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RÉSUMÉ EN FRANÇAIS

L’histoire de l’art du cinéma remonte à l’année 1888 avec la création de la première

caméra (Kinematograph) par Thomas Edison et du premier Cinématographe en 1895

par Auguste et Louis Lumière. Depuis le premier film enregistré intitulé Roundhay Gar-
den Scene par Louis Le Prince en 1888, de nombreux films ont été réalisés. Tout au long

de l’histoire du cinéma, le processus de création d’un film a été perfectionné de ma-

nière itérative par les cinéastes. Dans ce processus créatif et exploratoire, la chaîne de

production a été divisée en plusieurs étapes [Ste05] :

— L’écriture : l’étape où le scénario du film est écrit.

— Le développement : l’étape où l’on décide si le film sera produit.

— La préproduction : l’étape où tous les préparatifs sont menés avant le tournage

proprement dit, e.g. , storyboarding, construction du plateau de tournage, prévi-

sualisation.

— La production : l’étape où les scènes sont filmées, et les éléments sonores sont

enregistrés ou créés.

— La postproduction : l’étape qui regroupe les opérations qui finalisent la produc-

tion : montage, création VFX, mixage sonore, étalonnage.

Tout au long du processus de réalisation d’un film, à l’instar des romanciers qui

écrivent des livres en utilisant des mots, les cinéastes et leur équipe disposent de leur

propre langage et de leurs propres moyens d’expression pour transmettre des émotions,

une ambiance et des informations à travers l’écran [Eva20]. Nous énumérons ici certains

des principaux procédés narratifs utilisés par les cinéastes :

— L’éclairage définit l’aspect et l’atmosphère du film, et les configurations et pro-

priétés de l’éclairage peuvent avoir un impact sur l’image de nombreuses façons :

e.g. le nombre de lumières, leur taille, leur forme, la distance et l’angle avec la

scène.

— Composition du plan définit les positions et les relations à l’écran entre les élé-

ments composant les plans.
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— Mouvement de la caméra définit à quelle classe de mouvements appartient le

mouvement de la caméra, beaucoup d’entre elles ont été définies au fil des années

(e.g. travelling, tenu à la main, etc...). Ces mouvements sont souvent utilisés pour

susciter une émotion ou mettre visuellement l’accent sur une partie de l’histoire

(cf. [TB09b]).

— Montage définit les transitions entre les différents plans pris par les différentes

caméras. Le montage définit le rythme du film, et aide le spectateur à se construire

une représentation temporelle et spatiale cohérente de la scène.

— Le son définit une atmosphère et est crucial pour l’immersion du spectateur.

Tout au long de la longue histoire du cinéma, les ordinateurs ont joué un rôle essen-

tiel dans l’amélioration de la qualité de la production. De nouveaux outils ont été conçus

pour accélérer et faciliter toutes les étapes de la production, influençant non seulement

le contenu du film, mais aussi la manière dont les films sont créés.

C’est notamment le cas du domaine de l’informatique graphique (CG) qui permet la

création d’environnements virtuels réalistes ou non, dans lesquels les artistes disposent

de nouveaux moyens d’expression. La forme des éléments 3D est créée sous forme de

modèle 3D, puis ils sont animés pour définir leur déplacement et l’évolution de leur

forme dans l’environnement 3D, et enfin ils sont affichés avec des techniques de rendu

pour définir leur apparence.

Il est intéressant de noter que le domaine de l’image de synthèse a ouvert les portes à

de nouveaux médias narratifs qui peuvent s’inspirer des éléments de la cinématographie

(caméra, lumière, etc.) pour créer des expériences audiovisuelles différentes, telles que

des jeux vidéo, des films d’animation par ordinateur, des expériences XR interactives.

La transposition des connaissances cinématographiques à un environnement virtuel est

appelée Cinématographie virtuelle depuis 1999, date à laquelle le terme est apparu

[Fee04].

Applications de cinématographie virtuelle

En effet, les améliorations des technologies matérielles et logicielles ont eu un fort

impact sur l’industrie du divertissement, en particulier sur les médias narratifs comme le

cinéma et les jeux vidéo. Ces améliorations ont permis d’ajouter des éléments d’images

de synthèse aux films, de réaliser des films entièrement en images de synthèse (films
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d’animation par ordinateur) ou des productions narratives interactives (jeux vidéo, ex-

périences de réalité augmentée ou de réalité virtuelle).

Dans le domaine du cinéma, des outils ont été créés pour faciliter le processus de

préproduction. C’est le cas des outils de prévisualisation (Figure 1.1a). La conception

d’un film se fait sur la base d’une scène de synthèse rendue à bas prix afin de planifier

la composition, le cadrage, la position de la caméra et les mouvements des plans. Ce

procédé permet de réduire le temps passé sur le plateau et donc de réduire les coûts de

production.

De plus, aujourd’hui, les techniques de prévisualisation sont également utilisées sur

les sets de tournages pour permettre aux équipes de placer les accessoires, les rails

de caméra et les lumières en fonction des directives de préproduction, en utilisant des

technologies de réalité virtuelle ou augmentée (par exemple l’outil Cyclops de The Third
Floor, cf. Figure 1.1b) pour montrer où les éléments de synthèse seront ajoutés sur le

plateau, par exemple des monstres, des explosions.

Dans les applications narratives, la caméra joue un rôle important dans l’expérience

de l’utilisateur ou du spectateur. Dans les applications interactives telles que les jeux

vidéo, les utilisateurs contrôlent généralement la caméra et les éléments du jeu, ce qui

peut être une source de frustration. Pour un utilisateur novice, contrôler tous les élé-

ments du jeu, simultanément avec la caméra, peut en effet s’avérer une tâche difficile.

Même pour les utilisateurs expérimentés, dans les jeux hautement dynamiques, l’utilisa-

teur peut coincer la caméra dans l’environnement. L’une des solutions pour éviter cela

est d’automatiser le placement de la caméra. Lorsqu’elle est correctement automatisée,

la caméra peut aider à conduire la narration elle-même, comme dans les films. Pourtant,

l’automatisation de cette caméra d’une manière qui maintient l’expérience de l’utilisa-

teur et la jouabilité reste un problème ouvert. La plupart des productions conçoivent à

l’avance les placements et les mouvements de la caméra et, au moment de l’exécution,

décident de ceux qui seront utilisés.

En guise de référence, voici quelques exemples de jeux qui ont fait des efforts pour

inclure des éléments cinématographiques comme une grande partie de la narration :

Vagrant Story (2000), développé par Square Product, qui est l’une des premières grandes

productions à utiliser des caméras automatisées et à faire un gros effort sur les angles

de caméra et le montage, tant dans les cinématiques que durant le jeu. Plus récemment,

des jeux comme The Last Of Us (2013) par Naughty Dog, ou God Of War (2018) par

Santa Monica Studio, ont un modèle de contrôle de caméra hybride qui est capable de
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(a) Exemple de prévisualisation du court-métrage mort en ré mi-
neur ; à gauche : les résultats de la prévisualisation ; à droite : le
film

(b) Exemple d’outil de prévisualisation sur le set de tour-
nage : Cyclops de The Third Floor

faire respecter le point de vue dans le jeu à des fins de narration entre les séquences de

jeu avec un contrôle de caméra libre par l’utilisateur qui, malgré ces succès, nécessitent

une quantité importante de travail manuel, un certain nombre de questions doivent être

abordées.

En effet, une caméra et l’image qu’elle produit représentent une fenêtre sur le monde

et son but est de construire une représentation informative, cohérente et esthétique dans

l’esprit du spectateur, mais aussi de construire des représentations hypothétiques et

émotionnelles plus complexes à court et long terme. Si cet objectif est bien atteint dans

la cinématographie réelle grâce à un savoir-faire orchestré, il ne l’est pas encore dans les

approches computationnelles. De plus, nous ne sommes pas en mesure aujourd’hui de

créer des caméras émotionnelles et narratives de manière automatisée. La communauté

a progressé vers cet objectif, du moins partiellement, et nous présentons dans le chapitre
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2 un rapport sur les progrès récents dans le domaine, et identifions les défis de demain

en gardant ces perspectives à l’esprit.

La conception de systèmes de caméra interactifs et automatisés couvre en effet un

large éventail de défis. Nous proposons le terme de cinématographie virtuel calcu-

latoire pour englober toutes les techniques numériques liées à la cinématographie in-

teractive ou automatisée dans des environnements synthétiques qui reposent sur des

approches informatiques.

Suivies esthétiques de cible : définition du problème

Dans cette thèse, nous proposons d’étudier un sous-problème spécifique de la ciné-

matographie virtuelle computationnelle : le suivi esthétique de cibles. Dans les jeux

vidéo, la tâche de suivi de caméra consiste à maintenir le personnage principal à l’écran

tout en assurant d’autres propriétés dépendant du gameplay. Par exemple, dans les jeux

d’action à la troisième personne, la caméra parvient à se concentrer sur des objectifs tels

que des ennemis ou des éléments interactifs tout en maintenant le personnage principal

à l’écran.

Dans les tournois de jeux compétitifs multijoueurs (i.e. e-sport) ou durant les matches

de sport qui sont diffusés en ligne ou commentés lors d’événements en direct, les replays

sont souvent utilisés pour aider les spectateurs à comprendre des actions spécifiques. Ici,

la tâche de suivi doit transmettre les événements intéressants de manière compréhen-

sible et esthétique.

De nombreux défis se posent lorsqu’on s’attaque à ce problème.

Défi 1 : visibilité et collision Le premier défi du suivi est de maintenir la visibilité à

l’écran de la cible tout en évitant les collisions avec l’environnement. Il existe un certain

nombre de solutions pour mesurer la visibilité (e.g. ray-casting, rasterization, visibility

maps, ...) mais il est toujours difficile de mesurer la visibilité de manière efficace dans

des environnements dynamiques. De plus, il est difficile de réagir à une occlusion :

il faut mesurer la visibilité du voisinage local, et dans certains cas des régions plus

larges autour de la cible. Le choix de l’endroit où la caméra se déplace pour éviter

une occlusion est crucial car, dans certains cas, la meilleure solution est d’être occulté

pendant une courte période pour atteindre une zone sans occlusion plutôt que de rester

dans une zone qui sera occultée pendant une plus longue période.
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FIGURE 2 – Problème de contrôle de la caméra pour le suivi esthétique de la cible :
utiliser les 6 degrés de liberté de la caméra pour maintenir la visibilité sur la cible, en
assurant une composition de l’image et un mouvement esthétique de la caméra.
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Défi 2 : dimension esthétique L’esthétique d’une trajectoire de caméra est portée par

de nombreuses propriétés (angle de vue, distance de vue, composition de l’image) qui

ne sont pas toujours compatibles (pour éviter une occlusion, il sera difficile de conserver

un angle de vue ou une distance de vue). De plus, à un niveau d’expression supérieur,

la notion d’esthétique est difficile à formaliser en termes de métriques à optimiser, car

elle est subjective et dépendante du contexte offert par le contenu.

Défi 3 : dimension dynamique La nature dynamique de l’environnement traversé par

la caméra ajoute une dimension de non-déterminisme dans les mouvements de la cible

et des occultant. Cet aspect du problème rend difficile la planification à long terme du

mouvement de la caméra, de l’occlusion de la cible et d’un mouvement esthétique de la

caméra.

Défi 4 : Coordination en temps réel Enfin, ce qui rend la tâche globale de suivi es-

thétique des cibles pour les applications interactives particulièrement difficile, c’est que

chaque aspect mentionné ci-dessus (visibilité, esthétique, dynamique) doit être évalué

et équilibré en temps réel.

La question que nous abordons dans cette thèse est donc : "Comment pouvons-nous
contrôler efficacement et automatiquement une caméra virtuelle pour suivre une ou
plusieurs cibles dans un environnement dynamique 3D?".

Nous présentons deux travaux portant sur la manière de contrôler automatiquement

la caméra (Figure 1.2) afin de faire respecter des propriétés (i.e. collision, occlusion,

distance de vue, angle de vue, saccade de la trajectoire de la caméra, cadrage, etc...)

qui sont les vecteurs des règles cinématographiques pour la cinématographie virtuelle.

Publications

Au cours de cette thèse, nous avons publié deux articles de conférence, énumérés

ci-dessous :

Real-time Anticipation of Occlusions for Automated Camera Control in Toric Space

(Conference Paper) Ludovic Burg, Christophe Lino, Marc Christie. In Computer Gra-

phics Forum 39, 2020 [BLC20].
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Real-Time Cinematic Tracking of Targets in Dynamic Environments (Conference Pa-

per) Ludovic Burg, Christophe Lino, Marc Christie. In GI 2021-Graphics Interface confe-

rence, 2021 [BLC21].

Grandes lignes

Dans le chapitre 2, nous fournissons une vue approfondie du domaine de recherche

de la cinématographie virtuelle dans lequel nous montrons les avancées récentes dans

les domaines.

En s’appuyant sur notre analyse du domaine de la cinématographie virtuelle, nous

présentons une première contribution dans le chapitre ??. Nous proposons de nous ap-

puyer sur une approche de planification locale (??) pour résoudre le problème de l’évi-

tement automatique des collisions et des occlusions par la caméra. Le système s’appuie

sur l’espace torique présenté dans le chapitre 2 et sur la technique de rendu pour at-

teindre des performances en temps réel. Malgré ses avantages, le système présente des

limitations liées à la nature locale de l’approche (la caméra peut rester bloquée dans

des minima locaux).

Pour surmonter ces limitations, nous proposons une deuxième approche dans le

chapitre 4. Sur la même base, nous proposons un système de caméra automatique qui

s’appuie sur une approche hybride (cf. section 2.4.3). Dans cette seconde approche, au

lieu d’utiliser un espace paramétrique existant (espace torique), nous introduisons un

nouvel espace, le camera animation space. Nous utilisons le ray tracing GPU pour

évaluer efficacement les mouvements dans l’espace d’animation avec une métrique de

qualité de trajectoire personnalisée.

Dans le chapitre 5, nous conclurons cette thèse en résumant les contributions et leurs

limites et parlerons des perspectives de cette recherche.
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CHAPTER 1

INTRODUCTION

The story of the Art of Motion picture or cinematography goes back to the year

of 1888 with the creation of the first camera (Kinematograph) by Thomas Edison and

the first Cinematograph in 1895 by Auguste and Louis Lumière. From the first recorded

movie titled Roundhay Garden Scene by Louis Le Prince in 1888, numerous movies were

made. Across the movie history, the movie making process has been honed iteratively

by moviemakers. In this creative and exploratory process, the production pipeline has

been divided into multiple steps [Ste05]:

— The writing: the step where the scenario of the film is written.

— The pre-production: the step where all the preparations are conducted before the

actual shooting, e.g. , storyboarding, building of the shooting set, previsualization.

— The production: the step where the scenes are filmed, and the sound elements

are recorded or created.

— The post-production: the step that groups the operations that finalize the pro-

duction: editing, VFX creation, sound mixing, color grading.

During the whole movie making process, similarly to novelists who write books using

words, moviemakers and their team have their own language and means of expression

to convey emotions, mood and information through the screen [Eva20] We list here

some key narrative devices used by moviemakers:

— Lighting defines the look and feel of the movie, and there are many ways in which

the lighting configurations and properties can impact an image: e.g. the number

of lights, their size, shape, distance and angle with the scene, softness or indirect

nature.

— Shot composition defines the positions and on-screen relations between the ele-

ments composing the shots.

— Camera movement defines to which class of motions the camera’s movement

belong and many of them have been defined across the years (e.g. travelling,
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hand held, etc...). Such movements are often used to elicit emotion or bring focus

to a part of the visual story (cf. [TB09b]).

— Editing defines the transitions between the different shots taken by the cameras.

Editing defines the rhythm of the movie, as well as helps the viewer to build a

coherent temporal and spatial representation of the scene.

— The sound defines an atmosphere and is crucial for the viewer’s immersion.

Throughout the long history of cinema, computers played an essential role in im-

proving the quality of the production. New tools were designed to help all production

stages get faster and easier, not only influencing the contents that are in the film, but

also influencing the way films are created.

It is especially the case for the field of Computer Graphics (CG) that enables the

creation of realistic or non-realistic virtual environments, in which artists get new means

of expressions. The shape of 3D elements is created as a 3D model, then they are

animated to define their displacement and shape evolution in the 3D environment, and

finally they are displayed with rendering techniques to define their appearance.

Interestingly, the field of CG opened doors for new storytelling media which can

draw from elements of cinematography (e.g. camera, light, etc...) to create different

audiovisual experiences, such as video games, computer-animated films, interactive XR

experiences. Transposing cinema knowledge to virtual environment has been called Vir-

tual cinematography since 1999 when the term emerged [Fee04].

1.1 Virtual cinematography applications

Indeed, The improvements in hardware and software technologies have strongly

impacted the entertainment industry, particularly on the storytelling media like cinema

and video games. These improvements allowed adding CG elements to films, make

fully CG films (i.e. computer animated films) or interactive storytelling productions

(e.g. video games, AR or VR experiences).

In films, tools have been made to help the pre-production process. That is the case

for the previsualization tools (Figure 1.1a). A movie is designed on a cheap rendered

CG scene to plan the composition, framing, camera position and movement for the

shots. This process allows to reduce the time spent on set and thus reduce production

costs.
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(a) Previsualization example from the short film death in D minor;
Left: the previsualization results; right: the actual film

(b) On set previsualization tool example: Cyclops from
The Third Floor

Furthermore, today the previsualization techniques are also used on set for the team

to place props, camera rails or lights according to the post-production guidelines, using

virtual or augmented reality technologies (e.g. the Cyclops tool from The Third Floor,
cf. Figure 1.1b) to show where CG elements will be added on set, e.g. monsters, explo-

sions.

For storytelling applications, the camera plays an important role in the user or viewer

experience. In interactive applications such as video games, the users usually control the

camera and the game elements, which can be a source of frustration. For a novice user

controlling all game elements, simultaneously with the camera, can indeed be a chal-

lenging task. Even experimented users, in highly dynamic games the user can get the

camera stuck in the environment. One of the solutions to avoid this is to automate the

camera placement. When properly automated, the camera can help to drive the sto-
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rytelling itself similarly to films [TB09b]. Yet, automating this camera in a way that

maintains the user experience and the playability remains an open problem. Most pro-

ductions actually pre-design camera placements and motions, and at runtime decide

which ones to use.

As reference, some examples of games that made efforts to include cinematographic

elements as a big part of the storytelling are: Vagrant Story (2000) developed by Square
Product, which is one of the first big production with automated cameras and with a

great effort put on camera angles and editing, both in cut scenes and in-game. More

recently, games like The Last Of Us (2013) by Naughty Dog, or God Of War (2018) by

Santa Monica Studio, have a hybrid camera control model that is able to enforce in-

game point of view for storytelling purpose between gameplay sequences with a free

camera control by the user which, despite these successes, require a significant amount

of manual work, a number of issues need to be addressed.

Indeed, a camera and the image it yields, represent a window on the world and its

purpose is to build an informative, coherent and aesthetic representation in the specta-

tors mind, but also build more complex short and long term hypothetical and emotional

representations. While this is well achieved in real cinematography through orches-

trated craftsmanship, this is not reached yet in computational approaches. Moreover,

we are not able to create emotional and narrative cameras in automated ways today.

The community has been progressing towards this goal at least partially, and we present

in Chapter 2 a report on the recent progress in the field, and identify tomorrow’s chal-

lenges with these perspectives in mind.

The design of interactive and automated camera systems indeed covers quite a wide

range of challenges. We propose the term of computational virtual cinematography

to embrace all the numerical techniques related to interactive or automated cinematog-

raphy in synthetic environments that build on computational approaches.

1.2 Aesthetic target tracking: problem definition

In this thesis we propose to study a specific sub problem of computational virtual cin-

ematography: the aesthetic tracking of targets. In video games the camera tracking

task consists in maintaining the main character on screen while ensuring other proper-

ties depending on the gameplay. For example in third person action games the camera

manages to focus on objectives as enemies or interactive elements while always keeping
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Figure 1.2 – Camera control problem for aesthetic target tracking: using the camera 6
degrees of freedom to maintain visibility on the target, ensuring an image composition
and an aesthetic camera motion.

the main character on screen.

In competitive multiplayer games tournament (i.e. e-sport) or extensively, in sports

that are broadcasted online or commented during live events, replays are often used to

help the viewers to understand specific actions. Here, the tracking task has to convey

the interesting events in an understandable and aesthetic or codified.

Multiple challenges arise when tackling this problem.

Challenge 1: visibility and collision The first challenge of camera tracking is to main-

tain the on-screen visibility of the target while avoiding collisions with the environment.

A number of solutions exists to measure visibility (e.g. ray-casting, rasterization, visi-

bility maps, ...) but it is still challenging to measure visibility efficiently in dynamic

environments. Additionally, it is challenging to react to an occlusion: one needs to mea-

sure the visibility of the local neighborhood, and in some cases of the larger regions

around the target. Choosing where the camera goes to avoid an occlusion is critical

because in some cases the best solution is to be occluded for a short period of time to
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reach an occlusion-free area instead of staying inside an area that will be occluded for

a longer period.

Challenge 2: aesthetic dimension The aesthetics of a camera trajectory is carried by

numerous properties (i.e. view angle, view distance, image composition) that are not

compatible all the time (e.g. to avoid occlusion it will be difficult to keep a view angle

or view distance). Moreover, at a higher level of expression, the notion of aesthetics is

difficult to formalize in terms of metrics to optimize as it is subjective and dependent of

the context offered by the content.

Challenge 3: dynamic dimension The dynamic nature of the environment that the

camera goes through, adds a dimension of non-determinism in the target and occluders

motions. This aspect of the problem makes difficult to plan on the long term the camera

motion, target occlusion and an aesthetic camera motion.

Challenge 4: Coordination in real-time Finally, what’s makes the overall task of aes-

thetic target tracking for interactive applications particularly challenging, is that each

aspect mentioned above (i.e. visibility, aesthetic, dynamic) need to be evaluated and

balanced in real-time.

The question we address in this thesis is therefore: "How can we efficiently and
automatically control a virtual camera to track one or multiple targets in a 3D
dynamic environment ?".

We present two works focusing on how to automatically control the camera (Fig-

ure 1.2) in order to enforce properties (i.e. collision, occlusion, view distance, view an-

gle, camera trajectory jerkiness, framing, etc...) that are vectors to the cinematographic

rules for virtual cinematography.

1.3 Publications

During this thesis we published two conference papers listed as follows:

Real-time Anticipation of Occlusions for Automated Camera Control in Toric Space

(Conference Paper) Ludovic Burg, Christophe Lino, Marc Christie. In Computer Graph-

ics Forum 39, 2020 [BLC20].
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Real-Time Cinematic Tracking of Targets in Dynamic Environments (Conference Pa-

per) Ludovic Burg, Christophe Lino, Marc Christie. In GI 2021-Graphics Interface con-

ference, 2021 [BLC21].

1.4 Outline

In Chapter 2 we will provide an in depth view of the research field in virtual cine-

matography in which we show the recent advances in the fields.

Relying on our analysis of the virtual cinematography field, we present a first con-

tribution in Chapter 3. We propose to rely on a local planning approaches (cf. section

2.4.2) to the problem of automatic camera collision and occlusion avoidance. The sys-

tem relies on the toric space presented in chapter 2 and on rendering technique to

achieve real-time performances. Despite its benefits, the system has limitations related

to the local nature of the approach (i.e. the camera can get stuck in local minima).

To overcome these limitations we propose a second approach in the Chapter 4. On

the same basis, we propose an automatic camera system that relies on a hybrid approach

(cf. section 2.4.3). In this second approach, instead of using an existing parametric space

(toric space) we introduce a new space, the camera animation space. We use GPU ray

tracing to efficiently evaluate motions in the animation space with a custom trajectory

quality metric.

In the chapter 5 we will conclude this thesis by summarizing the contributions and

their limitations and talk about the perspectives of this research.
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CHAPTER 2

STATE OF THE ART

In this first Chapter we are going to study the literature to see on which basis we

can rely to address our problematic. We will be looking at the current state of the two

relevant fields for this topic: (i) virtual cinematography and (ii) drone cinematography.

Since the seminal work of Jim Blinn in 1988 [Bli88], which searched for automated

ways to position cameras in virtual environments, the area of interactive and auto-

mated virtual cinematography has addressed many challenging problems, borrowing

and adapting techniques from the wide fields of computer vision, robotics and com-

puter graphics, but also designing novel dedicated approaches.

The first survey related to virtual cinematography techniques [CON08] provided a

general overview of the virtual camera control approaches and related applications. A

more recent survey by Ronfard [Ron20] provides a historical perspective focused on film

editing. The latter mainly covers the cinematic background and editing conventions, ex-

tracted from books written by real cinematographers and psycho-cognitive works study-

ing this film grammar. The work reports contributions to the fully-automated computa-

tion of edits by using vision-based or early works on the transposition to virtual camera

control and storytelling. However, these respective surveys do not cover the many recent

contributions in controlling 3D cameras, in particular topics such as movie previsualiza-
tion (the interactive prototyping of movies in virtual environment), or aerial cinematog-
raphy (the cinematic control of unmanned aerial vehicles), which have emerged from

the 2010s. In this chapter, we aim at extending these two surveys with an overview

of both emerging applications and recent advancements in computational virtual cin-

ematography. We also provide the reader with perspectives on the ongoing technical

challenges and the remaining scientific locks. The surveyed contributions show that

there is an increasingly strong convergence in the challenges tackled by the virtual cin-
ematography (computer graphics) and aerial cinematography (robotics) communities.

We structured our approach by analyzing the evolution of camera control techniques

as branches in a graph that displays both the practical use-cases, and the evolution in

the use of underlying techniques as represented in Figure 2.1.
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Figure 2.1 – Ranges of topics that will be addressed in this state-of-the-art

This chapter is split into three major sections related to advances in viewpoint com-

putation, clip computation and trajectory computation. We open with the recent trends

in the field and the open challenges to address.

2.1 Classification of recent techniques

There is a wide variety in computational cinematography techniques, which have

been applied to a wide range of applications (e.g. computer games, drones, data visual-

ization, multimedia). In order to structure the chapter, we propose three main criteria

along which techniques can be sorted: (i) which problems are addressed, (ii) in which

control space problems are expressed (i.e. how much indirection exist in the way we fix

camera parameters) and (iii) which approach is used to solve them.

2.1.1 Classes of problems

Following what is done in the film and broadcast industries, we propose to distin-

guish four distinct classes of problems :
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— Camera placement problems which consist in computing a camera configuration

(assignment of intrinsic and extrinsic parameters) that ensures specified visual

properties such as image composition (e.g. spatial layout of targets in the image,

in/out focus on targets, relative angles to targets, but also properties driven by

aesthetics such as balance in images or lighting).

— Camera motion problems which consist in computing a continuous sequence of

camera configurations that ensures both visual properties over time (the same as

those in camera placement) and also properties of the generated trajectories such

as smoothness/jitter, similarity to standards (e.g. travelling, panoramic, dolly),

but also higher-level properties such amount of information conveyed.

— Camera cutting problems which consist in deciding when are the best moments

to switch between viewpoints and to choose to which camera to cut to, following

elicited continuity editing rules.

— Clip generation problems which consist in selecting from a sequence of events

occurring in the scene and from the characteristics of the scene, what are the most

interesting parts to display, where the level of interest can be guided by different

metrics (e.g. conveying actions, conveying only informative content, total duration

of the clip).

In this overview, we do not consider the correlated problem of 3D layouts in scenes

(i.e. how to place entities in the 3D scene to ensure expected visual and motion prop-

erties), nor do we address lighting issues. Both tremendously influence the problems

we address, yet have received limited attention when addressed simultaneously with

camera and clip computation problems. We refer the reader to notable exceptions like

[ER07]; [Lou+20] for layouts and [Gal+18b] for lighting.

2.1.2 Classes of control space

Computational virtual cinematography intrinsically requires searching for the values

of a parametric system (e.g. camera configuration, camera path, camera clip) by ex-

pressing relations between cinematographic properties and variables of the parametric

system. These properties represent the control space solving constraints in both world-

space (visibility, collisions, camera path smoothness) and in image-space (what the cam-

era sees, and how: on-screen position, size, view angle of filmed objects). Camera space

can be divided in four classes depending on the optimization scale:
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— optimize on low-level degrees of freedom: i.e. position, orientation or control

parameters for drones

— optimize look-at/look-from: camera position with look-at point position gives an

indirect control on the camera orientation (Ranon 2014 [RU14], Joubert 2015

[Jou+15])

— direct solving from image-space constraints: on-screen points (Gleicher [GW92]),

higher-level on-screen constraints (toric space [LC15])

— optimize in mixed world/image space: solving from a defined target on screen

position and on world camera positioning constraints

2.1.3 Classes of approach

For camera control we can identify 5 classes of approach in the literature:

— Fully interactive approaches (full control to the user): direct control on degrees

of freedom

— Fully automated approaches (full control to the machine, given user specifica-

tions):

— Reactive approaches: e.g. visual servoing

— Search-based approaches (local or global optimization): MPC, active contour,

graph search, etc.

— Close-form solutions: e.g. Blinn [Bli88], Lino & Christie 2012/2015 [LC12];

[LC15]

— Data-driven / Machine learning-based approaches

— Mixed-Initiative approaches (knowledge to the machine, control to the user):

shared decisions between user and machine (e.g. Director’s Lens), by delegating

low-level tasks to the machine, while providing the user with a fine control in

higher-level (creative) tasks.

We can also consider classifying the approach based on their knowledge level:

— explicit knowledge models (procedural)

— implicit knowledge models (data-driven)
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2.2 Camera Viewpoints

Placing cameras in 3D scenes is essential to any 3D application. In particular, how

cameras are positioned in the scene will control how the scene content is conveyed

(e.g. highlight or hide spatial and temporal relationships between objects). In turn, this

will strongly impact the perception of the user. Consequently, cinematographers have

long been elaborating a visual grammar of camera placements, enabling to properly

convey 3D animated contents.

What we here call a viewpoint refers to two interconnected aspects. At a geometric

level, a viewpoint corresponds to the set of values taken by each parameter of the cam-

era (e.g. its position, orientation, focal length). At a semantic level, a viewpoint refers

to the visual arrangement of objects on the screen (e.g. their location or size), which

directly results from these camera parameters. However, the relationship between this

semantics and the proper camera parameters is counter-intuitive for users, as well as

highly nonlinear mathematically speaking. How to intuitively interact with or compute

camera parameters, to satisfy a desired viewpoint semantics, still remains a central chal-

lenge in 3D cinematography.

Controlling a virtual camera in a complex 3D scene remains a tedious and technical

task. The community has been trying to design innovative interaction or computation

techniques, to make the exploration and inspection of 3D contents easier. We here do

not provide a complete survey of 3D navigation techniques, which can be found in

[JH13]. Rather, we list a few noteworthy contributions, which are laying the ground for

camera control techniques at large, and aim to provide hints on how they can influence

current or future 3D cinematography techniques.

2.2.1 Interactive methods (viewpoint manipulation)

Viewpoint manipulation techniques aim at providing the user with a means to in-

teractively update camera parameters, e.g. to inspect 3D objects or navigate through

complex 3D scenes. However, as explained in [CON08], in these tasks, the principal

challenge remains to provide interesting control metaphors (i.e. mappings between an

input device and the camera parameters).

Most early works, discussed in [CON08], have provided a limited solution to the

interactive control of cameras. Their proposition were limited to control metaphors de-

fined at a strictly geometric level. Indeed, they proposed direct mappings between 2D
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mouse inputs and the 7 camera parameters, or moving the camera onto user-defined

surfaces. In the case of proximal inspection, early works have proposed to use potential

fields [HA+92] or vector fields to avoid collisions. They have also proposed dedicated

techniques to handle cavities and sharp turns in the scene geometry. Potential fields

appear early in the robotic fields for path planner and have been used in the virtual

cinematography community. They are derivable functions defined locally around the

camera and map the properties to minimize. By this mean it is possible to find a path

from the current position to a local minimum of the field.

Due to their lack, more recent works have been seeking to provide more intuitive

and effective control metaphors, aiming to better consider the semantics of controlled

viewpoints.

Sudarsanam et al. [SGS04]; [SGS09] proposed to control the scene perspective

based on the concept of vanishing points, which artists are very familiar with when

sketching storyboards. Their IBar and CubeCam interfaces build on this same concept.

Both propose to visualize potential camera operations, relative to what the camera cur-

rently sees, through a cube widget centered on a focused object in the camera view. In

CubeCam, this cube widget represent the camera perspective at three different levels

(1-pt, 2-pt, or 3-pt perspective), depending on how many vanishing points are consid-

ered. While manipulating this widget at a given perspective level, the user can perform

a subset of camera operations (e.g. pan, zoom, zoom + dolly, camera translations or

rotations, change of focal length) around the selected object. Each operation is linked

to the update of extrinsic, intrinsic, or a combination of camera parameters. This in turn

results in changes in the rendered image of the scene. They also propose to save camera

views as bookmarks. Their system can then display nearby bookmarks around the cube

widget, which allows the user to select them as a new starting camera view. They finally

propose a ghosting mechanism as a way to visualize how a camera operation may im-

pact the camera view. While performing camera operation in ghosting mode, the system

superimposes the image rendered from the controlled view on top of the initial camera

view. This helps users in first exploring how camera operations impact on the rendering,

before actually applying them.

One remarkable early proximal camera technique is the point-of-interest (POI) tech-

nique proposed by Mackinlay et al. [MCR90]. POI consists in first selecting a point of

interest (i.e. target object). Camera motions can then be performed forward or back-

ward in the direction of this POI, using a logarithmic speed depending on its distance to
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the camera. The camera can also rotate around this target object, with constant angu-

lar speed, thus providing orbiting motions at faster speed at high distance, and slower

speed at low distance. Following the POI concept, Moerman [MMG12] proposed Drag’n

go, where the POI is computed with a ray cast from a pixel clicked by the user. The

camera then moves along a straight path (i.e. the launched ray), while the mouse cur-

sor controls the amount of camera motion along this path. The user can also control

the amount of rotation through the x component of the mouse position. The on-screen

position of the POI is also enforced during all camera motions.

Though efficient and simple, the POI technique and proposed improvements were

lacking generic solutions to handle cavities and sharp turns when traveling 3D scenes

or inspecting complex 3D geometries. Hence, further research has been devoted to the

proposition of generic solutions able to handle such specific cases. Among prominent

works, Boubekeur [Bou14] proposed ShellCam, a geometry-aware proximal inspection

technique. Their idea is to leverage the rasterization pipeline to determine an implicit

surface (i.e. an offset shell) around the visible geometry of an inspected object. Given

a current camera position and orientation, the local tangent to the shell is determined

from the averaged visible normal. This allows for smooth rotational movements around

objects, regardless of the complexity of their geometry, while rotating the camera to

always point at the object. By leveraging the depth buffer, they also approximate the

distance to the visible geometry. This naturally provides logarithmic translation mo-

tions. The main advantage of their technique is the implicit definition of a multiscale

set of shells (i.e. a shell can be defined at any distance to the geometry). As well, ren-

dering the visible geometry is more detailed at a closer distance. Hence, close shells will

more closely follow cavities. Symmetrically, shells become smoother and smoother at

an increasing distance, hence allow smooth orbiting motions around the object.

McCrae [McC+09] also leverage GPU hardware computation. They proposed to en-

code the local environment around the camera into a cubemap, with knowledge of both

normal, up vector and distance to geometry. They propose to use a level-of-detail strat-

egy, by abstracting an object with simple primitives when it is far, while directly using

its detailed geometry when closer. Then, the authors proposed to use the distance to

geometry to adapt the camera speed and viewing frustum (i.e. the near/far plane dis-

tance) to the navigation scale. And, more importantly, they use it to smoothly handle

collision detection while avoiding costly geometrical computations. They instead lever-

age the distances in the cubemap to compute a repulsion force, by comparing them to a
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Figure 2.2 – ShellCam [Bou14]

distance threshold (i.e. a sphere around the camera). This enables generating collision-

free fly-through paths to move the camera forward (or backward) to a new scale level

(e.g. at world-scale), or camera motions within a fine detailed scale level (e.g. within a

city or building). They finally propose to detect when the camera is stuck in a cluttered

area, and to consequently decrease the distance threshold.

Marton et al. [Mar+14] proposed IsoCam, which also relies on the concept of mov-

ing the camera on a multiscale set of implicit iso-surfaces around the inspected object.

Note that, the computation of these iso-surfaces here relies on a hierarchy of simplified

geometries, from the actual object’s geometry to rough meshes. Authors further propose

to leverage an idea similar to design galleries [Mar+97]. In the image rendered from

the current viewpoint, similar viewpoints are also displayed. They are automatically

extracted from a database of pre-computed views around the object of focus, using a

metric combining the similarities of rendered images and of camera configurations (in

position and viewing direction). They can be clicked to teleport the camera to the asso-

ciated camera configuration.

Hachet et al. [Hac+08] derive an extension from the POI technique. They first pro-

pose to use sketching to select a region of interest (ROI), instead of a single POI, which

provides a more robust control on where the user wants to focus. They then design a

new 3D widget, called Navidget, which allows a better control on the positioning and

view direction of the camera around this ROI. Navidget is a sphere centered on the cen-

tral POI. They propose several strategies to initiate the radius of this sphere, among

which the lowest distance to geometry enables to find camera positions from which the
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whole ROI might be seen. They finally propose to control the camera viewing angle

(i.e. its position and viewing distance) by simply pointing to some location onto the

visible half-sphere surface of Navidget. The camera is consequently moved to a position

located along the corresponding normal, and at a distance equal to the sphere radius.

In turn, the camera’s viewing direction is computed to always point toward the central

POI.

All these interactive techniques have been mainly proposed for the exploration of 3D

scenes, and the proximal or distant inspection of objects. Often, they are even limited to

a single object of focus, or to manipulating low-level geometrical concepts or primitives.

But more importantly, such technique miss knowledge on how cameras are controlled

in the real world (e.g. in cinema or documentary) to convey real world situations. This

may lead to unnatural 3D camera views and motions. Better conveying virtual worlds

through the lens of cameras intrinsically requires manipulating high-level concepts such

as the visual layout of objects (i.e. how they are visually arranged on screen). Hence,

using available camera control metaphors offered in current 3D software designing the

aesthetic of rendered images remains a highly technical, artistic, and time-consuming

task.

2.2.2 Automated methods (viewpoint computation)

In more and more 3D application (e.g. virtual tours, cultural heritage, entertain-

ment), designers wants to improve the immersion of users in 3D scenes, through a

more narrative experience. The pressing requirement to control the aesthetic of camera

viewpoints has then pushed researchers to propose techniques to automate the place-

ment of cameras. This automation problem is also known as a viewpoint computation
or a camera composition problem. Visual composition criteria generally accounted for in

the literature comprise the on-screen positioning or ordering of objects (e.g. to the left,

right, top, bottom), their size (e.g. using a cinematic scale, such as which proportions

of a character should be included in the image), or view angle (e.g. from front or back,

from a side, from above or below). A better insight into such criteria can be found in

cinematography cook books [Ari91]; [Mas98]; [TB09b].

The specification of these visual composition criteria is generally performed through

a declarative process. Early works [CON08] allowed user to declare such criteria as con-

straints on the camera parameters. Automated systems then generally cast the camera
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placement problem as a constraint solving problem (CSP) or an optimization problem.

In the former constraints are translated into a set of equations and inequations to solve.

In the latter, they are translated into a set of cost functions (to minimize) or satisfaction

functions (to maximize) taking camera parameters as input.

Notable early works comprised Blinn’s "Where am I? What am I looking at?" [Bli88],

as well as Gleicher and Witkin’s "Through-the-lens camera control" [GW92]. Both pro-

posed to control the screen position of selected objects and/or their distance to the

camera. Blinn’s solution is based on the inversion of the camera projection matrix, and

on the resolution of the camera position and its orientation in two separate steps, which

his system iterates on. Gleicher and Witkin instead proposed to cast the problem as an

inverse kinematic problem on camera parameters, where the minimized costs are linked

to the on-screen projection errors of the controlled points in the scene.

Recent state-of-the-art techniques use either close-form solutions, when possible,

or optimization techniques. Although some early approaches have relied on constraint-

solving (CSP) techniques, to our best knowledge recent approaches no longer use them.

Indeed, computing camera viewpoints is essentially an inverse problem involving con-

straints that remain difficult to combine. As a result, such problems are most often under

constrained or over constrained. In this context, optimization provides more flexibility

on how constraints are combined, while making it possible to find good approximate

solutions when a close-form solution cannot be found. Some recent approaches also

combine the advantages of close-form and optimization-based solutions.

Most works based on optimization use the same form:

arg min
x

E(x(t), c(t)) (2.1)

With E the energy combination of the properties to evaluates, x(t) the camera con-

figuration over time and c(t) the context in which the camera is (i.e. the scene topology,

the environment, the dynamic objects, etc...).

Optimization on camera parameters

Most proposed techniques rely on the formalization of viewpoint constraints (visual

composition rules) as cost functions (or satisfaction functions), and their aggregation

into a fitness function built as a weighted sum of costs (or satisfactions). They then rely

on the search, in the 7-dimensional camera parameter space, of a camera configuration
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that minimizes costs (or maximizes satisfactions).

Ranon and Urli [RU14] propose a very general and efficient solution, which relies on

a particle-swarm optimization (PSO) technique, and on a smart initialization procedure.

One might need to make a trade-off between the computational cost and the ac-

curacy in the evaluation of the visual constraints’ satisfaction. Ranon et al. [RCU10]

proposed a simple language to define camera constraints and a way to accurately eval-

uate the evaluation precision within a defined computation time constraint.

Some works focused more on composition features as Abdullah et al. [Abd+11]

encoded multiples standard cinematography rules and use a PSO (Particle Swarm Op-

timization) in order to satisfy the constraints. Sanokho et al. [SC14] focuses on visual

balance. By using semi-annotated data, they are able to correct the visual balance of

synthetic shot. First, features are extracted by hand from multiple shots with one and

two actors from which a feature space is created. Secondly, the center of each cluster of

data is considered as a good balancing point. Finally, from a synthetic shot the balance

is evaluated and corrected from the optimized space.

Close-form solutions

Historically, the first attempt to provide a closed-form solution was proposed in

[Bli88]. Blinn mention a viewpoint computation challenge he has been giving his stu-

dents for a decade. Considering a planet and a ship, with the planet being at a given

distance and its axis being vertical on screen, find a camera configuration that satisfies

input screen positions. His solution relies on inverting the camera projection matrix to

solve the camera position and the camera orientation in two separate steps. He then

proposed to iterate on solving each sub problem, while the other is considered fixed,

until convergence. More recently, Lino and Christie [LC12] proposed a low-dimensional

search space, called Toric manifold (Figure 2.3). They first observed that given the exact

on-screen positions of two targets, solutions camera positions belong to a spindle torus

around them, and that the camera orientation is also fully determined by a picked cam-

era position on this torus. Solution camera positions can also be parameterized with

two angles: a vertical angle and a horizontal angle on the torus. The key provision of

their toric manifold is that one can now intrinsically encode a key visual feature (the

on-screen positions of two objects) into a 2-parametric search space. Leveraging Toric

space’s nice properties, they have been able to propose the first fully algebraic solution

to Blinn’s problem.
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(a) Camera viewpoints for different toric parameters (b) The toric manifold

Figure 2.3 – The toric space [LC15]: a camera position representation dedicated to
framing

Optimization in intermediate search spaces

In [LC12], Lino and Christie also proposed to leverage their close-form solution

(the Toric space) and provide a nice extension to the on-screen positioning of more

than two target objects. They first propose to fix the on-screen positions of a pair of

target (e.g. two protagonist characters). Then, they cast the problem as searching a

2-parametric camera position onto the torus associated to this pair of objects, while

minimizing the on-screen projection error for other objects. Note that for three objects

the on-screen positioning is well-constrained (there exist only two discrete solutions),

while for more objects the problem is over constrained, hence requiring either a trade-

off between constraints or a relaxation of some constraints.

2.2.3 Hybrid methods

The rise of better interaction metaphors and procedural generation models have also

enabled the emergence of a new trend in the computer graphics community: the propo-

sition of mixed-initiative content creation tools. As for camera control tasks, the main

idea behind have been to try combining the power of automated systems and the creativ-

ity of human artists. In this quest, one important factor is to propose automated systems

which can compute camera viewpoints in interactive time, while providing users with
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interaction metaphors providing a fine and effective control of the visual result.

Being able to propose effective control techniques would indeed enable the user

and the system to share the burden of solving the camera control problem together,

by letting the user have the control artistic decisions while the system would make the

technical and tedious tasks as transparent as possible to the user.

Lino et al. [Lin+11b] proposed Director’s Lens, a system assisting the user in the

interactive exploration of available viewpoints in the scene. They rely on an idea similar

to intelligent gallery [Vie+09]. Viewpoints are arranged in a grid, which the user can

browse. Their system then allows the user to select a viewpoint, and to virtually dig

into the viewpoint, by using a 6DOF physical device tracked in position and orientation,

reproducing the way real cameras are controlled. This allows a rapid exploration of

semantically meaningful viewpoints, while also providing users with a fine and intuitive

control of the final viewpoint.

More recently, Lino and Christie [LC15] have proposed an intuitive and robust ma-

nipulation of a larger set of visual features (on-screen position, size or view angle) on

a pair of target objects. Their solution relies on direct algebraic computations in Toric

space, an intermediate camera parameter space they proposed in [LC12].

As a conclusion to this section, to our opinion the viewpoint computation problem

is mostly solved for specific cases (e.g. simple geometrical constraints in world space or

screen space, or for up to two or three objects). As a remaining challenge, there is now a

pressing need to account for higher-level aesthetic rules (e.g. image balance, or quality

in composition) and to address more complex problems (e.g. considering additional

camera parameters such as the depth of field, or moving to stereoscopic cameras).

2.3 Clip computation of 3D animation

The idea of processing automatically an animation sequence from a defined 3D an-

imation is a natural though. Indeed, when the animation of the scene is done by an

animator, placing camera is a tedious and time-consuming task. Moreover, besides com-

puting clips from a finished animation, clip computation includes summarization of a

filmed sequence (e.g. in game replay for online multiplayer games) that keep the most

relevant parts of a sequence. The main questions to answer here are: (i) How to detect

and define "interesting" events of the sequence ? (ii) How to handle uninteresting parts

of the sequence ? (iii) How to convey interesting parts ?
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Figure 2.4 – Decomposition of potential field function constraints [Yeh+11a]

Assa et al. [Ass+08] proposed a work on maximizing the viewpoint entropy of a

character animation. The viewpoint quality is measured as a combination of generic

descriptor and pose specific ones. The combined descriptor is represented as a potential

field. To generate the camera motion an optimization phase is performed to minimize

an energy function for the camera displacement on the potential field 2.1 with c(t) the

character animation from which the potential field is generated. The energy function

in separated with the internal energy on one side and the external energy on the other

side. The external energy refers to the score of the camera on the potential field and

the internal energy refers to the cost of moving the camera in a specific spot. In the

same way, Assa et al. [AWC10] proposed an offline clip generator system of an ani-

mated character. First, according to cinematographic guidelines, multiple cameras are

positioned on the scene. Then, the character motions data is analyzed using signal pro-

cessing techniques and by a correlation measurement, the best camera to use can be

found and set as the active one. Using an idea similar to this viewpoint entropy, Yeh

et al. [Yeh+11a] proposed an offline camera path planner targeting to maximize the

shot quality on a character animation by computing a potential field from multiple con-

straints (figure 2.4). Yeh et al. [Yeh+11b] then extended this approach to an offline clip

generation for multiple characters. By analyzing the characters animations, they detect
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important events (e.g. when characters cross ?), which should be conveyed in the clip.

The sequence is analyzed through the targets localization and their animation data.

When a lot of activity is detected, it becomes an event to include in the clip. Using the

sequence decomposition, an optimization step is performed to maximize the viewpoint

entropy of each event and the transitions between the event clip are flags suggesting

the cuts.

The same idea as [Yeh+11b] but with a local approach Galvane et al. [Gal+13] pro-

posed to use steering techniques, first proposed for characters [Rey99], using steering

forces to attract the camera to the point of interest of the scene. The scene is analyzed

using flying camera. Thus, events are found this way and the camera is attracted to

these events using forces. The framing is handled using a modified toric space that add

a security space to avoid collisions between the camera and the targets.

Xie et al. [Xie+18] proposed a trip synopsis system by building trajectories by pieces.

Their goal is to film landmarks with drones. They build two kinds of trajectories, the

landmark’s exploration trajectories that are meant to optimize the view on the land-

marks and the transitions between the landmarks areas. The landmark exploration tra-

jectories are built using the landmark’s silhouette with potential fields and a quality

view metrics based on the visual entropy principle. The view points are positioned ac-

cording to the minimization of the potential field of a landmark. For each view point

the landmark is rendered to compute the viewpoint entropy score. Then, the interest

points are encoded directly inside a saliency texture for each landmark. Finally, 5th

degree B-spline is generated between the better connected view-points. For the transi-

tions trajectories, a graph is built to map the landmark position. Then, the transition

between the landmark is solved using a Traveling Salesman Problem where the cost of

a transitions account for collision and visibility.

Huang et al. [Hua+16] proposed a trip synopsis system. The goal of the system is to

make a 60 seconds clip that summarize a drone trip. To accomplish that, optical flow is

analyzed. Indeed, optical gives a good idea of what is happening on screen, the higher

the optical flow magnitude is the more event are happening on screen.

2.4 Camera motion

Computing static viewpoints is almost a solved problem. However, the addition of

the temporal dimension to this question raises new issues. For example, to be able to
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interact with the 3D environment in real-time, the camera computation time become

crucial. The addition of the temporal component also raises the question of the dynamics

of the scenes and how to handle it. Moreover, planing the motion of the camera imply

that we need to anticipate the future state of the scene and the targets’ behavior.

Proposed approaches to generate camera motions can be divided in four classes: (i)

global approaches: the camera is aware of the entire scene topology. It has the benefits

to be accurate and avoid local minima in the scene but is usually sensible to dynamic

environment due to the heavy computation costs of the data structures update used

for the topology representation (ii) local approaches: the camera only have a partial

knowledge of its surroundings. It presents the opposing advantages and disadvantages

of global approaches, it is usually low cost and can react easily to dynamic changes on

the scene but have trouble to get out of local minima (iii) hybrid approaches: trying to

convey benefits of both global and local approaches (iv) finally, data-driven approaches

usually relying on deep learning tools or the optimization of a latent space based on

large amount of data.

Trajectory evaluation is critical to define the quality of the result. This is the reason

why, in the last part of this section we analyze the different way the community evaluate

camera trajectories. To evaluate camera trajectories most of the works either conduct

user evaluation or compute satisfaction scores by evaluating criteria on the camera, we

can split these criteria in four categories:

— The relation between the camera and the environment: the camera collision and

the obstruction of the camera visibility by the environment

— The camera on screen properties: what does the camera has to see and where are

the targets on screen

— The camera motion: camera speed, jerkiness of the trajectory

— The cinematography: the on-screen motion properties

2.4.1 Global planning

Global planner approach usually relies on well known technologies and techniques

borrow to the AI and robotic fields as roadmaps, cell decomposition, PRM [Yan+17],

RRT and other optimization tools like potential fields [HA+92]. These data structures

are then, fill with the scene topology information and updated in runtime.
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Figure 2.5 – Visibility graph and road map computation [Osk+09]

Early, data structure like graphs were commonly used to encode the properties re-

lated to the scene topology. Geraerts et al. [Ger09] proposed the corridor map method.

It consists in two phases, an off-line construction phase and an online query phase. In

the construction phase, the environment is analyzed and mapped using a graph as an

environment representation. The graph construction is based on Voronoi diagram, this

allows to identify the principle navigable axis of the environment. Then, sampling these

axes and assigning to each sample the radius of the largest empty disk around it, permit

to define the cleared area. This data structure define what the authors call the corridor

map. In the query phase, the data structure is used to ensure that the camera is colli-

sion free and by using steering forces the camera is attracted by the target and an ideal

camera track.

Oskam et al. [Osk+09] proposed a real-time visibility-aware camera path planner

to follow a target. In a pre-computation step, a roadmap that stores the visibility and

collision information is computed (figure 2.5). First, collision-free spheres are sampled

in the scene. Then the surfaces created by the sphere superposition (i.e. represented

as disks) are considered as nodes and all nodes computed in a sphere are connected

by edges in the roadmap. Finally, the roadmap is augmented with visibility informa-

tion by performing a Monte-Carlo sampling between all pairs of spheres. At runtime,

given a start position, goal position and a focus point, the system computes the short-

est collision-free path using an A* algorithm. The cost of a transition accounts for the

length of a transition and the visibility toward the focus position. Following the same

idea, Lino et al. [Lin+10]; [Lin13] proposed a global virtual camera planner accounting

for visibility and viewpoint semantic. For this purpose, the director volumes are intro-

duced which are extension of the semantic space portioning of Christie et al. [CN05]. In

a pre-computation step, a 2.5D cell-and-portal partitioning is performed on the scene.

At run time, two partitioning are performed for every cell: a visibility partitioning and
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a semantic partitioning. These two partitioning generate respectively volumes encod-

ing each information. Directors volumes are computed from the intersection of the two

partitions. The roadmap is then generated by sampling the portals and shared edges of

the director volumes. Finally, an A* algorithm is performed to search in the graph ac-

counting for semantic and visibility. As the target moves, the volumes and the resulting

roadmap are recomputed.

On another note, manually placing camera rails and static cameras in a 3D environ-

ment is tedious and time-consuming for designers. Jovane et al. [JLC20] proposed a

virtual camera system that automatically generates cameras according to the scene ge-

ometry. In a pre-computation step, the navigation mesh of the scene is analyzed and a

dense collection of potential cameras is generated from a skeleton representation of the

navigation mesh. Then a RANSAC driven clustering is performed to generate camera

rails which are then organized in a graph representation. To reduce computation at run

time, additional visibility information is also added to the graph similarly as [Osk+09].

At runtime, using a physical model, the camera is attracted to an ideal position that is

computed to be the best camera position for the current frame. The pre-computation

step has reduced the research space to a set of feasible camera rails. The ideal camera

position is computed by an optimization step within this reduced research step, simply

enforcing the framing and the coherency of the camera motion (i.e. avoiding jerkiness).

More recently, the drone cinematography field raised a lot of attention. Joubert

et al. [Jou+15] proposed to use classical spline-based animation techniques on cam-

era parameters (look-at, look-from) to design virtual motions, which they apply to un-

manned aerial vehicles (UAV). However, the design of camera animation with cubic

splines remains a tedious and time-consuming process. Further, drone control space is

very different (e.g. rotor speed) imposing new constraints, such as the feasibility of

trajectories. On this matter, Gebhardt et al. [Geb+16] proposed an optimization-based

framework for trajectory computation from a set of key-frame to a feasible trajectory

for a given motion model (e.g. quadrotor, robot). In [GSH18] a feasible trajectory for a

drone is optimized using key-frames set by non-expert user. The trajectory is constructed

as smooth as possible over time in order to minimize jerkiness. Roberts et al. [RH16]

proposed an optimization algorithm that take as input a non-feasible drone trajectory

designed by a non-expert user defined by some key-frame and return a feasible one. The

progress curve of the robot that match its displacement model is firstly solve by a close

form solution for the speed, acceleration and jerk. Then this progress curve is optimized
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trying to match as closely as possible to the user specified progression curve.

Global approaches work well on mostly static scene as these approaches need to

pre-compute huge data structure. Moreover, the cost of updating it in runtime can be

expensive and not adapted to highly dynamic scenes. Local planning approaches is gen-

erally used to address dynamic environments.

2.4.2 Local planning

Local approaches are usually low budget in computation time and memory. More-

over, they usually address dynamic scene elements naturally by their reactive design.

However, they are strongly prone to fall into local minima due to their local knowledge

of the environment.

Steering based motion are commonly used for local approaches. By looking only

for the necessary information to compute the camera position for the next frame the

system does not require pre-computation and can react in case of dynamic changes on

the scene. Burelli et al. [BJ09] proposed a force based system that rely on potential

fields. The idea is to map the local environment around the target with functions. By

following the slope of these composed functions they are able to define forces that will

move the camera position and look-at. They use the visibility as a float instead of an

integer, this mean they can specify how much of a target to see. The second function

is the projection size of the target on the image. The last function is the view angle.

Each function gives a force that attracts the camera and the final displacement force

is computed through a weighed sum of the 3 functions. Moreover, following the same

idea as [Yeh+11b] but with a local approach, Galvane et al. [Gal+13] proposed to use

steering techniques, first proposed for characters by Reynolds [Rey99], using steering

forces to attract the camera to the point of interest of the scene. The scene is analyzed

using flying camera. Thus, events are found this way and the camera is attracted to

these events using forces. The framing is handled using a modified toric space that add

a security space to avoid collisions between the camera and the targets.

Visibility and collision are expensive to compute because of the high dimension prob-

lem of camera displacement. This is why, for more efficiencies some work focuses on

extracting local information by using GPU computation and rendering techniques.

Christie et al. [CNO12] proposed to render a prism around the camera position

using the targets as sources. Doing so the visibility can directly be extract inside the
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prism. Thus, without heavy computation time, visibility is evaluated for a lot of potential

camera configuration even if it is restrained around the current camera position.

Argelaguet et al. [AA10] proposed to optimize the speed of a camera from a camera

track defined by a set of key frames. The optimization step accounts for five criteria:

(i) improving the camera animation smoothness that is a standard guideline for cam-

era animation; (ii) minimizing fatigue that can cause different symptoms (e.g. motions

sickness, headache); (iii) maximizing the information given by the sequence; (iv) creat-

ing an interesting sequence, meaning accelerating when the on-screen information has

already been seen or are not interesting; (v) generating a concise sequence i.e. that has

a length adapted to the scene. Habituation maps are introduced and combined with

optical flow maps and image saliency maps to perform the optimization. The concept

of habituation refers to the degree of novelty of objects in the 3D scene and helps to

maintain the users’ attention.

Local planner are able to handle dynamic scene but have hard time to get out of

local minima. Thus, we can imagine solution that combine local approaches and global

approaches to get the benefits of the two approaches.

2.4.3 Hybrid planning

The core motives behind hybrid approaches is the will to create efficient techniques

for application that have hard time constraints while having better trajectory results

than local approaches.

Li and Cheng [LC08] proposed an automatic tracking system for one target. The ob-

jective is for the camera to keep a defined view angle on the target and avoid occlusion.

For the path planning part, a lazy PRM is used [BK00] allowing the system to map the

environment as a graph. The graph is build around the target and updated in real-time

at runtime. The evaluation of the nodes and transitions inside the graph is computed

using the difference between the ideal viewpoint and the current node position.

Burelli et al. [BY10a] proposed CamOn, a hybrid automatic virtual camera path

planner. The idea of this approach is to first optimize locally to compute an ideal camera

pose using a potential field accounting for image composition; if the local search fails, a

global search is performed accounting for collision and visibility using an Evolutionary

Algorithm [BY10b]. Finally, a path is computed between the current camera position

and the ideal camera position using a PRM.
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One of the most used techniques to create hybrid approaches is the Model Predictive

Control (MPC). The idea of MPC is to find the next state of the system while accounting

for the future within a time horizon. In the case of camera path planning it allows avoid-

ing local minima by anticipating the system state inside a time horizon by knowing only

the current state of it. To account for dynamic changes, the anticipation is recomputed

at a higher frequency.

Litteneker et al. [LT17] proposed an automatic camera system that computes an

optimized camera trajectory for scripted and unscripted scenario. Their optimization

process relies on two energies similarly as [Ass+08] presented in section 2.3, the op-

timized energy is split in an internal energy encoding visual properties (visibility, shot

size, relative angles, rule of third and look space) and an external energy encoding the

camera path smoothness. The energy optimized in 2.1 is then:

E(x(t)) = Eint(x(t)) + Eext(x(t))

Two successive optimization steps are applied. First, the keys frames are optimized

through a simulated annealing only accounting for the internal energy. In a way similar

to an active contour model, they secondly re-optimize key frames through a gradient

descent taking into account both energies. In case of a scripted scenario, the optimized

trajectory can be computed offline. In case of an unscripted scenario they use an MPC

strategy to enable its online computation. They rely on a Taylor series to anticipate fu-

ture key frames along the trajectory, from past key frames. They then run their 2-step

optimization process on this anticipated trajectory, and steer the camera toward the first

key frame. Nageli et al. [Näg+17a] proposed a real-time trajectory generator for aerial

cinematography. The drone trajectory is optimized accounting for visual properties on

multiple targets using MPC. Properties include: image space positions, projection size,

relative viewing angle, desired camera pose and visibility. Moreover, they add a con-

straint to their system to avoid collisions with the environment and dynamic objects in

the scene by using a potential field representation and a hard constraint. In [Näg+17c],

the system is extended to automated multi-drone cinematography in cluttered and dy-

namic environments. Using MPCC the drones positions are planned in parallel along a

time horizon. The targets positions are anticipated using a Kalmann filter and input to

the drones planning system along with the framing input set by the user. The drones tra-

jectories are constructed by optimization and account for mutual visibility issues. First
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Figure 2.6 – System setup and results on different situations. [Bon+19]

a virtual camera rail is specified by the user. The system applies the local MPCC opti-

mization to minimize the difference between the drone position and the virtual camera

rail while avoiding dynamic colliders.

Bonatti et al. proposed a drone cinematography system in which their quadrotor

is able to reconstruct the environment surrounding the drone as an occupancy grid.

In [Bon+18]; [Bon+19], a 3-step planner was proposed for a single quadrotor (fig-

ure 2.6). First, the target is tracked using a vision-based detection neural network. Then,

the target displacement is anticipated using a Kalman filter in a way that the targets’

trajectory can be forecast in the 3D environment. This anticipation helps to build the

"ideal" trajectory for the drone, "ideal" meaning maintaining the drone relative position

(i.e. distance, relative angle) to the target overtime. Finally, the real drone trajectory is

optimized for (i) Avoiding collision and occlusion with the environment, (ii) Staying as

close as possible to their ideal trajectory and (iii) Avoiding jerky motions. This system

is extended in [BBS20] to support multiple automatic drone planning with montage

between the different shots. Three criteria are added to the cost function (i) Avoiding

drones to see each other, (ii) Trying to have as much viewpoint diversity as possible

between the drones and (iii) Avoiding user-defined viewpoints area.

Galvane et al. [Gal+18a] proposed a multi drone cinematography system based on

the drone toric space (DTS). The DTS is a modified toric space representation of Lino

et al. [LC15], in which a security radius is added around the targets to ensure a min-
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imal security distance between the drone and the targets. The system allows the user

to control the drone either through a standard joystick controller or designing by hand

a rough trajectory that will be optimized to ensure collision-free and C4 continuity tra-

jectories. The user can also specify the framing using through-the-lens interaction. For

the collision-free path computation a road map similar to Oskam [Osk+09] is gener-

ated and encodes target visibility. Then, considering a sketched trajectory, the system

searches for the closest trajectory available in the road map and similarly to [Geb+16]

the found trajectory is optimized to be C4-continuous using a polynomial representa-

tion. In runtime, the trajectory is recomputed at a higher frequency to ensure it’s still

not collided. Finally, to handle multiple drones, a min conflict optimization is performed

to avoid mutual drone visibility and ensure framing requirements.

Sanokho et al. [San+14] proposed to create a collection of extracted camera track

from films to use them on virtual environments. The transitions between the tracks

(i.e. cuts or smooth transition) are pre-computed and defines the camera motion graph.

At run time, the visibility is checked by voxelizing the close future path and by launching

rays between the voxels and the targets. If none of the voxel are visible the system use a

transition toward another track. Otherwise, a path is built using the visible voxel. Each

camera trajectory is stored as a series of camera configurations in toric space coordinates

around the moving targets.

Most of the works focuses on how to produce a "good" camera trajectories with more

or less time constraints. However, the definition of a good trajectory is still not well

define. One of the possible solution to go around this, is to use data driven techniques

to learn trajectories.

2.4.4 Data-driven camera motions

Led by the motive to produce trajectory similar to the one produced by human oper-

ator (i.e. for film or animated films), we can turn the problem over and produce camera

trajectory from examples extracted from films.

Typically, Sanokho et al. [San+14] extract films camera trajectories using estima-

tion algorithms, and expressing them in the local basis of a character, in order to build

a camera motion graph (see Section 2.4.1 for more details). In the same idea, consider-

ing that details is an element of style for camera motion, Kurz et al. [Kur+14] proposed

a style transfer system based on camera trajectories extracted from movie clips. First,

45



State Of The Art

a database is built by extracting the trajectories using camera motion estimation algo-

rithms (Structure-from-Motion [Özy+17], visual SLAM [TUI17]) and manually labeling

the trajectories according to their style. Then, each trajectory is decomposed by sepa-

rating the shape and details. The shape is computed using a Taubin filter and the details

are extracted using a local frequency analysis (Gabor decomposition). Finally, the sys-

tem is able to match a given smooth trajectory to a known one in the trajectory database

and associate its details. Jiang et al. [Jia+20] proposed to learn the mapping between

a sequence of configuration of two animated characters (e.g. inter-character distance,

relative orientations) and the sequence of camera viewpoints on these characters. This

mapping is referred as camera behaviors. In the learning step, first the cinematic features

are extracted from multiple RGB movie clips. An LCR-net network [RWS17] estimate

the characters poses which is used for (i) extract the camera parameters in the Toric

space [LC15] and (ii) extract the relation features between the two characters. These

features are given to a gating network that maps the sequence of features to the se-

quence of camera. Then MoE are able to identify camera motion type by themselves

(i.e. orbital, traveling, etc...). Based on this work, Jiang et al. [Jia+21] proposed a cam-

era motion in-between generator to track 2 characters. As the previous work, the goal

here, is to learn from film examples, to track two characters. A network has been de-

sign to learn from movie clips, how the camera can transition between two key frames.

The toric space coordinates of the camera are extracted from movie clips and then, the

network map the camera motion style space. From this space, the motion between two

given key frames is reproduced according to the one learned.

With the explosion of Deep Learning techniques during the last decade, new per-

spectives opened for data driven approaches. In the cinematography field, reinforce-

ment learning have helped a lot for the question of motion planning and vision based

target identification. Hanocka et al. [Han+22] proposed a reinforcement learning strat-

egy for a flying camera to track multiple targets in a team sport environment. The

system is able to learn from a few key-frame examples given by an expert user. First, a

low-dimensional representation of the scene dynamics is encoded in two networks: the

spatial component is a variational auto encoder (VAE) and the temporal component is

an LSTM that compresses the history of the spatial latent states. Then a reward estima-

tor network is trained using a few simulated expert examples: the expert gives a good

point of view at the beginning of the epoch and stops the simulation when the point

of view is judged to be too bad. Finally, an MPC is performed by sampling sequences
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of actions inside the low-dimensional representation and evaluating the corresponding

trajectories using the reward estimator. Rucks et al. [RK21] proposed a low-depth re-

inforcement learning approach for a character chasing camera. The objective is for the

camera to (i) avoid occlusion and collision (ii) keep the target in the camera frustum

and (iii) maintain a reasonable distance from the target. The neural network (i.e. Prox-

imal Policy Optimization) is built with two hidden layers of 128 neuron each. There

are 48 inputs to the network: the target position and orientation, results of ray casts

launched between the camera and the target bounding box corner which account for

the target visibility (i.e. there is no occluder between the camera and the target and the

target are inside the camera frustum) and finally results of 26 rays casts from around

the camera in order to sample the local information of the surrounding environment.

The network needs to be trained for each specific environment and outputs an action to

perform for the camera (i.e. a camera translation and rotation). The high noisy output

is then smoothed by using a simple interpolation mechanism.

Being able to detect the target on the image space is a critical task for drone cine-

matography applications. Huang et al. [Hua+19b] proposed an expert-based learning

framework to generate drone poses in a character tracking task. In the first step three

features are extracted from the on-board drone camera: (i) the subject skeleton pose,

estimated with OpenPose [Cao+17]; this pose is encoded as thirteen Gaussian masks

centered on the skeleton joints; (ii) the background image, which is encoded using a

CNN; and (iii) the dense optical flow that encodes the camera motion. In the second

step, using these extracted features, a prediction network trained on professional human

motion videos infers the next subject pose and dense optical flow. During the last step,

from the predicted features, the camera pose is computed, and a feasible path is gen-

erated using a min-snap polynomial trajectory algorithm to drive the camera towards

the computed pose. Huang et al. [Hua+19a] further extended the previous approach

by considering a system where the user can input a desired camera pose. Training data

are collected from video sequences where the features (i.e. 20-frames pose sequences

associated to the next pose) are extracted using OpenPose and fed to the learning net-

work. The network learns to predict the next pose from the past sequence using a neural

machine translation (NMT). At run-time the system extracts the features from the video

captured by the drone. These features are processed by the decoder of the NMT that

returns the next pose. Finally, the system generates a command sequence to drive the

drone towards the predicted pose. Gschwindt et al. [Gsc+19] proposed a reinforce-
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ment learning approach for drone cinematography based on a previous work [Bon+18]

(see section 2.4.1). A deep Q-network (DQN) is trained to predict the next action to

perform for the flying camera. The network is trained using three elements: a height

map that represents the environment around the target, the current camera shot type

(front/rear/left/right) and the duration within this shot counted in steps, where step

has a duration of 6 seconds. The reward function relies on the optimization function

used in [Bon+18] that accounts for camera angle, occlusion, collision and on-screen

size of target, and is extended to handle shot duration. The network is then able to

select an action to perform for the next step: either maintain the current shot type or

change to a new shot type. Finally, the trajectory is generated by CHOMP [Rat+09], a

motion planner based on gradient optimization, between the current camera location

and the location corresponding to the selected action. We refer the reader to [Bon+20a]

which summarizes all their contributions [Bon+18]; [Bon+19]; [Gsc+19] and inte-

grates real-time generation of the height map using LiDAR.

Loquercio et al. [Loq+21] proposed a learning-based path planner for high-velocity

quadrotor travelling in cluttered environments. The process works through two stages:

an offline training stage, and an online optimal control stage. The offline training stage

is fully performed in simulation. A privileged expert is devised, which has full knowl-

edge of the environment (i.e. represented as a point cloud) and of the state of the drone

(e.g. orientation, altitude and a depth map computed from its point of view) along a ref-

erence collision-free trajectory between two positions [Liu+18]. From these inputs, the

expert randomly generates thousands of collision-free trajectories for the next second,

using a Metropolis-Hasting algorithm [FB13], then outputs the best three trajectories

regarding their collision probability and the distance to the reference trajectory. Then, a

student network learns how to imitate the privileged expert output, with only the drone

state as input. In the online stage, at each time step, all three trajectories output by the

trained network are represented as B-spline curves, and evaluated according to their

collision probability learned from the expert network. The one with the lowest cost is

finally tracked using MPC.

2.4.5 Trajectory evaluation

During the last decade and a half, the two research fields of virtual cinematography

and drones have converged. Before 2008 most of the works in virtual cinematography
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focused on camera positioning (i.e. viewpoint) [CON08]. At first most of the works

focused on the amount the information given by viewpoints or sequences based on

the notion of viewpoint entropy as defined by Vazquez [Váz+01]. With the evolution

of graphics performances, 3D environments became denser and more dynamic. From

this point the community of virtual cinematography started to focus on path planning

problems and how to generate aesthetic trajectories. On the other hand, the topic of

drone cinematography has emerged as a promising research field. Drone (or aerial) cin-

ematography has stemmed from robotics where most of the contributions focused on

feasibility and trajectories optimization for path planning. Almost all contributions we

show in this state-of-the-art report has a way or another to judge either camera view

point or the camera trajectory generated by their system. In this section we overview

how the trajectories are evaluated and what are the critical properties to ensure to gen-

erate "good" trajectories. We will decompose this analysis in two axes, first we analyze

the optimization process that most of the works rely on, then we analyze the different

user evaluation techniques proposed in the literature.

Optimization function analysis

Automatic cinematography is, for the most part, an optimization problem, and we

can define the optimization function as a combination of quantifiable properties. Most

of the time we search to minimize the energy of these combined properties 2.1.

We can break down these properties in 4 categories: (i) the environment related

properties, (ii) the camera motion properties, (iii) the on-screen properties and (iv) the

on-screen motion properties.

Environment related properties: These properties are what the camera will have to

be aware of when moving around in the scene. One of the most studied properties in

automatic cinematography is the visibility and occlusion avoidance. Contributions such

as [Osk+09]; [BY10b] proposed a global planning approach to compute visibility for

virtual camera control on static scenes. Ranon et al. [RU14] proposed an accurate visi-

bility computation between a camera and a target. This works also shows that ray cast is

more accurate than image-based techniques for visibility computation. Due to the highly

constrained nature of camera control, visibility can become computationally heavy if

computed for dynamic environments and over time while rendering is less expensive.

Christie et al. [CNO12] proposed a rendering based occlusion avoidance technique for
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multiple targets. When referring to environment related properties for camera planning,

and especially for drone cinematography, collision is a critical point. In the drone cin-

ematography field [Geb+16] proposed to optimize a set of user defined key frames to

compute a feasible and collision free trajectory for a quadrotor. Obstacles are approx-

imated as spheres and added to the optimization constraints. Later, [Bon+18] used a

LiDAR sensor to voxelize the environment and launch rays between the camera and the

target anticipated motion to avoid collision and occlusion. And more recently [Loq+21]

used data-driven approach to learn to avoid collision for a high velocity motion drone.

Camera motion properties: The smoothness of a camera motion is a key property

that was addressed in both fields. In virtual cinematography, camera motions are usu-

ally physically plausible while in drone cinematography, feasibility constraints need to

be considered. On the one hand, optimizing the trajectory to minimize the third motion

derivative (i.e. the jerkiness) has become common in order to produce smooth trajecto-

ries. In this idea [Gal+13]used force based steering system to move the camera toward

an ideal position. In another way [Osk+09] used Hermite curves to ensure a smooth

camera trajectory. Gebhardt et al. [Geb+16] proposed an optimization process to gen-

erate smooth and feasible trajectories for quadrotors by minimizing the energy function

of the motion model. Driven by the same idea yet using MPC optimization [Bon+18];

[Näg+17a] proposed a system to generate in real-time collision-free trajectories for

drones. On the other hand, [Kur+14] consider the camera shakiness as an element

of style and try to learn and apply some degree of shakiness to camera trajectories

(i.e. handheld camera for example).

On screen properties: Maintaining on-screen properties as image composition or

view angle, has often been considered in the optimization process. Contributions such

as [Abd+11]; [LT17] encoded numerous standard cinematographic rules (e.g. framing,

shot type) on their system. Another way to maintain these properties is to use a deriv-

able function defined by the on-screen properties to describe the camera position in the

3d environment as the potential fields. Yeh et al. [Yeh+11a] defined multiple potential

fields from on-screen properties such as view distance or view angle. Lino et al. [LC15]

introduce the toric space, an intermediate camera space built to solve the framing for

one or a pair of targets. Relying on the toric space [Gal+15a] proposed an optimization

based method to build camera rails to maintain image composition. Moreover, [Jia+20]
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also rely on the toric space but with a data driven approach. After extracting some movie

clip feature, they train a neural network to reproduce similar camera behavior as movies

inside virtual environment. Nageli et al. [Näg+17c] proposed an automatic drone sys-

tem that optimizes the trajectory according to cinematography guidelines like targets

view angle and shot type.

On screen motion properties: Finally, since cinematography is the art of motion

picture, it is also important to account for the on-screen motion. Unfortunately, these

properties remain under-addressed in virtual cinematography and drone cinematogra-

phy. Among the few works addressing this aspect, Argelaguet et al. [AA10] used opti-

cal flow in addition of image saliency that provides data on the image luminance and

chrominance variation. Huang et al. [Hua+16] proposed to use the optical flow to adapt

the camera motion speed to devote less time to the less interesting trajectory parts.

In image analysis field, there are other properties that can be accounted for and in-

teresting to use, such as image saliency which has proven to be really important for film

understanding. As Bruckert thesis [BCM21] shows, visual saliency in films is important

to understand what are the viewers focuses while watching a cinematographic pro-

duction. In virtual cinematography, these kinds of properties haven’t been investigated

much.

User study analysis

While there are some quantifiable properties that can be computationally optimized,

cinematography styles and quality is a subjective matter. Thus, performing user studies

provides a means to assess the visual quality of camera motions. In practice only a few

contributions in virtual and drone cinematography fields have performed extensive user

studies. First user studies were proposed by [AWC10]; [Yeh+11a] where 30 computer

graphics students have been asked, given a pool of videos, which one they find the most

appealing. In Yeh et al. [Yeh+11b] from 12 overview sequences rendered using their

system, a baseline method or a professional sequence, 70 users were asked to choose

their preferred videos. This was performed for 12 pairs of videos to reduce as much as

possible the bias. The ranking relied on 3 criteria: (i) the more stable, (ii) the more pro-

fessional and (iii) the more narrative content. In [Bon+20a] 10 participants were asked

to rank different videos of 30s captured with different policies from most to least visu-

ally appealing. In [BBS20] 15 participants were asked to choose which sequence they
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prefer. Each sequence is rendered to have a change in view angle every 3s, among a

predefined set of angles (i.e. 45°, 90°, 135°, or 180°). Other means of evaluation rely on

cinematography experts to validate sequences generated by the systems. In [Näg+17b]

an expert was asked to give feedback on their system to validate the interface and the

trajectory design system. Galvane et al. [Gal+18a] did both user study and expert val-

idation; 12 participants were asked to compare their controller to a baseline controller

for 6 criteria: familiarity, ease to use, fluidity, framing, precision, and satisfaction. The

expert user where asked to use the system for 30 minutes and give feedback. Finally, in

[Bon+20b] the authors tried to create a latent space of the camera trajectory emotion.

They generated multiple flying camera shots with different view angles and asked 15

users to rank 70 captured clips along emotional axis.

2.5 Conclusion

In this chapter we presented an overview of the computational virtual cinematogra-

phy field. We identified gaps in the literature that we will try to cover in this thesis and

the future challenges for the community.

One can view the automated approaches as composed of three approaches:

— The local approaches are computationally efficient but easily trapped in local min-

ima due to the local knowledge they have. The navigable space is reduced to the

local surrounding of the camera the goal being to find the immediate next camera

configuration.

— The global approaches need heavy pre-computations to process and store the en-

vironment data in dedicated data structures. A set of camera configuration will

then be optimized using the global information.

— The hybrid approaches are a mix of both previous approaches and there are no

precise guidelines to build hybrid approaches. The community however, tends to

agree on the use of the MPC technique that is able to find a valid solution for a

defined time horizon then recompute at a higher frequency in order to account for

local changes.

Now that we have analyzed the field of virtual cinematography, we can see that

there is currently no solution that satisfies our constraints at the same time (Automatic

camera target(s) tracking for real-time application accounting for dynamic changes
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of the virtual environment). Global approaches have a need of heavy pre-computation

and because we need to account for dynamic elements we would have to update the

pre-computed data structures which is too expensive for us. Local approaches could be a

good way to satisfy our constraints. Efficient solutions that handle well visual properties

(e.g. the Toric Space [LC15]) do not handle or solve occlusion avoidance.

In this thesis, a first problem we address is how to handle simultaneously occlusion

and visual properties (e.g. distance, angle, framing) in a target tracking task and in

real-time. Then, in the second problem, we address the limitations of the first proposi-

tion. We rely on an MPC-based approach coupled with a dedicated parametric space of

camera motion to characterize the trajectory quality.
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CHAPTER 3

A LOCAL APPROACH FOR

OCCLUSION-FREE VIRTUAL CAMERA IN

THE TORIC SPACE

As shown in the previous chapter, in most interactive applications, camera are tradi-

tionally controlled with low level interaction metaphors which offer limited degrees of

control on the camera and controlling these cameras is still a challenging task for non-

expert users. Furthermore, solutions remain limited in handling occlusion and collision

avoidance in the literature. Thus, there is a need to provide a higher level of camera

automation Therefore, in this chapter we address these 4 challenges: (i) the camera

has to be fully automated; (ii) the system has to be efficient enough to run in real-time

applications; (iii) the camera has to track target(s); (iv) the system needs account for

dynamic elements in the scene.

Therefore, In this chapter we address these challenges by proposing a real-time cin-

ematic camera control system for fully dynamic 3D scenes, which maximizes visibility

of one or two targets with no pre-computation. To do so, we leverage the contribu-

tions of the Toric space (i.e. [LC12]; [LC15]) which offer an efficient way to address

cinematic camera placement, yet without addressing the issues of visibility computa-

tion/maximization nor quality of camera motions. The contributions are:

— an efficient shadow-mapping algorithm to compute visibility information into a

Toric space coordinate system;

— a customizable anisotropic blurring algorithm to generate, in Toric space, an oc-
clusion anticipation map;

— a texture-based style model to encode viewpoint preferences (i.e. directorial styles

in viewpoints can be expressed as textures);

— a physically-plausible camera control model enabling, from this information, to

create smooth camera motions in real-time. We supplement this model with a
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Figure 3.1 – Real-time camera control system automatically anticipates and avoids static
and dynamic occluders. Starting from the same frame, our system without anticipation
activated (red camera) is unable to anticipate, hence remains occluded until the char-
acter moves away from the column (middle image 1); using our anticipation technique
(green camera), our system enables the camera to predict the occlusion, and move to
an unoccluded view of the character (middle image 2).

set of strategies (e.g. introduce cuts) to handle symptomatic cases (e.g. when no

occlusion free viewpoint can be found locally).

3.1 Background

Positioning cameras in 3D scenes is highly connected to the notion of viewpoint en-

tropy [Váz+01], i.e. measuring the quality of a viewpoint with regard to the amount

of information it conveys for a given scene. When addressing the problem of moving

cameras that should follow moving targets in a cinematographic way, three criteria are

critical: (i) maintain enough visibility on these targets, (ii) provide viewpoints in which

the visual arrangement of targets follow common aesthetic rules used by cinematogra-

phers [TB09b] and (iii) provide smooth camera motions because beside the notion of

viewpoint quality, the notion of motion quality is also an important point to address.

3.1.1 Toric space

Most approaches have tackled the framing problem as a search or a constraint-

solving problem in a 7D camera space (i.e. optimizing a 3D position, 3D orientation,

and field of view for each camera, and each time step). One key issue is the strongly

non-linear relation between the low-level camera parameters and the visual arrange-

ment constraints (e.g. targets on-screen positions, size, or viewing angles) to satisfy.
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Figure 3.2 – Toric space representation proposed by [LC12]; [LC15] to algebraically
solve combinations of on-screen constraints. A viewpoint is parameterized with a triplet
of Euler angles (α, θ, ϕ) defined around a pair of targets (A and B); α (red) defines the
angle between the camera and both targets – it generates a spindle torus on which to
position the camera –, θ (green) defines the horizontal angle and ϕ (blue) the vertical
angle around the targets.

Hence, for efficiency, it is often required to reduce the dimension of the problem, by

either optimizing the camera position and orientation in two separate steps or by con-

straining the possible camera positions. The Toric space proposed by Lino and Christie

[LC12]; [LC15], is a 3D compact space in which some visual constraints can be directly

encoded (in terms of both camera position and orientation) or solved algebraically.

This space is defined as a continuous set of spindle torus, around two targets. A 7D

camera configuration is fully determined by 3 parameters: an angle (α) algebraically

computed from the desired targets on-screen positions – any camera position (and its

associated orientation) on this α-Toric surface satisfies this key constraint –, as well as

a horizontal and a vertical angle (θ and ϕ) on the torus (see figure 3.2). Furthermore,

visual constraints can be robustly and interactively enforced or manipulated, while this

is a difficult problem in the 7D camera space. Yet, visibility information remains not

straightforward to compute in Toric space, which is a key motivation of this work.
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3.1.2 Visibility for computer graphics

Visibility (and by extension shadow) computation in 3D scenes has received much

attention in computer graphics, mainly for rendering purposes. An extensive overview

of general visibility and shadow computation is beyond the scope of this work, though

a good insight in visibility problems classification can be found in [Coh+03], and

overviews of modern shadow computation techniques can be found in these two works

[WP12]; [Eis+16]. Hence, we here only review techniques that are relevant to our

domain of interest.

Ray-casting techniques Rely on direct ray-primitive intersections [Rot82] to check if

some geometry exist between two 3D points. This is mostly used in path-tracing tech-

niques, as it allows computing point-point visibility very efficiently. By casting many

rays, one can obtain a rough approximation of the from-point visibility of a complex

geometry. It however remains more expensive than rasterization, as it requires to cast

many rays, and to dynamically maintain a bounding-volume hierarchy. One reason is

that it still heavily relies on CPU computations (at least until hardware ray-tracing GPUs

become the norm).

Rasterization-based techniques Rely on the hardware graphics pipeline, which offers

very powerful tools (e.g. the depth map or z-buffer). It enables approximating shadow
maps [Wil78] by computing a depth map from a light source, or even soft shadows
[HH97] by using multiple shadow maps computed from sampled points on an area

light source. [Rit+08] reversed this concept by computing many low-cost (128x128

pixel) shadow maps from sparse 3D scene points. They approximate the scene as a set

of sample points, split them into subsets, and render each subset into a shadow map,

with a point-based rendering method. As a result, they obtain inaccurate shadow maps.

These maps provide a very poor approximation of direct visibility, but are good enough

to efficiently approximate indirect visibility (illumination and shadows) from punctual

or area light sources. Our technique is inspired by the shadow mapping concepts, which

remain cheap (i.e. the z-buffer is encoded in the hardware of most GPUs) and provide

a precise-enough approximation of the from-point visibility in complex and dynamic

scenes. More generally, we design our computation pipeline to be massively parallel

(i.e. shader-oriented).
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3.1.3 Visibility for camera control

Visibility is also a central issue when controlling virtual cameras, though its has been

paradoxically under-addressed in this domain. Different concerns must be reconciled:

(i) the level of precision (from rough to precise approximation), (ii) whether dynamic

occluders or complex geometries are accounted for, and (iii) whether the camera can

anticipate on future occlusions. In most existing works, the visibility is computed by

casting rays toward a rough geometric abstraction (often a bounding box or sphere)

of targets, with no or few anticipations. We hereafter focus on techniques handling

visibility for camera motions.

Local visibility planning To plan paths in scenes with dynamic occluders, researchers

have proposed reactive planning techniques. Inspired by occlusion culling methods used

in rendering, Halper et al. [HHS01] proposed an occlusion avoidance relying on Poten-
tial Visibility Regions (PVR). They firstly define preferred viewpoints as a set of bounding

spheres. Each sphere is shaded regarding its preference level (the higher, the brighter

the color). They secondly use a depth buffer from the target position. They render all

volumes from most to least desirable, while considering the depth of occluders. As out-

put, they generate an image buffer whereby the brightest color (i.e. most desirable

camera position) that first pass the depth test is visible. To anticipate occlusions, they

also consider the past occluders trajectories and accelerations, and solve the camera for

that predicted state. In turn, the camera path is adapted so that the camera can be at this

predicted position at the prediction time. Christie et al. [CNO12] extend this concept

to two targets. They first compute low-resolution depth buffers from a large sample of

points on each target, in the direction of the camera. They combine these depth buffers

to create visibility volumes around the camera. Furthermore, they also extend it to three

or more targets [CON08] by combining pair-wise computations, and aggregate visibil-

ity in a temporal window to avoid over-reactive camera behaviors. Our technique relies

on similar concepts, while we project results in a configuration space (the Toric space)

allowing to also solve for the viewpoint semantics. Local approaches are best suited for

planning paths step-by-step. Hence, if no solution exists in the rendering, they will fail

to find an occlusion free position (even if one exists). In turn, they cannot plan a global

path to this position. In our approach, we overcome this problem by considering more

global visibility information, to make cuts, as an alternative when no local solution is

found.
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Figure 3.3 – Overview of the system: (left) a dynamic 3D scene serves as input, (middle)
our visibility anticipation process consists in computing shadow maps together with
occluder velocity maps for each target, and combining them to construct an occlusion
anticipation map (right) we use this anticipation map together with a physical camera
model to both maximize visibility and camera motion smoothness.

Visibility in Toric Space Remains an under-addressed problem. [LC15] proposed to

compute a set of camera positions in Toric space, satisfying other visual constraints.

They convert them back to Cartesian space, evaluate targets visibility with ray-casting,

and discard those with low visibility. The main drawback is that their visibility compu-

tation remains imprecise and costly, while they target placing cameras in static scenes

only. To our knowledge, there has been no other attempt to compute visibility, and none

to anticipate occlusions in Toric space.

3.2 Overview

The core of our method consists in solving an optimization problem in a 6D cam-

era space (position and orientation) in real-time that accounts for 3 main criteria: (i)

computing a sequence of viewpoints that satisfy a user-specified visual arrangement of

targets (e.g. desired on-screen positions), while (ii) maintaining as much visibility on

the filmed targets as possible, and (iii) ensuring that camera motions remain as smooth

as possible. First, by using the Toric space coordinate system [LC15], given two desired

on-screen positions for two distinct targets, the camera orientation is fully determined

by a given position in the Toric space. We leverage this property to re-write the overall

problem as a constrained-optimization on the camera 3D position only (rather than a

6D).

The Toric space being defined by two targets (abstracted as two 3D points), we
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propose a tracking with only one target but rely on the classical gaze-room filming

convention [TB09b] by considering another 3D point placed in the forward direction

of the target that represents the target’s anticipated 3D location. By composing on the

screen, the target together with its anticipated position, we provide enough visual space

ahead of the character, hence satisfying the gaze-room convention. The desired on-

screen positions of these two targets is enforced by maintaining the camera on a given

Toric surface within the Toric space [LC12]. This addresses criterion (i).

To address criterion (ii) (visibility), a key requirement is the ability to efficiently

evaluate the visibility of our two targets for many camera configurations. To further

maximize this visibility over time, we need to anticipate the motions of the camera,

targets and occluders, i.e. computing the visibility ahead of time.

In order to do so, we propose a 2-stage computation pipeline (see figure 3.3). In

the first stage (deferred projection), we draw inspiration from the shadow mapping

technique to compute the visibility of both target objects. We render occluders from

the viewpoint of each target and project this information onto the current Toric surface

(see figure 3.2). We therefore obtain a 2D scalar field on this surface which we refer

to as a target shadow map(or S-map). The field encodes the composed visibility of

target objects at the current frame. Then, in addition, we compute the velocity of our

occluders and generate a corresponding 2D vector field in the Toric space which we

refer to as the occluder velocity map(or V-map). In the second stage, we combine the

S-mapand the V-mapto compute a new 2D scalar field corresponding to an anisotropic

blur of occlusions along the occluders’ velocity directions given by V-map. In a word,

we compute the predicted visibility of the occluders knowing their velocity into a scalar

field to which we refer as occlusion anticipation map(occlusion anticipation mapor

A-map). This encodes the probability of future occlusion of the targets, expressed in

Toric space, within a given time window.

To address criterion (iii) (smooth camera motions) we propose the design of a

physically-driven camera motion controller in which our camera is guided by a num-

ber of external forces. We start by defining a search area which approximates the locus

of future camera positions, given a time window and our physical camera model. We

then sample points in the search area and project them on the Toric surface. For each

projected point, we extract the anticipation information stored in occlusion anticipa-

tion map, and then decide where to move the camera. To handle specific cases, differ-

ent camera motion strategies have been defined (see Section 3.4). This addresses the
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Table 3.1 – Notations

(u,v) angle between two vectors
u · v dot product
o target object
s sample point index
r number of sampled points on target object o

(i.e. s ∈ [1 . . r])
i camera motion iteration

(x, y) pixel/texture coordinates ∀x, y ∈ [0, 1]
T (x, y) value in a 2D buffer/map T
Sos map computed for sample point s on object o

combination of criteria (i) and (iii).

3.3 Visibility computation pipeline

We detail the two stages of our visibility computation: (i) computing pairs of target

shadow mapand occluder velocity mapfor the two targets; (ii) combining both maps

to generate an occlusion anticipation map. Both stages rely on a mapping between a

Toric surface and a texture.

The texture is mapped using the toric parameters θ (horizontal angle) and ϕ (vertical

angle). Before performing the projection, we build a mesh representation of this surface

on which every vertex is supplied with two additional channels of information: (a) its

texture coordinates, that will linearly map the Toric angles (θ, ϕ) illustrated in figure 3.4,

(b) the normal and tangent to the surface at this vertex that compose the local surface

basis matrix TBN which is later required in the camera motion strategy.

We rely on these additional channels to (a) transform any local pixel of a projected

map into its corresponding Toric texture coordinates (as illustrated in figure 3.5), and

(b) transform an occluder velocity expressed in the Cartesian space, into a plane tangent

to the Toric surface (i.e. a local Toric space velocity vector). With this in mind, we can

detail our visibility computation pipeline.
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Figure 3.4 – (x, y) texture mapping expressed in the Toric space (θ, ϕ).

3.3.1 Deferred projection of shadows and velocities

In order to obtain a good approximation of the visibility of potentially complex 3D

targets, we propose to perform visibility computation for a number (r) of random sam-

ple points on the surface of each target object (inspired by [CNO12]). Let’s consider a

sample s, picked on target object o. For this point, we will render the S-map (Sos) as

well as the V-map (V o
s ) using deferred projections.

G-Buffers To compute these two projections, we first need to render required infor-

mation into a set of screen-space textures. We perform two render passes, both using

the same camera projection (looking from s to the current camera position on the Toric

surface): the first render pass only renders the mesh of the Toric surface, and the sec-

ond renders the occluders (i.e. the rest of the scene without the object o to avoid self-

occlusions). In the first pass, we store the depth map in texture Ztoric, the mesh 3D

positions in Ptoric, and the surface texture coordinates provided in the extra information

channels on the mesh in texture UV together with its normal and tangent vectors (in

two textures N and T ). The Ptoric map is later used to compute the velocity of the Toric

by finite differences at the current location. In the second render pass, we store the

depth map (in texture Zocc) and the occluders 3D positions (in texture Pocc). The infor-
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Camera

Target A Target B

Sample 1
on A

Camera

Target A Target B

Sample 1 
on B

Camera

Target A Target B

Sample 1
on A

Camera

Sample 1 
on B

Target A Target B

Figure 3.5 – Deferred projection performed from one sample on each target, with at the
top the shadow maps, and at the bottom the velocity maps

.

mation stored in the map UV (x, y) is required to express a local position (x, y) of a map

into the corresponding global position in Toric coordinates on the S-mapand V-map.

Target shadow maps

For each point s on the target object o, we fill the 2D target shadow mapby simply

comparing depths:

Sos (UV (x, y)) =

1 if Zocc(x, y) < Ztoric(x, y)

0 otherwise
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Occluder velocity maps

We now want to predict locations from which this sample point will be occluded

in the next frames. To do so, we will rely on the current occluders velocity. What we

propose is to first render this velocity into a velocity map (V o
s ). By deriving our posi-

tion buffer Pocc using finite difference between two frames, we determine the occluders

world-space velocity as vocc(x, y) = dPocc(x, y)/dt. In the same way, we determine the

world-space toric velocity as vtoric(x, y). We finally express the occluders velocity in the

Toric space:

V o
s (UV (x, y)) = TBN t.(vocc(x, y)− vtoric(x, y))

Where the matrix TBN is computed from the normal and tangent vectors N(x, y)

and T (x, y). Do note that by removing the torus velocity, we get the relative velocity

with respect to the torus (moving with targets). Then, by projecting it in the tangent

space, we can in fact remove its 3rd component (orthogonal with the normal) to obtain

a 2D vector expressed in its tangent plane, which we store in the map.

3.3.2 Occlusion Anticipation Map computation

We now have generated 2r pairs of shadow+velocity maps (one for every sample

point). We combine all maps to generate a single occlusion anticipation map A(θ, ϕ)

encoding the area of probabilities of our target objects being occluded or not (from 0 –

none will be occluded – to 1 – both will always be occluded). Do note that shadow +

velocity maps contain information only for a region of the torus, typically where the

information has been projected around the current camera location. So at this stage, we

will only update the A-map in these regions.

Now, in order to account for uncertainty in the future location of occluders, we pro-

pose an occlusion prediction model which relies on classical image processing operators

for efficiency.

Given a point s, sampled on a target o, we can easily check whether it is (or not)

occluded from a location (θ, ϕ) by reading the associated value Sos (θ, ϕ). Knowing the

occluder’s velocity (i.e. V o
s (θ, ϕ)), we propose to estimate the amount of future occlusion

through an uncertainty function U , which in practice is an anisotropic blur operator,

directed along the occluder’s velocity. The operator takes as input a pair of 2D vectors
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Figure 3.6 – Uncertainty function U . (left) graphical representation of U accounting for
the distance δ and angle γ to the velocity vector V . (right) blur kernel in texture space
for a pixel at position (x, y); the length and angular cutoffs are marked as red lines.

(expressed in Toric space):

U(v1,v2) = Ul(δ).Ua(γ) (3.1)

where δ = ‖v1‖ − ‖v2‖ and γ = (v1,v2).

In other words, for a neighbor location (θ′, ϕ′), we compare the length and angular

differences of the extracted velocity v1 = V o
s (θ, ϕ) and vector v2 = (θ′, ϕ′)− (θ, ϕ). In

practice, we cast both comparisons into falloff functions (as illustrated in figure 3.6):

Ul(δ) = max

(
1− |δ|

δW
, 0

)
, Ua(γ) = max

(
1− |γ|

γW
, 0

)
where δW and γW are custom parameters that represent the length and angular cutoff

values of our uncertainty function (in our tests, we used values given in table 3.2).

Applying the prediction model Given our prediction model for one point s on one

object o, we can now focus on computing the probability of occlusion from any possible

camera location, i.e. Aos(θ, ϕ). In theory, this can be computed by integrating function U

over the couple Sos and V o
s :

∫∫ +∞

−∞
U

(
V o
s (θ + x, ϕ+ y), (−x,−y)

)
Sos (θ + x, ϕ+ y) dx dy
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But in practice, we rely on textures. Hence, we compute its value at a pixel-wise level,

through a double sum over pixels of Sos .

Aggregating predictions for all samples Our 2r partial occlusion predictions (each

for a single point s) can now be aggregated into an overall A-map:

A(θ, ϕ) =
1

2r

∑
o∈{A,B}

[
r∑
s=1

Aos(θ, ϕ)

]

3.4 Camera motion

We have all required information to design a camera motion controller that can

enforce on-screen constraints (this is the purpose of our supporting Toric surface) and

avoid future occlusions of target objects. Put altogether, we provide a low-dimensional

camera space (the 2D Toric surface), supplied with a scalar field encoding the risk of

our targets being occluded in the next frames.

In the following, we propose to mimic a physical model [Rey99]; [Gal+13] where

our camera will behave as a particle on which external forces are applied steering it to-

ward an occlusion free locations. The motion of the camera can therefore be formulated

as a function of its previous position (pi), velocity (vi) and k external forces (F):

vi+1 = vi +

[
1

m

k∑
j=1

Fj
i+1

]
dt then pi+1 = pi + vi+1.dt

with dt the time step, and m the particle mass. Note that we also need to ensure the

camera remains on the surface of our moving torus.

Physically plausible camera motion To enforce visibility at a low computational cost,

we propose an ad-hoc position update, which is nonetheless explained by a physical

model with two external forces:

— a visibility force (Fv) that steers the camera towards a location with a lower oc-

clusion risk;

— and a damping force (−cvi) controlling the camera’s reactivity (the higher the

damping factor c, the lower the reactivity).
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We firstly observe that, in a physical model

pi+1 = pi +
[
vi

(
1− c

m
dt
)
dt
]

+
1

m
Fv.dt

2 (3.2)

the middle part is a fixed translation, function of the velocity, damping, and elapsed

time. The right part represents a bounded surrounding area, function of the two external

forces and the elapsed time, containing all possible camera locations at the next frame

(or if we increase dt, after a few frames). Starting from this observation, our general

strategy is to search within this surrounding area for a less occluded camera location.

This should provide a physically-plausible camera motion, near-optimal in the sense

of the three constraints we stated earlier (smooth motion, on-screen composition, and

occlusion avoidance).

In order to move the camera to a potentially less occluded location (if one exists),

we propose three local sampling strategies, applied in this order:

1. we use a single frame search DS for a less occluded camera location in the next

frame (i + 1). We therefore restrict the search to the surrounding area which the

camera can reach at the next frame (see figure 3.9a).

2. When DS finds no satisfying solution (i.e. a configuration less occluded), we use

a look-ahead search DLA in a wider surrounding area that the camera can reach

after a given fixed number of frames. We then steer the camera, by selecting the

closest position inside area DS (see figure 3.9b).

3. When DLA still finds no satisfying solution, we search a cut to a further, less oc-

cluded, location. We cast this into a stochastic search in area DC (in practice the

whole surface) and then instantly teleport the camera to this position; this is a

common strategy in video games as well as movies (camera "cut" policy [TB09a]).

Note that our A-map will here act as a regularization operator in these local searches,

by casting high-frequencies contained in the S-maps into a low-frequency prediction

valid for a few frames ahead.

Search process We evaluate the anticipated occlusion at position p(vi) (i.e. if no

external force applies), and then randomly sample locations in a given surrounding area

DX . The selected location p̂ must provide an improvement in the predicted occlusion:

p̂ = arg min
(θ,ϕ)∈DX

A(θ, ϕ), subject to A (p̂) ≤ A (p(vi))
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Figure 3.7 – 3D view of our local search process for one frame.

Moving cameras in Toric space A purely physical model of camera motion is de-

fined in world space, while our A-map is expressed in Toric space along the coordinates

(θ, ϕ). An easy way to define our camera motion model would be to compute the motion

directly in Toric space coordinates. However since the mapping introduces distortions,

i.e. the same amount of motion in Toric coordinates does not correspond to the same

amount of motion in Cartesian space, depending on where the computation is per-

formed on the surface and on the size of the Toric surface. The size is dependent on the

Toric α value (angle AsB) and the distance 3D between the targets. We instead propose

to define the camera motions in Cartesian world coordinates using a plane tangent to

the Toric space. We first define the search area on the tangent plane of the torus at the

current camera position; we then uniformly sample points in the search area, which we

project onto the Toric surface, i.e. to now obtain plausible 2D locations in Toric coordi-

nates (θ,ϕ) so to exploit the information held in the occlusion anticipation map. This

process is illustrated in figure 3.7.

3.4.1 Physically-plausible search areas

In the following, we define the shape of the search areas DS and DLA, as well as

explain how to evaluate occlusions in area DC .
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(a) Low velocity (b) Medium velocity (c) High velocity

Figure 3.8 – Impact of camera velocity on the single-frame search area.

(a) Single-frame search strategy. (b) Look-ahead search strategy (over sev-
eral frames).

Figure 3.9 – Local strategies

Single-frame search The locations which our camera can physically reach within a

single frame define an area bounded by the range of possible forces Fv which can be

applied to the camera. Here we propose to approximate this range of possibilities using

a linear threshold and a rotational threshold (fl and fr respectively, see figure 3.8),

i.e. enabling the camera to perform, at each frame, a range of changes in velocity and in

direction. Obviously the range of changes are dependent on camera physical parameters

such as previous velocity (vi) and damping factor (c). In an empirical way, we propose

to express both changes as:

fr =
2π − χ
eg.‖vi‖dt

+ χ , and fl = 2h.‖vi‖dt (3.3)
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3.4. Camera motion

where fr represents the angle threshold dependent on the speed, which is used to define

the range of possibilities in angle [−fr/2, fr/2]. Constant χ is a constant (in radian)

representing the angular span at high speed, and g is a constant defining how the angles

evolves as a function of the camera velocity. fl represents a relative distance threshold,

also dependent on the speed, used to define the range of possibilities in positions as

pi+vi.dt +[−fl/2, fl/2]. The constant h controls the linear freedom in speed. By playing

with these parameters, one can easily control the camera reactivity to match specific

requirements of an application.

With the current formulation, at low camera speeds (e.g. ‖vi‖ = 0), the threshold fl
is null. To handle such situations, we provide another constant ρ representing the radius

in a way that fl ≥ ρ in all cases. Thanks to this, we will keep searching at low camera

speeds (see figure 3.8a) and provide a sufficient impulse as soon as a local solution is

found. After this local search, if we have successfully found a less occluded location, we

can update the camera position, i.e. pi+1 = p̂.

Look-ahead strategy In case there is no better solution in DS, we search a larger area

DLA by bounding locations which the camera can physically reach within a few frames,

rather than just the next frame. We simply need to replace dt by Ndt in equation 3.3

(N > 1 is a user-defined value). After this new local search, if a solution is found, we can

update the camera position, moving it in the direction of the best solution, while staying

in DS, i.e. pi+1 is the intersection of the edge of DS and the segment [p(vi), p̂] (see Fig.

3.9b). Assuming that a solution has been found, we need to update the velocity vi+1,

which could be done by simply deriving the camera’s position. In practice, this velocity

is dampened so that the camera stabilizes when there are no occlusions:

vi+1 =

(
pi+1 − pi

dt

)(
1− c

m
dt
)

Cut strategy The cut strategy is applied when no better solution can be found in DS

and DLA and enables the camera to jump to another location. In such case we search in

the area DC , which is much larger than the current camera neighborhood. Indeed, as

illustrated in figure 3.5, the A-map computation is only performed in a local area around

the current camera position. In fact, recomputing the entire map (Toric surface) would

be too inaccurate because of high distortion in the rendered buffers, and low precision

around the camera position. Furthermore, the camera performs a continuous motion
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(a) (b) (c) (d)

Figure 3.10 – Examples of masks (top) and the impact on the A-map (bottom). (a)
Empty mask, (b) flexible exclusion of viewpoints behind targets (with a gradient),
(c) hard exclusion of viewpoints behind targets, (d) smooth repulsive mask avoiding
regions behind the targets, top views and bottom views. Mask images (top) are sur-
rounded by a box to highlight edge gradients.

in most cases, so computing the whole map is unnecessarily expensive. This DC area

is additionally pruned for camera locations with a 30° angle rule of the current camera

location. This a very common film editing convention [TB09a] preventing jump-cuts.

To perform this search in DC we propose to rely on ray-casting. We cast rays to the

same sample points s as before, and only rely on these tests to compute an occlusion

ratio (i.e. there is no occlusion prediction). As soon as a less occluded position is found

we perform a cut by teleporting the camera, i.e. pi+1 = p̂. Further, in this case, we reset

the camera’s velocity, i.e. vi+1 = 0.

When no better solution has been found in these 3 searches, then we consider that

the best option is to leave our camera particle follow its current path, i.e. pi+1 = p̂ =

p (vi).

3.4.2 Style masks

While the camera moves autonomously to minimize occlusion, one might also want

to avoid some viewpoints, depending on the targeted application. For example, in inter-

active applications with character control, one might prefer to not see the scene from
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Table 3.2 – The set of default values we used to run our tests’

parameter r δw γw χ g h ρ
value 5 0.6 0.5 10° 5 0.5 0.1

0.5

0.6

0.7

0.8

0.9

1

64x64 128x128 256x256 512x512

vi
si

bi
lit

y

Moving Cylinders

(a) Visibility performance for different maps resolutions (the higher, the better).

Size 64x64 128x128 256x256 512x512
FPS 197.09 130.04 88.80 18.96

(b) Frame rate for different map resolutions.

Figure 3.11 – Comparison of performances for different map sizes. Red: median value;
Blue: 1st to 3rd quartile. The resolution impacts strongly the computational cost (b) but
not the capacity to maintain visibility (a).

bellow or from above angles. For this purpose, we propose the notion of style masks

on the A-map to influence the camera motion, or avoid specific areas (see examples in

figure 3.10). We update the A-map using the following formulation:

A(x, y) = A(x, y) ∗Mask(x, y)

3.5 Results

Implementation We implemented our camera system within the Unity3D 2018 game

engine. We compute our G-buffers through the Unity’s integrated pipeline, while we

perform our image processing stages (sections 3.3.1, 3.3.1, 3.3.2 and 3.4.2) through
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Figure 3.12 – Visibility comparison on 3 complex scenes, using the ray-cast method
(R), our method with anticipation (A) or our method without anticipation (W). (top)
Visibility over time (in s), (bottom) side-by-side comparison of performances. Red line:
median value; Blue: 1st to 3rd quartile; Red crosses: outliers.

Unity Compute Shaders. All our results (detailed in section 3.5) have been processed

on a desktop computer with an Intel Core i7-7820X CPU @ 3.60GHz and an NVIDIA

Titan XP.
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(a) Speed

(b) Acceleration

Figure 3.13 – Motion features on complex scenes, if using the ray-cast method (R), or
our method with (A) or without (W) anticipation. (top) reported camera speed for 3
benchmarks, (bottom) speed (a) and (acceleration) distribution.

We evaluate our camera system along two main criteria: how much the targets are
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Each map update Each frame

Steps
Projections

A-map Search
Camera

(S-map+ V-map) update
mean 9.8 11.9 4 2.8
(st. dev) (3.16) (2.25) (0.95) (1.34)

Table 3.3 – Computation time in ms. We use 64x64 maps, 3 sample points per target (at
each update, we recompute the maps for one sample on each target), and 50 sampled
points in the search area.

visible (1 meaning that both targets are visible, 0 both targets are occluded), and how

smooth the camera motions are. We compare the performance of our system with differ-

ent sets of parameters and features i.e. changing the size of computed maps, and using

(or not) our occlusion anticipation vs. a commonly used occlusion computation. To this

end, we perform comparisons on 4 scene configurations (illustrated in the accompany-

ing video) made of a simple scene and three complex scenes: (ii) a scene with a set of

columns and a gate (Columns+Gate) which the target avatar goes through (iii) a scene

with the avatar travelling a forest (Forest) and (iv) a scene with the avatar travelling a

mix of forest and corridors with big walls (Forrest+Corridor).

Comparisons are performed as post-process to not influence the performance of the

system. To provide a fair comparison between techniques, we measure the visibility

degree on both targets by casting many rays (1 ray per vertex on each target). In a

way similar, we evaluate the quality of camera motions by computing their derivatives,

i.e. speed and acceleration, which provide a good indication of camera smoothness.

Impact of map resolution As a stress test, we ran our system on our simple scene

configuration, where a pair of targets (spheres) is moving in a scene which we progres-

sively fill with cylinders moving in random directions. We add up to 70 cylinders (4 per

frame) until 47s of simulation; the whole simulation lasts about 60s. We ran this test

with medium-size cylinders, or large cylinders. This allowed to evaluate the ability of

our system to compute and enforce visibility by comparing the mean (actual) visibility

over time, and the average frame rate. As shown in figure 3.11, decreasing the map

resolution does not yield any noticeable loss in visibility enforcement, even for 64x64

maps. Conversely, there is a noticeable computational speedup. In all our following tests

we rely on 64x64 maps.

As a second test, we ran our system on the three complex scenes and focused on the
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system’s performances when using a brute-force ray-casting to evaluate visibility (R), or

using our computed maps while enabling (A) or disabling (W) the occlusion anticipation

stage. When disabled (W), our A-map was computed as the averaged value in each S-

map, i.e. we remove the use of our uncertainty function. Brute-force raycasting is very

common in game engines, but its cost prevents the computation of our anticipation

map with real-time performances; hence, in this case (R) we directly cast rays (to the

2r sample points) at the search stage (i.e. we compute no anticipation map). For all

three techniques, we compare their cost, and ability to enforce visibility (figure 3.12)

and to provide smooth camera motions (figure 3.13). We then provide a breakdown of

the computational cost of our method (A) (table 3.3).

Impact of the visibility computation technique From our results, it appears clearly

that with (A) or without (W) anticipation methods always improve visibility on targets

compared to the ray-cast based method (R). Further, enabling the anticipation stage (A)

provides an improvement compared to disabling it (W). Typically, in the Forest scene

which is a scene specifically designed with a high density of occluders, the method

with anticipation (A) shows the best performance (see figure 3.12). In the Columns +
Gate scene, there is a clear benefit in using our anticipation step, especially at moments

where the camera has to follow the target through the gate.

Motion smoothness Our motion strategies lead to smaller variations of velocity and

acceleration (figure 3.13), while outliers can be due to either cuts, or our strategy at low

camera speed, providing some impulse to the camera. Furthermore, when anticipation

is not used ((R) and (W)), the acceleration remain lower, but at the cost of reducing the

visibility.

Cost of the visibility evaluation As expected, casting rays (on the CPU) is much more

expensive than computing our maps (on the GPU). In our tests, we experimentally chose

r = 5 to enable a fair comparison of the system’s performances (i.e. a fast-enough frame

rate for the ray-cast based method (R)). As expected intuitively, the cost of computing

our maps is linear in the number r of samples, while computing and fetching the an-

ticipation map is made at a fixed cost, as we perform the search on the GPU (hence in

parallel).
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Walking to a column that will occlude the line
of sight of the character.

The camera avoids the occlusion from the col-
umn by moving to the right of the character.

The character is going through a door. The camera is not able to fully avoid the line of
sight occlusion from the character’s head.

Figure 3.14 – Results on an environment composed by columns and a doorway. The
two targets are the robot character and its line of sight (i.e. black sphere). The map on
the down right corner is the current anticipation map with a mask to avoid the toric
extremities.

Computational cost breakdown As shown in table 3.3, the most expensive stage

per frame is the computation of the A-map, then the projections of all S-maps and

V-maps. The search and camera update are conversely inexpensive stages. To improve

computational costs, we notice that, by tweaking parameters δW and γW , we can predict

occlusion for a long-enough time window W . Doing so, we propose an optimization: to

not update all 2r partial A-map at every frame, but 2 of them only (one per target). In

other words, each map Aos would be re-computed every r frames. Moreover, we propose

to not make an update at every frame, but instead to use a refresh rate matching our

time window W . It will dictate when to make an update, i.e. every W/r seconds. In our

tests, we make an update every 0.1 second (e.g. if r = 5, any map is updated every 0.5

second). We experimentally noticed that, for moderate values of r, the impact of this

optimization on our system’s visibility criteria is not noticeable.
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Walking by a plant that will occlude the line of
sight of the character.

The camera avoids the occlusion from the plant
by going above the plant.

The character is going through a dense vegeta-
tion area.

The camera is not able to avoid the occlusion
from the plant and will jump to an occlusion
free position.

Figure 3.15 – Results on an environment composed by dense vegetation. The two targets
are the robot character and its line of sight (i.e. black sphere). The map on the down
right corner is the current anticipation map with a mask to avoid the toric extremities.

3.6 Discussion and Conclusion

We have highlighted the key features of our approach: low computational cost and

improved visibility through anticipation. There however remains some limitations. First,

there is an intrinsic limitation in the underlying Toric space representation, i.e. the

camera must move at the surface of a moving torus, while there is no such restriction in

the 6D camera space. We would like to investigate the provision of slight changes in the

desired screen locations of targets to expand the range of motions; for instance we could

also compute a slightly smaller and a slightly wider torus, leading to the computation of

a 3D A-map. Typically, this would help to move the camera closer to the avatar, e.g. to

avoid some occlusion at the expense of loosing composition. In our future work, we

would also like to better exploit the depth information in the S-map to derive a camera
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The camera is in a local minimum and if it does
not choose to move, the target will be occluded
by the wall.

The camera therefore cuts to an occlusion-free
area to get out of the local minimum.

Figure 3.16 – Results on an environment composed of a corridor and a wall with holes.
The target is the robot character. The map on the down right corner is the current
anticipation map with a mask to avoid the toric extremities and the corridor interior. In
this tracking task, the target walks forward through the corridor.

motion control over all Toric space parameters (ϕ, θ and α). Second, our approach is

primarily designed to avoid occlusion, while simple secondary constraints can be added

with style masks. More complex (and ideally dynamic) secondary constraints could be

added by providing better representations. Finally, taking a step further, the Toric space

we rely on is one possible model, allowing to enforce on-screen constraints; in the

future, we would like to adapt our rendering+anticipation framework to perform our

anticipation for 3D primitives defined around one or more targets, on which we could

define more complex motions with physical constraints.

In this chapter, we proposed a real-time occlusion avoidance approach for virtual

camera control. The system first computes an occlusion map by projecting occluders

on a camera control surface (the Toric surface), and then exploits information on the

velocity of the occluders vertices, to derive an anticipation map. The anticipation map

is then exploited by a physical camera system to compute a new camera position min-

imizing occlusions. We compared our system with an elaborate ray-casting approach,

and with our system in which anticipation was disabled. Results reported better perfor-

mances both in terms of computational cost (compared to ray-casting), overall visibility

and smooth motions both in terms of camera velocity and acceleration.

Here we mainly focused on occlusion avoidance. Due to the local nature of the

approach, we only have a few means to characterize the trajectory quality that can only

be smoothened in this work but not optimized for smoothing.
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In the next chapter we will see how we address these problems by proposing a new

camera animation space applied to a hybrid planing approach accounting for trajectory

quality with dedicated visual properties.
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CHAPTER 4

HYBRID APPROACH FOR

CINEMATOGRAPHIC CAMERA PATH

PLANNING

The first and foremost problem in this chapter is to identify what are the intrinsic

characteristics of good camera motions. While film literature provides a thorough and

in-depth analysis of what makes a qualitative viewpoint in terms of framing, angle to

target, aesthetic composition, depth-of-field or lighting, the characterization of camera

motions has been far less addressed. This pertains to specifics of real camera rigs (dol-

lies, cranes) that physically limit the range of motions, and also the limited use of long

camera sequences in movies except for Steadicam sequence shots. In addition, charac-

teristics of camera motions in movies are strongly guided by the narrative intentions

which need to be conveyed (e.g. rhythm, excitation, or soothing atmosphere) that are

difficult to formalize.

In an attempt to transpose this knowledge to the tracking of targets in virtual en-

vironments, one can however derive a number of desirable cinematic characteristics

such as visibility (avoiding occlusion of the tracked target and collisions with the envi-

ronment), smoothness (avoiding jerkiness in trajectories) and continuity (avoiding large

changes in viewing angles and distances to target). In practice, however, these charac-

teristics are often contradictory: avoiding a sudden occlusion requires a strong acceler-

ation, or an abrupt change in angle. Furthermore, the computational cost of evaluating

visibility, continuity and smoothness along trajectories limits the possibility of evaluat-

ing many alternative camera motions.

Existing work have either addressed the problem using global motion planning tech-

niques typically based on precomputed roadmaps [NO04]; [Osk+09]; [JLC20], or local

planning techniques using ray casting [RU14] and shadow maps for efficient visibility

computations [HHS01]; [CNO12]. While global motion planning techniques excel at en-

suring visibility given their full prior knowledge of the scene, local planning techniques
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excel in handling strong dynamic changes in the environment. The main bottleneck of

both approaches remains the limited capacity in evaluating at run time the cinematic

properties along a camera motion or in the local neighborhood of a camera position.

Our approach builds on the idea of performing a mixed local+global approach by

exploiting a finite-time horizon that is large enough to perform a global planning, yet

efficient enough to react in real-time to sudden changes. This sliding window exploits

recent hardware raycasting techniques to enable the real-time evaluation of thousands

of camera motions. As such, our approach draws inspiration from Model Predictive

Control techniques [SM98] by optimizing a finite time-horizon, only implementing the

current time slot and then repeating the process on the following time slots.

To implement this approach, we make the hypothesis that the target object is con-

trolled by the user through interactive inputs. Its motions and actions can therefore be

predicted within a short time horizon h. Our system comprises 2 main stages, illustrated

in Figure 4.1. In the first stage, we predict the motion of the target over our given time

horizon h by using the target’s current position (at time ti) and the user inputs. We

then select an ideal camera position at time ti + h and propose to define the camera
animation space as all camera animations that link the current camera position (at time

ti), to the ideal camera location (at time ti + h) and to sample the animation space as a

collection of smooth camera animations. In the second stage, we perform an evaluation

of the quality of the camera animations in this animation space by relying on hardware

raycasting techniques and select the best camera animation. In a way similar to Motion

Predictive Control [SM98], we then apply part of the camera animation and re-start

the process at a low frequency (4 Hz in our case) or when a change in the user inputs

is detected. Finally, to better adapt the camera animation space to the scene topology

(e.g. cluttered environments vs. open environments), we dynamically update a scaling

factor on the animation space. As a whole this process allows generating a continuous

and smooth camera animation which enables the real-time tracking of a target object in

fully dynamic and complex environments.

Our contributions are:

— the design of a camera animation space as a finite time horizon space in which to

express a range of camera trajectories;

— an efficient evaluation technique using hardware ray casting;

— a motion predictive control approach that exploits the camera animation space to

generate real-time cinematic camera motions.
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4.1. Overview

4.1 Overview

Figure 4.1 – System overview: the orange box represents the CPU part of the system;
the green box represent the GPU part of the system

Our system aims at tracking in real-time a target object traveling through a dy-

namic 3d environment by generating series of smooth cinematic camera motions. In

the following, we will present the construction of our camera animation space (Section

4.2) and then detail the evaluation of camera animations using hardware ray casting

(Section 4.3). We will then show how the camera animation space can be dynamically

recomputed to adapt to the characteristics of the scene topology (cluttered vs. open

environments) and how this adaptation improves our results (Section 4.4).

4.2 Camera animation space

We propose the design of a Camera Animation Space as a relative local frame defined

by an initial camera configuration qstart at time ti and final camera configuration qgoal

at time ti + h (see Figure 4.2). This local space defines all the possible camera anima-

tions that link qstart at time ti to qgoal at time ti + h. Our goal is to compute the optimal

camera motion within this space considering a number of desired features on the trajec-

tory (e.g. smoothness, collision and occlusion avoidance along the camera animation,

viewpoint preferences and cinematic properties).

We propose to follow a 3-step process: (i) anticipate the target’s behavior (i.e. its

next positions) within the given time horizon, (ii) choose a goal camera viewpoint from

which to view the target at the end of the time horizon, and (iii) given this goal view-
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Table 4.1 – Notations used in the paper

H i Time horizon for iteration i (between times ti and ti + h)

Bi(t) Target behavior (predicted position) at time t ∈ Hi

Vi Set of preferred viewpoints at time ti + h

Qi Camera animation space for horizon H i

M i Transform matrix of the camera animation space, for H i

qij(t) 3D position in camera animation qij ∈ Qi, at time t ∈ H i

qistart Starting camera position. qij(ti) = qistart, ∀ (i, j)

qigoal Goal camera position. qij(ti + h) = qigoal ∈ Vi, ∀ (i, j)

q̇(t) Tangent vector of a camera track at time t

Di
j(t) The camera view vector at time t

(x,y) angle between two vectors x and y

G(x, σ) Gaussian decay, equals to e−x2/(2σ2)

E(x, λ) Exponential decay, equals to e−x/λ

Figure 4.2 – Representation of our animation space and its local transform

point, and the current one, build and evaluate the space of possible camera animations

between them using our camera animation space.
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4.2. Camera animation space

Figure 4.3 – Representation of the target’s behavior curve at iteration i

Target's sampling
area

Figure 4.4 – Ray launched from the camera toward the target’s sampling area at time t

4.2.1 Anticipating the target behavior

We here make a strong assumption that we can anticipate the next positions of the

tracked target within a time horizon H i. We consider H i begins at time ti and has a

constant user-defined duration of h seconds. Moreover, we consider that the target’s be-

havior will be consistent over the whole horizon H i (a behavior being a motion among

walking, running, turning, jumping). In our implementation, we consider the target as

a rigid body with a speed, acceleration, and behavior. We then simulate the target’s mo-

tion over time horizon H i (avoiding collisions with obstacles) and store all simulated

positions over time. We rely on PhysicsScene tool from Unity to perform the physi-

cal simulation. With this anticipation, we account for the scene geometry which might

influence future user inputs. We then refer to the anticipated positions as the target sim-

ulated behavior, expressed in the form of a 3d animation curve Bi(t) with t ∈ H i (see

Figure 4.3). Note that one may use another technique to anticipate the target behavior.

As long as it outputs a 3d animation curve over time, it will not change the overall
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workflow of our camera system.

4.2.2 Selecting a goal viewpoint

We now make a second assumption that the user defines a set of viewpoints to por-

tray the target object. By default, one might use a list of stereotypical viewpoints in

movies such as 3-quarter front and back views, side views, or bird eye views. These

viewpoints are sorted by order of preference in a priority queue V (order can be fixed

by the user, randomly chosen, or scene dependent). Each viewpoint is defined as a 3d

position in spherical coordinates (d, φ, θ), in the local frame of the target’s configura-

tion, where (φ, θ) defines the vertical and horizontal viewing angles, and d the viewing

distance.

Considering all viewpoints are in V, we pop viewpoints by order of priority. We

propose to stop as soon as a viewpoint is promising enough, i.e. at time ti + h neither

the target will be occluded from this viewpoint, nor the camera will be in collision with

the scene geometry. We then refer to this selected viewpoint as the goal viewpoint qgoal.

Knowing the current camera viewpoint qstart (at time ti) and this goal viewpoint

qgoal (at time ti + h), we can define our camera animation space that we further sample

and evaluate to select the optimal camera animation.

4.2.3 Sampling camera animations

Given the target behavior to track represented as a curve Bi(t) and the two key view-

points qstart and qgoal, we propose to sample a large set of camera animations between

the key viewpoints. We will hereafter note this stochastic set of camera animations as

Qi, and a sampled camera animation as qij, where j is the sample index.

Two requirements should be considered on this sampled space: (i) sampled camera

animations should be as-smooth-as-possible, i.e. with low jerk, and (ii) the sampled

animation space should enforce continuity between successive horizons. To do so, we

propose to encode each sampled camera animation as a cubic spline curve on all 3

camera position parameters, as they offer C3 continuity between key-viewpoints. In

practice, we make use of Hermite curves which eases the sampling by randomly select-

ing tangent vectors to the spline curve at start and end positions. C1 continuity between

successive Hermite curve portions is enforced by aligning both positions and tangents

at connecting positions.

88



4.3. Evaluating camera animations

In practice, we propose for each camera animation to complement the starting and

the goal camera positions qstart and qgoal by two tangents, i.e. the camera velocities

q̇start and q̇goal (figure 4.2). To offer a good coverage of the whole animation space,

we use a uniform sampling of these tangents in a sphere of radius r (in our tests, we

used r = 5). The number of sampled animations is left as a user-defined parameter. An

evaluation of results for different values is provided in Section 4.5.2.

The frequent recomputation of the tangent sampling and camera path construc-

tion has two drawbacks: its computational expense and the lack of stability over time.

To avoid the recomputation, we propose to precompute a graph of uniformly sampled

camera animations, in an orthonormal coordinate system (as illustrated in figure 4.2).

In this system, qstart and qgoal have coordinates (0, 0, 0) and (0, 0, 1) respectively. Then,

for any horizon H i, we apply a proper 4×4 transform matrix M i to align the graph onto

the computed viewpoints qistart and qigoal. It is worth noting that in M i the 3d transla-

tion, 3d rotation and the scaling on the z axis will lead this axis to match the vector

(qigoal − qistart). Two parameters remain free: the scaling for the other two axes (x and

y). As a first assumption we could use the same scaling as for z. However, we will fur-

ther explain how to choose a better scaling in section 4.4, in order to adapt the sampled

space to the scene geometry.

4.3 Evaluating camera animations

In the first stage, we have computed a set of camera animations Qi, that can portray

the target objects’ behavior within time horizon H i. We now need to select one of these

animations as the one to apply to the camera.

4.3.1 Evaluating camera animation quality

Our second stage is devoted to evaluate the quality of all animations and selecting

the most promising one efficiently. In the following, we will first detail our evaluation

criteria, before focusing on how we perform this evaluation. A camera animation that

portrays the motions of a target object should follow a number of requirements, among

which the most important are: avoid collisions with the scene and enforce visibility

on the target object, while offering a smooth series of intermediate viewpoints to the

viewer. To evaluate how well these requirements are satisfied along a camera animation
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(a) Occlusion (b) Collision

Figure 4.5 – Example of a part of a Visibility data encoding texture; Black = the target
is visible from the camera, Red = the target is occluded or partially occluded from the
camera, Blue = the camera is inside the scene geometry.

Occlusion or Collision 
Along the track

:

: Target's Behaviour
Track

Figure 4.6 – Representation of the positioned animation space where parts of some
trajectories collide with the scene geometry.

qij, we propose to rely on a set of costs Ck(t) ∈ [0, 1]:

Occlusions and Collisions To evaluate how much the target object is occluded from

a camera position qij(t), we rely on ray casting as recommended by [RU14]. We first

approximate the target’s geometry with a simple abstraction (in our case it is a sphere
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4.3. Evaluating camera animations

of the size of the character’s upper body). Second we sample a set of points s ∈ [0, N ]

on this abstraction, which we position at the object’s anticipated position Bi(t). Third,

we launch a ray from the camera to each point s (see figure 4.4). We note Rs(t) the

result of this ray cast. We use the same ray to also evaluate if the camera is in collision

(i.e. inside another object of the scene), by setting its value as:

Rs(t) =


0 if Visible

1 if Occluded

2 if Collided

(4.1)

We distinguish a collision from a simple occlusion as follows. By looking at the nor-

mal at the hit geometry, we know if the ray has hit a back face or a front face. When the

ray hits a back face, qij(t) must be inside a geometry, hence we consider it as a camera

collision. Conversely, when the ray hits a front face, qij(t) must be outside a geometry. If

the ray does not reach s, we consider s as occluded, otherwise we consider it as visible.

Knowing Rs(t), we define our collision and occlusion costs as:

Co(t) =
1

N

N∑
s=0

1 if Rs(t) = 1

0 Otherwise
(4.2)

and

Cc(t) =
1

N

N∑
s=0

1 if Rs(t) = 2

0 Otherwise
(4.3)

In our tests, we used N = 20.

Minimizing visual changes A smooth camera motion is a motion that avoids sudden

changes in visual properties (distance to target and angle to target). We therefore pro-

pose an addition metric to evaluate how much the viewpoint changes over time. We

split this evaluation into two distinct costs: one on the camera view angle, and one on

the distance to the target object. Costs are evaluated for each time step δt.

Let us denote Di
j(t) the view vector connecting the target object to the camera com-

puted as:

Di
j(t) = Bi(t)− qij(t)

91



Partie , Chapter 4 – Hybrid approach for cinematographic camera path planning

Occluder

(a) 2D view of an occluded track from the
animation space

Fail
Success

SuccessFail
2

2
3

2

8

3
3

14

00012

13681

(b) Computation of the fail and success his-
togram on each axis

Figure 4.7 – Projection of the success and fail of one camera animation on the four
axis of resolution R = 4. (a) Collision and occlusion detection (b) Enumeration and
projection of the success and fail samples on the axis.

From this view vector, we define the view angle change as:

C∆φ,θ
(t) =

(Di
j(t), D

i
j(t+ δt))

π
(4.4)

In a way similar, we propose to rely on a squared distance variation, defined as:

∆d(t) = (‖Di
j(t)‖ − ‖Di

j(t+ δt)‖)2

We then define a cost on this distance change which we further normalize as:

C∆d(t) = 1− E(∆d(t), λ) (4.5)

where E is an exponential decay function, for which we set parameter λ to 10−4.

Preferred range of distances One side effect of the above costs is that for large dis-

tances, changes on the view angle and distance will be less penalized. In turn, this will

favor large camera animations. It is worth noting that, in the same way, placing the cam-

era too close to the target object is also not desired in general. We should then penalize

both behaviors. To do so, we propose to introduce a last cost, aimed at favoring camera

animations where the camera remains within a prescribed distance range [dmin, dmax].
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4.3. Evaluating camera animations

We formulate this cost as:

Cd(t) =

1 if ‖Di
j(t)‖ /∈ [dmin, dmax]

0 otherwise
(4.6)

In our tests, we used [dmin, dmax] = [0.4, 1].

4.3.2 Selecting a camera animation

In a first step, we define the total cost of a camera animation as a weighted sum of

its single-criteria costs integrated over time:

C =
∑
k

wk.

[∫ ti+h

ti

Ck(t) G(t− ti, σ) dt

]
(4.7)

where wk ∈ [0, 1] is the weight of criterion k. G is a Gaussian decay function, where we

set standard deviation σ to the value of h/4. We also slightly tune the decay to converge

towards 0.25 (instead of 0). This way, we give a higher importance to the costs of the

beginning of the animation, yet still considering the end. Indeed, as in motion predictive

control, our assumption is that the camera will only play the first part of it (10% in our

tests), while the remaining part still brings a long term information on what could be

a good camera path. In our tests, typical weights are wo = 0.4, wc = 0.2, wd = 0.12,

w∆φ,θ
= 0.04, w∆d = 0.04. We compute the total cost for any camera animation qij ∈ Qi

by discretizing the time integral (details are given in the next section). We hereafter

refer to this total cost as Ci
j.

In a second step, we propose to choose the most promising camera animation for

time horizon H i, denoted as qi, as the one with minimum total cost, i.e. :

qi = arg min
j

Ci
j (4.8)

4.3.3 GPU-based evaluation

We have presented our evaluation metric on camera animations. However, some

costs are expensive to compute. In particular, occlusion and collision testing requires

to trace numerous rays (i.e. N rays, for many time steps, for hundreds of camera an-

imations). It is worth noting that many of our computations are independent and can
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therefore be performed in parallel. Similarly, the evaluation of a cost at discretized time

steps along a given animation are also independent. Hence, we propose to cast our

evaluation of single costs into a massively-parallel computation on GPU.

We design our system in a way that we only need to send the animation space (in

orthonormal coordinate system) once to the GPU. Then, when we need to reposition the

camera animation space, for horizon H i, we simply update the 4 × 4 transform matrix

M i. And, from this data, one can straightforwardly compute any camera position qij(t)

for any time t.

Second, for occlusion and collision computations, we propose to rely on the recent

RTX technology allowing to perform real-time ray casting requests on GPU. To discretize

the time integral of our costs, we run h
δt

thread per track (each thread corresponds to

a discretized time step and are executed in parallel on GPU). Each thread launches

N rays, one per sample s picked onto the target object. In our tests, we use N = 20,

and 100 threads per camera animation. In turn, δt = h
100

= 0.05. The result of these

computations are stored into a 2D texture (as shown in figure 4.5), where the texture

coordinates u and v map to one time step t and one animation of index j, respectively.

Occlusion and collision costs are stored into two different channels.

Third, we rely on a compute shader to compute all other costs, and combine them

with occlusion and collision costs. This shader uses one thread per camera animation. It

stores the total cost of all animations into a GPU buffer, finally sent back to CPU where

we perform the selection step.

4.4 Dynamic Trajectory Adaptation

Until now, we have considered a nominal situation where we evaluate the animation

space and select one camera animation for one given time horizon H i. We now need

to consider two other requirements. First, the camera should be animated to track the

target object for an unknown duration, larger than h. Changes in the target behavior

may also occur, due to interactive user inputs. Second, for any horizon H i, some cam-

era animations could be in collision with the scene, or the target could be occluded.

This would prevent finding a proper animation to apply. In other words, the space of

potential camera animations should be influenced by the surrounding scene geometry.

Hereafter, we explain how we account for these requirements.
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4.4. Dynamic Trajectory Adaptation

4.4.1 User inputs and interactive update

We here assume the camera is currently animated along a curve qi. We then need to

compute a new camera animation for a time horizon H i+1 in two cases. First, when the

target’s behavior is changed (i.e. the user input has changed). This event indeed breaks

the validity of the currently played animation for future time steps. Second, it appears

reasonable to consider the target behavior, collision and occlusion information will be

less and less reliable as time advances. In a way similar to motion-predictive control,

we then compute an animation for an anticipated horizon of length h, but only play

the first steps, to account for possible dynamic collisions and occlusions. The duration

of these first steps is specified as a user-defined ratio of progress along animation qi.

In our tests we used a horizon length h = 5 seconds and a ratio of progress of 10%. In

turn, the new horizon generally starts at ti+1 = ti + 0.1h, while we set qi+1
start = qi(ti+1).

When an update is required (behavior change, or ratio of progress reached), we

recompute a new camera animation for the next horizon H i+1: we select a new goal

viewpoint (i.e. qi+1
goal) and update the transform matrix (i.e. M i+1) to position the camera

animation space Qi+1. We then evaluate all camera animations in Qi+1.

Animation transitions To enforce continuity between animation qi and the animation

qi+1 that is to be selected we rely on an additional cost designed to favor a smooth

transition between consecutive animations. This cost penalizes abrupt changes when

transitioning between two camera animation curves. Our idea is to penalize a wide

angle between the tangent vector to camera animation qi and the tangent vector to

animation qi+1
j ∈ Qi+1, at connection time ti+1. We write this cost as:

Ci,i+1(j) =
(q̇i(ti+1), q̇i+1

j (ti+1))

π
(4.9)

We then rewrite the selection of camera animation qi+1 as:

qi+1 = arg min
j

[
Ci+1
j + wi,i+1 Ci,i+1(j)

]
(4.10)

where wi,i+1 is the weight of the transition cost, in our test we use wi,i+1 = 0.2.
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4.4.2 Adapt to scene geometry

Different scene geometries obviously impose different constraints on the camera an-

imations and a single sampled camera animation space may not enough to tackle all

situations. For example, cluttered environment such as corridors would ideally require

dedicated samples. In fact, our camera animation space should exhibit as few collisions

and occlusions as possible, while still covering as much as possible the free space be-

tween the target behavior and the scene geometry. To address this problem, rather than

recomputing a new sampling of camera trajectories dedicated to these specific situa-

tions, we propose a technique to dynamically adapt our camera animation space to the

scene geometry.

To do so, while we evaluate the quality of camera animations for a horizon H i, we

analyze how many collisions and occlusions occur. This informs us if the free space is

well covered or not. We then propose to dynamically rescale the camera animation space

to make it grow or shrink in the next time horizon H i+1. This rescaling applies when

we update the transform matrix M i+1, and on the x and y axes only. It is worth noting

that the free space might not be symmetrical around the target behavior (as illustrated

figure 4.6 where the free space is larger on the left than on the right of the target). The

same applies to the free space above or below the target. Consequently, our idea is to

compute four scale values, on all four directions {−x,+x,−y,+y} along the axis of the

camera animation space. For any camera position along a camera animation, we then

apply either two of them, depending on the sign of the position’s x and y coordinates in

the non-transformed animation space.

To compute this scaling we first leverage the occlusions and collisions evaluation to

store additional information: we count fails and successes along each axis. We consider

a launched ray along a camera animation (i.e. from the camera position at a given time

step) as a fail if it is marked as occluded or collided, and as a success if not. Second,

we store this information in height arrays: for each half-axis (e.g. +x or −x), we count

successes in one array, and fails in another array. We further discretize this half-axis

by using a given resolution R and output two histograms of fails and successes (as

illustrated in figure 4.7). Note that R here defines the scale precision on each axis. At

last, we use both histograms to compute the new scale to apply. We compute the indices

if and is of the medians of both arrays (fails and successes, respectively). By comparing

them, we define how much we should rescale animations along this half-axis. If is < if ,

we consider that there are too many fails, and multiply the current scale by if/R to
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shrink animations. Otherwise, we consider the free space is not covered enough, and

apply a passive inflation to the current scale. The aim of this inflation is to help return

to a maximum scale value, when the surrounding geometry allows for large camera

animations.

4.5 Implementation and Results

4.5.1 Implementation

We implemented our camera system within the Unity3D 2019 game engine. We

compute our visibility and occlusion textures through ray tracing shaders provided with

Unity’s integrated pipeline and perform our scores for all sampled animations and time

steps through Unity Compute Shaders. All our experimentation (detailed in section

4.5.2) have been performed on a laptop computer with an Intel Core i9-9880H CPU

@ 2.30GHz and an NVIDIA Quadro RTX 4000.

4.5.2 Results

We split our evaluation into three parts. We first validate our adaptive scale mecha-

nism. Then, we evaluate the robustness of our system, by comparing its performances

when using a different number or set of reference camera animations. We finally vali-

date the ability of our system mixing local and global planning approaches to outper-

form a purely local camera planning system. To do so, we compare results obtained with

our system and the one presented in the previous chapter, on the same test scenes.

To validate our adaptive scale, we study its impact on the quality of the animation

space. For the other evaluations, we compare camera systems using the two main crite-

ria: how much the camera maintains the visibility on the target object and how smooth

camera motions are. We compute visibility by launching rays onto the target object, and

calculate the ratio of rays reaching the target. A ratio of 1 (respectively 0) means that

the target is fully visible (respectively fully occluded). When relevant, we additionally

provide statistics on the duration of partial occlusions. We then compare the quality of

camera motions through their time derivatives (speed, acceleration and jerk), which

provide a good indication of motion smoothness.

Our comparisons have been performed within 4 different scenes (illustrated in the
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Figure 4.8 – Comparison of our system with an adaptive scale, or with a naïve scale,
applied on the camera animation space.
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Figure 4.9 – Results for multiple runs, each using a randomly generated camera anima-
tion space. This space is sampled with uniform distribution, with 2400 sample camera
animations (Hermite curves). Each plot shows the mean value over time (blue), with
a 95% confidence interval (red). Left: results for 22 runs using different seeds. Right:
results for 10 runs using the same seed.

accompanying video). We validated our system by using (i) a Toy example scene where

the target is travelling through a maze containing several tight corridors with sharp

turns, an open area inside a building, and a ramp. We then performed the comparisons

with the technique presented in the previous chapter, by using two static scenes and a

dynamic scene, which the target goes through: (ii) a scene with a set of columns and

a gate (Columns+Gate), (iii) a scene with set of small and large spheres (Spheres)

and (iv) a fully dynamic scene with a set of randomly falling and rolling boxes, and a

randomly sliding wall (Dynamic). To provide fair comparisons, in the dynamic scene,

the random motions of boxes and of the wall are the same for both scenes. In addition,

for all tests in a scene, we play a pre-recorded trajectory of the target avatar, but let

the camera system run as if the avatar was interactively controlled by a user, to ensure

motions are the same in all tests.
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Figure 4.10 – Visibility when varying the number of sampled curves in our camera
animation space.
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Figure 4.11 – Camera speed when varying the number of sampled curves in our camera
animation space.
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Figure 4.12 – Camera jerk when varying the number of sampled curves in our camera
animation space.
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Figure 4.13 – Comparison between this approach and the chapter 3 [BLC20], regarding
the target object’s visibility (a)(b) and, when not fully visible, the duration of partial
occlusion (c).
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Figure 4.14 – Comparison between this approach the chapter 3 [BLC20], regarding the
camera speed (a), acceleration (b) and jerk (c) distributions.
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Figure 4.15 – Speed over time, for our camera system (blue) and the chapter 3 (red)

Impact of adaptive scale

We validate our adaptive scale (section 4.4.2) by comparing results obtained (i)

when we compute and apply the adaptive scale on all 4 half-axes (−x,+x,−y,+y), and

(ii) when we simply apply the same scale as for the z axis (which we will call the naïve
scale technique). We ran our tests by using the toy example scene. For each technique,

each time we evaluate a new set of camera animations, we output the new scale values

and the ratio of fails on each half-axis. In addition, we output and plot the mean cost of

the 5 best animations in this set. Results are presented in figure 4.8.

Figure 4.8a shows how much our mechanism tightens the animation space (com-

pared to the naïve scaling technique) when the avatar is entering corridors, and grows

back to the same scale when the avatar reaches less cluttered areas (e.g. in the open in-

terior room, or the outdoor area). As expected, our mechanism allows to adapt the scale

on half-spaces in a non-symmetrical way. As shown by figure 4.8b, with our adaptive

105



Partie , Chapter 4 – Hybrid approach for cinematographic camera path planning

5 10 15 20 25 30 35 40 45 50
0

0.5

1

ac
ce

le
ra

tio
n

Columns + Gate

Burg 2020 Ours

5 10 15 20 25 30 35 40 45 50 55
0

1

2

3

ac
ce

le
ra

tio
n

Spheres

Burg 2020 Ours

2 4 6 8 10 12 14 16 18 20 22

Time (s)

0

1

2

3

4

5

ac
ce

le
ra

tio
n

Dynamic

Burg 2020 Ours

Figure 4.16 – Acceleration over time, for our camera system (blue) and the chapter 3
(red)

mechanism, the scaled animation space also exhibits fewer fails than using the naïve

scale technique. We have shown by figure 4.8c, it allows finding animations with lower

costs most of the time. One exception is between 40s and 50s, where the camera config-

uration isn’t the same because the scale is different. In the naïve case the camera is high

above the character while in the adaptive case, the camera is closer to the ground, thus

the scores is not relevant in this case because the two configurations are too different to

be compared.

In the next evaluations, we consider that the adaptive scale mechanism is always

activated.
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Figure 4.17 – Jerk over time, for our camera system (blue) and the chapter 3 (red)

Robustness

We study the robustness of our system regarding our randomly generated camera

animation space.

In a first step, we evaluate how performances vary if we run our real-time system

multiple times on the toy example scene. We also consider two cases: (i) using the

same seed for every run (i.e. the same animation space is used), and (ii) using a new

seed for every run (i.e. a new animation space is randomly sampled for each run). For

each case, we sample a set of 2400 animations. Results are presented in figure 4.9. As

illustrated, with as many sampled animations, all runs lead to very similar results both

on the visibility enforcement and on the camera motion smoothness. Differences are

mainly due to variations in the actual frame rate of the game engine, hence the rate at

which the system takes new decisions.

In a second step, we evaluate how the size of the animation space (i.e. the number
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Figure 4.18 – Results on a narrow corridor: the target is the upper body of the character;
The character performs a sharp turn and the camera manages to avoid colliding with the
wall. The upper images are the scene views; the bottom images are the camera views;
the left images are before the sharp turn; the right images are after the sharp turn.

of sampled animations) impacts performances. We ran our system with 4 different sizes:

2400, 1600, 800 or 100 animations. For each size, we performed 5 runs with random

seed, and combined the results in figures 4.21, 4.22 and 4.23. Figures show that lower-

ing the size (at least until 800 animations) still delivers good performances. Our camera

system is able to find a series of camera animations maintaining enough visibility on the

target object through smooth camera motions. As we expected, for 100 animations, our

system’s performances are poor: it becomes harder to find animations with sufficient

visibility and ensuring smooth camera motions. Obviously as we lower the number of

camera animations, the distribution of tangents becomes very sparse, hence breaking

our assumption of a uniform sampling. If the sampled animation space does not cover

enough the free space, it prevents the finding of qualitative animations.
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Figure 4.19 – Results on a scene with dynamic objects: the target is the upper body of
the character; the character walks on a flat area with random falling objects thrown all
around the scene. The camera manages to minimize occlusion and avoid most of the
collisions (see figure 4.13a).

Comparison to previous work

We also compare our system mixing local and global planning approaches to local

camera planning system presented in the previous chapter (cf. Chapter 3). We have

run our proposed camera system and the local camera planning system in 3 different

scenes: two static scenes (Columns+Gate and Spheres) and a fully dynamic scene

(Dynamic). The Columns + Gate is the same as we used in the chapter 3 where the

avatar is moving between some columns and go through a doorway. In the Spheres

scene, the avatar is travelling a scene filled with a large set of spheres, which makes it

moderately challenging for the camera systems. In the Dynamic scene, the avatar must

go through a flat area, where a set of boxes are randomly flying, falling, rolling all over

the place, and a wall is randomly sliding. This makes it challenging for camera systems

to anticipate the scene dynamics and find occlusion-free and collision-free camera paths.

In our camera system, we sample 2400 animations in the animation space once at
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Figure 4.20 – Results on a scene with a corridor: we move the target through the cor-
ridor to illustrate how the animation space adapts to the environment. In red, we see
20 randomly picked trajectories from the animation space. In the first image (i.e. upper
left) there is wall only on the right of the character, and we can already see that the
right of the animation space has shrunken. In the second image (i.e. upper right), the
character is surrounded by walls, and we can see that the animation space has shrunken
in all directions. Finally, in the last two images as the character gets out of the corridor,
the animation space widens to its original scales.

the beginning of the execution, the recomputation rate is set to 0.25s and the adaptive

scaling is on. We present results of our tests in figures 4.13, 4.14, 4.15, 4.16, and 4.17.

We first compare camera systems along their ability to enforce visibility on the target

object (figure 4.13). Our tests show that for moderately challenging scenes, both lead

to relatively good results. Few occlusions occur. However, for a more challenging scene

(Dynamic), our system outperforms the approach presented in the last chapter. Even if

occlusions may occur more often, the degree of occlusion is lower (figure 4.13b). More-

over, for all 3 scenes, when partial occlusions occur, they are shorter when using our

system (figure 4.13c). This is explained by the fact that when no local solution exist,

our system can still find a locally occluded path respecting other constraints, and lead-

ing to a less occluded area. This demonstrates our system’s ability to better anticipate

occlusions especially in dynamic scenes.
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Figure 4.21 – Speed, acceleration and jerk when varying the number of sampled curves
in our camera animation space.

Second, we compare the smoothness of camera motions in both camera systems.

Figure 4.14 presents the side-by-side distributions of speed, acceleration and jerk for

each system. We also provide the speed, acceleration and jerk over time in figures 4.15,

4.16, and 4.17. One observation we make is that the previous approach system leads to

lower camera speeds, as it restricts itself to simply following the avatar. In our camera

system, the camera is allowed to move faster, to bypass the avatar when visibility or

another constraint may be poorly satisfied. Yet, our system provides smoother motions

(i.e. less jerk). One explanation is that local systems often need to steer the camera

from local minima (e.g. low visibility areas). A side effect is that it may lead, for suc-

cessive iterations, to an indecision on which direction the camera should take to reach

better visibility. In turn, this leads to frequent changes in camera acceleration (hence

higher jerk). Conversely, our system has a more global knowledge on the scene, allow-

ing to more easily find a better path, which avoids sacrificing the smoothness of camera

motions.
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Figure 4.22 – Camera speed when varying the number of sampled curves in our camera
animation space.

4.5.3 Discussion and limitations

We report in this section some error cases and difficulties that the system can have

on specific situations.

First, as the system has a lot of constraints to satisfy, the decisions made on the

weights is critical to ensure that the camera has the desired behavior. With wrong weight

design the camera will hardly manage to converge towards a stable trajectory or will go

through walls (Figure 4.24a).
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Figure 4.23 – Camera jerk when varying the number of sampled curves in our camera
animation space.
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Second, the animation space sampling does not allow the system to find collision-

free solution most of the time on really narrow environments (see Figure 4.24a). More-

over, for performance’s sake we are not able to significantly increase the number of

samples from the animation space. Besides, if a collision free trajectory is found, the

quality of the shots will be poor (i.e. not collision free or with an incorrect camera angle

see Figure 4.24b and 4.24c).

4.6 Conclusion

In this chapter we proposed an efficient camera tracking technique adapted to dy-

namic 3D environments that does not require heavy roadmap pre-computations. We

defined a parametric camera animation space, which adapts to the 3D environment.

We sample the animation space using quadratic Hermite curves that we evaluate in

real-time with RTX technology and GPU computation.

Despite the ability of our system to evaluate thousands of trajectories each frame,

strongly cluttered environments remain challenging. As smoothness is enforced, visi-

bility may be lost in specific cases. Designing a technique that could properly balance

between the different properties in order to handle specific cases, still needs to be ad-

dressed.

A future work and straightforward work could consist in biasing the sampling in

the animation space in order to adapt the space to typical local topologies of the 3D

environment to sample less trajectories that are more relevant.
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(a) Camera collision on a narrow environment

(b) Occluded target

(c) Result of a compromise between aesthetics
and collision due to few collision-free camera
tracks available.

Figure 4.24 – Illustration of some limitations.





CHAPTER 5

CONCLUSION

After exposing the current state-of-the-art in computational virtual cinematography

and identifying the gaps and challenges of the field, we proposed two approaches to

solve the problem of real-time target tracking in dynamic virtual environment using

rendering techniques. Both contributions were accepted and presented respectively in

Eurographics 2020 and Graphics Interface 2021.

Our first contribution is a local approach to the target tracking problem (cf. section

2.4.2). We use the Toric space representation to solve the framing constraint for two

targets. Then, we rely on rasterization to project visibility on the Toric surface to com-

pute a map of the local surrounding around the camera. We propose an anticipation

model and accordingly a motion model to avoid dynamic occluders. Finally, to account

for style we propose to enforce specific view angles by adding a mask to the Toric space.

The limit of this contribution is inherent to its local nature (i.e. even with our anticipa-

tion model, as the searching technique has very little knowledge on the environment, it

can easily stay stuck in local minima).

To overcome this problem, we propose a second contribution, that uses a hybrid ap-

proach (cf. section 2.4.3). We focus on one character only. By anticipating the character

motion we are able to define an ideal target position for the camera in the future. Then

we search a good trajectory from the current camera position to the target camera posi-

tion. For this we introduce the camera animation space, a space that defines all camera

animations between two points. We sample the camera animation space with quadratic

Hermite trajectory model. Then, we rely on RTX technology to evaluate our criteria

(i.e. visibility, collision, view angle, motion) that we use to rank the trajectories and

select the best one to for the camera to play. In order to avoid dynamic elements in the

environment, we perform this process using MPC with a short recomputing frequency

(0.25s). Despite the fact that the tracking gives good results in open areas, in narrow

areas, the optimization process failed in finding collision-free trajectories. The reason

behind this is pertained to limitations in the sampling of the camera animation space.
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5.1 Perspectives

Toward an environment aware distribution in the camera animation space. After

defining the animation space, we used a uniform sampling of the animation space and

noticed that this still presented limitations for cluttered environment. To go further

we could bias the sampling depending on the local 3D environments. We make two

hypotheses: (i) by analyzing the environment using the depth information around the

qstart and qgoal (e.g. 360 degree maps) we could bias the probability field for the tangent

distribution; (ii) using data driven approach we could learn the trajectory distribution

based on the depth information.

Defining a quality metric for camera motions. We used a straightforward function

to define each camera track quality, but the quality is still not well-defined in the com-

munity (cf. section 2.4.5) and it is necessary to define the meaning of "quality" when

addressing the problem of automated camera trajectory generation. Similarly to editing,

(see Lino et al. [Lin+14]) we should be able to define a quality metric for camera trajec-

tories. There is a long history of cinema and a good starting point would be to analyze

and create a latent space of the existing camera trajectories. This has already by done

by others on different fields. For example Wei et al. [Wei+18] proposed a deep learning

method to find well composed views inside 2D images. The system they propose has an

evaluation network that is able to judge if a view is better than another. In other words,

a comparison loss function has been designed to compare two views. We could rely on

a similar idea by transposing the approach to camera trajectories. However, trajectories

are more complex to judge compares to single images, because of the importance of the

context and narrative intention.

Towards data-driven camera trajectories. Exploiting data from existing films rises a

number of questions:

1. On what basis do we judge a real camera trajectory ? We could use a movie

database and use the films rating system to favor some motions over others, but

usually the evaluation includes other parameters such as the scenario and pro-

duction quality that are irrelevant in our case. Another solution would be to ex-

tract camera trajectories from movies (e.g. structure from motion, dense or sparse

SLAM techniques). The problem with this solution is that such extraction tends
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to produce noisy results and are sensitive to cinematic features such as depth of

field, blur, or low light conditions. Moreover, we cannot extract with precision the

relation between the targets and the camera and determine the amount of motion

of both.

2. Are real camera trajectories enough to define what is a good virtual cam-

era trajectory ? If we can extract trajectories from real movies, we will be able

to generate trajectories similar to the ones we extracted, but real cameras have

physical constraints that virtual camera are freed from. Meaning that, among all

possible trajectories for virtual cameras, a dataset composed by camera trajectories

extracted from films only, might not be enough to cover all possible good trajecto-

ries. We could increase the dataset with virtual camera trajectories, but we still do

not know how to generate "good" trajectories. This therefore, raises the question,

whether virtual cinematography itself has developed, or needs to develop its own

style, and dedicated quality metric.

3. Whet level of information is necessary to define a good camera trajectory ?

We can probably define a pleasant camera trajectory, however, for a camera trajec-

tory to be actually "good" it has to match the context of the story, the personality of

the characters, and the mood of the scene, three subjective criteria, among many

others.

Defining the camera trajectory styles. While searching for these answers we are of-

ten faced with the problem of defining what is the camera trajectory style. The notion

of style is subtle. In literature for example, the writing style is defined by the choice

of words, sentence structures and paragraph structures. In other words, writers use

their tools (e.g. words, grammar, literary device) and organize them at multiple levels

(i.e. sentence, paragraph) according to the story context in order to define their style. As

a parallel, filmmakers also have low level tools (e.g. camera angle, camera distance, im-

age composition, editing, etc...) that they use and organize at multiple levels (i.e. shot,

scene) according to the story context.

At this point we can assume that a storytelling style can be defined by the balance

and frequency of the use of elementary bricks (i.e. an association of the camera param-

eters) to convey a message.

If we dive deeper in this idea, we could imagine defining bricks of the camera track-

ing style as an association of low level parameters’ evolution on a short period of time

119



(e.g. camera angle, distance, composition, camera speed, background motion, etc...)

and its overall style as a balance and frequency of the use of each brick.

Learning good camera trajectory from user preferences. Finally, a camera trajectory

quality is subjective to the viewer perception and the community of virtual cinematog-

raphy has not relied enough on user studies (cf. 2.4.5). Moreover, a lot of data on user

preferences related to the question of quality for camera trajectories can be exploited

in a learning process (see [Bon+20a]) and could lead us to the understanding of either

the quality or the style of a camera trajectory. Once more, data driven approaches could

be a good way to process the user studies data and help us determine if a trajectory is

qualitative and what style does it belong to.
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Titre : Cinématographie virtuelle en temps réel pour le suivi des cibles

Mot clés : Cinématographie virtuelle, Infographie, Contrôle de caméra

Résumé : Le suivi cinématographique d’une
cible mobile dans un environnement 3D dyna-
mique reste un problème difficile. Le défi est
d’assurer simultanément un faible coût de cal-
cul, un bon degré de réactivité et une haute
qualité cinématographique malgré les change-
ments soudains de l’environnement. Le ma-
nuscrit est divisé en quatre chapitres. Dans
le premier chapitre, nous avons présenté le
contexte et les domaines des applications
sous-jacentes considérées dans cette thèse,
qui se concentre davantage sur le suivi en
temps réel pour des applications telles que
les applications 3D interactives. Ensuite, nous
présentons l’état de l’art dans lequel nous
introduisons les connaissances de base des
techniques de planification et de contrôle des
caméras. Ensuite, nous présentons deux ap-
proches pour résoudre le problème du suivi
de cible en temps réel. Tout d’abord, au cha-

pitre 3, nous avons proposé de nous ap-
puyer sur un espace de caméra orienté vers
le cadrage, l’espace torique, pour suivre deux
cibles. Nous avons proposé un modèle d’anti-
cipation et un modèle de mouvement de la ca-
méra correspondant à l’espace toric et avons
mené des expériences pour montrer l’effica-
cité de la méthode proposée avec anticipa-
tion. Dans la deuxième approche, au chapitre
4, nous avons abordé les limites de la pre-
mière approche. Nous avons conçu un nou-
vel espace de caméra, l’espace d’animation
de caméra. Nous avons proposé une métrique
de qualité de trajectoire que nous évaluons en
utilisant des techniques de traçage de rayons.
Là encore, nous avons mené des expériences
pour montrer l’efficacité de la méthode pro-
posée. Dans le chapitre 5 de la thèse, nous
concluons en donnant des directions pour les
travaux futurs.

Title: Real-time Virtual Cinematography for Target Tracking

Keywords: Virtual cinematography, Computer graphics, Camera control

Abstract: Cinematic tracking of a moving tar-
get in a dynamic 3D environment remains a
challenging problem. The challenge is to si-
multaneously ensure low computational cost,
a good degree of responsiveness and high
cinematic quality despite sudden changes in
the environment and this thesis addresses
these challenges. The manuscript is divided
into four chapters. In the first chapter, we pre-
sented the background and domains of the
underlying applications considered in this the-
sis, which focuses more on real-time tracking

for applications such as interactive 3D appli-
cations. Next, we present the state of the art
in which we introduce the basic knowledge
of camera planning and control techniques.
Next, we present two approaches to solving
the real-time target tracking problem. First, in
Chapter 3, we proposed to rely on a framing-
oriented camera space, the torus space, to
track two targets. We proposed an anticipa-
tion model and a camera motion model cor-
responding to the torus space and conducted
experiments to show the effectiveness of the



proposed method with anticipation. In the sec-
ond approach, in Chapter 4, we addressed the
limitations of the first approach. We designed
a new camera space, the camera animation
space. We proposed a trajectory quality metric

that we evaluate using ray tracing techniques.
Again, we conducted experiments to show
the effectiveness of the proposed method. In
Chapter 5 of the thesis, we conclude by giving
directions for future work.
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