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Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is the most prevalent psy-

chiatric disease in childhood ( 5% of the total population). Several treatments

and diagnoses have been designed, however, some of them present a high price,

a low accuracy or unfavourable side effects. Neurofeedback training, a novel

method to help in the reduction of attention-related symptoms consists of a

real-time representation of the brain activity (in an understandable form) to

teach the participants how to self-regulate their symptoms. To develop ap-

plications proposing neurofeedbacks, several aspects have been considered in

this thesis.

First, participants’ attention has to be objectively recorded and assessed based

on several physiological signals. PhyDAA, a corpus of Electroencephalogram

(EEG) and eye-tracking signals have been recorded in VERA a framework

composed of novel Virtual Reality (VR) environments specially designed for

this task. These environments have been jointly developed with specialists in

the field.

Second, with the advancement of Artificial Intelligence (AI), several novel

signal processing techniques have been designed for biomedical signals analysis.

in order to estimate the attention state from physiological measurements.

Finally, a novel application reacting to participants’ attention state based on

the insights made above has been developed. The goal of the latter is to max-

imize the video game effects on the participant’s attention. This application

could help participants reduce attention-related disorders’ symptoms by better

detecting them.

Keywords: Electroencephalogram Signals Analysis, Brain Computer Inter-

faces (BCI), Attention Estimation, Deep Learning (DL)
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Résumé

Le Trouble du déficit de l’Attention avec ou sans Hyperactivité (TDAH) est

l’une des maladies psychiatriques les plus prévalentes auprès des enfants ( 5%

de la population totale). Plusieurs traitements et diagnostics ont été conçus,

cependant, certains d’entre eux présentent un prix élevé, une faible précision ou

des effets secondaires défavorables. Une nouvelle méthode, le neurofeedback,

consiste à représenter les signaux biomédicaux sous une forme compréhensible

afin d’aider les participants à réduire leurs symptômes par eux-mêmes. Dans

le cadre du développement de telles applications, différents axes de recherche

ont été considérés au cours de cette thèse.

Premièrement, l’état d’attention des participants doit être mesuré et enreg-

istré de manière objective à partir de signaux physiologiques. Pour ce faire,

un corpus d’Électroencéphalogramme (EEG) et de mesure de la direction du

regard a été enregistré dans des environnements virtuels spécialement dédiés

à cette tache. Ces derniers ayant été développés en collaboration avec des

spécialistes du domaine.

Deuxièment, grace aux récentes avancées en matière d’intelligence artificielle

(IA), diverses nouvelles approches pour traiter les signaux biomédicaux ont été

considérées. Ces avancées permettant au mieux d’estimer l’état d’attention à

partir des mesures physiologiques.

Finalement, les découvertes faites au cours de cette thèse ont permis le développement

d’une nouvelle application. Celle-ci a pour but de maximiser ses effets sur

l’attention des participants le plus longtemps possible.

Mots Clés : Analysise des Signaux Électroencéphalographiques, Interface

Cerveau-Machine (ICM), Estimation de l’Attention, Apprentissage Profond
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Introduction

In a world where neurons and neural networks more often refer to their arti-
ficial twins than the nerve cell that inspired them, it has become clear that
Artificial Intelligence (AI) and its use become the standard. Its advances have
made possible the creation or the improvements of areas of research such as
Machine-Learning (ML) or Deep Learning (DL) with, for instance, the come
back of deep learning architectures for image classification, in 2012 [1,2] several
years after their creation in 1998 [3].

Research in AI, as well as the resulting disciplines, are applied everywhere
in today’s world: images recognition, images generation, natural language
processing (NLP), recommendation system, drug discovery, etc. However,
one field where the use of AI techniques remains complex to address is the
medical field. DL models have already been developed to predict disorder or
to assess symptoms, but clear biases have been noticed [4]. Moreover, the
considered approaches with several million or billions of parameters remain
very often difficult to understand. For these reasons, the application of novel
technologies and more especially DL in medicine has to be made carefully,
by always keeping specialists in the experimental loop for instance. More
generally, it is necessary to keep in mind that mathematical models are here
to help but never to replace doctors and practicians. It is in this context that
this thesis work has been performed.

DL models applied to biomedical signals compose a large part of the exist-
ing works in DL. The considered signals measured on humans or animals for
this purpose can be various: movements, muscular activity, chemical compo-
sition, etc. One subset of the signals measures the electrical activity of the
brain. In this context, one of the most often considered measurements is the
Electroencephalogram (EEG). EEG signals measure the interaction between
neurons on the scalp with several electrodes placed at different locations of
the participant’s head. EEGs are often considered in the case of attention
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4 Introduction

estimation due to several motivations: the measurement is non-invasive, has
a low cost and the recorders can be easily moved/has not to be used in spe-
cific rooms. However, challenges remain: EEGs are signals difficult to analyse
compared to images or sounds that are more easily understandable. Another
stumbling block is their trend to be quickly affected by noise and artifacts
from recording environments (e.g. power plants) or the subjects themself (e.g.
eye blinks records on the useful signal).

The existing approaches to automatically processed EEGs are often based on
ML or DL. These last goals are often to make predictions from EEG record-
ings during specific tasks. The existing methods can be separated into two
categories: ML considering prior human knowledge in the signal processing
pipeline and DL considering the model only to process the signals. The differ-
ence between the two methodologies is based on the use of feature extraction
methods to reduce the dimension of the signals and extract the relevant infor-
mation. Both of these approaches are considered in the literature for various
reasons: feature extraction methods are based on analysis that are sometimes
not generalizable or not applicable to a specific group of participants and con-
sidering models able to extract the relevant information automatically requires
a large corpus of signals which is not necessarily the case. Moreover, DL mod-
els are more difficult to understand compared to more näıve approaches that
make the results less understandable.

The goal of this research project is to study the relationship between the
attention state during specific tasks promoting attention in Virtual Reality
(VR) and physiological signals, e.g. the electrical activity of the brain or the
direction of the sight. This objective is fulfilled by combining the expertise of
several actors, i.e. engineers, psychologists and neuroscientists with the novel
technologies, i.e. DL and VR.
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Strategy

The original goal of this thesis is to design a Human Computer Interaction
(HCI) system based on the joint measurement of EEG and eye-tracking in
VR. It aims to enhance attention and reduce attention-related symptoms for
healthy subjects between 18 and 30 years old.

For this purpose, a protocol aiming to maximize the effect of video games
in VR on the attention state should have been designed. The design of the
protocol would be based on the findings made during the PhD: an immersive
environment in VR; signal processing with the help of novel techniques, e.g.
AI and DL based approach.

The strategies to achieve our goals were divided into four main steps:

• Creating a VR benchmark promoting attention in the environment and
allowing the recording of physiological signals.

• Collection of several signals with the above-mentioned benchmark to ag-
gregate a dataset of sufficient size for DL based analysis [5]. The signals
are recorded on participants between 18 and 30 years old.

• Development of a signal processing box considering the signal registered
above to correctly estimate the attention state. The signal processing
part studies novel methods for feature extraction/representation and sig-
nal classification.

• Application of knowledge learned above in the design of a proof of concept
video game reacting with the attention state assessed with physiological
recordings.

The strategy was to proceed with the steps above sequentially during the three
years of the PhD1.

1The initial goal of this thesis was to consider a specific sub-group of participants corre-
sponding to children between 8 and 12 years old with inattentive and combined Attention
Deficit Hyperactivity Disorder (ADHD) symptoms. However, due to covid limitations,
it was decided to consider another more general group of participants, making easier the
signals registration.
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Contributions

Given the challenges and the plan, the original contributions of this thesis are
listed below:

• Based on the limitations of the existing works for the joint recording of
physiological signals and attention study in VR (non-realistic environ-
ments or limitations in the inspired life scene - e.g. virtual classroom), a
novel framework VERA (Virtual Environments Recording Attention) to
assess attention in VR has been designed. In this software, five different
VR environments based on everyday life situations were proposed and in
each of them, a task aiming to assess the participant’s attention state has
been designed. The framework has also been designed to record several
physiological signals (including EEG, eye-tracking and head movements
measurements) during the proceeding of the attention tasks. Moreover,
to promote research in the field, it has been made freely available as open
source software

• Given the novel framework promoting the simultaneous recording of phys-
iological signals during attention tasks, we have created a dataset dedi-
cated to attention assessment: PhyDAA (Physiological Dataset Assessing
Attention). In the actual context where most of the proposed methods
for signal processing are data-driven, this dataset could help for atten-
tion estimation. For this purpose, 32 healthy participants aged between
18 and 30 years old took part in a 15 minutes experiment during which
they played a short video game in VR. Several signals including EEGs,
eye-tracking and head position were recorded for later analysis of the
relationship between attention state and physiological recordings.

• We propose a novel approach to process EEG signals with models initially
dedicated to NLP: Transformer. The goal of this model is to estimate
the attention state from EEG signals. The original Transformer being
dedicated to text processing, a novel methodology to extract and repre-
sent features from EEG signals has also been developed. This analysis
pipeline is based on a threefold representation of EEGs: Time (temporal
evolution of the signals during the recording), Frequency (contribution
among frequency bands) and Space (spatial contribution of each elec-
trode on the participants’ scalp). As well as this novel approach, other
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architectures have also been considered: Variational Autoencoder (VAE),
Recurrent Neural Network (RNN)-inspired models.

• In addition to the novel pipelines, novel models and training methodolo-
gies have been investigated for EEG signals processing. This includes
novel approaches for multimodality fusion, i.e. how to combine sev-
eral physiological signals including EEG recordings, eye-tracking or head
movement for better estimation of the attention state. Another contribu-
tion in the context of DL is the development of self-supervised learning
tasks for EEG signal processing, the goal of which is to design learning
methodologies helping the model to process and understand the signal
instead of only processing it for estimation purpose.

• We have developed an application proposing feedback based on the par-
ticipants’ attention in real-time estimated from the recording of EEG
signals. The development of this application is based on the previously
mentioned findings.

Organization of the Dissertation

• Chapter 1 gives the background of the thesis and defines theoretical no-
tions to understand the next thesis chapters.

• Chapter 2 describes the environments designed with VERA for the as-
sessment of attention in VR as well as the attention task.

• Chapter 3 presents the corpus of signal, PhyDAA, acquired in the VR
environments.

• Chapter 4 introduces a novel approach for feature extraction and rep-
resentation from EEG signals based on the Temporal, Frequency and
Spatial evolution of the signal.

• Chapter 5 proposes methods to estimate attention from feature arrays
based on DL approach. Moreover, DL models for EEGs processing in
other tasks than attention estimation are described. Among the proposed
architecture for attention estimation, one of the proposed model is based
on the transformer that has proven its supremacy to automatically solve
tasks, e.g. text or images analysis.
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• Chapter 6 proposes three novel methods to process information from
EEGs and other modalities including eye-tracking, head movements or
respiratory signals in parallel.

• Chapter 7 describes the use of a novel learning approach in the context
of EEG processing: self-supervised learning.

• A proof of concept application in the form of a video game giving feed-
back depending on the attention state of the participant is described in
Appendix A.
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This chapter is organized as follows: Section 1.1 gives the context in which this
thesis was conducted, Section 1.2 presents the methods often used to assess
attention. The last two sections focus on the use of physiological signals for
attention estimation and the methodologies developed to process such signals.

1.1 Introduction

The attention state is a mental state during which a participant is considered
focused on a specific task. The nature of this task can be expressed in various
forms depending on the considered stimuli1, e.g. visual or auditory. The
attention state can be divided into two categories depending on the considered
task:

• Sustained attention reflects a state during which the participant is fo-
cused on a specific and redundant task. Sustained attention measures
the ability of the participant to keep a high attention state on the de-
signed task without any distractors.

• Selective attention reflects the faculty of a participant to remain focused
on a task and not be distracted by other stimuli. During the selective
attention tasks, different kinds of stimuli may appear. It is asked to the
participants to react to positive ones and not to react to or inhibit the
negative ones.

1.1.1 Why assessing attention?

Attention assessments can be helpful for various purposes, e.g. attention dis-
orders diagnosis, symptoms detection, marketing, etc. The existing methods
to assess attention state can be classified into two categories depending on the
assessment duration, i.e. the length of the measurement.

For the first category, assessing the general attention state can help classify
people in specific clusters depending on their reaction to stimuli or sequences of
stimuli. These clusters can represent subgroups with specific mental disorders
or presenting particular symptoms.

1external stimulation composing a study to which a participant has to react or not
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The second category aims at having an instantaneous assessment of the atten-
tion state. In this case, the goal is no longer to estimate the general participant
behaviour but to measure the attention state at a specific time, e.g. the atten-
tion loss and gain regarding a baseline or the attention state under particular
circumstances or situations.

1.1.2 Attention disorder

In the context of attention estimation, one of the most known disorders is the
Attention Deficit Hyperactivity Disorder (ADHD). ADHD patients are often
considered as people having difficulties focusing, but it remains much more
complex. Three subtypes of ADHD have been defined by the DSM-V [6],
depending on the symptoms encountered: predominantly inattentive (ADHD-
I), hyperactive (ADHD-H) and combined (ADHD-C). Their distribution is
not clearly defined; however, ADHD-I and ADHD-C seem more represented,
with a slightly higher representation of the inattentive subgroups than ADHD-
H [7]. Although the patients’ symptoms may vary, all three subtypes present
difficulties in planning, focusing and inhibiting perturbators. The degree of
difficulty varies depending on the subgroup.

ADHD is mainly represented in childhood, where it is the most prevalent
mental disorder within this age group. According to Raman et al. 2018 [8],
approximately 5% of the children in the world are diagnosed via the DSM-
V [6]. However, these figures may vary depending on the geographic region
(e.g. North-America presenting a prevalence higher of 5.3% compared to UK
[8]). Several questions can infer from these figures: are there much more
children affected by this disorder in the world? Are there regions over or
under-diagnosing?

In everyday life, ADHD is characterized by several drawbacks that affect the
patients’ life [9]: impairments in school, social life (with friends, classmates
and parents), activities, etc. Different methods have been developed to reduce
these symptoms: 1) Medication by daily intake of methylphenidate, but in
addition to the controversial aspects that medicalizing children involves, it is
not effective for 20 to 30% of the patients [10]; 2) Behavioural treatments to
help the detection and reduction of the behaviours caused by the symptoms,
but this method is more expensive and binding; 3) Neurofeedback training, a
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method consisting of a real-time representation of the brain activity (in an un-
derstandable form) to teach how to self-regulate specific brain functions. This
method is already used for the treatment of phobia [11], Autistic Spectrum
Disorder [12], or Anxiety [13].

1.1.3 Use case for attention estimation

As mentioned above, the estimation of the attention state can be helpful for
various applications. These applications can be summarized in different cate-
gories:

• Diagnosis of attention disorders: estimating attention under specific con-
ditions can help in the context of disorders detection by comparing the
results of the particular task.

• Symptoms assessment: Similar to diagnosis, tasks assessing specific symp-
toms can be designed to understand a disease’s evolution better.

• Treatment: an approach could be to consider attention estimation to
treat specific pathologies better. The goal is to help the participants
better understand and detect their symptoms to reduce them by themself.

• Well-being, entertainment and other: this last category includes all use
cases non-related to disorders. It can be applied in various fields, for
instance, vigilance estimation during driving tasks. Other applications
focus on using attention estimation to create a device to help with med-
itation tasks. Finally, the last area in which attention estimation can
be helpful is for marketing by creating applications predicting the user
behaviour in this context (e.g. early skipping or attention span in an
advertisement).

1.2 Attention Assessment

After answering why and in which context it is helpful to know the attention
state, this section focus on the available methods to assess attention. It is
possible to classify the methods employed to estimate participant attention
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into different categories: the general assessment and diagnosis, the neurophys-
iological assessments and the physiological recordings to measure attention.

1.2.1 Diagnosis and general assessment

One of the first approaches for assessing attention is based on the diagnosis
(i.e. the subject has a specific pathology) and symptoms assessment (i.e. the
subject present specific conditions or symptoms while not suffering from any
disorders) of attention-related disorder.

This approach considers general questionnaires and diagnoses designed by spe-
cialists, i.e. (child) Psychiatrists or (Neuro-)Psychologists. The most impor-
tant standard to establish a diagnosis is based on the Diagnosis and Statistical
Mental Disorder (DSM-V) [6] that aimed at helping practicians to have the
best definition of a given mental disorder. This manual also helps in the
context of symptoms definition and quantification.

1.2.2 Neurophysiological assessment

The neurophysiological assessments correspond to tests validated on a large
corpus of participants and aim at providing a discrete or continuous score
representing the attention state of the participant. These tests represent the
participants’ ability to answer at or inhibit specific stimuli or sequence of
stimuli. As previously said, neurophysiological assessments can be performed
by assessing various senses, e.g. visual (reacting to an image appearing on a
screen) or auditory (reacting as fast to a sound). These tests are and have to
be performed by specialists.

On the other hand, more general questionnaires can be used to estimate at-
tention. They correspond to observations made during the everyday life of
the participants. It can be based, for instance, on their diet or school grades.
In this case, the assessment must not necessarily be performed by practicians
but can be proceeded by the participants’ relatives or themselves [14].
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Figure 1.1. 10-20 Electrode placement. Electrode placement for the 10-20 configu-
ration (taken from [15]).

1.3 Physiological Signals and Attention

Due to the large variety of signals, this section will focus on their description
to correctly understand this thesis.

1.3.1 Electroencephalogram (EEG)

EEGs are signals representing the brain’s electrical activity on the scalp. Infor-
mation is transmitted in the brain through electrical impulses between neu-
rons. The electrical activity measured can be caused by action potentials
along the neurons themselves or by the electro-chemical interactions between
neurons.

These signals are acquired with electrodes placed on the scalp following a spe-
cific configuration with a predefined location on the scalp. Figure 1.1 from [15]
gives the representation of the the electrodes placement for one specific elec-
trodes placement: the 10-20 disposition, the number of electrodes employed
for this recording can vary depending on the chosen task. However, scientific
works generally consider 8, 16, 32, 64, 128 or 256 electrode montages.

EEG signals are non-invasive and easy to use, their temporal resolution can
vary depending on the resolution of the recorder: from 250 Hz to 2000 Hz
respectively corresponding to a temporal resolution from 4 ms to 0.5 ms. The
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precision with which these devices record the signals will vary depending on
their prices, usage or experience of the experimenter (electrodes having to
be correctly placed to register the cleanest possible signal). Moreover, the
amplitude of the EEG signals are in a very low range of value between 5 µV
and 250 µV.

External factors, sometimes uncontrollable, make the EEG signals challeng-
ing to register and analyze. Indeed, the amplifier can be affected by various
artefacts and noise from several sources, e.g. the electrical power plant and
the participant himself (e.g. muscular movements, heartbeats, etc.). For this
reason, analyzing EEG signals remains a difficult task.

1.3.2 Functional Near-Infrared Spectroscopy (fNIRS)

The Functional Near-Infrared Spectroscopy (fNIRS) is another method to as-
sess brain activity. In this case, the aim is not to measure the electrical activity
but to measure the oxygenation of the blood cells in the brain. The variation
of haemoglobin concentration is then measured via infrared, and the augmen-
tation and decay of oxygenation are assessed. The temporal resolution of this
approach is higher than EEG recordings, i.e. ≈ 100 ms - 200 ms. However,
similarly to EEGs this method has a relatively low cost, more it is portable
and easier to use compared to EEG (no need for conductive gel).

1.3.3 Eye-tracking signals

In the context of attention estimation, eye movements and other eyes-related
signals can be helpful.

Among the available signals, gaze position or real-time recording of sight di-
rection is employed to measure the exact location where sight is directed. This
measure can be discrete, e.g. with the position of the observed object or point
in the coordinate frame, or continuous with a probabilistic map giving the
probability of a given region to be seen or observed. An example of this dual
representation is given in Figure 1.2 from [16].

Another type of measurement among eye-tracking signals is eye vergence. It
represents the focal properties of the lens composing the eyes (or ”cristallin”).
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Finally, another insight measured is the pupils’ size during specific tasks. The
pupil is a hole placed at the centre of the eye. It can be seen as the diaphragm
of a camera. It varies its size to regulate the light intensity.

1.3.4 Electromyogram (EMG)

Electromyogram (EMG) is a measurement of the electrical activity related to
the movement of muscle fibres. Signals come from the synchronized muscular
contraction of the fibres composing the studied muscle. This measurement
can be made during rest state or during contractions. Practicians can perform
the exams by placing a needle in the muscle or with surface electrodes.

The amplitude of surface EMG is higher than EEGs with a mean amplitude
between 0.1 mV and 5 mV.

1.3.5 Electrooculogram (EOG)

Electrooculogram (EOG) is a specific case of EMG where the recorded mus-
cles are those responsible for eye movement. This measurement is made by
comparing the potential of the cornea (front of the eye) and the retina (back of
the eye). The goal is thus to measure and study the variation of the induced
dipole. By this means, it is possible to analyze the horizontal and vertical
variation of this dipole and therefore deduce the movement of the eyes.

Figure 1.2. Eye tracking measurement. Example of measurement of continuous eye
tracking signals (left) and discrete measurement of sight positions (right)
(taken from [16].)
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1.3.6 Limb and Head Positions

Another possible measurement is the position and orientation of the head and
the limbs. This measurement helps to measure the motor activity at different
locations of the body: e.g. wrist, hip, ankle, shoulders, head, etc. Various
sensors can be used for this purpose, among which the accelerometers are the
most often used due to their low size and weight combined with high precision.
It allows a low price with a correct temporal resolution ≈ 5 -10 ms.

1.4 Signal Processing Background

After listing all the available physiological signals in the context of attention
estimation, this section aims at providing background on signal processing for
1-D signals, also mentioned as temporal series.

This section gives the different steps to process this uni-dimensional signal.
First, feature extraction, which aims to reduce the dimension of the input sig-
nal. Second, the ML-based approach for signal processing that considers more
basic and older methods. Finally, the DL-based methodology is a subtype of
ML approach considering models with more parameters. Both ML and DL
methodologies are data-driven, meaning that the models learn from statistical
observations and not from defined equations.
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Figure 1.3. 1-D Signal. Example of 1-D signal (e.g. EEG from a single channel).
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For clarity, we will consider a signal noted x, which could represent a recording
at a given instant of EEG for a given electrode, as represented in Figure 1.3.

1.4.1 Feature Extraction

The first step in the signal processing pipeline is often to consider feature
extraction from the signal to reduce its dimension and make it easier to be
processed by computer and mathematical models. Another motivation behind
the use of feature extraction methods is a low Signal-to-Noise Ratio (SNR)
which means that the signal tends to be affected by noise or artefacts. Features
vectors can be easier to process compared to noisy signals.

Among the existing approach to extracting features, three categories have been
noted: statistical, time-based and frequency-based characteristics.

Statistical features

A näıve approach for extracting information can consider the statistical infor-
mation of the signal x. These information can be based on the mean µx, the
median medx, the standard deviation σx, the skewness γx or the kurtosis κx
of the signal x.

If we consider the signal x, composed of n samples, i.e. x = [x1, x2, . . . , xn],
these parameters are computed as:

µx =
1

n

n∑
i=0

xi (1.1)

σx =

√√√√ 1

n

n∑
i=0

(xi − µx)2 (1.2)

γx =

∑n
i=0(xi − µx)3

(n− 1)σ3x
(1.3)

κ =

∑n
i=0(xi − µx)4

(n− 1)σ4x
(1.4)
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Figure 1.4. Down Sampled 1-D Signal. Example of temporal feature extraction of 1-
D signal. In the figure the original signal is represented in black, the sig-
nal after low-pass filtering is represented in blue and the down-sampled
signal in red dots. This constituting the temporal feature vector.

Temporal features

In addition to the statistical features, it is possible to re-express the signal in
a shorter subspace considering temporal-based feature extraction.

A solution could be to consider the same statistical features for the first or
second-order derivative, respectively x′ and x′′.

Another approach is to consider information related to the signal temporal
evolution, with, for instance, the number of zero-crossing, i.e. the number
of times the signal x has crossed the x-axis. A different method consists of
considering a downsampled version of the signal after low-pass filtering. It
aims to observe the signal’s general trend as represented in Figure 1.4.

Frequency features

Another approach for feature extraction from temporal series is the study of
the evolution of their oscillating frequency.

To evaluate the contribution of the signal in different frequency bands, the
signal can be filtered, and the parameters mentioned earlier (i.e. statistical
and temporal features) can be computed for each filtered signal. On the other
hand, it is possible to re-express the signal as a weighted sum of harmonics
oscillating at a different frequency with the help of dedicated algorithms, in-
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Figure 1.5. Power Spectral Density of 1-D Signal. Example of PSD of a signal
between 0 Hz and 50 Hz. The figure represent the PSD with its contri-
bution in each defined brain rhythm.

cluding Fast Fourier Transform (FFT). With the FFT, the signal x can thus
be approximated by a periodic signal of period T , with xT computed as :

x ≈ xT = a0 +
N∑
i=1

ai sin(2πfit+ φi) (1.5)

with ai, fi and φi respectively the amplitude, frequency and phase shift of the
ith harmonics.

After computing the signal FFT, it is possible to estimate its Power Spectral
Density (PSD) representing the normalized contribution on the whole spec-
trum as represented in Figure 1.5.

Finally, the signal PSD can be directly used as a vector of reduced dimension
compared to the signal x. However, in the context of brain signal processing,
specific bands have been defined by specialists [17]. Each band is enhanced
during specific behaviour or tasks:

• δ rhythm between 0 Hz and 4 Hz related to deep sleep state.

• θ rhythm between 4 Hz and 8 Hz related to the processing of information
and memory.
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• α rhythm between 8 Hz and 13 Hz related to relaxation with eyes closed.

• β rhythm between 16 Hz and 30 Hz related to open eyes and alert state.

• γ rhythm between 30 Hz and 50 Hz related to consciousness, stress state
and motor movements.

In Figure 1.5 the contribution of each rhythm is represented. It is important
to note that, although these rhythms have been validated for a large corpus of
participants, they are not generalizable for everyone. It has been shown that
a specific sub-group of participants presents different frequency bands limits
or enhanced rhythm under different conditions [18]. These differences explain
that frequency bands limits may vary with the considered literature [19].

1.4.2 Machine Learning

After representing the information in a shorter subspace, the signal processing
block processes the input information, i.e. features extracted from the signal
x, to analyze or estimate the input modality. This estimation is represented
in various forms. For instance, it can be represented by the belonging of a
specific class (e.g. symptomatic vs healthy) or a score (e.g. concentration
state between 0-100 %).

Various approaches have been dedicated to this task. A non-exhaustive list of
the existing models and their descriptions will be presented in this subsection.

Decision Tree (DT)

Decision Tree (DT) can be considered as a simple approach to processing input
and making decisions based on answers to binary questions (e.g. is µx > given
threshold) made one after another. The end of each tree ramification corre-
sponds to a class corresponding to the answer to all the previous questions.
The process is then repeated for all the signals composing the dataset, and the
goal is to find the DT allowing correct classification for the whole database.

Figure 1.6 gives a schematic representation of a decision tree for flowers clas-
sification based on the iris dataset [20].
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Figure 1.6. Schematic view of a decision tree. Example of DT in the case of flowers
classification based on their petals and sepals size.

Random Forest (RF)

An existing method to improve DT is the Random Forest (RF). This method
considers several DT constituting a forest. The process of estimating the
feature vectors is similar to DT, except that it is repeated several times by
considering several, i.e. a forest, instead of a single tree. The final decision
consists of the mean decision of all the trees in the case of regression (i.e.
estimation of a score) or the most occurrent estimation (i.e. estimation of a
class).

Support Vector Machine (SVM)

Support-Vector Machine (SVM) are models that aim discriminate vectors with
the help of hyperplans. Given a feature vector f from an input vector x, the
goal is to estimate the class/score y with the help of the function:

y = w ∗ f + w0 (1.6)
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with w being a matrix with learnable parameters and w0 a bias. During the
parameters tuning, the goal is to define a hyperplane maximizing the frontier
between classes. In the case of non-linearly separable data, several kernels can
be used to transform the feature subspace into a linearly separable one, e.g.
polynomial or Gaussian.

1.4.3 Deep Learning

The specificity of the approaches presented above lies in the relatively low
amount of parameters they need to be efficient. Since the 2010s, a novel
family of methods has known a considerable increase of interest, it constitutes
a specific part of ML: Deep Learning (DL) models.

DL approaches aim to consider models composed of several parameters (sev-
eral millions to billions) to help process information. Although various DL
architectures have been created for several purposes during the last years, this
section describes four approaches at the basis of the most used today’s models.

Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron (MLP) is the most simple form of Artificial Neural
Network (ANN). As its name suggests, MLPs are composed by several layers of
perceptron, it corresponds to weighted sum followed by a non-linear function.
The perceptron aims at modeling the relationship between several inputs, e.g.
x = [x1, x2, x3], and an output o:

o = f(

3∑
i=1

wixi + bi) (1.7)

with xi, wi and bi representing respectively the input, learnable weight and
bias. The difference with Equation 1.6 proposed for the SVM is the non-
linearity function f(.) aiming to replicate more complex non-linear functions.

Finally, from the perceptron above defined, it is possible to reproduce var-
ious non-linear functions by tuning the learnable weights and repeating the
perceptron into several layers. These functions can model relationship from
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Figure 1.7. Schematic view of a MLP applied on a vector of dimension 10 and
composed of three layers with output dimension equal to 6, 4 and 2.

observations, being thus able to model their relationship can help to make
estimation from these observations.

Figure 1.7 represents a simple MLP with two hidden layers. The respective
input size of each layer is 10, 6, 4 and 2.

Reccurrent Neural Network (RNN)

In addition to the simple MLP approach, architectures specially dedicated
to sequential signals have also been designed: Recurrent Neural Networks
(RNNs) [21].

Given a sequence of length n, i.e. x = [x1, x2, x3, . . . , xn], the aim of RNN is
to process these sequences for estimation (e.g. by predicting a score or class)
or to forecast the following element in the sequence xn+1.

For this purpose, RNNs based architectures consider the sequence and process
the information sequentially with the following equation:

hi = f(Uxi + V hi−1 + b) (1.8)

yi = f(Whi) (1.9)
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Figure 1.8. Schematic view of a RNN

with U , V and W being matrices with learnable parameters, xi, hi and yi
being the input, hidden and output of the ith element of the sequence. Figure
1.8 gives an overview of the RNN with the hidden sequence being computed
from the input and allowing for output computing.

In the context of EEG signals processing, the recurrence can be expressed
toward the temporal (i.e. specific instant), frequency (i.e. location on the
frequency spectrum) or spatial (i.e. electrode location) features.

In addition to the RNN, several variants have also been developed to im-
prove the architecture by reducing its limitations (e.g. gradient vanishing
or lost of memory). For instance, the most famous Long Short-Term Mem-
ory (LSTM) [22] and Gated Recurrent Unit (GRU) [23] models aiming to
extract information more ”far away” in the sequence.

Convolutional Neural Network (CNN)

The last family of neural networks introduced in this section is the Convolutional
Neural Network (CNN). Initially dedicated to image processing, these net-
works are based on the succession of consecutive convolution operations.

An example of convolution is given in Figure 1.9. In this case, we consider a
random image of dimension 9 × 9 and a 2-D convolution is applied to it with
a kernel of dimension 3 × 3. In this case, a kernel with each parameter equal
to 1/9 is applied, the last consisting of mean filtering. However, other types
of filtering can be applied depending on the value of each element composing
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Figure 1.9. Simple convolution of an image of dimension 9 × 9 pixels with a single
channel. The input and result of the convolution operation have the
same color. The considered kernel for the convolution has a dimension
of 3 × 3 and a stride of 3 (i.e. distance encountered by the kernel
between two neighbors convolution).

the kernels. For this reason, the parameters composing each convolution can
be learned for the CNN.

Several convolution layers are applied one after the other. The idea behind
using these operations is that they help to extract the information at differ-
ent levels of the input images (e.g. contours, textures or shape). Finally,
the vectors deduced from successive convolutions can be used to process the
information in a shorter subspace better.

Figure 1.10. Schematic view of a CNN (drawn with [24]). Two convolutions layers
are applied on the three channels input image with output channels
equal to 16 and 64.
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In the context of computer vision, CNNs have proven their supremacy on
various tasks, including image classification, segmentation, Visual Question
Answering (VQA) and other tasks with models specially developed for this
purpose [25,26].

Autoencoder (AE)

This architecture aims to process the information differently. In this case,
the goal is no longer to estimate y from an input x but to encode the input
in a shorter subspace. For this reason, the network learns to compress the
information into a shorter subspace z and to reconstruct the input x from this
representation in a shorter subspace.

During the training, the goal of the model is to find the functions h(.) and
g(.) as:

z = h(x) (1.10)

x̂ = g(z) (1.11)

The two functions can be expressed by a succession of convolutions, recurrent
operations or weighted sums, depending on the nature of the input.

Figure 1.11. Schematic view of a Autoencoder (AE) with the input signal x is passed
in the encoder part to have the compressed representation z. The
reconstructed version of the original signal x̂ is computed from z with
the decoder.
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1.5 Conclusion

This chapter aims to present the context and the basis for a correct under-
standing of the following chapters of this thesis.

The notion of attention and the psychological and medical aspects surround-
ing has been introduced. The physiological signals that can be analyzed for
attention estimation have been listed and presented, as also their properties
and origins. Finally, the chapter has described the signal processing method-
ology for 1-D signals. This last section has also introduced the notions of ML
and DL models covering the data-driven approach from the simpler methods
to the more complex. A more complete description of these models applied to
EEG signals will be given in Chapter 5.
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This chapter presents the existing approaches for assessing attention and the
improvements proposed by VR in the field in Section 2.1. Then the VERA
framework that aims to assess attention in VR and propose the joint recording
of physiological signals will be shown in 2.2.

2.1 Related Work

The presented works aim to better assess specific attention states during pre-
defined tasks to better understand the mechanism behind attention in the hu-
man brain. As explained, it exists various methods to evaluate participants’
attention state. These methods can be applied during different ranges of time:
from the measurement at specific times to the assessment or diagnosis of the
symptoms made after a more extended period. Due to the medical concerns
and lack of expertise in the medical field, we will not focus on diagnosing the
attention-deficit-related disorder in this work. Practicians perform the diag-
nosis based on the DSM-V [6] constituting the guideline for symptoms and
diagnosis of all the existing mental disorders.

2.1.1 Neurophysiological assessment

Neurophysiological assessments are tasks defined by specialists, i.e. psycholo-
gists, psychiatrists, and pedo-psychiatrists, that aim to assess a participant’s
attention state in a specific context. Various tests have been validated on large
groups of participants and aim to evaluate multiple symptoms or behaviours.

In the context of attention estimation, three major tests are used to assess
the specific behaviours: these tests have a standard procedure consisting of
performing a task during which measurements are made, e.g. reaction time to
stimuli appearance or rate of detected/omitted stimuli. An assessment based
on the value of these measurements is deduced, e.g. measurement above/below
a given threshold from predefined formulas. The three tasks are:

• Go/noGo task where the participant is asked to answer as fast as possible
to a target, e.g. an ”x” appearance on a screen, and respectively to
inhibit the distractors (not corresponding to the target ”x” in this case).
This test aims to assess the reaction time to a stimulus as well as the
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ability of the participant to inhibit specific stimuli as described in Dillon
and Pizzagali [27]. An observation of attention state can be deduced
by measuring the amount of correctly answered right stimuli, inhibited
wrong stimuli and the time taken to answer. This task aims at assessing
selective attention and the participant’s inhibition ability.

• Conner’s Continuous Performance Test (CPT) [28] is a similar task to the
Go/noGo without the inhibition mechanism. The CPT consists of a task
during which it is asked to answer as fast to a single stimulus appearing
during a limited time without appearance of wrong stimuli. Attention
is computed from the reaction time and the number of answered and
missed stimuli. This task aims at assessing sustained attention during a
long and repetitive task.

• The Wisconsin Card Sorting Test is a task during which four cards are
presented to the participants, and they are asked to find the proper re-
lationship between them. This assessment has already been used in re-
search aiming to investigate ADHD symptoms as in Mullane and Corkum
[29].

Although these tests have presented encouraging results for attention estima-
tion at a specific instant, they are often made on a 2-D screen or on a paper
format which can cause a loss of interest and biases in the results. For this
reason, a novel trend has been to adopt these tests in VR environments to
benefit from their advantages as presented by Bashiri et al. [30].

2.1.2 VR Environment for attention estimation

Attention assessments are often made in a paper format for questionnaires or
on a 2-D screen for neurophysiological evaluations. However, for some years
now, an increasing amount of neurophysiological tasks have been adapted in
VR due to the advantages presented by Pollak et al. [31]: VR provides a
higher ecological validity for various assessment (compared to 2-D screen) and
in a more appreciated environment. Moreover, it brings larger freedom for the
environment creation, greater safety, and more control for the distractors. For
these reasons, the number of applications considering VR environments for
applications aiming to assess attention has increased during the last decade.
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Tan et al. [32] and Eom et al. [33] present in their work a VR environment
with which they assess the attention state of participants. The goal of these
VR environments is to help diagnose ADHD by considering the results of a
specific task. Eom et al. [33] show a high correlation between the results of
DSM-IV and VR-CPT defined in their work.

Another use of VR in the context of attention is the development of neu-
rofeedback training aiming to reduce symptoms and increase perturbators’
inhibition. As a reminder, neurofeedback training is a technique in which
brain activity is displayed in a more understandable form (e.g. video games
evolving with specific brain activation). Some recent works have presented
neurofeedback in VR environments, as Blume et al. [14] detecting the inat-
tention pattern with combined s and fNIRS recordings in a virtual classroom.
Other works have shown different methods to detect ADHD patterns based
on gaze direction or head position as described in Tan et al. 2019 [32].

2.1.3 Estimation of attention with physiological signals in VR

In addition to assessing attention with questionnaires or psychological assess-
ments on 2-D screens or in immersive environments, it has been shown that it
was also possible to evaluate attention state based on biomedical signals mea-
surement in VR. The advance in the field and the creation of low-cost record-
ing devices have led to an increase in research considering Brain Computer
Interfaces (BCI). BCI is a sub-type of Human Computer Interfaces (HCI)
that aims to link the brain with a computer. In BCI, the interfaces are con-
trolled directly with brain signals. Moreover, it is possible to classify BCI into
passive or active depending if the signals are directly controlling the interfaces
in real-time (i.e. active) or if it is recorded and pre-processed outline and then
processed through the interfaces delayed (i.e. passive).

The aims of BCI can be various: restore previously lost ability, improve, sup-
plement, enhance or replace human capabilities. In the context of attention es-
timation, several works have been presented to estimate attention from EEGs
and other physiological signals.

In their work, Blume et al. [14] propose an environment representing a VR
classroom where attention is assessed based on a frequency-based feature from
EEG signals. The computed feature corresponds to the ratio of two specific
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frequency bands: θ and β. They demonstrate that using VR instead of the 2-D
screen may increase the results of the tasks reflecting attention after numerous
training.

In another field, Zheng and Lu [34], and Cao et al. [35] propose a driving
car task in VR during which several signals were recorded and an attention
score was assigned. In both works, they consider the use of EEG signals to
assess the vigilance state. A strong correlation has been proven between these
signals and the attention state. More, Zheng and Lu [34] also propose in their
experiments the recordings of EOG to better assess the attention state.

Another domain where the use of entertainment recorders has been reported
is for engagement score assessment during presentation or learning tasks. Sim-
ilarly, an attention score is computed from EEG signals. Afterwards, partici-
pants receive feedback to tell them to focus again or to reward them in case of
a high attention state, as in AttentivU [36]. Other works aim at studying the
engagement of a large population and thus did not provide feedback as Pay
Attention! [37] that assess public engagement during TEDx talks.

In addition to this work considering the use of EEG signals to assess attention
state, other works with the same purpose considering other signals have also
been reported.

Garćıa-Baos et al. [38] propose an attention assessment based on gaze infor-
mation in their work. Varela Casal et al. [39] shows that biomarkers can be
computed from eye-tracking signals for attention assessment. The attention
state is estimated from the measurement of the fixation time to a target in
the centre of the screen. The framework has been tested and shows an im-
provement in impulsivity and reaction time compared to a control group not
taking part in the training.

Other biological signals, e.g. EMG, Electrocardiogram (ECG) or Galvanic
Skin Response (GSR) may also be interesting biomarkers for attention esti-
mation. The motivation behind using this type of biological signal is motivated
by the encouraging results that they have presented for other tasks [40].
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2.2 Neurophysiological Assessment in VR Environments

This section presents our framework VERA to assess attention in VR environ-
ments. This framework aims at assessing attention gain/loss from physiolog-
ical signals, i.e. EEG, eye-related signals and head movement. This section
presents the VR environments, VR tasks and the recorded signals during these
tasks.

2.2.1 VR environments

In the context of this work, five VR environments have been designed. Their
goal is to create a medium promoting attention, controllable and safe. Since
these environments are not the first designed for this purpose [14], the aim was
to create environments with the highest emotional comfort. For this reason,
no school environment has been created to avoid the possible fears related [9].
The designed VR environments are represented in Figure 2.1.

Figure 2.1. VERA - Virtual Environments. This figure gives a representation of
the different VR environments that have been developed in the VERA
(Virtual Environment Recording Attention) framework. Each of these
environments describe lifespan scene of a child.
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The framework is composed of five different environments promoting atten-
tion. The choice of creating separate environments is to allow the participant
to choose the place he feels the most comfortable in. These five environments
represent the lifespan scenes of a current child: a sports session in a gym hall;
a bedroom; a walk in the forest; a birthday party in a living room, and a trip
to an amusement park. For each scene, three different stimuli can appear at
predefined times. All the perturbators are related to the environment, e.g.
the basketballs in the gym hall or the squirrels in the forest. To measure the
effectiveness of the visual, auditive and combined distractors on the physio-
logical measurements, one stimulus of each type was considered as presented
in Table 2.1.

The five proposed environments, i.e. bedroom, forest, gym hall, birthday
party and amusement park, are displayed in Figure 2.1. In addition to the
stimuli appearing during the relaxation task as listed in 2.1, other stimuli
appear during the proceeding of the tasks promoting selective and sustained
attention as explained in Subsection 2.2.2. Each of these last being related to
the chosen environment:

• Basketball and football in the gym hall;

• Butterflies of different colours in the forest;

• Cats and dogs in the bedroom;

• Balloons of different colours in the living room;

• Animals in the amusement park.

2.2.2 VR tasks

Three tasks were designed in collaboration with cognitive psychology and neu-
ropsychology specialists at the Faculty of Psychology of the University of Mons
to assess participants’ attention. Each of these exercises had a duration of five
minutes. The choice of this duration was motivated by two factors: the dura-
tion had to suit with participants’ profiles (i.e. a part of the population could
have issues remaining still and calm during a too long time) and had to be
sufficient for data-driven signal processing applications [5].

We considered in our framework three different tasks:
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Auditory Visual Audio-Visual

Bedroom Knocking door Blinking Light Cars passing

Gym Hall Fridge On/Off Ball falling Birds flying on roof

Forest Bird singing Butterfly Squirrel running

Birthday Fire cracking Cat Box falling

Amusement Carousel Balloon Dog running

Table 2.1. Stimuli for each VR Environment. List of stimuli with their types for
each environment.

• A relaxation task during which we asked the participants to be as calm
as possible. The goal was to consider the mean baseline activity while
resting. This task aims to begin the attention tasks with a specific at-
tentional state and to have the best participant characterisation for the
resting state. At random times during the relaxation task, three different
perturbators related to the environment appear (one visual, one auditory
and one combined) as listed in Table 2.1.

• A selective attention task. During this task, the participant was asked
to look at a specific stimulus (considered positive) and to avoid look-
ing at the other (considered negative). The stimuli corresponding to
the environments are listed in the previous subsection. The difference
between the wrong and the right stimulus can be based on its nature
(different objects), texture or colour. The interstimulus interval (ISI)
corresponding to the appearance time between a couple of stimuli follows
a normal distribution of 3000 ms and a standard deviation of 250 ms,
i.e. ISI ∈ N(3000, 250). During the second task, a score representing
the selective attention state for each trial was computed. This score was
calculated with the following equation:

ttask2(k) = ttarget(k)− tdistractor(k) (2.1)

scoretask2(k) = a ∗ ttask2(k) + b (2.2)

with ttarget(k) (resp. tdistractor(k)) being the amount of time during which
the target (resp. the distractor stimulus) is looked during the trial k.
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a and b are parameters that were experimentally computed to have the
mean difference time corresponding to 50% and the lowest (resp. highest)
time corresponding to 20% (resp. 80%). These parameters have been
computed based on the participants dependent and independent mean
attention score for the second task.

• A sustained attention task. It is asked to the participant to direct the
sight in the direction of the stimulus. During this task, only the posi-
tive stimulus appears. The ISI for the third task also follows a normal
distribution with a mean of 3000 ms and a standard deviation of 500 ms,
i.e. ISI ∈ N(3000, 500). From the recordings made during the third task,
a score representing the sustained attention for each trial was computed
using the following formula:

ttask3(k) = telapsed(k) (2.3)

scoretask3(k) = a ∗ ttask3(k)2 + b ∗ ttask3(k) + c (2.4)

with telapsed(k) the time elapsed by the participants to move their gaze
towards the appearing stimulus at trial k. a, b and c are experimentally
chosen parameters that match the mean elapsed time with a score equal to
50%, the lowest (resp. highest) time to a score of 80% (resp. 20%). These
parameters have been computed based on the participants dependent and
independent mean attention score for the third task. During this task,
a high attention state corresponds to a short duration, contrary to the
previous task where the goal was to have the longest time as possible.

With the methodology presented above, assigning a score representing atten-
tion for each stimulus appearance or trial is possible. A threshold is then
defined, and each trial with an attention score above 50% is considered as
focused and below as distracted.

2.2.3 Recorded signals

In parallel to the task processing, it has been decided to jointly register several
signals during the relaxation, selective and sustained attention task to investi-
gate the evolution of physiological signals during attention processing. In the
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Figure 2.2. Participant taking part to VERA Experimentaion.

actual context where more and more models are trained on large amounts and
types of data, it has been decided to create a framework aiming to register:

• EEG recording the electrical brain activity during task promoting atten-
tion to investigate the mechanism behind attention in the brain.

• Gaze information including sight direction, pupils size and blinking in-
stants. This recording is justified by the fact that eye-related information
can be a good biomarker for attention estimation [39].

• Head movements are recording the linear and angular position of the head
during the proceeding of the attention task. The recording is motivated
by the fact that these signals have already proven their ability to help in
attention estimation [32].

An example of a participant taking part in the experiment is shown in Figure
2.2. The participant is equipped with the EEG recorder and VR headset.

All the recorded signals have been segmented around the stimuli appearance
(one second before and three seconds after) to extract information regarding
the instant of interest to characterise the attention state. A more precise
description of the signals acquisition will be made in Chapter 3.
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2.3 Conclusion

In this chapter, we first introduced some existing approaches to assess at-
tention and point out their drawbacks (i.e. loss of engagement due to the
considered format). A list of the previous works considering the assessment of
attention in VR has been presented.

We present a novel framework to assess attention state and jointly record phys-
iological signals according to the observations made from previous works. The
advantages of the proposed framework can be listed: 1) It allows assessment
of both selective and sustained attention; 2) The participant can choose the
environment in which the experimentation is made to be the most emotionally
comfortable; 3) It allows the recordings of several physiological signals and is
freely accessible online, in opposition to other environments that are licensed
or paid.
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In this chapter, the methodology employed to create our corpus of physiolog-
ical signals will be presented. In section 3.1, a review of the existing datasets
proposing EEG signals during attention tasks will be presented, as well as
other EEG corpuses during different types of assessments: epileptic seizure
detection, emotion classification, motor imagery or sleeping stage classifica-
tion. These datasets have also been employed in this thesis. Finally, after
investigating the limitations induced by the existing works, our corpus of EEG
PhyDAA will be presented in Section 3.2.

3.1 Related Work

There exist various datasets assessing multiple mental states, symptoms or
specific behaviours from EEG signals. This section will first focus on a par-
ticular subset of these works: those used for assessing attention state. In
the second subsection, we will also focus on other datasets composed of EEG
signals for different paradigms and tasks unrelated to attention assessment.

3.1.1 Attention EEG Datasets

Cao et al. [35] propose in their work a dataset composed of EEG signals during
a sustained attention task. The experimentation consists of a driving task in
a simulated VR environment. The car’s steering angle is randomly modified
at specific times, and the time the participant takes to react is measured.
Twenty-seven participants took part in the 90-minutes long experiments. The
recordings have been acquired with a 32 channels biomedical EEG recorder.
Each trial corresponds to a random modification of the car steering angle.
Only the EEG raw, preprocessed signals and raw steering angle measurement
are given with the dataset without pre-extracted features. No other modalities
have been registered.

Zheng and Lu [34] propose a similar dataset studying the vigilance evolution
during a driving task. Their work aims to predict drowsiness from neurophys-
iological signals: EEG and EOG. As in Cao et al. [35], the participants are
asked to take part in a driving task. During this task, the participants wear
eye-tracking glasses that help estimate a score representing their mental fa-
tigue state. PERCLOS score [41] has been considered to assess the attention
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state from eye-tracking signals. This score is considered a baseline for vigilance
estimation [41] and is computed from the duration of eyes opened, closed or in
movement as described in Equation A.2. No external stimuli were considered
during the experimentation. Twenty-three participants took part in the ap-
proximately two hours long experiment. The signals have been segmented in
fixed-duration windows, and a label corresponding to the drowsiness state has
been assigned. In addition to the raw signals from EEG, EOG and eye-related
features, preprocessed signals and frequency-based features are provided in
the dataset.

Except for to these two datasets, no other corpus that assesses the selective or
sustained attention state has been found in the literature. For this reason, we
consider creating our own coprus of EEG signals with the help of the VERA
framework presented in Chapter 2.

3.1.2 Other EEG Datasets

In addition to the datasets assessing attention, other EEG signal corpuses
have been considered for the experimentations presented in this thesis. It is
possible to divide the EEG datasets into different categories depending on the
studied paradigm.

1) Seizure detection is an important application of EEG signal processing. This
has resulted in a large amount of datasets freely available online [42,43]. The
motivation behind the consideration of EEGs for seizure detection is justified
by the relative simplicity of the task: seizures are temporal events that are
easier to visualize compared to oscillatory events. However, it is crucial to
remember that even if seizures seem easy to visually identify, epiletic seizures
detection remains a difficult task.

2) Estimating emotion from various modalities is a trending goal in today’s
research world. Emotion can be estimated from texts, images, videos or voices.
In this context, several works have envisaged the estimation of emotional
states from EEG signals with sometimes other modalities: EMG, EOG or
eye-tracking signals.

3) Motor imagery is an application that aims to estimate imagined or real
motor movements from EEG signals. The considered motor movement cor-
responds to movements of upper/lower limbs, tongue or fingers. Moreover,
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Paradigm Dataset # Participant Other Modalities

Seizure Detection
TUH [42] > 50 /

CHB-MIT [43] 22 /

Emotion Estimation

DEAP [44] 32 EMG, EOG, videos

SEED [45] 15 /

SEED-IV [46] 15 Eye Movement

Motor Imagery BCI IV 2a [47] 9 /

Sleep Stage Kemp et al. [48] 22 /

Driving Vigilance
Cao et al. [35] 27 /

SEED-VIG [34] 23 EOG

Table 3.1. List of considered EEG datasets in this thesis. It is presented by
paradigm, number of electrodes, number of participants and additional
modalities.

various applications have shown the feasibility of these applications and have
helped many people suffering from paralysis or amputated limbs.

4) Sleep monitoring is another field where the use of EEGs is often consid-
ered. EEG signals can help in the context of sleeping stage classification, e.g.
detecting rapid eye movement (REM) and non-REM sleep, to help treating
sleep-related disorders, e.g. sleep apnea detection.

Table 3.1 proposes a review of a part of the existing EEG datasets for the
above-presented paradigms. As seen, the corpus varies from one paradigm
to another. For instance, emotion-related datasets often propose other sig-
nals/modalities, e.g. EMG, EOG, videos or sound. Another interesting aspect
of the presented datasets is their relative size: seizure and sleep stage-related
EEG corpus present a larger size than other paradigms. As their result from
systematice recordings in medical environments for diagnosis and not in the
specific context of a research project, paper or challenge, as is the case for
other paradigms.
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3.2 Data collection

Since no corpus was available for tasks promoting selective and sustained at-
tention, we decided to create our new dataset. In this section, we present the
data collected with the help of VR environments described in Chapter 2. It
first describes the recording condition, then the datasets and finally setup for
further classification are presented.

The proposed dataset is composed of physiological signals: EEGs, eye-tracking
and head movements. It is available on the Zenodo platform1 [49].

3.2.1 Recording conditions

EEG signals were recorded using the Brainvision actiCHamp biomedical EEG
recorder2. The eye-tracking signals (i.e. gaze direction, blinking time and
pupil diameter) were recorded with the eye-tracker located in the VR headset
and the head position with the accelerometer also located on the HTC Vive
Pro Eye VR headset3. The recording setup used to record PhyDAA corpus is
shown in Figure 2.2.

The brain vision recorder software has been used to record EEGs at 500 Hz.
Due to the initial incompatibility of this software with an external recorder,
the stimuli appearance time in the VR environments has been automaticly
annotated with keyboard input simulation.

We have three types of signals in the dataset: 1) Signals recorded with the
sensors located in the HTC Vive Pro Eye VR headset, concatenated in a .txt
file at a sampling frequency of 5 Hz; 2) Raw EEG signals recorded with the
biomedical EEG recorder provided in the original brain vision format .vhdr;
3) The pre-processed and segmented signals as well as pre-extracted features
(see Chapter 4 for further information on feature extraction) that are provided
in NumPy [50] format .npy.

1https://zenodo.org/record/4558990
2https://brainvision.com/products/actichamp-pluss
3https://www.vive.com/eu/product/vive-pro-eye/overview

https://zenodo.org/record/4558990
https://brainvision.com/products/actichamp-pluss
https://www.vive.com/eu/product/vive-pro-eye/overview
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3.2.2 Dataset description

Thirty-two participants (11 females and 21 males) aged between 18 and 30
took part in the approximately 15 minutes experiment. Each participant was
in healthy condition and did not present any neurophysiological disorder or
trouble related to the use of VR (e.g. cybersickness [51]). Figure 2.2 presents
a representation of the experimental procedure.

Due to the place occupied by the VR headset, it was decided to adapt the
original position of the electrodes that could have been wrongly impacted
by the VR headset as shown in Figure 3.1 (P3 → AF3; Pz → FCz; P4 →
AF4). EEG signals have been recorded with an adapted cap of 32 electrodes
following the 10/20 placement [52]. Moreover, an automatic bandpass filtering
was applied to the signal between 0.5 and 140 Hz during the registration.

The physiological signals recorded by the HTC Vive VR headset are:

Figure 3.1. 10-20 Electrodes placement adapted to VERA. Electrode placement for
the 10-20 configuration adapted to VERA: in blue the ground, in red
the electrodes from the original placement, in green the electrodes from
the adapted version and in orange the position in common.
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• Position and orientation of the eyes in the VR coordinate frame at a given
time;

• Position and orientation of the considered stimuli represented as a game
object at a given time;

• Position and orientation of the head in the VR coordinate frame;

• Information from the eye state, i.e. eye blinking state (opened vs closed)
and eye pupils diameter for both eyes.

The above-described signals have been cut into segments of 4 s (one second
before the stimulus appearance and three after). This duration was chosen
to investigate the information from the signal variations around the stimuli
appearance.

Each signal recorded from the VR headset has been sampled at a frequency
of 5 Hz. Moreover, to focus on variation of signals instead of on their instan-
taneous value, it has been chosen to consider the first-order derivative of the
signals.

The attention score has been computed following the methodology from VERA
framework presented in subsection 2.2.2. As mentioned in Chapter 2, eye
tracking signals have been recorded for both the labels (with the instantaneous
eye-direction) and the raw signals (with EEG and other physiological signals).
A corresponding label representing the attention state was assigned for each
signal segment (composed of EEG and physiological signals). These labels
correspond to the binary attention state during the sustained and selective
attention task as described in Chapter 2.

The description of the signals composing the dataset is provided in Table 3.2.
In addition to the raw signals provided with the dataset, it was decided to pro-
vide already extracted feature maps from EEG signals, these last representing
respectively the time and frequency-based characteristics of EEG signals. A
method based on automatic feature extraction from autoencoder: latent space
representation, is also provided in the dataset. Further information about the
feature extraction methods is provided in Chapter 4.
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Modality Extract Feature File Name Dimension

EEG

Raw EEG Signal raw_eeg.npy [3946× 2001× 31]

Power Spectral Density (PSD) freq_band.npy [3946× 5× 31]

Hjorth parameters hjorth.npy [3946× 3× 31]

Latent-space representation AE.npy [3946× 16]

Eye-tracking Variation pupils diameter [mm] phy_sig.npy [3946× 1]

Eye-tracking Head acceleration (linear and angular) phy_sig.npy [3946× 6]

Table 3.2. List of the files in the PhyDAA dataset on Zenodo.

3.2.3 Classification tasks setup

To compare signals corresponding to a high/low attention state, it is neces-
sary to compute a label representing this feature. For this purpose, from the
attention label representing the attention state mentioned above, a threshold
has been deduced from the mean attention score of each participant separately
and the global mean attention score. If the score of a trial was above (resp.
below) the threshold, the trial corresponds to a shorter (resp. longer) reaction
time and therefore to a high (resp. low) attention state.

A binary label has been computed for each trial constituting the dataset, and
the goal of the proposed task was to estimate this label from (neuro)physiological
signals. The motivation behind this choice is justified by the fact that it was
desired to evaluate participants’ attention gain/loss during a task promoting
attention and not a continuous score. Estimating the exact score was consid-
ered useless in this context.

As mentioned above, the final dataset comprises a set of signal segments with
the corresponding attention binary label (focused vs distracted). In addition
to this score, a vector provides participant information. This table informs on
the considered participant for a given signal segment. This information will
help to measure the approach’s ability to generalize well or to be trained on a
smaller subset of signals.

There are two protocols to evaluate a model’s ability to estimate partici-
pants’ related signals: subject-independent (also known as Leave-One-Subject-
Out (LOSO)) and subject-dependent cross-validation. The first protocol con-
sists in training the model with all the participant signals except one used for

https://zenodo.org/record/4558990
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the validation. This step is repeated for all the study’s subjects, and a mean
cross-validation accuracy and its standard deviation are computed. The bene-
fit of this cross-validation method is to measure the model’s ability to general-
ize its knowledge to participants it has not been trained, i.e. it has never met.
However, if the amount of participants is large, it leads to a large amount of
training repetition time compared to the original K-fold cross-validation, and
then the training/validation is more resources and time-consuming. With the
second approach, the model is trained and validated with the same participant
following a regular K-fold cross-validation. The process is repeated for each
participant, and the mean of cross-validation accuracy and its standard devia-
tion is computed. The advantage of this method is that it gives a good insight
into the model’s ability to estimate with fewer signals. However, an approach
based on DL models generally needs a large amount of data. If the study is
not containing enough trials per participant, it thus may lead to overfitting
issues.

Another interesting approach would be to investigate the effect of the chosen
task. As mentioned, in this dataset, we consider two different tasks promoting
attention: selective and sustained tasks. They aim to investigate the ability
of the model to extract information from a task to transpose it into the other.
It is also possible to assess the training and evaluation with task-dependent
or task-independent cross-validation.

3.3 Conclusion

In this chapter, the existing datasets used for assessing attention have first
been presented. Then a non-exhaustive list of the existing datasets composed
of EEG signals during other tasks was given. After analyzing the current
works, several limitations have been noted, in addition to the lack of an existing
dataset assessing selective and sustained attention in VR.

For this reason, we present a novel dataset PhyDAA to assess attention state
with the help of the framework already described in Chapter 2. The advan-
tages of the proposed dataset are various: 1) Proposing EEG signals during
relaxation, selective and sustained attention tasks; 2) A joint record of EEG
and physiological signals to assess their contribution; 3) A binary label related
to the attention loss and gain during the mentioned tasks.
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EEGs are signals of high dimension that can be represented in Rnelectrodes×time

with nelectrodes being the number of electrodes and time the signal duration
in samples. Being able to design architectures to compress them has been a
challenging task for several years now. For this purpose, feature extraction
methods are often considered. These are often based on the signals’ time,
frequency or space properties [17].

Moreover, EEG signals are sets of 1-D temporal series. However, other repre-
sentations can be considered for the set of features extracted or the raw signal
from EEGs. For instance, it is possible to consider embeddings (from AE as
explained in Chapter 1) or image-based representation.

In this chapter, Section 4.1 will first focus on the existing work for EEG
feature extraction as well as our proposed methodology. In Section 4.2, a
similar analysis will be performed for feature representation.

4.1 Feature Extraction Methods

Representing signals with high dimensions in shorter subspace or finding a
solution to the curse of dimensionality has been a stumbling block in ML works
for many years. In this section, the existing works to solve this problem in the
case of EEG processing, as well as our proposed method, will be presented.

4.1.1 Related work

Due to the increasing interest in BCI and ML applied to the medical field,
EEG signal processing has often been studied in recent works. In most cases,
EEG signal analysis follows a predefined pipeline separated into different steps,
as presented in Lotte et al. [17]: 1) Signal acquisition during which the EEGs
are recorded in a specific context; 2) Signal preprocessing, where the noise and
artefacts are removed from the signals, this step is sometimes merged with the
previous one or not considered; 3) Feature extraction, where the most relevant
information is extracted from the signal; 4) Feature classification or regression,
during which the feature vectors are used to classify the signals or assign them
a specific score.
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Signal pre-processing

The preprocessing step consists of preparing the signals for further analysis:
computing the classes/scores from the observations, removing the noise and
artefacts, segmenting the signals, etc. Signal denoising is not a mandatory
step, as shown in Lawhern et al. [53]. However, if an artefacts removal policy
is considered, it often consists of bandpass filtering to remove the continuous
contributions and artefacts that occur at specific frequency bands (e.g. elec-
trical noise oscillating at 50 Hz). Moving average filter can also be applied to
remove residual noise components. Another approach used to remove artefacts
(e.g. ocular) is the use of Independent Component Analysis (ICA) to investi-
gate the external contributions in the signal corresponding to eye movements
and removing them [54,55].

After preprocessing the signals, several feature extraction methods specially
designed for BCI applications have been developed. These methods can be
classified into two categories: Frequency and Time-based approaches.

Frequency features

Frequency features can be extracted by studying the contributions of the signal
in the frequency spectrum. The most commonly considered approach is the
PSD representing the signal power distribution in different frequency bands.
In the context of EEG processing, the spectral information is mainly used
to characterise the power of the signals in different frequency bands. For
instance, in the case of ADHD assessment, the θ - wave [∼ 5− 7 Hz] and β -
wave [∼ 15− 30 Hz] powers are often studied [56].

There are different methodologies to extract spectral features, but the most
commonly considered is FFT. A large part of the current work in the con-
text of attention assessment considers spectral features [14, 57, 58]. Similar
methods have also been considered for other tasks, e.g. vigilance and emotion
estimation [34, 59]. However, an important aspect that has to be taken into
account is the correct definition of the frequency bands that can cause issues
in the case of erroneous definition [18]. As explained previously, the frequency
band limit may vary from one participant group to another, which may lead
to wrong frequency band definition and incorrect feature extraction.
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Temporal Features

One application in which temporal features are often used is in the context of
Evoked Related Potential (ERP) analysis. ERPs consist of specific patterns
occurring in brain signals recording during particular tasks, e.g. appearance
of visual stimuli. EEG temporal variation can be quantified and used as a
feature for signals classification. A temporal feature generally consists of a
downsampled signal after low pass filtering. This feature extraction method
aims to represent the signal’s general trend, as shown in Figure 1.4. Although
these methods have been first designed for ERP analysis, it is also possible to
consider them for other tasks, e.g. sleep stage analysis or seizure detection.

Another approach often considered in EEG processing consists in studying
the mean of the signals for a given task for all the participants to investigate
general trends and insights among the studied groups [17].

Other feature extraction algorithms can also be applied to EEG signals. These
may express spatial information (e.g. electrodes position or activated brain
regions) or features representing the signal’s disorder with chaos theory-based
feature extraction methods (e.g. Higuchi fractal dimension [60]).

4.1.2 Proposed Approach

In this context, it was thought to investigate previous approaches to extract
information from 1-D signals and analyse their results for feature extraction
from EEGs.

Differential Entropy

Differential Entropy (DE) is a measurement directly correlated with the vari-
ance of the signal’s amplitude. The method has presented encouraging results
for emotion estimation from EEGs [46, 59]. Given a temporal series x, DE is
computed as:

DE =
1

2
∗ log 10

(
e ∗ σ(x)2

)
(4.1)
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with e the Euler’s number and σ(x) the standard deviation of the considered
temporal series.

Fisher Information

Fisher Information (FI) parameter is a measurement evaluating the quantity of
information contained in a set of measurements, for instance EEG signals. FI
measurement has already been considered for EEG signal processing [61, 62].
The method employed to compute the FI parameters is the one proposed in
Py-EEG [63]. Given a temporal serie x = [x1, x2, . . . , xN ], FI is computed
from the singular values σ of the delayed vector y:

y(i) =[xi, xi+τ , xi+2τ , . . . , xi+(dE−1)τ ]

Y =[y(1), y(2), . . . , y(N − (dE − 1)τ)]

FI =
M−1∑
i=1

(σi+1 − σi)2

σi
(4.2)

with τ the delay, dE the embedding dimension and σ1, σ2, . . . σdE the singular
values computed from the singular value decomposition of the matrix Y . The
singular value decomposition consists of a specific matrix factorization where a
rectangular matrix is decomposed into two orthogonal matrices and a diagonal
matrix. The diagonal matrix’s coefficients are the original matrix’s singular
values. The delay and embedding dimension are two parameters that can be
tuned with the considered matrix, in the original implementation τ = 2 a,d
dE = 20.

Hjorth Parameters

Hjorth parameters are temporal-based features representing the signal’s ac-
tivity, complexity and mobility. These parameters are computed from the
evolution of the first and second-order derivatives of the signal. This feature
extraction method has been considered in EEG signal processing for emotion
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and attention estimation [40,49] and is computed as:

Activity = σ(x)2

Mobility =

√
σ(x′)2

σ(x)2
(4.3)

Complexity =
Mobility(x′)

Mobility(x)

with x′ being the first-order signal’s derivative. The signal derivative is com-
puted with numerical differentiation by computing the differences between
consecutive samples.

Petrosian Fractal Dimension

Petrosian Fractal Dimension (PFD) is a measurement of the signal disorder,
due to the high variability of EEGs, methods from chaos theory as fractal di-
mensions have been widely used for to process these signals, e.g. for drowsiness
detection [64]. It is computed as:

PFD =
logN

logN + log( N
N+0.4Nsign

)
(4.4)

with N being the signal’s length and Nsign the signal’s sign changes, i.e. the
number of crossings of the x-axis during the signal’s duration.

Teager Energy

Teager Energy (TE) operator [65] is an operator extracting the information
from signals’ shape [66]. TE is computed from the evolution of the signal and
its first and second order derivatives. In this thesis, TE operator has been
applied on EEG and is computed as presented in the original work:

TE =
1

N

N−1∑
i=0

(x
′2
i − xi ∗ x

′′
i )2 (4.5)
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With x′ being the first order signal’s derivative and x′′ the second order sig-
nal’s derivative. Both derivatives are computed with numerical differentiation
method as for the hjorth parameters.

Other Feature Extraction Methods

Other feature can be considered but have not been studied in detail in this
thesis. However, due to no-convergence, bad feature extraction and poor re-
sults, we will not enter into details with the latter: Lyapunov exponents [67],
Discrete Wavelet Transform (DWT) [68], Statistical parameters (i.e. mean,
standard deviation, kurtosis and skew), Principal Component Analysis (PCA),
Empirical Mode Decomposition (EMD) [69] and Higuchi Fractal Dimension
(HFD) [70].

4.2 Representation of Information

As mentioned, EEG and the corresponding feature maps can be represented
under various forms depending on the information willing to proceed: graphs,
images, temporal series, arrays, etc. Other works also propose considering the
raw signals directly in the considered DL architecture. However, this approach
will be more precisely presented in Chapter 7.

4.2.1 Related Work

This section presents some existing methodologies to represent features ex-
tracted from EEG.

Arrays

Arrays representation of EEG is the most straightforward approach for rep-
resenting feature matrices. It represents the feature maps with the same di-
mensionality as raw EEGs. The corresponding representation is in three di-
mensions, each corresponding to the evolution among trials (i.e. measurement
instant), electrodes and number of features.



58 Feature Extraction and Representation

The processing of these arrays can be made with different approaches depend-
ing on the considered methods that will be investigated in Chapter 5.

The simpler way to consider these arrays is to flatten them to obtain a 1-D
vector easily processed by many mathematical or ML models, e.g. Logistic
Regression (LR), DT, RF, SVM, etc. Although these approaches present
a correct baseline for EEG features maps processing, they did not consider
the specificity of EEG signals, i.e. time, frequency or space evolution. By
flattening the vector, the information is mixed regardless of temporal position
in the sequence, frequency evolution or electrode placement.

For this reason, methods dedicated explicitly to processing sequences or series
have been designed, it is based on RNN. This family of models extracts
and analyses the recurrence in these types of signals. The recurrence can be
expressed with the temporal or spectral evolution of the signals or the spatial
feature of EEG signal (i.e. where is the information located on the scalp). To
process the signal regarding these specificities (i.e. time, frequency or space),
the feature maps have to be re-arranged on the chosen axis, i.e. temporal,
spectral or spatial.

Images

Another existing method to represent EEG feature maps is the image-based
representation. This method considers EEG feature matrices as images where
each non-empty pixel corresponds to the value of the feature matrix for the
given electrodes. The pixel can be organised by keeping the neighbour elec-
trodes as neighbour pixels as shown at the center of Figure 4.1. However,
this methodology does not consider the distance that can separate electrodes,
i.e. two neighbours electrodes are neighbours pixels regardless of their dis-
tance [71].

An improved method aims to take into account the positions of the electrodes
by considering a more complex methodology: First, assigning to each electrode
in 3-D coordinates the corresponding feature vectors; Second, projecting the
information from 3-D representation to a 2-D discrete representation with az-
imuthal projection, which gives a discrete image; Third, creating a continuous
image with bicubic interpolation [72,73]. The resulting image-based represen-
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Figure 4.1. Image-based representation of EEGs. Employed methodology to con-
struct images-based representation of feature maps from EEGs for each
frequency bands. At the left the representation in arrays, at the center
the näıve representation with re-organised pixels and at the right the
interpolated images.

tation can be processed with images dedicated DL models, e.g. CNN and is
represented at the right of Figure 4.1.

4.2.2 Multi-dimensional representation of EEG

First, let’s consider an EEG dataset as a set of segmented signals Xr = [Sr1 ,
Sr2 , . . . , S

r
C ] ∈ RC×T with C and T representing respectively the amount of

electrodes on EEG recorder and the length of the signal.

Among the current work aiming to predict attention state from EEGs, it has
been noted that spectral information plays an essential role in the estimation of
attention [34,49]. For this purpose, it has been thought to filter the signals into
five frequency ranges whose intervals have been defined in previous studies [19]:

• δ-rhythm∈ [0.5, 4] Hz

• θ-rhythm∈ [4, 8] Hz

• α-rhythm∈ [8, 13] Hz

• β-rhythm∈ [13, 30] Hz
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• γ-rhythm∈ [30, 50] Hz

As mentioned in previous works, each of these bands is enhanced during spe-
cific tasks or behaviour, e.g. δ−rhythm is enhanced during the deep sleep
state [74] or α−rhythm for attention during specific task eye closed [18]. Fi-
nally, the preprocessed EEG dataset is re-expressed after band filtering as a
set of signal Xr

f = [Sr1,f , S
r
2,f , . . . , S

r
C,f ] ∈ RFreq×C×T with Sri,j being the EEG

segment of i-th channel and j-th frequency band and Freq being the amount of
considered frequency bands. The bandpass filtering applied on each segment
consists of a FIR filter with a Hanning window of 1-second length and the
cut-off frequencies corresponding to the boundaries of each frequency band.

It was reported that a wrong spectral band definition might lead to behaviour
misclassification in the context of attention. Moreover, the spectral bands’
boundaries may change from one participant to another [18]. To avoid these
issues, it has been decided to adapt it by comparing the maximum of the par-
ticipant dependent PSD and the mean for participant independent PSD. For
this purpose, the mean PSD for each participant separately has been computed
and compared to the global mean PSD, the difference between the frequency
of each maximum has been computed and considered as the frequency shift
occuring between participants.

Another filtering strategy has also been envisaged to avoid the drawbacks of
fixed frequency bands. This strategy consists of filtering the EEG signal with
regular boundaries between 0 Hz and the cut-off frequency at 50 Hz. This
method splits the frequency spectrum into frequency windows of the same
size.

After separating EEGs into spectral contributions, EEG segments are sep-
arated into time windows. The goal of this segmentation is to capture the
information from the signal’s temporal evolution during the processing task.
It has been proven that specific patterns occur in EEGs during the sight of a
stimulus [53]. From this insight, the novel signal representation is Xt

f = [St1,f ,

St2,f , . . . , S
t
C,f ] ∈ RF ×C×T

′× T
T ′ with T ′ being the amount of temporal window

to consider in the segmentation. Thus, the length of the segment after the
division into windows is T

T ′ .

Finally, from Xt
f , it is possible to extract features helping to express the sig-

nal information in a shorter subspace. All the proposed feature extraction
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Figure 4.2. Mutli-dimensional representation of EEG. At the top left the original
signal, the top right the set of signals after frequency filtering, at the
bottom right the temporal slicing into windows and at the bottom left
the final representation with the feature extracted for each frequency
band and temporal window. For this figure, five frequency bands and
four temporal windows have been considered.

approaches have been considered to represent EEG segments in a shorter sub-
space and will be evaluated in Chapter 5 to investigate the best feature ex-
traction approach.

With the feature matrice F ∈ RFreq ×C ×T ′ ×nfeat , it is possible to consider its
representation as a sequence in three dimensions: frequency, time and space.
The spectral direction considers the signal evolution among the considered
spectral bands. The temporal dimension expresses the time-based evolution
of each feature vector. The spatial direction represents the electrodes-based
relationship between feature information and depends on the order in which
the electrodes are sorted.

Practically, this representation can be expressed considering each of these
dimensions after transposing and merging axes. From the original feature
matrice, it is possible to generate the following arrays:

• EEG|frequency ∈ RFreq×nfeat−freq a set of feature vectors representing the
sequential information within the considered spectral bands.

• EEG|temporal ∈ RT ′×nfeat−temp a set of feature vectors representing the
sequential information within the considered temporal bands, i.e. the
segment position in the trial.
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• EEG|spatial ∈ RC×nfeat−spat a set of feature vectors representing the se-
quential information within the considered spatial position, i.e. the con-
sidered electrode.

The feature dimension for each of these three representations is deduced from
the reshape dimension of the feature matrice F . These dimensions can vary
with the number of temporal windows, frequency bands or considered elec-
trodes.

One of the main interests of this representation is that it allows having a
sequential representation of information considering each stream (i.e. spec-
tral, temporal and spatial) separately. Moreover, this representation allows to
avoid losing information, unlike the image-based representation that considers
an interpolation of a feature map. More, image-based EEGs of conventional
dimension [32 × 32] is created from low dimension feature vector ∈ RC that
could lead to a bias induced by the interpolation.

4.3 Conclusion

This chapter lists the existing methods to extract and represent features from
raw EEG signals. After the literature review, it was noted that the current
approaches to express and represent these signals in a shorter subspace present
some drawbacks: they consider solely the specificity of the signals (i.e. fre-
quency, time or space) and without any merging strategies. Moreover, most
existing works consider PSD based features that could present issues, e.g.
variation of the frequency bands between participants.

To address all these concerns, it has been thought to consider a novel method
to segment the signals into three streams, each corresponding to one of the sig-
nal specificity. After considering this novel representation of EEG segments,
various feature extractions have been applied to each segment. The approach
proposed in this chapter will help to evaluate each stream’s effect and feature
extraction for the attention estimation purpose in Chapter 5. This sequen-
tial representation of information will be considered for architectures specially
dedicated to this representation of information, i.e. RNN and transformers.
The experiments with this representation of information are given in the Sub-
section 5.3.1.
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For over a decade, research in AI and especially DL have known an increase
of interest. The novel DL models have become standard in many fields. For
instance, computer vision, natural language processing, speech, etc. However,
another area in which their use remains more elusive is biomedical signals and,
particularly, for EEG processing.

In this context, this chapter will first discuss the existing works investigating
the use of DL with EEG signals in general in Section 5.1. For clarity, the
current works will be classified according to their architecture. The proposed
novel architecture dedicated to EEG processing in different contexts and tasks
(i.e. estimation of attention, assessment of emotion and study of visual saliency
maps from EEGs) will be presented in Section 5.2. Finally, the results will be
discussed in Section 5.3.

5.1 Related Work

This section presents a literature review of some existing works proposing DL
models for EEG signals processing. The context of attention estimation from
EEG signals being limited, related works covering similar analyses with other
paradigms and tasks will also be presented, although they are not specially
dedicated to attention estimation.

5.1.1 Multilayer Perceptron (MLP)

The Multi-Layer Perceptron (MLP) remains the most straightforward method
among the existing DL models. It consists of the succession of linear combina-
tions of inputs followed by a non-linearity as explained in Chapter 1. Although
this näıve approach is often considered as a baseline for comparison with the
more complex DL approach, some works have considered architecture exclu-
sively composed by MLP [75–78].

One of the explanations for the decline in research projects considering MLP is
that it does not allow the adaptation to signals’ specificities, e.g. MLP are not
specially dedicated to images, sounds or graph signals processing. MLP can be
considered a mathematical function that processes the information regardless
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of its nature. For this reason, other DL approaches specially dedicated to the
processed modality have been developed.

However, it should be noted that it is also possible after modifications to
adapt MLP to the nature of the considered signals. Recent works have shown
encouraging results using exclusively MLP architecture images processing [79].

5.1.2 Convolutional Neural Networks (CNN)

In the context of EEG processing, Convolutional Neural Network (CNN) can
be considered to model the relationship between electrodes or extract the
signal’s temporal evolution.

The first approach consider an image-based representation of EEGs (as ex-
plained in Chapter 4) and process them with architecture initially dedicated
to image processing [71–73, 80]. CNN can thus process the image representa-
tion with(out) interpolation.

The second approach considering CNN aims at extracting temporal informa-
tion from signals. EEGs being set of time series, it is thus possible to use
CNN based architecture to extract the relevant information from these sig-
nals with the help of convolution operations on the temporal axis. Several
architectures composed by convolution layers have been designed to overcome
this challenge like, Shallow ConvNet [81] considering 1-D convolution succes-
sively on the time and spaces (i.e. electrodes) axes, EEGNet [53] proposing a
pointwise convolution to mix the feature maps from differents electrodes and
StagerNet [82] considering convolution only on the temporal axis.

Finally, the specificities of each of these architectures are based on the choice
made to construct the network: considered layers, skipped connections, com-
binations with other architectures, and learning methodologies. This aspect
makes the network more or less robust for solving tasks.

5.1.3 Reccurent Neural Networks (RNN)

Recurrent Neural Network (RNN), including Long Short-Term Memory (LSTM)
and GRU, are often considered to process the sequential information in EEG
recordings. They correspond to a neural network family processing the input
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information as a sequence of input vectors. RNN has been initially designed to
process the recurrence in modalities. For instance, in text for natural language
processing, they have provided encouraging results in text translation or sen-
timent analysis. In addition to their results with these modalities, RNN also
appear to be a good approach for EEG processing with various task such as
vigilance estimation [83,84], emotion estimation [40,59] or motor imagery [72].

The explanation for the use of this type of architecture can be various. For
instance, Li et al. [59] consider RNN to manage the spatial information in EEG
signals. Their work considers two recurrent streams over all the electrodes: one
vertical and one horizontal, to model the relationship between EEG electrodes.

Another aspect that can be covered is the evolution of the signals over time.
Bashivan et al. [72] proposed in their work, a model processing the recurrence
of EEG segments. Each EEG trial is segmented into sub-segments, and each
of them is processed sequentially as an input cell of the RNN.

Although these methods present several advantages, they still present draw-
backs.

First, they process information in a unidirectional pathway. This means it is
necessary to organize the signal’s information on one single axis to process it.
Therefore, it is not possible to process information in more than one direction
at the same time. However, EEG electrodes are challenging to organize in
1-D.

Second, they process the information recurrently, which makes the relation-
ship between non-neighbours (or faraway) electrodes more difficult to process.
Third, the gradient in RNN is propagated over many stages that may cause
an issue for the gradient descent [85] during the training. This is due to the
partial derivative’s self-multiplication that causes the gradient’s exploding or
vanishing.

5.1.4 Autoencoder (AE)

Autoencoder (AE) composes a network family aiming to encode information
into a shorter subspace. During the training, the network’s goal is to recreate
the input modality from a representation in a smaller subspace as closely as
possible. This information compression is acquired by updating the weights to
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minimize the mean reconstruction error rate, i.e. mean squared error, between
the input and output.

The aims of the AE is to project the signal in a subspace with less dimen-
sions than the input. This representation in shorter subspace is more easily
classifiable by ML models, e.g. LR, DT, RF, SVM, or handled by DL models.

AE are used nowadays in various fields, for instance in vigilance estima-
tion [86], epileptic seizure detection [87] or representation of EEGs for better
interpretability [88].

5.1.5 Graph Neural Network (GNN)

Graph Neural Network (GNN) are network considering EEG feature maps
as graph, i.e. feature values of each electrodes are assigned to each vertices
and their edges are proportional to the inter-electrodes distances in cartesian
or geodesic space. They have proven their supremacy in various fields such
as emotion estimation [89], seizure/abnormal signals detection [90] or ERP
detection [91] from EEGs.

GNN can be useful to model several aspects of EEG signals. They can thus
model the temporal evolution of the signal in each electrode, study the spatial
interaction of electrodes regarding their distance, and investigate the func-
tional neural connectivity that studies the brain regions’ synchronization dur-
ing specific tasks.

5.1.6 Generative Adversarial Neural Network (GAN)

Generative Adversarial Neural Network (GAN) is a family of neural networks
where two networks (the generator and the discriminator) are trained in an
adversarial manner: the discriminator aims at detecting if a given modality has
been artificially created by the generator or corresponds to the ground truth,
and the generator tries to fool the discriminator by developing modalities very
close to reality [92].

GAN have already been used for generating images representing thoughts
and/or dreams [93, 94]. Although this research field is still under develop-
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ment, the authors have high hopes that one day, it will be possible to visualize
our thoughts or dreams.

Although these approaches present encouraging results, it is essential to con-
sider that visualizing thoughts from biomedical signals is a very challenging
task [95] even if some research teams express the opposite in media [96].

5.2 Methodology

This section will describe the DL-based models developed for EEG signal pro-
cessing. As for the previous section, proposed approaches have been organized
depending on their architecture. The proposed methods have been applied to
solve various tasks from EEGs: attention estimation, emotion estimation and
visual saliency estimation.

5.2.1 Hierarchical RNN

An H-RNN has been developed to model the spatial relationship between elec-
trodes. The methodology is inspired by previous works considering different
stages of RNN to predict action from skeleton-based signals [97]. The skele-
ton hierarchical method aims to process the information at a different levels,
from the general body information to the interactions toward the limbs, to the
position of each joint.

A similar approach has been considered to process EEG feature maps in this
context and is represented in Figure 5.1. The spatial analysis focused on the
different levels of information: from brain hemispheres to electrodes region to
specific electrodes relationship between neighbors.

From the given feature matrix xfeat ∈ Rc×n with c the number of electrodes
and n the feature dimension, it is first possible to split it into two sub-matrices
depending on the considered hemispheres, i.e. left or right. Then, both matri-
ces can be separated into i sub-matrices to represent the contribution for each
electrode region (i.e. frontal, occipital, temporal, parietal). These matrices

are xl,feati and xr,feati representing the feature matrices for each hemisphere
(i.e. left l and right r) and each region i.
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Figure 5.1. Hierarchical-Recurrent Neural Network (H-RNN) architecture overview.
Three stages of RNN, the first stage capturing information in the brain
region, the second taking into account the relationship between the two
hemispheres and the third considering the relationship between the re-
gions. After the RNN stages, a fully-connected network was used to
make the estimation.

This feature array is then passed through three-stage of RNN. The hidden
state from the different RNN stages can be formulated as explained in Equa-
tion 1.9. A schematic representation of the model is given in the top-centre
of Figure 5.2. As seen in the figure, three stacks of RNN (corresponding to
neighbors, electrodes regions and hemispheres) have been successively applied
to the EEG feature maps, and a MLP layer estimates the hidden representa-
tion at the third stage of RNN.

5.2.2 Saliency based RNN-CNN

Given the approach presented above, an improvement is to consider the com-
bination of different models and feature representations. For this purpose, a
novel approach was envisaged considering the fusion of CNN with H-RNN.
The advantage of this method is that it combines two representations of EEG
feature maps, i.e. arrays and images-based representation. An illustration of
this dual processing approach is summarised in Figure 5.2.
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From the results provided by the methods presented above, a combination of
these last has been considered to improve the classification accuracy. An ap-
proach based on saliency analysis has been considered to promote the synchro-
nized learning of both networks and help transfer learning between modules.
This method consists of finding the most important electrodes to estimate a
saliency image from H-RNN model. This ”saliency” information is then trans-
fered to the image-based network. The feature vector representing Saliency
from the H-RNN is computed as:

Saliency =

∣∣∣∣∣∣∣∣∂ Estimation

∂ Class

∣∣∣∣∣∣∣∣ (5.1)

with delta the partial derivative operator representing the variation of the es-
timation with regard to the considered class. The Saliency is represented as
a normalized score giving the elements for which the gradient is the highest.
These vectors measure the importance of each electrode’s feature to make the
estimation. From the saliency vector, an image representation is considered
and used to weigh the image representation of the feature vector as shown
at the top-right of Figure 5.2. This process aims to concentrate the learning

Figure 5.2. H-RNN and CNN architecture overview. Overview of the framework
composed of the feature extraction and represenation (left part), the
H-RNN (top part), the CNN (bottom part) and the emotion classifica-
tion (right part). The saliency maps extracted by the H-RNN are used
to weight input images of the CNN.
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around the most crucial region of the EEGs for both representations. The op-
posite process consisting of guiding the learning of H-RNN based on CNN has
not been considered for two reasons: 1) The process to compute the saliency
feature vector from the image presents a high computing cost; 2) Results from
H-RNN were better than those guided by the CNN.

5.2.3 Transformer-based Model

Another innovative method to process the information from EEG feature maps
is to consider the novel methods based on transformer architecture initially
presented by Vaswani et al. in 2017 [98]. This architecture family was initially
dedicated to Natural Language Processing by helping to understand and gen-
erate texts. Transformers have proven their supremacy in this field [99, 100].
However, as seen in recent years, transformer-based models have also pre-
sented great result for other tasks not specially related to text processing, e.g.
computer vision [101], speech analysis [102] or VQA [103].

In this context, it was envisaged to use this sequential model to process the
EEG feature maps. In addition to their encouraging results in various fields,
their use is also motivated by their ability to solve the recurrence issues of
RNN. As explained by Merkx et al. 2020 [104], transformers can process
sequential information in a non-recurrent manner.

Given the multi-dimension representation of EEGs in the three dimensions (i.e.
time, frequency and space), it was envisaged to consider a transformer-based
approach to process this specific information representation. An adapted ver-
sion of the encoder layers from the transformer architecture [98] has been
considered. This architecture comprises different parts, each responsible for
a specific processing step. If we consider the input feature matrix EEG|i
representing the sequential information in one of the three dimensions i, the
estimated class ŷ is computed after the following steps:

Embedding

The embedding aims to have a continuous representation of the feature in a
vector of lower dimension. In machine translation problems, this embedding
consists of assigning to a word a vector that is more easily handled by the
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Transformer Encoder
Frequency

Transformer Encoder
Temporal

Transformer Encoder
Spatial

Concatenation

Figure 5.3. Transformer EEG architecture overview. The three representations of
the EEG features arrays are passed to the correspond transformer en-
coder stream. Then the outputs are decoded and concatenated to create
an hidden vectors passed to a fully-connected networks to estimate the
attention state.

DL model. In this thesis, the embedding step has been replaced by a linear
operator expressed as:

E = F Wembed (5.2)

with E the embedded feature vectors ∈ RSeqLen×EmbDim, F the feature matrix
∈ RSeqLen×FeatDim and Wembed a learnable transformation matrice ∈ Rnfeat

×EmbDim, SeqLen, EmbDim and FeatDim being three parameters represent-
ing respectively the sequence length (proportional to the temporal windows
and frequency bands length or amount of considered electrodes), the choosen
size for the embbed vector and the dimension of the considered feature extrac-
tion method.

Positional encoding

Position encoding allows adding information about the element position in the
sequence. The motivation to consider this step is justified by the fact that the
self-attention based network did not recurrently process information, i.e. no
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information on the elements’ position is provided in self-attention network.
This issue is solved with a trick consisting of adding a sinusoidal function
(sine for even position and cosine for odd positions) oscillating at different
frequencies proportional to the embedded features vectors positions [98]. With
this step, the model can handle the element position in the sequence.

In the context of EEG signal processing, it has been decided to adopt posi-
tional encoding for the spatial transformer encoder (as seen in Figure 5.3) to
the modality: the considered frequencies for the sinusoidal function being pro-
portional to the electrode distances instead of the position in the array. The
original position encoding has been kept for spectral and temporal transformer
encoders.

Transformer encoder

The transformer encoder aims to create a novel representation of the embed-
ded sequence. This module is divided into two parts, each considering residual
connections [26] and normalization layers. The first block is composed of the
multi-head attention layer. With the help of this layer, the transformer can
find the relationship between the sequential information, not necessarily neigh-
bours. For instance, in the case of spatial information of EEGs, it considers the
relationship between one electrode on the frontal lobes in the right hemisphere
and the parietal on the left hemisphere; in the case of machine translation,
it considers the relationship between the first and fifth word of a sentence.
This architecture applied the self-attention mechanism [98]. This mechanism
consists of the multiplication of three learnable matrices, the query Q, key K
and value V . The three matrices are computed from linear operations of the
set of encoded feature vectors E and are processed as:

Attention(Q,K, V ) = softmax

(
Q KT

√
dk

)
V (5.3)

With dk, the dimension of each matrix corresponds to the sequence length.
The second block composing the transformer encoder is a MLP applied on
each sequence element separately and identically. The resulting sequence is
written S ∈ RSeqLen×FeedDim with FeedDim corresponding to the output size
of the MLP.
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From this continuous representation of the features, the original aim of the
transformer in NLP is to estimate the next feature vector in the sequence.
This process is part of predicting the next element of the sequence. The
prediction is made with the decoder layer comparing the combination of the
hidden representation and the shifted original sequence. In our case, the goal
is to estimate a class, not a sequence. This step has been modified to suit
our task consisting of estimation from EEG feature maps. The estimation
part consists of first a MLP applied separately on each vector Si composing
the sequence, and then computing another representation Vi followed by a
concatenation of the hidden representation of the sequence. The succession of
operation is represented at the top of Figure 5.3. The resulting hidden arrays
called H and calculated as:

Vi = relu(Si Wdecoder + bdecoder) (5.4)

H = [V1, V2, . . . VSeqLen] (5.5)

with Wdecoder and bdecoder being responsively the learnable weight and bias of
the MLP decoder network. The hidden representation is finally passed through
a dense layer to estimate the class/score suiting with the input sequence.

5.2.4 Variational Autoencoder

A novel approach proposed by this thesis to process raw EEG signals consists
of considering VAE to compress and extract the relevant features from these
signals. These feature vectors can thus be mapped with another modality with
which it is studied. This approach is divided into a two steps:

• In a first time, an unsupervised training of two VAE. The first VAE pro-
cessing EEG signals, the second considering the unsupervised learning
with the other modality to map with EEGs. During this step, the train-
ing consists to compress information from EEGs and the other modality
individually.

• In the second time, merging half of both networks, i.e. the encoding part
of EEG VAE with the decoding part of VAE for the other modality.
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Figure 5.4. VAE architecture overview. At the left the encoding of the EEGs, to
its mapping with the embedding of the saliency maps with the decoder.
And The discriminator fulling the generator (composed by the encoder
and decoder) at the right.

Given the registered signals from our experimentation, a typical use case was to
study the relationship between visual saliency maps and EEG signals. Visual
saliency maps represent the probability of an area in a visual scene to attract
the participant’s visual attention. Concretely, a visual saliency map is a single-
channel image with each pixel representing the probability between 0 and 1 to
be observed [105]. The idea was to create a model to estimate visual saliency
maps from EEG signals. The final model is then composed of the encoding
part of the EEG VAE and the decoding part of the saliency VAE. Figure 5.4
represents the model. This model can be divided into two sub-models, each
aiming to encode/decode specific information.

Autoencoding saliency maps

From raw eye-tracker recordings, it is possible to create a visual saliency map
representing the area of attention in an image of one channel with values
between 0 and 1 representing the degree of visual attention on specific pixels
and their neighbours. It can also be considered as a probability for a given
pixel to be watched or not.

During the experimentation, sight direction has been jointly recorded with
EEGs with the help of the eye-tracker located in the VR headset as shown in
Figure 2.2. The recordings have been separated into trials corresponding to
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a specific time. Then, the discrete eye-tracking measurements were projected
on 2-D images (one per trial) as explained by Salvucci et al. [106].

The considered network architecture is based on the ResNet proposed by He
et al. [26]. We consider for the encoding part four stacks of ResNet layer, each
composed of three convolutional layers and batch normalization, each stage
except the being separated by a max-pooling operation. Given the visual
saliency images, a VAE has been trained to represent them in the correspond-
ing latent space. A similar approach has been considered for the decoding
part with upsampling layer instead of a max-pooling operation. The padding
has been adapted to ensure that the output size matches the input.

The goal of this network is double: 1) Recreating an image as faithful as
possible to the original saliency map via a representation in a shorter latent
space; 2) Computing a continuous and complete latent space representation
and therefore not favouring one dimension among others.

After some experimental tests, it has been observed that the VAE tends to
overfit after a certain amount of epochs. A data augmentation policy has been
considered to handle this issue and build a more robust network. The data
augmentation process had to be well designed to keep the physical behaviour
behind the visual saliency map. For this reason, we have considered for each
training sample of each batch from the training set a random horizontal flip
with a probability of 0.5 and a random vertical and horizontal translation
between -5 and +5 pixels. This method helped to generate a wider range of
visual saliency maps with a lower error rate between the initial image and its
reconstruction with a better representation of the latent space.

Autoencoding EEG

EEG signals can be represented as two-dimension time series, the first cor-
responding to time evolution and the second to the considered electrodes.
Bashivan [72] proposes to create EEG-images from spectral feature maps based
on the electrodes’ spatial location. The process to construct our EEG-images
was inspired by their work, except that the process was directly applied to the
pre-processed signal and repeated on each time sample.

This map representation of EEGs allows keeping the spatial (in the first and
second dimension) and temporal relationship between samples. It enables the
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consideration of squared shape kernels, unlike the older approaches considering
uni-dimensional kernels for feature extraction from EEGs [53]. Moreover, this
methodology is better suited for CNN than the array representation of EEGs.

In a similar way to the saliency-VAE, the EEG images have been passed
through a VAE to reduce the EEGs dimension and to represent them in a
continuous and completed subspace. For this purpose, the VAE has been
trained with the images-based EEG.

A similar methodology for the saliency map has been considered to construct
the most robust network possible. To that end, a random signal following a
gaussian distribution of zero mean and standard deviation = 0.05 has been
added to EEG images to increase the model stability and to promote a better
understanding of the difference between noise and EEGs. In addition, some
pixels composing the EEG images have been supposed to remain equal to
zero, these groups of pixels corresponding to the region of the space where no
electrodes were placed. A checking was set up to verify that those regions of
the images remained equal to zero.

Latent space mapping

From the representation of the saliency map and EEGs in their corresponding
shorter subspace, the possibility of mapping the two distributions has been
investigated.

As mentioned above, previous works have already investigated the GAN archi-
tecture for EEG processing [93, 94]. However, previous works consider array-
based representation. A novel architecture adapted to EEG-images represen-
tation was then designed.

From both hidden representations, this model aims to estimate a saliency map
from EEGs without considering a one-to-one correspondence between modal-
ities. To solve this issue, a GAN has been considered with a generator aiming
to recreate the latent representation from EEGs. This generator is combined
with a discriminator seeking to distinguish the generated images from the ac-
curate saliency maps. Similar to existing approaches [92], noise following a
normal centred distribution (i.e. µ = 0 and σ = 1) has been concatenated to
the latent vector at the centre of the generator. This concatenation aims to
guide the generator for the saliency map generation.
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The overall architecture of the networks to translate EEG space into image
space is represented in Figure 5.4. As seen, the generator consists of the
concatenation of the encoding part of EEG VAE and decoding part of Saliency
VAE through a generator composed of Fully-Connected (FC) layers.

5.3 Experiments

Let us present the experimental evolution of the different methods developed
in this chapter on various datasets. This section shows the results depending
on the considered task: attention, emotion and visual saliency estimation.
During the experiments, it was noted that some approaches did not converge
for some tasks, this being explained by the datasets specificity (e.g. number
of electrodes, duration of the segments or tasks). For clarity, only the best
results will be presented in this section.

5.3.1 Attention estimation

This subsection discusses the attention state estimation from EEGs and presents
a comparison with some existing methods.

For this purpose, two datasets proposing EEG signals with the corresponding
attention state will be considered: the PhyDAA datasets recorded in the con-
text of this thesis and the corpus presented by Cao et al. [35]. A more detailed
description of both datasets is given in Chapter 3.

To evaluate the proposed methodology, the architecture has been trained and
validated with two training methodologies aiming to assess the model’s abil-
ity to generalize: 1) Subject-Independent (or LOSO) classification, where the
model is trained with all the participant signals except one that is used for the
validation. The step is repeated for all subjects, and a mean cross-validation
accuracy and its standard deviation are computed. The benefit of this method
is to measure the model’s ability to generalize its knowledge to never met par-
ticipants; 2) Subject-dependent classification where the model is trained and
validated with the same participant following a regular 5-fold cross-validation,
the process is repeated for each participant and the mean, and standard devi-
ation of cross-validation accuracy is computed. The advantage of this method



80 Deep Learning and EEG signals

is that it gives a good insight into the model’s ability to make estimations with
fewer signals.

It was also thought to compare the different methodologies to estimate at-
tention from feature matrices constructed from EEG signals. Among all the
existing ML models, four have been kept:

• Traditional ML models: RF and SVM based classifier to define a baseline
result for attention estimation.

• H-RNN classifier considering the multi-level representation of information
for spatial features from EEGs combined with regular RNN for the time
and frequency stream.

• CNN classifier considering ResNet [26] inspired architecture to process
images-based representation of EEG feature maps.

• Transformer classifier with the threefold representation of feature maps
combined at the output as represented in Figure 5.3.

Approach Driving EEG [35] PhyDAA [49]

ACC/STD [%] ACC/STD [%]

SVM 68.09/9.55 64.61/9.22

RF 67.81/10.17 61.55/9.79

H-RNN 72.12/8.27 70.86/9.82

ResNet 62.07/6.20 66.82/5.21

Transformer 74.41/9.27 77.24/6.11

TCA + LR [107] 72.70/9.42 -

MIDA [108] 73.01/9.17 -

Graph Network [49] - 72.41/5.51

Table 5.1. Classification performance for attention estimation with participant in-
dependent protocol. Results above the bold line are obtained from our
model experiments.

As seen in Tables 5.1 and 5.2, results obtained by the transformer-based ap-
proach present the highest accuracy compared to other baseline approaches
for both datasets, which demonstrate the proposed framework’s ability to es-
timate attention from EEG signals. Moreover, it demonstrates the efficiency
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of the self-attention based models architecture in processing sequential signals
as EEGs for attention assessment.

Furthermore, results from previous works have also been compared to evaluate
the developed architectures. For the first dataset, the previous works consider
transfer learning approach to increase cross-subject accuracy. These last are
based on Transfer Component Analysis (TCA) or Maximum Independence
Domain Adaptation (MIDA) with traditional ML architecture. The consider-
ation of näıve ML approaches may cause an accuracy decay compared to the
more complex methods. As seen in Tables 5.1 and 5.2 the results from our ex-
periments from traditional ML approaches, i.e. SVM and RF, are lower than
other DL methods. It makes us think that considering a more complex training
methodology, including transfer learning, may increase the transformer accu-
racy, although its accuracy already outperforms the state-of-the-art methods.

The best results from the related works for the second dataset are based on
GNN. Its architecture includes a graph convolution and a pooling operation
conserving the most discriminant nodes (i.e. electrodes) by removing those
that can be represented by neighbors electrodes. Unlike the transformer, GNN
only considers the spatial stream to estimate attention from EEG. This single
representation may explain the lower results.

As mentioned in Section 4, different feature extraction methods and segmenta-
tion parameters have been considered. We have investigated the corresponding
cross-validation accuracy for each combination. In Figure 5.5, the feature ex-

Approach Driving EEG [35] PhyDAA [49]

ACC/STD [%] ACC/STD [%]

SVM 76.07/9.65 70.82/13.25

RF 75.60/8.76 75.63/12.89

H-RNN 80.03/8.09 79.64/10.55

ResNet 75.96/8.98 70.39/6.91

Transformer 83.31/6.71 85.04/7.56

MLP [78] 81.32/6.02 -

Graph Network [49] - 77.34/10.24

Table 5.2. Classification performance for attention estimation with participant de-
pendent protocol. Results above the bold line are obtained from our
model experiments.
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Figure 5.5. Mean cross-validation accuracy as a function of the feature extraction
methods (at the left); the amount of temporal windows and frequential
bands (at the right).

traction methods present cross-validation accuracy around similar range of
value ≈ 70%. As shown, Hjorth, TE, PSD and DE present the best results.
Moreover, the two best feature extraction methods: Hjorth parameters and
TE based operator, consider both the signals’ derivative that corroborating
the fact that the derivative play an important role in the attention estimation
from EEGs.

As seen in Figure 5.5, the amount of both time windows and frequency bands
play an essential role in attention estimation. For both the number of temporal
windows and frequential bands, a too small number of time windows/frequency
bands leads to a decrease in accuracy. This decay can be caused by the
difficulty of representing the evolution of the brain activity during the stimuli
appearance or among the spectrum. Moreover, a large number can decrease
accuracy due to high dimension or overfitting issues.

The medium values present the higher results in temporal and spectral param-
eters. More precisely, better results are proposed for regularly cut bands (i.e.
with 20 frequency bands) compared to pre-defined bands (i.e., five frequency
bands). This insight can be explained by the fact that some populations do
not present the same band limits as the pre-defined [18,109].
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5.3.2 Emotion Estimation

Estimating emotion from EEG is a task often considered for the design of
BCI. In this context, exploiting the previously described models for emotion
estimation was considered. After experimentation, it has been noted that the
saliency-based H-RNN-CNN presents better results than other approaches.

The experimentation has been made on four public datasets considering EEG
signals during task promoting specific emotion: SEED-IV [46], SEED [45],
DEAP [44] and MPED [40]. Each of these datasets were composed resepec-
tively of four classes for SEED-IV [46], i.e. happy, sad, neutral and fear,
three classes for SEED [45], i.e. positive, neutral and negative, four classes
for DEAP [44], i.e. positive and negative dominance and arousal, and seven
classes for MPED [40], i.e. joy, funny, anger, disgust, fear, sad and neutral.

The consideration of several datasets was motivated by the desire to present
a general model instead of a finely tuned approach working only in a specific
context.

The LOSO cross-validation accuracy has been chosen to assess the model’s
ability to generalize to previously unmet participants. EEG signals being very
person-specific [95], a significant gap is often noted for the cross-validation
accuracy between participant dependent and participant-independent. Never-
theless, BCI applications are supposed to be directly used on the participant
in real-life, i.e. their signals are not used during the training of the DL model.

In Table 5.3, a comparison of the results of our approach is presented with
state-of-the-art methods for emotion estimation from EEGs. Our approach
presents the best results for some datasets and remains on the same scale

Dataset SEED-IV SEED DEAP MPED

Saliency 74.42/4.8 84.11/2.9 78.47/4.9 32/4.7

BiHDM [59] 69.03/8.6 85.40/7.5 - 28.27/4.9

RGNN [89] 73.84/8.1 85.30/6.7 - -

RODAN [110] 60.75/10.4 - 56.60/3.5 -

Table 5.3. Classification performance for emotion estimation. Results above the
bold line are obtained from our model experiments.
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for others. This proved our approach’s ability to estimate emotion in various
cases. Although our approach may seem slightly better than previous works,
it is important to note that the proposed approach can achieve a comparable
subject-independent cross-validation performance as previous works on four
datasets. Similar results have not been observed in the literature. As said,
our work aimed to propose an easily generalizable approach instead of fine-
tuning our results only on one dataset.

5.3.3 Visual Saliency Estimation

Another model presented in this chapter is the VAE. The task dedicated to
this model was to estimate visual saliency maps from EEG signal. The signals
from PhyDAA (presented in Chapter 3) were considered to solve this task.
To this end, the EEG and raw eye-tracking segments were processed for each
trial, and the saliency maps were computed from the raw eye-tracking signals
as presented by Salvucci et al. [106] and shown in Figure 1.2. The goal of this
model is to estimate a visual saliency map from an EEG segment as shown in
Figure 5.4.

Due to the specificity of the task, no works considering the same modality, i.e.
EEG, to estimate visual saliency maps were found in the literature. It was not
possible to have a fair comparison of our approach with previous work. For
this reason, the effect of the discriminator has been investigated by comparing
the results for the estimation with the whole model vs the model without the
discriminator. The considered metrics to quantitatively evaluate the saliency
maps estimation were:

• The area under the curve (AUC) represents the area under the Receiver
Operating Characteristic (ROC) curve. In the case of visual saliency esti-
mation, the AUC has been adapted to suit the problematic by considering
a changing threshold for class estimation from a value between 0 and 1
(corresponding to the saliency value). This adapted AUC is sometimes
also called AUC-Judd [111].

• The Normalized Scanpath Saliency (NSS) is a straightforward method
to evaluate the model’s ability to predict the visual attention map. It
measures the distance between the normalized around 0 ground-truth
saliency map, and the model estimation [112].
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Approach AUC NSS CC

VAE with Discriminator 0.697 1.9869 0.383

VAE without Discriminator 0.574 1.6891 0.251

Table 5.4. Estimation performance for visual saliency estimation.

• The Pearson’s Correlation Coefficient (CC) is a linear correlation coef-
ficient measuring the correlation between the ground truth and model
estimation distributions [113].

The results in Table 5.4 show that the proposed approaches present encour-
aging results for the AUC score representing the classification ability of the
model to estimate a pixel as being seen or not, i.e. modelling the participant’s
visual attention. To illustrate, an AUC of 0.5 corresponds to a random clas-
sification with a model without knowledge. The closer the AUC is to 1.0, the
better the model performs. In this study, we can consider the classification
ability acceptable, meaning that our model cannot perform well in every case
but can already distinguish specific patterns. However, the goal of our model
is to detect a small visual attention region, predicted map without any salient
pixel could have presented results with high AUC. We must consider other
metrics to evaluate our model’s ability to estimate saliency maps from EEG.

For this reason, the NSS and correlation factors have also been studied. These
corroborate the insights given by AUC score that our model performs well for
some configurations but cannot estimate the saliency map for every case. It
is crucial to keep in mind that the goal of this approach is not to improve an
existing work already stated but to discuss the possible relationship between
brain activity and visual saliency maps.

The discriminator’s goal is indirectly to force the generator to create images
as similar as possible to the visual saliency map generated with eye-tracking
signals. This phase is achieved through a competitive training process between
the generator and the discriminator. In Table 5.4, we note that the adversarial
model, i.e. with the discriminator, presents better results for the three metrics
than the approach composed only from the generator. It seems that in addition
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to promoting the generation of faithful maps, adversarial learning could also
help to make a better estimation.

5.4 Conclusion

The existing DL techniques to process EEGs have been presented in this chap-
ter. Due to the small number of works considering attention estimation, ap-
proaches considering DL for EEG processing for other tasks have also been
presented. Although DL is an active field of research in the context of EEG
signals processing, it was noted that a few architectures were specially de-
signed for EEGs, i.e. by considering all the signal specificities, including time,
frequency and space properties, and not copying existing ones dedicated to
image or text processing.

For this reason, it was decided to present three of our contributions in the
field of EEG signals processing, including 1) A Hierarchical-Recurrent Neu-
ral Network (H-RNN) architecture for processing spatial information. This
architecture can be combined with an image-based EEG to consider a dual
representation of information; 2) A transformer architecture to consider spa-
tial, spectral and temporal information; 3) A Variational Autoencoder (VAE)
to process EEG signals based on spatial and temporal information.

Even though several approaches have been presented in this chapter, two as-
pects have still to be considered in the context of DL-based EEG processing.

First, as mentioned previously, physiological signals have been co-registered
jointly with EEGs. For this reason, Chapter 6 will focus on a novel approach
to merge EEG signals with physiological signals.

Second, no specific approach has been considered for the training of DL mod-
els, they are trained in a supervised (i.e. the goal during the training is to
make the model able to estimate input by reproducing examples) or unsuper-
vised (i.e. the goal during the training is to find specific patterns/organization
of information in the datasets) manner. For this reason, Chapter 7 will investi-
gate a novel approach to represent EEGs in a shorter subspace by training the
model in a self-supervised manner, i.e. by teaching the model how to process
information instead of how to reproduce behaviours (e.g. classifying, doing
regression or clustering the signals).
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When constructing the PhyDAA corpus, physiological signals have been recorded
in addition to EEG signals during the task promoting attention in VR in ad-
dition to EEG signals. This chapter will first focus on the existing works to
combine those types of signals in Section 6.2. From these insights, three novel
methods for fusion modalities are presented in Section 6.3. They have all been
trained and validated on three public datasets. Due to the few works consid-
ering modality fusion in the context of attention estimation, this chapter will
focus on fusion policy for EEG and other signals, but not specially dedicated
to attention estimation.

6.1 Introduction

Several public datasets propose joint recordings of EEG signals and other
modalities. The additional modalities can be of various natures and vary
depending on the considered tasks perfomed during the dataset acquisition.
A näıve approach could be to consider each separately by designing one model
for each modality and training them individually. In addition to presenting
better results, a fusion-based approach would also reduce the model size and
training time. Indeed, instead of considering n models for the n different
modalities, the n signals are processed jointly in the same model.

For this reason, several techniques in the DL field have emerged. They aim
to focus on the processing of several modalities. The existing methods to
combine modalities can be classified into three categories depending on the
location of the fusion block: Early fusion, Middle fusion (or DL feature fusion)
and late fusion. The location of the modality combination in the architecture
characterizes the fusion methods: early fusion consists of fusing the input
directly after the preprocessing steps, middle fusion consists of combining the
feature vectors computed by DL model, and late fusion consists of combining
the prediction for each standalone modality, this method can also be seen as a
voting estimator. A representation of these three methods is shown in Figure
6.1.
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6.2 Related Work

This section reviews the existing works proposing a method to fuse EEG sig-
nals with one or more physiological modalities.

6.2.1 Early fusion

In the early fusion, the signals from different modalities are combined and
passed jointly in the ML models. It is important to note that with this fusion
method, handcrafted feature extraction methods have been considered. These
features could represent the signals’ time or frequency properties [34, 46, 49].
The fusion part mostly consists of a concatenation of all feature vectors [34,
84,114,115].

The concatenated feature vectors can then be passed in more or less complex
architectures such as SVM [34], MLP [115], CNN [114] or a cascade of LSTM
layers and Capsule Network [84]. The improvements of the proposed methods

... ...

(a) Early fusion

... ...

(b) Middle fusion

... ...

(c) Late fusion

Figure 6.1. Summary of the modality fusion methods in the context of EEG and
external physiological signals.
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can thus come from the specificity of the considered DL architecture: Cimtay
et al. [114] consider the InceptionResnet architecture [116] that have shown
encouraging results in computer vision-related tasks. Zhang et al. [84] adapte
the original capsule networks [117] introducing spatiality information in image
processing to EEGs.

Another possible analysis consists of investigating the aspects of the modalities
that affect the model performances. For instance, Zheng et al. [34] propose a
comparison of the fusion between EOG signals and EEG signals from differ-
ent brain regions: posterior, temporal or forehead. They prove that merging
information from temporal EEG regions and EOG presents the best results
for vigilance estimation.

6.2.2 Deep learning feature fusion

Another category consists of fusing the extracted features by the DL models
from each modality. Handcrafted features are passed to their corresponding
networks in this case, and the resulting embeddings are merged. Although the
considered approaches to combine these vectors can be various, concatenation
remains one of the most used methods to combine the embedded vectors [46,
73,86,118,119]. However, other methods are also presented in the state-of-the-
art. Zhang et al. [120] give a global fusion layer with regularization merging the
embedded vectors from each modality, and Liu et al. [121] propose a canonical
correlation analysis to rectify and regularize the embedded vectors from each
modality.

Similarly, the handcrafted features are extracted from the raw signals before
passing them through their corresponding DL model for input fusion. Several
motivations explain this methodology: EEG and the considered physiological
signals are easily affected by noise. To ensure the correct proceeding, features
are extracted from raw signals to keep only the relevant information from them
and to have a better representation. Moreover, a large part of the available
datasets for EEG signal processing has a relatively small size regarding the
high dimension of the signals, which makes using DL models more complex to
be deemed with high dimension signals.

Although lots of existing approaches are considering concatenation as feature
fusion, they may still differ based on the considered DL model and its complex-
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ity: Restricted Boltzmann Machine (RBM) [46], CNN [73], MLP [120,121] and
AE networks, although most DL methods consider an AE-based architecture
to merge the encoded information from several modalities [86,118,119].

6.2.3 Late fusion

In addition to the proposed methods, few works present late fusion architec-
tures, where each modality is used separately to make the estimation, and the
decisions of each model (i.e. logits) are weighted to take the final decision.
Lu et al. [122] consider this method for emotion recognition from EEG and
eye-tracking signals. Although their feature fusion approach present better
result than the processing of signals solely, other more complex approaches
based on DL fusion have presented better results [46].

6.2.4 Other fusion methods

A less envisaged method consists in considering raw signals both for EEGs
and the other modalities and combining the feature vectors extracted by each
corresponding DL model [123]. As mentioned above, the motivation for us-
ing pre-extracted features from EEGs in the context of modality fusion is
explained by the relatively small size of the available datasets presenting EEG
signals with other modalities and the low signal-noise ratio that presents EEG
signals. This issue is even more represented in the context of multimodal
signal acquisition.

6.3 Proposed Methodology

In this section, we present three novel methods to fuse information from two
biomedical modalities: EEG and a set of physiological signals depending on
the considered dataset. From our point of view, fusing raw signals or manually
extracting features from different modalities/sources makes less sense due to
their specificity. Moreover, many recent works considering DL-based fusion
have shown encouraging results.
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For simplicity and understanding, it was decided to consider the same notation
in the entirety of this chapter. The pre-extracted features from EEG and Phys-
iological signals (i.e. EMG, EOG, etc depending on the considered dataset)
are respectively written XEEG and XPhy. Given the considered methodology,
both vectors are passed in a DL pipeline to have an embedded representation
of the input easier to fuse. The corresponding embedded vectors are respec-
tively written EEEG and EPhy for both set of modalities. The two embedded
vectors are passed through the fusion layers. The resulting fused vectors are
written Efusion, and finally, the corresponding estimation, i.e. classes or re-
gressed score, is written ŷ. These notations are also shown in the center of
Figure 6.1: middle fusion.

The methods we propose to combine the embedded vectors are Basic ap-
proaches, Feature-wise Linear Modulation (FiLM) layers and Multi-Head At-
tention (MHA) based fusion are represented in Figure 6.2.

6.3.1 Basic Approaches

Given both embedded vectors, the first considered methodology to merge the
information from sets of modalities proposed in the state-of-the-art consists

(a) Early fusion (b) Middle fusion (c) Late fusion

Figure 6.2. Overview of the proposed methods for biomedical modality fusion.
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of using direct operations. Among these, one of the most considered method
is concatenation, whether for input fusion [34,84,114,115] or DL based fusion
[46,73,86,118,119].

However, other straightforward methods can also be considered in addition to
this baseline approach. The addition and inner product are simple operations
that consider the interaction between pairs of elements composing both latent
spaces [59]. These two basics approaches for merging embeddings are listed
in Equations 6.1 and 6.2. Although these methods can express this one-to-
one relationship, they present a drawback due to the fact that no interaction
occurs between two elements of each embedded vector which are not located at
the same position. A solution to overcome this drawback would be to consider
the outer product. However, the resulting dimension of the fusion embedded
vector could be drastically high: if EEEG ∈ REEG−emb and EPhy ∈ RPhy−emb, the
resulting dimension of the fused embedded vector Efusion ∈ REEG−emb∗Phy−emb.
With dimensions similar to previous works, i.e. EEGemb = Phyemb = 64, the
resulting embedded vector would have a dimension of 4096.

To avoid a huge dimentional representation, Gao et al. [124] propose a novel
method in the context of image processing: Compact Bilinear Pooling (CBP),
aiming to reduce the computational burden while speeding up computations.
This method is based on the finding that an operation on two vectors’ outer
product can be re-expressed as the convolution of both operations applied on
each vector separately [125]. In the original work, the authors introduce an
FFT in the equation to benefit from the convolution theorem, which states that
”the Fourier transform of a convolution of two signals is the pointwise products
of their Fourier transforms”. It is possible to get rid of the convolution between
vectors and re-express the equation with their products [124] as seen in Eq.
6.3.

Finally, the resulting direct operations are summarized:

Eadd = EEEG + EPhy (6.1)

Emult = EEEG � EPhy (6.2)

ECBP = FFT−1 (FFT(EEEG)� FFT(EPhy)) (6.3)
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Figure 6.3. Representation of the FiLM layer as defined in the original paper [126].
The two parameters γ and β are computed from the activations maps
from the modality to condition the neural network with (taken from
[126]).

with Ej being the resulting embedded vectors for the method j and � being
the inner product. In our case, the fused modalities include EEG and external
signals.

6.3.2 Feature-wise linear modulation

Perez et al. [126] proposed a novel approach for merging information from
several modalities. This approach modulates the network during the learn-
ing phase through Feature-wise Linear Modulation (FiLM) layers. Instead of
considering a direct operation between both embedded vectors, the proposed
method aims to condition the learning of each neural network processing the
embedded vectors. The idea is here to pass each embedded vector in a Feed
Forward Network (FFN) and to condition the learning of DL feature extractor
with parameters computed from the other. The general conditioning process
is represented in Figure 6.3 and its application to the fusion between EEG and
physiological signals is represented in the center of Figure 6.2.

The mentioned FFN corresponds to a linear transformation or a multiplication
by a parametrized matrix followed by adding a bias, followed by a non-linearity
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follows it. The corresponding relationship can be written as:

FFN(x) = f(x ∗W + b) (6.4)

with W being the parametrized matrix or weight, b the bias and f(.) the
non-linear function.

Concretely the idea is to estimate two parameters from each embedded modal-
ity computed as:

γi = fγ(Ei) βi = fβ(Ei) (6.5)

with i being the considered modality, γ and β two parameters computed with
the functions fγ(.) and fβ(.). In this work, the considered function to estimate
these parameters is a FFN that automatically estimates both parameters.

Given the parameters computed above, the FiLM layer applied the following
operation on each embedded vector:

EFiLMi = γj � Ei + βj (6.6)

EFiLMj = γi � Ej + βi (6.7)

This approach aims to promote the joint processing of both neural networks
by modulating their learning process.

Finally the proposed approach for FiLM based fusion between EEEG and EPhy

can be expressed as:

γEEG = fγ(EEEG) βEEG = fβ(EEEG) (6.8)

γPhy = fγ(EPhy) βPhy = fβ(EPhy) (6.9)

EFilm = γPhy � EEEG + βPhy + γEEG � EPhy + βEEG (6.10)

Given the encouraging results proposed by FiLM based neural network con-
ditioning in various fields, e.g. question answering from images [126] or au-
diovisual feature fusion [127], it has been decided to investigate its use for
biomedical signals fusion.
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Figure 6.4. Representation of the MHA based fusion between EEGs and physiolog-
ical signals. From both DL feature vectors, the attention mechanism is
repeated h times representing the number of heads.

6.3.3 Multi-Head attention fusion

As explained in Subection 5.2.3, for five years now, a new family of neural
networks called transformers or attention-based networks [98] has known an
increase in interest, and have been used in many applications. They have
proven their supremacy to solve many types of tasks including NLP [99], image
processing [101], speech recognition [128] and even all of them simultaneously
[129].

The main idea behind a transformer is based on the concept of attention
mechanism. This mechanism has been created to overcome the drawbacks of
previous works based on RNN. RNNs are considering sequential data recur-
rently, i.e. by considering the last entry when processing the current one, the
processing (i.e. computing an hidden representation by taking into account
the current entry and the hidden representation of the previous entry) is re-
peated for each element composing the sequence as shown in Figure 1.8. It
is to overcome these drawbacks that transformers have been created. Finally,
this approach initially dedicated to NLP has been adapted for estimation tasks
with other modalities.

The attention mechanism can be expressed mathematically with the equations
5.3 from [98].
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Instead of performing the attention mechanism once, we propose considering
a parallelization of the attention function h times in different projected di-
mensions. The resulting MHA mechanism is represented in Figure 6.4 and
mathematically expressed as:

MHA(Q,K, V ) = concat(head1, . . . , headh)W0 (6.11)

with headi = Attention(QWQ
i ,KW

K
i , V WiV )

With W j
i being the parameter matrice or weight of the ith head and jth input

matrix and h being the number of heads.

Recent works have also shown that it is possible to consider these architectures
for modality combination or fusion. Some of them have presented encouraging
results in the combination of images and LiDAR view [130], visual, acoustic
and linguistic modalities for emotion recognition and sentiment analysis [131],
or audio and visual modalities for emotion estimation [132,133].

For this thesis, Equation 5.3 and 6.11 defined above have been re-expressed to
suit the paradigm studied. The resulting equations are:

MHA(EEEG, EPhy) = concat(A1, . . . , Ah)W0 (6.12)

with Ai = Attention(EEEGW
EEG

i , EEEGW
EEG

i , EPhyW
Phy

i )

As seen in Eq. 6.12, the modalities are combined with the help of the attention
mechanism.

In addition to providing encouraging results in other fields, the use of MHA
based fusion is motivated by its ability to capture the relationship between se-
quential signals with the help of the attention mechanism. Compared to exist-
ing methods based on RNNs, the strength of this approach is that transformers
take into account the information regardless of its position in the sequence. In
contrast, conventional approaches capture only the recurrence between con-
secutive elements. Therefore, elements are processed differently based on their
relative/mutual distance in the sequence (two elements far from each other
will be processed differently than two neighbour elements with RNNs).
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6.4 Results

6.4.1 Experimental details

In the experiments, three different datasets have been used. These datasets
are composed of EEG signals recorded with a specific experimental proce-
dure following particular conditions. In addition, each dataset is composed of
physiological recordings representing other aspects of the experimentation.

The differences between datasets consist of the number of considered electrodes
during the recording, the nature of the additional physiological signals, and the
proceeding task during which the signals have been recorded. The considered
datasets are:

• DEAP [44] assessing emotion during the recording of EEG, EOG, EMG,
GSR.

• SEED-VIG [34] assessing vigilance during the driving task with eye-
tracking signals, EEG and EOG signals are recorded during the study.

• PhyDAA [49] assessing attention in VR based on eye-tracking signals.
The recording procedure is described in Chapter 2. This dataset proposed
the joint recording of EEG and physiological signals consisting of heading
movement and eye-tracking signals.

These datasets are described more in detail in Chapter 3.

Due to the number of experiments and datasets considered for our experiment,
we decided to present the results for each dataset separately. For clarity,
the same nomenclature and acronyms will be kept as in this sections. EEG
and Phy correspond to estimation from only EEG signals and physiological
signals. Among the direct operation, Concat, CBP and Mult respectively
correspond to concatenation, compact bilinear pooling and multiplication of
the embedded vectors. Finally, FiLM and MHA correspond to the feature-wise
linear modulation and multi-head attention-based fusion.

6.4.2 Attention estimation

An interesting task on which our method can be tested is that of attention
estimation. The datasets proposing this task consider EEGs with other modal-
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ities registered during task promoting attention. The goal is to estimate the
attention class, i.e. focused vs distracted. For this purpose, we consider the
PhyDAA dataset [49] proposing EEG and physiological signals (corresponding
to eye-tracking and head position) to estimate attentional state during a task
promoting selective and sustained attention state in VR. In this section, the
ability of the model to predict a high (resp. low) attention state will be mea-
sured, and subject-dependent and independent cross-validation as explained
in Subsection 3.2.3 accuracy will be used to measure the model’s ability to
combine modalities efficiently.

Table 6.1 provides the results of attention estimation from fused modalities.
As seen in the table, the proposed methods to fuse modalities present higher
results than those considering modalities separately. Moreover, the results of
the proposed methods to combine information from several modalities present
better results than existing works in the state-of-the-art.

The first column of Table 6.1 presents the cross-validation accuracy for the
participant dependent study. As seen, the proposed methods’ results present
higher results than previous approaches based on GNN with a pooling opera-

Accuracy Dep. Accuracy Ind.

GNN [49] 77.3/10.3 72.4/5.51

CNN [73] 73.9/9.8 70.4/6.9

EEG 74.1/7.6 71.8/7.1

Phy 72.1/8.6 61.8/6.9

Concat 81.1/8.8 72.4/4.6

CBP 78.3/8.3 71.2/5.6

Mult 78.2/8.4 71.2/5.5

FiLM 82.2/8.3 73.6/6.8

MHA 84.6/6.9 76.9/4.9

Table 6.1. Classification performance of the different methods considering partici-
pant dependent and independent cross-validation accuracy on the Phy-
DAA dataset [49]. The results above the bold line correspond to the
state-of-the-art models. The experimentation is performed for each par-
ticipant so the each metric is represented by its mean and standard de-
viation.
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tion to keep only the relevant nodes [49] and a CNN [73]. However, among the
proposed methodologies to fuse information, MHA is the approach presenting
the best results for attention estimation.

The second column of Table 6.1 presents the cross-validation accuracy for
the participant independent analysis. A similar observation can be inferred
for the subject independent study: the proposed approaches present higher
results than the existing methods, and the attention-based method for feature
fusion also acquire the best results.

Finally, the results above corroborate that MHA based fusion correctly com-
bines information from different modalities. Moreover, this method can also
predict attention from a smaller set of signals, i.e. subject dependent cross-
validation, and extrapolate information from never met subjects, i.e. subject
independent cross-validation.

6.4.3 Vigilance estimation

The second dataset for multimodal biomedical signal processing is SEED-
VIG [34] which is composed of EEG and EOG signals. This dataset studies
the vigilance state during a driving task, promoting sustained attention. The
task has been segmented into four seconds length segments, and for each of
them, a vigilance score between 0 and 1 corresponding to awake to asleep
has been computed. It corresponds to the PERCLOS score computed from
eye-tracking signals. The studied paradigm in this context corresponds to a
regression, the estimation being a score and not a class. Although the goal
is to predict the nearest possible score representing the vigilance state, the
original paper [34] also propose to consider the specific threshold to express
this problem as a classification.

Table 6.2 and 6.3 present the results obtained by our model to predict the
vigilance score from EEG and EOG recordings separately and with the five
propose approaches to merge information. Since the problem is now a regres-
sion problem. The considered metrics have been adapted: Root Mean Squared
Error (RMSE) and Correlation Coefficient (CORR) have been considered to
evaluate the prediction performance. As seen in both tables, the proposed
approaches perform well and obtain results compared to the state-of-the-art
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CORR RMSE

MAE [118] 0.85/0.06 0.094/0.030

SVR [34] 0.85/0.09 0.133/0.017

AE [86] 0.89/0.14 0.08/0.04

CapsAtt [84] 0.98/0.01 0.030/0.010

EEG 0.87/0.04 0.2/0.002

Phy 0.73/0.18 0.14/0.017

Concat 0.95/0.03 0.06/0.002

CBP 0.92/0.04 0.07/0.003

Mult 0.93/0.04 0.07/0.003

FiLM 0.95/0.03 0.063/0.002

MHA 0.97/0.03 0.062/0.001

Table 6.2. Vigilance prediction performance of the different methods considering
participant dependent cross-validation on SEED-VIG dataset [34]. The
results above the bold line correspond to the state-of-the-art models. The
experimentation is performed for each participant so the each metric is
represented by its mean and standard deviation.

methods for the subject-dependent and independent cross-validation. More-
over, the proposed fusion methods also present better results than signals
taken separately.

CORR RMSE

ADDA [115] 0.84/0.13 0.141/0.051

CapsAtt [84] 0.88/0.11 0.109/0.070

EEG 0.69/0.15 0.682/0.021

Phy 0.67/0.18 0.694/0.025

Concat 0.73/0.12 0.247/0.023

CBP 0.91/0.06 0.221/0.023

Mult 0.93/0.04 0.23/0.024

FiLM 0.73/0.18 0.22/0.031

MHA 0.95/0.03 0.2/0.025

Table 6.3. Vigilance prediction performance of the different methods considering
participant independent cross-validation on the SEED-VIG dataset [34].
The results above the bold line correspond to the state-of-the-art models.
The experimentation is performed for each participant so the each metric
is represented by its mean and standard deviation.
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The subject-dependent estimation results are presented in Table 6.2. The
proposed approach based on MHA presents a lower error rate represented by
the RMSE compared to other proposed approaches. The previous works are
constituted by Multimodal AE [118], Support Vector Regression [34], AE [86]
and Capsule Attention Networks [84] presenting the best results for vigilance
estimation on SEED-VIG dataset. Although the model performs well with a
low error rate, a slightly lower CORR is shown for our best approach compared
with previous methods. However, their standard deviation makes the two
cross-validation correlations overlap, which makes these improvements non-
significant. Given the results of Table 6.2, it is possible to affirm that the
proposed methods can estimate vigilance from a single participant given its
EEG, EOG or both. Moreover, the proposed approaches present non-negligible
improvements compared to single modality methods.

Table 6.3 presents the results for the participant-independent cross-validation
metrics. The results obtained during the participant-independent validation
are lower due to the relatively more complex task than a subject-dependent
study and the necessity of considering inter-subject variability in the esti-
mation process. In this context, the results from two previous works are
presented: Adversarial Discriminative Domain Adaptation for AE [115], and
Capsule Attention Networks [84]. The best results for the subject-dependent
analysis are also acquired for the second approach. The lower amount of work
considering subject-independent results is explained by the higher computa-
tional cost that this cross-validation method presents: with this methodology,
the training is repeated for each participant, and the resulting training set is
nsubject− 1 times bigger than for the subject dependent analysis, with nsubject
being the number of the participant taking part to the study. Table 6.3 shows
that the results obtained by the proposed approaches outperform the results
for estimation from a single modality. Moreover, MHA based method presents
the best results outperforming other experiments. These results prove that
most proposed approaches can take the relevant information from participants’
signals and make estimations from unseen participants.

As mentioned above, it is possible to re-express the regression as a classification
task. As noted in the dataset’s original paper: a score below 0.35 can be
considered awake, between 0.35 and 0.7 as tired and above 0.7 as drowsy. Thus
by considering these two thresholds, it is possible to re-express the regression
problem as a classification task. The thresholds have been applied to each
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Figure 6.5. Confusion matrix regression/Classification. Confusion matrix from the
regressed predictions, black dots represent the discrete prediction and
ground truth values between 0 and 1. Boxes represent the density of
the predicted and truth classes inferred from regression.

method, and the resulting accuracy reflects the same behaviour as the RMSE
and CORR: a higher accuracy is denoted for merging methods compared to
single modality methods. Moreover, the best results are obtained with MHA
for the subject (in)dependent cross-validation with an accuracy of 91.48/5.33
(64.29/8.32). Figure 6.5 gives the dual representation of information with dots
representing the discrete estimation and the boxes representing the predicted
and ground-truth classes, i.e. awake, tired and drowsy. One of the advantages,
in addition to good predictions, is that wrong forecasts remain near ground
truth, i.e. no predictions of a drowsy state were made from awake signals.
Therefore, in addition to giving accurate predictions, the errors made by the
model remain very low.

6.4.4 Emotion estimation

The emotional task consists of estimating an emotional state from physiologi-
cal signals. Moreover, emotion can be represented into a three axis coordinate
frame, each representing a metric of the emotional state: arousal (i.e. excita-
tion to disinterest), valence (i.e. pleasant to unpleasant) and dominance. In
this context, it was decided to measure our approach’s ability to estimate a
high (resp. low) score for each metric (i.e. low versus high arousal, valence or
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valence arousal dominance mean

Inception [114] 86.6 84.7 - -

SAE [119] - 65.9 78.1 -

DCCA [121] - 84.3 - 85.6

EEG 79.4/23.5 82.2/23.9 84.9/22.1 82.1/23.3

Phy 78.4/22.9 83.6/26.6 84.4/24.6 88.1/20.3

Concat 82.5/23.9 88.5/18.4 84.1/9.9 88.4/18.9

CBP 87.2/21.7 87.1/19.2 88.1/22.8 87.4/21.3

Mult 88.1/18.9 83.3/20.8 84.1/21.7 86.1/19.8

FiLM 87.8/21.5 87.9/18.4 88.7/20.9 84.8/23.7

MHA 90.6/15.6 91.6/21.7 86.8/23.2 89.2/23.2

Table 6.4. Classification performance of the different methods considering
participant-dependent cross-validation accuracy on the DEAP dataset
[44]. The results above the bold line correspond to the state-of-the-art
models. The experimentation is performed for each participant so the
each metric is represented by its mean and standard deviation.

dominance) and a mean score in the case where all the metrics are estimated
simultaneously.

As seen in Table 6.4 and 6.5, the proposed methods to merge information from
different modalities present higher results compared to considering each modal-
ity separately. Moreover, the results presented by the model proposed are gen-
erally higher than the ones proposed by the existing approach. This insight is
observed for both participant-dependent and independent cross-validation.

Table 6.4 presents the results for the participant-dependent training. The
best valence, arousal, and mean results are obtained by the MHA approach
corresponding to the attention-based fusion. The second best results are ob-
tained by the FiLM based approach. Although the methods result in a similar
ranges of values, these generally perform at least equal or better compared to
approaches proposed by the state-of-the-art. A recurring issue is that previous
works mainly focus on estimating one or two metrics from the DEAP dataset.
For this reason, it was decided to present results from several earlier works
to present a fair comparison with state-of-the-art methods: InceptionResnet
model [114] estimating valence and arousal; Stacked AE [119] presenting fea-
ture fusion for arousal and dominance estimation; the Deep Canonical Corre-
lation Analysis based approach that proposed the arousal and general emotion
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valence arousal dominance mean

Inception [114] - - - 32.5/15.6

DFKM [120] 64.5 63.1 - -

MSD [134] - - 77.6

EEG 77.3/5.5 79.2/9.9 78.6/7.3 78.4/7.8

Phy 74.8/3.2 75.3/5.2 77.4/8.4 78.5/6.1

Concat 79.6/5.3 80.9/6.5 79.9/9.9 80.1/7.5

CBP 79.9/7.5 78.5/5.6 80.5/10.6 79.7/8.2

Mult 79.9/5.1 81.5/6.5 81.1/9.4 80.9/7.3

FiLM 78.6/5.1 79.2/7.3 79.8/9.5 79.2/7.5

MHA 79.9/4.1 81.2/6.9 81.8/8.9 80.9/7.2

Table 6.5. Classification performance of the different methods considering partic-
ipant independent cross-validation accuracy on the DEAP dataset [44].
The results above the bold line correspond to the state-of-the-art models.
The experimentation is performed for each participant so the each metric
is represented by its mean and standard deviation.

estimation from both signals. The results of Table 6.4 corroborates that most
of the proposed approaches perform well for feature fusion in the context of
subject-dependent studies.

Table 6.5 proposes a similar analysis for the subject-independent study. Participant-
independent estimation is generally more complex than participant-dependent
due to the variability in biomedical signals with the chosen participant. How-
ever, results also outperform previous works. Similarly, the best results are
proposed by MHA. However, the proposed methods do not provide the score
for all the metrics of DEAP dataset. For this reason, several previous works
have been considered: InceptionResnet model [114], Deep Fusion Kernel Ma-
chine [120] and Multi-Stage Decision Method [134]. The results of Table 6.5
also corroborate that most of the proposed approaches perform well in gener-
alizing for participants’ signals they have never met.

In addition to the raw results presented by Tables 6.4 and 6.5, a comparative
study can also be made to investigate the differences between the proposed
approaches. Similarly, for the model-based comparison, the study has been
performed for the estimation of valence, arousal and dominance and the mean
estimation. This experiment is also made for participant-dependent and inde-
pendent cross-validation.
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As seen in Table 6.4, the unimodal approach, i.e. considering only physiolog-
ical signals or EEG signals, present lower results compared to the merged ap-
proaches. Although the results remain pretty good, no trend is noted from the
standard deviation, which does not bring out a specific model stability com-
pared to others. It confirms the assumption that considering several modali-
ties, each reflecting particular behaviours instead of a single one, helps forecast
this specific behaviour. Moreover, the MHA feature fusion method seems to be
an interesting approach for feature fusion, given its relatively high performance
compared to other methods.

From Table 6.5, more detailed observations can be made. The hypothesis
regarding the signals separately or merged is likewise confirmed. However,
where a trend was observed for participants-dependent analysis, it is impos-
sible to identify a methodology outperforming other approaches. The greater
difficulty of participant-independent analysis can explain this difference with
an intra-subject validation. No comparison is also possible for the model sta-
bility, the standard deviation of each model overlapping each other. However,
a lower standard deviation is observed for the participant-independent meth-
ods (four times lower). This insight could be explained by the fact that more
signals have been considered for this analysis compared to subject-dependent
analysis.

6.5 Conclusion

In this chapter, we first presented the existing approaches and the gaps for mul-
timodal analysis of neurophysiological signals. From the observations, three
novel methods have been designed: Compact Bilinear Pooling (CBP), Feature-
wise Linear Modulation (FiLM) and Multi-Head Attention (MHA).

The three methods have been trained and validated on three public datasets,
and the results obtained corroborate the fact that considering a more complex
approach to fuse EEGs with other signals can be benefic for various tasks:
attention, vigilance and emotion estimation. Finally, the MHA based method
provides the best results for all the tasks and the cross-validation methods.
MHA also outperforms the results of previous works.
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As mentioned in the previous chapters, EEGs are rarely processed directly in
DL models. Moreover, several approaches to extract information from EEG
signals have been developed. These feature vectors are deduced from the time,
frequency or space properties. Although these approaches suit various appli-
cations, the evolution of DL techniques has demonstrated that handcrafted
feature extraction from modalities presents several limitations that can be
overcome with the use of DL pipelines. For this reason, it has been decided to
investigate the design of such approaches with a specific learning methodology.

This chapter first introduces the concept of Self-Supervised Learning (SSL)
in Section 7.1. The related works considering SSL for EEG processing are
presented in Section 7.2. Based on the limitations of previous works, the
proposed methodology for SSL processing is presented in 7.3 with the results
of the preliminary study in Section 7.4.

7.1 Introduction

For some years now, DL algorithms have proven their supremacy to solve
tasks automatically and sometimes even better than humans. The scope of
these last is huge: computer vision, natural language processing (NLP), speech
recognition, image generation or biomedical signal processing. Even if these
algorithms present encouraging results, several concerns remain: how to en-
sure that the model is learning and if so, is the learning based on relevant
and unbiased information? [4, 135] Moreover, is it appropriate to consider su-
pervised methods to train these models (i.e. by showing a large number of
examples to the model to make it reproduce them), while it is not the case in
the nature for animals and humans babies?

In this context, we decided to consider the use of recent methods to train
algorithms to promote a better understanding of information. This new learn-
ing approach, called Self-Supervised Learning (SSL), aims to put forward the
understanding of the information by the model prior to make it reproduce
example.

Another important aspect of this approach is the separation of the learning
into two steps: the pretext and downstream tasks. The pretext task is the
first step where some basic knowledge is learned with SSL algorithms. The
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tasks can take various forms: solving a jigsaw puzzle from images [136], esti-
mating rotation from images or the relative position of patches [137]. Novel
methodologies propose to evaluate clusters to which the vector representa-
tion create by DL architecture can belong, these clusters being computed in
previous steps and automatically updated [128, 138]. After considering the
pre-trained pipeline resulting in the pretext task, it is possible to re-use the
part aiming to extract features from the modalities during the downstream
task. The pipeline is re-used to proceed to a supervised learning task. The
aggregated knowledge from the pretext tasks can thus be re-used to improve
the learning during the downstream task.

Other pretext tasks often developed consist of processing to an attraction or
repeal mechanism between feature vectors [139, 140], these vectors are auto-
matically computed from a DL model called backbone. This attraction (resp.
repeal) mechanism consists of teaching the model to create feature vectors
with a mathematical high (resp. low) similarity. The goal of this task is to
attract two embedded vectors from the same images, video or sound after dif-
ferent modifications (e.g. rotation or cropping) and to repeal the ones being
the transformation of other inputs. This problem can be re-expressed as an
optimization problem where the goal is to decrease a contrastive loss between
two transformations of a given modality x respectively z1 and z2 computed
as [139]:

l(z1, z2) = −log

(
exp(sim(z1, z2))∑2N

k=1 1[k 6=1] exp(sim(z1, zk)/τ)

)
(7.1)

with sim(zi, zj) being a similarity function, e.g. the cosine similarity function
shown in Equation 7.2. The Function 1[k 6=i] is an indicator function equal to 1

for each index except the ith, and τ is the temperature parameter controlling
the penalty of the negatives samples [141] fixed to 0.1 in several implementa-
tions.

sim(z1, z2) =
z1
tz2

||z1||||z2||
(7.2)
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7.2 Related Work

Self-Supervised Learning (SSL) is a recent concept initially dedicated to pro-
cessing images-based modalities. However, recent works have emerged and
present the use of SSL for EEG processing.

Banville et al. [142] propose a novel approach for processing of EEGs based on
SSL algorithms. Their methodology considers pretext tasks aiming to predict
if a temporal window is temporally close (i.e. the difference between both
recording times is lower than a predefined threshold) or far (i.e. time difference
is higher than the given threshold). Their approach assumes that the signals’
representations should evolve slowly with time [143]. The pretraining has
been performed on the TUH Abnormal Dataset [144] composed of more than
a year of EEG recordings. The resulting trained backbone for automatic EEG
feature extraction is then re-used to predict sleeping stage from EEGs [48].
Their approach presents promising results and proofs that SSL methods can
be applied for EEG signal processing, especially to create a general feature
extraction backbone. However, it can be seen as näıve due the fact that it is
only processing the temporal evolution of EEG signals (frequency properties
and electrode location are not taken into account during the training).

In 2019, Baevski et al. [102] presented wav2vec 2.0, a model based on the
transformer to process speech signals. The motivation behind this considera-
tion is the fact that speech signals can be expressed, like EEGs, as temporal
series of unique dimensions (the only difference being that EEG signals can be
recorded on several regions of the brain considering them as a set of time series
instead of a unique one). In addition to this new architecture, an innovative
training methodology is also proposed. It implements a contrastive training
between feature vectors extracted from transformer with masked part of the
signal. The advantage of wav2vec pointed out by the authors is that one hour
of label speech data can be enough to fine-tune the model and beat any state-
of-the-art methods. From this promising approach, Kostas et al. [145] adapted
this model and its specific pretraining methodology to EEG signal. They kept
the wav2vec backbone [102] and fine-tuned it with the TUEG dataset [144].
Their method has been tested on the same downstream task for sleeping-stages
estimation [48] and other public EEG dataset [47]. Their approach corrobo-
rates that SSL learning can be leveraged to create a general backbone for EEG
feature extraction. Although the presented results are very encouraging, this
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method is not considering other signal properties than its temporal evolution.
Moreover, even if EEG signals are represented as 1-D vectors, they present
differences from speech signals: they have different spectral properties and are
more difficult to separate into discrete segments (e.g. the word in NLP or
speech units in speech signals).

In this context, it was essential to consider the pros and cons of creating a
method to extract features from raw signals based on SSL. The novel approach
processes the properties and specific aspects of the EEGs.

7.3 Methodology

In this section, we proposee our approach for automatically extracting feature
vectors from EEG signals.

7.3.1 Architecture

Due to the lack of baseline networks to extract features from raw EEGs, unlike
to well-known image dedicated networks, e.g. ResNet [26]. We propose a
general DL approach to extract feature vectors from EEGs.

To consider the most generalist and simple architecture, it has been decided to
design a VGG-liked architecture [25] inspired from previous works [81,102,142].
This architecture is considering 1-D convolutions layers applied sequentially
on each EEGs segments resulting to one feature vector for each EEG segment
of one electrode. Moreover, to promote the use of this model with the various
datasets, the convolution among the dimension of the electrode have been
removed from this architecture to keep a more general model.

As mentioned, the main idea is to create a novel backbone that automatically
extracts a feature vector from raw EEG signals, this feature vector corre-
sponding to the resulted embedding from our VGG architecture after the SSL
pretext task.
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7.3.2 Pretexts tasks

At first, we consider pretext tasks to train the feature extractor or backbone
to process EEG signals. Recent works [139, 140] have shown that applying
first a pretext task presents better results for the knowledge transfer during
the downstream task (i.e. classification or regression).

In this context, instead of pretraining the architecture described above in a
supervised manner, we decided to teach the backbone how to analyze EEG
signals instead. This was done by designing tasks based on the EEG sig-
nal’ properties, i.e., their temporal evolution, frequency-based properties and
electrode location.

In the transfer learning context, this step aims at helping the knowledge trans-
fer to classify signals from another dataset.

Time-domain task

Given an EEG signal x, a jigsaw version of this signal can be created. The
jigsaw EEG xswapped corresponds to a swapped version of the original signal
x in the temporal domain. To create xswapped, the original signal x is first
augmented with data augmentation methods s(presented in Subsection 7.3.3)
and segmented into nwindows (of duration equal to 0.8 s). The corresponding
windows are then randomly sorted and concatenated to create the temporally
swapped signal. An overlap has been considered for shared signals between
windows to keep information between temporal windows.

The time-related task predicts the original sequence from the temporally trans-
formed signal. Concretely, this task sorts the windows that been randomly
shuffled in the correct order. This task can also be considered a classification
task consisting of predicting the proper order among the nwindows!. Concretely,
if the model estimates a wrong prediction with a part of the correct informa-
tion (i.e. partially predicting the sequence), it is computed as similar to a
random prediction without any predicted windows at the right position. It is
explained by the fact that during the learning process, the network can only
predict right or wrong sequence, and not a partially right sequence. The draw-
back with this method is that it only promoted the accurate forecast versus
wrong and did not differentiate among the errors that can appear. For this
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Figure 7.1. Time-domain task for SSL. On the left, the original signal is divided
into time windows on the right, the windows are shuffled in random
positions.

reason, the similarity between the predicted order and the order of the true
windows has been considered, and a similarity loss has also been implemented.
The loss corresponding to the temporal task can thus be summarized as:

Losstemporal(y, ŷ) = Lossclassification(y, ŷ) + Losssimilarity(y, ŷ) (7.3)

with Lossclassification a classical cross-enropy, Losssimilarity equal to the in-
verse of the cosine similarity, y and ŷ the ground-truth and predicted sequence
order.

Frequency-domain task

After the temporally modified EEG signal xswapped, we decide to also take into
account the spectral information located in EEG signal x. Given this signal
x, it is possible to compute the PSD representing the signal contributions
in each frequency range. The corresponding periodogram Pf is computed
from the squared absolute value of Discrete Fourier Transform (DFT) for each
frequency ff , i.e. Pf = |DFT(x)|2 at the frequency ff . Finally, with this
information, a harmonic reconstruction of the signal x is computed as:

xharm(t) =
N∑
i

Pi ∗ sin(2πfit) (7.4)
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Figure 7.2. Frequency Task for SSL. Representation of the pipeline for the
frequency-related task: on the left the original signal, in the centre its
decomposition into harmonics and on the right the resulting harmonic
reconstruction.

After computing the xharm, the goal of the spectral task is to proceed to the
attraction between x and its harmonic representation xharm. The correspond-
ing signal aims at representing its contribution to the spectral domain. The
repeal mechanism was applied between the harmonics and different signals
with the similar process (in this case the denominator of Equation 7.1 was
smaller than the numerator that makes high value for the contrastive loss).
To proceed with this task, the contrastive loss presented in Equation 7.1 has
been adapted to suit the signals.

Spatial-domain task

In addition to the time and frequency information located among EEG sig-
nals, it is possible to process electrodes’ positions on the scalp as a source
of information for EEG signal processing. In previous work, several meth-
ods considering this type of information by selecting the relevant channels or
making spatial-based filtering have presented promising results [17].

The idea was to adapt the advances proposed by the SSL approach in com-
puter vision [139, 140] to EEG signal processing. As mentioned, these ap-
proaches perform an attraction and repeal mechanism with similar elements
after modification or augmentation of the information. Two elements can thus
be considered similar if they were the transformed version of the same image
in the case of computer vision task. A repeal mechanism is made between
patches from different images. In the context of EEG, we designed a similar
approach by attracting the embedded vectors from the same EEG trial (i.e.
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Figure 7.3. 3-D representation of mask with respect to the F8 electrode for spa-
tially weighted loss for the Spatial Task. Reder (resp. bluer) are elec-
trodes, higher (resp. lower) is the attraction/repeal mechanism during
the training between the feature vectors from these electrodes and F8.

signals recorded at the same time but from different electrodes), respectively
repealing embedded vectors from different EEG trials.

Given two EEG signals x1, x2 of dimensions [nelectrodes×sduration] with nelectrodes
and sduration being the amount of electrodes and signal length in samples, it is
possible to construct two augmented version of these EEG signals x̃1, x̃2. After
passing the signals into the same backbone, the signals can be re-expressed
as two embedded vectors z1 and z2 of dimensions [nelectrodes × dembedded] with
dembedded being the dimension of the resulting embedded vector. The embed-
ded vectors can also be considered as a set of signals, one for each channel:
zi = [z1i , z

2
i , . . . , z

nelectrodes
i ].

From the above-described signal representation, an attraction and repeal mech-
anism is applied with the contrastive loss function described in Equation 7.1.
However, the formula has been slightly modified to introduce information from
the relative position of electrodes. The equation remains the same except that
the indicator 1[k 6=i] is replaced by a scalar matrix G = Gi,j multiplying the
exp(sim(zi, zj)/τ) term:

l(z1, z2) = −log

(
exp(sim(z1, z2))∑2N

k=1Gik exp(sim(z1, zk)/τ)

)
(7.5)
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The elements of the scalar matrix elements are in the range ∈ [0, 1], depending
on the normalized distance between the signal from the ith and jth electrode.
A 3D representation of this matrice is given in Figure 7.3.

Concretely, with the channel weighted loss, the signals from various electrodes
belonging to the same EEG trial are attracted proportionally to the distance
between the electrodes, i.e. two spatially close electrodes will be more at-
tracted than two electrodes with a higher distance separating them. The
process is repeated and reversed for the repeal mechanism: two electrodes’
signals belonging to different EEG segments will be repealed proportionally
to the distance separating them. In other words, two signals from the same
electrodes but different EEG trials will be more repealed compared to two
electrodes’ signals from electrodes further from each other.

7.3.3 Dataset augmentation

During both pretext and downstream tasks, we decided to consider a data
augmentation policy to help the network generalize and be more robust against
overfitting issues. This process aims at proposing to the network a different
version of EEG signals with the same properties.

Three tasks have been applied in this work, each of them considering one of the
specific aspects of EEG signals: temporal (among time), frequency (among the
spectral bands) and spatial (among the location of the electrodes on the scalp).
In this context, it has been necessary to design data augmentation methods
that will not impact the properties of the signals regarding the task. Indeed,
we decided to consider two categories of augmentation: time conservative
augmentation keeping the temporal properties of the signal and frequency
conservative keeping the frequency-related properties.

Time conservative data augmentations are listed as:

• Local Mean Assignation: assigning each elements of a signal’s segment
randomly choosen, the mean value of the signal in this window.

• Signal inversion: consists of multiplying the signals by -1.

• Random crops: consists of cropping the signal at a ratio of 80% randomly
on the signal. This step consists to only keep a segment of length equal
to 80% of the original signal length and to remove the border.
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• Noise addition: consists of adding snoise following a gaussian distribution
with a zero mean and standard deviation ratio between signal and noise
equal to 100.

Frequency conservative data augmentation is similar to previously proposed
methods described above with two specificities:

• Local Mean Assignation: assigning each elements of a signal’s segment
randomly choosen, the mean value of the signal in this window.

• Signal inversion: consists of multiplying the signals by -1.

• Random crops: consists of cropping the signal at a ratio of 80% randomly
on the signal. This step consists to only keep a segment of length equal
to 80% of the original signal length and to remove the border.

• Noise multiplication: consists of adding snoise following a gaussian dis-
tribution with a zero mean and standard deviation ratio between signal
and noise equal to 100.

• Random swapping: consists to the same process than for the time-domain
task except that it is used as a data augmentation with a number of
windows equal to 2.

7.3.4 Downstream task

To verify the performances of the backbone trained with SSL on the TUEG
Dataset [144], we envisaged to re-use the pre-trained backbone to perform a
classification task. The classification has been tested on three public datasets
considering motor imagery [47,146] and sleeping stage classification [48].

The datasets used for the experimentation present the following characteris-
tics:

• BCI competition 2008 - Graz dataset A [47] is a challenge from 2008
consisting to estimate the motor movements from EEG signals. The
dataset includes four classes: movement of right, left hand, tongue and
both feet.

• MMI [146] is another dataset for motor imagery movement. The dataset
is separated into three classes depending on the task: 1) resting state; 2)
left, right or both fists; 3) left, right or both feet.
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• Sleep-EDF [48] is a dataset that aims to classify the sleeping patterns or
hypnograms. The dataset is composed of EEG and Physiological record-
ings, i.e. EOG and chin EMG. However, the backbone being pre-trained
with EEG signals we decided to only keep the EEG signals.

The choice of these datasets is motivated by studying several aspects: the
effect of dataset size, electrode amount/placement and behaviour to estimate.
All of these aspects also have to be considered by keeping in mind that the
dataset is suitable and comparable for automatic estimation with raw signals,
a large amount of datasets only considering pre-extracted features [46,49].

7.4 Results

Table 7.1 presents the experimental results for the downstream task in various
contexts depending on the considered datasets and tasks performed during the
pretraining.

The first insight made from the observation of Table 7.1 is the improvements of
the results for the downstream tasks when combined with a pretext task. This
observation is repeated for each dataset and pretext task. This insight can be
explained by the fact that pretraining a model, even with another dataset, can
be helpful for better extraction of information from raw EEG.

Dataset
Supervised
Standalone

Dual Approach

Temporal Spectral Spatial Mixed

BCI [47]
4− classes

32.81/1.26 41.54/3.7 42.82/4.1 39.50/5.1 43.96/5.2

MMI [146]
3− classes

66.92/5.68 70.66/7.04 72.54/2.5 68.03/7.68 74.42/4.9

Sleeping-EDF [48]
5− classes

38.59/8.34 42.80/6.62 43.37/6.39 40.72/6.08 45.28/6.04

Table 7.1. Mean/standard deviation of the cross-validation accuracies for the down-
stream (ie classification) task for different datasets and with different
pretext tasks.
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In this experiment, we demonstrate that transferring knowledge from one EEG
dataset to another is possible. Moreover, it can also be generalized for the
dataset with other paradigms, tasks or acquisition procedures. This aspect
could help for various applications given many datasets with several hours of
recording that remain unused due to their poor labels.

In addition to this general observation, Table 7.1 also shows that aconsidering
the combination of all the pretext tasks instead of one in particular helps in
the processing of the downstream task. This can be explained by the large
spectrum of information covered by these tasks, the later analyzing the tem-
poral trend of the signal, its contribution to the frequency spectrum and the
spatial organization of the electrodes. However, a trend stands out for each
task: the spectral task seems to provide the best results, followed by the tem-
poral and the spatial task presenting the worst results (but still higher than
the supervised learning standalone). This aspect can be explained by the fact
that more information is located in the spectral evolution of the signal than
in another property, i.e. temporal or spatial. This is explained by the fact
that the considered datasets present tasks inducing oscillatory patterns in the
EEG signals. Moreover, it can explain that extracting spatial information
from EEGs remains a complex task due to the volume conductions effect.

Finally, another important aspect of this work is that it is generalizable for
several tasks. As shown in Table 7.1, the proposed approach presents improve-
ments when considering the downstream task for various paradigms. It can
therefore be applied to multiple cases.
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7.5 Conclusion

In this chapter, the notion of Self-Supervised Learning (SSL) has first been
introduced. Then the advances presented in several DL techniques in recent
years have been listed, after which the existing models considering SSL for
EEG signals processing have been presented.

From the observations, SSL-EEG approaches to design models for EEG dimen-
sion reduction has been developed. Although this novel method is not able
to replace all the handcrafted feature extraction approaches for EEG signals
processing, it has shown encouraging results, and several insights can be made
from this first study: 1) SSL promotes better results than a supervised learn-
ing standalone with raw signals; 2) Training a DL model with SSL method
helps the model to better process the signals based on their properties; 3) SSL
allows the transfer learning between datasets and tasks.



Conclusion

Assessing attention in various contexts with the help of physiological signals
could have several benefits in various fields. For instance, to help in the di-
agnosis and symptoms assessment of attention-related disorders, for vigilance
estimation during specific task (e.g. driving), in entertainment, but also in
many other applications. Undoubtedly, being able to assess attention with
the help of novel DL-based methods could allow for improvements in many
people’s lives.

In addition to the medical aspect, artificial intelligence has known a revolution
during the 2010s with the innovations provided by DL. These innovations
led to advances in various fields, including in signal processing and lately in
biomedical signal processing.

It is in the above-described circumstances that this thesis was born. As ini-
tially defined, the research project aimed at applying AI for studying attention
in VR with the help of physiological signals, including EEG and eye-tracking
signals.

Concretely, it was possible to divide the project into four milestones:

• Designing VR environments promoting various levels of attention, e.g.
focused or distracted.

• Acquiring a corpus of EEG and eye-tracking signals in VR during attention-
related tasks.

• Characterizing attention state from physiological signals with the help of
novel DL methods.

• Developing a proof of concept video-game reacting with attention state.

These milestones have taken place sequentially during the three years of this
PhD from September 2019 to August 2022. As explained in the introduction,
the initial goal was to study the attention state of specific subgroups of par-

— 121 —
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ticipants, i.e. children between 8-12 years old with specific ADHD symptoms.
However, due to COVID restrictions for enrolling children in or experiments,
the thesis has been redirected to study a more general group of healthy par-
ticipants aged between 18 and 30.

Contributions

As mentioned, four milestones have been noticed for the accomplishment of
this thesis. In this context, the main contributions of this PhD work are
related to the abeovementioned milsones and can be summerized as follows.

Virtual Environments Recording Attention (VERA) [147] - Although
VR has been often used for research, most available VR environments for
attention assessment consist in VR classroom setups. In our research, we
have considered the creation of VR environments representing everyday life
scenarios. Two neurophysiological tasks designed by specialists have been
adapted to VR to assess attention. The resulting environments in this context
are freely accessible online to promote research in the field1.

Physiological Dataset Assessing Attention (PhyDAA) [49] - It exists
a large variety of datasets providing EEG signals during various tasks. In
this thesis, a corpus of EEG and eye-tracking signals have been registered
for the the assessment of attentional state in VR. This novel corpus aims at
solving the lack of existing works providing physiological signals recorded in
VR during tasks promoting attention. Several advances are proposed by this
novel corpus: physiological signals assigned to an attention score; a dataset
recorded in VR; the joint measurement of EEGs with a biomedical recorder
and eye-tracking signals. The signals recorded in VR for the 32 participants
are freely available online (but subject to EULA)2.

Attention estimation from EEG - four majors advances for DL-based
analysis of EEG signals have been presented in this thesis [73,148–150].

1https://github.com/VDelv/VERA
2https://zenodo.org/record/4558990

https://github.com/VDelv/VERA
https://zenodo.org/record/4558990
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A novel approach to represent EEG segments by considering their frequency,
time and space properties has been designed. An analysis of the most critical
aspects of the signals has also been proposed.

Several DL models specially dedicated to EEG signals or their resulting feature
maps have been proposed: Hierarchical-Recurrent Neural Network (H-RNN),
combined H-RNN-CNN with saliency-based fusion [148] and Transformer [149].

Three novel approaches have also been proposed to fuse EEG and physiological
signals. The existing approach processed these signals separately or considered
näıve based methods to merge the information. Novel methods based on
Compact Bilinear Pooling (CBP), Feature-wise Linear Modulation (FiLM)
and Multi-Head Attention (MHA) have been developed.

Finally, experimentations using novel learning techniques specially dedicated
to EEGs have been performed. This novel technique aims to learn the model
how to process the signals instead of näıvely reproducing examples to make
classification or regression. The latter is based on Self-Supervised Learning
(SSL).

An application with attention assessment - a demo appplication in which
attention assessment could be useful has been developed, with the help of the
insights made for EEG signals processing. We hope that further works will be
made on the prototype to deploy it.

The contributions mentioned above have led to several publications (see Ap-
pendix B) to promote the works in the scientific community and to confront
our-self with peers.

Perspectives

From the contributions of this PhD, several further directions can be inferred.
Among the existing further works, we propose five directions for future works:

• Study of attention for other groups: as previously mentioned, the initial
goal of this thesis was to work with pathological participants. It would be
interesting to consider attention estimation and study from physiological
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signals of children with ADHD. Signal processing pipeline presented in
this work can be kept.

• Transfering insights and knowledge to other paradigms: based on the
findings made during this PhD, it could be interesting to study their im-
plementation for different tasks or paradigms, for instance, by considering
our DL approaches for the processing EEG recordings for other detec-
tion or classification of symptoms and diseases (e.g. Alzheimer epileptic
seizure detection, or sleeping stage classification).

• Pursuing the analysis of SSL for EEGs: SSL being an increaslingly hot
research topic, it could be interesting to do further works to test novel
SSL tasks and/or adapt recent results for 1-D signal analysis [128].

• Validation of the proof of concept: from the prototype video game pre-
sented in this thesis, it could be interesting to consider a more extensive
study to analyze its effect on participant attention state. The video game
could be a great help for the regulation of attention loss.

• Considering a general DL pipeline for EEG processing: as it is the case for
other modalities, e.g. BERT for text translation [99], or ResNet for image
processing [26], it could be interesting to work on novel architectures or
improve the ones proposed in this thesis to suit with EEG in various
contexts, i.e. signal duration or the number of channels. This perspective
aims to create a novel and general pipeline for the automatic analysis of
EEG signals.



Appendix A

A Proof of Concept: Attention Rythm
Video Game

To consider a concrete application for the research presented in this thesis, we
envisaged developing a HCI interface reacting to the participant’s attention.
The goal of this application would be to propose a video game responding to
the attentional state through rewards (resp. motivations) during high (resp.
low) engagement.

In this chapter, the previous application evolving with attention state will be
presented in Section A.2. Then the followed process to create our proof of con-
cept will be presented in Section A.3. Finally, further works and perspectives
related to this prototype will be proposed in Section A.4.

A.1 Introduction

Creating an application able to estimate and/or evolve with the participant’s
attention state is a very challenging task. An application able to measure
attention state could help in various fields:

• Entertainment by designing tools that can be deployed for everyone and
everywhere. These applications could help to drive a drone, for medita-
tion or improve attention-related skills in a non-medical environment.

• Symptoms assessment & diagnosis of attention-related disorder with the
help of physiological measurements. As seen in previous works, BCI have
already been applied to assess and detect specific symptoms. It can be
useful for the help of diagnosis or treatment of particular disorders.
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• Marketing and Neuromarketing applications aiming to better target needs
with the help of physiological signals. BCI has also been designed in this
context with applications, for instance, predicting premature video skip-
ping from EEG signals.

After working on the signal analysis pipeline aiming to estimate attention state
from EEGs, developing an application to export and mobilize the knowledge
gained during this thesis is proposed.

An essential point in the development of BCI is dedicated to neurofeedback.
As previously explained, biofeedbacks are applications displaying physiological
signals in a more understandable form, e.g. a bubble with its size evolving
with the heart rate [151]. Neurofeedback is a specific category of biofeedbacks
where the considered measurements represent the brain activity.

In the context of attention estimation from EEGs, the development of neuro-
feedback evolving with the attention state could have benefits. It can reduce
symptoms of specific disorders without a daily intake of medication which is
a stumbling block, especially for children.

Thus, for all of these motivations, we thought to consider developing an ap-
plication able to assess and react to the participants’ attentional state.

A.2 Related Work

This section presents some related works proposing a prototype to increase or
assess attention. The common point of the methods is that they all consider
EEG as physiological signals. The resulting BCI can be considered passive or
active depending on whether the signals are processed online and if feedbacks
are given after the processing of the task.

In their work, Kosmyna and Maes [36] propose AttentivU an active BCI to
estimate attention from peripherical EEG. The attention assessment is based
on an engagement score E computed as:

E =
β

α+ θ
(A.1)
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with β, α and θ corresponding to the signal mean power spectral density in the
chosen spectral bands as described in Figure 1.5. As a reminder, frequency
bands are related to specific behaviour in EEGs, e.g. δ is increased during
sleeping or beta during motor movements. During the experiment, the partic-
ipants are asked to watch a video on several general subjects (DNA, Bitcoins
and Neural Networks), and a stimulus (corresponding to vibration in a scarf)
occurs during the loss of engagement. The study considers 48 participants
split into three groups: 1) Feedback related to engagement score; 2) Random
feedback; 3) No feedback. The study shows that participants who receive the
correct feedback present a higher mean score on the questionnaire following
the videos than other groups.

Zheng et al. [34] present a vigilance estimator during driving task based on
joint EEG and EOG recording. The goal of the prototype is to record signals
to retrieve an engagement score based on the PERCLOS index computed as:

PERCLOS =
blink + CLOS

blink + fixation+ saccade+ CLOS
(A.2)

with blink, CLOS, fixation and saccade respectively representing the dura-
tion of blinking time, closed eyes, fixation and ocular saccades. At the time
of writing this thesis, the authors have only presented a passive BCI with an
outline analysis of the signals. Twenty participants took part in this experi-
ment.

Pay Attention is another passive BCI proposed by Szafir and Mutlu [37].
This project aims to assess audience engagement during TEDx talks, more
especially, to investigate the effect of speaker parameters on the score (e.g.
gesture or volume). The goal is to tune speaker behaviours based on the
audience’s loss/gain of attention. The score is computed based on frequential
band contribution as described in the AttentivU equation A.1.

Yan et al. [152] proposed a similar study to the one proposed for Pay Attention
adapted for an art performance. The engagement is similarly computed with
Equation A.1. The 3D theatre scene is adapted from this score to enhance
the audience’s engagement with dance movements, lighting effects or state
machinery.

Another project proposed by Huang et al. [153] is FOCUS. This BCI aims to
help children learn to read. During the reading task, virtual book parameters
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evolved to reward attention gain and encourage during the drop in engagement.
Similarly, the concentration is computed with the frequency band features as
explained in Equation A.1.

Another application where the engagement score can be used is for drone pilot
engagement as proposed by Pham et al. [154]. In their work, they present an
active BCI displaying the engagement during the driving task. The goal of
the application is to help the pilot to focus during the task with the feedback.
A study was led with 10 participants into two groups with attention scores
displayed or not. From the participants’ point of view, the attention score
display helps for the in-game performance, however, no more analysis has
been made.

Finally, a BCI working with attention estimation was proposed by Libert and
Van Hulle [155]. The passive BCI aims at predicting premature video skipping
in advertising. Moreover, an emotion study is also performed to estimate the
valence and arousal of the video. Four participants took part in the research.

Although the proposed works present promising innovations in various fields,
they present two major drawbacks:

• The considered method to estimate attention state from EEGs is based
on the engagement score formula proposed by Equation A.1 that may
seem näıve. It has already been considered inefficient in various cases
due to variation in the frequency limits or the public not being concerned
by this method for attention estimation [18,58,109].

• The used in some of the proposed works of entertainment recorder can
be affected by noise. Moreover, it has been reported that considering
the pre-extracted features from this recorder may induce a bias in the
experiment.

A.3 PoC Description

The idea of the proposed application is to create a video game reacting to the
participant’s attentional state. The general pipeline of this application is sum-
marized in Figure A.1. The system is composed of different parts interacting
with each other:
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• The participant whose attention is assessed.

• The EEG recorder registers the signals during the task.

• The Biomedical Signal Analysis part takes the signals and estimates the
attention state from the raw signals.

• The application or video game gives the score of that attention’s related
video games and feedback depending on the attention state estimated
during the previous step. Moreover, distractors are also shown to eval-
uate participant inhibition.

For clarity, the following section will be separated into the major steps of the
application.

A.3.1 Signal Acquisition

The first step concerns the acquisition of the EEG signals during the tasks.
The signals are registered with a hybrid recorder presenting the advantages
of entertainment recorders, i.e. mobility and ease of use while avoiding their
drawbacks, i.e. low signal-noise ratio and artefacts appearances. The chosen
recorder for this purpose is the Unicorn Hybrid Black.

EEG Recorder

Application

Biomedical Signal
Processing

User/Participant

Raw Signals

Feedback on
attention

Perturbators

Attention
State

Score of
Attention

Figure A.1. Attention Rythm Pipeline
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Due to synchronization issues and to break free from the constructor limita-
tions, it has been considered not to use the API sold with the recorder. This
software being effective only for this specific recorder model, it was envisaged
to develop a more general solution.

The proposed solution is to stream the signals from EEG recorder through a
local acquisition server, this server being made with OpenViBE software [156].
This methodology allows access to the signals whenever needed by listening
at the predefined port while considering open-source software.

A.3.2 Signal Analysis

After the first step, the signal acquired during the task is directly accessible.
It is extracted as arrays with the python interface of Lab Streaming Layer
(LSL) with pylsl library [157]. The choice of this format is motivated by its
ease of processing in python language.

After being able to read in real-time the signal stream, it is analyzed to es-
timate an attention state, i.e. focused vs distracted. During this step, the
knowledge encountered in the previous chapters has been deployed.

First, the features have been extracted following the specific feature represen-
tation as explained in Chapter 4. With this method, the EEG raw arrays are
represented in 3D matrices, with each dimension representing the specificity
of the EEG signals, i.e. time, frequency and space. Then, after consider-
ing this approach for feature representation, DE is extracted for each element
composing the array.

A transformer based methods to the ones presented in Chapter 5 has been
considered for the representation and classification of EEGs. The method em-
ployed to estimate attention state from feature maps is based on the approach
presenting the best results for attention estimation in Chapter 5.

Finally, with the abovementioned methodology, an attention score is computed
for each EEG segment. This information is also streamed locally via UDP
sockets on a specific port [158].



A Proof of Concept: Attention Rythm Video Game 131

Figure A.2. Representation of the Attention Rythm Video-Game

A.3.3 Game evolution

In this context, an application assessing attention in a portable and easy-to-
use manner has been considered. This application aims to provide a medium
to evaluate attention loss and gain to help the participant better detect these
specific behaviours.

The video game has been designed with Unity game engine and represents an
environment in space. The game asks the participants to reproduce sequences
by pushing specific keys on the keyboard. Four different configurations of keys
have been set to let the participants place their hands at the location they feel
the most comfortable in.

A representation of the game is given in Figure A.2 with the four different
buttons represented in different colours. During the game, the number of keys
correctly pressed is recorded jointly with the number of omissions and wrong
input. The time taken to process the information has been measured, i.e. the
time between the appearance of the tile and the button pressed. Moreover, to
reduce the learning effect during the task, i.e. the participant’s ability to play
better during the game’s evolution, the difficulty is progressively increased
by decreasing the time between consecutive tiles occurrence. From all this
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information, a game-related attention score is computed, giving a good insight
into the degree of game completion.

In parallel to the task and tile appearance, it has been chosen to consider the
appearance of perturbators as shown in Figure A.3. Two types of distractors
have been considered, both appearing randomly during the game and being
related to the environment. The first perturbator corresponds to a shooting
star blinking and crossing the screen. The shooting star aims at assessing the
inhibition during a short time distraction. The second perturbator is a ufo
flying randomly and at a lower speed. It lands at a random location (out of
the playing area) and remains there for 10 seconds. The second perturbator
aims at assessing the inhibition during more persistent external stimuli. Con-
sidering these two external stimuli is motivated by the fact that it helps cover
a larger span of attention and helps in recording attention loss compared to
more repetitive tasks where the loss of engagement can be more challenging
to detect.

The attention state computed with EEGs has not been considered yet. How-
ever, the aim of this project and, more generally this thesis was to use the
physiological signals to help participants reduce the symptoms related to at-
tention loss. This aspect could make this video game helpful to increase the
participant’s general attention state by training with the video game. More-
over, it has been proven that using physiological signals was helpful in this
context [14, 18]. For these reasons, we decided to consider the attention ob-
servation from EEGs to corroborate this measurement.

The combination of information has been made by considering the attention
state computed in the previous section. This attention state is sent from the
python script to the Unity video game through UDP socket [158]. This at-
tention state is then stored and registered several times to observe and study
the attention trend as made in previous works [36, 147]. Finally, if a high
(res. low) attention state is measured during a significant duration, the par-
ticipant is considered attentive (resp. distracted), and thus he is rewarded
(resp. helped). The rewards and help have not been designed yet but will be
considered in further works.

The main idea of this prototype is to ensure that considering positive feedback
could help improve the attention state.
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(a) Star (b) UFO

Figure A.3. Video-Game Perturbators

A.4 Conclusion and Discussion

We present in this chapter an innovative video game to study and help improve
attention state. Although the application remains a prototype, we wish to
improve it to become an actual application usable by everyone and everywhere
(especially by participants with attention-related disorders and/or symptoms
at home).

In the future, we plan to conduct a study on a large public to investigate the
effect of the feedback based on attention estimation from EEG measurement
as it has been made for previous works [36]. This study will help validate
the prototype by comparing the feedback from EEG recordings with random
feedback or no feedback at all.

For the following years, we hope that EEG acquisition combined with novel
technologies will significantly help people with disorders or attention-related
symptoms.
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“Differential efficacy of neurofeedback in children with adhd presenta-

tions”, Journal of clinical medicine, vol. 8, no. 2, p. 204, 2019.

[11] A. Zilverstand, B. Sorger, P. Sarkheil, and R. Goebel, “fmri neurofeed-

back facilitates anxiety regulation in females with spider phobia”, Fron-

tiers in behavioral neuroscience, p. 148, 2015.

[12] R. Coben, M. Linden, and T. E. Myers, “Neurofeedback for autistic

spectrum disorder: a review of the literature”, Applied psychophysiology

and biofeedback, vol. 35, no. 1, pp. 83–105, 2010.

[13] E. A. Schoneveld, M. Malmberg, A. Lichtwarck-Aschoff, G. P. Verheijen,

R. C. Engels, and I. Granic, “A neurofeedback video game (mindlight) to

prevent anxiety in children: A randomized controlled trial”, Computers

in Human Behavior, vol. 63, pp. 321–333, 2016.

[14] F. Blume, J. Hudak, T. Dresler, A.-C. Ehlis, J. Kühnhausen, T. J. Ren-
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