
HAL Id: tel-04012973
https://theses.hal.science/tel-04012973

Submitted on 3 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Radiographic Diagnosis with Deep Learning
in Clinical Settings

Aloïs Pourchot

To cite this version:
Aloïs Pourchot. Improving Radiographic Diagnosis with Deep Learning in Clinical Settings. Machine
Learning [cs.LG]. Sorbonne Université, 2022. English. �NNT : 2022SORUS421�. �tel-04012973�

https://theses.hal.science/tel-04012973
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

École Doctorale Informatique,
Télécommunications, et Électronique (Paris)

Présentée par :

Alöıs POURCHOT

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Improving Radiographic Diagnosis with
Deep Learning in Clinical Settings

Soutenue publiquement le 22/09/2022
Devant le jury composé de :

Diana MATEUS Rapportrice

Professeure, Centrale Nantes

Caroline PETITJEAN Rapportrice

Professeure, Université de Rouen Normandie

Stéphanie ALLASSONNIÈRE Examinatrice

Professeure, Université Paris Cité

Christian WOLF Examinateur

Principal Scientist, Naver Labs Europe

Kévin BAILLY Co-encadrant

Mâıtre de Conférences, Sorbonne Université

Olivier SIGAUD Directeur de Thèse

Professeur, Sorbonne Université

Alexis Ducarouge Invité

Scientific and Technical Director, Gleamer

Abstract

The impressive successes of deep learning over the course of the past decade
have reinforced its establishment as the standard modus operandi to solve
difficult machine learning problems, as well as enabled its swift spread to
manifold domains of application. One such domain, which is at the heart
of this PhD, is medical imaging. Deep learning has made the thrilling per-
spective of relieving medical experts from a fraction of their burden through
automated diagnosis a reality. Over the course of this thesis, we were led
to consider two medical problems: the task of fracture detection, and the
task of bone age assessment. For both of them, we strove to explore possi-
bilities to improve deep learning tools aimed at facilitating their diagnosis.
With this objective in mind, we have explored two different strategies. The
first one, ambitious yet arrogant, has led us to investigate the paradigm of
neural architecture search, a logical succession to deep learning which aims
at learning the very structure of the neural network model used to solve
a task. In a second, bleaker but wiser strategy, we have tried to improve
a model through the meticulous analysis of the data sources at hands. In
both scenarios, a particular care was given to the clinical relevance of our
different results and contributions, as we believed that the practical anchor-
ing of our different contrivances was just as important as their theoretical
design.

i

Acknowledgements

I would first like to greatly thank the three people without whom the com-
pletion of this PhD would not have been possible. Olivier Sigaud, for his
infallible backing and encouragements, for believing in me from start to fin-
ish, and for guiding me through difficult times. Kévin Bailly, for accepting
to effectively take the role of co-supervisor as I was quickly diverging from
Olivier’s field of expertise, and for the fruitful discussions that emerged from
his critical thinking and analyses. Alexis Ducarouge, for the initial idea that
led to the onset of this project, for believing that I could see it through, and
for helping me reconsider the scope of this PhD at times when I needed to
find practical meaning in my work.

I could not have hoped for a better setting to pursue this doctorate than
as part of Gleamer. The Gleamer team is full of vibrant and brilliant peo-
ple, and I am very grateful to be part of it. I would like to warmly thank
Gabriel, Nini, Zekun, Vincent, Lauryane, Jeanne, Violette, Chris, Audrey,
Léo, Louis-Maxime, Yassine and many others, for their help, support, enthu-
siasm, and sense of humor. I am thrilled to be able to pursue my adventures
with them.

I further sincerely thank Diane Mateus and Caroline Petitjean for ac-
cepting to review this PhD, Christian Wolf and Stéphanie Allassonnière
for accepting to be part of my defense jury, as well as Ludovic Denoyer
and Matthieu Cord for the advice that they offered through the monitoring
committees.

Finally, I would like to thank my family and friends for their uncondi-
tional love and support.

iii

Contents

1 General Introduction 1

1.1 Medical Context . 1

1.2 Contributions . 2

2 Improving Fracture Detection Performance with DL 7

2.1 Introduction . 9

2.2 Related Work . 11

2.3 Methods . 11

2.3.1 AI System . 12

2.3.2 Dataset & Readings 14

2.3.3 Metrics . 14

2.4 Results . 18

2.5 Discussion . 20

3 Neural Architecture Search 23

3.1 Deep Convolutional Neural Networks 25

3.2 Searching for Architectures 26

3.3 Search Spaces . 28

3.4 Architecture Optimization . 30

3.4.1 Dynamic Formulation of the Inner Objective 30

3.4.2 Discrete Optimization 31

3.4.3 Continuous Relaxation 32

3.4.4 Stochastic Relaxation 33

3.5 Performance Estimation . 34

3.5.1 Proxy Training . 34

3.5.2 Model-Based Prediction 34

3.5.3 Weight-Sharing . 35

3.6 Conclusion . 37

4 WS on the NB-101 Dataset: A Practical Case Study 39

4.1 Introduction . 41

4.2 Related Work . 42

v

4.2.1 Evaluating Weight-Sharing 42
4.2.2 Enhancing Weight-Sharing Correlations 46

4.3 Methods . 46
4.3.1 Impact of Search Spaces on NAS Performances 47
4.3.2 Ranking Architectures with Weight-Sharing 47
4.3.3 Impact of Weight-Sharing on NAS Performances . . . 49
4.3.4 Good Practices . 52

4.4 Results . 53
4.4.1 Ranking Capabilities of Weight-Sharing 53
4.4.2 Can Weight-Sharing Improve NAS? 53
4.4.3 Variations between Search Spaces 58

5 Neural Architecture Search for Fracture Classification 63
5.1 Introduction . 65
5.2 Related Work . 66
5.3 Methods . 66

5.3.1 Fracture Patches Dataset 66
5.3.2 ImageNet pre-training 67
5.3.3 Search Space . 68
5.3.4 NAS Configuration . 68
5.3.5 Architecture Training and Evaluation 69

5.4 Results . 69
5.5 Conclusion . 71

6 Estimating Bone Age with DL 73
6.1 Introduction . 75
6.2 Related Work . 77
6.3 Experiments . 81

6.3.1 Clinical Validation Dataset 81
6.3.2 Setting up a Baseline 82
6.3.3 Adjusting for Prevalence Bias 84
6.3.4 Exploiting the RHPE Dataset 86
6.3.5 Adjusting for Chronological Age Bias 89

6.4 Conclusion and Perspectives 91

7 General Conclusion 93
7.1 Contributions . 93
7.2 Limits and Perspectives . 95

References 99

Acronyms

AI artificial intelligence.

AUC Area Under the Curve.

BAA bone age assessment.

CAD Computer-Aided Detection.

CNN Convolutional Neural Network.

CNNs Convolutional Neural Networks.

CT Computed Tomography.

DCNN Deep Convolutional Neural Network.

DCNNs Deep Convolutional Neural Networks.

DHAD Digital Hand Atlas Database.

DL Deep Learning.

EDs emergency doctors.

FCNNs Fully-Connected Neural Networks.

FN false negative.

FP false positive.

FROC Free-response Receiver Operating Characteristic.

G&P Greulich and Pyle.

GNNs Graph Neural Networks.

GPU Graphics Processing Unit.

vii

GPUs Graphics Processing Units.

HPO Hyperparameter Optimization.

IOU Intersection Over Union.

MAE Mean Average Error.

MDP Markov Decision Process.

ML machine learning.

MRI Magnetic Resonance Imaging.

MSE Mean Squarred Error.

NAS Neural Architecture Search.

NB-101 NAS-Bench-101.

NEAT NeuroEvolution of Augmenting Topologies.

R-CNN Region Based Convolutional Neural Network.

RHPE Radiological Hand Pose Estimation.

RL reinforcement learning.

RMSE Root Mean Square Error.

RNNs Recurrent Neural Networks.

ROC Receiver Operating Characteristic.

ROI Regions of Interest.

RPN Region Proposal Network.

RSNA Radiological Society of North America.

SGD Stochastic Gradient Descent.

TN true negative.

TP true positive.

TTA Test Time Augmentations.

TW Tanner-Whitehouse.

WS Weight-Sharing.

Chapter 1

General Introduction

In the last decades, the advent of Deep Learning (DL) has led to tremendous
breakthroughs in several hard machine learning (ML) problems (LeCun et
al., 2015). Tasks which required ML practitioners to acquire and leverage
advanced field expertise, can now be readily tackled by experienced DL spe-
cialists, owing to the ability of DL models to extract features on their own.
This paradigm shift has enabled the ML community to considerably widen
their scope of application. The literature of computer vision, a discipline
that is interested in the high-level understanding of images, videos, 3D point
clouds and volumes through computer programs, has been particularly pro-
lific since the advent of DL. Computer vision researchers have proposed a
plethora of DL-based solutions to challenging practical problems in robotics
(Arulkumaran et al., 2017), autonomous driving (Grigorescu et al., 2020),
image generation (Z. Pan et al., 2019), and perhaps most notably, in medical
imaging (J.-G. Lee et al., 2017; Litjens et al., 2017).

1.1 Medical Context

The discipline that uses medical imaging to diagnose and treat diseases is
called radiology, and medical doctors that specialize in their analysis radiol-
ogists. Modern imaging techniques can help radiologists identify a plethora
of pathologies, from fractures and other outcomes of traumatic events, to
viral and bacterial infections, or even cancers (Sutton, 1987). In most coun-
tries, radiologists must undergo an intense and lengthy medical training
and are a scarce resource. Yet, the ever expanding availability and use of
medical imaging has considerably increased their workloads, resulting in a
shortage of radiologists (Rimmer, 2017) and invariably leading to higher
rates of misdiagnosis, a leading cause of morbidity and mortality (James,
2013). Common external sources of error are overstrain induced tiredness
or limitations in the time committed to the interpretation of a single exam.

1

2 Chapter 1. General Introduction

Nonetheless, even in ideal work conditions, radiologists are prone to several
cognitive biases (Busby et al., 2018). Notorious examples are satisfaction of
search, where a radiologist might stop looking for pathologies after one has
already been found, or satisfaction bias, where a radiologist might overlook
an exam based on prior belief that a patient is healthy.

Computer software are inherently unaffected by aforementioned impedi-
ments. As such, they have long been considered as tools to improve patient
care (Castellino, 2005). The availability and performances of those programs
has soared with the onset of DL and they are now used in diverse scenar-
ios such as the segmentation of brain lesions (Ghafoorian et al., 2016), the
segmentation of lung nodules (Jaeger et al., 2020), the detection of breast
cancer (Shen et al., 2019) or the detection of fractures (Duron et al., 2021;
Guermazi et al., 2021). Several meta studies suggest that radiologists greatly
benefit from the usage of AI tools in their clinical workflow (Kuo et al., 2022;
Zheng et al., 2021). AI technologies for medical diagnosis are coming of age
and their use in clinical routine is getting increasingly essential.

This work was conducted in partnership with Gleamer, a French company
which develops AI solutions to assist radiologists in their daily work. The
goal of this PhD was to study several DL-based tools for diagnosis aid, and
explore ways to improve them. Two particular medical tasks were of inter-
est. The task of fracture detection, which consists in spotting fractures
in a patient after a traumatic event, and the task of bone age assess-
ment, which consists in estimating the advance of the skeletal development
of children.

Both of those tasks are commonly diagnosed through radiography, an
imaging technique that uses X-rays to reveal the inner form of a region
of interest. To create radiographs (also referred to as X-rays), X-rays are
sent through patients around the region of interest. Placed oppositely to the
radiation source, a receptor measures the quantity of energy that is absorbed
by the subject’s tissues. Because this absorption is directly dependent on the
density of the anatomy traversed by the beam, the result image produces a
2d projection of the density of the crossed regions. A contrast is thus created
between regions of different projected densities. Consequently, bones emerge
quite clearly due to the relatively high density of their calcium minerals,
as opposed to air and other softer tissues which are mostly comprised of
oxygen, carbon, hydrogen and nitrogen. We present in Figure 1.1 examples
of radiographs used for the fracture detection and BAA diagnosis.

1.2 Contributions

The contributions of this PhD were separated into the following chapters:

1.2. Contributions 3

Figure 1.1: Examples of radiographs for the fracture detection and the BAA
tasks. On the left, a radiograph of a hip reveals a quite obvious fracture
of the femoral head. On the right, the radiograph of a children’s left hand
typically used by radiologists to assess skeletal maturity.

• In Chapter 2, Improving Fracture Detection Performance with
Deep-Learning, we introduce the fracture detection problem, and
the rationale behind its coveted automation. After a succinct liter-
ature review, we present the AI software of Gleamer, and delve into
the protocol used to determine its clinical effectiveness. We briefly
describe the inner workings of the algorithm, introduce the clinical
validation dataset, and describe the setup of the study, and how med-
ical experts were assisted by the AI in their diagnosis. Along the way,
we provide a critical analysis of performance indicators typically used
to measure the performance of readers on the fracture detection task,
and introduce what we argue are better alternatives. Finally, we detail
the results of the study, revealing that AI assistance has a significant
positive impact on the performance of medical experts. The work
within this chapter is linked to the following journal publication:

– Löıc Duron, Alexis Ducarouge, André Gillibert, Julia Lainé, Chris-
tian Allouche, Nicolas Cherel, Zekun Zhang, Nicolas Nitche, Elise
Lacave, Alöıs Pourchot, Adrien Felter, Louis Lassalle, Nor-Eddine
Regnard, Antoine Feydy: Assessment of an AI aid in detection
of adult appendicular skeletal fractures by emergency physicians
and radiologists: a multicenter cross-sectional diagnostic study.
In Radiology 2021.

• In Chapter 3, Neural Architecture Search, we present Neural Ar-
chitecture Search (NAS), a recent learning paradigm which delegates
the search of not only the features, but also the architecture used to

4 Chapter 1. General Introduction

extract those features, to the AI algorithm. We briefly describe moti-
vations for the application of NAS to our setting, and put forward key
papers of the NAS literature. We present the optimization processes
typically encountered in NAS, and close the chapter by describing the
Weight-Sharing (WS) paradigm, an elegant solution to NAS, that aims
at learning all the architectures of a search space of interest at once.

• In Chapter 4, Weight-Sharing on the NAS-Bench-101 Dataset:
A Practical Case Study, we take advantage of NAS-Bench-101 (NB-
101), a dataset of architecture evaluations, to challenge the efficiency of
a uniform-sampling based WS variant on several representative search
spaces. After reviewing previous studies on WS and highlighting sev-
eral of their shortcomings, we introduce our own experimental setup,
from which we extract several good practices that one should keep in
mind when evaluating WS. With our experiments we first establish
that, given the correct evaluation procedure, WS is able to produce
accuracy scores decently correlated with standalone ones. We then
provide evidence that on some search spaces, this WS variant is able
to rapidly find better than random architectures, whilst it is equivalent
or sometimes even worse than a baseline random search on others. We
find that when given the same budget, the probability of superiority
of an architecture found using WS over an architecture found through
random search can vary between 7% and 78% depending on the search
space. We present evidence that the search space itself has an intricate
effect on the capabilities of WS and can bias weight-sharing towards
certain architectural patterns with no clear accuracy advantage. We
conclude that the impact of WS is heavily search-space dependent and
difficult to anticipate for a given problem.

– Alöıs Pourchot, Kévin Bailly, Alexis Ducarouge, Olivier Sigaud,
An Extensive Appraisal of Weight-Sharing on the NAS-Bench-
101 Benchmark. In Neurocomputing, 2022.

• In Chapter 5, Neural Architecture Search for Fracture Classi-
fication, we try to assess the efficacy of tailoring DCNN architectures
to traumatic radiographs. As an alternative to the fracture detection
problem, we start by introducing a fracture patch classification task
on which NAS is tractable. Then, after reaffirming the importance
of using transfer learning from natural images, and emphasizing the
apparent incompatibility between NAS and pre-training, we introduce
an efficient scheme based on weight sharing that makes it possible to
exploit both conjointly. Using a plain genetic algorithm and a search
space of efficient architectures, we show that it is possible to find archi-
tectures that are better suited to our problem than their counterparts
selected on ImageNet, both in terms of diagnostic performance, and

1.2. Contributions 5

inference-time computational efficacy. The work accomplished in this
chapter has led to a publication which is under review at ICIP.

– Alöıs Pourchot, Kévin Bailly, Alexis Ducarouge, Olivier Sigaud,
Neural Architecture Search for Fracture Classification. Under
review at ICIP, 2022.

• In Chapter 6, Estimating Bone Age with Deep Learning, we
introduce the bone age assessment (BAA) problem and the different
methods used by radiologists to perform its diagnosis. We then carry
out a brief review of recent deep learning solutions to BAA, with a par-
ticular focus on the results of the RSNA pediatric bone age challenge.
To analyze the generalization capabilities of a BAA model trained on
the RSNA dataset, we introduce a BAA clinical dataset of our own.
Starting from the solution of the winners of the challenge, we modern-
ize the training setup to slightly alleviate the computational resources,
and reveal that the resulting model is biased towards certain age and
sex categories. We propose a simple weighting mechanism to counter-
act this bias and display its efficiency on our internal dataset. Making
use of another public dataset for which the chronological age of the
patients were available, we demonstrate that incorporating this infor-
mation as an input to the model decreases the global average error, but
further biases the model, deteriorating its performance in the detection
of pathological patients. We argue that this effect has been ignored
in the literature, and show that by correcting the two biases at the
same time using the weighting procedure, we are able to significantly
improve the performance of our baseline model, which performs sub-
stantially better than a reference radiologist tasked to perform BAA
on our clinical dataset.

6 Chapter 1. General Introduction

Chapter 2

Improving Fracture
Detection Performance
with Deep-Learning

Contents

2.1 Introduction . 9

2.2 Related Work . 11

2.3 Methods . 11

2.3.1 AI System . 12

2.3.2 Dataset & Readings 14

2.3.3 Metrics . 14

2.4 Results . 18

2.5 Discussion . 20

7

8 Chapter 2. Improving Fracture Detection Performance with DL

In this chapter, we introduce the fracture detection problem, and the ra-
tionale behind its coveted automation. After a succinct literature review, we
present the AI software of Gleamer and briefly describe its inner workings.
We then delve into the protocol used to determine its clinical effectiveness:
we introduce the clinical validation dataset, and describe the setup of the
study, and how medical experts were assisted by the AI in their diagnosis.
We take advantage of this study to provide a critical analysis of perfor-
mance indicators typically used to measure the performance of readers on
the fracture detection task, and introduce what we argue are better alterna-
tives regarding clinical adequacy. Finally, we detail the results of the study,
and reveal that AI assistance has a significant positive impact on the per-
formance of medical experts. We conclude by showing that improvements of
the AI could lead to fully automated fracture detection systems.

2.1. Introduction 9

2.1 Introduction

Traumatic skeletal injuries are a leading source of emergency departments
consultation, with an annual incidence of 1.3% in the United States of Amer-
ica (DiMaggio et al., 2017), and 0.32% in China (W. Chen et al., 2017).
Radiography is the first-line imaging tool for the diagnosis of these lesions
and the most used imaging modality worldwide (Arasu et al., 2015; Wil-
lett, 2019). However, the global increase in radiographic exams has resulted
in a shortage of available radiologists (Rimmer, 2017). In turn, emergency
physicians and radiology trainees, who often lack expertise in orthopaedic
imaging, are regularly required to make patient management decisions prior
to the availability of a senior radiologist report, with an increased risk of in-
terpretation error (Scepi et al., 2005). Missed fractures, an important cause
of morbidity, account for 80% of emergency department diagnostic errors
(Guly, 2001), and are a frequent cause of patient claim.

Studies report that two of the main sources of misdiagnosis in radiology
are the under-reading of exams, and satisfaction of search (Y. W. Kim et al.,
2014). The former refers to practitioners overlooking a visible anomaly for
various reasons, such as tiredness, distraction or lack of training. The latter
is a well-known cognitive bias in radiology (Busby et al., 2018), and refers to
a decrease in a person’s alertness after a first finding was uncovered. In ad-
dition, there is an inherent difficulty to X-rays analysis due to its projective
nature. Some abnormalities simply cannot be identified using a single X-ray,
despite their presence being confirmed by additional X-rays with different
projection angles or other imaging modalities such as Computed Tomogra-
phy (CT) or Magnetic Resonance Imaging (MRI). In Figure 2.1, we provide
an example of a radiograph where satisfaction of search might typically oc-
cur, and another example were an anomaly is present but impossible to
describe from that image only.

Supplying physicians with real-time and reliable information about the
presence and location of fractures could therefore facilitate radiograph anal-
ysis, and help decrease overall false negative rates. In fields such as the
detection of breast cancer (Fenton et al., 2007) or the detection of lung nod-
ules in CT-scans (Shaukat et al., 2019), Computer-Aided Detection (CAD)
systems have been available for around 20 years. Similar technologies have
been applied to fracture detection unsuccessfully, on account of the wider
variety of morphological aspects and image patterns involved (Donnelley et
al., 2008; Cao et al., 2015). Only the onset of deep learning allowed the
emergence of systems capable of tackling this challenge.

In this chapter, we dive into the fracture detection system of Gleamer
and its clinical validation as a fracture detection AI-assistant, which led to a
publication in the Radiology journal (Duron et al., 2021). The critical focus

10 Chapter 2. Improving Fracture Detection Performance with DL

Figure 2.1: Examples of common radiographic diagnostic errors. Fractures
are marked with white arrows. On the left image, the radiologist reported
the fractures on the clavicle and the scapula, but failed to notice the three
fractures on the rib cage. On the right, an example of a very subtle fracture
of the third metatarsus, which was missed by the radiologist.

of this study was to demonstrate that Gleamer’s AI tool could improve the
fracture diagnosis performance of medical professionals in realistic settings.
To perform this feat, 12 medical experts were enrolled to analyse 600 exams
consecutively gathered from several French centers. Exams were comprised
of radiographs of various anatomic body parts, often containing several frac-
tures. Each reader examined a subset of the exams on their own, and the
other with the predictions of the AI displayed in their workflow.

This study was a team effort which individual contributions are hard to
disentangle. Part of this PhD was dedicated to the setup and design of
the AI, preliminary statistical analyses, literature review and manuscript
drafting. As such, the structure of this chapter is close to that of Duron
et al., 2021, and some paragraphs directly transcribed from earlier drafts of
the manuscript. Nonetheless, we try in this thesis to provide more insights
into technical aspects of the study that were sidelined from the original
publication due to editorial choices, the targeted public of the Radiology
journal being radiologists rather than computer vision researchers.

We pursue this chapter with a short review of the literature of fracture
detection with DL in Section 2.2. In Section 2.3, we then present the dif-
ferent aspects of our methods, including the AI model, the clinical dataset,
and the reported performance metrics. Finally, in Section 2.4, we introduce
the results of the study and compare the performance of the medical ex-
perts, with and without AI assistance, revealing that help from the system
enhances their diagnostic performance and reduces their reading time.

2.2. Related Work 11

2.2 Related Work

Prior to this work, no clinically relevant system existed to help physicians
detect bone fractures on extremity radiographs. However, a few DL algo-
rithms were developed with encouraging results.

Several proof of concept studies have considered the use of various DCNN
architectures to predict whether an X-ray contains a fracture. Different
bones or body parts were investigated, including the wrist, (D. Kim et al.,
2018), the proximal humerus (S. W. Chung et al., 2018), the ankle (Kitamura
et al., 2019), the femur, (Adams et al., 2019) or the hip (Cheng et al.,
2019; Gale et al., 2017). However, their clinical relevance were hindered by
several aspects. First, the different anatomical focuses critically narrowed
their range of application. Secondly, because networks were trained in a
classification paradigm, they were unable to readily explain their malignancy
scores by providing localization information, which is arguably what matters
the most to medical experts. Finally, clinical validations themselves were
limited or inadequate, as most approaches evaluated AI algorithms on their
own, without addressing the advantages that they could readily provide to
medical experts.

Closest to a suitable and practical solution is the work of Lindsey et al.,
2018, in which the authors develop a DCNN system capable of pinpointing
fractures in radiographs. Based on the U-Net architecture (Ronneberger
et al., 2015), their model learns to predict whether a fracture is present in
the image, and if applicable, a heatmap of its spatial extent. They develop
their algorithm using 135,409 radiographs, including 100,855 images of body
parts other than the wrist which were used during pre-training, and 31,490
wrist X-rays, used to perform the final fine-tuning. The authors perform a
clinical study revealing that AI-assistance reduces the propensity of several
emergency doctors to misdiagnose images. The study is however limited
to the analysis of wrist radiographs. Besides, no mention is made of the
integration of the DL algorithm into radiologists workflows.

2.3 Methods

In this section, we briefly describe the AI framework on which our model is
based on. We then detail the clinical dataset used to measure the perfor-
mance of the readers, as well as the reading process itself. We finally dive
into the metrics used to report the performance of the readers, and explain
why they must be carefully selected.

12 Chapter 2. Improving Fracture Detection Performance with DL

2.3.1 AI System

The goal of object detection is to accurately localize instances of objects be-
longing to prespecified classes within images. Typically, the expected output
of a detection model is a list of bounding box, each of them coming with
an estimated class for the region it encloses. Unlike the classification and
regression paradigms which are fairly straight-forward, DL object detection
approaches are quite diverse due to the fundamental difficulty of predict-
ing a varying number of localized outputs per image. For a taste of the
variety of existing approaches, we refer the reader to the survey of Li Liu
et al., 2020. Hereafter, we very briefly describe a family of object detection
models brought about by the Region Based Convolutional Neural Network
(R-CNN) approach of Girshick et al., 2014.

The idea behind R-CNN is to treat the detection problem as a patch
extraction and classification problem. This implies the presence of two fun-
damental image processing modules. The first one automatically extracts a
list of bounding boxes of interest. Note that bounding boxes obtained from
the extraction module do not need to be quite precise, and only serve as a
good prior for the position of objects. The goal of this extraction module is
to cover all of the actual objects of the images, with the least amount of boxes
possible. The second one takes as input the image patches of interest and
assesses whether they are “background” patches, or if they contain instances
of the sought after objects, and when they do, additionally predict offsets
on the coordinates of the patches so that they better surround the object
of interest. To perform the former, the authors utilize the Selective Search
(Uijlings et al., 2013) algorithm, which outputs a list of boxes of interest
based on clusters of pixels in the image. The latter is a plain DCNN trained
to classify image patches and regress offsets on positive examples.

Unfortunately, performing a complete forward pass for each patch is very
time-consuming and scales poorly with the number of Regions of Interest
(ROI). In a subsequent research, Girshick, 2015 introduce the Fast R-CNN
algorithm as a successful attempt to mitigate this issue. Instead of extracting
patches from the image and performing a forward pass of the model for each
patch, the authors propose to first perform a forward pass of the complete
image, and then extract the features associated to the patches from the
resulting feature maps using a ROI pooling layer. Patches classification and
offsets regression are then performed using the extracted feature maps.

In another work (S. Ren et al., 2015), the same authors demonstrate the
Selective Search is the new time-limiting factor of Fast R-CNN. They pro-
pose instead to automatically learn which regions to consider using another
network called the Region Proposal Network (RPN). The designed approach,
Faster R-CNN, can be dissected as such: (i) First, the input image is pro-

2.3. Methods 13

cessed by a DCNN to produce a global feature map; (ii) Each spatial unit of
the resulting feature map is associated to a list of several ROI called anchor
boxes, which vary in sizes and aspect ratios, such that they span the entirety
of the image all together; (iii) Using additional convolutional layers on top of
the extracted image features, the RPN learns to predict for each anchor box
whether they contain an object. For anchor boxes that do contain an object,
the RPN, also learns to predict an offset to the anchor as a first refinement
for the object’s location; (iv) Anchor boxes for which the “objectness” score
gets above a fixed threshold are kept as ROI, and the features associated
to the region are pooled from the set of features, following the Fast R-CNN
scheme; (iv) Those features are fed to a second set of layers that learn to
classify the object present in the ROI, and further improve the estimation
of its boundaries. Due to the two successive classification and regression
modules, this type of detection models are referred to as “two-stage” object
detectors.

To tackle the fracture detection problem, we make use of the Mask R-
CNN framework of He et al., 2017 which is a direct successor of Faster
R-CNN. The main difference lies in the introduction of the “ROI Align”
layer, a refinement of the ROI Pooling layer of Faster R-CNN. Additionally,
instead of directly extracting features from the DCNN backbone, Mask R-
CNN makes use of a Feature Pyramid Network (Lin et al., 2017) to extract
features at different spatial resolutions. We trained the Mask R-CNN on
a dataset of 60,170 trauma radiographs gathered from twenty-two French
public hospitals and private radiology departments between January 2011
and May 2019. This development dataset was split into a 70% training set,
a 10% validation set and a 20% test set. The training was performed using
the Detectron2 (Y. Wu et al., 2019) code base. Standard data augmenta-
tion strategies were applied during training, including the random rotation,
flipping, translating, cropping and resizing of input images. The model was
trained for 270,000 iterations using SGD with a batch size of 4.

Depending on the classification score returned by the AI for each ROI,
the whole pipeline is capable of running at different (sensitivity, specificity)
operating points. For the reading task of the study, the AI system displayed
two types of boxes: “DOUBT-FRACTURE” dashed boxes and “FRAC-
TURE” plain boxes. These two categories respectively correspond to two
different operating points of the algorithm: the first one with high sensi-
tivity and the second one with high specificity. The threshold values from
which the algorithm had to trace a bounding box during the reading phase of
the study had been previously defined on the development test set (indepen-
dent from the clinical test set) to correspond to a sensitivity of 96.2% for the
“DOUBT-FRACTURE” boxes and a specificity of 99.2% for the “FRAC-
TURE” boxes. Boxes were displayed with a confidence level expressed in
percentage, as illustrated in Figure 2.2.

14 Chapter 2. Improving Fracture Detection Performance with DL

2.3.2 Dataset & Readings

To appraise the performances of the AI, a clinical testing set was retrospec-
tively built from interpretations performed between January 2016 and De-
cember 2017 in 17 French medical centers. Exams of adult patients were in-
cluded if they contained a radiography of the lower limbs, the upper limbs or
the pelvis performed after a recent trauma. From the resulting list were dis-
carded studies containing only obvious fractures (displaced and commuted
fractures), containing an image featuring a body part which was not an
extremity (e.g. spine, head and ribs) or containing images of poor quality
precluding human interpretation. The inclusion procedure was stopped af-
ter 50 exams without any fracture and 50 exams with at least one fracture
were selected for each of the six considered body parts: hand, arm, shoul-
der, pelvis, leg and foot, resulting in a dataset of 600 exams, totalling 2,441
images for an average of 4 radiograph per exam. None of the exams had
previously been considered to design the AI. This exam dataset was then
split into two 300-patient subsets, with stratified randomization so that the
resulting subsets were similar in terms of median age, female-to-male ratio,
and body part and fracture prevalence.

We assessed the diagnostic performance and the radiograph reading time
of 12 medical experts with and without AI assistance. Six of the partici-
pants were radiologists, and the other six were emergency doctors (EDs).
Readers were asked to detect and report the localisation of fractures on loss-
less radiographs by pinpointing them with an annotation tool designed for
the study and running on a dedicated workstation. When assisted by the
system, readers were first presented with untouched radiographs and were
then required to manually activate the AI, which revealed boxes around
suggestions of fracture location. They were free to change their diagnosis
or not based on the suggestions. Each medical expert analysed one of the
two aforementioned subset with the help of the AI, and the other one with-
out. Half of the readers were helped by the AI on the first subset, and the
other half on the second subset, and vice-versa. The splitting of the readers
across the different groups ensured an even distribution of speciality and
experience.

2.3.3 Metrics

The reported performance metrics of the studies introduced in Section 2.2
focus on a classification paradigm in which only the binary output “frac-
ture”/“no fracture” is of interest. All in all, the result of the image-wise
(iw) examination of a reader can either by a true positive (TP), true nega-
tive (TN), false positive (FP) or a false negative (FN) based on the following
definitions:

2.3. Methods 15

– TPiw: There is at least one fracture in the image, and the reader
reports that a fracture is present.

– TNiw: There is no fracture in the image, and the reader reports that
no fracture is present.

– FPiw: There is no fracture in the image, but the reader reports that
at least one fracture is present.

– FNiw: There is at least one fracture in the image, and the reader
reports that no fracture is present.

Authors then commonly report the image-wise sensitivity and specificity of
readers as:

SEiw =

∑
iTPiw∑

iTPiw + FNiw
, SPEiw =

∑
iTNiw∑

i FPiw +TNiw
, (2.1)

where summations are performed over the images of interest, and which re-
spectively measure the proportion of patients for whom the reader accurately
assessed on the presence of at least one fracture among patients having at
least one fracture, and the proportion of patients for whom no fracture was
reported by the reader among patients having no fracture.

Usual classification metrics facilitate results understanding by researchers
of the medical field, who typically communicate their findings in terms of
positive and negative predictive value. Nonetheless, they are fundamentally
lacking, as they fail to measure exactness in fracture localization, a key
component of patient outcome. Moreover, in its usual description, the clas-
sification paradigm introduces no difference between cases with exactly one
and cases with strictly more than one fracture, and thus cannot measure
the effects of biases such as satisfaction of search. Finally, clinical evalu-
ations of the aforementioned studies are performed image-wise, a patient
being associated to a single radiograph, in contrast with clinical settings
where radiologists are rarely provided with a unique X-ray to diagnose a pa-
tient. Assessing the performance of medical experts in an image-wise setting
creates an under-evaluation bias, as some missed fractures could have been
easily spotted with the coverage provided by a proper amount of images.
To circumvent those limits, we have spent great effort in coming up with
appropriate metrics definitions.

Keeping in mind the ease of understanding of classification metrics, we
propose to transcribe the fracture detection paradigm into a patient-wise
(pw) classification problem, using stricter definitions of patient-wise results.
For each patient the result of a reader, can either be a TP, TN, FP, or FN,
as defined below:

– TPpw: There is one or more fracture in the exam, and the reader

16 Chapter 2. Improving Fracture Detection Performance with DL

correctly pinpoints all of them by putting a marker in at least one of
their associated ground truth regions.

– TNpw: There is no fracture in the exam, and no marker is created by
the reader.

– FPpw: There is no fracture in the exam, but the reader reports the
presence of a fracture by creating one or more marker.

– FNpw: There is one or more fracture in the exam, but the reader fails
to report at least one of them by not creating a marker inside one of
the corresponding ground truth regions.

From there, we introduced the patient-wise sensitivity SEpw and the patient-
wise specificity SPEpw as:

SEpw =

∑
pTPpw∑

pTPpw + FNpw
, SPEpw =

∑
pTNpw∑

p FPpw +TNpw
, (2.2)

where summations are performed over the patients of interest. SEpw mea-
sures the proportion of patients for whom the reader accurately pinpointed
all fractures among patients having at least one fracture, whilst SPEpw mea-
sures the proportion of patients for whom no fracture was reported by the
reader among patients having no fracture. We argue that those definitions
are more sensible for three reasons: (i) To be correct, readers must not only
assess on the presence of fractures, but also correctly pinpoint them. This is
more appropriate, because knowing their localization is required to begin pa-
tient treatment. (ii) To be correct, readers must pinpoint all the fractures
present in an exam. This is rational, as any fracture missed might lead
to further morbidity, regardless of how many were already found; (iii) By
construction, these metrics account for the exam-structure connecting the
different images. This allows the evaluations to be realistic, and diagnosis
to be performed with a more adequate amount of information.

Still, this approach suffers some practical defects. First, when every
fracture of an exam is reported, any additional marker created is ignored,
even if it was created through the incorrect belief that an additional fracture
might exist. This scheme is thus intrinsically lax towards false positives.
Secondly, because of its strictness towards true positives, this scheme fails
to acknowledge the propensity of readers to detect at least some of the
fractures, rather than none at all. A missed fracture is treated as if all
fractures were missed, even if the reader had accurately spotted several of
them.

Those discrepancies are inherent to the transcription from object detec-
tion to classification. However, it is possible to correct them by examining
object-detection metrics rather than classification metrics. To do this, one

2.3. Methods 17

must consider object-wise, i.e. fracture-wise (fw) definitions of TP, FN,
and a marker-wise (mw) definition of FP:

– TPfw: A marker was created by the reader inside at least one of the
regions associated to the fracture.

– FNfw: No marker was created by the reader inside any of the regions
associated to the fracture.

– FPmw: The marker created by the reader did not fall into any of the
regions belonging to any fracture described in the exam.

TPs and FNs are then aggregated over all fractures and averaged over pa-
tients to compute the fracture-wise sensitivity SEfw of the readers, whilst
the marker-wise FPs are leveraged to compute the average number of false
positive per patient, FPPpw:

SEfw =
1

Np

∑
p

∑
f TPfw∑

f TPfw + FNfw
, FPPpw =

∑
p

∑
m FPmw

Np
, (2.3)

where summations are performed over ground-truth fractures when indexed
by f , patients when indexed by p, and markers when indexed by m. Np is
the number of patients considered. The reader will have noticed that it is
impossible to define TN in this context, which limits the range of classical
metrics that can be considered. SEfw measures the average over patients
with fractures, of the proportion of fractures which were accurately pin-
pointed by the reader, whilst FPPpw measures the average over patients of
the number of incorrect markers created by the reader. This approach has
the advantages of the previous one, as missed fractures are still penalized,
but is more fair as the costs induced are proportional to the average number
of fractures actually missed. FPPpw is an informative additional measure of
the performance of readers that reflects their tendency to report fractures
wrongly.

As both sets of metrics are relevant, we report one and the other in the
results. However, we focus on the patient-wise metrics SEpw and SPEpw for
their practicality. When evaluating the model on its own, the previous def-
initions still apply, with two differences: (i) Instead of markers, the model
outputs bounding boxes. A box and a ground-truth region are considered to
match if their Intersection Over Union (IOU) is above 0,5; (ii) Unlike read-
ers, the AI can function with different levels of sensitivity and specificity.
Indeed, bounding boxes are associated with scores. Filtering boxes with
small confidences commonly increases the model specificity whilst reducing
its sensitivity, and vice-versa. Instead of considering a single functioning
point, the whole spectrum is explored by computing the different metrics
associated with different threshold values. When in the (SEpw, 1 - SPEpw)

18 Chapter 2. Improving Fracture Detection Performance with DL

Metric Unaided Aided Absolute Difference

SEpw (%) 70.8± 12.5 79.4± 7.4 +8.7[3.1,14.2] p = .003
SEfw (%) 73.7± 11.1 81.2± 6.5 +7.5[2.8,12.2] p = .005
SPEpw (%) 89.5± 6.5 93.6± 4.6 +4.1[0.5,7.7] p = .0006
FPPpw (∅ fract) 0.113± 0.069 0.066± 0.048 -0.047[-0.086,-0.009] p = .02
FPPpw (fract) 0.082± 0.055 0.045± 0.028 -0.037[-0.073,0.000] p = .05
Reading Time 67.0± 26.2 57.0± 24.8 -10.0[-23.1,3.0] p = .12

Table 2.1: Average performance of the readers according to different metrics,
with, and without the help of the AI software. Mean values are reported
with standard deviation (±). Absolute differences are reported with their
95% confidence intervals, and reported p-values are for one-sided t-tests.
(fract) and (∅fract) respectively refer to exams with and without fractures.

space, the resulting curve is referred to as a Receiver Operating Character-
istic (ROC) curve, whilst the (SEfw, FPPpw) space creates a Free-response
Receiver Operating Characteristic (FROC) curve (Bandos et al., 2009). The
former is bounded in the [0, 1]2 square, and the corresponding Area Under
the Curve (AUC) is often reported as an overall measure of performance.
The AUFROC equivalent for the FROC curve is not as straight-forward
to derive, given that the FPPpw coordinate is not bounded (Bandos et al.,
2009). A simple alternative is to integrate over a predefined range of FPPpw

values that encompasses the typical range of radiologists performance.

2.4 Results

We report the evolution of the average metrics with and without AI-assistance
in Table 2.1. The help of the AI had a global positive effect on all the
performance metrics of the readers. AI-assistance improved the average
patient-wise sensitivity SEpw from 70.8% to 79.4% (+8.7%, p = .003), and
the average patient-wise specificity SPEpw from 89.5% to 93.6% (+4.1%,
p = .0006). The mean number of false positive per patient FPPpw in pa-
tients with no fractures was reduced from 0.113 to 0.066 (-41.9%, p = .02).
The fracture-wise sensitivity SEfw improved by 7.5% (p = .005). Finally, the
mean reading time was reduced from 67.0 to 57.0 seconds (-10.0, p = .12).
We provide examples of AI results in Figure 2.2

Interestingly, The help of the AI was more valuable on some body parts
than others, as the increase in SEpw was the largest for the hand (+20.5%,
p = .009) and foot (+15.1%; p = .001) body parts. Other body parts
observed a non-significant increase in SEpw. The SPEpw was significantly
non-inferior with the help of the AI for all body parts except pelvis and
shoulder.

2.4. Results 19

Figure 2.2: Examples of multiple and severe fractures on the clinical dataset.
The result of the AI is displayed in boxes with labels “FRACT” and
“DOUBT FRACT” with the corresponding confidence level. In image A,
a fracture of the right distal radius, associated with a fracture of the distal
phalange of the thumb. In image B, a fracture of the scaphoid, and of the
triquetrum. The triquetrum fracture was missed by the AI. In image C, a
fracture of the right femoral head, along two fractures of the pubis.

20 Chapter 2. Improving Fracture Detection Performance with DL

The average unaided SEfw was 73.9% for patients with single fractures
and 73.4% for patients with multiple fractures with a non-significant differ-
ence of (-0.4%, p = .85), showing no evidence of satisfaction of search errors.
The unaided average number of false positive fractures per patient FPPpw

was 38.1% higher (p = .006) for patients with no fracture than for patients
with one or more fractures suggesting the paradoxical existence of “dissat-
isfaction of search” errors where readers tried to find fractures when none
existed. This suggests that the setting of the study was not appropriate to
measure effects on the satisfaction of search bias. We hypothesize that a
retrospective study would be more pertinent for this matter.

The sensitivity of emergency doctors (EDs) improved from 61.3% to
74.3% (+13%, p = .03) with AI-help while the sensitivity of radiologists
improved from 80.2% to 84.6% (+4.3%, p = .03). The difference in sen-
sitivity gain between EDs and radiologists was of +8.7% (p = .08). After
adjustment on the unaided sensitivity, this difference in sensitivity gain was
reduced to -5.6% (p = .28) for EDs vs radiologists. The SEpw of aided EDs
(74.3%) and unaided radiologists (80.2%) were not significantly different (-
5.9%, p = .15) while the SPEpw of aided EDs (96.6%) was higher (+8.1%,
p = .03) than that of unaided radiologists (88.4%). Those results suggest
that AI-help has the potential to reduce misdiagnosis in scenarios where the
former has to take premature decisions regarding patient-care in the absence
of the latter.

ROC and FROC curves were derived using standalone AI performance.
The overall ROCAUC was 0.908. As improvement updates of the AI al-
gorithm are regularly released, a post hoc analysis was also performed to
assess the latest release on the same external dataset. This new version
of the model was able to outperform every unaided reader and showed a
ROCAUC of 0.935. ROC curves, FROC curves and readers performance
are illustrated in Figure 2.3.

2.5 Discussion

With this work, we have made clear that the assistance of Gleamer’s AI
system significantly improves the radiographic diagnostic performance of
medical experts in a realistic setting. Remarkably, we revealed that further
iterations of the algorithm were able to outperform almost all human readers,
hinting at the possibility of letting AI handle the fracture detection task
partially on its own.

Previous deep learning approaches to bone fracture detection have only
been assessed in restrained conditions. Most studies focused on a single body
part, with clinical evaluations solely considering standalone performance of
the algorithms, using an inadequate image-wise classification paradigm. In

2.5. Discussion 21

0.0 0.1 0.2 0.3
1 - SPEpw

0.4

0.5

0.6

0.7

0.8

0.9

S
E
pw

AI System V1

AI System V2

Aided Readers

Unaided Readers

(a) ROC

0.0 0.1 0.2 0.3
FPPpw

0.5

0.6

0.7

0.8

0.9

S
E
f
w

AI System V1

AI System V2

Aided Readers

Unaided Readers

(b) FROC

Figure 2.3: ROC and FROC curves of the AI system used during the study
(AI System V1) and a subsequent version of the AI (AI System V2). In each
figure, we report the corresponding aided and non-aided performance of the
readers. A thin line between two points indicates that they correspond to
the same reader. The new version of the outperforms all unaided readers,
and almost all aided readers.

contrast, we: (i) Gathered a clinical dataset containing radiographs of six
different anatomical regions, from a wide variety of clinical sources; (ii) in-
troduced several metrics to reliably describe reader performance, accounting
for the importance of localization and not classification, accounting for the
presence of several fractures in exam, and considering the exam nature of
the radiographs; (iii) introduced detection metrics to further inquiry the
average proportion of fractures reported by readers, and their tendency to
wrongly describe the presence of fractures.

There are however several limitations to our clinical validation. First,
readers and AI were evaluated on their ability to make decisions based on
images alone, without knowledge about the patients’ physical examination
or medical history, creating a context bias. Clinical data can be crucial to
make decisions (Loy et al., 2004). However, in practice, radiologists often
lack relevant clinical data which partially justifies the setup of the study.
Second, a Hawthorne effect may have affected the performances of readers
and, prevented us from observing cognitive biases such as satisfaction of
search. Third, as exams containing only obvious fractures were excluded,
the sensitivity of unaided readers was probably underestimated. Finally, the
stratification of fractures, leading to an artificial 50% prevalence, made it
impossible to calculate negative and positive predictive values, and amplified
the context bias.

22 Chapter 2. Improving Fracture Detection Performance with DL

Chapter 3

Neural Architecture
Search

Contents

3.1 Deep Convolutional Neural Networks 25

3.2 Searching for Architectures 26

3.3 Search Spaces . 28

3.4 Architecture Optimization 30

3.4.1 Dynamic Formulation of the Inner Objective . . . 30

3.4.2 Discrete Optimization 31

3.4.3 Continuous Relaxation 32

3.4.4 Stochastic Relaxation 33

3.5 Performance Estimation 34

3.5.1 Proxy Training . 34

3.5.2 Model-Based Prediction 34

3.5.3 Weight-Sharing . 35

3.6 Conclusion . 37

23

24 Chapter 3. Neural Architecture Search

In this chapter, we present Neural Architecture Search (NAS), a recent
learning paradigm which delegates the search of not only the features, but
also the architecture used to extract those features, to the AI algorithm. We
briefly describe motivations for the application of NAS to our setting, and
put forward key papers of the NAS literature. We present the optimization
processes typically encountered in NAS, and close the chapter by describing
the Weight-Sharing (WS) paradigm, an elegant solution to NAS, that aims
at learning all the architectures of a search space of interest at once.

3.1. Deep Convolutional Neural Networks 25

3.1 Deep Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have become the de facto way to
solve computer vision problems. As is custom in the neural network litera-
ture, their design birthed from analogies with the mammalian brain. Their
primordial structure was loosely inspired by the hierarchical layout of sim-
ple and complex cells found in visual cortices (Hubel et al., 1968). While
both of those neurons respond mostly to the presence of oriented edges, the
receptive field of simple cells are relatively localized, whilst the response of
complex cells are to some extent spatially invariant.

In an attempt to describe this pattern with the semantics of neural net-
works, Fukushima et al., 1982 introduced the Neocognitron, a hierachical
compound of two types of layers: the convolutional layers, and the down-
sampling layers. Convolutional layers convolve an input image with a set of
learned kernels. Because of the limited receptive fields of the convolution
kernels, convolutional layers can be seen as the neural network equivalent
to simple cells. Down-sampling layers on the other hand reduce the spatial
resolution of an input image by applying a permutation invariant opera-
tor (e.g. a maximum or an average) to sets of neighbouring pixels and are
thus more akin to complex cells. Interestingly, this convolutional/down-
sampling dichotomy is still omnipresent in the description of contemporary
CNNs.

Whats is perhaps the first modern usage of CNNs is presented in the work
of LeCun et al., 1989, where convolutional layers are trained to recognize
handwritten zipcodes using the back-propagation algorithm. Their results
suggest a clear superiority of CNNs over Fully-Connected Neural Networks
(FCNNs) for image analysis. The authors explain the performance gap by
three core aspects of the CNN design:

1. The number of weights of a typical fully-connected layer scales linearly
with the number of input variables, where it is constant for convolu-
tional layers. Images, which commonly include tens of thousands of
pixels, burden FCNNs with a sizeable amount of parameters, making
them prone to overfitting.

2. The properties of the convolution operator inherently grants CNNs
with equivariance to translations, and robustness to local alterations.
FCNNs could theoretically learn such behaviors, but introducing them
as prior knowledge within CNN is far more efficient.

3. FCNNs are oblivious to image topology as their inner computations
are permutation-invariant. Images are processed as though they were
flat, with no preferential reading order. CNNs on the other hand, are
able to exploit the widespread local-correlations found in images, by

26 Chapter 3. Neural Architecture Search

restricting the receptive field of their layers to local neighbourhoods.

Although the networks derived by LeCun et al., 1989 were much more
efficient than their FCNNs counterparts, their training on higher resolu-
tion images was still excedingly expensive. In 2012 Krizhevsky et al., 2012
proposed to solve this problem by training CNNs using Graphics Process-
ing Units (GPUs). Owing to their efficient convolution implementation,
the authors were able to scale their network up to 60 million parameters.
With their newly designed AlexNet architecture, they were able to reach a
top-5 test error of 15.3% on the ImageNet dataset, effectively winning the
ILSVRC-2012 competition, beating the second best entry by more than 10%.
Although AlexNet was not the first instance of such large CNNs (Ciresan
et al., 2011; Chellapilla et al., 2006), the design of Krizhevsky et al., 2012 ef-
fectively marked the beginning of the Deep Convolutional Neural Networks
(DCNNs) era.

From there, several iterations were made to improve the AlexNet design.
In 2014, (Simonyan et al., 2014) introduced the VGGNet architecture, which
improves over the AlexNet design by reducing the receptive fields of the con-
volution filters to 3 × 3 and greatly increasing the depth of the network to
19 layers. Szegedy et al., 2015 pushed the depth of their GoogLeNet archi-
tecture by 3 additional layers, and replaced the plain linear architecture of
VGGNet and with their Inception module, a design pattern that introduces
a notion of width by merging the output of convolutional layers with differ-
ent kernel sizes, 1×1, 3×3 and 5×5. A diagram of the Inception module can
be observed in the left portion of Figure 3.1. Attempts at further increasing
the depth of DCNNs were met with a degradation in performances. He et al.,
2016 identified that this drop was due to the optimization process getting
more complex as the network depth increased. To circumvent the complica-
tion, the ResNet architecture and its deep residual learning paradigm were
introduced. Given a layer meant to learn to map an input x to H(x), resid-
ual learning suggests instead to learn the mapping F(x) = H(x) − x, such
that H(x) = F(x)+x. The added identity function to the mapping is often
called a residual or skip connection. This adjustment to the optimization
allowed the authors to train architectures up to 151 layers deep without
blows and whistles. A diagram of a residual layer can be observed in the
right portion of Figure 3.1.

3.2 Searching for Architectures

As the design complexity of DCNNs architectures further increased (Ioffe
et al., 2015; Szegedy et al., 2016; Saining Xie et al., 2017), so did the level
of expertise required to select and apply them to new tasks. Although
architecture selection is arguably less burdensome than feature description,

3.2. Searching for Architectures 27

(a) GoogLeNet (b) ResNet

Figure 3.1: On the left, the inception module, fundamental block of the
GoogLeNet architecture (Szegedy et al., 2015). On the right, a residual
module, fundamental building block of the ResNet architecture (He et al.,
2016). The left figure is a reproduction from Szegedy et al., 2015.

its reliance on advanced DL knowledge hinders the utilization of DCNNs
technologies by non-experts. The less architectural adjustments are required
for a model to perform optimally, the more outsider-friendly, and widespread
AI approaches will be. A promising direction for the DL framework would be
to automatically tune the design of DCNNs architectures, a process coined
Neural Architecture Search (NAS) by Zoph et al., 2017a.

Optimizing neural networks architectures is not a recent idea, and sev-
eral approaches have attempted to learn both the weights and the topology
of neural networks. In particular, evolutionary and genetic algorithms re-
searchers have displayed a keen interest in this paradigm, and several ap-
proaches related to this literature have been introduced (Angeline et al.,
1994; Gruau, 1994; Yao, 1999). An honorable mention is the NeuroEvo-
lution of Augmenting Topologies (NEAT) algorithm introduced by Stanley
et al., 2002 that was shown to be able to both optimize and complexify neu-
ral networks during learning through evolution, resulting in overall faster
training and better final performance on multiple reinforcement learning
tasks.

As a research field, NAS is closely related to Hyperparameter Optimiza-
tion (HPO). Unlike classical parameters, hyperparameters are parameters
that describe the learning process, and are usually fixed during training.
They have a critical impact on the performances of ML approaches, and
tuning them is essential to achieve great performance. Examples of com-
mon hyperparameters are the learning rate or the batch size used to optimize
a neural network with a gradient descent algorithm. A plethora of methods
have been introduced to solve the HPO problem (Feurer et al., 2019), from
model-free black box optimization methods like random search, evolutionary

28 Chapter 3. Neural Architecture Search

algorithms (Simon, 2013) or particule swarm optimization (Eberhart et al.,
1998), to model-based Bayesian optimization (Jones et al., 1998).

At a high level, the difference between HPO and NAS is thin. Since net-
work architecture on its own is a rightful hyperparameter NAS algorithms
belong to the family of HPO algorithms. Nonetheless, whilst most HPO
algorithms are agnostic to the type of hyperparameter explored, NAS ap-
proaches tend to incorporate the graph topology of architectures as a prior
in their inner workings. Conventional HPO approaches work best with con-
tinuous hyperparameters and can hardly handle the complex and discrete
structure explored by architecture search spaces.

3.3 Search Spaces

A search space is a set of architectures that can be considered by a NAS
algorithm. It constitutes one of the three fundamental aspects of a NAS
approach (Elsken et al., 2019b). There are thus roughly as many search
spaces as there are NAS algorithms. Still, some key design patterns can be
identified. We describe below a few approaches which we consider valuable
to the literature for their introduction of such design patterns. This list is
by no mean exhaustive, and we refer the reader to surveys such as Elsken
et al., 2019b or P. Ren et al., 2020 for a comprehensive list.

In their pioneer work, Zoph et al., 2017a considered the optimization
of both CNNs and Recurrent Neural Networks (RNNs). We confine our
summary to the former. The search space introduced by the authors is
quite simple. They propose to represent an architecture by a succession
of convolutional blocks, with a fixed maximum total length. Each block is
composed of a ReLU non-linearity, a convolutional layer parameterized by
its filters, number, sizes and strides, and a batch-norm layer (Ioffe et al.,
2015). Inspired by the skip connections of the ResNet architectures (He
et al., 2016), and the different pathways of the GoogLeNet (Szegedy et al.,
2015), the authors introduced shortcuts connections between the different
blocks, and each block can have a potential residual connection with all of
its preceding blocks.

Noticing a growing trend in DCNNs architectures to be hierarchically
constructed, such as with Inception module (Szegedy et al., 2015) or the
residual block (He et al., 2016) represented in Figure 3.1, Zoph et al., 2018a
propose to search only for sub-structures of interest, rather than optimizing
the complete architectures at once. The authors introduced two types of
patters. They dubbed those pattern cells, and searched for two of them:
“normal” cells, and “reduction” cells. The latter differs from the former
in that it must reduce the spatial dimension of its incoming inputs. The
complete architecture is then obtained by stacking those cells in a prede-

3.3. Search Spaces 29

(a) Cell-based (b) Block-based

Figure 3.2: (a) Example of an architecture obtained from the cell-based
search space of Zoph et al., 2018a; (b) Example of an architecture obtained
from the block-based search space of Tan et al., 2019a.

fined, fixed way. Each cell is represented by a directed acyclic graph which
transcribes the different operations meant to be performed. We provide a
graphical illustration of an architecture following this pattern in Figure 3.2a.
The main advantages of this cell-based search space is that by searching for
smaller sub-structures the optimization is made easier both because the
cardinality of the search space is drastically reduced, and because its design
enforces some structural priors which maximizes the likelihood of finding
good architectures within their search space. The cell-based search space
was particularly fruitful and was reused or adapted in several works (Real et
al., 2019a; C. Liu et al., 2018; Pham et al., 2018; H. Liu et al., 2019a).

In Tan et al., 2019a, the authors propose to search for architectures with
optimal trade-offs between performance and inference latency. They assert
that cell-based approaches are too restrictive because they require the same
layers to be replicated at all depth and argue that architectures designed
for optimal inference latency should be able to perform different operation
at different depth. For instance, they explain that earlier layers process
much more data due to the relatively high spatial dimension, and have an
overall higher impact on latency than later layers. Instead of the cell-based
search space, Tan et al., 2019a introduce a factorized hierarchical search
space which divides CNNs into several blocks, with the end of each block

30 Chapter 3. Neural Architecture Search

reducing the spatial resolution of the feature map, whilst increasing the
channel dimension. Each block is composed of several instances of the same
layer, which parameters and structure are searched for. Available choices
for the design of a block are the type of the convolutional layer, its kernel
size, its Squeeze-and-Excitation ratio (Iandola et al., 2016), the size of the
outputs filters and the number of layers in the block. Blocks are then stacked
one atop the other to complete the architecture, as visually transcribed in
Figure 3.2b. Because of its simplicity, this search space and some of its
variants have gained popularity in the NAS literature (Cai et al., 2018;
Stamoulis et al., 2019; Howard et al., 2019). A notable example is the
family of EfficientNet models (Tan et al., 2019b), which smaller variant was
found using NAS on the aforementioned search space.

3.4 Architecture Optimization

Given a search space A, with each of its architecture A coming with a set
of possible weights W(A), NAS can be formulated as a bi-level optimization
problem (Colson et al., 2007), which takes the following generic form:

Find A ∈ argmin
A∈A

Γ(A), where (3.1)

Γ(A) = inf
{
F (A,w⋆), w⋆ ∈ arg min

w∈W
f(A,w)

}
.

The evaluation of the variable of interest depends on a second variable (here
A and w respectively) that is constrained to be optimal with respect to
another optimization problem. F and A (resp. f and w) are called the outer
(resp. inner) objective and variable. In the typical ML setting, f would be
the loss of a model on a training dataset, whereas F would be the loss of the
same model on a held-out validation dataset. During training, the model
has only access to the training dataset to update its parameters in order to
minimize f . However, we would rather like the architecture to be selected
so as to improve the model generalization, that is to decrease the loss of the
model on unseen data, represented by the validation dataset.

3.4.1 Dynamic Formulation of the Inner Objective

Under its general form, the problem presented in Equation (3.1) creates
constraints on the inner variable w that cannot be explicitly formulated in
terms of A. Additionally, there is no guarantee for an optimal w to be
unique. As a result, w⋆ ∈ argminw∈W f(A,w) cannot be expressed as a
function of A, which is cumbersome for practical resolution algorithms. To
circumvent this difficulty, it is often implicitly assumed that each possible
value of w⋆ corresponds to the same value of the outer objective F , and
that at least one set of optimal weights can be reached through an iterative

3.4. Architecture Optimization 31

process, which dynamics can be described analytically in terms of A. In
practice, Equation (3.1) is thus essentially replaced by:

Find A ∈ argmin
A∈A

F (A,wT (A)), (3.2)

u.c.

{
w0 = Φinit(A, ϵ)
wt = Φ(wt−1, A, f), t = 1, . . . , T

}
,

where the initial weights w0 are initialized by a deterministic or random
process Φinit. Each wt is obtained by applying the operator Φ to wt−1 and
the current architecture A. Typically, Φ takes the form of gradient descent
on the inner objective f :

Φ(w,A, f) = w − α∇wf(A,w), (3.3)

where α is the learning rate. If the inner optimization behaves well, then
as T −→ ∞ the solutions of Equation (3.2) should get closer to the solutions
of Equation (3.1). Franceschi et al., 2018 show that this is true under
reasonable assumptions.

3.4.2 Discrete Optimization

In NAS problems, the search space A is usually discrete. Some approaches
directly solve the outer optimization problem in Equation (3.2) using this
discrete representation. When an architecture A is to be evaluated, the
corresponding weights wT (A) are computed, and the resulting fitness of the
individual F (A,wT (A)) is used directly. Because those approaches do not
consider interactions between the optimization of the architecture and the
optimization of its inner weights, it is common to think of them as black-
box optimization solutions. In Zoph et al., 2017b; Zoph et al., 2018a, the
authors describe the process of building an architecture as a Markov Deci-
sion Process (MDP), and translate the problem of searching for an optimal
architecture into the problem of searching for of an optimal policy to build
architecture. They propose to solve their introduced reinforcement learning
(RL) problem using Policy Search. Likewise, other approaches frame NAS
as a RL problem, which they solve using Q-Learning (Zhao Zhong et al.,
2020), or Monte Carlo Tree Search (Linnan Wang et al., 2018; Linnan Wang
et al., 2021; Wistuba, 2017; Negrinho et al., 2017). Another successful line of
approaches has been with the use of genetic algorithms. In their work, Real
et al., 2017 introduce architectural mutations taking the form of operations
on computational graphs, and optimize the performance of a population
of architectures using a regularized form of the tournament selection algo-
rithm (Goldberg et al., 1991), and so do Real et al., 2019a and H. Liu et al.,
2017. Other approaches use genetic programming (Suganuma et al., 2017),
Lamarckian evolution (Elsken et al., 2019a), or even a variant of the NEAT
algorithm (Miikkulainen et al., 2019).

32 Chapter 3. Neural Architecture Search

3.4.3 Continuous Relaxation

To avoid discrete variables, some works rely on a form of continuous re-
laxation of the search space. In Shin et al., 2018, the authors propose to
search for convolutional layers hyperparameters by replacing plain convolu-
tion kernels Wi,j with weighted averages over all possible resulting kernels∑

i,j αiβjWi,j , with λ = (αi, βj)i,j as learnable parameters. In Ahmed et
al., 2018, the i-th convolutional layer learns which of the previous outputs
(yj) to combine as input feature xi by optimizing the scales λ = (mi,j) of
a weighted average of all previous outputs xi =

∑i−1
j=1mi,jyj . In H. Liu

et al., 2019b, elementary operations (oi)i, such as convolutions and pool-
ing layers with different kernel sizes or skip connections are replaced by a
weighted average operation: õj =

∑
i λi,joi, parameterized by λ = (λi,j).

Those approaches make the original problem differentiable with respect to
the architecture parameters λ:

Find λ ∈ argmin
λ∈Λ

F (λ,wT (λ)), (3.4)

u.c.

{
w0 = Φinit(λ, ϵ)
wt = Φ(wt−1, λ, f), t = 1, . . . , T

}
.

Although very straightforward, these relaxations are not resource-efficient,
since previously unitary computations are replaced by weighted averages of
all possible computations. Besides, the optimization problem in Equation
(3.4) is still quite complex, as the gradient ∇λF (λ,wT (λ)) is far from triv-
ially estimated. Rather than unrolling the full optimization path of wT with
respect to λ, H. Liu et al., 2019b; Ahmed et al., 2018; Shin et al., 2018
propose to alternately optimize the inner and outer variables:

Find

{
λ⋆ ∈ argminλ∈Λ F (λ,w⋆)
w⋆ ∈ argminw∈W(A) f(λ

⋆, w)

}
, (3.5)

where W(A) represents the set of all possible weights, shared between the
different architectures. H. Liu et al., 2019b additionally propose to solve the
slightly more complex following problem:

Find

{
λ⋆ ∈ argminλ∈Λ F (λ,Φ(w⋆, λ, f))
w⋆ ∈ argminw∈W(A) f(λ

⋆, w)

}
. (3.6)

In Equation (3.6), the architecture parameters are optimized to be one-
step ahead of the network parameters. The resulting gradient of the global
objective with respect to λ leads to second-order optimization in λ (H. Liu et
al., 2019b). In Equation (3.5), a first-order approximation is taken, and the
dependency of w in λ is completely omitted. In practices, thoses problems
are solved by alternating gradient descent approaches. Once the search is
complete, the resulting architecture is made discrete, either by mapping the
continuous results to the closest discrete element, or by ensuring the sparsity
of the weighted averages using regularization.

3.4. Architecture Optimization 33

3.4.4 Stochastic Relaxation

Numerous other authors rather consider a stochastic relaxation of the prob-
lem (Sirui Xie et al., 2019; Casale et al., 2019; Shirakawa et al., 2018).
Instead of working with A directly, a family of probability distributions
P = {Pθ : θ ∈ Θ ⊆ Rnθ} is introduced over the set of architectures (Aki-
moto et al., 2019). It is assumed that each Pθ ∈ P has a density function
pθ which is differentiable with respect to θ. Working with this family, the
outer objective in Equation (3.2) is replaced by:

Find θ ∈ arg min
θ∈Rnθ

EA∼Pθ

{
F (A,wT (A))

}
. (3.7)

The idea behind this relaxation is that optimality is reached if Pθ concen-
trates all its mass in a Dirac centered around the optimal architecture. This
results in the following optimization problem:

Find θ ∈ argmin
θ∈Θ

EA∼Pθ

{
F (A,wT (A))

}
, (3.8)

where

{
w0(A) = Φinit(A, ϵ)
wt(A) = Φ(wt−1, A, f), t = 1, . . . , T

}
.

The constraints of the original formulation on θ disappear because of the
dummy variable in the expectation and the objective becomes trivially dif-
ferentiable in θ. In this case, the resulting gradient is a Reinforce-like
(Williams, 1992) gradient:

∇θEA∼Pθ

{
F (A,wT (A))

}
= EA∼Pθ

{
∇θ ln pθ(A)F (A,wT (A))

}
. (3.9)

Notice that this black-box approach is similar to the gradient-free methods
used in the discrete case, and is in particular very akin to evolutionary
algorithms such as evolution strategies (H.-G. Beyer et al., 2002). Similarly
to the continuous relaxation case, most authors rather optimize the objective
over both θ and w simultaneously, by dropping the optimization path wT (A)
and considering the currents weights w directly (Pham et al., 2018; Casale
et al., 2019; Sirui Xie et al., 2019):

Find

{
θ⋆ ∈ argminθ∈Θ EA∼Pθ

{
F (A,w⋆)

}
w⋆ ∈ argminw∈W(A) EA∼P ⋆

θ

{
f(A,w)

} }
. (3.10)

Likewise, these are solved using alternating gradient descent, approximating
expectations with Monte-Carlo integration. Finally, it is worth mentioning
that some approaches based on a paradigm called HyperNetworks (Ha et
al., 2017), try to directly predict the optimal weights of architectures w⋆(A)
through another learnable predictive model H(A) (Brock et al., 2018; C.
Zhang et al., 2018). The advantage of such approaches is that it removes
the necessity of the hypothesis that the parameters of all architectures can
be described as a subset of the set of all possible parameters W(A). Thus
more complex architectures distributions can thus be explored.

34 Chapter 3. Neural Architecture Search

3.5 Performance Estimation

The last key concept of NAS (Elsken et al., 2019b) has to do with how the
final score of an architecture is evaluated. Equation (3.2) suggests that the
score associated to an architecture A is obtained by optimizing its weights,
up to a certain points wT (A). Unfortunately, because of expensive training
requirements, evaluating a single DCNN using this simple methods can take
days to weeks. First NAS approaches (Real et al., 2019b; Zoph et al., 2018a;
Zoph et al., 2017b) were carried out this way, and in turn required thousands
of GPU days worth of computing. In light of this concern, many approaches
have been explored to reduce the time required to come-up with architecture
scores by proposing proxy-evaluations.

3.5.1 Proxy Training

An elementary approach to reduce the computational burden incurred by
the evaluation of an architecture is to substitute the original training setting
with a less precise, but more affordable surrogate one. In Zela et al., 2018,
the authors limit the total training time of individual architectures to 3
hours, and make use of BOHB (Falkner et al., 2018), an HPO algorithm
capable of terminating the evaluation of architectures that display sub-par
intermediate performances. In a similar way, Klein et al., 2017 propose to
perform HPO by training networks on a fraction of the original dataset.
Several NAS approaches additionally consider training smaller variants of
architectures, which size they increase when the search converges to a final
model (Zoph et al., 2018b; Real et al., 2019a). Finally, (Dong et al., 2020)
propose to work on down-sampled versions of image datasets. In a summary
work, Zhou et al., 2020 propose to perform a systematic study of the fidelity
of the scores obtained when combining the four aforementioned techniques:
reducing the resolution of inputs, the number of epochs, the data ratio, and
the size of the architectures considered. They conclude that some non-trivial
combinations exist that preserve the ranking of the evaluations whilst further
reducing training costs. Making use of a hierarchy of proxy that allowed
them to increase fidelity as sampled architectures improved, combined with
the evolutionary algorithm of Real et al., 2019a, they were able to find better
performing architectures with 400 times less computations.

3.5.2 Model-Based Prediction

Other approaches try to predict the score F (A,wT (A)) of a model either di-
rectly from the architecture A, or from intermediate results, such as the evo-
lution of the scores (F (A,wi(A))i. Domhan et al., 2015; Klein et al., 2016;
Baker et al., 2017 propose to extrapolate performance curves to try and pre-
dict the final score, terminating evaluations that are expected to reach poor

3.5. Performance Estimation 35

final performances. Most performance predictions directly try to learn the
relationship between architectures, and their scores in a supervised learning
fashion. Using a small dataset {(Ai, F (Ai, wT (Ai)), i = 1 . . . , N} a model F̃
is learned such that F̃ (A) ≈ F (A,wT (A)). The form of the model F̃ can be
quite diverse, from classical FCNNs working on pre-determined representa-
tions of architectures (White et al., 2019; Ning et al., 2020), Graph Neural
Networks (GNNs) (Z. Wu et al., 2020) directly working on the graph repre-
sentation of the architecture (H. Shi et al., 2020; Dudziak et al., 2020). Most
approaches only use the resulting models solely to extrapolate the score of
a new architecture. In Luo et al., 2018 however, the authors learn to embed
architectures using an encoder-decoder structure and optimize architectures
by directly performing gradient ascent on the learned architecture manifold.
White et al., 2021 perform a systematic study of model-based predictors,
assessing their generalization ability on a suite of different benchmarks. We
refer readers to their comprehensive work for a global picture on this family
of models.

3.5.3 Weight-Sharing

In Section 3.4, we have introduced several approaches which proposed to
transform the original discrete problem of Equation 3.2 into continuous al-
ternatives. In order to create practical solutions, some authors further sug-
gested to decouple the optimization of the architecture from the optimiza-
tion of the weights, as described in Equation (3.5) and (3.10). However,
such a feat can only be considered if weights can be factorized across dif-
ferent architectures, meaning that different architectures can share parts of
their weights. In our different equations, we have captured this constraint
by introducing W(A), the set of parameters shared by all the architectures
present in A.

This approach, which was first popularized by Pham et al., 2018, was
adequately coined Weight-Sharing. Typically, an architecture can be seen
as a graph of operations, with nodes representing operators applied to input
feature maps, and edges indicating the flow of feature maps through the
network. At each node, one of the several candidate convolutional operators
is selected. Pham et al., 2018, suggest to consider that architectures which
apply the same operator at a given node, can share the parameters of said
operator at at the specified position. For greater clarity, we illustrate this
behavior in Figure 3.3. The global network which is obtained by consider-
ing all individual node operations and connectivity pattern allowed by the
search space is referred to as the “super-net”. The WS approach has gained
incredible popularity in the NAS literature (H. Liu et al., 2019b; Sirui Xie
et al., 2019; Casale et al., 2019; Stamoulis et al., 2019). The main reason
behind this ubiquitous acceptance is its impressive efficiency. Indeed, in

36 Chapter 3. Neural Architecture Search

Figure 3.3: Examples of two cells from a cell-based search space with dif-
ferent connectivity patterns and operators at each node. Nodes that are in
green indicate that the same operator is used at the same location and thus
that their weights can be shared.

substance, WS allows to replace the weights wT (A) obtained by the costly
training of an architecture A, by the set of weights readily extracted from
a single trained super-network. Where the evaluation of N architectures in-
duces N learning processes in traditional NAS approaches, adopting the WS
paradigm allows to only train the super-net once, and extract the weights of
the N networks from the result. Because of this remarkable efficiency, NAS
algorithms which make use of WS are traditionally called One-Shot NAS
algorithms.

Different approaches combine the optimization of the architecture and
the optimization of the shared weights of Equation (3.5) and (3.10) in dif-
ferent ways. Most alternate between the two, with mini-batches of data
respectively coming from training and validation sets (H. Liu et al., 2019b;
Sirui Xie et al., 2019; Casale et al., 2019; Pham et al., 2018). In turn, the
shared weights are optimised so as to better fit the architectures selected by
the NAS algorithm. Other approaches, such as Bender et al., 2018 or Guo
et al., 2020, instead propose to first learn a shared set of weights adapted
to all the architecture of the search space, and only then use the obtained
weights to perform the architecture optimization process. This paradigm
facilitates the analysis of correlations, as methods training both weights and
architectures together induce a bias towards architectures with good early
evaluations, as we will see in the next chapter.

3.6. Conclusion 37

3.6 Conclusion

In this chapter, we have introduced the idea behind the NAS paradigm, and
how it was inspired by the history of DCNN. We summarized and presented
relevant literature for three core aspects of NAS approaches: the search
space, the optimization process, and the performance estimation strategy.
In particular, we have tried to present and describe the different optimiza-
tion approaches using the same framework. The work of this chapter was
primarily meant as an introduction to NAS, and we will abundantly refer
to the concepts presented here in the two following chapters.

38 Chapter 3. Neural Architecture Search

Chapter 4

Weight-Sharing on the
NAS-Bench-101 Dataset: A
Practical Case Study

Contents

4.1 Introduction . 41

4.2 Related Work . 42

4.2.1 Evaluating Weight-Sharing 42

4.2.2 Enhancing Weight-Sharing Correlations 46

4.3 Methods . 46

4.3.1 Impact of Search Spaces on NAS Performances . . 47

4.3.2 Ranking Architectures with Weight-Sharing 47

4.3.3 Impact of Weight-Sharing on NAS Performances . 49

4.3.4 Good Practices . 52

4.4 Results . 53

4.4.1 Ranking Capabilities of Weight-Sharing 53

4.4.2 Can Weight-Sharing Improve NAS? 53

4.4.3 Variations between Search Spaces 58

39

40 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

In this chapter, we take advantage of NAS-Bench-101 (NB-101), a dataset
of architecture evaluations, to challenge the efficiency of a uniform-sampling
based WS variant on several representative search spaces. After reviewing
previous studies on WS and highlighting several of their shortcomings, we
introduce our own experimental setup, from which we extract several good
practices that one should keep in mind when evaluating WS. With our ex-
periments we first establish that, given the correct evaluation procedure, WS
is able to produce accuracy scores decently correlated with standalone ones.
We then provide evidence that on some search spaces, this WS variant is
able to rapidly find better than random architectures, whilst it is equivalent
or sometimes even worse than a baseline random search on others. We find
that when given the same budget, the probability of superiority of an architec-
ture found using WS over an architecture found through random search can
vary between 7% and 78% depending on the search space. We present evi-
dence that the search space itself has an intricate effect on the capabilities of
WS and can bias weight-sharing towards certain architectural patterns with
no clear accuracy advantage. We conclude that the impact of WS is heavily
search-space dependent and difficult to anticipate for a given problem.

4.1. Introduction 41

4.1 Introduction

Because of expensive training requirements, evaluating a single DNN archi-
tecture can take days to weeks. In turn, original NAS approaches (Real
et al., 2019b; Zoph et al., 2018a; Zoph et al., 2017b) required thousands of
GPU days worth of computing, only to find conformations slightly better
than expert-designed ones. In light of this concern, many methods have
been explored that could drastically cut the resources required to perform
NAS, and today’s literature is blooming with approaches requiring less than
a day of computations Pham et al., 2018; H. Liu et al., 2019b; Sirui Xie
et al., 2019; Casale et al., 2019.

Most of these efficient methods rely on a computational trick called
Weight-Sharing (WS), an approach first popularized by Brock et al., 2018
and Pham et al., 2018, which we introduced in Chapter 3. Despite a grow-
ing literature, the effect of WS on the performance of NAS is still poorly
understood. A particular concern is the quality of the scores obtained with
the super-net. Employing WS implies substituting metrics obtained after
standalone training with metrics derived from the shared set of parameters.
Both quantities thus need to be correlated: if networks with excellent stan-
dalone performance are under-evaluated by the super-net or vice-versa, the
process could be pointless and even detrimental. A possible reason for a
lack of studies on the matter is the cost required by the training of a proper
amount of architectures. As described in Section 4.2, several works mitigate
this issue by assessing the correlations between evaluations of the super-net
and true evaluations in reduced settings, either evaluating few architectures
or studying a drastically reduced search space.

In this chapter, we leverage the architecture evaluations of the NAS-
Bench-101 (NB-101) (Ying et al., 2019) dataset to scrutinize the correlations
offered by a simple WS variant and investigate whether it can improve the
efficiency of baseline NAS algorithms. We perform this comparison in a re-
alistic setup in which we account for all the computational costs incurred by
WS. To strengthen the results of our different analyses, we consider seven
different search spaces with specific structural properties and reproduce this
analysis on each of them. Besides, to grant the results clear statistical sig-
nificance, we compare the different methods with an appropriate number of
seeds given a pre-specified effect size, totaling around 25 WS runs per search
space. To our knowledge, this study is the first to consider analysing WS on
such a wide variety of search spaces, using a fair comparison protocol that
explores all sources of computational cost, and with strong enough statisti-
cal power to draw meaningful conclusions, albeit in the reduced setting of
NB-101.

We summarize the key take-aways of our experimental setup in a list of

42 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

several good practices, which we believe are essential to accurately evaluate
WS. They are the following: evaluating WS using a wide variety of search
spaces, avoiding the different sources of biases that could come up during the
estimation of correlations, visualizing said correlations, properly assessing
computation duration, and guaranteeing statistical significance of the NAS
results.

Based on these observations and the resulting good practices, our ex-
perimental results show that, on the NB-101 dataset: (i) with the cor-
rect methodology, one can get decent Spearman’s rank correlations between
super-net proxy evaluations and real evaluations on several search spaces
containing hundred thousands of architectures, which can range between
0.46 and 0.71 depending on the search space; (ii) WS is often able to quickly
spot better than random architectures, but is sometimes on par or even
worse than a random search baseline, as the probability of superiority of
WS over random search under a one-shot setting can vary between 7% and
78% depending on the search space; (iii) global correlations evidenced in
(i) are not the limiting factor of uniform-sampling based WS, as search
spaces offering better global correlation do not always offer better WS per-
formances; (iv) the search-space can bias the super-net training and the
resulting evaluations, making WS fairly unreliable.

4.2 Related Work

In the first part of this section we describe several works trying to measure
the efficacy of WS. In the second part, we present several tricks and WS
training variants which have been introduced in the literature to improve the
correlations granted by super-nets, and which we explore in our experiments
in Section 4.3.2 and 4.4.1.

4.2.1 Evaluating Weight-Sharing

In Bender et al., 2018, the authors train a super-net on a search space of
their own. Path dropout is applied during training to randomly cut some
portions out of the super-net. A random search is then used to find a good
architecture. To validate the use of the super-net as a proxy, 20, 000 ar-
chitectures are sampled from the chosen search space and evaluated with
the resulting super-net. This set is then partitioned into several bins based
on the obtained proxy scores. For each bin, 4 architectures are sampled
and trained from scratch for a small number of epochs (around 10% of the
length of baseline training) before being evaluated. The authors note visu-
ally satisfying correlations between the two proxies, but do not report any
metrics. For computational reasons, correlations with full budget standalone
accuracy are not reported. Moreover, because the few models evaluated are

4.2. Related Work 43

evenly spread across the range of possible proxy accuracies, the produced
appealing correlations plots might not be representative of the whole search
space.

In K. Yu et al., 2020b, the authors quantify the impact of WS on NB-101,
and on a small language modeling task. They find that a simple random
search baseline is competitive with and often outperforms several NAS algo-
rithms exploiting WS such as DARTS (H. Liu et al., 2019b), ENAS (Pham
et al., 2018) and NAO (Luo et al., 2018), which furthermore display high
variance in their results. They report poor correlations between the ranks
obtained using a super-net and with standalone evaluations on the consid-
ered search spaces. We note however that the used algorithms were not
specifically designed to produce good correlations at the end of training,
but rather exploit them to rapidly converge to seemingly good architec-
tures.

Y. Zhang et al., 2020b explore another small search space of 64 archi-
tectures dedicated to computer vision. They train several super-nets using
different seeds, and report high variance in the relative rankings of the ar-
chitectures obtained with WS. They notice that during super-net training,
strong interactions exist between architectures, as updates in some models
can either improve or deteriorate the performance of others. They reach
correct correlations with standalone rankings, albeit the important variance
seems to hinder the practical implications of the super-net. They propose
several approaches to reduce the amount of WS between architectures, such
as fine-tuning parts of the super-net before evaluation or grouping architec-
tures into different sets according to different strategies.

In X. Chu et al., 2019, the authors argue that WS is limited by un-
even sampling of individual weights throughout the learning process. Al-
though they are seen equally often on average, some might locally be over-
represented due to chance, effectively biasing the weights of the super-net.
To prevent this, they propose to average the gradient updates of the shared
parameters over n samples, chosen such that each of the n elementary oper-
ations of the super-net appears exactly once. They combine their super-net
trained with the aforementioned strategy with a multi-objective genetic al-
gorithm, to build a Pareto front of accurate architectures with adequate
numbers of parameters and multiply-add operations. To justify their ap-
proach, they sample 13 models equally distant from the found Pareto front
and compare the accuracy obtained with WS against standalone ones, and
reveal that rankings are well preserved. However, details regarding this ex-
periment are lacking and it is likely that the result does not hold for the
whole search space.

Luo et al., 2019 also note a strong variance in the results of a few NAS
algorithms exploiting WS, and impute the poor results to meager correla-

44 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

tions, which they illustrate using 50 randomly sampled architectures. After
identifying several factors that could hinder performances, such as short
training times and bias towards simple architectures, they propose straight-
forward solutions for each of them, and eventually demonstrate improved
performances.

In A. Yang et al., 2020, the authors benchmark 8 NAS methods, 6 of
which are based on WS, on 5 different datasets. Their careful analysis
reveals that many NAS algorithms have trouble outperforming a random
search. They further argue that the use of training tricks in the evaluation
protocol have a greater influence over the final performance than the NAS
algorithm itself. Besides, they note that search spaces typically used in
NAS have a very narrow accuracy range and are thus already tuned to the
considered tasks.

Zela et al., 2020 use NB-101 to evaluate NAS algorithms exploiting WS.
However, because the authors choose to study DARTS (H. Liu et al., 2019b)
variants, they create their own search spaces to perform evaluations, whereas
we directly use the whole NB-101 search space. In one of their experiments,
they report the evolution during training of the correlations between evalua-
tions obtained using the super-net, and evaluations queried from the NB-101
dataset. They report poor or nonexistent correlations for most algorithms,
which contradicts our findings.

Y. Zhang et al., 2020a perform experiments with an intent similar to
that of our study. Instead of considering several sub-spaces of NB-101, the
authors rely on different search-spaces typically found in the NAS litera-
ture. On NB-101, the authors consider a relatively small sub search-space,
introduced by Zela et al., 2020, which contains around 42, 000 architectures,
around 10 times less than the number of available unique architectures. For
each search space, they train several super-nets using the same uniform-
sampling variant of WS (Guo et al., 2020). Their results suggest that it is
possible to reach correct correlations, but that there is an important vari-
ance with respect to the search space considered. This variance of behavior
is more preeminent in their work, given the greater diversity of search spaces
considered. Because the search space that they consider are not all based
on available NAS benchmarks, some of those correlations are obtained by
training only a few tens of architectures. They additionally reveal that on
some search spaces uniform WS is biased towards certain operators, and
that although WS cannot be used to accurately select top architectures, it
is paradoxically quite capable of finding the worst ones. Unlike this work,
the authors conclude that the positive effect of WS on NAS is clear cut and
positive. We explain this discrepancy by the fact that they do not account
for super-net training times when comparing against random search.

For clarity purposes, we gather in Table 4.1 a quick summary of each work

4.2. Related Work 45

authors space size #spaces #evals unbiased uniform good corrs. ws ↗

Bender et al. ∼ 109 1 ∼ 102 × ✓ ✓ ✓
K. Yu et al. ∼ 105 2 200 ✓ × × ×

Y. Zhang et al. ∼ 101 1 64 ✓ ✓ ✓ n.a.
X. Chu et al. ∼ 1019 1 13 × ✓ ✓ ✓
A. Yang et al. ∼ 1025 1 n.a. n.a. n.a. n.a. ×

Luo et al. ∼ 1025 1 50 ✓ ✓ × n.a.
Zela et al. ∼ 105 3 100 ✓ ✓ × n.a.

Y. Zhang et al. variable 5 variable ✓ ✓ ✓ n.a.
Ours ∼ 105 7 10,000 ✓ ✓ ✓ ×

Table 4.1: For each reference in Section 4.2, we gather the conclusions of
the authors on super-net correlations (good coors.), and whether WS can
consistently improve NAS (WS ↗). In each entry, we specify the approxi-
mate number of architectures in the search space (space size), the number
of search spaces considered (#spaces), the number of architecture evalua-
tions performed (#evals), whether the selection of the architecture and/or
their evaluation was unbiased (unbiased evals), and whether the consid-
ered WS variant used uniform sampling (uniform ws). We highlight in red
what we think are shortcomings of the different analyses. ”n.a.” stands for
not applicable, meaning that the column was not relevant to the study.

described in this section and their conclusions on super-net correlations and
whether WS can improve NAS consistently. We embed each paper using
five dimensions: the approximate size of the considered search spaces, the
number of studied search spaces, the number of architecture evaluations
performed, whether the architecture evaluations are biased and whether the
WS variant used uniform sampling. We additionally highlight in red what
we think are shortcomings of the different studies, which we briefly describe
here. The authors of Y. Zhang et al., 2020b consider an unrealistic search
space of merely 64 architectures. All studies except Zela et al., 2020; Y.
Zhang et al., 2020a and ours consider less than three search spaces, which
we think is too narrow to get an understanding of the various behaviors of
WS. Almost all authors evaluate below 1,000 architecture when analysing
correlations, resulting in limited statistical significance. The authors of Ben-
der et al., 2018; X. Chu et al., 2019 perform biased evaluations which are
likely to overestimate the quality of the correlations offered by WS. On the
contrary, authors of K. Yu et al., 2020b report their results for WS based
NAS algorithms that do not use uniform sampling and are therefore likely
to underestimate the quality of the correlations offered by WS.

All in all, the authors of Bender et al., 2018; Y. Zhang et al., 2020b; X.
Chu et al., 2019; Y. Zhang et al., 2020a report reaching correct correlations
whilst the authors of K. Yu et al., 2020b; Luo et al., 2019; Zela et al., 2020
report poor correlations, both sides coming with various shortcomings in the
methodology. Regarding NAS performances when exploiting WS, authors

46 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

of K. Yu et al., 2020b; A. Yang et al., 2020, suggest that when properly
evaluated, WS-based NAS is no better than random search, whilst most of
the NAS literature tacitly agrees on the opposite. With this study we aim
at reaching a satisfactory conclusion on those two aspects in a specific setup,
which is using the single-path one-shot approach of Guo et al., 2020 on the
search space described by the NB-101 benchmark Ying et al., 2019.

4.2.2 Enhancing Weight-Sharing Correlations

When evaluating a super-net to obtain a score for a given architecture, it is
possible to directly exploit the whole super-net and perform a standard for-
ward pass on the impending data whilst activating the graph corresponding
to the evaluated net. However, several works report the benefit of adapt-
ing the statistics of the inherited batch normalization layers (Bender et al.,
2018; Guo et al., 2020) to the architecture at hands.

The weights w of the super-net are updated through gradient descent
with respect to the objectives described in Chapter 3. The resulting gradient
takes the form of an expectation which is commonly approximated by an
empirical average. However, in practice Guo Guo et al., 2020 only use a
single architecture to estimate the expectation. Although this process is
unbiased, it results in high variance updates of w. Decreasing this variance
by sampling more models could be a straight-forward way to improve the
super-net optimization, at a higher computational cost.

In Stamoulis et al., 2019, the authors propose to not only share the
weights of the basic operations between architectures, but to further merge
the weights of all basic operations at a given node into a single set of pa-
rameters. For instance, if two basic operations were a x×x convolution and
a y × y convolution with x > y, instead of representing each operation with
its own set of kernels, one could use a single set of size x× x, and apply the
y × y convolution by extracting the sub-kernels of size y × y from the the
shared set.

Authors of Luo et al., 2019 identify in their work a bias towards archi-
tectures with fewer parameters, as they get trained faster. They propose
to correct this bias by sampling architectures pro-rata to their number of
parameters, sampling complex architectures more often.

4.3 Methods

In this section, we describe the protocols used to address the following ques-
tions: Are WS-based proxy-accuracies significantly correlated with stan-
dalone ones? How do correlations vary with respect to the training and
evaluation regimes of interest? Can the super-net find better than random

4.3. Methods 47

architectures? Can it find competitive architectures? How do the results
vary between search spaces? Outcomes of the experiments mentioned here-
after are described in Section 4.4

4.3.1 Impact of Search Spaces on NAS Performances

To measure the impact of the search space on WS, we consider for each
experiment several sub-sets of the NAS-Bench-101 (NB-101) search space,
which we now introduce.

In NB-101, feature maps going to the output of a cell are concatenated.
Given that the shape of the output is fixed across all possible cells, and that
different cells might have different number of outputs nodes, this means
that the kernel depth of a cell’s nodes varies over architectures, possibly
hindering the use of WS. A reasonable splitting strategy is to consider the
sets (Ai)i=1,...,4, in which architectures contain exactly i nodes connected to
the output (beside the input node, which is added and not concatenated),
resulting in compatible nodes with feature maps of equal sizes 1.

We also consider the full NB-101 set, which we call Afull: we solve
the aforementioned problem by dynamically adapting the number of feature
maps used for each node depending on the architecture: each node, as seen
by the super-net, contains the maximum number of filters for the given layer,
but sampled architectures only inherit the first n filters of the filter-bank,
where n is determined so as to satisfy the constraints on the output size
of the architecture’s cell. Other inheritance strategies could be considered,
such as randomly selecting the correct number of filters from the available
filter bank, but K. Yu et al., 2020a notice that this scheme is both simple
and efficient.

Early results additionally compelled us to study the influence of residual
connections on WS. It is well known that edges connecting the input node
to the output node of a cell, known as residual connections He et al., 2016,
significantly improve the training of convolutional architectures. Suspecting
that this is also true for sub-nets of a supernet, we consider two additional
search spaces: Ares

full and Anres
full , containing all architectures of NB-101 with

and without residual connections respectively. Figure 4.1 sketches the struc-
tural properties of the different search spaces.

4.3.2 Ranking Architectures with Weight-Sharing

With this experiment, we want to estimate the achievable correlation level
between super-net based proxy accuracies, and accuracies obtained with

1A difference of 1 feature map can still appear in A3 since the number of final feature
maps after concatenation is rarely divisible by 3. In such case, one branch may end up
with one more or one less feature map, e.g. [42, 43, 43] for 128 output feature maps

48 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

Figure 4.1: Structural properties of the different search-spaces. On each
graph, ”in” and ”out” denote the input and output of the cell, while ”+”
and ”&” denote the sum and the concatenation of incoming feature maps.
We only display the edges discriminating at least one search space and rep-
resent the rest of the graph with node G. If an edge does not discriminate
a specific search space, we represent it with a dotted line. A1 to A4 are
characterized by the number of edges concatenated after G, and Ares

full and
Anres

full by the presence or absence of a residual connection.

standalone training of architectures.

We train several super-nets on the cifar-10 dataset. Following Guo et al.,
2020, for each mini-batch of data seen during training, a single architecture
is uniformly sampled from the search space. The weights of the super-net
are then updated according to the computational graph generated by the
activation of this architecture.

We reuse the hyper-parameters of Ying et al., 2019 and train the super-
nets with the rmsprop optimizer. The initial learning rate is set to 0.2 and
decayed to 0 using a cosine annealing schedule over 432 training epochs,
which is four times the original time budget used in NB-101. As noted
by Luo et al., 2019 longer training times are often required for super-nets
to converge. The momentum is set to 0.9, weight decay to 10−4, and ϵ
to 1. The batch size is kept to 256 and the momentum and ϵ of the batch
normalization layers are respectively set to 0.003 and 10−5 2. We do not tune
hyper-parameters as doing so would require the computationally expensive
training of several architectures in a realistic setting.

We however reduce the initial number of filters to 16 compared to the orig-
inal 128, in order to accelerate training and evaluations. Earlier iterations

2Following PyTorch convention.

4.3. Methods 49

of our experiments revealed that using the default 128 value requires fairly
longer training times for the super-nets, without significantly improving the
resulting correlations. Although setting it to 16 is somewhat arbitrary, Zela
et al., 2020 also note that accuracies obtained after training architectures
with 16 initial filters are greatly correlated with those obtained using the
baseline 128 filters. We thus consider that the number of filters is not the
limiting factor of our different WS experiments. This setup additionally
mimics one-shot NAS approaches such as H. Liu et al., 2019b; Casale et
al., 2019; Pham et al., 2018, where the architecture found by the search is
up-scaled and retrained to further improve accuracies.

We train 5 different super-nets on each search space. We then randomly
sample 1,000 unique architectures from the search space and compute their
proxy accuracies on the held-out validation dataset. We match those ac-
curacies with the average validation accuracies returned by NB-101. To
quantify the quality of the correlations between the two, we use Spearman’s
rank correlation coefficient.

We estimate accuracies with the super-nets performing either no fine-
tuning (no-ft) or after fine-tuning the batch-norm statistics (bns-ft). With-
out fine-tuning, we directly use all the parameters and batch-norm statistics
of the super-net. When adapting the batch-norm statistics of the super-net
to a specific architecture, we simply estimate them using a single mini-batch
of training data (i.e. 256 images).

We additionally study the effect on correlations of the different train-
ing variations mentioned in Section 4.2.2. We follow the same protocol
but always fine-tune the batch-norm statistics (bns-ft). We consider four
variants: averaging the gradients over 3 sampled architectures (avg-3), sam-
pling architectures pro-rata to their number of parameters (pro-rata) Luo
et al., 2019, following the single-kernel approach of Stamoulis et al., 2019
(single-k), and combining the single-kernel and pro-rata approaches (s-k
+ p-r).

4.3.3 Impact of Weight-Sharing on NAS Performances

Quantifying the correlation level obtained with WS on realistically sized
search-spaces is of interest on its own, but is insufficient to conclude on
the efficiency of WS itself. Indeed what eventually matters are not the
correlations as such, but rather the quality of the architectures that can
be found by exploiting them. With the experiment of this section, we aim
at characterizing the interest of substituting super-net evaluations to the
standalone evaluations when performing NAS.

To investigate this, we consider two very simple search algorithms: ran-
dom search (RS) and a greedy local search (GS), which we both use in two

50 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

different settings. In the baseline NAS setting (BS), we directly maximize
the validation accuracy of models as returned by the benchmark. In the
weight-sharing (WS) setting, we maximize the performance of architectures
obtained from the super-net after fine-tuning batch-norm statistics (bns-
ft).

When performing a RS, we directly sample and evaluate a fixed num-
ber of unique architectures from the given search space. The GS is a plain
hill-climbing method that has been shown to be very effective on NAS bench-
marks White et al., 2020; Ottelander et al., 2020. A random architecture is
initially sampled from the search space. All of its neighbours are evaluated,
and the neighbour with the best score is selected to be the new current
architecture. This process is repeated until a fixed point (an architecture
whose best neighbour is itself) is reached, after which a new random archi-
tecture is sampled. The algorithm stops when the total evaluation budget
is reached. The set of neighbours of a given architecture is comprised of
the architecture itself, all architectures obtained by modifying a single node
operation, all valid architectures obtained by adding or removing a single
edge in its adjacency matrix, as well as all valid architectures that can be
obtained by adding a single node to the architecture.

In the baseline NAS setting, each search is given a budget of 10, 000
architecture evaluations. For each algorithm, we report the evolution of
the test regret. The test regret is computed after each model evaluation
by comparing the mean test accuracy of the model with the running best
validation accuracy and the best mean test accuracy of the considered search
space:

Rtest(t) = max
a∈A

acctest(a)− acctest(arg max
a∈(ai)t0

accvalid(a)), (4.1)

where A is the considered search space, a1, . . . , at the architectures trained
on their own and evaluated on the validation dataset at time t, accvalid(a)
and acctest(a) respectively refer to the validation and test accuracies of the
architecture a.

When exploiting WS, the strategy is slightly different. We first optimize
the architecture based on the super-net proxy accuracy. Although more
evaluations could be considered, we find 10, 000 to be enough for an efficient
algorithm such as GS to converge. Each evaluation requires performing
an inference on a validation dataset. Although this is orders of magnitude
cheaper than training architectures, we still find the process to be quite
costly, requiring around 4 seconds per architecture. A search performed us-
ing the proxy thus requires around ten hours, which, although reasonable on
its own, has to be multiplied by the number of search spaces and considered
seeds.

4.3. Methods 51

Once the optimization is finished, we assess the quality of the found
solutions by querying their true validation accuracies on the benchmark. To
obtain regret curves such as those of the baseline methods, we evaluate the
10,000 intermediate models considered during the WS searches in order of
decreasing proxy accuracy. Again, we report the evolution of this test regret
as a function of time as described in Equation (4.1).

The different regrets reported are plotted as a function of search time.
This search time is well approximated by the duration of the training and
evaluation of the different models. For a fair time-wise comparison of the
regrets, we account in the WS-based paradigm for both super-nets training
time and the duration of the evaluation of the 10,000 models. Unfortunately,
we were not able to perform experiments using the same hardware as Ying
et al., 2019. As a result, using the training times reported by NB-101 would
be biased, as theirs was much more efficient. To circumvent this, we used a
common setup comprised of two NVidia K80 GPUs and estimated for each
distinct architecture the time required to perform a single forward and a
single backward pass. We averaged this quantity over three independent
measures. To estimate the duration of a training, we simply multiply those
quantities by the appropriate number of forward and backward passes. Be-
sides, given that during super-net training each sampled architecture only
activates the necessary parts of the network, we approximate the super-
net training time by the average training time of the architectures of the
considered search space.

The original purpose of WS is to perform NAS in a one-shot paradigm L.
Xie et al., 2020 by quickly selecting a single architecture based on proxy ac-
curacy scores, and re-train it from scratch. Given a search space, we note for
each WS run the average time spent before the first real evaluation (super-
net training and evaluation, and training of the selected architecture) and
report the difference between the obtained regret with the regret achieved by
the baseline methods under the same time budget. To get an insight on the
size of the effect, we report Cohen’s d for the considered measures, which is
defined as the average difference divided by the pooled standard deviation.
Cohen’s d Cohen, 1988 reflects how the measured mean absolute difference
relates to the standard deviations of both populations. An effect is usually
considered important if |d|> 0.8, mild if |d|≈0.5 and small if |d|<0.2 Cohen,
1988.

We assess the statistical significance of the differences using a Student’s
t-test. For the baseline searches, since there is almost no computational
requirements (because a run is a simple query of the NB-101 dataset), we
follow Ying et al., 2019 and perform 100 runs. As explained above, WS-based
search takes a non-negligible amount of time. Given our computational
budget, we settle on ensuring that any effect of at least medium size can be

52 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

properly measured, with a statistical power of β = 0.8 and a significance
level α = 0.05. We estimate 3 that around 25 runs of the WS-based approach
should grant such guarantees.

4.3.4 Good Practices

As pointed out in Section 4.2 and Table 4.1, existing analyses of WS in
the literature bear several limits. In this section we present what we think
are good practices for evaluating the impact of WS on NAS. With those
guidelines, we hope to pave the way for future research and possible analyses
of other benchmarks. We further succinctly indicate in Table 4.2 the strategy
that we employed to avoid each pitfall.

– Search Space Variability: When evaluating WS, we suggest not
relying on a single search space, but rather explore various search
spaces. This diversity gives an idea of the intrinsic variance associated
with the procedure. As discussed in Section 4.4.3 this multiplicity is
key as WS performance varies greatly with the explored search space.

– Unbiased Estimation of Correlations: To fairly assess the qual-
ity of correlations between super-net and standalone scores, one must
limit biases that could emerge from the super-net in three respects:
sampling biases during training that result in some architectures being
trained more often than others, biases in the selection of architectures
during evaluation that result in correlations not representative of the
whole search space, and biases in the evaluation procedure itself that
result in poor non-representative individual performance.

– Visualization of Correlations: Correlation metrics such as Spear-
man’s rank correlation coefficient cannot capture the complexity of
a plain scatter plot of predicted against true score. Such scatter
plots additionally reveal over or under evaluation biases created by
the super-net. Examples of such figures can be observed in Figure 4.3
and Figure 4.4.

– Assessment of Computation Times: When reporting the evolu-
tion of regrets as a function of computing time, all sources of compu-
tations must be included. This includes the time required to train the
super-net, as well as to perform the individual evaluation of all the
architectures of interest.

– Satisfying Statistical Power: The proper statistical comparison of
two NAS approaches is crucial to reach any conclusion. Unfortunately,
it is quite common in the NAS literature to claim the superiority of
NAS method based on a single run. One must make sure that enough

3using the statsmodels python package (Seabold et al., 2010)

4.4. Results 53

runs are considered to get statistically significant comparisons Colas
et al., 2018.

4.4 Results

We now describe the results of the above studies. We then discuss the
influence of the search space on WS.

4.4.1 Ranking Capabilities of Weight-Sharing

For each search space, we report in the left part of Table 4.3 the average over
5 different super-nets of the rank correlation between the standalone accu-
racy returned by NB-101 and the proxy accuracies obtained after applying
the two evaluation protocols described in Section 4.3.2. no-ft refers to per-
forming no fine-tuning, and bns-ft to fine-tuning the batch-norm statistics.
Without any fine-tuning, correlations are poor across all search-spaces, with
substantial variances. With batch-norm statistics fine-tuning, the average
correlation increases by 270% over the no-ft scheme, granting almost 3
times better results on average.

In the right part of Table 4.3, we present the average rank correlations
obtained from training the super-net with the different variants described
in Section 4.2.2, and applying batch-norm statistics fine-tuning during eval-
uations. single-k refers to exploiting the single kernel variant of Stamoulis
et al., 2019, pro-rata to sampling architectures pro-rata to their number
of parameters (Luo et al., 2019), and s-k + p-r the combination of the
two. avg-3 refers to averaging gradients during the training of the super-
net over three architectures. We notice that all approaches lead to a small
improvement of the correlations, as well as a slight variance reduction.

These simple results show that it is possible to get correlations between
proxy evaluations performed with WS and full-budget evaluations as long
as batch-norm statistics are adapted to the evaluated architectures. We
notice that all the works mentioning poor correlations in Section 4.2 do not
detail their evaluation setup, and we suspect that they do not adapt batch-
norm statistics. Additionally, it is possible to further improve the resulting
correlations by modifying the super-net training in various ways.

4.4.2 Can Weight-Sharing Improve NAS?

The regret curves of the different NAS experiments described in Section 4.3.3
are reported in Figure 4.2. The relative position of the different methods
largely depends on the considered search space, but one can see that given
sufficient training time, baseline GS outperforms all other algorithms. In
a one-shot setting, (i.e. given a time budget equivalent to the evaluation

54 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

G
o
o
d
P
ra
ctice

O
u
r
A
p
p
ro
a
ch

O
b
serv

ed
R
esu

lts

S
e
a
r
c
h

S
p
a
c
e
V
a
r
ia
b
ility

W
e
ex

p
lo
red

sev
en

d
iff
eren

t
su

b
sea

rch
-sp

a
ces

o
f
N
B
-1
0
1
.

C
o
rrela

tio
n
s
a
n
d
W

S
p
erfo

rm
a
n
ce

v
a
ry

g
rea

tly
w
ith

th
e
co

n
sid

ered
sea

rch
sp

a
ce.

F
o
r
in
sta

n
ce,

th
e
S
p
ea

rm
a
n
co

effi
cien

t
ca

n
ra
n
g
e
b
etw

een
0
.4
6
a
n
d
0
.7
1
.

U
n
b
ia
se

d
E
stim

a
tio

n
o
f

C
o
r
r
e
la
tio

n
s

W
e
u
sed

th
e
u
n
ifo

rm
sa
m
p
lin

g
sch

em
e
o
f
G
u
o
et

a
l.,

2
0
2
0
.

U
n
ifo

rm
ly

sa
m
p
lin

g
a
rch

itectu
res

d
u
rin

g
tra

in
in
g
is

a
b
a
selin

e
th

a
t
a
llo

w
ed

u
s
to

m
ea

su
re

th
e
co

n
trib

u
tio

n
o
f
o
th

er
m
o
re

a
d
v
a
n
ced

tech
n
iq
u
es.

W
e
u
n
ifo

rm
ly

sa
m
p
led

a
rch

itec-
tu

res
fro

m
th

e
co

n
sid

ered
sea

rch
sp

a
ce.

U
n
ifo

rm
ly

sa
m
p
lin

g
a
rch

itectu
res

d
u
rin

g
ev
a
lu
a
tio

n
a
llo

w
ed

u
s
to

co
n
clu

d
e
o
f
th

e
co

rrela
tio

n
ca

p
a
b
ilities

o
f
W

S
,
a
s
w
ell

a
s
id
en

tify
in
g
so
m
e
b
ia
ses

in
th

e
ev
a
lu
a
tio

n
o
f
certa

in
a
rch

itectu
res

W
e
tu

n
ed

b
a
tch

-n
o
rm

sta
tistics

d
u
rin

g
ev
a
lu
a
tio

n
.

T
h
e
a
v
era

g
e
co

rrela
tio

n
o
v
er

th
e
d
iff
eren

t
sea

rch
sp

a
ces

in
crea

ses
b
y
2
7
0
%

w
h
en

fi
n
e-tu

n
in
g
b
a
tch

-n
o
rm

sta
tistics.

V
isu

a
liz

a
tio

n
o
f

C
o
r
r
e
la
-

tio
n
s

W
e
in
tro

d
u
ced

sca
tter

p
lo
ts

w
ith

co
lo
rs

in
d
ica

tin
g
sp

ecifi
c
p
ro
p
er-

ties.

W
e
id
en

tifi
ed

so
m
e
b
ia
ses

in
th

e
ev
a
lu
a
tio

n
o
f
certa

in
a
rch

itectu
res.

A
sse

ssm
e
n
t
o
f
C
o
m

p
u
ta

tio
n

T
im

e
s

W
e

a
cco

u
n
ted

fo
r

su
p
er-n

et
tra

in
in
g
a
n
d
ev
a
lu
a
tio

n
tim

es.
T
ra
in
in
g

su
p
er-n

ets
ta
k
es

a
n
o
n
-n
eg

lig
ib
le

a
m
o
u
n
t
o
f
tim

e
a
n
d

a
cco

u
n
tin

g
fo
r

th
is

d
u
ra
tio

n
m
a
k
es

a
b
a
selin

e
ra
n
d
o
m

sea
rch

eq
u
iv
a
len

t
to

a
ra
n
d
o
m

sea
rch

em
p
lo
y
in
g
W

S
o
n
sea

rch
sp

a
ces.

S
a
tisfy

in
g

S
ta

tistic
a
l
P
o
w
e
r

W
e

m
et

o
u
r

sta
tistica

l
p
o
w
er

a
n
d

sig
n
ifi
ca

n
ce

g
o
a
ls

w
ith

2
5

ru
n
s.

T
h
is

a
llo

w
ed

u
s
to

co
n
clu

d
e
o
n

th
e
effi

cien
cy

o
f
W

S
a
g
a
in
st

a
ra
n
d
o
m

sea
rch

b
a
selin

e.

T
a
b
le

4.2
:

F
or

each
g
o
o
d
p
ra
ctice

in
tro

d
u
ced

in
S
ection

4.3.4,
w
e
in
d
icate

th
e
strategy

th
at

w
e
em

p
loyed

an
d
th
e
ob

serv
ed

resu
lts.

4.4. Results 55

no ft bns-ft single-k pro-rata avg-3 s-k + p-r

A4 0.08 ± 0.17 0.64 ±±± 0.03 0.66 ± 0.01 0.68 ± 0.03 ∗0.67 ± 0.02 0.69 ±±± 0.02

A3 0.12 ± 0.15 0.59 ±±± 0.03 0.62 ± 0.02 0.63 ± 0.02 0.61 ± 0.03 0.66 ±±± 0.02

A2 0.24 ± 0.03 0.60 ±±± 0.04 0.64 ± 0.02 0.64 ± 0.02 0.61 ± 0.01 0.65 ±±± 0.02

A1 0.32 ± 0.05 0.68 ±±± 0.02 0.72 ± 0.02 0.75 ±±± 0.02 0.73 ± 0.01 0.67 ± 0.01

Afull 0.24 ± 0.05 0.56 ±±± 0.04 ∗0.63 ±±± 0.02 0.59 ± 0.03 0.61 ± 0.02 0.58 ± 0.02

Anres
full ∗0.11 ± 0.05 ∗0.46 ±±± 0.06 ∗0.58 ±±± 0.02 0.56 ± 0.03 0.52 ± 0.02 0.49 ± 0.02

Ares
full 0.34 ± 0.10 0.71 ±±± 0.02 0.68 ± 0.01 0.72 ±±± 0.02 0.69 ± 0.02 0.66 ± 0.01

Table 4.3: Spearman’s Rank Correlation Coefficient Between WS and Stan-
dalone Evaluations for Various Search Spaces, WS Variants, and Evaluation
Schemes. We report the average over 5 independent runs and the 95% con-
fidence interval for its estimation. On the left, we use the baseline WS
approach and we perform either no fine-tuning, or batch-norm statistics
fine-tuning. On the right, we test some variants of WS described in Sec-
tion 4.2.2 and always fine-tune batch-norm statistics during evaluations.
Results marked with an asterisk ∗ indicate that one of the super-net failed
to converge, and that the reported statistics are computed using only the
four others.

RSbs −RSws RSbs −GSws

A4 −0.68± 0.80 (p=0.00, d=−0.85) −0.82± 0.83 (p=0.00, d=−0.99)
A3 −0.20± 0.77 (p=0.25, d=−0.26) −0.62± 0.88 (p=0.00, d=−0.71)
A2 0.36± 0.87 (p=0.07, d=+0.42) 0.54± 0.85 (p=0.01, d=+0.63)
A1 1.18± 1.08 (p=0.00, d=+1.09) 1.30± 1.10 (p=0.00, d=+1.18)
Afull 0.53± 1.22 (p=0.06, d=+0.44) 0.76± 0.96 (p=0.00, d=+0.79)
Anres

full 0.63± 1.30 (p=0.03, d=+0.48) 0.32± 1.44 (p=0.32, d=+0.22)
Ares

full 0.33± 0.52 (p=0.01, d=+0.63) −0.02± 0.58 (p=0.87, d=−0.04)

Table 4.4: We report the average regret differences between the baseline ran-
dom search and the WS-based random search (RSbs −RSws), and between
the baseline random search and the WS-based greedy search (RSbs−GSws)
in the one-shot paradigm. We additionally report the pooled standard de-
viation, the p-value, as well as the effect size d. For clarity purposes,
regrets are multiplied by 100. We test for the statistical significance
of the difference using an independent t-test and report the resulting p-
values. Results highlighted in blue correspond to settings where the consid-
ered method performed significantly worse than the random search baseline
(p < 0.05), whereas results marked in red highlight settings in which the
considered method performed significantly better than random search base-
line (p < 0.05).

of a single WS-picked architecture), WS-based approaches seem to perform
better on average than the baseline RS and GS but can be quite unreli-
able.

56 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

105 107

time (s)

10−3

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(a) A4

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(b) A3

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(c) A2

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(d) A1

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(e) Afull

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(f) Ares
full

105 107

time (s)

10−2

t
e
st

r
e
g

r
e
t

RSbs

RSws

GSbs

GSws

(g) Anres
full

Figure 4.2: We report for a few search space the test regret as a function
of time for the different NAS algorithms considered. Curves are averaged
over 100 runs for RSbs and GSbs, and 25 runs for RSws and GSws. Visible
colored areas correspond to the 95% confidence interval for the estimation
of the average. Notice that both axes use a logarithmic scale.

We report in Table 4.4 the average regret difference between the base-
line random search and the weight-sharing based random search (RSbs −
RSws), and between the baseline random search and the weight-sharing
based greedy search (RSbs −GSws), in the one-shot setting. Numerical and
statistical results coincide with the visual results of Figure 4.2. Similarly,
we report in Table 4.5 the average regret difference between the baseline

4.4. Results 57

GSbs −RSws GSbs −GSws

A4 0.30± 1.21 (p=0.27, d=+0.25) 0.19± 1.25 (p=0.51, d=+0.15)
A3 0.72± 1.45 (p=0.03, d=+0.50) 0.28± 1.50 (p=0.41, d=+0.18)
A2 1.67± 2.92 (p=0.01, d=+0.57) 1.86± 2.92 (p=0.01, d=+0.64)
A1 2.46± 1.85 (p=0.00, d=+1.33) 2.50± 1.84 (p=0.00, d=+1.36)
Afull 1.42± 3.03 (p=0.04, d=+0.47) 1.67± 2.95 (p=0.01, d=+0.57)
Anres

full 1.48± 1.76 (p=0.00, d=+0.84) 1.14± 1.85 (p=0.01, d=+0.62)
Ares

full 0.78± 0.87 (p=0.00, d=+0.90) 0.43± 0.93 (p=0.04, d=+0.47)

Table 4.5: We report the average regret differences between the baseline
greedy search and the WS-based random search (GSbs−RSws), and between
the baseline greedy search and the WS-based greedy search (GSbs −GSws)
in the one-shot paradigm. We additionally report the pooled standard de-
viation, the p-value, as well as the effect size d. For clarity purposes,
regrets are multiplied by 100. We test for the statistical significance
of the difference using an independent t-test and report the resulting p-
values. Results highlighted in blue correspond to settings where the consid-
ered method performed significantly worse than the greedy search baseline
(p < 0.05), whereas results marked in red highlight settings in which the
considered method performed significantly better than the greedy search
baseline (p < 0.05).

greedy search and the weight-sharing based random search (GSbs −RSws),
and between the baseline greedy search and the weight-sharing based greedy
search (GSbs −GSws).

Combining WS and random search results in a significant improvement
over the baseline random search (left column of Table 4.4) on A1 (d =
+1.09, p = 0.00), Anres

full (d = +0.48, p = 0.03) and Ares
full (d = +0.63, p =

0.01), but grants significant worse results on A4 (d = −0.85, p = 0.00).
Results on A3 (d = −0.26, p = 0.25), A2 (d = +0.42, p = 0.07) and Afull

(+0.44, p = 0.06), are below our effect size threshold and non-significant.
Unsurprisingly, the baseline greedy search performs worse than the baseline
random search in the one-shot setting, as can be deduced from the left
column of Table 4.5, where GS is outperformed on all but one search space.
This is to be expected from an algorithm without any direct exploration
of the search space. Results in Table 4.4 moreover suggest that combining
WS with GS rather than RS results in unexpected behaviors, as it can
either improve (A2, A1, Afull), or be detrimental to (A4, A3, Anres

full , Ares
full)

performances depending on the search space.

All in all, results suggest that in a one-shot setting, WS can improve
the performance of RS but that its efficiency is inconsistent and on average
relatively small. To put the different reported regrets in context, one can
consider that with an effect size d = +0.44 for the WS based RS over
baseline RS on Afull, the probability that a random run with WS produces

58 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

a smaller regret than the baseline given the same time budget is only around
61% (Magnusson, 2020). On A1, where WS is somehow very effective and
produces a large effect size of d = +1.09, this probability reaches a maximum
of 78%. On the contrary, on A4, where WS is least effective, this probability
can get as low as 7%. As it has been noted several times in the literature
Li et al., 2019; A. Yang et al., 2020; K. Yu et al., 2020b, reporting the
results over several runs is thus crucial to NAS research, especially when
considering moderate or small effect sizes.

Interestingly, Table 4.4 reveals no clear link between the average level of
correlation reached by WS on a search space and its ability to outperform a
baseline RS in a one-shot setting: on Anres

full , where correlations in Table 4.3
are the lowest, WS significantly outperforms RS, whereas it offers terrible
results on A4 despite significantly better correlations. WS offers similar
correlations on A2 and A3, but the WS-guided greedy search respectively
gives smaller and larger regrets than the baseline random search. On Ares

full

and A1, where WS offers the best correlations, the WS-guided greedy search
is respectively equivalent to RS, and much better than RS.

Under the time constraints of one-shot NAS, WS can slightly outperform
a baseline RS, although rarely to a significant extent, and can even be worse.
Besides, there seems to be no obvious relationship between the level of cor-
relation between proxy and standalone evaluations, and the performances
of WS on a search space.

4.4.3 Variations between Search Spaces

From Section 4.4.2, WS-guided NAS seems to often slightly outperform RS,
but this depends on the search space.

Coincidentally, we notice from the results of Section 4.4.1 that simply
changing the number of nodes connected to the output makes the average
correlation vary between 0.59 on A3 and 0.68 on A1. Additionally, restrict-
ing the search space to architectures presenting a residual connection has a
noticeable positive effect on the correlations, as they increase from 0.46 to
0.71 between Anres

full and Ares
full. The search space itself has an important im-

pact on the correlations, even more so when using the training enhancements
described in Section 4.2.2.

The size of the datasets could explain the varying correlations. It has
often been asserted in the literature that, the more architectures there are in
the search space, the harder it is to train the super-net. The Spearman rank’s
correlation between the average correlation obtained with batch-size fine-
tuning (bns-ft) reported in Table 4.3 and the sizes of the dataset reaches
−0.71 (p = 0.07). The effect hints that larger search-spaces could possibly
lead to smaller correlations between proxy and standalone evaluations, but

4.4. Results 59

the relatively low number of search spaces of this study prevents us from
positively rejecting the null hypothesis that it does not with great confidence,
and further studies are required to conclude on this matter. Besides, results
in Section 4.4.1 suggest that it is probably not the only aspect of the search
space that is of influence. On A2 and A3, WS offers roughly the same level of
correlation, despite A2 being twice larger than A3. The correlation achieved
is 25% smaller in Anres

full than in Afull, with 23% less architectures. It is also
interesting to note that few architectures are actually seen during training:
given 432 training epochs of 157 mini-batches of data, less than 67, 824
unique architectures are used to update the super-net. This might be enough
to cover A4 or Ares

full, but represents only a tiny fraction of larger datasets,
such as A2 (≃ 200, 000 architectures), or Afull (≃ 400, 000 architectures).
Further studies are required to clearly establish whether the size of the
dataset has a non-negligible impact on the correlation capabilities of WS,
but several facts suggest that it cannot entirely explain the discrepancies
between the different search spaces.

We report in Figure 4.3 and for each search space a scatter plot between
the true validation accuracies and the proxy accuracies resulting from train-
ing a super-net. Interestingly, several visible clusters seem to be linked to
proxy evaluations. For each scatter-plot, we report the distributions of the
true validation and proxy accuracies over sampled architectures. Coinciden-
tally with the different visible architecture clusters, distributions of proxy
evaluations are much less regular than their true validation counterparts,
often presenting several modes. The clusters of architectures in the scatter-
plots visually transcribe existing biases in proxy evaluations.

There is no trivial relation between different biases and particular struc-
tural properties of the architectures. Fortunately, some biases are easier to
highlight than others. We focus on two such biases in Figure 4.4. On A1,
architectures with a residual connection tend to get better evaluations than
those without. On A4, the presence of a 3× 3 convolution on the first node
triggers over-evaluation. Such clusters can be seen in the scatter plots of
all search spaces except Ares

full. Different search spaces bias the super-nets
in different ways, resulting in different structural patterns of over/under-
evaluations.

The patterns appearing in the scatter-plots may explain the search results
of Section 4.4.2 better than the correlations level reached by WS. On A4, the
over-evaluation bias visible in Figure 4.4 creates a cluster of architectures
with excellent proxy accuracies. As a result, in a one-shot paradigm, WS
neglects a large number of architectures with equal or better capabilities
that random search does not miss. Although the cluster contains a few
of the best architectures, its average standalone accuracy is particularly
poor. This impedes WS from selecting top models, and makes the early WS-

60 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90
ρs = 0.67

0.3

0.4

0.5

0.6

(a) A4

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.59

0.2

0.3

0.4

0.5

0.6

(b) A3

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.59

0.2

0.3

0.4

0.5

(c) A2

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.69

0.2

0.3

0.4

0.5

(d) A1

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.56

0.1

0.2

0.3

0.4

(e) Afull

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.69

0.60.6

0.70.7

0.8

(f) Ares
full

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.37

0.2

0.3

0.4

(g) Anres
full

Figure 4.3: We report, for a few search spaces, a scatter plot of the proxy
accuracy computed using a super-net bns-ft (y-axis), and the average val-
idation accuracy returned by NB-101(x-axis) for 10,000 architectures.

guided search worse than RS on this particular search space. On A1, the
over-evaluation bias towards residual connections benefits to the search, as
architectures with residual connections are better on average and constitute
most of the best architectures of the search space. The WS-guided search is
in turn quite efficient.

4.4. Results 61

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90 0.95
ρs = 0.70

0.2

0.3

0.4

0.5

(a) A1

nasbench (%acc)

w
e
ig

h
t
-s

h
a
r
in

g
(%

a
c
c
)

0.85 0.90
ρs = 0.68

0.3

0.4

0.5

0.6

(b) A4

Figure 4.4: We report for a super-net trained on A1 (left) and A4 (right)
the proxy accuracy computed after fine-tuning the batch-norm statistics (y-
axis), and the average validation accuracy returned by NB-101 (x-axis) for
1, 000 architectures. We highlight in a darker tone the points corresponding
to architectures with residual connections (left) and architectures with a
3 × 3 convolution on the first node (right). Both examples reveal a clear
bias in super-net evaluations. We also report the distributions of the proxy
and standalone accuracies of the sampled architectures for the complete
population and for the sub-population of interest.

The patterns of over/under-evaluations dictate the search behavior when
exploiting WS. If WS is biased towards interesting patterns in the considered
search space, then it is likely to perform much better than random search.
Otherwise, the difference may not be significant. In the worst scenario, the
bias can even be strong enough to undermine the performances of WS.

62 Chapter 4. WS on the NB-101 Dataset: A Practical Case Study

Chapter 5

Neural Architecture Search
for Fracture Classification

Contents

5.1 Introduction . 65

5.2 Related Work . 66

5.3 Methods . 66

5.3.1 Fracture Patches Dataset 66

5.3.2 ImageNet pre-training 67

5.3.3 Search Space . 68

5.3.4 NAS Configuration 68

5.3.5 Architecture Training and Evaluation 69

5.4 Results . 69

5.5 Conclusion . 71

63

64 Chapter 5. Neural Architecture Search for Fracture Classification

In this chapter, we try to assess the efficacy of tailoring DCNN architec-
tures to traumatic radiographs. As an alternative to the fracture detection
problem, we start by introducing a fracture patch classification task on which
NAS is tractable. Then, after reaffirming the importance of using transfer
learning from natural images, and emphasizing the apparent incompatibil-
ity between NAS and pre-training, we introduce an efficient scheme based
on weight sharing that makes it possible to exploit both conjointly. Using a
plain genetic algorithm and a search space of efficient architectures, we show
that it is possible to find architectures that are better suited to our problem
than their counterparts selected on ImageNet, both in terms of diagnostic
performance, and inference-time computational efficacy.

5.1. Introduction 65

5.1 Introduction

We have seen in Chapter 2 that the high prevalence of traumatic skeletal
injuries and the shortage of radiologists called for the automation of the
fracture detection task. We additionally presented several deep learning
systems which are capable of increasing the fracture detection diagnostic
performance of radiologists, and can even outperform medical experts on
their own. Such solutions notably include the work of Lindsey et al., 2018
and the approach developed by Gleamer (Duron et al., 2021; Guermazi et
al., 2021).

Those algorithms were built using long established CNN backbones orig-
inally designed and tuned to perform well on natural images datasets. Re-
using such off-the-shelf models allows authors to rely on transfer learning
through fine-tuning, a feature that is key to improve performance when
data sources are relatively scarce (Kornblith et al., 2019). Pre-training is
however a double-edged sword, as fine-tuning models means making use
of architectures which design might be sub-optimal for the task at hands.
In opposition, tailoring model architectures to radiographs using the NAS
paradigm which we thoroughly described in Chapter 3 is a promising lead
for improved performance.

Unfortunately, classical NAS approaches are hardly compatible with pre-
training, as they involve the evaluation of many different architectures for
which no set of pre-trained weights might be available in advance. Since
in practice we find that pre-training models grants a greater performance
improvement than manually selecting better architectures, NAS appears to
be meaningless in settings where one can only perform one or the other. A
naive approach to bridge the gap between the two paradigms would be to
train each architecture considered by the NAS algorithm twice: once as pre-
training on a dataset of natural images, and a second time for the fine-tuning
on the task of interest. But it transpires quite clearly that this scheme would
further increase the computational burden of an approach which is already
remarkably resource-inefficient.

In this chapter, we first introduce the task of fracture patch classification
as a cheaper alternative to the fracture detection task. Using this new
problem, we reaffirm the importance of transfer learning. We then introduce
a procedure which uses a supernet trained with WS as a source of pre-
trained weights for an entire search space and thus reconciles classical NAS
approaches with transfer learning. By exploiting our approach on a search
space of efficient architectures, we challenge the efficacy of the architecture
fitting paradigm, and demonstrate using a plain genetic algorithm that it is
possible to create architectures better-suited to radiographs both in terms
of clinical performance, and computational efficiency.

66 Chapter 5. Neural Architecture Search for Fracture Classification

5.2 Related Work

As presented in Chapter 2, several deep learning based solutions to the
fracture detection problem have been studied in the literature. However, no
AI-technology breakthrough has clearly emerged so far. All the authors de
facto reuse an off-the-shelf architecture designed and pre-trained on datasets
of natural images, which they fine-tune on private annotated datasets of
fractures. In particular, this work is based on the detection model of Gleamer
Duron et al., 2021; Guermazi et al., 2021, which we also presented in Chapter
2. This model was obtained by fine-tuning a Mask-RCNN (He et al., 2017)
pre-trained on COCO on a private internal dataset of 60,000 radiographs
of patients with trauma gathered from 22 institutions and annotated by
medical experts.

Adjusting the design of a DCNN to a particular problem is a time-
consuming task, which can be automated using NAS, as previously described
in Chapter 3. Several approaches to NAS have been studied in the literature,
from using deep reinforcement learning (RL) Zoph et al., 2017a; Zoph et al.,
2018b, evolutionary algorithms Real et al., 2017; Real et al., 2019a or even
fully differentiable approaches H. Liu et al., 2019a. However the inherent
training cost of a single deep learning architecture is a strong limitation of
this paradigm, and early NAS approaches Real et al., 2019a; Zoph et al.,
2018b; Zoph et al., 2017a suffered from impractical computational costs. A
plethora of papers relying on Weight-Sharing (WS), a computational trick
allowing to train all the architectures of a search space at once have since
emerged. This WS mechanism is however poorly understood, and we have
shown in Chapter 4 that its capabilities are quite limited. In this paper,
rather than directly conducting NAS using WS, we propose to exploit a
super-net trained on natural images as a generator of pre-trained weights
used to fine-tune architectures on our fracture classification task.

5.3 Methods

In this section, we first introduce our dataset of fracture patches. We then
describe our scheme to combine NAS and transfer learning from natural
images. From there, we introduce the search space of the Once For All
framework (Cai et al., 2020), and the genetic algorithm with which we per-
form NAS. Finally, we describe the individual training setup of architec-
tures.

5.3.1 Fracture Patches Dataset

Medical object detection models often take a fairly long time to train, on
account of the high resolution images required to detect the complex and

5.3. Methods 67

wide variety of patterns that they need to work with. In turn, rather than
performing NAS on the fracture detection problem, we propose to consider
the easier task of predicting whether an image patch contains a fracture or
not. In order to create a diverse yet realistic set of patches, we rely on the
detection model of Gleamer. During inference, the detection model produces
bounding boxes of interest, each coming with an associated score, ranging
from 0 to 100, expressing the confidence of the network in the presence of
a fracture within the suggested region. We performed a forward pass on
the training images of the private internal dataset of Gleamer, and kept
the predicted bounding boxes with a confidence above 10. This procedure
generated 500,000 patches, which we split into a training, a validation and
a test dataset, respectively containing 60%, 20% and 20% of the samples.
Extracting patches solely from the detection training dataset is necessary
for fair model comparisons as it ensures that the distribution of prediction
localizations is the same during training, validation and test of the clas-
sification task. Predicted bounding boxes that had an intersection over
union (IoU) with a ground truth bounding box above 0.5 were considered
positives. Samples with an IoU below 0.2 were deemed negatives. During
training, boxes with intermediate IoUs between 0.2 and 0.5 were ignored so
as not to confuse the classification networks, but were considered negatives
during testing.

5.3.2 ImageNet pre-training

Fine-tuning architectures pre-trained on large image classification datasets
such as ImageNet is a well known strong baseline when working with scarce
data sources (Kornblith et al., 2019). Although the extent to which this
transfer learning is beneficial ultimately depends on the task at hands (Ko-
rnblith et al., 2019), we found that leveraging ImageNet pre-training was
essential for our fracture classification task. As will transpire clearly in Sec-
tion 5.4, the performance increase resulting from ImageNet pre-training is
substantially greater than what is usually gained by optimizing an archi-
tecture to a problem. Nonetheless, NAS algorithms commonly train archi-
tectures from scratch. This is reasonable, as the ImageNet dataset itself
is used to evaluate NAS procedures. Besides, naively incorporating this
pre-training further increases computational expenses, as each architecture
needs to be first pre-trained, then fine-tuned on the task of interest. Instead
of pre-training each individual architecture separately, we propose to exploit
a pre-trained super-net. Indeed, by design, the weights of all associated
architectures can be extracted from the sole training of this super-net. Al-
though the individual performance obtained with shared pre-trained weights
are likely worse than those of individual training, they provide a cheap and
efficient proxy.

68 Chapter 5. Neural Architecture Search for Fracture Classification

5.3.3 Search Space

Training super-nets is a long and minute process which requires very specific
tricks such as the in-place distillation of bigger sub-networks into smaller
ones, specific initialization schemes, or the progressive shrinking of the sub-
networks considered (Cai et al., 2020; J. Yu et al., 2020). To overcome
those difficulties, we rely on publicly available assets. Few of the approaches
described in the literature provide the code used for their development. The
sole work additionally providing the weights of their trained super-net that
we could find was the Once For All (OFA) framework of Cai et al., 2020.
The goal of the OFA approach is to quickly find neural architectures adapted
to specific inference settings, a task in which WS particularly shines given
its ability to very quickly evaluate architectures of interest. Each model of
their search space can be divided into five stacks of several convolutional
layers. The number of convolution layers in each stack varies between 2, 3
and 4. Individual layers are based on inverted residual blocks Sandler et al.,
2018, and each layer has an expansion ratio chosen between 3, 4 and 6, and a
kernel size, chosen between 3, 5 and 7. In total, an architecture is described
by 45 parameters, each taking 3 possible values. For deeper understanding
of the ins and outs of OFA, we refer the reader to the original paper.

5.3.4 NAS Configuration

There is evidence in the literature that local search based NAS algorithms
perform quite well (Den Ottelander et al., 2021; White et al., 2020). Us-
ing a genetic algorithm to optimize the architecture follows naturally, es-
pecially considering the original results of Real et al., 2017; Real et al.,
2019a. To perform the optimization, we opt for a plain (1 + 1) evolution
strategy which benefits from straight-forward parallelization (Rechenberg,
1978). At any time, to suggest an architecture, the algorithm considers the
best model found so far, and creates a child candidate by applying random
mutations. During this mutation process, each of the 45 parameters of the
current best model is modified with probability p, which varies with the
considered heuristic. Typically, p is set to the inverse of the dimension of
the problem, such that on average a single parameter is modified. To fur-
ther accelerate the process, we bootstrap the search from the best model
found on ImageNet by the OFA authors, and set it as the first best architec-
ture. Still, to prevent the optimization process from getting stuck around
this model, we mimic brain storm optimization (Y. Shi, 2011), by decaying
the mutation probability from 1 to 1

45 over the course of the optimization.
Since we indirectly encourage the NAS approach to search for architectures
in the neighbourhood of the best OFA model, we do not impose strong com-
putational constraints on the found architectures, and optimize solely for
the performance metric described in the next section. The optimization is

5.4. Results 69

performed using the Nevergrad framework (Rapin et al., 2018).

5.3.5 Architecture Training and Evaluation

To reduce the computational cost of search, we follow the path of Tan et al.,
2019a; Tan et al., 2019b and evaluate models after five training epochs. We
optimize architectures with standard stochastic gradient descent, using an
initial learning rate of 0.02 decayed to 0 over the course of the five epochs
using a cosine annealing scheme, a momentum of 0.9, batch-size 128 and a
weight-decay of 10−4. We additionally use exponential moving average of
the weights, with a decay of 0.99. To evaluate the obtained models on the
validation dataset, we report the performance of the underlying detection
model obtained when replacing the scores of the original detection model
with those of the newly trained model. Each patch is associated to the frac-
ture score returned by the classification model, and we compute the area
under the FROC curve (AUFROC) (Bandos et al., 2009) as the metric of
interest. Images of our datasets are grouped in studies, with each study
corresponding to a unique patient examination. The FROC curve is ob-
tained by performing a study-wise average of the recall, as a function of the
average number of false positives. A fracture is considered detected if it is
accurately pinpointed on at least one of the images of the considered study.
The AUFROC is the area under the resulting curve. We report the reader to
the analysis of the fracture detection metrics which we performed in Chap-
ter 2 for further details. To avoid having to work with varying intervals of
definition, we choose to integrate the AUFROC between 0.02 and 0.5 false
positives per image, as those two points cover most of the operating points
of radiologists (Duron et al., 2021). During the NAS run, we evaluate 100
architectures. Each individual training is performed on a cluster of four K80
GPUs, with 10 cluster running in parallel at all times.

5.4 Results

We report the evolution of the validation scores of the models selected by
the NAS algorithm in Figure 5.1. The total computing time amounts to
around 450 hours. The influence of the brain storm optimization process
presented in Section 5.3.4 can be deducted from the performance evolution.
The top left point, which corresponds to the best ImageNet model found
by the OFA authors, provides a strong anchor point to the search. In the
beginning of the run, the high mutation rate results in a performance drop,
but several candidates of interest are found later on.

Figure 5.2 provides a scatter plot of the number of trainable parameters
of the architectures encountered over the run, against their validation score.
Interestingly, no architecture was sampled with more parameters than the

70 Chapter 5. Neural Architecture Search for Fracture Classification

0 25 50 75 100
Eval. Index

0.68

0.69

0.70

0.71

0.72

0.73

0.74

A
U

F
R

O
C

Figure 5.1: Evolution of validation performance over the search. The red
point marked by a star on the top left corresponds to the best architecture
found on ImageNet by Cai et al., 2020. The red (resp. green) horizontal line
indicates the corresponding score, (resp. the best found validation metric).

reference OFA model. Among the sampled parameters, the first five act
most on the number of parameters, as they dictate the number of convo-
lutions appearing in each of the five blocks constituting the model. For
the original OFA architecture, four out of those five parameters were set to
their maximum value. This makes it hard to sample an architecture with
more parameters in the early part of the brainstorm process where search
is close to random. In the middle of the search, the algorithm could find
an architecture with less convolution layers that performed better. This
new architecture became the reference around which the next architectures
were more closely sampled as the brainstorming faded away, which made
sampling architectures with less parameters easier.

From the architectures found by the NAS, we extract the three with
the best validation metrics and re-train them with the setting described
in Section 5.3.5, but increasing the number of epochs to 20. Out of the
three, our final architecture is the one with the best validation performance
after this longer training. We refer to it as FractNet. We also perform
this re-training for the best ImageNet OFA model. Additionally, we train
with the same setting ResNet-152 and DenseNet-161 baselines, and models
from the EfficientNet family (Tan et al., 2019b), which are state-of-the-art
lightweight models, obtained using NAS on the ImageNet dataset over a
different search space than OFA. All of those additional networks were pre-
trained on ImageNet. To illustrate the relevance of pre-training, we further
gather the performances of the OFA model and our FractNet, when training
from scratch under the same setting.

Table 5.1 reports the final test metrics, as well as the number of param-

5.5. Conclusion 71

4 5 6 7 8
Nb. Parameters (1e6)

0.68

0.69

0.70

0.71

0.72

0.73

0.74

A
U

F
R

O
C

Figure 5.2: Scatter plot of the validation performance against the number
of parameters of the architectures seen during NAS. The red star marks the
best OFA ImageNet architecture.

eters and the number of multiply-adds for the processing of a single image
for each architecture and training of interest. The results first show that
transfer learning is key to the problem, and that performing NAS without
pre-training would be pointless. Secondly, our final FractNet model per-
forms slightly better than the best ImageNet-selected OFA network, whilst
having around 18% less parameters. This indicates that the architecture
tailoring process has potential for improving performances in computation-
ally constrained settings. Thirdly, our FractNet model has about the same
number of parameters as an EfficientNet-b1, whilst performing slightly bet-
ter. This strengthens our stand that task-specific architectures can improve
performances. Finally, we see that our FractNet model reaches promising
results compare to much larger models such as ResNet-151 or DenseNet-161,
which require 20 and 13 times as many multiply-adds operations per image
processed respectively.

5.5 Conclusion

In this chapter, we have considered tuning DCNN architectures to the prob-
lem of fracture patch classification. We have shown that exploiting transfer
learning was key to alleviate data sparsity and drastically reduces comput-
ing times. To perform NAS without losing the benefits of pre-training, we
have proposed to exploit a super-net trained on ImageNet as a generator
of pre-trained weights used to fine-tune architectures on our task. From
there, we introduced a plain genetic NAS algorithm and performed NAS on
the search space of computationally efficient architectures introduced by the
authors of the OFA framework. With this approach, we have created the

72 Chapter 5. Neural Architecture Search for Fracture Classification

Network AUFROC #Params #MAdds

DenseNet-161 0.773 26.3M 7.7B
ResNet-152 0.768 58.2M 11.7B

EfficientNet-b0 0.740 4.0M 0.38B
EfficientNet-b1 0.748 6.5M 0.57B

OFA 0.746 7.8M 0.61B
FractNet 0.754 6.4M 0.56B

OFA • 0.676 7.8M 0.61B
FractNet • 0.674 6.4M 0.56B

Table 5.1: For each model of interest, we report the test AUFROC, the
number of trainable parameters (#Params), and the number of multipy-adds
operations for the inference of a single image (#MAdds). OFA refers to the
best model found on ImageNet by the authors of the OFA framework (Cai et
al., 2020). FractNet refers to the model selected using our NAS approach.
Models marked with a black bullet were trained without ImageNet pre-
training.

FractNet model, which obtains better performances on the fracture classi-
fication problem whilst reducing computational overheads. This validates
both the relevance of the architecture tailoring process, as well as our in-
troduced super-net pre-training protocol. As further work, one could try to
replicate this scheme on other search spaces, such as the EfficientNet search
space. It would also be interesting to explore whether the performance gap
with respect to much larger architectures could be reduced through tech-
niques such as model distillation, or by slightly increasing model capacity
using the EfficientNet growing strategy. Still, it is worth noting that the
increase in performance resulting from our scheme was only moderate, and
was obtained at an important cost of around 450 GPU hours worth of com-
puting.

Chapter 6

Estimating Bone Age
With Deep Learning

Contents

6.1 Introduction . 75

6.2 Related Work . 77

6.3 Experiments . 81

6.3.1 Clinical Validation Dataset 81

6.3.2 Setting up a Baseline 82

6.3.3 Adjusting for Prevalence Bias 84

6.3.4 Exploiting the RHPE Dataset 86

6.3.5 Adjusting for Chronological Age Bias 89

6.4 Conclusion and Perspectives 91

73

74 Chapter 6. Estimating Bone Age with DL

In this chapter, we introduce the bone age assessment (BAA) problem
and the different methods used by radiologists to perform its diagnosis. We
then carry out a brief review of recent deep learning solutions to BAA, with a
particular focus on the results of the RSNA pediatric bone age challenge. To
analyze the generalization capabilities of a BAA model trained on the RSNA
dataset, we introduce a BAA clinical dataset of our own. Starting from the
solution of the winners of the challenge, we modernize the training setup to
slightly alleviate the computational resources, and reveal that the resulting
model is biased towards certain age and sex categories. We propose a simple
weighting mechanism to counteract this bias and display its efficiency on our
internal dataset. Making use of another public dataset for which the chrono-
logical age of the patients were available, we demonstrate that incorporating
this information as an input to the model decreases the global average error,
but further biases the model, deteriorating its performance in the detection
of pathological patients. We argue that this effect has been ignored in the
literature, and show that by correcting the two biases at the same time using
the weighting procedure, we are able to significantly improve the performance
of our baseline model, which performs substantially better than a reference
radiologist tasked to perform BAA on our clinical dataset.

6.1. Introduction 75

6.1 Introduction

Bone age, as opposed to calendar or chronological age, is a constructed
estimation of a patient’s skeletal maturity. When performing bone age as-
sessment (BAA), radiologists determine a bone age value by referring to one
of several standard BAA methods. The main indications for BAA are the
detection of early or late puberty, the detection and monitoring of endocrine
disorders and the assessment of adult height (Satoh, 2015). Another con-
troversial indication of BAA is to determine whether juvenile migrants are
of legal age (Schumacher et al., 2018).

Out of all BAA methods, the two most widely used are the Greulich
and Pyle (G&P) method (Greulich et al., 1959) and the Tanner-Whitehouse
(TW) method (James Mourilyan Tanner, 1983). Both rely on a radiograph
of the patient’s left hand. The predominance of hand radiographs can be
explained by several factors. First, the hand is comprised of 27 distinct
bones (8 carpal bones and 19 short bones forming the fingers), which can
all be clearly observed from a single X-ray. Secondly, hand radiographs are
easier to perform, especially on younger patients. Finally, hand radiographs
can be obtained with relatively low level of radiations (Mettler Jr et al.,
2008). Although it is possible to assess bone age using both hands, it is
customary to use the left one, as it is less likely to be hurt considering
the natural prevalence of right-handed persons. Other notable anatomical
regions explored to estimate bone age are the clavicle (Kreitner et al., 1998),
the teeth (Willems, 2001), the iliac crest (Little et al., 1994) and the femoral
head (Castriota-Scanderbeg et al., 1995). One significant feature of almost
all BAA methods is that male and female patients are diagnosed separately,
due to difference in growth patterns.

The G&P method is by far the most prevalent BAA method in practi-
cal settings. It consists in comparing a hand radiography of a patient with
an atlas of reference cliches. This atlas was collected between 1931 and
1942 from upper middle class Caucasian children living in Cleveland, Ohio,
United States. Cliches were separated by sex, and each sex atlas had its
patients split in bone age bins of various sizes. We provide examples of
such reference images in Figure 6.1. When performing the exam, the radi-
ologist matches a patient radiograph with its closest image from the atlas,
and reports the bone age provided by the atlas. The main reasons why
this approach has become popular is because it is both easy to learn, and
relatively fast compared to other methods. Still, there are some drawbacks
to G&P. First, it is known that there is a non-negligible part of subjectivity
in the result, and that the measure has a high intra-reader and inter-reader
variability. This subjectiveness can be partially explained by the absence of
standardization in the contribution of different bones to the final bone age
score. Hand bones grow at different rates, and different bones can display

76 Chapter 6. Estimating Bone Age with DL

(a) F, 16Y (b) M, 3Y4M

Figure 6.1: Examples of reference images found in the Greulich and Pyle
atlas. On the left, a hand radiograph of a female patient with a reference
bone age of 16 years. On the right, a male patient with a reference bone
age of 28 months. Images are from Gilsanz et al., 2005. Growth is almost
complete on the left, whereas the hand on the right is missing most of the
carpal bones, and the cartilage at the tip of the finger bones are not yet
merged with the bones themselves.

growth characteristics of different bone ages. From there, some radiologists
might give more importance to carpal bones or finger bones, resulting in
different matches in the G&P atlas, and thus different bone ages. It is also
important to note that the atlas itself was designed more than 60 years ago
and with a very specific populations, indicating that it might be less relevant
to use for current children, and children of a different ethnicity (Alshamrani
et al., 2019).

The other common BAAmethod is the Tanner-Whitehouse (TW) method
(James Mourilyan Tanner, 1983), and its updates. Unlike G&P, TW is
based on the score of local regions. 20 anatomical regions, corresponding
to different bones, are each assigned a maturity level which is translated
into a numerical score. Local scores are then summed into a unique global
score, which is mapped into the final bone age estimate, based on the sex
of the patient. TW offers several advantages over G&P. First, the over-
all result is more objective and more reproducible than G&P, thanks to
the more fine-grained assessment of the bone ages. Additionally, the final
mapping between the global maturity score and the final bone age results
can be fine-tuned to different populations. Despite TW being objectively
more appropriate, it is much more time expensive, which severely limits its
application in clinical settings.

6.2. Related Work 77

In this chapter, we introduce a clinical validation dataset for the BAA
task, and study whether a relevant bone age prediction tool can be developed
using publicly available bone age assets. We show that solutions introduced
in the literature contain hierarchical bias structures that impede their direct
application, and introduce simple weighting mechanisms to counteract those
effects.

6.2 Related Work

Bone age assessment methods, because of their important inter-reader and
intra-reader variance, are well suited for automation. Potential benefits
for radiologists are in the detection of minute growth differences, and the
standardization of the bone age estimations. Several automated BAA tools
were created in the early days of AI (Michael et al., 1989; J. Tanner et al.,
1992), and an extensive survey of those methods can be found in the work
of Mansourvar et al., 2013. One of their notable aspect is that they tend to
focus on the TW paradigm, in which local features and scores are combined,
rather than the holistic paradigm of G&P. More recently, Thodberg et al.,
2008 introduced a ML-based solution to the BAA task. The architecture of
their system, BoneXpert, combines three layers. The first layer’s task is to
reconstruct the borders of 15 hand bones, and predict whether their shape
is valid. The second layer examines each bone independently, and assigns it
a bone age score based on its shape, intensity and texture. In the final layer,
the individual scores are aggregated to form a final prediction according to
either the G&P or TW method. BoneXpert was trained using 1,559 images,
and was validated on several clinical test datasets. We focus the rest of this
literature review on approaches making use of DL technologies.

Spampinato et al., 2017 were the first to train several DCNNs to directly
predict bone age from hand radiographs. For this purpose, the Digital Hand
Atlas Database (DHAD) (Gertych et al., 2007), a public dataset of 1,400
hand X-rays equally representing four ethnic backgrounds was exploited.
Each image of the DHAD had previously been examined by two paedi-
atric radiologists who independently decided on a bone age using the G&P
method. The average of their predictions constituted the final ground truth
labels. The authors fine-tuned several architectures such as GoogLeNet
(Szegedy et al., 2015), VGG (Simonyan et al., 2014) and OverFeat (Sermanet
et al., 2013) on the dataset. Although fine-tuned networks performed great,
authors additionally introduced their BoNet architecture, which was com-
posed of pre-trained layers from an OverFeat network, with additional convo-
lutional layers randomly initialized, and a hand localization layer (Jaderberg
et al., 2015). Models were trained on crops of resized versions of the original
image. The size of the crops varied from 224×224 to 299×299, depend-
ing on the utilized backbone. Crops were augmented using standard data

78 Chapter 6. Estimating Bone Age with DL

augmentation techniques, including horizontal flips, rotations and transla-
tions. Networks were optimised using SGD with momentum for 150 epochs
to minimize the Mean Squarred Error (MSE) loss with the ground-truth
bone ages. Since the DHAD does not propose a train/validation/test split,
models were evaluated using 5-fold cross validation. The final BoNet sys-
tem had a Mean Average Error (MAE) with the ground-truth annotations
of 9.48 months.

To facilitate future researches in the BAA field, Larson et al., 2018, intro-
duced a dataset of 14,035 left hand radiographs coming from two different
institutions. Similarly to DHAD, X-rays were examined by pediatric radiol-
ogists and the average of their G&P predictions was used as ground-truth.
The dataset was then split into a training, validation and test sub-dataset.
The authors then fine-tuned a pre-trained ResNet-50 network, to predict a
probability score for each sex and each month from 0 to 19 years, resulting
in a total of 456 classes. Optimization was performed using the Adam algo-
rithm (Kingma et al., 2014). Input images were resized from their original
size to 256×256 and pre-processed with the CLAHE algorithm (Pizer et al.,
1987), with different thresholds used to create fake color channels. Standard
data augmentations were also performed. On the newly submitted test set,
the authors report a MAE of 6 months, whilst on the DHAD test set, their
model reached a Root Mean Square Error (RMSE) of 8.76 months. The
MAE error on the DHAD test set is not reported.

The popularity of the BAA task greatly increased within the DL com-
munity with the organization of the Radiological Society of North America
(RSNA) Pediatric Bone Age Machine Learning Challenge, by Halabi et al.,
2019. Reusing the dataset introduced by Larson et al., 2018, which from
now on we will refer to as the RSNA dataset, contestants were invited to try
to predict the bone age associated to full hand radiographs. The authors
briefly recap the different solutions proposed by the top five teams.

1. Fifth place, constestants, Chen et al., introduced a U-Net model (Ron-
neberger et al., 2015), trained to predict segmentation masks for the
hands using 400 manually labeled images. New image channels were
then built with the resulting masks. Several architectures including
ResNet-50, Inception-v3 and Xception were optimized for 200 epochs
using images resized to 299×299 and standard data augmentations.
The gender information was incorporated to the network through an
embedding layer. Using an ensemble of their best models the partici-
pants reached a MAE of 4.527 months.

2. The fourth place was obtained by the BoneXpert method of Thodberg
et al., 2008 described above. The system reached a MAE of 4.505
months.

6.2. Related Work 79

3. The third place was attributed to Kitamura et al., who introduced a
new Ice module, inspired by the Fire module of the SqueezeNet archi-
tecture (Iandola et al., 2016). In the SqueezeNet architecture, the Fire
module is used to squeeze and then expand the input features chan-
nel information using 1×1 convolutions. In contrast, the Ice module
squeezes and expands the spatial information using transposed con-
volutions. As pre-processing, images were resized to 550×550 while
keeping their original aspect ratio. The gender was appended to the
features extracted by their backbones. Combining the Ice module with
vanilla convolutional layers and averaging four models trained on dif-
ferent folds of the data, the entrants reached a final MAE of 4.382
months.

4. In second place, Pan et al. manually cropped the original images of
the dataset to focus on the hands, and resized the result to 560×560
images, further pre-processing the result with CLAHE. Rather than
training their models on the full images, Pan et al. proposed to reg-
ularly extract 49 patches of size 224×224 from the image and use
those as to fine-tune a ResNet-50 architecture pre-trained on Ima-
geNet. Separate models were trained for male and female patients.
During inference, the model predicted bone ages for each of the 49
patches, and a selected percentile (on average the 50th percentile, i.e.
the median) of the resulting outputs was chosen as the final predicted
bone age. The ensemble of nine models allowed the authors to reach
a final MAE of 4.350 months.

5. Bilbily et al. won the first place by training an Inception-v3 network
from scratch using images resized to 500×500. The patient sex in-
formation was appended to the features extracted from the image.
However, the authors argue that a single bit of information might be
overlooked by the network when juxtaposed with the several thousand
inputs of the backbone. In order to give more weight to the sex encod-
ing, the original binary scalar was mapped to a 32-dimensional vector
using a linear mapping. Unlike other competitors, the authors did not
introduce any specific scheme, and the resulting approach is rather
straightforward. Using an average of several models, the final reached
MAE was 4.252 months.

Because of the limited statistical resolution offered by the 200 images of the
RSNA test set, the organizers considered that all of those top 5 contestants
had won the challenge. Still, we find that the work of Bilbily et al was the
most interesting, not only because of its great performance, but also due
to its straightforward design. In contrast, Chen et al. had to create seg-
mentation masks, Thodberg et al. used a carefully tuned classical machine
learning approach, Kitamura et al. introduced a completely new type of

80 Chapter 6. Estimating Bone Age with DL

convolutional operator, and Pan et al. processed image patches rather than
full images. In the rest of this chapter, we thus consider the approach of
Bilbily et al. as a reference baseline.

After this competition, a different BAA dataset was introduced by Esco-
bar et al., 2019. The Radiological Hand Pose Estimation (RHPE) dataset
consists of 6288 radiographs of both hands. Likewise, ground-truth bone
ages were estimated as the average G&P diagnosis of two expert radiolo-
gists. The overall dataset was split in three, with 5,492 serving as train
set, 716 as validation set, and 80 as test set. The distributions of male and
female, and the overall distribution of bone ages were similar to those of the
RSNA dataset. Additionally, the authors introduced supplementary anno-
tations for both the RSNA and RHPE dataset. For each image, a cohort
of annotators created a bounding box around the left hand present in the
image, and marked the position of 17 keypoints on the left hand, positioned
at locations central to BAA, including the carpal bones, the distal radius
and ulna, and the proximal, middle, and distal phalanges of each finger.
Using those annotations, Escobar et al., 2019 were able to consequently im-
prove their BAA model. Starting from the approach of the winners of the
RSNA challenge, the following modifications were introduced: first images
were cropped around the hand bounding box before being resized, limiting
the information loss induced by the down-sampling of the original X-rays.
Secondly, an additional channel was artificially created for the images, by
generating Gaussian distributions around the different keypoints, allowing
networks to rapidly focus on regions of interest. To be able to use those
complementary informations during validation and testing on new datasets,
the authors additionally trained a detection model to output the location of
the left hand within the image, a keypoint detection model to pinpoint the
17 anatomical regions of interest. They showed that both aspects of their
approach improved performances. They report a final MAE of the RSNA
test set of 4.14 months when training only on the RSNA train set, and 3.85
months when using the RHPE dataset conjointly. On the RHPE test set,
final MAE were respectively 7.60 months and 6.86 months when respectively
using only the RHPE dataset, and both datasets.

Even more recently, González et al., 2020 improved upon the work of Es-
cobar et al., 2019 by introducing slight modifications to the overall network
and adding the chronological age of patients as a supplementary input to
their networks. The authors argue that similarly to the gender information,
the chronological age of the patient is an important information to possess in
clinical settings, as it facilitates diagnosis. Indeed, the default G&P process
requires radiologists to extensively examine hand atlases. Chronological age
can be used as a first bone age approximation in order to quickly target
a few reference radiographs of interest. The authors proposed to include
this age information in two ways: first, by directly appending the age to

6.3. Experiments 81

the features extracted from the image by the backbone, and secondly, by
training networks to predict, not directly the bone age of the patient, but
rather the offset between its chronological and bone ages. Rather than con-
catenating fabricated high-dimension embeddings of the additional features
as proposed by the winners of the RSNA challenge, the authors suggest
to simply multiply the age and sex information scalars by a learnable pa-
rameter, in order to let the network learn the importance of those features
through the magnitude of the learned coefficients. On the RHPE test set,
the authors report a final MAE of 5.47 months. Due to the correlations
between bone age and chronological age, one could expect that feeding the
network with the chronological age could make the network prone to predict
bone ages closer to the chronological age. However, the authors show that
there is no correlation between the absolute difference between the true and
predicted bone age, and the absolute difference between the true bone age
and the chronological age of the patients.

6.3 Experiments

In this section, we describe the different approaches that we considered to
build and improve our DL solution to the BAA problem. We first introduce
the dataset that we created to evaluate the performance of our algorithms on
a population of interest. Then, we describe our baseline training scheme, and
how we managed to reach the performance level of the winners of the RSNA
challenge, without performing model ensembling. From there, we reveal a
bias in the distribution of the bone ages of the RSNA dataset, and introduce
a procedure to limit its influence on our model. Afterwards, we train a model
on the RHPE dataset using the baseline setup, highlighting the performance
difference with the models trained using the RSNA dataset, and additionally
train a model that used the chronological ages of the patients. Finally, we
reveal that whilst using chronological age improves performance on a specific
sub-group of the patients, it tends to make the model conservative in its
predictions, by strongly anchoring them around the chronological age. We
finally introduce and demonstrate the efficacy of another procedure that
tackles this problem.

6.3.1 Clinical Validation Dataset

Creating a dataset of bone age annotations sufficiently large to train a DL
model is a costly task which we could not afford. The introduction of the
RSNA and RHPE benchmarks are thus of significant practical importance.
However, given the high inter-reader variability of the G&P method, and
the limits inherent to its holistic approach, it is critical to question the gen-
eralization capabilities of AI algorithms trained on such datasets to unseen
populations. To appraise this capability, we gathered a clinical dataset of

82 Chapter 6. Estimating Bone Age with DL

206 bone age exams performed in several French centers. Patients were ran-
domly selected in such a way that the distribution of chronological ages was
uniform, between 5 and 17 years old, and were evenly divided between boys
and girls. Exams of patients below 5 years old were discarded as BAA is
of poor medical relevance for younger children. Patients above 17 were not
considered on account of the ethical concerns raised in Section 6.1. Two pe-
diatric radiologists were tasked to predict the bone age of the patients using
the G&P method. The final bone age was considered as the average of the
two predictions. An additional radiologist with limited experience in BAA
was asked to perform the same task. The performance of this radiologist
serves as a baseline comparison for the algorithms which we introduce in the
sections hereafter. During their screenings, all radiologists had access to the
sex and the chronological age of the patients. Exams were flagged as either
healthy or pathological based on the difference between the chronological
age, and the assessed bone age, as described in Greulich et al., 1959. Of the
206 exams, 56 were deemed pathological.

6.3.2 Setting up a Baseline

The winning entry of the RSNA challenge was quite compute-intensive for
several reasons. First, Bilbily et al. propose to train their networks for
500 epochs, which we suspect is much higher than required. Secondly, the
competitors reach their reported performance by employing an ensemble
of five models. Thirdly, each image of interest was processed 10 times by
each of the five networks using Test Time Augmentations (TTA). Network
ensembling and TTA are often an optimal strategy in DL challenges for
which no time limit is established for the processing of input images. In
practical scenarios however, the memory required to store the parameters of
the final models, and the time incurred by the inference of an input image
are crucial resources.

The challenge took place in 2017. In the mere 5 years that separate
their work from this study, the fast-evolving computer vision literature has
tremendously grown. As such, several efficient DCNNs backbones, as well
as training tricks and techniques have been introduced. We were therefore
convinced that the original approach of Bilbily et al. could be improved
without blows and whistles. Accordingly, our first objective was to bring
up to date the training scheme of the authors and hopefully improve the
overall efficacy of the DL pipeline by doing so. The result of this prelimi-
nary work was a baseline setup which we employed in all of our following
experiments.

First and foremost, rather than the Inception-v3 backbone, we propose
to make use of a recent family of models called ConvNeXt (Zhuang Liu et
al., 2022). The ConvNeXt architecture was designed to mimic the macro

6.3. Experiments 83

structure of the Swin image Transformer of Ze Liu et al., 2021, but replac-
ing self-attention layers by convolutional layers with wide kernel sizes. A
particularly relevant aspect of ConvNeXt models is that they do not make
use of batch normalization layers (Ioffe et al., 2015) which typically require
large batch sizes that are hard to attain when working with high-dimension
inputs, as is the case for BAA. All of our models exploit a “Small” variant
of ConvNeXt pre-trained on the ImageNet-22K dataset, which we fine-tune
for 20 epochs rather than 500. We imitate the schedule of Zhuang Liu et
al., 2022, and use the AdamW optimizer (Loshchilov et al., 2017), with a
learning rate of 5× 10−5 and a cosine-annealing schedule, a weight-decay of
10−8, and a batch size of 16. Input images are resized to 600×600, keep-
ing original aspect ratios. We employ exponential moving averaging of the
model weights with a decay of 0.999, and perform standard augmentations
including random horizontal and vertical flips, random 90 degrees rotations,
random rotations, shift and scaling of the image, and random erasing (Zhun
Zhong et al., 2020). To regularize the networks, we further apply path
dropout (Huang et al., 2016), with probability 0.1. We reduce the original
size of the two fully connected layers in the regression head from 1,000 to
256, but rather than embedding the binary sex information in a somewhat
randomly sized space, we let our networks predict two bone ages, one for
boys and one for girls, and simply select the appropriate output. Networks
are optimized to minimize the L1 distance between their outputs and the
normalized targets obtained by subtracting the mean and dividing by the
standard deviation of all train labels. During inference, we make use of a
single model but perform TTA, averaging the predictions obtained for the
original image, the image flipped vertically, the image flipped horizontally,
and the image flipped both ways. In Figure 6.2, we present an overview of
the approach of Bilbily et al, and of our baseline model. Using this setup,
we obtain a MAE of 4.26 months on the RSNA test set, which is slightly
better than the replications results introduced by Escobar et al., 2019 of
4.45 months, and on par with the original results of 4.25 months.

In Table 6.1, we report the performance of the baseline, as well as the
reference radiologist, on our internal dataset. For each entry, we list the
MAE, and the sensitivity and specificity in the detection of pathological
cases. Altogether, the baseline reaches a MAE of 7.44 months, a significant
improvement over the radiologist (8.36 months). The sensitivity of the AI
for the detection of pathological cases is 0.76, which is better than that of
the radiologist (0.60), but the gain comes with an inferior specificity, with
the baseline reaching 0.87, against an excellent specificity of 0.95 for the
radiologist. In Table 6.2 and Table 6.3, we detail the MAE on the female and
male populations respectively. We additionally provide an analysis on sub-
groups of patients of different ages by splitting the [5, 17] chronological range
in three bins of equivalent population: [5, 9[, [9, 13[and [13, 17]. Results

84 Chapter 6. Estimating Bone Age with DL

(a) Bilbily et al.

(b) Ours

Figure 6.2: Overview of the different models introduced in this chapter: (a)
the baseline approach of Bilbily et al, as presented in the RSNA challenge;
(b) our baseline introduced in Section 6.3.2.

reveal that the AI is only significantly better than the radiologist on the
girl population (5.92 months against 7.58 months). We further notice that
on average, both the AI and the radiologist better assess the bone ages
of girls than that of boys (5.92 months against 8.98 months for the AI,
7.58 months against 9.06 months for the radiologist). The performance is
roughly even across all age groups for girls, although the performance of
the AI seems to be relatively better on girls between 5 and 9 years old.
For boys, the MAE of the AI is suspiciously smaller on boys from 13 to 17
years old, going as low as 4.47 months, whereas the average MAE across all
other groups is roughly twice as high. The radiologist, on the other hand,
performs slightly worse on younger patients for both populations, but has
an otherwise approximately constant performance across all sub-groups of
the same sex. This discrepancy suggests the existence of a bias in the design
of our baseline algorithm.

6.3.3 Adjusting for Prevalence Bias

In the previous section, we evidenced that our baseline approach was signifi-
cantly better on boys between 13 and 17 years old, possibly at the detriment
of other age groups. Our first hypothesis is that this discrepancy can be ex-
plained by the prevalence of bone ages found in the RSNA dataset. Indeed,
whilst we built our dataset to represent all ages evenly, no such concerns
were considered for the RSNA datasets, and as such some age categories

6.3. Experiments 85

MAE Sensitivity Specificity

Radiologist 8.35[7.51,9.22] 0.60[0.48,0.70] 0.95[0.91,0.97]

BSLRSNA 7.51[6.80,8.34] 0.74[0.62,0.82] 0.87[0.84,0.92]
+W(BA) 6.67[6.01,7.34] 0.86[0.78,0.94] 0.85[0.83,0.92]

BSLRHPE 6.59[6.02,7.21] 0.68[0.58,0.78] 0.90[0.85,0.93]
+CA 6.50[5.79,7.14] 0.40[0.29,0.51] 0.99[0.97,1.00]
+CA+W(DA) 6.20[5.67,6.77] 0.60[0.48,0.70] 0.93[0.91,0.97]
+CA+W(BA,DA) 5.72[5.21,6.30] 0.65[0.55,0.76] 0.93[0.88,0.96]

Table 6.1: For each entry, we report the MAE over all patients, as well
as the sensitivity and the specificity in the detection of pathological cases.
Each score is provided with a 90% confidence interval which was estimated
using bootstrap. Radiologist is the performance of our reference radiologist.
BSLRSNA and BSLRHPE correspond to models trained with the baseline
setup on the RSNA and RHPE dataset respectively. +CA indicates that the
model was traind with the chronological age as input. +W(BA), +W(DA)
and +W(BA,DA), respectively indicate that the model was trained, with
the prevalence correction introduced in Section 6.3.3, with the pathological
prevalence correction introduced in Section 6.3.5, and with both corrections.
Results are highlighted if the corresponding score is better than the baseline
of reference, and confidence intervals do not overlap.

were less represented. In Figure 6.3a, we display the distribution of bones
ages for boys and girls on the RSNA train set. For boys, a notable bias ex-
ists in the bone ages distribution, which is heavily skewed towards patients
around 13 years old. This bias could potentially lead to an over-evaluation
bias for patients below 13 years old, and an under-evaluation bias for pa-
tients above 13 years old, as the model will on average try to center its
predictions around 13 years old.

To compensate for the bias in bone ages, we propose to modify the train-
ing procedure by incorporating weights for each samples of the train set.
Ideally, such weights would put more emphasis on poorly-represented sam-
ples. Suppose than the train bone age labels (yi) are the outcome of a
random variable which admits a density fBA(y). A natural candidate for
the weighting scheme is to consider the inverse of the density ω(y) = 1

fBA(y) .
In practice, we estimate this density using the gaussian kde implementation
of the SciPy library (Virtanen et al., 2020). Since the loss associated to a
ground-truth bone age yi is multiplied by ω(yi), on average the loss com-
puted for a batch of samples is multiplied by 1

N

∑
i ω(yi), where N is the

number of training sample, and in turn the overall learning rate seen by the
optimization process is multiplied by the same amount. To avoid modifying
the learning rate specifically for this new training, we additionally divide
the weights by the average weights encountered in the training dataset, and

86 Chapter 6. Estimating Bone Age with DL

F[5,9[(N=32) F[9,13[(N=32) F[13,17[(N=33) F (N=97)

Radiologist 8.73[6.16,12.0] 6.44[4.59,8.53] 7.57[5.84,9.27] 7.58[6.23,8.84]

BSLRSNA 4.64[3.62,5.69] 6.18[4.65,7.69] 6.92[5.11,8.74] 5.92[5.09,6.76]
+W(BA) 4.37[3.42,5.45] 6.76[5.29,8.31] 6.09[4.57,7.58] 5.75[4.86,6.55]

BSLRHPE 6.14[4.96,7.39] 5.19[4.15,6.45] 7.50[5.65,9.54] 6.29[5.43,7.20]
+CA 6.41[4.84,8.06] 5.25[4.09,6.46] 7.50[5.54,9.73] 6.40[5.50,7.37]
+CA+W(DA) 5.90[4.69,7.18] 5.30[4.29,6.45] 6.77[5.05,8.87] 6.00[5.11,6.77]
+CA+W(BA,DA) 6.02[4.68,7.33] 4.97[3.89,6.00] 5.57[4.02,7.27] 5.52[4.71,6.29]

Table 6.2: For each entry, we report the MAE across all girls (F), and
across several girl sub-groups F[X,Y[, indicating that the age of the patient
is comprised between X, included and Y, excluded. Each score is provided
with a 90% confidence interval which was estimated using bootstrap. Details
about the different labels on the left can be found in Table 6.1.

M[5,9[(N=32) M[9,13[(N=32) M[13,17[(N=32) M (N=96)

Radiologist 9.81[7.59,11.9] 8.75[6.75,11.0] 8.62[6.27,11.2] 9.06[7.78,10.4]

BSLRSNA 12.0[10.0,14.1] 10.5[8.42,12.7] 4.47[3.34,5.75] 8.98[7.83,10.3]
+W(BA) 9.79[7.65,11.9] 9.06[7.22,10.8] 4.65[3.67,5.69] 7.83[6.82,8.79]

BSLRHPE 7.03[5.49,8.76] 6.85[5.25,8.71] 5.00[3.90,6.24] 6.29[5.41,7.19]
+CA 7.12[5.12,9.55] 5.21[4.15,6.48] 6.24[4.79,7.59] 6.19[5.26,7.32]
+CA+W(DA) 6.49[4.92,8.26] 5.30[4.10,6.41] 6.01[4.80,7.45] 5.93[5.18,6.85]
+CA+W(BA,DA) 7.07[5.42,8.93] 5.48[4.53,6.52] 5.00[3.90,6.26] 5.85[5.08,6.67]

Table 6.3: For each entry, we report the MAE across all girls (M), and
across several boy sub-groups M[X,Y[, indicating that the age of the patient
is comprised between X, included and Y, excluded. Each score is provided
with a 90% confidence interval which was estimated using bootstrap. Details
about the different labels on the left can be found in Table 6.1.

consider instead weighting the samples by ω̃(yi) =
Nω(yi)∑
i ω(yi)

.

The performance of the resulting method is displayed next to the Baseline
in Tables 6.1, 6.2 and 6.3. On girls of all ages, this new modification did not
result in any significant performance difference with the baseline approach.
On male patients, the procedure produced significant positive effects on the
two subgroups of interests. For patients with chronological age between 5
and 9 years old, the MAE was reduced from 12.0 months to 9.79 months.
For patients between 9 and 13 years old, the MAE was reduced from 10.5
months to 9.08 months. Still, the performance on the last category, including
patients from 13 to 17 years old was still twice as good.

6.3.4 Exploiting the RHPE Dataset

Using our baseline training setup, we similarly train a model on the RHPE
dataset of Escobar et al., 2019. Unlike the RSNA dataset, the radiographs

6.3. Experiments 87

0 5 10 15
G&P Bone Age

0

500

1000

1500

2000
M

F

(a) RSNA

5 10 15
G&P Bone Age

0

200

400

600

800

1000 M

F

(b) RHPE

Figure 6.3: Distribution of the G&P bone ages annotations for the RSNA
(left) and RHPE (right) training datasets for male (M) and female (F) pa-
tients. On the RSNA dataset the distribution of boy bone ages is skewed
towards 13 year old patients. On the RHPE dataset, the distribution of girl
bone ages is skewed towards 10 year old patients.

of the RHPE dataset contain both hands of the patient. Rather than pro-
cessing both hands at the same time, we artificially multiply the size of the
dataset by two, by splitting the radiographs so that each hand makes up a
single image. We obtain a MAE on the RHPE validation set of 6.74 months,
which is far better than the performance of the BoNet approach (Escobar
et al., 2019) which is reported by González et al., 2020, even though our
model does not exploit any of the additional bounding box and keypoints
annotations provided.

The resulting performance on our validation dataset can be observed in
Tables 6.1, 6.2 and 6.3. Overall, switching from the RSNA to the RHPE
dataset reduces the MAE from 7.51 months to 6.59 months, slightly de-
creases the sensitivity from 0.74 to 0.68 but slightly increases the specificity
from 0.87 to 0.90. The benefits in terms of MAE are thus quite noticeable.
Looking at the different sub-group analysis reveals that the decrease in MAE
mostly comes from male patients, and in particular from the [5,9[and [9,13[
sub-groups for which we introduced a bias correction mechanism in the pre-
vious section. Looking at the distribution of bone ages for male patients
in Figure 6.3, we see that it is much less skewed than that of the RSNA,
which seems to confirm the intuition of the previous section. However, the
resulting model is still much better on boys between 13 and 17 years old,
indicating that other factors might be at play. On girl patients, this model
performs slightly worse than the RSNA-trained model, the difference being

88 Chapter 6. Estimating Bone Age with DL

the most important for younger patients between 5 and 9 years old. The
skewdness of the bone ages distributions for girls suggest that another bias
might be at play.

Unlike the RSNA dataset however, the authors of the RHPE dataset give
access to the chronological age of the patients. Using those chronological
ages can be used to refine the predictions of the AI. Indeed, in practice,
when a radiologist is tasked to perform BAA using the G&P method, they
need to search for the hand that resembles the most that of the patient.
Using the chronological age of the patient grants an important time save by
providing the radiologists with a first approximation of bone age. In turn,
rather than browsing the whole atlas, they can quickly navigate around a
few pages of interest. Likewise, introducing the chronological age of the
patient to the input of the bone age regression head significantly grants the
network with a strong proxy to the looked after bone age. To introduce
the chronological age to our network, we employ the scheme introduced by
González et al., 2020, and append to the features extracted by the backbone
a linear mapping of chronological age. Unlike the authors however, we first
normalize the chronological ages by subtracting the mean and dividing by
the variance of all the chronological ages of the train set. With this scheme,
our model reaches an MAE of 6.27 months, a result which again, is on par
with the approach of the authors (6.34 months), without making use of
additional annotations. González et al., 2020 propose to further train the
model not to directly predict the bone age, but rather predict the offset
from the chronological age to the bone age. However, unlike González et al.,
2020, we do not observe that this leads to significant gain in MAE and settle
with our baseline approach.

Again, looking at Tables 6.1, 6.2 and 6.3 grants us interesting insights.
Unlike our belief, we do not observe a significant overall benefit to including
chronological age as an input to the model. The global MAE only very
slightly decreased from 6.59 months to 6.50 months. The specificity reaches
an amazing 0.99, but at the cost of a terrible sensitivity of 0.40. On the
different sub-groups, a significant decrease in MAE is only observed for the
boys between 9 and 13 years old. This comes in contrast with the overall
positive effect of the inclusion of the chronological age on the validation set of
RHPE. We are unsure what causes this discrepancy. A possible explanation
is that in the RHPE dataset, chronological ages were available up to the
month, whereas in our dataset, only the calendar year of the patient was
available. Unfortunately, we do not have the data required to test this
hypothesis.

6.3. Experiments 89

6.3.5 Adjusting for Chronological Age Bias

Benchmarks and challenges built on the RSNA and RHPE datasets only re-
port MAE as a measure of interest. This focus fails to measure the propen-
sity of the DL solutions to accurately diagnose patients with actual skeletal
growth disorders, which is one of the main indications of BAA, and instead
reward approaches which decrease the overall MAE by a fraction of a month.
In the previous section, we demonstrated that, whilst the model utilizing
chronological age is slightly better in terms for MAE on a specific popula-
tion, an particularly adverse effect was observed on the sensitivity of the
model. A possible effect that could explain this behavior is the over-reliance
of the AI on the provided chronological ages. Indeed, chronological age and
bone age are inherently correlated, as ideally, for a healthy patient, the bone
age should be close to the chronological age. In turn, if the dataset is consti-
tuted of a majority of healthy patients, it is possible that the model might
simply output the chronological age given input. To study this phenomenon,
we display in Figure 6.4a and 6.4b, a scatter plot of the difference between
the chronological age and the bone age, against the difference between the
bone age and the predicted bone age for the model obtained from training
respectively with and without the chronological ages. It transpires clearly
from the resulting graph that an important correlation exists between the
two when incorporating the chronological age, suggesting that the resulting
model is quite conservative, and has a tendency to predict a bone age that
is close to the chronological age, even in cases where the chronological age
is in fact unrepresentative of the actual bone age of the patients, i.e. for
pathological cases, the model has a tendency to predict a bone age value
that is close to the patient chronological age. This explains the propensity
of the model to commit very few false positives and thus have a near perfect
specificity, but also miss 60% of the actually pathological patients.

To reduce the influence of this bias, we propose, as done in Section 6.3.3,
to re-weight samples during training based on the distribution of the differ-
ence between the bone age and the chronological age. This time, we do not
estimate the distribution of the bone ages, but the distribution of the differ-
ence between bone ages and chronological ages. We find however that the
resulting distribution is too narrowed around a few points. To dampen the
result, we consider weighting not by the inverse, but by a negative power
of the distribution, i.e. ω(y) = fDA(y)

−α. setting α = 1 reverts to the
scheme introduced in 6.3.3. We find that 0.5 works well in our setup, but
do not try to tune α to avoid over-fitting on our clinical dataset. We report
the performance of the resulting model in Tables 6.1, 6.2 and 6.3. Using
the weighting scheme leads to a slight decrease in global MAE from 6.50
months to 6.20 months. A small MAE improvement is observed for both
girls and boys. Most importantly, the significant gain for boys between 9

90 Chapter 6. Estimating Bone Age with DL

−2.5 0.0 2.5 5.0
BA - CA

−2

−1

0

1

2
B

A
-

P
B

A

corr = 0.23

(a) BSLRHPE

−2.5 0.0 2.5 5.0
BA - CA

−1

0

1

2

3

B
A

-
P

B
A

corr = 0.70

(b) BSLRHPE+CA

−2.5 0.0 2.5 5.0
BA - CA

−1

0

1

2

B
A

-
P

B
A

corr = 0.40

(c) BSLRHPE+CA+W(DA)

Figure 6.4: Scatter plot of the difference between the bone age and the
predicted bone age (BA - PBA) against the difference between bone age and
chronological age (BA - CA) for three different networks. For each figure,
we additionally report the Pearson correlation coefficient between the two
variables. The left most plot corresponds to the model trained with the
baseline seutp on the RHPE dataset. In the middle, the model trained with
the additional chronological information. On the right, the model trained
with the chronological information, and the weighting procedure described
in Section 6.3.5.

and 13 years old that resulted from the introduction of the bone age is still
present. A significant increase in sensitivity is observed from 0.40 to 0.60,
accompanied by a reduction of specificity from 0.99 to 0.93, suggesting that
the procedure had the intended result. We additionally report in Figure 6.4c
the same correlations plots described above, for the new model. The cor-
relations between the two variables noticeably reduced, as suggested by the
evolution of the Pearson correlation coefficient, which dropped from 0.70 to
0.40.

We train a final model, with the aim of encompassing both of the weight-
ing strategies introduced in this Section, in order to correct the bone age
distribution bias, and the chronological age anchoring bias. A possible ap-
proach could have been to simply multiply the weights obtained with each
procedure and normalize the result. This would be equivalent to considering
that the two variables are independent, which is unlikely, but would offer the
advantage of applying different dampening factors α to each set of weights.
Instead we directly learn the joint distribution fBA,DA with a Gaussian ker-
nel density estimator, and use a dampening factor α of 0.5. We report the
results in Tables 6.1, 6.2 and 6.3. This last model reaches a global MAE
of 5.72 months, a significant improvement over the baseline training scheme
(6.59 months), with a roughly equivalent sensitivity and specificity. Delving
into sub-groups, the additional weighting by bone age prevalence improved

6.4. Conclusion and Perspectives 91

over the weighting by the age difference prevalence in girls between 13 and 17
years old. The combination of the two results in a significant improvements
over all girls from 6.29 months to 5.52 months. For boys, a similar global
improvement was observed, but was only substantial for boys between 9 and
13 years old. All in all, the different modifications that we introduced led
us to close the gap between male and female patients, as the MAE for boys
greatly decreased from 7.58 months to 5.52 months.

6.4 Conclusion and Perspectives

In this chapter, we introduced a strong DL baseline for BAA that is able to
perform on par with state of the art approaches without blows and whistles.
The meticulous analysis of the performance of the algorithm on a clinical
validation set allowed us to spot several problems with the available public
datasets, which we attempted to resolve using several weighting mecha-
nisms. The resulting model reaches an excellent MAE across all patients of
5.72 months, a fairly significant improvement over the performance of the
reference non-expert radiologist. We detail below some of the limitations of
this study, and several perspectives for future work.

Although we did find benefits to training models on both the RSNA
and the RHPE datasets, leveraging chronological age significantly decreased
MAE on boys between 9 and 13 years old. We thus chose to drop the
RSNA dataset, because of the absence of reported chronological ages. Still,
even without making use of chronological age, models trained on the RSNA
dataset seemed to perform better on girls, whilst models trained on the
RHPE dataset performed much better in boys. Although the distribution
of the labels can partially explain the discrepancy, the weighting procedure
introduced did not completely negate the biases. Albeit building a dataset
with uniform distribution seems to be unrealistic given the very low preva-
lence of some bone age classes, perhaps we could have considered building
an overall dataset with less skewed distributions simply by removing some of
the over-represented samples from both training datasets, or by modifying
the sampling strategy of the samples considered during training. Additional
mechanisms could have also been introduced to allow training on samples
both with and without an available chronological age.

Because classical BAA methods rely on localized information in the im-
age, using the keypoints and bounding box annotations of the RHPE dataset
is completely relevant. However, their incorporation into the prediction
pipeline, as done by Escobar et al., 2019, requires to train and perform in-
ference with two additional models, one to learn the bounding boxes in an
object detection fashion, and the other to learn to predict the different key-
points. The additional costs incurred prevented their usage in our scenario.

92 Chapter 6. Estimating Bone Age with DL

However, several approaches in the literature have considered learning to
predict both the bone age, and the additional spatial information at once
(C. Chen et al., 2021; D. Wang et al., 2020). Taking advantage of such meth-
ods, and considering how they could be improved is a thrilling perspective
to further improve the performances of our BAA algorithm. Unfortunately
we did not find the time to thoroughly explore those methods during the
extent of this PhD.

Although the different bias compensation steps introduced significantly
improve the performance of our method on the clinical validation set, it is
to easy to assess which final model is truly better. The model tuned to
our internal model seems to display more fair performance, as it performs
roughly the same on all our introduced sub-groups. However, the uniform
distribution across sub-groups that we introduced in the dataset is artificial.
For instance, the natural prevalence of chronological age for exams is far
from uniform. Besides, pathological cases were most likely over-represented
in our dataset. It is entirely plausible that on a dataset built to mimic a
natural prevalence of those data characteristics, the modifications that we
brought forward in this chapter could be detrimental. On top of this, we
were limited in our stratified analysis by the available external metadata
offered by the different datasets, but it is very likely that other data strates
which cannot be represented exist in the dataset, for which our model is
significantly worse or better. A natural candidate for such a strate would be
the ethnical background of the patient, as there is already evidence in the
literature that the holistic approach of the G&P atlas is not adapted to other
populations. The TW atlas was corrected for several populations.

A strong limitation of our study is that we were only able to build a sin-
gle clinical dataset, which size is relatively limited. In turn, it was difficult
to tune some aspects of our algorithms, as doing so would have invariably
led to over-fitting. This suggests that there is still a significant room for
improvement, that could be unlocked by gathering and annotating more
validation data. Besides, the overall clinical proof provided by this work is
quite limited for two major reasons. First, the performance of a single ra-
diologist was considered as reference, which is evidently non-representative
and provides very limited proof of the advantages of the AI over the ra-
diologist. Secondly, as pointed in other parts of this manuscript, it would
be much more interesting to consider the gain in performance obtained by
radiologists when assisted with such a tool.

Chapter 7

General Conclusion

In this ultimate chapter, we condense and put into perspective the differ-
ent contributions of this PhD. We then discuss potential improvements,
and plant the seeds of what we hope will grow into a flourishing future
work.

7.1 Contributions

The course of this PhD has led us to scrutinize two instances of medical prob-
lems typically encountered by radiologists. The first one, fracture detection,
deals with the precise localization of bone fractures, a frequent outcome of
traumatic events. The second one, bone age assessment, is a meticulous
exercise which purpose is to assess the skeletal development of children. Ac-
curacy in both tasks is clinically crucial, as the consequences of errors in the
former are costly and frequently debilitating, whilst a careful conduction of
the latter is necessary for the detection of hormonal disorders. The ever
increasing need for radiographic interpretation coupled with the difficulty
inherent to the diagnosis of one or the other has led both problems to be
candidate for computer-aided diagnosis tools for quite some time.

The advanced medical knowledge required to design classical feature-
based machine learning approaches has made medical imaging arguably one
of the great winners of the ubiquitous success of deep learning. In this work,
we have presented two commonplace deep learning models which were almost
directly transferred from natural to medical images. In chapter 2, we saw
how the Mask R-CNN approach was at the core of the fracture detection
tool of Gleamer. In chapter 6, we described a baseline approach for bone
age assessment reusing a ConvNeXt backbone pre-trained on the ImageNet
dataset. The core essence of this thesis was to explore ways to improve those
baselines, and several strategies have been considered in this matter.

93

94 Chapter 7. General Conclusion

Chronologically, the initial gamble of this PhD was that tuning the archi-
tecture of deep learning models to radiographs using NAS would significantly
improve their performance. In turn, NAS holds a special place in this work.
The rationale behind our stance was that classical deep convolutional archi-
tectures had been specifically designed and tuned for natural images, and
that a significant domain gap exists between natural images and X-rays.
Bolstered by the evidence provided by early NAS approaches, we started
reviewing new algorithms as they were released, with a particular focus on
their optimization processes. We tried to capture the essence of the accumu-
lated knowledge in Chapter 3. This review suggested that traditional NAS
methods were out of our reach due to their expensive computational require-
ments. Yet a glimpse of hope seemingly appeared along the emergence of
efficient NAS approaches making use of weight-sharing.

Unfortunately, despite its blatant computational efficacy, we had little
success with WS, and realized that its adequacy as a proxy evaluation tool
was subject to debate. On the one hand, several works still emerged suc-
cessfully applying WS to new problems. On the other, several papers had
appeared that emphasized its uselessness. As we found that the evidence
supporting either side was lacking, we strove to study the matter ourselves.
This is the gist of Chapter 4, in which we made use of a benchmark of archi-
tecture evaluations to systematically analyse WS on a wide variety of search
spaces. A notable question that puzzled us was whether a standard NAS ap-
proach using WS could systematically outperform a baseline random search.
Our conclusion for WS were grim, as we revealed that WS is particularly
unreliable and search space dependent, sometimes performing slightly better
than random search, most of the time being on par with random search. We
used the work in this chapter as an opportunity to introduce good practices
in the evaluation of WS based approaches, which we hope will foster future
research in the field.

This bleak result did not completely falter our ambition to adapt neural
architectures to radiographs, as we imputed the failure of NAS with WS
to the untrustworthiness of the latter. Noticing that ImageNet pre-training
was crucial to reach correct performance in our different practical setups,
we were struck by the realization that any successful NAS application would
require to support ImageNet pre-training, for the gain resulting from archi-
tecture tuning would most likely be smaller than the gain achieved from
said pre-training. This additional condition further increased the resources
required to perform NAS. To alleviate this pre-training burden, we sug-
gested in Chapter 5 to use WS, not as an evaluation tool, but as a source
of pre-trained weights. By combining this pre-training with a tight training
schedule, we were able to perform standard NAS on a dataset of fracture
patches, and improved the design of a baseline architecture tuned for nat-
ural images. Still, we realized that the resources required for a marginal

7.2. Limits and Perspectives 95

improvement resulted in a poor return over investment, and thus ended our
NAS experiments with this result.

The strategy that unveiled from the refinement of our bone age model,
which we detailed in Chapter 6, was utterly different. Rather than blindly
optimizing an architecture to this new task, our take was to reuse a deep
convolutional network designed for natural images and spend minimal time
tuning its design. In turn, the few modifications that we introduced over
prior approaches were simply to update the training setup with contempo-
rary computer vision tips and tricks. Instead, we invested our time and
expertise in the in-depth examination of the model’s results across sub-
populations of interest. This data-centric approach helped us uncover sev-
eral biases created either by the dataset used to train our model, or by the
modifications that we introduced on the model itself. Adjusting the training
procedure for those biases using plain sample weighting schemes resulted in
a significant improvement of the resulting model on the sub-populations of
interest.

Finally, throughout this PhD, a particular care was given to provide
clinically relevant insights into the different AI solutions introduced. The
foundation of Chapter 2 lies with the introduction of the clinical study used
to assess the quality of Gleamer’s fracture detection tool. We presented
the clinical protocol used to monitor the evolution of the performances of
the different medical experts with and without the assistance of the AI.
Most notably, we tried to explain with great care the different introduced
measures of reader performance, and why previously used performance in-
dicators were inadequate and not relevant. In Chapter 6, albeit with more
limited resources, we tried to compare our bone age assessment model with
a reference radiologist. More importantly, we raised concerns towards the
literature’s quest for the lowest possible mean average error, which com-
pletely conceals the problem of interest that is the detection of pathological
patients.

7.2 Limits and Perspectives

Our different contributions to the NAS literature are not without limits. In
the extensive analysis of WS that we provide in Chapter 4, the sole usage of
the NAS-Bench-101 dataset coupled with the simplicity of the baseline NAS
approaches considered non-negligibly weakens our different claims. This
could readily be fixed by extending our work with the analysis of distinct
evaluation datasets according to our introduced guidelines. As for the pre-
training scheme introduced in Chapter 5, the prerequisite of having access
to a pre-trained supernet hinders its practical applications for at least two
reasons: (i) Training a super-net is costly, and requires several tricks that

96 Chapter 7. General Conclusion

are poorly documented in the literature; (ii) Supernets come with built-in
search spaces, which are typically made up of architectures with limited
sizes. In turn, looking for state-of-the-art architectures using this method is
unrealistic. The architecture that we found using our method was only of
interest in a scenario where the inference-time computational requirements
of the models needed to be considered, which has hardly ever been a prob-
lem in our different medical applications. In turn the performance of the
resulting architecture was quite underwhelming compared to that of base-
line ResNet and DenseNet models. A possible way to fix this would be to
increase the size of the found architecture a posteriori, as performed by Tan
et al., 2019b at the cost of further computational expenses.

Our global experience with NAS has been rather negative, as even in the
most favorable scenario and with decent computation resources, we have
only observed marginal gains. This poor return over investment has made us
question the utility of this paradigm, even more so given the environmental
concerns of such resource-hungry approaches (Dhar, 2020). Interestingly,
companies which led NAS research a few years ago have also displayed a
complete loss of interest in the field, suggesting that even when tackled with
the largest pool of resources practically conceivable the NAS paradigm is still
lacking. As of today, the focus of such companies as instead shifted towards
designing rather plain model and making use of extremely large datasets of
labeled images, or making use of self-supervised techniques (Jaiswal et al.,
2020; He et al., 2022) as pre-training. In particular the vision transformer
(ViT) architectures (Dosovitskiy et al., 2020) and other transformer-based
models (Ze Liu et al., 2021), which design are almost directly copied from
plain text transformer models (Vaswani et al., 2017), have become a growing
trend in ai research, hinting at a more general family of models capable
of learning over various sources of data, further questionning the benefits
provided by NAS. In turn, although the answer to the concerns raised in
the previous paragraph would be of interest to us out of pure curiosity, this
PhD has made it clear that Gleamer tools are unlikely to ever directly benefit
from NAS.

On the contrary, our study of BAA was quite successful. Although
some aspects still need to be elucidated, including why the different public
datasets induce different performances on boys and girls, and how model
performance could be improved using the additional hand keypoint annota-
tions, the data and results centric approach was much more favorable to the
problem. Our biggest regret with the study of Chapter 6 is the relatively
limited clinical evidence provided in the analysis of our BAA tool. First,
our study falls into one of the shortcomings described in Chapter 2 since it
only considered the standalone performance of the AI approach and did not
address the potential increase of performance for radiologists. Secondly, a
single medical expert was considered to be compared with our AI model,

7.2. Limits and Perspectives 97

which impedes any form of statistical evidence. The main reasons behind
those decisions was that the work presented in Chapter 6 was incremen-
tal and quite exploratory. Overall, its goal was to study the feasibility of
transferring a model learned using public datasets to a new population of
interest. Given that recruiting medical experts incurs significant costs and
that performing a clinical study takes considerable time, we decided to limit
our investigation to this minimal setting. However, now that we are satis-
fied with the resulting model design and performance, we hope that in the
near future we will be able to truly explore whether the AI genuinely helps
radiologists.

98 Chapter 7. General Conclusion

Bibliography

Adams, Matthew et al. (2019). “Computer vs human: deep learning ver-
sus perceptual training for the detection of neck of femur fractures”. In:
Journal of medical imaging and radiation oncology 63.1, pp. 27–32.

Ahmed, Karim and Lorenzo Torresani (2018). “Maskconnect: Connectivity
learning by gradient descent”. In: Proceedings of ECCV), pp. 349–365.

Akimoto, Youhei et al. (2019). “Adaptive Stochastic Natural Gradient Method
for One-Shot Neural Architecture Search”. In: Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA. Ed. by Kamalika Chaudhuri and
Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Re-
search. PMLR, pp. 171–180. url: http://proceedings.mlr.press/
v97/akimoto19a.html.

Alshamrani, Khalaf, Fabrizio Messina, and Amaka C Offiah (2019). “Is the
Greulich and Pyle atlas applicable to all ethnicities? A systematic review
and meta-analysis”. In: European radiology 29.6, pp. 2910–2923.

Angeline, Peter J, Gregory M Saunders, and Jordan B Pollack (1994). “An
evolutionary algorithm that constructs recurrent neural networks”. In:
IEEE transactions on Neural Networks 5.1, pp. 54–65.

Arasu, Vignesh A et al. (2015). “Diagnostic emergency imaging utilization
at an academic trauma center from 1996 to 2012”. In: Journal of the
American College of Radiology 12.5, pp. 467–474.

Arulkumaran, Kai et al. (2017). “Deep reinforcement learning: A brief sur-
vey”. In: IEEE Signal Processing Magazine 34.6, pp. 26–38.

Baker, Bowen et al. (2017). “Accelerating neural architecture search using
performance prediction”. In: arXiv preprint arXiv:1705.10823.

Bandos, Andriy I et al. (2009). “Area under the free-response ROC curve
(FROC) and a related summary index”. In: Biometrics 65.1, pp. 247–
256.

Bender, Gabriel et al. (2018). “Understanding and Simplifying One-Shot
Architecture Search”. In: Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause.

99

http://proceedings.mlr.press/v97/akimoto19a.html
http://proceedings.mlr.press/v97/akimoto19a.html

100 Bibliography

Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 549–558.
url: http://proceedings.mlr.press/v80/bender18a.html.

Beyer, Hans-Georg and Hans-Paul Schwefel (2002). “Evolution strategies–A
comprehensive introduction”. In: Natural computing 1.1, pp. 3–52.

Brock, Andrew et al. (2018). “SMASH: One-Shot Model Architecture Search
through HyperNetworks”. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net. url: https:
//openreview.net/forum?id=rydeCEhs-.

Busby, Lindsay P, Jesse L Courtier, and Christine M Glastonbury (2018).
“Bias in radiology: the how and why of misses and misinterpretations”.
In: Radiographics 38.1, pp. 236–247.

Cai, Han, Ligeng Zhu, and Song Han (2018). “Proxylessnas: Direct neu-
ral architecture search on target task and hardware”. In: arXiv preprint
arXiv:1812.00332.

Cai, Han et al. (2020). “Once-for-All: Train One Network and Specialize
it for Efficient Deployment”. In: Proc. of ICLR. OpenReview.net. url:
https://openreview.net/forum?id=HylxE1HKwS.

Cao, Yu et al. (2015). “Fracture detection in x-ray images through stacked
random forests feature fusion”. In: 2015 IEEE 12th international sympo-
sium on biomedical imaging (ISBI). IEEE, pp. 801–805.

Casale, Francesco Paolo, Jonathan Gordon, and Nicolo Fusi (2019). “Proba-
bilistic Neural Architecture Search”. In: arXiv e-prints, arXiv:1902.05116,
arXiv:1902.05116. arXiv: 1902.05116 [stat.ML].

Castellino, Ronald A (2005). “Computer aided detection (CAD): an overview”.
In: Cancer Imaging 5.1, p. 17.

Castriota-Scanderbeg, ADMV and V De Micheli (1995). “Ultrasound of
femoral head cartilage: a new method of assessing bone age”. In: Skeletal
radiology 24.3, pp. 197–200.

Chellapilla, Kumar, Sidd Puri, and Patrice Simard (2006). “High perfor-
mance convolutional neural networks for document processing”. In: Tenth
international workshop on frontiers in handwriting recognition. Suvisoft.

Chen, Chao et al. (2021). “Attention-guided discriminative region localiza-
tion and label distribution learning for bone age assessment”. In: IEEE
Journal of Biomedical and Health Informatics.

Chen, Wei et al. (2017). “National incidence of traumatic fractures in China:
a retrospective survey of 512 187 individuals”. In: The Lancet Global
Health 5.8, e807–e817.

Cheng, Chi-Tung et al. (2019). “Application of a deep learning algorithm for
detection and visualization of hip fractures on plain pelvic radiographs”.
In: European radiology 29.10, pp. 5469–5477.

Chu, Xiangxiang et al. (2019). “FairNAS: Rethinking Evaluation Fairness of
Weight Sharing Neural Architecture Search”. In: arXiv e-prints, arXiv:1907.01845,
arXiv:1907.01845. arXiv: 1907.01845 [cs.LG].

http://proceedings.mlr.press/v80/bender18a.html
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=HylxE1HKwS
https://arxiv.org/abs/1902.05116
https://arxiv.org/abs/1907.01845

Bibliography 101

Chung, Seok Won et al. (2018). “Automated detection and classification of
the proximal humerus fracture by using deep learning algorithm”. In:
Acta orthopaedica 89.4, pp. 468–473.

Ciresan, Dan Claudiu et al. (2011). “Flexible, high performance convolu-
tional neural networks for image classification”. In: Twenty-second inter-
national joint conference on artificial intelligence.

Cohen, Jacob (1988). “Statistical power analysis for the behavioral sciences.
Abingdon”. In: England: Routledge.

Colas, Cédric, Olivier Sigaud, and Pierre-Yves Oudeyer (2018). “How many
random seeds? statistical power analysis in deep reinforcement learning
experiments”. In: arXiv preprint arXiv:1806.08295.

Colson, Benôıt, Patrice Marcotte, and Gilles Savard (2007). “An overview of
bilevel optimization”. In: Annals of operations research 153.1, pp. 235–
256.

Den Ottelander, Tom, Arkadiy Dushatskiy, Virgolin, et al. (2021). “Local
search is a remarkably strong baseline for neural architecture search”. In:
EMO. Springer, pp. 465–479.

Dhar, Payal (2020). “The carbon impact of artificial intelligence”. In: Nature
Machine Intelligence 2.8, pp. 423–425.

DiMaggio, Charles J et al. (2017). “The epidemiology of emergency depart-
ment trauma discharges in the United States”. In: Academic emergency
medicine 24.10, pp. 1244–1256.

Domhan, Tobias, Jost Tobias Springenberg, and Frank Hutter (2015). “Speed-
ing up automatic hyperparameter optimization of deep neural networks
by extrapolation of learning curves”. In: Twenty-fourth international joint
conference on artificial intelligence.

Dong, Xuanyi and Yi Yang (2020). “NAS-Bench-201: Extending the Scope of
Reproducible Neural Architecture Search”. In: 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net. url: https://openreview.net/
forum?id=HJxyZkBKDr.

Donnelley, Martin, Greg Knowles, and Trevor Hearn (2008). “A CAD sys-
tem for long-bone segmentation and fracture detection”. In: International
Conference on Image and Signal Processing. Springer, pp. 153–162.

Dosovitskiy, Alexey et al. (2020). “An image is worth 16x16 words: Trans-
formers for image recognition at scale”. In: arXiv preprint arXiv:2010.11929.

Dudziak, Lukasz et al. (2020). “Brp-nas: Prediction-based nas using gcns”.
In: Advances in Neural Information Processing Systems 33, pp. 10480–
10490.

Duron, Löıc, Alexis Ducarouge, André Gillibert, et al. (2021). “Assessment
of an AI aid in detection of adult appendicular skeletal fractures by emer-
gency physicians and radiologists: a multicenter cross-sectional diagnostic
study”. In: Radiology 300.1, pp. 120–129.

https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr

102 Bibliography

Eberhart, Russell C and Yuhui Shi (1998). “Comparison between genetic al-
gorithms and particle swarm optimization”. In: International conference
on evolutionary programming. Springer, pp. 611–616.

Elsken, Thomas, Jan Hendrik Metzen, and Frank Hutter (2019a). “Effi-
cient Multi-Objective Neural Architecture Search via Lamarckian Evo-
lution”. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
url: https://openreview.net/forum?id=ByME42AqK7.

— (2019b). “Neural architecture search: A survey”. In: The Journal of Ma-
chine Learning Research 20.1, pp. 1997–2017.

Escobar, Maŕıa et al. (2019). “Hand pose estimation for pediatric bone age
assessment”. In: International conference on medical image computing
and computer-assisted intervention. Springer, pp. 531–539.

Falkner, Stefan, Aaron Klein, and Frank Hutter (2018). “BOHB: Robust and
Efficient Hyperparameter Optimization at Scale”. In: Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G.
Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Re-
search. PMLR, pp. 1436–1445. url: http://proceedings.mlr.press/
v80/falkner18a.html.

Fenton, Joshua J et al. (2007). “Influence of computer-aided detection on
performance of screening mammography”. In: New England Journal of
Medicine 356.14, pp. 1399–1409.

Feurer, Matthias and Frank Hutter (2019). “Hyperparameter optimization”.
In: Automated machine learning. Springer, Cham, pp. 3–33.

Franceschi, Luca et al. (2018). “Bilevel Programming for Hyperparameter
Optimization and Meta-Learning”. In: Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and An-
dreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR,
pp. 1563–1572. url: http://proceedings.mlr.press/v80/franceschi18a.
html.

Fukushima, Kunihiko and Sei Miyake (1982). “Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recognition”. In:
Competition and cooperation in neural nets. Springer, pp. 267–285.

Gale, William et al. (2017). “Detecting hip fractures with radiologist-level
performance using deep neural networks”. In: arXiv preprint arXiv:1711.06504.

Gertych, Arkadiusz et al. (2007). “Bone age assessment of children using
a digital hand atlas”. In: Computerized medical imaging and graphics
31.4-5, pp. 322–331.

Ghafoorian, Mohsen et al. (2016). “Non-uniform patch sampling with deep
convolutional neural networks for white matter hyperintensity segmenta-
tion”. In: 2016 IEEE 13th International Symposium on Biomedical Imag-
ing (ISBI). IEEE, pp. 1414–1417.

https://openreview.net/forum?id=ByME42AqK7
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/franceschi18a.html
http://proceedings.mlr.press/v80/franceschi18a.html

Bibliography 103

Gilsanz, Vicente and Osman Ratib (2005). Hand bone age: a digital atlas of
skeletal maturity. Springer.

Girshick, Ross (2015). “Fast r-cnn”. In: Proceedings of the IEEE interna-
tional conference on computer vision, pp. 1440–1448.

Girshick, Ross et al. (2014). “Rich feature hierarchies for accurate object
detection and semantic segmentation”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 580–587.

Goldberg, David E and Kalyanmoy Deb (1991). “A comparative analysis of
selection schemes used in genetic algorithms”. In: Foundations of genetic
algorithms. Vol. 1. Elsevier, pp. 69–93.

González, Cristina et al. (2020). “SIMBA: Specific identity markers for bone
age assessment”. In: International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention. Springer, pp. 753–763.

Greulich, William Walter and Sarah Idell Pyle (1959). Radiographic atlas of
skeletal development of the hand and wrist. Stanford university press.

Grigorescu, Sorin et al. (2020). “A survey of deep learning techniques for
autonomous driving”. In: Journal of Field Robotics 37.3, pp. 362–386.

Gruau, Frederic (1994). “Neural network synthesis using cellular encoding
and the genetic algorithm”. In.

Guermazi, Ali, Chadi Tannoury, Andrew J Kompel, et al. (2021). “Improv-
ing Radiographic Fracture Recognition Performance and Efficiency Using
Artificial Intelligence”. In: Radiology, p. 210937.

Guly, HR (2001). “Diagnostic errors in an accident and emergency depart-
ment”. In: Emergency Medicine Journal 18.4, pp. 263–269.

Guo, Zichao et al. (2020). “Single path one-shot neural architecture search
with uniform sampling”. In: European Conference on Computer Vision.
Springer, pp. 544–560.

Ha, David, Andrew M. Dai, and Quoc V. Le (2017). “HyperNetworks”. In:
5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-
Review.net. url: https://openreview.net/forum?id=rkpACe1lx.

Halabi, Safwan S et al. (2019). “The RSNA pediatric bone age machine
learning challenge”. In: Radiology 290.2, pp. 498–503.

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer
Society, pp. 770–778. doi: 10.1109/CVPR.2016.90. url: https://doi.
org/10.1109/CVPR.2016.90.

He, Kaiming et al. (2017). “Mask R-CNN”. In: Proc. of ICCV. IEEE Com-
puter Society, pp. 2980–2988. doi: 10 . 1109 / ICCV . 2017 . 322. url:
https://doi.org/10.1109/ICCV.2017.322.

He, Kaiming et al. (2022). “Masked autoencoders are scalable vision learn-
ers”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16000–16009.

https://openreview.net/forum?id=rkpACe1lx
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322

104 Bibliography

Howard, Andrew et al. (2019). “Searching for mobilenetv3”. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
pp. 1314–1324.

Huang, Gao et al. (2016). “Deep networks with stochastic depth”. In: Eu-
ropean conference on computer vision. Springer, pp. 646–661.

Hubel, David H and Torsten N Wiesel (1968). “Receptive fields and func-
tional architecture of monkey striate cortex”. In: The Journal of physi-
ology 195.1, pp. 215–243.

Iandola, Forrest N et al. (2016). “SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and¡ 0.5 MBmodel size”. In: arXiv preprint arXiv:1602.07360.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accel-
erating deep network training by reducing internal covariate shift”. In:
International conference on machine learning. PMLR, pp. 448–456.

Jaderberg, Max, Karen Simonyan, Andrew Zisserman, et al. (2015). “Spa-
tial transformer networks”. In: Advances in neural information processing
systems 28.

Jaeger, Paul F et al. (2020). “Retina U-Net: Embarrassingly simple exploita-
tion of segmentation supervision for medical object detection”. In: Ma-
chine Learning for Health Workshop. PMLR, pp. 171–183.

Jaiswal, Ashish et al. (2020). “A survey on contrastive self-supervised learn-
ing”. In: Technologies 9.1, p. 2.

James, John T (2013). “A new, evidence-based estimate of patient harms
associated with hospital care”. In: Journal of patient safety 9.3, pp. 122–
128.

Jones, Donald R, Matthias Schonlau, and William J Welch (1998). “Effi-
cient global optimization of expensive black-box functions”. In: Journal
of Global optimization 13.4, pp. 455–492.

Kim, DH and T MacKinnon (2018). “Artificial intelligence in fracture de-
tection: transfer learning from deep convolutional neural networks”. In:
Clinical radiology 73.5, pp. 439–445.

Kim, Young W and Liem T Mansfield (2014). “Fool me twice: delayed di-
agnoses in radiology with emphasis on perpetuated errors”. In: AJR Am
J Roentgenol 202.3, pp. 465–470.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980.

Kitamura, Gene, Chul Y Chung, and Barry E Moore (2019). “Ankle fracture
detection utilizing a convolutional neural network ensemble implemented
with a small sample, de novo training, and multiview incorporation”. In:
Journal of digital imaging 32.4, pp. 672–677.

Klein, Aaron et al. (2016). “Learning curve prediction with Bayesian neural
networks”. In.

Klein, Aaron et al. (2017). “Fast bayesian optimization of machine learning
hyperparameters on large datasets”. In: Artificial intelligence and statis-
tics. PMLR, pp. 528–536.

Bibliography 105

Kornblith, Simon, Jonathon Shlens, and Quoc V. Le (2019). “Do Better
ImageNet Models Transfer Better?” In: Proc. of CVPR. Computer Vision
Foundation / IEEE, pp. 2661–2671. doi: 10.1109/CVPR.2019.00277.
url: http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/
html/Kornblith%5C_Do%5C_Better%5C_ImageNet%5C_Models%5C_

Transfer%5C_Better%5C_CVPR%5C_2019%5C_paper.html.
Kreitner, K-F et al. (1998). “Bone age determination based on the study

of the medial extremity of the clavicle”. In: European radiology 8.7,
pp. 1116–1122.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet
classification with deep convolutional neural networks”. In: Advances in
neural information processing systems 25.

Kuo, Rachel YL et al. (2022). “Artificial intelligence in fracture detection:
a systematic review and meta-analysis”. In: Radiology, p. 211785.

Larson, David B et al. (2018). “Performance of a deep-learning neural net-
work model in assessing skeletal maturity on pediatric hand radiographs”.
In: Radiology 287.1, pp. 313–322.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”.
In: nature 521.7553, pp. 436–444.

LeCun, Yann et al. (1989). “Handwritten digit recognition with a back-
propagation network”. In: Advances in neural information processing sys-
tems 2.

Lee, June-Goo et al. (2017). “Deep learning in medical imaging: general
overview”. In: Korean journal of radiology 18.4, pp. 570–584.

Li, Liam and Ameet Talwalkar (2019). “Random Search and Reproducibil-
ity for Neural Architecture Search”. In: Proceedings of the Thirty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv,
Israel, July 22-25, 2019. Ed. by Amir Globerson and Ricardo Silva.
Vol. 115. Proceedings of Machine Learning Research. AUAI Press, pp. 367–
377. url: http://proceedings.mlr.press/v115/li20c.html.

Lin, Tsung-Yi et al. (2017). “Feature pyramid networks for object detec-
tion”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2117–2125.

Lindsey, Robert, Aaron Daluiski, Sumit Chopra, et al. (2018). “Deep neural
network improves fracture detection by clinicians”. In: Proceedings of the
National Academy of Sciences 115.45, pp. 11591–11596.

Litjens, Geert et al. (2017). “A survey on deep learning in medical image
analysis”. In: Medical image analysis 42, pp. 60–88.

Little, David G and Michael D Sussman (1994). “The Risser sign: a critical
analysis.” In: Journal of pediatric orthopedics 14.5, pp. 569–575.

Liu, Chenxi et al. (2018). “Progressive neural architecture search”. In: Pro-
ceedings of the European conference on computer vision (ECCV), pp. 19–
34.

https://doi.org/10.1109/CVPR.2019.00277
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Kornblith%5C_Do%5C_Better%5C_ImageNet%5C_Models%5C_Transfer%5C_Better%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Kornblith%5C_Do%5C_Better%5C_ImageNet%5C_Models%5C_Transfer%5C_Better%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Kornblith%5C_Do%5C_Better%5C_ImageNet%5C_Models%5C_Transfer%5C_Better%5C_CVPR%5C_2019%5C_paper.html
http://proceedings.mlr.press/v115/li20c.html

106 Bibliography

Liu, Hanxiao, Karen Simonyan, and Yiming Yang (2019a). “DARTS: Differ-
entiable Architecture Search”. In: Proc. of ICLR. OpenReview.net. url:
https://openreview.net/forum?id=S1eYHoC5FX.

— (2019b). “DARTS: Differentiable Architecture Search”. In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net. url: https://openreview.
net/forum?id=S1eYHoC5FX.

Liu, Hanxiao et al. (2017). “Hierarchical representations for efficient archi-
tecture search”. In: arXiv preprint arXiv:1711.00436.

Liu, Li et al. (2020). “Deep learning for generic object detection: A survey”.
In: International journal of computer vision 128.2, pp. 261–318.

Liu, Ze et al. (2021). “Swin transformer: Hierarchical vision transformer
using shifted windows”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 10012–10022.

Liu, Zhuang et al. (2022). “A ConvNet for the 2020s”. In: arXiv preprint
arXiv:2201.03545.

Loshchilov, Ilya and Frank Hutter (2017). “Decoupled weight decay regu-
larization”. In: arXiv preprint arXiv:1711.05101.

Loy, Clement T and Les Irwig (2004). “Accuracy of diagnostic tests read
with and without clinical information: a systematic review”. In: Jama
292.13, pp. 1602–1609.

Luo, Renqian, Tao Qin, and Enhong Chen (2019). “Balanced One-shot Neu-
ral Architecture Optimization”. In: arXiv preprint arXiv:1909.10815.

Luo, Renqian et al. (2018). “Neural Architecture Optimization”. In: Ad-
vances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, Decem-
ber 3-8, 2018, Montréal, Canada. Ed. by Samy Bengio et al., pp. 7827–
7838. url: https://proceedings.neurips.cc/paper/2018/hash/
933670f1ac8ba969f32989c312faba75-Abstract.html.

Magnusson, Kristoffer (2020). Interpreting Cohen’s d Effect Size: An Inter-
active Visualization. Version 2.1.1. url: https://rpsychologist.com/
d3/cohend/.

Mansourvar, Marjan et al. (2013). “Automated bone age assessment: moti-
vation, taxonomies, and challenges”. In: Computational and mathematical
methods in medicine 2013.

Mettler Jr, Fred A et al. (2008). “Effective doses in radiology and diagnostic
nuclear medicine: a catalog”. In: Radiology 248.1, pp. 254–263.

Michael, David J and Alan C Nelson (1989). “HANDX: a model-based sys-
tem for automatic segmentation of bones from digital hand radiographs”.
In: IEEE transactions on medical imaging 8.1, pp. 64–69.

Miikkulainen, Risto et al. (2019). “Evolving deep neural networks”. In: Ar-
tificial intelligence in the age of neural networks and brain computing.
Elsevier, pp. 293–312.

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://rpsychologist.com/d3/cohend/
https://rpsychologist.com/d3/cohend/

Bibliography 107

Negrinho, Renato and Geoff Gordon (2017). “Deeparchitect: Automatically
designing and training deep architectures”. In: arXiv preprint arXiv:1704.08792.

Ning, Xuefei et al. (2020). “A generic graph-based neural architecture encod-
ing scheme for predictor-based nas”. In: European Conference on Com-
puter Vision. Springer, pp. 189–204.

Ottelander, T Den et al. (2020). “Local Search is a Remarkably Strong Base-
line for Neural Architecture Search”. In: arXiv preprint arXiv:2004.08996.

Pan, Zhaoqing et al. (2019). “Recent progress on generative adversarial net-
works (GANs): A survey”. In: IEEE Access 7, pp. 36322–36333.

Pham, Hieu et al. (2018). “Efficient Neural Architecture Search via Param-
eter Sharing”. In: Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, pp. 4092–4101. url:
http://proceedings.mlr.press/v80/pham18a.html.

Pizer, Stephen M et al. (1987). “Adaptive histogram equalization and its
variations”. In: Computer vision, graphics, and image processing 39.3,
pp. 355–368.

Rapin, J. and O. Teytaud (2018). Nevergrad. https://github.com/facebookresearch/nevergrad.
Real, Esteban, Sherry Moore, Andrew Selle, et al. (2017). “Large-Scale Evo-

lution of Image Classifiers”. In: Proc. Ed. by Doina Precup and Yee
Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,
pp. 2902–2911. url: http://proceedings.mlr.press/v70/real17a.
html.

Real, Esteban et al. (2019a). “Regularized Evolution for Image Classifier
Architecture Search”. In: Proc. of AAAI. AAAI Press, pp. 4780–4789.
doi: 10.1609/aaai.v33i01.33014780. url: https://doi.org/10.
1609/aaai.v33i01.33014780.

— (2019b). “Regularized Evolution for Image Classifier Architecture Search”.
In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019. AAAI Press, pp. 4780–4789. doi: 10.
1609/aaai.v33i01.33014780. url: https://doi.org/10.1609/aaai.
v33i01.33014780.

Rechenberg, Ingo (1978). “Evolutionsstrategien”. In: Simulationsmethoden
in der Medizin und Biologie. Springer, pp. 83–114.

Ren, Pengzhen et al. (2020). “A comprehensive survey of neural architecture
search: Challenges and solutions”. In: arXiv preprint arXiv:2006.02903.

Ren, Shaoqing et al. (2015). “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks”. In: Advances in neural information
processing systems 28.

http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v70/real17a.html
http://proceedings.mlr.press/v70/real17a.html
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780

108 Bibliography

Rimmer, Abi (2017). “Radiologist shortage leaves patient care at risk, warns
royal college”. In: BMJ: British Medical Journal (Online) 359.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-net: Con-
volutional networks for biomedical image segmentation”. In: Interna-
tional Conference on Medical image computing and computer-assisted in-
tervention. Springer, pp. 234–241.

Sandler, Mark et al. (2018). “MobileNetV2: Inverted Residuals and Linear
Bottlenecks”. In: Proc. of CVPR. IEEE Computer Society, pp. 4510–
4520. doi: 10.1109/CVPR.2018.00474. url: http://openaccess.
thecvf.com/content%5C_cvpr%5C_2018/html/Sandler%5C_MobileNetV2%

5C_Inverted%5C_Residuals%5C_CVPR%5C_2018%5C_paper.html.
Satoh, Mari (2015). “Bone age: assessment methods and clinical applica-

tions”. In: Clinical Pediatric Endocrinology 24.4, pp. 143–152.
Scepi, Michel et al. (2005). “Discordant results in x-ray interpretations be-

tween ED physicians and radiologists. A prospective investigation of
30000 trauma patients”. In: The American journal of emergency medicine
23.7, pp. 918–920.

Schumacher, Günter, Andreas Schmeling, and Ernst Rudolf (2018). “Medi-
cal age assessment of juvenile migrants: an analysis of age marker-based
assessment criteria”. In: Joint Research Centre (JRC) science for policy
report, European Union, Luxembourg.

Seabold, Skipper and Josef Perktold (2010). “statsmodels: Econometric and
statistical modeling with python”. In: 9th Python in Science Conference.

Sermanet, Pierre et al. (2013). “Overfeat: Integrated recognition, localization
and detection using convolutional networks”. In: arXiv preprint arXiv:1312.6229.

Shaukat, Furqan, Gulistan Raja, and Alejandro F Frangi (2019). “Computer-
aided detection of lung nodules: a review”. In: Journal of Medical Imaging
6.2, p. 020901.

Shen, Li et al. (2019). “Deep learning to improve breast cancer detection on
screening mammography”. In: Scientific reports 9.1, pp. 1–12.

Shi, Han et al. (2020). “Bridging the gap between sample-based and one-shot
neural architecture search with bonas”. In: Advances in Neural Informa-
tion Processing Systems 33, pp. 1808–1819.

Shi, Yuhui (2011). “Brain storm optimization algorithm”. In: International
conference in swarm intelligence. Springer, pp. 303–309.

Shin, Richard, Charles Packer, and Dawn Song (2018). “Differentiable neural
network architecture search”. In.

Shirakawa, Shinichi, Yasushi Iwata, and Youhei Akimoto (2018). “Dynamic
optimization of neural network structures using probabilistic modeling”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32.
1.

Simon, Dan (2013). Evolutionary optimization algorithms. John Wiley &
Sons.

https://doi.org/10.1109/CVPR.2018.00474
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Sandler%5C_MobileNetV2%5C_Inverted%5C_Residuals%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Sandler%5C_MobileNetV2%5C_Inverted%5C_Residuals%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Sandler%5C_MobileNetV2%5C_Inverted%5C_Residuals%5C_CVPR%5C_2018%5C_paper.html

Bibliography 109

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional
networks for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.

Spampinato, Concetto et al. (2017). “Deep learning for automated skeletal
bone age assessment in X-ray images”. In: Medical image analysis 36,
pp. 41–51.

Stamoulis, Dimitrios et al. (2019). “Single-Path NAS: Designing Hardware-
Efficient ConvNets in less than 4 Hours”. In: arXiv e-prints, arXiv:1904.02877,
arXiv:1904.02877. arXiv: 1904.02877 [cs.LG].

Stanley, Kenneth O and Risto Miikkulainen (2002). “Evolving neural net-
works through augmenting topologies”. In: Evolutionary computation 10.2,
pp. 99–127.

Suganuma, Masanori, Shinichi Shirakawa, and Tomoharu Nagao (2017). “A
genetic programming approach to designing convolutional neural network
architectures”. In: Proceedings of the genetic and evolutionary computa-
tion conference, pp. 497–504.

Sutton, David (1987). “A textbook of radiology and imaging”. In.
Szegedy, Christian et al. (2015). “Going deeper with convolutions”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 1–9.

Szegedy, Christian et al. (2016). “Rethinking the inception architecture for
computer vision”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826.

Tan, Mingxing, Bo Chen, Ruoming Pang, et al. (2019a). “MnasNet: Platform-
Aware Neural Architecture Search for Mobile”. In: Proc. of CVPR. Com-
puter Vision Foundation / IEEE, pp. 2820–2828. doi: 10.1109/CVPR.
2019.00293. url: http://openaccess.thecvf.com/content%5C_
CVPR%5C_2019/html/Tan%5C_MnasNet%5C_Platform- Aware%5C_

Neural%5C_Architecture%5C_Search%5C_for%5C_Mobile%5C_CVPR%

5C_2019%5C_paper.html.
Tan, Mingxing and Quoc V. Le (2019b). “EfficientNet: Rethinking Model

Scaling for Convolutional Neural Networks”. In: Proc. of ICML. Vol. 97.
Proceedings of Machine Learning Research. PMLR, pp. 6105–6114. url:
http://proceedings.mlr.press/v97/tan19a.html.

Tanner, James Mourilyan (1983). “Assessment of skeletal maturity and pre-
diction of adult height”. In: TW 2 Method, pp. 50–106.

Tanner, JM, RD Gibbons, and RD Bock (1992). “An image analysis sys-
tem for TW skeletal maturity”. In: Hormone research 37.supplement 3,
pp. 11–15.

Thodberg, Hans Henrik et al. (2008). “The BoneXpert method for auto-
mated determination of skeletal maturity”. In: IEEE transactions on
medical imaging 28.1, pp. 52–66.

Uijlings, Jasper RR et al. (2013). “Selective search for object recognition”.
In: International journal of computer vision 104.2, pp. 154–171.

https://arxiv.org/abs/1904.02877
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Tan%5C_MnasNet%5C_Platform-Aware%5C_Neural%5C_Architecture%5C_Search%5C_for%5C_Mobile%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Tan%5C_MnasNet%5C_Platform-Aware%5C_Neural%5C_Architecture%5C_Search%5C_for%5C_Mobile%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Tan%5C_MnasNet%5C_Platform-Aware%5C_Neural%5C_Architecture%5C_Search%5C_for%5C_Mobile%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Tan%5C_MnasNet%5C_Platform-Aware%5C_Neural%5C_Architecture%5C_Search%5C_for%5C_Mobile%5C_CVPR%5C_2019%5C_paper.html
http://proceedings.mlr.press/v97/tan19a.html

110 Bibliography

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in
neural information processing systems 30.

Virtanen, Pauli et al. (2020). “SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python”. In: Nature Methods 17, pp. 261–272. doi:
10.1038/s41592-019-0686-2.

Wang, Dong et al. (2020). “Improve bone age assessment by learning from
anatomical local regions”. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, pp. 631–640.

Wang, Linnan, Yiyang Zhao, and Yuu Jinnai (2018). “AlphaX: eXploring
Neural Architectures with Deep Neural Networks and Monte Carlo Tree
Search”. In: CoRR abs/1805.07440. arXiv: 1805.07440. url: http://
arxiv.org/abs/1805.07440.

Wang, Linnan et al. (2021). “Sample-efficient neural architecture search by
learning actions for monte carlo tree search”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence.

White, Colin, Willie Neiswanger, and Yash Savani (2019). “Bananas: Bayesian
optimization with neural architectures for neural architecture search”. In:
arXiv preprint arXiv:1910.11858 1.2, p. 4.

White, Colin, Sam Nolen, and Yash Savani (2020). “Local Search is State
of the Art for NAS Benchmarks”. In: arXiv preprint arXiv:2005.02960.

White, Colin et al. (2021). “How Powerful are Performance Predictors in
Neural Architecture Search?” In: Advances in Neural Information Pro-
cessing Systems 34.

Willems, Guy (2001). “A review of the most commonly used dental age
estimation techniques.” In: The Journal of forensic odonto-stomatology
19.1, pp. 9–17.

Willett, Jessica K (2019). “Imaging in trauma in limited-resource settings:
a literature review”. In: African Journal of Emergency Medicine 9, S21–
S27.

Williams, Ronald J. (1992). “Simple statistical gradient-following algorithms
for connectionist reinforcement learning”. In:Machine Learning 8.3, pp. 229–
256. issn: 1573-0565. doi: 10.1007/BF00992696. url: https://doi.
org/10.1007/BF00992696.

Wistuba, Martin (2017). “Finding competitive network architectures within
a day using uct”. In: arXiv preprint arXiv:1712.07420.

Wu, Yuxin, Alexander Kirillov, Francisco Massa, et al. (2019). Detectron2.
https://github.com/facebookresearch/detectron2.

Wu, Zonghan et al. (2020). “A comprehensive survey on graph neural net-
works”. In: IEEE transactions on neural networks and learning systems
32.1, pp. 4–24.

Xie, Lingxi et al. (2020). “Weight-Sharing Neural Architecture Search:A
Battle to Shrink the Optimization Gap”. In: arXiv preprint arXiv:2008.01475.

https://doi.org/10.1038/s41592-019-0686-2
https://arxiv.org/abs/1805.07440
http://arxiv.org/abs/1805.07440
http://arxiv.org/abs/1805.07440
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

Bibliography 111

Xie, Saining et al. (2017). “Aggregated residual transformations for deep
neural networks”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492–1500.

Xie, Sirui et al. (2019). “SNAS: stochastic neural architecture search”. In:
7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. url: https:
//openreview.net/forum?id=rylqooRqK7.

Yang, Antoine, Pedro M. Esperança, and Fabio Maria Carlucci (2020). “NAS
evaluation is frustratingly hard”. In: 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net. url: https://openreview.net/forum?id=
HygrdpVKvr.

Yao, Xin (1999). “Evolving artificial neural networks”. In: Proceedings of the
IEEE 87.9, pp. 1423–1447.

Ying, Chris et al. (2019). “NAS-Bench-101: Towards Reproducible Neural
Architecture Search”. In: Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov.
Vol. 97. Proceedings of Machine Learning Research. PMLR, pp. 7105–
7114. url: http://proceedings.mlr.press/v97/ying19a.html.

Yu, Jiahui, Pengchong Jin, Hanxiao Liu, et al. (2020). “Bignas: Scaling
up neural architecture search with big single-stage models”. In: Proc.
of ECCV. Springer, pp. 702–717.

Yu, Kaicheng, Rene Ranftl, and Mathieu Salzmann (2020a). “How to Train
Your Super-Net: An Analysis of Training Heuristics in Weight-Sharing
NAS”. In: arXiv preprint arXiv:2003.04276.

Yu, Kaicheng et al. (2020b). “Evaluating The Search Phase of Neural Ar-
chitecture Search”. In: 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. Open-
Review.net. url: https://openreview.net/forum?id=H1loF2NFwr.

Zela, Arber, Julien Siems, and Frank Hutter (2020). “NAS-Bench-1Shot1:
Benchmarking and Dissecting One-shot Neural Architecture Search”. In:
8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. url: https:
//openreview.net/forum?id=SJx9ngStPH.

Zela, Arber et al. (2018). “Towards automated deep learning: Efficient joint
neural architecture and hyperparameter search”. In: arXiv preprint arXiv:1807.06906.

Zhang, Chris, Mengye Ren, and Raquel Urtasun (2018). “Graph hypernet-
works for neural architecture search”. In: arXiv preprint arXiv:1810.05749.

Zhang, Yuge, Quanlu Zhang, and Yaming Yang (2020a). “How Does Super-
net Help in Neural Architecture Search?” In: arXiv e-prints, arXiv:2010.08219,
arXiv:2010.08219. arXiv: 2010.08219 [cs.LG].

Zhang, Yuge et al. (2020b). “Deeper Insights into Weight Sharing in Neu-
ral Architecture Search”. In: Submitted to International Conference on

https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=HygrdpVKvr
https://openreview.net/forum?id=HygrdpVKvr
http://proceedings.mlr.press/v97/ying19a.html
https://openreview.net/forum?id=H1loF2NFwr
https://openreview.net/forum?id=SJx9ngStPH
https://openreview.net/forum?id=SJx9ngStPH
https://arxiv.org/abs/2010.08219

112 Bibliography

Learning Representations. rejected. url: https://openreview.net/
forum?id=ryxmrpNtvH.

Zheng, Qiuhan et al. (2021). “Artificial intelligence performance in detecting
tumor metastasis from medical radiology imaging: A systematic review
and meta-analysis”. In: EClinicalMedicine 31, p. 100669.

Zhong, Zhao et al. (2020). “Blockqnn: Efficient block-wise neural network
architecture generation”. In: IEEE transactions on pattern analysis and
machine intelligence 43.7, pp. 2314–2328.

Zhong, Zhun et al. (2020). “Random erasing data augmentation”. In: Pro-
ceedings of the AAAI conference on artificial intelligence. Vol. 34. 07,
pp. 13001–13008.

Zhou, Dongzhan et al. (2020). “Econas: Finding proxies for economical neu-
ral architecture search”. In: Proceedings of the IEEE/CVF Conference
on computer vision and pattern recognition, pp. 11396–11404.

Zoph, Barret and Quoc V. Le (2017a). “Neural Architecture Search with Re-
inforcement Learning”. In: Proc. of ICLR. OpenReview.net. url: https:
//openreview.net/forum?id=r1Ue8Hcxg.

— (2017b). “Neural Architecture Search with Reinforcement Learning”. In:
5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-
Review.net. url: https://openreview.net/forum?id=r1Ue8Hcxg.

Zoph, Barret et al. (2018a). “Learning Transferable Architectures for Scal-
able Image Recognition”. In: 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018. IEEE Computer Society, pp. 8697–8710. doi: 10.1109/
CVPR.2018.00907. url: http://openaccess.thecvf.com/content%
5C_cvpr%5C_2018/html/Zoph%5C_Learning%5C_Transferable%5C_

Architectures%5C_CVPR%5C_2018%5C_paper.html.
— (2018b). “Learning Transferable Architectures for Scalable Image Recog-

nition”. In: Proc. of CVPR. IEEE Computer Society, pp. 8697–8710.
doi: 10.1109/CVPR.2018.00907. url: http://openaccess.thecvf.
com / content % 5C _ cvpr % 5C _ 2018 / html / Zoph % 5C _ Learning % 5C _

Transferable%5C_Architectures%5C_CVPR%5C_2018%5C_paper.html.

https://openreview.net/forum?id=ryxmrpNtvH
https://openreview.net/forum?id=ryxmrpNtvH
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg
https://doi.org/10.1109/CVPR.2018.00907
https://doi.org/10.1109/CVPR.2018.00907
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Zoph%5C_Learning%5C_Transferable%5C_Architectures%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Zoph%5C_Learning%5C_Transferable%5C_Architectures%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Zoph%5C_Learning%5C_Transferable%5C_Architectures%5C_CVPR%5C_2018%5C_paper.html
https://doi.org/10.1109/CVPR.2018.00907
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Zoph%5C_Learning%5C_Transferable%5C_Architectures%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Zoph%5C_Learning%5C_Transferable%5C_Architectures%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Zoph%5C_Learning%5C_Transferable%5C_Architectures%5C_CVPR%5C_2018%5C_paper.html

	General Introduction
	Medical Context
	Contributions

	Improving Fracture Detection Performance with DL
	Introduction
	Related Work
	Methods
	AI System
	Dataset & Readings
	Metrics

	Results
	Discussion

	Neural Architecture Search
	Deep Convolutional Neural Networks
	Searching for Architectures
	Search Spaces
	Architecture Optimization
	Dynamic Formulation of the Inner Objective
	Discrete Optimization
	Continuous Relaxation
	Stochastic Relaxation

	Performance Estimation
	Proxy Training
	Model-Based Prediction
	Weight-Sharing

	Conclusion

	WS on the NB-101 Dataset: A Practical Case Study
	Introduction
	Related Work
	Evaluating Weight-Sharing
	Enhancing Weight-Sharing Correlations

	Methods
	Impact of Search Spaces on NAS Performances
	Ranking Architectures with Weight-Sharing
	Impact of Weight-Sharing on NAS Performances
	Good Practices

	Results
	Ranking Capabilities of Weight-Sharing
	Can Weight-Sharing Improve NAS?
	Variations between Search Spaces

	Neural Architecture Search for Fracture Classification
	Introduction
	Related Work
	Methods
	Fracture Patches Dataset
	ImageNet pre-training
	Search Space
	NAS Configuration
	Architecture Training and Evaluation

	Results
	Conclusion

	Estimating Bone Age with DL
	Introduction
	Related Work
	Experiments
	Clinical Validation Dataset
	Setting up a Baseline
	Adjusting for Prevalence Bias
	Exploiting the RHPE Dataset
	Adjusting for Chronological Age Bias

	Conclusion and Perspectives

	General Conclusion
	Contributions
	Limits and Perspectives

	References

