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Résumé

Cette these est consacrée a I'étude mathématique de deux modeéles différents:
le systeme de la magnéto-hydrodynamique prenant en compte l'effet Hall (Hall-
MHD), et d'une équation scalaire de type Burgers avec terme non local et diffusion
non linéaire.

Le systeme Hall-MHD décrit 1’évolution temporelle d'un plasma tridimension-
nel. Nous nous intéressons aux questions d’existence (locale dans le temps pour
les grandes données ou globale dans le temps pour les petites données) et d"unicité
pour le systeme Hall-MHD couplé a une vitesse et un champ magnétique initial
dans des espaces de régularité critique, dans l'esprit du théoreme de Fujita-Kato et,
plus tard, de Chemin pour les équations classiques de Navier-Stokes. Nous étu-
dions les estimations de décroissance temporelle, le critere d’explosion et les pro-
priétés de stabilité de ces solutions. Un énoncé d’unicité fort-faible est également
prouvé. Lorsque les données du systeme Hall-MHD sont indépendantes de la vari-
able verticale (les flux dits de dimension 21/2), nous établissons 1’existence globale
d’une solution forte, en supposant seulement que le champ magnétique initial est
petit. Notre stratégie s’appuie fortement sur 1'utilisation de champs vectoriels auxil-
iaires et d"une formulation impliquant ce que 1’on appelle la vitesse de 1’électron. La
preuve est basée sur la théorie de Littlewood-Paley et la méthode de 1’énergie.

Dans la deuxiéme partie de cette thése, nous nous concentrons sur 1’étude d’une
équation de Burgers non locale généralisée dans un domaine périodique multidi-
mensionnel. Nous construisons des solutions classiques globales a partir de don-
nées positives et régulieres, et des solutions faibles globales a partir de données
positives et bornées. Nous montrons que toute solution faible est instantanément
régularisée en une fonction infiniment différentiable. Nous décrivons également le
comportement asymptotique en temps long de toutes les solutions. Nos méthodes
s’appuient sur plusieurs avancées récentes dans la théorie de la régularité des équa-
tions intégro-différentielles paraboliques.

Mots-clé:

Magnéto-hydrodynamique, effet Hall, probléeme bien posé, régularité cri-
tique, asymptotique en temps long, critéres d’explosion, unicité fort-faible,
équation de Burgers non locale, estimations de Schauder.
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Abstract

This thesis is dedicated to the mathematical study of two different mod-
els: the Hall-magnetohydrodynamics (Hall-MHD) system and a non-local
Burgers equation with non-linear diffusion.

Hall-MHD system describes the time evolution of three-dimensional plas-
ma. We are concerned with existence (local-in-time for large data or global-
in-time for small data) and uniqueness issues for Hall-MHD supplemented
with initial velocity and magnetic field in critical regularity spaces, in the
spirit of Fujita-Kato and, later, Chemin’s theorem for the classical Navier-
Stokes equations. We investigate the time-decay estimates, blow-up criterion
and stability properties of such solutions. A weak-strong uniqueness state-
ment is also proven. When the data for the Hall-MHD system are indepen-
dent of the vertical variable (the so-called Z%D flows), we establish the global
existence of a strong solution, assuming only that the initial magnetic field is
small. Our strategy strongly relies on the use of auxiliary vector-fields and of
an extended formulation involving the so-called velocity of electron. The proof
is based on the Littlewood-Paley theory and energy method.

In the second part of this thesis, we focus on the study of a general-
ized non-local Burgers equation in a multi-dimensional periodic domain.
We construct global classical solutions starting from smooth positive data,
and global weak solutions starting from bounded positive data. We show
that any weak solution is instantaneously regularized into infinitely differ-
entiable. We also describe the long-time asymptotics of all solutions. Our
methods follow several recent advances in the regularity theory of parabolic
integro-differential equations.

Keywords:

Magneto-hydrodynamics, Hall effect, non-local Burgers equation, well-pose-
dness, critical regularity, long-time asymptotics, blow-up criterion, weak-
strong uniqueness, Schauder estimates.






xiii

Acknowledgements

First and foremost, I am extremely grateful to my two supervisors, Prof.
Raphaél Danchin and Prof. Frangois Vigneron for their invaluable advice,
continuous support, and patience during my PhD study. Their immense
knowledge and plentiful experience have encouraged me in all the time of
my academic research and daily life. It was their tremendous encourage-
ment and patience in the past few years that made me spend a wonderful
journey in the process of studying for a PhD degree in mathematics.

I would like to thank the referees: Prof. Daniel Han-Kwan and Prof.
Franck Sueur, and the committee of my oral defense: Prof. Hajer Bahouri,
Prof. Eric Dumas, Prof. Isabelle Gallagher and Prof. Evelyne Miot.

I am very grateful to Prof. Christophe Prange for sharing with me his
newest works on regularity theory for Navier-Stokes equations, and offer me
an opportunity to work with him in the near future. Here, I would like to ex-
tremely thank Prof. Raphaél Danchin and also Prof. Frangois Vigneron, Prof.
Marco Cannone for their many times recommendation on my job seeking.

Next, let me express my sincere gratitude to Prof. Wei-xi Li for his great
support and help during my master’s study in Wuhan University, China. Es-
pecially, it is Prof. Wei-xi Li who provided me timely help when my family
was in financial trouble, and encouraged me to apply Bézout master’s schol-
arships.

I benefit a lot from the "Laboratoire d’Analyse et de Mathématiques Ap-
pliquées" (LAMA), during the preparation of the present thesis. I would like
to thank Frédéric Charve for his encouragement, Lingmin Liao for his kind
suggestions for studying and living, our former director Stéphane Sabourau
and current director Olivier Guédon and our sectary Sonia Boufala, for their
enthusiastic service.

During my master’s study in the Université Paris-Est Marne-la-Vallée, I
was deeply influenced and motivated by my teachers: Prof. Marco Can-
none, Prof. Hajer Bahouri, Prof. Galina Perelman, Prof. Laurent Mazet, Prof.
Raphaél Danchin and Prof. Frédéric Charve, due to their immense knowl-
edge and intense passion about mathematics. I would also like to thank my
classmate Akin Campinar, and my friends Dr. Peng Tian and Dr. Xin Zhang
for their help on that time.

Now, I would like to express gratitude to Dr. Cosmin Burtea and Timo-
thée Crin-Barat for their introduction and discussion on the relaxation limit
problem for a compressible fluid model. My appreciation also goes out to
my collaborator Lvgiao Liu.

About my living and studying in China and in France, there are a lot
of friends that I have to mention because of their sharing maths, foods and



Xiv

activities with me: Cosmin Burtea, Akin Campinar, Timothée Crin-Barat,
Zikang Dong, Jingnan Guo, Jiao He, Tian Jiang, Wei Liao, Lvqiao Liu, Guil-
laume Saés, Kunkun Song, Chenmin Sun, Changzheng Sun, Shan Wang, Yan-
lin Wang, Wanlou Wu, Weiman Xu, Dingding Yu, Lan Zhang.

I want to offer my special thanks to my parents Youlan Wan & Guolin
Tan and my girlfriend Piao Yang for their unwavering support and belief in
me.

Lastly, my master’s study in the Université Paris-Est Marne-la-Vallée was
funded by the Bézout Labex, funded by ANR (reference ANR-10-LABX-58).
This thesis is supported by a three-years contract with the Université Paris-
Est.



Contents

Résumé étendu en francais

1.1 Etude mathématique d'un modelede plasma . . . . ... ...
1.1.1 Présentationdusysteme . . . . ... ... ... ... ..
1.1.2  Principauxrésultats . .. ... ... ... ........

1.2 Etude mathématique d’une équation non-locale avec une dif-
fusionnon linéaire . . ... ... ... ... .. ... . ..
121 Motivations . . . . ... ... ... L.
122 Principauxrésultats . ... ... .............

Introduction

2.1 Mathematical study of a plasmamodel . ... .........
2.1.1 Presentationof thesystem . . . .. ... ... ......
2.1.2 Two-fluid plasma description . . . . . .. ... ... ..
2.1.3 Criticality of the Hall-MHD system . .. ... ... ..
214 Mainresults . . . ... .. Lo oo Lo

2.2 Mathematical study of a non-local equation with nonlinear
diffusion . ... ... ... . L o
221 Motivations . . ... ... o oo
222 Mainresults . . . ... o oo

On the well-posedness of the Hall-MHD system in critical spaces
3.1 Global existence and time-decay estimates for small data in

3
the spaces B} ; withgeneral 1 <p <oo .............

3.1.1 Global existence for smalldata . . . ...........
3.1.2 Local existence for small current . . . ... ... ....
313 Uniqueness . ... .....................
3.14 Propagation of Sobolev regularity . ... ... .. ...
3.1.5 Time-decayestimates . ... ...............

1

3.2 Local well-posedness for large data in the spaces 327,1, and blow-
upcriterion . .. ... o Lo
3.2.1 Local existence by energy method . . . ... ... ...
322 Uniqueness . ... .....................
323 Stability . . ... ... . oo o
324 Blow-upcriterion .. ........... . ... ...

3.3 The Fujita-Kato type theorem . . .. ... ... .........
33.1 Globalexistence . .....................
332 Uniqueness ... ......................
3.3.3 Propagation of higher Sobolev regularity . .. ... ..
334 Proofof Corollary2.1.6. .. ... ... ... ... ...
3.3.5 Proofof Corollary2.1.7. . . . . ... ... ... ...

XV

W M =

NN

11
11
11
12
16
18

27
27
30

33



XVi

3.3.6 Weak-strong uniqueness . . . . .. ... ... ...... 71
34 The 21D flows with large velocity fields . . .. ......... 77
341 Aprioriestimates. . . . ... ... . .00 0L 77
3.4.2 Existence and uniqueness . . ... ... ... ...... 79
Global regularity and long-time asymptotics for a generalized non-
local Burgers type equation 83
41 Global regularity for smooth positive periodic initial data . . . 83
411 Localexistence .. ..................... 83
412 A Beale-Kato-Majda type criterion . . . . ... ... .. 92
4.1.3 Instant regularization and global regularity . . . . . . . 94
4.2 Global existence of weak solutions for positive bounded peri-
odicdata . ... ... .. ... ... o 98
421 Proofof Theorem?225 .. ................. 99
43 Long-time asymptotics and stability . . .. .. ... ...... 101
431 Proofof Lemma227.................... 102
432 Proof of Theorem?22.8 . ... ... ... .......... 102
Notations and definitions of some weak solutions 111
Al Notations . . . .. ... ... .. . 111
A.2 Definitions of some weak solutions . . . . .. ... ... .... 111
Sobolev Spaces, Besov Spaces and commutator estimates 113
B.1 Littlewood-Paley decomposition and Besov spaces . . . . . . . 113
B.2 A priori estimates in Besov spaces for the heat equation . . . . 115
B.3 Nonlinearestimates . . . . ... ... ............... 116
B.4 Commutator estimates . . . ... ... .............. 120
B.5 Sobolevspaces. ... ........ ... ... .. .. . ... 122
1
The well-posedness theory for Hall-MHD system in spaces sz,r for
general r 125
C.1 Global existence for smalldata . . . ............... 125
C.2 Ideas on the local existence for small initial velocity of election 129
Schauder Estimates for a class of general non-local equations 131
D.1 Preparation . ... .............. .. . . . ..., 131
D.2 Proof of Theorem4.1.4 . ... ... ... ..... ... .... 133

Bibliography 137



Chapter 1

Résumé étendu en francais

Cette these est consacrée a I'étude mathématique d"un systeme de la magnéto-
hydrodynamique prenant en compte 1’effet Hall, et d’une équation scalaire
de type Burgers avec terme non local et diffusion non linéaire.

Les résultats principaux obtenus sur ces deux types d’équations sont présen-
tés dans les paragraphes qui suivent.

1.1 Etude mathématique d’un modele de plasma

1.1.1 Présentation du systeme

La premiere partie de la these concerne le systeme de la magnéto-hydro-
dynamique incompressible, prenant en compte l’effet Hall suivant':

diu+u-Vu+ VP = (VAB)AB+ uAu, (1.1.1)
divu =divB =0, (1.1.2)
dtB =V A ((u—hV AB) AB) + vAB. (1.1.3)

Les inconnues sont :

e lavitesse u = u(t,x) (avect > Oet x € R%) qui est un champ de vecteurs
sur R3 dépendant du temps;

e le champ magnétique B = B(t, x) qui est également un champ de vecteurs
sur R3 dépendant du temps;

e la pression P = P(t,x), qui est a valeurs réelles.

Les nombres réels strictement positifs y et v représentent la viscosité cinéma-
tique et la diffusivité magnétique, et h > 0 représente la magnitude de I'effet
Hall.

On souhaite résoudre le probleme de Cauchy pour le systeme ci-dessus
avec conditions initiales:

(u(0,x), B(0,x)) = (up(x),By(x)), x€R3, (1.1.4)

ot les champs de vecteurs u et By sont a divergence nulle. Aumoins formelle-
ment, la condition de divergence nulle pour B est préservée au cours de
I’évolution, alors que la présence de VP assure divu = 0.

IDans R3, nous notons w A z := (wpz3 — W3zy, Waz1 — W1z, W12y — Wz )T et divew := 2]3- djw;.
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Le systeme (1.1.1)—(1.1.3) que I’on désignera dorénavant par systeme de la
Hall-MHD est utilisé dans la modélisation de fluides conducteurs tels que
plasmas ou electrolytes (u représente la vitesse des ions) lorsque 'on prend
en compte le fait que dans un fluide conducteur en mouvement, le champ
magnétique induit des courants qui, a leur tour, polarisent le fluide et changent
le champ magnétique. Ce phénomeéne qui est négligé dans la MHD classique
(i.e. pour h = 0) est modélisé par le champ électrique de Hall Ey := h] A B,
avec | := V A B désignant le courant associé a J. L'effet Hall doit étre pris en
compte dans la description des vents solaires, des étoiles a neutrons ou de la
géo-dynamo (voir par exemple [1, 2, 3, 4, 5, 6]).

Si le systeme de la Hall-MHD est bien connu des physiciens, il n’a attiré
l'attention des mathématiciens qu’assez récemment a la suite, notamment, de
l'article d’Acheritogaray, Degond, Frouvelle et Liu [7] (dérivation formelle
du systeme a partir de la théorie cinétique, voir le sous-secteur 2.1.2). De
nombreux autres travaux mathématiques ont suivi, qui seront décrits dans
I'introduction en anglais.

Notre but principal ici est d’établir que le systéeme de la Hall-MHD est
localement (ou globalement) bien posé dans un cadre fonctionnel a régularité
critique similaire a celui que 'on utilise pour le systeme de Navier-Stokes
incompressible ou le systéme de la MHD classique.

On notera cependant que la présence du terme de Hall tue l'invariance
d’échelle du systeme. De ce fait, on considere la fonction J := V A B comme
une inconnue supplémentaire, afin d’obtenir le systéme de la Hall MHD aug-
menté suivant :

(0u+u-Vu—puAu+VP=(VAB)AB,

divu =divB =div] =0,

9B —V A ((u—hJ) ANB) —vAB =0, (1.1.5)
] =V A(VA((u—hJ)Acurl ') —vA] =0,
[ (1(0,x), B(0,x),J(0,x)) = (0, Bo, Jo),

ott curl ! := (=A)"'VA désigne l'opérateur de Biot-Savart.

On notera que le systéme augmenté est bien invariant pour tout A > 0
par la transformation :

(u(x), B(x), J(x)) ~ (Au, AB,AJ)(A%t, Ax).

Par analogie avec I'approche classique pour le systeme de Navier-Stokes
incompressible, on cherche a résoudre (1.1.2) dans des espaces fonctionnels
anormes invariantes par la transformation ci-dessus, ce qui correspond a des
espaces fonctionnels critiques pour les données initiales au sens de l'invariance
de la norme pour les transformations suivantes :

(uo(x), Bo(x), Jo(x)) ~ (Aug(Ax), ABy(Ax),AJo(Ax)), A >0,

Dans la famille des espaces de Besov homogeénes B;,,r (qui seront définis plus
loin dans le texte), cette invariance correspond a la relations = 3/p — 1.
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1.1.2 Principaux résultats

Dans cette these, nous apporterons des éléments de réponses aux prob-
léemes suivants :

e Probleme 1 : Etablir I'existence globale a données petites dans les es-
3

21
paces critiques B ;’; 1 avecl < p < oo;
* Probleme 2 : Etablir I'existence locale a données grandes et des critéres
.1
d’explosion dans les espaces critiques B ;;

* Probléme 3 : Démontrer 1’'équivalent du théoreme de Fujita-Kato (i.e.
caractére bien posé dans 1’espace de Sobolev homogene H'/2);

e Probléme 4 : Construire des solutions en dimension 2 1/2 c’est-a-dire ne
dépendant que de deux variables.

Les résultats obtenus pour ces problémes, et présentés ci-dessous, sont les
fruits d"une collaboration avec 'un de mes directeurs de these (le professeur
Raphédel Danchin) et ont été publiés dans [8, 9] ou, en ce qui concerne les
estimations de decay, en collaboration avec Lvqgiao Liu [10].

Probléme 1

Dans ce paragraphe, on s’intéresse a la résolution globale du systéme de
la Hall-MHD avec coefficients strictement positifs et données initiales telles

3
que (ug, By, Jo) € B;,1 :
Forts des résultats classiques sur les équations de Navier-Stokes incom-
pressibles (voir en particulier l'article [11] de J.-Y. Chemin), on s’attend a
obtenir des solutions dans l'espace :

R R
Ep(T):i={w € C((0,T), B}, ), V2w € L'(0, T;B], ) et divew =0

3
.
ou dans sa version globale E, (avec w € Cy(Ry; B;,l )) si les données sont

petites.

En utilisant la formulation étendue et le théoréeme du point fixe de Picard
dans I'espace E;, on obtient le résultat suivant.

21
Théoréme 1.1.1. Soit 1 < p < oo. Soit (ug,By) € B;,1 tel que divuy =

31
divBy = 0et Jy := VABy € 35,1 . Il existe une constante cy > 0 ne dépen-
dant que de p et de y /v et telle que, si

fuoll 5, + 1Boll 34 +hlJoll 5, < cop
Bp/1 Bp,l BPJ

alors le systeme (1.1.1)-(1.1.3) avec données initiales (uo, Bg) admet une unique
solution globale (u,B) € E,, avec | := V A B € E,. De plus, pour tout m > 0,
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ona
|D™ul| 5, +||D"B|| 5 , < Cocot™2, pour tout >0,
By By

avec Cy dépendant seulement de y, v, h, p et m.

Probléme 2

Dans le cas ot 4 = v, le systeme vérifié par u, B et v := u — hJ (qui,
physiquement, représente la vitesse d"un élection) a une structure bien parti-
culiere, a savoir :

'atu—yAu:B-VB—u-Vu—VH,

divu =0,

0tB — uAB =V A (u. A\ B),

90tv — uAv =B-VB—u-Vu—hV A ((V Av) AB)
+VA(vAu)+2hV A(v-VB) — VI],

| (u(0,x),B(0,x),v(0,x)) = (w0, Bo, vo)

On constate que l'unique terme quasi-linéaire vérifie

(VA{VAD)AB),v),, = ((VAD)AB,V Av), =0.
Cette propriété d’annulation demeure apres localisation en fréquence, a un
terme d’ordre inférieur prés. En combinant localisation a 1’aide de la dé-
composition de Littlewood-Paley et méthode d’énergie, on obtient le résultat
suivant.

1
Théoréme 1.1.2. Supposons que y = v et considérons (ug, Bg) € B avec div uy =

1
divBy = Oet Jo:= V A By € B} ;.
Sans aucune condition de petitesse, il existe T > 0 tel que (1.1.1)-(1.1.3) avec
donnée initiale (1o, By) admet une unique solution (u, B) € Ep(T) avec | := V A
B € E(T). De plus, si la solution explose au temps T*, alors

* *

[ 1w, B,VB)(t)fudt =00 et | (B, VB) (O],

dt = o0

1

N

et, pour tout ¢ € (2,00),

*

T 0
|, Il B,VB)(®)|°,  dt = co.

B& o

Pour les solutions construites dans le théoréme 1.1.2, on démontre le ré-
sultat de stabilité suivant :

1
Théoréme 1.1.3. Soit (u;, By;) € B2, (R?) avec divup; = div By; = 0, tel que

1
g, := o, —hV A By, € By, (R3), pour i = 1,2. On suppose de plus que y = v
et que le probleme de Cauchy (1.1.1)-(1.1.4) avec données initiales (g1, Bo1) admet
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une solution (uq, By) sur [0, T|, telle que

.2
(41, B,V ABy) € L'(0, T; B2, (R%)).

11 existe une constante c; > 0 qui ne dépend que de y, h et de normes critiques de
(u1, By) telle que, si
| (#0,1 — 02, Bog — Bop,vo1 —v02)l| 1 <1

3 ’
By,

alors (ug 2, Bop) génere une unique solution (uy, By) € Ex(T).

Probléme 3

Toujours sous I'’hypothese i1 = v, on démontre le résultat inspiré du tra-
vail de Fujita-Kato [12] pour les équations de Navier-Stokes incompressibles,
suivant :

Théoréme 1.1.4. Sous ['hypothese u = v, soit (ug, By) € H %(IR3) avec div uy =
divBy=0e¢t Jy:=V ABy € H%(IR3). Il existe co > 0 tel que, si

B
90l g, + Bl <

e+ 150 = ol

3 2 (R?)

alors il existe une unique solution globale
(u,B) € Cy(R; H2(R) N L2(Ry; H2 (R?))
au systeme de la Hall-MHD, tel que | := V A B appartienne a L (R ; H 2 (R3))N

L2(Ry; H2 (R%)). De plus, pour tout t > to > 0, 0na

o B = RO,y + 5 [ 10, B,u = W)y e < o, By = ) ()

Nl—=

En particulier, la fonction

e ()7, + IBOI ) + lu(t) =k (O]

Nj—

est décroissante.

Finalement, si de plus (ug, By) est dans L>(R%), alors (u, B) est continue a
valeurs dans L?(R3), vérifie l'identité énergie pour tout t > tg > 0 :

t
(8172 + 1B(E) 172 + 20 LO(HWHiz +IVB|72) dv = [|u(to) 72 + 1B (to) 172,

etl'ona

lim (u(t)

2 2
+ ||B(t
£ oo ||H I ()HH

IR, =o.

1
2

Nl—=

On démontre finalement le résultat d’unicité fort-faible suivant :

Théoreme 1.1.5. Soit (ug, By) dans L?(R3) avec divug = div By = 0, et (u, B)
une solution de Leray-Hopf du systeme de la Hall-MHD avec données initiales
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(1o, Bo). Si, de plus, u et V A B sont dans L*(0, T; H'(R®)) pour un T > 0,
alors toutes les solutions de Leray-Hopf qui correspondent a (ug, By) coincident avec
(u, B) sur lintervalle [0, T).

Probléme 4

On s’intéresse enfin a la construction de solutions ne dépendant que de
deux variables pour le systeme de la Hall-MHD (comme suggéré par Chae et
Lee dans [13]). Par analogie avec les solutions de ce type pour les équations
de Navier-Stokes (décrites par exemple dans le livre [14] de Bertozzi et Ma-
jda), on parle de solution de dimension 2 1/2. Le systéeme a résoudre devient
alors :

o+ 1 - Vu+ VII = B- VB + ulAu, (1.1.6)
divii =0, (1.1.7)
dB+1i-VB+hB-Vj—hj-VB=vAB+B-Vu, (1.1.8)
divB =0, (1.1.9)
(u(0,x),B(0,x)) = (uo, By), (1.1.10)

otl les inconnues u et B sont des fonctions de Rt x R? dans R3, # :=
B ::N(Bl,Bz), V := (01,02), V := (91,02,0), div := V., A := 8% + 8% et
j =VAB= (82B3, —8183, 81B2 - azBl)tr.

Contrairement au cas de Navier-Stokes ou méme de la MHD classique,
les équations vérifiées par les inconnues ‘horizontales” sont couplées avec
I’équation sur la troisieme composante via le terme B - Vj —j- VB, ce qui
laisse peut d’espoir de démontrer un résultat global a données grandes.

On parviendra néanmoins a démontrer un résultat global avec une con-
dition de petitesse ne portant que sur le champ magnétique, en considérant
I’équation de la vorticité w := V A u suivante :

dw~+ VA (wAu) =V A(GAB)+ uAw.
Lorsque y = v, on constate que le champ de vecteur () := hw + B vérifie
30— Q- Vu+i-VQ = uAQ.

A l'aide de cette égalité et d’une méthode d’énergie, on obtient un contrdle
global de Q) dans I'espace L?(R;; H!(IR?)) et, finalement, de j dans l’espace
L*(R; HY(R?)), pourvu que le champ magnétique initial soit suffisamment
petit dans H'(IR?). Cela permet d’obtenir finalement 1’énoncé suivant :

Théoréme 1.1.6. Supposons que yu = v. Soit (uy, By) un couple de champs de
vecteurs a divergence nulle, tel que ug et By soient dans H' (R?; IR3). Il existe une

constante c3 dépendant seulement de la norme L2 de uo, Vug, et de u, h telle que, si

IBoll 1 (r2) < €3,
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alors (1.1.6)-(1.1.10) admet une unique solution globale (u, B) vérifiant

(u,B) € Cy(Ry; H'(R?)) et (Vu,VB) € L2(R,; H'(R?)).

1.2 Etude mathématique d’une équation non-locale avec une
diffusion non linéaire

1.2.1 Motivations

Dans son livre [15], Lemarié-Rieusset a introduit le modele
o+ u|V]u — |V|(u?) = vAu, x € R%or T¢

comme une variante scalaire de I'équation de Navier-Stokes classique, ot
|V| = (—A)'/? représente la racine carrée du Laplacien et a pour symbole |¢|.

Plus récemment, les travaux de Imbert, Shvydkoy et Vigneron [16, 17]
portent sur le modele non visqueux (noter l'inversion de signe):

o — u|Viu+ |V|(u?) =0, ie? o =[u|V|u (1.2.1)

Dans l'article [16], ils construisent des solutions classiques a partir de don-
nées régulieres positives et des solutions faibles a partir de données L. Dans
[17], ils établissent des estimées de Schauder pour des équations intégro-
différentielles générales qui peuvent étre appliquées a (1.2.1).

Le modele ci-dessus présente une certaine ressemblance avec les mod-
eles hydrodynamiques non-visqueux. Par exemple, a un facteur 1/2 prés,
I’équation de Burgers peut s’écrire sous la forme d"un commutateur :

o = [u, dx]u.

Le modeéle (1.2.1) peut s’interpréter comme une variante de Burgers ou1 on
remplace d; par un opérateur non-local |V| du méme ordre. L'équation
d’Euler incompressible s’écrit

oiu+u-Vu+ VP =0,

ol P est la pression, qui est donnée par P = N (u ® u) + local, ou N est
un opérateur d’intégrale singuliere avec un symbole pair. On peut donc
aussi faire une analogie entre les termes u - Vu ~ —u|V|u et VP ~ |V|(u?).
En vertu de ces analogies formelles avec Euler et Burgers, le modéle (1.2.1)
s’appelle I'équation de Burgers Non-locale.

Dans ce travail, nous souhaitons étudier I"équation de Burgers Non-locale
Généralisée:
o = [F(u),|V[¥]u x € R? ouT?, (1.2.2)

avec une condition initiale
u(0,x) = ug, (1.2.3)

Le commutateur de deux opérateurs f and g est noté [f, g] := fg — ¢f.
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oit |V[* = (—A)*/2 représente le Laplacian fractionnaire dans le régime non-
local s € (0,1].

La fonction F est donnée; on la suppose de régularité C> (R) et F/ > 0
p.p- sur (0, +0o0). Par exemple, on peut prendre F(u) = u™ avec n > 0 mais
aussi F(u) = u —sinu, e*, In(1 + u), etc. Dans ce qui suit, on fait '’hypothese
que F(0) = 0 qui n’est pas restrictif puisque (1.2.2) n’est pas modifiée si on
remplace F(u) par F(u) — F(0).

Nous aimerions signaler le paralléle entre notre modéle (1.2.2) et la classe
tres générale des équations non-locales de la forme:

o+ |V|Pp(u) = f, in (0,+00) x RY. (1.2.4)

Ces modeles apparaissent en particulier dans le controle par le bord de 1'équa-
tion de la chaleur, comme indiqué par Athanasopoulos et Caffarelli [18] et qui
renvoient au livre de Duvaut et Lions [19]. Ce type de modele est aussi utile
dans I'étude des milieux poreux.

L'existence, "unicité et la régularité des solutions faibles® du cas homogeéne
(f = 0) ont été completement etudiés par Vazquez et al. [20] (voir aussi [21,
22] pour I'équation des milieux poreux). Plus précisément, Vazquez et al.
démontrent que

Théoréme 1.2.1. [20] Soit f = 0et ¢ € C(IR) une fonction croissante. Etant donné
uy € LY(RY) N L®(RY), il existe une unique solution faible bornée au probleme
(1.2.4)-(1.2.3). Si on suppose en plus que ¢ € C®(R) et ¢’ > 0 sur R, alors
u € C®((0,+00) x RY).

Inspirés par [16, 17], nous développons une théorie du caractere bien posé
et de la régularité du modele (1.2.2) et étudions son comportement en temps
long. Tous les résultats qui suivent sont établis dans le cadre des fonctions
périodiques, a I'exception de l'existence locale qui est valable a la fois en péri-
odique et dans I’espace entier.

1.2.2 Principaux résultats

Donnons maintenant un apergu de nos résultats (qui ont été obtenus sous
la direction du Professeur Frangois Vigneron).

Existence locale avec critére de BKM.

Le premier résultat concerne les données 1y € H"(Q) positives ot Q4 =
R? ou T*.
Théoréeme 1.2.2. Soit m > % + 1 un entier, s € (0,1] et F une fonction sat-
isfaisant les hypotheses précédentes. Pour toute donnée initiale strictement pos-
itive ug € H™(QY), il existe un temps T > 0 et une unique solution locale
u € C([0,T); H™(Q%)) nC ([0, T); H™1(Q*)) au probleme de Cauchy (1.2.2)-
(1.2.3). De plus, u(t,x) > 0 pour tout (t,x) € [0,T) x QF et le maximum
max, .« U(t,-) décroit strictement au cours du temps.

3Le lecteur peut se référer a I’Appendice A.2 pour la définition des solutions faibles pour I'équation
(1.2.4).
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On dispose aussi d'un critere d’explosion de type Beale-Kato-Majda :

Théoréme 1.2.3. Supposons que
u € C([0,T); H™(Q))NC([0,T); H" 1 (Q))

est une solution strictement positive de (1.2.2), ot m > % + 1. Supposons aussi que

T
f, IVu(®)l|isdt < co.

Alors u s’étend au dela du temps T dans la méme classe de régularité.

Regularisation instantanée et caractére globalement bien posé.

Toute solution classique positive de (1.2.2) sur un intervalle de temps
[0, T) satisfait aux estimations suivantes : pour toutk € N ettout0 < tp < T

0¥, DXu|| L%, (f0,T) xT) < C(d,s, k,ty, T, min 1y, max ug). (1.2.5)

Théoréme 1.2.4. Soit 59 € (0,1], sp < s < 1. Pour toute donnée positive ug €

H™(T%) avec un entier m > % + 1 la solution du probleme (1.2.2)-(1.2.3) con-
struite au théoréeme 1.2.2 existe globalement en temps. De plus, la solution devient
instantanément réguliere et satisfait les estimations (1.2.5).

Pour obtenir ce résultat, nous symétrisons le membre de droite de (1.2.2)
en le multipliant par 2u puis en utilisant I'identité* :

F(u(t,y)) — F(u(t,x)) = (u(t,y) — u(t,x)) ) F'((1 = Du(x) + u(y)) dA.

On obtient ainsi '’équation d’évolution pour la densité énergétique w = u?:

drw = p.v. de (w(y) —w(x))K°(t, x,y) dy

ou

K 1650) = )ty Jo (1= 0t) 2t 2

Le noyau actif K° est symétrique et possede des bornes elliptiques uniformes
A—i < K° < —2-— pour un certain A > 0. Cette transformation place
[x—y|®*e [x—y|*e

le modele (1.2.2) dans le champ d’application des résultats récents de Kass-
mann et al. [23, 24] et de Caffarelli, Chan & Vasseur [25] ot des techniques
de De Giorgi-Nash-Moser permettent d’obtenir un premier gain de régular-
ité Holdérienne pour w, puis, par positivité, aussi pour u. Nous suivons
ensuite 1'idée de [17] pour obtenir une estimée de Schauder pour une équa-
tion intégro-différentielle parabolique générale, qui entraine en particulier
les bornes (1.2.5). Le Théoreme 1.2.3 et la propriété de régularisation instan-

tanée impliquent que la solution existe globalement en temps.

4Dans RY, le Laplacien fractionnel |V |° posséde une définition comme intégrale singuliere: |V|* f :=
P fa (F() — (1)K (x — ) dy 2= lim 01 fo 5. (F() — F(1) K (x — y) dy.
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Existence globale des solutions faibles.

Puisque les bornes (1.2.5) dépendent essentiellement uniquement de la
norme L* des données initiales, on peut construire des solutions réguliéres
approchées a partir de n’importe quelle donnée 1y € L®(T?) avec uy > 0.
De plus, ces solutions possedent des bornes a-priori dans 'espace L* (R4 x

TN L2(R; H3(T%)), ce qui entraine de la compacité en appliquant le lemme
d’Aubin-Lions.

Théoréme 1.2.5. Soit s € [sg, 1] avec sy € (0, 1]. Pour toute donnée ug € L°(T4),
ug > 0, il existe une solution faible globale de (1.2.2) dans
LP°(Ry x T N LA (Ry; H3 (TY)) NC(Ry; LA(T?)).

L’énergie est conservée, le moment fqrd u(t, x) dx est continu sur R™ et satisfait

er u(t,x)dx — er u(t,x)dx = Lt/ er F(u(t,x))|V|*u(t, x) dx drt.

De plus, pour tout t > 0, la solution u satisfait les estimées de régularisation instan-
tanée (1.2.5) ainsi que I'équation (1.2.2) au sens classique.

Asymptotique en temps long

Lorsque t — oo, toute solution faible de I'équation (1.2.2) converge vers
une constante, a savoir ﬁ [[40][ 12 (14), au sens fort suivant:

Théoréme 1.2.6. Soit ug € L®°(T%),uq > 0. Supposons que u est une solution

faible associée & la donnée ug par le Théoreme 1.2.5. Alors il existe un temps T qui
ne dépend que de s, d, i1(0),u(0) et des valeurs maximales de F', F" sur intervalle

0 [u(0), @(0)] de sorte que pour tout t > T, la norme || Vu(t,-)|| L~ décroit vers zéro
exponentiellement.

Enfin, nous présentons deux estimées de stabilité.

Corollaire 1.2.1. Soient Fj, F, deux fonctions qui satisfont les hypothéses précé-
dentes sur la fonction F. On considere deux données initiales positives 11, 1pn €
H™ (Td). Pouri = 1,2, on note u; la solution du probleme de Cauchy (1.2.2)-(1.2.3)
associée a F; et a la donnée ug;. On a alors I'estimée de stabilité suivante pour tout
t>0:

lur = uzlp2pay < (101 — uo2ll2epay + I F = Fall oo (pay ) e
avec une constante Cy qui ne dépend que de d, ||u1 || gm, ||uz||gm. On a aussi :

1 = vl poopay < 2VAT (|| Vi1 (8) | oo gy + | Va2 ()] ooy
1
\/ﬁﬂuo,l — uo2|| 12(4)-

_|_
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Chapter 2

Introduction

The present thesis is devoted to the mathematical study of a magneto-
hydrodynamics system taking into account the Hall effect, and of a Burgers
type scalar equation with non-local term and nonlinear diffusion.

The main results obtained on these two types of equations are presented
in the following paragraphs.

2.1 Mathematical study of a plasma model

2.1.1 Presentation of the system

In this section, we are concerned with the following three dimensional in-
compressible resistive and viscous Hall-magnetohydrodynamics (Hall-MHD)
system!:

oiu+u-Vu+ VP = (V X B) X B+ ulu, (2.1.1)
divu =0, (2.1.2)
0B =V x ((u—hV x B) x B) +vAB, (2.1.3)
divB = 0. (2.1.4)

The unknowns are:

o the vector-field u(t,x) : R4 x R®> — RR3, that represents the velocity of
the fluid;

e the vector-field B(t,x) : Ry x R® — IR?, that represents the magnetic
tield interacting with the fluid;

e the scalar function P(t,x) : R; x R? — R, that represents the pressure.

The positive parameters y and v are the kinematic viscosity and the magnetic
diffusivity, while the number i1 > 0 measures the magnitude of the Hall effect
compared to the typical length scale of the fluid.

We wish to solve the Cauchy problem for the above system with initial
conditions:

(u(0,x),B(0,x)) = (up(x),By(x)), x€R3, (2.1.5)

n R3, we note w x z := (wyz3 — w32y, W3z — W123, W1Zp — Woz1 )™ and divw := 2]3- djw;.
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where we assume that div up = div By = 0. Notice that, at least formally, the
divergence free condition for magnetic field is conserved through the evolu-
tion.

The above system is used to model the evolution of electrically conduct-
ing fluids such as plasmas or electrolytes (then, u represents the ion velocity),
and takes into account the fact that in a moving conductive fluid, the mag-
netic field can induce currents which, in turn, polarize the fluid and change
the magnetic field. That phenomenon which is neglected in the following
classical MHD equations (corresponding to h = 0):

oru+u-Vu+ VP = (V X B) x B+ ulu,

divu =0, (2.1.6)
0B —V x (u x B) = vAB, o
divB =0,

is represented by the Hall electric field Ey; := h] x B where the current | is
defined by J := V x B. Hall term plays an important role in magnetic re-
connection, as observed in e.g. plasmas, star formation, solar flares, neutron
stars or geo-dynamo. For more explanation on the physical background of
the Hall-MHD system, one can refer to [1, 2, 3, 4, 5, 6].

2.1.2 Two-fluid plasma description

We first provide a derivation of Hall-MHD system without viscosity from
a two-fluid isothermal Euler-Maxwell system for electrons and ions, through
a set of scaling limits. To simglify the presentation, we assume that the fluid
domain is the whole space R’ (namely boundary effects are neglected).

A plasma is a collection of fast-moving charged particles. At high temper-
ature and velocity, ions and electrons in an isothermal plasma tend to become
two separate fluids due to their different physical properties (inertia, charge).
We refer to [26] for physics references in book form. In the Eulerian descrip-
tion, the following basic laws and equations from physics will enable us to
determine the system of PDEs governing the dynamical evolution of such
plasmas:

¢ the mass conservation for the ions:
omt +div(nTut) =0;
* the momentum balance for the ions (D;" := 9; + u™ - V):
m*ntDfu" = —VP" + Znie(E+u" x B) + R™;
¢ the mass conservation for the electrons:
o~ +div(n u ) =0;
¢ the momentum balance for the electrons (D, :=0; +u~ - V):

m n Dyu” =—-VP  —n_e(E+u" xB)+R;
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* Maxwell’s equations:
1 .
C—zatE—VXB:—‘M()], atB—FVXE:O,'

Gauss’s law for electric field:

eodivE = p; (2.1.7)

Gauss’s law for magnetism:

divB = 0; (2.1.8)

equation for the charge density:

p=e(Znt —n");

equation for the current density:
j=e(ZnTut —nu").
In order to close the system we prescribe the state equations for perfect gases:
Pt =7Znt9, P =n"0
and the collisional moments as in [26]:
R™=eéven (Zn"u™ —n"u"), R"=-R".

Note that the last identity is due to the conservation of momentum when
collision happens. These equations describe a plasma composed of electrons
and one species of ions. e denotes the elementary positive charge, v, is the
resistivity due to the electron-ion collisions, €y, j1o and c are respectively the
vacuum permittivity, the vacuum permeability and the speed of light, re-
lated by the relation €ypoc?> = 1. The ions have charge Ze, density n', mass
m™, velocity ut, and pressure P*, and the electrons have charge —e, density
n~, mass m_, velocity u~, and pressure P~. In addition, E and B denote the
electric and magnetic field while p and j denote the charge and current den-
sity. The two relations (2.1.7) and (2.1.8) are propagated by the dynamic flow,
provided that we assume that they are satisfied at the initial time.

Now, we follow the idea of Acheritogaray et al. [7] to derive the compress-
ible Hall-MHD system and MHD system without viscosity. We introduce
scaling units ng, ug, Eo, Bo, Lo, to, po, jo for respectively the densities, veloci-
ties, electric field, magnetic field, space, time, charge and current. We assume
that these units are related by the following relations:

T
Lo=wuoty, uo=+/—r, Eo=1ugBo, po=-eno.
m

The first relation means that we observe the system at the convection time
scale. The second relation states that the convection velocity is that of the ion
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thermal speed. The third relation is typical of a MHD scaling and states that
the main contribution to the electric field is induction due to the motion of
the charged fluid. Finally, the last relation expresses the consistency between
the density and charge units.

Then, six dimensionless parameters appear:

m- . . . .
o &2 = s the electron to ion mass ratio and is very small;
2 eEoLo_ . .
ot =—p—is the ratio of the electric energy to the thermal energy;
e2v,nougLy .
* B = ———— measures the relaxation frequency of the electron and

ion velocities due to collisions;

v = ? is the ratio of the fluid velocity to the speed of light;

—;OHLZ, where A is the scaled Debye length and measures the

closeness to quasi-neutrality;

./\2:

enopug
current scales.

is the ratio of the charge current scale to the electron or ion

The dimensionless two-fluid Euler-Maxwell system is obtained:
(9nt +div (ntu™) =0,
ntDfut = -V (Zn0) + a’ZnT (E+u" x B) — pn (Zntut —n"u"),
o~ +div(n u") =0,
en Dyu =-V(n 0)—a’n (E+u xB)+Bn (ZnTut —n"u"),
2
2 __rn .
Y atE—VXB—_W]I
atB +V XE= O,
a’A%divE = p,

divB =0,
o=2Znt—n",

1
j=—(Zntut —n"u").

\

2
In all what follows, we assume that ’Y2 172 = &’y = 1in order to give rise to

the standard magnetostatic Ampere’s law and keep the Lorentz force term in
the momentum equation of ions of order 1. Then by taking the simultaneous
independent limits:

e 72 — 0 which amounts to neglecting the displacement current in Am-
pere’s equation;
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e ¢2 — 0 which corresponds to neglecting the convection term in the elec-
tron momentum equation and gives the generalized Ohm’s law?: (notice
that #*A% — 0)

1 B
+
E+u ><B———2<9V(1 )-|——)—|——4

e a2A? — 0 which uses the fact that a plasma, on the average, is almost
electrically neutral. A condition commonly termed "quasi-neutrality."

The resulting system is the so-called compressible isothermal resistive
Hall-MHD equations without viscosity. Denoting by u the ion velocity and n
the ion density, this system is written

(0 + div (nu) =0,
n(dm—+u-Vu) +V(2Zn) =j x B,
VxB=j,

1 jXxBy B
J0iB—V x (uxB)+ PV X <9V(lnn) + > —AB,
(divB = 0.

Meanwhile, we have
j=Za*n(ut —u"). (2.1.9)

Note that the term 6V (Inn) at the left-hand side of magnetic equation

has no contribution since the curl operator cancels it. We consider % =0(1)

which corresponds to resistive MHD model and there is only one dimension-

less parameter left: — " . In particular, we have

1 . .\ . .
* if — — 0, then the electron and ion velocities become identical thanks

«
to (2.1.9). This gives rise to compressible MHD system without viscos-
ity.

1
o if 27 = O(1), then the ion and electron velocities differ and Hall term

appears. This gives rise to the compressible Hall-MHD system without
viscosity.

Our study takes place in the context of the last regime, where both the
resistive and Hall terms are important. We note that it is easy to extend this
system to the viscous isothermal resistive compressible Hall-MHD system.
Additionally, we assume incompressible homogeneous viscous fluid motion.
In this case, the Hall-MHD system can be written according to (2.1.1)-(2.1.4).
From a similar argument one can derive the classical MHD equations (2.1.6).

2The reader may refer to the paper [27] by Jang and Masmoudi where this generalized Ohm'’s law
is derived from the kinetic equations.
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2.1.3 Criticality of the Hall-MHD system

Despite its physical relevance, the Hall-MHD system has been considered
only rather recently in mathematics, following the work by Acheritogaray,
Degond, Frouvelle and Liu in [7] where the Hall-MHD system was formally
derived both from a two fluids system and from a kinetic model. Then, in
[28], Chae, Degond and Liu showed the global existence of weak solutions®
in the spirit of Leray [29], as well as the local well-posedness for initial data
up and By in Sobolev spaces* H® with s > 5/2. Weak solutions have been fur-
ther investigated by Dumas and Sueur in [30] both for the Maxwell-Landau-
Lifshitz system and for the Hall-MHD system. Very recently, Dai [31] focused
on the non-uniqueness of weak solutions in the Leray-Hopf class.

In Chae et al. [13, 32], Serrin type continuation criteria for smooth solu-
tions and the global existence of strong solutions emanating from small initial
data have been obtained (see also Dai [33] for more sharp criteria). In Ahmad
et al. [34], it has been observed that the possible blow-up of smooth solutions
may be controlled in terms of the velocity only. More well-posedness results
of strong solutions for less regular data in Sobolev or Besov spaces, have been
established in [35, 36, 37, 38], and the convergence to the MHD system with
no Hall-term for 1 — 0 has been addressed in [39].

In Chae & Schonbek [40], Weng [41, 42] and Dai & Liu [43], long time
behavior of solutions have been investigated. Examples of smooth data with
arbitrarily large L* norms giving rise to global unique solutions have been
exhibited very recently in Li & Zhu [44].

Our main goal here is to establish the well-posedness of the Hall-MHD
system with initial data in critical spaces. In contrast with the classical MHD
system (2.1.6) however, the system under consideration does not have any
scaling invariance owing to the coexistence of the Hall term in (2.1.3) and of
the Lorentz force in (2.1.1), and we have to explain what we mean by critical
regularity.

On the one hand, for B = 0, the Hall-MHD system reduces to the incom-
pressible Navier-Stokes equation:

oru+u-Vu+ VP = uAu in 1R+><]R‘°’,
diva =0 in Ry x R, (2.1.10)
u(0,x) = ug in R

System (2.1.10) is invariant for all positive A by the rescaling

(u, P)(t,x) ~ (Au, A>P)(A%t,Ax) and wup(x) ~ Aug(Ax), (2.1.11)

3The reader may refer to the Definition A.2.1 for the definition of Leray-Hopf weak solutions for 3D
Hall-MHD.

“For reader’s convenience, definitions of Sobolev spaces (resp. Besov spaces) and its properties
used in the thesis are given at the Appendix B.5 (resp. Appendix B.1).
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and optimal global well-posedness results for (2.1.10) supplemented with
small initial data are obtained in functional spaces endowed with norms hav-
ing the scaling invariance® (2.1.11), for all A > 0. One can read the book [45]
by Bahouri, Chemin and Danchin for more details.

On the other hand, if the fluid velocity in (2.1.3) is 0, then we get the
following Hall equation for B:

9tB+hV x ((V x B) x B) = vAB,
B(O,x) :Bo,

which is invariant by the rescaling
B(t,x) ~ B(A%,Ax) and Bgy(x)~ By(Ax).

Therefore, if 1 > 0 and if we neglect the Lorentz force in (2.1.1), then it is
natural to work at the same level of regularity for # and VB, while for h = 0
(the classical MHD system) u and B have the same scaling invariance.

The way to reconcile the two viewpoints is to look at the current function
J = V X B as an additional unknown. Now, owing to the vector identity

V x(Vxw)+Aw = Vdiv w
and since B is divergence free, we have AB = —V X J, whence
B=curl 'J:=(—A)"'V x J,

where the —1 order homogeneous Fourier multiplier curl ™! (the so-called
Boit-Savart operator) is defined on the Fourier side by

F(eurl )(&) := % 2.1.12)

With that notation, one gets the following extended Hall-MHD system:

(0iu+u-Vu—pAu+ VP = (V xB) xB,

divu =divB =div] =0,

0tB —V x ((u—hJ) x B) —vAB =0, (2.1.13)
0] — V x (V x ((u—hJ) x curl '])) —vAJ =0,

[ (u(0,x),B(0,x),J(0,x)) = (uo, Bo, Jo)

In contrast with the original Hall-MHD system, the above extended system
has a scaling invariance (the same as for the incompressible Navier-Stokes
equations (2.1.10)). This reformulation motivates us to give the following
definition of criticality on the original Cauchy problem (2.1.1)-(2.1.5):

5Pointing out a smallness condition for ug leading to global existence in a space that does not obey
this invariance is essentially equivalent to solving the global well-posedness issue for (2.1.10) in the
large data case.
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Definition 2.1.1. A critical space for initial data (ug, By) is any Banach space
X C S'(R3) whose norm is invariant for all A > 0 by (ug(x), Bo(x), Jo(x)) —
(Aug(Ax), ABo(Ax), AJo(Ax)).

A critical space for solutions (u, B) is any Banach space X C S'(R3) whose
norm is invariant for all A > 0 by (u(x), B(x), J(x)) — (Au, AB,AJ)(A%t, Ax).

Studying whether the Hall-MHD system written in terms of (u, B, J) is
well-posed in the same critical functional spaces as the velocity in (2.1.10),
and if similar blow-up criteria and results related to the structure of the sys-
tem may be established is part of the main aim of the present thesis.

2.1.4 Main results

After the celebrated work by Fujita & kato [12] and later by Cannone [46],
Chemin [11], it is by now classical that the incompressible Navier-Stokes
equations are well-posed (locally for large data or globally for small data)

3

in all homogeneous Besov spaces B;,’,, ! withl <p <ooand1 <r < co. Sim-
ilar results have been obtained for the classical incompressible MHD system
(2.1.6) by Miao and Yuan in [47]. According to the scaling considerations of
the above paragraph, it is natural to look for similar results for the Hall-MHD
system written in its extended formulation (2.1.13).

In what follows, we present the main results for the Hall-MHD system
obtained in the thesis concerning the following four problems.

* Problem 1: Global existence and time-decay estimates for small data in
31
the critical spaces B ;,1 with general 1 < p < oo ;
* Problem 2: Local well-posedness for large data and blow-up criterion
1
in the critical spaces B, ; ;

¢ Problem 3: The Fujita-Kato type theorem (i.e. the solvability in homo-

geneous Sobolev spaces H ?), and properties related to the structure of
the system;

¢ Problem 4 The Z%D flows with large velocity fields.

The results obtained for Problem 1-4 and presentation below are super-
vised under one of my thesis director, professor Raphédel Danchin, and have
been recently published or accepted in [8, 9]. The problem concerning time-
decay estimates and stability is based on a collaboration with Lvqgiao Liu [10].

Problem 1
Let us first consider the case of positive general coefficients u, v and h,

3
for data (ug, By, Jo) in B ;’7”1 . Following the paper [11] by Chemin dedicated
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to the incompressible Navier-Stokes equations, we introduce for T > 0, the

space®

3 3
EP(T)::{w eC(l0,T],B], ), V2w € LI(0,T;B) ) and divaw = o}

|
and its global version E, (with w € C,(IR; B;”l ) if T = +o0.

Using the extended formulation and Picard’s fixed point theorem in the
space E,, we obtain the following result, which works for any positive coeffi-
cients y, v and h.

3

Theorem 2.1.2. Let 1 < p < oo and (ug, By) € B’E’I with divug = divBy = 0
R

and By := V X By € B;’j,l . There exists a constant ¢y > 0 depending only on p

and /v such that, if

loll 5o+ 1IBoll 31 +RlJoll 51 < cop, (2.1.14)
Bp/1 Bp,1 B’y/1

then the Cauchy problem (2.1.1)-(2.1.5) has a unique global solution (u,B) € Ep,
with ] .=V X B € Eyp. Furthermore,

|ullg, +1IBllg, +hllT g, < 2cop- (2.1.15)
Moreover, for any integer m > 1, we have

ID™ul| 5, +|ID"B| 5, < Cocot 2,
B B

pl pl

forall t > 0, where
ID"al] 5, = sup D% 5,
Bpa |a|=m By
and the positive constant Cy depends only on u, v, h, p, m.
If, in addition, uy € H® and By € H" with

%—1<s§r and %<r§1+8, (2.1.16)

then (u,B) € Cy(R4; H® x H"), Vu € L*>(Ry; H*) and VB € L?>(Ry; H") and
the following energy balance is fulfilled for all t > O:

t
lu(®)1F2 + B2 +2 | (| Val72 + v VBIZ:) dT = |luolF2 + | Boll7-
(2.1.17)
Finally, in the case where only Jo fulfills (2.1.14), there exists some time T > 0 such
that (2.1.1)-(2.1.5) has a unique local-in-time solution on [0, T| with (u,B,J) in
E,(T), and additional Sobolev regularity is preserved.

®The reader may refer to the Notations in the Appendix A.1 for definitions of time-space spaces
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The key to the proof of Theorem 2.1.2 is to consider the extended Hall-
MHD system (2.1.13), suitably rewritten in the form of a generalized Navier-
Stokes system that may be solved by implementing the classical fixed point
theorem in the Banach space E,. In order to derive an appropriate formula-
tion of the system, we need to use some algebraic identities. The first one
is that for any couple of C! divergence free vector-fields z and w on R®, we
have

3
w-Vz=div(z®w), where (div(z® w))].:: o(zjwy).  (2.1.18)
k=1

Observe also that

(wa)xw:w-vw_v<@>.

Hence, setting I := P + |B|?/2, equation (2.1.1) recasts in
diu +div(u @ u) + VII = div(B ® B) + uAu. (2.1.19)

After projecting (2.1.19) onto the set of divergence free vector fields by means
of the Leray projector P :=1d — VA~ ldiv, we get

o — pAu = Qu(B, B) — Qq(u, u),

where the bilinear form Q, is defined by

Qu(z, w)::%P(diV(Z Qw)+div(w ® z)).
Next, by using the identity
Vx(wxz)=z-Vw—w-Vz, (2.1.20)
one can rewrite Hall term as
Vx(JxB)=B-VJ]—]-VB.
Hence, combining with (2.1.18), equation (2.1.3) recasts in
0tB —vAB = Qu(B,h] — u),

where
Qp(z, w):=div(z @ w) — div(w ® z),

and the equation for J may thus be written

0] —vAJ] =V x Qp(curl ], h] —u).
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Altogether, we conclude that the extended Hall-MHD system (2.1.13) recasts
in
oru — uAu = Q,(B,B) — Qu(u, u),
atB —VAB = Qb(B/ h] - M),
3] —vA] =V x Qp(curl '], h] —u),
(u(ol x)/ B(O/ x)/ I(OI x)) - (u()/ BOI IO)

Set U := (U3, U, U3) with U; := u, U := B and U; := J. Then, (2.1.21) may
be shortened into:

(2.1.21)

a u-A u= lI, u ’ yAu
t TR Q( ) with Ay,yu = vAB (2.1.22)
u(o,x) = U, vAJ

and where Q : R? x R? — R’ is defined by

Qa(V2, W2) — Qa(V1, W1)
Q(V,W):= Qp(Va, hW3 — Wy)
V X Qb(curl_lVg;, ]’le — Wl)

The gain of considering the above extended system rather than the initial one
is that it is semi-linear, while the Hall-MHD system for (u, B) is quasi-linear.
The quadratic terms in the first two lines of (2.1.22) are essentially the same
as for the system (2.1.10).

Owing to the Hall term in the last line however, one has to go beyond the
theory of the generalized Navier-Stokes equations as presented in e.g. [45,
Chap. 5] since the differentiation is outside instead of being inside the first
variable of Q. This actually prevents us from considering Problem 2 with
large Jop and Problem 3, 4.

Problem 2

In the case” 1 = v, we find that there is a cancellation property that elimi-
nates the Hall term when performing an energy estimate. This will enable us
to prove the following local well-posedness result in the sense of Hadamard

.1
for large data in the critical Besov space B;,, together with blow-up criteria
involving critical norms.

.1
Theorem 2.1.3. Assume that y = v. For any initial data (uo, Bo) in B3, with

1
divuyg =divBy =0and Jo .=V X By € Bzf,l, there exists a positive time T such
that the Cauchy problem (1.1.1)-(1.1.4) has a unigue solution (u, B) € Ep(T) with
J :=V x B € Ey(T). Moreover, if the maximal time of existence T* of that solution
is finite, then

*

T 2
[ 1, B, VB)(1) [} dt = o0

7That is made in most mathematical papers devoted to the Hall-MHD system even though it is not
physically motivated.



22 Chapter 2. Introduction

T*
J"O |(u, B, VB)(1)] 5 dt = oo (2.1.23)
BZ,l
and, for any ¢ € (2,0),
T*
jo I (u, B,VB)(t)Hzgl dt = co. (2.1.24)

As an application, the following corollary states the (global) stability for
1
possible large solutions of Hall-MHD system in the spaces Bj ;.

1
Corollary 2.1.4. Assume that (ug;, Bo;) € B2, (R®) with div ug; = divBg,; = 0

1
such that vy ; := ug; —hV x By; € 322’1(11(3), i = 1,2. Suppose in addition that for
i = v the Cauchy problem (1.1.1)-(1.1.4) supplemented with initial data (ug 1, Bo1)
admits a solution (uq, By) such that for some time T > 0,

.5
(11, B,V x By) € LY(0, T; B, (IR%)).

There exist a positive constant ¢y depends only on u, h and some critical norms of
the solution (uq, By) such that if

||(n01 — 102, Bo1 — Bop,v01 —vo2)|l 1 < c1, (2.1.25)

1
B,
then (uop, Boo) generates a unique solution (up, By) € Ex(T).

In order to explain where that cancellation comes from, let us introduce
the auxiliary unknown v := u — hJ (that may be interpreted as the velocity of
the electron, see [1] page 5). Recall the following vector identities:

V(w-z) = (Vw)"2+ (Vz)"w and (Vw — (Vw)")z= (V xw) x v.
Hence, combining with (2.1.20) yields

Vx(wxz)=z-Vw—w-Vz
= (Vw— (Vw)")z+ (Vz— (Vz2)")w —2w - Vz+ V(w - 2)
= (Vxw)xz+(Vxz)xw—2w -Vz+V(w-z). (21.26)

Then, applying identity (2.1.26) to the term V x (v x B), equation (1.1.3)
turns into

0tB—uAB = (Vxv)xB+]Jxu—2v-VB+V(v-B).
Taking h - curl of the above equation, and subtracting it from (1.1.1), we get

0tv —puAv =B-VB —u-Vu—hV x ((V xv) x B)
+hV X (u x J)+2hV x (v-VB) — VIL
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Therefore, since ] = u — v, in terms of unknowns (u, B, v), the extended
Hall-MHD system reads

(0 — uAu =B - VB —u-Vu— VII,

divu =0,

0tB— uAB =V x (v x B), (2.1.27)
0tv — 4Av =B-VB—u-Vu—hV x ((V x v) X B)

L +V x (vxu)+2hV x (v-VB) — VIL

The only quasilinear term cancels out when performing an energy estimate,
since

(VX ((Vxv)xB),v),,=((Vx0v)xB,Vxv),=0. (2.1.28)

After localization of the system by means of the Littlewood-Paley spectral

cut-off operators A; defined in the Appendix B.1, the above identity still

holds, up to some lower order commutator term?®.

Problem 3

Still for 4 = v, we show that the Hall-MHD system is indeed globally

well-posed if 1y, Byp and vy are small in H? (1R3), a Fujita-Kato type result for
the Hall-MHD system in the spirit of the celebrated work [12]. We also get
some informations on the long time behavior of the solutions, similar to that
are presented for the System (2.1.10) in e.g. [45, Chap. 5].

Theorem 2.1.5. Assume that yp = v. Let (ug, By) € H%(IR3) with divuy =

divBy = 0,and Jp := V X By € H%(IR3). There exists a constant ¢co > 0 such
that, if

1013 oy + B0l 3 ) + N0 = ol g o) < 21, (2.1.29)

then there exists a unique global solution
(u,B) € Cy(R+; HE(R?)) N L*(Ry; 3 (R?))
to the Cauchy problem (1.1.1)-(1.1.4), such that | := V x B € L®(Ry; H%(IR3)) N

L*(Ry; H3 (R3)). Furthermore, for all t > ty > 0, one has

t
ot B = B2y +5 [ 0B =B < 0B u— B W),

(2.1.30)

2,
H2
In particular, the function

s () + B, + () =1 ()

Nj—

2
2

is nonincreasing.

81n this thesis, the commutator of two elements, f and g, is the element [f, ¢] := fg — gf.
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If, in addition, uy € H® and By € Hstl for some s > 0 with s # 1/2, then
(u,B) € C,(Ry; H® x H**1), Vu € L?>(Ry; H®) and VB € L*>(R4; H*1).

Remark 1. Note that the functional framework used in the above statement
ensures that all the terms of System (2.1.1)-(2.1.4) are well defined. In partic-
ular, the most nonlinear one, namely V x ((V x B) x B), makes sense since
both B and V x B have positive Sobolev regularity.

Remark 2. A small variation on the proof yields local well-posedness if as-
suming only that ||ug — h] HH b o) is small. In contrast with the incompress-

ible Navier-Stokes equations however, whether a local-in-time result may be
proved without any smallness condition is an open question.

Corollary 2.1.6. If (u, B) denotes the solution given by Theorem 2.1.5 and if, in
addition, (uo, By) is in L?(R3), then (u, B) is continuous with values in L>(IR3),
satisfies the energy balance (2.1.17) for all t > 0, and we have

. 2 2 2 —
Jim (a2, +IBOI2, +1TOR,) =0. 213D

The following corollary states that global solutions, even if large and with
infinite energy, enjoying a suitable integrability property (that is obviously
satisfied by the solutions constructed in Theorem 2.1.5) have to decay to zero
at infinity.

Corollary 2.1.7. Assume that (ug, By) € H%(]R‘g) with divuy = div By = 0 and

Jo=VxBy € H %(IR?’). Suppose in addition that the Hall-MHD system with
i = v supplemented with initial data (ug, By) admits a global solution (u, B) such
that

(u,B,V x B) € L*(R; HY(R%)).

Then, (u, B) has the regularity properties of Theorem 2.1.5, and (2.1.31) is satisfied.

Our second purpose about Problem 3 is to prove a weak-strong unique-
ness result for Hall-MHD system, namely that all Leray-Hopf weak solutions
(in the tempered distribution meaning) coincide with the unique Fujita-Kato
solution whenever the latter one exists. That result turns out to be less sensi-
tive to the very structure of the system, and is valid for all values of y, v and
h.

Theorem 2.1.8. Consider initial data (ug, By) in L?(R?®) with divug = div By =
0. Let (u, B) be any Leray-Hopf solution of the Hall-MHD system associated with
initial data (ug, By). Assume in addition that u and V x B are in L*(0, T; H' (R?))
for some time T > 0. Then, all Leray-Hopf solutions associated with (ug, By) coin-
cide with (u, B) on the time interval [0, T].

In fact, for 4 = v, one can even prove well-posedness in any critical space
.1
By, with r € [1,00] (see Appendix C). Then, the components of the solution

will belong to the following space”’:

E (T)-—{ Cr(B2 ), V22 € Ih(B2 d divz=
2+(T):=41z € Cr(B;,), Vz € Lp(B;,) an ivz=0¢,

9The reader may refer to Definition B.2.2 for the definition of ‘tilde spaces’
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where the letter T is omitted if the time interval is R ..

1
Theorem 2.1.9. Assume that u = v. Consider initial data (ug, B) in B, with

.1
divag = divBg = Oand Jo := V x By € B3 for some r € [1,00]. Then, the
following results hold true:

1. there exists a universal positive constant c such that, if

[uo| + |l — BJol| 1 < cop, (2.1.32)

1 1
2 2
2 2
then the Hall-MHD system has a unique global solution (u, B) with (u, B, J)
in E2 e

2. Ifonly ||lug — hJy H <o, then there exists T > 0 such that the Hall-MHD
2r

system has a unique solution (u, B) on [0, T|, with (u, B, J) in Ep,(T).

Problem 4

As proposed by Chae and Lee in [13], we consider the 21D flows for the
Hall-MHD system, that is, 3D flows depending only on two space variables.
This issue is well-known for the incompressible Navier-Stokes equations (see
e.g. the book by Bertozzi and Majda [14]). In our case, the corresponding
system in R* x IR? reads:

o+ 1i- Vu+ VII = B- VB + uAu, (2.1.33)
divii =0, (2.1.34)
B+ii-VB+hB-Vj—hj-VB=vAB+B-Vu, (2.1.35)
divB =0, (2.1.36)
(u(0,x), B(0,x)) = (uo, By), (2.1.37)

where the unknowns u and B are functions from RT x RZtoR3, # := (uy,up),
B := (By,By), V := (81,8;), V := (81,02,0),div := V-, A := 32 + 83 and
j = 6 X B = (82B3, —81B3, 81B2 — 82B1)tr.

A small modification of the proof of [28] allows to establish that for any
initial data (uo, By) in L2(IR%;R3) with diviip = divBy = 0, there exists a
global-in-time Leray-Hopf weak solution'" (u, B) of (2.1.33)—(2.1.37) that sat-
isfies:

Hu( )HLz RR2) ‘1‘HB( )HLZ R2) —|—2f ‘uHVuHLZ R?) +VHVBHL2 R?) )dT
< luo|32ge) + 1Boll 72z (2:1.38)

Whether that solution is unique and equality is true in (2.1.38) are open ques-
tions.

10Tn the 21 D setting, one needs to slightly adjust the Definition A.2.1.
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The difﬁculty here is that, unlike for the Z%D Navier-Stokes equations or
for the 23D MHD flows with no Hall term, the two-dimensional system sat-
isfied by the first two components of the flow is coupled with the equation
satisfied by the third component, through the term B - Vj — j - VB, thus hin-
dering any attempt to prove the global well-posedness for any large data by
means of classical arguments.

Our aim here is to take advantage of the special structure of the system so
as to get a global well-posedness statement for Z%D data such that only the ini-
tial magnetic field is small. Since it has been pointed out in [13] that controlling
just j in the space L?(0, T; BMO(IR?)) prevents blow-up of a smooth solu-
tion at time T and because the space H!(IR?) is continuously embedded in
BMO(IR?), it is natural to look for a control on j in the space L?(0, T; H! (IR?))
forall T > 0.

Then, our idea is to look at the equation satisfied by the vorticity w :=
V x u, namely

dw + V x (wx u) =V x (j x B) + pAw.
In the case y = v, the vector-field ) := hw + B thus satisfies
3#Q—Q-Vu+ii-VQ = uAQ. (2.1.39)

From that identity and energy inequality (2.1.38), obvious energy estimates,
one can get a global control of Q in the space L?>(IR*; H'(R?)) and, finally,
of j in L?(R*; H'(R?)), provided the initial magnetic field is small enough
in H'(IR?). This leads to a global well-posedness statement, under the sole
assumption that the initial magnetic field is small.

Theorem 2.1.10. Assume that y = v. Let (19, By) be divergence free vector-fields
with ug in L?(R%;R3) and By in H'(R?;R3). There exists a constant c3 > 0 such
that, if

[0l r2(r2) + | Bollr2(r2) + [0 — BV X Bo|12(r2) < c3p,

then there exists a unique global solution (u, B) to the Cauchy problem (2.1.33)-
(2.1.37), with (u, B) € Cp(R4; L*(R?)) N L?(R4; H(R?)) and

VB € L®(Ry; L2(R?)) with V?B e L*(R,;L*(R?)).

If both ug and By are in H' (R?), then there exists a constant c, depending only on
the L2 norm of uo, Vug, and on u, h such that if

IBoll 1 (r2) < €4,
then there exists a unique global solution (u, B) to (2.1.33)-(2.1.37), with
(u,B) € Cy(R; H'(R?)) and (Vu,VB) € L*(Ry; H'(R?)).

Remark 3. In fact, one can obtain a similar stability result for the 23D flows
as in the Theorem 2.1.4, by changing the estimates and spaces according to
the dimension. Then we see that for any initial data (u9,0) € BY,(IR?), it
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will generate a global solution (u, 0) for the system due to the theory of Z%D

Navier-Stokes equation in [14]. Thus one can conclude that if ||(By, V x
By)|| By, I8 small enough then (ug, By) also generates a unique global solu-

tion. This gives a global well-posedness result with large velocity and small
magnetic field in the critical spaces.

2.2 Mathematical study of a non-local equation with nonlin-
ear diffusion

The second part of this thesis is focused on the well-posedness, global
regularity and long-time asymptotics of a non-local Burgers equation with
non-linear diffusion.

2.2.1 Motivations

In the book [15], Lemarié-Rieusset proposed the following model
o+ u|Viu — |V|(u?) = vAu, x € R?orT?

as a scalar case study of the Navier- Stokes equations (2.1.10), where |V| =
(—A)1/2 denotes the square root of the Laplacian and has the symbol ||.

The works of Leliévre [48, 49, 50] presented the construction of global
Kato-type mild solutions for initial data in L3(IR%) and of global weak Leray-
Hopf type solutions for initial data in L?(IR?) and so on. A local energy in-
equality obtained for this model was suggestive of possible uniqueness for
small initial data in critical spaces, in a similar fashion to 3D Navier-Stokes
equations stated in e.g. [45].

Very recently, the works of Imbert, Shvydkoy and Vigneron [16, 17] have
focused on the model without viscosity (note the opposite signs),

o —ulV|u+|V|(u?) =0, ie omu=[ul|V|u (2.2.1)

In [16], global classical solutions starting from smooth positive data, and
global weak solutions starting from data in L* are constructed. In [17],
the authors established Schauder estimates for a general integro-differential
equations which can be applied to (2.2.1). Indeed the above model bears a
resemblance to some of the “even” inviscid cases. For example, dropping the
1/2 factor, the Burgers equation can be written in the form of a commutator:

oy = [u, dx]u.

Thus the model (2.2.1) can be seen as replacing d, with the non-local operator
|V| of the same order. The classical incompressible Euler equation is given
by

oiu+u-Vu+ VP =0,
where P is the associated pressure given by P = N (u ® u) + local, where N
is a singular integral operator with an even symbol. We thus can draw an
analogy between terms: u - Vu ~ —u|V|u and VP ~ |V|(u?). Because of
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the formal analogies with Euler or Burgers equation, the model (2.2.1) was
named the Non-local Burgers equation.

We are motivated to study the following Generalized Non-local Burgers type
equation:

o = [F(u),|V['lu x € R%orT¥, (2.2.2)
with some initial conditions
u(0,x) = ug, (2.2.3)

where s € (0,1] and |V|* = (—A)*/2 denotes the fractional Laplacian. The
function F is given and assumed to be C (R) smooth with F/ > 0 a.e. on
(0, +00). Such a function can be chosen like F(u) = u" withn > 0 or F(u) =
u —sinu, e, In(1 + u) and so on. In the sequel, we assume that F(0) = 0
since (2.2.2) is invariant by replacing F(u) to F(u) — F(0).

We would like to mention that our model (2.2.2) bears some semblance to
following general non-local equation:

du+ |Vp(u) = f, in (0,+c0) x RY, (2.2.4)

which occurs in the boundary heat control, as already mentioned by Athana-
sopoulos and Caffarelli [18], who refer to the model formulated in the book
by Duvaut and Lions [19]. Based on some suitable assumptions on the non-
linerality ¢, the existence, uniqueness and regularity properties of weak so-
lutions!! on the homogeneous case (f = 0) have been fully investigated in
Vazquez et al. [20]. See also [21, 22] for porous medium equation.

Precisely, Vazquez et al. [20] proved that

Theorem 2.2.1. Let f = 0. Let ¢ € C(R) be nondecreasing. Given ug € L'(R%) N
L®(RY) there exists a unique bounded weak solution to the problem (2.2.4)-(2.2.3).
If in additional, ¢ € C®(R) and ¢/ > 0in R, then u € C*((0, +-00) x RY).

Their idea of the proof is to apply the results of Athanasopoulos and Caf-
farelli [18], that ensure that bounded weak solutions are Holder continuous.
In order to improve the regularity they rewrite the equation as a fractional
linear heat equation with a source term, which has good properties.

Let us recall that, in R?, the operator |V|* enjoys a singular integral rep-

resentation!?:

IVEfi=pv. | (f(x) = f(y)) K (x —y) dy

with the kernel K*(z) = |C|dT’S+S,
z

sion d and s. See [51] for more equivalent definitions of the fractional Laplace

where ¢, ; is a constant depending on dimen-

The reader may refer to the Definition A.2.2 for the concept of weak solutions for (2.2.4).
12The principal-value distribution is defined by lim_,o f]Rd\ B.(x) (f(x) = f(y))K3(x —y) dy.
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operator. The model (2.2.2) can thus be rewritten in an integral form:

o =pv. [, (F(u(t,y)) - P(u(t,x)))u(t,y)Ks(x —y)dy. (2.2.5)

If u is periodic with period 27t in all coordinates, the representation above
can alternatively be written as

ot = pv. [ (Fu(t,)) = F(u(t,x) )u(t,y) Koer(x — y) dy,

where T is the torus and K5..(z) = Yiczd 2 +Cds . For periodic solu-

per P
tions, both representations are valid due to a sufficient decay of K® at infinity,
while the former is more amenable to an analytical study due to the explicit
nature of the kernel and applicability of known results, we shall consider that

(2.2.5) holds on (0, +o0) x R? with u periodic.

Formally, the following basic structural properties of the model (2.2.2) can
be readily obtained from either representation.

e Translation invariance: if ty > 0, xg € R? then u(t+ to, x + xg) is an-
other solution. In particular, the periodicity of the initial condition is
preserved.

e Time reversibility: if o > 0, then —u(ty — ¢, x) is a solution too.

* Max / Min principle: if u > 0, then its maximum is decreasing and its
minimum is increasing.

e Energy conservation: ||u(f)||;2 = |[uol|;2 is obtained by testing (2.2.5)
with u.

e Higher power law: for any p € (2,00) the following quantity is con-
served:

et gy + B [ [ ()P =2 = () P2)
- (F(u(t,y)) — F(u(t,x)))u(t, x)u(t,y)Kper (x — y) dx dy d.

Inspired by [16, 17], our goal is to develop a well-posedness theory for
the model (2.2.2) and study its long-time behaviour. We blend classical tech-
niques relevant to the Euler equation, such as energy estimates, a Beale-Kato-
Majda criterion, etc [14], with recently developed tools of regularity theory
for parabolic integro-differential equations [25, 52, 53, 54, 55]. Let us point
out that all the results are proved in the periodic setting, except local ex-
istence, which holds in both the periodic and the open case. Periodicity
provides extra compactness of the underlying domain, which for positive
data, due to the minimum principle, warrants uniform support from below
in space and time, which in turn further entails uniform ellipticity of the
right-hand side of (2.2.5).
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2.2.2 Main results

Let us give a brief summary of our results, where these results are ob-
tained under the supervision of Professor Francois Vigneron.

Local existence with a BKM criterion

For any initial data uy € H"(Q%) on Q¢ = R? or T¢, with 1y > 0 point-
wiseand m > ‘21 +1, there exists a unique local solution in C([0, T); H™(Q%)) N

Cl([0, T); H™1(Q*)). Even for this local existence result, the positivity of the
initial data seems essential.

Theorem 2.2.2. Let m > % + 1 be an integer. Given a pointwise positive initial data
uy € H™(Q), then there exists a time T > 0 such that there exists a unique local
solution u € C([0,T); H™(Q4)) N C'([0,T); H™"1(Q%)) to the Cauchy problem
(2.2.2)~(2.2.3). Moreover, u(t,x) > 0 for all (t,x) € ([0,T) x QF, and the maxi-
mum max, e U(t, x) is strictly decreasing in time.

The proof is based on a smoothing scheme with a regularization of the
kernel. In the case of Q7 = R the proof requires slightly more technical
care to ensure the maximum principle, while being similar in the rest of the
argument. However, in the case of Q = T we will additionally obtain
a complementary statement for the minimum: min, s u(t,x) is a strictly
increasing function of time, thus the amplitude A(t) := max, s u(t, x) —
min, s u(t, x) is shrinking. In Lemma 2.2.7 we elaborate much more on the
asymptotic behaviour of the amplitude.

We also have a blow-up criterion of Beale-Kato-Majda type:

Theorem 2.2.3. Suppose
u € C([0,T); H"(Q))nC([0,T); H" 1(Q))

is a positive solution to (2.2.2), where m > % + 1. Suppose also that

[ 19u(t) i dt < oo, (2.2.6)

Then u can be extended beyond the time T in the same regularity class.

Instant regularization and global well-posedness

Any positive classical solution to (2.2.2) on a time interval [0, T) satisfies
the following bounds: for any k € IN, forany 0 < o < T

|0Fu, Dkul|| 12 ((to 7)) < C(d, 5,k to, T, min g, max ug). (2.2.7)

Theorem 2.2.4. Let sy € (0,1],s0 < s < 1. Given a pointwise positive initial data
uy € H™(T) and m > % + 1 an integer. The solution of problem (2.2.2)-(2.2.3)
obtained from Theorem 2.2.2 exists globally in time. Furthermore, the solution is
reqularized instantly and satisfies the bounds (2.2.7).
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To achieve this we symmetrize the right-hand side of (2.2.5) by multiply-
ing it by 2u. One uses also:

Fu(t,y)) — F(u(t,x)) = (u(t,y) — u(t,0)) [; F'((1= Au(x) + Muy)) dA,

the evolution equation for w = u? thus becomes:

0w = p.v. de (w(y) —w(x))K°(t, x,y) dy (2.2.8)

with
(txy) = u( il [ F (1= Au(x) + Au(y)) d
(2.2.9)
The active kernel K° is symmetric and satisfies uniform ellipticity bound
W < K<L ﬁ for some A > 0. This puts the model within the

scope of recent results of Kassmann et al. [23, 24] and of Caffarelli-Chan-
Vasseur [25]. De Giorgi-Nash-Moser techniques yield initial Holder regular-
ity for w and hence for u by positivity. We then follow the idea of [17] to get
Schauder estimates for parabolic integro-differential equations with a gen-
eral fractional kernel (see also [54, 55]). Finally, we obtain the bounds (2.2.7).
It readily follows from the Theorem 2.2.3 and the instant regularization prop-
erty that the solution exists globally in time.

Global existence of weak solutions

Since the bounds (2.2.7) depend essentially only on the L norm of the
initial condition, we can construct global smooth approximate solutions by
smoothing out any initial data 1y € L®(T%), ug > 0. Moreover, these solu-
tions have an a priori bound in the space L*® (R, x T4)N L*(R; H*/2(T%)),
which enables us to obtain compactness by applying the well-known Aubin-
Lions lemma.

Theorem 2.2.5. Let s € [sg, 1] with sy € (0,1]. For any initial data ug € L®(T%),
ug > 0, there exists a global weak solution to (2.2.2) in the class

L®°(R; x T%) N LA (R ; H/?(T%)) N C(Ry; L*(T?)).

The energy is conserved, the momentum de u(t, x) dx is continuous on Ry and
satisfies

eru(t’,x)dx—j u(t, x) dx—j j (7,x))|V|°u(t,x) dxdr.

Furthermore, for all t > 0, solution u satisfies the instant regularization estimates
(2.2.7) and the original equation (2.2.2) is satisfied in the classical sense.

Remark 4. The continuity of the momentum at ¢ = 0 prevents any concentra-
tion of the F*/2 norm in our weak solutions.

As a corollary, we show that some negative smooth initial data could de-
velop singularity in finite time.
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Corollary 2.2.6. For any t* > 0, there exists a negative initial condition ug €
C®(T) and there exists a classical solution to (2.2.2) om [0, t*), which is discontin-
uous at time t* i.e. u(t*) € L°(T?)/C(T?).

Long-time asymptotics

Ast — oo, any weak solution to (2.2.2) converges to a constant, namely

L3 12(14), in the following strong sense: the amplitude of u(t) and the

VT
semi-norm || Vu(t)|| .~ tend to 0 exponentially fast.

Lemma 2.2.7. Let ug € L®(T%),ug > 0. Suppose that u is a weak solution corre-
spond to ug obtained from Theorem 2.2.5. Then the amplitude A(t) decays to zero
exponentially fast for all t > 0.

Theorem 2.2.8. Let ug € L*(T%),ug > 0. Suppose that u is a weak solution

corresponding to uq obtained from Theorem 2.2.5. Then there exists a time T that
depends only on s,d,(0),u(0) and the maximal and minimal values of F',F" on
the interval [u(0),1(0)] such that ||Vu(t,-)| 1~ decays to zero exponentially on

[T, c0).
Finally, concerning stability, we have the following two estimates.

Corollary 2.2.9. Let F;, F, be two functions that satisfy our assumptions on the
function F. Given two pointwise positive initial data ug 1,10y € H™(T4). Fori =
1,2, suppose that u; is the solution of Cauchy problem (2.2.2)-(2.2.3) with F; and
initial data ug ;, respectively. Then we have the following stability estimates:

lur — w2l 2pay < (o1 — o2l p2may + [1F] = Ball o ey ) e, W >0
with a constant Cy that depends on d, ||u || gm, || u2 || gm, and also

[u1 — | poo ey §2\/E7T(||V”1(t)||m(1rd) + Vo (t) || o e))
1
\/ﬁﬂuo,l — 02| r2(ra)-

_|_
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Chapter 3

On the well-posedness of the
Hall-MHD system in critical spaces

3.1 Global existence and time-decay estimates for small data
3

in the spaces B;l with general 1 < p <

The present section is dedicated to proving Th. 2.1.2. Before starting, a
fundamental observation (that will be also used in the next sections) is in
order: the triplet (u, B, P) satisfies the Hall-MHD system (2.1.1)-(2.1.4) with
coefficients (p,v, h) if and only if the rescaled triplet:

(I, B, D)(t, x) := %(u B, %P) (%Zt hx> (3.1.1)

satisfies (2.1.1)-(2.1.3) with coefficients (1,1,v/u).

Consequently, taking advantage of the scaling invariance of the homo-
geneous Besov norms (see Proposition B.1.3 (vi)), it is enough to prove the
statement in the case where the viscosity y and the Hall number h are equal
to 1.

For expository purpose, we shall assume in addition that the magnetic
resistivity v is equal to 1 (to achieve the general case it is only a matter of
changing the heat semi-group in the definition of B in (3.1.3) below accord-
ingly).

Throughout this section and the following ones, we shall repeatedly use
the fact that, as a consequence of Proposition B.1.3 (vii), one has the following
equivalence of norms for all s € R and (p,7) € [1, +00]?:

IVBlg, ~ [V xBllg, and [VBly=|VxBg (12

3.1.1 Global existence for small data

In order to establish the global existence of a solution of the Hall-MHD
system in the case of small data, we shall first prove the corresponding re-
sult for the extended system (2.1.22). It relies on the following well known
corollary of the fixed point theorem in complete metric spaces.

Lemma 3.1.1. Let (X, || - ||x) be a Banach space and B : X x X — X, a bilinear
continuous operator with norm K. Then, for all y € X such that 4K|jy||x < 1,



34 Chapter 3. On the well-posedness of the Hall-MHD system in critical spaces

equation
x=y+ B(x,x)

has a unique solution x in the ball B(0, 5% ). Besides, x satisfies || x| x < 2||y]|x.

We shall take for X the set of triplets of (time dependent) divergence free
vector-fields with components in E, endowed with the norm

IVIx: =1Vl s, +IVII 5.
Ll(B;l+1 L® B;l !

Let (e'®);>¢ denote the heat semi-group defined in (B.2.2). We set y : t
e!®Uy and define the bilinear functional B by the formula

BV, W) (1) = [ - 8Q(v, W) dr. (3.1.3)
By virtue of Duhamel’s formula (B.2.1), System (2.1.22) recasts in
U(t) =y(t)+BU,U)(t). (3.1.4)

In order to apply Lemma 3.1.1, it suffices to show that y is small in X,
and that B maps X x X to X. The former property holds true if Condition
(2.1.14) is tulfilled for a small enough ¢y > 0, as Proposition B.2.3 ensures
that y belongs to X and that

lyllx < C||Up| -
B
pl

In order to prove the latter property, one can use the fact that, by virtue
of Identity (2.1.18), Proposition B.1.3 (i), (iii), (vii), and Inequality (B.3.2), we
have

Idiv(o@w)|| 5, Sllo@w]

pl p1
Slloll s llwll 5 (3.1.5)
BPrl Bp,l
Idiv((curl o) @ w)[| 5 = [[w- V(curl'o)] 5
Blfrl B:l
S IVeurl o 5wl 5
3 P BP
pl pl
Sloll 5 llw]
BF’
pl pl
} bl !
S ol llewll®s lol%s  lwl?s o (3.1.6)
Bprl BPJ pl pl

and, since div(curl_lv) = 0, owing to Proposition B.1.3 (viii),

|div(w ® (curl_lv))H 3= H(curl_lv) -Vwl| 3
B
p1 pl
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with general 1 < p < o

< leurl 0| 5 |[Vw|
3P BP
pl pl
S ol s lwll s, (3.1.7)
P BP
pl pl

Hence, integrating on R and observing that the Leray projector P maps
3
B ;’,1 to itself according to Proposition B.1.3 (vii), we get
1Qa(w, w)[| 5, Sdiv(e@w)+diviweo)| 5,
LB, ) LY(B), )
S llollxllwllx, (3.1.8)

[Qo(v,w)|| 5, =|[divioe@w)-—diviweo)| 5,
LY(BY, )

pl Ll(B;j,l )
S ol xl|w||x, (3.1.9)
IVxQp(curl "o, w)|| 3, S [Qp(curl o, w)| s
L1 B;l ) Ll(B]f,l)
< ||div((curl_1v) Qw)|| 3 +|div(w® (curl_lv))|| 3
LY(B,, LY(B,,)
S ol x||w||x- (3.1.10)

Now, by definition of B(V, W), we have

3:B(V, W) — AB(V, W) = Q(V, W),
{B(V, W)li—o = 0.

Hence, by Proposition B.2.3 and the definition of Q in (2.1.4), we get

I1B(V,W)llx S 1Qa(V2, W2) = Qa(Vi, W1)|| 5,
Ll(Brf’,l )

Qo (Vo, Ws = Wi)|| 5, + IV x Qplecurl V3, W5 —Wy)|| 5, .
LY(BY, ) LY(B), )

Remembering (3.1.8)-(3.1.10), one can conclude that B maps X x X to X.
Hence, System (2.1.22) has a global solution (u, B, J) in X.

For completing the proof of the global existence for the original Hall-
MHD system, we have to show that if Jy = V X By, then ] = V x B so
that (u, B) is indeed a distributional solution of (2.1.1)—(2.1.5). Now, we have

(3 —A)(VXB—])=V x Qylcurl (VxB—]),] —u).

3
Remember that J — u belongs to L?(B ;)’,1) (use interpolation for the space
regularity and Holder inequality for the time variable), that J and u are in

21 21
L%(B ;,1 ) for all T > 0 since they are in LOO(B;J ) and observe that V x B is
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31
in L?(B ; 1 ). Therefore, from the definition of Qy, the properties of continu-

ity of operator curl !, and product laws, we gather that V x Qj(curl ™ }(V x
32
B—]),J—u)isin LlT(B;,1 ) for all T > 0. Because (V X B—J)|= = 0,

)
Proposition B.2.3 thus guarantees that V x B — J is in C([0, T]; B ;,1 ) for all
T > 0. Furthermore, we have

T
1(V x B—I)(T)|IB;,_Z+IO IV>xB=Jll 5 dt

p1 pl

T
<CJylr—ull 3 1V x B 5 dt

pl p1
The right-hand side may be handled by means of an interpolation inequality:

1
IJ—ul s [VXB=J|| 3., <s|IVXB=]J|| 3 +C|J—ull*s [VxB—J| s_,.
Bp BV 2 BP BV

p
pl pl pl B pl pl

Hence, using Gronwall’s lemma ensures that ||(V x B — J)(¢)|| 3, = 0,

pl
whence V x B—] = 0 ae. on R, x R3. This yields the existence part of

Theorem 2.1.2 in the small data case.

3.1.2 Local existence for small current

Let us explain how the above arguments have to be modified so as to
prove local existence in the case where only Jj is small. The idea is to control
the existence time according to the solution U’ of the heat equation:

out — AUt =0,
ut|—y = Up.

By Proposition B.2.3, we have

ITE s < CllJoll 54, (3.1.11)
Lo p BP

T\"p1 pl

and, using also the dominated convergence theorem yields

lim U] 5,2, =0, whenever 1< ¢ < co.
T—0 12(gP P

T( pl
Clearly, U is a solution of (2.1.22) on [0, T] x R® with data U if and only if
u:=u'+u

with, for all t € [0, T,

U(r) = | e 0M(Q(E, Ut + QUL T) + QI ) + Q(ut, ut)) dr.
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with general 1 < p < o

Then, proving local existence relies on the following generalization of Lemma
3.1.1.

Lemma 3.1.2. Let (X, || - ||x) be a Banach space, B : X x X — X, a bilinear
continuous operator with norm K and £ : X — X, a continuous linear operator
with norm M < 1. Let y € X satisfy 4K||y||x < (1 — M)?. Then, equation

x=y+ L(x)+ B(x,x)
has a unique solution x in the ball B(0, 1;21)-

Take B as in (3.1.3), set y := B(U%, Ut) and define the linear map £ by
L(V):=B(V,U") + B(U, V). (3.1.12)
Our problem recasts in
0 = y+ £(0) + B, ).

For X, we now take the space (denoted by Xr) of triplets of divergence free
vector-fields with components in E,(T). Then, arguing as for getting (3.1.5),
(3.1.6), integrating on [0, T| we get

||div (v@w)” 31 + ||div (curl ~ 1v®w)|| 3 <ol i

3 3
r 2P
T Bp,l LT Bp,l LT Bp,l) LT Bp,l)

Hence, using also (3.1.7) and the definition of B(V, W), we end up with

1B(V,W)lx; S IV ||WH
TBpl) (Bpl)
+(UWill s Wl )V by (3.1.13)

TBpl TBpl T Bp,l

For justifying that £ defined in (3.1.12) is indeed a continuous linear operator
on Xt with small norm if T — 0, the troublemakers in the right-hand side of
(3.1.13) are

Il s M s, and ||I|| 1IIILH 3
L7 L¥(B,, ’” L¥(B,,

since, for large Jo, the term || J*|| 31 need not to be small. One thus have
Ly (B i)
to assume that ||Jo|| 5 is small so as to guarantee that the norm of L is
B
pA
smaller than 1 for T small enough. Then, one can conclude thanks to Lemma
3.1.2, to the local-in-time existence statement of Theorem 2.1.2.

3.1.3 Uniqueness

To prove the uniqueness part of Theorem 2.1.2. Consider two solutions
(u',B') and (u? B?) of (2.1.1)~(2.1.4) emanating from the same data, and
denote by U! and U? the corresponding solutions of the extended system
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(2.1.22). Since one can take (with no loss of generality) for U? the solution
built previously, and as || Jo|| 31 =60 is assumed, we have

pa

17%[1 3¢ < 2co. (3.1.14)
Denoting 5U := U? — U, we find that 6U satisfies
0;0U — ASU = Q(U?,6U) + Q(su, u?)
with 6U|;—9=0, and thus
ou = B(U?,6U) + B(su, uh).
Arguing as in the proof of (3.1.13) yields

|82, su)lx, < [ 3 llou] 5 de+ [ 17211 5 loul] 5. at

P, p Pl pl

2 2 %
<[ u I3 19U, leull’s  dt+ [r | 5 llou] ..

pl p,l pl p pl
whence there exists C > 0 such that
1
IB(U?,6U)|x, < (5 +C||12|| 5, )||<5U|| 54
2 BP ( 5P )
pl pl

T
2112
+CJ Ilu ||B% loul| 5, dt.

pl1 pl

Similarly, we have

T T
86U, u < c f) u 18Ul e fu 51571 i)
P P P

p,l

—_

< 5llour] Bs+l)+cj (Juty) 3H+||u1||2 Jlsull 5, dt.

T\"p1 pl pl pl

N

Remembering (3.1.14), one gets

loulx, < [ (Ju] o IS+ U2E Yo d.

BY

P 1 pl p,l BP'l

Gronwall’s lemma thus implies that U = 0 in X1, whence uniqueness on
[0, T] x R3. Of course, in the case where the data Uy are small, then ]2 remains
small for all T > 0, and one gets uniqueness on R" x RR3.

3.1.4 Propagation of Sobolev regularity

Let us finally justify the propagation of Sobolev regularity in the case
where, additionally, (19, Bp) is in H® x H" with (r,s) satisfying (2.1.16). For
expository purpose, assume that the data fulfill (2.1.14) (the case where only
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with general 1 < p < o

Jo is small being left to the reader). Our aim is to prove that the solution
(u, B) we constructed above satisfies

(u,B) € C,(Ry; H* x H") and (Vu,VB) € L*(R,; H® x H").

For the time being, let us assume that (u, B) is smooth. Then, taking the 12
scalar product of (2.1.1) and (2.1.3) by u and B, respectively, adding up the
resulting identities, and using the fact that

(Vx(JxB), B)=(] xB,])=0,

one gets the following energy balance:

1d
E%(Hu”%z +Bl2) + I Vul|7. + | VB|7. = 0. (3.1.15)
Since ||z|| e = ||A%z||;2 and ||z||ge ~ ||z]|;2 + ||2]| jga, in Order to prove es-

timates in H® x H’, it suffices to get a suitable control on ||A°ul|;>» and on
| A”B]|;2- To this end, apply A® to (2.1.1), then take the L? scalar product with
Au:

LAl ATVl % = (A%(B- VB), Aw) — (A%(u- Vu), A'w)

24dt
=: A1 + A,.
Similarly, apply A’ to (2.1.3) and take the L? scalar product with A"B to get:

1d
5 7 IABlf2 + |A'VB|{2 = (A"(u x B), A'J) — (A"(J x B), A"])

2dt
=: Az + Ay.

To bound Aj, Ay, A3 and Ay, we shall use repeatedly the following classical
tame estimate in homogeneous Sobolev spaces:

IA7(fQ)Ir2 S M= lIA%8 2 + gl A7 fll2, e =0. (3.1.16)

Using first the Cauchy-Schwarz inequality, then (3.1.16), the fact that s <r <
1+ s and Young inequality, we readily get

[A1] < C(IA°BI| 12| VB[ + || B[ L= | AV B| 2) [} ¢ 5
1
< C(|IBllgs + [ 5) | VBl + g | VBl + ClIB| L[]/,

|Ao| < ClIVulllullEs,
|[As| < ClIA™(u x B[ 12| AT ]2

1
< C(|[A"u|2:|1Bl| = + | AB| L2 |ullEx) + S I VB &r

1
< C(llullfe + Vallze) 1BIE + ClIBIlr i + glI VBl

|Ag| < C|IT % Bl T || ar
< C(|IT|Z 1Bl + Tl || B a T | 1rr)
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1
< Cl[B|l=[VB|7 + ClIT i~ [1BlF + 5171

Putting the above estimates and (3.3.17) together, and using the fact that
|| B||L~ is small since, according to Proposition B.1.3 and the first part of the
proof, we have

1Bl S 1Bl 5 S (711 51 < [l (w0, Bo, Jo)| 54/
b B

pAl pl By
one gets
ld 2 2 2 2 2 2
5 77 Uaellts + [BlIEr) + [IVallgs +[[VB[5r < Cllulfhs + |[Bl[5)S(),

with
S(t) = [IVu(t) = + IVB(#) |1 + u(t) |7 + IBE) 1= + 1T (E)][7-

By Gronwall’s lemma, we conclude that for all ¢t > 0,
t
(813 + 1 B(E) 170 + fo (IVu(t)||Es + IVB(T)[|3) dT
t
< (Il + Bolf) exp(C J) S(r)dr):

As Jg S(7) dt is bounded thanks to the first part of the theorem and embed-
ding (use Proposition B.1.3 (ii)), we get a control of the Sobolev norms for all
time.

Let us briefly explain how those latter computations may be made rigor-
ous. Let us consider data (ug, By) fulfilling (2.1.14) and such that, addition-
ally, we have ug in H® and By in H" with (7, s) satisfying (2.1.16). Then, there
exists a sequence (u(j, Bjj) in the Schwartz space S such that

3 3 3
(uf, BY) — (uo,Bo) in (B), MH) x (B), NBr NH):
The classical well-posedness theory in Sobolev spaces (see e.g. [28]) ensures
that the Hall-MHD system with data (u;, Bjj) has a unique maximal solution
(4", B") on some interval [0, T") belonging to all Sobolev spaces. For that
solution, the previous computations hold, and one ends up for all t < T"
with
t
" (8) 13 + IB" (1)1 + | (10" () [ + [ VB (0) |3 de
t
< (gl + 13815 exp ([, 5"(0) ),

where

S"(t) = [ Vu" (1) [ + VB (}) [l + [ (D)][7 + [1B" () [T + 1" (D)II7=.
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with general 1 < p < o

Since the regularized data (u{j, Bj) fulfill (2.1.14) for large enough #, they gen-
erate a global solution (#", B") in E, which, actually, coincides with (u", B")
on [0, T") by virtue of the uniqueness result that has been proved before.
Therefore, S belongs to L!(0, T") and thus (#", B") is in L*(0, T"; H® x H").
Combining with the continuation argument of e.g. [28], one can conclude
that T" = +oo.

At this stage, one can assert that:
1. (u",B",]")nen is bounded in E;
2. (u",B"),en is bounded in C(R4; H® x H") and also (Vu", VB"),cN is
bounded in L?(R,; H® x H").
Hence, up to subsequence,
1. (u",B", J") converges weakly * in E;
2. (u",B") converges weakly * in L*(R; H® x H");
3. (Vu", VB") converges weakly in L?(R; H® x H").

Clearly, a small variation of the proof of uniqueness in E, allows to prove
the continuity of the flow map. Hence, given that (uj, B, J§}) converges to

3
(u0, Bo, Jo) in B;/l 1, one gets (u",B",J") — (u,B,]) strongly in E,, where
(u, B, J) stands for the solution of (2.1.22) with data (ug, By, Jo)-

Since the weak convergence results listed above imply the convergence
in the sense of distributions, one can conclude that the weak limit coincides
with the strong one in E,,. Hence (u, B) (resp. (Vu, VB)) isindeed in L* (IR, ;
H® x H") (resp. L?>(Ry; H®* x H")). Then, looking at (u, B) as the solution of
a heat equation with right-hand side in L?(R;; H*~! x H'™!) yields the time
continuity with values in Sobolev spaces (use for instance Proposition B.2.3).

3.1.5 Time-decay estimates

In this subsection, we prove the decay estimates of the solution provided
by Theorem 2.1.2. In fact, we have the following general result for small

31 B 3
initial data (ug, By) € B;,1 X (B;’,1 N Brf,l)'
Theorem 3.1.3. Let 1 < p < g < oo be such that
1

1 1 1
—min{s, —} < - ——. 1.
mm{3, ZP}_q ; (3.1.17)

3 31
Assume that uy € B;,l and By, Jo := V X By € B;{l . There exists a positive
constant cs, which depends on u,v, h, p, q such that if

||uo||B%_1 + ||Bo||Bg_1 + ||Io||Bg_1 <cs, (3.1.18)

pl q.1 9.1
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then the Cauchy problem (2.1.1)-(2.1.5) admits a unique global-in-time solution

(u,B) € E, xE;, and J:=V xBEcE,,

with
u 3, + Ul|lu 3
I ||Lw s Al ||L1(R+;B;f)

HIEDI o +IBDI < Ces

]R+;BI/],1 ) L (R+}Bq,1
(3.1.19)
If only Jo fulfills (3.1.18) and in addition
1 1 1
—<-=- (3.1.20)
3 q p

there exists a time T > 0 such that Hall-MHD system admits a unique local-in-time
solution

(u,B) € E,(T) x Eg(T) with J € E4(T).
Finally, if p, q satisfy (3.1.17) and (3.1.20) then for any integer m > 1, we have

ID"u|| 5, +I|ID"B| 5, < Cocst 2, (3.1.21)
B BF

pl pl
forall t > 0, where the positive constant Cy depends only on u,v, h, p, m.

Proof. The proof of existence statement is based on the classical energy method
and we will not offer the proof here, the reader can refer to [10] for details.

Now, we use a time-weighted method to prove the time-decay estimates
(3.1.21).

For any fixed m > 1,let T > 0 be the largest t such that

W(e) = sup <t (anu(r)nB;l +ID"B()] ) < Cocs,

0<t<t Pl Bq,l

where Cy will be chosen later.

Decay estimates for velocity fields

Applying Aj to the equation (2.1.1) and taking D§ (with || = m) on the
resulting equation leads to

3:A;D%u — pAA;Diu = A;DYPdiv (B ® B) — A;DAPdiv (u @ u).
Then

. t . .
A;D%u = " A;Diugy + fo el!=)MAP (A;Didiv (B ® B) — A;DYdiv (u @ u)) ds.
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with general 1 < p < o

Lemma B.2.1 thus implies that
|A;jD5ul|
<C fot g~ cH2Y (1) <||A]-Df§77div (B® B)||1r + [|AjDyPdiv (u @ u) ||Lp>d$
+ Ce—aﬂzzftHAjDzuOHLp
<A1+ Ay + Az + Ce= | A;Dug|| s, (3.1.22)

where
Ay i=C _[05 e—fy22j(t—5) (HAijéPdiV (B®B)||r + ||A]'D;"Pdiv (u®Ru) ”LP)dS,
Ay :=C [, e #2212 || ;DY Pdliv (B® B)|1 ds,
2
Az :=C f; eiéyzzj(tfs)Zj||AjD§71diV (u@u)l|Lrds.
2
Notice that there exists a constant ¢ > 0 such that

o~ CH2%tojm < 3—5?422”1}—%, forany m > 1. (3.1.23)

By employing Proposition B.1.1, a straightforward calculation shows that

Lo o . .
Ay <Cr 3 [}l <||A]-div (B B)||1r + || Ajdiv (u @ u) HLp) ds

_m —<§—1>j . .
<Cgjt™22 \¥ <||d1V(B®B)|| 5, +[ldiv (@ u) .3_1)
LY(BY, ) LY(B,, )
_m —(3-1)j
<cgt42” G (Julp, + 11813,
m_—(3_-1)j
<cgt327 1>f(1+%+}/)c§, (3.1.24)

where {g;}icz € /! and {gj I < 1.
Thanks to product law (B.3.6), we have

|A; D¢~ 1Pdiv (B ® B)||1
<C2||A;(DY'B®B)|1»
_(3_1);
<cgz GViipsBo B
B
pl

—(3-1)i . —(3-1)j _
<cgz D pe Bl o 318l 3 + g2 VDBl i .

1 g1 g1 Bq,l

2 gon
S[68]
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By means of interpolation , we get

D3 "Bl o 5Bl 5 + D3 "Bl s 1B
ql ql ql

1 1

S(IDsBIts 1B ) (IDSBI™, B ST
B;,l Bql ql Bql

=T
+ (HD;'sBH,Ll)(HD“Bums JBI ")
B B

.1 Bql q1

6_3
B1 7
‘1

1+ 1-1 atr
SID:B] ||B|| :

where r := %(% - %) <1

Since % - % < 1, Inequality (3.1.23) and Holder’s inequality imply that

_(3_1); rt _1 _3 1 _ _
A <Cg (1 [l ) 03D Dy A By s
2 B Bq1

<cg iy 0 npyremore=h 7 1 g)7h043 -0 g

2
m —(31)i _m _1
<2%+1Cg;2 (3 1>1r7wl+%*fc}) nt?
(3.1.25)
Thanks to (B.3.2), we have
|A;Dy ™ Pdiv (u @ u)||1p <C2||A(DE 'u @ 1) || oo )
<cg 0Dy tue )

pl

—(3-1)j _
<cg (V108 a3 Jul

3
pl B pl

By means of interpolation,

1
1D ull 5 a5 < IIDSul| 5 1||D"‘u||’"3 ]l 3"

pl B, pl pfl Bp 1 P, 1

Thus, Inequality (3.1.23) and Holder’s inequality imply that

—(3-1); ot 1 1+L 1—1
Ay <Cg” GV [ =) 4D 55 a3, s

2 B
pl pl
_(3_1); t _1 nt
<cgz V) wiid [li-9 e

m _(3_ i m _1
<2%+1cg;2 (; 1>]t*7w1+%c; ", (3.1.26)
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with general 1 < p < o

Putting (3.1.24), (3.1.25) and (3.1.26) together, one has

m 1 1
tz ||Dmu|| 3o <cs+ (1 + ﬁ + ;)C52 + W1+,,%*7’c51*%+r + W1+%C51*%.
B
pl

(3.1.27)

Decay estimates for Magnetic fields

Applying A; to equation (2.1.3) and taking D4 on the resulting equation
leads to

0tA;D{B — vAA;D{B =A;DYV x ((u— h]) x B). (3.1.28)
Then
. t . .
A;DSB = e"A;D2By +f0 =08 (A;DYV x (u x B) — hA;DEV x (J x B)) ds.
Lemma B.2.1 thus implies that
|A;DSB]|1a
t 27 . .
<c [ o (HA]-Dggv x (u x B)||1r — | A;DEV x (h] x B)||Lq>ds
+Ce 2" || A;DEBy|| 14
<Aq+ As + Ag + Ce™ 2| A;DBo | 14, (3.1.29)
where
2 —cv2% (t—s) A TN AT
Agi=C [e <||AijV x (X B)||1s + | A;DEV x (h] x B)||Lq>ds,
t — A2] .
As :=C [, e =090 | A,DSTIV x (u x B)||1 ds,
2

t — A2i .
Agi=C [, e P02 |ADEIV x (1] x B) |1 ds.
2

Similar with the steps of getting estimates (3.1.24) and (3.1.26), one can easily
show that

T _ :
Ay <Ct 2 foz o= CH2i (t-5) (||A]~V X (ux B)|s + [|1A;V x (k] x B)||Lq>ds
_m —(3—1>j
<cgit 12 V(I x (xB)| o +|Vx (I xB)| o)
LY(BI ) 1B/, )

<cg= 42 G (jul, + 18,115, )

1) 1 1
1>](1 + ﬁ + ;)C%,

= |

gCg]-t*%z’(
(3.1.30)
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and

_(3_1); rt
as <cgp G [l 4 DE By ds
3 B

2 a1

(3.1)i ¢t

<cgr U [l—9) 3 (1D ux Bl + fux D3B3 )
9.1 g1

_(3.1); 1t

SCg’JZ <‘I 1)]w1+%cé I Jt(t_s)—%s—%(1+m) ds
3
SZ%HngZ_<%_1>]‘t—%wl+%c;7%.
(3.1.31)

Because div B = 0, one can rewrite

V x (h] x B) = hV x (div(B® B) — V(g)) =hV x (div(B® B)),

then, Holder’s inequality yields
f —cv2% (t—5)n3 11| A .ya—1
Ag gChLe 2%j||A;D% 1B @ B|| 14 ds
2

—(3_1)j b 292 :
<ch2™ 1)]g]-j£ e—cvzz“f—s)zzf||D§§—1(B@B)HB3 ds
g1
—(3_1){ t_ 292 ;
<Ch2 (q 1)]g], jL €_CV22](t_S)22]||DféB|| E ||V % BH 5 ds
2 By B\

R NP
<Ches2 (1 Vigi(5) 7% [, o702 ¥ DB s
q,

m h _(3_1); m
<2#tlco2 G Vgt~ 3 W(T)cs, (3.1.32)
here we use the fact that

j: e—C_V22j(t—S)22j ds = _E (1 _ e_%C_Vtzzj) < E
cv

cv

2

Putting (3.1.30), (3.1.31) and (3.1.32) together, one has

1

m 1 1 h
tz ||DmB|| 3 q 5 c5 + (1 + -+ —)C52 -+ W1+’"C51_% -+ —WC5.
BY uov v

q.1

This combined with (3.1.27), implies that

1 1 h 1_ 1
W(T) §Cc5+C(1+ﬁ+;+;CO+Cé+m r+Cé+m)C%-

Choosing c5 small enough, one can take suitable Cy such that W(T) < 3Cocs.
By the continuous induction, we have W(t) < Cycs for all £ > 0.

This completes the proof of Theorem 2.1.2. O
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1
3.2 Local well-posedness for large data in the spaces B; |, and
blow-up criterion

Proving Theorem 2.1.3 is based on a priori estimates in the space E»(T)
for smooth solutions (u, B, v) of (2.1.27). Those estimates will be obtained by
implementing an energy method on (2.1.27) after localization in the Fourier
space. A slight modification of the method will yield uniqueness, stability
and blow-up criteria.

Throughout this section and the following one, we shall take advantage
of the rescaling (3.1.1), so as to reduce our study to thecase y =v =h =1
(remember that we have y/v = 1 in Theorem 2.1.3).

3.2.1 Local existence by energy method
First step: a priori estimates

Our main aim here is to prove the following result.

Proposition 3.2.1. Consider a smooth solution (u, B, P) to the Hall-MHD System
on [0, T] x R3 for some T > 0, and denote v := u — V x B. Let u" := e'®uy,
Bl := ¢'"*By, vl := e'®vgand (i1,B, %) := (u — u*,B — Bt,v — ol). Let

er(t) = o ()] 5

32
21
ct) = llu" )2 +IB*B)I25 + (luoll 3 + ool y)lIo B 5
By, By, By, 21 By,
There exist three positive constants x, C and Cy such that if
T C[re(tyar
fo co(T)e~ e dt < «x, (3.2.1)
then we have
|(@ B,%)| 1 +Ci|(@B,3)| s <Ck and (3.2.2)
Ly (B3y) L1(B3,)
[ Bo)| 3 +CillwB o)l | 5 < lBow)l y +Cr. (323)
L%O(Bz,l) LT(BZ,l) B2,1

Proof. From (B.2.2), Plancherel identity and the definition of || - || By s We have
for some universal constant Cq, ’

Izl o +Cillzll s 1 for z=1u" B 0" (3.24)
() el =0l

Hence Inequality (3.2.3) follows from Inequality (3.2.2).
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In order to prove (3.2.2), we use the fact that (1, B,7, IT) satisfies

ol — A = B-VB —u-Vu— VII,
;B—AB =V x (v xB),
00— AT =B-VB—u-Vu—V x ((V x7)xB)
—V x ((Vxvl)xB)+V x (vxu)+2V x (v-VB) — VII,

(3.2.5)

with null initial condition.

Apply operator Aj to both sides of (3.2.5), then take the L? scalar product

with Ajii, A]-E, A7, respectively. To handle the third equation of (3.2.5), use
that

—V x Aj((V x0) x B) =V x ([A;, BX](V x8)) + V x (B x Aj(V x 7)),
and that the L? scalar product of the last term with A]-z7 is 0. Then, we get

1d‘
2dt

1d L~ . o~
. dtHA B, + IVABIZ < |V x &0 x B)| 21 Bl

|Ajil|F: + [ VAl72 < (14;(B - VB) 2 + (|4 - V) || 2) 1A 12,

||A Oll7. + IVADIT: < (I1A;(B- VB2 + |Aj(u - Var) || 2) 1A 2

+([I[A;, BXI(V x @) [l 12 + [1A;((V x ©") x B)| 12 + [|Aj(v x u)]| 2
+2||Aj(v - VB)||12) |V x A 2.

2dt

Hence, using Bernstein inequalities, one can deduce after time integration
that for some universal constants C; and C,,

L~ . et~
H(A]u, A]B, A]U) (t)HLz + C122] j() H(A]u, A]B, A]'Z))HLz dt
ty . . , . "
< [ (I14;(B- VB) |2 + 1A - Va) | 2 + o2/ (1114, BX)(V x 9)] 2

+ 1A;((V x o) x B) |12 + |Aj(0 x u) | 2
+|Aj(v - VB)||12 + ||Aj(0 x B)||L2)) . (3.2.6)

Multiplying both sides of (3.2.6) by 25 and summing up over j € Z, we
obtain that

~ N ~ t ~ 5 ~
I B2 3 +CJ @B dr
t
<Co [, (NB- By -+l Tl o+ llox Bl g + o<l g
Fllo-VBI| 3 +(Vx0") < B 5 + Y27 (4, Bx|(V x9)]2) d.
Bj1 B;, j

(3.2.7)
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Using (B.3.2), Proposition B.1.3 (i), (ii), (iii) and Young's inequality yields

IB-VBJ 1 S IBY|*5 + [|B]|*;
B34 B3, B
<182, + Bl 1Bl
B34 B4 B},
-Vl y +lox By +loxl 5 <l + (1B 3 + el 3ol g
By, B34 By, By, B34 R Byq
S ||uL||2% + IBHP 5 + 0" %||v I .
B34 B}, Bs4 By
sl g Il 5 +IBI, 1B 5 + 2]y 2] 5
B34 B3, By, By, By1 By,

.3
Using that B = curl *(z — v) and that Vcurl™! is a self-map on B3, (see
Proposition B.1.3 (vii)) yields

lo- VBl 5 < loll, IVeurl™ (u — v)]|

B34 By, B34
N ||v|\2% + Hu||2%
B34 Byy
S Ity + oty b 5 + Il 175 + 1] 18] 5
322,1 B3, 51 By, By, By, By,
and, using also (B.3.2),
[(Vxo")xB| 3 S|V xo"| 5 |IB| 3
B2 B2 B2
B34 By, By,
S o) s lewrl ™ (u— )| 5
B3, B3,
St s (el g + 10y +lal +H7JH 1)
B B} B}, B} B}

3
From the estimate (B.4.1) with s = 3/2 and the embedding B;; — L%, we
get

3
Y218, blall 2 S V0] 5 lal 4 (32.8)
] 21 2,1
whence
ZZZH [A;, BX](V x0)||12 S [lo—ul?s +|17)*;
3221 B3,
St 2y + oy ot s
B2,1 2,1 B21
+HuH [ ]] Hv|| 9]

21 BZ,l 21 BZ,l
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Plugging the above estimates into the right-hand side of (3.2.7) and using
(3.2.4), we end up with

X(H)+C jot D(t)dt <C jot X(t)D(t)dt+C jot(cl(T)X(T) + cp(7)) dT,

(3.2.9)
where c; and ¢; have been defined in the proposition,
X(t) = a1 +1BO 1 + 150 4
B2,1 BZ,l BZ,l
and  D(t) := [[a(t)]| 5 +[[B®)] 5 +I[lo@)] 5.
B2,1 B2,l B2,l
Note that whenever
2C sup X(1) < Cq, (3.2.10)
T€[0,]
Inequality (3.2.9) combined with Gronwall lemma implies that
t t A
X(t) + % . D(t)dt < Cjo cz(r)ecﬁcl(T)dT dart. (3.2.11)

Now, if Condition (3.2.1) is satisfied with x := C;/2C?, then the fact that the
left-hand side of (3.2.9) is a continuous function on [0, T] that vanishes at 0
combined with a standard bootstrap argument allows to prove that (3.2.10)
and thus (3.2.1) is satisfied. Renaming the constants completes the proof of
the proposition. O

Second step: constructing approximate solutions

It is based on Friedrichs” method : consider the spectral cut-off operator

E, defined by
F(Enf) () = Lin1<ig1<ny (E)F (F)(E)-

We want to solve the following truncated system:

d0tB— AB =V X E,(E,(u—V x B) X E,B),

supplemented with initial data (IE,ug, [E,By).

We need the following obvious lemma:

Lemma 3.2.2. Lets € Rand k > 0. Let f € Bi,l' Then, for all n > 1, we have

I f | gy < 1N £l (32.13)
Jim [ f = fllgs, =0, (3.2.14)

1
Bnf = fllgg, S g llfll e (32.15)
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We claim that (3.2.12) is an ODE in the Banach space L?(R3;R> x R?) for
which the standard Cauchy-Ligschitz theorem applies. Indeed, the above
lemma ensures that IE, maps L” to all Besov spaces, and that the right-hand
side of (3.2.12) is a continuous bilinear map from L?(IR%* R> x R3) to itself.
We thus deduce that (3.2.12) admits a unique maximal solution (u", B") €
Cl([0, T"); L>(R%;R® x R3)). Furthermore, as [E2 = [E,, uniqueness implies
E,u" = u" and E,B" = B", and we clearly have divu" = divB" = 0.
Being spectrally supported in the annulus {n~! < |¢] < n}, one can also
deduce that the solution belongs to C'([0, T") ;B3 1) for all s € R. Hence,
setting J" := V x B" and v" := u" — J", we see that u", B" and v" belong to
the space Ex(T) forall T < T" and fulfill:

(0" — Au" =E,P(B"-VB"—u"-Vu"),
0;B" — AB" = V x E,(v" x B"),

00" — Av" = ]En77<B” -VB"—u" - Vu"+V x (v" xu") (3.2.16)

-V x ((Vx0")xB")+2V x (v”-VB"))-

Third step: uniform estimates

We want to apply Proposition 3.2.1 to our approximate solution (u", B", v").
The key point is that since [, is an L? orthogonal projector, it has no effect
on the energy estimates. We claim that T" may be bounded from below by
the supremum T of all the times satisfying (3.2.1), and that (u", B", v"),>1 is
bounded in E(T). To prove our claim, , we split (#", B", v") into

(un, Bn, vn) — (un,L’ Bn,L’ vn,L) + ("Il’l, ﬁn’ 51’1)/
where

nl.— E,ePuy, B :=E,e®By and 0" :=E,ev,.

u
Since [E;, maps any Besov space Bi,l to itself with norm 1, Condition (3.2.1)
may be made independent of n and thus, so does the corresponding time T.
Now, as (#", B",%") is spectrally supported in {& € R3|n~! < |§| < n}, the
estimate (3.2.2) ensures that it belongs to L®([0, T]; L?(IR3)). So, finally, the
standard continuation criterion for ordinary differential equations implies
that T" is greater than any time T satisfying (3.2.1) and that we have, for all
n>1,

| (@", B", ") y +Ci| @, B 3" s <Cx and (3.2.17)
L7 (B34) r(B31)

1", B",o")|| 1+ +Cill(", B, 0")|| s <|(u0,Bo,w0)| ; +Cr. (32.18)
L%O(Bz,l) LT(BZ,l) BZ,l

Fourth step: existence of a solution

We claim that, up to an extraction, the sequence (u", B",0")1eN converges
in D'(Ry+ x R3) to a solution (u, B,v) of (2.1.27) supplemented with data
(u0, Bo, vp) having the desired regularity properties. The definition of E,
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entails that
(Enuo, EnBo, Envg) — (u0, Bo,vp) in Béy

and Proposition B.2.3 thus ensures that (u™t, BV, o) — (uL,BL,vL) in
Ex(T).

Proving the convergence of (", B",7") will be achieved from classical
compactness arguments: we shall exh1b1t uniform bounds in suitable spaces
for (0u”, 9¢B", 0;v™") N SO as to glean some Holder regularity with respect
to the time variable. Then, combining with compact embedding will enable
us to apply Ascoli’s theorem and to get the existence of a limit (u,B,v) for
a subsequence. Furthermore, the uniform bounds of the previous steps pro-
vide us with additional regularity and convergence properties so that we will
be able to pass to the limit in (3.2.16). Let us start with a lemma.

~ 1
Lemma 3.2.3. Sequence (u", B",90"),>1 is bounded in Cz ([0, T}; By 1)
Proof. Observe that (1", B", 0") satisfies

(0" = Au" + E,P(B"-VB" —u" - Vu"),
9:B" = AB" + V x E,(v" x B"),
97" = AT + E, P (Bn VB — " Vi 4V x (0" x u") (3.2.19)

~V x ((V x 0") x B") +2V (v”-VB”))-

\

According to the uniform bounds (3.2.17), (3.2.18) and to the product laws:
labll, 3 < lall, ||b|| el 5

2,1 1 2 1

and [lab]| 1 < al

1

NN\»—\

1
B2
2

o8]
LT

1
B2
1 2

1
the right-hand side of (3.2.19) is uniformly bounded in L% (B, 1 ).Since u"(0) =
B"(0) = 9"(0) = 0, applying Holder’s inequality completes the proof. ~ [J

We can now come to the proof of the existence of a solution. Let (¢;);en
be a sequence of C(R®) cut-off functions supported in the ball B(0,j + 1)
of R3 and equal to 1 in a neighborhood of B(0,j). Lemma 3.2.3 tells us that

1
(#", B",%"),> is uniformly equicontinuous in the space C([0, T]; B, 7) and
(3.2.17) ensures that it is bounded in L°°( [0, T]; Bzzl) Using the fact that the

application u — ¢;u is compact from 32 1 into B2 {, combining Ascoli’s the-
orem and Cantor’s diagonal process ensures that there exists some triplet
(u, B,0) such that for all j € IN,

(", ¢;B", ¢/0") — (¢jit, ¢;B, ¢;7) in C([0,T); B, 1%). (3.2.20)

This obviously entails that (i, B", ") tends to (#, B, ?) in D' (R x R3).
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Coming back to the uniform estimates of third step and using the argu-
ment of [45, p. 443] to justify that there is no time concentration, we get that

~ 1 .5 1
(#, B,0) belongs to L*(0, T; B; ;) N LY(0,T; B3,) and to C%([O, T|;B, 1)

Let us now prove that (u, B,v) := (u* 4 i, B: 4 B, v" + %) solves (2.1.27).
The only problem is to pass to the limit in the non-linear terms. By way of
example, let us explain how to handle the term E,PV x ((V x v") x B")
in (3.2.16) (actually, P may be omitted as a curl is divergence free). Let 0 €
CP (R4 x R%R?) and j € N be such that Supp 6 C [0, j] x B(0, ). We use
the decomposition

(VXE,((Vx0v")xB"),0) —(Vx((Vxv)xB),0)
= ((Vxv") x¢j(B"—B), VxE;0) + ((V x ¢;(v" —v)) x B, V x E,;,0)
+(E,((V xv) x B) — (V xv) xB, V x60).

.3 .1
As V x v" is uniformly bounded in LlT(Bzz’l) and ¢;B" tends to ¢;Bin LT (B; ),
the first term tends to 0. According to the uniform estimates (3.2.18) and

.1
(3.2.20), V x ¢j(v" — v) tends to 0 in LlT(Bzz,1) so that the second term tends
to 0 as well. Finally, thanks to (3.2.14), the third term tends to 0.

The other non-linear terms can be treated similarly, and the continuity
of (u, B,v) stems from Proposition B.2.3 since the right-hand side of (2.1.27)

1
belongs to LlT(Bzz,l)-

3.2.2 Uniqueness

Let (u1,B1) and (uy, By) be two solutions of the Hall-MHD system on
[0, T] x R3, with the same initial data, and such that (u;, B;,v;) € E»(T) for
i = 1,2. Then, the difference (0u,dB,v) := (41 — up, By — By,v1 — 1) is in
E>(T) and satisfies

atdu — Adu := Rl/
9:6B — ASB := Ry, (3.2.21)
0t0v — Adév := R1 + Rz + R4 + R5,

where

Ry :=P(By-VOB+6B-VBy —uy-Véu—ou-Vuy),
Ry :=V x (v1 X 6B+ 6v X Bp),

R3:= -V x ((V xv1) x B+ (V x dv) x By),

Ry :=V X (v1 X du+6v x up),

R5:=2V X (v1 - VéB + év - VBy).

Hence, arguing as in the first step of the proof gives for all t € [0, T],

t t
<
I(6u,6B,60)(D)lly + [, 6,68, 60)] 5 dr < [ (II(Ry R Ra, R

N

Bs B By,
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+ ||V x ((V xv1) xIB)|| 1 + 222 1[Aj, B2x](V X (SU)HLz)dT (3.2.22)

1
2
le jEZ

Putting together the product laws (B.3.2) and the commutator estimate (3.2.8)
yields
S N[ (u1, By, uz, By )|

< Byon)
BZ

,1
1 S ||(u2z01)|\3g (0w, 60|l 3,
2,1 2,1 2,1
S (VB o)l 3 (VOB sv)]| 5

1 21 21
S [z, 01,02) ||(5u,5v)||3g :

=

IV > ((V x01) x6B)||

and

37 .
Y 2%||[A;, Box](V x 60) |12 < | VB[
jez

1V x g0

2,1

3
B2

3
2

By,
S (2, 0)]] 5 [160]]
By, B;,

Hence, by interpolation and Young’s inequality, Inequality (3.2.22) becomes

I(6,58,50) (1) + [ 11(6u,6B,50) ()| 5 d
< j 7)||(6u,6B,60)(7)| 1 dt (3.2.23)
B},
with Z(t) := C([| (w1, 42, B1, B, 01, 25) % + ol 5 ):
By, 21

Thus, Gronwall’s lemma and our assumptions on the solutions ensure
that

(6u,6B,é6v) =0 on [0, T].

3.2.3 Stability

We now focus on the proof of Corollary 2.1.4. Given that initial data
(10,2, Bo2), we know from the local-in-time existence part in subsection 3.2.1
that there exists a solution (uy, B;) on the maximal time interval [0, T*) ful-
filling

(uz, Bz,v X Bz) € EZ(Tl)/
for all T} < T*. Without lost of generality, we assume that T* < T.
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Now, following the same steps as to get (3.2.23), one can obtain similar
estimate for the difference of (u1, By, v1) and (u, By, v2). We have

|(6u, 6B, 60) ()| +j |(6u,6B,60)(7)| 5 dt

3
B,

!"mm

dt

1

<j Z1(t) + C||(6u, 5B, 5v)(r)||2% )|l (6u,6B,60) ()|

By, B

LN

+ ||(6u, 5B,5v)(O)HB

NI

1

with Z;(t) := C(||(u1, By, v1) ||2
B

+ o]l 5)'

1 21

NN\(»

Hence, by interpolation and Young’s inequality, we further have

(6w, 6B, 50) (1) 1 +j |(6u,6B,50)(1)|| 5 dt
B B
t
< [ (Z1(1)]|(6u,6B,60)| ., + C||(6u,6B,60)(7)|| 5 ||(6u,6B,60)|?, ) dt
0 B3 B3 B3y
+ || (6u, 6B, 6v)(0 )|| ] (3.2.24)

Now, one needs to prove the following lemma.

Lemma 3.2.4. Let X, D, Z; be three nonnegative measurable functions on [0, Ty].
Assume that there exists a nonnegative real constant C such that for any t € [0, Ty],

+j T)dt < X(0) + j (z1 (T)+CX2(T)D(T)>dT. (3.2.25)

If, in addition,
T
2CX%(0) exp (2 jo ' Z4(7) dT> <, (3.2.26)

then, for any t € [0, Ty, one has

X(t) + % fot Ddt < X(0) exp (fot Z1(7) dT) : (3.2.27)

Proof. Let Tl be the largest t < Tj such that

2C sup X*(t') < 1. (3.2.28)
o<t'<t

Then, (3.2.25) implies that for all t € [0, T;], we have

X(t) + % fot Ddt < X(0) + jot Z1(7)X (1) dr. (3.2.29)
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By Gronwall’s lemma, this yields for all t € [0, T;],

zf 7)dt < X(0) exp(j Zi(t dT)

Hence, it is clear that if (3.2.26) is satisfied, then (3.2.28) is satisfied with a
strict inequality. A continuity argument thus ensures that we must have T} =
Ty and thus (3.2.27) on [0, T1]. O

Noticing our assumptions on (u1, By) ensure that Z; € L'(0,T) and thus
Z1 € LY(0,T*).

By virtue of (2.1.25), let c; satisfies
2CcT exp 21 Z1ll 1 o,my) < 1

and applying Lemma 3.2.4 to inequality (3.2.24) in time interval [0, T}] , we
haveforany 0 <t < Ty < T%,

|(6u,6B,50)(1)] zj | (6u,6B,50)(v)]|

%
B34

dt < crexp ([ Z1ll 1 o,1))-

N I\)\»—l

At this stage, one can either follow the contradiction argument presented in
[56] or use the forthcoming blow-up criteria (2.1.23), to show that indeed, the
solution (éuy, 6By, dv;) can continued beyond T*, which finally implies that
T =T.

3.24 Blow-up criterion

Let us assume that we are given a solution (#, B) on some finite time in-
terval [0, T*) fulfilling the regularity properties listed in Theorem 2.1.3 for all
t < T*. Then, applying the method of the first step to (2.1.27) yields for all
t< T,

t
[(u, B,2)(D)[| 1 +Ci fo [(u,B,0)| 5 dt <|(u,B,2)0)] 1
B2,1 BZ] BZ,l
t
+ [y (18- Bl + - ul )+ (o x Bl 5 +loxul
2 2 21 B2,1
3j
+lo-VB| 5 +Y27[A; Bx]( VXU)HLz))dT. (3.2.30)
2,

1 Jj

.3
Using the tame estimates (B.3.1), the fact that B22’1 is an algebra embedded in
L™, interpolation inequalities and Young’s inequality, we get for all 7 > 0,

|IB-VB| 1 <C|B®B|

1
B2
21

3
B2
2

< Cl[Bll~[IBIl

—

< Z||B||*~||B
< 17|| 7o | ||B
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and, similarly,

+opllul,

Ju- Val < il
21 21 21
We also have
o x Bl y < Cllollu=lBll 5 + IBll=llel )
21 21 BZ,l
C
< =|(B,v)||7=|/(B,v)|| 1 Hill(B o) s,
7] B2,1 2,1
C 2
o X ul| 3 < — (o) ||zl (w,0) | 1 +7l(w0)]| 5,
21 ;7 BZ,l 2,1
C
lo- VB 5 <—[[(VB, v)||7=[|(VB, o) 1 +7l(VB,0)] s
BZ,l 77 B21 BZl

As, according to (B.4.1) with s = 3/2 and to the fact that V : L* — BO_O}OO, we
have

222 I[Aj, BX](V x 0)|| 2 < C(IVB||~[lo]
j

+ ||v||= || VB]| 3) (3.2.31)

3
B2
21 21

that term may be bounded as v - VB.

Therefore, if we choose 7 small enough, then (3.2.30) becomes:

Cq t
I Bo)Ol 4 + 5 [} B0l 5 4 <[[(B,0)(0)]
B2,1 B

N
Y

y
BZ,l

t
+C [, II(n, B, VB)|[7=]l(n, B,0)||  dv

1
B},
and Gronwall’s inequality implies that for all t € [0, T*),

C1 ¢t
+5 ], I Bo)|

%
BZ,l

I(, B, o) (1) dt

o~}
NN
—

< [[(w,B,2)(O)],

t
w(c J) w8, VB) [foat).

LN

1

Now, if one assumes that

*

T
Jo 116w, B, VB)(®)|} dt < oo,

.1
then the above inequality ensures that (u, B, v) belongs to L*(0, T*; B ;) and
one may conclude by classical arguments that the solution may be continued
beyond T*.



58 Chapter 3. On the well-posedness of the Hall-MHD system in critical spaces

In order to prove the second blow-up criterion, one uses the following
inequalities, based on (B.3.2) and interpolation inequalities:

S By 1Bl

1 2,1

IB- VB
[ - V|

lo < B
IBIl 5 -

1 21

+ 1Bl

1
B2
2

N\w

and by (3.2.8) and Proposition B.1.3 (iii) (vii),
222 I[A;, BX)(V x 0)[[2 S IVBI| 3 o]l 5

S el

Plugging those estimates in (3.2.30), we find that

t
| Bo)D ; +Ci [ llwB,0)] 5 dr < |(,B,0)0)] ,
BZ,l

3
B2,1 B2,1

+ 1l B,o) |

Hence, if

*

[ B

By,

dt < oo,

N

then the solution may be continued beyond T*.

For proving the last blow-up criterion, one can use that for ¢ € (2, 0],
most of the terms of (3.2.30) may be bounded by means of Inequality (B.3.3).
The last commutator term may be bounded from (B.4.2) (without time inte-

gration) with r = 1 and s = 3/2 as follows:

2.

1

3,
Y22 [|[A;, BX|(V x 0)]| 12 < IVB] 1||v|| 5 z+||v|| 2 1||VB||

j OOOO

!\’ m\m
IO
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Since, by interpolation, we have

1 1
lzll 52 S llzl®, flzll®
By ¢ h Bz%l Bzgl ¢

using Young inequality and reverting to (3.2.30) yields

I(w, B, 0) ()] dt < [|(u, B,v)(0)]|

: X
B3y By, B

t
¢
+C J I B )% (e B2}y

dr.

Boo,oo

As before, one can conclude that if T* < oo and (2.1.24) is fulfilled, then the
solution may be continued beyond T*.

This completes the proof of the theorem. O

3.3 The Fujita-Kato type theorem

This section is devoted to the proof of Theorem 2.1.5 and its two corollar-
ies. Throughout this section, we assume for simplicity that y = v = h =1
(the general case y = v > 0 and 1 > 0 may be deduced after suitable rescal-
ing, see (3.1.1)).

3.3.1 Global existence

Proving the existence part of Theorem 2.1.5 is based on the following re-
sult:

Proposition 3.3.1. Let (u, B) be a smooth solution of the 3D Hall-MHD system
with h = y = v =1, on the time interval [0, T|. Let v := u — V x B. There exists
a universal constant C such that on [0, T|], we have

d 2 2 2 2 2 2

Nl—
NI—=

<Cy/lul?, + B2, + vl
H2 H2

2 2 2
+ ||B . (331
1 (||”|| 3 || [l % ||U|| %) (3.3.1)

Proof. Applying the fractional derivative operator A? to both sides of System

(2.1.27), taking the 12 scalar product with A%u, AZB and A%v, respectively,
and using (2.1.18), we get

1d
2dt|| ull> e + ||”||2.3 = (A

HBH2 +BJ%; = (A
H2

(u®u) | VAu) — (A2 (B® B) | VAZu) =: A; + A,

N—

N —

2(;lt (’()XB)lVXAZB)—Ag,

Sallol ) + ol = Ayt As o+ A,
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where
Ay = (A2 (u®u) | VAZD),
As = —(A2(B® B) | VAZv),
Ag = —(A3((V x ©) x B) = (A2V x 0) x B| A2V x 0),

Ay = (A%(v xu) |V x A%v),
As:=2(A2(v-VB)|V x AZ0).
By Lemma B.5.3 and Sobolev embedding (B.5.2), we get
|Ar| < Cl|A2u| o] | VA2 2
< Cllul llull 3,
A6l < CUIVBIsllA2oll s + [AZB] 6]V x 0]l 2) o] 3
< C(IVBlgllollg + VB _ylloll 3) Il 3.
45| < CIAZ0l|s VBl s+ o]l s VAZB] ) o5
< CIVBlmlolmlol ;-
Terms Aj, A3, A4, A5 and A7 may be bounded similarly as A;:
Az < CIIBIZ [l 3,
[As] < Cllollin Bl I1BI 3,
[Asl < Cllulalloll 3,
45| < CIIBIalloll 3,

[A7] < Cllollp [ullmlloll ,3-

Hence, using repeatedly the fact that

12l < /N2l izl

and Young inequality and, sometimes, (3.1.2), it is easy to deduce (3.3.1) from
the above inequalities. O

The following result has been used several times to establish global a pri-
ori estimates.

Lemma 3.3.2. Let X, D, W be three nonnegative measurable functions on [0, T]
such that X is also differentiable. Assume that there exist two nonnegative real
numbers C and a such that

%XZ + D? < CWX? + CX*D>. (3.3.2)
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If, in addition,
Ca (T
o
2CX*(0) exp (7 fo Wdt) <1, (3.3.3)
then, for any t € [0, T|, one has
X2(t) f D?dt < X2(0) exp( f Wdr) (3.3.4)
Proof. Let T* be the largest t < T such that
2C sup X*(t') <1. (3.3.5)
0<H <t

Then, (3.3.2) implies that for all t € [0, T*], we have

d 1
EXZ +-D? < CWX>2. (3.3.6)

By Gronwall lemma, this yields for all ¢ € [0, T*],

X2(t) jDsz<X2( exp( deT)

Hence, it is clear that if (3.3.3) is satisfied, then (3.3.5) holds with a strict in-
equality. Then, a continuity argument ensures that we must have T* = T,
and thus (3.3.4) on [0, T]. O

Now, combining Proposition 3.3.1 with Lemma 3.3.2 (take « = 1, W = 0)
implies that there exists a constant c; > 0 such that if

||”0|| 1 + ||B0|| 1 + ool .1 < ca, (3.3.7)

H2

then we have for all ¢ € [0, T|

I(u, B, o) ()% | + Zf [(n,B,0)] s dT < ||(u,B,)(0 )Hzl (3.3.8)

2 1

I\)

That inequality implies that Condition (3.3.7) is satisfied for all ¢y € [0, T].
Hence, the previous argument may be repeated on [tg, T], and one gets for all
0<to<t<T,

|(u, B, ) (t) H2 f |(u, B, v HZ% T < ||(u, B, v)(t )H2 - (339)

N

In order to prove rigorously the existence part of Theorem 2.1.5, we shall
resort to the following classical procedure:

1. smooth out the initial data and get a sequence (u", B"),cn of smooth
solutions to Hall-MHD system on the maximal time interval [0, T");

2. apply (3.3.8) to (1", B"),eN so as to prove that T" = oo and that the se-
quence (u", B",v"),en with 9" := u" — V x B" isbounded in L* (R ; H%)
NL2(Ry; H%),
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3. use compactness to prove that (#", B"),cn converges, up to extraction,
to a solution of Hall-MHD system supplemented with initial data (uo, Bo);

4. prove stability estimates in L? to get the uniqueness of the solution.

Step 1

To proceed, let us smooth out the initial data as follows:
ul == FY(1¢ i) and BE:= F l(1¢,By),

where C,, stands for the annulus with small radius 7! and large radius n.
Clearly, uj and Bj belong to all Sobolev spaces and, setting vy := uj — V X
Bj, we have

I(u5, By, o9)1l 3 < [[(#0, Bo, w0) .3 (3.3.10)
The classical well-posedness theory in Sobolev spaces (see e.g. [28]) en-
sures that the Hall-MHD system with data (uj, Bfj) has a unique maximal
solution (u",B") on [0, T") for some T" > 0, belonging to C([0, T]; H™) N
L%(0, T; H™*1) for allm € N and T < T". Since the solution is smooth, we
have according to (3.3.9) forall 0 < top <t < T",

1 ot
n pn _n 2 - n pn _n\||2 < n pn _n 2 )
1", B, ") ()4 +2LO (", BY, )7 5 d7 < [I(w”, BY, ") (to) [y
(3.3.11)
Step 2
Combining (3.1.2) and Theorem 1.48 in [45], we get
[T I, B o dt S N, o)
0 ’ BMO ™%~ ’ 12,(F13)
Hence, the continuation criterion of [13] guarantees that T" = -+oo. This

means that the solution is global. Hence (3.3.11) is satisfied for all 0 < fp <
t < co and, owing to (3.3.10), we have in addition

|(u", B", ") + =||(u", B",0") (3.3.12)

2 < ||[(ug, By, 0 2.
1,3, < 10 B0 2

N[
Nl

Nl—

[
Le(H?)
Step 3

We claim that, up to extraction, the sequence (u", B"),cn converges in
D'(R; x R3) to a solution (u, B) of (2.1.1)—(2.1.4) supplemented with data

(10, Bo). The definition of (uf}, BY) and the fact that (uo, By, v) belongs to H 2
already entail that

(ul', BI, o) — (ug, By, v9) in H2-
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Proving the convergence of (u", B",v"),cN can be achieved from com-
pactness arguments, after exhibiting bounds in suitable spaces for the so-
lution sequences (0¢u",0;B",9;v"),en. Then, combining with compact em-
bedding will enable us to apply Ascoli’s theorem and to get the existence of
a limit (u, B, v) for a subsequence. Furthermore, the uniform bound (3.3.12)
will provide us with additional regularity and convergence properties so that
we will be able to pass to the limit in the Hall-MHD system.

To proceed, let us introduce (ur, Br,v;) := e®(uo, By, vo), (u}f,B},v]) :=
FY(1¢, (L, By, 9.)) and (&, B", ") := (u" — u},B" — B}, v" — vlh).

Itis clear that (u}, B}, v') tends to (uy, By, vr) in C(R4; H2)NL2(Ry; H3),
which implies that v;, = u; — V x By, since v} = u} —V x Bj foralln € IN.

Proving the convergence of (i, B", 3", relies on the following lemma:

. 1 :
Lemma 3.3.3. Sequence (", B",0"),ci is bounded in C} (R ; H™1).

Proof. Observe that (#", B",7")(0) = (0,0,0) and that

ol = A" + P (div (B" ® B") — div (1" @ u")),
9;B" = AB" +V x (v" x B"),
910" = A" + P (div (B" @ B") — div (u" @ u"))
—Vx ((Vxo") xB"—9" xu") +2V x (v" - VB")

(3.3.13)

where P = Id — VA~ !div still stands for the Leray projector on divergence-
free vector-fields.

Using the uniform bound (3.3.12) and the product law (B.5.3), we discover
that the right-hand side of (3.3.13) is uniformly bounded in Ll%o (R4 H -1,
Indeed, for example, owing to (B.5.3), the most nonlinear term V x ((V x
v") x B") is uniformly bounded in L%(II{+;H_1) since V x v" and B" are
uniformly bounded in the spaces L?(Ry; H 2) and L*(R; H'), respectively.

Once it is known that the sequences (9;4"), (9;B") and (9;B") are bounded
in the space Ll%o (Ry; H™ 1), applying Holder’s inequality with respect to time

completes the proof of the lemma as, obviously, #"(0) = B"(0) = 3"(0) =
0. [

One can now turn to the proof of the existence of a solution. Let (¢;);en

be a sequence of C2°(IR3) cut-off functions supported in the ball B(0,j + 1) of
R? and equal to 1 in a neighborhood of B(0, j).

Lemma 3.3.3 ensures that (#", B", ") N is uniformly equicontinuous in
the space C([0, T]; H~!) forall T > 0, and (3.3.12) tells us that it is bounded in

L®(R; H?). Using the fact that the application z ¢;z is compact from H :
into H~!, combining Ascoli’s theorem and Cantor’s diagonal process enables
to conclude that there exists some triplet (#, B, 7) such that for all j € IN,

(pjit", ¢;B", ¢;0") — (¢jii, ¢;B,¢;0) in C(Ry; H ). (3.3.14)
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This obviously entails that (#", B",3") tends to (#,B,?) in D'(R, x R3),
which is enough to pass to the limit in all the linear terms of (2.1.27) and
toensurethatv = u — V x B,and thusv = u — V x B.

From the estimates (3.3.12), interpolation and classical functional analy-
sis arguments, we gather that (i, B, 7) belongs to L®(0, T; H2) N L2(0, T; H?)

and to Ci ([0,T]; H1) forall T > 0, and better properties of convergence like,
for instance,

loc

¢;(@",B",5") — ¢;(i,B,¥) in L (Ry;H') forall j€N. (3.3.15)

As an example, let us explain how to pass to the limit in the ‘worst” term,
namely V x ((V x v") x B"). Let 8 € C°(Ry x R3R3) and j € IN be such
that Supp 6 C [0, j] x B(0,j). We write

(Vx ((Vxo")xB"),0)—(Vx((Vxv)xB),6)
= ((Vxv") x¢j(B" = B), Vx8) +((V x ¢j(v" —v)) x B, V x0).

Now, we have for all T > 0, owing to (B.5.3),

I(V x2") x ¢j(B" = B)|1(0,;12) S IV x 0" 16i(B" = B)lli2(0,1;11),

1
12(0,T;H2

1V X 9j(@" =0)) x Bl g 1oy S WV X @507 = 0))lli20,rxms) [ Bllago,7:0)-

Thanks to (3.3.12) and to (3.3.15), we see that the right-hand sides above con-
verge to 0. Hence

V x ((Vx2") xB") = (Vx((Vxv)xB) in D'(R; x R%).

Arguing similarly to pass to the limit in the other nonlinear terms, one may
conclude that (u, B, v) satisfies the extended formulation (2.1.27). Besides,
as we know that v = u — V x B, the couple (u, B) satisfies the Hall-MHD
system for some suitable pressure function P.

To prove that (u, B) is continuous in H 1, it suffices to notice that the prop-
erties of regularity of the solution ensure that # and B satisfy a heat equation

with initial data in HZ and right-hand side in L2(R; H _%) (we do not know

how to prove the time continuity with values in H ? for VB or, equivalently,
v, though).

3.3.2 Uniqueness

Let us finally prove the uniqueness part of the theorem. Let (1, Bq)
and (uy, By) be two solutions of the Hall-MHD system on [0, T] x R3, sup-
plemented with the same initial data (u#9, Bp) and such that, denoting v; =
u;—V xB;fori=1,2,

(u;, B;,v;) € L°([0,T]; I2) and (Vu;, VB, Vo;) € LX(0, T; FI2).
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In order to prove the result, we shall estimate the difference (éu, 0B, dv) :=
(41 — 1z, By — By, v1 — vy) in the space C([0, T]; L?) N L?(0, T; ot H'). In order
to justify that, indeed, (du, 6B, 5v) belongs to that space, one can observe that

dtou — Adu := Ry,
9:6B — AGB := Ry, (3.3.16)
0t6v — Aév := Ry + R3 + R4 + R5,

where

Ry :=P(By-VOB+6B-VBy —uy-Véu—ou-Vuy),
Ry :=V X (Ul X(SB+5UXBz),

R3:= -V x ((V xv1) x 6B+ (V x 6v) x By),

Ry :=V X (v1 X du+6v X up),

R5 :=2V X (vl - VB + év - VBz).

Since (0u,0B,6v)|t—0=0, in order to achieve our goal, it suffices to prove
that Ry to Rs belong to the space L2(0,T; H-!). Now, since (6u,dB,év) €
L*®(0,T; H %) NL2(0,T; H ; ), we have, by interpolation and Holder inequality
that (6u,0B,6v) € L*(0, T; H'). Hence, using repeatedly (B.5.3), we get

IR\l 20,501y S [1B1 ® 6B 120, 112) + | B2 @ 0Bl 20,112
+ [lur @ Sul[ 120 7;12) + w2 @ Sull 120 7;12)

1
S TH) (02, By B2 1 169 0B) sy,

IRall 200 7.1-1) S 0" X 6Bl 12(0,7512) + 160 X Ball 120712

1
STH 0Bl g 0, 160 0B) s

||R3||L2(0,T;H—1) SV x01) % 5B||L2(0,T;L2) +[[(V x 6v) x BZ||L2(0,T;L2)

S ||711||L2(0,T;Hg)||5B||L°°(0,T,-Hl) + ||5v||L2(O,T;H%)||B2||LOO(O’T;H1)

5 || (7]1/ (SU) ||L2(0,T}H%) || (BZI (SB) ||L°°(0,T;H1)'

Note that our assumptions ensure that B; and VB; are in L®(0, T; H %) and
thus we do have, by interpolation inequality (B.5.1), B; in L*(0, T; H') for
i = 1,2. Terms R4 and Rs may be treated similarly.

Estimating (du, 6B, §v) in the space L*(0, T; L?) N L?(0, T; H') follows from

a standard energy method applied on (3.3.16), Holder’s inequality Sobolev
embedding and, again, (B.5.3). More precisely, we have'

1d
5 7 16ullT2+ [6ullEy S (IBy © 0B 12+ (B2 @ 6Bl 12 + ||z @ 1| 12) | Vou| 12

S (B, Bo) g 10B] y w2l lloull 1)1 6ul g,

1
2

ISomehow, the following computations are formal. One can make them rigorous by using a regu-
larization procedure as in Subsection ??.
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H<5BH 12+ 10BlF1 S(llo1 x 0B 12 + (|00 x Ba||;2) [ VB 12

2dt
Slollgn 1By + 60l 1 I B2ll ) 16B]| g
and, using (3.1.2),
2
A A

S (IB1 ® 6B||2 + [|B2 @ 6B|[ 12 + [[u1 @ Sul[ 12 + [[uz @ Sul12) || Voo ]| 2
+ [[(V x v1) X 6B||2||V % 00| 2
+ (||or X dul|;2 + [[6v X uz]|;2) ||V X 60|12
+ (||vr - VOB|| 12 + [|60 - VBy||12) |V X 69|12

S <||BlHH1”53|| 3 T 1Bl 1By + luall g llou] ,y + (a2l [[ou]] s
+ VXl (||5uHLz+H5vHLz)+Hv1||H1H<5u|! 1+H(SUHH1Hu2” )
+ ol (6wl g + 1021l 1) + 102l s HVanHl) |62 41
At this stage, interpolation and Young’s inequality imply that
1 1
1Bl 0Bl 10ull g < [1Ballgn 1B L2 [10B| g [| 63l g
1
< 151(6B, au)l[ + Cl18B|[Z: 1B 13,

and similar inequalities for all the terms of the right-hand sides of the above
inequalities, except for the one with ||V x v ||H ; that we bound as follows:

1
IV <ol 16w, 60) [ 2100l < 511003 + Clloall” 5 1| (5w, 60) |2
In the end, we get forall t € (0, T),

2dt||(35u 0B,60)||72 + || (6u, 6B, 60) |31 < V(1)[/(6u, 0B, 60) |7

with
V(t) := ||(u1, 12, By, By, 01,02) (1) |30 + [loa (£) |12 gy

Since our assumptions ensure that V is integrable on [0, T] and (du, 6B, 6v)(0) =
0, applying Gronwall’s inequality yields

(6u,0B,6v) =0 in L*(0,T; L2(R®)).

3.3.3 Propagation of higher Sobolev regularity

Let us finally explain the propagation of regularity H® x H5*1 if the initial
data (ug, By) are, additionally, in H® x H**! for some s > 0. Our aim is to
prove that the solution (u, B) constructed above is in C (R 4; H® x H**1), and
such that (Vu, VB) € L?(R; H® x H**1),
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For the time being, let us assume that (#, B) is smooth and explain how
to perform estimates in Sobolev spaces. First, we multiply (2.1.1) and (1.1.3)
by u and B, respectively, integrate and add up the resulting equations. Using
the fact that

(VX (JxB),B)=(J]xB,J)2=0,

one gets the following energy balance:

1d

Sl + [BIR) + [ Vulf+ [VBIE =0, @317)

Let A® denote the fractional derivative operator defined in the Appendix B.
Since
e[+ 1Bl g1 = [[ (1, B)[| 2 + [[(A°w, A°B, A0)| 2,

in order to prove the desired Sobolev estimates, it suffices to get a suitable
control on ||A%u||;2 and on ||AS*!B||;2. To this end, apply A® to (1.1.1), then
take the L2 scalar product with Au. We get:

1d

Sl ASuls + ATV, = (A(B @ B)| AVa) — (A*(u @ u) | A°Vu)

=: E1 + Es.
In order to control || AST!B||;2, one has to use the cancellation property (2.1.28).

Then, applying A® to the second and third equation of (2.1.27) and taking the
L? scalar product with A°B, A’v, respectively, yields:

1d

5 |ABIE: + [A*VB|E: = (A*(0 x B) | AV x B) =: Es,

1d
I RV 2

=(A*(B®B)|A°Vv) — (A°(u®@u) | A°Vo)
—(A°((V xv) xB) — (A°V xv) X B|A°V xv) + (A°(v xu) | A°V X v)
+2(A°(v-VB)|A°V xv) =t E4+Es+---+ Eg.
Sobolev embedding, Young's inequality and Lemma B.5.3, imply that
[Eal S (1A°Blls [l s | A"V | 2
S 1Bl (IAVBI[L: + [ A°Vul|Z,),
Eal < [l ) ATl 2,
B3] < (1A%l 1Bl + [A%B e ol5) [A° x Bl
S B (IAVBI[E + [|AVol[7),
[Ea| S 1B 3 (IA*VB|7 + [ A*Vol[7),
[Es| < llull 3 (IA°Vulf2 + AV ol72),
[Esl < (IVBI sl AV % 0l + [|A°B 1|V x ] 1) |4V 12

NI—=
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< (CIVB| ,y + ) A°VolL: + CAVBIL o] 5,
E7l S (HASvHLéHuHLs + [ A%ulls][ol[ ) [[ AV 2
S o)l 3 (1A Va|f: + [ A°Vo|72),
|Es| < (A2l ps [V B3 + [ AV B[ s [|o][13) [ A*V o[ 2
S I(VB o)1 (IAVB|3 + AVl |2).

Since || (u, B, v) HH ; is small, putting the above estimates and (3.3.17) together,
and using (3.1.2) and J = u — v, one gets after time integration that

()13 + B + lo(D1 + ft Va3 + IVBI, + | Vol3,) dT
< luoll3 + IIBoll ;s + llvoll + Cf (lullfs + lolE) o) 5 d Ly
By Gronwall’s inequality, we then get for all t > 0,
1, B, o) (£) |3 + fot I(Vu, VB, Vo)l dt

t
< 1m0 B, 0) 5 exp ) ol )

Putting together with (3.3.17) and using that fo |lo(T ||2 dt isbounded thanks

to the first part of the theorem, we get a global-in-time control of the Sobolev
norms.

Of course, to make the proof rigorous, one has to smooth out the data. For
that, one can proceed exactly as in Subsection 3.1.4. This completes the proof
of Theorem 2.1.5. O

3.3.4 Proof of Corollary 2.1.6
As the solution (u, B) belongs to

Cp(Ry; HE(R?)) N L2(R+; H2 (R%))

and ] € Cy(Ry; H2(R3)) N L2(Ry; H2 (R3)), the interpolation inequality be-
tween Sobolev norms (B.5.1) implies that (u, B, J) belongs to LY (R4; H i (R3)),
which, in view of Sobolev embedding (B.5.2), is a subspace of L} (R ; L*(IR?)).
Now, the right-hand sides of the first two equations of (2.1.27) belong to
L? (R4+; H1(IR?)). As, furthermore, uy and By are in L?(IR®), one can con-

clude to time continuity with values in L?(IR3) thanks to e.g. [45, Th. 5.10].

In order to prove that the energy balance is fulfilled, one can use the
same approximation scheme as in the proof of existence (the energy balance
is clearly satisfied by (u,, B,)) then observe that (u,, By),en is actually a
Cauchy sequence in L®(R; L?(R®)) N L2(R;; H'(IR?)), as may be checked
by arguing as in the proof of uniqueness.



3.3. The Fujita-Kato type theorem 69

Let us next prove that (u, B, v) goes to 0 in H 2 (R3) when t — 0. Inequal-
ity (2.1.30) and interpolation guarantee that B € L*(IR; H'(IR%)). Hence, as
v = u— V x B, one can find some ty > 0 so that v(ty) € L?(R3). Then,
performing an energy estimate on the equation satisfied by v, we get for all
t > to,

t
o).+ [} IVolR2dr < [[o(to)]2:
t
+ [ (IBeB—u@ulz+ox ul2+ o VBl|z) dr.
0

Using (B.5.3) repeatedly, the equivalence (3.1.2) and adding up to (2.1.17)
yields

t
1(u, B,0)(1)]I7 +LO 1(u, B, 0) |3 dT < [|(u, B, 0) (to)[7

dr.

t 2 2
+C |, 11, B,0) I3 (s, B,0) %y
Since || (u, B, v)(t) ||H 1 is small for all + > 0, the last term may be absorbed by
the left-hand side, and one can conclude (by interpolation) that (u, B,v) €

L4(tg, 00; H 2 (R3)). Therefore, for all ¢ > 0 one may find some t; > tg so that
|(u, B,v)(t1) ||H% < 0. Observing that (2.1.30) implies that t — || (u, B, v)(t) ||H%

is non-increasing on [t1, o) allows to conclude the proof of (2.1.31). O

3.3.5 Proof of Corollary 2.1.7

We shall argue as in [45] and [56], splitting the data into a small part in
H2(R%) and a (possibly) large part in L2(IR%). More precisely, we set

vo=ug—V XBy, ug=ugy+uy, Bo=Bys+Byn vo=v00+ 70y
with
uge = F (L #0), Bog:= F ' (1g(0,0)Bo), vo,e := F ' (1p(0,)0)-

Fix some 1 € (0, c2) (with ¢ being the constant of (2.1.29)) and choose p such
that

< T
22
By Theorem 2.1.5, we know that there exists a unique global solution (u, B/)
to the Hall-MHD system supplemented with data (uy, B;), that satisfies

| (20,0, Bro, ve0) |l i

+ < with vy :=uy—V X By

(3.3.18)
Let (uy, By, vy) := (u—uy, B— By, v —vy). We have (uy, By, v;) € C(Ry; H%) N
L*(R4; H') since that result holds for both (u, B,v) and (u, By, v¢) (use in-
terpolation as in the proof of Corollary 2.1.7). Furthermore, (1, B, Ji0) is

uy,By,v 2
(¢, By Z)HB(H%)

N[ —
N

uy,By,v 2
| (¢, By z)HLw(H%)
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in L2(IR%) owing to the low-frequency cut-off and we have

oy, — Auy, := Ry,

0:B;, — ABj, := Ry,

drv, — Avy = Ry + R3 + Ry + Rs,
(41, By, vp) li=0= (140 , Br,0, J1n,0),

(3.3.19)

where

R, :=P(B-VB,+By,- VB, —u-Vu, —uy-Vuy),
R, :=V x (v x B, +v), x By),

R;:= -V x ((V xv) x B, + (V x ;) x By),

Ry :=V x (v X uy, + vy, x uy),

Rs:=2V x (v- VB, +v,- VBy).

Let us bound the terms Rj, Ry, R4 and Rs as in the proof of the uniqueness
part of Theorem 2.1.5, and estimate Rj3 as follows:

IRllg2 1) < (¥ % 0) x Bull2 2) + 1V x 21) % Bll 2 1o

< [[oll s gy 1Bill s ooy + 1ol o gy [ Bell 1o oy

Note that our assumptions ensure that B, and By, are in L*(0, T; H' N H?),
thus in L4(0, T; L*) owing to the Gagliardo-Nirenberg inequality (B.5.5) with
s = 1l and s’ = 1. Then one can conclude by a straightforward energy argu-
ment that

t
|| (sy, By, o) (1) 72 +2f0 |, By, on) | 30 dT < || (244, By, 03) (0) 132

b _ _
+C jo V||(uh,Bh,vh)||%2 dt with V(t):=|(u,uy,B,By,v, Ug)(t)“%{l

and Gronwall’s lemma thus implies that

t
| G By on) ()72 + J, 11, B 00 (0) 3 T

t
< || (21,0, Bio, on0) II72 exp (Cfo V(t) dr)-

Since V is globally integrable on IR ; thanks to our assumptions and (3.3.18),
we see by interpolation that (uy, By, vy,) is in L*(R;; H %) This in particular
implies that there exists some to > 0 such that || (uy, By, v;,)(to) HH% < n/2.
Hence ||(u, B,v)(tp) HH% < 1 and global existence result in Theorem 2.1.5

thus ensures that ||(u, B, v)(t) HH%
of the corollary. O

< gy forallt > ty. This completes the proof



3.3. The Fujita-Kato type theorem 71

3.3.6 Weak-strong uniqueness

This section is devoted to the proof of Theorem 2.1.8. Let us underline
that the proof works for any positive coefficients y, v and h. Furthermore, it

could be adapted to the Z%D flows of the next section. For expository purpose
however, we focus on the 3D case.

Throughout, we shall repeatedly use the following result.

Lemma 3.3.4. Let a,b,c € L*(0,T; L?>(R%)) N L%(0, T; H'(IR®)) be three diver-
gence free vector fields in R3. The following inequalities hold:

e If, in addition, b belongs to L*(0, T; H'(IR3)), then
T 1
|, @Yol dr| S lall o ] o 118 i el iy 6:3:20)
o If, in addition, c belongs to L*(0, T; H'(R3)), then
T 1
[, (@ Vel dr| S lall o Il o ]2 i el gy G321
e If, in addition, V x c belongs to L*(0, T; H'(IR®)), then
T
U (Vx((Vxa) xb)\c)dr‘
Sl 161 g 101 g 19 el oy 6322)

Proof. To prove the first inequality, we use the identity (2.1.18) and the duality
inequality between H' and H ! so as to write

[ /(@ Vbl e)ac| < [ [beallzelp dr.

Hence, thanks to Holder and Gagliardo-Nirenberg inequalities, and Sobolev
embedding (B.5.2),

T t
| (a-Vbleydr| < [ lallslblle Vel 2 dT

T
< J, Nall s libllpliellg de

S ||ﬂ|| 10l s ey llell 2 en
H2) )’

Using the interpolation inequality (B.5.1) yields (3.3.20).

Proving (3.3.21) is similar. To get the last inequality, we take advantage of
the identity
(VXxw,z)p=(w,V xz)p,

and of Holder and Gagliardo-Nirenberg inequalities, and Sobolev embed-
ding:

UOT(VX((an)XbHc)dT‘ZUOT((an)xMch)dT‘
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T
< [, IV xall2lbls |V x el s de

T
< J, lalmlioll 41V x el g d

S HaHLzT(Hl)HbHL%(H%)Hv xellpa oy

Using the interpolation inequality (B.5.1) completes the proof. O

One can now start the proof of Theorem 2.1.8. Let us recall our situation:
we are given two Leray-Hopf weak solutions (u, B) and (%, B) in LY (L?) N
L%(H") corresponding to the same initial data (ug, Bg) € L? with divauy =
div By = 0, and assume in addition that # and J := V x B are in L+(H!).
Note that we also have B in L}(H?) for finite T. Indeed, B is in LY (L?) and
thus in L%(L?), and V?B is in L}(L?) since ] is in LT.(H?).

We want to prove that the two solutions coincide on [0, T], that is to say

(0u,éB) = (0,0) with (6u,B) := (u—1d,B— B). (3.3.23)
By definition of what a Leray-Hopf solution is, both (#, B) and (i1, B) satisfy

the energy inequality (2.1.38) on [0, T|, which implies that for all t > T,

- A —
| (Gu, 8B) ()72 + 20 | IIVoull}2 dx +2v [ 1I5B[3 dv
< 2 (uo, Bo) I 72 — 2(u(t) |a(t)) — 2(B(t) | B(t))
t t _

— 4y jo (Vu | Vi) dt — 4v fo (VB|VB)dr. (3.3.24)

Then, the key to proving (3.3.23) is the following lemma, which is an adapta-
tion to our setting of a similar result for the Navier-Stokes equations in [57].

Lemma 3.3.5. Under the assumptions of Theorem 2.1.8, we have for all timet < T,
_ t t _
(u(t) | @(t)) + (B(t) | B(t)) +2u J"O (V| Vi) dt +2v jo (VB|VB)dt
ty,— _ R —
= lluol2 + IBol?2 + | (((5u .VB|6B) + (3u- Vu|ou) — (6B - VB | u)
—(3B-Vu|6B) — h(V x ((V x 0B) x 6B) |B)>dr.
Proof. The result is obvious if (#, B) and (i1, B) are smooth and decay at in-
finity. In our setting where the solutions are rough, it requires some justifica-

tion. Therefore, we consider two sequences (uy,, By),en and (i, By ) e of
smooth and divergence free vector fields, such that

lim (4, By, V % By) = (u,B,V x B) in LA(HY) (3.3.25)

and  lim (un, By, iy, By) = (u,B,4,B) in Li(H)NLF(L?). (3.3.26)

n—o00
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Since our assumptions on (u, B) also ensure that (9;u,9;B) isin L3(H '), one
can require in addition that

lim (9uy, d:By) = (0;u,0;B) in L%(H ). (3.3.27)

n—00

Likewise, that (i1, B) is a Leray-Hopf solution guarantees that (9,1, d;B) is in
L33 (H~" x H?) (observe for example that 7 and B are in L%3(L*) and thus

u®@uand B ® B are in L%/ 3(L?) and similar properties for the other nonlinear
terms of the Hall-MHD system). One shall thus require also that

lim (31t 9By) = (3¢i%,;B) in LY3(H 1 x H?). (3.3.28)
n—oo

Now, taking (i, B,) and (u,, By) as test functions in the weak formulation
of (2.1.1), (2.1.3) for (u, B) and (i, B), respectively, we get forall t < T,

jot((afu | @0) + p(Vat| Vi) + (- Vae| @) — (B VB | ) ) dr = 0,
(3.3.29)

ﬂ((ara () + §(VE| Vaty) + (- Vit | ) — (B VB |uy) ) dr = 0,
(3.3.30)

f;((aTB |B,) + v(VB|VB,) + (u-VB|By) — (B- Vu|By)

Fh(V % (] % B)|Bn)) dt =0,
(3.3.31)

[, (@B Bu) +v(VB| VB,) + (- VB| B,) — (B - Va| B,)

Fh(V % (] % B)|Bn)) dt = 0.
(3.3.32)

Since Vi, and Vu, converge to Vii and Vu, in LZT(LZ), we deduce that

fim (jot(w Vi) dr+ [ (V| Vuy) dT) =2 [((Vu|Va)dr.

n—oo

Thanks to (3.3.25) and (3.3.26), and Lemma 3.3.4, we have

lim [ (u Vu| @) dv = [ (u-Vu|a)dr,

n—oo JO

lim [ (& Va|u)dt = [ (@ Va|u)dr,

n—oo JO

and one can pass to the limit similarly in all the quadratic terms that do not
contain J or J. Finally, using the following vector identity

(axb)-c=(cxa)-b=(bxc)-a, (3.3.33)
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Inequality (3.3.22) and (3.3.25), we get, since B, is smooth,

[{(Vx(JxB)|By)(t)dr= [ (] x B|V x By) dr
= [{(Bx (VxB,)|])dr

=~ [{(Vx ((V x B,) x B)| B)dr.
Hence, by (3.3.26), (3.3.22) and (3.3.33),

lim ['(V x (] x B)|By)dr = — [ (V x ((V x B) x B) | B)d

n—o0 J0O

t _
= fo(v x (J x B) | B) dr.
In order to prove that

lim [(V x (] x B)|B)dr = [ (V x (] x B)| B)dr,

n—o0 J0O

one may use directly (3.3.22) and (3.3.25).

In order to pass to the limit in the term of (3.3.29) with a time derivative,
one may use (3.3.26) and the fact that d;u is in L2(H ). This gives

t t
lim [ (3cu|i1,)dr = jo (3cu | @) dr.

n—o0 J0O

Next, since 9;ii is in L‘%/ 3(H™1), (3.3.25) enables us to write that

t t
lim | (3| uy) dt = jo (31 | u) dr.

n—00

In order to pass to the limit in the term of (3.3.31) with d;B, it suffices to
use the fact that 9;B is in L3(H!) and (3.3.26). Passing to the limit in the

4
term of (3.3.31) with 9;B, relies on the property that 9;B is in L3(H?) and on
(3.3.25).

Finally, passing to the limit in (3.3.29) and (3.3.30), and adding up the
resulting equalities yields for all t € [0, T],

[ (@eu @) + @it | ) de + 20 (V| V) e

+ [ (@ Vu| @)~ (B-VB|@)+ (a-Va|u)  (B-VB|u))dr =0,
(3.3.34)

Applying the same procedure for (3.3.29) and (3.3.30), we get
t _ _ t _
I ((BTB |B) + (0B B))dT +2v [ (VB| VB)dr

+f0t<(u'VB’B)_(B'v”‘g)+(ﬁ‘VB|B)—(B~Vﬁ]B)>dT
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+hj;((v x (J < B) | B)+(V x (] x B) | B) )dr = 0. (3335)
We claim that
[ (@eu| @) + (u|9ci) dr = (u(p) | a(6) ~ w2 (3336)

Indeed, since both u,, and i,, are smooth, we have

jot((afun | 1) + (| aTﬂn)) dt = (un(t) |, (t)) — (4a(0) [, (0)).

One can pass to the limit in the right-hand side thanks to (3.3.26). For the
left-hand side, we write

fot(arunIﬁn)dr—fot(amm)drzfot( wu | (i dT"’j o —u) | i1y) dT.
J2 (s | Betty) d— [ (| 9cit) d = jot((un—u) |9eit) d + fot(un|8T(ﬂn—ﬁ))dr,

We already proved that the first terms of the right-hand side converge to 0.
For the second ones, this is due to (3.3.27),(3.3.28) and to the fact that (7, ).en
and (u,),en are bounded in L%(H') and L (H?'), respectively. This proves
(3.3.36).

In order to prove that
J; (@:B1B) + @:B|B)) dr = (B(1) | B() ~ B}, (3337)
we start from the fact that
[} (@<Bu | B) + (Ba | 9<Bo)) dr = (Bu(t) | Ba(t)) — (BA(0) [Ba(0)).

Passing to the limit in the right-hand side may be done thanks to (3.3.26). For
the left-hand side, we write

jot(aTBn | Bn)dr_jot(aTB | B)dt —f (0B| (B (;lr+f (B,—B) | B,) dt

[\ (Bal9cBy)dr— [ (B|3:B)dt = jot((Bn—B) |0:B)dT + || (By | 3<(B, — B))dr.

The convergence of the first terms of the right-hand side has already been
shown before, and that of the second terms is due to the boundedness of
(Bn)nen and (By),en in LA (H?) and L2 (H?), respectively, and to (3.3.27),(3.3.28).

To conclude the proof of the lemma, one has to notice that

o (G- Vu| @)+ (a-Valw)dt =~ [ (Gu-Vu|du)dr,  (3338)

[((u-VB|B)+ (& VB|B))dr = - | (5u-VB|TB)dr, (3339
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j(:((B-VB]ﬁ)+(B-Vﬁ|B)+(B-VB\u)+(B-Vu\B))dT

- —jot((a_B-VB@H (5B - Vu|3B)) dr, (33.40)

t _ S t _
Jo((Vx(1xB) | B) + (Vx (JxB) | B))dr = [ (V x (5] x 3B) | B) d.
(3.3.41)
The above relations are obvious in the case of smooth vector-fields (just per-
form suitable integrations by parts and use the divergence-free property).
Now, since the trilinear form corresponding to (3.3.20) is continuous on the
spaces

LA(L3) x L2(HY) x L4(L%) and L3(L%) x LY(H') x L3(L®),

we deduce that (3.3.38), (3.3.39) and (3.3.40) are still valid under our assump-
tions.

For justifying (3.3.41) under our regularity framework, one just has to use

the fact that the trilinear form (a, b, ¢) — fot (V x (a x b) | ¢) dt is continuous

on
L4(L?) x L3(L%) x L3(H') and L%(L?) x L3(L?) x L}(H?)

and thus on
L4 (H2) x LA (HY) x LA(HY) and  L[3(L2) x LY(H2) x LA(EP).
This completes the proof of Lemma 3.3.5. O

Let us finish the proof of the theorem. Reformulating the right-hand side
of (3.3.24) by means of Lemma 3.3.5, we get

- t — t P
|(6u,6B) () ]2 + 2p jo |V3u||?, dt + 2v jo |V3B|2, dt
< zjot((mvsw)+(5_B.Vu|5_3)+h(v « ((V x 5B) x B) | B)
— (3u-VB|oB) — (ou - Vu @)) dt. (3.3.42)

Arguing as in the proof of Lemma 3.3.4 and using Young’s inequality, we see
that

— — R —
(6B - VB |du)| < 6B 2 [I6B| | Bl g | u] g

C =2 4 His2 Vism2
< EHcSBHLzHBHHl + §||5uI|H1 + g lI6Bllg,
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_ _ C
(6B - V| 3B)| < —[[0B|1%:|lullfy + 7 19BI;,

_ -— C ,—

@ VB|3B)| < - 5wl Fa] Bl + Elldul2, + S 16B|%,,

_ _ C __
@ V| 5a)| < 0w Tl -+
and

— — -1 3
h|(V < ((V x 6B) x 6B) | B)||[0B|| 1, [|0B|| [V x Bl g

Ch4
< =5 I8Bl LTIz + —H5B||H1-

Thus, reverting to (3.3.42), we conclude that, forallt < T,
— b P
|(Gu, SB) (D72 + 1 [ 1 VoullF2dv+v j | V3B ;.

- mm{y 1/}3j 1(6B, 6u)| 2||(M,B,])||}lq1 dt

Recall that both u and J are in L} (H!) and that this also holds true for B as
pointed out at the beginning of the proof. Hence Gronwall’s lemma implies

that (du,0B) = 0 on [0, T]. This completes the proof of Theorem 2.1.8. O

3.4 The 21D flows with large velocity fields

This section is devoted to the proof of Theorem 2.1.10. It essentially relies
on the following estimates and on an inequality for the vector-field () defined
by ) = hw + B, that will be proved at the end of the section.

3.4.1 A priori estimates

Proposition 3.4.1. Let (u, B) be a smooth solution of (2.1.33)—(2.1.37) with h =
u=v =1 Letv:=u— j. Then, we have

1d ~ =
5 31w B)lIE + [[(Va, VB) |2 =0, (3.4.1)
and there exists a universal constant C such that
d _
El\vHiz + V0|7, < Cl|(u, B,0)||7.]|(Vu, VB, Vo) 132, (3.4.2)
d _
SIIB% + [ VBIR, < CWIBIR, +CIVBI:|AB[%,  (343)

with W := ||u||%||Vul|?, + || Vu| 2| Vewl| 2 and w == V x u.
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Proof. The first identity is just the energy balance. For proving (3.4.2), we use
the fact that the third equation of (2.1.27) rewrites for 2%D flows a follows:

3w —Av=P(B-VB—1i-Vu) -V x ((Vx0v) xB)+V x (vx u)
+2V x (- VB).

Therefore, taking the L? scalar product with v, integrating by parts in some
terms, and using the Cauchy-Schwarz inequality, one gets:

1d
2dt

Thanks to Holder’s inequality, Sobolev embedding (B.5.2), interpolation in-
equality (B.5.1) and Young’s inequality, we have

loll72 +1IVoll72 < (IB&B—u@ul 2 +[loxul 2 +2[0- VB 2) [ Vol 2.

1B @ B 12| Voll2 < Bl Vol
< C|IBl[2IVB|[12[[Vol| 2

_ 1 -~
< C||B|3.[IVBI7. + EHVUHiz,
a similar inequality for the term with u ® u,
o X ull 2| Vol 2 < o] paflul| 4[| Vo] 12
_ _ 1 -~
< Cllull 2ol 2| Vull 2| Vol 12 + EHVvH%z

- 1 ~
< Cll(w,0) |32 (Va, Vo) |72 + mHWH%m

and, using that B = (—A) 'V x (u — v) and that V2(—A)~! maps L* to L,
2[5 VB 2[|Vol 2 < Cllo| sl — o]l 4] Vo 2
< Cllolla(llull s + o)) 1 Vol 2
< Cll(a,0) B | (T, Fo) 22 + 15| o2
This yields (3.4.2).
For proving (3.4.3), use the following identity (valid if divio = divz = 0):
Vx(wxz)=%-Vw—1-Vz,
to rewrite the equation for B as follows:
9B —V x (ux B) +hV x (j x B) = vAB. (3.4.4)
Taking the L? scalar product with B yields

1d

57 lIBllZ: + [VBIE. = (u x B ).
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To get an estimate for VB, apply the following relations:
Vx(wxz)=(Vxw)xz+(Vxz)xw—2w Vz+V(w-z),
V x (V x w) +Aw =0,
so as to rewrite (3.4.4) as
B+1i-VB—B-Vu—ABxB—2j-VB+V(j-B) = AB.
Taking the L2 scalar product with —AB and using that div AB = 0, we get

1d ~ ~ o~ ~ e~ e~
EEHVBH%z +||AB||2, = —(B-Vu|AB) + (ii- VB|AB) — 2(j - VB | AB).

Thanks to Holder’s inequality, (B.5.1), (B.5.4) with p = 4 and Young's in-
equality, we have

[(ux B|j)| < [lu>x Bl|]1fl2
< [laell sl Bl s [ VBl 2

< Cllull%, [l |1 BIZ VB,

< Cllull% | ull%|BI: + g1 VB|2
(it- VB| AB)| < |ul| | VB +]|3B]»

< Cllull%, lul3, IV BI %IV BIZ, | AB| 2

< Cllul%l|Ful 2 VBI% + 1B,
|(B-¥u| AB)| < |[Bl|s/|Vull s]|AB] 2

< CIIB| L | VB 2|Vl o P2 )| 3B 2

< C(IBIZ: + [ VBI2) [Vullz | 9] 2 + 5 IABIZ,
(7-VB|AB)| < |- VB2 |AB||,»

< |1l 31V B 1+ 1ABI| 2

< C|[VB|| 2| 3B|1%.

Summing up the above estimates and using || Vu||;2 < || Vw|| ;2 yields (3.4.3).
L

3.4.2 Existence and uniqueness

It is now easy to prove the first part of Theorem 2.1.10: adding up (3.4.1)
and (3.4.2) yields for some universal constant C and all t > 0 :

t ~ ~ ~
I B,2)()[F2 + f, |(Vu, VB, Vo) |7 d

t ~ ~ ~
< ||(w0, Bo,20)lI}> + C [ 11w, B, ) |[2%:[|(Vae, VB, Vo) |2, d.
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Lemma 3.3.2 (take & = 2, W = 0) thus implies that if 2C||(u0, By, vo) ||?

H L2 < 1/
then we have for all time,

1 ¢t~ ~  ~
(0, B,2) (1) + 5 [ 11(Fa, VB, Vo)|[2,dr < [ (s, Bo,20) |3 (3:45)

From that stage, applying a regularization scheme similar to the one that we
used for handling the 3D case allows to conclude to the first part of Theorem
2.1.10 (uniqueness being also similar).

In order to prove the second part of the statement, we observe that In-
equality (3.4.3) reads

L < CX?W+CXD? with X(t) = || B(t)|| g1, D*(t) f VB2,

dt
and  W(t) = [lu(D)lIZ [ Vu() |17 + [ V()| 2V 2u() ] 2.

The first term of W may be controlled thanks to (2.1.38). To handle the second
one, the idea is to get a bound for w (the curl of #) through Equation (2.1.39).
More precisely, taking the scalar product of (2.1.39) with ) and integrating
by parts, we get (remember that 1 = 1):

2dtHﬂH VO + (e Q| V) =

Combining Holder and Gagliardo-Nirenberg inequalities thus yields

SN0l + 90U < 8] ) [T
1 1 1o~ 3
< CllQf| [l Vull [Vl
1.~
< CllOIIZ: w2 Valf + 51 VO
Taking advantage of (2.1.38) and using Gronwall’s lemma, we thus get
[0)[1% + [, 17012, dr < (00|12 exp(Cll (o, Bo)|22)-
Since w = Q) — B, using again (2.1.38) eventually yields
leo(®) 2+ [ IV |3 dr < [[(wo, uo, Bo) |22 exp(Cll (o, Bo)[2) - (3.4.6)
Taking advantage of the energy balance (3.4.1) and of Inequality (3.4.6),

we discover that the function W of Proposition 3.4.1 may be bounded as fol-
lows for all t > 0:

t
Jo W < (a0, Bo) £z + Il 10, Bo) 2| (wo, o, Bo) |2 exp (Cll (o, Bo) ) )-

Hence, applying Lemma 3.3.2 to Inequality (3.4.3), one can conclude that, if

ClBolp exp (o, Bl (o, Bl exp (Clao B [ 5)) ) < 1,
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then we have for all t > 0,
.
IB®) 30 + |, IVB3pdr < 1.
From that latter inequality, (2.1.38) and Inequality (3.4.6), one can work out

a regularization procedure similar to that of Section 3.3.1 and complete the
proof of the second part of Theorem 2.1.10. O
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Chapter 4

Global regularity and long-time
asymptotics for a generalized
non-local Burgers type equation

4.1 Global regularity for smooth positive periodic initial data

41.1 Local existence

We first discuss the local existence in the Theorem 2.2.2. In the case of
07 = RY, the proof requires slightly more technical care in the maximum
principle part, while being similar in the rest of the argument. We therefore
present the case R? only. However, in the case of QO = T%, we will addition-
ally obtain a complementary statement for the minimum: min, s u(t, x) is
a strictly increasing function of time, thus the amplitude is shrinking. In Sec-
tion 4.3 we will elaborate much more on the asymptotic behaviour of the
amplitude.

Proof of Theorem 2.2.2 The proof is based on a regularization of the kernel and
by classical energy method. We will split it into several steps.

Step 1: Regularization. Given 6 € (0,1]. Let us consider the following
regularization of the kernel from Fourier side

K3 (@) = [ e K5 (y) dy = —5'6'5 (4.1.1)

and the corresponding operator

VIS 1= [ (F0) — F) K3 —y) dy = K3(0)f ~ T3f = 5f ~ T3f (412)

where T; f = K5 * f is the convolution. Note that from [58] there is an explicit
formula on above regularized kernel, specially

1
K(y) = ———7F— —ftz]d2 t
) = T N (lylt) dt

where ], denotes the Bessel function of first kind of order & and Kj(y) is a
continuous strictly positive radial function on R?. Then we have by scaling
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property of Fourier transform that

4 s
Ki(y) = 6 GVKs ().

1
s

<>,

Just remark that in [16], Kg (y) (thatiss = 1) is given by
Cd1
Ky(y) = —"—=
@

where the fact that the Fourier transform of Abel kernel is Poisson kernel
have been used:

e~ S0l gg — (o) — AL
J (82 + |y1>) T

The regularized equation will takes the form

dptt = [F(u), |V[5Ju (41.3)
= [ (Fuy) - Fu)u@)Kix -y @14
= —[G(u), T5u (4.15)

where G(u) := F(u) — F(0). Note that T} is infinitely smoothing since its
symbol is exponential decreasing and || Tjul|gn < Cyg 5|14 .

Now, we would like to introduce a kind of composition lemma, which
have been wildly used in compressible fluid dynamics with a pressure law
depends on the density of the fluid, see [59] for an application to the well-
posedness issue of compressible Navier-Stokes equations in the critical Besov
space. In order to adapt to our setting, we state the version in Sobolev spaces,
the proof and various generalization can be found in e.g. [60, 45, 61].

Lemma 4.1.1. (Proposition 1.4.8 in [60]) Let I be an open interval of R. Let r > 0
and o be the smallest integer such that ¢ > r. Let G : I — R satisfy G(0) = 0 and
G € WP®(I;R). Assume that f € H" has values in | CC I. Then G(f) € H"
and there exists a constant Cq depending only on v, 1, ],d and || f||p~ such that

IGHer < CLllG ey 1 £ 1l

Lemma 4.1.2. (Corollary 1.4.9 in [60]) Let I be an open interval of R. Let r > d /2
and o be the smallest integer such that o > r. Let G : I — R satisfy G(0) = 0 and
G" € WO*(I;R). Let f,¢ € H" has values in | CC I. Then there exists a constant
Cy depending onlyonr,1,],d and || f|| 1, ||g]| L such that

1G(f) —G(8) |l §C2||g”||wm(1)<||f—g||Hf sup [|f +7(g— f)llLe

T€[0,1]

+11f = glli= sup [If +7(g— )l )

T€[0,1]
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With above Lemma 4.1.1, we will show the right-hand side of (4.1.5) is
quadratically bounded and locally Lipschitz in any open set of H™:

M.— [y e H™ |jul g < M}.

Indeed, by the standard quadratic estimates (note that H" (IR) is an algebra)
and the facts that G(0) = 0, H"(R") < L®(R"), one has for any u,v € OM

G (u), T5]ul| g < Cslla|Fpm
and
1[G (u), T5u — [G(v), T5]ol|m < Csllu — 0| g (||| g + [[0]] )2

In particular, C; is a constant depends on 4. Thus, by the Picard theorem on
Banach spaces (see [14] for example), for any u(0,x) € OM there is a unique
local solution u € C1([0, T); OM) to (4.1.5). Here T depends on ||u||g= and 6.
For late use, note that ||u(t)|;2 = ||#(0, x)||;2 is conserved thanks to the basic
feature of (4.1.3).

Step 2: Maximum principle. Suppose u(0,x) € OM and in addition u (0, x) >
0.Letu € C'([0,T); H"(R?)) be a corresponding local solution to (4.1.5). As
H"(R?) < C(RY) for m > 441, and u(t,x) — 0 as x — oo, then for fixed
time ¢, u(t, x) has and attains its maximum M (#) = max,ca t(t, x). We claim
that u(t,x) > 0, for all (t,x) € [0,T) x RY, and the maximum function M(t)
is strictly decreasing on [0, T). Let us prove the first claim first.

Let us fix R > 0 and show that u never vanishes on (0, T) x Bg(0). Sup-
pose it does. Let us consider

=inf{t € (0,T): Ix € Br(0), s.t. u(t,x) = 0}.

By the boundedness of (0, T) x Bg(0) and the continuity of u, ty is attained.
Since uy > 0, then ty > 0. We next show that u(tg,x) > 0 for all x € Br(0).
If it does not satisfied, then there exists x, such that u(fy, x,) < 0. Thanks
to the continuity of u there exists a constant 6 > 0 such that for all (t,x) €
(to — 4,t0) X Bs(x4), we have

1
|u(t,x) —ulto, x:)| < S u(to, x.)|

and particularly

§u(t0,x*) < u(ty —é x) <

1
) 5 ) < Eu(to,x*) < 0.

This is a contradiction to the definition of ty. Thus u(fp,x) > 0 for all x €

Br(0).
Now, let xg € Br(0) be such that u(tg, xg) = 0. Evaluating (4.1.4) at (o, xo)
we obtain

oru(to, Xo) f f u?(y)K3(xo — y) Ady > 0.
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The right-hand side is strictly positive since the energy of solutions to (4.1.3)
is conserved and F/ > 0 a.e. on (0,+0c0). This shows that for some earlier
time t < to, u(t,xp) vanishes, which is a contraction. Since the argument
holds for all R > 0, the claim follows.

Let us prove the second claim now. Suppose that M(t) is not strictly de-
creasing on [0, T). This implies that there exists a pair of times 0 < #; < t; <
T such that M(#;) < M(t;). Let us first show that there exists a fy > t1, such
that M(tg) > M(t) forallt € [y, to]. If M(t1) < M(tz), then by the continuity
of M(t) (use the fact that u is continuous), M(t) attains its maximum on the
interval [t1, t2]. Choose tg € [t1, t2] be the left utmost point where the maxi-
mum of M(t) is attained. Then ¢y > t1, and M(ty) > M(t) forall t; < t < f.
If, on the contrary M(t;) = M(t;) then either one can shrink the interval
to fulfil the previous assumption or M(t) is constant throughout [t1,fp]. In
either case, there exists, as claimed, a tyg > t1, such that M(ty) > M(t) on
[t1, to]. Let us consider a point xy € R such that u(t, xg) = M(to). Then

druu(to, x0) = [, (F(u(y)) — F(u(x0)))u(y)K5(xo — y) dy < 0.
This implies at an earlier time ¢t < ty, one must have u(t,xg) > u(to, x9) =
M(tp) which in contradiction with the initial assumption.

Step 3: uniform bounds. Let us first state the following uniform estimates
in term of §

Vsl < Cas VI fllar (4.1.6)

for all r € R;. In fact, using the definition of nonhomogeneous Sobolev
spaces (see for example [45])

1Al = 1@+ 812 f ) e,

by virtue of (4.1.2) we write

IV [5f 1l = 11+ 1822 F (V512

= [ +1gP)2f 50— e N2

2\L xS T |1 — 6_5|§|S|
< A +181)2 [P Al sup =
5 4
< IV Ffllzr
Let « be a multi-index of order |a| = m, obviously m > 2 so that there

exists j € {1---d} such that 0 = 9" “9;. Differentiating (4.1.3), we obtain
ata"‘u
= [F(u),|V[Jo*u+ Y 9P (F(u))|V[;0" Pl

- |V|f5< Y. aﬁz(F(u_))G"‘_ﬁzu + Y udP(F(u)o" Pu+u F’(u)&"‘u).

0<Br<a 0<Bz<a—e;



4.1. Global regularity for smooth positive periodic initial data 87

Here, for multi-indexes «, 8, we point out that 0 < g < a means 0 < ,B]- < aj
foreachj=1,...,d.

Let us take L? inner product of above equation with 0*u. Using the prop-
erty

[ £1VI58 = [ VIS, (41.7)
and thus
fg f.1VI5lg
We have
d
ol
= [ou Y P (F()|V[50* Pu— Y ja“u|V|§<aﬁz(F(u))a“—ﬁ2u>
0<B1<u 0<Ba<a
-y jaaung(uaﬁs(?(u))a“*ﬁsu) — [ 9u |V [5 (uF' (u)o"w).
0<B3<a—e;
(4.1.8)

Only the last term is of order m + 1. Using (4.1.7) and the definition of | V|3,
one has

- fa"‘u (V15 (uF (u)0"u)
=— j(|V!§8“u) (uF' (1)0*u)
=— j j u(x)F (u(x)) 0%u(x) (0%u(x) — o%u(y) ) K (x — y) dx dy.

Then by the positivity of u, F/, a bound for the above term will follows from
the elementary identity

1
—a(a—0b) < ~3 (a® — b?).

More precisely, we use the embedding H"~1(R?) < L®(R) and estimate
(4.1.6) to find that

— | [ )P (u(x)) 0 (x) (3*u(x) — 3*u(y)) K5(x — y) dx dy
< _% [ (o) F () ((0*u)*(x) = (0*u)* () K3 (x — ) dx dy
= = [ u(x)F'(u(x)) [VI5(@*u(x))?)
= [@ PV (uF ()
< 5 ol 11V (P ) o
S el [wF () [[m < (el o, (419)

where in the last step we have apply Lemma 4.1.1 to the function #F’(u) and
use the maximal principle for u proved in Step 2.
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The rest of the expression (4.1.8) is simpler to deal with as it does not con-
tain any other derivatives of order m + 1. To estimate it, we will use Lemma
4.1.1 and the Gagliardo-Nirenberg inequalities:

1_7

197AIl 20 S Ml " IIuHHn 0<|y[ <, (4.1.10)

and the following Kato-Ponce inequality (see [62]):
VIS ez S TV EAeeligliee + I lall1 Vgl 1a (4.1.11)

for p,d € [2,00),p,q € (2,00] such that § = %—I—% = %—}— %.
Remembering that G(u) = F(u) — F(0) with G(0) = 0. So for any 0 <
B1 < a, we write by Holder’s inequality
| [ 0 udP(P(u)) |V [59 Pru |
= | | 9*udf (G(u))| V50" Pru|
< Jl0%ull 2 1P (G ()| 20y 1V150%Pratl] 2y

L 1B1l-1 Lm=1Bq]
1_lAl=1 1Bpl-1 m—|p1]|
S Nl V(G @) ™ IVG )] g JHVWHLOG i IV 15ull gy
1B11-1 1Byl-1 1_m=IAl m—|pq]

< Ll |GG o NG Nl ™ Nl g™ S lalm (@1122)

For the second term in the expression of (4.1.8), by the estimate (4.1.6) and
Kato-Ponce inequality (4.1.11) we have forany 0 < f, < &

| [[oul V5 (92 (P(u))a*F2u)|

= | [[0u|V[3(9P(G(u))a*—Peu),
< [ ull 2010P2(G ()9 P2 .
S el 952 V(G| 2y 9% P2l a0

L \ﬁz 1. m—1Ba-1
+ [l e [P (GO 2 0PV Put]| 2o - (4.1.13)
L 1B2[-1 Lm— \/32

Using Gagliardo-Nirenberg inequalities (4.1.10) and Lemma 4.1.1 again, we
get

0PV (G 20— 0* P2l a0,

L \/52| Lm |ﬁ2\ 1
1- P2l m—|Bp|- m-lfpl-1
S VP (G(u ))HLoom’llHV\s( (u ))HHm 1HVM|HLoo el HVuH\Hm
182 m—|Bp|-1 m—|p| -1

S11G@) |t 1+SIIG( )IIHm vl ™ g

< Mol
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and we estimate |082(G ()| 21 [|0*P2|V[*u|| 20 1) as same asin (4.1.12).
L 1B2]-1 1.m—[B2]
Hence

| [ oI5 (9P (F ()0 P2 ) | S 3 (4.1.14)

The remaining term in the expression of (4.1.8) is new comparing to [16]. We
take an advantage of the following commutator estimate developed recently
due to Li [44]: forany s € (0,1],1 < p < oo,

IIVE(f) = fIVEgIe S NIVE Il gl (4.1.15)
Forany 0 < p3 < a — ¢; we have by (4.1.15)

|0 ul I3 (wdbo (P (u)3*Pou) |
< 0% ul 2l 0 (F' ()0 Fou

S Ml (1Y Puel| oo 1072 (F' (10))0%Pou]| 2 + [Jual| o |07 (F' (1) )0 Poua]| ).
(4.1.16)

The term ||0P3 (F’(u))0* P3u|| ;s can be estimated similarly as we did in (4.1.13),
i.e. we have

19F3 (' (u))o* Poull g < e[y (4.1.17)

Notice that we can estimate ||0%3 (F/(1))9% F3u/||;2 by simply taking s = 0 in
(4.1.17) and thus it is bounded by ||u||2,,.. However, in order to prove a Beale-
Kato-Majda blow-up criterion in the next (see Theorem 2.2.3), we shall prove
it actually has shape bound |[u||g». Indeed, thanks to Gagliardo-Nirenberg
inequalities (4.1.10) and the fact that u is essentially bounded, we have

18P (F' (u))a*~Pou| 2 < [|0F (F'(u) — F'(O))HL‘% [0 Fou| 2

1, m—I[Bsl
p 1183l , p 183l 1—"=1A3| m—|Ba|
SNE )l ™ [[F'(u) = F0) || i [l oo ™ [[al] g
S llul e (4.1.18)

Put (4.1.9), (4.1.12) and (4.1.14), (4.1.17), (4.1.18) into (4.1.8), we thus obtain
a differential inequality

7wl < Cllu[3n

with a positive constant C independent of ¢ or ||u||g». By continuation the-
orem of an autonomous ODE on a Banach Space, it shows that the solution
u obtained from Step 1 can be extended to a time T which is independent of

5 as well. Namely, there exists a time T* = (C||ug||gn) ! such that we have
the bound

[[uo || m .
, telo,T). (4.1.19
1—Ct||1/l()||Hm [ ) )

Step 4: Convergence. We now turn to the convergence issue. For each
0 € (0,1], let us be the solution to (4.1.3) from previous steps with the same

[ (E)][ i <
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initial data u(0, x) = up(x). Thanks to (4.1.19), us € C([0, T); H™) uniformly
in terms of ¢ for any fixed T < T*. Then we estimate the right-hand side of
(4.1.3), recall that G(u) = F(u) — F(0), we have

ITE (us), [V [5]ut5]| -1
=[G (us), IV [5lus | s
S G o) [[ g1 [V 515 ppns + 1V [5 (15 G (u5) ) || s
< llusl g

This shows that the family {9;us} is uniformly bounded in C([0, T); H"~1)
with respect to 4.

At this moment, one can perform the classical weak compactness method,
which provides a limit for a subsequence. Instead, we will show that the
family {us} is a Cauchy sequence in C([0, T]; L?). To prove our claim , we
first need to prove an estimate on the difference of operator |V|5. Recall
definition (4.1.2) thus for any fixed J, € € (0,1] we have

1V13f ~ [91efliz = ||<1 ST - T)fl
= [ 9 (21— e ) de o
= (0= (A Tlg)e ) ae fll
<| j r|c| ) dt fll 2
< §I5—€! H!é\zsfHLz
< 316~ el I fln. (4.1.20)
Writing the equation for the difference of two solutions, we obtain

O¢ (s — ue)
=(G(us) — G(ue)) | VI5us + Gue) (| V[5 — VI us + G(ue) IV[e(us — ue)
(IVI5 = IVID)(G(us)us) — |VIZ((G(us) — Glue))us) — [V (G(ue) (us — ue)).

Taking L? inner product with us — u,, we further obtain

= [ (s = ue) (Glus) — G(ue)) |V [sus + [ (s — ue) Glue) (IVI5 — |V[2)us
[ (s = 1e) ([G(ue), IV (s = ue) ) = [ (15 = ue) (1V[5 = [VI)(G (1) s)
— [ (15— ue) V12 ((Glus) = Glue))us)-
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We see that the third term cancels out, and we have for the last term, using
the same trick as (4.1.9):

— [ (15— ue) V12 ((Glus) = Glue))us)
= — [(1g — ) IV[2 (a5 — e s [ F (1= A)uas + Aue) dd)

1 1
<=5 (s — e [VI2 (s [ P (1= Ay + duee) d2)

1
S s — el llus [ F/((1 = A)us + Ante) dA | eom
< Nus — uell72, (4.1.21)

in view of the uniform bounds on u;, 1. in H™ and a generalization of the
composition Lemma 4.1.1 with two variables (see Chap. 5 in [61] ). The rest
terms can be estimated by (4.1.20):

| [ (s = 11e) (Gus) = G(ue)) [V [5us] + | [ (s — 1te) Glue) (|V[5 — |V [2) g
+ | J(ufs —ue) ([V[5 = IV (G(us)us)|
Sllus — uell 2 (||G(u5) — Gue) |21V [5usll= + |G (ue) = [ (V][5 = V[ usl| 2
+ (1915 = V1) (G (us)us) 12
Sllus = uell 2 ([lus — uell 2 + 16 =€),
where in order to estimate ||G(us) — G(ue)||;2 and ||G(ue) ||~ we have spe-

cially use the fact that u;, ue € L*. We thus get

5l —uellfa < Cllus — uelF + 10 — elllus — uell 2),

where C depends only on the initial conditions and other absolute dimen-
sional quantities, but not on §, €. Given that the solutions start with the same
initial condition, the Gronwall’s lemma implies that

lus(t) = ue(t)| 2 < Cl6 —el(e — 1)

forallt < T . This proves our claim.
As a consequence of the interpolation inequality

1’ !

m’
1 g < WM " s O <m <m

and the uniform bound for u; in C([0, T); H™), so us converges strongly to
some u in all C(]0, T);Hm'), % +1 < m' < m. Moreover, di; converges
distributionally to d¢u, and in view of the uniform bound of d;us in Hm1
it does so strongly in H™ ~1. This shows that the limit u € C([0,T); H™) N
Cl([0, T); H™ 1) solves (2.2.2) classically with initial condition uy. Unique-
ness is guaranteed by performing similar estimate like in Step 4. Note that
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for the solution u that we constructed, the maximum principle proved ear-
lier for u; still holds. The argument is the same, due to the positivity of the
kernel.

Step 6: Continuity of the solution. At last, we prove that the unique solu-
tion u belongs to C([0, T], H™) N CY([0, T), H™~!). By virtue of the equation
it is sufficient to show that u € C([0,T), H™). For that, we first show that
u € Cy([0, T); H™) which is the space of weakly continuous H"-valued func-
tions. In view of the uniform bounds of d;us in C([0,T); H"!) and u; in
C([0, T); H™), we know that u € L®(0, T; H") and o;u € L®(0, T; H" '), in
particular u is almost everywhere equal to a continuous function from [0, T|
into H"~'. Finally, H~ ("1 is dense in H~" imply that u is weakly contin-
uous from [0, T] into H™. More precisely, let (¢, 1), ¢ € H™ denote the dual
paring of H™"™, there exist y € H~("~1) close to ¢ in the sense of H"-norm
and we write the decomposition

(@, u)(t) = (@ = p,u) (t) + (P, u) (t),

it implies the continuity of (¢, u)(¢t) on [0, T).

From the fact that u € Cy ([0, T); H™) we have liminf; o |[u(t)|gm >
||to||gm. For fixed t € [0,T), as the sequence us(t) is uniformly bounded in
H™, so that it also have a subsequence weakly converge to u(t) in H". Thus
we have |[u(t)||gm < limsup,_,, |[|us(t)|| gm. Recall (4.1.19) we further obtain

limsup ||u(t)||gm < limsup lim sup ||us(¢) || g

t—0+ t—0+ 0—0
- [[140]|
< limsu < |lug||gm-
PP 7= Celuolle = 1]
In particular, lim;_,o4 [[u(t)||gm = ||ug||gn. This gives us strong right con-

tinuity at t = 0. Because the analysis that we performed for the equation
(2.2.2) is time reversible, we could likewise show strong left continuity at
t = 0. Moreover, as the equation is also translation invariant, we conclude
that u is continuous on [0, T).

This completes the proof of Theorem 2.2.2. O

4.1.2 A Beale-Kato-Majda type criterion

We now state the proof of the classical BKM criterion for our model. In
fact we will see that fOT ||V |u(t)]| =dt is also a BKM criterion.

Proof of Theorem 2.2.3 The proof relies on an available log-Besov interpolation
inequality (see Lemma B.3.5). The reader may also refer to the Appendix
B for definition of Besov spaces and its properties such as interpolation in-
equalities, embedding.

In fact, we shall prove the following stronger criterion:

T
Jo M), dt < co. (4.122)
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According to the Bernstein’s inequalities in Proposition B.1.1 and the fact that
Ajisa uniformly bounded operator in terms of j in any L” spaces (p € [0, =]),
we have 2]||A]-u||Loo < ||A]-Vu||Loo < |[|[Vul|L~. Hence (2.2.6) implies (4.1.22).
Similarly, since the symbol of operator |V| is || ~ 2/, we have 2/ HAjuH Lo S
1A;|Vul|lLe S |||V |u|| L=, thus the condition fOT [V |u(t)|| odt < oo also im-
plies (4.1.22).

Now, we prove once (4.1.22) holds, the solution will not blow-up at time
T. Performing exactly the same estimates as (4.1.9), (4.1.12), (4.1.14), (4.1.17)
on Step 3 of the proof of Theorem 2.2.2 but now with |V|® instead of |V}, we
can arrive at the following a priori bound (we will specially use (4.1.18))

alX
2 S / by |11 S lﬁl‘
S ||u||Hm(IIIV| (uF' () [l + VG @)l ™ V0l ™
s 1_\/372|1 1‘ - 1- ‘11 s “Bl‘
+IVIG(u)[| =" IIVuIILoo VGl ™ IV ™
B3l *\ﬁs\
+ IV Pl | F () ] " ||u||Loo
T L =
el | VF @)l ™ 119

1— B3l B3] -1
Fulle [V FE @) 1" [ Vale ™).

It is clear that as u € C([0, T); H™(Q)) N C1([0, T); H"~1(Q))), maximal prin-
ciple holds for u, thus Hu|| L~ < |lug||L~. Now, by Young's inequality and ob-
vious embedding BY ; < L® and Proposition ?? in order, we rewrite above
inequality to

e
24" IH™

< Nl (11 ) g, + G ge | + el +1G0 gy, + g,
+ Gl + ullge, + Nl (IF (o)l + ol )
+ [l = (1F () = 'O g1+ lullgs, )
+ [l (11F' () = F'(0) g+ llulln )

< ol (N )15, + NG @Nge |+ Matllgy, + G0 lgs, + Nl
+ [[F () = F Ol +IF'(w) = F'(0) 11 )

S Nullon (lull s, + leellge ) (4.1.23)

where in the last step we used a composition lemma for homogeneous Besov
spaces, see Theorem 2.61 in [45].
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Next, one can get from interpolation inequality in Proposition B.1.3 (iii)
and Young’s inequality that

lullge | S Dullig? ullyy | < Nuolli=slluly, <1+ luly (4129)
Moreover, by takingr =1, p =00,0; =1, 0p = m —d/2 —1in Lemma B.3.5

and from the embedding H" — B2 _9/2, and the inequality —alog,a < 2 on
R% we have

lullg S lullgy, (1410
By > WHBL DT 082 Tulle, .

< Il (1+10g, (luoll i + lullsm) ) = 1l gy, Togs Nl .

<||MHBgo,oo + ||u”Bg"o;g/2>>
(
< llullgy, (1 +1og (llmolle + fjullsm) ) +1. (41.25)

Hence, taking (4.1.24) and (4.1.25) into (4.1.23), we obtain the following
differential inequality (note that ||u(t)|| = will not vanishing)

d
lllzon S ulli (14 Yl (1+1og (ol + 1ullm)) ).

Define X(t) := In(||u||gm + ||uo||), we further obtain

d
_ < .
SX() S 1+ lullgy, (14 X)),

and thus

d
S In(1+X(5) 1+ lullg . (4.1.26)

One finally gets a double-exponential estimate of the form:

(T 12 5 ol exp (exp (T + [ et 15 ) ).

Theorem 2.2.3 follows immediately. O

4.1.3 Instant regularization and global regularity

In this subsection we study the question of the global existence in the
periodic case through regularity theory.

Suppose up(x) > 0,x € T and uy € H™(T%). From local existence
theory Theorem 2.2.2, there exists a unique classical positive solution u €
C([0, T); H™(T%)) N C'([0, T); H"™ 1(T") on the torus T¥. Let T* be its max-
imal time of existence. We will show that T* = oo. Let us assume, on the
contrary, that it is finite. Then we can quickly infer from BKM criterion The-
orem 2.2.3 that

T*
Jo IVu() ey dt = oo. 41.27)
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In what follows we apply the De Giorgi-Nash-Moser regularization result of
[25] to the equation (2.2.8).

Theorem 4.1.3. [25] Let w be a weak solution of the evolution equations of the type

dw = [ (@) = w(*)K(L,x,y) dy. (4.1.28)
There exists 0 < 5§ < 2and 0 < A, such that if the kernel K satisfying the properties:

K(t,x,y) = K(t,y,x) foranyx #y,
A1 A
<K(t,x,y) < ——m—.

x — y|*+5
Then for every ty > 0, w € C%((ty, 00) x R?). The constant « and the norm of w
depend only on to,d, ||wol| 2, and A.

Since u is a classical solution, the formal passage from the u-equation
(2.2.5) to the w = uz—equation (2.2.8) holds true. Moreover, in virtue of Max/
Min principle, i.e. (t) := max, s u(t, x) is a strictly decreasing function of
time f while u(t) := min, s u(t, x) is a strictly increasing function of time f.

By rewriting SZC(;CEI((L;)) = T i T in (2.2.9), one finds that
u(x) " u(y
2u(x)u(u) [P (1= Aulx) + Auly)) dA
u(x) +u(y) Jo
<#a(t) max F(a) <@(0) max F(a
o )ue[g(t),ﬁ(t)] (a) < i )ae[g(o),a(o)] (a)
and
Qu(x)u(u) (1,
Tl Jo F((1 = A)u(x) + Auy)) da
>u(t) min F'(a) > u(0) min F'(a).

1
aclu(t), a(t)] a€u(0),(0)]

Thus, one may define

1
A := cy,max < ii(0 max F'(a), ,
- { ( )aE[u(O)rﬂ(O)} @) u(0) mingey(0),1(0)] F’(ﬂ)}
and get
A1 A
<K < =
g =) S

Obviously, the active kernel £° given by (2.2.9) is symmetric with respect to
(x,y). Hence above Theorem 4.1.3 applies verbatim to our periodic solutions
of (2.2.8), there exists an ap > 0 which depends only on t,d, A, ||ug||L~ such
that for any 0 < to < T* we have w € C*((to, T*) x T%) with the bound

[l eao (g, 7y xey < Clto,d, A, [luo]|L=2)-
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Moreover, we also have C*0 regularity for

m(t,x,y) 1 = cgs M fl F’((l — Mu(x) + Au(y)) dA

( )+u(y
_ \2/w\/ +V\/w j < A)y/Jw(x) +)u/w(y)> A
(4.1.29)

on (to, T*) x T% x T4, since the solution u and thus w is bounded away from
zero.

Based on the gained C* bound in space-time, the next step is to prove
Schauder estimates on equation (2.2.8) or more general type equations. Paral-
lel to this, the Schauder estimates is obtained in [17] for a general class of lin-
ear integro-differential equations without evenness assumption on the ker-
nel, which have been applied successfully to (2.2.8) of the case s = 1, F' = 1.
Remark that the lack of evenness of the kernel makes our model out of the
range of immediate applicability of recently results concerning the regularity
theory of nonlinear integro-differential equations, such as Caffarelli-Silvestre
[63], Lara-Davila [64], Mikulevicius— Pragarauskas [12] and Jin—Xiong [65,
54], Dong-Zhang [66].

It therefore needs to be addressed separately to get higher order estimates.
We have the following result for a class of general equations (proved in the
Appendix D).

Theorem 4.1.4. Let sy € (0,1], 59 < s < 1. Suppose w € C1(1+0)s((—6,0] x
IR?) is a solution of the linear integro-differential equation:

diw = LR (w(t,x+y) —w(t,x)) L(t x,y)dy
+ (@t x +y) = w(t, %) QUt %, y) dy + (4, %)
with ¢(t,x) € C**((—6,0] x R?). Suppose L and Q satisfy

L(t,x,y) = L(t,x,—y) forall (t,x,y) € (—6,0] x RY x R?,  (4.1.30)

Ay~ < L(t,x,y) < Agly| =@ forall (t,x,y) € (—6,0] x R? >(<4]1§d3,1)

L(t1, x1,y) — L(t2, x2, )| < Aa(|ty — b + |x1 — 22| )|y~ °  (4.1.32)
for all (t1,x1,y), (f2,x2,y) € (—6,0] x RY x R,

and

1Q(t,x,y)| < Agmin{1, |y|**}|y| @ forall (¢t x,y) € (—6,0] x Rd(zll[{;é)

Q(t1, x1,y) — Qlt2, x2,y)| < Agmin{|ty — to|* + [x1 — 22", |y[* Hy| ="~
(4.1.34)
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for all (t1,x1,y), (t2,x2,y) € (—6,0] X RY x RY,

respectively. Then for every B < «, there exists C > 0depending onlyons,d, A1, Ay,
«, B such that

lwllgresaeps (1,0 xrty < CUlwll o500 xmey + 1l cprs (5,01 xre))- (41.35)

Now, we follow the idea of [17]. Assume that w € C1 e (1+@)s((t,, T*) x
T9),0 < a3 < 1is a solution to (2.2.8). we then restore the evenness by
rewriting equation (2.2.8) to

drw = de <w(t,y) — w(t,x)) % dy
+ (w(t,y) - w(t,x)) mitxy) =mbxx) g 56

Letm(t, x,y) defined as in (4.1.29), thus [|m | cu (1, 7)) xme ey < C(d, A, [[uo][ ).

In this form it is clear that the C1*#1(1%41)s regularity of w and thus C* regu-
larity of m are sufficient to make sense of both integrals classically. Define

m(t,x,x m(t,x,x+vy)—m(tx,x
L(t/x/y) = % and Q(t/x/y) = ( ‘szrS ( )

Then, it is elementary to check that L and Q satisfy the assumptions in Theo-
rem 4.1.4. Therefore, we have for every B1 < ay,

||w||(j1+/51'(1+/51)5 £ T*) x T4 < C(S,d,A,DCO,ﬁl).
((to,T*)xT)

Without loss of generality, we assume that (1 4 f1)s > 1. In fact, if it is not
satisfied, we can apply Theorem 4.1.4 again and again until for some ko € IN
such that (ko 4 B,)s > 1 and

l0lluip, (0,0 xmey < N0l reprossig)s o guyoqay < €84 s 0, B Ko)-
This is a contradiction to (4.1.27). Thus we conclude that T* = oo.

Next, we prove the higher regularity bounds (2.2.7) for w and hence for u.
Differentiating (4.1.36) in x, we have for v := V,w,

m(t,x, x
010 = p.v. de (v(t,x +y) —o(tx)) % dy

m(t,x,x+vy)—m(t, x,x
pvf o(t, x+y) —o(tx)) ( |yy|21+s ( )dy

2V,m(t, x, x
—|—pvf w(t,x +y) —w(t, x))%

2Vom(t,x,x +vy) — 2V ym(t, x, x
—I—pvf w(t,x+y) —w(tx)) Ui |yy’)d+s o )dy

=I+1I+1IT+1V.
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Above, for simplicity, we used the property that m(t,x,y) = m(t,y, x).
Notice that we have HmHC1+131,(1+/31)5((1_0,T*)X,]rdXIRd) < C with (14 B1)s >

1. And we can write by the definition of fractional derivatives that III =
2|V 5w Vym(t, x,x). It is classic that the application w — |V |*w is bounded

from C(1*A)s into CPS. Thus we see that for By, := min{p;, —(Hﬁ;)sfl I3

|| IIIHCﬁl*//gl*S((tO,T*) XTd)

< CHwHCBl/ﬁlS((tO,T*) x T xR¥) ||m||C/51,(1+/51)5—1((t0,T*) x T4 xT4)
S C(S; d/ A/ xo, ﬁl)

Meanwhile, it follows from Proposition D.1.2 that for every B, < B1. we have
HIVHcﬁzlﬂzs((to,T*)xTﬂl) < Cllwllens(ty, ) i ey < C(s,d, A, B, B2)-
Applying Theorem 4.1.4 to the equation of v, we then obtain
| vxwHclJrﬁz,(Hﬁz)S((tO,T*) X T) < C(s,d, A\, a0, B1, B2)-
In a exactly similar way, we can differentiate (4.1.36) in time ¢ and obtain
HatwHcl+ﬁ2/(1+ﬁ2)5((t0,’]‘*)><’][‘d) < C(s,d, A\, a0, B1+, B2)-

Then (2.2.7) follows from keeping differentiating (4.1.36) and applying The-
orem 4.1.4 as above. The particular connection between w and m is crucial: a
given regularity of w implies the same regularity of m.

We have completes the proof of Theorem 2.2.4. O

4.2 Global existence of weak solutions for positive bounded
periodic data

In view of Theorem 2.2.4, for smooth enough and positive initial data
uy € L®°(T), the corresponding solution u(t, x) is bounded and bounded
below and satisfies the higher order bounds (2.2.7), where all of these bounds
depend on the maximal and minimal value of u(. Thus, for any positive time
t, we shall have classical solution. However, in order to set up a weak for-
mulation of the equation near ¢t = 0 and restore the initial data, we need to
have additional a priori bounds for solutions. Recall that in [16], we consider
the case s = 1, F(u) = u in (2.2.2), and we do have "first momentum law": by
integrating (2.2.2), we have

t/
JW u(t', x)dx — er u(t,x)dx = L er u(t,x)|Viu(t,x)dxdr
= ||u||%2(t,t/;H1/2(Td))'

This combined nicely with energy conservation ensures that we have u €
L*(R; HY?(T%)), regardless of the sign of uy.

A difficulty emerged here, since above property is not obvious for the case
F(u) = u", not to say for general function F(u). Nevertheless, we find that
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the following quantity is conserved for smooth 27-periodic solution u(t, x)
to our generalized model (2.2.2),

it gy + 5 [ [ [ (m P2 = u(z, ) P2)

( (u(t,y)) — F(u (T,x))) (T, )u(T,y)Kper (x —y) dxdy dt
(4.2.1)

for any p € (2,00). This property can be obtained by testing (2.2.2) with
|u|P~2u. Instantly, by taking p = 3 in above, we get

(t,x)]? s
2»[ de j’Il"d |y_x|d+s M(T,X,]/) dXdydT < ||u0||L3(Td
where
Cdslx_y|d+s
M(t,2,y) = u(r,xu(r,y) Y YL
y y jEZZd|x_y+2m|d+s

. jol F/((1=ANu(t,x) + Au(t,y)) dA.

Hence by finite differences representation of the F*/%(T%)-norm, we find that
for s € [sp, 1] with sp € (0,1]

2 (T, x)|2
||MHL2 Hs/2 Td f de de |x—y|d+5 dXdydT
2 1
- gminf,x,y/\/l

||uOHL3 jl"d) < CH”OHLOO(Td). (422)

Then the Max / min principle and above a priori bound allow us to construct
weak solutions from arbitrary positive data in L*(T*). By global weak solu-
tions of (2.2.2), we mean that for any ¢ € C®(R x T?) the following weak
formulation is satisfied for all + > 0,

fd (tx)go(tx)dx—f up(x) (0, x) dx—jf (T, x)0r(T, x)dxdt

- j Ll"d f”ﬂ"d F(u(r,x)))(p(r,x)u(y) K}S)er( ]/) dXd]/dT-
(4.2.3)

4.2.1 Proof of Theorem 2.2.5

Proof. In order to prove the existence of weak solution in the class L®(R; x
T¢) N L2(R,; H/?(T%)), one can resort to the following classical procedure:

(1) smooth out the positive and bounded initial data uo by taking standard
mollifications (up)e>0, and get a sequence of global smooth solutions
(tte)e>0 which satisfied Max / Min principle, regularization properties
and thus (4.2.1), (4.2.2);
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(2) find out (dsue)e>o is uniformly bounded in L?(R; x T¢) by using com-
mutator estimate (4.1.15), then use Aubin-Lions lemma to get strong
convergence of solution sequence in L?(R; x T*);

(3) based on the obtained convergence results to show that (i¢)e~ con-
verges, up to extraction, to a solution u of (2.2.2) in the sense of distri-
butions.

Remark that, we have u > miny up(x) > 0. The only remaining problem
is to restore the initial data and prove the announced time continuity in the
theorem. We first prove the continuity of momentum. Now, for steady test
function ¢(x) we rewrite (4.2.3) as

fwu(t,x)qo(x) dx — de uo(x) g (x) dx
o o s (P )) = B, 20)) () = (T, ) () K — )

3 s (P y) — Bl 0)u(n, ) (p(x) — 9(3) Kierlx — 1),
(4.2.4)

At this moment, there are no a priori bounds that guarantee the smallness
near the time t = 0 of the first integral on the right-hand side. However, we
shall show that a possible concentration of the H*/? norm near t = 0 is not
the case. This goes back to an observation of the following lemma.

Lemma 4.2.1. (Lemma 2.4 in [16]) Suppose that a sequence of functions {u,} C
2

L*°(T*), bounded away from zero, enjoys both limits u, — u’ and u2 — (u")* in
the weak* topology of L® (T%). Then u” > u’.
Following the same line of steps (1)-(3), we know there exists a weak so-

lution w in the class L°°(]R x T9) N L*(Ry; H/2(T?)) (since L® N H? is an
algebra) satisfies w = u 2_equation (2.2.8) in the weak sense, that is ( leer
represents the periodic version of K°, which is symmetric in terms of x, y)

erw(t,x)go(t,x)dx—f w(0,x)p(0, x) dx—f j (t,x)0r(T, x)dxdt

L ) = () (90 ) = 91, )) KT, 3,3 ddy .

In particular, we take ¢ independent of ¢, and find that u?(t) — u weakly*

in L®(T%) as t — 0. Then we notice that for ¢(x) > 0 the first integral of the
right-hand side of (4.2.4):

[ [ (Bt y)) = F(u(r, ) (u(t,) = u(t,2))p(x) Kperx — 1) > 0.

Meanwhile, by Holder” inequality and composition lemma, we have for the
second integral of the right-hand side of (4.2.4):

o [ (BT y) = F(u(t,)))u(t,0) (9(x) — 9()) Kier(x — 1)
< CVEIF() | 20 ey @l rall o
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< CVt|ull 2o ;p52) @l o2 s — 0 as £ — 0.

Hence, any weak* limit of a subsequence of (u(t));~o would converge to a
function u’ satisfying

[, = 1w0) g(x)dx >0V (x) > 0.

Thus u' > ug, which combined with u?(t) — u3 implies that lim;_,qu(t) =
u' = ug in the weak* topology of L®(T%), in particular, testing this weak*
limit with ¢ = 1 ensures that the momentum [, u(t, x) dx is continuous at

t = 0. Look back at (4.2.4), it is clear that

H”|’L2(0,t;Hs/z(w)) —0 as t—0.

Let us finally point out that u is weakly continuous in L?(T%) at t = 0 and
[u(t, )| 12(ya) is continuous at t = 0. So the L? norm of u is also continu-
ous at time t = 0 and therefore overall preserved since u is instantaneously
regularized into C*. O

In view of the time reversibility property mentioned above, if u is a posi-
tive solution to (2.2.2), then —u(t* — t) is a negative solution for any +* > 0.
Thus starting with positive data ug € L®°(T%)/C(T?) we obtain a solution
u from Theorem 2.2.5 which becomes smooth instantaneously. Then —u(t*)
serves as negative initial data that develop singularity at time t = ¢*.

Corollary 4.2.2. (Finite time singularity) For any t* > 0, there exists a negative
initial condition ug € C*(T*) and there exists a classical solution to (2.2.2) that
develops into a discontinuous solution at time t* i.e. u(t*) € L®(T%)/C(T4).

4.3 Long-time asymptotics and stability

As the solution is squeezed by the maximum and minimum principles, it
is expected that the long-time dynamics of the model converges to a constant
state consistent with the conservation of energy, namely,

[ol| 12(e)
VT

In this section, we first show that the amplitude of such weak solutions tends
to zero exponentially fast. Then, we will exclude the non-trivial oscillations
by showing that |Vu|.~ also tends to zero exponentially fast.

Recall notations:

u(t,x) —

t — +o0.

i(t) = maxu(t,x), wu(t) = minu(t x)
xeT xeT

and we define amplitude by

A(t) = a(t) — u(t).
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4.3.1 Proof of Lemma 2.2.7

Proof. The proof is similar with our previous result [17], which relies on an
idea from [67]. For initial data 1y € L°°(Td), ug > 0, we infer from Theorem
2.2.5 that there exists a global weak solution, which is smooth for all ¢ > 0.
Let us unfold such solution on IR¥. Tt is reasonable to say that there exist two
points %, x € T? such that i1(t) = u(t, %) and u(t) = u(t, x). The gradient V ,u
vanish at both %, x. Now, we are going to evaluate (2.2.5) at X, x. By F/ > 0 and
minimal principle, we have (we dropped the reference to time for readability)

Lat) = [, uly) (Fu(y) ~ Fu(2)K (% - y) dy

<u(0) f

-tz —xiz1
<u(0) f (F(u(y)) — F(u(%))) min{K*(x —y),K*(x — y) } dy,

y—%=21|y—x[=1
and similarly

D) = [, u(y) (Fu(y)) ~ Fu(x))K*(x ~ y) dy

>u(0) [ (Fu(y) = Fu(2) Ko (x — y) dy

>u(0) [ () = Fu(x)) min{K(x = y), K°(x — y)} dy.

Then mean value theorem implies that

d

A1)
< —(0) (F(u(®) = F(u()) | -0 minfK(2—y), Ko(x — )} dy

. Cd,s

< —u(0 F'(a) A(t - d
< -u0) min Fla)Al f\y|zl+\x|+|;| (I + 7] + [xDa+s 7
< —A(t),
where 17 = u(0) min,cp,(0),2(0) F'(4) f\y|21+2\/«3n m dy. An applica-
tion of Gronwall’s lemma completes the proof. O

4.3.2 Proof of Theorem 2.2.8

Proof. Let u be a weak solution obtained from Theorem 2.2.5, we unfold such
solution on R?. Let us first rewrite (2.2.5) as

dtu = p.v. LRd (F(u(t,x +z)) — F(u(t, x))u(t, x + z)K*(z) dz.

Then we consider the equation of Vu from above and multiply by Vu to
get (the integrals being understood as principal values and we dropped the
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reference to time for readability)

%8t|Vu(t,x) > =Vu(x) .[]Rd Vi (F(u(x +z)) — F(u(x))u(x +z)K*(z) dz

+ Vu(x) fw (F(u(x 4 2)) — F(u(x)) Vau(x + 2)K(2) dz.
(4.3.1)

For the first integral in (4.3.1), we write
Vu(x) fRd Vi (F(u(x +z)) — F(u(x))u(x +z)K*(z) dz
= Vu(x) jw F'(u(x)) (Vatt(x + 2) — Vau(x))u(x +2) K (2) dz
+ Vu(x) de (F'(u(x +2)) = F'(u(x))) Vaert(x + 2)u(x + 2)K*(2) dz.
Notice that for x € T the point of the maximum of |Vu/|, one has

Vu(x) fRd F'(u(x)) (Viu(x +z) — Viu(x))u(x +z)K(z) dz

:% ot F@C)) IVt (x + 2) 2 = [V (x)P)u(x + 2)K°(2) dz
_% de(u(x))|vxu(x+z)_vx”(x)|zu(x+z)1<s(z)dz

i ' 1 21s
=7 aeutorno) (2)u(0)3 fmd [Vau(x +2) = Vau(x)|7K(2) dz,
hence we get from (4.3.1) that

PIVUEDE+ min | F@u0) [ [Vantao+2) = Tau()P KOG 2

<Vu(x) _[]Rd (F(u(x+2z)) — F(u(x))) Viu(x + z)K°(z) dz
+ Vu(x) fle (F'(u(x+2z)) — F'(u(x))) Vau(x + z)u(x + z)K*(z) dz
. (4.3.2)

Meanwhile, we find that by integration by parts
Ja |Vt (x +2) = V() PKE (2) diz

> |V u(x) 2 szr K*(z) dz — 2V u(x) j' Vo (u(x +2) — u(x))K°(2) dz

z|>r

> %vau(x)l2 +2Vu(x) - flzm(u(x +z) — u(x)) V.K*(z) dz

— 2V u(x) - fM:r vz (r) (u(x +z) —u(x))K*(z) do(r)

where o (r) is the surface |z| = r and v;(r) is the outward-pointing normal to
o(r) at point z. It follows that

Jrod IVt + 2) = V() PKS(2) dz
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A(t)
1/1+S

C
> 5 Vau(2)? — Co| V()

and taking r = % gives
v 2+s
de V(x4 z) — Veu(x)|?K*(z) dz > 2C % (4.3.3)

To estimate J;, we shall split it depending on whether |z| > p; or |z| < p;
and write J; = J11 + Ji12. We estimate [;; after rewriting it in the following
form

Jiu = f |>p1f F'(1 = A)u(x) + Au(x +z))
Vo u(x +z) — u(x)[PKS(z) dA dz.

Define H(A, t,x,z) = F'((1 — A)u(x) + Au(x + z))K*(z), we see that there
exists Cs > 0 such that

c
HO x2S e F@KE <
and
|V H(A t,x,2)]
< mex P VRG] [Vl mex [P0 K@
< s + IVl

Thus by integration by parts we have for Jq;,

Il <5Vu@| [ [ lux+ )~ uPIHO L 3,2)| dAdoen)

1 1
+§|Vu(x)\f|| f lu(x +2z) —u(x)?|V:H(A t,x,2)| dA dz

< Co(I a2 4 g )
ot 1
As to J12, we use the first order Taylor formula for the increment of u :
Ji2 = Vu(x JZ|<p1f F'(u(x+ Az))z - Viu(x + Aqz)

-Vyu(x +2z)K%(z) dA dz
= Vu(x fz|<p1 f F'(u(x + A1z))z - (Vau(x 4+ Ayz) — Viu(x))

-Vyu(x +2z)K%(z) dA dz

+ Vu(x j ‘<p1f F'(u(x+ Az))z - Veu(x)



4.3. Long-time asymptotics and stability 105

(Vau(x +z) — Vyu(x))K(z) dAy dz
2. 1 ! X s
+ [ Vu(x)| Lz|§p1 fo F(u(x + A1z))z - Veu(x) K (z) dA dz
=T+ i+ i
We get by Cauchy-Schwarz inequality that
(Al)s 1

|Z|d§rs -1

1
Tl <CoAIVullfe [ [ IVau(x+ 2) = Vau(x) | Ko (2) - s dz

|z|<A101
2 21s 1—s/2
<GlVullis (LKM |Vt (x + 2) — Vu(x) 2K (2) dz) 0!
1
<= i FI O _ 2KS d
< 16 acimippmoy . X ) |Vt 2) = V() PKC (2) dz
16C2

+ Viull}e0?75.
min,e ,(0),2(0)] F'(a) u(0 )” I

The estimate for J?, is completely analogous, since without the integral for
A For J3,, itis clear that

3 < F/ \V4 300
o< max  F@|Vuls [

<Cs|| V3w p3~°

1z|K®(z) dz

Thus,

2| <1l + ] + i)

1
<3 i ! _ 215
S 8 e iin | F(@)u(0) Ja |Vt (x +2) = V() K (z) diz

+ Co (I V[ 107 + Ve[ 3 07 7°)
and

1l <1l + 12|

1

<= i ! _ 2s

= 8 acruyioy " DL J g [ Vxt4(x +2) = V() K (2) dz + (Cs + Co)
).

Az()_|_|’V HZ Az(t)
1 1

(IVullfepi™ + I VullZe o1 + Va1

Choosing p1 = A(t)/||Vul| 1~ gives

1
< min  F'(a) u(0 Vaou(x +z) — Veu(x) K5 (z) dz
Bl <g, min  F@)u©) [, [Vl +2) = Veule) PG

+2(Cq + Co) || Vu |25 (A 75(8) + AZ75(1)).
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Now, we are going to estimate |, by rewriting it similar with J;:

Jo = 5 Vu(x) [, (F (u(x +2)) — F'(u(2)) Valu(x +2)PK(2) dz

— %Vu(x) Lprz (F'(u(x +2z)) — F'(u(x))) Va(Ju(x + 2)|* — [u(x)|*)K*(z) dz

1
+ Vu(x) j\z\épz fo F'(u(x 4+ A2z))z - Viu(x + Arz)
-Vau(x +z)u(x +z)K*(z) dAy dz
=Jo1 + |2

We see [, is the kind of type that we studied for [;;. Indeed, we have
Vo (F'(u(x +2))K*(z)) dz

K*(z)do(p2))

| <2 @|IVull=A@® ([,
2 F
- ac(u(0)1(0)] (a)(j\zlzpz
Alt A(t
<Gl Vuln (52 + 17l 5.

1+s
2 2

For ]y, we split it like for Jj; :

_ 1
ol <) IVl lF gy (f,, fo (Tetx+222) = V()

z|KS(2) dAg dz + L jol (Vau(x +2) — Vau(x)) 2K (2) dAg dz

|z[<p2

1
+ (V][ o J”|Z|<pz INEISE dAzdz>

< F'(a)u(0) [, |Vatt(x +2) — Vu(x) 2K (2) dz

1 min
8 a€[u(0),1(0)]
+ Crr (| Vullieps™ + I VullFe ;7).

Thus, we have

1 . s
Bl <g, min o F(@)u) Ju [ Va4 2) = Vau(2) K (2) dz

A(t A(t _ _
# Coa(IVln S 9 ) 1 uldd Tl )
2

Choosing pp = \/A(t) /|| Vul| 1~ gives

1 .
2| < 3 ae[ﬁél)%(o)} F'(a) u(0) j]Rd |Vt (x +z) — Vi (x) 2K (2) dz

+ Ca| Vu|255(A2079) 4 A2C79)),
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Taking estimates for [;, J> and (4.3.3) into (4.3.2), we obtain

d . V|25
—IVul[?s + C F 0) L= IL*
dtH ul| e + 3 o min (a) u(0) A1)
< Coyl| V|25 (AV5 (1) + AZ5(8) + A209) (1) + A229) (1))
< 4Cy4 || Vu |25 max{ A2~ (1), A20-9) (1)},

In view of Lemma 2.2.7, there exists a time T* such that
2—s 1(1-s) 1 : /
4Cy max{A“5(t), A2 (1)} <=C3 min F'(a)u(0).
2" aeu(0),a(0)]
This implies that

d 1 , | Vu||2Es
— || Vu|?~ + =C F’ 0)1—— L2 <
g Villes +5C  min  F(@)u(0) =7 <

Using the precise estimate from Lemma 2.2.7, we further get
st

— i F 0)||Vul|>L <o.
2C3AS(0)ue[gr(r(1)§%(o)] (a)u(0)]] uHL =

d
SVl +

This finally completes the proof of Theorem 2.2.8. O
Concerning stability, we also established the following two estimates.

Corollary 4.3.1. Let F;, F, be two functions satisfied our assumptions on the func-
tion F. Given two pointwise positive initial data uy o, upg € H™(T*). Suppose that
u; is the solution of Cauchy problem (2.2.2)-(2.2.3) with F; and initial data u;,
respectively. Then we have the following stability estimate in L?(T*)

1 — wallgz < (lluro — uzollp + I = Ellzw)e®, ¥t >0

with a constant Cy depends on d, ||uy || gm, ||uz||gm. And in L®(T%), we have

1
\/ﬁH”Lo — 2,0/ 124y

1 — uz || < 2V (| Vur (1) |1 + [ Vua(8)[[1) +

Remark 5. From Theorem 2.2.8 we see that when t > T, the difference be-
. . 1 . . .
tween two solutions is controlled by T [11,0 — u2,0| 2(a), this is consistent

with the long time asymptotics of our model.

Proof. From Theorem 2.2.4 we know that uy,up € C(R4; H™) are positive and
bounded by the maximal value of its initial data. We first write the equation
of the difference of two solutions:

(1 — uz) = [Fi(u1) — Fa(u2), [V Jur + [Fa(u2), |V ] (1 — u2).
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Then we take L? inner product of above equation with u1 — 1. We obtain

We write the decomposition
Fi(u1) = Fa(uz) = Fi(u1) — Fu(u2) + Fi(u2) — Fa(uz).

As mentioned before, we can assume F;(0) = 0. By composition lemma
Corollary 2.66 in [45], the first integral can be estimated as

| f(ul —up)(Fi(u1) — B2(u2))|V[*uq]|

<y — ua |2 ([|Fi(u1) — Fy(u2) || 2 + | Fi(u2) — Fa(u2) || 12) ||V [uq || e
< Cllug —ua[2(|lu1r — uz|| 2 + [|[F1 — Eaf|re) [ ]| gm-

We then split the second integral as
J (w1 = w) [V (w1 (Fi (1) = Ea(12)))
= [ (i = )|V (w1 (Fy (1) = Fi(u2))) + [ (w1 = 2) |V (2 (Fy (u2) = Fa(2)))-

One can estimate — [ (11 — u2)|V|*(u1 (Fi (u1) — Fi(u2))) similarly as (4.1.21).
Indeed,

— [0 = w) |V (s (i (1) = Fy (1))
1
<Clluy — un||%s jo F{ (1= A)ug + Aug) dA || g
< Clluy — ua[7|lus || || 141, 2| | -

While use the fact that L™ N H® is an algebra and interpolation inequality, we
have

| [ (a1 = 1) [V[* (1 (Fy (112) = Fa(12)))]

<|luy — ua|| 2|V * (u1 (Fr (u2) — Fa(u2))) | 12
< Cllur — s g2 (Ml [ 1B (42) = Bau2) e + Nt} 1B = Bl )
< Clluy = uall el s (119 (B (142) = Eo(142)) 2 + 1By = ol
< Cllus = |2, wall o (I = Ballos + [[Ff = Fll o= )
< Cllug — ua||r2llur, || Fpn | F{ — B3|
Thus we obtain
L s — walyz < Collur — wallyz + 1 — Bl

and finish the first statement with the help of Gronwall’s lemma.
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Now, we find that fori = 1,2

luioll 2wy [1ui(8) |2 (1ay
u(t) < = <1(t),
u(t) < =2 L0 < a(r)
thus there exists y; € T such that u(t,y;) = \/Lfd [0/l 12(ay- And so

[[u1(8) = ua(8) ||

1
<lur(t, x) —ur(t,y1) |1 + |luz(t, x) — ua(t, y2) || + WHMLO — Uz
1

\/ﬁﬂul,o — u2,0(| 120

12(T4)

<oV ([|[Vuy ()| + | Vua(t)[|) +
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Appendix A

Notations and definitions of some
weak solutions

A.1 Notations

Here is for a few notations. We denote by C harmless positive constants
that may change from one line to the other, and we sometimes write A < B
instead of A < CB. Likewise, A ~ B means that C;{B < A < (C,;B with ab-
solute constants C1, C;. For X a Banach space, p € [1,00] and T € (0, c0],
the notation L? (0, T; X) or L}(X) designates the set of measurable functions
f:[0,T] - X witht — ||f(t)||x in LP(0,T), endowed with the norm || -
||L;%(X) = [[| - Ix[|Lr(o,7)- For any interval I of IR, we agree that C(I; X) (resp.

Cp(I; X)) denotes the set of continuous (resp. continuous and bounded) func-
tions from I to X. We keep the same notation for functions with several com-
ponents.

We define the Holder semi-norm as follows: for any «,8 € (0,1], and
function f,

flt,x) = f(xy)
t— Tt x =yl

Alesgrnrs) =500 ] (t,2), (z,) € IR, (1,3) £ (z,1) .

We denote by Cff f (I x R?) the Holder spaces with the norm
1 s sy = 1)+ Fless gy
For any nonnegative integers n; and n,, the norm
Hf”ct’f)lc"'“r"Z“'ﬁ(IX]Rd) = ||f||L°°(I><]Rd) + [a]t/lzf]czf(lx]l{d) + [vzzf]cfif(lxﬂ{d)

corresponding to the spaces C; ;—f—a,nz—i—ﬁ

subscript t, x, respectively.

(I x R?). Sometimes, we omitted the

A.2 Definitions of some weak solutions

In the analysis of solutions of the Hall-MHD system, we need to consider
the following spaces of divergence free functions.

V= {¢p € C*(R?), divp = 0},
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and
H := the closure of Vin L*(R?®) and V := the closure of V in H!(R).

Definition A.2.1. We say that a pair (u, B) is a Leray-Hopf weak solution of the
Hall-MHD problem (2.1.1)-(2.1.5), if the following conditions are satisfied.

1. It holds that (u, B) € Cy([0, T]; H) N L?(0, T; V);
2. Forany ¢1, ¢ € V and any iy, P, € C*°([0,T)), such that
L (=, p0) 29 () = (00w, V) 2 () + (Ve Vo 2) (1))
= — [ (B& B, V) o (1) dt + (s, 91) 241 (0);
[ (= (B,92)295a() — (X B,V % 2) 2a(t) + v(VB, Vo) () )
= — (V% B) x B,V x ) apa(t) dt + (Bo, ¢2);242(0);
3. Forany t € [0, T]

t t
lu(), B2 +2u [ 1Vu(0) |72 dr+2v [ | VB(T)|32 dv < uo, Boll7-

If T can be taken arbitrarily large then we say (u, B) is globally exists.

Let us recall the concept of weak solution to the Cauchy problem (2.2.4)-
(2.2.3).

Definition A.2.2. We say that a scalar function u is a global weak solution of the
Cauchy problem (2.2.4)-(2.2.3), if the following conditions are satisfied.

1. It holds that u € C([0, c0; LY (IRY)) such that ®(u) € L2((0,00); H/2(R%));
2. Forevery 8 € C°((0,0) x R?)
jo fw 1040 dx dt — fo fRd(—A)s/4<I>(u) (—A)S/49 dx dt
+ [ o fOdxdt=0;

3. u(-,0) = ug almost everywhere.
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Appendix B

Sobolev Spaces, Besov Spaces and
commutator estimates

B.1 Littlewood-Paley decomposition and Besov spaces

Here, we briefly recall the definition of the Littlewood-Paley decomposi-
tion, define Besov spaces and list some properties that have been used re-
peatedly in the paper. For the reader’s convenience, we also prove some
nonlinear and commutator estimates.

The Littlewood-Paley decomposition is a dyadic localization procedure in

the frequency space for tempered distributions over R?. To define it, fix some

nonincreasing smooth radial function x on IR, supported in (say) B(0,4/3)
and with value 1 on B(0,3/4), and set ¢(¢&) := x(&/2) — x(&). Then, we have

VEeRY, x(&)+ )Y @278 =1 and VEe R\ {0}, ) 927 =1.
j=0 j€z

The homogeneous dyadic blocks Aj and low-frequency cut-off operator S]'
are defined for all j € Z by

.= (271 D)u = 2 j]Rd v(2y)u(x —y)dy with p:=F Lo,
— —j __njd 7(0] : 7. 1
=x(27'D)u=2 Ri P(2'y)u(x —y)dy with ¢:=F *x.

A]'M
S]-u

The following Littlewood-Paley decomposition of u:
uw=Y Au
JEZ

holds true modulo polynomials for any tempered distribution u. In order
to have an equality in the sense of tempered distributions, we consider only

elements of the set S,; (R?) of tempered distributions u such that

lim ||Sjuf|p~ = 0.

j—>—o0
Next, we recall some basic facts on Littlewood-Paley theory and Besov spaces,
one may check [45] for more details.

Proposition B.1.1. Fix some 0 < r < R. A constant C exists such that for any
nonnegative integer k, any couple (p,q) in [1,00)? with g > p > 1 and any function
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u of LP with Supp & C {& € RY, |&| < AR}, we have

1 1
1D u) o < CEHIARTGT0) | .

If u satisfies Supp i1 C {& € R, rA < |&| < RA}, then we have

CT MMl < (1D | < CEHEAR a1
Definition B.1.2. Let s be a real number and (p,r) be in [1,0]2. The homogeneous
Besov space B;’,’r is the set of distributions u in 8;1 such that

lull g, =125 Ajull oyl er 2y < -

Proposition B.1.3. The following properties hold true:

(i) Derivatives: foralls € R and 1 < p,r < oo, we have

k
ID%ullps, = sup [[0%u]|

|a|=k o Hu”B;ﬁk'

(ii) Embedding: we have the following continuous embedding

.s—d

B, < Bj; whenever p>p and 7>,

d
and the space B ;]’ 1 is embedded in the set of bounded continuous functions.

(iii) Real interpolation: for any 6 € (0,1) and s < §, we have

o]l gosa-ps < Il

1-6
- Ml -

(iv) Completeness: the space B“;;,r is complete if (and only if) (s, p, r) satisfies

s < é, or s= E and r=1. (B.1.1)
p p

(v) Density: the space So(IRY) of Schwartz functions on R? with Fourier trans-
form supported away from the origin is dense in By, . whenever both p and r
are finite.

(vi) Scaling invariance: for any s € R and (p,r) € [1,00]?, there exists a constant

C such that for all positive A and u € By, ., we have

C N Tl < AN < CASFllutll
luell s, < ()]s, < el s, -

(vii) Let f be a smooth function on R? \ {0} which is homogeneous of degree 0.
Define f(D) on S(RY) by

F(f(D)u)(&):=f(§)Fu(d),
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Then, for all exponents (s, p,r), we have the estimate
||f(D)u||B;,,, < ||”||B;,,-

If in addition f(D) extends to a map from S},(R?) to itself and (B.1.1) is ful-
filled, then f(D) is continuous from B, , to B}, .

(viii) Operator curl ™! maps B‘;;/_ll toB5 if1<p<ocoands <d/p.

Proof. We only prove the last item as it is fundamental in our analysis. Owing
to the definition in (2.1.12), it is obvious that curl "' maps Sy (R?) to itself, and
homogeneity of degree —1 implies that we have for all u in S] (R?):

—1
[curl ”||B;L1 N ||u||3»;,—11-

As S/ (R%) is dense in B;jll and since the space B;,l is complete (owing to
s < d/p), we get the result. O

B.2 A priori estimates in Besov spaces for the heat equation

A great deal of our analysis relies on regularity estimates for the heat
equation:

() {atu —Au=f,

u‘t:() = Uy.

It is classical that for all uy € S'(R%) and f € L} (RT;S'(RY)), equation

l
(H) has a unique tempered distribution solution,ocgiven by the following

Duhamel formula:
t
u(t) = e®ug + fo =8 f(7) dr, t>0. (B.2.1)
Above, ('*);> stands for the heat semi-group. It is defined on S(IRY) by

F(e2)(&) := el 5(g), (B.2.2)

and is extended to the set of tempered distributions by duality. It is classical
that

Lemma B.2.1. Let € be a ring of R3, if the support of il is included in A€. Then,
there exist two positive constants ¢ and C such that forall 1 < p < oo,

=12
leAul|Ly < Ce|ul|1r,
where e'® denotes the heat semi-group operator.

As observed by Chemin in [11], the following spaces are suitable for describ-
ing the maximal regularity properties of the heat equation.
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Definition B.2.2. For T > 0,s € R, 1 < p < oo, we set

o as v i = |[25|A;
||u||LpT(B%/r) =2 ||A]”||LPT(LP) r(z)

We define the space L-( B;,r) to be the set of tempered distribution u on (0, T) x R?
such that lim |Sju(t)||> = 0 a.e. in (0,T), and [l e 55 ) < oo. The space
J——00 T\=pr

Z‘%(B;’r) NC([0, T1; B, ,) is denoted b~y CNT(BZIY). In the case T = o0, one denotes
the corresponding space and norm by LF (B3 ,) and || - ||, (B,)7 respectively.

The above spaces or norms may be compared to more classical ones accord-
ing to Minkowski’s inequality:

||”||Zf;(3;/,) < ||”||U}(B;,r) if r>p and ||”||’D;(B;,r) > HMHLPT(B%J) if r<p.
The following fundamental result has been proved in [11].

Proposition B.2.3. Let T > 0,s € Rand1 < p, p,r < oo. Assume that ugy € B;/r

.s—2+4

~ —242 N N
and f € L(B,, *). Then, (H) has a unique solution u in LpT(B:;P) N LT (Bj,)
and there exists a constant C depending only on d and such that for all p1 € [p, o],
we have

u w2 < C(||uollgs + s242 ) (B.2.3)
Il o S Cloll, + 151, )

Furthermore, if 1 is finite, then u belongs to C([0, T]; By, ,).

B.3 Nonlinear estimates

Let us now recall a few nonlinear estimates in Besov spaces, that we used
in the paper. They all may be easily proved by using the following so-called
Bony decomposition (from [68]) for the (formal) product of two distributions
u and v:

uv = Tyv+ Tyu + R(u,v).

Above, T designates the paraproduct bilinear operator defined by

Tyv = ZS']-,luA]-U, Tyu := ZS'j,lv A]-u
j j

and R stands for the remainder operator given by

R(u,0):=Y Y Auhjyo.

joli=il<t

The following properties of the paraproduct and remainder operators are
classical:

Proposition B.3.1. For any (s,p,r) € R x [1,00]% and t < 0, there exists a con-
stant C such that

ITuollgs, < Cllullisllolly, and [Tuollgse < C llullgg 1ol
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For any (s1, p1,11) and (s, p2,12) in R x [1, 00)? satisfying

1 1 1 1 1 1
Sl+52>01 E:_+_§1 m’ld ;:—+—<1/

there exists a constant C such that

IR(w, 0l goyrsr < Cllutllgn Mol

B

Combining the above proposition with the Bony decomposition allows to get
a number of inequalities like, for instance:

* tame estimates: forany s > 0and 1 < p,r < oo,

luollgy, < lulleslollgy, + olllullg (B3.1)

* the following product estimate:

[uv]] S Mg ol (B.3.2)

Sl+52—7
pl

whenever! 51,5, < % satisfy s; + 52 > dmax(O,% —1);

* the following inequality (in the case d = 3 and p > 2) that has been
used in the proof of (2.1.24):

lab]] <HM!2JHI52+HMI2JMH

(B.3.3)

1

3 5_2
B2 B2 f
2 2

Remark 6. Proposition B.3.1 and estimates like (B.3.2) or (B.3.3) may be adapted
to the spaces LPT(B“;;J). The general principle is that the time exponent be-
haves according to Holder inequality. For example, we have

HDML HlTeall, 3 +IR@IL, g Sllally g 1Pl )-

1
(B3,) L} (B3,)

Li(B3,) L} (Booj)

I\J

Then, combining with embedding (in the case d = 3) gives Inequality (C.1.2).
Similarly, Inequality (C.1.3) stems from

HTbH +HHML +IR(a, D)L,

3 3 3
1 (B3,) (B3,) L{(B3,)

Sllall, oo ol s+l f%HML%Q-

Lt (BOOOO) Lt (BZ,r) Lt 0000) Lt (BZ,r)

d
In particular, B ;1 is an algebra forany 1 < p < .
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In order to prove Inequality (C.1.7), it suffices to use the fact that
ITebll 3 Sl ||b||
Li(By7)

2 f(Bok)  LP( 2,,)
IToall 3 S bl s ||ﬂ||~4 3
L}(B,2) 3 oofx: : Li(By,)’
< e
RGO,y 5 Dl 6]

2,r ’ t ( z,r)
Proving Inequality (C.1.8) is similar.

In fact, as an application of Bony’s decomposition, the following product
laws in Besov spaces will play a crucial role in the proof of Theorem 3.1.3.

Lemma B.3.2. (see [69]) Let g > p > 1,and s; < %, Sy < % with

1 1
S1 +52 Z 3m1n{0,; + 5 —1}

Leta € B;l’l(lRE;), be B;fl(IR3) Thenab € B 1+ 2 ”(1R3),and
HﬂbH ;11+ssz < HaHB;ll”bHB?l (B34)

Lemma B.3.3. Let g > p > 1 and

1.1 > —min{l,i}
q P 3 2p
Assume 6 satisfies
3 34«1
p 4
3_ 349 3
Leta,b € By, (]R3) NB,, (R%). Thenab € B} | (R?), and
labll 5 S llall sllbll 5.0+ lall 2.olbll jo (B.3.5)
pl ql ql 511 q.1
_3 3 3
Leta,b € Bq PR N By (R). Thenab € B | (R%), and
latll 5 S llall 5 112l gngrllall 3 1101l s (B.3.6)
Pl ql By q/l By

Proof. The proof is standard, we follow the method of [69] and only give a
proof of (B.3.5). In fact, we shall focus on the case g > p, since when g = p, it
is obvious.

By Bony’s decomposition, we can write

ab = T,b+ Tya + R(a,b).
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By Holder’s inequality and Proposition B.1.1, under p < g < 2p we have
3 , 310} 3_3_ 3_3_
2 |8j1a8bllr S @AV NAl) YD 258N Byl gy 270

k<j—2 o
3.0 30k, 3_3_p)(i—
S @A) T 2070 Ayl 200,
k<j-2

Thus by Young's inequality with % — g <6

ITabll 5 S Ml 5 ollbl 5
pl ql Bql

Similarly,

ITall 5 < llall 5.l 5,
pl 91 1
Thanks to Lemma B.3.1, we have
IR(a, D) 5 S llall 53-ol1Pll 5.0
B
PI ql

q-=p’
Sllall s ollbl s
g1 9.1

pl

]

Lemma B.3.4. Let 1 < g < oo. For any homogeneous function o of degree - 1
smooth outside of 0, there hold:

+1
Let‘aEBq1 andbEB | o then
q,
[(c(D)a) - Vb|| 3 S all s 1Hb|| 3 (B.3.7)
ql Bql ql
3 3
Leta € B;{l and b € B;,lf then
la-V(a(D)b)]| s < llall 5 [16]] 5 (B.3.8)
BY B
.1 .1 9.1

3
Proof. Thanks to Lemma B.3.2, we know that when 1 < g < oo, B;l is an

algebra, thus by Proposition B.1.3 (vii), we have
[(e(D)a)- VB 2 S lle(Da]l 5 IV

ql ql
S lall 5 l1Bl 3
B
g1 g1

3
31
q

Similarly,
la-V(o(D)b )|| 3 S ||ﬂ|| 3 [V(e(D)D)]

q
ql ql Bq,l
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S lall s 1o(D) V0]l s

.1 ql

< llall s 116l s
g1 q

O

Lemma B.3.5. Let s € R. Forall 61,6, > 0and 1 < p < oo, there exists a constant
C depends on 01, 0, such that

r—0; .
AW g+ 1Ll gren

roS 91, 92 r 1 —+ lo e . (B39)

171, < C(61,02) 3y, (1 +1ogs (— i ))
Proof. The proof is exactly the same as the case §; = 6, while the latter is
classic and can be found in [60]. H

B.4 Commutator estimates

We end this appendix with the proof of commutator estimates that were
crucial in our analysis.

Proposition B.4.1. Let s be in (0,d/2]. Then, we have:

2 2F(I[A blall 2 S VBl llall g + llallg VDl - (B.4.1)
JEZ

Furthermore, for all v € [1,00] and p € (2, 00|, we have if we set 1/p' :==1—1/p,

1251145, Blall 3 12 [l <HW’H 24 Hallw,(Bsf%)
00,00 t 2,r
+uwu~p, g lal, o 42
t 2,r 00,00

Proof. Proving the two inequalities relies on the decomposition
[Aj,bla = [Aj, Tyla + Aj(T,b + R(a, b)) — (Taab + R(Aja,b)). (B.4.3)

For getting (B.4.1), we bound the first term of (B.4.3) as follows (use [45, Ineq.
(2.58)]):

) 2" 1A, Tlallz S (Vb Le[lal g1
jEZ

The next two terms of (B.4.3) may be bounded by using the fact that the
remainder and paraproduct operator map By, x B3{! to B3 ;. Finally, owing
to the properties of localization of the Littlewood-Paley decomposition, we
have
T, LD+ R(Aja,b) = Y SioAjaAgb. (B.4.4)
j'>j-2
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From Bernstein inequality and [|S 4|1~ < 27 ||a| gL, we gather

22’5 ITMHR(M b2 S Z Y 2F1Si0alli= | Ajb] 2
j jj'=j-2

Slallg ) X 2501215V Ay 2
jj'=j-2

< llall ot 1Vl g

To prove (B.4.2), we observe that owing to the localization properties of the
Littlewood-Paley decomposition, the first term of (B.4.3) may be decomposed

into ]
[Aj/Tb]a: Z [A],S]/ 1b]
- 71<a

Now, according to [45, Lem. 2.97], we have

118, S 1blApall 2 S 271 VS5 1b]e | Apalle,

)

and, since f—) —1<0,

. 1_2
1918l S 2P IVEIL

Hence, for all (j,j') € Z? such that |j — j'| < 4,

2f5||[A,,s],_ b]A /a||L1 12) < 2527 o |Apall ||Vb||

LP (L2)

oo,oo

Therefore, summing up on j' € {j — 4, j + 4}, then taking the EY(Z) norm,

12711 [A;, Tplall a2

oS ||Vb|| v llall oz

2_ -
opooo) LPB P

The next two terms may be bounded according to Proposition B.3.1 and Re-
mark 6:

1218 Tabll gy gyl + [2°IAR @) 3z e < lall 5, 901, s

t BOO,OO t 2,r

Finally, use (B.4.4) and the fact that

3 (2-2)j'
||S]’+2a||Lf(Loo) S22 “aHZP BZ—Z

t( o%,oo
to get
2F(|Tyob+ R(A@ ) g2y S Y 25 Spaall o) [1AyDI]
j'2j-2

(s+2-2)
Sllall, 2, 3 20026270 A
Lt(Boooo)]/>] 2

LP (L2)

LP (L2
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Taking the ¢"(Z) norm of both sides and using a convolution inequality for
series (remember that s > 0), we end up with

12711 T b + R(Aja, )|y 12

2 .
/o s+l-5
(B P)

" 5 a 2 Vb
iz Sl g IV

t

This completes the proof of Inequality (B.4.2). O

B.5 Sobolev spaces

Let us first recall the definitions of Sobolev spaces and fractional deriva-
tion operators (more details may be found in e.g. [45, Chap. 1]).

Definition B.5.1. Let s be in R. The homogeneous Sobolev space H*(R?) (also
denoted by H°) is the set of tempered distributions u on R%, with Fourier transform

in L} (IR, satisfying

[ll s := [[ AU 12 < o0,

where \° stands for the fractional derivative operator defined in terms of the Fourier
transform by

F(Nu)@) = [gPFu@), FeR”
The nonhomogeneous Sobolev space H*(R?) (also denoted by H®) is the set of
tempered distributions u on R?, with Fourier transform in L}, C(]Rd), satisfying
lulltzs = [(D)*ull 2 < 0o with  F({D)Y*u)(Z) == (1+ [§*)* 2 Fu(Z).
We have the following proposition.

Proposition B.5.2. Let sy < s < sq. Then, H% N H% is included in H®, and we
have for all 6 in [0, 1],

1-6

L ul8,  with s = (1—0)sg + 051 (B.5.1)

[l s <[] Fo1

We also often used the following Sobolev embedding for 0 <s < d/2:
E(RY) < Lo (RY). (B.5.2)

Note that in dimension d = 3, as a consequence of Holder’s inequality and
(B.5.2), we have the following product law:

luollizmey < llullssgre) ollsme) < Cllull g s 11l o). (B.5.3)

We also needed the following Gagliardo-Nirenberg inequalities:

2 1—-2
”uHLP(]RZ) S ”uHLPZ(]RZ)HVLlHLz(ﬁ{z)/ 2 < p < oo, (B.5.4)
1-6 0 3 _ 3—s
ooy S Il Nty 5 < 5 </, 6=

(B.5.5)

s’ —s

Finally, we used the following inequalities (see e.g. [62], Lemma 2.10):
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LemmaB.5.3. Lets > 0and 1 < p, p1, P2, P3, P4 < oosatisfying% = % + % —
% + i- There exists a constant C > 0 such that
A% (uv) — ul*o||pp < C(IVullpr |A 0| e + | A%ul| s ][0l es)  (B5.6)

and

[A* (uo) ||y < COIA Ul ([0l + [l s [[ A Lpa).- (B.5.7)
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Appendix C

The well-posedness theory for
1

Hall-MHD system in spaces B3 _ for
general r

Here, we present the proof of Theorem 2.1.9. Let us first prove the a priori
estimates leading to global existence.

C.1 Global existence for small data

Proposition C.1.1. Assume that (u, B) is a smooth solution of the Hall-MHD sys-
tem on [0,T] x R> withh = y = v = 1. Let v := u — V x B. There exists a
universal constant C such that for any r € [1, 0], we have

I(00,B,0)] g, 7y < C (w0 By + [ B o), () (C1)

»
iy

Proof. We argue as in the proof of Inequality (3.2.30), but take the ¢"(Z) norm
instead of the ¢!(Z) norm. We get for all ¢ € [0, T},

u,B,v 1+ ||[(u,B,v 5 < |[(ug, By, v 1 +||B-VB 1
Bl 5 F B s S o Boool g + 18- VBI,
+|lu - Vull 1 +||v VBH 1 +[B-Vol_ 1 +o-Vul_
3.
Hlu- Vvu %)+||v VB|| %) + 12285 BXIY X )30 Ly
2 2

The first six nonlinear terms in the right-hand side may be bounded accord-
ing to the following product law that is proved after Proposition B.3.1:

< -~
bl o % el 01 €12)
The last but one term may be bounded as follows:
lo-VBIL, 3 Slollzey)IVBILs , +1VBlzsg ) lvlly (C.13)

(BZ ) P Lt3 (B%,r) o Zt (B%r)
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Finally, in light of (B.4.2) withb = B, a = V xv,s = 3/2and p =
and embedding, one discovers that the commutator term may be bounded
exactly as v - VB.

Putting together all the above inequalities eventually yields for all £ > 0,

1(w, B, 0)l|g,,+) S | (w0, Bo, vo) || I(#, B, 0)| 7431 5-

(C.1.4)
Since one can prove by making use of Holder’s inequality and interpolation
that

]| _ (Bz% 2 < ||zllg,, ) forall p & [1,+0ed],
Inequality (C.1.4) implies (C.1.1). [

In order to prove Theorem 2.1.9, we proceed as follows:

1. smooth out the data and get a sequence (u", B"),c of global smooth
solutions to the Hall-MHD system;

2. apply Proposition C.1.1 to (#", B"),,en and obtain uniform estimates for
(u", B",v"),eN in the space Ej

3. use compactness to prove that (u", B"),cn converges, up to extraction,
to a solution of the Hall-MHD system supplemented with initial data

(uOI BO)/

4. prove stability estimates in a larger space to get the uniqueness of the
solution.

To proceed, let us smooth out the initial data as follows!:

Clearly, uj and Bjj belong to all Sobolev spaces, and we have for z = u, B, v
and alln € N,

Vi€Z, |Ajzllz < |Ajzoll2 and lzg]l 3 < flzol (C.15)

1 1
B2 B2
2 2

1
Since in particular (ug, By, vj) is in Bzz,y Theorem 2.1.3 guarantees that the
Hall-MHD system with data (u{j, B} ) has a unique maximal solution on [0, T")
for some T" > 0, that belongs to E; 1(T) for all T < T". Now, take some pos-
itive real number M to be chosen later on and define

Ty :=sup{t € [0,T"), |[(u",B",0")|g,, ) < Mc}-

We are going to show first that T;, = T", then that T" = +-co.
According to Proposition C.1.1 and to (C.1.5), we have

I(u", B",0")||g, (1) < C(Il(s0,Bo,v0)|| 1 + [|(u", B", 0 )HEzr T,) ):

1
B2
2

IThe reader may refer to the Appendix B.1 for the definition of $ i
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Hence, using the smallness condition on (ug, By, vg) and the definition of T},
(", B",0")[|g, , (1,) < Ce(1+ MPc).
If we take M = 2C, then ¢ so that 4C?c < 1, then we have
|(u", B",v")||g,,(1,) < Mc,

and thus, by a classical continuity argument, T, = T".

Now, using functional embedding and interpolation arguments, we discover
that

(s

Hence, the continuation criterion (2.1.24) guarantees that, indeed, T" = +-oo.
This means that the solution is global and that, furthermore,

1
n I
I B, 0" [y ) 0 B, 0" g ) S 107 B0

00,00

| (u",B",v")||g,, < Mc forall n € N. (C.1.6)

At this stage, proving that (u", B"),cn converges (up to subsequence) to a
global solution (u, B) of the Hall-MHD system with data (ug, By) and (u, B, v)
in E; , follows from the same arguments as in the previous section.

Let us now prove the uniqueness part of the theorem. Suppose that (u1, By)
and (uy, By) are two solutions of the Hall-MHD system on [0, T] x R? sup-
plemented with the same initial data (uo, By) and such that

~ .1 ~ .2
(u;, Bi,v;) € C([0,T);BZ,)NL'(0,T; B,), i=1,2.

In order to prove the uniqueness, we look at the difference (du,JB,év) =

(u1 — up, By — By, v1 — v7) as a solution of System (3.2.21). In contrast with

the previous section however, we do not know how to estimate the difference

in the space E; ,(T) since the term V x ((V X v1) X 6B) cannot be bounded
1

in the space ZlT(BZZr) from the norm of v; and 6B in E; ,(T) (this is due to the
fact that the norm of E,,(T) fails to control || - || ~(o 7xrs) by a little if r > 1).

For that reason, we shall accept to lose some regularity in the stability esti-
mates and prove uniqueness in the space

~ L1
o (T) = L(B, 7).

We need first to justify that (éu, B, dv) belongs to that space, though. Ac-
cording to Proposition B.2.3, it is enough to check that the terms R; to Rs

~ 1
defined just below (3.2.21) belong to LIT(Bz,rZ ). Now, from (C.1.2) and Holder
inequality, we have

1
S T2, By, ua, Bo) Iz g1 )[1(6%,0B) [l 5 ),
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1
<Ti s s
||R2||Z1T( s T2([(Ba, 01)lIs 5y 1 (6B, 00) I 4 5y
IRsll 1 S I(VoL,Voo)ll gy - (1(0B, B2)llga sy e
T( 2,r LT (ler)
1
<7} s s
HR4HZ%(B;% S T2[(u2, 01) g gy 100, 60) s
< s
IRsll, 3 SI(VB2,VEB)|| s - (160, 01)lls gy -
T\=2,r LT B2,r

— 4
Since the norm in E;,(T) bounds the norm in L3.(B;,) N L}(B3,), one can

1
indeed conclude that the terms R; to Rs are in L} (B2 2)-
Next, estimating (éu, B, 6v) in F,,(T) may be achieved by a slight mod-
ification of the beginning of the proof of Proposition C.1.1. We get for all

te[0,T],
(61,08, 00) 1 < 1By VOB, + 9B VBa|

t\"2,r 27)
+ - Voul|_ o+ 6w Vol 1+ o V513||~
L}(B2,r2) L}(BZ,r2) } 2,r )
—|—”(SB'V7)1||~ 1 +||BZ'V§Z)||N 1 —|—”57) VBQH 1
t(By?) L}(B,}) L}(B,,7)
+ ||o1 - Véu||_ gt || ou - Vle 1t |y - V(SvH
} 2 (BZr ) ( 2,r )
+ |00 Vup| . 1 +]|[(Vx7o1) X (5B|| 1+ ||or- V5B|| Il
L}(By2) L} (B3,) L} (B3,)
+ ||5Z) . VB2||Z} Bz% —+ HZZH[A], BzX](v X (SU)HL}(LZ) " (Z)"

Most of the terms on the right-hand side can be bounded by means of the
following inequalities that are proved in Appendix B:

labll 3 S lallzas )bl s (C.17)
t(B2,r ) L B t3(B ,r)
ab < la b||74/p0 - C.138
lablly g Slalg Bl C18)
Next, owing to Inequality (C.1.2) and interpolation, we have
[(V xo1) x6B||_ 1 + o v53“ 1 +[|l6v- VB
1 (B2)) Ly (BZ,) L;(B2,)
< 1y ~y
S 1By 1921l s+ I90BILy el

+loolls VB2l
t 2,r '

S (N2 o2, 00) gy gy )+ lloall_g )16 00) g, )

t 2,r
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Finally, applying (B.4.2) with p = 4, s = 1/2 and using embedding Bg,r —

.3 . L1
By and B%/r — Boo oo yields

j .
123114y, BaxI(V % 60) 13012z S 1 VBallisag )|V % 60y

r(Z
( Lt (B(Z),r)

Thus, one can conclude that

164, 6B, 50) |, 1) < Y(t)[|(6u,6B,60) g, 1)

Wit Y1) = Eicra Bl + loall 3
Now, Lebesgue dominated convergence theorem ensures that Y is a con-
tinuous nondecreasing function vanishing at zero. Hence (du, 6B, 6v) = 0 in

~ 1 ~, .3

L°(B,2) NL{(B3,) for small enough t. Combining with a standard connec-
tivity argument allows to conclude that (du,6B,dv) = 0 on R . This com-
pletes the proof of the theorem in the small data case. 0

C.2 Ideas on the local existence for small initial velocity of
election

Let us briefly explain how the above arguments have to be modified so as
to handle the case where only vy is small. Note that no smallness condition
is needed whatsoever in the proof of uniqueness. As regards the existence
part, we split # and B (not v) into u = ul + 4 and B = B! + B and repeat
the proof of Proposition C.1.1 on the system fulfilled by (i, B, v) rather than
(2.1.27). Instead of (C.1.4), we get

~ 5 < ~a
||(u, B,U)ngj(t) ~ HvOHBz%r + ||(u, BIU)H,I:?(B%JH(”/ Brv)HL;l(B%rr)
from which we deduce that

~ < L pL L pLy|.
1(#, B,v)[|E,, (1) S ||vo||BZ% + ||(u", B )”zﬁ(gg 1™ B s s )

+[I(u", BY)| (3 B, 0)|le,, 1) + 1 (i, B, ), -

% . ~a
L} (B3,)NLi(B},)
Since, by dominated convergence theorem, we have

. L L L L
tim (| (u, B s+ 115, B gy ) =0,

t 2,r

it is easy to see that if ||vg]| } is small enough, then one can get a control
B2,r

on || (&, B,v)| E,,(+) for small enough t. From this, repeating essentially the

same arguments as in the small data case, one gets a local-in-time existence

statement.
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Appendix D

Schauder Estimates for a class of
general non-local equations

This Appendix is for the proof of Theorem 4.1.4, where the case s = 1 has
been proved in [17]. We will use the ideas from there to prove the general
case s € (0,1), and thus we need the following propositions and lemmas.

D.1 Preparation

Proposition D.1.1. Let ¢(t, x) € C**((—6,0] x RY),and w € C1+*(1+4)s((—6,0]
xIR?) be a solution of the integro-differential equation (the equation presented in
Theorem 4.1.4 with Q = 0)

dw = [, (w(t,x+y) = w(t,2)) L(t,x,y) dy + (¢, %). (D.1.1)

Suppose that L satisfy (4.1.30), (4.1.31), (4.1.32). There exists a constant C > 0
depending only on s, d, A1, Ay such that

Hch1+a,<1+a)s((_z,o}><]Rd) < C(H“HL”((—S,O]XIRd) + ”‘PHCWS((—S,O]x]Rd))'

Proof. At first, we know from the Holder estimates in [64] (see also [53]) that
there exist positive 1 and C depending only on s, d, A1, A such that

||w||071r715((—4,0]><IRd) < C(HwHL‘”((fS,O]xIRd) + ||¢||L°°((—5,0]><IR”’))'
Then we infer from Theorem 1.1 in [66] that
HwHcl+71r(1+71)5((_3,0}><]Rd) < C(H(‘JHCVlWlS((—AL,O}><]Rd) + H(pHC“Yl"YlS((—S,O}X]Rd))
< C(l|w|[poo(—5,01xrey + NPl erims ((—5,01xre))-

If 71 = a, then we have done. If 91 < &, we can apply above theorem one
more time to finish our proof. O

Proposition D.1.2. Let 0 < o < 1,0 < B < a. Suppose Q satisfy (4.1.33) and
(4.1.34). Define

Qu(t,x) = [, (w(t,x+y) — w(t, %) Qt x,y) dy.
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There exists C > 0 depending only on s, d, Ay, B, « such that

1Qullesss((—5,0xrey < Cllwllers ((—5,0xre):
Proof. We firstly find by (4.1.33) that
||Qw||L°° —5,0]xR%)
< llos(-soxme) fy, ) 1¥1°1Q1 4 + 20l im0 xR0) [,y 121
<2||wlles((—5,0xre) LR,, min{1, [y }/Q| dy
< Cllelles sy [ min{L [yl minL, [y ]y~ dy
< Cllwlles (5,0 xra)- (D.1.2)

Forany (t,x), (1,z) € (—5,0] x R? with 0 < |x —z| < 1. Similar with (D.1.2),
we have

[Qu (%) = Qu(t,2)
<| (@t x+y) —w(t,2)) (Qtx,y) = Qlt,z,y)) dy]
| s (@t x+y) —w(tz4y) +w(t2) —w(t, X)) Qtz,y) dy|
< 2] wlleg (50 xre) fo Min{L IYIHQE %) — Q(t 2, y) | dy
+ 20|l s (s opimeses) fppg mindlx = 2I% [y*HQ(E 2, y) | dy
< Clwlleg (s 0pme) [ min{1, Iyl } ming | — 2[ [y |} ly| == dy
- f g mind|x = 2I7, [y[*} min{1, [y|* |y == dy)
< Cllwlles((—s0pxrey|x = 2| (1+ In |x —z]])

< Cllwlles (s 0 xrey X — 217
Moreover, for any 0 < |t — 7| < 1 we have

Qu(t %) = Qu(T, )|
<| [ (@t x+y) —w(t,2)) (Qtx,y) — QT x,y)) dy|
| [ (@t x+y) = w(t,x) + w(T,x +y) — w(T,%))Q(T, x,y) dy|
<2f@lles((—s0xre) [ min{L Iy HQ(E ,y) — Q(T,x,y)|dy
10l g sy Jga min{1E = 71 1YIHQ(T, 2, )| dy
< Cllll g sy Jpge min{L lyl*) min{]t = ol [yl*Hy| = dy

+ [l min{]t — 7, [y} min{1, [y} |yl dy)
= CHwHC}’;((fS,O]led)“ — 7"+ |In|t —7]|)
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< CHwHC}’;((—S,O}X]Rd) |t - T|'B

Thus we conclude that for g < «,
1Qullepss (5,01 xre) < Cllwllens (=501 xre)-
O

We also need the following iteration lemma, which is Lemma 1.1 in [70].

Lemma D.1.3. Let h : [Ty, T1] — R be nonnegative and bounded. Suppose that for
all0 < Ty <t < v < Ty we have

ht) < A(t— )7 + %h(r)

with v > 0and A > 0. Then there exists C = C(vy) such that forall Tp < t < T <
Ty we have

h(t) < CA(T— )77

D.2 Proof of Theorem 4.1.4

We are ready to prove Theorem 4.1.4.

Proof. By Proposition D.1.1 and Proposition D.1.2, for w € C1**(1+0)s((—6,0] x
R?) a solution of

orw = JIR (w(t,x+y) —w(t,x)) L(t x,y)dy
+ ot x+y) = w(t,2)) QE x,y) dy + ¢t %),

we have for B € (0,a),

lwllerpasss(—2,0xrey < CUWI Lo —501xre) + | Quor Pllesps((—5,0)xre))

< Clllwllers((—5,01xrey + 19l css((—5,0)xRe))-
We first prove the case (1 + )s < 1. Define
hey(7,7) = {[atw]c%(lﬂ)s((r,o]xmd) + [@]eraims (1,01 xR i.f v € (0, ]
1otw]esray e ((rop + Hwlesmay ooy i ¥=0.

Then we just proved that

h(B,—2) < C(||wl| (=50 xre) + 1P llcpes((—50xre) + (0, =5)).  (D.2.1)
Forevery -2 < 19 < T < —1, we let

- )
P(t,x) = w(pt + t,, ux) with pi= - 3T0, b= %
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then (¢, x) satisfies that

dup(t,x) = [ (Wt x+y) —(t,2)) L(t,x,y) dy
+ [ (Wt x+y) = 9(t,x) Q(t,x,y) dy + B¢, %) in(—6,0] x RY,
with
L(t,x,y) = p" ' L(pt + Lo, px, py), QL x,y) = T Q(ut + b, pix, py)

and ¢(t,x) = ¢(ut + t., ux). As u < 1, and each of L, Q, ¢ satisfies the same
assumptions on L, Q, ¢, respectively. Therefore, (D.2.1) holds true for ¢ as
well. Noticing that

hy(B,—2) > (u+ 1) min{pP, %}k (B, 7) > pPhe (B, T)
and
hy(0,=5) < (p+1)p’hew (B, 10) < 21°he (0, 10)-
Thus we have

ho(B,T) <

W(Hw”Lw((fS,med) + H‘P“Cﬁrﬁs((—S,O}x]Rd))

C

‘T——Tol.Bhw (O, To).

By interpolation inequality in Holder spaces and Young’s inequalitywe know
that for every ¢y < 1, there exists C > 0 independent of €y such that

ho(0,10) <[drw] 5 +w] 5
CTHBS 17 (1, 0] xRY) C BT ((10,0] led)
<[a ]1+15+Z+1 H || 1+1/3+)i~+1 _|_[ ](1+15rss+1 H H 1+1ﬁ+)z+1
tw CB.(1+B)s L CB(1+B)s L

1+s
<eo([01w]ppaps + [W]opaips) + Cey ™ |||
+s

1
= €0l (B, 10) + Cey ™ [|wl| oo (.07 < R)-

_ t—nlf

Choosing €) = ~——, we get
C
ho(B,T) < 7= “3+1+1/5(Hw”LO"((fS,O}x]Rd) + Nl epes (=50 xra))

_hw (ﬁ, TO) .
Thanks to Lemma D.1.3, we have that

ho(B,—1) < Cl|wll o100 xwre) + 191l cpps((—1,0)xra))-
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For the case (1 + B)s > 1, we need to rewrite
[atw]c%(lms—l((r,o]X1Rd) + [vxw]m,(lﬂ)s—l((r,o]X]Rd) if v € (0,p]
hw('Y/T - .
10w oo (01 x k) F 1Vl oo (7,01 xR if ¥=0,
as in [17] for the case s = 1. Then by Proposition D.1.2, we have
lwllrepaeps(—o,0xre) < CUIW Lo((—5,0 xRty T [ Qe Pllpps (=50 xreY)
< Cllwllern(—s,0xrey T @llcsps((—5,0xre))-

This shows that (D.2.1) is satisfied. We omitted another details here and com-
plete the proof of Theorem 4.1.4. O
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