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he provided me with many valuable references and ideas for my Ph. D. research.

I thank my fellow labmates in LTDS: Cui Dongze, Zhang Xiaoyan, Wu Qichen, Li Xuefeng,
Zhu Boyao, Shao Lun and Giulia Mazzeo, for the stimulating discussions, and for all the fun
we have had in the last three years.

In the past three years, the care of my friends has made my life full of color. Dennis Adriao,
without his support, I might lose the courage to smile at life. Liu Liqun and Yang Zihua, they
came to Lyon with me together three years ago. We always encourage and help each other.

Nobody has been more important to me in the pursuit of my Ph. D. research than the members
of my family. I would like to thank my parents, whose love and guidance are with me in what-
ever I pursue. They are the ultimate role models. Also, I wish to thank my little sister, Yang
Meixia, and her husband, Xu Qin, who provide unending inspiration.

At last, I would like to acknowledge China Scholarship Council (CSC) for providing the funding
source of my Ph. D. research.



ii



Abstract

In this work, the Second Strain Gradient (SSG) theory proposed by Mindlin is used within a
Wave Finite Element Method (WFEM) framework for dynamic analysis of enriched medias.
Strong forms of continuum models including governing equations and boundary conditions for
one-dimensional (1D) micro-sized Euler-Bernoulli bending beam and torsion bar are derived
respectively by using Hamilton’s principle. New ”non-local” Lattice Spring Models (LSM) are
expounded, giving unified description of the SSG models for bending and torsion. Weak forms
for bending and torsion are established based on SSG theory. WFEM is used to formulate wave
propagation characteristics of 1D periodic structures.

A two-dimensional (2D) micro-sized beam grid, which is restricted to out-of plane vibration,
is introduced through SSG theory. The strong formulas of continuum model are derived. A
valuable long-range LSM formed by interactions of nearest, next-nearest and next-next-nearest
neighbors is elaborated. Weak formulas are established within the framework of SSG theory
and the global dynamic stiffness matrix of a unit cell is assembled. The band structure and slow-
ness surfaces, confined to the irreducible first Brillouin zone, are studied in frequency spectrum
under WFEM. In addition, the energy flow vector fields and wave beaming effects are analyzed
by SSG and Classical Theory (CT) of continuum mechanics.

The dynamical behaviors of a three-dimensional (3D) micro-sized slender beam are investi-
gated. The constitutive relations of 3D micro-sized model are introduced within the SSG theory
framework and the weak formulations including element stiffness, mass matrices and force vec-
tor are calculated. Free wave propagation characteristics are expressed by solving eigenvalue
problems through the direct WFEM. Diffusion matrix for a simple coupling condition and a
complex coupling condition are confirmed. Wave dispersion, diffusion including reflection and
transmission are introduced.

The wave propagation characteristics in a micro-sized 2D full plate are predicted under SSG the-
ory. An eigenvalue solving approach called Contour Integral (CI) method is applied to illustrate
the Nonlinear Eigenvalue Problem (NEP) and to conform the band structure and iso-frequency
contours. A Sensitivity Analysis (SA) is introduced to investigate the effects of higher order
parameters on the dispersion relation.

Keywords: Micro-sized periodic structures; Second strain gradient theory; Wave finite element
method; Wave propagation; Reflection and transmission
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Résumé

Dans ce travail, la théorie du Second Strain Gradient (SSG) proposée par Mindlin est utilisée
dans le cadre de la Wave Finite Element Method (WFEM) pour l’analyse dynamique de médias
enrichis. Des formes fortes de modèles de continuum comprenant des équations gouvernantes
et des conditions aux limites pour la unidimensionnelle (1D) de taille micro poutre de flex-
ion Euler-Bernoulli et la barre de torsion sont dérivées respectivement en utilisant le principe
de Hamilton. Un nouveau Lattice Spring Model (LSM) est présenté, donnant une description
unifiée des modèles SSG pour la flexion et la torsion. Les formes faibles pour la flexion et la
torsion sont établies sur la base de la théorie SSG. WFEM est utilisé pour formuler les car-
actéristiques de dispersion des ondes des structures périodiques 1D.

Une grille de faisceau bidimensionnelle (2D) de taille micro qui est limitée aux vibrations hors
du plan est introduite par la théorie SSG. Les formules fortes du modèle continu sont dérivées.
Un LSM à longue portée précieux formé par les interactions des voisins les plus proches, les
plus proches et les plus proches est élaboré. Des formules faibles sont établies dans le cadre de la
théorie SSG et la matrice de rigidité dynamique globale d’une maille élémentaire est assemblée.
La structure de bande et les surfaces de lenteur, confinées à la première zone irréductible de Bril-
louin, sont étudiées en spectre de fréquence sous WFEM. De plus, les champs de vecteurs de
flux d’énergie et les effets de faisceau d’ondes sont analysés par SSG et CT.

Les comportements dynamiques d’une poutre élancée tridimensionnelle (3D) de taille micro
sont étudiés. Les relations constitutives du modèle 3D micro-taille sont introduites dans le
cadre de la théorie SSG et les formulations faibles comprenant la rigidité des éléments, les ma-
trices de masse et le vecteur de force sont calculées. Les caractéristiques de propagation des
ondes libres sont exprimées en résolvant des problèmes de valeurs propres via le WFEM direct.
La matrice de diffusion pour une condition de couplage simple et une condition de couplage
complexe sont confirmées. La dispersion des ondes, la diffusion incluant la réflexion et la trans-
mission sont introduites.

Les caractéristiques de propagation des ondes dans une plaque pleine 2D de taille micro-
scopique sont prédites selon la théorie SSG. Une approche de résolution des valeurs propres
appelée méthode Contour Integral (CI) est appliquée pour illustrer le problème des Nonlin-
ear Eigenvalue Problem (NEP) et pour conformer la structure de la bande et les contours iso-
fréquences. Une Sensitivity Analysis (SA) est introduite pour étudier les effets des paramètres
d’ordre supérieur sur la relation de dispersion.

Mots-clés: Structures périodiques microscopiques; Second strain gradient theory; Wave finite
element method; Propagation des ondes; Réflexion et transmission
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Introduction

Enriched medias are a class of medias with local mechanical behavior, global mechanical
behavior, heterogeneity and size effects caused by multi scale features. As the typical enriched
medias, periodic structures which are constructed by repeating a basic unit cell to form regular
patterns are widely used in engineering fields. Initially, studies focused on the field of solid-
state physics at macro-sized level based on Classical Theory (CT) of continuum mechanics. For
example, the characteristics of fatigue issues and acoustic radiation for periodic systems need
to be known in engineering applications. The study of maximizing and localizing band gaps or
stop bands in some specific frequency ranges has also attracted many researchers.

But for the micro-sized structures (e.g., periodically positioned nano-sized Silicon resonator
and nanobio-sensors) with size effects caused by multi scale features, long-range or non-local
interaction between micro-particles is an important feature in the structure’s deformation pro-
cess. On the other hand, the micro-displacements such as micro-rotation, micro-stretch caused
by micro-material can influence the mechanical behavior of micro-structure. What is more, due
to the very large ratio between the surface and volume of micro-structure, the surface tension,
produced by atoms with associated energy on the free surface, has a significant effect on the
micro-structure’s behavior. Last, the characteristic length scales associated with conventional
Lamé parameters and additional higher order parameters can generate higher order deforma-
tions in the micro-structure. These properties of micro-structure can no longer be reasonably
explained by CT.

Therefore, the non-classical continuum theories of elasticity that can interpret the proper-
ties of micro-sized structures have been proposed. Generally, these non-classical continuum
theories of elasticity can be categorized into non-local elasticity theory, micro-continuum the-
ory, surface elasticity theory and strain gradient family. Mindlin established one of the strain
gradient theories called First Strain Gradient (SG) theory in which the potential energy density
composed of strain and first gradient of strain is considered, but only for micro-sized noncentro-
symmetric materials. In order to explore the properties of centro-symmetric materials, the Sec-
ond Strain Gradient (SSG) theory was put forward, which offers a reasonable explanation for
the transforming of strain or tension on a solid plane surface. The potential energy density in
SSG theory is a function of strain, first gradient of strain and second gradient of strain. The

1



2

equilibrium equation is a high order partial differential function with classical and non-classical
boundary conditions.

In order to derive the mathematical and mechanical models including governing equations
and boundary conditions for micro-sized structures, the continuum theories are widely used.
On the other hand, Lattice Spring Model (LSM) theory is also a valuable approach to interpret
the dynamic characteristics for micro-sized medias. The continuum equation of motion with
derivatives can be determined by long-range interactions in LSM.

However, there exist difficulties to interpret the physical properties of complex periodic
structures through analytical solutions, especially for the micro-sized medias. Therefore, the
numerous methods such as Finite Element Method (FEM) have been established to study the
homogeneous or periodic structures. But the whole structure needs to be meshed, which re-
quires excessive computing time. Subsequently, a Wave Finite Element Method (WFEM) that
can effectively avoid the above defect has been proposed based on the periodic structures theory.
The view of WFEM is to reduce a global periodic structure into a single substructure or unit
cell. The resulting stiffness and mass matrices are post processed to offer the dynamic stiffness
matrix. The dynamical properties of the periodic structure can be reflected through the spectral
analysis of the unit cell.

Thesis contributions

The main contributions of the work in this thesis are:

1. The SSG theory is used within WFEM framework for dynamic analysis of 1D Euler-
Bernoulli bending beam and torsional bar. Strong forms of continuum models including govern-
ing equations and boundary conditions for bending and torsion cases, respectively, are derived
using Hamilton’s principle. New ”non-local” LSM are expounded, giving unified description
of the SSG models for bending and torsion.

2. The dynamical properties of a 2D micro-sized beam grid, which is restricted to out-
of plane vibration, are analyzed. Weak formulas including element stiffness and mass matrices
are established within the framework of SSG theory and the global dynamic stiffness matrix
of a unit cell is assembled. The WFEM is applied for the vibrational analysis of 2D periodic
wave-guides.

3. The multi-mode propagation and diffusion of a 3D micro-sized beam are illustrated.



Introduction 3

The constitutive relation of 3D model is introduced. The displacement vector is derived by em-
ploying the six quintic Hermite polynomial shape functions. The weak formulations including
element stiffness, mass matrices and force vector are calculated. The dynamical characteristics
such as dispersion relations, forced response are analyzed. Wave diffusion under a simple cou-
pling condition and a complex coupling condition is introduced by SSG theory.

4. The WFEM is used to predict wave propagation characteristics in a micro-sized 2D
full plate through SSG theory. An eigenvalue solver based on the Contour Integral (CI) method
is applied to confirm the dispersion relations under different wave propagation directions.

5. A Sensitivity Analysis (SA) is performed on a 2D full plate to investigate the effects
of higher order parameters on the models outputs such as dispersion relation. These parameters
are associated with the non local characteristics of micro-sized structure. Statistics of the output
set and SA results with correlated inputs are discussed through SSG theory.

Thesis outline

Chapter 1 presents the results of the conducted literature survey. The survey concerns the
review of previous researches on enriched medias, of existing methods on the studying of micro-
sized medias. The existing methods for studying micro-sized structures including continuum
model and LSM are introduced. What is more, the plane wave expansion, modified Transfer
Matrix Method (TMM), WFEM, Model Order Reduction (MOR) method and homogenization
methods are discussed for the research of periodic structures.

Chapter 2 provides a method which combines SSG theory with WFEM to analyse the dy-
namic behavior of 1D micro-sized structures. A continuum model for Euler-Bernoulli bending
beam and torsional bar are introduced by SSG theory. The strong forms including govern-
ing equations and boundary conditions are illustrated by applying the variation method. The
LSMs of a micro-sized Euler-Bernoulli bending beam and torsional bar are discussed, respec-
tively. After Fourier series transforming, the continuous governing equations of motion are
determined and the variational, or weak, formulations are then calculated. The dispersion rela-
tions and forced responses for bending and torsion in micro-sized structures are calculated by
SSG theory.

Chapter 3 illustrates the dynamical behaviors of a 2D beam grid within the WFEM frame-
work. The analysis is restricted to out-of plane vibration including bending and torsion. The
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weak formulas of an element are illustrated and the global dynamic stiffness matrix of a unit cell
is assembled. WFEM inverse form for 2D periodic systems is introduced. Dynamic behaviors
of the beam grid such as band structure, slowness surfaces, energy flow vector fields and wave
beaming effects are discussed.

Chapter 4 investigates the dynamical behaviors of a 3D slender beam. The constitutive
relations of 3D micro-sized model are introduced within the SSG theory framework and the
weak formulations including element stiffness, mass matrices and force vector are calculated.
Afterwards, free wave propagation characteristics are expressed by solving eigenvalue prob-
lems in the direct WFEM framework, diffusion matrix for a simple coupling condition and a
complex coupling condition are confirmed. Wave dispersion and diffusion, effects of higher
order parameters and forced response are introduced.

Chapter 5 predicts the wave propagation characteristics in a micro-sized 2D full plate un-
der SSG theory. An eigenvalue solving approach called CI method is applied to illustrate the
Nonlinear Eigenvalue Problem (NEP) and to conform the band structure and iso-frequency con-
tours. A SA method is introduced for this 2D full plate to investigate the effects of higher order
parameters on the dispersion relation.

Finally, the conclusions and perspectives are drawn in chapter 6.
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Literature survey
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1.1 Introduction

Periodic structures as the typical enriched medias are widely applied in engineering fields.
The dynamical properties of periodic structures have been studied over the past decade espe-
cially in the field of acoustics and electromagnetic. Initially, studies focused on the solid-state
physics at macro-sized level based on CT of continuum mechanics [1, 2]. But for the micro-
sized structures, it is well known that one of their noticeable features is size-dependent mechan-
ical behavior [3, 4], which can not be observed in macro-structures. CT fails to describe those
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6 Chapter 1. Literature survey

physical phenomena in which non-local or long-range interaction plays a non-negligible role in
the deformation process.

The chapter begins with a review about the studies on micro-sized periodic structures, which
is then followed by a literature survey of engineering application and wave propagation char-
acteristics. Subsequently, attention is paid on existing methods of studying the micro-sized
structures by continuum model and LSM. Finally, the plane wave expansion, modified TMM,
WFEM, MOR method and homogenization methods are discussed for the research of periodic
structures.

1.2 Micro-sized periodic structures as a class of enriched
medias

1

Introduction

1. Background

Introduction Methods ConclusionsApplications

(a) Each unit cell is composed of a ring and a bar.

2
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Introduction Methods ConclusionsApplications

400 nm

500 nm

1 μm 300 nm

(b) Each unit cell is composed of a cylinder.

Fig. 1.1. Periodically positioned nano-sized Silicon resonators [5].

Mechanical periodic mediums consist of macro-sized periodic structures and micro-sized
periodic structures. The macro-sized periodic structures include Phononic Crystals (PCs), com-
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Fig. 1.2. Nano-coatings for aerospace materials [6].

posite sandwich panels, stiffened plates, truss beams, perforated plate, multi-story building
and multi-span bridges, periodic foundation for buildings and so on. The micro-sized peri-
odic structures include nano-sized PCs, periodically positioned nano-sized Silicon resonator
[5], nano-coatings [6] and so on.
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1.2.1 Engineering micro-sized periodic structures
Lots of structures employed in various engineering domains can be considered as micro-

sized periodic. For example, as shown in Fig.1.1, the periodically positioned nano-sized Silicon
resonators which are applied in nano-sensors for detection of atoms / molecules, nano-pumping
devices for molecular transportation. The advantages of nano-resonators are low cost, earth-
abundant and very small or even negligible light energy losses, as well as the ultra-high fre-
quency, high sensitivity and high stability.

On the other hand, the micro-sized material can be used in aerospace, as shown in Fig.1.2,
the nano-coating with ample benefits: First, enables development of highly responsive aircraft
electro-communication system. Second, reduce weight of airframe structure while simultane-
ously imparting high strength and toughness. Third, provide friction wear and withstand high
temperature of landing gear and turbine blade. Fourth, enhances performance of engine parts
by increasing corrosion resistance and creak healing. Last, lowers aviation carbon footprint and
enhances engineering safety.

Micro-sized structures have been widely investigated for their dynamic behaviors [7–9].
Initially, the research of micro-structures was mainly focused on stop band phenomena. Then,
attention was devoted to wave propagation within the pass bands, such as negative refraction,
super-lens effects, acoustic cloaks. The exploration for quantum spin Hall effect [10] and topo-
logical insulators [11] has become a hot spot for current research.

1.2.2 Free wave propagation characteristics in periodic structures

Lx

Ly

y
x

(a) A unit cell in the 2D
periodic structure.

O A

B

0

0 π/Lx-π/Lx

π/Ly

-π/Ly

κx

κy

C

(b) The first Brillouin zone
and IBZ (O–A–B–O).

O θ'
κθ'

κx

κy

(c) Plane wave.

Fig. 1.3. A unit cell in the 2D periodic structure and its first Brillouin zone.

The Bloch wave theory, used in the photonics crystal and quantum mechanics, has been
widely applied in engineering periodic structures [12]. The description of free wave propaga-
tion characteristics is the following: The periodic reciprocal lattice can restrict wave vectors in
certain regions of the reciprocal lattice called first Brillouin zone [13]. As a result, wave vectors
can be expressed in terms of the reciprocal lattice basis. Fig.1.3(a) illustrates a unit cell in 2D
periodic structure with size Lx × Ly. The behaviour is usually described using propagation
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constants λx and λy which are related to the wavenumbers κx and κy in following manner:

λx = e−iκxLx ,

λy = e−iκyLy .
(1.1)

The wave-numbers κx and κy change within the first Brillouin zone [−π/Lx, π/Lx] and
[−π/Ly, π/Ly] and are discretised into (κix, κjy), with κix being the i-th term, κjy being the j-th
term. Due to the symmetric properties in the reciprocal lattice, the wave vectors may be re-
stricted to the Irreducible Brillouin Zone (IBZ) as presented in Fig.1.3(b). In some descriptions
of the free wave propagation characteristics, the free wave propagates along the contour of IBZ
(O-A-B-O) is considered. The plane wave propagates with wave-number κθ′ in angle θ′ as
shown in Fig. 1.3(c). The κθ′ can be described as:

κx = κθ′cosθ′,

κy = κθ′sinθ
′.

(1.2)

Furthermore, The band structure, formed by the wave number with respect to frequency
along the contour of IBZ, represents the backbone of electronic structure theory [14]. In me-
chanics, a band structure is a description of dispersion relation reflecting the property of free
wave propagation in an elastic (or acoustic) structure. For 1D periodic structures, the term “dis-
persion relation” is employed and the free wave propagates along one direction only. For 2D
periodic structures, “band structure” is utilized and the free wave propagates along two direc-
tions.

There exist some important features in dispersion relation or band structure. First is the stop
bands of the propagation. In periodic structures and phononic materials, the wave has the fil-
tering property. Elastic/acoustic waves cannot propagate freely within some frequency ranges,
which are called stop bands or band gaps. In solid-state physics, a stop band, also called an
energy gap, is an energy range in a solid where no electronic states can exist. In graphs of
the electronic band structure of solids, the stop band generally refers to the energy difference
between the top of the valence band and the bottom of the conduction band in insulators and
semiconductors. It is the energy required to promote a valence electron bound to an atom to
become a conduction electron, which is free to move within the crystal lattice.

For 2D periodic structures, the stop band can be complete or partial, a partial stop band is a
frequency range where waves can not propagate in certain directions, the phenomenon is known
also as wave beaming effect [1]. Bragg Scattering and Local Resonance are two types of stop
bands in the periodic structures. Bragg scattering stop band is due to the spatial periodicity of
impedance mismatch. It appears when wavelengths are on the same order as period length. In
contrary, local resonance stop band depend on the properties of local resonator but not on the
period length. It can lie in sub-wavelength regime whereby waves with wavelengths larger than
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unit cell will be prohibited from propagation.

1.3 Existing methods to study micro-sized structures

3Introduction Methods ConclusionsApplications

Size (m)              10-10      10-9       10-8       10-7      10-6        10-5        10-4       10-3        10-2   

Frequency (Hz)   1011                                 107                                   103                      10

Atoms Particles Clusters Samples

Size effectsMicro-structure Macro-structure

Fig. 1.4. Structures of different sizes and the size effects.

The size effect, as shown in Fig. 1.4, is a noticeable feature in micro-scale structures [3, 4].
Firstly, due to the large surface-volume ratio, micro-particles such as atoms with associated
energy on the surface of the micro-structure can produce surface tension. Secondly, in addi-
tion to the macro-displacements caused by the macro-material, the micro-displacements caused
by micro-material in the structure also have important influences on the structure’s mechanical
behavior. What is more, besides local interactions, there exist non-local or long-range interac-
tions between micro-particles in the micro-structure. Last, the existence of characteristic length
scales in the micro-structure can generate higher order deformations. CT of continuum mechan-
ics can not describe these physical phenomena reasonably. Therefore, non-classical continuum
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Fig. 1.5. Existing methods to study micro-sized structures.

theories of elasticity and LSM theories that can interpret the properties of micro-sized structures
have been proposed. The classification of non-classical theories of elasticity is shown in Fig.
1.5 with basic concepts.
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1.3.1 Non-classical continuum theories of elasticity

In order to explore the mechanism of size-dependent behaviors for micro-sized media or
structures, several non-classical continuum theories of elasticity are proposed. Generally, these
theories can be categorized into strain gradient family [15–17], micro-continuum theory [18,
19], non-local elasticity theory [20–22] and surface elasticity theory [23, 24].

1.3.1.1 Strain gradient family

Strain gradient family can be categorized into couple stress theory, modified couple stress
theory, SG theory and SSG theory. In the couple stress theory, the non-independent gradient
of rotation vector from macro-material in the structure is considered in the strain energy. By
modifying the couple stress theory, the modified couple stress theory is confirmed, in which an
equilibrium condition of moments is introduced to achieve the symmetrization of couple stress
tensor. The SG theory considers the non-independent first gradient of strains from macro-
material in the structure. The SSG theory considers both the non-independent first and second
gradients of strains from macro-material in the structure.

(1) Couple stress theory

The couple stress theory was put forward by Toupin [25], in which the deformation metrics
include conventional strains from macro-material and non-independent macro-rotation from
macro-material in the structure. Many articles have focused on the research of couple stress
theory. For example, Najafzadeh [26] introduced the torsional vibration of the porous nano-
tube with an arbitrary cross-section based on couple stress theory. The novelty of his work is
to present a solution by taking into account the existence of porosity. Wang [27] derived the
elastic seismic wave equation through couple stress theory and compared the mathematical ex-
pression from couple stress theory with that of the conventional elastic wave equation. Fan [28]
illustrated a Love wave dispersion equation by the couple stress theory for a new physical con-
figuration. The result shows that couple stress theory solution is simple and has a great potential
to be employed in the much more complex multifactor problems. By employing couple stress
theory and micro-rotatory inertia, the elasto-dynamic fields of an anti-plane shear wave in nano-
fiber was studied by Shodja [29]. It shows that the inclusion of micro-rotatory inertia term gives
rise to the dynamic characteristic length, in addition to just the static characteristic length in the
usual couple stress theory. What is more, Ghodrati [30] investigated Lamb wave propagation in
a homogeneous and isotropic non-classical nano-plate. In this plate with constant thickness, the
results match to CT by increasing the thickness to characteristic length ratio, and wave propa-
gation speed in the plate is significantly increased by reducing this ratio. Nobili [31] studied the
anti-plane waves which is localized at the discontinuity surface between two perfectly bonded
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half-spaces. It is shown that anti-plane waves are supported under very general conditions, and
this outcome stands in remarkable contrast with CT. Here, the basic concept of couple stress
theory is introduced. For a continuum volume (V ), the equilibrium equations is written as:∫

V

fdV +

∫
∂V

tnds = 0,∫
V

(x× f + I)dV +

∫
∂V

(x× tn + µn)ds = 0,

(1.3)

where tn = t · n is the force per unit area. µn = µ · n is the couple vectors per unit area. The
subscript n means the direction of the external normal n to the volume surface. f represents
the body force and I is the body couple per unit volume of the material particles. x denotes the
position vector of a material particle in the continuum.

Using divergence theorem to transform surface integrals to volume integrals, one arrives:∫
V

(f +∇t)dV = 0,∫
V

[x× (f +∇t)− ε : t+∇µ+ I]dV = 0,

(1.4)

where ε is the alternating tensor. Since the volume V is arbitrary, eliminating the volume de-
pendence which leads to f +∇t = 0, ∇µ− ε : t + I = 0 which indicates that the equivalent
body couple −ε : t acting together with I is generated by the stress tensor t. Since the couple
moment should vanishes, on obtains:∫

V

x× (I − ε : t)dV +

∫
∂V

x× µnds = 0, (1.5)

where x is the position vector of a material particle in the continuum. I − ε : t is the residual
body couple. Using the divergence theorem, Eq.1.5 can be rewritten as:∫

V

[x× (I +∇µ− ε : t)− ε : µ]dV = 0. (1.6)

Introducing the symmetric part of the stress tensor (σ) and anti-symmetric part of the stress
tensor (τ ), the equilibrium equation of couple stress theory can be expressed as:

∇σ +
1

2
ε : (∇2m+∇I) + f = 0, (1.7)

wherem is the deviatoric couple stress tensor.

(2) Modified couple stress theory



12 Chapter 1. Literature survey

Unlike the classical couple stress theory, the equilibrium equation in modified couple stress
theory requires that the deviatoric couple stress tensorm to be symmetric. Yang et al.[17] pro-
posed the modified couple stress theory by extracting the couple stress tensor symmetrically in
which only one material length scale parameter is involved. Later, Espo [32] investigated the
band gap properties of a periodic nano-beam using a modified couple stress theory. The Bloch
theorem together with the transfer matrix method are employed for analyzing the nano-beam.
It shows that the surface effects on the band gaps are increased when the external electrical
field is increased. Liu [33] combined Legendre orthogonal polynomial method and Global ma-
trix method with the couple stress theory to investigate the wave reflection and transmission
in a couple stressed plate immersed in liquid. Increasing the frequency and decreasing the
thickness can bring the incident wavelength and thickness closer to the length scale parameter,
thereby leading to the effect of the couple stress more pronounced. khorshidi [34] employed
modified couple stress theory with Euler–Bernoulli and Timoshenko beam theories to predict
the dispersion characteristics of flexural waves in carbon nano-tubes. This study predicted the
capability of carbon nano-tubes to the weakening effect in nano-scale. Soltani [35] analyzed
the scale-dependent micro-inertia effect on the longitudinal dispersion by the modified couple
stress theory. The higher order micro-rotations should be considered to investigate the highly
nonlinear dispersion curve including an extremum/inflection point. Alizadeh [36] derived the
governing equations of a noncircular micro-wire using Hamilton’s principle and obtained the
free torsional vibration of the noncircular micro-wire through modified couple stress theory.

(3) Strain gradient theory

Mindlin proposed the SG elasticity theory (or called First Strain Gradient) and put forward
three versions of SG. For the first version, the deformation metrics include the conventional
strains from macro-material and the non-independent second-order displacement gradients from
macro-material. For the second version, the second-order displacement gradients are replaced
by the gradient of strain. For the third version, the conventional strains, rotation gradients and
symmetric part of gradient of strain are used as deformation metrics.

Many articles have focused on the study of micro-sized structures’ properties through SG
elasticity theory. For example, karami [37] developed a non-local SG elasticity theory to an-
alyze wave dispersion in a doubly-curved nano-shell. The result shows that strain gradient
parameters influence the wave frequencies and phase velocities. Hosseini [38] studied stress
distribution in a single-walled carbon nano-tube under internal pressure and used SG theory to
capture the size-dependent behavior of the nano-tube. Numerical results show that in a single-
walled carbon nano-tube, as the radius is increased, the non-dimensional radial and circum-
ferential stresses along the wall thickness increase. What is more, Eremeyev [39] studied the
anti-plane surface waves in SG materials with surface stresses which indicates that the solutions
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related to the surface elasticity model are more localised near the free surface. Wave propagation
in Timoshenko nano-beams considering strain gradient effects was analyzed by Norouzzadeh
[40]. It shows that increasing the non-local and small scale parameters has softening and hard-
ening influences on the wave frequencies of nano-beam, respectively. Yang [41] established
a dynamic Timoshenko beam model based on the new non-local SG theory and studied the
wave propagation behaviors of fluid-filled carbon nano-tubes. The numerical solution indicates
that the strain gradient effect leads an enhancement of stiffness when the non-local stress effect
causes stiffness decrease. In the second version of SG, the strain energy density, U , depends on
both the conventional strain and the first gradient of strain:

U = U(εij, ξijk), (1.8)

where εij = sym(∇U) is classical infinitesimal strain, ξijk = ∇∇U means the first order of
strain, in which U is the displacement vector and symbol ∇ means the gradient operator. The
Cauchy stress σij and higher-order stress τijk are expressed as:

σij =
∂U

∂εij
, τijk =

∂U

∂ξij
. (1.9)

Based on the principle of virtual work, the equilibrium equations in the body V of a solid
with boundary S and sharp edge C gives as:

σjk,i − τijk,ij + bk = 0, (1.10)

with bk is the body force per unit volume. For linear elasticity, the total strain energy density
can be written as:

U =
1

2
Cijklεijεkl +

1

2
Fijklpqξijkξlpq, (1.11)

whereCijkl means the classical fourth-order elasticity tensor and Fijklpq is the sixth-order elastic
tensor. For a isotropic structure, the conventional fourth-order elasticity tensor includes two
Lamé constants λ and µ which will be discussed in the following section.

(4) Second strain gradient theory

As discussed in the former section, the SG in which the potential energy density composed
of strain and first gradient of strain is considered, but only for micro-sized noncentro-symmetric
structures [42]. In order to explore the properties of centro-symmetric structures, the SSG
theory [16] was put forward, which offers a reasonable explanation for the transforming of
strain or tension on a solid plane surface. For instance, Ghazavi [43] investigated the influence
of length scale parameters by applying SSG theory and Euler- Bernoulli beam theory. The



14 Chapter 1. Literature survey

linear stability analysis shows that the nano-beam becomes unstable by static divergence due to
the losing stiffness. Torabi [44] reported the free vibration finite element analysis of the nano-
beam and nano-plate by the SSG theory of 3D elasticity model. It is realized that the difference
of the results between SSG theory and CT decreases with the increase of thickness-to-lattice
parameter ratio. Khakalo [45] derived the fundamental equations for Form II of Mindlin’s
SSG elasticity theory for isotropic materials and proposed a simplified formulation with six
and two higher-order material parameters for the strain and kinetic energy, respectively. On the
other hand, Babu [46] presented a new computationally efficient nonconforming finite element
formulation for the modelling of nano-plates through SSG elasticity theory. It can be concluded
from the results that the effect of the positive and negative strain gradient terms is of softening
and hardening nature, respectively. Delfani [47] employed Mindlin’s SSG elasticity to extract
an estimate of the effective shear modulus of an anti-plane mode which is a functionally graded
unidirectional fibrous composite. The results indicate that, at a constant volume fraction, the
shear modulus of the composite takes a higher value when the diameter of the fibers decreases.
In the SSG theory, strain energy density U is composed of strain ε=sym(∇U) from macro-
material in the structure, first gradient of strain ξ=∇ε and second gradient of strain ζ=∇∇ε, as
below:

U =
1

2
λεiiεjj + µεijεij + a1ξijjξikk + a2ξiikξkjj + a3ξiikξjjk + a4ξijkξijk + a5ξijkξjki

+ b1ζiijjζkkll + b2ζijkkζijll + b3ζiijkζjkll + b4ζiijkζllkj + b5ζiijkζlljk + b6ζijklζijkl

+ b7ζijklζjkli + c1εiiζjjkk + c2εijζijkk + c3εijζkkij,

(1.12)

where λ and µ represent the Lamé parameters which are related to the Young’s modulus E, the
Poisson’s ratio ν and the shear modulus G, as µ=G=E/2(1 + ν), λ=νE/(1 + ν)(1− 2ν). ai, bi
and ci denote the higher order parameters [42] for SSG theory.

The components of the usual stress τ 1, and higher order stresses τ 2 and τ 3 are defined as:

τ 1 =
∂U
∂ε

, τ 2 =
∂U
∂ξ
, τ 3 =

∂U
∂ζ

. (1.13)

The potential energy density in SSG theory is a function of strain, first gradient of strain and
second gradient of strain. The equilibrium equation is a high order partial differential function
with classical and non-classical boundary conditions.

1.3.1.2 Micro-continuum theory

The micro-continuum theory was proposed by Eringen [48–50] including micro-polar, micro-
stretch and micro-morphic theories in which micro-material in the structure can deform and
rotate independently.
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Currently, new researches about wave propagation characteristics through micro continuum
theory have been carried out. For example, Ogam [51] studied the micro-polar behavior of
materials by using a theoretical and experimental acoustic method. The micro-polar elastic
behavior in the material was illustrated through the comparison between theoretical and exper-
imental wave transmission coefficients. kalkal [52] investigated the plane waves reflection in a
micro-polar medium under the effect of rotation which shows that during reflection phenomena,
the sum of modulus of energy ratios is approximately equal to unity at each angle of incidence.
Yadav [53] dealt with the reflection of plane waves in a micro-polar thermoelastic diffusion
solid half-space. The reflection coefficients of the reflected waves are calculated for a particular
material. Furthermore, Kishine [54] examined the phonon spectrum of a chiral crystal within
the micro-polar elasticity theory. It shows that the polarization-dependent phonon dispersion
demonstrated may lead to chirality-induced cross correlations among lattice, electronic, and
magnetic degrees of freedom. Varygina [55] studied the mathematical model of multilayered
cylinder shell within the framework of linear micro-polar theory of elasticity and computed the
dynamic problems on the action of instant concentrated external load. The results of numerical
computations of wave propagation in micro-polar cylindrical shells demonstrate qualitative dif-
ference in the wave pattern depending on the particle types.

In micro-polar mechanics in addition to classical stresses the couples tresses from indepen-
dent micro-rotation of micro-material in the structure are introduced. The equations of motion
of micro-polar can be expressed as [51]:

ρ
dV

dt
= divσ + ρf ,

j
dω

dt
= divM− σ + ρm,

(1.14)

where σ and M denote the stress and independent couple stress tensors of Cauchy type, ρ is
the density in the actual configuration, j means the measure of rotatory inertia of particles of
micro-polar medium, f and m represent the external forces and couples, respectively.

On the other hand, Chirilua [56] studied micro-stretch elastic material with thermal and
mass diffusion at the macro- and micro-level to give the plane harmonic in time wave solutions.
The result shows that displacement, microrotation and microdilatation are un-damped in time
waves under micro-stretch elasticity with thermal and mass diffusion. Singh [57] investigated
the effect of diffusion on wave propagation and reflection in a micro-stretch solid half-space
and observed the influence of diffusion parameters on the speeds and energy ratios of reflected
waves. Lotfy [58] solved a model of the equations of generalized thermo-micro-stretch for an
infinite space which is considered as homogeneous isotropic elastic. The presence of micro-
stretch plays an important role in all the physical quantities.

The governing equations in micro-stretch elastic referred to a fixed system of rectangular
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Cartesian axes are expressed as [56]:

σji,j + ρfi = ρÜi, hk,k + g + ρl = Jφ̈,

Mji,j + εirsσrs + ρgi = Iijφ̈j, Ċ = ηi,i,
(1.15)

where σ is the components of the classical stress tensor from macro-material in the structure, f

is the components of the body force, U means the components of the displacement vector field
from macro-material in the structure, h means the independent components of the micro-stretch
vector from micro-material in the structure, g denotes the internal body force, l denotes the ex-
ternal microstretch body load, M is the independent components of the couple stress tensor
from micro-material in the structure, C is the concentration, η means the components of the
flux vector of mass diffusion, φ is micro-dilatation function.

Furthermore, a new beam model was illustrated based on the simplified micro-morphic elas-
ticity theory and wave propagation in an infinitely long beam was solved by Zhang [59]. Marco
[60] described the dynamical behavior of a band-gap metamaterial with tetragonal symmetry
micro-morphic material model. The main microscopic characteristics such as dispersion and
band-gaps of the targeted metamaterial is presented. The efficient theoretical model can avoid
unnecessary complexifications related as it is the case for higher gradient elasticity. Eremeyev
[61] derived the conditions for acceleration waves propagation through nonlinear elastic theory
of micro-morphic continuum and obtained the acoustic tensor of the micro-morphic medium
and formulated the conditions of the acceleration waves existence. In order to explain the
micro-morphic elasticity, the simplified strain energy density which is the fundamental function
is introduced here [59]:

U =
1

2
λεiiεjj + µεijεij + λcεiiξjj + 2µcεijξij +

1

2
λmξiiξjj + µmεijξij

+ l2(
1

2
λmξii,kξjj,k + µmεij,kξij,k),

(1.16)

in which λ and µ are classical Lamé constants from macro-material in the structure, λm and µm
are independent Lamé constants from micro-material in the structure, λc and µc are independent
coupling Lamé constants from micro-material in the structure, l is length scale parameter.

1.3.1.3 Non-local elasticity theory

It is well known that the stress at each point is related to the strain at the same point only in
the local theory of continuum mechanics. But for micro-meter scales, the size effects become
very important. In order to explain the size effects, the non-local continuum mechanics has been
developed which is based on the assumption that the stress at a point is a function of strains at
all points in the continuum. In the non-local elasticity theory, forces between atoms and internal
length scale are considered.
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The non-local elasticity theory was initially formulated by Eringen and Edelen [2, 62]. The
material constant in non-local elasticity theory can be determined either from experiments or
simulations. For example, Arash, Huang and Duan [63–65] evaluated the value of the material
constant for the static and dynamic analysis.

The non-local models can be categorized into beam model and plate model. The non-local
beam model was developed by Peddieson and Sudak [66, 67]. Peddieson applied his model
to study the size effects on the bending behaviour of isotropic nano-beams. Sudak applied his
model to analyze the buckling of multi-walled carbon nano-tubes. Since the early works by
Peddieson and Sudak, there have been a large number of articles devoted to the modelling of
nano-beams. For example, Moheimani [68] put forward the static and dynamic solutions of
nano-beams under external loads using non-local theory which shows that a non-local effect
could greatly affect the behaviors of nano-beam. What is more, Ghaffari [69] offered a com-
plete solution to analyze the mechanical behavior (bending, buckling and vibration) of nano-
beam under non-uniform loading. It shows that the theoretical non-local parameters can be
determined to reduce the cost of experiments determining the value of non-local parameters.
Bensattalah [70] employed the Differential Transform Method to predict and to analysis the
non-local critical buckling loads of carbon nano-tubes with various end conditions. In order to
investigate the influence of true shear stresses in non-local beam, Faghidian [71] put forward a
non-local flexure beam considering the effects of true shear stresses through non-local elasticity
theory. While the explicit shear force and bending moment were determined from the standard
dynamic equations by Bourouina [72]. The fracture behavior is also a significant property in
non-local beam. Alotta and Vantadori [73, 74] studied the fracture behavior by employing non-
local theory of elasticity. Rahimi [75] governed the non-local dynamics equations of motion of
Euler–Bernoulli beam to study the fracture behavior.

On the other hand, the wave propagation characteristics of non-local beam or tube have
also been widely studied recently. For instance, a non-local modeling of the vibration charac-
teristics such as wave propagation of carbon nano-tubes was introduced by Wang [76]. The
numerical results show that the fluid has a significant influence on the dynamical proprieties of
nano-tube, and the effect of high-speed fluid on the carbon nano-tube wall cannot be ignored.
He [77] studied wave propagation in a non-local piezoelectric phononic crystal Timoshenko
nano-beam. The results are helpful for the design of micro and nano-devices. Rakrak [78] an-
alyzed the transverse wave propagating of carbon nano-tube using non-local elasticity theory.
The results obtained can be used to predict the phenomenon of resonance for the forced vibra-
tion analyses of carbon nano-tubes. The bending wave propagation characteristics of a single
walled carbon nano-tube was investigated by Belhadj [79] based on the theory of non-local elas-
ticity. Different natural frequencies of single walled carbon nano-tubes of non-local parameter
improve its effect on the bending vibration of simply supported carbon nano-tubes, and local
natural frequencies agree well with exact results. Length and diameter of carbon nano-tubes
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have a significant influence on the optical and mechanical properties. Arefi and Yayli [80, 81]
presented a non-local solution for a nano-rod and evaluated the characteristics of the wave prop-
agation in the rod structure.

One of the earliest non-local plate model was put forward by Lu [82]. This model was used
to analyze the size effects on the bending and bucking behaviours of isotropic nano-plates. Re-
cently, many articles have focused on the wave propagation in plate model through non-local
theory. For example, karami [83] investigated the wave propagation of porous nano-shells using
non-local theory in conjunction with a higher-order shear deformation shell theory. According
to the results, it is verified that the size-dependence of the response is nearly the same to plates,
beams and tubes. Opalakrishnan [84] presented the study of propagation of elastic waves in 2D
nano-structures using Eringen’s non-local theory. In his work, wave propagation features such
as escape frequency, cut-off frequencies, phase speeds and group speeds are studied. What is
more, Cherednichenko [85] investigated the uniaxial tension of a 2D plate by the non-local the-
ory of elasticity and analyzed the demonstration of non-local effects arising in stresses. Sumelka
[86] dealt with the non-local Kirchhoff–Love plates theory using fractional calculus which is a
branch of mathematical analysis to study differential operators of an arbitrary order, emerged
as a powerful tool for modelling complex systems. The reflection and transmission of elastic
waves in non-local band-gap metamaterials are studied via the relaxed micromorphic model by
Madeo [87].

In my work, in order to describe the non-local elasticity theory, an Euler–Bernoulli nano-
beams (length L, width b and thickness h) is taken as an example [88], as shown in Fig.1.6.
The Young’s modulus E is assumed to change as arbitrary function in both axial and thickness
directions, as follows:

E = f(x)g(z). (1.17)

Based on Euler–Bernoulli beam theory, the displacements w and u are expressed as:

Lz

x

b

h0

Fig. 1.6. Geometry of Euler–Bernoulli nano-beam.

u1 = −z∂w(x, t)

∂x
, u2 = w(x, t). (1.18)

Here, nonzero strain is considered only:

ε11 = −z∂
2w(x, t)

∂x2
. (1.19)
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The governing equation of the Euler–Bernoulli beam can be obtained by using the concept
of minimum total potential energy principle:

δΠ = δU − δW = 0, (1.20)

in which δU and δW are variation of strain energy and variation of virtual work done by the
external applied forces, respectively. The variation of strain energy is:

δU =

∫
V

σ11δε11dV =

∫ L

0

(
−d2M11

dx2
δw

)
dx, (1.21)

where M11 =
∫
A
zσ11dA. The virtual work done by the external forces, f , is given:

δW =

∫ l

0

qδwdx. (1.22)

Substituting Eqs.1.21 and 1.22 into Eq. 1.20, the governing equation is given as:

−d2M11

dx2
+ q = 0. (1.23)

According to the non-local elasticity theory, the stress tensor at an arbitrary point x in the
domain of material depends not only on the strain tensor at x but also on strain tensor at all
other points in the domain. So a stress–strain relationship is written as:

σnlij =

∫
V

α (|x′ − x, τ |)σlijdV (x′), (1.24)

where α is the non-local modulus, which contains the small scale effects incorporating into
constitutive relations in which the non-local effects at the point x produced by local strain at the
source x′. |x − x′| is the distance in Euclidean form, τ = e0ā/L denotes a material parameter
that depends on internal and external characteristic length. e0 is determined by matching the
dispersion curves. σnl is the non-local stress tensor at the reference point and σl means the
classical stress tensor at local point which is defined in the following:

σl = C : ε, (1.25)

where C is the fourth order elasticity tensor. The non-local constitutive relation given in integral
form can be expressed in an equivalent differential form as:

(1− υ∆2)σnl = C : ε, (1.26)
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where υ = (e0a)2. For a non-local beam, the relation between the local and non-local stresses
can be represented as:

σ11 − υ
∂2σ11

∂x2
= Eε11. (1.27)

Then, multiplying Eq. 1.27 by z and integrating the resulting over the beam cross section
area A leads to:

M11 − υ
∂2M11

∂x2
=

∫
A

Ez

(
−zd2w

dx2

)
dA = −f(x)I2

d2w

dx2
, (1.28)

in which I2 =
∫
A
z2g(z)dA. The second derivative of Eq.1.28 which is the governing equation

under non-local theory can be expressed as:

∂2M11

∂x2
− υ∂

4M11

∂x4
= −I2

(
f(x)

d4w

dx4
+ 2f ′(x)

d3w

dx3
+ f ′′(x)

d2w

dx2

)
. (1.29)

1.3.1.4 Surface elasticity theory

It is well known that due to high surface-to-volume ratio in micro-sized structures, the sur-
face tension, produced by atoms with associated energy on the free surface, has a significant
influence on the structure’s behavior.

The mostly used model of the surface elasticity proposed by Gurtin [89]. Recently, some
researchers have focused on the exploration of surface wave properties through surface elastic-
ity theory. For instance, Eremeyev [90] discussed the propagation of transverse surface waves
along a surface of an elastic cylinder with coating. About the similarities between the gener-
alized Young–Laplace equation and transmission conditions through a stiff interface, the pre-
sented results can be reformulated for surface shear waves propagating along such stiff inter-
faces. Arefi [91] evaluated the governing differential equations of the Love nano-rod model by
employing the coupled stress components and surface elasticity, and discussed the character-
istics of wave propagation in nano-rod. Eremeyev [92] built a new model of surface elasticity
in which the surface strain energy depends on surface stretching and on changing of curvature
along a preferred direction. It shows that the dispersion relation depends on the direction of
wave propagation. The presented results demonstrated a influence of a surface micro-structure
on surface waves.

On the other hand, the contribution of the non-local integral theory of elasticity to surface
elasticity was revealed by Li [93]. In his work, a uniform and isotropic half-space medium
subjected to an arbitrary uniform strain is considered. The interaction forces generated by the
points within the horizon will offset against each other owing to the geometric symmetry and the
symmetric distribution of attenuation functions. Xie [94] predicted the influence of surface free
energy on nonlinear secondary resonance of silicon nano-beams under external hard excitations
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through surface elasticity theory. It shows that due to the higher surface to volume ratio for a
nano-beam, reduction in the value of beam thickness causes to enhance the difference between
the classical and non-classical predictions for the nonlinear secondary resonance response.

Here, in order to introduce the surface elasticity theory, an isotropic elastic solid body V
with smooth enough boundary S = ∂V is considered within Gurtin–Murdoch model [89]
framework. The surface stress tensor τ is expressed as [89]:

τ = γP + 2(µs − γ)ε+ (λs − γ)P(trε) + γ∇sU, (1.30)

where the surface strain tensor ε is written as:

ε =
1

2
(P · (∇sU) + (∇sU)T ·P), (1.31)

in which U is a displacement vector, γ means a scalar coefficient interpreted as a residual
surface tension, λs, µs denote the surface Lamé constants, ∇s is the surface nabla operator, P

is the unit vector of outer normal to S. The proposed expression of surface stress tensor is the
foundation of surface elasticity theory.

1.3.2 Lattice spring model theory

The LSM theory [95] is also a valuable approach to interpret the dynamic characteristics
for micro-sized medias. In the last decade, many articles have focused on the wave propaga-
tion properties of micro-sized structures through LSM. For example, Dario [96] presented a
non-local lattice model to give the micro-stiffness and micro-inertia terms a physical interpre-
tation based on geometrical and mechanical properties of the micro-structure. The dispersion
characteristics of waves propagating in nano-structure are illustrated as well. It shows that the
proposed three-length-scale gradient formulation is effective to capture a range of wave disper-
sion characteristics arising from experiments. Nannapaneni [97] defined the strains consistently
in terms of displacements in the micro-sized lattice structures, and analyzed the wave propaga-
tion proprieties using a Bloch wave theory. Liu [98] proposed a modified LSM by introducing
an independent micro-rotational inertia which can indicates the scale-dependent effect. The
stiffness ratio, numerical damping, lattice spacing, and micro-rotational inertia have influences
on the Poisson’s ratio. Also, he analyzed the dispersion relationship of elastic waves by consid-
ering the characteristic material length.

On the other hand, the dynamical properties of a lattice refined truncated nano-cube are
studied by Sahmani [99], and the size-dependent non-linear large-amplitude vibrations of this
structure are explored. Vila [100] analyzed the free longitudinal wave vibration in a one di-
mensional structured solid which is modeled as a discrete chain of masses interacting through
non-linear springs, which shows that the higher the characteristic size in the underlying struc-
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ture of the chain, the lower the frequencies of oscillation. Wang [101] studied wave propagation
in a weakly non-linear monoatomic lattice chain with non-local interaction, and offered a way
to control the wave propagation and energy transferring behaviors. Song [102] studied elastic
wave propagation in non-linear periodic mass-in-mass lattice structures and discussed the band
structures which can be influenced by nonlinearities of the lattice. The non-classical continuum
model theory is used to capture the dynamic behavior such as dispersion and natural frequency
of the lattice.

Furthermore, for the LSM based on surface elasticity theory, Hamilton [103] introduced the
subject by considering embedded-atom-method calculations of the equilibrium in-plane strain
for free-standing nano-sheets. Eremeyev [104] derived the dispersion relations for anti-plane
surface waves using surface of lattice dynamics. The proposed model can capture material
behavior related to presence of surface energy. Karlivcic [105] investigated the elastic wave
propagation in lattice elastic Timoshenko beams with attached point masses. Here, a “toy-

L

z
x

b

h

0

a

Fig. 1.7. Schematic drawing of a simple one-dimensional ”toy-model”. The black bonds represent bulk pair
potentials with equilibrium spacing, a. The red bonds represent surface pair potentials with equilibrium spacing,
b. The blue bonds are at right angles to the atomic planes and force the surface and bulk spacing to be equal.

model” [106] of LSM based on surface elasticity theory is presented. Fig.1.7 shows a simple
1D “toy-model” for surface and bulk elasticity. This is a pseudomorphic model in which the
vertical black bonds force the surface layers and bulk layers with same inter-atomic separation.
Here, we assume that a spring potential for the bulk layers with equilibrium length, a, and force
constant, kb. A spring potential for the two surface layers with equilibrium length, b, and force
constant, ks.

The total energy of the nano-sheet of thickness, h layers, is a function of the inter-atomic
spacing, L. The energy per atom in the surface layers is Es = ks(L− b)2/2 and the energy per
atom in the bulk layers is Eb = kb(L − a)2/2. The model has two surface layers and (h − 2)
bulk layers. The total energy per surface atom can be expressed as:

Et(h) = ks(L− b)2 +
kb(L− a)2(h− 2)

2
. (1.32)

The form Et(h) = 2Es + Eb(h − 2) shows that energy of the various layers is additive
and that layers can be divided into bulk and surface. The equilibrium strain (ε) for a given h is
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expressed as:

1/ε =

[
kbh

2
+ (ks − kb)

]
a

(a− b)ks
. (1.33)

This model shows that the strain is a linear function of h, and that the surface layer has
a residual strain whose elastic properties are different from the bulk. On the other hand, the
”toy-model” can offer a quantitative prediction of surface and bulk strains.

Last, for the LSM based on long-rang interaction, Tarasov [107] proposed a LSM with near-
est and next-nearest-neighbor interactions of a tension beam for the first time and confirmed the
resulting dynamic equations by using Fourier series. Then, a lattice torsion beam with nearest
and next-nearest interactions is proposed by Gomez [108]. The novel model proposed shows
the best performance, and the governing equation being of low order can avoid the use of extra
boundary conditions. Zhu [109] calculated the governing equation of a 1D tension vibration
bar using a LSM with nearest, next-nearest and next-next-nearest interactions. The author [95]
expounded LSMs with nearest, next-nearest and next-next-nearest interactions for bending and
torsion vibration respectively, and wave dispersion relations and forced responses for bending
and torsion are analyzed.

In order to explain LSM based on long-rang interaction, a LSM with the nearest-neighbor

d

n-1 n+1nn-2n-3 n+2 n+3

1

1
lk

M

2
lk

zxy
0

Fig. 1.8. Discrete mass-spring system with stiffness kl1 and kl2, the mass M and the distance d corresponds to the
lattice model with the nearest-neighbor and next-nearest-neighbor interactions.

and next-nearest-neighbor interactions is introduced within SG theory framework. The sug-
gested LSM gives unified description of the second-gradient model. The sign in front the
gradient is determined by the relation of the coupling constants of the nearest neighbor and
next-nearest-neighbor interactions.

As shown in Fig.1.8, LSM for 1D tension bar can reflect the mechanical response of the
continuum structure when the length between each node at small scale and P is large enough.
The lattice equation of motion for node n as:

kl1(un−1 − 2un + un+1) + kl2(un−2 − 2un + un+2)− Fn = M
d2un(t)

dt2
, (1.34)

in which un is the displacement of mass n along x direction. Subsequently, the Fourier series
transform approach [110] is used to derive a continuous equation u(x, t) from the LSM un(t).
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Equation 
for un(t)

From lattice 
to continuum

Equation
for u(x, t)

Fourier series
transform

Inverse Fourier
integral transform

Limit 
d → 0

Equation 
for u(k, t)

Equation 
for u(k, t)

_

Fig. 1.9. Diagrams of sets of operations for differential equations.

The detail addressed in Fig.1.9, as a result:

Gl
2

∂2u(x, t)

∂x2
+Gl

4

∂4u(x, t)

∂x4
+ o

(
Gl
i

∂iu(x, t)

∂xi

)
− 1

ρ
f(x, t) =

d2u(x, t)

dt2
, (i = 6, 8, ...),

(1.35)
where ρ is the mass density, Gl

2 = (kl1 + 4kl2)d2/M , Gl
4 =

(
kl1 + 16kl2

)
d4/(12M).

This LSM can only be used to describe the SG theory whose continuum equation of motion
contains one higher order term. But for the SSG theory, the continuum equation of motion
contains two higher order terms, the LSM of nearest, next-nearest interactions is insufficient
to derive this two higher order terms. So the establishment of LSM with nearest, next-nearest
and next-next-nearest interactions is necessary to determine the continuum equation under SSG
theory. The LSM for SSG theory is a new research topic, especially for bending and torsion
vibration. If only the nearest interaction is considered, the LSM will reverse to the one by CT.

1.4 Existing methods to study periodic structures

The attentions of my work lie on the explorations of engineering periodic structures. There
are many methods to study the engineering periodic structures. For instance, plane-wave expan-
sion method [14], modified TMM [111], WFEM [95, 112], MOR technique [113] and homog-
enization methods [114]. These methods are mainly used in phononic materials to deal with
multiple medias and assure good convergence.

1.4.1 Plane-wave expansion

The view of plane wave expansion method for continuous systems is expanding the sought-
after solution field and the material properties in a Fourier series, and then invoking orthogonal-
ity of the basis functions to solve the introduced solution coefficients. Recently, a novel Fourier
series expansion is proposed by Dal [115] to represent a periodic cubic lattice structure using
the plane wave expansion method. Meanwhile, he discussed the flexural wave band gaps in
a ternary periodic metamaterial plate by using the plane wave expansion method [116]. Riva
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[117] investigated 1D wave propagation in phononic wave-guides whose non-reciprocal disper-
sion diagram is computed using a generalized plane wave expansion method. This new model
is able to violate the mirror symmetry in the momentum space.

Furthermore, an improved fast plane wave expansion method for topology optimization of
phononic crystals was put forward by Xie [118]. The properties of the unit cells affect the
optimization speed as well as the overall computational time. The adaptive genetic algorithm
can decrease the overall iteration time required for convergence, and improve the optimization
efficiency. On the other hand, Mock [119] calculated the band structure through the plane wave
expansion by considering a material constant called time-modulated permittivity. It shows how
tailored time-modulation influences a directional synthetic momentum to the field causing uni-
directional propagation. Here, the basic concept of plane wave expansion method is introduced.
Considering a system governed by the periodic wave equation, as below:

ρ
∂2U

∂x2
=

∂

∂x

(
ρc2∂U

∂x

)
, (1.36)

where U denotes the displacement field, ρ is the density, c means the speed of sound through
the media. A lattice vector for this system can be expressed as R = na = nax̂ in which x̂ is a
unit vector and n any integer. A reciprocal lattice vector can be written as Gm = mb = m/ax̂

where m denotes any integer. Then, the plane-wave expansion can be presented as:

U(x, t) = ei(κ·r−ωt)
∑
G1

Uκ(G1)eiG1·r,

ρ(x) =
∑
Gm

ρ(Gm)eiGm·r,

ρ(x)c2(x) =
∑
Gm

τ(Gm)eiGm·r,

(1.37)

where r = xx̂ denotes position, κ = kx̂ is the wave vector,
∑

G1
,
∑

Gm
are sums over all

reciprocal lattice vectors. Substituting the expansions into Eq.1.36 and forming the complex
inner product with eiGn·r yields:∑

G1

[
−ω2ρ(GnGm) + (κ+ G1) · (κ+ Gn)τ(Gn −G1)

]
Uκ(G1) = 0. (1.38)

For each Gn, the nonzero terms in the inner product satisfies G1 + Gm − Gn = 0 . By
truncating the expansion for G1, the eigenvalue problems leads to eigen-frequencies ω(κ) and
eigen-vector [Uκ(G−N)Uκ(G−N+1)...Uκ(GN)]T , while (2N + 1) is the number of retained
terms. By solving the problems for all the wavenumbers κ in IBZ, the eigenfrequencies are ob-
tained and they can be used to express the band structures. As in any approximation technique,
a convergence criterion should be applied to determine an appropriate value for N .
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1.4.2 Modified transfer matrix method

TMM with some advantages in computer implementation is a simple and accurate method
for analyzing the vibration of beams and other structures. In this section, a method is presented
to reduce the order of the matrix which is call modified TMM. For the modified TMM, some
remarkable researches are presented here. Han [120] introduced a modified MTM to calculate
the bending vibration band structure in 1D phononic crystal (PC) Euler beams. Meanwhile, a
modified TMM is applied by Feyzollahzadeh [121] to study on beam vibration and the result
shows that the calculation time is reduced. Yang [122] proposed the modified TMM for the
Steel composite transmission shafting system based on lamination theory and layer-wise beam
theory. The result shows that the modified TMM can effectively illustrate the bending vibration
characteristics of the composite transmission shafting system.

Here we define a model which is divided into a series of elements with constant parameters.
It leads to a differential equation with constant coefficients when using separation of variables
method to solve a function w(x) in which each element can be represented as follows:

w =
n=N∑
n=0

ANcoshsnsn +
n=N∑
n=0

Bnsinhsnsn +
n=N∑
n=0

Cncossnxn +
n=N∑
n=0

Dnsinsnxn, (1.39)

where An to Dn are the constant coefficients in the solution based on the problem dimension
N , sn is the eigenvalue of the differential equation. If the system response is a combination
of harmonic and hyperbolic functions, An to Dn appear in the derivatives of the response. As
a result, the state vector Z including the response and its derivatives can be expressed through
transfer matrix function T(x) as follows:

Z = T(x) ·C, (1.40)

where C is the vector of constants. Z and C can be expressed as:

Z = [w1, w2, ..., wn, ϕ1, ϕ2, ..., ϕn,M1,M2, ...,Mn, V1, V2, ..., Vn]T ,

C = [A1, A2, ..., An, B1, B2, ..., Bn, C1, C2, ..., Cn, D1, D2, ..., Dn]T .
(1.41)

In point i − 1, x sets to zero and the state vector is expressed by T(0). The transfer matrix
function T(x) at x = 0, is called as the “zero matrix”:

Z = T(0) ·C, (1.42)

and vector C is:
C = T(0)−1Zi−1, (1.43)
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which can be substituted into Eq.1.40 to produce the state vector:

Z(x) = T(x)T(0)−1Zi−1. (1.44)

At same time, in point i, x = l and we have:

Z(i) = T(l)T(0)−1Zi−1. (1.45)

The system response is a combination of harmonic and hyperbolic equations. The rows of
transfer matrix are derivatives of the response system. Thus, the rows of the transfer matrix will
be the same every other rows and alternately, which means that in the presence of matrix T(0),
half of the terms will be zero in each row. The idea is about the zero elements concentration
and all zeros of T(0) are gathered on one side of matrix. The inversion of n× n matrix can be
calculated instead of 2n× 2n matrix.

1.4.3 Wave finite element method

The WFEM offers a numerical wave characterization of periodic structures that composed
of identical unit cells coupled together. The advantage of WFEM is modeling a unit cell by
the conventional finite elements, which thus complex geometries or several materials can be
involved. What is more, the wave propagation of whole structure can be evaluated by analyzing
a single unit cell. The size of numerical problem that related directly to the number of DOFs
will be reduced, thus computational time will be saved.

Literature on WFEM is extensive and covers a vast scope of applications [123–183], ranging
from damage detection, metamaterials, vibro-acoustics, inverse identification. For the investi-
gation of 1D wave propagation characteristics in periodic structures, an enhanced WFEM was
developed by Fan [141] for a reduced model with local dampers to mitigate the ill-conditioning.
Free wave characteristics are analyzed by the proposed method. Hoang [145] presented a
method to calculate the wave amplitudes of the moving loads applying in a periodic railway
track by using the WFEM in frequency domain. Miranda [146] investigated the forced re-
sponse of flexural waves propagating in a 1D phononic crystal Euler-Bernoulli beam by WFEM.
The numerical band gap can match the experimental result. Guo [159] proposed a method for
dynamic homogenization and vibration analysis of lattice truss core sandwich beams using
WFEM. This method is used to predict wave propagating and evanescent in the periodic truss
core sandwich beam. Singh [166] presented a stochastic formulation for the Bloch analysis of
1D periodic structures based on WFEM, which shows a remarkable achievement for compu-
tational cost savings. He also studied the structured uncertainties in wave characteristic of 1D
periodic structures through WFEM [157]. A homogenization technique was put forward by Ah-
sani [172] for 1D periodic structure. In his work, the WFEM is used to retrieve the multi-modal
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interface wave diffusion coefficients. What is more, Duhamel [183] proposed a WFEM to com-
pute the dynamic response of infinite periodic structures restricted to localized time-dependent
excitations. The proposed approach can predict the dynamic behavior of the periodic structure
over the whole time period.

On the other hand, WFEM can also be used to calculate the 2D wave propagation charac-
teristics in periodic structures. For example, a modeling strategy was proposed by Zergoune
[140] based on WFEM to deal with the flexural vibroacoustic behavior of sandwich panels and
an expression of the sound transmission loss of these sandwich panels was developed. Hong
[147] presented an improved WFEM that can be used to illustrated the band-gap character-
istics of stiffened shell structures. Result shows that stiffeners’ geometric parameters can be
selected to attenuate the out-of-plane vibration. Mencik [149] proposed a numerical method
to compute the 2D wave modes of periodic structures with cyclic symmetry based on WFEM.
The numerical result highlights the efficiency of the WFEM compared to FE method. Thierry
[156] analyzed 2D wave propagation in highly anisotropic textile composites. In his work, the
advantages of mode-based Component Mode Synthesis (CMS) and WFEM are combined. Fur-
thermore, Errico [160] developed a WFEM to compute the sound transmission loss of any flat,
curved and cylindrical, homogeneous and periodic structure. Different periodic unit cell are
investigated under diffuse acoustic field excitation. A second order optimization approach was
presented by Boukadia [171] based on WFEM to optimize the 2D infinite structures. The pro-
posed method can be utilized to optimize the vibro-acoustic performances of metabeams under
clamped-free boundary conditions. In addition, Guenfoud [174] dealt with multi-layer rectan-
gular core topology systems which are built by stacking layers. The WFEM is introduced to
analyze the transition frequency and to control the bending waves propagation in the structure.

According to the WFEM, only one unit cell is modeled through traditional finite elements.
The dynamic equilibrium formulation of a unit cell can be written as:

Ku(t) + C
∂u(t)

∂t
+ M

∂2u(t)

∂t2
= F, (1.46)

where K and M denote the stiffness matrix and mass matrix, respectively, C = ηK/ω is
identified as damping matrix considering damping lose factor η, u is vector of nodal displace-
ment/rotation/torsion, F represents force/moment/torque. Assuming that u and F are harmonic,
the dynamic stiffness matrix will be written as D = K̃ − ω2M in frequency (ω) domain with
K̃ = (1+iη)K. Eq. 1.46 can be re-expressed by dividing the DOFs into I (internal), Bd (bound-
ary) DOFs. It should be noticed that the internal DOFs are not affected by external loads due to
the coupling actions are restricted to its boundary only [184], as a result, FI = 0, this yields:[

DBdBd DBdI

DIBd DII

](
ûBd

ûI

)
=

(
F̂Bd

0

)
, (1.47)
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where û and F̂ are the amplitudes of u and F, respectively. After dynamic condensation, the
dynamic equilibrium equation will be written as:

DûBd = F̂Bd, (1.48)

where D = DBdBd−DBdID
−1
II DIBd is the condensed form of dynamic stiffness matrix, subscript

Bd represents the DOFs on the boundaries of the unit cell.

1.4.3.1 One-dimensional WFEM
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Fig. 1.10. Periodic structure constituted by k unit cell.

Considering an elastic structure with identical unit cells that arranged in x direction, as
presented in Fig.1.10, the length of each unit cell is Lu, which corresponds to a small length
of wave-guide or a unit length of periodic structure and only one unit cell is modeled. The left
boundary and right boundary of the unit cell are meshed with same number of DOFs. There
exist two forms to illustrate the wave propagation: direct form and inverse form.

(1) Direct form of WFEM1D :

Using Eq. 1.48, the vectors of nodal displacement of the right boundary of a cell related to
the left boundary can be expressed, as follows:

d̂
(n)
R = Sd̂

(n)
L , (1.49)

where d̂
(n)
L =

[(
û

(n)
L

)T (
−F̂

(n)

L

)T
]T

and d̂
(n)
R =

[(
û

(n)
R

)T (
F̂

(n)
R

)T
]T

representing the left

and right state vectors for the unit cell n are 2m×1 state vectors. S is a 2m × 2m symplectic
transfer matrix expressed as:

S =

[
−D−1

LRDLL −D−1
LR

DRL − DRRD−1
LRDLL −DRRD−1

LR

]
. (1.50)

Considering two consecutive cells n − 1 and n, the coupling conditions of displacement
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should be satisfied in the interface between them:

q̂
(n−1)
R = q̂

(n)
L , F̂

(n−1)
R + F̂

(n)
L = 0, (1.51)

where the superscripts (n − 1) and n are used to label the unit cell which the vector is re-
ferred to. The application of those relations to Eq. 1.49 allows one to establish a link between
kinematic/kinetic (or mechanical) quantities on the left boundaries of unit cells n− 1 and n as
follows:

û
(n)
L = Sû

(n−1)
L . (1.52)

The state vector û(n) can be expanded into a set of 2m linearly independent vectors, which
can be written as:

û(n) =
2m∑
j=1

φjQ
(n)
j , (1.53)

where {φj}j=1,...,2m and {Qj}j=1,...,2m are indexed families of vectors of wave shapes and wave
amplitudes, respectively, m is a discrete index, called the band index. The wave amplitudes
between two consecutive cells n− 1 and n have a relation that pointed by Bloch’s theorem for
periodic structures given by:

Q
(n)
j = λjQ

(n−1)
j , (1.54)

where λj = e−iκjLu ,κj is the wavenumber, Lu is a cell length. Affiliated with Eq. 1.53, the state
vector related to the left boundary of a cell n can be written as:

u
(k)
L =

2m∑
j=1

φje
−iκjLuQ

(n−1)
j . (1.55)

Whereupon, substituting Eq. 1.54 into Eq. 1.55, free wave propagation characteristics are
represented by solving symplectic eigenvalue problem:

Sφj = λjφj. (1.56)

According to the preceding section, the solutions {λjφj}j=1,...,2m of the symplectic eigen-
value problems are referred to as the waves modes of the periodic structure. The eigenvalues
{λj}j=1,...,2m are the propagation constants which are related to the wave-numbers {κj}j=1,...,2m.

(2) Inverse form of WFEM1D :

Suppose a real value of wavenumber is assigned as first. The value of λ can then be derived
since λ = exp(−iκLu). According to periodic structures theory, for free wave propagation, we
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have:
û

(n)
R = λû

(n)
L , F̂

(n)
R = −λF̂

(n)
L . (1.57)

According to the Bloch’s theorem, the DOFs’ relations and forces’ relations can be ex-
pressed separately as:  ûL

ûR

ûI

 = ΛR

(
ûL

ûR

)
, ΛL

 F̂L

F̂R

0̂

 = 0, (1.58)

with

ΛR =

 Is 0

λIs 0

0 II

, ΛL =

[
Is λ−1Is 0

0 0 II

]
, (1.59)

where Is and II denote the identity matrices of size s and I . Substituting Eq. 1.58 into Eq. 1.47
yields:

ΛL(K̃− ω2M)ΛR

(
ûL

ûI

)
= 0. (1.60)

Since κ is supposed to be real, the equation deduced above will become a standard and linear
eigen-problem of ω2. The size of problem is the sum of the size of ûL and ûI. No numerical
issue will appear in this case, however here should be noted that the attenuation of waves can
not be predicted by WFEM inverse form.

1.4.3.2 Two-dimensional WFEM

nxny

(a) 2D periodic structure (b) DOFs in a unit cell

xy

A unit cell

u1

u2

u4

u3

uL

uR

uB

uT

uI

Fig. 1.11. 2D periodic structure and its unit cells.

A scheme for 2D periodic structure and its unit cell is given in Fig.1.11. The nodes in the
unit cell are divided into six parts DOFs: four corners, left, bottom, right, top and internal DOFs.
They are classified by the amplitudes of nodal displacements: [ûBd ûI] = [û1 û2 û3 û4 ûL ûB

ûR ûT ûI]. It should be pointed that the nodal forces are classified in the same way.
According to the periodic structures theory, the nodal DOFs are related through propagation
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constants λx and λy:

û2 = λxû1, û3 = λyû1, û4 = λxλyû1, ûR = λxûL, ûT = λyûB. (1.61)

In addition, for free wave propagation, the sum of nodal forces of all the elements connected
to nodes 1, L, B is zero, one arrives:

F̂1 + F̂2λ
−1
x + F̂3λ

−1
y + F̂4λ

−1
x λ−1

y = 0,

F̂L + F̂Rλ
−1
x = 0,

F̂B + F̂Tλ
−1
y = 0.

(1.62)

(1) Direct form of WFEM2D :

The internal DOFs of the unit cell are condensed. For the boundary nodes:

ûBd = Λ̂R

 û1

ûL

ûB

, (1.63)

with

Λ̂R =



Is 0 0

λxIs 0 0

λyIs 0 0

λxλyIs 0 0

0 Ism 0

0 0 Isn

0 λxIsm 0

0 0 λyIsn


. (1.64)

Similar for the nodal forces:
Λ̂LF̂Bd = 0, (1.65)

with

Λ̂L =

 Is λ−1
x Is λ−1

y Is λ−1
x λ−1

y Is 0 0 0 0

0 0 0 0 Ism 0 λ−1
x Ism 0

0 0 0 0 0 Isn 0 λ−1
y Isn

, (1.66)

where Is, Isn and Ism represent the identity matrix of size s, sn, sm respectively. So the equation
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of motion Eq.1.48 becomes:

Λ̂LDΛ̂R

 û1

ûL

ûB

 = 0. (1.67)

Suppose one of (λx, λy) is given, for example λy. Eq.1.67 then becomes a quadratic eigen-
value problem in λx as follows:

1

λx

λ2
x

 A11 A1L A1B

AL1 ALL ALB

AB1 ABL ABB

+ λx

 B11 B1L B1B

BL1 BLL BLB

BB1 BBL BBB

+

 C11 C1L C1B

CL1 CLL CLB

CB1 CBL CBB


 ûb = 0,

(1.68)
where ûb=[(û1)T (ûL)T (ûB)T]T. The quadratic eigenvalue problem can be solved by using the
polyeig function. The A, B and C are addressed in Appendix A.

(2) Inverse form of WFEM2D :

For inverse form, the internal nodes are conserved since the dynamic condensation can not
be performed, as a result: (

ûBd

ûI

)
= Λ′R


û1

ûL

ûB

ûI

, (1.69)

with

Λ′R =

[
Λ̂R 0

0 II

]
. (1.70)

Similar for the nodal forces:

Λ′L

(
F̂Bd

0

)
= 0, (1.71)

with

Λ′L =

[
Λ̂L 0

0 II

]
. (1.72)

Then, the Eq.1.47 becomes:

Λ′L(K̃− ω2M)Λ′R


û1

ûL

ûB

ûI

 = 0, (1.73)



34 Chapter 1. Literature survey

which becomes the following standard, linear eigenvalue problem in ω2:

[K∗(λx, λy)− ω2M∗(λx, λy)]


û1

ûL

ûB

ûI

 = 0. (1.74)

If we consider about the un-damped structure, K∗ and M∗ are positive definite Hermitian
matrices. The eigvalues ω2 for free wave propagation is real and positive. The size of the
eigen-problem is the same as [ûT

1 , ûT
L , ûT

B, ûT
I ]T.

1.4.4 Model order reduction technique

The MOR based on component mode methods are now described. The main one of these,
known as Component Mode Synthesis (CMS) [113], contains two variants: the fixed interface
method and the free interface method. Xie [185] presented an adaptive MOR strategy to reduce
the number of DOFs. The associated computational cost is largely alleviated. Pereyra [186]
discussed the application of MOR to problems in seismic petroleum exploration. The proposed
method significantly reduced calculation time. What is more, an experimental research is made
by Thierry [187] to compare with a numerical method based on CMS which can be applied
to analyze vibro-acoustic and ultrasonic wave propagation in complex woven composites. Li
[188] proposed a new gap element to illustrated the coupling properties of incompatible inter-
face through CMS method. The natural frequencies and modal shapes obtained from proposed
method match well with the ones obtained from full FE model.

In our work, the fixed interface method called Craig-Bampton method, conserving the phys-
ical DOFs of the boundary nodes, is combined with WFEM. It is easy to implement to WFEM
formulation since wavenumbers are confirmed from relation between physical DOFs at different
boundaries of unit cell. The inner DOFs ûI and boundary DOFs ûBd can be expressed as:

û = [(ûBd)T, (ûI)
T]T. (1.75)

A reduced set of DOFs p̂ is defined as:

p̂ = [(ûBd)T, (P̂C)T]T, (1.76)

in which û is related to p̂ by the transfer matrix B:(
ûBd

ûI

)
=

[
In 0

ΦBd ΦC

](
ûBd

P̂C

)
= B

(
ûBd

P̂C

)
, (1.77)
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where
ΦBd = −K̃−1

II K̃IBd. (1.78)

The component modes ΦC are selected among the eigenvectors ΦI:

(K̃II − ω2
0MII)ΦI = 0. (1.79)

ΦC can choose modes into the frequency range [0, 2ωmax], where ωmax is the maximum
frequency of interest for the wave dispersion analysis. The reduced mass and stiffness matrices
are expressed as:

K = BTK̃B, M = BTMB. (1.80)

1.4.5 Homogenization methods

Numerous homogenization methods have been developed to study the heterogeneous ma-
terials or periodic structures. Homogenization methods can be categorized into equivalent
strain energy method, mode-based method, wave-based method and asymptotic homogeniza-
tion method.

The equivalent strain energy method was proposed initially by Nemat [114] to analyze pe-
riodically distributed inclusions and cylindrical geometries. Recently, Liu [189] developed a
novel equivalent dynamic model based on equivalent strain energy principle to enhance the
design capacity of vibration controllers. Results indicate that the equivalent beam model has
accuracy for studying the dynamic properties of antenna truss. Neves [190] applied equiva-
lent strain energy to design the periodic micro-structure of cellular materials for optimal elastic
properties. A new strain energy-based method for homogenization cellular materials is devel-
oped by Gad [191]. The results agree well with those provided by a FE model. Suttakul [192]
determined the bending response of 2D-lattice plates with unit cells based on equivalent strain
energy. The obtained results show how the bending response can be adjusted by varying their
unit-cell geometries.

According to equivalent strain energy method, an equivalent homogenized model with the
same volume can replace the periodic structure with the following conditions: the stress and the
strain tensors of the homogeneous structure are equivalent to the average stress and strain of the
unit cell with:

1

V

∫
σdV = σ,

1

V

∫
εdV = ε, (1.81)

where V is the volume of the unit cell. The average stress and strain of the homogenized model
follow the Hooke’s law:

σ = DHε, (1.82)
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where D is the effective elastic tensor of the material.
On the other hand, Jhung [193] put forward the mode-based method for determining equiv-

alent Young’s Modulus of solid plate to match the frequencies of the perforated plate. In his
research, four steps are conducted:

i. Develop a FE model for homogeneous solid plate and perforated plate.
ii. Analysis the modal of perforated plate and the solid plate with original properties.
iii. Determine the frequencies ratio for the perforated plate to homogeneous solid plate.
iv. Calculate the multipliers of Young’s modulus in homogeneous solid plate to match the

frequencies of the perforated plate with original properties.
Furthermore, the wave-based method was proposed by Chronopoulos [194] to confirm a

dynamic stiffness matrix for the modeled laminate. The advantage of the wave-based method
are: (1) the global matrix can be easy to construct; (2) different boundary conditions can be
conveniently adjusted; (3) high computational efficiency. Recently, the stochastic response of
periodic flat and axial-symmetric structures was analysed by Errico [195] based on wave-based
method. The proposed method shows the flexibility of linking the structural and fluid meshes
to offer the possibility of applying a single unit cell to analyse different test-cases. Wang [196]
used a piezoelectric ceramic to detect the damage of the concrete interface through the wave-
based method. It shows the clear process of damage development. Liu [197] analyzed the free
vibration proprieties of functionally graded material cylindrical shell with arbitrary boundary
conditions by wave based method. The natural frequencies of functionally graded shell can be
effected by geometric parameters, ratio of thickness to radius and ratio of length to the radius.
Ling [198] used the wave based method to illustrate a general formulation of plate bending
problems. The proposed method can save simulation time and help the deterministic numerical
approach to be practical at a higher frequency range. Here, in order to derive the expressions
for the equivalent dynamic mechanical characteristics. The classical laminated plate theory is
used to give following expressions [194]:

Deq,i =
ω2ρs
κ4
f,i

, Beq,i =
ω2ρs
κ4
s,i

, (1.83)

in which ρs is the mass per unit of area, Deq,i is the equivalent flexural stiffness of the structure
towards direction i, Beq,i means the equivalent shear stiffness.

Last, the asymptotic homogenization method proposed by Kalamkarov [199] is introduced
here. The asymptotic homogenization method is used to develop a comprehensive micro-
mechanical model with an embedded periodic grid of generally orthotropic reinforcements.
Later on, a multifield asymptotic homogenization method for periodic elastic materials is es-
tablished by Fantoni [200] to analyse the wave propagation. The result shows that the solution
of the heterogeneous problem will have a better estimation when the order of approximation
increase. Preve [201] introduced a multi-scale variational-asymptotic homogenization technol-
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ogy for periodic micro-structures. The dispersion relation confirmed from the proposed method
are compared with the one from Floquet-Bloch theory. Andrianov [202] studied a higher or-
der asymptotic homogenization for dynamical problems and investigated the influence of the
boundary conditions and system parameters on the structure’s vibration proprieties. Bacigalupo
[203] proposed a micro-polar-based asymptotic homogenization method to analyze the compos-
ite periodic micro-structures. The capabilities of the proposed method in predicting the periodic
structures’ behaviors are evaluated through some examples. In order to built the asymptotic ho-
mogenization model, there are three main steps as follow [199]:

i. Define the fast or microscopic variables in the domain of the unit cell.
ii. Consider the asymptotic expansions in terms of the small parameter ε.
iii. Modelling development of the homogeniztion procedure to confirm the resulting expres-

sion of the unit cell.

1.5 Conclusions

The literature survey presented in this chapter was guided on three aspects: The first is in-
vestigations on micro-sized periodic structure including engineering micro-sized periodic struc-
tures and free wave propagation characteristics in periodic structures. The second part is about
existing methods to study micro-sized structures including continuum model and LSM. For con-
tinuum model, the non-local elasticity theory, micro-continuum theory, surface elasticity theory
and strain gradient family theories are introduced.

The third part of this chapter described the periodic structures. A historical review of the
studies on periodic structures was given in this chapter. Numerous methods have been devel-
oped during these studies. Among them, the plane-wave expansion method, modified TMM,
WFEM and homogenization methods were explained. As one of the MOR techniques, the fixed
interface method called Craig-Bampton method was introduced in detail.
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Chapter 2

Wave motion analysis of second strain gra-
dient elasticity through a wave finite ele-
ment approach for one-dimensional struc-
tures
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2.1 Introduction

In this chapter, the SSG theory proposed by Mindlin is used within a WFEM framework for
dynamic analysis of 1D Euler-Bernoulli bending beam and torsional bar. Firstly, strong forms

39
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of continuum models including governing equations and boundary conditions for bending and
torsion cases, respectively, are derived using Hamilton’s principle. New ”non-local” LSM are
expounded, giving unified description of the SSG models for bending and torsion. These LSM
can be regarded as a discrete micro-structural description of SSG continuum models and the
resulting dynamic equations are transformed using Fourier series. Weak forms for both bending
and torsion are established based on SSG theory. Subsequently, the WFEM is used to formulate
the spectral problem and compute wave dispersion characteristics from one-dimensional unit-
cell structures. Finally, dispersion relations and forced responses for bending and torsion are
calculated by SSG and CT, and some useful conclusions are discussed.

2.2 Bending vibration analysis for Euler-Bernoulli beam

2.2.1 Continuum model by second strain gradient elasticity

Based on the SSG theory formulated by Mindlin [16], the strain energy density U for an
isotropic linearly elastic material is established as shown in Eq. 1.12. It should be pointed out
that there is no mature experimental method to determine the higher order parameters. Some
researchers [42] defined the parameters mentioned above in face centered cubic (fcc) materials
by the Sutton-Chen potential atom method. The higher order parameters for Aluminum (Al),

1

f (x, t)



w
x

x

w(x, t)

zxy
0

Fig. 2.1. A Euler-Bernoulli beam under Lateral distributed force.

Table 2.1. Higher order material parameters ai (eV /Å), ci (eV /Å).

Material a1 a2 a3 a4 a5 c1 c2 c3

Al 0.1407 0.0027 -0.0083 0.0966 0.2584 0.5041 0.3569 0.1782
Cu 0.1833 0.0103 0.0010 0.0717 0.1891 0.8448 0.5732 0.3465
Pb 0.1039 0.0260 0.0126 0.0154 0.460 1.0991 0.6043 0.5106

Copper (Cu) and Lead (Pb) are shown in Tab. 2.1 and Tab. 2.2. In order to calculate the govern-
ing equation of a micro-sized Euler-Bernoulli bending beam, the variational principle is applied.
Considering a beam on which acting a lateral distributed force f(x, t). The beam length is L
as shown in Fig. 2.1. Assuming that the symmetry axis of the cross section coincides with the
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Table 2.2. Higher order material parameters bi (eV ·Å).

Material b1 b2 b3 b4 b5 b6 b7
Al 0.7927 0.0644 -0.1943 -0.0009 0.0009 16.1566 48.5291
Cu 0.6612 0.0663 0.2062 0.0015 0.0015 12.6254 37.9402
Pb 0.2503 0.0154 0.0595 0.0007 0.007 2.7886 8.3842

neutral axis. According to the kinematic hypothesis, the displacement fields are as follows:

ub1 = −z∂w(x, t)

∂x
, ub2 = 0, ub3 = w(x, t), (2.1)

where ub1, ub2, and ub3 mean the displacement components along x, y and z directions, respec-
tively, superscript b of u represents bending case, w(x, t) is the vertical displacement along z
direction. Only nonzero components of displacement tensors are shown as:

ε11 = −z∂
2w(x, t)

∂x2
, ξ111 = −z∂

3w(x, t)

∂x3
, ξ311 = ξ131 = −∂

2w(x, t)

∂x2
,

ζ1111 = −z∂
4w(x, t)

∂x4
, ζ3111 = ζ1311 = ζ1131 = −∂

3w(x, t)

∂x3
, ζ1113 =

∂3w(x, t)

∂x3
.

(2.2)

Integrating the strain energy density over its volume to obtain the beam strain potential
energy as:

U =

∫ L

0

∫
A

UdAdx. (2.3)

Whereupon, the beam strain potential energy for SSG theory can be obtained by substitution
of Eq. 1.12 and Eq. 2.2 into Eq. 2.3:

U =
1

2

∫ L

0

[
Cb

1

(
∂2w(x, t)

∂x2

)2

+ Cb
2

(
∂3w(x, t)

∂x3

)2

+ Cb
3

(
∂4w(x, t)

∂x4

)2

+Cb
4

∂2w(x, t)

∂x2

∂4w(x, t)

∂x4

]
dx,

(2.4)

where Cb
1 = 2(a1 − a2 + a3 + 3a4 − a5)A + EI , Cb

2 = 2(a1 + a2 + a3 + a4 + a5)I + 4(b2 −
b4 + b5 + 2b6)A, Cb

3 = 2(b1 + b2 + b3 + b4 + b5 + b6 + b7)I , Cb
4 = 3(c1 + c2 + c3)I , A is the area

of cross section, I means the moment of inertia. On the other hand, the beam kinetic energy
including classical part and non-classical part is expressed as [204]:

T =
1

2
ρ

∫
Ω

(
U̇ · U̇ + l21∇U̇ : ∇U̇ + l42∇∇U̇

... ∇∇U̇

)
dΩ, (2.5)

where l1 and l2 are higher-order length-scale parameters. In our work, the form of kinetic
energy is simplified to consider the classical part only, whose applications can be found in
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[107, 205, 206]. As a result, the beam kinetic energy will be simplified as:

T =
1

2

∫ L

0

ρA

(
∂w(x, t)

∂t

)2

dx, (2.6)

where ρ denotes the linear mass density.
The work done by external classical force and higher-order forces,W , can be established in

the variation form as:

δW =

∫ L

0

f(x, t)δw(x, t)dx+ f0δw(x, t)|Lx=0 + f1δ

(
∂w(x, t)

∂x

)∣∣∣∣L
x=0

+ f2δ

(
∂2w(x, t)

∂x2

)∣∣∣∣L
x=0

+ f3δ

(
∂3w(x, t)

∂x3

)∣∣∣∣L
x=0

,

(2.7)

where f , andf0 denote the classical forces, f1,2,3 are the higher order forces of the micro-beam.
Next, the Hamilton’s principle is used to calculate the strong forms of the Euler-Bernoulli

beam for SSG theory as follows:∫ t2

t1

(δU − δW − δT )dt = 0, (2.8)

where δU is the variational form of strain energy, δT means the variational form of kinetic
energy. Then doing mathematical calculations according to the variation method by substituting
equations Eq. 2.4, 2.6, and 2.7 into Eq. 2.8, one obtains:

Cb
1

∂4w(x, t)

∂x4
+ (Cb

4 − Cb
2)
∂6w(x, t)

∂x6
+ Cb

3

∂8w(x, t)

∂x8
− f(x, t) = ρA

∂2w(x, t)

∂t2
. (2.9)

Additionally, the boundary conditions at the ends of Euler-Bernoulli beam are extracted:

− Cb
1

∂3w(x, t)

∂x3
− (Cb

4 − Cb
2)
∂5w(x, t)

∂x5
− Cb

3

∂7w(x, t)

∂x7
= f0 or δw(x, t) = 0, on Ω = {0, L} ;

− Cb
1

∂2w(x, t)

∂x2
− (Cb

4 − Cb
2)
∂4w(x, t)

∂x4
+ Cb

3

∂6w(x, t)

∂x6
= f1 or δ

∂w(x, t)

∂x
= 0, on ∂Ω;

− (
1

2
Cb

4 − Cb
2)
∂3w(x, t)

∂x3
+ Cb

3

∂5w(x, t)

∂x5
= f2 or δ

∂2w(x, t)

∂x2
= 0, on ∂Ω;

1

2
Cb

4

∂2w(x, t)

∂x2
+ Cb

3

∂4w(x, t)

∂x4
= f3 or δ

∂3w(x, t)

∂x3
= 0, on ∂Ω.

(2.10)
Then, transforming strong form into weak form. In the FEM, the displacement w(x, t)

inside of an element at point x ∈ R2 could be expressed by providing the values u(e)b of nodal
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Fig. 2.2. Definition of nodal DOFs, nodal numbers and coordinate for 1D.

degree of freedoms (DOFs) vector and shape function Nb(x), as follows:

w(x, t) = Nb(x)u(e)b(t), (2.11)

where the sizes of u(e)b and Nb are p× 1 and 1× p, respectively, and p means the DOFs num-
ber. In Eq. 2.11, the form of the interpolation function determines u(e)b, Nb and p. The C3

continuum Hermite interpolation function that guarantees the higher-order strain field and dis-
placement field smooth and continuous is used in Eq. 2.11. The nodal DOFs, nodal numbers
and coordinate of 1D Hermite element are presented in Fig. 2.2. For 1D C3 continuum Her-
mite element (element length is de), there are four DOFs, wi, θi, ∂

2wi
∂x2 ,

∂3wi
∂x3 , i = 1, 2, on each

node. The Hermite shape functions corresponding to the eight DOFs of the 1D element can be
expressed as:

N0
1 = 1− 35

x4

d4
e

+ 84
x5

d5
e

− 70
x6

d6
e

+ 20
x7

d7
e

, N0
2 = 35

x4

d4
e

− 84
x5

d5
e

+ 70
x6

d6
e

− 20
x7

d7
e

,

N1
1 = x− 20

x4

d3
e

+ 45
x5

d4
e

− 36
x6

d5
e

+ 10
x7

d6
e

, N1
2 = −15

x4

d3
e

+ 39
x5

d4
e

− 34
x6

d5
e

+ 10
x7

d6
e

,

N2
1 =

x2

2
− 5

x4

d2
e

+ 10
x5

d3
e

− 15
x6

d4
e

+ 2
x7

d5
e

, N2
2 = 5

x4

d2
e

− 7
x5

d3
e

+ 13
x6

d4
e

− 2
x7

d5
e

,

N3
1 =

x3

6
− 2

x4

3de
+
x5

d2
e

− 2
x6

3d3
e

+
x7

6d4
e

, N3
2 = − x4

6de
+

x5

2d2
e

− x6

2d3
e

+
x7

6d4
e

,

(2.12)

where the subscript and superscript of N in Eq. 2.12 denote the nodal numbers and the order
of the derivative with respect to coordinate x ∈ [0, de], respectively. Substituting Eq. 2.11 into
equilibrium equation Eq. 2.9, then doing integration to the resulting formula by the Galerkin’s
approach leads to:[∫ de

0

(Nb)T

(
Cb

1

d4Nb

dx4
+ (Cb

4 − Cb
2)

d6Nb

dx6
+ Cb

3

d8Nb

dx8

)
dx

]
u(e)b −

∫ de

0

(Nb)Tf(x, t)dx

=

(∫ de

0

(Nb)TρANbdx

)
ü(e)b,

(2.13)
in which the dot symbol over u(e)b indicates the second derivative with respect to the time. In
order to illustrate the weak form of Eq. 2.9, the part-by-part integration is used and the result
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can be obtained as follows:

K(e)bu(e)b − F(e)b = M(e)bü(e)b, (2.14)

where K(e)b and M(e)b represent the element stiffness matrix and mass matrix, respectively,
F(e)b denotes the element force vector for bending. Finally, the aforementioned matrices and
vector are derived as:

M(e)b = ρA

∫ de

0

(Nb)TNbdx,

K(e)b =

∫ de

0

[
Cb

1

(
(Nb)′′

)T
(Nb)′′ + (Cb

2 − Cb
4)
(
(Nb)′′′

)T
(Nb)′′′ + Cb

3

(
(Nb)′′′′

)T
(Nb)′′′′

]
dx,

F(e)b =

∫ de

0

(Nb)Tf(x, t)dx+ f0N
b|∂Ωf0

+ f1(Nb)′|∂Ωf1
+ f2(Nb)′′|∂Ωf2

+ f3(Nb)′′′|∂Ωf3
,

(2.15)
where superscript (′) is partial derivative with respect to x. It is noted that ensuring the correct-
ness of correspondent relations between the local numbering and global numbering of DOFs is
a prerequisite, especially owing to the strict regularity of basis functions.

2.2.2 Lattice spring model by second strain gradient elasticity
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2
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(a) LSM from Euler beam with bending coupling constants kb1 (red line: nearest neighbor
interaction), kb2 (blue line: next-nearest neighbor interaction) and kb3 (green line: next-next-
nearest neighbor interaction) and the distance d and the mass M = ρAd.
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Fig. 2.3. Sketch of a LSM beam.

In this part, the fundamentals of Euler–Bernoulli theory and “non-local” LSM are used to
discretize the beam into a series of identical elements, as shown in Fig. 2.3, P is the total number
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of lattice nodes. This LSM can reflect the mechanical response of the continuum structure when
the length between each node at small scale and P is large enough. The DOFs on each node are
displacement in z direction and rotation angle in x0y plane. From Fig. 2.3(b), 2.3(c), 2.3(d), the
total rotation angle of node n can be presented by displacement components as:

∆θi =
wn+i − wn

id
− wn − wn−i

id
, (i = 1, 2, 3). (2.16)

The governing equation of motion at node n for a LSM of Euler beam can be illustrated by
applying Lagrange equation [207] in z direction as:

∂L
∂wn

− fn =
d

dt

(
∂L
∂ẇn

)
, (2.17)

where fn is an externally load applied at node n in z direction. L=T -U means the lagrangian
that composed of the kinetic energy (T ) and potential energy (U), where,

T =
1

2
M

P∑
n=1

ẇ2
n,

U =
1

2
kb1

P∑
n=1

(∆θ1)2 +
1

2
kb2

P∑
n=1

(∆θ2)2 +
1

2
kb3

P∑
n=1

(∆θ3)2.

(2.18)

The lattice equation of motion for node n can be calculated by replacing Eq. 2.16 and
Eq. 2.18 into Eq. 2.17 as:

kb1
d3

(wn−2 − 4wn−1 + 6wn − 4wn+1 + wn+2) +
kb2

(2d)3
(wn−4 − 4wn−2 + 6wn − 4wn+2

+wn+4) +
kb3

(3d)3
(wn−6 − 4wn−3 + 6wn − 4wn+3 + wn+6)− fn = M

d2wn(t)

dt2
.

(2.19)
Subsequently, the Fourier series transform approach is used to derive a continuous equation

w(x, t) from the LSM wn(t). The process from a LSM to a continuum model was defined as
[110]:

(1) Assuming wn(t) is the Fourier coefficient of field ŵ(κ, t), and defining F∆ as the Fourier
series transform:

ŵ(κ, t) =
+∞∑

n=−∞

wn(t)e−iκxn = F∆ (wn(t)) . (2.20)

(2) Using Taylor series expansion for sine function by limiting d→ 0:

w̃(κ, t) = lim
d→0

ŵ(κ, t). (2.21)
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(3) The inverse Fourier transform F−1:

w(x, t) =
1

2π

∫ +∞

−∞
w̃(x, t)eiκxdκ = F−1 (w̃(x, t)) , (2.22)

where xn = dn, κ is defined as wavenumber which will be discussed later. These three steps
aforementioned was proved in [110, 208]. And the detail for calculating dynamic continuum
equation w(x, t) from LSM addressed in Appendix B, as a result:

Lb4
∂4w(x, t)

∂x4
+ Lb6

∂6w(x, t)

∂x6
+ Lb8

∂8w(x, t)

∂x8
+ o

(
Lbi
∂iw(x, t)

∂xi

)
− f(x, t)

=ρA
∂2w(x, t)

∂t2
, (i = 10, 12, ...),

(2.23)

with Lb4 = k1 + 2kb2 + 3kb3, Lb6 = −
(
kb1
6

+
4kb2
3

+
9kb3
2

)
d2, Lb8 =

(
kb1
80

+
2kb2
5

+
243kb3

80

)
d4, Lb10 =

−
(

17kb1
30240

+
68kb2
945

+
1377kb3
1120

)
d6,.... The convergence condition for Eq. 2.23 is defined as:

∣∣∣∣Lb10

∂10w(x, t)

∂x10

/
Lb8
∂8w(x, t)

∂x8

∣∣∣∣ < 1. (2.24)

For the continuum model of Eq. 2.23, the displacement solution is w(x, t) = w0e
i(ωt−κx)

[209], where w0 is amplitude, ω means angular frequency. Replacing this solution into Eq. 2.24,
as a result: the Eq. 2.24 holds when the node number P ≥ π + 1 (here P should be infinite or
large enough), then ignore higher order part, Eq. 2.23 will be written as:

Lb4
∂4w(x, t)

∂x4
+ Lb6

∂6w(x, t)

∂x6
+ Lb8

∂8w(x, t)

∂x8
− f(x, t) = ρA

∂2w(x, t)

∂t2
. (2.25)

Compare Eq. 2.25 with Eq. 2.9, the first 3 parts should be:

Lb4 = Cb
1, L

b
6 = Cb

4 − Cb
2, L

b
8 = Cb

3, (2.26)

with kb1 =
3Cb1

2
+

13(Cb4−Cb2)

4d2 +
10Cb3
3d4 , kb2 = −3Cb1

10
− 2(Cb4−Cb2)

d2 − 8Cb3
3d4 , kb3 =

Cb1
30

+
(Cb4−Cb2)

4d2 +
2Cb3
3d4 .

Then, replacing Eq. 2.26 into Eq. 2.15, the weak formulations from LSM will be derived.

2.3 Torsional vibration analysis for a bar

2.3.1 Continuum model by second strain gradient elasticity
In order to derive the governing or differential equation of torsional problem associated

with a micro-bar. The variational principal in the context of SSG theory is applied. Consider
a bar of length L with distributed torque Γ(x, t) acting as shown in Fig. 2.4. Suppose that the
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neutral axis coincides with the axis of symmetry of the cross-section. The components of the
displacements are expressed as:

ut1 = 0, ut2 = −zϕ(x, t), ut3 = yϕ(x, t), (2.27)

where ut1, ut2, and ut3 denote the torsional angle components of the torsional bar particles along
x, y, and z directions of the coordinate system, respectively. Therefore, the only nonzero com-

1

x

( , )x t
zxy

0

Fig. 2.4. A torsional bar under torque.

ponents of torsional angle tensors are as follows:

ε12 = ε21 = −1

2
z
∂ϕ(x, t)

∂x
, ε13 = ε31 =

1

2
y
∂ϕ(x, t)

∂x
, ξ112 = −z ∂

2ϕ(x, t)

∂x2
, ξ113 = y

∂2ϕ(x, t)

∂x2
,

ξ123 = ξ213 =
∂ϕ(x, t)

∂x
, ξ132 = ξ312 =

∂ϕ(x, t)

∂x
, ζ1112 = −z ∂

3ϕ(x, t)

∂x3
, ζ1113 = y

∂3ϕ(x, t)

∂x3
,

ζ3112 = ζ1312 = ζ1132 = −∂
2ϕ(x, t)

∂x2
, ζ2113 = ζ1213 = ζ1123 =

∂2ϕ(x, t)

∂x2
.

(2.28)
In this step, the Hamilton principle is utilized to derive the governing equation and boundary

conditions of a torsional bar. The detail addressed in Appendix C, one arrives:

Ct
1

∂2ϕ(x, t)

∂x2
+ (Ct

4 − Ct
2)
∂4ϕ(x, t)

∂x4
+ Ct

3

∂6ϕ(x, t)

∂x6
− Γ(x, t) = ρJ

∂2ϕ

∂t2
, (2.29)

whereCt
1 = GJ+2A(4a4−a5), Ct

2 = J(a3+a4)/2−2A(b4+2b5−6b6+2b7), Ct
3 = 2J(b5+b6),

Ct
4 = Jc3, J means torsion of inertia within plane y0z. Additionally, the associated boundary

conditions of the bar ends (i.e. x = 0, L) for SSG theory as:

Ct
1

∂ϕ(x, t)

∂x
+ (Ct

4 − Ct
2)
∂3ϕ(x, t)

∂x3
+ Ct

3

∂5ϕ(x, t)

∂x5
= Γ0 or δϕ = 0, on Ω = {0, L} ;

(Ct
2 −

1

2
Ct

4)
∂2ϕ(x, t)

∂x2
+ Ct

3

∂4ϕ(x, t)

∂x4
= Γ1 or δ

∂ϕ(x, t)

∂x
= 0, on ∂Ω;

1

2
Ct

4

∂ϕ(x, t)

∂x
+ Ct

3

∂3ϕ(x, t)

∂x3
= Γ2 or δ

∂2ϕ(x, t)

∂x2
= 0, on ∂Ω,

(2.30)

where Γ0 and Γ1,2 denote the classical and higher-order end-sectional loads.
In the FEM, given the vector of nodal DOFs values u(e)t and the shape function Nt(x), the
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torsional angle ϕ(x, t) of point at x ∈ R2 inside of one element could be expressed as:

ϕ(x, t) = Nt(x)u(e)t(t), (2.31)

where u(e)t is of size r × 1, Nt(x) is a row vector of size 1 × r, and r is the number of nodal
degrees of freedom (DOFs). In Eq. 2.31, u(e)t, Nt(x) and r are determined by the specific
form of the interpolation function. To ensure higher displacement continuity than traditional
elements, we use the C2 continuous Hermite interpolation function for Eq. 2.31 to guarantee the
continuity and smoothness of both displacement field and strain field. The definition of node
numbering, nodal DOFs and coordinate for 1D Hermite elements are shown in Fig. 2.5. For
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2
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1 2
, ,
 


 
 x x

x=0 x=de

2
2 2

2 2
, ,
 


 
 x x

node 1 node 2

Fig. 2.5. Definition of node numbering, nodal DOFs and coordinate for 1D

1D C2 continuous Hermite element (element length is de), three DOFs, ϕi, ∂ϕi∂x
, ∂

2ϕi
∂x2 , i = 1, 2,

are associated with each node. The connecting elements have these three common DOFs which
ensuring continuity of slope and higher derivatives up to the second order between the elements.
The Hermite polynomial shape functions corresponding to the six DOFs of 1D element are:

N0
1 = 1− 10

x3

d3
e

+ 15
x4

d4
e

− 6
x5

d5
e

, N0
2 = 10

x3

d3
e

− 15
x4

d4
e

+ 6
x5

d5
e

,

N1
1 =

x

de
− 6

x3

d3
e

+ 8
x4

d4
e

− 3
x5

d5
e

, N1
2 = −4

x3

d3
e

+ 7
x4

d4
e

− 3
x5

d5
e

,

N2
1 =

x2

2d2
e

− 3
x3

2d3
e

+ 3
x4

2d4
e

− x5

2d5
e

, N2
2 =

x3

2d3
e

− x4

d4
e

+
x5

2d5
e

.

(2.32)

According to Galerkin’s method, doing the same calculating progress as shown in bending
case, the element stiffness K(e)t, mass matrices M(e)t and force vector F(e)t are derived as:

M(e)t = ρJ

∫ de

0

(Nt)TNtdx,

K(e)t =

∫ de

0

[
Ct

1

(
(Nt)′

)T
(Nt)′ + (Ct

4 − Ct
2)
(
(Nt)′′

)T
(Nt)′′ + Ct

3

(
(Nt)′′′

)T
(Nt)′′′

]
dx,

F(e)t =

∫ de

0

ΓNtdx+ Γ0N
t|∂ΩΓ0

+ Γ1(Nt)′|∂ΩΓ1
+ Γ2(Nt)′′|∂ΩΓ2

.

(2.33)
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2.3.2 Lattice spring model by second strain gradient elasticity
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Fig. 2.6. LSM for a torsional bar with torsional coupling constants kt1 (red line: nearest-neighbor interaction), kt2
(blue line: next-nearest-neighbor interaction) and kt3 (green line: next-next-nearest-neighbor interaction).

In this part, the fundamentals of “non-local” LSM for torsion is introduced to discretise the
bar into a chain of identical elements, as demonstrated in Fig. 2.6. The total number of lattice
nodes is N (they are numbered as 1, 2, ..., n, ...N ). As same as bending case, this chain is a
lattice representation of the continuum where the interaction between each node at small scale
can reproduce the mechanical response of the continuum structure at large scale (theoretically
when N tends to infinity or large enough). The lattice equation of motion for particle n is:

kt1(ϕn−1 − 2ϕn + ϕn+1) + kt2(ϕn−2 − 2ϕn + ϕn+2) + kt3(ϕn−3 − 2ϕn − ϕn+3)− Γn

=
mJ

A

d2ϕn(t)

dt2
.

(2.34)
Subsequently, the Fourier series transform approach [110] is utilized to derive a continuous

equation ϕ(x, t) from the LSM ϕn(t). The detail addressed Appendix in D, as a result:

Lt2
∂2ϕ(x, t)

∂x2
+ Lt4

∂4ϕ(x, t)

∂x4
+ Lt6

∂6ϕ(x, t)

∂x6
+ o

(
Lti
∂iϕ(x, t)

∂xi

)
− Γ(x, t)

=ρJ
d2ϕn(t)

dt2
, (i = 8, 10, ...),

(2.35)

with Lt2 = (kt1 + 4kt2 + 9kt3)d, Lt4 =
(
kt1
12

+
4kt2
3

+
27kt3

4

)
d3, Lt6 =

(
kt1
360

+
8kt2
54

+
81kt3
40

)
d5, Lt8 =(

7kt1
20160

+
4kt2
315

+
729kt3
2240

)
d7,... Here, the convergence condition is same as bending case: N ≥

π + 1. Ignore higher order part, Eq. 2.35 will be written:

Lt2
∂2ϕ(x, t)

∂x2
+ Lt4

∂4ϕ(x, t)

∂x4
+ Lt6

∂6ϕ(x, t)

∂x6
− Γ = ρJ

d2ϕn(t)

dt2
, (2.36)

where Γ(x, t) is assumed as a constant Γ. Compare Eq. 2.36 with the equation of motion for
torsion from Mindlin’s theory (Eq. 2.29), the first 3 parts should be same:

Lt2 = Ct
1, Lt4 = Ct

4 − Ct
2, Lt6 = Ct

3, (2.37)
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with kt1 =
3Ct1
2d

+
13(Ct2−Ct4)

2d3 +
15Ct3
d5 , kt2 = −3Ct1

20d
− 2(Ct2−Ct4)

d3 − 6Ct3
d5 , kt3 =

Ct1
90

+
(Ct2−Ct4)

6d3 +
Ct3
d5 .

Replacing Eq. 2.36 into Eq. 2.33, the weak formulations from LSM will be derived finally.

2.4 One-dimensional wave propagation characteristics

The unit cell stiffness matrix (K(b/t)) and mass matrix (M(b/t)) can be assembled by element
stiffness and mass matrices (Ke(b/t)), Me(b/t)). According to the WFEM, only one unit cell
is modeled through traditional finite elements, as indicated in Fig. 1.10, The left boundary
and right boundary of the unit cell are meshed with same number of DOFs. The dynamic
equilibrium formulation of a unit cell can be re-expressed by dividing the DOFs into I (internal),
L (left boundary) and R (right boundary) DOFs, this yields: D

b/t
LL D

b/t
LI D

b/t
LR

D
b/t
IL D

b/t
II D

b/t
IR

D
b/t
RL D

b/t
RI D

b/t
RR


 û

b/t
L

û
b/t
I

û
b/t
R

 =

 F̂
b/t
L

F̂
b/t
I

F̂
b/t
R

, (2.38)

where ûb/t and F̂b/t are the amplitudes of ub/t and Fb/t, respectively. It should be noticed that
the internal DOFs are not affected by external loads due to the coupling actions are restricted to
its left boundary and right boundary only [184], as a result, F̂

b/t
I = 0. The dynamic equilibrium

equation, considering left boundary and right boundary in Db/t only, will be written as:[
Db/t

LL Db/t
LR

Db/t
RL Db/t

RR

](
û
b/t
L

û
b/t
R

)
=

(
F̂
b/t
L

F̂
b/t
R

)
, (2.39)

where Db/t = D
b/t
BdBd −D

b/t
BdI(D

b/t
II )
−1

D
b/t
IBd is the condensed form of dynamic stiffness matrix,

subscript Bd represents the DOFs on the boundaries of the unit cell. Note that this is a typical
issue for WFEM [135] and a modal reduction can be applied to reduce the computational cost
of the dynamic condensation. Eq. 2.39 is the starting point for the WFEM analysis that relates
the displacement/rotation/torsion and force/moment/torque on the two sides of the unit cell. For
the solution of propagation constants Λb/t and eigenvectors Φ

b/t
u , one can solve the direct Bloch

formulation [210–212] as:[
Db/t

RL(ω)(Λb/t)
−1

+ (Db/t
RR(ω) + (Db/t

LL(ω)) + Db/t
LR(ω)Λb/t

]
Φb/t
u = 0, (2.40)

where Λb/t =diag{λj}j=1,...,2m, Φ
b/t
u = {φj}j=1,...,2m. The 2m eigenvalues in Eq. 2.40 can be

divided into (λj, φ
+
j ) and (1/λj, φ

−
j ). The waves propagate to the positive direction if |1/λj|

<1. And the waves propagate to the negative direction if |λj| >1. Here, λj take the form
λj = exp(−iκjLu). The direction of wave propagation can be defined utilizing R(κj) when
|λj| = 1 in the passing bands, which representing the real part of the wave-number. R(κj)
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>0 means that the waves propagate to the positive direction. On the other hand, R(κj) <0
represents that the waves propagate to the negative direction.

2.5 Numerical applications and discussions
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(a) Single material structure.
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(b) Binary periodic structure.

Fig. 2.7. One-dimensional structures’ configurations.

In this section, the WFEM is applied to study bending and torsional vibration based on
SSG theory. Two different structures are considered for each: one is a single material structure
with 5 unit cells, each unit cell’s length Lu is 15a0 (a0 is the lattice parameter) as shown in
Fig. 2.7(a). The other one is a binary periodic structure with 5 unit cells, each unit cell has a
length Lu = 15a0 and consists of parts A and B as shown in Fig. 2.7(b). Both structures have a
circular cross section with radius r = 3a0 and loss factor η = 1× 10−4.

2.5.1 Bending vibration of Euler-Bernoulli beam
The bending vibration for single material and binary periodic structures are discussed. Alu-

minium (Al) is used for single material structure with linear mass density ρ = 2.7 g/cm3 and
Young’s modulus E = 70 GPa, and each unit cell is divided into 100 elements. Al and Pb
(Lead: linear mass density ρ = 11.34 g/cm3, Young’s modulus E = 16 GPa) are respectively
used for part A with 50 elements and part B with 50 elements in binary periodic structure.

2.5.1.1 Euler-Bernoulli beam with single material

Firstly, the dispersion relation of a unit cell for single material Euler-Bernoulli beam is cal-
culated by WFEM. The real part R(κj) of wavenumber is the phase shift per unit length and
the imaginary part I(κj) means the attenuation per unit length. Only the positive waves with
real and imaginary parts are illustrated due to the wavenumbers of the negative waves and posi-
tive waves are symmetric with respect to x-axis. The dimensionless wavenumbers in frequency
range [0, 30ωb1], where ωb1 = 3.516

√
EI/ρAL4 [213] assumed as clamped-free boundary

conditions, are presented in Fig. 2.8. There are four waves (κ1, κ2, κ3, κ4) predicted by SSG
theory, in which κ1 is non-classical bending wave propagating in a dispersive manner, κ2 is the
non-classical shear wave, κ3 and κ4 are the evanescent waves which exist exclusively in SSG
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Fig. 2.8. Dispersion relation for single material Euler-Bernoulli beam by SSG (ωb1 is the first nature frequency,
subscript c of SSG means continuum model, l is lattice model).

theory.
In order to verify the WFEM results, an analytical method is used. Replacing displacement
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Fig. 2.9. Comparison of dispersion relation between SSG and CT and reverse SSG to CT (subscript a of SSG
means analytical method, l is lattice model).

w(x, t) = w0e
i(ωt−κx) into Eq. 2.9 assuming f(x, t) = 0, the analytical dynamical formulation

of Euler-Bernoulli beam by SSG theory becomes: Cb
1κ

4 + (Cb
4 − Cb

2)κ6 + Cb
3κ

8 = ρAω2. The
results by analytical method and WFEM via LSM are shown in Fig. 2.9. The dispersion relation
by WFEM is in good accordance with the analytical method. On anther hand, at low frequency,
κ1 from SSG and CT are close, but a discrepancy appears at higher frequency. Note that without
higher order material contributions (i.e. ai, bi and ci equal 0), SSG becomes identical to CT.

Next, the forced response for single material Euler-Bernoulli beam is discussed, as pre-
sented in Fig. 2.7(a), the beam consists of 5 unit cells. One side is clamped and another side is
free and subjected to a harmonic force f(x, t) = eiωt on free end of the beam. The amplitude
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(a) Forced response of displacement along z direc-
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(b) Forced response of rotation angle in y0z plane.

Fig. 2.10. Forced response for single material Euler-Bernoulli beam by CT and SSG (subscript cmeans continuum
model, l is lattice model).

at free end is calculated out on each frequency according to Eq. 1.46. The forced response
is shown in Fig. 2.10 by SSG theory and CT. It can be noticed that resonances are well pre-
dicted in both theories. Same as for the dispersion curves, the results show that discrepancies
between CT and SSG FRF increase with frequency. Wave propagation is significantly affected
by the micro-sized structure interactions. The input vibration energy can be transferred both
by propagating waves and other evanescent waves, which decay rapidly in the near field of the
excitation.

2.5.1.2 Euler-Bernoulli beam with binary periodic materials
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Fig. 2.11. Dispersion relation for periodic Euler-Bernoulli beam by SSG (subscript c of SSG means continuum
model, l is lattice model).

The dispersion relation with positive-going waves of a unit cell for periodic Euler-Bernoulli



54
Chapter 2. Wave motion analysis of second strain gradient elasticity through a wave finite

element approach for one-dimensional structures

beam is calculated by WFEM. The dimensionless wavenumbers with real and imaginary parts
of the waves [0, 20ωb1] are presented in Fig. 2.11. The difference with single material structures
lies in the existence of stop bands (visible here on κ1). For the bending wave in micro-sized pe-
riodic structure we have R(κ1) = 0 within pass bands and I(κ1) 6= 0 within stop bands, which
is a typical behavior of evanescent waves. When R(κ1) = 0, the waves decay exponentially
with the stop bands frequencies bounded with λ = 1. The stop bands frequencies are bounded
with λ = −1 which indicates a single wavelength when R(κ1) = ±π/Lu.
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Fig. 2.12. Comparison of dispersion relation between SSG and CT and reverse SSG to CT (subscript l of SSG
means lattice model).

Next, the comparison between SSG theory and CT is shown in Fig. 2.12. It is noticed that
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(a) Forced response of displacement.
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(b) Forced response of rotation angle.

Fig. 2.13. Forced response for periodic Euler-Bernoulli beam by CT and SSG (subscript c of SSG means continuum
model, l denotes lattice model).

at low frequency, the first wave by SSG confirms to CT well, but the difference is bigger when
frequency increase. When higher order material parameters ai, bi and ci are 0, SSG will reverse
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to CT.
The forced response for periodic Euler-Bernoulli beam is discussed, as presented in Fig. 2.7(b),

the beam is composed of 5 unit cells, each unit cell includes two parts with A and B. The
boundary condition and external force are same as bending case of single material structure.
The forced response of displacement and rotation angle is shown in Fig. 2.13 by SSG theory
and CT. The resonances are predicted well by both theories. The results by these two theories
close to each other at lower frequency range, but the values are different in higher frequency.
The frequency ranges in the stop bands indicate that there is no resonance.

2.5.2 Torsional vibration of a bar
Material Al with shear modulus G = 26 GPa is used for single material torsional bar with

100 elements in each unit cell. Al and Cu (shear modulus G = 48 GPa, linear mass density
ρ = 8.96 g/cm3) are used for part A with 50 elements and part B with 50 elements in binary
periodic bar, respectively.

2.5.2.1 Torsional bar with single material
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Fig. 2.14. Dispersion relation for single material torsional bar by SSG (ωt1 = π
√
G/4ρL2 [214] is the first nature

frequency, subscript c of SSG means continuum model, l is lattice model).

Firstly, the dispersion relation of a unit cell for single material torsional bar is calculated by
WFEM. The positive-going waves are shown in Fig. 2.14. Then, the WFEM is compared with
the analytical method which expressed as Ct

1κ
2 + (Ct

4 − Ct
2)κ4 + Ct

3κ
6 = ρJω2. As shown in

Fig. 2.15, the results indicate that there are three waves (κ1, κ2, κ3) predicted by SSG theory,
in which κ1 is a dispersive non-classical torsional wave. The evanescent waves κ2 and κ3 exist
only in SSG theory model. Next, the forced response is illustrated in Fig. 2.16 by SSG and CT.
The boundary conditions are same as bending case of single material structure and a harmonic
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Fig. 2.15. Comparison of dispersion relation between SSG and CT and reverse SSG to CT (subscript a means
analytical method and l is lattice model).
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Fig. 2.16. Forced response of single material torsional bar by CT and SSG (subscript c and l of SSG denote
continuum model and lattice model, respectively).

force Γ(x, t) = eiωt is applied on free boundary. The properties of forced responses referred in
bending case of single material structure are observed in the torsional ones as well.

2.5.2.2 Torsional bar with binary periodic materials

As presented in Fig. 2.17, the dispersion relation of a unit cell for periodic torsional bar is
calculated by WFEM. And the comparison between SSG theory and CT is shown in Fig. 2.18.
As we can see, the wave κ1 of SSG confirms the wave of CT well when the frequency range
is in the first pass band and stop band. But as the frequency increases, the difference between
this two waves is getting bigger. This phenomena shows that the micro-sized structure’s char-
acteristics can be reflected by non-local theory at high frequency range. And when higher order
material parameters ai, bi and ci are 0, SSG will reverse to CT. Next, the forced response for
periodic torsional bar is discussed by SSG theory and CT, as shown in Fig. 2.19. The boundary
conditions and external force are same as single material structure of torsional bar. The fre-
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Fig. 2.17. Dispersion relation for periodic torsional bar by SSG (subscript c is continuum model, l is lattice model).
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Fig. 2.18. Comparison of dispersion relation between SSG and CT and reverse SSG to CT (subscript l of SSG
means lattice model).
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Fig. 2.19. Forced response by CT and SSG (subscript c means continuum model and l is lattice model).

quency range can be divided into two parts, namely the stop bands frequency and pass bands
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frequency, and there is no resonances in stop bands. The results by these two theories match to
each other just in the first pass and stop band frequency range.

2.6 Conclusions

In this chapter, we used WFEM to study the dynamic behavior and wave propagation fea-
tures of complex 1D micro-sized structures. The SSG theory is used to analyze the structural
characteristics. The main contributions of the work are drawn as follows:

(i) The governing equations and boundary conditions of 1D Euler Bernoulli bending beam
and torsional bar are derived from continuum models based on SSG theory. Then, two “non-
local” LSM for bending and torsion are introduced, and the dynamic equations from LSM are
calculated respectively. Weak forms by SSG theory for bending and torsion are established
finally. WFEM for one-dimensional structures is discussed. Free wave propagation character-
istics are expressed by solving eigenvalue problems.

(ii) Bending and torsional dispersion relations for single material and binary periodic struc-
tures are presented by WFEM, respectively. For bending, there are four waves (κ1, κ2, κ3, κ4)
predicted by SSG theory, in which κ1 is non-classical bending wave propagating in a dispersive
manner, κ2 is non-classical shear wave, κ3 and κ4 are the evanescent waves which exist exclu-
sively in SSG theory model. For torsion, there are three waves (κ1, κ2, κ3) predicted by SSG
theory, in which κ1 is non-classical torsional wave propagating in a dispersive manner, κ2 and
κ3 are the evanescent waves. Significant stop bands are observable for both bending and torsion
modes in SSG periodic structures.

(iii) For the forced response of bending and torsion, wave propagation is significantly af-
fected by the micro-structure interactions. The input vibration energy can be transferred both
by propagating waves and other evanescent waves which decay rapidly in the near field of the
excitation.
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3.1 Introduction

In chapter 2, the author used SSG theory within WFEM framework to study 1D wave prop-
agation characteristic of Euler-Bernoulli bending beam and torsional bar. However, the prop-

59



60
Chapter 3. Multi-scale modelling based on second strain gradient elasticity for a

two-dimensional beam grid

agation of waves in realistic periodic structures is very complicated. The potential dynamic
properties of complex structures cannot be obtained by studying 1D waves only. So, the explo-
ration of 2D waves in complex structures is of great significance.

In this chapter, the SSG theory is used for the dynamic analysis of a 2D micro-sized beam
grid which is restricted to out-of plane vibration. Firstly, the dynamic continuum equations of
continuum model and LSM are derived respectively. Subsequently, weak formulas are estab-
lished within the framework of SSG theory and the global dynamic stiffness matrix of a unit cell
is assembled. The WFEM2D is applied for the vibrational analysis of 2D periodic wave-guides.
Finally, the band structure and slowness surfaces are studied in frequency spectrum. In addition,
the energy flow vector fields and wave beaming effects are analyzed through SSG theory and
CT. The results show that the proposed approach is of significant potential in investigating the
2D wave propagation characteristics of complex micro-sized periodic structures.

3.2 Strong formulas for out-of plane vibration

3.2.1 Continuum model by second strain gradient elasticity

ny nx

A unit cell

(a) A beam grid.

uI

u3

x
y

z

LxLy

φ
w

x

u2
uI

u1

θ

(b) A unit cell of the beam grid.

Fig. 3.1. Sketch of 2D beam grid and displacements at position x on a branch of the unit cell (displacement w
along z direction, angle θ in x0z plane and angle ϕ in y0z plane, û1,2,3 is corner DOFs, ûI is internal DOFs).

As shown in Fig. 3.1(a), a beam grid is presented as a 2D periodic structure. The dynamical
properties of whole beam grid can be reflected through the spectral analysis of a unit cell in
framework of WFEM [215]. Starting with the dynamical analysis of the beam along x direction
in the unit cell as shown in Fig. 3.1(b). According to the out-of plane vibration analysis [216],
the vibration of beam is restricted to bending and torsion. The calculating process of strong
formulas for continuum model is shown in Fig. 3.2. All the details for illustrating the governing
equations and boundary conditions of bending and torsion cases can be found in the author’s
paper [95] and main derivation results are cited in this work. Here should be pointed that the
beam kinetic energy consists of two parts: the classical part and the non-classical part. In our
work, the form of kinetic energy is simplified to consider the classical part only, whose appli-
cations can be found in [107, 205, 206].
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Firstly, the beam along x direction in the unit cell is regarded as a Euler-Bernoulli micro-
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Fig. 3.2. Graphical representation for analysing continuum model vibration.

sized bending beam with displacements w along z direction and angle θ in x0z plane. The
variational principle is applied to derive the governing equation. Consider a lateral distributed
force f(x, t) along z direction acting on the beam. According to the calculating process in
Fig. 3.2, the governing equation and boundary conditions for bending can be deduced by SSG
theory, which are shown in Eq.2.9 and Eq.2.10.

Next, the beam is regarded as a torsional beam with angle ϕ in y0z plane. A distributed
torque Γ(x, t) around x axis is considered. In order to derive the strong formulas of torsional
vibration, the variational principle is used as well. The governing equation and boundary con-
ditions for torsion can be calculated, which are shown in Eq.2.29 and Eq.2.30 respectively.

3.2.2 Lattice spring model by second strain gradient elasticity

x

y

z M

d

nn-1n-2n-3 n+1 n+2 n+3

Fig. 3.3. A unit cell by LSM with coupling relations. Red line denotes the nearest neighbor interaction, blue line
means the next-nearest neighbor interaction and green line represents the next-next-nearest neighbor interaction. d
is the distance between two nodes and the mass M = ρAd. z axis is perpendicular to x0y plane.

As shown in Fig. 3.3, the discrete structure, formed by interactions of nearest, next-nearest
and next-next-nearest neighbors, is a valuable presentation for SSG model. The distance d is a
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numerical parameter which is used for the convergence study [107]. The process of dynamic
analysis for bending and torsion is presented in Fig. 3.4. The lattice equation of motion for dis-
placement field on node n is illustrated from the LSM method. After Fourier series transform
[110], the dynamic continuum equations for bending and torsion will be derived separately.

Starting with the bending analysis within the LSM framework, the branch of the unit cell

Displacement 
component
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 for bending

+
Lagrange 
equation

Lattice equation of motion
 for bending on node n

Lattice equation of motion
 for torsion on node n

Fourier series 
transform

Dynamic 
continuum
 equations

Fig. 3.4. Graphical representation for analyzing LSM vibration.

along x direction, as shown in Fig. 3.3, is regarded as a discrete form of Euler–Bernoulli beam
based on SSG theory. The coupling constants from nearest (red line), next-nearest (blue line)
and next-next-nearest (green line) neighbors interactions can be expressed by kb1, kb2 and kb3
which are called bending stiffness. The Degree of Freedoms (DOFs) on node n are displace-
ment w along z direction and angle of rotation θ in x0z plane. The governing equation can be
illustrated based on Fourier series transform approach as shown in Eq.2.23. Ignore the higher
order infinitesimal part o in Eq.2.23, the continuum equation for micro-sized Euler–Bernoulli
lattice bending beam can be confirmed.

Next, the branch of the unit cell along x direction is regarded as a lattice torsional beam, as
shown in Fig. 3.3, the three coupling parameters from the interactions of nearest, next-nearest
and next-next-nearest neighbors are represented by torsional stiffness kt1, kt2 and kt3. The ex-
pression of ϕ(x, t) from the torsional LSM can be obtained, as presented in Eq.2.35. Remove
the higher order infinitesimal part o, the continuum equation of torsional beam by LSM can be
confirmed and the relations between the torsional stiffness and higher order parameters can be
derived finally.

3.3 Wave finite element method for 2D structures

3.3.1 Finite element procedure
In this part, the weak formulas for out-of plane vibration are transformed from strong for-

mulas. As shown in Fig. 3.5, nodal displacement field for an element is:

u(e)(t) =

[
w1, ϕ1, θ1,

∂ϕ1

∂x
,
∂2w1

∂x2
,
∂2ϕ1

∂x2
,
∂3w1

∂x3
, w2, ϕ2, θ2,

∂ϕ2

∂x
,
∂2w2

∂x2
,
∂2ϕ2

∂x2
,
∂3w2

∂x3

]T

,
(3.1)
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Fig. 3.5. Two nodes fourteen DOFs in an element.

in which the four DOFs, wi, θi, ∂
2wi
∂x2 ,

∂3wi
∂x3 , i = 1, 2, belong to bending on each node and the

three DOFs, ϕi, ∂ϕi∂x
, ∂

2ϕi
∂x2 , i = 1, 2, belong to torsion on each node. Then, defining bending

displacement w(x, t) and torsion displacement ϕ(x, t) on point x ∈ R2 inside an element:(
w(x, t)

ϕ(x, t)

)
=

(
Nb(x)

Nt(x)

)
u(e)(t)

=

[
Nb0

1 , 0, Nb1
1 , 0, Nb2

1 , 0, Nb3
1 , Nb0

2 , 0, Nb1
2 , 0, Nb2

2 , 0, Nb3
2

0, Nt0
1 , 0, Nt1

1 , 0, Nt2
1 , 0, 0, Nt0

2 , 0, Nt1
2 , 0, Nt2

2 , 0

]
u(e)(t),

(3.2)

where the size of Nb is 1× p in which p is the number of DOFs for bending. Nt has the size of
1× r in which r is the number of DOFs for torsion.

In order to obtain the shape functions Nb for bending and Nt for torsion, the C3 and C2

continuum Hermite interpolation functions [95, 217, 218] guaranteeing the displacement and
strain fields continuous and smooth at higher-order level are utilized in Eq. 3.2, as expressed:

Nb0
1 = 1− 35

x4

d4
e

+ 84
x5

d5
e

− 70
x6

d6
e

+ 20
x7

d7
e

, Nb0
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x4

d4
e

− 84
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d5
e

+ 70
x6

d6
e

− 20
x7

d7
e

,

Nb1
1 = x− 20

x4

d3
e

+ 45
x5

d4
e

− 36
x6

d5
e

+ 10
x7

d6
e

, Nb1
2 = −15

x4

d3
e
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x5

d4
e
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x6

d5
e
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x7
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e

,
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1 =

x2
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e
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e
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e
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e
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e
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+
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(3.3)

where the subscript number of N denotes the node number, superscript number means the
derivative order with respect to x ∈ [0, de] coordinate.
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Submitting w(x, t) and ϕ(x, t) from Eq. 3.2 into equilibrium equation Eq. 2.9 and Eq. 2.29
respectively. Doing the integration according to Galerkin’s approach and part-by-part integra-
tion to the resulting function. The weak forms can be derived and the element mass matrices
M(e)b and M(e)t, stiffness matrices K(e)b and K(e)t, force vectors F(e)b and F(e)t for bending
and torsion are extracted separately as:

M(e)b = ρA

∫ de

0

(Nb)TNbdx,

M(e)t = ρJ

∫ de

0

(Nt)TNtdx,

K(e)b =

∫ de

0

[
Cb

1

(
(Nb)′′

)T
(Nb)′′ + (Cb

2 − Cb
4)
(
(Nb)′′′

)T
(Nb)′′′ + Cb

3

(
(Nb)′′′′

)T
(Nb)′′′′

]
dx,

K(e)t =

∫ de

0

[
Ct

1

(
(Nt)′

)T
(Nt)′ + (Ct

2 − Ct
4)
(
(Nt)′′

)T
(Nt)′′ + Ct

3

(
(Nt)′′′

)T
(Nt)′′′

]
dx,

F(e)b =

∫ de

0

f(x, t)Nbdx+ f0N
b|∂Ωf0

+ f1(Nb)′|∂Ωf1
+ f2(Nb)′′|∂Ωf2

+ f3(Nb)′′′|∂Ωf3
,

F(e)t =

∫ de

0

Γ(x, t)Ntdx+ Γ0N
t|∂ΩΓ0

+ Γ1(Nt)′|∂ΩΓ1
+ Γ2(Nt)′′|∂ΩΓ2

,

(3.4)
where superscript (′) means partial derivative with respect to coordinate x. The matrices and
vector for an element are illustrated by adding bending and torsion cases together:

M(e) = M(e)b + M(e)t, K(e) = K(e)b + K(e)t, F(e) = F(e)b + F(e)t. (3.5)

3.3.2 2D wave propagation analysis

The global mass matrix M and stiffness matrix K of a unit cell can be assembled by the
element mass matrix M(e) and stiffness matrix K(e) separately. Defining that û and F̂ are
the amplitudes of nodal harmonic displacement u and force F of a unit cell, respectively. As
presented in Fig. 3.1(b), the nodal DOFs (û) are divided into corners DOFs (û1, û2, û3) and
internal DOFs (ûI). The vectors of corners forces are represented by F̂1, F̂2 and F̂3. Assuming
that there are no external forces on the internal DOFs: F̂I = 0. The unit cell’s dynamical
equilibrium equation [219] is:

(K̃− ω2M)û = F̂, (3.6)

where û = [(û1)T, (û2)T, (û3)T, (ûI)
T]T, F̂ = [(F̂1)T, (F̂2)T, (F̂3)T,0T]T. According to the

Bloch’s theorem, the DOFs’ relations and forces’ relations can be expressed separately as [220]:

û = ΛR

(
û1

ûI

)
, ΛLF̂ = 0, (3.7)
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with

ΛR =


Is 0

λyIs 0

λxIs 0

0 II

, ΛL =

[
Is λ−1

y Is λ−1
x Is 0

0 0 0 II

]
, (3.8)

where λx and λy are related to wave-numbers κx and κy by λx = exp(−iκxLx) and λy =

exp(−iκyLy) respectively, Is and II denote the identity matrices of size s and I . Substituting
Eq. 3.7 into Eq. 3.6 yields:

ΛL(K̃− ω2M)ΛR

(
û1

ûI

)
= 0. (3.9)

Eq. 3.9 provides a way to analyze the wave propagation in 2D periodic structures. There
exist two different forms to solve this equation: the first one is fixing frequency (ω) and λy, all
possible solutions for λx are sought which correspond to evanescent or propagation waves. The
second one is fixing λx and λy, the values of ω are calculated. In our work, the second form
which is called inverse form is used. As shown in Fig. 1.3(b), the wave-numbers κx and κy
change within the first Brillouin zone [−π/Lx, π/Lx] and [−π/Ly, π/Ly] and are discretised
into (κix, κjy), with κix being the i-th term, κjy being the j-th term. The corresponding frequencies
(ω) are sorted in the ascending order ωi,j1,2,3,...k,...n. The k-th slowness surface is formed by ωi,jk .
The Poynting vector (i.e., energy flow vector) at any point (κx, κy) is same as the gradient of
slowness surface [221]. For the iso-frequency contour of the slowness surface, Poynting vector
is normal to the contour curves. This character can be used to determine the direction of wave
propagation and non-propagation which is known as the wave beaming effect.

In addition, a convenient 2D representation of the slowness surface is the band structure,
which is obtained by plotting the wave-numbers along the contour O–A–B–O as shown in
Fig. 1.3(b). The plane wave propagates with wave-number κθ′ in angle θ′ as shown in Fig. 1.3(c).
The band structure can be used to explore the frequency ranges of stop bands and the location
where different slowness surfaces touch each other.

3.4 Numerical examples and discussions

In this part, the inverse form of WFEM is applied to analyze the un-damped out-of plane
vibration of a beam grid by SSG and CT. As presented in Fig. 3.1(b), the material of a unit
cell in the beam grid is Aluminum with 15a0 wide and 20a0 high in cross-section, Lx = 250a0

and Ly = 175a0 (a0 = 4.04 × 10−10m is the lattice parameter). The size of this unit cell is at
nano-sized level and the characteristics of non-local interactions in the unit cell can be presented
effectively. The Young’s modulus E = 70 GPa, linear mass density ρ = 2.7 g/cm3, and each
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branch of the unit cell is meshed into 20 elements. The beam grid contains 20 unit cells along x
direction and 20 unit cells along y direction. Here should be pointed that the circular frequency
is normalized as ω/ω0, in which ω0 is the first nature circular frequency of the unit cell.

3.4.1 Band structure
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(a) Band structure by SSG and CT and validation.
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(b) Convergence of band structure at boundary point O
by SSG and CT.

Fig. 3.6. Band structure, validation and convergence.

Fig. 3.6(a) shows the four lowest branches of the normalized frequency spectrum along the
boundary (O-A-B-O) of the irreducible first Brillouin zone for 2D beam grid. The blue lines
represent the results from SSG theory and black lines denote the CT. The curve by SSG is close
to the one by CT at low frequency. But the difference between SSG and CT becomes more
obvious as frequency increases. The frequency value by SSG is higher than CT at same κ-
space position. Due to the existence of non-classical parts containing higher-order parameters
in SSG, the eigenvalue ω calculated by the dynamical equilibrium equation of SSG theory is
bigger than the one of CT at same κ-space position. In order to valid the band structure by CT,
a linear elastic method called Hierarchical Finite Element Method (HFEM) [222] is used, as
shown in Fig. 3.6(a), the result by HFEM matches CT well. At the same time, when the higher
order parameters ai, bi and ci are equal to zero, SSG will reverse to CT. On the other hand, a
higher-order continuum theory called Modified Couple Stress (MCS) theory [81, 223] is used
to compare with SSG theory. It shows that the discrepancy between SSG and MCS becomes
more obvious as frequency increases. This is because that the curvature tensor is considered
in MCS theory, curvature tensor and higher order terms of strain tensor are considered in SSG
theory. Fig. 3.6(b) is about the convergence of the first four frequencies at boundary point O by
SSG and CT. It indicates that the variety of frequency decreases with element number increases
and shows the convergence.
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3.4.2 Slowness surfaces

(a) The first slowness surface. (b) The second slowness surface.

(c) The third slowness surface. (d) The fourth slowness surface.

Fig. 3.7. The first four slowness surfaces by SSG and CT.

The first four slowness surfaces, as presented in Fig. 3.7, are studied in the frequency range
based on SSG and CT. The 3D surfaces are symmetric with respect to κx and κy. The slowness
surface position by SSG is higher than CT. This phenomenon can be explained by taking the
bending wave as an example: assuming the lateral distributed force f(x, t) = 0 and submitting
bending displacement w(x, t) = w0e

i(ωt−κx) into Eq. 2.9, the dynamical equation of bending
wave by SSG theory becomes: Cb

1κ
4 + (Cb

4 − Cb
2)κ6 + Cb

3κ
8 = ρAω2, in which the term

containing the fourth power of wave-number corresponds to CT. It can be clearly found that the
frequency value by SSG is bigger than the value by CT at same κ-space position.

As shown in Fig. 3.8, in order to calculate the iso-frequency contours, the normalized
frequencies are chosen at 0.008 and 0.08 on the first slowness surface, 0.9 and 1.2 on the second
slowness surface, 1.9 and 2.1 on the third slowness surface, 2.5 and 2.9 on the fourth slowness
surface. The direction, perpendicular to the iso-frequency line, indicates the direction of wave
propagation and more details will be discussed in next section. There exists a big difference



68
Chapter 3. Multi-scale modelling based on second strain gradient elasticity for a

two-dimensional beam grid

-3 -2 -1 0 1 2 3
5

x
L

x

-3

-2

-1

0

1

2

3

5
yL

y

CT-0.008

SSG-0.008

CT-0.08

SSG-0.08

(a) Normalized frequency: 0.008, 0.08.

-3 -2 -1 0 1 2 3
5

x
L

x

-3

-2

-1

0

1

2

3

5
yL

y

CT-0.9

SSG-0.9

CT-1.2

SSG-1.2

(b) Normalized frequency: 0.9, 1.2.

-3 -2 -1 0 1 2 3
5

x
L

x

-3

-2

-1

0

1

2

3

5
yL

y

CT-1.9

SSG-1.9

CT-2.1

SSG-2.1

(c) Normalized frequency: 1.9, 2.1.
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(d) Normalized frequency: 2.5, 2.9.

Fig. 3.8. The iso-frequency contour of first four slowness surfaces by SSG and CT.

between SSG and CT at higher frequency, which means that the high-order parameters have a
significant influence on the value of iso-frequency contours at higher frequency.

3.4.3 Energy flow vector fields

The energy flow vector fields by SSG and CT on the first four slowness surfaces are studied
in this part. As shown in Fig. 3.9, the direction of arrow indicates the direction of energy flow
and the length of arrow means the gradient value of energy flow. The blue arrow from SSG
and black arrow from CT almost overlap, which indicates that the gradient and direction of
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(b) Energy flow on the second slowness surface.
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(c) Energy flow on the third slowness surface.

-3 -2 -1 0 1 2 3
5

x
L

x

-3

-2

-1

0

1

2

3

5
yL

y

CT-2.9 SSG-2.9

(d) Energy flow on the fourth slowness surface.

Fig. 3.9. Energy flow vector fields by SSG and CT on the first four slowness surfaces.

energy flow by SSG are basically the same as that by CT at the same κ-space position. At low
frequency, as shown in Fig. 3.9(a), the behavior of beam grid is similar to an homogeneous
orthotropic plate where the dynamic energy spreads in all directions and is perpendicular to the
iso-frequency contour. At higher frequency such as 0.9, as shown in Fig. 3.9(b), the directions of
majority energy are limited to x direction, which means that there are stop bands in y direction.
When normalized frequency is 1.9 as presented in Fig. 3.9(c), the directions of majority energy
are restricted to y direction and stop bands exist in x direction.

The distance from any point on the iso-frequency contour to the center point of the figure
represents the wave number κθ′ with θ′ for plane wave propagation. On the first slowness
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surface, the position of the iso-frequency contour from SSG is located inside the iso-frequency
contour from CT, which means that κθ′ from SSG is smaller than the one from CT at same
wave propagation angle θ′. Contrast that with the second and third slowness surfaces, whose
iso-frequency contour position from SSG is located outside the one from CT, which shows that
κθ′ from SSG is bigger than the one from CT.

3.4.4 Wave beaming effects
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Fig. 3.10. Direction of wave propagation on the 1st slowness surface (ω increases from the center of the polar
image to the edge, ψ is the range of free wave propagation under a considered frequency, frequency rang: 0-0.5).
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Fig. 3.11. Direction of wave propagation on the 2nd slowness surface (ω increases from the center of the polar
image to the edge, ψ is the range of free wave propagation under a considered frequency, frequency rang: 0.5-1.5).

For further research of wave propagation directivity, the function κy = f(κx) is defined
for a given iso-frequency contour line in the first quadrant as shown in Fig.3.9. The wave



3.4. Numerical examples and discussions 71

0°180°

45°135°

315°225°

90°

270°

A

1st direction
2nd direction

!/!
0

1.9

(a) CT.

0°180°

45°135°

315°225°

90°

270°

A

1st direction
2nd direction

!/!
0

1.9

(b) SSG.

Fig. 3.12. Direction of wave propagation on the 3rd slowness surface (ω increases from the center of the polar
image to the edge, ψ is the range of free wave propagation under a considered frequency, frequency rang: 1.5-2.5).
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Fig. 3.13. Direction of wave propagation on the 4th slowness surface (ω increases from the center of the polar
image to the edge, ψ is the range of free wave propagation under a considered frequency, frequency rang: 2.5-3.5).

propagation direction ψ, perpendicular to the iso-frequency contour, can be confirmed by ψ =

arctan(dκy/dκx) + π/2 [224]. The frequency dependent directional behavior of the beam grid
by CT and SSG can be visualized through polar images as shown in Fig. 3.10 to Fig. 3.13. In
the case of ω/ω0 =0.08 on first slowness surface, wave propagation occurs in all directions
which verifies the conclusion in previous section. The direction of wave propagation under
other different frequencies can be predicted as well. It should be pointed out that there exist two
directions of wave propagation at some frequencies as shown in Fig. 3.11 and Fig. 3.12. This
is because there may be two iso-frequency contours at a certain frequency in the first quadrant,
for example as shown in Fig. 3.9(c) for CT case. Two different directions of wave propagation
can be generated with one being primary and another one being secondary. In this work, the
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primary wave propagation directivity is studied.
In addition, the harmonic displacement fields are explored under Born-von Karman bound-

(a) CT. (b) SSG.

Fig. 3.14. Harmonic displacement field when ω/ω0 = 0.08.

(a) CT. (b) SSG.

Fig. 3.15. Harmonic displacement field when ω/ω0 = 0.9.

ary conditions [1, 113]: In damped systems, the response of harmonic displacement is consid-
ered approximately independent from boundary conditions. The function of harmonic displace-
ment fields by FE method is expressed as: [(1 + iη)K′ − ω2M′]û′ = F̂′ [1], in which K′ and
M′ are stiffness and mass matrices of the beam grid with 20 unit cells along x direction and
20 unit cells along y direction. Due to the existence of damping loss factor η, the input power
from external force rarely reaches the system boundary. So, the response by the above equation
is closely approximate to the response of an infinite system. The free boundary condition was
chosen for the beam grid in this work. Loss factor η is 0.05 and a harmonic force with unit
amplitude is loaded at central place of the structure along z direction.

The results of displacement amplitudes along z direction, normalized with respect to the
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(a) CT. (b) SSG.

Fig. 3.16. Harmonic displacement field when ω/ω0 = 1.9.

(a) CT. (b) SSG.

Fig. 3.17. Harmonic displacement field when ω/ω0 = 2.9.

central point amplitudes (zc), are presented in Fig. 3.14 to Fig. 3.17 by CT and SSG respec-
tively. The continuous maps are obtained by interpolating the nodal displacements. The white
lines on the harmonic displacement field images show the range of wave propagation as pre-
dicted in Fig. 3.10 to Fig. 3.13: ψ = 360◦ by CT and SSG when normalized frequency is 0.08;
ψ = 42◦ by CT and ψ = 36.1◦ by SSG when normalized frequency is 0.9; ψ = 90◦ by CT
and ψ = 104.7◦ by SSG when normalized frequency is 1.9. The above results show that the
directional patterns of the harmonic displacement response match the predictions from the en-
ergy flow vector fields, as well as the wave propagation directivity analysis. On the other hand,
at low frequency, the wave propagation range by SSG is consistent with the one by CT. At high
frequency, the wave propagation range by SSG is larger than the one by CT.

Next, the normalized forced response contours is discussed, as shown in Fig. 3.18, the iso-
displacement contours are calculated at position z/zc = 0.1 along z direction by SSG and CT.
Here we fix the normalized frequency as 1.9. The wave spreads in y direction both by SSG and
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Fig. 3.18. Normalized forced response contours by SSG and CT (ω/ω0=1.9, z/zc=0.1).

CT. However, the range of wave propagation by SSG is bigger than the one by CT at same fre-
quency. Furthermore, from the midpoint of the beam grid to the edge in y direction, the range
of wave propagation increases first and then decreases by CT. In contrast, the range of wave
propagation increases first and then remains unchanged by SSG.

3.4.5 Wave shapes
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Fig. 3.19. The points on band structure for studying wave shapes.

The study of wave shapes at different κ-space position and frequency is another important
part for understanding the dynamical characteristics of structure. The wave, which shows how
energy travels, is the vibration of molecules or basic particles in the structure. The amplitude of
wave shape is the strength of a wave’s effect: the higher the amplitude, the more the particles
are displaced. Different wave shapes have different harmonics. A harmonic is an additional
frequency created by the wave.

In this part, the wave shapes Φ for bending along z direction are studied by SSG and CT.
The wave shapes illustrated from Eq 3.9 can be expressed as Φ = [φ1, φI] in which corner
node u1 and internal nodes uI are considered only. The global shapes can be obtained from
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Fig. 3.20. Wave shapes on points O1, O2, O3 and O4 (κx = 0, κy = 0).

[φ1, φ2, φ3, φI]
T = ΛR[φ1, φI]

T. The marked points Oi, Ai, Bi and Ci (i=1, 2, 3, 4) are shown in
Fig. 3.19. The wave shapes at points O1, O2, O3 and O4 (κx = 0, κy = 0) are given in Fig. 3.20
which are extended in a rectangular domain from the unit cell. It can be seen that the wave
shapes by SSG are similar to CT. However, the amplitudes direction of wave shapes by CT are
opposite to the one by SSG at points O1, O2 and O4. The wave shapes at points Ai, Bi and Ci

are presented in Appendix E.

3.5 Conclusions

In this chapter, SSG theory is used for the dynamic analysis of a 2D micro-sized beam grid
within the WFEM framework. Some conclusions in our work are addressed as follow:

(i) Strong formulas of continuum model for out-of plane vibration containing governing
equations and boundary conditions are illustrated based on Hamilton principle. A valuable
long-range LSM, formed by interactions of nearest, next-nearest and next-next-nearest neigh-
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bors, is elaborated which provides a reasonable explanation for the SSG model. Weak formulas
including element stiffness and mass matrices are established within the framework of SSG the-
ory and global dynamic stiffness matrix of a unit cell is assembled. The reason for combining
SSG theory and WFEM is that the characteristics of micro-sized medias can be interpreted by
SSG theory and the dynamical properties of complex periodic structures can be investigated
through WFEM.

(ii) The band structure for 2D beam grid is illustrated by SSG and CT. The curve by SSG
is close to the one by CT at low frequency. However, the difference between SSG and CT
becomes more obvious as frequency increases. This phenomenon can be explained as: the dy-
namical equilibrium equation is a high order partial differential function composed of classical
part and non-classical part in SSG theory. Due to the existence of non-classical parts containing
higher-order parameters, the eigenvalue ω calculated by the dynamical equilibrium equation
from SSG theory is bigger than the one from CT at same κ-space position. The first four slow-
ness surfaces are studied in the frequency range by SSG and CT. The 3D surfaces are symmetric
with respect to κx and κy.

(iii) The direction, perpendicular to iso-frequency line, indicates the direction of wave prop-
agation. The iso-frequency lines by SSG are close to CT at low frequency. The difference
between SSG and CT lies in the higher frequency, which means that the high-order parameters
have a significant influence on the value of iso-frequency contours at higher frequency. Fur-
thermore, the energy flow vector fields by SSG and CT on the first four slowness surfaces are
studied. At low frequency, the behavior of beam grid is similar to an homogeneous orthotropic
plate where the dynamic energy spreads in all directions and is normal to the iso-frequency con-
tour. At higher frequency, the directions of majority energy are limited to specific directions.

(iv) The harmonic displacement fields along z direction are studied by SSG and CT. The
directional patterns of the harmonic displacement response match the predictions from the en-
ergy flow vector fields, as well as the wave propagation directivity analysis. The range of wave
propagation by SSG is bigger than the one by CT at same frequency. Furthermore, from the
midpoint of the beam grid to the edge, the range of wave propagation increases first and then
decreases by CT. In contrast, the range of wave propagation increases first and then remains
unchanged by SSG.
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4.1 Introduction

In chapter 2 and chapter 3, the SSG theory is used to analyze the single mode (e.g., bend-
ing, torsion) propagation within WFEM framework. As we all know, in the real engineering
structures, there exist complex waves including high-order waves. Therefore, in recent years,
the exploration for multi-mode propagation and diffusion in the complex structures has become
a hot spot.

In this chapter, SSG theory is applied for the multi-mode propagation and diffusion analysis
of a 3D micro-sized beam. Firstly, the constitutive relation of 3D model is introduced. The weak
formulations are calculated by using the Hamilton’s principle and global dynamic stiffness ma-
trix of a unit cell is assembled. Then, free wave propagation and diffusion characteristics are
expressed in the WFEM framework. The effects of higher order parameters on the dispersion
curves are presented. Furthermore, the wave diffusion through a simple coupling condition and
a complex coupling condition are confirmed respectively. Finally, some useful conclusions are
presented.

4.2 Second strain gradient theory for 3D model

In this part, the constitutive relations of 3D micro-sized model are introduced in the SSG
theory framework firstly. Then, the displacement vector is derived by employing the six quin-tic
Hermite polynomial shape function. The weak formulations including element stiffness, mass
matrices and force vector are calculated by using the Hamilton’s principle finally.

4.2.1 Calculation of constitutive relations

The strain energy density U composed of strain ε=sym(∇U), first gradient of strain ξ=∇ε
and second gradient of strain ζ=∇∇ε in the SSG theory framework was put forward by Mindlin,
as presented in Eq. 1.12.

Based on the three-dimensional elasticity theory, the vector of displacement field defined in
the Cartesian coordinate system (x, y, z) is given as:

U(x, y, z, t) =

 u1(x, y, z, t)

u2(x, y, z, t)

u3(x, y, z, t)

 , (4.1)

where u1, u2 and u3 are the the displacements along x, y and z direction.
The relations between strains and displacement components can be defined by introducing



4.2. Second strain gradient theory for 3D model 79

the vectors of first, second and third order derivatives of displacement components:

ε = Ψ1U, ξ = Ψ2U, ζ = Ψ3U, (4.2)

where

Ψ1 =



∂x 0 0

0 ∂y 0

0 0 ∂z

0 ∂z ∂y

∂z 0 ∂x

0 ∂y ∂x


,Ψ2 =

 e1 0 0

0 e1 0

0 0 e1

⊗



∂xx

∂yy

∂zz

2∂xy

2∂xz

2∂yz


,

Ψ3 =

 e2 0 0

0 e2 0

0 0 e2

⊗ [ ∂xxx, ∂yyy, ∂zzz, 3∂xxy, 3∂xxz, 3∂yyx, 3∂yyz, 3∂zzx, 3∂zzy, 6∂xyz ]T
,

(4.3)

in which, symbol⊗ stands for the Kronecker product, e1 with size 6×1 and e2 with size 10×1

are the matrices whose element value is 1. Then, the constitutive relations for 3D model by
SSG theory are defined as:

τ 1 = Lε+ Cζ, τ 2 = Aξ, τ 3 = Bζ + CTε, (4.4)

in which, L =


λ+ 2µ λ λ 0

λ λ+ 2µ λ 0

λ λ λ+ 2µ 0

0 0 0 µI

, A =


A1 0 0 0

0 A1 0 0

0 0 A1 0

0 0 0 A2

,

B =



B11 B12 B13 B14 B15 B16

B21 B22 B23 B24 B25 B26

B31 B32 B33 B34 B35 B36

B41 B42 B43 B44 B45 B46

B51 B52 B53 B54 B55 B56

B61 B62 B63 B64 B65 B66


, C =

[
C1 C2 C3 C4 C5 C6

]
. The de-

tails of matrices A, B and C are presented in Appendix F. Finally, the strain energy density for
SSG theory can be rewritten as the matrix form:

U =
1

2

(
εTτ 1 + ξTτ 2 + ζTτ 3

)
. (4.5)

Eq. 4.5 is the basic form of building the 3D model using partial differential equations (PDE)
weak form in some commercial numerical simulation software (e.g., COMSOL).
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4.3 Discretization and element matrices

The definition of node DOFs for 1D and 3D Hermite elements are shown in Fig.4.1. Firstly,
in order to ensure the continuity of higher derivatives up to the second order between 1D ele-
ments, the six-term polynomial function is considered to interpolate the scalar field U1=u1(x, t)

inside a 1D element, as follows:

U1 =
[

1 x x2 x3 x4 x5
]


s0

s1

s2

s3

s4

s5


= xs. (4.6)

The evaluation of the nodal displacement vector u
(e)
1 , as presented in Fig.4.1(a), gives:

u
(e)
1 =



1 −de d2
e −d3

e d4
e −d5

e

0 1 −2de 3d2
e −4d3

e 5d4
e

0 0 2 −6de 12d2
e −20d3

e

1 de d2
e d3

e d4
e d5

e

0 1 2de 3d2
e 4d3

e 5d4
e

0 0 2 6de 12d2
e 20d3

e


s = ds. (4.7)

Then, submitting Eq.4.7 into Eq.4.6, the displacement vector within the 1D element can be

node 1

node 1

(a) 1D element

node 2

u1

uiui(e)=[

x=-de

∂u1

∂x

1

∂ui

∂x

∂ui

∂z
1

∂2u1

∂x2

∂2ui

∂y2
1∂2ui

∂x2
1  ∂3ui

∂x2∂y
1

∂3ui
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∂4ui
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Fig. 4.1. Definition of node numbers, nodal DOFs for 1D and 3D Hermite elements with C2 continuity.

derived by employing the six quin-tic Hermite polynomial shape function and nodal displace-
ment vector, as follows:

U1 = xd−1u
(e)
1 = N(x)u

(e)
1 , (4.8)
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in which the shape function N(x) is written as:

N(x) =



N0
1(x)

N1
1(x)

N2
1(x)

N0
2(x)

N1
2(x)

N2
2(x)



T

=



5x3

8d3
e

−
15x

16de
−

3x5

16d5
e

+
1

2

5de

16
−

7x

16
−

3x2

8de
+

5x3

8d2
e

+
x4

16d3
e

−
3x5

16d4
e

d2
e

16
−
dex

16
−
x2

8
+

x3

8de
+

x4

16d2
e

−
x5

16d3
e

15x

16de
−

5x3

8d3
e

+
3x5

16d5
e

+
1

2

3x2

8de
−

7x

16
−

5de

16
+

5x3

8d2
e

−
x4

16d3
e

−
3x5

16d4
e

dex

16
+
d2
e

16
−
x2

8
−

x3

8de
+

x4

16d2
e

+
x5

16d3
e



T

. (4.9)

On the other hand, according to the calculating process above, the shape functions N(y)

= N(x)|x=y = [N0
1(y), N1

1(y), N2
1(y), N0

2(y), N1
2(y), N2

2(y)], N(z)=N(x)|x=z=[N0
1(z), N1

1(z),
N2

1(z), N0
2(z), N1

2(z), N2
2(z)] can be confirmed as well. Then, the shape function of the hexahe-

dral element, as shown in Fig.4.1, can be developed by expanding the relation of the 1D element
to 3D element [217, 218], as follows:

N(x, y, z) =

 N1 ⊗E1

N2 ⊗E2

N3 ⊗E3

 . (4.10)

The element in Np and Ep (p = 1, 2, 3) are defined as:

Ni(j,k,l)
p (x, y, z) = Nj

i′(x)Nk
i′′(y)Nl

i′′′(z),

Ep =
[
εp1 εp2 εp3

]
,

(4.11)

where N
i(j,k,l)
p (x, y, z) is associated with the DOFs ∂j+k+lui1/(∂x

j∂yk∂zl) of node i of the hex-
ahedron element. i = 1, ..., 8. j, k, l = 0, 1, 2. i′, i′′, i′′′ = 1, 2 relate to the node number in the
corresponding 1D element and they take values of 1 or 2 if the coordinate value of node i is
−de or de. For example, N

2(1,2,2)
1 (x, y, z)=N1

2(x)N2
1(y)N2

1(z). εpq = 1 for p = q. εpq = 0 for
p 6= q (q = 1, 2, 3). The displacement vector U(x, y, z) within 3D element can be presented by
employing the 3D shape function N(x, y, z) and nodal displacement vector u(e), one obtains:

U(x, y, z, t) =N(x, y, z)u(e)(t), (4.12)
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where u(e)=[(u
(e)
1 )T, (u

(e)
2 )T, (u

(e)
3 )T]T, (u

(e)
p )T=[(u

1(e)
p )T, (u

2(e)
p )T, ..., (u

8(e)
p )T]T (p = 1, 2, 3).

Then, integrating the strain energy density over its volume to obtain the strain potential energy:

U =

∫
V

UdV =
1

2
u(e)TK(e)u(e). (4.13)

Meanwhile, the simplified kinetic energy T and work done δW by external force are:

T =
1

2

∫
V

(
∂U

∂t

)T

ρ

(
∂U

∂t

)
dV =

1

2

(
∂u(e)

∂t

)T

M

(
∂u(e)

∂t

)
,

δW =

∫
V
δUTfV dV +

∫
S
δUTfSdS = δu(e)TF(e),

(4.14)

where ρ denotes the linear mass density, fV is the volume force, fS means the face force. By
introducing 3D element stiffness, mass matrices and force vector:

K(e) =

∫
V

(
NTΨT

1 LΨ1N + NTΨT
2 AΨ2N + NTΨT

3 BΨ3N + 2NTΨT
3 CΨ1N

)
dV,

M(e) =

∫
V

(
NTρN

)
dV,

F(e) =

∫
V

(
NTfV

)
dV +

∫
S

(
NTfS

)
dS,

(4.15)

the Hamilton’s principle in time domain leads to:∫ t2

t1

(δU − δW − δT ) dt =

∫ t2

t1

[
δu(e)T

(
M(e)∂

2u(e)

∂t2
+ K(e)u(e) − F(e)

)]
dt = 0. (4.16)

4.4 Diffusion calculation based on second strain gradient
elasticity

Lk Lc Lk+1

^ ^u(k) ^u(k+1)
R2

u(c)
L2L1

^u(c)
R1

Q(k+1)+Q(k)+

Q(k)-

1 2
Coupling element cUnit cell k

x

Waveguide 1 Waveguide 2

Unit cell k+1

x x

Fig. 4.2. Two coupled waveguides through a coupling element.

This section is concerned with the characterization of coupling conditions between two
semi-infinite periodic waveguides which are connected through an elastic coupling element at
surfaces 1 and 2 as shown in Fig.4.2. Here should be noted that the coupling element is only
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subject to the coupling actions, which means there is no force inside the element. The reflection
coefficients (R) and transmission coefficients (T) are confirmed through two different coupling
conditions. Simple coupling condition: wave modes calculation in waveguides and coupling
element are based on the same theory (SSG-SSG). Complex coupling condition: wave modes
calculation in waveguides is based on the CT but SSG theory in coupling element (CT-SSG).

4.4.1 Diffusion with simple coupling condition

In order to illustrate the wave diffusion, the wave propagation characteristics should be
introduced firstly. Our study focuses on the description of wave propagating along x direction
in a slender waveguide, as shown in Fig.1.10, which is composed of identical unit cells coupled
together. The dynamics of the system is formulated by using WFEM which offers a numerical
wave characterization of periodic structures. The dynamic equilibrium equation of unit cell
k with length Lk is expressed in Eq.1.46, where K and M denote the unit cell stiffness and
mass matrices assembled by element stiffness and mass matrices (K(e), M(e)), C = ηK/ω is
defined as damping matrix considering damping lose factor η, u is nodal displacement vector,
F represents nodal force vector. Assuming that u and F are harmonic, the dynamic stiffness
matrix will be written as D=K̃−Mω2 in frequency domain with K̃ = (1+iη)K. Then, Eq. 1.46
can be re-expressed by dividing the DOFs into left boundary (L), internal (I) and right boundary
(R) DOFs, as described in Fig. 1.10, this yields: DLL DLI DLR

DIL DII DIR

DRL DRI DRR


 ûL

ûI

ûR

 =

 F̂L

F̂I

F̂R

, (4.17)

in which û and F̂ are the amplitudes of u and F, respectively. Assuming that F̂I = 0 [184].
The dynamic equilibrium equation will be re-written as:[

DLL DLR

DRL DRR

](
ûL

ûR

)
=

(
F̂L

F̂R

)
, (4.18)

where D=DBdBd−DBdID
−1
II DIBd is the condensed form of dynamic stiffness matrix, subscript

Bd represents the DOFs on the unit cell boundaries. Eq. 4.18 is the expression of the WFEM
analysis that relates the displacement and force on the left and right boundaries of unit cell. For
the solution of propagation constants Λ and eigenvectors Φu, one can solve the direct Bloch
formulation [95, 210] as:

[
DRL(ω)Λ−1 + (DRR(ω) + (DLL(ω)) + DLR(ω)Λ

]
Φu = 0, (4.19)
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where Λ=diag {λj}j=1,...,2p, Φu={φj}j=1,...,2p which can be divided into Φ+
u =
{
φ+
j

}
j=1,...,p

and
Φ−u =

{
φ−j
}
j=p+1,...,2p

, in which p=m for SSG, p=n for CT. The propagation constants Λ relating
the displacements between two consecutive unit cells can be used to define the positive, neg-
ative, propagating and evanescent waves. The waves propagate to the positive direction when
|1/λj| <1. The waves propagate to the negative direction when |λj| >1. Here, λj take the form
λj=exp(−iκjL(q)), subscript q=c for coupling element, q=k, k+1 for unit cells. It should be
noted that the spectral analysis method of the coupling element and unit cell k+1 is the same as
that of the unit cell k.

Then, the reflection coefficients (R) and transmission coefficients (T) can be calculated
through a simple coupling element. Assuming that the incident waves come from the infinity
of waveguide 1 and there is no reflection from the end of waveguide 2. The initial boundary
of waveguide 1 is also non-reflecting. The local dynamic equilibrium can be written using the
state vectors expansion on the positive-going wave amplitudes Q(k)+ at surface 1, Q(k+1)+ at
surface 2 and negative-going wave amplitudes Q(k)− at surface 1, as shown in Fig.4.2. Defining
Q(k)+=I, Q(k)−=R, Q(k+1)+=T. As a result, the R and T coefficients are expressed as [225]:

(
R

T

)
=

 D(k)
RLΦ

(k)−
u Λ(k) +

(
D(k)

RR + D(c)
LL

)
Φ

(k)−
u , D(c)

LRΦ
(k)+
u

D(c)
RLΦ

(k)−
u , D(k+1)

LR Φ
(k+1)+
u Λ(k+1) +

(
D(k+1)

LL + D(c)
RR

)
Φ

(k+1)+
u

−1

·

[
−
(
D(k)

RL + Λ(k)
(
D(k)

RR + D(c)
LL

))
Φ

(k)+
u

−Λ(k)D(c)
RLΦ

(k)+
u

]
,

(4.20)

where superscript k represents the unit cell, c means the coupling element. The R and T

coefficients can be derived through calssical theory or SSG theory individually.

4.4.2 Diffusion with complex coupling condition

As shown in Fig.4.2, the coupling element is described by SSG theory model. The waveg-
uides are built by CT model. The description of complex coupling condition enriches the wave
propagation and diffusion features in complex system. Firstly, the displacement field of cou-
pling element (c) and unit cells (k, k+1) can be represented by the superposition of the eigen-
modes:

û(q)± = Φ(q)±
u υ(q)±Q(q)±, (4.21)

where Q(q)± is the amplitudes of wave modes. υ(q)±=diag
{

exp
(
∓iκ

(q)
j x
)}

(0 ≤ x ≤ L(q)).
On the other hand, the force components of coupling element (c) and unit cells (k, k+1) can be
expressed as:

F̂(q)± = Φ
(q)±
F υ(q)±Q(q)±, (4.22)
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in which Φ
(q)±
F =D(q)

LLΦ
(q)±
u +D(q)

LRΦ
(q)±
u diag

{
exp

(
∓iκ

(q)
j L(q)

)}
according to Eq.4.18. The eigen-

solutions will be same when waveguides 1 and 2 have the same cross-section and material.
The state vector on the right side of surface 1, represented by R1, is expressed as:(

û
(c)
R1

F̂
(c)
R1

)
=

[
û

(c)+
R1

+ û
(c)−
R1

F̂
(c)+
R1

+ F̂
(c)−
R1

]
=

[
Φ

(c)+
u Φ

(c)−
u

Φ
(c)+
F Φ

(c)−
F

][
υ(c)+Q(c)+

υ(c)−Q(c)−

]
. (4.23)

In addition, the state vector on the left side of surface 2, represented by L2, is written as:(
û

(c)
L2

F̂
(c)
L2

)
=

[
û

(c)+
L2

+ û
(c)−
L2

F̂
(c)+
L2

+ F̂
(c)−
L2

]

=

[
Φ

(c)+
u Φ

(c)−
u

Φ
(c)+
F Φ

(c)−
F

][
υ(c)+|x=Lc 0

0 υ(c)−|x=Lc

][
υ(c)+Q(c)+

υ(c)−Q(c)−

]
.

(4.24)

Combining Eq.4.23 and Eq.4.24, the relation between state vector on left and right side of
coupling element will be conformed:(

û
(c)
L2

F̂
(c)
L2

)
= S(c)

(
û

(c)
R1

F̂
(c)
R1

)
, (4.25)

with

S(c) =

[
Φ

(c)+
u Φ

(c)−
u

Φ
(c)+
F Φ

(c)−
F

][
υ(c)+|x=Lc 0

0 υ(c)−|x=Lc

][
Φ

(c)+
u Φ

(c)−
u

Φ
(c)+
F Φ

(c)−
F

]−1

. (4.26)

Next, Assuming that the incident waves come from the infinity of waveguide 1 and there
is no reflection from the end of waveguide 2. The initial boundary of waveguide 1 is also
non-reflecting. The state vector on the left side of surface 1, represented by L1, is expressed as:(

û
(k)
L1

F̂
(k)
L1

)
=

[
û

(k)+
L1

+ û
(k)−
L1

F̂
(k)+
L1

+ F̂
(k)−
L1

]
=

[
Φ

(k)+
u Φ

(k)−
u

Φ
(k)+
F Φ

(k)−
F

][
υ(k)+|x=LkQ

(k)+

υ(k)−|x=LkQ
(k)−

]
. (4.27)

The state vector on the right side of surface 2, represented by R2, is written as:(
û

(k+1)
R2

F̂
(k+1)
R2

)
=

(
û

(k+1)+
R2

F̂
(k+1)+
R2

)
=

[
Φ

(k+1)+
u υ(k+1)+|x=0Q

(k+1)+

Φ
(k+1)+
F υ(k+1)+|x=0Q

(k+1)+

]
. (4.28)

Here should be noted that the size of state vector for coupling element is 2m × 1, but
2n × 1 for unit cells k and k+1. The higher order parts in state vector for coupling element is
2(m− n)× 1. In order to ensure the continuity on surfaces 1 and 2, defining new state vectors
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including higher order parts (2(m− n)× 1) for unit cells k and k+1:

(
û
∗(k)
L1

F̂
∗(k)
L1

)
=


û

(k)
L1

û
′(k)
L1

F̂
(k)
L1

F̂
′(k)
L1

 ,

(
û
∗(k+1)
R2

F̂
∗(k+1)
R2

)
=


û

(k+1)
R2

û
′(k+1)
R2

F̂
(k+1)
R2

F̂
′(k+1)
R2

, (4.29)

where û
′(k)
L1

, F̂
′(k)
L1

are unknown higher order displacements and forces vectors for unit cell k.
û

′(k+1)
L1

, F̂
′(k+1)
L1

are unknown higher order displacements and forces vectors for unit cell k+1.
The continuity on surfaces 1 and 2 is:(

û
(c)
R1

F̂
(c)
R1

)
=

(
û
∗(k)
L1

F̂
∗(k)
L1

)
,

(
û

(c)
L2

F̂
(c)
L2

)
=

(
û
∗(k+1)
R2

F̂
∗(k+1)
R2

)
. (4.30)

Combining Eq.4.25, Eq.4.29 and Eq.4.30, assume that higher order forces vectors for unit
cell k and k+1 are 0. Define Q(k)+=I, Q(k)−=R, Q(k+1)+=T, the R and T coefficients for
complex coupling condition can be conformed as:

Φ
(k+1)+
u υ(k+1)+|x=0T

û
(k+1)
R2

Φ
(k+1)+
F υ(k+1)+|x=0T

0

 = S(c)


Φ

(k)+
u υ(k)+|x=LkI + Φ

(k)−
u υ(k)−|x=LkR

û
(k)
L1

Φ
(k)+
F υ(k)+|x=LkI + Φ

(k)−
F υ(k)−|x=LkR

0

. (4.31)

4.5 Numerical applications and discussions

(b)

Lz

Lk/k+1

Ly

Lc Lc
(c) (d)

Waveguide 1

Coupling element c
Unit cell k

(a) 

x

y
0

z
Unit cell k+1

Waveguide 1

Waveguide 2

Fig. 4.3. Finite element model. (a): two waveguides coupled by a coupling element, (b): a unit cell k/k+1, (c): a
simple coupling element, (d): a complex coupling element.

In this part, the WFEM is applied to analyze the multi-mode propagation and diffusion. The
unit cells k and k+1 with Lk/k+1 = 50a0, Ly = 300a0 and Lz = 300a0 (a0 is the lattice pa-
rameter) as presented in Fig.4.3(b). The coupling element with Lc = 25a0 for simple coupling
condition as shown in Fig.4.3(c) and Lc = 100a0 for complex coupling condition as shown in
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Fig.4.3(d). Materials Aluminum (Al) and Copper (Cu) are used here. The Young’s modulus E
is 70 GPa for Al and 110 GPa for Cu, linear mass density ρ is 2.7 g/cm3 for Al and 8.96 g/cm3

for Cu. The damping lose factor η=1e−4. Unit cells k and k+1 are meshed into 16 3D elements
respectively, coupling element for simple coupling condition is meshed into 16 3D elements but
64 3D elements for complex coupling condition.

4.5.1 Dispersion relation

The dispersion relation of unit cell k is calculated by WFEM as shown in Fig.4.4. The real
part R(κj) of wavenumber is the phase shift per unit length and the imaginary part I(κj) means
the attenuation per unit length. Only the positive waves with real and imaginary parts are il-
lustrated due to the wavenumbers of the negative waves and positive waves are symmetric with
respect to x-axis. The frequency is normalized as ω/ω0, in which ω0 is the first nature frequency
of the unit cell. The blue lines represent the results from SSG theory and black lines denote the
CT. The curve by SSG is close to the one by CT at low frequency. But the difference between
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Fig. 4.4. Dispersion relation of unit cell k by SSG and CT.

SSG and CT becomes more obvious as frequency increases. On the other hand, the value of
wavenumber κ by SSG is smaller than CT at same frequency, especially for bending, tension
and torsion modes. This phenomenon can be explained as: the potential energy density in SSG
theory is a function of strain, first gradient of strain and second gradient of strain, which leads
to the dynamical equilibrium equation being a high order partial differential function composed
of classical part and non-classical part. Due to the existence of non-classical parts containing
higher-order parameters, the interactions between microscopic particles within the structure are
non-local or long-range, which hardened the stiffness of the material and caused the wavenum-
ber value to decrease.

In order to verify the WFEM results, the analytical methods referring to the tension, torsion
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and Timoshenko bending vibration [226] are used. The results from analytical methods match
the ones from WFEM, but the difference between them becomes more obvious as frequency
increases. Besides the tension, torsion and bending modes, there are high-order modes that
analytical methods can not predict. Note that the normalized cut-on frequency for the complex
thickness contractional wave 1 [210] is 23 by CT, instead of 26 by SSG, and the second-order
bending wave cuts-on at 13 by CT but 15 by SSG. Other waves such as 2 and 3 are more com-
plex, which lead to confusions in the wave modes classification.

Here, the aliasing effects should be introduced. The practical implementation of the pro-
posed method arises two main problems. The first one is choice of unit cell’s size whose
value cannot be arbitrary. The second one is the pertinent frequency band under considera-
tion. Along the propagation direction, the chosen finite element must then correctly represent
a part of propagating wave along the propagation axis. So, based on a kind of Shannon space
theorem, pertinent wavelengths or wavenumbers κj should be connected to the propagation dis-
tance: Re(κj(ω)) <π/Lk. However, it should be pointed that this value is too far removed
from practical applications. Practically, wavenumbers prediction should start at around 6 to
10 elements per wavelength. As a result, errors and deviations are expected to appear around
Re(κj(ω)) <π/3Lk or Re(κj(ω)) <π/6Lk. large values of Lk will limit the wavenumber va-
lidity domain, and consequently the given frequency band leading to aliasing. Small values
of the propagation distance Lk will lead to two difficulties. The first one is connected to the
nature of the employed finite elements. Depending on the cross section shape, Lk should re-
spect the strain and stress intrinsic limitations. The second problem is mainly numerical. Small
propagation distances will lead to eigenvalues close to unity.

4.5.2 Effects of higher order parameters

As mentioned in previous section, the dispersion relations are influenced by the higher-order
parameters ai(i = 1, ..., 5), bj(j = 1, ..., 7) and ck(k = 1, ..., 3) in the SSG framework. In order
to study the effects of these parameters on the results, each parameter is multiplied by a ratio
(δaai, δbbj , δcck) and the influence of these parameters on the results will be analysed by chang-
ing the value of δa, δb, δc as -100, -10, -1, -0.5, 0, 0.5, 1, 10, 100. In this work, four different
cases are presented. Case 1: δa, δb, δc change at the same time. Case 2: δa changes only. Case
3: δb changes only and in case 4: δc changes only.

The joint effects of ai, bj and ck on the bending and tension dispersion relations includ-
ing real part and imaginary part are presented in Fig.4.5(a) and Fig.4.6(a) respectively. When
δa= δb= δc=-100, the value of wavenumber is the largest in real part but smallest in imaginary
part. When δa= δb= δc=100, the value of wavenumber is the smallest in real part but largest in
imaginary part. On the other hand, as the ratio increases, the value of the real part decreases
but the imaginary value increases. What is more, the individual effects of ai, bj and ck on the
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Fig. 4.5. Effects of higher order parameters for bending.

value of wavenumber are shown in Fig.4.5(b), Fig.4.5(c), Fig.4.5(d) and Fig.4.6(b), Fig.4.6(c),
Fig.4.6(d). It can be clearly seen that each parameter has an impact similar to that of case 1, that
is, the value of the real part decreases but the imaginary value increases as the ratio increases.
However, the difference between these three cases is that parameters ai have the biggest impact
on the results but parameters ck have the smallest impact on the results.

In order to specifically discuss the influence of the parameters on the results, a rate of

Table 4.1. Effects of higher order parameters to real and imaginary part of bending (ω/ω0=30).

δa/b/c -100 -10 -1 -0.5 0 0.5 1(SSG) 10 100
∆κ(δa, δb, δc) 35.87 9.69 3.92 3.42 1.94(CT) 0.48 0 -5.24 -23.19

∆κ(δa, δb=δc=1) 24.54 6.63 2.68 2.34 1.33 0.33 0 -3.59 -15.87
∆κ(δb, δa=δc=1) 5.66 1.53 0.62 0.54 0.31 0.08 0 -0.83 -3.66
∆κ(δc, δa=δb=1) 1.89 0.51 0.21 0.18 0.10 0.03 0 -0.28 -1.22

change for wavenumber is defined as: ∆κ = (κ− κSSG)/κSSG × 100%, in which κ is the value
of wavenumber under different parameter ratio, κSSG is the value of wavenumber by SSG the-
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Fig. 4.6. Effects of higher order parameters for tension.

Table 4.2. Effects of higher order parameters to real and imaginary part of tension (ω/ω0=30).

δa/b/c -100 -10 -1 -0.5 0 0.5 1(SSG) 10 100
∆κ(δa, δb, δc) 37.75 10.20 4.12 3.59 2.04(CT) 0.51 0 -5.12 -24.41

∆κ(δa, δb=δc=1) 26.43 7.14 2.89 2.52 1.43 0.36 0 -3.86 -17.09
∆κ(δb, δa=δc=1) 7.55 2.04 0.82 0.72 0.41 0.10 0 -1.10 -4.88
∆κ(δc, δa=δb=1) 3.78 1.02 0.41 0.36 0.20 0.05 0 -0.55 -2.44

ory (δa= δb= δc=1). ∆κ is then calculated when normalized frequency is chosen as 30 under
different parameter ratio. As shown in Tab. 4.1 for bending and Tab. 4.2 for tension, with the
ratio of parameters increases, the value of ∆κ decreases. At the same ratio of parameter, δa, δb
and δc together have a bigger impact on the results than their respective effect on the results. For
example, ∆κ=35.87 for bending and ∆κ=37.75 for tension when δa=δb=δc=-100; ∆κ=24.54 for
bending and ∆κ=26.43 for tension when δa=-100, δb=δc=1; ∆κ=5.66 for bending and ∆κ=7.55
for tension when δb=-100, δa=δc=1; ∆κ=1.89 for bending and ∆κ=3.78 for tension when δc=-
100, δa=δb=1. On the other hand, the sum of the value ∆κ(δa, δb=δc=1), ∆κ(δb, δa=δc=1) and
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∆κ(δc, δa=δb=1) is approximately equal to the combined value ∆κ(δa, δb, δc). What is more,
When δa = δb = δc=0, the result belongs to the CT. When δa = δb = δc=1, the result belongs to
the SSG.

4.5.3 Diffusion through a simple coupling element
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Fig. 4.7. Absolute values of diffusion coefficients by SSG and CT (the material of coupling element is Cu, unit
cell k and k+1 are Al).

In this part, the diffusion is discussed through a simple coupling element which is shown in
Fig.4.3(c), firstly, when the material of coupling element is same as the waveguides, the incident
waves will be fully transmitted without reflection. The value of transmission coefficient is 1
and the value of reflection coefficient is 0. Secondly, when the material of coupling element
is Cu and the material of waveguides are Al, there exist wave reflection and transmission. The
resulting R and T coefficients can be illustrated by Eq. 4.20. As shown in Fig.4.7, the diffusion
coefficients including bending, tension and torsion modes are presented by CT and SSG theory.
The blue lines represent the results from SSG theory and black lines denote the CT. The curve
by SSG is close to the one by CT at low frequency. The difference between SSG and CT
becomes more obvious as frequency increases. For bending, tension and torsion modes, the
value of reflection coefficient by CT is bigger than the one by SSG but the value of transmission
coefficient by CT is smaller than the one by SSG. The difference between SSG and CT diffusion
coefficients is due to the size effect, which is caused by the non-local interactions in the micro-
sized structures. Higher order parameters exert stiffness-hardening mechanisms especially at
high frequency. In order to verify the WFEM results, a state space method [227] is used and the
results from two different methods match each other well.
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4.5.4 Diffusion through a complex coupling element

In order to study the wave diffusion under a complex coupling condition, as shown in
Fig.4.3(d), first of all, defining the the materials of coupling element, unit cell k and k+1 are
Al, the diffusion model of coupling element is built by SSG theory with higher-order param-
eters, the diffusion models of unit cell k and k+1 are built by CT. The R and T coefficients
can be calculated from Eq. 4.31 including bending, tension and torsion modes. As shown in
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Fig. 4.8. Absolute values of diffusion coefficients (the materials of coupling element, unit cell k and k+1 are Al).

Fig. 4.8, The black lines denote the WFEM results. As a result, the value of R representing the
non-classical part of reflection is no longer 0, and the value of T representing the non-classical
part of transmission is no longer 1. The influence of non-local interactions caused by higher-
order parameters can be reflected by this model. On the other hand, an analytical method [228],
shown by the red lines, is used to valid the WFEM results for bending and tension. As we can
see, for the reflection coefficient, the result obtained by WFEM is very close to the one by the
analytical method at low frequency, but the results are different at high frequencies. For the
transmission coefficient, the results by WFEM matches the results by analytical method well.

In addition, the joint influence of classical parameters (i.g., Young’s modulus, Poisson’s
ratio and mass density) and higher-order parameters of material on diffusion is also a very
meaningful study. Defining the material of coupling element is Cu, unit cell k and k+1 are Al,
the diffusion model of coupling element is built by SSG theory with higher-order parameters,
the diffusion models of unit cell k and k+1 are built by CT. The R and T coefficients including
bending, tension and torsion modes can be illustrated by Eq. 4.31 as well. As shown in Fig.4.9,
the black lines denote the WFEM results and the red lines represent the results from an analyti-
cal method [228]. The diffusion is different from the case presented in Fig.4.8. This shows that
the impedance mismatch is not only due to the non-local interactions caused by higher order
parameters but also the local interactions caused by classical parameters.
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Fig. 4.9. Absolute values of diffusion coefficients (coupling element is Cu, unit cell k and k+1 are Al).

4.5.5 Forced response
In this part, the forced response for waveguide 1 is discussed, as presented in Fig. 4.3(a),

the waveguide 1 consists of 10 unit cells. There are two boundary conditions in this study: One
is that left end of waveguide 1 is clamped, right end of waveguide 1 is free (C-F), another is
that left and right ends of waveguide 1 are free (F-F). A harmonic force with a unit amplitude
is loaded at center point of right end along z direction. Then, the amplitude of displacement at
center point of right end is calculated out on each frequency according to D′u′=F′, in which
D′ is the global dynamical stiffness matrix of waveguide assambled from a unit cell dynamical
stiffness matrix D.

The forced responses for C-F and F-F doundary conditions are shown in Fig. 4.10(a) and
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(b) F-F boundary condition.

Fig. 4.10. Forced response of waveguide 1 by SSG and CT.

Fig. 4.10(b) respectively by SSG theory and CT. It can be noticed that resonances are well
predicted in both theories. The comparison between SSG theory and CT shows that at low fre-
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quency, the forced response by SSG confirms to CT well. On the other hand, the discrepancies
of forced responses between CT and SSG increase with frequency increases. Wave propagation
is significantly affected by the long-range interactions in micro-sized structure. The input vibra-
tion energy can be transferred both by propagating waves and other evanescent waves, which
decay rapidly in the near field of the excitation.

4.5.6 Wave shapes
The study of wave shapes at different frequency is another important part for understanding

the dynamical characteristics of structures. In this part, the wave shapes for bending (see in
Fig.4.11) and tension (see in Fig.4.12) are discussed by SSG and CT.

As shown in Fig.4.11, the real part of bending modes by SSG and CT are presented. At
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Fig. 4.11. Bending modes (real part) by SSG and CT.

low frequency such as ω/ω0=0.1, the wave shape by CT is nearly the same as the one by SSG.
However, with the frequency increase, the difference of wave shape between CT and SSG is
more oblivious. For instance, the amplitude direction of wave shape by CT is opposite to the
one by SSG when ω/ω0=12.

On the other hand, the real part of tension modes by SSG and CT are shown in Fig.4.12. As
we can see, at low frequency such as ω/ω0=0.1, the wave shape by CT is also nearly the same
as the one by SSG. When ω/ω0=4, the amplitude direction of wave shape by CT is opposite to
the one by SSG, and the value of wave shape amplitude by CT is bigger than the one by SSG.
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Fig. 4.12. Tension modes (real part) by SSG and CT.

What is more, when ω/ω0=12 or 20, the amplitude value by CT is smaller than the one by SSG.

4.6 Conclusions

In this chapter, SSG theory is used for the multi-mode propagation and diffusion analysis
within the WFEM framework. Some conclusions in our work are addressed as follow:

(i) The constitutive relations of 3D micro-sized model are introduced in the SSG theory
framework. The displacement vector is derived by employing the six quin-tic Hermite poly-
nomial shape function. The weak formulations including element stiffness, mass matrices and
force vector are calculated by using the Hamilton’s principle and global dynamic stiffness ma-
trix of a unit cell is assembled. The reason for combining SSG theory and WFEM is that the
characteristics of micro-sized medias can be interpreted by SSG theory and the dynamical prop-
erties of complex periodic structures can be investigated through WFEM.

(ii) Free wave propagation characteristics are expressed by solving eigenvalue problems
through WFEM. The dispersion relation for a 3D beam is illustrated by SSG and CT. The curve
by SSG is close to the one by CT at low frequency. But the difference between SSG and
CT becomes more obvious as frequency increases. On the other hand, the κ value by SSG is
smaller than CT at same frequency, especially for bending, tension and torsion modes. This
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phenomenon can be explained as: the potential energy density in SSG theory is a function
of strain, first gradient of strain and second gradient of strain, which leads to the dynamical
equilibrium equation being a high order partial differential function composed of classical part
and non-classical part. Due to the existence of non-classical parts containing higher-order pa-
rameters, the interactions between microscopic particles within the structure are non-local or
long-range, which hardened the stiffness of the material and caused the wavenumber value to
decrease.

(iii) The joint effects of ai, bj and ck on the bending and tension dispersion relations are
presented. What is more, the individual effects of ai, bj and ck on the dispersion relations are
studied as well. The effect of ai on the result is biggest and the effect of ci on the result is small-
est. The forced responses including two boundary conditions for waveguide are discussed. The
comparison between SSG theory and CT shows that at low frequency, the forced response by
SSG confirms to CT well. On the other hand, the discrepancies of forced responses between
CT and SSG increase with frequency increases. Wave propagation is significantly affected by
the long-range interactions in micro-sized structure.

(iv) The diffusion including R and T coefficients is confirmed through three different cases.
First: the material of coupling element is different to the waveguides, but the wave modes cal-
culation in waveguides and coupling element are based on the same theory (classical or SSG).
Second: the material of coupling element is same as the waveguides, the wave modes calcula-
tion in waveguides is based on the classical theory but SSG theory for coupling element. Third:
the material of coupling element is different to the waveguides, the wave modes calculation in
waveguides is based on the classical theory but SSG theory for coupling element. For the first
case, the diffusion curve by SSG is close to the one by CT at low frequency. However, the
difference between SSG and CT becomes more obvious as frequency increases. For the second
case, the value of R representing the non-classical part of reflection is no longer 0, and the
value of T representing the non-classical part of transmission is no longer 1. The influence of
non-local interactions caused by higher-order parameters can be reflected by this model. For
the third case, the impedance mismatch is not only due to the non-local interactions caused
by higher order parameters in the SSG theory model but also the local interactions caused by
Young’s modulus and mass density.
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5.1 Introduction

In chapter 4, SSG theory is applied for the multi-mode propagation and diffusion analysis
of a micro-sized beam. The wave propagation analysis is based on the WFEM1D. Meanwhile,
a large number of 2D full plate structures are wildly used in engineering. The propagation of
2D waves in these 2D full plates is more in line with the real situation. So, the exploration of
2D waves in 2D full plate structures is of great significance.

In this chapter, SSG theory is applied for a 2D full plate within WFEM2D framework.
Firstly, the CI method is applied to illustrate the NEP and conform the band structure and iso-
frequency contours. Then, a SA method is introduced for this 2D full plate to investigate the

97
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effects of higher order parameters on dispersion. Finally, some useful conclusions are discussed.

5.2 2D wave propagation analysis

A scheme for 2D periodic structure and its unit cell is given in Fig.1.11. The DOFs in the
unit cell are classified by the amplitudes of nodal displacements: [ûBd ûI] = [û1 û2 û3 û4

ûL ûB ûR ûT ûI]. The nodal forces are classified in the same way. There are two ways to
illustrate the wave propagation: Inverse form and direct form.

5.2.1 Inverse form of 2D wave finite element method

For the inverse form, the internal nodes are conserved since the dynamic condensation can
not be performed. the dynamical equation of motion is:

[K∗(λx, λy)− ω2M∗(λx, λy)]


û1

ûL

ûB

ûI

 = 0, (5.1)

in which K∗ and M∗ are explained in Eq. 1.74. Eq. 5.1 provides a way to analyze the wave
propagation in 2D periodic structures. The view of WFEM2D inverse form is fixing λx and λy,
the values of ω are calculated. The corresponding frequencies (ω) are sorted in the ascending
order ωi,j1,2,3,...k,...n. The k-th slowness surface is formed by ωi,jk . In addition, a convenient 2D
representation of the slowness surface is the band structure, which is obtained by plotting the
wave-numbers along the contour O–A–B–C–O as shown in Fig. 1.3(b).

5.2.2 Direct form of 2D wave finite element method

As shown in Fig.1.3(c), there exist two different situations to solve the direct form of
WFEM2D: θ′=0 and θ′ 6=0.

5.2.2.1 Wave propagation angle θ′=0

Suppose λy is given, which means the wave propagates along x direction, the dynamical
equation for 2D unit cell as shown in Eq.1.68 is written as:

1

λx

λ2
x

 A11 A1L A1B

AL1 ALL ALB

AB1 ABL ABB

+ λx

 B11 B1L B1B

BL1 BLL BLB

BB1 BBL BBB

+

 C11 C1L C1B

CL1 CLL CLB

CB1 CBL CBB


 ûb = 0,

(5.2)
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where ûb=[(û1)T, (ûL)T, (ûT
B)]T. The A, B and C are addressed in Appendix A. The quadratic

eigen-problem in Eq.5.2 can be solved using the following linearization:[
−C 0

0 I

](
ûb

λxûb

)
= λx

[
B A

I 0

](
ûb

λxûb

)
. (5.3)

In our work, assume that the wavenumber κy = 0, which means λy = 1. Then, wavenumber
κx can be solved from Eq.5.3 under different frequency.

5.2.2.2 Wave propagation angle θ′ 6=0

In this part, a solution strategy based on CI method is introduced to solve the NEP when
wave propagation angle is not equal to 0. As presented in Fig.1.3(c), define the wave propaga-
tion constants λx, λy as:

λx = e−iκθ′cos(θ′)Lx , λy = e−iκθ′sin(θ′)Ly . (5.4)

In Eq.5.4, the linear dimension of the cell along x direction is referred to as Lx, θ′ is heading
angle of the wave propagation and κθ′ means the wavenumber. In practice, the non-dimensional
wavenumber κ′ and the scaled heading angle β are introduced as:

κ′ = κθ′ [(Lxcosβ)2 + (Lysinβ)2]−
1
2 , tanβ =

Ly
Lx

tanθ′. (5.5)

Then, the wave propagation constants can be re-expressed as:

λx = e−iκ′cos(β), λy = e−iκ′sin(β). (5.6)

Consequently, Eq.1.67 will be re-written in the following form:

[Λ̂L(κ′, β)D(ω)Λ̂R(κ′, β)]ûb = 0. (5.7)

In our work, the frequency ω and heading β are fixed, all the eigenvalues κ′ can be solved
within a specific contour Γ of the complex plane corresponding to the eigen-vectors ûb:

D̂(κ′)ûb = 0, (5.8)

where D̂(κ′) ∈ Cn,n. The above NEP can be deduced using the contour integral method (CI)
which is based on the analysis of the moments related to the matrix D̂(κ′), as defined:

Ap =
1

2πi

∫
Γ

(κ′)pD̂(κ′)−1V̂dκ′, (5.9)
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with p ∈ N. In Eq.5.9, V̂(κ′) ∈ Cn,l is a probe matrix which can be chosen at random practi-
cally. Moments Ap contain the spectrum information of D̂(κ′) inside the contour Γ. So as to
illustrated the eigenvalues and eigenvectors, 2p moments are utilized to built the block Hankel
matrices B0 and B1 ∈ Cpn,pl as follows:

B0 =

 A0 . . . Ap−1

...
. . .

...
Ap−1 . . . A2p−2

 , B1 =

 A1 . . . Ap
...

. . .
...

Ap . . . A2p−1

, (5.10)

in which p ∈ N. Then, the Singular Value Decomposition (SVD) is expressed as:

B0 = VΣWH, (5.11)

which can be used to confirm the low rank approximation:

B0 ≈ V0Σ0WH
0 . (5.12)

Namely, a tolerance εSV D is introduced. Only the m leading singular values, which corre-
sponds columns of V andW , are reserved according to the sorting of the singular values:

σ1 ≥ · · · ≥ σm ≥ σSV D ≥ σm+1 ≈ · · · ≈ 0. (5.13)

After the algebraic manipulation, the eigenvalues of matrix B̂ can be calculated, which are
same as the ones by the original NEP (i.e. Eq.5.8) inside the contour Γ, as follows:

B̂ = VH
0 B1W0Σ−1, (5.14)

where B̂ ∈ Cm,m. Also, being si the eigenvectors of B̂, the original eigenvectors ûbi can be
retrieved from the first n rows of V0si. As a result, the NEP in Eq.5.8 is reformulated in terms of
a reduced sized linear eigenvalue problem with the same eigenvalues inside Γ. Here, assuming
that nsol is the number of eigenvalues within Γ and expecting that m ≥ nsol after the low rank
decomposition. In order to satisfy the condition above, the number of moments and columns of
the probe matrix have to be chosen as pl ≥ nsol. Here should be noted that p ≥ 1 is necessary
only if algebraic multiplicity solutions are higher than the one are expected. As a basic rule,
the maximum order of the moments 2p − 1 must keep small for the reasons of accuracy and
stability. In practice, a numerical approximation of the integral in Eq.5.9 is necessary. Set a
parametrization of the contour as:

Γ = γ0 + γ1(cost+ iγ2sint), (5.15)
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where 0 ≤ t ≤ 2π. Based on these circumstances, the integral is approximated by a N -point
trapezoidal rule, which causes to the discrete approximation of Eq.5.9, one arrives:

Ap ≈
γ1

N

N∑
j=1

(κ′)pjωjXj, (5.16)

in which κ′j is the integration point along Γ, ωj = (γ2costj + i sintj) is the weight and
D̂(κ′j)Xj = V̂ is the N linear system to be deduced. In order to ensure the numerical stability,
a shift and scale transformation is utilized to the spectrum. The monomial basis ((κ′− γ0)/γ1)p

is appiled in Eqs.5.9 and 5.16 in place of (κ′)p. The procedure above can be used to confirm the
wavenumbers of different wave propagation angles within a closed curve of the complex plane.

5.2.3 Sound transmission by second strain gradient elasticity

The transmission of sound through a 2D full plate is of interest in many applications such as
aerospace and automotive. There have been a number of researches of the acoustic performance
of infinite structures [229–231]. If we consider an external force vector Fe=[Fe

1 Fe
2 Fe

3 Fe
4 Fe

L

Fe
B Fe

R Fe
T Fe

I ] imposed on the unit cell by the acoustic pressure fields, the dynamic equation
Eq.1.67 will be re-written as:

Dûb = AF̂e
b, (5.17)

where D=Λ̂LDΛ̂R, A=Λ̂LΛ̂R, F̂e
b=[(F̂e

1)T (F̂e
L)T (F̂e

B)T]T are the external forces amplitudes on
node 1 and boundaries L, B. An oblique incident plane wave impinging the plate on one side is
concerned. The amplitude of this wave is pI . The interaction between this incident wave and
the plate create a reflected wave with amplitude pR on the same side, and a transmitted wave on
the other one with amplitude pT . The sound field on the incident side is then the superposition
of the incident and reflected waves:

P I = p(x, y, z)|z>0 = pIexp(−iκIzz) + pRexp(−iκRz z), (5.18)

where the common factor exp(i(ωt−κxx−κyy) has been ignored for legibility. The wavenum-
ber components κx, κy and κz have the relationship, as:

κ2
x + κ2

y + (κIz)
2 = κ2 = (

ω

cI
)2, (5.19)

in which cI is the speed of sound in the fluid of the incident side. In the same way, the sound field
on the transmission side includes only the transmitted wave propagating in the same direction
as the incident wave:

P T = p(x, y, z)|z<0 = pT exp(−iκTz z), (5.20)
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with the relation κ2
x + κ2

y + (κTz )2 = ( ω
cT

)2, in which cT is the speed of sound in the fluid on the
transmission side. Potential phase difference between the pressure fields leads to the amplitudes
complex of pR and pT . κx and κy are conserved across the plate, only κz component change
according to the nature of fluid. Assume that the fluid keep same on both sides, one arrives:

ρI = ρT = ρ, cI = cT = c. (5.21)

Then, we set θ∗ as the angle between the wave vector and the normal of the plate, while φ∗

gives the azimuthal angle of its orientation in the plane. As a result:

κx = κsinθ∗cosφ∗, κy = κsinθ∗sinφ∗, κz = κcosθ∗. (5.22)

The force loaded on the nodes of the FE model of the plate can be expressed from these two
pressure fields. Due to the pressure force is exerted along the normal to the plate, only non-
zero terms in the external force vector related to the DOFs in z direction on the incident and
transmission sides are considered, which are expressed as F̂eIb and F̂eTb respectively. Assume
ûeOb and F̂eO

b are the displacement and force vectors on all other DOFs. Eq.5.17 becomes:

 d
II DIO d

IT

DOI DOO DOT

d
TI DTO d

TT


 ûeIb

ûeOb
ûeTb

 =

 F̂eIb
F̂eO
b

F̂eTb

 =

 S(pI + pR)

0

SpT

, (5.23)

where S is the free surface of the element, which is identical on both sides. Doing condensation
for Eq.5.23, one arrives: [

d
II
c d

IT
c

d
TI
c d

TT
c

](
ûeIb
ûeTb

)
=

(
S(pI + pR)

SpT

)
. (5.24)

The interaction of fluid-structure is characterized by the continuity of normal particle veloc-
ity at the interface. For the incident side:

ρω2ûeIb =
∂P I

∂z
= −iκz(p

I − pR). (5.25)

What is more, for the transmission side:

ρω2ûeTb =
∂P T

∂z
= −iκzp

T . (5.26)

Then, the acoustic admittance introduced as:

Y = cos(θ∗)/(iωρc), (5.27)
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the displacements ûeIb and ûeTb can be expressed as:

ûeIb = Y (pI − pR), ûeTb = Y pT . (5.28)

ûeIb and ûeTb can be re-injected into Eq.5.24, leading to two scalar equations related to the
unknowns pR and pT , yields: d

II

c +
S

Y
−dITc

d
TI

c −dTTc −
S

Y


(
pR

pT

)
= pI

 d
II

c −
S

Y
d
TI

c

. (5.29)

Solving Eq.5.29, gives the acoustic transparency and absorption coefficients, as:

τ t =

∣∣∣∣pTpI
∣∣∣∣2 , τa = 1−

∣∣∣∣pRpI
∣∣∣∣2. (5.30)

Finally, the transmission loss (TL) for a plane wave is expressed as:

TL = −10log10τ
t. (5.31)

5.2.4 Numerical simulations of a 2D full plate

nxny

(a) A 2D full plate (b) A unit cell meshed into 16 3D elements

LxLy
xy
z

A unit cell

Lz

Fig. 5.1. A 2D full plate and its unit cells.

In this part, a 2D full plate is applied, as presented in Fig.5.1. The WFEM2D is used to
analyze the 2D wave propagation. The material of a unit cell is Aluminum (Al) with Lx = 20a0,
Ly = 16a0 and Lz = 1a0 (a0 is the lattice parameter). The Young’s modulus E is 70 GPa, mass
density ρ is 2.7 g/cm3. Damping lose factor η=1e−4. Each unit cell is meshed into 16 elements.

5.2.4.1 Wave propagation angle θ′=0

The dispersion relation of a unit cell is calculated by WFEM2D direct form and CI method
as shown in Fig.5.2. The real part R(κj) of wavenumber is the phase shift per unit length
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and the imaginary part I(κj) means the attenuation per unit length. Only the positive waves
with real and imaginary parts are illustrated due to the wavenumbers of the negative waves and
positive waves are symmetric with respect to x-axis. The frequency is normalized as ω/ω0,
in which ω0 is the first nature frequency of the unit cell. The blue lines represent the results
from SSG theory and black lines denote the CT. The curve by SSG is close to the one by CT
at low frequency. But the difference between SSG and CT becomes more obvious as frequency
increases. CI method can predict first three modes (1: bending, 2: shearing, 3: tension) only.

In order to verify the WFEM results, the analytical methods referring to the tension, shear-
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Fig. 5.2. Dispersion relation from WFEM2D direct form (θ′ = 0, 1: bending, 2: shearing, 3: tension).

ing and bending vibration [226] are used. The results from analytical methods match the ones
from WFEM CT, but the difference between them becomes more obvious as frequency in-
creases. Besides the tension, shearing and bending modes, there are high-order modes (e.g.,
modes 4, 5, 6) that analytical methods can not predict.

Next, the band structure is introduced based on WFEM2D inverse form. As presenred
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Fig. 5.3. Band structure from WFEM2D inverse form (red lines: first three modes from WFEM2D direct form, 1:
bending, 2: shearing, 3: tension).
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in Fig.5.3, the five lowest branches of the normalized frequency spectrum along the boundary
(O-A-B-C-O) of the irreducible first Brillouin zone are calculated. The blue lines represent the
results from SSG theory and black lines denote the CT. The curve by SSG is close to the one
by CT at low frequency. But the difference between SSG and CT becomes more obvious as
frequency increases. On the other hand, the frequency value by SSG is higher than CT at same
κ-space position. This phenomenon can be explained as: the potential energy density in SSG
theory is a function of strain, first gradient of strain and second gradient of strain, which leads
to the dynamical equilibrium equation being a high order partial differential function composed
of classical part and non-classical part. Due to the existence of non-classical parts containing
higher-order parameters, the eigenvalue ω calculated by the dynamical equilibrium equation of
SSG theory is bigger than the one of CT at same κ-space position. In order to valid the band
structure, a Component Mode Synthesis (CMS) method [113] is used, as shown in Fig. 5.3, the
result by WFEM2D inverse form matches CMS well.

5.2.4.2 Wave propagation angle θ′ 6=0
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Fig. 5.4. Dispersion relation by CI method (1: bending with θ′= 10◦, 2: bending with θ′= 30◦, 3: bending with
θ′= 60◦, 4: shearing with θ′= 10◦, 5: shearing with θ′= 30◦, 6: shearing with θ′= 60◦, 7: tension with θ′= 10◦,
8: tension with θ′= 30◦, 9: tension with θ′= 60◦).

In this part, the situation for wave propagation angle θ′ 6=0 is discussed. The dispersion
relation of a unit cell is illustrated by CI method as shown in Fig.5.4. Only the positive bending,
shearing and tension waves with real and imaginary parts are discussed. The frequency is
normalized as ω/ω0, in which ω0 is the first nature frequency of the unit cell. The black lines
represent the results when θ′= 10◦, blue lines denote the results when θ′= 30◦ and red lines
mean the results when θ′= 60◦. The curve by SSG is close to the one by CT at low frequency.
But the difference between SSG and CT becomes more obvious as frequency increases.

On the other hand, for the same wave, the wave frequency at which the wave reaches the
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FBz boundary is different under different wave propagation angles θ′. Here we take bending
(1, 2, 3) by SSG as an example, for bending 1, the wave reaches the boundary of the FBz at
ω/ω0=50, for bending 2, the wave reaches the boundary of the FBz at ω/ω0=50, for bending 3,
the wave arrives the boundary of the FBz at ω/ω0=70.

5.2.4.3 Slowness surfaces
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(a) The 1st slowness surface in the first quadrant.
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(c) The 3rd slowness surface in the first quadrant.

Fig. 5.5. The first three slowness surfaces in the first quadrant by CT and SSG.

The first three slowness surfaces in the first quadrant, as presented in Fig. 5.5, are discussed
in the frequency range based on SSG and CT. The 3D surfaces are symmetric with respect to
κx and κy. The slowness surface position by SSG is higher than CT. This phenomenon can be
explained as: the potential energy density in SSG theory is a function of strain, first gradient of
strain and second gradient of strain, which leads to the dynamical equilibrium equation being a
high order partial differential function composed of classical part and non-classical part. Due
to the existence of non-classical parts containing higher-order parameters, the eigenvalue ω
calculated by SSG theory is bigger than the one of CT at same κ-space position.
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5.2.4.4 Iso-frequency contours

As shown in Fig. 5.6, the iso-frequency contours are illustrated through CI method. In order
to calculate the iso-frequency contours, the normalized frequencies are chosen at 30 and 65. The
direction, perpendicular to the iso-frequency line, indicates the direction of wave propagation
and more details will be discussed in next section. At low frequency, as shown in Fig. 5.6(a),
the iso-frequency lines by SSG are close to CT. However, there exists a big difference between
SSG and CT at higher frequency, which means that the high-order parameters have a significant
influence on the value of iso-frequency contours at higher frequency. What is more, the CMS
method is used for the validation, the results by CI match the results by CMS well.
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Fig. 5.6. The iso-frequency contours by CT and SSG.

5.2.4.5 Energy flow vector fields

The energy flow vector fields by SSG and CT on the first two slowness surfaces are studied
in this part. As shown in Fig. 5.7, the direction of arrow indicates the direction of energy
flow and the length of arrow means the gradient value of energy flow. The blue arrow from
SSG and black arrow from CT almost overlap, which indicates that the gradient and direction
of energy flow by SSG are basically the same as that by CT at the same κ-space position.
At low frequency, as shown in Fig. 5.7(a), the dynamic energy spreads in all directions and
is perpendicular to the iso-frequency contour. At higher frequency such as 65, as shown in
Fig. 5.7(b), in the middle part, the energy spreads outward. But at the edge, the energy spreads
to the inside. The distance from any point on the iso-frequency contour to the center point of the
figure represents the wave number κθ′ with θ′ for plane wave propagation. On the first slowness
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Fig. 5.7. The energy flow vector fields by CT and SSG.

surface, the position of the iso-frequency contour by SSG is located inside the one by CT, which
means that κθ′ by SSG is smaller than the one by CT at same wave propagation angle θ′. On
the second slowness surface, whose iso-frequency contour position by SSG is located outside
the one by CT at the edge, but inside the one by CT in the middle.

5.2.4.6 Sound transmission analysis

In this part, the transmission loss of the 2D full plate is presented by SSG and CT. Fig. 5.8
shows the oblique incidence TL for plane wave with incidence angles θ∗=45◦, φ∗=0. At low
frequencies, the TL by SSG matches the one by CT. The resonances of the wave modes have a
particularly strong influence on the TL. Particularly, the dips around the first three resonances.
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Fig. 5.8. Transmission loss of the 2D full plate (θ∗ = 45◦, φ∗ = 0).
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On the other hand, the first resonance frequency by SSG is smaller than the one by CT. But for
other resonance frequencies, the ones by SSG nearly match the ones by CT. In order to valid the
result from WFEM CT, a analytical method called Love-Kirchoff theory [232] is used, which
shows that the agreement between the analytical and WFEM CT predictions is excellent at low
frequency.

5.3 Sensitivity analysis of higher order parameters

The sensitivity analysis is based on the Fourier Amplitude Sensitivity Test (FAST)[233].
FAST is a global sensitivity analysis technology under a variance decomposition which can
offer information about sensitivity covering the whole design space and can illustrate interaction
effects between input parameters. It is an efficient technique that allows estimation of the “main

1

Sensitivity analysis of higher order parameters

The Fourier Amplitude Sensitivity Test (FAST)

Input factors
x=(x1, x2,...,xn)

The model
y=f (x) The FAST 

method

x1

x2

xn

...

D

Empirical distribution of y

Output

General scheme of  Sensitivity analysis 
method (D: variance)

D

Fig. 5.9. The general scheme of SA method. The total variance of output is apportioned to the various input factors.

effect” (also named first order term) and the so-called “Total Sensitivity Index” (TSI). The
general scheme of SA method is presented in Fig. 5.9.

5.3.1 Fourier amplitude sensitivity test formulation
Defining a model as a real valued function f over K = [0, 1]n, which can map a vector of

input parameters x = (x1, ..., xn) to a scalar output y = f(x). The unique partition of f is
expressed as:

y = f(x1, x2, ..., xn) =
∑

U∈[1,n]

fU(x|U)dx|U

= f0 +
n∑
i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + ...+ f1,...,n(x1, ..., xn),

(5.32)



110 Chapter 5. Dynamic and sensitivity analysis of a two-dimensional full plate

which provides that each function fU has zero mean over its range of variation K|U , which
means the subspace of K spanned by the dimensions contained in subset U . This writes:∫

K|U
fU(xU)dxU = 0. (5.33)

The decomposition offered by Eq.5.32 is called the high order model representation (HDMR)
[234] or Hoeffding decomposition.

For a given set of indices U=(i1, ..., ik), the partial variance is therefore the variance of fU :

DU =

∫
K|U

fU(xU)2dxU . (5.34)

The sensitivity index, which is represented as the ratio of the variance of the function fU to
the total variance of the model, is relative to the set U :

SI(U) =
DU

D
. (5.35)

The calculation of all the 2n sensitivity indices is needed to fully represent the model, which
requires long computational time. However, most information of a parameter’s influence can be
obtained in the first-order sensitivity index and the total sensitivity index, which can be deduced
more efficiently with the FAST method.

FAST method can be used to avoid the evaluation of the multidimensional integrals needed
to compute the fi functions by introducing a single 1D integral along a space-filling curve in
the design space. This curve is defined to be periodic with different periods relative to each
parameter. The sampling function given by [235]:

xi =
1

2
+

1

π
arcsin(sin(ωis+ ϑi)). (5.36)

The frequencies ωi are integers chosen to minimize interference between parameters [236].
ϑi are chosen real numbers with random in the interval [0, 2π]. The integer set frequencies {ωi}
is interference free up to order M under the condition of all linear combinations:

n∑
i=1

viωi 6= 0, (5.37)

where vi ∈ Z and
∑n

i=1 |vi| < M , M denotes a parameter at the investigator disposition. Due
to all the frequencies are integers, the resulting function shows 2π-periodic characteristics with
respect to variable s. Then, a sampling is illustrated by utilizing N > 2ωn + 1 samples in the
[0, 2π] interval. The discrete Fourier transform ŷk can be easily confirmed via the model output
yk = f(xk) on each sample.
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The values of the frequencies ωi for M=4 and less than 19 parameters have been given by

Table 5.1. Set of integer frequencies ωi for 14, 15 and 16 parameters with M=4 (n is parameters
number).

n Frequency set
14 {87, 133, 195, 251, 277, 315, 355, 387, 409, 429, 439, 445, 453, 457}
15 {67, 143, 189, 251, 307, 333, 371, 411, 443, 465, 485, 495, 501, 509, 513}
16 {73, 169, 245, 291, 353, 409, 435, 473, 513, 545, 567, 587, 597, 603, 611, 615}

[233] in Tab. 5.1. The total variance of the function in the design space is calculated through
Parseval’s theorem as:

D =

∫
K

(
f 2(x)− f 2

0

)
dx ≈

N∑
k=1

y2
k =

N∑
k=1

ŷ2
k. (5.38)

The sensitivity contribution of parameter i is then approximated by summing the coefficients
indexed under the M lowest multiples of ωi:

Di =
M∑
k=1

ŷ2
kωi
. (5.39)

The main effect is confirmed as:

ME(i) =
Di

D
. (5.40)

On the other hand, the total sensitivity index of parameter i is then given as:

TSI(i) = 1− D∼i
D

, (5.41)

where D∼i is the partial variance relative to all parameters but i.

5.3.2 Numerical applications of sensitivity analysis

Table 5.2. Sampling bounds for inputs.

Input factors Lower bound Upper bound Samples
ai(i = 1, ..., 5) −100ai 100ai 5000
bi(i = 1, ..., 7) −100bi 100bi 5000
ci(i = 1, ..., 3) −100ci 100ci 5000

In this part, the FAST method is used to analysis the sensitivity effects of 15 higher order
parameters for the dispersion relation including bending, shearing and tension modes, as shown
in Fig.5.2. The sampling bounds for inputs are given in Tab.5.2.
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5.3.2.1 Statistics of the output set with inputs for dispersion relation
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Fig. 5.10. Mean value ± standard deviation.

Firstly, the statistics of the output set with inputs (ai, bi, ci) for dispersion relation (bending,
shearing and tension) are discussed. As shown in Fig.5.10, several frequency zones can be iden-
tified. For real part of bending wave, mean absorption as well as standard deviations increase
steeply up to 50, then decrease till to 280 and increase after 280 again. For real parts of shearing
and tension waves, mean absorption and standard deviations increase up to 230 and 370 respec-
tively and then decrease. On the other hand, for all the modes (bending, shearing and tension),
as frequency increase, the range between +standard deviation and−standard deviation increase
continuously.The 15 higher order parameters has the greatest impact on bending wave.

Then, the Normalized Standard Deviation (NSD) is shown in Fig.5.11. For real part of
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Fig. 5.11. NSD (ratio of standard deviation to mean value).

bending mode, the maximum value of NSD lies between 300 and 350 Hz, with a moderate and
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increasing mean value of κx. It imposes a focus on sensitivity indexes around 350. However,
for real parts of shearing and tension modes, the values of NSD increase with the frequency
increase.

5.3.2.2 Sensitivity analysis for dispersion relation

In this part, SA with 15 higher order parameters is discussed. The influence of each input
parameter on the result including bending, tension and shearing modes are illustrated.

Bending mode :

Starting with the SA for bending mode firstly. The influences of ai on the result are shown in
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Fig. 5.12. Sensitivity analysis of ai for bending.
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Fig. 5.13. Sensitivity analysis of bi for bending.

Fig.5.12, the sensitivity index for a2 increases first and then decreases with frequency increases
for the real part. The sensitivity indexes for a1, a3, a4, a5 decrease with the frequency increases
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for both real and imaginary parts. The parameter a4 has the biggest influence to the result.
The influences of bi on the result are shown in Fig.5.13, the sensitivity index for b7 decreases

first and then increases with the frequency increases for the real part. The sensitivity indexes for
b1, b2, b3, b4, b5 and b6 increase with the frequency increases for both real and imaginary parts.
Furthermore, the parameter b6 has the biggest influence to the result.

The influences of ci on the result are shown in Fig.5.14, the sensitivity index for c1 and c3
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Fig. 5.14. Sensitivity analysis of ci for bending.

decrease first and then increase with the frequency increases for both real and imaginary parts.
The sensitivity index for c2 increases with the frequency increases for both real and imaginary
parts. On the other hand, the parameter c1 has the biggest influence to the result at low frequency
but c2 has the biggest influence to the result at higher frequency.

Tension mode :

Then, the SA for tension mode is discussed. The influences of ai on the result are shown
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Fig. 5.15. Sensitivity analysis of ai for tension.
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in Fig.5.15, the sensitivity index for each ai nearly keep a constant value with the frequency
increases for both real and imaginary parts, which indicates that the effect each ai on the result
is continuous. On the other hand, the parameter a5 has the biggest influence to the result.

The influences of bi on the result are shown in Fig.5.16, the sensitivity indexes for b6 and b7
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Fig. 5.16. Sensitivity analysis of bi for tension.

increase with the frequency increases for the real and imaginary parts. The sensitivity indexes
for b1, b2, b3, b4 and b5 stay the same first and then increase with the frequency increases for
both real and imaginary parts. Furthermore, the parameter b7 has the biggest influence to the
result.

The influences of ci on the result are shown in Fig.5.17, the sensitivity indexes for c1, c2
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Fig. 5.17. Sensitivity analysis of ci for tension.

and c3 decrease with the frequency increases for both real and imaginary parts. However, the
reduction is very slow. On the other hand, the parameter c1 has the biggest influence to the
result.
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Shearing mode :

Last, the SA for shearing mode is presented. The influences of ai on the result are addressed
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Fig. 5.18. Sensitivity analysis of ai for shearing.

in Fig.5.18, the sensitivity index for each ai decrease with the frequency increases for real part.
But the influence of a3 on the result decreases first and then increases for the imaginary part.
On the other hand, the parameter a4 has the biggest influence to the result.

The influences of bi on the result are shown in Fig.5.19, the sensitivity indexes for b6 and
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Fig. 5.19. Sensitivity analysis of bi for shearing.

b7 increase with the frequency increases for the real and imaginary parts. On the other hand,
the sensitivity indexes for b1, b2, b3, b4 and b5 keep the same at low frequency and then increase
at high frequency for both real and imaginary parts. Furthermore, the parameter b6 and b7 have
the biggest influences to the result.

The influences of ci on the result are shown in Fig.5.20, the sensitivity index for c1, c2 and
c3 increase with the frequency increases for both real part. However, the sensitivity indexes for
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Fig. 5.20. Sensitivity analysis of ci for shearing.

c1, c2 and c3 increase first and then decline slowly with the frequency increase. On the other
hand, the parameter c3 has the biggest influence to the result at low frequency but parameter c1

has the biggest influence to the result at high frequency. In order to valid the results from FAST,
a method called Fourier Amplitude Sensitivity Test with Correlation (FASTC) [237] is used for
bending, shearing and tension modes. As we can see, the results from FAST match the ones
from FASTC well.

5.4 Conclusions

In this chapter, SSG theory is used for the exploration of 2D waves in a 2D full plate within
the WFEM framework. Some conclusions in our work are addressed as follow:

(i) 2D wave propagation are analyzed including direct and inverse forms. Two different
situations are discussed to solve the direct form of WFEM2D. The first one is wave propaga-
tion angle θ′=0, the second one is wave propagation angle θ′ 6=0. In order to study the second
situation, a solution strategy based on the CI method is introduced to solve the NEP within
the WFEM2D framework. What is more, the transmission of sound through a 2D full plate is
introduced by SSG theory.

(ii) The dispersion relation of a unit cell is calculated by WFEM2D direct form and CI
method, and the band structure is introduced based on WFEM2D inverse form. The curve by
SSG is close to the one by CT at low frequency. But the difference between SSG and CT be-
comes more obvious as frequency increases. The result by WFEM2D inverse form matches
CMS and WFEM2D direct form well.
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(iii) The dispersion relation by CI method under different wave propagation angles are dis-
cussed. The first three slowness surfaces in the first quadrant are presented. The iso-frequency
contours are illustrated through CI method. Then, energy flow vector fields by SSG and CT
on the first two slowness surfaces are studied which shows that the dynamic energy spreads in
all directions and is perpendicular to the iso-frequency contour at low frequency. however, at
higher frequency, the energy spreads outward in the middle part but spreads to the inside at the
edge.

(iv) The SA based on the FAST is introduced. The statistics of the output set with in-
puts (ai, bi, ci) for dispersion relation (bending, shearing and tension) are discussed. As the
frequency increase, the range between +standard deviation and −standard deviation increase
continuously. The 15 higher order parameters have the greatest impact on bending wave. The
NSD is illustrated. Furthermore, SA for dispersion relation is introduced.
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6.1 Conclusions

The main findings and contributions of the conducted work are summarized below:

(i) Chapter 1 presents the results of the conducted literature survey. The survey concerns
the review of previous researches on periodic structure, of existing methods on the studying of
micro-sized medias. The existing methods for studying micro-sized structures including contin-
uum model and LSM are introduced. What is more, the plane wave expansion, modified TMM,
WFEM, homogenization methods and MOR method are discussed for the research of periodic
structures.

(ii) Chapter 2 provides a method which combines SSG theory with WFEM to analyse the dy-
namic behavior of 1D micro-sized structures. A continuum model for Euler-Bernoulli bending
beam and torsional bar by SSG are introduced. The strong forms including governing equa-
tions and boundary conditions are illustrated by applying the variation method. The LSM of a
micro-sized Euler-Bernoulli bending beam and torsional bar are discussed. After Fourier series
transforming, the continuous governing equations of motion are determined and the variational,
or weak, formulations are then calculated. The dispersion relations and forced responses for
bending and torsion in micro-sized structures are calculated by SSG.
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(iii) Chapter 3 illustrates the dynamical behaviors of a 2D beam grid within the WFEM
framework. The analysis is restricted to out-of plane vibration including bending and torsion.
The weak formulas of an element are illustrated and the global dynamic stiffness matrix of a
unit cell is assembled. WFEM inverse form for 2D periodic systems is introduced. Dynamic
behaviors of the beam grid such as band structure, slowness surfaces, energy flow vector fields
and wave beaming effects are discussed.

(iv) Chapter 4 investigates the dynamical behaviors of a 3D slender beam. The constitutive
relations of 3D micro-sized model are introduced in the SSG theory framework and the weak
formulations including element stiffness, mass matrices and force vector are calculated. After-
wards, free wave propagation characteristics are expressed by solving eigenvalue problems in
the direct WFEM framework, diffusion matrix for a simple coupling condition and a complex
coupling condition are confirmed. Wave dispersion and diffusion, effects of higher order pa-
rameters and forced response are introduced.

(v) Chapter 5 predicts the wave propagation characteristics in a micro-sized 2D full plate
under SSG theory. An eigenvalue solving approach called CI method is applied to illustrate the
NEP and conform the band structure and iso-frequency contours. SA is introduced for this 2D
full plate to investigate the effects of higher order parameters on the dispersion relation.

6.2 Perspectives

Micro-sized periodic structures have been studied widely. WFEM based on SSG theory is
an available method which offers a range of applications over different kinds of micro-sized pe-
riodic structures. The author attempts to foresee some probable perspective works as follows:

(i) Some researchers [42] defined the higher order parameters ai, bi and ci emerging in SSG
theory for face centered cubic (fcc) materials by the Sutton-Chen potential atom method. It
should be pointed out that there is no mature experimental method to determine the higher or-
der parameters. So, the use of experimental methods to obtain the physical meaning of these
higher-order parameters is of great value for a better understanding of SSG theory.

(ii) LSM theory [95] is a valuable approach to interpret the dynamic characteristics for
micro-sized medias. One of its applications is the investigation of wave propagation within lin-
ear strain-gradient elasticity for 1D lattice structures. The continuum equation of motion with
derivatives can be determined by long-range interactions in LSM. The LSM formed by nearest,
next-nearest and next-next-nearest interactions between different mass nodes can be used to
describe the SSG theory whose continuum equation of motion contains two higher order term
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for 1D longitudinal or bending model. But for the 2D or 3D lattice structures, confirming the
LSM formed by nearest, next-nearest and next-next-nearest interactions between different mass
nodes is a new research topic.

(iii) On the other hand, the governing equation can be deduced for the LSM. But it is dif-
ficult to obtain the analytical solution of boundary conditions for LSM. For instance, a new
”non-local” LSM are expounded in Chapter 2, giving unified description of the SSG models
for bending and torsion. The governing equations for bending and torsion are illustrated using
Fourier series. However, there is still no effective way to establish boundary conditions.

(iv) WFEM is based on the spectral study of a single unit cell to reflect the dynamic char-
acteristics of the entire periodic structure [238]. The resulting mass and stiffness matrices are
post-processed to establish the dynamic stiffness matrix of the unit cell. The advantage of
WFEM is modeling a unit cell by the conventional finite elements, which thus complex ge-
ometries or several materials can be involved. What is more, the wave propagation of whole
structure can be evaluated by analyzing a single unit cell. The size of numerical problem that
related directly to the number of DOFs will be reduced, thus computational time will be saved.
But for a unit cell based on SSG theory, take a 3D model as an example, the DOFs on each
node is 27, which is much more than the one based on CT with only 3 DOFs on each node.
Therefore, the computing time based on the SSG theory is long. How to effectively reduce
computing costs will be the next step of my research.

(v) Due to the unavoidable existence of damping in the structure, it is important to investi-
gate the damping effect in periodic structures in the further. In my work, the effect of damping
is identified as damping lose factor η which is caused by internal friction within the material or
at the joints. It is of simple treatment and also seems to be more closely related to the problem
cases treated in this work. But for the viscous damping or other linear damping models, the
effect of damping could be considered by means of the damping matrix C. What is more, the
higher order parameters, which reflect the non-local behavior of micro-sized structures, should
also be considered in the damping matrix in the SSG theory framework.

(vi) In Chapter 5, SSG theory is applied for a 2D full plate within WFEM2D framework. An
eigenvalue solving approach called CI method is applied to illustrate the NEP and conformed
the band structure and iso-frequency contours. However, using CI method to solve NEP requires
a lot of computational time.
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Appendix A

Expressions of the coefficients A, B and C
in Eq.1.68

A11 = D12 + D34 + D32λ
−1
y + D14λy (A.1)

A1L = D1R + D3Rλ
−1
y (A.2)

A1B = 0 (A.3)

AL1 = DL2 + DL4λy (A.4)

ALL = ALR (A.5)

ALB = 0 (A.6)

AB1 = DB2 + DT4 + DT2λ
−1
y + DB4λy (A.7)

ABL = DBR + DTRλ
−1
y (A.8)

ABB = 0 (A.9)

B11 = D11 + D22 + D33 + D44 + (D31 + D42)λ−1
y + (D13 + D24)λy (A.10)

B1L = D1L + D2R + (D3L + D4R)λ−1
y (A.11)

B1B = D1B + D3T + D3Bλ
−1
y + D1Tλy (A.12)

BL1 = DL1 + DR2 + DL3λ
−1
y + DR4λy (A.13)

BLL = DLL + DRR (A.14)

BLB = DLB + DLTλy (A.15)

BB1 = DB1 + DT3 + DT1λ
−1
y + DB3λy (A.16)

BBL = DBL + DTLλ
−1
y (A.17)

BBB = DBB + DTT + DTBλ
−1
y + DBTλy (A.18)

C11 = D21 + D43 + D41λ
−1
y + D23λy (A.19)
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C1L = D2L + D4Lλ
−1
y (A.20)

C1B = D2B + D4T + D4Bλ
−1
y + D2Tλy (A.21)

CL1 = DR1 + DR3λy (A.22)

CLL = DRL (A.23)

CLB = DRB + DRTλy (A.24)

CB1 = 0 (A.25)

CBL = 0 (A.26)

CBB = 0 (A.27)



Appendix B

Transform the bending LSM to continuum
model

The lattice function of motion on node nwill be derived by submitting Eq. 2.16 and Eq. 2.18
into Eq. 2.17 as:

kb1
d3

(wn−2 − 4wn−1 + 6wn − 4wn+1 + wn+2)

+
kb2

(2d)3
(wn−4 − 4wn−2 + 6wn − 4wn+2 + wn+4)

+
kb3

(3d)3
(wn−6 − 4wn−3 + 6wn − 4wn+3 + wn+6)

− fn = M
d2wn(t)

dt2
.

(B.1)

Multiplying Eq. (B.1) by e−iκnd, and n changes from −∞ to +∞. Afterwards, Eq. (B.1)
can be expressed as:

kb1
d3

+∞∑
n=−∞

e−iκnd (wn−2 − 4wn−1 + 6wn − 4wn+1 + wn+2)

+
kb2

(2d)3

+∞∑
n=−∞

e−iκnd (wn−4 − 4wn−2 + 6wn − 4wn+2 + wn+4)

+
kb3

(3d)3

+∞∑
n=−∞

e−iκnd (wn−6 − 4wn−3 + 6wn − 4wn+3 + wn+6)

−
+∞∑

n=−∞

e−iκndfn

=M
+∞∑

n=−∞

e−iκnd
d2wn(t)

dt2
.

(B.2)
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Then, the first three parts in the left side of the equation above are presented as:

kb1
d3

e−2iκd
+∞∑

m=−∞
e−iκmdwm − 4e−iκd

+∞∑
j=−∞

e−iκjdwj + 6
+∞∑

n=−∞
e−iκndwn − 4eiκd

+∞∑
p=−∞

e−iκpdwp

+e2iκd
+∞∑
q=−∞

e−iκqdwq

]
+

kb1
(2d)3

e−4iκd
+∞∑

m=−∞
e−iκmdwm − 4e−2iκd

+∞∑
j=−∞

e−iκjdwj + 6
+∞∑

n=−∞
e−iκndwn

−4e2iκd
+∞∑
p=−∞

e−iκpdwp + e4iκd
+∞∑
q=−∞

e−iκqdwq

]
+

kb1
(3d)3

[
e−6iκd

+∞∑
m=−∞

e−iκmdwm

−4e−3iκd
+∞∑
j=−∞

e−iκjdwj+6
+∞∑

n=−∞
e−iκndwn − 4e3iκd

+∞∑
p=−∞

e−iκpdwp + e6iκd
+∞∑
q=−∞

e−iκqdwq

 .
(B.3)

The definition in Eq. (2.20) is used here, and Eq. (B.3) can be shown as:

4kb1
d3

[
−2 sin2

(
κd

2

)]2

ŵ(κ, t) +
4kb2

(2d)3

[
−8 sin2

(
κd

2

)
+ 8 sin4

(
κd

2

)]2

ŵ(κ, t)

+
4kb3

(3d)3

[
−18 sin2

(
κd

2

)
+ 48 sin4

(
κd

2

)
− 32 sin6

(
κd

2

)]2

ŵ(κ, t).

(B.4)

Next, step 2 in Eq. (2.21) is utilized in sine function form at the point 0. Submitting Eq. (B.4)
into Eq. (B.2), one arrives:

Lb4κ
4w̃(κ, t)− Lb6κ6w̃(κ, t) + Lb8κ

8w̃(κ, t)− o(Lbjκjw̃(κ, t))−F
(
f(x, t)

)
=ρA

∂2w̃(κ, t)

∂t2
, (j = 10, 12, ...),

(B.5)

where Lb4, Lb6, Lb8, Lbj are expressed in Chapter 2. Eq. (B.5) will be re-expressed based on step
3 in Eq. (2.22):

Lb4F−1(κ4w̃(κ, t))− Lb6F−1(κ6w̃(κ, t)) + Lb8F−1(κ8w̃(κ, t))− o
(
LbjF

−1(κjw̃(κ, t))
)

− f(x, t) = ρA
∂2F−1(w̃(κ, t))

∂t2
,

(B.6)

in which: F−1(κ4w̃(κ, t)) = ∂4w(x,t)
∂x4 , F−1(κ6w̃(κ, t)) = −∂6w(x,t)

∂x6 , F−1(κ8w̃(κ, t)) = ∂8w(x,t)
∂x8 .

Finally, the dynamic continuum function w(x, t) will be written as:

Lb4
∂4w(x, t)

∂x4
+ Lb6

∂6w(x, t)

∂x6
+ Lb8

∂8w(x, t)

∂x8
+ o

(
Lbi
∂jw(x, t)

∂xj

)
− f(x, t) = ρA

∂2w(x, t)

∂t2
.

(B.7)



Appendix C

Governing equation and associated bound-
ary conditions of a torsional bar by SSG
theory

Based on Eq. 2.27 and Eq. 2.28, U (the strain energy density) of a torsional bar by SSG
theory is expressed as:

U =µ(ε2
21 + ε2

12 + ε2
13 + ε2

31) + a3(ξ2
112 + ξ2

113) + a4(ξ2
112 + ξ2

113 + ξ2
123 + ξ2

213 + ξ2
132

+ ξ2
312) + a5ξ213ξ312 + b4ζ1132ζ1123 + b5(ζ2

1132 + ζ2
1123 + ζ2

1112 + ζ2
1113) + b6(ζ2

3112

+ ζ2
1312 + ζ2

1132 + ζ2
2113 + ζ2

1213 + ζ2
1123 + ζ2

1112 + ζ2
1113) + b7(ζ3112ζ1123 + ζ2113ζ1132)

+ c3(ε12ζ1112 + ε13ζ1113).
(C.1)

Integrating strain energy density over its volume, the strain energy of the bar will be calcu-
lated as:

U =

∫ L

0

∫
A

UdAdx
′
. (C.2)

By substitution of Eq. 2.28 and Eq. C.1 into Eq. C.2, the strain energy of the torsional bar
by SSG theory is expressed as:

U =
1

2

∫ L

0

[
Ct

1

(
∂ϕ(x, t)

∂x

)2

+ Ct
2

(
∂2ϕ(x, t)

∂x2

)2

+ Ct
3

(
∂3ϕ(x, t)

∂x3

)2

+Ct
4

∂ϕ(x, t)

∂x

∂3ϕ(x, t)

∂x3

]
dx,

(C.3)

whereCt
1 = GJ+2A(4a4−a5), Ct

2 = J(a3+a4)/2−2A(b4+2b5−6b6+2b7), Ct
3 = 2J(b5+b6),

Ct
4 = Jc3, J means torsion of inertia within plane y0z.

127



128
Appendix C. Governing equation and associated boundary conditions of a torsional bar by

SSG theory

The kinetic energy of the bar is presented as:

T =
1

2

∫ L

0

ρJ

(
∂ϕ(x, t)

∂t

)2

dx. (C.4)

The work done by external classical force and higher-order forces, W , can be established in
the variation form as:

δW =

∫ L

0

Γ(x, t)δϕdx+ Γ0δϕ(x, t)|Lx=0 + Γ1δ

(
∂ϕ(x, t)

∂x

)∣∣∣∣L
x=0

+ Γ2δ

(
∂2ϕ(x, t)

∂x

)∣∣∣∣L
x=0

,

(C.5)
where Γ(x, t) means the distributed torque within plane y0z, Γ0 denotes the classical torque,
Γ1,2 are higher-order end-sectional torques of the micro-bar.

In this step, the Hamilton principle is used to calculate the strong forms of the bar for SSG
theory as follows: ∫ t2

t1

(δU − δW − δT )dt = 0, (C.6)

where δU and δT are the variation form of strain energy and kinetic energy, respectively. Then
doing mathematical calculations according to the variation method by substituting equations
Eq. C.3, Eq. C.4, and Eq. C.5 into Eq. C.6, one arrives at:

Ct
1

∂2ϕ(x, t)

∂x2
+ (Ct

4 − Ct
2)
∂4ϕ(x, t)

∂x4
+ Ct

3

∂6ϕ(x, t)

∂x6
− Γ(x, t) = ρJ

∂2ϕ(x, t)

∂t2
. (C.7)

Additionally, the associated boundary conditions for a torsional bar written as:

Ct
1

∂ϕ(x, t)

∂x
+ (Ct

4 − Cx
2 )
∂3ϕ(x, t)

∂x3
+ Ct

3

∂5ϕ(x, t)

∂x5
= Γ0 or δϕ(x, t) = 0, on Ω = {0, L} ;

(Ct
2 −

1

2
Ct

4)
∂2ϕ(x, t)

∂x2
+ Ct

3

∂4ϕ(x, t)

∂x4
= Γ1 or δ

∂ϕ(x, t)

∂x
= 0, on ∂Ω;

1

2
Ct

4

∂ϕ(x, t)

∂x
+ Ct

3

∂3ϕ(x, t)

∂x3
= Γ2 or δ

∂2ϕ(x, t)

∂x2
= 0, on ∂Ω.

(C.8)



Appendix D

LSM vibration analysis for torsion

The torsional lattice function of motion ϕn(t) on node n is expressed as:

kt1(ϕn−1−2ϕn+ϕn+1)+kt2(ϕn−2−2ϕn+ϕn+2)+kt3(ϕn−3−2ϕn−ϕn+3)−Γn =
MJ

A

d2ϕn(t)

dt2
.

(D.1)
In order to obtain the dynamic continuum function ϕ(x, t), the same method is used as

shown in Appendix in B. Multiplying Eq. (D.1) by e−iκnd with n from −∞ to +∞, Eq. (D.1)
will be expressed as:

kt1

+∞∑
n=−∞

e−iκnd(ϕn−1 − 2ϕn + ϕn+1) + kt2

+∞∑
n=−∞

e−iκnd(ϕn−2 − 2ϕn + ϕn+2)

+ kt3

+∞∑
n=−∞

e−iκnd(ϕn−3 − 2ϕn + ϕn+3)−
+∞∑

n=−∞

e−iκndΓn =
MJ

A

+∞∑
n=−∞

e−iκnd
d2ϕn(t)

dt2
.

(D.2)
Employing the same mathematical calculations and Fourier series transform approach as

explained in Appendix B: (1) Defining an assumption that ϕn(t) is the Fourier constant of
ϕ̂(κ, t), (2) The expansion of Taylor series is used based on the limitation of d→ 0, (3) Defining
F−1 as inverse Fourier transform. Then, the dynamic continuum function ϕ(x, t) is illustrated
as:

Lt2
∂2ϕ(x, t)

∂x2
+ Lt4

∂4ϕ(x, t)

∂x4
+ Lt6

∂6ϕ(x, t)

∂x6
+ o

(
Ltj
∂jϕ(x, t)

∂xi

)
− Γ(x, t)

=ρJ
d2ϕ(x, t)

dt2
, (j = 8, 10, ...),

(D.3)

with Lt2, Lt4, Lt6, Ltj are shown in Chapter 2.
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Appendix E

The wave shapes in Chapter 3

The wave shapes at points A1, A2, A3, A4 B1, B2, B3, B4 C1, C2, C3, C4 are given:
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Fig. E.1. Wave shapes on points Ai, Bi, and Ci (i=1,...,4). A1 : ωSSG/ω0 = 0.35, ωCT /ω0 = 0.34. A2 :
ωSSG/ω0 = 0.55, ωCT /ω0 = 0.46. A3 : ωSSG/ω0 = 2.95, ωCT /ω0 = 2.47. A4 : ωSSG/ω0 = 4.78, ωCT /ω0 =
4.00. B1 : ωSSG/ω0 = 0.79, ωCT /ω0 = 0.69. B2 : ωSSG/ω0 = 0.83, ωCT /ω0 = 0.69. B3 : ωSSG/ω0 =
1.46, ωCT /ω0 = 1.23. B4 : ωSSG/ω0 = 4.08, ωCT /ω0 = 3.41. C1 : ωSSG/ω0 = 0.25, ωCT /ω0 = 0.21.
C2 : ωSSG/ω0 = 1.14, ωCT /ω0 = 0.95. C3 : ωSSG/ω0 = 2.24, ωCT /ω0 = 1.87. C4 : ωSSG/ω0 = 3.25,
ωCT /ω0 = 2.72.



Appendix F

Definition of matrices A, B and C in Chap-
ter 4

The details of matrices A, B and C are presented as:

A1 =



a1 a2 a2 a1 a3

a2 a4 2a3 a5

a2

2

a2 2a2 a4

a2

2
a5

a3 a5

a2

2
a6

a1

2

a3

a2

2
a5

a1

2
a6


, A2 =


a4

a5

2

a5

2
a5

2
a4

a5

2
a5

2

a5

2
a4

, B11 =


b1 0 0 0 0

0 b4 0 b7 0

0 0 b4 0 b7

0 b7 0 b2 0

0 0 b7 0 b2

,

B12 = BT
21 =



b6 0 b6 0 0

0 0 0
2

3
b5 0

0
2

3
b5 0 0 0

0 0 0
b7

3
0

0
b7

3
0 0 0


, B22 =



b9 + b11 0 b11 0 0

0 b5 0 0 0

b11 0 b9 + b11 0 0

0 0 0 b5 0

0 0 0 0
b9

2


,

B33 =



b4 0 0 0 0

0 b1 0
b6

3
0

0 0 b4 0
2

3
b5

0 b6 0 b9 + b11 0

0 0
2

3
b5 0 b5


,
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B34 = BT
43 =



b7 0
2

3
b5 0 0

0 0 0
b6

3
0

0 b7 0 0 0

0 0 0 b11 0

0
b7

3
0 0 0


, B44 =



b2 0
b7

3
0 0

0 b2 0 0 0

b7

3
0 b1 0 0

0 0 0 b9 + b11 0

0 0 0 0
b9

3


,

B55 =



b4 0 0 0 0

0 b1 0
2

3
b5 0

0 0 b1 0 b6

0
2

3
b5 0 b5 0

0 0 b6 0 b9 + b11


, B66 =



b5 0
b7

3
0 0

0 b9 + b11 0 0 0

b7

3
0 b2 0 0

0 0 0 b2 0

0 0 0 0
b9

3


,

B56 = BT
65 =



2

3
b5 0 b7 0 0

0 0 0 b7 0

0
b6

3
0 0 0

0 0 0
b7

3
0

0 b11 0 0 0


, B13 = BT

31 =


0 2b1 0 b13 0

2b4 0 0 0 0

0 0 0 0 0

b12 0 0 0 0

0 0 0 0 0

,

B14 = BT
41 =



0 0 0
2

3
b1 0

b12 0
2

3
b4 0 0

0 0 0 0
b3

6
b10 0 b17 0 0

0 0 0 0 b15


, B23 = BT

32 =



0 b13 0 b3 0

0 0 0 0 0

0
2

3
b1 0 b16 0

2

3
b4 0 0 0 0

0 0
b3

6
0 b18


,

B24 = BT
42 =


0 0 0 b16 0

0 0 0 0 b18

0 0 0 b19 0

b17 0 b14 0 0

0 b15 0 0 0

, B15 = BT
51 =


0 0 2b1 0 b13

0 0 0 0 0

2b4 0 0 0 0

0 0 0 0 0

b12 0 0 0 0

,



135

B16 = BT
61 =



0
2

3
b1 0 0 0

0 0 0 0
b3

6
2

3
b4 0 b12 0 0

0 0 0 0 b15

b17 0 b10 0 0


, B25 = BT

52 =



0 0
2

3
b1 0 b16

2

3
b4 0 0 0 0

0 0 b13 0 b3

0 0 0 0 0

0
b3

6
0 b18 0


,

B26 = BT
62 =


0 b19 0 0 0

b14 0 b17 0 0

0 b16 0 0 0

0 0 0 0 b18

0 0 0 b15 0

, B35 = BT
53 =



0 0 0 0 0

0 0 2b1 0
2

3
b1

0 2b4 0
2

3
b4 0

0 0
4

3
b1 0 b19

0
2

3
b4 0 b14 0


,

B36 = BT
63 =



0 0 0 0
b3

6
0 b13 0 0 0

0 0 0 b12 0

0 b16 0 0 0

0 0 0 b17 0


, B45 = BT

54 =



0 0 0 0 0

0 b12 0 b17 0

0 0 0 0 0

0 0 b13 0 b16

b3

6
0 0 0 0


,

B45 = BT
54 =


0 0 0 0 b15

0 0 0 b10 0

0 0 0 0 b18

0 b3 0 0 0

b18 0 b15 0 0

, C1 =



c1 0 0 0 0

c1 0 0 0 0

c1 0 0 0 0

0 0 0 0 0

0 0
c3

2
0 c3

0
c3

2
0 c3 0


,

C2 =



c2 0 c2 0 0

c2 0 c1 0 0

c1 0 c2 0 0

0 0 0 0
c2

6

0
c3

2
0 0 0

0 0 0
c3

2
0


, C3 =



0 c1 0 c4 0

0 c1 0 c2 0

0 c1 0 c1 0

0 0
c3

2
0

c3

2
0 0 0 0 0

c3

2
0 0 0 0


,
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C4 =



0 0 0 c1 0

0 0 0 c2 0

0 0 0 c2 0

0 c3 0 0 0

0 0 0 0
c2

6

0 0
c3

2
0 0


, C5 =



0 0 c1 0 c4

0 0 c1 0 c1

0 0 c1 0 c2

0
c3

2
0

c3

2
0

c3

2
0 0 0 0

0 0 0 0 0


,

C6 =



0 c1 0 0 0

0 c4 0 0 0

0 c4 0 0 0

0 0 0 c3 0

c3

2
0 c3 0 0

0 0 0 0
c2

6


,

where a1=2(a1 + a2 + a3 + a4 + a5), a2=a2 + 2a3, a3=
2a1 + a2

2
, a4=2(a3 + a4), a5=

a2 + 2a5

2
,

a6=
a1 + 2a4 + a5

2
, b1=2(b1+b2+b3+b4+b5+b6+b7), b2=

2

9
(2b2+b3+b5+3b6+2b7), b3=

2

9
(b1+

b3 +2b7), b4=2(b5 +b6), b5=
2

9
(b5 +3b6), b6=(2b1 +b3 +2b4 +2b5)/3, b7=

b3 + 2b5

3
, b8=

2

3
(b1 +b2 +

b3 + b4 + b5), b9=
2

9
(b2 +3b6 + b7), b10=

2

9
(2b2 + b3 + b4), b11=

2

9
(b1 + b4 + b5), b12=

b3 + 2b4 + 2b7

3
,

b13=
2b1 + 2b2 + b3

3
, b14=

2

9
(b4 + b7), b15=

4b2 + b3

18
, b16=

2b1 + b3

9
, b17=

b3 + 2b4

9
, b18=

b3 + 4b7

18
,

b19=
2

9
(b1 + b2), c1=c1 + c2 + c3, c2=

c1 + c3

3
, c3=

2c2 + c3

6
, c4=

c1 + c2

3
.
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2.2 Higher order material parameters bi (eV ·Å). . . . . . . . . . . . . . . . . . . . 41
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propagation analysis in composite structures, Composite Structures 113 (2014) 134–144.



154 Bibliography

[131] M. Kharrat, M. Ichchou, O. Bareille, W. Zhou, Pipeline inspection using a torsional
guided-waves inspection system. part 2: Defect sizing by the wave finite element method,
International Journal of Applied Mechanics 6 (04) (2014) 1450035.
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