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Résumé: La thèse porte sur le développement
de modèles de décision pour la gestion des stocks
partagés, intégrée à l’optimisation des tournées de
véhicules dans les chaînes logistiques. Nous nous
concentrons plus particulièrement sur le partage
des stocks de produits finis et des supports réutil-
isables de transport (SRTs) qui circulent en boucle
fermée entre les partenaires d’une chaine logis-
tique. Pour mener cette recherche, nous partons
d’études de cas pratiques, décrivant la réalité du
partage des stocks. Nous nous intéressons par-
ticulièrement à la distribution d’articles de mode
et de pièces de rechange pour les produits finis
et à la gestion des SRTs dans les industries au-
tomobile et agroalimentaire tout en exploitant le
paradigme de l’Internet Physique. Ce dernier est
un concept novateur d’encapsulation des marchan-

dises dans des objets intelligents qui s’inspire de
la capacité d’Internet à interconnecter des réseaux
hétérogènes pour le transposer aux réseaux logis-
tiques. Nous étudions la littérature connexe pour
analyser les travaux existants et mettre clairement
en avant nos contributions. Nous développons
pour chaque type de stock partagé des modèles
mathématiques spécifiques, et des méthodes de
résolution originales basées sur l’hybridation de la
modélisation mathématique, des algorithmes co-
évolutifs et de l’apprentissage par renforcement
profond. Des expérimentations sont menées pour
évaluer la pertinence des modèles proposés, la per-
formance des approches de résolution, et pour
analyser les résultats obtenus afin de produire des
recommandations pertinentes.

Title: Modelling and solving complex vehicle routing problems with integrated management of shared
inventories in supply chains.
Keywords: supply chains management, inventory sharing, optimisation, modelling, metaheuristics,
machine learning

Abstract: The thesis focuses on the development
of decision models for managing inventory shar-
ing, integrated with vehicle routing optimisation
in supply chains. Specifically, we focus on inven-
tory sharing of finished products and returnable
transport items (RTIs) that flow in a closed loop
between partners in supply chains. To conduct this
research, we start from practical case studies, de-
scribing the reality of inventory sharing. We are
particularly interested in the distribution of fash-
ion items and spare parts for finished goods and
in the management of RTIs in the automotive and
food industries while exploiting the paradigm of

the Physical Internet. We review the related lit-
erature to analyse existing work and clearly high-
light our contributions. We develop for each type
of shared inventory specific mathematical models,
and original solution methods based on the hybridi-
sation of mathematical modeling, co-evolutionary
algorithms and deep reinforcement learning. Ex-
periments are conducted to evaluate the relevance
of the proposed models, the performance of the
resolution approaches, and to analyse the results
obtained in order to produce relevant recommen-
dations.
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Abstract

This thesis is a part of a joint project in industrial engineering and complex systems, known as the
"Pôle Commun de Recherche CentraleSupelec/EC Casablanca", between the Complex Systems and
Interactions research group of Ecole Centrale Casablanca and Laboratoire Génie Industriel of Cen-
traleSupelec. It concerns modelling and solving complex problems for optimising vehicle routing and
integrated management of shared inventory in supply chains. Sharing inventory concerns finished
products and empty reusable transport items (RTIs) that flow in a closed loop (e.g., pallets and
containers). Sharing inventory is authorised between entities belonging to the same supply chain
echelon to reduce logistics costs and enhance service levels at customers’ locations. We started with
practical case studies to conduct this research, highlighting the need to promote inventory sharing.
We were particularly interested in the distribution of fashion items, perishable products and spare
parts for finished goods and in managing RTIs in the automotive and food industries. Second,
we reviewed the related literature to analyse existing work and position our contributions. Then,
we developed specific mathematical models for each type of shared inventory and original solving
methods based on the hybridisation of mathematical modelling, co-evolutionary algorithms and deep
reinforcement learning. Finally, we conducted experiments to evaluate the proposed models’ rele-
vance and the resolution approaches’ performance and to analyse the results obtained to produce
relevant recommendations.

Keywords: supply chains management, inventory sharing, optimisation, modelling, metaheuristics,
machine learning
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Résumé Général

Cette thèse s’inscrit dans le cadre du partenariat en génie industriel et systèmes complexes, appelé
"Pôle Commun de Recherche CentraleSupélec/EC Casablanca", entre l’unité de recherche Sys-
tèmes Complexes et Interactions de l’Ecole Centrale Casablanca et le Laboratoire Génie Industriel
de CentraleSupelec. Elle porte sur la modélisation et la résolution de problèmes complexes pour
l’optimisation des tournées des véhicules et la gestion intégrée des stocks partagés dans les chaînes
logistiques. Les stocks partagés concernent à la fois les produits finis et les supports réutilisables
de transport (SRTs) vides qui circulent en boucle fermée (e.g.„ les palettes et les conteneurs). Le
partage des stocks est autorisé entre les entités appartenant au même échelon de la chaîne logistique
afin de réduire les coûts logistiques et d’améliorer le niveau de service chez les clients.

Pour mener cette recherche, nous nous sommes basés sur l’étude de cas pratiques, mettant en
évidence la nécessité de promouvoir le partage des stocks. Nous nous sommes particulièrement
intéressés à la distribution d’articles de mode, de produits périssables et de pièces de rechange
pour les produits finis, ainsi qu’à la gestion des SRTs dans les industries automobile et alimentaire.
Ensuite, nous avons passé en revue la littérature connexe afin d’analyser les travaux existants et de
positionner clairement nos contributions.

Nous avons proposé des approches de gestion pour les acteurs de la chaîne logistique désireux
de collaborer dans le but de réduire les coûts tout en maintenant un niveau de service élevé. Plus
spécifiquement, nous avons élaboré des approches de gestion des stocks et des tournées de véhicules
consistant à promouvoir le multi-sourcing pour atténuer les pénuries. Cette politique combine les
livraisons régulières du(es) producteur(s) aux clients (e.g., dépôts, points de vente, usines), et le
partage des stocks. L’autorisation de la substitution des produits est également investiguée.

D’un point de vue développement mathématique, nous avons proposé des modèles mettant en
exergue le partage des stocks, la collecte et la livraison couplées à l’optimisation des tournées de
véhicules, ainsi que les substitutions de produits. Ces formulations prennent également en compte
différents profils de demandes et prise de décision centralisée et décentralisée, ainsi que la logistique
inverse.

En ce qui concerne les approches de résolution, nous avons conçu des algorithmes intégrant les
connaissances acquises des modèles, et de l’hybridation de métaheuristiques sophistiquées. Étant
donné que la recherche aléatoire conduit à une évolution lente et à une faible efficacité de con-
vergence des métaheuristiques, nous avons utilisé l’apprentissage par renforcement profond pour
construire des algorithmes avec une forte auto-adaptabilité et des performances axées sur les con-
naissances et les objectifs. Les matheuristiques proposées ont été comparées aux algorithmes exacts
et métaheuristiques bien connus en termes de qualité de solution et du temps de calcul.

Finalement, nous avons évalué et quantifié l’impact de la mise en avant du multi-sourcing sur la
performance globale de la chaîne logistique. Nous avons démontré, au moyen des expérimentations,
que le multi-sourcing présente un apport vital pour une amélioration de la résilience et de l’efficacité
dans des contextes de plus en plus volatiles, complexes, incertains et ambigus.

Mots clés: gestion des chaines logistiques, stocks partagés, optimisation, modélisation, méta-
heuristiques, machine learning
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1 - General Introduction

In this introductory section, we present the supply chain trends and re-
lated issues. We then define the research scope, and provide the research
motivations and the theoretical background. Later, we present the related
research questions and methodology, and report our main contributions. Fi-
nally, we give a synoptic view of the thesis structure.

1.1 . Supply chain trends and related issues

Supply chains are continually changing, and the logistics environment
is becoming exceedingly challenging. Globalisation, along with technolo-
gies, is driving this transformation (Faruquee et al., 2021). Indeed, products
reach customers from companies involved in various processes and activi-
ties to produce and provide value through upstream and downstream link-
ages (Dudukalov et al., 2021). Moreover, customers behavioural patterns
are rapidly shifting as they are increasingly connected, endowed with an in-
creased capacity to act through networked exchanges, making digital their
daily use (Dash and Chakraborty, 2021). Nowadays, it has never been so
easy to consume. Whether in a few clicks, via phone or on a street corner,
customers will always find a way to see what they need (Reinartz et al.,
2019). Customers are thus more likely to change their source of supply and
to opt for a similar product from a different supplier who promises to de-
liver faster the right quantities of product to the right place at the most
reasonable cost.

With these significant disruptions, companies must be on top of their
game. They are being forced to transform and re-invent their operations
management to meet their customers’ needs, preserve, and develop their mar-
ket positioning and growth (Reinartz et al., 2019). This is particularly true
today with the current COVID crisis severely straining companies (Agostino
et al., 2021; Bai et al., 2021) and overturning all the theories that have been
established around logistics, more precisely regarding inventory management
and product availability (Shi et al., 2021). For instance, 94% of Fortune 1000
companies (e.g., Walmart, Boeing, Procter & Gamble, Coca-Cola, Amazon)
are seeing supply chain disruptions from COVID, particularly product unavail-
ability (Butt, 2021). In France, retailers lost €2.5 billion in potential sales,
and in the UK, £20 billion in lost sales in non-food stores due to COVID
(Panzone et al., 2021). In Japan, stocks of finished goods have dropped to
levels not even seen in the wake of the earthquake and tsunami disaster of
2011 (Batth, 2021). Not to mention the $1.1 trillion of total revenue lost
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worldwide each year due to inventory distortion (IHL, 2015).

Packaging is also concerned with unavailability issues that impacted global
trade during COVID. Indeed, almost all finished products – including clothes,
spare parts, medicines, and processed food products – are shipped, stored,
and handled using Returnable Transport Items (RTIs) like drums, containers,
pallets, boxes, barrels, trolleys, refillable liquid, or gas containers (Kochańska
et al., 2021). Along with the ever-growing globalised supply chains, RTIs
have become more popular over the last decades as they eliminate wastes
that one-way packaging may generate while conforming with the govern-
ment’s regulations for sustainable supply chains (Iassinovskaia et al., 2017;
Limbourg et al., 2016; Glock, 2017). Furthermore, due to COVID, the RTIs
market in the United States was valued at $7,827.5 million in 2020 and is
expected to reach $ 11,040.06 million by 2026, at a CAGR of 5.9% over
the forecast period (2021 - 2026) (Mordor Intelligence, 2021). On the other
hand, to avoid packaging unavailability, many companies frequently tend to
invest more into RTIs, resulting in higher holding costs (Meherishi et al.,
2021)). Moreover, supply chain players experience loss rates of RTIs varying
from 3 to 20% (TrackX, 2017). This mismanagement lengthens turnaround
times and pushes players to overinvest in these assets leading to inefficient
budgetary practices: companies buy new RTIs to replace the lost ones and
recruit additional staff to handle them (Meherishi et al., 2021; Ullah et al.,
2021).

These disruptions and changing conditions force companies to adopt dif-
ferent approaches to shipping products through their supply chains. The
continuous flow of data regarding customers, purchases, deliveries, locations,
and inventory makes product movement from various origins to various des-
tinations intrinsically much more complex and dynamic than it used to be
(Dudukalov et al., 2021). Since building customer loyalty is achieved through
product availability, timeliness, and consistency of delivery, companies should
properly integrate and understand the relevance of logistics activities. More-
over, they need to be more resilient and reactive to changes, to provide more
effective responses to customers whose demand is becoming more difficult to
predict and variable over time. This highlights inventory management and
distribution optimisation problems by resurfacing a longstanding research
area yet highly relevant to today’s world: the inventory routing problem
(IRP). Accordingly, this research project investigates the emerging issues of
modelling and solving complex routing problems. It emphasises that appro-
priate solutions to such complex issues can be identified when supply chain
players are jointly accountable for total system value creation, which can be
accomplished when information and resources are shared, and when broader
parts of the supply chain are together modelled and optimised.
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1.2 . Research scope definition

We consider in our research project distribution networks where a set of
products are shipped from one or different suppliers to different customers
(e.g., retailers, Point of Sales, plants) to satisfy their demands that vary over
time. The supplier-s and the customers incur inventory costs. Shipments are
performed by an owned or outsourced vehicle fleet with a given capacity.
Transportation costs occur for each movement of vehicles.

Products shipment from supplier-s to the customer can occur under two
main configurations. In the first one, deliveries are triggered by customers
placing orders. The delivery company (supplier-s) should then find for each
day an efficient and effective combination of routes that minimises the dis-
tance travelled from its warehouse to the customers’ local stores. This prob-
lem is called “Vehicle Routing Problem (VRP)”, well-known in the literature
in various forms with varying constraints (Laporte, 2009). In the second con-
figuration, the delivery company manages the inventory replenishment of its
customers. Under a supply chain agreement called “Vendor Managed Inven-
tory (VMI)”, the supplier-s and the customer manage inventory jointly and
mutually, reducing the risk of shortage or oversupply of products (Archetti
et al., 2007). The supplier-s can schedule the logistics operations more
productively, yielding reductions in inventory costs and shortages. In the lit-
erature, this problem is referred to as Inventory Routing Problems (Coelho
et al., 2012b; Coelho and Laporte, 2013a).

Yet, it is well known that both VRP and IRP are NP-Hard (Coelho and
Laporte, 2013a; Laporte, 2009). They are notoriously challenging for exact
methods (Desaulniers et al., 2016), but they can efficiently be tackled by
combining metaheuristic and mathematical modelling techniques, referred
to as matheuristics (Chitsaz et al., 2019). Indeed, the use of metaheuristics
in most cases does not capture different aspects of real-world problems,
leading to impractical resolution approaches (Archetti and Speranza, 2014).
This keeps research in this area interesting and gives rise to practical problems
for investigation, particularly when it comes to urban logistics.

The product’s transportation and delivery and the management of their
reusable transport supports are vital processes in different supply chains. It
plays a decisive role in customer value creation through the provided service
level and determines the business logistics costs. The current competitive
environment and the development of new technologies have forced companies
to share resources more than just information and practices. The scope of our
research is then defined around partnerships, cooperation, and collaboration
processes that suppliers and their customers need to develop to work together
through new forms of distribution of goods to reduce costs while guaranteeing
the service level to customers and preventing product shortages as much
as possible. It also focuses on developing original and efficient resolution
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approaches to handle the combinatorial complexity of the problems.

1.3 . Research motivation

Product shortage is a timely issue that reduces the supply chain’s play-
ers’ profits, harms product branding, and impedes the overall supply chain’s
sustainability. This is especially true regarding the uncertainties that char-
acterise the international business landscape in which supply chains operate
today. Supply chain managers are asked to secure supplies and avoid pos-
sible shortages. They must play a delicate balancing act: reducing stock
levels to reduce costs while ensuring no shortages so that no interruption of
production and delivery to customers may incur. This is not easy, especially
if orders for a particular product category are unpredictably increasing. The
question is how to proceed? One way is to authorise resource sharing, partic-
ularly lateral transshipment (LT), which relies on inventory sharing between
members belonging to the same echelon of supply chains (Paterson et al.,
2011; Coelho et al., 2012b; Lefever et al., 2018; Abouee-Mehrizi et al., 2015).
This is a practice of inventory pooling used thanks to its potential to increase
profitability and service levels through risk pooling. It is common to see LT
between different stores nowadays as it allows faster deliveries compared to
emergency orders and savings from unnecessary production, especially for
perishable goods.

Many illustrations of this practice can be found in various industry sec-
tors, such as automotive, spare parts, fashion, retailing, and different online
trading platforms (Grahovac and Chakravarty, 2001; Abouee-Mehrizi et al.,
2015; Accorsi et al., 2019; Zhao and Bisi, 2010). The advantages of inventory
sharing are noticeable in terms of improved service levels and profitability.
These advantages are ultimately determined by inventory holding and player
sharing decisions. This requires academic research that examines how shar-
ing decisions are made and quantifies savings through analytical models and
simulation studies.

Avoiding shortages and improving service levels can result from a sub-
stitution strategy. In competitive markets, customers choose from various
products according to their needs. They may choose to buy their preferred
products or opt for substitute products in case of unavailability. Substitutes
can lead to healthy market competition between products, which is in the
customers’ best interest, preventing a market monopoly. Indeed, substitution
is another strategy to cope with shortages that can be combined with LT.
Examples of such practices stem from perishable products like blood products
(e.g., artificial blood that can be used as a substitute to mitigate the risks of
blood transfusions) and spare parts (e.g., original equipment manufacturer
parts that can be substituted by aftermarket parts called replacement or pat-
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tern parts). In both cases, substitution can represent an alternative to meet
customers’ demands better, mainly if decision-makers are not fully aware of
future events.

Our research is mainly motivated by real-life industrial applications. We
investigated two Moroccan companies seeking a better way to supply their
distribution networks via a Central Warehouse (CW). The objective is to
demonstrate that LT can help reduce costs and enhance service levels. We
started with a fashion distribution company that manufactures a set of fin-
ished products and allocates them via a CW to its customers (i.e., Point
of Sales POS) according to a pre-established policy based on the previous
sales of similar products. In most cases, as customer demands vary, the stock
imbalance can regularly happen: some customers have over-stock (and there-
fore incur high holding cost), while others are out of stock (and therefore
incur shortage cost: loss of sales). The company aims to increase its rev-
enues and service level and avoid any loss of profit due to the non-availability
of products at the right places and moments.

We also examined the case of an automotive spare parts distributor,
which has been active for decades in the distribution of spare parts and
automotive accessories sector. The distributor supplies its customers via
a CW with original equipment manufacturer (OEM) and replacement or
aftermarket parts, also called replacement parts or pattern parts (PP). The
latter are reverse-engineered OEM parts, designed to perform the same way
as OEM parts, are less expensive, have a quality equivalent to or better
than OEM parts, and are provided with a wider variety. On the other hand,
spare parts are known to be at the most significant risk of obsolescence and
may collectively account for up to 60% of the total stock value (Johnston
et al., 2003). Moreover, their demand pattern is intermittent, exhibiting an
infrequent rate and extreme dispersal over periods which often hinders the
reduction of lost sales at the customer’s location.

Reducing the shortage of finished products at customers’ locations by
authorising multi-sourcing (i.e., LT and substitutions) is essential. On the
other hand, the unavailability of packaging, particularly RTIs, hinders the
performance of the supply chains. Indeed, such assets usually flow in a closed-
loop supply chain between different players. Once received and unloaded at
a given level of the supply chain, the empty RTI can either be collected and
returned to the sender, or they can be reused by the receiver to ship his
products and thus continue to flow downstream the supply chain. Therefore,
there exist two flows of RTIs that must be managed: forward flows, which
correspond to the forward distribution of finished products loaded on RTIs,
and reverse flows, which correspond to the collection and return of empty
RTIs to their owners. However, in many practical cases, the quantity of
empty RTIs in inventory at the owner’s location may not be sufficient to meet
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the future demands of his customers (e.g., plants, POS, retailers). This may
be due, for example, to delays in returning empty RTIs from customers, loss
of RTIs, damage to the returned RTIs, or highly variable customer demands,
making it challenging to meet customers’ needs. This thesis focuses on a new
management approach to overcome the shortcomings of managing empty
RTI inventories. Specifically, we consider the case of a two-level closed-loop
supply chain comprising a set of suppliers delivering the product to common
customers. This can be, for instance, the case of stillages in an automotive
supply chain, plastic crates in a Fresh-food supply chain, or pallets in the
Fast Moving Consumer Goods (FMCG) supply chain. We assume that RTIs
are "mutualised" throughout the supply chain. Consequently, suppliers can
sidestep the shortage of empty RTIs at their levels and reduce the cost of
transportation, inventory holding, and new RTIs procurement. Thus, we
addressed a deterministic multi-supplier, multi-customer IRP with pickup
and delivery of multi and shared RTIs.

To bring into the play the benefits of promoting inventory sharing of
finished products and RTIs, we built up all developed models to investigate a
three-level-closed loop supply chain in a Physical Internet (PI) setting. The
latter is an innovative concept of encapsulating goods in intelligent objects,
globally standard, smart, green, shared, and modular containers, inspired by
the Internet’s ability to interconnect heterogeneous networks and transpose
them to logistics networks. In this thesis, we develop an optimisation model
for inventory routing of reusable containers flowing in a closed loop. We
investigate a PI-supply chain in which a set of suppliers deliver their products
using RTIs to customers (e.g., plants, retailers, etc.). Direct and reverse
flows of the RTIs are consolidated at the level of a set of PI-hubs. Such
management is highly relevant in the FMCG industry, where products are
non-durable, delivered in packaged form, at low prices and in high volumes,
and frequently purchased. This thesis focuses on the inventory routing model
under stochastic demand of reusable containers exploiting the PI concept,
which is new to the literature. Second, it considers inventory sharing between
the PI-hubs. Sharing includes both empty and loaded RTIs (i.e., finished
products).

The analysis of the different configurations under consideration reveals
a specific need in inventory management which may be common to several
other companies. Indeed, companies seek alternative methods to manage in-
ventory sharing by promoting product substitution and transshipment within
the distribution network. The objective is to ensure a high customer service
level commitment avoiding as much as possible loss of sales while minimis-
ing logistics costs. Our research work aims to answer these critical concerns.
The research objective is to develop a modelling framework endowed with
solving capabilities that allows capturing different sharing strategies and in-
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vestigating their potential benefits for the players.

1.4 . Theoretical Background

In this section, we present the theoretical background of the thesis. More
in-depth literature reviews are to be found in the remaining chapters.

1.4.1 . IRP Problems

In its classical version, an IRP refers to a combination of inventory man-
agement, vehicle routing and delivery scheduling decisions. Such a prob-
lem arises in several industries and services under a VMI setting where a
supplier/vendor is responsible for managing its customer’s inventory. The
supplier must deliver products to several geographically dispersed customers
subject to side constraints Coelho et al. (2014b)). He can reduce the over-
all costs of his activities to achieve a competitive advantage by integrating
routing, inventory, and distribution decisions instead of optimising them in-
dependently.

The IRP has received considerable attention from researchers over the
years, and multiple variants considering multiple attributes of the problem
have been studied. IRP problems can be classified according to different crite-
ria. The first is the number of customers and suppliers (Coelho et al., 2012a).
We distinguish the one-to-many version where one supplier serves several cus-
tomers (Bell et al., 1983; Burns et al., 1985; Abdelmaguid, 2004); and the
many-to-many version, which is less investigated, with multiple customers be-
ing served by numerous suppliers (Christiansen, 1999; Ronen, 2002). Routing
is the second criterion that distinguishes between the direct routing, where
there is only one customer per route, and the multiple routing, where dif-
ferent customers are visited using the same route (Zhao et al., 2008). The
inventory strategy pre-established to satisfy customers is the third classifica-
tion criterion. The most used policies are the Maximum Level strategy (ML)
and the Order-Up to level (OU) one. The replenishment level is flexible un-
der an ML inventory strategy but is restricted by the resources available to
each customer (Savelsbergh and Song, 2008; Coelho and Laporte, 2013b).
Under an OU policy, the quantity delivered must fill its inventory capacity
whenever a customer is visited. The characteristics of the vehicle fleet are
another classification criterion. The number of vehicles can be set at one,
set at many or unconstrained. The vehicles can be homogeneous, heteroge-
neous of limited capacity or unconstrained (Zhao et al., 2008; Coelho et al.,
2012a). In most papers in the IRP literature, only one product is considered,
whereas many VMI applications are concerned with multiple product distri-
butions. Few papers address the multi-product inventory routing problem
(Coelho et al., 2012a).
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IRP can also be classified regarding the nature of demands. Static and
deterministic IRP is the most studied. Unlike static and stochastic IRP in
which demands distributions are known before planning, in a dynamic and
stochastic IRP (DSIRP), demands are gradually revealed over time (Bertazzi
et al., 2013). This is particularly true in the aerospace, IT, blood, and
automotive industry contexts (Turrini and Meissner, 2019). In this case,
the objective is not to deliver a static result, but a solution policy using the
information revealed, outlining which measures need to be performed as time
passes (Coelho et al., 2014a).

1.4.2 . Transshipment

Inventory and transportation are the most critical issues of the logistics
system and the two main drivers that provide value to customers ensuring
product availability, timeliness and consistency of delivery. Supply chain
managers are asked to secure supplies and avoid possible shortages of product
availability. When dealing with distribution networks with different retailers
supplied from one or multiple warehouses, managers must constantly play a
tricky balancing act, juggling between the need to reduce inventory levels to
reduce costs and the need to avoid shortages not to impact the service levels
promised to customers. This is not easy, significantly, if customer demand for
a particular product category is unpredictably increasing. The question that
arises then is how to proceed in such conditions. A possible solution could
stem from resource sharing, particularly LT, which relies on inventory sharing
between members belonging to the same echelon of a supply chain (Paterson
et al., 2011; Coelho et al., 2012b; Lefever et al., 2018; Abouee-Mehrizi et al.,
2015).

Unlike the "traditional" and "hierarchical" design of an inventory sys-
tem, with transportation flows from one echelon to the next, i.e. from
manufacturers/suppliers to customers (e.g., wholesalers, retailers), a flexible
approach allows LT within an echelon, i.e. between customers (Paterson
et al., 2011). In this way, members of the same echelon pool their inven-
tories. LT can occur at predetermined times before all demand is realised
or at any time to respond to shortages or potential shortages of products
(Timajchi et al., 2019). LT concerns, for instance, perishable products (e.g.,
blood products), low demand items (e.g., spare parts), fast-moving items
(e.g., packaged food) and empty RTIs inventory (Grahovac and Chakravarty,
2001; Abouee-Mehrizi et al., 2015; Accorsi et al., 2019).

LT is certainly not a new practice, but it has been brought to the fore
during the pandemic thanks to its numerous advantages (Ekren et al., 2021):

• it allows faster response to customers compared to emergency deliveries
in case these latter is significantly longer and more expensive (e.g.,
supplier’s CW located far from customers) (Paterson et al., 2011).
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• it re-balances the entire system’s stock levels to react to scenarios
where one of the locations faces a shortage while others have residual
stock in hand. Thus, reducing the inventory distortion (shortages and
overstocks) (Cavagnini et al., 2018).

• it reduces transportation and inventory costs at customers (Timajchi
et al., 2019).

• it reduces excessive production, especially for perishable products, as
the products that were to be manufactured and then shipped to a
customer to respond to emergency orders will instead be replaced by
the products held at other customers’ locations (Dehghani et al., 2021).

• it saves vehicle resources, eases traffic congestion, and reduces envi-
ronmental pollution (Mirzaei and Seifi, 2015).

LT can be encountered either in centralised or decentralised settings. In
a centralised setting, a single decision-maker (e.g., supplier) aims to reduce
the overall logistics costs at his level and customers’ locations (Paterson
et al., 2011). Minimising the total cost may include inventory holding at
suppliers and customers, shortage, routing and transshipment costs. To
address the planning of routing and LT, an inventory routing problem (IRP)
with LT (IRPT) is solved (Coelho et al., 2012b; Azadeh et al., 2017). In
this specific problem (IRPT), the decision-maker determines simultaneously
when to deliver which products to which customer; how much to deliver to
each customer; how much inventory to share and transship, and the routing
of vehicles for regular shipment (e.g., from supplier’s central warehouse to
customers) and for LT (e.g., between customers).

In decentralised systems, each decision-maker (supplier and customers)
operates to minimise his costs (Axsäter, 2003). Each LT policy has to bal-
ance conflicting interests and manage inventories and deliveries in this set-
ting. Moreover, it has to choose the right LT price so that both supplier
and customers would benefit from LT and its related cost would not exceed
the profit to be made (Shao et al., 2011; Hezarkhani and Kubiak, 2010;
Atan et al., 2018). The supplier’s objective is to choose inventory levels
and routes to be constructed either for regular shipment or LT. In addition,
customers minimise their inventory holding and shortage costs; while satis-
fying constraints relative to vehicle routing (VRP) and product availability.
Therefore, costs are often optimised locally as both players aim at reduc-
ing their objective functions that are narrowly defined. Accordingly, solving
such problems requires hierarchical decision-making, which belongs to the
multilevel optimisation family (Grahovac and Chakravarty, 2001).
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1.4.3 . Substitution

Another management policy that relies on promoting multi-sourcing op-
tions to mitigate shortages without resorting to drastic inventory increases is
using product substitutes (Hssini et al., 2016). In practice, more precisely in
a multi-product configuration environment, when a supplier cannot guaran-
tee the replenishment of product P , retailers, for instance, may suggest to
their clients the use of substitute product S having the same functionality as
P to meet his demand. This practice offers opportunities to increase service
quality.

Suppliers can promote product substitution along with LT whenever de-
mand exceeds the available stock at their customers’ level by assuming that
emergency supplies from the CW are significantly extended and expensive.
That is, LT and substitution can be considered to meet expected demands
with the use of the same part from the inventory of another retailer in the
network (LT) or with the help of product substitutes held in their stock
(substitution). This can be the case with perishable products such as blood
products, where artificial blood can be used as a substitute to mitigate the
risks of blood transfusions and shortage of supply (Hssini et al., 2016).

Along with LT, product substitution is most encountered in the spare
parts supply chain, where aftermarket parts can substitute original spare
parts. The typical studied configuration is a two-level supply chain configu-
ration in which a company supplies its CW with OEM products and replace-
ment, or aftermarket parts, also called replacement parts or pattern parts
(PP) to a set of its customers. In such a case, shipments are assumed to be
direct, if necessary, from the CW to any customer. This problem can gen-
erally be modelled as a multi-product IRPT with substitutions under static
or dynamic stochastic demands. The objective is to minimise the total cost,
including the costs of holding inventory, transportation, LT, substitution and
lost sales. To the best of our knowledge, none of the existing papers incor-
porates product substitution within the settings and promotes LT between
customers to avoid shortages.

1.4.4 . Pickups and deliveries and transshipment Price

When a supplier agrees with his customers to share inventories, he must
decide, at each visit to a customer, the quantity to deliver and pick up. Pick-
ups and deliveries of shared stocks can be either outsourced or integrated.
In the first case, pickups and deliveries are performed by a third-party car-
rier that only takes charge of shipments of transshipped products between
customers, while regular shipments from the supplier are performed using
his vehicles. In this case, the decision-maker determines only the nodes and
periods where LT may occur are determined, and inventories are managed
so that LT can be performed (Coelho et al., 2012b). When pickups and de-
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liveries can be carried out by the same vehicles that make regular shipments,
LT should be integrated into the design of vehicles’ routes.

Modelling inventory sharing brings out an essential concept of collabo-
ration in decentralised supply chains. Indeed, each LT policy must balance
conflicting interests to achieve economies of scale. Also, it must determine
the right LT price such that both the company and its customers (i.e., POS,
depots, and retailers) benefit from LT and the resulting costs do not exceed
the profit to be made (Atan et al., 2018). This is the case of decentralised
supply chains in which each decision-maker or level of the supply chain works
to optimise its costs (Liao et al., 2020; Li et al., 2020). This problem is often
modelled using game theory and considering the supplier acting as a Stack-
elberg leader (Axsäter, 2003). That is, customers (followers in such a game)
optimise their objective function subject to the value of the leader variable.
In such a model, each player’s preliminary decision is to enhance the ser-
vice level while maintaining a minimum total cost, including transportation,
inventory, lost sales, and LT. That is, the objective of the supplier (upper
level) is to choose inventory levels and routes to be constructed (accord-
ing to his objective), knowing that the customers (lower level) will follow
optimally; while satisfying a set of constraints relative to vehicle routing,
products availability, and inventory management.

Moreover, players under a decentralised setting seek approaches that
suggest trade-off solutions to manage their conflict of interests (Li et al.,
2020). Indeed, as a part of the collaboration, the supplier and the customers
may agree to incur each their own holding cost as well as a part of the cost
of lost sales associated with the products shortage and a part of the cost of
LT, more precisely when LT is not outsourced. The supplier incurs, in turn,
the vehicle routing cost for regular shipments. Therefore, inventory sharing
can only be attractive to all players if the LT and lost sales costs share are
optimally defined. Such a configuration is thoroughly investigated in this
thesis.

1.4.5 . Returnable Transport Items in sharing context
Product packaging is of great importance in the supply chain. It serves

multiple functions that impact distribution, warehousing, business operations
and customers’ actions (Limbourg et al., 2016). We can distinguish between
single-use and multi-use packaging or RTIs (Iassinovskaia et al., 2017). The
various items used for transporting goods naturally differ per industry. How-
ever, almost all finished products are shipped, stored, and handled using
Returnable Transport Items (RTIs) like drums, containers, pallets, boxes,
barrels, trolleys, refillable liquid, or gas containers. These under-recognised
packaging items ensure goods flow safely, cheaply, and efficiently through
the entire supply chain. They are of significant value. Their prices can fluc-
tuate many times a year under the pressure of new trends in e-commerce and

21



logistics, particularly since the COVID crisis (Mordor Intelligence, 2021).
RTIs unavailability hinders the flow synchronicity through the entire sup-

ply chain and impacts its global performance. Thus, reducing the shortage
of RTIs at suppliers’ locations by promoting sharing and authorising multi-
sourcing is very important. Indeed, RTIs flow in a closed-loop supply chain
between different players. Therefore, their forward (loaded RTIs) and reverse
(empty RTIs) flows must be managed. However, suppliers often experience
delays in returning empty RTIs from customers, loss of RTIs, damage to the
returned RTIs, or highly variable customer demands, making it challenging to
meet customers’ needs (Bortolini et al., 2018). Therefore, managing such as-
sets becomes a primary concern of supply chain managers in the same way as
managing inventories, warehouses, machines, and vehicles. To avoid reusable
packaging unavailability, many companies frequently tend to over-invest in
RTIs, which results in higher inventory holding and purchasing costs. It is
then of such interest to consider sharing RTIs among owners as a new man-
agement approach to overcome the shortcomings of managing empty RTIs
inventories. This approach may concern, for instance, the case of stillages
in an automotive supply chain, plastic crates in a Fresh-food supply chain,
or pallets in the FMCG supply chain. This thesis contributes to modelling
sharing RTIs within multi-level closed-loop supply chains.

As mentioned above, this research project is also driven by gaps identified
in the literature. Literature reviews, conducted and presented in the follow-
ing chapters, highlight that few papers consider the study of multi-product,
multi-supplier VRP/IRPT with deterministic or stochastic demands, and in
which lost sales due to shortages are viewed as a measure of customer satis-
faction. Moreover, it can also be noted that most papers consider centralised
decision making, a single actor responsible for managing the overall opera-
tions. Moreover, to the best of our knowledge, none of the existing papers
incorporates product substitution within the settings and promoting LT be-
tween customers to avoid shortages. Furthermore, one can observe the lack
of contributions regarding integrating the LT in the design of the vehicle
routes, which are traditionally decomposed or separated as researchers as-
sume that LT is always outsourced. Beyond the fact that multi-sourcing
creates flexibility and mitigates the risks of supply chain disruptions, it is
worth noting that its integration makes the supply chain and, consequently,
its modelling more complex. This requires, therefore, the development of
efficient, fast, and relevant resolution approaches.

1.5 . Research questions

The research project is motivated by real-world applications. The inves-
tigation of these fundamental problems reveals a specific need for suppliers
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and customers relative to the management of inventories and goods trans-
portation and delivery. They are seeking new approaches to work together
to reduce costs while guaranteeing high service levels and preventing stock-
outs as much as possible. This has revitalised the classical IRP under new
constraints and brought the critical question of its resolution to the fore.

The present research is also driven by gaps in the literature regarding
modelling and solving complex vehicle routing problems with shared inven-
tory management in supply chains. Yet, it is well known that large inventory
routing problems are complicated to solve to optimality and are notoriously
challenging for exact methods that push researchers to design suitable solu-
tions.

In this thesis, we are advocating for a new management policy promoting
multi-sourcing options to mitigate shortages. This policy combines regu-
lar shipment from manufacturer to customers, inventory sharing through LT
among customers, and the use of product substitutions whenever it is possi-
ble. We assume emergency supplies from the CW are significantly extended
and expensive, which makes relevant investigating substitution whenever pos-
sible along with LT whenever demand exceeds the available stock at the level
of each customer.

Therefore, both the case studies and the literature analysis open promis-
ing lines of research. Particularly, the main objective of this thesis can be
stated as follows:

Modelling and solving complex vehicle routing problems with integrated
management of shared inventories in supply chains.

Four main research questions can be derived from this research objective:

1. How to mathematically model inventory sharing and substitutions con-
straints within inventory routing problem formulations under different
customer demand and supply chain settings?

2. How to design suitable solving approaches integrating as much as pos-
sible the knowledge built up thanks to the mathematical modelling?

3. How to quantify the benefits of sharing inventories between suppliers
and customers, and what advantages does product substitution bring
to the different players?

4. Under which organisation conditions inventory sharing is the most ben-
eficial to the involved players?

To address these questions, an appropriate methodology is described here-
after.
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1.6 . Research methodology and dissertation organisation

1.6.1 . Research methodology

We establish a global review of the literature in parallel with a deep
understanding of the business cases. This step helps us depict an explicit
characterisation and classification of the different problems and encored con-
figurations. We then develop mathematical formulations to model the various
forms of IRP decision problems with transshipment and substitutions. After
that, we design appropriate and original solving approaches. The perfor-
mance of these solving methods is compared to the best existing benchmark.
Finally, different experiments are conducted to evaluate the benefits of the
proposed approaches for managing shared inventory.

Based on the above-described practical cases and thorough literature
reviews, we identify four constrained and complicated configurations of real-
world supply chains so that the benefits of promoting inventory sharing and
product substitution are highlighted. As the availability of both finished
products and RTIs is a vital input for an effective performance appraisal, we
mainly investigate the distribution of fashion items, perishable products, and
spare parts for finished goods and the management of RTIs in the automotive
and food industries in closed-loop supply chains. The configurations under
study are as follows:

• For finished products:

– We consider a two-level supply chain in which a company man-
ufactures a set of products and sells them through its point of
sale network (we refer to as customers). A deterministic multi-
product multi-vehicle inventory routing problem with LT in which
transshipment-related decisions are integrated into the design of
routes is studied (cf. Chapter 2).

– We conserve the same configuration, and along with LT, substitu-
tions of products are used to sidestep shortages at the customer
level in stochastic contexts. The two modes of managing the
pickup and delivery of shared inventory are examined (cf. Chap-
ter 3 and 4).

– We investigate the same configuration but this time with decen-
tralised decision-making. A deterministic multi-product multi-
vehicle Vehicle Routing Problem (VRP) with LT and Inventory
Management (VRP-TIM) is solved. The problem is modelled as
a 1- leader - n-followers Stackelberg game, and the LT-related
decisions are integrated into the design of vehicle routing (cf.
Chapter 5
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• For RTIs:

– We consider a two-level-closed loop supply chain consisting of a
set of suppliers and customers. A deterministic, multi-supplier,
multi-customer inventory routing problem with pickup and deliv-
ery of multi and shared RTI is modelled and solved (cf. Chapter
6).

– We consider a stochastic, multi-supplier, multi-hub, multi-customer
inventory routing problem with pickup and delivery of multi and
shared containers in the PI’s related logistics services. Also, inven-
tory sharing between the hubs, including empty RTIs and finished
products, is considered (cf. Chapter 7).

Figure 1.1 provides a global view of the different configurations under
study.

Figure 1.1: Overview of the configurations under study
Regarding the resolution approaches, we investigate first exact methods

and meta-heuristics as they are widely used for classical IRP. Literature re-
views revealed that few algorithms could be applied to the problems studied
in this thesis. Original solution approaches- called matheuristics - based on
the hybridisation of mathematical modelling, sophisticated metaheuristics
and deep reinforcement learning techniques (RL) are then developed.

We propose an original matheuristic to solve a deterministic IRPT that
integrates mathematical modelling strengthened with relevant derived valid
inequalities and hybridises two sophisticated metaheuristics: Genetic Algo-
rithm (GA) and Simulated Annealing (SA). Also, we used Sample Aver-
age Approximation and GA coupled with mathematical modelling and RL
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to solve a stochastic IRPT with integrated/outsourced LT and substitutions
(cf. Chapters 3 and 4).

The competitive performance of the matheuristic coupled with RL en-
courages us to use it to solve the models developed in Chapters 5, 6 and 7.
Regarding managerial insights, the results highlight the benefits of inventory
sharing and substitution on the overall performance of the supply chain: cost
reduction (up to 50%) and improved service levels (up to 43%). Results also
suggest insights of interest to professionals willing to develop new decision
support models for the most efficient management of finished products and
RTIs inventory.

Further details are given in Chapters 2, 3, 4, 5, 6 and 7. Contributions
related to these questions are published in international journals and confer-
ences. Figure 1.2 provides an overview of the main contributions that had
been carried out in this doctoral thesis. It’s worth highlighting that each
scientific paper has a specific methodology presented in each article.

1.6.2 . Dissertation organisation
Figure 1.3 gives a synoptic view of how the thesis is structured based on

literature gaps and case studies described in the previous sections. Chapter 2
presents the model and resolution approach developed to solve a deterministic
multi-product multi-vehicle IRPT in which transshipment-related decisions
are integrated into the design of routes. Computational results highlighted
the benefits of LT on the overall supply chain. Also, a sensitivity analysis is
conducted, revealing the extent to which inventory sharing among different
points of sale can be cost-effective by the savings it brings to reduce lost
sales and inventory holding.

Based on the supply chain configuration and modelling given in Chapter
2, Chapter 3 provides the model with and resolution approach developed to
solve a static and stochastic multi-product multi-vehicle spare parts IRP with
substitution and LT, and in which transshipment-related decisions are inte-
grated into the design of routes. Computational experiments highlight the
benefits of promoting LT and substitution on the supply chain performance.
Results also suggest insights that interest professionals willing to develop new
decision support models for the most efficient management of such items.

Chapter 4 extends the work presented in Chapter 3 by investigating a
dynamic and stochastic version of the problem, considering that LT is out-
sourced, and by combining the matheuristic, proposed in Chapter 2, with RL
techniques to enhance its performance. Results confirm the efficiency of the
proposed algorithm and highlight the benefits of both transshipment, and
substitutions on the supply chain’s overall performance.
The competitive performance of the resolution approach described in Chapter
5 encourages us to use it to solve a deterministic multi-product multi-vehicle
VRP with LT and inventory management under a decentralised setting of the
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configuration presented in the previous chapters. The gap analysis shows that
the proposed algorithm performs relatively well and that inventory sharing
allows the network to improve its service level.
After highlighting the benefits of promoting sharing inventory of finished
products, sharing empty RTIs inventory is examined in closed-loop supply
chain configurations. In Chapter 6, a deterministic, multi-supplier, multi-
customer inventory routing problem with pickup and delivery of multi and
shared RTIs is modelled and solved. From a managerial point of view, the
results stress that sharing RTIs allows economies of scale and cost reduction
at the level of all involved parties. From a managerial point of view, the
results emphasise that this new approach will enable economies of scale and
cost reduction at the level of all involved parties. Also, a sensitivity analysis
highlights the benefits and limits of the proposed model compared to classi-
cal management strategies.
To bring into play the advantages of sharing finished products and their
reusable packaging, we exploit the PI paradigm characteristics in terms of
high integration, flexibility and openness. Chapter 7 is built on models,
configurations and solving methods examined in previous chapters. It fo-
cuses on the inventory routing model with pickup and delivery of reusable
PI-containers, which is new to the literature. Also, deliveries from suppli-
ers to the PI-hubs and from PI-hubs to the customers are considered to be
performed within time windows. Furthermore, the positive impact of the PI
model on logistics efficiency compared to the classical model is highlighted.

28



Figure 1.3: Dissertation organisation
The list of publications associated with this thesis and on which this

manuscript is built is as follows:

• Chapter 2:
Achamrah, F.E., Riane, F., Di Martinelly, C. and Limbourg, S. (2022).
A matheuristic for solving inventory sharing problems. Computers &
Operations Research.

• Chapter 3:
Achamrah, F.E., Riane, F. and Limbourg, S. (2022). Spare parts
inventory routing problem with transshipment and substitutions under
stochastic demands. Applied Mathematical Modelling.

• Chapter 4:
Achamrah, F.E., Riane, F. and Limbourg, S. (2021). Solving inven-
tory routing with transshipment and substitution under dynamic and
stochastic demands using genetic algorithm and deep reinforcement
learning. International Journal of Production Research.

• Chapter 5:
Achamrah F.E., Riane F., and Aghezzaf E.H. (2022). Bi-level program-
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ming for modelling inventory sharing in decentralized supply chains.
Transportation Research Procedia.

• Chapter 6:
Achamrah F.E., Riane F., Bouras A., and Sahin E. (2020). Collabora-
tion Mechanism for Shared Returnable Transport Items in Closed Loop
Supply Chains’, 9th International Conference on Operations Research
and Enterprise Systems, ICORES 2020, VALLETA, Malta.
Achamrah F.E, Riane F., Sahin E., and Limbourg, S. (2022). An
Artificial-Immune-System-Based Algorithm Enhanced with Deep Rein-
forcement Learning for Solving Returnable Transport Item Problems.
Sustainability.

• Chapter 7:
Achamrah F.E, Riane F., and Aghezzaf E.H. (2022). Integrating For-
ward and Reverse Network in the Interconnected Logistics Services in
the Physical Internet. Under review.
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2 - Modelling and solving a deterministic multi-
product multi-vehicle IRP-T
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A Matheuristic for Solving Inventory Sharing Problems

Fatima Ezzahra Achamrah a,b, Fouad Riane a,b, Christine Di Martinelly c,
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Abstract: In this paper, we addressed a two-level supply chain in which
a company manufactures products and sells them through its point of sale
network. The problem of concern is a multi-product, multi-vehicle inventory
sharing routing problem. We formulated it as a mixed-integer linear program-
ming problem. We also designed a two-phase matheuristic that integrates
mathematical modelling strengthened with relevant derived valid inequal-
ities and hybridisation of sophisticated metaheuristics: Genetic Algorithm
and Simulated Annealing. We tested 660 best known instances designed
for the single and multi-vehicle inventory routing problem, and the results
showed that the matheuristic outperformed the best known algorithms re-
garding computational times. Extra experiments were conducted on a set of
data specially designed for the multi-product multi-vehicle inventory sharing
routing problem. Computational results highlighted the benefits of sharing
inventory on the overall supply chain. Finally, a sensitivity analysis was con-
ducted, which revealed the extent to which inventory sharing among different
points of sale can be cost-effective by the savings it brings to reduce lost sales
and inventory holding.
Keywords: Shared Inventory, Transshipment, Inventory Routing Problem,
Matheuristic

2.1 . Introduction

In this paper, we focus on an inventory sharing problem that arises in
a fashion distribution company. The company manufactures products and
allocates them to its customers (i.e., Point Of Sales POS). Customer de-
mand varies, and stock imbalance can regularly happen: some customers
may be overstocking items while others may be running out of them. The
IHL Group, a global research and advisory firm specialising in technologies for
the retail and hospitality industries, revealed that $1.1 trillion worldwide to-
tal lost revenue opportunities is annually recorded due to inventory distortion
(IHL, 2015). Furthermore, acquiring trucks to handle last-mile distribution
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is becoming more complex as cities are getting more congested (Viu-Roig
and Alvarez-Palau, 2020). To ensure that the customers have enough items
so that the company can optimise its revenue, it can be in its best interests
to allow inventory sharing between its customers to balance inventories and
enhance service levels. Moreover, the same fleet of vehicles can be used to
ship products from its central warehouse (CW) to the customers and between
customers when needed. Furthermore, the fact that the same vehicles are
used to perform regular shipment and transshipment leads to better use of
each vehicle’s carrying capacity and implicitly reduces the carbon footprint.
This paper is positioned in the overlapping area of the two well-known prob-
lems: the classical inventory routing problem (IRP) and the transshipment
problem in which the same fleet of vehicles is used to make regular shipments
from CW to reallocate stocks between customers. The related literature is
now briefly examined.

2.1.1 . IRP and transshipment
The classical IRP refers to a combination of the vehicle routing and in-

ventory management problem in which a supplier has to deliver products
to several geographically dispersed customers (i.e., retailers, POS), subject
to side constraints (Coelho et al., 2014b). IRP arises in a vendor-managed
inventory (VMI) setting in which a supplier manages the inventory replen-
ishment of its customers so that the supplier saves on distribution cost while
the customers save on inventory management cost (Campbell et al., 1998).
The customers will engage in this relationship with the supplier once a high
service level is guaranteed. Some applications can be found in Absi et al.
(2013); Karakostas et al. (2020); Karakostas et al. (2020); Wu et al. (2021);
Gunawan et al. (2019) and Li et al. (2013).

However, regarding highly variable demand, IRP may lead to higher in-
ventory costs and a bullwhip effect. To mitigate this issue, sharing inventory
between the different locations belonging to the same distribution network
level can result in a considerable cost reduction (Paterson et al., 2011).
This type of inventory sharing is commonly referred to as LT (Grahovac and
Chakravarty, 2001). In their literature review on LT, Paterson et al. (2011)
divided the research into proactive and reactive transshipment. Proactive
transshipment is conducted periodically to re-balance the entire system’s
stock levels and aims to reduce potential shortages (Dehghani et al., 2021).
Reactive transshipment reacts to a scenario where one of the locations faces
a shortage while others have residual stock in hand (Cavagnini et al., 2018).
This type of transshipment is suitably conducted in environments with a
relatively low transportation cost compared to the holding and shortage
cost. Reactive transshipment can be encountered either in centralised sys-
tems where a single decision-maker works to increase the overall profit of
the entire system or in decentralised systems where each decision-maker op-
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erates to maximise profits. Most studies on centralised systems suppose
that the transshipment lead times are lower than those of the regular ship-
ment (Axsäter, 2003; Banerjee et al., 2003; Burton and Banerjee, 2005;
Shao et al., 2011; Mangal and Chandna, 2010; Herer and Tzur, 2001). The
authors showed that an LT policy is preferable to a non-LT policy if the ad-
vantages of preventing shortages exceed the increased delivery cost resulting
from transshipment. When significant LT times are considered, the benefits
of risk pooling are substantial only when the demand is highly variable (Gra-
hovac and Chakravarty, 2001; Tagaras and Vlachos, 2002; Wong et al., 2005;
Kutanoglu and Mahajan, 2009). Moreover, when considering stochastic de-
mands, transshipment can show more flexibility and better results regarding
lost sales reduction (Cavagnini et al., 2018; Abouee-Mehrizi et al., 2015).

It is in the latter context that Coelho et al. (2012b) introduced formally
the concept of IRP with transshipment (IRP-T). Under such a policy, prod-
ucts may be shipped to a customer, either directly from the supplier or from
other customers. The total cost to be minimised includes inventory holding
cost at the supplier and the customers, routing and transshipment costs.
The authors proposed a single-vehicle IRP-T under Order-Up to level (OU)
and Maximum Level (ML) policies. The authors assumed that shortages
are restricted, and transshipment is performed by a carrier’s vehicles, not by
the supplier’s vehicles. Transshipment decisions are therefore not considered
when optimising the routing decisions between the manufacturer and cus-
tomers. The authors used an Adaptive Large Neighbourhood Search heuristic
(ALNS) to tackle large-scale instances. Lefever et al. (2018) extended the
work of Coelho et al. (2012b). To strengthen the mathematical formula-
tion, the authors proposed a set of valid inequalities for IRP-T based on
the existing valid inequalities for the IRP, bounds, reformulation and variable
eliminations on the linear relaxation of the problem of concern. Mirzapour
Al-e-hashem and Rekik (2014) explored an IRP-T with a heterogeneous fleet
of trucks. They considered many-to-one supply chain networks comprising
one assembly plant and a set of suppliers, each of which supplies only one
product type. The authors assumed that a rental truck company is respon-
sible for shipping products from suppliers to the plant.

The MILP is solved by employing a branch-and-bound method. Azadeh
et al. (2017) proposed an MILP for IRP-T in the presence of a single per-
ishable product. Under an ML policy, a supplier decides on the quantities to
deliver to each customer over a finite planning horizon. The authors used
the Genetic Algorithm (GA) to solve the problem at hand and the Tagushi
approach for adjusting its parameters. Turan et al. (2017) addressed an IRP-
T under stochastic demand. They investigated a supply chain comprising a
central warehouse and retail stores. Transshipment may occur between retail
stores within a time window to re-balance the inventories. To solve the prob-
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lem, they used a Variable Neighbourhood Search algorithm. Timajchi et al.
(2019) studied an IRP-T for hazardous and deteriorating pharmaceutical
items in a healthcare network. Transshipment is allowed between hospitals
to sidestep any shortage. They proposed a bi-objective MILP. The first ob-
jective aimed to minimise the total cost, including ordering, transportation,
delivery, pickup, shortage and inventory holding costs. The second objective
function minimised the maximum accident loss during distribution among
all periods. The authors solved the problem using GA. Finally, Peres et al.
(2017) modelled a multi-product inventory routing problem for a proactive
transshipment between a factory and a set of distribution centres. In their
paper, multi-customer routes are considered an alternative to direct shipping.
Indeed, during a planned route, instead of shipping products to each single
centre, a vehicle can be filled with the current demand of a centre and the fu-
ture demand of other centres. The pre-delivered demand is stored temporarily
in this specific centre. The authors use a Randomised Variable Neighbour-
hood Descent to solve the problem. Table 2.1 characterises the previous
papers regarding criterion integration of multi-product (MP), multi-vehicle
(MV), Shortage (SH), either Backorder (BO) or Lost sales (LS), transship-
ment mode (TM) if LT is outsourced (OS) or integrated into the routing
(IT). Finally, resolution approaches (RA) use: MILP, metaheuristic (MT) or
a combination of the latter (matheuristic: MTH). From Table 2.1, a few pa-
pers on IRP-T studied a multi-product multi-vehicle version and considered
lost sales due to the shortages as a measure of the quality of the service and
customer satisfaction. Also, transshipment-related decisions were ignored
in designing vehicle routing as the transshipment is always assumed to be
subcontracted or performed by another carrier. Indeed, to simplify the opti-
misation problem, the authors only determine the nodes and periods where
transshipment may occur and manage inventories so that transshipment can
be performed. This paper thus aims to fill this gap.

Table 2.1: Overview of the related work on IRP-T
References MP MV SH TM RABO LS OS IT MILP MT MTHDehghani et al. (2021) ✓ ✓ ✓ ✓Coelho et al. (2012b) ✓ ✓ ✓Lefever et al. (2018) ✓ ✓Mirzapour Al-e-hashem and Rekik (2014) ✓ ✓ ✓ ✓ ✓Azadeh et al. (2017) ✓ ✓ ✓Turan et al. (2017) ✓ ✓ ✓ ✓ ✓Timajchi et al. (2019) ✓ ✓ ✓ ✓ ✓Peres et al. (2017) ✓ ✓ ✓ ✓ ✓This paper ✓ ✓ ✓ ✓ ✓ ✓

2.1.2 . Pickup and delivery

Integrating LT in the design of routes that do regular shipment overlaps
another classical problem: the pickup-and-delivery problem (PDP). PDP
refers to the collection and distribution of one or several products to and
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from a location (Berbeglia et al., 2007). According to Berbeglia et al. (2007)
and Battarra et al. (2014), the PDP can be classified into three variants –
Many-to-many (M-M), one-to-many-to-one (1-M-1) and one-to-one (1-1)
– based on the pickup and delivery structures. In an M-M PDP, multiple
pickups and delivery nodes exist (Xu et al., 2017). 1-M-1 PDP refers to the
deliveries from one depot to many customers, and pickups are performed
to send back products to the depot (Wassan et al., 2017). Finally, a 1-1
PDP refers to pickup and delivery requests in which each pickup location is
assigned to one delivery location (Qu and Bard, 2012). Applications of the
PDP combined with IRP can be mostly found in maritime transportation.
For reviews on maritime transportation, the reader is referred to Christiansen
et al. (2013) and Christiansen and Fagerholt (2014). On-road transportation,
Iassinovskaia et al. (2017) studied 1-M-1 IRP with simultaneous pickups
and deliveries of the returnable transport item in a two-level supply chain.
Archetti et al. (2018) explored an IRP with pickup and delivery (IRP-PD) in
which a commodity must be picked up from pickup customers and delivered
to delivery customers over a given planning horizon with a single capacitated
vehicle. Archetti et al. (2020) extended this work to the multiple vehicle
case. In both papers, it is assumed that role of pickup or delivery customers
remains unchanged during all the time horizons. Our study parallels that
of van Anholt et al. (2016) as it also considers two PDP structures in their
model: the 1-M-1 structure, which accounts for product shipments from a
depot to automated machines and back to a depot, and the M-M structure,
which refers to a commodity shipment among machines. However, in the
IRP-PD under consideration, routes are mainly constructed for pickup and
delivery. At the same time, in this paper, transshipment is considered an
additional measure to sidestep shortages, and transshipment movements,
depending on the costs, could be permitted on a link (i, j) even if they were
not to be used in IRP without transshipment. Moreover, van Anholt et al.
(2016) focused on one product while considering the multi-product case.
Also, in their paper, machines are assumed to be visited either for a pickup
or delivery operation, which is not the case in our paper. Each POS can be a
pickup node, delivery node, or both in each period. Finally, the return flows
of products to the CW were unexplored. We believe that we are unaware of a
contribution to multi-product IRP-T that includes these aspects mentioned
above.

2.1.3 . Scientific contribution and organisation of the paper
This paper contributes to the literature in three main dimensions. First,

it studies a multi-product multi-vehicle IRP-T in which transshipment-related
decisions are integrated into the design of routes. Each vehicle is allowed to
deliver regular demand of each product: from a CW to customers and trans-
shipped products from a pickup node to a delivery node. Second, it proposes
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an original matheuristic capable of handling the combinatorial complexity of
the problem, which integrates mathematical modelling strengthened with rel-
evant derived valid inequalities and hybridisation of two sophisticated meta-
heuristics. The performance of the suggested matheuristic is extensively
tested on benchmark sets of the literature for single and multi-vehicle IRP,
and results are compared to the best-known algorithms for similar problems.
Finally, extra experiments are conducted to explore inventory sharing benefits
and draw managerial insights regarding multi-product multi-vehicle IRP-T.

The remainder of the paper is organised as follows. Sections 2.2 and
2.3 provide the description and mathematical formulation of the problem or
concern, respectively. Section 2.4 describes the approach proposed to tackle
the problem complexity and derive good solutions in reasonable computa-
tional times. In Section 2.5, computational results are presented to evaluate
the approach’s accuracy and performance and get insight into the benefits
of promoting inventory sharing. Conclusions and perspectives are drawn in
Section 2.6.

2.2 . Problem setting

In this paper, we investigate a fashion distribution company that man-
ufactures a set of products and allocates them via a CW to its customers
according to a pre-established policy based on the previous sales of similar
products. In most cases, some customers have over-stock (and therefore
incur high holding cost), while others are out of stock (and therefore incur
shortage cost: loss of sales). The company aims to increase its revenues
and service level and avoid any loss of profit due to the non-availability of
products at the right places and moments. Therefore, it is in the company’s
interest to pool the stock of its customers and agree to manage all the inven-
tory collectively by entrusting operations optimisation to CW. We formulate
the problem as an MILP based on a VMI system. The optimisation is cen-
tralised, i.e., the CW optimises the total cost by deciding on the stock levels
of each customer and the routes to be constructed. Transshipment occurs to
sidestep possible stock-outs. Moreover, lost sales happen when a shortage
occurs, as we assume that backorders are restricted. Lost sales are used to
measure the service level at the customer locations.

The customer is located at distinct geographic locations, and we assume
there is no competition for the demand. Each customer orders from the
manufacturer’s CW to meet its demand. The demand for items is assumed
to be deterministic and variable over the planning horizon. Based on a
VMI system and an ML policy, the manufacturer is responsible for delivering
the products to the different POSs using a homogeneous fleet of vehicles
with a limited capacity. The CW attempts to meet the customer’s demand
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while minimising its cost over a finite planning horizon. We consider that
transshipment is possible between customer locations (see Figure 2.1 for an
illustrated example). We also assume that the manufacturer’s emergency
shipments are significantly longer and more expensive than transshipment.
The sequence of operations performed at a node in each time period is
the following: first, the product is delivered, then the demand is satisfied,
and finally, the inventory level is calculated. Finally, it is assumed that the
quantities delivered in period t from the CW cannot be transshipped in period
t.

Figure 2.1: A numerical example of the IRP-T with 2 products.
The objective is to minimise the total cost while increasing the availability

of items by allowing LT between the customer and coordinating the supply
and demand through shared inventory management and vehicle routing op-
timisation. Over a finite planning horizon, solving the IRP-T determines for
each period the optimal distribution routes from the CW to the set of cus-
tomers and how to build the inventories such that the customer can meet
the demands of their customers.

2.3 . Mathematical formulation

IRP-T is defined on a graph G = (N0,A), where N0 = {0, . . . , n} is
the vertex set and A = {(i, j) : i, j ∈ N0, i ̸= j} is the edge set. Let
N = {1, . . . , n} be the set of n customers and 0 be the vertex repre-
senting the manufacturer’s CW. At the end of each period, both the CW
and customers incur an inventory holding cost hpi (i ∈ N ) per product
p ∈ P = {0, . . . ,m}. Each CW and customer has a maximum inventory
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holding capacity Ci (i ∈ N0). The length of the planning horizon is T with
time period t ∈ H = {1, . . . , T}. At the beginning of the planning horizon,
the current inventory level Ipi0, which is expressed in terms of the stock
keeping unit (SKU) for each i ∈ N0, is known. In addition, the manufac-
turer receives information on the demand of each product Dpit that each
customer has to satisfy for each period t. v ∈ V = {1, . . . , k} is the avail-
able set of k homogeneous vehicles. Let us define Q (in equivalent SKU)
as the vehicle capacity and α as the associated transportation cost per km.
Let dij (expressed in km) be the associated distance for each arc (i, j) ∈ A,
and bij be the additional transportation unit cost associated to transshipping
products from a customer i to a customer j. The total quantity delivered
to a customer in a given period guarantees that the storing capacity is not
exceeded at the end of the period. fpi is the lost sales cost associated with
product p at location i. The quantity of an item p planned to be shipped by
the manufacturer to the CW at period t is gpt.

All these notations are summarised in Table 4.1.

Table 2.2: Notation summary
H Planning horizon indexed by t
V Set of vehicles indexed by v
P Set of products indexed p Parameters
α Transportation cost per km
hpi Unit inventory holding cost per period for product p of node, i ∈ N0
Ci Maximum inventory capacity at node i ∈ N0
Ipi0 Inventory level of a product p at location i ∈ N0 at the beginning of the planning horizon
Dpit Demand for product p to be satisfied at period t at node i ∈ N
Q Vehicle capacity
di,j Distance associated to arc (i, j) ∈ A
gpt Quantity of product p shipped by the manufacturer to the CW in period t
bij Unit cost induced by transshipping products from node i ∈ N to node j ∈ N
fpi Unit loss of sales cost associated with the product p at the level of the customer i ∈ NVariables
Ipit Inventory level of product p at node i ∈ N0 at the end of period t
Qpit Quantity of product p directly shipped from the CW to the node i ∈ N in a period t
qpijvt Quantity of product p transported from the node i ∈ N0 to the node j ∈ N0 by vehicle v in a period t. Itincludes regular shipment from CW and transshipment between customers
ypijvt Quantity of product p transshipped from the node i ∈ N to the node j ∈ N , by vehicle v to sidestep theshortage of product p in a period t
Spit Lost sales quantity of product p the node i ∈ N in a period t
xijvt = 1 if the arc (i, j) ∈ A is visited by a vehicle v in period t; 0 otherwise
uvt = 1 if the vehicle v is used in period t; 0 otherwise
zivt Equal to 1 if and only if a node i ∈ N0 is visited by vehicle v in period t (defined for valid inequalities)

The objective is to minimise the cost of inventory, routing and transship-
ment while meeting the demand for each customer and avoiding shortages
that may induce loss of sales over the planning horizon as much as possible.
The formulation of the IRP-T can be written as:

min

[∑
t∈H

∑
i∈N0

∑
p∈P

hpiIpit +
∑
t∈H

∑
v∈V

∑
i,j∈N0

αdijxijvt

+
∑
p∈P

∑
t∈H

∑
v∈V

∑
i,j∈N ,i ̸=j

bpjypijvt +
∑
t∈H

∑
i∈N

∑
p∈P

fpiSpit

] (2.1)
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Subject to:

Ipit = Ipit−1 +Qpit −Dpit + Spit +
∑
v∈V

∑
j∈N
i ̸=j

(ypijvt − ypjivt)

∀p ∈ P , i ∈ N , t > 0 ∈ H (2.2)
Ip0t = Ip0t−1 −

∑
i∈N

Qpit + gpt∀p ∈ P , t > 0 ∈ H (2.3)

Qpjt +
∑
v∈V

∑
i∈N
i ̸=j

(ypijvt − ypjivt) =
∑
v∈V

∑
i∈N0
i ̸=j

(qpijvt − qpjivt)

∀p ∈ P , j ∈ N , t ∈ H (2.4)∑
p∈P

qpi0vt = 0 ∀i ∈ N0, v ∈ V, t ∈ H (2.5)
∑
p∈P

Ipit ≤ Ci ∀i ∈ N0, t ∈ H (2.6)
∑
p∈P

qpijvt ≤ Quvt ∀i, j ∈ N0, v ∈ V, t ∈ H (2.7)
∑
v∈V

∑
j ̸=i∈N0

ypijvt ≤ Ipit−1 ∀p ∈ P , i ∈ N , t > 1 ∈ H (2.8)
∑

i ̸=j∈N0

xijvt =
∑

i ̸=j∈N0

xjivt ∀j ∈ N , v ∈ V, t ∈ H (2.9)
∑

i ̸=j∈N0

∑
v∈V

xijvt ≤ 1 ∀j ∈ N , t ∈ H (2.10)
∑
j∈N

x0jvt = uvt ∀v ∈ V, t ∈ H (2.11)
∑
v∈V

uvt ≤ k ∀t ∈ H (2.12)
qpijvt ≤ Q xijvt ∀i, j ∈ N , v ∈ V, t ∈ H (2.13)

Qpit, Ipit, ypijvt, qpijt, Spit ∈ N ∀p ∈ P , i, j ∈ N0, v ∈ V, t ∈ H (2.14)
xijvt, uvt ∈ {0, 1} foralli, j ∈ N0, v ∈ V, t ∈ H (2.15)

The objective function (7.2) minimises the total cost. The first sum corre-
sponds to the inventory cost at both the CW and customer locations. The
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second sum stands for transportation cost. The third sum captures the trans-
shipment cost. The fourth sum is for the lost sales cost at different customer
locations. Constraints (7.4) ensure the satisfaction of demand Dpit expressed
at customer i for product p in period t. This is possible thanks to the quan-
tity of product p available at customer i, which is equal to the inventory level
at the beginning of the period computed at the end of the period (Ipit−1)
plus the quantity of the product p delivered either directly from the CW,
Qpit, or transshipped from another customer j, minus the total quantity of
product p transshipped from i to different customer. A surplus constitutes
the inventory level Ipit of product p at the end of period t. Otherwise, a
shortage will be registered, leading to a lost sale Spit. Constraints (7.5) ex-
press the conservation conditions of the inventory at the CW over successive
periods. The conditions consider the quantities of product p delivered to the
CW from the manufacturer, and those shipped to the different customers.
Constraints (7.6) express the flow conservation conditions at a customer j.
Constraints (7.7) state that the vehicles must be empty at the end of each
period when returned to the CW. Constraints (7.8) guarantee that the in-
ventory levels at different locations i do not exceed the maximum inventory
capacity. Constraints (7.9) state that the vehicle’s capacity is not exceeded
for each period and arc. Constraints (7.11) state that the quantity trans-
shipped from customer i at a period t does not exceed the initial inventory
level available in this period. Constraints (7.13) stipulate that if a vehicle v
enters (visits) the customer j in period t, it must leave it in the same period.
Constraints (7.15) ensure that, at most, a vehicle v visits a customer once
per period. Constraints (7.17) ensure that only vehicles carrying products
leave the CW. Constraints (7.18) stipulate that the sum of vehicles used in
a time period t respect the total number of available vehicles. Constraints
(7.19) ensure that product p will only be transported from a node i to a
node j by vehicle v if the arc (i, j) is being used by the vehicle v during
the same period t. Constraints (7.21)–(2.15) define the non-negativity and
binary conditions.

Valid inequalities can be added to the formulations of the IRP problem to
improve the quality of the root node lower bound (Coelho and Laporte, 2014;
Lefever et al., 2018). Several researchers have developed valid inequalities
for IRP formulations. Below, we present different classes of such inequalities
that we modified to make them compatible with our IRP-T model.

We start with constraints referred to as logical inequalities commonly
used for the multi-vehicle IRP. Constraints (2.16) impose the condition that
if a supplier (node 0, in our case CW) is the predecessor of a node i on
vehicle v’s route, then the same vehicle must visit i, as follows (Archetti
et al., 2007):

x0ivt ≤ zivt ∀i ∈ N , v ∈ V, t ∈ H (2.16)
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Constraints (2.17), which are also referred to as logical inequalities, impose
the condition that if a node i is the predecessor of a node j on the vehicle v
path, then the same vehicle must visit j, as follows (Archetti et al., 2007):

xijvt ≤ zjvt ∀i, j ∈ N , v ∈ V, t ∈ H (2.17)
Constraints (2.18) insert the supplier (CW) in the route of vehicle v if it
visits any customer in the given period, as follows (Archetti et al., 2007):

zivt ≤ z0vt ∀i ∈ N , v ∈ V, t ∈ H (2.18)
Constraints (2.19) deal with symmetry breaking and state that vehicle v
cannot leave the depot if vehicle v − 1 is not used, as follows (Coelho and
Laporte, 2014):

z0vt ≤ z0v−1t ∀i ∈ N , v ∈ V \ {1}, t ∈ H (2.19)
Constraints (2.20), which were developed based on the valid inequalities of
Coelho and Laporte (2014) for IRP and extended for the single-vehicle single-
product IRP-T by Lefever et al. (2018), state that if the inventory level of a
customer j is insufficient to fulfil the demand of product p, then a visit must
take place, as follows:

t2∑
t=t1

∑
v∈ V

zivt +

∑t2
t=t1

∑
j∈N

∑
v∈ V ypjivt∑t2

t=t1
Dpit

≥
∑t2

t=t1
Dpit − Ipit1−1∑t2
t=t1

Dpit

(2.20)
∀i ∈ N , p ∈ P , t1, t2 ∈ H, t2 ≥ t1.
For each product p ∈ P , the inventory level at t1 is sufficient to cover the
demand as long as the left hand side of Constraints (2.20) is less or equal
to zero. Otherwise, either the customer should be supplied by the CW or
transshipment from other customer should be allowed to meet the demand.

Avella et al. (2018) proposed disjoint path inequalities for a single product
IRP considering the demands and inventory levels from the periods t−1 and
t + 1. Once violated, cuts are generated based on the arc disjunction of a
given route S to eliminate edges from the sub routes of S. According to the
authors, these inequalities help to enhance the overall performance of the
algorithm. The formulation of these inequalities is modified to use them in
our model, as follows:

∑
i,j∈A

µijxijvt ≥

 ∑
j∈S0∪S1

∑
p∈P

qpijt +
∑
j∈S2

∑
p∈P

(qpijt − Ipjt+1)

+
∑
j∈S3

∑
p∈P

(qpijt − Ipjt) +
∑
j∈S4

∑
p∈P

Ipjt −

Cj −
∑

t−1<t′<t+1

Dpjt′

 ∀i ∈ N , v ∈ V, t ∈ H

(2.21)
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where (S0, S1, S2, S3, S4) are a partition of S ⊆ N and µij = min(Q−bi, bj)
whose values lead to a disjoint route inequality, such that bi = Q if i ∈ S0,
bi = Ci if i ∈ S1, bi =

∑
t<t′<t+1Dpit if if i ∈ S2, bi = Dpit if i ∈ S3,

bi = Dpit−1 if i ∈ S4 and bi = 0 for i ∈ N0 \ S. Referring to Avella et al.
(2018), the disjoint route inequality holds for every route R starting and
ending at the CW. Indeed, regardless of the number of products to ship, it
suffices to consider the case where

∑
i,j∈R µij < Q and thus assume that∑

i,j∈R µij ≥
∑

i∈V (R)∩S bi to prove that this claim holds for any route; and
thus, it follows that it is a disjoint route inequality.

The mathematical formulation is solved using the branch-and-cut method
as follows. As some valid inequalities are of exponential size, they are not
added in the beginning but separated on-the-fly. If a valid inequality is
violated, it is dynamically added at the current branch-and-cut node, and
the program is then re-optimised. This is handled by first enumerating all
valid inequalities and then checking them one by one in order. The process
is repeated until a feasible or dominated solution is found or no more cuts
need to be made. As for the branching strategy, it is set to default which
means that no automatic priority order will be generated.

2.4 . Resolution Approach

IRP and its variant are first solved using exact methods, inter alia,
branch-and-bound (Mirzapour Al-e-hashem and Rekik, 2014), branch-and-
cut (Archetti et al., 2007), column generation algorithms Michel and Vander-
beck (2012) and dynamical constraint-generating algorithm (Lefever et al.,
2018). Nevertheless, IRP and IRP-T are extensions of the Vehicle Routing
Problem, including inventory decisions. (Laporte, 2009) proved that VRP
problems are NP-hard. Thus, solving such problems for medium-to-large
size scales requires using approximation algorithms. Accordingly, significant
attention and research have been devoted to developing effective approximate
algorithms that can provide nearly optimal solutions to large-scale problems,
including the IRP and its variants.

A matheuristic algorithm with two optimisation stages is proposed in this
study (see Figure 2.2). Since the route design is the most complex part of the
model, an initial solution for route decisions is built during the construction
phase. This is made possible by solving a relaxed model version strength-
ened by valid inequalities (RMILP). If the obtained solution is optimal, the
algorithm stops. The objective is to get a better solution without going
through the improvement phase and thus reduce further the computational
time. Otherwise, this solution is used to construct clusters of customers. For
each built cluster, the non-relaxed mathematical model is then solved to set
vehicles’ routing. In an iterative process, a hybridisation of GA and SA is
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used to further improve the best solution found by generating a set of neigh-
bours of the route decisions. An MILP in which fixed routes (noted FMILP)
is used to assess each neighbour’s quality and feasibility and determine the
other integer variables, such as the inventory level and quantity directly de-
livered from CW and shared between customers. The entire process stops
when the annealing temperature reaches a final temperature, a time limit is
reached, or no solution improvement is noted. We now extensively describe
these two phases.

Figure 2.2: Decomposition scheme of the matheuristic.
2.4.1 . Constructive phase

The objective is to decompose the problem into sub-problems that will be
solved to obtain route decisions. The decomposition allows us to reduce the
size of the problem and, consequently, the computational times. This is done
in two steps. First, we consider a relaxed version of the model noted RMILP
comprising Constraints (7.4)–(7.19), (2.15) and (2.16)–(2.21), and in which
all decision variables, except routing’s variable, are considered continuous.
Solving RMILP allows us to obtain a solution to the problem at hand. If the
solution is not optimal, we retain only the constructed routes that allow us
to build a set of sub-graphs or clusters for each period (as shown in Figure
2.3-a). Each sub-graph or cluster contains a subset of customers (Figure
2.3-b). Unlike classical clustering, which is based on minimising distances in
and between clusters and in which the number of clusters is often equal to
the number of available vehicles (Nananukul, 2013), this clustering is more
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efficient as its construction is based not only on distances but also on the
constraints related to the inventory levels, quantity shipped and shared, and
in which the number of clusters varies accordingly. Next, non-negativity
Constraints (7.21) related to each decision variable are added to the RMILP
model as lazy constraints. Then the related MILP is solved for each con-
structed sub-graph (as shown in Figure 2.3-c). Moreover, the algorithm is
executed until a time limit is reached or a feasible solution is found. The
objective is to generate a good initial solution within a small amount of time
as it is claimed that the initial solution affects the efficiency of an algorithm
to find a solution near the optimum. Finally, we retain the solution related
to the route decisions, which will be further improved in the second stage.
The pseudo-code of this procedure is provided in Algorithm 1.

(a) Routes constructed bysolving the relaxed versionof the model.
(b) Clusters of POS formedwith the help of theconstructed routes.

(c) Routes constructed withineach cluster.
Figure 2.3: Implementing the construction phase of the matheuristic ina given period.
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Algorithm 1 : Constructive phase
Input : A given instanceOutput : Routing decisionsSolve RMILPUse route decisions to build a set of sub-graphs/clustersAdd lazy constraintsSolve concurrently the MILP on each sub-graph to obtain routes decision

2.4.2 . Improvement phase

In the improvement stage, the routing decisions obtained in the construc-
tive phase are iteratively improved using the metaheuristics SA and GA and
an MILP in which routes are fixed (noted FMILP). It has be noted that,
as routes are under continuous adjustment thanks to GA and SA operators,
new neighbourhoods are explored, allowing better flexibility and an enhanced
space search for feasible solutions. In this phase, an initial population of
neighbours of the routing decisions obtained in the first stage (noted X) is
randomly generated using the 2-Opt permutation technique. Without loss of
generality, each generated neighbour is noted X ′. Also, each neighbour X ′ is
picked, and, if feasible, its fitness F (X ′) is computed through the resolution
of the related FMILP. If the new fitness exceeds the old one, X is given a new
value, X ′. Even if the new solution is worse, it can still be accepted using the
Metropolis acceptance criteria of SA. Iteratively, the algorithm generates the
neighbourhood of the current solution using the genetic operators of the GA
and evaluates it using FMILP. Furthermore, to enhance the algorithm’s local
search ability, worse solutions accepted according to the Metropolis criteria
are also used to generate new neighbourhoods. We now extensively describe
these steps.

2.4.2.1 . Genetic Algorithm

The improvement process starts with an initial set of random solutions
called population. Each individual in the population is referred to as a chro-
mosome X, representing a routing decision to the problem at hand. The
fitness of each solution is measured during each generation of a chromo-
some, and solutions are selected for cloning, crossover and mutation based
on their fitness (computed using objective function values).

Chromosomes encoding : in this paper, each chromosome X is rep-
resented using a one-dimensional array of integer values, representing the
nodes (customers) to be visited (see Figure 2.4). Each chromosome is fur-
ther partitioned into several sub-sequences, each representing a constructed
route assigned to a given vehicle and in a given period (see Figure 4.3). This
partition allows us to verify the routing constraints. It helps to easily check
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whether a customer with a non-zero demand is missing on the routes or if
it is served several times in the same period. It also helps GA operators to
perform better and quickly. For instance, if we swap two nodes, this parti-
tion ensures that they either belong to the same route or two different routes
performed during the same period.

Figure 2.4: Representation of a partitioned chromosome used to solvethe problem at hand.

Figure 2.5: A chromosome part representing a constructed route for agiven period and vehicle.
Finally, each chromosome is re-converted to binary variables xijvt (while

also considering the values of x0ivt and xi0vt) to solve the FMILP and then
determine its related fitness.

Initial population generation : A 2-Opt heuristic is an algorithm based
on the conditional permutation of nodes. In other words, two nodes in
a current tour are selected and swapped if it reduces the total distance.
The process can be repeated several times until the tour is optimised. The
computational complexity of this method is O(n2). A variant of this heuristic
proposed by Sabba and Chikhi (2012) shows promising results regarding the
quality of the solutions and the computational times (a few seconds). It
encourages us to use this variant to generate an initial population for our
algorithm. The heuristic is thus applied to a randomly selected tour, and the
resulting chromosome is added to the population. As shown in Figure 2.6,
this algorithm comprises of selecting a position ι in a current tour, then the
permutation of nodes is authorised between the two segments « Cι Cι+1 » if
it allows reducing total cost. This verification is performed with all segments
which follow the segment « Cι Cι+1 ». If the permutation allows a cost
reduction, then only the second node of the first segment and the first node
of the second segment can be swapped, while the intermediate nodes keep
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the same position. Furthermore, the enhanced 2-Opt also relies on inter-
route moves. That is, swapping two nodes that belong to two different tours
performed in the same period is also permitted.

(a) Test phase

(b) Permutation of nodes
Figure 2.6: Overview of the enhanced 2-Opt proposed by Sabba andChikhi (2012)
Fitness function The fitness function of a chromosome X is calculated
from the objective function OF (X) as follows:

F (X) =
1

OF (X)
(2.22)

Genetic Operators : in this algorithm, the following operators are used:

• Cloning operator, which preserves the best solutions found so far. That
is, chromosomes are reproduced in each generation, and this is done
by selecting a member of the population according to its fitness and
making a copy. This guarantees that the best members of the current
population will be present in the next. Finding the trade-off between
the algorithm’s performance and speed led us to choose the best 30%
of chromosomes in the current population to be copied to the next
generation.

• Parent selection operator, which uses a binary tournament selection
process that starts with the creation of two pairs of chromosomes.
Every pair comprises two chromosomes that are randomly selected
from the current population. The two best chromosomes for each

48



pair are chosen for crossover operations. This process results in two
children, each counted in the new population.

• Crossover operator is important to mate the pairs of chromosomes
to produce their offspring. Herein, a double-point crossover is imple-
mented in which the crossover points are randomly selected, and the
nodes between are swapped to produce two children. A crossover is
performed based on a probability PC and the partition adopted for each
chromosome. Figure 2.7 shows the detailed procedure.

• Mutation operator is the second operator used for exploring new neigh-
bours. The aim is to produce random alterations in different chromo-
somes. This paper adopts reversal mutation, which has been shown
to be efficient (Zhang et al., 2010). Two nodes are randomly selected
(based on the representation in Figure 4.3), and the nodes in between
are sorted in the reverse order. A mutation process is performed using
a probability PM .

Figure 2.7: Crossover operation.
2.4.2.2 . Simulated Annealing

GA is preferred to solve problems efficiently by generation through its
systemic operators, which allow for the improvement and variety of solu-
tions. However, GA has inherently weak local search ability and converges
prematurely. On the other hand, SA is a local search metaheuristic that
provides a mechanism for avoiding local optima by accepting hill-climbing
movements. The SA algorithm provides a different (or a new neighbour of
the current) possible solution by changing the current state at each virtual
annealing temperature by a criterion previously specified. On the basis that
the Metropolis criterion is met, the new state will then be accepted. Until
convergence, this procedure will be iterated.

Practically, the algorithm employs this characteristic as follows. As de-
picted in Figure 2.8, it begins by generating, aided by the 2-Opt heuris-
tic, an initial population of the routing decision X determined in the con-
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structive phase. A given chromosome X ′ is picked from the initial genera-
tion, its related fitness is computed, and if it outperforms the old one (i.e.,
F (X ′) > F (X)), the current routing X is given a new value, which is X ′.
Even if the new solution is worse (i.e., F (X ′) < F (X)), it can still be ac-
cepted using the Metropolis acceptance criteria of SA to enhance the local
search ability of the algorithm. That is, a chromosome X ′ is accepted with
the probability P > a random number generated between 0 and 1 (Equation
2.23 is used to compute P ). Otherwise, X ′ is rejected. For each anneal-
ing temperature TSA, this process is repeated a given maximum number of
iterations, iter, equal to the size of each generated population. When iter
is reached, c used as a variable for incrementing is reset to 1; the anneal-
ing temperature is updated using the function βTSA, where β is the cooling
ratio (0 < β < 1). New populations of neighbours X ′ are generated us-
ing the GA operators. Moreover, worse solutions accepted according to the
Metropolis criteria are also used to generate new neighbours. In this paper,
duplicated offspring are rejected alongside neighbours generating infeasible
solutions. Iter is updated regularly to take the value of the new population
size. The entire process stops when the annealing temperature TSA reaches
a final temperature Tf , or a time limit is reached, or no improvement of
the solution is noted. Therefore, the best Fbest(X) and the related decision
variables are obtained.

P = e
−(OF (X′)−OF (X))

TSA (2.23)

2.5 . Computational experiments and discussion

In this section, we assess the effectiveness and efficiency of the proposed
model and the matheuristic approach. We first describe the experiments
and benchmark instances used to evaluate the efficiency of the matheuris-
tic on a single-product IRP and compare it to benchmark algorithms. The
matheuristic is also tested on specially designed instances for multi-product
IRP-T so that the benefits of promoting inventory sharing among different
POSs can be highlighted. We then explain how we fine-tune the metaheuris-
tic. To investigate interactions between the parameters, a sensitivity analysis
is performed.

2.5.1 . Experiment design and instances
First, to test the effectiveness and validate the proposed model, we per-

form experiments on a set of well-known benchmarks of 660 instances devel-
oped for a single and multi-vehicle IRP. The set comprises 480 small instances
and 180 large ones. 160 small instances proposed by Archetti et al. (2007)
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Figure 2.8: Flow diagram of the improvement phase.
and 60 large ones proposed by Archetti et al. (2012) for a single-vehicle IRP.
In addition, 320 small instances and 120 large ones adapted for multi-vehicle
case (k = {2, 3}) by Coelho and Laporte (2013b). For each case, small
instances comprise 100 three-period instances with 5 to 50 customers and
60 six-period instances with a number of customers varying between 5 and
30. Large instances comprise of 6-periods and 50 to 200 customer instances.
Each configuration can be further divided into two subgroups according to
the distributions of their unit inventory costs, which are [0.01,0.05] at the
customers and equal to 0.03 at the CW (low cost) and [0.1, 0.5] at the
customers and equal to 0.3 at the CW (high cost). In addition, the trans-
portation cost between each pair of vertices (i, j) is computed by rounding
the Euclidean distance, and the lost sale cost is equal to 200 times the unit
inventory cost. As these instances were developed for the single and multi-
vehicle IRP, we adopt the proposed model by considering the LT’s and lost
sales-related decision variables:

ypijvt = 0 ∀p ∈ P , i, j ∈ N0, v ∈ V, t > 0 ∈ H (2.24)
Spit = 0 ∀p ∈ P , i ∈ N0, t > 0 ∈ H (2.25)

In the instances mentioned above, we compare the results of our proposed
matheuristic to the results obtained using the best known exact algorithm
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branch-and-cut (B-C) of Coelho and Laporte (2013b, 2014) with a time limit
up to 86400 s and the recently improved branch-and-cut (I-B-C) developed
by Guimarães et al. (2020). The reader, if interested, is referred to this paper
for further details on I-B-C. The I-B-C is tested on 800 instances generated
for the single and multi-vehicle IRP and compared to the-state-of-the-art al-
gorithms: the B-C of Avella et al. (2018) and Adulyasak et al. (2014), which
were tested only on the small instances, and the B-C of Coelho and Laporte
(2013b), and the heuristic of Archetti et al. (2012) which, were tested on
small and large instances generated by Archetti et al. (2007) and Archetti
et al. (2012). With a time limit of 7200 s, the I-B-C outperforms the existing
algorithms regarding the quality of solutions and run time (Guimarães et al.,
2020). The authors highlight that their algorithm reaches 704 best-known
solutions, 108 exclusive ones on small instances of Archetti et al. (2007) and
70 new best solutions for large instances of Archetti et al. (2012). Therefore,
instead of comparing our matheuristic with other state-of-the-art algorithms,
we compare it with I-B-C. The computational platforms for the B-C and I-B-C
are Xeon CPU 2.66 GHz and Xeon CPU E5-2630 v2 2.6 GHz, respectively. All
instances and detailed solutions for the exact methods are retrieved and avail-
able from: https://www.leandro-coelho.com/instances/inventory-routing/.

For a fair comparison between approaches, hardware benchmarking is
used to compare the speed of the algorithms. The reported CPU of the
matheuristic is thus recalculated to align the computational time regarding
the performance of computers used in Coelho and Laporte (2013b, 2014),
and Guimarães et al. (2020). For each algorithm, CPU and scaled CPU
(S_CPU) are reported. Further information on the CPU speed of both
computers can be found on: www.cpubenchmark.net.

Second, we consider a set of 50 randomly generated instances to evaluate
the multi-product IRP-T and highlight the benefit of LT on the supply chain’s
overall performance. The small and large instances were generated following
the same standards as in Archetti et al. (2007), Archetti et al. (2012) and
Coelho and Laporte (2013a). The number of products varies between 1 and
30. As for transshipment unit cost, as in Coelho et al. (2012b), we choose
bij = 0.01αdij.

2.5.2 . Parameters setting of the matheuristic
Experiments have shown that computational times become very impor-

tant for some parameter values, even for small-sized instances. To tune the
parameters of the GA and the SA, we use the Irace package (López-Ibáñez
et al., 2016). The Irace package implemented in R uses the Iterated Race
method: a generalisation of the Iterated F-race method for the automatic
configuration of optimisation algorithms. The method comprises three steps:
(1) sampling new configurations according to a particular distribution, (2) se-
lecting the best configurations from the newly sampled ones through racing,
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and (3) updating the sampling distribution to bias the sampling towards the
best configurations. These three steps are repeated until a termination cri-
terion is met (López-Ibáñez et al., 2016). We use a set of training instances
representing the problem (20 instances with 5, 10, 15... 50 customers each)
to find the best algorithm configuration for the GA and SA (see Table 2.3).
The selected algorithm configuration can then be used to solve new instances
of the same problem.

Table 2.3: Parameters tuning using Irace package
Parameters Range Chosen valuesInitial temperature Ti [90 ; 95] 92Final temperature Tf [3.5 ; 5.1] 4.2Cooling ratio beta [0.94 ; 0.97] 0.96Crossover probability PC [0.81 ; 0.85] 0.84Mutation probability PM [0.35 ; 0.43] 0.37Population size [150 ; 200] 180Number of iteration iter [150 ; 200] 180

2.5.3 . Computational experiments

The computational experiments were conducted on a personal computer
(MacBook Pro, macOS Cataline, CPU 3.3 GHz Quad-Core Intel Core i7, 8
GB of RAM). The problem was solved using the branch-and-cut solver of
CPLEX 12.9 (academic version) and Python 3.7. We performed 25 inde-
pendent runs for each instance under a time limit of 2 hours (7200 s) and
recorded the results and run-time average.

2.5.3.1 . Single and multi-vehicle IRP

This section presents the results of the experiments performed on the
small and large-scale datasets. Table 2.4 summarises the results for small
instances. The first four columns give the number of the vehicle (K), the
number of period T, the distribution of inventory cost IC (low/high), and the
number of instances NI generated for each T and IC. For each exact method,
we give the number of the best solution found (NBFS), the gap related to
the lower bound (GLB) in (%) computed using B-C and I-B-C and finally,
the computational time (CPU) in the second. For the matheuristic, statistics
are provided regarding the average of the best solutions. We thus note GLB
and CPU the average of the gap computed using the lower bound of the
exact methods and the average CPU time, respectively. Finally, S_CPU
represents the average of the scaled CPU.

From Table 2.4, the proposed matheuristic can find optimal solutions for
all 160 small-scale instances for single-vehicle IRP within a minimal amount
of time compared to B-C and I-B-C. Moreover, for the multi-vehicle cases
under consideration, on average, both I-B-C and matheuristic outperform
B-C in terms of the number of the optimal solution found and run time.
Finally, for the 320 instances, the matheuristic outperforms I-B-C, the current
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best resolution approach regarding computational times (CPU and S_CPU),
highlighting its performance and efficiency.

Table 2.4: Results for small-scale benchmark instances obtained usingB-C, I-B-C and the matheuristic
Instances B-C I-B-C Matheuristic

K T IC NI NBSF GLB CPU NBSF GLB CPU NBSF GLB CPU S_CPU

1
3 Low 50 50 0.0 10 50 0.0 29 50 0.0 1 73 High 50 50 0.0 10 50 0.0 26 50 0.0 2 96 Low 30 30 0.0 38 30 0.0 134 30 0.0 3 146 High 30 30 0.0 29 30 0.0 94 30 0.0 3 16

2
3 Low 50 49 0.0 1539 50 0.0 457 50 0.0 12 613 High 50 50 0.0 672 49 0.0 455 50 0.0 41 2046 Low 30 27 0.3 10942 28 0.4 1716 28 0.1 39 1946 High 30 28 0.1 7234 28 0.1 1516 28 0.1 35 173

3
3 Low 50 42 1.3 8790 43 0.7 1896 43 0.3 58 2913 High 50 42 0.5 8772 42 0.3 1686 41 0.4 77 3836 Low 30 15 5.0 27046 16 5.0 4426 16 0.3 65 3266 High 30 14 2.6 25385 17 2.0 4161 17 1.9 49 243

Detailed results on large instances are presented in Tables of Appendix
A. The tables provide the worst solution (WS), the best solution (BS), the
average of the best solutions found (BFS), and the average GLB computed
regarding the LB of each exact algorithm, and the average of the scaled
CPU (S_CPU) regarding hardware performances (for a fair comparison, the
actual CPU was limited that its corresponding CPU would be comparable
to the limit time of I-B-C: 7200 s). The tables also provide the contribution
of the constructive phase (CPC in %) in improving the quality of the final
solution. Also, for each S_CPU , tables report the computational time
needed in the CP and improvement phase (IP).

We refer to each instance using the following notation: [number of prod-
ucts] P [number of POS] N [number of vehicles] K [number of periods] T,
e.g., 2P5N2K5T refers to the instance where two items are distributed over a
set of 5 POS, transported by two vehicles over a planning horizon of 5 days.
We retain the notation in the rest of the paper. Finally, Table 2.5 provides a
summary of comparison of the results regarding the average UB, GLB and
CPU (which represents the S_CPU for the matheuristic).

Table 2.5: Summary of comparison of results for large benchmark in-stances obtained using B-C, I-B-C and the matheuristic
Instances B-C I-B-C Matheuristic

K T IC NI UB CPU (s) UB CPU (s) UB CPU (s)
1 6 Low 30 19911 69058 16535 5798 16879 23156 High 30 72078 59960 64431 5326 65681 2692
2 6 Low 30 31061 86400 18804 7200 19689 27326 High 30 60487 86400 66886 7200 69679 3148
3 6 Low 30 42348 86400 22235 7200 23062 34016 High 30 84955 86400 70505 7200 73382 3981
From Table 2.5, the proposed matheuristic can find solutions within the
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least amount of computational time compared to B-C and I-B-C due to
its exploration capability regarding the searching procedures. Indeed, the
matheursitic can find solutions with an average CPU of 3045 s against 6654
s for I-B-C and 79103 s for B-C. As for solution quality, we can see that both
I-B-C and the matheuristic outperform B-C and that I-B-C has the lowest
UB compared to our matheuristic. Moreover, both approaches can find good
exclusive solutions. On the other hand, we can observe that, unlike small
instances, the matheuristic does not scale quite well with large instances.
In this case, there is an exponential increase in search space size, which
requires an increase in the GA population size to explore the space further.
In addition, we can see from Tables in Appendix A that the constructive
phase is the most time-consuming component. Indeed, in the constructive
phase, if the solution is not optimal, the model is solved optimally on each
constructed cluster, which could be time-consuming depending on the size
of instances. To tackle this problem, one can argue that we could solve the
model without Constraints (7.21). However, adding them as lazy constraints
significantly helps generate excellent initial solutions (clearly highlighted in
Tables of Appendix A), which enhances the efficiency of the matheuristic to
find a good final solution.

2.5.3.2 . Results for IRP-T on small and large instances
For each instance, we consider two scenarios in which the IRP-T is com-

pared to a model that does not consider LT between customers, IRP. Tables
2.6 and 2.7 summarise the results obtained for small and large-scale instances,
with some products varying between 1 and 5 for small instances and 10 and
30 for large ones. Tables 2.6 and 2.7 provide the breakdown of the total
cost (TC), transportation (TR), Inventory (INV), lost sales (LS) and trans-
shipment (TRA). They also report the improvement in service level (SL) and
cost-saving (CS) regarding the reduction of the total cost and, finally, the
un-scaled CPU , as there is no need to use S_CPU . The measure of the
attained S is computed for each instance as follows:

S (%) = (1−
∑

t∈H
∑

i∈N
∑

p∈P Spit∑
t∈H
∑

i∈N
∑

p∈P Dpit

)100

The saving CS is computed as follows:

CS(%) = (
TCIRP − TCIRP−T

TCIRP

)100

and the improvement in the service level SL as:

SL(%) = (
SIRP −SIRP−T

SIRP

)100

.
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Table 2.6: Computational results for multi-product IRP-T on small scaleinstances
Instances Model Cost ($) Improvement

CPU (s)TR INV LS TRA TC* CS (%) SL(%)
1P5N8K5T IRP 970 940 1170 0 3080 16 24 1IRP-T 1080 912 460 121 2573 0
2P5N8K5T IRP 1062 1056 1160 0 3279 25 44 12IRP-T 1154 892 270 147 2462 10
3P5N8K5T IRP 1175 1109 1670 0 3954 31 45 6IRP-T 1259 814 420 220 2714 9
4P5N8K5T IRP 1239 1209 1940 0 4388 39 47 2IRP-T 1376 809 200 282 2667 4
5P5N8K5T IRP 1379 1320 2090 0 4789 31 40 9IRP-T 1422 805 760 336 3324 7
1P10N8K5T IRP 2110 1490 2370 0 5970 21 38 1IRP-T 2349 1045 950 350 4694 3
2P10N8K5T IRP 2215 1591 5060 0 8866 27 37 9IRP-T 2521 1307 2190 470 6487 7
3P10N8K5T IRP 2435 1782 1470 0 5687 16 45 13IRP-T 2565 1281 340 599 4785 5
4P10N8K5T IRP 2579 1901 3520 0 8000 21 36 8IRP-T 2768 1265 1620 643 6296 12
5P10N8K5T IRP 2762 2129 2500 0 7391 21 41 11IRP-T 2939 1181 850 838 5809 12
1P15N8K5T IRP 3527 2912 3940 0 10379 13 33 12IRP-T 3925 2425 2130 563 9043 7
2P15N8K5T IRP 3771 3543 3330 0 10645 26 48 7IRP-T 4090 2646 400 690 7826 3
3P15N8K5T IRP 4245 4165 3340 0 11751 20 34 10IRP-T 4436 2513 1640 795 9385 13
4P15N8K5T IRP 4765 4563 2900 0 12227 26 41 8IRP-T 4736 2509 970 835 9050 1
5P15N8K5T IRP 5314 4986 4350 0 14650 35 44 7IRP-T 5201 2378 940 955 9474 2
1P20N8K5T IRP 6242 4122 3650 0 14014 15 37 13IRP-T 6947 2798 1560 540 11845 6
2P20N8K5T IRP 6714 4398 4660 0 15773 14 32 13IRP-T 7548 2646 2530 849 13573 6
3P20N8K5T IRP 7479 4635 4880 0 16994 22 45 10IRP-T 7808 3466 970 994 13238 5
4P20N8K5T IRP 8126 5212 3760 0 17098 18 40 6IRP-T 8398 3304 1350 1012 14064 14
5P20N8K5T IRP 8539 5546 4550 0 18635 22 43 4IRP-T 8691 3246 1320 1240 14496 1
*All obtained solutions are optimal
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Table 2.7: Results for multi-product IRP-T on large scale instances
Instances Model Cost ($) Improvement

CPU (s)TR INV LS TRA TC CS (%) SL(%)
10P50N8K5T IRP 29806 32895 53010 0 115711* 46 32 485IRP-T 30964 26458 4499 620 62540* 287
15P50N8K5T IRP 52304 33060 65286 0 150650 19 33 513IRP-T 49626 26618 44489 1107 121839 753
20P50N8K5T IRP 41633 43329 90540 0 175502 38 38 512IRP-T 43554 26030 37972 1541 109096* 282
25P50N8K5T IRP 34860 33189 184778 0 252827 50 41 562IRP-T 38077 29937 55488 2685 126187 507
30P50N8K5T IRP 45724 37389 137590 0 220703 42 43 431IRP-T 53325 19583 51118 3496 127523 411
10P100N8K5T IRP 111543 43445 178128 0 333115 40 38 600IRP-T 113309 34722 49504 1962 199496 747
15P100N8K5T IRP 122592 47667 52029 0 222289 14 36 566IRP-T 123608 39160 25541 3270 191579 437
20P100N8K5T IRP 132149 58444 66273 0 256866 19 41 567IRP-T 133852 49178 22018 2560 207608 311
25P100N8K5T IRP 184874 43945 107364 0 336184 18 37 882IRP-T 192418 38681 40589 3651 275339 581
30P10N3K5T IRP 204793 46082 92821 0 343696 15 37 615IRP-T 205111 37601 42658 7491 292861 742
10P150N8K5T IRP 204998 69472 169692 0 444162 26 37 414IRP-T 206209 53397 63908 3982 327495 1126
15P150N8K5T IRP 321715 56038 129293 0 507047 9 37 711IRP-T 342635 40783 71763 5466 460647 303
20P150N8K5T IRP 494281 65768 185640 0 745690 22 44 835IRP-T 481456 58675 35928 6116 582174 467
25P150N8K5T IRP 506862 79054 73959 0 659875 9 43 1161IRP-T 517423 60444 18591 6887 603345 611
30P150N8K5T IRP 624238 80723 77893 0 782854 10 40 228IRP-T 628745 42873 29319 7006 707943 473
10P200N8K5T IRP 761486 93211 67702 0 922398 7 40 311IRP-T 775349 43205 34745 9111 862410 740
15P200N8K5T IRP 873577 108408 54928 0 1036914 6 36 631IRP-T 881776 65903 21823 6399 975900 1003
20P200N8K5T IRP 965250 103192 91284 0 1159726 3 41 645IRP-T 994712 87177 32218 10076 1124183 888
25P200N8K5T IRP 1000991 102191 189719 0 1292900 12 40 520IRP-T 1002495 50638 80159 10077 1143370 338
30P200N8K5T IRP 1102348 102335 100996 0 1305679 7 40 648IRP-T 1109641 73032 22481 11517 1216671 639
*Optimal solution

From Tables 2.6 and 2.7, we can see that, compared to IRP, IRP-T allows
to reduce total costs with an average of 23% for small instances and 21%
for large ones and enhances service levels with an average of 40% for small
instances and 39% for large ones. Indeed, we can see that when transship-
ment is not considered, the supply chain experiences a high inventory and
lost sales cost, as there is no emergency measure to sidestep shortage at
the level of POS facing higher demands while others are overstocking (which
increases idle stock and thus inventory cost). Thanks to transshipment and
the M-M PD structure, excess stocks are dynamically reallocated while the
system’s cost is reduced. That is, the out-of-stock POS can reduce par-
tially loss of sales (with an average of 66% for small instances and 63% for
large ones) and thus enhance their service level, and the POS from which
the transshipment is carried out can decrease inventory cost by reducing idle
stocks that other POS can now use to meet demand at their levels (with an
average of 31% for small instances and 27% for large ones). However, we
can notice that, as excepted, compared to IRP, transportation cost increases
when transshipment is allowed as multiple pickups and deliveries are carried
out (and more kilometres to be travelled). Moreover, for large instances in
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same cases, although that inventory and lost sales costs are significantly re-
duced, the total cost is slightly reduced because the cost that transshipment
generates (which can be seen as a penalty) cannot be offset by the savings
it brings. Also, when the number of products is high, i.e. several demands
of different sizes to be satisfied at each POS, it becomes more challenging
to cover the costs generated by the transshipment: several pickups and de-
liveries that can take place at each POS. Therefore, transshipment can be of
great interest once the costs it incurs can be offset by the savings it enables.

2.5.3.3 . Sensitivity analysis
Therefore, a sensitivity analysis is carried out because performances may

depend on the different unit costs. Due to their significant contributions to
the total costs, lost sale and transshipment unit costs are chosen to conduct
the sensitivity analysis. Without lost of generality, we consider the instance
10P50N8K5T, a lost sale unit cost proportional to the holding unit cost:
µhpi; where µ ∈ {100; 150; 200; 250; 300}, and a transshipment unit cost:
bij = ναdij; where ν ∈ {0.01; 0.03; 0.05; 0.07; 0.1}. Tables 2.8 and 2.9
provide the results regarding the breakdown of total costs. They also report
cost-saving CS, improvement in service level SL and the corresponding CPU
time necessary to solve the IRP and IRP-T.

Table 2.8: Computational results for various values of lost sale unit cost
µ Model Cost ($) Improvement

CPU (s)TR INV LS TRA TC CS (%) SL(%)
100 IRP 29,810 32,833 38,627 0 101,270 11 22 535IRP-T 29,992 28,492 31,364 305 90,153 467
150 IRP 29,959 32,787 45,892 0 108,638 17 28 407IRP-T 30,066 26,616 32,960 512 90,154 490
200 IRP 29,806 32,895 53,010 0 115,711 46 32 485IRP-T 30,964 26,458 4,499 620 62,540 287
250 IRP 30,046 33,549 80,690 0 144,285 56 42 527IRP-T 32,922 23,317 6,210 1,025 63,474 352
300 IRP 30,035 35,546 103,410 0 168,990 60 53 494IRP-T 34,982 20,583 9,324 1,939 66,828 426

Table 2.9: Computational results for various values of LT unit cost
ν Model Cost ($) Improvement

CPU (s)TR INV LS TRA TC CS (%) SL(%)
0.01 IRP 29,806 32,895 53,010 0 115,711 46 32 485IRP-T 30,964 26,458 4,499 620 62,540 287
0.03 IRP 29,840 33,676 53,962 0 117,478 33 25 386IRP-T 30,520 28,044 19,539 563 78,665 507
0.05 IRP 29,940 32,860 53,227 0 116,028 10 17 454IRP-T 30,346 29,474 44,143 321 104,284 401
0.07 IRP 29,944 33,059 53,272 0 116,274 7 11 355IRP-T 30,072 31,722 46,761 123 108,677 575
0.1 IRP 29,975 33,038 53,948 0 116,961 1 4 298IRP-T 29,956 32,836 52,700 21 115,514 387

As expected, from Table 2.8, in the case of 10 products, when lost sale
unit cost increases, it becomes binding to use transshipment as an additional
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measure to reduce loss of sales and also to balance inventories between POS,
which helps to reduce inventory holding cost. However, when the transship-
ment unit cost increases (see Table 2.9), fewer transshipment operations are
performed as the cost it generates can no longer be offset by its savings.
Therefore, we can conclude that the recourse to transshipment is due to
stock shortages, and it might be a good practice to reduce the inventory
costs. Moreover, trade-offs on unit costs are significant to safeguard cost
reduction.

2.6 . Conclusions & Perspectives

This paper addresses a two-level supply chain in which a company manu-
factures products and sells them through its customers (own POS network).
The problem of concern is a multi-product, multi-period, multi-vehicle in-
ventory routing problem with transshipment under a deterministic demand
and an ML policy. We formulate it as an MILP and exploit this formulation
to find good initial solutions. We also design a two-phase matheuristic that
integrates mathematical modelling strengthened with relevant derived valid
inequalities and hybridises sophisticated metaheuristics: Genetic Algorithm
and Simulated Annealing. The matheuristic was tuned with the parametri-
sation technique Irace. Experimentations were performed on new datasets
specially designed for the IRP-T problem and are publicly available. Tested
first on 660 best-known instances for a single and multi-vehicle IRP, the
proposed algorithm proves to be efficient. Also, experiments highlight its
limitations regarding large instances. Tested on the specially designed in-
stances, the algorithm allows us to solve small-and-medium-sized instances
in a reasonable amount of time and also solve the model for large instances
up to 200 customers and 30 products. In what concerns the managerial
insights, we demonstrate the benefits of promoting inventory sharing among
different customers. This is a viable solution for supply chain managers aim-
ing to improve the system’s wide service level by dynamically reallocating
(excess) stocks while lowering the system’s cost. We show that it is in the
company’s interest to pool the customers’ inventory and agree to manage
all inventories collectively by entrusting the operations optimisation to the
company’s warehouse. The later optimises the total cost by deciding on the
stock level of each customers and on the routes to be constructed over the
planning horizon. LT occurs to fully avoid shortages. Lost sales are allowed
when shortages occur and are used to measure the customer service level.
The sensitivity analysis highlights the extent to which transshipment can be
cost-effective by the savings it brings to reduce transportation costs, lost
sales and inventory holding.

Finally, as a research outlook, it could be interesting to investigate the
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benefits of LT under stochastic demands. Moreover, this work could be fur-
ther developed by considering a realistic market, representing a competition
between several POS, conflict of interest under joint control, pre-negotiated
cash payments between either symmetric or asymmetric POS, and with differ-
ent decision-makers. Nevertheless, depicting such markets requires a drastic
mathematical transformation of the model. Specifically, it could differenti-
ate between the decisions of the main stakeholders: CW, POS and carriers.
Furthermore, as both direct emergency shipping and transshipment signifi-
cantly contribute to environmental pollution, decisions related to fleet com-
position and fuel consumption alongside filling rate are to be considered in
future work. Finally, as for the resolution approach, it might be worthwhile
to check the performance of a pure metaheuristic algorithm to solve large
problem instances and use other promising techniques to enhance its search
performance.
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Abstract: We study a two-level spare parts supply chain in which a
manufacturer supplies a central warehouse (CW) with original equipment
manufacturer (OEM) and replacement or pattern parts (PP). The CW, dis-
tantly located from the manufacturer, distributes both OEM parts and PP
to a given number of customers facing stochastic demands. The demand for
spare parts is intermittent, exhibiting an infrequent rate and extreme disper-
sal overtime periods. Along with lateral transshipment, PP can be used as
substitutes for the OEM parts to sidestep shortages at customers. Assum-
ing that emergency shipments are significantly longer and more expensive,
we aim to underline the relative effectiveness of such a new spare parts in-
ventory management policy. A mixed-integer linear programming model is
proposed to solve the inventory routing problem with transshipment and sub-
stitution under stochastic demands. The objective is to minimise costs of
holding inventory and transportation, including regular shipment and trans-
shipment, substitution and lost sales. To solve the problem, Sample Average
Approximation method is used. Three demand patterns are studied based
on empirical goodness-of-fit tests: Poisson distribution, stuttering Poisson
distribution and negative binomial distribution. The model is tested on well-
known benchmark instances generated for multi-product multi-vehicle IRP.
Computational experiments highlight the benefits of promoting transship-
ment and substitution on the overall supply chain performance. Results also
suggest insights that interest professionals willing to develop new decision
support models for the most efficient management of such items.
Keywords: routing, transshipment, substitution, spare parts management,
sample average approximation

3.1 . Introduction

Generally, in the first level of a spare parts supply chain, producers or
manufacturers supply their customers with original equipment manufacturer
(OEM) parts and/or aftermarket parts, also called replacement parts or pat-
tern parts (PP). The latter are reverse-engineered OEM parts, designed to
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perform in the same way as OEM parts, are less expensive, have a quality
equivalent to or better than OEM parts, and are provided with a broader
range of variety Beiderbeck et al. (2018); Lacerda et al. (2016). Spare parts
customers such as distributors (or depots) and eventual re-sellers such as
shops and car dealerships are on the second level of the supply chain. The
critical role of the customers is to guarantee that end-user demands are met
while incurring the lowest logistical costs Ronzoni et al. (2015).

An efficient spare parts inventory management is argued to be the back-
bone for reliable plant operations, cost reduction, and service level maximisa-
tion (Upadhyay and Kumaraswamidhas, 2018). Such items are at the most
significant risk of obsolescence and may collectively account for up to 60% of
the total stock value (Johnston et al., 2003). Moreover, their demand pat-
tern is intermittent, exhibiting an infrequent rate and extreme dispersal over
periods which often hinders the reduction of lost sales to customers. This is
particularly true in the aerospace, IT, and automotive industry contexts (Tur-
rini and Meissner, 2019). In this respect, the classical management models
mainly designed to guarantee smooth replenishment often do not apply (Syn-
tetos et al., 2012). Thus, alternative methods to manage inventory within
the distribution network must be investigated to minimise logistics costs and
ensure a high customer service level commitment Van Jaarsveld and Dekker
(2011). This paper proposes a new management policy consisting of pro-
moting multi-sourcing options to mitigate shortages: (1) regular shipment
from manufacturer, (2) inventory sharing, or so-called lateral transshipment
(LT) among customers, and (3) the use of PP as substitutes for OEM parts.
We focus mainly on the inventory routing problem (IRP) that arises in a two-
level spare parts supply chain in which a manufacturer distributes via her/his
central warehouse (CW) a set of spare parts to a given number of customers
facing stochastic demand. Indeed, assuming that emergency supplies from
the CW are significantly long and expensive, this paper promotes spare parts
substitution along with LT whenever demand exceeds the available stock at
the level of each customer. That is, LT and substitution can be considered
by customers to meet expected demands with the use of the same part from
the inventory of other customers (LT) or with the use of a PP as substitutes
for OEM parts held in their inventory (substitution).

Different incentives can promote the use of both LT and substitutions
among customers. Regardless of the type of item, promoting LT is a viable
solution for managers aiming to improve the system’s broad service level by
dynamically reallocating (excess) stocks while lowering the lost sales cost
(Paterson et al., 2011; Coelho et al., 2012a; Lefever et al., 2018). Another
criterion that can promote substitution is the ready availability of PP, which
increases the likelihood of the user switching more often to. Not to men-
tion the case where PP are of high quality. From the manufacturer’s point
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of view, it would be beneficial if she/he sells more PP than OEM parts by
relying on branding and pricing, especially in a market with fewer substi-
tute PP, which allows a higher probability of earning more significant profits.
Moreover, multiple-sourcing is a promising research field for spare parts man-
agement (e.g., producing spare parts on-demand via additive manufacturing)
(Minner, 2003; Sgarbossa et al., 2021). With this respect, the use of PP
can be viewed as one of the more sourcing options available for spare parts
management since PP is a less expensive and less reliable sourcing option.
Another incentive for LT and substitution would be the slowness of the pro-
cedures regarding controlling the conformity of the imported spare parts to
local or international standards. For instance, most automotive spare part
distributors, such as Moroccan companies, often procure spare parts from
domiciled offshore suppliers Achetoui et al. (2019a). The quality control
procedure can take up to over 15 days and even longer if the Ministry’s de-
partments decide to rely on laboratories to analyse further the supplied parts
Achetoui et al. (2019a,b). Moreover, spare parts are often stored until the
results are published, which increases storage costs and renders emergency
supplies significantly long and expensive Achetoui et al. (2019b).

On-demand distribution, parametric approaches rely upon a lead-time
demand distributional assumption and an appropriate forecasting procedure
for estimating the characteristics of a given distribution (i.e., means and
variance) Syntetos et al. (2012); Turrini and Meissner (2019); Van der Auw-
eraer and Boute (2019). For the case of fast-moving items, the Normality
assumption is typically sufficient Lengu et al. (2014). However, Stock Keep-
ing Units (SKUs) often exhibit intermittent or irregular demand patterns
that may not be represented by the Normal distribution (Syntetos et al.,
2012). This is almost invariably the case for spare parts since demands arise
whenever a component fails or requires replacement instead of being gener-
ated according to buying behaviours of end-consumers Lengu et al. (2014);
Syntetos et al. (2012). The reader is referred to (Boylan et al., 2008) for fur-
ther details on such non-Normal demand patterns. Demand for spare parts
exhibits thus an infrequent rate, extreme dispersal overtime periods, with
some periods having no demand. In the literature, intermittent demand pat-
terns are built from compound elements, namely a demand inter-arrival time
and distribution of the demand sizes, when demand occurs (Syntetos et al.,
2012; Turrini and Meissner, 2019; Van der Auweraer and Boute, 2019). As
such, Syntetos et al. (2012) carry out an empirical analysis of the fitness of
different compound distributions and their stock-control effects concerning
inventories, demands and service levels in real-world contexts. According to
the authors, the compound Poisson distribution (called the stuttering Pois-
son), a combination of a Poisson distribution for demand occurrence and a
geometric distribution for demand size, outperforms in all considered data
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sets. In this paper, three compound distributions are considered. In addi-
tion to stuttering Poisson distribution, we conduct experiments for two other
distributions: Poisson distribution for demand occurrence, combined with
demands of constant size and negative binomial distribution.

This paper contributes to the literature in three main dimensions. It
studies a two-level spare parts supply chain where a manufacturer supplies a
CW with OEM and PP parts. The CW, distantly located from the manufac-
turer, distributes both OEM parts and PP to a given number of customers
facing stochastic demands. These customers may thus form a virtual pool
of their parts inventories, allowing LT. Unlike other research, our approach
integrates LT decisions in designing routes that carry out regular shipments
from CW. Substitutions are also possible among parts for which waiting is
not an option. In addition, Parts are assumed to be substitutable only if
they have the same shape, fit, and function. Substitution is also consid-
ered to be not bi-directional. That is, part 1 is, for example, substituting
part 2, and the inverse is not necessarily applied. Considering the aforemen-
tioned multi-sourcing options and assuming that emergency shipments are
significantly longer and more expensive, we aim to underline the relative ef-
fectiveness of the spare parts inventory management policy based on LT and
substitutions. We model the problem as a two-stage stochastic multi-product
multi-vehicle IRP considering LT and substitution as emergency measures to
mitigate shortages. The objective is to minimise the total cost, including
the inventory holding cost at the CW and customers, transportation which
includes regular shipment and transshipment, substitution and lost demands.
The sample average approximation method is used because of its good con-
vergence properties to solve the problem. Based on empirical goodness-of-fit
tests of (Syntetos et al., 2012), three different demand patterns are stud-
ied: Poisson distribution for demand occurrence, combined with demands of
constant size, stuttering Poisson distribution and negative binomial distri-
bution. The model is tested on well-known benchmark instances generated
for multi-product multi-vehicle IRP. Computational experiments provide in-
sights into the benefits of promoting transshipment and substitution on the
overall supply chain performance. They also suggest findings that may in-
terest practitioners willing to improve decision support models for the most
effective management of such items.

The remainder of the paper is structured as follows. Section 2 presents
related works. After a detailed description of the problem in Section 3, a
mathematical formulation and a solution approach are provided in Section
4. Section 5 reports computational results. Finally, section 6 presents con-
clusions and perspectives.

3.2 . Related work
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The classical IRP includes inventory management, vehicle routing, and
delivery scheduling decision problems (Coelho and Laporte, 2014). Such de-
cisions can be streamlined by introducing a vendor-managed inventory (VMI)
approach, which incorporates replenishment and distribution processes, re-
sulting in overall logistics cost reduction. The deterministic versions of the
IRP have been widely studied. Applications can be found in (Archetti et al.,
2007; Geiger and Sevaux, 2011; Coelho and Laporte, 2013a; Christiansen
et al., 2011; Zhao et al., 2008). The most closely aligned works to this pa-
per are the ones that studied the stochastic variant of the IRP. The Stochastic
IRP (SIRP) is similar to the deterministic IRP, except that the customer’s
demand is known in a probabilistic sense (Coelho and Laporte, 2014). More
recent works on SIRP include the one of (Bertazzi et al., 2013), in which
stockouts and finite horizon SIRP are studied and solved using a dynamic
programming model and a hybrid roll-out algorithm. A similar problem is
addressed in a robust optimisation approach through MILP formulations by
(Soysal et al., 2015), who suggest a robust-based strategy for these demands
that assumes a uniform random behaviour. In Huang and Lin (2010), the
authors develop a modified ant colony optimisation metaheuristic for the
multi-product SIRP. Considering stochastic customer demands and replen-
ishment lead-times, a robust inventory routing policy is addressed in (Li et al.,
2016). Dynamic SIRP under Maximum Level (ML) and Order Up-To level
(OU) policies are studied in (Coelho et al., 2014a). Authors use a proactive
and reactive approach to solve the problem at hand. In (Roldán et al., 2016),
this work is extended by addressing the robustness of inventory replenishment
and customer selection policies. In Yu et al. (2012), a SIRP with split de-
liveries and service level constraints is addressed. In Rahim et al. (2014),
a multi-period IRP with stochastic stationary demand through a determin-
istic equivalent approximation model is studied. Finally, in (Gruler et al.,
2018) the authors study a SIRP and incorporate constructive components in
a simheuristic they use to solve the problem.

It is in the latter context that Coelho et al. (2012b) introduce the concept
of LT between customers within a deterministic inventory routing (IRP-T).
Coelho et al. (2012b) study a single-product, single-vehicle IRP-T and use an
Adaptive Large Neighbourhood Search heuristic (ALNS) to solve large-scale
instances. The authors assume that shortages are not permitted, and LT is
performed by a carrier’s vehicles and not by the supplier. In Lefever et al.
(2018), the authors extend the work of Coelho et al. (2012b) by proposing
new sets of valid inequalities to strengthen the linear relaxation. A multi-
product IRP-T is studied and solved using a Randomised Variable Neighbour-
hood Descent in Peres et al. (2017). On stochastic IRP-T (SIRP-T), (Coelho
et al., 2014a) study the stochastic version of the problem addressed in Coelho
et al. (2012b). Under the same assumptions, the authors propose a reac-
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tive and proactive policy to solve the single-product, single-vehicle SIRP-T.
In Tarhini et al. (2019), a multi-product, multi-vehicle SIRP-T is addressed
and solved using a Variable Neighbourhood Search algorithm. In Dehghani
et al. (2021), a mathematical model that decides on proactive transshipment
under stochastic demand to reduce total costs and shortages in a blood sup-
ply chain is developed. Finally, single-product SIRP-T is studied in Fattahi
and Tanhatalab (2021). Lot sizing and perishability of the product are also
considered. The authors propose a Lagrangian relaxation-based heuristic to
solve the problem at hand.

Based on this literature review, it can be stated that fewer papers on
IRP-T and SIRP-T study a multi-product multi-vehicle version and take into
account lost sales due to the shortages as a measure of the service quality.
Moreover, in the design of vehicle routing, LT-related decisions are not inte-
grated as LT is always assumed to be subcontracted or handled by another
carrier’s vehicles. Indeed, to simplify the optimisation problem, authors iden-
tify just the nodes and periods when LT may take place and manage stocks
so LT may be performed. In this respect, this paper is thus intended to
fill this gap. Furthermore, to the best of the authors’ knowledge, none of
the existing papers incorporates product substitution within the settings and
promotes LT between customers to avoid shortages of parts. We study the
following a multi-product multi-vehicle SIRP-T and ML inventory policy. We
develop an appropriate model to underline the relative effectiveness of this
new spare parts inventory management policy based on LT and substitutions
and use average sample approximation (SAA) to solve it.

3.3 . Problem setting

We consider a spare parts supply chain with two levels. CW distributes
different parts to a certain number of customers (the second level). Com-
pared to the distance from the CW, the customers are located at a negligible
distance away from each other, and all hold low-demand spare parts. By
allowing LT, these customers form a pool that can share inventories. In
this paper, we assume that LT is not outsourced and incorporated into the
routes carrying regular shipments. We also assume that PP can also be trans-
shipped between customers. Given the demand distributions of customers,
at the beginning of the planning horizon, the CW’s manager needs to choose
the routes, inventory levels, transshipment, and substitution decisions. Once
demand is realised if it exceeds the available capacity at the level of each
customer, spare part substitution and LT are used as a recourse. That is,
when critical OEM parts are unavailable, transshipped parts and the compat-
ible PP can be used to satisfy the customers’ demand. As is commonly the
case, we assume that the vehicle capacity is expressed as a function of the
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demands to be satisfied (Archetti et al., 2007; Coelho and Laporte, 2013a,
2014). We also assume that all PP made available to customers are reliable
and of good quality. Parts are substitutable only if they have the same shape,
fit, and function. We assume that the substitution is not bi-directional. We
also implicitly assume that emergency supplies from the CW are significantly
long and expensive. Therefore, LT and substitutions are favoured over the
use of emergency supplies. Customers can then consider transshipment and
substitution to meet expected demands using the same part from the inven-
tory of other locations (transshipment) or using a compatible part from their
inventory (substitution).

The problem of concern can be addressed as a two-stage stochastic
inventory-routing problem considering transshipment and substitution as emer-
gency measures to mitigate shortages. We assume the routing (which cus-
tomers to visit in each period) is the first-stage decision. The quantities to
deliver, including transshipment, the lost sales at each period, and the inven-
tory levels and substituted quantities are adjusted to the scenario. The goal
of the stochastic approach is to find the solution that minimises the routing
cost plus the expected cost of both inventory, transshipment, substitution
and shortage due to loss of sales.

3.4 . Mathematical formulation

3.4.1 . Mathematical modelling

The SIRP-TS is defined on a graph G = (N ,A), where N is the vertex
set indexed by i ∈ {0, ..., n} and A = {(i, j) : i, j ∈ N , i ̸= j} is the
edge set. Vertex 0 represents the CW, and the set N0 = N\{0} denotes
the customers. The length of the planning horizon is H with discrete time
periods t. Each customer i ∈ N0 has demands for spare part p ∈ {1, ...,m}
per period t ∈ H = {1, ..., T} which is a random variable Dpit. A scenario,
denoted ω, is a set of potential demands that appear by the end of the
horizon H. We denote the set of scenarios for the realisation of demands
by Ω. Thus, Dpit(ω) denotes the demand of a customer i of a spare part
p in period t in scenario ω ∈ {1, ..., |Ω|}. Moreover, each customer and
the CW, i ∈ N , incur unit inventory holding costs, hpi, per period and
per spare part p ∈ {1, ...,m}, with inventory capacities Ki. Inventories
are not allowed to exceed the holding capacity and must be positive. At
the beginning of the planning horizon, at each location i ∈ N , the current
inventory levels Ipi0 of the spare part p are known. A set of homogeneous
vehicles v ∈ V = {1, ..., k} is available, each with a capacity Q in terms
of the spare part without distinction between them, with a being a fixed
transportation cost per km. Each vehicle is able to perform a route per
period. A distance dij is associated for all (i, j) ∈ A. A transshipment can
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start from any customer, i.e., a customer can transfer to other locations as
needed. transshipment can occur when it is profitable to ship spares between
customers. As in Coelho et al. (2012b), we choose a transshipment cost per
unit of bij =0.01 a dij. The unit cost of substituting a spare part p by s ∈ P
is cps. All possible combinations according to the parts’ compatibility are
represented by ops, which is equal to 1 if a spare part p is compatible with
a spare part s, and 0 otherwise. The lost sales cost associated with a spare
part p at the customer i is fpi, and the quantity of spare parts shipped by the
manufacturer (from the factory) to the CW during period t is gpt. Finally, it
is assumed that holding and vehicle capacities, and quantity shipped by the
manufacturer are exogenous parameters and are not under the control of the
CW. All of these notations as well as decision variables are summarised in
Table 3.1:

Table 3.1: Notation summary
Sets

N Set of nodes including CW
N0 Set of customers
H Planning horizon indexed by t
V Set of vehicles indexed by v
P Set of spare parts indexed by p
Ω Set of scenarios indexed by ω; ω ∈ {1, ..., |Ω|}Parameters
a Transportation cost per km
dij Distance in km between (i, j) ∈ A
hpi Unit inventory holding cost per period for spare part p at node i ∈ N
bij Unit transshipment cost between node i ∈ N and node j ∈ N
Ki Maximum inventory capacity at node i ∈ N
Ipi0 Inventory level of a spare part p at location i ∈ N at the beginning of the planning horizon
Q Vehicle capacity
csp Unit cost associated with the substitution of a spare part p by a substitute s
osp Equal to 1 if a substitute part s is compatible with a a spare p, and 0 otherwiseVariables
xijvt Equal to 1 if (i, j) ∈ A is visited by the vehicle v in period t, 0 otherwise
uvt Equal to 1 if the vehicle v is used in period t, 0 otherwise
Ipit(ω) Inventory level of a spare part p at a location i ∈ N at the end of period t for a scenario ω
Qpit(ω) Quantity of a spare part p delivered from the CW to the customer i ∈ N0 in a period t for a scenario ω
qpijvt(ω) Quantity of a spare part p transported from a location i ∈ N to a location j ∈ N by vehicle v in a period tfor a scenario ω. This quantity includes regular shipment from CW and transshipment between customers
ypijvt(ω) Quantity of a spare part p transshipped from the customer i ∈ N0 to the customer j ∈ N0 by vehicle vto address a shortage of spare p in a period t for a scenario ω
wpit(ω) Lost sales quantity of a spare part p at the customer i ∈ N0 in a period t for a scenario ω
zspit(ω) Quantity of a spare part s substitute for spare part p used at the customer i in period t for a scenario ω tosatisfy a part of the unsatisfied demand forDpit(ω) and for all osp=1

The formulation of the SIRP-TS can be written as:

min
∑
t∈H

∑
v∈V

∑
i,j∈N

adijxijvt +
1

|Ω|
∑
ω∈Ω

[∑
t∈H

∑
i∈N

∑
p∈P

hpiIpit(ω)+∑
p∈P

∑
t∈H

∑
v∈V

∑
i,j∈N0

bijypijvt(ω)

+
∑
t∈H

∑
i∈N0

∑
p∈P

fpiwpit(ω) +
∑
t∈H

∑
i∈N0

∑
p,s∈P

cspzspit(ω)

]
[(3.1)

Subject to:

Ipit(ω) = Ipit−1(ω) +Qpit(ω)−Dpit(ω) + wpit(ω)+
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∑
v∈V

∑
j ̸=i∈N0

(ypjivt(ω)− ypijvt(ω))

+
∑

s ̸=p∈P

(zspit(ω)− zpsit(ω)) ∀p ∈ P , i ∈ N0, t ∈ H (3.2)
Ip0t(ω) = Ip0t−1(ω)−

∑
i∈N

Qpit(ω) + gpt ∀p ∈ P , t ∈ H (3.3)
Qpjt(ω) =

∑
v∈V

∑
i ̸=j∈N0

(ypijvt(ω)− ypjivt(ω) + qpijvt(ω)− qpjivt(ω))

∀p ∈ P , j ∈ N0, t ∈ H (3.4)∑
p∈P

qpi0vt(ω) = 0 ∀i ∈ N0, v ∈ V, t ∈ H (3.5)∑
p∈P

Ipit(ω) ≤ Ki ∀i ∈ N , t ∈ H (3.6)∑
p∈P

qpijvt(ω) ≤ Qxijvt ∀i, j ∈ N , v ∈ V, t ∈ H (3.7)∑
p∈P

qpijvt(ω) ≤ Quvt ∀i, j ∈ N , v ∈ V, t ∈ H (3.8)∑
v∈V

∑
j ̸=i∈N0

ypijvt(ω) ≤ Ipit−1(ω) ∀p ∈ P , i ∈ N0, t ∈ H (3.9)∑
i ̸=j∈N

xijvt =
∑

i ̸=j∈N

xjivt ∀j ∈ N , v ∈ V, t ∈ H (3.10)∑
i ̸=j∈N

∑
v∈V

xijvt ≤ 1 ∀j ∈ N0, t ∈ H (3.11)∑
j∈N0

x0jvt = uvt ∀v ∈ V, t ∈ H (3.12)∑
v∈V

uvt ≤ k ∀t ∈ H (3.13)
ypijvt(ω) ≤ xijvtKj ∀i, j ∈ N , p ∈ P , v ∈ V, t ∈ H (3.14)
The objective function (3.1) minimises the total cost. The first term

corresponds to the transportation costs, the second term to the inventory
cost at the CW and customers’ locations, the third term to the transship-
ment costs, the fourth term to lost sales costs at the customers’ locations,
and the last term corresponds to the cost of substitutions. Constraint (3.2)
indicates that for each customer i and for each spare part p, the inventory
level at period t is the inventory level at the previous period plus the delivered
quantity of the spare part p and the lost sales wpit if any, minus the demand,
plus the difference between the quantity of spare part p transshipped to and
from i, plus the difference between the quantity of spare part s used as a
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substitute of p and the quantity of p used as a substitute of the other spare
parts. Constraint (3.3) expresses the conservation conditions of inventory at
the CW over successive periods. The conditions take into account quanti-
ties delivered to the CW and to the customers. Constraint (3.4) expresses
the flow conservation conditions at a customer j. Constraint (3.5) states
that at the end of each period, vehicles must return back empty to the CW.
Constraint (3.6) guarantees that inventory levels do not exceed the maxi-
mal available inventory capacity. Constraints (3.7) and (3.8) state that the
maximum capacity of the vehicle is not exceeded. Constraint (3.9) states
that the quantity transshipped from a customer i at a period t does not
exceed the initial inventory level at this period. Constraint (3.10) stipulates
that if a vehicle v visits the customer j, it must leave j in the same period
t. Constraint (3.11) ensures that, at most, one vehicle v visits a customer
per period. Constraint (3.12) ensures that only vehicles carrying parts leave
the CW. Constraint (3.13) stipulates that the sum of vehicles used in time
period t is bounded by the number of available vehicles. Constraints (3.14)
ensure that spare part p is transshipped from the node i to the node j by
vehicle v if the arc (i, j) is being used by the vehicle v during the period t.

3.4.2 . Sample Average Approximation
Given their inherent analytical complexities and high computational re-

quirements, solving large-scale stochastic optimisation problems is highly
challenging (Kleywegt et al., 2002; Shastri and Diwekar, 2006). The SAA
method’s good convergence properties, which have been thoroughly explored
in the literature, are one of its most appealing features (Banholzer et al.,
2019; Jiang et al., 2021). With regards to SAA estimators’ consistency, which
is often seen as a minimum criterion on any excellent estimator, (Dupacová
and Wets, 1988) stress, in a somewhat general fashion, that the sequence of
approximate objective function epi-converges to the optimal solution. This
enables the inference of sets of optimal values with high consistency. An
alternate approach has been followed based on the epi-convergence. This
approach draws from a strong consistency of optimal estimators by construct-
ing almost sure uniform convergence (Shapiro et al., 2014). In (Banholzer
et al., 2019), authors examine the rates at which optimum SAA estimators
converge in the nearly certain and mean sense with their deterministic coun-
terparts. Finally, in Verweij et al. (2003), the SAA method is applied to three
classes of 2-stage stochastic routing problems. Through considerable exper-
imentation, the authors proved the excellent convergence properties of SAA
and the high quality of solutions to the stochastic programming problems
under consideration. The reader, if interested, is referred to this paper for
further details. For all these reasons, SAA has been widely used to cover a
large variety of applications such as stochastic supply chain design and opti-
misation problems of large scale (Santoso et al., 2005); stochastic knapsack
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problem (Kleywegt et al., 2002) and reliability-based design of engineering
systems (Royset and Polak, 2004).

In SAA, the objective function value of the stochastic problem is unknown
and approximated using a random sample estimate (Homem-de Mello and
Bayraksan, 2014; Royset and Szechtman, 2013). The objective function is
evaluated iteratively for a given number of scenarios before the optimality
gap falls below a particular threshold value. SAA provides a straightforward
framework conducive to parallel implementation and reduction of variance
techniques. It also possesses good convergence properties and well-developed
statistical methods to validate solutions and perform error analysis. For this
reason, SAA is used to solve the SIRP with transshipment and Substitution
(SIRP-TS).

SAA approximates the expected cost of the objective function by the
average sample function. This expected cost is replaced by the mean value of
a random set of samples (ω1, ω2, ..., ω|Ω|) of size |Ω| obtained by the Monte
Carlo method, where Ω is the set of ω-indexed scenarios. Each time, this is
repeated L times with different samples, resulting in a candidate solution.
Thus, SAA method generates L separate sample sets Ωl, l ∈ {1, ..., L}. For
each scenario set, Ωl, the related SAA problem (where Ω is replaced by Ωl

in SIRP-TS) is solved and generates a candidate solution. Therefore, the
first-stage solution is fixed for each candidate solution, and the value of the
objective function for a very large sample with l scenarios is computed. This
value is computed in the case of the two-stage model SIRP-TS by solving a
pure linear programming problem on the second-stage variables.

With a reasonable level of accuracy, SAA solves the real problem if certain
conditions are met (Kleywegt et al., 2002; Shapiro and Philpott, 2007).
These requirements and justifications for how SIRP-TS meets them are as
follows:

1. a sample realisation of the random variable can be generated. For
SIRP-TS, this can be done for each random variable Dpit which repre-
sents demand each customer i has to satisfy for each spare part p and
for each period t (see Section 3.5.1.2).

2. with moderate sample size, the SAA problem can be solved effectively.
In the computational experiments section, we will show that for most
test instances, with a sample size of 20, we can solve SIRP-TS in a
reasonable amount of time.

3. the expected costs can be easily calculated by solving the model for a
given first-stage solution and a given realisation of demand.

4. there is a complete recourse to the actual problem, i.e. every solution
to the first stage problem is feasible for the second stage. In SIRP-TS,
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this is made possible by assuming that transshipment and substitutions
are always used when demand cannot be met with the related first-
stage variables.

Statistical estimates of the lower and upper bounds on the objective
function value of the stochastic problem, as well as estimates of the variances
of these bounds, can be computed to evaluate the quality of the SAA solution
(Kleywegt et al., 2002; Shapiro and Philpott, 2007). Let X̂ l be a candidate
solution to the first stage with an objective function F̂ l. To estimate the
lower bound of the true objective function value, the mean F̄ and the variance
σ̂2
Ω,L of the objective function F̂ 1, ..., F̂L

F̄ =
1

L

L∑
l=1

F̂ l (3.15)

σ̂2
Ω,L =

1

L(L− 1)

L∑
l=1

(F̂ l − F̄ )2 (3.16)
The lower bound is then expressed as:

LB = F̄ − χπ,ρσ̂Ω,L (3.17)
where χπ,ρ is the π-critical value of the χ-distribution with ρ degrees of
freedom, ρ = L− 1

By assessing the solution with a very large scenario tree of size |Ω′| that
is assumed to represent the true distribution of demand, the upper bound
on the true objective function value of each candidate solution is computed.
As each scenario ω ∈ {1, ..., |Ω′|} is an i.i.d. random sample, the problem
of assessing a candidate solution is broken down into Ω′ sub-problems. The
size of Ω′ which is the scenario tree is far larger than the one held in any
SAA run (Kleywegt et al., 2002). The objective function value of a given
sub-problem ω is denoted as ψω(X

l) , which is calculated as:

ψω(X
l) =

∑
t∈H

∑
i∈N

∑
p∈P

hpiIpit(ω) +
∑
p∈P

∑
t∈H

∑
v∈V

∑
i,j∈N0

bijypijvt(ω)

+
∑
t∈H

∑
i∈N0

∑
p∈P

fpiwpit(ω) +
∑
t∈H

∑
i∈N0

∑
p,s∈P

cspzspit(ω) (3.18)
It has be noted that, |Ω′| can be very large since each subproblem is

solved separately without creating a significant computation complexity. The
approximation of the true objective value, denoted as ψ(X l), of the second
stage problem is computed as:

ψ(X l) =
1

|Ω′|

|Ω′|∑
ω=1

ψω(X
l) (3.19)
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The value of the true objective function, F̄ l, for a candidate X̂ l and its
variance σ̂2

Ω′(X l) as computed then as follows:

F̄ l = ψ(X l) +
∑
t∈H

∑
v∈V

∑
i,j∈N

adijxijvt (3.20)

σ̂2
|Ω′|(X

l) =
1

|Ω′|(|Ω′|−1)

|Ω′|∑
ω=1

(ψω(X
l)− ψ(X l))2 (3.21)

The upper bound of the candidate X̂ l, ϕl is then computed as:

ϕl = F̄ l − τπσ̂2
|Ω′|(X

l) (3.22)
where τπ is the π-critical value of the τ -distribution. The upper bound of
the algorithm is the smallest ϕl and the candidate solution X̂ refers to the
solution with the smallest upper bound solution that results in the smallest
optimality gap for all candidate solutions:

X̂ = argminl∈{1,..|L|}(ϕ
l) (3.23)

3.5 . Computational experiments

This section presents the experimental design adopted in this paper as
well as the computational results.

3.5.1 . Experimental design
3.5.1.1 . SAA setting

To solve the SIRP, |Ω|=20 scenarios are used to compute the expected
costs of the second stage. Each scenario is repeated L=20 times to calculate
the LB on the expected value. This choice is based on a trade-off between
the optimality gap and computational time. For the UB on expected cost, all
L candidate solutions are assessed using a scenario tree of |Ω′|=800. Finally,
all optimisation steps are carried out with a personal computer (MacBook
Pro, macOS Big Sur, 3.3 GHz Quad-Core Intel Core i7 CPU with 8 GB of
RAM) and with CPLEX 12.9 and Python 3.7. A maximum time limit of
1200 seconds is fixed.

3.5.1.2 . Demand distributions
The demand for spare parts occurs when a component fails or needs re-

placement rather than triggered by the end-user purchasing behaviours (and
the way demand moves upstream in a supply chain). It is possible, then,
to identify such items as sporadic and slow movers arising at irregular inter-
vals and variable sizes. It is preferable to model spare parts demand from the
constituent components, i.e. the demand size and the inter-demand interval.
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Consequently, compound theoretical distributions (which specifically include
the combination of size and interval) are widely used in such application con-
texts (Conceição et al., 2015; Syntetos et al., 2012; Turrini and Meissner,
2019). In this paper, demands each customer i has satisfy per spare part
p and per period t are random variables Dpit. Different distributions have
been studied based on empirical goodness-of-fit tests. Discrete distributions
are chosen since they provide a better fit for intermittent demands compared
to continuous ones. According to Syntetos et al. (2012), these distributions
are (1) Poisson distribution (PD) for demand occurrence with demands of
constant size; (2) stuttering Poisson distribution (SPD), with Poisson distri-
bution for demand occurrence and a geometric distribution for demand size;
and (3) negative binomial distribution (NBD), with a Poisson distribution for
demand occurrence and logarithmic distribution for demand size.

For β = 0,1,2, ... , the distribution functions of Poisson distribution
occurrence PDλ(β) can be expressed as:

PDλ(β) =
λβ eβ

β!
(3.24)

the stuttering Poisson distribution SPD(λ,θ)(β) as

SPD(λ,θ)(β) =
∑

1≤i≤β

eβ
λβ

i!

(
β − 1

i− 1

)
θi(1− θ)β−i (3.25)

where λ and θ are the Poisson and geometric distribution parameters, and
the Negative Binomial distribution NBD(r, µ)(β) as:

NBD(r, µ)(β) =

(
β + r − 1

β

)
µr(1− µ)β (3.26)

where r is the number of successes, and µ is the probability of success.
To generate an independent and identical distributed (i.i.d.) random

sample of |Ω| realisations of Dpit for each distribution under consideration,
the Inverse Transform Sampling algorithm 3 is used.

Algorithm 2 Inverse Transform Sampling
1: procedure ITS(F ) ▷ F is a distribution function
2: α ← Generate random numberfrom the standard uniform distribution in [0, 1];
3: β ← F−1(α)
4: end procedure
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3.5.1.3 . Other input data
First, the model is tested on randomly instances generated by Coelho

and Laporte (2013a) for multi-product multi-vehicle IRP. Following a brief
description is provided, and the reader is referred to their paper for fur-
ther details. The dataset can be downloaded from http://www. leandro-
coelho.com/instances/. For each instance, the number of customers varies
between 10 and 50, and the number of products and vehicles varies between
1 and 5. Each instance contains 3, 5 and 7 periods. Product availabil-
ity at the CW is a multiple of a number randomly generated according to
a discrete uniform distribution in the interval [50, 140], and the maximum
inventory level is a multiple of a number drawn randomly from [150, 200].
The initial inventory level is a randomly generated number in the interval
[100, 150]. Holding costs are randomly generated from a continuous uniform
distribution in the interval [0.02, 0.2]. As in Coelho et al. (2014a) shortage
penalty cost equals 200 times the holding cost.

Secondly, to highlight the benefit of promoting substitutions and trans-
shipment on the overall supply chain performance, we use the same set of
instances but this time for a number of products varying between 20 and 40.
For each customer, period and spare part Poisson and geometric distribution
parameters λ and θ, as well as the NBD parameters r and µ, are random
numbers generated between 0 and 1.

An instance name is referred to as n [number of customers] m [number of
spare parts] k [number of vehicles] T [number of periods], e.g. n5m20k2T5 is
an instance consisting of 5 customers, demands for a number of spare parts
equal to 20 performed by two vehicles in a planning horizon that corresponds
to 5 days.

3.5.2 . Computational experiments
This section presents each computational distribution result obtained for

all instances under consideration. Detailed results are shown in Appendix B.
For an illustrative purpose, Table 3.2 reports costs computed for products
varying between 1 and 5 and the number of customers equal to 10. It
provides the first and second stage (FSC, SSC), standard deviation regarding
the upper and lower bound (UB, LB), and CPU time in the second. Table
3.3 reports for all instances under consideration the breakdown of costs,
namely: Transportation (T), Inventory (I), Lost sales (LS), substitution (S)
and transshipment (Ts). All experiments are performed for four different
models: SIRP, SIRP with Transshipment (SIRP-T), SIRP with Substitution
(SIRPS) and finally, SIRP-TS. They also report cost-saving (CS) computed
concerning total cost (TC), which is expressed as follows:

CS =
TCSIRP − TCSIRP−with−X

TCSIRP

(3.27)

76



Table 3.2: Computational results for a number of product varying between 1 and 5 - number of customers equal to 10
Instances Model PD SPD NBD

FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s)

n10m1k3T3 SIRP 1590.2 2512.6 0.01 0.09 30 2116.6 2921.7 0.06 0.07 36 2409.4 3868.3 0.04 0.09 45
SIRP-T 1436.8 2091.6 0.07 0.00 45 1696.1 2456.9 0.03 0.08 50 2160.0 3031.1 0.02 0.05 63

n10m1k3T5 SIRP 3430.0 5100.2 0.08 0.07 82 3719.8 5825.5 0.10 0.01 91 3869.7 7956.9 0.09 0.05 114
SIRP-T 2995.1 4511.5 0.07 0.01 75 3105.2 5339.7 0.01 0.05 90 3480.2 6273.7 0.03 0.04 121

n10m1k3T7 SIRP 4820.3 7291.1 0.07 0.01 116 5741.6 8961.6 0.01 0.04 129 7043.9 9908.9 0.05 0.02 161
SIRP-T 4255.8 6402.3 0.08 0.03 113 4483.3 7389.8 0.06 0.05 124 5655.1 8117.7 0.01 0.01 160

n10m3k3T3

SIRP 1928.0 2722.3 0.09 0.01 48 2219.4 3430.7 0.01 0.08 63 2506.8 3764.9 0.10 0.06 78
SIRP-T 1572.1 2427.1 0.03 0.04 34 1914.3 2896.8 0.04 0.09 37 2385.0 3378.7 0.08 0.10 46
SIRPS 1618.0 1567.2 0.08 0.06 60 2143.6 1945.7 0.09 0.06 74 1955.8 3774.7 0.04 0.07 92
SIRP-TS 1686.2 1141.5 0.09 0.01 75 2158.9 905.3 0.02 0.10 97 2604.9 1710.1 0.01 0.02 120

n10m3k3T5

SIRP 3768.4 5835.1 0.06 0.09 89 4589.7 7145.7 0.09 0.06 109 5677.9 9073.6 0.00 0.06 134
SIRP-T 3401.3 4953.7 0.07 0.07 68 4112.0 6031.0 0.03 0.09 84 4500.6 7549.3 0.01 0.08 102
SIRPS 3537.7 5009.5 0.04 0.06 41 3508.1 6201.5 0.05 0.00 47 4657.0 7489.6 0.00 0.03 59
SIRP-TS 3463.2 4891.9 0.06 0.06 58 3677.1 4513.4 0.03 0.04 71 4276.2 5934.5 0.05 0.02 92

n10m3k3T7

SIRP 5344.0 7946.3 0.06 0.09 87 6189.7 9971.3 0.09 0.03 104 7173.8 11282.1 0.02 0.05 139
SIRP-T 4649.3 7311.9 0.06 0.01 111 5194.3 8489.4 0.08 0.01 133 5751.7 9916.2 0.05 0.09 178
SIRPS 4655.1 6907.5 0.07 0.04 75 5397.3 7518.0 0.02 0.02 89 5725.0 9553.9 0.06 0.01 109
SIRP-TS 4519.3 6910.4 0.08 0.02 74 5263.8 5669.0 0.05 0.07 85 5486.2 8536.5 0.04 0.08 105

n10m5k3T3

SIRP 2427.0 3663.3 0.06 0.06 69 2911.1 4068.3 0.06 0.01 79 3107.2 5009.9 0.06 0.02 101
SIRP-T 2212.8 3268.5 0.02 0.01 63 2654.7 3939.2 0.04 0.03 71 2873.5 4870.3 0.02 0.03 89
SIRPS 2010.2 3227.4 0.08 0.00 79 2452.0 3482.2 0.06 0.01 103 2399.8 5264.4 0.05 0.03 139
SIRP-TS 2201.2 2019.2 0.07 0.01 71 2581.2 1679.3 0.08 0.02 81 2828.6 3615.1 0.04 0.10 104

n10m5k3T5

SIRP 4883.5 7056.7 0.09 0.09 180 5099.8 8583.6 0.04 0.03 203 5588.2 10188.8 0.02 0.03 258
SIRP-T 4094.7 6412.7 0.09 0.00 90 4888.8 7688.5 0.04 0.04 116 6039.0 8406.0 0.09 0.01 156
SIRPS 4311.4 6434.8 0.01 0.05 96 5176.6 5912.2 0.09 0.07 115 6512.9 7023.6 0.06 0.01 153
SIRP-TS 4188.9 5257.9 0.02 0.02 89 5040.5 5640.0 0.07 0.08 114 5184.1 5980.0 0.08 0.06 153

n10m5k3T7

SIRP 5518.0 8522.7 0.02 0.01 133 6236.3 9882.4 0.08 0.02 166 8595.4 11407.9 0.07 0.05 213
SIRP-T 5221.5 7415.2 0.09 0.09 130 6147.2 8751.4 0.04 0.10 168 5789.0 12538.1 0.06 0.04 225
SIRPS 4863.5 7632.7 0.05 0.06 100 6102.8 8192.9 0.05 0.03 110 5605.6 10562.8 0.07 0.01 147
SIRP-TS 4904.3 5786.0 0.02 0.01 135 6215.0 6329.8 0.01 0.00 169 7031.5 7160.4 0.03 0.07 209
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Table 3.3: Breakdown of cost for a number of product varying between 1 and 5 - number of customers equal to 10
Instances Model PD SPD NBD

T I LS S Ts CS (%) T I LS S Ts CS (%) T I LS S Ts CS (%)

n10m1k3T3 SIRP 1590 1340 1173 0 0 2117 2029 893 0 0 2409 2442 1427 0 0
SIRP-T 1437 739 541 0 812 14 1696 835 624 0 998 18 2160 1677 192 0 1162 17

n10m1k3T5 SIRP 3430 3325 1775 0 0 3720 4314 1511 0 0 3870 5474 2483 0 0
SIRP-T 2995 1819 1077 0 1615 12 3105 2328 1159 0 1852 12 3480 3465 596 0 2213 18

n10m1k3T7 SIRP 4820 4284 3007 0 0 5742 5465 3497 0 0 7044 5540 4369 0 0
SIRP-T 4256 2831 1350 0 2222 12 4483 2566 1997 0 2827 19 5655 4828 645 0 2645 19

n10m3k3T3

SIRP 1928 1376 339 1007 0 2219 2188 1243 0 0 2507 2189 1576 0 0
SIRP-T 1572 1084 534 0 809 14 1914 1184 596 0 1117 15 2385 1832 291 0 1257 8
SIRPS 1618 506 490 572 0 32 2144 762 612 571 0 28 1956 1923 605 1247 0 9
SIRP-TS 1686 182 182 360 418 39 2159 222 96 315 273 46 2605 507 10 532 661 31

n10m3k3T5

SIRP 3768 2982 2853 0 0 4590 4311 2835 0 0 5678 5513 3560 0 0
SIRP-T 3401 2167 1134 0 1653 13 4112 2673 1540 0 1819 14 4501 4605 10 0 2935 18
SIRPS 3538 2385 1067 1557 0 11 3508 2478 1682 2042 0 17 4657 4629 725 2135 0 18
SIRP-TS 3463 842 526 1598 1925 13 3677 848 305 1633 1728 30 4276 1831 45 2081 1978 31

n10m3k3T7

SIRP 5344 4217 3729 0 0 6190 7214 2757 0 0 7174 8738 2544 0 0
SIRP-T 4649 2260 2219 0 2833 10 5194 3327 1872 0 3290 15 5752 5842 462 0 3612 15
SIRPS 4655 2404 2023 2480 0 13 5397 2952 1906 2660 0 20 5725 6953 10 2591 0 17
SIRP-TS 4519 1339 1164 2153 2253 14 5264 1184 594 1944 1948 32 5486 2320 46 2892 3278 24

n10m5k3T3

SIRP 2427 2432 1231 0 0 2911 2534 1535 0 0 3107 2532 2478 0 0
SIRP-T 2213 1125 1075 0 1068 10 2655 1432 1041 0 1466 6 2873 2444 682 0 1744 5
SIRPS 2010 1421 859 948 0 14 2452 1395 1004 1084 0 15 2400 3320 1 1944 0 6
SIRP-TS 2201 381 170 672 796 31 2581 407 190 566 517 39 2829 971 2 1318 1324 21

n10m5k3T5

SIRP 4884 4156 2900 0 0 5100 5575 3009 0 0 5588 5458 4731 0 0
SIRP-T 4095 2753 1511 0 2149 12 4889 2701 1841 0 3146 8 6039 4311 875 0 3219 8
SIRPS 4311 2943 1508 1983 0 10 5177 2529 1627 1757 0 19 6513 4832 211 1981 0 14
SIRP-TS 4189 683 673 1904 1997 21 5040 1247 434 1857 2101 22 5184 1769 351 1970 1890 29

n10m5k3T7

SIRP 5518 5922 2601 0 0 6236 5506 4376 0 0 8595 7830 3578 0 0
SIRP-T 5221 2853 2027 0 2535 10 6147 3830 1910 0 3011 8 5789 8263 381 0 3894 8
SIRPS 4864 3457 1521 2655 0 11 6103 3981 1835 2377 0 11 5606 6178 852 3533 0 19
SIRP-TS 4904 817 754 1916 2299 24 6215 1237 654 2396 2043 22 7031 1741 54 2581 2784 29
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From Table 3.2 and Appendix B, we can notice that, for all instances
and demand patterns under study, any cost reduction is made possible by
allowing LT between customers and substituting spare parts. Indeed, from
Table 3.3 and Appendix B, we can see that these emergency measures allow
for reducing holding and transportation costs along with lost sales.

For all sets of instances and models, we can see that when substitution
and LT are not considered, the supply chain seems to experience high trans-
portation, inventory and lost sales costs for the three different distributions.
When LT is allowed (SIRP-T), the customers receiving the quantity latterly
transshipped are permitted to satisfy even more (sometimes wholly) demand
and reduce lost sales. The customers from which the LT is carried out are
allowed to lower their inventory holding costs. When the substitution is also
allowed (SIRPS), compared to the SIRP model, we observe a reduction in
lost sales costs and holding inventory. Indeed, quantities that might be later
transshipped from a customer can be used at its level as a substitute for
other spare parts, reducing the lost sales. For SIRP-TS, we observe that it
considerably reduces costs compared to the other models. Indeed, in addition
to what can be received through LT, each customer can use the quantities
of spare parts, if compatible, that could constitute idle stock (which leads
to high holding cost) to meet the demand for other spares. Moreover, based
on our assumptions, PP can also be transshipped to be used as a substitute
for additional spare parts using substitution.

Concerning the demand patterns, we observe that a very low variability
in-demand size (as in the case of PD) can be less stressful, regardless of
the average inter-demand interval. Indeed, when the demand size exceeds
the quantity available to be promised, the emergency measures cannot be
sufficient to mitigate any loss of sales. Therefore, the benefits of promoting
transshipment and substitution rely on the extent to which demand variabil-
ity is considered a stressful scenario. The computational experiments also
stress that the benefit of transshipment and substitution can be less notable
for some instances, as in the case of instances n10m1k3T3 and n10m20k3T7
in Table 3.3 with a saving equal to 10% for SIRP-T model. As LT depends
on the travelling distances and is incorporated in route decisions, the related
cost cannot sometimes be offset by the savings it brings in reducing inven-
tory and lost sales costs. In such context, the substitution would be given
higher priority as compared with LT as we could substitute spares at the
level of the customer itself, and thus no further shipment would be required.
Furthermore, compared with the other configurations, the combination of
LT and substitution always allows for a reduction in total costs. On the
other hand, the two alternatives help mitigate lost sales, but they can lead
to higher costs. Thus, LT and substitution can be of much interest as long
as the costs they incur can be offset by the savings they enable.
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As for SAA performance, from Table 3.2 for example, we can notice a low
variability in the solutions of the SAA runs (based on the standard deviation
computed for the UB and LB) which shows the sampling stability of the
different runs. We note, however, that the maximum time limit of each SAA
run (the 1200s) is reached for some instances and models under consideration
(see Tables in Appendix B, for example), which means that some of the SAA
runs might not have been resolved to optimality, hindering the quality of the
candidate solutions and, in turn, the optimality gap. However, there is no
incentive to increase the number of scenarios retained in the SAA problem
due to the low variability in the solutions across various instances under the
current setting. Moreover, CPU time for some instances is small, meaning
optimality is reached (see Table 3.2). For future studies, algorithms can be
developed to enhance the quality of solutions within a reasonable amount of
time because of the combinatorial complexity of the problem.

3.6 . Conclusions & Perspectives

In this paper, we consider a two-level supply chain. At the first level,
a manufacturer-owned central warehouse distributes spare parts to a given
number of customers (the second level). Spare parts demand arises when
a component fails or requires replacement instead of generated according
to end-consumer buying behaviours. We model the problem as a shared
inventory-routing problem considering the two flexible instruments of trans-
shipment and substitution to mitigate shortages. We assume that lost sales
are allowed when a shortage occurs.

Based on empirical goodness-of-fit tests, three discrete distributions are
chosen since they provide a better fit for intermittent demands than con-
tinuous ones. These distributions are the Poisson distribution for demand
occurrence, combined with demands of constant size, the stuttering Poisson
distribution, and the negative binomial distribution.

We have used the SAA method to solve the problem because of its good
convergence properties. For the different demand patterns under consider-
ation, computational results highlight that allowing transshipment and sub-
stitution is beneficial as they reduce holding and transportation costs along
with lost sales. In addition, experiments show the impact of transshipment
and substitution on the overall performance depends on the size variability
of demands, regardless of the average inter-demand interval. Moreover, they
stress that transshipment and substitution can only be of such interest as
long as the costs they incur can be offset by the savings they enable. Due to
combinatorial complexity, metaheuristics must be developed for future stud-
ies to enhance the quality of the candidate solutions. It is also possible to
extend this paper to examine a multi-echelon of centralised or decentralised
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supply chains. Other policies and non-parametric methods for demand may
be investigated, whereby the distribution of empirical distribution is instead
directly constructed from the data. It is also possible to investigate stochas-
tic lead time, production, and demands. Moreover, the reliability of PP can
be integrated into the model as it affects the customers’ future requirements
concerning the spare parts to be supplied with. Finally, using metaheuristics
and solving the problem in the case of large experimental data sets are nec-
essary to strengthen the present analysis and generalise findings that can be
applied to more complex supply chains.
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Abstract: In this paper, we investigate a two-level supply chain consist-
ing of a company which manufactures a set of products and distributes them
via its central warehouse to a set of customers. The problem is modelled
as a dynamic and stochastic inventory routing problem (DSIRP) that con-
siders two flexible instruments of transshipment and substitution to mitigate
shortages at the customer level. A new resolution approach, based on the
hybridisation of mathematical modelling, Genetic Algorithm and Deep Re-
inforcement Learning is proposed to handle the combinatorial complexity of
the problem at hand. Tested on the 150 most commonly used benchmark
instances for single-vehicle-product DSIRP, the proposed algorithm outper-
forms the current best results in the literature for medium and large instances.
Moreover, 450 additional instances for multi-products DSIRP are generated.
Different demand distributions are examined in these experiments: Normal
distribution, Poisson distribution for demand occurrence, combined with de-
mands of constant size, Stuttering Poisson distribution, and Negative Bino-
mial distribution. Regarding managerial insights, results show the advantages
of promoting inventory sharing and substitutions on the overall supply chain
performance.
Keywords: dynamic and stochastic routing, transshipment, substitution,
genetic algorithm, deep reinforcement learning

4.1 . Introduction

Highly competitive markets drive companies to efficiently and accurately
satisfy their customers’ demands across their supply chain. The lead times
in most industries must be relatively short, and companies must be flexible
enough to meet highly variable demands. Companies also should efficiently
manage their capital assets to guarantee profitability. This highly depends
on their capacity to maintain their manufacturing and logistical capabilities
to meet their customers’ service requirements. In practice, to mitigate this
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issue, firms may promote inventory sharing among multiple locations within
the same distribution network, leading to significant cost reductions. This
type of inventory sharing is commonly referred to as lateral transshipment
(LT) (Paterson et al., 2011; Grahovac and Chakravarty, 2001).

In such competitive markets, customers choose from various products
according to their needs. They may choose to buy their preferred products
or replace them with different ones in case of unavailability. Substitutes can
lead to healthy market competition between products, which is in the cus-
tomers’ best interest, preventing a market monopoly. This can be the case
of food products; perishable products (e.g., artificial blood that can be used
as a substitute to mitigate the risks of blood transfusions and shortage of
supply or two different milk brands that can be substituted if their "milk"
products have similar characteristics); and spare parts (e.g., original equip-
ment manufacturer parts that can be substituted by aftermarket parts called
replacement or pattern parts). Substitution could, therefore, serve as a new
alternative to better meet customers’ demands, mainly if decision-makers are
not fully aware of future events. This paper aims to highlight the benefits
of promoting both inventory sharing among customers and using substitutes
to remedy the shortage of products in such a stochastic environment. Prod-
ucts are therefore considered virtually pooled in the network and sent to a
requesting location via LT from a location possessing a surplus of on-hand
inventory, or they are substituted, if compatible, by each other.

This paper has four main contributions. First, we study a two-level sup-
ply chain in which a manufacturer supplies a central warehouse with a set of
products. The central warehouse, distantly located from the manufacturer,
distributes products under dynamic and stochastic demands to a given num-
ber of customers. Along with LT, substitutions of products, new to literature,
are used to sidestep shortages at the customer level. We also assume that
direct shipment, if necessary, can take place from the central warehouse to
any customer. Secondly, we model the problem as a multi-product dynamic
and stochastic inventory routing problem. The objective is to minimise the
total cost, including holding inventory, transportation, transshipment, sub-
stitution and lost sales. Thirdly, a new resolution approach based on the
hybridisation of mathematical modelling, Genetic Algorithm and Deep Re-
inforcement Learning is proposed to handle the combinatorial complexity of
the problem at hand. And finally, tested on the 150 most commonly used
benchmark instances for single-vehicle-product DSIRP, our algorithm outper-
forms the state-of-the-art algorithm. The experimental results show that the
proposed algorithm outperforms the current best results in the literature for
medium and large instances in terms of the quality of the solutions and run
times. In addition, 450 additional instances for multi-product DSIRP are gen-
erated. Different demand distributions are examined in these experiments:
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Normal distribution, Poisson distribution for demand occurrence, combined
with demands of constant size; Stuttering Poisson distribution and Negative
Binomial distribution. Results confirm the efficiency of the proposed algo-
rithm and highlight the benefits of both LT and substitutions on the supply
chains overall.

The remainder of the paper is structured as follows. Section 2 presents
related works. After describing the problem in Section 3, a mathematical
formulation is provided in Section 4. In Section 5, a matheurstic based
on hybridisation of mathematical modelling, a Genetic Algorithm and Deep
Reinforcement learning is described. Section 6 provides computational ex-
periments. We present conclusions and perspectives in Section 7.

4.2 . Related work

First, we describe the Inventory Routing Problem (IRP) and its classi-
fications, then papers on IRP with uncertainty are categorised, and finally,
papers addressing IRP with transshipment are discussed.

4.2.1 . Inventory Routing Problem
IRP includes inventory management, vehicle routing problem (VRP), and

delivery scheduling decision-making problems (Coelho and Laporte, 2014).
Suppliers can reduce the overall costs of their activities to achieve a com-
petitive advantage by integrating their routing, inventory and distribution
decisions instead of independently optimising them. Such decisions can be
streamlined by introducing a vendor-managed inventory (VMI) approach,
which incorporates replenishment and distribution processes, resulting in
overall logistics cost reduction. In Coelho et al. (2012a), IRP is classified
according to:

1. the number of customers and suppliers:

(a) one-to-one if only one supplier serves one customer (Dror and
Levy, 1986).

(b) one-to-many, in the most common cases of one supplier and sev-
eral customers (Bell et al., 1983; Burns et al., 1985; Abdelmaguid,
2004).

(c) many-to-many, which occurs less often, with multiple suppliers
and multiple customers (Christiansen, 1999; Ronen, 2002).

2. routing can be direct if there is only one client per route, multiple
if there are multiple clients on the same route (Zhao et al., 2008),
or continuous, as in several maritime applications, where there is no
central depot (Savelsbergh and Song, 2008; Hewitt et al., 2013).

86



3. pre-established inventory strategies to satisfy customers. The two
most popular are the Maximum Level (ML) policy and Order-Up to
level (OU). The replenishment level is flexible under an ML inventory
strategy but is restricted by the resources available to each customer
(Coelho and Laporte, 2013a). Under an OU policy, the quantity de-
livered is required to fill its inventory capacity whenever a customer is
visited (Archetti et al., 2007). If the inventory is allowed to become
negative, back-ordering will take place, and the corresponding demand
will be served at a later period (Abdelmaguid et al., 2009). If there
is no back-order, the extra demand will be considered a loss of sales
(Mirzaei and Seifi, 2015). In both cases, a penalty for the shortage
can be applied.

4. composition and size of the fleet. The fleet can be homogeneous or
heterogeneous, and the number of available vehicles can be set at one,
set at many or unconstrained (Zhao et al., 2008; Coelho et al., 2012a).

In these papers, only one product is considered, whereas many VMI applica-
tions are concerned with multiple product distributions. Few papers address
the multi-product inventory routing problem (MPIRP) (Coelho and Laporte,
2013a). Most of the applications emerge in maritime logistics: Bertazzi and
Speranza (2002); Grønhaug et al. (2010); Christiansen et al. (2011); Stål-
hane et al. (2012). Non-maritime cases include, for example, the delivery
of perishable goods (Dehghani et al., 2021; Hssini et al., 2016), the trans-
portation of gas by tanker trucks (Bell et al., 1983), the production and the
distribution planning in the gas filling industry (Strack et al., 2011), and the
vehicle parts industry (Alegre et al., 2007).

4.2.2 . IRP with uncertainty
IRP can be classified into four categories depending on the nature of

the input data: (1) static and deterministic; (2) dynamic and deterministic;
(3) static and stochastic and (4) dynamic and stochastic. Dynamic IRP
(DIRP) differs from the static IRP (SIRP) in that the demands are known
before planning in SIRP, while in DIRP, demands are gradually revealed over
time (Bertazzi et al., 2013). Stochastic and static IRP (SSIRP) is similar to
the static IRP except that the customer demand is known in a probabilistic
sense (Bertazzi et al., 2013). In a dynamic and stochastic IRP (DSIRP),
the objective is not to deliver a static result, but a solution policy using the
information revealed, outlining which measures need to be performed as time
passes (Coelho et al., 2014a).

According to Coelho et al. (2014b), solving stochastic DSIRP relies on
finding a solution policy which consists of one of the following:

1. optimising a static instance whenever new information becomes avail-
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able.

2. applying a static algorithm only once and then re-optimising the prob-
lem through a heuristic whenever new information is available.

3. taking advantage of the probabilistic knowledge of future information
and using forecasts.

Yu et al. (2012) solve an SSIRP with split delivery using a hybrid approach
based on Lagrangian relaxation and local search improvement. Solyalı et al.
(2012) solve a single product SSIRP with backorders. The authors apply a
branch-and-cut algorithm for the robust proposed formulation. Bertazzi et al.
(2013) address the same problem under an OU policy and consider shortage
to be allowed. The authors present a dynamic programming formulation, a
hybrid algorithm based on the roll-out algorithm, and a heuristic method.
Huang and Lin (2010) solve a multi-product SSIRP using the conventional
ant colony optimisation algorithm. Coelho et al. (2014a) propose an adaptive
large neighbourhood search with reactive and proactive policies to solve a
single-vehicle single product DSIRP with transshipment. Finally, Roldán et al.
(2016) extend the work of Coelho et al. (2014a) by addressing the robustness
of inventory replenishment and customer selection policies.

4.2.3 . IRP with transshipment
Coelho et al. (2012b) are, to the best of our knowledge, the first authors

to propose the concept of transshipment within inventory routing (IRP-T).
The authors propose a mixed-integer linear program to model a single-vehicle
and single-product IRP-T. Transshipment is allowed either from the manu-
facturer to customers or between customers. Lefever et al. (2018) model the
same problem as in Coelho et al. (2012b) and strengthen their formulation
by proposing a set of valid inequalities for IRP-T based on the existing valid
inequalities for the IRP, bounds, reformulation and variable eliminations on
the linear relaxation of the problem of concern. Peres et al. (2017) model
a multi-period, multi-product IRP-T and use a Randomised Variable Neigh-
bourhood Descent to solve the problem. Hssini et al. (2016) address MPIRP
under a static and deterministic demand in a blood supply chain. The authors
consider transshipment of blood products between hospitals and substitution
between blood groups. On stochastic demand, Dehghani et al. (2021) de-
velop a mathematical model that decides on transshipment under static and
stochastic demand to reduce total costs and shortages in a blood supply
chain. Achamrah et al. (2022c) model a two-level spare parts supply chain
under static and stochastic demands. The authors consider transshipment
of spare parts between depots and substitutions between original equipment
manufacturer and pattern parts. Chrysochoou et al. (2015) propose a two-
stage programming model in which transshipment is considered a recourse
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action to address a single product and vehicle DSIRP. Coelho et al. (2014a)
address the dynamic and stochastic version of the problem studied by Coelho
et al. (2012b). Under OU and ML policies, the problem is solved using either
a proactive or reactive policy, all implemented in a rolling horizon fashion. In
the proactive policy, once forecasts on demands are obtained, routes are con-
structed, and LT takes place after the demand is realized to reduce shortages.
The reactive policy (or wait and see policy) observes the system’s state and
makes decisions accordingly. It is defined as an (r, S) replenishment system
under which whenever the inventory reaches the reorder point r, it triggers
a replenishment order to bring the inventory position up to S. Routing is
constructed based on the threshold r, and as in proactive policy, LT occurs
when demands are revealed. Authors also use an adaptive large neighbour-
hood search to determine routing and the exact method to determine the
quantities to be transshipped. The setting of our problem description follows
that of this paper.

4.2.4 . Paper main contributions

Based on this literature review, apart from promoting transshipment be-
tween customers to avoid shortages of products, none of the existing papers
incorporates product substitution within a dynamic and stochastic setting.
The present paper extends the work of Coelho et al. (2014a) on a single
product and single-vehicle DSIRP by addressing a more realistic configu-
ration of the problem at hand. In the following, we study a one-to-many
multi-product DSIRP under an ML policy in which customers’ demand fol-
lows a probability distribution in which values of parameters are revealed over
time. Moreover, we propose a model that integrates substitutions along with
transshipment as alternatives to sidestep shortages at the customer level. As
for the resolution approach, the present study also contributes to the existing
literature by combining Genetic Algorithm and Deep Reinforcement Learning
techniques. The latter is used to analyze data related to the decision and the
objective spaces visited during the search process, moves and recombination.
With the help of Deep Q-learning, helpful knowledge is extracted and used
to enhance the search performance and speed of the metaheuristic. Applied
on a benchmark of 150 instances with up to a maximum of 200 customers
and 20 as the number of periods for a single-product DSIRP and on a set
of 450 generated instances for multi-products, the resolution approach ob-
tains results that are advantageous compared to results stemming from the
state-of-the-art algorithm, thus, proving its efficiency.

4.3 . Problem setting
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The following problem description follows that of the paper of Coelho
et al. (2014a) developed for a single-vehicle-product DSIRP. Our multi-
vehicle-product DSIRP with Transshipment and Substitution (DSIRP-TS)
is defined on a graph G = (N ,A), where N is the vertex set indexed by
i ∈ {0, ..., n} and A = {(i, j) : i, j ∈ N , i ̸= j} is the edge set. Vertex
0 represents the the manufacturer’s central warehouse (CW), and the set
N0 = N\{0} denotes the customers. The planning horizon length is T with
discrete time periods t ∈ H = {1, ..., T}. The demand dpit each customer
i ∈ N0 has to satisfy for product p ∈ P = {1, ...,m} per period t ∈ H is
a random variable Dpit per stock keeping unit (SKU). Moreover, each cus-
tomer and the central warehouse, i ∈ N , incur unit inventory holding costs,
hpi per product p ∈ P , with inventory capacities Ki. Inventories are not
allowed to exceed the holding capacity and must be positive. We further
assume the CW has enough inventory to meet all demand during the plan-
ning horizon. At the beginning of each period, at each location i ∈ N , the
current inventory levels Ipi0 of the product p are known.

A set of homogeneous vehicles v ∈= {1, ..., k} is available, each with a
capacity Q in terms of SKU with routing cost cij associated to all (i, j) ∈ A.
Direct deliveries and multiple routing are permitted to guarantee that all
planned deliveries are met (before demands are revealed). LT can occur
when it is profitable to ship products between customers. LT between cus-
tomers and direct shipment from CW to any customer are assumed to be
outsourced, and the relative unit cost can be expressed as αcij, where α > 0.
α is used to express that outsourced operations are volume-dependent rather
than distance-dependent (as this is how often carriers define the terms of
contracts).

The unit cost of substituting a product p by s ∈ P is aps. All possible
combinations according to the products’ compatibility are represented by ops,
which is equal to 1 if a product p is compatible, according to the customer,
with a product s, and 0 otherwise. Compatible products can be used as sub-
stitutes to satisfy customer demand when preferred products are unavailable.
We assume that the substitution of products is not bi-directional. A product
p is substituting product s, but the inverse is not necessarily implied. We also
assume that the CW distributes multiple products, including substitutes, and
deliveries and transshipment can be performed simultaneously. The lost sales
cost, which is associated with the shortage of a product p at the customer
i is fpi. Finally, we assume that the manufacturer has enough inventory of
products to service its CW and that the quantity of product p shipped from
the manufacturer to the CW in period t is expressed by gpt. As in Coelho
et al. (2014a) and Archetti et al. (2012), we assume that gpt is used only to
account for inventory costs at the CW.

Regarding the sequence of the operations, we assume that the decisions
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related to routing, including direct shipments, are determined. Second, after
demands are realised, LT and possible substitutions are performed to sidestep,
as much as possible, shortages at the level of each customer. Decisions
variables are as follows:

• Ipit the inventory level of product p at node i ∈ N at the end of a
period t.

• qpitv the quantity of product p delivered by vehicle v from the CW to
the node i ∈ N in a period t.

• wpijt the quantities of product p carried by the outsourced carrier from
the the node i ∈ N to j ∈ N , in a period t.

• lpit the lost sales quantity of product p at customer i ∈ N0 in a period
t.

• zspi are defined for all osp = 1 as the quantity of a product s substitute
for product p used at the customer i in a period t to satisfy a part of
the unsatisfied demand.

The inventory level at the end of each period at customer i is then:

Ipit = Ipit−1 + lpit +
∑

j ̸=i∈N0

(wpjit − wpijt) +
∑

s ̸=p∈P

(zspit − zpsit)

∀p ∈ P , i ∈ N0, t ∈ H (4.1)
The objective function is to minimise the total cost which includes inventory
holding, lost sales, substitutions, transshipment and routing costs:

min
∑
t∈H

∑
i∈N

∑
p∈P

hpiIpit +
∑
t∈H

∑
i∈N0

∑
p∈P

fpilpit+∑
t∈H

∑
i∈N0

∑
p,s∈P

aspzspit + α
∑
t∈H

∑
i,j∈N0,i ̸=j

cij
∑
p∈P

wpijt + Ct

(4.2)

where Ct is the cost of the routes performed in a period t. In the following,
we present how the DSIRP-T is solved using a reactive policy as in (Coelho
et al., 2014a).

4.4 . Solution policy

The reactive policy, also known as the "wait and see" policy, consists of
observing the system’s state to make decisions regarding routing, transship-
ment and substitution. As in (Coelho et al., 2014a) we adopt an (rpit, Spit)
replenishment system in which anytime the inventory level of a product p
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reaches a reorder point rpit, a replenishment order to visit a customer i is
triggered so that the inventory level is brought up to a value Spit. Routing,
including direct shipment, is constructed accordingly (Routing Model RM)
in each period t. The objective is to deliver the quantities of products that
have been determined using RM. Then, when visiting customers, the product
p’s demand is revealed in a period t and LT, and substitution occurs if the
available inventory is insufficient to meet this demand (Transshipment and
Substitution Model TSM). This is implemented in a rolling horizon frame-
work. Figure 4.1 provides a numerical example. Notations of the model are
summarised in Table 4.1.

Table 4.1: Notation summary
Sets

H Planning horizon indexed by t
V Set of CW’s vehicles indexed by v
P Set of products indexed by p

Routing model
Parameters

cij Transportation unit cost associated to regular shipment using CW’s vehicles for all (i, j) ∈ A
α Discount factor 0 < α < 1 used to represent the cost associated to the outsourced operations
Q CW’s vehicles capacity
Ip00 Inventory level at beginning of the planning horizon of a product p at CW (node 0)
gpt Quantity of a product p supplied to CW in period t
rpit Reorder point for product p, at customer i and period t
upit Expected demand of product p in period t
σpit Standard deviation of the demand of product p in period t
β Shortage probability
Υβpt β-order quantile of the demand distribution for product p
Ipit−1 Inventory level of product p at customer i at the beginning of period t (before the demand is revealed)
d′pit Quantity of product p that should be delivered to customer i in period t (using both regular and direct shipment/ beforethe demand is revealed)

Decision variables
qpitv Quantity of product p delivered by vehicle v of CW to node i ∈ N in period t
wp0it Quantity of product p carried by the outsourced carrier from CW to node i ∈ N0 , in period t
Ip0t Inventory level of a product p at CW (node {0}) at the end of period t
xijv Equal to 1 if the arc (i, j) ∈ A is visited by vehicle v in period t; 0 otherwise
yitv Equal to 1 if a customer i is visited by vehicle v in period t; 0 otherwise

Transshipment and substitution model
Parameters

hpi Unit inventory holding cost of product p at customer i ∈ N0 in period t
fpi Unit cost associated to the lost demand of product p at customer i ∈ N0 in period t
asp Unit cost associated with the substitution of a primary preferred product p by a substitute s
Dpit Random variable associated to revealed demand of product p in period t at node i ∈ N0
Ki Maximum inventory capacity at customer i ∈ N0
Ipi0 Inventory level of product p at customer i ∈ N0 at beginning of the planning horizon
osp Equal to 1 if a substitute product s is compatible with a primary preferred product p, and 0 otherwise

Decision variables
Ipit Inventory level of a product p at a customer i after the demand is revealed and the performance of transshipment andsubstitutions at the end of period t
wpijt Transshipment quantity of product p carried by the outsourced carrier from customer i ∈ N0 to the customer j ∈

N0 , in period t after the demand is revealed
zspit Quantity of product s substitute for product p used at the customer i in period t to satisfy a part of the unsatisfieddemand (defined for all osp = 1)
lpit Lost sales quantity of product p at customer i ∈ N0 in period t when the demand is revealed and performance oftransshipment and substitutions

Note that the part of the satisfied demand of product p is represented by
the quantity zppi of the product p used as a substitute of itself.

4.4.1 . Routing model
Under ML policy, CW can freely decide on the quantity to supply the

customer with, restricted only by the customer’s inventory capacity and the
threshold rpit. This quantity defines the parameter d′pit that is proportional
to max[0, rpit−Ipit−1], where Ipit−1 is the inventory level at the beginning
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Figure 4.1: A numerical example.
of a period t. rpit is defined as the expected demand during a lead time L
(which is equal to 1 as deliveries taking place in a period t can be used to
satisfy demand at period t), plus a safety stock which depends on demand
variability, L and target service level. We assume a normally distributed
demand as in Coelho et al. (2014a). rpit can be then computed as follows:

rpit = upit +Υβptσpit (4.3)
where upit in a given period t is an estimate of the expected demand of
product p at the customer i and σpit the related standard deviation. β is
the shortage probability and Υβpt is the β-order quantile of the demand
distribution for the product p. These values as well as rpit are updated in
each period t.

To construct vehicle routing in each period t, a mixed-integer linear pro-
gram (MILP) is proposed. The objective is to decide which customer is
allocated to which vehicle, the quantities delivered at each node, and direct
shipments if any.

For each period t, the RM is formulated as follows :
Objective function OF of routes X:

min

[∑
v∈V

∑
i,j∈N ,i ̸=j

cijxijvt + α
∑
i∈N0

c0i
∑
p∈P

wp0it

]
(4.4)

Subject to:

∑
v∈V

qpitv + wp0it = d′pit ∀p ∈ P , i ∈ N0

(4.5)
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∑
i∈N0

∑
p∈P

qpitv ≤ Q ∀v ∈ V

(4.6)∑
p∈P

qpitv ≤ Qyitv ∀i ∈ N0, v ∈ V

(4.7)∑
j∈N ,i ̸=j

xijtv +
∑

j∈N ,i ̸=j

xjitv = 2yitv ∀i ∈ N , v ∈ V

(4.8)∑
i∈S,

∑
j∈S,i ̸=j

xijtv ≤
∑
i∈S

yitv − yιtv ∀S ⊆ N0, ι ∈ S , v ∈ V

(4.9)
Ip0t = Ip0t−1 −

∑
i∈N

∑
v∈V

qpitv −
∑
i∈N

wp0it + gpt ∀p ∈ P

(4.10)
qpivt, wp0it ≥ 0 ∀p ∈ P , i ∈ N0, v ∈ V(4.11)
xi0tv ∈ {0, 1, 2} ∀i ∈ N0, v ∈ V(4.12)
xijtv ∈ {0, 1} ∀i, j ∈ N0, v ∈ V(4.13)
yitv ∈ {0, 1} ∀i ∈ N0, v ∈ V(4.14)

The objective function (4.4) is to minimise the cost of routing and di-
rect shipments. Constraints (4.5) defines the total quantity supplied to a
given customer d′pit with respect to the delivery modes. Constraints (7.5)
ensure that vehicle capacity is not exceeded and constraints (4.7) stipulate
that CW’s vehicle supplies quantities only to customers allocated to a visit.
Constraints (4.8) and (4.9) are respectively degree and sub-tour elimination
constraints. The conservation conditions of inventory at the central ware-
house are expressed by constraints (4.10). Constraints (4.11)-(4.14) state
the conditions of non-negativity and integrality on the variables.

4.4.2 . Transshipment and substitution model
After the routing decisions have been constructed based on the (rpit, Spit)

system, in TSM, the objective is, therefore, to use transshipment and substi-
tution as emergency measures whenever demands have been revealed exceeds
the quantity of products made available to each customer. In TSM, an in-
ventory level Ipit−1 refers to the initial inventory per product at the beginning
of each period of the rolling horizon. TSM is solved for each period t after
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demands have been revealed.
For each period t, TSM is formulated as follows:

min

∑
i∈N0

∑
p∈P

hpiIpit +
∑
i∈N0

∑
p∈P

fpilpit +
∑
i∈N0

∑
(p,s)∈P

aspzspit + α
∑

(i,j)∈N0,i̸=j

cij
∑
p∈P

wpijt


(4.15)

Subject to:

Ipit−1 = Ipit−1 + d′pit −Dpit ∀p ∈ P, i ∈ N0 (4.16)

Ipit = Ipit−1 + lpit +
∑

j ̸=i∈N0

(wpjit − wpijt) +
∑

s ̸=p∈P

(zspit − zpsit)

∀p ∈ P, i ∈ N0 (4.17)
0 ≤ Ipit ≤ Ki ∀p ∈ P, i ∈ N0 (4.18)

I ′pit−1 = Ipit−1 +
∑

s̸=p∈P

(zspit − zpsit) ∀p, s ∈ P, i ∈ N0 (4.19)
0 ≤ lpit ≤ −min[0, I ′pit−1] ∀p ∈ P, i ∈ N0 (4.20)

0 ≤ wpijt ≤ min[max[0, I ′pit−1],−min[0, I ′pjt−1]] ∀p ∈ P, i, j ∈ N0 (4.21)
The objective function (4.15) is to minimise the cost of inventory holding, lost sales,

substitution and transshipment costs. Constraints (4.16) define actual inventory level
after demands is revealed. Constraints (4.17) state that the inventory level at the end of
the period of a product p at the level of each customer i is computed using the actual
inventory level at i, quantities transshipped from and to customer i and the difference
between the quantity of product s used as a substitute of p and the quantity of p used as
a substitute of the other products. Constraints (4.18) impose bound on inventory level.
Constraints (4.19) define the inventory level after products’ substitutions have taken place.
Constraints (4.20) state that if the initial inventory of a product p is non-negative, both
boundaries are equal to zero, and thus lpi = 0, i.e. no demand is lost; otherwise, the
number of lost units is maximum -I ′pit− 1. Constraints (4.20) state that if the initial
inventory of a product p is non-negative, then no demand is lost, and both boundaries
are equal to zero; otherwise, a minimum of zero and a maximum of I ′pit−1 units are lost.
Similarly, for each product p, constraints (4.21) place limits on the transshipment arc
flows. For customers i and j, there are four possible combinations of inventory levels, all
of which can be managed by these constraints:

• I ′pit−1 < 0 and I ′pjt−1 < 0 : no transshipment is possible since there is not enough
inventory to ship to j.

• I ′pit−1 ≥ 0 and I ′pjt−1 < 0 : Ipjt−1 is the upper bound on the arc of the emergency
transshipment from i to j.

• I ′pit−1 < 0 and I ′pjt−1 ≥ 0 : no transshipment is needed since customer j does
not need LT and i does not have enough inventory.

• I ′pit−1 ≥ 0 and I ′pjt−1 ≥ 0 : no transshipment is needed since customer j has
enough inventory.
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4.5 . Genetic Algorithm and Deep Reinforcement Learning

The classical Vehicle Routing Problem (VRP) is NP-hard (Laporte, 2009). Conse-
quently, exact methods can fail to find optimal solutions for large-size problems. Given
the complexity of the RM, our approach is, therefore, to first use a metaheuristic, namely
Genetic Algorithm (GA), to determine routing decisions. Unlike Neighborhood Search
Algorithms known for their propensity to deliver only local optima solutions, GA is an
efficient computational tool known for its simplicity, great global search ability and adapt-
able topology (Baker and Ayechew, 2003). However, GA does not quietly scale well with
complexity (as explained in Chapter 2). On the other hand, metaheuristics in general and
GA in particular, through their iterative search processes, generate a lot of data that can
be turned into explicit knowledge if coupled with machine learning models (Talbi, 2020).
This data relates to decision-making solutions and the objective spaces visited during the
search process, solution or trajectory sequence, successive solution populations, move-
ments, recombination, local optima, elite solutions, bad solutions, etc. Machine learning
techniques may assist in analysing this data, learning useful knowledge and guiding to im-
prove metaheuristics’ search performance and speed. Thus, techniques for metasearch are
data-driven, well informed and therefore smarter. In this paper, we use Deep Q-learning
(DQ) to speed up our GA, which combines reinforcement learning (RL) and deep learning
techniques. We further explain these steps in the following sections.

Once RM is solved in the current period, the solution is used as a parameter for
TSM, which is solved exactly using CPLEX with default parameters. To do so, we use
a matheuristic (noted DQ-GA) in a rolling horizon framework which hybridises the exact
method and GA. We now describe these steps in detail.

4.5.1 . Genetic Algorithm
The algorithm begins with a set of initial solutions called population. For each slice

time of the rolling horizon, each individual in the population is referred to as a chro-
mosome, reflecting the sequence of assigned customers to each vehicle. During each
generation, the fitness of each solution is measured, and solutions are evaluated and se-
lected for cloning, crossover and mutation operations based on their fitness (computed
using objective function values).

4.5.1.1 . Chromosomes encoding
In this paper, each chromosome X is represented using a one-dimensional array of

integer values, representing the nodes (customers) to be visited (see Figure 4.2). A repair
heuristic is used to check the RM constraints. It ensures, for instance, that no customer
with a non-zero d′pi is missing on the routes, or it belongs to several routes.

Figure 4.2: Representation of a chromosome for an RM with 12 cus-tomers and 2 vehicles.
4.5.1.2 . Generating the initial population
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We use a variant of the 2-opt heuristic to generate an initial population for GA,
an algorithm based on the conditional permutation of nodes (Sabba and Chikhi, 2012).
The heuristic begins by randomly selecting two nodes in a tour and allowing permutation
between segments as long as the total cost is reduced. Also, this permutation relies on
inter-route moves. That is, we permit swapping nodes that belong to different tours. This
process is repeated until routes are optimised.

4.5.1.3 . Fitness function
The fitness function of a chromosome X is calculated from the objective function

OF (X) of RM as follows:

F (X) =
1

OF (X)
(4.22)

4.5.1.4 . Genetic Operators
In this algorithm, the following operators are used:

• The cloning operator retains the best solutions found so far. The trade-off between
the performance of the algorithm and its speed led to picking the best 20% of the
present population of chromosomes to be copied into the next generation.

• The parent selection operator uses a binary selection process that begins with two
chromosome pairs. Two chromosomes are selected randomly from the existing
population each. For crossover operations, the two best chromosomes are selected
for each pair. This leads to two children, each counting in the new population.

• The crossover operator is necessary to mate the chromosome pairs so that they
produce their offspring. This paper implements double-point crossover to guarantee
the preservation of the best chromosomes. A crossover is performed based on a
PC probability.

• The mutation operator is a second operator used to explore new neighbours. It
consists of producing random alterations in different chromosomes. A reversal
mutation is used since it is shown to be effective (Zhang et al., 2010). A random
set of two nodes are selected, and the nodes between are reversely ordered. Like the
crossover, the mutation process is performed with a PM probability. Accordingly,
each node in a chromosome is checked for possible mutation by generating a
random number between zero and one, and if this number is less than or equal to
PM , the node value is changed.

4.5.1.5 . Constraints violation penalty
A simple penalty strategy is adopted to respect the constraints of the model. In

other words, the feasibility of each chromosome is tested in light of the violations of
the model constraints during the generation of initial solutions, along with the crossover
and mutation operations. If there is an infeasibility in the solution, then the value of
the fitness function of the corresponding chromosome is correlated with a penalty. In
this way, infeasible chromosomes are less likely to integrate into the next generation of
chromosomes.

GA stops when a time limit is reached, or no improvement in the quality of the
solution is noted.

4.5.2 . Deep Reinforcement
In this section, we present the deep RL algorithm used to speed up the convergence

of GA.
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4.5.2.1 . Q-learning
Q-Learning is an RL off-policy algorithm characterised by its strong self-adaptability

and environmental feedback signals (Alom et al., 2019). The main idea is to use the
feedback signal to adjust an agent’s action policy to optimise its choice when interact-
ing with an environment. By performing actions (i.e., genetic operators), the agent (a
chromosome here) arrives in different conditions known as states. Actions contribute to
rewards that can be positive and negative. The idea behind Q-learning consists of putting
the agent in sequences of state-action pairs, observing the resulting rewards, and adjusting
the predictions of a table (called a Q-table) to those rewards until correctly predicted by
the best policy. The "Q" stands for quality, which measures how beneficial a given action
is in achieving a potential reward.

An agent communicates with the environment in one of two ways: exploration and
exploitation (Silver, 2015). Exploration consists of allowing the agent to choose the action
randomly it will take regardless of the reward, while in exploitation, the agent uses the
Q-table and selects an action depending on the maximum reward. Initially, the exploration
rate noted ϵ (also called ϵ-greedy policy) is set to 1 as all the actions have a Q-value of
0. As the agent learns more about its environment, ϵ is decayed by a specific rate so that
the probability of exploration decreases.

4.5.2.2 . Deep Q-learning
Q-learning is a straightforward and efficient algorithm for our GA to construct a Q-

table. This allows the latter to figure out exactly the best actions to perform for crossover,
cloning and mutation operators in terms of the best moves. However, it could be time-
consuming since the amount of memory needed to save and update the table will increase
as the number of states increases, and the amount of time required to explore each state
to build the appropriate Q-table would be impractical. Since computational time is our
primary concern, we estimate these Q-values with deep learning models, namely neural
networks, known as DQ (Adams et al., 2021; Zhang et al., 2010). Indeed, to approximate
the Q-value function, we use a neural network. This function maps a state to the Q values
of all the actions that can be taken from that state. It learns the network’s parameters
(weights) to output the optimal Q-values. Choosing the correct action means comparing
the possible rewards of each action and selecting the best one.

4.5.2.3 . DQ exploitation
As depicted in Figure 4.3, DQ starts with random Q-value estimations and uses the

ϵ-greedy policy to explore the environment. DQ improves its Q-value estimates using the
same concept of dual actions, a current action with a current Q-Predicted value and a
target action with a Target Q-value. As the network and its weights are identical, the
direction of the predicted Q-Target values changes; they remain unchanged but may fluc-
tuate following each update. The stabilisation of the Q-Target values is ensured by using a
second network which is not trained. The learned weights from the Q-Predicted Network
are copied to the Q-Target network after a pre-set number of steps noted C-iteration.
From Figure 4.3, we can see two neural networks in the DQ architecture (Q-Predicted
and Q-Target) and an agent Experience Replay. Replay Experience interacts with the
environment for data generation for Q-network training. This information contains all
moves carried out by GA’s operators and saved as <st,a,R,st’> tuples (see notation be-
low Equation 6.53). Then a sample is picked randomly from this data, consisting of a mix
of older and more recent samples. This batch of training data is used in the Q-Predicted
and Q-Target networks. The Q-Predicted network takes the current state and moves
out of each sample, and that particular move predicts the Q value. Q-Predicted value,
Q-Target value and the observed data sample reward are used to compute the loss for the
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Q network training (see Equation 6.53). To reduce variance and guarantee the stability
of the algorithm, in C-iteration, a batch of data is selected from all prior experiences.

Figure 4.3: DQ architecture

Loss = [Rt+1 + γmax
a

(θTQ(st′, a′)− θTQ(st, a))]2 (4.23)
Where:

• γ: discount-rate parameter. It measures how much weight the future awards are
given.

• a, a′: current and future action respectively.

• st, st′ : current and future state respectively.

• Rt+1: future reward.

• Q(st, a): learned action-value function.

• θT : Transpose matrix of network weights.

Finally, to further speed up the GA, all genetic moves we have gotten as of yet are
stored. Instead of "starting from scratch" every time the algorithm is run to solve the
RM either for the current instance, for a different period, or a new given instance, which
happens to be similar to the chromosomes that have already been treated, we use the
"memory" to exploit the best optimal policies rapidly. The selection of the best moves
depends on how the instance is solved, similar to the previously addressed instances. The
K-Nearest Neighbours algorithm is used to determine clusters of instances closer to a
given "new and unseen" instance (Mohammed et al., 2017).

4.6 . Computational Results

4.6.1 . Experimental design
First, to test the effectiveness and validate the proposed resolution approach, we per-

form experiments on a set of well-known benchmark instances developed for the single-
vehicle and product DSIRP with and without transshipment. It is composed of 150
instances proposed by Coelho et al. (2014a): 5 to 200 customers and a planning horizon
of 5 to 20 periods for a total of 10 instances for each set of customers. The instances
follow some standards defined for the deterministic IRP instances of Archetti et al. (2012,
2007), namely the mean customer demand, initial inventories, vehicle capacity and dis-
tances matrix. The demand follows a normal distribution, the mean is generated as an
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integer random number after an interval of discrete uniform distribution [10, 100], and the
standard deviation is generated as an integer random number after an interval of discrete
uniform distribution [2, 10]. A negative demand value, if generated, is replaced by zero.
The maximum inventory capacity is a multiple of the average demand, and initial invento-
ries equal the maximum capacity minus the average demand. In the interval [0.02, 0.10],
holding costs are generated randomly from a continuous uniform distribution, and the
shortage penalty cost equals 200 times the cost of holding. Finally, the unit cost α is set to
0.01 and the vehicle capacity to 1.5

∑
i∈N0

∑
p∈P upi. Where u is the expected demand.

All instances are available from: https://www.leandro-coelho.com/instances/inventory-
routing/ and solutions are retrieved from Coelho et al. (2014a). Finally, a fair comparison
between algorithms and hardware benchmarking is used to compare the algorithms’ speed.
The reported CPU of the matheuristic is thus recalculated to align the computational time
concerning the computer’s performance in Coelho et al. (2014a). Further information on
the CPU speed of both computers can be found on: www.cpubenchmark.net.

Second, we consider a set of randomly generated instances to evaluate the DSIRP-
TS for multi-products and multi-vehicles and highlight the benefit of transshipment and
substitution on the supply chain’s overall performance. The generation precisely follows
the standards defined for the single-vehicle-product DSIRP. As the supplier has a fleet of
homogeneous vehicles, the vehicle capacity no longer needs to be expressed as a function of
the expected demands. In this paper, we consider a set of 10 homogeneous vehicles, each
having a capacity of Q=2000 units. For products’ substitution, we consider a constant
unit cost of c = 0.1$/product (for identical products: s = p, c = 0$/product). All
optimisation steps were carried out with a personal computer (MacBook Pro, macOS Big
Sur, 3.3 GHz Quad-Core Intel Core i7 CPU with 8 GB of RAM) and with CPLEX 12.9
for the resolution of TSM and Python for RM, Python and Pytorch for DQ.

4.6.2 . Parameters tuning
Sophisticated optimisation algorithms typically require a large number of parameters

to be set to enhance their performance. The immediate purpose of the automated config-
uration of the algorithm is to find the optimiser’s best parameter settings automatically.
Automatic configuration of algorithms can contribute to new design paradigms for opti-
misation applications. The Irace package is a software package that implements various
automated configuration procedures (López-Ibáñez et al., 2016). It provides particularly
iterated racing procedures that have been used effectively to configure various state-of-
the-art algorithms automatically. Irace’s repeated racing processes include the iterated
F-race algorithm and several improvements and extensions. In this paper, a set of train-
ing instances representing the problem (40 instances with 5, 10, 15... 50 customers each)
is used to choose the best algorithm configuration (see Table 4.2). The selected algorithm
configuration can then be used to solve new instances of the same problem.

Table 4.2: Parameters tuning using Irace package
Parameters Range Chosen valuesCrossover probability PC [0.60,0.81] 0.7Mutation probability PM [0.33,0.37] 0.34Population size [100;140] 110Maximum number of iteration [100;140] 110

4.6.3 . Computational results for the single-vehicle-product DSIRP
with and without transshipment

In this section, we present the results of the experiments performed on the set of small
to large-scale datasets generated by Coelho et al. (2014a). To assess the performance
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of the matheuristic, we compare it with the result obtained using the best known ALNS
of Coelho et al. (2014a) developed to solve a single vehicle-product DSIRP. A statistical
analysis using ANOVA is also conducted to assess the randomness or not of the differences
between the obtained results (p-value > 0.05). For each size of instance (small, medium
and large), we present the average total cost and the CPU time in seconds. Results are
summarised in Table 4.3.

First, for all 150 instances under consideration, we notice that on average, our al-
gorithm provides better solutions both in terms of CPU and costs than those of Coelho
et al. (2014a) apart from small instances, with a very small gap between the costs. Thus,
our algorithm is competitive and efficient compared to the most known state-of-the-art
algorithm applied to solve a such specific DSIRP-T under a reactive policy. Finally, as is
expected, we notice that sharing inventories between customers helps to reduce the lost
sales and thus total costs significantly.

Table 4.3: Summary of comparison between the results obtained byCoelho et al. (2014a) and this paper
Instances Average cost Average CPU (s)Coelho et al. (2014a) DQ-GA Coelho et al. (2014a) DQ-GADSIRP DSIRP-T DSIRP DSIRP-T DSIRP DSIRP-T DSIRP DSIRP-TSmall 10,225.9 7,926.7 9,473.6 8,788.9 46.3 44.6 42.7 11.6Medium 30,360.7 26,527.1 27,797.7 26,244.4 452.7 444.1 125.2 129.0Large 61,250.2 54,292.4 50,550.0 47,352.2 3,860.1 4,100.1 136.6 127.0Average 33,945.6 29,582.0 29,273.8 27,461.8 1,453.0 1,529.6 101.5 89.2

4.6.4 . Computational results for the multi-vehicle-product DSIRP
with substitution and transshipment

We now evaluate the impact of transshipment and substitution on solution cost for a
more realistic DSIRP. We first consider DSIRP for 20 products and compare the results
obtained for DSIRP without transshipment (DSIRP), DSIRP with transshipment (DSIRP-
T), and DSIRP with substitution (DSIRPS) and finally DSIRP with transshipment and
substitution (DSIRP-TS). Later, we apply the same logic to 40 products. The aim is to
confirm the representativeness of the results, highlight the benefits of both transshipment
and substitution, and re-evaluate the proposed algorithm’s accuracy. The generation
of the 300 instances (150 for the 20 and 40 products, respectively) follows exactly the
standards defined for the single-vehicle-product DSIRP. Results are summarised in the
Tables 4.4 and 4.5.

Table 4.4: Summary of computational results for 20 products
Instances Average cost Average CPU (s)DSIRP DSIRP-T DSIRPS DSIRP-TS DSIRP DSIRP-T DSIRPS DSIRP-TSSmall 112,479.0 90,647.5 88,195.7 73,306.5 169.2 182.3 176.9 141.5Medium 332,970.5 265,625.6 260,424.7 214,757.3 279.2 280.2 291.0 218.6Large 601,088.3 490,336.0 472,007.6 389,921.1 307.4 247.4 293.0 263.9

We can see from Table 4.4 that the comparison results confirm that any reduction
in total cost is made possible by either considering transshipment between customers or
substitution of products. Moreover, considering transshipment combined with substitu-
tion enhances the performance of the overall supply chain considerably. By substituting
products, less inventory is being held and by sharing further their inventory, customers
are allowed to meet better their demands and decrease the lost sales and inventory costs.
This is reconfirmed in the case of 40 products as it is shown in Table 4.5. On average,
both DISIRP-T and DSIRPS may lead to the same results as they both can be used to
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mitigate the shortage, and lower inventory and transportation costs. Combining these
two emergency measures allows for a considerable reduction of costs for all the instances
under consideration. Finally, the algorithm again proves efficient and competitive as it
allows finding a solution in a reasonably short amount of time.

Table 4.5: Summary of computational results for 40 products
Instances Average cost Average CPUDSIRP DSIRP-T DSIRPS DSIRP-TS DSIRP DSIRP-T DSIRPS DSIRP-TSSmall 958,123.8 814,014.9 808,906.6 643,880.2 396.6 378.1 385.2 386.5Medium 2,828,370.3 2,427,250.4 2,401,466.8 1,922,767.0 565.4 564.9 517.4 594.4Large 5,157,985.9 4,389,631.7 4,382,510.6 3,493,632.6 1,127.3 1,176.2 1,123.3 1,192.0

4.6.5 . Computational results for other demand patterns
Intermittency of demands of products such as spare parts can be characterised by

the infrequent demands that occur at irregular intervals, often of variable size. Modelling
demand from constituent components, i.e. the demand size and inter-demand interval, is
thus preferable. Compound theoretical distributions (which explicitly consider the com-
bination of size and interval) are therefore commonly used in these application contexts
(Conceição et al., 2015; Syntetos et al., 2012; Turrini and Meissner, 2019). In this paper,
dpit represents demand that each customer i has to satisfy per product p and per period
t. Different distributions have been studied. We have chosen discrete distributions as
they provide a better fit for intermittent demands than continuous ones. According to
Syntetos et al. (2012) these distributions are: (1) Poisson Distribution (PD) for demand
occurrence, combined with demands of constant size over the planning horizon. (2) Stut-
tering Poisson distribution (SPD) is a combination of a Poisson distribution for demand
occurrence and a Geometric distribution for demand size over the planning horizon. (3)
Negative Binomial Distribution (NBD) is a combination of a Poisson distribution for de-
mand occurrence and a Logarithmic distribution for demand size over the planning horizon.

For ζ = 0, 1, 2, ... the distribution functions can be written as:
Poisson distribution occurrence PDλ:

PDλ(ζ) =
λζ eζ

ζ!
(4.24)

Stuttering Poisson distribution SPD(λ,ω)(ζ) :

SPD(λ,ω)(ζ) =
∑

1≤i≤ζ

eζ
λζ

i!

(
ζ − 1

i− 1

)
ωi(1− ω)ζ−i (4.25)

where λ and ω are the Poisson and geometric distribution parameters.
Negative Binomial distribution NBD(r,l)(ζ):

NBD(r,l)(ζ) =

(
ζ + r − 1

ζ

)
lr(1− l)ζ (4.26)

where r is the number of successes, and l is the probability of success.
We used the Inverse Transform Sampling (algorithm 3) to generate independent and

identical distributed (i.i.d.) random sample for dpit realisations for each distribution under
consideration.

102



Algorithm 3 Inverse Transform Sampling
1: procedure ITS(F ) ▷ F is a distribution function2: χ ← Generate random number from the standard uniform distribution in [0, 1];3: ζ← F−1(χ)4: end procedure

We conduct extra experiments on 150 instances generated based on the experimental
design to get more insight into the advantage of both transhipment and substitution. We
consider a set of customers varying between 5 and 200, periods between 5 and 20 and a
number of products of 40. For each customer, period and product, Poisson and geometric
distribution parameters λ and ω, as well as the NBD parameters r and l, are random
numbers generated between 0 and 1. Table 4.6 reports the summary of computational
results for the different demand distributions under consideration.

Table 4.6: Computational results for the different distribution patterns
Distribution Instances Average cost Average CPUDSIRP DSIRP-T DSIRPS DSIRP-TS DSIRP DSIRP-T DSIRPS DSIRP-TS

PD
Small 579,620.0 510,199.0 512,898.8 395,199.3 172.5 206.2 185.5 191.6Medium 1,717,250.6 1,514,218.5 1,515,691.4 1,157,961.0 913.9 895.7 879.7 975.9Large 3,094,277.0 2,717,394.1 2,692,526.4 2,104,930.6 1,785.5 1,920.2 1,671.7 1,723.1Average 1,797,049.2 1,580,603.9 1,573,705.6 1,219,363.6 957.3 1,007.4 912.3 963.5

SPD
Small 659,197.4 582,248.4 580,904.5 450,600.6 203.2 183.5 187.6 206.8Medium 1,870,371.9 1,661,277.5 1,649,561.1 1,281,203.8 201.5 747.4 947.4 939.4Large 3,590,243.8 3,175,741.8 3,141,875.6 2,407,310.5 1,818.8 1,996.7 1,714.0 1,744.5Average 2,039,937.7 1,806,422.6 1,790,780.4 1,379,705.0 741.2 975.9 949.7 963.5

NBD
Small 706,205.3 626,912.6 617,771.5 472,025.9 180.1 180.0 219.1 181.3Medium 2,081,957.6 1,845,195.7 1,820,708.2 1,391,390.4 739.7 827.9 982.4 690.8Large 3,772,317.6 3,338,938.7 3,287,841.0 2,539,575.3 1,860.2 1,800.6 1,952.2 1,690.9Average 2,186,826.8 1,937,015.6 1,908,773.6 1,467,663.9 926.7 936.2 1,051.2 854.3

We notice that allowing transshipment and substitution considerably reduces the total
cost. When these two options are not taken into account, the supply chain experiences
a high cost of inventory and loss of sales. Transshipment and substitution reduce lost
sales and inventory holding costs at the level of each customer. When transshipment is
permitted, results show that it offers a number of advantages: customers receiving the
quantity latterly transshipped can satisfy even more demand and consequently reduce lost
sales. Customers from which the transshipment is carried out, are, in counterpart, able
to lower their inventory holding costs. When the substitution is also allowed along with
transshipment, compared to the other configurations, we observe a considerable reduction
of the costs (to about 32%). In addition to what can be received through transshipment,
each customer can use the quantities of products, if compatible, that could constitute
idle stock (which leads to high holding cost) to meet the demand of other products.
Furthermore, by means of substitution, the quantity of products that could be transshipped
can be also used as a substitute for different products. As for demand patterns, very low
size variability and value of demands (as in the case of PD), regardless of the average
inter-demand interval may be less stressful than the case when demands experience high
variability and size. Indeed, when demands to satisfy are higher than the available quantity
to promise, there would not be enough quantity for substitution and transshipment to
lessen any possible lost sales. For this reason, the impact of transshipment and substitution
depends on whether the distribution of demands to meet may or not be considered a
stressful scenario.

4.7 . Conclusions & Perspectives
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In this paper, we consider a two-level supply chain. At the upper level, a manufacturer-
owned central warehouse distributes products to a given number of customers (the lower
level). We model the problem as a dynamic and stochastic inventory-routing problem
that considers the two flexible instruments of transshipment and substitution to mitigate
shortages. We assume that lost sales are allowed when a shortage occurs. We solve the
problem using a new matheuristic which combines the mathematical modelling, the strong
global search ability of the Genetic Algorithm and the self-adaptability of the Deep Q-
learning. The matheuristic is first applied to a set of 150 known instances and is found to
be competitive and efficient as it enhances the best-known solutions of the single-vehicle-
product DSIRP. We later solve the problem for multi-product-vehicle DSIRP. Four demand
distributions have been studied: Normal distribution, Poisson distribution for demand
occurrence, combined with demands of constant size, Stuttering Poisson distribution and
Negative Binomial distribution. Regarding the managerial insights, for all the demand
patterns under consideration, we demonstrate the benefits of promoting inventory sharing
or substitutions as emergency measures to sidestep shortages. In addition, we show
that combining these two flexible instruments can be a viable solution for supply chain
managers aiming to improve the system’s broad service level under dynamic and stochastic
demands. Moreover, results show that the impact of transshipment and substitution on
the overall performance depends on the size variability of demands, regardless of the
average inter-demand interval.

This paper can be expanded to investigate the performance of the resolution approach
in centralised and decentralised settings, either deterministic or stochastic. One can also
consider non-parametric methods for demand, whereby the empirical demand distribution
is instead directly constructed from the data. The effect of the forecasting method and
the resulting error can also be integrated into the model. Also, a stochastic optimisation
on demands such as average sample approximation could be applied (as investigated in
Chapter 3). This paper assumes that the lead times are long between the facility and
the central warehouse. Additionally, stochastic lead time and production rate can also be
investigated. Furthermore, it would be interesting to consider a substitution rate instead
of a compatibility matrix. This would allow customers to more explicitly express their
preference with regard to the available products.

Acknowledgements

We would like to show our gratitude to the (Prof. Leandro C. Coelho, Ph.D., Canada
Research Chair in Integrated Logistics, Laval University) for sharing valuable information
about the single-vehicle-product DSIRP data-set. His help is sincerely appreciated. The
authors thank the editor-in-chief, the associate editor and three anonymous referees for
their constructive comments and encouragements that have helped improve our paper
greatly.

104



5 - Modeling and solving a decentralised and
deterministic multi-product multi-vehicle
VRPT

Preliminary version of the paper published on Transportation Research Procedia
as part of the Special Issue of the 24th Euro Working Group on Transportation

Meeting, EWGT 2021, Aveiro, Portugal,
https://doi.org/10.1016/j.trpro.2022.02.064

Achamrah, F.E., Riane, F. and Aghezzaf, E.H. (2022). Bi-level programming for modeling
inventory sharing in decentralised supply chains. Transportation Research Procedia.

Full paper to be submitted to Journal of Intelligent Transportation Systems –
Taylor & Francis, ISSN 15472450, Impact Factor: 4.2, Quartile: Q1

105



Bi-level programming for modeling inventory sharing in decentralised supply
chains

Fatima Ezzahra Achamrah a,b, Fouad Riane a,b, El-Houssaine Aghezzaf c, d

aComplex Systems and Interations, Ecole Centrale of Casablanca; bLaboratoire Genie
Industriel, CentraleSupelec, Paris Saclay University; c Ghent University, Faculty of En-
gineering and Architecture, Department of Industrial Systems Engineering and Product
Design, d Industrial Systems Engineering (ISyE), Flanders Make

Abstract: This paper deals with inventory sharing and routing in decentralised supply
chains. The supply chain considered in this paper consists of a single company distribut-
ing its products through a network of independent Points of Sale (POS). The problem
is modelled as a 1-leader - n-followers Stackelberg game. A new mixed-integer bi-level
program is developed, in which the manufacturer’s central warehouse decides first on
inventory levels and the distribution routes, considering each follower’s (POS) response
function that minimises the follower’s own cost. A trade-off solution to manage conflict
of interests between the parties involved in the supply chain is also proposed. To solve the
mixed-integer bi-level program, an original hybrid Genetic Algorithm coupled with deep
reinforcement learning is developed and used to solve a set of large-size instances. The
gap analysis shows that the proposed hybrid algorithm performs relatively well and that
inventory sharing allows the network to improve its service level.

5.1 . Introduction

To increase service levels and reduce logistics costs, manufacturers tend to encourage,
through lateral transshipment (LT) policy, sharing of inventories between a network of
customers (e,g., points of sale (POS), retailers) belonging to the same echelon (Chiou,
2008; Peres et al., 2017; Tarhini et al., 2019; Wang et al., 2019). To successfully achieve
such economies of scale, each LT policy must balance conflicting interests and manage
inventories and deliveries. Moreover, it has to choose the right LT price so that both
manufacturer and customers would benefit from LT and its related cost would not exceed
the profit to be made (Shao et al., 2011; Hezarkhani and Kubiak, 2010; Atan et al., 2018).
This is the case of decentralised supply chains in which the same manufacturer does not
own customers’ locations, and each decision-maker or level of the supply chain works to
optimise its costs (Liao et al., 2020; Li et al., 2020).

In the literature on vehicle routing (VRP) or IRP with LT, the problem is thoroughly
studied in its centralised version (Coelho et al., 2012b; Achamrah et al., 2021; Lefever
et al., 2018; Timajchi et al., 2019; Mirzapour Al-e-hashem and Rekik, 2014). Moreover, to
simplify the optimisation problems, most papers assume that LT operations are outsourced
and performed by another carrier; only consider decision variables that determine nodes to
visit and periods when LT may occur (Achamrah et al., 2022b). However, LT often occurs
with independent customers’ locations not owned by the manufacturer. On decentralised
decision making, LT has been extensively studied in the context of news vendor-related
supply chains (Rudi et al., 2001; Yan and Zhao, 2011; Arikan and Silbermayr, 2018;
Zhao et al., 2016). According to Hanany et al. (2010), there exist two variants to be
distinguished: vertical and horizontal systems. Vertical if the manufacturer supplies to a
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single downstream company with a set of stores (a chain store). Using a deterministic
demand pattern, Dong and Rudi (2004) demonstrates that the manufacturer benefits
from LT under reasonable assumptions. Zhao et al. (2005) generalises the results of
Dong and Rudi (2004) to include stochastic demands. A horizontal decentralised supply
chain with LT concerns customers’ locations not owned by the same company. Two
approaches are being used. The first one adopts a non-cooperative game framework.
Rudi et al. (2001) and Hu et al. (2007) compare equilibrium inventory levels with and
without LT. Rong et al. (2010) consider LT in multiple periods. Jiang and Anupindi
(2010) compare the LT game with another game in which consumers are allowed to
choose among retailers. The upstream (manufacturer) is not considered in the study in
all these papers. Grahovac and Chakravarty (2001) study the case of an inventory control
policy for a supply chain in which a manufacturer acts as a Stackelberg leader. The
other approach uses a cooperative game framework (Anupindi et al., 2001; Granot and
Sošić, 2003; Sošić, 2006). Particularly, these papers address the "coopetition" between
customers’ locations (e.g., POS, retailers). That is, customers define their inventories
unilaterally before satisfying the demands of their customers and then collectively decide
how to share their inventory. Huang and Sošić (2010) compare the two approaches and
conclude that, based on the model’s parameters, each approach can be more effective
than the other in gaining additional benefit from transshipment. However, the LT has
been usually treated as the single simplified manufacturer multiple customers inventory
management problem in which vehicle routing, delivery scheduling decisions, and the
relative power of all parties in the decision-making are not considered.

This paper makes several contributions to the literature. First, it studies a multi-
product, multi-vehicle Vehicle Routing Problem (VRP) with LT and Inventory Man-
agement (VRP-TIM) in a decentralised supply chain. The supply chain consists of a
manufacturer’s central warehouse (CW) that distributes products through a network of
independent customers. Demand for finite horizon planning is deterministic but time-
varying. Customer product delivery is carried out using a homogeneous capacitated fleet
of vehicles. Moreover, unlike other research, our approach considers that LT is not out-
sourced. That is, its related decision is integrated into the design of vehicle routing. Each
player’s preliminary decision is to enhance the service level while maintaining a minimum
cost, including transportation, inventory, lost sales, and LT. Second, the paper suggests
a trade-off solution to manage conflict of interests between the supply chain’s players.
Indeed, as a part of the collaboration, the CW and the customers may agree to incur
each their own holding cost as well as a part of the cost of lost sales associated with
the products shortage and a part of the cost of LT. The CW incurs, in turn, the ve-
hicle routing cost for regular shipments. Therefore, inventory sharing can only attract
all players if the LT and lost sales costs share are optimally defined. Such policies are
often optimised locally as both players aim at reducing their objective functions that are
narrowly defined. Therefore, solving such problems requires hierarchical decision-making,
which belongs to the multilevel optimisation family (Grahovac and Chakravarty, 2001).
Moreover, many automotive, high-tech and fashion enterprises can benefit from this re-
search. Online retailing companies with several independent stock-keeping locations may
particularly benefit, as customers usually have no preference for the location from which
their products are delivered as long as these latter are made available at the right time
and place. Finally, to handle the combinatorial complexity of the model, an original hybrid
Genetic Algorithm (HGA) coupled with deep reinforcement learning is proposed.

The remaining of this work is structured as follows. In Section 2, related works are
presented. Problem description and formulation are provided in Section 3. Section 4
describes the resolution approach, while Section 5 shows the computational experiments.
Finally, conclusions and perspectives are presented in Section 6.
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5.2 . Related work

Two streams that are of great importance have been examined. The first investi-
gates the pickup and delivery problem (PDP) in which pickup and delivery operations
are optimised along with inventory management or/and LT. The second examines bi-level
optimisation as a modelling approach for decentralised decision-making and presents the
resolution methods.

5.2.1 . Pickup and Delivery Problem
This section presents the class of problems that combines vehicle routing and inventory

management decisions and includes problems where products are picked up from different
origins and transported to other destinations, i.e., problems addressing the optimisation
of pickup and delivery operations and inventory management. The reader, if interested,
is referred to Berbeglia et al. (2007) and Battarra et al. (2014) for a thorough description
of the other variant of PDP.

Regarding literature on VRP with Pickup and Delivery (PD), two classes of customers
are to be distinguished: linehaul and backhaul (Wade and Salhi, 2002). Linehaul if
products are requested to be delivered from the depot, while backhaul if products are
picked up from and returned to the depot. These two classes are further divided into
sub-classes concerning the way these customers are served:

1. VRP with backhauls when all linehauls are visited before backhauls (Wassan et al.,
2017).

2. VRP with mixed PD if linehauls and backhauls can be visited in any order (Avci
and Topaloglu, 2015).

3. VRP with simultaneous PD if a customer can be both linehaul and backhaul (Gong
et al., 2018).

4. VRP with split PD when deliveries and pickups are split so that the customers can
be visited twice either by the same vehicle or by another (Polat, 2017).

Another research stream which is relevant to this paper is the one that studies the Inven-
tory routing problem (IRP) with PD (IRPDP) such that quantities of pickup and delivery
are decided based on an inventory policy, and the decision-making is centralised based on
the Vendor Managed Inventory (VMI). The most relevant papers which study IRPPD are
related to maritime applications (Christiansen and Fagerholt, 2014; Christiansen et al.,
2013). On-road transportation, a recent paper of Archetti et al. (2018) studied a single-
product and single-vehicle problem IRPPD in which a commodity must be picked up from
pickup customers and delivered to delivery customers over a given planning horizon with a
single capacitated vehicle. Archetti et al. (2020) extend this work to the multiple vehicle
case. In both papers, it is assumed that the role of each customer does not change.
That is, the role of pickup or delivery customers remains unchanged throughout the time
horizon. Iassinovskaia et al. (2017) study IRP with simultaneous pickups and deliveries
of the returnable transport items in a two-level supply chain. The most closed paper to
us is the paper of van Anholt et al. (2016). Unlike other articles, the authors consider
two PD structures in their model: one to many to 1 structure, which accounts for a
product movement from the depot to automated teller machines to the depot, and the
M-M structure, which refers to commodity transfers among the machines and which is
assumed to be visited either for a pickup or a delivery operation. However, in the IRPPD
under consideration, routes are mainly constructed for pickup and delivery; while this
deals with a decentralised supply chain, LT is considered as a complementary measure
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to sidestep shortage, and there are multiple products. Moreover, the role of customers
can change over time horizon. That is, in a given period, each customer can be a pickup
node, delivery node, or both, depending on its inventory level.

5.2.2 . Bi-level optimisation
Game Theory can be described as "the study of mathematical models of conflict and

cooperation between intelligent, rational decision-makers" (Myerson, 1991). The outcome
of a competitive game is generally an equilibrium (e.g., Cournot, Nash, Stackelberg) where
none of the decision-makers would benefit by modifying their decision. In this work, we
focus on some non-cooperative games called Stackelberg Games, sequential non-zero-sum
games involving two players. Connected to game theory, bi-level problems can be seen
as the mathematical programming counterpart of Stackelberg games introduced by H.
von Stackelberg in 1952. These games can be mathematically modelled as two nested
optimisation problems, also referred to as bi-level problems (Sinha et al., 2017). In the
bi-level programming model, the first level decision-maker (Upper Level: UL) is called
the leader and the second level decision-maker, the follower (Lower Level: LL) (Colson
et al., 2007). Each decision-maker tries to optimise his objective function regardless
of the purpose of the other. Nevertheless, each decision-maker’s choice influences the
value of the objective function and the other level’s decision-making space (Dempe and
Zemkoho, 2020). Therefore, the UL must choose an answer as the optimal solution in
bi-level programming, which is also optimal for the decision-makers on the second level.
This nested structure implies that a feasible solution at the UL should be optimal for the
LL problem (Colson et al., 2007). This is the reason why bi-level optimisation problems
are challenging to solve. Many practical problems involving a bi-level structure have been
studied in the literature. For instance: inventory management with LT in a decentralised
supply chain (Grahovac and Chakravarty, 2001) and VRP (Marinakis et al., 2007).

On the other hand, Ben-Ayed (1988) stress that as the Bi-Level Programming Problem
(BLPP) is non-convex, it is difficult to solve since the simplest case is an NP-hard problem.
The methods developed to solve BLPP can be classified into two main categories: classical
and evolutionary methods (Feng et al., 2018). The classical or exact methods include
vertex enumeration methods (Bard and Falk, 1982), Kuhn-Tucker transformation methods
(Shi et al., 2005), and penalty function techniques (White and Anandalingam, 1993).
Classical methods can address only differentiable and convex problems. Furthermore,
the BLPP solution requirements produce disconnectedness and non-convexity even with
simple problems. Zhang et al. (2016) propose a survey on multilevel optimisation problems
and their solution techniques. They highlight that exact methods have been used to solve
a particular case where BLPP is used and have not been used to solve various multilevel
programming problems, especially for large-scale problems. Exact solutions thus show
some drawbacks when it comes to large-scale problems, as they continue to rely on
consistency, differentiability, and convexity.

Conceptually, the evolutionary methods differ from the classical methods. They can
address differentiable and convex optimisation problems. Evolutionary methods are in-
spired by the human, biological, genetic, insect swarm, and neuro-biological processes
Yang (2010). They cover metaheuristics such as GA, simulated annealing, particle swarm’s
optimisation, ant colony optimisation, neural networks, immune systems, etc. Applica-
tions can be found in Carrasqueira et al. (2017), Li et al. (2014) and Wang et al. (2008).
Among these metaheuristics, particle swarm optimisation (PSO) and GA have been proven
to be more efficient and convenient in the resolution of BLPP. Kuo and Han (2011) and
(Li et al., 2014) highlight that the PSO algorithm is more practical in solving nonlinear
and large-sized problems. Ma et al. (2016) and Jia et al. (2014) use a GA algorithm to
solve a bi-level supply chain planning problem and showed its high computational perfor-
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mance. In Amirtaheri et al. (2017), it is stressed that PSO and GA algorithms manifest
high computational efficiency: GA is ultimately discrete and can be applied to discrete op-
timisation, especially for decision problems with 0-1 decision variables. At the same time,
PSO is inherently continuous and can be used in continuous optimisation. GA typically
applies a crossover operator to two solutions that play a key role in the algorithm. Often,
a fixed probability mutation operator is used that changes randomly the unique content,
and a selection of performed which is generally rendered probabilistically or proportionally
(Moscato et al., 1989). Generation in this algorithm is the replacement of picked solu-
tions. That is, the parents are substituted by their children. The literature clearly shows
that GA is very robust in dealing with nonconvex and nondifferential problems, owing to
its simplicity and explicit parallelism. For the above reasons, a hybrid GA is used to solve
our bi-level program for large-scale instances.

5.3 . Mathematical formulation

5.3.1 . Bi-level integer program
Since the supply chain is decentralised, we formulate the problem as a bi-level integer

program (BLP). We assume that the manufacturer’s CW acts as a Stackelberg leader
(Upper Level: UL) that chooses stocking levels and routes to be built, knowing each
customer’s (Lower Level: LL) response function arising from its minimisation of the total
cost. In addition, we define parameter 0 ≤ ϵ ≤ 1 to denote the relative share of the cost
of lost sales that is incured by the customer and 0 ≤ β ≤ 1 to denote the relative share of
the transshipment costs that is incurred by customer receiving products. The CW incurs
the remaining parts (1 − ϵ) and (1 − β). The parameters ϵ and β can thus be seen as
measures of the relative power of the partners in the supply chain.

Table 5.1: Model’s notation summary
V set of nodes including CW
P set of products
K set of available vehicles
H set of periods Parameters
Ci maximum inventory capacity at node i ∈ V
IpiO inventory level at the beginning of the planning horizon at each node i and product p
Dpi demand to be satisfied per customer i ∈ V0 and product p
Q capacity of vehicle
ck fixed transportation cost for each vehicle k
dij distance in km between (i, j) ∈ E
hpi unit inventory holding cost for each anode i ∈ V and product p
apij unit transshipment cost of a product p from a node i ∈ V0 to node j ∈ V0
spi loss sales cost associated to the product p at the level of a customer i ∈ V0
fpt quantity of product p produced at the CW at period tDecision variables
Ipit inventory level of product p at node i ∈ V at the end of period t
Qpit quantity of product p directly shipped from the CW to node i ∈ V0 in period t
qpijkt quantity of product p shipped from node i ∈ V0 to node j ∈ V0 by vehicle k in period t. It includes regular shipmentfrom CW and transshipment between customer
wpijkt quantity of product p transshipped from node i ∈ V0 to node j ∈ V0 by vehicle k in order to sidestep the shortageof the product p in period t
ypit lost sales quantity of product p at node i ∈ V0 in period t
zkt equal to 1 if the vehicle k is used in period p, 0 otherwise
xijkt equal to 1 if the arc (i, j) ∈ E is visited by a vehicle k in period t, 0 otherwise

The related BLP is defined on a graph G = (V,E) where V = {0, . . . , n} the vertex
set and E = {(i, j) : i, j ∈ V, i ̸= j} is the edge set. Let V0 = V \{0} be the set
of n customers (LL) and 0 be the vertex representing the CW (UL). Both the LL and
UL incur an inventory holding cost hpi per product p ∈ P = {1, ...,m}. Each has a
maximum inventory holding capacity Ci. The length of the planning horizon is T with
discrete periods t ∈ H = {1, ..., T}. We assume that at the beginning of the planning
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horizon, the current inventory-levels for each product p Ipi0, expressed in terms of Stock
Keeping Unit (SKU), are known for each i ∈ V . Dpit is the demand a point of sale i ∈ V0

has to meet for each period t and product p. Let k ∈ K = {1, ..., u} be the available
set of homogeneous vehicles. Each vehicle has a capacity Q (in equivalent SKU), with a
fixed transportation cost per km ck. A distance dij (expressed in km) is associated for all
(i, j) ∈ E. The unit cost associated with transshipping a product p from a customer i to
a customer j is apij . spi is the lost sale cost associated to product p at the level of the
customer i. fpt the quantity of product p produced by the CW at period t. The model’s
notation summary is given in table 5.1. The BLP for VRP-TIM can be written as:

• Upper Level

min
∑
t∈H

∑
p∈P

hp0Ip0t +
∑
t∈H

∑
k∈K

ck
∑
i∈V

∑
j∈V,i̸=j

dijxijkt+

(1− ϵ)
∑
t∈H

∑
k∈K

∑
i∈V0

∑
j∈V0,i̸=j

∑
p∈P

apijwpijkt + (1− β)
∑
t∈H

∑
i∈V0

∑
p∈P

spiypit
(5.1)

Subject to:
Ip0t = Ip0t−1 −

∑
i∈V0

Qpit + fpt ∀p ∈ P, t ∈ H (5.2)

Qpjt −
∑
k∈K

∑
i∈V0,i̸=j

(wpjikt − wpijkt) =
∑
k∈K

∑
i∈V0,i̸=j

(qpijkt − qpjikt)

∀p ∈ P, j ∈ V0, t ∈ H (5.3)∑
p∈P

qpi0kt = 0 ∀i ∈ V0, k ∈ K, t ∈ H (5.4)
∑
p∈P

Ip0t ≤ C0 ∀t ∈ H (5.5)
∑
p∈P

qpijkt ≤ Qzkt ∀(i, j) ∈ E, k ∈ K, t ∈ H (5.6)
∑
i∈V

xijkt =
∑
i∈V

xjikt ∀j ∈ V0, k ∈ K, t ∈ H (5.7)
∑
i∈V

∑
k∈K

xijkt ≤ 1 ∀j ∈ V0, k ∈ K, t ∈ H (5.8)
∑
j∈V0

x0jkt = zkt ∀k ∈ K, t ∈ H (5.9)
∑
k∈K

zkt ≤ u ∀t ∈ H (5.10)
• Lower Level

min
∑
t∈H

∑
i∈V0

∑
p∈P

hpiIpit + ϵ
∑
t∈H

∑
k∈K

∑
i∈V0

∑
j∈V0,i̸=j

∑
p∈P

apijwpijkt+

β
∑
t∈H

∑
i∈V0

∑
p∈P

spiypit (5.11)
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Subject to:

Ipit = Ipit−1 +Qpit −Dpit −
∑
k∈K

∑
j∈V0,i̸=j

(wpjikt − wpijkt) + ypit

∀i ∈ V0, p ∈ P, t ∈ H (5.12)∑
p∈P

Ipit ≤ Ci ∀i ∈ V0t ∈ H (5.13)
∑
k∈K

∑
j∈V0

wpijkt ≤ Ipit−1 ∀(i, j) ∈ E, k ∈ K, t > 1 (5.14)
The objective function (5.1) at the UL minimises its total cost. The first sum corre-

sponds to the inventory cost. The second sum is for transportation costs. The third is
the total shared cost of transshipment (1 − ϵ). The last sum is the shared cost of lost
sales (1 − β). Constraints (5.2) indicate the conservation conditions of inventory at the
CW over successive periods. Constraints (5.3) express the conservation of flows (inflows
and outflows) at each customer j. Constraints (5.4) guarantee that vehicles are emptied
when returned to the CW at the end of a period. Constraints (5.5) guarantee that in-
ventory levels at the CW do not exceed the maximal holding capacity. Constraints (5.6)
state that the quantities transported do not exceed the vehicle capacity. Constraints (5.7)
stipulate that when a vehicle k visits the customer j in period t, the customer j must
be left in period t. Constraints (5.8) ensure that the most a customer is visited once by
the vehicle k per period. Constraints (5.9) stipulate that only vehicles shipping products
are used. Constraints (5.10) indicate that only available vehicles are used. The objective
function (5.11) at the LL minimises the customer’s costs. The first sum corresponds to
the inventory cost. The second is the total shared cost of transshipment (ϵ). The last
sum is the total shared cost of lost sales (β). Constraints (5.12) indicate the conservation
conditions of inventory at the customer over successive periods. The constraints (5.13)
guarantee that inventory levels at each customer do not exceed the maximal holding ca-
pacity. Constraints (5.14) state that the quantity latterly transshipped from customer i
at a period t does not exceed the inventory level at the beginning of the period.

5.3.2 . Reformulation of LL model using Karush-Kuhn-Tucker con-
ditions

The traditional idea of the reformulation of the BLP is to substitute the LL mathe-
matical program by its Karush-Kuhn-Tucker (KKT) conditions as sufficient and necessary
optimality conditions (Bouza Allende and Still, 2012). Let σ1

pit, σ
2
it and σ3

pit be the dual
variables associated with LL’s constraints. We use the Lagrangian function to compute
the relative complementary conditions and dual feasibility. The BLP is converted into a
single linear program subject to the UL feasibility constraints, LL primal and dual fea-
sibility constraints, and complementary conditions. The BLP for VRP-TIM is therefore
converted into a single linear program in the following format:

min
∑
t∈H

∑
i∈V

∑
p∈P

hpiIpit +
∑
t∈H

∑
k∈K

ck
∑
i∈V

∑
j∈V,i ̸=j

dijxijkt+∑
t∈H

∑
k∈K

∑
i∈V0

∑
j∈V0,i̸=j

∑
p∈P

apijwpijkt +
∑
t∈H

∑
i∈V0

∑
p∈P

spiypit+∑
t∈H

∑
i∈V0

∑
p∈P

σ1
pitDpit +

∑
t∈H

∑
i∈V0

σ3
itCi

(5.15)

Subject to:
Upper level feasibility: constraints (5.2)– (5.10)

112



Lower level primal feasibility: constraints (5.12)– (5.14)
Substituted complementary conditions:∑

i∈V0

∑
t∈H

∑
p∈P

hpiIpit + ϵ
∑
t∈H

∑
k∈K

∑
i∈V0

∑
j∈V0,i̸=j

∑
p∈P

apijwpijkt + β
∑
t∈H

∑
i∈V0

∑
p∈P

spiypit

= −

∑
i∈V0

∑
p∈P

∑
t∈H

σ1
pitDpit +

∑
t∈H

∑
i∈V0

σ3
itCi


(5.16)

Lower level dual feasibility:

σ2
it − σ3

pit ≤ hpi ∀i ∈ V0, p ∈ P, t ∈ H (5.17)
−2σ1

pit + σ3
pit ≤ ϵapij ∀i ∈ V0, p ∈ P, t ∈ H (5.18)
σ1
pit ≤ βspi ∀i ∈ V0, p ∈ P, t ∈ H (5.19)

5.4 . Resolution approach

This section describes the resolution approach adopted to solve the problem at hand.

5.4.1 . Hybrid Genetic Algorithm coupled with reinforcement learn-
ing

The bi-level problems are intrinsically hard, even for convex levels. The simplest
bi-level linear programs have been proven strongly NP-Hard (Zhang et al., 2016). The
complexity induced by multiple levels and/or multiple objectives makes exact approaches
non-efficient in tackling large-sized problems. For this reason, researchers turned towards
metaheuristics. Among the metaheuristic algorithms, GA has proved to be the most
practical and quite robust in dealing with discrete problems (Amirtaheri et al., 2017; Jia
et al., 2014). On the other hand, GA is fast at global search but slow to converge (Nia
and Alipouri, 2009). Furthermore, local search heuristics such as Variable Neighborhood
Search (VNS) are good at fine-tuning but often fall into local optimum. In this paper,
a hybrid metaheuristic which combines the properties of GA and VNS is used. Indeed,
GA performs a global search to escape from the local optimum, whereas VNS is used to
conduct fine-tuning. Finally, as in Achamrah et al. (2021), deep reinforcement learning
is used further to enhance the speed and convergence of the algorithm and to cope with
GA’s limitation in terms of speed of convergence highlighted in Achamrah et al. (2022b,d).

5.4.1.1 . General description of HGA
As shown in the Algorithm 4, the first step consists of applying GA for UL. First, we

generate randomly an initial population of chromosomes representing the routing decisions
of the UL (a sequence of customers to visit). Once generated, the related mixed-integer
program is solved. For each chromosome, a fitness value is computed concerning the
objective function of the UP. Next, a double-point crossover is performed. A VNS proce-
dure is used to replace any child created with its better neighbour. A reverse mutation
is performed depending on the corresponding mutation rate. VNS is again applied to re-
place a mutated child with its better neighbour. The next population from the population
size of the best available solutions is chosen. The best available solution based on the
computed fitness is saved. All the steps above are repeated until the maximum number
of iterations is reached. Based on the best solution for the upper level, the above stages
are performed to find the best solution for the lower level. Based on the best solution
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of the LL, an initial solution for the upper level is constructed. All the steps mentioned
above are repeated until no solution improvement is noted.

Algorithm 4 : HGA
1: Generate an initial population.
2: Calculate the fitness value of each chromosome according to UL’sobjective function.
3: Execute the cross-over operator.
4: Use VNS to replace any child the cross-over generates with its bestneighbour.
5: Conduct mutation process.
6: Perform a mutation for the insertion.
7: Apply the VNS method to substitute any child with its best neigh-bour generated by mutation.
8: Measure the fitness value of all strengthened chromosomes withinthe current population; select the next population with the bestpossible solutions from the population size and save the best rela-tive solution.
9: Repeat steps 3 to 7 until the maximum number of iterations isreached.
10: Depending on the best UL solution, repeat the above steps for thelower level.
11: Depending on the best LL solution, build an initial solution for UL.
12: Repeat steps 2 to 11 until no improvement of the solution is notedor a time limit is reached.

Now we describe these steps in detail.

5.4.1.2 . Chromosomes encoding
A chromosome is represented as a bit string in which all the possible information re-

garding vehicles’ routing, inventory levels and quantities to be transshipped are presented.
In this paper, a chromosome of UL is a one-dimensional array of integer values represent-
ing the nodes (customers) to be visited. Each chromosome (χ) is partitioned into several
sub-sequences, each representing a constructed route assigned to a given vehicle and in a
given period. As for LL, we choose the representation space of the relative chromosome
ξ to be expressed as a Cartesian product of allele sets Aι, with ι = {1, 2}:

ξ = A1 ×A2 (5.20)
The algorithm uses a 8-bit scheme Aι = {a1ιa2ιa3ιa4ιa5ιa6ιa7ιa8ι; alι ∈ {0, 1}/l =
1, 8}, so that transshipped quantity from a customer takes an integer value less than or
equal to its inventory level at the beginning of the period minus the demands it has to
satisfy. Next, each chromosome is re-converted to its corresponding variables xijkt, Ipit
and wpijkt to be able to calculate the fitness value (F ) according to each level’s objective
function (OF ). This fitness is expressed as:

F =
1

OF
(5.21)
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5.4.1.3 . Genetic operators
In this algorithm, as in Achamrah et al. (2021, 2022b), the following operators are

used:

• Cloning operator consists of selecting a member of each generated population
according to its fitness and making a copy. This guarantee that the best members of
the current population will be present in the next. Finding the trade-off between the
algorithm’s performance and speed led us to choose the best 30% of chromosomes
in the current population to be copied to the next generation.

• Parent selection operator, which uses a binary tournament selection process that
starts with creating two pairs of chromosomes. Every pair consists of two chromo-
somes randomly selected from the current population. The two best chromosomes
for each pair are chosen for crossover operations. This process results in two
children, each counted in the new population.

• Crossover operator is essential to mate the pairs of chromosomes to produce their
offspring. In this paper, the two-point crossover is chosen, and the contents be-
tween these points are exchanged between two mated parents. A crossover is
performed based on a probability PC .

• Mutation operator is the second operator used for exploring new neighbours. The
idea is to produce random bit alterations in different chromosomes. A mutation
process is performed using a PM probability.

5.4.1.4 . VNS procedure
VNS is a metaheuristic for solving combinatorial and global optimisation problems.

Its basic idea is a systematic change of neighbourhood within a descent phase to find a
local optimum and a perturbation phase to get out of the corresponding valley (Hansen
et al., 2019). The algorithm proceeds as described in Algorithm 5. With the function
Shake represented in Line 4, a neighborhood x′ is randomly generated from the kth
neighborhood of x, i.e., x′ ∈ Nk(x). Its steps are given in Algorithm 6, where it is
assumed that points from Nk(x) are {x1, ..., x|Nk(x)|}. Next, a Variable Neighborhood
Descent (VND) procedure is applied if a neighbourhood is changed. Its steps are presented
in the Algorithm in 7. It is worth noting that the final solution should be a local minimum
regarding all kmax neighbourhoods; thus, the chances of reaching a global one are larger
than using a single structure.

Algorithm 5 : VNS
t ← 0 t < tmax k ← 1 k < kmax x

′ ← Shake(x, k) x′′ ←
V ND(x, k) OF (x′′) < OF (x) x ← x′′; k ← 1 // make a move
k ← k + 1 //next neighborhood

Algorithm 6 : Shake procedure
ω ← [1 +Rand(0, 1)× |Nk(x)|] x′ ← xω
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Algorithm 7 : VND
k ← 1 k < kmax x

′ ← argminy∈Nk(x)OF (x) // find the bestneighbour in Nk(x) OF (x′′) < OF (x) x ← x′′; k ← 1 // make amove k ← k + 1 //next neighborhood
5.4.1.5 . Constraints violation

A basic penalty strategy is adopted to respect the model’s constraints in the HGA.
That is, during the generation of the random initial solutions and through the crossover
and mutation schemes, the feasibility of each chromosome is checked considering the con-
straints of the model. If an infeasibility arises in the solution, then a penalty is associated
with the value of the fitness functions of the corresponding chromosome Achamrah et al.
(2021). In this way, infeasible chromosomes have a lower probability of being part of the
next generation of chromosomes.

5.5 . Computational experiments

5.5.1 . Data set and parameters tuning
This section summarises the computational experiments performed on a set of in-

stances randomly generated by Coelho and Laporte (2013a) for a multi-products IRP. For
each instance, the number of customers varies between 10 and 50, the number of both
products and vehicles varies between 1 and 5, and finally, the number of periods varies
between 3 and 5. Product availability at the CW is a multiple of a number randomly
generated according to a discrete uniform distribution in the interval [50, 140], and the
maximum inventory level is a multiple of a number drawn randomly from [150, 200]. The
initial inventory level is a randomly generated number in the interval [100, 150]. Hold-
ing costs are randomly generated from a continuous uniform distribution in the interval
[0.02, 0.2]. The reader is referred to their paper for further details, and the dataset can
be downloaded from http://www. leandro-coelho.com/instances/.

As in Achamrah et al. (2021, 2022b), to fine-tune the parameters, we use the Irace
package (see Table 5.2). All optimisation steps are carried out on a personal computer
(MacBook Pro, macOS Cataline, CPU 3.3 GHz Quad-Core Intel Core i7, 8 GB of RAM).
The problem is solved using the branch-and-cut solver of CPLEX 12.9 (academic version),
Python 3.7 and Pytorch. For each instance, ten independent runs are performed using
HGA, and the average of the results is recorded. We refer to the instances using the
following notation: [number of products] P [number of customers] N [number of periods]
T, e.g., 2P5N5T refers to the instance where two products are shipped to a set of 5
customers over a planning horizon of 5 days.

Table 5.2: HGA’s parameters
Parameter Range Chosen valuePopulation size (UL / LL) [100,140] 100Maximum number of iterations [100,140] 100Mutation probability [0.10,0.18] 0.15Crossover probability [0.5,0.55] 0.52Cloning probability [0.2,0.4] 0.3
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Table 5.3: DQ’s parameters
Parameter ValueExploration rate [0,1]Discount rate 0.33C 100

5.5.2 . Primary insights into ϵ and β optimal value
Considering a Stackelberg game, the parameters ϵ and β can be seen as measures of

the relative power of the partners in the supply chain under consideration. The policies at
the level of the CW and the customers are locally optimal since all the partners minimise
their narrowly defined objectives. The objective is to determine the scenario in which
transshipment is beneficial, and the total cost is minimised for all the partners. That is,
determine ϵ∗ the fair shares relative to transshipment cost given the shared parameter β
of lost sales cost. Without loss of generality, we consider an instance consisting of 10
customers and five products. For a given value of β, we vary ϵ ∈ {0; 0.2; 0.4; 0.6; 0.8; 1}
and observe the variation of the total cost at the level of CW and customers. The
intersection of the two curves makes it possible to determine ϵ∗ (see Table 5.4).

From Table 5.4, we can see that the CW tends to become relatively more interested
in instituting inventory sharing schemes as the customer incurs higher LT and shortage
costs. Indeed, whenever the CW incurs a major part of the cost of lost sales, he becomes
more cautious about sharing the cost of LT. And vice versa. If he incurs a large part of
LT cost, it is in his interest to incur a small percentage of the cost of lost sales. As a
result, a fair share of costs and inventory sharing is efficient if only they make at least one
party strictly better-off while making no one else worse-off.

Table 5.4: Optimal shares relative to the transshipment for a givenvalue of share of lost sales
β 0 0.2 0.4 0.6 0.8 1
ϵ∗ ~ 0,95 ~0.87 ~0.80 ~0.76 ~0.68 ~0.6

5.5.3 . Results on small and large instances
This section aims to provide insight into the benefits of transshipment and the rep-

resentativeness of the results. For each instance, we consider two scenarios in which we
compare the bi-level program with (VRP-TIM) and without transshipment (VRP-IM).
Tables 5.5, 5.6, and 5.7 summarise the results of the comparison between CPLEX and
HGA in terms of total costs (TC). It also provides the gap (GAP) computed regarding
the total costs obtained using CPLEX (with a time limit of 24 hours). For each instance
under consideration, we remade the same tests done in the previous section by varying
ϵ and β to determine the optimal ϵ∗ and β∗; corresponding to the lowest cost recorded
so far. Tables 5.9, 5.8 and 5.10 summarise the results for each instance under considera-
tion. For all instances, the breakdown of costs is provided, namely: Transportation (T),
Inventory (I), Lost sales (LS) and transshipment (Ts). Tables also provide the service
levels computed regarding the satisfied and lost demands and report CPU time in second
(CPU) needed to solve the models using HGA. From Tables 5.9, 5.8 and 5.10, results
show that transshipment is overall efficient as it reduces lost sales and enhances service
levels. It also shows that as a leader, the CW tends to become relatively more interested
as the customer incurs higher costs relative to transshipment and lost sales. In addition,
any of the involved parties can end up better off once transshipment is allowed. Hence,
depending on the value of the parameters ϵ∗ and β∗, inventory sharing may work both in
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Table 5.5: Results of comparison between CPLEX andHGAon small andrelatively large instances (T=3, P=[1;5])
Instance Model CPLEX (24 hours) HGA GAP (%)TC TC
1P10N3T VRP-IM 18516 18552 0.2VRP-TIM 9187 9233 0.5
3P10N3T VRP-IM 29513 29810 1.0VRP-TIM 17262 17326 0.4
5P10N3T VRP-IM 31768 31859 0.3VRP-TIM 21266 21402 0.6
1P20N3T VRP-IM 34593 34885 0.8VRP-TIM 21355 21530 0.8
3P20N3T VRP-IM 42537 42890 0.8VRP-TIM 30651 30950 1.0
5P20N3T VRP-IM 57323 57775 0.8VRP-TIM 34759 34855 0.3
1P30N3T VRP-IM 75214 75413 0.3VRP-TIM 44183 44526 0.8
3P30N3T VRP-IM 84497 84502 0.0VRP-TIM 61422 61765 0.6
5P30N3T VRP-IM 146285 147026 0.5VRP-TIM 120758 121877 0.9
1P40N3T VRP-IM 298157 300525 0.8VRP-TIM 211125 213115 0.9
3P40N3T VRP-IM 532164 532675 0.1VRP-TIM 312668 314693 0.6
5P40N3T VRP-IM 1045161 1047582 0.2VRP-TIM 560721 564945 0.7Average 160045 160821 0.6

Table 5.6: Results of comparison between CPLEX andHGAon small andrelatively large instances (T=5, P=[1;5])
Instance Model CPLEX (24 hours) HGA GAP (%)TC TC
1P10N5T VRP-IM 54906 57374 4.3VRP-TIM 25520 26571 4.0
3P10N5T VRP-IM 83486 86809 3.8VRP-TIM 41948 45754 8.3
5P10N5T VRP-IM 95773 100671 4.9VRP-TIM 64473 68463 5.8
1P20N5T VRP-IM 83858 89549 6.4VRP-TIM 63147 63336 0.3
3P20N5T VRP-IM 128805 131262 1.9VRP-TIM 94850 101505 6.6
5P20N5T VRP-IM 150075 165037 9.1VRP-TIM 96008 106671 10.0
1P30N5T VRP-IM 213697 214955 0.6VRP-TIM 126989 127369 0.3
3P30N5T VRP-IM 218268 229654 5.0VRP-TIM 149120 165583 9.9
5P30N5T VRP-IM 342772 376994 9.1VRP-TIM 305375 311610 2.0
1P40N5T VRP-IM 698592 713216 2.1VRP-TIM 555475 564037 1.5
3P40N5T VRP-IM 1116978 1186197 5.8VRP-TIM 1113083 1136364 2.0
5P40N5T VRP-IM 2207908 2278178 3.1VRP-TIM 1941518 1998841 2.9Average 415526 431083 4.6
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Table 5.7: Results of comparison between CPLEX andHGAon small andrelatively large instances (T=5, P=[10;50])
Instance Model CPLEX (24 hours) HGA GAP (%)TC TC
10P10N5T VRP-IM 140557 150529 6.6VRP-TIM 77430 79360 2.4
30P10N5T VRP-IM 241628 244706 1.3VRP-TIM 117936 125302 5.9
50P10N5T VRP-IM 270571 272303 0.6VRP-TIM 214298 219320 2.3
10P20N5T VRP-IM 255809 266921 4.2VRP-TIM 166545 179466 7.2
30P20N5T VRP-IM 357611 380396 6.0VRP-TIM 275612 295787 6.8
50P20N5T VRP-IM 435518 480562 9.4VRP-TIM 283314 292944 3.3
10P30N5T VRP-IM 545194 557441 2.2VRP-TIM 383061 402484 4.8
30P30N5T VRP-IM 599030 643571 6.9VRP-TIM 436854 484457 9.8
50P30N5T VRP-IM 1170652 1270142 7.8VRP-TIM 944584 973017 2.9
10P40N5T VRP-IM 2477299 2488065 0.4VRP-TIM 1758354 1779353 1.2
30P40N5T VRP-IM 4195039 4581517 8.4VRP-TIM 3091047 3223196 4.1
50P40N5T VRP-IM 8994324 9160663 1.8VRP-TIM 5848865 5900509 0.9Average 1386714 1435500 4.5

Table 5.8: Results for small and relatively large instances (T=3)
Instances Model Level T I LS Tr TC ϵ∗ (%) β∗ (%) SL (%) CPU (s)
1P10N3T VRP-IM UL 2391 662 634 0 3688 - 95 47 42LL 0 3577 11288 0 14865

VRP-TIM UL 2894 806 626 1433 5759 37 23 87 23LL 0 2445 187 842 3474
3P10N3T VRP-IM UL 4623 1438 3347 0 9408 - 81 40 73LL 0 5769 14632 0 20402

VRP-TIM UL 6292 1644 149 2105 10190 37 69 73 16LL 0 5569 330 1237 7136
5P10N3T VRP-IM UL 7750 2651 4594 0 14994 - 62 43 19LL 0 9344 7520 0 16865

VRP-TIM UL 9165 2592 178 1408 13343 40 28 74 11LL 0 7059 70 930 8059
1P20N3T VRP-IM UL 7225 3477 5169 0 15871 - 60 48 55LL 0 11209 7806 0 19014

VRP-TIM UL 7544 3090 0 1633 12266 51 0 100 19LL 0 7576 0 1689 9264
3P20N3T VRP-IM UL 9004 4045 8553 0 21602 - 55 43 12LL 0 10800 10488 0 21288

VRP-TIM UL 12441 3607 407 1285 17740 59 43 79 35LL 0 11064 302 1845 13210
5P20N3T VRP-IM UL 13884 6379 15996 0 36260 - 39 35 79LL 0 11156 10359 0 21515

VRP-TIM UL 13329 4863 25 2944 21160 48 96 87 76LL 0 10405 615 2675 13695
1P30N3T VRP-IM UL 20608 7200 2139 0 29947 - 92 35 56LL 0 19500 25965 0 45466

VRP-TIM UL 15996 6963 0 2733 25693 51 100 100 40LL 0 16010 0 2823 18833
3P30N3T VRP-IM UL 17844 9891 16264 0 43998 - 58 46 12LL 0 18254 22250 0 40504

VRP-TIM UL 27281 9063 106 4210 40660 40 18 88 15LL 0 18329 23 2753 21105
5P30N3T VRP-IM UL 30478 14134 36659 0 81270 - 45 34 37LL 0 35832 29924 0 65756

VRP-TIM UL 62146 19060 197 10028 91430 25 25 78 63LL 0 27109 66 3272 30447
1P40N3T VRP-IM UL 72232 31999 119258 0 223489 - 15 48 78LL 0 55827 21209 0 77036

VRP-TIM UL 101981 25808 111 13533 141432 49 70 87 45LL 0 58447 263 12973 71683
3P40N3T VRP-IM UL 94046 53118 177614 0 324778 - 41 42 39LL 0 83517 124380 0 207897

VRP-TIM UL 154705 35821 515 26084 217125 42 32 89 32LL 0 78670 241 18657 97568
5P40N3T VRP-IM UL 155834 111866 300065 0 567764 - 50 33 74LL 0 173799 306018 0 479818

VRP-TIM UL 273518 46603 343 77884 398348 19 67 86 47LL 0 147900 701 17996 166597
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Table 5.9: Results for small and relatively large instances (T=5)
Instances Model Level T I LS Tr TC ϵ∗ (%) β∗ (%) SL (%) CPU (s)
1P10N5T VRP-IM UL 7612 2015 10471 0 20098 - 71 30 7LL 0 11678 25598 0 37276

VRP-TIM UL 9086 2172 337 355 11950 94 85 80 79LL 0 7082 1910 5629 14621
3P10N3T VRP-IM UL 14207 4075 7354 0 25636 - 85 39 63LL 0 19263 41910 0 61173

VRP-TIM UL 15102 4524 1581 3319 24525 67 1 81 15LL 0 14569 18 6642 21228
5P10N5T VRP-IM UL 22079 8933 7890 0 38903 - 79 44 95LL 0 31424 30344 0 61768

VRP-TIM UL 30803 8046 123 6341 45313 13 84 88 12LL 0 21544 631 975 23150
1P20N5T VRP-IM UL 18692 8900 30779 0 58372 - 5 36 93LL 0 29580 1598 0 31177

VRP-TIM UL 24652 8438 0 4016 37106 58 92 100 17LL 0 20666 0 5564 26230
3P20N5T VRP-IM UL 30244 10291 23375 0 63909 - 62 38 21LL 0 29527 37825 0 67352

VRP-TIM UL 41367 10543 334 7031 59275 30 85 86 102LL 0 37186 1963 3081 42230
5P20N5T VRP-IM UL 44179 21824 43414 0 109417 - 36 31 100LL 0 30846 24775 0 55621

VRP-TIM UL 38240 13970 948 1900 55059 89 46 69 36LL 0 34711 800 16102 51613
1P30N5T VRP-IM UL 49213 17920 36635 0 103769 - 60 39 10LL 0 56395 54791 0 111187

VRP-TIM UL 40870 16635 0 6957 64462 54 15 100 110LL 0 54883 0 8023 62906
3P30N5T VRP-IM UL 49232 26062 11793 0 87086 - 89 30 38LL 0 49121 93446 0 142567

VRP-TIM UL 72349 25359 4 2742 100453 86 99 88 69LL 0 47326 338 17465 65130
5P30N5T VRP-IM UL 69564 39692 18525 0 127781 - 89 31 46LL 0 91906 157307 0 249213

VRP-TIM UL 141514 42578 552 19266 203910 49 28 87 15LL 0 89021 220 18459 107700
1P40N5T VRP-IM UL 125424 95261 10848 0 231533 - 97 35 6LL 0 158078 323604 0 481682

VRP-TIM UL 201091 73320 1662 31556 307629 59 0 81 80LL 0 211603 5 44800 256408
3P40N5T VRP-IM UL 222753 220815 320036 0 763604 - 40 33 43LL 0 208980 213614 0 422594

VRP-TIM UL 387703 156831 2185 64299 611018 62 14 83 54LL 0 420244 347 104754 525346
5P40N5T VRP-IM UL 384250 526864 781004 0 1692117 - 26 47 94LL 0 318694 267366 0 586060

VRP-TIM UL 588534 267396 1374 151755 1009059 45 66 77 14LL 0 865282 2727 121773 989782
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Table 5.10: Results for small and relatively large instances (T=5,P=[10;50])
Instances Model Level T I LS Tr TC ϵ∗ (%) β∗ (%) SL (%) RT (s)
10P10N5T VRP-IM UL 21085 6526 39934 0 67545 - 53 38 223LL 0 37405 45579 0 82984

VRP-TIM UL 28820 6914 2612 10674 49021 26 59 87 171LL 0 22776 3792 3771 30339
30P10N5T VRP-IM UL 42350 13659 100613 0 156622 - 28 39 304LL 0 49391 38693 0 88084

VRP-TIM UL 35670 11757 3484 15742 66652 48 9 73 101LL 0 43780 350 14519 58649
50P10N5T VRP-IM UL 52725 20582 34759 0 108066 - 71 40 182LL 0 79723 84514 0 164237

VRP-TIM UL 103990 23091 1464 9295 137840 47 36 67 69LL 0 72432 807 8241 81481
10P20N5T VRP-IM UL 57778 22188 58632 0 138598 - 43 33 196LL 0 84775 43547 0 128323

VRP-TIM UL 60225 25533 0 8528 94286 64 94 74 82LL 0 70079 0 15100 85180
20P20N5T VRP-IM UL 98413 32446 93782 0 224642 - 41 44 107LL 0 89615 66140 0 155754

VRP-TIM UL 134733 27643 1911 12107 176395 53 71 67 259LL 0 100887 4775 13731 119392
50P20N5T VRP-IM UL 104792 74289 215707 0 394789 - 0 34 311LL 0 85444 329 0 85773

VRP-TIM UL 100074 42134 1672 31652 175532 32 62 87 239LL 0 100071 2774 14567 117412
10P30N5T VRP-IM UL 115159 49783 101081 0 266022 - 56 33 300LL 0 163546 127873 0 291419

VRP-TIM UL 118974 56093 0 24236 199303 49 64 70 144LL 0 179467 0 23714 203181
30P30N5T VRP-IM UL 128100 72452 251249 0 451801 - 21 48 116LL 0 126537 65234 0 191770

VRP-TIM UL 205036 75621 286 46096 327039 30 72 86 197LL 0 136584 753 20081 157418
50P30N5T VRP-IM UL 224176 172000 74357 0 470532 - 89 45 194LL 0 201573 598037 0 799609

VRP-TIM UL 462151 182777 381 67978 713287 44 83 65 121LL 0 203511 1904 54315 259730
10P40N5T VRP-IM UL 477719 388892 737077 0 1603688 - 45 37 307LL 0 284218 600160 0 884378

VRP-TIM UL 806453 420386 3503 238992 1469334 1 32 82 266LL 0 306690 1646 1682 310018
30P40N5T VRP-IM UL 995566 710506 1941002 0 3647074 - 16 42 312LL 0 575256 359187 0 934443

VRP-TIM UL 1276615 733995 3685 142791 2157085 75 48 69 80LL 0 636996 3434 425681 1066111
50P40N5T VRP-IM UL 1713368 1617823 3293957 0 6625149 - 31 41 73LL 0 1084358 1451156 0 2535515

VRP-TIM UL 2280034 1418812 1766 833662 4534273 38 83 67 143LL 0 838923 8579 518733 1366236
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favour of or against any of the participants, regardless of their relative power and lead-
ership position in the supply chain. This result indicates that the transshipment-related
agreement between customers frequently needs to be accompanied by mutual monitoring
and enforcement mechanisms and possibly pre-negotiated cash payments. Coordination
is thus beneficial, i.e. encouraging the decision-makers to behave as in the centralised
system while still optimising their income. One way of organising the system is to allow
the decision-makers to transfer payments based on their actions and implication. Finally,
as for HGA performance, we can see from Table 5.5, 5.6, and 5.7 that HGA can provide
solutions with a minimum gap (on average 3.2%) and with less amount of time. However,
we can notice that in some instances, the gap exceeds 5%—this highlight the limitation
of GA in terms of scalability.
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5.6 . Conclusions & perspectives

This paper considers a deterministic, multi-product, multi-period, multi-vehicle rout-
ing problem with transshipment; in a decentralised supply chain. The supply chain consists
of a CW that produces a set of items and sells them through an independent network
of customers, running on a franchising scheme. We model the problem as a BLP. We
consider that the CW acts as a Stackelberg leader. That is, the lower levels: customers
optimise their objective function subject to the value of the leader variable. The CW (UL)
goal is to choose a stock level and routes to be constructed (according to its objective),
knowing that the customers will follow optimally; while satisfying a set of constraints
relative to vehicle routing, product availability and inventory management. The results
show that if the CW agrees to take part in the costs of LT and lost sales, the network will
improve its service level. They also show that the CW seems to become increasingly more
involved as more transshipment and the customer incurs shortage costs. Furthermore,
all of the parties involved can end up worse off once transshipment is permitted. Hence,
depending on the value of the parameters ϵ∗ and β∗, sharing of inventories may work for
and against any of the parties, regardless of their relative power and leadership position in
the supply chain. This result suggests that sharing deals where customers are autonomous
also needs to be followed by joint control and regulation systems and likely pre-negotiated
cash payments between the parties. Further, some supply chains are characterised not
only by one or two decision-makers but also by many divisions at the lower level where
there is a mix of small and large customers arranged within a hierarchical structure. The
BLP we develop could also be generalised to model such decentralised systems. Finally, as
for the resolution approach, coupling HGA with reinforcement learning helps significantly
to enhance the quality of the feasible solutions and reduce the computational time. While
the benefits of the model and the effectiveness of the resolution approach are demon-
strated using randomly generated instances, it would be helpful to further assess their
effectiveness on a real dataset. Also, it would be interesting to evaluate the performance
and limitation of resolution approaches on other complex supply chains such as closed-loop
ones.
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Abstract: This paper proposes a new approach, i.e., virtual pooling, for optimising
returnable transport item (RTI) flows in a two-level closed-loop supply chain. The supply
chain comprises a set of suppliers delivering their products loaded on RTIs to a set of
customers. RTIs are of various types. The objective is to model a deterministic, multi-
supplier, multi-customer inventory routing problem with pickup and delivery of multi-
RTI. The model includes inventory-level constraints, the availability of empty RTIs to
suppliers, and the minimisation of the total cost, including inventory holding, screening,
maintenance, transportation, sharing, and purchasing costs for new RTIs. Furthermore,
suppliers with common customers coordinate to virtually pool their inventory of empty
RTIs held by customers so that, when loaded RTIs are delivered to customers, each
may benefit from this visit to pick up the empty RTI, regardless of the ownership. To
handle the combinatorial complexity of the model, a new artificial-immune-system-based
algorithm coupled with deep reinforcement learning is proposed. The algorithm combines
artificial immune systems’ strong global search ability and a strong self-adaptability ability
into a goal-driven performance enhanced by deep reinforcement learning, all tailored to
the suggested mathematical model. Computational experiments on randomly generated
instances highlight the performance of the proposed approach. From a managerial point
of view, the results stress that this new approach allows for economies of scale and
cost reduction at the level of all involved parties to about 40%. In addition, a sensitivity
analysis on the unit cost of transportation and the procurement of new RTIs is conducted,
highlighting the benefits and limits of the proposed model compared to dedicated and
physical pooling modes.
Keywords: closed loop supply chain, returnable transport items, pickup and delivery,
inventory routing problem, artificial immune systems, deep reinforcement learning

6.1 . Introduction

Returnable transport items (RTIs) are all reusable assets used to facilitate product
shipping, storing, handling, and protection in the supply chain (Cobb, 2016). RTIs cover
reusable drums, pallets, crates, rolls, boxes, and barrels (Kim and Glock, 2014; Limbourg
et al., 2016; Iassinovskaia et al., 2017). Along with globalised supply chains, the use of
RTIs has become more prevalent in recent decades as they eliminate the wastes that one-
way secondary packaging may generate (Glock, 2017). The use of RTIs has been proved to
be an enabler for better ergonomics and productivity while facilitating automation, better
inventory control, and improved quality (Limbourg et al., 2016; Iassinovskaia et al., 2017;
Bortolini et al., 2018; Liu et al., 2020). Furthermore, their operational benefits help
reduce the disposal costs of packaging material and improve productivity (Twede and
Clarke, 2005). These assets usually flow in a closed-loop supply chain between players
(Glock, 2017; Sarkar et al., 2017). Loaded RTIs are received and unloaded at a given level
of the supply chain. Either the empty RTI can be collected and returned to the sender,
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or the receiver can reuse them to ship his products and thus continue to flow downstream
the supply chain. Therefore, there exist two flows of RTIs that must be managed (Talaei
et al., 2016): forward flows, which correspond to the forward distribution of goods loaded
on RTIs, and reverse flows, which correspond to the collection and return of empty RTIs
to their owners. This paper aims to optimise both forward and reverse flows of RTIs in a
two-level closed supply chain.

Managing such assets has become a primary concern of supply chain managers, along
with managing warehouses, machines, and vehicles (Sarkar et al., 2017; Liu et al., 2020).
Indeed, it has become very pressing for companies to effectively package products and
guarantee to have them in the proper quantity, at the right place, and at the right time.
To avoid shortages, many companies frequently invest in more RTIs, resulting in higher
holding and purchasing costs (Limbourg et al., 2016; Meherishi et al., 2021). Moreover,
supply chain players experience RTI losses, varying from 3 to 20% (TrackX, 2017). This
mismanagement lengthens turnaround times and pushes players to overinvest in these
assets, leading to inefficient budgetary practices: companies buy new RTIs to replace the
lost ones and recruit additional staff to handle them (Kim and Glock, 2014; Sarkar et al.,
2017; TrackX, 2017).

According to Liu et al. (2020); Na et al. (2019); Zhang et al. (2015), RTI management
can be divided into two modes depending on the ownership of empty RTIs: a dedicated
mode (private RTIs) and a shared mode (public RTIs). The dedicated mode (DM) refers
to the case where RTIs are owned by players (suppliers, for example) who use them
exclusively to deliver their products without considering sharing them with others. They
are responsible, in general, for collecting, refurbishing, and managing the inventory of
their specific assets. In this system, RTIs received by a partner are shipped back to their
specific owner. In the shared mode (SM), players agree to share their RTIs within a
"pooled" system. A service provider company manages this shared system, and running
such a pool is its core business (GS1 Global Office, 2014). In this pool, empty RTIs are
physically stored and can be used by all players without any obligation for these assets
to return to their starting point at their next movement (GS1 Global Office, 2014). RTI
pools can be categorised into two types: "rented" and "open" pools (GS1 Global Office,
2014). The "rented" pool is based on a one-owner pool model: RTIs are owned by one
company that rents and provides the supply chain players with the empty RTIs they need.
In this case, the company manages and oversees its RTI pool’s day-to-day operations
and services. The "open" pool is based on a changing-owner pool model: all partners
store their RTIs in a pool, and when an RTI is used, its ownership is transferred to
the receiving partner, who must return similar RTIs of comparable quality (1:1 exchange
concept). In both cases, a pooling system involves a pooler responsible for supplying
ready-to-use RTIs to all partners, collecting them from downstream levels, refurbishing
damaged ones, and holding inventory within its facilities until new RTI orders are placed
(Accorsi et al., 2019).

The literature review (see Section 6.2) shows that most papers exclusively address
DM and SM and highlight each mode’s benefits on the overall supply chain performance.
However, both modes may not always be profitable and practicable. Compared to the SM,
the DM may be easier to implement, and it does not lead to resource dependency, as each
player is always free to manage and use his inventory of empty RTIs (Liu et al., 2020). On
the other hand, the SM is typically less expensive, as it may offer cost benefits through the
shared use of RTIs among tier suppliers (Zhang et al., 2015; Na et al., 2019). However,
the prerequisites of commonly serviceable RTIs for various materials from several suppliers
are hard to meet (Na et al., 2019). Moreover, the SM compels advanced decision-making
on where to locate pooler facilities, how to set facilities’ capacities, and how to distribute
transportation flows (i.e., delivery, pickup, inventory balancing, and supply) across the
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network, which may imply additional managerial costs (i.e., transportation, inventory
holding) and a need for solid information system support (Govindan et al., 2015). The SM
may also establish a resource dependency, as each player is not always free to pick up the
empty RTIs needed to deliver his products. This is particularly true for complex supply
chains, which include multiple origins and destinations and multiple RTIs that flow within,
in which constraints such as variable demands, vehicle capacity, and shortage are to be
considered.

This paper proposes a new approach to overcome the shortcomings above of both
modes in a closed-loop supply chain. Specifically, we consider the case of a two-level
closed-loop supply chain comprising a set of suppliers delivering products to joint cus-
tomers. We assume that each supplier owns RTIs that can be held in either his or the
customer’s inventory. In addition, each supplier is responsible, as in DM, for collecting,
refurbishing, and managing his inventory. We also assume that the suppliers coordinate
their logistics operations so that, while delivering loaded RTIs to customers, each supplier
may benefit from this visit to pick up empty RTIs regardless of the ownership. This has
earmarks of the classic lateral transshipment that relies on authorising the virtual pooling
of finished products’ inventory between members belonging to the same echelon of supply
chains (Paterson et al., 2011). This practice usually takes place to re-balance the entire
system’s stock levels to react to scenarios where one of the locations faces a shortage
while others have residual stock in hand. Accordingly, instead of calling upon a pooler
or a leasing company to acquire the needed quantities of RTIs, this paper suggests that
suppliers arrange to "virtually" pool/share their stock of identically substitutable RTIs:
no need for a real and physical pool to store RTIs as in SM. As such, we conserve the
ownership of RTIs as in the DM and allow the shared use of RTIs as in SM (Table 6.1).
Moreover, each supplier buys, when needed, and adds new RTIs to the whole system.
Therefore, the order may be filled, and the customers receive what they want, and the
partners free up space in their inventory and reduce idle stock. It is mutually beneficial
for all parties. Consequently, suppliers can sidestep the shortage of empty RTIs at their
levels and reduce the cost of transportation, inventory holding, and the procurement of
new RTIs. Such a strategy creates a valuable partnership but implies additional logistics
operations that must be optimised.

Table 6.1: Characteristics of RTIs management strategies
DM SM Virtual Pooling ModeOwner of RTIs Each supplier All suppliers or a pooler company Each supplierManagement of empty RTIs, collection, refurbishing Each supplier One pooler company All suppliersStorage of empty and shared RTIs - In dedicated facilities At suppliers’ level

Our paper has three main contributions. First, we develop a new mathematical for-
mulation of the RTI pickup and delivery problem in a closed-loop supply chain consisting
of a set of suppliers shipping their products to a set of common customers (e.g., plants,
retailers) and using a set of RTIs, i.e., a multi-supplier multi-customer inventory routing
problem with the pickup and delivery of multi-type of shared RTIs (IRPPDS). We assume
that supply chain partners adopt a vendor-managed inventory policy (VMI): their oper-
ations are coordinated to organise deliveries and pickups to fulfil customers’ demands.
Thus, we address a multi-supplier, multi-customer, multi-RTI inventory routing problem
that is hard to solve due to its inherent combinatorial complexity. Suggesting an effi-
cient way to cope with this complexity by developing a breakthrough solving approach
is the second contribution of this paper. Indeed, we use a matheuristic that hybridises
an artificial-immune-system-based metaheuristic and a mathematical programming algo-
rithm. Furthermore, thanks to its generality and flexibility, this matheuristic uses deep
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reinforcement learning techniques initially proposed by Achamrah et al. (2021) for success-
fully solving dynamic and stochastic inventory routing problems. Also, the performance
of the approach is compared to the one developed in Achamrah et al. (2021) and two
pure metaheuristics. Finally, broad experiment campaigns are conducted on instances
of large sizes. These experiments stress that the resolution approach is very competitive
compared to other existent metaheuristics: it leads to better quality solutions and reduces
computational time. Furthermore, we evaluate the cost reduction enabled by the virtual
pooling of RTIs compared to DM and SM.

The remainder of the paper is organised as follows. Section 6.2 presents an overview
of related works. After a detailed definition of the problem in Section 6.3, the mathe-
matical formulation is provided in Section 6.4. Section 6.5 describes the proposed resolu-
tion approach and explains the hybridisation scheme used to integrate the mathematical
model, the artificial-immune-system-based algorithm and the deep reinforcement learning
technique. Section 6.6 provides the computational results and presents the matheuris-
tic performance analysis compared to three resolution approaches. Finally, Section 6.7
summarises the main findings and provides perspectives for further research.

6.2 . Related Work

This section reviews research streams that are mostly related to our work. The
objective is to position our contributions in line with papers on the inventory routing
problem (IRP) with pickup and delivery and RTIs management modes and highlight our
contribution to the resolution approaches applied to solve similar problems.

The vehicle routing problem (VRP) calls for determining the optimal set of routes
to be performed by a fleet of vehicles to serve a given set of customers (Toth and Vigo,
2002). In the literature, three different variants related to the structure of pickup and
delivery and the number of origins and destinations are to be distinguished (Berbeglia
et al., 2007): one-to-one (1-1), in which a request is originated at one location and des-
tined for another location; one-to-many-to-one (1-M-1), in which each customer receives
a delivery originating from a common depot and sends a pickup quantity to the depot;
and finally, many-to-many (M-M), in which a commodity may be picked up at one of
many locations and also delivered to one of many locations (Andersson et al., 2011; Rais
et al., 2014; Chen et al., 2014; Li et al., 2015). The IRP calls for inventory management,
vehicle routing, and delivery scheduling decision-making problems (Coelho and Laporte,
2014). Our paper’s most relevant research stream addresses IRP with pickup and delivery
(IRPPD). According to Parragh et al. (2008), this problem has three variations regarding
vehicle routing: (1) VRP with simultaneous pickup and delivery (SPD), in which products
are delivered whilst others are simultaneously sent back to the origin; (2) VRP with back-
hauls, where all deliveries must be undertaken before any pickup on each route; (3) VRP
with mixed pickup and delivery, which can be characterised as a particular case of the
VRP with SPD in which customers may have a pickup or delivery demands. Some recent
applications of the VRP/IRP with pickups and deliveries can be found in (Iassinovskaia
et al., 2017; Liu et al., 2020; Tarantilis et al., 2012; Archetti et al., 2018; Van der Heide
et al., 2018; Archetti et al., 2020). IRP problems have been intensively studied in the liter-
ature, and the reader is referred to (Coelho et al., 2014b) for a thorough overview of more
related papers. Furthermore, for the more recent papers on decision support models for
RTIs, the reader is referred to the review by (Meherishi et al., 2019; Glock, 2017), which
provides a systematic literature review of decision models in managing closed-loop supply
chains, including RTIs. Along with developing decision support models, significant re-
search efforts have also been devoted to investigating RTI management strategies in both
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the dedicated and the shared modes (Zhang et al., 2015). Most related works address
the management of RTIs as part of a VMI policy and develop decision support models
for cost reduction under stochastic or deterministic environments for the dedicated mode.
Applications can be found in (Cobb, 2016; Kim and Glock, 2014; Zhang et al., 2015).
In Achamrah et al. (2019); Iassinovskaia et al. (2017); Singh et al. (2017), the authors pro-
pose models for inventory routing problems with simultaneous pickups and deliveries for a
single-supplier, single-RTI, multi-customer (1-M-1) closed-loop supply chain. The models
consider the maintenance costs of the reused RTIs returned from customers and the cost
of buying a new one. In Achamrah et al. (2019), other scheduled pickups and the supply
of new RTIs are integrated as alternatives to sidestep the shortage of empty RTIs at the
supplier level. Finally, in Meherishi et al. (2021), a decentralised two-stage supply chain
with a Retailer Stackelberg game is studied. The authors develop an analytical model to
determine lot-sizing and pricing decisions for the product and its secondary packaging.
As for the shared mode, most related work has studied different scenarios for the pooling
or rental of RTIs with the help of mathematical modelling and simulation. The authors
of Ech-Charrat et al. (2017) investigate a lot-sizing problem and assignment strategy that
minimises the pallet management cost under environmental constraints. The authors of
Ren et al. (2017) study the pallet allocation problem under stochastic supply scenarios
and customer priority. In contrast, those of Bortolini et al. (2018) study a fresh fruit and
vegetable supply chain and develop a mathematical model to select the best packaging
(reusable/disposable) and minimise holding and handling costs. The authors of Tornese
et al. (2018) analyse the effects of pallet service conditions and repair facilities on a pallet
pooling system’s economic and environmental performance. In their paper, a new RTI
procurement decision is also taken into consideration. The authors of Hassanzadeh Amin
et al. (2018) analyse the reverse logistics of plastic pallets in Canada, focusing on recov-
ery options, such as reusing, remanufacturing, and recycling. A mathematical model is
developed to determine the best locations in a pallet reverse logistics network and opti-
mise the distribution flows between the network players. The authors of Accorsi et al.
(2019) analyse the transportation operations of a pallet pooling company serving a set
of retailers. A pooler company is assumed to be responsible for supplying, collecting,
and refurbishing pallets. Buying/selling and pooling management strategies are assessed
and compared through what-if analysis. The authors of Zhou and Song (2019) study
the service centres’ location problem considering a pallet pool mode. By integrating the
forward and reverse flow of pallets, the objective is to minimise the total cost, includ-
ing fixed construction, inventory, delivery, and recovery costs. The authors of Liu et al.
(2020) develop a mixed-integer program model for planning the distribution and vehicle
routing for a single type of RTI and in a single period. They consider a pooler company
responsible for dispatching leased empty containers to its customers and collecting the
customers’ surplus empty containers. In their model, minimising procurement, storage,
and maintenance costs are not considered. The authors of Achamrah et al. (2020) use
a simulation-based approach to model sharing a single RTI between two producers in a
closed-loop supply chain. The results show that collaboration can lead to economies of
scale and cost reduction. They also highlight the need for a third party to manage the sys-
tem to promise mutual benefits for the concerned parties. On the other hand, the routing
decisions are not optimised in their simulation model. Moreover, the model is not generic
and realistic, as it considers a simple supply chain and only one type of RTI that flows in.

As for combinatorial complexity, VRP/IRP with pickup and delivery problems are well
known to be NP-hard (Karp, 1972; Papadimitriou and Steiglitz, 1977). To tackle this
complexity, approximation algorithms or metaheuristics are used. The most commonly
encountered metaheuristics are either stochastic algorithms such as simulated annealing
(SA) or ones based on artificial intelligence algorithms such as artificial immune system
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(AIS), genetic algorithm (GA), particle swarm optimisation (PSO) and ant colony (AC).
Though AIS-based algorithms are a relatively new complex-problem-solving approach com-
pared to other metaheuristics, the inherent characteristics of the immune memory, vacci-
nation process, and self-recognition ability of the antibody and the diversity of immunity
allow it to have a high level of flexibility and a good balance between global and local
search (Bernardino and Barbosa, 2009b). Furthermore, AIS has demonstrated efficiency
in convergence compared to other algorithms for large instances. The authors of De
Castro et al. (2000); Wong et al. (2010); Tiwari et al. (2005); Panigrahi et al. (2007);
Pierrard and Coello Coello (2012); Navarro et al. (2018) reported that AIS has a higher
convergence rate than GA, PSO, AC, and SA. Therefore, AIS is used to solve our model
for large-sized instances for all the reasons above.

To further enhance the convergence speed of AIS, we use machine learning (ML)
techniques. Indeed, metaheuristics, through their iterative search processes, generate
a lot of data that can be turned into explicit knowledge if coupled with ML models.
This data concerns decision-making solutions and the objective spaces visited during the
search process, the sequence of solutions or trajectories, successive populations of solu-
tions, moves, recombination, local optima, elite solutions, and bad solutions (Talbi, 2020).
ML techniques can help analyse this data, extract valuable knowledge, and enhance meta-
heuristics’ search performance. Thus, metasearch techniques become "data-driven", "well
informed", and therefore "smarter". In this respect, ML was used to address discrete opti-
misation problems that focus on the travelling salesman problem and VRP. The data-driven
metaheuristics have been proven to be advantageous in convergence speed, solution qual-
ity, and robustness. The methodologies in ML for decision problems, typically addressed
by operation research (OR), are mainly found in reinforcement learning (RL), learning to
search, and multi-armed bandits. The authors of (Bello et al., 2016; Dai et al., 2017; Han
et al., 2016; Kaempfer and Wolf, 2018; Achamrah et al., 2021) illustrate the recent suc-
cesses achieved by RL concerning problems typically addressed by OR. For instance, the
authors of (Achamrah et al., 2021) develop a matheuristic enhanced by RL techniques to
solve a dynamic and stochastic IRP. The authors of (Ahmadian, 2017; OroojlooyJadid and
Hajinezhad, 2019) introduce ML in the solution processes of inventory and location prob-
lems. Finally, the authors of (Lu et al., 2019; Duan et al., 2020; Achamrah et al., 2022a)
use an RL-based technique to solve a VRP. As far as we are concerned, our paper is the
first that combines RL with AIS to solve a multi-supplier multi-customer multi-RTI IRP
with pickup and delivery in a closed-loop supply chain (Nakib et al., 2017; Seyyedabbasi
et al., 2021).

This review shows that despite the extensive literature on RTIs related to IRP, there
is a lack of efficient tools and techniques to solve complex combinatorial problems such
as closed-loop multi-product, multi-period, inventory routing problems with deliveries and
pickups of multiple types of RTIs. As already mentioned, our research makes three main
scientific contributions. Firstly, we develop a mathematical model to address the de-
terministic, multi-supplier, multi-customer (M-M) inventory routing problem, considering
the delivery and return flows of multiple RTIs which are virtually pooled between a given
number of suppliers. Secondly, we use a new artificial immune-system-based algorithm
and combine its strong global search capability with RL’s strong self-adaptability and
goal-driven performance, all tailored to the mathematical model. Thirdly, computational
experiments on specially designed instances highlight the performance of the proposed
algorithm. From a managerial point of view, the results stress that this new approach
allows for economies of scale and cost reduction at the level of all the involved parties.
Furthermore, a sensitivity analysis on unit cost and the procurement of new RTIs is con-
ducted and highlights the benefits and limits of the proposed model compared to other
RTI management modes.
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6.3 . Mathematical Formulation

This section presents the mathematical models developed for IRPPDS, DM, and SM.

6.3.1 . Mathematical Model for IRPPDS
We examine a multi-supplier, multi-customer, multi-RTI closed-loop supply chain.

A set of m suppliers distribute different types of products using a set of r types of RTIs
to a set of n common customers over a finite planning horizon. Each supplier delivers
RTIs loaded with products to a set of customers. Each customer uses these products
in his production process and constitutes an inventory of empty RTIs. The supplier
then collects those empty RTIs to be reused for future productions and deliveries at his
level. We assume that all supply chain players adopt a centralised management policy
to synchronise operations according to each player’s requirements, optimise deliveries and
pickups, and meet customers’ expectations.

The planning horizon is defined by a discrete and finite set of periods (days). Each
player has a storage zone separated into two areas: one for the inventory of empty RTIs
(E) and another for the inventory of loaded RTIs (L). Each of these inventory areas is char-
acterised by an initial inventory level and a maximum holding capacity. Initial inventories
of loaded and empty RTIs are supposed to be positive and known at the beginning of the
planning horizon. Deliveries and pickups are carried out by a set of homogeneous fleets of
vehicles. Each vehicle can transport loaded or empty RTIs, or both, with a determined ca-
pacity in terms of the number of RTIs without distinction between empty and loaded RTIs
(foldable RTIs are not considered). It is assumed that each constructed route starts from
a supplier to visit a set of customers, and there is no route built between suppliers. Fur-
thermore, customers are visited by each supplier independently of other suppliers’ planned
routes. Since vehicles have a limited capacity, multiple suppliers’ routes are allowed. We
assume that a vehicle can perform at most one pickup and delivery per period, all routes
start and finish at each supplier, and split pickup/deliveries are not allowed. In each
period, the sequence of events is as follows. First, each supplier prepares the quantity of
loaded RTIs to be shipped by considering the current inventory. He uses his empty RTIs
and those of other suppliers to load products on the appropriate type of RTIs. Then, each
supplier visits each customer in each period to deliver the required quantity of products
(in terms of loaded RTIs) for production. The available inventory of empty RTIs at each
level of the supply chain is checked. Depending on the demand that he must satisfy in
the next period, each supplier picks up empty RTIs belonging to him. If these are not
sufficient; he picks up other RTIs belonging to the other suppliers as long as these latter
have enough inventory to meet demands for the next period. After pickups are performed,
the empty RTIs are subject to quality control at each supplier location. Damaged RTIs
are disposed of; serviceable RTIs are repaired, and undamaged RTIs are transferred to
the inventory of empty RTIs. All the RTIs present in the inventory (repaired/cleaned) at
the end of each period can be reused in the next period. Moreover, we assume that, in
addition to the virtual pooling of empty RTIs, a supplier can purchase empty RTIs that he
may need to fulfil future demands. In this case, buying RTIs is permitted in each period,
and each RTI is available for use in the following one.

The objective of the IRPPDS model is to determine, for each level of the supply
chain and over the finite planning horizon, the quantity of loaded RTIs to be delivered
by each supplier and the quantity of empty RTIs to be picked up by each customer
and shared. The demand is supposed to be deterministic by being time-varying. Such
planning considers the inventory-level constraints (no shortages, backlogs, or overstocking
are allowed), the availability of empty RTIs to suppliers, and the minimisation of the total
cost, including inventory holding, maintenance, transportation, sharing, and purchasing
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of new RTIs.
To model IRPPDS, we introduce different notations. We consider: a set N =

i|i = 1, ..n of n customers; a set P = 0p|0p = 01, ..0m of m suppliers; a set Np =
i|i = 0p, 1..n that represents the n customers, and the node 0p that represents the sup-
plier p; a set R = r|r = 1, ..u of u types of RTIs that are used to carry on different types
of products; and a set V = v|v = 1, ..k of k homogeneous vehicles with a capacity of Q
in terms of the number of RTIs. Accordingly, loaded and empty RTIs occupy the same
volume as in the case of boxes and containers. We also consider a horizon T = t|t = 1, ..l
of l periods. Each supplier p and customer i incurs a holding cost for loaded RTIs (L) and
empty RTIs (E): HL,r

p , hL,r
i , HE,r

p and hE,r
i (e per unit), respectively. IL,r

p0 , LL,r
i0 , IE,r

p0

and LE,r
i0 represent the initial inventory level of loaded and empty RTI of type r, re-

spectively, at the supplier p and customer i. CL
p , c

L
i , C

E
p and cEi represent the maximum

holding capacity for loaded and empty RTI, respectively, for the supplier p and customer i.
At the beginning of the planning horizon, each supplier p receives information on demand
to satisfy Dr

pit (expressed in terms of loaded RTIs) of each customer i ∈ N for each period
t ∈ T and for each RTI r. The distance between actors i ∈ Np and j ∈ Np is denoted by
dpij . The fixed cost of transportation is represented by a in e per km, and b represents
the variable cost of transportation in e per weight unit and per km. The weights of a
loaded and empty RTI are wr

L and wr
E , respectively. The cost of buying an RTI is er in

e per unit. The sharing cost incurred by each supplier p is sr per unit of unowned empty
RTIs of type r belonging to other suppliers p used at his level to deliver products. This
cost represents the utilisation cost of an unowned RTI used by each supplier if it occurs.
Finally, gr is the maintenance cost per RTI of type r used by the suppliers to deliver
products, including inspection and cleaning costs. The model’s notation is summarised in
Table 6.2.

133



Table 6.2: Model’s notation summary
Sets

N Set of n customers.
P Set ofm suppliers.
R Set of u RTIs.
V Set of k vehicles.
T Set of l periods.

Parameters
a Fixed cost of transportation (e per km).
b Variable cost of transportation (e per weight per km).
HL,r

p , hL,r
i ,HE,r

p ,HE,r
i Cost of holding inventory of loaded and empty RTIs, respectively, for eachsupplier p and customer i.

er Cost of buying a new RTI of type r (e per unit).
sr Cost of sharing incurred by each supplier which is proportional to thenumber of unowned empty RTIs of a type r used at his level to deliverproducts (e per unit of unowned RTI used).
gr Cost of maintenance of one RTI of type r (e per RTI loaded).
wr

L, wr
E Weights of a loaded and empty RTIs of type r, respectively.

Q Capacity of vehicle in terms of the number of RTIs.
dpij Distance between nodes i and j ∈ Np.
Dr

pit Demand of each customer i for each period t loaded on an RTI r satisfiedby supplier p.
IL,r
p0 , LL,r

i0 , IE,r
p0 , LE,r

i0 Initial inventory level of loaded and empty RTIs of type r, respectively, forthe supplier p and customer i.
CL

p , cLi , CE
p , cEi Maximum holding capacity for loaded and empty RTIs, respectively, forthe supplier p and customer i.

Decision variables
xp
ijvt Binary variable stating whether the vehicle v visited node j immediatelyafter node i in period t.

F p′t
pt Quantity of empty RTIs of type r owned by supplier p that have been filledwith products by supplier p in period t. This quantity also includes the casewhere p = p′ (supplier uses his RTI).

IptLr Inventory level of loaded RTIs of type r held by the supplier p at the endof period t.
LLr
pit Inventory level of RTIs of type r filled with the product of supplier p bycustomer i at the end of period t.

Qp′r
pit Quantity of loaded RTIs of type r owned by supplier p′ and delivered bysupplier p to customer i in period t.

Xpr
ijt Quantity of loaded RTIs of type r filled with a product of supplier p trans-ported from node i to node j in period t.

LEr
it Inventory level of empty RTIs of type r held by the customer i at the endof period t.

IEr
pt Total quantities of all empty RTIs of type r held by the supplier p at theend of period t.
Zpr
it Quantity of empty RTIs of type r owned by supplier p collected from acustomer i in period t.

W pr
ip′t Quantity of empty RTIs of type r owned by supplier p and collected fromcustomer i by supplier p in period t.

Epr
ijt Quantity of empty RTIs of type r collected by supplier p transported fromnode i to node j in period t.

npr
t Quantity of RTIs of type r bought by supplier p in period t.

The IRPPDS in a multi-supplier, multi-customer, multi-RTI closed-loop supply chain

134



is modelled as follows:

min
∑
i∈N

∑
t∈T

∑
r∈R

(hLr
i LLr

it + hEr
i LEr

it ) +
∑
p∈P

∑
t∈T

∑
r∈R

(HL,r
p ILr

pt +HEr
p IEr

pt )+

∑
p∈P

∑
t∈T

∑
r∈R

ern
p,r
t +

∑
p∈P

∑
t∈T

∑
p′∈P

∑
r∈R

grF
p′r
pt +

∑
i∈N

∑
p∈P

∑
p′∈P

∑
t∈T

∑
r∈R

srW
pr
ip′t+

∑
p∈P

∑
t∈T

∑
i∈Np

∑
j∈Np

(
a
∑
v∈V

xp
ijvt +

∑
r∈R

b (wr
LX

pr
ijt + wr

EE
pr
ijt) d

p
ij

) (6.1)

subject to:

LLr
pit = LLr

pit−1 +
∑
p′∈P

Qp′r
pit −Dr

pit ∀i ∈ N, t ∈ T, p ∈ P, r ∈ R

(6.2)
ILrpt = ILrpt−1 −

∑
i∈N

∑
p′∈P

Qp′r
pit +

∑
p′∈P

F p′r
pt ∀t ∈ T, p ∈ P, r ∈ R

(6.3)
LEr
it = LEr

it−1 −
∑
p∈P

Zpr
it +

∑
p∈P

Dr
pit −

∑
p∈P

∑
p′∈P

W pr
ip′t ∀i ∈ N, t ∈ T, r ∈ R

(6.4)
IEr
pt = IEr

pt−1 +
∑
i∈N

Zpr
it −

∑
p′∈P

F p′r
pt + npr

t +
∑
p′∈P

W pr
ip′t ∀p ∈ P, t ∈ T, r ∈ R

(6.5)∑
i∈Np,i ̸=j

(Xpr
ijt −Xpr

jit) =
∑
p′∈P

Qp′r
pjt ∀j ∈ N, p ∈ P, t ∈ T, r ∈ R

(6.6)∑
i∈Np,i ̸=j

(Epr
jit − Epr

ijt) = Zpr
jt +

∑
p′∈P

W pr
jp′t ∀j ∈ N, p ∈ P, t ∈ T, r ∈ R

(6.7)
0 ≤

∑
p∈P

∑
r∈R

LLr
pit ≤ cLi ∀i ∈ N, t ∈ T

(6.8)
0 ≤

∑
r∈R

ILrpt ≤ CL
p ∀p ∈ P, t ∈ T

(6.9)
0 ≤

∑
p∈P

∑
r∈R

LEr
pit ≤ cEi ∀i ∈ N, t ∈ T

(6.10)
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0 ≤
∑
r∈R

IEr
pt ≤ CE

p ∀p ∈ P, t ∈ T

(6.11)∑
p∈P

∑
r∈R

(Xpr
ijt + Epr

ijt) ≤ Q
∑
p∈P

∑
v∈V

xpijvt ∀i, j ∈ Np, t ∈ T

(6.12)∑
i∈Np

∑
v∈V

xpijvt ≤ 1 ∀j ∈ N, p ∈ P, t ∈ T

(6.13)∑
i∈Npi ̸=j

xpijvt =
∑

i∈Npi ̸=j

xpjivt ∀vs. ∈ V, j ∈ Np, p ∈ P, t ∈ T

(6.14)∑
j∈N

xp0pjvt ≤ 1 ∀vs. ∈ V, p ∈ P, t ∈ T

(6.15)
The objective function (6.1) minimises inventory costs at the level of each customer
and supplier, the costs of purchasing new RTIs, the cost of the maintenance of
RTIs, the sharing cost of RTIs undertaken by each supplier, and finally, the fixed
and variable cost of transportation for pickup and delivery. Constraints (6.2) define
the conditions for the conservation of the inventory levels of loaded RTIs owned
by supplier p at the level of each customer i. Constraints (6.3) state that at the
level of each supplier p, the inventory level of loaded RTIs at the end of period t
is equal to the inventory level at the beginning of the period minus the quantities
of loaded RTIs delivered to all customers and the quantities of empty RTIs that
were loaded by supplier p in period t. Constraints (6.4) indicate that the inventory
level for customer i at the end of period t of empty RTIs, held by supplier p, is
equal to the inventory level of empty RTIs at the beginning of the period minus the
quantity picked up by each supplier p plus the RTIs that have been emptied after
demand has been satisfied minus the quantity of empty RTIs belonging to each
supplier p that other suppliers have collected. Constraints (6.5) indicate that at
the level of each supplier p, the inventory level of empty RTIs at the end of period
t is equal to the inventory level at the beginning of the period plus the quantity
of his empty RTIs collected from all customers plus the quantity of empty RTIs
belonging to other suppliers that have been collected from customers by supplier
p, minus the quantity of empty RTIs that have been loaded in period t plus the
quantity of purchased RTIs. Constraints (6.6) ensure that the quantities of loaded
RTIs owned by supplier p are delivered to customer j. Constraints (6.7) show that
the flow of empty RTIs belonging to supplier p outgoing from node j is equal to
the quantity of empty RTIs belonging to supplier p collected by supplier p, plus the
quantity of empty RTIs belonging to other suppliers collected by supplier p, minus
the inflow from all customers. Constraints (6.8)–(6.11) indicate the boundaries of
the inventory levels of loaded and empty RTIs at the level of each supplier p and
customer i. Constraints (6.12) stipulate that the quantities delivered and collected
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between two nodes i and j must not exceed the capacity of the vehicles on the
arc (i, j). Constraints (6.13)–(6.15) express the conditions for the construction of
tours. Constraints (6.13) indicate that at most one vehicle is used to visit node j.
Constraints (6.14) guarantee the continuity of a tour. Constraints (6.15) ensure
that vehicles leave the supplier only once per period or remain at the depot. Finally,
constraints that define the non-negative constraints and the binary nature of the
decision variables are imposed.

6.3.2 . Mathematical Model for DM
For the DM model, there is no pooling of empty RTIs between the suppliers.

That is, W pr
ip′t = F p′r

pt = 0, if p′ ̸= p,∀p, p′ ∈ P, i ∈ N, t ∈ T, r ∈ R. Each sup-
plier manages, independently of other suppliers, the deliveries of his loaded RTIs
to customers, the pickups of empty ones from customers, and their inventories at
his level and customers’ location. Accordingly, the mathematical model is solved
for each supplier independently and costs to minimise include inventory holding of
empty and loaded RTIs, the transportation cost for delivery and pickups, mainte-
nance, and the procurement of new RTIs. Accordingly, the formulation of the DM
model, ∀p ∈ P , is as follows:

min
∑
i∈N

∑
t∈T

∑
r∈R

(hLri LLr
it + hEr

i LEr
it ) +

∑
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∑
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∑
r∈R
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p,r
t +

∑
t∈T

∑
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r
pt+

∑
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∑
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∑
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(
a
∑
v∈V

xpijvt +
∑
r∈R

b (wr
LX

pr
ijt + wr

EE
pr
ijt) d

p
ij

) (6.16)

The objective function minimises inventory costs for the supplier p and each
customer, the costs of purchasing new RTIs, the maintenance cost of RTIs, and fi-
nally, the fixed and variable transportation costs for pickup and delivery.
It is subject to:

LLr
pit = LLr

pit−1 +Qr
pit −Dr

pit ∀i ∈ N, t ∈ T, r ∈ R (6.17)
ILrpt = ILrpt−1 −

∑
i∈N

Qr
pit + F r

pt ∀t ∈ T, r ∈ R (6.18)
LEr
it = LEr

it−1 −
∑
p∈P

Zpr
it +

∑
p∈P

Dr
pit ∀i ∈ N, t ∈ T, r ∈ R (6.19)

IEr
pt = IEr

pt−1 +
∑
i∈N

Zpr
it − F r

pt + npr
t ∀t ∈ T, r ∈ R (6.20)∑

i∈Np,i ̸=j

(Xpr
ijt −Xpr

jit) = Qr
pjt ∀j ∈ N, t ∈ T, r ∈ R (6.21)

∑
i∈Np,i ̸=j

(Epr
jit − Epr

ijt) = Zpr
jt ∀j ∈ N, t ∈ T, r ∈ R (6.22)

0 ≤
∑
p∈P

∑
r∈R

LLr
pit ≤ cLi ∀i ∈ N, t ∈ T (6.23)
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0 ≤
∑
r∈R

ILrpt ≤ CL
p ∀t ∈ T (6.24)

0 ≤
∑
p∈P

∑
r∈R

LEr
pit ≤ cEi ∀i ∈ N, t ∈ T (6.25)

0 ≤
∑
r∈R

IEr
pt ≤ CE

p ∀t ∈ T (6.26)∑
p∈P

∑
r∈R

(Xpr
ijt + Epr

ijt) ≤ Q
∑
p∈P

∑
v∈V

xpijvt ∀i, j ∈ Np, t ∈ T (6.27)
∑
i∈Np

∑
v∈V

xpijvt ≤ 1 ∀j ∈ N, t ∈ T (6.28)

∑
i∈Npi ̸=j

xpijvt =
∑

i∈Npi ̸=j

xpjivt ∀vs. ∈ V, j ∈ Np, t ∈ T (6.29)
∑
j∈N

xp0pjvt ≤ 1 ∀vs. ∈ V, t ∈ T (6.30)

with:
Qr

pit: Quantity of loaded RTIs of type r owned by supplier p and that have been
delivered to customer i in period t.
F r
pt: Quantity of empty RTIs of type r owned by supplier p and that have been

filled with products at his level in period t.

6.3.3 . Mathematical Model for SM
In the SM model, a pooler company manages the inventory, pickups, and pro-

curement of empty RTIs. On the other hand, each supplier is responsible for
delivering loaded RTIs and managing their corresponding inventory. Furthermore,
empty RTIs are delivered directly from customers to a series of centres (pooler fa-
cilities) managed by the company rather than suppliers, as in the DM and IRPPDS
models. The centres are assumed to be located near the suppliers. To determine
the location of these centres, we solve a multi-period weighted clustering problem
(MPC). The clustering consists of grouping supplier nodes into clusters to minimise
the distance between suppliers. Each cluster centroid of suppliers represents the
centre in which empty RTIs of these suppliers are stored, cleaned, and repaired.
When needed, the centre sends empty RTIs to suppliers so that they can produce
and deliver their products to customers. As for costs, two other costs are to be
considered: inventory holding at each centre ι and pooling cost. The latter incor-
porates the management of centres by the pooler company and each unowned RTI
used by each supplier (which is assumed, for the purposes of simplification, to be
equivalent to the sharing cost in IRPPDS). The constraints of IRPPDS for the in-
ventory and routing of pickups of empty RTIs from customers to centres and from
the centres to suppliers are rewritten accordingly. In the following, the formulation
of the SM model is presented.

6.3.3.1 . Multi-Period Clustering Problem
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To determine the location of the centres, we first solve an MPC. To do so, we
define the binary variables θpι that have a value of 1 if a supplier p belongs to the
cluster ι(ι ∈ K = {ι| ι = ι, ..κ ≤ m}), and 0 otherwise with a binary variable ϵpp′ι
having a value of 1 if the suppliers p and p′ belong to the same cluster. MPC can
be then modelled as follows:

min
∑

p,p′∈P

∑
ι∈K

dpp′ϵpp′ι (6.31)
subject to: ∑

ι∈K
θpι = 1 ∀ p ∈ P (6.32)∑

p∈P

∑
r∈R

∑
1≤t′≤t

Dr
pιt′θpι ≤ tQ ∀ ι ∈ K, t ∈ T (6.33)

ϵpp′ι ≤ θpι , ϵpp′ι ≤ θp′ι ∀ι ∈ K, p ∈ P, p′ ∈ P, p ̸= p′ (6.34)
ϵpp′ι ≥ θpι + θp′ι − 1 ∀ι ∈ K, p ∈ P, p′ ∈ P, p ̸= p′ (6.35)

ϵpp′ι, θpι ∈ {0, 1} ∀ι ∈ K, p ∈ P, p′ ∈ P, p ̸= p′ (6.36)
The objective function (6.31) is to minimise the distance between suppliers

(p, p′) belonging to the same cluster (ι). Constraints (6.32) ensure that each
supplier is assigned to a unique cluster. Constraints (6.33) state that the aggregate
quantity of empty RTIs in each cluster in terms of demands over the planning
horizon must fit into the available capacity, tQ, where Q is the vehicle capacity.
Constraints (6.34) and (6.35) state that the distance between suppliers p, p′, and
dpp′ is included in the objective function if and only if suppliers p and p′ are
assigned to the same cluster. Constraints (6.36) define the binary nature of the
decision variables.

6.3.3.2 . SM Model
In the SM model, two costs are considered:

• Inventory holding at each centre ι :
∑

ι∈K
∑

t∈T
∑

r∈R HEr
ι L

Er
ιt ;

• Pooling cost for each un-owned RTI used by each supplier (which is equiv-
alent to the sharing cost in IRPPDS).

The constraints of IRPPDS for the inventory and routing of pickups of empty
RTIs from customers to centres and from the centres to suppliers are rewritten as
follows. Conservation of inventory levels and flows of empty RTIs at the level of
each supplier p, customer i, and centre ι (with θpι and ϵpp′ι already determined
by solving MPC):

LEr
it = LEr
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∑
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∑
p∈P
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pr
it +

∑
ι∈K

∑
p∈P
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r
pit ∀i ∈ N, t ∈ T, r ∈ R

(6.37)
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yι0ιpvt ≤ 1 ∀v ∈ V, t ∈ T, ι ∈ K (6.51)
with:
Npι: set of customers for whom the supplier p belongs to the cluster of centre ι
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(node 0ι).
Ppι: set of suppliers belonging to the cluster of centre ι.
Rι,r

pt : quantity of empty RTIs of type r belonging to supplier p and sent to centre
ι to which supplier p belongs.
Eι,r

ijt: quantity of empty RTIs of type r transported from node i to node j in period
t and sent to centre ι.
E′ ι,rp′pt: quantity of empty RTIs of type r transported from node p to node p′ in
period t and sent by centre ι.
LE,r
ιt : inventory level of empty RTIs of type r at centre ι in period t.

yιijvt: binary variable equal to 1 if node j is visited right after node i by vehicle v,
0 otherwise.
yι0ιjvt: binary variable equal to 1 if customer j is visited by v from node (cluster)
0ι, 0 otherwise.
yιpp′vs.t: binary variable equal to 1 if supplier p′ is visited right after supplier p by
vehicle v, 0 otherwise.
yι0ιpvt binary variable equal to 1 if supplier p is visited by v from node (cluster) 0ι,
0 otherwise.

6.4 . Resolution Approach

The DM, SM, and IRPPDS models described in the previous section are NP-
hard. To tackle their combinatorial complexity, a resolution approach is proposed.

We aim at determining over a given planning horizon the required quantities of
RTIs to allow for supplying the needed quantities of products from a set of suppliers
to a set of customers. We also seek to construct the optimal routes for pickups and
deliveries of RTIs. Since the construction of the routes is the most complex part of
the problem, we first use an appropriate heuristic to determine those routes. Once
constructed, we solve a modified version of the three MILPs described in Section 3
to determine the other decision variables related, for example, to the quantities
transported, delivered, and collected. Each of these versions is a min-cost network
flow problem that is easier to solve. Regarding IRPPDS, its modified version is
called FMILP, where the routing decision variables, xpijvt, are fixed:
FMILP:
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(6.52)
subject to Constraints (6.2)–(6.11).
We use a matheuristic to construct routes and improve the final solution as de-
scribed above. The matheuristic hybridises the FMILP with an artificial-immune-
system-based algorithm and a deep Q-learning process into a global solving scheme
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called AIS-DQL. The overview of the matheuristic AIS-DQL is presented in Fig-
ure 6.1.

These steps are described in detail in the following subsections.

6.4.1 . Artificial Immune System
Artificial-immune-system-based algorithms are bio-inspired metaheuristics that

imitate the principles and processes of immune system functioning (Talbi, 2009).
The algorithms are typically modelled after the immune system’s characteristics
of learning and memory for use in problem-solving. They imitate antigen recogni-
tion, antigen and antibody binding, and antibody production. Furthermore, they
abstractly use the diversity and memory mechanism of the immune system. There-
fore, they can ensure individual diversity while maintaining a high affinity, avoiding
premature phenomena and showing a strong global search ability. In this paper,
antigens correspond to the input data of the problem, and the antibodies corre-
spond to the routes to construct or the different suppliers. Their structure, depicted
in Figure 6.2, consists of sequences of possible nodes to be visited in each route
and for each supplier and each period. These steps are described in detail in the
following subsections.

Figure 6.1: Overview of the implementation of the AIS-DQL matheuris-tic.
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Figure 6.2: Structure representing the route of Supplier i (antibodies).
As depicted in Figure 6.1, AIS starts with an initialisation phase. A population

of random routing solutions representing a pool of antibodies (routes) is initially
generated. The routes are built using a 2-opt local search algorithm (Chiang
et al., 2010). Proliferation and maturation processes are undergone by cloning
each member of the initial pool, i.e., copying each of the initial solutions based
on their affinity. The rate of proliferation is chosen to be directly proportional to
the affinity, such that the higher the affinity, the more offspring there are. For this
purpose, selection, Hyper-Mutation (HM), and receptor editing (RE) operators
are used.

6.4.1.1 . Affinity and Cloning Selection
Each time an antibody (routing decisions) is generated, it is used as an input

to solve the FMILP. Therefore, the corresponding feasible objective function (OF)
and the remaining decision variables of the model are computed. The affinity fι
of an antibody, ι, is computed using the corresponding objective function OF ι:
fι =

1
OF ι

. Thus, the higher affinity value would have a lower total cost. Hence, as
an antibody’s cloning rate is proportional to its affinity, more antibody clones have
lower costs in the next generation than antibodies with higher costs. The prob-
ability, PS, of selecting an antibody to be cloned depends on its affinity. If fι is
the affinity of an antibody ι in the population, its probability PSι is defined as:
PSι= fι∑

ς fς
.

6.4.1.2 . Affinity Maturation
Since the algorithm needs to thoroughly explore and exploit the search space

to obtain a good solution, exploration and exploitation depend on the evolution
operator’s capability variation. These operators conduct random perturbations on
each gene to generate the next generation’s population in the current population.
The variation in the antibodies is performed through HM and RE mechanisms.
The HM mechanism ensures that the higher-affinity antibodies are hyper-mutated
at a slower rate. The HM ι the rate for an antibody ι is defined as HM ι = e−ωf ι ,
where ω is the decay control factor. A new population is created after hyper-
mutation, and each antibody undergoes various affinity changes. Antibodies are
therefore reorganised once again based on the affinity assessment.
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After cloning and mutation processes, a percentage of the antibodies in the
current population is eliminated (the worst ϕ% of the population) and replaced by
the randomly generated antibodies. This mechanism, a vertebrate immune system
mechanism, is called receptor editing (De Castro et al., 2000). This mechanism
creates new antibodies that correspond to the new search area of the search space.
Exploring new search areas may help the algorithm to escape from local optima.
The new antibody population then becomes the next generation of antibodies.

Finally, if a generation’s objective function value does not improve over the
previous generation, convergence is assumed to be achieved, and it is possible to
retrieve the best equivalent antibody as the best solution, and the algorithm stops.

6.4.2 . AIS enhanced with Deep Q-Learning
This section highlights AIS limitations and presents an RL technique used to

overcome them.

6.4.2.1 . AIS and RL
According to (Bernardino and Barbosa, 2009b), although many results have

proved the convergence of AISs to a global optimum, a Markov-chain analysis
shows weak convergence of the AIS algorithms. Indeed, due to the single-point
random mutation of the antibody, AIS converges slowly, meaning that a given
antibody selects a gene bit and changes its value randomly to some of the other
selectable values. Moreover, it cannot retain any locally excellent gene blocks
in some low-affinity antibodies because of other poor gene blocks. As a result,
the search speed is low. From this stems the idea of using RL to tackle this problem.
Indeed, since random searching leads to slow evolution and weak AIS convergence
efficiency, environmental feedback signals and the updated action policy of deep
Q-learning are used to construct an algorithm with strong self-adaptability and
goal-driven performance.

In this paper, RL is employed to assist in analysing data on moves and recom-
bination that have been performed to construct solutions to the problem. The goal
is to extract meaningful information from this data to direct and improve the AIS’s
search performance and speed. Indeed, just like a human being, the agent that
symbolises the antibody (solution to the problem) learns on its own to acquire
successful strategies that result in the most significant long-term rewards. RL is
a paradigm of learning by trial and error based entirely on rewards or penalties.
The agent constructs and learns its information directly from moves it makes using
operators such as HM and RE. RL is used to assist AIS in determining the optimal
actions to take in terms of the best moves for each operator.

6.4.2.2 . Q-Learning
Q-Learning is a self-adaptive RL off-policy method characterised by strong

environmental feedback signals (Alom et al., 2019). The fundamental idea is
to use the feedback signal to adjust an agent’s action policy to make the best
decision when interacting with the environment (i.e., antibody space). The agent
(i.e., antibody) arrives in different states based on actions (i.e., AIS operators).
Actions determine positive and negative rewards. The concept behind Q-learning
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is to put the agent in a series of state-action combinations, observe the rewards,
and then change the predictions of a table (called a Q-table) to those rewards until
the best policy correctly predicts them. As a result, the “Q" stands for quality,
which indicates how effective a particular action is in earning a possible reward.

6.4.2.3 . Deep Q-Learning
Q-learning is a relatively basic and effective algorithm. However, it may be

time-consuming, as the amount of memory required to save and update the Q-table
grows with the number of states, and the amount of time needed to investigate each
state to construct the appropriate Q-table is impracticable. In this paper, these
Q-values are estimated using neural networks known as deep Q-learning (DQ).
Accordingly, the state is an input, and the output is the Q-value of all potential
actions. Once the network is trained, selecting the right action means comparing
each action’s possible rewards and choosing the best one.

6.4.2.4 . Deep Q-Learning Architecture
DQ begins by estimating random Q-values to explore the environment, as shown

in Figure 6.3. DQ enhances its Q-value estimations by employing the same dual-
action paradigm, with a present action having a current Q-predicted value and a
target action with a target Q-value. The direction of the predicted Q-target values
varies since the network and its weights are equal; they remain unchanged but
may fluctuate with each update. The Q-target values are stabilised by employing
a second network that has not been trained. After a pre-determined number of
iterations, called C-iteration, the learned weights from the Q-predicted network
are copied to the Q-target network. The DQ design has two neural networks (Q-
predicted and Q-target) and an experience replay agent, as shown in Figure 6.3.
For data generation during Q-network training, the experience replay interacts
with the environment. These data contain all of AIS’s operators’ moves, which are
recorded as <st,a,R,st’> tuples (see notation below Equation (6.53)). Then, a
sample is picked randomly from these data, consisting of a mix of older and more
recent samples. This batch of training data is used in the Q-predicted and Q-target
networks. The Q-predicted network takes the current state and moves out of each
sample, and for that move predicts the Q-value. The Q-predicted value, the Q-
target value, and the observed data sample reward are used to compute the loss for
the Q-network training (see Equation (6.53)). A batch of data is selected from all
prior experiences to reduce variance and guarantee the algorithm’s stability in C-
iteration. Next, a sample is chosen from these data, with an equal mix of older and
newer samples. The Q-predicted and Q-target networks use this batch of training
data. The Q-predicted network predicts the Q-value based on the current state
and moves out of each sample. The loss for the Q network training is computed
using the Q-predicted value, the Q-target value, and the observed data sample
reward (see Equation (6.53)). After each C-iteration a batch of data is selected
from all prior experiences to reduce variation and ensure the algorithm’s stability.

Loss = [Rt+1 + γmax
a

(θTQ(st′, a′)− θTQ(st, a))]2 (6.53)
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where:

• γ: discount-rate parameter to measure the weight of the future awards.

• a, a′: current and future action, respectively.

• st, st′: current and future state, respectively.

• Rt+1: future reward.

• Q(st, a): learned action-value function.

• θT : transpose matrix of network weights.

Finally, as for the AIS memory, a set of the best antibodies having the highest
affinity is stored, and the best moves have been obtained so far. Instead of starting
from scratch every time the algorithm is run to solve the model for a given antigen,
similar to the antigens (instances) already solved, we use the genetic memory to
rapidly obtain the best solutions and the optimal policies for the antibodies. Similar
antigens are selected based on the K-nearest neighbours algorithm (Mohtashami,
2015).

Figure 6.3: DQ architecture used as in (Achamrah et al., 2021)
6.5 . Implementation and Experimental Analysis

This section presents the experimental design adopted for this study and the
analysis of the computational results. All the optimisation steps were carried out
on a personal computer (MacBook Pro, macOS Cataline, CPU 3.3 GHz Quad-Core
Intel Core i7, 8 GB of RAM).
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Experimental Design and Parameters Tuning
The MILP developed for the multi-supplier, multi-customer, multi-RTI closed-

loop supply chain was first solved optimally for small-and-medium-size instances
using the Branch-and-Cut solver of CPLEX 12.9 (academic version). The ob-
jective was to check the model’s validity, representativeness, and exact solving
approach limitations.

To implement the matheuristic, we used Python 3.7, and Pytorch interfaced
with CPLEX. The approach was first tested on the same instances optimally solved
using CPLEX. The objective was to assess its performance. We ran the AIS algo-
rithm without the learning process (AIS) and compared the improvement provided
by the deep Q-learning when coupled with the AIS algorithm (AIS-DQL). We also
compared the algorithm’s performance with a pure genetic algorithm (GA) and its
improved learning version (GA-DQL). GA is also a population-based metaheuristic
that mimics the principle of natural genetics to find a solution. The algorithm
is known for its strong global search. The algorithm starts with an initial set of
random solutions called a population. Each individual in the population is called a
chromosome, representing a solution to the problem. The best parents (best chro-
mosomes having the highest affinity) are selected from the current generation and
considered for a two-point crossover operation to form their offspring. The muta-
tion process is also integrated as it helps obtain new information randomly for the
genetic search process and ultimately helps avoid getting trapped at local optima.
In this paper, the chromosomes also represent the routing decisions and are de-
coded as the antibodies of AIS. For a thorough description of GA-DQL, the reader
is referred to Achamrah et al. (2021).

The tests were performed in 20 replications for the 40 generated instances
to evaluate the algorithms’ stability, and the objective function’s average value
is presented. A statistical analysis using ANOVA was also conducted to assess
the eventual randomness of the differences between the obtained results (see Ta-
ble 6.3). These results stress that for all resolution approaches under consideration,
p-value > 0.05 means no significant difference between the algorithms and the so-
lutions obtained using CPLEX. Table 6.4 reports the algorithm parameters tuned
so that a trade-off between the algorithm’s performance and speed is satisfied.

Table 6.3: Statistical analysis using ANOVA.
Resolution Approach F p− valueGA 2.16 0.14AIS 1.57 0.22GA-DQL 0.91 0.34AIS-DQL 0.49 0.49
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Table 6.4: Values of the tuning parameters
Tuned Parameter ValuePopulation size (GA/AIS) 200Maximum iteration number (GA/AIS) 200Crossover probability (GA/AIS) 0.81Mutation probability (GA/AIS) 0.46Selection probability 0.80Receptor editing rate 0.28

The instances had a number of suppliers varying from 5 to 25, customers
from 6 to 24, and RTIs ranging from 2 to 10. The planning horizon of deliveries
and pickups was five days, corresponding to a workweek. Customer demands
were randomly generated between 5 and 70 in loaded RTIs. For each instance,
suppliers’ and customers’ locations were randomly chosen in the Euclidean space
between (0,0) and (1000, 1000). Moreover, we considered initial inventory levels
and unit costs for transportation, holding and maintenance of the self-same scale
as in Iassinovskaia et al. (2017), which considers a 1-M-1 IRP for a single type
of RTIs. As the unit cost of an RTI may go from a few euros for plastic boxes
to 1300 euros for stillages, according to the study conducted by Limbourg et al.
(2016), we considered a randomly generated purchase cost varying between 3 and
1000 euros. Finally, we considered a unit cost of sharing ranging between 2 and
10 euros per type of RTI.

In the remainder of the paper, we refer to the instances using the following
notation: (number of RTIs) R, (number of suppliers) S, (number of customers) C,
(number of vehicles) V, and (number of periods) T; e.g., 1R2S5C2V5T refers to
the instance where one type of RTI is shared and used to ship the products of two
suppliers to a set of five customers, transported by two vehicles over a planning
horizon of 5 days.

6.6 . Computational Experiments

First, the three models developed for the DM, SM, and IRPPDS modes, were
solved using CPLEX. The objective was to compare the benefits and limitations
of each mode on the performance of the overall supply chain. Then, given their
combinatorial complexity, the three models were solved using four approaches: AIS
and GA with and without DQL. The performance of each approach was analysed by
comparing it to the solutions obtained using CPLEX on small instances. The ben-
efits of DQL on the performance of the methods were also highlighted. Given the
contribution of DQL, the three models were solved on large instances using the
AIS-DQL and GA-DQL approaches.

6.6.1 . Results on Small Instances Solved Using CPLEX
The SM, DM, and IRPPDS models were first solved using the Branch-and-

Cut solver of CPLEX until reaching optimality. We first considered solving the
models with only one type of RTI for a number of customers varying from 6 to
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24 in a planning horizon corresponding to a week of 5 days. We also conducted
additional experiments in which we considered a number of RTIs varying from 2
to 10, and finally a number of suppliers varying between 5 and 25. The objective
was to provide partial insights regarding the benefits of RTI sharing, the represen-
tativeness of the results, and the run time needed to solve this problem. Table 6.5
summarises the computational results for each instance under consideration. It re-
ports the breakdown of the total cost (TC), namely: transportation (T), inventory
of the suppliers (I-S), inventory of the customers (I-C), inventory at the centres
for SM (I-K), maintenance (M), procurement of new RTIs (P), and sharing (S).
Table 6.5 also provides the saving (%) between total costs for SM and IRPPDS
regarding the total cost of DM and the CPU time in seconds. The saving, noted
CS, is computed as follows: CS = Total Cost DM−Total Cost SM or IRPPDS

Total Cost DM
100.

Table 6.5: Experimental results for DM, SM, and IRPPDS on small andmedium instances solved using CPLEX.
Instances Model T (e) I-S (e) I-C (e) I-K (e) M (e) P (e) S (e) TC (e) CS (%) CPU (s)

1R2S6P40V5T DM 106,899 1386 1428 0 141 280,224 0 390,078 - 424SM 105,309 592 1368 751 133 122,771 2371 233,294 40 629IRPPDS 84,854 1188 1308 0 141 98,739 865 187,095 52 451
1R2S12P40V5T DM 315,279 3706 1721 0 299 907,085 0 1,228,090 - 5050SM 245,866 2032 1359 2390 331 737,268 8940 998,186 19 6445IRPPDS 228,259 3562 1190 0 294 415,480 2998 651,784 47 5265
1R2S18P40V5T DM 519,475 3067 4988 0 366 831,051 0 1,358,947 - 8776SM 471,330 1710 2680 1765 351 731,678 5504 1,215,018 11 12,115IRPPDS 402,425 2532 1911 0 352 611,920 4835 1,023,975 25 9331
1R2S24P40V5T DM 853,012 4136 8040 0 685 3,280,781 0 4,146,653 - 24,314SM 711,300 3230 4061 2890 688 2,758,063 7761 3,487,994 16 31,701IRPPDS 552,893 4744 3046 0 696 1,886,929 6107 2,454,415 41 24,399
2R2S5P40V5T DM 267,334 1013 4607 0 152 1,306,998 0 1,580,105 - 473SM 203,254 629 2957 746 171 1,188,760 3240 1,399,757 11 591IRPPDS 158,771 928 2011 0 154 781,631 1326 944,821 40 496
4R2S5P40V5T DM 575,795 2055 11,269 0 502 1,719,310 0 2,308,932 - 1309SM 508,117 1177 5829 1432 426 1,493,784 6928 2,017,692 13 1626IRPPDS 413,915 1859 5141 0 457 1,056,450 5324 1,483,147 36 1316
6R2S5P40V5T DM 984,677 3886 11,401 0 645 1,953,350 0 2,953,958 - 3013SM 601,250 1993 13,834 3007 578 1,608,985 12,681 2,242,328 24 4131IRPPDS 571,245 3372 6552 0 562 1,499,512 14,711 2,095,952 29 4405
8R2S5P40V5T DM 1,196,050 3559 19,337 0 799 2,649,398 0 3,869,143 - 5423SM 1,027,848 2099 17,123 3738 734 2,270,434 221,00 3,344,076 14 7346IRPPDS 704,453 3307 11,693 0 765 1,726,959 15,446 2,462,623 36 5968
10R2S5P40V5T DM 1,536,319 7376 22,048 0 1005 3,674,097 0 5,240,844 - 7981SM 1,450,099 3844 23,893 9146 1122 2,852,572 45,735 4,386,411 16 10,675IRPPDS 878,014 6777 11,199 0 967 2,263,598 18,631 3,179,185 39 8687
1R5S5P40V5T DM 223,327 1698 3473 0 257 414,556 0 643,312 - 8084SM 213,934 947 3137 964 241 340,187 3415 562,825 13 13,686IRPPDS 157,568 1591 1754 0 233 245,555 1440 408,141 37 8969
1R10S5P60V5T DM 470,266 3753 6052 0 544 1,040,464 0 1,521,078 - 22,526SM 465,720 1744 5879 1869 537 487,739 4204 967693 36 33,882IRPPDS 383,377 2661 5856 0 505 209,126 2136 603,661 60 24,005
1R15S5P40V5T DM 1,018,250 6620 12,547 0 798 882,493 0 1,920,708 - 32,387SM 995,463 4898 6364 4941 845 677,583 18,544 1,708,639 11 41,501IRPPDS 715,381 6145 4966 0 823 612,775 7922 1,348,012 30 34,055
1R20S5P40V5T DM 1,595,794 9500 21,299 0 1310 1,929,223 0 3,557,125 - 55,543SM 1,419,879 6413 9549 7967 1139 1,724,055 25,988 3,194,989 10 67,511IRPPDS 893,618 10,265 7933 0 1181 754,922 9303 1,677,222 53 55,135
1R25S5P40V5T DM 2,251,175 11,306 28,742 0 1488 1,758,976 0 4,051,687 - 67,115SM 2,044,658 6530 25,480 5387 1388 1,510,890 17,212 3,611,545 11 85,413IRPPDS 1,439,157 11,087 14,999 0 1536 1,394,438 13,932 2,875,148 29 63,468

From Table 6.5, we can see that, as expected, SM and IRPPDS reduce total
costs compared to DM. Moreover, IRPPDS can help achieve significant cost sav-
ings; for IRPPDS, the average total cost was reduced by 40% against 17% for SM.
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Indeed, in DM, each supplier needs to manage his inventory, deliveries, and the
pickups of his empty RTIs from customers. As no shortage is permitted, if his
inventory of empty RTIs is insufficient to meet customer demand, he buys this
needed quantity, and a procurement cost is then incurred. Furthermore, regarding
transportation costs, as each supplier can only use his RTIs, which cannot be shared
among suppliers, the cost of picking up these latter from customers is incurred.

In SM, by contrast, as empty RTIs are owned and centrally managed by a
pooler company, procurement costs could be reduced thanks to the risk pooling
effect. Transportation costs (which include a variable cost that depends on the
quantity of RTIs transported) are slightly reduced. Indeed, deliveries incurred by
the suppliers remain the same as in DM, but not for the pickups of empty RTIs
from customers. These empty RTIs are later transported to RTI centres owned by
the pooler company, which are assumed to be located near suppliers, and they are
transported to the suppliers when required. However, in SM, since the requests
of RTI are not balanced between the suppliers, the pooler company must buy the
needed quantities and ship them to the suppliers, which increases transportation
and procurement costs.

As for IRPPDS, the transportation and procurement costs are significantly
reduced. Indeed, in this configuration, the supply chain is centrally managed,
and each supplier has his RTIs held at his inventory/customers and picks up empty
ones from customers when vehicles visit customers to deliver the required products.
In addition, each supplier can also benefit from this visit to pick up not only his
RTIs but also the RTIs of other suppliers, and vehicle fill rates are improved (as
transportation cost includes a variable cost that depends on the quantity of RTIs
transported), and each supplier no longer needs to buy the RTIs he may need
to meet his customers’ demand. Orders are thus satisfied by any RTI, and a
procurement order is only triggered if required, which reduces its relative cost
compared to DM.

Moreover, in IRPPDS, the risk pooling is maintained as each supplier, when he
buys RTIs, adds them to the system pool. Furthermore, the additional management
costs of SM, including pooling, inventory, and transportation on the level of the
pooler company’s centres, are no longer incurred. Furthermore, as is shown in
Figure 6.4, compared to IRPPDS, the quantity of new RTIs bought may represent,
for some instances, up to 70% of the available inventory of empty RTIs in SM. More
RTIs are purchased at each centre to meet the needs of the suppliers it serves.
Finally, from Table 6.5 and Figure 6.4, we notice that IRPPDS takes on more
interest as the number of RTIs and suppliers increases. Indeed, in SM, when the
number of suppliers increases, more centres are needed, especially in different and
distant geographical areas, making it challenging to reduce the cost of logistics and
procurement for centres servicing clusters housing a significant number of suppliers.
As a result, the demands for empty RTIs are not balanced; procurement, inventory,
and transportation costs increase as the number of visits from customers to these
centres and from these centres to suppliers increases.
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Figure 6.4: Ratio of quantity of RTIs bought over the inventory level ofempty RTIs made available in SM and IRPPDS.
6.6.2 . First Insights into the Effectiveness of the Resolution Ap-

proach on Small Instances
As we can see, solving exactly the three models under consideration is very

combinatorially complex, and the CPU time increases drastically with the number
of suppliers. As described in the experimental design, the resolution approach AIS-
DQL was compared to other metaheuristics to assess its performance: GA, AIS,
and GA-DQL. Table 6.6 gives the results of the comparison. The gap regarding
total cost is computed as: Gap = Total Cost Metaheuristic−Total Cost CPLEX

Total Cost CPLEX
100.

From Table 6.6, we can see that for all the instances under consideration, AIS-
DQL can find solutions with minor gaps compared to AIS, GA-DQL, and GA.
On average, GA provided solutions with a gap of 12.6%, AIS with 9.4%, GA-DQL
with 4.8%, and AIS-DQL with a gap of 0.1%. Indeed, AIS-DQL was more stable,
as it was less sensitive to small changes (perturbations) in the input data and
the instances’ size. Moreover, AIS-DQL allowed for reducing the computational
time considerably. GA and AIS may have similar mutation mechanisms, but AIS’s
immune memory makes it more robust and stable. Furthermore, AIS learning
requires increasing the relative population size of each of these antibodies, which
proved valuable. A clone is generated temporarily, and those low-affinity antibodies
are eliminated. The goal is to solve the problem using minimal resources and
time. Therefore, the algorithm’s response efficiency was greatly enhanced by the
memory associated with the first and best antibodies obtained for different and
similar antigens. It was capable of providing the best solutions with a high affinity
for a given instance only after a few iterations. Indeed, our algorithm ensures that
both the speed and accuracy of the immune response are progressively higher after
each model resolution. In addition, combined with a deep reinforcement learning
technique and KNN, the immune memory further strengthens the interaction with
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the environment, resulting in a continuous improvement of the algorithm’s ability
and prior knowledge of similar problems to solve the model for a given instance.

Table 6.6: Assessing the performance of GA, AIS, GA-DQL, and AIS-DQLcompared to CPLEX on relatively small and medium instances.
Instance Model

CPLEX GA AIS GA-DQL AIS-DQL

TC (e) CPU (s) TC (e) CPU (s) Gap TC (e) CPU (s) Gap TC (e) CPU (s) Gap TC (e) CPU (s) Gap
(%) (%) (%) (%)

1R2S6P40V5T DM 390,078 424 396,319 8 1.6 395,929 28 1.5 396,319 15 1.6 390,078 2 0.0SM 233,294 629 257,557 9 10.4 254,757 22 9.2 245,892 10 5.4 234,461 31 0.5IRPPDS 187,095 451 204,308 9 9.2 199,443 41 6.6 200,379 14 7.1 187,095 4 0.0
1R2S12P40V5T DM 1,228,090 5050 1,331,250 256 8.4 1,312,828 240 6.9 1,251,424 421 1.9 1,228,090 25 0.0SM 998,186 6445 1,044,102 427 4.6 1,038,113 205 4.0 1,032,124 307 3.4 1,003,177 21 0.5IRPPDS 651784 5265 677,204 401 3.9 689,587 57 5.8 682,418 461 4.7 651,784 21 0.0
1R2S18P40V5T DM 1,358,947 8776 1,498,919 84 10.3 1,382,049 32 1.7 1,394,280 89 2.6 1,358,947 18 0.0SM 1,215,018 12,115 1,364,466 527 12.3 1,362,036 62 12.1 1,273,339 57 4.8 1,219,879 77 0.4IRPPDS 1,023,975 9331 1,135,588 824 10.9 1,087,461 925 6.2 1,054,694 483 3 1,023,975 50 0.0
1R2S24P40V5T DM 4,146,653 24,314 4,486,679 1394 8.2 4,470,092 884 7.8 4,457,652 1674 7.5 4,146,653 47 0.0SM 3,487,994 31,701 3,857,721 989 10.6 3,864,697 508 10.8 3,808,889 416 9.2 3,508,922 21 0.6IRPPDS 2,454,415 24,399 2,947,752 2313 20.1 2,923,208 25 19.1 2,648,314 455 7.9 2,454,415 163 0.0
2R2S5P40V5T DM 1,580,105 473 1,922,988 12 21.7 1,783,939 37 12.9 1,685,972 30 6.7 1,581,685 1 0.1SM 1,399,757 591 1,542,532 40 10.2 1,511,738 12 8.0 1,426,353 20 1.9 1,402,557 42 0.2IRPPDS 94,4821 496 1,037,413 18 9.8 993,952 4 5.2 963,717 35 2 945,766 3 0.1
4R2S5P40V5T DM 2,308,932 1309 2,673,743 75 15.8 2,542,134 76 10.1 2,403,598 4 4.1 2,308,932 12 0.0SM 2,017,692 1626 2,360,700 39 17 2,209,373 41 9.5 2,031,816 51 0.7 2,017,692 22 0.0IRPPDS 1,483,147 1316 1,739,731 124 17.3 1,576,585 21 6.3 1,566,203 79 5.6 1,483,147 5 0.0
6R2S5P40V5T DM 2,953,958 3013 3,202,090 63 8.4 3,190,275 42 8.0 3,140,057 227 6.3 2,953,958 6 0.0SM 2,242,328 4131 2,679,583 58 19.5 2,684,067 6 19.7 2,419,472 8 7.9 2,249,055 53 0.3IRPPDS 2,095,952 4405 2,290,876 70 9.3 2,292,971 379 9.4 2,179,790 240 4.0 2,098,048 2 0.1
8R2S5P40V5T DM 3,869,143 5423 4,604,280 538 19.0 4,016,170 527 3.8 3,927,180 392 1.5 3,873,012 29 0.1SM 3,344,076 7346 3,691,860 525 10.4 3,410,957 604 2.0 3,390,893 209 1.4 3,347,420 41 0.1IRPPDS 2,462,623 5968 2,856,643 350 16 2,570,978 46 4.4 2,561,128 31 4.0 2,462,623 44 0.0
10R2S5P40V5T DM 5,240,844 7981 5,801,614 733 10.7 5,848,782 670 11.6 5,382,347 293 2.7 5,246,085 28 0.1SM 4,386,411 10,675 4,618,891 319 5.3 4,614,504 400 5.2 4,496,071 415 2.5 4,425,888 32 0.9IRPPDS 3,179,185 8687 3,795,947 447 19.4 3,808,664 206 19.8 3,344,503 177 5.2 3,179,185 60 0.0
1R5S5P40V5T DM 643,312 8084 702,497 421 9.2 714,720 63 11.1 656,178 30 2.0 643,955 27 0.1SM 562,825 13,686 665,259 276 18.2 613,479 54 9.0 602,786 38 7.1 567,328 6 0.8IRPPDS 408,141 8969 454,261 726 11.3 422,426 702 3.5 436,711 100 7.0 408,549 7 0.1
1R10S5P60V5T DM 1,521,078 22,526 1,718,818 422 13.0 1,630,596 1732 7.2 1,522,599 337 0.1 1,522,599 168 0.1SM 967,693 33,882 1,065,430 307 10.1 1,065,430 980 10.1 1,047,043 475 8.2 969,628 52 0.2IRPPDS 603,661 24,005 719,564 285 19.2 705,680 508 16.9 644,106 295 6.7 604,265 160 0.1
1R15S5P40V5T DM 1,920,708 32,387 2,214,576 2272 15.3 2,212,656 1433 15.2 2,058,999 2871 7.2 1,920,708 48 0.0SM 1,708,639 41,501 1,942,722 525 13.7 1,905,132 1245 11.5 1,802,614 395 5.5 1,717,182 22 0.5IRPPDS 1,348,012 34,055 1,419,457 2947 5.3 1,443,721 1598 7.1 1,376,320 949 2.1 1,349,360 289 0.1
1R20S5P40V5T DM 3,557,125 55,543 4,197,408 1656 18.0 4,030,223 5005 13.3 3,841,695 148 8.0 3,557,125 103 0.0SM 3,194,989 67,511 3,600,753 910 12.7 3,466,563 406 8.5 3,252,499 510 1.8 3,201,379 12 0.2IRPPDS 1,677,222 55,135 1,893,584 902 12.9 1,893,584 5312 12.9 1,769,469 451 5.5 1,677,222 296 0.0
1R25S5P40V5T DM 4,051,687 67,115 4,590,561 3358 13.3 4,517,631 2022 11.5 4,221,858 1636 4.2 4,051,687 524 0.0SM 3,611,545 85413 4,174,946 3140 15.6 4,113,549 400 13.9 3,795,733 211 5.1 3,611,545 42 0.0IRPPDS 2,875,148 63,468 3,346,672 4064 16.4 3,197,165 3750 11.2 2,955,652 70 2.8 2,875,148 385 0.0

6.6.3 . Extra Experiments on Large Instances Solved Using GA-
DQL and AIS-DQL

To obtain more insights into the effectiveness of IRPPDS and AIS-DQL, we
further ran tests on large instances and compared the results to those obtained
using GA-DQL. We solved the DM, SM, and IRPPDS. Then, we computed the
total cost and the corresponding savings. We present the results obtained within
a CPU time of less than half an hour. The computational results are summarised
in Table 6.7. Table 6.7 also reports the difference (Diff) between the total costs
computed using GA-DQL and AIS-DQL as follows:
Diff =

Total Cost GA−DQL−Total Cost AIS−DQL

Total Cost GA−DQL
100.

As expected, the AIS-DQL allows for feasible solutions to large-sized problems
within a reasonable time. AIS-DQL allowed for better solutions with an average
of 14% compared to GA-DQL and with less time, with an average CPU of 479 s
for DM, 557 s for SM, and 556 s for IRPPDS against 743 s for DM, 644 s for SM,
and 697 s for IRPPDS. As for the results, for all the instances under consideration,
IRPPDS reduced total cost compared to DM, with an average saving of 35%
(against 16% for SM). Moreover, the benefits of promoting virtual pooling were
highlighted when the number of RTIs and suppliers increased. Furthermore, if the
demands to be satisfied required the use of several types of RTIs, the benefits
of SM were smaller compared to those of IRPDPS and even DM (according to
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the results of Zhang et al. (2015)). This was truer when the number of suppliers
increased. Indeed, even if SM can reduce the long-distance transportation of empty
RTIs compared to DM, when empty RTIs are not balanced, SM’s transportation
cost increases since it includes the incurred costs from customers to the pooler’s
centres from these latter to the suppliers. In addition, even if the centres are
located near suppliers (often in the automotive industry), it would be challenging
to balance the quantity of empty RTIs between all suppliers. Therefore, SM may
work in favour of or against any supplier regardless of location, the demands they
should meet, or the centres’ number.

Table 6.7: Experimental results for large instances obtained using GA-DQL and AIS-DQL.
Instances

AIS-DQL GA-DQL Diff (%)DM SM IRPPDS CS (%) DM SM IRPPDS CS (%)

TC (e) CPU TC (e) CPU TC (e) CPU SM IRPPDS TC (e) CPU TC (e) CPU TC (e) CPU SM IRPPDS DM SM IRPPDS(s) (s) (s) (s) (s) (s)15R15S15C90V5T 1,055,305 330 979,362 274 806,191 217 7 24 1,217,822 527 1,074,615 318 902,934 276 12 26 13 9 1115R20S15C120V5T 2,698,516 824 2,407,032 475 1,827,526 254 11 32 3,192,344 1207 2,919,561 550 2,077,897 316 9 35 15 18 1215R30S15C190V5T 5,826,310 44 5,075,948 1070 3,877,637 980 13 33 6,659,472 70 5,079,089 1203 4,552,346 1259 24 32 13 0 1515R40S15C250V5T 13,140,456 181 12,054,126 335 7,920,967 391 8 40 15,715,985 300 14,922,266 372 9,006,139 473 5 43 16 19 1215R50S15C350V5T 27,632,333 513 19,565,564 395 17,761,072 329 29 36 31,031,110 829 27,865,271 463 20,673,888 410 10 33 11 30 1415R60S15C450V5T 64,334,836 135 58,442,222 165 42,490,648 256 9 34 72,248,021 227 71,156,121 197 49,884,021 329 2 31 11 18 1515R70S15C550V5T 143,862,932 97 134,278,723 156 80,904,270 156 7 44 172,347,793 151 134,553,700 169 97,004,220 198 22 44 17 0 1715R80S15C650V5T 301,974,530 717 268,660,125 922 200,455,201 1145 11 34 339,721,346 1155 286,184,629 1146 225,311,646 1454 16 34 11 6 1115R100S15C750V5T 641,210,086 398 606,987,781 443 429,635,068 414 5 33 721,361,347 615 612,861,772 471 514,273,176 536 15 29 11 1 1615R200S15C2000V5T 1,291,975,415 106 832,110,939 694 663,928,176 751 36 49 1,536,158,768 165 1,135,671,285 852 794,722,027 927 26 48 16 27 1615R300S15C4000V5T 2,721,138,343 728 2,256,821,880 803 2,082,860,769 665 17 23 3,091,213,158 1146 2,503,447,969 870 2,447,361,404 827 19 21 12 10 1515R400S15C6000V5T 5,791,824,472 268 4,014,243,737 268 3,126,883,840 237 31 46 6,718,516,388 409 4,960,776,575 289 3,592,789,532 292 26 47 14 19 1315R600S15C8000V5T 11,431,199,715 384 8,504,611,093 357 7,582,649,005 178 26 34 13,603,127,661 624 9,546,143,904 391 8,507,732,184 217 30 37 16 11 1131R20S34C400V5T 4,428,883 740 3,736,512 845 3,445,812 971 16 22 5,053,356 1105 4,036,051 954 3,979,913 1182 20 21 12 7 1331R40S34C900V5T 10,976,187 301 7,719,378 569 7,089,787 839 30 35 13,028,734 475 9,160,248 690 8,507,744 1033 30 35 16 16 1731R60S34C1300V5T 23,233,219 917 16,916,596 395 14,939,103 312 27 36 27,368,732 1388 25,748,719 424 16,731,795 392 6 39 15 34 1131R80S34C2500V5T 53,970,019 595 43,722,965 622 28,413,814 603 19 47 62,605,222 890 57,142,014 714 31,993,955 745 9 49 14 23 1131R110S34C4000V5T 120,114,263 331 97,779,299 724 65,665,251 938 19 45 138,972,202 492 103,217,419 858 77,288,000 1188 26 44 14 5 1531R130S34C5200V5T 265,313,611 515 251,439,010 284 210,348,468 214 5 21 315,457,883 796 299,527,277 346 243,583,526 277 5 23 16 16 1431R150S34C6000V5T 572,377,195 294 506,511,145 531 410,627,455 495 12 28 681,701,239 456 569,930,183 608 473,453,456 614 16 31 16 11 1331R200S34C9000V5T 1,227,011,538 942 1,134,046,280 346 959,955,051 172 8 22 1,425,787,407 1481 1,312,205,027 385 1,136,586,780 221 8 20 14 14 1631R300S34C14000V5T 2,529,324,214 561 2,398,032,183 563 1,745,537,723 435 5 31 3,030,130,408 869 2,645,201,253 697 2,049,261,287 556 13 32 17 9 1531R400S3418000V5T 5,169,582,108 319 4,520,814,515 483 3,311,432,130 511 13 36 5,789,931,961 516 5,245,182,129 556 3,751,852,603 640 9 35 11 14 1231R500S34C20000V5T 11,050,906,466 244 8,845,362,928 547 6,925,392,214 728 20 37 13,006,916,910 376 12,963,475,117 614 7,964,201,046 925 0 39 15 32 1331R600S34C24500V5T 23,471,937,843 1027 18,265,998,726 1128 14,568,743,068 1110 22 38 26,734,537,203 1598 23,081,746,819 1420 17,278,529,279 1412 14 35 12 21 1631R700S34C29000V5T 49,800,010,407 933 32,665,152,291 1090 26,308,338,166 1160 34 47 57,270,011,968 1439 56,207,283,103 1185 31,096,455,712 1430 2 46 13 42 15Average 4,489,886,892 479 3,287,441,168 557 2,646,228,016 556 17 35 5,185,154,402 743 4,685,635,081 644 3,092,258,327 697 14 35 14 16 14

6.6.4 . Sensitivity Analysis on Unit Cost
Considering that the performances may depend on the different unit costs,

a sensitivity analysis was conducted, and the results are given in this section.
Without loss of generality, we ran tests on the instance 10R20S30C. For each test,
we considered three scenarios. The first scenario represents the case where the
unit cost of sharing is significantly lower than the smallest unit cost of procurement
(sr = 5). The second one corresponds to the case where the unit cost of sharing
is equal to a given unit cost of procurement (sr = 700). Furthermore, the third
scenario represents the case where the unit cost of sharing is significantly higher
than the greater unit cost of procurement (sr = 1800). Figures 6.5 and 6.6 depict
the variation in cost reduction (CR) for different values of cost parameters. It
is worth noting that variable transportation and procurement costs were chosen
to conduct the sensitivity analysis due to their significant contributions to the
total costs.
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Figure 6.5: Saving in terms of total costs for the various unit costsof procurement.

Figure 6.6: Saving in terms of total costs for the various unit costsof transportation.
From Figure 6.5, we see that from a cost-reducing perspective, IRPPDS gen-

erally has obvious advantages compared to DM for the three scenarios under con-
sideration. Moreover, we notice that any change in the procurement cost has the
most significant impact on cost reduction for IRPPDS. For the lower unit cost of
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sharing, we see that as the procurement cost increases, the performance advan-
tages of IRPPDS increase significantly. Indeed, authorising virtual pooling reduces
inventory holding costs for empty RTI owners (lowering the idle stock of non-used
empty RTIs), while suppliers who use these RTIs can meet more demands when no
or fewer RTIs need to be bought. On the other hand, when the procurement cost
is smaller than the unit cost of sharing, saving is smaller, and the advantages of
DM and IRPPDS are comparable (this is even more evident in scenario 3). Thus,
the benefits of IRPPDS may lessen as the cost incurred by sharing cannot be offset
by the saving it brings regarding the reduction of procurement costs. Therefore,
IRPPDS becomes profitable with a higher procurement cost. Moreover, as shown
in Figure 6.6, significant savings are achieved when the sharing cost is smaller.
In addition, when the transportation cost increases, IRPPDS is more profitable
than DM. Indeed, more empty and loaded RTIs can be transported in a period
(high fill rates), while fewer customers are visited, and fewer RTIs are bought in
the next period. However, the predominance of IRPPDS may weaken when the
sharing cost increases (this was even more evident in scenario 3, with GAP tending
to zero). Indeed, with higher unit costs of sharing and transportation, it would be
preferable and more cost-effective to have low fill rates (i.e., not to accept loading
of unowned RTIs and to send them to the suppliers for further reuse) and to buy
the needed RTIs rather than to have to pay for shared RTIs. Consequently, DM
may be more profitable compared to IRPPDS.

6.7 . Conclusions and Perspectives

This paper considered a deterministic, multi-supplier, multi-customer and multi-
RTI inventory routing problem with delivery and pickup in a collaborative supply
chain in which empty RTIs inventories are virtually pooled among suppliers. We de-
veloped an MILP and solved it using CPLEX. Experiments showed that the virtual
pooling of RTIs significantly reduces new RTI procurement costs and inventory
and transportation costs compared to dedicated and shared modes. Moreover,
to handle the combinatorial complexity of the problem, we developed an artificial
immune-system-based algorithm coupled with deep reinforcement learning tailored
to the mathematical program. We implemented our resolution approach using
Python and Pytorch and compared it to the CPLEX solver and three metaheuris-
tics: AIS without deep learning and GA with and without deep learning. Both
variants of GA and AIS coupled with DQL seem to be competitive. However,
the AIS variant outperformed GA thanks to its immune memory, which continu-
ously improved the algorithm’s speed and stability in solving the model. AIS-QDL
even allowed for obtaining optimal solutions for some instances and feasible so-
lutions with a tiny gap and within a small amount of time. Using AIS-QDL, we
solved the model for large instances of up to 700 suppliers, 34 customers, and 31
types of RTIs. A sensitivity analysis of units’ costs was also conducted. These
results highlight how virtual pooling can be preferable compared to the dedicated
and shared modes.

While the benefits of the model and the effectiveness of the AIS-DQL were
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demonstrated using randomly generated instances, it would be beneficial to assess
further their effectiveness on real data. Moreover, several possible applications may
be investigated. For example, one could study the integration of cross docks in the
RTI flows, as in the case of automotive supply chains. The idea is to combine and
consolidate, when it seems advantageous, numerous smaller RTI loads provided
by different suppliers and to deliver them downstream. Future research may also
investigate the case of stochastic demands as room to exploit further and assess the
limits of the resolution approach to tackle this kind of problem, the relative power
of all parties in decision making, and maximising profit and its allocation. One way
to address this latter may rely on the degree of commitment of the players. Indeed,
as many supply chains experience the highest loss and damage rates of RTIs (which
can be trackable using, for instance, RFID tags), the pool manager can reduce the
costs incurred by "good" users and increase those of the "bad" ones or offer them
training on the use of these RTIs so that they can improve on their weak points,
reduce the environmental impacts, and increase the competitiveness of the whole
system. Furthermore, decisions related to fleet composition and fuel consumption
are to be considered in future work.
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Abstract: We investigate the integration of forward and reverse networks in

the interconnected logistics services in the Physical Internet (PI). A three-level PI-
supply chain is considered, in which suppliers deliver their products to customers
using reusable containers. In the light of sustainable development, forward and
reverse flows are consolidated at the level of hubs. A mathematical model for
the pickup and delivery of reusable PI-containers exploiting the PI concept is pro-
posed. It considers inventory sharing between the PI-hubs, including empty and
loaded PI-containers. Deliveries from suppliers to the PI-hubs and from PI-hubs to
the customers are considered to be performed within time windows. A resolution
approach based on the hybridization of mathematical modelling, artificial immune
system algorithm and deep reinforcement learning is proposed to handle the combi-
natorial complexity of the problem at hand. Computational experiments highlight
the positive impact of the PI model on logistics efficiency compared to the classical
model, thanks to PI’s high level of integration, flexibility and openness, which help
achieve significant cost savings. They also stress that the resolution approach is
very competitive and allows better solutions in terms of solution quality and run
time.
Keywords: physical internet, reverse logistic,inventory routing with pickup and
delivery, artificial immune system algorithm, deep reinforcement learning

7.1 . Introduction

The Physical Internet (PI) is a relatively new paradigm developed to enable
the global logistics sustainability (Montreuil, 2011). Its vision focuses on 13 char-
acteristics based on data transmission protocols that have formed the Internet
(Montreuil, 2011; Ballot et al., 2014). PI is defined as how physical objects are
transported, stored, supplied and used, aiming at greater efficiency and sustain-
ability (Montreuil et al., 2012). PI, therefore, can introduce ground-breaking de-
velopments in material handling, logistics and facility design.

The main characteristic of PI is the use of globally standard, smart, green
(either recyclable or reusable), shared and modular containers, also known as PI
containers (Ballot et al., 2014; Montreuil, 2011; Montreuil et al., 2012). Ballot
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Figure 7.1: Modular PI-container for consolidation andde-consolidation(source: Montreuil (2011))
et al. (2014) discuss other detailed characteristics of the PI-containers. The au-
thors emphasise that in the manner of the BIC code in the maritime sector, these
containers have a unique international identification to ensure better traceability.
PI-containers are also in a position to provide physical security and anonymisation
of content which considerably facilitates the sharing of resources between various
partners, including competitors. They also have a standardised size and mechanical
strength, making it easier to handle and stack. And finally, by using a standard-
ised system and appropriate twist-lock development, handling and locking between
PI-containers are possible (see 4.2). PI containers can be therefore interlocked or
encapsulated inside each other (Landschützer et al., 2015). These PI-containers
will subsequently be decomposed into separate and smaller unit containers at PI-
hubs for consolidation and better use of the capacity of trucks or better handling
and storage at PI-hubs and destination locations (see Figure 7.1).

Aside from the PI-containers, movers and nodes are other critical physical
elements of the PI (Fahim et al., 2021). Movers are grouped into PI-transporters,
PI-conveyors and PI-sorters. For the nodes, PI-hubs and PI-transit centres are
introduced. This forms PI’s backbone. Therefore, the PI-logistics system can be
defined as follows: if a shipment is made from supplier A to customer B, PI-
containers are routed through one or more PI-hubs or PI-transit centres where
they are consolidated, handled and transported by PI-conveyors, PI-sorters and PI-
transporters. Similarly, when dealing with a set of suppliers and customers, goods
with the same destination are consolidated and collected from and to transshipment
points in the exact shipping period.

The PI logistics system is shared (Ballot et al., 2014) and thus, the expected
benefit of such a system comes from sharing and pooling resources. Since the
sharing of inventory and transportation resources allow for seamless interoperability,
the cost, speed, quality and sustainability of the transport of goods are optimised
(Tran-Dang et al., 2020). Routing systems are thus coordinated so that the means
of transportation and their drivers meet at PI-hubs. The haulage and hauls can be
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re-consolidated to avoid transports with empty or partially filled charge carriers and
shorten transport times. Therefore, the PI’s objective is to achieve higher utilisation
of the transport routes. This is meant to provide significant economic (shorter
transport times, fewer personnel costs) and ecological (traffic reduction, less CO2
emissions) advantages (Montreuil, 2011). A balanced utilisation of storage facilities
and distribution centres also strives (Ballot and Fontane, 2010; Pan et al., 2019).
In such a system, routing and inventory decisions thus become very complex, and
the need for optimisation models has become more than needed (Pan et al., 2019;
Yang et al., 2017). This is even truer when dealing with reusable PI-containers,
which involve the management of both forward and reverse flows. This paper aims
to fill this gap.

This paper contributes to the literature in four dimensions: first, we develop
an optimisation model for inventory routing of reusable PI-containers flowing in
a closed loop. We investigate a PI-supply chain in which suppliers deliver their
products using reusable PI-containers to their customers (e.g., plants, retailers).
Direct and reverse flows of the PI-containers are consolidated at the level of a set of
PI-hubs. Such management is highly relevant in the fast-moving consumer goods
(FMCG) industry, where products are non-durable, delivered in packaged form, at
low prices and in high volumes, and frequently purchased. Nevertheless, existing
papers mainly consider traditional designs of the supply chain network, where each
company establishes its logistics network independently (Iassinovskaia et al., 2017;
Limbourg et al., 2016; Liu, 2020). This paper focuses on the inventory routing
model under stochastic demand of reusable containers exploiting the PI concept,
which is new to the literature. Second, we consider inventory sharing between the
PI-hubs. Sharing includes both empty and loaded PI-containers. Third, we consider
deliveries from suppliers to the PI-hubs and from PI-hubs to the customers to be
performed within specified time windows as is usually done in practice. And finally,
a resolution approach based on the hybridisation of mathematical modelling and an
artificial immune system-based algorithm and reinforcement learning is proposed
to handle the combinatorial complexity of the problem at hand. Also, thanks
to its generality and flexibility, this matheuristic uses deep reinforcement learning
techniques originally presented by Achamrah et al. (2021) to solve dynamic and
stochastic inventory routing problems successfully.

In this paper, we aim to determine for each level of a three-level PI-supply chain,
under stochastic demands and over a given planning horizon, the required quantities
of empty and loaded PI-containers to allow the flows of products necessary to meet
the customers’ demand within specified time windows. The objective is to construct
thus planning for PI-containers deliveries, pickups, transshipment and procurement
of new ones while performing deliveries the predetermined within time windows.

The remainder of this work is structured as follows. In Section 2, related works
are presented. Problem description and formulation are provided in Sections 3
and 4. Section 5 describes the resolution approach, while Section 6 reports the
experimental results. Finally, conclusions and perspectives are presented in Section
7.
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7.2 . Related work

Two research streams which are most aligned with our work address classical
cross-docking into a supply chain environment and PI application in supply chain
management. Regarding the first research stream, cross-docking takes place to
consolidate shipments from disparate and even decentralised sources to achieve
full-load outbound trucks and satisfy the customers’ demands in a minimum deliv-
ery time. Many papers discuss Vehicle Routing Problem (VRP) with the classical
cross-docking problem, and associated topics cover both models and solution ap-
proaches to deal with their combinatorial complexity. Lee et al. (2006) study a
VRP with a cross-dock centre and propose a heuristic based on a tabu search
algorithm to tackle the problem. Benjamin (2020) proposes a model to address
a VRP with multi-product cross-docking and uses CPLEX to solve the model for
small instances. Wang et al. (2017) propose a model to address VRP with multiple
cross-docks and split deliveries. A constructive heuristic with two-layer simulated
annealing and tabu search is used to solve the problem. Musa et al. (2010) address
a VRP where products are shipped to customers directly or via cross-docks. They
implement an ant colony optimisation algorithm to solve the problem at hand.
Mousavi and Vahdani (2017) develop a two-phase deterministic model for VRP
with multiple cross-docks and use a metaheuristic called a self-adaptive imperi-
alist competitive algorithm to tackle the problem of concern. Babaee Tirkolaee
Erfan Goli (2020) propose a bi-objective model for a VRP with cross-docking. The
model takes into account pollution and routing costs, and supply reliability. They
use the multi-objective simulated-annealing algorithm and non-dominated sorting
genetic algorithm to provide Pareto solutions to the problem. Other papers also in-
tegrate time windows constraints or transshipment between cross-docks. Ma et al.
(2011) model a transportation problem with cross-docking and time windows and
propose a heuristic approach to solve it. Lim et al. (2005) consider transshipment
between cross-docks constrained by transportation schedules and warehouse capac-
ities. Chen et al. (2006); Marjani et al. (2012) study the VRP with cross-docking
and consider both transshipment and time windows constraints. Both papers use
simulated annealing and tabu search based algorithms to solve the problem. We
also note scarce interest in considering both forward and reverse flows of products.
Zuluaga et al. (2016) analyse and adjust a set of models used to optimise forward
flows to cope with reverse flows’ characteristics in cross-docking. Kheirkhah and
Rezaei (2015) develop a mathematical model that integrates returned products’
flows. Rezaei and Kheirkhah (2017) considers an integrated supply chain network
in which the forward/reverse cross-docking is applied, wherein the demands of
customers (in forwarding flow) and that of recovery centres (in reverse flow) can
be less than a truckload. The authors use the general algebraic modelling sys-
tem (GAMS) software to solve the model. Kaboudani et al. (2020) study a VRP
with a cross-docking centre and consider forward and reverse flows. A simulated
annealing algorithm is used to solve the problem of concern.

On the other hand, previous papers related to PI have dealt chiefly with func-
tional design for a road-based transit centre (Meller et al., 2012), tracking technol-
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Figure 7.2: Forward and reverse flows of PI-containers in a PI-closedloop comprising set of suppliers, cross-docks, and customers
ogy for the management of returnable PI-containers (Roch et al., 2014), routing
problem (Fazili et al., 2017), rule-based simulation models for inventory control
(Pan et al., 2014), a single product inventory optimisation control model with
transshipment (Yang et al., 2017) and PI-enabled integrated production inventory
and distribution (Ji et al., 2019). It is also necessary, however, to consider cross-
docking hubs and PI-containers management from an operational and sustainable
viewpoint. The primary objective is to find the optimal inventory management,
forward and reverse flows of reusable PI-containers and transshipment between
cross docks, all constrained by time windows. To the best of our knowledge, no
work has been reported that addresses such a PI-setting. Thus, this paper aims to
fill this gap.

7.3 . Problem description

As a part of a PI-enabled vendor-managed inventory (VMI) system, the objec-
tive is to optimise transportation, inventory, transshipment and production costs
for a uni-modal freight for delivery and pickup in a PI-closed loop supply chain.
This supply chain consists of multiple suppliers and multiple customers and in
which a set of PI-hubs are used to consolidate the forward and reverse flows of
reusable PI-containers. This paper focuses on the cross-docking terminals, mainly
Road–Road PI-hubs used to transfer the PI-containers between inbound and out-
bound PI-trucks (see Figure 7.2).

The planning horizon length is d with discrete-time periods t ∈ T = {1, ..., d}.
Regarding the sequence of the operations for forwarding flow, we assume that first,
the decisions related to the quantities to be delivered by each supplier to PI-hubs
are determined. Second, after customers reveal demands, they are supplied by PI-
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hubs. Moreover, inventory sharing is allowed between PI-hubs to avoid, as much
as possible, shortages at the level of each customer.

This paper assumes that direct shipping is not allowed from suppliers to cus-
tomers and vice versa. All flows must be handled and consolidated at the PI-hubs
before being shipped to their final destination (supplier or customer). Moreover,
under VMI and Maximum Level policies (Yang et al., 2017), we assume that each
supplier j can freely decide on the quantity to supply to the PI-hubs in terms of
loaded PI-container p, restricted only by the customer i’s inventory capacity and by
a threshold (reorder point) rpijt. This quantity defines the parameter Qpijt which
is assumed to be proportional to max[0, rpijt − IL,0pit ], where IL,0pit is the inventory
level at a customer i at the beginning of a period t expressed in terms of loaded
PI-container p.

As in Coelho et al. (2014a); Achamrah et al. (2021), we assume a normally
distributed demand; a reorder point r can be then computed as follows:

r = µ+ σgβ (7.1)
Where µ at a given period is the expected demand and σ the related standard
deviation, β is the shortage probability, and gβ is the β-order quantile of the
demand distribution. We note that these values and r are updated in each period
t. Also, the Expression 7.1 is applied before solving the model for each supplier,
customer and loaded PI-container.

Transshipment between PI-hubs is permitted so that they can patch the de-
mands by other’s inventories. Transshipment can take place as an emergency
measure to avoid shortages as much as possible whenever demands that have
been revealed exceed the quantity of loaded PI-containers made available to each
customer. Transshipment also includes sharing empty PI-containers to avoid pack-
aging unavailability and unnecessary over-investment in buying new PI-containers.
This transshipment is allowed whenever it seems profitable, and each supplier’s
required quantity of empty PI-containers exceeds his inventory level (insufficient to
meet future demands).

Furthermore, we assume a direct shipment to customers from PI-hubs. Af-
ter the demand is revealed, each customer is visited to be delivered the required
quantity of loaded PI-containers. We also benefit from this visit to collect empty PI-
containers necessary for future deliveries. Once returned, the empty PI-containers
are sorted and consolidated at the level of PI-hubs, before being directly shipped to
the suppliers for further reuse. Deliveries from suppliers to the PI-hubs and from
PI-hubs to the customers are performed within time windows. We also assume that
each location (supplier, customer and PI-hub) has two storage areas. One is dedi-
cated to the storage of loaded PI-containers and the other for empty PI-containers.
Each stock area is characterised by an initial inventory level and a maximum storage
capacity. At the beginning of the planning horizon, each customer places an order
in terms of loaded PI-containers to a PI-hub. The supplier has to directly ship the
products to the given PI-hub within a time window. After being unloaded from
inbound PI-trucks, the PI-containers are decomposed and sorted using PI-sorters.
PI-containers having the same destination are then grouped and loaded into the
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outbound PI-trucks (or after being stored temporarily in the storage zone). The
outbound PI-trucks ship the PI-containers to the downstream customer and pick
up the empty PI-containers to be returned to the PI-hubs for consolidation before
sending them back to the suppliers for further reuse.

The transportation cost is computed based on flows. This paper considers five
classes given the two flows of PI-containers: from suppliers to PI-hubs, from PI-
hubs to suppliers, to customers, from customers to PI-hubs, and between PI-hubs.

Finally, aside from the assumptions already expressed, we consider the follow-
ing:

1. Shortage penalty is incurred if demands are not met even after allowing
lateral transshipment (Coelho et al., 2014a).

2. The time window restriction should be satisfied.

3. The time horizon is finite and is subdivided into equal periods.

4. The transshipment of PI-containers, either loaded or empty, between PI-hubs
is possible all the time.

5. PI-trucks can load either empty or loaded PI-containers.

6. Buying new PI-containers is allowed if the quantity of empty PI-Containers
remains insufficient to meet the needs of suppliers.

7. At the end of each period, all empty PI-containers are subject to quality con-
trol. Damaged ones are disposed of, serviceable PI-containers are repaired,
and undamaged ones are transferred to the inventory.

The problem considers delivery and pickup, inventory and transshipment prob-
lems of PI-containers in a PI-closed loop supply chain. The objective is to determine
for each level of the supply chain and over the planning horizon the quantities of PI-
containers to be delivered by the suppliers and the quantities of empty PI-containers
to be picked up or bough, if necessary. Deliveries to customers must be performed
within time windows. To do this, we need to set up planning for the inventory level
constraints (no shortages and overstocking are allowed) while taking into account
time windows constraints, the availability of empty PI-containers at suppliers and
PI-hubs, and minimising the inventory holding cost, operating cost at the PI-hubs,
transportation, production/cleaning and new PI-containers purchasing costs.

7.4 . Problem formulation

Using the notations, parameters and decisions variables reported in Table 7.1,
the pickup and delivery of PI-containers in a PI-hubs network with forward and
reverse flows is formulated as follows:

min
∑
t∈T

∑
k∈K

∑
p∈P

(hLpkI
L
pkt + hEpkI

E
pkt) +

∑
t∈T

∑
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∑
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(hLpiI
L
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E
pit)+∑
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Table 7.1: The model’s notation
Sets

S Set of suppliers
K Set of PI-hubs
N Set of customers
P Set of PI-containers
T Set of periods Parameters
cjk Transportation cost from a supplier j to a PI-hub k
cki Transportation cost from a PI-hub k to a customer i
ckk′ Transshipment cost from a PI-hub k to a PI-hub k′

hL
pk , hE

pk Holding cost of a loaded and an empty PI-container p at the PI-hub k resp.
hL
pi, hE

pi Holding cost of a loaded and an empty PI-container p at the customer i resp.
hL
pj , hE

pj Holding cost of a loaded and an empty PI-container p at the supplier j resp.
bp Unit cost of buying a new PI-container p
gp Unit cost of maintaining and cleaning a PI-container p
api Unit cost of shortage per unit of loaded PI-container p at the level of customer i
TSD

j , TED
j Starting and ending time of delivering PI-containers from a supplier j resp.

TSP
i , TSP

i Starting and ending time of shipping PI-containers to a customer i resp.
ILpk0, IEpk0 Initial inventory of a loaded and an empty PI-container p at a PI-hub k resp.
ILpj0, IEpj0 Initial inventory of a loaded and an empty PI-container p at a supplier j resp.
ILpi0, ILpi0 Initial inventory of a loaded and an empty PI-container p at a customer i resp.
V L
p , V E

p Volume occupied by a loaded and an empty PI-container p resp.
CkL, CkE Maximum holding capacity of PI-hub k (loaded and empty PI-containers resp.)
CiL, CiE Maximum holding capacity of customer i (loaded and empty PI-containers resp.)
CjL, CjE Maximum holding capacity of supplier j (loaded and empty PI-containers resp.)
Dpit Customer demand which is normally distributed with average parameter µpit and standard deviation σpit

(rpijt, Qpjit) Replenishment policy of supplier j; Qpjit for batch size and rpijt for reorder point considered by supplier j foreach customer i and PI-container p
M Big number Variables
xL
jkt Binary variable equal to 1 if supplier j is assigned for delivering loaded PI-containers to PI-hub k at period t, 0,otherwise.

yLikt Binary variable equal to 1 if a PI-hub k is assigned for delivering PI-containers to customer i at period t, otherwise.
xE
jkt Binary variable equal to 1 if supplier j is assigned to PI-hub k for receiving empty PI-containers at period t, 0,otherwise.

yEikt Binary variable equal to 1 if a PI-hub k is assigned to customer i for receiving empty PI-containers at period t, 0,otherwise.
zkk′t Binary variable equal to 1 if there is a transshipment between a PI-hub k and PI-hub k′ at period t, 0, otherwise
ILpkt, IEpkt Inventory level of loaded and empty PI-container p at PI-hub k at period t resp.
ILpjt, IEpjt Inventory level of loaded and empty PI-container p at supplier j at period t resp.
ILpit, IEpit Inventory level of loaded and empty PI-container p at customer i at period t resp.
wL

pkk′t,
wE

pkk′t

Quantity of loaded and empty PI-container p shipped from PI-hub k to PI-hub k′ at period t resp.
Qpkit Quantity of loaded PI-container p filled by the product of supplier j shipped from a PI-hub k to a customer i atperiod t
Rpkijt Quantity of empty PI-container p shipped from a customer i to PI-hub k at period t
Rpkjt Quantity of PI-container p to be shipped from a PI-hub k to supplier j at period t
npkt Quantity of PI-container p being bought and stored in the PI-hub k at period t
Fpjt Quantity of empty PI-container p being filled by products at the supplier j at period t
upit Quantity of lost sales at customer i expressed in terms of the number of filled PI-container p at period t
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p∈P

Rpkit ≤MyEikt ∀i ∈ N, k ∈ K, t ∈ T (7.19)
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j

xLjkt = 1 ∀j ∈ S (7.20)

∑
k∈K

TED
i∑

t=TSD
i

yLikt = 1 ∀i ∈ N (7.21)

The objective function (7.2) minimises the total cost. The three first sums corre-
spond to the inventory holding cost at PI-hubs, suppliers and customers, respec-
tively, for empty and loaded PI-containers. The fourth sum to the eighth sum
corresponds to transportation costs from suppliers to PI-hubs, from PI-hubs to
customers and between PI-hubs for both forward and reverse flows of empty and
loaded PI-containers. Constraints (7.3)-(7.8) define at each location the conver-
sations the conditions for the conservation of inventory levels of loaded and empty
PI-containers. Constraints (7.9)-(7.14) indicate the boundaries of the inventory
levels of loaded and empty containers at the level of PI-hubs, suppliers and cus-
tomers. Constraints (7.15) guarantee that the quantity of loaded PI-containers
shipped from a supplier to a PI-hubs is positive only when the related binary vari-
able is. Similarly, constraints (7.16)-(7.19) ensure the same logic between PI-hubs
and between PI-hubs to customers for loaded and empty PI-containers. Constraints
(7.20)-(7.21) stipulate that each delivery from suppliers to PI-hubs and from PI-
hubs to customers is performed only within its time window.

7.5 . Resolution approach

The classical cross-docking problem is NP-complete in the strong sense (Chen
et al., 2006). It is even harder for our setting, which integrates forward and reverse
flows, transshipment and time windows constraints. Therefore, exact methods
can fail to find optimal solutions for large-size problems. Given the complexity
of the cross-docking problem, our approach is, therefore, to use a matheuristic
that combines mathematical modelling and an artificial immune system (AIS). For
each flow, we determine using AIS the values of three decisions: the choice of
the PI-hubs assigned for delivering full PI-containers and for receiving empty ones,
and the time of delivery to the customers. The rest of variables are determined
by solving the MILP in which the related variables of the three decisions are fixed.
We note this MILP: FMILP

7.5.1 . Artificial immune system
To be used in problem-solving, AIS is modeled after the immune system’s learn-

ing, and memory features (De Castro et al., 2000). Antigen recognition, antigen
and antibody binding, and antibody synthesis are all replicated. It also uses the
immune system’s variety and memory mechanisms abstractly. As a result, it can
assure individual variation while retaining a high level of affinity, preventing prema-
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ture occurrences that demonstrate a great global search ability (De Castro et al.,
2000). Finally, even though AIS is a relatively new complex problem-solving ap-
proach when compared with other nature-inspired metaheuristics such as evolution
strategies and genetic algorithms, its inherent characteristics of immune memory,
vaccination, antibody self-recognition ability, and immunity diversity allow it to
have a high level of flexibility and a good balance between global and local search
(Bernardino and Barbosa, 2009a)

The process starts with an initial set of random solutions called antibodies.
Each antibody in the pool represents the set of assigned PI-hubs and delivery times.
The fitness of each solution is measured during each generation of an antibody,
and solutions are selected for hypermutation, selection and cloning based on their
fitness (computed using objective function values).

An antibody is represented as a bit string in which all the possible information
regarding assigned PI-hubs and delivery times should be contained. The represen-
tation space χ is expressed as a Cartesian product of allele sets Aξ. ξ = L stands
for forward flow and ξ = E for reverse flow:

χ = AL ×AE (7.22)
The algorithm uses a 5-bit scheme Aξ = {akξajξat1ξaiξat2ξ; alξ ∈ {0, 1}/l =

k, j, i, t1, t2}, so that for forward flow, each bit, if equal to 1, represents respectively
a PI-hub k assigned to receive full PI-container from supplier j at time t1 and to
deliver to customer i in time t2. For reverse flow, each bit, if equal to 1, represents
respectively a PI-hub k assigned to deliver empty PI-container to supplier j at time
t1 and receive empty container from customer i in time t2.

Later, each antibody is re-converted to binary variables xLjkt, y
L
ikt, x

E
jkt and yEikt

to be able to solve the FMILP and then determine its related fitness Fχ computed
with regard to the objective function OFχ:

Fχ =
1

OFχ
(7.23)

Therefore, the probability, PSχ, of selecting an antibody for cloning depends
on its fitness. The probability PSχ is defined as: PSχ= Fχ∑

χ Fχ

As for exploration and exploitation processes, AIS uses Hyper Mutation (HM)
and Receptor Editing (RE) mechanisms. Each operator conducts random per-
turbations on each gene to generate the next generation’s population. The HM
mechanism guarantees that the higher-fitness antibodies are hyper-mutated at a
slower rate. The HMχ the rate for an antibody χ is defined as HMχ = e−ωFχ

where ω is the decay control factor. Following hyper-mutation, a new population
is generated. Antibodies are so reorganised based on the affinity evaluation.

Following the cloning and mutation operations, the RE mechanism is per-
formed, which consists of removing a subset of the current antibodies (the worst
ϕ% percent of the population) and replacing them with newly generated antibodies
(De Castro and Von Zuben, 1999). This mechanism allows exploring new search
areas, which helps escape from local optima.
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7.5.2 . AIS enhanced by Deep Q-learning
Although several studies have demonstrated the convergence of AISs to a global

optimum, a Markov-chain analysis reveals poor convergence of the AIS algorithms
(Bernardino and Barbosa, 2009a). Indeed, AIS converges slowly owing to the
antibody’s single-point random mutation, which means that a particular antibody
chooses a gene bit and changes its value randomly to one of the other selectable
values. Furthermore, because of other weak gene blocks, it cannot preserve any
locally great gene blocks in some low-affinity antibodies. As a result, the speed of
the search is slow.

In this paper, we use the same Deep Q-learning (DQ) technique thoroughly
explained in Achamrah et al. (2021) to speed up the algorithm and enhance its
performance. Indeed, metaheuristics (in our case, AIS) produce a large amount
of data throughout their iterative search processes, which can be converted into
explicit knowledge using Machine Learning models (Talbi, 2020). This information
covers, for instance, the search’s spaces, moves, recombination, local optima, and
excellent and bad solutions. In this paper, DQ is used to help analyse data relative
to movements and recombination that have been made to generate good solutions
to the problem. The objective is to extract useful information from this data so
that the AIS’s search performance and speed may be improved.

The concept of Q-learning consists of placing the agent (i.e., antibody) in state-
action pair sequences (i.e., mutation, -recombination), observing the rewards that
ensue, and updating a table’s predictions (called a Q-table) until the best action is
accurately predicted. As a result, the "Q" stands for quality, which determines how
effective a specific action is in earning a prospective reward. On the other hand,
the process can be time-consuming since the amount of memory needed to save
and update that table rises as the number of states increases, and the amount of
time required to investigate each state to generate the requisite Q-table becomes
thus impractical.

These Q-values are approximated using neural networks, which are referred to
as DQ, to tackle this problem. Consequently, the state is given as an input, and
the output is the Q-value of all potential actions. After the network has been
trained, picking the best action requires comparing the potential rewards of each
action and selecting the best one. Accordingly, DQ guides AIS in choosing the
best actions to perform regarding the best moves for HM and RE.

To help speed up the AIS even further, all of the moves made so far are
recorded. This "memory" is exploited so that the prior best actions are used every
time the algorithm is applied to solve the model for a given instance, which happens
to be similar to the ones already treated. The best moves are chosen based on how
the new instance compares to the prior ones. The K-Nearest Neighbours technique
is used to determine similarities (Achamrah et al., 2021).

Finally, a basic penalty method is used to respect the model’s constraints in the
AIS. Each antibody’s feasibility is evaluated against the model’s constraints during
HM and RE procedures. If an infeasibility occurs, the value of the fitness functions
of the corresponding antibody is penalised. Consequently, infeasible antibodies
have a lower chance of making it into the following generation of antibodies.
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Figure 7.3: Current dominant distribution system in FMCG vs. PI forforward flows (source: Yang et al. (2017))
The algorithm stops when a time limit is reached, or no improvement in the

quality of the solution is noted.

7.6 . Computational experiments

We compare the performance of our PI-supply chain to the classical supply
chain described in Figure 7.3, which depicts forward flows in the distribution system
in FMCG. The classical supply chain we address consists of suppliers from which
products (manufactured by companies) are shipped using reusable transport items
they own (e.g., pallets, boxes, .) to customer zones via the distribution centres to
meet each customer’s demand. In addition, neither direct shipment of products nor
transshipment are allowed. Similarly, in the reverse flow, empty reusable items are
collected from the customer zones and returned to their owner. All the production
and maintenance processes (cleaning, recovering and disposal) are assumed to be
performed at the suppliers regarding the type of returned items.

The performance ratio related to the total cost (TC) is computed as follows:

R = (
TCPI − TCClassic

TCPI
)100 (7.24)

The improvement in service levels (SL) is also computed as follows:

S = (
SLPI − SLClassic

SLPI
)100 (7.25)

7.6.1 . Experimental design
This section presents the experimental design for generating a set of instances

since no benchmark instances were found in the PI literature with the same con-
straints and input/output data. As a result, we generate our data to be as realistic
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Table 7.2: The model’s input data
Parameter ValueNumber of customers [5,200]Number of PI-hubs [5,20]Number of suppliers [5,40]Number of PI-containers [5,40]Average demand U(20, 240)Standard deviation U(2, 144)Maximum inventory level of empty and loaded PI-containers at each customer i νi

∑
p,t Dpit ; νi = U(1, 3)

Maximum inventory level of empty and loaded PI-containers at each supplier j νj
∑

p,i,t Dpit ; νj = U(1, 4)

Maximum inventory level of empty and loaded PI-containers at each PI-hub k νk
∑

p,i,t Dpit ; νk = U(5, 10)

Initial inventory level of a loaded PI-container p at customer i νiDpi1 ; νi = U(1, 2)Initial inventory level of an empty PI-container p at customer i Dpi1Initial inventory level of a loaded/empty PI-container p at supplier j νj
∑

p,i,t Dpit; νj = U(5, 10)

Initial inventory level of a loaded/empty PI-container p at PI-hub k νk
∑

p,i,t Dpit; νk = U(5, 10)

Inventory holding cost of loaded PI-container p per period U(0.02, 0.2)Inventory holding cost of empty PI-container p per period U(0.01, 0.1)production cost U(0.01, 0.04)New PI-container procurement cost U(10, 200)Lost sales cost 100hL
piTime windows U(0, 5)

Transportation cost from a node i to j with regard to the spacial coordinate Xand Y generated in U(0, 500). This concerns any level of the supply chain.
√

(Xi −Xj)2 + (Yi − Yj)2 + 0.5

Transshipment cost from PI-hub k to k′ 0.01(
√

(Xk −Xk′ )2 + (Yk − Yk′ )2 + 0.5)

as possible by following some of the standards for instances generated for the IRP
and IRP for returnable transport items, namely demands, initial inventories and
storage capacities (Iassinovskaia et al., 2017; Archetti et al., 2007, 2012; Coelho
et al., 2014a). Our dataset, available upon request, is generated according to Table
7.2.

To evaluate the stability of the resolution approach, the tests are performed in
10 replications for each of the generated instances, and the average value of the
objective function is presented. A time limit of 7200s is set for CPLEX to be able to
validate the results obtained using the resolution approach. The analyses are also
supported by one-tailed Wilcoxon signed-rank tests, which show that most observed
differences are highly significant (p-value ≤ 0.001). Finally, all optimisation steps
are carried out with a personal computer(MacBook Pro, macOS Big Sur, 3.3 GHz
Quad-Core Intel Core i7 CPU with 8 GB of RAM) and with CPLEX 12.9, Python
3.7 and Pytorch.

7.6.2 . Parameters tuning of AIS and DQ
To enhance their performance, modern optimisation algorithms often require

many parameters to be adjusted. The automatic algorithm configuration’s imme-
diate purpose is to discover the best optimiser parameter values automatically. Au-
tomatic algorithm setting can lead to new optimisation software design paradigms
in the long run. The Irace package is a piece of software that automates a number
of configuration operations (López-Ibáñez et al., 2016). Iterated racing processes,
in particular, have been effectively employed to automatically configure a variety
of state-of-the-art algorithms (López-Ibáñez et al., 2016). The iterated F-race al-
gorithm and various adaptations and refinements are among the repeated racing
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techniques implemented in Irace.
In this paper, a set of training instances representing the problem (80 instances

with 5 to 50 customers, 5 to 10 suppliers and 5 to 10 PI-hubs) is used to choose the
best algorithm configuration (see Table 7.3). The selected algorithm configuration
can then be used to solve new instances of the same problem. Table 7.4 reports
the parameters tuning for AIS and DQ.

Table 7.3: Tuning of AIS’s parameters
Parameter Range Chosen valuesPopulation size [170,200] 200Maximum number of iterations [150,200] 200HM probability [0.31,0.34] 0.31Selection probability [0.47,0.54] 0.5RE probability [0.2,0.3] 0.2

Table 7.4: Tuning of DQ’s parameters
Parameter ValueExploration rate 0.32Discount rate 0.41
C 120

7.6.3 . Computational results
This section reports computational results on medium and large instances and

sensitivity on unitcost.

7.6.3.1 . Results for medium and large instances
Table 7.5 report total costs computed for both the PI model (PI-M) and clas-

sical model (C-M) using CPLEX and our Algorithm. The set of instances under
consideration consists of a number of customers N varying between 5 and 50; a
number of suppliers S and PI-hubs K varying between 5 and 10 and a number of
PI-containers P varying between 5 and 40. Table 7.5 also provides the CPU time
in the second computed for PI-M and C-M. Table 7.6 provides for all instances
under consideration the breakdown of costs for PI-M, namely: transportation (T),
inventory at the customers (I-C), inventory at the suppliers (I-S), inventory at
the PI-hubs (I-P), lost sales (LS), procurement (Pr), transshipment (Ts) and pro-
duction (M). Table 7.6 also reports cost saving and service level improvement
computed using CPLEX and our algorithm.
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Table 7.5: Computational results on medium instances obtained using CPLEX and our algorithm
Instances CPLEX Algorithm

RCPLEX (%) RAlgo (%) SCPLEX (%) SAlgo (%)Total Cost CPU (s) Total Cost CPU (s)
# N S K P PI-M C-M PI-M C-M PI-M C-M PI-M C-M
1 5 5 5 5 8,794.0 15,444.1 242 210 9,401.2 16,358.8 1,039 385 43.06 42.53 30.65 48.81
2 5 5 5 10 18,473.2 32516.0 457 160 19,891.9 33,708.9 754 1,187 43.19 40.99 50.55 47.96
3 5 5 5 20 28,081.4 44,307.8 1,003 272 28,431.5 44,333.5 1,054 763 36.62 35.87 42.78 65.70
4 5 5 5 30 43,426.9 69,220.4 2,851 644 44,204.6 71,772.9 925 340 37.26 38.41 59.08 48.47
5 5 5 5 40 53,559.7 97,737.4 2,468 1,803 5,6945.5 104,911.8 1,001 521 45.20 45.72 60.12 48.47
6 5 5 10 5 12,829.6 18,986.8 2,013 1,498 14,059.5 19,448.4 1,147 463 32.43 27.71 64.04 55.08
7 5 5 10 10 16,416.4 26,155.5 2,488 2,720 16,628.0 23,480.5 975 856 37.24 29.18 41.06 26.10
8 5 5 10 20 32,512.3 57,259.1 2,914 2,053 33,562.8 58,139.2 723 677 43.22 42.27 37.88 55.51
9 5 5 10 30 44,121.6 81,345.9 2,552 2,657 46,243.7 84,089.1 852 654 45.76 45.01 41.39 29.46

10 5 5 10 40 48,981.0 88,185.0 2,972 2,743 52,951.1 94,819.5 730 311 44.46 44.16 29.08 31.92
11 5 10 10 5 11,515.1 21,075.8 1,202 2,337 11,788.4 21,700.9 806 864 45.36 45.68 26.16 46.63
12 5 10 10 10 16,803.7 28,774.8 3,137 1,193 17,529.4 29,133.9 523 656 41.60 39.83 44.09 47.04
13 5 10 10 20 35,071.6 68,427.3 3,643 7,097 37,677.1 68,814.2 458 707 48.75 45.25 40.99 41.13
14 5 10 10 30 51,159.8 73,729.4 2,730 3,077 52,223.9 73,883.8 394 700 30.61 29.32 43.15 55.60
15 5 10 10 40 69,059.1 121,055.5 4,385 4,807 71,731.7 122,833.3 1,079 961 42.95 41.60 57.58 46.20
16 10 10 10 5 16,850.3 31,762.5 3,034 2,669 17,638.8 33,360.6 932 708 46.95 47.13 31.58 43.44
17 10 10 10 10 25,439.2 38,256.2 2,883 7,178 26,750.3 36,326.6 832 1,186 33.50 26.36 62.88 40.59
18 10 10 10 20 41,450.1 59,971.3 6,833 6,571 43,839.4 59,774.1 823 1,192 30.88 26.66 37.16 54.65
19 10 10 10 30 64,592.8 88,010.2 1,508 4,617 67,924.9 96,397.0 520 398 26.61 29.54 53.53 50.94
20 10 10 10 40 82709.0 148545.9 4332 6436 86,553.8 15,0465.9 369 1029 44.32 42.48 44.77 64.28
21 20 10 10 5 40,022.6 70,378.6 2,387 2911 41,027.8 76,191.1 1,155 886 43.13 46.15 24.94 26.59
22 20 10 10 10 54618.6 85311.7 5678 2862 55,682.8 88,531.8 672 1,149 35.98 37.10 51.27 42.88
23 20 10 10 20 85,995.3 130,593.8 6,064 6,773 88,207.2 134,041.5 1166 791 34.15 34.19 54.70 54.14
24 20 10 10 30 122,095.2 198,578.3 1,507 6,364 124,500.9 214,544.8 775 1,171 38.52 41.97 65.37 57.95
25 20 10 10 40 166,125.3 274,701.7 5,030 4,261 167,262.4 220,674.3 580 375 39.53 24.20 38.71 40.06
26 30 10 10 5 74,311.9 109,580.7 3,882 7,043 75,628.4 110,201.9 420 1,179 32.19 31.37 64.46 29.45
27 30 10 10 10 112,564.5 206,602.5 4,320 5,494 117,416.2 211,236.5 914 681 45.52 44.41 59.72 66.15
28 30 10 10 20 398,623.3 767,668.9 7200 7200 183,338.0 267,244.5 663 669 48.07 31.40 40.52 41.57
29 30 10 10 30 380,238.8 584,237.2 7200 7200 271,971.8 404,941.5 1038 455 34.92 32.84 42.80 60.90
30 30 10 10 40 840,315.9 1,209,253.2 7200 7200 355,656.7 612,341.3 400 1121 30.51 41.92 50.56 55.56
31 40 10 10 5 334,506.8 699,251.3 7200 7200 161,498.2 222,234.5 821 1166 52.16 27.33 39.10 46.10
32 40 10 10 10 235,585.1 383,937.2 7200 7200 247,969.2 370,952.0 655 384 38.64 33.15 66.31 52.58
33 40 10 10 20 946,823.0 1,943,387.2 7200 7200 397,985.0 612,674.0 1187 1199 51.28 35.04 43.05 36.89
34 40 10 10 30 2,373,723.7 3,196,527.2 7200 7200 595,835.5 960,457.1 769 783 25.74 37.96 44.23 61.61
35 40 10 10 40 1,867,767.6 4,339,149.1 7200 7200 814,733.0 1,116,062.0 718 919 56.96 27.00 57.93 51.61
36 50 10 10 5 849,863.2 1,343,747.1 7200 7200 351,513.9 667,145.3 1034 1178 36.75 47.31 33.48 52.62
37 50 10 10 10 1,118,547.8 1,494,275.0 7200 7200 523,683.8 740,729.7 856 502 25.14 29.30 24.54 31.14
38 50 10 10 20 2,241,369.7 3,658,178.7 7200 7200 863,703.1 1,607,835.2 404 1006 38.73 46.28 27.23 29.93
39 50 10 10 30 3,445,654.3 4,546,979.9 7200 7200 1,288,021.0 2,269,171.0 710 1071 24.22 43.24 44.31 31.82
40 50 10 10 40 3,621,136.9 5,964,566.2 7200 7200 1,750,128.7 3,072,910.9 833 1086 39.29 43.05 26.11 30.57

173



From Tables 7.5, we can see that for all instances under consideration, and
the proposed PI model helps reduce the total logistics cost compared to the classic
inventory models with better service levels. The average total cost is reduced by
40%, and the average service level is increased by 44%. This improvement, as
it can be noticed from Table 7.5, is only made possible thanks to the reduction
of transportation, lost sales, inventory and procurement costs. Indeed, the classic
inventory model results in significant inventory and transportation costs at all levels:
suppliers, customers, warehouses and distribution centres. With the PI model,
both forward and reverse flows are consolidated at the PI-hubs and thanks to
the direct shipment transportation costs are reduced (as the truck fill rates are
improved). Allowing transshipment between PI-hubs also reduces further inventory
costs and better meets the customers’ demand which systematically reduces lost
sales. Finally, sharing empty PI-containers also reduces the cost of procurement of
new containers.

Since CPLEX uses an exact method, Branch-and-Cut, it can fail to find exact
solutions in a reasonable amount of time. Table 7.5 also reports the best results
obtained by CPLEX and the proposed algorithm. From the table, we can see that
the algorithm outperforms CPLEX significantly in solution quality and CPU times
(given in seconds). The algorithm provides a better solution in all the test sets and
can provide feasible solutions with an average gap of 4% for optimal solutions and
can provide solutions from 28–62% better than those obtained by CPLEX for other
feasible solutions, and this within only less than 16% the time spent by CPLEX.

To get more insight into the representiveness of the model and benefits of
PI, extra experiments are conducted. We consider a set of customers N varying
between 50 and 200, a number of suppliers varying between 20 and 40, a number of
PI-hubs varying between 10 and 20 and finally, a number of PI-containers varying
between 5 and 40. Table 7.7 summarizes obtained results and Table 7.8 reports
the breakdown of costs.
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Table 7.6: Breakdown of costs for medium size instances
Instances T I-C I-S I-P LS Pr Ts M# N S K P1 5 5 5 5 4,172.4 976.9 1,720.0 117.8 932.5 299.0 50.9 1,131.72 5 5 5 10 5,777.9 3,040.7 7,784.8 361.9 805.9 329.0 190.6 1,601.23 5 5 5 20 6,026.0 4,929.8 11,856.3 901.7 1,150.6 88.0 111.3 3,368.04 5 5 5 30 4,167.7 8,522.6 23,935.6 1,364.2 968.6 246.0 240.5 4,759.45 5 5 5 40 4,120.6 13,223.5 29,547.6 1,938.9 779.5 317.0 330.1 6,688.36 5 5 10 5 3,453.3 2,081.9 6,826.1 239.0 197.3 251.0 251.0 760.07 5 5 10 10 3,605.4 2,260.2 7,346.6 373.1 1131.5 85.0 150.9 1,675.48 5 5 10 20 4,708.0 5,807.5 18,284.6 936.5 448.4 265.0 350.3 2,762.69 5 5 10 30 5,960.1 9,391.9 23,183.3 1,519.7 721.3 90.0 430.4 4,946.910 5 5 10 40 5,497.0 12,386.0 24,951.7 2,036.7 1,144.4 247.0 580.7 6,107.711 5 10 10 5 3,630.4 1,038.5 1,966.5 74.1 16.9 273.0 180.4 4,608.612 5 10 10 10 3,893.9 3,100.4 2,640.2 361.2 549.7 227.0 160.5 6,596.513 5 10 10 20 4,309.0 4,666.5 8,162.2 1,020.6 1,000.4 252.0 790.3 17,476.214 5 10 10 30 5,430.5 9,711.6 9,988.9 1,468.4 832.3 61.0 480.7 24,250.715 5 10 10 40 6,595.7 11,771.6 18,552.1 1,421.9 22.5 186.0 620.1 32,562.016 10 10 10 5 6,246.9 3,070.2 1,373.7 50.2 1748.4 260.0 500.8 4,388.717 10 10 10 10 6,975.7 5,253.5 3,483.6 432.7 2,064.9 32.0 728.0 7,779.918 10 10 10 20 7,160.3 9,741.5 6,300.9 1,137.1 3,014.4 308.0 932.0 15,245.319 10 10 10 30 8,641.6 157,23.6 17,360.0 1,478.4 2,945.7 271.0 1,049.2 20,455.620 10 10 10 40 8,680.4 19,543.7 17,892.2 2,252.9 3,735.8 84.0 1,450.9 32,913.821 20 10 10 5 13,365.1 6,859.8 3,112.0 110.1 6,954.5 55.0 1119.9 9,451.322 20 10 10 10 16,400.8 8,463.3 7,909.0 965.0 3,871.6 85.0 1,561.0 16,427.223 20 10 10 20 21,168.1 9334.6 14,475.2 2,404.4 6,542.0 273.0 1,966.3 3,2043.724 20 10 10 30 24,394.5 10,286.8 37,032.9 3,192.1 2,017.6 452.0 2,211.8 44,913.225 20 10 10 40 28,769.9 12,990.5 38,282.6 4,970.6 3,911.8 36.0 3,063.3 75,237.726 30 10 10 5 28,200.5 14,617.7 6,591.0 231.3 2,771.0 424.0 2,443.9 20,349.127 30 10 10 10 33,988.6 18,911.3 17,856.2 2,185.4 5,223.2 177.0 3,530.0 35,544.528 30 10 10 20 41,770.7 21,843.7 31,690.0 5,130.0 6,798.9 79.0 4,330.3 71,695.529 30 10 10 30 47,040.5 24,407.9 82,504.0 7,322.2 7,168.3 519.0 4,680.6 98,329.430 30 10 10 40 57,369.6 28,499.4 83,497.8 10,621.8 1,134.8 199.0 6,503.0 167,831.331 40 10 10 5 62,198.1 31,387.8 14,074.4 516.4 3,119.5 628.0 5,215.4 44,358.632 40 10 10 10 78,272.0 36,528.8 37,802.0 4,773.2 6,348.0 363.0 8,098.9 75,783.433 40 10 10 20 95,420.6 45,117.4 72,308.6 11,703.8 127.1 596.0 9,757.7 162,953.834 40 10 10 30 121,582.1 55,683.9 182,472.5 16,682.2 1,604.8 4.0 10,389.0 207,417.135 40 10 10 40 136,596.3 68,832.5 189,473.3 22,841.8 2,763.9 142.0 14,586.5 379,496.736 50 10 10 5 134,060.6 66,415.2 30,776.8 1,127.0 6,411.3 302.0 11,793.0 100,627.937 50 10 10 10 161,096.7 83,769.5 80,067.7 10,788.4 4,721.4 74.0 17,299.8 165,866.338 50 10 10 20 198,039.3 98,506.3 158,937.9 26,899.8 340.9 474.0 22,402.5 358,102.439 50 10 10 30 221,544.6 123,583.0 419,044.4 35,797.9 355.0 327.0 23,860.4 463,508.740 50 10 10 40 246,920.3 149,586.1 412,940.0 50,136.3 5,105.3 550.0 31,633.9 853,256.7
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Table 7.7: Computational results for large size instances
Instances Total cost CPU (s)

R (%) S (%)# N S C P PI-M C-M PI-M C-M1 50 20 10 5 671,367.52 1,691,846.16 2268 1118 60.32 54.522 50 20 10 10 1,039,769.34 3,177,535.10 1942 2048 67.28 62.593 50 20 10 20 1,792,640.23 7,439,456.95 1887 282 75.90 43.834 50 20 10 30 2,654,005.98 6,568,664.79 1536 1829 59.60 66.605 50 20 10 40 3,814,545.05 13,804,838.53 2322 2402 72.37 40.736 50 30 20 5 1,348,191.40 3,960,986.33 2143 1829 65.96 44.077 50 30 20 10 2,255,208.92 7,685,752.01 359 979 70.66 61.438 50 30 20 20 3,781,244.84 13,483,919.10 796 391 71.96 63.779 50 30 20 30 5,482,473.43 22,077,920.50 376 1936 75.17 57.1310 50 30 20 40 8,301,365.96 19,400,292.25 1573 2301 57.21 51.2711 50 40 20 5 2,923,717.12 8,379,373.27 1692 1032 65.11 60.8112 50 40 20 10 4,953,843.82 10,962,856.37 1379 1457 54.81 42.4713 50 40 20 20 8,255,497.02 24,295,927.73 1001 659 66.02 51.3714 50 40 20 30 11,741,816.15 34,098,234.11 906 2462 65.56 53.6815 50 40 20 40 18,081,740.82 47,048,689.61 2427 481 61.57 58.7816 100 20 10 5 2,112,277.91 7,069,794.17 1982 1603 70.12 66.6017 100 20 10 10 3,390,063.16 9,688,800.52 923 1624 65.01 44.3718 100 20 10 20 5,538,778.94 12,268,395.35 1837 563 54.85 41.8319 100 20 10 30 8,187,659.16 20,198,955.16 2496 2365 59.46 65.5120 100 20 10 40 12,399,944.14 50,442,972.75 1628 2353 75.42 46.4321 100 30 20 5 4,290,204.08 10,193,524.90 1903 2041 57.91 51.9122 100 30 20 10 7,108,076.17 25,198,130.03 2342 1878 71.79 46.5223 100 30 20 20 12,001,551.48 40,349,216.09 2389 631 70.26 47.8324 100 30 20 30 17,588,891.03 59,696,696.17 1472 2208 70.54 63.8225 100 30 20 40 27,100,967.78 63,931,182.98 1152 1149 57.61 58.7126 100 40 20 5 9,135,031.33 34,183,287.23 889 750 73.28 63.3727 100 40 20 10 14,472,340.30 35,326,982.68 1119 1605 59.03 56.4328 100 40 20 20 26,341,895.76 59,216,581.67 819 1926 55.52 40.1829 100 40 20 30 36,305,695.30 132,552,093.55 339 1811 72.61 36.9530 100 40 20 40 55,951,896.60 134,564,311.33 1063 1945 58.42 64.7831 150 20 10 5 6,574,526.47 18,093,096.83 1165 342 63.66 49.6832 150 20 10 10 10,838,937.18 25,352,274.06 920 518 57.25 36.5933 150 20 10 20 18,118,395.14 55,496,644.30 843 1048 67.35 65.7934 150 20 10 30 25,918,218.40 84,908,083.47 2020 565 69.47 65.7835 150 20 10 40 38,854,783.38 120,138,990.21 1809 2420 67.66 66.6236 150 30 20 5 13,706,278.12 56,195,740.29 647 492 75.61 63.0137 150 30 20 10 22,658,744.09 55,355,311.80 1807 678 59.07 52.8038 150 30 20 20 40,250,927.86 152,873,024.03 1352 1849 73.67 58.5939 150 30 20 30 56,319,419.69 180,447,420.67 1601 1442 68.79 38.1140 150 30 20 40 84,401,006.65 261,136,714.57 673 325 67.68 64.3741 150 40 20 5 29,168,808.92 64,579,742.94 2320 1083 54.83 64.5242 150 40 20 10 48,742,090.03 170,451,088.82 1502 547 71.40 58.5743 150 40 20 20 84,768,507.46 253,457,837.29 1827 1123 66.56 48.0144 150 40 20 30 124,380,496.09 497,521,984.35 1925 2399 75.00 37.9645 150 40 20 40 177,380,660.26 513,517,011.46 1832 719 65.46 52.1546 200 20 10 5 21,401,105.86 64,631,339.71 1566 2204 66.89 60.8947 200 20 10 10 34,378,834.61 113,793,942.55 1517 1593 69.79 56.3148 200 20 10 20 57,739,495.77 152,547,747.82 1076 2277 62.15 45.9549 200 20 10 30 82,079,254.80 318,221,270.85 2279 1020 74.21 66.9250 200 20 10 40 120,615,566.37 452,067,142.75 1624 706 73.32 38.6651 200 30 20 5 48,142,327.29 177,452,618.41 2303 727 72.87 52.5352 200 30 20 10 73,276,442.80 198,945,542.21 691 1110 63.17 59.9053 200 30 20 20 128,557,365.45 474,762,350.59 1147 1417 72.92 42.0654 200 30 20 30 180,123,884.87 470,843,835.04 1052 1458 61.74 66.0355 200 30 20 40 263,504,139.29 749,405,772.14 992 2339 64.84 42.9156 200 40 20 5 106,838,732.82 409,619,701.63 410 962 73.92 42.6857 200 40 20 10 160,136,038.60 457,508,662.27 689 1966 65.00 66.2358 200 40 20 20 276,194,604.15 856,203,272.86 773 1267 67.74 38.3159 200 40 20 30 388,525,032.88 1,568,864,082.77 1835 609 75.24 60.6960 200 40 20 40 557,973,728.33 1,500,949,329.20 657 320 62.83 44.56
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Table 7.8: Breakdown of costs for large size instances
Instances T I-C I-S I-P LS Pr Ts M# N S C P1 50 20 10 5 286.87 69.91 65.02 2.41 134.96 6.08 12.82 228.122 50 20 10 10 358.82 95.26 177.12 23.02 106.80 6.67 19.66 359.123 50 20 10 20 433.23 103.51 360.14 58.52 7.38 8.04 24.01 805.184 50 20 10 30 487.72 136.41 894.73 75.74 7.63 9.72 26.86 1,022.825 50 20 10 40 560.54 157.40 1,032.00 107.44 111.00 8.20 35.11 1,913.756 50 30 20 5 606.36 95.37 142.35 3.05 141.11 7.79 27.51 465.627 50 30 20 10 831.41 121.70 424.71 29.10 132.45 8.44 42.87 796.848 50 30 20 20 920.99 121.33 733.79 65.31 9.38 10.62 54.58 1,874.629 50 30 20 30 1,026.92 179.32 1,899.38 82.33 8.74 11.18 58.92 2,224.4210 50 30 20 40 1,295.05 164.10 2,199.45 121.18 140.76 9.96 83.92 4,427.5611 50 40 20 5 1,326.16 103.85 303.43 3.30 174.43 10.81 64.79 1,111.1912 50 40 20 10 1,947.59 153.19 954.01 35.59 158.42 8.99 102.12 1,752.1813 50 40 20 20 2,035.88 138.63 1,669.19 77.34 11.15 10.93 128.70 4,194.8114 50 40 20 30 2,226.41 229.16 4,232.33 98.69 8.98 12.09 140.69 4,802.4315 50 40 20 40 3,039.93 214.70 4,980.94 127.47 186.98 13.24 182.70 9,522.5816 100 20 10 5 870.87 217.50 199.06 7.41 430.38 19.38 39.16 758.4617 100 20 10 10 1,200.18 302.29 555.74 73.56 357.03 21.35 63.75 1,172.8318 100 20 10 20 1,348.66 317.69 1,128.78 197.43 22.66 25.67 78.25 2,442.2719 100 20 10 30 1,517.16 447.23 2,698.17 228.19 23.17 32.82 87.19 3,176.8720 100 20 10 40 1,696.87 494.41 3,451.94 342.73 366.15 26.88 115.47 6,271.2721 100 30 20 5 1,782.44 237.68 420.86 9.26 521.60 23.72 93.92 1,721.8122 100 30 20 10 2,563.76 341.26 1,300.87 100.37 377.52 23.45 150.13 2,627.8623 100 30 20 20 3,180.62 430.86 2,365.02 275.29 30.66 34.95 176.95 5,537.8324 100 30 20 30 3,497.50 556.63 5,564.86 285.62 28.62 43.21 182.95 7,458.0925 100 30 20 40 3,840.65 606.76 7,930.18 439.47 417.62 34.67 238.75 14,010.0826 100 40 20 5 3,861.50 260.12 948.33 12.85 574.66 25.76 224.30 3,801.5927 100 40 20 10 5,482.94 351.49 2,630.08 138.59 415.94 25.44 347.42 5,495.9728 100 40 20 20 7,004.64 535.39 5,286.76 375.84 34.35 35.18 369.55 12,734.5129 100 40 20 30 7,386.26 666.76 11,671.91 333.43 35.13 56.49 416.88 15,773.9430 100 40 20 40 8,045.96 662.22 17,148.70 489.06 419.50 43.93 539.45 29,022.1631 150 20 10 5 2,677.17 712.83 654.75 24.84 1,459.70 61.83 123.21 2,318.4432 150 20 10 10 3,831.39 979.58 1,791.55 236.75 1,087.78 64.24 202.24 3,732.1133 150 20 10 20 4,418.19 1,016.89 3,817.43 651.54 69.07 83.87 242.36 7,888.0534 150 20 10 30 4,605.34 1,464.43 8,757.82 731.75 77.72 103.90 279.64 9,975.2535 150 20 10 40 5,333.15 1,520.56 11,019.46 1,111.28 1,205.97 82.19 369.09 19,417.8636 150 30 20 5 5,752.72 776.14 1,318.47 32.67 1,730.82 76.06 246.56 5,501.9237 150 30 20 10 9,046.71 1,042.89 3,793.83 307.84 1,403.12 64.74 419.84 7,981.4938 150 30 20 20 10,389.94 1,281.98 8,279.24 797.65 81.32 99.60 506.62 18,895.8239 150 30 20 30 11,040.90 1,483.07 19,128.84 994.66 92.32 115.20 636.91 22,919.7440 150 30 20 40 11,049.74 2,054.72 22,982.19 1,384.93 1,270.55 99.26 798.09 46,030.8241 150 40 20 5 12,775.65 780.21 2,672.78 35.31 1,910.33 98.14 524.63 12,280.1942 150 40 20 10 19,716.59 1,229.92 9,081.03 379.88 1,572.66 65.34 886.15 17,381.6143 150 40 20 20 23,387.66 1,300.07 17,520.77 1,032.19 93.73 114.05 1,120.41 40,293.2644 150 40 20 30 25,277.03 1,673.22 44,871.85 1,104.40 125.19 122.03 1,528.38 49,803.4645 150 40 20 40 23,572.75 2,284.11 47,275.96 1,598.34 1,623.44 114.49 1,721.29 100,812.0946 200 20 10 5 8,821.35 2,359.63 2,071.37 81.89 4,643.80 199.60 413.12 7,449.5047 200 20 10 10 11,953.93 2,999.22 5,970.74 733.68 3,438.93 208.66 652.17 11,856.9948 200 20 10 20 14,506.50 3,317.06 11,808.68 2,180.60 233.74 264.19 779.15 24,883.0949 200 20 10 30 14,553.35 4,770.53 28,693.34 2,264.48 255.25 333.56 871.62 30,592.1150 200 20 10 40 17,442.91 5,116.87 34,442.97 3,719.67 3,686.65 264.68 1,245.75 58,379.0251 200 30 20 5 20,243.31 4,997.80 4,714.01 171.04 10,641.13 420.24 847.52 16,737.7752 200 30 20 10 24,056.10 6,113.61 12,966.36 1,556.28 7,080.28 490.03 1,327.89 26,759.0853 200 30 20 20 30,461.18 7,233.01 26,348.71 4,407.91 536.26 631.98 1,706.70 57,767.3354 200 30 20 30 31,044.03 10,769.53 64,193.32 5,344.52 562.20 784.66 2,090.02 65,897.2455 200 30 20 40 36,839.59 12,086.04 81,845.46 7,567.19 8,608.44 559.82 2,665.83 121,931.6056 200 40 20 5 44,276.17 11,256.14 11,173.81 386.62 24,415.75 938.76 1,915.88 36,866.9457 200 40 20 10 48,206.50 14,273.33 28,625.05 3,253.81 14,500.20 1,012.80 2,742.56 62,007.4858 200 40 20 20 70,531.04 14,669.49 57,247.32 9,757.52 1,260.86 1,323.55 3,708.78 118,955.6459 200 40 20 30 62,960.09 21,731.72 142,269.10 12,715.74 1,177.23 1,628.17 4,294.50 142,924.5360 200 40 20 40 84,184.73 24,371.25 166,886.99 16,302.91 20,116.20 1,129.61 5,521.12 259,557.01
*All costs except LS are given on a x1000 scale

From Tables 7.7 and 7.8, we can observe the positive impact of the PI model
on the logistics efficiency compared to the classical model. This implies that
exploiting the high level of integration, flexibility and openness of PI can help firms
achieve significant cost savings. That is, along with the increased flexibility of
the supply chain network, cost benefits follow. Indeed, in the traditional model,
frequent transportation is necessary to meet as much as possible demands and
send empty containers back to the suppliers, increasing transportation costs. For
holding, lost sales and procurement costs, the traditional supply chain network
is a multi-echelon hierarchical structure, independent and fragmented, and thus,
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the transportation is inefficient. That is, it is impossible to rapidly and efficiently
satisfy demand. Therefore, the holding and lost sale costs are relatively high
compared to the PI model. This also implies that each supplier needs to buy
more containers to guarantee the continuity of production and supplies at its level.
Referring to the parameters and , we can also notice that under a significant
network scale, PI can more adequately exploit the inter-connection and synergy
among the entities in the supply chain network to consolidate the fragmented and
overlapping transportation flow and thus reduce its relative cost. That is, a larger
network scale better highlights the advantages of distribution flexibility. Hence,
the contributions of transportation cost savings to the total cost savings increase
with the network scale. We can also observe that transshipment between PI-hubs
increases with the number of suppliers and customers since such policy is used as
a sourcing means, reducing transportation, lost sales and inventory costs.

7.6.3.2 . Sensitivity analysis on unit costs
Sensitivity analysis is conducted on the unit cost of inventory at the suppliers,

transportation and production due to their significant contributions to the total
costs. Table 7.9 reports the two scenarios under study. Figure 7.4 depicts the
variation of the total cost of PI and classical model for various unit cost of trans-
portation, Figure 7.5 for the unit cost of production and Figure 7.6 depicts their
variation for various unit cost of inventory holding.

Table 7.9: Unit costs value
Scenario Unit cost under study Value
Scenario 1 Unit cost of transporta-tion U(0.5, α) ; α =

√
(Xi −Xj)2 + (Yi − Yj)2

Scenario 1 Unit cost of inventory U(0, 1, 1)Scenario 2 Unit cost of production U(0.01, 0.2)

From Figure 7.4, we can notice that when the transportation cost is smaller,
a lower cost is incurred as each level can quickly achieve certain flexibility in its
operations by increasing the number of delivery and pickup, even in a classical sup-
ply chain network. Thus, the advantages of PI weaken. However, as the unit cost
of transportation increases, the advantage of flexibility is gradually highlighted.
Therefore, PI becomes more preferable with a higher unit cost of transportation.
Moreover, from Figures 7.5 and 7.6, we can notice that as the units cost of produc-
tion and inventory increase, the predominance of PI may weaken (as the difference
between total costs is not notable, compared to the other settings). The reason
may be that the advantages of PI mainly depend on its flexibility compared to
classical configurations. In addition, this flexibility mainly includes flexible produc-
tion, inventory, and distribution in practice. Thus, the advantage of the produc-
tion flexibility of PI weakens with a higher inventory and production cost. Allowing
transshipment between suppliers may qualify, as the literature has proved to reduce
inventory costs at their level. Indeed, when transshipment is permitted, it offers
several advantages: suppliers receiving the quantity latterly transshipped can sat-
isfy even more demand and consequently reduce lost sales. Customers from which
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Figure 7.4: Variation of total cost for PI-M and C-M for various unit costof transportation

Figure 7.5: Variation of total cost for PI-M and C-M for various unit costof production
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Figure 7.6: Variation of total cost for PI-M and C-M for various unit costof inventory
the transshipment is carried out can lower their inventory holding costs (preventing
thus idle stock).

7.7 . Conclusions & perspectives

This paper investigates the integration of forward and reverse networks in the
interconnected logistics services in PI. A three-level PI-supply chain is examined
in which a set of suppliers deliver their products using a set of PI-containers to
customers. Direct and reverse flows of the PI-containers are consolidated at the
level of a set of PI-hubs. This paper focuses more on the inventory routing model
of reusable PI-containers exploiting the PI concept, which is new to the literature.
Secondly, the paper considers inventory sharing between the PI-hubs, including
empty and loaded PI-containers. Thirdly, deliveries from suppliers to the PI-hubs
and from PI-hubs to the customers are considered to be performed within time
windows. And finally, a resolution approach based on the hybridisation of math-
ematical modelling, artificial immune system algorithm and deep Reinforcement
Learning is proposed to handle the combinatorial complexity of the problem at
hand.

Computational experiments highlight that exploiting the high level of integra-
tion, flexibility and openness of PI can help firms achieve significant cost savings.
That is, along with the increased flexibility of the supply chain network, cost ben-
efits follow. They stress that PI can be more efficient under a larger network scale
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and better highlights the advantages of distribution flexibility. Results also show
the benefit of promoting transshipment in the overall supply chain. On the other
hand, sensitivity analysis of unit cost highlights the limit of the PI model depending
on the unit cost of transportation, inventory and production cost. As for the reso-
lution approach, results show that it significantly outperforms CPLEX in solution
quality and CPU times.

Further extensions of the present work may include investigation of new ap-
proaches to manage disruptions such as truck delays, customers changing or can-
celling orders at the last minute, routing in PI-hubs, PI-hubs suddenly becoming
unserviceable, etc. Also, the decisions related to fleet composition and fuel con-
sumption alongside filling rate are to be considered in future work. Furthermore,
it could be interesting to investigate multi-modal freight for delivery and pickup
in the PI context. Finally, using the proposed resolution approach to solve other
variants of the problem strengthens the present analysis and generalises findings
that can be applied to more real and complex supply chains.
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8 - General conclusions

The research topic of this thesis was motivated by real-world applications and
identified gaps in the literature. Through several scientific articles, we tackled
the critical issue of inventory sharing in distribution networks to assure product
availability, timeliness, and consistency of delivery.

When dealing with distribution networks with different customers supplied from
one or multiple warehouses, managers are asked to secure supplies and sidestep
shortages as much as possible. The analysis of real-life applications indicates a
special requirement for suppliers and customers regarding inventory management,
material transportation, and product delivery. Managers must continuously per-
form a tricky balancing act, swinging between the urge to lower inventory levels
to reduce costs and the requirement to avoid shortages to maintain high service
levels.

The scope of our research is yet defined around partnerships, cooperation, and
collaboration. We mainly focused on the inventory routing problem since inventory
and transportation are the most critical issues of the logistics system and are the
two main drivers that provide value to customers.

In all the presented papers, we proposed a new approach for supply chain play-
ers ready to collaborate to lower costs while maintaining a high level of customer
service and avoiding stock-outs as much as possible. We designed a new inven-
tory and routing management policy promoting multi-sourcing options to mitigate
shortages. This policy combines regular shipment from manufacturer to customers
and inventory sharing through LT among customers. The use of product substitu-
tions is also investigated.

Each of the five articles comprehensively summarises the findings and limita-
tions. Other broad concerns, as well as some of the research limitations and future
study ideas, are discussed here.

From a mathematical perspective, we built our mathematical formulations on
classical IRP models, which we adjusted and expanded to account for new limita-
tions. The peculiarities of lateral transshipment, pickups and deliveries operations
coupled with routing optimisation, as well as product substitutions, were brought
to the fore by these new formulations. The formulations also capture different
customer demand and supply chain settings, namely centralised and decentralised
decision-making and reverse logistics.

To assess the benefits of promoting inventory sharing and products substitution
within constrained and complicated configurations of real-world supply chains, the
results obtained in the first and second articles (Chapters 2 and 3) were meant to
serve as a basis for the elaboration of the rest of articles. Also, suitable resolu-
tion methods are designed using, as much as possible, the knowledge built upon
mathematical formulation and hybridisation of sophisticated metaheuristics.

The results have shown that inventory sharing and substitutions may present
a vital input for an effective performance appraisal within ever-volatile, complex,
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uncertain and ambiguous environments. We examined the distribution of fashion
items, perishable products, and spare parts for finished goods under centralised
and decentralised settings and the management of returnable transport items in
the automotive and food industries in closed-loop supply chains.

For each configuration, we quantified the impact of promoting this multi-
sourcing on the overall performance of the supply chain. We demonstrated that
these two options could help reduce costs and increase service levels through ex-
tensive experiments using either a literature benchmark or a randomly generated
dataset. Also, we highlighted that the recourse to them is not only to mitigate
shortages for finished products and reduce procurement costs for RTIs, but it might
be a good practice to reduce inventory and transportation costs in deterministic
or stochastic contexts. Regarding the combinatorial complexity, it is undeniable
that capturing critical elements of supply chains increases the complexity of the
developed models.

Several resolution approaches were used, evaluated, and enhanced through-
out the process. To capture subtly and holistically all decisions related to the
multi-sourcing, inventory management and vehicle routing, the first step was the
hybridisation of the mathematical model, strengthened by a set of well-known valid
inequalities and two sophisticated metaheuristics namely GA and SA. The proposed
matheuristic was tested on a set of benchmark instances and proved to be very
competitive compared to well-known and exact algorithms in terms of run time.
This also allows us to assess the limitation of GA regarding its scalability. Un-
der stochastic context, we used sample average approximation approach. We also
highlighted its advantages and limitations regarding the generation of low-quality
solutions with a high computational burden. This initiated us to brainstorm solu-
tions to how we could simultaneously build on the developments already made and
bypass the so-called limitations. From this stems the idea of using RL technique.
Indeed, since random searching leads to slow evolution and weak convergence effi-
ciency, environmental feedback signals and the updated action policy of the deep
Q-learning method are used to construct an algorithm with strong self-adaptability
and goal-driven performance.

The promising results from stochastic and dynamic IRP encourage us to use
this approach to solve the models we developed for more complex settings. We also
compared it with pure metaheuristics and enhanced AIS. This comparison allowed
us to assess the limits of our approach. Results showed that AIS improved with RL
performs GA owing to its mechanisms, the speed and the accuracy of its immune
response. Again, enhanced AIS is retained and used to solve a model developed
for the PI setting.

Developing an inventory sharing modelling framework endowed with solving
capabilities allowed us to capture different sharing strategies and investigate their
potential benefits for the players. On the other hand, the more effectively we try
to model real supply chain configurations, the more complex the models become.
Results also highlight that no standard approach is 100% reliable and efficient for
any problem and distribution network. Furthermore, ensuring better performance
requires continuous improvement and upgrading of the developed algorithms.
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Corroborating with this, our results indicated that, despite the attractiveness
of inventory sharing and substitution, trade-offs on unit costs are significant to
safeguard cost reduction. Hence, other multi-sourcing options can be considered,
such as 3D printing. It would also be interesting to conducting more in-depth
studies of organisational conditions and collaboration mechanisms in decentralized
supply chains under which sharing would be beneficial to all involved players.

In addition, apart from detailed limitations displayed within each of the articles,
all the developments (models and resolution approaches) could be of great insight
regarding the relevance and ease of implementation if tested on a real dataset.
Moreover, considering inventory back-ordering instead of lost sales would be in-
teresting given its importance in some supply chain contexts (e.g. spare parts,
RTIs, etc.). Furthermore, it would be interesting to conduct extra experiments
to support the findings, such as sensitivity analysis on some strategic costs and
analysing of the impact of demand uncertainty/

In this line of thinking, it would also be convenient to explicitly adjust the
models designed and developed in line with the expectations of sustainable devel-
opment goals of the United Nations, particularly the goal of 9 that aims to build
resilient, inclusive, and sustainable industrialisation; and the goal 12 that focuses
on fostering sustainable consumption and production patterns. Integrating some
environmental indicators such as CO2 emissions and energy consumption would
also be interesting.

The use of hybrid modes for shared transportation could be an interesting way
to extend the present work to highlight the use of zero-emission vehicles for last-
mile deliveries in Physical Internet settings, for instance. Moreover, sustainability
should be considered an intrinsic feature in the design of future models.

An interesting perspective for future work would be to investigate sharing other
resources such as vehicles, machines and production or warehousing facilities and
examine various collaboration mechanisms and negotiation protocols.

Finally, RL has been widely applied to various optimisation problems in many
domains. However, it may be interesting to investigate the deep reinforcement
learning limitation regarding its inability to question or rationalise the information
provided.
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A - Computational results for the classical
IRP (Chapter 2)

Tables A.1, A.2, A.3, A.4, A.5 and A.6 provide computational results for IRP
on large instances. For each algorithm B-C and I-B-C, the tables report the best
solutions found so far (noted Z1 and Z2 respectively) and the corresponding CPU
in second. For the matheuristic, tables provide the worst solution (WS), the best
solution (BS), the average of the best solutions found (BFS), and the average
of the scaled CPU (S_CPU) with regards to hardware performances (for a fair
comparison the actual CPU was limited so as its corresponding S-CPU would be
comparable to the limit time of I-B-C: 7200s). Tables also provide the contribution
of the constructive phase (CPC in %) in improving the quality of the final solution.
Finally, for each S_CPU , tables report the computational time needed in the
constructive phase (CP) and improvement phase (IP).

211



Table A.1: Computational results for large scale benchmark instances using B-C, I-B-C and matheuristic (k=1, high cost)
Instances B-C I-B-C Matheursitic

WS BS BSF CPC (%) S_CPU
Z1 CPU Z2 CPU CP IP Total

1P50N1K6T 30,189 3,056 30,189 744 30,552 30,190 30,392 48 1314 1458 2772
1P50N1K6T 29,790 3,334 29,790 730 30,088 29,790 29,900 44 1221 1206 2427
1P50N1K6T 29,791 4,020 29,791 1,399 30,089 29,791 29,801 45 1902 2191 4093
1P50N1K6T 31,518 5,737 31,518 1,910 31,897 31,519 31,819 50 1894 2330 4224
1P50N1K6T 29,240 684 29,240 3,586 29,563 29,241 29,269 36 1110 1281 2391
1P50N1K6T 31,903 28,320 31,903 3,477 32,223 31,904 31,934 30 1048 1082 2130
1P50N1K6T 29,735 13,561 29,734 1,412 30,062 29,735 29,892 44 1990 1945 3935
1P50N1K6T 25,954 21,552 25,954 1,312 26,241 25,955 26,228 43 779 1020 1799
1P50N1K6T 30,193 20,581 30,193 1,401 30,495 30,193 30,494 44 1051 1368 2419
1P50N1K6T 31,338 1,879 31,338 2,295 31,652 31,339 31,456 41 599 652 1250
1P100N1K6T 57,459 86,400 57,334 7,200 58,359 57,716 57,970 31 1641 2145 3786
1P100N1K6T 53,510 86,400 53,311 7,200 53,969 53,329 53,703 36 1030 1194 2224
1P100N1K6T 58,505 86,400 58,421 7,200 59,195 58,493 59,109 44 2028 2138 4166
1P100N1K6T 51,554 86,400 51,552 7,200 52,121 51,554 51,755 34 651 749 1400
1P100N1K6T 57,977 86,400 57,943 4,705 58,537 57,957 58,156 32 610 681 1291
1P100N1K6T 55,088 86,400 55,091 7,200 55,695 55,089 55,473 50 1630 1662 3292
1P100N1K6T 56,077 86,400 56,054 7,200 56,620 56,059 56,422 35 863 842 1705
1P100N1K6T 56,057 86,400 55,052 7,200 56,193 55,637 55,722 50 1016 1085 2101
1P100N1K6T 59,426 86,400 58,483 7,200 60,074 59,362 59,694 47 1695 1800 3495
1P100N1K6T 56,588 86,400 56,354 7,200 57,053 56,488 56,489 48 1788 2087 3875
1P200N1K6T 136,337 86,400 111,200 7,200 117,571 116,177 117,063 42 974 1267 2241
1P200N1K6T 141,543 86,400 112,350 7,200 118,102 116,817 117,974 50 1875 2260 4135
1P200N1K6T 123,147 86,400 108,335 7,200 113,693 112,456 112,785 35 1758 2322 4080
1P200N1K6T 129,615 86,400 109,413 7,200 117,458 116,295 117,426 32 1003 1127 2130
1P200N1K6T 126,552 86,400 109,376 7,200 113,762 109,106 113,328 39 1371 1752 3123
1P200N1K6T 136,513 86,400 109,403 7,200 111,321 110,219 110,843 52 1923 1860 3783
1P200N1K6T 111,186 86,400 97,939 7,200 105,586 104,334 105,574 33 841 1065 1906
1P200N1K6T 115,946 86,400 101,754 7,200 106,017 104,967 105,701 35 634 700 1334
1P200N1K6T 136,819 54,474 104,847 7,200 106,143 104,988 105,623 42 857 923 1780
1P200N1K6T 142,796 86,400 109,056 7,200 114,987 113,736 114,858 40 727 740 1467

Average 72078.2 59959.9 64430.7 5325.7 66510.6 65795.4 66228.4 41.1 1260.8 1431.0 2691.8

* All values are rounded up for the sake of a better presentation
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Table A.2: Computational results for large scale benchmark instances using B-C, I-B-C and matheuristic (k=1, low cost)
Instances B-C I-B-C Matheursitic

WS BS BSF CPC (%) S_CPU
Z1 CPU Z2 CPU CP IP Total

1P50N1K6T 9,976 86,400 9,966 1,485 10,085 9,975 9,987 50 986 974 1960
1P50N1K6T 10,632 2,536 10,632 758 10,749 10,632 10,678 51 631 827 1458
1P50N1K6T 10,511 1,355 10,511 4,575 10,627 10,511 10,569 40 656 659 1315
1P50N1K6T 10,513 60,289 10,513 2,181 10,630 10,514 10,520 31 1101 1449 2550
1P50N1K6T 10,113 2,416 10,113 5,349 10,214 10,113 10,171 46 1150 1450 2600
1P50N1K6T 10,148 86,400 10,148 3,831 10,757 10,629 10,690 45 1294 1404 2698
1P50N1K6T 9,982 14,698 9,982 1,331 10,103 9,983 10,009 36 1385 1620 3005
1P50N1K6T 10,299 86,400 10,299 4,795 10,413 10,300 10,327 43 1023 1341 2364
1P50N1K6T 10,010 6,326 10,010 1,731 10,130 10,010 10,086 51 973 1279 2252
1P50N1K6T 9,659 3,523 9,659 3,912 9,766 9,660 9,731 38 1194 1239 2433
1P100N1K6T 15,649 86,400 15,639 7,200 15,828 15,640 15,745 31 1092 1279 2371
1P100N1K6T 14,697 86,400 14,551 7,200 14,756 14,581 14,678 52 1066 1406 2472
1P100N1K6T 16,155 86,400 15,539 7,200 16,089 15,898 16,021 40 1076 1273 2349
1P100N1K6T 14,644 86,400 14,643 7,200 14,804 14,643 14,669 48 1232 1252 2484
1P100N1K6T 15,235 86,400 15,222 7,200 15,410 15,227 15,325 50 1511 1669 3180
1P100N1K6T 15,769 86,400 15,226 7,200 15,427 15,259 15,344 51 1193 1218 2411
1P100N1K6T 15,538 86,400 15,321 7,200 15,665 15,495 15,620 48 815 1022 1837
1P100N1K6T 15,279 86,400 15,041 7,200 15,383 15,201 15,207 35 1422 1607 3029
1P100N1K6T 17,190 86,400 15,563 7,200 15,999 15,825 15,832 46 1536 1598 3134
1P100N1K6T 16,145 86,400 15,464 7,200 16,233 16,056 16,223 39 1494 1485 2979
1P200N1K6T 32,683 86,400 24,373 7,200 27,225 26,955 27,168 42 1241 1407 2648
1P200N1K6T 34,033 86,400 24,708 7,200 25,503 25,226 25,427 51 1292 1538 2830
1P200N1K6T 33,317 86,400 23,914 7,200 24,888 24,593 24,593 43 1143 1343 2486
1P200N1K6T 34,004 86,400 24,396 7,200 25,025 24,777 24,826 38 965 1118 2083
1P200N1K6T 35,487 86,400 25,216 7,200 26,250 25,990 26,024 36 841 952 1793
1P200N1K6T 33,360 86,400 23,917 7,200 24,991 24,695 24,751 52 820 836 1656
1P200N1K6T 32,774 86,400 23,977 7,200 24,281 24,017 24,035 48 586 714 1300
1P200N1K6T 33,489 79,789 23,165 7,200 24,685 24,392 24,615 37 1179 1227 2406
1P200N1K6T 35,173 86,400 24,729 7,200 25,034 24,737 24,924 50 806 812 1618
1P200N1K6T 34,872 86,400 23,597 7,200 25,088 24,840 24,897 34 871 871 1742

Average 19,911.2 69057.7 16,534.5 5798.3 17,067.9 16,879.1 16,956.4 43.3 1085.8 1229.0 2314.8

* All values are rounded up for the sake of a better presentation
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Table A.3: Computational results for large scale benchmark instances using B-C, I-B-C andmatheuristic (k=2, high cost)
Instances B-C I-B-C Matheursitic

WS BS BSF CPC (%) S_CPU
Z1 CPU Z2 CPU CP IP Total

1P50N2K6T 31,783 86,400 31,557 7200 31,979 31,600 31,819 36 1715 1755 3470
1P50N2K6T 31,121 86,400 30,957 7200 31,429 31,118 31,359 41 1435 1459 2894
1P50N2K6T 30,439 86,400 30,377 7200 30,755 30,420 30,513 40 1008 1225 2233
1P50N2K6T 32,722 86,400 32,288 7200 32,977 32,586 32,627 48 1957 2341 4298
1P50N2K6T 30,115 86,400 30,100 7200 30,441 30,110 30,278 37 1523 1932 3455
1P50N2K6T 33,495 86,400 33,182 7200 33,602 33,269 33,485 38 1219 1544 2763
1P50N2K6T 31,840 86,400 31,315 7200 31,888 31,541 31,773 33 1701 1723 3424
1P50N2K6T 28,552 86,400 27,709 7200 28,381 28,072 28,252 41 1106 1305 2411
1P50NK6T 31,415 86,400 31,287 7200 31,723 31,409 31,605 51 1159 1407 2566
1P50N2K6T 32,788 86,400 32,691 7200 33,027 32,700 33,000 49 1575 1680 3255
1P100N2K6T 91,823 86,400 58,447 7200 61,879 61,266 61,934 41 1972 2245 4217
1P100N2K6T 59,861 86,400 54,791 7200 56,658 56,097 56,181 43 1597 1741 3338
1P100N2K6T 114,040 86,400 59,528 7200 62,469 61,789 62,456 46 1117 1179 2296
1P100N2K6T 55,344 86,400 52,743 7200 54,607 54,066 54,407 37 1601 1628 3229
1P100N2K6T 67,259 86,400 60,179 7200 65,081 64,437 64,833 45 1185 1154 2339
1P100N2K6T 93,171 86,400 57,456 7200 61,983 61,369 61,490 36 2071 2002 4073
1P100N2K6T 111,776 86,400 57,124 7200 62,944 62,198 62,590 52 1850 2415 4265
1P100N2K6T 142,585 86,400 57,247 7200 61,402 60,734 61,274 30 1309 1731 3040
1P100N2K6T 70,293 86,400 60,189 7200 65,692 65,042 65,214 37 1038 1337 2375
1P100N2K6T 89,315 86,400 58,088 7200 63,037 62,290 62,368 52 1979 2277 4256
1P200N2K6T - - 114,641 7200 116,401 115,021 115,109 40 1074 1206 2280
1P200N2K6T - - 116,632 7200 119,203 118,023 118,736 52 1276 1593 2869
1P200N2K6T - - 112,425 7200 114,703 113,567 114,139 30 1480 1770 3250
1P200N2K6T - - 112,426 7200 127,441 125,930 127,035 37 1251 1427 2678
1P200N2K6T - - 113,247 7200 118,170 116,768 116,875 36 1555 1678 3233
1P200N2K6T - - 113,719 7200 123,944 122,717 123,466 31 1444 1588 3032
1P200N2K6T - - 103,707 7200 112,197 111,086 111,532 40 1468 1560 3028
1P200N2K6T - - 108,320 7200 111,158 110,057 110,266 42 1925 1974 3899
1P200N2K6T - - 109,730 7200 118,334 117,162 118,250 35 1247 1505 2752
1P200N2K6T - - 114,489 7200 119,217 117,920 118,889 39 1585 1633 3218

Average 60,486.7 86400.0 66,886.3 7200.0 70,424.0 69,678.8 70,058.5 40.4 1481 1667 3148

* All values are rounded up for the sake of a better presentation
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Table A.4: Computational results for large scale benchmark instances using B-C, I-B-C and matheuristic (k=2, low cost)
Instances B-C I-B-C Matheursitic

WS BS BSF CPC (%) S_CPU
Z1 CPU Z2 CPU CP IP Total

1P50N2K6T 12209 86400 11317 7200 11,615 11,500 11,542 42 1114 1246 2360
1P50N2K6T 11820 86400 11705 7200 11,850 11,709 11,844 45 1467 1683 3150
1P50N2K6T 11238 86400 11041 7200 11,301 11,189 11,221 37 1064 1209 2273
1P50N2K6T 11740 86400 11152 7200 11,286 11,174 11,217 37 1264 1310 2574
1P50N2K6T 10856 86400 10873 7200 10,986 10,866 10,868 40 1167 1199 2366
1P50N2K6T 11662 86400 11381 7200 11,620 11,494 11,500 45 957 1248 2205
1P50N2K6T 12012 86400 11530 7200 11,765 11,637 11,731 42 1195 1319 2514
1P50N2K6T 13379 86400 12130 7200 13,362 13,217 13,353 45 1498 1728 3226
1P50NK6T 11302 86400 11079 7200 11,294 11,171 11,231 45 1145 1416 2561
1P50N2K6T 11475 86400 10891 7200 11,482 11,368 11,381 41 1263 1379 2642
1P100N2K6T 50284 86400 17082 7200 18,481 18,280 18,434 46 1671 1624 3295
1P100N2K6T 72767 86400 16000 7200 17,370 17,164 17,220 37 1078 1185 2263
1P100N2K6T 20837 86400 17145 7200 17,494 17,287 17,409 50 1235 1347 2582
1P100N2K6T 42634 86400 15423 7200 16,406 16,244 16,298 46 1368 1460 2828
1P100N2K6T 72016 86400 16449 7200 17,677 17,502 17,506 48 1097 1316 2413
1P100N2K6T 52945 86400 17220 7200 18,727 18,505 18,520 43 1637 1604 3241
1P100N2K6T 47628 86400 16780 7200 17,121 16,935 16,942 32 1222 1480 2702
1P100N2K6T 47360 86400 17773 7200 18,991 18,784 18,939 46 1323 1340 2663
1P100N2K6T 48667 86400 16979 7200 17,519 17,346 17,406 35 1610 1617 3227
1P100N2K6T 48398 86400 16259 7200 17,576 17,385 17,547 50 1427 1755 3182
1P200N2K6T - - 28662 7200 30,794 30,459 30,786 34 1012 1323 2335
1P200N2K6T - - 27535 7200 29,984 29,658 29,914 48 1400 1382 2782
1P200N2K6T - - 27828 7200 29,402 29,082 29,150 43 1394 1603 2997
1P200N2K6T - - 28333 7200 30,628 30,295 30,527 46 1652 1608 3260
1P200N2K6T - - 29083 7200 30,530 30,168 30,195 37 1154 1207 2361
1P200N2K6T - - 28551 7200 31,345 30,973 31,006 34 1275 1408 2683
1P200N2K6T - - 28293 7200 29,652 29,301 29,361 46 1118 1221 2339
1P200N2K6T - - 29290 7200 31,366 30,994 31,248 33 1289 1609 2898
1P200N2K6T - - 29077 7200 30,668 30,364 30,446 32 1337 1495 2832
1P200N2K6T - - 27265 7200 28,913 28,626 28,807 48 1460 1731 3191

Average 31,061.3 86400.0 18,804.2 7200.0 19,906.8 19,689.2 19,785.0 41.8 1296.4 1435.1 2731.5

* All values are rounded up for the sake of a better presentation
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Table A.5: Computational results for large scale benchmark instances using B-C, I-B-C andmatheuristic (k=3, high cost)
Instances B-C I-B-C Matheursitic

WS BS BSF CPC (%) S_CPU
Z1 CPU Z2 CPU CP IP Total

1P50N3K6T 36,497 86,400 33,449 7200 34,225 33,819 34,189 49 1926 1917 3843
1P50N3K6T 37,328 86,400 33,594 7200 34,477 34,068 34,091 31 2048 2250 4298
1P50N3K6T 33,124 86,400 32,148 7200 32,748 32,424 32,480 49 1978 2581 4559
1P50N3K6T 41,325 86,400 34,533 7200 35,751 35,397 35,568 40 2168 2579 4747
1P50N3K6T 34,070 86,400 32,067 7200 32,737 32,381 32,454 30 2183 2107 4290
1P50N3K6T 38,640 86,400 35,892 7200 36,491 36,058 36,175 34 1839 1857 3696
1P50N3K6T 35,795 86,400 33,496 7200 34,768 34,356 34,594 39 1663 1895 3558
1P50N3K6T 33,535 86,400 30,535 7200 32,161 31,843 32,110 46 2064 2273 4337
1P50N3K6T 36,437 86,400 33,529 7200 33,919 33,583 33,849 33 1849 2306 4155
1P50N3K6T 36,330 86,400 35,027 7200 35,550 35,163 35,491 41 1487 1904 3391
1P100N3K6T 110,146 86,400 62,597 7200 66,021 65,367 65,441 42 1561 1963 3524
1P100N3K6T 107,683 86,400 60,160 7200 65,560 64,847 65,221 42 1666 1682 3348
1P100N3K6T 165,084 86,400 64,933 7200 68,012 67,272 67,837 50 1705 2220 3925
1P100N3K6T 168,527 86,400 54,369 7200 58,847 58,207 58,833 39 1852 2321 4173
1P100N3K6T 167,986 86,400 63,306 7200 70,618 69,919 70,139 46 2239 2316 4555
1P100N3K6T 109,981 86,400 60,243 7200 63,547 62,793 62,978 38 1818 2348 4166
1P100N3K6T 107,437 86,400 61,319 7200 66,154 65,499 65,583 45 2300 2253 4553
1P100N3K6T 106,218 86,400 61,236 7200 66,736 65,945 66,294 44 1858 2153 4011
1P100N3K6T 184,721 86,400 64,627 7200 68,230 67,421 67,926 44 1820 1825 3645
1P100N3K6T 108,231 86,400 60,377 7200 63,560 62,931 63,070 48 1745 1710 3455
1P200N3K6T - - 120,512 7200 124,770 123,412 123,770 42 2027 1991 4018
1P200N3K6T - - 122,979 7200 129,930 128,644 129,030 51 1647 1978 3625
1P200N3K6T - - 118,259 7200 125,101 123,618 124,148 46 2157 2371 4528
1P200N3K6T - - 117,705 7200 120,322 119,131 119,897 50 1728 1800 3528
1P200N3K6T - - 118,737 7200 123,205 121,864 121,916 41 1738 1882 3620
1P200N3K6T - - 118,640 7200 123,679 122,333 123,539 43 1858 2240 4098
1P200N3K6T - - 107,266 7200 115,668 114,297 115,369 44 1593 2106 3699
1P200N3K6T - - 112,216 7200 116,104 114,840 116,026 31 1654 2166 3820
1P200N3K6T - - 113,994 7200 118,338 117,167 117,777 44 1963 2377 4340
1P200N3K6T - - 117,407 7200 128,272 126,876 127,240 32 1849 2081 3930

Average 84,954.7 86400.0 70,505.0 7200.0 74,183.4 73,382.5 73,767.8 41.8 1866.2 2115.0 3981.2

* All values are rounded up for the sake of a better presentation
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Table A.6: Computational results for large scale benchmark instances using B-C, I-B-C and matheuristic (k=3, low cost)
Instances B-C I-B-C Matheursitic

WS BS BSF CPC (%) S_CPU
Z1 CPU Z2 CPU CP IP Total

1P50N3K6T 15,533 86,400 13,337 7200 14,396 14,225 14,254 49 1509 1643 3152
1P50N3K6T 17,992 86,400 14,112 7200 14,758 14,597 14,599 43 1681 2050 3731
1P50N3K6T 15,425 86,400 12,400 7200 13,411 13,278 13,311 40 1500 1939 3439
1P50N3K6T 17,315 86,400 13,606 7200 14,186 14,032 14,170 46 1618 1869 3487
1P50N3K6T 15,651 86,400 12,938 7200 14,084 13,917 13,947 47 1622 1865 3487
1P50N3K6T 16,468 86,400 13,720 7200 13,971 13,833 13,898 51 1827 1760 3587
1P50N3K6T 17,899 86,400 13,940 7200 14,633 14,459 14,506 51 1541 1500 3041
1P50N3K6T 19,411 86,400 14,866 7200 15,273 15,107 15,116 46 1579 1551 3130
1P50N3K6T 17,759 86,400 13,467 7200 14,717 14,571 14,680 50 1525 1832 3357
1P50N3K6T 16,003 86,400 12,664 7200 12,985 12,844 12,971 43 1387 1757 3144
1P100N3K6T 70,571 86,400 20,381 7200 22,418 22,152 22,367 30 1610 1745 3355
1P100N3K6T 68,421 86,400 17,711 7200 19,807 19,572 19,663 39 1622 2119 3741
1P100N3K6T 64,860 86,400 20,559 7200 21,487 21,253 21,393 47 1607 1704 3311
1P100N3K6T 66,067 86,400 18,005 7200 19,850 19,653 19,739 41 1797 1768 3565
1P100N3K6T 66,508 86,400 20,571 7200 22,825 22,599 22,690 40 1635 2028 3663
1P100N3K6T 69,777 86,400 21,411 7200 22,258 22,038 22,097 42 1433 1894 3327
1P100N3K6T 66,054 86,400 20,269 7200 22,282 22,040 22,127 37 1780 1855 3635
1P100N3K6T 66,338 86,400 21,003 7200 23,030 22,757 22,824 45 1494 1731 3225
1P100N3K6T 71,530 86,400 21,434 7200 22,417 22,195 22,383 46 1447 1676 3123
1P100N3K6T 67,377 86,400 20,169 7200 22,222 22,002 22,170 35 1561 1784 3345
1P200N3K6T - - 32,591 7200 33,472 33,140 33,230 37 1456 1813 3269
1P200N3K6T - - 33,811 7200 34,792 34,414 34,658 46 1526 1600 3126
1P200N3K6T - - 32,713 7200 32,421 32,037 32,242 47 1855 1920 3775
1P200N3K6T - - 32,429 7200 34,271 33,898 34,009 33 1563 2002 3565
1P200N3K6T - - 33,703 7200 33,766 33,432 33,719 50 1616 1821 3437
1P200N3K6T - - 32,847 7200 34,020 33,683 33,794 48 1531 1707 3238
1P200N3K6T - - 33,191 7200 34,356 33,983 34,211 39 1590 1578 3168
1P200N3K6T - - 32,764 7200 33,549 33,184 33,489 36 1755 1705 3460
1P200N3K6T - - 33,670 7200 33,825 33,424 33,600 34 1500 1873 3373
1P200N3K6T - - 32,769 7200 33,937 33,534 33,662 35 1637 2133 3770

Average 42,347.9 86400.0 22,235.0 7200.0 23,314.0 23,061.8 23,184.0 42.5 1593.5 1807.4 3400.9

* All values are rounded up for the sake of a better presentation
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B - Computational results for different mod-
els and demand distributions under con-
sideration (Chapter 3)

Tables B.1, B.3, B.5, B.7 and B.9 report costs computed for the first and
second stage (FSC, SSC), standard deviation regarding the upper and lower bound
(UB, LB), and CPU time in second. Tables B.2, B.4, B.6, B.8 and B.10 provide for
all instances under consideration the breakdown of costs namely: Transportation
(T), Inventory (I), Lost sales (LS), substitution (S) and transshipment (Ts). All
experiments are performed for four different models: SIRP, SIRP with Transship-
ment (SIRPT), SIRP with Substitution (SIRPS) and finally SIRPTS. They also
report cost saving (SV) computed with regard to total cost.
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Table B.1: Computational results for a number of product varying between 20 and 40 - number of customers equal to10
Instances Model PD SPD NBD

FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s)

n10m20k3T3

SIRP 2798.9 3847.7 0.63 0.37 1128 3666.0 4370.0 0.27 0.60 1167 3695.6 7296.6 0.63 0.47 1118
SIRPT 2062.1 3410.5 0.76 0.50 903 3022.8 3588.7 0.32 0.78 802 3053.9 6253.9 0.83 0.77 1099
SIRPS 2227.2 3548.8 0.54 0.66 1125 2524.1 4104.4 0.83 0.84 992 3047.7 5781.1 0.78 0.78 844
SIRPTS 1758.3 2750.2 0.44 0.33 857 2003.1 2831.9 0.70 0.71 1025 2527.9 4311.6 0.90 0.88 1043

n10m20k3T5

SIRP 4870.5 9247.0 0.39 0.79 1148 5888.8 9106.9 0.22 0.70 814 6612.1 11648.2 0.82 0.66 1191
SIRPT 4672.4 8111.3 0.66 0.43 1107 6177.2 6837.8 0.67 0.34 962 6054.8 9824.5 0.44 0.69 907
SIRPS 4964.4 7269.2 0.34 0.54 868 5533.4 7868.9 0.28 0.52 1137 6145.8 8749.4 0.85 0.86 1056
SIRPTS 4176.7 5929.0 0.49 0.43 864 5480.6 6978.1 0.36 0.38 1151 4895.5 7869.9 0.80 0.63 813

n10m20k3T7

SIRP 8088.0 13555.1 0.75 0.49 1048 10820.1 14337.1 0.75 0.29 1078 10218.2 20347.8 0.34 0.53 838
SIRPT 6385.2 12074.5 0.40 0.61 878 7589.9 12273.7 0.77 0.59 1140 8347.3 16319.7 0.42 0.46 1077
SIRPS 6810.9 10353.7 0.53 0.78 1115 8856.4 10447.0 0.71 0.88 1014 7459.2 13505.3 0.86 0.51 1143
SIRPTS 7067.9 7483.0 0.55 0.53 1063 8226.6 9571.5 0.69 0.61 865 10104.9 7933.0 0.96 0.63 959

n10m30k3T3

SIRP 3084.7 5039.4 0.74 0.68 1019 3652.6 5924.3 0.44 0.43 837 4148.2 6388.2 0.58 0.84 1055
SIRPT 2427.5 4395.2 0.70 0.66 910 2807.6 4683.3 0.22 0.28 906 3686.1 5437.9 0.41 0.36 959
SIRPS 2436.1 4574.2 0.34 0.41 986 3886.3 3442.3 0.48 0.47 982 3658.3 5247.0 0.54 0.40 1105
SIRPTS 2517.8 2584.6 0.49 0.53 934 3840.3 1905.5 0.55 0.41 1024 3447.7 3542.7 0.56 0.60 989

n10m30k3T5

SIRP 6083.3 8859.7 0.71 0.36 939 8542.0 12100.8 0.58 0.87 990 8419.3 16112.4 0.77 0.47 978
SIRPT 5450.8 8961.7 0.41 0.71 1088 7313.1 10153.2 0.48 0.68 1167 6252.1 12762.7 0.90 0.52 1122
SIRPS 4988.7 8626.8 0.49 0.62 934 5867.1 8881.7 0.72 0.79 1199 7295.5 11908.3 0.64 0.36 1111
SIRPTS 6067.4 5052.7 0.49 0.53 805 6743.4 9266.6 0.70 0.67 881 6615.5 9690.9 0.73 0.84 900

n10m30k3T7

SIRP 8798.7 12306.3 0.47 0.41 900 10931.3 15491.9 0.33 0.58 1140 11103.5 19367.1 0.95 0.55 1129
SIRPT 7932.9 10834.3 0.35 0.37 829 9578.6 12985.8 0.58 0.33 876 9564.3 18109.8 0.38 0.55 953
SIRPS 7455.6 11160.1 0.65 0.69 808 8764.8 12597.2 0.75 0.34 1014 9748.9 17789.0 0.86 0.80 1160
SIRPTS 7834.8 8698.5 0.34 0.53 991 10454.3 8178.8 0.22 0.51 954 9244.8 15013.5 0.53 0.45 949

n10m40k3T3

SIRP 3473.6 6124.7 0.69 0.44 864 5565.5 7374.5 0.26 0.55 1032 3971.1 11407.6 0.97 0.77 812
SIRPT 3364.6 5164.2 0.42 0.60 1191 4504.4 6276.8 0.41 0.30 1151 5199.9 8136.6 0.38 0.94 1194
SIRPS 2880.7 5394.8 0.73 0.37 850 4368.9 6194.1 0.51 0.50 1038 3925.1 6697.6 0.53 0.41 971
SIRPTS 3765.6 3010.0 0.60 0.44 1191 4803.6 5964.5 0.80 0.23 841 5337.6 4413.5 0.91 0.53 1063

n10m40k3T5

SIRP 8881.1 12360.5 0.74 0.37 830 8084.9 13411.8 0.21 0.21 1154 8370.2 16800.2 0.48 0.36 1172
SIRPT 7635.5 10458.2 0.63 0.45 909 7827.3 12912.7 0.39 0.68 892 8831.9 14358.9 0.67 0.94 1161
SIRPS 6751.0 11775.4 0.44 0.74 893 8893.0 11758.6 0.66 0.69 894 10033.7 13440.4 0.79 0.74 895
SIRPTS 6209.1 11597.3 0.49 0.47 1114 8662.1 9869.4 0.47 0.36 1115 8085.0 13356.6 0.82 0.88 1096
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n10m40k3T7

SIRP 8772.5 15911.0 0.66 0.46 980 11418.3 15469.0 0.28 0.72 911 12939.7 21166.0 0.33 0.44 877
SIRPT 8401.5 13118.7 0.47 0.38 832 10141.3 14782.3 0.30 0.77 892 10757.3 16359.6 0.80 0.70 843
SIRPS 7626.9 13291.7 0.62 0.56 856 8672.7 15714.3 0.85 0.31 830 9820.5 17386.1 0.72 0.88 836
SIRPTS 8290.9 10418.8 0.46 0.60 1093 11441.5 10550.0 0.22 0.68 1111 9247.3 16225.4 0.71 0.96 1037
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Table B.2: Breakdown of cost for a number of product varying between 20 and 40 - number of customers equal to 10
Instances Model PD SPD NBD

T I LS S Ts SV (%) T I LS S Ts SV (%) T I LS S Ts SV (%)

n10m20k3T3

SIRP 2799 3016 832 0 0 3666 3016 1354 0 0 3696 6006 1291 0 0
SIRPT 2062 1543 533 0 1334 18 3023 1543 744 0 1301 18 3054 2517 1050 0 2687 15
SIRPS 2227 1836 614 1099 0 13 2524 1836 749 1519 0 18 3048 2899 1030 1852 0 20
SIRPTS 1758 423 315 1003 1010 32 2003 423 253 1068 1087 40 2528 465 171 1796 1879 38

n10m20k3T5

SIRP 4871 5818 3429 0 0 5889 5818 3288 0 0 6612 7950 3698 0 0
SIRPT 4672 3017 2580 0 2514 9 6177 3017 1513 0 2308 13 6055 4966 1291 0 3568 13
SIRPS 4964 3625 1210 2434 0 13 5533 3625 1362 2882 0 11 6146 4214 1713 2823 0 18
SIRPTS 4177 1151 1007 1967 1804 28 5481 1151 456 2515 2857 17 4896 1016 493 3369 2992 30

n10m20k3T7

SIRP 8088 9040 4516 0 0 10820 9040 5298 0 0 10218 13865 6483 0 0
SIRPT 6385 6426 1873 0 3776 15 7590 6426 1835 0 4014 21 8347 6318 2861 0 7140 19
SIRPS 6811 5861 1031 3462 0 21 8856 5861 1328 3258 0 23 7459 5761 2584 5160 0 31
SIRPTS 7068 1812 584 2601 2486 33 8227 1812 969 3541 3250 29 10105 1547 594 2540 3252 41

n10m30k3T3

SIRP 3085 4434 605 0 0 3653 4434 1490 0 0 4148 4914 1474 0 0
SIRPT 2428 2345 478 0 1572 16 2808 2345 595 0 1743 22 3686 2734 518 0 2186 13
SIRPS 2436 1822 1009 1742 0 14 3886 1822 446 1174 0 23 3658 2310 778 2159 0 15
SIRPTS 2518 400 390 970 825 37 3840 400 154 610 741 40 3448 613 148 1424 1357 34

n10m30k3T5

SIRP 6083 8053 807 0 0 8542 8053 4048 0 0 8419 12186 3927 0 0
SIRPT 5451 5015 580 0 3367 4 7313 5015 1775 0 3364 15 6252 5245 2660 0 4857 22
SIRPS 4989 3408 2769 2449 0 9 5867 3408 2032 3442 0 29 7296 6050 1139 4719 0 22
SIRPTS 6067 1230 54 1813 1955 26 6743 1930 1028 2937 3370 22 6616 1872 626 3307 3886 34

n10m30k3T7

SIRP 8799 12109 198 0 0 10931 12109 3383 0 0 11104 13166 6201 0 0
SIRPT 7933 6650 682 0 3503 11 9579 6650 1607 0 4729 15 9564 7773 2396 0 7941 9
SIRPS 7456 5643 1699 3818 0 12 8765 5643 3095 3859 0 19 9749 7978 2993 6819 0 10
SIRPTS 7835 1972 402 3201 3124 22 10454 1972 679 2694 2834 29 9245 2858 1537 5063 5556 20

n10m40k3T3

SIRP 3474 4672 1452 0 0 5565 4672 2702 0 0 3971 7715 3693 0 0
SIRPT 3365 2565 679 0 1920 11 4504 2565 1378 0 2334 17 5200 4443 887 0 2806 13
SIRPS 2881 2506 1296 1593 0 14 4369 2506 1497 2191 0 18 3925 3195 637 2865 0 31
SIRPTS 3766 765 45 1069 1131 29 4804 1065 614 1831 2455 17 5338 1116 218 1452 1628 37

n10m40k3T5

SIRP 8881 9927 2433 0 0 8085 9927 3484 0 0 8370 13368 3432 0 0
SIRPT 7636 5959 941 0 3559 15 7827 5959 2086 0 4868 4 8832 7925 1447 0 4987 8
SIRPS 6751 5054 3273 3449 0 13 8893 5054 3024 3680 0 4 10034 5577 2529 5335 0 7
SIRPTS 6209 1740 2284 3551 4022 16 8662 1740 1032 2978 4119 14 8085 1890 684 5267 5516 15
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n10m40k3T7

SIRP 8773 12146 3765 0 0 11418 12146 3323 0 0 12940 17386 3780 0 0
SIRPT 8401 7614 265 0 5240 13 10141 7614 1959 0 5209 7 10757 7854 1998 0 6508 20
SIRPS 7627 8633 748 3910 0 15 8673 8633 2173 4908 0 9 9820 7786 2693 6907 0 20
SIRPTS 8291 1549 1108 4086 3676 24 11441 1549 784 4118 4100 18 9247 3505 717 6320 5684 25
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Table B.3: Computational results for a number of product varying between 1 and 5 - number of customers equal to 20
Instances Model PD SPD NBD

FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s)

n20m1k3T3 SIRP 2148.3 3144.3 0.06 0.04 100 2525.4 3497.6 0.05 0.08 111 2528.8 4313.3 0.03 0.05 137
SIRPT 1996.8 3119.3 0.02 0.03 128 2246.2 3576.0 0.07 0.02 168 2753.3 2326.5 0.00 0.04 220

n20m1k3T5 SIRP 4536.8 7234.9 0.05 0.07 144 5379.9 8993.3 0.00 0.06 187 6875.9 10831.9 0.07 0.06 236
SIRPT 4472.6 6487.0 0.05 0.01 124 5575.6 7696.5 0.09 0.02 164 6850.8 9341.1 0.07 0.02 200

n20m1k3T7 SIRP 6348.9 10001.5 0.01 0.07 316 7810.5 10812.6 0.00 0.07 376 9019.3 13682.2 0.09 0.07 500
SIRPT 5295.2 7601.0 0.02 0.04 217 6068.0 8466.1 0.06 0.09 267 6322.1 11755.4 0.09 0.07 326

n20m3k3T3

SIRP 2652.3 3765.1 0.02 0.03 128 2750.6 4501.1 0.00 0.03 143 3973.9 4996.5 0.07 0.00 189
SIRPT 2400.8 3598.1 0.10 0.08 147 2939.4 4295.2 0.08 0.07 172 3501.5 4847.3 0.00 0.09 212
SIRPS 1955.6 2773.8 0.02 0.08 108 2144.3 4110.0 0.05 0.04 132 2304.5 5111.1 0.09 0.01 170
SIRPTS 2239.7 1577.8 0.03 0.03 102 2588.1 2358.0 0.00 0.09 120 3396.0 2300.5 0.01 0.03 148

n20m3k3T5

SIRP 4959.3 7621.3 0.05 0.06 124 5500.8 8727.8 0.05 0.07 162 6523.8 9668.4 0.00 0.06 198
SIRPT 4595.6 7185.0 0.01 0.01 104 5317.5 8007.7 0.07 0.05 125 5656.9 9659.5 0.05 0.06 154
SIRPS 4230.8 6453.1 0.10 0.05 126 5034.0 7113.6 0.03 0.03 155 5755.0 9465.9 0.08 0.05 200
SIRPTS 4548.8 4546.9 0.03 0.09 135 4660.8 6878.4 0.01 0.03 153 5766.7 8644.0 0.00 0.09 197

n20m3k3T7

SIRP 6981.2 10960.7 0.01 0.10 114 8305.1 12130.7 0.08 0.06 141 10103.6 13091.1 0.05 0.02 174
SIRPT 6263.4 9286.3 0.07 0.06 331 7270.0 12487.7 0.07 0.02 420 7333.1 13881.8 0.10 0.08 517
SIRPS 6175.2 9087.3 0.04 0.10 339 7560.4 11121.0 0.06 0.02 400 7406.2 14030.1 0.09 0.09 532
SIRPTS 6359.1 7213.9 0.03 0.08 217 7372.6 10100.7 0.02 0.02 276 8893.1 9708.5 0.03 0.08 367

n20m5k3T3

SIRP 3105.4 4446.6 0.00 0.07 126 3473.6 5754.9 0.05 0.10 150 4602.8 6499.1 0.06 0.02 190
SIRPT 2503.4 4019.3 0.00 0.09 250 3065.1 4475.1 0.04 0.03 325 3256.0 6184.4 0.09 0.08 400
SIRPS 2352.4 3409.0 0.08 0.05 446 2482.6 3901.1 0.08 0.03 535 3408.2 4392.6 0.03 0.04 664
SIRPTS 2669.0 2160.6 0.03 0.05 403 2977.6 2712.6 0.04 0.03 467 3605.7 2999.3 0.10 0.09 580

n20m5k3T5

SIRP 5997.8 8808.0 0.09 0.02 345 6959.6 10052.3 0.01 0.06 414 8993.2 11455.2 0.01 0.05 505
SIRPT 5398.3 8261.3 0.09 0.05 209 6166.3 10334.4 0.08 0.01 261 6956.9 12134.5 0.07 0.06 332
SIRPS 5684.1 5608.3 0.01 0.03 322 5881.3 10183.4 0.08 0.02 406 7367.6 11990.3 0.04 0.08 527
SIRPTS 5578.5 3821.4 0.02 0.05 326 6435.7 8533.8 0.10 0.05 375 6785.8 11658.9 0.10 0.00 484

n20m5k3T7

SIRP 6319.8 9265.4 0.03 0.01 250 8162.5 11007.3 0.00 0.02 310 7638.9 15211.5 0.07 0.05 378
SIRPT 6443.6 8236.7 0.01 0.07 341 6705.2 11776.6 0.08 0.03 443 7264.6 14008.0 0.04 0.07 545
SIRPS 7512.9 7106.5 0.05 0.09 336 8900.1 9108.0 0.08 0.03 407 11253.2 9571.9 0.10 0.04 516
SIRPTS 6681.8 6504.0 0.06 0.03 148 7428.1 8579.4 0.05 0.01 181 10132.2 9171.0 0.05 0.07 226
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Table B.4: Breakdown of cost for a number of product varying between 1 and 5 - number of customers equal to 20
Instances Model PD SPD NBD

T I LS S Ts SV (%) T I LS S Ts SV (%) T I LS S Ts SV (%)

n20m1k3T3 SIRP 2148 1903 1241 0 0 2525 2263 1234 0 0 2529 2473 1840 0 0
SIRPT 1997 994 991 0 1134 3 2246 1665 589 0 1322 3 2753 1465 98 0 763 26

n20m1k3T5 SIRP 4537 4961 2274 0 0 5380 5143 3850 0 0 6876 6399 4432 0 0
SIRPT 4473 2574 1836 0 2077 7 5576 3284 2025 0 2388 8 6851 5821 8 0 3512 9

n20m1k3T7 SIRP 6349 5995 4007 0 0 7811 7174 3638 0 0 9019 7189 6494 0 0
SIRPT 5295 2688 2043 0 2870 21 6068 3233 2456 0 2778 22 6322 7602 256 0 3897 20

n20m3k3T3

SIRP 2652 1888 1877 0 0 2751 3370 1132 0 0 3974 3831 1165 0 0
SIRPT 2401 1102 1058 0 1439 7 2939 1729 1012 0 1554 0 3501 2702 486 0 1659 7
SIRPS 1956 1028 848 898 0 26 2144 1539 1165 1406 0 14 2304 3069 450 1592 0 17
SIRPTS 2240 239 180 560 599 41 2588 327 177 889 966 32 3396 528 121 758 893 36

n20m3k3T5

SIRP 4959 3944 3677 0 0 5501 5488 3240 0 0 6524 5901 3768 0 0
SIRPT 4596 2846 1948 0 2391 6 5318 3796 1404 0 2808 6 5657 5509 434 0 3716 5
SIRPS 4231 2345 1762 2347 0 15 5034 2989 1795 2330 0 15 5755 5717 712 3037 0 6
SIRPTS 4549 1020 454 1334 1740 28 4661 1108 695 2594 2482 19 5767 2715 196 2714 3019 11

n20m3k3T7

SIRP 6981 5487 5474 0 0 8305 8411 3719 0 0 10104 8480 4611 0 0
SIRPT 6263 3527 2151 0 3609 13 7270 4086 3302 0 5100 3 7333 8479 312 0 5090 9
SIRPS 6175 3982 2299 2806 0 15 7560 4484 2909 3728 0 9 7406 8048 1880 4102 0 8
SIRPTS 6359 1068 953 2467 2725 24 7373 2348 1139 3142 3471 14 8893 2901 92 3454 3261 20

n20m5k3T3

SIRP 3105 2859 1588 0 0 3474 3835 1920 0 0 4603 3383 3116 0 0
SIRPT 2503 1516 1206 0 1298 14 3065 1618 1216 0 1641 18 3256 4063 35 0 2087 15
SIRPS 2352 1372 804 1233 0 24 2483 1584 886 1432 0 31 3408 2879 8 1505 0 30
SIRPTS 2669 388 264 649 859 36 2978 436 328 1005 944 38 3606 801 76 989 1133 41

n20m5k3T5

SIRP 5998 5985 2823 0 0 6960 5944 4108 0 0 8993 7849 3606 0 0
SIRPT 5398 3066 2320 0 2875 8 6166 3769 2906 0 3659 3 6957 7236 726 0 4173 7
SIRPS 5684 1891 1835 1882 0 24 5881 4003 2813 3368 0 6 7368 7215 701 4074 0 5
SIRPTS 5579 791 377 1301 1352 37 6436 1357 664 3023 3490 12 6786 2755 798 3992 4114 10

n20m5k3T7

SIRP 6320 5617 3649 0 0 8162 8145 2862 0 0 7639 11092 4119 0 0
SIRPT 6444 3466 1754 0 3017 6 6705 4566 3100 0 4111 4 7265 8392 564 0 5051 7
SIRPS 7513 2808 1703 2595 0 6 8900 4226 1482 3401 0 6 11253 5071 995 3505 0 9
SIRPTS 6682 1013 987 2264 2240 15 7428 1663 1236 2651 3029 16 10132 2932 92 2741 3406 16
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Table B.5: Computational results for a number of product varying between 20 and 40 - number of customers equal to20
Instances Model PD SPD NBD

FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s)

n20m20k3T3

SIRP 2958.4 5631.5 0.43 0.40 1043 3941.8 6339.4 0.53 0.41 1026 4141.4 7880.2 0.51 0.81 915
SIRPT 2847.9 4215.2 0.40 0.42 997 4378.4 4839.6 0.27 0.41 1160 4385.2 6461.1 0.56 0.58 989
SIRPS 2903.9 4111.3 0.31 0.45 1040 3603.2 4955.5 0.62 0.43 913 3234.0 6601.8 0.35 0.67 1193
SIRPTS 2474.4 3327.2 0.68 0.34 893 2764.5 4440.3 0.40 0.23 1154 3706.0 5141.0 0.49 0.66 1142

n20m20k3T5

SIRP 6431.9 11908.3 0.70 0.71 1064 8452.6 13265.3 0.22 0.76 1049 12678.7 17566.3 0.98 0.83 1062
SIRPT 6810.6 9601.5 0.75 0.52 1037 9215.2 11263.1 0.65 0.23 1064 11569.0 15167.8 0.36 0.45 1050
SIRPS 6429.0 9611.4 0.55 0.45 984 6422.1 13581.1 0.54 0.85 1022 6994.6 19494.3 0.78 0.85 903
SIRPTS 4156.7 7126.4 0.74 0.52 832 4706.3 13948.7 0.46 0.30 952 5961.3 9926.9 0.51 0.90 1162

n20m20k3T7

SIRP 9519.6 17213.3 0.69 0.50 880 12545.3 17568.2 0.21 0.50 831 13339.4 21507.5 0.89 0.36 1138
SIRPT 8323.2 16419.8 0.41 0.77 1147 9833.0 16418.6 0.66 0.84 991 12108.8 17657.2 0.51 0.84 1117
SIRPS 7561.6 16707.5 0.66 0.31 814 10024.3 16485.0 0.89 0.40 886 9176.0 15847.3 0.70 0.31 1127
SIRPTS 9367.0 11725.0 0.49 0.42 822 12722.8 7919.8 0.86 0.42 981 14022.7 4459.0 0.51 0.44 1054

n20m30k3T3

SIRP 3865.2 6922.4 0.70 0.50 1020 5119.3 10657.4 0.75 0.39 916 5673.0 9271.6 0.45 0.99 1190
SIRPT 3591.7 5168.4 0.72 0.51 1173 5201.9 8232.8 0.68 0.88 912 4817.0 8449.3 0.50 0.69 1066
SIRPS 2893.2 5127.8 0.36 0.32 1045 3626.6 8380.9 0.24 0.64 1074 3533.0 6821.6 0.31 0.43 1166
SIRPTS 3765.5 1862.5 0.41 0.62 1136 5915.4 4997.5 0.38 0.42 854 5255.2 2946.4 0.49 0.87 991

n20m30k3T5

SIRP 8553.3 13802.4 0.56 0.42 955 8965.1 16477.4 0.79 0.74 852 10691.1 18017.6 0.56 0.42 1188
SIRPT 7106.7 11930.8 0.48 0.44 814 10080.7 13902.5 0.38 0.45 913 9861.3 15739.2 0.64 0.94 1163
SIRPS 7058.2 12448.4 0.75 0.32 857 7966.4 15502.3 0.68 0.70 1197 10895.0 14619.9 0.63 0.48 1130
SIRPTS 8094.3 8072.9 0.40 0.64 1068 8906.2 12059.4 0.76 0.73 1019 9515.6 12191.2 0.65 0.50 868

n20m30k3T7

SIRP 11753.1 20219.4 0.75 0.36 1174 14677.0 21269.6 0.67 0.89 845 12368.5 23142.5 0.39 0.78 1143
SIRPT 10508.4 14153.4 0.39 0.65 916 12985.2 18517.0 0.83 0.26 1051 11922.3 21399.1 0.79 0.64 1171
SIRPS 9329.5 14052.7 0.39 0.32 993 12807.9 16615.3 0.53 0.74 929 16166.1 17379.6 0.88 0.50 830
SIRPTS 10583.6 10877.8 0.34 0.66 856 12787.6 16006.5 0.34 0.36 1058 14361.1 14776.5 0.79 0.90 808

n20m40k3T3

SIRP 4880.4 6817.6 0.40 0.61 904 5762.6 8320.1 0.88 0.34 1109 7379.8 11326.9 0.91 0.38 1155
SIRPT 3431.4 6646.2 0.55 0.53 1187 4722.1 6588.3 0.56 0.67 868 5462.6 10907.1 0.82 0.39 1194
SIRPS 3647.1 6464.2 0.31 0.60 875 4339.8 7516.6 0.41 0.71 1193 4749.6 11274.8 0.71 0.67 1099
SIRPTS 3808.1 4723.2 0.62 0.36 938 5666.3 3084.1 0.70 0.66 1195 5832.3 8265.7 0.99 0.43 944

n20m40k3T5

SIRP 8509.2 14958.0 0.45 0.38 1200 12493.7 18195.8 0.87 0.60 975 11228.6 23267.8 0.86 0.86 1051
SIRPT 8576.5 13276.0 0.53 0.39 1197 11335.0 14257.7 0.41 0.59 1080 12095.7 20161.6 0.98 0.62 849
SIRPS 8638.7 12430.2 0.40 0.37 1020 10451.9 13837.9 0.78 0.69 908 11663.8 20689.9 0.49 0.33 953
SIRPTS 8629.7 10531.8 0.60 0.41 1137 11789.2 9291.2 0.58 0.82 1171 11253.4 17526.9 0.94 0.99 1028
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n20m40k3T7

SIRP 9473.6 18049.9 0.57 0.41 966 14880.7 19701.5 0.86 0.56 985 15051.5 25279.4 0.34 0.60 1142
SIRPT 10390.7 14999.2 0.44 0.60 916 13507.1 18614.4 0.25 0.28 816 12992.1 20278.4 0.67 0.71 935
SIRPS 12174.2 13635.4 0.78 0.44 963 17114.2 15116.6 0.25 0.40 1186 13608.4 19856.6 0.65 0.55 1049
SIRPTS 10488.8 11805.5 0.63 0.78 1077 12096.0 15890.4 0.28 0.55 1186 13406.7 16509.7 0.92 0.96 893
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Table B.6: Breakdown of cost for a number of product varying between 20 and 40 - number of customers equal to 20
Instances Model PD SPD NBD

T I LS S Ts SV (%) T I LS S Ts SV (%) T I LS S Ts SV (%)

n20m20k3T3

SIRP 2958 4971 661 0 0 3942 4971 1369 0 0 4141 5175 2705 0 0
SIRPT 2848 1945 959 0 1311 18 4378 1945 1106 0 1789 10 4385 2838 1176 0 2447 10
SIRPS 2904 1990 526 1596 0 18 3603 1990 1133 1833 0 17 3234 3557 724 2321 0 18
SIRPTS 2474 960 139 1128 1100 32 2764 960 534 1375 1571 30 3706 1162 433 1704 1843 26

n20m20k3T5

SIRP 6432 10186 1722 0 0 8453 10186 3079 0 0 12679 12866 4701 0 0
SIRPT 6811 5139 1119 0 3343 11 9215 5139 1987 0 4137 6 11569 7243 2251 0 5674 12
SIRPS 6429 6046 868 2697 0 13 6422 6046 2667 4867 0 8 6995 10121 2369 7004 0 12
SIRPTS 4157 1732 272 2640 2482 38 4706 2832 962 5387 4768 14 5961 1723 618 3870 3717 47

n20m20k3T7

SIRP 9520 13723 3491 0 0 12545 13723 3846 0 0 13339 14468 7039 0 0
SIRPT 8323 7845 3479 0 5095 7 9833 7845 2927 0 5646 13 12109 8385 2656 0 6616 15
SIRPS 7562 6949 4689 5069 0 9 10024 6949 3003 6533 0 12 9176 6953 3242 5653 0 28
SIRPTS 9367 1781 1023 4351 4570 21 12723 1781 566 2455 3118 31 14023 663 295 1720 1781 47

n20m30k3T3

SIRP 3865 6552 370 0 0 5119 8252 2405 0 0 5673 6498 2774 0 0
SIRPT 3592 3216 176 0 1776 19 5202 3816 1409 0 3007 15 4817 3368 1809 0 3273 11
SIRPS 2893 3051 47 2030 0 26 3627 3451 1669 3260 0 24 3533 3453 901 2468 0 31
SIRPTS 3766 584 45 639 595 48 5915 1284 490 1608 1617 31 5255 345 141 1193 1267 45

n20m30k3T5

SIRP 8553 10901 2901 0 0 8965 10901 5576 0 0 10691 14084 3933 0 0
SIRPT 7107 6040 1693 0 4198 15 10081 6040 2182 0 5681 6 9861 8142 1921 0 5676 11
SIRPS 7058 7779 182 4488 0 13 7966 7979 2718 4806 0 8 10895 7550 2197 4873 0 11
SIRPTS 8094 2560 29 2298 3186 28 8906 2660 1087 4195 4117 18 9516 2537 621 4629 4403 24

n20m30k3T7

SIRP 11753 13379 6841 0 0 14677 13379 7891 0 0 12368 15281 7862 0 0
SIRPT 10508 8487 31 0 5636 23 12985 8487 2581 0 7449 12 11922 9829 3085 0 8485 6
SIRPS 9330 8897 352 4803 0 27 12808 8897 2237 5481 0 18 16166 8491 2164 6724 0 6
SIRPTS 10584 3271 44 3620 3943 33 12788 3671 853 4896 6587 20 14361 1805 320 6181 6471 18

n20m40k3T3

SIRP 4880 6174 643 0 0 5763 6174 2146 0 0 7380 7370 3956 0 0
SIRPT 3431 3112 1184 0 2351 14 4722 3112 1029 0 2448 20 5463 4677 2385 0 3845 12
SIRPS 3647 3186 701 2577 0 14 4340 3186 1427 2903 0 16 4750 5409 1591 4274 0 14
SIRPTS 3808 789 437 1847 1650 27 5666 789 191 1043 1062 38 5832 868 285 3501 3612 25

n20m40k3T5

SIRP 8509 12515 2443 0 0 12494 12515 5681 0 0 11229 19296 3972 0 0
SIRPT 8577 5211 3284 0 4781 7 11335 5211 3070 0 5977 17 12096 9463 3164 0 7534 6
SIRPS 8639 6429 1989 4012 0 10 10452 6429 2590 4818 0 21 11664 8078 4167 8446 0 6
SIRPTS 8630 1453 1879 4017 3183 18 11789 1453 493 3645 3700 31 11253 3938 1145 6376 6068 17
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n20m40k3T7

SIRP 9474 12376 5673 0 0 14881 12376 7325 0 0 15051 19263 6016 0 0
SIRPT 10391 7464 2427 0 5109 8 13507 7464 3847 0 7304 7 12992 9915 2639 0 7724 18
SIRPS 12174 6872 2448 4316 0 6 17114 6872 3443 4801 0 7 13608 8403 4426 7027 0 17
SIRPTS 10489 2875 840 4087 4003 19 12096 2875 1524 5371 6121 19 13407 2521 1311 6993 5684 26

229



Table B.7: Computational results for a number of product varying between 1 and 5 - number of customers equal to 50
Instances Model PD SPD NBD

FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s)

n50m1k3T3 SIRP 2714.2 4007.4 0.04 0.03 123 2942.9 4894.5 0.07 0.08 137 3562.7 5850.0 0.05 0.07 183
SIRPT 2879.7 3341.1 0.08 0.08 814 3345.0 3123.4 0.04 0.03 952 4495.1 3523.0 0.10 0.00 1138

n50m1k3T5 SIRP 5987.4 8727.2 0.04 0.08 837 7364.0 10676.1 0.02 0.00 937 7139.9 13822.7 0.08 0.09 1172
SIRPT 4566.5 6612.3 0.07 0.01 910 5247.4 9435.5 0.08 0.06 1147 5371.1 13063.1 0.04 0.08 1114

n50m1k3T7 SIRP 7779.3 12495.2 0.05 0.03 1022 9267.2 14271.5 0.02 0.09 1018 9898.4 19266.0 0.05 0.05 1153
SIRPT 5650.9 8406.0 0.04 0.02 1037 6167.3 12209.0 0.01 0.04 1196 6555.2 12179.3 0.05 0.05 1198

n50m3k3T3

SIRP 3221.0 4608.3 0.07 0.06 1020 3315.0 5485.1 0.02 0.10 1153 4724.5 8950.0 0.05 0.05 1133
SIRPT 2987.7 4690.8 0.06 0.09 1044 3518.1 3749.9 0.02 0.08 1105 4984.4 6267.0 0.06 0.01 1131
SIRPS 2252.0 3234.0 0.02 0.08 1031 2402.3 4235.8 0.01 0.03 1155 2923.3 5334.6 0.02 0.06 1136
SIRPTS 2784.4 1338.5 0.01 0.02 733 3490.3 1796.3 0.07 0.01 814 3708.1 3672.4 0.03 0.05 1066

n50m3k3T5

SIRP 7491.9 10749.9 0.01 0.01 944 8989.5 13411.5 0.09 0.07 1046 9362.7 16107.2 0.01 0.07 1157
SIRPT 6773.8 10190.3 0.04 0.00 1018 7451.0 11996.2 0.00 0.06 1022 9074.0 14842.8 0.05 0.01 1051
SIRPS 5775.1 8327.7 0.07 0.05 1021 6314.3 10862.8 0.09 0.09 1044 8842.2 10877.2 0.01 0.02 1175
SIRPTS 5666.7 8104.1 0.07 0.03 900 5867.6 10368.2 0.07 0.05 990 7959.9 10351.1 0.04 0.04 1138

n50m3k3T7

SIRP 9468.7 14394.0 0.02 0.04 931 10872.8 17762.5 0.01 0.05 1192 12500.6 11775.8 0.07 0.01 1154
SIRPT 6830.4 9652.2 0.01 0.08 1020 7477.7 19999.4 0.06 0.00 1065 8971.0 13885.1 0.05 0.06 1156
SIRPS 8163.8 8593.3 0.05 0.01 1107 9693.2 18173.9 0.05 0.02 1051 12214.8 8257.9 0.02 0.04 1114
SIRPTS 6977.8 8589.6 0.08 0.08 1100 8249.6 13200.2 0.01 0.02 1009 11887.5 6989.1 0.00 0.02 1141

n50m5k3T3

SIRP 4322.9 6098.8 0.06 0.03 1103 5296.7 7365.7 0.04 0.08 1157 6257.0 8355.4 0.03 0.09 1047
SIRPT 3165.3 4661.9 0.02 0.09 1149 3642.2 6774.0 0.09 0.09 1167 4529.3 6120.4 0.04 0.09 1136
SIRPS 2792.4 4121.3 0.06 0.02 1031 2942.8 6772.9 0.07 0.08 1189 3887.5 5610.5 0.07 0.01 1088
SIRPTS 3543.3 1676.8 0.04 0.08 1111 4330.4 2977.6 0.04 0.01 1189 5735.5 1484.6 0.01 0.03 1027

n50m5k3T5

SIRP 8734.7 13474.1 0.04 0.08 1035 10493.1 16357.3 0.01 0.00 1142 11211.8 20767.1 0.02 0.05 1002
SIRPT 6379.8 13192.1 0.07 0.00 1032 7388.0 16391.8 0.01 0.05 1142 10282.9 19097.9 0.03 0.02 1031
SIRPS 8089.8 10919.6 0.08 0.01 1138 10541.2 10990.3 0.00 0.10 1134 9170.9 18917.7 0.03 0.01 1164
SIRPTS 6270.5 9713.4 0.02 0.01 1037 8190.7 11149.8 0.06 0.03 1038 8765.5 13727.5 0.01 0.09 1093

n50m5k3T7

SIRP 6842.1 16925.0 0.00 0.09 1110 7953.2 18420.6 0.04 0.03 1143 8572.8 16798.0 0.06 0.04 1079
SIRPT 9156.9 11862.0 0.01 0.03 1063 10719.7 14406.8 0.08 0.06 1144 12886.1 9144.9 0.00 0.08 1067
SIRPS 9966.5 10169.7 0.07 0.08 1012 10551.7 15399.7 0.06 0.10 1126 13102.6 8271.4 0.08 0.10 984
SIRPTS 8516.5 11309.5 0.01 0.03 1025 9476.7 13754.1 0.05 0.07 1171 10727.6 8792.5 0.00 0.06 1127
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Table B.8: Breakdown of cost for a number of product varying between 1 and 5 - number of customers equal to 50
Instances Model PD SPD NBD

T I LS S Ts SV (%) T I LS S Ts SV (%) T I LS S Ts SV (%)

n50m1k3T3 SIRP 2714 2513 1495 0 0 2943 3524 1371 0 0 3563 3799 2051 0 0
SIRPT 2880 1256 809 0 1276 7 3345 1332 688 0 1103 17 4495 2352 20 0 1151 15

n50m1k3T5 SIRP 5987 6024 2704 0 0 7364 6859 3817 0 0 7140 8158 5665 0 0
SIRPT 4567 2778 1252 0 2582 24 5247 4437 1735 0 3264 19 5371 4253 305 3671 4835 12

n50m1k3T7 SIRP 7779 8067 4428 0 0 9267 9062 5209 0 0 9898 12912 6354 0 0
SIRPT 5651 2785 2295 0 3326 31 6167 5335 2970 0 3904 22 6555 7353 122 0 4705 36

n50m3k3T3

SIRP 3221 2548 2060 0 0 3315 3208 2277 0 0 4725 6655 2295 0 0
SIRPT 2988 2186 975 0 1530 2 3518 1306 915 0 1529 17 4984 4075 65 0 2127 18
SIRPS 2252 1236 971 1027 0 30 2402 1986 675 1575 0 25 2923 3324 443 1567 0 40
SIRPTS 2784 269 158 466 446 47 3490 228 181 659 728 40 3708 1083 107 1069 1413 46

n50m3k3T5

SIRP 7492 6435 4315 0 0 8990 7413 5999 0 0 9363 10507 5600 0 0
SIRPT 6774 4141 2748 0 3301 7 7451 5054 2147 0 4795 13 9074 8581 575 0 5686 6
SIRPS 5775 3725 2191 2412 0 23 6314 4811 2489 3563 0 23 8842 7309 353 3215 0 23
SIRPTS 5667 1780 841 2382 3101 25 5868 2137 1461 3240 3530 28 7960 2804 208 3653 3686 28

n50m3k3T7

SIRP 9469 8841 5553 0 0 10873 12443 5320 0 0 12501 6682 5094 0 0
SIRPT 6830 3729 2659 0 3264 31 7478 8653 4191 0 7156 4 8971 7435 1998 0 4452 6
SIRPS 8164 4035 2084 2474 0 30 9693 7550 4954 5670 0 3 12215 5296 87 2875 0 16
SIRPTS 6978 1467 1116 2573 3434 35 8250 1965 1362 4656 5217 25 11888 1997 303 2494 2195 22

n50m5k3T3

SIRP 4323 3590 2509 0 0 5297 5268 2098 0 0 6257 5102 3254 0 0
SIRPT 3165 1982 926 0 1754 25 3642 2647 1716 0 2411 18 4529 4107 14 0 1999 27
SIRPS 2792 1402 1305 1414 0 34 2943 2919 1686 2169 0 23 3888 2868 1179 1564 0 35
SIRPTS 3543 338 213 491 634 50 4330 637 246 984 1111 42 5735 521 0 478 485 51

n50m5k3T5

SIRP 8735 7944 5530 0 0 10493 9567 6790 0 0 11212 13719 7048 0 0
SIRPT 6380 5066 3415 0 4711 12 7388 7331 4083 0 4978 11 10283 10756 2085 0 6256 8
SIRPS 8090 4452 2532 3935 0 14 10541 4199 3002 3788 0 20 9171 12209 452 6256 0 12
SIRPTS 6270 1856 1241 3176 3440 28 8191 2735 926 3717 3771 28 8766 5194 313 3816 4404 30

n50m5k3T7

SIRP 6842 10509 6416 0 0 7953 12213 6208 0 0 8573 9850 6948 0 0
SIRPT 9157 3996 3592 0 4274 12 10720 5453 3467 0 5486 5 12886 5779 5 0 3361 13
SIRPS 9966 3657 3614 2898 0 15 10552 7517 3343 4540 0 2 13103 4725 674 2873 0 16
SIRPTS 8517 2107 1279 3927 3997 17 9477 2742 2203 4382 4427 12 10728 2231 88 3178 3296 23
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Table B.9: Computational results for a number of product varying between 20 and 40 - number of customers equal to50
Instances Model PD SPD NBD

FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s) FSC SSC LB (%) UB (%) CPU (s)

n50m20k3T3

SIRP 4189.7 7894.2 0.60 0.34 1140 6486.8 7651.9 0.62 0.68 884 5681.2 10979.3 0.82 0.94 929
SIRPT 5310.2 5234.5 0.70 0.32 1136 5750.2 5095.7 0.69 0.29 827 7075.3 7787.1 0.60 0.86 1154
SIRPS 3097.9 7374.1 0.33 0.66 1043 4360.7 6286.9 0.70 0.24 811 3956.6 10154.3 0.94 0.47 1178
SIRPTS 3245.0 5371.6 0.75 0.66 1043 4627.2 3995.4 0.23 0.24 1070 4455.3 5757.7 0.75 0.50 1091

n50m20k3T5

SIRP 8704.8 16059.9 0.70 0.72 1142 12703.4 15818.0 0.49 0.73 1055 10128.5 21336.3 0.75 0.32 1175
SIRPT 7578.3 10173.6 0.71 0.63 931 9572.6 14180.8 0.30 0.32 866 10322.3 16579.6 0.97 0.65 924
SIRPS 7760.2 11846.2 0.70 0.74 1152 7831.4 11172.2 0.71 0.66 1118 8818.3 15315.0 0.71 0.56 986
SIRPTS 5039.3 7919.1 0.66 0.58 948 6299.6 7467.0 0.63 0.24 934 6197.2 10926.8 0.67 0.98 913

n50m20k3T7

SIRP 12111.8 20854.5 0.59 0.65 1030 19547.9 23480.8 0.65 0.62 983 19948.0 32285.5 0.60 0.74 1150
SIRPT 8820.1 15357.8 0.78 0.36 810 13174.9 21122.2 0.66 0.35 898 13650.1 28966.6 0.68 0.76 1049
SIRPS 8544.7 15066.0 0.64 0.47 852 12009.2 23327.8 0.33 0.58 1195 13411.9 31137.1 0.33 0.43 1096
SIRPTS 12904.1 7019.0 0.71 0.50 1021 15048.4 13507.6 0.56 0.39 1026 16133.6 22243.0 0.92 0.99 1107

n50m30k3T3

SIRP 5320.9 7918.4 0.55 0.50 803 5063.2 8392.1 0.60 0.24 926 6508.0 12247.1 0.79 0.78 953
SIRPT 4664.1 6921.1 0.77 0.34 1084 5803.2 5516.8 0.71 0.28 1164 6491.8 10613.0 0.34 0.56 827
SIRPS 3385.1 7601.1 0.63 0.72 988 5113.1 6151.8 0.64 0.62 1054 4943.0 12376.9 0.81 0.44 1112
SIRPTS 4268.5 4524.2 0.33 0.75 834 5505.4 4363.7 0.47 0.89 970 5809.2 10019.4 0.80 0.56 1166

n50m30k3T5

SIRP 11174.6 17775.2 0.45 0.56 824 13835.3 20124.6 0.28 0.55 930 18103.9 25551.5 0.53 0.85 874
SIRPT 10564.5 15562.8 0.79 0.55 904 14373.3 15844.5 0.42 0.39 1127 14554.8 24931.9 0.62 0.34 1008
SIRPS 9375.0 15826.6 0.75 0.43 920 12109.5 18837.7 0.76 0.58 806 12168.8 27337.1 0.86 0.95 930
SIRPTS 8392.5 14147.0 0.76 0.70 831 11184.4 15221.6 0.65 0.83 875 11221.4 21276.1 0.44 0.82 935

n50m30k3T7

SIRP 13231.7 24757.7 0.33 0.46 1069 19379.8 28412.5 0.42 0.74 1072 17471.9 36856.2 0.74 0.87 827
SIRPT 9669.3 22944.7 0.51 0.32 1097 14361.6 29783.9 0.59 0.40 1061 12877.2 36526.7 0.58 0.97 895
SIRPS 13086.7 19611.9 0.49 0.77 851 14319.7 29980.9 0.81 0.33 1062 20766.6 30057.2 0.65 0.63 954
SIRPTS 11635.0 15735.0 0.71 0.61 1180 16101.0 21221.6 0.58 0.55 1058 16069.3 29056.5 0.47 0.68 1107

n50m40k3T3

SIRP 6394.7 30832.4 0.79 0.33 1052 9187.8 11325.3 0.27 0.65 1029 8283.4 14219.7 0.60 0.39 1123
SIRPT 4597.6 29865.3 0.68 0.31 1095 6156.1 9211.1 0.47 0.78 938 7267.8 10602.4 0.54 0.90 1136
SIRPS 4353.9 30514.5 0.46 0.77 1090 4723.4 10529.2 0.54 0.74 897 5821.6 11018.4 0.91 0.92 1173
SIRPTS 5749.8 22620.0 0.57 0.38 829 6654.8 5941.2 0.52 0.41 1178 7115.2 7282.9 0.80 0.78 1030

n50m40k3T5

SIRP 15555.0 21666.9 0.79 0.36 1178 19721.5 28662.9 0.63 0.38 1012 18428.7 35519.6 0.43 0.60 892
SIRPT 9705.8 25022.4 0.77 0.44 805 12491.4 27053.8 0.29 0.61 931 15974.7 26064.0 0.62 0.35 806
SIRPS 13219.6 20256.1 0.49 0.39 951 14697.8 24748.8 0.90 0.83 923 15173.7 28807.3 0.92 0.35 881
SIRPTS 8657.2 15958.0 0.51 0.66 1085 15280.9 19615.0 0.56 0.86 923 13711.9 21692.0 0.44 0.95 912
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n50m40k3T7

SIRP 11093.0 38880.1 0.79 0.45 896 15387.4 29067.2 0.86 0.86 985 14070.6 27968.7 0.99 0.55 805
SIRPT 14619.5 21612.2 0.78 0.66 1059 16179.7 25074.0 0.52 0.30 1089 19213.9 18481.0 0.79 0.70 810
SIRPS 16061.8 20402.0 0.52 0.52 1015 19098.4 22608.4 0.33 0.25 856 23291.7 14112.8 0.72 0.65 1123
SIRPTS 12113.8 20498.2 0.73 0.42 956 17007.5 20894.2 0.67 0.59 965 18137.7 12541.0 0.46 0.63 864
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Table B.10: Breakdown of cost for a number of product varying between 20 and 40 - number of customers equal to 50
Instances Model PD SPD NBD

T I LS S Ts SV (%) T I LS S Ts SV (%) T I LS S Ts SV (%)

n50m20k3T3

SIRP 4190 5274 2620 0 0 6487 5274 2377 0 0 5681 8769 2210 0 0
SIRPT 5310 2046 1300 0 1889 13 5750 2046 1122 0 1927 23 7075 4078 1032 0 2677 11
SIRPS 3098 2550 2286 2538 0 13 4361 2550 1321 2416 0 25 3957 3987 2002 4165 0 15
SIRPTS 3245 828 714 1815 2015 29 4627 828 310 1258 1600 39 4455 955 425 2387 1991 39

n50m20k3T5

SIRP 8705 10013 6047 0 0 12703 10013 5805 0 0 10129 15134 6202 0 0
SIRPT 7578 6588 183 0 3403 28 9573 6588 1894 0 5699 17 10322 7895 2653 0 6032 15
SIRPS 7760 5896 2218 3733 0 21 7831 5896 1666 3611 0 33 8818 8128 2162 5025 0 23
SIRPTS 5039 1591 493 2928 2907 48 6300 1591 403 2784 2689 52 6197 1423 477 4483 4543 46

n50m20k3T7

SIRP 12112 15706 5148 0 0 19548 15706 7774 0 0 19948 23191 9095 0 0
SIRPT 8820 8345 1392 0 5621 27 13175 8345 4107 0 8671 20 13650 13005 4073 0 11888 18
SIRPS 8545 10404 18 4643 0 28 12009 11404 4841 7082 0 18 13412 14582 5657 10898 0 15
SIRPTS 12904 1833 473 2424 2289 40 15048 1833 997 5209 5469 34 16134 2990 1525 8490 9238 27

n50m30k3T3

SIRP 5321 6493 1425 0 0 5063 6493 1899 0 0 6508 10406 1841 0 0
SIRPT 4664 2261 2237 0 2423 12 5803 2261 1296 0 1960 16 6492 4989 1985 0 3639 9
SIRPS 3385 2813 2207 2581 0 17 5113 2813 1279 2060 0 16 4943 5807 1402 5167 0 8
SIRPTS 4269 623 639 1554 1707 34 5505 623 280 1723 1737 27 5809 1607 560 4253 3600 16

n50m30k3T5

SIRP 11175 15411 2364 0 0 13835 15411 4713 0 0 18104 20257 5294 0 0
SIRPT 10564 6851 2661 0 6051 10 14373 6851 2586 0 6407 11 14555 11552 3342 0 10038 10
SIRPS 9375 9491 131 6204 0 13 12110 9891 3274 5672 0 9 12169 12838 4726 9773 0 10
SIRPTS 8393 2831 2394 4312 4611 22 11184 2831 1191 5978 5223 22 11221 3365 1631 6976 9304 26

n50m30k3T7

SIRP 13232 19213 5545 0 0 19380 19213 9200 0 0 17472 26817 10040 0 0
SIRPT 9669 15055 926 0 6964 14 14362 15055 3554 0 11175 8 12877 19994 4040 0 12492 9
SIRPS 13087 12128 63 7421 0 14 14320 13628 6933 9420 0 7 20767 12952 5158 11948 0 6
SIRPTS 11635 4099 3 5926 5707 28 16101 4505 1307 7058 8351 22 16069 5168 2116 10452 11320 17

n50m40k3T3

SIRP 6395 7801 23032 0 0 9188 7801 3524 0 0 8283 9288 4931 0 0
SIRPT 4598 3837 14578 0 11450 7 6156 3837 1768 0 3607 25 7268 5260 994 0 4349 21
SIRPS 4354 4575 13788 12151 0 6 4723 4575 2177 3777 0 26 5822 5353 1703 3962 0 25
SIRPTS 5750 1311 3606 8849 8853 24 6655 1311 529 2183 1918 39 7115 1493 389 2499 2902 36

n50m40k3T5

SIRP 15555 18339 3328 0 0 19721 18339 10324 0 0 18429 23539 11981 0 0
SIRPT 9706 11191 6087 0 7744 7 12491 11191 5393 0 10470 18 15975 10019 5002 0 11043 22
SIRPS 13220 9977 2249 8030 0 10 14698 9977 6102 8670 0 18 15174 12815 4740 11252 0 18
SIRPTS 8657 2973 1353 5616 6016 34 15281 2973 1230 7650 7762 28 13712 3173 1399 9228 7892 34
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n50m40k3T7

SIRP 11093 22341 16539 0 0 15387 22341 6726 0 0 14071 19103 8866 0 0
SIRPT 14620 9245 4464 0 7904 27 16180 9245 5436 0 10393 7 19214 7052 3508 0 7921 10
SIRPS 16062 10078 3783 6541 0 27 19098 10078 3508 9023 0 6 23292 7161 1719 5233 0 11
SIRPTS 12114 2640 3469 6533 7857 35 17008 2640 1222 8314 8719 15 18138 2220 615 4461 5245 27
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