
HAL Id: tel-04011484
https://theses.hal.science/tel-04011484

Submitted on 2 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid approaches for context recognition in Ambient
Assisted Living systems : application to emotion
recognition and human activity recognition and

anticipation
Hazem Khaled Mohamed Abdelkawy

To cite this version:
Hazem Khaled Mohamed Abdelkawy. Hybrid approaches for context recognition in Ambient Assisted
Living systems : application to emotion recognition and human activity recognition and anticipation.
Artificial Intelligence [cs.AI]. Université Paris-Est Créteil Val-de-Marne - Paris 12, 2021. English.
�NNT : 2021PA120006�. �tel-04011484�

https://theses.hal.science/tel-04011484
https://hal.archives-ouvertes.fr


 

    

 

 

 

 

Ecole Doctorale 

Mathématiques, Sciences de l’Information et de la Communication (MSTIC) 

THÈSE 

pour obtenir le grade de 

Docteur de l’Université Paris-Est Créteil 

Spécialité : Informatique 

présentée et soutenue publiquement par 

Hazem Khaled Mohamed ABDELKAWY 

le 16 Septembre 2021 

Hybrid approaches for context recognition in Ambient Assisted Living 
systems: application to emotion recognition and human activity recogni-

tion and anticipation. 

Directeurs de thèse 

Yacine AMIRAT, Abdelghani CHIBANI 

 

Jury 
Mounim A. EL YACOUBI Rapporteur 
Mounir MOKHTARI Rapporteur 
Patrick REIGNIER Examinateur 
Marie BABEL Examinateur 
Yacine AMIRAT Directeur 
Abdelghani CHIBANI Encadrant 
  

136805
Typewriter
Paulo GONÇALVES 

136805
Typewriter
Rapporteur



2



To my parents, my wife, my daughters, my sister.

3



4



Acknowledgments

Foremost, I would like to express my sincere gratitude to my supervisor Prof.

Yacine Amirat who has guided and taught me a lot throughout the journey of

this Ph.D. thesis, which allowed me to learn and acquire the spirit of scientific

research. Because the same thing can also be said about my advisor Dr. Abdel-

ghani Chibani, I would like to thank her too for continuous support.

Besides, I would like to thank all jury members for offering their valuable

time to review my thesis and examining my defense. Huge thanks are also due

to them for valuable comments, questions, and insightful remarks.

My sincere thanks also go to the staff of the LISSI laboratory represented by

the director Prof. Yacine Amirat and also to my colleagues in the department of

R&T in the IUT of Créteil/Vitry especially to Dr.Ferhat Attal.

I would also like to thank my lab-mates for the discussions, the inspirational

talks, and all the fun we have had together in the last four years. Among them,

special thanks go to Roghaeh Mojarad, Elnaz Soliemani, Mohsen Qutbi, Nicolas

Khoury, and Arnaud Flori.

Last but not least, I would like to express my gratitude and love to my par-

ents, Eman and Khaled, my lovely wife, Alaa, and my daughters, Hana and

Mariem and my sister Heba for their love and support.

5



6



Contents

1 General Introduction 21

2 Overview of research context 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Ambient intelligence: principles and definitions . . . . . . . . . . . 25

2.3 Identification and localization technologies . . . . . . . . . . . . . 29

2.3.1 Radio-Identification . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Localization systems . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Connected objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Video analytics for ambient intelligence . . . . . . . . . . . . . . . . 41

2.6 Physical Assistance Vs Cognitive Assistance . . . . . . . . . . . . . 43

2.6.1 Assistive robots . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 Ubiquitous Robotics . . . . . . . . . . . . . . . . . . . . . . . 46

3 Review of human activity recognition/anticipation and emotion recog-

nition approaches 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Review of human activity recognition . . . . . . . . . . . . . . . . . 52

3.2.1 What is an activity? . . . . . . . . . . . . . . . . . . . . . . . . 52

7



3.2.2 Activity recognition . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Data-driven approaches . . . . . . . . . . . . . . . . . . . . . 54

3.2.4 Knowledge-driven approaches . . . . . . . . . . . . . . . . . 61

3.2.5 Hybrid approaches . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Review of human activity anticipation . . . . . . . . . . . . . . . . . 77

3.3.1 Physical-activity vs Mind-intention anticipation . . . . . . 77

3.3.2 Human activity anticipation approaches . . . . . . . . . . . 78

3.4 Emotion recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.1 What are emotional expressions? . . . . . . . . . . . . . . . . 79

3.4.2 Emotions vs Affects . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.3 Human emotions / affects recognition approaches . . . . . 81

3.4.4 Data driven approaches . . . . . . . . . . . . . . . . . . . . . 81

3.4.5 Knowledge driven approaches . . . . . . . . . . . . . . . . . 84

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Narrative Knowledge Representation and Reasoning 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Fundamentals of NKRL . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Dynamic knowledge modeling in NKRL . . . . . . . . . . . . . . . . 95

4.3.1 Representation of temporal knowledge in NKRL . . . . . . . 97

4.3.2 Binding occurrences . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Concept and Event Ontologies . . . . . . . . . . . . . . . . . . . . . 101

4.4.1 ConceptNet-based Ontology . . . . . . . . . . . . . . . . . . 101

4.4.2 Event Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 NKRL-based reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.1 Matching mechanism . . . . . . . . . . . . . . . . . . . . . . 106

4.5.2 Hypothesis-Transformation Rules . . . . . . . . . . . . . . . 110

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8



5 Hybrid approach for contextual emotion recognition 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Proposed hybrid approach . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Features extraction . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.2 Unimodal Classifiers . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.3 Fusion based on Multilayer Perceptron (MLP) neural net-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.4 Decision based on Possibilistic Logic (PL) . . . . . . . . . . 123

5.4 Contextual emotion recognition . . . . . . . . . . . . . . . . . . . . 125

5.4.1 Emotional knowledge representation . . . . . . . . . . . . . 125

5.4.2 NKRL-based contextual emotion inference . . . . . . . . . . 129

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5.1 Multimodal emotion dataset description . . . . . . . . . . . 134

5.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.2 Unimodal emotion recognition . . . . . . . . . . . . . . . . . 137

5.6.3 Audio-Visual evaluation on RECOLA . . . . . . . . . . . . . 138

5.6.4 Multimodal emotion recognition . . . . . . . . . . . . . . . . 140

5.6.5 Contextual emotion recognition . . . . . . . . . . . . . . . . 144

5.6.6 Evaluation of the hybrid approach . . . . . . . . . . . . . . . 145

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Hybrid approach for human activities recognition 149

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Proposed hybrid approach . . . . . . . . . . . . . . . . . . . . . . . 150

6.2.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 150

9



6.2.2 STJ-CNN for skeleton-based activity recognition . . . . . . 151

6.2.3 HMResNet for IMUs-based activity recognition . . . . . . . 155

6.2.4 Contextual activity detection . . . . . . . . . . . . . . . . . . 159

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3.2 STJ-CNN model evaluation . . . . . . . . . . . . . . . . . . . 166

6.3.3 HMResNet model evaluation . . . . . . . . . . . . . . . . . . 168

6.4 Usecase: Cognitive daily exercises coaching . . . . . . . . . . . . . 172

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7 Hybrid approach for human activity anticipation 175

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2.1 Human Hand Detection in Cluttered Environments . . . . 177

7.2.2 Indoor-Place and Ambient-Objects Detection . . . . . . . . 180

7.2.3 Multi-Perspectives Object-to-Object Mapping . . . . . . . . 183

7.2.4 Inference of Ambient-Objects Contextual Affordances . . . 185

7.2.5 Human Action Recognition/Anticipation . . . . . . . . . . . 189

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 190

7.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.4.1 Place detection: ResNet model . . . . . . . . . . . . . . . . . 198

7.4.2 Hand detection: YOLOv2-GLCM Auto-Encoder model . . . 199

7.4.3 Multi-Perspective Object-Object Mapping . . . . . . . . . . 200

7.4.4 Entire approach Evaluation . . . . . . . . . . . . . . . . . . . 201

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10



8 General conclusion and perspectives 205

8.1 General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

11



12



List of Figures

2.1 Example of the wide range of services that an ambient intelligence

system may provide for a dependent person . . . . . . . . . . . . . 28

2.2 Radio Frequency Identification (RFID) system architecture . . . . 30

2.3 EL-E robot delivering the phone equipped with an RFID tag to

dependent person . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Living Lab at the University of Orebro . . . . . . . . . . . . . . . . . 32

2.5 Cricket localization system . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Ubisense localization system . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Accessories for social communication and web browsing . . . . . 37

2.8 E-textile system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Electronic epidermal system . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Video-based human activity monitoring system . . . . . . . . . . . 42

2.11 Alzheimer patients activity monitoring system . . . . . . . . . . . . 43

2.12 Assistive robots for mobility . . . . . . . . . . . . . . . . . . . . . . . 44

2.13 PARO sensory awareness robot . . . . . . . . . . . . . . . . . . . . . 47

2.14 Different domestic robots . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Discrete vs Continuous emotion mapping . . . . . . . . . . . . . . 83

13



4.1 An Example of the ambient-environment representation based

on the concept ontology HClass . . . . . . . . . . . . . . . . . . . . 103

4.2 Indexing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Hybrid emotion recognition approach . . . . . . . . . . . . . . . . 116

5.2 Facial expression recognition neural network architecture, before

distillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Modified VGGish backbone feature extractor for Speech Emotion

Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 A segment of the emotion upper ontology (EmUO) describing hu-

man states taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Scene extracted from the smart devices showroom . . . . . . . . . 136

5.6 Normalized confusion matrix of the multimodal emotion recog-

nition at the low level . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.7 Emotions intensities transition during interactions . . . . . . . . . 143

5.8 Non-directly observable emotion recognition . . . . . . . . . . . . 144

6.1 Hybrid approach for human activity recognition . . . . . . . . . . 150

6.2 Human Body Parts (red boxes) and Skeleton Joints (orange dots)

Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3 Skeleton Joint Deep Convolutional Residual Feature Extractor Net-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4 Inverted Pyramid Convolutional Network for body part feature

extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 Human Activity Classification Network . . . . . . . . . . . . . . . . 155

6.6 Daily Human Activity Recognition based-Hierarchal Multichan-

nel Deep Residual Network Model for robotic systems Exploiting

N IMUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

14



6.7 Multilayer Convolution Feature Extractor Unit (MCFEU) . . . . . . 157

6.8 Deep Residual Network Based on Stacked MCFEU units . . . . . . 157

6.9 Confusion Matrix obtained by HMResNet using PH12-ARI dataset 169

6.10 Scene extracted from the smart home environment . . . . . . . . . 173

7.1 Proposed hybrid approach for huamn activity recognition and in-

tention anticipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2 GLCM-YOLO model: texture-based hand detection deep learning

model. a) Input RGB video frame. b) YOLOv2 state-of-art object

detection model for hand localization. c) Proposed regions of in-

terest. d) Content of each bounding box. e) Stacked auto-encoder

combined with MLP neural network for texture classification. f)

Reconstructed image from the decoder network. g) Classification

of bounding boxes labels . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 GLCM skin-texture verification deep network architecture . . . . . 181

7.4 ResNet-Siamense Network for Objects Similarity Measurement . . 184

7.5 ConceptNet-based ontology for contextual affordances represen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.6 (a) 2D locations of hands and the ambient objects; (b) 2D graph

representation space of the observations; (c) Constructed search

tree from the current video frame. . . . . . . . . . . . . . . . . . . . 189

7.7 Experimental setup of human daily activities dataset. 1) General

view of the experimental environment with IMU sensors, RGB

egocentric vision, and RGB-D robot camera and activity dash-

board. 2) Human egocentric vision perspective. 3) Third-person

vision perspective. 4) The IMU sensors location on human body . 191

15



7.8 Sample images of indoor and outdoor places extracted from DHA-

11Th dataset with hand bounding boxes and segmentation mask

annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.9 Samples from different textures existing in SKNS textures dataset.

a) The first row consists of different skin textures; b) The second

row consists of non-skin textures similar to skin colors; c) The

third row consists of diverse non-skin texture . . . . . . . . . . . . 193

7.10 DHA-11Th dataset images distribution over different categories . 197

16



List of Tables

3.1 State of the art comparison data-driven approaches for human

activity recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 State of the art formalisms used for knowledge representation and

reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Knowledge representation basic predicates . . . . . . . . . . . . . . 94

4.2 AECS Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 General structure of a predicate template . . . . . . . . . . . . . . . 96

4.4 Template of MOVE predicate . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Time modulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Example of occurrence of predicate EXIST. . . . . . . . . . . . . . . 99

4.7 Example of occurrence of predicate EXPERIENCE. . . . . . . . . . 99

4.8 Example of occurrence of the predicate PRODUCE. . . . . . . . . . 100

4.9 BEHAVE Template example . . . . . . . . . . . . . . . . . . . . . . . 104

4.10 EXIST template example . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.11 EXPERIENCE template example . . . . . . . . . . . . . . . . . . . . 104

4.12 MOVE template example . . . . . . . . . . . . . . . . . . . . . . . . 105

4.13 OWN template example . . . . . . . . . . . . . . . . . . . . . . . . . 105

17



4.14 PRODUCE template example . . . . . . . . . . . . . . . . . . . . . . 106

4.15 RECEIVE template example . . . . . . . . . . . . . . . . . . . . . . . 106

4.16 John was present at his home from date date-1= 21/10/2020 . . . 108

4.17 Query to check if John was present at the hospital between 21/10/2020

and 29/10/2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Representation of the emotional context: Matthew is happy . . . . 128

5.2 Example of transformation rules T R . . . . . . . . . . . . . . . . . 131

5.3 Example of hypothesis rule . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Transformation rules N 2 . . . . . . . . . . . . . . . . . . . . . . . . 133

5.5 Performance of the proposed visual facial expression embedding

network on the AffectNet validation set compared to existing state-

of-the-art models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6 Triplet prediction performance of the proposed visual facial ex-

pression embedding network on the Google FEC test set com-

pared to existing state-of-the-art models . . . . . . . . . . . . . . . 139

5.7 RECOLA dataset results (in terms of CCC) for predicting arousal

and valence on train, development and test sets. . . . . . . . . . . 140

5.8 Performances of the proposed audio embedding network on the

RECOLA dataset comparing to existing state-of-the-art models.

In parenthesis are the performances obtained in the development

set. —— : no results reported in the original papers. . . . . . . . . 140

5.9 Multimodal emotion recognition performance versus selected fea-

tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.10 Emotion recognition performance using the test set . . . . . . . . 142

5.11 Comparison to baseline models . . . . . . . . . . . . . . . . . . . . 143

5.12 Response Time of each service . . . . . . . . . . . . . . . . . . . . . 145

18



6.1 NKRL Predicative Occurrences Representation . . . . . . . . . . . 162

6.2 Transformation rule to provide an assistive service for human . . 163

6.3 Performance comparison of the proposed STJ-CNN model against

the state-of-the-art models on DAHLIA dataset in F-score . . . . . 166

6.4 Performance comparison of the proposed STJ-CNN model against

the state-of-the-art models on NTU RGB+D dataset in accuracy . 167

6.5 HARS dataset Accuracy Evaluation . . . . . . . . . . . . . . . . . . . 170

6.6 HAR Using HARS dataset Confusion Matrix Evaluation . . . . . . . 171

6.7 PH12-ARI dataset Evaluation . . . . . . . . . . . . . . . . . . . . . . 172

7.1 State of the art datasets comparison . . . . . . . . . . . . . . . . . . 195

7.2 Evaluation results of Place365 dataset . . . . . . . . . . . . . . . . . 198

7.3 Accuracy (%) results of skin texture classification models . . . . . 200

7.4 Average Precision (%) results of hand detection models . . . . . . 200

7.5 Evaluation results of Multi-Perspectives Object-Object Matching

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.6 Response Time of iCare different Modules . . . . . . . . . . . . . . 202

19



20



Chapter 1
General Introduction

UBiquitous robots and connected objects are intended to become an in-

creasingly important part of our everyday life environments such as

homes, hospitals, airports, schools, transports, amongst others. According to

the latest estimations of Gartner1, the US research company, 25 billion objects

will be connected in the world by 2021. The ambition of this emerging domain

is to provide intelligent assistance services with a high level of performance and

acceptability, such as services that adapt to the user’s context and naturally in-

teract with them. Designing cognitive capabilities of assistive robots or agents

based on the concept of context awareness, is a very challenging topic in the AI

community.

The evolution of ubiquitous computing and ambient assisted living (AAL)

paradigms, and the recent development of service robotics, have led to the de-

velopment of a new branch of robotics research, called ubiquitous robotics or

networked robotics. The challenges surrounding the ubiquitous robotics are

numerous in terms of fields of applications. One of the most important appli-

cations is the home care of the elderly and dependent people in the context of

1https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-
top-10-strategic-iot-technologies-and-trends

21



Chapter 1

the Silver economy (or senior economy). The integration of service robotics in

ambient intelligence environments aims to create cyber-physical spaces that

provide, anywhere and anytime, a wide range of services to improve the quality

of life, the physical and mental state, and the social well-being of users. The ob-

jective is to create a unified ecosystem exploiting all connected objects/entities

in the environment (sensors, actuators, smartphones, smart TV, digital tablets,

smartwatches, service robots, etc.) to create intelligent services and spaces ac-

cording to the vision of the Web of Objects (Web of Things). The success of

intelligent ambient robotics operating and collaborating with humans in daily

living environments depends on their ability to generalise and learn human

movements, and obtain a shared understanding of an observed scene. In this

context, human daily activity recognition, human emotion recognition, and

human intention anticipation are the most challenging cognitive capabilities

that should be integrated with any AAL system to guarantee the people’s well-

being and safety in the ambient intelligence environments. However, to effi-

ciently integrate those capabilities in a highly dynamic environment, multiple

modalities sensing systems combined with complex knowledge representation

and fusion techniques are required.

This thesis proposes three novel hybrid approaches that enable the AAL

system to detect the emotional states, actions, and intentions of users, tak-

ing advantage of their context and the benefits of combining data-driven and

knowledge-based techniques. Firstly, a hybrid approach for contextual emo-

tion recognition for cognitive assistance services in ubiquitous environments is

proposed. The proposed approach is based on integrating deep-learning mod-

els with possibilistic logic and expressive emotional knowledge representation

and reasoning model. Secondly, a hybrid approach for human activity-aware

AAL system is proposed. The proposed approach is based on the integration
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of spatial and temporal deep-learning models for recognizing human activi-

ties from IMUs and skeleton key-points with higher knowledge representation

and reasoning engine. Finally, a hybrid approach is proposed to recognize and

anticipate the human contextual daily activities from the current partially ob-

served activities and events in an ambient environment. The proposed ap-

proach combines both of human and robot egocentric vision perspectives is

proposed to recognize and proactively anticipate human daily activities. The

manuscript is organized as follows :

• In chapter 2, we first present the fundamental principles of ambient in-

telligence and ubiquitous systems, and their exploitation in the develop-

ment of a new variant of service robotics commonly called ubiquitous or

ambient robotics. In the remainder of the chapter, we review the exist-

ing technologies that enable the implementation of ambient intelligence

systems. Then, we discuss the benefits of robotic systems for personal

assistance with a focus on the challenges of ubiquitous robotics. Finally,

in the last part, we present the objectives of the thesis in terms of the am-

bient environment perception, knowledge management, and reasoning

based on deep learning and n-ary ontologies for better management of

human-robot interaction in Ambient Assisted Living (AAL).

• In chapter 3: the objective of this chapter is to present and also analyze

the state of the art of human activity recognition, human intention an-

ticipation, and human emotion estimation in an ambient environment.

Firstly, we we reviewed and analyzed the literature of the human action

recognition approaches. Secondly, a detailed analysis of the state of the

art human intention anticipation approaches is presented. Finally, a com-

parative study of different emotion estimation approaches is presented

and analyzed.
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• In chapter 4: we present the foundations of the Narrative Knowledge

Representation Language (NKRL) used for context representation in AAL

environments. First, we present the definitions used throughout this chap-

ter. Then, we describe, on the one hand, the foundations of the modelling

of narrative knowledge by exploiting the HClass and HTemp ontologies,

and on the other hand, the NKRL reasoning mechanisms.

• In chapter 5: a hybrid approach for contextual emotion recognition for

cognitive assistance services in ubiquitous environments is proposed. The

proposed approach is able to recognize accurate explicit discrete emo-

tions using a multilayer perceptron neural network fusion model com-

bined with possibilistic logic. Besides, the proposed approach is able to

recognize non-directly observable emotions using expressive emotional

knowledge representation and reasoning model.

• In chapter 6: a novel hybrid approach for human activity-aware AAL sys-

tem is proposed. A combaniation of Spatio-Temporal Joint based Convo-

lutional Neural Network (STJ-CNN) and Hierarchical Multichannel deep

Residual Network (HMResNet) is proposed to recognize human activi-

ties from both skeleton keypoints and multichannel IMUs’s raw data. Be-

sides, the NKRL representation and inference is exploited to represent

and combine the detected human activities with the ambient events, and

infer the semantic context of the detected activity.

• In chapter 7: a novel hybrid approach is proposed to recognize and an-

ticipate the human contextual daily activities from the partially observed

activities and events in an ambient environment.

• In chapter 8: we summarized the contributions of the proposed thesis,

and the different future directions are highlighted.
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Chapter 2
Overview of research context

2.1 Introduction

In this chapter, we first present the fundamental principles of ambient intelli-

gence and ubiquitous systems, and their exploitation in the development of a

new variant of service robotics commonly called ubiquitous or ambient robotics.

In the remainder of the chapter, we review the existing technologies that enable

the implementation of ambient intelligence systems. Then, we discuss the ben-

efits of robotic systems for personal assistance with a focus on the challenges

of ubiquitous robotics. Finally, in the last part, we present the objectives of the

thesis in terms of the ambient environment perception, knowledge manage-

ment, and reasoning based on deep learning and n-ary ontologies for better

management of human-robot interaction in Ambient Assisted Living (AAL).

2.2 Ambient intelligence: principles and definitions

In recent years, mobile computing has become the core of many daily objects

such as smartphones, smart TVs, smart glasses, digital tablets, smartwatches,
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etc. Currently, the connected objects are beginning to become noticeable in the

market, which are new communicating and intelligent devices intended to be

used as monitoring, assistance, communication, and information tools. These

objects are starting to be more and more present in our everyday places, such as

houses and workplaces. For example, Samsung Vapor Cook smart oven, Gen-

eral Electric ChillHub smart refrigerator, Google Home, and iRobot’s Roomba

980 smart vacuum cleaner. The variety of the connected objects used in our

day-to-day activities, their number, and level of sophistication will continue to

grow in the future. The American research agency Gartner estimates that 21

billion number of objects that will be connected by 2021.

Ubiquitous robots and connected objects are intended to become an in-

creasingly important part of our everyday life environments such as homes,

hospitals, airports, schools, transports, amongst others. According to the lat-

est estimations of Gartner1, the US research company, 25 billion objects will be

connected in the world by 2021. The ambition of this emerging domain is to

provide intelligent assistance services with a high level of performance and ac-

ceptability, such as services that adapt to the user’s context [1] and naturally in-

teract with them. Designing cognitive capabilities of assistive robots or agents

based on the concept of context awareness, is a very challenging topic in the AI

community.

Given the development of these new technologies, in the near future, it is

expected that the systems will provide countless functions that will be accessi-

ble at all times and in any place and several modes of interactions. Such sys-

tems, described as ubiquitous or omnipresent, can continuously and transpar-

ently adapt the same function or service (e.g., medication reminder, appoint-

ment reminder, etc.), to the context of use (e.g., displaying a text message on

1https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-
top-10-strategic-iot-technologies-and-trends
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the user’s PC if the user is at work, or display a text message on the user’s PC

if the user is at work, or displaying the same message on the dashboard of the

user’s vehicle if the user is driving). Besides, these systems can dynamically

discover the objects available in the ambient environment; these objects may

be intangible, such as information services, or physical, such as robots, sen-

sors/actuators, multimedia equipment, etc. The services provided by these ob-

jects are then exploited to provide the user with contextual value-added ser-

vices. According to A. K. Dey [2], context refers to any information that can

be used to characterize the situation of an entity. An entity is a person, place,

or object that is considered relevant to the interaction between a user and an

application, including the user and the applications themselves. By linking the

physical world to the digital world, the objective is to transform the devices and

equipment that we use in our daily lives into communicating objects endowed

with perception, interpretation, decision, and action capabilities, allowing to

proactively offer value-added assistance services to the user. The development

of radio identification, wireless communication networks, and Internet proto-

cols, allows the creation of large scale networks of connected objects according

to the paradigm of the Internet of Things; an object can be a sensor, an actua-

tor, or any physical object. The thematic expression of ubiquitous computing,

called Ambient Intelligence (AmI), has been introduced in 1998 by the Philips

company as part of a prospective study about the evolution of household elec-

tronics by 2020. Concurrently, the Information Societies Technology Advisory

Group (ISTAG) published in 2001 a document of four scenarios illustrating the

notion of "Ambient Intelligence" by 2010 [3]. The work carried out by the ISTAG

aimed to provide a vision to orient the European program of the IST (Informa-

tion Societies Technology) towards emerging fields of research, such as ambient

intelligence.
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Figure 2.1 – Example of the wide range of services that an ambient intelligence
system may provide for a dependent person

The exploitation of the ambient intelligence paradigm aims to design and

implement intelligent environments or ecosystems that provide a variety of re-

active or proactive services to improve the quality of life, physical and mental

well-being, comfort, and safety of users. In the context of dependent people’s

home care, as shown in Fig.2.1, it is possible to design an ambient intelligence

system (AIS) to provide a wide range of services such as reminders to drink,

take medication or carry out tasks; alarms to hospital services or caregivers in

the event of an accident (fall, injury, burn, intoxication, asphyxiation, medical

complication, etc.), etc. Other types of assistance services can be developed

to support a balanced lifestyle and reduce the risk factors of potential chronic

diseases such as diabetes, Alzheimer’s, and Parkinson’s (physical activity coach-

ing, cognitive stimulation, etc.). Finally, it is also possible to implement envi-

ronmental services to match the user’s preferences and needs, for example, ad-

justing the opening of shutters, switching lights on/off, adjusting the ambient

temperature and light, turning on an oven, etc.

The paradigm of ambient intelligence has been defined in several ways,
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but they are generally quite similar. According to the ISTAG [3], ambient in-

telligence is the creation of environments capable of considering the personal

characteristics of different users, adapting and intelligently responding to their

specific requests, acting in a non-intrusive and often invisible way, and allow-

ing them to access the offered services most naturally and intuitively, using

voice recognition, gesture recognition or the manipulation of tangible objects.

Reignier [4] defines ambient intelligence as a paradigm resulting from the in-

tersection of the ubiquitous computing and the artificial intelligence where the

objective is to exploit the perceptual capabilities offered by all sensors to ana-

lyze the environment, the users and their activities, and enable the system to

react according to the context. The key properties of this paradigm are the abil-

ity to analyze the context and to adapt dynamically to the changes that occur

in it.

2.3 Identification and localization technologies

2.3.1 Radio-Identification

Radio Frequency Identification (RFID) is a technology for identifying and track-

ing a person or an object. RFID radio tags are capable of transmitting and re-

ceiving data transmitted remotely by a reader, such as the identifier of an ob-

ject or a person, see Figure.2.2. There are two types of tags: Passive tags and

active tags. The passive tags do not use any external power supply such as

battery; they are powered by the electromagnetic field produced by the RFID

reader when sending a request. Compared to passive tags, active tags require

an external power supply. Active tags can be operated as range-finders; the

distance can be estimated from the received power measurements of the in-

coming radio signal. In terms of standards, four main frequency bands are re-
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Figure 2.2 – Radio Frequency Identification (RFID) system architecture

served for the RFID applications: the low-frequency band, around 125 kHz, the

high-frequency band at 13, 56 MHz, the UHF band, between 800 and 900 MHz,

and finally the microwave band with frequencies at 2, 45 GHz and 5, 8 GHz. In

terms of RFID applications, Georgia Tech developed the EL-E robot [5], which

is a home assistance RFID-based robot to support dependent people in daily

activities. On one hand, long-range antennas are used to enable the robot to

detect the presence of an object or a person in a given space (bedroom, kitchen,

etc.). On the other hand, Short-range antennas are used to detect the presence

of objects near the robot’s hand. The RFID enables the robot to perceive and se-

mantically understand its environment. For example, the robot can deliver an

object to a person wearing an RFID tag, or handling the ambient objects, such

as: delivering a phone to a dependent person, as shown in Fig.2.3. Besides, as

shown in Figure.2.4, a living lab apartment was developed by the University of

Orebro-Sweden [6] as part of the European project Robot-ERA, which aims to

develop and evaluate robotic technologies for elderly people. The ambient en-

vironment consists of a grid of 1900 passive RFID tags that were deployed under

the floor to localize and guide the navigation system of different robots, where
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Figure 2.3 – EL-E robot delivering the phone equipped with an RFID tag to de-
pendent person

each one is equipped with an RFID tag reader. As an extension of RFID tech-

nology, Field Communication (NFC) is a short-range, high-frequency wireless

communication technology that allows the exchange of information between

devices up to a distance of approximately 10 cm. Currently, This technology

is integrated into smartphones, tablets, connected audio-video players, smart-

payment terminals, etc. Finally, the iBeacon technology was developed by Ap-

ple based on Bluetooth Low Energy (BLE) technology. The beacon device will

transmit a signal carrying a unique universal identifier to interact with a smart-

phone present in a given area. The identifier will be detected by a smartphone

and will be converted into a physical location or can be used to trigger a specific

action.

2.3.2 Localization systems

In this section, we present the main indoor localization systems which can be

divided into two categories [7] :
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(a) Distribution map of the RFID tags inside the living
lab apartment (in red)

(b) Snap-shot of the apartment

Figure 2.4 – Living Lab at the University of Orebro
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• Wifi Positioning Systems (WPS): These systems exploit the distributed

WiFi access terminals (hotspots) to localize the ambient objects and hu-

mans in different environments such as urban environments, buildings,

and apartments. This localization system can be implemented using dif-

ferent techniques; on one hand, the simplest one is the triangulation be-

tween different WiFi hotspots. On the other hand, the most precise tech-

niques are based on the radio fingerprint mapping such as Ekahau’s RTLS

2 (Real-Time Location System), which has a high localization precision

up to few centimeters. The RSS (Received Signal Strength) is the most

commonly used parameter in WPS (triangulation, mapping) localization

systems to estimate the working area boundaries, which is defined as the

distance between the transmitter node and the receiver node. To ach-

ieve good performance, this system requires a well-defined attenuation

model for different places such as obstacles, walls, etc.

• Localization systems based on short-range wireless technologies such as

Bluetooth, Infrared, Zigbee, Ultra-Wideband (UWB), etc. The localiza-

tion techniques used in WPS systems can also be used for this type of

system. In [8], Active Badge is proposed as a localization system based

on infrared (IR) technology. The IR sensors are distributed at specific

places in the ambient environment to capture the IR signals emitted by

the badge worn by a person or an object to be tracked. Therefore, The

badge is localized using the triangulation technique. The drawbacks of

the Active Badge system can be summarized as follow: (i) the system ac-

curacy is relatively low up to several meters; (ii) the IR sensor should be

on the line of sight with the badge to be located without any obstacles;

(iii) the system is so sensitive for the fluorescent light and sunlight. In [9],

2https://www.ekahau.com/products/ekahau-connect/pro/
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Figure 2.5 – Cricket localization system

the Active Bat localization system is proposed; the system is based on the

time-of-flight measurement of the ultrasonic signals. Compared to Ac-

tive Badge, the Active Bat localization system is more accurate, and less

sensitive to the obstacles.

Cricket is a localization system combining both of RF (Radio Frequency)

and ultrasonic (US) waves, as shown in Fig.2.5. Each "Cricket beacon"

deployed on the ceiling transmits both RF and US signals simultaneously.

The receiver node (Cricket listener), attached to an object or a person

to be localized, receives these signals, and estimates the distances to the

different beacons to calculate its current position. Each Cricket beacon

listener distance is estimated by measuring the difference between the

propagation time of the RF and US waves. This parameter is called Time

Difference of Arrival or TDoA [10]. The accuracy of the Cricket system

localization is about 10 cm.

The Ubisense 3 localization system uses UWB technology, as shown in

Fig.2.6. The system consists of (1) an array of sensors, called Ubisensors,

placed at known locations in the area to be covered; each Ubisensor sen-

3http://www.ubisense.net/en/
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Figure 2.6 – Ubisense localization system

sor consists of an RF transmitter/receiver (2.4 GHz), and an array of UWB

receivers (6-8 GHz); (2) a set of active beacons (called Ubitags), carried by

persons or objects to be localized. Each Ubitag beacon has an RF trans-

mitter/receiver and a UWB transmitter. The Ubisense system uses the

Time Difference of Arrival (TDoA) and Angle of Arrival (AOA) correspond-

ing to the direction of the received signal to calculate the position of each

Ubitag beacon using triangulation. Although the Ubisense system is very

accurate (accuracy of the order of 15 cm), nevertheless it is relatively ex-

pensive, imposes a high deployment cost to cover large areas (3 sensors

are needed to cover a rectangular cell), and also requires special cabling.

Recently, The development of LIFI (LIight-FIdelity) technology as an al-

ternative to Wi-Fi [11] becomes noticeable. LIFI is based on the principle

of turning a light-emitting diodes (LED) light on and off several thousand

times per second to transmit information using different encoding sys-

tems. Consequently, it is possible to remotely transmit different multi-

media contents such as video, sound, and geolocations to a tablet or a

smartphone. In addition to high-speed data transmission, LIFI technol-
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ogy allows the use of LED light sources as localization sensors.

2.4 Connected objects

Connected objects are intelligent embedded devices that are typically com-

posed of the following components: a processing unit, random access memory,

storage space, wireless communication interfaces, and sensors. These devices

can be integrated into any everyday object and can be used to assist users in

their daily activities [12]. Equipped with sensors, they are capable of perceiving

changes in the ambient environment, reacting to these changes, and possibly

cooperating with other devices. Some connected objects are able to interact

with users using different interfaces such as integrated display screens, smart-

phones, or tablets applications. Four types of connected objects applications

can be distinguished: social communication and web browsing, home automa-

tion, well-being, and e-health.

• Social communication and web browsing: The usage of connected ob-

jects is more easier and comfortable than smartphones or tablets, which

are bulkier. As shown in Fig.2.7, several models of smartwatches are al-

ready commercially available, such as the Apple Watch or Samsung Gear,

which, for example, are equipped with applications for displaying up-

dates from social networks, e-mails, SMS and calendar applications. Cur-

rently, these watches can be used as communication peripherals for smart-

phones or tablets. They can manage incoming or missed calls and con-

trol the music stored on a smartphone (playing, pausing, and selecting

songs). Besides, these watches can be integrated with more advanced

features to be used as remote control devices based on hand gestures de-

tection, or voice commands recognition. Recently, Google glass was in-
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Figure 2.7 – Accessories for social communication and web browsing

troduced as the first commercial smart glass in the market. Google glass

is equipped with a built-in camera, a microphone, a touchpad, mini-

screen, and internet access using WiFi or Bluetooth. Google Glass was de-

signed to provide different services such as real-time communication us-

ing social networks and web browsing, answering phone calls, and show-

ing navigation maps. Google is now moving towards the development of

a new generation of Google glasses to offer a different kind of services

such as assisting physicians during surgeries by displaying the historical

patient records, medical images related to the surgery, the patient’s vital

signs as well as a range of alert messages to reduce the risk of error.

• Home Automation: Many projects were aiming to develop various con-

nected objects to support different home automation applications. Most

of these projects have been turned into products that are now commer-

cially available. Besides, The contributions of giant companies such as

Google, Apple, Samsung, etc., to the home automation market augurs

well for a strong presence of home automation technologies in our daily

lives. In the following, we present a few examples of products that show

this evolution. For example, the Joshfire4 company offers a sofa that de-

4http://www.joshfire.com/

37



Chapter 2

tects an RFID chip installed in a phone or wallet to identify the user, and

to provide a personalized on-screen display. The Nest5 thermostat, orig-

inally produced by Nest Labs, recognizes and stores the user’s preferred

temperatures, reduces the heating in the user’s absence and can be con-

trolled remotely. NextBulb6 is a connected bulb technology designed to

reduce the consumption of electricity. It allows you to know in which

room a user is located to automatically manage the switching on and

off of the lamps. NextBulb uses Bluetooth Low Energy (BLE) technology

to measure the distance from the bulb to the user’s smartphone. Safe-

Light7 is a system consisting of a color LED bulb that can be controlled

(color, intensity, white temperature) using a smartphone or tablet appli-

cation. This bulb also has a smoke sensor to detect the fires and warn the

users. Recently, connected scales became commercially available such

as Countertop8 or Tefal Cooking Connect9. These scales are equipped

with embedded applications for suggesting recipes, giving instructions,

etc. Besides, These scales can monitor the user’s nutrient requirements

and provide him/her with nutritional advice based on his/her activities.

Finally, These scales can recommend the user to use certain kitchen uten-

sils, such as a blender or a casserole to facilitate the preparation of meals.

• Well-being: In addition to smartwatches, which are increasingly used for

monitoring well-being, other several sensors have been recently devel-

oped to provide similar functionalities. These sensors are generally im-

plicitly integrated into everyday objects or accessories. For example, cloth-

5https://nest.com/fr/thermostat/meet-nest-thermostat/
6https://www.indiegogo.com/projects/nextbulb-smart-bulb-that-knows-your-location
7http://www.awox.com/connected-lighting/safelight/
8https://techcrunch.com/2015/04/07/countertop/
9https://www.tefal.fr/Ustensiles-de-cuisine/Balance-de-cuisine/Cooking-

Connect/p/2100093072
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Figure 2.8 – E-textile system

ing, jewelry, or bed linen, which can be used to measure physical activity

or monitor vital signs. Smart blankets, that adapt its temperature based

on the temperature of the ambient environment and the human body.

Balluga10 smart bed, which can monitor the different vital signs (body

temperature, heart rate) in real-time and take into account the user’s pref-

erences in terms of comfort and treatment options. The mattress of Bal-

luga smart bed can produce a vibration massage to relax the muscles and

help the user wake up in the morning. Dreem11 is a connected headband,

which is capable of analyzing the user’s brain waves and producing small

sounds through bone conduction to improve sleep quality.

• E-health: Several connected objects have been recently developed for

medical use. As smartphones or bracelets, they are dedicated to fall de-

tection and monitoring of vital signs. In this context, for example, Apple

Watch consists of a heart rate sensor, a GPS, and an accelerometer. It

can monitor the heart rate and detect different sports and physical ac-

10https://www.kickstarter.com/projects/684490728/balluga-the-worlds-smartest-bed
11https://dreem.com/
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Figure 2.9 – Electronic epidermal system

tivities. Smartex12 has developed a prototype of an intelligent garment

(e-textile system) for the remote and continuous monitoring of physio-

logical and movement data. Flexible embedded wireless sensors are inte-

grated into the fabric to record electrocardiographic (ECG) data related to

cardiac activity, and electromyographic (EMG) data related to muscle ac-

tivity. Finally, a wireless epidermal electronic system developed through

a collaboration between the University of Illinois, the Institute of High-

Performance Computing in Singapore, and Dalian University of Technol-

ogy in China. As shown in Fig2.9, the system was designed as a flexible,

ultra-thin, electronic patch that sticks to the skin like a tattoo. Different

types of electrodes and LEDs are integrated into the patch to measure,

depends on the body location, the heart rate, brain activity, or muscle ac-

tivities [13]. In the field of diabetes, in France, Diabeloop13 is a project to

develop, an artificial pancreas to treat type-1 diabetics. The system con-

sists of a sensor that continuously measures blood sugar levels, a pump

patch that automatically delivers insulin, and a smartphone application

that calculates the required insulin doses to be injected.

12http://www.smartex.it/en/our-products
13https://www.diabeloop.fr/produits
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2.5 Video analytics for ambient intelligence

As previously discussed, a great number of sensors are nowadays available, this

has stressed the need for new approaches to merge low-level measurements

to realize what facts they refer to in the real environment. Ambient Intelligence

(AmI) techniques exploit information about the environment state to adapt the

environment itself to the users’ preferences. Even if traditional sensors allow a

rough understanding of the users’ preferences, ad-hoc sensors are required to

obtain a deeper comprehension of users’ habits and activities. Consequently,

the technologies for video analytic becomes a need to complement/replace

this huge number of heterogeneous sensors. Videos are considered as a main

source of information compared to the previously mentioned technologies for

many reasons. Firstly, visual information can be acquired at reasonable costs

using small and cheap cameras with high-quality resolution. Consequently,

many surveillance cameras are installed in many public places (train stations,

intersections, public parks, airports, etc.) and inside homes. Secondly, visual

information processing becomes much easier because of the availability of the

powerful hardware to process and transfer the data over the wired and wireless

networks available in most of the cities. Finally, visual information includes the

biggest amount of information related to the objects and people populating the

environment.

In this context, human activity monitoring system was developed by CEA

14 to recognize ambient objects, localize and track humans, and predict their

actions based on video analytics, see Fig.2.10. The smart apartment consists

of 3 different Microsoft Kinect depth sensors to monitor the kitchen and liv-

ing room area, besides integrating a number of ambient sensors such as RFID,

light, and limit-switch sensors. For each Kinect sensor, 4 different streams are

14https://www-mobilemii.cea.fr
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Figure 2.10 – Video-based human activity monitoring system

produced such as RGB videos, depth maps, skeleton data, and body indices.

The system was able to detect a set of 7 different daily activities such as cook-

ing, washing dishes, eating, clearing table, working, housework, and laying. Be-

sides, The system exploited the 3D locations of human skeleton-joints in the 3D

point space to detect the associated object for each action.

To support Alzheimer patients, a monitoring system was developed in the

Greek Alzheimer’s Association for Dementia and Related Disorders (GAADRD)

in Thessaloniki, Greece 15, see Fig.2.11. The system succeeded to fuse many

modalities such as audio, RGB videos, Depth videos, and wearable physiologi-

cal sensors to track and detect the activities of different people suffering from

conditions ranging from Mild Cognitive Impairment (MCI) to mild dementia,

and in a few cases full-blown Alzheimer’s Disease (AD). The system was able

to detect different activities such as reading article, watering Plant, preparing

drug box, preparing drink, turning on radio and talking on phone.

15https://team.inria.fr/stars/en/demcare-gaadrd-dataset/
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Figure 2.11 – Alzheimer patients activity monitoring system

2.6 Physical Assistance Vs Cognitive Assistance

In ambient intelligence, physical assistance focuses on the use of ambient actu-

ators to automatically control the user’s living spaces to increase their comfort

and guarantee their safety. With the development of assistive robots, such as

robotic wheelchairs or exoskeletons, a new form of physical assistance can be

provided to facilitate the mobility of users. Unlike physical assistance, cogni-

tive assistance does not necessarily require the use of physical actuators, but

it rather focuses on the verbal and gestural interaction with the user. In the

context of cognitive assistance, on one hand, DOMUS laboratory at the Univer-

sity of Sherbrooke in Canada developed a system that can transform a home

into a cognitive orthosis. DOMUS’s system can provide a personalized, con-

textual, and adaptive cognitive support, which is capable of compensating the

cognitive deficits of its user (problems of attention, memory, planning, etc.). On

other hands, many other projects exploited the concept of companion robot to

create cognitive assistance services such as PEIS-Ecology [14], CompanionAble

[15], and Robot-Era16 projects.

16www.robot-era.eu
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Figure 2.12 – Assistive robots for mobility

2.6.1 Assistive robots

In the following, we present two main categories of assistive robots for perform-

ing daily tasks or activities: mobility assistive robots and domestic assistive

robots. These prototypes of robots developed from various research projects,

which are still at the experimental and research phases to improve their perfor-

mance and make them economically viable.

Mobility assistive robots

Assistive robots are promising solutions to improve the autonomy of elderly

people in daily physical activities such as: standing up, sitting down, walking,

going upstairs/downstairs, etc. Currently, many research projects are being car-

ried out worldwide to develop robotic systems to improve the quality of mobil-

ity services such as robotic chairs, smart canes, walker robotics, and portable

robots or exoskeletons. As shown in Fig.2.12, (a) the CARRIER wheelchair robot,

developed by the University of Applied Arts at the Industrial Design Studio in

Austria. It is a mobility and standing robot; (b) the robotic arm wheelchair
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developed by Kinova Robotics17; (c) the iCane intelligent cane developed at

Nagoya University [16] ; (d) the c-Walker robot developed within the framework

of the European DALI project18; (e) the E-ROWA (Exoskeletal Robotic Orthosis

for Walking Assistance) lower limb exoskeleton from the LISSI laboratory, for

supporting the daily activities such as walking, sitting, standing, stairs-up, and

stairs-down. Exoskeletons are portable mechatronic robots that support and

enhance the motor skills of the patients; they can also be used for neuromus-

cular rehabilitation.

Domestic assistive robots

Currently, domestic assistive robotics is one of the most important sectors of

robotics with numerous research studies and new consumer products in the

market, such as iRobot’s Roomba cleaning robot. In this context, PARO sensory

awareness robot was originally developed by the AIST in Japan to derive ther-

apeutic benefits from the interaction through direct contact between patients

and the robot, as shown in Fig.2.13. The robot was able to provide many cogni-

tive services such as emotional support, improvement of patient’s moods, de-

crease in anxiety, stress level, depressive symptoms, blood pressure, pain. Sev-

eral therapeutic studies, conducted in different hospitals and long-stay centers

for people with dementia or Alzheimer’s disease, have shown the benefits of the

PARO robot in terms of improving the patient sociability. Generally, Sensory

awareness robots are equipped with tactile sensors, microphones, and speak-

ers to react differently to various touches and to communicate verbally with pa-

tients, respectively. Besides, They have built-in emotional intelligence engines

that allow them to communicate and interact emotionally and in a personal-

ized way with different patients.

17http://www.kinovarobotics.com/
18http://www.ict-dali.eu/dali/
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Domestic robots can be considered as connected mobile objects with (1)

cognitive assistance capabilities such as physical and intellectual stimulation

support, (2) communication capabilities such as e-mail or social interaction

(social networks, relatives, caregivers, etc.). Generally, such robots consist of a

mobile-base equipped with wheels and a head. Besides, they are equipped with

an autonomous navigation system, voice recognition and synthesis engines,

and different network interfaces. Some examples of domestic robots are shown

in Fig.2.14, such as Ava from iRobot, Pepper from SoftBank Robotics, Buddy

from BlueFrog Robotics.

The development of multitasking service robotics for domestic applications

is still at the experimental and research stage, as evidenced by the numerous

studies, particularly in humanoid robotics. The humanoid robot ROMEO was

intendedly developed to explore and deepen research into assistive robotics for

elderly and frail people, see Fig.2.14 (e). The PR2 robot from Willow Garage

is probably the most sophisticated personal assistive robot. It has a wheeled

mobile-base to navigate, and two arms each with 7 degrees of freedom to per-

form handling tasks, see Fig.2.14 (d). However, given its price, this robot is con-

sidered more as an experimental robot for research rather than as a product for

daily use. Finally, the Care-o-bot 4 robot was developed by the Fraunhofer IPA

in Germany to provide the same capabilities of the PR2 robot Fig.2.14 (f).

2.6.2 Ubiquitous Robotics

The evolution of ubiquitous computing and ambient intelligence paradigms,

and the recent development of service robotics, have led to the development

of a new branch of robotics research, called ubiquitous robotics or networked

robotics [17, 18]. The challenges surrounding the ubiquitous robotics are nu-

merous in terms of fields of applications. One of the most important applica-
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Figure 2.13 – PARO sensory awareness robot

tions is the home care of the elderly and dependent people in the context of the

Silver economy (or senior economy).

The integration of service robotics in ambient intelligence environments

aims to create cyber-physical spaces that provide, anywhere and anytime, a

wide range of services to improve the quality of life, the physical and mental

state, and the social well-being of users. The objective is to create a unified

ecosystem exploiting all connected objects/entities in the environment (sen-

sors, actuators, smartphones, smart TV, digital tablets, smartwatches, service

robots, etc.) to create intelligent services and spaces (web and physical) ac-

cording to the vision of the Web of Objects (Web of Things).

The notion of service as defined in ubiquitous computing or ambient intel-

ligence can be used identically in ubiquitous robotics. Therefore, the interac-

tion of the robot with the ambient environment is totally reconsidered, since it

is no longer based on predefined instructions. A ubiquitous robot is expected

to be interoperable and compatible with any connected object/entity it discov-

ers in its ambient environment instead of being statically pre-programmed for

specific actions. Besides, it should be able to use its own objects/entities (sen-

sors and actuators) as well as interacting with other connected objects/entities
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Figure 2.14 – Different domestic robots
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in the ambient environment. The main objective is to migrate from a central-

ized computation system where only the robot own the intelligent capabilities

such as Perception, Decision Making by Reasoning, Actuation and Communi-

cation (PRAC), to the concept of service robotics where each object, robot or

system in the ambient environment is equipped with PRAC capabilities. In this

case, the physical robot, by itself, is only a part of the ambient and ubiquitous

intelligence; this intelligence is embodied in the different connected objects

populating the ambient environment as well as being centralized on the physi-

cal robot which, by its autonomy, ensures the guarantees the service operation,

and maintenance. An essential property of the ambient intelligent system, ac-

cording to this new vision, is the ability to dynamically adapt the robotic ser-

vices provided according to the context. In this case, the intelligent system

should be sensitive to the context. A context-sensitive intelligent system is a

system that has the ability to react, adapt, and reconfigure itself according to

the detected environmental changes. In order to provide context-sensitive ser-

vices, the ambient intelligence system should have advanced cognitive capa-

bilities to interpret the context, recognize the user’s emotions, activities, and

intentions to proactively take the most appropriate decision and to provide the

most relevant assistance services for the situation.

The recent development of cloud computing has led to the rapid evolution

of ubiquitous robotics and the development of the field of cloud robotics. By

leveraging the high-performance computing infrastructure of the cloud, robots

will be able, in the future, to improve their cognitive abilities in terms of per-

forming the perception and reasoning tasks that require intensive computa-

tion, which is impossible to be executed by the on-board embedded computers

of the robots [19, 20, 21].
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Chapter 3
Review of human activity

recognition/anticipation and

emotion recognition approaches

3.1 Introduction

The objective of this chapter is to present and also analyze the state of the art of

human activity recognition, human intention anticipation, and human emo-

tion estimation in an ambient environment. Firstly, we we reviewed and an-

alyzed the literature of the human action recognition approaches. Secondly, a

detailed analysis of the state of the art human intention anticipation approaches

is presented. Finally, a comparative study of different emotion estimation ap-

proaches is presented and analyzed. In this chapter, the analysis of both human

activity recognition and human intention anticipation is split into: data-driven,

knowledge-driven, hybrid approaches. In other hand, the analysis of human

emotion recognition is split into classical emotion recognition and deep-learning

based emotion estimation. Finally, the major obstacles facing the recognition
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of both human activities/emotions as well as the anticipation of human inten-

tions are analyzed, besides the objectives of the proposed thesis are detailed.

3.2 Review of human activity recognition

Human activity recognition is a challenging task which can be exploited in dif-

ferent domains such as AAL systems [22, 23, 24], and rehabilitation [25, 26].

Recently, human activity recognition has attracted the attention in the AAL do-

main because of its vital impact on enhancing individual’s life style/quality. In

the context of ambient intelligence, wearable-sensors based approaches are

proposed to exploit the mobile sensors such as Inertial Measurement Units

(IMUs), smart watches, and mobile phones to recognize simple human activ-

ities such as walk, stand, sit, and running. On other hands, visual-based ap-

proaches are proposed to exploit different visual modalities such as monocular

vision, stereo vision, depth maps, and points cloud to recognize complex hu-

man daily activities [27] such as cleaning, drinking, and eating. Finally, multi-

sensor based approaches are proposed based on fusing ambient sensors, mo-

bile sensors, and visual-based modalities to recognize more complex and in-

terlaced activities such as preparing breakfast, and washing clothes. In this

part, we will review the approaches that exploit both wearable based and vi-

sual based approaches to recognize human activities. These approaches can

be summarized into three categories [28]: (1) data-driven approaches [29], [30],

[31], [32],[33] (2) knowledge-driven approaches [34], [35], [36],[37], as well as (3)

hybrid approaches [38, 39, 22].

3.2.1 What is an activity?

Aggarwal and Ryoo [40] present 4 categories of human activities classified ac-

cording to their complexity: gestures, actions, interactions and group activities.
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1. Gestures: Gestures are the "elementary movements" of the human body.

They present the atomic components that give a meaningful description

of the person’s movements; such as "raising a hand" or "lifting a foot".

2. Actions: Actions present a simple activity of a person. Actions are com-

posed of a set of temporally organized gestures; such as "walking" com-

posed of "lifting a foot" and "get-down a foot".

3. Interactions: Interactions are human activities that involve several peo-

ple and/or objects. For example: two people shaking hands is an interac-

tion that involves two people, and a person writing letter is an interaction

that involves a person, paper, and pen.

4. Group activities: Group activities are a set of activities carried out by a

groups of several people and/or objects; such as "football match" that

involves many people and a ball, or "a group of people have a meeting"

that involves group of people, and group of objects (chairs, papers, pens,

projector, etc).

In our work, in the context of ambient intelligence, an activity can be rec-

ognized based on a set of associated elementary events, which are partially or-

dered in time and comply with specific constraints. These elementary events

describe the gestures, states, or actions of one or more persons/objects and

captured by the ambient sensors such as cameras, smart-plugs, wearable sen-

sors, etc. Consequently, in this thesis, an "activity" can be defined as:

1. A set of actions by a single person such as "walking and hand-waving" at

the same time is an activity consisting of two actions that happen in the

same time.
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2. An interaction or set of interactions of a person with one or more objects

such as "preparing a coffee" or "taking a medication".

3. An interaction or set of interactions between several people and/or ob-

jects such as "group of people having lunch together".

4. A group activity such as "a meeting" can be broken down into: one person

enters, another person enters, they shake hands.

3.2.2 Activity recognition

Activity recognition is the process of detecting human activities after their ex-

ecution [41]. Consequently, the activity recognition systems infer the activity

labels after the complete termination of those activities, which can be useful in

non-critical scenarios such as meal preparation assistive services. The earlier

studies were mostly interested in recognizing simple activities such as walking,

standing, and running in a controlled experimental environment [42, 43, 44].

Nevertheless, the recent studies have progressively evolved towards recogniz-

ing more complex activities in real-time from heterogeneous input modalities

such as RGB-D cameras [45, 41], and wearable devices [46, 47].

3.2.3 Data-driven approaches

Data-driven methods rely heavily on data, which is prone to various flaws such

as imprecision, uncertainty, confusion, incompleteness, disagreement, and so

on. Imprecision is concerned with the substance of the data and quantifies its

quantitative deficiency, while uncertainty is concerned with the truthfulness

of the data and quantifies its degree of adherence to fact [48], [49]. Confusion

refers to unclarified or unspoken knowledge that can be interpreted in a variety

of ways [48], [49]. Incompleteness refers to a lack of knowledge regarding a
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specific feature of the problem. Disagreement happens when two or more bits

of evidence are incompatible, resulting in inconsistent and thereby incorrect

meanings.

A dataset is generally required to train models in data-driven approaches.

These methods are mainly focused on a probabilistic or predictive interpreta-

tion of data. Most of the traditional data-driven approaches are based on hand-

crafted features, which are known as shallow features. In one hand, in terms of

werable sensors, the most commonly used features for human activity recogni-

tion are hand-engineered features [50], time domain features such as mean,

median, variance, skewness, kurtosis and range [47] and frequency domain

features such as temporal fast Fourier transform (tFFT) [51], Discrete Fourier

Transform (DFT) and Power Spectral Density (PSD) [47]. To recognize human

activities using the hand-crafted features, a set of classification approaches are

proposed such as Hidden Markov Models [52], Artificial Neural Network [53],

Support Vector Machine (SVM) [54] and naive Bayes classifiers [55]. On other

hands, in terms of camera-based systems, the most commonly used features

for human activity recognition are based on representing the human skeleton

joint’s dynamics manually such as skeleton-joints trajectories co-variance ma-

trix [56], skeleton-joints relative positions [57], or different body-parts transla-

tions and rotations [58]

In [59], to recognize low-level human tasks, an ensemble-based SVM clas-

sifier is used. The model was able to recognize sitting, standing, walking, going

up and coming down the stairs. The accelerometer and gyroscope data were

obtained from Samsung Galaxy S2 mobile phone. An SVM is also used in de-

tecting several activities patterns, especially in [60], [61], [62], [63], [64], [65].

In [60], an SVM model is exploited to recognize nine different tasks, including,

climbing stairs, walking forward, walking right, walking left, hopping up, lying,
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standing, sitting, and going down. In [61], SVM model was used as a social ac-

tivity identification system. The model was able to recognize social actions as

shaking hands, pushing, touching, and kicking. In [62], The SVM model is used

to identify eleven key human daily tasks such as cleaning, prepare food, doing

laundry, and work.

In [66], both NB and K-NN models are exploited to detect human activi-

ties using a data obtained from a single three-axial accelerometer. The prepro-

cessing phase consists of extracting the most relevant features using two differ-

ent methods: Relief-F and Sequential Floating Search (SFFS). Finally, Both NB

and K-NN models explited the extracted features to identify six low-level move-

ments including walking, running, hopping up, standing, sitting and standing.

Additionally, [67], [68] employ the K-NN model. In [68], a K-NN model was de-

veloped to identify eight low-level movements such as standing, sitting, biking,

ascending and descending steps, and teeth brushing. Besides, the NB model is

exploited in [69], [70], [71]. In [69], The NB model was developed to identify five

low-level human activities such as: running, walking, standing, sitting, and ly-

ing. In [70], The NB model was developed to classify twelve different high-level

daily tasks, such as using a computer, learning, listening to music, and serving

hot tea.

In [72], a DT model was developed to identify human actions using data

obtained from the eWatch smartwatch. The DT model was able to identify six

different actions, such as put on wrist, put in backpack, use it as a belt. The

model was able to identify the six common everyday human movements, like

sitting, standing, walking, going up and down the stairs, as well as jogging. Be-

sides, in [73] eight human movements are identified using the K-Means model,

which is trained on a dataset obtained from a wristwatch: sitting, lying, stand-

ing, jogging, walking, biking, ascending and descending stairs. In [74], The K-
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means model detects seven simple low-level tasks, such as cooking, cleaning,

sleep, taking out the garbage, and vacuuming. In [75], RF-based model was

developed to identify six general human movements, including standing, sit-

ting, reclining, walking, hiking, walking up/down the stairs, and lying on the

ground using a data collected from a wearable IMU sensor. In [71], an RF model

was developed to identify seven high-level activities, including lying, sleeping,

washing, walking slowly, walking naturally, nordic walking, and racing. In [76],

an RF model is used to classify eleven low-level movements such as jumping in

place, jumping jacks, and bending.

In [68], a variety of classifiers were applied, including K-NN, DT, SVM, and

meta-level classifiers to recognize human actions. Eight low-level actions such

as standing, sitting, running, ascending and descending stairs, and brushing

teeth are recognized in this analysis using data obtained from a wearable ac-

celerometer. In [77], HMMs and CRFs models exploited the data collected from

wearable accelerometers, gyroscopes, and magnetometers to recognize human

movements such as walking, standing, jogging, sitting, and biking. As described

in [78], 6 simple tasks, such as standing, sitting, walking up stairs, walking down

stairs, and running, were identified using HMM and CRF algorithms. In [79], a

HMM model was developed to exploit the environmental ambient sensors to

recognize a vast variety of human activities such as loading a medication dis-

penser, moving chairs, watering trees, and cooking dinner. Using GPS info, in

[80] employs the CRF model was used to identify six different activities such

as working, sleeping, picking up, leisure exercise, visiting, and turning off/on

a vehicle. In [81], CRF model was developed to identify five high-level activi-

ties including dressing, doing laundry, showering, cooking a dinner, and wash-

ing dishes. In [82], using a set of wearable sensors and ambient sensors, a CRF

model was able to identify eight low-level human actions such as: walking, run-
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ning, using stairs, using elevator, sitting, standing, and brushing teeth.

In [83], a spatial-temporal hierarchical model combined with a linear dy-

namic system (LDS) is proposed to encode the skeleton-joint sequences and

to learn the dynamic structure of human motions respectively. The model was

able to recognize seven different human activities such as walking, sitting, stand-

ing, lying, running, and ascending/descending stairs. In [58], human actions

are modeled as curves in groups using Lie algebra, then an SVM model is ex-

ploited to classify the 3D relationships between different body parts using ro-

tations and translations. The proposed approach was able to identify six high-

level activities such as eating, cleaning, reading, washing dishes, working, do-

ing laundry. In [84], the 3D joint coordinates histograms are exploited as a

representation of human postures. Then, a Hidden Markov Model (HMM) is

proposed to classify the temporal dynamics in the skeleton motion activity se-

quences. The HMM model was able to identify five different postures including

standing, sitting, lying. In [85], a graph-based model combined with the short-

est path graph kernel (SPGK) based SVM is proposed to represent the motion

sequences and to detect human actions respectively. The model was able to

recognize the following activities standing, walking, ascending stairs, descend-

ing stairs, running, shopping, taking bus, and moving.

In [86], a novel fusion approach for ensemble classifiers is introduced for

human activity recognition. It is based on the idea of a Generalized Fuzzy

Soft Set (GFSS). Besides, a weighted aggregate operator is used to weighting

each classifier output and to create a more stable fused classifier. To solve the

GFSS decision-making problem, a new ranking algorithm was proposed. The

approach suggested was assessed by a CRF and HMM ensemble classification

for identifying different high-level action recognition such as idleness, leaving

home, showering, brushing teeth, breakfast preparation, dinner preparation,

58



snacking and drinking.

One of the first attempts to recognize human basic activities with a deep

learning model is proposed in [32]. The proposed model is based on Restricted

Boltzmann Machines (RBM) which allows automatically extracting features from

accelerometer raw data. The proposed model was used to recognize the low-

level activities from Opportunity dataset [87]. In [31], a convolutional neural

network (ConvNet) model is proposed for recognizing basic gestures from the

accelerometer and gyroscope raw data. This ConvNet model outperformed

the other state-of-the-art models in gesture recognition such as Dynamic Time

Wrapping (DTW) and Hidden Markov Model (HMM). In [88], for the recogniz-

ing human activities, a range of state-of-the-art, deep models are proposed

such as CNN, and LSTM deep-learning models. The proposed models were

evaluated using different public including Opportunity dataset [87], PAMAP2

dataset[89], and Daphnet Gait datasets [90]. In [29], a novel deep CNN model

for human activity detection based on data obtained from a smartphone’s ac-

celerometer and gyroscope sensors is proposed. The proposed model enables

identification of seven different low-level human actions including standing,

sitting, ascending and descending stairs, running, shopping, taking the subway,

and walking. In [91], A more advanced body-measurement deep model incor-

porating convolutional and LSTM units is proposed. The model was able to rec-

ognize 21 different activities from a wearable IMU unit such as running, stand-

ing, opening/closing a refrigerator, and washing tables. In [88], a CNN model

was developed to identify 21 different activities, including standing, walking, ly-

ing, sitting, opening and closing doors, and opening and closing refrigerator. In

[92], an LSTM-based model was developed to identify nine different high-level

actions such as leaving, toileting, bathing, eating, eating, snacking, and watch-

ing television. In [93], an LSTM-based model has been used for recognizing six
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different low-level actions, including jogging, cycling, standing, lying, hiking,

and going down.

As shown in Table 3.1, the most important data-driven methods are de-

tailed, including classical machine-learning and deep learning approaches, com-

bined with their key features, including the classifier used, detected activities,

precision, and sensors used.

As mentioned previously, classical data-driven approaches depend heav-

ily on hand-crafted features, which affects their overall performance. Deep

learning models, on the other hand, are able to automatically extract more rel-

evant features. Recently, The researchers focusing on human activity recogni-

tion [91],[88],[93] gained considerable interest in deep learning models.

The researchers in [94] and [88] addressed the unlimited capabilities of the

deep learning models by conducting more detailed studies using both ambient

and wearable sensors approaches. Besides, these studies discussed the limi-

tations of the deep learning models, such as the fact that these models often

need a large amount of computing power and thus cannot be conveniently im-

plemented on battery-constrained devices like smartphones and smartwatches

for real-time activity recognition [94]. Furthermore, the success of deep learn-

ing models is still extremely dependent on huge amount of labelled data. Since

obtaining appropriate huge amount of labeled data is costly and time- consum-

ing, more reliable unsupervised activity recognition using deep learning mod-

els remains an open research problem. Another difficulty for human activity

recognition using deep learning, is developing models that are scalable, flexi-

ble and adaptable to recognize human high-level overlapped activities. These

activities are hard to examine at the higher levels because they involve a lot of

semantic and contextual knowledge. Current models often neglect the latent

similarities between the input modalities, which leads to not achieving high
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recognition rates [94].

3.2.4 Knowledge-driven approaches

In the context of knowledge-driven approaches, prior assumptions as a basis

integrated with a domain knowledge are used to create an activity model. Do-

main knowledge is a human experience which is recorded in a formal repre-

sentation. In contrast to data-driven approaches, domain knowledge does not

need large data-sets to create an activity model. In general, knowledge-driven

approaches can be divided into logical and ontological approaches. In logical

approaches as in [34][35], the knowledge representation formalisms are used

to encode the activities into a logical structure. Besides, a knowledge-based

inference engine combined with the logical structure is used to recognize the

activities. In ontological approaches as in [95] [36], a hierarchy of concepts and

classes is developed to model the domain concept. The concepts and classes

are connected using relationships with applied restrictions besides having a set

of properties. The ontological approaches have more flexibility and re-usability

compared to the classical logical approaches because of the more generic rep-

resentation of the domain is used. Compared to the data-driven approaches,

the knowledge-driven approaches don’t require a data-set to create the activ-

ity model which makes them reusable and complete independence from the

environment/scenario. Besides, the knowledge driven approaches have a clear

construction of the activity model which depends on an explicit formalization

of the domain. In contrast, the data-driven approaches have the ability to rep-

resent the uncertainty and the temporal variables which are difficult in the

knowledge-driven approaches.
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Table 3.1 – State of the art comparison data-driven approaches for human activity recognition

Reference Year Model Dataset
Number of

Activities

Level of

Activities
Accuracy Sensors

[70] 2009 NB custom 12 high-level 92.41%
environmental,

wearable

[79] 2010 HMM custom 15 high-level 73.15% environmental

[60] 2011 SVM custom 9 low-level 93.10% wearable

[64] 2012 SVM custom 6 low-level 93.50% wearable

[65] 2014
SVM,

HMM
custom 5 low-level 90.80% smartphone

[66] 2014
NB,

K-NN
custom 6 low-level 98.40% wearable

[96] 2015 HMM Kast 7 high-level 97.00% environmental

[96] 2015 HMM Aruba1 11 high-level 92.00% environmental

[96] 2015 HMM Adlnormal 5 high-level 98.00% environmental
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[47] 2015

k-Means,

GMM,

HMM,

K-NN,

RF,

SVM,

GMM

custom 12 low-level

83.89%

72.95%

75.60%

99.25%

98.95%

95.55%

85.05%

wearable,

environmental

[62] 2015 Binary SVM Aruba1 11 high-level 91.88% environmental

[62] 2015 Binary SVM Kasteren 7 high-level 94.30% environmental

[62] 2015 Binary SVM Kyoto1 5 high-level 96.67% environmental

[62] 2015 Binary SVM Kyoto2 5 high-level 94.98% environmental

[62] 2015 Binary SVM Kyoto8 11 high-level 95.04% environmental

[62] 2015 Binary SVM Tulum1 10 high-level 99.28% environmental

[62] 2015 Binary SVM Tulum2 16 high-level 84.92% environmental

[62] 2015 Binary SVM Milan 15 high-level 95.20% environmental

[62] 2015 Binary SVM Cairo 13 low-level 94.17% environmental

[69] 2016 HMM, NB custom 5 low-level 95.40% wearable
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[97] 2016 Neural network custom 6 low-level 92% wearable

[78] 2016
AdaBoost,

CRF
custom 6 low-level 93% wearable

[91] 2016 DeepConvLSTM Skoda 10 low-level 95.80% wearable

[88] 2016

CNN

RNN

LSTM

custom 4 low-level

59.1%

69.8%

74.5%

wearable

[88] 2016

CNN

RNN

LSTM

PAMAP2 12 low-level

93.7%

88.2%

86.8%

wearable

environmental

[98] 2016 shapelet-based custom 18 low-level 96.54%
wearable,

environmental

[29] 2016 CNN custom 4 low-level 95.75% smartphone

[91] 2016 DeepConvLSTM custom
4

17

low-level

middle-level
86.4% wearable

[99] 2016
K-NN,

DT
custom

7

6

low-level

high-level
95% 92%

smartwatch,

smartphone
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[88] 2016

CNN

RNN

LSTM

Daphnet

Gait
3 low-level

68.4%

76.0%

74.1%

wearable

[75] 2016 RF custom 6 low-level 100% smartphone

[100] 2016

interval-based

model,

Allen’s interval

relations

custom 5 high-level
98%

96%

wearable,

object,

environmental

[101] 2017

Allen’s interval

relations,

Bayesian

network-based

custom 5 high-level 98%

wearable,

object,

environmental

[102] 2017
Ameva

algorithm
custom 8 low-level 95% smartphone

[103] 2017 MCODE custom 6 low-level 73% smartphone

[103] 2017 MCODE custom 5 high-level 86% smartphone

[103] 2017 MCODE custom 3 low-level 88% smartphone
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[74] 2017
k-means

clustering
custom 7 low-level 81%

environmental,

wearable

[63] 2017

RF,

NN,

J48

custom 6 low-level

98.28%

97.84%

97.26%

smartphone,

environmental

[63] 2017

RF,

NN,

J48

custom 6 low-level

95.06%

94.01%

93.62%

smartwatch,

environmental

[104] 2017 regression tree custom 8 low-level 95%

environmental,

wearable,

smartphone,

camera

[71] 2017 Random Forest custom 7 high-level 87%
smartphone,

wearable

[73] 2017
LDA,

K-mean
custom

9

8

high-level

low-level
89%

smartphone,

smartwatch,

wearable
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[77] 2017

LDA,

AdaBoost,

HMM,

CRF

Smartphone

Dataset
7 low-level 97.24% wearable

[77] 2017

LDA,

AdaBoost,

HMM,

CRF

UCI

HAR
6 low-level 91% wearable

[86] 2017

HMM,

CRF,

NB

Van

Kastersen
10 high-level 70.50% environmental

[86] 2017
RF

K-NN
Opportunity 10 high-level 94% wearable

[76] 2018 RF custom 7 low-level 94%
wearable,

environmental

[76] 2018 RF
Berkeley

MHAD
11 low-level 99.50%

wearable,

environmental
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[76] 2018 RF custom 4 low-level 92.50%
wearable,

environmental

[92] 2018 LSTM Ordonez 9 high-level 99.47% environmental

[76] 2018 RF UTD-MHAD 26 low-level 98% wearable

[92] 2018 LSTM CASAS 8 high-level 97.68% environmental

[105] 2019 CNN custom 6 low-level 95.70% smartphone

[93] 2020
Lightweight RNN

LSTM
WISDM 6 low-level 95.78% smartphone

[106] 2020 bidirectional LSTM custom 6 low-level 96.34%
wearable,

environmental

[107] 2020

LSTM,

CNN,

RNN

MHEALTH

6

6

6

5

low-level

94.05%

83.42%

81.32%

85.92%

wearable,

environmental

[108] 2020 LSTM custom 4 low-level 93.20% wearable
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The use of increasingly advanced logical hypotheses of activities such as

Event Calculus (EC) as part of knowledge driven approaches is an important

subject for the problem of human activity recognition. Event Calculus (EC) is an

event-driven language in which events and their consequences are presented

and reasoned [109]. A domain is formalized in EC using events, fluents, and

predicates. The events are represented as occurrences that occur or take place,

while fluents are defined as any domain property that can change over time.

Predicates are characterized in terms of their connections to events and fluents.

In [34], the authors proposed an EC-based approach for representing high-level

activities that require the execution of several events sequentially or concur-

rently. Sensor data is processed in this approach to classify the presence of

events; the detected events are then used by a reasoning engine to identify the

individual high-level activities such as eating breakfast and reading the news-

paper. In [110], an advanced EC-based approach for recognizing long-term hu-

man activities is proposed. Long-term activities are defined in this context by

placing temporal restrictions on short-term activities. For example, the long-

term activity immobile is identified by using the short-term activity inactive for

a period of time which is greater than a specified value, where the long-term ac-

tivity immobile is characterized as a person sitting on a chair or on the floor, or

has fallen on the floor. In [111], the authors proposed a more robust EC imple-

mentation for computing the variations of long-term activities. Additionally,

this research demonstrates how fragmented short-term activity narratives, am-

biguous annotation of short and long-term events, and a small dictionary of

short-term activities and contextual variables both influence the performance

of the activity recognition. Finally, in [112], the authors summarized the most

groundbreaking methods and algorithms for dynamic event detection, such as

EC-based systems, and explores the key conceptual relations and distinctions
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between all these models.

Due to their strong cognitive interpretation of the ambient environment

and reasoning capacities, ontologies have been commonly used to infer hu-

man activities [113]. In [114], the authors employs an ontology to model both

sensors and human activities as ontological classes, taking into account the

entity-based and location-based definitions of the activities. In [115], [116],

[117], [118], multiple ontologies are proposed to represent various human ac-

tivities classes; these classes are then exploited by different reasoning engines

to infer different human activities. The advantages of the ontological-based ap-

proaches over data-driven approaches are discussed in [119]. Additionally, this

work demonstrates that the use of ontologies in case-based reasoning methods

enables data-driven approaches to address the overfitting issues in case of lim-

ited size training data [120]. To express the relationships between established

concepts in an ontology, the ontology can be combined with a rule-based lan-

guage such as SWRL [121]. The success of ontology-based methods is strongly

dependent on the kind of ontology used and its relationship to the rule-based

language chosen. OWL-DL is used in [118] to classify high-level activities by us-

ing contextual features that allow the representation of particular aspects of the

physical ambient environment. This research demonstrates how expressive, ra-

tional, and conclusive algorithms can be used to identify differences between

the contextual features and to recognize human activities.

Due to the fact that the expressiveness shortcomings of OWL 1 have been

recognised in different fields, this language has been enhanced and developed,

but in the meantime it’s still keeping the DL decidability components. Conse-

quently, The language OWL 2 has been evolved as a product of this expansion.

In contrast to OWL 1, OWL 2 adds additional functionality; these new features

are proposed to make it easy to read or express the represented knowledge,
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such as disjoint union of classes, while others include new expressivity, such

as richer data types, keys, property chains, and disjoint property. In [117], the

authors investigated the use of OWL 2 for classifying different high-level activi-

ties.

Due to the complex dynamic nature of AAL systems, there are many con-

ditions/requirements for encoding temporal relationships between events oc-

curs in the ambient environment using these systems. In this context, certain

knowledge-based approaches allow the provision of a set of strategies for deal-

ing with these temporal representation. In [122], a combination of ontologi-

cal and temporal knowledge representation formalisms is proposed. In this re-

search, the authors proposed a series of rules based on the Allen temporal rela-

tions to infer high-level dependencies between activities and thus the ongoing

high-level activities such as cooking and making tea. The method suggested

in [122] is strengthened in [123] by taking into account two properties of the

Time concept including: temporal relation and model of transformation. The

temporal relation determines the exact moment or time period which a low or

high-level action occurs, while the model of transformation shows that a high-

level activity is composed of two or more low-level events in a given temporal

inference.

In [124], an ontological-based approach was proposed for recognizing high-

level activities. The proposed ontology enables the use of DL to encode tempo-

ral operators such as Allen’s Interval Algebra. This approach enables the iden-

tification of high-level activities and events with significant temporal associa-

tions in their context. In [125], more advanced ontological-based approach is

proposed for understanding human high-level activities using SPARQL queries

and OWL 2 interaction patterns. SPARQL is used as a uniform declarative lan-

guage for aggregating, translating, and enriching low-level contextual RDF in-
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formation with higher-level derivations. The SPARQL-based reasoning engine

enables the proposed approach to employ both of temporal reasoning and dy-

namic declaration of entities to recognize the performed activities. The authors

of [126] and [127] proposed a SPARQL-based architecture for recognizing high-

level activities by combining SPARQL CONSTRUCT graph patterns with OWL

ontologies. In [128], the authors proposed an OWL 2 ontology to represent hu-

man daily activities and the specifications of sensors used to recognize these

activities. The proposed ontology takes into account the measuring proper-

ties and characteristics of sensors platform, including their position. The aim

of this analysis is to determine the most suitable sensors for recognizing real-

world activities. This ontology is based on the W3C-standard Semantic Sensor

Network (SSN) ontology for representing sensor networks. The SSN Ontology

lacks some sensor definitions, including sensor types, characteristics, proper-

ties, units of measurement, and locations, which must be described in an exter-

nal ontologies. In [128], an extended ontology for representing these definitions

is proposed by expanding the SSN ontology.

In [129], The authors proposed an OWL 2 ontology to represent the AAL do-

main’s goals, measurements, roles, and sensors. The ontology facilitates the

representation of criteria, such as essential activities, for achieving a goal, such

as human activity recognition. The Goal-oriented Requirement Language (GRL),

a language that enables goal-oriented representation and reasoning about goal

requirements, is used to do goal analysis. The authors constructed the pro-

posed ontology using existing AAL ontologies, including OntoiStar [130], Do-

gOnto [131], KPIOnto [132], and SSN [133]. In [134], The authors proposed a

goal-based ontology to describe the conviction, desire, and intention concepts,

where the conviction concept denotes a user’s perception of his/her world, the

desire concept denotes the user’s goals, such as "making a coffee," and the in-
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tention concept denotes the actions taken by the user to achieve his/her goal.

For example, the action "reaching for a cup" is performed in order to fulfill the

intention "making coffee".

The authors in [135] provide an overview of ontologies for recognizing hu-

man activities. Various ontologies are discussed, including CoBrA-Ont, CONON,

Delivery Context Ontology, SOUPA, mIO!, Pervasive Information Visualization

Ontology (PiVOnm), CoDAMoS, and situation ontology. The aim of this anal-

ysis is to compare various ontology-based approaches by calculating the fatal

flaw rate in ontology-based reasoning. The most popular flaws include hav-

ing unconnected ontology objects, omitting annotations, omitting domain or

range of properties, recursive meanings, and using various naming conven-

tions throughout the ontology. In [37], a novel fuzzy ontology is proposed for

gait-cycle recognition from skeleton-joint 3D coordinates. Besides, in [136], a

3D depth sensor ontology called Kinect ontology is proposed to model the in-

formation related to the user movement and the object interaction. Finally, in

[137], a novel fuzzy ontology is proposed to represent the human activities, and

reason about incomplete, and uncertain knowledge.

Table 3.2 outlines the strengths and weaknesses of various knowledge rep-

resentation and reasoning formalisms, including RDF, various variants of OWL,

SPARQL, and SWRL [138].
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Table 3.2 – State of the art formalisms used for knowledge representation and reasoning.

Engine Description Pros Cons

RDF A basic and main version of reasoning Powerful reasoning
Reduced

expressiveness

OWL Lite Limited version of OWL DL Powerful reasoning
Reduced

expressiveness

OWL DL
DL-based language with an RDF syntax/ All of RDF

documents are not
OWL DL ontologies (Pellet, Her miT, FaCT++, RacerPro)

High
expressiveness

High computational
cost

OWL Full
Extended version of RDF, similar to OWL DL

but it can support all RDF documents
High

expressiveness
Unresolvable

OWL 2 EL
Reduce expressivity for providing light-weight ontologies

(CEL, SHER, snorocket, ELLY (extension of IRIS))
Low computational

cost
Reduced

expressiveness

OWL 2 QL
Scalabe reasoning for large dataset using SQL,

(Owlgres, QuOnto, Quill)
Easy to use

Reduced
expressiveness

OWL 2 RL

A reasoning version with simplified modeling and
implementation,

Fast and scalable implementation(OWLIM, Jena, Oracle
OWL)

High
expressiveness

Easy to use
Reduced scalability

SPARQL
SPARQL can express queries across diverse data sources

(query language for RDF)
W3C standard

Lack of tools (eg.
editors)

SWRL
Combination of OWL Lite and the OWL DL with
the Unary/Binary Datalog RuleML (Rule Markup

Language)

High
expressiveness

Undecidable

DL-Safe
rules

A decidable fragment of SWRL Resolvable
Reduced

expressiveness
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3.2.5 Hybrid approaches

Hybrid approaches merge data-driven and knowledge-based approaches in or-

der to overcome their shortcomings while maximizing their benefits. In [139],

the authors proposed a hybrid approach to recognize human activity by focus-

ing on the relationships between human activities and their associated objects.

The research makes use of commonsense knowledge of how objects can be

used during the daily activities. Then, by combining HMM and DBN, a prob-

abilistic model of object usage, physical actions, and behaviors is used to un-

derstand high-level activities such as preparing tea. In [140], a hybrid approach

based on an MLN is proposed for recognizing human activities. In order to

recognize high-level daily activities with the potential to handle data uncer-

tainty, the authors used MLN to combine the commonsense knowledge with

a probabilistic model. In that study, the data uncertainty corresponds to the

lost sequences of events occurring during an activity due to sensor data errors.

In [141], the authors expanded analysis done in [140] by including probabilis-

tic ontology-based activity recognition. The proposed probabilistic ontology-

based activity recognition system represents the domain knowledge using an

ontology, which simplifies the probabilistic reasoning based on MLN. The prob-

abilistic ontology enables the provision of coherent knowledge by allowing the

representation of complexity, time, uncertainty, and high-level activities in a

unified system.

In [142], the authors proposed an MLN-based approach, the MLN soft rules

were used to model the low-level activities by learning the context of the activ-

ities, such as spatio-temporal contextual information. To model the high-level

activities, the MLN hard rules were used. In [143], to recognize human daily

activities and manage the sensor’s uncertainty, a hybrid approach is used. In

that study, the sensor data and the associated uncertainty are represented us-
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ing the ontological modeling. In other hands, the production rules are used to

estimate the activity and associated uncertainty score from sensor data. Each

production rule is composed of a set of clauses connected by logic operators,

where a clause is represented by an RDF triple to model the sensor data with its

associated uncertainty using the ontology. The Dempster Shafer hypothesis is

used to classify the activities depending on the detected actions. In [144], the

authors proposed a hybrid approach for human activity recognition that com-

bines both of probabilistic and symbolic reasoning based on log-linear DL. The

log-linear DL, implemented in [145], combines DL [146] and probabilistic log-

linear models [147] in order to handle the data uncertainty. In [148], Th authors

proposed a probabilistic EC-based framework for recognizing human activities.

This framework enables the management of data uncertainty by exploiting the

linear-time algorithm, where data uncertainty corresponds to the missing se-

quences as a result of sensor failure. In this research, to recognize the high-level

activities, the linear-time algorithm is exploited to calculate all maximal tem-

poral intervals that meet a predefined probability threshold. In [137], a fuzzy

OWL 2 ontology is exploited to model the uncertain domain events. It enables

the representation of uncertainty and the temporal relationship between dif-

ferent based on fuzzy state machine model. Compared to classical ontologies,

the fuzzy ontologies are able to handle the implicit uncertainty in real-world

domains. Besides, the fuzzy ontologies are far more realistic and have a more

coherent world view than classical ones [137]. By exploting the fuzzy ontolo-

gies, the system is able to include the relative results with the exact matching of

the queries using advanced search algorithms. Besides, fuzzy ontologies ben-

efit from their semantics, which makes them more adaptable to be mapped

between various ontologies [137].

In [39], a novel hybrid approach is proposed for recognizing human high-

76



level activities by using a pattern learning algorithm and MLN. The pattern

learning algorithm is exploited to learn the relations between the probabilistic

interval of different events. By combining the pattern learning algorithm with

MLN, the approach was able to infer the uncertain high-level activities based

on the learned relations. Seven different Allen’s temporal relations and one hi-

erarchical relation are considered in this analysis. Finally, In [149] , the authors

proposed a hybrid approach for human activities recognition that combines

HMM and symbolic logic. The HMM algorithm is used to identify the atomic

activities. Using an symbolic logic reasoning , the approach was able automat-

ically to recognize high-level human daily activities.

3.3 Review of human activity anticipation

Activity anticipation is the process of inferring human activities during or be-

fore of their execution [41]. Consequently, the activity anticipation systems an-

ticipate the activity labels before the termination of those activities, which can

be useful in critical emergency scenarios such as the detection of drinking de-

tergent instead of water. In [150], two types of activity anticipation categories

are distinguished: physical-activity anticipation [151, 152, 153, 154, 155] and

mind-intention anticipation [156, 157, 158, 150].

3.3.1 Physical-activity vs Mind-intention anticipation

Physical-activity anticipation studies are interested in recognizing the physical

actions with the objects populating the ambient environment. The physical-

activity anticipation can be divided into two main categories, short-term and

long-term activity (physical-intention) anticipation [41]. On one hand, short-

term activity anticipation focuses on the prediction of relatively short period
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activities, which may take several seconds. On the other hand, long-term ac-

tivity (physical-intention) anticipation focuses on inferring human activities in

the far future based on the currently observed actions.

Unlike physical-activity anticipation, mind-intention anticipation studies

are interested in the interpretation of the mental desire behind "why" a human

is looking to a specific object in a given place. In the earlier cognitive studies

[159], four main fixation roles were defined to describe human mind intentions:

locate, direct, guide, and check. These roles were extended in [150] to analyze

human intentions in complex daily activities: 1) locate: the person recognizes

the location of an object; 2) direct: the person’s hands move toward an object

to do an action; 3) guide: the person guides an object toward another one; 4)

check: the person checks the object state.

3.3.2 Human activity anticipation approaches

Human activity/action anticipation and human intention anticipation are of-

ten used interchangeably [135], [160], [161], [162], [163]. In [161], a GMM and

Gaussian regression models are proposed to anticipate human actions from

wearable sensors. In [162], a combination of CNN model and MLP neural net-

work are proposed to extract automatically the spatial features and to antici-

pate human daily activities. In [164], a unified framework for anticipating hu-

man short-term intentions based on DBN is proposed. In [163], the authors

proposed an approach for anticipating human short-term activities based on

fuzzy inference. This approach enables the anticipation of human actions by

integrating the inferred knowledge about currently recognized activities with

predictions based on previously observed activities. The fuzzy inference is used

to merge these two forms of knowledge in order to anticipate short-term activ-

ities. In [165], the authors proposed a hybrid approach for anticipating hu-
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man daily activities activities. To learn the user preferences from ontologies,

a bottom-up method is proposed in this approach . A Restricted Boltzmann

Machine uses the learned preferences to anticipate human daily actions. In

[166], The authors proposed a hybrid framework for anticipating human long-

term activities by combining both the Planning Domain Definition Language

(PDDL) and DBN model. The PDDL is a predicate-based language commonly

used for action monitoring, planning, and execution. The framework modeled

different human activities are modeled based on the PDDL language. Then, the

DBN model is used to anticipate the future activities by calculating the proba-

bility distribution for different activities.

The previously-mentioned research studies considered a small range of hu-

man activities. This is because the difficulties in obtaining vast amounts of la-

belled data for anticipating human activities to train data-driven approaches.

In knowledge-driven approaches, as mentioned previously, they failed to ad-

dress the data uncertainty and ambiguity, which reduces their capabilities to

anticipate complex human activities. Anticipating different human activities is

not well investigated and evaluated using hybrid approaches due to the diffi-

culty of obtaining a dataset that combines both the contextual knowledge and

multi-modal sensors for human activity anticipation.

3.4 Emotion recognition

3.4.1 What are emotional expressions?

Emotional expressions are the behaviors that communicate our emotional state

or attitude to others. They are expressed through verbal and non-verbal com-

munication. Complex human behavior can be understood by studying physical

features from multiple modalities; mainly facial, vocal and physical gestures.
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Recently, spontaneous multi-modal emotion recognition has been extensively

studied for human behavior analysis.

Darwin concluded through his observations and descriptions of human emo-

tional expressions that emotions adapt to evolution, are biologically innate,

and universal across all human and even non-human primates ([167]). For-

mal, systematic research studies have since been realized on the universality of

emotions. This work demonstrated: (i) the universality of six basic emotions

(anger, disgust, fear, happiness, sadness and surprise) and (ii) the cultural dif-

ferences in spontaneous emotional expressions ([168]).

3.4.2 Emotions vs Affects

A human’s emotion resulting from an interaction with stimuli is referred to as

an affect. In psychology, an affect refers to the mental counterparts of internal

bodily representations associated with emotions. In fact, humans express affect

through facial, vocal or gestural behaviors. The notion of affect is subjective,

and in the literature it is represented by two alternative views: the categorical

view where affects are represented as discrete states with a wide variety of af-

fective displays and the dimensional view, where we suppose that affects might

not be culturally universal and alternatively, should be represented in a contin-

uous arousal-valence space, see figure 3.1. Recently, a trend in the scientific

community has emerged towards developing new technologies for processing,

interpreting or simulating human emotions through Affective Computing or

through Artificial Emotional Intelligence. Consequently, a broad range of ap-

plications have been developed in Human-Computer Interaction, health infor-

matics and assistive technologies.
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3.4.3 Human emotions / affects recognition approaches

In recent years, many researchers have focused on the creation of human-like

social robots. Only a few studies are interested in providing robots with human

emotion recognition capabilities [169, 170, 171, 172]. Some researchers have

focused on unimodal affect/emotion recognition where only single source is

used such as facial expressions [169, 171, 173, 174, 175, 176], voice [177], textual

expressions [178, 179], and body language [180]. Other researchers have inves-

tigated multimodal techniques using visual and spoken information [181, 182,

183, 170, 172]. Using multimodal sources allows, on the one hand, to increase

robustness and performance in terms of emotion recognition due to the com-

plementarity and diversity of information when multiple modalities are avail-

able, and on the other hand, to overcome resources unavailabilities when one

modality isn’t available by using the remaining modalities [184].

3.4.4 Data driven approaches

Although data-driven approaches are deeply linked with training data, they

have been explored in the above studies to recognize emotions. Among the

used models, Artificial Neural Networks (ANN) [175], Hidden Markov Models

(HMM) [176], and Bayesian Networks [172]. These approaches allow only the

recognition of observed emotions which can be summarized in the following

seven affective/emotion states: sad, fear, anger, happy, neutral, surprise, and

disgust.

More recently however, work in affective computing has paid more atten-

tion to multimodal emotion recognition by developing approaches to multi-

modal data fusion. Research on affect recognition has seen considerable progress

as the focus has shifted from the study of laboratory-controlled databases to
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databases covering real-world scenarios. In traditional emotion recognition

databases, subjects posed a particular basic emotion in laboratory-controlled

conditions. In more recent databases, videos are obtained from real-life scenar-

ios with in-the-wild environmental conditions and less constrained settings,

which exhibit characteristics like illumination variation, noise, occlusion, non-

frontal head poses, and so on. Today, automatic emotion recognition of the

six basic emotions in acted visual and/or audio expressions can be performed

with high accuracy. However, in-the-wild emotion recognition is a more chal-

lenging problem due to the fact that spontaneously occurring behavior varies

more widely in its audio profile, visual aspects, and timing. Multimodal fusion

for emotion recognition concerns the family of machine learning approaches

that integrate information from multiple modalities in order to predict an out-

come measure. Such is usually either a class with a discrete value (e.g., happy

vs. sad), or a continuous value (e.g., the level of arousal/valence), as shown in

figure 3.1. Several literature review papers survey existing approaches for mul-

timodal emotion recognition ([185, 186, 187, 188]). There are three key aspects

to any multimodal fusion approach: (i) which features to extract, (ii) how to

fuse the features, and (iii) how to capture the temporal dynamics.

Extracted features: several handcrafted features have been designed for

audio-visual emotion recognition (AVER). These low-level descriptors concern

mainly geometric features like facial landmarks. Meanwhile, commonly-used

audio signal features include spectral, cepstral, prosodic, and voice quality fea-

tures. Recently, deep neural network-based features have become more pop-

ular for AVER. These deep learning-based approaches fall into two main cat-

egories. In the first, several handcrafted features are extracted from the video

and audio signals and then fed to the deep neural network ([189, 190, 191]). In

the second category, raw visual and audio signals are fed to the deep network
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Figure 3.1 – Discrete vs Continuous emotion mapping

([192, 193, 194]). Deep convolutional neural networks (CNNs) have been ob-

served as outperforming other AVER methods ([185]).

Multimodal features fusion: An important consideration in multimodal emo-

tion recognition concerns the way in which the audio and visual features are

fused together. Four types of strategy are reported in the literature: feature-level

fusion, decision-level fusion, hybrid fusion and model-level fusion ([195, 188]).

Feature-level fusion also called early-fusion concerns approaches where fea-

tures are immediately integrated after extraction via simple concatenation into

a single high-dimensional feature vector. Such is the most common strategy for

multimodal emotion recognition. Decision-level fusion or late fusion concerns

approaches that perform fusion after an independent prediction is made by a

separate model for each modality. In the audio-visual case, this typically means

taking the predictions from an audio-only model, and the prediction from a

visual-only model, and applying an algebraic combination rule of the multi-
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ple predicted class labels such as ’min’, ’sum’, and so on. Score-level fusion is a

subfamily of the decision-level family that employs an equally weighted sum-

mation of the individual unimodal predictors. Hybrid fusion combines outputs

from early fusion and from individual classification scores of each modality.

Model-level fusion aims to learn a joint representation of the multiple input

modalities by first concatenating the input feature representations, and then

passing these through a model that computes a learned, internal representa-

tion prior to making its prediction. In this family of approaches, multiple kernel

learning ([196]), and graphical models ([186, 197]) have been studied, in addi-

tion to neural network-based approaches.

Modelling temporal dynamics: audio-visual data represents a dynamic set of

signals across both spatial and temporal dimensions. [185] identify three dis-

tinct methods by which deep learning is typically used to model these signals:

Spatial feature representations: concerns learning features from individual im-

ages or very short image sequences, or from short periods of audio. Temporal

feature representations: where sequences of audio or image inputs serve as the

model’s input. It has been demonstrated that deep neural networks and espe-

cially recurrent neural networks are capable of capturing the temporal dynam-

ics of such sequences ([198]). Joint feature representations: in these approaches,

the features from unimodal approaches are combined. Once features are ex-

tracted from multiple modalities at multiple time points, they are fused using

one of strategies of modality fusion ([189]).

3.4.5 Knowledge driven approaches

To deal with issues related to emotions and affects, some studies have investi-

gated knowledge-driven approaches as an alternative to data-driven approaches.

Different ontologies were proposed in the literature, such as the semantic lex-
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icon of feelings proposed in [199] and WordNetAffect, the extension of the lex-

ical database WordNet, proposed in [200]. Recently, an ontology, called Emo-

tion Ontology, covering all aspects of emotion, affect and mental states from

the neuroscience point of view, was proposed in [201]. In [202], Gil et al. pro-

pose an upper ontology, called EmotionsOnto, to describe emotions and their

recognition systems. Developing cognitive robots with the capability of man-

aging natural interactions with humans according to their emotional contexts

needs that robots and all entities populating the ambient environment share

semantically the same knowledge. In this perspective, an ontology covering all

commonsense concepts of human mental states and entities populating the

environment is needed. The ontologies proposed recently to model human

emotions and affects are mostly dedicated to specific applications such as so-

cial networking or e-learning. Furthermore, most of these ontologies are not

flexible enough to be applied for assistive robotics. Therefore, to better address

human-robot interaction scenarios, it is important to build a flexible ontology

that allows an easier extension with commonsense knowledge and concepts

through other existing ontologies.

3.5 Discussion

In this chapter, we presented a comprehensive review of human activity recog-

nition, activity anticipation, and emotions recognition approaches. In the con-

text of ambient intelligence, the purpose of activity recognition / anticipation is

to analyze, and interpret the different events and actions generated by the am-

bient objects and people to understand the context of their behaviour or even

anticipate their intentions. The different challenges facing the recognition and

anticipation of complex activities/intentions are detailed as follows :
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• Recognition of concurrent activities: In some cases, activities can be car-

ried out simultaneously. A person can perform several activities at the

same time, he/she can walk while hand-waving to someone. This kind of

activities should be recognized with specific kind of approaches, which

are different from sequential activities recognition models. The recogni-

tion of these concurrent activities can be affected by the racing between

activities, and thus it leads to non-deterministic and undesirable recog-

nition behaviours.

• Recognition of interlaced activities: Some activities can be suspended or

interlaced to make another one. For example, if a person is preparing a

coffee and the doorbell rang, he will pause the task of preparing the coffee

and go to check who is there, then go back to prepare the coffee.

• The ambiguity in the intentions interpretation: Interpretations of similar

activities may differ from one intention to another. For example: taking

a spoon "activity" may be part of several different "intentions" such as

"cooking", "making coffee" or "taking a medicine".

• Recognition of activities involving several people (Group activities): It is

possible to have several people present in an activity and each of these

people can do another activity in parallel (for example, in a meeting one

person speaks and another writes) or several people doing the same ac-

tivity (for example, "a choreography").

The reviewed approaches are divided into three different categories: data-

driven, knowledge-driven, and hybrid approaches. The primary shortcomings

of data-driven methods is their failure to take the ambient context and the ex-

pert knowledge into account. The majority of data-driven approaches of hu-

man activity recognition and anticipation ignore the contextual information of
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human actions and activities, such as spatio-temporal attributes, objects of in-

terest, the orders of activities, level of activity, and length of activity. Besides,

additional contextual knowledge are rarely considered in the literature, such

as relationships between atomic actions and low-level activities, or between

low-level activities and high-level activities. These relationships are critical for

understanding the contextual human activities and help to anticipate them.

However, the ability to represent and model the knowledge, check the activity

properties during axiomatization, as well as verifying the characteristics of hu-

man action and activities, is the key benefit of knowledge-driven approaches.

However, knowledge-based approaches are not able to handle both data and

sensors uncertainty during the recognition and anticipation of human activi-

ties. To get the best of both cases, the hybrid approaches are proposed to com-

bine both data-driven and knowledge-driven approaches. The majority of hy-

brid approaches employ data-driven part to recognize the uncertain input data

as atomic actions, and low-level activities, while the knowledge-driven part is

used to infer the implicit relationships between the detected activities, apply

both spatial and temporal reasoning to anticipate human actions, and to rec-

ognize the longer-term activities based on the inferred relations.

Regarding the emotion recognition, despite the considerable advancements

in the field, multi-modal emotion recognition has remained a challenging task.

Most existing methods still lack generalisation ability across datasets acquired

under different conditions. The majority of modern approaches in the emotion

recognition literature either learn or fine-tune an end-to-end network that can

only be used for a specific dataset, and/or use more general features as input to

a more basic model. To overcome these limitation, it is essential to learn an in-

dependent feature extractor for each modality, that could be employed for any

dataset. This approach could achieve a good level of generalisation by training
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on multiple labeled datasets.

In the AAL domain, one of the main challenges is developing a unified frame-

work to perceive and represent the contextual knowledge associated with the

entities populating an ambient intelligent environment (human, objects, robots,

sensors, actuators, etc.). In fact, two types of contextual knowledge can be

distinguished here: (1) those are directly observable from sensors or human-

machine interfaces (ambient sensors, localization systems, verbal interaction

interface, etc.) and (2) those are non-observable but can be inferred (user emo-

tion, activity/intention, abnormal activities, etc.). To achieve those objectives,

it is necessary to develop a unified, generic, and expressive framework, allowing

the perception and the representation of the spatial and temporal dimensions

of the ambient environment and taking into account the multi-modal nature

of AAL systems. Consequently, this framework allows to obtain a richer, finer,

and more coherent modeling of the spatial and/or temporal knowledge of the

context, thus providing a better adaptation of the user assistance services. To

tackle the previously mentioned challenges, the contributions of this thesis can

be summarized as follows:

• A unified framework combines both of human egocentric and environ-

mental vision perspectives that allows the recognition and proactively

anticipation of human daily activities.

• A novel Multi-Modal approach that allows the recognition of human emo-

tions from visual and auditory data and taking into account the contex-

tual attributes of human reactions.

• A novel Hierarchical Multichannel Deep Residual Network (HMResNet)

model that allows the recognition of low-level human daily activities from

uncertain wearable inertial sensors.

88



• A novel 3D Spatio-Temporal Joint based Convolutional Neural Network

(STJ-CNN) that allows the recognition of high-level human daily activities

from skeleton depth information.

• ConceptNet [203] based ontology that allows the modelling of the ambi-

ent environment and to infer the implicit relations between the objects

populating the ambient environment and the human activities.

• Two novel datasets for human hand detection in the cluttered environ-

ment are proposed: DHA-11TH (Diverse Hands) and SKNS (skin/non-

skin texture) datasets

• Validating the proposed approaches through the implementation of dif-

ferent personal assistance scenarios using the living lab experimentation

environment at the LISSI laboratory.
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Chapter 4
Narrative Knowledge Representation

and Reasoning

4.1 Introduction

In this chapter, we present the foundations of the Narrative Knowledge Rep-

resentation Language (NKRL) used for context representation in AAL environ-

ments. First, we present the definitions used throughout this chapter. Then,

we describe, on the one hand, the foundations of the modelling of narrative

knowledge by exploiting the HClass and HTemp ontologies, and on the other

hand, the NKRL reasoning mechanisms.

4.2 Fundamentals of NKRL

This paragraph presents the main concepts used in NKRL:

• Narrative event: It corresponds to an event reported in a story, which is

composed as sequence of events related by means spatial and temporal

modulators. There are two types of narrative events: The fictional nar-
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rative and non-fictional (or factual) narrative. The former allows repre-

senting events from a simulated world and the second, events that occur

effectively in the real world.

• Elementary event: This is an event in which a change in the state of the

world occurs at a given time. The change can be localized spatially and

temporally, such as "open the window of the living room", "call a friend

in the evening", "prepare breakfast in the early morning", etc.

• Static entity: It may either refer to a material object (wall, washbasin, etc.)

or an immaterial object (piece of music, e-mail, etc.); a static entity has

the characteristic of not changing during the entire life of the application.

• Dynamic event: It is defined as a set of elementary events characterizing

the behavior of an entity (person, object, etc.), such as: An elderly person

uses his remote control to turn on his air conditioner, the system sends

an alarm to the emergency services as soon as it detects that an elderly

person has fallen, etc. ;

• Concept: In this work, the notion of concept is similar to that of concept

or class in the semantic web. Properties or attributes can be associated

with a concept. There are two types of concepts: Concepts that can be in-

stantiated directly (sortal_concept) and concepts that cannot be instan-

tiated directly (non_sortal_concept).

• Instantiated concept: For example, CHAIR_125, BED_2012, ROBINET_45,

etc. are instances of the concepts chair_, bed_, faucet_.

• Non-instantiated concept: For example, from the concept color_, it is not

possible to directly create an instance; RED_120 cannot be considered

as an instance since it makes no sense if used independently. However,
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using the concept color_ appearance, a specialization of the instantiated

concept physical _appearance, it is then possible to associate a color to

an instantiated concept, such as RED_PLATE.

• Predicate: It allows the representation of non-fictional events. There are

seven predicates to model an event, an action, a state, a situation, etc.,

table 4.1.

• Role: There are seven conceptual roles: SUBJECT , OBJECT , SOURCE,

BENIFICIARY , MODAL, TOPIC and CONTEXT . A role defines a functional

relationship between a predicate and its arguments, and can be used to

identify the actors of an event.

• AECS operators: There are four operators to define the relationships be-

tween the attributes of a role argument: ALTERNATIVE(A), ENUMERA-

TION(E), COORDINATION(C) and SPECIFICATION(S). These operators

are used to define. A relationship can be: disjunctive, distributive, collec-

tive or attributive, table 4.2.

NKRL was basically designed to represent and process natural language knowl-

edge contained in mainly non-fiction documents, such as reports, memos, etc.

It is based on two N-aires ontologies that guarantee an expressive representa-

tion of narrative knowledge, including elementary events and temporal rela-

tionships between these events. The concept ontology HClass allows the repre-

sentation of portions of narrative knowledge using concepts. The event ontol-

ogy HTemp allows the representation of dynamic events. Besides, NKRL allows

combining predicates and conceptual roles to model narrative information,

and to establish semantic links (causality, purpose, etc.) between elementary

events. The inference mechanisms associated with the NKRL allow to establish

implicit or explicit relationships between knowledge.
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Table 4.1 – Knowledge representation basic predicates

Predicate Description

BEHAVE
This predicate makes it possible to model knowledge relating to the role or attitude that an entity
(person, object, etc.) can adopt for a specific purpose, for example, an elderly person taking
his or her medication, two friends watching a football match together, and so on.

EXIST
This predicate can be used to represent the fact that an entity may be present in a given place,
e.g. an elderly person is in their bedroom, an elderly person has fallen at the entrance of a store, etc.

EXPERIENCE
This predicate is used to represent the fact that an entity may be affected by an event.
For example, observing the increase in temperature in a given place, an elderly person having
a heart attack, etc., is a good example.

MOVE
With the help of this predicate, it is possible to represent events related to entity movements,
such as moving a piece of furniture, transmitting a message, etc.

PRODUCE
This predicate can be used to represent the execution of a task or activity by an entity,
for example, an inertial measurement unit produces information related to the movements of an entity.

OWN
This predicate makes it possible to model the notion of ownership between entities,
for example, a person owns an apartment, the room where the elderly person has fainted
is part of the house, and so on.

RECEIVE
With the help of this predicate, it is possible to represent events related to the reception of information,
such as, for example, a person receives a text message.
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Table 4.2 – AECS Operators

Operator Description Logic description
ALTERNATIVE Disjunction OR

ENUMERATION Distribution Generalization
COORDINATION Conjunction AND
SPECIFICATION Attribution Specialization

4.3 Dynamic knowledge modeling in NKRL

Representation of narrative knowledge is based on four main components:

• Definitional Component: This component is used to represent concepts

such as: component, robot, actuator, sensor, etc. Concepts can range

from the most general concepts, such as a human being (human_being)

to the most specific concepts, such as a table. According to the naming

rules imposed in the language, the identifier of a concept must be a string

of lowercase characters ending with the underscore character "_".

• Enumerative component: This component can be used to represent an

enumeration of the instances of the concepts in the definitional com-

ponent. Naming rules for instances require that the identifier of an in-

stance must be a string of uppercase characters ending with the under-

score character "_". As examples, STEVE_ and ERIC_ are instances of the

human_being concept and ROBOT_PEPPER is an instance of the robot_-

concept.

• Descriptive component: This component allows representing the struc-

tures of the elementary events. An elementary event is modeled using a

predicate and one or more roles; each role can have one or more argu-

ments. The general structure of a predicate template, given in table 4.3,

consists of several elements :
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– PREDICATE: Corresponds to one of the seven basic predicates of the

language: PRODUCT, MOVE, EXPERIENCE, EXIST, OWN, RECEIVE,

BEHAVE.

The instantiation of a predicate occurrence follows the following

rule:

(L(P(R1a1)(R2a2)......(Rn an))) (4.1)

where :

* L: A semantic label or symbol uniquely identifying a predicate

occurrence, i.e. verifying the (UNA) Unique Name Assumption

1;

* P: predicate ;

* Rk (k = 1, ...,n): The set of roles associated with the occurrence ;

* ak (k = 1, ...,n): The set of arguments associated with the roles.

Table 4.3 – General structure of a predicate template

PREDICATE
SUBJ { <argument > : [location] }
OBJ { <argument > : [location] }
SOURCE { <argument > : [location] }
BENF { <argument > : [location] }
MODAL { <argument >}
TOPIC { <argument >}
CONTEXT { <argument >}

[ modulators ]
[ temporal attributes ]

1Unique Name Assumption is a commonly accepted assumption in most model-driven
tools. It consists of assuming that different names will always denote different elements in the
model. This is usually not true in DL reasoners because of the essential nature of knowledge
integration problems.
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– Argument: Represents the attributes associated with each role: SUBJ,

OBJ, SOURCE, MODAL, TOPIC, CONTEXT.

– Location: Represents the space where the event occurs. The loca-

tion and temporal attributes parameters are used for the temporal

representation of knowledge as we will see later.

• Factual component: This component allows modeling instances of ele-

mentary events. An event instance corresponds to an occurrence of pred-

icate (predicative occurrence).

In the MOVE predicate template, the NL Description symbol is used to spec-

ify a natural language description of the predicate, see table 4.4. Note that a role

or variable, specified in square brackets, is optional. Concerning the MOVE

predicate template, the roles SUBJ, OBJ as well as the variables var1 and var3,

must be specified; the roles BENF, MODAL and CONTEXT, as well as the vari-

ables var2, var4, var5, var6 and var7, are considered as optional. The variables

var1, ..., var7 are variables are associated with constraints which are used to

check that the value assigned to each variable at the instantiation of an occur-

rence is consistent with the terms (concept, instances) contained in the defini-

tional component. Thus, the constraints specified in the templates of the event

ontology HTemp are associated with the concepts contained in the same on-

tology. Consequently, the knowledge consistency check relies on the concept

ontology HClass to establish a hierarchy of concepts and instances according

to the generalization/specialization principle.

4.3.1 Representation of temporal knowledge in NKRL

The representation of temporal knowledge in NKRL is based on the use of tem-

poral annotations, also called temporal modulators. These annotations make

97



Chapter 4

Table 4.4 – Template of MOVE predicate

NL Description : ’Transmit a Structured Information’
PREDICATE : MOVE

SUBJ var1 : [(var2)]
OBJ var3
[BENF var4 : [(var5)]]
[MODAL var6]
[CONTEXT var7 ]
{[modulators] !=abs}
{[temporal attributes]}

var1 = <human_being> | <artefact_>
var2 = <location_>
var3 = <symbolic_label>
var4 = <human_being> | <artefact_>
var5 = <location_>
var6 = <media_> | <information_support>
var7 = <situation_>

it possible to specify the beginning and/or end of an event, or to specify that an

event occurred on a given date, table 4.5.

Example 1 :

Consider the following situation: John, an elderly person living alone, stayed in

his living-room between the dates date-1 =10/21/2020/ 6:33 and date-2 =10/21/2020/

7:06. This event is modelled by the occurrence aal1.c2 of the predicate EXIST,

see table 4.6.

Example 2 :

The occurrence aal1.c4 of the predicate EXPERIENCE, shown in table 4.7, in-

dicates the increase (the growth_ property) of the temperature at date date-1=

21/10/2020 8:53, but gives no indication on the end of this event. The tempera-

ture_ property is used to specify that it is a temperature; the LIVING_ROOM_2

instance represents the location where the event occurred.

Example 3 :
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Table 4.5 – Time modulators

Acronym General description
begin Start date of the event
end End date of the event

obs

This modulator is used if no time information about
the beginning or end of an event is available.
For example, the system detected a temperature
increase at 19:23.

The instance of the predicate PRODUCT, shown in Table 4.8, is a representa-

tion of the following event: the house control system, described by the sym-

bol HOME_CONTROL_SYSTEM_1, has detected (property detection_) the pres-

ence, in the kitchen (KITCHEN_1), of a person named John, at the time speci-

fied in the date attribute-1.

Table 4.6 – Example of occurrence of predicate EXIST.

aal1.c2) EXIST SUBJ JOHN_ : (LIVING_ROOM_2)
date-1 : 21/10/2020/6 :33
date-2 : 21/10/2020/7 :06

Table 4.7 – Example of occurrence of predicate EXPERIENCE.

aal1.c3)
EXPERIENCE SUBJ : HOME_CONTROL_SYSTEM_1 :

(SPECIF temperature_ LIVING_ROOM_2)
OBJ : growth_
{obs}
date-1 : 21/10/2020/8 :53
date-2 :
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Table 4.8 – Example of occurrence of the predicate PRODUCE.

aal1.c4)
PRODUCE SUBJ HOME_CONTROL_SYSTEM_1
OBJ detection_ : (KITCHEN_1)
TOPIC JOHN_ date-1 : 21/10/2020/17 :19
date-2 :
On 21/10/2020/5:19 p.m.,

the system detects that John is present in the kitchen

4.3.2 Binding occurrences

Binding occurrences can be used to create links between elementary events.

Unlike predicate occurrences, these structures do not use the PREDICATE and

ROLE symbols to specify semantic links. The creation of binding occurrences

using operators such as COORD, GOAL, CAUSE, etc. must conform to the syntax

below :

(oper ator [ar g1ar g2...ar gn]) (4.2)

where (ar g1, ..., ar gn) represent occurrences of predicates.

Example: Consider the following statement: "The robot moves towards

Steve to give him a medicine". This statement has two elementary events: i)

"The robot moves towards Steve"; and ii) "The robot gives medicine to Steve".

The following occurrences of the predicate MOVE represent these two events:

Sent1.C2)
MOVE SUBJ ROBOT_1 : location_1
OBJ STEVE :location_2
date-1 :
date-2 :
Move : AutonomousPersonDisplacement
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Sent1.C3)
MOVE SUBJ ROBOT_1 : location_2
OBJ medicine_
BENEF STEVE
date-1 :
date-2 :
Move : TransferObject

The GOAL link operator can, for example, be exploited to create a link be-

tween these two occurrences, and model the fact that the event represented by

the occurrence Sent1.C3, represents the objective (or goal) associated with the

occurrence Sent1.C2. Formally,

Sent1.C1 : GOAL(Sent1.C2;Sent1.C3) (4.3)

4.4 Concept and Event Ontologies

Knowledge representation in NKRL is based on two ontologies: (i) the concept

ontology HClass represents a hierarchy of concepts where the definitional and

enumerative components are defined, and (ii) the event ontology HTemp, a hi-

erarchy of predicate templates allowing the representation of events, where the

descriptive and factual components appear.

4.4.1 ConceptNet-based Ontology

The concept ontology HClass is a binary high-level ontology that describes gen-

eral concepts of commonsense knowledge in most fields. The concepts and

instances composing these branches are structured according to a taxonomy

based on the subsumption relationship, also called hierarchy link (isA) and rep-

resented by the operator ⊆. Formally, the concept, sortal_concept is defined in
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the concept ontology as follows :

sor t al _concept_ ⊆ h_cl ass ∩ sor t al _concept ≡ enti t y_; si tuati on_ (4.4)

The concept ontology HClass is based on ConceptNet knowledge-graph [203],

which is a developed knowledge graph version of the Open Mind Common

Sense (OMCS) project [204], a general upper ontology that represents the knowl-

edge of the basic things that any person may know. In addition, ConceptNet

combines the OMCS knowledge with 1) Multilingual Information extracted from

Wikitionary; 2) common knowledge collected based on "games with a purpose"

[205, 206]; 3) a multilingual Japanese dictionary (JMDict) [207]; 4) a small set of

facts which extracted from Wikipedia info-boxes (DBpedia) [208]; 5) multilin-

gual WordNet [209] and linked data representation of WordNet [210]. Conse-

quently, ConcepNet consists of over 8 million nodes and over 21 million edges.

Besides, the ConceptNet knowledge graph is connected through 36 relations di-

vided into asymmetric (directed) and symmetric (undirected) relations as fol-

lows :

• Asymmetric relations: Part-Of, At-Location, Has-A, Capable-Of, Is-A, Made-

Of, Used-For, Causes, Causes-Desire, Created-By, Defined-As, Derived-

From, Desires, Entails, ExternalURL , Form-Of, Has-Context, Has-First-

Subevent, Has-Last-Subevent, Has-Prerequisite, Has-Property, Instance-

Of, Manner-Of, Motivated-By-Goal, Obstructed-By, Receives-Action, Sense-

Of, and Symbol-Of

• Symmetric relations: Antonym, Distinct-From, Near-To, Synonym, Related-

To, and Similar-To.

For example, the concept ontology exploits a set of asymmetric relations

such as At-Location, Is-A, and Used-For to define the notion of contextual af-
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Figure 4.1 – An Example of the ambient-environment representation based on
the concept ontology HClass

fordances as a relationship between the action classes and the object instances.

Besides, the Related-To and Near-To symmetric relation are used to infer the

implicit relations between the ambient-objects and the probable actions (ac-

tivities), as shown in Fig.4.1

4.4.2 Event Ontology

The event ontology HTemp is a hierarchy of templates allowing to represent

structured/dynamic knowledge of logically and semantically coherent and tem-

porally ordered elementary event sets. It includes seven predicates:

1. BEHAVE: This predicate allows modeling the actions carried out by one

or more dynamic entities or their behaviors. The predicate occurrence

below represents the fact that Steve is a neighbor of John since date-1=
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21/10/2020, see table 4.9.

Table 4.9 – BEHAVE Template example

BEHAVE SUBJ STEV E_
OBJ (SPECIF neighbour_ JOHN_)
date-1 : 21/10/2020
date-2 :

2. EXIST: This predicate allows modeling an event concerning the presence

of an entity in a given place. The statement "John is present in the living

room at date1=21/10/2020/17:35", can be represented by the following

occurrence of the predicate EXIST, see table 4.10.

Table 4.10 – EXIST template example

EXIST SUBJ JOHN_ :(LIVING_ROOM_2)
date-1 : 21/10/2020/17:35
date-2 :

3. EXPERIENCE: This predicate is used to represent an event affecting an

entity (success, accident, etc.). For example, the following occurrence al-

lows us modeling the fact that John suffers from respiratory failure since

the date date-1=21/10/2020/17:35, see table 4.11.

Table 4.11 – EXPERIENCE template example

EXPERIENCE SUBJ JOHN_
OBJ respiratory_distress
date-1 : 21/10/2020/17:35
date-2 :

4. MOVE: This predicate allows modeling events related to actions, such as

moving a subject, sending an e-mail, etc. As an example, the following
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occurrence models the fact that the robot ROBOT_PEPPER moved from

the LOCATION_1 position to the LOCATION_2 position, at the date date-

1=21/10/2020/11:36, see table 4.12.

Table 4.12 – MOVE template example

MOVE SUBJ ROBOT_PEPPER : LOCATION_1
OBJ ROBOT_PEPPER : LOCATION_2
date-1 : 21/10/2020/11 :36
date-2 :

5. OWN: This predicate is used to represent the notion of ownership be-

tween entities or the state of an entity. The representation of the fact that

the front door, represented by the symbol FRONT_DOOR_2, is unlocked

since the date date-1=21/10/2020/17:30, is written as shown in table 4.13.

Table 4.13 – OWN template example

OWN SUBJ FRONT_DOOR_2
OBJ property_
TOPIC unlocked_
{obs}
date-1 : 21/10/2020/17:30
date-2 :

6. PRODUCE: This predicate is used to represent the execution of a task or

activity by an entity. The instance of the predicate PRODUCE below is

used to model the fact that the control system of the house, represented

by the symbol HOME_CONTROL_SYSTEM has detected that John is sit-

ting in the wheelchair represented by the symbol WHEELCHAIR_1, see

table 4.14.

7. RECEIVE: This predicate allows representing events related to the recep-
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Table 4.14 – PRODUCE template example

PRODUCE SUBJ HOME_CONTROL_SYSTEM
OBJ detection_
TOPIC SPECIF(JOHN_ SPECIF
(sitting_activity WHEELCHAIR_1))
date-1 : 21/10/2020/12 :03
date-2 :

tion of information. Using the predicate RECEIVE, the representation of

the statement: "John received a phone call in the living room on date-

1=21/10/2020/12 :06", can be written as shown in table 4.15.

Table 4.15 – RECEIVE template example

RECEIVE SUBJ JOHN_ : (LIVING_ROOM_2)
OBJ (SPECIF
information_content PHONE_CALL_1)
SOURCE HOME_CONTROL_SYSTEM
date-1 : 21/10/2020/12 :06
date-2 :

4.5 NKRL-based reasoning

The NKRL reasoning engine is based on the question(query)-answer principle.

The processing of a question (query) is done by triggering a matching mecha-

nism provided by the Filter Unification Module (FUM), and a mechanism for

inferring hypothesis rules and transformation rules.

4.5.1 Matching mechanism

Based on the concept ontology HClass, the FUM module is in charge of match-

ing (unifying) the occurrences present in the knowledge base with a query rep-
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Figure 4.2 – Indexing algorithm

resented as a predicate occurrence. The generalization/specialization princi-

ple is used between concepts/instances associated with the concept ontology.

Thus, any predicate occurrence matched with the query is a plausible answer

to the query. The FUM module relies on two main functions: filtering and uni-

fication.

Knowledge filtering

The knowledge filtering is based on a temporal reasoning algorithm which skips

occurrences in the knowledge base whose dates do not fall within the interval

specified in the query by the date-1 and date-2 attributes. In the knowledge

base, each predicate occurrence is referenced using a pair of attributes: the

label of the occurrence and the temporal attributes: date-1 and date-2.

To illustrate the principle of the reasoning algorithm used by the FUM mod-

ule, consider the following statement: "John is a person who was recovering. He

went home on date date-1= 21/10/2020. Five days later he was re-hospitalized",
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see Figure 4.2. The occurrence below allows us modeling the fact that John was

present at his home from date date-1= 21/10/2020, see table 4.16.

Table 4.16 – John was present at his home from date date-1= 21/10/2020

aal1.c1) EXIST SUBJ JOHN_ :(HOME_)
[begin]
date-1 : 21/10/2020
date-2 :

Now let’s assume that for John’s medical follow-up, we want to know if he

was present at the hospital between 21/10/2020 and 29/10/2020. This request

is written as follows, see table 4.17.

Table 4.17 – Query to check if John was present at the hospital between
21/10/2020 and 29/10/2020

[query1] = EXIST SUBJ JOHN_ :(HOSPITAL_)
(21/10/2020, 29/10/2020)

This request only allows selecting the occurrences whose dates are in the

interval [21/10/2020- 29/10/2020].

In terms of the classification of events in the knowledge base, there are nine

lists of dates; these lists are grouped into three sets of three lists each, see Fig-

ure 4.2: precedence, coincidence, subsequence. The precedence set groups the

events that took place before the date specified in the date-1 attribute. The

subsequence set groups events that took place after date-2. Finally, the coinci-

dence set allows, as for it, to represent the events by using the obs modulator.

Each list has three periods: period 1, period 2 and period 3 bounded by bound

1 and bound 2. Thus, period 1 represents the period before the bound 1 termi-

nal, period 2 the period between the two terminals (bound 1 and bound 2), and

period 3 the period after the bound 2 terminal.
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In the above example, bound 1 corresponds to the lower bound (21/10/2020)

of the interval [21/10/2020- 29/10/2020], and bound 2 to the upper bound

(29/10/2020) of the interval [21/10/2020- 29/10/2020]. The predicate occur-

rence aal1.c1 only selects those occurrences whose date corresponds to the sec-

ond bound 2, i.e. those occurrences whose date-1 attribute corresponds to the

concidence set. Occurrences whose date corresponds to the period period 1

are excluded.

Unification

Unification is used to match queries as predicate occurrences with the occur-

rences in the knowledge base. The first step is to match the predicate of the

query with the predicate of each occurrence in the knowledge base. If the match-

ing is successful, i.e. both occurrences have the same predicate, then the match-

ing of each query role with the corresponding role of the knowledge base oc-

currence is carried out. For example: Suppose Frank, John’s nurse, was on duty

during the night of the following interval: [date-1 = 25/10/2020/22:00 , date-2 =

26/10/2020/06:00]. The representation of this fact can be written as follows:

aal1.c2)
BEHAVE SUBJ SPECIF (FRANCK_ nurse_)

: (HOME_1)
[begin]
date-1 : 25/10/2020/22 :00
date-2 : 26/10/2020/06 :00

Suppose that for the purposes of John’s medical follow-up, we want to know

which nurses were on duty between the following dates: date-1 = 25/10/2020/12:00

and date-2 = 26/10/2020/12:00. This query can be written as follows:

In the query "query2", the nurse is represented by the role SUBJ. The match-

ing of the SUBJ role of the query with the SUBJ role of the occurrence "aal1:c2"
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[query2] =
BEHAVE SUBJ SPECIF (human_being nurse_)

:(HOME_1)
date-1 : 25/10/2020/12 :00
date-2 : 26/10/2020/12 :00

involves matching the attribute "SPECIF (human_being , nurse_):(HOME_1)"

with the attribute "SPECIF (FRANCK_ , nurse_):(HOME_1)". These two attributes

are represented by the specification operator SPECIF and the location parame-

ter defined by the instance HOME_1.

To match the instance FRANK_ with the concept human_being, we use the

concept ontology HClass. Assuming successful matching, the occurrence aal1.c2

is selected as the response to the query2 query.

4.5.2 Hypothesis-Transformation Rules

The expressiveness of NKRL language is exploited, through inference rules, to

automatically establish relationships between events or between characteris-

tics of the same event. An inference rule is composed of a predicate, role(s),

attribute(s) and a set of constraints represented by variables. It is formally de-

fined as follows:
X(vari ) −→ Y(var j ); vari ⊆ var j (4.5)

where X denotes the query represented as a predicate occurrence or link

structure. Y denotes the set of inferred occurrences. In addition, the constraint

vari ⊆ var j imposes that the vari variables included in the X query are in the

set of var j variables included in the set Y of inferred occurrences.

There are two types of inference rules: transformation rules and hypothesis

rules. A transformation rule includes an antecedent corresponding to a gener-

alization of the initial query, and one or more consequents. A hypothesis rule
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is composed of a premise and one or more conditions, each corresponding to

a reasoning step. In the reasoning process, a hypothesis rule can be used to

search for the causes that led to a given context by reconstructing the links be-

tween the events that generated this context. Suppose, for example, that we

want to explain why the air conditioning system stopped working on a summer

evening in a given time interval, despite a high ambient temperature. The idea

here is to show the existence, in the knowledge base, of a predicate occurrence

proving that a person has stopped the air-conditioning system.

4.6 Conclusion

In this chapter, we presented the basic principles of NKRL language and the

associated reasoning mechanisms. Knowledge representation is based on two

N-aires ontologies that guarantee an expressive representation of knowledge.

The concept ontology HClass is a hierarchy of general concepts of common-

sense allowing to represent portions of narrative knowledge. The event ontol-

ogy HTemp allows the representation of dynamic events. NKRL allows combin-

ing predicates and conceptual roles to model narrative knowledge, and also to

infer semantic links (causality, purpose, etc.) between events. The reasoning

engine is based on the question (query)-answer principle. The processing of

a query relies on a mechanism for matching and filtering occurrences in the

knowledge base, and a mechanism for applying hypothesis rules and transfor-

mation rules. In the context of ambient intelligent environments, the objective

of this thesis is to exploit the high expressivity of NKRL to improve the ambient

environment representation in terms of context recognition, and also to model

human-robot interaction using verbal natural language.
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Chapter 5
Hybrid approach for contextual

emotion recognition

5.1 Introduction

In this chapter, a hybrid approach for contextual emotion recognition for cog-

nitive assistance services in ubiquitous environments is proposed. The pro-

posed approach is able to recognize accurate explicit discrete emotions using a

multilayer perceptron neural network fusion model combined with possibilis-

tic logic. Besides, the proposed approach is able to recognize non-directly ob-

servable emotions using expressive emotional knowledge representation and

reasoning model. The first section of the chapter discuss the motivation behind

the proposed approach. The second section present the data-driven compo-

nents of the proposed approach. Then, the contextual knowledge representa-

tion and reasoning are detailed in the fourth section. Finally, in the last section

the evaluation of the proposed approach using different datasets is detailed.
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5.2 Motivations

Considering emotional or affective aspects is fundamental for natural assistive

interaction where robots act as companion entities that can support conver-

sation, understanding, and responses [172]. Endowing ubiquitous robots with

cognitive capabilities for recognizing emotions, sentiments, affects and moods

of humans in their context is an important challenge to discern the meanings

that a facial expression or a natural language dialogue can have, and decide

how to react to a given situation.

Emotion is defined in [211] as an immediate cognitive, behavioral and phys-

iological reaction following an event; the author differentiates emotion terms

from other tightly coupled terms such as sentiments, affects and moods.

In recent years, many researchers have focused on the creation of human-

like social robots. Only a few studies are interested in providing robots with

human emotion recognition capabilities [169, 170, 171, 172]. Some researchers

have focused on unimodal affect/emotion recognition where only single source

is used such as facial expressions [169, 171, 173, 174, 175, 176], voice [177], tex-

tual expressions [178, 179], and body language [180]. However, these data-

driven techniques that are generally highly dependent on learning data can

be insufficiently effective to recognize non-directly observable emotions. The

latter cannot be interpreted in an accurate way without considering the user’s

context [212].

In this chapter, emotion contextual recognition refers to the recognition of

emotions of humans considering their context. To address the above-mentioned

challenges, multimodal recognition and conceptual representation of the emo-

tional knowledge in AAL systems must be powerful enough to supply a general

description of the environment where the user evolves and thus better recog-

nize non-directly observable emotions such as stressed, motivated, depressed,
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..etc. In terms of applications, this chapter focuses on the cognitive assistance

of people in a smart spaces by providing them relevant and timely information

based on their needs.

5.3 Proposed hybrid approach

For more accurate emotion recognition in daily living environments, a hybrid

model-based emotion contextual recognition approach for cognitive assistance

services in ubiquitous environments is proposed. This model is based on: (i) a

hybrid-level fusion exploiting a multilayer perceptron neural network model

and the possibilistic logic; (ii) an expressive emotional knowledge representa-

tion and reasoning model to recognize non-directly observable emotions; this

model exploits jointly the emotion upper-ontology (EmUO) and the n-ary on-

tology of events HTemp supported by NKRL language. The architecture of the

proposed emotion recognition approach is shown in Figure 5.1.

5.3.1 Features extraction

For an accurate recognition of human’ emotions, three modalities are taken

into account in this study for the expressiveness of the information they con-

tain: text, audio, and face. From the face modality, human’s eye gaze, lips,

brows, and face muscles motions and positions appear as good features en-

abling the recognition of facial expression. In the text modality, the words used,

their syntactic structure, and their meaning represent the main keys of an emo-

tion recognition. However, considering only the text can decrease significantly

the recognition accuracy when relevant information in the audio are not avail-

able. The main relevant features in the audio modality are: the manner with

which utterances are produced, the intensity and quality of the voice. To im-
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Figure 5.1 – Hybrid emotion recognition approach

prove the emotion recognition, extra-features are considered in this study for

their influences in the emotional meaning as demonstrated in the literature.

These features extracted from audio-visual data are: age [213], gender [214],

and culture [215].

5.3.2 Unimodal Classifiers

In this work, a deep neural network-based model for a finer recognition of user’s

emotion is presented. The proposed model is a fusion of three deep neural

networks: (i) a deep CNN model, trained with knowledge distillation, for facial

emotion recognition (FER), (ii) a modified and fine-tuned VGGish model for

voice emotion recognition (VER), and (iii) state-of-the-art deep network for text

emotion recognition (TER) .
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Figure 5.2 – Facial expression recognition neural network architecture, before
distillation.

Facial expression classifier

It analyses a facial expression in an image, and returns a set of expressions with

their probabilities. These expressions are: anger, contempt, disgust, fear, happi-

ness, neutral, sadness, and surprise. The first component of the proposed multi-

modal architecture is a deep convolutional neural backbone network (CNN) for

facial expression recognition. The input to this network is a single RGB face im-

age, detected and cropped using Multi-Task Cascaded Convolutional Networks

(MTCNN) ([216]). The output of this network is a compact vector of dimension

Dface.

In this work the ‘facial expression embedding network’ term is used to re-

fer to the backbone CNN deep network, and its trained using knowledge distil-

lation ([217]). Knowledge distillation is a two step process whereby a teacher

network is trained on the task of interest, and then a (typically smaller) student

network is trained on predictions made by the teacher. Specifically in this work,

the benefits of self-distillation are leveraged, where the student network is the

same size as (or at least, is not smaller than) the teacher network. It has been

widely observed that distilling the knowledge of a teacher network to an equiva-

lent student network leads to a regularization effect that improves performance

on held out test data ([218]). Self-distillation is exploited to improve the perfor-

mance of the facial expression embedding network. The training procedure for
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this network thus consists of two phases:

1. Training a teacher model: the teacher model is a fine-tuned FaceNet ([219]),

trained simultaneously on two different visual facial expression recogni-

tion datasets (Section 5.3.2).

2. Training a student model: a second CNN is additionally trained to mimic

the outputs of this fine-tuned FaceNet (Section 5.3.2).

The teacher network

The starting point for the teacher model is a pre-trained FaceNet ([219]). This

pre-trained model is fine-tuned for emotion recognition using two datasets:

• AffectNet ([220]), which consists of around 440,000 in-the-wild face crop

images, each of which is human-annotated into one of eight facial ex-

pression categories (Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger

and Contempt).

• Google Facial Expression Comparison (FEC) ([221]), which consists of

around 700,000 triplets of unique face crop images. Annotations denot-

ing the most similar pair of face expressions in each triplet are provided.

The goal is to train a model that places the similar pair closer together in

a learned embedding space.

The teacher model’s architecture (Fig. 5.2) is almost identical to the model

proposed in [221], the only difference being that we add an additional output

head for the AffectNet loss. A pre-trained FaceNet1 is taken up until the In-

ception 4e block. This is followed by a 1x1 convolution and a series of five un-

trained DenseNet ([222]) blocks. Another 1x1 convolution followed by global

1In this, a FaceNet pretrained on the VGGFace2 dataset is used. The pre-trained FaceNet
model architecture and weights were obtained from https://github.com/timesler/facenet-
pytorch.
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Figure 5.3 – Modified VGGish backbone feature extractor for Speech Emotion
Recognition

average pooling is used to reduce this representation to a single Dface dimen-

sional vector. After pooling, two independent linear transformations serve as

output heads. These heads take the Dface-dimensional facial expression repre-

sentation vector as input and make separate predictions for the AffectNet and

FEC tasks. A 32-dimensional embedding is used for the FEC triplets task, while

an 8-dimensional output head produces class logits for AffectNet (which has

8 classes). The teacher network training procedure is detailed in Algorithm 1.

To improve the regularisation effects of self-distillation through model ensem-

bling, two teacher networks are trained, and their outputs are concatenated to

serve as distillation targets (see Section 5.3.2 for details). The only difference

between the two teacher networks are the random seeds used for weight ini-

tialization, and the penultimate layer dimensionalities: Dface = 128 for the first

teacher network, and Dface = 256 for the second are used.

Student network

The student network is a DenseNet201 pretrained on ImageNet.2 The student

network training procedure is essentially the same as described in Algorithm

1, except that sample batches of unlabeled data from an internal dataset are

2the implementation and pretrained ImageNet weights provided in the torchvision

Python package are used.
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Algorithm 1 Visual model: training the teacher network.
fΘ: Given feature extractor network,
gφ: Google FEC output head,
hθ: AffectNet output head,
N: number of training steps,
α: AffectNet loss weight.

for iteration in range(N) do
(XFEC,yFEC) ← batch of Google FEC triplets and labels
(XAff,yAff) ← batch of AffectNet images and class labels
eFEC ← fΘ(XFEC) . Face embeddings for FEC images
eAff ← fΘ(XAff) . Face embeddings for AffectNet images
vFEC ← gφ(eFEC) . Predict vectors for triplet loss
pAff ← hθ(eAff) . Predict class probabilities for AffectNet
LFEC = triplet_loss(vFEC,yFEC)
LAff = cross_entropy_loss(pAff,yAff)
L = LFEC +α∗LAff . Total loss for training step
Obtain all gradients ∆all = ( ∂L

∂Θ , ∂L
∂φ , ∂L

∂θ )
(Θ,φ,θ) ← SGD(∆all) . Update feature extractor and output heads’
parameters simultaneously

end

used, which is called PowderFaces. The PowderFaces dataset was created by

downloading approximately 20,000 short, publicly-available videos from vari-

ous online sources. MTCNN face detection was then applied to the extracted

frames from those videos, producing approximately 1 million individual face

crops. The sampled batches of face crops from the Google FEC, AffectNet, and

PowderFaces datasets are passed through the proposed two teacher networks.

Each of the two teacher networks produces predictions for the Google FEC task

(32-dimensional) and AffectNet class logits (8-dimensional). These four vectors

(i.e., two vectors from two teacher networks) are individually L2-normalised.

The four normalised vectors are then concatenated, producing one long vector

of dimension 80. A knowledge distillation loss (‘Relational Knowledge Distilla-

tion’ ([223]) is then calculated by comparing the output of a third output head

in the student network to this 80-dimensional target vector. This knowledge
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distillation loss is then added to the standard AffectNet and Google FEC losses,

which are calculated as per the teacher network training procedure.

Voice emotions classifier

It classifies the input voice into the following 11 emotions: such as supremacy,

hostility, criticism, self-control, leadership, creativeness, friendliness, love, lone-

liness, sadness, and defensiveness emotions.

The proposed deep model for audio-based emotion recognition is based on

a modified version of the VGGish model ([224]). The starting point is the orig-

inal VGGish model, pre-trained on the Audio Set dataset ([225]). The VGGish

backbone consists of 6 convolutional layers that output 64, 128, 256, and 512

feature maps ( f ) respectively. For each convolution layer, a kernel (k) with size

3x3, and stride (s) of 1x1 is used. A max pooling layer with a kernel (k) of size

2x2, and stride (s) 2x2 is then applied. This VGGish backbone is exploited, but

its last convolution and max pooling layers are replaced with a global average

pooling layer. The resulting model produces an output vector of dimension

256. Finally, three randomly-initialized fully-connected layers are added, with

output dimensionalities of size 4096, 4096, and 128. The aim of these layers is to

extract a standard embedding vector with size of 128 that reflects the emotional

characteristics of the input audio segment.

The expanded VGGish backbone architecture is exploited and fine-tuned

on the RECOLA dataset. Two separate VGGish networks are fine-tuned: one to

predict arousal and the other to predict valence. The inputs of size [480,128] is

passed to the VGGish model, which are the mel-spectrogram representations of

30 seconds of audio from one of the videos in the RECOLA dataset. The target

used for fine tuning is then the average ground truth arousal or valence for the

target values corresponding to the input 30 seconds of audio. The target label

121



Chapter 5

is predicted by passing the 128-dimensional audio representation through a

fully-connected layer fφ with a tanh activation. The training procedure for fine

tuning the audio feature extraction model is detailed in Algorithm 2.

Algorithm 2 VGGish fine-tuning algorithm for predicting arousal.
fΘ: Given the VGGish feature extractor network,
fφ: arousal prediction head,
N: number of training steps.

for iteration in range(N) do
(X,y) ← batch of RECOLA spectrograms and targets
e ← fΘ(X) . Calculate VGGish embeddings for batch
p ← fθ(e) . Predict arousal for all elements in batch
Loss =−concordance_correlation_coeff(p,y)
Obtain all gradients ∆all = (∂Loss

∂Θ , ∂Loss
∂θ )

(Θ,θ) ← Adam(∆all) . Update VGGish model, output head
end

Text emotions classifier

it uses linguistic analysis of the input text to detect a set of sentiments as joy,

fear, sadness, anger, analytical, confident and tentative sentiments. The model

allows estimating the probability of the general sentiment of the input text and

the probability of the sentiment for each sentence;

5.3.3 Fusion based on Multilayer Perceptron (MLP) neural net-

work

In this study, a Multilayer Perceptron (MLP) neural network is exploited to esti-

mate emotion probability from the combination of the multimodal prediction

of the above classifiers associated with the features: age, gender and culture. As

shown in Fig.5.1, the MLP Neural Network-based regression model for emotion

fusion aggregates the output probabilities from the unimodal classifiers (video,

audio, and text) into a single dimension input features vector and classifies it
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into 9 standard emotions. Besides, in case of modality absence (audio, video,

or text), the classification outputs of the MLP are replaced by zeros to maintain

the regression fusion network input size.

The Multilayer Perceptron (MLP) neural network consists, in this study, of

five layers of neurons which are fully connected. The input layer consists of a

set of neurons representing the prediction of each classifier, such as emotion

in text prediction, emotion in audio prediction, facial expression prediction,

age, culture, and gender. The output layer consists of the neurons represent-

ing the emotions classes considered as outputs. In this chapter, nine classes of

observed emotions are considered: anger, contempt, fear, happiness, neutral,

sadness surprise, disgust, and energy. The MLP neural network model consists,

also, of three hidden layers where each hidden layer has 100 nodes. To prevent

the model from over-fitting on the training data, the Dropout technique is ex-

ploited on 10% of the hidden nodes. The weights initialization process is based

on small normal distribution with zero mean and 0.05 standard deviation. The

neurons output/input computing process exploits the forward propagation al-

gorithm with a nonlinear function, the Rectified Linear Units (ReLU) and Soft-

max functions. Errors-computing and weights-updating process is based on

the loss function. This function exploits mean squared error functions. In order

to minimize the loss function, the Adaptive Moment Estimation (Adam) opti-

mization algorithm [226] is exploited to optimize the values of neural network

weights.

5.3.4 Decision based on Possibilistic Logic (PL)

In this study, a categorical model is used for emotion representation. There-

fore, the proposed hybrid fusion model based on a MLP neural network infers

a set of emotions with their probabilities. In this context, managing uncertainty
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consists of managing the ambiguity of emotion over complex emotions, and fil-

tering out emotions which are unlikely to correspond to real-world overlapped

emotions.

The inference step takes as input the probability of emotions predicted from

the multimodal recognition classifiers at each time t , and infers the overlapped

emotions. The possibilistic logic [227] is exploited over the most likely over-

lapped emotion to decide whether its probability corresponds to a real-world

overlapped emotion. Possibilistic logic provides an efficient way to find the

probability level from which a multimodal emotion recognition has sufficient

evidence to recognize a real-world overlapped emotion.

A possibilistic interpretation is a mapping π : IΦ −→ [0,1] where π(I) is the

degree to which the world I is possible. In particular, every world I such that

π(I) = 0 is impossible, while it is totally possible when π(I) = 1. The possibility

of an emotion φ in a possibilistic interpretation π, denoted by Poss(φ), is de-

fined by Poss(φ) = {
Max(π(I))|I ∈IΦ, I |=φ}

. Intuitively, the possibility of φ is

evaluated in the most possible world when φ is true. The dual notion to the

possibility of an emotion φ is the necessity of φ, denoted by Nec(φ), which is

defined by Nec(φ) = 1−Poss(¬φ). In possibilistic theory, for all possibilistic

interpretations π and emotions φ and ψ, the following relationships hold:

• Poss(φ∧ψ) ≤ mi n(Poss(φ),Poss(ψ));

• Poss(φ∨ψ) = max(Poss(φ),Poss(ψ));

• Poss(¬φ) = 1−Nec(φ);

• Poss(⊥) = 0;

• Poss(ᵀ) = 1;

• Nec(φ∧ψ) = mi n(Nec(φ),Nec(ψ));
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• Nec(φ∨ψ) ≥ max(Nec(φ),Nec(ψ));

• Nec(¬φ) = 1−Poss(φ);

• Nec(⊥) = 0;

• Nec(ᵀ) = 1;

5.4 Contextual emotion recognition

The contextual emotion recognition and management proposed in this study

consists of exploiting jointly the emotions predicted from the multimodal emo-

tion recognition model, and the events characterizing the user’s context, in a

knowledge representation and reasoning model to infer the non-directly ob-

servable emotions and trigger the assistance service adapted to the emotional

context of the user.

5.4.1 Emotional knowledge representation

The Narrative Knowledge Representation Language (NKRL) is exploited in the

description of emotions and human states information in ambient intelligent

environments. In this study, the commonsense knowledge based on the ex-

tended HClass ontology (EmUO) allow describing static knowledge such as

feeling, sentiment, passion, pleasure, etc.

As emotion is defined as immediate reaction following an event, it is im-

portant to take into account what is happening in the ambient environment

around the user. To deal with this important aspect, dynamic knowledge repre-

sentation based on the HTemp ontology of NKRL is exploited to describe the

observed or inferred emotion in a specific context, such as, "having a posi-

tive/negative experience".
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Emotion upper-ontology (EmUO)

Figure 5.4 – A segment of the emotion upper ontology (EmUO) describing hu-
man states taxonomy

The Emotion upper-ontology (EmUO), extension of the HClass ontology, is

proposed in this study to represent the emotional context attributes of the user

in an ambient intelligent environment. In particular, it covers all commonsense

126



concepts of human states such as affects and emotions, cf. figure 5.4. EmUO

ontology combines different "sentiment and emotion lexica" such as Sentic-

Net3 and WordNet-Affect.

Emotional knowledge and the HTemp ontology of NKRL

To represent contextualized emotions, the HTemp ontology is exploited. This

ontology is designed as formal representation of generic classes of events such

as "threatening someone with violence", "having a positive/negative experi-

ence", and "evaluating an artefact", etc. The NKRL templates allow represent-

ing the full emotional context of human where contextual attributes like cul-

ture, religion, and other social rules should be taken into account.

In terms of emotional context representation, the ‘BEHAVE’ templates are

well suited to represent emotional context features. Particularly, the "Behave:

Focus" template allows representing emotional context features such as desire,

intention, etc. Besides, the "Behave: Attitude" template can be exploited to

represent situation or behavior of a person, a social body, or a situation/activity.

Some specific templates such as Experience, Produce and Receive are im-

portant from emotion analysis point of view. An experience of a human-being

or social body, such as success, richness, illness, racism, violence, etc. can be

considered as positive, negative, or neutral and can be represented respectively

using the following templates: Experience: PositiveSituation, Experience: Nega-

tiveSituation, and Experience: GenericSituation.

The Produce templates, in the context of emotion analysis, are Produce:

Acceptance/Refusal and Produce: CreateCondition/Result. The templates Pro-

duce: PositiveCondition/Result and Produce: NegativeCondition/Result are used

to represent an emotion with respect to a given action/situation. Furthermore,

the Receive: DesiredAdvice template, one of the templates Receive, is important
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in emotional context representation.

Table 5.1 – Representation of the emotional context: Matthew is happy

E.occ2: EXPERIENCE
SUBJ MATTHEW :

SPECIF(ADP_building SHOWROOM_1)
OBJ SPECIF (feeling_ joy_)
date-1: 14/08/2017 11:23:15
date-2:

Experience:Human/Social

Let us consider the example where a companion robot, called Pepper which

perceives that a visitor, called Matthew, is happy. The semantic description of

this emotional context is given in table 5.1 in the symbolic label of the predica-

tive occurrence (L = "E.occ2"). In this example, the conceptual predicate (P =
"EXPERIENCE") denotes the experience of the entity which is here a human.

This human entity is represented with the role (R = "SUBJ") and its argument

(a = "MATTHEW"), an instance of the HCl ass concept "human_bei ng ". The

emotion is represented by the role "OBJ" and its argument SPECIF( feeling_-

joy_).

The question "what is the meaning of someone smiles?" could be answered

that it’s about ‘a happiness’ or ‘embarrassed smiling’. Depending on the user’s

context, an embarrassed smiling can then be differentiated from a happiness

smiling.

The novelty of this study lies in the description of emotional knowledge us-

ing n-ary ontologies that makes possible the contextual recognition of emo-

tions, such as negative surprise and embarrassed smile, and the recognition of

non-directly observable emotions such as curiosity and attention.
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5.4.2 NKRL-based contextual emotion inference

To better understanding human emotions in their context, the NKRL inference

engine is exploited to infer implicit relations between predicative occurrences

of emotions and the events characterizing the user’s context. Two kinds of

high-level rules, transformations and hypotheses, are systematically used in

the NKRL inference engine.

The transformation rules are defined as implications expressed as in for-

mula 5.1. The constraint vari ⊆ var j corresponds to the variables defined in

the antecedent that must also appear in the relative consequent according to

the emotional commonsense knowledge.

A(vari ) ⇒ Csi (var j ); vari ⊆ var j . (5.1)

Emotion contextual recognition

In ambient intelligent environments, certain emotions such as upset, confu-

sion, curiosity, are not directly observable since they are context-dependant

and exploiting only data-driven approaches may not be sufficient to predict

them. To recognize a non-directly observable emotion, the rich expressiveness

of the n-ary ontologies and powerful inference mechanisms of the NKRL are

exploited in this study. The recognition of this kind of emotions allows a better

decision-making in terms of assistance services. Three methods are considered

in this study to recognize non-directly observable emotions:

• The first method is based on transformation rules and reactive reasoning

that allow inferring humans feelings following the occurrence of an event

characterizing the user’s context. Formally, by exploiting a transforma-

tion rule, denoted by T R j , an event e makes true a situation (i.e feeling)
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f starting from an instant t such as:

( f , t ) ⇐ (e, t )∧T R j

. The feeling of "confusion" is a non-directly observable emotion that can

be recognized by analyzing the meaning of a query of the user during a

discussion using the NKRL language. The native feature of this language

aims to represent and reason on the meaning of natural language sen-

tences allowing therefore a finer recognition of non-directly observable

emotions by contextualizing them. An example of transformation rule

allowing to infer that a human feels confusion is shown in table 5.2. In

this rule, the recognition of the feeling "confusion" can be triggered by a

misunderstanding of a topic during a discussion. It consists of the ag-

gregation of different situations: process information and general topic

of discussion that are represented respectively by the NKRL templates

Behave:Questioner, and Behave:Participant. In this study, the represen-

tation of the topic of each utterance allows to check if two topics have

the same main topic using the specification/generalization relationship

in the EmUO ontology.

• The second method is based on binding occurrences defined using ax-

ioms. It consists of causal law, formally, a predicative occurrence X causes

a predicative occurrence Y:

CAUSE(X,Y)

For example, an abnormal activity such as eating many sweets at the

same time can be caused by a happiness or sadness feeling after the oc-

currence of such events. In this case, the emotion is triggered from the
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Antecedent :
COORD(e1 e2)
e1: BEHAVE SUBJ var1 :

OBJ conversation_
CONTEXT var2
date-1
date-2

var1:human_being
var2: topics_
Behave: Participant

e2: BEHAVE SUBJ var1 :
MODAL SPECIF(quering_ information_)
CONTEXT var3
date-1
date-2

var1:human_being
var3: topics_
G(var3): ! var2
Behave: Questioner

Consequent :
f1: BEHAVE SUBJ var1:

OBJ SPECIF (feeling_ confusion_ )
date-1 t
date-2

var1:human_being
Behave:NegativeConcrete

Table 5.2 – Example of transformation rules T R

observed event "eating many sweets".

• Causality-based reasoning consists of identifying the relationship between

a cause and its effect. This model aims to identify a possible cause of an

observed emotion in order to improve the recognition in terms of accu-

racy. To deal with that, the NKRL inference engine is exploited by us-

ing hypothesis rules. The latter are defined using axioms that consist of

state constraints and can be used to express the following assertion: a
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predicative occurrence X can be caused by the predicative occurrences

Y1,Y2, ...,Yn . Formally, a hypothesis rule can be expressed as follows:

X if Y1,Y2, ...,Yn

For example, the hypothesis rule, given in table 5.3, is used to get a pos-

sible cause of the observed emotion "surprise". Two possible causes are

described in this rule: receiving money and receiving medical process. If

the first cause is proved, the transformation rule, given in table 5.4, allows

inferring a new emotion such as positive-surprise.

Pr emi se :
f : EXPERIENCE SUBJ var1:

OBJ SPECIF (feeling_ surprise_ )
date-1 t
date-2

var1:human_being
Experience:Human/Social

Antecedent :
e1: RECEIVE SUBJ var1:

date-1 t
date-2

var1:human_being
Receive:GetMoneyl

e2: RECEIVE SUBJ var1:
date-1 t
date-2

var1:human_being
Receive:MedicalProcess

Table 5.3 – Example of hypothesis rule

Emotion-aware cognitive assistance

Endowing ambient intelligent environments with the ability to provide emotion-

aware services is the main objective of the used reasoning techniques. In this
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Antecedent :
e: RECEIVE SUBJ var1:

date-1 t
date-2

var1:human_being
Receive:GetMoneyl

Consequent :
f : EXPERIENCE SUBJ var1:

OBJ SPECIF (feeling_ positive-surprise_ )
date-1 t
date-2

var1:human_being
Experience:PositiveHuman/Social

Table 5.4 – Transformation rules N 2

chapter, the states of humans populating an ambient intelligent environment,

such as user feeling’, are considered in the context modeling.

To reason about the emotions needed for performing an action, each task

should be described based on the emotional state of the user. In this study, a

task selection model is used to choose the appropriate task for the recognized

user emotion. Formally, a task selection consists of a tuple Π = 〈K,E,T〉 where

K is a set of tasks, and E is a set of emotions evolving over the time T. Selecting

a task k, having a score s, according to a particular emotion et at specific time

t consists of determining the normalized score Nk :

Nk = k s∑
k s

i
; (5.2)

The task score Ks is a factor which is evolving over time based on various pa-

rameters: the prerequisites tasks score pk of the next planned task, the current

and previous emotion score respectively et and et−1, and the emotion transi-
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tion factor φe where φe ∈ [−1,1].

Ks = pk

et
+φe (5.3)

φe = et −et−1 (5.4)

5.5 Experiments

The proposed approach for contextual emotion recognition is evaluated as fol-

lows: (i) the proposed model for multimodal emotion recognition is evaluated

through empirical experiments on real-world dataset. Results are reported for

validation and test sets of a 10-fold cross-validation scheme. These results are

compared to those obtained with two baseline models: Multiple Kernel Learn-

ing [228] and MLP Neural Network [229]; (ii) the emotion contextual recogni-

tion and management is evaluated through experiments in real world scenario

dedicated to the cognitive assistance of visitors in a smart devices showroom.

A qualitative feedback about satisfaction of each user was collected after these

real world experiments.

5.5.1 Multimodal emotion dataset description

In this study, the YouTube Opinion Dataset, proposed in [230], is exploited for

its richness to train the multimodal emotion recognition proposed model based

on visual, textual, audio and culture features. This dataset is a collection of

opinion videos collected from the social media website YouTube. It consists of

47 videos sampled into 3149 frames of people expressing their opinions about a

variety of topics. All the videos show the frontal view of the subject’s face that is

recognizable with face-tracking software. The videos were found using the fol-
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lowing keywords: opinion, review, product review, best perfume, toothpaste,

war, job, business, cosmetics review, camera review, baby product review, I

hate, I like. The final video set includes 20 female and 27 male speakers ran-

domly selected from youtube.com, with their age approximately in the range

of 14−60 years old. Although of different ethnic backgrounds (e.g., Caucasian,

African-American, Hispanic, Asian), all speakers expressed themselves in En-

glish. The videos are converted to .mp4 format with a standard size of 360x480.

The length of the videos varies from 2−5 minutes. All videos are pre-processed

to address the following issues: introductory titles and multiple topics. Many

videos on YouTube contain an introductory sequence where a title is shown,

sometimes accompanied with a visual animation. As a simple way to address

this issue, the videos are manually segmented until the beginning of the first

opinion utterance. All video clips are manually transcribed to extract spoken

words as well as the start time of each spoken utterance. The Transcriber soft-

ware was used to perform this task. The transcription is carried out using only

the audio track of each video clip. All 47 video clips are annotated by three an-

notators who were shown videos in three different random sequencing orders,

so as to reduce the compound effect. It is important to note that the dataset

is not annotated by the sentiment felt by the person watching the video. The

annotation task is to associate the input data with a sentiment label that best

summarizes the opinion expressed in the YouTube video. To ensure equitable

evaluation, the dataset is divided into 10 randomly stratified folds: 9 folds for

training and 1 fold for testing each time. 10% of the training set are considered

for validation to tune the model hyperparameters.
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5.5.2 Implementation

General description

The contextual emotion recognition approach is implemented using Python

and Java as a cloud service. The communication service is based on XMPP and

REST protocols. To extract features from audio-visual data, a set of services are

exploited. Both of the proposed audio-visual deep learning models combined

with the textual expressions extraction, 3 are exploited. The MLP neural net-

work is implemented based on Keras framework with tensor-flow as a backend.

The possibilistic logic is implemented based on SAT4J library.

Cognitive assistance of visitors in a smart devices showroom scenario

Figure 5.5 – Scene extracted from the smart devices showroom

A real world scenario dedicated to the cognitive assistance of visitors in a

smart devices showroom is proposed to validate the proposed approach. In this

scenario, Matthew is a visitor who needs help from a robot companion (Pep-

per robot) that will act as a tour guide to explain and show Matthew the smart

3www.alchemyapi.com/
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devices showroom, cf. figure 6.10. Pepper can detect and monitor Matthew’s

emotions continuously based on the proposed approach to adapt the discus-

sion based on the detected emotions. One of the most important issues is to

make Pepper reacting more naturally. The proposed scenario shows how the

proposed approach makes the Human-Robot interaction in an intelligent am-

bient environment more natural and more intelligent.

5.6 Evaluation

5.6.1 Baselines

The first baseline model consists of the classifier Multiple Kernel Learning (MKL)

that learns from multimodal heterogeneous fused feature vectors to recognize

sentiments [228]. These vectors are extracted from the combination of uttered

words, facial expressions, and speech sounds. This model is evaluated through

a traditional training/testing evaluation by dividing the dataset into 70% for

training and 30% for testing. The second baseline model consists of the (MLP)

Neural Network proposed in [229]. This model is learned from different clas-

sifiers such as facial, vocal and textual expression classifiers. It is intended to

recognize nine emotions: anger, contempt, fear, happiness, neutral, sadness,

surprise, disgust, and energy. The evaluation is carried out over 5 folds cross

validation.

5.6.2 Unimodal emotion recognition

The performance of the proposed uni-modals has been evaluated using the

REmote COLlaborative and affective interactions (RECOLA) corpus ([231]). In

RECOLA, participants’ spontaneous interactions were collected while being en-
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gaged in a remote discussion that aimed to manipulate their moods. Then,

six annotators measured the emotional state present in all sequences continu-

ously on the valence and arousal dimensions. 27 audio-visual recordings of 5

minutes of interaction – 9 for training, 9 for validation, and 9 for testing – are

made publicly available. The visual feature extraction network is evaluated on

held-out evaluation data from the AffectNet and Google FEC datasets.

Visual facial expression embedding network performance

the visual facial expression embedding network was evaluated on held-out data

from the two static image datasets it was trained on:

1. AffectNet: for AffectNet, which requires classifying face into eight dis-

crete facial expression classes, a logistic regression model is trained on

the features extracted by the student network for the entire AffectNet train-

ing set.4 This model achieves state-of-the-art results on the AffectNet val-

idation set, with an accuracy of 61.6% (Table 5.5).

2. Google FEC: following [221], the model is evaluated by exploiting triplet

accuracy on the Google FEC test set. Using this metric, the proposed

model is substantially outperforming the state-of-the-art on the FEC test

set with an accuracy of 86.5% (Table 5.6).

5.6.3 Audio-Visual evaluation on RECOLA

To evaluate the performance on RECOLA of visual and audio feature extractors

separately, the same fusion architecture is retrained, but disable either the au-

dio or visual feature inputs and the associated pre-transform network.

4the classes in the AffectNet training set are re-weighted so that they have equal representa-
tion, as per the validation set.
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Table 5.5 – Performance of the proposed visual facial expression embedding
network on the AffectNet validation set compared to existing state-of-the-art
models

Models Accuracy (8 facial expressions)
[232] 59.6%
[233] 59.3%
Proposed (Teacher model) 61.3%
Proposed (Distilled student) 61.6%

Table 5.6 – Triplet prediction performance of the proposed visual facial expres-
sion embedding network on the Google FEC test set compared to existing state-
of-the-art models

Models Accuracy
[221] 81.8%
Proposed (Teacher model) 84.5%
Proposed (Distilled student) 86.5%

Visual-only: feeding the embeddings from the visual feature extractor into the

visual-only version of the fusion model performs well on the RECOLA dataset

(Table 5.7). Such reaches a CCC of 0.55 for predicting valence and 0.57 for pre-

dicting arousal on the validation set, while on the test set the CCC reaches 0.66

for valence and 0.57 for arousal. This result illustrates the robustness of the vi-

sual feature extractor. In terms of valence prediction, the model outperformed

the state-of-the-art models , even though only visual features are used as input.

Audio-only: the results (Table 5.7) show that the modified VGGish backbone

feature extractor for audio segments performs well, CCCs of 0.52 and 0.70 for

valence and arousal, respectively on the RECOLA test set. The achieved results

for arousal prediction match the existing state-of-the-art models when only au-

dio features are used (Table 5.8).

139



Chapter 5

Table 5.7 – RECOLA dataset results (in terms of CCC) for predicting arousal and
valence on train, development and test sets.

Valence Arousal
CCC Train Dev Test Train Dev Test
Visual only .6 .55 .66 .49 .57 .57
Audio only .55 .46 .52 .78 .80 .70
Audio-visual .69 .63 .74 .78 .81 .72

Table 5.8 – Performances of the proposed audio embedding network on the
RECOLA dataset comparing to existing state-of-the-art models. In parenthe-
sis are the performances obtained in the development set. —— : no results
reported in the original papers.

Models Arousal Valence
[192] .70 (.75) .31 (.41)
[234] .67 (.76) .36 (.48)
[190] ——(.80) ——(.40)
Proposed .70 (.80) .52 (.46)

5.6.4 Multimodal emotion recognition

In this section, the dataset described in section 5.5 is exploited, to evaluate the

performance of the proposed multimodal emotion recognition model in terms

of F-1 score, precision and recall metrics. This performance is compared to

those obtained with baseline models: Multiple Kernel Learning (MKL)[228] and

MPL Neural Network [229].

The first evaluation regards the MLP Neural Network-based regression model

for the multi-modal emotion fusion/recognition. This model predicts the prob-

abilities of 9 emotions considered in this study: happiness, sadness, anger, neu-

tral, energy, contempt, disgust, fear and surprise. The results of the MLP model

are obtained from the evaluation of 10 models. In these tests, a mean square

error of 0.024 and a mean absolute error of 0.095 are obtained.

The second evaluation of the emotion recognition based on decision-level

fusion exploiting the MLP neural network and the possibilistic logic. Table
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Table 5.9 – Multimodal emotion recognition performance versus selected fea-
tures

Mean Without Age Gender Culture All
F1 score Features features
Anger 0.38 0.55 0.52 0.64 0.89
Contempt - 0.00 0.00 - 0.00
Disgust 1.00 0.86 0.67 1.00 1.00
Energy 0.50 0.55 0.64 0.67 0.91
Fear 0.67 1.00 1.00 1.00 1.00
Happiness 0.69 0.72 0.76 0.74 0.97
Neutral 0.80 0.75 0.83 0.85 0.98
Surprise 0.55 0.67 0.57 0.46 0.90
Sadness - - - - -

5.9 shows the performance of the proposed multimodal emotion recognition

model based on the selected features such as age, gender and culture. The re-

ported results show that including the feature culture improves significantly

the recognition of the emotions fear and anger whereas the feature gender has

an impact on the recognition performance of the emotion happiness. One can

also observe that the feature age slightly improves the recognition performance

of the emotion surprise. Including all features significantly improves the per-

formance of the proposed multimodal emotion recognition in terms of F− 1

score from 0.67 to 0.95.

The performance of the emotion recognition based on decision-level fusion

is reported in Table 5.10 by varying the number of modalities from one to three.

One can observe that the multimodal emotion recognition model outperforms

all other modalities in all detected emotions. The modality face improves sig-

nificantly the recognition of the emotions happiness, anger, neutral and sur-

prise. The emotions disgust and fear are recognized in the multimodal emotion

recognition with F1 score equal to 1.0 where the emotions happiness and neu-
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Table 5.10 – Emotion recognition performance using the test set

mean MLP Neural Network + Possibilistic Logic
F-1 score Unimodal Bimodal Multimodal
Emotions T A F T+A T+F F+A A+T+F
Anger 0.42 0.24 0.48 0.79 0.69 0.55 0.89
Contempt 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Disgust 0.00 0.00 0.00 1.00 1.00 0.00 1.00
Energy 0.67 0.37 0.67 0.76 0.67 0.77 0.91
Fear 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Happiness 0.29 0.40 0.70 0.52 0.61 0.58 0.97
Neutral 0.56 0.51 0.75 0.71 0.79 0.78 0.98
Surprise 0.53 0.42 0.57 0.48 0.62 0.63 0.90
Sadness - - - - - - -
T:text, F:face, A:Audio

Figure 5.6 – Normalized confusion matrix of the multimodal emotion recogni-
tion at the low level

tral are recognized with F1 score equal to, respectively, 0.97 and 0.98. The con-
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Figure 5.7 – Emotions intensities transition during interactions

fusion matrix of the multimodal emotion recognition shows that happiness is

recognized as surprise, and surprise is recognized as energy, see. figure 5.6. The

positive emotions (happy, energy, surprise) are slightly misclassified by the pro-

posed multimodal emotion recognition model, due to the fact that the ground-

truth labels are strongly coupled such as a good surprise might cause happiness

and energy emotions. Consequently, the proposed approach exploits the n-ary

ontologies to discern the coupled emotions. The performances obtained with

Table 5.11 – Comparison to baseline models

Multimodal emotion models
Accuracy Baselines The proposed

MKL[228] MLP-NN [229] model
Multimodal Techniques 88.60% 85.45% 93.75%

the proposed multimodal emotion recognition model and the baseline models

(MLP neural network-MLP-NN and Multiple Kernel Learning-MKL) are shown

in Table 5.11. These results show that the proposed multimodal emotion recog-

nition model outperforms all the baseline models. Exploiting jointly possibilis-

tic logic and the MLP neural network allows improving the performance of the
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multimodal emotion recognition with an improvement of 8.3% in terms of the

mean accuracy in comparison with the model proposed in [229].

The average processing time to recognize emotions for each fold, during the

10 folds validation set, is 0.35s which is compatible with the dynamic nature of

an ambient intelligent environment for real time recognition.

5.6.5 Contextual emotion recognition

Figure 5.8 – Non-directly observable emotion recognition

First evaluation concerns the non-directly observable emotion recognition,

cf. figure 5.8. In the proposed scenario, two emotions are recognized using the

proposed approach: curious and confusion. For instance, the emotion "confu-

sion" is recognized by analyzing the meaning of a user’s query during a discus-

sion using NKRL language. Such types of emotions cannot be recognized using

only data-driven approaches or logic-based approaches.

Second evaluation focuses on the humans emotions management. Figure

5 shows the transition of the visitor’s emotions during the tour-guide experi-
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ments. One can observe that the interaction starts with the visitor person hav-

ing neutral feeling. The proposed human emotions management approach re-

duces significantly the neutral emotion to transit it to happy and surprise.

5.6.6 Evaluation of the hybrid approach

Real world experiments of the tour-guide scenario have been carried out at the

showroom of the ADP (Aeroport De Paris) company with the participation of ten

(10) persons of 15 min each. The participants have different cultures, different

accents and their ages vary from 22 years to 55 years. To evaluate the perfor-

mance of the proposed approach, three metrics were considered: the size of the

ontology, the runtime performance in terms of of the services response time,

and the qualitative feedback about satisfaction of each participant involved in

the experiments. In terms of runtime performance, three services were eval-

uated: emotion recognition and representation service, attention recognition

and representation service, and reasoning service.

Quantitative evaluation

Table 5.12 – Response Time of each service

Services Emotion recognition Attention Reasoning
Runtime (ms) & representation recognition service

Minimum time 4 20 0
Maximum time 247 33 17

Average time 75.25 27.33 6.55

• Knowledge base size: The HClass ontology includes, nowadays, more

than 9.000 concepts describing commensense knowledge covering a wide

range of concepts about human-centric applications, ambient environ-

ments, and everyday activities. This ontology can be extended automati-
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cally by other upper ontologies such as wordnet. The knowledge base of

the Pepper robot consists of instances of HTemp ontology whose number

increases during tests;

• Runtime performance: The different proposed services were evaluated

during experimentations on macintosh computer (3i core, 8 Go). Table

7.6 shows that the average response time of the reasoning service is less

than 7 ms. Moreover, the average time needed for Emotion recognition

and representation service is less than 76 ms. During the experimenta-

tion, the attention recognition and representation service runtime varies

between 20 ms and 33 ms.

Qualitative evaluation

A feedback is collected about the participants satisfaction after real world ex-

periments. The results showed that 98% of them were satisfied about the overall

assistance services in terms of intelligent guide tour. Besides, 80% of them were

satisfied about the response time of the robot during interactions. Participants

describe their experiences as enjoyable.

5.7 Conclusion

In this chapter, a hybrid contextual emotion recognition approach is proposed

for cognitive assistance services in ubiquitous environments. Its principle con-

sists of, on the one hand, the multimodal emotion recognition based on hybrid-

level fusion exploiting a multilayer perceptron neural network model and the

possibilistic logic, and on the other hand, the expressive NKRL knowledge rep-

resentation and reasoning exploiting both HClass and HTemp ontologies for

representing both commonsense knowledge and the ambient environment dy-
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namics, respectively. The performance of multimodal emotion recognition based

on hybrid-level fusion was enhanced in terms of F-1 score from 0.67 to 0.95 by

including the selected features: age, gender, and culture. The proposed ap-

proach is able to recognize perfectly the 9 observed emotions considered in this

study: happy, sad, anger, neutral, energy, contempt, disgust, fear, and surprise.

The proposed emotion contextual recognition and management approach is

able to recognize the non-directly observable emotions by contextualizing the

observed emotions. Seven non-directly observable emotions were considered

in this study: curious, confusion, upset, dislike, liking, positive surprise, and

negative surprise; these emotions are recognized accurately with an average F-

1 score 0.84. The scenario dedicated to the cognitive assistance of visitors of

smart devices showroom showed promising results in terms of relevance and

usefulness of the provided service.
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Chapter 6
Hybrid approach for human activities

recognition

6.1 Introduction

In this chapter, a novel hybrid framework for human activity recognition is pro-

posed. A combaniation of Spatio-Temporal Joint based Convolutional Neu-

ral Network (STJ-CNN) and Hierarchical Multichannel deep Residual Network

(HMResNet) is proposed to recognize human activities from both skeleton key-

points and multichannel IMUs’s raw data. Besides, a novel representation and

inference based on NKRL HClass and HTemp ontologies are proposed to rep-

resent and combine the detected human activities with the ambient events,

and infer the semantic context of the detected activity. The proposed approach

combines both the IMUs-based and the skeleton-based activity recognition to

overcome the misclassification error caused by sensor instability, visual occlu-

sions, and visual perspective changes.
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6.2 Proposed hybrid approach

Figure 6.1 – Hybrid approach for human activity recognition

6.2.1 Data Preprocessing

In this chapter, both the skeleton joints (keypoints) and IMUs raw-data are pre-

processed in three main steps: data selection, missing values linear interpola-

tion, and temporal segmentation. In the data selection step, the human skele-

ton is divided into five main parts: human’s head, right arm, left arm, right leg,

and left leg, such that each part consists of multiple joints as shown in Fig.6.2.

Besides, both of the linear and angular motion based on accelerometer and gy-

roscope raw data are selected from the IMUs raw data. In the segmentation

step, for each IMUs channel and each skeleton joint coordinate (i.e., X,Y,Z), to

create temporal-shifted windows, the overlapping sliding window technique is

exploited to partition the continuous input frames into fixed-size window of 1
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sec and overlapped with 0.25 sec. Both of the window size and the overlapping

ratio are defined based on the empirical experiments carried out on different

datasets [235, 236]. Finally, for each IMUs channel and each skeleton joint, the

missing data points are filled using polynomial interpolation.

6.2.2 STJ-CNN for skeleton-based activity recognition

In this chapter, To recognize human daily activities from skeleton joints (key-

points) in an AAL system, a Spatio-Temporal Joint based Convolutional Neu-

ral Network (STJ-CNN) is proposed. Compared to the previous approaches

[237, 238, 45, 27], STJ-CNN model consists of two different levels of fusion:

Joint-level and Body-Part level fusion networks. On one hand, for each joint

, a novel temporal multi-channels residual network (TRN) is exploited to com-

bine the temporal 3D (X,Y,Z) coordinates and extract low-level features from

that combination. On the other hand, for each body part (i.e., arm), an inverted

pyramid convolutional fusion layer (CFL) is used to combine the low-level fea-

tures of the joints (i.e., shoulder, elbow, hand) relative to that body part. Finally,

a fully connected network is exploited to fuse the different body parts features

and to recognize the human activity. The hierarchical fusion networks enable

the proposed approach to extract more complex features and help to train more

sparse and deep architectures.

Skeleton joint level fusion

At this level, for each skeleton joint coordinate (i.e., X,Y,Z), as shown in Fig.6.3,

the convolutional network building block (CBB) of the STJ-CNN model is pro-

posed. The CBB module consists of a 1D convolution layer followed by Batch

Normalization [239] and Rectified Linear Unit (ReLU) layers, which are exploited

to prevent the vanishing gradient problem, accelerate the model convergence,
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Figure 6.2 – Human Body Parts (red boxes) and Skeleton Joints (orange dots)
Selection

and improve the learning generalization. To build the coordinates feature ex-

tractor (CFE), a set of 3 CBB modules are created with incremental kernel sizes

(KS), and without strides to learn 64, 128, and 265 feature maps respectively,

as shown in Fig.6.3. To develop a deeper feature extractor (DFE), inspired by

ResNet convolution network [240], multiple CFE modules combined with resid-

ual shortcut connections are stacked together. The features transferred using

the residual shortcut connections are concatenated with the latent-space fea-

tures to create a new feature vector for the incoming convolutional layers. Fi-

nally, a Global Average Pooling layer is used to minimize the model over-fitting,

as shown in Fig.6.3. The optimal number of feature maps and kernel sizes are

defined based on the experimental trials applied on different datasets.
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Figure 6.3 – Skeleton Joint Deep Convolutional Residual Feature Extractor Net-
work

153



Chapter 6

Body parts level fusion

At this level, for each body part (i.e, arm), after extracting the feature vectors

of the relative skeleton joints (i.e, wrist, hand, elbow, shoulder) for that part,

the inverted pyramid convolution fusion layers (CFL) are applied on the con-

catenated features of the relative joints to extract high-level features, and re-

duce the number of learning parameters without degrading the overall accu-

racy [241], as shown in Fig.6.4. The proposed inverted pyramid architecture ex-

ploits the down-sampling technique without increasing the number of feature

maps (Fm) to represent the long-term association of different joints features,

while reducing the computation of the successive blocks.

As shown in Fig.6.4, the inverted pyramid architecture consists of 3 build-

ing blocks; each one consists of 3 convolution layers (conv) followed by max-

pooling (Mp) of kernel size 4 and stride (S) with 2 steps. The max-pooling oper-

ation is applied to create a new internal representation from the concatenated

features of the relevant joints for that body part. Finally, the stride operation is

applied to reduce the size of the generated representation by half.

Figure 6.4 – Inverted Pyramid Convolutional Network for body part feature ex-
traction
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Human activity classification

As shown in Fig.6.5, a bottleneck MLP (Multi-Layer Perceptron) network is ex-

ploited to classify the human activities based on the extracted features from

different body-parts fusion networks.

Figure 6.5 – Human Activity Classification Network

6.2.3 HMResNet for IMUs-based activity recognition

In this chapter, to recognize human daily activities based on IMUs raw-data,

a novel Hierarchical Multichannel deep Residual Network (HMResNet) is pro-

posed. Compared to the state of the art deep learning based approaches [242,

29, 30, 243], the proposed model is based on multilevel fusion layers, with resid-

ual shortcut connections, exploits the multichannel raw data to accurately rec-

ognize human daily activities. At the features fusion level, a Multichannel 1D

Deep Residual Network combined with a Bottleneck MLP neural network is

used, for each sensor channel, to automatically extract features from raw data.

At the decision fusion level, a multi-sensor fusion layer based on deep 1D ResNet

followed by a fully connected MLP neural network is exploited for recognizing

daily human activities.
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Feature Level Fusion

At the feature level fusion, a 1D deep ResNet is exploited to extract features

automatically from the preprocessed raw data, followed by a Bottleneck MLP

neural network to extract sensor level features as shown in Fig.6.6.

Deep Residual Network (ResNet)

Basically, the Deep Residual Network (ResNet ) developed by Microsoft research

labs, is exploited in [240] for image recognition. ResNet got the first place in the

five main tracks of COCO and ImageNet competitions, which cover challenges

on object recognition, image classification, and semantic segmentation. After-

wards, many studies started to evaluate ResNet performance in different fields

such as speech recognition [244], and question answering systems [245]. How-

ever, to our knowledge, a single attempt was proposed in [246] to use ResNet

for time-series classification.

Figure 6.6 – Daily Human Activity Recognition based-Hierarchal Multichannel
Deep Residual Network Model for robotic systems Exploiting N IMUs

In the proposed model, the basic block of ResNet is 1D convolutional layer
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Figure 6.7 – Multilayer Convolution Feature Extractor Unit (MCFEU)

Figure 6.8 – Deep Residual Network Based on Stacked MCFEU units
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with kernel (Wn) of size (s) followed by Batch Normalization (BN) [239] and

Rectified Linear Unit (ReLU) layers. To avoid the problem of the vanishing

gradient, ReLU activation function is used. The Batch normalization (BN) is

applied to speed up the model convergence and improve the model general-

ization. Inspired by ResNet152 deep model [240], a plain network based on 3

basic blocks is developed with different 1D kernel sizes, without strides, with

32, 64, and 64 feature maps respectively to create Multilayer Convolution Fea-

ture Extractor Unit (MCFEU) as shown in Fig.6.7. Both the kernel sizes and the

number of feature maps have been chosen based on the empirical experiments

which were conducted on different datasets [29, 47]. MCFEU is exploited to ex-

tract multilevel features from time-series preprocessed raw data. The complete

deep ResNet model is developed by stacking multiple MCFEU units, besides

adding residual shortcut connection between the MCFEU units as shown in

Fig.6.8. The shortcut connections are exploited to ensure that every MCFEU

unit is learning more complex features and to solve the problem of the van-

ishing gradient for deep networks [240]. Before feeding the extracted features

to the decision level fusion layer, a Global Average Pooling (GAP) layer [247]

is used to minimize the model overfitting by reducing the total number of the

learned parameters.

MLP Neural Network for Sensor Level Fusion

In this chapter, for every single IMU, a bottleneck MLP neural network is ex-

ploited as a fusion layer for the sensor channels as shown in Fig.6.6. The bot-

tleneck MLP neural network acts as a nonlinear dimension reduction module,

used to extract low-dimensional features from the integrated deep ResNet out-

put features. Finally, the outputs of all bottleneck MLP neural networks are

integrated into a single feature vector, which is fed to the decision level fusion

158



layer. In this work, the bottleneck MLP network includes two fully connected

hidden layers where each layer consists of 1000 nodes. The Dropout algorithm

[157] is applied on 30% of the nodes to prevent the network from overfitting

the training features. To break the symmetry of the neurons performance, The

network weights are randomly initialized with small values close to zero based

on normal distribution. For every node, the Rectified Linear Unit (ReLU) is ex-

ploited as an activation function.

Decision level fusion

At decision level fusion, both the 1D deep ResNet and the Bottleneck MLP neu-

ral networks are exploited to recognize daily human activities as shown in Fig.6.6.

The Bottleneck MLP neural network is composed of three fully connected lay-

ers. In the hidden layers, each layer consists of 1000 nodes which are based

on ReLU activation function. The output layer consists of a number of nodes

equal to the total number of target activities. Besides, the softmax activation

function is used for the output layer. During the training phase, the categorical

cross entropy cost function is exploited to calculate the difference between the

target labels and the predicted labels. This difference is exploited by the back-

propagation algorithm [248] to update the parameters to be learned of both the

feature level and decision level layers during the training phase. Finally, The

Adam algorithm [249] is used for optimizing the MLP categorical cross-entropy

cost function.

6.2.4 Contextual activity detection

To enable an AAL system to serve humans in an environment populated with

different objects, it should perceive both the ambient environment status and

the human activities. Therefore, a knowledge representation engine is required
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to model different environmental events (i.e. on/off coffee machine, on/off

shower) and human activities (i.e. washing dishes, drink, walk). Besides, a

reasoning engine is required to infer the contextual activities with respect to

the observed situation. In this section, NKRL knowledge representation is ex-

ploited to model both the ambient events and the human activities. Besides,

NKRL reasoning engine is used to exploit the represented event and activities

to detect the contextual activities.

Daily activities knowledge representation

In this work, an ontological model based on the Narrative Knowledge Repre-

sentation Language (NKRL) [250] is proposed to model both the st ati c and

d ynami c characteristics of any entity populating the AAL environment. The

HClass ontology is used to model the static commonsense knowledge for human-

centered applications such as Human, Activity, Object, etc. This ontology is a

binary ontology characterized by the common properties relationships of se-

mantic web ontologies to describe the generalization / specialization between

concepts. Besides, The HTemp ontology is exploited to model the dynamic

and temporal ambient events that can be inferred or observed by the AAL sys-

tem. Besides, The HTemp ontology is used to represent the human activities

detected from different modalities (IMUs and skeleton key-points).

NKRL daily activities-aware reasoning

The NKRL reasoning engine exploits both the "transformation and the hypoth-

esis rules" to infer, on the one hand, the implicit relations between the different

predicative occurrences, on the other hand, to infer the chronological/semantic

context. In other words, the NKRL reasoning engine allows exploiting the am-

bient environment temporal representation (i.e. Fridge is opened at 10:00 am,
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coffee machine is switched on at 10:02 am, floor cleaning robot is fully charged

at 10:15 am) and combining it with the temporal representation of the recog-

nized activities from the HMResNet and STJ-CNN models (i.e. Person is cook-

ing at 10:09 am) to infer a new activity (i.e. Person is preparing breakfast).

In HTemp ontology, the time interval ([00h,12h]) are associated with a pre-

defined time marks ("morning_") which are predefined as HClass concepts.

Consequently, based on the temporal-axioms (i.e., After, Before), the NKRL en-

gine allows inferring the chronological/semantic contexts by binding different

predicative occurrences, see Eq.6.1, which represents the fact that a predicative

occurrence Y occurred after a predicative occurrence X.

AFTER(X,Y) (6.1)

In this study, the contextual human activities can be predicted by inferring

the chronological order of the associated predicative occurrences. For example,

a daily habit for a human called "Steve", who is usually cooking before clean-

ing the kitchen. As shown in table.6.1, the NKRL represents the main temporal

events such as "Every morning, Steve is cooking" and "Every morning, Steve is

cleaning the kitchen" with the predicative occurrences "E.occ1" and "E.occ2".

E.occ1: EXPERIENCE
SUBJ STEVE_1 : KITCHEN_1
OBJ COORD (SPECIF(cooking_)

SPECIF(during_ morning_))
date-1: 15/09/2019 10:00:00
date-2:

Consequently, as shown in Eq. 6.2, the NKRL reasoning engine allows in-

ferring the binding occurrences "Steve is cleaning the kitchen after cooking"

from the chronological order of the observed events and activities. Besides,
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E.occ2: EXPERIENCE
SUBJ STEVE_1 : KITCHEN_1
OBJ COORD (SPECIF(cleaning_)

SPECIF(during_ morning_) )
date-1: 15/09/2019 10:23:13
date-2:

Table 6.1 – NKRL Predicative Occurrences Representation

the NKRL reasoning engine allows inferring the implicit activity "preparing his

breakfast" from the temporal information associated with the predicative oc-

currences "E.occ1".

AFTER(E.occ1,E.occ2) (6.2)

Finally, to provide an assistive service for a human such as cleaning the

kitchen floor, the NKRL transformation rules are used to infer the contextual ac-

tion to be taken by the robot. As shown in table 6.2, the NKRL inference engine

used the detected activities cooking, cleaning to infer the currently required

action to be taken by the robot " clean_kitchen_". In this example, a robot

will wait for a human to finish cooking activity. Then, once the human starts

cleaning the floor, the robot will start "clean_kitchen_" task to assist the human.

The human behavior "cleaning at morning, after cooking" is represented using

the predicate AFTER. The operator COORD appears in the antecedent of the

transformation rule, to aggregate and combine the detected activities (cooking,

cleaning) and the observed ambient event that occurred ("battery_charged_")).

Finally, the consequent part consists of the required action to be taken by the

robot ("clean_kitchen_")).
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Antecedent:
COORD(b1 e3)
b1 AFTER(e1 e2)
e1: EXPERIENCE SUBJ var1 :

OBJ COORD (SPECIF(cooking_ )
SPECIF(during_ morning_) )

var1:human_being
e2: EXPERIENCE SUBJ var1 :

OBJ COORD (SPECIF(cleaning_)
SPECIF(during_ morning_) )

var1:human_being
e3: EXPERIENCE SUBJ var1 :

OBJ SPECIF(battery_charged_)
date-1: var2 date-2:

var1:robot_
var2:morning_

Consequent:
a1: PRODUCE SUB var1:

OBJ SPECIF(task_clean_kitchen)
var1:robot_

Table 6.2 – Transformation rule to provide an assistive service for human

6.3 Experiments

The proposed hybrid approach for human activity recognition is evaluated in

three phases: 1) on one hand, the STJ-CNN model is evaluated using Daily

Home Life Activity dataset (DAHLIA) [235] and NTU RGB+D dataset [251]. ;

2) The HMResNet model is evaluated using HARS dataset [252] and PH12-ARI

Sensors dataset [47].; 3) on the other hand, to validate the contextual activities

detection in real-time scenarios, an assistive service scenario is implemented.
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6.3.1 Datasets

Daily Home Life Activity dataset (DAHLIA)

Daily Home Life Activity Dataset (DAHLIA) [235] is the most comprehensive

public dataset for recognizing human daily living activities. DAHLIA dataset

consists of 44 different subjects participated in recording 51 different sessions

in a fully monitored kitchen with 3 different Kinect depth sensors. For each

session, RGB videos, depth maps, skeleton data, and body indices are recorded

for 40 minutes. Besides, a set of 7 different daily activities (cooking, wash-

ing dishes, eating, clearing table, working, housework, and laying) are labeled.

In this study, the skeleton data, which consists of 3D locations of 25 human

skeleton-joints in the 3D point space are used.

NTU RGB+D dataset

NTU RGB+D dataset [236] consists of RGB videos, infrared videos , depth maps,

and 3D skeleton data of 60 different activities captured by 3 different Kinect

depth sensors. These activities are split into three main categories: daily, mu-

tual, and health related activities. The activities were performed by 40 different

subjects, which produced 56,880 activity samples in total. In this study, the

skeleton data are used, which consists of 3D locations of 25 human skeleton-

joints in the 3D point space. The main evaluation protocols proposed in [251]

are exploited for both cross-subject and cross-views. Regarding the cross-subject

evaluation, the activities performed by the first 20 subjects (50%) are used for

training, while the activities performed by the remaining 20 subjects (50%) are

used as a testing set. Regarding the cross-view evaluation, the activities cap-

tured by the first 2 Kinect sensors are used for training, while those activities

captured by the last Kinect are used as a testing set.
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HARS Dataset

This dataset contains data from six activities, collected using a smartphone

with a built-in tri-axial accelerometer/gyroscope inertial sensor. Activities were

performed by 30 volunteer subjects holding a smartphone in a pocket tight

around their waist. The activities are a mix of periodic and static activities

such as WALKING, WALKING UPSTAIRS, WALKING DOWNSTAIRS, SITTING,

STANDING, and LAYING. The data were sampled at 50Hz and divided into fixed

length windows of 128 samples with 50% overlap. Butterworth low-pass filter

is used to separate body acceleration and gravity from the accelerometer raw

data. The data were separated into a training set with 7352 windows from 21

randomly selected subjects, and testing set of the remaining 2947 windows.

PH12-ARI dataset

This dataset contains data collected from three IMUs sensors placed on the

chest, the right thigh and the left ankle of the subject. Each IMUs sensor has

built-in inertial sensor with a tri-axial accelerometer, a tri-axial gyroscope and

a tri-axial magnetometer. The dataset consists of 12 different activities per-

formed by 6 volunteer subjects. The activities are a mix of periodic and static

activities with transitional activities such as: A1:WALKING DOWNSTAIRS, A2:

STANDING, A3:SITTING DOWN, A4:SITTING, A5:FROM SITTING TO SITTING

ON THE GROUND, A6:SITTING ON THE GROUND, A7:LYING DOWN, A8:LYING,

A9:FROM LYING TO SITTING ON THE GROUND, A10:STANDING UP, A11:WALKING,

and A12:WALKING UPSTAIRS. The dataset was sampled at 25Hz and no sliding

window was applied to the raw data.
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6.3.2 STJ-CNN model evaluation

In this section, the performance of the proposed STJ-CNN model is compared

with those obtained with different state-of-the-art models on both DAHLIA and

NTU RGB+D datasets.

Daily Home Life Activity Dataset (DAHLIA)

View-1 View-2 View-3 Cross-View
DOHT [235] 0.58 0.60 0.71 0.31
ELS [235] 0.18 0.26 0.55 0.32
Plain-CNN 0.624 0.667 0.751 0.305
STJ-CNN [ours] 0.823 0.831 0.847 0.382

Table 6.3 – Performance comparison of the proposed STJ-CNN model against
the state-of-the-art models on DAHLIA dataset in F-score

The F-score results obtained with the Deeply Optimized Hough Transform

(DOHT) [235] model, Efficient Linear Search (ELS) [235] model, Plain-CNN,

and the proposed STJ-CNN model, are shown in Table 6.3. To ensure a fair com-

parison with the baseline models, all models are trained only using the skeleton

raw data from DAHLIA dataset. From the F-score results, the STJ-CNN model

substantially outperforms the baseline models and leads to obtain the best F-

score for both single and cross views configurations. As shown in Table 6.3,

compared to the best classical baseline model (DOHT), the F-score is improved

by 7.2%, 13%, 23%, and 24% for Cross-View, View3, View2, and View1 respec-

tively. Compared to the STJ-CNN model, the Plain-CNN model input vector is a

concatenation of all skeleton joints without any body-parts fusion layers. Con-

sequently, the proposed STJ-CNN model allows obtaining an improvement of

7.7%, 9.6%, 16.4%, and 19.9% for Cross-View, View3, View2, and View1 respec-

tively. The F-score obtained with the Cross-View testing configuration is sub-
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stantially decreased for all models, because the visual features learned from

different views are not identical.

NTU RGB+D dataset

Model Cross-View Cross-Subject
HBRNN-L [253] 0.64 0.591

Part-aware LSTM [251] 0.703 0.629
Trust Gate ST-LSTM [236] 0.777 0.692

Two-stream RNN [254] 0.795 0.713
STA-LSTM [255] 0.812 0.734

Ensemble TS-LSTM [256] 0.813 0.746
Visualization CNN [257] 0.826 0.760

VA-LSTM [258] 0.876 0.794
ST-GCN [27] 0.883 0.815
HCN [259] 0.911 0.865

MS-G3D Net [260] 0.962 0.915
STJ-CNN [ours] 0.928 0.876

Table 6.4 – Performance comparison of the proposed STJ-CNN model against
the state-of-the-art models on NTU RGB+D dataset in accuracy

As shown in Table 6.4, the proposed STJ-CNN model outperforms the-state-

of-the-art models and achieves the best accuracy of 92.8% and 87.6% for both

cross-views and cross-subjects respectively. These results show the robustness

of the STJ-CNN model compared to the baseline models, which are based on

different deep architectures such as Recurrent Neural Network (RNN) based

models [Two-stream RNN [254], Part-aware LSTM [251], Trust Gate Spatio-Temporal

LSTM (SP-LSTM) [236], and Ensemble Temporal Sliding LSTM (TS-LSTM) [256]],

and Convolution Neural Networks (CNN) based models [Visualization CNN

[257], Spatio-Temporal Graph Convolutional Networks (ST-GCN) [27], Hierar-

chical Co-occurrence Network (HCN) [259]]. The HCN [259] was designed to

learn the global co-occurrences from the 3D skeleton joints data. As the pro-
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posed STJ-CNN model, the HCN [259] handles each skeleton joint as a separate

input channel. In contrast to the proposed model, a plain convolution layer is

exploited as a fusion layer and to learn the global co-occurrence features for all

joints. As shown in Table 6.4, compared to HCN [259], the proposed STJ-CNN

model allows obtaining an improvement of 1.7% and 1.1% for cross-view and

cross-subject evaluations respectively. The results shows that the hierarchical

features learned from the different fusion layers are more relative and represen-

tative than the global co-occurrence features learn by the HCN model. Finally,

compared to the state-of-the-art Disentangling and Unifying Graph Convolu-

tions Network (MS-G3D Net), the proposed model achieves comparable per-

formance in terms of cross subject evaluation. Based on the latter results, the

STJ-CNN model shows a good performance on two different datasets from two

different domains, which reflects the stability of the proposed model. Besides,

the ability of the proposed model to classify different daily activities, from mul-

tiple individual and cross views for different subjects, reflects the robustness

of the proposed model against the occlusion and noisy skeletal joint data. The

multi-level fusion for different skeleton joints and for different body parts com-

bined with residual shortcut connections allows the extraction of more com-

plex features than hand-crafted, plain CNN, and global co-occurrence features.

Finally, the STJ-CNN model shows better performance than both the classical

and deep learning baseline models for recognizing human daily activities based

on skeleton-joints data.

6.3.3 HMResNet model evaluation

The HMResNet model is evaluated against the following baseline models : (i)

k-NN with time domain and frequency domain features [47] using the PH12-

ARI dataset. (ii) Convnet combined with MLP neural network applied to raw
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Figure 6.9 – Confusion Matrix obtained by HMResNet using PH12-ARI dataset

data [29], and Convnet with tFFT features [29], using the HARS dataset. The

architecture shown in Fig.6.6 is used for both datasets, the only differences are

the number of input sensors and the number of output classes since the input

and output of the datasets are different. Both of the features level deep net-

works and the decision level deep networks are trained together to ensure the

consistency of the learning process.

The obtained results show that the proposed HMResNet model significantly

outperforms the baseline models and achieves better classification accuracy

performance compared to the best baseline model (ConvNet). From confu-

sion matrices, one can observe a significant improvement in performance ob-

tained with the proposed model for static activities (SITTING, STANDING, and

LAYING) which constitute a major impediment for the best baseline model to
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Table 6.5 – HARS dataset Accuracy Evaluation

Method Accuarcy (%)
Baseline Models [29]

PCA+MLP 57.10
HCF+NB 74.32
HCF+J48 83.02

SDAE+MLP(DBN) 87.77
HCF+ANN 91.08
HCF+SVM 94.61

Deep Learning Models [29]
Convnet (inverted pyramid archi)+MLP 94.79

tFFT+Convnet ((J(L1))=200) 95.75
Proposed Model

Hierarchal Multichannel Deep ResNet 97.619

classify them correctly. In the case of LAYING activity, the number of the cor-

rectly classified classes is improved by 12.3% with no misclassified classes. For

STANDING activity, the number of the correctly classified classes is improved

by 4.8%, Besides the number of misclassified classes decreased by 4.5%. For

SITTING activity, the number of the correctly classified classes is improved by

0.4%, Besides the number of misclassified classes is decreased by 0.6%.

These results show that, for both static and periodic activities, the proposed

model shows the hierarchal architecture with multilevel fusion layers combined

with residual shortcut connections allows extracting more relevant features than

both the hand engineered ones and the plain CNN learned ones. In addition,

the proposed model is more accurate than both the traditional machine learn-

ing and deep learning baseline models for recognizing human daily activities

based on a single tri-axial accelerometer/gyroscope inertial sensor.

To evaluate the extendability and the robustness of the proposed model re-

gardless of the hardware configuration, the proposed model was benchmarked

against another baseline models using PH12-ARI dataset. In terms of average
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Table 6.6 – HAR Using HARS dataset Confusion Matrix Evaluation

ConvNet Predicted classes Proposed Model Predicted classes
Actual class W WU WD Si St L W WU WD Si St L

Walking 491 3 2 0 0 0 496 0 0 0 0 0
W. upstairs 0 471 0 0 0 0 3 468 0 0 0 0

W. downstairs 0 0 420 0 0 0 2 0 417 0 1 0
Sitting 0 0 0 436 34 21 0 1 0 438 52 0

Standing 0 1 0 24 496 11 0 0 0 10 522 0
Laying 0 0 0 43 23 471 0 0 0 0 0 537

precision-recall values. The performance of the proposed model in terms of

precision and recall metrics and those obtained with the eight base line models

are shown in Table 6.7.

Among the baseline models, the K-nearest neighbor (k-NN) model applied

to time-domain, and frequency-domain features achieves the best performance

in terms of average recall, and precision values, followed by Random Forest

model (RF), then k-NN model without features. Finally, the Supervised Learn-

ing Gaussian Mixture Model (SLGMM) without features achieves relatively the

worst results. As shown in Table 6.7, the proposed model outperforms the base-

line models which are evaluated on raw data as well as on the hand-crafted fea-

tures. The obtained results show that the proposed model improves the values

of the precision and recall to be 99.22% and 98.88% respectively, while those ob-

tained with the baselines methods vary from 69.88% to 98.85% and from 69.99%

to 98.85%. The best results are highlighted in bold for in the table. The pro-

posed model achieves almost perfect results as shown in the confusion matrix

in Fig.6.9.

Because of the small size of the dataset, the obtained results show a slight

difference in performance when comparing the the proposed (HMResNet) model

to the best baseline (k-NN with features) model. Even though the small differ-

ence, the extraction of features phase requires integrating additional models

and algorithms to the baseline models. Besides, the feature extraction phase
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needs extra computation time, which is not practical for real-time applications.

From the latter empirical evaluation experiments, one can observe the pro-

posed HMResNet model outperforms the baseline models, extract more rele-

vant features, and recognize periodic, transitional, and static daily human ac-

tivities from single IMU up to 3 IMUs sensors, which shows the robustness of

the proposed model regardless of the hardware configuration.

Table 6.7 – PH12-ARI dataset Evaluation

Model Precision(%) Recall(%)
Without features [47]

KNN 94.62 94.57
RF 83.46 82.28

SVM 90.33 90.98
SLGMM 69.88 69.99

With features [47]
KNN 98.85 98.85

RF 98.25 98.24
SVM 92.90 93.15

SLGMM 73.61 74.44
Proposed Model

Deep Multichannel ResNet 99.22 98.88

6.4 Usecase: Cognitive daily exercises coaching

To validate the proposed approach for real-time activity recognition, a use-

case of cognitive daily exercises coaching for a diabetic person is studied, see

Fig.6.10. This use case consists of a robot, called Pepper, that is acting as a

training coach of a diabetic person, called Alice. Indeed, Pepper recognizes

and guides the daily exercises which were prescribed by a doctor for Alice. This

work is reported in a multimedia video that is available on LISSI’s Website 1.

1http://www.lissi.fr/videos/HMResNet.php
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Figure 6.10 – Scene extracted from the smart home environment

During the experiment, The proposed approach was evaluated by streaming

6974 sliding windows of 1.5 seconds and the average processing time to recog-

nize a single activity was 0.2 seconds. Therefore, The processing time is reason-

ably fitting the constraints of real-time activity recognition. This use case is a

part of MEDOLUTION European project 2 which is funded by ITEA3 Research,

Development and Innovation (RDI) program.

6.5 Conclusion

In this chapter, a novel hybrid framework for human activity recognition is pro-

posed. A combaniation of Spatio-Temporal Joint based Convolutional Neu-

ral Network (STJ-CNN) and Hierarchical Multichannel deep Residual Network

(HMResNet) is proposed to recognize human activities from both skeleton key-

points and multichannel IMUs’s raw data. Besides, a novel representation and

2https://itea3.org/project/medolution.html

173



Chapter 6

inference based on NKRL HClass and HTemp ontologies are proposed to rep-

resent and combine the detected human activities with the ambient events,

and infer the semantic context of the detected activity. The proposed approach

combines both the IMUs-based and the skeleton-based activity recognition to

overcome the misclassification error caused by sensor instability, visual occlu-

sions, and visual perspective changes. Compared to the baseline models, the

performance of the STJ-CNN model shows a significant improvement up to

24% in terms of F-score on DAHLIA dataset. The performance of the daily hu-

man activity recognition based on HMResNet model is shown through two ac-

tivity datasets. The proposed automatic features extraction model is more rel-

evant than both the hand engineered features and the plain CNN learned fea-

tures. It is able to recognize perfectly, in terms of precision, the static activities:

SITTING, STANDING, and LAYING. The obtained results demonstrated that the

proposed model outperforms baseline methods exploiting the same datasets

Finally, a use-case for coaching a dependent person is carried out.
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Hybrid approach for human activity

anticipation

7.1 Introduction

In this chapter, a novel hybrid approach for human activity recognition and

intention anticipation from partially observed environment is proposed. The

proposed hybrid approach combines both of human ego-centric and third-

person vision perspectives to accurately recognize and proactively anticipate

human daily activities. At the low-level, a modified YOLO (You Only Look Once)

deep model combined with GLCM-CNN ( Gray-Level Co-Occurrence Matrix -

Convolution Neural Network) deep Auto-Encoder model are proposed for pre-

cise hand detection in the cluttered environments. At the high-level, ConceptNet-

based [203] ontology combined with probabilistic reasoning are proposed to

represent the ambient-environment and infer the implicit relations between

the ambient-objects and the human activities. To evaluate the proposed ap-

proach, we collected two novel datasets for human hand detection in the clut-

tered environment: DHA-11TH (Diverse Hands) and SKNS (skin/non-skin tex-
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ture) datasets.

7.2 Proposed approach

Figure 7.1 – Proposed hybrid approach for huamn activity recognition and in-
tention anticipation

In this chapter, as shown in Fig.7.1, a novel approach for human activity recog-

nition and intention anticipation is proposed. The role of the physical layer is
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to monitor the ambient environment from two different perspectives: human

ego-centric and third-person vision perspectives. An the low level layer, the

output of the physical layer is processed to detect indoor place, ambient objects

populating the environment, and the precise hand locations. Besides, a Muti-

Perspectives Object-to-Object mapping model is used to associate the similar

objects recognized from different perspectives to solve the problem of visual

perception uncertainty. Finally, a Hand-to-Object mapping model is used to

analyze the spatial relationships between human hands and ambient objects

to solve the problem of the partial observations of an environment. At the

high level layer, the human activity and the object contextual affordances are

predicted using a probabilistic reasoning engine combined with ConceptNet-

based ontology.

7.2.1 Human Hand Detection in Cluttered Environments

In the proposed approach, the problem of detecting human hands from an ego-

centric vision camera worn by the user consists of two main steps: 1) the initial

detection of human hands 2D bounding boxes; 2) the automatic false-positive

correction based on the elimination of non-skin-texture bounding boxes as

shown in Fig.7.2.

YOLOv2 (You Only Look Once version 2) [261] model is a unified end-to-

end object detection deep learning architecture that is extremely fast compared

to the state of the art models [262, 263]. Compared to the state-of-the-art ob-

ject detection models such as RCNN [262] and Faster-RCNN [263], in YOLOv2,

the problem of object detection and localization was framed as an end-to-end

regression problem starting from the pixel-based processing to the bounding

boxes localization. Consequently, the YOLOv2 network architecture has suc-

cessfully solved the problems encountered when using regions-proposal based
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models [262, 263] and more precisely 1) the need of generating the region-

proposals boxes thereafter execute independently the classification stage; 2)

the need of a post-processing stage to refine the detected boxes, eliminate the

duplication, and re-score the boxes based on the ambient objects in the scene;

3) the partial view of the entire image during the training makes the region-

proposal based models miss the global contextual information of the classes

besides their appearance. Based on this analysis, the YOLOv2 model is ex-

ploited in this chapter as a backbone model to detect human hands in clut-

tered environments. However, as shown in Fig.7.2.(c), YOLOv2 generates a lot

of false-positive human hand boxes because of the variety of skin colors, clut-

tered and skin-like backgrounds, and the highly deformable shapes of human

hands. As shown in Fig.7.2.(e), to eliminate the false positive boxes, a GLCM-

CNN deep Auto-Encoder is proposed to verify whether the proposed bounding

box contains skin-texture or not.

To enable the YOLOv2 model to detect human hands of different races, gen-

ders, and ages, the last convolution layer of the model is replaced by a novel Su-

pervised GLCM-CNN Auto-Encoder network. latter allows classifying the skin-

texture of the proposed human hands bounding boxes. The GLCM-CNN net-

work consists of 3 main blocks: 1) GLCM texture extraction network 2) CNN-

based Encoder-Decoder network for extracting latent space features; 3) Multi-

layer perceptron (MLP) fully connected network for classifying the latent space

features to skin or non-skin labels as shown in Fig.7.2.(e).

The Gray-Level Co-Occurrence Matrix (GLCM) features were originally pro-

posed in [264] to extract textural features from remotely sensed satellite images.

GLC matrix is a second-order statistical representation that describes the rela-

tionship between gray level neighboring pixels by calculating their joint prob-

abilities [264]. In other words, a GLC matrix represents the occurrence of the
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pixel-pairs of an image in a horizontal, vertical, or diagonal direction. In [264],

a set of 14 different GLCM features was proposed such as contrast, homogene-

ity, dissimilarity, correlation, and energy. In this study, the input bounding box

image is resized to 224x224 pixels image, then a 7x7 pixels sliding window with

a stride of 3 pixels is used to create the GLCM-CNN input sub-image patches.

For each sub-image in the input patch, the GLCM pooling layer is applied to

extract the homogeneity (see Eq.7.1), and the energy (see Eq.7.2) feature maps.

In one hand, homogeneity is the closeness of the distribution of elements in

the GLCM to the GLCM diagonal. In other hands, energy is also known as uni-

formity, uniformity of energy, and angular second moment. Finally, both of the

original RGB bounding box image and the GLCM homogeneity, and the energy

feature maps are combined through a series of convolutional layers, as shown

in Fig.7.3.

homog enei t y =∑
i , j

P(i , j )

1+∥∥i − j
∥∥ (7.1)

ener g y =
√∑

i , j
P2(i , j ) (7.2)

In this thesis, a new loss function combining both YOLOv2 and GLCM-CNN

loss functions is proposed to train both of YOLOv2 and the GLCM-CNN Auto-

Encoder simultaneously, see Eq.7.3. On one hand, the YOLOv2 loss function

(see Eq.7.4) consists of multi-part loss equations as follow: 1) the loss of the

predicted bounding box position (x, y), where: 1i j denotes that the j th bound-

ing box in cell i is responsible for the object prediction. ; 2) the loss of the pre-

dicted bounding box width and height (w,h); 3) the loss of the predicted confi-

dence score where C denotes the confidence score, Ĉ the IOU of the predicted

bounding box with the ground truth, and 1
noob j
i j the inverse of 1i j ; 4) the object
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classification loss where 1
ob j
i equals 1 when there is an object in the cell, and 0

otherwise. Consequently, the classification error is only penalized if an object

exists inside the cell. Finally, the λ parameters are exploited as weighting pa-

rameters of the entire loss function to increase model stability where λcoor d = 5

and λnoob j = 0.5 [261]. On the other hand, the GLCM-CNN Auto-Encoder loss

function (see Eq.7.5) consists of two-parts loss equations as follow: 1) the clas-

sification categorical cross-entropy loss function of the MLP neural network

where: lbli denotes the ground truth skin-label of the bounding box image and

ˆlbli denotes the predicted skin-label of the bounding box image; 2) the recon-

struction loss function of the decoder network where the mean-squared error

between the bounding box image pixels i mg i
[r,c] and the reconstructed image

pixels ˆi mg i
[r,c], is calculated. For each detected bounding box image from the

YOLOv2 model, 1Hand
i equals 1 if the bounding box contains a human hand im-

age and 0 otherwise.

In this study, both of YOLOv2 and GLCM-CNN models are pre-trained inde-

pendently on both EgoHands [265] and Skin/Non-Skin data-sets respectively.

Besides, the entire model is fine-tuned on both Viva-Hands [266] and DHA-

11Th (Diverse Hands) datasets to enable the model to detect human hands

in the cluttered environments. Finally, the model is used to localize human

hands from both the human ego-centric and third-person vision perspectives,

as shown in Fig.7.1.

7.2.2 Indoor-Place and Ambient-Objects Detection

In this paper, a Residual deep neural network (ResNet) [155] is used to recog-

nize the indoor places such as living-room, bed-room, kitchen, and office. The

ResNet basic building block (residual block) concatenates 4 (3x3) convolution

layers; each one consists of 64 feature maps of (7x7) pixels used. These feature
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Figure 7.2 – GLCM-YOLO model: texture-based hand detection deep learning
model. a) Input RGB video frame. b) YOLOv2 state-of-art object detection
model for hand localization. c) Proposed regions of interest. d) Content of each
bounding box. e) Stacked auto-encoder combined with MLP neural network
for texture classification. f) Reconstructed image from the decoder network. g)
Classification of bounding boxes labels

Figure 7.3 – GLCM skin-texture verification deep network architecture
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maps are used as low-level feature extractors and are followed by (3x3) pixels

max-pooling layer with a stride of 2 pixels to down-sample the number of the

extracted features. The ResNet model concatenates 16 basic building blocks

(residual blocks) to extract latent space features. To reduce the total number of

learned parameters, a Global Average Pooling (GAP) layer [247] is used. Finally,

a fully connected neural network with 2 hidden layers is used as a classification

network. In this study, the ResNet model is pre-trained on the Place365 dataset

[267] which consists of 2 million images of indoor and outdoor places. Finally,

The resulting model is used to recognize the indoor places from both the hu-

man ego-centric and third-person vision perspectives, as shown in Fig.7.1.

To detect the ambient objects, YOLOv2 [261] deep neural network is used.

The object detector is pre-trained on Microsoft COCO [268] (Common Objects

in Context) dataset which consists of 2.5 million images of 80 different objects.

Finally, the ambient objects detector is used to recognize objects populating the

environment from both the human ego-centric and third-person vision per-

spectives, as shown in Fig.7.1.

LossYOLO−GLCM = LossYOLO +LossGLCM (7.3)
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LossYOLO =λcoor d

S2∑
i=0

B∑
j=0

1
ob j
i j [(xi − x̂i )2 + (yi − ŷi )2]

+λcoor d

S2∑
i=0

B∑
j=0

1
ob j
i j [(

p
wi −

√
ŵi )2

+ (
√

hi −
√

ĥi )2]

+
S2∑

i=0

B∑
j=0

1
ob j
i j (Ci − Ĉi )2

+λnoob j

S2∑
i=0

B∑
j=0

1
noob j
i j (Ci − Ĉi )2

+
S2∑

i=0
1

ob j
i

∑
c∈cl asses

(pi (c)− p̂i (c))2

(7.4)

LossGLCM =
B∑

i=0
1Hand

i [−l bli log( ˆlbli )

+ 1

2m

m∑
r=0

m∑
c=0

(i mg i
[r,c] − ˆi mg i

[r,c])
2]

(7.5)

7.2.3 Multi-Perspectives Object-to-Object Mapping

In this thesis, a ResNet-Siamese deep network deep network is proposed to map

and associate the ambient objects detected from both human ego-centric and

robot vision perspectives, as shown in Fig.7.4. The ResNet-Siamese model al-

lows measuring the visual similarity of the detected objects and associate sim-

ilar ones. Basically, the Siamense network model was proposed in [269] for

hand-written signature verification. The input module of the Siamense net-

work consists of two identical neural networks to extract latent space features

from the input image-pairs. Thereafter, the outputs of these two neural net-

works are combined to calculate the euclidean distance between the extracted
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Figure 7.4 – ResNet-Siamense Network for Objects Similarity Measurement

feature vectors to measure the similarity of the input image-pairs. Compared

to Siamense-CNN model [270], the proposed ResNet-Siamense Network (RSN)

model integrates the residual shortcut connections within the Siamense CNN

modules to extract more representative features, and solve the problem of the

vanishing gradient encountered with deep networks [240].

The basic building block of the RSN model consists of a 2D convolution

layer followed by Batch Normalization [239] and Rectified Linear Unit (ReLU)

layers, which are used to prevent the vanishing gradient problem, accelerate

the model convergence, and improve the learning generalization. The back-

bone unit of the RSN model consists of 3 basic building blocks with different
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kernel sizes to extract 32, 64, and 128 feature maps respectively. To develop a

deep feature extractor, multiple backbone units combined with residual short-

cut connections are stacked together and cascaded with a Global Average Pool-

ing layer to minimize the model over-fitting. During the model training, for

each image patch with n images, the euclidean distance d between the fea-

tures (F1,F2) extracted from identical ResNet features extractors is calculated,

see Eq.7.6. Finally, the contrastive loss function Lc [271] is used to learn the

similarity distance between the input image-pairs in a way that similar features

are becoming closer and non-neighbors are separated away, see Eq.7.7, where

yi is the image target label and r is the euclidean distance threshold.

d(F1,F2) =
n f∑

f =0

‖F1i −F2i‖ (7.6)

Lc = 1

2N

N∑
i=0

(yi .d 2 + (1− y).max(r −d(F1,F2),0)2) (7.7)

ResNet-Siamese model is pre-trained on Core50 [272] (Common Objects in

Context) dataset which consists of 50 different objects belong to 10 categories:

plug adapters, mobile phones, scissors, light bulbs, cans, glasses, balls, mark-

ers, cups and remote controls. Finally, the obtained model is used to map and

associate the detected objects from human ego-centric and third-person vision

perspectives, as shown in Fig.7.1.

7.2.4 Inference of Ambient-Objects Contextual Affordances

For a human being, the contextual visual reasoning is one of the most impor-

tant cognitive skills that give the ability to infer, from a little sneak peek, the

objects names, colors, textures, and what actions (activities) may the objects

afford. The notion of object affordances was defined in [273] as the object
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properties that determine what actions a human can perform on them. In this

thesis, the notion of the "contextual object affordances" is defined as the set

of "activities" that an "object" afford in a given "place". In other words, the

same object may afford different actions (activities) in different locations such

as a cup may afford "drink" in the ("kitchen, office, living-room"), while the

same cup may afford "hold-toothbrushes" in the ("bath-room"). From a pure

data-driven perspective, it is possible to train a deep network to detect the am-

bient objects and recognize their contextual affordances. However, to the best

of our knowledge, there are no datasets available for recognizing the objects

contextual affordances. Consequently, an inference engine is proposed to de-

tect the contextual affordances of the ambient objects. The inference engine

exploits the detected indoor places, ambient objects, and a ConceptNet-based

ontology to infer the possible activities that may be afforded by the recognized

objects in the current place, as shown in Fig.7.1.

ConceptNet-based Ontology for Contextual Object Affordances

To endow the ability of decision-making in partially observed environments to

the AAL system is one of the most important challenges in the field of artifi-

cial intelligence [152]. This capability is achievable by exploiting an abstracted

semantic representation of the environments, which increases the adaptabil-

ity and flexibility of the approach. To represent the semantics of the environ-

ments, a comprehensive knowledge-base is required, by carefully analyzing the

domain of the environment, choosing the proper vocabularies, and integrat-

ing a reasoning engine to infer the best decision to make. In this chapter, the

knowledge representation and reasoning play a key role in processing the par-

tially observable information by combining the knowledge-base with the on-

going perception of the ambient environment. In this perspective, to infer the
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contextual affordances of the ambient objects, a ConceptNet-based ontology

combined with a probabilistic Description Logic (DL) reasoning model is pro-

posed.

Figure 7.5 – ConceptNet-based ontology for contextual affordances representa-
tion

As shown in Fig.7.5, the proposed ontology consists of three main concepts:

OBJECT, PLACE, and ACTION. OBJECT instances represent all of the ambient-

objects populating daily living environments. PLACE instances represent the

indoor places where the objects can be found. ACTION is a reified action con-

cept whose it’s instances represent the actions (activities) afforded by an ob-

ject. The reification is exploited to represent the contextual affordances as first-

order relations without resorting to meta-modeling subterfuges. The general

schema of the Description Logic (DL) subsumption rule to infer the contextual

affordances is formulated as follows:

OBJu∃AtLocation.P v∃UsedFor.{ACT}

where OBJ is a subclass of the Object, P is a subclass of Place and ACT is an

instance of Action. In other words, as shown in Fig.4.1, if an object instance
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(laptop) of a specific class (personal computer) is placed at the right place (of-

fice), it will afford a given action (work).

Probabilistic Description Logic (DL) inference engine

In this study, a probabilistic DL reasoner based on the probabilistic seman-

tics for DL DISPONTE (”DIstribution Semantics for Probabilistic ONTologiEs“)

[274] is used to enrich the DL axioms with the probabilistic information pro-

duced by both ambient-object and indoor place detection models. In DISPONTE,

the DL axioms can be annotated with the corresponding probability, to cre-

ate a probabilistic knowledge-base (KB). To calculate the probability of a given

query from the DISPONTE KBs, the BUNDLE (Binary decision diagrams for

Uncertain reasoNing on Description Logic thEories) algorithm is used [274].

The BUNDLE algorithm exploits the DISPONTE reasoner (Pellet1) to infer a

set of worlds (explanations) of a given query, where the probability of each

world w equals the joint probability distribution over the selected and non-

selected axioms. The worlds (explanations) are encoded into a Binary Deci-

sion Diagram (BBD), from which the probability of the query is computed as

a marginalized joint probability over the worlds that imply the query. To cal-

culate the ultimate probabilities of the contextual affordances of the ambient

objects in a given place, for each input video frame, the YOLOv2 object de-

tection model produces the output vector OBJs = [p1 : OC1 , ..., pn : OCn ], where

OCi represents the recognized class of the i -th object with probability pi . For

the same video frame, the ResNet place detection model produces the output

vector PLACEs = [p1 : LC1 , ..., pn : LCm ], where PLACEs is a list of the possible

classes LCi of the current place scene with probabilities pi . To create the prob-

abilistic KB, the DISPONTE reasoner encodes the output vectors as a set of in-

1https://github.com/stardog-union/pellet
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Figure 7.6 – (a) 2D locations of hands and the ambient objects; (b) 2D graph
representation space of the observations; (c) Constructed search tree from the
current video frame.

stances of the ontology associated with their probabilities. A place instance

pl ace is created in the KB for each element pi : LCi in PLACEs, and an axiom

pi :: pl ace : LCi is added to the ontology. Similarly, an object instance ob ji is

created in the KB for each element pi : OCi in OBJs, and an axiom pi :: ob ji : OCi

is added to the KB. Finally, all of the object instances ob ji are associated to a

pl ace using At-Location relation. Finally, BUNDLE algorithm exploits the lat-

ter KB to infer the probabilistic contextual affordance relationships between

the object instances ob ji and the detected activities.

One of the most important advantages of the proposed approach is that all

of the ontology axioms even the non-probabilistic ones are taken into consid-

eration during the reasoning process. Besides, the number of inference rules is

drastically reduced by aggregating the classes of the ambient-objects under a

set of common super-classes to cover all the possible contextual affordances.

7.2.5 Human Action Recognition/Anticipation

In this study, we assume that many of human short-term actions (e.g.drink,

eat) can be recognized independently of their durations by detecting the ob-

jects (Objects-in-Action) actively involved (e.g. cup, food) in the action. Conse-
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quently, the Qualitative Representation (QR) of hand locations to the ambient-

objects is required to identify the objects of interest and therefore anticipate

the intended activity. Besides, the QR of hand locations with respect to the

ambient-objects allows abstracting complex activities (e.g. working, eating,

cooking) which often occur over different time durations.

In this study, The K-d tree nearest neighbor algorithm [275] is used to de-

tect the 2D coordination of the nearest object relative to hand. For each video

frame, both of Yolov2-GLCM hand detector and YOLOv2 [261] object detector

will estimate the 2D locations of hands and the ambient objects to construct

the search space. Finally, the nearest objects relative to hands are detected us-

ing the K-d tree search algorithm, as shown in Fig.7.6.

Finally, the probabilistic reasoner exploits the contextual affordances of the

Objects-in-Action to recognize and anticipate human activities, as shown in

Fig7.1.

7.3 Experiments

7.3.1 Experimental setup

The experimental environment consists of human egocentric vision RGB wear-

able camera, RGB robot (third-person) integrated camera, 4 wearable IMU sen-

sors, and activity dashboard screen located see Fig.7.7. The video streams from

both the wearable camera and the robot camera are used to anticipate human

activities, while the IMU streams are considered for future experiments.

The proposed approach for human activity recognition and anticipation is

evaluated in two phases: 1) the main components of the proposed approach

are evaluated independently with different datasets; 2) a use-case of cognitive

daily activities coaching for a dependent person is then studied to validate the
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Figure 7.7 – Experimental setup of human daily activities dataset. 1) General
view of the experimental environment with IMU sensors, RGB egocentric vi-
sion, and RGB-D robot camera and activity dashboard. 2) Human egocentric
vision perspective. 3) Third-person vision perspective. 4) The IMU sensors lo-
cation on human body
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entire approach for real-time action recognition/anticipation. Finally, for each

subject, satisfaction feedback is collected to evaluate the user experience after

the experiments.

7.3.2 Datasets

Empirical experiments on real-world datasets (Microsoft COCO [276], Place365

[267], DHA-11Th , SKNS, and CORe50 [272]) were carried out to evaluate the

different components of the proposed approach, and more precisely, object

detection, place detection, hand detection, skin texture detection, and object-

object mapping models.

Microsoft COCO dataset

To evaluate the object detection model, Microsoft COCO [268] (Common Ob-

jects in Context) dataset is used. This dataset consists of 2.5 million annotated

instances of 91 different objects, which are split into training-set, validation-

set, and testing-set of 118K, 5K, and 41K images, respectively. In this study, the

commonly used objects (keyboard, mouse, cup, microwave, etc) in daily activ-

ities are selected to evaluate the object detection model.

Place365 dataset

Place365 dataset includes 2 million annotated images of 365 different indoor

and outdoor places, which is split into training-set, validation-set, and testing-

set of 1M, 36K, and 300K images, respectively. In this study, indoor places

(living-room, bed-room, kitchen, etc) are selected to evaluate the place detec-

tion model.

192



Figure 7.8 – Sample images of indoor and outdoor places extracted from DHA-
11Th dataset with hand bounding boxes and segmentation mask annotations

Figure 7.9 – Samples from different textures existing in SKNS textures dataset.
a) The first row consists of different skin textures; b) The second row consists
of non-skin textures similar to skin colors; c) The third row consists of diverse
non-skin texture
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Diverse Hand Dataset

To evaluate the hand detection model performance, a new Diverse Hands (DHA-

11Th) dataset is collected. As shown in Table.7.1, compared to the state-of-the-

art datasets such as EgoHands [265], and Viva [266] datasets, DHA-11Th dataset

consists of 11,320 egocentric vision images with more than 23,000 ground-truth

labeled hands, of 6 different subjects (3 males, 3 females) aged between 21 and

30 years old of different skin colors. To create a realistic dataset, the latter is

recorded in different lighting conditions, and different (indoor-outdoor) places

such as supermarkets, kitchens, offices, and streets, as shown in Fig.7.8. In ad-

dition, the dataset is recorded on different days to add remarkable varieties for

the recording conditions such as the subject clothes, the arrangement of the

ambient-objects, and to add different noise sources as much as possible. The

dataset consists of hypothetically unlimited hand positions since the subjects

were freely engaged to do unscripted activities with different objects. To build

the dataset, as shown in Fig. 7.7, an egocentric camera is used, which records

videos of 1920x1080 pixels at 30 frames per second (fps). In the post-processing

phase, the produced videos are exported to images with the Joint Photographic

Experts Group (JPEG) standard format at a sampling rate of 10 fps. For each

image, a set of manually annotated bounding boxes and pixel-level segmenta-

tion masks are created for each hand present in the image, as shown in Fig. 7.8.

For each hand, a set of labels are created as a combination of (left-hand, right-

hand), (Male, Female), (age), (Dark, Medium, Fair). To the best of our knowl-

edge, DHA-11Th is the largest multi-purpose hand dataset recorded from the

egocentric vision perspective. The dataset can be used in different research ar-

eas: semantic hand detection and segmentation, gender recognition, and age

estimation. In this study, the dataset is randomly split into 80% for training,

20% for validation, and 20% for testing since the ratio of the activities and lo-
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cations is equally distributed between the different sets. The comprehensive

statistical analysis for the dataset is shown in Fig.7.10.

Table 7.1 – State of the art datasets comparison

Dataset
EgoHands [265] Viva [266] DHA-11Th [Ours]

Total Images 4,800 11,000 11,320
Total Labels 15,000 21,199 23,558

Number of Subjects 4 - 6
Semantic Annotation Yes Yes Yes

Segmentation Map Yes No Yes
Age No No Yes

Gender No No Yes
Skin Color No No Yes

Place
Conference Room

Outdoor Courtyard
Coffee Table in Home

Car

Kitchen
Street
Office

Supermarket

Activities
Playing Cards
Playing Chess

Solving Jigsaw Puzzle
Driving Car

Cooking
Make Coffee

Read Newspaper
Use Laptop

Use Mobile Phone
Writing

Inspect Products
Random Gesture

Resolution 720 x 1280 640 x 480 1920 x 1080

Skin/None-Skin Texture Dataset

To evaluate the performance of the texture detection model, a new skin/non-

skin dataset (SKNS) is collected. This dataset consists of approximately 800,000

skin and non-skin manually annotated texture images of 128x128 pixels (337,700

skin images and 462,200 non-skin images). To ensure the variation and the di-

versity of the dataset images, the skin texture images are collected by generating

sub-patches from different hands dataset such as DHA-11Th , EgoHands [265],

and 11K hands [277] datasets. The data were collected from 201 different sub-
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jects aged from 18 to 75, of different skin colors. The non-skin images are col-

lected by generating sub-patches of images of material textures from different

datasets such as Describable Textures [278], and ImageNet [279]. As shown in

Fig.7.9, The non-skin patches consist of skin-like textures such as wood, sand,

fire, and fur. The dataset is stratified splits into 80% for training, 20% for valida-

tion, and 20% for testing.

To the best of our knowledge, the SKNS dataset is the largest skin/non-skin

texture dataset currently available for research; it combines 50 different tex-

tures labeled into skin and non-skin labels. In addition, SKNS dataset contains

varied races and skin colors to be diverse enough to detect skin-textures pixels.

CORe50 Dataset

To evaluate the multi-perspectives object-to-object mapping model, CORe50

[272] dataset is used. This dataset, originally designed for continuous ambient-

objects recognition, consists of images of 50 different objects belonging to 10

categories (plug adapters, mobile phones, scissors, light bulbs, cans, glasses,

balls, markers, cups and remote controls). The dataset is collected in 11 differ-

ent recording sessions (8 indoor, 3 outdoor) using different backgrounds and

different lighting conditions. For each session and for each object, a 15 seconds

egocentric vision RGB-D video has been recorded with a Kinect 2.0 sensor de-

livering 300 RGB-D frames. The full dataset consists of 164,866 images. To build

the Core50 dataset, the objects were differently manipulated by moving and ro-

tating them randomly using both hands. In this study, the RGB images are split

into training, validation, and testing sets of 131892, 16486 and 16486 images

respectively.
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Figure 7.10 – DHA-11Th dataset images distribution over different categories

7.3.3 Implementation

The proposed approach is implemented in python 3.7 based on keras deep

learning framework 2 with tensorflow as a backend. The communication be-

tween the individual modules is implemented based on MQTT 3 lightweight

publish/subscribe messaging protocol. At the low-level layer, the deep learn-

ing models were run on an Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz (8

CPUs), with 64Gb RAM combined with Nvidia M2000M GPU. At the high-level

layer, the reasoner was run on an Intel(R) Xeon(R) CPU E5-1630 v4 @ 3.70GHz,

4 Core(s), 8 Logical Processor(s), with 8Gb RAM.

2https://keras.io/
3http://mqtt.org/
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7.4 Evaluation

7.4.1 Place detection: ResNet model

To evaluate the performance of the place detection ResNet model, each of AlexNet

[280], GoogleNet [281], and VGG [282] models were selected as baseline models.

For the training phase, The indoor places images were selected from the train-

ing set of the Place365 dataset. The Top-1 and Top-5 accuracy metrics were

used for the performance evaluation. [267]. The performances of the proposed

model and baselines models are shown in Table 7.2. One can clearly observe

that the ResNet model outperforms all baseline models in terms of the Top-5

classification accuracy, while the VGG model outperforms the proposed model

in terms of the Top-1 accuracy.

With regards to the validation and testing sets, the ResNet model which has

residual shortcut connections between the convolution layers allows extracting

more generalized features than the plain CNN baseline models and therefore

leading to more accurate results in terms of Top-5 accuracy. On the contrary,

the plain VGG CNN model focuses on extracting the local features for each

place, which leads to getting the Top-1 accuracy.

Table 7.2 – Evaluation results of Place365 dataset

Accuracy %
Testing-set Validation-set

Model Top-1 Top-5 Top-1 Top-5
Baseline Models

AlexNet 53.3 82.8 53.2 82.9
GoogleNet 53.6 84.1 53.6 83.9

VGG 55.8 85.4 55.6 85.1
Proposed Model

ResNet [Ours] 55.2 87.4 54.5 86.7
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7.4.2 Hand detection: YOLOv2-GLCM Auto-Encoder model

The evaluation of the hand detector model is carried out on two phases: 1) the

evaluation of the GLCM-CNN Auto-Encoder for skin texture classification us-

ing SKNS dataset; 2) the evaluation of the entire YOLOv2-GLCM Auto-Encoder

model using EgoHands [265] and DHA-11Th datasets.

To evaluate the GLCM-CNN Auto-Encoder for skin texture classification,

each of plain CNN, GLCM features combined with CNN, and stacked deep au-

toencoder [283] were selected as baseline models. All models are trained and

evaluated using SKNS dataset. As shown in Table 7.3, the proposed GLCM-CNN

Auto-Encoder model achieves the highest accuracy outperforming the baseline

models. Besides, the obtained results show that the integration of the GLCM

features with the automatically extracted latent features improves the perfor-

mance of the stacked autoencoder model in terms of accuracy. Accuracy im-

provements of 11.8% and 15.5% are achieved for deep autoencoder [283] and

convolution neural network baseline models respectively.

To evaluate the YOLOv2-GLCM Auto-Encoder model, each of YOLOv2 [261],

RCNN [262], and Faster-RCNN [263] were selected as baseline models. Be-

sides, all models are trained and evaluated using EgoHands [265] and DHA-

11Th datasets. The results shown in Table 7.4 demonstrates clearly that the

proposed model significantly outperforms the baseline models and provides

the best performance for both EgoHands and DHA-11Th datasets in terms of

Average Precision (AP). Compared to the Faster-RCNN combined with texture

features, the proposed model achieves a better AP score with an improvment

(∆AP) of 6.7% and 13.1% for EgoHands and DHA-11Th datasets respectively.

However, Table.7.4 shows that the proposed model AP performance decreases

by almost 47% in the case of using DHA-11Th dataset in comparison with the

EgoHands dataset. This difference can be explained by the high complexity
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of the proposed DHA-11Th dataset, which contains more places with skin-like

textures and cluttered backgrounds compared to EgoHands dataset. Finally, as

shown in Table.7.4, a substantive improvement is observed by integrating the

skin-texture model with the baseline models. In addition, AP improvements

over baselines models of 48.6% and 15.1% are obtained for EgoHands and DHA-

11Th datasets, respectively.

Table 7.3 – Accuracy (%) results of skin texture classification models

Accuracy (%)
Plain CNN 69.5

GLCM features + CNN 73.7
Deep AutoEncoder [283] 77.4

GLCM-CNN Auto-Encoder [Ours] 89.2

Table 7.4 – Average Precision (%) results of hand detection models

Datasets
Hand Detection Models EgoHands DHA-11Th

RCNN[262] 31.2 25.3
RCNN + Texture 82.6 35.8

Faster-RCNN[263] 33.1 24.4
Faster-RCNN + Texture 86.4 32.6

YOLOv2[261] 44.5 30.6
YOLOv2 + Texture [Ours] 93.1 45.7

7.4.3 Multi-Perspective Object-Object Mapping

To evaluate the ResNet-Siamese model for multi-perspectives object-to-object

mapping, Core50 dataset is used. In this paper, for the positive patches, each

of the training, validation, and testing sets are created by constructing image-

pairs of the same object with different angles. To improve the performance

of the ResNet-Siamese model, a set of negative patches are created by con-

structing random image-pairs from different objects. As shown in Table 7.5, the
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ResNet-Siamese model outperforms the CNN-based Siamese baseline model in

terms of the area under ROC curve. The results show that the proposed ResNet

feature extractor network allows extracting more relevant and representative

features than the classical CNN network used in the baseline model, which

leads to a remarkable improvement (∆AUC = 0.06) compared to the classical

Siamese architecture.

Table 7.5 – Evaluation results of Multi-Perspectives Object-Object Matching
Model

Models Area Under ROC Curve
Siamese [270] 0.87

ResNet-Siamese [Ours] 0.93

7.4.4 Entire approach Evaluation

Real-World Scenario

To validate the proposed approach, a blind person assistance scenario is im-

plemented. In this scenario, a blind person named Bob is wearing a head-fixed

camera and assisted by the robot companion Pepper in different homerooms

such as office, kitchen, and living room. Bob can initiate the discussion by ask-

ing Pepper to describe him the ambient-environment according to his hand

location. The approach is used to anticipate Bob intentions automatically to

help him to locate the target objects correctly and informing him about the

location of the related objects or the missing objects needed to complete the

ongoing action. For example, if Bob is targeting a Spoon and Pepper infers an

Eat action then Pepper will inform Bob about the location of the related items

such as Pl ate in the scene. If there are no related items found, Pepper will

inform Bob that Eat action cannot be completed. The proposed scenario suc-

ceeded to validate all of the components of the proposed approach. Besides,
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the scenario shows the best use of these components to make the Human-

Robot interaction in daily living more symbiotic, effective, and natural. This

work is reported in a multimedia video that is available on LISSI Website 4.

Quantitative and Qualitative Evaluation

To evaluate the performance of the proposed approach, three evaluation met-

rics are used: the proposed ontology size, the execution time of the different

components, and the qualitative satisfaction feedbacks collected to evaluate

the user experience after the experiments.

Table 7.6 – Response Time of iCare different Modules

Execution Time (ms)
Minimum Maximum Average

Object Detection 250 420 360
Place Detection 520 610 570
Hand Detection 450 530 494

Object-Object Mapping 120 160 145
K-d tree 10 25 17

Affordances Inference 150 520 354

• Ontology size: The proposed ontology consists of more than 400,000

concepts covering commonsense knowledge of the ambient environment,

objects, contextual affordances, and places.

• Runtime: As shown in Table.7.6, for each video frame, the average exe-

cution time to recognize the indoor place, location of human hands, and

all the ambient-objects is 570, 494, and 360 milliseconds, respectively. In

addition, the average time consumed to map each object from human-

robot perspectives, and to calculate the nearest objects to the human

4http://www.lissi.fr/videos/Anticipation.php
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hands is 145 and 17 milliseconds, respectively. Finally, the probabilistic

reasoner generates approximately 11 axioms, and the average reasoning

time for inferring the contextual affordances is approximately 354 mil-

liseconds. For each object in the frame, the probabilistic reasoner infers

approximately 3 contextual affordances on average.

• Feedback: Based on the satisfaction feedback collected after each exper-

iment, the results show that 83% of subjects are satisfied with the overall

performance of the proposed approach in terms of cognitive assistance.

In terms of Human-Robot interaction response time, 75% of them are sat-

isfied, and the experiments were described as a truly enjoyable experi-

ence.

7.5 Conclusion

A hybrid approach combining deep learning models and higher-level reason-

ing for activities recognition and intention anticipation is proposed. In one

hand, it combines different deep-learning models to detect ambient objects,

indoor places, and human hands locations. Besides, the human and robot vi-

sion perspectives are aggregated using a novel deep learning model for sim-

ilarity measurement combined with k-d tree search technique. In the high-

level layer, a novel ontology-based on ConceptNet knowledge graph is com-

bined with a probabilistic logic inference engine to infer human activities and

intentions. Finally, the reasonable execution time of the different components

allows the proposed approach to recognize and anticipate human activities in

real-time. To evaluate the performance of the proposed approach, three eval-

uation metrics are used: The proposed ontology size, the execution time of the

different components, and qualitative satisfaction feedbacks are collected to
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evaluate the user experience after the experiments. Based on the satisfaction

feedback collected after each experiment, the results show that 83% of subjects

are satisfied with the overall performance of the proposed approach in terms of

cognitive assistance.
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Chapter 8
General conclusion and perspectives

8.1 General conclusion

The objective of this thesis is to propose novel hybrid approaches that enable

the AAL system to detect the emotional states, actions, and intentions of users,

taking advantage of their context and the benefits of combining data-driven

and knowledge-based techniques. The contributions of the this thesis can be

summarized as follows:

• A hybrid contextual emotion recognition approach is proposed for cog-

nitive assistance services in ubiquitous environments. Its principle con-

sists of, on the one hand, the multimodal emotion recognition based on

hybrid-level fusion exploiting a multilayer perceptron neural network model

and the possibilistic logic, and on the other hand, the expressive NKRL

knowledge representation and reasoning exploiting both HClass and HTemp

ontologies for representing both commonsense knowledge and the am-

bient environment dynamics, respectively. The performance of multi-

modal emotion recognition based on hybrid-level fusion was enhanced

by including the selected features: age, gender, and culture. The pro-
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posed approach is able to recognize perfectly the 9 observed emotions

considered in this study: happy, sad, anger, neutral, energy, contempt,

disgust, fear, and surprise. The proposed emotion contextual recognition

and management approach is able to recognize the non-directly observ-

able emotions by contextualizing the observed emotions.

• A hybrid approach for human activity-aware AAL system is proposed. A

combaniation of Spatio-Temporal Joint based Convolutional Neural Net-

work (STJ-CNN) and Hierarchical Multichannel deep Residual Network

(HMResNet) is proposed to recognize human activities from both skele-

ton keypoints and multichannel IMUs’s raw data. Besides, a novel repre-

sentation and inference based on NKRL HClass and HTemp ontologies

are proposed to represent and combine the detected human activities

with the ambient events, and infer the semantic context of the detected

activity. The proposed approach combines both the IMUs-based and the

skeleton-based activity recognition to overcome the misclassification er-

ror caused by sensor instability, visual occlusions, and visual perspective

changes. Compared to the baseline models, the performance of the STJ-

CNN model shows a significant improvement up to 24% in terms of F-

score on DAHLIA dataset. The performance of the daily human activ-

ity recognition based on HMResNet model is shown through two activity

datasets.

• A hybrid approach combining deep learning models and higher-level rea-

soning for activities recognition and intention anticipation is proposed.

In one hand, it combines different deep-learning models to detect am-

bient objects, indoor places, and human hands locations. Besides, the

human and robot vision perspectives are aggregated using a novel deep
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learning model for similarity measurement combined with k-d tree search

technique. In the high-level layer, a novel ontology-based on Concept-

Net knowledge graph is combined with a probabilistic logic inference en-

gine to infer human activities and intentions. Finally, the reasonable exe-

cution time of the different components allows the proposed approach

to recognize and anticipate human activities in real-time. To evaluate

the performance of the proposed approach, three evaluation metrics are

used: The proposed ontology size, the execution time of the different

components, and qualitative satisfaction feedbacks are collected to eval-

uate the user experience after the experiments. Based on the satisfaction

feedback collected after each experiment, the results show that 83% of

subjects are satisfied with the overall performance of the proposed ap-

proach in terms of cognitive assistance.

8.2 Perspectives

The following perspectives can be summarized as a result of this thesis:

• Multimodal human emotion estimation: emotion recognition remains

a challenge for AAL systems at the moment due to the constraints of ob-

taining reliable results in order to provide a trustworthy interaction, as

well as the time constraints associated with integrating the recognized

emotion into the AAL system behavior adaptation. As demonstrated in

this thesis, human emotion recognition is feasible through the collec-

tion of various types of data (video, sound, text). While some modalities

have been extensively investigated as human facial expressions, others

should be deeply studied as Electroencephalography (EEG), Facial Action

Units (FAU), and 3D facial key-points. All of the those modalities, rep-
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resent promising information sources for future developments: innova-

tive and accessible technologies such as depth cameras, consumer-grade

EEG, and smart devices, combined with deep-learning models, will ac-

celerate the development of emotion-aware AAL systems. Besides, many

of the available datasets used were collected from streaming plateform as

YouTube or derived from general HMI research. Therefore, they are un-

suitable for emotion recognition in real-world situations. To tackle this

problem, real-world multi-modal datasets should be collected.

• User-centric human activity recognition: One of the key features of hu-

man activities is how the users are executing the activity. In fact the same

activity may have different patterns which highly depend on the user style

of executing the activity. Furthermore, activity patterns are changing over

time; thus, the assumption that activity patterns of the same user re-

main constant over time is questionable. Additionally, users may engage

in new activities, which were not included in the trained data. To ad-

dress these issues, an innovative approach should be used such as: active

learning or transfer learning techniques to enable the machine learning

models to learn new activities without forgetting the old ones. The ac-

tive learning approach is a subset of the incremental learning that en-

ables selecting new ground truth (new activity labels) for newly selected

data samples in case of data modification. As a result, active learning

algorithms can distinguish between time-varying activity patterns. The

transfer learning approach is a technique that enables knowledge trans-

fer from one domain to another based on the assumption of a relation-

ship between the source and target domains. As a result of transfer learn-

ing approaches, the approach is able to distinguish the activities of dif-

ferent groups of users.
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• Human intentions datasets: By reviewing the literature, we find that there

are few number human intention datasets available for recognizing short

-term and long-term human intentions such as the DAHLIA dataset. Be-

sides, the collected datasets are not realistic, for example, the user per-

forms the identical actions/intentions everyday, which is not realistic.

The process of collecting dataset, particularly for estimating human in-

tentions, is time consuming and the annotation cost is high. To tackle

those issues, we can collect more realistic datasets and exploit the crowd-

source data labeling techniques, in particular the pair-wise comparison,

to generate the groundtruth of the human intentions from large popula-

tion of annotators.

• Physical intentions vs social intentions: In this thesis, human intentions

are limited to physical intentions and visible behaviors, but many people

already have a web presence and they are showing a social networking

behavior that is becoming increasingly essential to estimate their inten-

tions. As a result, we believe that we should broaden the proposed defini-

tion of contextual human actions to include different settings, such as the

social-networking activities, and the sentiment analysis of comments.
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