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Abstract

Classification is the branch of supervised learning that aims at estimating a discrete
valued mapping from data made of input-output pairs. The most classical and well stud-
ied setting is binary classification, where the discrete predictor takes zero or one as value.
However, most of the practical classification settings deal with large structured output
spaces such as sequences, grids, graphs, permutations, matchings, etc. There are many
fundamental differences between structured prediction and vanilla binary or multi-class
classification, such as the exponentially large size of the output space with respect to
the natural dimension of the output objects and the cost-sensitive nature of the learn-
ing task. This thesis focuses on surrogate methods for structured prediction, whereby
the typically intractable discrete problem is approached using a convex continuous sur-
rogate problem which in turn can be addressed using techniques from regression. The
large size of the output space and the cost sensitivity of the task in the structured set-
ting defines new challenges not present in the binary case. Much effort in this thesis is
towards a general theory of surrogate methods whereby statistical and computational
properties such as Fisher consistency, calibration, complexity of training and complex-
ity of inference are studied. More specifically, two main types of surrogate strategies
show up in this thesis: probabilistic methods, also known as plug-in classifiers, and non-
probabilistic methods. The main contribution on the first type is a quantitative calibra-
tion analysis for both existing and recently proposed structured probabilistic surrogates,
which is a key ingredient to obtain guarantees for those estimators. The main contribu-
tions on the second type include a statistical and computational analysis of the Max-Min
loss, a recently proposed calibrated polyhedral surrogate loss for structured prediction
and a consistency analysis of the structured Max loss, also known as structural SVM,
which is the classical extension of the binary SVM to structured output spaces.



Résumé

La classification est la branche de l’apprentissage supervisé qui vise à estimer une
fonction à valeurs discrètes à partir de données constituées de paires d’entrées et de sor-
ties. Le cadre le plus classique et le plus étudié est celui de la classification binaire, où
le prédicteur discret prend pour valeur zéro ou un. Cependant, la plupart des prob-
lèmes de classification qu’on retrouve en pratique sont definis sur de grands espaces de
sortie structurés tels que des séquences, des grilles, des graphs, des permutations, etc.
Il existe des différences fondamentales entre la prédiction structurée et la classification
multiclasse ou binaire non structurée: la grandeur exponentielle de l’espace de sortie
par rapport à la dimension naturelle des objets à prédire et la sensibilité des coûts de la
tâche de classification. Cette thèse se concentre sur les méthodes de substitution pour
la prédiction structurée, dans lesquelles le problème discret typiquement insoluble est
abordé à l’aide d’un problème continu convexe qui, à son tour, peut être résolu à l’aide
de techniques de régression. La grandeur de l’espace de sortie et la sensibilité des coûts
de classification de la tâche dans le cadre structuré définissent de nouveaux défis qui
ne sont pas présents dans le cas binaire. Un soin tout particulier dans cette thèse porte
sur une théorie générale des méthodes de substitution à partir de l’étude de propriétés
statistiques et computationelles telles que la calibration à la tâche de prédiction discrète,
la complexité de l’apprentissage et la complexité de l’inférence. En particulier, deux
types principaux de stratégies de substitution sont présentés dans cette thèse : les méth-
odes probabilistes, également appelées classifieurs plug-in, et les méthodes non prob-
abilistes. La principale contribution pour le premier type est une analyse quantitative
de la calibration des substituts probabilistes structurés existants et aussi récemment pro-
posés; cette analyse est un ingrédient clé pour obtenir des garanties pour ces estimateurs.
Les principales contributions pour le deuxième type incluent une analyse statistique et
computationelle de la fonction de perte max-min, une perte de substitution polyédrique
calibrée récemment proposée pour la prédiction structurée et finalement une analyse
de calibration de la fonction de perte max-margin structurée, également connue sous le
nom de structural SVM, qui est l’extension classique de la SVM binaire aux espaces de
sorties structurées.
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Contributions and Thesis Outline

We briefly summarize the structure of the thesis, which is divided into three main parts.

Part I: Introduction.

• Chapter 1: Introduction. The goal of the introductory chapter is to provide a
general picture of surrogate methods and its application to structured prediction.
Hopefully, this will prove to be useful for establishing the necessary background
and to give a brief taste of the contributions presented in depth in the following
chapters. More specifically, the chapter starts with a brief introduction to struc-
tured prediction and a presentation of the very basics of statistical learning theory.
Then, surrogate methods are presented in its generality together with their desir-
able theoretical properties and the main types. After that, the surrogate strategy
is studied under the point-wise framework for cost-sensitive losses, and finally all
these tools are deployed in the structured prediction setting. A final section of
related works and summary of contributions closes the introductory chapter.

Part II: Probabilistic Surrogates. This part focuses on probabilistic surrogate methods,
i.e., based on conditional risk estimation. It is divided into the following two chapters:

• Chapter 2: Sharp analysis of learning with discrete losses. This chapter focuses
on the statistical and computational analysis of the quadratic surrogate loss. We
explicitly show that the statistical cost of minimizing low-rank structured losses is
logarithmic in the potentially exponential size of the output space, showing thus
the feasibility of the learning problem.

• Chapter 3: A general theory for structured prediction with smooth convex surro-
gates. This chapter extends the above analysis to generic smooth convex surrogate
losses for structured prediction such as conditional random fields. We leverage
tools from property elicitation theory to study the generic structure of probabilistic
based surrogate losses, which allows us to provide statistical results on the perfor-
mance of these methods when approached using stochastic gradient techniques.

Part III: Non-probabilistic Surrogates. This part focuses on non-probabilistic surro-
gate methods, i.e., not based on conditional risk estimation. Tt has the following two
chapters:

• Chapter 4: Consistent structured prediction with Max-Min Margin Markov Net-
works. We introduce a novel non-probabilistic consistent convex surrogate method
for structured prediction called Max-Min Margin Markov Networks (M4N), based
on the Max-Min loss. We provide a full-stack analysis of the method; calibration,
generalisation bounds and a generalised version of Block-Coordinate Frank-Wolfe
as an efficient algorithm to minimize the regularized empirical risk. The theoretical
findings are validated with reproducible experiments available in a public reposi-
tory.
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• Chapter 5: Max-Margin is Dead, Long Live Max-Margin! In this chapter we study
margin maximization methods and their inability to provide guarantees for gen-
eral structured prediction. In particular, we provide necessary and sufficient con-
ditions on the discrete loss to ensure consistency of the Max loss, which are not
satisfied by most of the losses used in practice. Moreover, we propose a novel
restricted version of the Max loss, called Restricted-Max loss, which significantly
weakens those conditions and it is consistent for discrete losses such as the 0-1 loss.

Finally, we conclude the thesis by summarizing the contributions and providing
guidelines for future work.

Publications and Preprints. The main bulk of the thesis is based on the following pub-
lished and not yet published scientific papers:

• Part II is based on:

- Sharp Analysis of Learning with Discrete Losses, Nowak-Vila, A., Bach, F.,
and Rudi, A., published in International Conference on Artificial Intelligence and
Statistics 2019 (cited as Nowak et al. (2019)).

– A General Theory for Structured Prediction with Smooth Convex Surro-
gates, Nowak-Vila, A., Bach, F., and Rudi, A., technical report (cited as Nowak-
Vila et al. (2019)).

• Part III is based on:

- Consistent Structured Prediction with Max-Min Markov Networks, Nowak-
Vila, A., Bach, F., and Rudi, A., published in the International Conference on
Machine Learning 2020 (cited as Nowak-Vila et al. (2020)).

– Max-Margin is Dead, Long Live Max-Margin!, Nowak-Vila, A., Bach, F., and
Rudi, A., submitted to NeurIPS 2021.

The paper Eboli et al. (2020) is a project on structured prediction applied to image
restoration. The work presents a novel approach to image restoration that leverages
ideas from localized structured prediction and non-linear multi-task learning by opti-
mizing a learned penalized energy function. The resulting estimator comes with strong
statistical guarantees leveraging local dependency properties of overlapping patches
and its practical efectiveness is demonstrated on different image restoration problems
using standard benchmarks. This research work does not appear in this manuscript.
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1 Introduction

1 A Brief Introduction to Structured Prediction

Machine Learning. Classical computer science deals with input-output tasks for which
there exists an explicit description of the underlying mechanism generating the output
from the input. The sequence of operations the computer performs to check the correct-
ness of our credentials when logging into a session or to sort an array of natural numbers
is directly programmed into the computer as a set of rules derived from a complete un-
derstanding of the procedure. Unfortunately, expert knowledge is not available for most
complex tasks. The lack of mathematical description for recognizing objects in an image
or to translate a sentence from one language to another does not allow us to write down
a set of rules to generate the label of the object or the translated sentence from the corre-
sponding input. While the exponential increase in computer power of these last decades
cannot provide us the explicit rules to solve these tasks, it gives us an indirect solution
through learning. Indeed, a massive amount of data related to these complex tasks, such
as labelled images or translated text in the case of the examples above, is generated daily
due to our every day exposition to electronic devices and can be leveraged by computers
as raw material for learning. Machine learning is the scientific discipline lying at the in-
tersection of computer science and statistics aiming at learning such complex tasks from
data.

Supervised learning. The setting we consider in this thesis is supervised learning (Vap-
nik, 1995; Devroye et al., 1996), which is the branch of machine learning where the data
is made of input-output pairs. More specifically, the goal is to predict an unobserved
output 𝑦 from an output space 𝒴 given an input 𝑥 from an input space 𝒳 , by estimating
a function

𝑓 : 𝒳 −→ 𝒴,

such that 𝑓(𝑥) ≈ 𝑦 learned from finite data made of pairs (𝑥, 𝑦). In the examples above, 𝒳
is the space of images and 𝒴 = {−1, 1} are binary labels specifying whether there is a
dog or a cat present in an image and for translation 𝒳 and 𝒴 are the space of sentences
in two different languages, respectively. The error between the observed value 𝑦 and the
prediction 𝑓(𝑥) is measured by a non-negative loss function as 𝐿(𝑓(𝑥), 𝑦), where

𝐿 : 𝒴 × 𝒴 −→ R,

is a measure of error satisfying 𝐿(𝑦, 𝑦) = 0 for all output elements 𝑦. Other well-known
branches of machine learning are unsupervised learning (Friedman et al., 2001), where
only input data is available and the goal is to solve the task by finding patterns in the

8
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data, and reinforcement learning (Sutton and Barto, 2018), where the data is generated
in an online fashion by interaction with an environment.

There are two classical settings in supervised learning depending on whether the
output willing to predict is continuous or discrete.

Continuous Prediction. This setting is also known as regression. The output space 𝒴 is
generally a vector space. This setting includes scalar regression, where the output lives
in 𝒴 = R and vector regression, where the output is in 𝒴 = R𝑘. A classical loss used in
those settings is least squares, defined as 𝐿(𝑦, 𝑦′) = ‖𝑦 − 𝑦′‖2

2.

Discrete Prediction. While we will extensively use continuous prediction as a means
to predict discrete labels, the main goal in this thesis is to study discrete prediction prob-
lems. We classify them into two main groups depending on the type of output.

• Unstructured Prediction. Informally, this setting corresponds to the case where the
different labels to be predicted have the same importance. Thus, we can visualise the
elements of the output space as being independent objects. This includes vanilla binary
classification 𝒴 = {−1, 1} and multi-class classification 𝒴 = {1, 2, . . . , 𝑘}. The loss com-
puting the error between predictions and observations is the 0-1 loss 𝐿(𝑦, 𝑦′) = 1(𝑦 ̸=
𝑦′), defined as zero if both elements are equal and one otherwise.

• Structured Prediction. This is the more general setting in supervised learning. The la-
bels are structured objects (BakIr et al., 2007; Nowozin et al., 2014) in the sense that some
pairs of labels are closer in the output space than others. For instance, if 𝒴 is the space
of sequences of a fixed length in a given dictionary of characters, a sequence is closer to
another one differing in a single character than to a sequence with all characters being
different. Furthermore, the output space can be of exponentially large size with respect to
the natural dimensional of the output objects (e.g., the number of possible sequences is
exponential with the length), which can lead in many learning settings to larger num-
ber of potential outputs than available data for learning. More concretely, we say that
a prediction problem is structured if it has at least one of the two following distinctive
features:

Structured prediction distinctive features

1. Cost-sensitivity of predictions. The loss measuring the error between obser-
vations and predictions is different than the 0-1 loss 𝐿(𝑦, 𝑦′) = 1(𝑦′ ̸= 𝑦).

2. Large output space. The cardinality of the output space is much larger than
the natural dimension of the output elements.

While all cost-sensitive learning problems are not always considered as structured in
the literature, we include it in our definition as the developed framework and anal-
ysis in this thesis will naturally include this setting. The following are examples of
structured output spaces and some discrete losses defining its geometry:

– Ordered elements. The output set consists of ordered elements 1 ≺ 2 ≺ · · · ≺ 𝑘.
A classical measure of error is the absolute deviation loss 𝐿(𝑦, 𝑦′) = |𝑦 − 𝑦′|.
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– Subsets. The output space is the set of subsets of {1, . . . , 𝑘}. The space has ex-
ponential size 2𝑘 and a classical measure of error is the F-1 score, defined as the
harmonic mean between precision and recall 𝐿(𝑦, 𝑦′) = 2|𝑦 ∩ 𝑦′|/(|𝑦| + |𝑦′|).

– Permutations. The output space is the set of permutations acting on a set of 𝑘
elements. The space has 𝑘! = 𝑘 × (𝑘 − 1) × · · · × 2 × 1 elements. There exist
several losses between pairs of permutations 𝜎, 𝜎′ (Deza and Deza, 2009), such as
the Kendall’s 𝜏 distance 𝐿(𝜎, 𝜎′) =

∑︀
𝑖<𝑗 1((𝜎(𝑖) −𝜎(𝑗))(𝜎′(𝑖) −𝜎′(𝑗)) < 0) and the

Hamming loss 𝐿(𝜎, 𝜎′) = 1
𝑘

∑︀𝑘
𝑗=1 1(𝜎(𝑗) ̸= 𝜎′(𝑗)).

– Sequences. The output space is the set of sequences of length 𝑘 with charac-
ters in a dictionary of size 𝑅. The space has 𝑅𝑘 elements. Classical losses for
sequences are the edit distance (Jurafsky, 2000), which counts the minimum num-
ber of required editions to transform one sequence to another and the Hamming
loss measuring the proportion of position-wise errors.

– Trees. The output space is the set of trees, i.e, acyclic undirected graphs. Typical
metrics focus on the number of ‘constituent errors’ between two trees (Black et al.,
1991), and it is generally measured using the F1-score.

– Grids. The output space is a 𝑘×𝑘 - dimensional grid, where every element of the
grid is a character in a dictionary of size 𝑅. The space has 𝑅𝑘

2
elements and error

is generally measured using the Hamming loss.

Remark 1 .1 (Continuous structured problems). In some cases continuous prediction
problems are also considered as structured. For instance, if the continuous output
space is structured as a manifold (Rudi et al., 2018). This setting will not be consid-
ered in this thesis.

Example 1 .2. There exists a vast zoo of structured classification problems in many
different scientific and engineering areas (see Figure 1.1). The following are examples
from three particular domains.

Natural Language Processing. Data related to language is highly structured in na-
ture. Structure prediction tasks in this field include part-of-speech tagging, hand-
written recognition, parsing, named-entity recognition, text summarization, transla-
tion and word alignment, amongst others (Smith, 2011).

Computer Vision. Images are structured objects made of pixels laid out in a grid
and many tasks dealing with images require predicting other types of structures.
Some examples are object detection, segmentation, motion tracking, 3D reconstruc-
tion from video and stereo (Nowozin and Lampert, 2011).

Computational Biology. The emergence of modern molecular genetics has
changed modern biology. In particular, recent advancements such as large-scale
DNA sequencing are producing massive amount of structured data that requires
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Structured Output Prediction Setting

I Estimate f : X �! Y that predicts structured output y 2 Y from
input x 2 X .

Handwritten Recognition Matching

Application to machine translation

Word alignment between languages:
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également

à
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(a) Dice only (b) Dice and Distance
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(c) Dice, Distance, Orthographic, and BothShort (d) All features

Figure 1: Example alignments for each successive feature set.

except fertility.1

First, and, most importantly, we want to in-
clude information about word association; trans-
lation pairs are likely to co-occur together in
a bitext. This information can be captured,
among many other ways, using a feature whose

1In principle, we can model also model fertility, by
allowing 0-k matches for each word rather than 0-1, and
having bias features on each word. However, we did not
explore this possibility.

value is the Dice coe�cient (Dice, 1945):

Dice(e, f) =
2CEF (e, f)

CE(e) + CF (f)

Here, CE and CF are counts of word occurrences
in each language, while CEF is the number of
co-occurrences of the two words. With just this
feature on a pair of word tokens (which depends
only on their types), we can already make a stab

(Taskar, Lacoste-Julien, Klein. EMNLP ’05)
David Sontag (NYU) Inference and Representation Lecture 10, Nov. 28, 2016 23 / 38

10.2. LEARNING TO MATCH 147
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Figure 10.1: PDB protein 1ANS: amino acid sequence, 3D structure, and graph of potential
disulfide bonds. Actual disulfide connectivity is shown in yellow in the 3D model and the
graph of potential bonds.

where xjk is the portion of the input x that directly relates to nodes j and k, fd(xjk) is
a real-valued basis function and wd 2 IR. For example, the basis functions can represent
arbitrary information about the two cysteine neighborhoods: the identity of the residues
at specific positions around the two cysteines, or the predicted secondary structure in the
neighborhood of each cysteine. We assume that the user provides the basis functions, and
that our goal is to learn the weights w, for the model:

hw(x) = arg max
y2Y

X

jk

w>f(xjk)yjk. (10.3)

Below, we will abbreviate w>f(x,y) ¥ P
jk w>f(xjk)yjk, and w>fi(y) ¥ w>f(x(i),y),

The naive formulation of the max-margin estimation, which enumerates all perfect
matchings for each example i, is:

min
1

2
||w||2 s.t. w>fi(y

(i)) ∏ w>fi(y) + `i(y), 8i, 8y 2 Y (i). (10.4)

The number of constraints in this formulation is super-exponential in the number of nodes
in each example. In the following sections we present two max-margin formulations,
first with an exponential set of constraints (Sec. 10.3), and then with a polynomial one
(Sec. 10.4).

Example #2 (vision): Image segmentation

Problem: Given an image X 2 Rm x n x 3, produce a labeling
Y 2 {1, . . . , k}m x n.

The labels 1, . . . , k could correspond to e.g. {grass, sky, tree}.

David Sontag (NYU) Inference and Representation Lecture 9, Nov. 21, 2016 14 / 42

Figure 1.1: Examples of structured prediction tasks. Top-left: In optical character recog-
nition (OCR) (Taskar et al., 2004), the goal is to predict the word written in the sequence
of images. The structured output is a sequence. Top-Right: In image segmentation
(Forsyth and Ponce, 2012), the goal is to predict the object every pixel of the image be-
longs to. The structured output is a grid of pixels. Bottom-left: In word alignment
(Lacoste-Julien et al., 2006), the goal is to predict an alignment between the words of two
sentences of different languages, such that every word is mapped to its semantic equiv-
alent in the other language. The structured output is an alignment. Bottom-Right: In
disulfide connectivity prediction (Chatalbashev et al., 2005), the goal is to predict a set
of pairs of elements of an aminoacid chain describing the disulfide bridges (intra-chain
covalent bonds). The structured output is a set of pairs where each element belongs to a
single pair.

machine learning techniques to make sense of. In particular, prediction tasks in com-
putational biology include gene-finding, alignment of sequences, protein structure
prediction, DNA sequence labelling, molecular pathway discovery and bond struc-
ture discovery, amongst others (Durbin et al., 1998).
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2 Mathematical Framework

In this section, we give a brief introduction to the mathematical framework we will use
throughout the thesis. In particular, we show why continuous prediction tasks are both
statistically and computationally more attractive than its discrete counterparts for learn-
ing directly. This serves as a motivation for the introduction of surrogate methods in the
next section, which is the central methodology studied in this thesis whereby a surrogate
continuous problem is designed to solve the discrete task of ultimate interest.

Statistical learning. The statistical learning setting (Vapnik, 1995) is the classical math-
ematical framework to study supervised learning methods. Let 𝜌 be an unknown distribu-
tion of input-output pairs in Prob(𝒳 ×𝒴) and 𝐿 a loss measuring the error between a pre-
dicted output 𝑦 and an observed output 𝑦′ as𝐿(𝑦, 𝑦′). The quality of a predictor 𝑓 : 𝒳 −→ 𝒴
is measured using the so-called expected risk,

ℰ(𝑓) ..= E(𝑥,𝑦)∼𝜌 𝐿(𝑓(𝑥), 𝑦), (1.1)

defined as the averaged incurred cost of predicting 𝑦 using 𝑓(𝑥) measured by 𝐿, where
the pair (𝑥, 𝑦) comes from the distribution 𝜌. Thus, the problem consists in finding a
predictor 𝑓 with low expected risk ℰ(𝑓). A central mathematical object of the learning
task is the Bayes predictor 𝑓⋆ defined as the exact minimizer of the expected risk over all
measurable functions. This is precisely the mapping we want to approximate. The Bayes
predictor can be characterized point-wise in 𝑥 ∈ 𝒳 as

𝑓⋆(𝑥) ∈ arg min
𝑦′∈𝒴

E𝑦∼𝜌𝑥 𝐿(𝑦′, 𝑦), (1.2)

where 𝜌𝑥(𝑦) = 𝜌(𝑦 | 𝑥) is the conditional probability of 𝑦 given 𝑥. Note that the Bayes
predictor is always a function of the conditional distribution 𝜌𝑥.

Example 2 .1 (Bayes predictors). The following are two classical examples of Bayes
predictors for classification and regression, respectively.

• Binary classification. If 𝐿(𝑦, 𝑦′) = 1(𝑦′ ̸= 𝑦) is the 0-1 loss and 𝒴 = {−1, 1}:

𝑓⋆(𝑥) = sign(E𝑦∼𝜌𝑥 𝑦).

• Least-squares regression. If 𝐿(𝑦, 𝑦′) = (𝑦 − 𝑦′)2 and 𝒴 = R:

𝑓⋆(𝑥) = E𝑦∼𝜌𝑥 𝑦.

Estimators. In general, the exact minimization of the expected risk cannot be solved
in practice as we only have access to the distribution 𝜌 through a finite dataset 𝒟𝑛 =
{(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} made of 𝑛 input-output pairs sampled independent and identi-
cally distributed (i.i.d.) from the distribution 𝜌. The goal is to design an estimator 𝒜 :
∪𝑛≥1(𝒳 × 𝒴)𝑛 −→ ℱ taking as input the dataset 𝒟𝑛 and generating a function from a
hypothesis space ℱ ⊆ {𝑓 : 𝒳 → 𝒴}, also known as class of predictors, having low ex-
pected risk (1.1). More concretely, we want to design an estimator 𝒜 minimizing the
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quantity ℰ(𝒜(𝒟𝑛)) in expectation or in high probability over the 𝑛 samples 𝒟𝑛 ∼ 𝜌𝑛 1. In
particular, typical guarantees in expectation take the form E𝒟𝑛∼𝜌𝑛 ℰ(𝒜(𝒟𝑛)) − ℰ(𝑓⋆) ≤
𝒪(𝑛−𝛾), where 𝛾 > 0 is positive scalar specifying the polynomial rate of convergence to
the Bayes predictor 𝑓⋆.

Remark 2 .2. A note on the i.i.d. assumption. The statistical learning framework
assumes that the distribution of the training data is the same as the distribution in
which the estimator is evaluated. In practice this assumption is rarely satisfied, as
in many settings the learned estimators are applied in domains different than the
ones used for training (Torralba and Efros, 2011). The problem of out-of-distribution
generalization is out of the scope of this thesis, but it is important to keep in mind
that the i.i.d. assumption is usually a deliberate simplification differing from real
practices in the field.

An insightful way to look at the error incurred by an estimated predictor 𝑓 is to
decompose it into the so-called estimation error ℰest and approximation error ℰapp as

ℰ(𝑓) − ℰ(𝑓⋆) = ℰ(𝑓) − ℰ(𝑓⋆ℱ )⏟  ⏞  
ℰest

+ ℰ(𝑓⋆ℱ ) − ℰ(𝑓⋆)⏟  ⏞  
ℰapp

,

where 𝑓⋆ℱ is the minimizer of the expected risk over ℱ . The estimation error is a ran-
dom quantity (𝑓 is random as it is an estimated quantity) and it is the source of error
coming from the fact that we only have access to the distribution 𝜌 through the finite
dataset 𝒟𝑛. The approximation error is a deterministic quantity coming from the fact we
seek a solution over a restricted set of hypothesis ℱ and not the set of all possible mea-
surable input-output mappings. In the context of least-squares regression, the errors ℰest
and ℰapp correspond to the classical variance and bias terms, respectively. Undesired
unbalance between the two sources of error above leads to important phenomena in
statistical learning theory known as overfitting and underfitting.

Overfitting and underfitting. If the hypothesis space ℱ is large, the approximation
error will be small as the minimizer of the expected risk over this space will be closer
to the exact minimizer 𝑓⋆. However, picking ℱ ‘too large’ with respect to the amount of
available data will increase the statistical error as the estimator will pick ‘complicated’
functions very specific to the observed data but unstable to unobserved data under the
distribution. This phenomena is known as overfitting. On the other hand, choosing a
small hypothesis space will reduce the statistical error as small amount of data will be
enough to pick a stable solution in ℱ but choosing it too small will move the potential
predictors away from the Bayes predictor 𝑓⋆. This phenomena is known as underfitting.
See Figure 1.2 for a visualization of those phenomena in a one dimensional regression
task.

1High probability learning bounds are also known as ‘Probably approximately correct’ (PAC) (Valiant,
1984).
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Figure 1.2: We depict in a blue line the Bayes predictor 𝑓⋆, with crosses the elements
of the dataset and in an orange line the estimator 𝑓 . Left (underfitting): The estimator
gives a too simple explanation of the data, incurring in large approximation error. On
the other hand, the estimation error is small as the solution is stable under additional
data. Right (overfitting): The hypothesis space ℱ is large enough to contain 𝑓⋆ but too
large as it provides a solution too specialized to the observations and not stable under
additional data from the distribution. Middle (good fitting): The hypothesis space ℱ
is small enough to keep the estimation error small and good enough to approximate
well 𝑓⋆.

The crux of designing a good estimator is to choose the right function class ℱ
small enough to control the estimation error and good enough to approximate the Bayes
predictor 𝑓⋆.

Below we briefly formalize what we mean by large and small hypothesis space by
studying the estimation error of the minimizer of the average error on the dataset 𝒟𝑛.

Empirical Risk Minimization (ERM). A natural approach to minimize the expected
risk having only access to a finite dataset is to consider the empirical risk ℰ𝑛(𝑓) defined as

ℰ𝑛(𝑓) ..= 1
𝑛

𝑛∑︁
𝑖=1

𝐿(𝑓(𝑥𝑖), 𝑦𝑖), (1.3)

and minimize it over the hypothesis space ℱ . The estimation error ℰest of the mini-
mizer 𝑓𝑛 of the empirical risk (1.3) can be upper bounded as follows

ℰ(𝑓𝑛) − ℰ(𝑓⋆ℱ ) = {ℰ(𝑓𝑛) − ℰ𝑛(𝑓𝑛)} + {ℰ𝑛(𝑓𝑛) − ℰ𝑛(𝑓⋆ℱ )}⏟  ⏞  
≤0

+{ℰ𝑛(𝑓⋆ℱ ) − ℰ(𝑓⋆ℱ )}

≤ 2 sup
𝑓∈ℱ

|ℰ𝑛(𝑓) − ℰ(𝑓)|,

where we have used that ℰ𝑛(𝑓𝑛) = min𝑓∈ℱ ℰ𝑛(𝑓) ≤ ℰ𝑛(𝑓) for all 𝑓 ∈ ℱ . Thus, the estima-
tion error can be bounded by the maximal deviation of the empirical risk to the expected
risk over the hypothesis space ℱ . Upper bounds on the expectation of this random ob-
ject with respect to the number of samples 𝑛 and complexity quantities associated to the
hypothesis space ℱ are known as uniform bounds. These bounds provide us with a notion
of “size” of the hypothesis space ℱ that will allow us to control the estimation error.
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Uniform bounds through empirical process theory. Uniform bounds for binary (thus
discrete) classification problems with the 0-1 loss date back from the first works of statis-
tical learning theory (Vapnik, 1999). In this setting, the hypothesis space is a class of sets
from the input space defining the decision boundary of the predictor 𝑓 . The main result
is that the estimation error of the ERM estimator 𝑓𝑛 can be bounded in expectation as

.
√︃

VC(ℱ)
𝑛

,

where VC(ℱ) is the so-called Vapnik-Chervonenkis (VC) dimension of ℱ and . means
greater or equal up to universal multiplicative constants independent of ℱ and 𝑛. This
dimension is combinatorial in nature and it is defined as the maximum number of points
in 𝒳 that can be shattered 2 using sets from the hypothesis class. Put in simple terms,
it is a measure of the capability of the decision boundaries to separate elements of the
input space. As we will argue below, in practice discrete prediction problems are solved
using vector-valued functional spaces, and while the VC dimension can be extended to
this setting (Pollard, 1984), other measures of complexity have appeared which are more
natural in the continuous setting and sensitive to the distribution of the data, such as the
Rademacher complexity Rad(𝑛,ℱ) (Koltchinskii and Panchenko, 2000; Bartlett et al., 2002).
In particular, if the loss 𝐿 is 𝐾-Lipschitz 3, the estimation error can be upper bounded in
expectation as

. 𝐾 E𝜎,𝜌

[︃
sup
𝑓∈ℱ

1
𝑛

𝑛∑︁
𝑖=1

𝜎𝑖𝑓(𝑥𝑖)
]︃

⏟  ⏞  
Rad(𝑛,ℱ)

,

where 𝜎 are i.i.d. Rademacher variables P {𝜎𝑖 = ±1} = 1/2. The Rademacher complexity
can usually be bounded as ≤ 𝑅𝐵/

√
𝑛, where 𝐵 is a measure of the maximal complexity

of the predictors, typically a functional norm ‖ · ‖ℱ of the hypothesis space, and 𝑅 is the
size of the inputs. 4 We informally call the capacity of ℱ the hypothesis specific term con-
trolling the estimation error. These bounds on the statistical error of the form capacity of ℱ√

𝑛

suggest that one should control the capacity of ℱ in terms of the number of available samples.
The technique to adaptively control the complexity of the predictors with the number of
samples to avoid large estimation error (thus overfitting) is called regularization.

Capacity control for continuous output spaces. When the output space 𝒴 is contin-
uous, a classical way to implement such a regularization strategy is to choose a large
hypothesis space ℱ , potentially a dense set in the continuous space of functions, and
define a regularizer on ℱ , typically a norm ‖ · ‖ℱ controlling the capacity. Indeed, as we
have seen above, the capacity in the continuous setting can be usually controlled by the
functional norm of the hypothesis space. The estimator is then defined as the minimizer
of the following penalized optimization problem

min
𝑓∈ℱ

ℰ𝑛(𝑓) + 𝜆

2 ‖𝑓‖2
ℱ ,

2If 𝐴 is a discrete set and 𝒞 a class of sets, we say that ℱ shatters 𝐴 if for each subset 𝑎 ∈ 𝐴, there exists
𝑐 ∈ 𝒞 such that 𝑎 = 𝐴 ∩ 𝑐.

3Note that this excludes its direct applicability to discrete learning problems. As we will see later, this
is not a problem as those are usually tackled with surrogate continuous prediction problems.

4This is the case for reproducing kernel Hilbert spaces (RKHS) (Aronszajn, 1950).
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where 𝜆 > 0 is the so-called regularization parameter. If 𝜆 is large the penalization will
guide the solution to small capacity predictors, while small penalization will encourage
minimizers of larger norm, thus more complex. On other words, 𝜆 controls the trade-off
between estimation and approximation error. While it is clear that the regularization
parameter should decrease with the number of samples, choosing the right parameter
is a hard problem in practice and one usually additional validation data is required for
this task. Note that the convexity of 𝐿 in the first argument is key to be able to tractably
minimize the regularized functional. In the next section we will briefly discuss about
computational issues and general gradient based techniques to efficiently solve the reg-
ularized ERM problem.

Example 2 .3 (Capacity control for linear hypothesis spaces). The classical exam-
ple of capacity control for regression problems is that of Tikhonov regularization
(Tikhonov, 1963) for least-squares loss and linear hypothesis space ℱlin = {𝑓 : R𝑑 →
R | 𝑓(𝑥) = 𝑤⊤𝑥, 𝑤, 𝑥 ∈ R𝑑}. In this case, the estimator is defined as the minimizer of
the following penalized convex minimization problem:

min
𝑤∈R𝑑

1
2𝑛

𝑛∑︁
𝑖=1

(𝑤⊤𝑥𝑖 − 𝑦𝑖)2 + 𝜆

2 ‖𝑤‖2
2,

where ‖𝑤‖2 can be seen as a norm of the function 𝑓(𝑥) = 𝑤⊤𝑥 in the space ℱlin
(Schölkopf et al., 2002).

Problems of ERM for discrete output spaces. While the study of empirical risk min-
imization for binary classification can be found in the first works of statistical learning
theory using the combinatorial VC-dimension introduced above, in practice this estima-
tor has several issues both of computational and statistical nature due to the discreteness
of the output space 𝒴 .

(i) ERM is generally intractable. In binary classification, a binary-valued predictor 𝑓
can be viewed as a set in 𝒳 , where the points 𝑥 satisfy 𝑓(𝑥) = 1 if they belong to
the set and 𝑓(𝑥) = −1 otherwise. For instance, the hypothesis space of linear deci-
sion functions corresponds to the set of halfplanes. Unfortunately, minimizing the
empirical risk (1.3) over this type of space of functions is a combinatorial problem
which is known to be computationally intractable for many non-trivial classes of
predictors (Arora et al., 1997).

(ii) Lack of regularization techniques. While for real or vector valued functions the
capacity of the hypothesis space can be controlled by a norm, the capacity of spaces
of sets is controlled by combinatorial quantities such as the VC-dimension, for
which there is no clear way to adaptively control it with the number of samples
𝑛. There exist capacity measures of spaces of sets depending continuously on a
regularity parameter of the decision boundaries (Mammen and Tsybakov, 1995),
but the resulting algorithm remains abstract and impossible to implement in prac-
tice (Tsybakov, 2004).

The classical solution to problems (i) and (ii) with discrete empirical risk minimiza-
tion is to consider a surrogate continuous prediction problem for which the solution can

PhD thesis – INRIA & DI-ENS 16/197 Alex Nowak Vila

https://www.inria.fr/en/
https://www.di.ens.fr/


Structured Supervised Learning with Theoretical Guarantees January 11, 2022

be mapped to a solution of the discrete one. Regularization techniques such as penaliza-
tion with a norm can then be applied to adaptively control the capacity of the space of
continuous surrogate predictors. This thesis is devoted to the design and study of both
the statistical and computational properties of such surrogate strategies for tackling dis-
crete structured prediction problems.

3 Surrogate Methods

From now on, we assume the output space 𝒴 to be discrete and 𝑓 to be discrete valued.
The goal of surrogate methods is to substitute the discrete prediction problem into a
continuous prediction problem such that the solution of the first can be written in terms
of a solution of the second. More concretely, the surrogate approach is made of the
following two objects:

1. Surrogate loss 𝑆. A surrogate loss 𝑆 : R𝑘 × 𝒴 −→ R is a loss bounded from below
and continuously depending on the first argument. The vector space R𝑘 is the
surrogate space, in contrast with the discrete output space 𝒴 .

2. Decoding function 𝑑. The decoding is a discrete-valued function 𝑑 : R𝑘 −→ 𝒴
mapping points from the surrogate space R𝑘 to the discrete output space 𝒴 .

The goal of the surrogate approach is to find a surrogate predictor 𝑔 : 𝒳 → R𝑘 mini-
mizing the expected surrogate risk ℛ defined as

ℛ(𝑔) ..= E(𝑥,𝑦)∼𝜌 𝑆(𝑔(𝑥), 𝑦). (1.4)

Then, a discrete predictor 𝑓 : 𝒳 → 𝒴 is constructed using the decoding as 𝑓 = 𝑑 ∘ 𝑔 5.
Analogously to the Bayes predictor 𝑓⋆ associated to the discrete problem, we define the
surrogate Bayes predictor 𝑔⋆ as the exact minimizer of the expected surrogate risk ℛ. It can
be characterized point-wise in terms of the conditional distribution 𝜌𝑥 as

𝑔⋆(𝑥) = arg min
𝑣∈R𝑘

E𝑦∼𝜌𝑥 𝑆(𝑣, 𝑦). (1.5)

See Figure 1.3 for examples of classical surrogate losses and decodings in binary clas-
sification and structured prediction.

Surrogate hypothesis space 𝒢. Given a hypothesis space of vector valued functions 𝒢 ⊆
{𝑔 : 𝒳 → R𝑘}, the goal is to find the minimizer of the expected surrogate risk (1.4) over
𝒢. The associated hypothesis space ℱ of discrete predictors corresponds to the set of
discrete-valued functions 𝑓 : 𝒳 → 𝒴 that can be written as 𝑓 = 𝑑 ∘ 𝑔, where 𝑔 ∈ 𝒢. As
an example, in binary classification with a sign decoding 𝑑(𝑣) = sign(𝑣), 𝑣 ∈ R and 𝒢 the
space of affine functions, the discrete hypothesis space corresponds to linear decision
boundaries.

5The notation 𝑓 = 𝑑 ∘ 𝑔 stands for 𝑓(𝑥) = 𝑑(𝑔(𝑥)) for all 𝑥 ∈ 𝒳 .
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Binary Classification with decoding 𝑑(𝑣) = sign(𝑣)

Name 𝑆(𝑣, 𝑦) : R × {1, 1} → R Convex Smooth

Hinge max(1 − 𝑦𝑣, 0) 3 7

Squared hinge max(1 − 𝑦𝑣, 0)2 3 3

Logistic log(1 + 𝑒−𝑦𝑣) 3 3

Max-Min max(|𝑣|, 1/2) − 𝑦𝑣 3 7

Ramp min(1,max(1 − 𝑦𝑣, 0)) 7 7

Sigmoid (1 + 𝑒𝑦𝑣)−1 7 3

Perceptron max(−𝑦𝑣, 0) 3 7

Structured Prediction with decoding 𝑑(𝑣) = arg max𝑦∈𝒴 𝑣𝑦

Name 𝑆(𝑣, 𝑦) : R𝒴 × 𝒴 → R Convex Smooth

Structured Max max𝑦′∈𝒴 𝐿(𝑦, 𝑦′) + 𝑣𝑦′ − 𝑣𝑦 3 7

Structured Squared ‖𝑣 + 𝐿𝑦‖2
2/2 3 3

Multinomial Logistic log
(︁∑︀

𝑦′∈𝒴 exp 𝑣𝑦′

)︁
− 𝑣𝑦 3 3

Max-Min max𝑞∈Δ𝒴 min𝑦′∈𝒴 𝐿⊤
𝑦′𝑞 + 𝑣⊤𝑞 − 𝑣𝑦 3 7

Ramp max𝑦′∈𝒴 𝐿(𝑦, 𝑦′) + 𝑣𝑦′ − max𝑧∈𝒴 𝑣𝑧 7 7

Probit E𝜀∼𝒩 (0,𝐼𝒴 ) 𝐿(arg max𝑦′∈𝒴 𝑣𝑦′ + 𝜀𝑦′ , 𝑦) 7 3

Structured perceptron max𝑦′∈𝒴 𝑣𝑦′ − 𝑣𝑦 3 7

Figure 1.3: Plots and table at top: Convex and non-convex binary surrogates
losses 𝑆(𝑣, 1), 𝑣 ∈ R plotted against the 0-1 binary loss 𝐿(sign(𝑣), 1) = 1(sign(𝑣) ̸= 1).
The classical decoding in binary classification is the sign function. Table at bottom: Sur-
rogate losses used in structured prediction for minimizing a discrete loss 𝐿 : 𝒴 × 𝒴 → R.
The classical decoding used in structured prediction is the argmax function. Here, 𝐿𝑦
stands for the vector 𝐿𝑦 = (𝐿(𝑦, 𝑦′))𝑦′∈𝒴 and 𝒩 (0, 𝐼𝒴) for the |𝒴|-dimensional gaussian
isotropic distribution.

Regularized ERM for the surrogate problem. As the problem is now continuous, given
a finite dataset 𝒟𝑛 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} of pairs of points sampled i.i.d. from 𝜌, we
can define the regularized ERM estimator 𝑔𝑛 as the minimizer of the following mini-
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mization problem

𝑔𝑛 = arg min
𝑔∈𝒢

1
𝑛

𝑛∑︁
𝑖=1

𝑆(𝑔(𝑥𝑖), 𝑦𝑖) + 𝜆

2 ‖𝑔‖2
𝒢 , (1.6)

where ‖𝑔‖𝒢 is the norm of the function 𝑔 in the hypothesis space 𝒢 and 𝜆 > 0 is the
regularization parameter controlling the capacity of the solution. The above functional
can be tractably minimized using convex optimization gradient-based methods (Boyd
et al., 2004) if 𝑆 is convex in the first argument and the surrogate predictors are linearly
parametrized.

Remark 3 .1 (Stochastic gradient methods). Note that one has to look at all data points
of the dataset in order to computing a gradient of the regularized ERM functional.
Unfortunately, this can be extremely costly for massively large datasets. Most op-
timization algorithms used in machine learning use stochastic gradient algorithms
(Robbins and Monro, 1951), where the parameters are updated at every iteration us-
ing information of individual elements of the dataset. Despite being a central part
of the design of machine learning estimators, this is not the main topic of this thesis
and we avoid going into much detail in the introductory section. We explicitly use
these algorithms in Chapter 3 and more significantly in Chapter 4 where we design
a specific algorithm for the strucutured Max-Min loss.

Fisher consistency. In order to make sure that the surrogate strategy is well posed with
respect to the original task of interest, we ask that the exact minimizer 𝑔⋆ of the expected
surrogate risk ℛ gives the exact minimizer 𝑓⋆ of the expected risk ℰ through the decoding
as 𝑓⋆ = 𝑑 ∘ 𝑔⋆. This is properly formalized by the notion of Fisher consistency introduced
by Lin (2004) in the context of binary classification.

Definition 3 .2 (Fisher consistency). We say that 𝑆 is Fisher consistent to 𝐿 under the decod-
ing 𝑑 if for every probability distribution 𝜌 ∈ Prob(𝒳 × 𝒴) it is verified that the minimizer 𝑔⋆ of
the expected surrogate risk reaches optimal expected risk, that is,

ℛ(𝑔) = ℛ(𝑔⋆) =⇒ ℰ(𝑑 ∘ 𝑔) = ℰ(𝑓⋆). (1.7)

Example 3 .3. Quadratic surrogate for binary classification. From Example 2 .1, we
know that the Bayes predictor for binary classification is 𝑓*(𝑥) = sign(E𝑦∼𝜌𝑥 𝑦) and
for least-squares regression is 𝑔⋆(𝑥) = E𝑦∼𝜌𝑥 𝑦 if the space of (continuous) observa-
tions in R is set to 𝒴 = {−1, 1} ⊂ R. Thus, one can estimate 𝑓* by estimating the con-
ditional expectation using least-squares regression. More specifically, the surrogate
method defined by the surrogate loss 𝑆(𝑣, 𝑦) = (𝑣− 𝑦)2 and decoding 𝑑(𝑣) = sign(𝑣)
is trivially Fisher consistent to 𝐿, as by construction 𝑓⋆ = 𝑑 ∘ 𝑔⋆.

Calibration. Fisher consistency is a property of the Bayes predictors 𝑔⋆ and 𝑓⋆. In prac-
tice, however, we are interested in the usual notion of consistency, which states that if the
surrogate predictor 𝑔 is arbitrarily close to 𝑔⋆, then the associated discrete predictor 𝑑 ∘ 𝑔
will be also close to 𝑓⋆. Indeed, this is precisely the notion we are ultimately interested in
as 𝑔⋆ is never attained in practice. This is captured by the concept of calibration (Bartlett
et al., 2006; Zhang, 2004a; Steinwart, 2007).
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Definition 3 .4 (Calibration). We say that 𝑆 is calibrated to 𝐿 under the decoding 𝑑 if for every
probability distribution 𝜌 ∈ Prob(𝒳 ×𝒴) there exists a non-negative convex function 𝜁 : R −→ R
such that

𝜁(ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆)) ≤ ℛ(𝑔) − ℛ(𝑔⋆), (1.8)

satisfying 𝜁(0) = 0 and 𝜁(𝜀) > 0 for all 𝜀 > 0.

Note that calibration trivially implies Fisher consistency. From the form of 𝜁 in Def-
inition 3 .4, it can easily be seen that the function is invertible for non-negative values
and the inequality can also be written as ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆) ≤ 𝜁−1(ℛ(𝑔) − ℛ(𝑔⋆)). In-
equalities of the form (1.8) are called comparison inequalities and are useful to translate
performance guarantees of the surrogate problem into the original task. In particular, it
directly follows that if 𝑆 is calibrated to 𝐿 under the decoding 𝑑 and (𝑔𝑡)𝑡≥1 is a sequence
of surrogate predictors the following is satisfied

lim
𝑡→∞

ℛ(𝑔𝑡) = ℛ(𝑔⋆) =⇒ lim
𝑡→∞

ℰ(𝑑 ∘ 𝑔𝑡) = ℰ(𝑓⋆).

As we will see in the next section, Fisher consistency does not always imply cali-
bration for a given decoding 𝑑. On the other hand, if Fisher consistency holds for a
decoding, in general it is possible to design decodings for which calibration also holds.

Example 3 .5. Calibration for the quadratic surrogate. By construction, the quadratic
surrogate method introduced in Example 3 .3 is Fisher consistent. One can also prove
calibration:

ℰ(sign(𝑔)) − ℰ(𝑓⋆)
= E𝑥∼𝜌𝒳 {1𝑔⋆(𝑥)𝑔(𝑥)<0|𝑔⋆(𝑥)|} (Theorem 2.2 of (Devroye et al., 1996))
≤ E𝑥∼𝜌𝒳 |𝑔⋆(𝑥) − 𝑔(𝑥)| (𝑎𝑏 ≤ 0 =⇒ |𝑎| ≤ |𝑎− 𝑏|)

≤
√︁
E𝑥∼𝜌𝒳 (𝑔⋆(𝑥) − 𝑔(𝑥))2 (Cauchy-Schwartz)

=
√︁
E(𝑥,𝑦)∼𝜌(𝑔(𝑥) − 𝑦)2 − E(𝑥,𝑦)∼𝜌(𝑔⋆(𝑥) − 𝑦)2 (𝑔⋆(𝑥) = E𝑦∼𝜌𝑥 𝑦)

=
√︁

ℛ(𝑔) − ℛ(𝑔⋆),

where 𝜌𝒳 stands for the marginal distribution of 𝜌 over the input space 𝒳 . Thus, the
comparison inequality (1.8) holds for 𝜁(𝜀) = 𝜀2.

𝒢-consistency. The consistency notions of the surrogate method we have introduced so
far deal with the relationship between both excess risks around its exact minimizers 𝑓⋆

and 𝑔⋆. In practice, however, the surrogate risk (1.4) is minimized over a surrogate hy-
pothesis space 𝒢 not containing the surrogate Bayes predictor 𝑔⋆. In this case, we would
like to know whether 𝑓⋆ can be found by minimizing the surrogate risk under the as-
sumption that there exists 𝑔 ∈ 𝒢 satisfying 𝑓⋆ = 𝑑 ∘ 𝑔, i.e., 𝑓⋆ belongs to the hypothesis
space ℱ associated to 𝒢. This is formalized with the notion of 𝒢-consistency (Long and
Servedio, 2013).
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Definition 3 .6 (𝒢-consistency). We say that 𝑆 is 𝒢-consistent to 𝐿 under the decoding 𝑑 if for
every probability distribution 𝜌 ∈ Prob(𝒳 × 𝒴) the following is satisfied:

ℰ(𝑓⋆) = inf
𝑔∈𝒢

ℰ(𝑑 ∘ 𝑔) =⇒ ℰ(𝑓⋆) = ℰ(𝑑 ∘ 𝑔⋆𝒢),

where 𝑔⋆𝒢 is the minimizer of the surrogate risk over 𝒢, i.e., ℛ(𝑔⋆𝒢) = min𝑔∈𝒢 ℛ(𝑔).

Note that 𝒢-consistency corresponds to Fisher consistency when 𝒢 is the space of
measurable functions. Unfortunately, convex surrogate methods are in general not 𝒢-
consistent with respect to an hypothesis space other than the full set of measurable func-
tions. For instance, if 𝑓⋆ corresponds to a linear decision boundary, in general it cannot
be recovered using a convex surrogate method with affine surrogate estimators. Note
that this is not surprising, as minimizing ℰ(𝑑 ∘ 𝑔) over 𝒢 is known to be NP-Hard for
most non-trivial class of functions (Arora et al., 1997). On the other hand, 𝒢-consistency
holds for scale-invariant spaces 𝒢 6 and certain non-convex surrogate losses which are
Lipschitz continuous approximations of the discrete loss such as the ramp and probit
surrogate losses (see Figure 1.3) (Keshet and McAllester, 2011).

Example 3 .7 (𝑐𝑎𝑙𝐺-consistency of the non-convex ramp loss). The ramp loss de-
fined as 𝑆(𝑣, 𝑦) = min(1,max(1 − 𝑦𝑣, 0)) satisfies lim𝛾→0 𝑆(𝑣/𝛾, 𝑦) = 𝐿(sign(𝑣), 𝑦).
Thus, if 𝒢 is scale invariant, then it directly follows inf𝑔∈𝒢 ℰ(sign(𝑔)) = inf𝑔∈𝒢 ℛ(𝑔)
and so 𝒢-consistency is satisfied. Moreover, as it upper-bounds the 0-1 loss as
𝐿(sign(𝑣), 𝑦) ≤ 𝑆(𝑣, 𝑦), the following comparison inequality holds:

ℰ(sign(𝑔)) − ℰ(𝑓⋆) ≤ ℛ(𝑔) − inf
𝑔′∈𝒢

ℛ(𝑔′).

Thus, the ramp loss is 𝒢-consistent to the 0-1 loss.

𝒢-consistency can hold for convex surrogates under strong conditions on the data
distribution. For instance, if the problem is realizable in 𝒢, i.e., there exists 𝑔 ∈ 𝒢 for
which ℰ(𝑑 ∘ 𝑔) = 0, then there are convex surrogates for which 𝒢-consistency holds for
scale-invariant 𝒢. This is the case for the hinge loss and logistic in binary classification
and the corresponding extensions to multi-class (Long and Servedio, 2013). It is an inter-
esting open problem to characterize or provide useful sufficient conditions on the data
distribution for 𝒢-consistency to hold for specific convex surrogate losses.

Theoretical guarantees of surrogate-based estimators. As we have seen, the proper-
ties of surrogate methods described above are key to derive theoretical guarantees of
surrogate-based estimators. Let’s now make the use of these properties more precise
depending on the setting of the learning problem.

(i) The surrogate estimator converges to 𝑔⋆ and/or 𝑔⋆ ∈ 𝒢. This is the most favor-
able setting. In particular, if the surrogate method is calibrated, then one can
readily deduce convergence on the discrete predictors from convergence on the
surrogate risks as lim𝑡→∞ ℰ(𝑑 ∘ 𝑔𝑡) = ℰ(𝑓⋆). Moreover, if 𝑔⋆ ∈ 𝒢, generalization

6𝒢 is said to be scale-invariant if 𝛼𝑔 ∈ 𝒢 for every 𝑔 ∈ 𝒢 and 𝛼 ∈ R.
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bounds can be obtained by means of the comparison inequality (1.8). Note, however,
that comparing risks is an undirect strategy to obtain guarantees on the excess risk
ℰ(𝑑 ∘ 𝑔𝑛) − ℰ(𝑓⋆). Fast rates under low-noise settings are often obtained by directly
bounding this quantity using convergence directly on the surrogate predictors and
not on the surrogate risk (Audibert and Tsybakov, 2007).

(ii) There exists 𝑔 ∈ 𝒢 such that 𝑓⋆ = 𝑑 ∘ 𝑔, i.e., 𝑓⋆ ∈ ℱ . In this setting, proving
convergence to the Bayes predictor 𝑓⋆ requires 𝒢-consistency, which in general is
only possible for intractable (non-convex) surrogate methods. Some works prove
convergence to 𝑓⋆ in this setting without assuming 𝑔⋆ ∈ 𝒢 under the assumption
that there exists a 𝜆 > 0, for which 𝑔𝜆 = arg min𝑔∈𝒢 ℛ(𝑔)+ 𝜆

2 ‖𝑔‖2
𝒢 ∈ 𝒢 satisfies 𝑓⋆ =

𝑑 ∘ 𝑔𝜆 (Koltchinskii and Beznosova, 2005; Pillaud-Vivien et al., 2018a). Another
option is to show that 𝒢-consistency holds for a specific subset of data distributions
containing the learning problem of study.

(iii) There is no 𝑔 ∈ 𝒢 such that 𝑓⋆ = 𝑑 ∘ 𝑔, i.e., 𝑓⋆ /∈ ℱ . In this case, there is no hope
in obtaining convergence to the Bayes predictor as ℰ(𝑓⋆) ̸= inf𝑔∈𝒢 ℰ(𝑑 ∘ 𝑔) and one
would like to obtain guarantees relative to the best predictor in 𝒢 as

ℰ(𝑑 ∘ 𝑔𝑛) − inf
𝑔∈𝒢

ℰ(𝑑 ∘ 𝑔).

These results can be obtained using non-convex surrogates such as the one de-
scribed in Example 3 .7, but remain unaccessible for tractable estimators.

Beyond margin bounds. There exists a vast literature in discrete prediction on the so-
called margin bounds (Mohri et al., 2018) (see also Taskar et al. (2004); Cortes et al. (2016);
London et al. (2016)). We argue that even though the practice of analyzing surrogate
methods using margin bounds is still quite extended in today’s theoretical research in
structured prediction, the obtained guarantees are vacuous for analyzing tractable (i.e.,
convex) surrogate methods. In a nutshell, these bounds are obtained by bounding the
loss with a 1/𝛾-Lipschitz-continuous non-convex surrogate loss 𝑆𝛾 such that 𝐿(𝑑(𝑣), 𝑦) ≤
𝑆𝛾(𝑣, 𝑦) for all 𝛾 > 0, such as the ramp loss defined in Figure 1.3. Then, the classical
methodology is to prove generalization bounds of estimators 𝑔𝑛 minimizing the penal-
ized functional ℛ𝛾

𝑛(𝑔) + 𝜆Ω(𝑔), 𝜆 > 0, where the penalization term controls the capac-
ity of the estimator and ℛ𝛾

𝑛 is the empirical version of the non-convex risk ℛ𝛾(𝑔) =
E(𝑥,𝑦)∼𝜌 𝑆

𝛾(𝑔(𝑥), 𝑦). As computing 𝑔𝑛 is intractable due to non-convexity, convex sur-
rogate losses are usually justified by further upper bounding the non-convex risk by
their corresponding convex risk. However, we stress that all theoretical guarantees are
lost in this last step, as minimizing an upper bound of the risk does not guarantee its
minimization.

Probabilistic and non-probabilistic estimators. We now make a key distinction be-
tween two types of surrogate losses which is central to this thesis. Recall that the Bayes
estimator 𝑓⋆ can be characterized point-wise in 𝑥 as the minimizer of the conditional
risk. We classify surrogate methods into two groups depending on whether the surro-
gate predictor 𝑔 is also an estimator of the conditional risk E𝑦′∼𝜌𝑥 𝐿(𝑦, 𝑦′) or not.
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Two strategies for estimating the Bayes predictor 𝑓⋆

𝑓⋆(𝑥) = arg min
𝑦∈𝒴

probabilistic estimators⏞  ⏟  
E𝑦′∼𝜌𝑥 𝐿(𝑦, 𝑦′)⏟  ⏞  

non-probabilistic estimators

. (1.9)

• Probabilistic estimators. In the literature they are also called plug-in estima-
tors because the discrete estimator is constructed by plugging-in an estimator of
the conditional distribution 𝜌𝑥 into the right hand side of Eq. (1.9). We call it
probabilistic estimators because they estimate the conditional expected risk 𝑥 ↦→
(E𝑦′∼𝜌𝑥 𝐿(𝑦, 𝑦′))𝑦∈𝒴 , and as we will see throughout this thesis, it does not all always
correspond to estimating the conditionals 𝜌𝑥. More precisely, a surrogate loss 𝑆 is
a probabilistic estimator if 𝑔⋆ can be mapped to the conditional risk as 𝑔⋆(𝑥) ↦→
(E𝑦′∼𝜌𝑥 𝐿(𝑦, 𝑦′)))𝑦∈𝒴 for all 𝑥 ∈ 𝒳 . Note that these estimators are solving a harder
problem than classification, as estimating the conditional risk is strictly more than
estimating the decision boundaries. In general, if the associated surrogate loss 𝑆 is
convex, these types of surrogates are smooth and the comparison inequality (1.8)
is quadratic, i.e., 𝜁(𝜀) ∝ 𝜀2 as in Example 3 .5. Part II of this thesis focuses on this
type of surrogates. More specifically, in Chapter 2 we analyze both statistically
and computationally the quadratic surrogate for structured prediction by leverag-
ing the low dimensional structure of the loss, and in Chapter 3 we go beyond the
quadratic setting and derive a general theory for smooth convex surrogates based
on regression of low dimensional representations of the discrete conditional risk.

• Non-probabilistic estimators. These type of predictors directly tackle the classi-
fication task, i.e., the decision boundary, without estimating the conditional risk as
an intermediate step. If the associated surrogate loss 𝑆 is convex, these types of
surrogates are generally non-smooth and the calibration function 𝜁 is linear, i.e.,
𝜁(𝜀) ∝ 𝜀. Part III of this thesis focuses on polyhedral surrogates, which fall into
this category. More specifically, in Chapter 4 we study the Max-Min loss (see Fig-
ure 1.3) in the context of structured prediction and derive an efficient algorithm
with generalization guarantees to the Bayes predictor. In Chapter 5 we provide
both necessary and sufficient conditions for Fisher consistency of the structured
Max loss (see Figure 1.3) and we derive a novel loss called Restricted-Max loss par-
tially overcoming these consistency limitations and maintaining the maximization
structure.

Example 3 .8 (Binary probabilistic and non-probabilistic estimators). Recall that in
binary classification 𝑓⋆(𝑥) = sign(E𝑦∼𝜌𝑥 𝑦), where E𝑦∼𝜌𝑥 𝑦 = 2𝜌𝑥(1) − 1 and 𝜌𝑥(1) is
the conditional probability of 𝑦 = 1 given 𝑥. In this case, probabilistic estimators are
the ones estimating the conditional 𝜌𝑥(1) and non-probabilistic estimators are the
ones directly estimating 𝑓⋆(𝑥). From tables in Figure 1.3, all binary smooth convex
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surrogates are probabilistic estimators. For instance, the conditional distribution can
be written in terms of the Bayes surrogate predictor as 𝜌𝑥(1) = (𝑔⋆(𝑥) − 1)/2 for the
quadratic surrogate and 𝜌𝑥(1) = (1+𝑒−𝑔⋆(𝑥))−1 for logistic. On other hand, the convex
non-smooth hinge and Max-Min are non-probabilistic estimators and satisfy 𝑔⋆(𝑥) =
𝑓⋆(𝑥) and 𝑔⋆(𝑥) = 𝑓⋆(𝑥)/2 respectively.
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Figure 1.4: Two binary classification settings in 𝒳 = [−3, 3]2 with uniform marginal
distribution over the input space. We depict on the left 𝑛 = 100 samples of the dataset
and on the right the conditional distribution 𝜌𝑥(1) ∈ [0, 1]. Top: The problem has low-
noise but 𝑓⋆ defines two disconnected regions which cannot be recovered with linear
decision boundaries. Bottom: 𝑓⋆ is a linear decision boundary but there is a lot of mass
at points where 𝜌𝑥 ≈ 0.5.

When is a discrete prediction problem easy/hard? The difficulty of learning discrete
prediction tasks comes essentially from two different sources:

• Shape of the decision boundary 𝑓⋆. If the decision boundary is hard to approxi-
mate as 𝑑∘𝑔 with a function 𝑔 from the hypothesis space 𝒢, then the approximation
error will be large. Note that contrary to regression problems, where typically the
regularity of the function to predict charaterizes the difficulty of the problem, it is
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not clear whether the regularity of the decision boundary in 𝒳 is important for hav-
ing small approximation error. A remarkable example is given by Steinwart and
Scovel (2007), where fast convergence rates are obtained for binary classification
with smooth surrogate functions independently of the regularity of the decision
boundary.

• Large noise ℰ(𝑓⋆). The learning rate 𝛾 > 0 of a discrete estimator converging
at 𝒪(𝑛−𝛾) highly depends on the amount of noise present in the learning task.
This is in contrast to regression, where the noise generally appears as a multi-
plicative constant in the learning bounds. For instance, in binary classification
where 𝑓⋆(𝑥) = sign(2𝜌𝑥(1) − 1), the amount of mass for which 𝜌𝑥(1) ≈ 0.5 plays an
important role in the learning rates (Tsybakov, 2004).
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4 Point-wise Analysis of Surrogate Methods

In the previous section we presented surrogate methods in its generality and their key
required properties to guarantee the surrogate strategy is theoretically sound. In this
section, we study Fisher consistency and calibration using a point-wise analysis on the
surrogate losses 𝑆 and decodings 𝑑. In particular, two main types of losses we already
discussed above naturally show up in the analysis: probabilistic estimators, which essen-
tially require a form of smoothness of the loss, and non-probabilistic estimators, which
estimate directly the decision boundaries. By now, we do not care about the potential
exponentially large size of the output space appearing in structured prediction - this will
be addressed in the following Section 5 .

Point-wise analysis. What makes Fisher consistency and calibration easy to analyze
is the fact that 𝑓⋆(𝑥) and 𝑔⋆(𝑥) depend on 𝑥 ∈ 𝒳 only through the conditional distri-
bution 𝜌𝑥 ∈ Δ𝒴 , where Δ𝒴 is the |𝒴|-dimensional simplex. Thus, we can remove the
dependence of the input 𝑥 and study these properties in terms of distributions 𝑞 ∈ Δ𝒴
over the output space. As we will see, it turns out that the resulting mathematical objects
can be studied using convex analysis.

We drop the dependence on 𝑥 in the conditional distribution 𝜌𝑥 and write 𝑞.

Let’s now define the mathematical objects associated to the losses 𝐿 and 𝑆 under the
point-wise framework. Let 𝐿⊤

𝑦 𝑞 = E𝑦′∼𝑞 𝐿(𝑦, 𝑦′) be the conditional risk of the discrete
loss 𝐿 where 𝐿𝑦 = (𝐿(𝑦, 𝑦′))𝑦′∈𝒴 is the 𝑦-th row of the loss matrix 𝐿. We define the Bayes
risk ℓ : Δ𝒴 → R and the excess conditional risk 𝛿ℓ : 𝒴 × Δ𝒴 → R as

ℓ(𝑞) = min
𝑦′∈𝒴

𝐿⊤
𝑦′𝑞, 𝛿ℓ(𝑦, 𝑞) = 𝐿⊤

𝑦 𝑞 − ℓ(𝑞).

The Bayes risk ℓ is the minimum possible error measured by 𝐿 when the output is dis-
tributed as 𝑞, and the excess risk 𝛿ℓ is the error relative to the Bayes risk for a given
prediction 𝑦. Note that ℓ is a concave polyhedral function as it is defined as the point-wise
minimum of finite |𝒴| linear functions. We also define the optimal predictor 𝑦⋆ : Δ𝒴 → 2𝒴 7

as
𝑦⋆(𝑞) = arg min

𝑦′∈𝒴
𝐿⊤
𝑦′𝑞 ⊆ 𝒴,

which corresponds to the set of output elements optimal for the distribution 𝑞. In par-
ticular, the Bayes error and the excess risk can be written in terms of these quantities
as ℰ(𝑓⋆) = E𝑥 ℓ(𝜌𝑥) and ℰ(𝑓) − ℰ(𝑓⋆) = E𝑥 𝛿ℓ(𝑓(𝑥), 𝜌𝑥).

Let’s now define the objects for the surrogate loss. Let 𝑆(𝑣)⊤𝑞 = E𝑦′∼𝑞 𝑆(𝑣, 𝑦′) be the
conditional surrogate risk, where 𝑆(𝑣) = (𝑆(𝑣, 𝑦))𝑦∈𝒴 . We analogously define the Bayes
surrogate risk 𝑠 : Δ𝒴 → R and the conditional excess surrogate risk 𝛿𝑠 : R𝑘 × Δ𝒴 → R as

𝑠(𝑞) = min
𝑣′∈R𝑘

𝑆(𝑣′)⊤𝑞, 𝛿𝑠(𝑣, 𝑞) = 𝑆(𝑣)⊤𝑞 − 𝑠(𝑞).

7The set 2𝐴 denotes the power set of the set 𝐴.
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Similarly, 𝑠 is concave (but not polyhedral) as it is defined as the point-wise minimum of
a non-finite set of linear functions. The surrogate optimal predictor 𝑣⋆ : Δ𝒴 → 2R𝑘

reads

𝑣⋆(𝑞) = arg min
𝑣′∈R𝑘

𝑆(𝑣′)⊤𝑞 ⊆ R𝑘.

The Bayes surrogate error and the excess surrogate risk can be written in terms of these
quantities as ℛ(𝑔⋆) = E𝑥 𝑠(𝜌𝑥) and ℛ(𝑔) − ℛ(𝑔⋆) = E𝑥 𝛿𝑠(𝑔(𝑥), 𝜌𝑥).

Prediction sets. The polyhedral concave structure of the Bayes risk ℓ naturally defines
a partition of the simplex defined by the affine regions of ℓ. More concretely, we define
the prediction sets Δ𝐿 : 2𝒴 → 2Δ𝒴 as

Δ𝐿(𝑌 ) = {𝑞 ∈ Δ𝒴 | 𝑌 ⊆ 𝑦⋆(𝑞)} ⊆ Δ𝒴 .

The prediction set Δ𝐿(𝑌 ) associated to a subset 𝑌 ⊆ 𝒴 corresponds to the probability
vectors 𝑞 ∈ Δ𝒴 for which all elements in 𝑌 are optimal. When 𝑌 = {𝑦} is a singleton we
just write Δ𝐿(𝑦). By construction, the simplex can be decomposed into the union of |𝒴|
prediction sets as ∪𝑦∈𝒴Δ𝐿(𝑦) = Δ𝒴 .

Figure 1.5: Visualization of the prediction sets in the simplex of a generic discrete loss
over an output space with three elements. Note that 𝑞 ∈ Δ𝐿(𝑌 ) if and only if 𝑌 ⊆ 𝑦⋆(𝑞).

Remark 4 .1 (Power diagram associated to 𝐿). The finite set 𝒫𝐿 = {Δ(𝑦⋆(𝑞)}𝑞∈Δ𝒴

defines a cell complex in the simplex, i.e., a set of faces which (i) union to Δ𝒴 , (ii) have
pairwise disjoint relative interiors and (iii) any nonempty intersection of faces 𝐹, 𝐹 ′

in 𝒫𝐿 is a face of 𝐹 and 𝐹 ′ and an element of 𝒫𝐿. Moreover, this cell complex can be
shown to be a power diagram (Aurenhammer, 1987; Finocchiaro et al., 2019), which is
a generalized version of a Voronoi diagram.

In the following, we provide the point-wise versions of the notions of Fisher consis-
tency and calibration introduced in the previous section.

Fisher consistency. Recall that Fisher consistency states that ℰ(𝑓⋆) = ℰ(𝑑 ∘ 𝑔⋆) for any
data distribution 𝜌. This can be re-written using the point-wise objects introduced above
as E𝑥 𝛿ℓ(𝑑∘𝑣, 𝜌𝑥) = 0 for any 𝑣 ∈ 𝑣⋆(𝜌𝑥) and 𝜌. It can readily be seen that this is equivalent
to the point-wise characterization provided by the following Proposition 4 .2.
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Proposition 4 .2 (Point-wise characterization of Fisher consistency). 𝑆 is Fisher consistent
to 𝐿 under the decoding 𝑑 if and only if

𝑣 ∈ 𝑣⋆(𝑞) =⇒ 𝑑(𝑣) ∈ 𝑦⋆(𝑞), ∀𝑞 ∈ Δ𝒴 . (1.10)

Put it simply, every minimizer of the conditional surrogate risk can be mapped to a
minimizer of the conditional risk through a decoding function.

Calibration. Calibration has a similar point-wise characterization as Fisher consistency
given by the following proposition.

Proposition 4 .3 (Point-wise characterization of calibration). 𝑆 is calibrated to 𝐿 under the
decoding 𝑑 if and only if:

inf
𝑣∈R𝑘

𝑦=𝑑(𝑣)

𝛿𝑠(𝑣, 𝑞) = 0 =⇒ 𝑦 = 𝑑(𝑣) ∈ 𝑦⋆(𝑞), ∀𝑦 ∈ 𝒴,∀𝑞 ∈ Δ𝒴 .

See Theorem 3 of Zhang (2004a) for a proof of this result in the context of multi-
class classification. In other words, 𝑦 is an optimal prediction if the excess surrogate risk
can be made zero under the constraint that the decoding predicts output 𝑦. Note that
calibration trivially implies Fisher consistency.

Remark 4 .4. Fisher consistency and calibration are not equivalent for a fixed decod-
ing 𝑑. Note that Fisher consistency only depends on the decoding restricted to the
set 𝑉 = {𝑣 ∈ R𝑘 | 𝑣 ∈ 𝑣⋆(𝑞), 𝑞 ∈ Δ𝒴}. In particular, if 𝑉 ̸= R𝑘, the decoding can be
extended to R𝑘 in such a way that calibration does not hold.

A comparison inequality relating both excess risks can be computed from point-wise
quantities by means of the so-called calibration function (Steinwart, 2007) defined as,

𝜁(𝜀) = inf
𝑣∈R𝑘

𝑞∈Δ𝒴

𝛿𝑠(𝑣, 𝑞) s.t. 𝛿ℓ(𝑑(𝑣), 𝑞) ≥ 𝜀. (1.11)

Note that the minimization problem defining the calibration function is generally not
jointly convex with respect to 𝑣 and 𝑞 and it is straightforward from Proposition 4 .3 that
if calibration holds then 𝜁(0) = 0 and 𝜁(𝜀) > 0 for all 𝜀 > 0, i.e., 𝛿𝑠 cannot be made zero
if 𝛿ℓ is bounded away from zero. The following result, which corresponds to Theorem
2.13 by Steinwart (2007), establishes the link between the calibration function (1.11) and
a comparison inequality between the risks.

Proposition 4 .5. If 𝑆 is calibrated to 𝐿 under the decoding 𝑑, the Fenchel bi-conjugate 𝜁** 8 of
the calibration function gives a convex comparison inequality of excess risks as in (1.8).

The Fenchel bi-conjugate of 𝜁 corresponds precisely to its lower convex envelope in
the non-negative real numbers, thus maintaining the property 𝜁**(𝜀) > 0 for 𝜀 > 0.
Proposition 4 .5 follows from Jensen’s inequality as

𝜁**(E𝑥 𝛿ℓ(𝑑 ∘ 𝑔(𝑥), 𝑦)⏟  ⏞  
ℰ(𝑑∘𝑔)−ℰ(𝑓⋆)

) ≤ E𝑥 𝜁**(𝛿ℓ(𝑑 ∘ 𝑔(𝑥), 𝑦)) ≤ E𝑥 𝛿𝑠(𝑔(𝑥), 𝑦)⏟  ⏞  
ℛ(𝑔)−ℛ(𝑔⋆)

,

8The Fenchel conjugate (Rockafellar, 1997) of a function ℎ : 𝒞 → R is the convex function ℎ* defined as
ℎ*(𝑣) = sup𝑢∈𝒞 𝑣⊤𝑢 − ℎ(𝑢). The Fenchel bi-conjugate ℎ** of ℎ is (ℎ*)*.
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where we have used that 𝜁**(𝛿ℓ(𝑑(𝑣), 𝑞)) ≤ 𝜁(𝛿ℓ(𝑑(𝑣), 𝑞)) ≤ 𝛿𝑠(𝑣, 𝑞) by construction.
Note that the same holds for any convex lower bound of the calibration function. In
particular, most comparison inequalities we will obtain are lower bounds of 𝜁, which is
in general hard to compute exactly.

We now present the two main types of losses, i.e., probabilistic and non-probabilistic
estimators, but restricting ourselves to losses with a particular structure for the sake of
presentation. The general case will be briefly discussed at the end of this section with
references into the corresponding parts of this thesis in which are studied.

Fenchel-Young (FY) surrogate losses. Fenchel-Young losses (Blondel et al., 2020) are
a central type of surrogate losses constructed using Fenchel conjugates, which makes
them easy to analyze. Let Ω : 𝒞 → R be a convex function defined in a compact 9 convex
set 𝒞 ⊃ Δ containing the simplex. The Fenchel-Young loss associated to Ω is defined as

𝑆(𝑣, 𝑦) = Ω*(𝑣) − 𝑣𝑦, (1.12)

where Ω*(𝑣) = sup𝑢∈𝒞 𝑢⊤𝑣 − Ω(𝑢) is the Fenchel-conjugate of the function Ω. Note
that the surrogate loss 𝑆 is defined in the vector space R𝑘 due to the compactness of
the domain 𝒞 and it is lower bounded by −Ω(𝑒𝑦) > −∞ because of the Fenchel-Young
inequality 10 (Rockafellar, 1997). The key property of these surrogates is that the Bayes
risk can be written as

𝑠(𝑞) = min
𝑣∈R𝑘

Ω*(𝑣) − 𝑣⊤𝑞 = −Ω(𝑞), ∀𝑞 ∈ Δ𝒴 . (1.13)

Moreover, the set of surrogate predictors has the following form:

𝑣⋆(𝑞) = 𝜕Ω(𝑞), ∀𝑞 ∈ Δ𝒴 , (1.14)

where 𝜕ℎ(𝑞) ⊆ R𝑘 denotes the subgradient of the convex function ℎ at the point 𝑞.

FY smooth surrogates are probabilistic estimators. These losses are also known in the
literature as proper composite losses with canonical link (Williamson et al., 2016). If Ω* is
smooth, then the sub-gradient is a singleton 𝜕Ω*(𝑣) = {∇Ω*(𝑣)}. Moreover, by Fenchel
duality, we have that ∇Ω(𝑣) = 𝑞 if and only if 𝑣 ∈ 𝑣⋆(𝑞) = 𝜕Ω(𝑞). Hence, the decoding
defined as

𝑑(𝑣) = 𝑦⋆(∇Ω*(𝑣)) = arg min
𝑦∈𝒴

𝐿⊤
𝑦 ∇Ω*(𝑣), (1.15)

is Fisher consistent to 𝐿 by construction. In Eq. (1.15), the ties (i.e., |𝑦⋆(𝑞)| > 1) are
broken arbitrarily. Moreover, if Ω* is 𝛽-smooth 11, then we can also prove calibration
using the decoding Eq. (1.15). More specifically, a direct application of the general results
provided in Chapter 3 to this particular case shows that the calibration function can be
lower bounded as

𝜁(𝜀) ≥ 𝜀2

8𝑐2
𝐿𝛽
,

9The construction also works for functions Ω such that ∀𝑣 ∈ R𝑘 exists 𝑢 ∈ 𝒞 such that 𝑣 ∈ 𝜕Ω(𝑢). In
particular, this is always satisfied if the domain of Ω is compact and convex, where the sub-gradients at the
boundary correspond to the normal cone.

10The Fenchel-Young inequality states that ℎ(𝑢) + ℎ*(𝑣) ≥ 𝑢⊤𝑣 for all 𝑢 ∈ dom(ℎ), 𝑣 ∈ dom(ℎ*).
11We say that a differentiable function ℎ : R𝑘 → R is 𝛽-smooth with respect to a norm ‖ · ‖ if it holds

|ℎ(𝑣) − ℎ(𝑣′)| ≤ 𝛽‖𝑣 − 𝑣′‖ for all 𝑣, 𝑣′ ∈ R𝑘.
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where 𝑐𝐿 is a constant only depending on the discrete loss 𝐿. As we will see later,
quadratic-type calibration functions are a feature of probabilistic estimators. The clas-
sical example of smooth FY loss is when Ω(𝑞) =

∑︀
𝑦∈𝒴 𝑞𝑦 log 𝑞𝑦 is the negative Shannon

entropy, defined in the simplex Δ𝒴 . The resulting loss is the well known multinomial
logistic loss defined as 𝑆(𝑣, 𝑦) = log

(︁∑︀
𝑦′∈𝒴 exp 𝑣𝑦′

)︁
− 𝑣𝑦. In this particular case, when

𝐿 is the 0-1 loss the decoding (1.15) can be made independent of the mapping ∇Ω* as it
holds 𝑑(𝑣) = arg max𝑦′∈𝒴 𝑣𝑦′ = 𝑦⋆(∇Ω*(𝑣)) 12.

Remark 4 .6 (Loss-independent decodings). As smooth FY losses are Fisher consis-
tent to any discrete loss, it is the decoding 𝑑 that contains all information about the
discrete task (see Eq. (1.15)). However, this is not desirable in practice as it is pre-
ferred that the surrogate loss contains all the information about the task so that the
minimization of the expected surrogate risk is guided to minimize the discrete loss of
interest (Lacoste-Julien et al., 2011), and thus make the approximation error smaller.
This can be easily achieved in cost-sensitive binary classification (Scott, 2012), but
remains an open question to do it systematically in the structured prediction case.

FY polyhedral surrogates are non-probabilistic estimators. Strictly speaking, non-
probabilistic FY surrogates are those for which Ω* is non-smooth. In this thesis, however,
we we will implicitly think of them as polyhedral. This is because polyhedral losses are
at the other end of the spectrum: they cannot be used to estimate conditional probabili-
ties in any neighborhood of the simplex. Let Ω* be a polyhedral function, i.e., a function
that can be written as a point-wise maximum of a finite number of affine functions. Note
that if Ω* is polyhedral, then Ω is also polyhedral in 𝒞. While consistency is trivially
met from the smoothness of Ω*, this is not anymore the case for polyhedral surrogates
as 𝜕Ω*(𝑣) is not always a singleton. Let Ω be the polyhedral convex function defined
as Ω(𝑞) = −ℓ(𝑞) + 𝑖Δ𝒴 (𝑞) 13 for all 𝑞 ∈ Δ𝒴 . If 𝑞 is in the interior of the simplex Δ𝒴 , then

𝑣⋆(𝑞) = 𝜕Ω(𝑞) = − hull({𝐿𝑦}𝑦∈𝑦⋆(𝑞)),

where hull stands for the convex hull. Under the argmax decoding 𝑑(𝑣) = arg max𝑦′∈𝒴 𝑣𝑦′

Fisher consistency holds in the interior of the simplex. To see this, let 𝑣 = −
∑︀
𝑦∈𝑦⋆(𝑞) 𝛼𝑦𝐿𝑦

in 𝑣⋆(𝑞) with 𝛼⊤1 = 1, 𝛼 ⪰ 0. Then:

𝑑(𝑣) = arg max
𝑦′∈𝒴

−
∑︁

𝑦∈𝑦⋆(𝑞)
𝛼𝑦𝐿(𝑦, 𝑦′) = arg min

𝑦∈𝑦⋆(𝑞)

∑︁
𝑦∈𝑦⋆(𝑞)

𝛼𝑦𝐿(𝑦, 𝑦′) ∈ 𝑦⋆(𝑞),

whenever 𝐿(𝑦, 𝑦′) = 0 ⇐⇒ 𝑦 = 𝑦′ (i..e, 𝐿 is not degenerate). The resulting FY loss is the
so-called Max-Min loss, which was introduced by Fathony et al. (2016) for cost-sensitive
learning and in the general structured setting in Chapter 4. It takes the following form:

𝑆(𝑣, 𝑦) = max
𝑞∈Δ𝒴

min
𝑦′∈𝒴

𝐿⊤
𝑦′𝑞 + 𝑣⊤𝑞⏟  ⏞  

Ω*(𝑣)=(−ℓ+𝑖Δ𝒴 )*(𝑣)

−𝑣𝑦. (1.16)

12This statement for the 0-1 loss can be extended to any functions Ω which are Schur-convex.
13Let 𝐴 be a set. The function 𝑖𝐴 is defined as 0 if 𝑢 ∈ 𝐴 and ∞ otherwise.
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Multinomial Logistic 0 − 1 loss Max-Min Loss

y⋆ ΔL

d d

∂Ω∇Ω*∇Ω ∂Ω*

Ω = − s + iΔ𝒴 Ω = − ℓ + iΔ𝒴ℓ

Ω* Ω*
Figure 1.6: Diagram of the smooth multinomial logistic and polyhedral Max-Min
Fenchel-Young surrogate losses and the discrete 0-1 loss for an output space of three
elements. The dashed lines correspond to the decision boundaries of the argmax func-
tion 𝑑 that make both losses Fisher consistent. Middle: Visualization of the Bayes
risk ℓ(𝑞) = 1 − ‖𝑞‖∞ of the 0-1 loss and its prediction sets {Δ𝐿(𝑗)}3

𝑗=1 partitioning
the simplex. Left: Visualization of the function Ω(𝑞) =

∑︀3
𝑗=1 𝑞𝑗 log 𝑞𝑗 and its Fenchel-

conjugate Ω* = log(
∑︀3
𝑗=1 𝑒

𝑣𝑗 ) in the affine space 𝑣⊤1 = 0. The gradient mapping ∇Ω*

is a bijection between 𝑣⊤1 = 0 and the simplex. Right: Visualization of the func-
tion Ω(𝑞) = ‖𝑞‖∞ − 1 + 𝑖Δ3(𝑞) and its Fenchel-conjugate Ω* in 𝑣⊤1 = 0. The sub-gradient
mapping at the non-differentiable points {𝑣𝑗}3

𝑗=1 correspond precisely to the convex pre-
diction sets {Δ𝐿(𝑗)}3

𝑗=1 of the 0-1 loss.

This loss is studied in detail in Chapter 4 of this thesis, where we rigorously show that
calibration holds under the argmax decoding. In particular, it can be shown that un-
der mild assumptions on the discrete loss 𝐿, the calibration function under the argmax
decoding 𝑑(𝑣) = arg max𝑦∈𝒴 𝑣𝑦 can be lower bounded by a linear function as

𝜁(𝜀) ≥ 𝜀

𝑐𝐿
,

where 𝑐𝐿 is a constant depending on the discrete loss 𝐿. This result corresponds to
Theorem 3 .3 in Chapter 4.

Finally, we briefly discuss about the general case where the surrogate loss does not
necessarily have a FY structure.
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Non-FY probabilistic estimators. In contrast to FY losses, smooth losses without a
FY structure do not necessary correspond to probabilistic estimators. More specifically,
the required smoothness is not on the surrogate loss 𝑆 but rather in the convex func-
tion Ω* = (−𝑠 + 𝑖Δ𝒴 )* 14, where recall that 𝑠 stands for the surrogate Bayes risk. Note
that both forms of smoothness are equivalent for FY losses. In the general case with
smooth Ω*, the decoding is not computed using the gradient ∇Ω* but rather the inverse
of the function 𝑣⋆. Moreover, it is known that these losses have a composite proper struc-
ture in the set of minimizers 𝑉 = {𝑣 ∈ R𝑘 | 𝑣 ∈ 𝑣⋆(𝑞), 𝑞 ∈ Δ𝒴} (Williamson et al., 2016)
(which we also name Bregman representation in Chapter 3), i.e., the excess risk can be
written as 𝛿𝑠(𝑣, 𝑞) = 𝐷−𝑠(𝑞, 𝑡(𝑣)) where 𝐷ℎ(𝑢, 𝑢′) = ℎ(𝑢) − ℎ(𝑢′) − ∇ℎ(𝑢′)⊤(𝑢 − 𝑢′) is
the Bregman divergence between 𝑢, 𝑢′ with respect to the convex function ℎ and 𝑡 is a
mapping such that 𝑡(𝑣) = 𝑞 ⇐⇒ 𝑣 ∈ 𝑣⋆(𝑞). In Chapter 3 we further study this setting
and provide quadratic lower bounds of the calibration function.

Non-FY polyhedral non-probabilistic estimators. The classical polyhedral loss used
for classification is the hinge loss (or SVM loss) and its generalization in structured pre-
diction called the Max loss (also known as Max-Margin, structured hinge or structural
SVM (Tsochantaridis et al., 2005; Taskar et al., 2004)) defined as:

𝑆M(𝑣, 𝑦) = max
𝑦′∈𝒴

𝐿(𝑦, 𝑦′) + 𝑣𝑦′ − 𝑣𝑦. (1.17)

Note that this loss does not have a FY structure. It is known that the Max loss is not
Fisher consistent to the 0-1 loss for output spaces with more than two labels (Liu, 2007).
On the other hand, it was not known of any necessary or sufficient conditions on the
discrete loss 𝐿 for Fisher consistency to hold. One of the contributions of this thesis (see
Chapter 5) is the derivation of highly restrictive necessary conditions for consistency of
𝑆M, which are essentially only satisfied by discrete losses corresponding to a shortest
path distance in an acyclic graph (for which we prove Fisher consistency). In the same
section, we also introduce another non-FY polyhedral loss called the Restricted-Max loss,
which maintains the maximization structure of (1.17) but the maximization domain is
restricted to the prediction sets Δ𝐿 and has better consistency guarantees. The novel
introduced loss reads,

𝑆RM(𝑣, 𝑦) = max
𝑞∈Δ𝐿(𝑦)

𝐿⊤
𝑦 𝑞 + 𝑣⊤𝑞 − 𝑣𝑦. (1.18)

There exist other non-FY polyhedral surrogate losses which are Fisher consistent to a
generic 𝐿, such as the Lin-Lin-Wahba SVM (Lee et al., 2004) and Simplex-coding SVM
(Mroueh et al., 2012). Unfortunately, the structure of these losses does not allow them to
be used in large structured output spaces studied in the following Section 5 .

5 Structured Prediction

The surrogate losses we have studied in the previous section had a surrogate space di-
mension 𝑘 potentially as large as the size of the output space 𝒴 . In structured prediction,
this is generally intractable due to the exponentially large cardinality of this space. In this
section, we introduce the classical methodology of structured surrogate methods to deal

14In particular, this is equivalent to say that the surrogate Bayes risk 𝑠 is strictly concave.
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with both the statistical and computational challenges associated to the size of 𝒴 . More
specifically, we impose two basic computational requirements on the surrogate method:
(I) a model for which decoding is tractable, and (II) a tractable subgradient of the surro-
gate loss. These requirements will be introduced along with the two classical surrogate
methods for structured prediction - conditional random fields and structural support
vector machines. Then, we will discuss the statistical properties of these methods by
introducing classical parameter tying techniques to design output size independent hy-
pothesis spaces 𝒢 allowing for size-varying outputs. Finally, we extend the point-wise
analysis of surrogate methods from the previous section to the general structured setting
along with the study of theoretical properties such as Fisher consistency and calibration.

Decoding models for structured prediction. Given 𝑔 : 𝒳 ×𝒴 → R a continuous scalar-
valued function, we write a generic decoding as the following discrete maximization
problem,

𝑓(𝑥) = arg max
𝑦∈𝒴

𝑔(𝑥, 𝑦). (1.19)

Note that without further structure on 𝑔, the computational complexity of the argmax is
linear in the size of the output space |𝒴|. Unfortunately, as we have seen at the beginning
of the introduction, this is intractable due to the exponentially large size of the output
space. The classical strategy in structured prediction is to consider predictors 𝑔 for which
(1.19) can be tractably computed. More concretely, we assume that the predictor can be
decomposed as follows,

𝑔(𝑥, 𝑦) = 𝑔(𝑥)⊤𝜙(𝑦), (1.20)

where 𝜙 : 𝒴 → R𝑘 is an embedding of the output space to R𝑘 with 𝑘 ≪ |𝒴|. We can now
formulate the first requirement (I).

I. We require that the following decoding can be computed:

𝑑(𝑣) = arg max
𝑦∈𝒴

𝑣⊤𝜙(𝑦).

Let’s define the marginal polytope (Wainwright and Jordan, 2008) ℳ ⊆ R𝑘 as the con-
vex hull generated by the embeddings 𝜙(𝒴) = {𝜙(𝑦)}𝑦∈𝒴 ,

ℳ = hull(𝜙(𝒴)) =

⎧⎨⎩∑︁
𝑦∈𝒴

𝑞𝑦𝜙(𝑦) | 𝑞 ∈ Δ𝒴

⎫⎬⎭ . (1.21)

The decoding can be seen as a maximization of a linear function over ℳ as 𝑑(𝑣) =
arg max𝜇∈ℳ 𝑣⊤𝜇. We can classify the type of structures into two classes depending on
whether the structure comes from a graphical model defined on the parts of the output,
or whether it comes from a combinatorial problem in the output space.

1. Factor graphs / Graphical models. The structured output is seen as composed
by a set of 𝑝 parts as 𝒴 = 𝒴1 × · · · × 𝒴𝑝. These parts are grouped into a (possibly
overlapping) set of factors 𝒯𝑡 for 𝑡 = 1, . . . , 𝑇 as 𝒯𝑡 = Π𝑗∈𝑁(𝑡)𝒴𝑗 , where 𝑁(𝑡) ⊆
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{1, . . . , 𝑝} is the subset of the parts corresponding to the factor 𝑡. The assumption
is that 𝑔 decomposes as

𝑔(𝑥, 𝑦) =
𝑇∑︁
𝑡=1

𝑔𝑡(𝑥, 𝑦𝑡), 𝑦𝑡 ∈ 𝒯𝑡.

The predictor 𝑔 can be written in the form (1.20) by defining

𝑔(𝑥) = (𝑔𝑡(𝑥, 𝑦𝑡))𝑡=1,...,𝑇
𝑦𝑡∈𝒯𝑡

∈ R𝑘, 𝜙(𝑦) = (𝑒𝑦𝑡)𝑡=1,...,𝑇
𝑦𝑡∈𝒯𝑡

∈ R𝑘,

where 𝑒𝑦𝑡 is the 𝑦𝑡-vector of the natural basis of R𝒴𝑡 . The dimension of the em-
bedding space is 𝑘 =

∑︀𝑇
𝑡=1 |𝒴𝑡|. The computational complexity of the decoding

highly depends on the factor graph. For pairwise factor models, it is known that
the decoding can be efficiently computed whenever the associated graph is a tree.
If the graph has cycles, then iterative methods such as loopy belief propagation
(also called max-product algorithm) can be used to approximate the solution. An-
other set of techniques are linear programming relaxation techniques, where the
goal is to find tractable relaxations of the marginal polytope (Sontag, 2010).

Figure 1.7: Output sequence with unary and pair-wise adjacent factors.

Example 5 .1 (Sequence prediction). In sequence prediction it is typically as-
sumed that adjacent characters in the sequence are more correlated that char-
acters which are at a long distance of each other. In particular, this motivates
the factor graph structure depicted in Figure 1.7, where pair-wise adjacent fac-
tors are considered in order to model these dependencies. If each character
belongs to a dictionary of size 𝑅, then the dimension 𝑘 of the surrogate space
is 𝑁𝑅 + (𝑁 − 1)𝑅2 where 𝑁 is the length of the sequence. Note that this is
much smaller than the number of total sequences 𝑅𝑁 . The decoding can be
solved using the Viterbi algorithm in 𝒪(𝑀𝑅2) operations (Viterbi, 1967), which
corresponds precisely to the max-product algorithm applied to this sequential
factor graph.

2. Combinatorial problem structure. These are structures derived from specific
combinatorial problems on 𝒴 defined as arg max𝑦∈𝒴 𝑐⊤𝜙(𝑦), with 𝑐 ∈ R𝑘. Many
graph-related combinatorial problems over different output spaces can be formu-
lated in this form, where the vector 𝑐 ∈ R𝑘 is a representation of the graph, such as
maximum weight bipartite and perfect matching, spanning tree, graph-cut, edge-
cover, and many others (Papadimitriou and Steiglitz, 1998).
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Figure 1.8: Matrix representation of the permutation.

Example 5 .2 (Permutations and matchings). When 𝒴 is the space of permuta-
tions 𝜎 acting on a set of 𝑁 elements, one can map each permutation to the
permutation matrix 𝑃𝜎 ∈ R𝑁×𝑁 , where the (𝑖, 𝑗)-th coordinate is one if and
only if 𝜎(𝑖) = 𝑗 and zero otherwise (see Figure 1.8). The size of the surrogate
space is 𝑁2, which is much smaller than the total number of permutations 𝑁 !.
The decoding problem corresponds to the linear assignment problem (Burkard
et al., 2012). This matrix representation can be also used for more complex
structures such as matchings in a graph (Chatalbashev et al., 2005), where fur-
ther structural constraints are imposed to the binary valued matrix, such as
zeros in the diagonal or graph specific constraints (Lacoste-Julien et al., 2006).
For each variation, the decoding algorithm changes accordingly.

Finally, note that the distinction above between the two types of structures is made
regarding the most natural representation of the problem. Indeed, many combinatorial
structures such as the one in Example 5 .2 can also be written as graphical models (Son-
tag, 2010).

Surrogate losses for structured prediction. Now that we have defined a structure on
the surrogate predictors, we move to the next step: the design of tractable surrogate
losses to estimate it. In order to do that, let’s work in the point-wise setting as done in
Section 4 and proceed with the following identification 𝑣 = 𝑔(𝑥) ∈ R𝑘. Given a surrogate
loss ̃︀𝑆 : R𝒴 × 𝒴 → R, we consider the following low-dimensional parametrization 𝑆 :
R𝑘 × 𝒴 → R associated to the embedding 𝜙 as

𝑆(𝑣, 𝑦) = ̃︀𝑆((𝑣⊤𝜙(𝑦))𝑦∈𝒴 , 𝑦). (1.22)

In order to be able to minimize 𝑆 using gradient descent techniques, we formulate our
second requirement (II).

II. We require that a sub-gradient 𝑢 ∈ 𝜕𝑣𝑆(𝑣, 𝑦) can be computed.
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The two classical surrogates used in structured prediction are the multinomial logis-
tic and the Max loss, also called conditional random fields (CRFs) (Lafferty et al., 2001) and
Structural SVMs (SSVMs) (Tsochantaridis et al., 2005; Taskar et al., 2004). Both losses are
typically used with the decoding 𝑑(𝑣) = arg max𝑦∈𝒴 𝑣⊤𝜙(𝑦). We briefly introduce these
methods and discuss the computational complexity of computing a sub-gradient of the
corresponding loss.

Conditional Random Fields. CRFs are smooth losses constructed by parametrizing the
multinomial logistic loss as (1.22). The resulting loss reads as follows,

𝑆(𝑣, 𝑦) = log
(︁ ∑︁
𝑦′∈𝒴

exp 𝑣⊤𝜙(𝑦′)
)︁

− 𝑣⊤𝜙(𝑦).

The CRF loss is smooth and its gradient can be written as a variational problem taking
the form of an entropy penalized decoding as

∇𝑆(𝑣, 𝑦) = arg max
𝜇∈ℳ

𝑣⊤𝜇+𝐻(𝜇)⏟  ⏞  
marginal inference

−𝜙(𝑦), (1.23)

where 𝐻 : ℳ → R is the entropy on the marginal polytope ℳ defined as

𝐻(𝜇) = max
𝑞∈Δ𝒴

−
∑︁
𝑦∈𝒴

𝑞𝑦 log 𝑞𝑦 s.t. E𝑦∼𝑞 𝜙(𝑦) = 𝜇. (1.24)

The entropy penalized decoding is also known as marginal inference as one can eas-
ily check that it is equivalent to computing the expectation E𝑦∼𝑞𝑣 𝜙(𝑦), where 𝑞𝑣(𝑦) =
exp 𝑣⊤𝜙(𝑦)/(

∑︀
𝑦′∈𝒴 exp 𝑣⊤𝜙(𝑦′))−1 is an element of the exponential family over 𝒴 with

statistic 𝜙 (Fahrmeir et al., 1994). Thus, the required oracle for computing the gradient
of the CRF loss is the following:

Oracle for Conditional Random Fields: Marginal Inference

arg max
𝜇∈ℳ

𝑣⊤𝜇+𝐻(𝜇).

In the following we discuss about the tractability of marginal inference depending on
the structured model we presented above. As we will see, although having a tractable
decoding does not always guarantee a tractable sub-gradient, it is generally true for
factor graph models.

• Marginal inference for factor graphs. There exist plenty of algorithms for exact
inference for factor graphs. The most naive method is the elimination algorithm,
whereby the marginal of a factor 𝒯𝑡 is computed by picking an ordering of the
other factors and eliminate them, i.e., marginalise out, according to that order.
However, this procedure is very expensive as one has to repeat the elimination
sequence for every factor without re-using computations. The sum-product algo-
rithm (or belief propagation) is a dynamic algorithm leveraging intermediate terms
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by ‘message passing’ operations between the factors, where the messages are pre-
cisely shared. However, this method only works for acyclic graphs. The junction
tree algorithm (Lauritzen and Spiegelhalter, 1988) is a combination of both elimi-
naton and dynamic programming for graphs with small tree-width (the computa-
tional complexity is exponential with the tree-width of the graph). For large tree-
width graphs such as grids, approximate inference methods are required. Vari-
ational methods aim at approximating the marginals using the variational form
Eq. (1.23) and approximating the intractable ℳ and entropy 𝐻 . Outer approxima-
tions include loopy belief propagation (relaxation of the polytope and approxima-
tion of𝐻 with the non-convex Bethe entropy) (Yedidia et al., 2005), tree-reweighted
sum-product (Wainwright et al., 2005) (concave upper-bound of entropy) and log-
determinant relaxation (Wainwright and Jordan, 2008), while inner approxima-
tions include mean-field methods (Baxter, 2016). Other classical approximation
methods include Monte Carlo sampling (Robert and Casella, 2013), and methods
leveraging the submodularity of the energy defined by the factors (Djolonga and
Krause, 2014). Finally, note that when the decoding is also intractable, both prob-
lems can have very different complexities. As an example, 2-dimensional pair-wise
factor graph grids (also known as Ising models) have an NP-Hard decoding and
#P-hard 15 marginal inference (Barahona, 1982).

• Marginal inference for combinatorial structures. Generally speaking, having a
tractable decoding in this setting does not imply tractability of marginal inference.
An example of this is the matrix representation of permutations in Example 5 .2.
While the decoding can be solved using the polynomial-time Hungarian method
(Kuhn, 1955), performing marginal inference corresponds to computing the per-
manent matrix which is known to be #P-complete (Valiant, 1979).

Calibration properties of CRFs are studied below when discussing about structured
Fenchel-Young surrogates. We just disclose here that in contrast to the 0-1 loss case,
which corresponds to the multiomial logistic loss, CRFs are generally not calibrated in
the structured setting to any discrete loss 𝐿 using the argmax decoding presented in the
beginning of this section (also known as MAP inference in the literature). On the other
hand, they can be made consistent by changing the decoding.

Structural support vector machines. The loss of structural SVMs is the polyhedral Max
loss defined in Eq. (1.17) parametrized as (1.22),

𝑆(𝑣, 𝑦) = max
𝑦′∈𝒴

𝐿(𝑦, 𝑦′) + 𝑣⊤𝜙(𝑦′) − 𝑣⊤𝜙(𝑦).

The sub-gradient of the loss can be written as

𝜕𝑆(𝑣, 𝑦) = 𝜙
(︁

arg max
𝑦′∈𝒴

𝐿(𝑦, 𝑦′) + 𝑣⊤𝜙(𝑦′)⏟  ⏞  
loss-augmented decoding

)︁
− 𝜙(𝑦),

where the maximization problem is known as loss-augmented decoding, as it has the struc-
ture of the decoding with an additive term corresponding to the discrete loss to be min-
imized. Thus, the required oracle for computing the sub-gradient is the following.

15#P is the set of counting problems associated with the decision problems in NP.
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Oracle for Structural SVM: Loss-augmented Decoding

arg max
𝑦′∈𝒴

𝐿(𝑦, 𝑦′) + 𝑣⊤𝜙(𝑦′).

The loss-augmented decoding is tractable whenever the loss can be decomposed us-
ing the same structure as the surrogate predictor. This is formalized by means of an affine
decomposition of the loss 𝐿.

Definition 5 .3 (Affine decomposition of the loss). Let 𝜓,𝜙 : 𝒴 −→ R𝑘 be two embeddings of
the discrete output space 𝒴 to the vector space R𝑘 and 𝑐 ∈ R. We say that the triplet (𝜓,𝜙, 𝑐) is
an affine decomposition of the loss 𝐿 if it can be decomposed as

𝐿(𝑦, 𝑦′) = 𝜓(𝑦)⊤𝜙(𝑦′) + 𝑐, ∀𝑦, 𝑦′ ∈ 𝒴. (1.25)

Many examples of affine decompositions of classical losses used in structured pre-
diction can be found in Chapter 2. If the discrete loss satisfies the above decomposition,
then the loss-augmented decoding can be written in terms of the decoding 𝑑 as

arg max
𝑦′∈𝒴

(𝜓(𝑦) + 𝑣)⊤𝜙(𝑦′) = 𝑑(𝜓(𝑦) + 𝑣).

Thus, computing a sub-gradient has exactly the same computational complexity as the
decoding. This is a considerable advantage of the structural SVM over CRFs, together
with the fact that the surrogate loss is dependent on the full discrete loss to minimize.
Unfortunately, as we have seen disclosed at the end of Section 4 and will be studied in
detail in Chapter 5, the SSVM loss is not Fisher consistent for the vast majority of losses
used in practice (and cannot be made consistent by changing the decoding).

Design of the hypothesis space 𝒢 for structured prediction. For the sake of presen-
tation, let’s assume that the model has a factor graph structure. The surrogate predic-
tor 𝑔 : 𝒳 → R𝑘 is made of 𝑘 =

∑︀𝑇
𝑡=1 |𝒴𝑡| scalar-valued predictors

𝑔𝑡,𝑦𝑡 : 𝒳 −→ R. (1.26)

Even though we have considerably reduced the number of scalar-valued predictors to
learn from |𝒴| to 𝑘 ≪ |𝒴|, this number can still be very large. Moreover, in many settings
the size of the output elements are varying in size, and this cannot be taken into account
if the hypothesis space 𝒢 grows with |𝒴|. The following are common settings in which
additional structure can be enforced on the hypothesis space.

1. Problems with some form of stationarity in the output space. The factors are
grouped by different types, such as unary and pairwise adjacent potentials, re-
spectively, as in Figure 1.7. Then, within each factors 𝑡, 𝑡′ belonging to the same
group, the predictors are tied as 𝑔𝑡,𝑦𝑡 = 𝑔𝑡′,𝑦𝑡′ . This parameter-tying technique is
widely used in practice in structured prediction.

2. The input has the same parts as the output. In this case, it is generally assumed
that the domain of 𝑔𝑡,𝑦𝑡 is 𝒳𝑡, where 𝒳𝑡 is the input part associated to the output
part 𝒴𝑡.
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Figure 1.9: The predictors 𝑔𝑢, 𝑔𝑝 corresponding to unary and pair-wise potentials are tied,
respectively. Moreover, the predictors only depend on the corresponding input factors.
Note that the size of the hypothesis space is independent of the output size. Thus, these
tied predictors can be used to learn using datasets of sequences of variable size.

Both techniques above allow us to apply surrogate approaches to problems with varying
size of the outputs (using 1) and varying size of both the input and the output (using also
2). The extension to this setting is straightforward and corresponds to make the output
space depend on the input as 𝒴(𝑥). Furthermore, these techniques also provide the
possibility of proving generalization bounds from one example as done by Ciliberto et al.
(2019) for the quadratic surrogate. Indeed, with sufficient correlation decay between the
output parts, tending the size of the observed outputs to infinity in a fixed-size dataset
corresponds to increasing the information present in the data for learning. Finally, note
that these considerations extend naturally to problems with a combinatorial structure.

Example 5 .4 (Linear hypothesis space). In practice we generally use a linear hypoth-
esis space over shared input-output features Φ : 𝒳 × 𝒴 → R as

𝑔(𝑥, 𝑦) = 𝑤⊤Φ(𝑥, 𝑦).

In the factor graph setting, the predictor is assumed to decompose as 𝑔(𝑥, 𝑦) =∑︀𝑇
𝑡=1𝑤

⊤
𝑡 Φ𝑡(𝑥, 𝑦𝑡), which corresponds precisely to our setting by letting 𝑔(𝑥) =

(𝑤⊤
𝑡 Φ𝑡(𝑥, 𝑦𝑡))𝑦𝑡∈𝒴𝑡,𝑡=1,...,𝑇 ∈ R𝑘. Parameter tying in the linear hypothesis case cor-

responds to set 𝑤𝑡 = 𝑤𝑡′ if the factors 𝑡, 𝑡′ belong to the same group.

We now extend the point-wise analysis of the previous section to discrete losses sat-
isfying the affine decomposition and surrogate losses defined over structured surrogate
spaces introduced above. More concretely, the geometry will be studied on the marginal
polytope ℳ instead of the simplex Δ𝒴 .

Point-wise analysis of structured surrogate losses. Assuming an affine decomposition
of the loss (see Definition 5 .3), we define the Bayes risk ℓ : ℳ → R as

ℓ(𝜇) = arg min
𝑦′∈𝒴

𝜓(𝑦′)⊤𝜇+ 𝑐, ∀𝜇 ∈ ℳ, (1.27)

which corresponds to a parametrization in the marginal polytope of the Bayes risk de-
fined in the previous section. Analogously, we define the set of optimal predictors 𝑦⋆ :
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ℳ → 2𝒴 and the prediction sets ℳ𝐿 : 2𝒴 → 2ℳ as

𝑦⋆(𝜇) = arg min
𝑦′∈𝒴

𝜓(𝑦′)⊤𝜇 ⊆ 𝒴, ℳ𝐿(𝑌 ) = {𝜇 ∈ ℳ | 𝑌 ⊆ 𝑦⋆(𝜇)}. ⊆ ℳ. (1.28)

Unfortunately, the surrogate Bayes risk 𝑠(𝑞) = arg min𝑣∈R𝑘 𝑆(𝑣)⊤𝑞 of a parametrized
surrogate loss of the form 𝑆(𝑣, 𝑦) = ̃︀𝑆((𝑣⊤𝜙(𝑦))𝑦∈𝒴 , 𝑦) in general cannot be written in
terms of elements 𝜇 from the marginal polytope as in (1.27). This is the case of the Max
loss. We now present structured Fenchel-Young losses, which have the property that the
surrogate Bayes risk can be defined in the marginal polytope.

FY losses in structured prediction. Structured Fenchel-Young losses were first intro-
duced by Blondel et al. (2020), and the first calibration analysis is given by the work
presented in Chapter 3. Let Ω : 𝒞 ⊆ R𝑘 → R be a convex function where 𝒞 is a convex set
containing the marginal polytope ℳ. We define the Fenchel-Young loss 𝑆 : R𝑘 × 𝒴 → R
as

𝑆(𝑣, 𝑦) = Ω*(𝑣) − 𝑣⊤𝜙(𝑦). (1.29)

The surrogate bayes risk 𝑠 and the set of minimizers 𝑣⋆ : ℳ → 2R𝑘
take the following

form:
𝑠(𝜇) = −Ω(𝜇), 𝑣⋆(𝜇) = 𝜕Ω(𝜇), ∀𝜇 ∈ ℳ.

The sub-gradient of the FY loss reads 𝜕𝑆(𝑣, 𝑦) = 𝜕Ω*(𝑣) −𝜙(𝑦). Thus, the computational
complexity of computing the sub-gradient boils down to the complexity of computing
a sub-gradient of Ω*. The requirement for the tractability of structured FY losses can be
summarized with the following oracle:

Oracle for Structured Fenchel-Young losses: Projection Oracle

𝜕Ω*(𝑣) = arg max
𝜇∈𝒞

𝑣⊤𝜇− Ω(𝜇).

We call it projection as it corresponds to an euclidean projection into the marginal
polytope if Ω is a quadratic function. Both Fisher consistency and calibration properties
between 𝑆 and 𝐿 introduced in the previous section can therefore be written using the
marginal polytope parametrization. In particular, Fisher consistency corresponds to the
following statement:

𝑣 ∈ 𝑣⋆(𝜇) =⇒ 𝑑(𝑣) ∈ 𝑦⋆(𝜇), ∀𝜇 ∈ ℳ,

and the calibration function can be written as

𝜁(𝜀) = inf
𝑣∈R𝑘

𝜇∈ℳ

𝛿𝑠(𝑣, 𝜇) s.t. 𝛿ℓ(𝑑(𝑣), 𝜇) ≥ 𝜀,

where 𝛿𝑠(𝑣, 𝜇) and 𝛿ℓ(𝑦, 𝜇) are the parametrizations of the excess risks in ℳ. Analo-
gously to the presentation of FY losses for the simplex in the previous section, we study
the two main types of FY surrogate losses: smooth and polyhedral.
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Structured FY smooth losses are probabilistic estimators. Smooth structured Fenchel-
Young losses are always Fisher consistent to any discrete loss satisfying an affine decom-
position of the form 𝐿(𝑦, 𝑦′) = 𝜓(𝑦′)⊤𝜙(𝑦)+𝑐 for some 𝜓 : 𝒴 → R𝑘 and 𝑐 ∈ R. To see this,
note that 𝜇 = ∇Ω*(𝑣) ⇐⇒ 𝑣 ∈ 𝑣⋆(𝜇) = 𝜕Ω(𝜇) by construction of the Fenchel conjugate.
Hence, Fisher consistency holds with the decoding defined as

𝑑(𝑣) = 𝑦⋆(∇Ω*(𝑣)) = arg min
𝑦′∈𝒴

𝜓(𝑦′)⊤∇Ω*(𝑣) ∈ 𝑦⋆(𝜇), ∀𝑣 ∈ 𝑣⋆(𝜇),

where ties are broken arbitrarily. These losses are probabilistic estimators as they esti-
mate the conditional risk:

𝐿⊤
𝑦 𝑞 = E𝑦′∼𝑞 𝜓(𝑦)⊤𝜙(𝑦′) + 𝑐

= 𝜓(𝑦)⊤ E𝑦′∼𝑞 𝜙(𝑦′) + 𝑐

= 𝜓(𝑦)⊤∇Ω*(𝑣) + 𝑐, ∀𝑣 ∈ 𝑣⋆(E𝑦′∼𝑞 𝜙(𝑦′)).

The following are some examples of functions Ω defining structured smooth FY losses:

• Entropy on the marginal polytope. The function Ω : ℳ → R is defined as Ω =
−𝐻 , where 𝐻 is the entropy of the marginal polyope defined in Eq. (1.24). The
resulting surrogate loss is the one of conditional random fields presented above.

• ℳ-constrained entropy. As we already seen above, marginal inference (oracle re-
quired for the sub-gradient of CRFs) can be intractable for combinatorial structures
such as the matrix representation of permutations in Example 5 .2. One can relax
the computational intractability of the previous entropy by defining an entropy
directly on the surrogate space. More specifically, if ℳ ⊆ R𝑘⪰0 is included in the
positive orthant, we can define the negative entropy Ω : ℳ → R as

Ω(𝜇) =
𝑘∑︁
𝑗=1

𝜇𝑗 log𝜇𝑗 + 𝑖ℳ(𝜇), ∀𝜇 ∈ ℳ. (1.30)

In this case, the sub-gradient of Ω* using the structure of permutations from Ex-
ample 5 .2 can be efficiently approximated to precision 𝜀 with complexity 𝒪(𝑘2/𝜀)
using the Sinkhorn algorithm (Sinkhorn and Knopp, 1967). This loss was intro-
duced by Blondel (2019).

• Quadratic. Let Ω : R𝑘 → R defined as

Ω(𝑢) = 1
2‖𝑢‖2

2, ∀𝑢 ∈ R𝑘.

The resulting loss corresponds to the quadratic surrogate 1
2‖𝑣 − 𝜙(𝑦)‖2

2 up to addi-
tive constant terms. This loss is studied in depth in Chapter 2. It was introduced
in the structured setting by Ramaswamy et al. (2013) and further generalized to
continuous structured spaces by Ciliberto et al. (2020).

• ℳ-constrained quadratic. Let Ω : ℳ → R defined as

Ω(𝜇) = 1
2‖𝜇‖2

2 + 𝑖ℳ(𝜇), ∀𝜇 ∈ ℳ.

In this case, the sub-gradient corresponds to an Euclidean projection into the marginal
polytope. The resulting loss is known as SparseMAP (Niculae et al., 2018).
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Finally, using the 𝛽-smoothness of the function Ω*, in Chapter 3 we also prove cali-
bration results by deriving lower bounds on the calibration function 𝜁 of the form

𝜁(𝜀) ≥ 𝜀2

8𝑐2
𝜓𝛽

,

where 𝑐𝜓 is a constant depending on the embedding 𝜓. An important observation is that
both constants 𝑐𝜓 and 𝛽 are not exponentially large even if it is the case for the size of the
output space, but rather depend polynomially with the affine dimension of the discrete
loss decomposition.

Structured FY polyhedral losses are non-probabilistic estimators. The FY polyhedral
Max-Min loss Eq. (1.17) presented in the previous section under the parametrization
Eq. (1.22) reads as follows:

𝑆(𝑣, 𝑦) = max
𝜇∈ℳ

min
𝑦′∈𝒴

𝜓(𝑦′)⊤𝜇+ 𝑣⊤𝜇− 𝑣⊤𝜙(𝑦). (1.31)

The entire Chapter 4 of this thesis is devoted to the statistical and computational analysis
of this surrogate loss. For the sake of presentation, let’s now assume that the affine
decomposition takes the form 𝐿(𝑦, 𝑦′) = 𝜙(𝑦′)⊤𝐴𝜙(𝑦) + 𝑐 where 𝐴 ∈ R𝑘×𝑘 is a linear
operator from the surrogate space R𝑘 to itself. In this case, the sub-gradient of Ω* can be
written as a bi-linear max-min problem in the marginal polytope as

𝜕Ω*(𝑣) = arg max
𝜇∈ℳ

min
𝜈∈ℳ

𝜈⊤𝐴𝜇+ 𝑣⊤𝜇, ∀𝑣 ∈ R𝑘. (1.32)

The computation of the sub-gradient (1.32) is different than the maximization oracle from
the Max loss and the projection oracle from smooth FY loss presented above. In particu-
lar, the above sub-gradient can be approximated using both maximization and projection
oracles. However, as we see below, even though using maximization oracles seems more
attractive at first sight (as we only rely on the decoding 𝑑), it is not practical to implement
into the regularized ERM optimization procedure.

• Using maximization oracles. Having in mind that by assumption we have ac-
cess to a linear maximization oracle over the marginal polytope, the first idea
that comes into mind is to use a saddle-point version of the conditional gradient
method (a.k.a. Frank-Wolfe) (Frank et al., 1956), whereby the maximization ora-
cle is performed in an alternated fashion over the marginal polytope as in (Gidel
et al., 2017). It has been proven that the method converges (Robinson, 1951) with
worst-case complexity of 𝒪(𝑡−1/(2|𝒴|−2)) (Shapiro, 1958), while it is an open con-
jecture to prove it actually converges at a better rate of 𝒪(𝑡−1/2). Despite being an
attractive algorithm due to the required oracle its main drawback lies in its inabil-
ity to warm-start the method with a solution close to the optimum. In particular,
in Chapter 4 this will prove to be a key property of the algorithm in order to reuse
past gradients during the iterative optimization procedure.

• Using projection oracles. Let ̃︀Ω : 𝒞 ⊇ ℳ → R be a strongly convex 16 differ-
entiable function defined in a convex set 𝒞 containing ℳ such that ∇̃︀Ω(𝒞) = R𝑘

16A differentiable convex function ℎ is said to be strongly convex with constant 𝑐 if ℎ(𝑢) ≥ ℎ(𝑣) +
∇ℎ(𝑣)⊤(𝑢 − 𝑣) + 𝑐

2 ‖𝑢 − 𝑣‖2
2 holds for all 𝑢, 𝑣 in the domain.

PhD thesis – INRIA & DI-ENS 42/197 Alex Nowak Vila

https://www.inria.fr/en/
https://www.di.ens.fr/


Structured Supervised Learning with Theoretical Guarantees January 11, 2022

and lim𝑢→𝜕𝒞 ‖∇̃︀Ω(𝑢)‖ = ∞, where 𝜕𝒞 denotes the boundary of 𝒞. We can show
that with 𝑡 projection oracles

arg min
𝜇∈ℳ

−𝜂𝜇⊤𝑢+𝐷̃︀Ω(𝜇, 𝜇′), (1.33)

a sub-gradient (1.32) can be approximated up to precision 𝜀 = 𝒪(𝑡−1), where
𝐷ℎ(𝜇, 𝜇′) = ℎ(𝜇) − ℎ(𝜇′) − ∇ℎ(𝜇′)⊤(𝜇 − 𝜇′) is the Bregman divergence associated
to the convex function ℎ. A part from the fast convergence to a sub-gradient, this
method can be easily warm-started with past approximated sub-gradients. In par-
ticular, under the assumption that the sub-gradients do not change much during
the full optimization procedure, it can be shown experimentally that a constant
number of projections at each iteration is enough to make the algorithm conver-
gence.

Remark 5 .5. A sub-gradient of the Max-Min loss can thus be approximated using
several gradients of smooth FY losses corresponding to Ω = ̃︀Ω. One might ask what
are the advantages of using the Max-Min loss rather than a smooth FY loss if both are
calibrated. Being a non-probabilistic estimator instead of a probabilistic estimator is
not generally a valid argument (i.e., decision boundaries are estimated directly), as
plug-in estimators can have super fast rates under certain low-noise assumptions
(Audibert and Tsybakov, 2007). On the other hand, note that the Max-Min surrogate
is dependent of the discrete loss 𝐿, whereas smooth FY surrogates generally only
depend on the embedding 𝜙 and remaining information about the loss is contained
in the decoding function. This means that the approximation error ℰ(𝑑 ∘ 𝑔𝒢) − ℰ(𝑓⋆)
of the Max-Min loss is likely to be smaller than the smooth loss due to the full de-
pendence of 𝑔𝒢 in 𝐿.

In Chapter 4 we also derive linear lower bounds on the calibration function for the
argmax decoding 𝑑(𝑣) = arg max𝑦′∈𝒴 𝑣⊤𝜙(𝑦′) under mild conditions on the learning
problem. They take the following form:

𝜁(𝜀) ≥ 𝜀

𝑐𝜙,𝐴
,

where the constant 𝑐𝜙,𝐴 depends on the matrix𝐴 and embedding 𝜙 corresponding to the
affine decomposition of the structured discrete loss. Similarly as for smooth FY loss, the
constant 𝑐𝜙,𝐴 is shown to be polynomial with the affine dimension of the loss.

Structured Prediction Topics Not Covered

We conclude this section by pointing out two topics on structured prediction which are
not covered in this thesis: the learning to search approach, and the use of deep learning
techniques.
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Other approaches to structured prediciton: learning to search. We now briefly discuss
a completely different approach to structured output space prediction from the one pre-
sented in this manuscript. This approach is known in the literature as learning to search
(Daumé et al., 2009; Daumé III and Marcu, 2005; Doppa et al., 2014), and it is closely re-
lated to imitation learning (Osa et al., 2018) and inverse reinforcement learning (Russell,
1998). The main idea behind is to view the structured outputs as objects whose parts are
built iteratively by an agent navigating in a search space or environment. For instance,
in sequence prediction, a learning agent is navigating the positions from left to write
and at every step it takes an action using both input and past information to choose
the following character in the sequence. The input-output examples from the training
dataset are thus realizations of an expert policy that the learning agent wants to use in
order to minimize the expected risk of the discrete loss 𝐿. The potential advantages of
this framework over the surrogate based approach is that it can be used to minimize
discrete losses without a low-dimensional structure (i.e., non-decomposable losses) and
it can take into account complicated dependencies in the output space while keeping the
tractability of the search procedure. On the other hand, many structured output spaces
such as the space of permutations do not have a natural associated search space in which
the outputs can be iteratively constructed. Indeed, this constrains the application of the
learning to search approach to structured spaces where there is a natural order of the
parts of the output such as sequences.

Structured prediction with deep learning. Deep learning is the branch of machine
learning that uses deep artificial neural networks (also known as deep networks) to learn
a representation of the data (LeCun et al., 2015). In deep learning, discrete prediction
problems are tackled using precisely the same surrogate strategies described in this the-
sis. This means that most theory developed here is complementary to the theoretical
understanding of the performance of deep networks. More specifically, finite-sample
generalization bounds on the excess risk of a deep network (if obtained), can be directly
plugged into the calibration functions studied in this thesis to obtain guarantees on the
Bayes predictor. When the output elements have a natural order such as sequences, deep
learning techniques are usually used under the learning to search framework presented
above (Sutskever et al., 2014).
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6 Related works and Summary of Contributions

In this final section of the introduction, we provide a brief historical review of the related
works on discrete prediction learning until the moment where the research developed
in this thesis began. The literature review is not fully exhaustive and it is biased by
the personal views of the author of the thesis. In particular, we want to convey the
need for a sound general framework for structured output prediction that goes beyond
the margin-based paradigm that was present in the early phases of statistical learning
theory and served as basis to design classification methods such as the structural SVM.
After the related works exposition, we present the main questions that were asked at the
beginning of the PhD and finally a summary of the contributions provided in this thesis.

From margin bounds to quantitative guarantees to the Bayes predictor. As it con-
stantly happens during the scientific entreprise, paradigms in which phenomena, prob-
lems or methods are seen change (Kuhn, 1970). In particular, it is common that proce-
dures are developed under a certain view and later are reformulated differently. This
is the case for classification methods in statistical learning, which were developed using
the central concept of margin for binary linearly separable data, which corresponds to the
maximum distance between the linear classifier and the set of positive and negative la-
bels, respectively. More specifically, binary classification and some of the first multi-class
and structured prediction methods were designed and studied as margin maximization
procedures. The perceptron algorithm (Rosenblatt, 1961) was proved to converge at a
rate depending on the margin, and the (hard) support vector machine (SVM) (Vapnik
and Lerner, 1963; Boser et al., 1992) was designed to find precisely the maximum margin
hyperplane. Later, SVMs were generalized to non-separable training data (Cortes and
Vapnik, 1995) by extending the notion of margin to its soft version where data points
are allowed to be missclassified. Probabilistic methods for classification such as logistic
regression (Friedman et al., 2000) and boosting techniques (Freund and Schapire, 1997),
also known as plug-in rules, where also seen through the lens of margin maximization
(Bartlett et al., 1998), and their theoretical analysis was performed under this paradigm
(Koltchinskii and Panchenko, 2000; Bartlett and Mendelson, 2002) using the so-called
margin bounds (see also related paragraph in Section 2 ). Even if this vision has been par-
tially abandoned at least for binary classification, most introductory courses in machine
learning motivate those binary convex surrogate methods with the notion of margin and
their name margin losses has remained. The extension of the binary margin to larger out-
put spaces led to generalizations of the SVM such as the Weston-Watkins SVM (Weston
and Watkins, 1999) and Crammer-Singer SVM (Crammer and Singer, 2001) for multi-
class classification with 0-1 loss and the structural SVM (Taskar et al., 2004; Tsochan-
taridis et al., 2004) for the general structured prediction setting.

Soon after, some parts of the community started to realize that margin-based analy-
sis was not able to address in a sound way the two basic sources of error of a statistical
procedure introduced in Section 2 , namely, the estimation error and the approximation
error. Quoting Zhang (2004b): ‘The margin idea mixes the two aspects together (...) so
that it is not clear which aspect is the main contribution to the success of the so-called
margin maximization methods.’ In other words, margin bounds were missing a quanti-
tative control on the closeness of the surrogate predictor to the discrete Bayes predictor,
which is the ultimate quantity of interest. Although there were works addressing this
question for specific instances of these methods such as Devroye et al. (1996) for general-
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ized linear models, Lugosi and Vayatis (2004) for boosting methods and Steinwart (2002)
for SVMs, the first general framework for studying binary convex surrogates for the 0-1
loss with respect to the discrete Bayes predictor was done by Zhang (2004b); Lin (2004);
Bartlett et al. (2006). In particular, these works introduced the concepts of Fisher con-
sistency and calibration, which are central in this thesis (see Section 3 ). Soon after, this
analysis was applied to multi-class methods with 0-1 loss, both providing conditions for
calibration (Tewari and Bartlett, 2007) and a corresponding quantitative analysis (Zhang,
2004a). In particular, the former work and Liu (2007) proved that many of the multi-class
extensions of the SVM derived from margin generalizations were not consistent for the
0-1 loss. Steinwart (2007) introduced the concept of calibration function in its generality
and a point-wise analysis of probabilistic-based classifiers was studied in depth by Reid
and Williamson (2010) in the binary case and Williamson et al. (2016) for the multi-class
setting under the name of composite proper losses. Despite existing calibration analysis
of surrogate methods for structured output spaces, those were specialized to a partic-
ular setting. For instance, Gao and Zhou (2011) for multi-label, Duchi et al. (2010) and
Ravikumar et al. (2011) for ranking, Pires et al. (2013) for some specific surrogates, and
Ramaswamy et al. (2013) for low-rank tasks with a quadratic surrogate. The first for-
malization of surrogate methods for general structured prediction can be traced back to
Ramaswamy and Agarwal (2016), but the authors do not provide a quantitative analysis
required to obtain finite-sample guarantees of the estimators, such as calibrated func-
tions. The first quantitative study of calibration for structured prediction is by Ciliberto
et al. (2016); Osokin et al. (2017), but both works are very specific to the quadratic surro-
gate.

The remaining existing generic quantitative analysis for structured prediction (Lon-
don et al., 2016; Cortes et al., 2016) are based on margin bounds, and as already discussed
above and in Section 3 , these bounds are unable to provide theoretically sound quanti-
tative guarantees to the discrete Bayes predictor.

Open questions at the beginning of the PhD. As we have seen in the literature review
above, there has been a continuous effort to provide a general framework to theoretically
understand surrogate methods for structured prediction. Although there are still some
analysis working under the margin-based framework, most of the research is towards
providing quantitative calibration guarantees, which serve as basis to understand the
capabilities of the method to approximate the Bayes predictor. In particular, the way to-
wards this general framework comes by understanding calibration properties of existing
surrogate losses designed as margin maximizers such as the structural SVM and by un-
derstanding how calibrated surrogate losses can be systematically constructed from the
learning problem. More specifically, these are some of the open questions at the moment
where the research investigations appearing in this thesis started:

• There was lacking a general and user-friendly strategy to explicitly compute com-
parison inequalities between excess risks in the general context of structured pre-
diction. Moreover, as pointed out by Osokin et al. (2017), it is key to show that these
inequalities do not hide large constants when dealing with exponentially large out-
put spaces.

• Despite being known that the structural SVM is not consistent to the 0-1 loss in
multi-class classification (Liu and Shen, 2006; Tewari and Bartlett, 2007), nothing
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was known regarding its calibration for general structured output spaces, which is
the learning setting in which the method is most often used in practice.

• Two multi-class extensions of the SVM were known to be calibrated (Lee et al.,
2004; Mroueh et al., 2012). However, they are not useful for structured prediction
with large output spaces due to its additive structure. It was not known of any
calibrated non-probabilistic method applicable to structured prediction.

Summary of contributions. During this thesis, these open questions have been ad-
dressed and have been partially or completely answered. The following is a summary
of the contributions of this thesis:

• In Chapter 2, we provide a statistical and computational analysis of the quadratic
surrogate for structured prediction. In particular, we show that the constants ap-
pearing in the calibration function are logarithmic with respect to the size of large
structured output spaces by leveraging the affine decomposition of the task loss,
thus making learning possible. Moreover, a sharp analysis of constants appearing
in the generalization bounds of kernel ridge regression is given, together with the
computational complexity of the decoding procedure. In Chapter 3, this analysis is
extended to generic smooth convex surrogates beyond the quadratic surrogate and
special emphasis is made on calibration functions, which are lower bounded by
quadratics using the strong convexity of the Bayes risk. Comparison inequalities
between excess risks are obtained for smooth surrogates ranging from one-vs-all
methods to conditional random fields.

• In Chapter 5, we provide a general calibration analysis of the Max loss (structural
SVM) for general symmetric task losses. In particular, we provide strong necessary
conditions for its Fisher consistency, which are not satisfied by most losses used
in practice. Moreover, we show that losses defined as shortest path distances in
acyclic graphs such as the absolute deviation loss used in ordinal regression are
Fisher consistent, thus providing the first consistent losses for the Max loss for
output spaces with more than two labels. In particular, this work shows how the
maximum margin extension to multi-class problems led to the design of ill-posed
surrogate methods for most discrete prediction tasks.

• In Chapter 4, we present the Max-Min loss, a polyhedral non-probabilistic surro-
gate loss for structured prediction that it is calibrated to any task loss and it is
applicable to structured output spaces. The minimization of the surrogate requires
projection oracles to the marginal polytope. We provide an efficient algorithm and
corresponding finite-sample generalization bounds with respect to the Bayes pre-
dictor of the corresponding regularized ERM estimator, where the constants are
shown to be logarithmic with respect to the size of large structured output spaces.
This loss, however, does not correspond to the SVM in the binary classification set-
ting. In Chapter 5, we introduce the Restricted-Max loss, which is a generalization
of the binary SVM to structured prediction, it has a maximization additive struc-
ture such as the Max loss, but despite having better consistency guarantees than
the latter, it is not consistent to any task loss as it is the case for the Max-Min loss.
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2 Sharp Analysis of Learning with Discrete
Losses

Abstract

The problem of devising learning strategies for discrete losses (e.g., multilabeling, rank-
ing) is currently addressed with methods and theoretical analyses ad-hoc for each loss. In
this paper we study a least-squares framework to systematically design learning algo-
rithms for discrete losses, with quantitative characterizations in terms of statistical and
computational complexity. In particular we improve existing results by providing ex-
plicit dependence on the number of labels for a wide class of losses and faster learning
rates in conditions of low-noise. Theoretical results are complemented with experiments
on real datasets, showing the effectiveness of the proposed general approach.

1 Introduction

Structured prediction with discrete labels of high cardinality is ubiquitous in machine
learning, e.g., in multiclass problems, multilabel learning, ranking, ordinal regression,
etc (BakIr et al., 2007; Crammer and Singer, 2001; Read et al., 2011; Pedregosa et al., 2017).
These supervised learning problems typically come with computational and theoretical
challenges:

(1) how to design efficient algorithms dealing with potentially large number of
data and labels?

(2) even if learning is computationally feasible, how to make sure that the resulting
algorithm leads to improved accuracy on the test set?

Many special cases are often addressed in an ad-hoc fashion in terms of consistency,
algorithms and convergence rates, depending on the specific loss used in each applica-
tion to quantify the performance of predictors.

A few generic learning frameworks exist: (a) conditional random fields (Lafferty
et al., 2001; Settles, 2004) use conditional probabilistic modelling typically combined
with maximum likelihood estimation, but may lead to intractable probabilistic infer-
ence and cannot easily incorporate structured losses which are needed in applications
(Volkovs et al., 2011); (b) Structured SVM (Tsochantaridis et al., 2004; Joachims, 2006) ex-
tended the class of problems where a systematic max-margin framework can be applied,
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with the incorporation of arbitrary losses, but they are not consistent in general, that is,
even with infinite amounts of data, they would not lead to optimal predictions (Tewari
and Bartlett, 2007); (c) more recently, least-squares (or quadratic surrogate) frameworks
(Ciliberto et al., 2016; Osokin et al., 2017) have emerged. Such approaches can tackle
arbitrary discrete losses producing consistent estimators and have the potential to pro-
vide a systematic way to design learning algorithms with both statistical and compu-
tational guarantees. However, no sharp analyses exist yet, quantifying the impact of
crucial quantities like the number of labels or the level of noise on the statistical and
computational properties of the resulting algorithms. The goal of this paper is to char-
acterize explicitly such impact for a number of widely used loss functions in the context
of multilabeling and ranking, showing the effectiveness of least-squares frameworks for
structured prediction with discrete labels. We make the following contributions:

– We provide quantitative characterizations of the statistical and computational com-
plexity for the least-squares framework of Ciliberto et al. (2016) depending on the
number of labels and the number of examples. The characterization is explicit for
a wide family of common losses in ranking and multilabel learning (see Sections 3
.1, 3 .2 and 4 ).

– We propose a margin condition for discrete losses (generalizing the Tsybakov con-
dition for binary classification (Tsybakov, 2004)) and obtain fast learning rates for
the framework of Ciliberto et al. (2016), that are adaptive to the proposed condition
(see Section 3 .3).

– Our analysis encompasses many previous results on special cases and provides
improved learning rates over existing generic structured prediction frameworks
(see Section 6 ).

– We conduct a series of experiments highlighting the benefits of the considered
least-squares framework on ranking and multilabel problems (see Section 5 ).

2 Background

The problem of supervised learning consists in learning from examples the function relat-
ing inputs with observations/labels. More specifically, let 𝒴 be the space of observations,
denoted observation space or label space and 𝒳 be the input space. The quality of the pre-
dicted output is measured by a given loss function 𝐿. In many scenarios the output of the
function is in a different space than the observations (see Section 3 .2 for some examples).
We denote by 𝒵 the output space, so

𝐿 : 𝒵 × 𝒴 −→ R,

where 𝐿(𝑧, 𝑦) measures the cost of predicting 𝑧 when the observed value is 𝑦. Finally the
data are assumed to be distributed according to a probability measure 𝜌 on 𝒳 × 𝒴 . The
goal of supervised learning is then to recover the function 𝑓⋆ minimizing the expected
risk ℰ(𝑓) of the loss,

𝑓⋆ = arg min
𝑓 :𝒳 →𝒵

ℰ(𝑓), ℰ(𝑓) = E(𝑥,𝑦)∼𝜌 𝐿(𝑓(𝑥), 𝑦),
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given only a number of examples (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1, with 𝑛 ∈ N, sampled independently
from 𝜌. The quality of an estimator 𝑓 for 𝑓⋆ is measured in terms of the excess risk ℰ(𝑓) −
ℰ(𝑓⋆).

2 .1 Quadratic Surrogate method

A systematic way to solve the problem in Section 2 is to consider that 𝑓⋆ is characterized
as follows (Steinwart and Christmann, 2008; Ciliberto et al., 2016):

𝑓⋆(𝑥) = arg min
𝑧∈𝒵

ℓ(𝑧, 𝑥),

where ℓ(𝑧, 𝑥) = E𝑦∼𝜌𝑥 𝐿(𝑧, 𝑦) is the conditional risk, where 𝜌𝑥(𝑦) is the conditional dis-
tribution of 𝑦 given 𝑥 ∈ 𝒳 . The quadratic surrogate (QS) for structured prediction,
introduced by Ciliberto et al. (2016), is a natural estimator that has the following form,

̂︀𝑓(𝑥) = arg min
𝑧∈𝒵

̂︀ℓ(𝑧, 𝑥), (2.1)

where ̂︀ℓ(𝑧, 𝑥) :=
∑︀𝑛
𝑖=1 𝛼𝑖(𝑥)𝐿(𝑧, 𝑦𝑖). Here (𝛼𝑖)𝑛𝑖=1 are suitable functions defined explic-

itly in terms of the observed data (not on 𝐿) and will be discussed later (see Eqs. (2.6)
and (2.7)). Informally, the closer ̂︀ℓ(𝑧, 𝑥) is to ℓ(𝑧, 𝑥), the closer ̂︀𝑓 will be to 𝑓⋆ in terms
of the excess risk. Ciliberto et al. (2016) analyzes the generalization properties of the
derived estimator, that will be recalled in the next paragraph. Here we point out that a
crucial aspect of the algorithm in Eq. (2.1), that makes it appealing from a practical view-
point, is that we can directly apply it given the loss at hand, without the need to devise
a different surrogate (and consequently a different algorithm and theoretical analysis)
ad-hoc for each specific loss.

Statistical properties of Quadratic Surrogate. Here we recall some generalization prop-
erties of the QS estimator from Ciliberto et al. (2016), that will be extended in Section 3
. First, assume that the loss 𝐿 is a structure encoding loss function (SELF), i.e., it can be
written as,

𝐿(𝑧, 𝑦) = ⟨𝜙(𝑧), 𝑉 𝜙(𝑦)⟩ℋ, (2.2)

where ℋ is a separable Hilbert space with ⟨·, ·⟩ℋ the associated inner product, 𝑉 : ℋ → ℋ
is a bounded linear operator and 𝜙 : 𝒵 → ℋ, 𝜙 : 𝒴 → ℋ.

Note that by assuming 𝒵,𝒴 discrete and finite, then every loss function on 𝒵,𝒴 is
SELF. Indeed Eq. (2.2) is recovered by setting ℋ = R|𝒵|, 𝑉 = (𝐿(𝑧, 𝑦))𝑧∈𝒵,𝑦∈𝒴 ∈ R|𝒵|×|𝒴|

the loss matrix, and 𝜙(𝑧) = 𝑒𝑧, 𝜙(𝑦) = 𝑒𝑦 the vectors of the canonical basis in R|𝒵| and
R|𝒴|, respectively (For the case of continuous 𝒵,𝒴 see Ciliberto et al. (2016)). The key
property of a loss being SELF is that, by linearity of the inner product,

ℓ(𝑧, 𝑥) = E𝑦∼𝜌𝑥 𝐿(𝑧, 𝑦)
= E𝑦∼𝜌𝑥 ⟨𝜙(𝑧), 𝑉 𝜙(𝑦)⟩ℋ

= ⟨𝜙(𝑧), 𝑉 𝑔⋆(𝑥)⟩ℋ,

with 𝑔⋆(𝑥) = E𝑦∼𝜌𝑥 𝜙(𝑦) being the conditional expectation of 𝜙(𝑦), given 𝑥. This means
that in order to estimate ℓ, we just need to find an estimator ̂︀𝑔 for the conditional expec-
tation 𝑔⋆, and then define ̂︀ℓ(𝑧, 𝑥) = ⟨𝜙(𝑧), 𝑉 ̂︀𝑔(𝑥)⟩ℋ. To find a suitable estimator for 𝑔⋆,
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Multilabel and Ranking measures

Measure 𝒵 Definition 𝑟 A INF𝐹 (|𝒵|)

0-1 (↓) 𝒫𝑚 1(𝑧 ̸= 𝑦) 2𝑚 2𝑚/2 𝒪(𝑛 ∧ 2𝑚)

Block 0-1 (↓) 𝒫𝑚 1(𝑧 ∈ 𝐵𝑗 , 𝑦 /∈ 𝐵𝑗 , 𝑗 ∈ [𝑏]) 𝑏
√
𝑏 𝒪(𝑏)

Hamming (↓) 𝒫𝑚 1
𝑚

∑︀𝑚
𝑗=1 1([𝑧]𝑗 ̸= [𝑦]𝑗) 𝑚 1

2 𝒪(𝑚)

F-score (↑) 𝒫𝑚 2 |𝑧∩𝑦|
|𝑧|+|𝑦| 𝑚2 + 1

√
2𝑚 𝒪(𝑚2)

Prec@k (↑) 𝒫𝑚,𝑘 |𝑧∩𝑦|
𝑘 𝑚

√︁
𝑚
𝑘 𝒪(𝑚 log 𝑘)

NDCG (↑) S𝑚
1

𝑁(𝑟)
∑︀𝑚
𝑗=1𝐺([𝑟]𝑗)𝐷𝜎(𝑗) 𝑚

√
𝑚 (

∑︀
𝑗 𝐷

2
𝑗 )

1
2𝐺max 𝒪(𝑚 log𝑚).

PD (↓) S𝑚
1

𝑁(𝑦)
∑︀𝑚
𝑗,ℓ=1 1([𝑦]𝑗<[𝑦]ℓ)1(𝜎(𝑗)>𝜎(ℓ))

𝑚(𝑚−1)
2

𝑚
4 MWFAS(𝑚).

MAP (↑) S𝑚
1

|𝑦|
∑︀𝑚
𝑗=1

[𝑦]𝑗
𝜎(𝑗)

∑︀𝜎(𝑗)
ℓ=1 𝑦𝜎−1(ℓ)

𝑚(𝑚+1)
2

1
2𝑚
√︀

log(𝑚+ 1) QAP(𝑚).

Table 2.1: Upper bounds for A in Theorems 3 .1 and 3 .5 and Corollary 3 .6 and compu-
tational complexity of evaluating the QS estimator in Eq. (2.7), for a number of widely-
used losses for multilabel/ranking problems. See Section 3 .2 for notation, Section 4 for
computational considerations and Section B for the full derivation of the results.

note that 𝑔⋆ can be written as the minimizer of the following quadratic surrogate (QS),

𝑔⋆ = arg min
𝑔:𝒳 →ℋ

ℛ𝜙(𝑔), (2.3)

where ℛ𝜙(𝑔) := E(𝑥,𝑦)∼𝜌 ‖𝑔(𝑥) − 𝜙(𝑦)‖2
ℋ is the expected surrogate risk of 𝑔. The quality of

the surrogate estimator 𝑔 is measured in terms of the surrogate excess risk ℛ𝜙(𝑔)−ℛ𝜙(𝑔⋆).
In particular, denote by 𝑑 : ℋ → 𝒵 the decoding function 𝑑(𝑢) = arg min𝑧∈𝒵⟨𝜓(𝑧), 𝑉 𝑢⟩ℋ.
Ciliberto et al. (2016) prove that by construction the QS estimator is Fisher consistent,
i.e., 𝑓⋆ = 𝑑 ∘ 𝑔⋆, with 𝑓⋆, 𝑔⋆ as above. Moreover, for any 𝑔 : 𝒳 → ℋ, the comparison
inequality holds

ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆) ≤ 2𝑐𝑉,𝜓
√︁

ℛ𝜙(𝑔) − ℛ𝜙(𝑔⋆), (2.4)

where 𝑐𝑉,𝜓 = sup𝑧∈𝒵 ‖𝑉 ⋆𝜓(𝑧)‖ℋ. In the next paragraph we recall how to devise a suit-
able estimator of 𝑔⋆.

The QS estimator depends only on 𝐿. Given a finite dataset (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1, an estimator ̂︀𝑔
for 𝑔⋆ can be found by considering the characterization of 𝑔⋆ in terms of Eq. (2.3). Indeed
the problem in Eq. (2.3) can be solved using kernel ridge regression (KRR) (Caponnetto
and De Vito, 2007). Let 𝑘 : 𝒳 × 𝒳 → R be a kernel on 𝒳 and ℋ𝒳 the associated repro-
ducing kernel Hilbert space (RKHS). Then given 𝜆 > 0, KRR reads

̂︀𝑔𝑛 ∈ arg min
𝑔∈𝒢

1
𝑛

𝑛∑︁
𝑖=1

‖𝑔(𝑥𝑖) − 𝜙(𝑦𝑖)‖2
ℋ + 𝜆‖𝑔‖2

𝒢 , (2.5)

where 𝒢 is the space of Hilbert-Schmidt operators from ℋ𝑋 to ℋ, which is isometric
to ℋ⊗ℋ𝒳 . The minimizer ̂︀𝑔𝑛 can be written in closed form as ̂︀𝑔𝑛(·) =

∑︀𝑛
𝑖=1 𝛼𝑖(·)𝜙(𝑦𝑖) ∈ 𝒢

where 𝛼(𝑥) = (𝛼1(𝑥), . . . , 𝛼𝑛(𝑥)) ∈ R𝑛 is defined by

𝛼(𝑥) = (𝐾 + 𝑛𝜆𝐼)−1𝐾𝑥, (2.6)
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with 𝐾𝑥 = (𝑘(𝑥, 𝑥1), . . . , 𝑘(𝑥, 𝑥𝑛)) ∈ R𝑛 and 𝐾 ∈ R𝑛×𝑛 is defined by 𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗).
The key property here, is that due to the fact that ̂︀𝑔𝑛 is linear in the 𝜙(𝑦𝑖)’s, then ̂︀ℓ(𝑧, 𝑥)
does not explicitly depend on the surrogate space ℋ. Indeed, we have that ̂︀ℓ(𝑧, 𝑥) =
⟨𝜓(𝑧), 𝑉 (

∑︀𝑛
𝑖=1 𝛼𝑖(𝑥)𝜙(𝑦𝑖))⟩ℋ =

∑︀𝑛
𝑖=1 𝛼𝑖(𝑥)𝐿(𝑧, 𝑦𝑖), so the final estimator ̂︀𝑓𝑛 = 𝑑 ∘ ̂︀𝑔𝑛 can

be written as ̂︀𝑓𝑛(𝑥) = arg min
𝑧∈𝒵

𝑛∑︁
𝑖=1

𝛼𝑖(𝑥)𝐿(𝑧, 𝑦𝑖). (2.7)

Finally, by combining the comparison inequality with results on the convergence of ̂︀𝑔𝑛
to 𝑔⋆ (see for example Caponnetto and De Vito (2007)), the following theorem holds.

Theorem 2 .1 (Thm. 5 of Ciliberto et al. (2016)). Let 𝑛 ∈ N, 𝜆𝑛 = 𝑛−1/2 and 𝜏 > 0. If 𝐿 is
SELF and 𝑔⋆ ∈ 𝒢, then the following holds with probability at least 1 − 8𝑒−𝜏 ,

ℰ( ̂︀𝑓𝑛) − ℰ(𝑓⋆) ≤ 𝐶 𝑐𝑉,𝜓𝜅‖𝑔⋆‖𝒢𝜏
2𝑛−1/4. (2.8)

where 𝜅2 = sup𝑥 𝑘(𝑥, 𝑥) and 𝐶 a universal constant.

Positioning of our contribution. From a theoretical viewpoint the result above holds
for any loss on discrete and finite 𝒵,𝒴 , and shows a learning rate that is 𝒪(𝑛−1/4). More-
over, from a practical viewpoint, to define and evaluate the QS estimator in Eq. (2.7) is
enough to know only the loss 𝐿 and a kernel 𝑘 for 𝒳 (no knowledge of ℋ, 𝜙, 𝜓 is re-
quired). These considerations show that the QS framework could be a good candidate
to systematically solve learning problems with discrete outputs.

However, note that constants of the bound depend on the specific SELF decompo-
sition for 𝐿. If we use the one by Ciliberto et al. (2016), ℋ = R|𝒵|, 𝜓(𝑧) = 𝑒𝑧, 𝜙(𝑦) =
𝑒𝑦, 𝑉 = 𝐿, then the constant 𝑐𝑉,𝜓 equals the spectral norm of the loss matrix ‖𝐿‖, which
is exponentially large even for highly structured loss functions such as Hamming. In
that case ‖𝐿‖ = 2𝑚−1, where 𝑚 is the number of labels (and a similar behaviour could
affect ‖𝑔⋆‖𝒢). Then Eq. (2.8) can be totally uninformative if the constants of the rate are
exponentially large (Osokin et al., 2017).

In the next section, we prove that by using a suitable SELF-decomposition it is pos-
sible to find a version of Eq. (2.8), that depends only polynomially on the number of
labels 𝑚. In particular we find the explicit constants for a number of widely used loss
functions for ranking and multilabel learning. Finally we provide a refined generaliza-
tion bound adaptive to the noise-level of the learning problem.

3 Main Results

In this section we study a specific SELF-decomposition for discrete losses, providing a
generalization bound in the form of Eq. (2.8), with explicit constants depending on the
specific loss chosen (Theorem 3 .1). In Theorem 3 .2 and Table 2.1 we quantify the con-
stants for a number of widely used loss functions for multilabeling and ranking prob-
lems, showing that they are always polynomial with respect to the number of labels and
in many cases optimal (Remark 3 .3). Finally in Theorem 3 .5 we generalize Eq. (2.8) (and
so the learning rate obtained by Ciliberto et al. (2016)), introducing a Tsybakov-like noise
condition for the structured prediction problem.
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3 .1 Affine decomposition

Motivated by the limitations given by the possible exponential magnitude of the con-
stants in the generalization bound in Eq. (2.8), we consider another SELF-decomposition
of the loss, based on the following affine decomposition of the loss matrix:

𝐿 = 𝐹𝑈⊤ + 𝑐1, (2.9)

where 𝐹 ∈ R|𝒵|×𝑟, 𝑈 ∈ R|𝒴|×𝑟, 𝑐 ∈ R is a scalar and 1 ∈ R|𝒵|×|𝒴| is the matrix of ones,
i.e. 1𝑖𝑗 = 1 and 𝑟 ∈ N. The minimum 𝑟 for which there exists a decomposition as
Eq. (2.9) is called the affine dimension of the loss 𝐿 and is denoted affdim(𝐿). Note that
the “centered” loss 𝐿− 𝑐 is SELF with

ℋ = R𝑟, 𝜓(𝑧) = 𝐹𝑧, 𝜙(𝑦) = 𝑈𝑦, 𝑉 = 𝐼𝑟×𝑟, (2.10)

where 𝐹𝑧 is the 𝑧-th row of 𝐹 and 𝑈𝑦 the 𝑦-th row of 𝑈 . Using the decomposition above,
the following theorem gives a new version of the bound Eq. (2.8) specialized to discrete
losses. Before giving the result, note that when we use the SELF-decomposition above for
a loss, the conditional expectation 𝑔⋆ is characterized by 𝑔⋆ : 𝒳 → R𝑟, 𝑔⋆(𝑥) = (𝑔⋆𝑗 (𝑥))𝑟𝑗=1,
for 𝑔⋆𝑗 : 𝒳 → R defined as 𝑔⋆𝑗 (𝑥) = 𝑈 𝑗⊤𝜌𝑥, with 𝑈 𝑗 ∈ R|𝒴| the 𝑗-th column of 𝑈 and 𝜌𝑥(𝑦)
is the conditional probability of 𝑦 given 𝑥. In particular 𝑔⋆𝑗 (𝑥) ≤ max𝑘∈𝒴 |𝑈𝑘𝑗 |, (𝑈𝑘𝑗 is the
𝑘, 𝑗-th element of 𝑈 ). Finally, 𝒢 is isometric to ℋ𝑟

𝒳 , since ℋ = R𝑟.

Theorem 3 .1 (Statistical complexity). Let 𝑛 ∈ N, 𝜏 > 0 and 𝜆𝑛 = 𝑛−1/2. Assume that the
loss 𝐿 decomposes as Eq. (2.9). If 𝑔⋆ ∈ 𝒢, we have that with probability 1 − 8𝑒−𝜏 ,

ℰ( ̂︀𝑓𝑛) − ℰ(𝑓⋆) ≤ A𝑄 𝐶𝜅𝜏2 𝑛−1/4, (2.11)

where 𝐶, 𝜅 are as in Theorem 2 .1,

A =
√
𝑟‖𝐹‖∞𝑈max,

and 𝑄 = max1≤𝑗≤𝑟 ‖𝑔⋆𝑗 /𝑈max‖ℋ𝒳 , 𝑈max = max𝑗,𝑘 |𝑈𝑘𝑗 |.

Proof. First, note that the excess risk ℰ(𝑓) − ℰ(𝑓⋆) is the same for 𝐿 and for 𝐿 − 𝑐
for any 𝑐 ∈ R, moreover both the definition of 𝑓⋆ and ̂︀𝑓 are invariant when 𝐿 − 𝑐

is used instead of 𝐿. So we bound ℰ( ̂︀𝑓) − ℰ(𝑓⋆) with Eq. (2.8) applied to 𝐿 − 𝑐,
with 𝑐 as in Eq. (2.9).

Applying Theorem 2 .1 with the affine decomposition in Eq. (2.10) for𝐿−𝑐 and
the definition of 𝑐𝑉,𝜓 by Ciliberto et al. (2016), we have that 𝑐𝑉,𝜓 := sup𝑧∈𝒵 ‖𝐹𝑧‖2 =
‖𝐹‖∞ and ‖𝑔⋆‖2

𝒢 =
∑︀𝑟
𝑗=1 ‖𝑔⋆𝑗 ‖2

ℋ𝒳
≤ 𝑟max1≤𝑗≤𝑟 ‖𝑔⋆𝑗 ‖2

ℋ𝒳
. The final result is ob-

tained by multiplying and dividing by 𝑈max.

The theorem above is essentially a version of Theorem 2 .1 where we use the affine
decomposition in Eq. (2.9) for the loss 𝐿, making explicit the dependence of the constants
on structural properties of the loss, like the affine dimension. In particular, we explicitly
identify three distinct terms A, 𝑄 and 𝐶𝜅𝜏2𝑛−1/4. The third term is completely explicit
and does not dependent on the loss nor on the data distribution. It expresses the de-
pendence of the statistical error with respect to the number of examples 𝑛 and the high
probability confidence 𝜏 (𝐶 is a universal constant and 𝜅 the constant of the kernel). The
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second term depends on the data distribution 𝑃 and measures in a sense the “regular-
ity" of the most difficult regression scalar function 𝑔⋆𝑗 defining the surrogate conditional
expectation for the given loss. Note that the 𝑄 is renormalized by 𝑈max so is invariant to
the magnitude of the representation vector 𝜙.

Finally A depends only on the chosen loss and measures the cost of using the QS
method as surrogate approach. In the next section we give sharp bounds on the constant
A for many discrete losses used in practice, together with the computational complexity
required to evaluate the QS estimator. In particular, we prove that, contrary to what
suggested by Osokin et al. (2017), A depends only polynomially on the number of labels,
making the QS method a good systematic approach to deal with discrete losses.

3 .2 Sharp constants for multilabel and ranking losses

In this section (Theorem 3 .2, Table 2.1) we characterize explicitly the constants intro-
duced in Theorem 3 .1, for a number of widely used losses for multi-labeling and rank-
ing problems. In particular we show that they depend only polynomially on the number
of labels (or equivalently polylog(|𝒴|, |𝒵|)). Moreover in Remark 3 .3 we show that the
bounds obtained for many of the considered losses are sharp in a precise sense (Ra-
maswamy and Agarwal, 2016). Finally we characterize the computational complexity of
evaluating the QS estimator in Eq. (2.7) for such losses.

In the following we denote by 𝑚 ∈ N the number of classes of a multilabel/ranking
problem, by 𝒫𝑚 the power-set of [𝑚] = {1, . . . ,𝑚} and by S𝑚 the set of permuta-
tions of 𝑚-elements. In particular note that in the multilabel problems both the out-
put space 𝒵 and the observation space 𝒴 are equal to 𝒫𝑚, while in ranking 𝒵 = S𝑚

and 𝒴 = {1, . . . , 𝑅}𝑚 = [𝑅]𝑚, the set of observed relevance scores for the 𝑚 documents
where 𝑅 is the highest relevance (Ravikumar et al., 2011). Finally we denote by [𝑣]𝑗 the
𝑗-th element of a vector 𝑣 and we identify 𝒫𝑚 with {0, 1}𝑚, moreover 𝜎(𝑗) is the 𝑗-th
element of the permutation 𝜎, for 𝜎 ∈ S𝑚, 𝑗 ∈ [𝑚].

Theorem 3 .2. The constant A and the computational complexity of the QS estimator for the
multilabel losses: 0-1, block 0-1, Hamming, Prec@k, F-score and ranking losses: NDCG-type,
PD and MAP, appearing in Table 2.1 hold.

Proof. We sketch here the analyses for the Hamming loss and the NDCG-type
ranking measures. The complete analysis for all the losses is in Section B .
Hamming. Let 𝑚 ∈ N be the number of labels. We represent each output element
as a binary vector (𝒵 = 𝒴 = {0, 1}𝑚). We re-write the Hamming loss as

𝐿(𝑦′, 𝑦) = 1
2 − 1

2𝑚

𝑚∑︁
𝑗=1

𝑠𝑗(𝑦′)𝑠𝑗(𝑦),

where 𝑠𝑗(𝑦) = 2[𝑦]𝑗 − 1. Hence, this corresponds to an affine decomposition by
setting

𝐹𝑧 = − 1
2𝑚(𝑠𝑗(𝑧))𝑚𝑗=1, 𝑈𝑦 = (𝑠𝑗(𝑦))𝑚𝑗=1, 𝑐 = 1

2 .

We have that 𝑟 = 𝑚, ‖𝐹‖∞ = 1
2
√
𝑚
, 𝑈max = 1. This implies that 𝐴 = 1

2 . Finally, in-

ference corresponds to ̂︀𝑓𝑗(𝑥) = (sign (̂︀𝑔𝑗(𝑥))+1)/2 where ̂︀𝑔𝑗(𝑥) =
∑︀𝑛
𝑖=1 𝑠𝑗(𝑦𝑖)𝛼𝑖(𝑥).

This is done in 𝒪(𝑚).
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NDCG-type. (Valizadegan et al., 2009; Ravikumar et al., 2011; Wang et al., 2013)
Let 𝒵 = S𝑚 be the set of permutations of 𝑚 elements and 𝒴 = [𝑅]𝑚 the set of rel-
evance scores for 𝑚 documents. Let the gain 𝐺 : R → R be an increasing function
and the discount vector 𝐷 = (𝐷𝑗)𝑚𝑗=1 be a coordinate-wise decreasing vector. The
NDCG-type losses are defined as the normalized discounted sum of the gain of
the relevance scores ordered by the predicted permutation:

𝐿(𝜎, 𝑟) = 1 − 1
𝑁(𝑟)

𝑚∑︁
𝑗=1

𝐺([𝑟]𝑗)𝐷𝜎(𝑗), (2.12)

where 𝑁(𝑟) = max𝜎∈S𝑚

∑︀𝑚
𝑗=1𝐺([𝑟]𝑗)𝐷𝜎(𝑗) is a normalizer. Note that looking at

Eq. (2.12) we can directly write that 𝑟 = 𝑚 and

𝐹𝜎 = −(𝐷𝜎(𝑗))𝑚𝑗=1, 𝑈𝑟 =
(︂
𝐺([𝑟]𝑗)
𝑁(𝑟)

)︂𝑚
𝑗=1

, 𝑐 = 1.

It follows that ‖𝐹‖∞ = ‖𝐷‖2, and 𝑈max = 𝐷max𝐺max. Hence, we have that
𝐴 =

√
𝑚𝐺max𝐷max(

∑︀𝑚
𝑗=1𝐷

2
𝑗 )1/2. For Table 2.1, assume 𝐷1 = 1. If we define the

vector 𝑢 ∈ R𝑚 as

𝑢𝑗 =
𝑛∑︁
𝑖=1

𝐺([𝑟𝑖]𝑗)𝛼𝑖(𝑥)
𝑁(𝑟𝑖)

, 1 ≤ 𝑗 ≤ 𝑚, (2.13)

then inference corresponds to 𝑓⋆(𝑥) = argsort𝜎∈S𝑚
(𝑢). This operation can be

done in 𝒪(𝑚 log𝑚) operations.

The key result in Table 2.1 is that the generalization properties and the computa-
tional complexity of the algorithm are both polynomial in the number of labels 𝑚 (or
equivalently polylog(|𝒴|, |𝒵|)) for all considered losses except the 0-1, which does not
provide any structural information of the observation/output spaces 𝒴,𝒵 . This theoret-
ically explains why in discrete structured prediction and in particular multi-labeling and
ranking, learning is possible even if the size of the output space is exponentially large
compared to the number labels and, potentially, to the number of examples. Moreover
this result shows that the Quadratic Surrogate is a valid candidate for systematically ad-
dressing learning problems with discrete losses both from a statistical and from a com-
putational viewpoint (in contrast with what was conjectured by Osokin et al. (2017)).

Remark 3 .3 (On the sharpness of the QS estimator). It is natural to ask to what extent
the statistical rates provided by Theorem 3 .1 can be considered representative of
the statistical difficulty of solving the problem in Section 2 . Of course, formally
answering this question necessarily requires a study of the corresponding minimax
rates under certain priors. In particular, one would be interested in studying the
dependence of those rates both in the number of samples and the size of the output
space 𝒵 .

Although far from answering this question, we can provide a weaker notion of
optimality on the framework of surrogate-based methods. In particular, by using
the results of Ramaswamy and Agarwal (2016), we prove that cannot exist a con-
sistent convex surrogate that maps the discrete problem in a vector valued problem
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of lower dimension than 𝑟 (the one used by the QS estimator through the affine-
decomposition) for the following losses: 0-1, block 0-1, Hamming, Prec@k, NDCG,
PD and MAP (see Section B ).

More in detail, for the Hamming loss we obtain that the statistical complexity of the
problem is independent of the number of labels. Intuitively this is explained by the fact
that the QS estimator corresponds to estimating the 𝑚 marginals independently. Our
result is to be compared with Osokin et al. (2017), where they obtain a constant in the
order of 𝒪(𝑚2). For Prec@k, we obtain A =

√︁
𝑚
𝑘 , which is coherent with the intuition

that the problem becomes more challenging when 𝑘 is fixed and 𝑚 increases. For the
F-score the computational bound of the resulting algorithm is provided by Waegeman
et al. (2014). For the NDCG-type losses, 𝐺 : R → R, the gain is an increasing function
and 𝐷 = (𝐷𝑗)𝑚𝑗=1 ∈ [0, 1]𝑚, the discount, is a coordinate-wise decreasing vector. For
this family of losses A depends crucially on the discount factor 𝐷𝑗 , tending to

√
𝑚 (the

constant of Prec@1) for fast decaying 𝐷𝑗 and to 𝑚 for low decaying ones. For PD and
MAP, estimating the surrogate function is statistically tractable, but both inference algo-
rithms are NP-Hard (Minimum Weight Feedback Arcset problem (MWFAS) for PD and
an instance of Quadratic Assignment Problem (QAP) for MAP), as was already noted by
Ramaswamy et al. (2013).

3 .3 Improved rates under low-noise assumption

Intuitively, if there is small noise at the decision boundary between different labels, then
it should be statistically easier to discriminate between them. To formalize this intuition,
we define the margin 𝛾(𝑥) as

𝛾(𝑥) = min
𝑧′ ̸=𝑓⋆(𝑥)

ℓ(𝑧′, 𝑥) − ℓ(𝑓⋆(𝑥), 𝑥).

The margin function 𝛾 measures the minimum suboptimality gap in terms of the condi-
tional risk. If for a given 𝑥 the margin is small, then its cost at the optimum is very close
to the cost at a suboptimal label. We will say that the 𝑝-noise condition is satisfied if

𝜌𝒳 ({𝑥 ∈ 𝒳 | 𝛾(𝑥) ≤ 𝜀}) = 𝑜(𝜀𝑝), (2.14)

where 𝜌𝒳 is the marginal of 𝑃 over 𝒳 , with 𝑝 ≥ 0. The parameter 𝑝 characterizes how fast
the noise vanishes at the boundary and corresponds to no assumption when 𝑝 = 0. Note
that Eq. (2.14) is a generalization of the Tsybakov condition for binary classification (Tsy-
bakov, 2004) and of the condition provided by Mroueh et al. (2012) for multi-class clas-
sification, to general discrete losses. Indeed, for the binary 0-1 loss (𝒴 = {−1, 1}),
𝛾(𝑥) = |E[𝑌 |𝑥]|, so we recover the classical Tsybakov condition.

Example 3 .4 (Generalized Tsybakov for multiclass). For every 𝜌𝑥 in the simplex, one
associates the corresponding optimal label as 𝑧⋆(𝑥) = arg min𝑧 ℓ(𝑧, 𝑥). Figure 2.1
represents the partition of the simplex corresponding to the 0-1 loss for 𝒵 = 𝒴 =
{1, 2, 3}. In this case, 𝛾(𝑥) corresponds to the distance to the boundary decision de-
picted in Figure 2.1 and so {𝜌𝑥 | 𝛾(𝑥) < 𝜀} corresponds to the yellow area. Eq. (2.14)
says that the probability of falling in that region vanishes as 𝑜(𝜀𝑝).
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2𝜀

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

𝑧 = 3

𝑧 = 1 𝑧 = 2

Figure 2.1: Generalized Tsybakov condition for discrete losses, Eq. (2.14), in the case of
multi-class. See Example 3 .4 for more details.

In the next theorem we improve the comparison inequality of Eq. (2.4) to take into
account the generalized Tsybakov condition for discrete losses of Eq. (2.14).

Theorem 3 .5 (Improved comparison inequality). Assume 𝒴,𝒵 to be finite and 𝛾 to sat-
isfy Eq. (2.14) for 𝑝 > 0. Then the following holds

1. 1/𝛾 ∈ 𝐿𝑝(𝜌𝒳 ).

2. Assume a decomposition as in Eq. (2.9) for the loss𝐿. Then, for any bounded measurable 𝑔 :
𝒳 → ℋ,

ℰ(𝑓) − ℰ(𝑓⋆) ≤ 𝑞𝛾
1

𝑝+2
𝑝 (ℛ𝜙(𝑔) − ℛ𝜙(𝑔⋆))

𝑝+1
𝑝+2 ,

where 𝛾𝑝 = ‖1/𝛾‖𝐿𝑝(𝜌𝒳 ), 𝑞 = (16‖𝐹‖2
∞)

𝑝+1
𝑝+2 .

The proof of the first part can be found in Lemma A .7, while the second part is
Corollary A .11, both in the Section A . As you can note, the comparison inequality of
Eq. (2.4) is recovered when 𝑝 = 0 (i.e. when the generalized Tsybakov condition is always
verified), while an exponent close to 1, instead of 1/2 is obtained when 𝑝 ≫ 0. Finally,
by using the improved comparison inequality we refine the rates for the QS estimator in
Theorem 3 .1.

Corollary 3 .6 (Improved rates). Under the 𝑝-noise condition, we have the following improve-
ment on the generalization bound in Eq. (2.11),

ℰ(𝑓𝑛) − ℰ(𝑓⋆) ≤ 𝐶𝛾
1

𝑝+2
𝑝

(︁
A2𝑄2𝜅2𝜏4𝑛− 1

2
)︁ 𝑝+1

𝑝+2 , (2.15)

with 𝐶 universal constant and A, 𝑄, 𝜅 as in Theorem 3 .1.

Note that the result of Theorem 3 .1 is recovered for 𝑝 = 0 (always verified), while we
obtain a learning rate essentially in the order of 𝑛−1/2, instead of 𝑛−1/4, in conditions of
low-noise (i.e. 𝑝 ≫ 0).
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Multilabel bibtex birds CAL500 corel5k enron mediamill medical scene yeast

𝑛 7395 645 502 5000 1702 43907 978 2407 2417
𝑑 1836 260 68 499 1001 120 1449 294 103
𝑚 159 19 174 374 53 101 45 6 14

0-1 (↓)
THBM 0.82 0.57 1.0 0.99 0.92 0.93 0.31 0.49 0.93
SSVM 0.91 0.53 1.0 0.99 0.90 1.0 0.35 0.51 0.95
QS 0.78 0.52 1.0 0.95 0.86 0.86 0.29 0.34 0.76

Ham (↓)
THBM 1.3e-2 7.9e-2 0.14 1.1e-2 5.9e-2 3.1e-2 9.4e-3 0.11 0.26
SSVM 1.3e-2 6.4e-2 0.13 1.0e-2 7.1e-2 8.7e-2 1.07e-2 0.11 0.40
QS 1.3e-2 4.9e-2 0.14 9.4e-3 8.6-2 3.1e-2 9.6e-3 0.11 0.42

F-score (↑)
THBM 0.44 0.25 0.46 0.25 0.51 0.56 0.80 0.63 0.48
SSVM 0.19 0.16 0.33 0.11 0.49 0.40 0.74 0.57 0.48
QS 0.47 0.28 0.47 0.26 0.52 0.56 0.83 0.68 0.47

Ranking Ohsumed

𝑛 106
𝑑 25
𝑚 150

NDCG@3 (↑)
SSVM 0.47

QS 0.51

NDCG@5 (↑)
SSVM 0.45

QS 0.48

NDCG@10 (↑)
SSVM 0.43

QS 0.46

Table 2.2: Numerical results on real-world multilabeling and ranking datasets compar-
ing our QS estimator, THBM (Zhang and Zhou, 2014) and SSVM (Joachims, 2006). 𝑛 is
the size of the full dataset, 𝑑 the dimensionality of the data and 𝑚 the number of classes
(multilabel), or the avg. number of query-document pairs (ranking). See Section 5 for
more details.

4 Computational Considerations

As already observed by Ciliberto et al. (2016): (1) the computation of the QS estimator
(Eq. (2.7)) is divided in training step and inference step (or evaluation step), (2) the SELF-
decomposition of the loss is not needed to run the algorithm, but only to derive the
theoretical guarantees. Here we show how the explicit knowledge of the affine decom-
position of the loss can be useful to improve also the computational complexity of the
method (its theoretical implications have been studied in Section 3 .1). First we recall the
training and test steps.

Training. The training step requires only to have a kernel function 𝑘 over 𝒳 and to
have access to the training input examples (𝑥𝑖)𝑛𝑖=1. It consists essentially in computing
the inverse of the kernel matrix necessary for the second step, i.e. 𝑊 = (𝐾 + 𝜆𝑛𝐼)−1,
with 𝐾 defined in Eq. (2.6).

Evaluation. The evaluation step requires only the knowledge of the loss 𝐿 and to have
access to the train observations (𝑦𝑖)𝑛𝑖=1. Given a test input point 𝑥 ∈ 𝒳 , it consists in: first,
computing the coefficients (𝛼𝑖(𝑥))𝑛𝑖=1 according to Eq. (2.6), i.e. 𝛼(𝑥) = 𝑊𝐾𝑥, with the
notation in Eq. (2.6); second predicting the output 𝑧 ∈ 𝒵 associated to the test input 𝑥,
by solving Eq. (2.7).

4 .1 Using the affine decomposition to speed up the QS estimator

Note that, to run the algorithm described above, only the loss 𝐿 and kernel 𝑘 are needed.
This makes the QS-method (1) systematically applicable to any supervised learning prob-
lem with discrete loss, since it does not require to devise a specific surrogate for each
loss (2) theoretically grounded with basic guarantees from Ciliberto et al. (2016) in terms
of consistency and learning rates. Indeed note that the SELF-decomposition in terms
of ℋ, 𝜓, 𝜙 for the loss and in particular the affine decomposition of Eq. (2.9) is needed
only to prove the sharper guarantees in Theorems 3 .1, 3 .2 and 3 .5 and Corollary 3 .6.
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However it is possible to additionally exploit the affine decomposition to have even
a computational benefit for the presented algorithm, as we are going to show in the rest
of the section.

Improved training when 𝑈 is known. When we know the affine decomposition of
the loss, we have ℋ = R𝑟 and 𝜙(𝑦) = 𝑈𝑦, so we can compute explicitly the solution
to Eq. (2.5) (Caponnetto and De Vito, 2007), ̂︀𝑔𝑛 : 𝒳 → R𝑟 that is ̂︀𝑔𝑛(𝑥) =

∑︀𝑛
𝑖=1 𝑘(𝑥, 𝑥𝑖)𝐶𝑖,

where 𝐶𝑖 ∈ R𝑟 is the 𝑖-th row of 𝐶 ∈ R𝑛×𝑟, the solution of the linear system

(𝐾 + 𝜆𝑛𝐼)𝐶 = 𝜙⊤,

with 𝜙 = (𝜙(𝑦1), . . . , 𝜙(𝑦𝑛)) ∈ R𝑟×𝑛. This is the same as solving 𝑟 scalar KRR problems
independently and its computation can be efficiently reduced from essentially 𝒪(𝑛3𝑟)
to 𝒪(𝑛

√
𝑛𝑟) via suitable random projection techniques (Smola and Schökopf, 2000; Rahimi

and Recht, 2008; Rudi et al., 2017).

Improved evaluation when 𝐹 is known. Given a test point 𝑥 ∈ 𝒳 , first we evalu-
ate 𝜃 := ̂︀𝑔𝑛(𝑥) ∈ R𝑟, requiring essentially 𝒪(𝑛𝑟) (up to 𝒪(

√
𝑛𝑟) by using random projec-

tion techniques (Smola and Schökopf, 2000; Rahimi and Recht, 2008; Rudi et al., 2017)).
Then we use the characterization of ̂︀𝑓𝑛(𝑥) = (𝑑 ∘ ̂︀𝑔𝑛)(𝑥) = 𝑑 ∘ 𝜃, to obtain the equivalent
problem

min
𝑧∈𝒵

𝐹𝑧 · 𝜃, (2.16)

where 𝐹𝑧 ∈ R𝑟 is the 𝑧-th row of 𝐹 (see Eqs. (2.9) and (2.10)) and (·) the dot-product. The
computational complexity of Eq. (2.16) (we denote it by INF𝐹 (|𝒵|)) has been devised for
a number of widely used losses in Theorem 3 .2, Table 2.1 (see Section B for the proofs).

5 Numerical Experiments

We perform numerical experiments for the QS-estimator on multilabeling (9 datasets
provided by Tsoumakas et al. (2011)) and ranking problems (1 dataset provided by Hersh
et al. (1994)), see Table 2.2. We use three evaluation measures for multilabel, namely, 0-1,
Hamming and F-score, and NDCG@k for ranking (in the NDCG-type family provided
by Valizadegan et al. (2009)), which have been theoretically analysed in Section 3 and
Table 2.1. All experiments are performed using 60% of the dataset for training, 20% for
validation and 20% for testing. We compare the performance of the QS-estimator with a
threshold-based method, which we denote by THBM (Zhang and Zhou, 2014), and the
Structural SVM (Joachims, 2006) (SSVM). THBM is a common method for multilabelling
where learning is done in two stages. The method first estimates the 𝑚 marginals ̂︀𝑔𝑗(·)
and then learns the best threshold function ̂︀𝑡(·) minimizing via least-squares the measure
of interest. The inference is performed via thresholding the estimated marginals by ̂︀𝑡(𝑥)
(see Sec. 2 of Zhang and Zhou (2014)). The SSVM corresponds to the multilabel-SVM
(Finley and Joachims, 2008), which is an instance of the SSVM with unary potentials
that optimizes the Hamming loss. Note that we have used the same multilabel-SVM
for all multilabel losses; for the F-score, there is no principled way of optimizing the
measure with SSVMs. The experimental results in Table 2.2 show that the QS-estimator
outperforms the other methods for 0-1 loss and F-score. Indeed, the method depends
on the loss and is designed to be consistent with it. THBM achieves approximatively
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the same accuracy for Hamming as it is based on estimating the marginals, while the
SSVM is proven to be inconsistent even in this case (Gao and Zhou, 2011), as the exper-
imental result empirically shows. For the ranking experiment, we have used the SSVM
from Joachims (2006) called RankSVM as baseline to compare with the QS-estimator.
The algorithm corresponding to the QS-estimator for NDCG, which corresponds to the
one by Ravikumar et al. (2011) for this measure, outperforms the SSVM. This highlights
the importance of consistency in learning, and the importance of making the algorithm
dependent on the measure willing to use for evaluation.

6 Related Works & Discussion

While the QS for structured prediction generalizes the QS for binary classification, Struc-
tural SVMs (SSVMs) (Tsochantaridis et al., 2004; Crammer and Singer, 2001) and Con-
ditional Random Fields (CRFs) (Lafferty et al., 2001; Settles, 2004; Sutton and McCal-
lum, 2012) generalize the binary SVM and logistic regression to the structured case.
All of them are surrogate methods based on minimizing the expected risk of a certain
surrogate loss 𝑆(𝑣, 𝑦) : 𝒞 × 𝒴 → R in a convex surrogate space 𝒞. The correspond-
ing surrogates are 𝑆QS(𝑣, 𝑦) = ‖𝑣 − 𝑈𝑦‖2

R𝑟 , 𝑆SSVM(𝑣, 𝑦) = max𝑦′∈𝒴(𝑣𝑦′ + 𝐿(𝑦′, 𝑦)) − 𝑣𝑦
and 𝑆CRF(𝑣, 𝑦) = log(

∑︀
𝑦′∈𝒴 exp 𝑣𝑦′)−𝑣𝑦 (See Examples in Section A .1) for QS, SSVM and

CRF, respectively. SSVMs and CRFs exploit the structure of the problem by decomposing
each output element into cliques and considering only the features on this parts. This is
necessary for the tractability of the methods. Moreover, for SSVMs, the loss 𝐿 must de-
compose into these cliques to make possible the maximization inside the surrogate, often
called augmented inference. The clique decomposability of the loss, can be seen as a low
rank decomposition, analogous to our SELF-decomposition. While the QS has attractive
statistical properties, it is generally not the case for the other surrogate methods. CRFs
are only consistent for the 0-1 loss in the case that the model is well-specified (Sutton
and McCallum, 2012). This lack of calibration to a given loss is an important drawback
of this method (Volkovs et al., 2011). SSVMs are in general not Fisher consistent, even for
the 0-1 loss, for which is only consistent if the problem is deterministic, i.e, there always
exists a majority label 𝑦 with probability larger than 1/2 (Zhang, 2004a).

QS for structured prediction. Ramaswamy et al. (2013) proposed the QS through an
affine decomposition of the loss and derived Fisher consistency of the corresponding sur-
rogate method. They analyzed the inference algorithms for Prec@k, ERU (NDCG-type
measure that we study in Section B ), PD and MAP. As Fisher consistency is a prop-
erty only at the optimum, their analysis is not able to provide any statistical guarantees.
Ravikumar et al. (2011) analyses consistency and calibration properties for the QS spe-
cialized for NDCG-type losses. In particular, they highlight the fact that estimating the
normalized relevance scores is key to be consistent, which is a property that follows
directly from our framework.

As far as we know, Osokin et al. (2017) is the only work that addresses the learning
complexity of general discrete losses for structured prediction. They consider a different
QS surrogate than ours, which could be potentially intractable to compute since it is de-
fined on the space of labels (even when the loss is low-rank) E(𝑥,𝑦)∼𝜌 ‖𝐹𝑔(𝑥)−𝐿(·, 𝑦)‖2

R|𝒵| ,
and not in the low dimensional space of the decomposition E(𝑥,𝑦)∼𝜌 ‖𝑔(𝑥) −𝑈𝑦‖2

R𝑟 . They
also obtain rates of the form ∝ A𝑛−1/4, however, their constants are always larger than
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ours and computed explicitly only for a small number of loss functions. In particular,
for A, they obtain 𝒪(2𝑚),𝒪(𝑏),𝒪(𝑚2), while we obtain 𝒪(2𝑚/2),𝒪(

√
𝑏),𝒪(1) for the 0-1,

block 0-1 and Hamming, respectively. In addition, our constants are interpretable and
most of them can be proven to be optimal (in the sense explained in Remark 3 .3). Finally
we provide a refined bound adaptive to the noise of the problem as in Corollary 3 .6.

To conclude, Ramaswamy and Agarwal (2016) introduces and studies the concept of
convex calibration dimension. We use their lower bound on this quantity to study the
optimality of the dimension of the QS as reported in Remark 3 .3.

PhD thesis – INRIA & DI-ENS 62/197 Alex Nowak Vila

https://www.inria.fr/en/
https://www.di.ens.fr/


Appendices

A Calibration and fast rates for surrogate methods

The goal of Section A is to provide a generic method to sistematically improve the rela-
tion between excess risks of surrogate methods. Our analysis is a generalization of the
one provided by Bartlett et al. (2006), which was done for binary classification under 0-1
loss, to the case of general discrete losses.

In Section A .1, we introduce the basic quantities used for the analysis of surrogate
methods. Then, in Section A .2 we focus on the central concept of calibration, which is key
to study the statistical properties of these methods. In particular, we will re-derive the
calibration properties of the Quadratic Surrogate (QS), which were proved by Ciliberto
et al. (2016). Finally, in Section A .3, we derive our main result, which generalizes the
Tsybakov condition, existing for multiclass and binary (Mroueh et al., 2012; Tsybakov,
2004) classification.

A .1 Prerequisites on surrogate methods

Given a loss 𝐿 : 𝒵 × 𝒴 → R and a probability measure 𝜌 on 𝒳 × 𝒴 , recall that the goal of
supervised learning is to find the function 𝑓⋆ that minimizes the expected risk ℰ(𝑓) of the
loss,

𝑓⋆(𝑥) = arg min
𝑧∈𝒵

ℓ(𝑧, 𝑥), ℰ(𝑓) = E(𝑥,𝑦)∼𝜌 ℓ(𝑓(𝑥), 𝑥),

where ℓ(𝑧, 𝑥) = E𝑦∼𝜌𝑥 𝐿(𝑧, 𝑦) is the conditional risk. The goal of surrogate methods is to
design a tractable surrogate loss 𝑆 : 𝒞 × 𝒴 → R defined on a surrogate space 𝒞, such that
when approximately minimized by a surrogate function ̂︀𝑔 : 𝒳 → 𝒞, then it produces a
good estimator ̂︀𝑓 of 𝑓⋆. The mapping from ̂︀𝑔 to ̂︀𝑓 is performed with a decoding function 𝑑 :
𝒞 → 𝒵 . For a given surrogate 𝑆, we define the following quantities,

𝑔⋆(𝑥) = arg min
𝑣∈𝒞

𝑠(𝑣, 𝑥), 𝑠(𝑣, 𝑥) = E𝑦∼𝜌𝑥 𝑆(𝑣, 𝑦), ℛ(𝑔) = E(𝑥,𝑦)∼𝜌 𝑠(𝑔(𝑥), 𝑥),

were 𝑔⋆ is the optimal surrogate function, 𝑠(𝑣, 𝑥) is the conditional surrogate risk and ℛ(𝑔) is
the expected surrogate risk of 𝑔. An important requirement for a surrogate method is the
so-called Fisher consistency, which says that the optimum 𝑔⋆ of the surrogate 𝑆 gives the
optimum 𝑓⋆ of the loss 𝐿. It can be written as 𝑓⋆ = 𝑑 ∘ 𝑔⋆.

Example A .1 (Surrogate elements for the QS). In the case of the QS, we have that ,

𝑆(𝑣, 𝑦) = ‖𝑣 − 𝑈𝑦‖2
R𝑟 , 𝒞 = R𝑟, 𝑑(𝑣) = arg min

𝑧∈𝒵
𝐹𝑧 · 𝑣,

63
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and its conditional excess risk 𝑠(̂︀𝑔(𝑥), 𝑥) − 𝑠(𝑔⋆(𝑥), 𝑥) has the following form,

𝑠(̂︀𝑔(𝑥), 𝑥) − 𝑠(𝑔⋆(𝑥), 𝑥) = ‖̂︀𝑔(𝑥) − 𝑔⋆(𝑥)‖2
2. (2.17)

Moreover, it is Fisher consistent by construction (Ciliberto et al., 2016).

Example A .2 (Surrogate elements for the CRFs and SSVMs). (Assume 𝒵 = 𝒴) Con-
ditional Random Fields (CRFs) and Structural SVMs (SSVMs) are also surrogate
methods for structured prediction. In this case, they split the output into a set of
parts/cliques 𝐶 as {𝒴𝑐}𝑐∈𝐶 , which encode the structure of the output set. Then, they
both consider

𝒞 = R𝑟, 𝑑(𝑣) = arg max
𝑧∈𝒵

∑︁
𝑐∈𝐶

𝑣𝑧𝑐 ,

where 𝑟 =
∑︀
𝑐∈𝐶 |𝒴𝑐|. The surrogate for CRFs has the following form (note that it

does not dependent on any 𝐿),

𝑆(𝑣, 𝑦) = log

⎛⎝∑︁
𝑦′∈𝒴

exp
(︃∑︁
𝑐∈𝐶

𝑣𝑦′
𝑐

)︃⎞⎠−
∑︁
𝑐∈𝐶

𝑣𝑦𝑐 .

For SSVM, one assumes that the loss decomposes accordingly to the structure given
by 𝐶. Then, it takes the following form,

𝑆(𝑣, 𝑦) = max
𝑦′∈𝒴

{︃∑︁
𝑐∈𝐶

(︀
{𝐿(𝑦𝑐, 𝑦′

𝑐) + 𝑣𝑦′
𝑐
}
)︀}︃

−
∑︁
𝑐∈𝐶

𝑣𝑦𝑐 .

A .2 Calibration

Fisher consistency is an essential property of a surrogate method, nevertheless, it is only
a property at the optimum. In practice the surrogate will be never optimized exactly,
this is why it is important to study the concept of calibration, i.e, how the excess risk of
the surrogate relates to the excess risk of the loss of interest. This concept is formalized
through the following Definition A .3.

Definition A .3 (Calibration and Calibration function). We say that a surrogate 𝑆 is cali-
brated w.r.t a loss 𝐿 if there exists a convex function 𝜁 : R → R with 𝜁(0) = 0 and positive
in (0,∞), such that,

𝜁(ℓ(𝑑 ∘ 𝑔(𝑥), 𝑥) − ℓ(𝑓⋆(𝑥), 𝑥)) ≤ 𝑠(𝑔(𝑥), 𝑥) − 𝑠(𝑔⋆(𝑥), 𝑥), (2.18)

for every 𝑥 ∈ 𝒳 .

Calibration means that for every 𝑥, one can control the excess of the conditional risk
by the excess conditional risk of the surrogate. Let’s re-derive the form of the calibration
function for the QS.
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Lemma A .4 (Calibration function for QS (Ciliberto et al., 2016)). Assumption 1 holds for
the QS with

𝜁(𝜀) = 𝜀2

4‖𝐹‖2
∞

(2.19)

Proof. Let’s first decompose the conditional risk into two terms 𝐴 and 𝐵:

ℓ( ̂︀𝑓(𝑥), 𝑥) − ℓ(𝑓⋆(𝑥), 𝑥) = {ℓ( ̂︀𝑓(𝑥), 𝑥) − ̂︀ℓ( ̂︀𝑓(𝑥), 𝑥)}
+ {̂︀ℓ( ̂︀𝑓(𝑥), 𝑥) − ℓ(𝑓⋆(𝑥), 𝑥)}
= 𝐴+𝐵.

The first term, clearly 𝐴 ≤ sup𝑧∈𝒵 |̂︀ℓ(𝑧, 𝑥) − ℓ(𝑧, 𝑥)|. For the second term , we use
the fact that for any given two functions 𝜂, 𝜂′ : 𝒵 → R, it holds that | min𝑧 𝜂(𝑧) −
min𝑧 𝜂′(𝑧)| ≤ sup𝑧 |𝜂(𝑧)−𝜂′(𝑧)|. As ̂︀𝑓(𝑥) minimizes ̂︀ℓ(·, 𝑥) and 𝑓⋆(𝑥) minimizes ℓ(·, 𝑥),
we can conclude also that𝐵 ≤ sup𝑧∈𝒵 |̂︀ℓ(𝑧, 𝑥)−ℓ(𝑧, 𝑥)|. Using the fact that ̂︀ℓ(𝑧, 𝑥) =
𝐹𝑧̂︀𝑔(𝑥) and ℓ(𝑧, 𝑥) = 𝐹𝑧𝑔

⋆(𝑥), we can conclude that,

(ℓ(𝑓(𝑥), 𝑥) − ℓ(𝑓⋆(𝑥), 𝑥))2 ≤ 2 sup
𝑧∈𝒵

(̂︀ℓ(𝑧, 𝑥) − ℓ(𝑧, 𝑥))2 = 4‖𝐹‖2
∞‖̂︀𝑔(𝑥) − 𝑔⋆(𝑥)‖2

2.

Re-arranging and using Eq. (2.17) gives the final result.

The following important Theorem shows how Eq. (2.19) translates into a relation
between excess risks, which are the quantities that we are ultimately interested at.

Theorem A .5 (From conditional risks to full risks). Suppose Assumption 1 holds. Then,

𝜁(ℰ(𝑓) − ℰ(𝑓⋆)) ≤ ℛ(𝑔) − ℛ(𝑔⋆) (2.20)

Proof. This is a simple application of Jensen inequality.

𝜁(ℰ(𝑓) − ℰ(𝑓⋆)) = 𝜁(E𝑥∼𝜌𝒳 (ℓ(𝑑 ∘ 𝑔(𝑥), 𝑥) − ℓ(𝑓⋆(𝑥), 𝑥)))
≤ E𝑥∼𝜌𝒳 𝜁(ℓ(𝑑 ∘ 𝑔(𝑥), 𝑥) − ℓ(𝑓⋆(𝑥), 𝑥))
= E𝑥∼𝜌𝒳 𝑠(𝑔(𝑥), 𝑥) − 𝑠(𝑔⋆(𝑥), 𝑥)
= ℛ(𝑔) − ℛ(𝑔⋆)

If we combine Theorem A .5 with Lemma A .4, we obtain the comparison inequality
for the QS.

Corollary A .6 (Comparison inequality for QS (Ciliberto et al., 2016)). For the QS, we have
that

ℰ(𝑓) − ℰ(𝑓⋆) ≤ 2 ‖𝐹‖∞

√︁
ℛ(𝑔) − ℛ(𝑔⋆)
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A .3 Improved calibration under low noise

Theorem A .5 gives the ability to translate learning rates of the surrogate to learning rates
of the full risk. However, as we will show, Eq. (2.20) can be loose in the presence of low
noise at the boundary decision. To formalize this, we will improve the result from the
relation given by Theorem A .5 under the 𝑝-noise assumption. We recall that the 𝑝-noise
condition states that

𝜌𝒳 ({𝑥 ∈ 𝒳 | 𝛾(𝑥) < 𝜀}) = 𝑜(𝜀𝑝),

where 𝛾(𝑥) = min𝑧′ ̸=𝑓⋆(𝑥) ℓ(𝑧′, 𝑥) − ℓ(𝑓⋆(𝑥), 𝑥), is called the margin, and is defined as the
minimum suboptimality gap between labels. We have the following Lemma A .7.

Lemma A .7. If the p-noise condition holds, then 1/𝛾 ∈ 𝐿𝑝(𝜌𝒳 ).

Proof.

‖1/𝛾‖𝑝𝐿𝑝(𝜌𝒳 ) = E𝑥∼𝜌𝒳 1/𝛾(𝑥)𝑝

=
∫︁ ∞

0
𝑝𝑡𝑝−1𝑃𝒳 (1/𝛾(𝑥) > 𝑡)𝑑𝑡

=
∫︁ ∞

0
𝑝𝑡𝑝−1𝑃𝒳 (𝛾(𝑥) < 𝑡−1)𝑑𝑡.

The integral converges if 𝜌𝒳 ({𝑥 ∈ 𝒳 | 𝛾(𝑥) < 𝑡−1}) decreases faster than 𝑡−𝑝.

Let’s now define the error set as 𝑋𝑓 = {𝑥 ∈ 𝒳 | 𝑓(𝑥) ̸= 𝑓⋆(𝑥)}. The following
Lemma A .8, which bounds the probability of error by a power of the excess risk, is
a generalization of the Tsybakov Lemma (Tsybakov, 2004, Prop.1) for general discrete
losses.

Lemma A .8 (Bounding the size of the error set). If 1/𝛾 ∈ 𝐿𝑝(𝜌𝒳 ), then

𝜌𝒳 (𝑋𝑓 ) ≤ 𝛾
1

𝑝+1
𝑝 (ℰ(𝑓) − ℰ(𝑓⋆))

𝑝
𝑝+1

Proof. By the definition of the margin 𝛾(𝑥), we have that:

1(𝑓(𝑥) ̸= 𝑓⋆(𝑥)) ≤ 1/𝛾(𝑥)Δℓ(𝑓(𝑥), 𝑥)

By taking the 𝑝
𝑝+1 -th power on both sides, taking the expectation w.r.t 𝑃𝒳 and

finally applying Hölder’s inequality, we obtain the desired result.

Before proving Theorem A .10, we will need the following useful Lemma A .9 of
convex functions.

Lemma A .9 (Property of convex functions). Suppose ℎ : R → R is convex and ℎ(0) = 0.
Then, for all 𝑥 > 0, 0 ≤ 𝑦 ≤ 𝑥,

ℎ(𝑦) ≤ 𝑦

𝑥
ℎ(𝑥) and ℎ(𝑥)/𝑥 is increasing on (0,∞).

Proof. Take 𝛼 = 𝑦
𝑥 < 1. The result follows directly by definition of convexity, as

ℎ(𝑦) = ℎ((1 − 𝛼)0 + 𝛼𝑥) ≤ (1 − 𝛼)ℎ(0) + 𝛼ℎ(𝑥) = 𝑦
𝑥ℎ(𝑥). For the second part,

re-arrange the terms in the above inequality.
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The following Theorem A .10, is an adaptation of Thm. 10 of Bartlett et al. (2006),
which was specific for binary 0-1 loss, now adapted to the case of general discrete losses.

Theorem A .10 (Improved Calibration). Suppose that the surrogate 𝑆 is calibrated with cali-
bration function 𝜁 (see Eq. (2.18)) and the 𝑝-noise condition holds. Then, we have that

𝜁𝑝(ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆)) ≤ ℛ(𝑔) − ℛ(𝑔⋆),

where
𝜁𝑝(𝜀) = (𝛾𝑝𝜀𝑝)

1
𝑝+1 𝜁

(︂1
2(𝛾−1

𝑝 𝜀)
1

𝑝+1

)︂
. (2.21)

Moreover, we have that 𝜁𝑝(𝜀) ≥ 𝛾
1

𝑝+1
𝑝 𝜁(𝜀/(2𝛾

1
𝑝+1
𝑝 )). Hence, 𝜁𝑝 never provides a worse rate than 𝜁.

Proof. (Of Theorem A .10). Write the excess conditional risk as 𝛿ℓ(𝑧′, 𝑥) = ℓ(𝑧′, 𝑥) −
ℓ(𝑓⋆(𝑥), 𝑥). We split the excess conditional risk into a part with low noise 𝛿ℓ(𝑓(𝑥), 𝑥) ≤
𝑡 and a part with high noise 𝛿ℓ(𝑓(𝑥), 𝑥) ≥ 𝑡. The first part will be controlled by
the 𝑝-noise assumption and the second part by Eq. (2.18).

ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆) = E𝑥∼𝜌𝒳 𝛿ℓ(𝑓(𝑥), 𝑥)
= E𝑥∼𝜌𝒳 {1(𝑋𝑓 )𝛿ℓ(𝑓(𝑥), 𝑥)}
= E𝑥∼𝜌𝒳 {𝛿ℓ(𝑓(𝑥), 𝑥)1(𝑋𝑓 ∩ {𝛿ℓ(𝑓(𝑥), 𝑥) ≤ 𝑡}}
+ E𝑥∼𝜌𝒳 {𝛿ℓ(𝑓(𝑥), 𝑥)1(𝑋𝑓 ∩ {𝛿ℓ(𝑓(𝑥), 𝑥) ≥ 𝑡}}
= 𝐴+𝐵.

• Bounding the error in the region with low noise 𝐴:

𝐴 ≤ 𝑡𝜌𝒳 (𝑋𝑓 ) ≤ 𝑡𝛾
1

𝑝+1
𝑝 (ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆))

𝑝
𝑝+1 ,

where in the last inequality we have used Lemma A .8.

• Bounding the error in the region with high noise 𝐵:
We have that

𝛿ℓ(𝑓(𝑥), 𝑥)1(𝛿ℓ(𝑓(𝑥), 𝑥) ≥ 𝑡) ≤ 𝑡

𝜁(𝑡)𝜁(𝛿ℓ(𝑓(𝑥), 𝑥)) (2.22)

In the case 𝛿ℓ(𝑓(𝑥), 𝑥) < 𝑡, inequality in Eq. (2.22) follows from the fact that
𝜁 is nonnegative. For the case 𝛿ℓ(𝑓(𝑥), 𝑥) > 𝑡, apply Lemma A .9 with ℎ =
𝜁, 𝑥 = 𝛿ℓ(𝑓(𝑥), 𝑥) and 𝑦 = 𝑡.
From Eq. (2.19), we have that E𝑥∼𝜌𝒳 {1(𝑋𝑓 )𝜁(𝛿ℓ(𝑓(𝑥), 𝑥))} ≤ ℛ(𝑔) − ℛ(𝑔⋆).
Hence,

𝐵 ≤ 𝑡

𝜁(𝑡)(ℛ(𝑔) − ℛ(𝑔⋆))

Putting everything together,

ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆) ≤ 𝑡𝛾
1

𝑝+1
𝑝 (ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆))

𝑝
𝑝+1 + 𝑡

𝜁(𝑡)(ℛ(𝑔) − ℛ(𝑔⋆)),

and hence,(︂ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆)
𝑡

− 𝛾
1

𝑝+1
𝑝 (ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆))

𝑝
𝑝+1

)︂
𝜁(𝑡) ≤ ℛ(𝑔) − ℛ(𝑔⋆).
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Choosing 𝑡 = 1
2𝛾

−1
𝑝+1
𝑝 (ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆))

1
𝑝+1 and substituting finally gives Eq. (2.21).

The second part of the Theorem follows because 𝜁(𝑡)
𝑡 is non-decreasing by Lemma A

.9.

Finally, if we apply Theorem A .10 to the QS, we get the desired result as Corollary A
.11.

Corollary A .11 (Improved comparison inequality for QS). For the QS, we have that

ℰ(𝑓) − ℰ(𝑓⋆) ≤ 𝛾
1

𝑝+2
𝑝

(︁
16‖𝐹‖2

∞(ℛ(𝑔) − ℛ⋆)
)︁ 𝑝+1

𝑝+2 . (2.23)

Proof. Substituting 𝜁(𝜀) = 𝜀2

4‖𝐹‖2
∞

in Eq. (2.21), gives that,

𝜁𝑝 = 𝜀
𝑝+2
𝑝+1

𝛾
1

𝑝+1
𝑝 16‖𝐹‖2

∞

.

Reversing the relation gives the comparison inequality in Eq. (2.23).

B Multilabel and ranking losses

The goal of this section is to derive all of the constants from Table 2.1. In Section B .1,
we recall the elements that we need in order to derive the constants. In Section B .2, we
introduce the main tool from Ramaswamy and Agarwal (2016) that we use in order to
study the optimality of the QS. Finally, the main bulk is in Section B .3, where we analyse
each loss separately.

B .1 Prerequisites.

Remember that the goal here is to study the statistical and computational properties of
the QS-estimator ̂︀𝑓𝑛 : 𝒳 −→ 𝒵 defined as

̂︀𝑓𝑛(𝑥) = arg min
𝑧∈𝒵

𝑛∑︁
𝑖=1

𝛼𝑖(𝑥)𝐿(𝑧, 𝑦𝑖). (2.24)

Recall that the statistical complexity is determined by the following quantity,

𝐿 = 𝐹𝑈⊤ + 𝑐1. (2.25)

where 𝐹 = (𝐹𝑧)𝑧∈𝒵 ∈ R|𝒵|×𝑟, 𝑈 = (𝑈𝑦)𝑦∈𝒴 ∈ R|𝒴|×𝑟, 𝑐 ∈ R is a scalar and 1 ∈ R|𝒵|×|𝒴|

is the matrix of ones, i.e. 1𝑖𝑗 = 1 and 𝑟 ∈ N. Here, 𝐹𝑧 is the 𝑧-th row of 𝐹 and 𝑈𝑦 the
𝑦-th row of 𝑈 . We denote by affdim(𝐿) the affine dimension of the loss 𝐿, which is defined
as the minimum 𝑟 for which Eq. (2.25) holds. Recall that the quantity of interest for the
statistical complexity is

A =
√
𝑟‖𝐹‖∞𝑈max.

The inference complexity corresponds to the computational complexity of solving
Eq. (2.24).
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B .2 On the optimality of the QS.

We use results from Ramaswamy and Agarwal (2016) in order to study the optimality of
the dimension of the QS as commented in Remark 3 .3. We implicitly use the concept of
convex calibration dimension of a loss 𝐿 (see Def. 10 of Ramaswamy and Agarwal (2016)),
which is defined as the minimum dimension over all consistent convex surrogates w.r.t
𝐿. In the following Theorem B .1 (their Thm. 18), they provide a sufficient condition to
lower bound this dimension.

Theorem B .1 ((Ramaswamy and Agarwal, 2016)). Let 𝐿 ∈ R|𝒵|×|𝒴| the loss matrix. If
∃𝑞 ∈ relint(Δ|𝒴|), 𝑐 ∈ R, such that 𝐿𝑞 = 𝑐1, then there cannot exist any consistent convex
surrogate with dimension less than affdim(𝐿) − 1. Here, Δ|𝒴| is the simplex of |𝒴| dimensions
and relint(𝐴) denotes the relative interior of the set 𝐴.

In particular, Theorem B .1 says that if there exists at least one distribution 𝑞 at the
interior of the simplex for which the conditional risk is the same for all labels, then one
can’t hope to be consistent by estimating less than affdim(𝐿) − 1 scalar functions. In par-
ticular, this means that the QS is essentially optimal over all surrogate methods, in the
sense that it estimates affdim(𝐿) scalar functions. For each loss, we test the condition
given by Theorem B .1 to show the optimality (or not) of the Quadratic Surrogate ap-
proach. Note that there exist problems for which you can find consistent surrogates with
dimension much smaller than affdim(𝐿). In ordinal regression, where the discrete la-
bels have a natural order, there exist one dimensional surrogates (Pedregosa et al., 2017)
despite the loss matrix being full rank.

B .3 Analysis of the losses

Notation. In the following we denote by 𝑚 ∈ N the number of classes of a multil-
abel/ranking problem, by 𝒫𝑚 the power-set of [𝑚] = {1, . . . ,𝑚} and by S𝑚 the set of
permutations of 𝑚-elements. In particular note that in the multilabel problems both the
output space 𝒵 and the observation space 𝒴 are equal to 𝒫𝑚, while in ranking 𝒵 = S𝑚

and 𝒴 = [𝑅]𝑚, the set of observed relevance scores for the 𝑚 documents where 𝑅 is the
highest relevance (Ravikumar et al., 2011). Finally we denote by [𝑣]𝑗 the 𝑗-th element
of a vector 𝑣 and we identify 𝒫𝑚 with {0, 1}𝑚, moreover 𝜎(𝑗) is the 𝑗-th element of the
permutation 𝜎, for 𝜎 ∈ S𝑚, 𝑗 ∈ [𝑚].

0-1 loss

The 0-1 loss is defined as 0 if the subsets are exactly equal and 1 otherwise, i.e, it does
not provide any structural information. In this case, 𝒴 = 𝒵 = {0, 1}𝑚 and

𝐿(𝑧, 𝑦) = 1(𝑧 ̸= 𝑦).

• Statistical complexity. We can decompose it as

𝐹𝑧 = −(1[𝑧=𝑧′])𝑧′∈{0,1}𝑚 , 𝑈𝑦 = (1[𝑦=𝑦′])𝑦′∈{0,1}𝑚 , 𝑐 = 1.

We have that
𝑟 = 2𝑚, ‖𝐹‖∞ = 1, 𝑈max = 1.

Hence,
A = 2𝑚/2.

PhD thesis – INRIA & DI-ENS 69/197 Alex Nowak Vila

https://www.inria.fr/en/
https://www.di.ens.fr/


Structured Supervised Learning with Theoretical Guarantees January 11, 2022

• Inference. Inference corresponds to

̂︀𝑓(𝑥) ∈ arg max
𝑧∈𝒫𝑚

∑︁
𝑖|𝑦𝑖=𝑧

𝛼𝑖(𝑥),

which can be done in
𝒪(2𝑚 ∧ 𝑛).

• Optimality of 𝑟. Taking 𝑞𝑦 = 1/2𝑚 for every 𝑦 ∈ 𝒴 and applying Theorem B .1,
one has that affdim(𝐿) = 2𝑚 is optimal.

Block 0-1 loss

Assume that the prediction space 𝒫𝑚 is partitioned into 𝑏 regions 𝒫𝑚 = ⊔𝑏𝑗=1𝐵𝑗 . The
block 0-1 loss is defined as 0 if the subsets belong to the same region and 1 otherwise. In
this case, 𝒴 = 𝒵 = {0, 1}𝑚 and

𝐿(𝑧, 𝑦) = 1(𝑧 ∈ 𝐵𝑗 , 𝑦 /∈ 𝐵𝑗 , for some 𝑗 ∈ [𝑏]).

• Statistical complexity. We can decompose it as

𝐹𝑧 = −(1[𝑧∈𝐵𝑗 ])𝑏𝑗=1, 𝑈𝑦 = (1[𝑦∈𝐵𝑗 ])𝑏𝑗=1, 𝑐 = 1.

We have that
𝑟 = 𝑏, ‖𝐹‖∞ = 1, 𝑈max = 1.

Hence,
A =

√
𝑏.

• Inference. Inference corresponds to

̂︀𝑓(𝑥) ∈ arg max
1≤𝑗≤𝑏

∑︁
𝑖|𝑦𝑖∈𝐵𝑗

𝛼𝑖(𝑥),

which can be done in
𝒪(𝑏)

• Optimality of 𝑟. Taking 𝑞𝑦 = 1
𝑏|𝐵(𝑦)| , where 𝐵(𝑦) is the partition where 𝑦 ∈ 𝒴

belongs to and applying Theorem B .1, one has that affdim(𝐿) is optimal.

Hamming

The Hamming loss counts the average number of classes that disagree. In this case, 𝒴 =
𝒵 = {0, 1}𝑚 and

𝐿(𝑧, 𝑦) = 1
𝑚

𝑚∑︁
𝑗=1

1([𝑧]𝑗 ̸= [𝑦]𝑗).
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• Statistical complexity. If we define 𝑠𝑗(𝑦) = 2[𝑦]𝑗−1, we can re-write the Hamming
loss as

𝐿(𝑧, 𝑦) = 1
𝑚

𝑚∑︁
𝑗=1

(︂1 − 𝑠𝑗(𝑧)𝑠𝑗(𝑦)
2

)︂
= 1

2 − 1
2𝑚

𝑚∑︁
𝑗=1

𝑠𝑗(𝑧)𝑠𝑗(𝑦).

This implies that

𝐹𝑧 = − 1
2𝑚(𝑠𝑗(𝑧))𝑚𝑗=1, 𝑈𝑦 = (𝑠𝑗(𝑦))𝑚𝑗=1, 𝑐 = 1

2 .

We have that
‖𝐹‖∞ = 1

2
√
𝑚
, 𝑈max = 1.

Hence,

A = 1
2 .

• Inference. Inference corresponds to

̂︀𝑓𝑗(𝑥) =
(︂

sign (̂︀𝑔𝑗(𝑥)) + 1
2

)︂
, where ̂︀𝑔𝑗(𝑥) =

𝑛∑︁
𝑖=1

𝑠𝑗(𝑦𝑖)𝛼𝑖(𝑥),

which can be done in
𝒪(𝑚).

• Optimality of 𝑟. Taking 𝑞𝑦 = 1/2𝑚 for every 𝑦 ∈ 𝒴 and applying Theorem B .1,
one has that affdim(𝐿) = 𝑚 is optimal.

Prec@k

Prec@k (Precision at k) measures the average number of elements in the predicted 𝑘-set
that also belong to the ground truth. In this case, the prediction space is 𝒵 = 𝒫𝑚,𝑘, i.e,
subsets of [𝑚] of size 𝑘, and 𝒴 = 𝒫𝑚.

𝐿(𝑧, 𝑦) = 1 − |𝑦 ∩ 𝑧|
𝑘

= 1 − 1
𝑘

𝑚∑︁
𝑗=1

[𝑧]𝑗 [𝑦]𝑗 .

• Statistical complexity. We have that 𝑟 = 𝑚,𝐹𝑧 = − 1
𝑘 ([𝑧]𝑗)𝑚𝑗=1, 𝑈𝑦 = ([𝑦]𝑗)𝑚𝑗=1, 𝑐 =

1, ‖𝐹‖∞ = 1√
𝑘
, 𝑈max = 1. Hence,

A =
√︂
𝑚

𝑘
.

• Inference. Inference corresponds to

̂︀𝑓(𝑥) ∈ arg top𝑘
𝑧∈𝒫𝑚,𝑘

⎛⎜⎝
⎛⎝ ∑︁

𝑖|[𝑦𝑖]𝑗=1
𝛼𝑖(𝑥)

⎞⎠𝑚
𝑗=1

⎞⎟⎠ ,
which can be done in

𝒪(𝑚 log 𝑘).

• Optimality of 𝑟. Taking 𝑞𝑦 = 1/2𝑚 for every 𝑦 ∈ 𝒴 and applying Theorem B .1,
one has that affdim(𝐿) = 𝑚 is optimal.
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F-score

The F-score is defined as the harmonic mean of precision and recall. In this case 𝒵 =
𝒴 = 𝒫𝑚 and

𝐿(𝑧, 𝑦) = 1 − 2 |𝑧 ∩ 𝑦|
|𝑧| + |𝑦|

,

where we treat the case 𝑦 = 0 as follows:

2 |𝑧 ∩ 𝑦|
|𝑧| + |𝑦|

=
{︃

2
∑︀𝑚
𝑗=1

∑︀𝑚
ℓ=0

[𝑧]𝑗
ℓ+|𝑧|1([𝑦]𝑗 = 1, |𝑦| = ℓ) 𝑦 ̸= 0

1(𝑧 = 0) 𝑦 = 0
. (2.26)

Let’s define the matrix 𝑃 (𝑥) ∈ R𝑚×𝑚 and 𝑝0(𝑥) ∈ R as,

𝑃𝑗ℓ(𝑥) = 𝑃 ([𝑌 ]𝑗 = 1, |𝑌 | = ℓ|𝑋 = 𝑥), 𝑝0(𝑥) = 𝑃 (𝑌 = 0|𝑋 = 𝑥).

Then, the conditional risk reads

ℓ(𝑧, 𝑥) =
{︃

2
∑︀𝑚
𝑗=1

∑︀𝑚
ℓ=0

[𝑧]𝑗
ℓ+|𝑧|𝑃𝑗ℓ(𝑥) 𝑦 ̸= 0

𝑝0(𝑥) 𝑦 = 0
.

Hence, for every 𝑥, one needs no more than 𝑟 = 𝑚2 + 1 parameters to compute the
F-score conditional risk. We have the following Lemma G .2.

Lemma G .2. Given the matrix 𝑃 (𝑥) ∈ R𝑚×𝑚 and the scalar 𝑝0(𝑥), inference can be performed
through the following two-step procedure:

1. Compute the matrix 𝐴(𝑥) ∈ R𝑚×𝑚:

𝐴𝑗𝑘(𝑥) =
𝑚∑︁
ℓ=0

𝑃𝑗ℓ(𝑥)
ℓ+ 𝑘

(2.27)

This is a matrix-by-matrix multiplication that takes 𝒪(𝑚3).

2. From 𝐴(𝑥) and 𝑝0(𝑥), the prediction 𝑓(𝑥) can be computed in 𝒪(𝑚2) through an iterated
maximization procedure.

Proof. Suppose we have already computed 𝐴(𝑥) ∈ R𝑚×𝑚 and 𝑝0(𝑥) ∈ R. Now,
we perform the following 𝑚 maximizations:

𝑓 (𝑘)(𝑥) = arg max
𝑧∈𝒫𝑚,𝑘

𝐴𝑇·,𝑘(𝑥)𝑧, for 𝑘 = 1, . . . ,𝑚.

Then, 𝑓⋆(𝑥) is computed by taking the maximum over the 𝑓 (𝑘)(𝑥)’s together with
𝑝0(𝑥), which corresponds to 𝑧 = 0.

• Statistical complexity.

Note that depending on whether we approximate 𝑃 or directly 𝐴, we have dif-
ferent computational complexities. In particular, if the surrogate approximates di-
rectly 𝐴, then it avoids the operation Eq. (2.27). As the estimator is the same, the
statistical complexity is the minimum of both.
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Decomposition 1. Estimating 𝑃 (𝑥), corresponds to the following decomposition:

𝐹𝑧,𝑚(ℓ−1)+𝑗 = −
(︂1([𝑧]𝑗 = 1)

|𝑧| + ℓ

)︂
, 1 ≤ 𝑗, ℓ ≤ 𝑚

𝑈𝑦,𝑚(ℓ−1)+𝑗 = 1([𝑦]𝑗 = 1, |𝑦| = ℓ), 1 ≤ 𝑗, ℓ ≤ 𝑚

and 𝐹𝑧,𝑚2+1 = 1(𝑧 = 0), 𝑈𝑦,𝑚2+1 = 1(𝑦 = 0). In this case,

𝑟 = 𝑚2 + 1, 1
2 ≤ ‖𝐹‖∞ ≤ 1, 𝑈max = 1.

Hence,
A1 ≤

√︀
𝑚2 + 1 ≤

√
2𝑚

Decomposition 2. Estimating 𝐴(𝑥), corresponds to the following decomposition:

𝐹𝑧,𝑚(ℓ−1)+𝑗 = −1([𝑧]𝑗 = 1, |𝑧| = ℓ), 1 ≤ 𝑗, ℓ ≤ 𝑚

𝑈𝑦,𝑚(ℓ−1)+𝑗 =
(︂1([𝑦]𝑗 = 1)

|𝑦| + ℓ

)︂
, 1 ≤ 𝑗, ℓ ≤ 𝑚

and 𝐹𝑧,𝑚2+1 = 1(𝑧 = 0), 𝑈𝑦,𝑚2+1 = 1(𝑦 = 0).

In this case,
𝑟 = 𝑚2 + 1, ‖𝐹‖∞ =

√
𝑚, 𝑈max = 1.

Hence,
A2 =

√︁
𝑚(𝑚2 + 1) ≤ 𝑚

√
2𝑚.

We take A = min(A1,A2), hence,

A ≤
√

2𝑚.

• Inference. The quadratic surrogate approximates 𝐴(𝑥) and 𝑃 (𝑥) as:

̂︀𝑃𝑗ℓ(𝑥) =
∑︁

𝑖|[𝑦𝑖]𝑗=1,|𝑦𝑖|=ℓ
𝛼𝑖(𝑥), ̂︀𝐴𝑗𝑘(𝑥) =

𝑚∑︁
ℓ=0

̂︀𝑃𝑗ℓ(𝑥)
ℓ+ 𝑘

, ̂︀𝑝0(𝑥) =
∑︁
𝑖|𝑦𝑖=0

𝛼𝑖(𝑥).

If we use Decomposition 1, i.e, ̂︀𝑔(𝑥) = ( ̂︀𝑃 (𝑥), ̂︀𝑝0(𝑥)), then we have cubic inference,

𝒪(𝑚3).

If we use Decomposition 2, i.e, ̂︀𝑔(𝑥) = ( ̂︀𝐴(𝑥), ̂︀𝑝0(𝑥)), then we have quadratic infer-
ence,

𝒪(𝑚2).

• Optimality of 𝑟. We can’t say anything about the potential existence of a convex
calibrated surrogate with smaller dimension than affdim(𝐿) − 1. This is because
the sufficient condition from Theorem 18 of Ramaswamy and Agarwal (2016) does
not hold for any 𝑞 even for 𝑚 = 2.
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NDCG-type

Let 𝒵 = S𝑚 be the set of permutations of 𝑚 elements and 𝒴 = {1, . . . , 𝑅}𝑚 = [𝑅]𝑚 the
space of relevance scores for 𝑚 documents. Let the gain 𝐺 : R → R be an increasing
function and the discount vector 𝐷 = (𝐷𝑗)𝑚𝑗=1 be a coordinate-wise decreasing vector.
NDCG-type losses are defined as the normalized discounted sum of the gain of the rele-
vance scores ordered by the predicted permutation:

𝐿(𝜎, 𝑟) = 1 − 1
𝑁(𝑟)

𝑚∑︁
𝑗=1

𝐺([𝑟]𝑗)𝐷𝜎(𝑗) (2.28)

where 𝑁(𝑟) = max𝜎∈S𝑚

∑︀𝑚
𝑗=1𝐺([𝑟]𝑗)𝐷𝜎(𝑗) is the normalizer. The discount is performed

in order to give more importance to the relevance of the top ranked elements.

• Statistical complexity.

Note that looking at Eq. (2.28) we can directly write that 𝑟 = 𝑚, 𝐹𝜎 = −(𝐷𝜎(𝑗))𝑚𝑗=1,

and 𝑈𝑟 =
(︁
𝐺([𝑟]𝑗)
𝑁(𝑟)

)︁𝑚
𝑗=1

, 𝑐 = 1.

It follows that,

‖𝐹‖∞ =

⎯⎸⎸⎷ 𝑚∑︁
𝑗=1

𝐷2
𝑗 , 𝑈max = 𝐺max𝐷max,

hence,

A =
√
𝑚𝐺max𝐷max

⎯⎸⎸⎷ 𝑚∑︁
𝑗=1

𝐷2
𝑗 .

• Inference.

The inference corresponds to,

̂︀𝑓(𝑥) = argsort𝜎∈S𝑚
(𝑣), where 𝑣𝑗 =

𝑛∑︁
𝑖=1

𝐺([𝑟𝑖]𝑗)𝛼𝑖(𝑥)
𝑁(𝑟𝑖)

,

which can be done in
𝒪(𝑚 log𝑚)

operations.

• Optimality of 𝑟. Optimal. As Hamming, the barycenter of the simplex satisfies
Theorem B .1.

Normalized Discounted Cumulative Gain (NDCG) This is the most widely used con-
figuration, in this case, 𝐺(𝑡) = 2𝑡 − 1 and 𝐷𝑗 = 1

log(𝑗+1) . We have that

‖𝐷‖2 ∼
(︃∫︁ 𝑚

2

1
log2(𝑡)

𝑑𝑡

)︃1/2

∼
√︂

𝑚

log𝑚.

Thus,
A ≤ 𝑐 𝐺max

𝑚√
log𝑚

.
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Expected Rank Utility (ERU) In this case, 𝐺(𝑡) = max(𝑡− 𝑟, 0) and 𝐷𝑗 = 21−𝑗 , where 𝑟
corresponds to a neutral score. We have that ‖𝐷‖2 ≤ 2√

3 ,

𝐴 ≤ 2√
3
𝐺max

√
𝑚.

The QS-estimator estimates the marginals of the normalized relevance scores and
sorts the estimates at inference. Ravikumar et al. (2011) showed that in order to be con-
sistent for NDCG, one has to estimate the normalized relevance scores and not the unnor-
malized ones as one would do at the first place. In particular, the QS-estimator for the
NDCG that follows directly from our framework corresponds exactly to their proposed
consistent algorithm.

Due to the discount factor, the statistical complexity grows with the number of el-
ements to sort. In particular, faster the decay is, more samples you need to optimize
the corresponding loss. This is shown in the two examples we have shown, where the
NDCG is statistically easier to optimize than the ERU.

Pairwise Disagreement (PD)

The pairwise disagreement computes the cost associated to a given permutation in terms
of pairwise comparisons using binary relevance scores. In this case, 𝒵 = S𝑚, 𝒴 =
[0, 1]𝑚 = 𝒫𝑚, and,

𝐿(𝜎, 𝑦) = 1
𝑁(𝑦)

𝑚∑︁
𝑗=1

∑︁
ℓ ̸=𝑗

1([𝑦]𝑗 < [𝑦]ℓ)1(𝜎(𝑗) > 𝜎(ℓ)),

where 𝑁(𝑦) = sup𝜎∈S𝑚

∑︀𝑚
𝑗=1

∑︀
ℓ̸=𝑗 1([𝑦]𝑗 < [𝑦]ℓ)1(𝜎(𝑗) > 𝜎(ℓ)) = |𝑦|(𝑚 − |𝑦|) is a nor-

malizer.

• Statistical complexity. Note that we can re-write

1([𝑦]𝑗 < [𝑦]ℓ) = sign([𝑦]ℓ − [𝑦]𝑗) + 1
2 , 1(𝜎(𝑗) > 𝜎(ℓ)) = sign(𝜎(𝑗) − 𝜎(ℓ)) + 1

2 .

Hence,

𝐿(𝜎, 𝑦) = 1
4 + 1

4𝑁(𝑦)

𝑚∑︁
𝑗=1

∑︁
ℓ̸=𝑗

sign([𝑦]ℓ − [𝑦]𝑗)sign(𝜎(𝑗) − 𝜎(ℓ))

Note that 𝐹𝜎 = 1/4(sign(𝜎(𝑗) − 𝜎(ℓ)))𝑚𝑗,ℓ=1 and 𝑈𝑦 = ( sign([𝑦]ℓ−[𝑦]𝑗)
𝑁(𝑦) )𝑚𝑗,ℓ=1 are anti-

symmetric matrices. Hence, they can be described with 𝑚(𝑚 − 1)/2 numbers. We
can then consider 𝐹𝜎 and 𝑈𝑦 as vectors of 𝑚(𝑚− 1)/2 coordinates.

This implies that 𝑟 = 𝑚(𝑚 − 1)/2, 𝑐 = 1/4, ‖𝐹‖∞ = 1/4
√︀
𝑚(𝑚− 1)/2, 𝑈max =

2
𝑚−1 . Hence,

A = 𝑚

4
• Inference. In this case, the optimization problem reads

̂︀𝑓(𝑥) ∈ arg min
𝜎∈S𝑚

𝑚∑︁
𝑗=1

∑︁
ℓ̸=𝑗

𝛾𝑗ℓ(𝑥)1(𝜎(𝑗) > 𝜎(ℓ)),
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with
𝛾𝑗ℓ(𝑥) =

∑︁
𝑖|[𝑦𝑖]𝑗<[𝑦𝑖]ℓ

𝛼𝑖(𝑥)
𝑁(𝑦𝑖)

.

This is precisely a Minimum Weight Feedback Arcset (MWFAS) problem with as-
sociated directed graph having weights 𝛾𝑗ℓ(𝑥). This problem is known to be NP-
Hard.

• Optimality of 𝑟. Optimal. See Corollary 19 and Proposition 20 from Ramaswamy
and Agarwal (2016).

As shown by Calauzenes et al. (2012), there is no hope of devising a consistent convex
surrogate method which is based on sorting an estimated vector of relevance scores. In
particular, one needs to estimate 𝑚(𝑚−1)

2 scalar functions corresponding to the weights
of a graph between the classes. Although estimating the graph structure is statistically
feasible, inference corresponds to finding a directed acyclic graph (DAG) with minimum
cost. This is equivalent to the Minimum Weight Feedback Arcset Problem (MWFAS),
which is known to be NP-Hard. Consequently, one can state that, unless 𝑃 = 𝑁𝑃 , there
does not exist any polynomial surrogate-based consistent algorithm for the PD loss. If
it existed, one could solve the conditional risk minimization problem, i.e., MFWAS, to
𝜀-accuracy in poly(1

𝜀 ).

Mean Average Precision (MAP)

The mean average precision (MAP) is a widely used ranking measure in information
retrieval. The precision associated to a relevant document 𝑗 ([𝑦]𝑗 = 1) ranked at po-
sition 𝜎(𝑗) is the Precision at 𝜎(𝑗) of the 𝜎(𝑗) retrieved documents ranked before (and
including), 𝑗. In this case, 𝒵 = S𝑚 and 𝒴 = [0, 1]𝑚 = 𝒫𝑚. The mean average preci-
sion corresponds to the mean over all relevant documents in 𝑦. Hence, MAP has the
following form:

𝐿(𝜎, 𝑦) = 1 − 1
|𝑦|

∑︁
𝑗|[𝑦]𝑗=1

1
𝜎(𝑗)

𝜎(𝑗)∑︁
ℓ=1

[𝑦]𝜎−1(ℓ).

Note that it can be re-written as

𝐿(𝜎, 𝑦) = 1 − 1
|𝑦|

𝑚∑︁
𝑗=1

[𝑦]𝑗
𝜎(𝑗)

𝜎(𝑗)∑︁
ℓ=1

[𝑦]𝜎−1(ℓ)

= 1 − 1
|𝑦|

𝑚∑︁
𝑗=1

𝑗∑︁
ℓ=1

[𝑦]𝜎−1(ℓ)[𝑦]𝜎−1(𝑗)
𝑗

= 1 − 1
|𝑦|

𝑚∑︁
𝑗=1

𝑗∑︁
ℓ=1

[𝑦]ℓ[𝑦]𝑗
max(𝜎(𝑗), 𝜎(ℓ)) .

• Statistical complexity. We have that 𝑟 = 𝑚(𝑚+1)
2 , 𝐹𝜎 =

(︀
max(𝜎(𝑗), 𝜎(ℓ))−1)︀

𝑗≥ℓ,

𝑈𝑦 = −
(︁

[𝑦]𝑗 [𝑦]ℓ
|𝑦|

)︁
𝑗≥ℓ

, 𝑐 = 1, ‖𝐹‖∞ ≤
√︀

log(𝑚+ 1), 𝑈max = 1/2. Hence,

𝐴 = 1
2𝑚

√︁
log(𝑚+ 1)
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• Computational complexity. The inference problem reads

̂︀𝑓(𝑥) = arg max
𝜎∈S𝑚

𝑚∑︁
𝑗=1

𝑗∑︁
ℓ=1

1
max(𝜎(𝑗), 𝜎(ℓ))

∑︁
𝑖|[𝑦𝑖]𝑗 [𝑦𝑖]ℓ=1

𝛼𝑖(𝑥)
|𝑦𝑖|

Denote by

𝑊𝑗ℓ =
{︃ ∑︀

𝑖|[𝑦𝑖]𝑗 [𝑦𝑖]ℓ=1
𝛼𝑖(𝑥)
|𝑦𝑖| 𝑗 ≥ ℓ

0 otherwise
, 𝐷𝑗ℓ =

{︃
max(𝑗, ℓ)−1 𝑗 ≥ ℓ

0 otherwise

We have that,

̂︀𝑓(𝑥) = arg max
𝜎∈S𝑚

𝑚∑︁
𝑗,ℓ=1

𝑊𝑗ℓ𝐷𝜎(𝑗)𝜎(ℓ) ≡ arg max
𝑃∈𝑞𝑚

Tr(𝑊 𝑇𝑃𝐷𝑃 𝑇 ),

where 𝑞𝑚 is the set of permutation matrices of size 𝑚. This is an instance of the
Quadratic Assignment Problem (QAP).

• Optimality of 𝑟. Optimal. See Corollary 19 and Proposition 21 from Ramaswamy
and Agarwal (2016).

As for PD, inference for MAP corresponds to a NP-Hard problem, more specifically,
to an instance of the Quadratic Assignment Problem (QAP). Consequently, one can con-
clude analogously as for the PD loss, i.e., that no efficient and consistent surrogate algo-
rithm exists for MAP.
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3 A General Theory for Structured Predic-
tion with Smooth Convex Surrogates

Abstract

In this work we provide a theoretical framework for structured prediction that gener-
alizes the existing theory of surrogate methods for binary and multiclass classification
based on estimating conditional probabilities with smooth convex surrogates (e.g. logis-
tic regression). The theory relies on a natural characterization of structural properties of
the task loss and allows to derive statistical guarantees for many widely used methods
in the context of multilabeling, ranking, ordinal regression and graph matching. In par-
ticular, we characterize the smooth convex surrogates compatible with a given task loss
in terms of a suitable Bregman divergence composed with a link function. This allows
to derive tight bounds for the calibration function and to obtain novel results on existing
surrogate frameworks for structured prediction such as conditional random fields and
quadratic surrogates.

1 Introduction

In statistical machine learning, we are usually interested in predicting an unobserved
output element 𝑦 from a discrete output space 𝒴 given an observed value 𝑥 from an
input space 𝒳 . This is done by estimating a function 𝑓 such that 𝑓(𝑥) ≈ 𝑦 from a finite
set of example pairs (𝑥, 𝑦).

In many practical domains such as natural language processing (Smith, 2011), com-
puter vision (Nowozin and Lampert, 2011) and computational biology (Durbin et al.,
1998), the outputs are structured objects, such as sequences, images, graphs, etc. This
structure is implicitly characterized by the loss function 𝐿 : 𝒴 × 𝒴 → R used to measure
the error between the prediction and the observed output as 𝐿(𝑓(𝑥), 𝑦). Unfortunately,
as the outputs are discrete, the direct minimization of the loss function is known to be
intractable even for the simplest losses such as the binary 0-1 loss (Arora et al., 1997). A
common approach to the problem is to design a surrogate loss 𝑆 : 𝒱 × 𝒴 → R defined
in a continuous surrogate space 𝒱 that can be minimized in practice and construct the
functional 𝑓 by “decoding” the values from the continuous space to the discrete space of
outputs.

In this paper, we construct a general theory for structured output prediction using
smooth convex surrogates based on estimating the conditional risk of the task loss. The
methods we consider can be seen as a generalization of binary and multiclass methods
based on estimating the conditional probabilities (Bartlett et al., 2006; Zhang, 2004a,b) to
general discrete losses, and correspond to proper composite losses (Reid and Williamson,
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2010; Vernet et al., 2011) for multiclass classification. Our construction is based on two
main ingredients; first, the characterization of the structural properties of a loss function
𝐿 by means of an affine decomposition of the loss (Ramaswamy et al., 2013; Nowak et al.,
2019), which we present in Section 2 , and second, the Bregman divergence characteri-
zation of proper scoring rules for eliciting linear properties of a distribution (Abernethy
and Frongillo, 2012; Frongillo and Kash, 2015a), which has already been noted to have
strong links with the design of consistent surrogate losses (Agarwal and Agarwal, 2015).

We put these two ideas together in Section 3 to construct calibrated surrogates, which
are consistent smooth convex surrogates with two basic elements, namely, a differentiable
and strictly convex potential ℎ and a continuous invertible link function 𝑡, which can be
easily obtained from the surrogate loss. We showcase the generality of our construction
by showing how general methods for structured prediction such as the quadratic surro-
gate (Ciliberto et al., 2016; Osokin et al., 2017; Ciliberto et al., 2019) and conditional ran-
dom fields (CRFs) (Lafferty et al., 2001; Settles, 2004), and widely used methods in mul-
ticlass classification (Zhang, 2004a), multilabel classification (Read et al., 2011), ordinal
regression (Pedregosa et al., 2017), amongst others, fall into our framework. Hinge-type
surrogates such as the structured SVM (Crammer and Singer, 2001), which is known to
be inconsistent (Tewari and Bartlett, 2007), are not included.

This theoretical framework allows to derive guarantees by relating the surrogate risk
associated to 𝑆 (object that we can minimize) to the actual risk associated to 𝐿 (object
that we want to minimize) by means of convex lower bounds on the calibration function
𝜁ℎ (Bartlett et al., 2006; Steinwart, 2007; Osokin et al., 2017), which is a mathematical
object that only depends on the surrogate loss through the potential ℎ. In Section 4 , we
provide an exact formula for the calibration function (Theorem 4 .3) and a user-friendly
quadratic lower bound for strongly convex potentials (Theorem 4 .4).

There, we also analyze the role of the link function on the complexity of the surrogate
method by studying the learning guarantees when the convex surrogate is minimized
with a stochastic learning algorithm (Theorem 4 .7). In particular, we show that, while
the relation between excess risks is related to the potential ℎ, the approximation error is
crucially related to the link function. More specifically, we discuss the benefits of logistic-
type surrogates with respect to the quadratic-type ones.

Finally, those results are then used in Section 5 to derive learning guarantees for spe-
cific methods on multiple tasks for the first time, while also recovering existing results.
The most significant novel results on this direction being an exact expression for the cali-
bration function for the quadratic surrogate (Theorem 5 .1) and a quadratic lower bound
for CRFs (Proposition 5 .2).

2 Setting

2 .1 Supervised Learning

The problem of supervised learning consists in learning from examples a function relating
inputs with observations/labels. More specifically, let 𝒴 be the space of observations,
denoted observation space or label space and 𝒳 be the input space. The quality of the pre-
dicted output is measured by a given loss function 𝐿. In many scenarios the output of
the function lies in a different space than the observations, for instance in subset ranking
losses (Chen et al., 2009) or losses with an abstain option (Ramaswamy et al., 2015). We
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denote then by 𝒵 the output space, so

𝐿 : 𝒵 × 𝒴 −→ R,

where 𝐿(𝑧, 𝑦) measures the cost of predicting 𝑧 when the observed value is 𝑦. We assume
that 𝒴 and 𝒵 are discrete. Finally the data are assumed to be distributed according to a
probability measure 𝜌 on 𝒳 × 𝒴 . The goal of supervised learning is then to recover the
function 𝑓⋆ 1 minimizing the expected risk ℰ(𝑓) of the loss,

𝑓⋆ = arg min
𝑓 :𝒳 →𝒵

ℰ(𝑓), ℰ(𝑓) = E(𝑋,𝑌 )∼𝜌 𝐿(𝑓(𝑋), 𝑌 ), (3.1)

given only a number of examples (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1, with 𝑛 ∈ N, sampled independently from 𝜌.
The quality of an estimator ̂︀𝑓 for 𝑓⋆ is measured in terms of the excess risk ℰ( ̂︀𝑓) − ℰ(𝑓⋆).

It is known that 𝑓⋆ is characterized as (Steinwart and Christmann, 2008; Ciliberto
et al., 2016),

𝑓⋆(𝑥) = arg min𝑧∈𝒵 ℓ(𝑧, 𝜌(·|𝑥)), (3.2)

where for any 𝑞 ∈ Prob(𝒴), the quantity ℓ(𝑧, 𝑞) = E𝑌∼𝑞 𝐿(𝑧, 𝑌 ) is the conditional risk,
defined as the expectation of the loss with respect to the distribution 𝑞 on the labels. We
also define the excess conditional risk as 𝛿ℓ(𝑧, 𝑞) = ℓ(𝑧, 𝑞) − min𝑧′∈𝒵 ℓ(𝑧′, 𝑞) ≥ 0.

2 .2 Affine Decomposition of Discrete Losses and Marginal Polytope

Consider the following affine decomposition of a loss 𝐿 (Ramaswamy et al., 2013; Nowak
et al., 2019),

𝐿(𝑧, 𝑦) = ⟨𝜓(𝑧), 𝜙(𝑦)⟩ + 𝑐,

where 𝜓 : 𝒵 → ℋ and 𝜙 : 𝒴 → ℋ are embeddings to a vector space ℋ with Euclidean
scalar product ⟨·, ·⟩ and 𝑐 ∈ R is a scalar constant. Note that by linearity of the inner
product,

ℓ(𝑧, 𝑞) = E𝑌∼𝑞⟨𝜓(𝑧), 𝜙(𝑌 )⟩ + 𝑐 = ⟨𝜓(𝑧), 𝜇(𝑞)⟩ + 𝑐,

with 𝜇(𝑞) = E𝑌∼𝑞 𝜙(𝑌 ) the vector of moments of the statistic 𝜙. If we denote 𝜇⋆(𝑥) =
𝜇(𝜌(·|𝑥)), then the excess conditional risk takes the following form 𝛿ℓ(𝑧, 𝜌(·|𝑥)) = ⟨𝜓(𝑧)−
𝜓(𝑓⋆(𝑥)), 𝜇⋆(𝑥)⟩ ≥ 0. Note that the affine decomposition always exists, is not unique and
it corresponds to a low-rank decomposition of the “centered” loss matrix 𝐿− 𝑐 ∈ R𝒵×𝒴 .
The image of 𝜇⋆ lies inside the convex hull of the 𝜙(𝑦)′𝑠, that is,

Im(𝜇⋆) ⊆ ℳ ..= hull(𝜙(𝒴)) ⊂ ℋ.

The set ℳ is the polytope corresponding to the convex hull of the finite set𝜙(𝒴) ⊂ ℋ. We
will refer to ℳ as the marginal polytope associated to the statistic 𝜙, making an analogy
to the literature on graphical models (Wainwright and Jordan, 2008). We denote by 𝑘 =
dim(ℋ) the dimension of the embedding space and by 𝑟 = dim(ℳ) the dimension of
the marginal polytope, defined as the dimension of its affine hull. Note that it can be the
case that 𝑟 < 𝑘, which means that ℳ is not full-dimensional in ℋ.

1In general 𝑓⋆ is not unique, as there might be 𝑥 ∈ 𝒳 with more than one optimal outputs. For sim-
plicity, we assume that we have a method to choose a unique output between the optimal ones. Note that
this is always possible as 𝒵 is discrete, so one can always construct this method using an ordering of the
elements of 𝒵 .
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Example 2 .1 (Multiclass and multilabel classification). The 0-1 loss used for 𝑘-
multiclass classification (𝒵 = 𝒴 = {1, . . . , 𝑘}) can be decomposed as 𝐿(𝑧, 𝑦) = 1(𝑧 ̸=
𝑦) = 1 − ⟨𝑒𝑧, 𝑒𝑦⟩, where ℋ = R𝑘 and 𝑒𝑧 is the 𝑧-th vector of the canonical basis in
R𝑘. In this case, the loss matrix is full-rank and the marginal polytope is the simplex
in 𝑘 dimensions, ℳ = hull({𝑒𝑦}𝑘𝑦=1) = Δ𝑘, which is not full-dimensional and has
dimension 𝑟 = 𝑘 − 1. Another example is the Hamming loss used for multilabel
classification (𝒵 = 𝒴 = {−1, 1}𝑘). In this case, the loss matrix is extremely low-rank
and can be decomposed as 𝐿(𝑧, 𝑦) = 1

𝑘

∑︀𝑘
𝑗=1 1(𝑧𝑗 ̸= 𝑦𝑗) = 1

2 − ⟨𝑧/(2𝑘), 𝑦⟩, where
𝑘 = log |𝒴|. The marginal polytope is the cube ℳ = hull({−1, 1}𝑘) = [−1, 1]𝑘 which
is full dimensional in ℋ = R𝑘.

3 Surrogate Framework

3 .1 Estimation of the Conditional Risk with Surrogate Losses

The construction in Section 2 .2 leads to a natural method in order to estimate 𝑓⋆ based
on estimating the conditional expectation 𝜇⋆. Indeed, given an estimator ̂︀𝜇 of 𝜇⋆, one can
first construct an estimator of the conditional risk as ̂︀ℓ(𝑧, 𝜌(·|𝑥)) ..= ⟨𝜓(𝑧), ̂︀𝜇(𝑥)⟩ + 𝑐, and
then define the resulting estimator as

̂︀𝑓(𝑥) ..= arg min
𝑧∈𝒵

̂︀ℓ(𝑧, 𝜌(·|𝑥)) = arg min
𝑧∈𝒵

⟨𝜓(𝑧), ̂︀𝜇(𝑥)⟩.

In the following, we study a framework to construct estimators of 𝜇⋆ using surrogate
losses. We consider estimators which are based on the minimization of the expected sur-
rogate risk ℛ(𝑔) of a surrogate loss 𝑆 : 𝒱 × 𝒴 → R defined in a (unconstrained) vector
space 𝒱 ,

𝑔⋆ = arg min
𝑔:𝒳 →𝒱

ℛ(𝑔), ℛ(𝑔) = E(𝑋,𝑌 )∼𝜌 𝑆(𝑔(𝑋), 𝑌 ). (3.3)

An estimator ̂︀𝑓 of 𝑓⋆ is built from an estimator ̂︀𝑔 of 𝑔⋆ using a decoding mapping 𝑑 :
𝒱 → 𝒵 as ̂︀𝑓 = 𝑑 ∘ ̂︀𝑔. The pair (𝑆, 𝑑) constitutes a surrogate method and we say that it is
Fisher consistent (Lin, 2004) to the loss 𝐿 if the minimizer of the expected surrogate risk
(3.3) leads to the minimizer of the true risk (3.1) as 𝑓⋆ = 𝑑 ∘ 𝑔⋆.

Analogously to the quantities defined in Section 2 .1 for the discrete loss 𝐿, we define
the excess surrogate risk as ℛ(̂︀𝑔)−ℛ(𝑔⋆), the conditional surrogate risk 𝑠(𝑣, 𝑞) = E𝑌∼𝑞 𝑆(𝑣, 𝑌 )
and the excess conditional surrogate risk as 𝛿𝑠(𝑣, 𝑞) = 𝑠(𝑣, 𝑞) − min𝑣′∈𝒱 𝑠(𝑣′, 𝑞) ≥ 0. Simi-
larly to Eq. (3.2), 𝑔⋆ is characterized by 𝑔⋆(𝑥) = arg min𝑣∈𝒱 𝑠(𝑣, 𝜌(·|𝑥)), which we assume
unique.

We will now focus on surrogate losses for which 𝜇⋆ can be computed from the min-
imizer 𝑔⋆ through a continuous injective mapping 𝑡 : ℳ → 𝒱 called the link function.
More precisely, we ask

𝑡(𝜇(𝑞)) = arg min
𝑣∈𝒱

𝑠(𝑣, 𝑞), ∀𝑞 ∈ Prob(𝒴). (3.4)

Although Eq. (3.4) is the only property that we need from 𝑆 in order to build the theoret-
ical framework, we assume in the following that 𝑆 is smooth and convex. This is justified
in Remark 3 .1.
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Remark 3 .1 (On smoothness and convexity requirement on 𝑆). Although we do
not formalize any statement of that kind, the smoothness of 𝑆 is closely related to
the injectivity of 𝑡. For instance, in the multiclass case where 𝜇(𝑞) = 𝑞, if 𝑣0 =
arg min𝑣∈𝒱 𝑠(𝑣, 𝑞0) and 𝑠(·, 𝑞0) is not differentiable at 𝑣0, then one can find 𝑞′ ̸= 𝑞0
such that 𝑠(𝑣0, 𝑞

′) = 𝑠(𝑣0, 𝑞0), and so the link is not injective. This is the case for
hinge-type surrogates, which do not estimate conditional probabilities. A proper
analysis in this direction can be formalized in terms of supporting hyperplanes on
the so-called superdiction set associated to 𝑆 (see Sec. 5.3 of Vernet et al. (2011)). The
convexity requirement is made in order to be able to minimize in a tractable way the
expected surrogate risk.

If a surrogate loss satisfies Eq. (3.4), then one can relate 𝑓⋆ and 𝑔⋆ using the decoding
mapping 𝑑𝜓,𝑡 : 𝑡(ℳ) → 𝒵 defined as

𝑑𝜓,𝑡(𝑣) = arg min𝑧∈𝒵 ⟨𝜓(𝑧), 𝑡−1(𝑣)⟩.

The role of the link function here is to deal with the fact that the image of 𝜇⋆ lives in
ℳ, which is a constrained, bounded, and possibly non full-dimensional set of ℋ. As
in general it is not easy to impose a structural constraint on the hypothesis space, the
goal of the link function is to encode this geometry by mapping points from a “simpler"
𝑡(ℳ) ⊆ 𝒱 to ℳ. Note that 𝑑𝜓,𝑡 is defined in 𝑡(ℳ), so if 𝑡(ℳ) ̸= 𝒱 , we do not know how
to map points from 𝒱∖𝑡(ℳ) to ℋ. In the next Section 3 .2 we show that in the cases where
𝑡(ℳ) ̸= 𝒱 , the link can be sometimes naturally extended to cover the whole vector space
𝒱 . In order to do this, we first show that surrogates satisfying Eq. (3.4) have a very rigid
structure in 𝑡(ℳ) in the form of a Bregman divergence representation. Then, we define
𝜙-calibrated surrogates as the ones such that the corresponding Bregman divergence
representation can be extended to 𝒱 .

Assume for now that 𝑡(ℳ) = 𝒱 . The surrogate method (𝑆, 𝑑𝜓,𝑡) works as follows;
in the learning phase, an estimator ̂︀𝑔 is found by (regularized) empirical risk minimiza-
tion on the smooth convex surrogate loss 𝑆, and then, given a new input element 𝑥, the
decoding mapping 𝑑𝜓,𝑡 computes the prediction ̂︀𝑓(𝑥) from ̂︀𝑔. Note that the computa-
tional complexity of inference can vary depending on the loss 𝐿 (see Nowak et al. (2019);
Ciliberto et al. (2016)). See boxes below.

Learning

- Given: a functional hypothesis space 𝒢 ⊂ {𝑔 : 𝒳 → 𝒱}, dataset (𝑥𝑖, 𝑦𝑖)1≤𝑖≤𝑛
and surrogate loss 𝑆 : 𝒱 × 𝒴 → R.

- Goal: Minimize the expected surrogate risk ℛ(𝑔) as:

̂︀𝑔 = arg min
𝑔∈𝒢

1
𝑛

𝑛∑︁
𝑖=1

𝑆(𝑔(𝑥𝑖), 𝑦𝑖) + 𝜆‖𝑔‖2
𝒢 . (3.5)
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Inference

- Given: an input element 𝑥 ∈ 𝒳 , an estimator ̂︀𝑔 ∈ 𝒢, the inverse of the link
function 𝑡−1 : 𝒱 → ℋ and an embedding 𝜓 : 𝒵 → ℋ.

- Goal: Construct prediction ̂︀𝑓(𝑥) ∈ 𝒵 as:̂︀𝑓(𝑥) = 𝑑𝜓,𝑡 ∘ ̂︀𝑔(𝑥) = arg min
𝑧∈𝒵

⟨
𝜓(𝑧), 𝑡−1(̂︀𝑔(𝑥))

⟩
. (3.6)

3 .2 Bregman Divergence Representation

Let 𝒟 ⊆ ℋ be a convex set. Recall that the Bregman divergence (BD) associated to a
convex and differentiable function ℎ : 𝒟 ⊆ ℋ −→ R is defined as

𝐷ℎ(𝑢′, 𝑢) = ℎ(𝑢′) − ℎ(𝑢) − ⟨𝑢′ − 𝑢,∇ℎ(𝑢)⟩.

We will say that a surrogate loss 𝑆 has a BD representation if the excess conditional
surrogate risk 𝛿𝑠(𝑣, 𝑞) can be written as a BD by composition with the link function.

Definition 3 .2 (BD Representation). The surrogate loss 𝑆 has a (ℎ, 𝑡, 𝜙)-BD representation
in 𝒱 ′ ⊂ 𝒱 , if there exists a set 𝒟 ⊇ ℳ containing the marginal polytope, a strictly convex and
differentiable potential ℎ : 𝒟 ⊆ ℋ → R and continuous invertible link 𝑡 : 𝒟 → 𝒱 ′, such that the
excess conditional surrogate risk can be written as

𝛿𝑠(𝑣, 𝑞) = 𝐷ℎ(𝜇(𝑞), 𝑡−1(𝑣)), ∀𝑣 ∈ 𝒱 ′ ⊂ 𝒱,∀𝑞 ∈ Prob(𝒴).

The following Theorem 3 .3 states that any surrogate loss satisfying Eq. (3.4) has a BD
representation in 𝑡(ℳ), which justifies why we focus on these representations of losses.

Theorem 3 .3 (BD Representation in 𝑡(ℳ)). If the surrogate loss 𝑆 : 𝒱×𝒴 → R is continuous
and satisfies Eq. (3.4) for a continuous injective mapping 𝑡 : ℳ → 𝒱 , then it has a (ℎ, 𝑡, 𝜙)-BD
representation in 𝑡(ℳ) ⊆ 𝒱 .

The proof of Theorem 3 .3 can be found in Section A and it is based on a charac-
terization of scoring rules for linear properties of a distribution as Bregman divergences
associated to strictly convex functions (Abernethy and Frongillo, 2012; Frongillo and
Kash, 2015b). The differentiability of ℎ is derived from the continuity of the link 𝑡 and 𝑆.

It is important to highlight the fact that the function ℎ is defined up to an additive
affine term, as the BD is invariant under this transformation. Hence, we will say that ℎ
and ℎ′ are equivalent if and only if ℎ − ℎ′ is an affine function. Note that the function ℎ
given by Theorem 3 .3 can be computed as

ℎ(𝜇(𝑞)) = 𝛿𝑠(𝑣0, 𝑞), (3.7)

for any 𝑣0 ∈ 𝑡(ℳ). Indeed, by Theorem 3 .3, the dependence on 𝑞 of 𝛿𝑠(𝑣0, 𝑞) is only
through the vector of moments 𝜇(𝑞) and 𝛿𝑠(𝑣, 𝑞) − 𝛿𝑠(𝑣′, 𝑞) is an affine function of 𝜇(𝑞)
for all 𝑣, 𝑣′ ∈ 𝑡(ℳ).

Observe that different surrogate losses can yield the same BD representation in 𝑡(ℳ).
For instance, in binary classification, the square, squared hinge and modified Huber
margin losses have the same BD representation in [−1, 1] (Zhang, 2004b) (see Section F ).
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3 .3 𝜙-Calibrated Surrogates

Now, we define the concept of a 𝜙-calibrated loss by asking the surrogate loss satisfying
Eq. (3.4) to extend (in the case that 𝑡(ℳ) ̸= 𝒱) its (ℎ, 𝑡, 𝜙)-BD representation in 𝑡(ℳ)
given by Theorem 3 .3 to 𝒱 , which will allow us to define the decoding mapping 𝑑𝜓,𝑡 to
the whole vector space 𝒱 .

Definition 3 .4 (𝜙-Calibrated Surrogates). Let 𝜙 : 𝒴 → ℋ. A smooth convex surrogate
loss 𝑆 : 𝒱 × 𝒴 → R is 𝜙-calibrated if it has a (ℎ, 𝑡, 𝜙)-BD representation in the vector space 𝒱 .

There are many ways of building a continuous extension of 𝑡 to an invertible mapping
in 𝒱 (and thus to extend 𝑑𝜓,𝑡), however, the BD representation extension allows to prove
guarantees for estimators ̂︀𝑔 with Im(̂︀𝑔) ̸⊂ 𝑡(ℳ) (see Section 4 ). In general, it is not
true that any surrogate loss satisfying Eq. (3.4) with 𝑡(ℳ) ( 𝒱 has an extended BD
representation in 𝒱 , this is the case for squared hinge and modified Huber margin losses
in binary classification (see Section F ).

Example 3 .5 (Quadratic, logistic and hinge surrogates). Let us provide some exam-
ples in binary classification where ℳ = Δ2 ⊂ ℋ = R2. The quadratic surrogate is
defined as 𝑆(𝑣, 𝑦) = 1/2 · ‖𝑣 − 𝑒𝑦‖2

2 with 𝒱 = R2 and satisfies 𝑞 = arg min𝑣∈R2 𝑠(𝑣, 𝑞).
It has ℎ(𝑢) = 1/2 · ‖𝑢‖2

2 and the link is 𝑡 = 𝐼𝑑. Note that although 𝑡(Δ2) = Δ2 ( R2,
the BD representation can be extended to R2, and in this case 𝒟 = R2 and so it is
𝜙-calibrated. The logistic corresponds to 𝑆(𝑣, 𝑦) = log(1 + 𝑒−𝑦𝑣) with 𝒱 = R and
satisfies log(𝑞1/(1 − 𝑞1)) = arg min𝑣∈R 𝑠(𝑣, 𝑞). In this case the potential is minus
the entropy ℎ(𝑞) = − Ent(𝑞) and the link is 𝑡(𝑞) = log(𝑞1/(1 − 𝑞1)) with inverse
𝑡−1(𝑣) = (1 + 𝑒−𝑣)−1. Note that we have 𝑡(Δ2) = R, so it is 𝜙-calibrated. Finally,
consider the hinge margin loss 𝑆(𝑣, 𝑦) = max(1 − 𝑦𝑣, 0) with 𝒱 = R, which satisfies
sign(2𝑞1 − 1) = arg min𝑣∈R 𝑠(𝑣, 𝑞), hence, 𝑡 is not injective, so 𝑆 is not 𝜙-calibrated.

Note that if a loss 𝑆 is 𝜙-calibrated for a statistic 𝜙, then the surrogate method (𝑆, 𝑑𝜓,𝑡)
is Fisher consistent w.r.t 𝐿(𝑧, 𝑦) = ⟨𝜓(𝑧), 𝜙(𝑦)⟩ + 𝑐. This implies that a 𝜙-calibrated loss
can be used to consistently minimize different losses by simply changing the embed-
ding 𝜓 at inference time. For instance, if 𝑆 is 𝜙-calibrated for the statistic 𝜙(𝑦) = 𝑒𝑦 ∈ R𝒴 ,
then it can be made consistent for any cost-sensitive matrix loss 𝐿 ∈ R𝒵×𝒴 by set-
ting 𝜓(𝑧) = 𝐿𝑧 , where 𝐿𝑧 is the 𝑧-th row of 𝐿. Indeed, in this case ℳ = Δ𝒴 , and so
one can estimate the conditional risk of any loss with labels 𝒴 .

Summary. The surrogate loss has two components; the potential ℎ : 𝒟 → R and
the invertible link function 𝑡 : 𝒟 → 𝒱 , which compose the surrogate loss 𝑆. In the
learning phase (see Eq. (3.5)), only the surrogate loss is needed to minimize ℛ(𝑔),
while in the inference phase (see Eq. (3.6)), one needs the inverse of the link to con-
struct an estimate of 𝜇⋆, and the rest of the inference only depends on 𝜓. The poten-
tial function ℎ is not needed to define the surrogate method but it is the mathematical
object providing the guarantees in order to relate both excess risks in Section 4 . The
link function also has implications in terms of learning complexity (see discussion in
Section 4 .4). See Figure 3.2 in Section A for an illustrative diagram.

We now provide a recipe on how to check whether a surrogate loss is 𝜙-calibrated
and to compute its corresponding (ℎ, 𝑡, 𝜙)-BD representation if applicable.
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Computing the BD representation and checking 𝜙-calibration. Given a statistic 𝜙 :
𝒴 → ℋ and a surrogate 𝑆 : 𝒱 × 𝒴 → R, the first thing to do is to check whether the
minimizer of 𝑠(𝑣, 𝑞) satisfies Eq. (3.4) for a continuous injective 𝑡. If this is the case, the
potential ℎ can be found up to an additive affine term by Eq. (3.7). If 𝑡(ℳ) = 𝒱 , then
𝑆 is 𝜙-calibrated. Otherwise, one has to check if there exists an extension of 𝑡 and ℎ
such that 𝛿𝑠(𝑣, 𝑞) = 𝐷ℎ(𝜇(𝑞), 𝑡−1(𝑣)) for all 𝑣 ∈ 𝒱, 𝑞 ∈ Prob(𝒴). We provide numerous
examples in Section 5 and in the Appendix.

We present now a special group of 𝜙-calibrated surrogates, whose potential ℎ is a
function of Legendre-type and the link is the gradient of the potential ∇ℎ.

𝜙-Calibrated surrogates of Legendre-type. A function ℎ is of Legendre-type in 𝒟 ⊆ ℋ
if it is strictly convex in int(𝒟) and essentially smooth, which in particular requires
lim𝑢→𝜕𝒟 ‖∇ℎ(𝑢)‖2 = +∞, where 𝜕𝒟 is the boundary of 𝒟. Given a Legendre-type
function ℎ with domain 𝒟 ⊇ ℳ including the marginal polytope, one can set the link
function to 𝑡 = ∇ℎ. We call it the canonical link. It has the nice property that if ℎ is
of Legendre-type in 𝒟, then its Fenchel conjugate ℎ* is also of Legendre-type and its
gradient is the inverse of the link function ∇ℎ* = (∇ℎ)−1. We denote the resulting
loss 𝑆 : dom(ℎ*) × 𝒴 → R a surrogate loss of Legendre-type, which is convex and has the
form:

𝑆(𝑣, 𝑦) = 𝐷ℎ(𝜙(𝑦),∇ℎ*(𝑣)) = ℎ*(𝑣) + ℎ(𝜙(𝑦)) − ⟨𝜙(𝑦), 𝑣⟩, (3.8)

The excess conditional surrogate risk can be written as a BD also in dom(ℎ*) as:

𝛿𝑠(𝑣, 𝑞) = 𝐷ℎ(𝜇(𝑞),∇ℎ*(𝑣)) = 𝐷ℎ*(𝑣,∇ℎ(𝜇(𝑞))).

Moreover, 𝒟 is bounded if and only dom(ℎ*) is a vector space and ℎ* is Lipschitz. Those
losses were studied by Blondel et al. (2020) as a subset of Fenchel-Young losses, but
without providing learning guarantees. The most important examples are the quadratic
surrogate, where 𝒟 = ℋ, and CRFs, where 𝒟 = ℳ, both studied in detail in Section 5 .1.
Further details on this construction can be found in Section B .

4 Theoretical Analysis

We know by construction that 𝜙-calibrated surrogate losses lead to Fisher consistent
surrogate methods (𝑆, 𝑑𝜓,𝑡), which means that the minimizer of the surrogate risk ℛ
provides the minimizer of the true risk ℰ as 𝑓⋆ = 𝑑 ∘ 𝑔⋆. However, in practice we will
never be able to minimize the surrogate risk to optimality. The goal of this section is
to calibrate the excess surrogate risk to the true excess risk, i.e., quantify how much the
excess surrogate risk has to be minimized so that the excess true risk is smaller than 𝜀.
This quantification is made by means of the calibration function (Steinwart, 2007; Osokin
et al., 2017; Bartlett et al., 2006; Duchi et al., 2010), which is the mathematical object
that will allow us to relate the quantity we can directly minimize to the one that we are
ultimately interested in. All the proofs from this section can be found in Section C .

4 .1 Calibrating Risks with the Calibration Function

The calibration function is defined as the largest function 𝜁 : R+ −→ R+ that relates
both excess conditional risks as 𝜁(𝛿ℓ(𝑑(𝑣), 𝑞)) ≤ 𝛿𝑠(𝑣, 𝑞), ∀𝑣 ∈ 𝒱,∀𝑞 ∈ Prob(𝒴). The
calibration function for general losses is thus defined as follows.
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Definition 4 .1 (Calibration function (Osokin et al., 2017)). he calibration function 𝜁 :
R+ −→ R+ is defined for 𝜀 ≥ 0 as the infimum of the excess conditional surrogate risk when the
excess conditional risk is at least 𝜀:

𝜁(𝜀) = inf 𝛿𝑠(𝑣, 𝑞) such that 𝛿ℓ(𝑑(𝑣), 𝑞) ≥ 𝜀, 𝑞 ∈ Prob(𝒴), 𝑣 ∈ 𝒱.

We set 𝜁(𝜀) = ∞ when the feasible set is empty.

Note that 𝜁 is non-decreasing on [0,+∞), not necessarily convex (see Example 5 by
Bartlett et al. (2006)) and also 𝜁(0) = 0. Note that a larger 𝜁 is better because we want a
large 𝛿𝑠(𝑣, 𝑞) to incur small 𝛿ℓ(𝑑(𝑣), 𝑞).

The calibration function 𝜁 relates conditional risks. In order to calibrate risks ℛ and
ℰ one needs to impose convexity so that the expectation with respect to the marginal dis-
tribution 𝜌𝒳 ∈ Prob(𝒳 ) can be moved outside of the calibration function. In Theorem 4
.2 we calibrate the risks by taking a convex lower bound of 𝜁 (Steinwart, 2007).

Theorem 4 .2 (Calibration between risks (Steinwart, 2007)). Let 𝜁 be a convex lower bound
of 𝜁. We have

𝜁(ℰ(𝑑 ∘ ̂︀𝑔) − ℰ(𝑓⋆)) ≤ ℛ(̂︀𝑔) − ℛ(𝑔⋆) (3.9)

for all ̂︀𝑔 : 𝒳 → 𝒱 . The tightest convex lower bound 𝜁 of 𝜁 is its lower convex envelope which is
defined by the Fenchel bi-conjugate 𝜁** 2.

Note that a surrogate method is Fisher consistent if and only if 𝜁**(𝜀) > 0 for all
𝜀 > 0, as this implies 𝑓⋆ = 𝑑 ∘ 𝑔⋆. In the case that 𝜁** ̸= 𝜁, this property also translates to
𝜁. See Figure 3.1.

4 .2 Calibration Function for 𝜙-Calibrated Losses

The computation of 𝜁 (or a convex lower bound thereof) is known not to be easy and has
been a central topic of study for many past works (Bartlett et al., 2006; Pires et al., 2013;
Osokin et al., 2017). One of the main contributions of this work is to provide an exact
formula for 𝜁 for 𝜙-calibrated losses based on Bregman divergences between pairs of sets
in ℋ. This geometric interpretation of the calibration function will be used to compute
the calibration function for existing surrogates which are widely used in practice.

First, let us define the calibration sets ℋ𝜀(𝑧) for every 𝜀 ≥ 0 and 𝑧 ∈ 𝒵 as

ℋ𝜀(𝑧) = {𝑢 ∈ ℋ | ⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≤ 𝜀,∀𝑧′ ∈ 𝒵} ⊂ ℋ.

The points in ℋ𝜀(𝑧) are the ones whose conditional risk is at least 𝜀-close to have 𝑧 as
optimal prediction. In particular, ℋ0(𝑧) is the set of points with optimal prediction 𝑧,
which can be equivalently written as 𝜇⋆(𝑥) ∈ ℋ0(𝑓⋆(𝑥)), ∀𝑥 ∈ 𝒳 . Note that ℋ𝜀(𝑧) is
convex ∀𝜀 ≥ 0, ∀𝑧 ∈ 𝒵 . See Figure 3.1 for a visualization of the calibration sets for the
Hamming loss in the context of multilabel classification (and Figure 3.4 in Section G for
the 0-1 loss for multiclass classification).

Theorem 4 .3 (Calibration function for 𝜙-calibrated losses). Let 𝑆 be a 𝜙-calibrated surro-
gate with potential function ℎ : 𝒟 → R and let 𝐿(𝑧, 𝑦) = ⟨𝜓(𝑧), 𝜙(𝑦)⟩ + 𝑐. The calibration
function only depends on 𝑆 through ℎ and we denote it by 𝜁ℎ. Moreover, it can be written as

𝜁ℎ(𝜀) = min
𝑧∈𝒵

𝐷ℎ(ℋ𝜀(𝑧)𝑐 ∩ ℳ,ℋ0(𝑧) ∩ 𝒟), (3.10)

2The Fenchel bi-conjugate is characterized by epi(𝜁**) = hull(epi(𝜁)), where epi(𝜁) denotes the epigraph
of the function 𝜁 and hull(𝐴) is the closure of the convex hull of the set 𝐴.
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where the Bregman divergence between sets𝐴,𝐵 is defined as𝐷ℎ(𝐴,𝐵) = inf𝑢∈𝐴,𝑣∈𝐵 𝐷ℎ(𝑢, 𝑣).

Note that the Bregman divergence inside the minimum in Eq. (3.10) does not lead
to a convex minimization problem since ℋ𝜀(𝑧)𝑐 ∩ ℳ is not convex and 𝐷ℎ(𝑢, 𝑣) is in
general not jointly convex in (𝑢, 𝑣), with notable exceptions such as the KL-divergence
and squared distance (Bauschke and Borwein, 2001). In general, the exact computation
of 𝜁ℎ using Theorem 4 .3 can still be hard to perform, for instance, when the embed-
dings 𝜓 are not simple to work with or the problem lacks symmetries. In the following
Theorem 4 .4 we provide a user-friendly lower bound when the potential ℎ is strongly
convex. Recall that a function ℎ is (1/𝛽‖·‖)-strongly convex w.r.t a norm ‖ · ‖ in 𝒟 if it
satisfies ℎ(𝑢) ≥ ℎ(𝑣) + ⟨𝑢− 𝑣,∇ℎ(𝑣)⟩ + 1

2𝛽‖·‖
‖𝑢− 𝑣‖2, ∀𝑢, 𝑣 ∈ 𝒟.

Theorem 4 .4 (User-friendly lower bound on 𝜁ℎ). Let 𝜁ℎ(𝜀) be the calibration function given
by Eq. (3.10). If ℎ is (1/𝛽‖·‖)-strongly convex w.r.t a norm ‖ · ‖ in 𝒟, then:

𝜁ℎ(𝜀) ≥ 𝜀2

8𝑐2
𝜓,‖·‖*

𝛽‖·‖
,

where 𝑐𝜓,‖·‖* = sup𝑧∈𝒵 ‖𝜓(𝑧)‖* and ‖ · ‖* is the dual norm of ‖ · ‖.

The proof is provided in Section D .2, together with Theorem D .4, that gives a tighter
bound in the case of strong convexity w.r.t the Euclidean norm. Finally, the following
Theorem 4 .5, states that 𝜁ℎ can never be larger than a quadratic for 𝜙-calibrated surro-
gates.

Theorem 4 .5 (Existence of quadratic upper bound). Assume ℎ is twice differentiable. Then,
the calibration function 𝜁ℎ is upper bounded by a quadratic close to the origin, i.e., 𝜁ℎ(𝜀) = 𝑂(𝜀2).

4 .3 Improved Calibration under Low Noise Assumption

The result of Theorem 4 .2 can be further improved under low noise assumptions on
the marginal distribution 𝜌𝒳 . Following the definition from classification (Bartlett et al.,
2006; Mroueh et al., 2012; Zhang, 2004a), we define the margin function 𝛾 : 𝒳 → R as
𝛾(𝑥) = min𝑧′ ̸=𝑓⋆(𝑥) 𝛿ℓ(𝑧′, 𝜌(·|𝑥)). We say that the 𝑝-noise condition is satisfied if

𝜌𝒳 (𝛾(𝑋) ≤ 𝜀) = 𝑜(𝜀𝑝). (3.11)

A simple computation shows that Eq. (3.11) holds if and only if ‖1/𝛾‖𝐿𝑝(𝜌𝒳 ) = 𝛾𝑝 < ∞
(Steinwart and Christmann, 2011).

Theorem 4 .6 (Calibration of Risks under low noise and hard margin assumption). Let 𝜁
be a convex lower bound of 𝜁.

(1) If the 𝑝-noise condition (3.11) is satisfied, we have that 𝜁(𝑝) defined as

𝜁(𝑝)(𝜀) = (𝛾𝑝𝜀𝑝)
1

𝑝+1 𝜁((𝛾−1
𝑝 𝜀)

1
𝑝+1 /2), (3.12)

satisfies Eq. (3.9) where ‖1/𝛾‖𝐿𝑝(𝜌𝒳 ) = 𝛾𝑝. Moreover, we have that 𝜁(𝑝) & 𝜁. Hence, 𝜁(𝑝)

never provides a worse rate than 𝜁.

(2) If 𝛾(𝑥) ≥ 𝛿 > 0 𝜌𝒳 -a.s. Then, 𝛿𝑣(̂︀𝑔(𝑥), 𝜌(·|𝑥)) < 𝜁(𝛿), 𝜌𝒳 -a.s. =⇒ ℰ(𝑑 ∘ ̂︀𝑔) = ℰ(𝑓⋆).
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𝜀

𝜁(𝜀)
fast, consistent

slow, consistent

non consistent
ℋ0((1,1))∩[−1,1]2

ℋ𝜀((1,1))𝑐∩[−1,1]2

2𝜀

𝑦 = (0, 0) 𝑦 = (1, 0)

𝑦 = (1, 1)𝑦 = (0, 1)

Figure 3.1: Left: Both red and blue curves correspond to calibration functions of Fisher
consistent surrogate methods as 𝜁(𝜀) > 0 for all 𝜀 > 0, which is not the case for the
orange curve. However, the blue curve has better guarantees because the same surrogate
excess risk leads to smaller excess true risk. Right: Illustration of the sets ℋ0(𝑧) ∩ ℳ
and ℋ𝜀(𝑧)𝑐 ∩ ℳ for the Hamming loss with 𝑘 = 2 labels and 𝑧 = (1, 1). In this case,
by symmetry, the calibration function is computed as the Bregman divergence between
these two sets.

The first part of Theorem 4 .6 is a generalization of Thm. 10 by Bartlett et al. (2006)
to general discrete losses. Note that combining Eq. (3.12) with the lower bound given

by Theorem 4 .4 gives 𝜁(𝑝) & 𝜀
( 𝑝+2

𝑝+1 ). Indeed, 𝑝 = 0 corresponds to no assumption at all
and so 𝜁(0) stays quadratic, while 𝑝 → ∞ corresponds to having less and less noise at the
boundary decision and 𝜁(𝑝) tends to be linear. Note that 𝑝 = ∞ corresponds to having 𝛿 >
0 such that 𝛾(𝑥) ≥ 𝛿 > 0 𝜌𝒳 -a.s, and so from the second part of Theorem 4 .6, one obtains
zero excess risk if the excess surrogate conditional risk is smaller than 𝜁(𝛿) almost surely.
This fact has been used in binary classification together with high probability bounds
on the estimator to obtain exponential rates of convergence for the risk ℰ (Audibert and
Tsybakov, 2007; Koltchinskii and Beznosova, 2005; Pillaud-Vivien et al., 2018b), and our
result could be used in the same way for the structured case. Finally, note that Theorem 4
.2 and Theorem 4 .6 are not specific to 𝜙-calibrated surrogates and apply to any surrogate
method.

4 .4 Minimizing the Surrogate Loss with Averaged Stochastic Gradient De-
scent (ASGD)

In this section, for simplicity, we assume 𝑆 : 𝒱 × 𝒴 → R is a loss of Legendre-type (see
Eq. (3.8)) with associated Legendre-type potential ℎ : 𝒟 ⊆ ℋ → R and 𝒱 = dom(ℎ*) =
R𝑘′

. Following Osokin et al. (2017), we provide a statistical analysis of the minimization
of the expected risk of 𝑆 using online projected averaged stochastic gradient descent
(ASGD) (Nemirovski et al., 2009) on a reproducing kernel Hilbert space (RKHS) 3 (Aron-

3Recall that a scalar RKHS 𝒢 is a Hilbert space of functions from 𝒳 to R with an associated kernel
𝑘 : 𝒳 × 𝒳 → R such that 𝑘(𝑥, ·) ∈ 𝒢 for all 𝑥 ∈ 𝒳 and 𝑔(𝑥) = ⟨𝑔, 𝑘(𝑥, ·)⟩𝒢 for all 𝑔 ∈ 𝒢.
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szajn, 1950) 𝒢 = (𝒢)⊗𝑘′ = 𝒱 ⊗ 𝒢, where 𝒢 is a scalar RKHS. This will give us insight
on the important quantities for the design of the surrogate method when minimizing
a discrete loss 𝐿. Let 𝑘 : 𝒳 × 𝒳 → R be the kernel associated to the RKHS 𝒢 and
sup𝑥∈𝒳 𝑘(𝑥, 𝑥) ≤ 𝜅2. The 𝑛-th update of ASGD reads

̂︀𝑔𝑛 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔𝑖, 𝑔𝑖 = Π𝐷 (𝑔𝑖−1 − 𝜂𝑖∇𝑆(𝑔𝑖−1(𝑥𝑖), 𝑦𝑖) ⊗ 𝑘(𝑥𝑖, ·)) ,

where ∇𝑆 denotes the gradient of 𝑆 w.r.t the first coordinate, 𝜂𝑖 is the step size and Π𝐷

is the projection onto the ball of radius 𝐷 w.r.t the norm induced by 𝒢. We have the
following theorem.

Theorem 4 .7. Let 𝑆 : 𝒱 × 𝒴 → R be a loss of Legendre-type with associated (1/𝛽‖·‖2)-strongly
convex ℎ. Let (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1, with 𝑛 ∈ N be independently and identically distributed according
to 𝜌 and assume 𝑔⋆ ∈ 𝒢 and ‖𝑔⋆‖2

𝒢 =
∑︀𝑘′
𝑗=1 ‖𝑔⋆𝑗 ‖2

𝒢 ≤ 𝐷2. Let 𝐶2 = 1 + sup𝑦∈𝒴 ‖𝜙(𝑦) −
∇ℎ*(0)‖2/(𝜅𝛽‖·‖2𝐷), then, by using the constant step size 𝜂 = 2/(𝛽‖·‖2𝜅

2𝐶2√
𝑛), we have

E [ℰ(𝑑 ∘ ̂︀𝑔𝑛) − ℰ(𝑓⋆)] ≤
4 · 𝜅 · 𝑐𝜓,‖·‖2 · 𝛽‖·‖2 ·𝐷 · 𝐶

𝑛1/4 . (3.13)

Proof. Let’s first compute a uniform bound on the gradients as

‖∇𝑆(𝑔(𝑥), 𝑦) ⊗ 𝑘(𝑥, ·)‖𝒢 ≤ 𝜅‖∇𝑆(𝑔(𝑥), 𝑦)‖2

= 𝜅‖∇ℎ*(𝑔(𝑥)) − 𝜙(𝑦)‖2

≤ 𝜅(‖∇ℎ*(𝑔(𝑥)) − ∇ℎ*(0)‖2 + ‖𝜙(𝑦) − ∇ℎ*(0)‖2)
≤ 𝜅(𝜅𝛽‖·‖2𝐷 + sup

𝑦∈𝒴
‖𝜙(𝑦) − ∇ℎ*(0)‖2) = 𝑀,

where at the first step we have used that ‖𝑘(𝑥, ·)‖𝒢 ≤ 𝜅 and at the last step that ℎ*

is 𝛽‖·‖2-smooth because ℎ is (1/𝛽‖·‖2)-strongly convex, ‖𝑔(𝑥)‖2
2 =

∑︀𝑘′
𝑗=1⟨𝑔𝑗 , 𝑘(𝑥, ·)⟩2

𝒢 ≤∑︀𝑘′
𝑗=1 𝜅

2‖𝑔𝑗‖2
𝒢 = 𝜅2‖𝑔‖2

𝒢 ≤ 𝜅2𝐷2 and that ∇ℎ*(𝑣) − ∇ℎ*(0) vanishes at the ori-
gin. Using classical results on ASGD (Nemirovski et al., 2009), we know that
using the constant step size 𝜂 = 2𝐷/(𝑀

√
𝑛), we have that E[ℛ(̂︀𝑔) − ℛ(𝑔⋆)] ≤

2𝐷𝑀/𝑛1/2 after 𝑛 iterations of ASGD. Finally, applying the lower bound on 𝜁
in Theorem 4 .4, re-arranging terms, and using the fact that E[𝑤] ≤

√︀
E[𝑤2], for

𝑤 = ℰ(𝑑 ∘ ̂︀𝑔𝑛) − ℰ(𝑓⋆) ≥ 0, we obtain the bound (3.13).

Note that Eq. (3.13) is bounded by 8𝜅1/2𝑐𝜓,‖·‖2 max(𝜅1/2𝛽‖·‖2𝐷, (𝑐𝜙,ℎ𝛽‖·‖2𝐷)1/2)/𝑛1/4,
where 𝑐𝜙,ℎ = sup𝑦∈𝒴 ‖𝜙(𝑦) − ∇ℎ*(0)‖2. There are essentially 4 quantities appearing in
the bound (3.13): 𝑐𝜓,‖·‖* that depends on 𝐿, 𝑐𝜙,ℎ that bounds the marginal polytope cen-
tered at ∇ℎ*(0), 𝛽‖·‖ that depends on ℎ and 𝐷, which is an upper bound on the norm of
the optimum ‖𝑔⋆‖𝒢 = ‖∇ℎ(𝜇⋆)‖𝒢 which depends on the link, in this case ∇ℎ, the RKHS
𝒢, and 𝜇⋆. Note that the image of 𝜇⋆ lies in the marginal polytope, which is bounded
and potentially non full-dimensional in ℋ, so if one directly estimates 𝜇⋆, the hypothesis
space 𝒢 has to model this constraint. The role of the link function is to remove this addi-
tional complexity from 𝒢 by mapping the marginal polytope (or a superset 𝒟 of it) to the
vector space 𝒱 , and consequently smoothing out 𝜇⋆ close to the boundary of ℳ, leading
to a smaller ‖𝑔⋆‖𝒢 . The types of surrogates that directly estimate 𝜇⋆ are of quadratic-type
(see Section 5 .1), which have 𝒟 = ℋ and the link is the identity. In this case, 𝒢 has to be
able to model the fact that Im(𝜇⋆) ⊆ ℳ. The second types are of logistic-type (see CRFs
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in Section 5 .1), which have 𝒟 = ℳ, and as lim𝜇→𝜕ℳ ‖∇ℎ(𝜇)‖ = +∞, the link smooths
out 𝜇⋆ close to the boundary. In this case, ‖𝑔⋆‖𝒢 can potentially be much smaller as 𝒢
does not have to model the polytope constraint. This generalizes the idea that the lo-
gistic link is preferable for estimating class-conditional probabilities, for instance, when
using linear hypothesis spaces. In between the two, there are methods with bounded
𝒟 but different than ℳ, such as one-vs-all methods in multiclass classification, where
ℳ = Δ𝑘 ( 𝒟 ( ℋ (see Section G ).

5 Analysis of Existing Surrogate Methods

In this section we apply the theory developed so far to derive new results on multi-
ple surrogate methods used in practice. In Section 5 .1, we study two generic methods
for structured prediction, namely, the quadratic surrogate (Ciliberto et al., 2016; Nowak
et al., 2019; Ciliberto et al., 2019) and conditional random fields (CRFs) (Lafferty et al.,
2001; Settles, 2004). Then, in Section 5 .2, we present new theoretical results on multiple
tasks in supervised learning which can be derived using results from Section 4 . The
proofs of the results and further details can be found in Section E for Section 5 .1, and
from Section F to Section K for Section 5 .2.

5 .1 Optimizing generic losses: Quadratic surrogate vs. CRFs

Quadratic Surrogate for Structured Prediction. The quadratic surrogate for structured
prediction (Ciliberto et al., 2016, 2019) has the form

𝒱 = ℋ, 𝑆(𝑣, 𝑦) = 1
2‖𝑣 − 𝜙(𝑦)‖2

2.

This is a loss of Legendre-type with 𝒟 = ℋ, ℎ(𝑢) = 1
2‖𝑢‖2

2 and 𝑡−1(𝑢) = ∇ℎ*(𝑢) = 𝑢. We
can exactly compute the calibration function when ℳ is full-dimensional. Theorem 5 .1
is a simpler version of the result which holds for 𝜀 small enough, the complete result can
be found in Section E .1.

Theorem 5 .1. If ℳ is full-dimensional, there exists 𝜀0 > 0 such that

𝜁ℎ(𝜀) = 𝜀2

2 max(𝑧,𝑧′)∈𝐴 ‖𝜓(𝑧) − 𝜓(𝑧′)‖2
2
, ∀𝜀 ≤ 𝜀0,

where 𝐴 = {(𝑧, 𝑧′) ∈ 𝒵2 | 𝑧′ ̸= 𝑧,ℋ0(𝑧) ∩ ℋ0(𝑧′) ̸= ∅}.

Note that in this case as ℎ is 1-strongly convex with respect to the Euclidean norm,
Theorem 4 .4 gives 𝜁ℎ(𝜀) ≥ 𝜀2 · (8𝑐2

𝜓,‖·‖2
)−1, and we recover the comparison inequal-

ity from Ciliberto et al. (2016). In Section E .1 we compare this result with the lower
bounds on the calibration function for the quadratic-type surrogates studied by Osokin
et al. (2017). An interesting property of the quadratic surrogate is that one can build
the estimator ̂︀𝑓 independently of the affine decomposition of 𝐿 by minimizing the ex-
pected surrogate risk with kernel ridge regression. In particular, this allows to extend the
framework to continuous losses defined in compact sets 𝒵,𝒴 where ℋ can be infinite-
dimensional (Ciliberto et al., 2016).
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Conditional Random Fields. Recall that 𝑟 = dim(ℳ). CRFs correspond to

𝒱 = R𝑟, 𝑆(𝑣, 𝑦) = log(
∑︀
𝑦′∈𝒴 exp(⟨𝑣, 𝜙(𝑦′)⟩) − ⟨𝑣, 𝜙(𝑦)⟩. (3.14)

This is a loss of Legendre-type with 𝒟 = ℳ and ℎ(𝑢) = − max𝑞∈Prob(𝒴) Ent(𝑞) such
that 𝜇(𝑞) = 𝑢, where Ent(𝑞) = −

∑︀
𝑦∈𝒴 𝑞(𝑦) log 𝑞(𝑦) is the Shannon entropy of the dis-

tribution 𝑞 ∈ Prob(𝒴) 4. In this case, the inverse of the link function 𝑡−1 = ∇ℎ* cor-
responds to performing marginal inference on the exponential family with sufficient
statistics 𝜙. A well-known important drawback of CRFs is the fact that they are in
general not calibrated to any specific loss. The reason being that inference in CRFs is
done using MAP assignment, which corresponds to ̂︀𝑓MAP(𝑥) = arg max𝑦∈𝒴 ⟨𝜙(𝑦), ̂︀𝑔(𝑥)⟩.
It can be written in terms of ∇ℎ* as ̂︀𝑓MAP(𝑥) = 𝜙−1 (lim𝛾→∞ ∇ℎ*(𝛾̂︀𝑔(𝑥))) (see Sec-
tion E .2 for the computation), which is different from the decoding 𝑑𝜓,∇ℎ we propose:̂︀𝑓(𝑥) = arg min𝑧∈𝒵⟨𝜓(𝑧),∇ℎ*(̂︀𝑔(𝑥))⟩. Note that ∇ℎ*(𝛾̂︀𝑔(𝑥)) converges to a vertex of ℳ
as 𝛾 → ∞, while decoding 𝑑𝜓,∇ℎ partitions ℳ into |𝒵| regions using 𝜓 and assigns a
different output to each of those. With our proposed decoding, we can calibrate CRFs to
any loss that decomposes with the cliques of the probabilistic model. For instance, for
linear chains, the method consistently minimizes any loss that depends on the neighbors.
Moreover, we can compute a lower bound on 𝜁ℎ.

Proposition 5 .2 (Calibration of CRFs). The calibration function of CRFs can be lower bounded
as

𝜁ℎ(𝜀) ≥ 𝜀2

8𝑐2
𝜓,‖·‖2

𝑐2
𝜙,‖·‖2

,

where 𝑐𝜙,‖·‖2 = sup𝑦∈𝒴 ‖𝜙(𝑦)‖2.

5 .2 Specific Problems

Binary Classification. In this case 𝒵 = 𝒴 = {−1, 1}. See Example 2 .1 setting 𝑘 = 2
for the structure of the loss. We consider margin losses, which are losses of the form
𝑆(𝑣, 𝑦) = Φ(𝑦𝑣) with 𝒱 = R, where Φ : R → R is a non-increasing function with Φ(0) =
1. The decoding simplifies to 𝑑(𝑣) = sign(𝑣). The logistic, exponential (𝒟 = [0, 1] = Δ2)
and square (𝒟 = R ) Δ2) margin losses are 𝜙-calibrated. The calibration function is
𝜁ℎ(𝜀) = ℎ

(︁
1+𝜀

2

)︁
− ℎ

(︁
1
2

)︁
(Bartlett et al., 2006; Scott, 2012), where ℎ : 𝒟 ⊂ R → R is the

associated potential.

Multiclass Classification. In this case 𝒵 = 𝒴 = {1, . . . , 𝑘}. See Example 2 .1 for the
structure of the loss. The one-vs-all method corresponds to 𝑆(𝑣, 𝑦) = Φ(𝑣𝑦) +

∑︀𝑘
𝑗 ̸=𝑦 Φ(−𝑣𝑗)

with 𝒱 = R𝑘. If the margin loss Φ(𝑦𝑗𝑣𝑗) is 𝜙-calibrated for binary classification with
potential ℎ̄ : �̄� ⊂ R → R, then 𝑆 is 𝜙-calibrated with ℎ : 𝒟 = �̄�𝑘 ⊂ R𝑘 → R defined
as ℎ(𝑢) =

∑︀𝑘
𝑗=1 ℎ̄(𝑢𝑗). Note that the marginal polytope is strictly included in 𝒟: Δ𝑘 (

[0, 1]𝑘 ⊆ 𝒟. The decoding can be simplified to 𝑑(𝑣) = arg max𝑗∈[𝑘] 𝑣𝑗 and the calibration
function has the form given by Proposition 5 .3.

Proposition 5 .3 (One-vs-all calibration function). Assume ℎ̄′′ is non-decreasing in �̄� ∩
[1/2,+∞). Then, the calibration function for the one-vs-all method is 𝜁ℎ(𝜀) = 2 · 𝜁ℎ̄(𝜀).

4Note that here, for simplicity, we do not consider the constant term ℎ(𝜙(𝑦)) from Eq. (3.8).
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Note that the assumption on ℎ̄′′ is met by the logistic, exponential and square binary
margin losses. Another important example is the multinomial logistic loss, which corre-
sponds to (3.14) for multiclass. In this case the decoding is also simplified to 𝑑(𝑣) =
arg max𝑗∈[𝑘] 𝑣𝑗 , and 𝜁ℎ(𝜀) ≥ 𝜀2/8 by using strong convexity of the entropy w.r.t ‖ · ‖1
norm on Theorem 4 .4.

Multilabel Classification. In this case 𝒵 = 𝒴 = {−1, 1}𝑘. See Example 2 .1 for the
structure of the loss. We consider independent classifiers, which have the form: 𝑆(𝑣, 𝑦) =∑︀𝑘
𝑗=1 Φ(𝑦𝑗𝑣𝑗), with 𝒱 = R𝑘. In this case the potential has the form ℎ(𝑢) =

∑︀𝑘
𝑗=1 ℎ̄((𝑢𝑗 +

1)/2), where ℎ̄ is the potential for the individual classifier. In this case ℳ equals 𝒟 for
logistic and exponential classifiers, as they have �̄� = [0, 1]. The decoding is simplified
to 𝑑(𝑣) = (sign(𝑣𝑗))𝑘𝑗=1 and the calibration function 𝜁ℎ can be computed exactly and it is
linear in the number of labels 𝜁ℎ(𝜀) = 𝑘 · 𝜁ℎ̄(𝜀) (see Proposition H .1 in Section H ).

Ordinal Regression. In this case 𝒵 = 𝒴 = {1, . . . , 𝑘} with an ordering: 1 ≺ · · · ≺ 𝑘.
We consider the absolute error loss function defined as 𝐿(𝑧, 𝑦) = |𝑧 − 𝑦|. We analyze
two types of surrogates, the all thresholds (AT) (Lin and Li, 2006) and the cumulative link
(CL) (McCullagh, 1980), both studied by Pedregosa et al. (2017). AT methods correspond
to independent classifiers 𝑆(𝑣, 𝑦) =

∑︀𝑘−1
𝑗=1 Φ(𝜙𝑗(𝑦)𝑣𝑗) with 𝒱 = R𝑘−1, where 𝜙(𝑦) = (2 ·

1(𝑦𝑗 ≥ 𝑗)−1)𝑘−1
𝑗=1 . In this case, using results from the Hamming loss we show that 𝜁ℎ(𝜀) ≥

(𝑘 − 1) · 𝜁ℎ̄(𝜀/(𝑘 − 1)) ∼ 𝜀2/(𝑘 − 1), where ℎ̄ is the potential for the individual classifier.
CL methods, instead, are based on applying a link to the cumulative probabilities, and
it can be shown that the associated potential is the negative entropy on the simplex in 𝑘
dimensions. Using the strong convexity of the entropy w.r.t the ‖ · ‖1 norm, we can show
that 𝜁ℎ(𝜀) ≥ 1/8 · 𝜀2/(𝑘 − 1)2 ∼ 𝜀2/(𝑘 − 1)2. In particular, this explains the experiment
of Fig. 1 from (Pedregosa et al., 2017), where they provide empirical evidence that the
calibration function for AT is larger than the one for CL, which they are not able to
compute.

Ranking with NDCG loss. We provide guarantees for learning permutations with the
NDCG loss. In this case, we recover the results from Ravikumar et al. (2011).

Graph matching. In graph matching, the goal is to map the nodes from one graph
to another. In this case, the outputs are “matchings” (permutations) and the goal is to
minimize the Hamming loss between permutations 𝐿(𝜎, 𝜎′) = 1

𝑚

∑︀𝑚
𝑗=1 1(𝜎(𝑗) ̸= 𝜎′(𝑗)) =

1−⟨𝑋𝜎, 𝑋𝜎′⟩𝐹 /𝑚, where𝑋𝜎 ∈ R𝑚×𝑚 is the permutation matrix associated to the permu-
tation 𝜎. In this case, 𝑘 = 𝑚2, the marginal polytope is the polytope of doubly stochastic
matrices which has dimension 𝑟 = dim(ℳ) = 𝑘2 − 2𝑘 + 1, and the decoding mapping
corresponds to perform linear assignment. As CRFs are intractable in this case (Petterson
et al., 2009), a common approach is to learn the probabilities of each row independently
by casting this problem as 𝑘 multiclass problems (one for each row of the matrix). Do-
ing multinomial logistic regression independently at each row corresponds to set 𝒟 as
the polytope of row-stochastic matrices, which strictly includes ℳ and has dimension
𝑘2 − 𝑘. A direct application of Theorem 4 .4 gives 𝜁ℎ(𝜀) ≥ 𝑚2𝜀2/8.
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Figure 3.2: Diagram representing the surrogate method (𝑆, 𝑑𝜓,𝑡). The dashed lines sepa-
rate the calibration sets ℋ0(𝑧). If ̂︀𝜇(𝑥) = 𝑡−1(̂︀𝑔(𝑥)) ∈ ℋ0(𝑧′), then ̂︀𝑓(𝑥) = 𝑑𝜓,𝑡 ∘ ̂︀𝑔(𝑥) = 𝑧′.

A Bregman Divergence Representation of Surrogate Losses

Proof of Theorem 3 .3. As 𝑡 : ℳ → 𝒱 is injective, we have that for any 𝑣 ∈ 𝑡(ℳ)
there exists a unique 𝜇 ∈ ℳ such that 𝑡(𝜇) = 𝑣. We then consider the loss 𝑆 : ℳ×
𝒴 → R defined as 𝑆(𝜇, 𝑦) = 𝑆(𝑡(𝜇), 𝑦). Moreover, 𝑆 is a continuous function of 𝜇
because 𝑡 and 𝑆 are continuous. We define the quantities 𝑠(𝜇, 𝑞) = E𝑌∼𝑞 𝑆(𝜇, 𝑌 )
and 𝛿𝑠(𝜇, 𝑞) = 𝑠(𝜇, 𝑞) − min𝜇′∈ℳ 𝑠(𝜇′, 𝑞) ≥ 0.

Furthermore, we have that if 𝑆 satisfies 𝑡(𝜇(𝑞)) = arg min𝑣∈𝒱 𝑠(𝑣, 𝑞), then 𝑆
satisfies

𝜇(𝑞) = arg min
𝜇′∈ℳ

𝑠(𝜇′, 𝑞). (3.15)

A loss 𝑆 satisfying Eq. (3.15) is said to elicit the function 𝜇(·) = E𝑌∼· 𝜙(𝑌 ). It is
a known result from the theory of property elicitation (Abernethy and Frongillo,

93
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2012; Frongillo and Kash, 2015b) that if a loss elicits a linear function of a distri-
bution, then there exists a strictly convex function ℎ such that,

𝛿𝑠(𝜇, 𝑞) = 𝐷ℎ(𝜇(𝑞), 𝜇), ∀𝑞 ∈ Prob(𝒴),∀𝜇 ∈ ℳ.

Here, the Bregman divergence of a strictly convex (and potentially non-differentiable)
function ℎ is defined as

𝐷ℎ(𝜇′, 𝜇) = ℎ(𝜇′) − ℎ(𝜇) − ⟨𝜇′ − 𝜇, 𝑑ℎ𝜇⟩,

where {𝑑ℎ𝜇}𝜇∈ℳ are a selection of subgradients of ℎ. Note that 𝑑ℎ𝜇 ∈ 𝑇𝜇ℳ,
where 𝑇𝜇ℳ = R𝑟 is the tangent space of the marginal polytope ℳ at the point
𝜇 ∈ ℳ, where 𝑟 = dim(ℳ).

Finally, we prove that ℎ is differentiable in ℳ. Let’s first note that as 𝑆(𝜇, 𝑞) is a
continuous function of 𝜇, then 𝛿𝑠(𝜇, 𝑞) = 𝐷ℎ(𝜇(𝑞), 𝜇) and consequently 𝐴𝜇′(𝜇) ..=
ℎ(𝜇) − ⟨𝜇− 𝜇′, 𝑑ℎ𝜇⟩ are also continuous in 𝜇.

Now assume that ℎ is not differentiable at 𝜇0 and consider 𝑑ℎ(1)
𝜇0 and 𝑑ℎ(2)

𝜇0 two
different subgradients of ℎ at the point 𝜇0 ∈ ℳ. In particular, this means that
there exists at least a point 𝜇1 ∈ ℳ such that ⟨𝜇0 − 𝜇1, 𝑑ℎ

(1)
𝜇0 ⟩ ≠ ⟨𝜇0 − 𝜇1, 𝑑ℎ

(2)
𝜇0 ⟩.

Assume without loss of generality that ⟨𝜇0 − 𝜇1, 𝑑ℎ
(1)
𝜇0 ⟩ < ⟨𝜇0 − 𝜇1, 𝑑ℎ

(2)
𝜇0 ⟩ and

that 𝜇0 + (𝜇0 − 𝜇1) ∈ ℳ. Then, consider the parametrization of the segment
hull({𝜇0 + (𝜇0 − 𝜇1), 𝜇1}) as

𝜇(𝑡) = 𝑡 · 𝜇1 + (1 − 𝑡) · (𝜇0 + (𝜇0 − 𝜇1)).

We have that

lim
𝑡→(1/2)−

𝐴𝜇1(𝜇(𝑡))

≤ ℎ(𝜇0) − ⟨𝜇0 − 𝜇1, 𝑑ℎ
(1)
𝜇0 ⟩

< ℎ(𝜇0) − ⟨𝜇0 − 𝜇1, 𝑑ℎ
(2)
𝜇0 ⟩

≤ lim
𝑡→(1/2)+

𝐴𝜇1(𝜇(𝑡)).

Hence, 𝐴𝜇1(𝜇(·)) is not continuous at 𝑡 = 1/2, which means that 𝐴𝜇1(·) is not
continuous at 𝜇0, which is a contradiction.

B Functions of Legendre-type and Canonical Link

In this section, we first introduce functions of Legendre-type and provide some of the
most representative examples, namely, the quadratic function and negative maximum-
entropy. We then show how Fenchel duality applied to this group of functions can be
used to construct 𝜙-calibrated surrogates by taking the gradient as the link function. In
particular, we show that the surrogate loss resulting from this construction, which we
refer to as Legendre-type loss function, has desirable properties such as convexity and
the fact that the surrogate excess conditional risk can be written as a Bregman divergence
directly at the surrogate space 𝒱 .

First, we recall the concept of essentially smooth functions (see Rockafellar (2015) for
more details).
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Definition B .1 (Essentially Smooth Functions). A function ℎ : 𝒟 ⊆ ℋ → R is called
essentially smooth if

(1) 𝒟 is non-empty,

(2) ℎ is differentiable throughout int(𝒟),

(3) and lim𝑢→𝜕𝒟 ∇ℎ(𝑢) = +∞, where 𝜕𝒟 is the boundary of the set 𝒟.

Definition B .2 (Legendre-type Functions). A function ℎ : 𝒟 ⊆ ℋ → R is of Legendre-type
if it is strictly convex in int(𝒟) and essentially smooth.

The two most important examples of such functions are the quadratic loss ℎ(𝑢) =
1
2‖𝑢‖2

2 with domain 𝒟 = ℋ ) ℳ and the negative maximum-entropy

ℎ(𝑢) = − max
𝑞∈Prob(𝒴)

Ent(𝑞) s.t 𝜇(𝑞) = 𝑢,

with 𝒟 = ℳ ( ℋ, where Ent(𝑞) = −
∑︀
𝑦∈𝒴 𝑞(𝑦) log 𝑞(𝑦) is the Shannon entropy of

the distribution 𝑞 ∈ Prob(𝒴). Now, recall the concept of Fenchel conjugate of a function
ℎ : 𝒟 ⊆ ℋ → R, which is defined as the function ℎ* computed as

ℎ*(𝑣) = sup
𝑢∈𝒟

{⟨𝑣, 𝑢⟩ − ℎ(𝑢)},

with domain dom(ℎ*). The following Proposition B .3 states that Legendre-type func-
tions behave specially well with Fenchel duality.

Proposition B .3 (Fenchel conjugate of a Legendre-type function (Rockafellar, 2015)). The
Fenchel conjugate ℎ* of a Legendre-type function ℎ is also of Legendre-type, with int(dom(ℎ*)) =
int(Im(∇ℎ)). Moreover, the gradient functions ∇ℎ : int(𝒟) → int(dom(ℎ*)) and ∇ℎ* :
int(dom(ℎ*)) → int(𝒟) are inverse of each other ∇ℎ* = (∇ℎ)−1. Furthermore, we also have
that

𝐷ℎ(𝑢, 𝑢′) = 𝐷ℎ*(∇ℎ(𝑢′),∇ℎ(𝑢)).

The Fenchel conjugate of the quadratic function is the same quadratic function with
dom(ℎ*) = 𝒟 = ℋ, while the Fenchel conjugate for the negative maximum-entropy is
the log-sum-exp function ℎ*(𝑣) = log(

∑︀
𝑦∈𝒴 exp(⟨𝜓(𝑦), 𝑣⟩)) with domain dom(ℎ*) = R𝑟

where 𝑟 = dim(ℳ).
An interesting consequence of Proposition B .3 for our framework is that one has a

systematic way of constructing a surrogate method from a function of Legendre-type
with domain including the marginal polytope. More specifically, we define the surro-
gate loss associated to ℎ as the loss with (ℎ,∇ℎ, 𝜙)-BD representation, which takes the
following form

𝑆(𝑣, 𝑦) = 𝐷ℎ(𝜙(𝑦),∇ℎ*(𝑣)) = ℎ*(𝑣) + ℎ(𝜙(𝑦)) − ⟨𝜙(𝑦), 𝑣⟩.

Note that 𝑆(𝑣, 𝑦) is always convex and the excess conditional surrogate risk 𝛿𝑠(𝑣, 𝑞) has
the form of a Bregman divergence both in 𝒟 and dom(ℎ*),

𝛿𝑠(𝑣, 𝑞) = 𝐷ℎ(𝜇(𝑞),∇ℎ*(𝑣)) = 𝐷ℎ*(𝑣,∇ℎ(𝜇(𝑞))),

where we have used the last property of Proposition B .3. Moreover, we have that
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- 𝒟 is bounded if and only if dom(ℎ*) is a vector space and ℎ* is globally Lipschitz.

- If ℎ is (1/𝛽‖·‖)-strongly convex w.r.t the norm ‖ · ‖, then 𝑆(·, 𝑦) is (𝛽‖·‖)-smooth w.r.t
the dual norm ‖ · ‖*.

The surrogate loss associated to the quadratic function is the quadratic surrogate and
has the form 𝑆(𝑣, 𝑦) = 1

2‖𝑣 − 𝜙(𝑦)‖2
2 with 𝒱 = ℋ, while the surrogate loss associated to

the entropy corresponds to conditional random fields (CRFs) and has the form 𝑆(𝑣, 𝑦) =
log(

∑︀
𝑦′∈𝒴 exp(⟨𝜓(𝑦′), 𝑣⟩)) − ⟨𝜓(𝑦), 𝑣⟩ with 𝒱 = R𝑟. Both surrogates are studied in detail

in Section 5 .1.

C Calibration of Risks

In this section we study the implications of the calibration function 𝜁 for relating both
excess risks. In particular, we first prove in Section C .1 that a convex lower bound 𝜁
of 𝜁 satisfies 𝜁(ℰ(𝑑 ∘ ̂︀𝑔) − ℰ(𝑓⋆)) ≤ ℛ(̂︀𝑔) − ℛ(𝑔⋆), which corresponds to Theorem B .4.
Then, in Section C .2 we improve the calibration between risks by imposing a low noise
assumption at the decision boundary.

C .1 Calibration of Risks without Noise Assumption

Proof of Theorem B .4. Note that by the definition of the calibration function, we
have that

𝜁(𝛿ℓ(𝑑 ∘ ̂︀𝑔(𝑥), 𝜌(·|𝑥))) ≤ 𝛿𝑠(̂︀𝑔(𝑥), 𝜌(·|𝑥)). (3.16)

The comparison between risks is then a consequence of Jensen’s inequality:

𝜁(ℰ(𝑑 ∘ ̂︀𝑔) − ℰ(𝑓⋆)) = 𝜁(E𝑋∼𝜌𝒳 𝛿ℓ(𝑑 ∘ ̂︀𝑔(𝑋), 𝜌(·|𝑋)))
≤ E𝑋∼𝜌𝒳 𝜁(𝛿ℓ(𝑑 ∘ ̂︀𝑔(𝑋), 𝜌(·|𝑋))) (Jensen ineq.)
≤ E𝑋∼𝜌𝒳 𝜁(𝛿ℓ(𝑑 ∘ ̂︀𝑔(𝑋), 𝜌(·|𝑋))) (𝜁 ≤ 𝜁)
≤ E𝑋∼𝜌𝒳 𝛿𝑠(̂︀𝑔(𝑋), 𝜌(·|𝑋)) (𝐸𝑞. (3.16))
= ℛ(̂︀𝑔) − ℛ(𝑔⋆).

C .2 Calibration of Risks with Low Noise Assumption

In this section we prove Theorem 4 .6 by imposing assumptions on the the behavior of
the margin function 𝛾(𝑥) = min𝑧′ ̸=𝑓⋆(𝑥) 𝛿ℓ(𝑧′, 𝜌(·|𝑥)) under the marginal distribution of
the data 𝜌𝒳 ∈ Prob(𝒳 ). Note that the p-noise condition 𝜌𝒳 (𝛾(𝑋) ≤ 𝜀) = 𝑜(𝜀𝑝) is a
generalization of the Tsybakov condition for binary classification (Tsybakov, 2004) and
of the condition by Mroueh et al. (2012) for multiclass classification to general discrete
losses. Indeed, for the binary 0-1 loss (𝒴 = {−1, 1}), 𝛾(𝑥) = |2𝜂(𝑥) − 1| with 𝜂(𝑥) =
𝜌(𝑌 = 1|𝑥), so we recover the classical Tsybakov condition.

We first prove Lemma C .1, which states the equivalence between the p-noise condi-
tion 𝜌𝒳 (𝛾(𝑋) ≤ 𝜀) = 𝑜(𝜀𝑝) and 1/𝛾 ∈ 𝐿𝑝(𝜌𝒳 ).

Lemma C .1. If the p-noise condition holds, then 1/𝛾 ∈ 𝐿𝑝(𝜌𝒳 ).
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Proof.

‖1/𝛾‖𝑝𝐿𝑝(𝜌𝒳 ) = E 1/𝛾(𝑋)𝑝 =
∫︁ ∞

0
𝑝𝑡𝑝−1𝜌𝒳 (1/𝛾(𝑋) > 𝑡)𝑑𝑡 =

∫︁ ∞

0
𝑝𝑡𝑝−1𝜌𝒳 (𝛾(𝑋) < 𝑡−1)𝑑𝑡.

The integral converges if 𝜌𝒳 (𝛾(𝑋) < 𝑡−1) decreases faster than 𝑡−𝑝.

Let’s now define the error set as 𝑋𝑓 = {𝑥 ∈ 𝒳 | 𝑓(𝑥) ̸= 𝑓⋆(𝑥)}. The following
Lemma C .2, which bounds the probability of error by a power of the excess risk, is
a generalization of the Tsybakov Lemma (Tsybakov, 2004, Prop.1) for general discrete
losses.

Lemma C .2 (Bounding the size of the error set). If 1/𝛾 ∈ 𝐿𝑝(𝜌𝒳 ), then

𝜌𝒳 (𝑋𝑓 ) ≤ 𝛾
1

𝑝+1
𝑝 (ℰ(𝑓) − ℰ(𝑓⋆))

𝑝
𝑝+1 .

Proof. By the definition of the margin 𝛾(𝑥), we have that:

1(𝑓(𝑥) ̸= 𝑓⋆(𝑥)) ≤ 1/𝛾(𝑥)𝛿ℓ(𝑓(𝑥), 𝜌(·|𝑥)).

By taking the
(︀ 𝑝
𝑝+1

)︀
-th power on both sides, taking the expectation w.r.t 𝜌𝒳 and

finally applying Hölder’s inequality, we obtain the desired result.

We will need the following useful Lemma C .3 of convex functions.

Lemma C .3 (Property of convex functions). Suppose 𝜁 : R → R is convex and 𝜁(0) = 0.
Then, for all 𝑦′ > 0, 0 ≤ 𝑦 ≤ 𝑦′,

𝜁(𝑦) ≤ 𝑦

𝑦′ 𝜁(𝑦
′) and 𝜁(𝑦′)/𝑦′ is increasing on (0,∞).

Proof. Take 𝛼 = 𝑦
𝑦′ ≤ 1. The result follows directly by definition of convexity, as

𝜁(𝑦) = 𝜁((1 − 𝛼)0 + 𝛼𝑦′) ≤ (1 − 𝛼)𝜁(0) + 𝛼𝜁(𝑦′) = 𝑦

𝑦′ 𝜁(𝑦
′).

For the second part, re-arrange the terms in the above inequality.

We now have the tools to prove Theorem 4 .6, which is an adaptation of the proof of
Thm. 10 of Bartlett et al. (2006) which was specific to binary 0-1 loss.

Proof of part 1 Theorem 4 .6. The intuition of the proof is to split the conditional ex-
cess risk into a part with low noise 𝛿ℓ(𝑓(𝑥), 𝜌(·|𝑥)) ≤ 𝑡 and a part with high noise
𝛿ℓ(𝑓(𝑥), 𝜌(·|𝑥)) ≥ 𝑡. The first part will be controlled by the 𝑝-noise assumption
and the second part by the convex lower bound of the calibration function 𝜁.

ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆) = E𝑋∼𝜌𝒳 𝛿ℓ(𝑓(𝑋), 𝜌(·|𝑋))
= E𝑋∼𝜌𝒳 {1(𝑋𝑓 ) · 𝛿ℓ(𝑓(𝑋), 𝜌(·|𝑋))}
= E𝑋∼𝜌𝒳 {𝛿ℓ(𝑓(𝑋), 𝜌(·|𝑋)) · 1(𝑋𝑓 ∩ {𝛿ℓ(𝑓(𝑋), 𝜌(·|𝑋)) ≤ 𝑡}}
+ E𝑋∼𝜌𝒳 {𝛿ℓ(𝑓(𝑋), 𝜌(·|𝑋)) · 1(𝑋𝑓 ∩ {𝛿ℓ(𝑓(𝑋), 𝜌(·|𝑋)) ≥ 𝑡}}
= 𝐴+𝐵.
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• Bounding the error in the region with low noise 𝐴:

𝐴 ≤ 𝑡𝜌𝒳 (𝑋𝑓 ) ≤ 𝑡𝛾
1

𝑝+1
𝑝 (ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓*))

𝑝
𝑝+1 ,

where in the last inequality we have used Lemma C .2.
• Bounding the error in the region with high noise 𝐵:

We have that

𝛿ℓ(𝑓(𝑥), 𝜌(·|𝑥)) · 1(𝛿ℓ(𝑓(𝑥), 𝜌(·|𝑥)) ≥ 𝑡) ≤ 𝑡

𝜁(𝑡)
𝜁(𝛿ℓ(𝑓(𝑥), 𝜌(·|𝑥))). (3.17)

In the case 𝛿ℓ(𝑓(𝑥), 𝜌(·|𝑥)) < 𝑡, inequality in Eq. (3.17) follows from the fact
that 𝜁 is nonnegative. For the case 𝛿ℓ(𝑓(𝑥), 𝜌(·|𝑥)) > 𝑡, apply Lemma C .3
with 𝑦′ = 𝛿ℓ(𝑓(𝑥), 𝜌(·|𝑥)) and 𝑦 = 𝑡.
From Eq. (4.18), we have that E𝑋∼𝜌𝒳 {1(𝑋𝑓 ) · 𝜁(𝛿ℓ(𝑓(𝑋), 𝜌(·|𝑋)))} ≤ ℛ(𝑔) −
ℛ(𝑔*). Hence,

𝐵 ≤ 𝑡

𝜁(𝑡)
(ℛ(𝑔) − ℛ(𝑔*)).

Putting everything together,

ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓*) ≤ 𝑡𝛾
1

𝑝+1
𝑝 (ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓*))

𝑝
𝑝+1 + 𝑡

𝜁(𝑡)
(ℛ(𝑔) − ℛ(𝑔*)),

and hence,(︂ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓*)
𝑡

− 𝛾
1

𝑝+1
𝑝 (ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓*))

𝑝
𝑝+1

)︂
𝜁(𝑡) ≤ ℛ(𝑔) − ℛ(𝑔*).

Choosing 𝑡 = 1
2𝛾

−1
𝑝+1
𝑝 (ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓*))

1
𝑝+1 and substituting finally gives Eq. (3.12).

The fact that 𝜁(𝑝) never provides a worse rate than 𝜁 is because we have

𝜀
𝑝

𝑝+1 · 𝜁((𝛾−1
𝑝 𝜀)

1
𝑝+1 /2) ≥ 𝜁(𝜀 · (𝛾−1

𝑝 )
1

𝑝+1 /2). (3.18)

To see this, re-arrange the terms in Eq. (3.18) to,

𝜁((𝛾−1
𝑝 𝜀)

1
𝑝+1 /2)

𝜀
1

𝑝+1
≥
𝜁(𝜀 · (𝛾−1

𝑝 )
1

𝑝+1 /2)
𝜀

. (3.19)

Then, Eq. (3.19) follows from the fact that 𝜁(𝑡)
𝑡 is non-decreasing by Lemma C

.3.

Proof of part 2 of Theorem 4 .6. If 𝛿𝑠(𝑔⋆(𝑥), 𝜌(·|𝑥)) ≤ 𝜁(𝛿) 𝜌𝒳 -a.s implies by the defi-
nition of the calibration function that 𝛿ℓ( ̂︀𝑓(𝑥), 𝜌(·|𝑥)) < 𝛿 𝜌𝒳 -a.s.

As 𝛾(𝑥) = min𝑧′ ̸=𝑓*(𝑥) 𝛿ℓ(𝑧′, 𝜌(·|𝑥)) ≥ 𝛿 > 0 𝜌𝒳 -a.s., then we necessarily havê︀𝑓(𝑥) = 𝑓⋆(𝑥) 𝜌𝒳 -a.s., which implies that ℛ( ̂︀𝑓) = ℛ(𝑓⋆).

D Calibration Function for 𝜙-Calibrated Losses

In this section we study the calibration function for 𝜙-calibrated losses. In Section D .1,
we compute exact expressions for 𝜁, in Section D .2 we provide lower bounds and in
Section D .3 we prove the existence of an upper bound.
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D .1 Exact Formula for the Calibration Function

This section contains three results. The first is Lemma D .1, which re-writes the calibra-
tion function from its definition by leveraging the BD representation of the surrogate
loss. In particular, it shows that 𝜁 only depends on 𝑆 through the potential ℎ, and it
can be written as a (constrained) minimization problem where the Bregman divergence
associated to ℎ is minimized. In the following we will denote

𝑧(𝑢) = arg min
𝑧′∈𝒵

⟨𝜓(𝑧′), 𝑢⟩.

Lemma D .1. The calibration function for a 𝜙-calibrated surrogate can be written as

𝜁ℎ(𝜀) = inf
𝑢′∈ℳ,𝑢∈𝒟

𝐷ℎ(𝑢′, 𝑢) s.t ⟨𝜓(𝑧(𝑢)) − 𝜓(𝑧(𝑢′)), 𝑢′⟩ ≥ 𝜀. (3.20)

Proof. As 𝑆 is 𝜙-calibrated, we can write

𝛿𝑠(𝑣, 𝑞) = 𝐷ℎ(𝜇(𝑞), 𝑡−1(𝑣)), ∀𝑣 ∈ 𝒱, ∀𝑞 ∈ Prob(𝒴).

Using the affine decomposition of the loss 𝐿, we can write

𝛿ℓ(𝑧, 𝑞) = ⟨𝜓(𝑧) − 𝜓(𝑧(𝜇(𝑞))), 𝜇(𝑞)⟩, ∀𝑧 ∈ 𝒵, ∀𝑞 ∈ Prob(𝒴).

Hence, the constrained minimization problem only depends on 𝑞 through
𝜇(𝑞), so the minimization over Prob(𝒴) can be done over ℳ. Moreover, we can
write 𝛿ℓ(𝑑(𝑣), 𝑞) = 𝛿ℓ(𝑧(𝑡−1(𝑣)), 𝑞) and 𝑡−1(𝒱) = 𝒟. Hence, applying the inverse
of the link to the problem one obtains (3.20).

The second result is Theorem 4 .3, which uses the result of Lemma D .1 to view
the problem (3.20) as the minimum over 𝑧 of the Bregman divergence between the sets
ℋ𝜀(𝑧)𝑐 ∩ ℳ and ℋ0(𝑧) ∩ 𝒟.

Proof of Theorem 4 .3. Use the fact that ℋ =
⋃︀
𝑧∈𝒵 ℋ0(𝑧) with 𝑧 = 𝑧(𝑢) ⇐⇒ 𝑢 ∈

ℋ0(𝑧) to re-write the calibration function as

𝜁ℎ(𝜀) = min
𝑧∈𝒵

inf
𝑢′∈ℳ

𝑢∈ℋ0(𝑧)∩𝒟

𝐷ℎ(𝑢′, 𝑢) s.t ⟨𝜓(𝑧) − 𝜓(𝑧(𝑢′)), 𝑢′⟩ ≥ 𝜀.

Now, the minimization over the first coordinate is made on the set (now indepen-
dent of 𝑢)

{𝑢′ ∈ ℋ | ⟨𝜓(𝑧)−𝜓(𝑧(𝑢′)), 𝑢′⟩ ≥ 𝜀}∩ℳ = {𝑢′ ∈ ℋ | ⟨𝜓(𝑧)−𝜓(𝑧(𝑢′)), 𝑢′⟩ ≤ 𝜀}𝑐∩ℳ.

Now let’s show that

{𝑢′ ∈ ℋ | ⟨𝜓(𝑧) − 𝜓(𝑧(𝑢′)), 𝑢′⟩ ≤ 𝜀} = ℋ𝜀(𝑧),

where ℋ𝜀(𝑧) = {𝑢′ ∈ ℋ | ⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢′⟩ ≤ 𝜀,∀𝑧′ ∈ 𝒵}. Note that the inclusion
(⊃) is trivial. For (⊂), note that for any 𝑧′ ∈ 𝒵 , we have that

⟨𝜓(𝑧′), 𝑢′⟩ + 𝜀 ≥ ⟨𝜓(𝑧(𝑢′)), 𝑢′⟩ + 𝜀 ≥ ⟨𝜓(𝑧), 𝑢′⟩.

Hence, we obtain the final result,

𝜁ℎ(𝜀) = min
𝑧∈𝒵

inf
𝑢′∈ℋ𝜀(𝑧)𝑐∩ℳ
𝑢∈ℋ0(𝑧)∩𝒟

𝐷ℎ(𝑢′, 𝑢) = min
𝑧∈𝒵

𝐷ℎ(ℋ𝜀(𝑧)𝑐 ∩ ℳ,ℋ0(𝑧) ∩ 𝒟).
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Finally, the following Proposition D .2 provides an exact formula for the Euclidean
distance between the sets ℋ𝜀(𝑧)𝑐 and ℋ0(𝑧). This result will be useful to derive an im-
proved lower bound on 𝜁ℎ using strong convexity of the potential w.r.t the Euclidean
norm and an exact expression in the case of the quadratic surrogate when the marginal
polytope ℳ is full-dimensional. In the following, we denote by 𝑑2(𝐴,𝐵) = inf𝑢′∈𝐴,𝑢∈𝐵 ‖𝑢′−
𝑢‖2 the Euclidean distance between the sets 𝐴 and 𝐵.

Proposition D .2. We have that

𝑑2(ℋ𝜀(𝑧)𝑐,ℋ0(𝑧)) = min
𝑧′ ̸=𝑧

𝜀

‖𝜓(𝑧) − 𝜓(𝑧′)‖2
+ 𝛿𝑧,𝑧′ , (3.21)

where 𝛿𝑧,𝑧′ = 𝑑2(ℋ0(𝑧), {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ = 0}) > 0 if and only if ℋ0(𝑧) ∩ ℋ0(𝑧′) = ∅.

Proof. Write ℋ𝜀(𝑧)𝑐 =
⋃︀
𝑧′ ̸=𝑧{⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≥ 𝜀}. Then, we have that

𝑑2(ℋ𝜀(𝑧)𝑐,ℋ0(𝑧)) = min
𝑧′ ̸=𝑧

𝑑2(ℋ0(𝑧), {𝑢 ∈ ℋ | ⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≥ 𝜀}),

where we have used that 𝑑2(∪𝑘𝑖=1𝐴𝑖, 𝐵) = min𝑖=1,...,𝑘 𝑑2(𝐴𝑖, 𝐵). Recall that the dis-
tance between two convex bodies is characterized by the minimum distance be-
tween two parallel supporting hyperplanes. Let’s split the analysis in two cases:

- ℋ0(𝑧) ∩ ℋ0(𝑧′) ̸= ∅. In this case {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ = 0} is a support-
ing hyperplane of ℋ0(𝑧). Hence, the distance betwen ℋ0(𝑧) and {⟨𝜓(𝑧) −
𝜓(𝑧′), 𝑢⟩ ≥ 𝜀} is equal to the distance between {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≥ 𝜀} and
{⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≤ 0}, which is equal to 𝜀

‖𝜓(𝑧)−𝜓(𝑧′)‖2
.

- ℋ0(𝑧)∩ℋ0(𝑧′) = ∅. In this case {⟨𝜓(𝑧)−𝜓(𝑧′), 𝑢⟩ = 0} is not a supporting hy-
perplane of ℋ0(𝑧). The supporting hyperplane parallel to {⟨𝜓(𝑧)−𝜓(𝑧′), 𝑢⟩ =
𝜀} has the form {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ = −𝜀′} for 𝜀′ > 0. The distance be-
tween both hyperplanes is then 𝜀+𝜀′

‖𝜓(𝑧)−𝜓(𝑧′)‖2
= 𝜀

‖𝜓(𝑧)−𝜓(𝑧′)‖2
+ 𝛿𝑧,𝑧′ , where

𝛿𝑧,𝑧′ = 𝑑2(ℋ0(𝑧), {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ = 0}).

Hence, we obtain the final result.

Note that many losses satisfy ℋ0(𝑧) ∩ ℋ0(𝑧′) ̸= ∅ for all 𝑧, 𝑧′ ∈ 𝒵 , such as the 0-1,
Hamming and absolute error in ordinal regression. In this case, Eq. (3.21) is simplified
to 𝜀

max𝑧′ ̸=𝑧 ‖𝜓(𝑧)−𝜓(𝑧′)‖2
.

D .2 Lower Bounds on the Calibration Function

In this section, we provide two lower bounds on the calibration function. The first one
is given by Theorem 4 .4 and allows to exploit strong convexity of the potential w.r.t an
arbitrary norm in ℋ. The second one is given by Theorem D .4 and provides a tighter
bound but it is special to strong convexity w.r.t the Euclidean norm. The proof of Theo-
rem 4 .4 relies on the following Lemma D .3.

Lemma D .3 (Generic bound on the conditional excess risk). Let ‖ · ‖ be a norm in R𝑘 and
denote by ‖ · ‖* its dual norm. We have that,

𝛿ℓ(𝑧(𝑢), 𝑞) ≤ 2 𝑐𝜓,‖·‖* ‖𝑢− 𝜇(𝑞)‖,

where 𝑐𝜓,‖·‖* = sup𝑧∈𝒵 ‖𝜓(𝑧)‖*.
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Proof. Decompose the excess conditional risk 𝛿ℓ(𝑧(𝑢), 𝑞) into two terms 𝐴 and 𝐵:

𝛿ℓ(𝑧(𝑢), 𝑞) = ⟨𝜓(𝑧(𝑢)), 𝜇(𝑞) − 𝑢⟩
+ ⟨𝜓(𝑧(𝑢)), 𝑢⟩ − ⟨𝜓(𝑧(𝜇(𝑞))), 𝜇(𝑞)⟩
= 𝐴+𝐵.

For the first term, we directly have 𝐴 ≤ sup𝑧∈𝒵 |⟨𝜓(𝑧), 𝜇(𝑞) − 𝑢⟩|. For the second
term, we use the fact that for any given two functions 𝜂, 𝜂′ : 𝒵 → R, it holds that
| min𝑧 𝜂(𝑧) − min𝑧′ 𝜂′(𝑧′)| ≤ sup𝑧 |𝜂(𝑧) − 𝜂′(𝑧)|. As 𝑧(𝜇(𝑞)) minimizes ⟨𝜓(𝑧), 𝜇(𝑞)⟩
and 𝑧(𝑢) minimizes ⟨𝜓(𝑧), 𝑢⟩, we can conclude also that𝐵 ≤ sup𝑧∈𝒵 |⟨𝜓(𝑧), 𝜇(𝑞)−
𝑢⟩|. Hence, we obtain

𝛿(𝑧(𝑢), 𝑞) ≤ 2 sup
𝑧∈𝒵

|⟨𝜓(𝑧), 𝜇(𝑞) − 𝑢⟩| ≤ 2 𝑐𝜙,‖·‖* ‖𝑢− 𝜇(𝑞)‖,

where at the last step we have used Cauchy-Schwarz inequality.

We now proceed to the proof of Theorem 4 .4.

Proof of Theorem 4 .4. Starting from Lemma D .1, we see that the constrains are
⟨𝜓(𝑧(𝑢))−𝜓(𝑧(𝑢′)), 𝑢′⟩ ≥ 𝜀. From the definition of Bregman divergence and strong
convexity we have that if ℎ is (1/𝛽‖·‖)-strongly convex in 𝒟, then

𝐷ℎ(𝑢′, 𝑢) ≥ 1
2𝛽‖·‖

‖𝑢′ − 𝑢‖2, ∀𝑢, 𝑢′ ∈ 𝒟.

From Lemma D .3 we have that ⟨𝜓(𝑧(𝑢))−𝜓(𝑧(𝑢′)), 𝑢′⟩ ≤ 2𝑐𝜓,‖·‖*‖𝑢′ −𝑢‖. Putting
all these things together, we obtain,

𝐷ℎ(𝑢′, 𝑢) ≥ 1
2𝛽‖·‖

‖𝑢′ − 𝑢‖2 ≥ ⟨𝜓(𝑧(𝑢)) − 𝜓(𝑧(𝑢′)), 𝑢′⟩2

8𝑐2
𝜓,‖·‖*

𝛽‖·‖
≥ 𝜀2

8𝑐2
𝜓,‖·‖*

𝛽‖·‖
.

Finally, we present Theorem D .4, which is based on Proposition D .2 and provides a
tighter lower bound under strong convexity w.r.t the Euclidean distance.

Theorem D .4 (Improved lower bound for 𝐿2-strong convexity). If ℎ is (1/𝛽‖·‖2)-strongly
convex w.r.t the 𝐿2 norm ‖ · ‖2, then:

𝜁ℎ(𝜀) ≥ 𝜀2

2𝛽‖·‖2 max𝑧′ ̸=𝑧 ‖𝜓(𝑧) − 𝜓(𝑧′)‖2
2
. (3.22)

Proof.

𝜁ℎ(𝜀) ≥ 1
2𝛽‖·‖2

min
𝑧∈𝒵

𝑑2(ℋ𝜀(𝑧)𝑐 ∩ ℳ,ℋ0(𝑧) ∩ 𝒟)2 (𝐷ℎ(𝑢′, 𝑢) ≥ 1
2𝛽‖·‖2

‖𝑢′ − 𝑢‖2
2)

≥ 1
2𝛽‖·‖2

min
𝑧∈𝒵

𝑑2(ℋ𝜀(𝑧)𝑐,ℋ0(𝑧))2 (minimization on larger domain)

= 1
2𝛽‖·‖2

min
𝑧∈𝒵

(︂
min
𝑧′ ̸=𝑧

𝜀

‖𝜓(𝑧) − 𝜓(𝑧′)‖2
+ 𝛿𝑧,𝑧′

)︂2
(Proposition D .2)
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≥ 1
2𝛽‖·‖2

min
𝑧′ ̸=𝑧

𝜀2

‖𝜓(𝑧) − 𝜓(𝑧′)‖2
2

(𝛿𝑧,𝑧′ ≥ 0)

= 𝜀2

2𝛽‖·‖2 max𝑧′ ̸=𝑧 ‖𝜓(𝑧) − 𝜓(𝑧′)‖2
2
.

Note that the lower bound (3.22) is tighter than the one given by Theorem 4 .4:

𝜀2

2𝛽‖·‖2 max𝑧′ ̸=𝑧 ‖𝜓(𝑧) − 𝜓(𝑧′)‖2
2

≥ 𝜀2

8𝛽‖·‖2 max𝑧∈𝒵 ‖𝜓(𝑧)‖2
2
,

using that ‖𝜓(𝑧) − 𝜓(𝑧′)‖2
2 ≤ ‖𝜓(𝑧)‖2

2 + ‖𝜓(𝑧′)‖2
2 ≤ 2 · max𝑧∈𝒵 ‖𝜓(𝑧)‖2

2.

D .3 Upper bound on the Calibration Function

In this section we prove the result of existence of a quadratic upper bound on 𝜁ℎ. The
idea of the proof is to show that there exists a point 𝑢0 ∈ ℋ0 ∩relint(ℳ) and a continuous
path (𝑢𝜀)𝜀≤𝜀0 such that 𝑢𝜀 ∈ ℋ𝑐

𝜀 ∩ relint(ℳ) with ‖𝑢𝜀 − 𝑢0‖ . 𝜀 for all 𝜀 ≤ 𝜀0. Then, the
norm of the Hessian of ℎ can be uniformly bounded in this compact continuous path
and the result follows. It is important to take this sequence at the relative interior of the
marginal polytope because ‖∇2ℎ‖2 could explode at the boundary. Note that if ℳ is full
dimensional, the result follows easily from Proposition D .2. We begin by constructing
this path as a segment in Lemma D .5.

Lemma D .5. There exists 𝑧 ∈ 𝒵 and a closed segment 𝐼 = hull({𝑢𝜀0 , 𝑢0}) ⊂ relint(ℳ) with
𝑢0 ∈ ℋ0(𝑧) such that the point 𝑢𝜀 = 𝑢0 · (1 − 𝜀/𝜀0) + 𝑢𝜀0 · (𝜀/𝜀0) ∈ 𝐼 satisfies for a constant
𝐶 ∈ R:

𝑢𝜀 ∈ ℋ𝜀(𝑧)𝑐 and ‖𝑢𝜀 − 𝑢0‖2 ≤ 𝐶 · 𝜀, ∀𝜀 ≤ 𝜀0.

Proof. We will first assume ℳ is non full-dimensional. Hence, it lies in an affine
subspace of ℋ. Take 𝑢0 ∈ 𝜕ℋ0(𝑧) ∩ relint(ℳ) and take 𝑧′ ∈ 𝒵 corresponding to a
supporting hyperplane of ℋ0(𝑧) at 𝑢0, i.e, ⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢0⟩ = 0.

Using that ℋ𝜀(𝑧)𝑐 =
⋃︀
𝑧′ ̸=𝑧{⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≥ 𝜀}, we have that

𝑑2(𝑢0,ℋ𝜀(𝑧)𝑐 ∩ ℳ)
= min

𝑧′′ ̸=𝑧
𝑑2(𝑢0,ℳ ∩ {⟨𝜓(𝑧) − 𝜓(𝑧′′), 𝑢⟩ ≥ 𝜀})

≤ 𝑑2(𝑢0,ℳ ∩ {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≥ 𝜀}).

Now, consider a convex neighborhood 𝑈 ⊂ relint(ℳ) of 𝑢0. We have that for
𝜀0 small enough, the distance in ?? is achieved at𝑈 at a point 𝑢𝜀0 ∈ 𝑈 ⊂ relint(ℳ).
Moreover, we have that

𝑢𝜀 = 𝑢0(1 − 𝜀/𝜀0) + 𝑢𝜀0(𝜀/𝜀0) = arg min
𝑢∈𝑈∩{⟨𝜓(𝑧)−𝜓(𝑧′),𝑢⟩≥𝜀}

‖𝑢0 − 𝑢‖2, ∀𝜀 ≤ 𝜀0,

and

‖𝑢𝜀 − 𝑢0‖2
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= 𝑑2(𝑢0, 𝑈 ∩ {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≥ 𝜀})
= 𝐿 · 𝑑2(𝑢0, {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≥ 𝜀})

= 𝐿 · 𝜀

‖𝜓(𝑧) − 𝜓(𝑧′)‖2
= 𝐶 · 𝜀.

For the full-dimensional case, the proof follows the same with 𝐿 = 1.

Proof of Theorem 4 .5. We will show that for a sufficiently small 𝜀0, there exists𝐶 ′ ∈
R such that 𝜁ℎ(𝜀) ≤ 𝐶 ′ · 𝜀2 for all 𝜀 ≤ 𝜀0. First use Lemma D .5 and define
(using that ℎ is twice differentiable) 𝐶𝐼 = sup𝑢′∈𝐼 ‖∇2ℎ(𝑢′)‖2 < +∞ which is
finite because 𝐼 = 𝐼 ⊂ int(ℳ). Then, for all 𝜀 ≤ 𝜀0, the proof follows as:

𝜁ℎ(𝜀) = min
𝑧′∈𝒵

𝐷ℎ(ℋ𝜀(𝑧′)𝑐 ∩ ℳ,ℋ0(𝑧′) ∩ 𝒟)

≤ min
𝑧′∈𝒵

𝐷ℎ(ℋ𝜀(𝑧′)𝑐 ∩ ℳ,ℋ0(𝑧′) ∩ ℳ)

≤ 𝐷ℎ(ℋ𝜀(𝑧)𝑐 ∩ ℳ,ℋ0(𝑧) ∩ ℳ)
≤ 𝐷ℎ(𝑢𝜀, 𝑢0)
≤ 𝐶𝐼 · ‖𝑢𝜀 − 𝑢0‖2

2

≤ 𝐶𝐼 · 𝐶 · 𝜀2 = 𝐶 ′ · 𝜀2.

E Generic Methods for Structured Prediction

In this section we present results on two generic methods for structured prediction: the
quadratic surrogate in Section E .1 and conditional random fields (CRFs) in
Section E .2.

E .1 Quadratic Surrogate

We first provide an exact formula for the calibration function of the quadratic surrogate
when the marginal polytope ℳ is full-dimensional. Note that in this case, one can di-
rectly apply Proposition D .2 if one makes sure that the distances are achieved inside ℳ.

Theorem E .1 (Exact Calibration for Quadratic Surrogate). Let ℎ : 𝒟 = ℋ → R be ℎ(·) =
1
2‖ · ‖2

2 corresponding to the quadratic surrogate. If ℳ is full-dimensional, then

𝜁ℎ(𝜀) = 1
2

(︂
min
𝑧′ ̸=𝑧

𝜀

‖𝜓(𝑧) − 𝜓(𝑧′)‖2
+ 𝛿𝑧,𝑧′

)︂2
, ∀𝜀 ≤ min

𝑧 ̸=𝑧′
‖𝐿𝑧 − 𝐿𝑧′‖∞, (3.23)

where 𝛿𝑧,𝑧′ = 𝑑2(ℋ0(𝑧), {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ = 0}) > 0 if and only if ℋ0(𝑧) ∩ ℋ0(𝑧′) = ∅, and
𝐿𝑧 is the 𝑧-th row of the loss matrix 𝐿 ∈ R𝒵×𝒴 .

Proof. Note that the calibration for the quadratic surrogate is

𝜁ℎ(𝜀) = 1
2 min
𝑧′ ̸=𝑧

𝑑2(ℋ𝜀(𝑧)𝑐 ∩ ℳ,ℋ0(𝑧))2.

Hence, the goal of the proof is to show that 𝑑2(ℋ𝜀(𝑧)𝑐,ℋ0(𝑧)) = 𝑑2(ℋ𝜀(𝑧)𝑐 ∩
ℳ,ℋ0(𝑧)) if 𝜀 ≤ min𝑧 ̸=𝑧′ ‖𝐿𝑧 − 𝐿𝑧′‖∞ and then use Proposition D .2.
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Remember from the proof of Proposition D .2 that the term 𝜀
‖𝜓(𝑧)−𝜓(𝑧′)‖2

is the
distance between the half-spaces {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≤ 0} and {⟨𝜓(𝑧) − 𝜓(𝑧′), 𝑢⟩ ≥
𝜀}. This distance is achieved inside of the marginal polytope if 𝜀 ≤ sup𝜇∈ℳ |{⟨𝜓(𝑧)−
𝜓(𝑧′), 𝜇⟩|. Hence, we have that 𝑑2(ℋ𝜀(𝑧)𝑐 ∩ ℳ,ℋ0(𝑧)) = 𝑑2(ℋ𝜀(𝑧)𝑐,ℋ0(𝑧)) if

𝜀 ≤ min
𝑧′ ̸=𝑧

sup
𝜇∈ℳ

|{⟨𝜓(𝑧) − 𝜓(𝑧′), 𝜇⟩|

= min
𝑧′ ̸=𝑧

sup
𝑞∈Prob(𝒴)

|ℓ(𝑧, 𝑞) − ℓ(𝑧′, 𝑞)|

= min
𝑧′ ̸=𝑧

sup
𝑞∈Prob(𝒴)

|(𝐿𝑧 − 𝐿𝑧′) · 𝑞|

= min
𝑧 ̸=𝑧′

‖𝐿𝑧 − 𝐿𝑧′‖∞.

Now we prove Theorem E .1, which states that if one takes 𝜀 small enough, then the
expression can be simplified by removing the 𝛿𝑧,𝑧′ ’s from Eq. (3.23).

Proof of Theorem 5 .1. Take a 3-tuple (𝑧, 𝑧′, 𝑧′′) such that ℋ0(𝑧) ∩ ℋ0(𝑧′) ̸= ∅ and
ℋ0(𝑧′) ∩ ℋ0(𝑧′′) = ∅. Then, it is clear that there exists 𝜀′

0 > 0 such that for all
𝜀 ≤ 𝜀′

0:
𝜀

‖𝜓(𝑧) − 𝜓(𝑧′)‖2
≤ 𝜀

‖𝜓(𝑧′) − 𝜓(𝑧′′)‖2
+ 𝛿𝑧′,𝑧′′ ,

because 𝛿𝑧′,𝑧′′ > 0 as ℋ0(𝑧′) ∩ ℋ0(𝑧′′) = ∅. Taking 𝜀0 as the minimum of the 𝜀′
0’s

over all 3-tuples of this type gives the desired result.

Kernel ridge regression as an estimator independent of the affine decomposition of
𝐿. It was shown by Ciliberto et al. (2016) that if one minimizes the expected risk of
the quadratic surrogate using kernel ridge regression, then one can construct an estima-
tor independent of the affine decomposition of the loss. Indeed, given 𝑛 data points
{(𝑥𝑖, 𝑦𝑖)}𝑖≤𝑛 and a kernel 𝑘 : 𝒳 × 𝒳 → R with corresponding RKHS 𝒢, the kernel
ridge regression estimator ̂︀𝑔𝑛 ∈ 𝒢 ⊗ ℋ of 𝑔⋆ can be written in closed form as ̂︀𝑔𝑛(·) =∑︀𝑛
𝑖=1 𝛼𝑖(·)𝜓(𝑦𝑖) where 𝛼(𝑥) = (𝛼1(𝑥), . . . , 𝛼𝑛(𝑥)) ∈ R𝑛 is defined by 𝛼(𝑥) = (𝐾 +

𝑛𝜆𝐼)−1𝐾𝑥 with𝐾 ∈ R𝑛×𝑛 is defined by𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) and𝐾𝑥 = (𝑘(𝑥, 𝑥1), . . . , 𝑘(𝑥, 𝑥𝑛)) ∈
R𝑛. Note that ̂︀𝑔𝑛 is linear in the embeddings 𝜙(𝑦𝑖)𝑖≤𝑛 and the link function is the identity,
so the estimator is independent of the choice of the embedding of the loss because

̂︀𝑓(𝑥) = arg min
𝑧∈𝒵

⟨𝜓(𝑧), 𝑡−1(̂︀𝑔(𝑥)⟩ = arg min
𝑧∈𝒵

𝑛∑︁
𝑖=1

𝛼𝑖(𝑥)𝐿(𝑧, 𝑦𝑖).

In the following, we compare our calibration results on the quadratic surrogate with
the work by Osokin et al. (2017).

Comparison with related work on the quadratic surrogate for structured prediction.
In the work by Osokin et al. (2017), they study the calibration properties of a quadratic-
type surrogate, which is constructed differently than ours. In order to understand their
construction under our framework, let’s consider the following decomposition of the
loss function, 𝐿(𝑧, 𝑦) = ⟨𝜓(𝑧), 𝜓(𝑦)⟩ = ⟨𝑒𝑧, (𝐿 · 𝑒𝑦)⟩, where 𝐿 is the loss matrix. Note
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that in this case the quadratic surrogate associated to this decomposition is 𝑆(𝑣, 𝑦) =
1
2‖𝑣 − 𝐿:,𝑦‖2

2 with decoding 𝑑(𝑣) = arg min𝑧∈𝒵 𝑣𝑧 . As 𝑣 ∈ R𝒴 can be an exponentially
large vector, they consider the parametrization 𝑣 = 𝐹 · 𝑤, where 𝐹 ∈ R𝒴×𝑘 is a score
matrix and 𝑤 ∈ R𝑘, where 𝑘 can be potentially much smaller than 𝒴 . The surrogate loss
they consider is

𝑆(𝑤, 𝑦) = 1
2‖𝐹 · 𝑤 − 𝐿:,𝑦‖2

2, (3.24)

where 𝐿:,𝑦 is the 𝑦-th column of 𝐿. In their work they normalize the surrogate loss by
|𝒴|, but we remove this factor in order to properly compare calibration functions5. It is
important to note that this loss does not fall into our framework for 𝐹 different than the
identity. They provide the following lower bound on the calibration function

𝜁(𝜀) ≥ 𝜀2

2 max𝑧′ ̸=𝑧 ‖𝑃𝐹 (𝑒𝑧 − 𝑒𝑧′)‖2
2
, (3.25)

where 𝑃𝐹 = 𝐹 (𝐹 𝑇𝐹 )†𝐹 𝑇 is the orthogonal projection to the subspace generated by the
columns of 𝐹 . In order to compare with our work, we follow (Nowak et al., 2019) and
consider a decomposition 𝐿 = 𝐹 ·𝑈𝑇 with 𝐹 ∈ R𝒵×𝑘, 𝑈 ∈ R𝒴×𝑘 and 𝑆(𝑣, 𝑦) = 1

2‖𝑣−𝑈𝑦‖2
2

with decoding 𝑑(𝑣) = arg min𝑧∈𝒵 𝐹𝑧 · 𝑣, where 𝐹𝑧 = 𝜓(𝑧) = 𝐹 𝑇 · 𝑒𝑧 and 𝑈𝑦 = 𝜙(𝑦) =
𝑈𝑇 · 𝑒𝑦. For this surrogate method, Theorem D .4 provides the following lower bound:

𝜁ℎ(𝜀) ≥ 𝜀2

2 max𝑧′ ̸=𝑧 ‖𝐹 𝑇 (𝑒𝑧 − 𝑒𝑧′)‖2
2
. (3.26)

Note the similarity between expressions (3.26) and (3.25). In particular, if 𝐹 ∈ R𝒴×𝒴 is
the identity, (so that surrogate (3.24) enters our framework), both expressions are equal.
For other𝐹 ’s, both calibration functions are not comparable since their surrogate is larger
than ours. For instance, if one takes 𝐹 ∈ R𝒵×𝑘 with the smallest 𝑘 such that 𝐿 = 𝐹 · 𝑈𝑇
for the Hamming loss, their calibration function is proportional to |𝒴|

𝑘 (Osokin et al.,
2017), while ours is linear in 𝑘 (see Proposition H .1). Indeed, their surrogate is larger by
construction because it is defined in R𝒴 , while ours is defined in R𝑘. It is important to
note that our surrogates are the ones used in practice while theirs require a summation
over |𝒴| elements (see (3.24)), which in structured prediction is in general exponentially
large.

E .2 Conditional Random Fields

This section has two parts. In the first one, we show how changing the decoding pro-
cedure in CRFs from MAP assignment (what it is used in practice) to the decoding
we propose, it is possible to calibrate CRFs to any discrete loss with affine decompo-
sition 𝐿(𝑧, 𝑦) = ⟨𝜓(𝑧), 𝜙(𝑦)⟩ + 𝑐, where 𝜙(𝑦) are the sufficient statistics of the CRF. At the
second part, we prove the convex lower bound on the calibration function.

On calibration of CRFs and MAP assignment. Using MAP as a decoding mapping
does not calibrate CRFs to any discrete loss in general. This is not the case for multi-
nomial logistic regression (which is the equivalent method in multiclass classification),

5If you multiply a surrogate by a factor, the associated calibration function gets multiplied by the same
factor.
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Figure 3.3: MAP assignment can be written as ̂︀𝑓MAP(𝑥) = 𝜙−1 (lim𝛾→∞ ∇ℎ*(𝛾̂︀𝑔(𝑥))),
which corresponds to continuously move the vector of predicted marginals ∇ℎ*(̂︀𝑔(𝑥)) to
a vertex of the marginal polytope lim𝛾→∞ ∇ℎ*(𝛾̂︀𝑔(𝑥)). The decoding 𝑑ℎ,∇ℎ corresponds
to assign to ∇ℎ*(̂︀𝑔(𝑥)) an output element 𝑧 ∈ 𝒵 such that ∇ℎ*(̂︀𝑔(𝑥)) ∈ ℋ0(𝑧).

where our decoding corresponding to the multiclass 0-1 loss is exactly MAP assignment
(see Section G .2). A way to understand the difference between both decoding mappings
is to write MAP assignment in terms of ∇ℎ* as:

̂︀𝑓MAP(𝑥) = arg max
𝑦∈𝒴

⟨𝜙(𝑦), ̂︀𝑔(𝑥)⟩

= 𝜙−1
(︃

lim
𝛾→∞

arg max
𝜇∈ℳ

{⟨𝛾̂︀𝑔(𝑥), 𝜇⟩ − ℎ(𝜇)}
)︃

= 𝜙−1
(︂

lim
𝛾→∞

∇ℎ*(𝛾̂︀𝑔(𝑥))
)︂
.

With this form we can compare it to the decoding of our framework which is

̂︀𝑓(𝑥) = arg min
𝑧∈𝒵

⟨𝜓(𝑧),∇ℎ*(̂︀𝑔(𝑥))⟩.

See Figure 3.3 with explanation.
Finally, we provide the proof of the lower bound on 𝜁ℎ given by Theorem 4 .4, which

is based on the computation of the strong convexity constant w.r.t the Euclidean distance
of the negative maximum-entropy potential.

Proof of Proposition 5 .2. Recall that the strong convexity constant of a Legendre-
type function ℎ w.r.t a norm ‖ · ‖ is the inverse of the Lipschitz constant of ∇ℎ*

w.r.t ‖ · ‖*. In this case, ℎ* corresponds to the partition function

ℎ*(𝑣) = log
(︁ ∑︁
𝑦′∈𝒴

exp(⟨𝑣, 𝜙(𝑦′)⟩
)︁
,

and the Hessian corresponds to the Fisher Information matrix which in this case
is equal to the covariance Σ(𝑣) of 𝜙(𝑦) under 𝑝𝜙(·|𝑣), where

𝑝𝜙(·|𝑣) = exp ⟨𝜙(𝑦), 𝑣⟩∑︀
𝑦′∈𝒴 exp ⟨𝜙(𝑦′), 𝑣⟩

,
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is the exponential family with sufficient statistics𝜙 and parameter vector 𝑣. Hence,
the strong convexity constant of ℎ under the Euclidean norm is the maximal spec-
tral norm of the covariance, which can be upper bounded as

sup
𝑣∈𝒱

‖Σ(𝑣)‖2 = sup
𝑣∈𝒱

⃦⃦⃦⃦
⃦⃦∑︁
𝑦∈𝒴

𝑞𝜙(𝑦|𝑣) · 𝜙(𝑦)𝜙(𝑦)𝑇
⃦⃦⃦⃦
⃦⃦

2

≤ sup
𝑞∈Prob(𝒴)

⃦⃦⃦⃦
⃦⃦∑︁
𝑦∈𝒴

𝑞(𝑦) · 𝜙(𝑦)𝜙(𝑦)𝑇
⃦⃦⃦⃦
⃦⃦

2
= sup

𝑦∈𝒴
‖𝜙(𝑦)‖2

2.

F Binary Classification

We will present the cost-sensitive case to highlight the fact that a 𝜙-calibrated loss can be
calibrated to multiple losses. In this case 𝒵 = 𝒴 = {−1, 1} and consider the following
cost-sensitive loss 𝐿 defined as 𝐿(−1, 1) = 2 − 𝑐, 𝐿(1,−1) = 𝑐 and 0 otherwise with
0 < 𝑐 ≤ 1. We consider the following embeddings 𝜓(1) = (0, 𝑐)𝑇 , 𝜓(−1) = (2 − 𝑐, 0)𝑇 ,
𝜙(1) = (1, 0)𝑇 , 𝜙(−1) = (0, 1)𝑇 . In this case ℋ = R2, ℳ = Δ2, 𝑟 = 1, 𝑘 = 2. Hence, the
marginal polytope is not full-dimensional. The decoding corresponds to 𝑑(𝑣) = sign(2𝑞−
𝑐), where we will abuse notation and set 𝑞 = 𝑞(𝑌 = 1) = 𝜇1 = E𝑌∼𝑞 𝜙1(𝑌 ).

We will focus on surrogate margin losses (Bartlett et al., 2006), which are losses of the
form 𝑆(𝑣, 𝑦) = Φ(𝑦𝑣) with 𝒱 = R, where Φ : R → R is a non-increasing function with
Φ(0) = 1. The link function is computed as

𝑡(𝑞) = arg min
𝑣∈𝒱

E𝑌∼𝑞 Φ(𝑌 𝑣). (3.27)

Note that it is always the case that the link is symmetric around 𝑞 = 1/2, i.e., 𝑡(𝑞)(2𝑞 −
1) > 0 for 𝑞 ̸= 1/2. Hence, in the non-cost-sensitive case (𝑐 = 1), the decoding can be
simplified to 𝑑(𝑣) = sign(2𝑡−1(𝑣) − 1) = sign(𝑣). Moreover, the potential function can be
computed as

− ℎ(𝑞) = min
𝑣∈𝒱

E𝑌∼𝑞 Φ(𝑌 𝑣), (3.28)

and it is also symmetric around 1/2. In the following, we prove that logistic, exponential
and square margin losses are 𝜙-calibrated, squared hinge and modified Huber satisfy
Eq. (3.27) for injective 𝑡 : Δ2 → 𝒱 but don’t have a BD representation extension to 𝒱 , and
hinge loss does not satisfy Eq. (3.27) because the corresponding 𝑡 is not injective.

Here we present those examples and provide the corresponding BD representation (if
applicable) and the calibration function using Proposition F .3, which states that 𝜁ℎ(𝜀) =
ℎ((1 + 𝜀)/2) − ℎ(1/2) when 𝑐 = 1.

Remark F .1 (Notation). Throughout this section, we will identify Δ2 with [0, 1] and
affhull(Δ2) to R by projecting onto the first coordinate.
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Logistic. The logistic loss corresponds to Φ(𝑢) = log(1 + exp(−𝑢)).

𝒟 = [0, 1], ℎ(𝑞) = − Ent(𝑞), 𝑡(𝑞) = log
(︂

𝑞

1 − 𝑞

)︂
, 𝜁ℎ(𝜀) = 1 − Ent

(︂1 + 𝜀

2

)︂
.

The link is the canonical link and corresponds to 𝑡(𝑞) = ℎ′(𝑞) = log(𝑞/(1 − 𝑞)) with
inverse 𝑡−1(𝑣) = (ℎ*)′(𝑣) = (1 + 𝑒−𝑣)−1.

Exponential. The exponential loss corresponds to Φ(𝑢) = exp(−𝑢).

𝒟 = [0, 1], Φ(𝑢) = exp(−𝑢), ℎ(𝑞) = −2
√︁
𝑞(1 − 𝑞)

𝑡(𝑞) = 1
2 log

(︂
𝑞

1 − 𝑞

)︂
, 𝜁ℎ(𝜀) = 1 −

√︀
1 − 𝜀2.

The link corresponds to 𝑡(𝑞) = 1
2 log(𝑞/(1 − 𝑞)) with inverse 𝑡−1(𝑣) = (1 + 𝑒−2𝑣)−1. It

does not correspond to the canonical link, which is (ℎ*)′(𝑣) = 1
2

(︁
1 − 𝑢√

4+𝑢2

)︁
and ℎ′(𝑞) =

1−2𝑞√
𝑞(1−𝑞)

.

Square. The square loss corresponds to Φ(𝑢) = (1 − 𝑢)2.

𝒟 = R, ℎ(𝑞) = −4𝑞(1 − 𝑞), 𝑡(𝑞) = 2𝑞 − 1, 𝜁ℎ(𝜀) = 𝜀2.

The link corresponds to 𝑡(𝑞) = 2𝑞− 1 with inverse 𝑡−1(𝑣) = (𝑣+ 1)/2. It does correspond
to the canonical link up to a multiplicative factor because (ℎ*)′(𝑣) = (4+𝑣)/8 and ℎ′(𝑝) =
4(2𝑞 − 1).

Squared Hinge. The squared hinge loss corresponds to Φ(𝑢) = (max(1 − 𝑢, 0))2. The
link and potential is the same in Δ2 as the square margin loss. However, in this case the
excess conditional surrogate risk reads (see Zhang (2004b))

𝛿𝑠(𝑣, 𝑞) = (2𝑞 − 1 − 𝑣)2 − 𝑞max(𝑣 − 1, 0)2 − (1 − 𝑞) min(0, 𝑣 + 1)2.

We know that for 𝑣 ∈ 𝑡(Δ2) = [−1, 1], 𝛿𝑠(𝑣, 𝑞) = 4(𝑞 − 𝑡−1(𝑣))2 = 𝐷ℎ(𝑞, 𝑡−1(𝑣)) as the
square loss. However this BD representation can’t be extended to 𝒱 = R (see Proposi-
tion F .2).

Modified Huber loss. The Modified Huber loss (Zhang, 2004b) corresponds to

Φ(𝑢) =

⎧⎪⎨⎪⎩
0 if 𝑢 ≥ 1
−4𝑢 if 𝑢 ≤ −1
(1 − 𝑢)2 otherwise

.

The excess conditional surrogate risk reads (see Zhang (2004b))

𝛿𝑠(𝑣, 𝑞) = (2𝑞 − 1 − 𝑇 (𝑣))2 + 2|2𝑞 − 1 − 𝑇 (𝑣)||𝑞 − 𝑇 (𝑣)|,

where 𝑇 (𝑣) = min(max(𝑣,−1), 1). As the squared hinge, it has the same BD representa-
tion as the squared margin loss in 𝑡(Δ2) = [−1, 1] but it can’t be extended to 𝒱 = R (see
Proposition F .2).
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Hinge. The hinge loss corresponds to Φ(𝑢) = max(1 − 𝑢, 0). We have that

𝑡(𝑞) = sign(2𝑞 − 1).

Note that in this case 𝑡 is not injective.

Proposition F .2. The Bregman divergence representation of the squared hinge can not be ex-
tended to R.

Proof. Observe that 𝛿𝑠(𝑣, 1) = 0 for 𝑣 ≥ 1 and so for any right continuous exten-
sion of 𝑡(𝑞) = 2𝑞−1 to [1,+∞), 𝛿𝑠(𝑡(𝑞′), 1) = 0 for 𝑞′ ≥ 1. In particular, this means
that the extension of ℎ must be linear for all 𝑞′ ≥ 1. And so 𝛿𝑠(𝑣, 𝑞) should be
independent of 𝑣 ≥ 1 for any 𝑞 < 1. However, this is not the case. Hence, squared
hinge does not have a BD representation extension to 𝒱 = R.

Finally, we prove the form of the calibration function for binary margin losses, which
can be found at Bartlett et al. (2006) for 𝑐 = 1 and at Scott (2012) for the asymmetric case.

Proposition F .3 (Binary 0-1 calibration function). The calibration function for a 𝜙-calibrated
margin loss can be written as 𝜁ℎ(𝜀) = min𝛼∈{−𝜀,+𝜀}𝐷ℎ((𝑐+ 𝛼)/2, 𝑐). Moreover, if 𝑐 = 1, then
the calibration function simplifies to 𝜁ℎ(𝜀) = ℎ

(︁
1+𝜀

2

)︁
− ℎ

(︁
1
2

)︁
.

Proof. Note that ⟨𝜓(1) − 𝜓(−1), 𝑢⟩ = 𝑐𝑢2 − (2 − 𝑐)𝑢1. Hence,

ℋ𝜀(1) = {𝑢 ∈ R2 | 𝑐𝑢2 − (2 − 𝑐)𝑢1 ≤ 𝜀}.

Taking the intersection with ℳ gives

ℋ𝜀(1) ∩ Δ2 = {𝑞 ∈ [0, 1] | 𝑐− 2𝑞 ≤ 𝜀} =
[︂(︂
𝑐− 𝜀

2

)︂
, 1
]︂
.

Analogously, we obtain ℋ𝜀(−1) = {𝑢 ∈ R2 | (2−𝑐)𝑢1−𝑐𝑢2 ≤ 𝜀} and ℋ𝜀(−1)∩Δ2 =[︀
0,
(︀
𝑐+𝜀

2
)︀]︀

. Recall that 𝒟 ⊇ [0, 1]. We obtain

𝐷ℎ(ℋ𝜀(1)𝑐∩ Δ2,ℋ0(1) ∩ 𝒟) = 𝐷ℎ([0, (𝑐− 𝜀)/2], [𝑐/2,∞) ∩ 𝒟) = 𝐷ℎ((𝑐− 𝜀)/2, 𝑐/2),

and

𝐷ℎ(ℋ𝜀(−1)𝑐∩Δ2,ℋ0(−1)∩𝒟) = 𝐷ℎ([(𝑐+𝜀)/2, 1],𝒟∩(−∞, 𝑐/2]) = 𝐷ℎ((𝑐+𝜀)/2, 𝑐/2).

Hence, we obtain the desired result:

𝜁ℎ(𝜀) = min
𝛼∈{−𝜀,+𝜀}

𝐷ℎ((𝑐+ 𝛼)/2, 𝑐/2).

Finally, setting 𝑐 = 1 gives 𝜁ℎ(𝜀) = min𝛼∈{−𝜀,+𝜀}𝐷ℎ((1+𝜀)/2, 1/2). Note that if ℎ is
convex differentiable and symmetric around 1/2, then ℎ((1 + 𝜀)/2) = ℎ((1 − 𝜀)/2)
and ℎ′(1/2) = 0, which simplifies the expression to

𝜁ℎ(𝜀) = ℎ

(︂1 + 𝜀

2

)︂
− ℎ

(︂1
2

)︂
.
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G Multiclass Classification

In this case, the loss considered is the 0-1 loss with 𝒵 = 𝒴 = {1, . . . , 𝑘}. The 0-1 loss
can be written as 𝐿(𝑧, 𝑦) = 1 − ⟨𝑒𝑧, 𝑒𝑦⟩, where 𝑒𝑧, 𝑒𝑦 ∈ R𝑘 are vectors of the natural basis
in R𝑘. Setting 𝜓(𝑧) = −𝑒𝑧 , 𝜙(𝑦) = 𝑒𝑦, the marginal polytope ℳ = Δ𝑘 corresponds
to the simplex in R𝑘, 𝑟 = 𝑘 − 1, which means that the marginal polytope is not full-
dimensional. We write 𝑞𝑗 = 𝜇𝑗 = 𝑞(𝑌𝑗 = 1). The decoding mapping can be written
as 𝑑(𝑣) = arg max𝑗∈[𝑘] 𝑡

−1
𝑗 (𝑣). See Figure 3.4 for a visualization of the calibration sets.

G .1 One-vs-all Method

The one-vs-all method (Zhang, 2004a) corresponds to 𝑆(𝑣, 𝑦) = Φ(𝑣𝑦) +
∑︀𝑘
𝑗 ̸=𝑦 Φ(−𝑣𝑗) with

𝒱 = R𝑘. The surrogate conditional risk reads 𝑠(𝑣, 𝑞) =
∑︀𝑘
𝑗=1{𝑞𝑗Φ(𝑣𝑗) + (1 − 𝑞𝑗)Φ(−𝑣𝑗)}.

Note that one can compute ℎ and 𝑡 as in (3.27) and (3.28) independently for each coordi-
nate. Hence, we obtain

ℎ(𝑞) =
𝑘∑︁
𝑗=1

ℎ̄(𝑞𝑗) 𝑡(𝑞) = (𝑡(𝑞𝑗))𝑘𝑗=1, (3.29)

where ℎ̄, 𝑡 are the potential and the link corresponding to the associated margin loss. As
the individual link 𝑡 is invertible and 𝑡(𝑞)(2𝑞 − 1) > 0 for 𝑞 ̸= 1/2, it means that it is
increasing and so 𝑡 = (𝑡)𝑘𝑗=1 is order preserving. This implies that the decoding can be
simplified to 𝑑(𝑣) = arg max𝑗∈[𝑘] 𝑣𝑗 . Note that if the margin loss is 𝜙-calibrated, then the
associated one-vs-all method is 𝜙-calibrated for multiclass with ℎ, 𝑡 given by (3.29) and
𝒟 = �̄�𝑘, where �̄� is the (extended) domain of the margin loss. Note that in this case the
marginal polytope is always a strict subset of 𝒟: Δ𝑘 ( [0, 1]𝑘 ⊆ �̄�𝑘.

We know provide the proof of Proposition 5 .3, which computes the exact calibration
function for the one-vs-all method.

Proof of Proposition 5 .3. Note that by exploiting the symmetries of the problem,
one can considerably simplify it to

𝜁ℎ(𝜀) = 𝐷ℎ({𝑝2 ≥ 𝑝1 + 𝜀, 𝑝2 ≥ 𝑝𝑗} ∩ Δ𝑘, {𝑞1 ≥ 𝑞2} ∩ �̄�𝑘). (3.30)

Indeed, as all of the quantities in Eq. (3.10) are invariant by permutation, hence,
one can get rid of the minimization over 𝒵 and set 𝑧 = 1. Then, also by symmetry,
one can reduce to problem to the comparison between 𝑧 = 1 and 𝑧 = 2.

The idea of the proof is to show that the minimizer of the following minimiza-
tion problem

min
𝑞1≥𝑞2

𝑝2≥𝑝1+𝜀

𝐷ℎ(𝑝, 𝑞) (3.31)

is achieved at the points 𝑞⋆ = (1/2, 1/2, 0, . . . , 0) and 𝑝⋆ = ((1+𝜀)/2, (1−𝜀)/2, 0, . . . , 0).
Then, as the constraints in Eq. (3.31) are included in Eq. (3.30) and 𝑞⋆ ∈ ℋ0(1) ∩
�̄�𝑘 ⊂ {𝑞1 ≥ 𝑞2} and 𝑝⋆ ∈ ℋ𝜀(1)𝑐 ∩ Δ𝑘 ⊂ {𝑝2 ≥ 𝑝1 + 𝜀}, the result follows.
Note that as 𝐷ℎ(𝑝, 𝑞) =

∑︀𝑘
𝑗=1𝐷ℎ̄(𝑝𝑗 , 𝑞𝑗), we already have 𝑝⋆𝑗 = 𝑞⋆𝑗 = 0 for 𝑗 =

3, . . . , 𝑘. Hence, we reduce the problem to minimizing 𝐷ℎ̄(𝑝1, 𝑞1) + 𝐷ℎ̄(𝑝2, 𝑞2) in
{𝑞1 ≥ 𝑞2} ∩ {𝑝2 ≥ 𝑝1 + 𝜀}. Note that the minimum must be necessarily achieved
at the boundary. So by setting 𝑞 = 𝑞1 = 𝑞2 and 𝑝 = 𝑝1, one has the following
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𝜀

𝑦 = 2 𝑦 = 3

𝑦 = 1

ℋ0(1) ∩ Δ3

ℋ𝜀(1)𝑐 ∩ Δ3

Figure 3.4: Illustration of calibration sets for the multiclass with 0-1 loss and 𝑘 = 3 labels.

unconstrained problem 𝐷ℎ̄(𝑝, 𝑞) +𝐷ℎ̄(𝑝+ 𝜀, 𝑞). Now, using the fact that ℎ̄ is sym-
metric around 1/2 and its Hessian is non-decreasing in �̄� ∩ [1/2,∞), we have that
𝑞 = 1/2 and 𝑝 = (1 − 𝜀)/2 is a minimizer. Hence, the result follows.

Comparison with lower bounds. Note that if ℎ̄ is (1/𝛽‖·‖2)-strongly convex in �̄�, then ℎ
is (1/𝛽‖·‖2)-strongly convex in 𝒟 = �̄�𝑘. Moreover, using that max𝑧′ ̸=𝑧 ‖𝑒𝑧 − 𝑒𝑧′‖2

2 = 2,
Theorem D .4 gives

𝜁ℎ(𝜀) ≥ 𝜀2

4𝛽 .

Note that for square margin loss, where ℎ̄(𝑞) = −4𝑞(1 − 𝑞) with 𝛽‖·‖2 = 1
8 , this lower

bound is tight.

G .2 Multinomial Logistic

Another important example is the multinomial logistic surrogate, which corresponds to
the loss (3.14) with ℳ = Δ𝑘, which is 𝑆(𝑣, 𝑦) = log(

∑︀𝑘
𝑗=1 exp(𝑣𝑗)) − 𝑣𝑦 where 𝒱 =

{𝑣 ∈ R𝑘 |
∑︀𝑘
𝑗=1 𝑣𝑗 = 0} ∼= R𝑘−1. In this case 𝒟 = Δ𝑘, 𝑡−1

𝑗 (𝑣) = exp(𝑣𝑗)∑︀𝑘

ℓ=1 exp(𝑣ℓ)
and so the

decoding is also simplified to 𝑑(𝑣) = arg max𝑗∈[𝑘] 𝑣𝑗 by taking the logarithm coordinate-
wise, which is a monotone function.

Lower bound on calibration function. Note that the entropy is 1-strongly convex w.r.t
the ‖·‖1 norm over the simplex. As ‖·‖∞ is the associated dual norm and max𝑧 ‖𝜓(𝑧)‖∞ =
max𝑧 ‖𝑒𝑧‖∞ = 1, Theorem 4 .4 gives

𝜁ℎ(𝜀) ≥ 𝜀2

8 .
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H Multilabel Classification with Hamming Loss

In this case 𝒵 = 𝒴 = {−1, 1}𝑘. We have that

𝐿(𝑧, 𝑦) = 1
𝑘

𝑘∑︁
𝑗=1

1(𝑧𝑗 ̸= 𝑦𝑗) = 1
2 +

𝑘∑︁
𝑗=1

𝜓𝑗(𝑧)𝜙𝑗(𝑦), (3.32)

with 𝜓(𝑧) = −𝑧/(2𝑘) and 𝜙(𝑦) = 𝑦. In this case ℳ = [−1, 1]𝑘 which corresponds to the
cube.

H .1 Independent Classifiers

The surrogates considered are 𝑆(𝑣, 𝑦) =
∑︀𝑚
𝑗=1 Φ(𝑦𝑗𝑣𝑗), with 𝒱 = R𝑘. The surrogate

conditional risk reads 𝑠(𝑣, 𝑞) =
∑︀𝑘
𝑗=1{𝜇𝑗+1

2 Φ(𝑣𝑗) + 1−𝜇𝑗

2 Φ(−𝑣𝑗)}. Note the similarity
with the one-vs-all method from multiclass classification. If ℎ̄ and 𝑡 are the potential and
link for the associated margin loss, we have:

ℎ(𝜇) =
𝑘∑︁
𝑗=1

ℎ̄

(︂
𝜇𝑗 + 1

2

)︂
𝑡(𝜇) =

(︂
𝑡

(︂
𝜇𝑗 + 1

2

)︂)︂𝑘
𝑗=1

. (3.33)

The decoding simplifies to 𝑑(𝑣) = (sign(𝑣𝑗))𝑘𝑗=1. The calibration function 𝜁ℎ can be com-
puted exactly and it is 𝑘 times the calibration function of the margin loss: 𝜁ℎ(𝜀) = 𝑘 ·𝜁ℎ̄(𝜀).

Proposition H .1 (Calibration function for Hamming loss). The calibration function for the
Hamming loss is

𝜁(𝜀) = 𝑘 · 𝜁ℎ̄(𝜀).

Proof. The proof consists of two parts. First, we show that the lower bound 𝜁ℎ(𝜀) ≥
𝑘 ·𝜁ℎ̄(𝜀) holds, and then we prove that it is actually tight, by showing it is achieved
at a pair of points on the minimization problem (3.10). The excess conditional risk
can be written as 𝛿ℓ(𝑧, 𝑞) = 1

𝑘

∑︀
𝑗|𝑧𝑗 ̸=𝑧𝑗(𝜇) |𝜇𝑗 |, where 𝑧(𝜇) denotes the optimal pre-

diction. Note that |𝜇𝑗 | is the excess conditional risk of the binary 0-1 loss, hence,
𝜁ℎ̄(|𝜇𝑗 |) ≤ 𝛿𝑠𝑗(𝑡(𝜇𝑗), 𝑞), where 𝛿𝑠𝑗(𝑣𝑗 , 𝑞) = 𝜇𝑗+1

2 Φ(𝑣𝑗) + 1−𝜇𝑗

2 Φ(−𝑣𝑗) is the excess
surrogate conditional risk of the 𝑗-th independent classifier. Hence,

𝜁ℎ̄(𝛿ℓ(𝑑(𝑣), 𝑞)) = 𝜁ℎ̄

⎛⎝1
𝑘

∑︁
𝑗|𝑧𝑗 ̸=𝑑𝑗(𝑣)

|2𝑡−1(𝑣𝑗) − 1|

⎞⎠ (𝜇𝑗 = 2𝑡−1(𝑣𝑗) − 1)

≤ 1
𝑘

∑︁
𝑗|𝑧𝑗 ̸=𝑑𝑗(𝑣)

𝜁ℎ̄(|2𝑡−1(𝑣𝑗) − 1|) (Jensen ineq.)

≤ 1
𝑘

∑︁
𝑗|𝑧𝑗 ̸=𝑑𝑗(𝑣)

𝛿𝑠𝑗(𝑣𝑗 , 𝑞) (𝜁ℎ̄calibrates single classifiers.)

≤ 1
𝑘
𝛿𝑠(𝑣, 𝑞).

Hence, 𝜁ℎ(𝜀) ≥ 𝑘·𝜁ℎ̄(𝜀). To prove tightness, consider the point 𝜇0 = 0 = (0)𝑘𝑗=1 and
the point 𝜇𝜀 = (−𝜀)𝑘𝑗=1 for all 0 ≤ 𝜀 ≤ 1. If we denote by 1 the output (1, . . . , 1) ∈
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𝒵 , we have that 𝜇0 ∈ ℋ0(1)∩ℳ ⊂ ℋ0(1)∩𝒟 and 𝜇𝜀 ∈ ℋ𝜀(1)𝑐∩ℳ for all 0 ≤ 𝜀 ≤ 1
because

ℋ𝜀(1) =

⎧⎨⎩𝑢 ∈ ℋ | − 1
𝑘

∑︁
𝑗 | 𝑏𝑗=1

𝑢𝑗 ≤ 𝜀, ∀𝑏 ∈ {0, 1}𝑘
⎫⎬⎭ .

Moreover, its Bregman divergence is 𝐷ℎ(𝜇𝜀, 𝜇0) =
∑︀𝑘
𝑗=1𝐷ℎ̄(((𝜇𝜀)𝑗 + 1)/2, (1 +

(𝜇0)𝑗)/2) =
∑︀𝑘
𝑗=1𝐷ℎ̄((1 − 𝜀)/2, 1/2) = 𝑘 · 𝜁ℎ̄(𝜀). Hence, the lower bound is tight.

I Ordinal Regression

In this case 𝒵 = 𝒴 = {1, . . . , 𝑘} and these are ordinal output variables instead of cate-
gorical. Which means that there is an intrinsic order between them: 1 ≺ · · · ≺ 𝑘. This is
captured by the absolute error loss function defined as

𝐿(𝑧, 𝑦) = |𝑧 − 𝑦|.

Note that in this case the loss matrix is full-rank, because it is a Toeplitz matrix. Hence,
it can be seen as a “structured” cost-sensitive multiclass loss.

Let’s consider the following embedding 𝜙(𝑦) = (2 · 1(𝑦 ≥ 𝑗) − 1)𝑘−1
𝑗=1 ∈ {−1, 1}𝑘−1 for

both 𝒵 and 𝒴 . In this embedding, we have that

𝐿(𝑧, 𝑦) = 𝑘 − 1
2 − 1

2

𝑘−1∑︁
𝑗=1

𝜙𝑗(𝑧)𝜙𝑗(𝑦). (3.34)

Comparing the expression above with the affine decomposition of the Hamming loss
from the section above, we observe that Eq. (3.32) and Eq. (3.34) are proportional by a
factor 𝑘 − 1.

The decoding from ℋ can be written as

𝑧(𝜇) = 1 +
𝑘−1∑︁
𝑗=1

1(𝜇𝑗 ≥ 0) ∈ 𝒵.

The excess conditional risk is

𝛿ℓ(𝑧, 𝑞) =
∑︁

𝑧(𝜇(𝑞))<𝑗≤𝑧
𝑧<𝑗≤𝑧(𝜇(𝑞))

|𝜇𝑗(𝑞)|.

By choosing an embedding 𝜙 different than the canonical one used in multiclass clas-
sification (𝜙(𝑦) = 𝑒𝑦), we have performed an affine transformation to the simplex in 𝑘
dimensions and project it inside the cube [−1, 1]𝑘−1. What we have gained is that under
this transformation the calibration sets have the same structure as for the Hamming loss
for 𝑘 − 1 labels. Note however, that the marginal polytope for the Hamming loss is the
entire cube, while here is a strict subset of the cube. See Figure 3.5 for the calibration sets
ℋ0(𝑧) for 𝑘 = 3 using the canonical embedding.
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𝑦 = 1 𝑦 = 3

𝑦 = 2

ℋ0(2)∩Δ3

ℋ0(1)∩Δ3 ℋ0(3)∩Δ3

Figure 3.5: Partition of the simplex corresponding to the absolute loss for ordinal regres-
sion with 𝒵 = 𝒴 = {1, 2, 3}.

I .1 All thresholds (AT)

AT methods (Lin and Li, 2006) correspond to apply an independent classifier (see Sec-
tion H .1) to the embedding 𝜙. It corresponds to

𝑆(𝑣, 𝑦) =
𝑘−1∑︁
𝑗=1

Φ(𝜙𝑗(𝑦)𝑣𝑗),

with 𝒱 = R𝑘−1. We have that ℎ(𝜇) =
∑︀𝑘−1
𝑗=1 ℎ̄((𝜇𝑗+1)/2) and 𝑡(𝜇) = (𝑡((𝜇𝑗+1)/2))𝑘−1

𝑗=1 , ex-
actly as for the Hamming loss. Note that in this case however ℳ ( 𝒟 and the decoding
mapping is 𝑑(𝑣) = 1 +

∑︀𝑘−1
𝑗=1 1(𝑣𝑗 ≥ 0) ∈ 𝒵 .

Using the fact that with the embedding 𝜙, the ordinal loss is a (𝑘 − 1) factor away
from the Hamming loss, and that the marginal polytope is included in the cube, so the
minimization is done in a smaller domain, we have that

𝜁ℎ(𝜀) ≥ 𝜁ham,ℎ(𝜀/(𝑘 − 1)) = (𝑘 − 1) · 𝜁ℎ̄(𝜀/(𝑘 − 1)), (3.35)

where 𝜁ham,ℎ is the calibration function of the Hamming loss. With this, we recover the
calibration results from Pedregosa et al. (2017).

I .2 Cumulative link (CL)

These methods are of the form (McCullagh, 1980)

𝑆(𝑣, 𝑦) =

⎧⎪⎨⎪⎩
− log(𝑡−1(𝑣1)) if 𝑦 = 1
− log(𝑡−1(𝑣𝑦) − 𝑡−1(𝑣𝑦−1)) if 1 < 𝑦 < 𝑘
− log(1 − 𝑡−1(𝑣𝑘−1)) if 𝑦 = 𝑘

,

with 𝒱 = R𝑘−1. In this case, it corresponds to the following decomposition 𝐿(𝑧, 𝑦) =
⟨𝐿𝑇 · 𝑒𝑧, 𝑒𝑦⟩, (i.e., 𝜙(𝑦) = 𝑒𝑦 ∈ R𝑘), ℎ(𝑞) = − Ent(𝑞) and 𝒟 = Δ𝑘 with inverse link,

𝑡−1(𝑣) =

⎧⎪⎨⎪⎩
𝑡−1(𝑣1) if 𝑦 = 1
𝑡−1(𝑣𝑦) − 𝑡−1(𝑣𝑦−1) if 1 < 𝑦 < 𝑘
1 − 𝑡−1(𝑣𝑘−1) if 𝑦 = 𝑘

,
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which is not the canonical one. It is called cumulative link because the link is applied to
the cumulative probabilities 𝑡−1(𝑣𝑦) =

∑︀𝑦
𝑗=1 𝑞𝑗 = (𝜇𝑦+1)/2. The decoding can be written

as 𝑑(𝑣) = 1 +
∑︀𝑘−1
𝑗=1 1(𝑡−1(𝑣𝑗) ≥ 1/2). In the case that 𝑡(𝑞)(2𝑞 − 1) > 0 for 𝑝 ̸= 1

2 , then
one can directly write (as for AT) 𝑑(𝑣) = 1 +

∑︀𝑘−1
𝑗=1 1(𝑣𝑗 ≥ 0). The most common link is

the logistic link 𝑡−1(𝑣) = 1/(1 + 𝑒−𝑣)). With this link CL surrogate is convex (see Lemma
8 by Pedregosa et al. (2017)). In this case, the exact calibration function is not easy to
calculate due to the lack of symmetry of the calibration sets (see Figure 3.5). However,
it is straightforward to apply the lower bound by using the fact that the entropy is 1-
strongly convex w.r.t the ‖ · ‖1 norm and 𝑐𝜓,‖·‖∞ = max𝑧∈𝒵,𝑦∈𝒴 |𝑧 − 𝑦| = 𝑘 − 1 using the
fact that 𝐹𝑧 = 𝐿𝑇 · 𝑒𝑧 = 𝐿𝑧 . Hence, applying Theorem 4 .4 we obtain:

𝜁ℎ(𝜀) ≥ 𝜀2

8(𝑘 − 1)2 . (3.36)

Note that this lower bound has a factor (𝑘 − 1)−2 instead of the (𝑘 − 1)−1 of Eq. (3.35).
This explains the experiment of Fig. 1 from Pedregosa et al. (2017), where they show

that the calibration function (3.35) of AT is larger than the calibration function for CL.
However, they were not able to provide any result such as (3.36).

J Ranking with NDCG Measure

Let 𝒵 = S𝑚 be the set of permutations of 𝑚 elements and 𝒴 = [�̄�]𝑚 the set of relevance
scores for 𝑚 documents. Let the gain 𝐺 : R → R be an increasing function and the
discount vector 𝐷 = (𝐷𝑗)𝑚𝑗=1 be a coordinate-wise decreasing vector. The NDCG-type
losses are defined as the normalized discounted sum of the gain of the relevance scores
ordered by the predicted permutation:

𝐿(𝜎, 𝑟) = 1 − 1
𝑁(𝑟)

𝑚∑︁
𝑗=1

𝐺([𝑟]𝑗)𝐷𝜎(𝑗), (3.37)

where𝑁(𝑟) = max𝜎∈S𝑚

∑︀𝑚
𝑗=1𝐺([𝑟]𝑗)𝐷𝜎(𝑗) is a normalizer. Note that looking at Eq. (3.37),

we have the following affine decomposition (Ramaswamy et al., 2013; Nowak et al.,
2019):

𝜓(𝜎) = −(𝐷𝜎(𝑗))𝑚𝑗=1, 𝜙(𝑟) =
(︂
𝐺([𝑟]𝑗)
𝑁(𝑟)

)︂𝑚
𝑗=1

. (3.38)

Inference from ℋ corresponds to 𝑧(𝜇) = argsort𝜎∈S𝑚
(𝜇𝑗)𝑚𝑗=1. If we now consider a

strictly convex potential defined in R𝑚 and the canonical link, we recover the group
of surrogates presented by Ravikumar et al. (2011). With our framework, Fisher consis-
tency comes for free by construction, we recover the same lower bound on the calibration
function of their Thm. 10 from Theorem 4 .4 and the same improvement under low noise
of their Thm. 11 from Theorem 4 .6.

K Graph Matching

In graph matching, the input space 𝒳 encodes features of two graphs 𝐺1, 𝐺2 with the
same set of nodes, and the goal is to map the nodes from 𝐺1 to the nodes of 𝐺2. The loss
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used for graph matching is the Hamming loss between permutations defined as

𝐿(𝜎, 𝜎′) = 1
𝑚

𝑚∑︁
𝑗=1

1(𝜎(𝑗) ̸= 𝜎′(𝑗)) = 1 − ⟨𝑋𝜎, 𝑋𝜎′⟩𝐹
𝑚

= 1 + ⟨𝜓(𝜎), 𝜙(𝜎′)⟩𝐹 ,

where 𝑋𝜎 ∈ R𝑚×𝑚 is the permutation matrix associated to the permutation 𝜎 and the
embeddings are 𝜓(𝜎) = −𝑋𝜎/𝑚 and 𝜙(𝜎) = 𝑋𝜎. In this case, the conditional risk reads

ℓ(𝑧, 𝑞) = 1 − ⟨𝑋𝜎, 𝑃 (𝑞)⟩𝐹
𝑚

,

where 𝑃 (𝑞) =
∑︀
𝜎′ 𝑞(𝜎′)𝑋𝜎′ and ℋ = R𝑘 with 𝑘 = 𝑚2. The Bayes optimum is computed

through linear assignment as

𝑧(𝑃 ) = arg max
𝜎′∈S

⟨𝑋𝜎′ , 𝑃 ⟩𝐹 .

In this case, the marginal polytope corresponds to the polytope of doubly stochastic
matrices (also called Birkhoff polytope),

ℳ = {𝑃 ∈ R𝑚×𝑚 | 𝑃 𝑇 1 = 1, 𝑃1 = 1, 0 ≤ 𝑃𝑖𝑗 ≤ 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑚},

which has dimension 𝑟 = dim(ℳ) = 𝑘2 − 2𝑘+ 1 < 𝑘2. One might consider CRFs (Petter-
son et al., 2009), however, the inverse of the canonical link requires performing inference
to the associated exponential family (see Section E .2) and this corresponds to computing
the permanent matrix which is a #P-complete problem. A possible workaround is to es-
timate the rows of the matrix 𝑃 independently with a multiclass classification algorithm
and then perform linear assignment with the estimated probabilities. For instance, if one
performs multinomial logistic regression independently at each row, it corresponds to
the potential ℎ(𝑃 ) = −

∑︀𝑚
𝑗=1 Ent(𝑃𝑗) where 𝑃𝑗 is the 𝑗-th row of the matrix 𝑃 and 𝒟 is

the polytope of row-stochastic matrices,

𝒟 = {𝑃 ∈ R𝑚×𝑚 | 𝑃1 = 1, 0 ≤ 𝑃𝑖𝑗 ≤ 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑚} =
𝑚∏︁
𝑗=1

Δ𝑚 ) ℳ,

which has dimension 𝑘2 − 𝑘 < 𝑘2 strictly larger than the dimension of the marginal
polytope. As the sum of entropies is 1-strongly convex w.r.t the ‖ · ‖1 norm and 𝑐𝜓,‖·‖∞ =
1
𝑚 , Theorem 4 .4 gives,

𝜁ℎ(𝜀) ≥ 𝑚2𝜀2

8 .
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4 Consistent Structured Prediction with Max-
Min Margin Markov Networks

Abstract

Max-margin methods for binary classification such as the support vector machine (SVM)
have been extended to the structured prediction setting under the name of max-margin
Markov networks (M3N), or more generally structural SVMs. Unfortunately, these meth-
ods are statistically inconsistent when the relationship between inputs and labels is far
from deterministic. We overcome such limitations by defining the learning problem in
terms of a “max-min” margin formulation, naming the resulting method max-min mar-
gin Markov networks (M4N). We prove consistency and finite sample generalization
bounds for M4N and provide an explicit algorithm to compute the estimator. The algo-
rithm achieves a generalization error of𝑂(1/

√
𝑛) for a total cost of𝑂(𝑛) projection-oracle

calls (which have at most the same cost as the max-oracle from M3N). Experiments on
multi-class classification, ordinal regression, sequence prediction and ranking demon-
strate the effectiveness of the proposed method.

1 Introduction

Many classification tasks in machine learning lie beyond the classical binary and multi-
class classification settings. In those tasks, the output elements are structured objects
made of interdependent parts, such as sequences in natural language processing (Smith,
2011), images in computer vision (Nowozin and Lampert, 2011), permutations in rank-
ing or matching problems (Caetano et al., 2009) to name just a few (BakIr et al., 2007).
The structured prediction setting has two key properties that makes it radically different
from multi-class classification, namely, the exponential growth of the size of the output
space with the number of its parts, and the cost-sensitive nature of the learning task,
as prediction mistakes are not equally costly. In sequence prediction, for instance, the
number of possible outputs grows exponentially with the length of the sequences, and
predicting a sequence with one incorrect character is better than predicting the whole
sequence wrong.

Classical approaches in binary classification such as the non-smooth support vec-
tor machine (SVM), and the smooth logistic and quadratic plug-in classifiers have been
extended to the structured setting under the name of max-margin Markov networks
(M3N) (Taskar et al., 2004) (or more generally structural SVM (SSVM) (Tsochantaridis
et al., 2005)), conditional random fields (CRFs) (Lafferty et al., 2001) and quadratic sur-
rogate (QS) (Ciliberto et al., 2016, 2019), respectively. Theoretical properties of CRF and
QS are well-understood. In particular, it is possible to obtain finite-sample generaliza-
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tion bounds of the resulting estimator on the cost-sensitive structured loss (Nowak-Vila
et al., 2019). Unfortunately, these guarantees are not satisfied by M3Ns even though the
method is based on an upper bound of the loss. More precisely, it is known that the up-
per bound can be not tight (and lead to inconsistent estimation) when the relationship
between input and output labels is far from deterministic (Liu, 2007), which it is es-
sentially always the case in structured prediction due to the exponentially large output
space. This means that the estimator does not converge to the minimizer of the problem
leading to inconsistency.

Recently, a line of work (Fathony et al., 2016, 2018a,b) proposed a consistent method
based on an adversarial game formulation on the structured problem. However, their
analysis does not allow to get generalization bounds and their proposed algorithm is
specific for every setting with at least a complexity of 𝑂(𝑛2) to obtain optimal statistical
error when learning from 𝑛 samples. In this paper, we derive this method in the generic
structured output setting from first principles coming from the binary SVM. We name
this method max-min margin Markov networks (M4N), as it is based on a correction of
the max-margin of M3N to a ‘max-min’ margin. The proposed algorithm has essentially
the same complexity as state-of-the-art methods for M3N on the regularized empirical
risk minimization problem, but it comes with consistency guarantees and finite sample
generalization bounds on the discrete structured prediction loss, with constants that are
polynomial in the number of parts of the structured object and do not scale as the size of
the output space. More precisely, the algorithm requires a constant number of projection-
oracles at every iteration, each of them having at most the same cost as the max-oracle of
M3N. We also provide experiments on multiple tasks such as multi-class classification,
ordinal regression, sequence prediction and ranking, showing the effectiveness of the
algorithm. We make the following contributions:

- We introduce max-min margin Markov networks (M4N) in Definition 3 .1 and prove
consistency, linear calibration and finite sample generalization bounds for the regu-
larized ERM estimator in Thms. 3 .2, 3 .3 and 3 .4, respectively.

- We generalize the BCFW algorithm (Lacoste-Julien et al., 2013) used for M3Ns to M4Ns
and solve the max-min oracle iteratively with projection oracle calls using Saddle
Point Mirror Prox (Nemirovski, 2004). We prove bounds on the expected duality gap
of the regularized ERM problem in Theorem 5 .1 and statistical bounds in Theorem 5
.2.

- In Section 6 , we perform a thorough experimental analysis of the proposed method
on classical unstructured and structured prediction settings.

2 Surrogate Methods for Classification

In this section, we review the first principles underlying surrogate methods starting from
binary classification and moving into structured prediction. We put special attention to
the difference between plug-in (e.g., logistic) and direct (e.g., SVM) classifiers to show
that while there is a complete picture in the binary setting, existing direct classifiers in
structured prediction lack the basic properties of binary SVMs. The first goal of this
paper is to complete this picture in the structured output setting.
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2 .1 A Motivation from Binary Classification

Let 𝒴 = {−1, 1} and (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) be 𝑛 input-output pairs sampled from a dis-
tribution 𝜌. The goal in binary classification is to estimate a binary-valued function 𝑓⋆ :
𝒳 −→ 𝒴 that minimizes the classification error

ℰ(𝑓) = E(𝑥,𝑦)∼𝜌 1(𝑓(𝑥) ̸= 𝑦).

We can avoid working with binary-valued functions by considering instead real-valued
functions 𝑔 : 𝒳 −→ R and use the prediction model 𝑓(𝑥) = 𝑑 ∘ 𝑔(𝑥) ..= sign(𝑔(𝑥)) (Bartlett
et al., 2006) where 𝑑 stands for decoding. The resulting problem reads

𝑔⋆ ∈ arg min
𝑔:𝒳 →R

ℰ(𝑑 ∘ 𝑔). (4.1)

Unfortunately, directly estimating a 𝑔⋆ from (4.1) is intractable for many classes of func-
tions (Arora et al., 1997).

Convex surrogate methods. The source of intractability of minimizing the classifica-
tion error (4.1) comes from the discreteness and non-convexity of the loss. The idea of
surrogate methods (Bartlett et al., 2006) is to consider a convex surrogate loss 𝑆 : R×𝒴 → R
such that 𝑔⋆ can be written as

𝑔⋆ = arg min
𝑔:𝒳−→R

ℛ(𝑔) ..= E(𝑥,𝑦)∼𝜌 𝑆(𝑔(𝑥), 𝑦). (4.2)

In this case, 𝑔⋆ can be tractably estimated from 𝑛 samples over a family of functions 𝒢
using regularized ERM. The resulting estimator 𝑔𝑛 has the form

𝑔𝑛 = arg min
𝑔∈𝒢

1
𝑛

𝑛∑︁
𝑖=1

𝑆(𝑔(𝑥𝑖), 𝑦𝑖) + 𝜆𝑛
2 ‖𝑔‖2

𝒢 , (4.3)

where 𝜆𝑛 > 0 is the regularization parameter and ‖ · ‖𝒢 is the norm associated to the
hypothesis space 𝒢. If not stated explicitly, our analysis of the surrogate method holds for
any function space, such as reproducing kernel Hilbert spaces (RKHS) (Aronszajn, 1950)
or neural networks (LeCun et al., 2015), where we lose global theoretical convergence
guarantees of problem (4.3).

The classical theoretical requirements of such a surrogate strategy are Fisher consis-
tency (i) and a comparison inequality (ii):

(i) ℰ(𝑓⋆) = ℰ(𝑑 ∘ 𝑔⋆)
(ii) 𝜁(ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆)) ≤ ℛ(𝑔) − ℛ(𝑔⋆),

for all measurable functions 𝑔, where 𝜁 : R+ −→ R+ is such that 𝜁(𝜀) → 0 when 𝜀 → 0.
Note that Condition (i) is equivalent to (4.1). Condition (ii) is needed to prove consis-
tency results, to show that ℛ(𝑔) → ℛ(𝑔⋆) implies ℰ(𝑑 ∘ 𝑔) → ℰ(𝑓⋆). The existence of 𝜁
satisfying (ii) is derived from (i) and the continuity and lower boundedness of 𝑆(𝑣, 𝑦),
see Thm. 3 by Zhang (2004a). Even though the explicit form of 𝜁 is not needed for a
consistency analysis, it is necessary to prove finite sample generalization bounds, as it
is the mathematical object relating the suboptimality of the surrogate problem to the
suboptimality of the original task. Note that the larger 𝜁(𝜀), the better.
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Plug-in classifiers. It is known that (i) is satisfied for any function 𝑔⋆ that continuously
depends on the conditional probability 𝜌(1|𝑥) as 𝑔⋆(𝑥) ..= 𝑡(𝜌(1|𝑥)), where 𝑡 : R → R is a
suitable continuous bijection of the real line1. In this case, Eq. (4.2) can be satisfied using
smooth losses. Some examples are the logistic loss log(1 + 𝑒−𝑦𝑣), the squared hinge loss
max(0, 1−𝑦𝑣)2 and the exponential loss 𝑒−𝑦𝑣. In this case, the convexity and smoothness
of 𝑆(·, 𝑦) imply that (ii) is satisfied with 𝜁(𝜀) ∼ 𝜀2 (Bartlett et al., 2006). Combining
this with standard convergence results of regularized ERM estimators 𝑔𝑛 on RKHS, the
resulting statistical rates are of the form E ℰ(𝑑 ∘ 𝑔𝑛) − ℰ(𝑓⋆) ∼ ‖𝑔⋆‖𝒢𝑛

−1/4. Even if the
binary learning problem is easy, 𝑔⋆ can be highly non-smooth away from the decision
boundary, resulting in large ‖𝑔⋆‖𝒢 . It is known that the dependence on the number of
samples can be improved under low noise conditions (Audibert and Tsybakov, 2007).

Support vector machines (SVM). Plug-in classifiers indirectly estimate the conditional
probability as 𝜌(1|𝑥) = 𝑡−1(𝑔⋆(𝑥)), which is more than just falling in the right binary
decision set. SVMs directly tackle the classification task by estimating 𝑔⋆ ..= 𝑓⋆ =
sign(𝜌(1|𝑥) − 1/2). In this case, the non-smooth hinge loss 𝑆(𝑣, 𝑦) = max(0, 1 − 𝑦𝑣) sat-
isfies (4.2). Moreover, (ii) is satisfied with 𝜁(𝜀) = 𝜀 and statistical rates are of the form
E ℰ(𝑑 ∘ ̂︀𝑔𝑛) − ℰ(𝑓⋆) ∼ ‖𝑓⋆‖𝒢𝑛

−1/2. Note that 𝑓⋆ is piece-wise constant on the support
of 𝜌, but it can be shown 𝑓⋆ ∈ 𝒢, (i.e., ‖𝑓⋆‖𝒢 < ∞), for standard hypothesis spaces 𝒢
such as Sobolev spaces with input space R𝑑 and smoothness 𝑠 > 𝑑/2 under low noise
conditions (Pillaud-Vivien et al., 2018a).

2 .2 Structured Prediction Setting

In binary classification, the output data are naturally embedded in R as 𝒴 = {−1, 1} ⊂ R.
However, as this is not necessarily the case in structured prediction, it is classical (Taskar
et al., 2005a) to represent the output with an embedding 𝜙 : 𝒴 → R𝑘 encoding the parts
structure with 𝑘 ≪ |𝒴|. Let 𝑔 : 𝒳 → R𝑘 and define the following linear prediction model

𝑓(𝑥) = 𝑑 ∘ 𝑔(𝑥) ..= arg max
𝑦∈𝒴

𝜙(𝑦)⊤𝑔(𝑥). (4.4)

The above decoding (4.4) corresponds to the classical linear prediction model over fac-
torized joint features Φ(𝑥, 𝑦) = 𝜙(𝑦) ⊗ Φ(𝑥) when 𝑔(𝑥) is linear in some input features
Φ(𝑥) (BakIr et al., 2007). The form in (4.4) is required to perform the consistency analysis
but the algorithm developed in Section 5 can be readily extended to joint features that
do not factorize. Non-linear prediction models have been recently proposed by Belanger
and McCallum (2016), but this is out of the scope of this paper.

Let 𝐿 : 𝒴 × 𝒴 → R be a loss function between structured outputs encoding the cost-
sensitivity of predictions. For instance, it is common to take 𝐿 to be the Hamming loss
over the parts of the structured object. The goal in structured prediction is to estimate 𝑓⋆ :
𝒳 −→ 𝒴 that minimizes the expected risk:

ℰ(𝑓) = E(𝑥,𝑦)∼𝜌 𝐿(𝑓(𝑥), 𝑦). (4.5)

Loss-decoding compatibility. It is classical to assume that the loss decomposes over
the structured output parts (Joachims, 2006). This can be generalized as the following

1It must satisfy (𝑢 − 1/2)𝑡(𝑢 − 1/2) ≥ 0 for all 𝑢 ∈ R.
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affine decomposition of the loss (Ramaswamy et al., 2013; Nowak et al., 2019)

𝐿(𝑦, 𝑦′) = 𝜙(𝑦)⊤𝐴𝜙(𝑦′) + 𝑎, (4.6)

for a matrix 𝐴 ∈ R𝑘×𝑘 and scalar 𝑎 ∈ R. Indeed, assumption (4.6) together with the
tractability of (4.4) is essentially equivalent to the tractability of loss-augmented inference
in structural SVMs (Joachims, 2006). For the sake of notation, we drop the constant 𝑎 and
work with the ‘centered’ loss 𝐿(𝑦, 𝑦′) − 𝑎. We provide some examples below.

Example 2 .1 (Structured prediction with factor graphs). Let 𝒴 = [𝑅]𝑀 be the set of ob-
jects made of 𝑀 parts, each in a vocabulary of size 𝑅. In order to model interdepen-
dence between different parts, we consider embeddings that decompose over (over-
lapping) subsets of indices 𝛼 ⊆ {1, . . . ,𝑀} (Taskar et al., 2004) as 𝜙(𝑦) = (𝜙𝛼(𝑦𝛼))𝛼.
More precisely, the prediction model corresponds to

arg max𝑦∈𝒴
∑︀
𝛼 𝜙𝛼(𝑦𝛼)⊤𝑣𝛼, (4.7)

where 𝜙𝛼(𝑦𝛼) = 𝑒𝑦𝛼 ∈ R𝑅|𝛼|
with 𝑒𝑗 being the 𝑗-th vector of the canonical basis and

the dimension of the full-embedding 𝜙 is 𝑘 =
∑︀
𝛼𝑅

|𝛼| ≪ |𝒴| = 𝑅𝑀 . It is com-
mon (Tsochantaridis et al., 2005) to assume that the loss decomposes additively over
the coordinates as 𝐿(𝑦, 𝑦′) = 1

𝑀

∑︀
𝑚=1 𝐿𝑚(𝑦𝑚, 𝑦′

𝑚) and so the matrix 𝐴 associated
to the loss decomposition of 𝐿 is low-rank. Problem (4.7) can be solved efficiently
for low tree-width structures using the junction-tree algorithm (Wainwright and Jor-
dan, 2008). More specifically, if the objects are sequences with embeddings mod-
elling individual and adjacent pairwise characters, Problem (4.7) can be solved in
time 𝑂(𝑀𝑅2) using the Viterbi algorithm (Viterbi, 1967).

Example 2 .2 (Ranking and matching). The output space is the group of permutations
𝒮𝑀 acting on {1, . . . ,𝑀}. This setting also includes the task of matching the nodes
of two graphs of the same size (Caetano et al., 2009). We represent a permutation
𝜎 ∈ 𝒮𝑀 using the corresponding permutation matrix 𝜙(𝜎) = 𝑃𝜎 ∈ R𝑀×𝑀 . The
prediction model corresponds to the linear assignment problem (Burkard et al., 2012)

arg max𝜎∈𝒮𝑀
⟨𝑃𝜎, 𝑣⟩𝐹 , (4.8)

where 𝑣 ∈ R𝑀×𝑀 , ⟨·, ·⟩𝐹 is the Frobenius scalar product and 𝑘 = 𝑀2 ≪
|𝒴| = 𝑀 !. The Hamming loss on permutations satisfies Eq. (4.6) as 𝐿(𝜎, 𝜎′) =
1
𝑀

∑︀𝑀
𝑚=1 1(𝜎(𝑚) ̸= 𝜎′(𝑚)) = 1 − 1

𝑀 ⟨𝑃𝜎, 𝑃𝜎′⟩𝐹 . The linear assignment problem (4.8)
can be solved in time 𝑂(𝑀3) using the Hungarian algorithm (Kuhn, 1955).

Plug-in classifiers in structured prediction. Let 𝜇(𝑥) = E𝑦∼𝜌(·|𝑥) 𝜙(𝑦) be the condi-
tional expectation of the output embedding. Using the fact that 𝑓⋆ can be characterized
pointwise in 𝑥 as the minimizer in 𝑦 of 𝜙(𝑦)⊤𝐴𝜇(𝑥) (Nowak et al., 2019), it directly fol-
lows that (i) is satisfied for 𝑔⋆(𝑥) = −𝐴𝜇(𝑥) and, analogously to binary classification,
it can be estimated using smooth surrogates. Some examples are the quadratic surro-
gate (QS) ‖𝑣 + 𝐴𝜙(𝑦)‖2

2 (Ciliberto et al., 2016) that estimates 𝑔⋆ and conditional random
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fields (CRF) (Lafferty et al., 2001) defined by log
(︀∑︀

𝑦′∈𝒴 exp 𝑣⊤𝜙(𝑦′)
)︀

− 𝑣⊤𝜙(𝑦) that esti-
mate an invertible continuous transformation of 𝜇(𝑥). Although CRFs have a powerful
probabilistic interpretation, they cannot incorporate the cost-sensitivity matrix𝐴 into the
surrogate loss, and it must be added a posteriori in the decoding (4.4) to guarantee con-
sistency. It was shown by Nowak-Vila et al. (2019) that these methods satisfy condition
(ii) with 𝜁(𝜀) ∼ 𝜀2 and achieve the analogous statistical rates of binary plug-in classifiers
∼ ‖𝑔⋆‖𝒢𝑛

−1/4.

SVMs for structured prediction. The extension of binary SVM to structured outputs
is the structural SVM (SSVM) (Joachims, 2006) (denoted M3Ns (Taskar et al., 2004) in the
factor graph setting described in Example 2 .1). It corresponds to the following surrogate
loss

𝑆(𝑣, 𝑦) = max
𝑦′∈𝒴

𝜙(𝑦)⊤𝐴𝜙(𝑦′) + 𝑣⊤𝜙(𝑦′) − 𝑣⊤𝜙(𝑦). (4.9)

In the multi-class case with 𝒴 = {1, . . . , 𝑘} and 𝐿(𝑦, 𝑦′) = 1(𝑦 ̸= 𝑦′) it is also known as
the Crammer-Singer SVM (CS-SVM) (Crammer and Singer, 2001) and reads 𝑆(𝑣, 𝑗) =
max𝑟 ̸=𝑗 1+𝑣𝑟−𝑣𝑗 . It shares some properties of the binary SVM such as the upper bound
property, i.e., 𝐿(𝑑 ∘ 𝑣, 𝑦) ≤ 𝑆(𝑣, 𝑦) for all 𝑦 ∈ 𝒴 . However, an important drawback of
this loss is that while the upper bound property holds, the minimizer of the surrogate
expected risk 𝑔⋆ and the one of the expected risk 𝑓⋆ do not coincide when the problem is
far from deterministic, as shown by the following Proposition 2 .3.

Proposition 2 .3 (Inconsistency of CS-SVM (Liu, 2007)). The CS-SVM is Fisher-consistent
if and only if for all 𝑥 ∈ 𝒳 , there exists 𝑦 ∈ {1, . . . , 𝑘} such that 𝜌(𝑦|𝑥) > 1/2.

Note that the consistency condition from Proposition 2 .3 is much harder to be met in
the structured prediction case as the size of the output space is exponentially large, and
it is always satisfied in the binary case (the binary SVM is always consistent). Although
there exist consistent extensions of the SVM to the cost-sensitive multi-class setting such
as the ones from Lee et al. (2004); Mroueh et al. (2012), they cannot be naturally extended
to the structured setting. In the following section we address this problem by introducing
the max-min surrogate and studying its theoretical properties.

3 Max-Min Surrogate Loss

Assume that the loss is not degenerated, i.e., 𝐿(𝑦, 𝑦) < 𝐿(𝑦, 𝑦′) for all 𝑦, 𝑦′ ∈ 𝒴 such
that 𝑦 ̸= 𝑦′. In this case, 𝑓⋆(𝑥) is the minimizer in 𝑦 of 𝜙(𝑦)⊤𝐴⊤𝜙(𝑓⋆(𝑥)), which means
that (4.1) is satisfied by

𝑔⋆(𝑥) ..= −𝐴⊤𝜙(𝑓⋆(𝑥)) ∈ R𝑘.

Note the analogy with SVMs, where we directly estimate 𝑓⋆ but now through the rep-
resentation 𝜙 of the structured output, avoiding the full enumeration of 𝒴 . We need to
find a surrogate function 𝑆(𝑣, 𝑦) that satisfies Eq. (4.2) for this 𝑔⋆. Following the same
notation as Nowak-Vila et al. (2019), we define the marginal polytope (Wainwright and
Jordan, 2008) as the convex hull of the embedded output space ℳ = hull(𝜙(𝒴)) ⊂ R𝑘.

Definition 3 .1 (Max-min surrogate loss). Define the max-min loss as

𝑆(𝑣, 𝑦) ..= max
𝜇∈ℳ

min
𝑦′∈𝒴

𝜙(𝑦′)⊤𝐴𝜇+ 𝑣⊤𝜇− 𝑣⊤𝜙(𝑦). (4.10)
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The max-min loss is non-smooth, convex and can be cast as a Fenchel-Young loss (Blon-
del et al., 2020). More specifically, Eq. (4.10) can be written as 𝑆(𝑣, 𝑦) = Ω*(𝑣)+Ω(𝜙(𝑦))−
𝑣⊤𝜙(𝑦) with

Ω(𝜇) = − min
𝑦′∈𝒴

𝜙(𝑦′)⊤𝐴𝜇+ 1ℳ(𝜇), (4.11)

where Ω(𝜙(𝑦)) = 0 for all 𝑦 ∈ 𝒴 , Ω* denotes the Fenchel-conjugate of Ω, and 1ℳ(𝜇) = 0
if 𝜇 ∈ ℳ and +∞ otherwise.

Note that the dependence on 𝑦 is only in the linear term 𝑣⊤𝜙(𝑦), while for SSVMs
(4.9) it appears in the maximization. Thus, we can study the geometry of the loss through
the non-smooth convex function Ω*(𝑣) (see Figure 4.1 for visualizations of some repre-
sentative unstructured examples). Connections between surrogates (4.10) and (4.9) are
discussed in Section 4 .

3 .1 Fisher Consistency

Fisher consistency is provided by the following Theorem 3 .2.

Theorem 3 .2 (Fisher Consistency (i)). The surrogate loss (4.10) satisfies (i) for 𝑔⋆(𝑥) =
−𝐴⊤𝜙(𝑓⋆(𝑥)).

This result has been proven by Fathony et al. (2018a) in the cost-sensitive multi-class
case. Our proof of Theorem 3 .2 is constructive and based on Fenchel duality.

Sketch of the proof. We want to show that −𝐴⊤𝜙(𝑓⋆(𝑥)) is the minimizer of the con-
ditional risk E𝑦∼𝜌(·|𝑥) 𝑆(𝑣, 𝑦) almost surely for every 𝑥. The proof is constructive
and based on Fenchel duality, using the Fenchel-Young loss representation of the
max-min surrogate. First, note that the conditional surrogate risk can be written
as E𝑦∼𝜌(·|𝑥) 𝑆(𝑣, 𝑦) = Ω*(𝑣) − 𝑣⊤𝜇(𝑥), where 𝜇(𝑥) = E𝑦∼𝜌(·|𝑥) 𝜙(𝑦) ∈ ℳ. Second,
note that by Fenchel-duality, 𝜕𝜇Ω(𝜇(𝑥)) is the set of minimizers of Ω*(𝑣)−𝑣⊤𝜇(𝑥).
Finally, if we assume that the set of 𝑥 ∈ 𝒳 such that 𝜇(𝑥) is in the boundary of ℳ
has measure zero, then

−𝐴⊤𝑓⋆(𝑥) ∈ 𝜕𝜇Ω(𝜇(𝑥)),

where Ω is defined in (4.11) and we have used that 𝑓⋆(𝑥) is the minimizer in 𝑦
of 𝜙(𝑦)⊤𝐴𝜇(𝑥). A more detailed proof can be found in Section B .1.
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S(v, 1)
S(v, 1) SVM

Figure 4.1: Left: The binary max-min loss has two symmetric kinks instead of one as the
SVM. Middle: Ω*(𝑣) in 𝑣⊤1 = 0 for multi-class 0-1 loss 1(𝑦 ̸= 𝑦′) with 𝑘 = 3. Right:
Ω*(𝑣) in 𝑣⊤1 = 0 for ordinal regression with the absolute loss |𝑦 − 𝑦′| with 𝑘 = 3.
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3 .2 Comparison Inequality

Fisher consistency is not enough to prove finite-sample generalization bounds on the
excess risk ℰ(𝑑∘𝑔)−ℰ(𝑓⋆). For this, we provide in the following Theorem 3 .3 an explicit
form of the comparison inequality.

Theorem 3 .3 (Comparison inequality (ii)). Assume 𝐿 is symmetric and that there exists 𝐶 >
0 such that for any probability 𝛼 ∈ Δ𝒴 , it holds that 𝛼𝑦 ≥ 1/𝐶 for 𝑦 ∈ arg min𝑦∈𝒴 E𝑧∼𝛼𝐿(𝑦, 𝑧).
Then, the comparison inequality (ii) for the max-min loss (4.10) reads

ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆) ≤ 𝐶(ℛ(𝑔) − ℛ(𝑔⋆)).

The second condition on the loss states that if 𝑦 is optimal for 𝑥, then its conditional
probability is bounded away from zero as 𝜌(𝑦|𝑥) ≥ 1/𝐶. This condition is used to obtain
a simple quantitative lower bound on the function 𝜁 of (ii) and more tight (albeit less
explicit in general) expressions of the constant 𝐶 can be found in Appendices C.3 and
C.4.

Constant 𝐶 for multi-class. When 𝐿(𝑦, 𝑦′) = 1(𝑦 ̸= 𝑦′) with 𝒴 = {1, . . . , 𝑘}, we have
that 𝐶 = 𝑘, as the minimum conditional probability of an optimal output is 1/𝑘. The
constant for this specific setting was derived independently using a different analysis by
Duchi et al. (2018).

Constant𝐶 for factor graphs (Example 2 .1). For a factor graph with separable embed-
dings and a decomposable loss𝐿 = 1

𝑀

∑︀𝑀
𝑚=1 𝐿𝑚(𝑦𝑚, 𝑦′

𝑚), we have that𝐶 = max𝑚∈[𝑀 ]𝐶𝑚,
where 𝐶𝑚 is the constant associated to the individual loss 𝐿𝑚. This is proven in Propo-
sition B .11.

Constant 𝐶 for ranking and matching (Example 2 .2). In this setting, Theorem 3 .3
gives 𝐶 = 𝑀 !, and so the relation between both excess risks is not informative. The
problem of exponential constants in the comparison inequality was pointed out by Os-
okin et al. (2017). We can weaken the assumption and change condition 𝛼𝑦 ≥ 1/𝐶 to

max
𝛽∈Δ𝒴

𝛽𝑦 s.t. E𝑧∼𝛽 𝜙(𝑧) = E𝑧′∼𝛼 𝜙(𝑧′) ≥ 1/𝐶.

Under this assumption, we have that 𝐶 = 𝑀 , thus avoiding the exponentially large size
of the output space.

3 .3 Generalization of Regularized ERM

In the following Theorem 3 .4, we use this result to prove a finite-sample generalization
bound on the regularized ERM estimator (4.3) when the hypothesis space 𝒢 is a vector-
valued RKHS.

Theorem 3 .4 (Generalization of regularized ERM). Let 𝒢 be a vector-valued RKHS, assume
𝑔⋆ ∈ 𝒢 and let 𝑔𝑛 and 𝜆𝑛 = 𝜅𝐿 log1/2(1/𝛿)𝑛−1/2 as in (4.3). Then, with probability 1 − 𝛿:

ℰ(𝑑 ∘ 𝑔𝑛) − ℰ(𝑓⋆) ≤ 𝑀‖𝜙(𝑓⋆)‖𝒢

√︃
log(1/𝛿)

𝑛
,

with𝑀 = 𝜅𝐶𝐿‖𝐴‖. Here, the constants are: 𝐿 = 2 max𝑦∈𝒴 ‖𝜙(𝑦)‖2, ‖𝐴‖ = sup‖𝑣‖2≤1 ‖𝐴𝑣‖2,
𝜅 = sup𝑥∈𝒳 Tr𝐾(𝑥, 𝑥)1/2 is the size of the features and 𝐶 is the one of Theorem 3 .3.
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Analogously to the binary case, the multivariate function 𝜙(𝑓⋆) is piecewise constant
on the support of the distribution 𝜌. In Theorem C .2 in Appendix C we prove that
standard low noise conditions, analogous to the one discussed by Pillaud-Vivien et al.
(2018a) for the binary case, are enough to guarantee ‖𝜙(𝑓⋆)‖𝒢 < ∞.

4 Comparison with Structural SVM

Max-min as a correction of the Structural SVM. We can re-write the maximization
over the discrete output space 𝒴 in the definition of the SSVM (4.9) as a maximization
over its convex hull ℳ = hull(𝜙(𝒴))

𝑆(𝑣, 𝑦) = max
𝜇∈ℳ

𝜙(𝑦)⊤𝐴𝜇+ 𝑣⊤𝜇− 𝑣⊤𝜙(𝑦). (4.12)

Note the similarity between (4.10) and (4.12). In particular, the max-min loss differs from
the structural SVM in that the maximization is done using min𝑦′∈𝒴 𝜙(𝑦′)⊤𝐴𝜇 and not the
loss at the observed output 𝑦 as 𝜙(𝑦)⊤𝐴𝜇. Hence, we can view the max-min surrogate
as a correction of the SSVM so that basic statistical properties (i) and (ii) hold. Moreover,
this connection might be used to properly understand the statistical properties of SSVM.
This is left for future work.

Notion of max-min margin. Given 𝑣 ∈ R𝑘 and 𝑦𝑖 ∈ 𝒴 , the classical SSVM is motivated
by a soft version of the following notion of margin:

𝑣⊤𝜙(𝑦𝑖) − 𝑣⊤𝜙(𝑦) ≥ 𝐿(𝑦𝑖, 𝑦) = 𝜙(𝑦𝑖)⊤𝐴𝜙(𝑦),

for all 𝑦 ∈ 𝒴 , which is equivalent to 𝑣⊤𝜙(𝑦𝑖) − 𝑣⊤𝜇 ≥ 𝜙(𝑦𝑖)⊤𝐴𝜇 for all 𝜇 ∈ ℳ. However,
we have seen in Proposition 2 .3 that this condition is too strong and only leads to a con-
sistent method if the problem is nearly deterministic, i.e., we observe the optimal 𝑦 with
large probability, which, as already mentioned, is generally far from true in structured
prediction. The max-min surrogate (4.10) deals with the case where this strong condition
is not met and works with a notion of margin that compares groups of outputs instead
of just pairs. We define the max-min margin as

𝑣⊤𝜙(𝑦𝑖) − 𝑣⊤𝜇 ≥ min
𝑦′∈𝒴

𝜙(𝑦′)⊤𝐴𝜇, (4.13)

for all 𝜇 ∈ ℳ. After introducing slack variables in (4.13) we obtain a soft version of the
max-min margin that leads to the max-min regularized ERM problem (4.3).

5 Algorithm

In this section we derive a dual-based algorithm to solve the max-min regularized ERM
problem (4.3) when the hypothesis space is a RKHS. The algorithm can be easily adapted
to the case where 𝑔 is parametrized using a neural network as commented at the end of
Section 5 .3.
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Algorithm 1: Generalized Block-Coordinate Frank-Wolfe (GBCFW), primal

1 Let 𝑤(0) ..= 𝑤
(0)
𝑖

..= 0;
2 for 𝑡 = 0 to 𝑇 do
3 Pick 𝑖 at random in {1, . . . , 𝑛};
4 (𝜇⋆𝑖 , 𝜈⋆𝑖 ) ∈ 𝒪𝐾(𝑔𝑤(𝑡)(𝑥𝑖), 𝜇⋆𝑖 , 𝜈⋆𝑖 );
5 𝑤𝑠 ..= Φ(𝑥𝑖)(𝜇⋆𝑖 − 𝜙(𝑦𝑖))⊤/(𝜆𝑛);

6 𝑤
(𝑡+1)
𝑖

..= (1 − 2𝑛
𝑡+2𝑛)𝑤(𝑡)

𝑖 + 2𝑛
𝑡+2𝑛𝑤𝑠;

7 𝑤(𝑡+1) ..= 𝑤(𝑡) + 𝑤
(𝑡+1)
𝑖 − 𝑤

(𝑡)
𝑖 ;

8 end

Algorithm 2: Saddle Point Mirror Prox (SP-MP) (�̄�(𝐾), 𝜈(𝐾)) ∈ 𝒪𝐾(𝑣, 𝜇(0)𝜈(0))
1 for 𝑘 = 0 to 𝐾 − 1 do
2 𝜇

(𝑘+1)
1/2 ∈ arg min𝜇∈ℳ − 𝜂𝜇⊤(𝐴⊤𝜈(𝑘) + 𝑣) +𝐷−𝐻(𝜇, 𝜇(𝑘));

3 𝜈
(𝑘+1)
1/2 ∈ arg min𝜈∈ℳ 𝜂𝜈⊤𝐴𝜇(𝑘) +𝐷−𝐻(𝜈, 𝜈(𝑘));

4 𝜇(𝑘+1) ∈ arg min𝜇∈ℳ − 𝜂𝜇⊤(𝐴⊤𝜈
(𝑘+1)
1/2 + 𝑣) +𝐷−𝐻(𝜇, 𝜇(𝑘));

5 𝜈(𝑘+1) ∈ arg min𝜈∈ℳ 𝜂𝜈⊤𝐴𝜇
(𝑘+1)
1/2 +𝐷−𝐻(𝜈, 𝜈(𝑘));

6 end
7 �̄�(𝐾) ..= 1

𝐾

∑︀𝐾
𝑘=1 𝜇

(𝑘), 𝜈(𝐾) ..= 1
𝐾

∑︀𝐾
𝑘=1 𝜈

(𝑘)

5 .1 Problem Formulation

Let 𝒢 ⊂ {𝑔 : 𝒳 → R𝑘} be a vector-valued RKHS, which we assume of the form 𝒢 =
R𝑘 ⊗ 𝒢, where 𝒢 is a scalar RKHS with associated features Φ : 𝒳 → 𝒢. Every function
in 𝒢 can be written as 𝑔𝑤(𝑥) = 𝑤⊤Φ(𝑥) ∈ R𝑘 where 𝑤𝑗 ,Φ(𝑥) ∈ 𝒢. For the sake of
presentation, we assume that 𝒢 = R𝑑×𝑘 is finite dimensional, but our analysis also holds
for the infinite dimensional case. The dual (D) of the regularized ERM problem (4.3) for
the max-min surrogate loss (4.10) reads

(D) max
𝜇∈ℳ𝑛

1
𝑛

𝑛∑︁
𝑖=1

min
𝑦′

𝜙(𝑦′)⊤𝐴𝜇𝑖 − 𝜆

2 ‖Φ𝑛(𝜇− 𝜙𝑛)‖2
2,

where Φ𝑛 = 1
𝜆𝑛(Φ(𝑥1), . . . ,Φ(𝑥𝑛)) is the 𝑑 × 𝑛 scaled input data matrix and the matrix

𝜙𝑛 = (𝜙(𝑦1), . . . , 𝜙(𝑦𝑛))⊤ is the 𝑛× 𝑘 output data matrix. The dual variables map to the
primal variables through the mapping 𝑤(𝜇) = 1

𝜆𝑛

∑︀𝑛
𝑖=1 Φ(𝑥𝑖)(𝜇𝑖 − 𝜙(𝑦𝑖))⊤. By strong

duality, it holds 𝑤⋆ = 𝑤(𝜇⋆). The dual formulation (D) is a constrained non-smooth opti-
mization problem, where the non-smoothness comes from the first term of the objective
function. In order to derive a learning algorithm, we leverage ideas from the block-
coordinate Frank-Wolfe algorithm used for SSVMs.

5 .2 Derivation of the Algorithm

Background on BCFW for M3Ns. The dual of the SSVM is the same as problem (D)
but the first term is linear: 1

𝑛

∑︀𝑛
𝑖=1 𝜙(𝑦𝑖)⊤𝐴𝜇𝑖, making the dual objective function smooth.

The BCFW algorithm (Lacoste-Julien et al., 2013) minimizes a linearization of the smooth
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dual objective function block-wise, using the separability of the compact domain. At
each iteration 𝑡, the algorithm picks 𝑖 ∈ [𝑛] at random, and updates 𝜇(𝑡+1)

𝑖 = (1 −𝛾)𝜇(𝑡)
𝑖 +

𝛾�̄�
(𝑡+1)
𝑖 with �̄�(𝑡+1)

𝑖
..= arg max𝜇′

𝑖∈ℳ ⟨𝜇′
𝑖,∇(𝑖)ℎ(𝜇(𝑡))⟩ where ℎ is the dual objective and 𝛾

is the step-size. Note that �̄�(𝑡+1)
𝑖 is an extreme point of ℳ and it can be written as a com-

binatorial maximization problem over 𝒴 that corresponds precisely to inference (4.4).
In the next section, we generalize BCFW to the case where the dual is a sum of a non-
smooth and a smooth function such as the dual (D) of our problem.

Generalized BCFW (GBCFW) for M4N. Borrowing ideas from Bach (2015) in the non
block-separable case, we only linearize the smooth-part of the function, i.e., the quadratic
term. We change the computation of the direction to

�̄�
(𝑡+1)
𝑖

..= arg max
𝜇′

𝑖∈ℳ
⟨𝜇′
𝑖,∇(𝑖)

−𝜆
2 ‖Φ𝑛(𝜇(𝑡) − 𝜙𝑛)‖2

2⟩

+ min
𝑦′

𝜙(𝑦′)⊤𝐴𝜇′
𝑖 = 𝒪(𝑔𝑤(𝜇(𝑡))(𝑥𝑖)),

where the max-min oracle 𝒪 : R𝑘 −→ ℳ is defined as

𝒪(𝑣) = arg max
𝜇∈ℳ

min
𝜈∈ℳ

𝜈⊤𝐴𝜇+ 𝑣⊤𝜇. (4.14)

Note that the mapping 𝑤(𝜇) between primal and dual variables is affine. Hence, one can
write the update of the primal variables without saving the dual variables as detailed in
Algorithm 1. The following Theorem 5 .1 specifies the required number of iterations of
Algorithm 1 to obtain an 𝜀-optimal solution with an approximate oracle (4.14).

Theorem 5 .1 (Convergence of GBCFW with approximate oracle). Let 𝜀 > 0. If the ap-
proximate oracle provides an answer with error 𝜀/2, then the final error of Algorithm 1 achieves
an expected duality gap of 𝜀 when 𝑇 = �̃�

(︀
𝑛+ 2𝑅2

𝜆𝜀 diam(ℳ)2)︀, where 𝑅 is the maximum norm
of the features.

5 .3 Computation of the Max-Min Oracle

The max-min oracle (4.14) corresponds to a concave-convex bilinear saddle-point prob-
lem. We use a standard alternating procedure of ascent and descent steps on the vari-
ables 𝜇 and 𝜈, respectively. Consider a strongly concave differentiable entropy 𝐻 : 𝒞 ⊃
ℳ → R defined in a convex set 𝒞 containing ℳ such that ∇𝐻(𝒞) = R𝑘 and it is verified
that lim𝜇∈𝜕𝒞 ‖∇𝐻(𝜇)‖ = +∞, where 𝜕𝒞 is the boundary of 𝒞. Then, perform Mirror as-
cent/descent updates using −𝐻 as the Mirror map. For instance, if 𝑢 = 𝐴⊤𝜈 + 𝑣 is the
gradient of (4.14) w.r.t 𝜇, the update on 𝜇 takes the following form:

arg min
𝜇∈ℳ

−𝜂𝜇⊤𝑢+𝐷−𝐻(𝜇, 𝜇(𝑡)), (4.15)

where 𝐷−𝐻(𝜇, 𝜇′) = −𝐻(𝜇) +𝐻(𝜇′) + ∇𝐻(𝜇′)⊤(𝜇−𝜇′) is the Bregman divergence asso-
ciated to the convex function −𝐻 . The resulting ascent/descent algorithm has a conver-
gence rate of 𝑂(𝑡−1/2), which can be considerably improved to 𝑂(𝑡−1) with essentially
no extra cost by performing four projections instead of two at each iteration. This cor-
responds to the extra-gradient strategy, called Saddle Point Mirror Prox (SP-MP) when
using a Mirror map and is detailed in Algorithm 2.
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Projection for factor graphs (Example 2 .1). The entropy in ℳ defined by the factor
graph (Wainwright and Jordan, 2008) can be written explicitly in terms of the entropies
of each part 𝛼 ⊂ [𝑀 ] if the factor graph has a junction tree structure (Koller and Fried-
man, 2009). For instance, in the case of a sequence of length 𝑀 with unary and adjacent
pairwise factors, we have 𝐻(𝜇) =

∑︀𝑀−1
𝑚=1 𝐻𝑆(𝜇𝑚,𝑚+1) −

∑︀𝑀
𝑚=1𝐻𝑆(𝜇𝑚), where 𝐻𝑆 is the

Shannon entropy and 𝜇𝑚, 𝜇𝑚,𝑚+1 are the unary and pair-wise marginals, respectively.
The projection (4.15) corresponds to marginal inference in CRFs and can be computed
using the sum-product algorithm in time 𝑂(𝑀𝑅2). In this case, the complexity of the
projection-oracle is the same the one of the max-oracle for SSVMs.

Projection for ranking and matching (Example 2 .2). In this setting, the projection
using the entropy in ℳ is known to be #P-complete (Valiant, 1979). Thus, CRFs are
essentially intractable in this setting (Petterson et al., 2009). If instead we use the entropy
𝐻(𝑃 ) = −

∑︀𝑀
𝑖,𝑗=1 𝑃𝑖𝑗 log𝑃𝑖𝑗 defined over the marginals 𝑃 ∈ ℳ, the projection can be

computed up to precision 𝛿 in 𝑂(𝑀2/𝛿) iterations using the Sinkhorn-Knopp algorithm
(Cuturi, 2013). This can be potentially much cheaper than the max-oracle of SSVMs,
which has a cubic dependence in 𝑀 . The projection with respect to the Euclidean norm
has similar complexity but implementation is more involved (?).

Warm-starting the oracles. On the one hand, Algorithm 1 is guaranteed to converge
as long as the error incurred in the oracle 𝒪 decreases sublinearly with the number of
global iterations as 𝜀𝑡 ∝ 𝑛/(𝑡+ 𝑛) (see Section E .1). On the other hand, Algorithm 2 can
be naturally warm-started because it is an any-time algorithm as the step-size 𝜂 does not
depend on the current iteration or a finite horizon. Hence, we are in a setting where a
warm-start strategy can be advantageous. More specifically, at every iteration 𝑡, we save
the pairs (𝜇⋆𝑖 , 𝜈⋆𝑖 ) ∈ 𝒪(𝑔𝑤(𝑡)(𝑥𝑖)) and the next time we revisit the 𝑖-th training example
we initialize Algorithm 2 with this pair. Even though the formal demonstration of the
effectiveness of the strategy is technically hard, we provide a strong experimental argu-
ment showing that a constant number of Algorithm 2 iterations are enough to match the
allowed error 𝜀𝑡.

Using the kernel trick. An extension to infinite-dimensional RKHS is straightforward
to derive as Algorithm 1 is dual-based. In this case, the algorithm keeps track of the dual
variables 𝜇𝑖 for 𝑖 = 1, . . . , 𝑛.

Connection to stochastic subgradient algorithms. It is known that (generalized) con-
ditional gradient methods in the dual are formally equivalent to subgradient methods
in the primal (Bach, 2015). Indeed, note that 𝑤𝑠 in Algorithm 1 is a subgradient of the
scaled surrogate loss 𝑆(𝑔𝑤(𝑥𝑖), 𝑦𝑖)/𝜆𝑛. However, the dual-based analysis we provide in
this paper allows us to derive guarantees on the expected duality gap and a line-search
strategy, which we leave for future work. Viewing Algorithm 1 as a subgradient method
is useful when learning the data representation with a neural network. More specifically,
both Algorithm 1 and Algorithm 2 remain essentially unchanged by applying the chain
rule in the update of 𝑤.
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5 .4 Statistical Analysis of the Algorithm

Finally, the following Theorem 5 .2 shows that the full algorithm without the warm-start
strategy achieves the same statistical error as the regularized ERM estimator (4.3) after
at most 𝑂(𝑛

√
𝑛) projections oracle calls.

Theorem 5 .2 (Generalization bound of the algorithm). Assume the setting of Theorem 3
.4. Let 𝑔𝑛,𝑇 be the 𝑇 -th iteration of Algorithm 1 applied to problem (4.3), where each iteration is
computed with 𝐾 = 𝑂(

√
𝑛) iterations of Algorithm 2. Then, after 𝑇 = 𝑂(𝑛) iterations, 𝑔𝑛,𝑇

satisfies the bound of Theorem 3 .4 with probability 1 − 𝛿.

As we will show in the next section, in practice a constant number of iterations of
Algorithm 2 are enough when using the warm-start strategy. Hence, the total number of
required projection-oracles is 𝑂(𝑛).

6 Experiments

We perform a comparative experimental analysis for different tasks between M4Ns, M3Ns
and CRFs optimized with Generalized BCFW + SP-MP (Algorithm 1 + Algorithm 2),
BCFW (Lacoste-Julien et al., 2013) and SDCA (Shalev-Shwartz and Zhang, 2013), respec-
tively. All methods are run with our own implementation 2. We use datasets of the UCI
machine learning repository (Asuncion and Newman, 2007) for multi-class classification
and ordinal regression, the OCR dataset from Taskar et al. (2004) for sequence prediction
and the ranking datasets used by Korba et al. (2018). We use 14 random splits of the
dataset into 60% for training, 20% for validation and 20% for testing. We choose the reg-
ularization parameter 𝜆 in {2−𝑗}10

𝑗=1 using the validation set and show the average test
loss on the test sets in Table 4.1 of the model with the best 𝜆. We use a Gaussian kernel
and perform 50 passes on the data and set the number of iterations of Algorithm 2 to
20 and 10 times the length of the sequence for sequence prediction. The results are in
Table 4.1. We perform better than M3Ns in most of the datasets for multi-class classifi-
cation, ordinal regression and ranking, while we obtain similar results in the sequence
dataset with the three methods.

Effect of warm-start. We perform an experiment tracking the test loss and the average
error in the max-min oracle for different iterations of Algorithm 2 with and without
warm-starting. The experiments are done in two datasets for ordinal regression and
they are shown in Table 2. We observe that both the test loss and average oracle error
are lower for the warm-start strategy. Moreover, when warm-starting the final test error
barely changes when increasing the iterations past the 50 iteration threshold.

7 Conclusion

In this paper, we introduced max-min margin Markov networks (M4Ns), a method for
general structured prediction, that has the same algorithmic and theoretical properties
as the regular binary SVM, that is, quantitative convergence bounds through a linear
comparison inequality, as well as efficient optimization algorithms. Our experiments

2Code in https://github.com/alexnowakvila/maxminloss
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Task Dataset (𝑑, 𝑛, 𝑘) M3N CRF M4N

MC

segment (19, 2310, 7) 6.64% 6.43% 6.09%
iris (4, 150, 3) 3.33% 3.08% 3.33%
wine (13, 178, 3) 2.56% 2.14% 2.35%
vehicle (18, 846, 4) 24.6% 25.1% 24%
satimage (36, 4435, 6) 12.2% 11.5% 11.9%
letter (16, 15000, 26) 14.6% 13.2% 13.5%
mfeat (216, 2000, 10) 3.94% 4.35% 3.96%

ORD

wisconsin (32, 193, 5) 1.24 1.26 1.26
stocks (9, 949, 5) 0.167 0.168 0.160
machine (6, 208, 10) 0.634 0.628 0.628
abalone (10, 4176, 10) 0.520 0.526 0.520
auto (7, 391, 10) 0.589 0.621 0.585

(𝑑, 𝑛,𝑀)

SEQ ocr (128, 6877, 26) 16.2% 16.3% 16.2%

RNK

glass (9, 214, 6) 17.7% - 17.4%
bodyfat (7, 252, 7) 79.6% - 79.6%
wine (13, 178, 3) 5.06% - 4.34%
vowel (10, 528, 11) 33.7% - 32.2%
vehicle (18, 846, 4) 14.8% - 15.0%

Table 4.1: Average test losses on the 14 splits for multi-class classification (first), ordi-
nal regression (second), sequence prediction (third) and ranking (forth). We show in
percentage the losses for multi-class, sequence prediction and ranking since they are be-
tween zero and one. We show in bold the lowest test loss between the direct classifiers
M3N and M4N.

Dataset W-S 𝐾 = 10 𝐾 = 30 𝐾 = 50 𝐾 = 100

machine
yes 0.42 / 0.57 0.41 / 0.43 0.41 / 0.22 0.41 / 0.13
no 0.50 / 4.41 0.50 / 2.74 0.44 / 1.25 0.42 / 0.63

auto
yes 0.56 / 1.55 0.55 / 1.29 0.51 / 0.81 0.50 / 0.44
no 0.61 / 2.66 0.57 / 1.79 0.53 / 0.89 0.51 / 0.47

Table 4.2: We show the (final ordinal test loss / average oracle error at the last epoch) for
M4Ns trained with 100 passes on data with different iterations of Algorithm 2 with and
without warm-starting.

show its performance on classical structured prediction problems when using RKHS hy-
pothesis spaces. It would be interesting to extend the analysis of the proposed algorithm
by rigorously proving the linear dependence in the number of samples when using the
warm-start strategy and incorporating a line-search strategy.
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Appendices

Notation on the structured prediction setting. Denote by 𝒫(𝐴) the set of subsets of
the set 𝐴. We define the following quantities

- Marginal polytope: ℳ = hull(𝜙(𝒴)) = {𝑣 ∈ R𝑘 | 𝑣 =
∑︀
𝑦∈𝒴 𝛼𝑦𝜙(𝑦), 𝛼 ∈ Δ𝒴}.

- Normal cone of ℳ at 𝜇: 𝒩ℳ(𝜇) = {𝑢 ∈ R𝑘 | ⟨𝜇′ − 𝜇, 𝑢⟩ ≤ 0,∀𝜇′ ∈ ℳ}.

- Conditional moments: 𝜈(𝑞) = E𝑦′∼𝑞 𝜙(𝑦′) ∈ ℳ where 𝑞 ∈ Prob(𝒴).

- Conditional risk: ℓ(𝑦, 𝜇) ..= E𝑦′∼𝑞 𝐿(𝑦, 𝑦′) = 𝜙(𝑦)⊤𝐴𝜇.

- Bayes risk: ℓ(𝜇) ..= min𝑦∈𝒴 ℓ(𝑦, 𝜇)

- Minus Bayes risk: Ω(𝜇) ..= −ℓ(𝜇) + 1ℳ(𝜇).

- Excess conditional risk: 𝛿ℓ(𝑦, 𝜇) = ℓ(𝑦, 𝜇) − ℓ(𝜇)

- Optimal predictor set: 𝑦⋆(𝜇) = arg min𝑦∈𝒴 ℓ(𝑦, 𝜇) ⊆ 𝒴 .

- Marginal polytope cell complex: 𝒞(ℳ) = (𝑦⋆)−1 ∘ 𝑦⋆(ℳ) ⊂ 𝒫(ℳ).

Notation on the max-min surrogate.

- Partition function: Ω*(𝑣) = max𝜇∈ℳ ℓ(𝜇) + 𝑣⊤𝜇.

- Surrogate loss: 𝑆(𝑣, 𝑦) = Ω*(𝑣) − 𝑣⊤𝜙(𝑦).

- Conditional surrogate risk: 𝑠(𝑣, 𝜇) ..= E𝑦∼𝑞 𝑆(𝑣, 𝑦) = Ω*(𝑣) − 𝑣⊤𝜇.

- Bayes surrogate risk: 𝑠(𝜇) ..= min𝑣∈R𝑘 𝑠(𝑣, 𝜇) (= ℓ(𝜇)).

- Excess surrogate conditional risk: 𝛿𝑠(𝑣, 𝜇) ..= 𝑠(𝑣, 𝜇) − 𝑠(𝜇).

- Optimal predictors: 𝑣⋆(𝜇) = arg min𝑣∈R𝑘 𝑠(𝑣, 𝜇) ⊂ R𝑘.

- Surrogate space cell complex: 𝒞(R𝑘) = 𝑣⋆(ℳ) ⊂ 𝒫(R𝑘).
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A Geometrical Properties

In this section, we study the rich geometrical properties of the max-min surrogate con-
struction. The geometrical interpretation provides a valuable intuition on different key
mathematical objects appearing in the further analysis needed for the proofs of the main
theorems. More precisely, we show that the max-min surrogate loss 𝑆 defines a parti-
tion 𝒞(R𝑘) ⊂ 𝒫(R𝑘) of the surrogate space R𝑘 which is dual to the partition 𝒞(ℳ) ⊂
𝒫(ℳ) of the marginal polytope ℳ defined by 𝐿. Moreover, we show that the map-
ping between those partitions is the subgradient mapping 𝜕Ω with inverse 𝜕Ω* (see Fig-
ure 4.2). Visualization for binary 0-1 loss, multi-class 0-1 loss, absolute loss for ordinal
regression and Hamming loss are provided in Section A .4.

Figure 4.2: The cell complex 𝒞(ℳ) on the marginal polytope ℳ maps to the cell com-
plex 𝒞(R𝑘) on the surrogate space R𝑘 through the subgradient mapping of the partition
function 𝜕Ω.

Following Finocchiaro et al. (2019), we now introduce the definition of a cell complex.

Definition A .1 (Cell complex). A cell complex in R𝑘 is a set 𝒞 of faces (of dimension 0, . . . , 𝑘)
such that:

(i) union to R𝑘.

(ii) have pairwise disjoint relative interiors.

(iii) any nonempty intersection of faces 𝐹, 𝐹 ′ in 𝒞 is a face of 𝐹 and 𝐹 ′ and an element of 𝒞.

Any convex affine-by-parts function has an associated cell complex defined by con-
sidering the polytope corresponding to the epigraph of the function and projecting the
faces down to to the domain. Moreover, if 𝑓(𝑣) is convex affine-by-parts, the cell complex
associated to 𝑓(𝑣) and 𝑓(𝑣) + 𝑣⊤𝑎 are the same for any 𝑎.

A .1 Geometry of the Loss L

The convex affine-by-parts function Ω(𝜇) = −ℓ(𝜇) + 1ℳ(𝜇) naturally defines a cell com-
plex of its domain ℳ (see for instance Ramaswamy and Agarwal (2016); Nowak-Vila
et al. (2019)). This can be constructed by considering the polyhedra corresponding to
the epigraph of −ℓ(𝜇) and then projecting the faces to ℳ. Each face corresponds to a
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different group of active hyperplanes in the definition of ℓ(𝜇). The cell complex can be
defined as 𝒞(ℳ) = {(𝑦⋆)−1 ∘ 𝑦⋆(𝜇) | 𝜇 ∈ ℳ} ⊂ 𝒫(ℳ), i.e., each face is defined as the set
of moments that share the same set of optimal predictors. Note that 𝒞(ℳ) contains faces
of 0-dimensions (points) up to faces of 𝑘-dimensions.

A .2 Geometry of the Loss S

Recall that 𝑆(𝑣, 𝑦) = Ω*(𝑣) − 𝑣⊤𝜇 and Ω(𝜇) = −ℓ(𝜇) + 1ℳ(𝜇), where ℓ(𝜇) is concave
affine-by-parts. In particular, as Ω is convex affine-by-parts with compact domain, then
Ω* is convex affine-by-parts with full-dimensional domain R𝑘. The projection of the
faces of the convex polyhedron defined as the epigraph of Ω* defines a cell complex
𝒞(R𝑘) ⊂ 𝒫(R𝑘) in the (unbounded) vector space R𝑘. The cell complex defined by Ω*(𝑣)
is the same as the one defined by 𝑠(𝑣, 𝜇) = Ω*(𝑣) − 𝑣⊤𝜇 for every 𝜇 ∈ ℳ. The faces of
𝒞(R𝑘) can be written as 𝑣⋆(𝜇) = arg min𝑣∈R𝑘 𝑠(𝑣, 𝜇) ∈ 𝒫(R𝑘) for a certain 𝜇 ∈ ℳ, i.e.,
the faces are the minimizers of the conditional surrogate risk. Hence, we can write in a
compact form 𝑣⋆(𝜇) ∈ 𝒞(R𝑘).

A .3 Relation between Cell Complexes

Recall that 𝒞(ℳ) is generated by projecting the faces of the epigraph of Ω while 𝒞(R𝑘)
is generated by projecting the faces of the epigraph of Ω*. The subgradients are well-
defined in the cell complexes and define a bijection between them:

𝜕Ω : 𝒞(ℳ) → 𝒞(R𝑘), 𝜕Ω* : 𝒞(R𝑘) → 𝒞(ℳ), 𝜕Ω* = (𝜕Ω)−1.

Moreover, we have that

dim(𝜕Ω(𝐹 )) = dim(ℳ) − dim(𝐹 ), ∀𝐹 ∈ 𝒞(ℳ)
dim(𝜕Ω*(𝐹 ′)) = dim(ℳ) − dim(𝐹 ′), ∀𝐹 ′ ∈ 𝒞(R𝑘),

where 𝐹, 𝐹 ′ are faces of 𝒞(ℳ), 𝒞(R𝑘), respectively.

A .4 Examples

Let’s now provide some concrete examples of cell complexes and the associated mapping
subgradient mapping for several classical tasks.

Binary Classification. The output space is 𝒴 = {−1, 1}. The loss is 𝐿(𝑦, 𝑦′) = 1(𝑦 ̸= 𝑦′)
with affine decomposition 𝑎 = 1, 𝜙(1) = (1, 0)⊤, 𝜙(−1) = (0, 1)⊤ and 𝐴 = −𝐼2×2. The
marginal polytope is ℳ = Δ2.

Ω(𝑝) = − min(𝑝, 1 − 𝑝) + 1Δ2(𝑝), Ω*(𝑣) = max(|𝑣|, 1/2), 𝑆(𝑣, 𝑦) = Ω*(𝑣) − 𝑦𝑣.

See Figure 4.3. The mapping between cells is

𝜕Ω({0}) = (−∞,−1/2], 𝜕Ω*((−∞,−1/2]) = {0}
𝜕Ω({1/2}) = [−1/2, 1/2], 𝜕Ω*([−1/2, 1/2]) = {1/2}
𝜕Ω({1}) = [1/2,+∞), 𝜕Ω*([1/2,+∞)) = {1}
𝜕Ω([0, 1/2]) = {−1/2}, 𝜕Ω*({−1/2}) = [0, 1/2]
𝜕Ω([1/2, 1]) = {1/2}, 𝜕Ω*({1/2}) = [1/2, 1]
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Figure 4.3: Binary 0-1 loss. Left: The Bayes risk −Ω is a concave polyhedral function
defined in Δ2 = [0, 1]. The faces of the induced cell-complex are the 0-dimensional faces
{0}, {1/2}, {1} and the 1-dimensional faces [0, 1/2], [1/2, 1]. Right: The partition func-
tion is a convex polyhedral function defined in R. The faces of the induced cell-complex
are the 0-dimensional faces {−1/2}, {1/2} and the 1-dimensional faces (−∞,−1/2],
[1/2, 1/2], [1/2,+∞).

0-1 Multi-class Classification. The output space is 𝒴 = [𝑘] = {1, · · · , 𝑘}. The loss is
𝐿(𝑦, 𝑦′) = 1(𝑦 ̸= 𝑦′) with affine decomposition 𝑎 = 1, 𝜙(𝑦) = 𝑒𝑦 and 𝐴 = −𝐼𝑘×𝑘, where
𝑒𝑦 ∈ R𝑘 is the 𝑦-th vector of the canonical basis in R𝑘. The marginal polytope is the
𝑘-dimensional simplex ℳ = Δ𝑘.

In this case, ℓ(𝑝) = 1 − ‖𝑝‖∞ and so

Ω(𝑝) = ‖𝑝‖∞ − 1 + 1Δ𝑘
(𝑝), Ω*(𝑣) = 1 + max

𝑗∈[𝑘]

{︂1
𝑗

𝑗∑︁
𝑟=1

𝑣(𝑟) − 1
𝑗

}︂
,

where 𝑣(1) ≥ · · · ≥ 𝑣(𝑘) (see Figure 4.4).
Note that the subgradient mapping 𝜕Ω sends the 2𝑘 0-dimensional faces (points) and

the full-dimensional faces of 𝒞(Δ𝑘) to the full-dimensional faces and 0-dimensional faces
of 𝒞(R𝑘−1), respectively.

Ordinal Regression. The output space is the same as for multiclass classification, but
in this case there is an implicit ordering between outputs: 1 ≺ 2 ≺ · · · ≺ 𝑘. This is
encoded using the absolute difference loss 𝐿(𝑦, 𝑦′) = |𝑦 − 𝑦′|. We consider the affine
decomposition 𝜙(𝑦) = 𝑒𝑦 ∈ R𝑘, 𝐴 = (|𝑖 − 𝑗|)𝑖,𝑗∈[𝑘]2 and 𝑎 = 0. It is possible to obtain a
closed form expression for the partition function (see Thm. 6 by Fathony et al. (2018a)):

Ω*(𝑣) = 1
2 max
𝑖,𝑗∈[𝑘]

𝑣𝑖 + 𝑣𝑗 + 𝑗 − 𝑖.

In Figure 4.5 we plot the Bayes risk and the partition function for the ordinal loss.
Note that that the topology of the cell-complex is different from the previous example.

Multi-label Classification with Hamming Loss. This corresponds to Example 2 .1 with
unary potentials. Let 𝒴 = Π𝑀

𝑚=1𝒴𝑚 with 𝒴𝑚 = {1, . . . , 𝑅}. We consider the Hamming
loss defined as an average of multi-class losses: 𝐿(𝑦, 𝑦′) = 1

𝑀

∑︀𝑀
𝑚=1 1(𝑦𝑚 ̸= 𝑦′

𝑚). The
marginal polytope factorizes as ℳ = Π𝑀

𝑚=1Δ𝑅. The Bayes risk decomposes additively as
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Ω(μ) Ω * (v)

Figure 4.4: Multi-class 0-1 loss (𝑘 = 3). Left: The Bayes risk −Ω has a pyramid shape
centered at the simplex. The cell-complex 𝒞(Δ𝑘) has 2𝑘 0-dimensional faces (points) and
𝑘 full-dimensional faces. In the figure, the set of points are the center point, the 3 vertices
of the triangle and the 3 middle points in the triangle face. The 3 full-dimensional faces
are the 3 colored zones. Right: The partition function Ω* is a convex polyhedral function.
The cell-complex has 𝑘 0-dimensional faces (points) and 2𝑘 full-dimensional faces. In
the figure, the set of points are the 3 vertices of the triangle in the center and the full-
dimensional faces are the colored zones.

Ω(μ) Ω * (v)

Figure 4.5: Absolute difference loss (𝑘 = 3). Left: The Bayes risk −Ω has an asymmetrical
pyramid shape with the tip in one face of the simplex. Right: The partition function Ω*

has a different topology than the one from multi-class.

the sum of the Bayes risks of the individual multi-class losses and the partition function
decomposes analogously. In Figure 4.6 we plot the Bayes risk and the partition function
for 𝑅 = 𝑀 = 2.

B Theoretical Properties of the Surrogate

The goal of this section is to prove the two theoretical requirements for the surrogate
method. These are Fisher consistency (1) and a comparison inequality (2):

(1) ℰ(𝑓⋆) = ℰ(𝑑 ∘ 𝑔⋆)
(2) 𝜁(ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆)) ≤ ℛ(𝑔) − ℛ(𝑔⋆).

for all measurable 𝑔 : 𝒳 −→ ℋ, where 𝜁 : R −→ R is such that 𝜁(𝜀) → 0 if 𝜀 → 0.
Fisher consistency ensures that the optimum of the surrogate loss 𝑔⋆ provides the Bayes
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Figure 4.6: Hamming loss for (𝑅 = 𝑀 = 2). Left: The marginal polytope is the cube
ℳ = [0, 1]2 and the Bayes risk −Ω has a pyramid shape centered in the cube. Right: The
partition function Ω*.

optimum 𝑓⋆ of the problem. However, in practice the optimum of the surrogate is never
attained and so one wants to control how close 𝑓 = 𝑑∘𝑔 is to 𝑓⋆ in terms of the estimation
error of 𝑔 to 𝑔⋆. The comparison inequality gives this quantification by relating the excess
expected risk ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆) to the excess expected surrogate risk ℛ(𝑔) − ℛ(𝑔⋆), which
allows to translate rates from the surrogate problem to the original problem.

Let’s start first by showing that 𝑠(𝜇) = ℓ(𝜇) for all 𝜇 ∈ ℳ, i.e., that the minimizers of
the conditional surrogate risks coincide.

Lemma B .1. The Bayes risk and the surrogate Bayes risk are the same:

𝑠(𝜇) = min
𝑣∈R𝑘

𝑠(𝑣, 𝜇) = min
𝑦′∈𝒴

ℓ(𝑦, 𝜇) = ℓ(𝜇), ∀𝜇 ∈ ℳ.

Proof. Note that 𝑠(𝜇) = min𝑣∈R𝑘 𝑠(𝑣, 𝜇) = min𝑣∈R𝑘 Ω*(𝑣) − 𝑣⊤𝜇 = −Ω = ℓ(𝜇) −
1ℳ(𝜇).

Note that this is not the case for smooth surrogates. It was noted by Finocchiaro et al.
(2019) (see Prop. 1 and 2) that consistent polyhedral surrogates necessarily satisfy the
property of matching Bayes risks.

B .1 Fisher Consistency

The following Proposition B .2 characterizes the form of the exact minimizer of the con-
ditional surrogate risk 𝑠(𝑣, 𝜇).

Proposition B .2. Let 𝜇 ∈ ℳ and 𝑦⋆(𝜇) = arg min𝑦∈𝒴 𝜙(𝑦)⊤𝐴𝜇 be the set of optimal predic-
tors. Then, we have that

hull(−𝐴⊤𝜙(𝑦))𝑦∈𝑦⋆(𝜇) + 𝒩ℳ(𝜇) = arg min
𝑣∈R𝑘

𝑠(𝑣, 𝜇). (4.16)

Proof. The proof consists in noticing that hull(−𝐴⊤𝜙(𝑦))𝑦∈𝑦⋆(𝜇) is a subgradient at
𝜇 of the non-smooth convex function Ω = −ℓ(𝜇) + 1ℳ(𝜇) with compact domain
ℳ. That is,

Ω(𝜇) = − min
𝑦′∈𝒴

𝜙(𝑦′)⊤𝐴𝜇+ 1ℳ(𝜇)
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= −𝜙(𝑦)⊤𝐴𝜇+ 1ℳ(𝜇), 𝑦 ∈ 𝑦⋆(𝜇).

The subgradient reads 𝜕Ω(𝜇) = − hull(𝐴⊤𝜙(𝑦))𝑦∈𝑦⋆(𝜇) + 𝒩ℳ(𝜇), where 𝒩ℳ(𝜇) is
the normal cone of ℳ at the point 𝜇. Then, using Fenchel duality we have that

𝜕Ω(𝜇) = arg min
𝑣∈R𝑘

Ω*(𝑣) − 𝑣⊤𝜇 = arg min
𝑣∈R𝑘

𝑠(𝑣, 𝜇).

Let 𝜌(·|𝑥) be the conditional distribution of outputs and 𝜇(𝑥) = E𝑦∼𝜌(·|𝑥) 𝜙(𝑦). If
we assume that the set of points 𝑥 ∈ 𝒳 for which 𝒩ℳ(𝜈(𝑥)) ̸= {0} has measure zero,
then we have that 𝑔⋆(𝑥) ∈ − hull(𝐴⊤𝜙(𝑦))𝑦∈𝑦⋆(𝜌(·|𝑥)) almost-surely. Thus, we can write
𝑔⋆(𝑥) = −

∑︀
𝑦∈𝑦⋆(𝜌(·|𝑥)) 𝛼𝑦𝐴

⊤𝜙(𝑦) with
∑︀
𝑦∈𝑦⋆(𝜌(·|𝑥)) 𝛼𝑦 = 1. We have Fisher consistency

as
𝑓⋆(𝑥) ∈ arg max

𝑦′∈𝒴
𝜙(𝑦′)⊤𝑔⋆(𝑥) = arg min

𝑦′∈𝒴

∑︁
𝑦∈𝑦⋆(𝜌(·|𝑥))

𝛼𝑦𝐿(𝑦′, 𝑦).

B .2 Comparison Inequality and Calibration Function

The goal of this section is to explicitly compute a comparison inequality. We will show
that the relation between both excess risks is linear and that the constants appearing
scale nicely with the natural dimension of the structured problem and not with the total
number of possible outputs |𝒴| which can potentially be exponential.

The main object of study will be the so-called calibration function, which is defined as
the ‘worst’ comparison inequality between both excess conditional risks.

Definition B .3 (Calibration function (Steinwart, 2007)). The calibration function 𝜁 : R+ −→
R+ is defined for 𝜀 ≥ 0 as the infimum of the excess conditional surrogate risk when the condi-
tional risk is at least 𝜀:

𝜁(𝜀) = inf 𝛿𝑠(𝑣, 𝜇) such that 𝛿ℓ(𝑑 ∘ 𝑣, 𝜇) ≥ 𝜀, 𝜇 ∈ ℳ, 𝑣 ∈ R𝑘.

We set 𝜁(𝜀) = ∞ when the feasible set is empty.

Note that 𝜁 is non-decreasing in [0,+∞), not necessarily convex (see Example 5 by
Bartlett et al. (2006)) and also 𝜁(0) = 0. Note that a larger 𝜁 is better because we want a
large 𝛿𝑠(𝑣, 𝜇) to incur small 𝛿ℓ(𝑑 ∘ 𝑣, 𝜇). The following Theorem B .4 justifies Definition B
.3.

Theorem B .4 (Comparison inequality in terms of calibration function (Steinwart, 2007)).
Let 𝜁 be a convex lower bound of 𝜁. We have

𝜁(ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆)) ≤ ℛ(𝑔) − ℛ(𝑔⋆) (4.17)

for all 𝑔 : 𝒳 → R𝑘. The tightest convex lower bound 𝜁 of 𝜁 is its lower convex envelope which is
defined by the Fenchel bi-conjugate 𝜁**.

Proof. Note that by the definition of the calibration function, we have that

𝜁(𝛿ℓ(𝑑 ∘ 𝑔(𝑥), 𝜇(𝑥))) ≤ 𝛿𝑠(𝑔(𝑥), 𝜇(𝑥)), (4.18)
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where 𝜇(𝑥) = E𝑦′∼𝜌(·|𝑥) 𝜙(𝑦′). The comparison between risks is then a conse-
quence of Jensen’s inequality:

𝜁(ℰ(𝑑 ∘ 𝑔) − ℰ(𝑓⋆)) = 𝜁(E𝑥∼𝜌𝒳 𝛿ℓ(𝑑 ∘ 𝑔(𝑥), 𝜇(𝑥)))
≤ E𝑥∼𝜌𝒳 𝜁(𝛿ℓ(𝑑 ∘ 𝑔(𝑥), 𝜇(𝑥))) (Jensen ineq.)
≤ E∼𝜌𝒳 𝜁(𝛿ℓ(𝑑 ∘ 𝑔(𝑥), 𝜇(𝑥))) (𝜁 ≤ 𝜁)
≤ E𝑥∼𝜌𝒳 𝛿𝑠(𝑔(𝑥), 𝜇(𝑥))
= ℛ(𝑔) − ℛ(𝑔⋆).

B .3 Characterizing the Calibration Function for Max-Min Margin Markov
Networks

Following Osokin et al. (2017), we write the calibration function in terms of pairwise
interactions.

Lemma B .5 (Lemma 10). We can re-write the calibration function 𝜁(𝜀) as

𝜁(𝜀) = min
𝑦 ̸=𝑦′

𝜁𝑦,𝑦′(𝜀),

where

𝜁𝑦,𝑦′(𝜀) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min𝑣,𝜇∈R𝑘 𝛿𝑠(𝑣, 𝜇)
s.t 𝛿ℓ(𝑦′, 𝜇) ≥ 𝜀 (𝜀− suboptimality)

𝑦 = 𝑦⋆(𝜇) (optimal prediction)
𝑦′ = 𝑑 ∘ 𝑣 (prediction)
𝜇 ∈ ℳ

(4.19)

Proof. The idea of the proof is to decompose the feasibility set of the optimization
problem into a union of sets enumerated by the pairs (𝑦, 𝑦′) corresponding to the
optimal prediction 𝑦 and the prediction 𝑦′. Let’s first define the sets 𝑉 (𝑦) ⊂ R𝑘
and ℳ𝑦,𝑦′,𝜀 ⊂ ℳ.

1. Define the prediction sets as 𝑉 (𝑦) ..= {𝑣 ∈ R𝑘 | 𝑣⊤(𝜙(𝑦) − 𝜙(𝑦′)) > 0, ∀𝑦′ ∈
𝒴} ⊂ R𝑘 to denote the set of elements in the surrogate space R𝑘 for which
the prediction is the output element 𝑦 ∈ 𝒴 . Note that the sets 𝑉 (𝑦) do not
contain their boundary, but their closure can be expressed as

𝑉 (𝑦′) ..= {𝑣 ∈ R𝑘 | 𝑣⊤(𝜙(𝑦′) − 𝜙(𝑦)) ≥ 0,∀𝑦 ∈ 𝒴}.

Note that
⋃︀
𝑦′∈𝒴 𝑉 (𝑦′) = R𝑘.

2. If 𝑣 ∈ 𝑉 (𝑦′), the feasible set of conditional moments 𝜇 for which output 𝑦 is
one of the best possible predictions (i.e., ℓ(𝑦′, 𝜇) − ℓ(𝑦, 𝜇) ≥ 𝜀) is

ℳ𝑦,𝑦′,𝜀 = {𝜇 ∈ ℳ | ℓ(𝑦, 𝜇) = ℓ(𝜇) | ℓ(𝑦′, 𝜇) − ℓ(𝑦, 𝜇) ≥ 𝜀}.

The union of the sets {𝑉 (𝑦′) × ℳ𝑦,𝑦′,𝜀}𝑦,𝑦′∈𝒴 exactly equals the feasibility set
of the optimization problem Definition B .3. We can then re-write the calibration
function as

𝜁(𝜀) = min
𝑦 ̸=𝑦′

⎧⎪⎨⎪⎩
min𝑣,𝜇 𝛿𝑠(𝑣, 𝜇)
s.t. 𝑣 ∈ 𝑉 (𝑦′)

𝜇 ∈ ℳ𝑦,𝑦′,𝜀

. (4.20)
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Finally, by Lemma 27 of Zhang (2004a), the function 𝛿𝑠(𝑣, 𝜇) is continuous w.r.t
both 𝜇 and 𝑣, allowing to substitute the sets 𝑉 (𝑦′) in Eq. (4.20) by their closures
𝑉 (𝑦′) without changing the minimum.

Until now, the results were general for any calibration function. We will now con-
struct a lower bound on the calibration function for M4Ns. Let’s first introduce some
notation.

Notation.

- Let ℳ0 be the finite set of 0-dimensional faces (points) of the cell complex 𝒞(ℳ) ⊂
𝒫(ℳ), or equivalently (mapped by 𝜕Ω), the full dimensional faces of the cell com-
plex 𝒞(R𝑘) ⊂ 𝒫(R𝑘). Note that |ℳ0| is finite.

- Let 𝑤(𝑦) = −𝐴⊤𝜙(𝑦).

Recall that in Lemma B .5 we split the optimization problem into |𝒴|(|𝒴| − 1) optimiza-
tion problems corresponding to all possible (ordered) pairs of different optimal predic-
tion and prediction. The following Theorem B .6 further splits the inner optimization
problems into some faces of the cell complex 𝒞(R𝑘) and simplifies the objective function
into an affine function.

Theorem B .6 (Calibration Function for the surrogate loss of M4N). We have that

𝜁𝑦,𝑦′(𝜀) = min
�̄�∈ℳ0(𝑦,𝑦′)

𝜁𝑦,𝑦′,�̄�(𝜀),

where ℳ0(𝑦, 𝑦′) = {�̄� ∈ ℳ0 | 𝑤(𝑦), 𝑤(𝑦′) ∈ 𝜕Ω(�̄�)} ⊆ ℳ0 ⊂ ℳ, and

𝜁𝑦,𝑦′,�̄�(𝜀) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑣,𝜇∈R𝑘

⟨𝑤(𝑦) − 𝑣, 𝜇− �̄�⟩

s.t ⟨𝑤(𝑦) − 𝑤(𝑦′), 𝜇⟩ ≥ 𝜀 (𝜀− suboptimality)
⟨𝑤(𝑦) − 𝑤(𝑧), 𝜇⟩ ≥ 0, ∀𝑧 ∈ 𝒴 (optimal prediction)
𝑦′ = 𝑑 ∘ 𝑣 (prediction)
𝑣 ∈ 𝜕Ω(�̄�) (face in 𝒞(R𝑘))
𝜇 ∈ ℳ

(4.21)

Proof. We split the proof into three steps. First, we split the optimization problem
w.r.t 𝑣 ∈ R𝑘 among the faces 𝜕Ω(ℳ0) of the complex cell 𝒞(R𝑘) ⊂ 𝒫(R𝑘). Second,
we show that the minimizer is achieved in a face 𝜕Ω(�̄�) such that 𝑤(𝑦), 𝑤(𝑦′) ∈
𝜕Ω(�̄�) and simplify the objective function. Finally, we update the notation of some
constraints.

1st step. Split the optimization problem according to the affine parts. Recall
that 𝑠(𝑣, 𝜇) is defined as a supremum of affine functions, where each affine func-
tion corresponds to a �̄� ∈ ℳ0: 𝑠(𝑣, 𝜇) = sup�̄�∈ℳ0 ℓ(�̄�) + 𝑣⊤(�̄� − 𝜇). Using
that

⋃︀
�̄�∈ℳ0 𝜕Ω(�̄�) = R𝑘 and the continuity of the loss, we split problem (4.19)

into |ℳ0| minimization problems and define

𝜁𝑦,𝑦′(𝜀) = min
�̄�∈ℳ0

𝜁𝑦,𝑦′,�̄�(𝜀),

where 𝜁𝑦,𝑦′,�̄�(𝜀) is given by problem (4.19) with the additional constraint 𝑣 ∈
𝜕Ω(�̄�).
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New Line

Figure 4.7: The minimizer of the objective 𝛿𝑠(𝑣, 𝜇) over R𝑘 is 𝑤(𝑦). In order to minimize
the objective under the constraints, we only need to consider the faces which include the
minimizer 𝑤(𝑦). In the figure above, we can safely remove the optimization over the
faces 𝜕Ω(�̄�4) and 𝜕Ω(�̄�3).

2nd step. Reduce the number of considered affine parts and simplify objective.
We will show that

min
�̄�∈ℳ0

𝜁𝑦,𝑦′,�̄�(𝜀) = min
�̄�∈ℳ0(𝑦,𝑦′)

𝜁𝑦,𝑦′,�̄�(𝜀),

where ℳ0(𝑦, 𝑦′) = {�̄� ∈ ℳ0 | 𝑤(𝑦), 𝑤(𝑦′) ∈ 𝜕Ω(�̄�)} ⊂ ℳ0. Moreover, when
�̄� ∈ ℳ0(𝑦, 𝑦′), the objective function in the definition of 𝜁𝑦,𝑦′,�̄�(𝜀) takes the affine
form ⟨𝑤(𝑦) − 𝑣, 𝜇− �̄�⟩. In order to see this, let’s make the following observations.

- We have that 𝑤(𝑦′) must belong to the feasibility set as 𝑦′ = 𝑑 ∘ 𝑤(𝑦′). And
so, we must have 𝑤(𝑦′) ∈ 𝜕Ω(�̄�).

- Fix 𝜇 in the feasibility set of Eq. (4.19). As 𝑦 is the optimal prediction, 𝑤(𝑦)
is a minimizer of the conditional surrogate risk: min𝑣′ 𝑠(𝑣′, 𝜇) = 𝑠(𝑤(𝑦), 𝜇).
The objective function 𝑠(𝑣, 𝜇) − 𝑠(𝑤(𝑦), 𝜇) ≥ 0 is a convex affine-by-parts
function with minimizer 𝑤(𝑦). We can lower bound this quantity by simply
considering the affine parts �̄� ∈ ℳ0 that include the minimizer, i.e., 𝑤(𝑦) ∈
𝜕Ω(�̄�) (see Figure 4.7). Moreover, note that if 𝑤(𝑦) ∈ 𝜕Ω(�̄�), then Ω*(𝑣) =
Ω*(𝑤(𝑦)) + ⟨�̄�, 𝑣−𝑤(𝑦)⟩, as �̄� is the slope of the affine part 𝜕Ω(�̄�). Using that
min𝑣′∈R𝑘 𝑠(𝑣′, 𝜇) = 𝑠(𝑤(𝑦), 𝜇) = Ω*(𝑤(𝑦)) − ⟨𝑤(𝑦), 𝜇⟩, we have that

𝛿𝑠(𝑣, 𝜇) = 𝑠(𝑣, 𝜇) − 𝑠(𝑤(𝑦), 𝜇)
= Ω*(𝑣) − Ω*(𝑤(𝑦)) + ⟨𝑤(𝑦) − 𝑣, 𝜇⟩
= ⟨𝑤(𝑦) − 𝑣, 𝜇− �̄�⟩.

3rd step. Re-write constraints in terms of 𝑤(𝑦). The constraint 𝑦 = 𝑦⋆(𝜇) =
arg min𝑦∈𝒴 𝜙(𝑦)⊤𝐴𝜇 is equivalent to ℓ(𝑧, 𝜇) − ℓ(𝑦, 𝜇) ≥ 0 for all 𝑧 ∈ 𝒴 , which
can be written 𝛿ℓ(𝑧, 𝜇) = ⟨𝑤(𝑦) − 𝑤(𝑧), 𝜇⟩, for all 𝑧 ∈ 𝒴 . Similarly, the constraint
𝛿ℓ(𝑦′, 𝜇) ≥ 𝜀 reads ⟨𝑤(𝑦) − 𝑤(𝑦′), 𝜇⟩ ≥ 𝜀.

In order to state Theorem B .7, let’s first define the function 𝜆𝜇𝑦′ : 𝜕Ω(𝜇) → R≥0. By
Proposition B .2, we know that 𝜕Ω(𝜇) = hull(𝑤(𝑦))𝑦∈𝑦⋆(𝜇) + 𝒩ℳ(𝜇). In general, there
exist multiple ways to describe a vector 𝑣 ∈ 𝜕Ω(𝜇) as 𝑣 =

∑︀
𝑦∈𝑦⋆(𝜇) 𝜆𝑦𝑤(𝑦) + 𝑛 with

𝜆 ∈ Δ𝒴 and 𝑛 ∈ 𝒩ℳ(𝜇). The function 𝑣 ↦→ 𝜆𝜇𝑦′(𝑣) is defined as the maximal weight of
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the vector 𝑤(𝑦′) over all possible decompositions:

𝜆𝜇𝑦′(𝑣) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max
𝜆,𝑛

𝜆𝑦′

s.t 𝑣 =
∑︀
𝑦∈𝑦⋆(𝜇) 𝜆𝑦𝑤(𝑦) + 𝑛

𝜆 ∈ 𝑦⋆(𝜇)
𝑛 ∈ 𝒩ℳ(𝜇)

. (4.22)

The following Theorem B .7 gives a constant positive lower bound of the ratio 𝜁(𝜀)/𝜀 as a
minimization of 𝜆�̄�𝑦′(𝑣) over the prediction set of 𝑦′.

Theorem B .7. We have that

𝜁(𝜀) = min
𝑦′∈𝒴

min
�̄�∈ℳ0(𝑦′)

𝜁𝑦′,�̄�(𝜀)

, where ℳ0(𝑦′) = {�̄� ∈ ℳ0 | 𝑤(𝑦′) ∈ 𝜕Ω(�̄�)} ⊆ ℳ0 ⊂ ℳ and

𝜁𝑦′,�̄�(𝜀)/𝜀 ≥

⎧⎨⎩ min
𝑣∈𝜕Ω(�̄�)

𝜆�̄�𝑦′(𝑣)

s.t 𝑦′ = 𝑑 ∘ 𝑣
. (4.23)

Proof. We split the proof into four steps. First, we remove some constraints and
write the optimization problem in terms of 𝜇 − �̄�. Second, we construct the dual
of the linear program associated to the minimization w.r.t. 𝜇 and extract the vari-
able 𝜀 as a multiplying factor in the objective, thus showing the linearity of the
calibration function. Then, we add a simplex constraint to simplify the problem
and finally, we put everything together to obtain the desired result.

1st step. Write optimization w.r.t 𝜇 in terms of 𝜇 − �̄� by removing some con-
straints. Let’s proceed with the following editions of the constraints of (4.21) to
obtain a lower bound:

1. The cone 𝒩ℳ(�̄�) is polyhedral, as it is the normal cone of the convex poly-
tope ℳ at the point �̄�. Hence, it is a finitely generated cone (De Loera et al.,
2012), which can be described as

𝒩ℳ(�̄�) = {𝑎1𝑛1 + · · · + 𝑎𝑟𝑛𝑟 | 𝑎𝑖 ≥ 0, 𝑛𝑖 ∈ R𝑘}.

Let’s now replace the constraint 𝜇 ∈ ℳ (last constraint of (4.21)) by the con-
straints ⟨−𝑛𝑖, 𝜇 − �̄�⟩ ≥ 0 where 1 ≤ 𝑖 ≤ 𝑟 and 𝑛𝑖 are the generators of the
cone 𝒩ℳ(�̄�).

2. Note that by construction, we have that

⟨𝜙(𝑧), 𝐴�̄�⟩ = ⟨𝜙(𝑧′), 𝐴�̄�⟩, ∀𝑧, 𝑧′ ∈ 𝑦⋆(�̄�), (4.24)

as 𝑧, 𝑧′ are optimal for the conditional moments �̄�. Let’s remove from the
second line of constraints of (4.21) the ones corresponding to 𝑧 ∈ 𝒴 ∖ 𝑦⋆(�̄�)
and use (4.24) for the remaining constraints. We obtain

𝜁𝑦,𝑦′,�̄�(𝜀) ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
𝑣,𝜇∈R𝑘

⟨𝑤(𝑦) − 𝑣, 𝜇− �̄�⟩

s.t ⟨𝐴⊤(𝜙(𝑦′) − 𝜙(𝑦)), 𝜇− �̄�⟩ ≥ 𝜀,
⟨𝐴⊤(𝜙(𝑧) − 𝜙(𝑦)), 𝜇− �̄�⟩ ≥ 0, ∀𝑧 ∈ 𝑦⋆(�̄�)
⟨−𝑛𝑖, 𝜇− �̄�⟩ ≥ 0, 1 ≤ 𝑖 ≤ 𝑟
⟨𝑣, 𝜙(𝑦′) − 𝜙(𝑧)⟩ ≥ 0, ∀𝑧 ∈ 𝒴
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3. Do the change of variables 𝜇′ = 𝜇− �̄� and re-define 𝜇 ..= 𝜇′ to ease notation.

𝜁𝑦,𝑦′,�̄�(𝜀) ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
𝑣,𝜇∈R𝑘

⟨𝑤(𝑦) − 𝑣, 𝜇⟩

s.t ⟨𝐴⊤(𝜙(𝑦′) − 𝜙(𝑦)), 𝜇⟩ ≥ 𝜀,
⟨𝐴⊤(𝜙(𝑧) − 𝜙(𝑦)), 𝜇⟩ ≥ 0, ∀𝑧 ∈ 𝑦⋆(�̄�)
⟨−𝑛𝑖, 𝜇⟩ ≥ 0, 1 ≤ 𝑖 ≤ 𝑟
⟨𝑣, 𝜙(𝑦′) − 𝜙(𝑧)⟩ ≥ 0, ∀𝑧 ∈ 𝒴

2nd step. Linearity in 𝜀 via duality. Define 𝒴 = 𝑦⋆(�̄�). Let’s now study sepa-
rately the linear program corresponding to the variables 𝜇, which reads as

(P)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
𝜇

⟨𝑤(𝑦) − 𝑣, 𝜇⟩
s.t ⟨𝐴⊤(𝜙(𝑦′) − 𝜙(𝑦)), 𝜇⟩ ≥ 𝜀,

⟨𝐴⊤(𝜙(𝑧) − 𝜙(𝑦)), 𝜇⟩ ≥ 0, ∀𝑧 ∈ 𝒴
⟨−𝑛𝑖, 𝜇⟩ ≥ 0, 1 ≤ 𝑖 ≤ 𝑟

Let’s consider the dual formulation (D) of (P):

(D)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max
𝜆∈R𝒴+𝑟

𝜀𝜆𝑦′

s.t 𝐴⊤∑︀
𝑧∈𝒴 𝜆𝑧(𝜙(𝑦) − 𝜙(𝑧)) +

∑︀𝑟
𝑖=1 𝜆

𝑛
𝑖 𝑛𝑖 = 𝐴⊤𝜙(𝑦) + 𝑣

𝜆𝑦 ≥ 0 𝑦 ∈ 𝒴
𝜆𝑛𝑖 ≥ 0 1 ≤ 𝑖 ≤ 𝑟

,

where we have used that 𝑤(𝑦) = −𝐴⊤𝜙(𝑦).

3rd step. Simplify by adding a simplex constraint (dependence of optimal
prediction 𝑦 disappears). As problem (D) is written as a maximization, we
can lower bound the objective by adding constraints. If we add the constraint∑︀
𝑧∈𝒴 𝜆𝑧 = 1, the term 𝐴⊤𝜙(𝑦) simplifies and we obtain the following lower

bound ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max
𝜆∈R𝒴+𝑟

𝜀𝜆𝑦′

s.t 𝐴⊤∑︀
𝑧∈𝒴 𝜆𝑧𝑤(𝑧) +

∑︀𝑟
𝑖=1 𝜆

𝑛
𝑖 𝑛𝑖 = 𝑣

𝜆𝑦 ≥ 0 𝑦 ∈ 𝒴∑︀
𝑧∈𝒴 𝜆𝑧 = 1

𝜆𝑛𝑖 ≥ 0 1 ≤ 𝑖 ≤ 𝑟

, (4.25)

Note that the term
∑︀𝑟
𝑖=1 𝜆

𝑛
𝑖 𝑛𝑖 with 𝜆𝑛𝑖 ≥ 0 covers all possible normal cone vectors,

and so the maximization can be written over vectors in 𝒩ℳ(�̄�). Hence, Eq. (4.25)
can be written as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
𝜆,𝑛

𝜀𝜆𝑦′

s.t 𝑣 =
∑︀
𝑦∈𝒴 𝜆𝑦𝑤(𝑦) + 𝑛

𝜆 ∈ Δ𝒴
𝑛 ∈ 𝒩ℳ(�̄�)

. (4.26)

4th step. Putting everything together. Recall that problem (4.26) is a function
of 𝑣. The desired lower bound is constructed by minimizing the quantity (4.26)
under the constraints 𝑣 ∈ 𝜕Ω(�̄�) and 𝑦′ = 𝑑 ∘ 𝑣.
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B .4 Quantitative Lower Bound.

The compressed form of the calibration function (4.23) given by Theorem B .7 is still far
from a quantitative understanding on the value of the function. The following Theo-
rem B .8 provides a quantitative lower bound under mild assumptions on the loss 𝐿.

Assumption on L. 𝐿 is symmetric and there exists 𝐶 > 0 such that

𝑦 ∈ arg min
𝑦′∈𝒴

E𝑧∼𝛼𝐿(𝑦′, 𝑧) =⇒ 𝛼𝑦 ≥ 1/𝐶 > 0, (4.27)

for all 𝛼 ∈ Δ𝒴 .

Theorem B .8. Assume (4.27). Then, for any 𝜀 > 0, the calibration function is lower bounded
by

𝜁(𝜀) ≥ 𝜀

𝐷
,

where 𝐷 = max𝑦′∈𝒴 𝐷𝑦′ and

1/𝐷𝑦′ = min
�̄�∈ℳ0(𝑦′)

⎧⎪⎪⎨⎪⎪⎩
min
𝛼∈Δ𝒴

max
𝛽∈Δ𝒴

𝛽𝑦

s.t 𝐴⊤ E𝑧∼𝛼 𝜙(𝑧) = 𝐴⊤ E𝑧′∼𝛽 𝜙(𝑧′)
𝑦′ ∈ arg min𝑦∈𝒴 E𝑧∼𝛼 𝐿(𝑦, 𝑧)

, (4.28)

where 𝒴 = 𝑦⋆(�̄�).

Proof. We use the notation 𝜈(𝛼) = E𝑦∼𝛼 𝜙(𝑦) for 𝛼 ∈ Δ𝒴 . Let’s first show that

𝜁𝑦′,𝑦,�̄�(𝜀)/𝜀 ≥

⎧⎨⎩ min
𝛼∈Δ𝒴

𝜆�̄�𝑦′(−𝐴⊤𝜈(𝛼))

s.t 𝑦′ ∈ arg min𝑦∈𝒴 E𝑧∼𝛼 𝐿(𝑦, 𝑧)
. (4.29)

In order to see this, note that as 𝑣 ∈ 𝜕Ω(�̄�), we can write 𝑣 = −𝐴⊤𝜈(𝛼)+𝑛𝑣 where
𝛼 ∈ Δ𝒴 and 𝑛𝑣 ∈ 𝒩ℳ(�̄�). We will show that condition 𝑦′ = 𝑑 ∘ 𝑣 implies

⟨𝜙(𝑧) − 𝜙(𝑦′), 𝐴⊤𝜈(𝛼)⟩ ≥ 0, ∀𝑧 ∈ 𝒴.

The condition 𝑦′ = 𝑑∘𝑣 is equivalent to ⟨𝜙(𝑧) −𝜙(𝑦′), 𝐴⊤𝜈(𝛼) −𝑛𝑣⟩ ≥ 0 for all 𝑧 ∈
𝒴 . By definition of 𝒩ℳ(�̄�), we have that 𝑛𝑣 satisfies ⟨𝑠− �̄�, 𝑛𝑣⟩ ≤ 0 for any 𝑠 ∈ ℳ.
Now let 𝑧 ∈ 𝒴 ∖ {𝑦′} and consider the representation �̄� = 𝑐𝑦′,�̄�𝜙(𝑦′) + 𝑐𝑧,�̄�𝜙(𝑧) +
(1−𝑐𝑦′,�̄�−𝑐𝑧,�̄�)𝑟 with 𝑟 ∈ hull(𝒴 ∖{𝑦′, 𝑧}) and 0 ≤ 𝑐𝑦′,�̄�, 𝑐𝑧,�̄� ≤ 1. Since 𝑛𝑣 ∈ 𝒩ℳ(�̄�)
satisfies ⟨𝑠 − �̄�, 𝑛𝑣⟩ ≤ 0 also for 𝑠 = (𝑐𝑦′,�̄� + 𝑐𝑧,�̄�)𝜙(𝑦′) + (1 − 𝑐𝑦′,�̄� − 𝑐𝑧,�̄�)𝑟 ∈ ℳ,
when 𝑐𝑧,�̄� > 0 we have

0 ≥ 𝑐−1
𝑧,�̄�⟨𝑠− �̄�, 𝑛𝑣⟩ = ⟨𝜙(𝑦′) − 𝜙(𝑧), 𝑛𝑣⟩.

From (4.27), we know that 𝑐𝑧,�̄� ≥ 1/𝐶 > 0 for all 𝑧 ∈ 𝑦⋆(�̄�). Then we have

⟨𝜙(𝑧) − 𝜙(𝑦′), 𝑛𝑣⟩ ≥ 0, ∀ 𝑧 ∈ 𝑦⋆(�̄�).

Note moreover that 𝑦⋆(𝜈(𝛼)) ⊆ 𝑦⋆(�̄�). Indeed, by the assumption (4.27), we have
that 𝛼𝑧 = 0 implies 𝑧 /∈ 𝑦⋆(𝜈(𝛼)) and since 𝛼 ∈ Δ𝑦⋆(�̄�) we have that 𝛼𝑧 = 0 for
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𝑧 /∈ 𝑦⋆(�̄�). Since 𝑦′ ∈ 𝑦⋆(�̄�) by construction of 𝜇 and 𝐴 is symmetric due to the
symmetry of 𝐿

E𝑡∈𝛼𝐿(𝑡, 𝑧) − E𝑡∈𝛼𝐿(𝑡, 𝑦′)
= ⟨𝜙(𝑧) − 𝜙(𝑦′), 𝐴𝜈(𝛼)⟩
= ⟨𝜙(𝑧) − 𝜙(𝑦′), 𝐴⊤𝜈(𝛼)⟩
≥ ⟨𝜙(𝑧) − 𝜙(𝑦′), 𝑛𝑣⟩ ≥ 0,

for all 𝑧 ∈ 𝑦⋆(�̄�). Hence, Eq. (4.29) is proven. Finally, setting 𝑛 = 0 in the definition
(4.22) of 𝜆�̄�𝑦′(−𝐴⊤𝜈(𝛼)), we obtain the desired lower bound.

Corollary B .9. Under the same assumptions of Theorem B .8, we have that 𝐶 ≥ 𝐷, and so

𝜁(𝜀) ≥ 𝜀

𝐶
.

Proof. This can be seen by setting 𝛼 = 𝛽 in Eq. (4.28).

Exponential constants in the calibration function. We argue that the constant 𝐷 from
Theorem B .8 does not grow as the size of the output space 𝒴 when the problem is
structured, i.e., 𝑘 ≪ |𝒴|. On the other hand, the constant 𝐶 from Assumption (4.27) and
Corollary B .9 can take exponentially large values (of the order of |𝒴|) when the problem
is structured. We show this by studying the calibration function for Example 2 .1 and
Example 2 .2 in the next section.

B .5 Computation of the Constant for Specific Losses

Calibration function for factor graphs (Example 2 .1). Assume that we only have
unary potentials and the individual losses are the 0-1 loss, which means that 𝐴 = −𝐼𝑑
is the negative identity. Assume also that each part takes binary values, i.e., 𝑅 = 2. The
constant 𝐶 can be as large as |𝒴| = 2𝑀 , by considering the uniform distribution 𝛼𝑦 =
1/2𝑀 for all 𝑦, which is optimal for every output. On the other hand, as the marginals
for the uniform distribution are (1/2, 1/2) for every 𝑚, one can take 𝛽 = 1/2𝛿𝑦 + 1/2𝛿−𝑦,
and so 𝐷 is 2.

Calibration function for ranking and matching (Example 2 .2). In this case, the con-
stant 𝐶 can be as large as |𝒴| = 𝑀 ! by considering the uniform distribution 𝛼𝑦 = 1/𝑀 !
for all 𝑦. This corresponds to E𝑧∼𝛼 𝜙(𝑧) = 1/𝑀11⊤. For this distribution, the value of the
constant 𝐷 is 𝑀 , because one can write 1/𝑀11⊤ as the the uniform distribution over 𝑀
different permutations.

Proposition B .10 (Lipschitz Multi-class). Let 𝒴 = {1, . . . , 𝑘},𝑘 ≥ 2 and assume that 𝐿 be
symmetric. If there exists 𝑞 ∈ [0, 1) such that for all 𝑦, 𝑧 ∈ 𝒴∑︁

𝑡∈𝒴∖{𝑦,𝑧}
|𝐿(𝑡, 𝑦) − 𝐿(𝑡, 𝑧)| ≤ 𝑞 𝐿(𝑦, 𝑧),

then the calibration function for 𝑀4𝑁 is bounded by

𝜁(𝜀) ≥ 𝐻𝜖, 𝐻 ≥ 1 − 𝑞

𝑘 − 𝑞
> 0.
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Proof. First we prove that 𝐿 satisfies (4.27). Then we apply Theorem B .6. Let
𝛼 ∈ Δ𝒴 and assume that 𝑦 ∈ arg min𝑦∈𝒴 E𝑡∼𝛼𝐿(𝑦, 𝑡). This is equivalent to the
following ∑︁

𝑡∈𝒴
𝛼𝑡𝐿(𝑡, 𝑦) ≤

∑︁
𝑡∈𝒴

𝛼𝑡𝐿(𝑡, 𝑧), ∀𝑧 ∈ 𝒴.

In particular fix as 𝑧 = arg max𝑡∈𝒴∖{𝑦} 𝛼𝑡. By symmetry of the loss, the equation
above is equivalent to

(𝛼𝑧 − 𝛼𝑦)𝐿(𝑦, 𝑧) ≤
∑︁

𝑡∈𝒴∖{𝑦,𝑧}
𝛼𝑡(𝐿(𝑡, 𝑧) − 𝐿(𝑡, 𝑦)).

Let 𝑠 = arg max𝑡∈𝒴∖{𝑦,𝑧} 𝛼𝑡, then∑︁
𝑡∈𝒴∖{𝑦,𝑧}

𝛼𝑡(𝐿(𝑡, 𝑧)−𝐿(𝑡, 𝑦)) ≤ ( max
𝑡∈𝒴∖{𝑦,𝑧}

𝛼𝑡)
∑︁

𝑡∈𝒴∖{𝑦,𝑧}
|𝐿(𝑡, 𝑧)−𝐿(𝑡, 𝑦)| ≤ 𝛼𝑠 𝑞 𝐿(𝑦, 𝑧).

Note that by construction 𝛼𝑠 ≤ 𝛼𝑧 , so

(𝛼𝑧 − 𝛼𝑦)𝐿(𝑦, 𝑧) ≤ 𝛼𝑠 𝑞 𝐿(𝑦, 𝑧) ≤ 𝛼𝑧 𝑞 𝐿(𝑦, 𝑧),

from which we have 𝛼𝑧(1 − 𝑞) ≤ 𝛼𝑦. Since 𝛼𝑧 is the maximum probability over
𝒴 ∖ {𝑦}, then it can not be smaller than (1 − 𝛼𝑦)/(𝑘− 1), so 𝛼𝑧 ≥ (1 − 𝛼𝑦)/(𝑘− 1).
From which we derive

𝛼𝑦 ≥ 1 − 𝑞

𝑘 − 𝑞
.

This holds for any 𝛼 ∈ Δ𝒴 , 𝑦 ∈ 𝒴 and implies that (4.27) is valid for 𝐿, with
𝑐 ≥ 1−𝑞

𝑘−𝑞 . Then we can apply Theorem B .6 obtaining the desired result.

Proposition B .11 (Decomposable Multi-label Loss). Let 𝒴 = 𝒴1 × · · · × 𝒴𝑀 , 𝐿(𝑦, 𝑦′) =∑︀𝑀
𝑚=1 𝐿𝑚(𝑦𝑚, 𝑦′

𝑚) and 𝜙(𝑦) = (𝑒𝑦𝑚)𝑚∈𝑀 . Let 𝜁𝑚 be the calibration function of𝐿𝑚 and assume
𝜁𝑚(𝜀) ≥ 𝜀/𝐶𝑚, with 𝐶𝑚 > 0. The calibration function 𝜁 associated to 𝐿(𝑦, 𝑦′) has the following
form:

𝜁(𝜀) ≥ 𝜀/( max
𝑚∈[𝑀 ]

𝐶𝑚).

Proof. We have 𝛿ℓ(𝑦, 𝜇) =
∑︀𝑀
𝑚=1 𝛿ℓ𝑚(𝑦𝑚, 𝜇𝑚) and the surrogate conditional loss

decomposes additively as

𝑠(𝑣, 𝜇) =
𝑀∑︁
𝑚=1

𝑠𝑚(𝑣𝑚, 𝜇𝑚), 𝑠𝑚(𝑣𝑚, 𝜇𝑚) = max
𝑞∈Δ𝒴𝑚

min
𝑦′

𝑚∈𝒴𝑚

𝐿𝑦′
𝑚
𝑞 + 𝑣⊤𝑞 − 𝑣⊤𝜇𝑚.

We recall that the calibration function satisfies 𝜁(𝜀) ≥ 𝜀/𝐶 iff 𝛿ℓ(𝑦, 𝜇) ≤ 𝐶𝛿𝑠(𝑣, 𝜇),
for all 𝑣, 𝜇 and 𝑦 among the minimizers of the surrogate. Hence, for all 𝑣, 𝜇 and 𝑦
among the minimizers of the surrogate:

( max
𝑚∈[𝑀 ]

𝐶𝑚)𝛿𝑠(𝑣, 𝜇) = ( max
𝑚∈[𝑀 ]

𝐶𝑚)
𝑀∑︁
𝑚=1

𝛿𝑠𝑚(𝑣𝑚, 𝜇𝑚)
)︀

≥
𝑀∑︁
𝑚=1

𝐶𝑚𝛿𝑠𝑚(𝑣𝑚, 𝜇𝑚)

≥
𝑀∑︁
𝑚=1

𝛿ℓ𝑚(𝑦𝑚, 𝜇𝑚) = 𝛿ℓ(𝑦, 𝜇).
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Proposition B .12 (Calibration function for high-order factor graphs (Example 2 .1)). As-
sume (4.27). The constant 𝐷 from Theorem B .8 for embeddings for unary and high-order inter-
actions is the same as the constant 𝐷 with only unary potentials.

Proof. As the loss is decomposable as 𝐿(𝑦, 𝑦′) = 1
𝑀

∑︀𝑀
𝑚=1 𝐿𝑚(𝑦𝑚, 𝑦′

𝑚), it only de-
pends on the unary embeddings. This means that the constraint 𝐴⊤ E𝑧∼𝛼 𝜙(𝑧) =
𝐴⊤ E𝑧′∼𝛽 𝜙(𝑧′) from Eq. (4.28) only affects the unary embeddings, and so the
lower bound is the same.

C Sharp Generalization Bounds for Regularized Objectives

For 𝜆 > 0 and 𝑔 ∈ 𝒢 where 𝒢 is a vector valued reproducing kernel Hilbert space and
with norm ‖ · ‖𝒢 and 𝑔(𝑥) ∈ R𝑘 defined as 𝑔(𝑥)𝑖 = ⟨𝑔,Ψ𝑖(𝑥)⟩𝒢 with Ψ𝑖 : 𝑋 → 𝒢 for
𝑖 = 1, . . . , 𝑘. Note that in particular we have the identity

𝐾(𝑥, 𝑥′) = ⟨Ψ(𝑥),Ψ(𝑥′)⟩𝒢 ∈ R𝑘×𝑘,

where 𝐾 is the associated vector-valued reproducing Kernel. A simple example is the fol-
lowing. Let 𝐾0 : 𝑋 × 𝑋 → R be a scalar reproducing kernel, then the kernel 𝐾(𝑥, 𝑥′) =
1
𝑘𝐾0(𝑥, 𝑥′)𝐼𝑘×𝑘 is a vector-valued reproducing kernel whose associated vector-valued re-
producing kernel Hilbert space contains functions of the form 𝑔 : 𝑋 → R𝑘. Now define

ℛ(𝑔) = E(𝑥,𝑦)∼𝜌𝑆(𝑔(𝑥), 𝑦), ℛ𝜆(𝑔) = ℛ(𝑔) + 𝜆‖𝑔‖2
𝒢 , 𝑔𝜆 = arg min

𝑔∈𝒢
ℛ𝜆(𝑔).

Define also the empirical versions given a dataset (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1

ℛ𝑛(𝑔) = 1
𝑛

𝑛∑︁
𝑖=1

𝑆(𝑔(𝑥𝑖), 𝑦𝑖), ℛ𝜆
𝑛(𝑔) = ℛ𝑛(𝑔) + 𝜆‖𝑔‖2

𝒢 , 𝑔𝜆𝑛 = arg min
𝑔∈𝒢

ℛ𝜆
𝑛(𝑔).

We will use the following theorem that is a slight variation of Thm.1 from Sridharan et al.
(2009).

Theorem C .1. Let 𝛿 ∈ (0, 1). Let 𝐿 be the Lipschitz constant of 𝑆 and let ‖Ψ𝑖(𝑥)‖ ≤ 𝐵 for
all 𝑥 ∈ 𝑋 , 𝑖 = 1, . . . , 𝑘. Assume that there exists 𝑔⋆ such that ℛ(𝑔⋆) = inf𝑔∈𝒢 ℛ(𝑔). For any
𝑔 ∈ 𝒢 the following holds

ℛ(𝑔) − ℛ(𝑔⋆) ≤ 2(ℛ𝜆
𝑛(𝑔) − ℛ𝜆

𝑛(𝑔𝜆𝑛)) + 16𝐿2𝐵2(32 + log(1/𝛿))
𝜆𝑛

+ 𝜆

2 ‖𝑔‖2
𝒢 .

with probability 1 − 𝛿.

Proof. We apply the following error decomposition:

ℛ(𝑔) − ℛ(𝑔⋆) = (ℛ𝜆(𝑔) − ℛ𝜆(𝑔𝜆)) + (ℛ𝜆(𝑔𝜆) − ℛ𝜆(𝑔⋆)) + 𝜆

2 (‖𝑔⋆‖2
𝒢 − ‖𝑔‖2

𝒢).

By applying Theorem 1 of Sridharan et al. (2009) on ℛ𝜆(𝑔) − ℛ𝜆(𝑔𝜆), we have

ℛ𝜆(𝑔) − ℛ𝜆(𝑔𝜆) ≤ 2(ℛ𝜆
𝑛(𝑔) − ℛ𝜆

𝑛(𝑔𝜆𝑛)) + 16𝐿2𝐵2(32 + log(1/𝛿))
𝜆𝑛

.

Considering that ℛ𝜆(𝑔𝜆) − ℛ𝜆(𝑔⋆) ≤ 0 by definition of 𝑔𝜆, we obtain the desired
result.

Now we are ready to prove Theorem 3.4
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Proof of Theorem 3.4. Apply the theorem above with 𝑔 = 𝑔𝜆𝑛. Note moreover that by
Fisher consistency in Theorem 3 .2, 𝑔⋆(𝑥) = −𝐴⊤𝜙(𝑓⋆(𝑥)). Let 𝒢 be the vector-valued
reproducing kernel Hilbert space associated to the vector-valued kernel 𝐾, then 𝐵 =
sup𝑥∈𝑋 ‖Ψ(𝑥)‖𝒢 = ‖𝐾(𝑥, ·)‖𝒢 = sup𝑥∈𝑋 Tr(𝐾(𝑥, 𝑥))1/2, where Tr is the trace. Moreover
we have 𝐿 ≤ 2‖𝐴‖ max𝑦∈𝒴 ‖𝜙(𝑦)‖. The result is obtained by minimizing the resulting
upper bound in 𝜆 and then applying comparison inequality of Theorem 3 .3.

To conclude we extend a result from Pillaud-Vivien et al. (2018b) to our case. In
the following assume 𝑋 = R𝑑 and denote by 𝒢𝑚 the vector-valued reproducing kernel
induced by 𝐾𝑚(𝑥, 𝑥′) = 1

𝑘 �̄�𝑚(𝑥, 𝑥′)𝐼𝑘×𝑘 where 𝐼𝑘×𝑘 is the identity matrix and �̄�𝑚(𝑥, 𝑥′)
is the scalar kernel associated to the Sobolev space𝑊𝑚

𝑠 (R𝑑) for𝑚 > 𝑑/2. Note that when
𝑚 = (𝑑+ 1)/2, �̄�𝑚(𝑥, 𝑥′) = 𝑒−‖𝑥−𝑥′‖.

Theorem C .2. Let 𝑋 = R𝑑 and 𝜌 be such that 𝑋𝑦 ∩ 𝑋𝑦′ = ∅, for every 𝑦 ̸= 𝑦′ where
𝑋𝑦 = {𝑥 ∈ 𝑋 | 𝑦 ∈ arg min𝑧∈𝒴 E𝑦∼𝜌(·|𝑥)𝐿(𝑧, 𝑦)}. When 𝒢 ⊆ 𝒢𝑚 for 𝑚 > 𝑑/2, we have that

‖𝜙(𝑓⋆)‖𝒢 < ∞.

Proof. Since 𝑊𝑚
2 (R𝑑) contains the smooth and compactly supported functions

𝐶∞
𝑐 (R𝑑) by construction for any 𝑚 > 0 and 𝒢𝑚 = 𝑊𝑚

2 (R𝑑)⊗𝑘, when 𝒢 ⊇ 𝒢𝑚
we have that 𝒢 contains all the vector valued compactly supported smooth func-
tions. Now note for any two sets 𝐴,𝐵 there exists a compactly supported smooth
function 𝑓𝐴,𝐵 that has value 1 on 𝐴 and 0 on 𝐵 (see Pillaud-Vivien et al. (2018b)
for more details). Now we build

𝑔 = −𝐴⊤ ∑︁
𝑦∈𝒴

𝜙(𝑦)𝑓𝑋𝑦 ,∪𝑧 ̸=𝑦𝑋𝑧 .

Note that 𝑑 ∘ 𝑔 ∈ arg min𝑓 :𝑋→𝒴 E(𝑥,𝑦)∼𝜌𝐿(𝑓(𝑥), 𝑦), since for any 𝑥 ∈ ∪𝑦∈𝑋𝑦 =
support(𝜌) we have 𝑑 ∘ 𝑔 ∈ arg min𝑧∈𝒴 E𝑦∼𝜌(·|𝑥)𝐿(𝑧, 𝑦) by construction. I.e. 𝑑 ∘ 𝑔 =
𝑓⋆ and so 𝑔 = −𝐴⊤𝜙(𝑓⋆). To conclude the theorem, note that ‖𝑔‖𝒢 < ∞ since
𝑔 ∈ 𝐶∞

𝑐 (R𝑑,R𝑘) ⊆ 𝒢𝑚 ⊆ 𝒢.

D Max-min margin and dual formulation

D .1 Derivation of the Dual Formulation

Let us first define

𝐻𝑖(𝜇,𝑤) = min
𝑦∈𝒴

𝜙(𝑦)⊤𝐴𝜇+ 𝑔𝑤(𝑥𝑖)⊤𝜇− 𝑔𝑤(𝑥𝑖)⊤𝜙(𝑦𝑖).

Let’s denote 𝑤(𝜇) = 1
𝜆𝑛Φ𝑛(𝜇− 𝜙𝑛) where Φ𝑛 = 1

𝜆𝑛(Φ(𝑥1), . . . ,Φ(𝑥𝑛)) is the 𝑑× 𝑛 scaled
input data matrix and 𝜙𝑛 = (𝜙(𝑦1), . . . , 𝜙(𝑦𝑛))⊤ is the 𝑛 × 𝑘 output data matrix. Note
that 𝑤⊤𝑤(𝜇) = 1

𝜆𝑛

∑︀𝑛
𝑖=1 𝑔𝑤(𝑥𝑖)⊤(𝜇𝑖 − 𝜙(𝑦𝑖)). The dual formulation (D) of M4Ns can be

derived as follows:

min
𝑤∈𝒢

1
𝑛

𝑛∑︁
𝑖=1

max
𝜇𝑖∈ℳ

𝐻𝑖(𝜇𝑖, 𝑤) + 𝜆

2 ‖𝑤‖2
𝒢

= min
𝑤∈𝒢

1
𝑛

(︁ 𝑛∑︁
𝑖=1

max
𝜇𝑖∈ℳ

𝑔𝑤(𝑥𝑖)⊤(𝜇𝑖 − 𝜙(𝑦𝑖)) + min
𝑦′∈𝒴

𝜙(𝑦′)⊤𝐴𝜇𝑖
)︁

+ 𝜆

2 ‖𝑤‖2
𝒢
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= max
𝜇∈ℳ×···×ℳ

1
𝑛

𝑛∑︁
𝑖=1

(︁
min
𝑤∈𝒢

𝑔𝑤(𝑥𝑖)⊤(𝜇𝑖 − 𝜙(𝑦𝑖)) + min
𝑦′∈𝒴

𝜙(𝑦′)⊤𝐴𝜇𝑖
)︁

+ 𝜆

2 ‖𝑤‖2
𝒢

= max
𝜇∈ℳ×···×ℳ

1
𝑛

𝑛∑︁
𝑖=1

min
𝑦′∈𝒴

𝜙(𝑦′)⊤𝐴𝜇𝑖 + min
𝑤∈𝒢

− 𝑤⊤ 1
𝑛
𝑤(𝜇) + 𝜆

2 ‖𝑤‖2
𝒢

= max
𝜇∈ℳ×···×ℳ

1
𝑛

𝑛∑︁
𝑖=1

min
𝑦′∈𝒴

𝜙(𝑦′)⊤𝐴𝜇𝑖 + 𝜆min
𝑤∈𝒢

− 𝑤⊤𝑤(𝜇) + 1
2‖𝑤‖2

𝒢

= max
𝜇∈ℳ×···×ℳ

1
𝑛

𝑛∑︁
𝑖=1

min
𝑦′

𝜙(𝑦′)⊤𝐴𝜇𝑖 − 𝜆

2 ‖𝑤(𝜇)‖2
2,

where the maximization and minimization have been interchanged using strong duality.
We have 𝑤⋆ = 𝑤(𝜇⋆).

D .2 Computation of the Dual Gap

The dual gap 𝑔 at the pair (𝑤(𝜇), 𝜇) decomposes additively in individual dual gaps as
𝑔(𝑤, 𝜇) = 1

2
∑︀𝑛
𝑖=1 𝑔𝑖(𝑤, 𝜇𝑖):

𝑔(𝑤, 𝜇𝑖) = 1
𝑛

𝑛∑︁
𝑖=1

max
𝜇′

𝑖∈ℳ
𝐻𝑖(𝜇′

𝑖, 𝑤) + 𝜆

2𝑤
⊤𝑤 −

(︁ 1
𝑛

𝑛∑︁
𝑖=1

min
𝑦′

𝜙(𝑦′)⊤𝐴𝜇𝑖 − 𝜆

2𝑤
⊤𝑤
)︁

= 1
𝑛

𝑛∑︁
𝑖=1

(︁
max
𝜇′

𝑖

𝐻𝑖(𝜇′
𝑖, 𝑤) − min

𝑦′
𝜙(𝑦′)⊤𝐴𝜇𝑖

)︁
+ 𝜆𝑤⊤𝑤

= 1
𝑛

𝑛∑︁
𝑖=1

(︁
max
𝜇′

𝑖

𝐻𝑖(𝜇′
𝑖, 𝑤) − min

𝑦′
𝜙(𝑦′)⊤𝐴𝜇𝑖

)︁
+ 1
𝑛

𝑛∑︁
𝑖=1

𝑤⊤(𝜆𝑛𝑤𝑖(𝜇𝑖))

= 1
𝑛

𝑛∑︁
𝑖=1

max
𝜇′

𝑖

𝐻𝑖(𝜇′
𝑖, 𝑤) + 𝑤⊤(𝜆𝑛𝑤𝑖(𝜇𝑖)) − min

𝑦′
𝜙(𝑦′)⊤𝐴𝜇𝑖

= 1
𝑛

𝑛∑︁
𝑖=1

max
𝜇′

𝑖

𝐻𝑖(𝜇′
𝑖, 𝑤) −𝐻𝑖(𝜇𝑖, 𝑤) = 1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑖(𝑤, 𝜇𝑖),

where 𝑤𝑖(𝜇𝑖) = 1
𝜆𝑛Φ(𝑥𝑖)(𝜇𝑖 − 𝜙(𝑦𝑖))⊤.

E Generalized Block-Coordinate Frank-Wolfe

E .1 General Convergence Result

In order to prove a convergence bound, following Lacoste-Julien et al. (2013), we will
consider a more general optimization problem, and combine their proof with the proof
of generalized conditional gradient from Bach (2015), with an additional support from
approximate oracles.

We thus consider a product domain 𝒦 = 𝒦1×· · · 𝒦𝑛, and a smooth function 𝑓 defined
on 𝒦, as well as 𝑛 functions ℎ1, . . . , ℎ𝑛. We assume that 𝑓 is 𝐿𝑖-smooth with respect to
the 𝑖-th block. The optimization problem reads

min
𝑧∈𝒦1×···×𝒦𝑛

𝑔(𝑧) ..= 𝑓(𝑧) +
𝑛∑︁
𝑖=1

ℎ𝑖(𝑧𝑖). (4.30)
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Algorithm 3: Generalized Block-Coordinate Frank-Wolfe (GBCFW)

1 Let 𝑧(0) ∈ 𝒦1 × · · · × 𝒦𝑛;
2 for 𝑡 = 0 to 𝑇 do
3 Pick 𝑖(𝑡) at random in {1, . . . , 𝑛};
4 𝑧⋆𝑖(𝑡) ∈ arg min𝑧′

𝑖(𝑡)∈𝒦𝑖
∇𝑖(𝑡)𝑓(𝑧(𝑡))⊤𝑧′

𝑖(𝑡) + ℎ𝑖(𝑡)(𝑧′
𝑖(𝑡)) (solve oracle);

5 𝛾 ..= 2𝑛
𝑡+2𝑛 or optimize 𝛾 by line-search.;

6 𝑧
(𝑡+1)
𝑖(𝑡)

..= (1 − 𝛾)𝑧(𝑡)
𝑖(𝑡) + 𝛾𝑧⋆𝑖(𝑡) (Update only the i-th coordinate);

7 end

The algorithm, described in Algorithm 3, proceeds as follows. Starting from 𝑧(0) ∈
𝒦1 × · · · × 𝒦𝑛, for 𝑡 ≥ 0, select 𝑖(𝑡) uniformly at random and find 𝑧𝑖(𝑡) ∈ 𝒦𝑖(𝑡) such that
minimizes a convex lower bound of the objective function on the 𝒦𝑖(𝑡)’th block. This
convex lower bound is constructed by linearizing only the smooth part of the objective
function. Hence, the minimization of the lower bound reads:

ℎ𝑖(𝑡)(𝑧𝑖(𝑡)) + ∇𝑖(𝑡)𝑓(𝑧(𝑡))⊤𝑧𝑖(𝑡) 6 inf
𝑧𝑖(𝑡)∈𝒦𝑖(𝑡)

ℎ𝑖(𝑡)(𝑧𝑖(𝑡)) + ∇𝑖(𝑡)𝑓(𝑧(𝑡))⊤ 𝑧𝑖(𝑡) + 𝜀𝑡. (4.31)

Note that we allow an error of at most 𝜀𝑡 on the computation of the generalized Frank-
Wolfe oracle. This is key in our analysis as in our setting we only have access to an
approximate oracle. Finally, define 𝑧(𝑡+1) by copying 𝑧(𝑡) except the 𝑖(𝑡)-th coordinate,
which is taken to be

𝑧
(𝑡+1)
𝑖(𝑡) = (1 − 𝛾𝑡)𝑧(𝑡)

𝑖(𝑡) + 𝛾𝑡𝑧𝑖(𝑡).

We have, using the convexity of ℎ𝑖(𝑡) and the smoothness of 𝑓 , and denoting 𝑧* a
minimizer of ℎ(𝑧) = 𝑓(𝑧) +

∑︀𝑛
𝑖=1 ℎ𝑖(𝑧𝑖):

𝑓(𝑧(𝑡+1)) +
𝑛∑︁
𝑖=1

ℎ𝑖(𝑧(𝑡+1)
𝑖 )

≤ 𝑓(𝑧(𝑡)) + (𝑧(𝑡+1)
𝑖(𝑡) − 𝑧

(𝑡)
𝑖(𝑡))

⊤∇𝑖(𝑡)𝑓(𝑧(𝑡)) +
𝐿𝑖(𝑡)

2 ‖𝑧(𝑡+1)
𝑖(𝑡) − 𝑧

(𝑡)
𝑖(𝑡)‖

2

+
𝑛∑︁
𝑖=1

ℎ𝑖(𝑧(𝑡)
𝑖 ) + ℎ𝑖(𝑡)(𝑧

(𝑡+1)
𝑖(𝑡) ) − ℎ𝑖(𝑡)(𝑧

(𝑡)
𝑖(𝑡))

≤ 𝑓(𝑧(𝑡)) + 𝛾𝑡(𝑧𝑖(𝑡) − 𝑧
(𝑡)
𝑖(𝑡))

⊤∇𝑖(𝑡)𝑓(𝑧(𝑡)) +
𝐿𝑖(𝑡)

2 𝛾2
𝑡 ‖𝑧𝑖(𝑡) − 𝑧

(𝑡)
𝑖(𝑡)‖

2

+
𝑛∑︁
𝑖=1

ℎ𝑖(𝑧(𝑡)
𝑖 ) + (1 − 𝛾𝑡)ℎ𝑖(𝑡)(𝑧

(𝑡)
𝑖(𝑡)) + 𝛾𝑡ℎ𝑖(𝑡)(𝑧𝑖(𝑡)) − ℎ𝑖(𝑡)(𝑧

(𝑡)
𝑖(𝑡))

≤ 𝑓(𝑧(𝑡)) +
𝑛∑︁
𝑖=1

ℎ𝑖(𝑧(𝑡)
𝑖 ) + 𝛾𝑡

[︀
ℎ𝑖(𝑡)(𝑧𝑖(𝑡)) + 𝑧⊤

𝑖(𝑡)∇𝑖(𝑡)𝑓(𝑧(𝑡))
]︀

−𝛾𝑡
[︀
ℎ𝑖(𝑡)(𝑧

(𝑡)
𝑖(𝑡)) + (𝑧(𝑡)

𝑖(𝑡))
⊤∇𝑖(𝑡)𝑓(𝑧(𝑡))

]︀
+
𝐿𝑖(𝑡)

2 𝛾2
𝑡 diam(𝒦𝑖(𝑡))2

Now, we use Eq. (4.31), i.e., the fact that 𝑧𝑖(𝑡) is an approximate solution of the minimiza-
tion problem inf𝑧𝑖(𝑡)∈𝒦𝑖(𝑡)

{︀
ℎ𝑖(𝑡)(𝑧𝑖(𝑡)) + ∇𝑖(𝑡)𝑓(𝑧(𝑡))⊤ 𝑧𝑖(𝑡)

}︀
. In this case, we can continue

upper bounding the above quantity as
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≤ 𝑓(𝑧(𝑡)) +
𝑛∑︁
𝑖=1

ℎ𝑖(𝑧(𝑡)
𝑖 ) + 𝛾𝑡

[︀
inf

𝑧𝑖(𝑡)∈𝒦𝑖(𝑡)

{︀
ℎ𝑖(𝑡)(𝑧𝑖(𝑡)) + ∇𝑖(𝑡)𝑓(𝑧(𝑡))⊤ 𝑧𝑖(𝑡)

}︀]︀
−𝛾𝑡

[︀
ℎ𝑖(𝑡)(𝑧

(𝑡)
𝑖(𝑡)) − (𝑧(𝑡)

𝑖(𝑡))
⊤∇𝑖(𝑡)𝑓(𝑧(𝑡))

]︀
+
𝐿𝑖(𝑡)

2 𝛾2
𝑡 diam(𝒦𝑖(𝑡))2 + 𝛾𝑡𝜀𝑡

≤ 𝑓(𝑧(𝑡)) +
𝑛∑︁
𝑖=1

ℎ𝑖(𝑧(𝑡)
𝑖 ) + 𝛾𝑡

[︀
ℎ𝑖(𝑡)(𝑧*

𝑖(𝑡)) + ∇𝑖(𝑡)𝑓(𝑧(𝑡))⊤ 𝑧*
𝑖(𝑡)

−ℎ𝑖(𝑡)(𝑧
(𝑡)
𝑖(𝑡)) − (𝑧(𝑡)

𝑖(𝑡))
⊤∇𝑖(𝑡)𝑓(𝑧(𝑡))

]︀
+
𝐿𝑖(𝑡)

2 𝛾2
𝑡 diam(𝒦𝑖(𝑡))2 + 𝛾𝑡𝜀𝑡.

Let’s now define 𝐶 ≥ 0 as

𝐶 =
𝑛∑︁
𝑖=1

𝐿𝑖diam(𝒦𝑖)2.

Finally, if we denote by ℱ𝑡 the information up to time 𝑡, we have that

E
[︁
𝑓(𝑧(𝑡+1)) +

𝑛∑︁
𝑖=1

ℎ𝑖(𝑧(𝑡+1)
𝑖 ) | ℱ𝑡

]︁
≤ 𝑓(𝑧(𝑡)) +

𝑛∑︁
𝑖=1

ℎ𝑖(𝑧(𝑡)
𝑖 )

+ 𝛾𝑡
[︀ 1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖(𝑧*
𝑖 ) + 1

𝑛
∇𝑓(𝑧(𝑡))⊤ 𝑧* − 1

𝑛

𝑛∑︁
𝑖=1

ℎ𝑖(𝑧(𝑡)
𝑖 ) − 1

𝑛
(𝑧(𝑡))⊤∇𝑓(𝑧(𝑡))

]︀
+ 𝛾2

𝑡

2
𝐶

𝑛
+ 𝛾𝑡𝜀𝑡,

where we have used 𝐶/𝑛 = E[𝐿𝑖(𝑡)diam(𝒦𝑖(𝑡))2], E
[︀
ℎ𝑖(𝑡)(𝑧𝑖(𝑡))

]︀
= 1

𝑛

∑︀𝑛
𝑖=1 ℎ𝑖(𝑧𝑖) and

E[𝑧𝑖(𝑡)] = 1
𝑛𝑧 for any 𝑧 ∈ 𝒦1 × · · · × 𝒦𝑛. Thus, if 𝑔 is the objective function as defined in

(4.30), we get:

E
[︀
𝑔(𝑧(𝑡+1)) − 𝑔(𝑧*)

]︀
≤ (1 − 𝛾𝑡

𝑛
)
[︀
E𝑔(𝑧(𝑡)) − 𝑔(𝑧*)

]︀
+ 𝛾2

𝑡

2
𝐶

𝑛
+ 𝛾𝑡𝜀𝑡.

Note that the above inequality is the same appearing in Jaggi (2013) but with the key
difference of the factor 1/𝑛, which stems from the random block-coordinate procedure
of the algorithm. If we define 𝐺𝑡 = E

[︀
𝑔(𝑧(𝑡)) − 𝑔(𝑧*)

]︀
, we can re-write the recursion as

𝐺𝑡+1 ≤ (1 − 𝛾𝑡
𝑛

)𝐺𝑡 + 𝛾2
𝑡𝐶

2𝑛 + 𝛾𝑡𝜀𝑡.

Let’s first set 𝜀𝑡 = 0, i.e., 𝐺𝑡+1 ≤ (1 − 𝛾𝑡

𝑛 )𝐺𝑡 + 𝛾2
𝑡𝐶
2 , and prove by induction if 𝛾𝑡 = 2𝑛

𝑡+2𝑛 ∈
[0, 1], we obtain

𝐺𝑡 ≤ 2𝑛(𝐶 +𝐺0)
𝑡+ 2𝑛 𝑡 ≥ 0.

Let’s proceed by induction. The base-case 𝑘 = 0 is satisfied as 𝐶 ≥ 0.

𝐺𝑡+1 ≤ (1 − 𝛾𝑡
𝑛

)𝐺𝑡 + 𝛾2
𝑡𝐶

2𝑛
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= (1 − 2
𝑡+ 2𝑛)𝐺𝑡 + ( 2𝑛

𝑡+ 2𝑛)2 𝐶

2𝑛

≤ (1 − 2
𝑡+ 2𝑛)2𝑛(𝐶 +𝐺0)

𝑡+ 2𝑛 + ( 1
𝑡+ 2𝑛)22𝑛𝐶

Rearranging the terms gives

𝐺𝑡+1 ≤ 2𝑛𝐶
𝑡+ 2𝑛(1 − 2

𝑡+ 2𝑛 + 1
𝑡+ 2𝑛)

= 2𝑛𝐶
𝑡+ 2𝑛

𝑡+ 2𝑛− 1
𝑡+ 2𝑛

≤ 2𝑛𝐶
𝑡+ 2𝑛

𝑡+ 2𝑛
𝑡+ 2𝑛+ 1

= 2𝑛𝐶
𝑡+ 2𝑛+ 1 ,

which is the claimed bound for 𝑘 + 1. If we now we use an error

𝜀𝑡 = 1
2𝛿𝛾𝑡𝐿𝑖(𝑡)diam(𝒦𝑖(𝑡))2. (4.32)

Then, we have that

𝐺𝑡+1 ≤ (1 − 𝛾𝑡
𝑛

)𝐺𝑡 + 𝛾2
𝑡𝐶(1 + 𝛿)

2𝑛 𝐶,

and so we get

E
[︀
𝑔(𝑧(𝑡+1)) − 𝑔(𝑧*)

]︀
≤ 2𝑛
𝑡+ 2𝑛

(︃
E
[︀
𝑔(𝑧(0)) − 𝑔(𝑧*)

]︀
+ (1 + 𝛿)

𝑛∑︁
𝑖=1

𝐿𝑖diam(𝒦𝑖)2
)︃
.

In order to obtain the final bound only in terms of
∑︀𝑛
𝑖=1 𝐿𝑖diam(𝒦𝑖)2, we can reuse

the techniques from Lacoste-Julien et al. (2013), such as a single batch generalized Frank-
Wolfe step, or use line search instead of constant step-sizes. Using these techniques, we
can manage to set

E
[︀
𝑔(𝑧(0)) − 𝑔(𝑧*)

]︀
≤ 𝑛max

𝑖
diam(𝒦𝑖)2 max𝑖 𝐿𝑖

2 ,

so that we obtain

E
[︀
𝑔(𝑧(𝑡+1)) − 𝑔(𝑧*)

]︀
≤ (2 + 𝛿) 2𝑛2

𝑡+ 2𝑛 max
𝑖
𝐿𝑖 max

𝑖
diam(𝒦𝑖)2.

E .2 Application to Our Setting, Proof of Theorem 5.1.

In our setting, we have that diam(𝒦𝑖) = diam(ℳ) and 𝐿𝑖 ≤ 𝑅2

𝜆𝑛2 (𝑅 is the maximal norm
of features). Hence, the bound simplifies to

E
[︀
𝑔(𝑧(𝑡+1)) − 𝑔(𝑧*)

]︀
≤ 2(2 + 𝛿)

𝑡+ 2𝑛
𝑅2diam(ℳ)2

𝜆
.

Which means that in order to get E
[︀
𝑔(𝑧(𝑡+1)) − 𝑔(𝑧*)

]︀
≤ 𝜀 one needs

𝑡 ≥ 2(2 + 𝛿)𝑅2 diam(ℳ)2

𝜆𝜀
+ 2𝑛 = 𝑂

(︃
𝑛+ 𝑅2 diam(ℳ)2

𝜆𝜀

)︃
iterations.
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Algorithm 4: Generalized Block-Coordinate Frank-Wolfe (GBCFW)

1 Let 𝑤(0) ..= 𝑤
(0)
𝑖

..= �̄�(0) ..= 0;
2 for 𝑡 = 0 to 𝑇 do
3 Pick 𝑖 at random in {1, . . . , 𝑛};
4 (𝜇⋆𝑖 , 𝜈⋆𝑖 ) = 𝒪𝜀𝑡(𝑔𝑤(𝑡)(𝑥𝑖)) (solve oracle with precision 𝜀𝑡);
5 𝑤𝑠 ..= Φ𝑛(𝜇⋆𝑖 − 𝜙𝑛)/(𝜆𝑛);
6 𝛾 ..= 2𝑛

𝑡+2𝑛 (or line-search);

7 𝑤
(𝑡+1)
𝑖

..= (1 − 𝛾)𝑤(𝑡)
𝑖 + 𝛾𝑤𝑠;

8 𝑤(𝑡+1) ..= 𝑤(𝑡) + 𝑤
(𝑡+1)
𝑖 − 𝑤

(𝑡)
𝑖 ;

9 (Optional averaging: �̄�(𝑡+1) ..= 𝑡
𝑡+2 �̄�

(𝑡) + 2
𝑡+2𝑤

(𝑡+1));
10 end

F Solving the Oracle with Saddle Point Mirror Prox

Let 𝒳 ⊂ R𝑘, 𝒴 ⊂ R𝑘 be compact and convex sets. Let 𝐹 : 𝒳 × 𝒴 → R be a contin-
uous function such that 𝐹 (·, 𝑦) is convex and 𝐹 (𝑥, ·) is concave. We are interested in
computing

min
𝑥∈𝒳

max
𝑦∈𝒴

𝐹 (𝑥, 𝑦).

By Sion’s minimax theorem there exists a pair (𝑥⋆, 𝑦⋆) ∈ 𝒳 × 𝒴 such that

𝐹 (𝑥⋆, 𝑦⋆) = min
𝑥∈𝒳

max
𝑦∈𝒴

𝐹 (𝑥, 𝑦) = max
𝑦∈𝒴

min
𝑥∈𝒳

𝐹 (𝑥, 𝑦).

We assume that

‖∇𝑥𝐹 (𝑥, 𝑦) − ∇𝑥𝐹 (𝑥′, 𝑦)‖*
𝒳 ≤ 𝛽1,1‖𝑥− 𝑥′‖𝒳

‖∇𝑥𝐹 (𝑥, 𝑦) − ∇𝑥𝐹 (𝑥, 𝑦′)‖*
𝒳 ≤ 𝛽1,2‖𝑦 − 𝑦′‖𝒴

‖∇𝑦𝐹 (𝑥, 𝑦) − ∇𝑦𝐹 (𝑥′, 𝑦)‖*
𝒴 ≤ 𝛽2,1‖𝑥− 𝑥′‖𝒳

‖∇𝑦𝐹 (𝑥, 𝑦) − ∇𝑦𝐹 (𝑥, 𝑦′)‖*
𝒴 ≤ 𝛽2,2‖𝑦 − 𝑦′‖𝒴 ,

where ‖ · ‖*
𝒳 , ‖ · ‖*

𝒴 denote the dual norms of ‖ · ‖𝒳 , ‖ · ‖𝒴 , respectively. We are interested
in finding an algorithm that produces (̂︀𝑥, ̂︀𝑦) that has small duality gap 𝑔(̂︀𝑥, ̂︀𝑦) defined as

𝑔(̂︀𝑥, ̂︀𝑦) ..= max
𝑦∈𝒴

𝐹 (̂︀𝑥, 𝑦) − min
𝑥∈𝒳

𝐹 (𝑥, ̂︀𝑦).

F .1 Saddle Point Mirror Prox (SP-MP)

Define 𝐻𝒳 : 𝒟𝒳 → R and 𝐻𝒴 : 𝒟𝒴 → R, which are 1-strongly concave w.r.t a norm ‖ · ‖𝒳
on 𝒳 ∩𝒟𝒳 and ‖·‖𝒴 on 𝒴∩𝒟𝒴 , respectively. Denote𝑅𝒳 = sup𝑥∈𝒳 𝐻𝒳 (𝑥)−min𝑥∈𝒳 𝐻𝒳 (𝑥)
and 𝑅𝒴 similarily for 𝐻𝒴 . Define 𝒵 ..= 𝒳 × 𝒴 and 𝐻 : 𝒟 ..= 𝒟𝒳 × 𝒟𝒴 → R defined as
𝐻(𝑧) = 1

𝑅2
𝒳
𝐻𝒳 (𝑥) + 1

𝑅2
𝒴
𝐻𝒴(𝑦), where 𝑧 = (𝑥, 𝑦). The saddle point mirror prox (SP-MP)

algorithm is defined as follows.
Start with 𝑧(1) = (𝑥(1), 𝑦(1)) = arg max𝑧∈𝒵 𝐻(𝑧). Then at every iteration 𝑘:
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(𝑢(𝑘+1), 𝑣(𝑘+1)) ..= arg min
𝑧∈𝒵∩𝒟

𝜂(∇𝑥𝐹 (𝑥(𝑘), 𝑦(𝑘)),−∇𝑦𝐹 (𝑥(𝑘), 𝑦(𝑘)))⊤𝑧 +𝐷−𝐻(𝑧, 𝑧(𝑘+1))

(𝑥(𝑘+1), 𝑦(𝑘+1)) ..= arg min
𝑧∈𝒵∩𝒟

𝜂(∇𝑥𝐹 (𝑢(𝑘+1), 𝑣(𝑘+1)),−∇𝑦𝐹 (𝑢(𝑘+1), 𝑣(𝑘+1)))⊤𝑧 +𝐷−𝐻(𝑧, 𝑧(𝑘+1))

The following Theorem F .1 by Nemirovski (2004) studies the convergence of SP-MP.

Theorem F .1 (Nemirovski (2004)). Let 𝐿 = max(𝛽11𝑅
2
𝒳 , 𝛽22𝑅

2
𝒴 , 𝛽12𝑅𝒳𝑅𝒴 , 𝛽21𝑅𝒳𝑅𝒴).

Then, the algorithm saddle point mirror prox (presented at the beginning of the section) runned
with 𝜂 = 1

2𝐿 satisfies

𝑔(�̄�𝐾 , 𝑣𝐾) ≤ 4𝐿
𝐾
,

where �̄�𝐾 ..= 1
𝐾

∑︀𝐾
𝑘=1 𝑢

(𝑘) and 𝑣𝐾 ..= 1
𝐾

∑︀𝐾
𝑘=1 𝑣

(𝑘).

In our setting, we have that 𝒳 = 𝒴 = ℳ and

𝐹 (𝜈, 𝜇) = 𝜈⊤𝐴𝜇+ 𝑣⊤𝜇. (4.33)

The gradients have the following form:

∇𝜈𝐹 (𝜈, 𝜇) = 𝐴𝜇, and ∇𝜇𝐹 (𝜈, 𝜇) = 𝐴⊤𝜈 + 𝑣.

F .2 Max-Min Oracle for Sequences (special case of Example 2 .1)

Consider unary potentials and binary potentials between adjacent variables. The em-
beddings can be written as

𝜙(𝑦) = (𝜙𝑢(𝑦), 𝜙𝑝(𝑦)) = ((𝜙𝑚(𝑦𝑚))𝑀𝑚=1, 𝜙𝑚,𝑚+1(𝑦𝑚,𝑚+1)𝑀−1
𝑚=1 ) ∈ R𝑅𝑀+𝑅2(𝑀−1),

where 𝜙𝑚(𝑦𝑚) = 𝑒𝑦𝑚 ∈ R𝑅 and 𝜙𝑚,𝑚+1(𝑦𝑚,𝑚+1) = 𝑒𝑦𝑚,𝑚+1 ∈ R𝑅2
are vectors of the

canonical basis. Here, 𝜙𝑢 and 𝜙𝑝 stand for unary and pair-wise embeddings. If the loss
decomposes coordinate-wise as 𝐿(𝑦, 𝑦′) = 1

𝑀

∑︀𝑀
𝑖=1 𝐿𝑚(𝑦𝑚, 𝑦′

𝑚) as detailed in Example 2
.1, the loss decomposition reads

𝐴 =

⎛⎜⎜⎜⎜⎝
𝐿1/𝑀 · · · 0𝑅×𝑅

...
. . .

...
0𝑅×𝑅 · · · 𝐿𝑀/𝑀

𝒪𝑀𝑅×(𝑀−1)𝑅2

𝒪(𝑀−1)𝑅2×𝑀𝑅 𝒪(𝑀−1)𝑅2×(𝑀−1)𝑅2

⎞⎟⎟⎟⎟⎠ , 𝑎 = 0.

The bilinear function (4.33) takes the following form:

𝐹 (𝜈, 𝜇) =
𝑀∑︁
𝑚=1

𝜈⊤
𝑚𝐿𝑚𝜇𝑚 +

𝑀∑︁
𝑚=1

𝑣⊤
𝑚𝜇𝑚 +

𝑀−1∑︁
𝑝=1

𝑣⊤
𝑝 𝜇𝑝.

Note that as𝐴 is low-rank, the dependence on 𝜈 is only on the unary embeddings, which
means that the minimization over 𝜈 is over a simpler domain that decomposes as 𝒬 =
Π𝑀
𝑚=1Δ𝑅.
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We consider the entropies 𝐻𝒬 : 𝒬 → R and 𝐻ℳ : ℳ → R defined as:

𝐻𝒬(𝜈) ..=
𝑀∑︁
𝑚=1

𝐻𝑆(𝜈𝑚), 𝐻ℳ(𝜇) ..=

⎧⎪⎨⎪⎩
max𝑞∈Δ|𝒴| 𝐻𝑆(𝑞)
s.t. E𝑦∼𝑞 𝜙𝑚(𝑦𝑚) = 𝜇𝑚, 1 ≤ 𝑚 ≤ 𝑀

E𝑦∼𝑞 𝜙𝑝(𝑦𝑝) = 𝜇𝑝, 1 ≤ 𝑝 ≤ 𝑀 − 1
,

where for 𝑞 ∈ Δ𝑘, we define the Shannon entropy𝐻𝑆 : Δ𝑘 → R as𝐻𝑆(𝑞) = −
∑︀𝑘
𝑗=1 𝑞𝑗 log 𝑞𝑗 .

In order to apply SP-MP we need to compute two projections in 𝒬 and ℳ with re-
spect to the corresponding entropies described above. The update on 𝜈 ∈ 𝒬 takes the
form

arg min
𝜈∈𝒬

𝜂
𝑀∑︁
𝑚=1

𝜈⊤
𝑚𝐿𝑚𝜇

(𝑡)
𝑚 +𝐷−𝐻𝒬(𝜈, 𝜈(𝑡)). (4.34)

As the entropy 𝐻𝒬 is separable, the projection (4.34) is separable and can be computed
with the softmax operator. The update on 𝜇 ∈ ℳ takes the form

arg min
𝜇∈ℳ

− 𝜂
𝑀∑︁
𝑚=1

𝜇⊤
𝑚(𝐿⊤

𝑚𝜈
(𝑡)
𝑚 + 𝑣𝑚) − 𝜂

𝑀−1∑︁
𝑝=1

𝜇⊤
𝑝 𝑣𝑝 +𝐷−𝐻ℳ(𝜇, 𝜇(𝑡)). (4.35)

Projection (4.35) can be computed using marginal inference using the sum-product algo-
rithm.

Norm ‖ · ‖𝒬 and constants 𝑅𝒬, 𝜎𝒬. We choose the norm as the 𝐿1-norm ‖𝜈‖𝒬 ..=
‖𝜈‖1 =

∑︀𝑀
𝑚=1 ‖𝜈𝑚‖1. From Pinsker’s inequality, we know that 𝐻(𝜈𝑚) is 1-strongly con-

vex with respect to ‖ · ‖1 in Δ𝑅. Hence, we have that 𝐻𝒬(𝜈) is 1-strongly respect with
respect to ‖ · ‖1 in 𝒬. Moreover, using that min𝑞∈𝒬𝐻𝒬(𝜈) = 0, we have that

𝑅2
𝒬

..= max
𝜈∈𝒬

𝐻𝒬(𝜈) = max
𝜈∈Π𝑀

𝑚=1Δ𝑅

𝑀∑︁
𝑚=1

𝐻(𝜈𝑚) =
𝑀∑︁
𝑚=1

max
𝜈𝑚∈Δ𝑅

𝐻(𝜈𝑚) =
𝑀∑︁
𝑚=1

log𝑅 = 𝑀 log𝑅.

Norm ‖ · ‖ℳ and constants 𝑅ℳ, 𝜎ℳ. If we choose the 𝐿2-norm ‖𝜇‖ℳ ..= ‖𝜇‖2, the
strong-convexity constant of 𝐻ℳ : ℳ → R defined in Section F .2 with respect to ‖ · ‖2 is

𝜎ℳ = diam(ℳ)−2.

In order to see this, note that the strong-convexity parameter 𝜎ℳ of𝐻ℳ is equal to the in-
verse of the smoothness parameter of the partition function𝐴(𝑣) = log

(︀∑︀
𝑦∈𝒴 exp(⟨𝜙(𝑦), 𝑣⟩)

)︀
,

which corresponds to the maximal dual norm ‖ · ‖* of the covariance operator Σ(𝑣) =
E𝑦∼𝑞𝑣 𝜙(𝑦)𝜙(𝑦)⊤−E𝑦∼𝑞𝑣 𝜙(𝑦)E𝑦∼𝑞𝑣 𝜙(𝑦)⊤, where 𝑞𝑣(𝑦) = exp⟨𝑣, 𝜙(𝑦)⟩/

∑︀
𝑦′∈𝒴 exp(⟨𝜙(𝑦′), 𝑣⟩)

)︀
If we consider ‖ · ‖2, it follows directly that 𝜎−1

ℳ = sup𝑣 ‖Σ(𝑣)‖2 ≤ diam(ℳ)2. Finally,
using that min𝜇∈ℳ𝐻ℳ(𝜇) = 0, we have that

𝑅2
ℳ

..= max
𝜇∈ℳ

𝐻ℳ(𝜇) =
𝑀∑︁
𝑚=1

max
𝜇𝑚∈Δ𝑅

𝐻(𝜇𝑚) + (≤ 0) ≤
𝑀∑︁
𝑚=1

log𝑅.
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Computation of the smoothness constants (𝛽11, 𝛽12, 𝛽21, 𝛽22).

- 𝛽11 = 0 as ∇𝑚𝐹𝑥(𝑞, 𝜇) is constant in 𝑞 for all 𝑚 ∈ [𝑀 ].

- We have that ‖𝐿𝑚(𝜇𝑚−𝜇′
𝑚)‖∞ ≤ ‖𝐿𝑚‖∞‖𝜇𝑚−𝜇′

𝑚‖1. Hence, 𝛽12 = max𝑚∈[𝑀 ] ‖𝐿𝑚‖∞.

- We have that ∇𝑚𝐹𝑦(𝑞, 𝜇) and ∇𝑐𝐹𝑦(𝑞, 𝜇) are constant in 𝜇 for all 𝑚 ∈ [𝑀 ] and
𝑐 ∈ 𝐶, so 𝛽12 = 0.

- We have that ‖𝐿⊤
𝑚(𝑞𝑚− 𝑞′

𝑚)‖2 ≤ ‖𝐿⊤
𝑚‖2‖𝑞𝑚− 𝑞𝑚‖2. Hence, 𝛽22 = max𝑚∈[𝑀 ] ‖𝐿⊤

𝑚‖2.

Finally, the constant 𝐿 appearing in Theorem F .1 reads

𝐿 = max
𝑚∈[𝑀 ]

‖𝐿𝑚‖2 diam(ℳ)2𝑀 log𝑅.

F .3 Max-Min Oracle for Ranking and Matching of Example 2 .2

We represent the permutation 𝜎 ∈ 𝒮𝑀 using the corresponding permutation matrix
𝜙(𝜎) = 𝑃𝜎 ∈ R𝑀×𝑀 . The loss decomposition is

𝐿(𝜎, 𝜎′) = 1
𝑀

𝑀∑︁
𝑚=1

1(𝜎(𝑗) ̸= 𝜎′(𝑗)) = 1 − ⟨𝑃𝜎, 𝑃𝜎′⟩
𝑀

= 1 − ⟨𝜙(𝜎), 𝜙(𝜎′)⟩
𝑀

,

i.e., 𝐴 = −𝐼𝑑/𝑀 and 𝑎 = 1. The marginal polytope ℳ corresponds to the Birkhoff
polytope or equivalently, the polytope of doubly stochastic matrices

ℳ = hull{𝑃𝜎 | 𝜎 ∈ 𝒮𝑀} = {𝑃 ∈ R𝑀×𝑀 | 𝑃1 = 1, 𝑃 𝑇 1 = 1, 0 ≤ 𝑃𝑖𝑗 ≤ 1, 𝑖, 𝑗 ∈ [𝑀 ]}.

The max-min oracle corresponds to the following saddle-point problem:

arg max
𝑃∈ℳ

min
𝑄∈ℳ

⟨𝑆, 𝑃 ⟩ − ⟨𝑄,𝑃 ⟩/𝑚. (4.36)

We have three natural options for the entropy, namely, the constrained Shannon en-
tropy (which is the one used in the factor graph Example 2 .1), the entropy of marginals
and the quadratic entropy.

Constrained Shannon Entropy. In this case,

𝐻(𝑄) ..= max
𝑝∈Δ𝒮𝑀

−
∑︁
𝜎∈𝒮𝑀

𝑝(𝜎) log 𝑝(𝜎) s.t.
∑︁
𝜎∈𝒮𝑀

𝑝(𝜎)𝑃𝜎 = 𝑄.

The projection corresponds to marginal inference, which is in general #𝑃 -complete as
we have to compute the permanent (Valiant, 1979). As noted by Petterson et al. (2009), it
can be ‘efficiently’ computed exactly up to 𝑀 = 30 with complexity 𝑂(𝑀2𝑀 ) using an
algorithm by Ryser (1963). Note that this is way faster than enumeration which is of the
order of 𝑀 ! ∼ 𝑀𝑀 .

Entropy of Marginals. We can define the entropy defined in the marginals as

𝐻(𝑄) = −
𝑀∑︁
𝑖,𝑗=1

𝑄𝑖𝑗 log𝑄𝑖𝑗 . (4.37)

The projection can be computed up to precision 𝛿 using the Sinkhorn-Knopp algorithm
with complexity 𝑂(𝑀2/𝛿). Moreover, this can be easily implemented efficiently in C++
as the algorithm corresponds to an alternating normalization between rows and columns.
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Quadratic Entropy. We can use the following quadratic entropy

𝐻(𝑄) ..= −‖𝑄‖2
𝐹 = −

𝑀∑︁
𝑖,𝑗=1

𝑄2
𝑖𝑗 .

The projection has essentially the same complexity as the entropy on marginals de-
scribed above ? and it provides sparse solutions. The algorithm consists in minimiz-
ing an unconstrained smooth and non-strongly convex function. The computation of
the gradient requires 𝑀 euclidean projections to the simplex Δ𝑀 . Each projection can
be performed exactly in worst-case 𝑂(𝑀 log𝑀) using the algorithm by Michelot (1986)
and in expected 𝑂(𝑀) using the randomized pivot algorithm of Duchi et al. (2008). The
resulting computational complexity is of 𝑂(𝑀2/𝛿). Note that even though the complex-
ity is the same as for the entropic regularization, the implementation is more involved
and difficult to speed up.

In our experiments we focus on the entropy on marginals (4.37). We now compute
the constants.

Norm ‖ · ‖ℳ and constants 𝑅ℳ, 𝜎ℳ. If we consider ‖ · ‖ℳ = ‖ · ‖1, we have that
𝜎ℳ = 1 and 𝑅2

ℳ = 𝑀 .

Computation of the smoothness constants (𝛽11, 𝛽12, 𝛽21, 𝛽22). In this case we obtain
𝛽11 = 𝛽12 = 0 and 𝛽21 = 𝛽22 = 1. Hence

𝐿 = 𝑀.

G Generalization Bounds for M4N solved via GBCFW and Ap-
proximate Oracle

Proof of Theorem 5.2 Denote by ̂︀𝑔𝑛,𝑇 the result of Algorithm 1 where the oracle is
approximated via Algorithm 2. In the same setting of Section E, by applying Theorem C
.1, bounding𝐿,𝐵 as in the proof of Theorem 3 .4 and applying the comparison inequality
in Theorem 3 .3, we have that the following holds with probability 1 − 𝛿

ℰ(𝑑 ∘ 𝑔𝑛) − ℰ(𝑓⋆) ≤ 2(ℛ𝜆
𝑛(̂︀𝑔𝑛,𝑇 ) − ℛ𝜆

𝑛(𝑔𝜆𝑛)) +𝑀‖𝜙(𝑓⋆)‖𝒢

√︃
log(1/𝛿)

𝑛
,

when 𝜆 is chosen as 𝜆 = 𝜅𝐿 log1/2(1/𝛿)𝑛−1/2 and 𝑀 defined as in Theorem 3 .4. De-
note by 𝜀opt = ℛ𝜆

𝑛(̂︀𝑔𝑛,𝑇 ) − ℛ𝜆
𝑛(𝑔𝜆𝑛). The result is obtained by optimizing until 𝜀opt =

𝑂
(︁
‖𝜙(𝑓⋆)‖𝒢

√︁
log(1/𝛿)

𝑛

)︁
, we have that

ℛ(̂︀𝑔𝑛) − ℛ(𝑔⋆) ≤ 𝑂
(︁
‖𝜙(𝑓⋆)‖𝒢

√︃
log(1/𝛿)

𝑛

)︁
.

According to Theorem 5.1 and F .1 this is obtained with a number of steps for Algo-
rithm 1 of 𝑇 = 𝑂(𝑛) and Algorithm 2 in the order of 𝑂(

√
𝑛), for a total computational

complexity of 𝑂(𝑛
√
𝑛).
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5 Max-Margin is Dead, Long Live Max-Margin!

Abstract

The foundational concept of Max-Margin in machine learning is ill-posed for output
spaces with more than two labels such as in structured prediction. In this paper, we
show that the Max-Margin loss can only be consistent to the classification task under
highly restrictive assumptions on the discrete loss measuring the error between outputs.
These conditions are satisfied by distances defined in tree graphs, for which we prove
consistency, thus being the first losses shown to be consistent for Max-Margin beyond
the binary setting. We finally address these limitations by correcting the concept of Max-
Margin and introducing the Restricted-Max-Margin, where the maximization of the loss-
augmented scores is maintained, but performed over a subset of the original domain.
The resulting loss is also a generalization of the binary support vector machine and it is
consistent under milder conditions on the discrete loss.

1 Introduction

One of the first binary classification methods learned in a machine learning course is
the support vector machine (SVM) (Boser et al., 1992; Cortes and Vapnik, 1995) and it
is introduced using the principle of maximum margin: assuming the data are linearly
separable, the classification hyperplane must maximize the separation to the observed
examples. Having this intuition in mind, the same principle has been used to extend this
notion to larger output spaces 𝒴 , such as multi-class classification (Crammer and Singer,
2001) and structured prediction (Taskar et al., 2004; Tsochantaridis et al., 2005), where the
separation to the observed examples is controlled by a discrete loss 𝐿(𝑦, 𝑦′) measuring
the error between outputs 𝑦 and 𝑦′. The resulting method generalizes the binary SVM
and corresponds to minimizing the so-called Max loss

𝑆M(𝑣, 𝑦) = max
𝑦′∈𝒴

𝐿(𝑦, 𝑦′) + 𝑣𝑦′ − 𝑣𝑦, (5.1)

where 𝑣 ∈ R|𝒴| is a vector with coordinate 𝑣𝑦 encoding the score for output 𝑦. Unfortu-
nately, this method may not be consistent, i.e., minimizing the Max loss (5.1) may not lead
to a minimization of the discrete loss 𝐿 of interest. In particular, it is known that the Max
loss is only consistent for the 0-1 loss under the dominant label condition, i.e., when for
every input there exists an output element with probability larger than 1/2 (Liu, 2007),
which is always satisfied in the binary case. However, far less is known for other tasks.
Indeed, the Max loss is widely used for structured output spaces where the discrete
loss 𝐿 defining the task is different than the 0-1 loss, under the name of Structural SVM
(SSVM) (Taskar et al., 2005b; Caetano et al., 2009; Smith, 2011) or Max-Margin Markov
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Networks (M3N) (Taskar et al., 2005b). In this general setting, the following questions
remain unanswered:

(i) Does it exist a necessary condition on 𝐿 for consistency to hold? Does it exist a space
of losses for which consistency holds? Can we generalize the consistency result under
the dominant label assumption beyond the 0-1 loss?

(ii) Can we correct the Max loss to make it consistent by maintaining the additive and
maximization structure of the Max loss?

We answer these questions in this paper. In particular, we make the following contri-
butions:

• We prove that the Max loss can only be consistent under a restrictive necessary
condition on the structure of the loss 𝐿, indeed, the loss 𝐿 has to be a distance and
satisfy the triangle inequality as an equality for several groups of outputs. As a pos-
itive result, we show that a distance defined in a tree graph, such as the absolute
deviation loss used in ordinal regression, satisfies this condition and it is consis-
tent, thus providing the first set of losses for which consistency holds beyond the
binary setting. We also extend the existing partial consistency result of the 0-1 loss
by extending the result under the dominant label condition to all losses that are
distances.

• We introduce the Restricted-Max loss, where the loss-augmented scores defining
the Max loss are maximized over a restricted subset of the simplex. The resulting
loss also generalizes the binary SVM and it is consistent under milder assumptions
on 𝐿. Moreover, we show the connections between these losses and the Max-Min
loss (Fathony et al., 2016; Duchi et al., 2018; Nowak-Vila et al., 2020), where consis-
tency always holds independently of the discrete loss 𝐿.

2 Max-Margin and Main Results

In this section we introduce the concept of Max-Margin learning and its consistency from
its origins in binary classification to the structured output setting. This is followed by the
presentation of the main results of this paper and its implications are discussed.

2 .1 Max-Margin Learning

Binary output. Let (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) be 𝑛 examples of input-output pairs sampled
from an unknown distribution 𝜌 defined in 𝒳 ×𝒴 . Let us first assume that the input space
𝒳 is a vector space and 𝒴 = {−1, 1} represents binary labels. The goal is to construct a
binary-valued function 𝑓 : 𝒳 −→ 𝒴 minimizing the expected classification error

ℰ(𝑓) = E(𝑥,𝑦)∼𝜌 𝐿(𝑓(𝑥), 𝑦), (5.2)

where 𝐿(𝑦, 𝑦′) = 1(𝑦 ̸= 𝑦′) is the binary 0-1 loss. The concept of max-margin was ini-
tially defined in this setting to construct a predictor of the form sign(𝑔(𝑥)) where 𝑔(𝑥) =
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𝑤⊤𝑥+ 𝑏 is an affine function defining a hyperplane with maximum separation to the ex-
amples assuming linearly separable data (Boser et al., 1992). In this setting, an example 𝑥𝑖
is correctly classified if (𝑤⊤𝑥𝑖 + 𝑏𝑖)𝑦𝑖 > 0 and misclassified otherwise. The max-margin
hyperplane can be found by minimizing ‖𝑤‖2

2 under the constraint (𝑤⊤𝑥𝑖 + 𝑏)𝑦𝑖 ≥ 1 for
all 𝑛 examples. When the data are not linearly separable, some examples are allowed to
be misclassified by introducing some positive slack variables 𝜉𝑖 and solving the optimiza-
tion problem known as the support vector machine (SVM) (Cortes and Vapnik, 1995):

min
𝑤,𝑏,𝜉

1
𝑛

𝑛∑︁
𝑖=1

𝜉𝑖 + 𝜆

2 ‖𝑤‖2
2 s.t. (𝑤⊤𝑥𝑖 + 𝑏)𝑦𝑖 ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑛,

where 𝜆 > 0 is a parameter used to balance the first term with the second. We can
re-write the constraints as 𝜉𝑖 ≥ 1 − 𝑦𝑖𝑔(𝑥𝑖) for non-negative 𝜉𝑖’s and extend the affine
hypothesis space to a generic functional space 𝒢 with associated norm ‖ · ‖𝒢 to allow
for non-linear predictors, such as reproducing kernel Hilbert spaces (RKHS) (Aronszajn,
1950). Then, the problem above can be written as a convex regularized empirical risk
minimization (ERM) (Vapnik, 1992) problem

min
𝑔∈𝒢

1
𝑛

𝑛∑︁
𝑖=1

𝑆M(𝑔(𝑥𝑖), 𝑦𝑖) + 𝜆

2 ‖𝑔‖2
𝒢 , (5.3)

where 𝑆M(𝑣, 𝑦) = max(1 − 𝑦𝑣, 0) is the binary Max loss (also called SVM or hinge loss),
and now 𝜆 can be interpreted as the regularization parameter. An important property of
the classification method is that the estimated predictor solving (5.3) over all measurable
functions converges to the predictor 𝑓⋆ minimizing the expected classification error (5.2)
in the infinite data regime (𝑛 → ∞ and 𝜆 → 0) (Vapnik, 1995). More concretely, the
minimizer 𝑔⋆ of the expected risk E(𝑥,𝑦)∼𝜌 𝑆(𝑔(𝑥), 𝑦) must satisfy 𝑓⋆ = sign(𝑔⋆). This
property is called Fisher consistency (Bartlett et al., 2006) (or simply consistency) and can
be studied in terms of the conditional expectation 𝑞(𝑥) := 𝜌(1|𝑥), as 𝑓⋆(𝑥) and 𝑔⋆(𝑥) can
be characterized in terms of this quantity 1. Note that in the rest of the paper we will drop
the dependence in 𝑥 from the function 𝑞: a statement 𝑃 (𝑞) for all 𝑞 ∈ [0, 1] must then be
read as 𝑃 (𝑞(𝑥)) for all 𝑥 ∈ 𝒳 . Let 𝑣⋆M(𝑞) ⊆ R and 𝑦⋆(𝑞) ⊆ 𝒴 be the minimizers of the
conditional risks E𝑦′∼𝑞 𝑆M(𝑣, 𝑦′) and E𝑦′∼𝑞 𝐿(𝑦, 𝑦′), respectively. Then, Fisher consistency
is equivalent to say that if 𝑣 ∈ 𝑣⋆M(𝑞), then sign(𝑣) ∈ 𝑦⋆(𝑞) for all 𝑞 ∈ [0, 1] (Devroye et al.,
1996). This property is satisfied as (see also left Figure 5.1):

𝑦⋆(𝑞) =

⎧⎪⎨⎪⎩
{1} 𝑞 ∈ (1/2, 1]
{−1, 1} 𝑞 = 1/2
{−1} 𝑞 ∈ [0, 1/2),

, 𝑣⋆M(𝑞) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[1,∞) 𝑞 = 1
{1} 𝑞 ∈ (1, 1/2)
[−1, 1] 𝑞 = 1/2
{−1} 𝑞 ∈ (0, 1/2)
(−∞,−1] 𝑞 = 0.

.

Structured prediction. In the structured prediction setting, we have 𝑘 = |𝒴| possible
outputs and the goal is to estimate a discrete-valued function 𝑓 minimizing (5.2) where
now 𝐿 : 𝒴 × 𝒴 −→ R is a generic non-negative discrete loss function between output
pairs defining the task at hand. We construct predictors of the form arg max𝑦∈𝒴 𝑔𝑦(𝑥),
where 𝑔 : 𝒳 −→ R𝑘 is a vector-valued function assigning scores to each of the 𝑘 possible

1This is because 𝑓⋆ and 𝑔⋆ are minimizers over all measurable functions of an expectation over 𝒳 .
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Figure 5.1: Left: Plots of the conditional risks of the Max loss for 𝑞 = 0.4, 𝑞 = 0.6 and
𝑞 = 0, respectively. The conditional risk in the set of minimizers 𝑣⋆M(𝑞) is plotted with
a thick point / line. Middle: Plot of 𝑆M(𝑣, 1), 𝑆MM(𝑣, 1) and 𝑆RM(𝑣, 1) in the binary
setting with 𝑣 = 𝑣1 = −𝑣2. In this case, 𝑆M = 2𝑆RM (so both losses generalize the binary
SVM up to a factor of 2) and 𝑆M is the only one upper-bounding the 0-1 loss. Moreover,
the three losses are consistent with the 0-1 loss. Right: Distance defined in a tree: the
distance/loss between two nodes is the sum of the distances between adjacent nodes of
the path between them. For every triplet of outputs 𝑦, 𝑦′, 𝑦′′ ∈ 𝒴 , or they are aligned in a
path, or there exists 𝑧 ∈ 𝒵 belonging to the shortest path between all pairs.

outputs. The maximum margin principle from binary classification is generalized as
follows. For every example (𝑥𝑖, 𝑦𝑖), the method minimizes the squared norm ‖𝑔‖2

𝒢 under
the constraints

𝑔𝑦𝑖(𝑥𝑖) ≥ 𝐿(𝑦, 𝑦𝑖) + 𝑔𝑦(𝑥𝑖)⏟  ⏞  
loss-augmented scores

, (5.4)

for all possible outputs 𝑦. By writing the above constraint as 𝑔𝑦𝑖(𝑥𝑖) − 𝑔𝑦(𝑥𝑖) ≥ 𝐿(𝑦, 𝑦𝑖),
we observe that this generalizes the condition 𝑦𝑖𝑔(𝑥𝑖) ≥ 1 from binary classification
when 𝑔 = 𝑔1 = −𝑔−1 so that the argmax corresponds to the sign and 𝐿 is the binary 0-1
loss. As in the binary case, introducing slack variables and turning it into a regularized
ERM problem of the form (5.3) we obtain the Max loss 𝑆M(𝑣, 𝑦) = max𝑦′∈𝒴 𝐿(𝑦, 𝑦′)+𝑣𝑦′ −
𝑣𝑦, which is constructed as a maximization of the loss-augmented scores defined in (5.4).
To ease notation, the dependence of 𝑆 on the loss𝐿 is deduced from the context. The Max
loss (5.1) is known as the Crammer-Singer SVM (Crammer and Singer, 2001) when 𝐿 is
the 0-1 loss, and it is also widely used in structured prediction settings with exponen-
tially large output spaces under the name of Structural SVM (Joachims, 2006) or Max-
Margin Markov Networks (M3N) (Taskar et al., 2004) by using losses between structured
outputs such as sequences, permutations, graphs, etc (BakIr et al., 2007). An interesting
property of this loss is that it upper-bounds the discrete loss as 𝐿(arg max𝑦′∈𝒴 𝑣𝑦′ , 𝑦) ≤
𝑆M(𝑣, 𝑦), for all 𝑣 ∈ R𝑘 and 𝑦 ∈ 𝒴 , which can guide us to think that minimizing
E(𝑥,𝑦)∼𝜌 𝑆M(𝑔(𝑥), 𝑦) leads to minimizing E(𝑥,𝑦)∼𝜌 𝐿(arg max𝑦′∈𝒴 𝑔𝑦′(𝑥), 𝑦). Unfortunately
this intuition is misleading, as this bound is in general far from tight. Analogously to the
binary case, let 𝑞 : 𝒳 → Δ be the conditional distribution where Δ is the simplex over 𝒴
(we again drop the dependence on 𝑥, since each statement must be read as holding for
every 𝑥 ∈ 𝒳 ). Moreover, we define for every 𝑞 the set of minimizers of the conditional
risks as

𝑦⋆(𝑞) = arg min
𝑦∈𝒴

𝐿⊤
𝑦 𝑞 ⊆ 𝒴, 𝑣⋆M(𝑞) = arg min

𝑣∈R𝑘

𝑆M(𝑣)⊤𝑞 ⊆ R𝑘,
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where 𝐿𝑦 = (𝐿(𝑦, 𝑦′))𝑦′ ∈ R𝑘 and 𝑆M(𝑣) = (𝑆M(𝑣, 𝑦′))𝑦′∈𝒴 ∈ R𝑘. We say that 𝑆M is Fisher
consistent to 𝐿 if for all 𝑞 ∈ Δ

𝑣 ∈ 𝑣⋆M(𝑞) =⇒ arg max
𝑦∈𝒴

𝑣𝑦 ∈ 𝑦⋆(𝑞). (5.5)

Related works on consistency of Max-Margin. The Max loss is only consistent
to the 0-1 loss under the dominant label assumption max𝑦∈𝒴 𝑞𝑦 ≥ 1/2 (Liu, 2007). Ra-
maswamy et al. (2018) show that it is consistent to the “abstain” loss, but in this case the
loss appearing in the definition (5.1) is not the same as the classification loss 𝐿. There
exist several generalizations of the binary SVM to larger output spaces other than Max-
Margin (Dogan et al., 2016) such as Weston-Watkins (WW-SVM) (Weston and Watkins,
1999), Lee-Lin-Wahba (LLW-SVM) (Lee et al., 2004), Simplex-Coding (SC-SVM) (Mroueh
et al., 2012), with the last two being consistent and defined as sums. However, the only
loss with a max-structure is (5.1), which makes it computationally feasible to work in
structured spaces of exponential size such as sequences or permutations. The Max-Min
loss (Fathony et al., 2016; Duchi et al., 2018; Nowak-Vila et al., 2020) (defined below in
Eq. (5.8)) is always consistent, it has a max-min structure and can be used in structured
prediction settings. However, it does not correspond to the SVM in the binary setting, so
it cannot be considered a generalization of the binary SVM.

2 .2 Main Results

We assume that 𝐿 is symmetric and that 𝐿(𝑦, 𝑦′) = 0 if and only if 𝑦 = 𝑦′. Symmetry of
𝐿 is assumed for the sake of exposition, but it is only required for the results on the Max
loss.

Main Results on Max-Margin. The following Theorem 2 .1 is our main negative result.

Theorem 2 .1 (Necessary condition for consistency 𝑆M). Let 𝑘 = |𝒴| > 2. If the Max loss
is consistent to 𝐿, then 𝐿 is a distance and for every three outputs 𝑦1, 𝑦2, 𝑦3 ∈ 𝒴 , there exists
𝑧 ∈ 𝒴 for which the following three identities hold:

𝐿(𝑦1, 𝑦2) = 𝐿(𝑦1, 𝑧) + 𝐿(𝑧, 𝑦2)
𝐿(𝑦1, 𝑦3) = 𝐿(𝑦1, 𝑧) + 𝐿(𝑧, 𝑦3)
𝐿(𝑦2, 𝑦3) = 𝐿(𝑦2, 𝑧) + 𝐿(𝑧, 𝑦3)

If 𝑧 = 𝑦2 in Theorem 2 .1, then the only informative condition is𝐿(𝑦1, 𝑦3) = 𝐿(𝑦1, 𝑦2)+
𝐿(𝑦2, 𝑦3) as 𝐿 is assumed to be symmetric, which means that the outputs 𝑦1, 𝑦2, 𝑦3 are
‘aligned’ in the output space (analogously for 𝑧 = 𝑦2, 𝑦3). On the other hand, if 𝑧 ̸=
𝑦1, 𝑦2, 𝑦3, then the three equations are informative and all distances between the pairs
can be decomposed into distances to 𝑧. The following discrete losses do not satisfy the
above necessary condition (see Appendix B ):

• Losses which are not distances (such as the squared discrete loss (𝑦 − 𝑦′)2).

• Losses with full rank loss matrix with existing 𝑞 ∈ int(Δ) for which all outputs are
optimal, i.e., 𝑦⋆(𝑞) = 𝒴 (such as the 0-1 loss).

• Hamming losses 𝐿(𝑦, 𝑦′) = 1
𝑀

∑︀𝑀
𝑚=1 𝐿𝑚(𝑦𝑚, 𝑦′

𝑚) with 𝑦, 𝑦′ ∈ Π𝑀
𝑚=1𝒴𝑚 where 𝐿𝑚

does not satisfy the necessary conditions for some 𝑚 = 1, . . . ,𝑀 .
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• Hamming loss on permutations 𝐿(𝜎, 𝜎′) = 1
𝑀

∑︀𝑀
𝑚=1 1(𝜎(𝑚) ̸= 𝜎′(𝑚)) with 𝜎, 𝜎′

permutations of size 𝑀 , used for graph matching (Petterson et al., 2009; Caetano
et al., 2009).

It is an open question whether the necessary condition of Theorem 2 .1 is also suffi-
cient. The following Theorem 2 .2 shows that distances defined in a tree, which always
satisfy this condition (see right Figure 5.1), are indeed consistent.

Theorem 2 .2 (Sufficient condition for consistency 𝑆M). If 𝐿 is a distance defined in a tree,
then the Max loss is consistent to 𝐿.

An important example of these losses is the absolute deviation loss used in ordinal
regression,

𝐿(𝑦, 𝑦′) = |𝛾𝑦 − 𝛾𝑦′ |, 𝛾 ∈ R𝑘,

SM(v, 1) SMM(v, 1) SRM(v, 1)

Figure 5.2: From left to right: plots of 𝑆M(𝑣, 1), 𝑆MM(𝑣, 1) and 𝑆M(𝑣, 1) in the three-label
setting with 𝑣⊤1 = 0 for the 0-1 loss (note that 𝑆(𝑣 + 𝑐1, 𝑦) = 𝑆(𝑣, 𝑦) for all three losses).
The Max-Min and the Restricted-Max loss coincide in the bottom-left region, but the
Max-Min loss has three extra activated faces in the top-right region of the plot which are
in general unnecessary for consistency, while the Restricted-Max uses just the necessary
ones. The Max loss in the left plot uses just three faces, being insufficient for consistency.

for which the associated tree is a chain. Note that these losses are not the only ones
satisfying the necessary condition given by Theorem 2 .1. Indeed, the Hamming loss
with 𝑀 = 2, 𝒴1 = 𝒴2 = {−1, 1} and 𝐿1, 𝐿2 the 0-1 loss is not a distance in a tree,
satisfies the necessary condition, and consistency can be proven to hold (see Appendix B
). The following Proposition 2 .3 gives a much milder sufficient condition to ensure partial
consistency under the dominant label assumption, generalizing thus the well-known
results from Liu (2007).

Proposition 2 .3 (Sufficient condition for partial consistency 𝑆M). If 𝐿 is a distance, then
the Max loss is consistent to 𝐿 under the dominant label assumption, i.e., max𝑦∈𝒴 𝑞𝑦 ≥ 1/2.

In other words, if the learning task is defined by a distance and it is close to deter-
ministic, then the Max loss is consistent to the task.

Beyond Max-Margin. To overcome the limitations imposed by the maximum margin,
but retaining the maximization structure of the loss, we propose a novel generalization
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of the binary SVM to structured prediction by restricting the maximization of the loss-
augmented scores in (5.1). First, note that the Max loss can be written as a maximization
over the simplex Δ over 𝒴 as

𝑆M(𝑣, 𝑦) = max
𝑞∈Δ

𝐿⊤
𝑦 𝑞 + 𝑣⊤𝑞 − 𝑣𝑦. (5.6)

We restrict the maximization to the so-called prediction set Δ(𝑦) = {𝑞 ∈ Δ | 𝑦 ∈ 𝑦⋆(𝑞)},
defined as the set of probabilities for which 𝑦 is optimal. In binary classification the sets
are Δ(−1) = [0, 1/2] and Δ(1) = [1/2, 1]. The resulting Restricted-Max loss reads

𝑆RM(𝑣, 𝑦) = max
𝑞∈Δ(𝑦)

𝐿⊤
𝑦 𝑞 + 𝑣⊤𝑞 − 𝑣𝑦. (5.7)

This loss satisfies 2𝑆RM = 𝑆M in the binary setting (see middle Figure 5.1), thus, it corre-
sponds to the binary SVM up to a scaling with a factor of two. The following Theorem 2
.4 states that consistency of 𝑆M implies consistency of 𝑆RM and provides a sufficient con-
dition for consistency of 𝑆RM.

Theorem 2 .4 (Sufficient condition for consistency 𝑆RM). The Restricted-Max loss is consis-
tent to 𝐿 whenever the Max loss is consistent. Moreover, if 𝐿 satisfies 𝑞𝑦 > 0 for every 𝑦 optimal
for 𝑞 ∈ Δ, i.e., 𝑞 ∈ Δ(𝑦), then the Restricted-Max loss is also consistent to 𝐿.

In other words, if the output 𝑦 is optimal for 𝑞, then the probability of this label has
to be strictly greater than zero 𝑞𝑦 > 0. The 0-1 loss, which does not satisfy the necessary
condition of Theorem 2 .1, satisfies the sufficient condition for the Restricted-Max, as
min𝑞∈Δ(𝑦) 𝑞𝑦 = 1/𝑘 for all 𝑦 ∈ 𝒴 . However, there are still losses for which (5.7) is not
consistent to, such as the squared discrete loss (𝑧− 𝑦)2 (see Appendix B ). The remaining
inconsistencies can be resolved by going beyond the maximization structure into a max-
min structure. The resulting loss is the so-called Max-Min loss (Fathony et al., 2016; Duchi
et al., 2018; Nowak-Vila et al., 2020) defined as

𝑆MM(𝑣, 𝑦) = max
𝑞∈Δ

min
𝑧∈𝒴

𝐿⊤
𝑧 𝑞 + 𝑣⊤𝑞 − 𝑣𝑦. (5.8)

It is known (Nowak-Vila et al., 2020) that the loss (5.8) is always consistent to𝐿. As shown
in Figure 5.1 (middle), this loss does not correspond to the SVM in the binary setting
because it has two symmetric kinks instead of one. See also Figure 5.2 to compare the
shape of the different losses for 𝑘 = 3. Hence, while the structure of the loss gets more
computationally involved from the Max loss (5.6) to the Max-Min loss (5.8), passing by
the Restricted-Max loss (5.7), the consistency properties of these losses improve from one
to the next.

3 Background and Preliminary Results

3 .1 Background on Polyhedral Losses

Fisher consistency. Let us now consider a generic loss 𝑆 : R𝑘 × 𝒴 → R and let’s gen-
eralize the argmax computing the prediction from the scores in the previous section to
a generic decoding function 𝑑 : R𝑘 → 𝒴 . The set of minimizers 𝑣⋆(𝑞) ⊆ R𝑘 of the condi-
tional risk 𝑆(𝑣)⊤𝑞 is also defined as before. We say that 𝑆 is Fisher consistent to 𝐿 (Tewari
and Bartlett, 2007) under the decoding 𝑑 : R𝑘 → 𝒴 if

𝑣 ∈ 𝑣⋆(𝑞) =⇒ 𝑑(𝑣) ∈ 𝑦⋆(𝑞), (5.9)
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for all 𝑞 ∈ Δ. If the decoding is not specified, it means that there exists a decoding
satisfying this property. An important quantity throughout the paper is the Bayes risk,
a concave function defined as the minimum of the conditional expected loss respectively
for 𝐿 and 𝑆:

𝐻𝐿(𝑞) = min
𝑦∈𝒴

𝐿⊤
𝑦 𝑞, 𝐻𝑆(𝑞) = min

𝑣∈R𝑘
𝑆(𝑣)⊤𝑞.

Embedding of discrete losses. Fisher consistency in Eq. (5.9) states that every mini-
mizer 𝑣 ∈ 𝑣⋆(𝑞) can be assigned to a solution of the discrete task using the decoding 𝑑.
For the analysis of this paper, it will be useful to work using the concept of embeddability
between losses (Finocchiaro et al., 2019), a stronger notion than Fisher consistency.

Definition 3 .1 (Embeddability). 𝑆 embeds 𝐿 if there exists an embedding 𝜓 : 𝒴 → R𝑘 such
that: (i) 𝑦 ∈ 𝑦⋆(𝑞) ⇐⇒ 𝜓(𝑦) ∈ 𝑣⋆(𝑞), ∀𝑞 ∈ Δ, and (ii) 𝑆(𝜓(𝑦)) = 𝐿𝑦, ∀𝑦 ∈ 𝒴 .

Condition (i) states that every solution of the discrete problem corresponds to a so-
lution of the problem in 𝑆 and vice versa. In particular, this rules out many smooth
plug-in classifiers such as the squared loss or logistic regression, because they predict
the vector of probabilities 𝑞 which cannot be recovered from the discrete predictor 𝑦⋆(𝑞).
It is known (Finocchiaro et al., 2019) that the existence of an embedding 𝜓 satisfying (i)
implies the existence of a decoding 𝑑 satisfying Eq. (5.9), so it is already a sufficient con-
dition for Fisher consistency. Note that both Eq. (5.9) and condition (i) are assumptions
on the predictors 𝑦⋆ and 𝑣⋆, but there exist many possible losses 𝐿 for which 𝑦⋆(𝑞) is
the set of minimizers of the conditional risk 𝐿⊤

𝑦 𝑞, and analogously for 𝑣⋆ and 𝑆. Con-
dition (ii) restricts the relationship between pairs of losses by assuming that 𝐿 can be
recovered from 𝑆 using the embedding 𝜓. The following Proposition 3 .2 shows that 𝑆
embedding 𝐿 is equivalent to having the same Bayes risks.

Proposition 3 .2 ((Finocchiaro et al., 2019)). 𝑆 embeds 𝐿 if and only if 𝐻𝐿 = 𝐻𝑆 .

Moreover, it is known that any discrete loss 𝐿 is embedded by at least one loss 𝑆
(Theorem 2 by Finocchiaro et al. (2019)), which corresponds precisely to the Max-Min
loss 𝑆MM defined in Eq. (5.8). Indeed, 𝑆MM and 𝐿 have the same Bayes risk as

𝐻MM(𝑞) = min
𝑣∈R𝑘

(︀
max
𝑝∈Δ

min
𝑦∈𝒴

𝐿⊤
𝑦 𝑝+ 𝑣⊤𝑝

)︀
− 𝑣⊤𝑞 = min

𝑣∈R𝑘
(−𝐻𝐿)*(𝑣) − 𝑣⊤𝑞 = 𝐻𝐿(𝑞),

where ℎ*(𝑢) = sup𝑠∈R𝑘 𝑢⊤𝑠 − ℎ(𝑠) is the Fenchel conjugate of ℎ. It can be checked
(Nowak-Vila et al., 2020) that the embedding is 𝜓(𝑦) = −𝐿𝑦 and it is always Fisher
consistent to 𝐿 under the argmax decoding.

3 .2 Preliminary Results

Relationship between losses and Bayes risks. What makes the Max-Min loss simple
to analyze is its Fenchel-Young structure (Blondel et al., 2020), i.e., it can be written in
the form 𝑆(𝑣, 𝑦) = Ω*(𝑣) − 𝑣𝑦, for a certain convex Ω defined in the simplex. We extend
this notion by allowing the convex function Ω to depend on the label 𝑦 as

𝑆(𝑣, 𝑦) = (Ω𝑦)*(𝑣) − 𝑣𝑦. (5.10)

The losses 𝑆M, 𝑆RM and 𝑆MM can be written in this form with

Ω𝑦
MM(𝑞) = − min

𝑦′∈𝒴
𝐿⊤
𝑦′𝑞 + 𝑖Δ(𝑞), Ω𝑦

M(𝑞) = −𝐿⊤
𝑦 𝑞 + 𝑖Δ(𝑞), Ω𝑦

RM(𝑞) = −𝐿⊤
𝑦 𝑞 + 𝑖Δ(𝑦)(𝑞),
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where 𝑖𝑈 (𝑢) = 0 if 𝑢 ∈ 𝑈 and ∞ otherwise. The first equation is the only one inde-
pendent of 𝑦 and we remove its dependence by simply writing ΩMM. The following
Proposition 3 .3 relates the functions ΩMM,Ω𝑦

M and Ω𝑦
RM.

Proposition 3 .3. The following holds: ΩMM = max𝑦∈𝒴 Ω𝑦
M and (ΩMM)* = max𝑦∈𝒴 (Ω𝑦

RM)*.

Proof. The first identity is trivial from the definition. For the second identity, note
that by construction the prediction sets necessarily cover the simplex as Δ =
∪𝑦′∈𝒴 Δ(𝑦′). Hence,

(ΩMM)*(𝑣) = max
𝑦∈𝒴

(︀
max
𝑞∈Δ(𝑦)

min
𝑦′∈𝒴

𝐿⊤
𝑦′𝑞+𝑣⊤𝑞

)︀
= max

𝑦∈𝒴

(︀
max
𝑞∈Δ(𝑦)

𝐿⊤
𝑦 𝑞+𝑣⊤𝑞

)︀
= max

𝑦∈𝒴
(Ω𝑦

RM)*(𝑣),

where we have used the fact that min𝑦′∈𝒴 𝐿
⊤
𝑦′𝑞 = 𝐿⊤

𝑦 𝑞 whenever 𝑞 ∈ Δ(𝑦) by
construction.

Moreover, it can be readily seen that 𝑆RM(𝑣, 𝑦) ≤ 𝑆MM(𝑣, 𝑦) ≤ 𝑆M(𝑣, 𝑦), for all 𝑣 ∈ R𝑘
and 𝑦 ∈ 𝒴 . See Figure 5.1 (left and middle) and Figure 5.2 for the shape of these losses
when 𝐿 is the 0-1 loss for two and three dimensions, respectively. Our main quantity
of interest is the Bayes risk 𝐻𝑆 , because by comparing it with 𝐻𝐿 we are able to tell
whether 𝐿 is embedded by 𝑆 using Proposition 3 .2, thus proving consistency. The fol-
lowing Proposition 3 .4 gives the form of the Bayes risks.

Proposition 3 .4 (Bayes risks). For all 𝑞 ∈ Δ, the Bayes risks read

𝐻MM(𝑞) = 𝐻𝐿(𝑞), 𝐻M(𝑞) = max
𝑄∈𝑈(𝑞,𝑞)

⟨𝐿,𝑄⟩F, 𝐻RM(𝑞) = max
𝑄∈𝑈(𝑞,𝑞)∩𝒞𝐿

⟨𝐿,𝑄⟩F,

where 𝑈(𝑞, 𝑞) = {𝑄 ∈ R𝑘×𝑘 | 𝑄1 = 𝑞,𝑄⊤1 = 𝑞,𝑄 ⪰ 0} and 𝒞𝐿 = {𝑄 ∈ R𝑘×𝑘 | (1𝐿⊤
𝑦 −

𝐿)𝑄𝑦 ⪯ 0, ∀𝑦 ∈ 𝒴}. Moreover, we have that 𝐻RM ≤ 𝐻MM ≤ 𝐻M, and there exists 𝐿 for
which 𝐻𝐿 ̸= 𝐻M and/or 𝐻RM ̸= 𝐻𝐿.

The proof can be found in Appendix A . As a corollary, the only one of these losses
always embedding 𝐿 is the Max-Min loss. Our sufficient conditions for consistency will
correspond to the conditions on 𝐿 for which the Bayes risks 𝐻M and/or 𝐻RM are equal
(or proportional) to 𝐻𝐿, thus implying consistency. In the next section, we use the ex-
pressions of the Bayes risks given by Proposition 3 .4 as a basis to prove the consistency
results.

4 Fisher Consistency Analysis

4 .1 Analysis of Max Loss

In this section we want to provide a necessary condition for consistency of the Max loss.
Note that it is not enough to provide a condition for which 𝐻𝑆 ̸= 𝐻𝐿, as 𝑆 consistent
to 𝐿 does not imply 𝑆 embedding 𝐿. The following Proposition 4 .1 gives a necessary
condition for consistency in terms of the extreme points of the prediction sets and the
Bayes risk of 𝑆.
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Proposition 4 .1. Assume 𝑆 is Fisher consistent to 𝐿. Then, for any extreme point 𝑞 ∈ Δ of a
prediction set Δ(𝑦), 𝑦 ∈ 𝒴 , we necessarily have {𝑞} = 𝜕(−𝐻𝑆)*(𝑣) for some 𝑣 ∈ R𝑘.

The set 𝜕ℎ(𝑥) denotes the subgradient of the function ℎ. This result is proven in
Appendix B . To use this necessary condition, we first have to compute the Fenchel con-
jugate (−𝐻M)* of the Max loss. This is given by the following Proposition 4 .2.

Proposition 4 .2. If 𝐿 is symmetric, then (−𝐻M)*(𝑣) = max𝑦,𝑦′∈𝒴 𝐿(𝑦, 𝑦′) + 𝑣𝑦+𝑣𝑦′
2 for all

𝑣 ∈ R𝑘.

As a corollary, we obtain the specific form of the images of the sub-gradient map-
ping 𝜕(−𝐻M)* at the differentiable points, i.e., when the sub-gradient is a singleton.

Corollary 4 .3. The 0-dimensional images of 𝜕(−𝐻M)* are of the form 𝑞 = 1
2(𝑒𝑦+𝑒𝑦′), 𝑦, 𝑦′ ∈ 𝒴 .

Figure 5.3: Left: Prediction sets Δ(𝑦) for a symmetric loss. The points given by Corol-
lary 4 .3 are the 3 extremes of the simplex and the middle points in the faces of the
simplex. The interior point is not of the form 1

2(𝑒𝑦 + 𝑒𝑦′) for any 𝑦, 𝑦′ ∈ {1, 2, 3}. Middle:
The sufficient condition from Proposition 4 .6 is satisfied for any point in the simplex.
Right: The sufficient condition from Proposition 4 .6 is not satisfied as the prediction set
Δ(2) (in green) intersects the line 𝑞2 = 0.

Note that the points {𝑞} ∈ Im 𝜕(−𝐻M)* are independent of the discrete loss 𝐿. In
Figure 5.3 (left), we show that this is not the case for the extreme points of the prediction
sets Δ(𝑦)’s of a generic 𝐿. In this example, the points 1

2(𝑒𝑦 + 𝑒𝑦′)’s are extreme points of
the prediction sets because 𝐿 is symmetric, but the extreme point in the interior is not of
this form. By moving this point to 1

2(𝑒1+𝑒3), we enforce 𝐿(1, 2)+𝐿(2, 3) = 𝐿(1, 3), which
corresponds precisely to the necessary condition given by Theorem 2 .1 when 𝑧 = 𝑦2.
The generic necessary condition is obtained by extending this argument to consider all
possibilities in larger output spaces. The full proof can be found in Appendix B .

Consistency of distances defined in trees. This result is proved by showing 𝐻M =
2𝐻𝐿 ( 𝐻𝑆 ∝ 𝐻𝐿 also implies consistency (Finocchiaro et al., 2019)) whenever 𝐿 is a
distance defined in a tree, and it is done by proving equality of the Fenchel conjugates
(−𝐻M)* = (−2𝐻𝐿)*. The proof is based on the analysis of the extreme points of a certain
polytope defined in terms of 𝐿, and can be found in Appendix B .

Partial positive results on consistency. In this section, we generalize the well-known
result by Liu (2007) which states that the Max loss is consistent to the 0-1 loss under the
dominant label condition. More specifically, we provide a generalization of this result to
all distance losses, i.e., symmetric and satisfying the triangle inequality.
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Proposition 4 .4. If 𝐿 is a distance, then we have 𝐻M ≤ 2𝐻𝐿 and 𝐻M(𝑞) = 2𝐻𝐿(𝑞) (𝑆 embeds
2𝐿, thus consistent), for all 𝑞 ∈ Δ such that max𝑦∈𝒴 𝑞𝑦 ≥ 1/2.

Some intuition can be obtained for 𝑘 = 3. The interior of the set delimited by the
dashed lines in the left image from Figure 5.3 shows precisely the points where it is
satisfied max𝑦∈𝒴 𝑞𝑦 ≤ 1/2. If 𝐿 is a distance, then the interior extreme point can only
move inside this region, and hence, it remains consistent at the exterior of this set, which
is precisely where the dominant label condition is satisfied. The proof of this result can
be found in Appendix B .

4 .2 Analysis of Restricted-Max Loss

In this section we sketch the proof of the consistency of the Restricted-Max loss (Theo-
rem 2 .4). We prove that 𝑆RM embeds 𝐿 by showing equal Bayes risks using the expres-
sions from Proposition 3 .4. The proof is done in two steps. In the first one (Proposition 4
.5), we show that under a condition on the extreme points of the prediction sets both
Bayes risks are equal, while in the second we obtain that this condition is satisfied when-
ever the hypothesis from Theorem 2 .4 holds.

Proposition 4 .5. If 𝑞𝑞⊤ ∈ 𝒞𝐿 = {𝑄 ∈ R𝑘×𝑘 | (1𝐿⊤
𝑦 − 𝐿)𝑄𝑦 ⪯ 0, ∀𝑦 ∈ 𝒴} for all extreme

points 𝑞 ∈ Δ of the prediction sets Δ(𝑦)’s, then 𝐻RM = 𝐻𝐿.

Proof. By Proposition 3 .4, we already know that 𝐻RM ≤ 𝐻𝐿, so we only need
to show that 𝐻RM ≥ 𝐻𝐿. If 𝑞 is an extreme point of the prediction set Δ(𝑦),
then 𝐻RM(𝑞) ≥ 𝐻𝐿(𝑞) by taking the matrix 𝑞𝑞⊤ ∈ 𝑈(𝑞, 𝑞) ∩ 𝒞𝐿, which satisfies
⟨𝐿, 𝑞𝑞⊤⟩F =

∑︀
𝑦′ 𝐿⊤

𝑦′𝑞𝑦′𝑢 ≥
∑︀
𝑦′ 𝑞𝑦′𝐿⊤

𝑦 𝑞 = 𝐿⊤
𝑦 𝑞 = 𝐻𝐿(𝑞), where we have used that

𝐿⊤
𝑦′𝑞 ≥ 𝐿⊤

𝑦 𝑞 for all 𝑦′ ∈ 𝒴 as 𝑞 ∈ Δ(𝑦). If 𝑞 is not an extreme point, then it can
be written as a convex combination of extreme points 𝑞𝑖 of Δ(𝑦) as 𝑞 =

∑︀𝑚
𝑖=1 𝛼𝑖𝑞𝑖

with 𝛼⊤1 = 1, 𝛼 ⪰ 0. Then, it is straightforward to show that the matrix 𝑄 =∑︀𝑚
𝑖=1 𝛼𝑖𝑞𝑖𝑞

⊤
𝑖 is in 𝑈(𝑞, 𝑞) ∩ 𝒞𝐿, and satisfies ⟨𝐿,𝑄⟩F ≥ 𝐿⊤

𝑦 𝑞 = 𝐻𝐿(𝑞). More details
in Appendix C .

Proposition 4 .6. Assume that for every 𝑞 ∈ Δ, if 𝑦 is optimal for 𝑞 (i.e., 𝑞 ∈ Δ(𝑦)), then 𝑞𝑦 > 0.
In this case, all extreme points of the prediction sets satisfy 𝑞𝑞⊤ ∈ 𝒞𝐿.

The proof of this result and the fact that consistency of 𝑆M implies consistency of 𝑆RM
can be found in Appendix C . In Figure 5.3 (middle and right), we show geometrically
in dimension 𝑘 = 3 what this condition means.

4 .3 Argmax Decoding

The positive consistency results of both 𝑆M and 𝑆RM do not specify whether the argmax
decoding 𝑑(𝑣) = arg max𝑦∈𝒴 𝑣𝑦 is consistent, but just that there exists a decoding for
which consistency holds. From Nowak-Vila et al. (2020), we know that the set of mini-
mizers of the Max-Min loss 𝑆MM is

𝑣⋆MM(𝑞) = − hull(𝐿𝑦)𝑦∈𝑦⋆(𝑞) + 𝒩Δ(𝑞), ∀𝑞 ∈ Δ, (5.11)

where hull denotes the convex hull and 𝒩Δ(𝑞) = {𝑢 ∈ R𝑘 | 𝑢⊤(𝑝− 𝑞) ≤ 0,∀𝑝 ∈ Δ} is the
normal cone of the simplex at the point 𝑞. In this case, the argmax decoding is consistent
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because arg max𝑦 𝑣𝑦 ∈ 𝑦⋆(𝑞) whenever 𝑣 ∈ 𝑣⋆MM(𝑞) if Eq. (5.11) is satisfied. The following
Theorem 4 .7 shows that the same holds true for the other losses whenever they embed
𝐿 (or 2𝐿).

Theorem 4 .7. 𝑆M and 𝑆RM are consistent to 𝐿 under the argmax decoding whenever 𝐻M =
2𝐻𝐿 (𝑆M embeds 2𝐿) and 𝐻RM = 𝐻𝐿 (𝑆RM embeds 𝐿), respectively.

5 Limitations of the Approach and Computational Considera-
tions

Fisher consistency does not take into account the hypothesis space. Fisher consis-
tency ensures that the minimizer 𝑔⋆ of the expected risk E(𝑥,𝑦)∼𝜌 𝑆(𝑔(𝑥), 𝑦) over all mea-
surable functions provides the Bayes discrete predictor 𝑓⋆ minimizing the expected clas-
sification risk (5.2) through the decoding as 𝑓⋆ = 𝑑 ∘ 𝑔⋆. Although this is an important
sanity check to produce reliable machine learning, in practice the minimizer 𝑔⋆ is ap-
proximated in a specific hypothesis space 𝒢, and Fisher consistency is not always the
best property to consider. Another notion that can be more adapted to these settings is
ℋ-consistency, where the hypothesis space of scoring functions is fixed (Long and Serve-
dio, 2013).

Comparing the complexity of subgradient computation between losses. One needs
to maximize a linear function over the prediction sets Δ(𝑦) to compute a sub-gradient
of the Restricted-Max loss. It can be efficiently performed if a tractable maximization
oracle is available on the polytopes Δ(𝑦)’s. If it does not exist, note that these sets can
be written as an intersection of the cone {𝑢 ∈ R𝑘 | (𝐿𝑦 − 𝐿𝑦′)⊤𝑢 ≤ 0, ∀𝑦′ ∈ 𝒴} with
the simplex. This problem can be converted into a bi-linear max-min problem of the
form max𝑞∈Δ min𝜆⪰0 by constructing the Lagrangian. This has to be compared with the
bi-linear max-min problem for the Max-Min loss, which is of the form max𝑞∈Δ min𝑝∈Δ
(Nowak-Vila et al., 2020). Both problems can be solved using efficient saddle-point al-
gorithms such as Saddle-Point Mirror-Prox (Nemirovski, 2004). It is interesting to study
whether computing the subgradient of 𝑆RM is easier than computing the one of 𝑆MM, as
then 𝑆RM will be more attractive for the practitioner than 𝑆MM. However, this question
is out of the scope of this paper and we leave it for future work.

6 Conclusion and Future Directions

In this work, we have analyzed the consistency properties of the well-known Max loss
for general classification tasks. We show that a restrictive condition on the task, which
is not satisfied by most of the used losses in practice, is necessary for Fisher consistency.
We also show consistency for the absolute deviation loss used in ordinal regression, and
more generally to any distance defined in a tree, showing that the necessary condition
is meaningful. Moreover, we have overcome this limitation and introduced a novel gen-
eralization of the binary SVM loss called Restricted-Max loss, which maintains the max-
imization over the loss-augmented scores and it is consistent under milder conditions
on the task at hand. Several questions remain unanswered, such as whether the pro-
posed necessary condition for the Max loss is sufficient or not, and whether there exists
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tractable linear maximization oracles over the prediction sets for specific structured pre-
diction problems, which would make the Restricted-Max loss more attractive than the
Max-Min loss.
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Appendices

Outline. The supplementary material is organized as follows. In Appendix A , we prove
general results on embeddings of losses, we compute the Bayes risks for each of the
losses and we provide an algebraic characterization of the extreme points of the predic-
tion sets. In Appendix B and Appendix C , we provide the main results of the Max loss
and the Restricted-Max loss, respectively.

A Preliminary Results

A .1 Results on Embeddability of Losses

Proposition A .1. Let 𝜓 : 𝒴 −→ R𝑘 be an embedding of the output space. If 𝐻𝑆 = 𝐻𝐿

and 𝑆(𝜓(𝑦)) = 𝐿𝑦 for all 𝑦 ∈ 𝒴 , then 𝑆 embeds 𝐿 with embedding 𝜓.

Proof. To prove that 𝑆 embeds 𝐿 with embedding 𝜓(𝑦) = −𝐿𝑦, we need to show
that

𝑦 ∈ 𝑦⋆(𝑞) ⇐⇒ 𝜙(𝑦) ∈ 𝑣⋆(𝑞).

If 𝑦 ∈ 𝑦⋆(𝑞), then

𝐻𝐿(𝑞) = 𝐿⊤
𝑦 𝑞 = 𝑆(𝜙(𝑦))⊤𝑞 = 𝐻(𝑞) = min

𝑣∈R𝑘
𝑆(𝑣)⊤𝑞.

Thus, 𝑆(𝜙(𝑦))⊤𝑞 = min𝑣∈R𝑘 𝑆(𝑣)⊤𝑞 implies that necessarily 𝜙(𝑦) ∈ 𝑣⋆(𝑞). Simi-
larly, if 𝜙(𝑦) ∈ 𝑣⋆(𝑞), then min𝑧 𝐿⊤

𝑧 𝑞 = 𝐿⊤
𝑦 𝑞 which implies 𝑦 ∈ 𝑦⋆(𝑞).

A .2 Bayes risk identities

The following Lemma A .2 provides an identity which will be useful to provide the forms
of the Bayes risk for 𝑆M and 𝑆RM.

Lemma A .2. Let 𝒞𝑦 ⊆ Δ, Ω𝑦(𝑞) = −𝐿⊤
𝑦 𝑞 + 𝑖𝒞𝑦 (𝑞) and 𝑆(𝑣, 𝑦) = (Ω𝑦)*(𝑣) − 𝑣𝑦 for every

𝑦 ∈ 𝒴 . Then,
𝐻𝑆(𝑞) = max∑︀

𝑦
𝑞𝑦𝜈𝑦=𝑞

𝜈𝑦∈𝒞𝑦

∑︁
𝑦

𝑞𝑦𝐿
⊤
𝑦 𝜈𝑦. (12)

Proof. Recall the definition of the Bayes risk 𝐻(𝑞) = min𝑣∈R𝑘 𝑆(𝑣)⊤𝑞. Using the
structural assumption on 𝑆, we can re-write it as

𝐻(𝑞) = min
𝑣∈R𝑘

∑︁
𝑦∈𝒴

𝑞𝑦(Ω𝑦)*(𝑣)−𝑣⊤𝑞 = − max
𝑣∈R𝑘

𝑣⊤𝑞−
∑︁
𝑦∈𝒴

𝑞𝑦(Ω𝑦)*(𝑣) = −
(︁∑︁
𝑦∈𝒴

𝑞𝑦(Ω𝑦)*
)︁*

(𝑞).
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Recall that if the functions ℎ𝑖 are convex, then the conjugate of the sum is the
infimum convolution of the individual conjugates (Rockafellar, 1997) as(︁∑︁

𝑖

ℎ𝑖
)︁*

(𝑡) = min∑︀
𝑖
𝑥𝑖=𝑡

∑︁
𝑖

ℎ*
𝑖 (𝑥𝑖).

If we apply this property to the functions ℎ𝑖 = 𝑞𝑖(Ω𝑦)*, we obtain:

−
(︁∑︁
𝑦∈𝒴

𝑞𝑦(Ω𝑦)*
)︁*

(𝑞) = − min∑︀
𝑦∈𝒴 𝜈𝑦=𝑞

∑︁
𝑦∈𝒴

(𝑞𝑦(Ω𝑦)*)*(𝜈𝑦)

= − min∑︀
𝑦∈𝒴 𝜈𝑦=𝑞

∑︁
𝑦∈𝒴

𝑞𝑦Ω𝑦(𝜈𝑦/𝑞𝑦) (𝑎ℎ)*(𝑥) = 𝑎ℎ*(𝑥/𝑎)

= − min∑︀
𝑦∈𝒴 𝜈𝑦=𝑞

𝜈𝑦/𝑞𝑦∈𝒞𝑦 , ∀𝑦∈𝒴

−
∑︁
𝑦∈𝒴

𝐿⊤
𝑦 𝜈𝑦 Ω𝑦(𝑞) = −𝐿⊤

𝑦 𝑞 + 𝑖𝒞𝑦 (𝑞)

= max∑︀
𝑦∈𝒴 𝜈𝑦=𝑞

𝜈𝑦/𝑞𝑦∈𝒞𝑦 , ∀𝑦∈𝒴

∑︁
𝑦∈𝒴

𝐿⊤
𝑦 𝜈𝑦 redefine 𝜈𝑦 as 𝜈𝑦/𝑞𝑦

= max∑︀
𝑦∈𝒴 𝑞𝑦𝜈𝑦=𝑞

𝜈𝑦∈𝒞𝑦 , ∀𝑦∈𝒴

∑︁
𝑦∈𝒴

𝑞𝑦𝐿
⊤
𝑦 𝜈𝑦.

The following Proposition A .3 provides us with the first part of Proposition 3 .4.

Proposition A .3 (Bayes risks). For all 𝑞 ∈ Δ, the Bayes risks read

𝐻MM(𝑞) = min
𝑦∈𝒴

𝐿⊤
𝑦 𝑞 = 𝐻𝐿(𝑞)

𝐻M(𝑞) = max
𝑄∈𝑈(𝑞,𝑞)

⟨𝐿,𝑄⟩F

𝐻RM(𝑞) = max
𝑄∈𝑈(𝑞,𝑞)∩𝒞𝐿

⟨𝐿,𝑄⟩F,

where

𝑈(𝑞, 𝑞) = {𝑄 ∈ R𝑘×𝑘
+ |𝑄1 = 𝑞,𝑄⊤1 = 𝑞}, and 𝒞𝐿 = {𝑄 ∈ R𝑘×𝑘 | (1𝐿⊤

𝑦 −𝐿)𝑄𝑦 ⪯ 0, ∀𝑦 ∈ 𝒴}.

Proof. The first identity is trivial and has already been derived in the main body
of the paper. We use the above Lemma A .2 to obtain the identities corresponding
to 𝑆M and 𝑆RM.

1. Bayes risk of Max loss: In this case 𝒞𝑦 = Δ. If we define Γ ∈ R𝑘×𝑘 as the matrix
whose rows are 𝜈𝑦, the maximization reads

max
Γ⊤𝑞=𝑞
Γ1=1
Γ⪰0

∑︁
𝑦∈𝒴

𝑞𝑦𝐿
⊤
𝑦 Γ𝑦

If we now define 𝑄 ∈ R𝑘×𝑘 as 𝑄 = diag(𝑞)Γ, i.e., 𝑄𝑦 = 𝑞𝑦Γ𝑦, the objective
can be re-written as a matrix scalar product as∑︁

𝑦∈𝒴
𝑞𝑦𝐿

⊤
𝑦 Γ𝑦 =

∑︁
𝑦∈𝒴

𝐿⊤
𝑦 (𝑞𝑦Γ𝑦) =

∑︁
𝑦∈𝒴

𝐿⊤
𝑦 𝑄𝑦 = ⟨𝐿,𝑄⟩F.
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Whenever 𝑞𝑦 > 0, the change of variables 𝑄𝑦 = 𝑞𝑦Γ𝑦 is invertible and the
constraints satisfy

(𝑄⊤1)𝑦 = 𝑞𝑦 ⇐⇒ (Γ⊤𝑞)𝑦 = 𝑞𝑦

(𝑄1)𝑦 = 𝑞𝑦 ⇐⇒ (Γ1)𝑦 = 1
𝑄𝑦 ⪰ 0 ⇐⇒ Γ𝑦 ⪰ 0.

On the other hand, if 𝑞𝑦 = 0 then 𝑄𝑦 = 0 but the objective is not affected as
it is independent of Γ𝑦.

2. Bayes risk of Restricted-Max loss: In this case 𝒞𝑦 = Δ(𝑦) = {𝑞 ∈ Δ | (𝐿𝑦 −
𝐿𝑦′)⊤𝑞 ⪯ 0, ∀𝑦′ ∈ 𝒴}. The maximization now reads

max
Γ⊤𝑞=𝑞
Γ1=1
Γ⪰0

(1𝐿⊤
𝑦 −𝐿)Γ𝑦⪯0,∀𝑦

∑︁
𝑦∈𝒴

𝑞𝑦𝐿
⊤
𝑦 Γ𝑦.

The result follows as (1𝐿⊤
𝑦 − 𝐿)Γ𝑦 ⪯ 0 if and only if (1𝐿⊤

𝑦 − 𝐿)𝑄𝑦 ⪯ 0 when-
ever 𝑞𝑦 > 0.

A .3 Extreme points of a polytope

We will need to analyse the extreme points of the polytope 𝒫 = {(𝑞, 𝑢) ∈ R𝑘+1 | 𝑞 ∈
Δ, 𝐿⊤

𝑦 𝑞 ≥ 𝑢,∀𝑦 ∈ 𝒴} ⊆ R𝑘+1 in the proof of the sufficient condition for consistency of
Max loss in Appendix B .3.

Algebraic characterization of extreme points of a polyhedron. The following Propo-
sition A .4 provides us with an algebraic characterization of the extreme points of a poly-
hedron 𝒬 = {𝑥 ∈ R𝑛 | 𝐴𝑥 ⪰ 𝑏}.

Proposition A .4 (Theorem 3.17 of Andreasson et al. (2020)). Let 𝑥 ∈ 𝒬 = {𝑥 ∈ R𝑛 | 𝐴𝑥 ⪰
𝑏}, where 𝐴 ∈ R𝑚×𝑛 has rank(𝐴) = 𝑛 and 𝑏 ∈ R𝑚. Let 𝐼 ⊆ [𝑚] be a set of indexes for which
the subsystem is an equality, i.e., 𝐴𝐼𝑥𝐼 = 𝑏𝐼 with 𝐴𝑥𝐼 ⪰ 𝑏. Then 𝑥𝐼 is an extreme point of 𝒬 if
and only if rank(𝐴𝑆) = 𝑛.

Let 𝒫 ⊆ R𝑘+1 be the polyhedron defined as

𝒫 = {(𝑞, 𝑢) ∈ R𝑘+1 | 𝑞 ∈ Δ, 𝐿⊤
𝑦 𝑞 ≥ 𝑢,∀𝑦 ∈ 𝒴} ⊆ R𝑘+1.

The polyhedron 𝒫 can be written as 𝒫 = {𝑥 = (𝑞, 𝑢) ∈ R𝑘+1 | 𝐴𝑥 ⪰ 𝑏} where

𝑆

𝑇

⎧⎪⎪⎪⎨⎪⎪⎪⎩⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L
...

−1
...

Id
...
0
...

· · · 1 · · · 0
· · · −1 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝐴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑞

𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⪰

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
...
...
0
...
1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝑏

, (13)
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with 𝐴 ∈ R(2𝑘+2)×(𝑘+1) and 𝑏 ∈ R𝑘+1. Note that rank(𝐴) = 𝑘 + 1. Given 𝑥 = (𝑞, 𝑢),
define 𝑆, 𝑇 ⊆ 𝒴 as the subsets of outputs such that

𝑦 ∈ 𝑆 ⇐⇒ 𝐿⊤
𝑦 𝑞 = 𝑢, 𝑦 ∈ 𝑇 ⇐⇒ 𝑞𝑦 = 0, (14)

i.e., 𝑆 and 𝑇 correspond to the indexes of the first and second block of the matrix 𝐴
for which the inequality holds as an equality, respectively. More concretely, if 𝐼 are the
indices of 𝐴 for which 𝐴𝐼𝑥𝐼 = 𝑏𝐼 , we have that 𝐼 = 𝑆 ∪ (𝑘 + 𝑇 ) ∪ {2𝑘 + 1} ∪ {2𝑘 + 1},
because the last two inequalities must be an equality as 𝑞 ∈ Δ. Moreover, the sets 𝑆 have
the following properties:

• We necessarily have |𝑆| ≥ 1: if 𝑆 = ∅, then rank(𝐴𝐼) = 𝑘 and so the rank is not
maximal, thus 𝑥 = (𝑞, 𝑢) cannot be an extreme point.

• We necessarily have |𝑆| + |𝑇 | ≥ 𝑘 (using the fact that rank(𝐴) = 𝑘 + 1).

B Results on Max Loss

B .1 Bayes Risk of Max loss for Symmetric Losses

The following Proposition B .1 gives another expression of the Bayes risk of 𝑆M and its
Fenchel conjugate assuming the loss 𝐿 is symmetric.

Proposition B .1. Let 𝐻M(𝑞) = max𝑄∈𝑈(𝑞,𝑞) ⟨𝐿,𝑄⟩F and assume 𝐿 symmetric. Then, the
following identities hold:

𝐻M(𝑞) = min
1
2 (𝑎𝑦+𝑎𝑦′ )≥𝐿(𝑦,𝑦′)

𝑎⊤𝑞, ∀𝑞 ∈ Δ,

(−𝐻M)*(𝑣) = max
𝑦,𝑦′∈𝒴

𝐿(𝑦, 𝑦′) + 𝑣𝑦 + 𝑣𝑦′

2 , ∀𝑣 ∈ R𝑘.

Proof. The first part corresponds to the dual of the maximization problem defin-
ing the Bayes risk 𝐻M when 𝐿 is symmetric:

− min
𝑄∈𝑈(𝑞,𝑞)

−⟨𝐿,𝑄⟩F = min
𝑄⪰0

max
𝑎,𝑏∈R𝑘

𝑎⊤(𝑄1 − 𝑞) + 𝑏⊤(𝑄⊤1 − 𝑞) − ⟨𝐿,𝑄⟩F

= − max
𝑎,𝑏∈R𝑘

−𝑎⊤𝑞 − 𝑏⊤𝑞 + min
𝑄⪰0

𝑎⊤𝑄1 + 𝑏⊤𝑄⊤1 − ⟨𝐿,𝑄⟩F

We can now re-write the minimization objective as a matrix scalar product with
𝑄 as 𝑎⊤𝑄1 = Tr(𝑎⊤𝑄1) = Tr(Q1a⊤) = ⟨𝑄, 𝑎1⊤⟩F and analogously 𝑏⊤𝑄1 =
⟨𝑄, 1𝑏⊤⟩F. Hence, the objective of the minimum becomes ⟨𝑎1⊤ + 1𝑏⊤ − 𝐿,𝑄⟩F,
which gives

min
𝑄⪰0

⟨𝑎1⊤ + 1𝑏⊤ − 𝐿,𝑄⟩F =
{︃

0 if 𝑎1⊤ + 1𝑏⊤ − 𝐿 ⪰ 0
−∞ otherwise

.

We obtain the following minimization problem in 𝑎, 𝑏 ∈ R𝑘

− max
𝑎1⊤+1𝑏⊤⪰𝐿

−(𝑎+ 𝑏)⊤𝑞 = min
𝑎1⊤+1𝑏⊤⪰𝐿

(𝑎+ 𝑏)⊤𝑞.
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Using that 𝐿 is symmetric, we can add the constraint 𝑎 = 𝑏. In order to see this,
let (𝑎⋆, 𝑏⋆) be a solution of the linear problem. If 𝐿 is symmetric, then (𝑏⋆, 𝑎⋆) is
also a solution, which implies that 1

2(𝑎⋆ + 𝑏⋆, 𝑎⋆ + 𝑏⋆) too. Hence, we can assume
𝑎 = 𝑏 and we obtain the desired result.

For the second part, note that if 𝐿 is symmetric, the matrix 𝑄 can be assumed
also symmetric. To see this, let 𝑄⋆ = arg max𝑄∈𝑈(𝑞,𝑞)⟨𝐿,𝑄⟩F. Then if 𝐿 symmetric
(𝑄⋆)⊤ is also a solution, which means that 1

2(𝑄⋆+(𝑄⋆)⊤) too, which is symmetric.
Hence, we can write

𝐻M(𝑞) = max
𝑄=𝑄⊤

𝑄1=𝑞
𝑄⪰0

⟨𝐿,𝑄⟩F

= min
𝑣∈R𝑘

max
𝑄=𝑄⊤

𝑄∈Prob(𝒴×𝒴)

⟨𝐿,𝑄⟩F − 𝑣⊤(𝑄1 − 𝑞)

= min
𝑣∈R𝑘

{︁
max
𝑄=𝑄⊤

𝑄∈Prob(𝒴×𝒴)

⟨𝐿+ 𝑣1⊤, 𝑄⟩F

⏟  ⏞  
(−𝐻M)*(𝑣)

}︁
− 𝑣⊤𝑞,

where at the last step we have used that 𝑞 ∈ Δ and so 1⊤𝑄1 = 1, which to-
gether with 𝑄 ⪰ 0 implies 𝑄 ∈ Prob(𝒴 × 𝒴). The extreme points of the problem
domain {𝑄 ∈ Prob(𝒴 × 𝒴)} where the maximization of the linear objective is
achieved are precisely the points {1

2(𝑒𝑦 + 𝑒𝑦′)}𝑦,𝑦′∈𝒴 .

B .2 Necessary Conditions for Consistency

Recall that 𝑆 is consistent to 𝐿 if there exists a decoding 𝑑 : R𝑘 −→ 𝒴 such that if 𝑣 ∈ 𝑣⋆(𝑞),
then necessarily 𝑑(𝑣) ∈ 𝑦⋆(𝑞) for all 𝑞 ∈ Δ. A necessary condition for this to hold is
that every level set of 𝑣⋆ must be included in a level set of 𝑦⋆, which are precisely the
prediction sets.

Lemma B .2. If 𝑆 is consistent to 𝐿, then for every 𝑣 ∈ R𝑘 there must exist a 𝑦 ∈ 𝒴 such that

(𝑣⋆)−1(𝑣) ⊆ (𝑦⋆)−1(𝑦) = Δ(𝑦). (15)

Proof. If (15) does not hold, then there exists 𝑞1, 𝑞2 ∈ (𝑣⋆)−1(𝑣) with 𝑦⋆(𝑞1) ∩
𝑦⋆(𝑞2) = ∅. However, Fisher consistency means that 𝑣 ∈ 𝑣⋆(𝑞1) implies 𝑑(𝑣) ∈
𝑦⋆(𝑞1) and 𝑣 ∈ 𝑣⋆(𝑞2) implies 𝑑(𝑣) ∈ 𝑦⋆(𝑞2), which is not possible because 𝑦⋆(𝑞1) ∩
𝑦⋆(𝑞2) = ∅.

The following Corollary B .4 re-writes (15) in terms of the Bayes risk 𝐻𝑆 .

Proposition B .3. The level sets of 𝑣⋆ are the image of −𝜕(−𝐻𝑆)* : R𝑘 −→ 2Δ, i.e.,

Im((𝑣⋆)−1) = Im(−𝜕(−𝐻𝑆)*).

Proof. First of all, note that −𝜕(−𝐻𝑆)* = (𝜕𝐻M)−1 (Rockafellar, 1997). We have

𝐻𝑆(𝑞) = min
𝑣∈R𝑘

𝑆(𝑣)⊤𝑞 + 𝑖Δ(𝑞), 𝜕𝐻𝑆(𝑞) = 𝑆(𝑣) + ⟨1⟩, 𝑣 ∈ 𝑣⋆(𝑞).
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Let’s now prove the two inclusions.
(⊆): Let 𝑄 ∈ Im((𝑣⋆)−1). This means that there exists 𝑉 ∈ R𝑘 such that 𝑉 =

arg min𝑣∈R𝑘 𝑆(𝑣)⊤𝑞 for all 𝑞 ∈ 𝑄. If we define 𝑇 = 𝑆(𝑉 ) + ⟨1⟩, then 𝑇 = 𝜕𝐻M(𝑞)
for all 𝑞 ∈ 𝑄.

(⊇): Let 𝑄 ∈ Im((𝜕𝐻M)−1). This means that there exists 𝑇 such that 𝑇 =
𝜕𝐻M(𝑞) for all 𝑞 ∈ 𝑄. For every 𝑞 ∈ 𝑄, the set 𝑇 can be written as 𝑇 = 𝑆(𝑣⋆(𝑞)) +
⟨1⟩. To show that 𝑣⋆(𝑞) = 𝑣⋆(𝑞′) for all 𝑞, 𝑞′ ∈ 𝑄, we need to show that if 𝑆(𝑣) =
𝑆(𝑣′) + 𝑐1, 𝑣 ∈ 𝑣⋆(𝑞), 𝑣′ ∈ 𝑣⋆(𝑞′) for some 𝑞, 𝑞′ ∈ 𝑄, then necessarily 𝑐 = 0. This
is because 𝑆(𝑣(𝑞))⊤𝑞′ ≥ 𝑆(𝑣(𝑞′))⊤𝑞′ =⇒ 𝑐 ≥ 0 and 𝑆(𝑣(𝑞))⊤𝑞 ≤ 𝑆(𝑣(𝑞′))⊤𝑞 =⇒
𝑐 ≤ 0.

Corollary B .4 (Necessary condition for consistency). If 𝑆 is Fisher consistent to 𝐿, then for
every 𝑣 ∈ R𝑘, there exists 𝑦 ∈ 𝒴 such that

− 𝜕(−𝐻𝑆)*(𝑣) ⊆ Δ(𝑦). (16)

Proof. This follows directly from Eq. (15) and Proposition B .3.

Proposition B .5 (Weaker necessary condition for consistency). If 𝑆 is consistent to 𝐿, then
every extreme point of Δ(𝑦) for some 𝑦 ∈ 𝒴 must be a 0-dimensional image of −𝜕(−𝐻𝑆)*.

Proof. Let Δ𝑆(𝑣) = −𝜕(−𝐻𝑆)*(𝑣). There exists a finite set 𝒱 ⊆ R𝑘 such that⋃︀
𝑣∈𝒱 Δ𝑆(𝑣) = Δ(𝑦). In particular, if 𝑞 is an extreme point of Δ(𝑦), then there

exists 𝑣 ∈ 𝒱 such that 𝑞 ∈ Δ𝑆(𝑣). We need to show that 𝑞 is also an extreme point
of Δ𝑆(𝑣). Indeed, if Δ𝑆(𝑣) ⊆ Δ(𝑦) are polyhedrons and 𝑞 ∈ Δ𝑆(𝑣),Δ(𝑦) is an
extreme point of Δ(𝑦), then it is also necessarily an extreme point of Δ𝑆(𝑣).

Theorem B .6. Let 𝐿 be a symmetric loss with 𝑘 > 2. If the Max loss is consistent to 𝐿, then
𝐿 is a distance, and for every three outputs 𝑦1, 𝑦2, 𝑦3 ∈ 𝒴 , there exists 𝑧 ∈ 𝒴 for which these the
following three identities are satisfied:

𝐿(𝑦1, 𝑦2) = 𝐿(𝑦1, 𝑧) + 𝐿(𝑧, 𝑦2),
𝐿(𝑦1, 𝑦3) = 𝐿(𝑦1, 𝑧) + 𝐿(𝑧, 𝑦3),
𝐿(𝑦2, 𝑦3) = 𝐿(𝑦2, 𝑧) + 𝐿(𝑧, 𝑦3).

Proof. From Proposition B .1 and Proposition B .5, we obtain that if the Max loss
is consistent to 𝐿, then the extreme points of the prediction sets Δ(𝑦)’s have to
be of the form 1/2(𝑒𝑦 + 𝑒𝑦′). Hence, the projection of the sets Δ(𝑦)’s into a three-
dimensional simplex can only be of the form depicted in Figure 4. The necessary
condition follows directly from these possibilities (see caption of Figure 4). More-
over, note that if the three identities of the theorem hold, then 𝐿 is a distance. To
see that, note that the triangle inequality holds for any triplet 𝑦1, 𝑦2, 𝑦3 ∈ 𝒴 as:

𝐿(𝑦1, 𝑦2) = 𝐿(𝑦1, 𝑧) + 𝐿(𝑧, 𝑦2)
= 𝐿(𝑦1, 𝑦3) − 𝐿(𝑧, 𝑦3) + 𝐿(𝑦3, 𝑦2) − 𝐿(𝑦3, 𝑧)
= 𝐿(𝑦1, 𝑦3) + 𝐿(𝑦3, 𝑦1) − 2𝐿(𝑦3, 𝑧)
≤ 𝐿(𝑦1, 𝑦3) + 𝐿(𝑦3, 𝑦1).
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Figure 4: These are the only possible possibilities of the prediction sets in a three-
dimensional face of the simplex. The equations associated to each configuration is writ-
ten below the corresponding simplex and all together can be compactly written as the
necessary condition given by the theorem. An edge from a corner of the simplex to the
middle point of the opposite side is not possible as 𝐿(𝑦, 𝑦′) = 0 if and only if 𝑦 = 𝑦′ by
assumption.

Examples of losses not satisfying the necessary condition. We now show that the
examples exposed in Section 2 .2 do not satisfy the necessary condition of Theorem B .6.

Lemma B .7. Let 𝐿 such with full rank loss matrix 𝐿 and existing 𝑞 ∈ int(Δ) for which all
outputs optimal, i.e., 𝑦⋆(𝑞) = 𝒴 . Then, the Max loss is not consistent to 𝐿.

Proof. The point 𝑞, which is not of the form 1/2(𝑒𝑦 + 𝑒𝑦′) for some 𝑦, 𝑦′ ∈ 𝒴 , is an
extreme point of the polytope Δ(𝑦) = {𝑞 ∈ Δ | 𝐿⊤

𝑧 𝑞 ≥ 𝐿⊤
𝑦 𝑞,∀𝑧 ∈ 𝒴} for every

𝑦 ∈ 𝒴 . This is because 𝑞 ∈ Δ is the unique solution of 𝐿𝑞 = 𝑢 with 𝑢 = 𝐿⊤
𝑦 𝑞 for all

𝑦 ∈ 𝒴 . Hence, by Proposition B .5, the Max loss is not consistent to 𝐿.

Lemma B .8. The Max loss is not consistent to the the Hamming loss on permutations𝐿(𝜎, 𝜎′) =
1
𝑀

∑︀𝑀
𝑚=1 1(𝜎(𝑚) ̸= 𝜎′(𝑚)) where 𝜎, 𝜎′ permutations of size 𝑀 .

Proof. Take the transpositions 𝜎1 = (3, 2), 𝜎2 = (2, 1), 𝜎3 = (3, 1). We have that
𝐿(𝜎𝑖, 𝜎𝑗) = 2/𝑀 for 𝑖 ̸= 𝑗 and 𝐿(𝜎, 𝜎′) > 2

𝑀 for all permutations 𝜎 ̸= 𝜎′. Hence,
the necessary condition can’t be satisfied.

The Hamming loss with𝑀 = 𝑘 = 2 is consistent and it is not defined in a tree. The
Hamming loss 𝐿(𝑦, 𝑦′) = 1

2(1(𝑦1 ̸= 𝑦′
1) + 1(𝑦2 ̸= 𝑦′

2)) is consistent as it decomposes
additively and each term is consistent as it is the binary 0-1 loss. However, it can’t be
described as the shortest path distance in a tree, but rather the shortest path distance in
a cycle of size four with all weights equal to 1/2.

B .3 Sufficient condition on the discrete loss 𝐿

Theorem B .9. If 𝐿 is a distance defined in a tree, then the Max loss 𝑆M embeds 𝐿 with embed-
ding 𝜓(𝑦) = −𝐿𝑦 and it is consistent under the argmax decoding.
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Figure 5: Left: The 4-partition of the output space where 𝑦1, 𝑦2, 𝑦3 ∈ 𝑆. The different sets
only communicate through the edges 𝑧𝑖 − 𝑦𝑖 for 𝑖 = 1, 2, 3 respectively. Right: The 3-
partition of the output space where 𝑠1, 𝑠2 ∈ 𝑆 and the depicted path is the path between
these two points.

Proof. We just have to prove that the extremes points of the polytope 𝒫 defined as

𝒫 = {(𝑞, 𝑢) ∈ R𝑘+1 | 𝑞 ∈ Δ, 𝐿⊤
𝑦 𝑞 ≥ 𝑢,∀𝑦 ∈ 𝒴} ⊆ R𝑘+1

are of the form (1
2(𝑒𝑦 + 𝑒𝑦′), 1

2𝐿(𝑦, 𝑦′)), where 𝑦, 𝑦′ ∈ 𝒴 . Using this, we obtain

(−𝐻2𝐿)*(𝑣) = max
𝑞∈Δ

min
𝑧∈𝒴

2𝐿⊤
𝑧 𝑞 + 𝑣⊤𝑞

= max
(𝑞,𝑢)∈𝒫

2𝑢+ 𝑣⊤𝑞

= max
(𝑞,𝑢)∈ext(𝒫)

2𝑢+ 𝑣⊤𝑞

= max
𝑦,𝑦′∈𝒴

𝐿(𝑦, 𝑦′) + 𝑣𝑦 + 𝑣𝑦′

2 = (−𝐻M)*(𝑣),

for all 𝑣 ∈ R𝑘. This implies 𝐻2𝐿 = 2𝐻𝐿 = 𝐻M. We will use the algebraic frame-
work introduced in Appendix A .3.

Let 𝑥 ∈ ext(𝒫) and 𝑆 are 𝑇 the sets of indices for which 𝐿⊤
𝑦 𝑞 = 𝑢 and 𝑞𝑦′ = 0

for 𝑦 ∈ 𝑆 and 𝑦′ ∈ 𝑇 (as defined in (14)).
If |𝑆| = 1, then we necessarily. have |𝑇 | = 𝑘 − 1 because |𝑇 | ≥ 𝑘 − |𝑆| = 𝑘 − 1

and |𝑇 | = 𝑘 is not possible because 𝑞 is in the simplex. In this case, the extreme
point is equal to 𝑞 = (𝑒𝑦, 0), which is of the desired form.

First part of the proof. If |𝑆| ≥ 2, let’s prove that the elements in 𝑆 must be
necessarily aligned, i.e., contained in a chain (always true for |𝑆| = 2). If we
denote by SP(𝑠, 𝑠′) ⊆ 𝒴 the elements in the shortest path between 𝑠, 𝑠′, this means
that there exists 𝑠1, 𝑠2 ∈ 𝑆 such that 𝑠 ∈ SP(𝑠1, 𝑠2) for all 𝑠 ∈ 𝑆.

If the elements in 𝑆 are not aligned, then there exist pairwise different ele-
ments 𝑦1, 𝑦2, 𝑦3 ∈ 𝑆 and 𝑧1, 𝑧2, 𝑧3 ∈ 𝒴 (possibly repeated) such that the tree defin-
ing the loss 𝐿 can be partitioned into four sets I, II, III, IV of the form depicted in
the left Figure 5, where the edges 𝑦𝑖 − 𝑧𝑖 belong to the tree for 𝑖 = 1, 2, 3.
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𝐿⊤
𝑧1𝑞 =

∑︁
𝑦∈I

𝐿(𝑧1, 𝑦)𝑞𝑦 +
∑︁
𝑦/∈I
𝑦 ̸=𝑧1

𝐿(𝑧1, 𝑦)𝑞𝑦

=
∑︁
𝑦∈I

(𝐿(𝑧1, 𝑦1) + 𝐿(𝑦1, 𝑦))𝑞𝑦 +
∑︁
𝑦/∈I
𝑦 ̸=𝑧1

(𝐿(𝑦1, 𝑦) − 𝐿(𝑧1, 𝑦1))𝑞𝑦

=
∑︁
𝑦 ̸=𝑧1

𝐿(𝑦1, 𝑦)𝑞𝑦 +
(︁∑︁
𝑦∈I

𝑞𝑖 −
∑︁
𝑦/∈I
𝑖 ̸=𝑧1

𝑞𝑦
)︁
𝐿(𝑧1, 𝑦1)

=
∑︁
𝑦∈𝒴

𝐿(𝑦1, 𝑦)𝑞𝑦 +
(︁∑︁
𝑦∈I

𝑞𝑖 −
∑︁
𝑦/∈I

𝑞𝑦
)︁
𝐿(𝑧1, 𝑦1)

= 𝑢+
(︁∑︁
𝑦∈I

𝑞𝑦 −
∑︁
𝑦/∈I

𝑞𝑦
)︁
𝐿(𝑧1, 𝑦1).

If we repeat the same procedure for II and III, we obtain that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐿⊤
𝑧1𝑞 = 𝑢+

(︁∑︀
𝑦∈I 𝑞𝑦 −

∑︀
𝑦/∈I 𝑞𝑦

)︁
𝐿(𝑧1, 𝑦1)

𝐿⊤
𝑧2𝑞 = 𝑢+

(︁∑︀
𝑦∈II 𝑞𝑦 −

∑︀
𝑦/∈II 𝑞𝑦

)︁
𝐿(𝑧2, 𝑦2)

𝐿⊤
𝑧3𝑞 = 𝑢+

(︁∑︀
𝑦∈III 𝑞𝑦 −

∑︀
𝑦/∈III 𝑞𝑦

)︁
𝐿(𝑧3, 𝑦3)

However, note that
∑︀
𝑦∈I 𝑞𝑦 +

∑︀
𝑦∈II 𝑞𝑦 +

∑︀
𝑦∈III 𝑞𝑦 +

∑︀
𝑦∈IV 𝑞𝑦 = 1, which implies

that
min

𝒜∈{I,II,III}

(︁ ∑︁
𝑦∈𝒜

𝑞𝑦 −
∑︁
𝑦/∈𝒜

𝑞𝑦
)︁
< 0.

Hence, there exists 𝑖 ∈ {1, 2, 3} for which 𝐿⊤
𝑧𝑖
𝑞 < 𝑢, which leads to a contradiction

as 𝐿⊤
𝑦 𝑞 ≥ 𝑢 for all 𝑦 ∈ 𝒴 .

Second part of the proof. Now that we have that the elements in 𝑆 must be
aligned, let’s proceed with the proof by analyzing separately particular cases:

- (𝑆 ∩ 𝑇 = ∅): This means that 𝑞𝑠 > 0 for all 𝑠 ∈ 𝑆. Let 𝑥 = (1
2(𝑒𝑠1 +

𝑒𝑠2), 1
2𝐿(𝑠1, 𝑠2)), where 𝑆 ⊆ SP(𝑠1, 𝑠2). Then, it satisfies the equality con-

straints as𝐿𝑠𝑞 = 1/2(𝐿(𝑠1, 𝑠)+𝐿(𝑠, 𝑠2)) = 1/2𝐿(𝑠1, 𝑠2) because 𝑠 ∈ SP(𝑠1, 𝑠2)
for all 𝑠 ∈ 𝑆. Hence, it has to be equal to the unique solution of the linear
system of equations.

- (𝑆 ∩ 𝑇 ̸= ∅): Let’s separate into two more cases.

– (∃𝑟1, 𝑟2 ∈ [𝑘] ∖ 𝑇 such that𝑆 ⊆ SP(𝑟1, 𝑟2)): Let 𝑥 = (1
2(𝑒𝑟1+𝑒𝑟2), 1

2𝐿(𝑟1, 𝑟2)).
Then, it satisfies the equality constraints as𝐿𝑠𝑞 = 1/2(𝐿(𝑟1, 𝑠)+𝐿(𝑠, 𝑟2)) =
1/2𝐿(𝑟1, 𝑟2) because 𝑠 ∈ SP(𝑟1, 𝑟2) for all 𝑠 ∈ 𝑆. Hence, it has to be equal
to the unique solution of the linear system of equations.

– (@𝑟1, 𝑟2 ∈ [𝑘] ∖ 𝑇 such that 𝑆 ⊆ SP(𝑟1, 𝑟2)): We will show that this
case is not possible. Consider the shortest path between 𝑠1 and 𝑠2 in 𝑆
and the partition of the vertices of the tree into the sets I, II, III depicted
in the right Figure 5. We know that

{I ∩([𝑘] ∖ 𝑇 ) = ∅} ∨ {II ∩([𝑘] ∖ 𝑇 ) = ∅}.
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If this is not true, then taking 𝑟1 ∈ I and 𝑟2 ∈ II we obtain 𝑆 ⊆ SP(𝑟1, 𝑟2).
Assume that I ∩([𝑘] ∖ 𝑇 ) = ∅. We have that 𝐿(𝑠1, 𝑦) > 𝐿(𝑠1, 𝑦) for all
𝑦 ∈ [𝑘] ∖ 𝑇 , which means that

𝐿⊤
𝑠1𝑞 > 𝐿⊤

𝑠1𝑞.

This is a contradiction because 𝐿⊤
𝑦 𝑞 ≥ 𝑢 = 𝐿⊤

𝑠1𝑞 as 𝑠1 ∈ 𝑆. The case
II ∩([𝑘] ∖ 𝑇 ) = ∅ can be done analogously.

Third part of the proof. By Proposition A .1, to prove that 𝑆M embeds 2𝐿 with
embedding 𝜓(𝑦) = −𝐿𝑦, we only need to show that 𝑆M(−𝐿𝑦) = 2𝐿𝑦. For every
𝑧 ∈ 𝒴 , we have

𝑆M(−𝐿𝑦, 𝑧) = max
𝑦′∈𝒴

𝐿(𝑧, 𝑦′) + (−𝐿𝑦)⊤𝑒𝑦′ − (−𝐿𝑦)⊤𝑒𝑧

= max
𝑦′∈𝒴

{𝐿(𝑧, 𝑦′) − 𝐿(𝑦, 𝑦′)} + 𝐿(𝑦, 𝑧)

= 2𝐿(𝑦, 𝑧),

where at the last step we have used 𝐿(𝑧, 𝑦′) − 𝐿(𝑦, 𝑦′) ≤ 𝐿(𝑦, 𝑦′) as 𝐿 is a distance
and so the maximization is achieved at 𝑦′ = 𝑦.

Finally, the argmax decoding is consistent as it is an inverse of the embedding
𝜓(𝑦) = −𝐿𝑦 as

𝑑(𝜓(𝑦)) = arg max
𝑦′∈𝒴

− 𝐿(𝑦, 𝑦′) = arg min
𝑦′∈𝒴

𝐿(𝑦, 𝑦′) = 𝑦.

B .4 Partial Consistency through dominant label condition

Lemma B .10. Let 𝑞 ∈ Δ such that 𝑞1 ≥ 1/2 ≥ 𝑝𝑦 for all 𝑦 ̸= 1. If 𝐿 is a distance, then
𝐿⊤

1 𝑞 ≤ 𝐿⊤
𝑦 𝑞 for all 𝑦 ∈ 𝒴 .

Proof.

𝐿⊤
𝑧 𝑞 = 𝑞1𝐿𝑧1 +

∑︁
𝑦 ̸=1,𝑧

𝐿𝑧𝑦𝑞𝑦

≥ 1
2𝐿𝑧1 +

∑︁
𝑦 ̸=1,𝑧

𝐿𝑧𝑦𝑞𝑦

=
(︁1

2 −
∑︁
𝑦 ̸=1,𝑧

𝑞𝑦
)︁
𝐿𝑧1 +

∑︁
𝑦 ̸=1,𝑧

(𝐿𝑧1 + 𝐿𝑧𝑦)𝑞𝑦

≥
(︁1

2 −
∑︁
𝑦 ̸=1,𝑧

𝑞𝑦
)︁
𝐿𝑧1 +

∑︁
𝑦 ̸=1,𝑧

𝐿1𝑦𝑞𝑦

≥ 𝐿𝑧1𝑞𝑧 +
∑︁
𝑦 ̸=1,𝑧

𝐿1𝑦𝑞𝑦

=
∑︁
𝑦 ̸=1

𝐿1𝑦𝑞𝑦 = 𝐿⊤
1 𝑞.
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Lemma B .11. If 𝐿 is a distance, then 𝐻M ≤ 2𝐻𝐿.

Proof. In particular, 𝐿 is also symmetric. Recall that

𝐻𝐿(𝑞) = min
𝑦∈𝒴

𝐿⊤
𝑦 𝑞 = min

𝑎⪰𝐿𝑝,
𝑝∈Δ.

𝑎⊤𝑞 = min
𝑎∈𝒫𝐿

𝑎⊤𝑞

1
2𝐻M(𝑞) = min

1𝑎⊤+𝑎1⊤⪰𝐿
𝑎⊤𝑞 = min

𝑎∈𝒫M
𝐿

𝑎⊤𝑞,

where the second expression is given by Proposition A .3. To show that 2𝐻M ≤
𝐻𝐿 we will show that 𝒫𝐿 ⊆ 𝒫M

𝐿 . If 𝑎 ∈ 𝒫𝐿, then there exists 𝑝 ∈ Δ such that
𝑎 ⪰ 𝐿𝑝. Moreover, if𝐿 is a distance, it means that the triangle inequality𝐿(𝑦, 𝑦′) ≤
𝐿(𝑦, 𝑧) + 𝐿(𝑧, 𝑦′), which is equivalent to 𝐿 ⪯ 1𝐿⊤

𝑧 + 𝐿𝑧1⊤ for all 𝑧 ∈ 𝒵 . This can
also be written as

𝐿 ⪯ 1𝑝⊤𝐿+ 𝐿𝑝1⊤, ∀𝑝 ∈ Δ.

Finally, note that if 𝐿𝑝 ⪯ 𝑎, then 𝐿𝑝1⊤ ⪯ 𝑎1⊤, and the same holds for its transpose
1𝑝⊤𝐿 ⪯ 1𝑎⊤. Hence, we obtain that 𝐿 ⪯ 1𝑎⊤ + 𝑎1⊤, which is equivalent to 𝑎 ∈
𝒫M
𝐿 .

Proposition B .12. Assume that 𝐿 is a distance. Then 1
2𝐻M(𝑞) = 𝐻𝐿(𝑞), for all 𝑞 ∈ Δ

satisfying ‖𝑞‖∞ ≥ 1/2. Moreover, under this condition on 𝑞, it is calibrated with the argmax
decoding.

Proof. Combining Lemma B .10 and Lemma B .11 gives

𝐻M(𝑞) ≤ 2𝐻𝐿(𝑞) = 2𝐿⊤
𝑦 𝑞,

for all 𝑞 ∈ Δ such that 𝑝𝑦 ≥ 1/2 ≥ 𝑝𝑧 for all 𝑧 ̸= 𝑦. Hence, in order to prove the
equality at these dominant label points, we just need to find a matrix 𝑄 ∈ 𝑈(𝑞, 𝑞)
such that ⟨𝐿,𝑄⟩F = 2𝐿⊤

𝑦 𝑞. We define the matrix 𝑄 as

𝑄𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞𝑖 if (𝑖 = 𝑦) ∧ (𝑖 ̸= 𝑗)
𝑞𝑗 if (𝑗 = 𝑦) ∧ (𝑗 ̸= 𝑖)
2𝑞𝑦 − 1 if 𝑖 = 𝑗 = 𝑦
0 otherwise.

.

The matrix 𝑄 has 𝑞 at the 𝑦-th row and 𝑦-th column and 2𝑞𝑦 − 1 at the crossing
point, instead of 2𝑞𝑦. The matrix is in 𝑈(𝑞, 𝑞) as the sum of the rows and columns
gives 𝑞 and it is non-negative because 2𝑞𝑦 − 1 ≥ 0 by assumption. Moreover, the
objective satisfies

⟨𝐿,𝑄⟩F =
∑︁
𝑦∈𝒴

𝐿⊤
𝑦′𝑄𝑦′ = 𝐿⊤

𝑦 𝑄𝑦 +
∑︁
𝑦′ ̸=𝑦

𝐿𝑦′𝑄𝑦′

= 𝐿⊤
𝑦 𝑞 +

∑︁
𝑦′ ̸=𝑦

𝑞𝑦′𝐿𝑦′𝑒𝑦

= 𝐿⊤
𝑦 𝑞 +

∑︁
𝑦′ ̸=𝑦

𝑞𝑦′𝐿(𝑦, 𝑦′) = 2𝐿⊤
𝑦 𝑞.
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The first part of the result follows. For the second part, we show that 𝑣⋆M(𝑞) = −𝐿𝑦
at the points 𝑞 satisfying the assumption. Note that we have 𝐻M(𝑞) = 2𝐿⊤

𝑦 𝑞 =
𝑆(𝑣⋆(𝑞))⊤𝑞, so we only need to show 𝑆M(−𝐿𝑦) = 2𝐿𝑦. For every 𝑧 ∈ 𝒴 , we have

𝑆M(−𝐿𝑦, 𝑧) = max
𝑦′∈𝒴

𝐿(𝑧, 𝑦′) + (−𝐿𝑦)⊤𝑒𝑦′ − (−𝐿𝑦)⊤𝑒𝑧

= max
𝑦′∈𝒴

{𝐿(𝑧, 𝑦′) − 𝐿(𝑦, 𝑦′)} + 𝐿(𝑦, 𝑧)

= 2𝐿(𝑦, 𝑧),

where at the last step we have used 𝐿(𝑧, 𝑦′) − 𝐿(𝑦, 𝑦′) ≤ 𝐿(𝑦, 𝑦′) as 𝐿 is a distance
and so the maximization is achieved at 𝑦′ = 𝑦.

C Proofs on Restricted-Max Loss

The following assumption A1 will be key to prove our consistency results.
Assumption A1: If 𝑞 is an extreme point of Δ(𝑦′) for some 𝑦′ ∈ 𝒴 , then

{𝑞 ∈ Δ(𝑦)} ∨ {𝑞𝑦 = 0}, ∀𝑦 ∈ 𝒴.

The following Lemma C .1 will be useful for the results below.

Lemma C .1. If A1 is satisfied, then Δ(𝑦) ∩ Δ(𝑦′) ̸= ∅ for all 𝑦, 𝑦′ ∈ 𝒴 .

Proof. If Δ(𝑦) ∩ Δ(𝑦′) = ∅ and A1 is satisfied, then for every 𝑞 extreme point of
Δ(𝑦′) we have that 𝑞𝑦 = 0. Hence, the prediction set Δ(𝑦) is included in the non
full-dimensional polyhedron Δ ∩ {𝑒𝑦 = 0}. As Δ = ∪𝑦∈𝒴 Δ(𝑦), this implies that
the point 𝑒𝑦′ ∈ Δ(𝑦′) must be necessarily included in another Δ(𝑧), which can
only be possible if 𝐿(𝑧, 𝑦) = 0. However, by assumption 𝐿(𝑧, 𝑦) = 0 if and only if
𝑧 = 𝑦.

The following Lemma C .2 shows that under A1, the Restricted-Max loss embeds the
loss 𝐿, which in turn implies consistency.

Lemma C .2. Assume A1. If 𝑞 is an extreme point of Δ(𝑦) for some 𝑦 ∈ 𝒴 , then

𝑞𝑞⊤ ∈ arg max
𝑄∈𝑈(𝑞,𝑞)∩𝒞𝐿

⟨𝐿,𝑄⟩F and ΩMM(𝑞) = ΩRM(𝑞).

Proof. The matrix 𝑞𝑞⊤ belongs to 𝑈(𝑞, 𝑞) as 𝑞𝑞⊤1 = 𝑞 and 𝑞𝑞⊤ ⪰ 0 and to 𝒞𝐿 by
assumption. Let 𝑧 ∈ 𝑦⋆(𝑞). We have that

−ΩRM(𝑞) = max
𝑄∈𝑈(𝑞,𝑞)∩𝒞𝐿

⟨𝐿,𝑄⟩F

≥ ⟨𝐿, 𝑞𝑞⊤⟩F =
∑︁
𝑦

𝑞𝑦𝐿
⊤
𝑦 𝑞 =

∑︁
𝑦

𝑞𝑦𝐿
⊤
𝑧 𝑞

= 𝐿⊤
𝑧 (1⊤𝑞𝑞⊤) = 𝐿⊤

𝑧 𝑞 = −ΩMM(𝑞)

We have shown that ΩRM(𝑞) ≤ ΩMM(𝑞). Combining with Proposition 3 .4 that
states ΩRM ≥ ΩMM, we obtain that ΩRM(𝑞) = ΩMM(𝑞).

Theorem C .3. If A1 is satisfied, the Restricted-Max loss embeds𝐿with embedding𝜓(𝑦) = −𝐿𝑦
and the loss is consistent to 𝐿 under the argmax decoding.

Proof. We split the proof into two parts.
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First part: 𝑆RM embeds 𝐿. Let 𝑧 ∈ 𝑦⋆(𝑞), so that 𝑞 ∈ Δ(𝑧). We can write 𝑞 as a
convex combination of extreme points of the polytope Δ(𝑧) as

𝑞 =
𝑚∑︁
𝑖=1

𝛼𝑖𝑞𝑖,

where 𝛼 ∈ Δ𝑚 and 𝑞𝑖 is an extreme point of Δ(𝑧). The matrix 𝑄 =
∑︀𝑚
𝑖=1 𝛼𝑖𝑞𝑖𝑞

⊤
𝑖

belongs to 𝑈(𝑞, 𝑞) ∩ 𝒞𝐿 as:

• 𝑄 ∈ 𝑈(𝑞, 𝑞): We have 𝑄1 =
∑︀𝑚
𝑖=1 𝛼𝑖𝑞𝑖𝑞

⊤
𝑖 1 =

∑︀𝑚
𝑖=1 𝛼𝑖𝑞𝑖 = 𝑞, the same holds

for 𝑄⊤ and
∑︀𝑚
𝑖=1 𝛼𝑖𝑞𝑖𝑞

⊤
𝑖 ⪰ 0.

• 𝑄 ∈ 𝒞𝐿: For all 𝑦 ∈ 𝒴 , we have (1𝐿⊤
𝑦 − 𝐿)𝑄𝑦 =

∑︀𝑚
𝑖=1 𝛼𝑖 𝑞𝑖,𝑦(1𝐿⊤

𝑦 − 𝐿)𝑞𝑖⏟  ⏞  
⪯0

⪯ 0.

Moreover, we obtain:

−ΩRM(𝑞) = max
𝑄∈𝑈(𝑞,𝑞)∩𝒞𝐿

⟨𝐿,𝑄⟩F

≥ ⟨𝐿,𝑄⟩F =
𝑚∑︁
𝑖=1

𝛼𝑖⟨𝐿, 𝑞𝑖𝑞⊤
𝑖 ⟩F

= −
𝑚∑︁
𝑖=1

𝛼𝑖ΩRM(𝑞𝑖) = −
𝑚∑︁
𝑖=1

𝛼𝑖ΩMM(𝑞𝑖)

=
𝑚∑︁
𝑖=1

𝛼𝑖𝐿
⊤
𝑧 𝑞𝑖 = 𝐿⊤

𝑧 𝑞 = −ΩMM(𝑞)

We have shown ΩRM ≤ ΩMM. Combining with Proposition 3 .4 that states ΩRM ≥
ΩMM, we obtain ΩRM = ΩMM.

Second part: the embedding is 𝜓(𝑦) = −𝐿𝑦. By Proposition A .1, we only
need to show that 𝜓(𝑧) = −𝐿𝑧 , i.e.,

𝑆RM(−𝐿𝑧, 𝑦) = sup
𝑞∈Δ(𝑦)

𝐿⊤
𝑦 𝑞 + (−𝐿𝑧)⊤𝑞 − (−𝐿𝑧)⊤𝑒𝑦 = 𝐿(𝑦, 𝑧),

which holds whenever
max
𝑞∈Δ(𝑦)

(𝐿𝑦 − 𝐿𝑧)⊤𝑞 = 0, (17)

for all 𝑦, 𝑧 ∈ 𝒴 . Note that by construction (𝐿𝑦 − 𝐿𝑧)⊤𝑞 ≤ 0 for all 𝑞 ∈ Δ(𝑦).
Moreover, by Lemma C .1 we have that Δ(𝑧) ∩ Δ(𝑦) ̸= ∅, so there exists 𝑞 ∈ Δ(𝑦)
with 𝐿⊤

𝑦 𝑞 = 𝐿⊤
𝑧 𝑞. Finally, the argmax decoding is consistent as it is an inverse of

the embedding 𝜓(𝑦) = −𝐿𝑦 as

𝑑(𝜓(𝑦)) = arg max
𝑦′∈𝒴

− 𝐿(𝑦, 𝑦′) = arg min
𝑦′∈𝒴

𝐿(𝑦, 𝑦′) = 𝑦.

Proposition C .4. Assume that 𝑞 ∈ Δ(𝑦) =⇒ 𝑞𝑦 > 0 for all 𝑞 ∈ Δ. Then A1 is satisfied.
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Proof. We will prove that if the Assumption is not satisfied then it exists a vertex
of Δ(𝑦) for some 𝑦 ∈ 𝒴 such that 𝑆 ∩ 𝑇 ̸= ∅. If the Assumption is not satisfied at
vertex 𝑞, then {𝑞 /∈ Δ(𝑦)} ∧ {𝑞𝑦 > 0}, which means in particular that 𝑆 ∪ 𝑇 ( [𝑘].
This necessarily means that 𝑆 ∩𝑇 ̸= ∅ because we must have |𝑆| + |𝑇 | ≥ 𝑘 to have
maximal rank as 𝑞 is a vertex.

Proposition C .5. Consistency of the Max loss implies consistency of Restricted-Max loss.

Proof. From Proposition B .1 and Proposition B .5, we know that if the Max loss is
consistent to 𝐿, then the extreme points of the prediction sets Δ(𝑦)’s have to be of
the form 1/2(𝑒𝑦+𝑒𝑦′). We will see that in this case (A1) is always satisfied. Indeed,
if 𝑞 is an extreme point of a prediction set, then is of the form 𝑞 = 1/2(𝑒𝑦 + 𝑒𝑦′),
which satisfies {𝑞 ∈ Δ(𝑧)} ∨ {𝑞𝑧 = 0} for all 𝑧 ∈ 𝒴 , because 𝑞 ∈ Δ(𝑧) if 𝑧 ∈ {𝑦, 𝑦′}
and 𝑞𝑧 = 0 otherwise.
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Conclusion and Future Directions

The research presented in this thesis is towards a general framework for surrogate meth-
ods in the context of structured prediction. Both the structure of this thesis and the
underlying theory clearly discloses the distinction between two major types of surro-
gate strategies: probabilistic estimators and non-probabilistic estimators. The first ones
are generally smooth, have a quadratic-type calibration function, are consistent to any
discrete loss over the output space, have a unique consistent decoding for each discrete
loss and have a continuous surrogate Bayes predictor. The major type from the second
group are polyhedral losses, which have a linear calibration function, are calibrated to a
very limited number of discrete losses, have multiple consistent decodings and have a
non-continuous surrogate Bayes predictor. The main contribution of this thesis regard-
ing probabilistic estimators is a user-friendly quantitative analysis of the closeness to the
Bayes risk using calibration functions. The contributions on non-probabilistic estima-
tors are the necessary and sufficient conditions for calibration of the Max loss and the
introduction of the Max-Min loss in the general structured setting with a full-stack anal-
ysis including the derivation of an efficient optimization algorithm accompanied with
finite-sample generalization bounds to the Bayes predictor.

Future Research Directions

Several open questions and interesting research directions have been constantly showing
up during the last three years of research. Unfortunately, many of the ideas have not
been further investigated due to time constraint. While some of them have already been
briefly discussed at some point throughout the thesis, we now provide a synthetized and
more detailed inspection of these perspectives for future research by classifying them
into four main categories.

Choosing the discrete loss for learning. The statistical learning setup for supervised
learning introduced in Section 2 is given by a data distribution 𝜌 over input-output pairs
and a loss function 𝐿 to minimize. However, the loss measuring the error between pre-
dictions and observations is not directly given by the learning problem as it is the case
for the distribution, and thus has to be ‘artificially’ designed. For binary classification,
it is quite natural to minimize the expected 0-1 loss, as the average number of predic-
tion errors is a sensible measure of error. However, in structured output spaces there is
usually a compromise between informativeness and computational tractability (such as
small affine dimension). For instance, whereas the Hamming loss measuring the aver-
age number of errors in a sequence has logarithmic affine dimension in |𝒴|, it is not as
informative of the closeness of two sequences as the edit distance, for which computing
the Bayes predictor from a distribution over sequences is computationally intractable.
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Designing discrete losses from basic primitives on the learning problem accounting for
a good balance between informativeness and computational tractability is indeed an im-
portant open question.

Towards a general theory of surrogate losses for discrete prediction. A general theory
regarding a set of mathematical objects is generally understood as a classification of these
objects and a characterization of the main properties of interest in each category. In the
case of surrogate methods, we already discussed extensively the two main categories,
namely, probabilistic estimators and non-probabilistic estimators:

• Probabilistic estimators: The first ones can be constructed in surrogate spaces as
small as the affine dimension of the task loss. Moreover, they can be characterized
with a Bregman representation (also known as proper composite representation
(Vernet et al., 2011; Agarwal and Agarwal, 2015). An open question regarding these
surrogates is how to make them task loss dependent. Indeed, most probabilistic es-
timators presented in this thesis do not contain full information about the discrete
loss 𝐿, which is generally only or mostly contained in the decoding. Making the
surrogate loss dependent on the task loss by maintaining its main properties is key
to have good calibration properties when the approximation error is large (Lacoste-
Julien et al., 2011). In particular, it would be interesting to develop a generalization
of the assymetric calibration theory from binary classification (Scott, 2012) to the
structured output case.

• Non-probabilistic estimators: Much less is known for non-probabilistic surro-
gates, for which there exist much more variety than in the probabilistic case. In
this thesis we just investigated polyhedral losses in a surrogate space of dimension
as small as the affine dimension of the task loss. However, one can construct non-
probabilistic calibrated convex surrogates (smooth or non-smooth) of even smaller
dimension depending on the task loss. As an example, there exist non-probabilistic
convex surrogate losses in one dimension which are calibrated to the absolute de-
viation loss with |𝒴| > 1. Given 𝐿, the minimum dimension of the surrogate space
for which there exist convex calibrated surrogates for a given discrete loss is known
as the convex calibration dimension (Ramaswamy and Agarwal, 2016). While there
exist some recent results on one-dimenional surrogates by Finocchiaro et al. (2020)
it still remains an open question how to characterize this quantity and systemati-
cally construct them. A proper understanding of the convex calibration dimension
will shed light to the nature of non-probabilistic surrogate methods.

Which surrogate loss to choose? An important open question for which is still hard
to give concrete answers is the problem of characterizing the learning settings for which
a surrogate loss works better than another one. A classical sufficient condition for this
question is to check whether the surrogate Bayes predictor 𝑔⋆ can be arbitrarly approx-
imated with functions from the surrogate hypothesis class 𝒢. Indeed, in this case one
can make use of calibration properties to show superiority of one surrogate loss over
another. However, when the 𝑔⋆’s cannot be approximated by predictors from the class,
which is the most common setting in practice, it is not an easy task to understand when
a surrogate method works better than another. Proper answers to this question will cer-
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tainly come from a deeper understanding of 𝒢-consistency presented in Section 2 of the
introductory part.

Parts-based generalization bounds for structured prediction. As we have seen in this
thesis, finite-sample generalization bounds for surrogate methods can be easily derived
under the assumption that the surrogate Bayes predictor 𝑔⋆ belongs to hypothesis class
by plugging-in learning bounds on the surrogate excess risk into the comparison in-
equality. Typically, these bounds are of the form ℰ(𝑑 ∘ 𝑔𝑛) − ℰ(𝑓⋆) ≤ 𝒪(𝑛−𝛾) for a pos-
itive 𝛾 > 0. However, as already discussed in Section 5 , when the structured output is
made of parts, it is a common practice to tie the predictors of different parts under the
assumption that the learning problem has some form of stationarity. In particular, some
works such as Ciliberto et al. (2019); London et al. (2016) are able to derive generalization
bounds on the excess risk of the form 𝒪(𝑝−𝛽𝑛−𝛾) with 𝛽 > 0, i.e., decreasing both with
the number of samples 𝑛 and parts 𝑝. Indeed, if the same predictor is repeated across the
output parts, having larger outputs in the dataset, (i.e., more parts 𝑝), corresponds to an
increase of information for learning under sufficient correlation decay between the parts.
Unfortunately, the works cited above use vacuous margin bounds for convex losses or
are specific for the quadratic surrogate. It is an interesting research direction to derive
parts dependent generalization bounds for widely used losses in structured prediction
such as conditional random fields.
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RÉSUMÉ

La classification est la branche de l’apprentissage supervisé qui vise à estimer une fonction à valeurs discrètes à partir
de données constituées de paires d’entrées et de sorties. Le cadre le plus classique et le plus étudié est celui de la
classification binaire, où le prédicteur discret prend pour valeur zéro ou un. Cependant, la plupart des problèmes de
classification qu’on retrouve en pratique sont definis sur de grands espaces de sortie structurés tels que des séquences,
des grilles, des graphs, des permutations, etc. Il existe des différences fondamentales entre la prédiction structurée et
la classification multiclasse ou binaire non structurée: la grandeur exponentielle de l’espace de sortie par rapport à la
dimension naturelle des objets à prédire et la sensibilité des coûts de la tâche de classification. Cette thèse se concentre
sur les méthodes de substitution pour la prédiction structurée, dans lesquelles le problème discret typiquement insoluble
est abordé à l’aide d’un problème continu convexe qui, à son tour, peut être résolu à l’aide de techniques de régression.

MOTS CLÉS

Théorie d’aprentissage statistique, prediction structurée, méthodes de substitution, méthodes à noyaux.

ABSTRACT

Classification is the branch of supervised learning that aims at estimating a discrete valued mapping from data made of
input-output pairs. The most classical and well studied setting is binary classification, where the discrete predictor takes
zero or one as value. However, most of the practical classification settings deal with large structured output spaces such
as sequences, grids, graphs, permutations, matchings, etc. There are many fundamental differences between structured
prediction and vanilla binary or multi-class classification, such as the exponentially large size of the output space with
respect to the natural dimension of the output objects and the cost-sensitive nature of the learning task. This thesis
focuses on surrogate methods for structured prediction, whereby the typically intractable discrete problem is approached
using a convex continuous surrogate problem which in turn can be addressed using techniques from regression.

KEYWORDS

Statistical learning theory, structured prediction, surrogate methods, kernel methods.
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