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Artificial intelligence for real-time decoding of motor
commands from ECoG of disabled subjects for chronic

brain-computer interfacing

Abstract

Brain-computer interfaces (BCIs) may significantly improve tetraplegic patients’ qual-
ity of life by creating an alternative communication path between humans and the en-
vironment, potentially compensating for motor function loss. This thesis focuses on
ECoG-based BCI systems that showed a high potential to provide efficient communica-
tion while being less invasive than intracortical recordings. In particular, we explored
problem of continuous 3D hand translation decoding in a tetraplegic patient. In this
case, most studies use linear models that may be too simple to analyze brain processes
and may suffer from low decoding accuracy. Models based on deep learning (DL) have
been proven effective in various tasks and thus emerge as a potential solution to create a
robust brain signals representation. In this thesis, we studied the potential of DL-based
methods for hand translation decoding from ECoG signals.

First, we evaluated several DL models to predict 3D hand translation from ECoG
time-frequency features. The analysis was performed on a dataset recorded with a
tetraplegic subject in the BCI and Tetraplegia clinical trial (NCT02550522). We started
the investigation with a multilayer perceptron taking vectorized features as input. Then,
we proposed convolutional neural networks (CNN), which take matrix-organized inputs
approximating the spatial arrangement of the electrodes. In addition, we investigated the
usefulness of long short-term memory (LSTM) to analyze temporal information. Results
showed that CNN-based architectures performed better than the current state-of-the-art
multilinear model on the analyzed ECoG dataset. The best architecture used a CNN-
based model to analyze the spatial representation of time-frequency features followed
by LSTM exploiting the sequential character of the desired hand trajectory. Compared
to the multilinear model, DL-based solutions increased average cosine similarity by up
to 60%.

In the case of BCI, access to large datasets is limited because recordings are time-
consuming and tiring. To investigate the influence of the dataset size on the decoding
performance, we compared the learning curve characteristics of DL and multilinear
models evaluated in the previous step. The training dataset size was gradually in-
creased from 5 to 140 minutes of signal in different computational experiments, focusing
on dataset size requirements and patient adaptation effects. Our results revealed that
DL models have a learning curve profile similar to the multilinear model, increasing
performance for almost all training dataset sizes. This result validates the DL-based
models as a good candidate for real-life applications. We also observed increased data
quality for recordings performed later, indicating improved patient ability to generate
meaningful patterns.

DL proved its usefulness for computer vision, primarily in the case of end-to-end
learning. It enabled extracting more powerful representations trained for a specific task
and removed the step of hand-crafted feature extraction. We evaluated methods using
raw ECoG signals as a natural extension of hand-crafted feature analysis. In the data
processing pipeline evaluated so far, continuous wavelet transform was used to extract
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time-frequency representation, which can be seen as a convolution between a set of
wavelet filters and the ECoG signal. In this setup, the gradient w.r.t. filters coefficients
can be computed, and thus the whole network can be trained within an end-to-end
scheme. The parameters of wavelet filters were optimized end-to-end to see potential
profit from adjusting the parameters to this specific problem. The results showed only
minor or no benefit from training the wavelets in terms of cosine similarity, while end-
to-end models require more computational power. This may suggest that training first
layer parameters may be less beneficial and more challenging in the case of ECoG-based
BCI.

Keywords: brain-computer interface, BCI, ECoG, tetraplegia, deep learning, convolu-
tional neural networks, multilayer perceptron, LSTM, dataset size, learning curve, end-
to-end, hand-crafted features, time-frequency representation, brain signals
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0
Thesis structure

The main part of this thesis is composed of three scientific articles created dur-
ing the 3-years-long PhD project. Each article presents a piece of methodological
development together with computed results on the topic of artificial intelli-
gence used to decode motor commands from electrocorticography signals for
brain-computer interfaces. All three major contributions were prepared gradu-
ally, step-by-step, aiming to understand and improve the current state-of-the-art
system as well as previously proposed methods. Before presenting the main con-
tributions, we start with a general introduction to the topic of brain-computer
interfacing and provide detailed context regarding the clinical trial. Next, we
present artificial intelligence and deep learning methods that, together with
brain-computer interfaces, constitute the thesis’s core. As a final part of the in-
troduction, we precise our research goals and describe the process of research
project development, creating a link between each scientific contribution and
explaining their importance in the context of current deep learning and brain-
computer interfaces research. Finally, after presenting the main contributions, a
conclusion chapter provides a global view of the presented research, describes
the thesis’s known limitations, and presents potential further developments.
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1
Introduction

1.1 Brain-computer interfaces

Brain-computer interface (BCI) is a device that enables a direct connection be-
tween brain and computer without requiring any muscle activation. In recent
years, BCIs have become more popular in the mainstream thanks to ambitious
projects on the border of science and fiction. In real-life applications, BCIs are
still far away from the vision of capable and widespread mind-reading technol-
ogy presented by startups and entrepreneurs. However, significant progress in
BCI-related research was made with several aspiring, cutting-the-edge projects.
While BCI research is driven by various motivations, e.g., entertainment [Cattan,
2021], enhancing human capabilities [Brunner et al., 2015], it is medical applica-
tions that lead the progress in the field. In particular, BCI can be used in several
medical applications, for example, consciousness assessment [Dovgialo et al.,
2019], rehabilitation [Mane et al., 2020; Sebastián-Romagosa et al., 2020], motor
deficits compensation [Ajiboye et al., 2017; Benabid et al., 2019; Hochberg et al.,
2012]. In this thesis, we focus on motor BCI used to restore/compensate lost
functionalities by providing control over various effectors, e.g., computer cursor
[Wolpaw and McFarland, 2004], robotic arm [Hochberg et al., 2012], exoskeleton
[Benabid et al., 2019], or electrical stimulation [Ajiboye et al., 2017; Lorach et al.,
2022]. In the case of motor BCI, many patients, for example, with locked-in syn-
drome or after spinal cord injury, preserve a fully-functional cortex so they can
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generate distinct motor imagery patterns. However, the connection between the
brain and the muscles is interrupted due to injury or disease, so the neuronal
signals are not properly transmitted. Another group of patients consists of those
whose cortex is damaged, for example, after a stroke. In this case, brain activity
is affected due to the loss of neurons. In both cases, as a result, patients lose
motor functions. Trying to respond to the difficulties of motor disabled individ-
uals, motor BCI research develops quickly because of the idea that motor BCI
could treat paralysis by enabling voluntary control of prosthetic limbs [Volkova
et al., 2019]. Additionally, a large number of individuals are impacted by motor
disabilities. Just in the United States, 12,000 people sustain motor deficits each
year due to spinal cord injury only [Hachem et al., 2017]. This creates huge
demand all over the world for assistive technologies. At the same time, many
best-performing BCI systems are used only in the laboratory settings [Shih et al.,
2012] due to several factors, e.g., the complexity of the system, relatively low
performance and usefulness, high cost, or in many cases non-negligible health
risk.

1.1.1 System outline

Typically, a motor BCI system is built up of multiple pieces that communicate
with each other and constitute a data processing pipeline. The zeroth and most
crucial step in the motor BCI system is the human, who performs a mental task
that induces changes in brain activity. Next, these changes caused by neuronal ac-
tivity modulation in the cortex are captured with a recording device. Signals are
then transmitted to the signal processing block that translates the recorded signal
into commands understandable by effectors. Finally, decoded commands rep-
resenting the participant’s intent are executed by an effector. Performed actions
are observed by the subject, which provides visual feedback to the participant.
In some systems, feedback can also be presented in different forms, for example,
proprioceptive feedback [Flesher et al., 2016]. In the following subsections, BCI
components are described in detail.

1.1.2 Recording devices

BCIs rely on recording devices to obtain information about a user’s intention
through brain activity changes. It can be recorded with two main approaches
[Nicolas-Alonso and Gomez-Gil, 2012], i.e., indirect, measuring blood hemody-
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Figure 1.1: Visualization of typical BCI system.

namic response to neuronal activity with functional near-infrared spectroscopy
(fNIRS) or functional magnetic resonance imaging (fMRI) and direct, record-
ing electrical/magnetic traces of neuronal activity with electroencephalogra-
phy (EEG)—electrical potential from the skull surface, magnetoencephalogra-
phy (MEG)—magnetic fields in the brain tissue, electrocorticography (ECoG)—
electrical potential from the brain surface, or intracortical micro-electrode ar-
rays (MEAs)—electrical potential recorded with electrodes penetrating cortex.
In this thesis, we focus on BCIs utilizing direct recording devices that are more
often used and have higher temporal resolution [Nicolas-Alonso and Gomez-
Gil, 2012]. Recording devices can also be divided into invasive and non-invasive.
Invasive methods require implantation, which carries the health risk and costs
associated with brain surgery. On the other hand, non-invasive methods are
cheaper, safer, and easier to use while usually providing less information about
brain activity changes [Leuthardt et al., 2021].

EEG

EEG is a non-invasive method of recording electrical brain activity, i.e., voltage
fluctuations, from electrodes placed over the scalp [Buzsáki et al., 2012]. This is by
far the most popular recording modality, thanks to its low cost, portability, and
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ease of use. However, the skull and skin separating electrodes from the cortex
increase the distance signals travel. This poses as a low-pass filter and decreases
the spatial resolution and overall recording quality [Burle et al., 2015]. The signal
is also more contaminated with artifacts not originating from brain activity, e.g.,
blinks and eye movements [Ball et al., 2009], compared to invasive recording
methods. Due to the distance between electrode and signal sources, EEG sensors,
similarly to ECoG and MEG, can measure the activity of synchronized neuron
populations without access to single unit activation. Usually, EEG systems record
signals from multiple electrodes.

MEG

Magnetoencephalography records magnetic fields induced by electrical currents
flowing in neurons in the brain. MEG provides higher spatial resolution than
EEG as the recorded magnetic field is less influenced by the variability of tissue
and bone impedance [Hämäläinen et al., 1993]. However, MEG devices are im-
practical for BCI due to the high cost of the recording device and the size of the
system requiring a user to stay still during the recording.

ECoG

Electrocorticography is an invasive (intracranial) recording method measuring
electrical potential on the brain surface, which does not require cortex pene-
tration. During surgery, a piece of the skull (craniotomy) is removed through
which implants/grids of electrodes are placed on the brain surface, covering
only a small part of the cortex. Compared to EEG, the ECoG signal contains
higher frequencies because the low-pass filter of the skull and skin is removed.
Recorded signal also has a higher spatial resolution, signal-to-noise ratio, and
overall better data quality [Schalk and Leuthardt, 2011]. However, EEG and
ECoG can only record activity of neurons’ population without access to single
neurons. Compared to MEAs, ECoG is less invasive, with a lower risk of medical
complications [Volkova et al., 2019].

ECoG recordings for motor BCI were typically performed as a secondary goal
during medical assessment aiming primarily to, for example, localize epileptic
foci. In this case, devices were implanted for a few days to minimize patient risk
and removed when the primary goal was achieved. Recently, ECoG implants
have become viable for chronic recording with the long-term stability of the
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signal [Larzabal et al., 2021], which is especially important in the case of BCI in
clinical application. In the case of ECoG recordings performed primarily for mo-
tor BCI, signals can be recorded from localization optimized for motor imagery
patterns [Benabid et al., 2019; Vansteensel et al., 2016], in contrast to epileptic
foci detection, where ECoG grids position was selected to identify epileptic foci.
ECoG arises as a promising recording modality, being a compromise between
invasiveness and signal quality [Schalk and Leuthardt, 2011].

Intracortical

The most invasive method of recording brain signals for BCI involves arrays
of electrodes (MEAs) that penetrate the cortex. This is a highly invasive pro-
cedure requiring craniotomy and placing electrodes inside the cortex. Cortex
penetration may influence the signal stability in time as it may cause local neu-
rodegeneration [McConnell et al., 2009] and astroglial scar formation covering
electrodes [Gunasekera et al., 2015] which significantly decreases signal quality.
MEAs can record single-unit spiking activity, providing a much higher informa-
tion level than other recording methods. However, intracortical recordings are
less stable with day-to-day variability due to physiological mechanisms in the
cortex [Perge et al., 2013]. Thus, BCI systems based on MEAs can provide high
performance but may require more often recalibration [Jarosiewicz et al., 2013].
To this day, intracortical-based BCIs are most powerful systems with control of
neuroprosthetic arm with up to ten degrees of freedom [Collinger et al., 2013;
Wodlinger et al., 2014] or high performance brain-to-text communication [Willett
et al., 2021]. Unfortunately, those systems are still far from getting out of the lab
due to high invasiveness, mandatory wired connection decreasing portability
and the need for often system recalibration.

1.1.3 Signal processing

While recording devices provide high-quality signals, data cannot be directly
deciphered into understandable commands. Therefore, typical BCI systems re-
quire a signal processing step that creates a mapping between brain signals and
instructions for effectors. Due to the complexity of the problem, machine learn-
ing (ML) pipelines are usually utilized. ML describes a family of data-driven
approaches in which algorithm behavior is learned from the data enabling the
extraction of desired information.
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Pre-processing may be applied as a first step in the data processing pipeline,
aiming to improve data quality and adapt data to match the decoder’s require-
ments. Data transformations commonly include artifact cleaning, data standard-
ization, signal resampling and referencing, and temporal filtering. [Bashashati
et al., 2007]

Secondly, an optional step of feature extraction may be performed. It aims
to transform data into a well-suited representation for the decoder and con-
tain pertinent information for decoding the user’s intention. The choice of the
representation has an enormous effect on the performance of ML models [Good-
fellow et al., 2016]. Thus, many BCI studies used feature extraction methods to
transform the temporal signal into time-frequency representation [Bashashati
et al., 2007] by decomposing the signal into modulation of activity in mul-
tiple frequency bands, e.g., wavelet transform, filter-bank methods, bandpass
filtering. Designing feature extraction pipelines is typically time-consuming and
requires data-specific knowledge, usually with a neuroscientific background. To
avoid that and benefit from end-to-end optimization, end-to-end models that
use deep learning (DL) were proposed. In this case, there is no feature extraction
step, and models analyze raw brain signals data (usually only pre-processed)
[Schirrmeister et al., 2017].

After feature extraction, the data is further analyzed with ML models that
aim to learn a mapping between brain signals and the user’s intentions to de-
code BCI commands. To operate properly, ML models (also called decoders)
require datasets to estimate parameters defining model behavior. In the case of
BCI, supervised learning is the most popular. Thus, besides recorded brain sig-
nals, ML models also require labels indicating the patient’s intention. To collect
both brain signals and ground-truth labels, calibration sessions are required in
which the user is asked to perform tasks defined by the experimental protocol.
This means that the participant cannot use the BCI system for any practical
task but has to follow experimental instructions. Furthermore, during calibra-
tion, experimenters record multiple realizations of a user performing task to
collect a dataset containing numerous pairs of brain signals and ground-truth
label (X𝑖 , y𝑖). This is usually tiring and time-consuming, reducing BCI’s real-life
operation capabilities.

Formally, a decoder represents a function 𝑓 (X𝑖 ;𝜃) → ŷ𝑖 , where 𝑓 is a function
that maps 𝑖-th observation X𝑖 into user’s intention prediction ŷ𝑖 that in the case
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of accurate decoding should be equal to ground-truth label y𝑖 . A model function
𝑓 typically depends on a set of parameters 𝜃 estimated using the dataset to
maximize decoding performance.

1.1.4 Effector

BCI systems can have various effectors that execute commands decoded by the
data processing pipeline. The most basic effectors in the case of motor BCI
can be as simple as a computer cursor on a monitor screen. However, more
advanced tools were used for motor BCI that are closer to functions that are
most needed in daily life of disabled people, e.g. robotic arm [Collinger et al.,
2013; Wodlinger et al., 2014] or exoskeleton [Benabid et al., 2019]. What is more,
recently, implants stimulating the spinal cord in paraplegic patients were used
to give users back the ability to move their legs and even walk outside the lab.
This opens a bright perspective for new and more advanced BCI applications
for supporting everyday mobility and providing neurorehabilitation methods
to people with spinal cord injury [Rowald et al., 2022].

1.1.5 Human in the loop and feedback

The presence of a human in the BCI loop is an essential factor influencing almost
all aspects of the system. The user and the BCI work together [Shih et al., 2012].
Achieving BCI control is impossible without the ability to produce significant
changes in brain activity for different motor commands. Motor imagery patterns
can be observed in the form of frequency band changes originating from event-
related desynchronization (ERD) and event-related synchronization (ERS) [Yi
et al., 2014]. Several factors originating from the presence of a human in the loop
affect the quality of MI patterns and brain signals datasets, which is essential for
a BCI to operate properly.

• Brain signals datasets are typically small in the number of observations.
To record data, a human subject has to participate in experiments. Due to
the nature of the exercise, i.e., tiring and repetitive experiments requiring
focus and strong attention through numerous realizations of the same task,
it is mentally exhaustive for the subject, and it limits the amount of available
data for calibrating the BCI systems.

• Recording sessions are usually long and exhaustive, causing variation
in the attention and engagement level of the participant. In the case of
disabled subjects, ground-truth labels for decoder training are estimated
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based on the instruction for the patient under the assumption that the user
is thoroughly executing the task (imaging movements without any actual
motion). Thus, mislabelled observations appear in the dataset, decreasing
data quality.

• It is not only the signal processing pipeline that learns how to decode
brain signals into commands but also the BCI user that can adjust motor
imagery patterns to operate the BCI more efficiently in the case of closed-
loop experiments [Jarosiewicz et al., 2013]. In closed-loop experiments,
a patient has actual control over effectors, typically with visual feedback
(systems with proprioceptive feedback were also proposed [Flesher et al.,
2016]), in contrast to open-loop experiments, in which the patient cannot
see the results of the imagined commands. Altogether, patient-model co-
adaptation makes the problem more complicated due to the learning of
two actors, namely the BCI data processing system and the subject.

• Additional challenge in the case of BCI datasets is the non-stationarity
of the signal [Gramfort et al., 2013; Perge et al., 2013]. Due to physiologi-
cal changes in the brain as well as day-to-day variability of brain activity,
the recorded brain signal is unstable with varying statistics across time.
Thus, models may not generalize well to data recorded later, resulting in
decreased decoding performance with time. Decoders may require recali-
bration, which limits real-life application suitability.

• In the case of invasive BCI, the high cost and health risk associated with
the surgery reduces the number of studies conducted worldwide, with
only a small number of patients willing to test those systems. This creates
additional legal/ethical concerns regarding experimental design and ca-
pabilities to perform experiments evaluating new methods within close to
real-life scenarios. Finally, it is one of the limiting factors of the current BCI
research, including the topic analyzed in this thesis.

All these factors make brain signals datasets challenging to analyze and unique
compared to popular ML datasets, for example, in computer vision. The datasets
are small and noisy with distribution shifts, which may significantly deteriorate
decoding performance and require methods adapted to brain signal character-
istics.

1.2 Clinical trial

This thesis was performed in the scope of “BCI and tetraplegia" (Clinical-
Trials.gov identifier: NCT02550522) clinical trial conducted at Clinatec, which
was approved by the Agency for the Safety of Medicines and Health Products
(Agence nationale de sécurité du médicament et des produits de santé—ANSM)
with the registration number: 2015-A00650-49 and the ethical Committee for the
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Protection of Individuals (Comité de Protection des Personnes—CPP) with the
registration number: 15-CHUG-19.

The main goal of the clinical trial is a proof of concept enabling tetraplegic sub-
jects to interact with their environment by controlling complex BCI effectors such
as a 4-limb exoskeleton [Eliseyev et al., 2014]. This is done by decoding tetraplegic
subjects’ intentions from the ECoG signal recorded from the brain surface. The
proposed BCI system is designed for long-term application to provide control
of multiple effectors to disabled subjects by using brain activity modulation. In
the project, substantial developments of all the BCI components were desired,
i.e., creating ECoG implants suitable for chronic recordings [Mestais et al., 2015],
building a signal processing platform for real-time signals decoding [Eliseyev
et al., 2017b], and finally designing a set of effectors including both robotic ex-
oskeleton [Morinière et al., 2015] and purely computer command executors. As
a result, the project may be a step toward improving the quality of tetraplegic
subjects’ life by providing them with tools that can compensate for part of the
lost motor function [Benabid et al., 2019].

1.2.1 Recording device

In the Clinatec BCI project, a WIMAGINE (wireless implantable multichannel
acquisition system for generic interface with neurons) [Mestais et al., 2015] ECoG
implant was created (see figure 1.2). The aim was to design a device that can
be implanted in humans for various clinical applications requiring long-term
chronic recordings. WIMAGINE implant is a wireless device (both signal trans-
mission and power supply) placed inside a 50 mm craniotomy. It records epidural
ECoG signal, which can be a reasonable trade-off between health risk associated
with the surgery and quality of recorded signal [Martens et al., 2014]. The im-
plant can record signals from 64 biocompatible electrodes arranged on a grid
and additional three reference electrodes. The signal is bandpass filtered on-chip
between 0.5 Hz and 300 Hz. Power is supplied to the implant inductively from a
helmet that is also used to receive the data. The helmet is connected to the base
station and finally to a computer. More details about the recording system can
be found in [Mestais et al., 2015].
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Figure 1.2: WIMAGINE implants.

Figure 1.3: EMY exoskeleton designed to be used as a BCI effector for tetraplegic
patients.

1.2.2 Effectors

Various experimental paradigms and effectors were designed for the clinical
trial. The most advanced assistive technology designed in the BCI project is an
EMY (Enhancing MobilitY) 4-limb robotic exoskeleton [Morinière et al., 2015]
(see figure 1.3 and 1.4.c) in which patient can stand, walk, grasp, translate both
hands and rotate wrists. This provides the ability to perform a fair number of
real-life tasks, such as reaching intended localization, moving objects, or even
pouring water.

Apart from the exoskeleton, more effectors were created. For example, a virtual
avatar environment which reflects real exoskeleton movements (figure 1.4.d).
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Figure 1.4: Example of BCI games/simulators implemented in the clinical trial
virtual environment, i.e., a)—2D cursor movement, b)—2D joystick control to
drive formula one car, d)—3D virtual avatar hand movement environment, and
an image of the patient performing hand translation and rotation experiment
with a real exoskeleton (c).

This virtual environment is useful in training patients to operate such a complex
effector in a safer and more comfortable position. This is needed in the case
of long recording sessions. Virtual effectors provide an opportunity to perform
experiments outside the lab, remotely, at the patient’s home. This is especially
important considering the current worldwide situation and the patient’s mobil-
ity limitations. Simulators can also be used at the beginning of patient training
to let the user learn how to use the system in more standard conditions and
gradually increase the difficulty. As the exoskeleton’s limbs move together with
the patient’s limbs, the perception of the movement can be modified, influencing
the brain activity, so the transfer between virtual and real environments may not
be straightforward. Figure 1.4 shows an example of virtual environment games.

The exoskeleton consists of multiple effectors controlled with two main types
of commands, i.e., discrete and continuous. In the case of discrete commands,
patient intention can be expressed as a binary instruction for an effector, e.g., in
the case of walking, the command represents whether the exoskeleton should
move or not; for grasping, whether to open/close the exoskeleton hand. Discrete
tasks are usually easier to use as they require less information and precision to be
decoded from the signals and are the most popular type of task for non-invasive
recordings. Continuous control effectors require a command describing the de-
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sired movement parameters, e.g., position, direction, and velocity. Examples of
effectors that use continuous commands can be hand translation—requires a 3D
vector defining the desired direction of movement or wrist rotation—requires
the angle to which the wrist should be rotated. Continuous decoding is more
challenging due to the higher level of information needed to perform correct
movements.

1.2.3 Signal processing

The overall signal processing pipeline used in the clinical trial is presented in
figure 1.5. The first step in the current signal processing pipeline is feature extrac-
tion. The recorded ECoG signal is transformed into a time-frequency represen-
tation. Every 100 ms, one-second-long windows of the signal are analyzed using
complex continuous wavelet transform (CWT). 15 Morlet wavelets with central
frequencies between 10 and 150 Hz (interval 10 Hz) were used to decompose
the signal into time-frequency representation. The modulus of the convolved
complex signal was averaged over 0.1 s fragments. Every observation of the
ECoG signal of shape 64 × 590 was transformed into a feature tensor of shape
64 × 15 × 10 with axes corresponding to electrodes, frequency bands, and time
steps. Obtained features were passed to the decoder. [Eliseyev et al., 2017a]

A signal processing system was designed to decode ECoG signals into actions
of multiple effectors using a mixture of experts. In the recursive exponentially
weighted Markov-switching linear model (REW-MSLM) [Moly et al., 2022], the
user can control several states, e.g., left or right hand translation, left or right
wrist rotation. The BCI works asynchronously, so the system can also be in
an idle state, meaning no effectors are activated. For every state, a multilinear
regression model (expert) predicts the desired hand, or more generally effector,
movement. Expert outputs are then weighted using the gate model (hidden
Markov model) output, i.e., the probability of every expert being activated. This
approach assumes that neuronal signals differ significantly for every state, so the
mapping between ECoG signal and desired movement can be modeled using
state-specific experts.

Described decoding model works in real-time, providing predictions to the
effector every 100 ms. The system’s main component is a multilinear expert
optimized using recursive exponentially weighted n-way partial least squares
(REW-NPLS) [Eliseyev et al., 2017a]. REW-NPLS allows for estimating parame-
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Figure 1.5: Visualization of a mixture of models system used in the clinical trial in
the case of upper-limb 8D alternative control [Moly et al., 2022]. Numbers below
the component name indicate the shape of a signal or feature tensor returned
by the component. In italic, the state’s name analyzed by an expert is described.
This visualization presents the experiment in which the patient can control 3D
left hand position, 3D right hand position, 1D left wrist rotation and 1D right
wrist rotation. LH and RH are acronyms for left hand and right hand.

ters online, i.e., every 15 seconds expert is fitted to the new batch of data. Thanks
to that, models can adjust to the new incoming data in real-time and potentially
improve decoder performance [Moly et al., 2022].

1.2.4 Thesis goals in the clinical trial context

A modern BCI decoding system should fulfill several requirements influenc-
ing control efficiency and communication performance. Decoders operate in
a complex environment consisting of several components and interact with a
tetraplegic patient. Skomrock et al. [2018] identified the three most desired fea-
tures of a BCI that may facilitate the adoption of the system in everyday clinical
use. We are going to present them briefly here with additional points that we
consider important from the clinical trial and ML models development perspec-
tive:

• A decoder has to predict motor commands with high accuracy, so the
system is able to follow user’s intentions. In the case of low performance,
the BCI system is hard to use as it does not execute properly tetraplegic
patient commands and requires more time to accomplish tasks Marathe
and Taylor [2015]. For example, upper-limb movements usually require
high precision, especially in the case of object manipulation. Thus, BCI
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decoding performance is crucial to achieving usability in everyday life ap-
plications. Finally, persistent low decoding performance may also decrease
the patient’s motivation and attention.

• As BCI interacts with a user in real-time, decoding has to be done with
low latency. Marathe and Taylor [2015] showed in a BCI simulator that
increasing processing delay between brain signals and effector actions
strongly affects the overall system performance. Moreover, increased la-
tency decreases the sense of agency [Evans et al., 2015] which is sensitive
to neuro-visual delay.

• BCI system should be multi-functional, i.e., enable performing a wide
variety of tasks. This is usually related to the number of effectors and di-
mensions the user can control. For example, most daily life actions require
bimanual movements and grasping that allow for object manipulation.
Typically, extending the capabilities of a BCI system to new functions can
decrease decoding accuracy and slow down the data processing pipeline
[Skomrock et al., 2018].

• Ideal decoder should require a small amount of data to achieve high per-
formance. Different ML algorithms may vary due to the necessary training
dataset size [Perlich et al., 2003]. In BCI, access to big datasets is limited as
recordings are performed in a specific experimental setup with a human
in the loop. Models requiring less data could reduce the time needed for
model calibration and make a BCI system more convenient.

Multilinear models used in the Clinatec signal processing pipeline are simple
yet capable models designed to match BCI decoder requirements. However, their
predictive power is limited due to their ability to express only linear relation-
ships. In the case of BCI systems, decoding performance is an essential factor
influencing overall BCI capabilities, especially when considering upper-limb
movements requiring high-performance decoding. Deep learning is a family of
machine learning models that model non-linear relationships in the data. This
allows for recognizing more complex patterns, which may not be possible in the
case of linear methods. In the last decade, the number of applications in which
deep learning showed effectiveness increased drastically. The first objective of
the thesis was to seek performance improvement by investigating whether DL-
based models are suitable for 3D hand translation decoding in the ECoG BCI
context. We focused on upper-limb translation, which is highly important for
increasing tetraplegic patients’ autonomy and requires particularly accurate de-
coding. Additionally, the increase in performance was the most needed for 3D
hand translation, considering multilinear model accuracy. Thanks to the modu-
lar structure of the signal processing pipeline consisting of a mixture of experts, it
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is possible to replace some experts with another type of model so that DL-based
methods can be easily integrated into the experimental setup. We focused on
improving 3D hand translation decoding performance in the article presented in
chapter 2, where we applied DL-based models to features extracted with CWT,
and in chapter 4, where we investigated potential further improvements from
using end-to-end optimization on raw ECoG signals.

The second goal of the thesis was to study the optimal training dataset size
for multilinear and DL-based models. The relationship between the size of the
dataset and decoding performance is especially important in the case of BCI
because it defines how long the calibration experiments have to be. Therefore,
reducing the training dataset size decreases the time needed to calibrate the
BCI system and reduces the subject’s inconvenience. Thus, models that require
smaller datasets are much preferable. Additionally, our analysis focusing on
signal non-stationarity showed data quality changes throughout the experiment.
Finally, we investigated whether long-term recordings and patient adaptation
play an important role from the perspective of decoding performance. The results
of our analysis were presented in chapter 3.

1.3 Deep learning

Artificial intelligence (AI), the science and engineering of making intelligent ma-
chines [McCarthy, 2004], is a popular research topic with many studies published
every year. Sometimes, AI tends to be interpreted as systems of human-like gen-
eral intelligence1, especially in business and popular science publications. Here,
we focus on algorithms capable of solving complex tasks, effective only in a
narrow specialization. AI describes a wide family of algorithms, while this the-
sis covers only a small part, namely machine learning (ML), with a particular
focus on the deep learning (DL) subfield, sometimes called also artificial neural
networks (ANN), due to the inspiration from the brain. ML methods are meant
to learn patterns from the data without being explicitly programmed. Based on
the data, models adjust their behavior to minimize a loss function, expressing
desired model behavior.

DL is a group of algorithms loosely inspired by, in a great simplification, how
the human brain works. However, they are not realistic models of brain bio-

1artificial general intelligence (AGI) is also extensively researched
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logical mechanisms. Generally, deep learning represents systems consisting of
multiple units called neurons. Neurons interact with each other and perform a
simple operation, i.e., linear combination, with a non-linear activation function
applied after. Most of the computational units in DL are based on a rectified
linear unit (with activation function 𝑔(𝑧) = max(0, 𝑧)), a simplified model of a
neuron [Goodfellow et al., 2016]. Computational neurons in ANNs correspond
to biological neurons that are connected with other neurons with synapses. Ar-
riving impulses (synaptic inputs) affect the state of a neuron, i.e., membrane
potential, to a different extent and ways (excitatory or inhibitory connections).
When a neuron has enough excitation to reach a threshold value from below,
it fires an all-or-nothing spike (action potential) towards other connected neu-
rons. [Burkitt, 2006] In this system, a neuron is a basic computational unit that
processes input data and affects other units. Neurons activate according to a
non-linear function, i.e., reaching a threshold from below causes an action po-
tential. This model of neuron functioning is generally called an integrate-and-fire
model.

The deep learning name originates from a deep structure created by the system
components. DL models are built up from a series of non-linear transformations,
called layers. Layers are stacked one after another so that the output of one layer
is the input to the next one. This allows for creating a complex representation of
the input data. The core idea behind deep learning is hierarchical representation
learning, i.e., creating complex representations out of a set of simpler repre-
sentations optimized to solve a specific problem. Every layer can build a more
complex representation based on the output of the previous one, reflecting a
higher level of abstraction. For example, in images, the first layers detect simple
structures such as edges that, in the next layers, form motifs, parts, and finally,
objects [Goodfellow et al., 2015].

In recent years, deep learning has grown rapidly with numerous highly-
influential studies. Several architectures and layers were utilized to perform
specific operations to extract certain information from the data. In the following
subsections, we are going to present DL concepts that were used throughout the
thesis. However, we limit ourselves to brief descriptions of the ideas required to
understand the main contributions. For a more detailed explanation, we refer
the reader to, for example, the Deep Learning book [Goodfellow et al., 2016].
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1.3.1 Multilayer perceptron

Multilayer perceptron (MLP) is a basic feedforward neural network yet powerful
architecture, implementing a series of fully-connected layers (FC). Every FC is
composed of several neurons that, in the case of the fully connected layer, are
linked to all the units in the previous and next layer. The strength of the connec-
tion is defined with connection weights matrix W ∈ R𝑙×𝑑—trainable parameters
of the layer. The number of trainable parameters depends on the number of
neurons in a layer 𝑙 and the number of features 𝑑 in the input vector x ∈ R𝑑. FC
layer function 𝑓FC is defined to be:

𝑓FC(x; W, b) = 𝑔(Wx + b) (1.1)

where b ∈ R𝑙 is the bias vector. The matrix 𝑊 and bias vector 𝑏 comprise train-
able parameters 𝜃 of an FC layer. After an affine transformation, a non-linear
activation function 𝑔 is applied element-wise. A typical recommended activa-
tion function for most feedforward neural networks is rectified linear activation
function 𝑔(𝑧) = max(0, 𝑧) [Goodfellow et al., 2016].

The last MLP layer is called the output layer, and it provides the model pre-
diction ŷ𝑖 for input data X𝑖 that corresponds to the ground-truth label/target y𝑖 .
The size of the last layer reflects the number of categories for the classification
or number of targets to predict in the case of regression problems. In general,
every k-th layer can be expressed as a function 𝑓 (𝑘)(x;𝜃(𝑘)) whose behavior for
every input x is defined by the set of parameters 𝜃(𝑘). For example, output of
3-layers-deep model is computed as 𝑓 (X𝑖 ;𝜃) = 𝑓 (3)( 𝑓 (2)( 𝑓 (1)(X𝑖 ;𝜃(1));𝜃(2));𝜃(3)),
where 𝜃 contains all network parameters 𝜃(𝑘) for 𝑘 ∈ {1, 2, 3}.

1.3.2 Convolutional neural networks

A special type of feedforward neural network is a convolutional neural net-
work (CNN). The core idea behind convolution is exploiting structures in the
input data. For example, images are organized on a grid with a correlation be-
tween neighboring pixels and occurring space invariant patterns; time-series
data points are related in time between consecutive samples with possibly oc-
curring time-invariant patterns. CNNs can be efficient for brain signals analysis
as they are designed to catch these patterns and make use of this kind of relation-
ship when creating a complex representation. To do that, CNNs use convolution
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Figure 1.6: Visualization of convolution and pooling operations in a 2D case with
multiple channels in the input. Convolution was visualized for two different
kernels (orange and green). The blue pooling kernel performs, for example, max
or mean operation.

operation instead of general matrix multiplication used in fully-connected layers
[Goodfellow et al., 2016]. The convolution operation in the discrete case (which
is the case for DL) and 1D can be defined as:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =
∞∑

𝑎=−∞
𝑥(𝑎)𝑤(𝑡 − 𝑎), (1.2)

where 𝑡 is a discrete sample index, 𝑥 is the input, and𝑤 is the weighting function,
also called kernel or filter. In the case of multidimensional input (see figure 1.6),
as images or multichannel brain signals input, it can be generalized to:

S(𝑖 , 𝑗) =
𝑀∑

𝑚=1

𝑁∑
𝑛=1

X(𝑖 − 𝑚, 𝑗 − 𝑛)W(𝑚, 𝑛), (1.3)

where 𝑖 and 𝑗 are integer indices of, for example, pixels, 𝑀 and 𝑁 are the height
and width of the kernel W ∈ R𝑀×𝑁 , X is the input data. After convolution, an
activation function is applied as in a fully-connected layer. Note that current
DL frameworks implement cross-correlation instead of convolution, which does
not flip the kernel. However, it is adopted in the community to use the name
convolution in this context.
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Compared to fully-connected layers having all neurons connected to all in-
put features, convolutional layers are sparsely connected. Kernels are typically
smaller than the input matrix/signal so that a kernel at every evaluation an-
alyzes only a segment of the data, e.g., a group of neighboring pixels (not
necessarily neighboring, for example, in the case of dilated convolution [Yu
and Koltun, 2016]). It speeds up the computations and makes estimating kernel
parameters more efficient. Another convolutional layer characteristic is weight
sharing, meaning that the same kernel is applied many times to analyze the in-
put. This reduces the number of model parameters but also forces equivariance
to translation. This is an important property that allows for detecting the same
patterns/objects occurring in different locations with the same set of filters. For
time-series data, convolutional layer output shows the location of detected pat-
terns in time. This can be particularly useful in the case of structures in the data
that represent the same pattern but may appear at any moment/localization,
such as motor imagery patterns in brain signals. The temporal and spatial struc-
ture of brain data makes CNNs the most common DL architecture used in BCI
research [Roy et al., 2019].

In computer vision, first convolutional layers may work similarly to tradi-
tional feature extraction pipelines, for example, Gabor filters (see visualization
of learned filters in [Krizhevsky et al., 2012]). Thus, they extract low-level fea-
tures, detecting basic structures in images like edges. The deep structure of
multiple layers allow for creating high-level features, revealing more complex
and task-specific objects. Similarly to computer vision, in EEG analysis, learned
filters can be strongly correlated with traditional feature extraction pipelines
[Lawhern et al., 2018]. On the other hand, shallower approaches are more pop-
ular for brain signals analysis with majority of architectures having at most 10
layers. However, there is no consensus that deeper models are not suitable for
EEG analysis and the optimal depth of the model depends on a problem [Roy
et al., 2019].

Pooling

Usually, convolutional layers are followed by a pooling layer that computes a
summary statistic of a group of points in a feature map (output for a given
layer). The most popular pooling method is max pooling, which replaces the
value with the maximum in its neighborhood. Alternatively, average pooling
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can be applied that computes an average of the neighborhood. Pooling is a way
to make the representation less sensitive to small translations. However, at the
same time, it spreads the localization of a pattern, making it less precise. A
detailed theoretical analysis of feature pooling was presented in [Boureau et al.,
2010].

1.3.3 Recurrent neural networks

Recurrent neural networks (RNNs) are a type of deep learning approach spe-
cialized in sequential data analysis. In contrast to feedforward networks, the
forward pass in RNNs contains recurrent connections, so the prediction at the
current time step also depends on a history of previous inputs. Both CNNs and
RNNs are based on parameters sharing paradigm. However, RNNs preserve in-
formation from previous time steps, i.e., output (or hidden state, depending on
the connection type) from the previous time step h(𝑡−1) is also input to the next
processing step together with input data x(𝑡) for time step 𝑡 (see equation 1.4).
This makes RNN a stateful model that has access to a broader context accumu-
lated from previous time steps, in contrast to CNN, which can analyze only local
neighborhood at every step. Hence, RNNs could effectively solve problems like
natural language processing, where long-range context affects the perception of
words and sentences. Temporal structure of brain data makes RNNs a good can-
didate to analyze BCI datasets and a popular method for EEG data processing
[Roy et al., 2019].

h(𝑡) = 𝑓 (h(𝑡−1), x(𝑡);𝜃) (1.4)

In theory, RNNs are capable of modeling long-range dependencies in the case
of sequential data. RNNs create a deep computational graph with a chain-like
application of the same function (see more details about gradient propagation
in Section 1.3.4). When the gradient is propagated through multiple timesteps,
it tends to vanish or explode due to multiplication by the same weight sev-
eral times when processing data. Moreover, long-term dependencies have de-
creased importance compared to short-term relationships due to the depth of
the computational graph resulting in a vanishing gradient [Bengio et al., 1994].
Responding to the challenge of modeling long-range relationships, several types
of RNNs were proposed, e.g., long short-term memory (LSTM) [Hochreiter and
Schmidhuber, 1997], gated recurrent unit (GRU) [Chung et al., 2014, 2015].
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Long short-term memory

Long short-term memory networks (LSTM) are a type of recurrent neural net-
work (RNN) that were introduced to solve the particular problem of learning
long-term dependencies in the case of sequential data [Hochreiter and Schmid-
huber, 1997]. LSTM cell has a gating mechanism that controls the unit’s state,
i.e., whether to forget the previous state or add some information. The cell state
is used to compute the current time step output and is passed to the next time
step prediction. Transferring cell state through time with a gating mechanism
allows for efficient information propagation through long data sequences by
removing several multiplications by the same weight. For a detailed and clear
explanation of LSTM mechanisms, we refer the reader to the popular blog post
by Olah [2015].

LSTMs were successfully used in a variety of applications, including brain
signals analysis. In many cases, LSTMs were preceded with hand-crafted features
extraction [Wang et al., 2018; Zhou et al., 2018] or CNNs [Garcia-Moreno et al.,
2020; Jeong et al., 2020; Xie et al., 2018; Zhang et al., 2021].

Attention

Attention is a mechanism that enables networks to focus on relevant information.
Often, not all the input data has to be analyzed when solving a particular task.
Similarly to human perception, the attention module highlight and concentrate
on the part of input useful for prediction. Several attention mechanisms were
proposed to tackle the problem of learning long-range dependencies, primarily
for natural language processing (neural machine translation) for sequence to
sequence models [Bahdanau et al., 2015; Britz et al., 2017]. As brain signals are
sequential data, various types of attention were used in neuroscience [Cisotto
et al., 2020; Lan et al., 2021; Zhang et al., 2019], however without much applica-
tions [Livezey and Glaser, 2020], especially in the case of invasive recordings.

In 2017, transformer architecture [Vaswani et al., 2017] with a multi-head
self-attention module revolutionized natural language processing, providing
superior performance compared to previous methods. Additionally, as it is not a
recurrent model, i.e., it analyzes the whole input sequence at once, it allowed to
greatly speed up computations. Transformer-based architectures were evaluated
in neuroscience to a limited extent, mainly for EEG so far, with promising results
[Lee and Lee, 2022; Song et al., 2021; Sun et al., 2021]
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1.3.4 Training

Model parameters𝜃 are optimized to solve a supervised learning problem (this is
valid for all the DL-based models analyzed in this thesis). The function 𝑓 (X𝑖 ;𝜃)
can be built up from any architecture/layer presented here. Typically, model
parameters 𝜃 are estimated with the maximum likelihood estimation (MLE)
method. The goal is to find a set of model parameters 𝜃ML so the likelihood of
observed data X𝑖 is the highest. For the supervised learning problem and inde-
pendent and identically distributed random variables, MLE can be expressed
as searching for 𝜃 that maximizes the conditional probability of ŷ𝑖 given X𝑖

(equation 1.5).

𝜃ML = arg max
𝜃

𝑛∑
𝑖=1

log𝑃(ŷ𝑖 |X𝑖 ;𝜃) (1.5)

Based on the MLE, various loss functions can be defined. Loss functions are
used to specify model performance criteria and serve as optimization objectives
for DL model training. For regression models, a popular approach is mean
squared error (MSE) loss:

ℒMSE(𝜃) =
1
𝑛

𝑛∑
𝑖=1

(y − 𝑓 (X𝑖 ;𝜃))2 (1.6)

The goal of optimization is to minimize the loss function. We have described
forward pass in the neural network’s framework used to obtain model predic-
tion ŷ, which is a series of non-linear transformations. All the layers may have
trainable parameters. Usually, to update the parameters, gradient-based meth-
ods are used. Gradient of loss function w.r.t. parameters ∇𝜃ℒ(𝜃) in the model
with several layers can be obtained with backpropagation method [Rumelhart
et al., 1986] of computing derivatives of function composition. Using a chain rule
of calculus, it computes the gradient of the loss function for any parameter in
the model, starting from the output layer and propagating gradients up to the
input.

After obtaining gradient values for all trainable parameters in a model, weights
are updated with a gradient descent procedure to find values of parameters 𝜃

that minimize the loss function ℒ(𝜃). This is done by performing steps, i.e.,
updating parameters with −𝜆∇𝜃ℒ(𝜃) following the direction of the steepest
descent of the loss function. The learning rate parameter 𝜆 (a training hyper-
parameter) controls the step size. High values of 𝜆 may cause jumping over
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minima while setting small values increases the time needed to reach minima
and the probability of getting stuck in a local minimum. However, for DL models
with numerous parameters, reaching the global minimum (which often leads to
overfitting) is not required as typically, many local minima provide low enough
generalization error [Choromańska et al., 2015]. In the case of DL optimization, a
variant of gradient descent, namely minibatch stochastic gradient descent (SGD),
is often used. Updates of parameters are based only on a subset of a dataset, i.e.,
minibatch, instead of the whole dataset as in the standard gradient descent. Us-
ing the expected gradient value estimated from a random subset speeds up the
computation and has a regularizing effect [Wilson and Martinez, 2003]. Mini-
batch size (more often called batch size) is another training hyperparameter that
affects the optimization process. Smaller batches strengthen regularization (by
introducing additional noise to the optimization process), while using bigger
batches improves the precision of gradient computation.

Besides SGD, several first-order and second-order gradient-based optimiza-
tion methods are commonly used for DL training. The most popular method
applied to brain signals is ADAM [Kingma and Ba, 2015] which adaptively
tunes learning rate for every parameter based on estimates of first and second
order moments of the gradient. Other optimizers with adaptive learning rates
(e.g., AdaGrad [Duchi et al., 2011] and RMSProp [Tieleman et al., 2012]) are less
often used in neuroscience [Roy et al., 2019].

Batch normalization

Batch normalization layer [Ioffe and Szegedy, 2015] allow for faster convergence
and better generalization in neural networks [Bjorck et al., 2018]. It shifts net-
work activation to be zero-mean by subtracting batch mean 𝜇𝑏 and to have unit
standard deviation by dividing by batch standard deviation √

𝜎𝑏 for every batch.
Then, the value is scaled by trainable parameter 𝛾 and moved by adding another
parameter 𝛽.

BN(𝑥𝑖)(𝛾,𝛽) = 𝛾
𝑥𝑖 − 𝜇𝑏√
𝜎𝑏 + 𝜖

+ 𝛽, (1.7)

The reason why batch normalization improves training was primarily at-
tributed to reducing internal covariate shift [Ioffe and Szegedy, 2015] in deep
models. However, Bjorck et al. [2018] showed that it is mainly caused by larger
learning rates that increase the regularization of stochastic gradient descent and
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improves generalization.

1.3.5 Regularization

Overfitting is one of the major challenges in machine learning. Ideally, one
would like a model that performs well on new unseen data (test set). However,
the optimization objective focuses on the training dataset performance only. This
usually results in models with high generalization error, i.e., worse performance
on the test set. To address this issue, regularization methods are applied with
the main goal of decreasing the generalization error. This is especially important
in the case of small training datasets such as brain signals datasets. Hence, we
applied several regularization strategies in the presented experiments. In the
following subsections, we describe these regularization methods.

In the simplest case, models are evaluated using two datasets, i.e., training
and test datasets. First, the training dataset is used to estimate model parameter
values that define model behavior. Then, the model is fixed and evaluated on
the test dataset, i.e., the model provides predictions for the test observations that
are used to compute scores expressing decoding performance. The test set must
not be used for hyperparameters (e.g., learning rate, batch size, regularization
strength) or architecture (e.g., number of layers, number of neurons) tuning
to not cause data leakage, which affects the credibility of generalization error
evaluation. To avoid overfitting to the test dataset, model hyperparameters are
selected based on a validation dataset score, i.e., datasets separated from the
training dataset and not used to optimize model parameters (weights).

Early stopping

It is often observed that training loss decreases, but generalization error may
start to increase due to overfitting. To reduce overfitting, the validation dataset
can be also used for early stopping, i.e., stopping the training when validation
loss is not decreasing. This prevents overfitting by measuring generalization
error on the unseen data and selecting models that achieved high performance
on the validation dataset.

Dropout

One of the most popular regularization methods is dropout [Srivastava et al.,
2014]. Every neuron activation is randomly dropped during training, i.e., set to
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zero, with a specified dropout probability (often 0.5). This forces the network
to create sparse and redundant representations by destroying co-adaptation
between units. Dropout can also be interpreted as an easy and cheap, in terms
of computations, way to create an ensemble of models. When using dropout,
multiple subnetworks are created thanks to the random neuron zeroing. For the
prediction, the activations of all subnetworks are averaged to obtain the final
estimate.

L2 regularization

L2 regularization (also called weight decay) is a regularization method that, by
imposing an additional penalty on the weights (model parameters), pushes their
value towards zero. Effectively, it decreases the strength of interaction, making
the model less complex and keeping high values of parameters only for crucial
connections. L2 regularization is implemented by adding a term to the loss
function penalizing model for having weights other than zero, i.e., | |W| |2.

1.4 Objectives and contributions

Applying deep learning to a new dataset usually requires several choices, e.g.,
architecture type and depth, loss function, regularization methods, and, more
generally speaking, all different hyperparameters. This complex task has to take
into account numerous factors and, in the end, is evaluated with an experimental
assessment that must be adapted to the problem.

The first objective of the thesis was to investigate potential performance gains
from using DL-based methods to decode hand translation signals from ECoG
signals. In chapter 2, we proposed several architectures, based on MLP, CNNs,
and LSTMs, for analyzing the ECoG data recorded in the clinical trial. As a first
step, the problem of hand translation decoding was formulated in terms of the
loss function and evaluation setup, i.e., session-wise cross-validation, hyperpa-
rameters search, and train-test split. Next, DL-based methods were compared
to a multilinear model already proven effective in this task. In this study, we
decided to analyze hand-crafted time-frequency features extracted using a stan-
dard pipeline designed for the clinical trial. This way, we tried to avoid changing
multiple factors at once and kept similar conditions for both DL and multilin-
ear models for a fair comparison. Furthermore, as the choice of architecture
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and hyperparameters is complicated, we performed an ablation study where
we removed/replaced particular mechanisms in the DL models to assess the
importance of each choice. Finally, model performance was evaluated from the
perspective of model usefulness in the long-term recordings with a human in
the loop, i.e., evaluating decoding stability and screening for potential model
biases. The best DL architecture was checked for the most important input fea-
tures (spatial, temporal, frequential) contributing to the prediction to validate
the results from the neuroscientific point of view. To sum up, chapter 2 presents
the first step toward implementing DL-based models in the real-life clinical trial
evaluation, i.e., the proposition of DL architectures together with their offline
evaluation showing potential improvement and most important components.
The main questions considered were:

• Is DL suitable for 3D hand translation prediction from ECoG signal? How
does it compare to the baseline multilinear model?

• Which architecture can be efficient for ECoG 3D hand translation decoding?

• What makes DL model effective?

• Can DL fulfill the requirements for BCI decoders, e.g., decoding stability
in time?

The second main objective of the thesis was to identify dataset size require-
ments of different models, in particular DL-based and linear methods. One of
the reasons for DL’s success is easier access to big datasets in computer vision or
natural language processing that started in the 2010s. However, in brain signals
analysis size of the dataset is limited by experimental constraints. As a result,
decoders should require a small amount of data to decrease the time needed
for system calibration. In chapter 3, we further investigated characteristics of
the models evaluated in chapter 2 with particular focus on dataset size require-
ments. This was possible thanks to a unique dataset of long-term recordings.
Several factors influence data recorded in real-life experiments with humans, so
we decided to increase the training dataset size in different manners. It allowed
us to isolate the influence of dataset increase, signal non-stationarity, and patient
adaptation to analyze how those factors affect ECoG BCI decoders trained on
this dataset. Additionally, we explored distribution changes that may indicate
data quality increase, confirming patient adaptation during the experiments.
The main questions considered were:
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• How does adding more data to the training dataset affect 3D hand trans-
lation decoders?

• How do DL-based approaches compare to multilinear models in terms of
required dataset size?

• Do we observe data quality changes across long-term recordings suggest-
ing patient adaptation?

The next problem explored was the effectiveness of end-to-end optimization
of manually-designed feature extraction step. Models evaluated in chapter 2
and chapter 3 used features extracted with continuous wavelet transform as in-
put, so the data is in a form of time-frequency representation. However, many
DL-based approaches are end-to-end models utilizing raw data as input. In end-
to-end models, the whole data analysis process is optimized together. Thanks to
that, the feature extraction step can be adjusted to the needs of the problem and
model architecture. Thus, potentially, end-to-end optimization can be a solution
providing higher performance and allowing for extracting features in a data-
driven way that humans could not design. Generally, feature extraction design
is time-consuming and sensitive to researcher’s bias, so end-to-end optimization
could be a solution to remove the process of manual tweaking. In chapter 4,
DL-models analyzing raw ECoG signals were evaluated. Particularly, we trained
models proposed in chapter 2 from scratch and starting from reproducing contin-
uous wavelet transform (but also ShallowFBCSPNet and Deep4Net [Schirrmeis-
ter et al., 2017] as a baseline only from scratch). The main goal was to investi-
gate whether end-to-end training can improve decoding performance. Further,
the difference between hand-crafted features-based and end-to-end models was
studied when adding more data to the training dataset to verify the hypothesis
that end-to-end models may require more data to estimate robust parameters.
Obtained filters were analyzed in order to identify changes in the feature ex-
traction step that could potentially lead to modification of the data processing
pipeline. The main questions considered were:

• Can end-to-end optimization improve the performance of 3D hand trans-
lation decoding from ECoG signal?

• Does end-to-end optimization require more data to achieve high perfor-
mance?

• What kind of features do end-to-end models learn to detect?
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All three contributions focus on applying DL models to a unique ECoG dataset
recorded in the clinical trial. The main goal of the analysis from the application
point of view was to provide higher decoding performance needed in the clinical
trial to make the BCI system more powerful. We evaluated several approaches
and tested hypotheses in order to explore the problem of 3D hand translation
prediction from ECoG signals with DL and to better understand data and model
characteristics.
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Abstract
Objective.Motor brain-computer interfaces (BCIs) are a promising technology that may enable
motor-impaired people to interact with their environment. BCIs would potentially compensate for
arm and hand function loss, which is the top priority for individuals with tetraplegia. Designing
real-time and accurate BCI is crucial to make such devices useful, safe, and easy to use by patients
in a real-life environment. Electrocorticography (ECoG)-based BCIs emerge as a good compromise
between invasiveness of the recording device and good spatial and temporal resolution of the
recorded signal. However, most ECoG signal decoders used to predict continuous hand
movements are linear models. These models have a limited representational capacity and may fail
to capture the relationship between ECoG signal features and continuous hand movements. Deep
learning (DL) models, which are state-of-the-art in many problems, could be a solution to better
capture this relationship. Approach. In this study, we tested several DL-based architectures to
predict imagined 3D continuous hand translation using time-frequency features extracted from
ECoG signals. The dataset used in the analysis is a part of a long-term clinical trial
(ClinicalTrials.gov identifier: NCT02550522) and was acquired during a closed-loop experiment
with a tetraplegic subject. The proposed architectures include multilayer perceptron, convolutional
neural networks (CNNs), and long short-term memory networks (LSTM). The accuracy of the
DL-based and multilinear models was compared offline using cosine similarity.Main results. Our
results show that CNN-based architectures outperform the current state-of-the-art multilinear
model. The best architecture exploited the spatial correlation between neighboring electrodes with
CNN and benefited from the sequential character of the desired hand trajectory by using LSTMs.
Overall, DL increased the average cosine similarity, compared to the multilinear model, by up to
60%, from 0.189 to 0.302 and from 0.157 to 0.249 for the left and right hand, respectively.
Significance. This study shows that DL-based models could increase the accuracy of BCI systems in
the case of 3D hand translation prediction in a tetraplegic subject.

1. Introduction

Brain-computer interfaces (BCIs) enable people to
interact with their environment using a direct con-
nection between their brain and external effect-
ors. Such devices could improve a paralyzed per-
son’s quality of life by offering them a certain
autonomy. Several communication paradigms have

been designed for a broad range of tasks, like
keyboard typing or binary decision making. This
study focus on motor imagery (MI) based BCI,
which can be used by a tetraplegic for continuous
and asynchronous [1] control of complex effect-
ors, for example, exoskeleton [2]. More precisely, we
studied upper-limb movements imagination because
regaining arm and hand motor functions are at the

© 2022 IOP Publishing Ltd
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top of the priority list in individuals with tetraplegia
[3, 4].

In the MI BCI paradigm, subjects imagine or
attemptmovements that cause changes in brain activ-
ity. These changes are caught by a recording device
that is the first part of a BCI system. Acquired signal
characteristics strongly depend on recording devices.
From the most invasive to less invasive, the most
common types of recordings are: intracortical micro-
electrode arrays (MEAs) placed inside the brain tis-
sue [5–7], intracranial electrocorticography (ECoG)
recording signal from the brain surface [2, 8, 9]
and electroencephalography (EEG) monitoring the
brain activity with a set of electrodes placed over the
scalp [10–13]. This study focuses on ECoG-based BCI
because it has better signal characteristics than nonin-
vasivemethods while decreasing the risk connected to
implantation and biocompatibility issues compared
to MEA. ECoG signal is also more stable in time [14].

The next step after signal recording is to extract
features from the signal. Those features represent
brain activity in a form that a decoder can exploit.
The most common and effective representation of
ECoG and EEG signals forMI BCI are time-frequency
features [2, 15–19] or low-frequency component
(LFC)/local motor potential [15, 20–22].

Another important step in a typical BCI system
is translating brain signal features into BCI com-
mands with a decoder. Decoding performance is cru-
cial for the quality of interaction between humans and
computers. Higher accuracy of decoding improves
correctness and speed of interaction. Most cur-
rent decoders use supervised machine learning (ML)
algorithms to predict BCI commands.

Predicting BCI commands based on brain signals
is a challenging task due to several limitations ori-
ginating from the nature of the application. Recor-
ded brain signals have a strong component of noise
generated by spontaneous brain activity unrelated to
the task. The recorded signal is nonstationary in time
(intra-subject variability) which often makes mod-
els valid only for a limited time and requires decoder
retraining. BCI experiments are monotonous and
time-consuming, so ML models have to be trained
with small datasets to reduce the time needed for cal-
ibration. Another important constraint is the need for
real-time decoding—the whole system should pro-
duce several movement predictions per second. In
the case of tetraplegic subjects, the real intention
of the patient is not known to the experimenters.
Even if a subject is provided with explicit instruction,
actual imagination patterns can be affected by several
factors, e.g. attention and fatigue levels.

Several types of algorithms were used to decode
brain signals. Majority of studies use ‘conventional’
ML techniques [23] for decoding of hand movement.
In the case of intracortical recordings, linear models,

e.g. Ridge linear regression [6, 7] and Kalman filter-
ing [5, 24] were applied to decode continuous ima-
gined hand translation. For ECoG signal decoding,
many studies focus on discrete decoding of hand ges-
tures/movements or fingers flexion, typically using
standard classifiers. This includes linear discriminant
analysis classifier [25–28] or support vector machine
[29–34], as well as other methods like naive Bayes
classifier [35] or spatiotemporal template matching
[36, 37]. Some of them were combined with addi-
tional data dimensionality reduction methods like
principal component analysis (PCA) [31, 32] or com-
mon spatial pattern [28]. Another group of studies
demonstrated prediction of continuous outputs—2D
and 3Dhandmovements and fingers flexion—mostly
using linear models including linear regression and
its variants [15, 18, 38–42] partial least squares (PLS)
[43], recursive exponentially weighted n-way partial
least squares (REW-NPLS) [2], and Kalman filtering
[20, 44, 45].

Recently, deep learning (DL) based methods got
more attention and demonstrated their usefulness for
a variety of tasks, e.g. in computer vision [46] or nat-
ural language processing [47], but ‘conventional’ ML
models (mainly linear) are still predominantly used in
ECoG-based studies. However, some studies investig-
ated the use of DL to decode MI patterns in humans.
For example, studies analyzing intracortical record-
ings used recurrent neural networks (RNNs) [48]
(classification of 31 letters and continuous decoding),
RNN-based autoencoders [49] (continuous decod-
ing) as well as CNN [50], and a combination of RNN
and CNN [51] to recognize several MI classes using
neuronal firing rates or time-frequency representa-
tion of single units activation.

In the EEG domain, DL was used for signal
classification from raw signals or hand-crafted fea-
tures. Most common architectures employed CNN
[52–55], RNN [56] (for lower limb continuous kin-
ematics decoding), long short-term memory net-
works (LSTM) [57, 58], and amix of CNN and LSTM
analyzing time-frequency features [59–61].

A few articles analyzed ECoG signals with DL to
predict overt hand/fingers movements. LSTMs were
used to classify fingers activation [19, 62] and three
different hand gestures [63] from time-frequency fea-
tures. Rashid et al [64] used LSTM to discriminate
tongue and handmovements from the raw signal. Xie
et al [65] predicted continuous flexion and extension
of five fingers using end-to-end DL with four spa-
tial/temporal convolutional layers as feature extract-
ors and one LSTM layer to predict fingers activation.
Contrary to our study, only non-disabled patients
participated in the experiments, which enables the
creation of an explicit mapping between brain activ-
ity and trajectory and removes the uncertainty intro-
duced in the case of only imagined movements.
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For neural population activity recordings, the
majority of studies only classified brain signals with
DL. However, continuous decoding is the only way
to provide paralyzed patients with normal-like con-
trol of complex neuroprosthetics. From ECoG signal,
multilinear models have been used to predict up to
3D continuousmovements [2, 38, 39, 43] whereas DL
was only tried to predict 1D finger flexion [65].

As DL achieved state-of-the-art performance in
solving several complex problems from different
domains, in this work, we propose and evaluate DL
architectures to predict 3D continuous hand move-
ments. For the first time, we show that DL can
efficiently predict complex, high-dimensional, upper-
limb translation from ECoG signals in a tetraple-
gic patient. We compare several architectures that
exploit particular ECoG and MI task characteristics,
e.g. CNNs analyze the relationship between electrodes
organized on two grids, LSTMs analyze temporal rela-
tionships in the ECoG signal. Apart from architecture
type, many design choices can modify model com-
plexity and its capacity to recognize patterns. There-
fore, an in-depth study of this topic for ECoG sig-
nals is crucial, especially considering that the choice
of the methods is data specific (depends, for example,
on the level of noise, dataset size, the dimensional-
ity of the data) and can drastically influence the per-
formance. Thus, in an ablation study, we investig-
ate the influence of the most important and most
data-specific design choices (dropout, batch normal-
ization, activation function, number of layers) on the
model’s performance.

All methods were compared offline on a dataset
recorded in a closed-loop experiment in which adapt-
ive multilinear REW-NPLS [66] models were used to
predict 3D hand translation. Recordings were per-
formed with a tetraplegic patient within more than
200 days. DL-based models obtained better perform-
ance than multilinear models optimized by REW-
NPLS.

2. Methods

2.1. Clinical trial and patient
This study was a part of a clinical trial ‘BCI and Tetra-
plegia’ (ClinicalTrials.gov identifier: NCT02550522)
approved by French authorities: Agency for the Safety
of Medicines and Health Products (Agence nationale
de sécurité dumédicament et des produits de santé—
ANSM) with the registration number: 2015-A00650-
49 and the ethical Committee for the Protection of
Individuals (Comité de Protection des Personnes—
CPP) with the registration number: 15-CHUG-19.
Clinical trial details are described by Benabid et al [2].

The subject involved in this study was a 28-year-
old right-handed man with tetraplegia caused by a
C4–C5 spinal cord injury. The patient had littlemotor
control of the upper limbs with American Spinal
Injury Association Impairment (ASIA) scores at the

Figure 1. (A) Screenshot from the virtual environment
displaying the hand of the avatar and the target. (B)
Visualization of the axes of the coordinate system of the
virtual avatar.

elbow: 4 right, 5 left and at the extensors of thewrist: 0
right, 3 left. Other muscles below were all scored 0 on
the ASIA scale with a complete sensory-motor deficit.
The patient used his left hand to control a wheelchair
[2].

The first experiment analyzed in this study was
recorded 463 days after the implantation. Shortly after
the surgery, BCI experimental sessions began. The
difficulty of the BCI task was gradually increased
starting from discrete control and 1D movements
tasks up to 8D movements in one experiment.

2.2. Experiment and dataset
During the experiment, the patient had control over
an avatar with a first-person view in a virtual envir-
onment. He could control one state out of 5: idle,
left or right hand 3D translation, and left or right
wrist rotation. A REW-MSLM state classifier (fur-
ther referred to as gate model) was used to detect the
patient’s intention and select the controlled effectors
[67]. This article focuses only on the left and right
hand translation. In that case, spherical targets (10 cm
diameter) were displayed in space and the patient
task was to reach them successively (figure 1(A)). To
control the virtual avatar, the patient used an MI
strategy developed in the previous experiments of the
clinical trial. This strategy consisted of imagined/at-
tempted, repeated arm, wrist, and finger movements.
The patient was instructed to imagine/attempt upper-
limb movements without any actual muscle activa-
tion and maintain a constant imagination strategy
through the experiments.

During the recordings, the hand movement
predictions were performed by multilinear models
obtained by REW-NPLS [66]. Separate models for
each hand and a gate model were incrementally cal-
ibrated during the six first sessions and used without
re-calibration for the following 37 sessions. The data
acquired during these sessions was used to perform
simulations of models offline training to evaluate
their potential benefits for this application. To ensure
equal conditions for further comparisons, we decided
to retrain all models on the same datasets.

Targets were placed in 28 (LH) and 23 (RH) pos-
itions during the experiments (see appendix A for
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Table 1. Datasets size in the number of trials and length of the
recordings.

Left hand Right hand

Trials
Duration
(min) Trials

Duration
(min)

Calibration 174 42 164 39
Test 691 314 649 327

Figure 2. Position of the implants (green) and electrodes
(red) on an MRI reconstruction of the patient’s brain.

targets positions visualization). The number of trials
and minutes of the recorded signal are given for both
hands and the calibration and test datasets in table 1.

2.3. Signal recording
Brain signals were recorded by two WIMAGINE®
ECoG implants [68] more than 15 months after the
surgery. Implants were placed over the left and right
primary motor and sensory cortex (figure 2) con-
trolling upper limbs. This position aims to provide
the best signal for MI decoding [2]. Each implant
was composed of an 8× 8 grid of electrodes, but only
half of the electrodes, arranged in a chessboard-like
manner, were used during the experiment due to the
data transfer limit. The signal sampling frequencywas
586 Hz, while cursor and target positions in the vir-
tual environment were recorded at 10 Hz.

2.4. Preprocessing and feature extraction
We extracted time-frequency features from each
ECoG channel using continuous complex wavelet
transform with 15 Morlet wavelets whose central
frequencies were regularly chosen between 10 and
150 Hz. The procedure was performed for each one-
second-long window i with 90% overlap. Absolute
values of the wavelet coefficients were finally averaged

over 0.1 s longwindows. As a result, we obtained a fea-
ture tensorXi ∈ R64×15×10 whose dimensions corres-
pond to ECoG channels, frequency bands, and time
steps.

2.5. Loss function
The main problem considered in this study was
to predict 3D hand translation from ECoG time-
frequency features. At each time step i, the desired
hand movement yi was defined as ti − ci where ti and
ci respectively correspond to the target and the cursor
(point of the avatar hand) position (figure 3). The
coordinate system origin was placed in the pelvis of
the virtual avatar (figure 1(B)). Our problemwas then
to predict yi from the feature tensor Xi. Hand move-
ment predictions ŷi were performed every τ = 100ms
and the cursor moved according to this direction by
the vector mi until the next prediction. Since pre-
dicted trajectories were followed only for 100 ms
(maximum hand speed equal 1 cm/100 ms), we com-
pared the predicted and desired vectors with respect
to their direction using cosine similarity defined as:

CS(yi, ŷi) =
yi · ŷi

∥yi∥ · ∥ŷi∥
= cosαi, (1)

calculating the cosine of the αi angle between yi and
ŷi vectors. CS ∈ [−1,1] is equal to 1 when vectors
have exactly the same direction, 0 for orthogonal vec-
tors, and−1 for opposite vectors. We used cosine loss
defined as:

CL(yi, ŷi) = 1−CS(yi, ŷi) (2)

as an objective function to train DL models.

2.6. REW-NPLS
As a baseline model, we used multilinear models
obtained by REW-NPLS regression algorithm [66].
PLS regression projects both input and response
variables to a low-dimensional latent space whose
components are designed to provide the highest cor-
relation between input and output variables. This
regression method is particularly well-suited in the
case of high-dimensional and nonindependent input
data. During the experiments, thesemultilinearmod-
els were trained and used to provide real-time control
of the avatar to the patient. The latent space dimen-
sion was limited to 100 and its optimal dimension
was determined every 15 s using recursive valida-
tion [66]. To obtain the results reported in this study,
we retrained the REW-NPLS model in a pseudo-
online manner with an update after each 15 s, which
simulates the online training. Next, we used this
pseudo-online model to compute predictions on the
test set.

2.7. Multilayer perceptron
Multilayer perceptron (MLP) is a classic method used
in ML to model complex functions. MLP treats each
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Figure 3. Visualization of movement scheme in 2D. Green
circle indicates target position, vectors ci and ci+1 are the
cursor position vectors for respectively samples i and i+ 1,
ti is the target position vector, yi is the desired trajectory
vector for sample i,mi is the actual move performed by
hand based on the prediction ŷi. αi is the angle between yi
and ŷi.

feature with a set of independent weights to create a
representation consisting of neurons excitations that
are next processed with nonlinear activation function
and finally passed to the next layer. In our exper-
iments, the number of fully connected (FC) layers
varied between 1 and 5. Each FC was composed of
50 neurons with ReLu activation. In addition, batch
normalization [69] and dropout [70] with probab-
ility of neuron being zeroed equal 0.5 were applied
between hidden layers (except last). Both methods
have a strong regularization effect and are commonly
used to increase the generalization of models. This is
especially important in the case of small and noisy
datasets. The input to MLP was a flattened tensor
Xi, consisting of 9600 features standardized using
Z-score.

2.8. 2D CNN
One reason why convolutional neural networks are
widely used in image processing is that they effectively
recognize similar patterns in different parts of images.
In each layer, several convolutional filters with train-
able parameters are shifted over an image to detect
patterns and obtain feature maps. This enables CNNs
to limit the number of parameters needed to solve
complex problems, generalize better, and effectively
use information encoded in the local structure of
the data and spatial relationships between pixels (for
a detailed description of CNN, see explanation by
Goodfellow et al [71]). This kind of architecture can
be well-suited for brain signals analysis if its inputs
are shaped in a way that enables spatial or temporal

Figure 4. Features from one randomly chosen sample in a
frequency band centered at 10 Hz. Values are arranged on a
grid approximating actual electrodes’ positions for left and
right implants, respectively. Top row grids also include
electrodes that were not recording signals (white squares).
Bottom row plots show electrodes’ arrangement after
removing missing values. The distance between implants is
not preserved.

pattern detection. Methods proposed further in this
section are inspired by architectures used in com-
puter vision [72] and EEG signal processing (mainly
by Bashivan et al [59] but also by other methods [10,
73]).

2.8.1. Input representation and processing
We propose to preserve the spatial relationship
between signals from different electrodes by using an
analogous transformation to the one proposed for
EEG [59]. Contrary to EEG, ECoG electrodes are dis-
tributed on two dense square grids. Hence, to obtain
a representation of the actual electrode array, we pro-
jected recorded signals onto a grid according to the
approximate physical electrodes position presented
in figure 2. We created two arrays of 64 electrodes
placed on a grid of shape 8× 8 with only half of the
electrodes recording signal.We removed unused elec-
trodes and represented each implant with a rectangle
of shape 8× 4 merging neighboring columns of elec-
trodes (see figure 4). The introduced distortion of the
image does not affect convolution as we preserved the
spatial neighborhood of each electrode.

Then, the input to all CNN models was a tensor
of shape 2× 8× 4× 15× 10, where dimensions cor-
respond to the number of implants, height and width
of implants, frequency bands, and time steps, respect-
ively. Features were Z-score standardized using mean
and standard deviation per frequency band. Each
observationmay be interpreted as a time series of con-
secutive spatio-frequential representations that form
two ‘images’ with 15 frequency channels, an analog
of the three RGB channels used in computer vision.

5



J. Neural Eng. 19 (2022) 026023 M Śliwowski et al

Figure 5. 2D CNN processing visualization. Two implants
record signals, then time-frequency features are extracted
using wavelet transform. Features from each implant (green
cuboids) are analyzed using filters (gray cuboid) by
consecutive convolutional layers to obtain representation in
the form of a vector. We also marked the receptive field
(gray dashed rectangle) of the one particular feature from
the last layer. Note that this is only a diagram. For
simplicity, we visualized a model with two convolutional
blocks and we skipped activation, batch normalization,
dropout. See detailed specification in tables 2 and 3.

Proposed two-dimensional CNN (2D CNN) analyzes
each time step independently by performing convolu-
tion only in space (two dimensions). The same con-
volutional kernels were applied separately for each
implant (see figure 5).

Table 2. Architecture specification of 2D CNNmodel with two
convolutional blocks.

Block Layer Filters Padding Output shape

Input 2× 8× 4× 15

1 Convolution 32 (0, 1) 2× 6× 4× 32
ReLU 2× 6× 4× 32
Batch normalization 2× 6× 4× 32
Dropout 2× 6× 4× 32

2 Convolution 64 (0, 1) 2× 4× 2× 64
ReLU 2× 4× 2× 64
Dropout 2× 4× 2× 64

After the final convolutional layer, the features
extracted from one second of the signal were flattened
and aggregated. We present details of temporal
information analysis in sections 2.9–2.12.

2.8.2. Convolutional block design
CNNs consist of multiple layers organized in con-
volutional blocks, usually composed of a convolu-
tional layer and a nonlinear activation function fol-
lowed by max pooling layer [71]. Optionally, one can
add batch normalization [69] and dropout [70]. The
optimal structure of convolutional block depends on
the characteristic of the problem, e.g. size and type
of data, signal, and problem characteristic. Further
in this section, we describe the convolutional block
design choices that we made in the study.

2.8.2.1. Batch normalization and dropout
We decided to use both dropout and batch normal-
ization to achieve a strong regularization effect, as
our dataset suffers from a small number of samples,
low signal to noise ratio, and uncertain labels. We
decided to include batch normalization between
the activation and the dropout layer, which might
be more effective in the case of ReLU activation
[74]. Merged batch normalization and dropout can
be interpreted as an independent-component layer,
reducing mutual information between neurons in
the input [74]. The batch normalization layer was
included in all convolutional blocks except last.

2.8.2.2. No-padding
Another design choice that we propose to use is
to remove the max pooling layer. Instead, we used
no-padding option (removing padding around grid
edges) to reduce the size of the ‘images’ (see pad-
ding sizes in table 3). We considered this variant
as a reasonable choice because our ‘images’ (size
8× 4) are much smaller than typical computer vis-
ion images (e.g. 224× 224× 3 for ResNet [75]) and
spatio-frequential EEG ‘images’ (32× 32× 3 ana-
lyzed by Bashivan et al [59]). Reducing the size of
our images too much could have resulted in the loss
of useful information. A convolution operation (ker-
nel size 3× 3 and stride equal to 1) without padding
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Table 3. Description of the 2D CNN architectures with different number of layers. The parameters of convolutional blocks are indicated
in the form ‘conv(padding height, padding width)-<number of channels>’. The last row presents the number of extracted features.

2D CNN

1 layer 2 layers 3 layers 4 layers 5 layers

Input size: 2× 8× 4× 15

conv(0, 0)-32 conv(0, 1)-32 conv(0, 1)-32 conv(0, 1)-32 conv(0, 1)-32
conv(1, 1)-32 conv(1, 1)-32

conv(0, 0)-64 conv(0, 1)-64 conv(0, 1)-64 conv(0, 1)-64
conv(1, 1)-64

conv(0, 0)-128 conv(0, 0)-128 conv(0, 0)-128

Flatten

768 1024 1024 1024 1024

reduces an image size of 2 pixels along each dimen-
sion, whereas a max pooling operation (kernel size
2× 2, stride 2) halves its dimension.

2.8.2.3. Activation function
Following the results presented by Schirrmeister
et al [73] and Lawhern et al [10] regarding activ-
ation function choice, we considered two potential
candidates—ReLU, used by Bashivan et al [59], and
exponential linear unit (ELU) [76] that was proven
to be more effective in the case of EEG processing
[10, 73].

Finally, we used convolutional blocks consisting
of: convolutional layer → ReLU → batch normaliz-
ation → dropout. All convolutional layers use typ-
ical parameters: kernel size equal to 3× 3, stride equal
to 1, and variable size of zero padding (denoted in
table 3). For dropout we used probability of zeroing
whole channel equal 0.5.

2.8.3. Number of blocks
Another important architecture choice is the num-
ber of convolutional blocks. In computer vision, typ-
ical models consist of dozens of convolutional layers
(e.g. ResNet [75] with more than 1000 convolutional
layers, VGG [72] with up to 19 layers, Inception-v3
[77] with 48 layers). However, methods proposed for
brain signals analysis used a significantly lower num-
ber of layers (e.g. ShallowConvNet andDeepConvNet
[73] with two and five convolutional layers respect-
ively, EEGNet [10] with three layers, Bashivan et al
[59] proposed architectures with up to seven convo-
lutional layers). To investigate this problem, the num-
ber of convolutional blocks in the 2D CNN was set
between 1 and 5 (table 3). The optimal model depth
was selected based on the session-wise cross-validated
CS obtained with the simplest proposed architecture:
CNN2D+ FC (see section 2.9). This depth value was
then used for more complex approaches.

2.9. CNN2D+ FC
We proposed several architectures to aggregate tem-
poral information from representation extracted by
the 2D CNN model. In the most straightforward

approach, the features extracted by 2D CNN at each
time step were concatenated and given as an input to
an FC layer composed of three neurons (figure 6(A)).
It provided three outputs that correspond to ŷi com-
ponents. Further, we will refer to this approach as
CNN2D+ FC.

2.10. CNN2D+ LSTM
LSTM [78] is a type of RNN that can efficiently ana-
lyze long temporal relationships in the data. As in typ-
ical RNNs, amodule called cell is applied to each time
step. LSTM cell carries relevant information through
time and decides what to forget and what to store
based on the current input [79]. In order to analyze
temporal information, we stacked two LSTM layers
at the top of 2D CNN (see figure 6(B)). At each time
step, the first LSTM cell with a hidden state of size 50
was provided with the flattened output features of the
2D CNN. The second LSTM layer had three neurons
that were used to provide three output coordinates
for ŷi components. Stacking two LSTM layers enabled
the network tomodel complex temporal relationships
and efficiently incorporate information from the last
second of the signal. It was already proven effect-
ive in a variety of tasks including ECoG decoding
[19, 62, 65].

2.10.1. CNN2D+ LSTM+MT
As an extension of CNN2D + LSTM, we also tested
a modification, referred to readers as multiple tra-
jectory prediction (MT), in which each LSTM out-
put from the last layer is used for network training
(see figure 6(C)). It means that ŷi and yi were com-
pared for ten consecutive time steps to compute the
model error. This was possible because desired tra-
jectory vector yi was registered every 100 ms. Thus,
LSTM may utilize the relation between close desired
trajectory to create a more general representation of
the system state. As a consequence, the loss function
was modified as follows:

CLMT(yi, ŷi) =
i∑

j=i−N−1

CL(yj, ŷj), (3)
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Figure 6. Four ways of temporal aggregation are presented for architectures based on the 2D CNNmodel. Numbers after the
name of the layer denote hidden state size in the case of LSTM, filter number in the case of tConv, and the number of neurons in
the case of FC. Visualization inspired by figures presented by Bashivan et al [59].

where N is the number of yi recorded during a one-
second-long window. In our case, N was equal to 10
because the desired trajectory was recorded at 10 Hz.

2.11. CNN2D+ tConv/LSTM+ FC
To compare our architectures with the state-of-the-
art, the best temporal aggregation variant proposed
by [59] (variant D) was included in our analysis.
For consistency, we will refer to this approach as
CNN2D + tConv/LSTM + FC. Bashivan et al [59]
used one LSTM layer with a hidden state of size
128 to analyze temporal information in parallel with
temporal convolution. The temporal convolution
(tConv) consisted of 32 filters of size 3 that were shif-
ted over features extracted by 2D CNN in the time
domain. It enables recognizing time-invariant pat-
terns in the data (similar patterns that occur at differ-
ent moments). Finally, the output of tConv and the
LSTM cell from the last time step were concatenated
and fed into an FC layer with 512 neurons followed by
an FC with 3 neurons predicting ŷi (see figure 6(D)).
A dropout layer was added before each FC layer.

2.12. CNN3D+ FC
We tested one more approach that can analyze spatial
and temporal patterns at the same time at all levels
of the data processing. Inspired by three-dimensional
CNNs (3D CNNs) [80] used to recognize human
actions on videos, we propose to extend the 2D CNN
model and to perform convolution not only in space
but also in time (see table 4). These architectures have
the advantage of propagating temporal information
from the first to the last layer. Similar to 2D CNN, an
FC was used as the output layer and the same convo-
lutional parameters were chosen (except for convolu-
tion performed in time).

Table 4. Architecture specification of 3D CNNmodel with two
convolutional blocks.

Block Layer Filters Padding Output shape

Input 2× 8× 4× 15× 10

1 Convolution 32 (0, 1, 0) 2× 6× 4× 32× 8
ReLU 2× 6× 4× 32× 8
Batch normalization 2× 6× 4× 32× 8
Dropout 2× 6× 4× 32× 8

2 Convolution 64 (0, 0, 0) 2× 4× 2× 64× 6
ReLU 2× 4× 2× 64× 6
Dropout 2× 4× 2× 64× 6

2.13. Sensitivity analysis
To analyze model behavior and identify important
features, we computed the gradient of the model’s
outputs with respect to the inputs on the test
datasets—network jacobian J ∈ RN×2×8×4×15×10×3

representing the sensitivity of each network output
to the inputs. For each input feature, the higher the
absolute gradient value, the stronger the influence
on the prediction. For visualization, the sensitivity
of the three outputs was averaged. We analyzed fea-
ture importance in three domains: spatial with pro-
jection on two implants, frequential within 15 fre-
quency bands from10 to 150Hz, and temporal within
10 time steps containing 1 s of the signal.

2.14. Optimization, hyperparameters, and
evaluation
We selected optimal hyperparameters values (ini-
tial learning rate, weight decay, and batch size) with
the tree of Parzen estimators (TPE) [81] algorithm
from hyperopt package. The selection was performed
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Table 5. Cosine similarity for each proposed method for left and
right hand datasets. Asterisks denote models which had
significantly different cosine similarity in comparison to CNN2D
+ LSTM+MT. Bold text indicates the highest cosine similarity
for each hand.

Cosine similarity

Left hand Right hand

CNN2D+ LSTM+MT 0.302± 0.017 0.249± 0.008
CNN2D+ FC 0.296± 0.015 0.237± 0.011
CNN2D+ tConv/LSTM+ FC 0.306± 0.017 0.223± 0.012∗

CNN3D+ FC 0.294± 0.016 0.226± 0.011∗

CNN2D+ LSTM 0.264± 0.015∗ 0.222± 0.011∗

MLP 0.229± 0.01∗ 0.205± 0.011∗

Multilinear model 0.189∗ 0.157∗

on the left hand calibration dataset using session-
wise 6-fold cross-validation. Hyperparameters val-
ues selected after 200 iterations can be found in the
appendix in table C1. The optimal number of layers
was selected using hyperparameters presented in table
C2.

Models were trained for 60 epochs with early
stopping (to limit overfitting) with the patience of
20 epochs without any loss function improvement on
the validation dataset. The learning rate was changed
using cosine annealing [82]. The last 10% of the
calibration dataset was used for validation and the
rest was used for training. We discarded the ran-
dom cross-validation scheme as the high correlation
between neighboring samples in time would have
biased performance on the validation datasets. The
model which achieved the best score on the validation
dataset was retained. It was used to compute average
CS on the test dataset (table 5).

To limit the influence of network weights initial-
ization and the optimization process on the results,
each model was trained five times. The mean and
standard deviation of the performance indicator was
computed. We used a T-test for independent samples
to assess the statistical significance of the difference in
performance between architectures.

We used PyTorch [83] and skorch [84] for DL
models training and evaluation, MATLAB [85] for
multilinear models training and evaluation, Seaborn
[86] and Matplotlib [87] for data visualization, and
Pandas [88] for results analysis.

3. Results

Our analysis started with determining the optimal
number of layers in the 2D CNN model and the
MLPs. Next, we compared all proposed methods in
terms of CS on the left and right hand datasets. Then,
a detailed comparison of the best DL-based archi-
tecture and the state-of-the-art multilinear model is
presented. Finally, we analyzed the influence of par-
ticular design choices on DL models’ performance.

3.1. Number of layers
The influence of the number of layers on the calibra-
tion cross-validated accuracy of MLP and CNN2D+

Figure 7. Influence of the number of layers on model
performance. Error bars denote the standard deviation of
six folds.

FC is presented in figure 7. In the LH case, the best CS
was obtained with two layers for both architectures.
For the RH, the best CS was obtained with one layer
for MLP and again with two layers for CNN. We can
observe a decrease in performance when addingmore
layers starting from 2 (LH) or even 1 (MLP and RH).
CNN architecture performed more stable on the RH
dataset and decreased accuracywas observed formore
than four layers. Based on these results, the number
of blocks in 2D CNN and the number of hidden FC
layers in MLP were chosen to be two as this choice
maximized the average CS over LH and RH results. It
simplified further analysis and limited computation
times without decreasing the performance.

3.2. Overall model performance
The CS of all evaluated approaches on both test data-
sets is given in table 5. The CNN2D + LSTM + MT
model achieved the best average performance across
left and right hand datasets with a CS of 0.302 for
the left hand and 0.249 for the right hand, corres-
ponding to 60% and 59% of CS improvement relative
to the multilinear model. Comparisons using the T-
test showed significant differences (p< 0.05) for both
hands between CNN2D+ LSTM+MT and CNN2D
+ LSTM, MLP, and multilinear model. Additionally,
in the case of the RH dataset, CNN2D + LSTM +
MT was also significantly better than CNN3D + FC
and CNN2D + tConv/LSTM + FC. All proposed
DL methods performed better than the multilinear
model. Generally, all models decoded LHmovements
more accurately than RH movements.

Correlation coefficients between predicted and
desired outputs are presented in table 6. CNN2D +
LSTM+MT achieved the highest average correlation
among all models. A significant decrease of perform-
ance can be observed in the X axis (forward/back-
ward movements) in comparison to other directions
for all models, reaching correlation close to zero for
the MLP. No correlation was observed between the
norm of predicted outputs and the distance to the tar-
get (maximum 0.047 for REW-NPLS, average over all
models: 0.0021± 0.26).

9



J. Neural Eng. 19 (2022) 026023 M Śliwowski et al

Table 6. Pearson’s r correlation coefficient between predicted and desired outputs on the test dataset. Bold text indicates the highest
correlation for each hand and axis.

Correlation coefficient

Left hand Right hand

X axis Y axis Z axis Average X axis Y axis Z axis Average

CNN2D+ LSTM+MT 0.09± 0.015 0.313± 0.005 0.292± 0.014 0.232± 0.021 0.072± 0.004 0.269± 0.008 0.253± 0.011 0.198± 0.014

CNN2D+ tConv/LSTM+ FC 0.067± 0.028 0.318± 0.009 0.294± 0.015 0.226± 0.033 0.051± 0.015 0.23± 0.007 0.246± 0.011 0.175± 0.02

CNN2D+ LSTM 0.054± 0.003 0.29± 0.01 0.274± 0.006 0.206± 0.012 0.061± 0.012 0.247± 0.007 0.254± 0.012 0.188± 0.018

CNN2D+ FC 0.065± 0.035 0.304± 0.007 0.264± 0.007 0.211± 0.0366 0.063± 0.04 0.254± 0.034 0.169± 0.074 0.162± 0.091

CNN3D+ FC 0.047± 0.023 0.302± 0.006 0.265± 0.013 0.205± 0.027 0.046± 0.008 0.232± 0.006 0.217± 0.011 0.165± 0.015

MLP −0.013± 0.01 0.182± 0.043 0.197± 0.011 0.122± 0.045 −0.003± 0.011 0.173± 0.012 0.199± 0.012 0.123± 0.02

REW-NPLS 0.036 0.1256 0.2186 0.126 0.046 0.174 0.119 0.113

Figure 8. The course of cosine similarity of CNN2D+ LSTM+MT and multilinear model in time. Error bars denote 95% mean
confidence interval.

3.3. Detailed performance comparison
To understand why CNN2D + LSTM + MT out-
performed the multilinear models, we performed a
detailed analysis of the accuracy of bothmethods. The
CNN2D+ LSTM+MTmodel used for comparison
was randomly selected from the five models trained
for that study. Then, the models’ performance was
compared over time, depending on the distance to
the targets and depending on the desired trajectory
direction.

Firstly, we compared the stability of the per-
formance over time. The average CS on each day of
the experiment is given in figure 8. The DL model
obtained a higher CS for a majority of points (15/17)
in the case of the LH dataset and all in the RH data-
set. For the LH and in comparison to the multilinear
model, the CS obtained by the DL models was better
(except the 26th day) until the 83rd day, similar on
days 83rd and 138th, and even much better until the
end of the test set. The improvement is more uniform
for the right hand, with an increase starting from the
83rd day after the last calibration session. The CS of
CNN2D+ LSTM+MT varies similarly to the multi-
linear REW-NPLS model in the case of the RH data-
set. CS was better than zero for all recording days for
both models.

The accuracy depending on the distance between
the hand cursor and the target is shown for bothmod-
els in figure 9. The DL model achieved a higher CS
than the multilinear model for both hands in almost
the whole range of distance (>90%). For both hands

Figure 9. Cosine similarity as a function of the distance
between cursor and target. The gray histograms represent
the number of samples in the test dataset. Error bands
denote 95% mean confidence interval.

and models, a drop in performance occurred when
the distance to the target was inferior to 10 cm. The
CS variance increased strongly when this distance was
superior to 60 cm. There are significantly fewer obser-
vations for the edge values of distance to the target, so
the performance estimate is noisier.

To determine if the predictions were more accur-
ate in a given direction, we plotted CS on 2D planes
(figure 10). CS has a non-uniform distribution—
observations for which the patient was asked to move
hand backward have a lower CS. CNN2D+ LSTM+
MT and multilinear model performed better in dif-
ferent directions. There is no wide angle in which per-
formance is below 0.
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Figure 10. Cosine similarity directional performance of
multilinear and CNN2D+ LSTM+MTmodels projected
on 2D planes.

3.4. Sensitivity analysis
To determine the inputs that had the strongest influ-
ence on the prediction, we visualized the average sens-
itivity of the DL model on the test set (figure 11).
We put together spatial feature importance maps and
the approximate shape of the central sulcus (CnS).
CnS separates the primary motor cortex and the
primary somatosensory cortex. For each hand, we
can see that the DL model outputs were more sens-
itive to changes in ECoG features from the contralat-
eral implant. The highest sensitivity can be observed
for the electrodes that are close to the CnS. For the
LH movements decoding, the most important elec-
trodes are located in the center of the implant sur-
rounding the CnS of the right cortex, while in the
case of the RH, they are posterior to the CnS of
the left cortex. The lowest absolute gradient values
can be found at the top and bottom edges of the
implants.

The most important features in the frequency
domain correspond to 20 and 30 Hz (beta rhythm).
An increase in importance can also be observed in fre-
quencies higher than 130 Hz.

In the time domain, the importance of input fea-
tures increases when getting closer to the current

time step, with a decrease observed for the features
computed with the last 100 ms of the ECoG signal for
the RH movements prediction.

3.5. Multiple trajectory influence
To understand better the influence of the MT variant
on the performance, wemodifiedCLMT loss function.
At time step j ∈ [i−N− 1, i] instead of comparing
LSTM output ŷj to the corresponding desired traject-
ory yj, it was compared to the desired trajectory at
the last time step yi (the one that is used when only
one time step is predicted). Finally, the modified loss
function was defined as:

CLMT (yi, ŷi) =
i∑

j=i−N−1

CL(yi, ŷj). (4)

This enabled us to isolate the influence of the inform-
ation about desired trajectory variation on the per-
formance from other factors as changes in the optim-
ization process due to providing explicit gradient
to the LSTM cell at each time step. Models trained
with CLMT loss function obtained cosine similarity
of 0.285± 0.012 and 0.224± 0.0077 for the left and
right hand respectively. This result is not as good as
in the case of standardMTmodification (LH: 0.302±
0.009, RH: 0.246± 0.011).

3.6. Influence of convolutional block design
The convolution blocks had the following chosen
structure: dropout (p= 0.5), batch normalization,
ReLU activation function, and no-padding. To assess
the influence of each particular design choice in the
convolutional block, we individually removed dro-
pout, batch normalization, replaced no-padding with
max pooling, and replaced ReLU with ELU. We com-
pared CS obtained over the test set by each DL
model with andwithout the particular design choices.
Results are presented in figure 12. It enabled us to
separately estimate the deterioration/improvement
related to each design choice. When CS values are
negative, it means that not applying the design choice
decreased the accuracy. The dropout layer brought
the biggest improvement overall for both hands and
all CNN-based models except CNN2D + LSTM,
where batch normalization had a stronger impact.
We observed much smaller improvements in the case
of no-padding, batch normalization, and activation
function.

As the biggest improvement in CS was due to
the dropout, we investigated its optimal value. The
CNN2D+ LSTM+MTmodel was trained with dif-
ferent probabilities of zeroing a channel. CS for each
hand for different dropout values is given in figure 13.
Results look similar for both hands: optimal dropout
values were 0.5 and 0.65. High (0.8) or low (⩽0.15)
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Figure 11. Average sensitivity of the CNN2D+ LSTM+MT outputs on the test dataset. Absolute gradient values are plotted as a
function of electrode positions (top plots), central wavelet frequency (left bottom plot), and time (right bottom plot). Gradient
integrals (averaged over hands) in mu (8–12 Hz), beta (12–31 Hz), gamma (31–70 Hz), and high gamma (70–150 Hz) frequency
bands are indicated on the plot with black horizontal lines with the corresponding axis on the right. CnS corresponds to the red
line on the heatmaps.

Figure 12. Influence of the architecture choices on the model performance. Models were trained with and without modification
for each architecture choice (dropout, no-padding, batch normalization). The difference between the two obtained models was
computed to evaluate the influence of particular modifications on the model performance. The lower the cosine similarity
difference is, the bigger deterioration is caused by removing the proposed modification from the model.

Figure 13. Cosine similarity obtained with CNN2D+
LSTM+MTmodel with two convolutional blocks as a
function of dropout levels.

dropout value strongly decreased the network
accuracy.

4. Discussion

We evaluated several DL-based methods to predict
3D hand translation. Our offline results show that
both MLP and CNN-based models outperform the
multilinear model proposed in [66]. A significant
improvement was obtained with CNN-based meth-
ods in comparison to both MLP and multilinear
models. At the same time, CNN2D + LSTM + MT

uniformly improved cosine similarity, independently
to the distance to the target, and provided better per-
formance than multilinear models in the majority of
directions. Increased correlation coefficients for all
the axes were observed, indicating higher perform-
ance in predicting desired outputs in all the direc-
tions. No correlation was observed between the norm
of the prediction and the magnitude of the desired
output. This is contradictory to the studies analyz-
ing real hand movements in able-bodied population
[12, 89]. However, it can be expected because of the
cosine loss function that does not depend on the vec-
tor’s magnitude and the mental task, which consisted
of imagined repeated movements encoding better the
direction. In our analysis, we did not use the LFC,
which had high importance in both studies decoding
speed of movement [12, 89].

We demonstrated that CNNs are a reasonable
choice to analyze time-frequency ECoG features and
may predict complex 3D hand translation. All the
presented results were computed offline, without
interaction between model and patient. This allowed
us to separate decoder performance and patient
adaptation influence and compare the models. Our
dataset was recorded in a closed-loop experiment,
which includes patient’s corrections after erroneous
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movements and control feedback that influence the
user’s brain activity. Thus, our estimate of models’
performance should be closer to the one obtained
during online control compared to open-loop exper-
iments. However, training and evaluation on previ-
ously recorded trajectories may lead to overfitting
and accommodation to the model used during the
experiment and the models’ errors inducing addi-
tional biases. This can impact the online results, but
it is impossible to measure those factors’ influence on
the results computed in an offline study.

In our dataset, we did not have access to real hand
movements. Compared to the open-loop experiment
with actual movement recorded, our output variable
can be distorted and influenced by the patient’s atten-
tion level, tiredness, or inexactness of imagination.
Moreover, in a closed-loop, a patient has to correct
the erroneous movements, complicating the traject-
ory. As a result, we train models on a distorted and
noisy dataset. It also complicates model evaluation
andmakes the problemmore challenging than decod-
ing overt movements.

4.1. Generalization of the results
This study included only one participant. It is
then impossible to generalize these results to other
patients. However, the proposed models were tested
on two different datasets. CNN2D + LSTM + MT
model achieved a similar improvement compared to
the state-of-the-art multilinear model and MLP for
both hands.

The feature importance maps demonstrated that
the neuronal patterns for each hand were different.
Thus, it showed the DL-based models’ capacity to
determine relevant features on two datasets. Never-
theless, our resultsmust be confirmedwith additional
tests (including online evaluation) of proposed mod-
els on a bigger group of patients. This is planned in
the clinical trial as the next steps after enrollment of
new patients.

The sensitivity analysis also revealed that beta and
high gamma band activity has a high impact on the
predictions, which is coherent with studies analyz-
ing real arm movements in epileptic patients [22,
89]. However, these studies indicated the strongest
influence of low-frequency potential on hand move-
ment predictions. Our feature extraction pipeline was
not designed to analyze the LFC, so further analysis
should use the information transmitted in frequen-
cies lower than 10 Hz.

4.2. Differences in cosine similarity
Our results showed a significant difference in cosine
similarity and correlation depending on hands and
directions. For example, right hand translations on
the test dataset were predictedwith significantly lower
accuracy than the left hand translations. The reason
for that relationship is unclear, especially taking into

account an inverse relationship showed by the cross-
validation results on the calibration dataset.We hypo-
thesize that the MI patterns used by the patient to
control left hand translations are more stable in time
than the right hand patterns. This may be caused by
differences in the level of residual motor functions in
the hands—the patient had better control of his left
hand and used it daily to operate a wheelchair. Con-
sidering that the test sessions were spread over more
than 200 days while calibration was recorded within
3 days, it could explain why cosine similarity was bet-
ter for left hand on the test sessions and not on the
calibration.

Interestingly, movements in the X axis (forward/-
backward) were decoded with significantly decreased
performance in comparison to Y (left/right) and Z
(up/down) axes. The possible amplitude of move-
ments was significantly lower for the X axis (∼30 cm)
compared to Y and Z axes (∼55 cm) which may
require from the patient more precise movements
closer to the target. Additionally, in the virtual envir-
onment, the hands of the avatar were displayed on a
flat screen which may cause problems in the percep-
tion of the depth and may affect visual feedback. A
combination of those two factors might influence the
recordings. Thus it should be taken into accountwhile
designing the next experimental sessions.

4.3. Online training
REW-NPLS enables incremental training of multilin-
ear models from newly recorded data chunks. This
is particularly important in a closed-loop experiment
since it enables co-adaptation between the patient
and the models. Such kind of training may be hard
to use in the case of DL. Backpropagation may fail
to find a reasonable solution [90], especially when
provided with small chunks (e.g. 150 samples corres-
ponding to 15 s of signal in the case of REW-NPLS)
that are likely to be biased towards an overrepresented
direction. Such circumstances may lead to a drastic
decrease inDLmodel performance. To trainDLmod-
els incrementally over the ECoGdata stream, onemay
increase the data chunk size or keep the whole or
part of the dataset in the memory and mix it with
new data. Schwemmer et al [51] updated a pretrained
model using a part of their training dataset com-
bined with newly recorded data. One can also utilize
more sophisticated methods like hedge backpropaga-
tion [90]. An alternative solution could be keeping
all the data in memory and retraining from scratch
each time a new data chunk is available. This solu-
tion is memory inefficient and may not be possible
to perform in real-time as training from scratch may
take more than 2 min (for CNN2D + LSTM + MT
and around 40minof signal).More experimentsmust
be conducted to study the possibility of training DL
models incrementally. Nevertheless, our study shows
that a standard optimization of the DL-based models
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from data recorded during multilinear model incre-
mental training enables obtaining significantly better
models.

4.4. 2D CNN
Methods processing data with 2D CNN obtained
higher cosine similarity compared to solutions based
on flattened feature vector. Input representation for
2D CNN enabled exploitation of local correlation
between electrodes in contrast to MLP and mul-
tilinear model. 2D CNN model with several con-
volutional blocks also has significantly fewer train-
able parameters than MLP. In 2D CNN architecture,
the data processing is separated for each implant.
We also considered a scenario in which the features
from both implants would be concatenated along the
width dimension as if there was no space between the
inner edges of the implants. However, we decided to
keep a separate data processing for each implant to
avoid introducing an additional spatial distortion that
would have broken the spatial consistency between
neighboring electrodes. Then, the same set of weights
was used for both implants. This enabled us to halve
the number of trainable parameters (see table B1) and
learn features that generalize across implants. Never-
theless, MI imagery patterns recorded by each ECoG
implant are different since they are not positioned in
the same cerebral hemisphere. Fromneuroscience, we
also know that most of the brain activity correlated
to unilateral hand MI/movements occurs in the con-
tralateral brain hemisphere. However, brain activity
correlated to this kind ofmovement can also be found
in the ipsilateral motor cortex [89]. Due to the weight
sharing property of CNNs, the network is oriented
towards extracting low-level features that are implant
invariant. On the other hand, extracting implant-
specific features remains possible because each con-
volutional layer has multiple independent filters with
parameters adjusted to the data.

4.5. Temporal information processing
We tested fivemethods to aggregate temporal inform-
ation. CNN2D + LSTM + MT obtained the highest
average cosine similarity. This confirmed that LSTMs
could decode ECoG signals into complex hand tra-
jectories. As the hidden state of the LSTM cell was the
output of the network, the final predicted trajectory
could be influenced by the input data from each time
step. 3D CNNs that also analyze temporal informa-
tion do not have this memory, so convolutional fil-
ters in the first layers are not aware of a longer tem-
poral context than the length of the kernel. LSTM’s
memory can increase the network’s ability to predict
the desired trajectory as the target position is con-
stant through the analyzed one second of the signal.
Therefore, using several even similar target vectors
to train the network may create a more robust and
precise final estimation. However, the improvement

compared to the CNN2D + FC model was not stat-
istically significant, so one can also use this model,
which has fewer parameters and performs similarly.

4.6. Multiple trajectories
CNN2D+ LSTM+MTmodel achieved significantly
higher cosine similarity than the CNN2D + LSTM.
In CNN2D+ LSTMmodels, the LSTM state encodes
previous trajectories. It can memorize past hand and
target positions and then modify the memory based
on the next steps’ data. Finally, the state of the LSTM
is a summary of past desired trajectories. Provid-
ing LSTM with additional information about earlier
desired trajectories enables a more accurate repres-
entation of the system state with a broader context.
LSTMs at each time step decide what to memor-
ize and what to forget. This can be especially use-
ful in the case of repeated imagined MI patterns
and varying patient concentration levels, resulting in
temporal changes in the level of information con-
tained in the data. Hence, we anticipate that the
attention mechanism may be a reasonable way to
extend the CNN2D + LSTM + MT model. Atten-
tionmodules can highlight parts of the input contain-
ing the most relevant information for the prediction.
Therefore, we expect that models incorporatingmore
advanced attention can further improve hand move-
ment decoding. Another way to extend the LSTM
context may be increasing input signal length and
taking into account long temporal relationships that
occur inside one trial (average trial length≈25 s). Our
results show that including even a one-second-long
time series of desired trajectory variations improves
decoding accuracy. Having access to previous output
variables gives more awareness, to the ML models,
about the processes taking place in the experiment.
Thus, extending the length of the input signal com-
bined with the attention mechanism could improve
overall BCI performance.

4.7. Design choices
We searched for the design choices that had the
strongest influence on the accuracy of the DL-based
models. Our results show that the most impactful
component of the CNN architecture is the dropout
layer. It enabled us to create a significant difference
between the accuracy obtained by the MLP and the
CNN2D + LSTM + MT. Our dataset has a few
samples compared to the number of trainable para-
meters, so it is especially prone to overfitting. Dro-
pout can be a remedy for overfitting as it is a reg-
ularization method [70]. Surprisingly, the CNN2D
+ LSTM + MT model achieved a high perform-
ance even when the dropout value was 0.65. It cor-
responds to a strong regularization with more than
half of the network switched off. This value is different
from the one suggested for computer vision. Cai et al
[91] reported a decrease in accuracy for channel-wise
dropout rates higher than 0.1. Higher dropout levels
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limit model capacity, distort information stronger,
and impose representation to be shared between vari-
ous neurons. We hypothesize that the difference in
optimal dropout rate between computer vision and
ECoG signals originates from the difference in signal
to noise ratio but may also be influenced by the net-
work’s size. A large network regarding the complexity
of the problem can favor stronger overfitting. There-
fore, we suggest that it may be possible to reduce the
number of convolutional filters and the dropout rate
conjointly. This would decrease the number of model
parameters and reduce training and inference time.

The other design choices had a much smaller
influence on the performance. We can notice a slight
but general downward trend in performance with
these design choices for almost all tested architectures.
Our results concluded that ReLU is a better choice
than ELU for our problem. This is in contradiction to
the conclusions of Schirrmeister et al [73], who repor-
ted a higher decoding accuracy using ELU. However,
Schirrmeister et al [73] analyzed raw EEG signals,
while our networks were trained from ECoG time-
frequency features. Therefore, both analyses consider
signals represented in different domains, which cer-
tainly influences the choice of architecture.

Regarding pooling method selection, no particu-
lar trend was observed when the no-padding option
was replaced by max pooling. One of our arguments
for the use of no-padding is the specific arrange-
ment of ECoG electrodes. The 64 ECoG electrodes
are placed on two 4× 4 cm grids that record neural
signals from a small and specific area of the brain.
The spatial resolution of the recording is higher than
in the case of EEG by orders of magnitude. We see
an opportunity for ML models to take advantage
of this fact. However, max pooling may prevent the
detection of small signal variations and make models
invariant to small translations. Those may be import-
ant due to the nature of the observed phenomenon
and the fact that we try to decode precise 3D move-
ments that can be coded in tiny signal variations.
Moreover, ECoG implants are centered on the sen-
sorimotor cortex responsible for hand movements.
Then, the central features are expected to be the most
informative. No-padding naturally directs the atten-
tion towards the center of the implants, as fewer con-
volution operations are performed on the edges of the
implants.

In our study, we also analyzed the influence of
model depth on cosine similarity. Using more than
two convolutional layers can decrease the models’
accuracy or give only a slight improvement, depend-
ing on the dataset. This result might seem counter-
intuitive, as stacking more layers in the DL architec-
tures increases the number of trainable parameters
and their capacity for representation. Nevertheless,
our input data corresponded to hand-crafted features,

which might not enable the extraction of high-level
features. Worse, increasing the depth of the networks
might have resulted in difficulties in estimating the
optimal value of the model parameters. This might
explain why we do not need to use dozens of layers,
like computer vision [75], for this application. Finally,
our best proposed model CNN2D + LSTM + MT
consists of four layers—two convolutional blocks and
two LSTM layers. Our results are consistent with the
vast majority of BCI studies that used DL for EEG
[92], ECoG [19, 62–65] and applied less than ten lay-
ers inside the models.

In the experiment, we chose hand-crafted time-
frequency features that may not be optimal since they
are not optimized for this specific problem. Thus,
other successful methods of feature extraction should
be evaluated, e.g. LFC [22, 93]. Most importantly,
end-to-end DL-based models can learn features spe-
cific to this problem, which could bring an evenmore
significant improvement than building upon already
existing solutions.
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Appendix A. Targets positions

In figure A1, we presented positions of targets that
were used during calibration and testing sessions.

Figure A1. Positions of targets that patient was asked to
reach during experiment.

Appendix B. Number of parameters

Table B1. Number of trainable parameters for evaluated methods.

Parameters

REW-NPLS 28 800
CNN2D+ FC 53 635
CNN3D+ FC 86 851
CNN2D+ LSTM+MT 238 772
CNN2D+ LSTM 238 772
MLP 482 953
CNN2D+ tConv/LSTM+ FC 943 523

Appendix C. Hyperparameters values

Table C1. Values of hyperparameters selected using TPE.

Model
Learning
rate

Weight
decay

Batch
size

MLP 0.00031 0.018 592
CNN3D+ FC 0.00064 0.3 928
CNN2D+ LSTM+MT 0.00023 0.24 96
CNN2D+ LSTM 0.0089 0.12 352
CNN2D+ FC 0.003 0.22 560
CNN2D+ LSTM/
tConv+ FC

0.00029 0.42 96

Table C2.Hyperparameters values used to estimate optimal
number of layers.

Learning rate Weight decay Batch size

0.001 0.01 200
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Supplementary implementation test

(a) Screenshot from F1 game.
The joystick is controlled with
motor imagery commands.

(b) Latency of the system with
DL model prediction for one
expert.

Figure 2.1: Online DL model evaluation.

The goal of this study was to propose DL-based models that could be used
in online experiments. As a part of the thesis, we prepared Python-package for
analysis of data recorded in the clinical trial. Prepared framework was integrated
into the Matlab-based real-time signal processing system.

To validate our implementation, DL-based model, i.e., CNN+LSTM+MT, was
used during an experiment with another tetraplegic subject enrolled in the Cli-
natec ’BCI and Tetraplegia’ clinical trial. The experimental paradigm considered
for DL model evaluation was formula one (F1) virtual environment game in
which patient controlled 2D joystick movements using hand motor imagery (see
figure 2.1a). First, model was trained using database of prerecorded signals.
Then, during an experiment, the model was used for approximately 4 minutes
to provide 2D control over virtual effector to the the patient. Only CPU was used
to compute predictions which provided enough computational power for our
application. Thanks to that, we could remove GPU from computer configuration
used for experiments.

Our online evaluation validates possibility to use DL models for real-life appli-
cation in the clinical trial without additional latency (< 100 ms, see figure 2.1b).
Our experiment focused only on the infrastructure integration and potential for
real-life online application of DL-based models. The main reason why we could
not analyze models prediction to estimate decoding performance was the level
of control the patient achieved in the clinical trial procedure that did not allow
for efficient multidimensional control at the moment of the experiment.
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Abstract. Objective. In brain-computer interfaces (BCI) research, recording
data is time-consuming and expensive, which limits access to big datasets. This
may influence the BCI system performance as machine learning methods depend
strongly on the training dataset size. Important questions arise: taking into
account neuronal signal characteristics (e.g., non-stationarity), can we achieve
higher decoding performance with more data to train decoders? What is the
perspective for further improvement with time in the case of long-term BCI
studies? In this study, we investigated the impact of long-term recordings on motor
imagery decoding from two main perspectives: model requirements regarding
dataset size and potential for patient adaptation.

Approach. We evaluated the multilinear model and two deep learning (DL)
models on a long-term clinical trial dataset containing 43 sessions of ECoG
recordings performed with a tetraplegic patient. In the experiment, a participant
executed 3D virtual hand translation using motor imagery patterns. We designed
multiple computational experiments in which training datasets were increased
or translated to investigate the relationship between models’ performance and
different factors influencing recordings.

Main results. For all tested decoders, our analysis showed that adding
more data to the training dataset may not instantly increase performance for
datasets already containing 40 minutes of the signal. DL decoders showed similar
requirements regarding the dataset size compared to the multilinear model
while demonstrating higher decoding performance. Moreover, high decoding
performance was obtained with relatively small datasets recorded later in
the experiment, suggesting motor imagery patterns improvement and patient
adaptation during the long-term experiment. Finally, we proposed UMAP
embeddings and local intrinsic dimensionality as a way to visualize the data and
potentially evaluate data quality.

Significance. DL-based decoding is a prospective approach in BCI which may
be efficiently applied with real-life dataset size. Patient–decoder co-adaptation is
an important factor to consider in long-term clinical BCI.

Keywords: ECoG, motor imagery, deep learning, tetraplegia, adaptation, dataset size,
learning curve
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1. Introduction

Permanent motor deficits as a result of a spinal cord
injury (SCI) affect hundreds of thousands of people
worldwide each year (12,000 people each year just in
the United States [1]). In this case, the motor cortex
is preserved, but neuronal signals can no longer be
transmitted to the muscles. Then, the use of a brain-
computer interface (BCI), which enables interacting
with an effector by thought, could enable these patients
to regain a certain autonomy in everyday life. For
example, motor imagery based BCI has been used
for the control of prostheses or exoskeletons of upper
limbs [2–4], lower limbs [5–8] and four limbs [9] in
subjects with paraplegia or tetraplegia following an
SCI. In this study, we focus on electrocorticography
(ECoG)-based motor BCIs, promising tools that may
enable continuous 3D hand trajectory decoding for
neuroprosthesis control while reducing the risk of
implantation compared to more invasive approaches
[10].

BCIs record neuronal activity and decode it
into control commands for effectors. Decoders are
generally trained using machine learning algorithms
in a supervised manner. In the vast majority of
studies, the training dataset is strongly restricted due
to limited access to recordings. At the same time,
dataset size is an important factor in machine learning
analysis and can influence overall system performance
drastically. In contrast to recent computer vision
and natural language processing studies [11–13], the
optimal quantity of training data, i.e., the quantity
at which decoder’s performance reaches a plateau for
a given application, is rarely studied for BCI [14].
Especially, learning curves, providing insight into the
relationship between model performance and training
set size, are rarely presented. Learning curves can be
used for model selection, decreasing the computational
load of model training, or estimating the theoretical
influence of adding more data to training datasets
[15]. The last point is particularly important in BCI,
considering limited access to datasets recorded with
humans. Without knowing the relationship between
system performance and dataset size, it is hard to
determine the strategy to improve the accuracy of
decoders: increase the amount of training data or
increase the capacity of the models. In the case of
ECoG-based motor BCI, most models have a limited
capacity. The decoders used are Kalman filters [16,17]
and mostly variants of linear models [18–24]. In most
of these studies, decoder optimization has been carried
out on databases containing a few minutes or tens of
minutes of the signal. This results in usable models but
does not provide any information on the performance
gain that could be achieved with more data, nor does
it compare the data quantity/performance relationship

between several decoders.
Model characteristics and learning curves are not

the only factors influencing decoders’ performance in
the case of BCI. The human ability to generate distinct
brain signal patterns is crucial for a BCI system to
work. Research in recent years has focused mainly on
the development of increasingly efficient decoders, for
example DL [25–38] rather than on patient learning
or co-adaptation [39, 40], even though several studies
have shown the crucial importance of patient learning
[41–45]. Thanks to recording device developments and
clinical trial advances, long-term studies of chronic
BCI enable recording bigger datasets than ever before.
Current techniques for recording brain activity, such
as the ElectroCorticoGram (ECoG), provide stable
recordings for at least 2 years [46]. It offers the
possibility to train and test a decoder over several
months. It also enables studying potential patient
learning and provides insight into the optimal quantity
of data necessary to get the best out of a decoder. These
questions have largely been put aside [14].

Closed-loop learning allows for short-term patient-
model co-adaptation through the visual feedback re-
ceived by the patient. This feedback leads to a mod-
ification of the brain activity and has shown capa-
bilities for improving the control of neuroprostheses
[44, 47–50]. Nevertheless, motor learning is a process
that takes place in the short term and in the long
term [51, 52]. This long-term learning is little studied
in BCI and most studies in humans are limited to a few
sessions (< 15) [53–56] to show that a fast and efficient
calibration of the proposed decoders is possible. Several
studies with a larger number of sessions (> 20) were
nevertheless carried out: [4,8,45,57–63]. Some have fo-
cused on patient learning [8,45,56–58,61] by seeking an
improvement in performance coming from changes in
the signal or the characteristics extracted from it. The
last point is required to distinguish between perfor-
mance improvement due to patient learning, increased
data available for decoder optimization, or changes in
the experimental environment [14,64].

This study investigated the relationship between
BCI decoders’ performance predicting 3D upper-limb
movements from ECoG signals and the training dataset
size used to optimize model parameters. Learning
curves obtained in different offline computational
experiments showed that multilinear and DL models
saturate at a similar amount of data, between 30
and 90 minutes of ECoG signal, depending on the
scenario and hand. Moreover, learning curves revealed
characteristics that were unlikely caused by just the
dataset increase. Extended analysis using unsupervised
ML methods showed dataset characteristic changes
with time, suggesting that long-term patient learning
may play an important role in achieving higher
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BCI performance. This kind of analysis was possible
thanks to the access to a rare database of ECoG
signals [63] containing imagined hand movements
performed by a tetraplegic patient to control upper-
limb 3D translation in a virtual environment. The
dataset contains 43 sessions recorded over 9 months
(approximately 6 hours of data for each hand).

2. Methods

2.1. Clinical trial and patient

The data was recorded and analyzed as a part of the
”BCI and Tetraplegia” (ClinicalTrials.gov identifier:
NCT02550522) clinical trial, which was approved by
the Agency for the Safety of Medicines and Health
Products (Agence nationale de sécurité du médicament
et des produits de santé—ANSM) with the registration
number: 2015-A00650-49 and the ethical Committee
for the Protection of Individuals (Comité de Protection
des Personnes—CPP) with the registration number:
15-CHUG-19.

The participant was a 28-year-old right-handed
man following tetraplegia after a C4-C5 spinal cord
injury. He had residual control over upper limbs
with American Spinal Injury Association Impairment
(ASIA) scores of 4 (right hand), 5 (left hand) at the
level of the elbow, and 0 (right hand), 3 (left hand) at
the extensors of the wrist. All motor functions below
were completely lost (ASIA score of 0). [65]

Two WIMAGINE implants [66], recording ECoG
signal at 586 Hz sampling rate, were implanted above
left and right primary motor and sensory cortex
responsible for upper limb movements. The implants
consisted of an 8 × 8 electrode’s grid. Due to the
data transfer limit, only 32 electrodes (organized on
a chessboard-like grid) were used.

The data recordings used in this study started
after 463 days post-implantation. The subject was
already experienced in the BCI setup as the clinical
trial experiments began shortly after the surgery.
During the clinical trial, the participant gradually
learned how to control the BCI, starting by using
discrete/1D effectors and finally achieving control of
up to 8D movements in one experimental session.

2.2. Data and experimental paradigm

The dataset analyzed in this study contains 43
experimental sessions in which tetraplegic patient
was asked to perform motor imagery tasks in
order to move virtual exoskeleton effectors (see
the virtual environment in figure 1). In particular,
the patient used an MI strategy in which he
repeatedly imagined/attempted fingers, hands, and
arm movements to control 8 dimensions (3D left and

Figure 1. Screenshot from the virtual environment. The patient
was asked to reach the blue sphere with his right hand.

Table 1. Datasets size in the number of trials and length of the
recordings.

Left hand Right hand

Trials 811 756
Duration [min] 300 284

right hand translation and 1D left and right wrist
rotation). In every trial, the patient’s goal was to reach
the target displayed on the screen, one after another,
without returning to the center position. [63]

During the experimental sessions, 1 out of 5
states (idle state, left hand translation, right hand
translation, left wrist rotation, right wrist rotation)
was decoded from the recorded ECoG signal with
a multilinear gate model. Accordingly to the gate
predictions, an appropriate multilinear expert was
selected to provide a trajectory of hand movement or
direction of wrist rotation. For further analysis, we
selected only left and right hand translation datasets.

Multilinear model parameters were optimized on-
line during the recordings using recursive exponentially
weighted n-way partial least squares (REW-NPLS)
[67]. Models were trained on the first six sessions, fur-
ther referred to as the calibration dataset. For the next
37 sessions, models’ weights were fixed and used for
the performance evaluation. In our computational ex-
periments, we concatenated calibration and test ses-
sions to perform offline simulations in different scenar-
ios, studying the dataset and model characteristics in-
depth. Datasets sizes are reported in table 1.

2.3. Preprocessing and feature extraction

Raw ECoG signal was processed with a feature extrac-
tion pipeline creating time-frequency representation.
Continuous complex wavelet transform was used with
15 Morlet wavelets with central frequencies in the range
of 10-150 Hz (10 Hz interval). Every 100 ms, one sec-
ond of signal (90% overlap) was selected and convolved
with the set of wavelets coefficients. Then modulus of
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the convolved complex signal was averaged over 0.1s
fragments. Finally, every i-th window of the signal was
represented with time-frequency representation in the
form of a tensor Xi ∈ R64×15×10 with dimensions cor-
responding to ECoG channels, frequency bands, and
time steps.

In this study, samples for which predicted and
desired states did not match each other were removed.
By removing the gate errors, we minimize the influence
of low gate model performance on the visual feedback
and thus on the patient imagination patterns. In
addition, one session was removed from the dataset as
during the online experiment patient reached a highly
negative cosine similarity (outliers compared to other
sessions) which may as well influence recorded signals
by providing erroneous visual feedback to the patient.

2.4. UMAP embeddings and artifacts identification

High-dimensional datasets are almost not possible to
visualize without any dimensionality reduction before.
What can be trivial to observe in low-dimensional
space may easily stay hidden in the noise in high-
dimensional representations. Due to the curse of di-
mensionality, understanding the topology of distribu-
tions or even noticing outliers is challenging. The main
goal of the visualization was to see the evolution of data
distributions between sessions. To map time-frequency
representation into lower-dimensional space, an unsu-
pervised learning algorithm, namely Uniform Manifold
Approximation and Projection (UMAP) [68] was used.
We decided to apply UMAP as it preserves the global
manifold structure similarly to t-SNE [69] but has a
lower computational load according to [68,70]. Thanks
to that, we could avoid additional dimensionality re-
duction (e.g., PCA), which is usually done before feed-
ing high-dimensional datasets into t-SNE [71]. We used
flattened time-frequency features Xi ∈ R64×15×10 →
R9600 (the same as for motor imagery decoding) as
the input to UMAP. Every tenth observation from the
dataset was selected for UMAP to avoid redundancy in
the data (90% overlap between samples) and decrease
the computational load. UMAP was fitted on three
datasets to all the sessions together, i.e., one UMAP
for both hands optimized together and one per hand
trained individually. The first scenario lets us better
see the data distributions within the state classifica-
tion framework, with samples being colored due to the
state they belong to. This gave us a global overview of
the dataset. In the per hand scenario, we focused more
locally on the structure of each dataset. This may have
a bigger influence on the decoding performance while
being harder to analyze due to the lack of explicit la-
bels for visualization (like states in the previous case).

In the case of UMAP optimized together for
both hands, we proposed an indirect indicator of data

Figure 2. Per hand embeddings before (top row) and after
(bottom row) artifacts removal.

quality reflecting the separability of the left and right
hand clusters. This was assessed using linear support-
vector machine (SVM). SVM was fitted to every session
separately. Then every sample in the session was
classified into two categories, i.e., left hand or right
hand movement. Accuracy of the state classification
was further used as a state separability indicator. We
did not perform any cross-validation as we focused
on the separability of the clusters and not on the
state classification performance itself. On the UMAP
embeddings we visualized also SVM decision boundary
dividing the space between categories of movements.

UMAP as a dataset visualization method may
also be used for an overall sanity check of the
dataset, especially for artifacts that are easy to
spot when the dataset is small, but it is impossible
to review every sample individually when analyzing
thousands of observations. In our case, UMAP helped
us to observe artifacts coming from connection loss
resulting in singular outliers samples that were not
caught during recording. Those, on the UMAP plots,
created suspicious clusters of observations (figure 2).
The clusters of artifacts after recognition on the
UMAP plots and further manual review were fixed by
interpolation of points in the raw signal domain.

2.5. Evaluated models

Multilinear model optimized with REW-NPLS algo-
rithm [67] was used as a ’traditional’ ML benchmark
to predict 3D hand translation. The same algorithm
was also used for providing online control to the pa-
tient during recordings. PLS models embed both high-
dimensional input features and output variables into
lower-dimensional latent space, aiming to extract la-
tent variables with the highest correlation between in-
put and output. REW-NPLS model can be updated on-
line thanks to low-computational cost, recursive valida-
tion of the number of latent factors, and model param-
eters being updated with only chunks of the dataset.
Online training ease performing the experiments and
makes it possible to use ECoG decoders almost from
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Table 2. MLP architecture from [72].

Layer Kernel Shape Output Shape

Flatten – [200, 9600]
Fully connected [9600, 50] [200, 50]
BatchNorm [50] [200, 50]
ReLU – [200, 50]
Dropout – [200, 50]
Fully connected [50, 50] [200, 50]
BatchNorm [50] [200, 50]
ReLU – [200, 50]
Dropout – [200, 50]
Fully connected [50, 3] [200, 3]

the beginning of the first recording session. Even if de-
coders may show unstable performance at the begin-
ning of the experiment due to the small amount of
data used for training, it provides visual feedback to
the patient. For our offline computational experiments,
multilinear models were trained in pseudo-online mode,
simulating real-life experiments with updates based on
15 seconds-long chunks of data.

The second group of models used deep learning
to predict the desired hand translation. In particular,
methods proposed and described in detail in [72]
were evaluated—i.e., multilayer perceptron (MLP—
simple approach) and mix of CNN and LSTM
(CNN+LSTM+MT) providing the best performance
for a given dataset [72]. MLP was built from two
fully-connected layers with 50 neurons with dropout
and batch normalization in-between (see table 2).
CNN-based method exploited the spatial correlation
between electrodes by analyzing data organized on
a grid reflecting the electrodes’ arrangement with
convolutional layers. As the CNN-based method
utilizes data structure, it has fewer parameters
while maintaining similar capabilities to MLP. In
CNN+LSTM+MT, LSTMs were used to aggregate
temporal information extracted by convolutional layers
into desired translation trajectory (see table 3). The
DL models were trained to maximize cosine similarity
(CS) between predicted and optimal trajectories.
We used early stopping to limit the overfitting
with a validation dataset consisting of the last
10% of the calibration dataset. The best model
on the validation dataset was used for further
evaluations. The procedure was repeated five times
for every scenario and model to limit the influence
of the stochasticity of the training process on our
results. To train DL models, we used a fixed set
of hyperparameters, i.e., learning rate equals 0.001,
weight decay (L2 regularization) equals 0.01, and batch
size equals 200.

Table 3. CNN+LSTM+MT architecture from [72].

Layer Kernel Shape Output Shape

Input [200, 15, 8, 8, 10]
Input per implant [200, 15, 8, 4, 10]
Conv space [15, 32, 3, 3, 1] [200, 32, 6, 4, 10]
ReLU – [200, 32, 6, 4, 10]
BatchNorm [32] [200, 32, 6, 4, 10]
Dropout – [200, 32, 6, 4, 10]
Conv space [32, 64, 3, 3, 1] [200, 64, 4, 2, 10]
ReLU – [200, 64, 4, 2, 10]
Dropout – [200, 64, 4, 2, 10]

LSTM – [200, 10, 50]
LSTM – [200, 10, 3]

2.6. Computational experiments

Multiple offline computational experiments were per-
formed on the prerecorded ECoG BCI dataset to assess
the impact of training dataset size on decoding per-
formance. The results computed on a real-life dataset
may be impacted by multiple factors that cannot be
observed directly. Thus, we proposed several ways of
increasing the training dataset as well as iterating over
it. By modifying the training datasets in different man-
ners, we aimed to isolate different factors that can po-
tentially influence learning curves. In every scenario,
all the models were trained on a different subset of the
database and then evaluated on test datasets accord-
ingly to the experiment.

2.6.1. Forward increase The forward increase (FI)
scenario measured the change of cosine similarity when
adding more recording sessions to the dataset. This
experiment corresponds to a real-life situation where
more data is collected during the experiment. The
sessions were incrementally added (session by session)
to the training dataset. After every step, all the
decoders were trained from scratch and evaluated on
the following 22 sessions (see Figure 3).

2.6.2. Backward increase An important factor influ-
encing model training may be the nonstationarity of
signal in time originating from the plasticity of the
brain as well as the patient’s adaptation. To assess the
influence of this factor, an inverse of forward increase
was performed, further referred to as backward increase
(BI). Similar to the FI simulation, the training dataset
was increased session by session. However, the increase
was started from the 21st session and the previous ses-
sions were added until including the first calibration
session. After every training, models were evaluated
on a fixed test set consisting of 22 last recordings (see
Figure 3).
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Figure 3. Visualization of forward and backward increase and
translation over the dataset. For clarity, we ignored differences
in session length.

2.6.3. Random increase An alternative way of assess-
ing the influence of training dataset size on the decoder
performance is random dataset increase (RI). Instead
of maintaining the temporal order of recorded samples,
we artificially removed the connection between neigh-
boring observations, i.e., for every dataset size, a re-
spective number of observations was selected from the
first 22 sessions, and then the model was trained. This
may reduce the effects of neuronal signal nonstationar-
ity and/or patient adaptation and provide results closer
to theoretical learning curves when assumptions about
the stationarity of observations are fulfilled. Evalua-
tions were performed on the same test set as in BI.

2.6.4. Dataset translation As data may change over
time, we trained models on approximately the same
amount of data but recorded in different periods of
the experiment. This enabled us to rule out the effect
of the increased dataset and focus on data shift and
potential patient adaptation that may modify the
data representation and influence the performance of
trained decoders. The training dataset was translated
over the whole dataset and evaluated on the test
dataset consisting of the following six sessions (see
figure 3).

2.7. Learning curve

The learning curve ‡ describes the relationship between
model performance and the training dataset size l [73].
It can be used, for example, to infer a potential change

‡ In this context, the learning curve does not refer to the
relationship between the number of training epochs and model
performance which the name learning curve is also commonly
used for.

in the performance from adding more data to the
system. This can be particularly efficient in application
to BCI because we can estimate the hypothetical
performance of decoders when recording more data
without actually performing the experiments. Learning
curves can also be used to select an appropriate model
for a specific dataset size. For example, Strang et al.
[74] showed that non-linear models are more likely
to outperform linear models for bigger datasets. On
the other hand, Hoiem et al. [12] showed that models
with more parameters can be more efficient in the
case of small datasets despite the higher potential for
overfitting.

The learning curve may be formulated with power
law [73,75]. In our case, the relationship between cosine
similarity and training dataset size may be expressed
as:

CS(l; a, b, c) = a− b · l−c (1)

where b and c can be interpreted as learning rate and
decay rate, respectively. a corresponds to theoretical
asymptotic performance when l → ∞. Parameters
a, b, and c were fitted to the results obtained in RI
experiment with non-linear least squares using Trust
Region Reflective algorithm with bounds a ∈ [−1, 1],
b > 0, and c > 0.

2.8. Intrinsic dimensionality estimation

The idea of patient adaptation and improving BCI
skills using visual feedback is based on the assumption
that the patient can modify/adjust motor imagery
patterns to solve the task better. As a result, the
data distribution and the shape of the data manifold
may change. To estimate the data distribution changes,
intrinsic dimensionality (ID) estimation methods may
be used. ID reflects the minimum number of variables
needed to represent the dataset without a significant
information loss. Thus, the ID indicator is strictly
connected to a dataset’s true dimensionality, which
is an important factor in data analysis, influencing
the performance and changing the number of samples
needed to train models. Intuitively, in a typical case,
higher-dimensional manifolds are harder to learn due
to the ’curse of dimensionality.’ ID is better studied
for images that, although have thousands of pixels, lie
on a lower-dimensional manifold (e.g., less than 50 for
ImageNet [76]). We use ID as a potential data quality
indicator, which may vary with different recording
sessions. ID estimates were computed for every session,
and values from the respective sessions were averaged
to obtain training dataset estimates for the dataset
translation experiment. To compute ID, we used
current state-of-the-art methods, namely expected
simplex skewness (ESS) [77] estimating local ID in data
neighborhoods (in our case 100 points) and TwoNN
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Decision
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Right hand

Figure 4. Visualization of 2D embedding of left and right hand data obtained using UMAP. Green dashed line showes SVM decision
boundary.

[78] estimating global dataset ID. ESS, according to
[79] provides better estimates for high ID values, while
most of the methods tend to underestimate the ID
(e.g., TwoNN [78]). It is especially important because
our preliminary analysis showed that ECoG data is
high dimensional, with ECoG features’ mean local ID
being significantly higher than the mean local ID for
images (around 300 for ECoG, below 15 for MNIST,
EMNIST, FMNIST [80]). For ID computations we used
scikit-dimensions package [81].

3. Results

3.1. UMAP

Data distributions for every session were shown in
figure 4 with colors indicating left and right hand
states. With time, clusters of states get better
separated from each other. We quantified separability
of different states with SVM classification accuracy
(figure 5). An increase in accuracy can be observed
for sessions recorded later in the experiment, with
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Figure 5. Accuracy of left vs. right hand state classification
using SVM classifier. The orange line indicates a linear trend
fitted to the points.

a maximum accuracy of 95% for session 37. Note
that UMAP, similarly to t-SNE, does not preserve
the density of points when mapping to the lower
dimensional space and may, in some cases, create sub-
clusters that originally may not exist in the input
space.

3.2. Forward and backward increase

Forward increase results (figure 6) show learning curves
in a situation close to a real-life scenario when more
recordings are performed in the experiment. For all
the models, a sharp increase in performance can
be observed for small datasets. After 30-40 minutes
of data, the curves become flat, reaching 70-80%
of maximum FI performance (except 100% for the
multilinear right-hand model) until 100-120 minutes of
the signal. For datasets with more data than 100-120
minutes, a slow performance increase can be noticed. In
the case of the left hand dataset, it starts earlier and is
also visible for the multilinear model, while for the right
hand, REW-NPLS performance stays stable. Overall,
multilinear and DL models have similar learning curves
and reach a performance plateau after including the
same amount of data. However, multilinear models
usually perform worse than DL models for the same
amount of data.

Extending the dataset backward, starting from the
middle of the recorded dataset, does not correspond
to any real-life scenario. However, by doing this, we
were able to assess the potential influence of data
quality change on the results computed in the FI
computational experiment. In the case of backward
increase (figure 7), high performance can be observed
for relatively small datasets—with just 3 (left hand)
and 2 (right hand) sessions. For bigger datasets, the
performance stabilizes or slightly decreases. The curves
for all the models behave similarly. Performance of DL
models starts to increase for > 130 minutes of signal for
the right hand and achieves the best cosine similarity.
When comparing FI and BI, in the case of the left

hand, the best performance can be observed for BI
and only 3 sessions of data in the training dataset. In
the case of the right hand, the highest performance
is achieved for the biggest dataset, suggesting that
recording more data may improve the cosine similarity.
The small amount of data needed to achieve high
performance (2-3 sessions) in the BI experiment may
suggest neuronal patterns improvement resulting in
dataset quality increase (the amount of data required
to reach a given performance).

3.3. Random increase

In the RI experiment, the influence of patient
adaptation and signal nonstationarity is reduced as all
the links between neighboring samples are destroyed
when selecting data for the training dataset. Results
for RI are more similar to theoretical learning curves
of DL models, with a sharp increase in performance
in the beginning and saturation when the model’s
maximum capacity is achieved. The performance is
saturated after adding approximately 60-90 minutes
of data to the training dataset at 95% of maximum
cosine similarity for RI experiment. Only a small
improvement can be observed from using more
data. For the multilinear model, we can observe
that saturated best performance is lower than in
the case of DL models. DL methods are able to
learn more complex functions and thus can reach
higher performance. Fitted learning curves show the
relationship between cosine similarity and dataset
size within a theoretical framework, emphasizing the
bigger capabilities of DL methods. The best models
trained in the RI experiment showed lower performance
compared to the best models from other experiments
(dataset translation for both hands and BI for the left
hand). However, in every experiment except BI and RI
models were evaluated on different test datasets (see
figure 3).

3.4. Dataset translation

The Dataset translation experiment shows the change
in performance while maintaining approximately the
same amount of data (six sessions) in the training
dataset. Generally, all models show similar trends.
For the left hand, we can observe an increase in
cosine similarity for datasets recorded later in the
experiment suggesting an improvement in data quality.
The increase is less visible for the right hand dataset.
This is confirmed by the slope of the linear trend
fitted to the average performance of all the models
(table 5). Expected cosine similarity improvement from
training a model on the dataset recorded later was
equal to 0.0069 per session and 0.0044 per session for
left and right hand datasets, respectively. For both
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Figure 6. Cosine similarity computed in forward increase experiment, i.e., different training dataset sizes when starting from the
first session.
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Figure 7. Cosine similarity for backward increase experiment, i.e., different training dataset sizes when starting from the 21st session
and going backward.

datasets, the most significant performance increase
between the first and last evaluation can be observed
for the multilinear model (table 4). It may suggest
that patient, to some extent, adapted specifically to
the linear model family. The multilinear model does
not follow the same fluctuations as the DL methods.
The difference could be caused by the way of validating
models (10% validation set for DL, recursive validation
on last 15 seconds of data at every step for pseudo-
online REW-NPLS).

In figure 10, the relationship between the local ID
of the training dataset computed with ESS and the
cosine similarity of different models for the translation
experiment is presented. A statistically significant
(α < 0.05) correlation between local ID and models’

Table 4. Differences between models trained on sessions 0-6 and
30-36 in the dataset translation experiment.

Left hand Right hand

CNN+LSTM+MT 0.203 0.157
MLP 0.175 0.167
Multilinear model 0.274 0.239

Table 5. Parameters of trend lines fitted to the dataset
translation results. Statistically significant p-values for the
correlation coefficient are marked with asterisks.

Slope Intercept R p-value

Left hand 0.0069 0.2612 0.8816 0.0003*
Right hand 0.0044 0.2744 0.6999 0.0165*
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Figure 8. Cosine similarity for random increase experiment, i.e., different training dataset sizes when randomly selecting a subset
of observations from the first 22 sessions. Every evaluation was performed 10 times.
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Figure 9. Cosine similarity for dataset translation, i.e., different training datasets (always 6 sessions for training and following 6
sessions for testing) translated over the dataset. The orange line indicates a linear trend line fitted to the models’ average.

performance was observed for all the methods, reaching
up to 0.66 of the r correlation coefficient for the
multilinear model. An overall trend of achieving higher
cosine similarity can be observed for training datasets
with a higher ID. ID for the analyzed datasets varies
between 250 and 330, which is much more compared to
less than 15 reported for MNIST, EMNIST, FMNIST
[80].

4. Discussion

Our results showed that including more data in
the training dataset for ECoG BCI may not be
immediately visible on the performance metrics if
already having access to 40 minutes of the signal.
Indeed, a drastic increase in performance can be
noticed for datasets smaller than 40 minutes. This
justifies the current experimental paradigms in which
40-50 minutes of the signal is collected (corresponding
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Figure 10. Relationship between cosine similarity and local ID of the training dataset computed with ESS for dataset translation
experiment. In the plot titles, Pearson correlation coefficient r and p-value (the probability of two uncorrelated inputs obtaining r
at least as extreme as obtained in this case) are presented.

to achieving approximately 70-80% of maximum
performance achieved with datasets up to 160 minutes
of data) for training 3D hand translation models.

Theoretically, models with bigger capacity can
benefit stronger from having access to more data.
One of the indicators of model capacity can be the
number of trainable parameters. In our case, MLP
had the biggest number of trainable parameters (482
953), followed by CNN+LSTM+MT (238 772) and the
multilinear model (28 800). The difference in potential
performance gains can be visible in figure 8. For small
datasets, a multilinear model outperforms DL-based
approaches (left hand) or provides approximately the
same cosine similarity. However, the multilinear model
saturates at a lower level of cosine similarity, resulting
in a performance gap which could be explained by the
difference in model capacity. Multilinear models are
more likely to provide high performance compared to
DL for small datasets, which is consistent with the ML
theory of less complex functions being less prone to
overfitting. RI results and fitted theoretical learning
curves revealed models’ characteristics while limiting
the influence of other factors like distribution shifts
or patient adaptation on the decoding performance.
Finally, all models saturate for relatively small training
datasets (50-90 minutes for RI, 50 minutes for FI, 30
minutes for BI) with only slight improvement from
adding more data (∼ 5%). This amount of data is
similar to the usual amount of data used in BCI studies.

While this result validates previously developed
data processing and experimental pipelines, a question
arises whether it is an actual property/characteristic
of brain signals or the shape of the curve is influenced
by the previous years of research in which a relatively
small amount of data was usually used to develop
pipelines. There are hundreds of hyperparameters
influencing data processing characteristics, starting
from recording devices (e.g., number of electrodes,
mental task design), signal processing pipelines (e.g.,
electrodes montage, filtering, standardization), ending

on hyperparameters of machine learning models of all
kinds (e.g., models’ capacity, regularization weight, the
architecture of models). The lack of huge improvement
from increasing the dataset may be caused just because
we reached the level of decoding close to maximum
due to a lack of information in the data needed for
prediction. However, from another perspective, one can
hypothesize that we observe an effect of researchers
overfitting to the specific conditions observed so far.

4.1. Models optimization for big datasets

All offline experiments were performed with a fixed set
of hyperparameters. At the same time, different dataset
sizes may require a change in the hyperparameters.
For example, regularization limits overfitting, which
should be less severe when the training dataset is
big. Similar logic applies to dropout, which limits
overfitting but on the other hand, it decreases models’
capacity by introducing redundancy in the network
representation. In the BI experiment, we observed
a decrease in performance when adding more data
for the left hand dataset. Hypothetically, increasing
models’ capacity may solve this problem (assuming it is
caused by adding samples from different distributions
to the dataset) because models with bigger capacity
might not have to ’choose’ on which motor imagery
patterns they should focus. However, hyperparameters
search is time and resource-consuming, so performing
hyperparameters search for every dataset size may not
be reasonable. In the future, DL architectures with
bigger capacities in terms of the number of layers,
number of neurons, etc., should be evaluated.

Datasets can also be artificially extended by using
data augmentation methods. A variety of beneficial
data augmentation methods exist for brain signals,
especially EEG [82], that might improve decoding
accuracy for the 3D hand movement control. Hoiem et
al. [12] showed, for computer vision datasets, that data
augmentation may act as a multiplier of the number
of examples used for training. In the light of recent
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advancements in EEG data augmentation, i.e., class-
wise automatic differentiable data augmentation [83],
it can be interesting to investigate how the reported
results generalize to ECoG signals and influence,
presented here, learning curves.

4.2. Patient training

UMAP embeddings may reveal interesting data
manifold structures. In our case, we observed signs of
distribution change on the embeddings visualization
and the separability of left/right hand observations.
Points start to be distributed denser in some regions
of the plots and align along lines (see for examples
sessions 35, 42, 43 for the left hand in figure A1
or sessions 31, 41, 42 in figure A2). Additionally,
in the dataset translation experiment, we can see
an increase in cosine similarity, stronger for the left
hand. Moreover, the overall best performance for the
left hand was achieved with only 3 sessions (∼ 25
minutes of signal), outperforming models trained on
much bigger datasets. This suggests improvements in
patient BCI skills by adapting motor imagery patterns
to the ML pipeline used in the study but non-specific
to the multilinear model because trends are visible for
all the evaluated approaches. At the same time, adding
more data with noisy and changing patterns may not
be profitable for the predictions. Thus, more focus
should be placed on obtaining high-quality and well-
separable motor imagery patterns in the signal. Patient
adaptation is possible thanks to the visual feedback
provided to the participant during recordings. The
potential for patient adaptation creates a perspective
for further improvements of BCI performance with
the experience gained by the patient in long-term
usage of the system. However, the reason adaptation
is visible only for the left hand remains unknown. We
hypothesize that the motor imagery patterns are easier
to adapt for the left hand thanks to the remaining
residual control resulting in better cortex preservation.

Our results showed a correlation between the
local ID of the training dataset and the models’
performance. This may indicate that models achieve
better results when trained on more complicated
manifolds. However, this hypothesis is counterintuitive
and contradictory to research in computer vision.
Thus, we hypothesize that higher ID may also
indicate more diverse motor imagery patterns, better
representing those found in the test set. Diversity
of patterns may be harmful to models with a too-
small capacity to learn them all. However, to some
extent, it may be helpful as it creates a more diverse
dataset that better reflect/cover the real manifold of all
motor imagery patterns. Finally, we hypothesize that
another hidden factor affects both the local ID and
the amount of information needed for prediction, like

the diversity of motor imagery patterns, so a change in
local ID may not cause the increase in the performance
itself. For example, local ID can also be increased
by adding Gaussian noise to the signal, decreasing
cosine similarity instead. Investigation of this kind of
relationship is especially challenging in the case of
brain signals due to a lack of data understanding with
the ’naked eye,’ which would significantly ease finding
a correct interpretation of observed phenomena. As
a next step, more ID estimation methods could be
evaluated as statistically significant correlations for DL
models were observed only for local ID computed with
ESS. In the case of TwoNN, global ID did not show
a significant correlation for DL approaches (see figure
B1). This could be caused by worse TwoNN precision
for high ID values as well as a lack of local per-sample
ID information in the global ID dataset estimate. The
relationship between local ID and performance should
be further analyzed on different brain signal datasets.

4.3. Interpretation limitations

All the computational experiments analyzed in this
study were obtained offline using data recorded with
only one patient. Thus the learning curves and
potential of patient adaptation should be further
investigated in a bigger population with online
experiments verifying our conclusions. Specifically, an
online experimental protocol aiming to isolate patient
training (with or without visual feedback) and decoders
update influence on performance should be designed.

Our results were computed on a real-life dataset
recorded with a tetraplegic patient. Analyzing this
kind of dataset allows us to draw conclusions about
the population in real need of assistive technology.
However, interpretation of results is even more
challenging than in the case of healthy subjects because
we do not have access to solid ground-truth labels
to train ML models. This increases the already long
list of factors that can affect the performance of
the decoders and may not be easily noticed when
analyzing ECoG signals. For example, in the ideal
ML world, one could analyze the learning curve and
draw conclusions about the required dataset size to
effectively train ML models. In our case, other factors
like the nonstationarity of the signal play an important
role in the process. In some cases, we may add more
data to the dataset (e.g., BI experiment) and decrease
the performance because we also ’extend’ the data
manifold with samples from a shifted distribution. A
remedy for distribution shifts between sessions may be
methods used for domain adaptation, for example, in
EEG transfer learning [84]. Part of the aforementioned
issues limiting our interpretation capabilities might
be addressed with generative models [85] that are
a popular tool in computer vision. In the case of
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brain signals, the ability to produce signals with the
given parameters and characteristics may be used to
verify and understand phenomena observed in real-life
experiments. First attempts to train GANs for EEG
[86] data analysis were made, but a significant amount
of work still has to be done to create a consistent
framework for easier hypothesis evaluation.

5. Conclusions

Our analysis showed that adding more data to the
training dataset may not be instantly profitable,
starting from datasets containing 30-50 minutes of the
signal in real-life scenarios. Instead, improvement may
be achieved by creating a high-quality dataset that can
be recorded after participant training. Furthermore,
we showed the importance of patient adaptation in
the human-in-the-loop system that enabled obtaining
high-performance models with relatively small training
datasets. Finally, we propose UMAP embeddings and
local intrinsic dimensionality as a way to visualize the
data and potentially evaluate data quality.
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Abstract. In brain signal processing, deep learning (DL) models have
become commonly used. However, the performance gain from using end-
to-end DL models compared to conventional ML approaches is usually
significant but moderate, typically at the cost of increased computational
load and deteriorated explainability. The core idea behind deep learning
approaches is scaling the performance with bigger datasets. However,
brain signals are temporal data with a low signal-to-noise ratio, uncertain
labels, and nonstationary data in time. Those factors may influence the
training process and slow down the models’ performance improvement.
These factors’ influence may differ for end-to-end DL model and one
using hand-crafted features.
As not studied before, this paper compares models that use raw ECoG
signal and time-frequency features for BCI motor imagery decoding. We
investigate whether the current dataset size is a stronger limitation for
any models. Finally, obtained filters were compared to identify differences
between hand-crafted features and optimized with backpropagation. To
compare the effectiveness of both strategies, we used a multilayer per-
ceptron and a mix of convolutional and LSTM layers that were already
proved effective in this task. The analysis was performed on the long-term
clinical trial database (almost 600 minutes of recordings) of a tetraplegic
patient executing motor imagery tasks for 3D hand translation.
For a given dataset, the results showed that end-to-end training might
not be significantly better than the hand-crafted features-based model.
The performance gap is reduced with bigger datasets, but considering the
increased computational load, end-to-end training may not be profitable
for this application.

Keywords: deep learning · ECoG · brain-computer interfaces · dataset
size · motor imagery · end-to-end

1 Introduction

In the last decade, deep learning (DL) models achieved extraordinary perfor-
mance in a variety of complex real-life tasks, e.g., computer vision [4], nat-
ural language processing [2], compared to previously developed models. This
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was possible mainly thanks to the improvements of data processing units and,
most importantly, increased dataset sizes [4]. Generally, in brain-computer in-
terfaces (BCI) research, access to large databases of brain signals is limited
due to the experimental and medical constraints as well as the immensity of
paradigms/hardware combinations. Given limited datasets, can we still train
end-to-end (E2E) DL models for the medical BCI application as effectively as
in computer vision?

In 2019, Roy et al. [12] reported that the number of studies classifying EEG
signals with deep learning using hand-crafted features (mainly frequency do-
main) and raw EEG signals (end-to-end) was similar. This indicates that de-
coding EEG from raw signals is indeed possible. However, in many articles,
researchers decided to use harder to design hand-crafted features. While end-
to-end models dominated computer vision, in brain signals processing, it is still
common to use features extracted as an input to the DL models. It is unclear
whether specific signal characteristics cause this, e.g., nonstationarity in time
making the creation of a homogeneous dataset impractical, low signal-to-noise
ratio complicating the optimization process and favoring overfitting, labels un-
certainty originating from human-in-the-loop experimental setup, or researchers’
bias toward solutions better understood and more explainable.

Most studies do not directly compare DL using end-to-end and hand-crafted
features approaches. Usually, DL architectures are compared with each other
and with an additional ’traditional’ ML pipeline, e.g., filter-bank common spatial
pattern (FBCSP) in [15], xDAWN and FBCSP in [5], SVM and FBCSP in [17].
In figure 1, we presented accuracy improvement of the best proposed DL model
compared to the ’traditional’ baseline for articles analyzed in [12] 3 depending on
the recording time and the number of examples in the dataset. The gap between
performance improvement of DL compared to the ’traditional’ baseline increases
with the dataset size (except for the last points on the plot, which contain
significantly fewer studies). In the right plot, the difference between models using
raw EEG and frequency domain features increases which may exhibit a boost
of end-to-end models with access to bigger datasets compared to hand-crafted
features. As the proposed DL models are usually compared to the baseline,
the boost of end-to-end models cannot be clearly stated because the accuracy
difference depends strongly on the ’traditional’ baseline model performance and
the particular task tackled in the study.

While EEG and ECoG signals share many characteristics—both are multi-
channel temporal signals with information encoded in frequency and space, with
low signal-to-noise ratio and noisy labels—there are also differences, e.g., a higher
spatial resolution of ECoG, higher signal-to-noise ratio and higher contribution
of informative high gamma band (> 70Hz). In motor imagery ECoG decoding,
end-to-end DL is not commonly used. ’Traditional’ ML classifiers are usually
preceded by a feature extraction step creating brain signals representation, typi-
cally in the form of time-frequency features, containing information about power

3 limited to the articles that contained all the required information, code adapted
from [12]
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Fig. 1: Binned average accuracy difference between best proposed DL model and
’traditional’ baseline on EEG datasets. Error bars denote one standard deviation
of the values in the bin. Bins are equal in size on a logarithmic scale. Points x-
axis position denotes the average dataset size in a bin.

time course in several frequency bands [8, 14] or focused only on low-frequency
component (LFC)/Local Motor Potential (LMP) [14] (detailed analysis can be
found in [19]).

However, a successful application of an end-to-end DL model to motor im-
agery decoding of finger movements trajectory from ECoG was performed with
convolutional layers filtering the raw signal both in temporal and spatial do-
mains followed by LSTM layers [20]. Smart weights initialization was helpful in
achieving high performance. Nevertheless, an average improvement from training
the weights can be estimated as 0.022 ± 0.0393 of Pearson r correlation coeffi-
cient, which is relatively small, with 66% of cases noticeable improvement from
end-to-end training (at the level of subjects/fingers). As this was not studied
before, we investigated the differences in data requirements between an end-to-
end model and one using hand-crafted features on a long-term clinical trial BCI
dataset of 3D target reach task. Unique long-term recordings (several months of
experiments, more than 600 min duration in total, compared to few minutes of
ECoG recording available in previous studies, e.g., [20]) allowed us to explore the
relationship between dataset size and the type of feature used for ECoG signal
decoding. In this study, we used architectures previously applied to the ECoG
dataset for decoding motor imagery signals with hand-crafted time-frequency
features as input [16]. In addition, we optimized the temporal filtering layer
with backpropagation seeking a more efficient set of filters that were initialized
to reproduce continuous wavelet transform. We also investigated whether both
approaches react differently to training dataset perturbations which may be the
case due to distinct model properties and may influence the choice of optimal
data processing pipeline for ECoG BCI.

2 Methods

2.1 Dataset

The dataset used in this study was collected as a part of the clinical trial ’BCI and
Tetraplegia’ (ClinicalTrials.gov identifier: NCT02550522, details in [1]) approved



4 M. Śliwowski et al.

by the ethical Committee for the Protection of Individuals (Comité de Protec-
tion des Personnes—CPP) with the registration number: 15-CHUG-19 and the
Agency for the Safety of Medicines and Health Products (Agence nationale de
sécurité du médicament et des produits de santé—ANSM) with the registra-
tion number: 2015-A00650-49 and the ethical Committee for the Protection of
Individuals (Comité de Protection des Personnes—CPP) with the registration
number: 15-CHUG-19.

Fig. 2: Screenshot from the virtual envi-
ronment. The patient is asked to reach
the yellow square (target) with the left
hand (effector) using motor imagery.

In the experiment, a 28-years-
old tetraplegic patient after spinal
cord injury was asked to move the
hands of a virtual avatar displayed
on a screen (see figure 2) using
motor imagery patterns—by imag-
ing/attempting hand movements that
influence brain activity in the mo-
tor cortex. These changes were then
recorded with two WIMAGINE [10]
implants placed over the primary mo-
tor and sensory cortex bilaterally.
Both implants consisted of 8 × 8
grid of electrodes with recording per-
formed using 32 electrodes selected in
a chessboard-like manner due to lim-
ited data transfer with a sampling fre-
quency equal to 586 Hz. Signals from
implants were transferred to the de-
coding system that performed online predictions. First, one out of 5 possible
states (idle, left and right hand translation, left and right wrist rotation) was
selected with a state decoder. Then, for every state (except idle), a multilinear
REW-NPLS model [3] updated online was used to predict 3D movements or 1D
wrist rotation. The dataset consisted of 44 experimental sessions recorded over
more than 200 days. It constitutes 300 and 284 minutes for left and right hand
translation, respectively.

2.2 Data representation and problem

Based on the collected database, we extracted two datasets for left and right
hand translation. The raw signal representation was created from 1-second long
windows of ECoG signal with 90% overlap. Every observation Xi ∈ R64×590

contained 590 samples for each of the 64 channels corresponding to the number
of electrodes recording the signal.

Every signal window Xi was paired with the corresponding desired trajectory
yi ∈ R3 that the patient was asked to follow, i.e., the straight line connecting the
tip of the hand to the target. The trajectories were computed in the 3D virtual
avatar coordinate system mounted in the pelvis of the effector.
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Before feeding the data to the models, datasets were cleaned from data loss
artifacts that were not caught during the online recordings. Additionally, obser-
vations for which the predicted and desired state did not match due to state
decoder errors were also removed to reduce the number of mislabelled obser-
vations (e.g., when the patient was asked to control left hand translation but
instead left wrist was rotating).

Then, all the models were trained to find the mapping between Xi ECoG
signal and yi desired trajectories that the exoskeleton hand should follow in the
case of optimal prediction. As a performance metric we used cosine similarity
(equation 1) measuring cosine of the angle αi between prediction ŷi and the
desired trajectory yi.

CS(yi, ŷi) =
yi · ŷi

∥yi∥ · ∥ŷi∥
= cosαi (1)

Cosine loss defined as CL(yi, ŷi) = 1 − CS(yi, ŷi) was used as optimization
objective.

2.3 ’Traditional’ feature extraction and DL optimization

Hand-crafted features were extracted using complex continuous wavelet trans-
form (CWT). CWT was performed with Morlet wavelets with central frequencies
ranging from 10 to 150 Hz with a step of 10 Hz. Each wavelet support consisted
of 118 samples (0.2s) centered on its maximum value. Features were obtained by
applying CWT on one-second-long signals, computing the module of the complex
signals, and performing an average pooling of 0.1 second. The resulting feature
tensor was of shape 64 × 15 × 10, with dimensions corresponding to channels,
frequency bands, and time steps.

CWT can be represented as a convolution between a set of filters and a
signal in the temporal domain. In the standard case, the filters are fixed and
constitute a basis for feature extraction where every filter detects brain activity
in a different frequency band. As every spatial channel is convolved separately
in time, we obtained a time-frequency-space representation of the ECoG signal
(see table 1 for feature extractor architecture specification).

Here, we propose to adjust the filters during backpropagation together with
all other parameters of the models. In the first scenario, the filters were initial-
ized to Morlet wavelets with 15 central frequencies, resulting in 30 kernels (real
and imaginary parts). Note that at the beginning of training, the first layer re-
produces ’traditional’ feature extraction. The filters were fixed for 5 epochs of
so-called pre-training, then they were unfreezed and optimized for the following
50 epochs. The pre-training was used to not distort the wavelets drastically in
the first epochs when parameters of the rest of the network are randomly initial-
ized. We also evaluated random weights initialization from uniform distribution
as a solution that does not incorporate prior knowledge about the system.

In the second scenario, an alternative approach was used to maintain the
wavelet structure by optimizing only the parameters used to generate the wavelets
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instead of modifying all filters’ parameters. In our case, the function generating
the wavelets was defined as:

Ψ(t, f) =
1√
π

1√
fs
f

e−(tf)2e2iπtf (2)

where central frequency parameter f defines the center of the frequency band
analyzed by the wavelet and fs is the signal sampling frequency. In the central
frequency optimization (CFO) scenario, we optimized only the central frequency
f parameters (one per wavelet), so the filters after training are still from the
Morlet wavelets family.

Table 1: The architecture used to reproduce hand-crafted feature extraction
with CWT. Only one convolutional layer (conv time) was used in computations
according to the performed experiment E2E/E2E CFO.

Layer Kernel Shape Output Shape Param # Mult-Adds

Input – [200, 1, 590, 8, 8] – –
Conv time [1, 30, 118, 1, 1] [200, 30, 590, 8, 8] 3,570 27,006,336,000
Conv time CFO [1, 30, 118, 1, 1] [200, 30, 590, 8, 8] 15 27,006,336,000

Square – [200, 30, 590, 8, 8] – –
Sum real and imaginary – [200, 15, 590, 8, 8] – –
Square root – [200, 15, 590, 8, 8] – –
Dropout – [200, 15, 590, 8, 8] – –
AvgPool – [200, 15, 10, 8, 8] – –
BatchNorm [15] [200, 15, 10, 8, 8] 30 6,000

2.4 DL architectures

In this study, we used two architectures proposed in [16], i.e., CNN+LSMT+MT,
which showed the best performance, and MLP, which was the simplest ap-
proach. In the baseline approach, the ’traditional’ feature extraction was followed
with fully connected or convolutional layers. When optimizing the first convo-
lutional layer, we kept the rest of the network the same to isolate the influence
of the training feature extraction step. Details of the tested DL architectures
are described below and in [16]. Additionally, we used ShallowFBCSPNet and
Deep4Net [15] as end-to-end DL baseline.

MLP The most basic DL architecture evaluated in the study was multilayer
perceptron (MLP), consisting of two fully connected layers. Dropout and batch
normalization layers were placed between fully connected layers for stronger
regularization (see table 2).



End-to-end deep learning for ECoG brain-computer interface 7

Table 2: MLP architecture from [16].

Layer Kernel Shape Output Shape Param # Mult-Adds

Flatten – [200, 9600] – –
Fully connected [9600, 50] [200, 50] 480,050 96,010,000
BatchNorm [50] [200, 50] 100 20,000
ReLU – [200, 50] – –
Dropout – [200, 50] – –
Fully connected [50, 50] [200, 50] 2,550 510,000
ReLU – [200, 50] – –
Dropout – [200, 50] – –
Fully connected [50, 3] [200, 3] 153 30,600

CNN+LSTM+MT In the CNN+LSTM+MT architecture, CWT features
were further analyzed with 3 × 3 convolutional layers in space (electrodes or-
ganized on an array 4 × 8 reflecting positions of electrodes on implants). After
two convolutional layers, two LSTM layers were applied to analyze temporal
information from 10 timesteps. Finally, every output of the last LSTM layer was
used for training to compute loss based on all predicted and ground truth tra-
jectories corresponding to 1 second (10 timesteps) of signal analyzed (see table
3).

Table 3: CNN+LSTM+MT architecture from [16].

Layer Kernel Shape Output Shape Param # Mult-Adds

Input [200, 15, 8, 8, 10] –
Input per implant [200, 15, 8, 4, 10] –
Conv space [15, 32, 3, 3, 1] [200, 32, 6, 4, 10] 4,352 208,896,000
ReLU – [200, 32, 6, 4, 10] – –
BatchNorm [32] [200, 32, 6, 4, 10] 64 12,800
Dropout – [200, 32, 6, 4, 10] – –
Conv space [32, 64, 3, 3, 1] [200, 64, 4, 2, 10] 18,496 295,936,000
ReLU – [200, 64, 4, 2, 10] – –
Dropout – [200, 64, 4, 2, 10] – –

LSTM – [200, 10, 50] 215,200 430,400,000
LSTM – [200, 10, 3] 660

Models training and hyperparameters For every model evaluation, we used
90% and 10% of the training dataset for training and validation, respectively.
The validation dataset was used for early stopping after 20 epochs without im-
provement. All the models used a learning rate of 0.001, weight decay of 0.01,
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batch size of 200, and ADAM optimizer [9]. To train DL models we used Py-
Torch [11], skorch [18], and braindecode [15].

2.5 Offline experiments

First, we computed results in a classical scenario, i.e., train/valid/test split. We
used the calibration dataset (first six sessions) as the training dataset. The rest
of the data (online evaluation dataset) was used as the test set.

Additionally, we gradually increased the training dataset size from one ses-
sion up to 22 with a step of 2. As different models may have different dataset
requirements, we wanted to verify whether collecting more data can be more
profitable for one of the evaluated optimization/architecture combinations.

To investigate the possible influence of end-to-end learning on models’ ro-
bustness against data mislabelling, we perturbed the dataset to make training
more challenging. In the BCI, part of observations is often mistakenly labeled
due to lack of subject attention, tiredness, experimental setup, etc. Therefore,
we randomly selected a fraction of observations in which targets were shuffled
between samples so they no longer have a connection with the ECoG signal
while preserving the same distribution. At the same time, we kept the test set
unchanged.

3 Results

Table 4: Cosine similarity computed in the train-valid-test split scenario. Values
are sorted by average performance and represent the mean and standard devia-
tion of 5 runs.

Left hand Right hand

E2E CNN+LSTM+MT CFO 0.304± 0.005 0.266± 0.020
CNN+LSTM+MT 0.297± 0.008 0.270± 0.011
E2E CNN+LSTM+MT 0.289± 0.007 0.273± 0.015
E2E MLP CFO 0.254± 0.012 0.230± 0.013
MLP 0.247± 0.023 0.232± 0.005
E2E MLP 0.243± 0.014 0.234± 0.020
ShallowFBCSPNet [15] 0.235± 0.010 0.236± 0.011
E2E CNN+LSTM+MT random init 0.216± 0.008 0.230± 0.020
E2E MLP random init 0.181± 0.029 0.223± 0.008
Deep4Net [15] 0.111± 0.021 0.259± 0.013

We started the analysis by comparing different model training scenarios when
trained on the first six sessions (online calibration dataset). The results for the
train/test split can be found in table 4. Differences between scenarios are rather
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small, with only small performance improvement coming from full end-to-end op-
timization. The best performance was achieved by models using CFO. However,
the gap between the hand-crafted features approach and CFO is relatively small,
considering standard deviations of the computed values. The worst performance
was achieved for Deep4Net (especially low performance for the left hand dataset)
and both MLP and CNN+LSTM+MT models with random weights initializa-
tion, suggesting the high importance of the prior signal processing knowledge
used to define the wavelet shape of the filters at the beginning of the training.
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Fig. 3: Difference between end-to-end model and its counterpart using hand-
crafted features. The bold line denotes the moving average with a window of
size 3.

We did not notice significant improvements coming from end-to-end opti-
mization, so we wanted to verify the hypothesis of different dataset size require-
ments for different optimization methods. Therefore, the differences between end-
to-end models and their hand-crafted features counterparts for several training
dataset sizes are presented in figure 3. In some cases, end-to-end models increase
the cosine similarity faster than the models using fixed features, so the gap be-
tween models can be reduced for approaches using random weights initialization.
However, only for models initialized to wavelets and optimized directly, an im-
provement over hand-crafted features can be observed for some points (up to
0.05 of cosine similarity for the right hand dataset).

When comparing CFO and standard E2E optimization in figure 4, higher
effectiveness of CFO for small training datasets can be observed. CFO may
limit overfitting as the functions represented by the convolutional filters are
constrained to the wavelet family. It may be interpreted as an additional op-
timization constraint imposed on model parameters. Note that diminished gap
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between CFO and standard end-to-end in figure 4 show only relative decrease
of CFO performance.
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Fig. 4: Difference between the CFO model and its counterpart using constraint-
free end-to-end optimization. The bold line denotes the moving average with a
window of size 3.

3.1 Filters visualization
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Fig. 5: Visualized filters before (blue) and after (orange) training for the models
with parameters optimized freely. Note that only real part of the wavelet was
visualized for clarity. Plot titles denote central wavelet frequency at initialization.

We visualized the filters before and after training to analyze the character-
istics of learned feature extraction. In figure 5, we presented the filters modified
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without additional constraints. The biggest change can be observed in the cen-
tral frequencies between 30 Hz and 80 Hz. In most cases, the initial central
frequency was maintained, while the wavelets got extended with a signal similar
to the sine wave in the central wavelet frequency. This could indicate the impor-
tance of information about frequencies from which the signal is composed. At
the same time, extending wavelets reduces the temporal resolution of the signals.
The changes in the high-frequency wavelets (> 100Hz) are less significant, and
the pattern of extending wavelets is no longer visible. Instead, components of
significantly lower frequencies and smaller amplitude were added.

In figure 6, we visualized filters before and after optimization when the con-
volutional layer was initialized to random. As random filters were much harder to
analyze visually, we presented them in the form of power spectra, so the changes
in the filtered frequencies could be better visible. All filters have a maximum
power peak lower than 65 Hz with 40% of maxima contained in the frequency
range 25-30Hz. Compared to hand-crafted features, end-to-end filters initialized
to random covered only approximately half of the frequency band analyzed by
the traditional feature extraction pipeline. However, in the higher frequencies,
there are smaller peaks which can also contribute to the extracted representation
and may cover the missing frequency band.
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Fig. 6: Power spectra of filters before (blue) and after (orange) training for con-
volutional layer initialized to random. The plots denoted frequencies for which
maximum power spectra were observed before and after training.

In figure 7.a, we presented the difference between initialized central wavelet
frequency and the one obtained after the training. We observed a decrease in
almost all frequencies when training the models. The decrease was higher for
higher frequencies. This may suggest that more information can be extracted
from lower frequencies. However, in our preliminary results, we noticed that
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adapting the learning rate for the convolutional layer may significantly change
the frequency behavior (see figure 7.b), which should be taken into account
when analyzing the results. This may lead to different changes in the central
frequencies than in the base model. The gradient was increased 150 times by
squeezing central frequencies from 10-150Hz to 0-1. In the case of initialization
to wavelet, a network may start the training near a local minimum found by
the manual design of feature extraction that can be hard to move out. Setting
a higher learning rate may enable reaching different regions on the loss function
surface. The performance achieved with a higher learning rate was similar to the
standard CFO results with a cosine similarity of 0.283 ± 0.014 (left hand) and
0.270 ± 0.011 (right hand) for CNN+LSTM+MT and 0.262 ± 0.01 (left hand)
and 0.227± 0.007 (right hand) for MLP.
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Fig. 7: Difference between central wavelet frequencies before and after CFO.
Models for left hand translation are presented in the left column, for the right
hand in the right column. Note that the scale is different for the (a) and (b)
figures.

3.2 Target perturbation

In the case of perturbed ground-truth (figure 8), CNN+LSTM+MT models were
more robust to noise in the targets with increased stability (especially for the left
hand) of hand-crafted features and CFO models compared to models optimized
freely. On the other hand, in the case of MLP models, almost no differences
between different optimization methods in the influence of noise on the perfor-
mance were noticed.
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Fig. 8: Influence of noise in the targets on models’ performance. Noise level in-
dicates the fraction of observations with perturbed labels.

4 Discussion

We proposed several approaches for the end-to-end optimization of deep learning
ECoG decoders. However, in this study, we did not observe improvement from
end-to-end optimization, especially when no prior knowledge was used for filter
initialization. This confirms the usefulness of hand-crafted features and years
of neuroscientific signal processing while leaving doors open to more sophisti-
cated end-to-end models. Firstly, deeper models with more advanced DL mech-
anisms [6, 13] should be evaluated as they may allow for the extraction of more
complex representations and thus outperform hand-crafted features. Secondly,
machine learning methods for robust learning may be evaluated, e.g., learning
from noisy input data, noisy labels, and out-of-distribution samples [7]. Those
can particularly tackle problems coming from specific recording/experimental
circumstances.

The reasoning behind our study is focused on the specificity of ECoG brain
signals and the adequacy of selected DL methods to the problem. The specificity
originates from experimental constraints caused by the presence of a human in
the loop but also signals characteristics, hardware capabilities, etc. It results
in a distorted dataset with a low signal-to-noise ratio, short signal stationar-
ity interval, and uncertain labels. This is quite different from computer vision
problems, usually with well-defined labels and images understandable with a
naked eye. Improving information extraction from noisy data may be especially
important in the light of increased robustness to noise in targets shown by the
CNN+LSTM+MT model compared to MLP. Using all 10 targets recorded dur-
ing a 1-second window decreases the influence of single perturbed points on the
performance because the information can be efficiently extracted even for 40%
or 60% of perturbed targets. In this case, the CNN+LSTM+MT model using
hand-crafted features maintains high performance for a higher noise level than
the end-to-end model. However, an important point in the discussion is that our
dataset, even after data cleaning, still contains a significant amount of observa-
tions with incorrect labels. Thus, in figure 8, a noise level equal to zero corre-
sponds to an unknown noise level in labels originating from the experimental
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setup. Thus, generative models should be used to create datasets with a known
level of noise and analyze the influence of perturbations on the performance in
the case of less distorted datasets.

All the results were computed offline on datasets recorded with only one
patient. These kinds of datasets are hardly accessible due to experimental and
legal constraints. It makes the generalization of the results to other patients
and datasets hard to estimate. Thus, more simulations should be performed to
confirm our conclusions, ideally with more patients and tasks. This should also
include hyperparameters search, like learning rate, batch size, weight decay, as
those could vary between different approaches. However, performing hundreds of
evaluations is time-consuming, and the problem is magnified in the case of end-
to-end models due to increased computational load. Our study focused on feature
extraction based on wavelet transform, which was previously used in this prob-
lem. As we optimized the parameters of the wavelet transform without changing
other parts of the model, we isolated the influence of end-to-end optimization
on models’ performance. While this simplified the problem, our study did not
evaluate other feature extraction pipelines that could behave differently. Thus,
an extended analysis of several feature extraction pipelines compared to their
end-to-end counterparts would allow for broader generalization and therefore is
of great interest.

While this article and [20] analyzed ECoG signals, targets used for training
models in [20] were actual fingers trajectories recorded while subjects performed
real movements. In our case, targets are much noisier due to the lack of labeling
based on the hand movements of a tetraplegic patient. This may favor hand-
crafted features, as could be seen for CNN+LSTM+MT in figure 8. Finally,
our conclusions are in line with [20] who observed relatively small improvement
from optimizing hand-crafted features and worse performance/longer training
time when initializing the model to random. In our case, end-to-end models
achieved the same performance as models using CWT features only with smart
weights initialization, which emphasizes the importance of prior signal processing
knowledge in designing DL for ECoG analysis.
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5
Limitations and perspective

As our main contribution, we showed that deep learning could be used for
decoding 3D hand translation from ECoG signal in a tetraplegic patient to pro-
vide higher prediction performance than multilinear models. The data analyzed
in this thesis was recorded with a tetraplegic patient. The subject did not per-
form any actual hand movement during the experiments. This is opposite to
the situation in which labels for training are inferred from real movements of
non-disabled subjects (e.g., BCI IV competition ECoG dataset [Miller, 2019]). The
ability to decode motor commands without having access to solid ground-truth
labels is especially important for motor BCIs, as the primary goal of many current
studies is to compensate for lost motor functions in the motor-impaired popu-
lation [Shih et al., 2012]. Furthermore, we conclude that the proposed methods
are suitable for BCI from the dataset size needs point of view. We showed that
DL models have similar learning curve characteristic to the multilinear model
and require 40-50 minutes of signal in the case of analyzed dataset. For real-life
BCI applications, data efficiency is an important model characteristic allowing
for maintaining reasonable duration of calibration. We also found signs of data
quality increase throughout the experiments, indicating patient adaptation, in-
fluencing BCI performance. We also created a new Python infrastructure that
can be used for clinical trial datasets analysis. It works in real-time with the
current signal processing system. The code implementation can speed up future
deep learning research in the context of the ’BCI and Tetraplegia’ clinical trial.
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The main limitation of the study is that all our analysis was performed using
a prerecorded dataset with only one tetraplegic patient. Therefore, we are not
able to estimate how these results generalize to the wider population. The ob-
served models’ behavior may be specific to the patient and experimental setup.
For example, a mental task performed by the patient plays an important role
in the BCI loop. The motor imagery patterns may vary between subjects [Saha
and Baumert, 2019], thus requiring an adjusted signal processing pipeline. We
were able to analyze the data only from one patient because of the clinical trial
progress, which was also affected by the COVID-19 health emergency state.
COVID-19 restrictions resulted in experiment cancellation, making it impossible
to perform planned recordings with the tetraplegic subject. An additional chal-
lenge in the case of invasive BCI is concerns connected to the risk of implantation
and further ethical questions. These factors limit access to the data that could be
used for this analysis. However, additional experiments will be performed in the
future as the clinical trial is planned to include a total of five tetraplegic patients
in the study, potentially enabling analysis in the wider population.

All our experiments are fully computational, offline simulations, raising con-
cern about the validity of the results in the case of real-life applications. In online
experiments, models interact with patients, which may influence the results.
However, comparing decoders in an online experiment is not feasible due to
limited recording time and data variations, making it challenging to identify the
source of performance change. On the other hand, offline experiments separate
different factors and evaluate models on the same datasets in the same condi-
tions. While the influence of the feedback on the models’ performance remains
unknown, offline simulation allows comparing different models in identical set-
tings.

In the analysis, we only focused on predicting 3D hand translation move-
ments, ignoring states classification and other simpler effectors’ commands. We
focused on this particular problem due to the clinical trial’s need to increase de-
coding performance for hand translation. It can be very interesting to evaluate
proposed methods on other tasks to show how the results generalize to other
experimental paradigms and identify potential gains for other system compo-
nents. This should be relatively straightforward as all the models use the same
input features/signal and only differ due to the output type. Models evalua-
tion on a different experimental paradigm may be possible in another clinical
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Figure 5.1: Schematic view of the potential architecture with shared feature
extractor and multiple predictions heads, individual for each effector. Note that
gate model can also be used before effectors to select appropriate expert which
could limit computational load.

trial (STIMO-BSI, ClinicalTrials.gov identifier: NCT04632290), carried out jointly
between EPFL and Clinatec, started recently aiming to restore lost motor func-
tions, i.e., walking, in patients after spinal cord injury using ECoG-based BCI
and spinal cord stimulation. In this ambitious project, ECoG signals are decoded
into spinal cord stimulation commands to move patients’ legs. It is possible to
adjust the proposed DL models to the new experimental paradigm, which can
potentially improve decoding performance similarly to the upper-limb decoding
problem.

In this thesis, each model was trained to solve one particular problem, i.e., an
independent model for each state (left hand translation, right hand translation).
However, multi-task learning (simultaneously training a shared model to solve
multiple tasks [Crawshaw, 2020]) can be a way to effectively increase dataset size
by combining datasets of different effectors (e.g., translation, rotation, grasping,
walking) in the case of BCI. This can also be useful when starting experiments
for new tasks, so using a pretrained model can decrease calibration time and po-
tentially improve decoding performance. General purpose models with shared
parameters may extract complex representation more efficiently by integrating
knowledge learned from related tasks [Crawshaw, 2020]. Additionally, sharing
parameters in the first layers would allow for computations speed up required
in the case of BCI operating with higher frequency. The concept of a gate model
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and multiple experts controlling various effectors could be implemented with
a shared general-purpose feature extractor followed by individual prediction
heads, one for state prediction and each effector (see figure 5.1). On the other
hand, multi-task learning may be challenging due to conflicting needs of dif-
ferent tasks and may require special task selection for joint training and several
architecture/approach adjustments [Crawshaw, 2020]. Thus, offline analysis on
the clinical trial dataset could be performed to assess possible improvements
from using a general-purpose model.

Deep learning covers a wide variety of architectures and decoding strategies
that can be potentially applied to this problem. Moreover, it is a fast-developing
field with new approaches proposed every day that may be suitable for this
application. In this thesis, we evaluated only a limited set of DL approaches. We
can assume that incorporating further deep learning advancements will increase
decoding performance. In the next steps, more DL architectures could be tested,
for example, models that use attention mechanisms [Eldele et al., 2021; Vaswani
et al., 2017], inception blocks [Santamaría-Vázquez et al., 2020], etc.

Besides different DL architectures, more types of neural networks could be
efficient in this task. For example, bayesian neural networks (BNNs) are data
efficient and provide uncertainty estimates [Jospin et al., 2022] which could be
important information allowing for creating real-life BCI systems resistant to the
noise in labels and allowing for high precision control thanks to the ability to
deal with the variation of data quality. Another potential neural network frame-
work could be spiking neural networks (SNNs) [Maass, 1997], which are more
closely inspired by biological neurons than the methods evaluated in this thesis.
SNNs were also successfully applied to EEG data [Demin and Nekhaev, 2018;
Faghihi et al., 2022; Virgilio G. et al., 2020], in a particular case for decoding
hand movements kinematics [Kumarasinghe et al., 2021], which makes SNN a
reasonable choice for further ECoG data analysis. In the last decade, methods
based on Riemannian geometry were shown effective for EEG multichannel tem-
poral data classification using signal covariance matrices [Barachant et al., 2013].
In our case, ECoG data is also a multichannel and temporal signal. However,
recording electrodes are placed much closer to each other than EEG, increasing
the correlation between channels. Electrodes are also placed closer to the cor-
tex, increasing high-frequency components’ amplitude. It can be interesting to
verify how Riemannian geometry can work with covariance matrices of ECoG
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signal to predict continuous hand trajectories, especially considering that first
attempts for classification were made [Larzabal et al., 2021] and new Riemannian
DL methods for analyzing SPD matrices were proposed recently [Brooks et al.,
2019; Huang and Gool, 2017] that were applied to EEG data [Ju et al., 2020; Wei
et al., 2022].

Our analysis revealed that regularization methods play an important role in
obtaining efficient DL models. In our approach, we used dropout, L2 regular-
ization, early stopping, and batch normalization. These are among the popular
regularization choices in DL research. However, more regularization methods
can be useful in alleviating overfitting. For example, in the proposed approach,
we did not use any data augmentation method, which is common in computer
vision and recently also in EEG analysis [Rommel et al., 2022]. Data augmenta-
tion is a way to regularize the model and artificially increase dataset size. Thus,
it can be profitable in this application with the potential to improve decoding
accuracy. Another strategy to regularize the model can be, for example, GradAug
[Yang et al., 2020], which showed effectiveness in the case of computer vision
datasets.

Deep learning models typically do not support continual/online learning in
which models are updated on chunks of newly recorded data. Usually, observa-
tions from the whole dataset must be used for every update to avoid catastrophic
forgetting [Parisi et al., 2019]. Our experiments (forward increase in chapter 3)
provide preliminary model training results after recording new sessions. This
can be a starting point for a more detailed analysis of model behavior in the
case of updating the model in a pseudo-online scenario, simulating a real-life
experiment and updating the model on chunks of data, and finally, in an online
experiment with a patient.

In some of our experiments, we used a fixed set of models’ hyperparameters
without performing any hyperparameters search. To estimate the models’ capa-
bilities more accurately, some hyperparameters, e.g., the learning rate, weight
decay, size of the network, can be optimized specifically for different tasks and
bigger datasets. This can potentially provide an improvement for datasets con-
sisting of many recording sessions (proposed models were created and evaluated
on 40 minutes of data in the chapter 2). However, hyperparameter search is time-
consuming, especially for big datasets and end-to-end models. In this case, the
experiments should be performed on a powerful server and focus on a particular
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dataset, for example, recorded with the patient shortly before online evaluation.
Our results did not show particular improvement from using end-to-end op-

timization to train DL models. This is counterintuitive as, in theory, end-to-end
training increases the model’s capabilities to learn complicated patterns by re-
moving the limitation of hand-crafted feature extraction. The reason for this
behavior is not fully explained. While our analysis showed that dataset size
and noise in the labels might have some minor influence, an extended study
should be performed to understand this behavior and address particular issues
preventing end-to-end models from achieving higher performance. Generative
adversarial networks (GANs) [Goodfellow et al., 2014] and, more generally, gen-
erative models can help understand this behavior by providing control over the
data generation process, opposite to real-life datasets where data understanding
is limited. This could lead to the identification of patterns that could not be de-
tected by the proposed architecture. Learned insights could potentially be used
to improve DL architecture and training strategy.

Considering a broader perspective of invasive BCI progress, ECoG-based BCI
research is affected by several factors that are general field problems. First, open-
access datasets are not easily accessible. This makes comparing models and the
development of new methods difficult. Currently, a dataset most similar to the
clinical trial dataset analyzed here is the BCI IV competition dataset with finger
flexion recording in non-disabled patients [Miller, 2019]. In this experiment, fin-
gers’ trajectories were recorded using a glove, so ground-truth labels represent
actual fingers’ movement. Besides the BCI IV competition dataset, most datasets
provide only discrete targets or data recorded with monkeys. The datasets cre-
ated in clinical trials are rarely accessible due to legal/ethical/strategic reasons.
As ML describes a family of data-driven models, methodological advancements
are hard to achieve without proper data and validation on multiple datasets.
Thus sharing more datasets with the community is very important and may
increase the number of studies analyzing BCI data as well as put more attention
on developing machine learning methods that could be better evaluated and
easier to use for the whole community.

One of the major steps in invasive BCI signals analysis could be setting proper
benchmarks on multiple datasets. The community could distinguish between
two types of contributions, i.e., case studies showing the effectiveness of a
method in particular conditions and studies focusing on a machine learning
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advancement that should be evaluated in a broader context of different clinical
trials and various datasets. The latter could be more beneficial for long-term ML
model development, bringing conclusions to the community that can general-
ize better to new data. This can be done by creating competitions, well-known
in the ML community, less popular for BCI, but already greatly impacting the
research directions [Blankertz et al., 2004; Tangermann et al., 2012; Wei et al.,
2022]. Competitions can be a way to unify data processing pipelines between
groups and introduce a better-structured model evaluation process. Easy access
to the data and increased popularity of BCI can significantly increase the quality
of research, allow for more in-depth analysis of specific data processing steps,
and be profitable to society.

Current machine learning research is primarily conducted using Python,
which provides a large ML ecosystem of packages with enormous capabili-
ties. It is based on an open-source paradigm, in which the whole community
can contribute to creating a greater project. This paradigm also influenced how
research is done in machine learning, i.e., many studies share implementations
of articles, significantly increasing reproducibility and, what is also essential,
reducing the redundancy between different studies. In the BCI community, a
shift toward Python-based systems can be visible. However, closed-source pro-
gramming languages are still dominant in invasive BCI applications, increasing
costs and limiting transparency and reproducibility. This also makes it difficult to
unify data processing pipelines due to a lack of a general, shared between groups
scheme. Generally, a shift toward open-source software can start a stronger col-
laboration in the invasive BCI field and ease research reproducibility in the
future.
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Résumé en français

Chapitre 1 - Introduction

Interfaces cerveau-machine (ICMs) Une interface cerveau-machine (ICM) est
un dispositif qui permet une connexion directe entre le cerveau et un ordinateur
sans nécessiter d’activation musculaire. Dans cette thèse, nous nous concen-
trons sur une ICM motrice utilisée pour restaurer/compenser les fonctionnal-
ités perdues en fournissant un contrôle sur divers effecteurs, comme par exem-
ple un curseur d’ordinateur [Wolpaw and McFarland, 2004], un bras robotique
[Hochberg et al., 2012], un exosquelette [Benabid et al., 2019], ou un stimula-
tion électrique [Ajiboye et al., 2017; Lorach et al., 2022]. Dans le cas des ICM
motrices, de nombreux patients perdent leurs fonctions motrices mais conser-
vent un cortex entièrement fonctionnel, ce qui leur permet de générer des sché-
mas d’imagerie motrice distincts. Les ICM motrices pourraient potentiellement
traiter la paralysie en permettant le contrôle volontaire de prothèses [Volkova
et al., 2019], la recherche dans ce domaine se développe donc rapidement.

Généralement, le système ICM moteur est constitué de plusieurs éléments qui
communiquent entre eux et constituent un pipeline de traitement des données.
L’élément prérequis le plus important d’un système d’ICM moteur est évidem-
ment le sujet humain qui effectue une tâche mentale induisant des changements
dans l’activité cérébrale. La présence d’un humain dans la boucle de l’ICM est
un facteur essentiel qui influence presque tous les aspects du système. Ensuite,
les modifications de l’activité cérébrale causées par la modulation de l’activité
neuronale dans le cortex sont saisies à l’aide d’un dispositif d’enregistrement,
par exemple l’électroencéphalographie (EEG), l’électrocorticographie (ECoG)
ou les réseaux de microélectrodes intracorticaux (MEA). Bien que les disposi-
tifs d’enregistrement fournissent des signaux de haute qualité, les données ne
peuvent pas être directement déchiffrées en commandes compréhensibles. Par
conséquent, les systèmes ICM typiques nécessitent une étape de traitement du
signal (basée sur l’apprentissage automatique (ML)) qui crée une correspon-
dance entre les signaux cérébraux et les instructions pour les effecteurs. Enfin,
les commandes décodées représentant l’intention du participant sont exécutées
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par un effecteur, par exemple un bras robotique [Collinger et al., 2013; Wodlinger
et al., 2014] ou un exosquelette [Benabid et al., 2019].

Essai clinique Cette thèse a été réalisée dans le cadre de l’essai clinique "BCI
et tétraplégie" (ClinicalTrials.gov identifier : NCT02550522) mené à Clinatec.
L’objectif principal de cet essai clinique est de réaliser la preuve de concept
permettant à des sujets tétraplégiques d’interagir avec leur environnement en
contrôlant des effecteurs ICM complexes, tels qu’un exosquelette à 4 membres
[Eliseyev et al., 2014]. Ceci est réalisé en décodant les intentions des sujets té-
traplégiques à partir du signal ECoG enregistré à la surface du cerveau. Le
système ICM proposé est conçu pour une application à long terme afin de
fournir le contrôle de multiples effecteurs à des sujets handicapés en utilisant la
modulation de l’activité cérébrale. Dans le cadre du projet, des développements
substantiels de tous les composants de l’ICM ont été réalisés, c’est-à-dire la créa-
tion d’implants ECoG adaptés aux enregistrements chroniques [Mestais et al.,
2015], la construction d’une plateforme de traitement du signal pour le décodage
des signaux en temps réel [Eliseyev et al., 2017b], et enfin la conception d’un en-
semble d’effecteurs comprenant à la fois un exosquelette robotique [Morinière
et al., 2015] et des exécuteurs de commandes virtuels. En conséquence, le projet
peut constituer une étape vers l’amélioration de la qualité de vie des sujets té-
traplégiques en leur fournissant des outils qui peuvent compenser une partie de
la fonction motrice perdue [Benabid et al., 2019].

L’apprentissage profond (DL) L’apprentissage profond (DL) a prouvé son ef-
ficacité dans diverses tâches, montrant des capacités accrues par rapport aux
méthodes linéaires. Les modèles DL sont construits à partir d’une série de trans-
formations non linéaires appelées couches. Cela permet de créer une représen-
tation complexe des données d’entrée. Les méthodes DL semblent être un bon
candidat pour fournir des performances de décodage plus élevées et remplacer
le modèle multilinéaire actuellement utilisé.

L’objectif principal de la thèse était de chercher à améliorer les performances
en examinant si les modèles basés sur DL sont adaptés au décodage de la trans-
lation de la main en 3D dans le contexte de l’ICM basée sur l’ECoG. Dans le cas
d’une amélioration des performances, les modèles DL avec des capacités plus
importantes pourraient remplacer les modèles multilinéaires utilisés dans l’essai
clinique. Le deuxième objectif de la thèse était d’étudier la taille optimale du jeu
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de données d’entraînement pour les modèles multilinéaires et les modèles DL.
La relation entre la taille du jeu de données et la performance de décodage est
particulièrement importante dans le cas des ICM car elle définit la durée des
expériences de calibration.

Chapitre 2 - Décodage du signal ECoG en une translation en 3D de la main
avec de l’apprentissage profond

La plupart des décodeurs de signaux ECoG utilisés pour prédire les mou-
vements continus de la main sont des modèles linéaires. Ces modèles ont une
capacité de représentation limitée et peuvent échouer à capturer la relation en-
tre les caractéristiques du signal ECoG et les mouvements continus de la main.
Les modèles d’apprentissage profond (DL), qui sont à la pointe du progrès
dans de nombreux problèmes, pourraient être une solution pour mieux cap-
turer cette relation. Dans ce chapitre, nous avons testé plusieurs architectures
basées sur l’apprentissage profond pour prédire la translation continue de la
main en 3D à l’aide de caractéristiques temps-fréquence extraites des signaux
ECoG. Le jeu de données utilisé dans l’analyse fait partie d’un essai clinique
à long terme (identifiant ClinicalTrials.gov : NCT02550522) et a été acquis lors
d’une expérience en boucle fermée avec un sujet tétraplégique. Les architectures
proposées comprennent des perceptrons multicouches (MLP), des réseaux neu-
ronaux convolutionnels (CNN) et des réseaux long short-term memory (LSTM).
La précision des modèles DL et multilinéaires a été comparée hors ligne à l’aide
de la similitude en cosinus.

Nos résultats montrent que les architectures basées sur les CNN sont plus per-
formantes que le modèle multilinéaire actuel. La meilleure architecture exploite
la corrélation spatiale entre les électrodes voisines avec CNN et bénéficie du car-
actère séquentiel de la trajectoire de la main souhaitée en utilisant LSTMs. Dans
l’ensemble, l’approche DL a obtenu jusqu’à 60 % d’augmentation de la similar-
ité cosinus moyenne par rapport au modèle multilinéaire, de 0.189 à 0.302 et de
0.157 à 0.249 pour la main gauche et la main droite, respectivement. Ce chapitre
montre que les modèles basés sur le DL pourraient augmenter la précision des
systèmes ICM dans le cas de la prédiction de la translation de la main en 3D
chez un sujet tétraplégique.
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Chapitre 3 - Impact de la taille du jeu de données et de l’utilisation à long terme
d’une ICM basée sur l’ECoG sur la performance des décodeurs d’appren-
tissage profond

Dans la recherche sur les ICM, l’enregistrement des données est long et coû-
teux, ce qui limite l’accès aux grands jeux de données. Cela peut influer sur
les performances du système d’ICM, car les méthodes d’apprentissage automa-
tique dépendent fortement de la taille du jeu de données d’apprentissage. Des
questions importantes se posent : en tenant compte des caractéristiques des
signaux neuronaux (par exemple, la non-stationnarité), peut-on obtenir des per-
formances de décodage plus élevées avec davantage de données pour entraîner
les décodeurs ? Quelles sont les perspectives d’amélioration dans le temps dans
le cas d’études ICM à long terme ? Dans ce chapitre, nous avons étudié l’impact
des enregistrements à long terme sur le décodage de l’imagerie motrice sous
deux angles principaux : les exigences du modèle concernant la taille du jeu de
données et le potentiel d’adaptation du patient.

Nous avons évalué le modèle multilinéaire et deux modèles d’apprentissage
profond (DL) sur un jeu de données de l’essai clinique « BCI & Tetraplegia »
(NCT02550522) contenant 43 sessions d’enregistrements ECoG réalisées avec un
patient tétraplégique. Au cours de l’expérience, un participant exécutait une
translation virtuelle de la main en 3D en utilisant de l’imagerie motrice. Nous
avons conçu plusieurs simulations dans lesquelles les jeux de données d’entraî-
nement ont été augmentés ou translatés afin d’étudier la relation entre les per-
formances des modèles et différents facteurs influençant les enregistrements.

Pour tous les décodeurs testés, notre analyse a montré que l’ajout de don-
nées supplémentaires au jeu de données d’entraînement peut ne pas augmenter
instantanément les performances pour les jeux de données contenant déjà 40
minutes de signal. Les décodeurs DL ont montré des exigences similaires con-
cernant la taille du jeu de données par rapport au modèle multilinéaire tout en
démontrant une meilleure performance de décodage. De plus, des performances
de décodage élevées ont été obtenues avec des jeux de données relativement pe-
tits enregistrés plus tard dans l’expérience, ce qui suggère une amélioration des
modèles d’imagerie motrice et une adaptation du patient au cours de l’expérience
à long terme. Enfin, nous avons proposé des incorporations UMAP et de la di-
mensionnalité intrinsèque locale comme moyen de visualiser les données et
d’évaluer potentiellement la qualité des données. Dans ce chapitre, nous avons
montré que le décodage basé sur le DL est une approche ICM potentielle qui
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peut être appliquée efficacement avec des jeux de données de taille réelle. En
outre, la co-adaptation patient-décodeur est un facteur important à prendre en
compte dans les ICM cliniques à long terme.

Chapitre 4 - Apprentissage profond pour l’interface cerveau-machine ECoG :
caractéristiques de bout en bout contre caractéristiques créées à la main

Les modèles d’apprentissage profond (DL) sont devenus couramment utilisés
dans le traitement des signaux cérébraux. Cependant, le gain de performance
obtenu par l’utilisation de modèles d’apprentissage profond de bout en bout
par rapport aux approches ML classiques est généralement significatif mais
modéré, au prix d’une augmentation de la charge de calcul et d’une détério-
ration de l’explicabilité. L’idée centrale des approches d’apprentissage profond
est de faire évoluer les performances avec des jeux de données plus importants.
Cependant, les signaux cérébraux sont des données temporelles avec un faible
rapport signal/bruit, des étiquettes incertaines et des données non stationnaires
dans le temps. Ces facteurs peuvent influencer le processus d’apprentissage et
ralentir l’amélioration des performances des modèles. L’influence de ces facteurs
peut différer entre un modèle DL de bout en bout et un modèle utilisant des
caractéristiques créées à la main.

Dans ce chapitre, nous avons comparé les modèles qui utilisent le signal ECoG
brut à ceux qui utilisent les caractéristiques temps-fréquence pour le décodage
de l’imagerie motrice des ICM. En outre, nous cherchons à savoir si la taille
actuelle du jeu de données est une limitation plus forte pour tous les modèles.
Enfin, les filtres obtenus ont été comparés pour identifier les différences entre
les caractéristiques créées à la main et les filtres optimisés par rétropropagation.
Pour comparer l’efficacité des deux stratégies, nous avons utilisé un perceptron
multicouche et un mélange de couches convolutionnelles et LSTM qui se sont
déjà avérés efficaces dans cette tâche. L’analyse a été réalisée sur la base de don-
nées d’essais cliniques à long terme (près de 600 minutes d’enregistrements) d’un
patient tétraplégique exécutant des tâches d’imagerie motrice pour la translation
de la main en 3D.

Pour un jeu de données donné, les résultats ont montré que l’entraînement de
bout en bout n’est pas nécessairement plus performant que le modèle basé sur
les caractéristiques élaborées à la main. L’écart de performance est réduit avec
des jeux de données plus importants, mais compte tenu de la charge de calcul
accrue, l’entraînement de bout en bout peut ne pas être rentable pour cette ap-
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plication particulière.

Chapitre 5 - Limitations et perspectives

Notre principale contribution a consisté à montrer que l’apprentissage pro-
fond pouvait être utilisé pour décoder la translation de la main en 3D à partir du
signal ECoG chez un patient tétraplégique. Il s’agit d’une étape importante vers
l’amélioration des systèmes de BCI basés sur l’ECoG, car elle peut fournir aux
patients un niveau de contrôle plus élevé. Comme nous avons analysé les don-
nées enregistrées chez un sujet tétraplégique, les modèles n’ont pas eu accès aux
trajectoires réelles de la main pendant l’entraînement et ont été optimisés unique-
ment sur la base des instructions fournies au patient. Ceci est particulièrement
important pour les BCI motrices, car l’objectif principal de nombreuses études
actuelles est de compenser la perte des fonctions motrices chez les personnes
atteintes de déficience motrice. En outre, nous concluons que les méthodes pro-
posées sont adaptées aux BCI du point de vue de la taille des jeux de données.

Dans notre analyse, nous nous sommes concentrés sur un seul sujet tétraplégi-
que. C’est la principale limite de l’étude, car nous ne sommes pas en mesure
d’estimer comment ces résultats se généralisent à une population plus large.
En outre, nous avons analysé des jeux de données préenregistrées dans des
expériences de calcul hors ligne, de sorte qu’une évaluation en ligne devrait être
effectuée pour confirmer nos résultats dans l’expérience réelle. Heureusement, à
l’avenir, d’autres expériences sont prévues qui pourraient évaluer les conclusions
présentées dans cette thèse. De plus, certaines de nos expériences de calcul
étaient limitées à des hyperparamètres sélectionnés manuellement, donc dans
les études suivantes, une recherche d’hyperparamètres qui prend du temps
pourrait être effectuée pour estimer plus précisément les capacités des modèles.
Enfin, d’autres architectures d’apprentissage profond pourraient être étudiées,
par exemple, les mécanismes d’attention et les autoencodeurs, qui pourraient
fournir des performances de décodage plus élevées.
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Artificial intelligence for real-time decoding of motor commands from ECoG of disabled
subjects for chronic brain-computer interfacing

Brain-computer interfaces (BCIs) may significantly improve tetraplegic patients’ quality of life by
creating an alternative communication path between humans and the environment, potentially com-
pensating for motor function loss. This thesis focuses on ECoG-based BCI systems that showed a high
potential to provide efficient communication while being less invasive than intracortical recordings. In
particular, we explored problem of continuous 3D hand translation decoding in a tetraplegic patient.
In this case, most studies use linear models that may be too simple to analyze brain processes and may
suffer from low decoding accuracy. Models based on deep learning (DL) have been proven effective in
various tasks and thus emerge as a potential solution to create a robust brain signals representation. In
this thesis, we studied the potential of DL-based methods for hand translation decoding from ECoG
signals.

First, we evaluated several DL models to predict 3D hand translation from ECoG time-frequency
features. The analysis was performed on a dataset recorded with a tetraplegic subject in the BCI and
Tetraplegia clinical trial (NCT02550522). We started the investigation with a multilayer perceptron tak-
ing vectorized features as input. Then, we proposed convolutional neural networks (CNN), which take
matrix-organized inputs approximating the spatial arrangement of the electrodes. In addition, we in-
vestigated the usefulness of long short-term memory (LSTM) to analyze temporal information. Results
showed that CNN-based architectures performed better than the current state-of-the-art multilinear
model on the analyzed ECoG dataset. The best architecture used a CNN-based model to analyze the
spatial representation of time-frequency features followed by LSTM exploiting the sequential character
of the desired hand trajectory. Compared to the multilinear model, DL-based solutions increased average
cosine similarity by up to 60%.

In the case of BCI, access to large datasets is limited because recordings are time-consuming and
tiring. To investigate the influence of the dataset size on the decoding performance, we compared
the learning curve characteristics of DL and multilinear models evaluated in the previous step. The
training dataset size was gradually increased from 5 to 140 minutes of signal in different computational
experiments, focusing on dataset size requirements and patient adaptation effects. Our results revealed
that DL models have a learning curve profile similar to the multilinear model, increasing performance
for almost all training dataset sizes. This result validates the DL-based models as a good candidate for
real-life applications. We also observed increased data quality for recordings performed later, indicating
improved patient ability to generate meaningful patterns.

DL proved its usefulness for computer vision, primarily in the case of end-to-end learning. It enabled
extracting more powerful representations trained for a specific task and removed the step of hand-crafted
feature extraction. We evaluated methods using raw ECoG signals as a natural extension of hand-crafted
feature analysis. In the data processing pipeline evaluated so far, continuous wavelet transform was used
to extract time-frequency representation, which can be seen as a convolution between a set of wavelet
filters and the ECoG signal. In this setup, the gradient w.r.t. filters coefficients can be computed, and
thus the whole network can be trained within an end-to-end scheme. The parameters of wavelet filters
were optimized end-to-end to see potential profit from adjusting the parameters to this specific problem.
The results showed only minor or no benefit from training the wavelets in terms of cosine similarity,
while end-to-end models require more computational power. This may suggest that training first layer
parameters may be less beneficial and more challenging in the case of ECoG-based BCI.

Keywords: brain-computer interface, BCI, ECoG, tetraplegia, deep learning, convolutional neural net-
works, multilayer perceptron, LSTM, dataset size, learning curve, end-to-end, hand-crafted features,
time-frequency representation, brain signals
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Intelligence artificielle pour le décodage de commandes motrices de sujets handicapés, grâce à
des interfaces cerveau-machine à usage chronique

Les interfaces cerveau-machines (ICMs) peuvent améliorer considérablement la qualité de vie
des patients tétraplégiques en créant une voie de communication alternative et en compensant
la perte de la fonction motrice. Cette thèse se concentre sur les systèmes ICM basés sur l’ECoG
qui ont montré un fort potentiel pour fournir une communication efficace, tout en étant moins
invasif que les enregistrements intracorticaux. Cependant, la plupart des systèmes actuels
souffrent d’une faible précision de décodage. Les modèles basés sur l’apprentissage profond
(DL) se sont avérés efficaces dans de nombreuses tâches et apparaissent donc comme une
solution possible pour créer une représentation robuste des signaux cérébraux. Dans cette
thèse, nous avons étudié le potentiel des méthodes basées sur l’apprentissage profond pour le
décodage de la translation de la main à partir de signaux ECoG.

Tout d’abord, nous avons évalué plusieurs modèles de DL sur des données de l’essai clin-
ique BCI et Tétraplégie (NCT02550522) enregistrées avec un sujet tétraplégique, pour prédire la
translation de la main en 3D à partir des caractéristiques temps-fréquence des signaux ECoG.
Nous avons commencé l’étude avec un perceptron multicouche prenant en entrée des carac-
téristiques vectorisées. Ensuite, nous avons proposé des réseaux neuronaux convolutifs (CNN),
qui prennent des entrées organisées en matrices se rapprochant de la disposition spatiale des
électrodes, et des cellulles long short-term memory (LSTM) pour analyser les informations
temporelles. Les résultats ont montré que les architectures basées sur les réseaux neuronaux
convolutifs sont plus performantes que le modèle multilinéaire actuel sur l’ensemble des don-
nées ECoG analysées, avec une augmentation de la similarité cosinus moyenne allant jusqu’à 60
%. La meilleure architecture utilisait un modèle CNN pour analyser la représentation spatiale
des caractéristiques temps-fréquence, suivi d’un LSTM exploitant le caractère séquentiel des
données.

Dans le cas des ICM, l’accès à de grands jeux de données est limité car les enregistrements
sont longs et fatigants pour le patient. Pour étudier l’impact de la taille du jeu de données sur
les performances de décodage, la quantité de données d’entraînement a été progressivement
augmentée de 5 à 140 minutes de signal dans différentes expériences de calcul, en se concentrant
sur les exigences de taille du jeu de données et les effets d’adaptation du patient. Nos résultats
ont révélé que les modèles de DL augmentent les performances pour presque toutes les tailles
de jeu de données d’entraînement. Ce résultat valide les modèles de DL comme bons candidats
pour les applications de la vie réelle. Nous avons également observé une meilleure qualité des
données pour les enregistrements effectués plus tardivement, ce qui indique un progrès du
patient pour générer des signaux informatifs.

Le DL a prouvé son utilité pour la vision par ordinateur, principalement dans le cas de
l’apprentissage de bout en bout, permettant l’extraction de représentations plus adaptées à une
tâche spécifique. Nous avons évalué des méthodes utilisant des signaux ECoG bruts en tant
qu’extension naturelle de l’analyse des caractéristiques créées à la main. Les paramètres de la
transformée en ondelettes continue utilisée pour extraire la représentation temps-fréquence ont
été optimisés de bout en bout pour voir le bénéfice potentiel de l’ajustement des paramètres
à ce problème spécifique. Les résultats ont montré qu’il n’y avait que peu ou pas de bénéfice
à entraîner les ondelettes en termes de similarité en cosinus, alors que les modèles de bout
en bout nécessitent plus de puissance de calcul. Cela peut suggérer que l’entraînement des
paramètres de la première couche peut être moins bénéfique et plus difficile dans le cas d’une
BCI basée sur l’ECoG.

Mots clés : interface cerveau machine, ICM, ECoG, tétraplégie, apprentissage profond, réseaux
neuronaux convolutifs, perceptron multicouche, LSTM, taille de jeu de données, courbe d’apprentissage,
de bout en bout, caractéristiques créées à la main, représentation temps-fréquence, signaux
cérébraux
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