In this chapter we compare two inference methods trained on high-throughput sequencing data: a knowledge-guided approach, which accounts for the details of sequence generation, supplemented by a physics-inspired model of selection; and a Variational Auto-Encoder based on deep artificial neural networks.
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Introduction

The human adaptive immune system is a complex system composed of multiple actors interacting stochastically yet exhibiting well regulated collective behaviour and performing complex decision processes. Trying to characterize this system is of extreme importance in order to develop better therapies, monitoring strategies and diagnostic tools.

Initiation of the immune response relies upon the ability to recognise pathogens.

In practice, our immune system needs a pair of eyes that can sight new invaders, direct the counter-attack towards the right targets and avoid killing human cells in the meanwhile. The complexity of this task can be appreciated by observing in how many ways it can fail: there exist more than 80 kinds of autoimmune diseases (1) which are associated to a loss of immune tolerance. It is thus crucially important to understand how our immune system senses the environment and initiates a response. This is the main function of T cells and B cells. Recognition relies upon an highly specific interaction between their immune receptor and a pathogenic epitope. Every T cell and B cell undergoes a genetic recombination process to express a unique receptor. The resulting diversity of receptors can potentially recognize any novel pathogen, yet these cells tolerate indigenous epitopes from human proteins. This tolerance arises from selection processes (thymic selection for T cells and central tolerance for B cells) in which clones carrying auto-reactive receptors are depleted.

At the same time, collective regulation in the periphery sustains self-tolerance. The interaction of these two mechanisms and their relative importance is still a subject of ongoing research.

Thanks to advances in high-throughput sequencing applied to immune receptor genes we have access to snapshots of the repertoires of multiple healthy and sick individuals. In principle, these datasets carry a lot of information regarding the history of antigen encounters and the dynamics of the immune response. Practically, extracting this information is an extremely difficult task since we do not have access to a dictionary that associates a receptor sequence to an antigen. There is now a Chapter 1. Introduction strong scientific interest in building such a dictionary by various methods (2; 3; 4; 5; 6; 7). It is however unclear whether the observed variability at the population level [START_REF] Sethna | Population variability in the generation and selection of T-cell repertoires[END_REF] and at the level of different subsets of T cell (9; 10) and B cell [START_REF] Meng | An atlas of B-cell clonal distribution in the human body[END_REF] receptor repertoires within an individual affects the use of such a dictionary in therapeutic and diagnostic applications. Moreover the fact that multiple distinct receptors can interact with the same epitope and that a single receptor can interact with multiple distinct epitopes additionally complicates this picture.

One way to tackle this complexity is via a model-based approach. If we are able to characterize the observed diversity of the immune repertoire, we can estimate the probability to observe any particular receptor in a random sample of the repertoire and evaluate significant deviations from our expectation. This approach can be applied to characterize local enrichments in sequence space (4; 5; 6) and significant sharing of receptors within a cohort of individuals (3).

The success of these analysis depends on multiple factors. On one hand, the model needs to accurately describe the immune repertoire of an individual. On the other hand, we need to also quantify the variability in the repertoires of different individuals within a population and between lymphocyte subsets. An additional layer of complexity is also introduced when trying to characterize the repertoire of Bcell receptors, which has a much bigger diversity than the one of T cells. The reason behind this fact is that on top of recombination of the receptor, B cells undergo a process of somatic hypermutation. In principle, population genetic models can be used to characterize this process. In practice, it is extremely hard to infer the parameters of this models on real data [START_REF] Beaumont | Approximate Bayesian Computation in population genetics[END_REF].

We will address these questions using a common framework: density ratio estimation. In the case of T cell and B cell receptor repertoires, a density ratio Q(x) = P post (x)/P gen (x) between the probability to observe a receptor in the periphery, P post , and the probability to recombine the receptor, P gen , characterizes the contribution of selection in shaping the statistics of the repertoire. In this thesis we will focus on developing more flexible models for Q(x) using deep neural networks.

These selection models will be used to estimate information theoretic quantities, like Jensen-Shannon divergences, to compare the repertoire of distinct phenotypes of T cells and B cells. We will finally focus on the task of inference of model parameters using simulated data by estimating an alternative density ratio: P (x|θ)/P (x) the likelihood-to-evidence ratio [START_REF] Hermans | Likelihood-free MCMC with amortized approximate ratio estimators[END_REF]. We will show that the methods developed to characterize T cell and B cell receptor repertoires can be translated to this task and we will clarify the connection to the field of mutual information estimation. This thesis collects multiple articles that have been published during my PhD work. For this reason each chapter is mostly self-contained and can be read independently.

In Chapter 2 we cover all background information which is required to understand the remainder of the thesis. This chapter is divided in two parts. In the first part, we introduce few basic notions regarding the adaptive immune response. In the second part we introduce the density ratio framework and clarify how it can be applied to T and B cell receptor repertoires.

In Chapter 3 we compare two alternative frameworks for modelling the T cell receptor repertoire. The first method is based on the density ratio framework and separates the inference in two steps: recombination of the receptor, P gen (x), and selection in the thymus , P post (x) = Q(x)P gen (x). The second method tries to model the post-selection repertoire directly using variational inference and deep neural networks. We find that both methods perform similarly.

Motivated by the comparison of Chapter 3, in Chapter 4 we synthesize the two approaches by using deep neural networks to infer selection factors and show that they significantly outperform linear selection models. Interestingly, these more complex models can capture the observed correlations in the pairing of α (light) and β (heavy) chains of T-(B-)cell receptors. We then analyse the repertoire of different subtypes of T cells from different tissues and quantify their degree of similarity using information-theoretic quantities. Finally, we show that selection factors can also be used to classify antigen specific receptors.

In Chapter 5 we focus on the local structure of the repertoires of T cells during thymic development and differentiation, and quantify differences between the neighbourhoods of different T cells subsets in sequence space. We then test alternative predictors for the number of nearest neighbours of a receptor sequence and show the P post model satisfies some approximate smoothness properties. We develop a Markov Chain Monte Carlo procedure that allows to sample productive receptors with high generation probability that have a similar aminoacid sequence to a reference receptor.

In Chapter 6 we focus on the problem of simulation-based inference of model parameters and show that the methods developed in the previous chapters can be applied to this task. We clarify how this framework relates to the field of mutual information estimation. We benchmark alternative estimators of mutual information to infer model parameters from trajectories of stochastic and chaotic processes.

Chapter 7 concludes the thesis, summarises the results and describes future research directions. In the Appendix we collect all supplementary materials to previous chapters.

Background, concepts and tools

The purpose of this chapter is to cover all necessary concepts and notions of the biological system and the computational methods to understand the work of this thesis. The chapter is divided into two main sections. In the first section I outline the basic properties of the adaptive immune response with a particular focus on T cell development. In the second section I introduce the unsupervised learning problem in machine learning and focus on the methods that have been applied to characterize immune receptor repertoires.

The immune system

In this section we cover some basic notions on the human adaptive immune system and the main actors the participate in the immune response. The explanation will be non comprehensive and highly biased towards those processes we venture to model in the thesis. For a broader and more complete overview of the immune system we refer to [START_REF] Murphy | Janeway's Immunobiology[END_REF].

Innate and adaptive immune system

Our immune system's role is to recognise and mount a response to old and new pathogens. It is composed of multiple actors that can be organized in two main groups: the innate and the adaptive immune system. Broadly speaking, the innate immune system reacts quickly and mounts a first immune response in the presence of danger signals. On the other hand, the adaptive immune system recognises and mounts a response to novel and previously unseen invaders that cannot be properly handled by the innate system alone. This separation is however a simplification: the interaction and cooperation between the innate and the adaptive immune system is continuous and there is no clear division of tasks.

There are multiple actors participating in the adaptive response and the two most important ones are T and B cells. In both types, each individual cell mounts a unique receptor which is highly specific to a target. The targets of T and B cell receptors are Chapter 2. Background, concepts and tools G. Altan-Bonnet, T. Mora and A.M. Walczak / Physics Reports 849 (2020) 1- 83 25 g. 9. Hematopoiesis. A cartoon representation of the outline of the hematopoiesis process that leads to the formation of immune cells. The cells at are discussed in some detail in this review are marked in red.

ust be balanced and reinterpreted in nonperturbative settings, e.g. by monitoring the spontaneous induction of Tbet in ifferentiating T-cells. Similar reassessments are happening in many models of leukocyte differentiation, such as in the 1/M2 model of macrophage differentiation [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF], or PU-1-controlled differentiation in the myeloid compartment [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF]). ture work will require better parametrization an innovative modeling approach that can embrace the combinatorial and ynamic complexity of cytokine communications and gene regulation in the immune system. Such ''murkiness'' in immunology must be embraced as it opens up functional possibilities. For example, Peine al. [START_REF] Chollet | [END_REF] tracked the formation of Tbet + GATA-3 + mixed phenotypes, i.e. with characteristics of both Th1 and Th2, in apparent contradiction with bistability. Their presence was demonstrated to limit the deleterious impact of all-out, on-mixed Th1 or Th2 inflammation. Thus, a better understanding of noise and stability in immune cell differentiation ill be key to understanding virtuous and pathologic inflammation.

. 2

. Hematopoiesis .2.1. Timescales

Where do immune cells come from? A human being has ⇠4 • 10 13 cells in the body [START_REF] Harris | Array programming with NumPy[END_REF] and more than half of em are made by hematopoietic stem cells (HSC) found in the bone marrow. There are an estimated order of magnitude 10 16 cell divisions per human, which gives ⇠10 6 cell divisions per second [START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF][START_REF] Durkan | On contrastive learning for likelihood-free inference[END_REF], and most of them are linked to e HSC cells. HSC number ⇠10 4 in mice [START_REF] Poole | On variational bounds of mutual information[END_REF] (there are no reliable numbers for humans), many of them already made the fetus. Through a series of differentiation and phenotypic commitment events (HSC! Short Term HSC (ST-HSC) Multipotent progenitor (MPP), these cells give rise to different kinds of cells found in the blood, including red blood lls and all immune cells (see Fig. 9). The first branching decision, whose precise timing is currently being questioned, about becoming a myeloid progenitor, that will give rise to red blood cells, mast cells, thrombocytes (so not immune lls) but also macrophages, granulocytes (neutrophils, basophils and eosinophils) and dendritic cells -so cells of the mune system that eat up cells and proteins non-specifically. They function as cells of the innate immune system, simply iminating bacteria and other pathogens, but some of them (e.g. dendritic cells) also play an important role in adaptive munity as antigen presenting cells (APC). The remaining branch of the differentiation tree leads to lymphoid progenitors at include cells of the adaptive immune system: B and T-cells as well as natural killer (NK) cells. The decision about ecoming a myeloid or a lymphocyte is widely assumed not be an autonomous decision but is believed to be influenced y external signals (see below for a detailed discussion).

General quantitative questions about differentiation apply to the differentiation of cells in the immune system. For ample, given that in mice there are of the order of 10 4 HSC, what kind of dynamics results in ⇠10 7 very short lived f the order of a day) granolocytes while at the same time producing ⇠10 11 lymphocytes that can live even for years? ow long does it take to produce these cells? What kind of differentiation process can produce this kind of diversity, d how is it regulated to produce the right numbers of cells? A lot of information about these differentiation processes as be gained from two types of experiments. The first involves exposing cells at a given upstream stage with dyes or aceable markers (i.e. bromium, deuterium) that get taken up -and then diluted -upon cell division. Analysis of the ecay curves is informative about cellular lifetimes. The second type of experiment -an adoptive transfer experiment is experimentally harder, since it involves transplanting new marked cells into an animal (typically mouse) and then acking them. To study cells during the early stages of hematopoiesis the mouse must first be cleared of its natural cells, d recent results suggest that the dynamics of differentiation after transplantation may be very different from regular ynamics [START_REF] Tishby | The information bottleneck method[END_REF]. Lymphocyte divisions can be studied without killing the host's own immune system. The principle of ese experiments is simple -after some time t the marked cell will appear in a given compartment. At the population level, given that cells at stage i of differentiation can proliferate with rate i , differentiate with rate i or die with rate i , the dynamics of a given cell type n R in the differentiation process follows [START_REF] Tishby | The information bottleneck method[END_REF][START_REF] Jozefowicz | Exploring the limits of language modeling[END_REF] dn A cartoon representation of the basic processes that take the cells from the bone marrow to the thymic cortex and medulla and finally lead to the generation of functional naive CD4+ and CD8+ T-cells that are exported to the periphery. The duration of the processes is not drawn to scale -it is meant solely as an indication of temporal order and overlap.

R dt = ↵ u n u (↵ R + R R )n R , (38) 
TCR that recognize peptides presented by the MHC class I commit to becoming CD8+ cells, whose main function is to kill infected cells, while cells with MHC class II TCR specificity become CD4+ cells, whose main function is to help B cells in their affinity maturation, and to regulate the immune response. There are about 4 times as many CD4+ cells as CD8+ cells in the thymus, based on mouse data [START_REF] Pogorelyy | Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires[END_REF]. The CD4+/CD8+ ratio for human blood was reported to be ⇠1.5 [207]. A small subclass of CD4+ T cells, called regulatory T cells (Tregs), actually suppress the immune response, and play an essential role to prevent auto-immunity [208]. Tregs are selected for higher affinities to self-epitopes than regular T cells, which allows them to selectively suppress immune responses to self-antigens, although the picture seem to be quite complex (see [209]).

To be able to ensure self tolerance, each receptor should in principle be tested against all possible self-epitopes, which would take an impractically long time. In practice, experiments suggest that each T cell may encounter around 500 antigen presenting cells [210], while theoretical arguments estimate the number of presented self peptides around a few thousands [START_REF] Yates | Theories and quantification of thymic selection[END_REF] (these numbers are not inconsistent because each antigen-presenting cell may present many different peptides in single encounter with a T cell). These numbers are much lower than the estimated diversity of presentable self peptide-MHC complexes, 5 • 10 5 -5 • 10 6 (see Section 6.1). Calling x the fraction of presented self peptides during negative selection and n the number of unique self-peptides, the probability that none of the selected TCR are self-reactive is (1 p) Rnx , which quickly goes to 0 as R becomes even moderately large, even if p scales as 1/n.

A recently proposed solution to this problem is to assume that a minimal number t of TCR must recognize a peptide to trigger an immune response [START_REF] Yates | Theories and quantification of thymic selection[END_REF]. By virtue of the law of large numbers, the number of T cells responding to a self-peptide is distributed as a Gaussian with mean and variance = Rp(1 x), while the number of T cells responding to a foreign peptide is of mean and variance = Rp. Good discrimination is achieved when the two distributions are well separated, giving the condition Rpx 2 1, with an optimal discrimination threshold t ⇤ = Rp(1 x/2) in the limit x ⌧ 1. This condition is barely satisfied by x = 10 2 , R = 10 9 and p = 10 5 , for which the optimal threshold for the number of TCR involved is t ⇤ ⇠ 10 4 . This argument suggests another, stricter lower bound on the diversity R of the T cell repertoire that is necessary to make such a collective decision. It also implies a ''quorum sensing'' mechanism by which responding T cells have a way of estimating how many other cells are involved in order to commit to a response. Recent work suggests that such quorum sensing does occur locally, probably using cytokine signaling [START_REF] Chollet | Keras[END_REF] (see Sec. 5.4.4.).

To model thymic selection in more quantitative detail, a common strategy has been to use additive models of binding free energy similar to [START_REF] Carter | Single T Cell Sequencing Demonstrates the Functional Role of α β TCR Pairing in Cell Lineage and Antigen Specificity Front[END_REF] [START_REF] Yamins | Using goal-driven deep learning models to understand sensory cortex[END_REF][START_REF] Senior | Improved protein structure prediction using potentials from deep learning[END_REF][START_REF] Minervina | TCR and BCR repertoire profiling in adaptive immunity[END_REF]. In these models, the only receptors that survive are those whose maximal affinity E ⇤ to any self peptide falls within a range (E p , E n ) corresponding to the positive and negative selection thresholds. This condition can be mapped onto an extreme value statistics problem, allowing for a statistical mechanics treatment [START_REF] Yang | Machine-learning-guided directed evolution for protein engineering[END_REF]. Under this framework, it was shown that the sequence composition of negatively selected TCR was biased towards weakly binding residues [START_REF] Yamins | Using goal-driven deep learning models to understand sensory cortex[END_REF], and the theory was subsequently applied to explain clinical data on ''elite controllers'' of HIV expressing a particular type of MHC class I molecule, HLA-B27 [211]. A similar theory was used to study the sensitivity of TCR that target tumor cells [START_REF] Senior | Improved protein structure prediction using potentials from deep learning[END_REF]. The parameters of these models are not inferred empirically, but are instead picked from popular but unrealistic interaction potentials between amino acids such as the Miyazawa-Jernigan matrix [START_REF] Carleo | Machine learning and the physical sciences[END_REF]. Yet many conclusions of these studies are relatively insensitive to the details of the interaction matrices in the extreme value statistics regime.

Statistical inference methods based on immune repertoire sequencing can also be used to estimate the probability that a particular receptor passes selection based on its sequence. We can define a selection factor corresponding to the ratio of probabilities to find a sequence in a selected repertoire, P sel (s), relative to its probability in the unselected repertoire, as given by the recombination model P gen (s): Q (s) = P sel (s)/P gen (s). In practice, it is impossible to evaluate P sel (s) directly, as the number of possible sequences to be considered is too large, spanning more than 20 orders of magnitude in generation probabilities. However, simplifying assumptions can be made on the form of Q (s). Specifically, Elhanati et al. [212] considered: While the binding mechanism is quite different, both cell types employ a very similar machinery to generate a diverse repertoire of naive receptors. We will now focus our attention on T cells to describe it.

Q (s) = q(L)q(V , J) L Y i=1 q i|L (a i ), (52) 

Hematopoiesis and T cells

The progenitors of T cells are hematopoietic stem cells (HSC) originating in the bone marrow. Through a series of differentiation processes HSC cells can commit to become lymphoid progenitors that in turn differentiate to several cell types of the adaptive immune system such as T cells, B cells and and natural killer (NK) cells, see Fig2.1A. Those progenitors that will commit to the T cell pathway will move to the thymus to continue the maturation process. In the thymus the cells begin to recombine their receptor chains. This recombination mechanism is responsible for the observed diversity of receptor sequences which cannot be encoded directly The insertion and deletion processes will determine the length of the junction.

Its length will be a multiple of three only one in three times. In approximately 2/3 of cases the sequence cannot be translated and the receptor-coding gene cannot be expressed. In this case the cell has a second chance to generate a productive receptor by repeating the recombination process on its second chromosome. If successful, it will continue the maturation process by undergoing thymic selection (see next subsection) and it will be released to the periphery. These T cells still carry in their genome the result of the initial failed recombination process. Sequencing the genomic DNA content of these cells will capture the sequence of both the successful and failed recombination. Failed sequences are particularly valuable as they carry information on the statistics of the process which is not affected by selection. They can thus be used to infer a stochastic model of the process. See the section 2.2.3 for a detailed description of the data-driven biophysical model used to characterize this mechanism.

Thymic selection and differentiation

After successful recombination of its receptor, T cells need to pass a stage of selection before being released to the periphery. During this process they will also differentiate into two major subset: helper T cells carrying the CD4+ surface protein and Otherwise the maturation process will continue and the cell travels to the medulla for the second stage (negative selection). In the medulla the epithelial cells present self-peptides on their MHC proteins. If the T cell interacts too strongly it will be discarded. This prevents the release of autoreactive cells that would eventually mount an auto immune response once reached the periphery. There is however an active discussion (16; 17) on how stringent is negative selection and whether there exist alternative mechanisms happening in the periphery that forbid autoreactive cells to mount an autoimmune response.

Both CD4+ and CD8+ T cells can then differentiate to multiple subtypes. Of notable interest are Regulatory CD4+ T cells that have on average higher affinity (less negative selection) to self-peptides and help control and suppress the immune response.

Positive selection is a simpler process to model as it modifies globally the composition of the repertoire and its effect can be captured in a data-driven model.

On the other hand negative selection can be thought to create local "holes" in the repertoire which are difficult to identify from data which is heavily under-sampled with respect to the original size of the repertoire. Moreover each T cell is thought to interact with an incomplete set of self-peptides (between 10 3 and 10 5 (18)) and in practice several auto-reactive cells are released to the periphery.

Peripheral selection, clonal expansion and ageing

The T cells clones that pass thymic selection are released to the periphery. There they can grow or decay in number depending on the dynamics of the immune response. The distribution of clone sizes is extremely broad and follows a power law, which can be recovered from stochastic models of population dynamics with fluctuating fitness which mimicks random antigen exposure [START_REF] Desponds | Fluctuating fitness shapes the clonesize distribution of immune repertoires[END_REF].

It has been suggested that the hierarchy of clone sizes is established through clonal expansion during repertoire formation in early life (20; 21). With ageing the thymic influx of naive T cell decreases. At the same time the succession of antigen expo-sures increases the relative percentage of the memory phenotype in T cells. These two processes lead to a reduced immunity to novel pathogens with ageing (immune senescence).

B cells

The humoral response to antigenic stimuli relies on the cooperation of T cells and B cells. These two phenotypes differentiate from common lymphoid progenitors and their functions complement each other to ensure swift detection and eradication of pathogens. While T cells participate in the regulation of the immune response and have polyreactive receptors, B cell functions require receptors highly specific to a given antigen. This difference is reflected in the notably higher diversity of the B cell receptor repertoire. The cornerstone of this diversity is again the V(D)J recombination process that forms the naive BCR receptor composed of a heavy and a light chain. Unlike in the case of T cells, the naive diversity of BCRs is further enriched in the process of somatic hypermutation. Upon activation, B cells enter a darwinian process of affinity maturation in which the receptor-coding genes mutate at a high rate and selection favours cells with highest affinity to a given antigen.

High throughput repertoire sequencing

The development of parallel high throughput sequencing technologies (22; 23; 24; 25; 26; 27; 28) applied to immune receptor genes is revolutionizing the way we understand the adaptive immune response. Millions of distinct T and B cell receptor sequences can be collected from 1mL of blood and novel computational techniques are being developed to analyse and interpret this information. The main difference between the most popular library preparation pipelines is the starting material:

genomic DNA or messenger RNA (mRNA). Genomic DNA of T cell receptor sequences is normally amplified using multiplex polymerase chain reactions (PCR)

with primers that capture their V and J genes. The genomic DNA has the advantage to be very stable, on the other hand PCR amplification can introduce biases when different efficiencies of primer amplifications are present. The mRNA is a more unstable starting material and carries an intrinsic bias from the heterogeneity of transciption of mRNA in a cell, however the possibility of introducing unique molecular identifiers (UMIs) when converting to cDNA for sequencing via rapid amplification of complementary DNA ends (RACE) technologies can reduce the bias from the sequencing pipeline.

Chapter 2. Background, concepts and tools

Mathematical Methods

Characterizing the distribution of T and B cell receptor repertoire from repertoire sequencing (RepSeq) data is an instance of an unsupervised learning problem, i.e. modeling a probability P (x) of random variable x having access to a set of samples

D = {x i } N i=1 .
This task is different from the alternative major class of problems broadly defined as supervised learning, where the task is to approximate the conditional probability distribution P (y|x) having access to a set of pairs {(y i , x i )} N i=1 . The distinction between these two major groups of problems is however not always well defined and we will show in this thesis a specific case where unsupervised learning problems can be addressed with supervised learning approaches.

Unsupervised Learning

Unsupervised learning addresses the task of inference of a probability distribution

P (x) from a set of samples D = {x i } N i=1 .
Given a specific parametrization of the probability distribution P θ (x), parameter inference is performed via maximization of the average log-likelihood

L(θ, D) = 1 N N i=1 log P θ (x i ) = E D [log P θ ] (2.1)
where E D [•] indicates the empirical average with respect to the set D.

Multiple methods have been proposed to address this task: Bayesian networks, Gaussian mixtures, markov and hidden markov models, variational inference, Gaussian processes, normalizing flows and many more. They all differ on the specific assumptions and constraints for P θ (x), resulting in alternative techniques for the maximization of Eq 2.1.

Density ratio estimation

In order to apply unsupervised learning techniques to high throughput repertoire sequencing data we need to take into account that the development of T and B cell receptors depends on two distinct processes: recombination of the receptor and selection.

Following the strategy developed in (32; 30; 33; 8) we try to infer two separate models for each of these processes. We model the VDJ recombination process with a factorized probability distribution P gen (for generation) on unproductive receptor sequences which are still present in the RepSeq data and subsequently estimate P (x) ≡ P post (x) = Q(x)P gen (x) on productive receptor sequences as a deviation from the reference distribution P gen . The selection factor Q(x) captures thymic and peripheral selection, for this reason we call P post the post-selection distribution.

Generation probability

Following the approach of (32; 30) the probability of a specific recombination scenario that leads to a CDR3 nucleotide sequence can be factorized as:

P scenario = P V (V )P delV (d V |V )P DJ (D, J) × P delD (d D , d D |D)P delJ (d J |J) × P insVD ( VD )p 0 (m 1 )   V D i=2 S VD (m i |m i-1 )   × P insDJ ( DJ )q 0 (n DJ )   DJ -1 i=1 S DJ (n i |n i+1 )   .
(2.2)

where P V , P DJ are the probabilities of choosing a specific V, D and J gene combination, P delD , P delJ are the probabilities of deletions conditioned on the gene choices, P insVD , P insDJ , S VD , S DJ characterize the probability of inserting a specific nucleotide sequence of length VD and DJ where p 0 and q 0 define the initial state of the markov chain.

This factorization captures the relevant correlations observed in the data, as it was first proposed in [START_REF] Murugan | Statistical inference of the generation probability of T-cell receptors from sequence repertoires[END_REF]. In order to compute the probability of a single nucleotide sequence x we need to sum over all possible scenarios compatible with that sequence:

P nt gen (x) = scenario→x P scenario , (2.3) 
This step is particularly important since there is a high degeneracy in the number of possible scenarios that can produce the same sequence and typically the most probable scenario does not coincide with the one that actually generated the sequence.

For this reason, in order to infer the parameters of the model defined in eq. 2.2 we need to use a specific optimization scheme that takes into account this degeneracy:

the Expectation Maximization algorithm.

Once the model is inferred we can evaluate the generation probability of new sequences. If we are interested in a productive amino-acid sequence x we need to additionally sum over the generation probability of all compatible nucleotide combinations:

P gen (x) = 1 f x→x P nt gen (x), (2.4) 
with f = scenario|prod P scenario is a sum over all possible productive scenarios and Chapter 2. Background, concepts and tools renormalizes the probability for productive sequences.

Post-selection probability

We are left to characterize the deviation between the statistics of the observed productive repertoire encoded in our samples D and those of our reference distribution P gen .

P θ post (x) = Q θ (x)P gen (x) = 1 Z θ e -E θ (x) P gen (x) (2.5)
where Z θ ensures normalization of the probability. Maximization of the average likelihood

L(θ, D) = E D [log P θ post ] = E D [-E θ ] -log Z θ + E D [P gen ] (2.6)
does not depend on the last term. The selection function Q θ (x) is the ratio between the target distribution P θ post and the reference distribution P gen . This problem is analogous to the noise contrastive estimation (NCE) framework (123; 124) in the Neural Language Processing (NLP) field. The partition function can be estimated through importance sampling as

Z θ = x P gen (x)e -E θ (x) ∼ E G [e -E θ ] (2.7) 
with E G [•] the empirical average with respect to a set G of samples from P gen . Intuitively when P gen is closer to P post , the empirical average in eq 2.7 converges faster and the inference is more stable. We are thus interested in maximizing:

L(θ, D, G) = E D log P θ post P gen = E D [-E θ ] -log E G [e -E θ ] (2.8)
where the size of D is fixed by the amount of data available while the size of G can be arbitrary large and depends on how many samples are produced from P gen . The functional form of E θ can be derived from the principle of minimum discriminatory information. We will keep the notation of P post and P gen for consistency, however the following section can be understood with arbitrary reference and target distributions.

Principle of minimum discriminatory information

We are looking for a probability distribution P post that is the most similar to our reference distribution P gen while reproducing some observables from the data D (such as frequencies of V, J genes and aminoacids at different positions) by extremization of the functional:

J (P post ) = D KL (P post ||P gen ) -η 0 x P post (x) -1 - f ∈F θ f (P post (f ) -P data (f )) (2.9)
where the second term imposes normalization of the probability, the index f identifies the observables (i.e. CDR3 aminoacid composition and V-and J-gene usage for T and B cell receptor repertoires) whose average is constrained to match the one computed on samples D from the P data distribution and

D KL (P post ||P gen ) = x P post (x) log P post (x) P gen (x) (2.10)
is the Kullback-Leibler divergence between the two distributions. The uniform distribution U is the distribution with maximal entropy. When P gen → U the above formulation is equivalent to the principle of maximum entropy [START_REF] Jaynes | Information Theory and Statistical Mechanics[END_REF]. Extremization of J recovers eq 2.5 with E θ (x) = f ∈F θ f x f where x f ∈ {0, 1} identifies whether the sequence x carries feature f from the set of features F = {f i } K i=1 . Two point correlations can be constrained by expanding the set of features F with additional elements f such that x f ∈ {0, 1} if the sequence x carries both f i and f j features.

Higher order correlations can be constrained in a similar way.

Higher order correlations with neural networks

With the model structure defined above, any high order correlation can in principle be constrained. The downside of this method is that for fixing nth-order correlations, we need K n parameters, with K number of features. In practice any n > 2 is unfeasible to fix in normal applications. An alternative way to achieve the same goal is using neural networks. A neural network is a powerful function approximator with a simple mathematical structure that allows efficient gradient computations with respect to its parameters. The most traditional model structure is a feed-forward perceptron model with M layers defined by the composition of maps

N N θ (x) = h M (L θ M (. . . h 1 (L θ 1 (x)) . . . )) (2.11)
with L θ i (y) = k θ jk i y k +θ j0 i a linear map L : R n → R m with n dimension of the input variable y, m dimension of the output of the map, k ∈ {1, . . . , n}, j ∈ {1, . . . , m}, i ∈ {1, . . . , M } and h i a non linear map (i.e. sigmoid, hyperbolic tangent, ReLu or softplus) applied to each dimension j with well defined first order derivative. See efficient computation of gradients with respect to all parameters θ by applying the chain rule to eq. 2.11 (commonly referred as backpropagation algorithm in machine learning jargon).

Optimization with stochastic gradient descent

When E θ = N N θ , our goal is to find the parameters θ that maximize eq. 2.8, or equivalently minimize its negative value. We will follow the latter convention to be consistent with the machine learning literature. The cornerstone for this optimization process is the Gradient Descent (GD) algorithm, which consists of the updating rule for the model parameters:

θ → θ = θ -η∇ θ L(θ, D) (2.12)
where the learning rate η defines the magnitude of the update. Since the likelihood defined in eq. 1 satisfies

∇ θ L(θ, D) = E D [∇ θ log P θ ], (2.13) 
for each parameter update we need to compute the gradient for all inputs x i ∈ D.

When the size of D increases, the optimization takes a long time.

An alternative approach is to produce an unbiased estimated of the gradient on a subsample D i (referred as mini-batch in machine learning jargon) from D without replacement at each update step. When all inputs x i have been assigned to a minibatch and used for updating the parameters, an epoch of training is terminated.

This procedure corresponds to the workhorse for optimization of artificial neural networks: the Stochastic Gradient Descent (SGD) algorithm.

The SGD algorithm is considerably more computationally efficient than GD.

Moreover stochasticity brings an additional desirable property: the ability to escape local minima. Changing the size S of the mini-batch is analogous to varying the temperature in statistical physics. As it is depicted in Fig 2 .2B, let's assume we start in a local minima of the negative log-likelihood. When S = |D| we are in the zero temperature limit and the dynamics of gradient updates converges to the local minima of the negative log-likelihood. As the size S of the mini-batches decreases, the effective temperature of the dynamics increases. Escape from the energy barrier is possible and the dynamics can continue towards the global minima. A similar rationale inspires alternative optimization schemes like simulated annealing.

Stochastic optimization of eq. 2.8 is ill-defined given the empirical average over the set G is trapped within the logarithm and the gradient operator does not commute with the average (as it does in eq. 2.13). We thus require a mixed strategy for stochastic optimization where the second average of eq. 2.8 needs to converge at each update step. This is in principle not always computationally feasible as it relies in the convergence of the importance sampling estimate in eq. 2.7. In our specific application mini-batch sizes of 10 4 are large enough to satisfy this condition.

Logistic regression for density ratio estimation

Maximization of the likelihood in eq. 2.6 can be performed by optimization of an alternative objective function that shares the same maximum. In the Noise Contrastive Estimation framework (123; 124), which developed within the field of Natural Language Processing, the density ratio between two distributions P post (x)/P gen (x) is inferred using a logistic classifier. As we show in Chapter 6, a classifier between the two hypothesis of x originating from P post or P gen in a mixture P mix = 1 2 (P post + P gen ) follows:

d(x) = P (P post |x) = P post (x) P post (x) + P gen (x) = 1 1 + Ze E(x) (2.14)
if we parametrize the classifier d = d θ , we can minimize the binary cross-entropy

S(θ) = -E D [log d θ ] -E G [log(1 -d θ )] (2.15)
and recover the density ratio using the energy representation of d θ in eq. 2.14.

Logistic regression (classification) is the workhorse of supervised learning. It finds here an untraditional application to an unsupervised problem. Since both averages in eq.2.15 can commute with the gradient as in eq. 2.13, this objective function is well defined with respect to the stochastic gradient descent dynamics.

Introduction

Deep learning methods are proving a very useful approach in many areas of physics and the natural sciences (37; 38). These algorithms are successful in identifying hidden patterns in large amounts of data, often helping make progress in situations where traditional analyses reach their limits (39; 40; 41). Despite the black box aspect of how the algorithm works and the lack of interpretability of the model features, machine learning is undoubtedly useful, especially in cases where the natural system of interest escapes our intuition or knowledge. However, as we show here on the example of immune repertoires, introducing physical or biological intuition into data-driven models can outperform basic uninformed machined learning approaches.

The adaptive immune system is made up of a large ensemble of diverse lymphocyte receptors that recognize different pathogens. The receptors expressed on the surface of T cells (T cell receptors -TCR) are generated by randomly assembling genomic templates for three genes (variable-V, diversity-D and junction-J) that make up of the so-called β chain, and two (V and J) for the α chain. Additionally to this combinatoric diversity, non-templated nucleotides are added at the junctions between these templates and nucleotides are deleted. Such recombined DNA forms the newly generated TCR that later undergoes thymic selection that tests for its Chapter 3. On generative models of T-cell receptor sequences ability to form a receptor protein and bind, albeit not too strongly, proteins that are natural to the host organism [START_REF] Yates | Theories and quantification of thymic selection Front[END_REF] TCR sequences differ from classical protein families, which are grouped by function and across species [START_REF] El-Gebali | The Pfam protein families database in[END_REF]. Those families are believed to have evolved over long time scales under a shared selective pressure that shapes their statistics. For such families, physics-inspired statistical inference methods have helped to predict contacts between amino-acids in the protein [START_REF] Cocco | Inverse Statistical Physics of Protein Sequences: A Key Issues Review[END_REF], define sectors of co-evolving residues [START_REF] Halabi | Protein Sectors: Evolutionary Units of Three-Dimensional Structure[END_REF], or find interaction partners [START_REF] Bitbol | Inferring interaction partners from protein sequences[END_REF]. Deep [START_REF] Riesselman | Deep generative models of genetic variation capture the effects of mutations[END_REF] and non-deep (51) machine learning approaches have also been successfully applied. By contrast, TCR generation is fairly well understood mechanistically. Previously we developed a statistical inference technique that uses biological knowledge of the underlying assembly processes to learn the statistics of generation and calculate the generation probability of each TCR sequence (32; 30). Since thymic selection involves many specific interactions with antigen-presenting cells, modeling it from first principles is more difficult. Nevertheless, simple models of selection based on the assumption of an additive fitness [START_REF] Berg | Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters[END_REF] have been shown to well recapitulate some key statistics of these ensembles (33; 8). However, a direct test of the performance of this method for the abundance of specific sequences in large cohorts is still lacking.

Recently, Davidsen et al. [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF] described an elegant approach for learning the distribution of T-cell receptor beta sequences (TCRβ or simply TCR in the following), based on a Variational Auto-Encoder (VAE). The method makes it possible to generate new sequences with the same statistics as real repertoires, and to evaluate the frequency of individual sequences, which agree with the data with good accuracy. Its main strength is that it does not take any information about the origin of these sequences through VDJ recombination and thymic and peripheral selection.

Yet it manages to extract statistical regularities imprinted by these processes.

Here we compare the VAE method [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF] with the previously proposed model of generation and selection, called SONIA (33; 8). We compare their performances for predicting the distribution of TCR sequences in controlled conditions, training and

Model definitions

validating on the same datasets. Contrary to the claims of the original VAE paper [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF], we show that that knowledge guided models perform as well as the variational auto-encoder or even better, at a lower computational cost.

Model definitions

Knowledge-guided model

To predict the probability distribution of TCR sequences, we build a generative model that proceeds in two steps: initial generation, and selection.

First, a recombination model for the probability of generation of a sequence σ, denoted by P gen (σ), is learned from failed, nonproductive rearrangements, which are free of selection biases (32; 30). This model describes in detail the probabilities of V, D, and J usages, and of deletion and insertion profiles. Calling E the collective variable describing the recombination scenario, the model predicts its probability P scenario (E). Its parameters are learned through Expectation-Maximization using the IGoR software [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF].

Although the model is trained on non-productive sequences, it can be used to predict the probability of any sequence. Denoting σ(E) the amino-acid sequence produced by scenario E, we define the generation probability of a productive aminoacid sequence σ as:

P gen (σ) = 1 F E P scenario (E)I[σ(E) = σ], (3.1) 
where I(•) is the indicator function, and

F = E P scenario (E)I(σ(E) is productive)
is the probability that a random recombination scenario results in a productive sequence. More precisely, σ is defined by the choice of V and J genes (σ V and σ J ), as well as the amino-acid sequence of the Complementarity Determining Region 3 (CDR3) that lies between V and J, σ 1 , . . . , σ L . The sum in (3.1) involves a large number of terms due to the degeneracy of both the genetic code and the recombination process, but it can be done using a recursive technique akin to transfer matrices, which is implemented in the OLGA software [START_REF] Sethna | OLGA: fast computation of generation probabilities of B-and T-cell receptor amino acid sequences and motifs[END_REF].

Second, a model of selection, called SONIA [START_REF] Sethna | Population variability in the generation and selection of T-cell repertoires[END_REF], is learned on top of the generation probability P gen to describe the distribution of productive sequences,

P SONIA (σ) = Q(σ)P gen (σ), (3.2) 
where

Q(σ) = 1 Z exp h V JL (σ V , σ J , L) + L i=1 h i,L (σ i ) (3.3)
Chapter 3. On generative models of T-cell receptor sequences is a selection factor calculated through additive "fields" h acting on the sequence elements, similarly to additive position-weight matrix models first introduced for DNA binding sites [START_REF] Berg | Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters[END_REF].

Within this framework, we can define three models according to the parametrization of h. In the first two models, the VJL field is decomposed as

h V JL (σ V , σ J , L) = h V J (σ V , σ J ) + h L (L).
A first model in which h i,L is left unconstrained is called the "Length-Position" (LP) model. This choice corresponds to the original model of [START_REF] Elhanati | Quantifying selection in immune receptor repertoires[END_REF], in which the selective pressure on each amino-acid may depend on the sequence length L. However, observations [START_REF] Elhanati | Quantifying selection in immune receptor repertoires[END_REF] suggest that these factors are to some extent independent of L. This invariance can be incorporated by assuming that the field can be decomposed into two contributions depending on the position of the amino acid from the right and left ends of the CDR3: h i,L = 0. Its parameters h V JL were fitted by maximizing the likelihood analytically.

h i,L = h i,right + h L-i+1,

Variational Auto-Encoder

A VAE is an auto-encoder whose structure can be used as a generative probabilistic model. A good introduction can be found in Ref. [START_REF] Kingma | An Introduction to Variational Autoencoders[END_REF]. In short, a VAE consists of a probabilistic encoder q(z|σ) and a probabilistic decoder p(σ|z), converting the sequence into a continuous multi-dimensional latent variable z and back. The goal of the encoder is to make the probabilistic mapping from σ to itself through q and p as faithful as possible, while at the same time making the distribution of the latent variable z as close as possible to a simple distribution, i.e. multivariate Gaussian with unit covariance.

Both p and q are parametrized by deep neural networks, whose parameters are optimized for these two objectives, using stochastic gradient descent. Once the model is learned, new sequences can be generated by drawing z from p 0 (z), and σ from p(σ|z), so that σ is distributed according to P VAE (σ) = dz p(σ|z)p 0 (z). In practice, the predicted probability of a given sequence P VAE (σ) is evaluated using Monte-Carlo importance sampling. In Ref. [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF], a variant of the traditional auto- 

Model comparison

Datasets and model training

The data consists of TCRβ sequence repertoires of 666 individuals (2). We use the exact same procedure, dataset, and subsamples as in [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF] for reproducibility.

For each individual, read counts are first discarded as they stem from clonal expansions. To train an initial P gen model on which SONIA is built and trained, we used 2 • 10 5 nonproductive sequences drawn randomly from all donors. For all models, unique amino-acid sequences were first separated into a training and a testing dataset of equal sizes. All models were then trained on 2 • 10 5 or 10 6 TCRβ sequences randomly sampled from the training dataset with replacement, according to their frequency in the cohort, counting each unique nucleotide sequence in each patient. Their performance was assessed by their ability to predict the frequency of sequences from the testing set, P data (σ).

Predicting sequence frequencies

We used two measures of performance: Pearson's ρ 2 between the logarithms of the frequencies as in [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF], and the Kullback-Leibler divergence:

D KL = log 2 [P data (σ)/P model (σ)]
(model = VAE or SONIA), where the average • is taken over 10 4 sequences from the testing set, sampled according to their relative frequencies within that set. We excluded ∼ 0.3% of sequences for which P gen = 0, probably due to sequencing errors.

Note that, if not for the L 2 regularization, maximizing the log-likelihood would be equivalent to minimizing the D KL . The scale of D KL may be compared to the total The performances of all models and both datasets are reported in Table 3.1.

SONIA models perform generally better than the VAE, especially the Left+Right model which is the best model according to both measures of performance. Note that the Length-Position model of Ref. [START_REF] Elhanati | Quantifying selection in immune receptor repertoires[END_REF], also performs as well as the VAE.

Davidsen et al. [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF] did not compare their model to it owing to the absence of a readily available implementation.

Strikingly, even the basic model of generation with no selection (h = 0), P gen , performs comparably to the VAE, and sometimes better according to the ρ 2 measure, despite the model being trained on nonproductive sequences. Accordingly, the OLGA.Q model, which adds a minimal layer of selection on top of P gen , also performs very well. These results differ substantially from the ρ 2 = 0.26 -0.27 reported in [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF] for OLGA.Q. In ( 31), the default model for P gen was not actually trained on the dataset of interest, but rather used with its default parameters learned from a different dataset, which explains the poor reported performance.

We can also compare the two models by asking whether the distribution of frequencies are well reproduced by one another, using another TCR dataset from for SONIA-versus VAE-generated sequences (Fig. 3.2b). This suggests that the VAE and SONIA capture some features of the sequence statistics that are distinct from one another.

Computational times

SONIA is an order of magnitude faster than the VAE, which uses Monte-Carlo sampling to calculate predicted frequencies. The average computing time for P SONIA (σ) is 14 ms per sequence on a laptop computer and 3 ms on a 16-core computer, versus 0.18 s for P VAE (σ) on a single core on a laptop (no parallelism implemented).

SONIA was also faster to train. It took 33 minutes to train a SONIA model on 10 6 sequences using a 30-core computer, to which one should add 31 minutes to train an IGoR model on 2 • 10 5 nonproductive sequences. For the same amount of data and on the same machine, the VAE took 7 hours to train.

Conclusion

In summary, both approaches, VAE and SONIA, perform equally well, with perhaps a slight advantage for the latter. SONIA is also much faster. These results suggest that, while knowledge-free approaches such as the VAE perform well, there is still value in preserving the structure implied by the VDJ recombination process as a baseline for learning complex distributions of immune repertoires. Extending the SONIA model considered here beyond a simple linear combination of features, and taking ideas from the modeling strategy of the VAE, offers interesting directions for future improvement in repertoire modeling.

In a more general context, while machine learning approaches are undoubtably a very useful tool, they can be made even more powerful when combined with models that describe the underlying physics or biology. This is the case when training data is limited, as has been reported in complex image processing of non-animate matter [START_REF] Colas | Nonlinear denoising for characterization of solid friction under low confinement pressure[END_REF]. As we show, even if data is abundant, using models to guide learning can help.

Introduction

The Before entering the periphery where their role is to recognize foreign antigens, the generated receptors undergo a two-fold selection process based on their potential to bind to the organism's own self-proteins. On one-hand, they are tested to not be strongly self-reactive (Fig. 4.1 A). On the other hand, they must be able to bind to some of the presented molecules to assure minimal binding capabilities. This pathogen-unspecific selection, known as thymic selection for T-cells [START_REF] Yates | Theories and quantification of thymic selection Front[END_REF] and the process of central tolerance in B-cells [START_REF] Nemazee | Mechanisms of central tolerance for B cells Nat[END_REF], can prohibit over 90% of generated receptors from entering the periphery (14; 60; 62). Based on such data, statistical inference techniques have been developed to infer biophysically informed sequence-based models for the underlying processes involved in generation and selection of immune receptors (30; 64; 65; 53; 8; 66). Machine learning techniques have also been used to infer deep generative models to characterize the T-cell repertoire composition as a whole [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF], as well as discriminate between public and private B-cell clones based on Complementarity Determining Region 3 (CDR3) sequence (67; 68). While biophysically informed models can still match and even outperform machine-learning techniques (see e.g. ( 69)), deep learning models can be extremely powerful in describing functional subsets of immune repertoires, for which we lack a full biophysical understanding of the selection process.

Here, we introduce a framework that uses the strengths of both biophysical We model these two processes independently. The statistics of the V(D)J recombination process described by the probability of generating a given receptor sequence σ, P gen (σ), are inferred using the IGOR software [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF]. P gen (σ) acts as a baseline for the selection model. We then infer selection factors Q, which act as weights that modulate the initial distribution P gen (σ). We infer two types of selection weights: linear in log space (using the SO-NIA software ( 8 
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Results

Neural network models of TCR and BCR selection

Previous work has inferred biophysically informed models of V(D)J recombination underlying the generation of TCRs and BCRs (32; 30). In brief, these models are parametrized according to the probabilities by which different V-, D-, J-genes are used and base pairs are inserted in or deleted from the CDR3 junctions to generate a receptor sequence. We infer the parameters of these models using the IGoR software (30) from unproductive receptor sequences, which are generated, but due to a frameshift or insertion of stop codons are not expressed, and hence, are not subject to functional selection. The inferred models are used to characterize the generation probability of a receptor sequence P gen , and to synthetically generate an ensemble of pre-selection receptors [START_REF] Sethna | OLGA: fast computation of generation probabilities of B-and T-cell receptor amino acid sequences and motifs[END_REF]. These generated receptors define a baseline G for statistics of repertoires prior to any functional selection.

The amino acid sequence of an immune receptor protein determines its function.

To identify sequence properties that are linked to function, we compare the statistics of sequence features f (e.g. V-, J-gene usage and CDR3 amino acid composition) present in a given B-or T-cell functional repertoire to the expected baseline of receptor generation (Fig. 4.1 C). To do so, we encode a receptor sequence σ as a binary vector x whose elements x f ∈ {0, 1} specify whether the feature f is present in a sequence σ. The probability P θ post (x) for a given receptor x to belong to a functional repertoire is described by modulating the receptor's generation probability P gen (x)

Results

by a selection factor Q θ (x),

P θ post (x) = P gen (x)Q θ (x) ≡ 1 Z θ P gen (x) Q θ (x), (4.1) 
where θ denotes the parameters of the selection model and Z θ ensures normalization of P θ post . Previous work (33; 75; 8) inferred selection models for functional repertoires by assuming a multiplicative form of selection Q θ (x) = exp( f θ f x f ), where featurespecific factors θ f contribute independently to selection. We refer to these models as linear SONIA (Fig. 4.1B). Selection can in general be a highly complex and nonlinear function of the underlying sequence features. Here, we introduce soNNia, a method to infer generic non-linear selection functions, using deep neural networks (DNN). To infer a selection model that best describes sequence determinants of function in a data sample D, soNNia maximizes the mean log-likelihood of the data

L(θ) = log P θ post D
, where the probability P θ post is defined by Eq. (4.1), and • D denotes expectation over the set of sequences D. This likelihood can be rewritten as (see Methods),

L(θ) = log P θ post D = log Q θ D -log Q θ G + const, (4.2) 
where • G is the expectation over the ensemble of sequences G that reflect the baseline. This baseline set is often generated by sampling from a previously inferred generation model P gen , using the IGoR software [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF]. Note that this expression becomes exact as the number of generated sequences approaches infinity.

In soNNia we divide the sequence features f into three categories: (i) (V,J) usage, models associated with different sub-repertoires with distinct functions. We will use this feature of soNNia to learn selection coefficients of subsets relative to an empirically constructed generic functional repertoire. In that case, the inferred selection factors Q only reflect differential selection relative to the generic baseline.

Importantly, this approach enables us to infer differential selection without having to infer a common underlying generation model P gen for the sub-repertoires. Once two soNNia models have been learned from two distinct datasets, their statistics may be compared by computing a sequence-dependence log-likelihood ratio r(x) = log Q 1 (x)/Q 2 (x) predicting the preference of a sequence for a subset over the other. This log-likelihood ratio can be used as a functional classifier for receptor repertoires (Fig. 4.1 E). 

Deep non-linear selection model best describes functional TCR repertoire

Intra-and inter-chain interactions in TCRs and BCRs

T-cell receptors are disulfide-linked membrane-bound proteins made of variable α and β chains, and expressed as part of a complex that interact with pathogens.

Similarly, B-cell receptors and antibodies are made up of a heavy and two major groups (κ and λ) of light chains. Previous work has identified low but consistent correlations between features of αβ chain pairs in T-cell receptors, with the largest contributions between V α , V β and J α , V β (77; 78; 10; 100; 80). In B-cells, preferences for receptor features within heavy and light chains have been studied separately (81;

82) but inter-chain correlations have not been systematically investigated.

We first aimed to quantify dependencies between chains by re-analyzing recently Both TCRs and BCRs have intra-and inter chain correlations of sequence features, with a stronger empirical mutual dependencies present within chains (Fig. 4.3).

To account for these dependencies between chains, we generalize the selection model of eq. 4.1 to pairs, x = (x a , x b ), where (a, b) = (α, β) in TCRs or (H, κ) or (H, λ) in BCRs:

P post (x) = 1 Z θ P a gen (x a )P b gen (x b )Q(x), (4.3) 
where we have dropped the dependence on parameters θ for ease of notation.

Analogously to single chains, we first define a linear selection model specified by

Q(x) = exp( f θ f x f )
, where the sum now runs over features of both chains a and b. Because of its multiplicative form, selection can then be decomposed as the product of selection factors for each chain: We trained these three classes of models on each of the TCR α -β, and BCR H-κ and H-λ paired repertoire data described earlier. We then used these models to generate synthetic data with a depth similar to the real data, and calculated mutual informations between pairs of features (Fig. Our results show that the process of selection in BCRs is restrictive, in agreement with previous findings [START_REF] Nemazee | Mechanisms of central tolerance for B cells Nat[END_REF], significantly increasing inter-chain feature correlations.

Q(x) = Q a (x a )Q b (x b ),
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Notably, the increase in correlations (difference between green and other bars) due to selection is larger in naive B-cells than in unsorted (memory and naive) T-cells.

However, the selection strengths inferred by our models should not be directly compared to estimates of the percentage of cells passing pre-peripheral selection, ∼ 10% for B cells versus 3 -5% for T cells [START_REF] Yates | Theories and quantification of thymic selection Front[END_REF]. Our models identify features under selection without making reference to the number of cells carrying these features. Since the T-cell pool in our analysis is a mixture of naive and memory cells, we can expect stronger selection pressures in the T-cell data than in the purely naive T cells.

However, previous work analysing naive and memory TCRs separately using linear selection models did not report substantial differences between the two subsets [START_REF] Elhanati | Quantifying selection in immune receptor repertoires[END_REF].

Lastly, to quantify the diversity of immune receptor repertoires, we compared the entropy of unpaired and paired chain repertoires in Table S1 

Cell type and tissue-specific selection on T-cells

During maturation in the thymus, T-cells differentiate into two major cell-types: cytotoxic (CD8 + ) and helper (CD4 + ) T-cells. CD8 + cells bind peptides presented Decomposing in this way the divergence between CD4 + Tconv and CD8 + repertoires, we find that contributions to the total divergence are evenly split between amino-acid features and VJ gene usage, with only a minor contribution from CDR3 length (Fig. S4.9). It should be noted that the baseline models P gen for these subrepertoires, inferred from their unproductive receptors, are similar (Fig. S4.10) and do not contribute to these differential preferences.

One key difference between CD4 + and CD8 + TCRs amino acid composition is their CDR3 charge preferences. We observe an over-representation of positively charged (Lysine, K, and Arginine, R) and suppression of negatively charged (Aspartate, D, and Glutamate, E) amino acids in CD4 + TCRs compared to CD8 + TCRs (Fig. 4.4B), consistent with previous observations [START_REF] Li | TCRβ repertoire of CD4+ and CD8+ T cells is distinct in richness, distribution, and CDR3 amino acid composition[END_REF]. These charge preferences arise due to differential selection on the two subtypes (Fig. 4.4B), indicating broad differences between amino acid features of peptide-MHC-I and peptide-MHC-II complexes, which respectively interact with CD8 + and CD4 + TCRs. For example, a statistical survey of peptides presented by different MHC classes show that MHC-I molecules tend to present more positively charged peptides compared to MHC-II molecules-a bias that is complementary to the charge preferences of the respective TCR subtypes (87).

Decomposing unsorted repertoires using selection models

Knowing P r post models specific to sub-repertoires enables us to infer the fraction of each class r in unsorted data. Estimating the relative fraction of CD4 + and CD8 + sub-types in a repertoire can be informative for clinical purposes, e.g. as a probe for Tumor Infiltrating Lymphocytes (TIL), where over-abundance of CD8 + cells in the sample has been associated with positive prognosis in ovarian cancer [START_REF] Sato | Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer[END_REF]. Given a repertoire composed of the mixture of two sub-repertoires r and r in unknown repertoires with soNNia proportions, we maximize the log-likelihood function L(f ) based on our selection models to find the fraction f of a sub-repertoire r within the mixture:

L(f ) = log(f P r post (σ) + (1 -f )P r post (σ)) D (4.4) = log(f Q r (σ) + (1 -f )Q r (σ)) D + const,
where • D is the empirical mean over sequences in the mixture.

Previous work has used differential V-and J-gene usage, and CDR3 length to characterize the relative fraction of CD4 + and CD8 + cells in an unfractionated repertoire [START_REF] Emerson | Estimating the ratio of CD4+ to CD8+ T cells using high-throughput sequence data[END_REF]. The log-likelihood function in eq. 4.4 provides a principled approach for inferring cell-type composition using selection factors that capture the differential receptor features of each sub-repertoire, including but not limited to their V-and J-usage and CDR3 length and amino acid preferences.

To test the accuracy of our method, we formed a synthetic mixture of previously The method can be extended to the decomposition of 3 or more sub-repertoires.

To illustrate this, we inferred the fractions of Tconv, Treg, and CD8 + cells in synthetic unfractionated repertoires from spleen, showing an accuracy of 3 ± 1% in reconstructing all three fractions (Fig. S4.11) in a mixture of size 5 × 10 3 . We use selection models inferred for distinct sub-repertoires r and r to estimate a log-likelihood ratio R(x) for a given receptor x to belong to either of the subrepertoires,
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R(x) = log P r post (x) P r post (x) = log Q r (x) Q r (x) . ( 4.5) 
A larger log-likelihood ratio R(x) indicates that the receptor is more likely to be associated with the sub-repertoire r than r . We set a threshold R c , to assign a receptor to r if R(x) ≥ R c and to r otherwise. The sensitivity and specificity of this classification depends on the threshold value. We evaluate the accuracy of our log-likelihood classifier between sets of CD8 + and Tconv CD4 + receptors harvested from spleen [START_REF] Seay | Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes[END_REF]. The Receiver Operating Characteristic (ROC) curve in Fig. 4.4F

shows that our selection-based method can classify receptors as CD8 + or CD4 + cells, with an area under the curve AUC = 0.68. Performance does not depend on the choice of the baseline model (P emp in Fig. 4.4F and P gen in Fig. S4.7E). Applying this classification method to all the possible pairs of sub-repertoires in Fig. 4.4A, we find that CD4 + vs CD8 + discrimination generally achieves AUC≈ 0.7, while discriminating sub-repertoires within the CD4 + or CD8 + classes yields much poorer performance (Fig. S4.12).

For comparison, we also used a common approach for categorical classification and optimized a linear logistic classifier that takes receptor features (similar to the selection model) as input, and classifies receptors into CD8 + or CD4 + cells. The model predicts the probability that sequence x belongs to sub-repertoire r (rather than r ) as ŷ

(x) = ζ(R log (x)), with R log (x) = f w f x f + b and ζ(x) = e x /(1 + e x ).
We learn the model parameters w f and b by maximizing the log-likelihood of the training set:

L c (w, b) = N i=1 y i log ŷ(x) + (1 -y i ) log(1 -ŷ(x i )) (4.6)
where y i labels each TCR by their sub-repertoire, e.g. y i = 1 for CD8 + , and y i = 0 for CD4 + . Note that when selection models are linear, the log-likelihood ratio (eq. 6.7) also reduces to a linear form-the only difference being how the linear coefficients are learned. This optimized logistic classifier (eq. 4.6) performs equally well compared to the selection-based classifier, with the same AUC=0.68 (points in Fig. 4.4F). These AUCs are comparable to those found in ref. [START_REF] Carter | Single T Cell Sequencing Demonstrates the Functional Role of α β TCR Pairing in Cell Lineage and Antigen Specificity Front[END_REF], which has addressed the same issue using black-box machine learning approaches.

Results

47

It should be emphasized that despite comparable performances, our fully linear selection-based method provides a biologically interpretable basis for subtype classification, in contrast to black box approaches [START_REF] Carter | Single T Cell Sequencing Demonstrates the Functional Role of α β TCR Pairing in Cell Lineage and Antigen Specificity Front[END_REF]. For example, the relative importance of different sequence features (i.e., CDR3 length, V / J gene identity and amino acid composition) for CD4 + vs. CD8 + classification are shown in Fig. S4.9.

Classification of TCRs targeting distinct antigenic epitopes

Recognition of a pathogenic epitope by a TCR is mediated through molecular in- 

teractions

Discussion

Previous work has developed linear selection models to characterize the distribution of productive T cell receptors [START_REF] Sethna | Population variability in the generation and selection of T-cell repertoires[END_REF]. Here, we generalized on these methods by using deep neural networks implemented in the soNNia algorithm to account for nonlinearities in feature space, and have improved the statistical characterization of TCR repertoires in a large cohort of individuals [START_REF] Emerson | Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire[END_REF].

Using this method, we modelled the selective pressure on paired chains of Tand B-cell receptors, and found that the observed cross-chain correlations, even if limited, could be partially reproduced with our model (Fig. 4.3). These observed inter-chain correlations are likely due to the synergy of the two chains interacting with self and non-self antigens, which determine the selection pressure that shape the functional TCR and BCR repertoires.

We systematically compared T cell subsets and showed that our method identifies differential selection on CD8 + T-cells, CD4 + conventional T-cells, and CD4 + regulatory T-cells. TCRs belonging to families with more closely related developmental paths (i.e., CD4 + regulatory or conventional cells) have more similar selection features, which differentiate them from cells that diverged earlier (CD8 + ).

Cells with similar functions in different tissues are in general similar, with the ex-
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ception of spleen CD8 + that stands out from lymph node CD8 + . These differences capture broad differential preferences of CD8 + and CD4 + TCRs, which can arise from their distinct structural features complementary to their different targets, i.e., peptide-HLAI and peptide-HLAII complexes. A next step would be to uncover more fine-grained differential features, associated with the distinct pathogenic history or HLA composition of different individuals.

One application of the soNNia method is to utilize our selection models to infer ratios of cell subsets in unsorted mixtures, following the proposal of Emerson et al. [START_REF] Emerson | Estimating the ratio of CD4+ to CD8+ T cells using high-throughput sequence data[END_REF]. Consistently with previous results, we find that the estimated ratio of CD4 + /CD8 + cells in unsorted mixtures achieves precision of the order of 1% with as few as 10 4 unique receptors. Emerson et al. validated their computational sorting based on sequence identity on data from in-vitro assays and flow cytometry, which gives us confidence that our results would also pass an experimental validation procedure.

As a harder task, we were also able to decompose the fraction of regulatory ver- selection and overlaps with CD4/CD8 differentiation. We found that the Jensen-Shannon divergence between CD8 + and CD4 + cells to be very small (0.1 bit) compared to the divergence between functional and generated repertoires (ranging from 0.8 to 0.9 bits). This result suggests that the selection factors captured by our model mainly act during positive selection, which is partly shared between CD4 + and CD8 + cells, rather than during cell type differentiation and negative selection, which is distinct for each type. Additionally to showing statistical differences in sub-repertoires, we classified cells into CD4 + and CD8 + subclasses with likelihood ratios of selection models and recovered similar results achieved using pure machine learning approaches [START_REF] Carter | Single T Cell Sequencing Demonstrates the Functional Role of α β TCR Pairing in Cell Lineage and Antigen Specificity Front[END_REF], but in a fully linear and interpretable setting.

Chapter 4. Deep generative selection models of T and B cell receptor repertoires with soNNia

In recent years multiple machine learning methods have been proposed in order to predict antigen specificity of TCRs: TCRex (73; 90), DeepTCR [START_REF] Sidhom | DeepTCR: a deep learning framework for understanding T-cell receptor sequence signatures within complex T-cell repertoires bioRxiv[END_REF], netTCR [START_REF] Jurtz | NetTCR: sequence-based prediction of TCR binding to peptide-MHC complexes using convolutional neural networks bioRxiv[END_REF], ERGO [START_REF] Springer | Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs Front[END_REF], TCRGP [START_REF] Jokinen | TCRGP: Determining epitope specificity of T cell receptors bioRxiv[END_REF] and TcellMatch [START_REF] Fischer | Predicting antigen specificity of single T cells based on TCR CDR3 regions[END_REF]. All these methods have explored the question in slightly different ways, and made comparisons with each other. However, with the sole exception of TcellMatch [START_REF] Fischer | Predicting antigen specificity of single T cells based on TCR CDR3 regions[END_REF], none of the above methods compared their performance to a simple linear classifier. TcellMatch [START_REF] Fischer | Predicting antigen specificity of single T cells based on TCR CDR3 regions[END_REF] does not explicitly compare to other existing methods, but implicitly compares various neural network architectures. We thus directly compared a representative of the above group of machine learning models, TCRex, to a linear logistic classifier, and to the log-likelihood ratio obtained by training two SONIA models on the same set of features. We found that the three models performed similarly (Fig. 4.5), consistent with the view that amino acids from the CDR3 loop interact with the antigenic peptide in an additive way. This result complements similar results in Ref. [START_REF] Fischer | Predicting antigen specificity of single T cells based on TCR CDR3 regions[END_REF], where a linear classifier gave comparable results to deep neural network architectures.

The linear classifier based on likelihood ratios achieves state-of-the art performance both in discriminating CD4 + from CD8 + cells (Fig. The epitope discrimination task discussed here and in previous work focuses on predicting TCR specificity to one specific epitope. A long-term goal would be to predict the affinity of any TCR-epitope pair. However, currently available databases (71; 89) do not contain sufficiently diverse epitopes to train models that would generalize to unseen epitopes [START_REF] Fischer | Predicting antigen specificity of single T cells based on TCR CDR3 regions[END_REF]. A further complication is that multiple TCR specificity motifs may co-exist even for a single epitope (74; 96), which cannot be captured by linear models (97). Progress will be made possible by a combination of high-throughput experiments assaying many TCR-epitope pairs (7), and machine learning based techniques such as soNNia.

In summary, we show that nonlinear features captured by soNNia capture more information about the initial and peripheral selection process than linear models.

However, deep neural network methods such as soNNia suffer from the drawback of being data hungry, and show their limitations in practical applications where data
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are scarce. Nonetheless, with the rapid growth of functionally annotated datasets, we expect soNNia to be more readily used for inference of nonlinear selection on immune receptor sequences. Such nonlinearity is expected as it would reflect the ubiquitous epistatic interactions between residues of a receptor protein that encode for a specific function. In a more general context, soNNia is a way to integrate more basic but interpretable knowledge-based models and more flexible but less interpretable deep-learning approaches within the same framework.

Methods

Data description.

In this work we used different datasets to evaluate selection on Tand B-cell receptor features.

1. To quantify the accuracy of the soNNia model (Fig. 4.2), we used the TCRβ repertoires from a large cohort of 743 individuals from ref. [START_REF] Emerson | Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire[END_REF]. We pool the unique nucleotide sequences of receptors from all individuals and construct a universal donor totalling 9 × 10 7 sequences. We randomly split the pooled dataset into a training and a test set of equal sizes. We then subsampled the training set to 10 7 to reduce the computational cost of inference . Comparing selection on different sub-repertoires. To characterize differences in sub-repertoires due to selection, we evaluate the Jensen-Shannon divergence D JS (r, r )

between the distribution of pairs (r, r ) of sub-repertoires, P r post and P r post ,

D JS (r, r ) = 1 2 log 2 2Q r Q r + Q r r + 1 2 log 2 2Q r Q r + Q r r (4.8)
where • r denotes averages over P r post (see Methods for evaluation details). This divergence is symmetric and only depends on the relative differences of selection factors between functional sub-repertoires, and not on the baseline model.

On the local structure of repertoires of T cells during thymic development

In the previous chapter we compared the repertoire of different T cell subsets. We inferred selection factors and characterized global differences between them. In this chapter we explore more in detail the local properties of these repertoires and try to characterize whether the neighbourhood of a TCR sequence carries information about its cell type.

Introduction

During maturation in the thymus, T cells undergo a selection process (60) that privileges receptors with higher affinity to peptide-MHC proteins (positive selection) and partially prevents self-reactive receptors to be released in the periphery (negative selection). After successful recombination of the receptor, T cells express both CD4+ and CD8+ markers. Depending on the affinity of the receptor to one of the two main classes of MHC proteins, the cells commit to one of the two differentiation pathways: CD4+ or CD8+ T cells. See Fig 2 .1C for a schematic of the process. Previous studies (9; 86; 10) have tried to characterize the statistical properties of the repertoires of these two subsets and shown significant yet limited differences, mostly related to V and J gene usage distributions. However, the role of thymic selection in shaping the functional properties of T cell subsets is still a subject of ongoing research.

In [START_REF] Sethna | Population variability in the generation and selection of T-cell repertoires[END_REF] we characterized the variability in a human population in the generation and selection statistics of T cell receptor repertoires. It is in principle unclear how much population variability impacts our ability to find significant differences between T cell subsets. We will show in this chapter that repertoires of the same T cell subset sampled from different individuals are more similar to each other than those of different subsets from the same individual.

In parallel to this line of research, there is an interest (4; 5; 6) in characterizing the local neighbourhood of a receptor sequence in order detect significant enrichments Chapter 5. On the local structure of repertoires of T cells during thymic development during an immune response. Inspired by these analyses we will ask whether the local neighbourhood of a sequence carries information about its cell type. Moreover neural networks models for thymic selection (29) may miss local features of enrichment and depletion caused by thymic selection or antigen-driven proliferation. We would like to see whether we can detect those local effects. We will then focus more specifically to the question of predicting the number of neighbours of a sequence. We will propose and compare alternative estimators which assume different properties of smoothness of P gen , P post and Q. Motivated by this analysis we will then propose an MCMC procedure that allows to explore the space of productive receptors close to a reference receptor sequence.

Results

We 

Global comparison of repertoires of subsets

We preprocess the data with the same pipeline descibed in the previous chapter and infer a universal VDJ recombination model P gen from unproductive sequences pooled from all samples using the IGoR (30) software. We select samples with at that CD4+Treg samples from thymus have significantly (two-tailed Welch's t-test p-value=0.01) higher entropy than CD4+Tconv samples. Similary, CD4+Treg samples in the peripheral blood have significantly (two-tailed Welch's t-test p-value=0.002) higher entropy than CD4+Teff samples. This increased diversity is consistent with the fact that T regulatory cells are know to be more self-reactive and yet are able to interact with foreign antigens.

E 3+ E 8 E 4c E 4r z L(✓) = X t2T E t [ E t ] log E G [e Et ]
We then compare samples by computing the Jensen-Shannon divergence D JS between the inferred models. To better visualize the properties of the resulting distance matrix we perform dimensionality reduction using multidimensional scaling (MDS) [START_REF] Borg | Modern Multidimensional Scaling -Theory and Application Springer Series in Statistics[END_REF], see In order to better visualize the differences between these repertoires within maturation in the thymus, we develop a method to map the receptor sequences in a representation space that carries information about selection. We build a feed forward neural network which outputs the selection factor for each subset and has a hidden layer of dimension 2, see Fig 5 .1E for a sketch of the network architecture.

We infer selection factors by maximizing the joint objective

L(θ) = t∈T E t [-E t ] -log E G [e -Et ] (5.1)
where with an abuse of notation we identify with T the cell types of the thymic samples and the corresponding dataset. It is important to clarify that this architecture is not an autoencoder beacuse we are not trying to reconstruct the sequences but we are only interested in the selection factor. For this reason the representation space will carry information only about selection. We implement the model using the Keras software [START_REF] Chollet | [END_REF] and infer its parameters using the RMSprop stochastic gradient descent algorithm (145). After inference we map all sequences to the 2 dimensional hidden space. As it can be seen in Fig 5 .1F, we do not observe any clear separation between cell types in this representation space. On the other hand the averages of the distributions are organized in a clear one dimensional subspace
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that follows increasing selection.

Local comparison of repertoires of subsets

The analyses of previous studies (9; 86; 10) and of the previous section focus on global statistical differences between the repertoires of T cell subsets. To our knowledge, there has not been any study that tried to characterized the local overlap between subsets in sequence space. In this section we analyse the neighbourhood of a specific In both cases we observe a wider tail at negative values. It identifies a depletion in the neighbourhood of the sequences with respect to the opposite subset. This is consistent with the intuition that TCRs are on average more surrounded with cells of the same type. For d H ≤ 2 we observe also a significant tail at positive values of ∆n. This tail identifies a group of T cells that have significantly more neighbours of the opposite type. Also in this case the distribution is well reproduced by a synthetic repertoire sampled from P post . tor sequence x t of cell type t, ∆n estimates the number of its nearest neighbours in a equal mixture of two repertoires of type t and t relative to a mixture of two repertoires of type t: receptors that are isolated in their original repertoire but that happen to be in a location of high probability for the other subset t .

∆n(x t ) = n mix (x t ) -n t (x t ) ( 5 

Prediction of the number of neighbours and test for smoothness

In the previous section we show that the model well captures the probability to find a sequence with exactly n nearest neighbours in the repertoire. This distribution integrates information from all the sequences. We can ask now a more refined question. Given a specific sequence, is our model able to predict the number of its nearest neighbours? This question was previously asked in (4) using P gen as a null model and in (5) by counting the number of neighbours of the sequence in the repertoire of a control group. We can revisit it now using P post as a null model.

The probability that a sequence x has d nearest neighbours at d H ≤ 1 in a repertoire of k nucleotide sequences of a specific V J combination is distributed as a

Poisson with rate (4):

n pred (x) = k P (V, J) x ∈µ 1 (x) P (x ) = kN µ P (V, J) P µ 1 (x) (5.3)
where µ 1 (x) is the set of all possible one point mutations of the sequence,

• µ 1 (x)
indicates the average over this set, N µ = N a L CDR3 is the total number of mutations with N a the total number of aminoacids and L CDR3 the length of the CDR3 aminoacid sequence, P is the null model for the probability of observing x and P (V, J) is the marginal probability to observe the specific V J combination under the model. We analyse the same repertoire data of CD8+ T cells that we charac- Up to constant factors in eq. 5.3 we can compare alternative estimators of P µ 1 (x)

by computing its pearson correlation ρ(n pred , n obs ) = ρ( P , n obs ) with respect to the number of observed neighbours n obs in the data (from now on we omit the µ 1 (x) term from the averages to ease notation). We compare three possible choices for the null model P ∈ {P gen , P lin post , P deep post }. We find that ρ( P deep post , n obs ) = 0.81±0.04 performs better than ρ( P lin post , n obs ) = 0.72 ± 0.04 and ρ( P gen , n obs ) = 0.63 ± 0.06 has the lowest performance. If we assume that P does not vary significantly in a local region of sequence space, we can ask whether our estimators can predict n obs defined by higher cut-offs in d H . In Surprisingly there is no loss in performance for d H ≤ 2. For higher cut-offs the average performance decreases and the standard deviation increases. The estimators remain however significantly correlated with n obs .

The previous result is consistent with the idea that P is smooth in the neighbour-
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hood of the sequence. We are then motivated to push this assumption even further to define alternative estimators for P . The first approximation we can perform is to estimate the average P P (x) with the value of P at the center. Alternatively we can assume that only selection factors do not vary considerably and approximate P post P gen Q for the two post-selection models. The P (x) estimator is the most computationally cheap as it requires only a single evaluation of the probability. The P gen estimator is also computationally cheaper since a dynamic programming implementation of this average is available in the OLGA software [START_REF] Sethna | OLGA: fast computation of generation probabilities of B-and T-cell receptor amino acid sequences and motifs[END_REF]. We compare the two approximations for P = P deep post in Fig 5 .3C. Their performance is approximately comparable to the P lin post for the smallest cut-off value. They generically perform better than P gen for all cut-off values that we tested. As expected the estimator that assumes smoothness only in Q slightly outperforms the one that assume smoothness of the whole probability P .

In conclusion we find that the three best choices for estimating the number of nearest neighbours are P deep post (x) , P gen Q deep (x) and P deep post . The three estimators have increasing performance but are also more computationally expensive: the choice of which one to use will thus depend on the specific application. Since these three estimators perform better at higher cut-offs in d H than the original P gen (4) at the smallest cut-off, we expect that integrating information from higher cut-offs in d H during enrichment analyses will produce more reliable results. In the previous section we show that P gen and P post satisfy some approximate Chapter 5. On the local structure of repertoires of T cells during thymic development smoothness properties in the local neighbourhood of a sequence. We can ask whether this condition is sufficient to construct high probability paths in sequence space which connect two sequences. The observation that nearest neighbours graphs computed on repertoire data form large connected components (109) suggests that this is possible.

Local search with MCMC

A B C

We explore this possibility by implementing the Metropolis-Hastings sampling algorithm. We fix a specific VJ and CDR3 length combination and focus on mutations of the CDR3. New sequences are proposed by mutating the aminoacid sequence of the CDR3 at low mutation rate such that the average number of mutations is 1

for each proposal. The new sequence is accepted with probability:

ρ P (x → x ) = min 1, P (x ) P (x) (5.4)
where from now on we choose P = P gen to test the algorithm. We compare this procedure with a uniform acceptance probability ρ U (x → x ) = U(0, 1). As it can be seen in Fig 5 .4A, ρ gen finds path in sequence space of high P gen probability while ρ U quickly produces nonsensical sequences. In Fig 5 .4B we show that the accepted transition of ρ gen are localized in the center of the CDR3 consistent with the fact that the borders of the CDR3 tend to be more conserved. The aminoacid identity of accepted proposal is also non-uniform, as it can be seen in Fig 5 .4C.

Discussion

Previous work (9; 86; 10) has characterized global statistical differences between the repertoires of CD4+ and CD8+ T cells. In this work we expand this analysis by charactering the whole maturation process from the CD4+CD8+CD3-stage to the differentiation in subsets. We show that the variability in the repertoires at the different stages of the maturation and differentiation process within an individual is greater than the variability in the repertoire between individuals. We observe that the dynamics of thymic development is clearly reflected in the structure of the repertories and can be precisely quantified using deep selection models.

Inspired by the work of (4; 5; 6) we ask whether the local neighbourhood of a sequence carries information about its cell type. We observe that during maturation receptors tend to increase the number of their nearest neighbours and that CD8+ cells have more neighbours than CD4+ subsets. We then characterize the overlap between subsets in the local neighbourhood of sequences and observe that on average receptors tend to be closer to other receptors of the same type. This difference is however limited since CD8+ and CD4+ T cells tend to overlap considerably also at the local level. Finally we find that our model is able to reproduce all the neighbourhood analyses extremely well.

We try to characterize how well P post models can predict the number of neighbours a sequence. We show that P post inferred with deep selection models significantly outperform linear models and simpler estimates using P gen as a null distribution. We show that estimators computed on neighbourhoods defined by hamming distance d H ≤ 1 can also predict the observed number of neighbours for higher cutoffs in d H . We expect that enrichment analyses (4; 5; 6) that integrate information at bigger hamming distances will have higher sensitivity and thus will be able to discover a more high fidelity epitope specific T cell receptors.

The neighbourhood analysis confirms the assumption that the P post (x) function is smooth in the space of sequences x: one can reliably extrapolate its value at x to its nearest neighbours. Motivated by this observation we propose an MCMC procedure that allows to sample novel productive synthetic sequences in the neighbourhood of a target sequence that carry high P gen (or P post ). This method can be used to enrich epitope-specific datasets with realistic sequences that have also high probability to be epitope specific. It would be interesting to test this claim by synthesis of this novel receptors and measuring their antigen affinity.

In conclusion this work is a first step towards bridging the barrier between local and global analyses of TCR receptor repertoires and we are looking forward to explore in more detail the regime in between these two extremes.

Chapter 6. Mutual Information Maximization for Amortized Likelihood Inference from Sampled Trajectories

techniques can be used as a powerful alternative approach for characterizing the underlying model.

Population genetics provides many examples of such problems. The observed quantities in this context are often based on sequencing data and are "far" from the quantities described by population dynamics models: it is in principle possible to write down likelihood functions, but they typically depend on a number of hidden variables that need to be marginalized out, making their evaluation impractical.

Approximate Bayesian Computation (ABC) was first used for posterior inference in the context of population genetics [START_REF] Tavaré | Inferring coalescence times from dna sequence data[END_REF], and since then numerous new approaches to simulation-based inference have been developed to answer particular questions of phylodynamics and sequencing data analysis.

More broadly, methods for simulation-based inference can be organized in two classes (111; 112). In the first class, observations and simulated data are compared within the inference process; examples include ABC (12; 113) and Probabilistic Programming (114; 115). The methods belonging to the second class proceed in two stages. First, they use a large number of simulations to learn an approximate model for the likelihood function (116; 117), or alternatively the posterior function [START_REF] Rezende | Variational inference with normalizing flows[END_REF], or the likelihood ratio (119; 13)) that is amortized over the simulation examples.

The amortized model is then used to evaluate the likelihood of observations and to evaluate the posterior for model parameters. With theoretical developments in machine learning and improvements in computing power, this class of models has seen a renewed interest in the past years.

Here, we propose a method to evaluate the likelihood-to-evidence ratio, by mapping the problem onto the inference of a Boltzmann-Gibbs density function. We show that the maximum-likelihood estimation of this density (where here likelihood refers to the meta-likelihood of simulated data given a density function proposal) is equivalent to the maximization of mutual information between parameters of the simulation and the simulated data. We use this equivalence to develop an inference technique for posterior prediction, based on the optimization of artificial neural networks. We compare our method to recent work by Hermans et al. [START_REF] Hermans | Likelihood-free MCMC with amortized approximate ratio estimators[END_REF], where a model of the likelihood-to-evidence ratio is learned through the optimization of a binary classifier operating on simulated data. We assess the accuracy of our method to infer the parameters of 3 types of stochastic processes (Ornstein-Uhlenbeck model, birth-death dynamics, and the Susceptible-Infected-Recovered model of epidemiology) as well as one example of chaotic dynamical system, the Lorenz attractor. 
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Methods

We aim to estimate parameters θ of a model given a set of data x obtained from stochastic simulation of that model, P (x|θ), with a prior P (θ). First, we reinterpret the likelihood-to-evidence ratio in terms of a Boltzmann-Gibbs density

P (x|θ) P (x) = P (x, θ) P (x)P (θ) ≡ P joint (x, θ) P indep (x, θ) = 1 Z e -E(x,θ) , ( 6.1) 
where the "energy" E(x, θ) captures how the joint distribution of data and parameters P joint (x, θ) = P (x|θ)P (θ) deviates from the independent distribution P indep (x, θ) = P (x)P (θ). The energy E(x, θ) is generally a non-linear function describing the dependence between data and parameters. Z is the "partition function", which ensures that the probability density P (x, θ) is normalized. E and Z are each defined up to constants (additive for E, multiplicative for Z) that compensate each other. Given the energy function, E(x, θ) we recover the posterior probability density P (θ|x) = 1 Z e -E(x,θ) P (θ). We will now describe an amortized inference scheme to learn a model of the energy function from simulated data, relying on the flexibility of artificial neural networks. Specificially, we approximate the energy E by a multi-layered network E φ characterized by a set of parameters φ. Under a given model E φ , the joint Chapter 6. Mutual Information Maximization for Amortized Likelihood Inference from Sampled Trajectories distribution is approximated as:

P φ joint (x, θ) = 1 Z φ e -E φ (x,θ) P indep (x, θ). (6.2)
We simulate samples from the joint distribution, denoted J = {(x i , θ i )} N i=1 by drawing a model parameter from a prior distribution, θ i ∼ P (θ) and simulating

x i ∼ P (x|θ i ).
To learn the neural network parameters φ, we need to maximize the (meta-)loglikelihood of the simulated sample J under a given model E φ : With this estimate of Z φ , and noting that the last term of eq. 6.3 does not depend on φ, the problem boils down to maximizing:

L(φ; J ) = N E J [log P φ joint ] = N -E J [E φ ] -log Z φ + E J [log P indep ] . ( 6 
Z φ = e -E φ (x,θ) P indep (x, θ)dxdθ ≈ E I [e -E φ ], (6.4 
I(φ; I, J ) ≡ -E J [E φ ] -log E I [e -E φ ] N → ∞ = P joint (x, θ) log P φ joint (x, θ) P indep (x, θ) dx dθ ≤ I * , ( 6.5) 
where I * = P joint (x, θ) log[P joint (x, θ)/P indep (x, θ)] dx dθ is the mutual information between x and θ. This lower bound is known as the Donsker-Varadhan representation (120) of the Kullback-Leibler divergence used in the definition of the mutual information. This bound was extensively studied in Ref. [START_REF] Ishmael Belghazi | MINE: Mutual information neural estimation[END_REF] as an estimate of the mutual information from discrete samples drawn from joint distributions. Here, we will use this representation to learn the energy function E φ , which approximates the likelihood-to-evidence ratio. We refer to this method as Mutual Information Neural 

L f (φ; I, J ) ≡ -E J [E φ ] -E I [e -E φ -1 ]. (6.6) 
This estimator defines an alternative objective function to (6.5) that can be used to infer an optimal energy model E φ . Note that in the limit of infinite data N → ∞, and when the class of models {E φ } φ is able to represent the true E exactly, the maxima of (6.5) and (6.6) are both reached at the true value of E(x, θ) where they give the true value of I * . Outside of this limit, using one of these objective functions may prove more beneficial. In particular, the second term of L f (φ; I, J ) and its gradients may be reliably estimated by averaging over small batches, unlike the second term of I(φ; I, J ) because of the logarithm, giving FDIV an advantage for stochastic gradient descent algorithms. While the Donsker-Varadhan bound on the mutual information is tighter, i.e. L f (φ; I, J ) ≤ I(φ; I, J ) holds for N → ∞ (120), it is unclear whether it might produce a more reliable estimate of E(x, θ).

A third alternative is to use the original approach for the likelihood-to-evidence ratio estimation proposed in Ref. [START_REF] Hermans | Likelihood-free MCMC with amortized approximate ratio estimators[END_REF]. We introduce their method in a more general setting in order to clarify its relationship to our likelihoods. The energy E(x, θ) may be rewritten in terms of a classifier between the two hypotheses of (x, θ) originating from the joint or independent distribution in a mixture P mix = 1 k+1 P joint + k k+1 P indep (in Ref. ( 13) k = 1). We define:

d(x, θ) ≡ P (joint|x, θ) = P joint (x, θ) P joint (x, θ) + kP indep (x, θ) = 1 1 + kZe E(x,θ) . (6.7)
The classifier is parametrized by a neural network, d = d φ and is trained by minimizing the binary cross entropy

S(φ; I, J ) = -E J [log d φ ] -kE I [log 1 -d φ ]. (6.8)
Similarly to objectives (6.5) and (6.6), in the N → ∞ limit and when the class of {d φ } φ models contains the true d, this cross entropy is minimized at the true value d(x, θ). In Ref. [START_REF] Mukherjee | CCMI : Classifier based Conditional Mutual Information Estimation[END_REF] it was shown that it can also be used as an estimator of mutual information by computing the mean logarithm of the predicted likelihood-toevidence ratio, E J [log(kd φ /(1 -d φ ))]. For high-dimensional random variables, this Chapter 6. Mutual Information Maximization for Amortized Likelihood Inference from Sampled Trajectories sets a tighter lower bound and a more accurate estimate of the mutual information than the f-divergence estimator. However, its accuracy was not directly compared to the proposed estimator in eq. 6.5. We will refer to the inference approach based on minimizing the binary cross-entropy loss in eq. 6.8 as BCE.

The three methods described so far are connected to the Noise Contrastive Estimation (NCE) framework for density ratio approximation introduced in Refs. (123; 124). The NCE methods are used for density estimation by comparing the data to a contrastive set of samples from a reference noise distribution. These techniques have been already applied for simulation-based inference, particularly for sequential posterior inference [START_REF] Greenberg | Automatic posterior transformation for likelihood-free inference[END_REF], see Supplementary Material for a more detailed discussion.

Finally, once an energy model E φ has been trained by optimizing I(φ; I, J ), L f (φ; I, J ), or S(φ; I, J ) over φ, the posterior of parameters given an observation

x may be calculated as P (θ|x) = (1/Z φ )e -E φ (x,θ) P (θ). When θ is of high dimension, scanning the posterior for all possible values of θ may be impractical. In that case, we generate samples of θ from the posterior using a Markov-Chain Monte-Carlo method with Metropolis-Hasting acceptance probability:

ρ(θ -→ θ ) = min 1, q(θ |θ)P (θ ) q(θ|θ )P (θ) e -(E(x,θ )-E(x,θ)) , (

with q an ergodic Markov transition probability in the parameter space. This procedure generalizes in a straightforward way to the case of multiple observations drawn with the same set of parameters.

In the next section we will use four different tasks to compare the inference accuracy based on the three introduced approaches, MINE (eq. 6.5), FDIV (eq. 6.6), and BCE (eq. 6.8).

Experiments

We set out to examine the 3 presented methods for estimating the likelihood-toevidence ratio (MINE, FDIV, and BCE) to infer the parameters of simple dynamical models from discrete samples of their trajectories. We chose 4 contexts that together encompass the range of difficulties in the inference of model parameters:

(i) the stochastic birth-death process, (ii) the epidemiological Susceptible-Infected-Recovered (SIR) process, (iii) the multidimensional Ornstein-Uhlenbeck process, and

(iv) the chaotic system of Lorenz attractor. Example trajectories of each model are shown in Fig. 6.2. The Ornstein-Uhlenbeck (OU) process is a multidimensional Markov process driven by additive Gaussian white noise. It is applied in many branches of science, notably to describe the velocity of a Brownian particle [START_REF] Uhlenbeck | On the Theory of the Brownian Motion[END_REF], the fluctuations of interest rates [START_REF] Vasicek | An equilibrium characterization of the term structure[END_REF] or evolution of continuous phenotypic traits (128; 129). The trajectories are a solution of a stochastic differential equation:

dx = -γ (x -µ) dt + √ 2σdW, (6.10) 
where µ is the stationary mean and γ is the damping matrix, assumed to be symmetric. W stands for the multidimensional Wiener process, and σ is the noise amplitude.

We use the Euler-Maruyama integration scheme to obtain the numerical solutions of this equation [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations[END_REF]. The corresponding Fokker-Planck equation for this process can be solved to obtain the true posterior (see Supplementary Material).

In one dimension, we infer the mean µ and the noise strength σ, setting γ = 1 and using uniform priors P (µ) = U(-10, 10) and P (σ) = U(0, 2). In higher dimensions, we fix µ = 0, σ = I, where I is the identity matrix, and infer the damping matrix parametrized as γ = I + g, where g is a Gaussian orthogonal matrix and < Birth-death process.

The birth-death process is a discrete one-dimensional Markov process with multiplicative demographic noise. The number of individuals n is subject to variation due to stochastic birth and death events occurring at rates nλ and nδ, respectively,

n nλ -→ n + 1, n nδ -→ n -1. (6.11)
We use the Gillespie algorithm to sample trajectories from this process [START_REF] Daniel T Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF]. We parametrize the process with the average exponential drift α = λ -δ, and the noise timescale β = λ + δ. We use uniform priors for both of these variables: We simulate the trajectories of the SIR model using the Gillespie algorithm [START_REF] Daniel T Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF].

P (α) = U(-2,
We infer the rates β and γ under uniform priors P (β) = P (γ) = U(0, 1) given samples from the (S, I) trajectories.

Lorenz attractor.

The Lorenz system is a 3-dimensional chaotic system governed by the equations,

ẋ = σ(y -x), ẏ = x(ρ -z) -y, ż = xy -βz. (6.13)
We simulate this deterministic process starting from a random position (x 0 +η, y 0 , z 0 ), where η is the noise in the initial position drawn from a uniform distribution, η ∼ U(-0.1, 0.1). We fix the parameters σ = 10 and β = 8/3 and set out to infer ρ. The ensemble of trajectories starting in the vicinity of x 0 diverge with the characteristic time set by the inverse of the largest Lyapunov exponent of the system λ = λ(ρ). We start sampling from the trajectories at a random initial time drawn from a Gamma distribution, t 0 ∼ Γ(k = 5, θ = 2). We then take 5 samples from each trajectory at time windows that are larger than the characteristic time for
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chaotic divergence ∆t = 2λ -1 . We set λ 0.905, which is the Lyapunov exponent for ρ = 28, a transition point where some but not all the solutions of the Lorenz system are chaotic. We infer the parameter ρ in a chaotic regime using a uniform prior P (ρ) = U [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF][START_REF] Senior | Improved protein structure prediction using potentials from deep learning[END_REF].

The artificial neural networks used for all 3 methods were multilayer perceptrons [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF] with two hidden layers and hyperbolic tangent activation function. This architecture choice was found to be expressive enough across tasks and, thanks to its simplicity, we could perform a well grounded comparison of the three methods without advanced regularisation techniques (see Supplementary Material for details on hyperparameters choices). The methods were implemented using Tensorflow (133; 134) with extensive use of Numpy [START_REF] Harris | Array programming with NumPy[END_REF] and Scipy (136) libraries.

Results

Given enough data and a powerful enough neural network, we expect the optima of the objective functions I, L f and S to converge, and the estimated energy function should approach the true value.

To study the convergence of the posterior functions we choose a hypothesis θ * and simulate M trajectories, x 1:M = {x m } M m=1 , x m ∼ P (x|θ * ) with M = 2 for SIR, and M = 5 for the other tasks. We evaluate the posteriors Pl (θ|x

1:M ) = 1 (Z φ l ) M exp - M m=1 E φ l (x m , θ) P (θ), (6.14) 
with l indexing one of the three methods (MINE, FDIV, or BCE) and φ is the optimal one for each method (we dropped the explicit dependency on φ in Pl for ease of notation). The posteriors converge when the amortized inference is done on a training set with at least N = 10 7 samples (and 10 7 samples for validation); see We compare the three objectives I, eq. 6.5 (MINE), L f , eq. 6.6 (FDIV), and S, eq. 6.7 (BCE) for 3 different metrics. We perform 10 replicates of the inference and comparison for simulation budgets N ∈ {10 4 , 10 5 , 10 6 } for 4 systems: Ornstein-Uhlenbeck (A,B,C), Birth-Death (D,E,F), SIR (G,H,I) and Lorenz attractor (J,K,L). In the first row we compare the mutual information on held out test data using eq. 6.5 with the estimated E φ . For the following two metrics we need to instead choose an hypothesis θ * , see Fig 6 .3. for the exact values. In the second row we compare the Jensen-Shannon divergence D JS (P ∞ (θ|x 1:M ), P N l (θ|x 1:M )) between the reference and inferred posteriors. In the last row we compare the Jensen-Shannon divergence D JS (P (x|θ * ), P N l (x|θ * )) using sampled trajectories from the simulator P (x|θ * ) and the inferred distribution Pl (x|θ * ). directly evaluated by summing over x, because it is typically of high dimension. We thus rely on samples from these two distributions and infer an additional classifier to estimate D JS ; see Supplementary Material.

The performance of the 3 methods are comparable (Fig 6 .4 C,F,I,L). For the Ornstein-Uhlenbeck process, the BCE infers more accurate likelihood functions at N = 10 4 and N = 10 5 but it is outperformed by MINE at higher simulation budgets.

The results of the benchmark shown in Fig 6 .4 suggest that all estimators show reliable performances across different tasks and simulation budgets. While the first metric is global and the two other metrics are local, they draw a consistent picture.

A higher simulation budget enhances the performance of all methods. The BCE method tends to perform better at the lowest simulation budget. All three methods perform similarly in the middle and high data regime.

Conclusion

We analysed the problem of inferring an amortized estimator for the likelihood-toevidence ratio over model parameters, using simulated data. We showed that this inference can be performed by maximization of the mutual information between simulated data and parameters of the model. This formulation captures an intuition that inference can be performed when we are able to extract the dependence between parameters and observed data, as measured by the mutual information.

The link between the field of mutual information estimation and simulation-based inference was first suggested in Ref. [START_REF] Durkan | On contrastive learning for likelihood-free inference[END_REF]. We formalized the relation within our framework, and tested its applicability on a variety of examples by proposing two methods (MINE and FDIV) for simulation-based inference. The formalism opens up possibilities for using algorithms and techniques developed in the context of mutual information estimation [START_REF] Poole | On variational bounds of mutual information[END_REF] for inverse problems.

The likelihood function we propose is equivalent to the mutual information bound analysed in Ref. [START_REF] Ishmael Belghazi | MINE: Mutual information neural estimation[END_REF]. However, while in (120) the focus is on the estimation of the absolute value of this quantity, we are interested in the inferred energy function that can be used to evaluate the posterior distribution for model parameters. Previous work that used classifiers for simulation-based inference (13) also fits naturally within our framework since logistic regression is linked to mutual information estimation [START_REF] Mukherjee | CCMI : Classifier based Conditional Mutual Information Estimation[END_REF]. Our methods rely on two lower bound estimators of mutual information, which are based on (i) the Donsker-Varadhan [START_REF] Ishmael Belghazi | MINE: Mutual information neural estimation[END_REF], and (ii) f-divergence representations of the Kullback-Leibler divergence [START_REF] Nguyen | Estimating divergence functionals and the likelihood ratio by convex risk minimization[END_REF]. It would be interesting to explore other known mutual information estimators for simulation-based inference [START_REF] Poole | On variational bounds of mutual information[END_REF].

We showed that our mutual information-based methods (MINE and FDIV), Inference from Sampled Trajectories implemented in flexible neural networks, can reliably infer the posterior of the parameters and give consistent results with the previously proposed classifier-based technique (BCE) [START_REF] Hermans | Likelihood-free MCMC with amortized approximate ratio estimators[END_REF], when the simulation budget is sufficient. We benchmarked the three approaches and found that in their performances are comparable in intermediate data regime, while in the low data regime the classifier-based method performs consistently better. The main limitation of the two proposed objective functions I and L f is that they require large simulation budgets for accurate inference.

Our choice to implement the neural network as a multilayer perceptron with two hidden layers was motivated by having a simple and reliable architecture to better focus on relative performance of the different objective functions. For the specific task of inference of model parameters from discrete samples of trajectories, absolute performance could be increased by choosing network architectures adapted to the data structure such as convolutional and recurrent layers.

Existing approaches to simulation-based inference, such as ABC, suffer from the need to define ad-hoc summary statistics to be matched between data and model. An important property of mutual information is its invariance upon reparametrization of its variables. This enables inference and comparison of different parametrizations of the observed data, as different choices can be evaluated using the absolute value of the mutual information. A specific application that could be interesting to explore is inference for population genetics models, where the choice of summary statistics to use for ABC analysis has been always critical and the ability to flexibly compare different parametrization choices could be greatly helpful. Another possibility would be to explore more principled regularization techniques such as the information bottleneck method [START_REF] Tishby | The information bottleneck method[END_REF]. This approach could be used to infer summary statistics of the data that are maximally informative of the parameters of the model. Then the summary statistics could be added as additional variables for the observations of related tasks, such as model extensions, in a transfer learning fashion.

In conclusion, our work helps to clarify the link between mutual information estimation and simulation based inference. We believe that this connection can be a fruitful source of improved methods for amortized inference.

Conclusion 7.1. Main contributions of this thesis

Thanks to the development of high-throughput sequencing technologies applied to immune receptor genes, we have access to snapshots of the immune receptor repertoire of multiple healthy and sick individuals. As the potential diversity of these repertoires is much greater than what can be characterized in the experiments, we need to combine theoretical models and computational techniques in order to extract information from this kind of data. A particularly important and challenging task is to identify which immune cell actively participates in the immune response to a specific pathogen based solely on its receptor sequence. This is a necessary step towards using receptor repertoire sequencing data as a biomarker for diseaes in diagnostic applications. A possible way to address this question is by characterizing significant sharing of receptors within a cohort (3) or by observing significant enrichment of receptors in a local region of sequence space during the immune response of an individual (4; 5; 6). We believe that development of more accurate models for the distribution of immune receptor repertoires has the potential to increase both sensitivity and specificity in this kind of analyses and help us better understand the dynamics of the adaptive immune response.

At the present moment there exist two alternative frameworks to characterize the distribution of immune receptors. Variational inference combined with deep neural networks has been applied to T cell receptor repertoires in [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF] and shown to accurately describe the observed sharing of these receptors in a cohort of individuals.

Another approach developed in (30; 32; 33; 8) models this distribution in two steps.

The V(D)J recombination statistics, here P gen , is first inferred on unproductive receptor sequences which are not biased by selection. A linear combination of selection factors is then inferred on productive sequences to characterize the deviation from the statistics of P gen . In Chapter 3 we compare these two methods and find that they perform similarly.

Chapter 7. Conclusion

Inspired by this comparison we asked whether a synthesis of these two approaches could be performed. On one hand, inferring separately the P gen model is an interesting strategy as it allows us to split the complexity of the task in separate steps.

On the other hand, selection has been so far implemented only as a simple linear combination of factors and has the potential to be extended to more flexible functional forms. To test this hypothesis, in Chapter 4 we use deep neural networks to infer selection factors. We find that these more flexible models better predict the sharing of receptors in a cohort of individuals than linear selection models. The underlying reason behind this improvement is that neural networks can capture higher order correlations between features while linear models can only constraint their independent frequencies. This implies that deep selection models can be used to perform sharing analyses at higher sensitivity and specificity than previous methods (3). Moreover, in Chapter 5 we show that deep neural networks also describe more accurately the neighbourhood of a receptor in sequence space and are thus better suited for local enrichment analyses (4; 5; 6).

An additional layer of complexity in analysing immune repertoire sequencing data arises when we take into account the variability of the repertoire of different individuals in a population [START_REF] Sethna | Population variability in the generation and selection of T-cell repertoires[END_REF] and between different cell subsets (9; 10; 11). In Chapter 4 and 5 we compare systematically the repertoire of different T cell subsets.

We find that cell types that are more closely related in the differentiation process, such as CD4+ conventional and regulatory T cells have more similar repertoires with respect to cell types that differentiate earlier, like CD8+ cytotoxic T cells.

We also observe that the variability in the repertoire between these cell subsets is bigger than the variability in the repertoire of different individuals in a population. This result suggest that there exist a common underlying mechanism that drives differentiation between major T cell subsets. The biggest observed deviations are between CD4+ and CD8+ T cells. Commitment to the CD4+ or CD8+ lineage is thought to be mediated by preferential affinity of the receptor to one of the two classes of the Major Histocompatibility Complex protein which mediates antigen presentation to T cells. We also observe systematic differences in the repertoire of regulatory and conventional CD4+ T cells and a significant lower entropy in the former group. As it is discussed in [START_REF] Van Santen | Number of T Reg Cells That Differentiate Does Not Increase upon Encounter of Agonist Ligand on Thymic Epithelial Cells[END_REF], regulatory T cells are less sensitive to negative selection than conventional T cells by two to three order of magnitudes.

We could thus hypothetize that our selection models capture, at least partially, the contribution of negative selection. This is an intriguing result, since selection factors constrain global properties of the repertoire while negative selection has been commonly thought to act locally in sequence space via depletion of auto-reactive receptor sequences. We then analyse the local properties of the these repertoires in sequence space. We find that during thymic development the repertoire of T cells becomes more clustered. We also show that on average receptors are closer to receptors of the same type, yet we find significant overlap at the local level between different cell types. Interestingly, our selection models were able to quantitatively reproduce all observations. In conclusion, the analyses of Chapter 4 and 5 imply that we can accurately describe the repertoire of T cells subsets both globally and locally.

Unlike T cells, B cells undergo a Darwinian process of somatic hypermutation and clonal selection to increase the affinity of their receptors to pathogenic antigens.

As this process shapes the structure and diversity of their repertoires, we believe that we can extract information about the properties of the germinal center dynamics from the distribution of receptor sequences. This evolutionary dynamics can be captured with population genetic models. Unfortunately, parameter inference of these models is notably difficult to perform [START_REF] Beaumont | Approximate Bayesian Computation in population genetics[END_REF] due to a generic intractability of the likelihood function. A possible way to address this complexity is with simulationbased inference. In Chapter 6 we adapt the method developed in Chapter 4 to infer the posterior of model parameters when the likelihood is intractable. We reframe the problem of posterior evaluation under the framework of mutual information estimation on simulated data. As mutual information captures higher order correlations between variables, the results of Chapter 4 were a necessary step towards this goal. We benchmark different estimators of mutual information on the prediction of posterior of model parameters from trajectories of multiple stochastic and chaotic processes and find that they all perform similarly.

Future research directions

The motivation behind the analysis of Chapter 6 was to apply simulation-based in- The smoothness of post-selection models in sequence space observed in Chapter 5 suggests multiple research questions. Until now, local enrichment analyses (4; 5; 6) have focused on neighbourhoods defined by single point mutations. However, smoothness of P post implies that we can accurately characterize the number of nearest neighbours of a receptor sequence for higher distance cut-offs using computationally cheap estimators. We believe that the integration of enrichment information at higher distance cut-offs can increase sensitivity and specificity of these kind of analyses. On the other hand, due to smoothness of our models we could also perform local exploration of sequence space with Monte Carlo Markov Chain (MCMC) sampling using P gen to compute the acceptance probability of the Monte Carlo step. An interesting application of this method is to perform MCMC on P post models where selection factors encode a desiderable function of the T cell, for example specificity to an antigen. Local search in sequence space can then be used to computationally discover new functional T cell receptors which are reactive to a specific antigen.

Finally, as the development of higher-throughput single-cell sequencing technolo-Chapter A. Appendix length is a multiple of 3)

4. Filter sequences starting with a cysteine 5. Filter sequences with CDR3 amino acid length smaller than a maximum value (set to 30 in this paper)

6. Remove sequences with small read counts (optional).

For the analysis of Fig. 2 we analysed data from [START_REF] Emerson | Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire[END_REF]. We first applied the standard pipeline. In addition we excluded TCRs with gene TRBJ2-5 which is badly annotated by the Adaptive pipeline [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF] and removed a cluster of artefact sequences, which was previously identified in [START_REF] Dewitt | Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity[END_REF] and corresponds to the consensus sequence CFFKQKTAYEQYF.

For the analysis of Fig. 3 we analysed data from ( 100) and ( 101). Dataset from (100) was obtained already pre-processed directly from the authors, while pre-processed dataset from ( 101) is part of the supplementary material of the corresponding paper. The soNNia standard pipeline is then applied to both datasets, independently for each chain, and a pair is accepted only if it passes both filtering steps. For α TCR datasets, sequences carrying the following rare genes were removed due to their rarity in the out-of-frame dataset: TRAJ33, TRAJ38, TRAJ24, TRAV19.

For the analysis of Figs. 4 and 5 we analysed data from ( 102) and ( 103), to which we applied our standard pre-processing pipeline.

A.1.3 Generation model

The generation model relies on previously published models described in (32; 30; 53).

Briefly, the model is defined by the probability distributions of the various events involved in the VDJ recombination process: V, D, and J gene usage, and number of deletions and insertions at each junction. The model is learned from non-productive sequences using the IGoR software [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF]. For BCR, only a few nonproductive sequences were available, and so we instead started from the default IGoR models learned elsewhere [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF], and re-inferred only the V gene usage distribution for the heavy chain, and VJ joint gene distribution for light chains, keeping all other parameters fixed.

Amino-acid sequence probability computation and generation is done with the OLGA software, which relies on a dynamic programming approach. The process is applied to all α, β, IgH and Igκ/λ chains. We focus on naive B cells and ignore so-matic hypermutations. Since it was shown that individual variability in generation was only small [START_REF] Sethna | Population variability in the generation and selection of T-cell repertoires[END_REF], for each locus we used a single universal model.

A.1.4 Neural network architectures

We describe the architecture of the soNNia neural network. The input of our net- We then flatten the matrix to an array and apply a dense layer. We merged the three transformed subsets into a vector and then applied a dense layer.

We finally applied a last dense layer without non-linearity to produce the output value, log Q(see Fig S1).

The model for paired chains focuses on combining the x L and x V J inputs of the two chains. First the x L and x V J inputs within each chain are merged and processed with a dense layer. Subsequently a Batch Normalizing Transform is applied to each encoded vector to enforce a comparable contribution of each chain once the vectors are merged and processed through a dense layer (this last step is skipped in the deep-indep model). A Batch Normalizing Transform ( 104) is a differentiable operator which is normally used to improve performance, speed and stability of a Neural Network. Given a batch of data, it normalizes the input of a layer such that it will have mean output activation 0 and standard deviation of 1. In parallel, the amino acid inputs are embedded as described before. Finally all the vectors are merged together and a dense layer without activation outputs the log Q (see Fig S3-4).

makes the selection factor invariant with respect to the following transformation:

q L i (a) → λ i q L i (a) q R j (a) → µ j q R j (a)

q → q max i= +1 λ i max j= +1 µ j (S4.2)
where q L i (a) and q R j (a) are respectively selection factors associated with the usage of amino acid a at positions i, j ∈ {1, . . . , max } from the left and the right boundaries of CDR3 (Fig. 1D), and q is the selection factor associated with CDR3 length .

The default value of max is 25 aa in the left-right model for TCRs. We constrain the gauge by imposing a P L i,G (a)q L i (a) = 1 and a P R j,G (a)q R j (a) = 1 at all positions, similar to [START_REF] Elhanati | Quantifying selection in immune receptor repertoires[END_REF]. Here, P L i,G (a) and P R j,G (a) are the marginal probabilities for observing amino acid a at respective positions i (from the left) and j (from the right) of CDR3 in the pre-selected ensemble G of sequences.

To learn the Q VJL model of Fig. 4, we used a linear SONIA model where features f where restricted to V, J and CDR3 length features. One major difference with the approach of Ref. [START_REF] Emerson | Estimating the ratio of CD4+ to CD8+ T cells using high-throughput sequence data[END_REF] is that, unlike the likelihood they use, we do not double-count the distribution of length (through P (L|V )P (L|J)). However, our results show that that error does not affect model performance substantially.

A.1.6 Hierarchy of models in linear SONIA

The linear SONIA model, Q θ (x) = e f θ f x f , (S4.3) may be rationalized using the principle of minimum discriminatory information. In this scheme, we look for the distribution P post that is most similar to our prior, described by the baseline set P gen (or empirical set G, replacing P gen by P emp (x) =

N -1 G N G i=1 δ x,x i
), but that still reproduces the marginal probabilities in the data. This translates to the minimization of the functional: The estimated mutual information Î on a finite sample of data is affected by a systematic error [START_REF] Steuer | The mutual information: Detecting and evaluating dependencies between variables[END_REF]. We estimated the finite sample systematic error I 0 (X, Y ) by destroying the correlations in the data through randomization. We implemented the randomization by mismatching CDR3-length, V and J assignment within the set. This mismatching procedure leads to the same marginals, P (V ) or P (J), but destroys correlations, P (V, J) -P (V )P (J) 0.

• Jensen-Shannon divergence

To quantify differential selection, we evaluate Jensen-Shannon divergence D JS (P post , P post ) between pairs (r, r ) of sub-repertoires, P r post and P r post , D JS (P post , P post ) = 1 2 D KL (P post (P post + P post )/2) + 1 2 D KL (P post (P post + P post )/2)

= 1 2 log 2 2Q r Q r + Q r r + 1 2 log 2 2Q r Q r + Q r r (S4.9)
where • r denotes averages over P r post .

• Entropy of paired receptor repertoires

To quantify diversity of immune receptors associated with paired chains, we S1). For comparison, we evaluated the entropy of single chain repertoires, using models inferred for each chain separately. We also evaluated the entropy of V and J gene features using the observed marginal probabilities of these features in the data. For example, the entropy associated with V-genes in the heavy chain repertoire can be calculated as H(P V H post ) = i P (V i H ) log 2 P (V i H ), where P (V i H ) is the marginal probability for the i th V-gene in a heavy chain (H) dataset.

Errors in estimating Entropy H (Table S1), the Kullback-Leibler divergences D KL (Fig. 2) and Jensen-Shannon divergences D JS (P post , P post ) (Figs. 4,S7) are evaluated by computing the standard deviation of the above quantities using subsampled datasets of size one fifth of the original data. Here we assume that P post (r) = 1 Z P gen (r)Q(r) or P post (r) = 1 Z P emp (r)Q(r), with P gen or P emp as baselines, respectively (eq. 1). G N G i=1 δ x,x i ), and the final targets are the sub-repertoires harvested from different tissues [START_REF] Seay | Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes[END_REF]. We can infer a deep selection model soNNia to characterize well the unfractioned repertoire P emp , and then learn a functional selection model for each sub-repertoire with an additional linear layer in the neural network. This procedure is equivalent to using P emp as the baseline distribution in the inference of a linear selection model, as it can be seen by the high correlation between selection factors inferred with the two different methodologies (right). We observe significant higher mutual information between intra chain features (mostly for β) but no strong difference in mutual information between inter chain features. (B) We compare two alternative baselines G (see section 4.2) for the inference of deep selection models. The first baseline is G 1 ∼ P α gen (x α )P β gen (x β ) as in main text eq 4.3. The second baseline G 2 is generated by shuffling the two chains in the data D. This procedure breaks the correlations between the α and the β chain but conserves intra-chain correlations. We infer deep selection models starting from both baselines, deep-joint for G 1 and deep-joint-shuffle for G 2 . In both cases the selection models are able to recover inter-chain correlations. The anti-correlation cannot be explained by conditioning on sequences of high P gen . We find nearly absent correlation between sequences with a generation probability of at least 10 -8 and their selection factors. (D) Proposed explanation for the two observations. In this chapter we show that n obs correlate with P post . Conditioning n obs > 3 is equivalent to conditioning P post > c. This corresponds to a diagonal cut in the 2 dimensional space spanned by P gen and Q.

If we add a cut at high P gen that corresponds to the fact that there are only few sequences that have high P gen , we can explain both behaviours observed in panel A and C. = -E J log 1 1 + kZe E φ -kE I log k k + Z -1 e -E φ . (S6.4)

In the infinite data limit the empirical averages converge and we can rewrite all objectives as functional of the energy model:

I(E φ ) = -E φ (x, θ)P joint (x, θ) dx dθ -log e -E φ (x,θ) P indep (x, θ) dx dθ, (S6.5) L f (E φ ) = -E φ (x, θ)P joint (x, θ) + e -E φ (x,θ)-1 P indep (x, θ) dx dθ, (S6.6)

S(E φ ) = -log 1 1 + kZe E φ (x,θ) P joint (x, θ) (S6.7) +k log k k + Z -1 e -E φ (x,θ) P indep (x, θ) dxdθ.

(S6.8)

In this limit the 3 optima of the objective functions are equivalent and recover the likelihood-to-evidence ratio. To see this, we take the functional derivative with respect to the energy model E φ , δI δE φ (x, θ) = -P joint (x, θ) + 1 e -E φ (x,θ) P indep (x, θ) dx dθ e -E φ (x,θ) P indep (x, θ), (S6.9) δL f δE φ (x, θ) = -P joint (x, θ) + e -E φ (x,θ)-1 P indep (x, θ), (S6.10) 

δS δE φ (x, θ) = k Ze E φ (x,
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 8311 Fig. 11. Thymic selection. A cartoon representation of the basic processes that take the cells from the bone marrow to the thymic cortex and medulla
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 21 Figure 2.1: (A) Hematopoiesis. More than half of human cells are originated from hematopoietic stem cells (HSC). One of the possible differentiation pathways leads to T and B cells. Figure adapted from (15). (B) V(D)J recombination schematics, figure adapted from (29). (C) Thymic development. Schematic representation of the stages of selection and differentiation of T cells in the thymus.Figure adapted from (15).
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 1213 The immune system 13 in our genome. The description of this marvellous process deserves a subsection on his own. (D)J recombination T cell receptors are composed of two chains: the light α chain and heavy β chain. In both chains we can identify an extremely hypervariable region of the DNA, which is commonly referred to CDR3. This variability is obtained trough a recombination process (58; 59) which takes the name of VDJ recombination for β chains and VJ recombination for α chains. The β chain is thought to carry the most information about the binding properties of the receptor and is often used synecdochically to identify it. The VDJ recombination process spans multiple stages and is mediated by a collection of enzymes referred as VDJ recombinase. First a variable (V), a joining (J) and a diversity (D) gene are chosen from a pool of variant genes. The three genes are then linked together. This naive process would produce a potential repertoire size of approximately 10 3 unique sequences. The increased estimated diversity derives from the additional deletion and insertion (palindromic and nonpalindromic) of nucleotides of random length at the V-D and D-J joining regions, see Fig 2.1B.

Chapter 2 .

 2 Background, concepts and tools cytotoxic T cells carrying the CD8+ surface protein. Cell fate is determined by the binding interaction between the T cell receptor and the MHC protein of the antigen presenting cells in the thymus. If the receptor interacts more strongly with MHC class I (II) proteins, the T cell will commit to the CD8+ (CD4+) state. The selection process can be broadly divided in two stages, see Fig 2.1C. The first stage (positive selection) happens in the thymic cortex. There T cells interact with the MHC protein of surrounding epithelial cells and begin the differentiation process. If the T cell does not interact strongly enough it will die by apoptosis.
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 222 Fig 2.2A for a schematic diagram of the model. This specific model structure allows

  left . The resulting "Left+Right" (LR) model has much fewer parameters and is less likely to overfit the data. For these two models, parameters are learned by maximizing the log-likelihood with an L 2 regularization using gradient ascent, as specified in Ref.[START_REF] Sethna | Population variability in the generation and selection of T-cell repertoires[END_REF].In addition, because no software implementation of the selection model was provided with the original article (33), Davidsen et al. (31) compared their VAE approach to a reduced version of this selection model (not examined in (33)), which they call OLGA.Q. In that model, only VJ usage and CDR3 length were included:
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 33132 Figure 3.1: Predicted TCR sequence probabilities (y-axis) versus empirical frequencies (y-axis), for (a) the SONIA Left+Right model (ρ 2 = 0.53 and D KL = 1.4) trained on 2 • 10 5 sequences, (b) the VAE model (ρ 2 = 0.47 and D KL = 2.0) trained on 2 • 10 5 sequences, (c) the SONIA Left+Right model (ρ 2 = 0.53 and D KL = 1.4) trained on 10 6 sequences and (d) the VAE model (ρ 2 = 0.48 and D KL = 1.7) trained on 10 6 sequences. Models were trained on sequences sampled from the training set assembled from the TCR β repertoires of 666 donors (2). Frequencies refer to empirical frequencies in the same datasets. The SONIA model was built on top of a P gen model trained on 2 • 10 5 non-productive sequences from the same donors.

Fig. 3 .

 3 Fig. 3.1 shows the predicted frequencies of the Left+Right SONIA model and the VAE model, both trained on the same 2•10 5 or 10 6 sequences, and compares them to data. The performances of all models and both datasets are reported in Table3.1.
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 563 to allow for a direct comparison to the results of Ref. (31) (Fig. 3.2). Both the Chapter On generative models of T-cell receptor sequences VAE and SONIA agree with the data in their distribution of P model . VAE-generated sequences have the same distribution of P SONIA as SONIA-generated sequences, with a slight under-estimation of the distribution peak, and an excess of low-frequency sequences (Fig. 3.2a). The converse is true when looking at the distribution of P VAE

4 .

 4 adaptive immune system in vertebrates consists of highly diverse B-and T-cells whose unique receptors mount specific responses against a multitude of pathogens. These diverse receptors are generated through genomic rearrangement and sequence insertions and deletions, a process known as V(D)J recombination (58; 59). Recognition of a pathogen by a T-or B-cell receptor is mediated through molecular interactions between an immune receptor protein and a pathogenic epitope. T-cell receptor proteins interact with short protein fragments (peptide antigens) from the pathogen that are presented by specialized pathogen presenting Major Histocompatibility Complexes (MHC) on cell surface. B-cell receptors interact directly with epitopes on pathogenic surfaces. Upon an infection, cells carrying those specific receptors that recognize the infecting pathogen become activated and proliferate to control and neutralize the infection. A fraction of these selected responding cells later contribute to the memory repertoire that reacts more readily in future encounters. Unsorted immune receptors sampled from an individual reflect both the Chapter Deep generative selection models of T and B cell receptor repertoires with soNNia history of infections and the ongoing responses to infecting pathogens.

  Additionally to receptor diversity, T and B cell-subtypes are specialized to perform different functions. B-and T-cells in the adaptive immune system are differentiated from a common cell-type, known as lymphoid progenitor. T-cells differentiate into cell subtypes identified by their surface markers, including helper T-cells (CD4 + ), killer T-cells (CD8 + ) (60), and regulatory T-cells or T-regs (CD4 + FOXP3 + ) (63), each of which can be found in the non-antigen primed naive or memory compartment. The memory compartment can be further divided into subtypes, such as effector, central or stem cell-like memory cells, characterized by different lifetimes and roles. B-cells develop into, among other subtypes, plasmablasts and plasma cells, which are antibody factories, and memory cells that can be used against future infections. These cell subtypes perform distinct functions, react with different targets, and hence, experience different selection pressures. Here, we ask whether these different functions and selection pressures are reflected in their receptors' sequence compositions. Recent progress in high-throughput immune repertoire sequencing (RepSeq) both for single-chain (22; 23; 24; 25) and paired-chain (26; 27; 25; 28) B-and T-cell receptor has brought significant insight into the composition of immune repertoires.
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 41 Figure 4.1: Inference of functional selection models for immune receptor repertoires. (A) T cell receptor α and β chains are stochastically rearranged through a process called V(D)J recombination. Successfully rearranged receptors undergo selection for binding to self-pMHCs. Receptors that bind too weakly or too strongly are rejected, while intermediately binding ones exit the thymus and enter peripheral circulation. Development of B-cell receptors follows similar stages of stochastic recombination and selection.(B)We model these two processes independently. The statistics of the V(D)J recombination process described by the probability of generating a given receptor sequence σ, P gen (σ), are inferred using the IGOR software[START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF]. P gen (σ) acts as a baseline for the selection model. We then infer selection factors Q, which act as weights that modulate the initial distribution P gen (σ). We infer two types of selection weights: linear in log space (using the SO-NIA software (8)) and non-linear weights using a deep neural network, in the soNNia software presented here. Non-linear selection weights are more flexible than linear ones. (C) Pipeline of the algorithm: P gen is inferred from unproductive sequences using IGOR. Selection factors for both the linear and non-linear models are inferred from productive sequences by maximizing their log-likelihood L, which involves a normalization term calculated by sampling unselected sequences generated by the OLGA software[START_REF] Sethna | OLGA: fast computation of generation probabilities of B-and T-cell receptor amino acid sequences and motifs[END_REF]. (D) In both selection models the amino acid composition of the CDR3 is encoded by its relative distance from the left and right borders (leftright encoding). (E) After inferring repertoire specific selection factors, repertoires are compared by computing e.g. log likelihood ratios r(x).

  Figure 4.1: Inference of functional selection models for immune receptor repertoires. (A) T cell receptor α and β chains are stochastically rearranged through a process called V(D)J recombination. Successfully rearranged receptors undergo selection for binding to self-pMHCs. Receptors that bind too weakly or too strongly are rejected, while intermediately binding ones exit the thymus and enter peripheral circulation. Development of B-cell receptors follows similar stages of stochastic recombination and selection.(B)We model these two processes independently. The statistics of the V(D)J recombination process described by the probability of generating a given receptor sequence σ, P gen (σ), are inferred using the IGOR software[START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF]. P gen (σ) acts as a baseline for the selection model. We then infer selection factors Q, which act as weights that modulate the initial distribution P gen (σ). We infer two types of selection weights: linear in log space (using the SO-NIA software (8)) and non-linear weights using a deep neural network, in the soNNia software presented here. Non-linear selection weights are more flexible than linear ones. (C) Pipeline of the algorithm: P gen is inferred from unproductive sequences using IGOR. Selection factors for both the linear and non-linear models are inferred from productive sequences by maximizing their log-likelihood L, which involves a normalization term calculated by sampling unselected sequences generated by the OLGA software[START_REF] Sethna | OLGA: fast computation of generation probabilities of B-and T-cell receptor amino acid sequences and motifs[END_REF]. (D) In both selection models the amino acid composition of the CDR3 is encoded by its relative distance from the left and right borders (leftright encoding). (E) After inferring repertoire specific selection factors, repertoires are compared by computing e.g. log likelihood ratios r(x).

Chapter 4 .

 4 Deep generative selection models of T and B cell receptor repertoires with soNNia models and machine learning approaches to characterize signatures of differential selection acting on receptor sequences from subsets associated with specific function. Specifically, we leverage biophysical tools to model what we know (e.g. receptor generation) and exploit the powerful machinery of deep neural networks (DNN) to model what we do not know (e.g. functional selection). Using the non-linear and flexible structure of the deep neural networks, we characterize the sequence properties that encode selection of the specificity of the combined chains during receptor maturation in α andβ chains in T-cells, and heavy and light (κ and λ) chains in B-cells. We identify informative sequence features that differentiate CD4 + helper T-cells, CD8 + killer T-cells and regulatory T-cells. Finally, we demonstrate that that biophysical selection models can be used as simple classifiers to successfully identify T-cells specific to distinct targets of pathogenic epitopes-a problem that is of significant interest for clinical applications (70; 71; 72; 73; 74).
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 142 Figure 4.2: Performance of selection models on TCR repertoires. Scatter plot of observed frequency, P data , versus predicted probability P post for (A) linear SONIA and (B) deep neural network soNNia models trained on the TCRβ repertoires of 743 individuals from ref. (98). The baseline is formed by sampling 10 7 sequences from the P gen model, learned from the nonproductive sequences of the same dataset (see Methods). Color indicates number of sequences. (C) The soN-Nia model performs significantly better, as quantified by both the Kullback-Leibler divergence D KL (Methods) and the Pearson correlation coefficient ρ 2 , without overfitting (see Fig. S4.2).

First

  , we systematically compare the accuracy of the (non-linear) soNNia model with linear SONIA (8) (Fig. 4.1 B) by inferring selection on TCRβ repertoires from a large cohort of 743 individuals from ref. (98). Our goal is to characterize selection on functional receptors irrespective of their phenotype. To avoid biases caused by expansions of particular receptors in different individuals, we pool the unique nucleotide sequences of receptors from all individuals and construct a universal donor. Multiplicity of an amino-acid sequence in this universal donor indicates the number of independent recombination events that have led to that receptor (in different individuals, or in the same individual by convergent recombination). We randomly split the pooled dataset into a training and a test set of equal sizes and trained both a SONIA and a soNNia selection model on the training set (Methods and Fig. 4.1 C). Our inference is highly stable, and the selection models are reproducible when trained on subsets of the training data (see Methods and Fig. S4.2). To assess the performance of our selection models, we compared their inferred probabilities P post (x) with the observed frequencies of the receptor sequences P data (x) in the test set (Fig. 4.2A and B). Prediction accuracy can be quantified through the Pearson correlation between the two log-frequencies, or through their Kullback-Leibler divergence D KL (P data |P post ) (Methods and Fig. 4.2C). A smaller Kullback-Leibler divergence indicates a higher accuracy of the inferred model in predicting the data. The estimated accuracy of an inferred model is limited by the correlation between the test and the training set, which provides a lower bound on the Kullback-Leibler divergence D KL 0.4 bits, and an upper bound on the Pearson correlation ρ 2 0.8. We observe a substantial improvement of selection inference for the generalized selection model soNNia with D KL 1.0 bits (and Pearson correlation ρ 2 0.61) compared to the linear SONIA model with D KL 1.6 bits (and Pearson correlation ρ 2 0.48); see Fig. 4.2. Both models show a strong effect of selection, reducing the D KL from 3.03 bits (and increasing the correlation ρ 2 from 0.43) for the comparison of data to the P gen model alone (Fig. 4.2). This result highlights the role of complex nonlinear selection factors acting on receptor features that shape a functional T-cell repertoire. The features that are still inaccessible to the soNNia selection factors are likely due to the sampling of rare features, individual history of pathogenic exposures, or HLA differences among individuals.

Chapter 4 .

 4 Fig. 4.3 show the mutual information between the V and J choices and CDR3 length of each chain, for TCR αβ (Fig. 4.3A), Ig Hλ (Fig. 4.3B), and Ig Hκ (Fig. 4.3C) repertoires. Mutual information is a non-parametric measure of correlation between pairs of variables (see Methods).

  where Q a and Q b are linear models. We also define a deep independent model (deep-indep), which has the multiplicative form Q(x) = Q a (x a )Q b (x b ), but where Q a and Q b are each described by deep neural networks that can account for complex correlations between features of the same chain, similar to the single-chain case (Fig. S4.3). The resulting post-selection distributions for both the linear and the deep-indep model factorize, P post (x) = P a post (x a )P b post (x b ), making the two chains independent. Thus, by construction neither the linear nor the deep-indep model can account for correlations between chains. Finally, we define a full soNNia model (deep-joint) where Q(x) is a neural network combining and correlating the features of both chains (Fig. S4.4).

  4.3). The pre-selection generation model (Q(x) = 1, green bars) explains part but not all of the intra-chain feature dependencies, for both T-and B-cells, while the linear (purple), deep-indep (red), and deep-joint (yellow) models explain them very well. By construction, the generation, linear, and deep-indep models do not allow for inter-chain correlations. Only the deep-joint model (yellow) is able to recover part of the inter-chain dependencies observed in the data. It even overestimates some correlations in BCRs, specifi-
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 43 Figure 4.3: Inference of selection on intra-and inter-chain receptor features. Mutual information between pairs of major intra-and inter-chain features (V and J gene choice and L =CDR3 length for each chain) for (A) TCR αβ, (B) Ig Hλ, and (C) Ig Hκ paired chains are shown. Mutual information is estimated directly from data (blue), and from receptors generated based on inferred models: generative baseline (green), linear SONIA (pink), deep-indep (red), and deep-joint (yellow). For both TCRs and BCRs, only the deep-joint model (yellow), which correlates the features of both chains through a deep neural network, is able to recover inter-chain correlations. Mutual informations are corrected for finite-size bias and error bars are obtained by subsampling (see Methods). The diversity of the pairedchain B-and T-cell repertoires and the contributions of different features to this diversity are reported in TableS4.1.
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 444 Figure 4.4: Cell type and tissue-specific selection on TCRs. (A) Jensen-Shannon divergences (D JS , see eq. 4.8) computed from models trained on different sub-repertoires are shown. (B) Difference in the marginal probability for amino acid composition along the CDR3, P CD8 post (a) -P CD4 post (a), between CD8 + and CD4 + Tconv (left) and the mean difference in the corresponding log-selection factors for amino acid usage ∆ log Q = log Q CD8 -log Q CD4 (right) are shown (the mean is taken over the distribution (P CD8 post + P CD4 post )/2). The negatively charged amino acids (Aspartate, D, and Glutamate, E) and the positively charged amino acids (Lysine, K, and Arginine, R) are indicated in red and blue, respectively. Other amino acids are shown in gray. (C) Maximum-likelihood inference of the fraction of CD8 + TCRs in mixed repertoires of conventional CD4 + T cells (Tconvs) and CD8 + cells from spleen (Eq 4.4) is shown. Each repertoire comprises 5 × 10 3 unique TCRs. (D) Same as (C) but for a mixture of Tconv and Treg TCRs. (E) Mean squared error of the inferred sample fraction from (C) as a function of sample size N , averaged over all fractions, using models of increasing complexity: "Q V JL " is a linear model with only features for CDR3 length and VJ usage, "linear" is linear SONIA model, "deep" is the full soNNia model (Fig. 4.1C). (F) Receiving-Operating Curve (ROC) for classifying individual sequences coming from CD8 + cells or from CD4 + Tconvs from spleen, using the log-likelihood ratios. Curves are generated by varying the threshold in eq. 6.7. The accuracy of the classifier is compared to a traditional logistic classifier inferred on the same set of features as our selection models. The training set for the logistic classifier has N = 3×10 5 Tconv CD4 + , and N = 8.7×10 4 CD8 + TCRs, and the test set has N = 2 × 10 4 CD4 + , and N = 2 × 10 4 CD8 + TCR sequences.

  sorted CD4 + (Tconv from spleen (102)) and CD8 + (from spleen (102)) receptors with different proportions, and show that our selection-based inference can accurately recover the relative fraction of CD8 + in the mix (Fig 4.4C). Our method can also infer the proportion of Treg cells in a mixture of Tconv and Treg CD4 + cells from spleen (Fig. 4.4D), which is a much harder task since these subsets are very similar (Fig. 4.4A). The accuracy of the inference depends on the size of the unfractionated data, with a mean expected error that falls below 1% for datasets with size 10 4 or larger for the CD8 + /CD4 + mixture (red and orange lines in Fig. 4.4E).Our method uses a theoretically grounded maximum likelihood approach, which includes all the features captured by the soNNia model. Nonetheless, a simple linear selection model with only V-and J-gene usage and CDR3 length information (blue line in Fig.4.4E), analogous to the method used in ref.[START_REF] Emerson | Estimating the ratio of CD4+ to CD8+ T cells using high-throughput sequence data[END_REF], reliably infers the composition of the mixture repertoire. Additional information about amino acid usage in the linear SONIA model results in moderate but significant improvement (orange line). The accuracy of the inference is insensitive to the choice of the baseline model for receptor repertoires: using the empirical baseline from ref.[START_REF] Dean | Annotation of pseudogenic gene segments by massively parallel sequencing of rearranged lymphocyte receptor loci[END_REF] (Fig.4.4E) or P gen (Fig.S4.7D) does not substantially change the results.
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 454264 Figure 4.5: Selection-based prediction of epitope specificity for TCR. TCRs are classified based on their reactivity to three pathogenic epitopes (columns), using three classification methods: TCRex, log-likelihood ratio (Eq. 6.7), and linear logistic regression (Eq. 4.6). (A-C) ROC curves, and (D-F) precision-recall curves for (A,D) influenza epitope GILGFVFTL (N = 3107 TCR), (B,E) CMV epitope NLVPMVATV (N = 4812), and (C,F) SARS-CoV-2 epitope YLQPRTFLL (N = 315) are shown. (G-I) Comparison between log-likelihood scores R(x) and logistic regression scores R log (x), for the three epitopes. Red points are TCRs that bind the specific epitope (positive set), black points are TCRs from bulk sequencing (negative set). r is Pearson's correlation. For all panels we used pooled data from Ref. (103) as the negative set. We used 10 times more negative data than positive data for training. Performance was quantified using 5-fold cross-validation.
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 4 between the two proteins. The strength of this interaction depends on the complementarity of a TCR against an antigen presented by a MHC molecule on the T-cell surface. Recent growth of data on paired TCRs and their target epitopes(71; 89) has led to the development of machine learning methods for TCRepitope mapping(70; 71; 72; 73; 74). A TCR-epitope map is a classification problem that determines whether a TCR binds to a specific epitope. We use our selectionbased classifier (eq. 6.7) to address this problem. We determine the target ensemble P r post from the training set of TCRs associated with a given epitope (positive data), and the alternative ensemble P r post from a set of generic unfractionated TCRs (negative data). For comparison, we also perform the classification task using the linear logistic regression approach (eq. 4.6), and the state of the art TCRex algorithm[START_REF] Gielis | Detection of Enriched T Cell Epitope Specificity in Full T Cell Receptor Sequence Repertoires Front[END_REF], which uses a random forest model for classification. We performed classification for the following CD8 + -specific epitopes, presented on HLA-A*02 molecules: (i) the influenza GILGFVFTL epitope (with N = 3107 associated TCRs), (ii) the Cytomegalovirus (CMV) NLVPMVATV epitope (N = 4812), and (iii) the SARS-CoV-2 YLQPRTFLL epitope (N = 315). The first two epitopes have the most abundant associated TCR sets in VDJdb (71; 89), and the latter is relevant for the ongoing COVD-19 pandemic. For consistency with TCRex (73), we used the pooled data from ref. (103) as the negative set, and used 10 times more negative data than positive data for training. To quantify performance of each classifier, we performed a 5-fold cross validation procedure. Due to the scarcity of data, we limit our selection inference to the linear SONIA model (see Fig. 4.1C). The ROC curves show comparable performances for the three classification methods on the three epitope-specific TCR sets (Fig. 4.5A-C). The TCR-epitope mapping is a highly unbalanced classification problem, where reactive receptors against a specific epitope comprise a very small fraction of the repertoire (less than 10 -5 (60)). Precision-recall curves are best suited to evaluate the performance of classification for imbalanced problems. In this case, a classifier should show a large precision (fraction of true predicted positives among all pre-Deep generative selection models of T and B cell receptor repertoires with soNNia dicted positives) for a broad range of recall or sensitivity (fraction of true predicted positives among positives = true positives + false negatives). The precision-recall curves in Fig. 4.5D-F show that TCRex and the logistic classifier can equally well classify the data, and moderately outperform the selection-based classifier. While both the logistic classifier and TCRex are optimized for classification tasks, the selection-based classifier is a generative model trained to infer the receptor distribution of interest (positive set) and identify its distinguishing features from the baseline (negative set). As a result, selection-based classification underperforms in the low-data regime, for which fitting a reliable distribution is difficult (e.g. for the SARS-CoV-2 epitope model, with only N = 315 positive examples). By contrast, the logistic classifier finds a hyperplane that best separates the two sets, and therefore, is better suited for classification tasks, and may be trained on smaller datasets. Nonetheless, we see a strong correlation between the selection-based log-likelihood ratio R(x) (eq. 6.7) and the estimator of the logistic classifier ŷ (eq. 4.6), shown for positive set (red points) and the negative set (black points) in Fig. 4.5G-I for the three epitopes. This result indicates that the separation hyperplane identified by the logistic classifier aligns well along the effective coordinates of selection that represent sequence features relevant for function in each epitope class.

  sus conventional CD4 + T-cells, showing that receptor composition encodes not just signatures of shared developmental history-receptors of these two CD4 + subtypes are still much more similar to each other than to CD8 + receptors-but also function: Tregs down-regulate effector T-cells and curb an immune response creating tolerance to self-antigens and preventing autoimmune diseases (63), whereas Tconvs assist other lymphocytes including activation of differentiation of B-cells. Since our analysis is performed on fully differentiated peripheral cells, we cannot say at what point in their development these CD4 + T-cells are differentially selected. Data from regulatory and conventional T-cells at different stages of thymic development could identify how their receptor composition is shaped over time. During thymic selection cells first rearrange a β receptor and then an α receptor is added concurrently with positive selection. Negative selection follows positive

  4.4F), and in predicting epitope specificity (Fig. 4.5). But unlike other classifiers, its engine can be used to generate positive and negative samples. Thus characterizing the distributions of positive and negative examples is more data demanding than mere classification.For this reason pure classifiers are generally expected to perform better, but lack the ability to sample new data. Our analysis complements the collection of proposed classifiers by adding a generative alternative that is grounded on the biophysical process of T-cell generation and selection. This model is simple and interpretable, and performs well with large amounts of data.
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 23474 To characterize selection on paired chain receptors (Fig. 4.3), we analyzed TCR αβ pairs of unfractionated repertoires from ref. (100) (totalling 5 × 10 5 receptors), and BCR of naive cells from ref. (101) totalling 22 × 10 3 and 28 × 10 3 receptors for the Hλ and Hκ repertoires, respectively. To characterize differential sequence features of TCRs between cell types in different tissues (Fig. 4.4), we pooled unique TCRs from 9 healthy individuals from ref. (102), sorted into CD4 + conventional T cells (Tconv), CD4 + regulatory T cells (Treg) and CD8 + T cells, harvested from 3 tissues: pancreatic draining lymph nodes (pLN) (2.3 × 10 5 Tconvs, 2.9 × 10 5 Tregs, 2.5 × 10 5 CD8s), "irrelevant" non-pancreatic draining lymph nodes (iLN) (2.0 × 10 5 Tconvs, 9.0 × 10 4 Tregs, 1.0 × 10 5 CD8s), and spleen (3.2 × 10 5 Tconvs, 1.1 × 10 5 Tregs, 1.1 × 10 5 CD8s). We used the unfractionated data from ref. (103), comprising of 2.2 × 10 6 receptor to construct a based line model for this analysis. Quantifying accuracy of selection models. To assess the performance of our selection models, we compare their inferred probabilities P post (x) with the observed frequencies of the receptor sequences P data (x) in the test set. Prediction accuracy can be quantified through the Pearson correlation between the two log-frequencies or the Kullback-Leibler divergence between the data and the distribution predicted by the selection model P post , D KL (P data |P post ) = log 2 P data P post P data . (Chapter Deep generative selection models of T and B cell receptor repertoires with soNNia A smaller Kullback-Leibler divergence indicates a higher accuracy of the inferred model in predicting the data. In Fig. 4.2 we estimate the Kullback-Leibler divergence using 10 5receptors in the test set with multiplicity larger than two.

  analyse high-throughput TCRβ repertoire sequencing data of purified T cell subsets from different stages of maturation. Part of this dataset has been previously analysed in (109). As it is shown in fig 5.1A, we have access to purified samples of CD4+CD8+CD3-(DPCD3-), CD4+CD8+CD3+ (DPCD3+), CD3+CD4+CD25+ (CD4+Treg), CD3+CD4+CD25-(CD4+Tconv) from thymus (green) and naive and memory phenotypes of CD4+ effector (respectively CD4+nTeff and CD4+amTeff) and regulatory (respectively CD4+nTreg and CD4+amTreg) T cells from peripheral blood (orange). DPCD3-cells represent the earliest stage of development after successful recombination of the receptor and the statistics of their repertoire should follow closely the recombination process. DPCD3+ cells belong to an early stage of selection. During selection, cells with higher affinity to one of the two major classes of MHC differentiate to either CD8+ or CD4+ cells. CD4+Treg cells belong to the CD4+ pathway and modulate the immune response by downregulating the proliferation of effector cells. Non-regulatory CD4+ cells, upon activation in the periphery, acquire effector (helper) function.

least 10 4

 4 clonotypes and infer linear selection factors using the SONIA software (8) by minimizing the binary cross-entropy loss function (see Methods chapter). We compute the entropy of each P post model and plot the result in Fig 5.1B. Following the maturation process depicted in Fig 2.1, DPCD3-and DPCD3+ samples have the highest entropies and CD4+ and CD8+ samples have lower entropies. We observe
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 151 Figure 5.1: (A) Overview of samples analysed in this study. (B) Entropy in bits of inferred P post models on samples with at least 10 4 unique clones grouped by cell type. Boxplots represent median and quartiles of the data. During thymic maturation the entropy of the repertoire is reduced. (C) Lower dimensional representation with Multi Dimensional Scaling (MDS) of the distance matrix defined by the Jensen-Shannon divergence D JS between the models. (D) Jensen-Shannon divergences (analogous to Fig 4.4A) between deep selection models trained on the repertoires of T cell subsets pooled from all individuals. (E) Joint inference of selection factors on a shared representation space of the same neural network. (F) No clear separation of subsets is visible in the representation space but the mean value of the distribution follows the differentiation process.
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 55 1C. We find a clear imprint from the maturation and differentiation process in the location of samples in the representation space. Three Chapter On the local structure of repertoires of T cells during thymic development distinct major clusters are present: DPCD3-and DPCD3+ form the first cluster, CD8+ cells form the second cluster and all CD4+ cells form a third cluster. In this latter cluster we observe a finer grouping with respect to the tissue origin (squares from blood and circles from thymus) and different T cell subsets. This result implies that the observed individual variability[START_REF] Sethna | Population variability in the generation and selection of T-cell repertoires[END_REF] in the generation and selection of the repertoire is lower than the variability between T cell subsets within a single individual.We continue the analysis by pooling samples from the same cell type across individuals. We infer deep selection models using the SoNNia software by minimizing the binary cross-entropy loss function (see Methods chapter) and compare them by computing the Jensen Shannon divergence D JS . This analysis was not possible with the dataset used in the previous chapter because there were not enough clonotypes to perform the inference with a neural network. As it can be seen in Fig 5.1D, clustering of subsets follow the maturation process depicted in Fig 2.1. We observe also a clear separation of clusters with respect to tissue origin. Moreover, naive and memory phenotypes from the same cell type cluster together. In conclusion, the observed similarity between repertoires of different T cell subsets is consistent with the know dynamics of thymic maturation.
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 58552 Figure 5.2: (A) Probability that two randomly sampled sequences with the same V J gene combination have Hamming distance d H between their aminoacid sequences. During thymic development the average distance decreases. (B) Probability to find a sequence with exactly n nearest neighbours with distance cut-off is d H ≤ 1. As T cells experience selection the average number of nearest neighbours increase. The distribution is well reproduced by a synthetic repertoire sampled from P post . (C) Same distribution as in the previous panel at cut-off d H ≤ 2. (D) Schematic computation of ∆n in a mixture of two repertoires from different cell types. (E) Distribution of ∆n values in a mixture and within a subset for d H ≤ 1 and (F) d H ≤ 2.In both cases we observe a wider tail at negative values. It identifies a depletion in the neighbourhood of the sequences with respect to the opposite subset. This is consistent with the intuition that TCRs are on average more surrounded with cells of the same type. For d H ≤ 2 we observe also a significant tail at positive values of ∆n. This tail identifies a group of T cells that have significantly more neighbours of the opposite type. Also in this case the distribution is well reproduced by a synthetic repertoire sampled from P post .
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 553 Figure 5.3: (A) Accurate prediction of number of nearest neighbours of a sequence is necessary for detecting significant enrichments associated to an immune response. Deep selection models well predict the number of nearest neighbours of a sequence with an average pearson correlation of ρ = 0.81 ± 0.04 across the 10 most probable V J combinations. (B) Comparison of alternative estimators for the number of nearest neighbours defined by different cut-offs in Hamming distance d H . P gen is a generation model inferred on unproductive sequences, P lin post adds a linear selection model to P gen while P deep post adds a deep selection model. (C) We compare performance for different approximations of P deep post which assume smoothness in Q and P gen .

Fig 5 .

 5 Fig 5.3B we show that the estimators perform reasonably well also in this regime.

Figure 5 . 4 :

 54 Figure 5.4: (A) Local sampling of sequences using the Metropolis-Hastings algorithm with P gen as acceptance probability defines connected paths in sequence space of high P gen . Uniform acceptance probability U fails to produce realistic sequences. Values have been clipped at P gen = 10 -60 for visualization purposes. (B) Location in the CDR3 sequence of accepted mutations. (C) Aminoacid identity of accepted mutation.
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Figure 6 . 1 :

 61 Figure 6.1: (A) Schematic of the method.We first sample parameters θ from the prior P (θ) and then sample observations x from the simulator P (x|θ) to obtain pairs (x i , θ i ). In order to generate pairs (x i , θ j ) from the independent distribution we shuffle the two initial vectors. Both sets are used to infer a model of energy E φ by maximizing a log-likelihood in (6.5) with φ parameters of the artificial neural network used for the inference. (B) Distribution of energies of independent and joint pairs. Pairs from the joint distribution have lower energy E φ , while pairs from the independent distribution have higher energy, as the majority of these independent samples are relatively unlikely under a joint model (6.2).

  ) where E I [•] is the counting measure over a large set I of independently drawn parameter and data pairs (x, θ) ∼ P indep (x, θ) = P (θ)P (x). In practice, I may be obtained by shuffling the indices of J (13), I = {(x i , θ π(i) )}, where π is a random permutation of N elements, possibly multiple times. Counting all possible combinations, the set I can have maximal size max(N I ) = N 2 -N under a fixed simulation budget. We denote the relative size of the two sets by k = N I /N .

  mutual information estimation established above opens the possibility of employing other empirical mutual information estimates to perform simulation-based-inference. An alternative lower bound to I * , first introduced in (121), is the so called f-divergence representation (FDIV),

Figure 6 . 2 :

 62 Figure 6.2: Example trajectories (A,C,E,G) and posterior inference (B,D,F,H) for Ornstein-Uhlenbeck (A,B), Birth-Death (C,D), SIR (E,F) and Lorenz attractor (G,H). Trajectories are simulated with the parameter marked in red on the posterior plots. Circles indicate the discrete observations used for inference. Posteriors where estimated over 10 trajectories.

  2) and P (β) = U(2,[START_REF] Pogorelyy | Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires[END_REF].SIR model.The Susceptible-Infected-Recovered (SIR) model is a staple of epidemiological modelling. Any member of susceptible population S can be infected at rate β upon a contact with one of I infected individuals. The infected individuals can become resistant R at a rate γ:
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 636364 Fig 6.3. We define a reference posterior P ∞ (θ|x 1:M ) ≡ Pl (θ|x 1:M ) l , obtained with N = 10 7 as the average over three estimators. In the case of Ornstein-Uhlenbeck process, where the true posterior P (θ|x 1:M ) can be calculated analytically, P ∞ (θ|x 1:M ) agrees with the analytical prediction. This first result confirms the validity of the proposed methods.With reducing sample size N , the amortized posteriors differ. To study the performance of the three methods under different simulation budgets N for each task we simulate N tot = 2 × 10 7 samples J = {(x i , θ i )}. We perform the inference of the amortized likelihood-to-evidence ratio with varying simulation budgets, where both the training and the validation data are equal-sized subsamples of J with N ∈ {10 4 , 10 5 , 10 6 }. Inference and comparison are performed 10 times on independent
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 71 Figure 7.1: (A) Simulation of a birth-death process with mutation on a tree. The results of the simulation are processed to be compatible with observables that can be measured on real data. (B) The method developed in Chapter 6 can recover birth and death parameters of the dynamics from synthetically generated trees.

work is a vector x where x f = 1 (

 1 otherwise 0) if sequence x has feature f . A dense layer is a map L(x) = tanh(Wx + b) with x the input vector, W the matrix of weights, b the vector bias, and where the tanh function is applied to each element of the input vector. The model architecture of the neural network is shown in Supplementary Fig.S1.The input is first subdivided into 3 sub-vectors: the x L subset of features associated with CDR3 length, the x A subset of features associated with the CDR3 amino acid composition and the x V J subset of features associated with V and J gene usage. We applied a dense layer individually to x L and x V J . In parallel, we performed an amino acid embedding of x A : we first reshape the vector to a 2K × 20 matrix A (the set of features associated with amino acid usage is 2 × K × 20 long, where K = 25 the maximum distance from the left and right ends that we encode, and 20 is the number of amino acids) and apply a linear embedding trough M(A) = AM with M a 20 × n matrix with n the size of the amino acid encoding.
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 18 (P post ) = D KL (P post P gen ) -η 0 x P post (x) -1 f θ f P post (f ) -P data (f ) , (S4.4) If we have enough pooled data, the deep soNNia model P emp post (x) should reproduce the associated empirical distribution of the unfractionated repertoire P emp . As a result, the first step of this transfer learning algorithm can be replaced by using the empirical distribution P emp as the common baseline set G, on top of which we can infer a linear selection model with SONIA. The inferred selection factors would then reflect deviations from this empirical baseline. Fig. S5 shows that these two approaches produce very similar selection factors. Estimation of information theoretic quantities• Mutual informationGiven two random variables X and Y with joint distribution p(x, y), the mutual information is:I(X, Y ) = x,y p(x, y) log p(x, y) p(x)p(y) , (S4.8)and P (x) and P (y) are the respective marginal distributions of p(x, y). I(X, Y ) can be naively estimated from data through the empirical histogram (x, y).

  post ) = -log 2 P post Ppost = -Q log 2 P post Pgen (S4.10) of the paired chain models by sampling 10 6 sequences from the generation model P gen (Table

  Figure S4.5: Transfer learning consists of a 2-step inference (left): in the first step we infer a deep neural network on a bigger data set G, and in the second second step we re-infer a subsection of the network, or an additional layer on a smaller dataset, which is the real target. In our specific application, the big data G is the unfractioned repertoire from ref. (103) (P emp (x) = N -1

Figure S4. 6 : 112 ChapterFigure S4. 7 :

 61127 Figure S4.6: (A) Distribution of log Q of inferred models starting from an empirical baseline G, and (B) the distribution of log Q of inferred models starting from the P gen model as a baseline.

Figure S4. 8 :Figure S4. 13 :

 813 Figure S4.8: Differential selection on V and J gene usage between CD4 + and CD8 + models inferred on top of P emp as baseline distribution.

DFigure S5. 1 :

 1 Figure S5.1: (A)We find an anti-correlation between the generation probability and selection factor of sequences with more than 3 neighbours. (B) As previously observed in[START_REF] Elhanati | Quantifying selection in immune receptor repertoires[END_REF], the generation probability of P gen and selection factor Q of sequences correlate generically. (C) The anti-correlation cannot be explained by conditioning on sequences of high P gen . We find nearly absent correlation between sequences with a generation probability of at least 10 -8 and their selection factors. (D) Proposed explanation for the two observations. In this chapter we show that n obs correlate with P post . Conditioning n obs > 3 is equivalent to conditioning P post > c. This corresponds to a diagonal cut in the 2 dimensional space spanned by P gen and Q. If we add a cut at high P gen that corresponds to the fact that there are only few sequences that have high P gen , we can explain both behaviours observed in panel A and C.
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 41214641 Supplementary material to chapter 6 Different objective functions share an optimumWe study the following objective funtions:I(φ; I, J ) = -E J [E φ ] -log E I [e -E φ ],(S6.1)L f (φ; I, J ) = -E J [E φ ] -E I [e -E φ -1 ], (S6.2) S(φ; I, J ) = -E J [log d φ ] -kE I [log 1 -d φ ] (S6.3)

  

Table 3 .

 3 10 6 ρ 2 10 6 D KL 2 • 10 5 ρ 2 2 • 10 5 D KL 1: Pearson's correlation coefficients ρ 2 and Kullback-Leibler divergence D KL (in bits) for the various models. Either 10 6 or 2 • 10 5 sequences were used in the training dataset. encoder detailed in (55) was used. Here we focus on the version of the VAE called basic in that paper.

	VAE	0.48	1.7	0.47	2.0
	P gen	0.48	4.5	0.51	4.5
	OLGA.Q	0.48	2.6	0.47	2.6
	SONIA LP 0.52	1.8	0.52	1.7
	SONIA LR 0.53	1.4	0.53	1.4

  (see Methods). These entropy measures suggest a repertoire size (i.e., a typical number of amino acid sequences) of about 10 9 receptors for TCRβ (consistent with ref. (8)), 10 7 receptors for TCRα, 10 13 receptors for BCR heavy chain, and 10 4 receptors for BCR light chain sequences. The paired chain entropy measures suggest repertoire sizes of 10 16 for TCRαβ and 10 17 BCR IgHλ and IgHκ receptors, which are compatible with

	the small correlations observed between heavy and light chains in Fig. 4.3, and
	previously reported in refs. (77; 78; 10; 100; 80).

  Results59we plot the distribution of ∆n for multiple mixtures of CD8+ and CD4+Tconv cells and compare with a control of only CD8+ or CD4+Tconv samples. As we would expect, when the two repertoires come from the same cell type the distribution of ∆n is symmetric and has mean zero. On the other hand when the two repertoires come from different subtypes, the distribution of ∆n is asymmetric, see Fig 5.2Eand F for thresholds d H ≤ 1 and d H ≤ 2. In both cases we observe a wider tail of negative values of ∆n, which is consistent with our expectation that a receptor is closer to other receptors of the same cell type. Interestingly the deviation is not too big with respect to the control distribution. This is consistent with the idea that CD4+Tconv and CD8+ cell repertoires overlap significantly not only globally but also locally. Also in this case synthetic repertoires generated with our P post model can capture this behaviour. It is also interesting that the signal-to-noise ratio increases at bigger d H as in Fig 5.2F. For d H ≤ 2 we observe also a significantly longer tail at positive values of the ∆n distribution in the mixture. This is due to

.2)

since the number of nearest neighbours scales with repertoire size we can estimate n t (x t ) = 2ñ t (x t ) from the neighbourhood of the sequence in the original repertoire before the samples of type t and t are mixed, see Fig 5.2D for a sketch. In Fig 5.

2E

5.2

  .3) where E J [•] denotes the empirical average over samples J . Note that this metalikelihood is distinct from the original likelihood P (x|θ) as it involves drawing both model parameters and data together, multiple times, given a model of the energy E φ parametrized by φ. The partition function is approximated using importance sampling on samples drawn from P indep :

  1, which ensures that the damping matrix is positive definite (see Supplementary Inference from Sampled Trajectories Material for more details). Since γ is symmetric, in the d-dimensional case we have d 2 parameters to infer. The prior is given by the Gaussian Orthogonal Ensemble distribution density P (g) = 1 z(d) e -d 4 Tr(g 2 ) .

  L ) TCR αβ 54.5 ± 0.1 31.4 ± 0.1 22.9 ± 0.1 4.803 ± 0.004 3.404 ± 0.001 4.906 ± 0.002 5.381 ± 0.001 TableS4.1: Entropy contribution from different receptor features in the pairedchain selection models. These entropy values are estimated based on the amino acid content of receptors' CDR3 and their V-,J-gene usages.
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			P gen				
			P emp				
	cell type			entropy [bits]		
	H(P HL post ) H(J Ig Hλ H(P H post ) H(P L post ) H(V H ) H(J H ) H(V L ) 57.0 ± 0.1 44.5 ± 0.4 14.0 ± 0.1 4.67 ± 0.02 1.98 ± 0.02 3.81 ± 0.01 1.40 ± 0.01
	Ig Hκ	58 ± 1	44.5 ± 0.4 12.9 ± 0.1	4.74 ± 0.01	2.04 ± 0.01	3.64 ± 0.02	2.24 ± 0.01

  θ) P joint (x, θ) -P indep (x, θ) 1 + kZe E φ (x,θ) 1 + δ log Z δE φ (x, θ) , (S6.11)and we find they vanish at energies E I , E f and E S respectively:

	E I = -log	P joint (x, θ) P indep (x, θ)	-log Z,	(S6.12)
	E			

f = -log P joint (x, θ) P indep (x, θ) -1, (S6.13) E S = -log P joint (x, θ) P indep (x, θ) -log Z. (

S6

.14) 
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Likelihood Inference from Sampled Trajectories, arXiv 2106.01808, 3 Jun 2021 Upon activation B cells undergo a somatic hypermutation process to increase affinity of their receptor to the pathogenic antigen. We would like characterize this process, however inference of parameters for population genetic models is notably challenging.

A possible way to tackle this complexity is with simulation-based inference, which enables learning the parameters of a model even when its likelihood cannot be computed in practice. One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio, or equivalently the posterior function. In this Chapter we show that this approach can be formulated in terms of mutual information maximization between model parameters and simulated data. We use this equivalence to reinterpret existing approaches for amortized inference, and propose two new methods that rely on lower bounds of the mutual information.

Introduction

Model-based Bayesian inference relies on the probabilistic description of a process.

Traditional methods rely on computing the likelihood of the observed data given the model parameters, in order to maximize or sample from the posterior. For many models, in particular with multiple interacting degrees of freedom or hidden variables, the likelihood function may be impractical to evaluate. In cases where drawing data from the generative process is possible, simulation-based inference subsamples of J . In order to obtain samples from the independent set I we shuffle the joint samples k = 5 times, and so N I = 5N . A larger shuffled data N I can improve the inference but at the cost of computing power, which sets a trade-off between performance and training time.

We compare the accuracy of the 3 inference methods (MINE, FDIV, BCE) for the 4 tasks (OU, Birth-death, SIR, Lorenz) based on the three following metrics:

Global comparison.

The first metric used for the benchmark is the mutual information given a density estimator, computed with eq. 6.5. For each N , it is evaluated on test data composed of the remaining N tot -N samples. Unlike the other two comparisons (see below), it is a global metric that tests the approximation of the likelihood-to-evidence ratio over all θ and x values. For this reason we use it to perform hyperparameter tuning for each task and each objective with N = 10 5 , see Supplementary Material.

For all four tasks the value of the estimated mutual information grows with the simulation budget and yields comparable performances for the 3 methods (Fig 6 .4A, D, G, J). For the Ornstein-Uhlenbeck process, the BCE method reaches consistently higher values of mutual information. For the Lorentz attractor, the MINE method is significantly outperformed by the other methods in the low data limit (N = 10 4 ).

Posterior comparison.

The objective of simulation-based inference is to find the posterior distribution over model parameters. To characterize the inference accuracy as a function of the simulation budget N and the method l, we evaluate the Jensen-Shannon divergence between the inferred and the reference posterior D JS (P ∞ (θ|x 1:M ), P N l (θ|x 1:M )) (where D JS (p, q) = (1/2) [p(x) log(p(x)/m(x))+q(x) log(q(x)/m(x))]dx with m(x) = (p(x)+ q(x))/2), by scanning through the parameter space with the prior P (θ). A larger Jensen-Shannon divergence indicates a larger deviation between the inferred posterior and the reference (i.e., a lower performance).

All method show comparable performances, and the Jensen-Shannon divergence decays as a function of the simulation budget N (Fig 6 .4B, E, H, K, and Supplementary Material for the Ornstein-Uhlenbeck process with d > 1). At N = 10 4 the accuracy of the posterior inference is significantly decreased in all methods, as reflected by the large variance of the D JS .

Likelihood comparison.

The third metric is the Jensen-Shannon divergence D JS (P (x|θ * ), P N l (x|θ * )) between the true and approximated likelihood for a given model θ. This D JS cannot be gies will open the possibility to combine immune receptor repertoire data and gene expression information [START_REF] Schattgen | Linking T cell receptor sequence to transcriptional profiles with clonotype neighbor graph analysis[END_REF], we believe that the methods that we introduced in this thesis will help researchers better characterize the continuum of cell differentiation and the dynamics of initiation and regulation of the immune response. Like other deep neural network algorithms, soNNia is powerful when trained on large datasets. While the use of appropriate regularization could reduce the risk of overfitting, it is recommended that the linear SONIA model is used for datasets with fewer than 10 5 receptor sequences.

The pre-processing pipeline implemented in this paper is also included in the soNNia package as a separate class.

The software is available on GitHub at https://github.com/statbiophys/soNNia.

A.1.2 Pre-processing steps

The standard pre-processing pipeline, which is implemented in the soNNia package and is applied to all datasets, consists of the following steps:

1. Select species and chain type 2. Verify sequences are written as V gene, CDR3 sequence, J gene and remove sequences with unknown genes and pseudogenes

Filter productive CDR3 sequences (lack of stop codons and nucleotide sequence
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A.1.5 soNNia model inference

Given a sample of data sequences D = {x i } N D i=1 and a baseline G = {x i } N G i=1 we want to maximize the average log-likelihood:

where

). The P gen term in the last equation is parameter independent and can thus be discarded in the inference. When an empirical baseline is used, P gen is replaced by

Otherwise, the baseline G is sampled from the P gen model, which we learn from nonproductive sequences using the IGoR software [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF].

The above likelihood is implemented in the soNNia inference procedure (linear and non-linear case) with the Keras (105) package. The model is invariant with respect to the transformation Q(x) → cQ(x) and Z → Z/c, where c is an arbitrary constant, so we fix dynamically the gauge Z = 1. We lift this degeneracy by adding the penalty Γ(θ) = (Z θ -1) 2 , and minimize -L sonia (θ) + γΓ(θ) with γ = 1 as a loss function.

In our implementation batch sizes between 10 3 -10 4 sequences produced a reliable inference. L2 and L1 regularization on kernel weights are also applied. Hyperparameters were chosen using a validation dataset of size 10 % of training data.

The inference converges after around 100 epochs and the network does not overfit (Fig. S2A). To test the stability of our inference, we evaluated the P post values of generated sequences, based on two models trained on subsets of the initial training data, and show that the P post estimated are highly reproducible between these selection models (Fig S2B The second term on the right-hand side imposes the normalization of P post and the last term imposes the constraint that the marginal probabilities of the selected set of features f should match those in the data through the set of Lagrange multipliers θ f . This scheme reduces to the maximum entropy principle when G is uniformly distributed. Minimization of eq. S4.4 results in:

where Z θ = e 1-η 0 , which is equivalent to eq. S4. 

KL (L). In Fig. S9 each of these divergences are then combined to get a "fractional Jensen-Shannon" divergence

KL , where f is the fraction of CD4 cells.

A.1.7 Transfer Learning

Training a deep soNNia model (Fig. 1C) for each subset in the analysis of Fig. 4 leads to overfitting issues due to limited data. To solve this problem, we can use a mixture technique known as transfer learning (Fig. S5). Specifically, we first infer a deep soNNia model to characterize selection factors (Q DNN (x)) on unfractionated repertoire data from ref. [START_REF] Dean | Annotation of pseudogenic gene segments by massively parallel sequencing of rearranged lymphocyte receptor loci[END_REF]: P emp post (x) = Q DNN (x)P gen (x) (eq. 1). We subsequently modulate the distribution by learning an additional linear selection model Q trans (x) for each sub-repertoire, output:
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(?, 50) (?, 1) Lambda input:

output:

(?, 1) (?, 1)

AMINOACID ENCODING

CDR3 LENGTH ENCODING V AND J GENE ENCODING

.1: Neural network structure of the deep soNNia model for the single chain case. There are three inputs, from left to right: first the encoded aminoacid composition of the CDR3 using the left-right encoding scheme, then the length of the CDR3, finally the independent V and J gene usage information. The aminoacid input is encoded using an embedding layer, called EmbedViaMatrix and then processed by a tanh non-linearity, called Activation layer. The Flatten layer turns the encoded matrix in the corresponding flattened array where each row of the matrix is concatenated to the successive one. A dense layer is then applied to reduce its dimensionality. The other two inputs are also processed through a dense feed-forward layer to reduce their corresponding dimensionality. The three groups of encoded inputs are then concatenated and two dense feed forward layers are applied to output log Q. Finally log Q is clipped to avoid diverging values using the Lambda layer. (?,

[(?, 50,

[(?, 50, 

.9: Decomposition of contribution from different features to the fractional Jensen Shannon divergence between the CD4 and CD8 subpertoire statistics,

. The blue bar is the contribution of CDR3 length; orange and green bars are the relative contributions from the amino-acid composition and VJ usage, respectively. Red bar is the fraction that's redundant between VJ and amino acid usage. Contributions are balanced between amino acid and VJ usage, with moderate redundancy between the two. 

to infer jointly the two fractions f 1 and f 2 in a chosen mixture of 3×10 4 TCRs x i , built by combining repertoires of purified subsets harvested from spleen [START_REF] Seay | Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes[END_REF]. Each point corresponds to a mixture with f 1 and f 2 sampled uniformly 2000 times in the simplex

P emp P gen previous analysis on unsorted data. We observe an increase in mutual information for intra-chain features but no significance difference for inter-chain features.

An alternative baseline for the inference of inter-chain correlations

The analysis of Fig S4 .13A was performed starting from a baseline set G 1 ∼ P α gen (x α )P β gen (x β ) which assumes independent generation of α and β chains. A model for the generation probability for each of these two chains needs to be inferred on unproductive data. Inference of the generation model can be biased by failures in the alignment algorithm for specific V and J gene alleles or lack of enough data. An alternative approach that does not suffer from these problems is to infer a selection model starting from a baseline set G 2 constructed by shuffling the two chains in the productive data D. This procedure breaks the correlations between the α and the β chain but conserves intra chain correlations. Inference of a selection model is thus focused on characterising inter-chain correlations. As it is shown in Fig S4 .13B, selection models inferred on G 1 and G 2 baselines can capture inter-chain correlations.
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We observe significant anti-correlation between the selection factors Q and the generation probability P gen of receptors having at least 3 nearest neighbours defined by Hamming distance d H ≤ 1 between their aminoacid sequences, see Fig S5 .1A. This finding is at first glance surprising as an opposite trend was observed in [START_REF] Elhanati | Quantifying selection in immune receptor repertoires[END_REF]. There, P gen and Q correlate for sequences sampled from the post-selection repertoire of T cell receptors, we reproduce this finding in Fig S5 .1B. A possible explanation for this observation depends on the assumption that sequences with many nearest neighbours have higher chance to be generated and are also surrounded by sequences with high generation probability. This statement assumes approximate smoothness of P gen in sequence space. This assumption has been validated in the analysis of Fig 5 .3. We would then be tempted to ask whether there exist a compensatory mechanism during thymic selection the depletes sequences with high generation probability in order to increase locally the diversity of the repertoire. Such a mechanism would then explain the negative correlation observed in Fig S5 .1A.

In order to test this claim, we can check whether we see any anti-correlation between P gen and Q for sequences at high generation probability. Interestingly, if we select only those sequences with P gen > 10 -8 the correlation disappears, see Fig S5 .1C. This result points us towards an alternative explanation, which is depicted in In order to explain the anti-correlation in Fig S5 .1A we need to select sequences with high P post instead of P gen . This choice corresponds to a diagonal cut in the space spanned by P gen and Q which leads to negative correlations in the selected sequences. This choice is justified by the observation in Chapter 5 that the predicted number of nearest neighbours of a sequence better correlates with P post than with P gen .
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All three are equal to the logarithm of the likelihood-to-evidence ratio up to constant factors. We note that the second derivatives are different in the 3 cases and therefore convergence to the optima E I , E f and E S will in general be different.

A.4.2 Noise Contrastive Estimation and mutual information

In this section we show how our work fits within the framework of Noise Contrastive Estimation (NCE) and how it relates to the existing contrastive learning approaches to simulation-based inference. The NCE methods estimate a probability density p(y) by comparison to a reference noise distribution q(y) (123; 124) :

which reduces the problem to approximating the density ratio. The original method (123) consists of the inference of the density ratio model using logistic regression (minimizing binary cross entropy) on samples from both distributions, p, q. This framework encompasses the likelihood-to-evidence ratio inference problem where p(y) = P joint (x, θ) and q(y) = P indep (x, θ) and one minimizes S(φ; I, J ) to find E φ .

An alternative approach proposed in the Noise Contrastive Estimation literature (140; 141) focuses on the estimation of conditional probability functions

e -E(z,y) q(y), (S6. [START_REF] Butler | Quorum sensing allows T cells to discriminate between self and nonself[END_REF] where now the partition function explicitly depends on the conditioned variable z. The new density ratio can be inferred by optimizing the the so-called ranking objective [START_REF] Jozefowicz | Exploring the limits of language modeling[END_REF]. This objective function is typically used to rank a positive sample from the target distribution p(y|z) above k samples from the reference noise q(y) for the input z (141).

In simulation-based inference, this family of methods has been used for posterior estimation, where p(y|z) = P (θ|x) is the unknown posterior and q(y) = P (θ) is the prior. In our notations the ranking objective function reads

This method is known as the Sequential Neural Posterior Estimation (SNPE) proposed in [START_REF] Greenberg | Automatic posterior transformation for likelihood-free inference[END_REF], building on the work in Refs. (142; 143). It's useful to note that the ranking loss L r (φ; J ) has also been used to construct a high-bias and low-variance estimator of mutual information (144; 137).
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Ref. [START_REF] Durkan | On contrastive learning for likelihood-free inference[END_REF] proposes that also the binary classification approach introduced in ( 13) is a special case of the above inference for k = 1. However, the ranking objective L r (φ; J ) with k = 1 is distinct from S(φ; I, J ) and the two methods cannot be identified as one. In Ref. [START_REF] Ma | Noise contrastive estimation and negative sampling for conditional models: Consistency and statistical efficiency[END_REF] the cross entropy has been compared to the ranking loss and shown to generically outperform it in the context of Neural Language Processing.

A.4.3 The Ornstein-Uhlenbeck process in dimension d

The trajectories x(t) are solutions to a stochastic differential equation

where x is a d-dimensional coordinate, µ its long-term average, γ is a d × d damping matrix, σ is the noise strength, and W is a d-dimensional Wiener process. From a trajectory x(t) we sample n values every ∆t so that x = {x i = x(i∆t)}. To find the analytical expression for the likelihood of these observations we write the corresponding Fokker-Planck equation for the density P = P (x i , t

solved with a multivariate Gaussian distribution density

with mean we can find an orthogonal eigenbasis r(γ) in which the damping matrix is diagonal,

where Γ is a diagonal matrix and r(γ)r(γ) T = I. The covariance matrix is also diagonal in this basis, which allows us to compute the integral when σ = I so that

To ensure that γ is symmetric and positive definite (which is required so that the trajectories don't diverge and a steady state exists) we choose the following parametrization:

where g is a random matrix from the Gaussian Orthogonal Ensemble with density

The eigenvalues of g can be both positive and negative, in particular the lowest eigenvalue is distributed according to the Tracy-Widom law with mean µ g = √ 2d

and standard deviation of σ g = √ 2d 1/6 . Choosing (d) = (µ g + 2σ g ) -1 ensures that the eigenvalues of γ are all positive with good confidence.

A.4.4 Neural network architecture and learning hyperparameters

The I(φ; I, J ) objective function is invariant with respect to a global shift in energy,

), since any shift E 0 can be incorporated in the partition function Z to obtain the same likelihood-to-evidence ratio. We choose an energy gauge in which the "free energy" vanishes, -log Z = 0. As suggested in [START_REF] Choi | Regularized mutual information neural estimation[END_REF] we do so by adding a regularization term of the form -λ Z (log Z) 2 to the likelihood function.

Since the constraint Z = 1 may be satisfied by adding the right constant E 0 to the energy function, this regularization does not affect the result of the optimization.

We fixed the strength of this term to λ Z = 10 -3 .

To perform the benchmark of the methods we used the same neural network architecture for all three objective functions: a multilayer perceptron [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF] with two hidden layers of 50 nodes each. Each node processes a linear combination of the inputs and adds a constant term (bias). A hyperbolic tangent activation function is then applied to the result of this linear map. Between the second hidden layer and the output of the network we do not apply the activation function. We implemented L 2 regularization on network weights, with regularization strength λ 2 . We optimized the network weights using stochastic gradient descent and the RMSprop (145) optimization algorithm with learning rate l r and size of mini batches b.

We tuned the hyperparameter by inference of 5 replicate models on N = 10 5
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125 training data for each objective function and combination of hyperparameters, λ 2 ∈ {10 -4 , 10 -5 , 10 -6 }, l r ∈ {10 -2 , 10 -3 , 10 -4 } and b ∈ {10 3 , 10 4 }. We evaluated the mutual information estimate I(φ; I, J ) on N = 10 5 independent samples (test set).

For each of the three methods, we chose hyperparameters for which the mutual information was highest.

A.4.5 Methods for likelihood comparison

We outline here the method for calculating the Jensen-Shannon divergence between two distributions for which an analytical density is not known but instead we can sample from the two distributions. This will be the case for the likelihood comparison where we will compare the true likelihood and an inferred model of the likelihood.

We generate M = 5 × 10 4 samples {x * m } M m=1 ∼ P (x|θ * ) from the true simulator. In order to generate samples for the inferred estimators {x m } M m=1 ∼ P N l (x|θ * ) we perform rejection sampling on samples from the marginal probability P (x). To produce samples from P (x) we discard the parameters θ from the samples {(x i , θ i )} Ntot i=1 . Rejection sampling is based on the identity P (x|θ) = P (x)Z -1 e -E(x,θ) where the likelihood-to-evidence ratio is approximated by an estimator. For each simulation budget N and method l we generate {x m } M m=1 samples by rejection sampling with acceptance probability e -E φ l /Z φ l . In the last row of Fig. 6.4 the methods are compared using this metric.

By mixing the samples from P (x|θ * ) and P N l (x|θ * ) in equal proportion we construct an ensemble of samples from P mix (x|θ * ) = 1 2 (P (x|θ * ) + P N l (x|θ * )). We then train two classifiers, one between samples from P (x|θ * ) and P mix (x|θ * ), and the second between samples from P mix (x|θ * ) and P N l (x|θ * ). We again exploit the fact that an optimal classifier is the ratio of the two likelihoods and we can read off the We compare the posterior with the analytical prediction for a hypothesis (g * ) ij = -1. We compute the Jensen-Shannon divergence D JS (P (θ|x 1:M ), P N l (θ|x 1:M )) between the true and inferred posteriors for each element of the damping matrix γ independently. We show the summary statistics for diagonal and off-diagonal terms.

MOTS CLÉS

immunologie, apprentissage automatique, répertoires de récepteurs, inférence basée sur la simulation, apprentissage non supervisé, sélection RÉSUMÉ Les lymphocytes T et B s'appuient sur la diversité des séquences de leurs récepteurs pour reconnaître les antigènes. Le répertoire de ces récepteurs immunitaires est généré par un processus de recombinaison V(D)J et est ensuite sélectionné pour augmenter l'affinité antigénique et éviter l'auto-immunité. Grâce aux développements des technologies de séquençage à haut débit, nous avons accès à une grande quantité de séquences de récepteurs du répertoire d'individus sains et malades. Afin d'utiliser les données de séquençage du répertoire immunitaire comme biomarqueur de maladies, nous devons développer un modèle neutre précis pour le répertoire de personnes en bonne santé. Ce modèle doit caractériser les processus de génération et de sélection des cellules pendant la maturation. Les modèles biophysiques de recombinaison des chaînes de récepteurs ont montré qu'ils capturaient bien les statistiques du répertoire avant la sélection. Cependant, lorsque nous déduisons des modèles linéaires simples de sélection, la probabilité post-sélection résultante est faiblement corrélée avec la répartition observée des récepteurs au sein d'un grand groupe d'individus. Dans cette thèse, nous appliquons une approche de maximum de vraisemblance à l'estimation de ratios de densités de probabilités pour déduire les facteurs de sélection en utilisant des modèles de réseaux neuronaux profonds et nous constatons que ces modèles de sélection non linéaires décrivent avec précision la distribution des récepteurs immunitaires. Nous étudions les voies de différenciation des cellules T pendant le développement thymique et montrons que les sous-catégories de cellules T ont des structures de répertoire significativement différentes, tant au niveau global que local. Nous montrons que cette même approche peut être adaptée au problème de l'inférence postérieure des paramètres d'un modèle en présence d'une vraisemblance insoluble. Dans ce cadre, le problème devient équivalent à la maximisation de l'information mutuelle entre les paramètres du modèle et les observations sur des données simulées. Nous évaluons des estimateurs alternatifs de l'information mutuelle sur des échantillons de trajectoires de différents processus stochastiques et chaotiques et montrons que ces estimateurs ont des performances similaires. Ce travail démontre qu'une approche "diviser pour mieux régner" de l'inférence statistique peut être un moyen fructueux de décrire les processus biologiques.

ABSTRACT

T and B cells rely on the diversity of their receptor sequences for antigen recognition. The repertoire of these immune receptors is generated via a process called V(D)J recombination and is subsequently selected to increase antigen affinity and avoid autoimmunity. Thanks to the developments in high throughput sequencing technologies we have access to a large amount of sequenced receptors form the repertoire of healthy and sick individuals. In order to use repertoire sequencing data as a biomarker for diseases we need to develop an accurate null model for the repertoire of healthy people. Such model should characterize the processes of generation and selection of cells during maturation. Biophysical models for the recombination of receptor chains have shown to well capture the statistics of the repertoire before selection. However, when we infer simple linear models of selection, the resulting post selection probability correlates weakly with the observed sharing of receptors in a large cohort of individuals. In this thesis we apply a maximum likelihood approach to density ratio estimation to infer selection factors using deep neural network models and find that these non linear selection models accurately describe the distribution of immune receptors. We study the differentiation pathways of T cells during thymic development and show that T cell subtypes have significantly different repertoire structures both at the global and local level. We show that this same approach can be adapted to the problem of posterior inference of model parameter in the presence of an intractable likelihood. Under this framework the problem becomes equivalent to the maximisation of mutual information between model parameters and observations on simulated data. We benchmark alternative estimators of mutual information on samples from trajectories of different stochastic and chaotic processes and show that they perform similarly. This work demonstrates that a "divide and conquer" approach to statistical inference can be a fruitful way to describe biological processes. KEYWORDS immunology, machine learning, receptor repertoires, simulation based inference, unsupervised learning, selection