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PART I: Domain-informed learning Clear

Chapter 1 Introduction

During the last few years, the emerging capabilities of deep neural networks have fascinated the computer vision community. The increasingly complex and refined representations learned from the ever increasing datasets led to huge progress not only in understanding images, but also in generating new ones similar to those used for training, thanks mostly to adversarial learning [START_REF] Goodfellow | Generative adversarial nets[END_REF]. In particular, image-to-image translation (i2i) networks gained traction in recent years. The goal of i2i is to make source images visually similar to target ones, without modifying the elements present in the source scene. More formally, this translates to mapping images from a "source" image distribution (or "domain", see Sec. 1.1) to the appearance of those in a "target" one, thus learning a source → target mapping in presence of differences between training distributions (also called "domain shift", Sec. 1.1).

Interestingly, the learned mapping can benefit several fields, for instance image editing, in which complex image modifications that normally require expert knowledge could be performed automatically (Liu et al., 2019a). Virtual reality applications can also build on i2i, to make synthetic renderings look more realistic [START_REF] Wei | Vr facial animation via multiview image translation[END_REF]. In robotics, i2i networks are used for aligning training data to deployment conditions, generating for instance realistic images from synthetic ones, ultimately reducing data annotation costs or providing an alternative way of testing performances in realistic scenarios [START_REF] Murez | Image to image translation for domain adaptation[END_REF]. This is also related to autonomous driving, since it is unrealistic to collect all possible weather or lighting condition outdoor, hence generated data could be used to achieve a robust perception in adverse weather and non-trivial illumination.

However, generating realistic output scenes usually requires training on large amounts of images, that could be unavailable or expensive to collect. Moreover, results could be unsatisfying for humans due to our better contextual understanding; while we assess the realism of a scene relying on a background of lifelong information, i2i networks may fall into unrealistic Figure 1.1: Overview of the thesis contributions, with sample outputs of each project. In Part I, we crawl new images from the web to train i2i using domain-level information (Chapter 3), extract patches capturing local domains (Chapter 4), and perform robust few-shot translation thanks to the deformation of a manifold learned on additional domains (Chapter 5). In Part II, we use realistic physical models to obtain disentangled controllable outputs (Chapter 7), or naive models to achieve continuous transformations (Chapter 8).

solutions due to the absence of necessary priors, such as basic physics knowledge. In this thesis, novel training strategies for i2i translation are studied and developed in order to solve these problems. In particular, Part I is dedicated to methodologies relying on human interpretation of data distributions. This enables to exploit more efficiently the images available for training. In Part II, instead, i2i networks are complemented with physics knowledge, to perform informed inferences when physics impacts significantly the appearance of the target condition. Overall, with the thesis we hope to open new directions in image translation research towards the inclusion of humanidentified or physical priors.

Thesis organization.

In this part of the thesis, the concepts needed for understanding the work are framed. In Sec. 1.1 and Sec. 1.2, preliminary notions and relevant papers are introduced. Part I is dedicated to methodologies for i2i translation relying on human interpretation of data, as introduced in Chapter 2. In Chapter 3, a web-crawling balancing strategy is proposed for i2i, along with additional contributions to benefit feature transfer to novel scenarios. In Chapter 4, we focused on the extraction of local relationships between image patches, to hallucinate novel scenarios unseen during training. Finally, a few-shot image translation strategy is presented in Chapter 5. Part II investigates instead physics priors for i2i, as introduced in Chapter 6. The approaches developed were used to combine realistic physical models with i2i networks in Chapter 7, or to drive a manifold reorganization with naive models in Chapter 8. The thesis is concluded in Chapter 9.

Research context. The thesis (2019)(2020)(2021)(2022) was carried out in the Inria ASTRA team (previously RITS), under a joint co-tutelle agreement between Mines Paris -PSL (France) and the University of Bologna (Italy). It was financed by Vislab/Ambarella (Italy/USA) and Inria (France). We applied most of the methodologies developed to outdoor robotics-oriented scenarios since autonomous driving is the main research topic of all involved partners. Nevertheless, as demonstrated in many of the published papers, we also present other applications considering general scene editing tasks.

Dataset bias and domain shift

In the deep learning era, the availability of large scale datasets became crucial to extract meaningful representations of the visual world, allowing to reach unprecedented performances in computer vision tasks. However, neural networks still suffer from bias problems related to the learning process. Indeed, training any statistical model (such as neural networks) on a dataset, biases the latter on the data distribution used for training. In other words, the model makes assumptions on the input, which, if violated, result in loss of performance and unexpected outputs. This is undesirable, but very complex to mitigate, since it is unrealistic to assume capturing the variety of the visual world with a finite collection of images. Although recent approaches scaled the training set size to billions of examples [START_REF] Zhai | Scaling vision transformers[END_REF], datasets biases persist. Their effects are quantified in a seminal paper [START_REF] Torralba | Unbiased look at dataset bias[END_REF], in which the best machine learning pipeline available at the time was trained for object recognition on several datasets, and quantified in terms of performance degradation on other datasets. Even though performances were satisfying when evaluated on the test set, a loss of accuracy was very evident when other data were used to evaluate the obtained model.

The causes of this bias could be related to different factors, including the type of represented scene, physical photography settings, task-related elements and complementary representations of the world [START_REF] Torralba | Unbiased look at dataset bias[END_REF]. Recent efforts also extend this decomposition for explaining intra-dataset diversities between training and test sets [START_REF] Ye | Ood-bench: Quantifying and understanding two dimensions of out-of-distribution generalization[END_REF].

The concept of dataset bias is tightly related to the "domain" one, quite common in the field when it comes to mitigation strategies for the dataset bias. The field of "domain adaptation" focus indeed on finding strategies for adapting the performances of downstream networks trained on a "source" domain, to a "target" one, which typically encompasses unlabeled examples. This could be seen as a particular application of transfer learning [START_REF] Csurka | A Comprehensive Survey on Domain Adaptation for Visual Applications[END_REF]. We could also see domain adaptation as a strategy for mitigating the dataset bias resulting from training on "source". Similarly, in domain generalization the idea is to be as robust as possible on unseen data distributions [START_REF] Wang | Generalizing to unseen domains: A survey on domain generalization[END_REF].

All things considered, it is possible to introduce a comprehensive definition of "domain" which will be of great importance in the thesis. Hence, a "domain" is a set of characteristics that are common in an image collection. For instance, autonomous driving datasets such as Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF], ACDC [START_REF] Sakaridis | Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding[END_REF] or IDD [START_REF] Varma | Idd: A dataset for exploring problems of autonomous navigation in unconstrained environments[END_REF]) may all belong to the "street scenario" domain, while they could also be in a "urban scene" or "countryside scene" domain, or "daytime", "nighttime" and "twilight", considering acquisition conditions, and again "clear weather", "rainy", "snowy" for atmospheric conditions. In this thesis, we dedicated considerable attention to time-of-day and weather-related domains, due to their physicsbased visual properties. Also, it is worth noting that every dataset could be identified with one domain, while a sufficiently broad domain could include multiple datasets. Finally, several domains could be identified in subsets of a dataset.

The definition provided is willingly wide-ranging, since in this thesis the identification of visual domains is meant to identify possible data relationships, rather than exactly defining all the reasons behind a dataset bias. In the same way, relationships among domains are part of the "domain shift", i.e. the set of characteristics that make two domains different. We can refer to the domain shift as an alternate interpretation of the effects of the dataset bias, in such a way that in presence of a domain shift, networks behave differently.

Image-to-image translation

To understand effectively the techniques used in the thesis, let us also consider a brief technical introduction and literature review about imageto-image translation. Even before deep learning, generating new images was a challenging goal of computer vision. Many approaches exploited relationships within existing images to automatically compose novel scenes, mostly applying methodologies for similarity identification such as nearest neighbors [START_REF] Barnes | Patchmatch: A randomized correspondence algorithm for structural image editing[END_REF][START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF][START_REF] Pritch | Shift-map image editing[END_REF]. With the advent of deep learning, Generative Adversarial Networks, or GANs [START_REF] Goodfellow | Generative adversarial nets[END_REF] dramatically improved the state-of-the-art for image generation, by exploiting alternate training of two deep neural networks. The concept behind GANs is to enforce a zero-sum game between a generator (G) and a discriminator (D) network. While the task of (D) is to distinguish between real images of a dataset and the fake ones (i.e. generated by G), the generator is optimized to fool the discriminator. This, at convergence, brings the outputs of G to be similar to the ones of the target dataset used for training.

As already introduced, image-to-image translation could be interpreted as an application of image generation conditioned on an input image. The first general GAN-based approach for i2i was proposed in Pix2pix [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF], exploiting both adversarial and reconstruction constraints. Since then, the field benefited from multiple improvements. An incremental work [START_REF] Wang | High-resolution image synthesis and semantic manipulation with conditional gans[END_REF] makes use of multi-scale training to increase the resolution of generated scenes. However, as [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF], they still required paired datasets for training, i.e. datasets in which the same scene is represented in both source and target domains. A major advancement in the field has been the introduction of cycle consistency (Zhu et al., 2017a), a mechanism exploiting a cyclic transformation between domains (i.e. source → target → source) that enabled training on any unpaired source and target domain. The idea of image-to-image translation between source and target is extended in several works, by enabling transformations across multiple domains [START_REF] Choi | Stargan: Unified generative adversarial networks for multi-domain imageto-image translation[END_REF][START_REF] Choi | Stargan v2: Diverse image synthesis for multiple domains[END_REF] or to generate different styles in the target domain itself, i.e. performing multimodal image translation [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]. Additional relevant literature about image-toimage translation is included in every chapter of the thesis.

Part I

Domain-informed learning

Chapter 2

Part introduction

Deep neural networks can extract meaningful patterns from large quantity of data. Yet, it was shown that human-extracted priors can significantly reduce the number of needed examples to achieve convergence, and boost performance [START_REF] Deng | Integrating machine learning with human knowledge[END_REF][START_REF] Von Rueden | Informed machine learning-a taxonomy and survey of integrating knowledge into learning systems[END_REF]. This opens possibilities for different human-based priors injection. For instance, it is possible to embed expert knowledge in the task, achieving application-aware networks [START_REF] Jumper | Highly accurate protein structure prediction with alphafold[END_REF]. Differently, active learning [START_REF] Settles | Active learning literature survey[END_REF] alternates human and networks inferences to achieve robust outputs.

In image-to-image translation, the problem formulation already requires human-gathered information to get a meaningful separation between source and target data, such that there is some gap in the data distribution that a network could learn. In other words, we are exploiting our ability to recognize differences and similarities in visual data -a result of the incredible abstraction capability of the human brain! -to perform a clustering of images in which a gap between data distributions emerges. Some efforts have been dedicated to do this automatically [START_REF] Baek | Rethinking the truly unsupervised image-to-image translation[END_REF], but with limited effectiveness, and only on low-level features such as color, ignoring more complex characteristics. Ultimately, modern architectures still naively exploit a binary source and target distinction. Now, we can envisage using more efficiently the human capability of distinguishing visual characteristics, or domains (see Sec. 1.1). Let us consider a simple example. In Fig. 2.1, we observe two masterpieces of van Huysum (Fig. 2.1a) and Picasso (Fig. 2.1b). It is fairly easy to identify differences between the two. Evidently, the absence of realism and perspective characterizes Picasso's work, while in van Huysum's art those features are essential. Nevertheless, and more surprisingly, it is also trivial to identify that both arts represent a vase of flowers. In other words, both paintings could be considered as related to the "vase of flowers" domain, while they also belong to, among others, exclusive domains: e.g. "realistic" for Fig. 2.1a, "unrealistic" for Fig. expert art priors, considering that they both belong to a "still life" domain, which we can relate with other works of different painters.

As illustrated with this example, humans are able to identify multiple relationships among visual data, exploiting contextual understanding, prior knowledge, and generalization capacities learned across our life. Let us then think again about computer vision. The crucial point of this illustration is that we could design domain-informed learning pipelines that embed additional human knowledge about domains, to exploit better human capabilities of distinguishing multiple relationships among data. For example, in Chapter 3 we propose a domain decomposition interpretation that have several applications in the thesis. This enables web-crawling additional data to perform image translation on large domain shifts, thanks to exclusive sub-domains identified in source and target (in the example in Fig. 2.1, being "realistic" or "unrealistic"). We extend a similar idea but introducing a local-domains translation network in Chapter 4, able to exploit local differences in single images identifiable by humans thanks to contextual and cultural priors. For instance, looking at Fig. 2.1a, we notice that we can easily distinguish between the appearance of different objects, as flowers and fruits. Finally, we show how relationships of domains of similar nature can be leveraged to perform few-shot learning in Chapter 5.

Chapter 3

Domain bridge for unpaired image-to-image translation and unsupervised domain adaptation

The contributions of this chapter have been published in: Pizzati, F., de Charette, R., Zaccaria, M., and Cerri, P. (2020b). Domain bridge for unpaired image-to-image translation and unsupervised domain adaptation. In WACV arXiv: https://arxiv.org/abs/1910.10563 

Résumé

Les architectures de traduction d'image à image peuvent avoir une efficacité limitée dans certaines circonstances. Par exemple, lorsqu'elles génèrent des scénarios de pluie, elles peuvent ne pas réussir à modéliser les caractéristiques typiques de la pluie, comme les gouttes d'eau, ce qui, en fin de compte, nuit au réalisme des images synthétiques. Avec notre méthode, appelée "domain bridge", les données extraites du Web sont exploitées pour réduire la différence de domaine, ce qui permet d'inclure des éléments précédemment ignorés dans les images générées. Nous utilisons un réseau de traduction du temps clair en pluie entrainé avec le domain bridge pour étendre notre travail à l'adaptation de domaine non supervisée (UDA). Dans ce contexte, nous introduisons une stratégie de sélection de style multimodal en ligne, où la multimodalité de la traduction d'images est exploitée au moment de l'apprentissage pour améliorer les performances. Enfin, une nouvelle approche pour l'apprentissage auto-supervisé est présentée et utilisée pour aligner davantage les domaines. Grâce à nos contributions, nous augmentons simultanément le réalisme des images générées, tout en atteignant des performances comparables à celles de l'état de l'art UDA, avec une approche plus simple. This eases the image translation mapping performed by MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF], providing realistic results.

Problem statement

Image-to-image translation training may fail if the domain shift between source and target datasets is wide due to high visual differences, that limit the adversarial learning effectiveness.

In this chapter, we present a simple domain bridging technique which, opposite to the standard image-to-image (i2i) translation (Fig. 3.1a), benefits of additional sub-domains identified by human knowledge, and retrieved automatically from web-crawled data (Fig. 3.1b). Our method produces qualitatively significantly better results, when the source and target domains are far since the bridge eases the learning of the mapping. We apply our i2i methodology to the case of clear → rainy images showing that domain bridging leads the translation to preserve drops on the synthetic images. Furthermore, we extend our work to unsupervised domain adaptation (UDA) to demonstrate that generated images are consistent with the original target domain. We make novel contributions for UDA too (Fig. 3.2) and demonstrate that all together we perform on par with the most recent UDA methods at the time of acceptance while being much simpler.

We contribute in three different ways:

• i2i: we propose a novel domain bridge (Sec. 3.3.1) to augment automatically the source and target domains and ease i2i mapping, • i2i with UDA: online multimodal style-sampling (Sec. 3.3.2.1) is applied for UDA, thus increasing the translation diversity, • UDA: we propose novel weighted pseudo label (Sec. 3.3.2.2) to benefit from self-supervision without the need of offline processing as for the original pseudo label [START_REF] Lee | Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks[END_REF].

Related work

Most of the related literature on image translation has been discussed in Sec. 1.2. We now narrow down to two topics close to the proposed method, since it exploits data crawled from the web, and we contributed also in the field of unsupervised domain adaptation for segmentation.

Web-based learning. The need of neural network to learn on big data collections has pushed numerous approaches to use web-crawled images to help many vision tasks. Preliminary works [START_REF] Chen | Neil: Extracting visual knowledge from web data[END_REF][START_REF] Divvala | Learning everything about anything: Webly-supervised visual concept learning[END_REF] learn to extract object relationships by automatically crawling the web. Another line of research benefit from webly-collected images to train supervised learning tasks, by using the query-image association as a form of weak supervision. For instance, it is possible to learn classification [START_REF] Chen | Webly supervised learning of convolutional networks[END_REF] or more complex tasks as segmentation [START_REF] Jin | Webly supervised semantic segmentation[END_REF][START_REF] Shen | Bootstrapping the performance of webly supervised semantic segmentation[END_REF]. Some crawl also video to benefit from consistency between frames [START_REF] Hong | Weakly supervised semantic segmentation using web-crawled videos[END_REF][START_REF] Lee | Frame-to-frame aggregation of active regions in web videos for weakly supervised semantic segmentation[END_REF] or to learn 3D features [START_REF] Qian | Understanding 3d object articulation in internet videos[END_REF]. More recent approaches extend web supervision for avoiding catastrophic forgetting [START_REF] Maracani | Recall: Replay-based continual learning in semantic segmentation[END_REF] or to increase the generalization of segmentation networks [START_REF] Kim | Wedge: Webimage assisted domain generalization for semantic segmentation[END_REF]. To the best of our knowledge, we were the first to propose a web-based regularization method for image translation.

Unsupervised domain adaptation for semantic segmentation. Usually, training segmentation networks on a source dataset causes performance degradation in presence of a domain shift while testing on target conditions. The field of domain adaptation for semantic segmentation tries to mitigate this problem accessing the unlabeled images of the target domain. The first attempts were based on unsupervised source/target feature alignment with adversarial learning [START_REF] Hoffman | Fcns in the wild: Pixel-level adversarial and constraint-based adaptation[END_REF][START_REF] Biasetton | Unsupervised domain adaptation for semantic segmentation of urban scenes[END_REF][START_REF] Michieli | Adversarial learning and self-teaching techniques for domain adaptation in semantic segmentation[END_REF][START_REF] Sankaranarayanan | Learning from synthetic data: Addressing domain shift for semantic segmentation[END_REF][START_REF] Zhang | Curriculum domain adaptation for semantic segmentation of urban scenes[END_REF][START_REF] Zhang | Fully convolutional adaptation networks for semantic segmentation[END_REF][START_REF] Tsai | Learning to adapt structured output space for semantic segmentation[END_REF][START_REF] Luo | Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation[END_REF]. In parallel to this, image-to-image translation provides a complementary pixel-level alignment that further boosts performances [START_REF] Hoffman | Cycada: Cycle-consistent adversarial domain adaptation[END_REF][START_REF] Li | Bidirectional learning for domain adaptation of semantic segmentation[END_REF]. Another line of re- search [START_REF] Zou | Unsupervised domain adaptation for semantic segmentation via class-balanced selftraining[END_REF][START_REF] Zhang | Deep mutual learning[END_REF][START_REF] Hoyer | Daformer: Improving network architectures and training strategies for domain-adaptive semantic segmentation[END_REF] uses instead pseudo-labels [START_REF] Lee | Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks[END_REF] as a form of self-supervision to perform domain adaptation. There are specific methods which exploit characteristics of the target dataset such as night [START_REF] Sakaridis | Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation[END_REF][START_REF] Wu | Dannet: A onestage domain adaptation network for unsupervised nighttime semantic segmentation[END_REF] or fog [START_REF] Ma | Both style and fog matter: Cumulative domain adaptation for semantic foggy scene understanding[END_REF][START_REF] Sakaridis | Semantic foggy scene understanding with synthetic data[END_REF][START_REF] Dai | Curriculum model adaptation with synthetic and real data for semantic foggy scene understanding[END_REF][START_REF] Lee | Fifo: Learning fog-invariant features for foggy scene segmentation[END_REF].

Method

Our methodology aims to translate clear images to rainy images reaching both high-qualitative images for both qualitative evaluation and usability to train semantic segmentation networks in rainy weather. Thus, our innovations are spread between image-to-image translation (Sec. 3.3.1) and unsupervised domain adaptation for semantic segmentation (Sec. 3.3.2).

Image-to-image translation (i2i)

Image-to-image translation GAN networks learn to approximate the mapping F : X → Y using adversarial training, from two sets of representative images in each domain, denoted here A and B. Each image in both sets can be interpreted as a sampling from a probability distribution P associated with the image domain [START_REF] Liu | Unsupervised image-to-image translation networks[END_REF]. Formally, ∀a ∈ A, a ∼ P X (x); ∀b ∈ B, b ∼ P Y (y). GANs are well-known for their instability at training. For the latter to succeed, the network needs to be fed with representative sets of images, so that it can extract the common domain characteristics. Even though, large domain gaps may be difficult to model for the network, resulting in a loss of characteristic features of the target domain. This could be intuitively be solved by increasing the dataset Figure 3.3: Rainy images from the Berkeley deepdrive dataset [START_REF] Xu | End-to-end learning of driving models from large-scale video datasets[END_REF]. Drops on the windshield or reflections help us perceive that it is raining.

size, since more data would contribute in having a better mapping. Unfortunately, this is not always possible, and it comes with significant costs. Instead, we propose to leverage human knowledge to collect necessary images from the Internet, thus eliminating the need for further acquisitions.

For getting a good image translation, it is necessary to concentrate also on some minor image details, which may still have a significant perceptual impact. This is the case for rain images, where even a few drops on the lens play an important role in sensing the rain, as it can be seen in Fig. 3.3. Furthermore, studies on human preference advocate that the presence of raindrops is the most important factor for recognizing a scene as rainy [START_REF] Tremblay | Rain rendering for evaluating and improving robustness to bad weather[END_REF]. Nevertheless, i2i networks may ignore some fundamental elements as drops, lens artifacts or reflections, just to concentrate on the general appearance of the scene. This ultimately impacts the realism of generated images. We argue that some characteristics changes (drops, artifacts, etc.) are ignored because they are relatively minor compared to other characteristics changes (e.g. wetness, puddles, etc.), and demonstrate the training may benefit from bridging to ease domain mapping.

Domain bridging.

Studying the specific case of adverse weather conditions, it is possible to formalize a generic domain K as the union of finergrained domains, such as K = {K W , K O }. In it, K W represents the subdomains typical of weather, e.g. the presence of precipitations, road wetness, and many more. K O , instead, is composed of sub-domains unrelated to the weather. Examples are the scenario, the city, and the illumination. Thus, it is possible to represent X and Y as

X = {X W , X O } , Y = {Y W , Y O } . (3.1)
Generally, only the joint probability distribution

P K (k) = P K W ,K O (k), k ∈ K is estimable, as we have no knowledge about the marginal probability distrubtions P K W (k), P K O (k).
On one hand, we hypothesize that it is possible to obtain a more stable image-to-image translation if the differences between the two datasets are minimized. On the other, we have to obtain a GAN that produces an effective transformation, so it is necessary to model correctly all relevant features of adverse weather. To simultaneously reach both objectives, images collected from web-crawled videos are added to the A and B datasets, obtaining two new training sets A ′ and B ′ , with respective domains X ′ and Y ′ , which aims as bridging the gap between the initial domain X and Y . This is illustrated in Fig. 3.1b. Our intuition is that adding samples with specific similarities identified by human knowledge will reduce the distance between the probability distributions P X ′ O (x) and P Y ′ O (y), with respect to P X O (x) and P Y O (y). As a consequence, the translation model will be more focused on weather-related characteristics and more stable during training.

Once the main hypotheses are formalized, the approach on how to select new images is needed. Let Z x and Z y be two images sets. As before, we have

Z x = {Z x W , Z x O } , Z y = {Z y W , Z y O }. (3.2)
We choose Z x and Z y in order to have

max |Z x W ∩ X W | , max |Z y W ∩ Y W | , max |Z x O ∩ Z y O | , (3.3)
where | • | is the set cardinality. Hence, it is possible to identify two image sets C and D such as ∀c ∈ C, c ∼ P Z x (z); ∀d ∈ D, d ∼ P Z y (z).

It is now possible to train the image-to-image translation network on A ′ and B ′ defined as:

A ′ = A ∪ C , B ′ = B ∪ D .
(3.4)

Adding new images, the differences in the global appearance of the two domains is minimized, while the weather-related domain shift remains constant.

In other words, our approach consists in selecting new image samples, with weather conditions corresponding to those in the original dataset, and join them to the existing data. The newly-added images are required to share some domains unrelated to the weather. Retrieving images from the same location and with the same setup ensures that.

In practice, we retrieved these additional samples from web-crawled videos using domain-related keywords search (details in Sec. 3.4.1.1). The same bridging can be applied automatically to other domain shifts, though as the domain differences become less semantically evident, human expertise We use MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] as backbone for our image-toimage translation network, as it allows disentanglement of style and content, which will be of high interest for us.

Unsupervised Domain Adaptation (UDA)

Similar to previous works [START_REF] Hoffman | Cycada: Cycle-consistent adversarial domain adaptation[END_REF][START_REF] Li | Bidirectional learning for domain adaptation of semantic segmentation[END_REF], we use our i2i network with domain bridge to translate images from pre-labeled clear weather datasets and learn semantic segmentation in rain in an unsupervised fashion. We follow the standard UDA practice which is to alternately train in a supervised manner from source (clear) images with labels and train in a self-supervised manner from target (rain) images without labels. Our entire UDA methodology (depicted in Fig. 3.2) brings two novels contributions: a) we use multi-modal clear→rain translations as additional supervised learning, b) we introduce weighted pseudo label -a differentiable extension of pseudo label [START_REF] Lee | Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks[END_REF] -to align source and target without any offline process.

Online Multimodal Style-sampling (OMS)

The standard strategy for UDA with i2i networks is to learn from the offline translation of the whole dataset [START_REF] Hoffman | Cycada: Cycle-consistent adversarial domain adaptation[END_REF][START_REF] Li | Bidirectional learning for domain adaptation of semantic segmentation[END_REF].

We instead propose to use the multimodal capacity of MUNIT i2i to generate multiple target styles (i.e. rain appearances) for each input image. Styles are sampled during training time. In this way, even if the source image content remains unaltered, it will be possible for the segmentation network to learn different representations of the same scene in the target domain, ultimately leading towards wider diversity and thus more robust detection. Different styles for the same image modify, among other factors, the position and size of drops on the windshield, and the intensity of reflections. This is visible in Fig. 3.4 showing three arbitrarily sampled styles, where in the last row images that resemble heavy rain are consistently produced.

Weighted Pseudo-Labels (WPL)

Pseudo Label [START_REF] Lee | Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks[END_REF] was proposed as a self-supervised loss to further align source and target distributions. The principle is to self-train a network on target (here, rain) whenever the prediction confidence is above some threshold, thus reinforcing the network beliefs.

Most often for UDA, thresholds are either hard coded or calculated offline as the median per-class confidence dataset-wise [START_REF] Li | Bidirectional learning for domain adaptation of semantic segmentation[END_REF][START_REF] Zou | Unsupervised domain adaptation for semantic segmentation via class-balanced selftraining[END_REF]. The latter requires storing all predictions for the whole dataset, which is cumbersome. To overcome this, thresholds may be estimated online imagewise or batch-wise [START_REF] Iscen | Label propagation for deep semi-supervised learning[END_REF]. It has to be noted that thresholds are critical since pseudo-labeling can harm global performances if thresholds were underestimated1 or have limited impact if overestimated [START_REF] Lee | Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks[END_REF].

We instead propose Weighted Pseudo-Labels (WPL) which estimates a global threshold α within the network optimization process. The general principle of WPL is to weight the self-supervised cross-entropy using learned threshold α, thus acting as continuous pseudo-labeling. Not only WPL does not require offline processing, but it is aware of the global network confidence thus leading to better results. In detail, let x be an input image and xu the pseudo label of pixel u, such that

xu = { argmax q f u (x) if max(f u (x)) ≥ α None otherwise , ( 3.5) 
where f u (x) refers to the class probabilities of u predicted by the network f , and argmax q is the best class prediction. In its original implementation [START_REF] Lee | Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks[END_REF] xu is directly used to weight the cross-entropy self-supervision. Instead, we weight this with a weight matrix W of the same size than x: The complete loss for WPL is thus defined as the weighted sum of crossentropy loss L w and a balancing loss L b :

w u = { max(fu(x))-α 1-α if max(f u (x)) ≥ α 0 otherwise , ( 3 
L ss = σL w + γL b , (3.7) 
where σ and γ are loss weights and cross-entropy loss is:

L w = - ∑ q∈Q w u xu,q log(p u ) . (3.8)
xu is the one-hot encoding of pseudo-label as in Eq. 3.5 and Q is the set of classes. In this way, predictions where the network is uncertain are weighted less in the network pseudo-label based training. To avoid that the selfsupervised contribution remains set to zero by the optimizer, L b is required as a balancing loss:

L b = log 2 (1 -α) .
(3.9)

The optimization of α leads to a pseudo-label expansion within the training process. Fig. 3.5 is an illustration of the growing process during training. For the first iteration (Fig. 3.5, left), the L w term prevails over L b , pushing α towards 1 thus including in the pseudo-label only pixels with high confidence. With the minimization of L w (Fig. 3.5, right), L b becomes gradually more important, leading the network to simultaneously include lower confidence pixels inside the pseudo-label, and increasing the informative potential of higher-confidence labels. Note that for numerical stability, we assume α = sigmoid(β) and estimate β.

Losses

To balance the self-supervised WPL contribution with the supervised learning in segmentation, we employ a probability-based approach where pseudolabel is applied only if a uniformly sampled variable p pl ∈ U (0, 1) is above a predefined threshold p tp . Hence, the complete UDA loss function is:

L(x a , xa , x b ) = L ce (f (x a ), xa ) + L ss (f (x b ))[p pl > p tp ]
(3.10) if we train on source and target data, and

L(x a , xa , x b ) = L ce (f (g(x a )), xa ) + L ss (f (x b ))[p pl > p tp ] (3.11)
if we train on translated images and target. In Eq. 3.10 and 3.11, x a ∈ A is source image with label xa , x b ∈ B target image, L ce the cross-entropy loss, f our segmentation network, g our bridged-GAN, and [•] are the Iverson brackets.

Experiments

We now evaluate the performance of both our i2i proposal (Sec. 3.4.2) and our UDA proposal (Sec. 3.4.3) on the clear→rain problem using clear/rain datasets recorded with different setups.

Experimental settings

Datasets

For i2i and UDA, we use the german dataset Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] as source (clear), and a subset of the American Berkeley DeepDrive [START_REF] Xu | End-to-end learning of driving models from large-scale video datasets[END_REF] (BDD) as target (rain). The bridge dataset, only used for the i2i, is a collection of Youtube videos. We now detail each dataset.

Cityscapes. We train on Cityscapes training set with 2975 pixel-wise annotated images, and evaluate on their validation set with 500 images. While we train on crops, we evaluate on full-size images, i.e. 2048 × 1024. The trainExtra set, with 19997 images, is also included in the domain bridge to further reduce the domain shift.

BDD-rainy.

We use the coarse weather annotations of BDD together with daylight annotation to obtain a subset we call BDD-rainy (i.e. rainy and daylight), i.e. 1280 × 720. For training the rainy+daylight is extracted from the 100k split, while for validation only the 10k split is used. Obviously, duplicates present in both splits are removed. It has to be noted that, while daylight annotation is accurate, weather annotation is approximate and "rainy" images may either be taken during or after a rain event, thus with or without drops on the windshield. This further increases complexity. Note that the acquisition setup (camera position, optics, etc.) remains unaltered.

Bridge dataset. 5 sequences (1280 × 720) were extracted from a single Youtube channel with keywords "driving" (2 videos) for clear weather and "driving rain"/"driving heavy rain" (2/1 video) for rainy scenarios. The choice of using videos from a unique channel further reduces domain gaps, ensuring the same acquisition setup. Some samples are shown in Fig. 3.6. Also to maximize image diversity, videos are uniformly sub-sampled into 2x6026 clear weather images and 3x9294 rainy images, leading to a total of 39934 frames.

GAN training

During training, the images are downsampled to be 720 pixels in height, and cropped to 480 × 480 resolution. The network is trained for 200k iterations, with batch size 1. Adam is used as optimizer, with learning rate 1e-4, β 1 = 0.5, β 2 = 0.999.

Segmentation training

We use Light-weight Refinenet [START_REF] Nekrasov | Light-weight refinenet for real-time semantic segmentation[END_REF] with Resnet-101 as backbone, pretrained on the full-size Cityscapes dataset. The refining is achieved by training for 100 epochs on 512 × 512 crops, after downscaling images to 1024 × 512 for GPU memory constraints. We use data augmentation for the training process, with random rescaling between a factor 0.5 and 2, and random horizontal flipping. The batch size is 6. We use SGD with different learning rates for the encoder (1e-4) and the decoder (1e-3).

The momentum is set to 0.9, and the learning rate is divided by 2 every 33 epochs. When pseudo-labels are added to the training, we further refine the network for 70 additional epochs, with constant learning rate divided by 10 with respect to the initial values. The α parameter is initialized to 0.8 and estimated by SGD as well, with learning rate 0.01 and momentum 0.9. 

Bridged image-to-image translation

We evaluate our bridged i2i (Sec. 3.3.1) on the Cityscapes to BDD-rainy translation task, and compare results against the most recent baselines at the time of submission, i.e. CycleGAN (Zhu et al., 2017a) and MUNIT [START_REF] Zhu | Toward multimodal image-to-image translation[END_REF]. As stated, our i2i uses a MUNIT backbone and is referred to as MUNIT-bridged. It is trained on the bridged versions of the two datasets.

Training follows details from Sec. 3.4.1.2, except for CycleGAN that follows the original implementation2 . We argue -like others -that GAN metrics aren't appropriate for such evaluation. Thus, we report qualitative evaluation and segmentation task evaluation, together with usual GAN metrics. 

Quantitative evaluation

We compute GAN metrics following usual practices from [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] and report results in Tab. 3.1a. The LPIPS distance (Zhang et al., 2018a;[START_REF] Shen | Towards instance-level image-to-image translation[END_REF] measures the image diversity [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF], while the Inception Score (IS) evaluates both quality and diversity [START_REF] Salimans | Improved techniques for training gans[END_REF]. In detail, LPIPS is the average on 19 paired translation of 100 images, and we report the diversity of real data in the target dataset as upper bound. Inception Score uses the InceptionV3 network previously trained to classify source and target images. Overall, we successfully improve performances over CycleGAN in both metrics, but original MUNIT has significantly higher performance. However, the images generated by MUNIT are evidently unrealistic (cf. Fig. 3.7) and thus we argue that GAN metrics are unreliable which is in fair alignment with [START_REF] Barratt | A note on the inception score[END_REF] advocating that Inception Score is uncorrelated with image quality when the output is evidently unrealistic.

For a more comprehensive evaluation, we train a segmentation task on GAN translated clear→rain images, and evaluate the standard mIoU metric on real rain images, reporting results in Tab. 3.1b. Note that for a fair comparison, we only sample a single style for MUNIT-based models, and report results when only trained on clear images as baseline. If the domain gap were reduced by the GAN translations, an improvement should be visible. Instead, from the table, training on the original MUNIT-translated dataset leads to a significant performance decrease disproving the high GAN metrics. Finally, our method outperforms CycleGAN by a little margin although CycleGAN fails to produce good quality images. Conversely, our method simultaneously reduces the domain shift and increases realism, thus it also eases performances evaluation on synthetic data. 

Unsupervised Domain Adaptation

We now evaluate our UDA contributions encompassing our i2i translation methodology and compare with AdaptSegNet [START_REF] Tsai | Learning to adapt structured output space for semantic segmentation[END_REF] and BDL [START_REF] Li | Bidirectional learning for domain adaptation of semantic segmentation[END_REF], the best found works at the time. We do not compare with less recent methods as CyCADA [START_REF] Hoffman | Cycada: Cycle-consistent adversarial domain adaptation[END_REF] since the approaches we are evaluating have already demonstrated to guarantee superior performances in UDA [START_REF] Tsai | Learning to adapt structured output space for semantic segmentation[END_REF][START_REF] Li | Bidirectional learning for domain adaptation of semantic segmentation[END_REF]. For fair comparison and given architectural similarities, BDL was adapted to work with the same segmentation network, data augmentation policy and hyperparameters detailed in Sec. 

Weighted pseudo labels

We evaluate the effectiveness of our WPL proposal and report results in Tab. 3.3, comparing similar training with either WPL (Ours), batch-wise Pseudo-Label4 , or None. For all, the training is performed using as target the whole BDD100k train set (removing duplicates from 10k split) together with the rainy sequences from Domain-bridge dataset, resulting in over 90k images. Performance is reported on target BDD-rainy. We do not compare against offline pseudo label, as this would be impractical with such a big dataset, and this evaluation is partly encompassed in BDL comparison (cf. Tab. 3.2). For WPL, we empirically set γ = 1, σ = 0.005 (Eq. 3.7) to balance contributions and p tp = 0.75 (Eqs. 3.10 & 3.11).

From results in Tab. 3.3, WPL performs the best and batch-wise pseudo label third. In fact, the performance decrease for batch-wise (compared to no self-supervision) may be explained since best batch pixels are used as pseudo-labels, thus possibly implying some incorrect self-supervision in case of low batch accuracy. Instead, our WPL boosts the mIoU on the target dataset which is expected due to its expansion behavior.

Conclusions

In this chapter, we introduced a novel strategy for crawling data from the web, that exploited as a prior the human ability to identify similarities and differences within domains. This allowed to generate realistic rainy images with an i2i network, while preserving traits of adverse weather that were typically ignored by state-of-the-art architectures. We also contributed in unsupervised domain adaptation, designing a simple pipeline obtaining on par performances with respect to the state-of-the-art at the time, and introducing a novel pseudo labeling strategy, that works with an unlimited number of images, and has a learnable weight parameter used to guide region growing. Importantly, we introduced a domain decomposition interpretation that is useful to model similarities between source and target. We reused similar reasonings in Chapters 4, 7, 8. While it is true that the weighted pseudo labels help training, we believe limited performances shown in Tab. 3.3 are also related to the fact that we did not investigate multiple per-class thresholds as in other works [START_REF] Zou | Unsupervised domain adaptation for semantic segmentation via class-balanced selftraining[END_REF]. Importantly, similar ideas in this research have been used in subsequent papers, for instance exploiting web-crawled data for connecting existing datasets [START_REF] Maracani | Recall: Replay-based continual learning in semantic segmentation[END_REF] or to analyze different domain shifts [START_REF] Ma | Both style and fog matter: Cumulative domain adaptation for semantic foggy scene understanding[END_REF].

Also, we demonstrated that the network may concentrate more on traits previously ignored, thanks to the addition of selected data on both source and target. Still, this requires a common decomposition sub-domain across source and target, which is not always easily identifiable. Moreover, some characteristics could still be ignored, due to limited discriminator contextual understanding. For these reasons, in Chapter 4 we provide an image translation method to model subtle characteristics decomposing a single domain, thus reducing the need of collecting new data.

Chapter 4

Leveraging local domains for image translation

The contributions of this chapter have been published in: Dell'Eva, A., Pizzati, F., Bertozzi, M., and 

Problem statement

While i2i GANs perform well at learning global scene changes such as weather, painting style, etc. [START_REF] Liu | Unsupervised image-to-image translation networks[END_REF]Zhu et al., 2017a), they struggle to learn subtle local changes. In this chapter, we leverage human domain knowledge to guide i2i and improve downstream tasks on target, without seeing target images. This is of paramount importance for real-world applications like autonomous driving [START_REF] Schutera | Night-to-day: Online image-to-image translation for object detection within autonomous driving by night[END_REF][START_REF] Bruls | Generating all the roads to rome: Road layout randomization for improved road marking segmentation[END_REF][START_REF] Romera | Bridging the day and night domain gap for semantic segmentation[END_REF] which must operate safely in all hazardous conditions -some of which are rarely observed. Reasoning similarly as in Chapter 3, our method exploits human knowledge to identify domain-specific local characteristics which we call local domains (Fig. 4.1, top). A substantial difference is that we decompose a single domain, training on extracted sub-domains, instead of using a decomposition of both source and target to crawl new data. The decomposition is used as guidance to perform patches translations on source only, thus hallucinating a new unseen domain. An example in Fig. 4.1 bottom shows we leverage local domains knowledge about 'lane markings' and 'asphalt' to hallucinate a new domain without lane markings. The latter domain can then be used to increase robustness on unstructured road environments which are typically hard to capture but may cause dramatic failures.

Experimental evidence in this chapter shows indeed that our new domain acts as a bridge leading to a performance boost on target. Notably, our method exhibits few-shot capabilities, requiring only source images and minimal human knowledge about the target. In short, the main contributions of this chapter are:

• we introduce and define local domains as being domain-specific spatial characteristics (Sec. 4.3.1), • to the best of our knowledge, we propose the first geometrical-guided patch-based i2i, leveraging our local domains priors (Sec. 4.3.2) and enabling continuous geometrical translation (Sec. 4.3.3), • we experiment on different tasks in a few-shot setting, showing that our translations lead to better performance on all target downstream tasks (Sec. 4.4).

Related works

Since to extract local domains we include some kind of prior as semantic supervision or geometry, we present relevant works which exploit different priors to boost image translation performances. The literature about general i2i presented in Sec. 1.2 is also related to the task.

Prior-guided image translation.

Several priors can be exploited to increase image translation effectiveness, with several degrees of supervision as bounding boxes [START_REF] Shen | Towards instance-level image-to-image translation[END_REF][START_REF] Bhattacharjee | Dunit: Detection-based unsupervised image-to-image translation[END_REF], semantic maps (Li et al., 2018a;[START_REF] Tang | Multi-channel attention selection gans for guided image-to-image translation[END_REF][START_REF] Cherian | Sem-gan: Semantically-consistent image-to-image translation[END_REF]Zhu et al., 2020b,a;Lin et al., 2020a;[START_REF] Ma | Exemplar guided unsupervised image-to-image translation with semantic consistency[END_REF][START_REF] Park | Semantic image synthesis with spatially-adaptive normalization[END_REF] or instance labels [START_REF] Mo | Instagan: Instance-aware image-toimage translation[END_REF][START_REF] Xu | Instance-level image translation with a local discriminator[END_REF]. Importantly, scene geometry could be used as a prior, with learned correspondences [START_REF] Wu | Transgaga: Geometry-aware unsupervised image-to-image translation[END_REF] or by exploiting additional modalities [START_REF] Arar | Unsupervised multi-modal image registration via geometry preserving image-to-image translation[END_REF]. Some use text for image editing purposes [START_REF] Liu | Describe what to change: A text-guided unsupervised image-to-image translation approach[END_REF]. Others exploit full semantic maps for road randomization [START_REF] Bruls | Generating all the roads to rome: Road layout randomization for improved road marking segmentation[END_REF], to generalize across challenging lane detection scenarios. However, they are limited to annotated road layouts and constrained by expensive complete segmentation maps.

Method

We address the problem of image to image translation accounting for source and target domains having predominant local transformations. As such, leveraging only source data, our proposal hallucinates a new unseen intermediate domain which can be used to ease transfer learning towards target. Here, source is having "lane markings" and "asphalt" local domains (X α and X β , respectively) while target have only "asphalt" (X β ), learning X α → X β further reduces the gap with target. An optional local domain interpolation strategy (Sec. 4.3.3) is added for generating geometrically continuous translation between local domains (here, simulating lane degradation).

An overview of our pipeline is in Fig. 4.2.

In the following, we introduce our definition of local domains (Sec. 4.3.1) and propose a geometrical-guided patch-based strategy to learn translation between the latter (Sec. 4.3.2). For some local domains, we also show that a continuous geometrical translation can be learned from the interpolation of a mask (Sec. 4.3.3). Finally, we describe our training strategy showing few shot capabilities (Sec. 4.3.4).

Local domains

Image-to-image (i2i) networks learn a mapping function G : X → Y from a source domain X to a target domain Y , such that the distribution P G(X) approximates P Y . The goal is to transfer the features of domain Y to samples from X while preserving their content. This works well for transformation globally affecting the scene (e.g. summer to winter) but struggles to capture the mappings of local changes due to the under-constrained settings of the system. A simple failure example, shown in Fig. 4.3, is the translation from outdoor images having lane markings, to images having no (or degraded) lane markings. As it seeks global changes, the i2i is likely to transfer unintended characteristics while missing the subtle -but consistent -local changes (here, the lane markings).

To overcome this, we introduce local domains which are sub-domains spatially defined -for example, lane markings, asphalt, etc. Formally, we define domain X as the composition of local domains, denoted {X α , ..., X ω }, and the remaining sub-domains written X O , similarly to Sec. 3. Considering Zhu et al., 2017a). Sample output shows that i2i is prone to transfer global features (here, sky color) but neglects evident local features for humans as the street structure (note that IDD has no lane markings).

only two local domains of interest, it writes:

X = {X O , X α , X β } . (4.1)
Because we consider only source and target domains sharing at least one local domain, say α , we write Y as:

Y = {Y O , Y α } , (4.2)
so that the distance between X α and Y α is close to 0. Instead of learning the direct mapping of X → Y , we propose to learn local domain mappings, such as X β → X α . If such mapping is applied systematically on all samples from X, we get a new domain X ′ without β , so:

X ′ = {X O , X α } , (4.3)
where domain X ′ is unseen and thus hallucinated. Considering that X ′ and Y share the same local domains, they are subsequently closer:

distance(Y, X ′ ) < distance(Y, X). (4.4)
Our intuition is that when training target data is hard to get, our hallucinated domain X ′ can ease transfer learning. Notably here, our method only requires a priori knowledge of the shared local domains in source and target.

Geometrically-guided patches

Learning the mapping between local domains requires extracting local domain samples. To do so we leverage patches corresponding to either local domains in the source dataset only. We rely here on a simple geometrical guidance from a mask M (.) to extract random patches centered around a given local domain.

Considering x an image in source domain X, we extract X α the unordered set of patches of fixed dimension, so that:

X α = {{x p 0 , x p 1 , . . . , x pm | p ∈ M α (x)} | ∀x ∈ X} , (4.5)
having m the number of patches per image, and M α (x) = JM (x) = αK with J.K the Iverson brackets. Literally, M (x) is our geometrical priora 2D mask of the same size as x -encoding the position of local domains. Subsequently, M α (x) is filled with ones where local domain X α is and zeros elsewhere. Similarly to Eq. 4.5, we extract the set X β from M β (x) and X.

In practice, the geometrical prior M (x) is often simply derivable from the image labels. For example, the position of lane marking and asphalt can both be extracted from image labels. In some cases, the position of local domains is constant dataset-wise and we use a fixed geometrical prior, so M (x) = M . This is for example the case for portraits datasets, where faces are likely to be centered and background located along the image edges.

Having collected the two sets of patches X α and X β , a straightforward patch-based GAN can learn X α → X β . In some cases, X α and X β being of similar nature we demonstrate spatial interpolation is beneficial.

Local domains interpolation

Continuous i2i are extensively studied [START_REF] Gong | Dlow: Domain flow for adaptation and generalization[END_REF][START_REF] Wang | Deep network interpolation for continuous imagery effect transition[END_REF][START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF], but existing methods are not suitable for translation affecting only local regions as in our problem setting (see Sec. 4.4). Instead, we learn a non-linear geometrical interpolation of patch masks, leveraging a variational autoencoder (VAE).

Previously we described each patch as encompassing a single local domain but, in reality, patches often mix multiple local domains. This is the case of lane markings patches, shown in Fig. 4.2, that contain asphalt too. Hence, along with the set of local domains patches we extract the sets P α and P β directly from our geometrical guidance M (.), and seek to continuously interpolate P α → P β .

In practice, our VAE having encoder E(.) and decoder D(.) is trained in the standard fashion, but at inference it yields the latent representation h Z corresponding to the linear combination of E(p α ) and E(p β ), having p α ∈ P α and p β ∈ P β , respectively1 . Formally:

h Z = E(p α ) z + E(p β ) (1 -z), p z = D(h Z ), (4.6)
where z ∈ [0, 1] encodes the progress along P α → P β . The final interpolated patch x z is the composite between x α and x β patches, following the VAE output. It writes:

x z = x α m + x β (1 -m) , with m = γ p z , (4.7)
γ ∈ [0, 1] being an arbitrary controlled blending parameter adding a degree of freedom to our model. Furthermore, notice that the stochastic VAE behavior further increases variability, beneficial for proxy tasks.

Training

We train our pipeline, the patch-based GAN and the optional VAE, leveraging only images from the source domain and geometrical priors about local domains. The patch-based GAN is trained on X α → X β (Sec. 4.3.2) minimizing the LSGAN [START_REF] Mao | Least squares generative adversarial networks[END_REF] adversarial loss:

y f = G(x), L G (y f ) = E x∼P X (x) [ (D(y f ) -1) 2 ] , L D (y f , y) = E x∼P X (x) [ (D(y f )) 2 ] + + E y∼P Y (y) [ (D(y) -1) 2 ] , (4.8) 
along with task-specific losses. If used, the VAE interpolation (Sec. 4.3.3) is trained with standard ELBO strategy [START_REF] Blei | Variational inference: A review for statisticians[END_REF], minimizing reconstruction loss along with a regularizer:

L V AE = -E q ϕ (z|x) log p θ (x|z)+ + D KL (q ϕ (z|x)||p(z)). (4.9)
At inference time, the full image is fed to the GAN backbone to produce the translated image, while the corresponding full interpolation mask is obtained processing mask patches independently and then stitching them together with a simple algorithm. Of note, our method has important fewshot capabilities. As we train only on source patches, a reduced number of image samples is sufficient to get reasonable data diversity, which we further demonstrated in the following section.

Experiments

We evaluate our method on 2 different tasks, namely lane markings degradation and snow addition, leveraging 4 recent datasets (TuSimple, 2021;[START_REF] Varma | Idd: A dataset for exploring problems of autonomous navigation in unconstrained environments[END_REF][START_REF] Sakaridis | Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding[END_REF][START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF], and evaluating our translation both against i2i baselines and on downstream tasks. In the original paper, an additional setup on deblurring is proposed and evaluated. We removed that from this thesis for the sake of brevity. In Sec. 4.4.1 we provide details on our tasks, while Secs. 4.4.2, 4.4.2.4 report extensive qualitative and quantitative evaluation.

Tasks definitions

We describe our tasks, detailing the local domains translation X β → X α .

Lane degradation

Here, we use the highway TuSimple (TuSimple, 2021) dataset having clear lane markings. For local domains, we chose lane marking (X β ) and asphalt (X α ) exploiting geometrical priors from the provided lane labels and assuming nearby asphalt. We use our interpolation strategy (Sec. 4.3.3) accounting for both degradation and blending. Importantly, we train only on 15 images (1280x720) to demonstrate few-shot capabilities, with 30 patches per image of size 128x128, 200x200 and 256x256. Backbones are DeepFillv2 [START_REF] Yu | Free-form image inpainting with gated convolution[END_REF] as GAN and IntroVAE (Huang et al., 2018a) for interpolation. The latter is trained with a binarized difference mask from lane inpainting and original image. We evaluate our translations on the standard 358/2782 val/test sets of TuSimple. In addition to demonstrating generalization, we evaluate several lane detectors on 110 images from the India Driving Dataset (IDD) [START_REF] Varma | Idd: A dataset for exploring problems of autonomous navigation in unconstrained environments[END_REF] -never seen during training -having degraded lane markings which we manually annotated. 

Snow addition

Here, we rely on snowy images from the recent Adverse Driving Conditions Dataset (ACDC) [START_REF] Sakaridis | Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding[END_REF], which typically have snow only on the sidewalk and not on the road. The task is to add snow on the road. Logically, local domains are road (X β ) and snowy sidewalk (X α ), exploiting semantic labels as priors. Again, we train only with 15 images with 30 patches (128x128) per image , using CycleGAN (Zhu et al., 2017a) with default hyperparameters. No interpolation is used. We evaluate on the original val/test set of ACDC having 100/500 images. To increase generalization for the segmentation task in snowy weather, we also augment Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] with the same trained network.

Evaluation

Translation quality

Qualitative results are visible in Fig. 4.4 and show our method outputs realistic translations for all tasks. In detail, we are able to modify lanes (first three rows) on TuSimple with different degrees of degradation (from left to right). On snow addition, images show plausible snow on ACDC roads (middle two rows), preserving shadows. 3 1.0 0.5 1.0 0.5 0.2 0.5 0.8 0.4 0.2 0.6 0.4 Best matching 0.6 1.0 0.4 0.6 0.6 0.4 0.4 1.0 0.3 0.4 0.3 0 [START_REF] Varma | Idd: A dataset for exploring problems of autonomous navigation in unconstrained environments[END_REF]. We associate clear patches (bottom row) to degraded ones (third row) by minimizing LPIPS. Applying our method to clean images variating the z and γ parameters (shown in the images), we subsequently lower the LPIPS. We display the best and second-best translation in terms of LPIPS. The similarities of our results with the degraded patches prove the efficacy of our LPIPS-based evaluation.

Interpolation quality

For the lane degradation task, we compare our interpolations against the continuous i2i DLOW [START_REF] Gong | Dlow: Domain flow for adaptation and generalization[END_REF] baseline, trained on the same data. As it suffers from evident color artifacts, we introduce DLOW+: a custom version using lane mask as additional channel input, masked reconstruction loss, and masked input-output blending.

For DLOW/DLOW+, we regulate the walk on the discovered manifold of each network with a domainness variable z -which amounts to our lane degradation.

With respect to baselines, it is visible in Fig. 4.5a that our degraded lane translations are more realistic for all z since DLOW and DLOW+ discover simpler transformations, just regulating color homogeneously.

For quantification, we compare translations against real degraded lane markings from IDD and report FID and LPIPS in Fig. 4.5b. In detail, we select 35/62 clear/degraded lane patches from IDD test set, and couple those with minimum LPIPS (Zhang et al., 2018a) Since baselines are not using any explicit blending as us (see γ in Eq. 4.7), we also evaluate "ours w/o blending" using m = p z in Eq. 4.7, which still outperforms baselines.

Downstream tasks

Here, we study the applicability of our pipeline to increase the robustness of existing lane detection and semantic segmentation networks.

Lane detection.

We aim here to make lane detectors robust to unseen degraded lane markings. To do so, we train two state-of-the-art detectors, SCNN [START_REF] Pan | Spatial as deep: Spatial cnn for traffic scene understanding[END_REF] and RESA [START_REF] Zheng | Resa: Recurrent feature-shift aggregator for lane detection[END_REF], on both TuSimple original images and our translated version (mixing with 5% probability and randomizing z and γ). The models are tested on both the TuSimple test set and our 110 labeled IDD images, the latter having severely degraded lane markings.

From the quantitative results in Tab. 4.1, we observe that with our source degraded translations both detectors severely outperform the baselines using clear source on the challenging IDD, while maintaining on-par performances on TuSimple with clear markings. In particular, for SCNN we improve by +11.3% the accuracy, -8.5% the false positives and -16.4% the false negatives. Sample qualitative results are in Fig. 4.7 and showcase the robustness of our method on degraded or even absent street lines. We conjecture that our degraded translations forced the network to rely on stronger contextual information.

Semantic segmentation. Here, we seek to improve segmentation in snowy driving conditions. We train three state-of-the-art semantic segmentation models, namely DeepLabv3+ [START_REF] Chen | Encoder-decoder with atrous separable convolution for semantic image segmentation[END_REF], PSANet [START_REF] Zhao | Psanet: Point-wise spatial attention network for scene parsing[END_REF] and OCRNet [START_REF] Yuan | Object-contextual representations for semantic segmentation[END_REF], with either clear Cityscapes images and snowy Cityscapes images translated with our method. We add snow on sidewalks and roads by using Cityscapes semantic maps. Snow is added uniformly on both semantic classes, even if inference on Cityscapes brings a consistent domain shift with respect to training patches on ACDC. In de- tail, for the latter we augment images with 10% (DeepLabv3+, PSANet) or 5% (OCRNet) probability. The models are evaluated on the ACDC snow validation set. Tab. 4.2 shows the benefit of our augmented images (Ours) to consistently improve the performance on road or sidewalk (our two local domains) and mean IoU for all networks. From Fig. 4.8 it is visible that the model trained with our augmentation strategy is able to better detect roads and footpaths in difficult weather conditions with respect to the baseline, which is not capable of properly discriminating between them if they are covered with snow.

Images and patches number ablation

Our method requires very few images to train. Here, we study the effect of number of images and patches per image on the lane degradation task. To measure its impact, we use LPIPS (Zhang et al., 2018a) and FID (Heusel et al., 2017a) following Sec. 4.4.2.2.

Results in Tab. 4.3 show, as expected, better translation with the increase of both the number of images and the number of patches extracted per each image. However, we also denote the few-shot capability of our method and the minimal benefit of using a large number of images. Other ablation studies in the main paper have been omitted for brevity.

Conclusion

In this chapter, we proposed a patch-based image-to-image translation model which relies on a GAN backbone trained on patches and an optional VAE to interpolate non-linearly between domains. Along with the definition of local domains, we introduced a dataset-based geometrical guidance strategy to ease the patches extraction process. Our few-shot method outperformed the literature on all tested metrics on several tasks, and its usability has been demonstrated on proxy tasks. In particular, our translation pipeline led to higher performances on lane detection in scenes with degraded or absent markings and on semantic segmentation in snowy conditions.

Although the VAE-based interpolation shows some kind of non-linearity, it is still far to be accurate for more complex transformations. The reason for this is the absence of guidance on how the continuous transformation should be, which we develop instead in Chapter 8.

Moreover, while exhibiting few-shot capabilities, our patch-based training strategy is able to model only very subtle transformations, since it loses completely the context from which patches are extracted. When trained on more complex transformations, e.g. from daytime to nighttime, more contextual understanding is required to get realistic outputs. For this reason, we complement patch-based training with additional insights in Chapter 5 to achieve few-shot image translation.

Résumé

La plupart des méthodes de traduction d'image à image nécessitent un grand nombre d'images d'entraînement, ce qui limite leur applicabilité. Au lieu de cela, nous proposons ManiFest : un système de traduction d'images qui apprend une représentation contextuelle d'un domaine cible à partir de quelques images seulement. Pour renforcer la cohérence des caractéristiques, notre système apprend un manifold de style entre les domaines source et d'ancrage (supposés être composés d'un grand nombre d'images). Le collecteur appris est interpolé et déformé vers le domaine cible de quelques images via des fonctions d'alignement de statistiques de caractéristiques et d'adversaires basées sur des patchs. En plus de la tâche générale de traduction de quelques images, notre approche peut également être conditionnée à une image exemplaire unique pour reproduire son style spécifique. Des expériences approfondies démontrent l'efficacité de ManiFest sur de multiples tâches, en surpassant l'état de l'art sur tous les paramètres et dans les scénarios généraux et basés sur des exemples.

Target (few-shot night)

General translation

Few-shot learning

Baselines translation manifold

Deformed Manifold

Exemplar translation Figure 5.1: Overview of ManiFest, which translates images from a source domain (here, Day) to a few-shot target (Night). Our framework learns a manifold between anchor domains, in the example spanning the translation between Day and Synthetic Nighttime. Our system deforms the manifold by injecting the few-shot domain information between anchor style representations, and further departs from the deformed manifold by learning to approximate the target domain general appearance, or to reproduce the style of a particular exemplar.

Problem statement

When performing image translation, it is unrealistic to impose significant data collection constraints every time a new scenario is pursued. In addition to the complex logistics involved in acquiring large quantities of images, some scenarios may be rare (e.g., auroras) or dangerous (e.g., erupting volcanoes) thereby preventing even the capture of sufficient training data. Even though during the thesis some few-shot behavior already emerged (see Chapter 4), this only works for simple scenarios in which the transformation is not involving all the scene. Existing methods have been proposed to alleviate the requirement for large datasets, but they mostly show realistic results in highly structured environments such as face translation [START_REF] Liu | Few-shot unsupervised image-to-image translation[END_REF][START_REF] Saito | Coco-funit: Few-shot unsupervised image translation with a content conditioned style encoder[END_REF][START_REF] Li | Super-resolving cross-domain face miniatures by peeking at one-shot exemplar[END_REF]. In this context, we propose ManiFest, a framework for few-shot image-to-image translation which is shown to be robust to highly unstructured transformations such as adverse weather generation or night rendering. Our approach, illustrated in Fig. 5.1, starts from the observation that features consistency (i.e. which image parts should be translated together) is crucial for i2i [START_REF] Ma | Exemplar guided unsupervised image-to-image translation with semantic consistency[END_REF] and that the fewshot domain offers little cues to train efficiently without overfitting [START_REF] Ojha | Few-shot image generation via cross-domain correspondence[END_REF]. Indeed, rather than directly addressing few-shot i2i, Mani-Fest exploits features learned on a stable manifold for the few-shot domain transformation. To do so, we exploit domain-level supervision by humans to include new data in the training process, which are related to source in such a way that an additional translation manifold could be learned. Importantly, ManiFest does not require reasoning on possible decompositions of the target domain (as we proposed instead in Sec. 3), but it is rather resistant to the choice of additional data, as long as an image translation network is trainable on those. In other words, the assumption we make is to be able to identify some common domain among source and few-shot target (e.g. "Street scenario") and to collect additional data belonging to the same domain. We aim to benefit from learned relationships among regions learned on the included data, and transfer them to the few-shot set, dramatically improving translation quality compared to alternatives. Additionally, we learn either to translate to some general style approximating the entire few-shot set, or to reproduce a specific exemplar from it. In short, our contributions are:

• ManiFest, a few-shot image translation framework using feature consistency by weighted manifold interpolation (WMI) and local-global few-shot loss (LGFS). • We introduce GERM, a novel residual correction mechanism for enabling general and exemplar translation, that also boosts performances. • Our framework outperforms previous work on adverse weather and low-light few-shot image translation tasks. We also present qualitative evaluations on rare (auroras) and dangerous (volcanoes) events.

Related work

Considering this project is about few-shot learning on image translation network, we review the state-of-the-art for few-shot GANs. Moreover, artistic style transfer normally works with with only one image, so it could be relevant to the work.

GANs with limited data.

There have been several attempts to overcome the large data requirement for training GANs. Some use transfer learning [START_REF] Torrey | Handbook of research on machine learning applications and trends: algorithms, methods, and techniques[END_REF] to adapt previously-trained networks to new few-shot tasks [START_REF] Wang | Transferi2i: Transfer learning for image-to-image translation from small datasets[END_REF][START_REF] Li | Few-shot image generation with elastic weight consolidation[END_REF]. In particular, [START_REF] Ojha | Few-shot image generation via cross-domain correspondence[END_REF]) uses a patch-based discriminator to generalize to few-shot domains. However, these methods are designed for generative networks and do not immediately apply to i2i. Another line of work focuses on the limited data scenario [START_REF] Patashnik | Balagan: Cross-modal image translation between imbalanced domains[END_REF][START_REF] Cao | Remix: Towards image-to-image translation with limited data[END_REF][START_REF] Zhao | Differentiable augmentation for data-efficient gan training[END_REF][START_REF] Karras | Training generative adversarial networks with limited data[END_REF], but usually performs poorly when very few (10-15) images are used for training. Others exploit additional knowledge to enable few-shot or zero-shot learning, such as pose-appearance decomposition [START_REF] Wang | Semi-supervised learning for few-shot image-to-image translation[END_REF], image conditioning [START_REF] Endo | Few-shot semantic image synthesis using stylegan prior[END_REF] or textual inputs [START_REF] Lin | Zstgan: An adversarial approach for unsupervised zero-shot image-to-image translation[END_REF]. FUNIT [START_REF] Liu | Few-shot unsupervised image-to-image translation[END_REF] and COCO-FUNIT (Saito et al., 2020) use few-shot style encoders to adapt the network behavior at inference time. Some use meta-learning to adapt quickly to newly seen domains [START_REF] Lin | Learning to transfer: Unsupervised meta domain translation[END_REF]. Those methods show limited performance on unstructured scenarios.

Neural style transfer.

Style transfer could be seen as an instance of few-shot i2i, where the goal is to combine the content of an image with the style of another [START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF]. This often results in distortions, which some work tried to mitigate [START_REF] Luan | Deep photo style transfer[END_REF]. The first examples for style transfer with arbitrary input style images are in [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF][START_REF] Li | Universal style transfer via feature transforms[END_REF]. Others try to transfer styles in a photo-realistic manner by using a smoothing step [START_REF] Li | A closed-form solution to photorealistic image stylization[END_REF] or by using wavelet transforms [START_REF] Yoo | Photorealistic style transfer via wavelet transforms[END_REF]. While these methods provide good results in some controlled scenarios, they may fail to understand the contextual mapping between source and style images elements (e.g. sky, buildings, etc.) which we learn more accurately.

The ManiFest methodology

The few-shot i2i task consists in learning a S → T mapping between images of source domain S and target domain T containing few training samples (e.g., |T | ≤ 25). Fig. 5.2 presents an overview of our approach. We learn a style manifold in a standard multi-target GAN fashion (Sec. 5.3.1) from a set of domains which contain large amounts of training data. We call these domains anchors, and denote them A. Anchors domains have the requirement of be suitable for learning a S → A transformation, thus requiring domain knowledge to select suitable data (e.g., if working with autonomous driving scenes, street scenarios). The idea of ManiFest is to simultaneously 1) learn a stable manifold using anchor domains and 2) perform few-shot training by enforcing the target style appearance to lie within the learned manifold. This allows to exploit additional knowledge, like feature consistency (i.e., image parts to be translated together), learned on anchors. To this end, Weighted Manifold Interpolation (WMI, Sec. 5.3.2) exploits style interpolation to benefit from the learned feature consistency on anchors. We allow to further depart from the interpolated manifold with the General-Exemplar Residual Module (GERM, Sec. 5.3.3) which learns a residual image refining the overall appearance and thus enabling style transfer to the general fewshot style (approximating the entire set T ), or to a single exemplar in T as in [START_REF] Ma | Exemplar guided unsupervised image-to-image translation with semantic consistency[END_REF]. We learn the appearance of T and inject it in the manifold with the Local-Global Few-Shot loss (LGFS, Sec. 5.3.4). In the following, real images are s ∈ S, t ∈ T , and fake ones s ∈ T where s is our output.

Multi-target i2i

Instead of learning S → T directly, we assume the availability of a set of two anchor domains, A = {A id , A m }, with abundant data (equivalent to the "base" categories in few-shot image classification, e.g., (Chen et al., 2019a)). By construction, one anchor is always the identity domain (A id = S), while the other (A m ) contains images easier to collect with respect to T , for example synthetic images or images from existing large-scale datasets. We formalize the multi-target image translation problem as learning the S → A mapping. At training time, we disentangle image content and appearance by using content and style encoders E(•) and Z(•) respectively, following MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]. We use Z for reconstruction and translation as in [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF], which we refer for details. We can reconstruct s = G Z(s) (E(s)), where G Z(s) is the style injection of Z(s) into G as in [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]. This effectively learns latent style distributions as in [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF], namely here for each anchor {z id , z m }. A multitarget mechanism (following [START_REF] Choi | Stargan v2: Diverse image synthesis for multiple domains[END_REF]) is employed in Z since we have two anchors. We translate to a randomly selected domain c ∈ {id, m} with employs adversarial losses L G adv and L D adv to force fake images sc to resemble a c ∈ A c .

z c = [[c = id]]z id + [[c = m]]z m , sc = G zc (E(s)) , ( 5 

Weighted Manifold Interpolation (WMI)

Our intuition is that encoding T between the linearly interpolated style representations of A should enforce feature consistency in T . For instance, assuming S = day, T = night, A m = synthetic night, the network will be provided with the information that all sky pixels should be darkened together.

In practice, we learn weights w = {w id , w m } which sum to 1 and encode an image sw with feature consistency by interpolating the anchors style representations:

z w = w id z id + w m z m , sw = G zw (E(s)) .
(5.2) This is visualized in Fig. 5.2 as "interpolation". Learning w allows us to determine the point in the A manifold which is most consistent with T . This point is learned with the LGFS loss (Sec. 5.3.4).

General-Exemplar Residual Module (GERM)

Our GERM seeks to further increase realism by learning a residual in image space. Moreover, our design enables distinguishing between general and exemplar translations. The idea is to allow deviations from the A manifold by learning a residual image sr which helps encode missing characteristics from T . This is done by processing the input image features E(s) with a generator G r such that sr = G r zr (E(s)) , and s = sw + sr , (5.3) where z r is a vector controlling general-or exemplar-based modalities. In both cases, we draw inspiration from AdaIN style injection [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] and condition the injected parameters on different vectors, as illustrated in Fig. 5.3.

For the exemplar residual, the style of a specific image t ∈ T as in [START_REF] Ma | Exemplar guided unsupervised image-to-image translation with semantic consistency[END_REF] is reproduced by conditioning the residual on t. In this case,

z e r = (µ k (t), σ k (t))| K k=1 , sr = G r z e
r (E(s)) , (5.4) where

µ k (•) = µ(ϕ k (•)) and σ k (•) = σ(ϕ k (•))
are mean and variance of the k-th out of K layer outputs ϕ k of a pretrained VGG network [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF], and | is the concatenation operator. Since the LGFS loss exploits VGG statistics (Sec. 5.3.4), G r will be driven to exploit the additional information provided by the input statistics vector, effectively making the generated image more similar to t.

We learn a general residual by removing the conditioning on t and by injecting random noise instead.

z g r ∼ N (0, 1) , sr = G r z g
r (E(s)) .

(5.5)

Local-Global Few-Shot loss (LGFS)

To guide the learning, the resulting image s is compared against the fewshot training set T with a combination of two loss functions. First, we take inspiration from the state-of-the-art of image style transfer where one image is enough for transferring the global appearance of the style scene [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF]. Our intuition is that feature statistics alignment, widely used in style transfer, could be less prone to overfitting with respect to adversarial training. Therefore, we align features between s and a target image t ∈ T using style loss L style as in [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF]) (5.6) where (µ k , σ k ) are the same as in Sec. 5.3.3. While this is effective in modifying the general image appearance, aligning statistics alone is insufficient to produce realistic outputs. Thus, to provide local guidance, i.e., on more finegrained characteristics, we employ an additional discriminator D fs which is trained to distinguish between rotated patches sampled from s and t. We define the adversarial losses (Mao et al., 2017a):

L style = K ∑ k=1 ||µ k (s) -µ k (t)|| 2 + ||σ k (s) -σ k (t)|| 2 ,
L G patch = ||D fs (p(s)) -1|| 2 , L D patch = ||D fs (p(s))|| 2 + ||D fs (p(t)) -1|| 2 , (5.7)
where p is a random cropping and rotation function. Note how the exemplar residual (from Sec. 5.3.3) is conditioned on the same feature statistics used here-this is what enables the exemplar-based behavior of the network. Also note the interaction between components: backpropagating the LGFS loss deforms the manifold learned by multi-target i2i, at the point identified by WMI, thereby injecting T "between" {A id , A m }.

Training strategy

Our framework is fully trained end-to-end and optimizes (5.8) where Θ(•) refers to the network parameters. We train GERM (Sec. 5.3.3) by randomly selecting one of the exemplar or general mode at each training iteration. For the multi-target settings, we adapt the discriminator and the style encoder of our backbone in a multi-target setup following [START_REF] Choi | Stargan v2: Diverse image synthesis for multiple domains[END_REF].

min Θ(E,G,G r ,Z),w L style + L G patch + L G adv and min Θ(D fs ,Dmt) L D patch + L D adv ,

Experiments

We leverage 4 datasets [START_REF] Sakaridis | Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding[END_REF][START_REF] Sakaridis | Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation[END_REF][START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF][START_REF] Richter | Playing for benchmarks[END_REF] and 3 translation tasks (Sec. 5.4.1.2) and evaluate performances against recent baselines [START_REF] Liu | Few-shot unsupervised image-to-image translation[END_REF][START_REF] Saito | Coco-funit: Few-shot unsupervised image translation with a content conditioned style encoder[END_REF][START_REF] Yoo | Photorealistic style transfer via wavelet transforms[END_REF][START_REF] Ma | Exemplar guided unsupervised image-to-image translation with semantic consistency[END_REF][START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]) (Sec. 5.4.2). We further demonstrate the benefit of our few-shot translation on a downstream segmentation task (Sec. 5.4.3), and rare few-shot scenarios (Sec. 5.4.4), and finally ablate our contributions (Sec. 5.4.5). In all, we use MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] as our backbone.

Training setup

Datasets

ACDC. We use ACDC [START_REF] Sakaridis | Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding[END_REF] for most of our experiments, using the night/rain/snow/fog conditions with 400/100/500 images for train/val/test respectively, following official splits. For any individual condition, ACDC also includes geolocalized weakly-paired clear weather day images of same splits.

Dark Zurich. Similar to ACDC, Dark Zurich (DZ) [START_REF] Sakaridis | Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation[END_REF] has daytime images paired with nighttime/twilight conditions. Here, we focus on twilight conditions exclusively and use training images from the GOPRO348 sequence only since it exhibits a distinctive twilight appearance.

We split the total 819 image pairs into 25/794 for train/test, respectively.

Cityscapes. Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] is used to evaluate Mani-Fest for training segmentation networks robust to nighttime1 . It includes 2975/500/1525 annotated images for train/val/test.

VIPER.

As anchors, we use synthetic images from VIPER [START_REF] Richter | Playing for benchmarks[END_REF], using the condition metadata to define splits. 4137/3090/1305/2018/ 2817 images are extracted from the VIPER training set for day/night/rain/ snow/sunset conditions, respectively.

Tasks and evaluation

We train our framework on three main tasks: Day → Night on ACDC daytime (S) and nighttime (T ).

Clear → Fog on ACDC daytime (S) and fog (T ). Day → Twilight on DZ daytime (S) and twilight (T ). Unless mentioned otherwise, the (synthetic) anchor domains from VIPER are "night" for Day → Night and Day → Twilight, and "day" for Clear → Fog. We evaluate with the FID (Heusel et al., 2017b) and LPIPS (Zhang et al., 2018a) metrics. While FID compares feature distance globally, LPIPS compares translated source images and the geolocalized paired image in the target dataset. This is beneficial for evaluating our exemplar modality. For all, we train on downsampled x4 images.

Comparison with the state-of-the-art

Baselines. We compare with four baselines for few-shot image translation with |T | = 25. We extensively evaluate on the most challenging Day → Night task, and provide insights and comparison for the two others tasks. We evaluate the impact of the few-shot image selection and of |T | in Sec. 5.4.5.3. We compare against the recent FUNIT [START_REF] Liu | Few-shot unsupervised image-to-image translation[END_REF] and COCO-FUNIT [START_REF] Saito | Coco-funit: Few-shot unsupervised image translation with a content conditioned style encoder[END_REF], trained on S → A m and adapted following [START_REF] Liu | Few-shot unsupervised image-to-image translation[END_REF][START_REF] Saito | Coco-funit: Few-shot unsupervised image translation with a content conditioned style encoder[END_REF] to the few-shot T (general) or to a single reference image (exemplar). For exemplar image translation, we also add specific baselines. First, we compare with WCT2 [START_REF] Yoo | Photorealistic style transfer via wavelet transforms[END_REF], used to transfer the style of the paired target condition to the source one. We also evaluate EGSC-IT [START_REF] Ma | Exemplar guided unsupervised image-to-image translation with semantic consistency[END_REF]. The method is trained by merging A m and T since it should be able to identify inter-domain variability, separating T styles from A m [START_REF] Ma | Exemplar guided unsupervised image-to-image translation with semantic consistency[END_REF]. To define metrics bounds, we also train our MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] sstill retain some characteristics of A (note, for example, how the street is similar to the GTA one) which worsens the overall image realism. The same can be observed with EGSC-IT, where the hood of the ego-vehicle in anchor images (first column) is retained and significantly impacts visual results. While WCT 2 exhibits sharp results, it does not correctly map the image context, and it is limited to appearance alignment which leads to artifacts (e.g. yellow sky with white halos). Our method generates significantly better results than the baselines in both the general and exemplar modalities, with visible differences in all three tasks: the general appearance is consistent across test samples, and each result adapts to its exemplar. For example, observe how the overall sky colors (Day → Twilight, Fig. 5.4b) match the exemplar. Here, the exemplars were unseen in training (not part of the fewshot set T ), thus GERM generalizes the few-shot learned exemplar behavior. The quantitative evaluation in Tab. 5.1 is coherent with the qualitative results, as we always outperform baselines. We perform on par (general), or even better (exemplar) than the backbone trained on the entire set of 400 training images on Day → Night (Tab. 5.1a). This result shows that GERM (Sec. 5.3.3) improves modeling of the exemplar style over AdaIN exemplar style injection [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]. The exemplar behavior may force artifacts following subtle characteristics of the scene (as trees in Fig. 5.4c), for which the general translation may be advisable.

Segmentation downstream task

We exploit semantic segmentation to evaluate ManiFest for increasing robustness in challenging scenarios. In Fig. 5.5 we train HRNet (Wang et al., 2019a) on nighttime versions of Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] obtained by translating the dataset with ManiFest or MUNIT, and evaluating on the ACDC-night validation set labels. We choose the best MUNIT and Mani-Fest configurations following nighttime realism in Tab. 5.1a with |T | = 25.

As lower and upper bounds we train HRNet either on original Cityscapes (baseline) or on ACDC-night training set (oracle). Fig. 5.5 shows we outperform the MUNIT backbone (+3.09 mIoU) thanks to our better target domain modeling.

Rare few-shot scenarios

Few-shot plays its full role with conditions that are rare by nature, difficult or even dangerous to photograph, such as auroras or erupting volcanoes. Fig. 5.6 shows the capability of ManiFest to learn Mountain →Volcano or Day →Aurora, by taking as source and anchor the summer and winter Yosemite dataset (Zhu et al., 2017a) splits respectively. Each task uses only 4 images from Google Images as T . We generate realistic erupting volcanoes or auroras starting from mountain images, with contextual understanding (Fig. 5.6, cols 1-4), where only one mountain is mapped to a volcano and auroras only partially cover the sky. Fig. 5.6 (cols 5-6) also demonstrate how exemplar characteristics are preserved.

Ablation studies

Architectural components

We evaluate the contribution of each component in ManiFest (c.f . Fig. 5.2, Sec. 5.3) using the Day → Night task in the general scenario, and report results in Fig. 5.7a. The impact of LGFS is studied by removing L style or L patch , showing that both local and global guidance are improving translations. Removing the GERM from the training pipeline simultaneously precludes the exemplar behavior and worsens the performance, demonstrating the effectiveness of encoding complementary characteristics outside of the manifold spanned by A. The benefit of WMI is evaluated in two experiments. First, the "w/o WMI" setting applies the residual directly on the fake anchor images sc , instead of the interpolated sw as in Eq. ( 5.3). The worse performance relate to synthetic characteristics present in sc (e.g. road texture in Fig. 5.7b). Second, "LGFS-only" directly uses the LGFS losses in substitution to L adv , without WMI and GERM components. While it only slightly worsens metrics, the impact on feature consistency is dramatic as shown in Fig. 5.7b, where the sky presents obvious artifacts and road trivially darkens.

Anchor selection

We ablate the choice of anchor domain A by selecting different conditions from the VIPER dataset, namely {Day, Night, Rain, Snow, Sunset}.

In particular, we experiment on previous intra-dataset (S and T taken from the same dataset) tasks, as well as on a cross-dataset task in which Table 5.2: Study of the impact of anchor domains A on the S → T translations for intra-dataset (a) and cross-dataset (b) tasks. The stable performance across all tested anchors demonstrates the robustness of our method. For all, we test a multi-anchor setup by using all anchors ("All"). In (b), * means LPIPS cannot be computed due to lack of pairs of matched images (Sec. 5.4.1.1). S = ACDC-Day and T = DZ-Twilight. Results in Tab. 5.2 show how performance remains relatively stable across most anchors. This may seem counter-intuitive since one could, for example, expect that the "Rain" anchor would be a poor choice for the Day → Night task since rainy and night scenes look different. The results instead show that the WMI only encodes consistency in the transformation, and is thus robust to the choice of anchors. We also test a multi-anchor setup ("All" in Tab. 5.2), where A ={A id , Day, Night, Rain, Snow, Sunset}. In general, more anchor domains improve performances, ranking either first or second in all cases for at least one metric, due to the additional information available for shaping the manifold in WMI. We hypothesize that multiple anchors helps identifying correspondences between S and T , benefiting especially the cross-dataset tasks.

Number of images and variability

First we compare our Day → Night translations against MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] for |T | = {25, 20, 15, 10, 5, 1}, to understand the effects of few-shot training on the backbone network. Some qualitative general outputs are shown in Fig. 5.8a. While MUNIT overfits and creates unrealistic appearance (25-10 images) or collapse (5, 1 image), we output realistic transformations in all cases, even retaining the image context in the extreme one-shot scenario. This is confirmed by the FID and LPIPS in Figs 5.8b and 5.8c for the general and exemplar scenarios respectively.

In Tab. 5.3 we also study variability, evaluating FID and LPIPS for the general and exemplar cases for |T | = {25, 15, 5, 1} images reporting the results of 7 runs. Overall, the performance remains relatively constant with the exception of the one-shot setup, where despite realistic transfer, the metrics are penalized since the target image itself might not accurately represent the style distribution of the test set. (b) Exemplar Table 5.3: Day → Night ablation on variability by training on 4 few-shot configurations with 7 runs each on general (a) and exemplar (b). |T | does not impact performance much except for the extreme one-shot scenario, where the network overfits to the seen style. The exemplar behavior performs better due to the style conditioning mechanism.

Anchor-based translation

The GERM module extracts residual information from encoded source images. We investigate the application of residuals on the anchor images themselves, by first translating from A m → S using our backbone cycle consistency [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF], and afterwards re-encoding the fake image in a S → A m reconstruction without retraining (see Fig. 5.9). This shows how ManiFest simultaneously learns S → T and acceptable A m → T transformations. The FID w.r.t. ACDC-Night improves from 142 to 130 when applying the residual on the synthetic anchors, thus confirming their shift towards T .

Conclusions

In this section we presented ManiFest, a framework for few-shot i2i which enables translating images using just few images from the target domain.

We exploited ideas about patch-based training emerged in other projects (see Chapter 4), complementing them with additional strategies to achieve few-shot transfer of meaningful context-aware characteristics. In developing ManiFest, we exploited knowledge about domains to collect additional data to enforce consistency in the transformation. It is interesting to notice how the distance between few-shot target and anchor domains did non impact results significantly, advocating for further research on how features extracted by i2i networks could be reused.

Although the method could theoretically be used for any kind of transformation, it performs best when applied to low-level transformations as lighting or adverse weather. We suppose that further investigation could be required if we wanted to apply the same methodology on semantic-based transformations, as face transfers.

On GERM-G effectiveness. Reflecting on this work, we investigated the usability of exemplar capabilities in GERM as a replacement for the general pipeline, by simply averaging exemplar style codes in the few-shot domain. We mostly observed the same results, so it could be simply removed without loss of performance. This advocates the greater flexibility of exemplar-based image translation strategies [START_REF] Ma | Exemplar guided unsupervised image-to-image translation with semantic consistency[END_REF].

Part II

Physics-informed learning

Chapter 6

Part Introduction

For a rather large number of systems which can be described by mathematics, it is evident that simple formulations formalize extremely well many classes of problems [START_REF] Wigner | The unreasonable effectiveness of mathematics in the natural sciences[END_REF], arguably better than it is achievable by learning on data. Moreover, on a general perspective about computer vision, depending only on data may have drawbacks. First, it is demonstrated that mostly bigger and more power-consuming vision architectures such as Vision Transformers [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] can benefit from the increased image availability [START_REF] Zhai | Scaling vision transformers[END_REF], pushing computational costs in many applications and de facto reducing the number of organizations over the world that can afford to train such large models. Second, data are not always available, since some phenomena could be rare or difficult to capture in real life. This highlights that novel strategies for training vision systems exploiting different priors are necessary. But which ones?

An interesting clue comes from neuroscience research. Let us diverge a moment and reason about how humans learn to interact with the world. From the earliest stages of life we are all exposed to an enormous amount of visual data, that we learn to understand thanks to our inner world representation. According to [START_REF] Fischer | Functional neuroanatomy of intuitive physical inference[END_REF], unsupervised learning of physics plays a big role in this. Since sensing our world is necessary for survival, evolution brought us to model physical aspects of what we see, and to learn abstract physical representations that we can reuse to predict motion, structure, and possible interactions of objects [START_REF] Ullman | Bayesian models of conceptual development: Learning as building models of the world[END_REF]. We can then assume physics understanding is a strong prior for better use of visual information. Moreover, humans tend to spontaneously correlate physics with visual perception [START_REF] Mason | Neural representations of physics concepts[END_REF], in such a way that, for instance, looking at people dancing stimulates the same brain regions as thinking about periodic physical concepts (e.g. "wavelength"). A visualization of activation regions is available in Fig. 6.1. Again, a surprising ability of our brain! It appears evident that understanding physics is leveraged by humans to 69 Figure 6.1: Activations in the brain of expert dancers specifically excited by videos of people dancing to music (see example frames). Similar neurons are stimulated when physics students are exposed to periodical physical concepts [START_REF] Mason | Neural representations of physics concepts[END_REF]. This intuitively implies an inner link between vision and physics understanding in humans. Image from [START_REF] Cross | Building a motor simulation de novo: observation of dance by dancers[END_REF].

properly exploit visual information. Consequently, it advocates for physics as a strong prior for training neural networks, as it is also demonstrated useful in recent works [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF]. Nevertheless, the usage of physical constraints in generative networks remains only limitedly explored. In this chapter, strategies for making use of physical priors in image translation are proposed. Ultimately, these physics-informed learning pipelines result in significant improvements of synthesized image quality, network capabilities, and relaxation of training constraints. Also, it is important noting how the usage of physics increases the interpretability of neural networks, since it provides strong well-studied priors to use during training.

The contributions of this chapter are two-fold. In Chapter 7, we address the entanglement problem in image translation by using physical knowledge. In there, we use realistic physical models for rendering visual effects of simple phenomena, as refraction of light by raindrops on a lens. With the usage of models, it was made possible to realistically generate rare out-of-distribution images, modifying explicitly controllable physical parameters. When realistic models are not available, naive models characterized by a very weak physical guidance (e.g. "night is darker than day") could be used to organize a GAN latent space, achieving continuous transformations. This resulted in the CoMoGAN framework presented in Chapter 8, which provided i2i networks with the capability of interpolating realistically between conditions which are continuous by nature, e.g. time of day or weather conditions.

Chapter 7

Physics-informed guided disentanglement for generative networks

The contributions of this chapter have been published in: Pizzati, F., Cerri, P., and de Charette, R. (2020a). Model-based occlusion disentanglement for image-to-image translation. In ECCV arXiv: https://arxiv.org/abs/2004.01071 Moreover, they have been significantly extended for a journal submission, currently under review: Pizzati, F., Cerri, P., and de Charette, R. (2021b). Physics-informed guided disentanglement in generative networks. TPAMI submission arXiv: https://arxiv.org/abs/2107.14229 

Résumé

Les réseaux de traduction d'image à image souffrent d'effets d'enchevêtrement en présence de phénomènes physiques dans le domaine target (tels que les occlusions, le brouillard, etc.), ce qui réduit la qualité, la contrôlabilité et la variabilité de la traduction. Dans ce chapitre, nous nous basons sur une collection de modèles physiques simples et nous présentons une méthode complète pour séparer les traits visuels dans les images target, en guidant le processus avec un modèle physique qui rend certains des traits cibles, et en apprenant les autres. Parce qu'il permet des sorties explicites et interprétables, notre modèle physique (régressé de manière optimale sur la target) permet de générer des scénarios invisibles de manière contrôlable. Nous étendons également notre cadre, en montrant sa polyvalence pour le désenchevêtrement guidé par les neurones. Les résultats montrent que nos stratégies de désenchevêtrement augmentent considérablement les performances qualitatives et quantitatives dans plusieurs scénarios difficiles de traduction d'images.

Naive GAN Disentangled GAN inject Figure 7.1: Guided disentanglement. While naive GANs generate all target scene traits at once (Target -Entangled), we learn a disentangled version of the scene from guidance of physical model W Mod (.) with estimated physical parameters ( w). Our main idea is to combine physical models of well-known phenomena (as raindrops) with generative capabilities of GANs, in a complementary manner. Here, we combine a physical model for raindrops with wetness learned by the GAN (Target -Disentangled), by only training on entangled data (i.e. rainy scene with raindrops on the lens). Notice here the unrealistic raindrops entanglement in naive GANs. With our method, we enable the generation of target style ( w) or unseen scenarios (here, w 1 , w 2 ).

Problem statement

A common pitfall of GANs is their inability to accurately learn the underlying physics of the transformation [START_REF] Xie | tempoGAN: A temporally coherent, volumetric gan for super-resolution fluid flow[END_REF], often resulting in artifacts based on inaccurate mapping of source and target characteristics, which significantly impact results. This is the case for example when learning clear →rain as a naive GAN translation will inevitably entangle inaccurate raindrops, as highlighted in Fig. 7.1 top. Domain-informed strategies used in Part I do not solve entanglement of physical traits, since in Fig. 3.4 raindrops are rendered always in the same positions for different style codes, and in Fig. 5.4c fog is always generated on trees. This is expected: distinguishing between different layers in images (e.g. the car glass layer and the scene one in a rainy urban scene) normally requires ad-hoc approaches [START_REF] Xue | A computational approach for obstruction-free photography[END_REF]. Physics-inspired models can instead render well-studied elements of target domain with great realism, for rain for example [START_REF] Roser | Video-based raindrop detection for improved image registration[END_REF][START_REF] Alletto | Adherent raindrop removal with self-supervised attention maps and spatiotemporal generative adversarial networks[END_REF][START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF][START_REF] Tremblay | Rain rendering for evaluating and improving robustness to bad weather[END_REF], though leaving any other appearance trait unmodified. For instance, in a rainy scene, models can accurately render raindrops but fail to render the complex scene wetness.

We propose a learning-based comprehensive framework to unify generative networks and physics priors. We rely on a disentanglement strategy that benefits from simple rendering physical models to learn the remaining un-modeled mapping. By relying on physical priors, we can achieve disentanglement without requiring ad-hoc data collection (Chapters 3, 5) or annotation (Chapter 4), thus achieving appealing results at nearly zero cost.

In brief, we render some of the target visual traits with a physical model and learn the un-modeled target characteristics with an i2i network. At inference, we compose them as shown in Fig. 7.1 to get the output benefiting from the visually pleasant outputs of GANs and the controllable characteristics of physical models. The peculiarity of our method is that we achieve disentanglement of modeled and learned characteristics by just using data in which they are both present simultaneously. For example, we can learn to generate wet scenes without raindrops on the lens, by only looking at rainy images with raindrops. Our strategy deeply differs from sequential composition of i2i and physics based rendering [START_REF] Tremblay | Rain rendering for evaluating and improving robustness to bad weather[END_REF] which instead assume underlying independence of the two. Besides increasing image realism, our physical model-guided framework enables fine-grained control of physical parameters in rendered scenes, for increasing generated images variability regardless of the training dataset. This is beneficial for robotics applications, which require resistance to unobserved scenarios.

A remarkable use case is vision in rainy conditions since raindrops appearances vary drastically with the camera setup. From Fig. 7.1 bottom, our disentanglement can be used to be resistant to dashcam-like rain even having only seen out-of-focus rain at training. This capability is not achievable by using domain priors as in Part I, since in those cases we were still constrained by data, limiting the generative capabilities of our network to values in the seen data distribution. Other applications we demonstrate in this chapter are: vision for dirty images, fog, or composite watermarks.

Related works

We do not repeat related works relative to prior-based translations already studied in Chapter 4, which are also relevant to this part of the thesis. Moreover, we introduce two topics of interest.

Physics-based generation. Many works in literature rely on rendering to generate physics-based traits in images, for rain streaks [START_REF] Garg | Photorealistic rendering of rain streaks[END_REF][START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF][START_REF] Tremblay | Rain rendering for evaluating and improving robustness to bad weather[END_REF][START_REF] Weber | A multiscale model for rain rendering in real-time[END_REF][START_REF] Rousseau | Realistic real-time rain rendering[END_REF], snow [START_REF] Barnum | Analysis of rain and snow in frequency space[END_REF], fog [START_REF] Sakaridis | Semantic foggy scene understanding with synthetic data[END_REF][START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF] or others. In many cases, physical phenomena cause occlusion of the scene -well studied in the literature. For instance, many models for raindrops are available, exploiting surface modeling and ray tracing [START_REF] Roser | Video-based raindrop detection for improved image registration[END_REF][START_REF] Roser | Realistic modeling of water droplets for monocular adherent raindrop recognition using bezier curves[END_REF][START_REF] Hao | Learning from synthetic photorealistic raindrop for single image raindrop removal[END_REF]. In [START_REF] You | Adherent raindrop modeling, detectionand removal in video[END_REF], raindrop motion dynamics are also modeled. Recent works instead focus on photorealism relaxing physical accuracy constraints [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF][START_REF] Alletto | Adherent raindrop removal with self-supervised attention maps and spatiotemporal generative adversarial networks[END_REF]. A general model for lens occluders has been proposed in [START_REF] Gu | Removing image artifacts due to dirty camera lenses and thin occluders[END_REF]. Logically, it is extremely challenging to entirely simulate the appearance of scene encompassing multiple physical phenomena (for rain: rain streaks, raindrops on the lens, reflections, etc.), hence in [START_REF] Tremblay | Rain rendering for evaluating and improving robustness to bad weather[END_REF][START_REF] Mușat | Multi-weather city: Adverse weather stacking for autonomous driving[END_REF] they also combine i2i networks and physics-based rendering. In [START_REF] Lengyel | Zero-shot day-night domain adaptation with a physics prior[END_REF], they propose to exploit night physics characteristics to perform domain adaptation. However, this is quite different from our objective since they assume to physically model features not present in the target images. To the best of our knowledge, there is no method which unifies rendering based on physical models and i2i translations in a complementary manner. Physical models could also influence many training aspects, in the form of output space conditions (Reichstein et al., 2019), loss functions [START_REF] Karpatne | Physics-guided neural networks (pgnn): An application in lake temperature modeling[END_REF] or ad-hoc data augmentation [START_REF] Xie | tempoGAN: A temporally coherent, volumetric gan for super-resolution fluid flow[END_REF]), but we were the first to use physical models to reproduce better the appearance of a target domain in image translation.

Disentangled representations.

Disentanglement is commonly used to gain control on generation by separating image content and style [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF][START_REF] Lee | Drit++: Diverse image-to-image translation via disentangled representations[END_REF][START_REF] Jiang | Tsit: A simple and versatile framework for image-to-image translation[END_REF][START_REF] Park | Contrastive learning for unpaired image-to-image translation[END_REF]. Others aim at controlling output images granularity [START_REF] Singh | Finegan: Unsupervised hierarchical disentanglement for fine-grained object generation and discovery[END_REF] or specific features, as blur [START_REF] Lu | Unsupervised domain-specific deblurring via disentangled representations[END_REF] or view-points [START_REF] Nguyen-Phuoc | Hologan: Unsupervised learning of 3d representations from natural images[END_REF]. Some exploit disentanglement for few-shot generalization capabilities [START_REF] Liu | Few-shot unsupervised image-to-image translation[END_REF][START_REF] Saito | Coco-funit: Few-shot unsupervised image translation with a content conditioned style encoder[END_REF]. Domain features disentanglement also unifies representations across domains [START_REF] Xia | Unsupervised multi-domain multimodal image-to-image translation with explicit domain-constrained disentanglement[END_REF][START_REF] Lin | Exploring explicit domain supervision for latent space disentanglement in unpaired image-to-image translation[END_REF]. To the best of our knowledge, we were the first to propose a disentanglement strategy for visual traits using physical models.

Physical model-guided disentanglement

Standard i2i GANs solely rely on context mapping between source and target only -which would be impractical relying only on physical rendering. In some setups, however, the target domain encompasses some visual traits, for example adverse weather or lens occlusions, which modeling is well understood from physics. Hence, it may be amenable to integrate a priori physics knowledge in the adversarial learning process.

To formalize i2i transformations as a composition of physics and learned characteristics, we propose a setting shown in Fig. 7.2 where the GAN learns to disentangle the physically modeled traits from target (Sec. 7.3.1). Disentanglement is achieved relying on physical model-guided strategies (Sec. 7.3.2), where we exploit as the only prior the nature of the physical trait we aim to disentangle (e.g. raindrop, dirt, fog, etc.). Because these may have infinite variations of appearances, we estimate differentiable (Sec. 7.3.3) and non-differentiable (Sec. 7.3.4) target parameters of the physical model which ease disentanglement by reducing differences with target. Our approach boosts image quality and realism guiding model injection during training with gradient-based guidance (Sec. 7.3.5). An extensive explanation of training strategies is in Sec. 7.5.

Adversarial disentanglement

In image-to-image translation we aim to learn a transformation between a source X and a target Y , thus mapping X → Y in an unsupervised manner. We assume that Y appearance is partly characterized by a well-identified phenomenon such as occlusions on the lens (e.g. rain, dirt) or weather phenomena (e.g. fog). Hence, we propose a sub-domain decomposition (as in Chapters 3 and 4) of Y = {Y W , Y T }, separating the identified traits (Y W ) from the other ones (Y T ). We assume this only on target, so X = {X T }. In adversarial learning, the task of the generator is to approximate the probability distributions P X and P Y associated with the problem domains, such as ∀x ∈ X, x ∼ P X (x), ∀y ∈ Y, y ∼ P Y (y).

(7.1)

For explaining the intuition, we assume that the traits identifiable in this manner are independent from the recorded scene. For instance, physical properties of raindrops on a lens (such as thickness or position) do not change with the scene, as it happens also with fog, where visual effects are only depth-dependent. Therefore, Y W is fairly independent from Y T , hence we formalize P Y as a joint probability distribution with independent marginals, such as

P Y (y) = P Y W ,Y T (y W , y T ) = P Y W (y W )P Y T (y T ). (7.2)
Intuitively, approximating one of the marginals with a priori knowledge will force the GAN to learn the other one in a disentangled manner. During training, this translates into injecting features belonging to Y W before forwarding the images to the discriminator, which will provide feedback on the general realism of the image. Formally, we modify a LSGAN (Mao et al., 2017a) training, which enforces adversarial learning minimizing 7.3) where L gen and L disc are tasks of generator G and discriminator D, respectively. We instead learn a disentangled mapping injecting physically modeled traits W Mod (.) on translated images. We newly define y d as the disentangled composition of translated scene G(x) and W Mod (.), hence

y d = G(x), L gen = L G (y d ) = E x ∼P X (x) [(D(y d ) -1) 2 ], L disc = L D (y d , y) = E x ∼P X (x) [D(y d ) 2 ]+ + E y ∼P Y (y) [(D(y) -1) 2 ], ( 
y d = α w G(x) + (1 -α w )W Mod (.) . (7.4)
We define as α w a pixel-wise measure of blending between modeled and learned scene traits. Pixels which depend only on W Mod (.) (as opaque occlusions) will show α w = 1 while others (e.g. transparent ones) will have α w < 1. 

Physics models as guidance

One can easily obtain physical model (i.e. W Mod ) from existing literature -typically to render visual traits like drops, fog, or else. Injecting such physical models in our guided-GAN enables disentanglement and learning of visual traits not rendered by physical models, like wet materials for rain models [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF], clouds in the sky for fog models [START_REF] Sakaridis | Semantic foggy scene understanding with synthetic data[END_REF], etc. However, these models often have extremely variable appearance depending on their physical parameters w so we propose adversarial-based strategies to regress optimal w mimicking the target dataset appearance. This is in fact needed for disentangled training where we assume modeled traits to resemble target ones. Other parameters are of stochastic nature (e.g. drop positions on the image) and are encoded as noise z regulating random characteristics. Additionally, some models appearance -like refractive occlusions -vary with the underlying scene1 s, so we write W Mod (.) = W Mod (s, w, z), with s = G(x). Following our pipeline in Fig. 7.2, if w properly estimates target physical parameters, W Mod (s, w, z) estimates marginal P Y W (y W ) which again enables disentanglement.

During inference instead, w and z can be arbitrarily varied, greatly increasing generation variability while still obtaining a realistic target scene rendering. In the following, we describe our adversarial parameter estimation strategy, while distinguishing differentiable (w d ) and non-differentiable (w nd ) parameters, such that w = {w d , w nd }.

Differentiable parameters estimation

To estimate the target optimized derivable parameters wd , we exploit an adversarial-based strategy benefiting from entanglement in naive trainings. We consider a naive baseline trained on source → target mapping, where target entangles two sub-domains as specified in Sec. 7.3.1. We refer to generator and discriminator trained in this way as entangled generator and discriminator, respectively. The entangled discriminator D ent successfully learns to distinguish fake target images. This results in being able to discriminate P X = P X S from P Y = P Y T (y S )P Y W (y W ). Considering a simplified scenario where P Y T is arbitrarily confused with the source domain, such that P Y T = P X T , regressing w d is the only way to minimize the domain shift. In other words, considering the derivable model parametrized by w d , the above domains confusion prevents any changes in the scene. To minimize differences between source and target the network is left with updating the injected physical model appearance, ultimately regressing w d . Fig. 7.3a shows our differentiable parameter pipeline. From a training perspective, we first pretrain an i2i baseline (e.g. MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]), learning a X → Y mapping with an entangled generator G ent and discriminator D ent . We then freeze D ent and use it to solve

y p = α w x + (1 -α w )W Mod (x, w, z), min w d L G (y p ) , ( 7.5) 
backpropagating the GAN loss through the differentiable model. Since many models may encompass pixelwise transparency, often the blending mask α w is α w = α w (w, z). Please not this is not a traditional adversarial training, since freezing the discriminator is mandatory to preserve the previously learned target domain appearance during the estimation process. After convergence, we extract the optimal parameter set wd . Alternatively, wd could be manually tuned by an operator, at the cost of menial work and inaccuracy, possibly leading to errors in the disentanglement. From Fig. 7.3a, notice that the gradient flows only through differentiable parameters (w d ). We now detail our strategy to optimize jointly inevitable non-differentiable parameters (w nd ).

Non-differentiable parameters estimation

The previously described strategy only holds for differentiable parameters w d , since we use backpropagation of an adversarial loss. Nonetheless, many models include non-differentiable parameters w nd that could equally impact the realism of our model W Mod (.). For example, a model generating raindrops occlusion would include differentiable parameters like the imaging focus, but also non-differentiable ones like the shape or number of drops -all of which significantly impact visual appearance. Incorrect sizing of non-differentiable parameters w nd can lead to a wrong disentanglement. Manual approximation of optimal w nd parameters via trial-and-error might also be cumbersome or impractical for vast search space. To circumvent this, we exploit a genetic strategy estimating w nd .

In our method, non-differentiable parameters are fed to a genetic optimization strategy. The evolutionary criteria remain the same as for differentiable parameters, that is the pretrained discriminator (D ent ) adversarial loss. In practice, to avoid noisy updates after genetic estimation, we average adversarial loss over a fixed number of samples to reliably select a new population. After convergence, we extract the optimal parameter set wnd . In our experiments, we use CMA-ES [START_REF] Hansen | Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)[END_REF] as evolutionary strategy, but the proposed pipeline is extensible to any other genetic algorithm.

Disentanglement guidance

It is worth noting that too sparse injection of model W Mod (.) negatively impacts disentanglement because the guided-GAN will entangle similar physical traits to fool the discriminator, while injecting too much of W Mod (.) will prevent the discovery of the disentangled target. Spatially, we observe that regions that do not differ from source to target are most frequently impacted by entanglement. This is because the discriminator naturally provides less reliable predictions due to the local source-target similarities, which leads the generator to produce artifacts resembling target physical characteristics to fool the discriminator, eventually leading to unwanted entanglement. In rainy scenes this happens for trees or buildings, which appearance little vary if dry or wet, whereas ground or road exhibit puddles which are strong rainy cues.

To balance the injection of W Mod (.), we guide disentanglement by injecting W Mod (.) only on low domains shift areas, pushing the guided-GAN to learn the disentangled mapping of the scene. Specifically, we learn a Disentanglement Guidance (DG) dataset-wise by averaging the GradCAM [START_REF] Selvaraju | Grad-cam: Visual explanations from deep networks via gradient-based localization[END_REF] feedback on the source dataset, relying on the discriminator D ent gradient on fake classification. Areas with high domain shift will be easily identified as fake, while others will impact less on the prediction. To take into account different resolutions, we evaluate GradCAM for all the discriminator layers. Formally, we use LSGAN to obtain .6) with L being the discriminator layers. At training, we inject models only on pixels (u, v) where DG u,v < γ, where γ ∈ [0, 1] is a hyperparameter. In Sec. 7.5.4.4 we visually assess the effect of DG. We do not show gradient propagation for simplicity.

DG = E x ∼P X (x) [E l∈L [GradCAM l (D ent (x))]] , ( 7 

Training strategy

For models having differentiable and non-differentiable parameters we employ a joint optimization shown in Fig. 7.3b. We first initialize a set of parameters w, then alternatively use our strategy for differentiable parameters estimation w d (Sec. 7.3.3) and the genetic strategy for non differentiable ones w nd (Sec. 7.3.4). Notice that the alternation of optimized parameters prevents divergence due to simultaneous optimization. We apply updates until optimum, reaching the two sets of target style parameters, w = { wd , wnd }.

The complete training strategy for model-guided disentanglement is in Sec. 7.5.1.1.

Neural-guided disentanglement

For some visual traits, a physical model may not be immediately available so we consider also the case in which the guidance is provided by a neural model, learned separately. Referring to our adversarial strategy in Sec. 7.3.1, we simply substitute W Mod with W GAN in Eq. 7.4, where W GAN is our neural guidance -a GAN in our experiments.

Following our past explanations, assuming W GAN generates specific visual traits -may it be dirt, drop, watermark or else -it is an approximation of the marginal P Y W (y W ). We define θ as the optimal set of parameters of the network to reproduce target occlusion appearance. Subsequently, processing generated images with W GAN before forwarding them to the discriminator pushes the guided-GAN we aim to train in a disentangled manner (not to be confused with W GAN ) to achieve disentanglement, as illustrated in Fig. 7.4, following the same reasoning as in Sec. 7.3.1.

Of importance here, even if W GAN is trained supervisedly -for example, from annotated pairs of images / dirt -the disentanglement strategy is itself fully unsupervised. Also, referring to Eq. 7.2, the guided-GAN can only achieve disentanglement and estimate P Y T (y T ) from images in Y , if W GAN (i.e. W (•)) correctly estimates P Y W (y W ). Suppose W GAN augments rain on images, it will be sensitive to the intensity as well as the appearance of drops of Y . In other words, it would be possible only to recreate target-like scenes. With the model-guided disentanglement strategy we could instead re-inject physical traits of arbitrary appearance, greatly increasing the generative capabilities of our guided framework.

The complete training strategy for neural-guided disentanglement is also in Sec. 7.5.1.1.

Experiments

We evaluate our disentanglement strategies on the real datasets nuScenes [START_REF] Caesar | nuscenes: A multimodal dataset for autonomous driving[END_REF], RobotCar [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF], Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] and WoodScape [START_REF] Yogamani | Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving[END_REF], and on the synthetic Synthia [START_REF] Ros | The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes[END_REF] and Weather Cityscapes [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF]. Our evaluation methodology is in Sec. 7.5.1 including training, tasks, user study, and model/neural guidance.

In Sec. 7.5.2 we extensively study the disentanglement of raindrop, dirt, composite occlusions, and fog -on a qualitative/quantitative basis, and using proxy tasks and human judgement. Our method is compared against the DRIT [START_REF] Lee | Drit++: Diverse image-to-image translation via disentangled representations[END_REF], U-GAT-IT [START_REF] Kim | U-gat-it: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[END_REF], AttentionGAN (Tang et al., 2019a), CycleGAN (Zhu et al., 2017a), and MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] frameworks. Opposite to the literature, our method enables disentanglement of the target domain, so we report both the disentangled translations as well as the translations with the injection of optimal target physical traits. The disentanglement is greatly visible in images presented in this section.

Because physical models are readily available, we emphasize our physical model-guided strategy (Sec. 7.3) evaluated on 4 models in Sec. 7.5.2.1. Conversely, the neural-guided strategy (Sec. 7.4), requires rare separate neural networks for rendering traits. It is subsequently only evaluated on dirt disentanglement in Sec. 7.5.2.2, relying on DirtyGAN [START_REF] Uricar | Let's get dirty: Gan based data augmentation for soiling and adverse weather classification in autonomous driving[END_REF], for comparison purposes with the model-guided strategy.

In Sec. 7.5.3, we study the accuracy of our physical model parameters estimation on the well-documented raindrop model, and finally ablate our proposal in Sec. 7.5.4.

Formalism. We formalize disentangled trainings as T dis , guided either with a full physical model (T W Mod ), a model with only differentiable param- 

eters (T W w d

Mod

), or neural-guided (T W GAN ). When re-injecting physical traits, we also show their parameters in parentheses. For example, T W Mod ( w) means model-guided disentangled output with injection of the full model estimated on target ( w).

Methodology

Training

Our disentangled GAN is architecture agnostic. Here, we rely on the MU-NIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] backbone for its multi-modal capabilities, and exploit LSGAN (Mao et al., 2017a) for training. Fig. 7.5 shows our two training pipelines. For model-guided training (Fig. 7.5, top), we leverage on a multi-step pipeline, only assuming the known nature of features to disentangle (e.g. raindrop, dirt, fog, etc.). First, an i2i source → target baseline is trained in an entangled manner, obtaining entangled discriminator (D ent ). Second, we make use of D ent to regress the optimal parameters w with adversarial (Sec. 7.3.3) and genetic (Sec. 7.3.4) estimation. Third, we extract Dis- entanglement Guidance (Sec. 7.3.5), also using D ent . Finally, we train from scratch the disentangled guided-GAN (Sec. 7.3).

For neural-guided training (Fig. 7.5, bottom), we use a prior-agnostic twostep pipeline. First, we train the third-party W GAN to render occlusions, exploiting semantic supervision in our experiments though it could realistically be replaced with self-supervision. Then, we train our disentangled guided-GAN without any supervision.

Tasks

Tab. 7.1 lists the tasks evaluated and ad-hoc datasets. When referring to a task, we denote as indices the entangled features in target domain. Thus, clear → rain drop literally means 'translation from clear to rain with entangled drops'. We later describe models used for disentanglement.

clear →rain drop . We exploit nuScenes [START_REF] Caesar | nuscenes: A multimodal dataset for autonomous driving[END_REF], which includes urban driving scenes, and use metadata to build clear/rain splits obtaining 114251/29463 training and 25798/5637 testing clear/rain images. Target rain images entangle highly unfocused drops on the windshield, which would hardly be annotated as seen in Fig. 7.6, first row.

gray →color dirt . Here, we rely on the fish-eye WoodScape [START_REF] Yogamani | Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving[END_REF] dataset which has some images with soiling on the lens. We separate the dataset in clean/dirty images using soiling metadata getting 5117/4873 training images and 500/500 for validation. Because clean/dirty splits do not encompass other domain shifts, we additionally transform clean images to gray. Subsequently, we frame this as a colorization task where target color domain entangles dirt. For disentanglement, we experiment using both a physical model-guided and a neural-guided strategy.

clear →snow cmp . With Synthia [START_REF] Ros | The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes[END_REF] we also investigate entanglement of very different alpha-blended composites, like "Confidential" watermarks or fences. We split Synthia using metadata into clear/snow images and further augment snow target with said composite at random position. As clear/fog splits, we use 3634/3739 images for training and 901/947 for validation. To guide disentanglement, we consider a composite model, inspiring from the concept of thin occluders [START_REF] Garg | Photorealistic rendering of rain streaks[END_REF].

synth →WCS fog . We learn here the mapping from synthetic Synthia [START_REF] Ros | The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes[END_REF] to the foggy version of Weather CityScapes [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF] -a foggy-augmented Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF]. The goal is to learn the synthetic to real mapping, while disentangling the complex fog effect in target. For training we use 3634/11900 and 901/2000 for validation as Synthia/WeatherCityscapes. We use a fog model to guide our network. Note that this task differentiates from others, since target has fog of heterogeneous intensities (max. visibility 750, 375, 150 and 75m) making disentanglement significantly harder.

Physical model guidance

To correctly fool the discriminator, it is crucial to choose a model that realistically resembles the entangled feature. We leverage 4 physical models, listed in Tab. 7.1 'Model' with their differentiable (w d ) and non-differentiable (w nd ) parameters.

Raindrop model. We extend the model of Alletto et al. [START_REF] Alletto | Adherent raindrop removal with self-supervised attention maps and spatiotemporal generative adversarial networks[END_REF], which is balanced between complexity and realism. Drops are approximated by simple trigonometric functions, while we encompass also noise addition for shape variability (sha, 2017). For drops photometry, we use fixed displacement maps (U, V ) for coordinate mapping on both x and y axes, technically encoded as 3-channels images [START_REF] Alletto | Adherent raindrop removal with self-supervised attention maps and spatiotemporal generative adversarial networks[END_REF]. To approximate light refraction, a drop at (u, v) has its pixel (u i , v i ) mapped to

( u + U(u i , v i ) • ρ, v + V(u i , v i ) • ρ ) , ( 7.7) 
where ρ is a drop-wise value representing water thickness. Most importantly, we also model imaging focus, since it may extremely impact the rendered raindrop appearance [START_REF] Halimeh | Raindrop detection on car windshields using geometric-photometric environment construction and intensitybased correlation[END_REF][START_REF] Cord | Towards rain detection through use of in-vehicle multipurpose cameras[END_REF][START_REF] Alletto | Adherent raindrop removal with self-supervised attention maps and spatiotemporal generative adversarial networks[END_REF]. Hence, we use a Gaussian point spread function [START_REF] Pentland | A new sense for depth of field[END_REF] to blur synthetic raindrops. We implement kernel variance σ as differentiable, while drops size (s), frequency (p), and shape (t) related parameters are non differentiable. We use a single shape parameter and generate 4 types of drops, with associated p and t.

Dirt model. Here, we naively extend our raindrop model removing displacement maps as soil has no refractive behaviors. Instead, we introduce a color guidance that forces synthetic dirt to be brighter in peripherals regions, also depending on a parameter α which regulates occlusion maximum opacity (hence, maximum α w value). We also estimate σ as aforementioned.

Composite occlusions model. We exploit the model of thin occluder proposed in [START_REF] Garg | Photorealistic rendering of rain streaks[END_REF] to render composite occlusions on images, i.e. randomly translated alpha-blended transparent images such as watermarks or fence-like grids. We assume to fully know transparency, thus no parameter is learned.

Fog model. We leverage the physics model of [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF] using an input depth map. Fog thickness is regulated by a differentiable extinction coefficient β which regulates maximum visibility.

Neural guidance

Finding appropriate neural networks to render visual traits is not trivial.

Here we experiment only with Dirt, as listed in Tab. 7.1 'Neural'.

Dirt neural. DirtyGAN [START_REF] Uricar | Let's get dirty: Gan based data augmentation for soiling and adverse weather classification in autonomous driving[END_REF]) is a GAN-based framework for opaque soiling occlusion generation. It is composed by two components, i.e. a VAE for occlusion map generation (trained using soiling semantic maps) and an i2i network conditioned on the generated map to include synthetic soiling on images. To train DirtyGAN, we first train a VAE to learn the shape of soiling, and then proceed to train a modified CycleGAN (Zhu et al., 2017a) to generate realistic soiling, conditioning the soiling shape on the VAE outputs. For more details on this we refer to [START_REF] Uricar | Let's get dirty: Gan based data augmentation for soiling and adverse weather classification in autonomous driving[END_REF].

User study

We also conducted a qualitative anonymous online study collecting answers from 56 users (22 males, 33 females, 1 non-binary) from 21 to 65 years old (mean 27.9, std. 7.6). Each user had to evaluate 85 randomized scenes with a Likert-5 scale, providing the image looks realistic and efficiently disentangled. For ease of reading we included the results in each ad-hoc subsections (Secs. 7.5.2.1,7.5.3).

Disentanglement

In this section, we evaluate our disentanglement strategy both using physical model-guidance or neural-guidance.

Physical model guided-disentanglement

On the 4 tasks and 4 ad-hoc models in Tab. 7.1 'Model', we evaluate the ability to disentangle visual traits with physical model guidance from Sec. 7.3, reporting qualitative, quantitative and human judgment.

Hereafter, we separate experiments on Raindrop, Dirt and Composite disentanglement from the Fog experiments, since only the former have homogeneous physical parameters (w) throughout the dataset2 . Since nondifferentiable parameters were fairly easy to manually tune, we thoroughly experiment in the differentiable-only {w d } setup and compare it later on to our full {w d , w nd } estimation (Sec. 7.5.3).

Qualitative disentanglement. We present outputs for clear → rain drop trained on nuScenes [START_REF] Caesar | nuscenes: A multimodal dataset for autonomous driving[END_REF], comparing to state-of-the-art methods at the time of submission [START_REF] Lee | Drit++: Diverse image-to-image translation via disentangled representations[END_REF][START_REF] Kim | U-gat-it: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[END_REF]Tang et al., 2019a;Zhu et al., 2017a;[START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]) (Fig. 7.6) and for gray → color dirt and clear → snow cmp with respect to the backbone (Figs. 7.7,7.8, respectively). In all cases, baselines entangle occlusions in different manners. For instance, in Fig. 7.6 it is noticeable the constant position of rendered raindrops between different frameworks, as in the 1st column on the leftmost tree, which is a visible effect of entanglement and limits image variability. Also, occlusion entanglement could cause very unrealistic outputs where the structural consistency of either the scene (Fig. 7.7) or the occlusion (Fig. 7.8) is completely lost.

Referring to Figs. 7.6,7.7,7.8, our method is always able to produce high quality images without occlusions ('Disentangled' rows) including typical target domain traits such as wet appearance without drops, colored image without dirt or snowy image without occlusions, respectively. Furthermore, we can inject occlusions with optimal estimated parameters ('Target-style' rows) to mimic target appearance which enables a fair comparison with baselines3 .

We also inject raindrops with arbitrary parameters to simulate unseen dashcam-style images in Fig. 7.6 (last 2 rows). The realistic results demonstrate both the quality of our disentanglement and the realism of the Raindrop model. Our model-guided network is able to disentangle the generation of peculiar rainy characteristics from the drops on the windshield ('Disentangled' rows) and re-injection with estimated parameters ('Target-style'). We evaluate both the differentiable-only parameter estimation (rows 8-9) and the genetic-based full estimation (rows 10-11). We also show injection of other arbitrary parameters w 1 , w 2 (last 2 rows). Quantitative disentanglement. We use GAN metrics to quantify the quality of the learned mappings. Results are reported in Tab. 7.2a, where Inception Score (IS) [START_REF] Salimans | Improved techniques for training gans[END_REF] evaluates quality and diversity against target, LPIPS distance (Zhang et al., 2018a) evaluates translation diversity (thus avoiding mode-collapse), and Conditional Inception Score (CIS) [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] single-image translations diversity for multimodal baselines. In practice, IS is computed over all the validation set while CIS is estimated on 100 different translations of 100 random images following [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]. The InceptionV3 network for Inception Scores was finetuned on the source/target classification as in [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]. LPIPS distance is calculated on 1900 random pairs of 100 translations as in [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]. For fairness, we only compare 'Target-style' outputs to baselines, since those are not supposed to disentangle physical traits, and can only output images resembling Target. Tab. 7.2a shows we outperform all baselines on IS/CIS, including MUNIT -our i2i backbone. This is due to disentanglement, since entanglement phenomena limit occlusions appearance and position variability. Even the scene translation quality is improved by disentanglement since the generator learns a simpler target domain mapping without any occlusions. As regards We extend the applicability of our method to composite occlusions, that we validate in the clear → snow cmp scenario. We add a fence-like occlusion (left) and a confidential watermark (right) to synthetic_snow, with random position.

As expected, we encounter entanglement phenomena for MUNIT, while our model-guided network is successful in learning the disentangled appearance ('Disentangled' row T W w d

Mod

). In our 'Target-style' row T W w d

Mod

( wd ), we inject the occlusions to mimic the target style.

LPIPS distance, we outperform the baseline on raindrops while we rank lower on the other tasks. While IS/CIS quantify both quality and diversity, LPIPS metric is evaluating variability only thus penalizing simpler occlusion generation. For instance, our rendered dirt in Fig. 7.7 is often black while MUNIT-generated artifacts are highly variable (compare rows MUNIT and ours T W w d Mod ( wd )). The same happens for watermarks in Fig. 7.8, where unrealistic artifacts are highly variable. For raindrops, instead, MUNIT tends to just blur images, while we benefit from the refractive capabilities of our physical model which increase LPIPS.

Semantic segmentation. To provide additional insights on the effectiveness of our framework and compensate for the well-known noisiness of GAN metrics (Zhang et al., 2018a), we quantify the usability of generated images for semantic segmentation in the clear → rain drop setup. Therefore, we process the popular Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] dataset for semantic segmentation with our best clear → rain drop model-guided training, obtaining a synthetic rainy version T W w d Mod ( wd ) that we use for finetuning PSPNet [START_REF] Zhao | Pyramid scene parsing network[END_REF], following Halder et al. [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF]. Please note that this also demonstrates the generation capabilities to new scenarios of our CycleGAN (Zhu et al., 2017a) 1.15 0.473 -AttentionGAN (Tang et al., 2019a) 1.41 0.464 -U-GAT-IT [START_REF] Kim | U-gat-it: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[END_REF] 1.04 0.489 -DRIT [START_REF] Lee | Drit++: Diverse image-to-image translation via disentangled representations[END_REF] 1.19 0.492 1.12 MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] 1 [START_REF] Kim | U-gat-it: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[END_REF] 1.05 0.406 -DRIT [START_REF] Lee | Drit++: Diverse image-to-image translation via disentangled representations[END_REF] 1.22 0.424 1.10 MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] 1.22 0.429

1.13 Ours T W w d Mod ( wd )
1.33 0.420 1.17

* AttentionGAN converges to the identity transformation.

(a) GAN metrics.

Method AP↑

Original (from [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF])) 18.7 Finetuned w/ Halder et al. (Halder et al., 2019) 25.6 Finetuned w/ Model-guided

T W w d Mod ( wd ) 27.7 
(b) Semantic segmentation on rain Table 7.2: Image quality evaluation. In (a), we quantify GAN metrics for all tasks. While quality-aware metrics are always successfully increased, LPIPS depends on the visual complexity of the model and presence of artifacts. In (b), we compare our pipeline for finetuning semantic segmentation network outperforming the state-of-the-art for rain generation.

GAN, since we use the pretrained network on nuScenes given the absence of rainy scenes in Cityscapes. We report the mAP for the 25 rainy images with semantic labels provided by [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF] in Tab. 7.2b. We experience a significant increase (+9%) with respect to baseline PSPNet trained on original clear images (Original), and also outperform (+2.1%) the finetuning with rain physics-based rendering [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF]. Both networks finetune Original weights. The overall low numbers reported are impacted by the significant domain shift between Cityscapes and nuScenes.

Disentanglement on heterogeneous datasets. We now evaluate the effectiveness of the synth → WCS fog experiment which translates from synthetic Synthia to the real-augmented Weather CityScapes [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF] entangling fog of various intensities (from light to thick fog). Notice this task significantly differs from others for two reasons. varies in the target dataset. Second, the fog model is depending on the scene geometry [START_REF] Narasimhan | Vision and the atmosphere[END_REF]. This makes the disentanglement task non-trivial. In our adversarial disentanglement, we however still regress a single β = 28.61 somehow averaging the ground truth values (β ∈ [4, 40]).

In Fig. 7.9 results show we are able to generate images stylistically similar to target ones, but with geometrical consistency and varying β (last 3 rows). Instead, MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] fails to preserve realism due to entanglement artifacts, visible in particular on elements at far (as buildings in the background). Please note that we intentionally do not show disentangled output for fairness, since the physical model always blocks the gradient propagation in the sky. More details on this will be discussed in Sec. 7.6. User study. To further evaluate our disentanglement quality, we asked 56 users to rate images (details in Sec. 7.5.1.5). First, we presented our disentangled outputs and real images with occlusions on the clear →rain drop and gray →color dirt tasks, where users were asked to rate for each image if "The camera lens is clean (no dirt, no raindrops)". Results in Fig. 7.10a show our strategy is better since the lens in our images is judge cleaner than target images. However, this does not assess if the underlying transformation (i.e. wetness or color) was properly learned.

Hence, secondly we compare translation realism with the MUNIT baseline, rating the statement "The scene looks wet" for clear →rain drop and "The scene looks colorful" for gray →color dirt . We also include real source images (i.e. gray) in gray →color dirt to evaluate performances in the naive identity transformation, and target images in both to set upper bounds. Results in Figs. 7.10b , 7.10c clearly show the superiority of our approach with respect to the MUNIT, heavily reducing the gap with real target images.

In brief, the study demonstrates that disentanglement is fairly perceived With both pipelines, we still outperform MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF], used as backbone.

by users (Fig. 7.10a) while preserving the learned underlying transformation (Figs. 7.10b , 7.10c).

Neural-guided disentanglement

Referring to Tab. 7.1 'Neural', we now evaluate our ability to disentangle visual traits with our neural guidance from Sec. 7.4, for Dirt disentanglement in the gray → color dirt task and compare it to our model-guided strategy.

We leverage here the WoodScape [START_REF] Yogamani | Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving[END_REF] datasets having soiling semantic annotation as polygons. Following our training strategy (Fig. 7.5, bottom), our neural guidance DirtyGAN (Uricar et al., 2021) (cf. Sec. 7.5.1.4) is trained beforehand and frozen during the disentanglement. (c) FID Figure 7.12: Realism of the injected occlusion. Our defocus blur σ estimation grants an increased realism in raindrop rendering on the Robot-Car [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF] dataset (a), compared with Porav et al. [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF]. This is confirmed by quantitative metrics (b). We report our model-guided translations using either differentiable parameter estimation only (T W w d Mod ( wd )) or the full model parameter estimation (T W Mod ( w)), outperforming Porav et al. [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF] in both. In (c), we evaluate the FID for different σ values in [0, 10], showing that our regressed σ value (σ = 3.81) actually leads to a local minimum.

The use of annotations boosts the overall quality and diversity, which is proved in Tab. 7.11a where our neural-guided outperforms both MUNIT baseline and our own model-guided version. Furthermore, since the ground truth for colorization is available, we evaluate in Tab. 7.11b the effectiveness of disentanglement with SSIM and PSNR metrics (higher is better). Here both disentanglement outperform MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] significantly, but model-guided is better. Arguably, we attribute this to the worse gradient propagation due to more occluded pixels with respect to our physical model4 . Finally, last 2 rows of Fig. 7.11c show our neural-guided strategy produces high quality colored images without occlusions ('Disentangled' row, T W GAN ) while injection of occlusions with optimal estimated parameters θ ('Target-style' row, T W GAN ( θ)) also mimics target appearance. In fact while both neural-guided disentanglement and physical model-guided disentangle- The reliability of our parameter estimation is assessed on synthetic datasets augmented with arbitrary physical models acting as ground truth values. Comparing against our regressed value, our strategy performs better when low modifications on the estimated values corresponds to big visual changes (average error is 0.99% for raindrops (a), 3.55% for dirt (b)). For fog (c), we get an higher error of 23.51% due to the low visual impact of high β values. ment perform well, only our model-guided strategies controllability of the occlusion at inference. This is because of the explicit physical parameters in the models, that allows reinjecting unseen models at inference.

Parameters estimation

We now evaluate the effectiveness of our parameter estimation for physical model-guided disentanglement, considering only differentiable parameters first and later extending to our full system. The neural-guided disentanglement strategy precludes this analysis due to the lack of explicit parameters.

Differentiable model (w = {w d })

To evaluate realism, we leverage the RobotCar [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF] dataset having pairs of clear/raindrop images. Since there is no domain shift between image pairs, we set G(x) = x and regress the defocus blur (σ) again following Sec. 7.3.3. The regressed σ = 3.87 is used to render raindrops on clear images. Using FID and LPIPS distances we measure perceived distance between real raindrop images and our model-guided raindrops translations (T W w d Mod ( wd )) or the one of Porav et al. [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF]. Fig. 7.12b shows we greatly boost similarity5 (-72.02 FID) with real raindrop images. This is qualitatively verified in Fig. 7.12a, where our rendered raindrops are more similar to Target. To provide insights about the quality of our minima, we also evaluate FID for arbitrary σ values (σ ∈ {0.0, 2. 5, 5.0, 7.5, 10}).

Model-guided

Source

MUNIT

T W w d Mod T W Mod Figure 7
.14: Full model on clear → rain drop . With complete parameter estimation (T W Mod , rightmost), we achieve a slightly worse disentanglement than with manually-tuned non-differentiable parameters (T w d W Mod ), visible in red areas of T W Mod . However, in both of our translations we generate typical rain traits as reflections with reasonable disentanglement, while baseline MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] has very evident raindrops entangled highlighted in red. Fig. 7.12c proves that our estimated sigma best minimized perceptual distances despite the weak discriminator signal. To measure the accuracy of our differentiable parameter estimation we need paired images with and without physical traits with completely known physical parameters. To the best of our knowledge such dataset does not exists. Instead, we augment RobotCar [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF], WoodScape [START_REF] Yogamani | Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving[END_REF] and Synthia [START_REF] Ros | The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes[END_REF] with synthetic raindrops, dirt, and fog, respectively, with gradually increasing values of defocus blur (σ) for raindrop, transparency (α) for dirt6 and optical thickness (β) for fog. Using each augmented dataset, we then regress said parameters following Sec. 7.3.3. Plots in Fig. 7.13 show estimation versus ground-truth. In average, the estimation error is 0.99% for raindrop, 3.55% for dirt, and 23.51% for fog. The very low σ error for raindrop is to be imputed to the defocus blur that drastically changes scene appearance, while higher error for β must be imputed to the logarithmic dependency of the fog model. Nevertheless, translations preserve realism (cf. Fig. 7.9).

Full model (w = {w d , w nd })

To evaluate the quality of our full raindrop model, we incorporate this time the non-differentiable parameters (i.e. s, p, t) which are estimated with our genetic strategy in Sec. 7.3.4 for 4 types of drops, with a genetic population size of 10. As shown in Fig. 7.12b, LPIPS metric privileges our full model-guided estimation (T W Mod ( w)) while FID suffers compared to using differentiable parameters only. However, we very significantly out-Figure 7.15: Parameter estimation user study. We presented users with {Reference, Model} image pairs where Reference includes real drops and Model has fake drops rendered with our method with differentiable only (Ours) or full (Ours -full) parameters estimation, or with [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF]. Users were asked whether they agree on the statement "The drops of the Model resemble the drops of Reference". Thanks to our estimation strategy, we dramatically improve similarity to real raindrops. perform [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF] also qualitatively (Fig. 7.12a). The mitigated results are explained by the much more complex optimization problem having many more parameters, and by the limited computation time for genetic iterations. However, this let us foresee applications in high-dimensionality problems where manual approximation is not always possible or with a less accurate model (see ablations Sec. 7.5.4.2). Results on the clear → rain drop task in Fig. 7.14 are coherent with above insights as the full model estimation, although effective, exhibits slightly lower quality disentanglement.

User study

We presented to users (see Sec. 7.5.1.5) couples of images with independent scenes in which the left one presented images with real drops taken from RobotCar [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF], while the right one included fake drops rendered with our model with differentiable only / all parameters estimated, or with Porav et al. [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF]. Users were asked to compare raindrops appearance between the two images regardless of the represented scenes. From results shown in Fig. 7.15, it is evident that our method largely outperform the baseline in both configurations, indicating a higher quality of our raindrops also for the human preference metric.

Ablation studies

We now ablate our proposal. We focus on the model-guided setting by tuning genetic processing, altering model complexity, changing models, or removing disentanglement guidance. 

Non-differentiable genetic estimation

We study the effectiveness of our genetic estimation ablating the population size of our raindrop model on RobotCar [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF] 

Model complexity

We study the influence of the model for the clear → rain drop on nuScenes [START_REF] Caesar | nuscenes: A multimodal dataset for autonomous driving[END_REF] task. Specifically, we evaluate three raindrop models of decreasing complexity: 1) Our model from Sec. 7.5.1.3 (named Ours).

2)

The same model but without shape and thickness variability (Refract), and 3) A naive non-parametric colored Gaussian-shape model (Gaussian). Note that Gaussian is deprived of any refractive property as it uses fixed color, and does not regress any physical parameters. In Fig. 7.16a, we report GAN metrics for all models following Sec. 7.5.2.1. Even if increasing model complexity is beneficial for disentanglement, very simple models still lead to a performance boost. We advocate the best performances of Ours to a more effective adversarial training, as consequence of increased realism.

Model choice

To also evaluate whether injected features only behave as adversarial noise regardless of the chosen model, we trained on RobotCar [START_REF] Porav | I can see clearly now: Image restoration via de-raining[END_REF] (as in Sec. 7.5.3) though purposely using an incorrect model as watermark, dirt, fence. Evaluating the FID against real raindrop images, we measure 135.32 (raindrop) / 329.17 (watermark) / 334.76 (dirt) / 948.71 (fence), proving necessity of using the ad-hoc model.

Disentanglement Guidance (DG)

We use the nuScenes clear → rain drop task to visualize the effects of different DG strategies (Sec. 7.3.5). For varying values of the DG threshold γ in Fig. 7.16b we see results ranging from no guidance (γ = 0) to strict guidance (γ = 1). With lax guidance (γ = 0), we fall back in the baseline scenario with visible entanglement effects, while with γ = 1 we do achieve disentanglement, at the cost of losing important visual features as reflections on the road. Only appropriate guidance (γ = 0.75) achieves disentanglement and preserves realism.

Discussion

To our best knowledge, we have designed the first unsupervised strategy to disentangle physics-based features in i2i. Good qualitative and quantitative performances showcase promising interest for several applications, still there are peculiar points and limitations which we now discuss.

Independence assumption. For unsupervised disentanglement, we assume the physical model to be completely independent from the scene, in order to use our intuition about marginal separation (see Sec. 7.3.1 and Eq. 7.2). However, since physical models may need the underlying scene to correctly render desired traits, one may argue their appearance is not completely disentangled. While this is true from a visual point of view, it is not from a physical one. Let's interpret disentanglement properties to be dependent on scene elements. In presence of disentanglement, the same physical model could be applied to different objects regardless of what they are. For instance, we could use the same raindrop refraction map on either roads or buildings with identical parameters. In this sense, G(x) dependency in physical models is not impacting our visual independence assumption.

On partial entanglement issues. We observe in some cases that gradient propagation can be affected by fixed entanglement of occlusion features. This is the case for example for sky regions in fog (Sec. 7.5.2.1) because physics formalizes that regardless of its intensity fog is always en-tangled at far [START_REF] Narasimhan | Vision and the atmosphere[END_REF]. In such scenarios, disentanglement will perform poorly because the generator will not get any discriminative feedback. In many other cases however, Disentanglement Guidance (DG, Sec. 7.3.5) mitigates the phenomenon as it blocks injection of the physical model in relevant image regions. We conjecture that the effectiveness could be extended by varying DG at training time to ensure a balanced gradient propagation.

On genetic estimation effectiveness. The sub-optimal performances of our genetic estimation of w nd are imputed to the much more complex search space, in which we vary all parameters of our physical model simultaneously.

Although we did set fairly large search limits for w nd , one could envisage a mixed training in which the search space is limited to reasonable hand-tuned limits. In this sense, genetic estimation of w nd could be seen as a minimum mining technique, ensuring increased performances on the hand-tuned values.

On model realism. The method proposed relies on realistic models, i.e. able to render physical traits which are desirable to include in output images. Their availability is constrained by the nature of the physical phenomenon to disentangle. It is not always easy to model the physics of a phenomenon: there could be scenarios, as night, which are difficult to describe physically, since their appearance is impacted by multiple factors (e.g. reflectivity, light sources, etc.). We argue that in those cases it is not ideal to include physical models in images, but it is preferable to leverage physics at the feature level only. This idea is further developed in the CoMoGAN methodology presented in Chapter 8, which exploits naive models to guide a continuous transformation. 

Résumé

Problem statement

Despite impressive leaps forward with unpaired (Zhu et al., 2017a;[START_REF] Liu | Unsupervised image-to-image translation networks[END_REF], multi-target [START_REF] Choi | Stargan v2: Diverse image synthesis for multiple domains[END_REF]Wu et al., 2019a), or continuous [START_REF] Wang | Deep network interpolation for continuous imagery effect transition[END_REF][START_REF] Gong | Dlow: Domain flow for adaptation and generalization[END_REF] i2i, there are still important limitations. Specifically, to learn complex continuous translations existing works require supervision on intermediate domain points. Also, they assume piece-wise or entire linearity of the domain manifold. Such constraints can hardly meet cyclic translations (e.g. daytime) or continuous ones costly or impractical to label (e.g. fog, rain). Instead, we introduce CoMoGAN, the first i2i framework learning nonlinear continuous translations with unsupervised target data. It is trained using simple physics-inspired models for guidance, while relaxing model dependency via continuous disentanglement of domain features. An interesting resulting property is that CoMoGAN discovers the target data manifold ordering, unsupervised. Of importance, we guide the GAN with a naive physical model, but the output of our network is fully neural. This is different from what was presented in Chapter 7, where the physical model was part of the output rendering, making realism dependent on the model complexity. This relax some constraints of realism for physical models used in CoMoGAN, that must just describe naively the physics of the transformation they aim to model, without necessarily being visually pleasing. For evaluation we propose new translation tasks, shown in Fig. 8.1, being either cyclic/linear, attached/detached from source. Our contributions are:

• a novel model-guided setting for continuous i2i,

• CoMoGAN: an unsupervised framework for disentanglement of continuously evolving features in generated images, using simple model guidance, • a novel Functional Instance Normalization (FIN) layer, • the evaluation of CoMoGAN against recent baselines and new tasks, outperforming the literature on all.

Related works

The state-of-the-art for physics-based image translation and disentangled representations, also relevant for CoMoGAN, has been presented in Chapter 7. Moreover, since we introduce the task of continuous i2i, we include relevant works.

Continuous image translation.

A common practice for continuous i2i is to use intermediate domains by weighting discriminator [START_REF] Gong | Dlow: Domain flow for adaptation and generalization[END_REF][START_REF] Gong | Analogical image translation for fog generation[END_REF], using losses for middle states (Wu et al., 2019a), or mixing disentangled styles representations [START_REF] Choi | Stargan v2: Diverse image synthesis for multiple domains[END_REF][START_REF] Romero | Smit: Stochastic multi-label image-to-image translation[END_REF]. Attribute vectors interpolation [START_REF] Xiao | Dna-gan: Learning disentangled representations from multi-attribute images[END_REF][START_REF] Zhang | Multiattribute transfer via disentangled representation[END_REF][START_REF] Mao | Continuous and diverse image-to-image translation via signed attribute vectors[END_REF] enables continuous control of several features. Others continuously navigate latent spaces with discovered paths [START_REF] Chen | Homomorphic latent space interpolation for unpaired image-to-image translation[END_REF][START_REF] Goetschalckx | Ganalyze: Toward visual definitions of cognitive image properties[END_REF][START_REF] Jahanian | On the "steerability" of generative adversarial networks[END_REF]. Finally, feature [START_REF] Upchurch | Deep feature interpolation for image content changes[END_REF] or kernel [START_REF] Wang | Deep network interpolation for continuous imagery effect transition[END_REF] interpolation were proposed. Still, they assume linear interpolation -not always valid (e.g. day to night include dusk). GANimation [START_REF] Pumarola | Ganimation: One-shot anatomically consistent facial animation[END_REF] instead, use non-linear interpolations but require intermediate domain labels.

The CoMoGAN methodology

Instead of a point-to-point mapping (X → Y ), CoMoGAN learns a continuous domain translation controlled by ϕ, that is X → Y (ϕ). Training uses source data (at fixed ϕ 0 ) and unsupervised target data (unknown ϕ). It reshapes the data manifold guided by naive physics-inspired models (e.g. tone-mapping, blurring, etc.). Rather than mimicry, we relax the model and let the networks discover private image features via our disentanglement of output, ϕ, and style.

where µ and σ are input feature statistics, and γ and β learned parameters of an affine transformation. As an extension, we propose Functional Instance Normalization (FIN)

FIN(x, ϕ) = x -µ σ f γ (ϕ) + f β (ϕ), (8.2) 
where instead of learning a unique value of affine transformation parameters, we learn the distribution of transformations f γ and f β . The intuition is to shape the ϕ-manifold based on how the transformation evolves. Compared to others [START_REF] Gong | Dlow: Domain flow for adaptation and generalization[END_REF], this allows us to interpret better the learned manifold. Depending on the nature of Y (ϕ), we can encode FIN layer accordingly. In this work, we investigate linear and cyclic encoding. Linear encoding is commonly encountered, and assumes reorganizing features linearly. For instance, considering adverse weather phenomena, severe conditions (e.g. thick fog) are always positioned after light ones (i.e. lite fog).

We model linear FIN parameters as

f γ (ϕ) = a γ ϕ + b γ , f β ϕ = a β ϕ + b β , ( 8.3) 
with {a γ , a β , b γ , b β } the learnable parameters of the layer. Conversely, some translations path loop back to source, as it happens with daylight, which is cyclic by nature going from Day to Dusk, Night, Dawn and Day again. In this case, we encode cyclic FIN layer with parameters

f γ (ϕ) = a γ cos(ϕ) + b γ , f β (ϕ) = a β sin(ϕ) + b β .
(8.4)

Disentanglement Residual Block (DRB)

The pitfall of strict model-dependency is that the GAN will only learn to mimic the model. 

(ϕ) = {Y ϕ , Y E } , Y M (ϕ) = {Y ϕ , Y E M } . (8.5)
We enable private features in either domain with our Disentanglement Residual Block (DRB, shown in Fig. 8.2) whose goal is to extract disentangled representations for a given ϕ. The DRB is composed of residual blocks mapping the encoder feature map h X to the disentangled representations of output images. Let

y ϕ ∈ Y (ϕ), y ϕ M ∈ Y M (ϕ), we have DRB(h X , ϕ) = {h Y , h Y M }, y ϕ = G D (h Y ) , y ϕ M = G D (h Y M ). (8.6)
The DRB works as follows. Following Fig. 8.2, the input representation h X is processed by residual blocks, each one extracting features associated with the atomic ones previously introduced, such as Y ϕ , Y E , Y E M ←→ h ϕ , h E , h E M , one per residual. In particular, the residual block for h ϕ extraction uses our FIN layers for normalization to encode continuous features. The hidden latent representations h Y and h Y M are obtained from summation of the disentangled features and h X to ease gradient propagation as in [START_REF] He | Deep residual learning for image recognition[END_REF]. In formulas, 

h Y = h ϕ + h E + h X , h Y M = h ϕ + h E M + h X . ( 8 
L G adv = ||D(y ϕ ) -1|| 2 , L M = ||y ϕ M -ỹϕ M || 1 . ( 8.8) 
Minimization of L G adv and L M during the generator update step enables disentanglement of h E and h E M .

Pairwise regression network (ϕ-Net)

The DRB enforces both disentanglement and manifold shape at a feature level, but it requires ad-hoc training strategies to actually disentangle also continuous features for real images and not fall into easy pitfalls, e.g. the network only exploiting h E for target translation ignoring h ϕ . Hence, we introduce a training strategy based on similarities which forces the network to both exploit extracted continuous information and follow the model guidance. Suppose an input image x, mapped to x → y ϕ by the network. As shown in Fig. 8.2, we randomly sample ϕ and ϕ ′ and apply M (.) to x, obtaining the couple {ỹ ϕ M , ỹϕ ′ M }. We use a CNN (ϕ-Net) for domain similarity discovery. It takes as input a pair of images and regresses their ϕ differences, such as ϕ-Net(y ϕ , y ϕ ′ ) = ϕϕ ′ = ∆ϕ . (8.9)

We jointly optimize ϕ-Net and generator (G) parameters in an end-to-end setting by enforcing consistency between real and modeled target domain images. In formulas, L G ϕ forces G to organize the manifold following the feedback of the physical model, ultimately resulting in generated y ϕ and ỹϕ M to be mapped to the same ϕ on the manifold discovered by ϕ-Net. That way, the network can identify that images follow some similarity criteria despite differences between model output and learned translation, leading to an organization of the latent space guided by the physical model. L gt instead exploits modeled data only and thus is used to avoid training collapse. For linear FIN, we train on ϕ and ∆ϕ, though for cyclic one stability is increased by evaluating each loss on sin/cos projection of ϕ.

L G ϕ = ||ϕ-Net(y ϕ , ỹϕ M )|| 2 + ||ϕ-Net(y ϕ , ỹϕ ′ M ) -∆ϕ|| 2 , L gt = ||ϕ-Net(ỹ ϕ M , ỹϕ ′ M ) -∆ϕ|| 2 , L ϕ = L G ϕ + L gt . ( 8 

Training strategy

CoMoGAN is end-to-end trainable and can be used with any i2i framework by simply adding the DRB between encoder and decoder, with our losses. The final objective for the generator depends if source and target are detached, i.e. X ̸ ⊂ Y (see Fig. 8.1 for visualization). If detached, the generator update step writes .11) For attached source/target, we enforce source (ϕ 0 ) identity: .12) Using real data (ỹ) from target the discriminator minimizes

L G = L G adv + L M + L ϕ . ( 8 
L G = L G adv + L M + L ϕ + ||G(x, ϕ 0 ) -x|| 1 . ( 8 
L D = L D adv = ||D(y ϕ )|| 2 + ||D(ỹ) -1|| 2 .

Cycle consistency.

In addition to X → Y , many networks perform Y → X to preserve context with cycle consistency. To handle the latter, we insert a shared DRB between {Day} and target {Dusk/Dawn, Night}, respectively obtaining train/val sets of 105307/28165 and 27272/7682 images. We train CoMo-MUNIT for multimodality. To respect the cyclic nature of time we exploit cyclic FIN (Eq. 8.4) encoding ϕ ∈ [0, 2π], which maps to a sun elevation ∈ [+30°, -40°]. For evaluation only, we obtain ground truth elevation from astronomical models (pys, 2007) with image GPS position and timestamp. For guidance, we render intermediate conditions by interpolating the tone-mapped model from [START_REF] Thompson | A spatial postprocessing algorithm for images of night scenes[END_REF], written Ω(.). Since the latter was originally designed only for night time rendering, we replace the target color in Ω(.) by the average of the Hosek sky radiance model [START_REF] Hosek | An analytic model for full spectral skydome radiance[END_REF], denoted HSK(ϕ). For implementation reason, we accordingly map ϕ to [0, 2π] so that max and min sun elevation angles corresponding to 30°and -40°, respectively. The complete model writes The effect of corr(.) is visible in Fig. 8.4 at ϕ = 5/8π and ϕ = 11/8π, which both maps to elevation of -13.75°for dusk (right image) and dawn (left image). We found that it slightly pushes the network towards better discovery of the red-ish and purple-ish appearance of dusk and dawn, respectively.

M (x, ϕ) = (1 -α)x + αΩ(x, HSK(ϕ) + corr(ϕ)) + corr(ϕ) , ( 8 

iPhone → DSLR

We inspire from CycleGAN (Zhu et al., 2017a) by adapting their initial task to a continuous setup, learning the mapping of iPhone images with large depth of field to DSLR images with shallow depth of field. We also use the iphone2dslr flowers dataset (Zhu et al., 2017a), split in source 1182/569 and target 3325/480. We train this task with CoMo-CycleGAN for comparison, and use linear FIN (Eq. 8.3) where ϕ ∈ [0, 1] encodes the progression.

As model for guidance, we simply use gaussian blurring, with kernel radius in pixels accordingly mapped to ϕ values, as Note that it discovered dawn/dusk and the stationary appearance of night, proving manifold quality.

M (x, k) = G(k) * x , ( 8 

Synthetic clear → Real clear, foggy

Here, we propose a detached source and target task, where we learn clear to foggy except that source is synthetic and target is real data. For source, we leverage spring sequences of synthetic Synthia dataset [START_REF] Ros | The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes[END_REF], split in 3497/959 images. As target we mix original Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] and 4 augmented foggy Weather Cityscapes [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF] with max visibility distances {750m, 350m, 150m, 75m}. In target, each of the 5 Cityscapes version has 2975/500 images. We train here a CoMo-MUNIT with linear FIN layer (Eq. 8.3) and encode maximum visibility as ϕ ∈ [0, 1], i.e. visibility ∈ [∞, 70m]. For guidance, we simply exploit the fog model of [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF]. Sample outputs are shown in Fig. 8.4. 

Manifold organization

We evaluate the quality of the unsupervised manifold discovery using CoMo-MUNIT on the Day → Timelapse. Fig. 8.5 shows a source day image (center) and our timelapse translations for uniformly sampled ϕ (middle circle).

Apart from the appealing translations appearance, notice the network discovered important features like frontal sun (when the sun is close to the horizon), sunset/sunrise, material reflectance (at night), and the stable nighttime appearance. All these features are not in model M (.) though present in target images (outer circle). This advocates the network disentangled model features and translation features. Note also that the top translation in Fig. 8.5 accurately resembles source, assessing that target is attached to source. Quantitatively, we measure the manifold precision by regressing ϕ with our ϕ-Net A CNN (cf. Sec. 8.3.4) on real Waymo validation set, and compute the error w.r.t. ground truth elevations. We get a mean error of 19.8°(std 8.56°) when unsupervised and 4.05°(std 4.20°) if supervised. Even unsupervised, our manifold discovery is acceptable, and opens ways for unsupervised translations where ϕ ground truth would be impractical (e.g. rain or snow).

Disentangled dimensions

Being MUNIT multi-modal, it is important to assess CoMo-MUNIT properly disentangles ϕ from the style dimension of MUNIT. We do this by sampling ϕ and style. From Fig. 8.6, the latter evolve correctly on different axes, which was expected since ϕ is regulated by model-guided features. Again, using ϕ-Net A , we regress ϕ values for 100 fixed ϕ translations each with 100 different styles, obtaining 1.06°ϕ-variance along the style dimension. This proves the orthogonality of ϕ and style manifolds. clear source Synthia or physics-based foggy model [START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF] as for guidance. For MUNIT and CoMo-MUNIT, we employ a multi-modal stylesampling strategy 3 with 5 fixed styles. Additionally, for CoMo-MUNIT and model translations that allow it, we sample uniform ϕ. We follow [START_REF] Zhao | Pyramid scene parsing network[END_REF] settings and train 150 epochs, using 3498 train images for each setup.

Tab. 8.7a reports the standard mIoU on shared Synthia-Cityscapes classes on real images from the validation set of Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] (CS, 500 images) and Foggy Driving [START_REF] Sakaridis | Semantic foggy scene understanding with synthetic data[END_REF] (FD, 101 images). While the transformation is subtle, it still reduces the domain shift, since even if Model significantly outperforms source but we beat all by additional margin of +4.7/+1.6/+3.2. Noticeably, we improve both on clear (CS) and foggy (FD) datasets showing CoMo-MUNIT preserved accurate clear and foggy translations. We speculate instead that MUNIT focuses on target dataset fog intensities which are discrete and may differ from FD, while our FIN layer enables continuous representation leading to better generalization. Qualitative evaluation on both datasets in Fig. 8.7b respects mIoU performances.

Benchmark evaluation

We evaluate the challenging Day → Timelapse with the literature. This is not trivial since our proposal is to the best of our knowledge the first continuous cyclic GAN. While some previous works could be adapted to cyclic translation (e.g. DLOW [START_REF] Gong | Dlow: Domain flow for adaptation and generalization[END_REF]) they all require intermediate labeled target points. Hence, to achieve a fair comparison compensating data scarcity in Waymo Open, we formulate timelapse as linear {Day, Dusk/Dawn, Night} for all baselines and randomly sample between Dusk or Dawn branch with our cyclic network. Please bear in mind that all baselines are more supervised than ours since they use intermediate Dusk/Dawn point while CoMoGAN discovers the manifold from unsupervised target data. We now detail the baselines. StarGAN V2 [START_REF] Choi | Stargan v2: Diverse image synthesis for multiple domains[END_REF] is a state-of-the-art multi-target i2i architecture learning multiple mapping from the same source point. We train it with official implementation on Day → Dawn/Dusk → Night path and use its style code disentanglement capability to enable continuous i2i. DLOW [START_REF] Gong | Dlow: Domain flow for adaptation and generalization[END_REF] is continuous by design. We train it with 2 unimodal DLOW Day → Dawn/Dusk and Dawn/Dusk → Night. Note that it can be multi-target, but we already compare with the more recent Star-GAN V2. DNI [START_REF] Wang | Deep network interpolation for continuous imagery effect transition[END_REF] applies Deep Network Interpolation to interpolate among kernels of finetuned networks for continuous i2i. We adapt 2 baselines DNI-CycleGAN and DNI-MUNIT both trained on Day → Dawn/Dusk → Night.

From Fig. 8.8, baselines (rows 1-4) either exhibit limited variability in interpolated points (StarGAN V2 / DNI) or unrealistic results (e.g. DLOW at night). A key limitation is that they rely on (piece-wise) linear interpolation preventing them from discovering the stationary aspect of night (last 3 columns). Conversely, CoMo-MUNIT (bottom row) translations are both realistic and stationary at night.

We also study the realism of all translations using the Frechet Inception Distance (Heusel et al., 2017b) (FID) to measure features distances between generated images and real ones. For that, we uniformly split the elevations range [+30°, -40°] in 70 overlapping bins of 7°width, and compute each bin FID by comparing 100 translations and ad-hoc real images. We call this "rolling FID", plotted in Fig. 8.11a. From the latter, our method outperforms others especially in complex intermediate conditions. Note the baselines performance at precise "dawn/dusk" center (where they are supervised) and how their FID degrade as they depart toward night (approx. -18°). Even if unsupervised, our lower FID shows CoMo-MUNIT better learns these complex visual transitions. An alternative accuracy evaluation is proposed with a proxy task, which is an InceptionV3 network trained shows our method is more effective in the complex dawn/dusk ("D/D") and night points, translating as lower mean FID (in legend). In b, we rank best on both mean and std error between the input ϕ and the regressed ϕ with an InceptionV3 network (trained on real data).

to regress sun elevation from real images and ϕ ground truths. For each method, we generate 100 images at 100 ϕ locations, and measure the error between the input ϕ and the inference with the InceptionV3. Tab. 8.11b shows we outperform others with a 3.96°margin due to our better mapping. We ablate the use of L M and L ϕ by removing either. To evaluate the diversity of Day → Timelapse translations, we sample 10 couples of random {ϕ 1 , ϕ 2 } for 100 images and evaluate the LPIPS distance among translations pairs. We obtain LPIPS 0.020 w/o L M , 0.044 w/o L ϕ , while using both proves best with 0.236.

Disentangled reconstruction.

While we disentangle real domain Y (ϕ) and model domain Y M (ϕ) (Fig. 8.2), steerable GANs [START_REF] Jahanian | On the "steerability" of generative adversarial networks[END_REF] instead leverage guidance directly on Y (ϕ). To study either benefit, we replace L ϕ and L M with L edit = λ||y ϕỹϕ M || 1 as in [START_REF] Jahanian | On the "steerability" of generative adversarial networks[END_REF]. Fig. 8.12 shows discrete FIDs, for ours and [START_REF] Jahanian | On the "steerability" of generative adversarial networks[END_REF] with λ = 1, 5, evaluated against real data (blue) or model translations (orange). The plots hold complex but interesting insights. Specifically, low FIDs at Dawn/Dusk infer the model is reliable there, while divergent FIDs at night mean the opposite. With λ = 1 the i2i lacks guidance and performs poorly, but higher λ increases We study the benefit of FIN encoding by swapping linear and cyclic. Comparing with Tab. 

Discussion

While we proved CoMoGAN is beneficial to a variety of continuous translations problems, we now discuss possible extensions and limitations, while positioning our work in the current state-of-the-art.

ϕ-agnostic inference.

In all experiments, translation assumes source at ϕ 0 , though agnostic inference is of interest. To test this, we trained our method with cycle consistency and shared parameters for X → Y and Y → X encoder/decoders (refer to Sec. 8.3.4.1). At inference, we used ϕ-Net A to estimate ϕ est on input which enabled absolute translation regardless of input (e.g. anytime →day) but also relative translation (e.g. +5°). Sample results in Fig. 8.13a show exciting results with challenging night input.

Source/Target domains confusion. A limitation of most GANs is the need of source/target splits while truly unsupervised GAN could discover a continuous manifold from mixed source/target data (i.e. X ∪ Y or domains confusion). Interestingly, model-guided GANs allow this if the model does not enforce ϕ input. While there are no physical model for bilateral night ↔ day or foggy ↔ clear, we prove the feasibility on MNIST-M [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF] toy tasks, learning brightness or redness. Fig. 8.13b shows we correctly achieve translation, paving ways for truly unsupervised GAN.

Models and data limitations. Model-guided GAN are unsuitable for some complex scenarios (e.g. face-to-face) due to the lack of models, but can guide features as skin tone, etc. as in our experiment Fig. 8.13c on Cat → Dog using fur color guidance. Like [START_REF] Jahanian | On the "steerability" of generative adversarial networks[END_REF], we too experienced that data scarcity affects greatly the manifold discovery and training timelapse without dusk and dawn proves to fail drastically.

On continuous domains.

Recently, the community has shown keen interest in representing continuously physics-based conditions. A synthetic dataset with continuous annotation has been published [START_REF] Sun | Shift: A synthetic driving dataset for continuous multi-task domain adaptation[END_REF], while recent efforts were also dedicated to be robust to continuously shifting conditions [START_REF] Panagiotakopoulos | Online domain adaptation for semantic segmentation in everchanging conditions[END_REF]. This advocates for the interest of the problem we tackled, and for the effectiveness of our formalization.

Chapter 9

Conclusions

In this thesis, we proposed novel applications, algorithms, and tasks in the context of image translation. First, we designed domain-informed pipelines with the help of human knowledge in Part I. Second, in Part II, we used physics priors in order to attain physics-informed pipelines which boosted realism and capabilities of generated images. During the thesis, we opened several original research directions. In Chapter 3, we first proposed to decompose domains for interpreting better the domain shift. In Chapter 4, we exploited local differences in images to hallucinate new domains, while in Chapter 5, we introduced multiple novel mechanisms, where the manifold deformation and GERM could be easily reused for other tasks. In Chapter 7 and Chapter 8, we first called for the combination of physical models and image translation networks, that could be leveraged in physics-dependent applications such as medical or astronomical imaging.

Additional considerations must be done for evaluating the efficacy of generated images in mitigating the domain shift in downstream tasks. Even with highly realistic outputs, it is indeed not clearly defined how the image quality transfers to the robustness of trained task networks on inferences on target domain images [START_REF] Cui | Gradually vanishing bridge for adversarial domain adaptation[END_REF]. It seems intuitive and confirmed by experimental evidence that image translation helps, thanks to pixel-level alignment [START_REF] Murez | Image to image translation for domain adaptation[END_REF]. Still, it is not always true that realism is mandatory, as we observed unrealistic images could benefit tasks such as semantic segmentation (see CycleGAN,Tab. 3.1b). This highlights the need for further research on the topic. Nevertheless, it is worth noting how image translation contributes positively to interpreting better the training transferability to novel domains, and how it enables labels reuse for different testing scenarios.

Additional considerations related to the evaluation of generative networks also emerged. While we used several metrics for quality assessment, evaluating if images are realistic is still challenging, since many still rely on expensive human-based surveys [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]Tremblay et al., 123 2020;[START_REF] Chen | Vector quantized image-to-image translation[END_REF]. Exploiting weakly-paired real image similarity as in Chapter 5 requires expensive data collection procedures, which are not always possible. Also, unexpected values could be detected by current GAN metrics in presence of out-of-distribution output data, i.e. images which are evidently not realistic (see MUNIT in Tab. 3.1a). In an ongoing worknot covered in the manuscript -we aim to decompose and characterize the domain shift using just a couple of image samples from a distribution. This could also be used as an additional metric for i2i.

While we presented multiple applications, it is necessary a last remark on a broader view on adversarial learning and i2i networks. In Chapter 5 we demonstrated that it is possible to use adversarial learning as a signal for obtaining weak semantic associations between elements in very different domains. This brings interesting insights: it enables envisaging unsupervised learning of meaningful representations by leveraging on similarities and differences among images, which appear as promising directions for research in computer vision. Self-supervised learning approaches such as DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] exploit similar ideas, while being based on augmentations only.

Finally, let us reflect on the current state-of-the-art of image translation and how it could be further improved. Many problems relative to unrealistic outputs are also due to the limited understanding of the scene performed from the translation network, such as wrong mappings, and trivial modifications of textures that could be easily spotted by human beings. With a broader view of the current developments in image generation [START_REF] Ramesh | Hierarchical text-conditional image generation with clip latents[END_REF][START_REF] Saharia | Photorealistic text-to-image diffusion models with deep language understanding[END_REF]), it appears evident how image translation itself could benefit from large-scale textual priors, that could be exploited to mitigate mistakes due to limited understanding of target scenes, and to increase style disentanglement thanks to zero-shot capabilities. Moreover, understanding the scene in 3D would bring enormous benefits both in quality and consistency of the proposed translation, and it could be combined with recent advancements in 3D representations such as NeRF [START_REF] Mildenhall | Nerf: Representing scenes as neural radiance fields for view synthesis[END_REF]. Finally, diffusion models seem to provide a dramatic boost in performance when it comes to image translation (Saharia et al., 2022a).

Ultimately, even though in the course of the thesis we extensively studied image translation GANs and possible priors, many challenges are still open. In conclusion, it is clear how including humans in the loop has been helpful for increasing the effectiveness and interpretability of training, and how this could be transferred to many unsupervised and self-supervised tasks which still do not exploit simple supervision by data interpretation. This could apply also to many other non-generative tasks, as transfer learning, that are inherently conditioned on domain information. Additionally, the evident effectiveness of methods in Part II calls for further investigation of physics priors in deep learning, which is a strong prior of our world often not exploited enough by modern computer vision. In particular, physics could provide significant clues for video analysis, making it possible to understand environments in fully unsupervised manners, thanks to consistency constraints that are always respected in visual observations.

Publications

During the PhD, five conference publications and one journal submission have been produced, here reported in chronological order. 

  Figure 2.1: Visual domains are immediately identifiable by humans in art, in which differences in two representations of flowers like (a) and (b) are immediately distinguishable in terms of style, colors, and number of elements. Nonetheless, we can also identify similarities in the type of subject and context.

  settings . . . . . . . . . . . . . . . . 25 3.4.2 Bridged image-to-image translation . . . . . . . . . 27 3.4.3 Unsupervised Domain Adaptation . . . . . . . . . 29 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 31 15

  Figure 3.1: Naive image-to-image translation (a) learns the X → Y domain mapping, that in presence of large domain shifts can lead to unrealistic results. Conversely, our domain bridge (b) completes source and target domains with automatically retrieved web-crawled data (Z X , Z Y ) which share common characteristics, identified thanks to human knowledge priors. This eases the image translation mapping performed by MUNIT (Huang et al., 2018b), providing realistic results.

Figure 3

 3 Figure 3.2: Overview of our pipeline for unsupervised domain adaptation. The blue dashed square means that the GAN parameters are frozen. The Image-to-image translation network is trained offline with our domain bridge strategy. Different line colors refer to different probabilities for one path to be executed. Loss functions are denoted with dotted lines.

  Figure 3.4: Examples of multimodal style-sampling from our Domainbridged i2i (Sec. 3.3.1). Note the consistency of style regardless of the source image.

Figure 3 . 5 :

 35 Figure 3.5: Analysis of the effect of α optimization. During training the Weighted Pseudo Label expands from high confidence pixels only (left) to lower ones (right).

  Figure 3.6: Samples from the bridge dataset in different weather conditions. Note that the acquisition setup (camera position, optics, etc.) remains unaltered.

Figure 3 . 7 :

 37 Figure 3.7: Qualitative comparison between state-of-the-art architectures and MUNIT-Bridged (MUNIT-B) for i2i in the clear → rain transformation.

8 :

 8 Figure 3.8: Comparison of our method with the state-of-the-art for semantic segmentation UDA.

  3.4.1.3. Quantitative results are shown in Tab. 3.2 where Ours refer to the proposed UDA using domain bridge i2i translation with online multimodal style-sampling (OMS) and weighted pseudo label (WPL), and w/o WPL or w/o OMS & WPL the self-explanatory ablation versions. Baseline refers to the training without any UDA. Overall, our methodology performs on par (+0.44) with BDL, the best state-of-the-art, using a much simpler do-

Figure 4 . 1 :

 41 Figure 4.1: Our method is able to generate images of unseen domains, leveraging geometrical-guidance to extract patches of local domains, i.e. spatially defined sub-domains, on source images. Here, we generate an image without any lane markings training only on an extremely small amount of images with well-defined lane markings.

Figure 4

 4 Figure 4.2: Architecture pipeline. Our method exploits knowledge about local domains (Sec. 4.3.1) and relies on geometrical-prior to extract samples of local domains in source only (Sec. 4.3.2) that train a patch-based GAN.Here, source is having "lane markings" and "asphalt" local domains (X α and X β , respectively) while target have only "asphalt" (X β ), learning X α → X β further reduces the gap with target. An optional local domain interpolation strategy (Sec. 4.3.3) is added for generating geometrically continuous translation between local domains (here, simulating lane degradation).

  Figure 4.3: Translation with CycleGAN(Zhu et al., 2017a). Sample output shows that i2i is prone to transfer global features (here, sky color) but neglects evident local features for humans as the street structure (note that IDD has no lane markings).

Figure 4

 4 Figure 4.4: Qualitative results. For each task we show the original input image and our output with the X β → X α local domains translation. Lane degradation: sample translations on TuSimple (TuSimple, 2021) test set with increasing degradation z ∈ [0.35, 0.95] from left to right, blending variable γ = 0.75. Snow addition: augmentation of ACDC (Sakaridis et al., 2021) validation set, only road is involved in the transformation.

Figure 4 . 5 :

 45 Figure 4.5: Lane translations. (a) Qualitative comparison of lane degradation on patches with baselines. Our method is the only one to output a realistic degradation. (b) GAN metrics on the lane degradation task prove the benefit of our method.

  Figure 4.6: Evaluation of lane degradation on patches taken from IDD dataset[START_REF] Varma | Idd: A dataset for exploring problems of autonomous navigation in unconstrained environments[END_REF]. We associate clear patches (bottom row) to degraded ones (third row) by minimizing LPIPS. Applying our method to clean images variating the z and γ parameters (shown in the images), we subsequently lower the LPIPS. We display the best and second-best translation in terms of LPIPS. The similarities of our results with the degraded patches prove the efficacy of our LPIPS-based evaluation.

Figure 4 . 7 :

 47 Figure 4.7: SCNN[START_REF] Pan | Spatial as deep: Spatial cnn for traffic scene understanding[END_REF] lane detection on IDD[START_REF] Varma | Idd: A dataset for exploring problems of autonomous navigation in unconstrained environments[END_REF]. Training on generated images with degraded lanes makes existing lane detectors -such as SCNN[START_REF] Pan | Spatial as deep: Spatial cnn for traffic scene understanding[END_REF] -resistant to scenes with damaged (first three columns) or no (last column) lane markings.

Figure 4 . 8 :

 48 Figure 4.8: DeepLabv3+ (Chen et al., 2018) on ACDC (Sakaridis et al., 2021) snow. Training with our generated images brings improvements in segmentation of snowy scenes in ACDC (Sakaridis et al., 2021), especially in the road and sidewalk classes.

  Figure 5.2: ManiFest architecture, here translating Day → Night using few real night images and a synthetic night anchor domain. The encoded image representation E(s) is separated into content and style codes, and translated to the few-shot domain by injecting T on a manifold learned on anchor domains in a multi-target i2i setting (bottom). We correct the output by using residuals estimated by the GERM (top). The LGFS loss (top-right), based on statistics alignment and patch-based adversarial learning, deforms the manifold and injects T in it. The reconstruction cycle with a style encoder is omitted for simplicity and follows[START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF].

Figure 5

 5 Figure 5.3: GERM-based residuals. We perform either exemplar-or generalbased transformations on the few-shot set by learning residuals conditioned on original image features (E(s)) and extracted statistics or noise, respectively. At training time, we alternate randomly the two modalities.

  Figure 5.4: Qualitative evaluation and comparison with the state of the art. We evaluate the (a) Day → Night, (b) Day → Twilight, and (c) Clear → Fog tasks. In all cases, our approach extracts a general realistic representation of the few-shot target, and correctly reproduces the style of paired exemplar target images. In comparison, existing baselines either has unnecessary similarity with anchors (e.g. FUNIT, COCO-FUNIT, EGSC-IT) or unrealistic artifacts (e.g. WCT 2). We report COCO-FUNIT as CFUNIT for space.

Figure 5 . 5 :

 55 Figure 5.5: Segmentation on ACDC-night, for few-shot Day →Night translations (|T | = 25) (a). We outperform the baseline with noticeably better segmentation in (b) due to the increased quality of our translation.

Figure 5 . 6 :

 56 Figure 5.6: Qualitative results for the Mountain → Volcano (a) and Day → Aurora (b) tasks. We retain contextual information by only partially mapping mountains to volcanoes and sky to auroras. In the green box we process the same image for ease of comparison. Exemplar results show how Ours conforms to Target, effectively reproducing the exemplar image style (cols 5-6).

Figure 5 . 7 :

 57 Figure 5.7: Ablation study for architectural components. (a) Removing each component individually lowers quantitative performances, which maps to (b) decreased visual quality in the generated images.

Figure 5 . 8 :

 58 Figure 5.8: Comparison against MUNIT for varying |T |: (a) qualitatively for the general scenario; as well as quantitatively for (b) general and (c) exemplar, always outperforming it.

Figure 5 . 9 :

 59 Figure 5.9: In the reconstruction cycle A m → S → A m , we can inject the extracted residual with GERM on anchor images to perform an alternative A m → T transformation.
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Figure 7

 7 Figure 7.2: Model-guided disentanglement. Our unsupervised disentanglement process consists of applying a physical model W Mod (.) to the generated image G(x). Subsequently, the composite image is forwarded to the discriminator and the GAN loss (L G (y D ) or L D (y d , y)) is backpropagated (dashed arrows). The model rendering depends on the estimated parameters w, composed by differentiable ( wd ) and non-differentiable ones ( wnd ). We use a Disentanglement Guidance (DG) to avoid interfering with the gradient propagation in the learning process. Green stands for real data, red for fake ones.

Figure 7 .

 7 Figure 7.3: Model-guided parameters estimation. a) We exploit a pretrained discriminator D ent , to calculate an adversarial loss L G on source data augmented with the model W Mod having differentiable parameters w d . In this process, the gradient flows only in direction of the differentiable parameters. b) We optimize until convergence differentiable (blue) and non-differentiable (purple) parameters, alternatively reaching new minima ( wd and wnd ) used during optimization of the other parameter set. While differentiable parameters are regressed (Sec. 7.3.3), non-differentiable ones require black-box genetic optimization (Sec. 7.3.4), here CMA-ES[START_REF] Hansen | Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)[END_REF].

Figure 7

 7 Figure 7.4: Neural-guided disentanglement. We exploit here a separate frozen GAN (W GAN ) which renders specific target traits (here, dirt) on generator G output images before forwarding them to the discriminator D. We do not show gradient propagation for simplicity.

FrozenFigure 7 . 5 :

 75 Figure 7.5: Training pipelines. For model-guided disentanglement, we 1) train a naive i2i entangled baseline, 2) use the entangled discriminator feedback to estimate optimal parameters w and 3) Disentanglement Guidance (DG), and finally 4) train the guided-GAN with model injection. For neuralguided disentanglement, we 1) train a GAN (W GAN ) exploiting additional knowledge as semantics and 2) use it to inject target traits during our guided-GAN training.

Figure 7 . 6 :

 76 Figure 7.6: Raindrop disentanglement on clear → rain drop . We compare qualitatively with the state-of-the-art on the clear → rain drop task with rain drops model-guided disentanglement. In the first row, we report samples of the target domain. Subsequently, the Source image (2nd row), the translations by different baselines (rows 3-7) and our results (rows 8-13).Our model-guided network is able to disentangle the generation of peculiar rainy characteristics from the drops on the windshield ('Disentangled' rows) and re-injection with estimated parameters ('Target-style'). We evaluate both the differentiable-only parameter estimation (rows 8-9) and the genetic-based full estimation (rows 10-11). We also show injection of other arbitrary parameters w 1 , w 2 (last 2 rows).

Figure 7 . 7 :

 77 Figure 7.7: Dirt disentanglement on gray → color dirt . We compare with MUNIT (Huang et al., 2018b) for the gray → color dirt task. Although MU-NIT successfully mimics the Target style (rows 1,3), our approach lead to a more realistic image colorization disentangling the presence of dirt ('Disentangled' row T W Mod ) We also use the dirt model to reproduce Target images ('Target-style' row T W w d Mod ( w)).

Figure 7 . 8 :

 78 Figure 7.8: Composite disentanglement on clear → snow cmp .We extend the applicability of our method to composite occlusions, that we validate in the clear → snow cmp scenario. We add a fence-like occlusion (left) and a confidential watermark (right) to synthetic_snow, with random position. As expected, we encounter entanglement phenomena for MUNIT, while our model-guided network is successful in learning the disentangled appearance ('Disentangled' row T W w d

Figure 7 . 9 :

 79 Figure 7.9: synth → WCS fog translations. As visible, MUNIT shows entanglement phenomena, leading to artifacts. Our model-guided disentanglement, instead, enables to generate a wide range of foggy images, with arbitrary visibility, while mantaining realism. Since the fog model W Mod always blocks the gradient propagation in the sky region, the network can not achieve photorealistic disentanglement but still improves the generated image quality.

  Figure 7.10: Disentanglement user study. We asked 56 users (cf. Sec. 7.5.1.5) to judge the lens cleanness (a) on raindrops (r) and dirt (d), or the wetness (b) or coloring (c) of clear → rain drop and gray → color dirt generated scenes, respectively. Details are in the text. Our system greatly improves results following human evaluation metrics.

Figure 7 .

 7 Figure 7.11: Comparison of model-and neural-guided disentanglement on gray → color dirt . Although our neural-guided strategy excels in image quality and diversity, mostly due to the complex nature of generated dirt (a), with model guidance we achieve more realistic image colorization (b). Qualitative results are coherent with metrics (c). With both pipelines, we still outperform MUNIT[START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF], used as backbone.

  T W w d Mod ( wd ) 135.32 0.44 Model-guided T WMod ( w) 157.44 0.43 (b) Benchmark on Porav et al.

Figure 7 . 13 :

 713 Figure 7.13: Evaluation of the model parameters regression. The reliability of our parameter estimation is assessed on synthetic datasets augmented with arbitrary physical models acting as ground truth values. Comparing against our regressed value, our strategy performs better when low modifications on the estimated values corresponds to big visual changes (average error is 0.99% for raindrops (a), 3.55% for dirt (b)). For fog (c), we get an higher error of 23.51% due to the low visual impact of high β values.

Figure 7 .

 7 Figure 7.16: Ablations of model complexity and Disentanglement Guidance.In (a), we quantify disentanglement effects with simpler model having less variability (Refract), or only color guidance (Gaussian). Even if complexity is beneficial for disentanglement (Ours), simple models permits disentanglement to some extent. In (b), we study the efficacy of the Disentanglement Guidance (DG) for different γ values on clear → rain drop task. With γ = 0 our approach fallbacks to the baseline and entangles occlusions, while with guidance γ = 1 the translation lacks important features such as reflections and glares. With γ = 0.75 we simultaneously avoid entanglements and preserve translation capabilities.

Figure 8 . 1 :

 81 Figure 8.1: Detaching from traditional i2i translation, we are interested in continuous mapping from source domain (green point) to a target domain (red lines), in single-or multi-modal setup. A key feature of our proposal, is unsupervised reorganization of the data along a functional manifold (top: cyclic, middle/bottom: linear). We leverage lighting translations from day images (top), shallower depth of field from in-focus images (middle), or synthetic clear images to realistic foggy images (bottom).

Figure 8 . 3 :

 83 Figure 8.3: We enforce cycle consistency by injecting the source ϕ 0 in the X → Y → X translation when reconstructing the original image. Also, for Y → X → Y we position the input image at ϕ est on the domain using our ϕ-Net A CNN trained unsupervised for ϕ regression.

  .13) with α the interpolation coefficient defined as,α = 1cos(ϕ) 2and corr(ϕ) an asymmetrical hue correction to arbitrarily account for temperature difference at dusk and dawn.

  .15) being G the Gaussian kernel, x input and k kernel size, which is directly mapped from ϕ ∈ [0, 1] → k ∈ [0, 8]. Effects on images are in Fig. 8.4.

Figure 8 . 5 :

 85 Figure 8.5: Translations (dark circle) of a source day image (center) exhibit both high variability and similarities with target data (outer circle) for which we report ground truth elevations. CoMo-MUNIT learned non-modeled visual features like frontal sun scenes resembling real ones (as in {0°, 6°, 18°}).Note that it discovered dawn/dusk and the stationary appearance of night, proving manifold quality.

Figure 8 . 6 :

 86 Figure 8.6: Translations along dimensions ϕ (red) and style (dotted). For a given ϕ, the styles vary slightly (notice hue and brightness), proving disentanglement of ϕ and style.

  .25°+12.50°3.75°-5.00°-13.75°-22.50°-31.25°-40.00°F igure 8.8: Day → Timelapse translations. Baselines output unrealistic translations (e.g. DLOW (Gong et al., 2019)) or images with limited variability (StarGAN V2 (Choi et al., 2020)). We adapt MUNIT and CycleGAN using DNI (Wang et al., 2019b) to DNI-MUNIT (DNI-M) and DNI-CycleGAN (DNI-C). Those are the best baselines, though our CoMo-MUNIT (last row) is the only cyclic one, outputs more variable images (e.g. at dusk/dawn) and discovered stable night with less supervision.

Figure 8 .

 8 Figure 8.11: Evaluation of Day → Timelapse. In a rolling FID (cf. text)shows our method is more effective in the complex dawn/dusk ("D/D") and night points, translating as lower mean FID (in legend). In b, we rank best on both mean and std error between the input ϕ and the regressed ϕ with an InceptionV3 network (trained on real data).

Figure 8 .

 8 Figure 8.12: FIDs (cf. text) for ours (a) and steerable GANs (Jahanian et al., 2020) (b-c). Ours has lowest FIDs as it learns to depart from the model. Instead when increasing λ, Steerable GANs (Jahanian et al., 2020) learns to mimic model but FID diverges from real images features.

  Figure 8.13: (a): Training with shared encoder/decoder and using ϕ-Net A at inference enables relative and absolute ϕ translations. The input is estimated at ϕ est = -33.45°(gt -32.73°) and shifted with various strategies. (b): CoMo-CycleGAN on MNIST-M (Ganin et al., 2016) trained with domain confusion. It shows source (leftmost) and translations along the ϕ dimension. Despite domain confusion, it reorganized the manifold and produced valid translations. In (c), we guide the complex Cat → Dog only with fur color.

  1.[START_REF] Pizzati | Domain bridge for unpaired image-to-image translation and unsupervised domain adaptation[END_REF]. Domain bridge for unpaired image-to-image translation and unsupervised domain adaptation. In WACV 2. Pizzati, F., Cerri, P., and de Charette, R. (2020a). Model-based occlusion disentanglement for image-to-image translation. In ECCV 3. Pizzati, F., Cerri, P., and de Charette, R. (2021a). CoMoGAN: continuous model-guided image-to-image translation. In CVPR (oral) 4. Dell'Eva, A., Pizzati, F., Bertozzi, M., and de Charette, R. (2022). Leveraging local domains for image-to-image translation. In VISAPP (best paper award) 5. Pizzati, F., Cerri, P., and de Charette, R. (2021b). Physics-informed guided disentanglement in generative networks. TPAMI submission 6. Pizzati, F., Lalonde, J.-F., and de Charette, R. (2022). ManiFest: Manifold Deformation for Few-shot Image Translation. In ECCV 127

  

3.4.2.1 Qualitative evaluation

  

	Network	LPIPS↑	IS↑	Network	mIoU↑
	Real images	0.7137	-	Baseline	31.67
	CycleGAN (Zhu et al., 2017a)	0.1146	1.15	CycleGAN (Zhu et al., 2017a)	35.09
	MUNIT (Huang et al., 2018b)	0.3534	1.92	MUNIT (Huang et al., 2018b)	20.78
	MUNIT-Bridged	0.2055	1.69	MUNIT-Bridged	35.18
	(a) GAN metrics		(b) Semantic Segmentation
	Fig. 3.7 shows randomly selected samples from the Cityscapes validation	
	set 3 . It is visible that both CycleGAN and original MUNIT method fails	
	at modeling the rain appearance, probably due to the large domain gap.	
	In detail, CycleGAN brings no realistic changes to the scene appearance,	
	only adjusting color-levels in the image. Original MUNIT, instead, seems	
	to have collapsed and fails to produce significant outputs, probably due	
	to instability related to the domain gap. Conversely, our MUNIT-bridged	

Table 3

 3 

	.1: Quantitative evaluation of translated image realism, diversity,
	and semantic segmentation effectiveness.
	model (MUNIT-B in Fig. 3.7) is the only one able to add realistic traits of
	rain in the synthetic images, thanks to the domain bridge.

48.78 73.93 30.87 27.33 26.03 15.10 26

  

	Method	mIoU	road	sidewalk	building	wall	fence	pole	t light	t sign	veg	terrain	sky	person	rider	car	truck	bus	train	m. bike	bike
	Baseline	31.67 77.40 39.95 61.20 12.01 24.76 23.68 13.21 24.11 58.33 27.18 78.86 24.73 12.78 63.34 24.01 28.43 0.00 4.76 2.90
	AdaptSegNet	33.44 82.23 39.85 62.06 9.84 17.73 20.39 10.91 22.47 66.30 22.81 76.54 32.24 38.49 68.95 13.08 30.31 0.00 17.97 3.26
	BDL	39.60 83.18 .05 72.63 26.08 88.01 28.59 26.59 76.37 43.31 50.11 0.00 7.38 2.10
	w/o OMS & WPL 35.18 79.00 37.23 62.36 8.60 14.78 20.98 11.94 22.92 68.02 13.11 82.55 38.96 44.61 72.34 29.10 39.40 0.00 19.32 3.16
	w/o WPL	39.72 82.53 44.51 69.97 20.29 22.91 28.93 14.02 29.17 74.32 28.98 83.53 36.75 32.80 71.29 43.03 46.34 0.00 21.80 3.54
	Ours	40.04 84.03 44.09 70.51 24.10 23.02 28.31 14.08 30.07 75.31 27.89 83.49 39.10 33.63 74.70 48.60 49.34 0.00 6.77 3.80
	Table 3.2: State-of-the-art comparison. OMS refers to online multimodal
	style-sampling. WPL is the weighted pseudo labels strategy.					
						Pseudo-labels mIoU target ↑							
							None				39.77									
							Batch-wise			38.23									
						WPL (Ours)			40.04									
	Table 3.3: Comparison of various pseudo labeling strategies: Batch-wise,
	with our WPL, or with None.														
	main adaptation method, and significantly better (+6.6) than AdaptSegNet.
	Studying the contributions of our OMS and WPL contributions, all compo-
	nents are necessary to reach the best performances. Qualitative evaluation
	on the target dataset is in Fig. 3.8, aligned fairly with quantitative metrics.
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	Les réseaux d'image à image peinent à saisir les changements locaux car ils
	n'affectent pas la structure globale de la scène. Par exemple, pour passer
	d'une scène d'autoroute à une scène hors route, les réseaux i2i se concentrent
	facilement sur les caractéristiques de couleur globales mais ignorent des car-
	actéristiques évidentes pour les humains comme l'absence de marquage des
	voies. Dans ce chapitre, nous exploitons les connaissances humaines sur
	les caractéristiques des domaines spatiaux, que nous appelons " domaines
	patches extraction locaux ", et nous démontrons leur avantage pour la traduction d'image à im-with geometrical
	age. En s'appuyant sur une simple indication géométrique, nous entraînons prior
	un GAN basé sur les patchs sur quelques données sources et nous halluci-
	nons un nouveau domaine non vu qui facilite ensuite l'apprentissage. Nous expérimentons sur trois tâches allant d'environnements non structurés à des I2I GAN
	conditions météorologiques défavorables. Notre cadre d'évaluation complet
	montre que nous sommes capables de générer des traductions réalistes, avec
	des prieurs minimaux, et en nous entraînant uniquement sur quelques im-
	ages. En outre, lorsque nous nous entraînons sur nos traductions d'images,
	nous montrons que toutes les tâches proxy testées sont améliorées de manière
	significative, sans jamais voir le domaine cible lors de l'entraînement.

Few-shot domain Local domains Hallucinated domain No lane markings! Lane markings Lane markings Asphalt Markings / Asphalt Snow / No snow In focus / Blur Local domain identification No fog / Fog

  

Table 4 .

 4 2: Semantic segmentation on ACDC[START_REF] Sakaridis | Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding[END_REF] snow. We train multiple segmentation networks on Cityscapes[START_REF] Cord | Towards rain detection through use of in-vehicle multipurpose cameras[END_REF] with added snow with our method and test on ACDC[START_REF] Sakaridis | Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding[END_REF] snow validation, consistently improving generalization capabilities.

	Model	Translations road IoU ↑ sidewalk IoU ↑ mIoU ↑
	DeepLabv3+ (Chen et al., 2018)	none (source) Ours	74.95 80.56	39.52 49.52	45.31 47.64
	PSANet (Zhao et al., 2018)	none (source) Ours	74.29 74.01	30.71 36.28	42.97 43.85
	OCRNet (Yuan et al., 2020)	none (source) Ours	82.30 82.78	45.60 54.69	54.54 55.48
	Input				
	GT				
	none				
	Ours				

  Table 4.3: Data ablation on TuSimple. The use of data on the lane degradation task (TuSimple → IDD) is ablated by varying the number of images and patches per image in the training set, and evaluating GAN similarity metrics (see Sec. 4.4.2.2) on IDD.

	TuSimple samples (%) Patches/img LPIPS↓ FID↓
	15 (0.4%)	1	0.3296	148.22
	15 (0.4%)	5	0.3295	135.53
	15 (0.4%)	30	0.3254	131.73
	15 (0.4%)	60	0.3246	127.94
	15 (0.4%)	150	0.3222 126.94
	50 (1.4%)	30	0.3236	129.42
	150 (4.1%)	30	0.3221 124.79
	500 (14%)	30	0.3234	128.56
	3626 (100%)	30	0.3218 125.56

Table 5 .

 5 

		Method	|Am|	|T |	FID ↓	LPIPS ↓		Method	|Am| |T |	FID↓ LPIPS↓
		MUNIT MUNIT	0 3090	400 0	79.20 132.72	0.529 0.613	G	FUNIT Ours	3090 3090	25 25	69.53 63.15	0.511 0.510
	G	MUNIT FUNIT	0 3090	25 25	91.61 156.97	0.553 0.573	E	FUNIT WCT 2 Ours	3090 -3090	25 -25	69.97 71.77 58.07	0.501 0.536 0.483
		COCO-FUNIT	3090	25	201.67	0.644						
		Ours MUNIT	3090 0	25 400	81.01 87.71	0.535 0.522		(b) Day → Twilight	
		MUNIT	3090	0	142.04	0.559						
		MUNIT	0	25	128.73	0.562		Method	|Am| |T |	FID↓ LPIPS↓
	E	FUNIT COCO-FUNIT	3090 3090	25 25	136.2 193.4	0.572 0.646	G	FUNIT Ours	3090 3090	25 25	152.90 89.57	0.580 0.520
		EGSC-IT WCT 2 Ours	3090 -3090	25 -25	106.68 105.58 80.57	0.574 0.580 0.525	E	FUNIT WCT 2 Ours	3090 -3090	25 -25	137.7 120.9 89.89	0.568 0.591 0.521
		(a) Day → Night			(c) Clear → Fog	

1: Quantitative comparison with state of the art. We compare FID and LPIPS on the

Table 7 .

 7 1: Disentanglement tasks. For each task, we indicate the features entangled in the target domain (also, shorten as indices of task name), the datasets, and the model or neural guidance employed for disentanglement.

		Task	Entanglement	Datasets	Guidance
					Model	w d	w nd
	Model	clear → rain drop gray → color dirt synth → WCS fog clear → snowcmp	Raindrop Dirt Fog Composite	nuScenes WoodScape Synthia,Weather CS Synthia	Raindrop σ t,(s, p)x4 Dirt σ, α -Fog β -Composite --
	Neural	gray → color dirt	Dirt	WoodScape	Network DirtyGAN

  CoMoGAN est un GAN continu qui repose sur la réorganisation non supervisée des données cibles sur un collecteur fonctionnel. A cet effet, nous introduisons une nouvelle strate de normalisation d'instance fonctionnelle et un mécanisme résiduel qui, ensemble, dissocient le contenu de l'image de sa position sur le manifold target. Nous nous appuyons sur des modèles naïfs inspirés de la physique pour guider l'apprentissage tout en autorisant les caractéristiques privées des modèles/translations. CoMoGAN peut être utilisé avec n'importe quel backbone GAN et permet de nouveaux types de traduction d'images, tels que la traduction cyclique d'images comme la génération de timelapse, ou la traduction linéaire détachée. Sur tous les jeux de données, il surpasse les résultats de la littérature.

  .7) Intuitively, for optimization we need feedback from both real data similarity and mimicking of the model output. While the first must rely on adversarial training due to the use of unpaired images, we can enforce reconstruction on the paired modeled ỹϕ

M = M (x, ϕ). Assuming LSGAN

(Mao et al., 2017a) 

training and discriminator D, we obtain

  8.1, training iPhone → DSLR with cyclic FIN is worse (IS/CIS/LPIPS 1.41/1.20/0.678) and at the cost of a more complex encoding. Training Day → Timelapse with linear FIN performs on par or better (IS/CIS/LPIPS 1.65/1.64/0.579) but loses dusk/dawn distinction capability.

In such case, the ratio of wrong pixels over pseudo-labeled pixels will be too high and lead to incorrect self-supervision.

(Zhu et al., 2017a) claims that best performances are obtained keeping constant the learning rate for half the training process (100k iterations in this case) to 2e-4 and then linearly decreasing to 0.

For MUNIT and our method, MUNIT-bridged, we also randomize the style.

For batch-wise Pseudo-Label implementation, we compute optimal threshold per class and per batch.

Our formalism includes VAE reparametrization in E(.)

ACDC does not provide annotated daytime clear weather sequences.

For FUNIT[START_REF] Liu | Few-shot unsupervised image-to-image translation[END_REF] and COCO-FUNIT[START_REF] Saito | Coco-funit: Few-shot unsupervised image translation with a content conditioned style encoder[END_REF], we modify hyperparameters per authors suggestions to adapt to the ACDC and Dark Zurich datasets.

In Sec. 7.6, we explain how W Mod depending of s is not violating the independence assumption of Eq. 7.2, and evaluate its effect in Sec.7.5.4.2. 

For Raindrop, Dirt and Composite we consider w d and w nd to be dataset-wise constant. E.g. all raindrops have the same defocus blur, transparency, etc. Conversely, Fog images have varying fog intensity.

For comparing with neural methods we set α = 1.

On average, DirtyGAN dirt covers 25.4% of the image while our physical model covered 20.1%. While this provides more realistic dirt masks (ground truth annotation is 29.6%) we conjecture this leads to worse gradient propagation.

Please note that unlike previous experiments, here LPIPS is used for distance estimation (not diversity), so lower is better.

In this experiment, we consider dirt with a fixed defocus blur value σ and regress only α to increase the diversity of tasks.
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Chapter 5

Few-shot learning for image translation with anchor domains

The contributions of this chapter have been published in: Pizzati, F., Lalonde, J.-F., and de Charette, R. (2022) Model guidance. We guide the learning with simple non-neural models M (x, ϕ), x the source image. Thus, following the intuition that target manifold can be discovered with coarse guidance: night resembles dark day, fog looks like a blurry gray clear image, etc. We depart from the need of complex physical guidance since we disentangle shared and private features from model/translation which enables discovering complex non-modeled features (e.g. light sources at night). Models are described in Sec. 8.4.1.

Functional Instance Normalization (FIN)

To take advantage of our model guidance which is continuous by nature, we must allow our network to encode ϕ continuity. To do so, we build on prior Instance Normalization (IN) which allows carrying style-related information [START_REF] Ulyanov | Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis[END_REF][START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF]. It writes for input x, each encoder/decoder couple to benefit from multiple sources. This is illustrated in Fig. 8.3. We also use another unsupervised network, called ϕ-Net A , that regresses ϕ on the target dataset. From above figure (left), because ϕ is injected in X → Y transformation, we enforce a correct spreading of all ϕ values by adding L reg to the generator objective, L reg = ||ϕ-Net A (y ϕ ) -ϕ|| 2 .

Experiments

We show the efficiency of CoMoGAN on new continuous image-to-image translation tasks X → Y (ϕ), where we consider source data to lie on a fixed point (ϕ 0 ) of the ϕ-manifold and unknown ϕ target data. The underlying optimization challenge is to learn simultaneously the ϕ-manifold and continuous image translation. Because continuous model-guided translation is new, we first describe our three novel translations tasks (Sec. 8.4.1) obtained by leveraging recent datasets at the time of submission [START_REF] Sun | Scalability in perception for autonomous driving: Waymo open dataset[END_REF][START_REF] Ros | The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes[END_REF][START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF][START_REF] Halder | Physics-based rendering for improving robustness to rain[END_REF]Zhu et al., 2017a). Each task encompasses challenges of its own such as linear/cyclic target manifold, attached/detached manifolds (i.e. X ⊂ Y or X ̸ ⊂ Y ) and uni-/multimodality. Specifically, we train with backbone MUNIT [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] (multi-modal) or CycleGAN (Zhu et al., 2017a) (uni-modal) and coin our alternatives CoMo-MUNIT and CoMo-CycleGAN, respectively. We evaluate the manifold organization (Sec. 8.4.2) and the translation quality (Sec. 8.4.3) from GAN metrics and proxy tasks. Continuous translation (Sec. 8.4.4) is evaluated separately and we conclude with ablation studies (Sec. 8.4.5). We train with the default backbone hyperparameters.

Translation tasks

Day → Timelapse

Using the Waymo Open dataset [START_REF] Sun | Scalability in perception for autonomous driving: Waymo open dataset[END_REF], we frame the complex task of day to any time, thus learning timelapse passing through day/dusk/night/ dawn. Waymo image labels are only used to split clear images into source 

Translation quality

GAN metrics

We measure the quality and variability of all translations task w.r.t. MUNIT and CycleGAN backbones, showcasing in Tab. 8.1 that we always perform better or on par. In the table, IS [START_REF] Salimans | Improved techniques for training gans[END_REF] evaluates image quality and diversity over all the dataset, CIS [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] over multimodal translations, and LPIPS (Zhang et al., 2018a) evaluates absolute diversity only. We conjecture our performance results of the higher degree of control we have, since we control ϕ features in a disentangled manner (i.e. extremely increasing variability), while entangled backbones lean towards the easiest translations. The InceptionV3 networks used for IS/CIS evaluation are trained on the source/target classification task. IS is evaluated on all validation set, while for CIS/LPIPS we follow [START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF] evaluation routine.

Semantic segmentation

We measure the effectiveness of Synthetic clear → Real clear, foggy translations in Fig. 8.7 by training PSPNet-50 [START_REF] Zhao | Pyramid scene parsing network[END_REF] with either MUNIT or CoMo-MUNIT outputs. For comparison, we also train segmentation with 

Continuous translation quality

To evaluate the continuity of the translations, we show uniformly spaced ϕ translations for Day → Timelapse (Fig. 8.8, bottom row), Synthetic → Real (Fig. 8.9) and iPhone → DSLR (Fig. 8.10). For all, regardless of the backbone and task, our translations look appealing with our network discovering unique visual features not present in the model guidance. This is quite noticeable in DSLR (Fig. 8.10) which learned depth of field despite simple blurring guidance, or in the detached foggy experiment (Fig. 8.9) since translations encompass the desired real appearance with increasing fog.
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