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CHAPITRE

SYNTHESE

Mots-clés : Données 3D, visualisation scientifique, visualisation abstraite 2D,
interaction/HCI, apprentissage automatique

Les technologies graphiques actuelles permettent de visualiser efficacement
des données scientifiques spatiales dans un environnement 3D afin que les uti-
lisateurs puissent observer clairement leurs formes et positions 3D. Paralléle-
ment, les visualisations abstraites 2D peuvent résumer des informations, mon-
trer des données supplémentaires et contrdler une vue 3D. Combiner ces deux
vues en une seule interface peut aider les utilisateurs a entreprendre des taches
complexes bien gqu'il y ait un manque de recommandations sur l'integration. En
général, les experts analysent de grands volumes de données pour des travaux
complexes, comme la reconstruction du lignage cellulaire d'embryons en biolo-
gie. Ici, le travail d'annotation peut étre fastidieux, et les algorithmes d'apprentis-
sage automatique peuvent l'alléger, en fournissant des prédictions initiales aux
experts. Dans le cas du lignage cellulaire, ces prédictions contiennent toutefois
des informations hiérarchiques et multicouches qu'il est essentiel de visualiser
de maniere séquentielle ou progressive afin d'accompagner les experts. De plus,
les représentations 2D et 3D ainsi que les prédictions d'apprentissage automa-
tique doivent étre connectées visuellement et interactivement.

Dans cette thése, nous prenons comme exemple le probléeme du lignage cel-
lulaire des embryons de plantes pour concevoir et étudier un systeme de visua-
lisation qui combine des vues 3D et 2D ainsi que des visualisations pour l'ap-
prentissage automatique. Les cellules d'un embryon de plante sont jointives et
constituent un ensemble dense d'objets 3D. Tout d'abord, nous évaluons trois
techniques de sélection et nous montrons que la combinaison de la Sélection
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4 Chapitre o

par Explosion et de laSélection par Liste est efficace pour désigner et observer
les cellules d'un embryon. Ces techniques sont généralisables a d’autres don-
nées 3D similaires. Ensuite, nous décrivons un systeme hybride de visualisations
et d'interaction que nous avons concu afin que les biologistes puissent examiner
les cellules d'un embryon et enregistrer I'histoire du développement dans l'arbre
de lignage hiérarchique. Nous gérons la construction de la hiérarchie dans deux
directions, a la fois en construisant I'historique de 'arbre de haut en bas en utili-
sant la sélection lasso, et de bas en haut selon I'approche usuelle des biologistes.
Nous avons par ailleurs proposé un modele de réseau neuronal pour fournir
aux biologistes des prédictions initiales sur les filiations. Nous avons évalué le
systeme avec des biologistes et concluons que les représentations 3D et 2D faci-
litent les prises de décisions et que I'outil enrichit la visualisation des embryons.
Cependant, la performance du modele d'apprentissage n'était pas idéale. Aussi,
pour faciliter le processus de lignage et améliorer les performances du systeme,
nous avons entrainé cinqg modeles de classification différents en montrant leurs
prédictions et leurs incertitudes. Notre étude montre que les représentations
des classifieurs sont faciles a comprendre et que ce nouvel outil peut améliorer
significativement les prises de décision.

Nous résumons nos conclusions comme suit. Tout d'abord, dans le contexte
du lignage cellulaire, il est essentiel d'adopter de nouvelles techniques d'interac-
tion, plus élaborées que les techniques usuelles. Deuxiemement, combiner les
représentations 3D avec les visualisations abstraites 2D est bénéfique dans le
domaine scientifique; nous I'avons montré pour la biologie et le lignage cellu-
laire. Troisiemement, les visualisations peuvent aider a la compréhension des
prédictions des modeles d’'apprentissage sur lesquelles sont basées des déci-
sions. Tous ces résultats peuvent inspirer de futurs travaux visant a combiner, de
maniere transparente, diverses représentations dans une seule interface, ceci
afin d’aider les experts a prendre de meilleures décisions.
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low the parent is almost black, whereas higher certainties would
be indicated with a greenish color. For the cell 83, the ML models
are confident about assigning cell 23 and cell 9 as sisters. Also,
from the figure, we observe that the ML models predict cell 19 and
cell 31 to have no sister cell in the currentlevel. . . ... ... ...

The details of model predictions for one cell. Here we take cell g as
the target cell for example. From the colors, we can also tell the re-
lative distances between two cells. The percentage of each model
depends on its accuracy rate and the customized model weight.
The colors of cells in the semi-donut chart correspond to the cell
colors as derived from their 3D positions. A small proportion of
gray space indicates the uncertainty of model prediction for the
cellg. e
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We show the overall details of predictions from all models when
the user double-clicks a child cell in the icicle plot. Taking again the
example of cell 9, this view shows us that Neural Network, SVM,
and Random Forest predicted cell 23 as the only possible sister,
while Bayesian proposed two cells, 8 and 19, to potentially be the
sister. KNN, however, does not propose any potential sister for cell

When hovering over a specific proposed sister cell in the semi-
donut chart (as we did in Figure 6.4, where the mouse hovers over
the proposed sister 23), we show the detailed view on the chosen
pairing as opposed to showing all predictions as before. Different
from Figure 6.5, here we only show which models actually predic-
ted these two cells as sisters. In this example, three models (Neu-
ral Network, SVM, and Random Forest) proposed cell 23 to be the
sister of the targetcellg. . .. ... ... ... ... ... .. ....

The connection of visualization design in the different information
levels. The gray part is the uncertainty where models can make
mistakes about the target cell (cell 9 in this example). . . . . .. ..

This view shows the similar pairs with the target cell. The leftimage
indicates the original embryo, and the right image demonstrates
the color change of the similar cell in the detection mode. In these
figures, the target cell is highlighted in red, and the similar cell in
pink. In this figure we highlighted the similar cell with a red box.

The workflow of using LineageD to do cell lineage. The steps with
white backgrounds are based on our previous work [84], and the
steps in orange represents the new stages we added in LineageD.

The interaction process of checking the model predictions. Biolo-
gists can target one cell from either the 3D view or the 2D hierar-
chy tree. If they are happy with the prediction, they can confirm
the pair, and the bar then turns green as in o1/a. If they disagree
with the prediction, they can double click to see the details of pre-
diction and make an informed decision. . . . ... ... ... ...
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the model Random Forest. All the pairs predicted by this model
would be highlighted with red strokes in the hierarchical tree. Also,
the corresponding cell in the thumbnail would turn red too. . . . .
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on Cell N-11. The 3D view only presents the cells within this part,
and in the hierarchical tree, we make the other cells transparent. .
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INTRODUCTION

Visualization is the field of research that deals with creating computational
visual representations to efficiently help with the tasks of users [143]. Today, it
has become a common element of our daily life, such as weather data diagrams
on our mobile phones and distribution cost charts from our banks. When used
in the professional domain, like biology, visualizations can additionally help ex-
perts to gain insights from raw data [79]. Normally the domain-specific datasets
are complicated, and it is challenging for experts to detect the patterns from
such raw data. Since human beings are good at dealing with visual information
[194], visualizations for raw datasets can help users to have a better understan-
ding. Forinstance, in botany, the structures of membranes and cytokinesis could
be too abstract for students to understand, while visualizations could help illus-
trators to visually better demonstrate such processes in the textbook [126]. As
a result, it can potentially assist experts in effective decision making. Among all
the domains, biology is a natural science exploring life which is a complex field
not fully understood. Adopting the techniques to present living organs and their
development process (e. g., the structure of organs and the hierarchical history)
could largely improve the expressiveness and inspire viewers with new insights.

The specific problem we are addressing in this thesis is the cell lineage pro-
blem. Cells in biological organisms generally keep dividing in their development
(see Figure 1.1), and such divisions could be symmetric or asymmetric depending
on species, generations, and cells’ positions. The asymmetric division is likely to
produce new cell types that function differently [153]. Such development history
is called cell lineage in biology. Understanding the cell lineage is essential be-
cause it could help botanists to (1) check whether an embryo develops normally
or not, (2) specify the functions of different divided parts, (3) predict the fate of
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Figure 1.1 - The illustration of three possible types of cell division : arithmetic increase,
geometricincrease, and combination of arithmetic and geometric increase. Figure from
the book [126]. Image © Jones & Bartlett Learning, used with permission.

certain cells in a pluripotent embryo at the early stage, and (4) effectively detect
the potential reasons when one embryo gets abnormal [179]. Researchers have
been investigating the cell lineage of diverse plant species since the 19th century,
and itis still a challenging problem now because the workflow of establishing the
cell lineage is quite time-consuming. Though computer technologies are develo-
ping fast, biologists seem to keep their traditional manual approach to making
the assignments and building the corresponding tree (see Figure 1.2). The major
drawbacks of this process are that, once the tree is set, it is hard to share and
communicate the tree with others to dynamically and vividly show the division
process. Meanwhile, biologists could even spend hours assigning for a single big
embryo that contains about 256 cells, which means that machine learning algo-
rithms have great potential to speed up the process and ease the workload of
biologists. On the other hand, the number of manually assigned plant embryo
datasets is limited, and the resulting lack of training datasets adds difficulties
in getting an optimal model. In this case, visualizations are designed for bet-
ter analysis. Thus, we collaborated with biologists to use visualizations, machine
learning, and their related fields to help with this problem.

In this thesis, we collaborated with plant biologists from INRAE (French Na-
tional Research Institute for Agriculture, Food, and Environment) to work on the
plant embryo datasets, namely Alain Trubuil, Philippe Andrey, Jean-Christophe
Palauqui, and Elise Laruelle. At the beginning of the thesis, we had several mee-
tings with biologists to understand their problems. We observed how they used
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the traditional tools to do cell lineage and their issues in finishing the assign-
ments. They also provided us with initial ideas about the potential solutions.
Then we discussed with them the feasibility of these solutions and whether there
were better solutions. After we had agreements, we started to produce some
sketches and prototypes for them to review. The collaboration follows such a
process. Every time when we had some ideas and implemented some functions,
we had meetings with biologists to get their feedback. We iteratively refined our
solutions back and forth via such regular meetings with biologists and got the
final design in the end.

As we found in our iterative design approach, to help biologists with the cell
lineage process, a tool needs to provide biologists with detailed information for
plant embryos (3D embryo data and temporal development data), basic assign-
ments predictions to start with, and the ability to interactively target and check
the predictions and adjust them. There are also additional requirements for
the design. The first is about the display of cells in an embryo. Different from
many other 3D datasets, plant cells are densely packed together without any
space between each other. This leads to occlusion, which cannot be easily sol-
ved by existing 3D selection techniques and tools. The second is about biologists’
traditional working habits. Biologists are so used to working with 2D diagrams
that they are not familiar with 3D interactions. Thus, the interaction techniques
connecting the 3D environment and the 2D tree should be smooth and intuitive.
Lastly, there are currently tedious, repetitive steps in doing the cell lineage. A sys-
tem should use advanced techniques to reduce redundant work and enhance
working efficiency.

To conclude, in the field of cell lineage research, there are three major chal-
lenges : (1) the cells are tightly packed together in an embryo which makes the
interaction with spatial data difficult, (2) the demand for closely linking 2D hie-
rarchical data and 3D cells requires a new design for an interactive system, and
(3) the manual process is time-consuming, and machine learning algorithms
could help speed up the process but for which biologists have to be able to make
informed decisions. Our thesis is structured to address these challenges, and
we will explain them in detail below. Note that though we targeted the plant
cell lineage problem in this thesis, the methodology and solutions can be used
in other similar problems. For example, the design for the second point can be
adopted in other systems with both 3D and 2D. We discuss this in detail in cha-
pitre 7.
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Figure 1.2 - The illustration of the hierarchy tree representing the cell division and the
corresponding possible slices from the microscope. Each row represents one genera-
tion. Image © Alain Trubuil, used with permission.

1.1 INTERACTIVE VISUALIZATION

First, visualizing biological phenomenais complicated [70]. One reasonis that
the phenomena themselves are complex. The complexity lies in the multiplicity
of life’s processes, the diversity of molecular species, and the adaptability to va-
riable environments. Another reason is that these datasets usually contain di-
verse data types (abstract and concrete, 3D and 2D, and temporal). To illustrate
this kind of biological data well, we need to use visualizations to demonstrate
various parts such as the biological structure and the development history in
our case so that we can inspire researchers [54]. Therefore, for the first two
challenges mentioned in section 1, adopting interactive visualization is a poten-
tial solution because it can help with the occlusion problem and provide visual
representations to help people effectively complete the tasks [143]. Interactive
visualization includes two components : interactivity and visualization. As the
definition of Human-Computer Interaction (HCI) shows, interactivity is an art of
methods design with which people can communicate with the computer system
[49]. Two fundamental factors in the HCl field are functionality and usability [91].
Functionality indicates what functions the system could provide and what kind of
problem could be solved with this tool, while usability is about how friendly and
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efficient the system could be used. In our case, all the functions should serve for
the task, which is cell assignments. Especially for a tightly packed embryo that
has no space between two adjacent cells, the interaction techniques should ef-
fectively help users to solve the occlusion problem. Also, experts need intuitive
interactions to check and edit the assignments. In short, interactivity is crucial
for our system because biologists need to investigate the data and complete
the tasks manually. In parallel, general embryo data and its traditional hierarchy
tree are hard to refer to and recall. Visualizations could make full use of people’s
visual perception to recognize data shapes and changes and detect potential di-
vision patterns [26]. Therefore, combining visualizations with interactivity can
largely increase the visualization's ability to express and reveal information. In
our specific case, there should be both 3D and 2D visualizations so that the in-
teractivity also needs to include the connection between these two parts. Thus,
in the thesis, we target to provide interactive visualizations so that biologists can
have a better overview of embryos in the 3D environment and the developing
history in the hierarchy tree. Also, it could improve the efficiency of examining
cells and assigning sisters to them.

For the first challenge in section 1, with the embryo visualized in 3D, we deve-
loped selection techniques (1D list, 3D explosion, and the combination of these
two techniques)) to target inside cells (see Figure 1.3). We also conducted a study
to investigate the interactions. We present our work for solving the second chal-
lenge in the next section.

Figure 1.3 - The interface with two 3D selection techniques (Explosion Selection on the
left side and List Selection on the right side) we developed.
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1.2 COMBINATION OF 3D AND 2D REPRESENTATIONS

As computer graphics technology advances, people can better visualize spa-
tial datasets nowadays. 3D representations can intuitively present real spatial
information, such as 3D shapes and positions. Meanwhile, 3D environments
usually require 3D operations such as orientating, which makes it difficult to exa-
mine numerical information. 2D abstract representations could provide additio-
nal data or help highlight and summarize the important parts, on the contrary.
Combining these two views can provide biologists with detailed 3D information
to make better decisions for assignments and provide an interactive hierarchy
tree to record the embryo's development history. Such 2D and 3D combinations
are commonly viewed in Virtual Reality [212, 214]. For example, in work by Hurter
et al. [88], the authors used projected 2D interactions on controllers instead of
using graphical interfaces. Also, in the biological field, Abstractocyte [138] used
a 2D panel to control the transition between highly-detailed 3D views and abs-
tract 2D views. The essence of the combinations is that the views are connected
in diverse ways : displays, contents, and interactions. The display connections in-
clude placing them separately [65], replacing each other [212], and colliding (3D
representations on 2D visualizations [217] and 2D on 3D [98, ]). Contents are
connected via the dataset and visualizations, while interactions are connected
either via controlling 3D environments with 2D representations [65] or control-
ling 2D visualizations with 3D objects [56].

In our scenario, the 3D representations provide the basic information, and
2D abstract visualizations present additional temporal data as a record. The in-
teractions with two views are closely connected, e. g., the encoded colors, cell
selections, and generation switching (see Figure 1.4). We explain the details in
chapitre 5.

1.3 MACHINE LEARNING

Though visualization systems can solve the first two challenges mentioned in
section 1, the third challenge requires additional techniques. For biologists, assi-
gning cells is time-consuming, especially for a large embryo with more than 200
cells. One reason is that traversing every cell within a big embryo takes time.
A potential approach to save time is adopting machine learning algorithms to
provide basic assignments for biologists to check. Other approaches include re-
cognizing similar cells and predicting the quarters of an embryo. Machine lear-
ning (ML) works on algorithms to help biologists predict and solve the problem
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Figure 1.4 - The design of combining 3D and 2D representations. Selecting cells from ei-

ther the abstract view or the 3D environment, the corresponding cell will be highlighted
in the other view.

[136]. As we have mentioned in the previous two sections, biologists need to
do the assignments manually based on 2D slices from the microscope to solve
the cell lineage problem. This process could be quite time-consuming when em-
bryos reach large sizes. Thus, it is essential to include machine learning models
to provide basic predictions for biologists to start with. Since two adjacent cells
are either sisters or non-sisters, we transferred the prediction problem into the
binary classification problem. Multiple supervised algorithms could help, such
as decision trees, support-vector-machine, single-layered / multilayered percep-
trons, and statistical learning algorithms (e.g., naive Bayes classifier) [101]. All
these models have different pros and cons, and the choices of models highly
depend on the problem itself. In the cell lineage case, there are lots of pairs to
predict. Different models could have diverse results for each pair, so they should
be included. We used visualizations to combine these different predictions and
provide an overview with detailed views for biologists to have thorough infor-
mation. We explained in detail about these in chapitre 6.

1.4 THESIS STATEMENT

In our thesis, we focus on the methods to help biologists to improve the effi-
ciency of the cell lineage process. Thus, we assumed that the image processing
part is completed through other means and worked on the segmented data ins-
tead of the raw image data from the microscope. In particular, we focus on de-



30 Chapitre 1

signing visualizations to present the model prediction results and the develop-
ment history.
With these backgrounds, we investigate the following research questions :

* RQ1 How to effectively check cells’ 3D properties of an embryo for decision
making?

* RQ2 How to connect 3D representations with 2D abstract information?

* RQ3 How to better visualize temporal information in 2D hierarchical struc-
tures?

* RQ4 How to involve machine learning to help with the assignments and
better visualize the predictions for biologists to refer to?

To conclude, our thesis contributes to : (1) an exploration of the 3D selection
techniques in picking specific cells among the tightly-packed plant embryos, (2)
a web-based tool, namely LineageD, designed for biologists to predict the cell
assignments, visualize the cell development history, and interactively correct the
predictions, (3) a new design of visualizations with corresponding interactions to
provide an overview of multiple models’ predictions, compare different models,
and support customizing model combinations for reference.

1.5 THESIS OVERVIEW

This thesis consists of seven chapters. The summarized contents of each
chapter are listed below :

+ Chapter 2 Background On Plant Cell Lineages describes background in-
formation about the plant embryo and the cell lineage problem.

+ Chapter 3 Systematic Review provides a thorough review of the related
work of the visualizations in the biological field, 3D techniques for the oc-
clusion problem, tree visualizations, and visualizations for machine lear-
ning.

+ Chapter 4 Exploration of 3D Selection Techniques for Plant Embryos
explores three different 3D selection techniques to pick cells from a tightly
packed embryo. We conducted a study to simulate biologists’ assigning
decision-making process and evaluate these techniques with the general
public.

+ Chapter 5 LineageD : Interactive Visual System for Plant Cell Lineage
Assignments presents an interactive web-based tool to help predict, vi-
sualize, and interactively adjust plant embryo cell lineages for biologists.
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The system combines both 3D representations and 2D abstract represen-
tations and supports intuitive interactions for them along with the machine
learning model. We also did a case study with biologists to evaluate whe-
ther the tool could help the assigning and inspire their insights.

+ Chapter 6 Comparative Visualization of Machine Learning Predictions
to Improve Human-Al Teaming on the Example of Cell Lineage pre-
sents the work of investigating multiple machine learning models' interac-
tion and visualizations in helping with the cell lineage problem. We trained
five ML models and used visualizations and interaction techniques to com-
pare and understand these different models. We also conducted a study
with six biologists to see whether and how the new design help with un-
derstanding and interacting with machine learning models.

+ Chapter 7 Discussion and Conclusion discusses how our work could contri-
bute to the visualization community and the potential future work which
can inspire researchers. Finally, it provides an overview of our work.
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BACKGROUND

In this chapter, we introduce an overview of the plant embryo we worked on,
the lineage problem, and considerations to design.

2.1 PLANT EMBRYO DATASETS

For the research described in this thesis, we worked on the ovum cell of Ara-
bidopsis thaliana plants (see Figure 2.1). In exploring the life of plants, biologists
cannotinvestigate all species, and thus they choose model species to study. Such
model species should generally be representative and easy to conduct experi-
ments. Arabidopsis thaliana is one of the model species they are working on.
After exploring this species, biologists could easily use the knowledge they got
to study other species. Thus, we chose Arabidopsis thaliana plants and used all
the embryo’s hierarchical division histories and 3D information of that species.
Also, there are multiple types of embryo growth, such as arithmetic and geo-
metric increase. In an arithmetic increase, only one cell is dividing, while in a
geometric increase, all cells are dividing. Geometric growth is common when
the plant embryo is extremely young and small. Later, the growth can be a com-
bination of both arithmetic and geometric growth [126]. We currently target the
early stage of embryo developmentin consideration that young embryos are ea-
sier to find division patterns. Note that, initially, when people are talking about
an embryo, they are indicating the proper embryo, but actually an embryo in-
cludes both the proper embryo (the upper part) and the suspensor (the lower
part) as shown in Figure 2.2. The suspensor is the suspending part of an embryo,
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and the function of these cells is to support the proper embryo.
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Figure 2.1 - The illustration [94] demonstrates the developing history of an Arabidopsis
plant. Image © Springer Nature, used with permission.

2.1.1 Embryos

To work on the cell lineage problem, biologists work on different parts se-
quentially. They name the external parts as the epidermis layer and inner parts
as the internal layer, while the upper part is called as apical part and lower part
is basal part. All these parts make the proper embryo. Biologists separate the
embryo into these parts because they are more familiar with the cell shapes in
these different parts. Also, traditionally, biologists use a staining technique [196]
for imaging entire plant embryos with the confocal laser microscope.

Besides these naming habits, biologists typically deal with the images they
get from the microscope via existing tools to segment embryos. The cells’ ids
are set in ascending order by tools, starting from 1, and the name has no mea-
ning for a specific cell. Each mesh file represents one embryo, including cells’
names, every cell's triangles, and the positions of the vertex of meshes. Since
tools like Avizo help biologists with the segmentation and automatically build
meshes from labeled images, they could make some errors, especially in the
naming part. For instance, a cell with a unique number could be nonexistent.
Also, tools cannot distinguish the suspensor from the proper embryo, and files
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would include all the cells in the slices. These required double-checking when
parsing the datasets. In this thesis, we do not focus on the segmentation part
because we were more interested in the interaction and visualization aspects of
the problem. Thus, we assumed that the segmentation part is solved by existing
tools, and we extracted the cells’ properties from the mesh files.

Figure 2.2 - The sequential up-down slices from the same 16-cell plant embryo. Contrast
enhanced to make the ID colors visible.

2.1.2 Cell Lineage

The plant embryo cell lineage problem is a general problem of interest in
biology. In this thesis, we worked only with Arabidopsis embryos. The design
process, however, could also be potentially applied to exploring the lineages of
other species because the basic division process is similar : cells divide during the
development process so that the embryo grows and develops. In plant biology,
one cell typically divides into two cells, and that initial cell is called parent cell
for the two generated cells, which are children cells or daughter cells. These
two cells could also be called sister cells for each other. We used these terms
in the whole manuscript.

During this process, however, not all cells necessarily divide in the same time
period as the majority. This means that the lineage hierarchy tree is not strictly a
binary tree and thus adds difficulties to the reconstruction. To better understand
a species’ division patterns, biologists need to work on exploring and rebuilding
such embryo development history. This process is a bottom-up approach to buil-
ding the hierarchy. Since the basic cells from the slices are named ascendingly,
when naming a new parent cell, biologists would choose the number of the big-
gest number of the existing cells adding one. Thus, the hierarchy tree of a 32-cell
embryo could look like that in Figure 2.3.

There are several general rules that biologists use when they establish the
cell lineage, such as Hertwig's rule [81] and Errera’s rule [18]. Hertwig's rule, also
known as ‘long axis rule’, indicates that cells divide along their longest axis. Er-
rera’s rule describes that “the cell plate, at the time of its formation, adopts the
geometry that a soap film would take under the same conditions” [18, 62]. These
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Figure 2.3 - The typical cell lineage of the plant embryo. The naming rules here follow
their traditional habits. As an embryo divides, the hierarchy tree is built from the top
town, while when biologists are reconstructing the tree, it is built from the bottom up.

rules, together with the biologists’ experiences, provide general guidelines for
them to check the cell shapes and volumes to make decisions.

2.2 CELL LINEAGE PROBLEM

2.2.1 Traditional workflow

For establishing the cell lineage, botanists will cut the slices of a sample and
observe these slices from the microscope first, as shown in Figure 2.6. Based
on our collaborators’ description, with the slices they got from the microscope,
they would import them into the existing tools, such as MorphoLibJ [112], Fiji Ima-
ge] [162], MorphoGraphX [44], and OsiriX [157]. They use these tools to segment
the embryo and, based on the segmented 3D meshes, they start to trace back
the developing history of the embryo. They would observe and traverse all the
cells in the current generation and observe their positions, shapes, and shared
surfaces. With existing tools like TreeJ (see Figure 2.4), they need to single-click
the target cell and the sister cell to make them a pair, and the tool then en-
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Figure 2.4 - The traditional system Tree] (a plugin to Fiji Image]) that the experts tradi-
tionally use to specify the cell lineage : (a) screenshots of the interface. Users primarily
interact in a 2D slice of the microscopy data, colored by the cell's assigned ID, to select a
pair of cells to merge. The resulting tree is then represented in a textual form with num-
bers as cell labels, and it is no interactive. The 3D view (marked A and D) only serves
as an additional view and is also not used for interaction, and (b) example cell lineage
result produced with Tree) that shows several development stages (A-D) of the cell in
the 3D view and the corresponding text-based lineage hierarchy. Image © Elise Laruelle,
Philippe Andrey, Jean-Christophe Palauqui, and Alain Trubuil, used with permission.

codes these two cells with the same color. Based on their knowledge and expe-
rience, they pick a most likely sister cell and mark these two cells as pairs and
write down these pairs. Typically, tools do not support the hierarchy tree buil-
ding, and biologists need to do it manually. The confidence they get after ma-
king such a decision varies among biologists. Still, they are typically confident in
their choices, especially for small embryos. After assigning all the cells in a given
generation, they would merge the proposed pairs and repeat the process for
the new-merged cells in the temporally previous generation until only one cell
remains. Though the cell shapes and positions could only be slightly different
between generations, they do not affect the decision-making of biologists. The
cell lineage process is basically a repetition of seeking sister cells. Normally, bio-
logists record the ongoing hierarchy history in the text format without any inter-
actions with the tools as in Figure 2.5, or they would write down the most likely
pairs in the tree format on paper (see Figure 2.7). The text format is actually an
array. The number in each position indicates the parent cell’s id. For example,
if the first number in an array is 30, then it means that cell 30 is the parent cell
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Figure 2.5 - The illustration of the recorded format. The upper part is the array biologists
would save in a text file, and below is the corresponding tree in 2D.

of cell 1. These manual characters of the data recording make it hard to connect
cells in the hierarchy tree with 3D objects. During this process, it is likely that
different biologists build diverse trees. The only way to be certain about the hie-
rarchy tree is to observe the time lapses of plant embryos [73] though the image
quality is not good. However, it is not easy because it happened inside a small
seed.

Figure 2.6 - Embryos slices got from the microscope. From left to right, embryos
consist of 16, 32, and 64 cells respectively. Image © Elise Laruelle, Philippe Andrey, Jean-
Christophe Palauqui, and Alain Trubuil, used with permission.

The current usage tools (e. g., OsiriX [157], Fiji Image] [162], and the Tree] plu-
gin for Fiji Image)) help the biologists with the cell checking and history rebuil-
ding. They, however, were mainly designed for checking embryo shapes and seg-
menting embryos and mostly relied on 2D images for the biologists to make deci-
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Figure 2.7 - Traditional trees to record the embryos’ developing history : (a) the hierarchy
tree biologists wrote on the paper, (b) the tree used in Tree). Image © Elise Laruelle,
Philippe Andrey, Jean-Christophe Palauqui, and Alain Trubuil, used with permission.

sions. For example, with Fiji Image], biologists input slices, and the tool segments
the embryo automatically with different colors (see Figure 2.8). After checking all
the slices being segmented correctly, the biologists reconstruct the embryo mo-
del in mind to build the hierarchy tree. Though Tree] was designed to solve the
cell lineage problem, it also lacks 3D shapes for biologists to refer to. The history
could only be built in a 2D format as the Figure 2.7 shows, which means that the
hierarchy tree cannot be explored interactively. Even for those tools (e. g., Avizo)
which provide 3D environments, it is difficult to examine the inner structure,
including the shapes of inside cells, because plant cells (like the cells in most
living organisms) are densely packed together in an embryo. Moreover, this ma-
nual assigning workflow is time-consuming and error-prone, especially for large
embryos with hundreds of cells. In addition, these tools require users to down-
load and install the implementations and, thus, have limited accessibility. Thus,
developing an elegant and efficient tool for solving the cell lineage problem is
challenging, urgent, and essential.

2.3  CONSIDERATIONS

With all these challenges and backgrounds, next we summarize our conside-
rations regarding the specific biological scenario for the design.

The first consideration is that the embryo has different parts, e. g., apical
and basal parts. Biologists have the knowledge of how an embryo could be di-
vided into those parts, and this information largely helps with and influences
their assigning decisions. That means biologists can build the hierarchy tree in
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Figure 2.8 - The screenshot of Fiji Image) [162] deals with the slices of a 16-cell embryo.
The lower slider bar enables users to target a specific picture among the whole stack of
slices. The figure here illustrates the segmented embryo.

both a bottom-up and a top-down approach. In the system, we should support
such grouping for biologists so that when machine learning algorithms are pre-
dicting the assignments, they can also provide better predictions. We achieve
the grouping function and explain the details in section 5.3.

The second consideration is that the raw datasets usually include the main
embryos and the suspensors extracted from the slices. We make use of this
fact and help biologists detect the suspensors and hide them from the main
embryo in chapitre 4. In the meantime, we support biologists manually marking
these suspensors.

The third consideration is that biologists have their preferences and ha-
bits. For example, they used to encode random colors to different cells so that
they could easily distinguish two adjacent cells even though these colors have
no additional meanings. Also, they have their customized approach to doing the
lineage, and we take this situation into consideration in chapitre 5.
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The forth consideration is that the system should work for general lineage
problems other than just plant embryo datasets. Biologists are also interested
in the lineage of other tissues or organs. That is to say, the visualization and
interaction design need to meet other datasets. We considered this and discus-
sed our detailed visualization in chapitre 5 and chapitre 6. We also discussed the
potential extension in chapitre 7.






CHAPITRE

SYSTEMATIC REVIEW

In this chapter, we present work that is related to our own research. Based on
the tasks-by-data-types taxonomy proposed by Shneiderman [173], in our the-
sis, we include three-dimensional data (spatial information of plant embryos),
temporal data (the approximate division periods), and tree data (the relation-
ships between parent cells and children cells). Thus, the major challenge for us
is to connect all these data types in a visualization system and to provide inter-
action techniques that allow users to smoothly manipulate them to finish the
task. We, therefore, investigate different visual systems in biology. Then, we re-
view the literature on interactively linking the 2D and 3D representations. Finally,
for a better understanding of how machine learning algorithms can assist users
solving the cell lineage problem, we survey related research projects about pre-
dicting object assignments in similar setups.

3.1 VISUAL SYSTEM IN BIOLOGY

There are numerous problems to work on in the biological field, ranging from
species-related to multi-scale challenges, which can be somehow solved by vi-
sualization techniques. It is because these problems are usually abstract and
complicated, where visualizations can assist in explorations. For instance, vi-
sualization has been proven to help biologists better understand life, and the
process of organs [54]. Since problems in biology are usually specific, such as
analyzing the gene sets [105], protein interaction [33], and biomolecular interac-
tion networks [170, 25], researchers should create tools particularly targeting at
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the problem. Thus, many different visual systems were created to solve those
diverse problems. Among them, we are interested in two types of systems. One
is to use enhanced visualization and interaction with 3D biological models to
solve the problem. The other one is to visualize the biological data in 2D repre-
sentations for better analysis. We are interested in these two types because, in
the scenario of the cell lineage, biologists need 3D plant embryos to refer to and
potentially require 2D diagrams for further hierarchy analysis.
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Figure 3.1 - The screenshot of MorphoNet [110]. Image permissions by Leggio et al. [110],
@@® CC-BY 4.0.

For helping with visualizing the 3D models, one interesting example is Mor-
phoNet [110] which enables biologists to observe the multi-scale biological data
(see Figure 3.1). It can visualize cells and organs. Other than that, it also allows
biologists to select specific cells among the whole embryo and make changes
to them, such as changing colors or hiding them. MorphoNet was developed
in Unity 3D and embedded in a website. This installation-free system also ins-
pired us to support an online tool with interactive 3D environments. The tool,
however, has constraints in several ways. Firstly, even though it can make cells
transparent, the cell occlusion problem is still challenging. It is difficult to get ac-
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cess to the inner cells. Secondly, the 2D panel was designed to control the 3D
objects but lacks sufficient summarized information for complicated decision-
making. Lastly, the compatibility of the website with Unity is not that smooth,
and the interaction has some delays for big embryos. Similarly, 3D-Cardiomics
developed an interactive 3D heart for biologists to examine the gene and com-
pare between different heart pieces [140]. It used the expand function to move
parts separately to solve the occlusion problem. Unlike these visualization sys-
tems, our purpose is to see not only the 3D structures of plant embryos but also
to make adjustments to these datasets and produce a dynamic hierarchy tree.

Besides this work, we also investigated other literature on 3D visualizations
from different aspects. For example, for better rendering, Mindek et al. develo-
ped the visualization pipeline for cell science which enables to process and ren-
der the volumetric data sequentially and in parallel so that biologists could get
the visualizations in different degrees of quality [134]. Researchers also investi-
gated visualization approaches for other datasets such as multiscale molecular
[131]. Such systems to analyze the molecular usually contain diverse techniques,
like visual guide [32], distortion [59], extracting abstraction structures [6&], and
overview and details [38]. These strategies are also important for our system to
support embryo examination.

In addition to the 3D-related techniques, these strategies usually require ad-
ditional abstract data visualizations. For example, based on MorphoNet [110],
researchers added a genome browser to visualize the gene order [40]. Also the
visual representations can also be organized in the 3D environment, such as
Arena3D [148]. It used the staggered layers in the 3D environment to visualize
networks. Each layer contains diverse groups of information. Unlike traditional
2D images, the design uses a large space and avoids overlapping issues. Because
we worked on the plant cell lineage problem, we specifically looked into the hie-
rarchy visualizations. Wang et al. [204] summarized two categories of visualiza-
tion techniques to visualize hierarchies : node-link and space-filling diagrams.
Node-link diagrams focus more on the relationships between nodes [187]. In
contrast, the space-filling diagrams can emphasize the relative widths or areas
of nodes. Thus, they can provide a clear visual guide to the hierarchy. The com-
bination of these two types, such as Elastic Hierarchies [218], saves space and
emphasizes the inner relationships (see Figure 3.2). Researchers also investiga-
ted the color modes for the tree structures [193].

Plant embryos’ division processes contain the hierarchical structure and the
temporal information. As we have stated before, biologists can roughly group
the cells with similar division time into one level. It means that the hierarchy has
inherent temporal data, though the information is time periods instead of pre-
cise timestamps. Biologists, thus, usually create customized hierarchical trees
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Node-Link Diagram Treemap Elastic Hierarchy

Figure 3.2 - The illustration of typical types of trees. The left image is an example of
a node-link diagram. The middle image is a treemap, a typical instance of space-filling
diagrams. The right one is the Elastic Hierarchy developed by Zhao et al. [218]. Image ©
2005 |EEE.

with generation information emphasized (see Figure 2.7).

These projects mainly focused on better and more efficient rendering of bio-
logical objects and helped with the analysis. In some cases, however, biologists’
decision-making should base on 3D biological models. For the cell lineage pro-
blem, biologists need to analyze the embryo cells’ inter-relationships and build
the hierarchy tree. These decisions are made after observing the cells’ proper-
ties in the 3D environment. Thus, in the following section, we investigated the
combination of design with 3D visualization and 2D abstract representations,
which are not necessarily in the biology field.

3.2 HYBRID SYSTEM COMBINING 3D AND 2D
REPRESENTATIONS

As shown in the previous section, 3D visualization normally presents neces-
sary information about specific 3D objects, such as the embryonic data [110]. For
controlling such complicated systems, designers usually add a 2D control panel
with other 2D representations to show abstract or additional information. These
two parts (the control panel and 2D representations) can be actually merged to-
gether to support users in better understanding the dataset and making deci-
sions. In this way, besides getting additional knowledge, people can also control
the 3D visualizations from such 2D representations. Other than separating two
views, we can also add 3D models directly to the 2D diagrams or the other way
around. Then within one view, we can visualize extra attribute values intuitively
as well.

In this thesis, we are interested in the design of such combinations of 3D and
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2D representations where 3D and 2D views are not simply control panels for the
other view but also represent valuable data. We thus divided all the systems
into three categories : 1. Two views are mainly adding/highlighting information
for the other view without interaction connection; 2. The interaction connection
between two views is one-directional; 3. The interaction connection between
two views is bi-directional. The first category includes cases where one view en-
codes additional datasets for the other, or the 2D view is an abstract view of
3D objects. In this scenario, two views are mainly connected via the datasets or
visual linking. The last two categories include cases where two views are interac-
tively connected. These three categories actually demonstrate two questions :
1. Why should these tools combine 2D and 3D representations? 2. How could
they let people understand and intuitively interact with multiple views? We will
explain in detail as follows.
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Figure 3.3 - The screenshot of 3D-Cardiomics [140]. The heart model is expanded in the
view, and two 2D panels add information to the 3D representations. Users can hover
over specific parts to see the details and use the buttons on the panel to target a specific
gene.

The purpose of combining the 3D with 2D representations is mainly to use
one view to enhance the expressiveness of the other view via adding additional
information or highlighting some part of the data. In this case, 2D visualization
can help present the extracted data from the 3D models, and 3D representa-
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Figure 3.4 - The illustration of the hybrid 2D and 3D to visualize trajectory attribute data
[195]. Image © 2012 IEEE.

tions can encode other datasets for 2D diagrams. For example, Semmo et al.
[168] transformed the geo-virtual city into an abstract diagram and combined
these two seamlessly so that people can effectively observe the city. Similarly,
in the paper [106], researchers use the abstracted 2D view to represent the net-
work traffic structure for users to find patterns efficiently. The forming of 2D
diagrams depends on the 3D view, and no additional information is included
in these cases. Also, with 2D abstract representations, a system could add ad-
ditional information to help with the expressiveness. A typical example is 3D-
Cardiomics [140]. With this tool, when targeting a specific gene, all the similar
genes will be listed in a 2D panel with additional information like the gene names
and the false discovery rate (FDR). Meanwhile, targeting the gene name in the
2D panel, the 3D models will be highlighted accordingly (see Figure 3.3). This tool
is interesting because the researchers enable to make interaction of 2D and 3D
representations closely connected, which largely increases the interfaces’ usa-
bility. For designing 3D visualizations on 2D diagrams to represent extra data,
we have examples where researchers build 3D visualizations on a 2D map [195]
as the Figure 3.4 shows to visualize the trajectory. In their design, the temporal
data is encoded with the ordering of bands, and the speed is represented by dif-
ferent colors. It provides an intuitive overview with a dynamic query system to
support the exploration. Another example is the vessel wall visualizations from
Meuschke et al. [130]. They used a flatted 2D map to represent the aneurysm
surface with color indicating the wall thickness and a 3D bar chart to show or
emphasize one attribute, such as the deformation. Different from the 2D dia-
grams on 3D visualizations, the 2D representation here serves as a background,
and the close placement of 2D and 3D visualizations add to the sense of enga-
gement.
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Figure 3.5 - The illustration of Abstractocyte [138]. From left to right, the neurons and
astrocytes are abstracted in different levels. Image © 2017 IEEE.

After exploring the reasons why previous tools chose to combine 3D and 2D
representations, we investigated how they are linked together. 2D and 3D repre-
sentations are both usually important in decision-making and task completion.
For systems with two views that are able to finish the task independently, i. e., the
datasets are shared in 3D and 2D, researchers are likely to put these two views
in the same place, so people can link them visually. For example, in the biological
field, Abstractocyte enables biologists to control the transition between the 3D
meshes and abstract node-linked diagrams of neurites [138] (see Figure 3.5). The
2D and 3D visualizations replace each other in the main view and are connected
via the datasets. Furthermore, researchers also explore electronic transitions of
the molecules in two dimensions for better analysis [125]. When both views can
only collaborate together to finish the tasks, researchers tend to put these two
parts side by side, e.g., [138, 159]. In these cases, two views are linked because
operations in one view can get feedback from both views. For instance, CeLaVi
is one of the most related works to visualize the hierarchy tree combined with
3D simulated molecules [159]. The hierarchy tree is visualized on the left with a
node-linked vertical diagram. Each node represents a cell in a specific genera-
tion. The generation information is displayed below the tree. On the right, every
cell is simulated with one sphere in 3D, and its position is the center of the cell.
Two views are interactively connected as shown in Figure 3.6. Interacting with
one of the views will highlight nodes/cells in the other view. Though biologists
could easily target the branches and correlate them to the cells in the 3D envi-
ronment on the right, the hierarchical tree is static and has no predictions.

Our co-supervised master's student Ebrar A. D. Santos worked on exploring
the design space of such combinations and published a poster about it [160]. We
went through the papers of 2012-2022 from IEEE Vis, EuroVis, and TVCG, and ex-
tracted 97 related work. Then, we came up with five dimensions to group these
designs, attempting to answer questions of why, where, and how to combine as
illustrated in Figure 3.7. The semantic relationship demonstrates "why" to com-
pare these two kinds of visualizations. The display medium shows "where" to
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CelLaVi: An Interactive Cell Lineage Visualisation tool

by Irepan Salvador-Martinez et al.
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Figure 3.6 - The screenshot of CeLaVi[159] using the default Ciona dataset. The hierarchy
tree is placed on the left side, while the 3D view of cells is on the right side.

use these two views, and lastly, the layout, linking relationship, and control pa-
nel are designed to illustrate the "how" question. In our thesis, the 3D embryo
shapes and positions are important for biologists to make a decision on which
two cells can potentially be sister cells. At the same time, the machine learning
predictions are visualized in a 2D tree allowing people to check. Thus, based on
the literature, we chose to place these two parts side by side. Also, because the
datasets of our 3D models and the hierarchy tree are different, we decided to
interactively connect these two views to enable controlling the 3D views with the
2D abstract tree and support the other way around.

3.3 VISUALIZATIONS FOR MACHINE LEARNING

Machine Learning (ML) has become increasingly important in solving diverse
problems. In our case of plant cell lineage, ML can also assist in predicting the
lineage so that biologists do not have to assign every cell with a proper sister
cell totally by themselves. However, people may not fully understand the direct
output of ML predictions, and the lack of knowledge of ML models themselves
could also discourage people from trusting models. Visualization, in this case,
can help people to generate, evaluate, and understand various ML models [158].
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For example, in our case, adding visualization to explain the prediction results
can assist biologists in making better decisions. In the work [119], the authors
specified the literature on visualization for ML into three categories : understan-
ding, diagnosis, and refining the ML models. To combine visualizations with the
machine learning in the workflow, explAlner [176] proposed the pipeline as in Fi-
gure 3.8. With this, researchers can improve the interactions between users and
ML models. Such combinations of visualizations and ML can be used in diverse
fields, such as biology [15] and medicine and health care [200]. In this section,
we will briefly discuss the related work in the following directions to see how
visualizations can assist ML, especially in the results and how our system can
learn from these examples.
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Figure 3.8 - The workflow proposed in explAlner [176]. As we can see from the figure,
there are multiple explainers being applicable in the process, and visual explanations
can be added in between. Image © 2019 IEEE.
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3.3.1 Understanding

Visualizations help enhance users’ understanding of machine learning in va-
rious ways, including the model generation process and model performance.
The former part mainly aims to create an optimal model, while the latter focuses
on the predicted results. In terms of the model generation process, Wongsu-
phasawat et al. developed a system to visualize Tensorflow's architecture [208&].
As for the model performance, ActiVis designs visualizations to unify instance
and subset-based neuron activation and classification results and support easy
comparisons and mistakes reasoning [89]. Another example is Seq2Seq-Vis [182],
which visually represents the seq2seq model predictions and enables viewers to
find the potential issues.

For our cell lineage prediction problem, we transformed it into the classifica-
tion problem, and many visualizations were created to understand these clas-
sifiers better. We investigated interactive analysis visual approaches in the clas-
sification field. For example, based on the clustered branch organization [192],
Paiva et al. proposed a visual classification approach to assist in analyzing the
similarities between classification results [147]. These examples indicate that the
visualizations need to be designed specifically for the requirement, and in our
case, we should combine the visualizations for ML results with the hierarchy
tree.

3.3.2 Machine learning for cell lineage

Machine learning can help the biology field in various ways, such as cell seg-
mentation and cell clustering [202]. For the cell lineage problem, which is a top-
down building approach to the hierarchical tree, researchers investigated dif-
ferent ML models to predict cells’ division and their potential fates. For example,
researchers used ML algorithms combined with cell lineage tracking to disclose
the coordination in the organ regeneration with the sample of superficial neuro-
masts [201]. The model they created can help identify the features for determi-
ning the cell fates. Similarly, in this work of McDole [127], the authors developed
a supervised ML model to detect the dividing activities. As for tracking back the
development history of an embryo which is a bottom-up hierarchy-building pro-
cess, we transformed the cell lineage problem into a classification problem, so
ML models need to decide, for each cell, which are potential sister cells. Other
researchers treated the cell lineage prediction problem differently. For example,
Louveaux et al. explored the methods to predict the cell division plane [120] fol-
lowing the biological rule for the division [154]. The rule is that for plant cells that
are going to divide, the cell walls will be built in the orientation along maximal
tension.
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As we can see from all these examples, it is essential to use visualizations in
explaining machine learning to people in terms of the ML prediction process and
output so that people, even without enough knowledge about the dataset, can
get an overview of the information and better make decisions. For people who
have limited knowledge of ML, we may need to focus more on providing them
with understandable prediction results and supportive interaction techniques to
interact with these results, especially for complicated problems where ML has
limited ability due to the limited training datasets. As in our scenario, based on
biologists' feedback, they care more about the results of model prediction than
the models themselves. We then mainly used visualizations to summarize the
prediction results from multiple models. We also supported Human-Al teaming
to enable biologists to control the final decision-making.

3.4 SUMMARY

To conclude, we have gone through previous work in diverse visual systems
in biology, visualizations design combining 2D and 3D representations, and ma-
chine learning models for the cell lineage problem. With an overview of them,
though numerous research work is done in these three directions, none of these
projects systematically focus on combining them to provide an interactive tool.
We, thus, are targeting to support biologists with visual systems to better deal
with the cell lineage problem.
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EXPLORATION OF 3D
SELECTION TECHNIQUES
FOR PLANT EMBRYOS

Our first project in my thesis is to try to answer RQ1 : How to effectively exa-
mine the 3D properties of embryo cells for decision making? The cells in plant
embryos are densely packed with virtually no space between them, which means
that traditional interactive exploration techniques do not apply in this scenario.
We, thus, investigated three established alternative selection techniques, na-
mely 1D List Selection, 2D Cross Section Selection, and 3D Explosion Selection
as shown in Figure 4.1. In our pilot study, we found that the Cross Section Selec-
tion approach is hard for biologists to control. Thus, excluding this 2D selection
technique, we investigated the other two methods in more detail for their suita-
bility for densely packed cell environments.

In this chapter, we describe the controlled user study in which we investi-
gated and compared two selection techniques in the scenario of cell lineage.
We also divide the cell interaction into two parts : discovery and traversal. We
compare List Selection, 3D Explosion Selection, and a combination of both tech-
niques in these two aspects. Our results indicate that the combination was most
preferred. List selection has advantages for traversing cells, while we did not find
differences for surface cells. Our participants appreciated the combination be-
cause it supports discovering 3D objects with the 3D explosion technique while
using the lists to traverse 3D cells.
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Figure 4.1 - Our original system : (a) the main interface with three selection techniques
and (b) the hierarchy tree for 8-cell embryo. The tree contains the 3D interactive models
of corresponding cells.
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4.1 INTRODUCTION

Selection as an interaction technique is fundamental for data analysis and vi-
sualization [207]. In 3D space, selection requires users to find and point out one
or more 3D objects (or subspaces), and a sizable amount of research has been
carried out on different 3D selection techniques [6, 13, 17, 5, 59]. Among them,
ray-casting [155, 135, 5] and ray-pointing [10, 5, 145] for object selection as well
as lasso techniques [216, 215] for point clouds or volumetric data are common
techniques. These existing techniques come to a limit, however, when data ob-
jects are tightly packed and no space exists whatsoever between adjacent data
objects so that internal structures are inaccessible.

Such selection problems in dense environments arise in many scientific do-
mains where researchers deal with data that originates from sampling proper-
ties in 3D space. We are motivated, in particular, by botany where cells are den-
sely packed in captured data, virtually without any room between them and half
or more of them being enclosed [59] such as in a confocal microscopy dataset
of a plant embryo's cellular structure (Figure 4.2). With such data, botanists ex-
plore the development of plant embryos based on their cellular structure. Using
a segmented dataset, they reconstruct the history of the embryo's cellular de-
velopment [142]. This process requires them to select each cell, one by one, exa-
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Figure 4.2 - Plant embryo dataset with 201 cells (87 “occluded” cells) : (a) a segmented
cross section from confocal microscopy, (b) the 3D model, and (c) a part of the desired
cell lineage tree—the botanists’ goal to be able to study the embryo’ development. The
shared area of any specific cell indicate the shared area between itself with the parent
cell. If a cell has no parent cell, like the cell 413 in this case, the shared area is the surface
area.

mine its immediate neighborhood, select each potential candidate in the neigh-
borhood to check the shared surface and relative position, and then decide on a
likely sister cell that originated from the same parent as the target cell. This pro-
cess is continued for all cells, and potentially previous assignments are revised
if needed. The cells are naturally tightly packed, so we ask the question of how
to effectively select 3D objects in such spaces, in particular for realistic datasets
with 200 cells or more.

Currently, botanists use several tools to study cell division, but none of them
provides efficient selection interaction techniques for 3D objects in dense pa-
cked environments; they are unable, e. g., to filter cells in a view for better selec-
ting or to support marking based on 3D data rather than just 2D (TIFF) images.
Researchers currently manually mark the cells, starting by targeting cells for
which it is easiest to find the respective sisters. From the set of 2D images, they
then identify all neighbors and examine their shapes and that of the surface the
two cells share. Based on their past experience, they then decide on the most
likely sister for the target cell.

We thus worked with them to understand their needs, to investigate intuitive
selection techniques, and to support them to interactively derive the cell division
tree. To better investigate the effectiveness of the needed selection techniques
in this specific dense packed data scenario, we divided the cell selection into two
parts : discovery and traversal. Discovery means to find a specific cell to assign
within the whole embryo, while traversal refers to picking a specific range of cells
in order. With this definition, we can describe the cell division process as repea-
tedly discovering target cells and traversing their complete set of neighbors. We
then evaluated three selection techniques : list selection (List), explosion selec-



58 Chapitre 4

tion (Explosion), and a combination of both (Combination). List provides traditio-
nal lists to indirectly select cells, while Explosion displays an explosion view of the
embryo and allows to directly select cells. Combination supports both techniques
in one interface. We were also interested in how efficient these techniques are
when selecting cells in different positions (on the surface and being enclosed).
We thus designed an experiment to compare the techniques and the two cell po-
sitions. We measured task completion times, assignment accuracy and clicking
ratios (clicking times for each neighbor). We also gathered subjective feedback
from our participants such as their interaction strategies and preference.

Our results show most participants favored the Combination technique : they
preferred to control the cell distance, often discovering targets in the 3D view,
and then using the lists to traverse the neighbors. List performed better than
Explosion when assigning occluded cells, while there was no clear performance
difference between these two techniques for the cells on the surface. With our
results on the techniques’ performance and people’s feedback about interac-
tion, we derived suggestions for future 3D selection technique design and dis-
cuss current limitations. In summary, we contribute :

+ a controlled experiment to study selection of dense 3D datasets with tradi-
tional input devices, whose results shed light on the performance of three
selection techniques, for two cell positions (on the surface or occluded),

+ an analysis of participants’ preferred strategies for List, Explosion and Com-
bination as well as the involved two steps (discovery and traversal) of cell
selection, and

+ a discussion of selection techniques for dense 3D environments.

4.2 RELATED WORK

The actual tasks we employed in our work on selection techniques focus on
object discovery and traversal, rather than simple picking. Below we thus first
review related work about discovery and accessing techniques for 3D objects.
We then discuss general interaction techniques besides selection for dense da-
tasets, especially for desktop-based interaction. We end this section with a small
survey of cell visualization applications—our application domain.

4.2.1 Discovery and Access Techniques

3D discovery is essential for finding the target cells among numerous cells.
It needs to be able to deal with occlusion, yet should maintain the spatial rela-
tionship of an object and its context [59]. ElImqvist and Tsigas [59] summarized
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a range of techniques to discover objects from densely datasets in virtual envi-
ronments. They identified five design patterns : multiple viewports, virtual X-ray
tools, tour planners, volumetric probes, and projection distorters. One of our
approaches (explosion selection) falls into the last of these categories, while our
list selection seems to be a separate category as it uses an abstract representa-
tion of the elements.

Though there were ways in dealing with the occlusion problem, the direct
interactions including discovering are limited and to completely solve the oc-
clusion, usually multiple techniques would be used [6]. To ease discovery, re-
searchers have also used object highlighting or dimming the remainder of the
objects. In the past, space distortion [69, 67, 60] and distinguishing the objects in
a region [178] have been extensively studied for object highlighting, while object
deacentuation has been achieved with transparency [47, 57, 60] and selective
object hiding [60]. These techniques, however, have not been fully tested for
discovering a large number of objects such as in our case because the such da-
tasets have high needs for orientation and an extreme lack of visual cues. Here,
our application has an advantage : it is guaranteed that the sister cell, at any
hierarchy level, is next to its sibling.

Multiple techniques have also been studied for precise accessing [59], and
the spacial occlusion cases are most relevant for us. In 3D environments and,
especially, VR, researchers have investigated using dedicated 3D selection tools
to address the occlusion issue [6]. The most common techniques are ray-casting
[107, , 121], ray-pointing [145], bubble cursor [121, 36], sphere-casting refined
by QUAD-menu (SQUAD) [100] and virtual hand [152, 151]. Among these four, ray-
casting and SQUAD were claimed suitable for dense objects [30] and numerous
of studies have explored ways to improve these two techniques. For example,
JDCAD [115] allowed people to use the cone selection to freely create the selec-
tion volume, which avoided the drawback of ray-casting that uses additional 1D
input to select 3D objects. Grossman et al. [74] proposed a ray cursor that provi-
ded all the intersected targets and allowed users to choose. Later, Baloup et al.
[10] developed RayCursor to automatically highlight the closest target and sup-
port manually switching the selection of intersected objects. As for the SQUAD,
to offset the cumbersome steps in accessing dense objects, Cashion et al. [30]
added a dimension called Expand to enable the sphere to zoom. Furthermore,
to help accurately select an object users see, researchers have explored advan-
ced access techniques that could calculate which object users would possibly
select. For example, Haan et al.'s [42] IntenSelect technique dynamically calcu-
lated a score for objects inside a set volume and allowed people choose from
the objects with the highest scores. Similarly, Smart Ray [74] continuously cal-
culated and updated object weights to help users to determine which object to
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select when multiple targets were intersected. All these techniques are efficient
in discovering and accessing objects in sparse datasets, yet are not suitable for
the highly dense environments with no space between possible selection tar-
gets. Moreover, in practical scenarios people are typically aware of which target
to select, while in our cell division application the biologists make the decision
by referring to the shared surface between the two cells and thus have to tra-
verse a number of potential targets to assess their suitability. Also, the learning
effects of new techniques could be high.

4.2.2 Interaction Techniques for Dense Datasets

In virtual 3D cell manipulations, biologists need to precisely select objects
from dense sets, without knowing which objects may need to be selected. Pre-
vious studies [141] have demonstrated that users tended to stick with the familiar
mouse interaction. In addition, past work [199, 14] has shown that low-DoF input
devices such as mouse and keyboard can easily achieve such tasks with high
accuracy. These supported our decision to study cell division with familiar input
devices. Nonetheless, in virtual 3D environments—especially in VR—discovering
an enclosed object can consume more time [6], even though the selecting is ea-
sier due to better depth perception in stereoscopy. In our dense embryo cells
scenario we thus relied on a traditional projected-3D environment with mouse
and keyboard input to accommodate our domain’s need for high selection ac-
curacy.

Researchers have also explored various methods for mouse and keyboard
input to manipulate the objects. For example, Houde [87] raised the idea of crea-
ting a handle box outside the 3D object and, similarly, modern 3D modeling ap-
plications such as Blender and Rhino allow users to individually transform the
3D objects with mouse and keyboard. Applications also provide layers for orga-
nizing the objects and selecting multiple items from a list. Even though in some
controlled environments the object layout can be rearranged to avoid occlusion
[1771, in our case the cells’ spatial relationship must not be changed to provide
our users with a faithful representation.

Past work on selection in dense datasets has focused on structure-aware
approaches (e.g., [45, 46, 58, 215, 216]). Unlike particle or volumetric data which
contains huge amounts of points or a sampled data grid without explicit borders,
our embryo cell data has dedicated cells that could be picked—yet are tightly
packed to each other such that many are not accessible for traditional picking.
Lasso-based selection is also not appropriate because we do not need to enclose
regions but need to match two dedicated objects as sister cells. We thus instead
require interaction techniques that preserve the respective positioning at least
locally and allow us to access all cells in an efficient and effective way.



4.3. STUDY DESIGN 61

4.2.3 Cell Visualization

Cell data visualization has been found to be useful in helping biologists get
knowledge about cell development. Various academic tools (e.g., OsiriX [157],
Fiji ImageJ [162], OpenWorm [186], and Icy [34]) and commercial software (e. g.,
Avizo, Imaris) provide advanced live-imaging techniques and computational ap-
proaches to allow users to clearly observe and interact with their data. The in-
teraction in these tools, however, remains simple : mouse-clicking the cells on
the surface of an embryo provides the users with access to specific variables
and actions. For example, MorphoNet [110] uses Unity to visualize diverse types
of cell data on a website, allowing users to visually explore cells. They left-click
to target a cell, and can rotate and zoom using specific keyboard combinations.
This interacting process is smooth for a few cells, while it gets slow and tedious
for large datasets (i. e., with > 100 cells). Though the software can hide and show
cells, it only provides access to the current outside of the embryo. No single tool
among the mentioned software is applicable to the cell division annotation, so
we worked to develop and study dedicated selection techniques for the entire
embryo.

4.3 STUDY DESIGN

To understand how people can best select objects in densely packed 3D
settings—in our application domain to discover target cells and traverse their
neighbors—and, ultimately, to process large datasets using these interaction
techniques, we designed the experiment as described below. We pre-registered
this study (osf.io/cewhn/)including the study design and the data analysis me-
thods (supplementary materials at osf.io/yze5n/), and it was also approved by
our institution’s (Université Paris-Saclay) ethical review board.

4.3.1 Interaction Techniques

We chose all the techniques based on previous related work and implemen-
tations biologists are using now. From our decisions to focus on desktop set-
tings, an obvious interaction technique to select from a set of segmented ob-
jects is to use a list widget (see 4.3(a)). Participants could discover the target
cells from the list only. It has the advantage of mapping the objects distributed
in 3D space into a 1D dimension, for a given order in the set. Naturally, there is
no such mapping that preserves the objects’ original 3D location, but in our use
case researchers need to access all of the cells from the set eventually. Moreo-
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Figure 4.3 - Three main interaction targets for the techniques compared in the study :
(a) List, (b) 3D Explosion, and (c¢) Combination selection. Cells to be assigned are marked
in orange, and selected cells are red. In all three cases the 3D view was visible to the
participants.

ver, this interaction also lends itself easily to the task of marking the cell division
history, as we can algorithmically extract the potential sister cells of a selected
target from the segmented dataset and show them in another list widget. For
each item in the list, we only show a name because, in the real scenario, biolo-
gists refer to such names. In addition, we did not include additional data since
they evaluate the shapes and neighborhoods of cells in the 3D view rather than
making decisions based on numeric cell property values such as a shared sur-
face area.

Nonetheless, the 3D location and 3D shape of the respective cells do play a
role, both for the initial target selection (as researchers tend to solve the easy
cases first) and for the decision on the sister cell (by inspecting the geometry of
the shared surface). We thus were also interested in the performance of selec-
tion techniques directly in the projected 3D view. We solved the inherent object
density and occlusion issues by employing 3D explosion techniques [114, 191].
Using this approach we created additional space between the cell objects, both
for the initial selection of a target cell in the embryo (e. g., 4.3(b)), the examina-
tion and, ultimately, selection of the sister cells for this target (e. g., Figure 4.4).

Another fundamental approach to exploring the inside of 3D objects or vo-
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Figure 4.4 - The focused view of a target cell and the associated number shown near
the neighbor cell's surface (red cell is the target cell and yellow cell is the neighbor cell
with its associated number).

lumetric datasets in visualization is the use of cutting planes (e. g., [82]). We also
explored this technique as a basis for exploration and selection as it concep-
tually relates to the slices of the confocal microscopy approach in our applica-
tion domain. With this technique, researchers would be able to move and orient
a cutting plane freely in 3D space, and then we would show the intersected cells
in an unprojected slice view where they could be clicked for selection. Pilot tests
showed, however, that this approach was not promising because it was diffi-
cult to reason from the intersected cells to their correct 3D shape and correct
selections took a long time, so we did not further pursue this technique in our
experiment.

Instead, we also merged the first two techniques into a Combination tech-
nique in which participants had the choice between using List and Explosion se-
lection. Moreover, in all techniques, including in the List selection, we showed the
3D projection of the embryo or a target cell's direct environment as our collabo-
rating biologists always make the decision of which two cells are sisters based
on numerous properties, such as the shape and size of their interface (i. e., the
shared surface between the two cells). We thus also used an explosion repre-
sentation for the List selection technique, to guarantee that our participants can
observe the shared surface. In the Explosion and Combination techniques, ho-
wever, we allow users to freely adjust the explosion degree and to control the
amount of space they need for navigating in 3D space.

4.3.2 Tasks

With these interaction techniques we aimed to support the practical task of
deriving the cell lineage for an entire embryo. We thus modeled the tasks in
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our experiment based on the approach our collaborating experts (three plant
biologists, all with more than 20 years of professional experience) take to derive
the cell division history as outlined in section 4.1, using the tools described in
section 4.2. We followed the same process in our experiment : participants were
first asked to select a non-marked target cell from the embryo. We then showed
them this cell's immediate neighborhood in the focused view (Figure 4.4, both
as a 3D view and, in case of List and Combination techniques, as a list), and then
asked them to select the correct cell based on which cell is most likely the sister
of the target.

This approach would naturally limit us to participants with years of expe-
rience in plant biology cell lineage analysis and the cell division scenario only. To
circumvent these restrictions, we implemented a proxy for the biologists’ expe-
rience : As we show a target cell's neighborhood, we asked participants to select
each potential neighbor, after which we showed a pre-defined “likelihood” (an
Integer € [1,99]) of being the correct sister cell. We chose this number randomly
and independent of the specific situation because we were interested in general
feedback on selection in dense environments with non-expert participants. We
displayed this number in the 3D environment hidden from the current view to
force participants to use 3D navigation (i. e., rotation) to reveal the number—this
interaction mimicking the 3D evaluation of the interface between two cells that
the biologists would do. Participants would then need to find the cell with the hi-
ghest number to make a correct selection. In addition, this highest number was
not necessarily 99, so that participants would have to examine each potential
neighbor at least once.

4.3.3 Datasets

We used a real embryo data provided by our collaborators, which contai-
ned 201 cells. We chose this single dataset as a representative research entity
because its size is realistic and other plant embryo datasets would contain si-
milar cell shapes and arrangements. Experimental time limits, however, meant
that participants could not assign sisters for all cells, we thus created three sets
of target cells for them to mark, each with 10 cells. We were interested in the
influence of the cell position (surface vs. occluded), so we created all three sets
with 5 cells on the embryo’s surface and 5 cells that were enclosed by other cells.
To reduce learning effects, the three sets did not share a same cell, nor did they
share any of the respective neighbors. Each set plus its 1-neighborhood (i.e.,
direct neighbors) was thus completely distinct from the other sets, plus their
respective 1-neighborhoods, which guaranteed that any past assignment (even
if done incorrectly) would not affect any future marking. Otherwise, if two tar-
get cells would have shared a potential neighbor, then participants marking this
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neighbor as a sister of either target would means that the other target would
lose a sister candidate.

Task Progress: 0/10

In this task, you could select cells from the lists on the right part. Also, you could move the scroll bar to get the exploded
view of the embryo.

Explosion Bar

3D view

Figure 4.5 - Study interface (combination selection shown).

4.3.4 Interface

In three conditions, the interfaces contained three main parts : instruction
panel, 3D view and operation panel (see Figure 4.5). The operation panel in all
techniques contains two buttons. One could be used to auto relocate the whole
embryo to the center of the 3D view, in case participants got lost, and another
one enabled participants to jump to the next task. In List and Combination, this
panelincluded a global list of all cells in the left list view and a focused neighbors
list, showing only the direct neighbors of a selected target cell. We scaled the
interface to completely fill the screen size of participants’ computers, with the
ratio of each part’s size to the interface size being fixed. In the instruction panel,
we displayed the study progress state and a brief introduction of the interaction
in the task. We placed the 3D view on the left, while we showed the operation
panel on the right. We designed the relative to indicate that 3D view was the
main reference, and such that it was approximately square. Below the 3D view,
we placed a horizontal bar widget to allow participants to control the explosion
distance between the cells. We placed the button to mark two cells as sisters
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on the top and in the center, somewhat in the middle between 3D view and
operation panel such that the distances to travel to the button from 3D view
or lists were about the same. We also allowed participants to assign cells by
pressing the space in the keyboard to further reduce the impact of the actual
marking action on completion time.

For indicating cells from the sets to be marked, we highlighted them in the
list via orange icons for List and rendered the cells’' 3D shapes in orange in the
3D view for Explosion. In Combination mode, we used both forms of highlighting.
When participants clicked on a cell either in the 3D view or the lists, we also
showed the corresponding item in the lists and the cell in 3D view would in red
(for target cells) or yellow (for neighbor cells) in the 3D view or highlighted in the
list as shown in Figure 4.5. Finally, we modeled the interaction in the 3D view
after commercial 3D modeling software like Rhinoceros or Blender. Participants
could hold the right mouse button to rotate, scroll the wheel to scale, and hold
the wheel to pan. To distinguish rotating from clicking, the left button of mouse
in the 3D view could be used to click and double click the cell.

4.3.5 Measures

We assigned a unique participating number to every participant and recor-
ded all data based on this number to guarantee participant anonymity. For all
trials, we recorded total completion times, accuracy, every action participants
did, and tracked the real-time position of the camera. We started the timer when
the program had loaded the visualization for each trial and stopped once the
participant triggered the signal of assigning the cell sister (button click or key-
board press). We asked participants to activate the assignment once they found
the sister. After choosing the sister for the target, these two cells would disap-
pear in the 3D view and the corresponding items in the lists would also be disa-
bled. We then instructed participants to continue with the next assignment and
we restarted the timer. We measured the total trial completion time and ac-
curacy by calculating the ratio of correct assignments in all assignments. Aside
from completion time and accuracy, we also recorded the cell selection ratio (cli-
cking times divided by the neighbor count) to better understand the efficiency
of different techniques. A more efficient selection technique was likely to have
lower clicking ratio, one that is closer to 1. After participants finished all tasks,
the examiner conducted a post-study semi-structured interview, focusing speci-
fically on the following questions : Q1—Sort the three techniques by preference;
Q2—What strategies did you use in doing three tasks? and Q3—Do you have any
other comments on the interaction?
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4.3.6 Participants

As our goal was to generally understand object selection in dense datasets
and to provide recommendations also for non-botany scenarios, we targeted
non-expert participants. Also, recruiting such participants ensures that all the
decisions are made by referring to the associated numbers, rather than being
fully or partial based on our participants’ own knowledge of cell division. We re-
cruited 24 people via social networking and our local university's mailing list (8
females, 16 males; 24-31 years old, with a mean age of 26.96 years). All partici-
pants had at least a master degree, were right-handed, and were well trained
in the usage of mouse and keyboard interaction. None of them was color defi-
cient. Twelve of them had previous experience in 3D manipulation including 3D
video games playing, and none of them had knowledge about cell division be-
fore. The latter aspectis important as it suggests that all participants made their
assignments only based on the number we showed, rather than their previous
knowledge of cell division patterns.

4.3.7 Procedure

We conducted the experiment via remote video calls due to the limitations
that arose from the Covid-19 pandemic for our research environment and for
the participants. We minimized the remoteness effects by checking in advance
whether every participant could smoothly conduct the experiment with their
preferred devices. We first explained participants the purpose of our study, as-
ked them to fillin basic demographicinformation, and sign a consent form if they
agreed to participate. Because we conducted the study online, for those parti-
cipants who preferred not to install our experimental software by themselves,
we asked them to use a dedicated remote interaction software to allow them to
remotely control the experimenter’'s computer. The others had downloaded the
software and installed the software in advance and shared their screen while
they communicated with the researcher via video conferencing.

We divided the experiment into three blocks, one for each technique. Each
block began with a non-timed training session in which the experimenter first
explained the task using written instructions in the interface and a study script,
and then asked participants to try their best to traverse all the neighbors of a
target cell and to find the correct answer as soon as possible. Before transfer-
ring to the main task, the experimenter ensured that participants understood
the task and were able to conduct the tasks correctly and independently. After
finishing all tasks, we conducted the mentioned post-study interview to explore
participants’ strategies and individual experiences.

Our first objective with the experiment was to compare the List and Explosion
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techniques. We thus only presented these two techniques in the first two study
blocks. We counter-balanced the order of both techniques to reduce order ef-
fects. Our second objective was to assess how participants would interact when
having the choice of using the Combination technique, after having experienced
the List and Explosion techniques separately. In the third block we thus always
presented the Combination technique to participants. In addition, we were inter-
ested in the effect of occluded vs. surface cells, so we alternated between these
types and also counter-balanced the type a participant would see first. We did
not expect an effect of the specific order of cells in the list view, so we always
used the same order (by name) for all participants. In List and Explosion tasks,
we showed the next target cell in orange after participants had finished the for-
mer assignment, while we marked all target cells at the start of a Combination
task to explore in which sequence participants would assign them. The order of
the specific cell subsets may play a role, so we counter-balanced the order of
the three subsets. In total, we thus had a 2 techniques x 2 cell types x 3 data sub-
sets design, resulting in 12 combinations in total, and each possible combination
was experienced by two participants. We used 10 trials per technique and the
resulting experiment lasted about one hour per participant.

4.4 RESULTS

We now present our experimental results of completion time, accuracy, and
clicking ratio for the two selection techniques List and Explosion. We then indivi-
dually examine the use of Combination, which we cannot analyze together with
the other techniques due to potential order effects. We also compared the per-
formance of the different techniques in assigning cells from two positions (on
the surface or occluded). Cells on the surface (surface cells) typically have less
neighbors and clearer layers, while enclosed cells (occluded cells) are hidden
entirely from an outside view. We also discuss our participants’ strategies and
subjective feedback.

We gathered totally 720 trials (24 participants x 3 tasks x 10 trials). Recent re-
commendations from the statistics community made us choose an analysis of
the results using estimation techniques with confidence intervals (Cls) and effect
sizes to avoid the dichotomous decisions [16, 51, ], instead of using a traditio-
nal analysis based on p-values [9]. However, it is still possible to transfer Cls to
p-values [50, ]. We report all Cls by default as 95% Cls. We did not find all
measurements to be normally distributed, so we used bootstrapping Cl [95] to
analyze completion time, accuracy, and clicking ratio. We visualized our output
distributions to increase the transparency of our reporting.
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Figure 4.6 - Completion time (absolute mean time) for different numbers of cell neigh-
bors in seconds : (a) overall time, (b) List selection, (c) Explosion selection, and (d) Combi-

nation selection.

4.41

Completion Time

We can naturally assume an impact of neighbor count on completion time
and we indeed observed an approximately linear relationship—globally for all
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Figure 4.7 - Completion time (absolute mean time) in seconds (List in yellow and Explo-
sion in red) : (a) the overall results, (b) selection of occluded cells, and (c) selection of
surface cells.
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Figure 4.8 - Pair-wise differences for completion time : (a) the ratio overall, (b) the ratio
for occluded cells, and (c) the ratio for surface cells.

tasks (4.6(a)) and also for the individual tasks (4.6(b)-(d)). The mean neighbor
count per dataset, however, was approximately similar (10.4 vs. 10.1vs. 10.8). Mo-
reover, each combination of task with dataset was seen by the same number of
participants (fully counter-balanced), so in our remaining global analysis of com-
pletion times this relationship does not play a role.

Techniques. In Figure 4.7 we present the absolute mean values of time in
seconds for each technique. With List, the average time is 63.81s (Cl [56.25s,
74.82s]), while using Explosion, the average time for one target cell is 69.75s (Cl
[60.64s, 80.265]). Since the Cls overlap a lot, to better demonstrate the difference
in the completion time, we checked the pair-wise ratio for these two techniques
(see Figure 4.8). The ratio for List/Explosion is 0.91 (Cl [0.86, 1.01]). As we can see,
the upper bound Cl of List/Explosion is 1.01, close to but above 1, so there is some
evidence that the List selection tool less time than Explosion. The absolute diffe-
rence, however, is only small as evident in the similar completion times. We also
investigated the completion time differences with these two techniques in two
task parts : discovery and traversal. For the discovery part (i. e., the accumulated
times from the start of a trial to the selection of the target cells), the average
mean times are 7.57s (Cl [6.79s, 8.52s]) with List and 5.23s (Cl [4.31s, 6.36]) with
Explosion (see 4.9(a)). Since the upper bound of Cl in Explosion is smaller than
lower bound of Cl in List, the Explosion is evidently faster in discovering target
cells than List. We also checked the pair-wise ratio of List/Explosion and it is 1.45
(Cl [1.27, 1.69]), which confirmed that List selection needed more time than Ex-
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Figure 4.9 - Completion time (absolute mean time) in seconds with two steps (List in
yellow and Explosion inred): (a) the target cell discovery, and (b) neighborhood traversal.
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Figure 4.10 - Pair-wise differences for completion time in two steps : the ratios for (a)
discovery and (b) traversal.

plosion (see 4.10(a)) for object discovery. As for traversing (i. e., the accumulated
times for checking all neighbors of a cell), the average time for List is 54.84s (Cl
[47.98s, 65.125]), while for Explosion it is 62.26s (Cl [54.37s, 71.495]) (see 4.9(b)).
Because the Cls overlap a lot, we examined the pair-wise ratio to better analyze
the difference. As 4.10(b) shows, the ratio for List/Explosion is 0.88 (Cl [0.82, 0.98]),
so there is some evidence that List selection is faster for traversal than Explosion.

Positions. We were also interested in the possible influence of the cell posi-
tion on performance. We investigated the average completion time for occluded
cells (4.7(b)), which was 79.42s (Cl [69.83s, 93.52s]) in List and 88.58s (Cl [77.43s,
102.33s]) in Explosion. Because this difference of mean completion times is small
and the Cls overlap, we again checked the pair-wise ratio, which is 0.90 (Cl [0.84,
0.97]). The upper bound of the Cl is again close to 1.0, so there is some evidence
that with List participants could finish the task quicker than Explosion when dea-
ling with occluded cells. We did the same analysis for surface cells. Here, the ave-
rage times are 51.62s (List; Cl [45.05S, 61.23s]) and 54.92s (Explosion; Cl [46.87s,
63.27s]), and the pair-wise ratio for List/Explosion is 0.94 (Cl [0.86, 1.06]). We thus
cannot find much evidence that, in assigning surface cells, List selection would
be faster than Explosion.
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Figure 4.11 - Accuracy rate (List in yellow and Explosion in red) : (a) overall, (b) selection
of occluded cells, and (c) selection of surface cells.
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Figure 4.12 - Pair-wise differences for accuracy : (a) the ratio overall, (b) the ratio for
occluded cells, and (c) the ratio for surface cells.

4.4.2 Accuracy

We measured the accuracy of the assignments with two techniques (List and
Explosion) and two positions. We calculated the accuracy by dividing the correct
assignments count by the total trials count.

Techniques. We report the absolute mean values of correctness in two tech-
niques in Figure 4.11 and the pair-wise ratio for comparison in Figure 4.12. The
accuracy was high in both techniques so we kept three decimals for a better
comparison. For the List, the absolute mean value of accuracy is 0.987 (Cl [0.963,
0.996]), while in Explosion, the value is 0.933 (Cl [0.892, 0.958]). From 4.11(a) we
can see that all participants found at least 8 correct sisters (as every participant
used each technique to make assignments for 10 cells). In addition, the fact that
Cls do not overlap provides evidence that List resulted in more accurate assi-
gnments than Explosion. We also analyzed the pair-wise ratio (List/Explosion) to
better understand the difference, which was 1.06 (Cl [1.03, 1.10]). This result pro-
vides evidence that List works more accurate then Explosion, although the mean
accuracy values are similar and are both high.

Positions. We also present the absolute mean values of accuracy for the two
positions in the two techniques in Figure 4.11 and the pair-wise ratios between
them in Figure 4.12. For occluded cells, the absolute mean values of List and
Explosion are 1.000 (CI [NA, NA]) and 0.933 (Cl [0.858, 0.967]), respectively (4.11(b)).
Using the List technique, all participants thus assigned all occluded cells correctly
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Figure 4.13 - Clicking Ratio (List in yellow and Explosion in red) : (a) overall, (b) selection
of occluded cells, and (c) selection of surface cells.

and we can say that the List technique achieved more correct assignments than
Explosion. The pair-wise ratio (List/Explosion), which turned out to be 1.10 (CI [1.03,
1.20]), confirms this finding, yet its lower bound being close to 1 makes this result
only weak evidence. For the surface cells, the absolute mean values for the two
selection techniques (List and Explosion) are 0.975 (Cl [0.925, 0.992]) and 0.933
(Cl [0.883, 0.958]). The largely overlapped Cls show limited information for the
differences. The pair-wise ratio is 1.05 (Cl [1.01, 1.09]) which also only provides
weak evidence that List performed more accurately than Explosion for surface
cells.

4.4.3 Clicking Ratio

We also counted the click events in both the lists and on the 3D view. We
separated the clicks needed for rotation in the 3D view for both techniques as
these were right clicks—in contrast to the left clicks in the list or 3D view for
selection. Thus, we only counted clicks to access cells. We defined the clicking
ratio as the average times participants clicked on every neighbor to get the right
answer, i.e., the click counts divided by the number of neighbors. Ideally, par-
ticipants click all neighbors once to find the right sister, with a clicking ratio of
1. In practice, however, participants usually clicked one same cell for multiple
times. We chose this variable as a factor to evaluate the efficiency of the selec-
tion techniques. The more this number deviates positively from 1, the worse is
the efficiency.

Techniques. We report the absolute mean values of the clicking ratio for the
two techniques in 4.13(a). List had the smallest absolute mean value which with
1.37 (Cl [1.32, 1.45]), while the value for Explosion was 1.70 (Cl [1.58, 1.86]). Though
the Cls are non-overlapping and there is evidence that supports that List has
a lower clicking ration than Explosion, to further explore the differences we also
calculated the pair-ratio of List/Explosion (4.14(a)). The ratio turned out to be 0.84
(Cl [0.77, 0.90]), which provides good evidence that List required less clicks than
Explosion.

Positions. We also examined the absolute mean values of the clicking ra-
tio for the two positions. The absolute mean values for occluded cells are 1.31
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Figure 4.14 - Pair-wise differences for clicking ratio : (a) the ratio overall and (b) the ratio
for occluded cells, and (c) the ratio for surface cells.

(List; ClI [1.26, 1.38]) and 1.71 (Explosion; Cl [1.56, 1.88]) respectively. The upper
bound Cl of List being much smaller than the lower bound CI of Explosion pro-
vides evidence that List required fewer clicks than Explosion. The pairwise ratio
(List/Explosion) being 0.81 (Cl [0.73, 0.89]) confirms this assessment. For the sur-
face cells, the mean values are 1.45 (List; Cl [1.37, 1.56]) and 1.69 (Explosion; Cl
[1.58. 1.87]) as shown in 4.13(c). The confidence intervals are close to we further
checked the pair-wise ratio (List/Explosion), which is 0.88 (Cl [0.82, 0.94]). This
evidence supports that using List required fewer clicks than Explosion also for
surface cells.

4.4.4 Techniques Used in Combination

We analyzed the Combination technique individually because we presented
this technique to participants always last—participants first had to learn the in-
dividual techniques. In Combination, participants were able to complete the task
freely, with both List and Explosion available to them. We were interested in how
participants would combine them and whether the neighbor number would in-
fluence their choice. We thus calculated the proportions of their click counts in
the List condition (over List plus Explosion clicks together) to present the strategy,
which we show in 4.15(a) (top bar; the Explosion click proportion is the comple-
ment of the List proportion). The absolute mean value of the list proportion is
0.87 (Cl (0.85, 0.90)), meaning that participants clicked more frequently in the
list widgets than in the 3D view (for discovery or traversal). We also calculated
the proportions for discovery and traversal separately, whose ratios are 0.50
(ClI [0.37, 0.63]) and 0.79 (Cl [0.75, 0.83]). We also analyzed the list clicking pro-
portion individually by cell neighbor counts (4.15(b)). As we had noted already,
however, the numbers of neighbors varied depending on the dataset and some
neighbor counts received only few trials. We thus only analyzed those numbers
which had more than 10 trials. In all cases, the average values of the percentage
are higher than o.5, which means participants clicked more often in the list wid-
gets than in the 3D view. Although the differences are small, we observed that
the List click proportion increases with a growing number of neighbors. While
these numbers suggest a strong preference for list interaction, this observation
is skewed by the fact that by far the most clicks naturally happened in the traver-
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Figure 4.15 - Clicking proportions of List/(List + Explosion) in the Combination task : (a)
overall and (b) by neighbor count (for discovery + traversal; x represents the numbers
of the cell neighbors, and y represents the clicking proportions).

sal phase (0.082% on average). Looking only at target cell discovery, however, in
the post-study interview feedback 13/24 participants stated that, after trying and
adjusting their strategies, they finally chose to examine the exploded embryo in
the 3D view to find the target cells, while the other 11/24 participants checked the
list by scrolling from the top to the bottom. We show this difference of strategies
in the click proportions in the two lower bars in 4.15(a). We also investigated, for
the Combination task, the order participants chose to assign the cells. According
to our logs, 8 participants always stuck to the list order, without taking the cells’
positions into consideration. Another two participants switched the strategies
and finally followed the list order. Others simply clicked on random orange cells
they saw.

4.4.5 Task Strategies

We were also interested in our participants’ approaches to finding target cells
and traversing the neighbors, especially for the Explosion, and their choice of
methods for the Combination condition. Here we report the strategies based on
participants’ statements in the post-study interview, combined with our obser-
vations of the participants as they interacted during the experiment. In the List
condition, all participants scrolled up and down the cell list to find the orange
item and then traversed the neighbors by going through the neighbor list. Par-
ticipants memorized the largest associated number and either the cell name or
its position in the list to complete the task.

Because we provided no lists in the Explosion condition, participants could
not rely the same strategies as with the List. We thus specifically asked them
about their detailed strategies in the 3D explosion condition, organized their
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ideas, and grouped similar points. To help with traversal, 8/24 (33.3%) partici-
pants stated that they mentally divided neighbors into different layers and zones
based on the spatial placement. For staying oriented, 7/24 (29.2%) participants
rotated back to the original position every time when they finished checking the
associated number of one neighbor, while 4/24 (16.7%) tried to rotate the em-
bryo by only one fixed axis. One participant kept the best candidate cell on top
during traversal. Another participant observed the relative positions of the cells
and matched them into a special shape like a sphere or triangle. Then he traver-
sed neighbors by referring to his chosen shape's corner cells. Other participants
tried to memorize the cell shape, their 3D relative position, and the temporally
largest number during the trial.

During the Combination task, 10/24 (41.7%) participants used the same steps
as they did in List because they were afraid to get lost in 3D interaction. One per-
son exclusively used the Explosion interaction in the Combination task because
she was bored to scroll the long list. Another 10 participants discovered target
cells with Explosion and traversed neighbors with the List technique. Only 3/24
(12.5%) participants chose the techniques based on the number of neighbors.
When this number was small, they used Explosion, and otherwise the List tech-
nique. Among them, two participants discovered target cells with direct interac-
tion in the 3D view, while the other one searched the target cells in the list.

4.4.6 Subjective Feedback

In the post-study interview we asked about participants’ preferences for the
three techniques and their general thoughts on the interaction.

As Figure 4.16 shows, more than a half of participants (16/24) liked the Com-
bination selection most. Two participants considered the Combination and List
to be equally satisfying, while another one favored the Combination and Explo-
sion techniques equally. The remaining 5/24 participants preferred the List tech-
nique. For this technique, participants appreciated its item order (e. g., “much ea-
sier to follow which have been clicked”). However, the interaction was troublesome
(e.g., “was boring to scroll the list,” “I had to fast move the mouse cursor between the
lists on the right and 3D cells on the left”). Moreover, when the associated number
was similar to the cell name by chance, it was easy to get confused (e.g., “/ got
messed up with the name and associated number. | forgot which one was the tempo-
rally best candidate cell.”). Meanwhile, they stated that they did not pay attention
to information such as the shape and 3D relative position of the cell because
they only looked at the associated number in the 3D view and otherwise focu-
sed on the list (“fl] only remembered the numbers and did not examine the shape”).
In the Explosion condition, participants appreciated the convenience to fast click
on the cells (e.g., “all [are] the interactions in the 3D view”) and the usefulness of
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Figure 4.16 - Accumulated participant preference ranks. Note that we allowed partici-
pants to rank two techniques as their first choice and then counted none as the second,
resulting in ranks 1, 1, and 3.
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being able to control the distance between two cells (e. g., “spreading out the cells
is useful in targeting cells”), but they disliked the need to rotate the view because
thisled them getlost and forget which cells they had already examined (e. g., “less
useful in checking out neighbors,” “it was easy to get lost when rotating the embryo

..  am not sure whether | have traversed all the cells or not”). For the Combination,
part|C|pants liked the freedom to spread out cells and the convenience of the
default order in the list (“supports both techniques and I could be quicker”). None-
theless, some participants would just use the same technique they preferred in
the previous two tasks and thought it was useless. Others reported confusion
("I struggled to choose the technique”). One participant also reported being bored
and tired in doing the last task.

Commenting on the whole interaction, participants proposed some changes
(e.g., “The interaction is good, and it will be better if there is a mark on the cells | have
checked in all techniques,” “[l] would like to have more context in the background of
the 3D view to help orientation,” “[you should] show the name of cells in 3D view so
that | could have a name order to follow,” and “hiding the least possible candidate
cell manually would accelerate the process”). Some participants thought the two
techniques should not be combined. One participant, e. g., stated that “List has
an order and 3D view has another order (layer). These two orders do not have a
similar logic or strategy and could not be combined. These two techniques in the
same interface will disturb each other’s use ... could present a 3D order based on
the 3D position and link to 2D order in the /lst Though most participants liked
the explosion bar, one argued that horizontally moving the bar, for him, did not
intuitively represent the conceptual increase of inter-cell distance.
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4.5 DISCUSSION

4.5.1 Performance Differences

We found evidence that List led to more efficient (faster, fewer clicks) and
more precise input than Explosion overall. This indicates that traditional list-based
selection was more familiar to participants, compared with 3D interaction which
was unfamiliar to many. Moreover, the List condition provided an order of the
potential neighbors of a target, which supported participants in traversing every
cell in the list without missing one as well as remembering the cell with the hi-
ghest associated number, regardless of potential view manipulations in the 3D
view. In contrast to the overall results and the results for occluded cells, we did
not find clear differences in completion time and accuracy of two techniques for
studying surface cells. This finding may due to the fact that surface cells usually
have fewer neighbors and a clear arrangement of the cells such that participants
had less problems when traversing these in the 3D view.

We also found that a direct interaction in the 3D view has advantages. While
the List condition enabled participants to traverse neighborhoods faster than
with the Explosion technique, with the latter participants were faster in discove-
ring the next target. This last point probably is due to the 3D view showing all
remaining targets in a single view (with only some rotation necessary), in the
lists participants had to use scrolling to get to the next target. In the traversal, in
contrast, the lists of potential neighbors had a lot fewer entries than the overall
list of cells, so that the participants did not need to scroll and thus their speed
improved. Moreover, the need to rotate the 3D view to traverse all neighbors of-
ten led to participants losing orientation such that they no longer remembered
which cells they had looked at already.

While this is a problem that was apparent in our pool of participants, the
situation may be very different in our envisioned application domain of plant
biologists constructing lineage trees. Here, the experts will not look for num-
bers but instead investigate the potential sister cells based on the cell's overall
shape as well as the size and shape of the shared surface between the cells, pro-
perties that are essential for making the lineage decision. This means that the
plant biologists not only inherently have to focus much more on the 3D view,
but they also do not necessarily traverse all neighbors because they can easily
reject some candidates based on their shape. Because we had to use a number
associated to the cells as a proxy for the biologists' experience, our participants,
in contrast, only focused on this abstract property and thus could more easily
focus almost entirely on the list as their main reference point, which in turn likely
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led to the List condition’s performance advantage.

4.5.2 Subjective Ratings

We can also find these assumptions supported by our participants’ qualita-
tive feedback. In particular, they preferred the List technique because they felt
it led to a lower mental load, requiring less memorization. Essentially, because
they were not experts they turned our envisioned spatial decision into an abs-
tract task because they did not need to examine the cell's shape etc. They thus
focused on and used the arbitrary order of cells in the List condition. Conse-
quently, our participants also disliked that they had to move back and forth bet-
ween list and 3D view in the List condition.

In the Explosion condition, in contrast, participants liked to be able to explode
the embryo, to freely explore it, and to have a whole view and direct access to
the cells. The downside of this aspect was the lack of a clear order of the ele-
ments that they could follow to traverse all neighbors. Moreover, the needed
rotations made participants more likely to lose the orientation in the 3D view,
and consequently also to forget which of the already visited cells had the highest
associated number. Participants had to memorize this intermediate result ba-
sed on the cell's shape and 3D position, which was much harder for them than
memorizing a position or a label in the 1D list. While these aspects made the
task more mentally demanding for participants compared to the List condition,
experts likely will not suffer from the same problems as we noted above.

Another problem with the Explosion condition was that the discovery phase
and the traversal phase needed different view configurations : in the former par-
ticipants needed to see all cells of the embryo, while in the latter they needed
to focus on only the 1-neighborhood of a single cell. We had specifically ensured
that the positions of the cells did not change when switching between overall
and focused view to maintain spatial continuity; yet this meant that in the Ex-
plosion condition participants had to frequently manipulate the view (adjust the
zoom factors). In the List condition, in contrast, we automatically centered the
view on a newly selected target because people focused on the overall cell list
when selecting targets, which lead to much less need for view adjustments.

4.5.3 Implications

One of our main insights is that 3D interaction techniques work best for truly
three-dimensional tasks which have no additional informative tags. When we
asked participants to perform a purely 3D action such as to discover colored
objects among a set of exploded cells of the embryo, e. g., the 3D Explosion tech-
nique performed well and our participants used them when they had the choice.
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In contrast, for tasks like the traversal which our participants converted into an
abstract search task as we had discussed, the List technique was faster, more
accurate, and preferred. As we discussed in sous-section 4.5.1, for the realistic
task in the biology domain the actual sister cell selection is likely much more a
3D task than our proxy, so we hypothesize that the Explosion technique will be
a strong competitor (but this will have to be verified in a separate experiment).

We also found that the use of explosion techniques as an interaction me-
taphor makes it possible to access objects in tightly packed 3D environments,
such as for selection as in our application. For discovering target cells, our par-
ticipants increased the distance between two cells and zoomed out to have a
clear overview of the embryo and the relative positions of cells, while for tra-
versal, they tended to shorten the distance and zoomed in so that they could
examine cells and find a structure to traverse. Also, our participants reported
that they would freely adjust the distance between two cells to have a better
overview or check cell details.

Next, the Combination seems to combine the advantages of the single tech-
niques. While we always showed it last to participants and thus cannot rule our
order effects for its performance, participants clearly preferred this type of in-
terface over only the (1D) List or the (3D) Explosion interaction. It allows users to
freely choose which technique works best for them, for a given task and dataset,
and also allows them to transition to a 3D interaction as they progress and as
3D aspects become more important. Nonetheless, even though with the Com-
bination both individual interaction methods were available to participants, a
constant switching between 3D view and lists is inconvenient. Participants who
preferred to use List chose strategies that operating the objects in the right part
of the 3D view which is placed close to the lists, while others tried to directly
interactin 3D view.

While we studied the specific scenario of cell division analysis in botany, we
believe that our results can apply to or, at least, inform many other settings in
which objects need to be selected from dense environments. Even if more work
will be needed to confirm the applicability, those contexts include machine as-
semblies [191] and datasets in brain connectomics [19]. In such settings, experts
similarly need to be able to select parts with virtually no space in-between, and
have to be able to understand spatial and logical relationships between neigh-
bors. Also, we designed our experiment specifically such that participants were
not experts from our application domain of biology, but came from the general
public.
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4.5.4 Limitations

Naturally, our work is not without limitations. We already pointed out that,
while we aimed to replicate the biologists’ spatial analysis task as well as possible
in our experimental setting, it turned out that our proxy for “experience” allowed
participants to turn the 3D spatial analysis task into an abstract search task, and
we have explained the implications of this change in sous-section 4.5.1. While in
the future we plan an empirical validation with experts, we think that our work
still sheds valuable light on how we can realize selection and access tasks in tight
3D environments.

Beyond this point, the fact that we were required by our IRB to conduct our
work via video conferencing also may have affected the outcome. Naturally, par-
ticipants had different types of equipment (screen resolution and size, PC po-
wer, general environment, etc.). An on-site experiment may have resulted in a
more controlled environment and procedure. Nonetheless, this spread of envi-
ronment reflects real-world working conditions, so we do not see this point as a
strong limitation. Next, our specific choice of application case and, consequently,
study datasetis a unique setting : all cells in the dataset were of roughly the same
size and were “well” distributed. Other datasets in other application domains—
even if they are densely packed—may have different properties and may thus
lead to slightly different selection performance. Yet we believe that our gene-
ral conclusions still hold. Finally, we only tested manual selection techniques. In
the future, however, we foresee the use of machine learning (ML) approaches to
support the biologists in establishing the cell lineage and, thus, the interaction
requirements will change from manual selection to ML supervision and verifica-
tion.

4.6 CONCLUSION

We have advanced our understanding of interaction techniques for the se-
lection of objects in dense 3D environments with our chosen example of cell
lineage assignment, but completed by members of the general public. We saw
that a list-based selection has advantages when the number of elements is large
and when the needed information can be represented in (or “projected” to) lists.
We also saw, however, that if the relevant criteria are three-dimensional proper-
ties then an explosion-based selection can have advantages, in particular when
the target audience is familiar with orienting themselves in 3D space. A combi-
nation of both techniques, ultimately, provides the best of both worlds.
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LINEAGED :
INTERACTIVE VISUAL
SYSTEM FOR PLANT
CELL LINEAGE
ASSIGNMENTS BASED
ON MACHINE LEARNING

The previous study described in chapitre 4 uncovered the efficient 3D selec-
tion techniques for the densely packed embryos. For assisting the cell lineage
problem, besides supporting the precise cell selection, a system should also pro-
vide enough details for decision-making (3D spatial data and hierarchical infor-
mation). That requires us to answer RQ2 and RQ3 in chapitre 1. In addition, since
the manual work is time-consuming, it will be optimal to include a machine lear-
ning model to help predict the assignments as well as be easily accessible. We,
thus, decided to develop a web-based system with the explored selection tech-
niques to systematically support biologists in completing the cell lineage process
for a new embryo dataset.

In this chapter, we describe LineageD—a hybrid web-based system to pre-
dict, visualize, and interactively adjust plant embryo cell lineages. Currently, plant
biologists explore the development of an embryo and its hierarchical cell lineage
manually, based on a 3D dataset that represents the embryo status at one point
in time. This human decision-making process, however, is time-consuming, te-
dious, and error-prone due to the lack of integrated graphical support for spe-
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cifying the cell lineage. To fill this gap, we developed a new system to support
the biologists in their tasks using an interactive combination of 3D visualization,
abstract data visualization, and correctable machine learning to modify the pro-
posed cell lineage. We use existing manually established cell lineages to obtain
a neural network model. We then allow biologists to use this model to repea-
tedly predict assignments of a single cell division stage. After each hierarchy le-
vel prediction, we allow them to interactively adjust the machine learning based
assignment, which we then integrate into the pool of verified assignments for
further predictions. In addition to building the hierarchy this way in a bottom-
up fashion, we also offer users the ability to divide the whole embryo and create
the hierarchy tree in a top-down fashion for a few steps, improving the ML-based
assignments by reducing the potential for wrong predictions. We visualize the
continuously updated embryo and its hierarchical development using both 3D
spatial and abstract tree representations, together with information about the
model’s confidence and spatial properties. We conducted case study validations
with five expert biologists to explore the utility of our approach and to assess the
potential for LineageD to be used in their daily workflow. We found that the vi-
sualizations of both 3D representations and abstract representations help with
decision making and the hierarchy tree top-down building approach can reduce
assignments errors in real practice.

5.1 INTRODUCTION

How individuals of species develop is an essential question in specific sub-
fields of biology. By looking at the historical development of a plant embryo, bo-
tanists investigate whether the plant develops normally or not. As an embryo de-
velops, single cells divide into two new cells and these parent-child relationships
can be described using temporal hierarchies. The process of creating these hie-
rarchies is called cell lineage assignment and requires biologists to (1) take images
of a multi-cell plant embryo using a confocal microscope, (2) segment the resul-
ting 3D volumetric data to identify the embryo cells, and (3) indicate pairs to
reconstruct the hierarchy backward toward the proper embryo as the first cell
(i.e., the ovum) of the embryo. The Figure 5.1 illustrates the overall traditional
process further.

In our collaboration with botanists, we identified several parts of this work-
flow that can be improved with a dedicated visual analytics tool. Existing tools
(a) only use two-dimensional slice-based interaction to mark sister cells, (b) do
not take advantage of either 3D interaction or interaction with a visual repre-
sentation of the hierarchy, (c) do not allow the scientists to interactively divide
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Figure 5.1 - Anillustration of the traditional way of biologists doing cell lineage based on
slices.

the 3D geometry into parts that can be identified as being part of early hierar-
chy levels in the cell division, and (d) do not provide any means to automate the
cell assignment process based on known cell division patterns (see Figure 2.4).
Given these limitations of existing tools, the current, largely manual workflow of
biologists does not scale to embryos with hundreds of cells (i.e., 7 or more ge-
nerations of cell divisions). A purely automatic approach would also not be ideal
as they want to retain manual control over the process, to be able to deal with
incorrect assignments and the special behavior of mutants.

We thus developed LineageD to address these limitations. LineageD is ba-
sed on specific domain requirements that we elicited with our collaborator and
described in detail later in the paper. Specifically, it was important for our col-
laborator that the tool would be interactive to retain control over the hierar-
chy construction process, contain the familiar 3D representations of the embryo
state, display a temporal hierarchy tree that encodes abstract temporal informa-
tion about cell divisions, closely link the 3D and abstract representations, and
include machine learning approaches to propose cell lineages and reduce repe-
titive work. We built the tool based on these requirements, while ensuring that
all views are interactive and proposed cell lineages could be efficiently reviewed
and interactively corrected if needed. Our goal was for biologists to arrive at a
final cell lineage more easily and with higher confidence. To better understand
whether our design actually meets these goals, we also conducted an evalua-
tion with five experts from the domain and described their feedback and our
observations of their tool use.

Overall, in this work, we contribute (1) an interactive, web-based approach to
establishing cell lineage, in which we combine 3D spatial and abstract data re-
presentations with correctable machine learning; (2) design considerations and
decisions that led to our approach, including about the visual and interaction
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mappings that we used; (3) the approach of top-down and bottom-up hierarchy
building and the interaction concepts that link the 3D and 2D representations at
different scale levels; and (4) the evaluation with five experts to learn about the
suitability of the employed approach, which also generated insights for applied
visualization at large.

5.2 RELATED WORK

Past work from three major fields is important for our own : the visual enco-
ding of hierarchical structures, the use of visualization techniques in biological
applications, and the application of machine learning in visualization. We review
these fields below.

5.2.1 Visualization of and with Hierarchies

Hierarchical structures are essential for organizing many types of data and
exploring inner relationships [166]. Such inner correlations can be, e.g., about
classification [12, 24], family development [20], and evolution [85, ]. Over the
past 40 years, much research has been conducted to design and compare dif-
ferent visual representations (e. g., treemaps, sundown charts, sunburst charts,
and icicle plots) of both 2D and 3D tree structures (e.g., [156, , 1), to ana-
lyze hierarchical data (e.g., [172, 1), and to help with visual decision making
(e.g., [7]). Work has also been done to evaluate the different representations
[200] and to propose guidelines for future design in hierarchical trees [99]. Ho-
wever, most of these 3D trees were designed to add one dimension to store
more information [161, 190, 116]. Our collaborating biologists are most familiar
with 2D node-linked diagrams for representing the hierarchy, while the actual
cell shapes have to be interpreted in 3D views to assist them with making li-
neage decisions. We thus rely on a combination of both a 3D view and a 2D tree.
One of the most closely related approaches is HyperLabels [102], which uses a
model's hierarchy to navigate the 3D structures. While Koufil et al. also combine
the abstract hierarchy data with 3D shapes that represent the actual physical
entities, their abstract data representations do not represent additional infor-
mation such as, in our case, the plant embryos’' temporal development.

The size of datasets is constantly increasing, so researchers have also explo-
red methods to flexibly adjust the space a tree representation takes to increase
its efficiency [113, 27, 3]. For treemaps, for example, Tu et al. [197] used a spiral
layout to visualize the updates of the hierarchical data. Similarly, van de Wetering
et al. [198] redesigned the icicle plot to reclaim empty space, to avoid the situa-
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tions where nodes deeper in the hierarchy have less space. These techniques
are not applicable in our scenario because we need to show all nodes equally
such that we do not have excess empty space. Moreover, we do not have the full
hierarchy at the start, and biologists are not always certain about the cell lineage
hierarchy root in the beginning, which is the ovum of an embryo.

Another important aspect of our hierarchies is that they represent temporal
development, and researchers have visualized temporal data with trees before.
For example, Carvalho et al. [41] combined aspects of treemaps with a calendar,
so that users could target data within a certain time slot. In our case, the division
time is different for each cell and the former and latter stages should always be
presented for reference, so that we cannot use filters to target at a single level.
Shen [171] also used index to mark the cell division within a time interval, but it is
hard to read especially the tree is large. We thus encode the generation rounds
with the layers.

In addition to innovative layout design, some work also focused on improving
the interaction with trees to adapt the substructures and compare the results
with the original data, which we also need in our work. AdaptiviTree [189] enco-
ded real-time game status information and indicated changes by color. Other
work [11, 23] used visual cues to allow viewers to compare different trees that
were shown horizontally, with color-coded similarity metrics based on juxtapo-
sed icicle plots. Because we use the trees proposed by ML only as an initial guess
and there is no ground truth, we do not show multiple trees and simply rely on
color coding to encode differences. Related to this approach is the encoding of
the uncertainty of the input data, for which researchers have used, e. g., glyphs
[109, 211]. While these methods can handle diverse forms of uncertainty inclu-
ding locations [109] and sub-tree structures [109], we can also use color-coding
to indicate the ML model’s certainty with respect to its results.

5.2.2 Biology-related Visualization

Biologists often study complex patterns or processes. While various stake-
holders have different levels of interest in the respective datasets [108], we focus
on interactive tools for experts—specifically botanists interested in plant em-
bryo development.

Within the biology domain, several visualization approaches and tools are
currently being used. For example, Briggs et al. [24] combined dendrograms
and heatmaps for the visualization of taxonomic diversity. Such representations,
however, are usually not space-efficient [128]. Moreover, we need to show both
abstract cell lineage data as well as the actual 3D shape of the entities. Numerous
platforms (e. g., OsiriX [157], Fiji Image] [162], and Avizo) are designed to display
such multi-scale 3D data, and these are currently being used by our collabora-
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ting experts to establish the cell lineage (e.g., the Tree) plugin for Fiji Image)).
Within academic research, Leeuw et al. [43] explored the visualization of time-
dependent confocal data. For visualizing inner cell structures, Mindek et al. [134]
proposed a multi-pipeline for visualizing the organelle system. Similarly, other
work [110, 78, 77] proposed different systems to interact with diverse scales of
cell or genome datasets. In contrast to these approaches, however, we are not
interested in the representation of spatial scale but in the temporal develop-
ment in the form of cell lineage. Of course, also general tools exists that could
support the representation of 3D shape such as VTK [164] which was used to
create visual representations of biological data (e.g., [157, 1) and ParaView
[2]. We also use the VTK library for creating the visual representations in our
tool, but our emphasis is on the combination of 3D spatial and abstract data re-
presentations and their interactive use for the establishment of cell lineage for
plant embryos.

5.2.3 Machine Learning in Visualization

In the visualization field, machine learning is used to create, improve, and
assess all kinds of visualizations [61, , 4]. Researchers also adopted machine
learning models to develop pipelines for the whole process of visualizations
[93, 92]. In our case, we use a machine learning model in predicting assignments
for a plant embryo and then visualize the predictions in the hierarchy. Unlike in-
teractive machine learning (IML) where users could review and refine the model
interactively [52] (i. e., an interactive correction of mislabeled data with the goal
of getting a more accurate result from the model [210]), we treat the ML out-
put only as a first suggestion and allow our users to directly interact with the
output of the model for a more efficient correction. Also, researchers propo-
sed different suggestions for designing such interfaces [181, 52, 86]. Inspired by
these, we predict cell inheritance with a neural network model and display par-
tial assignments to engage users [53] and reduce manual labor.

5.3  BACKGROUND AND DESIGN CONSIDERATIONS

As we just discussed, trees can be used to visualize cell hierarchies in em-
bryos. Our collaborator also confirmed that biologists use and appreciate 3D
views to assist them with understanding the spatial structure and to make deci-
sions on the lineage. Here they rely on actual 3D meshes that they derive from
the confocal microscopy slice data by segmenting and then processing them into
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the shapes of the embryo cells at the time of data capture. Yet, no suitable tools
exist to determine cell lineage for several reasons :

Continue this
process until there
is only one cell

4
14 Merge the pair sisters
14 and build the previous
hierachy stage
Observe the Traverse all the || Decide on the [/ S89n for all th

other cells in the

'segmented slice embryo

neighboring cells f§ sister cell based
on knowledge

Target ata
certain cell

Figure 5.2 - A 2D illustration of biologists’ cell lineage workflow.

A cell lineage tree only represents approximate division stages that apply to
most cells, while some cells may remain unchanged from a given level to the
next and the lineage hierarchy needs to account for such cases. Consequently,
there exists no single generic (binary) tree that would represent the develop-
ment of all embryos. In addition, the tree does not yet exist at the start of the
process and cannot be computed from the data, instead, it has to be established
step-by-step by the experts based on what they observe in the 3D spatial and
abstract data. Figure 5.2 illustrates this process, in which the experts reason ba-
sed on the embryo’s configuration at a given time to establish how it developed
into this stage from a previous set of cells, and then they repeat the process.
Existing tools are usually created to focus either on 3D spatial or on abstract
data representations, while in our case both types of representations are tightly
coupled and biologists need both to make decisions (the spatial cell data as well
as abstract data such as the hierarchy as established so far and information such
as shared area—either type alone is not sufficient).

Based on all these constraints, we set out to design a new interactive tool
for establishing and visualizing the development of plant embryos. To reduce
the tediousness of having to make many lineage decisions for larger embryos,
we targeted a process that relies at least partially on machine learning, yet also
leaves the biologists in control and allows them to override decisions as needed.
We also based our design on inspirations from existing tree representations
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such as icicle plots [209]. Moreover, we followed the principles and advice on
designing hierarchy structures [99], cell visualization systems [43], and mixed-
initiative user interfaces [86]. Next, we summarize our design considerations.

D1:Provide an overview of the hierarchical structure to indicate the cell
division process. We aim to create complete and accurate cell division hierar-
chies so that plant biologists can study the division history. Yet every cell divides
in a different time and it is impossible to measure the precise division time from
a single confocal microscopy dataset. So we rely on the fact that an embryo's
cells roughly divide within similar time ranges, and use these division times to
build the hierarchy. The tree should also clearly emphasize cells that divide out-
side of the regular time range. The tree thus not only needs to contain the parent
and children relationships but also represents the time-dependent division pro-
cess. As such, any node in the tree represents a given cell and thus its connected
3D representation at a certain stage, so navigation in the hierarchy needs to lead
to adjustments of the 3D visuals.

D2: Support the history building in two directions. Biologists traditionally
build the tree in a bottom-up approach. From the overall shape of the embryo,
however, they can also deduct how it divided in the very beginning. Introducing
this knowledge early could improve the ML predictions and make it easier for
the experts to specify assignments. It should thus be possible for biologists to
build the tree from two directions : bottom-up and top-down (Figure 2.3).

D3 :Show related information to assist with decision making. According
to our collaborator, biologists take the cells’ shape, the shared surface between
two adjacent cells, their approximate volumes, and the 3D positions into consi-
deration when picking the sister for a target cell from its neighbors, and we need
to show all this information. While the spatial properties are most effectively
shown in a 3D view, the experts need to be able to correlate them to the other
data. While 2D diagrams would be possible, each cell only has a few neighbors
and a color coding thus promises to be better than separate 2D diagrams. In ad-
dition, we need to account for cell occlusion in the 3D view, so the system needs
to support visibility techniques such as explosion views and layer peeling.

D4 : Provide assistance for building the hierarchy with machine lear-
ning (ML). Our previous work [83] indicated that, even with an interactive sys-
tem, traversing neighbors to find sisters for more than 200 cells is too time-
consuming, and ML-based assignment suggestions could greatly improve the
workflow. These predictions then need to be checked by the experts with the
help of an integrated hierarchy and spatial 3D interaction. Any mistake, howe-
ver, would invalidate any prediction for earlier cell divisions. The system should
thus use an ML model that predicts the most likely cell pairs for a given hierarchy
level, and bases future levels on verified or corrected assignments. The full po-
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wer of our approach relies on a fluid change between the bottom-up ML-based
prediction, expert correction, and the top-down hierarchy specification so that
the expert is always in full control over the process. At any time, the hierarchy
view should show the status of the lineage, indicate decisions confirmed from
the ML or corrected by the human, and navigate the temporal development of
the embryo.

D5 : Provide easy access to biologists who are not computers profes-
sionals. Many experts may be hesitant or not allowed to install extra software
on their workstations. Moreover, such local installations would require cross-
platform system development. We thus aim for a web-based implementation
that facilitates easy access, interaction, and data sharing among researchers

(o]

5.4 SYSTEM DESIGN

Based on these considerations, we designed our web-based tool LineageD
with two major components : a front-end for experts to interactively establish
the lineages and a back-end that comprises a module to process the input data
for the analysis, a set of default embryos for testing, a pre-trained classifier, and
the partial lineage data currently being worked on (D4, Ds).

5.4.1 Front-end Interface

Our web-based front end needs to allow the biologists to explore the 3D
information in its hierarchy-dependent configuration, traverse the cells at the
different hierarchy levels and understand their spatial and derived properties,
make decisions about the cell lineage for all cells, and then record these deci-
sions to specify further hierarchy levels. We thus offer the following elements to
assist the experts.

Our LineageD system (Figure 5.3) centers around two main views : the main
3D view of the embryo and the hierarchy view that shows the cell lineage tree
the biologists are building. The hierarchy on the right of the interface initially
consists just of small blocks, where each represents a single cell at the time when
the confocal microscopy dataset was captured; i.e., the leaf nodes of the tree
(D1). We chose a tree layout that grows from top to bottom (i. e., root at the top)
to match the traditional format used by the biologists (we illustrate the design
process in Figure 5.4). As the experts work on establishing the hierarchy and
declaring sister cells, this view actually becomes a hierarchical representation
that we based on (completelyfilled)icicle plots. Unlike node-linked diagrams that
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Figure 5.3 - Screenshot of LineageD, for the example of assigning a 256-cell embryo (in
progress). The core elements are the Main 3D View of the embryo, here exploded and
with the target cell highlighted, and the Hierarchy Tree of the lineage, which is inter-
actively established by the biologists. The Target and Sister View shows the relative
position of the target cell within the whole embryo and its proposed sister. The Thumb-
nail View of the tree provides the context of the full hierarchy. Finally, the Operation
Panel supports further control of the tool.

take more space and are harder to navigate in a wide tree, this mapping has the
benefit of establishing clear layers, which can then be navigated with the help
of the slider on the left of the hierarchy view. We compute the widths of the leaf
nodes based on their normalized volumes such that the biologists can directly
see the relative sizes of the cells’ volumes in the tree (D3). The icicle mapping
then also nicely reflects that the volume of a mother cell is roughly the sum of
the volumes of its daughters in consideration that the potential volume loss is
not essential to biologists, and that all cells of a given level together always form
the whole embryo. We chose the vertical direction for the hierarchy layering
because the biologists are used to this layout.

The hierarchy view is tightly linked to the main 3D view on the left. In the
latter, we show the whole embryo at the chosen division time, i. e., the level se-
lected in the (partial) hierarchy view on the left. A regular 3D representation has
the problem of the dense packing of the embryo cells, which results in inner cells
being fully occluded by the outermost cell layer. To address this visibility issue
we offer two visibility management techniques : explosion views (e. g., [114, 191];
see Figure 5.3-main 3D view) and layer peeling (e.g., [184]; see Figure 5.5-3),
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Figure 5.4 - An illustration of our reasoning for how we designed the lineage hierarchy
tree representation, based on the traditional hand-written or (ASCIl) text-based records
used by the biologists.

both controllable through sliders. The 3D view also provides typical 3D naviga-
tion interaction, including zoom, translation, and rotation to allow biologists to
explore the spatial character of the embryo.

We closely coupled both the 3D view and the hierarchy, not only through
cross-linked selections. When we select a given cell in either view, we not only
select it in the other as well but also show this cell and its currently assigned
sister (if any) in a secondary 3D view on the top, the target and sister view that
shares the same camera orientation as the main view. Here we highlight the se-
lected (target) cell in red and its assigned sister in its original color, while we show
the rest of the embryo’s cells transparently to illustrate the target and sister cell’
relative positions in context. Unlike in the main view, in the target and sister view
we always show all cells in a tightly packed configuration and do not apply any
explosion. This way we allow the biologists to understand the combined shape
of the proposed cell match and make it easy for them to identify incorrect assi-
gnments. We specifically decided to only provide a single target and sister view.
Initially we considered showing just the target and sister cell, a view of the target
cell's children without context, as well as a view of all direct neighbors of the tar-
get cell. In a pilot study, however, we found that these views were confusing to
our collaborator, and we settled on only showing the target and sister view as a
secondary 3D view and moved some of the other functionality to be accessible
on demand (see below).

We use the same color mapping in all views, both the 3D views and the hie-
rarchy. We initially color-code both views by spatial location [146], which we cal-
culate based on the relative 3D positions of each cell's center of mass within the
whole embryo, mapped to RGB. This mapping allows the users to clearly see if
two cells are located close to each other, even in the abstract hierarchy view. Du-
ring the later interaction we also offer color-coding by trust of the ML model, by
the shared area between two matched cells, and a random color mapping that
biologists are used to from their existing tools and that allows them to easily see
the decomposition of the embryo into the cells of a given hierarchy level (D3).
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Because the biologists can also use a top-down approach to establish the
lineage (in addition to bottom-up), we need to represent both the top and the
bottom section of the hierarchy at the same time—even if the tree has not been
fully specified. We thus split the hierarchy into a top tree and a bottom tree
(D2). For the top tree, we start with the root, i. e., the single ovum cell. As new
layers are established top-down, we add them below the root. We cannot be
sure about the layer number for the top-down layers at the beginning, so we
named them N, N-1, etc., until we complete the hierarchy. We know all cell ele-
ments at the lowest level, so we can ensure that both representations correctly
reflect this containment relationship. To ensure smooth layer navigation, as long
as the hierarchy is not completed we introduce an in-between section between
the top and the bottom tree marked by dots. We also add a corresponding layer
entry to the hierarchy slider on the left, with newly established bottom-up layers
being added directly below it and newly established top-down layers being ad-
ded directly above it.

Due to the exponential nature of cell division, the corresponding cell lineage
tree can become very large horizontally very quickly, already for embryos with
only a few generations of development. We thus provided two means to cope
with the resulting view limitations. First, we provide a slider on the top of the
hierarchy to control the horizontal zoom, allowing the users to see the whole
tree in one view or to zoom into details. For the latter case we can ensure that
the respective labels of the cells (numbers in our case) are visible, yet a viewer
may lose the context of what part of the hierarchy they are examining. We thus
also added a horizontal World-in-Miniature thumbnail view to make it easier
to navigate the wide icicle plot hierarchy tree and which is often used in virtual
reality (e.g., [180, 39]) and, more relevant to our case, in 2D video games (then
often called “mini-map”; e. g., [71]). This view, which we include below the hierar-
chy view, always shows the whole hierarchy and highlights the subsection that
is currently visible in the detailed hierarchy view and facilitates navigation.

Finally, most of the controls for the interaction (which we discuss in more
detail below) are then assembled in the operations panel. It also contains a
menu to load new datasets or export results as well as instructions for users
about our 3D interaction mappings.

5.4.2 Server-side Back-end

Our tool’s server-side takes care of data processing and analysis. Our da-
tasets comprise the cells’ names (i. e., numeric labels) and mesh data for their
surfaces. The experts create these datasets with dedicated tools (e. g., Avizo, Fiji
[162]). In the back-end we use this input to build the necessary data structures to
later be able to construct the hierarchy. We also derive the needed information
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such as the 3D cell locations (centers), neighbor counts and respective neighbor
look-up tables, normalized cell volumes, normalized cell surfaces, and normali-
zed shared areas between neighboring cells. After the completion of the lineage,
the back-end also allows us to export the results in the tree data format needed
by the biologists.

An essential part of the back-end is the creation of the ML model (D4). For
this purpose we also maintain a collection of 97 past (manual) cell lineage as-
signments provided to us by the biologists. For these we also computed the
data-derived parameters mentioned above and used this data to train a neural
network model to allow us to predict the lineage for future datasets. The clas-
sifier computes a probability for all possible direct neighbors to be sister cells,
and we then pick the one that has the highest chance. This reduces the number
of possible pairs, and we continue picking the pair with the highest probability
until this probability falls below 50%. This prediction functionality can then be
accessed from the front-end.

5.4.3 Interaction Design

Our interaction design centers around the processes of proposing new matches
of likely sister cells (manually and with the help of our neural network model)
and the verification of whether these matches are correct. Both processes rely
on abstract as well as 3D information, so our expert users have to constantly
switch back and forth between the abstract hierarchy view and the spatial 3D
views. Next, we describe how, in LineageD, we support the biologists both in the
top-down and the bottom-up lineage specification.

For a new dataset we show all cells as blocks on the lowest hierarchy level on
the right, and in the 3D view we show the embryo with the cells colored based on
their 3D location. Usually the first step of the biologists is to remove those cells
from the consideration that are part of the suspensor (i. e., those that connect the
plant embryo with the rest of the seed) by selecting them in the 3D or hierarchy
view and assigning them a respective label (Figure 5.5-1).

With the top-down specification we offer a new functionality not supported
by the traditional tools. We take advantage of the fact that, for most embryos,
the first few cell division generations happen in a predictable way—one that can
still be reconstructed from the geometric shape of the embryo and its cell de-
composition, even at a later time. For this purpose biologists start to explore
the shape of the embryo in the 3D view, usually via rotations. To better see and
understand the inner structure, they can also use the explosion functionality.
Then they decide on the most likely initial division—often a rather straight sub-
division between the existing cells. We then allow them to mark one half using
a spatial lasso selection [122] (Figure 5.5-2) to register the selection as the first
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subdivision, which can also be further refined.

As they continue this top-down process, it is important to note that the in-
teraction naturally relies on the selected level in the hierarchy. For example, to
specify the third generation N —2 (i. e., the second split), the experts first select
one of the daughters of the ovum in the hierarchy. This highlights all parts of the
embryo that belong to this cell at the N — 1 level in red, as if this was a single cell.
Any potential explosion setting, however, applies to the level currently specified
in the hierarchy just below; at the beginning this would be level 1." The following
lasso operation on a subset of these cells then selects them for the next split of
only the selected cell, in a context-aware fashion [216]. This step would then have
to be repeated for splitting the second cell of the N — 1 level. To mark these fully
human-decided divisions, we display blue bars between the divided parent cells
and their children in the hierarchy tree Figure 5.3. Naturally, this top-down pro-
cess only works for a few generations, but it provides valuable constraints both
for a manual and for the ML-supported process that we describe next.

For the bottom-up process we follow the biologists’ traditional work process,
as illustrated in Figure 5.2. They would start to traverse all cells at the lowest le-
vel and specify likely matches by examining each selected cell’s direct neighbors
to find its most likely sister. To reduce this workload, we can now use our neu-
ral network model and make ML-based predictions for the lineage. Initially we
had used this process to predict the entire lineage, but in pilot studies it quickly
turned out that this approach was not ideal. The experts disagreed with certain
mappings, rendering the entire remainder of the path toward the root node ob-
solete when they corrected the mistakes. We thus now restrict the classifier to
only predict the lowest non-specified hierarchy level (Figure 5.5-4).

After such a ML prediction step, the biologists can traverse the newly found
pairings and either confirm or reject them (D4). To do that they can select a
daughter cell in the hierarchy or 3D view, which shows it in a red highlight color,
with the rest of the cells retaining their colors according to the chosen color
scale (Figure 5.5-5-left). In the target and sister view, we also show its currently
assigned sister in color, while the rest is transparent. A single click on a mother
cell? is similar, only then we highlight the whole mother in red and show no
sister. With these techniques the experts can assess the mother cell's shape and
decide if it is plausible. To better understand the alternatives, the experts can
also double-click in either the hierarchy or the 3D view on a daughter cell, which
leads to the 3D view showing a focused view with only the direct neighborhood

1. If the ovum cell was selected instead, however, after a first top-down division specification,
the explosion would only separate the two daughter cells of the ovum to emphasize this position
in the lineage tree.

2. For performing such a selection in the 3D view one has to first select the corresponding
hierarchy level in the hierarchy view, e. g., via the slider.
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of the selected cell (Figure 5.5-5-center), while the target and sister view then
only shows the cell and its currently specified sister. Upon a further click on one
of the neighbors in the main 3D view we show this neighbor also in the target and
sister view, along with a potentially assigned sister of the neighbor (Figure 5.5-
5-right).

With these different mechanisms to see detailed views, the biologists then
make a decision about whether the pairing is plausible or not. If the biologist
then confirms a proposed mapping when a given mother cell is selected, we
mark that pairing as confirmed by showing a green bar between the mother
cell and its daughters in the hierarchy (Figure 5.3-right). If they disagree with
the pairing, we break it and, for the time being, treat the cells as non-dividing
cells for the chosen hierarchy transition. They can be left as such or can be re-
assigned. In the latter case, biologists select one cell, show its neighborhood with
a double-click, and then pick one of the neighbors to mark it as the new sister. To
distinguish such human specifications from confirmed ML pairs, we mark them
with an orange bar in the hierarchy between the mother and its daughters.

After examining all pairs of a given level and confirming or correcting them,
the experts can then go on to predict the next level. We treat any pairing that
has not been explicitly confirmed as implicitly confirmed in that case, and also
mark it with a green bar. The process then continues until the whole hierarchy
is specified, the top and bottom trees merge, and we can export the result. The
detailed interaction process is illustrated in Figure 5.6.

5.4.4 Implementation Details

We implemented LineageD in JavaScript and Express.js (v. 4.17.1). For the front-
end, we rely on D3 [21] to realize the hierarchy tree rendering and render the
embryo in the 3D views with vtk.js (v. 19.0.4) [163]. We implemented the back-
end in Node.js and used MongoDB to create our database. We used TensorFlow's
(v. 2.8.0) Keras library to train the multi-layer sequential neural network model
offline with Python. We created two hidden layers with ReLU activation and adop-
ted softmax for the final output layer to get the probability score, and the mo-
del's single-pair accuracy reaches approximately 94%. The raw data is produced
by Avizo and contains the cells’ information including names, vertices, and tri-
angles. We then parsed the raw shape data and set each neighboring pair as
one record. For each pair, we extracted features for the training data based on
the recommendations by the biologists : the normalized distance between the
cell pair, their normalized shared surface area, their neighbor counts, their nor-
malized volumes, normalized surface area, and the directions of neighbors with
target cells. With TensorFlow.js (v. 3.8.0), we used the trained model to predict
assignments in the website back-end. For an embryo with 256 cells, such as one
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Figure 5.6 - lllustration of the typical interaction workflow of LineageD.
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of our default datasets that we show in Figure 5.3, there are more than one mil-
lion vertices with more than five million triangles. Depending on the network
speed when connecting to the Web tool, typical datasets can thus be loaded in
less than a minute and can be rendered at interactive speeds (approx. 20 fps for
the 256-cell example on a macOS with AMD Radeon Pro and Intel UHD Graphics
630).

5.5 EMPIRICAL CASE STUDY EVALUATION

While we developed our overall approach and our LineageD tool based on
conversations with our expert collaborator, we were also interested in feed-
back from independent plant biologists, by whom we envisioned our tool to be
used. For this purpose it does not make much sense to run a quantitative ex-
periment with many participants because, first, we do not have a reasonable
alternative technique to which to compare our approach and, second, we would
not find enough participants skilled in the traditional lineage process to draw
meaningful conclusions. Instead we conducted case study evaluations [96] with
expert participants, as it has been done in the past in the visualization field (e. g.,
[123, 97, 88, 1). The benefit of this approach is that experts are trained in the
traditional cell lineage process and can thus assess our new tool based on their
experience.

In this section we present the overall experimental setup, our observations,
and the user feedback from the biologists interacting with the system. The spe-
cific embryo we used in the study was a real Arabidopsis thaliana dataset provi-
ded by our collaborators, which comprises 64 cells (not counting the cells of the
suspensor). Datasets that are needed to be analyzed in practice typically range
from several tens of cells to several hundreds of cells, so this example data-
set is realistic (and still manageable in our study) as well as already challenging
to analyze for biologists, and they could compare this experience to their past
work. The whole investigation was approved by our institution’s (Inria) ethical re-
view board (AVIS n° 2021-46) and we pre-registered the study setup and design
(osf.io/rhyg4).

5.5.1 Participants

We recruited 5 expert biologists (2 females, 3 males, ages 31-54 years, mean
43.4 years) via social networking and mailing lists, denoted as P1-P5. We offe-
red prospective biologists free access to our tool as compensation. Before the
study, we asked them to fill in a consent form, a research media records release
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form, and a background and demographic data collection form. All of the par-
ticipants had a PhD degree and have been doing post-PhD research on plant
biology or related fields for 2.5-25 years (mean : 14.1 years, sd : 9.4 years, me-
dian : 12 years). Two of them were experts in plant biology, while the other ones
focus on computational biology, biomathematics, or bio-images processing. We
conducted our study via videoconferencing due to the COVID19 limitations.

5.5.2 Procedure

Our case study experiment consisted of two parts : first we conducted an ob-
servational study of the experts using our tool with the example data, followed
by a survey and a semi-structured interview.

Observational study. We conducted the experiment with each participant
individually. We began by presenting a brief introduction about the features of
LineageD. Next, we asked the participant to open the website on Chrome using
the credentials we provided and to share their screen. We then briefly explained
to them the components of LineageD and introduced the main interaction me-
chanisms, as explained in section 5.4. Then the participant could freely explore
and establish the lineage for the 64-cell dataset. We used the think-aloud pro-
tocol and with the participant’s permission, we recorded the screen and audio
during the process for our later analysis.

Survey and semi-structured interview. To better understand the usabi-
lity of the tool and avenues for future improvement, we distributed a question-
naire which was designed based on the System Usability Scale (SUS) [80]. We
also conducted a semi-structured post-study interview to understand our ex-
pert participants’ usage experience and insights they may have gained.

5.5.3 Study results

A whole participant session took 60 to 100 minutes. All biologists reported
that the 64-cell embryo was challenging for them to assign, and none of them
finished the complete hierarchy history reconstruction within the study session.
This was also not to be expected since they had to learn and get used to the
new tool and its interaction concept first as well as answer our questions in the
experiment. All of the participants, however, said that they plan to work with the
tool more after the study and try it in practice.

Learning the Functionality. We found that three of our participating ex-
perts traditionally used 2D slice-based interaction (i. e., in TreeJ) to navigate the
embryo dataset and to mark sister cells, as opposed to using 3D interaction with
a surface-based dataset that we offer. This means that participants first had to
get used to the fundamental 3D interaction techniques (rotation, translation,
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scaling) in projected 3D views. They also traditionally used text-based node-link
representations of the hierarchy (see Figure 2.7), so they had to get used to the
icicle plot representation we used. Web-based implementations as we used for
LineageD were also new to one participant : P1 thought that the tool is quite dif-
ferent from the traditional software he is using. He stated that they generally
use desktop software, but he believes that with sufficient time to play with it,
most people could learn the new tool quickly. A final aspect was that P3 said
that it was difficult for her to learn the actions to expect from the system based
on specific input, such as what part of the tree to which the prediction applied.
Overall, these observations meant that the training phase in our experiment was
relatively long for four out of the five participants, but we expect that with more
training, they can get used to the new interaction concepts.

Interaction Design. After the training we observed how the experts freely
specified the lineage of the cells in the embryo. While they all used different stra-
tegies, they all heavily relied on both the 2D abstract tree and the 3D views. Four
of them primarily used the hierarchy view to select the cells for checking the pre-
dicted assignments. They used the 3D view only as a source to understand the
cells'shapes and their locations within the embryo, rather than to select the cells
in this view. P2, in contrast, used the hierarchy and the 3D views evenly to select
the cells to check. P1 and P4 explicitly stated that they appreciated the linking
between the tree and 3D views. Moreover, P2, P4, and Ps5 specifically expressed
that the approach to creating the hierarchy tree in a top-down fashion was very
interesting to them—as they do not have this ability with their traditional tools.
For example, P4 suggested that, for large embryos, biologists could specify the
lineage separately based on the top-down divisions or look only at a subset of
the top tree as a form of grouping to reduce the complexity. In addition, P2 and
P4 mentioned that the peeling and explosion functions have a great potential to
help them with their decision making. Overall, P1, P2, and P4 stated that using the
tool has the potential to reduce assigning time and possible errors, despite re-
quiring about double the clicks as the traditional approach according to P1. This
applies especially to embryos with more than 20 cells because it is very difficult
to do it manually. P2 also believed that LineageD could improve his confidence
in assignments.

Interface and Visuals. All participants stated that they appreciated the vi-
sual representations, both 3D and 2D. They also liked, for example, the mecha-
nisms for encoding the cell volumes in block widths and the coloring by shared
surfaces or location. Overall, P1 considered LineageD much more powerful than
any tool that they currently have, especially in selecting cells from both 3D en-
vironments and the tree. P2 specifically appreciated the target and sister view
that shows the proposed pairing as well as the transparent context. He liked
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the representations and interaction design of the tree, but also thought it may
take time for biologists because they are used to node-link trees. He also added
that some other functionality may need to be adjusted further to the mental
concepts of the biologists, but thinks this is a normal process that he would ex-
pect for most tools. Overall, all comments about the design were on the positive
side. For instance, P3 thought that all individual components are needed and
easy to use and she liked the hover effects in the hierarchy tree. P4 was happy
to see that the tool is versatile, because he could use peeling and explosion in-
dependently. Ps, finally, liked the hierarchy tree and thought all the options are
good.

Understanding the Embryo’s Development. We also asked biologists whe-
ther the tool helps them to better understand the embryo’s development. All
participants agreed that this is the case. P1 envisioned that, with the hierarchy
tree, he could perform quantification, data analysis, and create models because
we show a lot of additional information about or related to the lineage. P2 was
excited about the possible insights and wanted to try other datasets with the
tool, such as animal embryos. P3 thought that some visualizations, like the target
and sister view, make it easy for her to observe the development of the embryo’s
organization over time. P4 said he better perceived certain features of the em-
bryo with the information we presented in the tool, such as the cells’ volumes
and shared surfaces. Ps, finally, said that 3D views are essential for getting a
good understanding of the embryo.

Machine Learning Experience. Next, we inquired whether our participants
think that the automatic assignment based on machine learning helps them with
the lineage process. P1 and P4 thought they cannot fully evaluate it because
the experience time was not enough for assigning big embryos. Nonetheless,
P1and Ps reported that the ML model was essential and that it worked well for
small embryos. P2 thought the machine learning can generally help a lot, but he
would prefer the model to predict the lineage from both directions (top-down
and bottom-up), rather than one direction here (bottom-up). P2 and P4 also were
curious about how the model actually made the specific assignments. P3, inter-
estingly, said that she expects the model to help even more for larger embryos
with more cells. She was, however, confused about whether the prediction func-
tion is applied to the top-down or bottom-up approach, and like P2 also wanted
a model to predict the top tree. She also recommended to pre-visualize the mo-
del predictions for biologists to choose from before integrating them into the
lineage tree. P3 and P4 were not sure whether the time needed to check and
correct the ML predictions would ultimately be less than manually specifying
the lineage.

Improvements. We asked the experts what interactions or elements they
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missed in the interface. P1 and P4 would like to have functions to label or cate-
gorize the cells so that they would have more features to examine and analyze
the situation. P1and P3 also missed a function to temporarily hide selected cells
to get access to the inner cells and to distinguish checked pairs from unche-
cked ones. Also, P3 wanted the ability to explicitly highlight the shared surface
between two neighboring cells to help her to decide between two possible cell
pairings. The System Usability Scale rating we received for LineageD was 68 on
average, which is exactly the average SUS score [129]. This means that we need
to improve the overall usability of our tool, but this is to be expected for a re-
search prototype. We will use the specific feedback that we received during the
study to make these improvements.

5.6 DISCUSSION

Based on the responses of our participants we can now summarize and re-
flect on the main take-aways from our work.

Influence of past interaction habits of experts. Our specific application
domain required us to provide both abstract 2D and spatial 3D representations:
the cell lineage hierarchy that the experts constructed along with data such as
cell volumes or area of shared surfaces on the one side and the actual shapes of
the 3D cells that make up the embryo on the other side. Interestingly, it turned
out that most experts were not yet experienced with working with (projected)
3D representations, instead they used 2D slices from the segmented microscopy
data to interactively mark cells. In addition, traditionally they do not use the hie-
rarchy tree as an interaction proxy, and it only serves as the result of the lineage
specification (also see Figure 2.4). This fact may be the reason that many of our
experts were reluctant to work directly in the 3D view and, instead, primarily in-
teracted with the abstract hierarchy as this somewhat resembled a version of
their previous slice-based view (yet stripped from its spatial properties). More
longitudinal studies will be needed to see if experts can learn the benefits of in-
teracting in 3D space, and to take full advantage of the linked 2D and 3D views.
Our observations, however, make this a likely development as some of our par-
ticipants already understood the advantages of our 3D visibility techniques such
as explosion and peeling.

Reliance on both 2D and 3D representations. Our specificapplication exem-
plifies a case where both 3D spatial and abstract information and, in particular,
the tight connection between both is essential to solve a task. Nonetheless, both
types of representations show different aspects. Only the tree view can show in-
heritance and, thus, only here can the biologists specify which cell division time
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stage they want to see. At the same time, only the 3D view can show aspects
such as proposed sisters in a spatial context or the specific shape of a shared
surface between two cells. Yet only together they provide enough information
for the biologists to be able to solve their task. Moreover, unlike in many exis-
ting 3D interfaces, the navigation of the level in the abstract hierarchy actually
has an impact on the shape composition itself (i. e., on the decomposition of the
embryo into cells at the different hierarchy levels). In our case the actual compo-
sitional information is non-existent at the beginning and incomplete throughout
the process, so the interaction effects change as further parts of the hierarchy
are established. It is also interesting to note that, in both views, it is difficult to
see all information for realistic datasets. In the 3D view we thus need to rely
on techniques such as explosion and peeling, while in the 2D view we need the
world-in-miniature thumbnail view.

Complexity of cell lineage. According to one of our participants, itis already
very difficult for biologists to establish the lineage for embryos starting at a few
tens of cells, especially when they want to reconstruct the hierarchy for seve-
ral generations (i. e., from the observed generation to the very beginning of the
division process). Our novel support of also top-down specification made this
process easier for the experts, and all our participants took advantage of both
ways of establishing the lineage. From their responses it seems that the top-
down process makes it easier for them to control their interactions and have
more confidence in the results, in particular since they deal with incomplete in-
formation most of the time. Nonetheless, further interactive assistance such as
being able to focus and restrict operations (including the ML suggestions) to only
subsets of the whole embryo, as suggested by some participants, may make the
process even easier for them.

Generalization. Even though we focused on plant embryos, there is no rea-
son that our findings could not also apply in a broader scope. In particular, bio-
logists that study other kingdoms of life such as animals or fungi may similarly
profit from our work directly. The most closely related past work on the depiction
of parts may be research on the creation of assembly instructions [1, 114, 191, 76],
even though the actual interactive control of such depiction was typically not dis-
cussed in much detail in such work. Other past work [102] specifically discusses
the navigation of 3D data through hierarchy interaction, yet in our work we ac-
tually change the composition of the 3D scene through this input. We thus think
that our interactive combination of abstract hierarchy and spatial 3D views can
inform future visualization tools that need to support such inter-dependencies.
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5.7 LIMITATIONS AND FUTURE WORK

Both our specific realization of LineageD and our empirical evaluation have
some limitations that we will discuss next. We only focus on major issues, while
minor usability issues as highlighted by our study naturally also need to be ad-
dressed. First, the actual shape of the cells depicted in the 3D views is a result
of an approximative surface reconstruction from the segmentation of the origi-
nal volumetric data. We only relied on the shapes on the lowest level and mer-
ged them for higher stages in the hierarchy. It would be better to actually apply
any new hierarchy data to the segmentation masks and then re-extract the cell
shapes at the coarser levels, which we also plan to do in the future. Second, for
our machine learning support we adopted a neural network model to provide
predictions for biologists to interact with. Other machine learning models such
as reinforcement learning agents, however, could also work in our scenario and
we are interested in comparing different models in the future. Also, we are in-
terested in improving the interactions with the model, like sorting the pairs with
model confidence and enabling users to pick to decide. As suggested by the bio-
logists, we could also look into showing the reasons for the suggestions of the
ML model yet we are skeptical if this would lead to a helpful representation—at
least for our current neural network model. Instead, a more promising way could
be to take the biologists’ manual corrections into account (which we currently do
not do) and to propose and visualize alternative pairings, for the experts to pick
from.

Our relatively short case study evaluation is also limited. First, we largely did
not get past the initial learning curve for the experts. While this also showed
some interesting aspects about their interaction habits, it would be very inter-
esting to conduct a longer-term evaluation with our participants and see how
their interaction changes over time. Such a longitudinal evaluation would also
allow us to better understand the challenges and benefits of the 2D-plus-3D in-
terface on a deeper level, leading to better design guidelines for future tools.
Second, we also only used data of a single species in the experiment, and a
longer-term evaluation would allow us to use a variety of embryo tissues and
even non-standard cases such as the scans of mutant embryos—a current re-
search topic in the domain.
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5.8 CONCLUSION

Having developed LineageD together with a domain collaborator, we were
surprised to see that most domain experts did not have even basic visual re-
presentations such as tree representations [165] as interactive elements in their
traditional tools. A similar situation happens in the top-down and bottom-up ap-
proach where biologists spend reasonable amount of time to get familiar with
the interaction. Moreover, when we provided them with this tool along with a
standard 3D representation of their data, they primarily interacted in the 2D
abstracted hierarchy as opposed to the 3D spatial view that showed the rele-
vant data (cells within the context of the embryo)—almost like an extension of
their previous 2D interaction on segmentation slices. So one of the main results
of our work seems to be that, as a community, we may need to spend more
effort on studying how established representations (from our perspective) can
actually be transferred to tools in our application domains. We plan to continue
our work with the biologists to do just that, and to also see how LineageD can
evolve over a longer time to better suit the needs of the biologists.

Another interesting takeaway is that we may need to look further into ways
that machine learning can be integrated into our tools. It is not necessarily es-
sential to get the best or most correct prediction from a model, but instead how
we can provide means to verify or correct algorithmic suggestions, to speed up
or make less tedious otherwise manual processes. For this approach it is not
needed to completely understand why an ML technique made a specific sugges-
tion, but instead to accept that ML is not always perfect and to provide means
to quickly analyze results and adjust them.
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As we found in the evaluation study of chapitre 5, a single ML model may
make mistakes, which could result in biologists losing confidence in ML. We then
planned to create multiple ML models and combine their prediction results to
provide comparably reasonable predictions. Such design requires visualization
to clearly demonstrate the detailed ML predictions from different models and
also an overview of all predictions. Thus, based on LineageD, we created Linea-
geD+ to enhance the ML support with visualization in solving the cell lineage
problem and tried to answer RQ4 from chapitre 1.

We visualize the predictions of multiple machine learning models to help bio-
logists as they interactively make decisions about cell lineage—the development
of a (plant) embryo from a single ovum cell. Based on a confocal microscopy da-
taset, traditionally biologists manually constructed the cell lineage, starting from
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this observation and reasoning backward in time to establish their inheritance.
To speed up this tedious process, we make use of machine learning (ML) mo-
dels trained on a database of manually established cell lineages to assist the
biologist in cell assignment. Most biologists, however, are not familiar with ML,
nor is it clear to them which model best predicts the embryo’s development. We
thus have developed a visualization system that is designed to support biolo-
gists in exploring and comparing ML models, checking the model predictions,
detecting possible ML model mistakes, and deciding on the most likely embryo
development. To evaluate our proposed system, we deployed our interface with
six biologists in an observational study. Our results show that the visual repre-
sentations of machine learning are easily understandable, and our LineageD+
can effectively improve the assigning efficiency, reducing the time it takes to as-
sign cell lineage and improving biologists’ confidence in the ML models.

6.1 INTRODUCTION

In biology, a plant cell (the parent) normally divides into two daughter (or sis-
ter) cells over time, and an embryo grows to eventually comprise hundreds of
cells. To explore the history of an embryo’s development, biologists utilize a 3D
microscopy snapshot and assign sister relationships for every cell in the embryo.
This is done backward across a series of snapshots, where biologists iteratively
reason backward in time to arrive at the previous cell division stage. The data-
sets used in this process are extremely imbalanced because one cell can only
have one correct sister cell, yet the cell usually has a dozen or more neighbors.
As such, the manual assignment of the cell lineage for embryos of realistic sizes
(several hundreds of cells) is extremely time-consuming and tedious. However,
with the help of machine learning (ML), this procedure can be made significantly
easier as it is a binary classification problem—two neighboring cells are sisters
or not. Different ML classifiers, however, have different performances, so some
classifiers may provide the correct prediction for a given pair while others may
not. Unfortunately, there is no guarantee that the same model will perform cor-
rectly (or incorrectly) for another cell pair at another division stage. Ideally, the
biologist should train multiple models and explore which model or groups of
models are most reliable for a given assignment.

In the visualization community, researchers have focused on finding and trai-
ning an “optimal” model to solve a given domain problem [188, 118]. Visualization
tools have been developed toillustrate all steps of the machine learning pipeline,
including data processing, training, and evaluation (e. g., [158]). However, even
highly optimized models with high accuracy still have the potential to provide
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wrong predictions. In our cell lineage scenario, if a model wrongly predicts the
assignments in the first few generations, the predictions for the following gene-
rations are almost certainly incorrect as well. Thus, biologists cannot exclusively
rely on a completely automatic ML process. Instead, a human-Al teaming ap-
proach is preferred where experts can observe, control and update the labeling
process. However, little work has concentrated on enhancing this human-Al Tea-
ming" to assist experts in the decision-making process rather than focus their
efforts on improving a given model's performance. To fill this gap, we visually
represent the different ML predictions to assist the biologists, allowing them to
better understand the classifiers and enabling them to more efficiently derive
the correct lineage.

We collaborated with plant biologists, collected 93 embryo datasets with ma-
nually specified lineage, and extracted 47,132 cell division records with 12 fea-
tures. We trained five ML models with this data : support-vector-machine (SVM),
random forest, k-nearest neighbors (KNN), neural network, and Gaussian naive
Bayes (ordered in decreasing cross-validation accuracy rates) as shown in Fi-
gure 6.1(a). To help the experts in comparing these models, we provide them
with a prediction overview of every cell in the hierarchical tree along with a de-
tailed model view for biologists (Figure 6.1(b, c)). We sorted the hierarchical tree
by the models’ overall confidence and support similarity pattern detection for
target cells such that biologists can easily find possible mistakes. In addition, we
visualize each model's accuracy rate and recall via cross-validation and also vi-
sualize their model weights. We use the user-adjust model weight as a proxy for
the user’s trust in each model. Moreover, we allow the biologists to select new
features to train new or updated models online. Finally, we conducted an ob-
servational study with six biologists, and our results show that participants un-
derstand and appreciate the visualization design of multiple machine learning
models, and they can check and correct the predictions effectively.

Our contributions include the following : (1) a visualization system to assist
biologists in effectively establishing cell lineage through human-Al teaming; (2) a
novel visual representation to compare multiple ML models and help users de-
tect possible model mistakes for improved decision-making; and (3) operations
to predict cell sisters, assess the prediction results, and interactively revise the
assignments.

1. We use the term human-Al Teaming in reference to systems whose machine intelligence
modules can be controlled as well as potentially overruled by the human users based on their
professional experience. For more discussion on this point see section 6.6.



12 Chapitre 6

O 4 Gontrn

+ Distance +/ Relative Angle +/ Neighbor Counts + Volume +/ Surface Area

+/ Shared Area " Layer +’ Generation

Models Show Similar Cells

| svM | | RANDOM FOREST | | KNN | | NEURAL NETWORK | | BAYESIAN |

g

T 100

3 80

T 80

g 20

g 0 Random Forest KNN Neural Network Bayesian

Reset  Recalculate
svm RF KNN
NN _— Baye _—
@ @ neuralNetwork | [ |

knn 777727
bayesian 777777272777

VA— L svm l I I
randomForest | | |

Figure 6.1 - The visualization design for our multiple machine learning models. (a) The
overview of the model performance. Users can customize the features to train models.
Also, they can change the model weights via the panel. (b) The detailed prediction of a
specific cell (cell 64 as an example in this figure). (c) The model results of the target cell
(cell 64) and the interested proposed sister cell (cell 37) being sisters.

6.2 RELATED WORK

In our work we deal with improving the interaction of domain experts with
multiple machine learning models rather than training better models. In this
section, we summarize the relevant literature with respect to the visualization
of hierarchical information in biology, cell lineage reconstruction in biology, and
the visualization of ML model output.
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6.2.1 Visualization of Hierarchical Information in Biology

Numerous general visualization approaches focus on building different kinds
of hierarchy representations [166, ]. Besides showing the necessary hierar-
chical information, biologists usually need to add additional information to the
current tree design, e. g., time [55], relative object sizes [84], etc. In our scenario
we also need to add the cells’ volumes and model predictions for each cell in the
tree. Previous work has dealt with similar requirements, and researchers have
created various dedicated visual representations for bioinformatics data. Eisen
et al. [55], for example, designed a visual representation with colored nodes to
represent DNA data that relies on a basic cluster dendrogram with additional
temporal data, which resulted in a representation that resembles a heatmap.
Based on this design, the Hierarchical Clustering Explorer [169] added scatter-
grams to visualize DNA gene samples clustering under different conditions, and
provides an overview of different clustering results and detailed information
with linked views. These examples inspired us to augment a traditional hierarchy
view with other representation techniques such as bar charts.

Along with 2D representations, researchers also investigated approaches to
visualize biological data using 3D views. Arena3D [148&], for instance, presents
network data both on the 2D graph and in the 3D space. This combination helps
users in solving the overlapping and intersection problems that are inherent to
3D views when the entities reach the thousands. We also use such a combina-
tion of 2D and 3D views, but, unlike this and other similar work, in our applica-
tion the detailed predictions for individual cells—usually nodes or points in the
diagram—are as important as the overview of the results. We employ a tradi-
tional 2D icicle plot design for visualizing our hierarchical tree and combine this
with a 3D view of the actual embryo shape and its cells that can be viewed for
any given hierarchy level.

6.2.2 Cell Lineage Reconstruction

This visualization of hierarchies can help with predicting the possible deve-
lopments of specific cells [75] in biology. In Salvador et al.'s [159] CeLaVi tool,
for example, the assigned cell lineage is visualized in a hierarchical tree, and the
cells’ positions are indicated with a circle in a 3D environment. The two views are
closely connected so that biologists can target cells from either the tree or the
3D view. In addition, CeLaVi allows researchers to highlight a specific gene and
visualize the overall gene expression pattern in a heatmap. Though it supports
the efficient analysis of the cell lineage, the tool does not support the building or
the adjustment of the hierarchical tree, which is imported from static file. Also,
the 3D view only contains the cells’ positions, without the cell shapes or shared
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surfaces. The lineage hierarchy itself, traditionally, is mostly being established
manually with tools such as OsiriX [157], Fiji Image] [162], and the Tree) plugin
for Fiji, Image), but these tools typically rely on 2D slices. Because the hierarchy
resulted from numerous cell divisions and each cell division orientation is deci-
ded by the position and angle of mitotic spindle [111], researchers have explored
diverse machine learning models to predict the division planes [133, 124]. These
prediction methods, in the past, have been based on the microscopy slices [133];
howver, the ML requires specifically prepared training data and the organization
of results is difficult. Therefore, we work with the 3D model instead of the image
data and use extracted numerical information for our ML training.

6.2.3 Visualization of ML Model Output

Such ML prediction processes can also be assisted by visualization. For ins-
tance, researchers have enhanced the interpretability of ML models [28, 1,
with problems ranging from clustering [104] to classification [188]. Visual support
can assist practitioners to better understand where, why, and how ML models
make predictions [158]. Such work involves visualizing the steps of model gene-
ration as well as the actual prediction, including data preparation [183], model
training [117, , 118], results evaluation [37], and model comparison [104].

In our case, however, biologists are most interested in the final results of the
model predictions—the final cell lineage hierarchy—rather than the ML model
generation. Thus, we focus on visualization of the model output. Prior work in
visualizing model output focus on illustrating the results and comparing pre-
dictions. For evaluating ML model results, designers use different representa-
tions depending on the prediction type, such as stacked bar charts to represent
counts of data points in a cluster [104], scatter plots to show classification results
[29], and histograms for visualizing perplexity [149]. Inspired by these represen-
tations, we adopted the hierarchical tree to represent an embryo’s development
history and we enhance this with a variety of view to show the predicted cell
lineage. Prior work in interactive machine learning uses people’s feedback to
re-train the ML model to get better results [176] or to pick the optimal model
among multiple models [183]—approaches that we do not adopt. EMA propo-
sed by Cashman et al. [31], for instance, is a process that asks people to explore
different models and to select their preferred ones. Also, Gil et al. [72] proposed
human-guided machine learning (HGML) to encourage domain experts to fully
make use of relevant knowledge in getting a model with high quality, even if they
have no experience in ML. These examples provided us with good examples of
how to help biologists to understand how models perform and how to enhance
their overall experience : we need to visualize the properties and performance
of the different models. However, in our work, we focus on the comparison bet-
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ween models, rather than the selection of a single model or on improving mo-
dels, as there is a limited amount of manually assigned datasets to train the cell
lineage models. As such, model optimization is not possible at this stage, par-
tially because there may even be disagreements between experts on the correct
lineage.

We also focus our system design on enhancing trust between the biologists
and the machine learning models. Previous work has shown that interaction can
be critical in establishing people’s trust in machine learning models. Dietvorst et
al. [48] showed that people will likely trust models more if the system allows
them to disagree with some of the predictions. Such trust could establish peo-
ple’s beliefs and their willingness to use the system and complete specific tasks
[174]. When interacting with multiple models, the examination of various predic-
tions and being able to decide on which model to trust are also types of inter-
action to control model predictions. Thus, it is essential for biologists to interact
with the prediction results, especially when they have no experience in dealing
with the ML models. As previously stated, it is impossible to produce a single
ideal model for cell lineage classification. To overcome this, we produce mul-
tiple machine learning models for biologists to compare. Interaction methods
usually include the use of a pre-designed control panel [169] and the direct in-
teraction with the visualization itself [148]. Different from the aforementioned
work, our tool provides linked views of both the 3D environment and 2D panel,
both of which are needed to determine cell lineage and asses the ML decisions.

6.3 SYSTEM DESIGN

Based on this background, we set out to support our collaborators in their
work with a system that uses visualization to allow them to interpret the ML pre-
dictions for their cell lineage tasks. In this Section, we detail the design process
of the LineageD+ tool.

6.3.1 Design Considerations

Based on discussions with our collaborator in biology, we set a number of
design goals for the new system. First, we want to take the biologists’ tradi-
tional work process into account and support them in getting fully involved.
Biologists usually do not have experience in dealing with machine learning mo-
dels, and they do not care about the details of such models. Instead, they are
concerned about how much a model can help them with making the assign-
ments. Even though they do not care about the details behind the models, en-
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hancing their control over the models, such as selecting customized features,
could help us to increase their involvement and establish usage confidence. As
such, they need intuitive and efficient interactions to detect wrongly-paired cells
and correct them if necessary.

As indicated in sous-section 6.2.3, the lack of a sufficient amount of training
data prevents us from following the ideal approach, which would be to establish
an optimal ML model. Furthermore, even experts can have difficulties deciding
the right sister for a specific cell, and any given manual lineage solution is not
necessarily unique. While, in the future, more research into ML support for cell
lineage may produce such an optimal model, our focus is on training multiple
models such that biologists can compare their predictions and decide on which
model to use in a given assignment. Our visualization and interaction design
should help biologists to compare the different ML models and make informed
decisions.

Additionally, the fact that the cell lineage is deducted backward in time from a
single stage of the plant embryo’s development means that the process is inhe-
rently uncertain. Also, as just noted, even experts sometimes come up with
various hierarchies for the same dataset that differ in details. The manually-
assigned embryos we received from the biologists for generating the training
datasets range from 2-cell embryos to 256-cell embryos, covering a wide range
in the development history. Overall we had access to only 93 datasets in total
and this limited amount of samples adds to the uncertainty in the data. So the
application of ML will inherently also have uncertainty, and it is essential to re-
port this information. For example, one model may predict one pairing, while
another model predicts another pairing. Thus, the user may have several op-
tions for selecting cell lineage, or even none at all. Our goal is to showcase the
models’ confidence in their predictions to allow the biologists to understand the
uncertainty.

Our final major consideration is that we need to give biologists guidance on
the variety of ML predictions at a local level for each proposed pairing. It does
not make sense to show them one hierarchical tree per ML model as this would
overwhelm them. Instead, it makes more sense to show them a single hierarchy
(level) based on the most likely prediction, and then to show them the model
disagreement for each cell or cell pairing. This local presentation of differences
of the ML predictions should augment the global comparison of the different
models.

6.3.2 ML Features, Model Training, and Prediction

To determine the features to use for ML, we asked our collaborators about
which properties they refer to when they decide on which cells they assign as
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sisters. We also referred to universal division rules as described in the litera-
ture [150, 18]. Finally, we decided to take each pairing in the manually assigned
datasets as a record to be able to produce our training data. Based on these
considerations, we extracted 8 properties with 12 features in total from these
cell pairings as follows :

(1) the normalized distance between two neighboring cells, computed from their
respective centers (mean vertex positions),

(2) the angle between the line that connects both centers and the weighted ave-
rage normal of the shared surface,

(3) the number of direct neighbors of each of the two cells (i. e., two features as
the value for the paired cell is independent),

(4) the ratio of the volumes between the two paired cells,
(5) the ratio of the surface area between the two paired cells,

(6) the ratio of the area of the shared surface to the surface of each cell (2 fea-
tures),

(7) the layer count from the surface of the embryo in which each of the two cells
are located (2 features), and

(8) the generation of a cell in the division process along with the total cell count in
this generation (2 features).

For the first property we normalize all distances between adjacent cells in a
generation to the interval [0, 1], 0 being the minimum distance and 1 being the
maximum. This property encodes how close two sister cells are as compared
with other adjacent pairs in the same generation. With the second feature we en-
code the orientation of the shared surface with respect to the centers of both
sister cells, and pairings with low angles are more likely to be sisters than those
with higher angles—as confirmed by our collaborators. As we show schemati-
cally in Figure 6.2, we compute the lines that connect both centers of a potential
pairing and then compute the angle of this line to the weighted average normal
of the shared surface (Figure 6.2(b)). For the seventh property we first classify all
surface cells as layer 1and others as internal cells. We thenignore all surface cells
and iterate the algorithm, marking the next layer as layer 2, etc. The reason for
this layer marking is that there are, in fact, two types of cell divisions, periclinal
and anticlinal. In periclinal division, cells divide into two in a row, while cells with
anticlinal division divide into two columns of cells. Younger embryos usually di-
vide periclinally, while anticlinal division usually produces cells with new functio-
nality. We capture this feature through the layer property, along with the eighth
property, the generation information.
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Figure 6.2 - lllustration of (a) the first two stages of cell division and (b, c) the angles
we used in our ML training to identify likely sisters (illustrated in 2D for clarity). Here,
anglez is bigger than angle1, which means that cell2 is more likely to be a sister of cells,
compared to cellg.

We used these 8 properties to pre-train our ML models using all 12 features.
In addition, we allow the biologists to customize the feature selection and to
train new models with only a subset of features if they desire. LineageDsup-
ports 5 different machine learning techniques : support-vector-machines (SVM),
random forest [22], k-nearest neighbors (KNN; we used k = 5), artificial neural
network, and Gaussian naive Bayes. Based on the datasets, we picked supervi-
sed machine learning classifiers which are applicable to train and predict online.
In this way, users could directly re-train the model locally without setting up the
corresponding environment. Models from other families, such as XGBoost [35],
could also potentially provide different results. We excluded these, however, be-
cause either they require external package installation (e.g., sdk), making the
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website less accessible, or they do not support online real-time training.

To train our models, we treat the cell lineage prediction problem as a clas-
sification problem. This means that the ML should predict, for a given potential
pairing, whether these neighboring cells are, in fact, sisters or not. We use our
manually specified lineage datasets and extract, for each generation in this data,
all potential cell pairings of neighboring cells in a given generation and classify
them either as a correct sister pairing or as an incorrect paring. This way, we
capture both positive and negative targets from our input data. In total, we had
47,132 records with 43,392 negative targets and 3,740 positive ones. We had a lot
more negative targets than positive targets as each cell has many direct neigh-
bors but only a single correct sister. To solve this issue of our highly imbalanced
training data, we use randomly over-sampling and under-sampling [139]. Finally,
to analyze the stability of the models, we used a k-fold cross-validation approach
(k=150) and derived each model's accuracy rate and recall value, as shown in Ta-
bleau 6.1.

Table 6.1 - The overall accuracy rate and recall value for the five models using
the cross-validation approach.

model random SVM KNN neural Bayesian
forest network

accuracy rate 94.24 94.23 93.42 93.30 92.07

recall 44.20 60.96 52.37 67.44 84.22

For our actual prediction of a new hierarchy level,? we first use all five mo-
dels independently to predict all possible sister cells for any given cell. Then, for
each positive prediction, we weight the prediction by the corresponding model
accuracy. We also weight it with a customizable model weight to allow biologists
to control the influence of each model (1 by default). Thus, for each proposed
pair, we can get the average prediction across the five models. We then sort all
pairs by their probabilities and filter those with a probability value lower than
0.4. This means that we only consider those pairs that at least two models agree
on. There are cases, however, when cell A has the most likely sister cell B, while
for cell B the most likely sister cell is another cell C. In these situations, we sum
up the probabilities of these two pairs separately for each child cell and then
pick the pair with higher probability. In this way every cell can be marked with a
comparatively most likely sister.

2. We only predict one level at a time as we rely on user feedback to correct this prediction,
as a wrong prediction would invalidate any further hierarchy levels [84].
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Figure 6.3 - For each quarter (here we take the quarter Cell N-8 as an example), we
predicted the new level with the quarter constraints and sorted the predictions based
on the overall confidence of models from left to right. As the image shows, the left-most
pair has multiple possible sisters for both affected cells. The position of a cell in the
subtree and the color of the bar indicate the overall certainty of prediction. The parent
cell 82 for two children cells 14 and 8, for example, is the least certain prediction as
it is placed left-most in the subtree N-8 (i.e., needs to be processed first) and the bar
below the parent is almost black, whereas higher certainties would be indicated with a
greenish color. For the cell 83, the ML models are confident about assigning cell 23 and
cell g as sisters. Also, from the figure, we observe that the ML models predict cell 19 and
cell 31to have no sister cell in the current level.

6.3.3 Visualization Design

Based on these design considerations and our ML setup, we created our Li-
neageD tool with a particular emphasis on three aspects : the visualization of
ML model parameters, features to support mistake detection, and interactive
decision making to improve the biologists’ workflow.

Visualization of ML prediction data

The multi-model prediction process described in sous-section 6.3.2 allows
us to produce a single (partial, bottom-up) hierarchy similar to the previous one-
model approach [84]—which can be shown to expertsin an icicle plot. Our multi-
model prediction, however, provides users with more information about each
pairing and the overall model parameters.

We summarize the model predictions from the five models and visualized
them in stacked bar charts that shows the prediction for each cell (Figure 6.3),
adjusted by model weight. We sort the bar charts descending from top to bottom



6.3. SYSTEM DESIGN 121

so viewers can focus more on the most likely predictions. In Figure 6.3, the ver-
tical stacked bar chart of cell 9 has three parts and an additional gray area. This
representation means that, for cell g, the ML models proposed three potential
sisters. The colors of the bar chart elements match the colors of the target cells,
so we can see that the majority of the predictions go to cell 23, which actually
was chosen as the most likely sister in the pairing. The gray area at the bottom
of the bar chart represents the accumulated uncertainty of all of the ML mo-
dels based on the accuracy rates and model weights. For cell 23, the ML models
predicted three possible sisters, and the most possible sister cell is cell 9, thus
confirming the match. We place the vertical bar on the side near the proposed
sister (i. e., on the “inside” of each paring) to allow biologists to directly compare
the individual predictions of any given pair. For those without predicted sisters,
we add a diagonal line texture upon the nodes to indicate that the ML models
consider them not to have divided at this stage (or are not confident enough to

make a pairing).
All predicted sisters
X
“ wll Vertical thumbnail of
B 9

all predictions

All the other neigh-

00000 - ==

Figure 6.4 - The details of model predictions for one cell. Here we take cell 9 as the tar-
get cell for example. From the colors, we can also tell the relative distances between
two cells. The percentage of each model depends on its accuracy rate and the custo-
mized model weight. The colors of cells in the semi-donut chart correspond to the cell
colors as derived from their 3D positions. A small proportion of gray space indicates the
uncertainty of model prediction for the cell 9.

While this overview can provide the biologists with a general sense of the
model predictions, the possible alternative matches are not obvious. Also, the
ML models occasionally do not predict the correct sister, as indicated by the gray
mark based on our previously determined model accuracy rate. Thus, the biolo-
gists need to be able to see all adjacent cells and investigate them individually.
For this purpose, we designed a half-donut pie chart (Figure 6.4), inspired by
previous work on necklace maps [175], to show all predicted cell names with the
proportions indicating the probabilities. In addition, we list all remaining direct
neighbors of the selected cell (i. e., those not included in any prediction) in a line
below the cell for the biologists’ reference. What this representation still does



122 Chapitre 6

neuralNetwork

knn 7777

bayesian 19

svm
randomForest

Figure 6.5 - We show the overall details of predictions from all models when the user
double-clicks a child cell in the icicle plot. Taking again the example of cell 9, this view
shows us that Neural Network, SVM, and Random Forest predicted cell 23 as the only
possible sister, while Bayesian proposed two cells, 8 and 19, to potentially be the sister.
KNN, however, does not propose any potential sister for cell 9.

not show is the individual model predictions, i.e., which sisters were predicted
by which model. We thus created a pop-up view to show the overall predictions
from five models (Figure 6.5). To display which models proposed a specific sister
cell, we added another pop-up view to the current interface (Figure 6.6), which
we show when the biologists hover over one of the bar in the half-donut pie
chart. In the example in Figure 6.6 which shows the popup upon hovering on
the cell 9 curved bar in Figure 6.4, three models predict cell 23 as the sister cell
of 9. For models which do not predict these two cells as sisters, we used diago-
nal stripes as the texture. In Figure 6.7 we summarize the connection between
the different detail levels and how we derive the necessary proportions that we
show.

Support for detecting possible errors

It is also important to provide guides for the biologists to quickly target po-
tential errors in the predictons. We adopted two approaches for this purpose :
(a) we sort the newly predicted cell pairs for each top-level subtree based on the
overall model certainty and (b) we use color highlighting in the 3D view to indi-
cate cells that are similar to a given target cell. For (a), we show the cells with the
least certainty on the left, with increasing certainty toward the right. We chose
this assignment to first show to the biologists the most likely mistakes that they
need to address, and, as they move from left to right, they can stop once they
feel that the remainder of the assignments is reliable. Of course, this can only be
sorted within each of the top-level subtrees in order to not break this previously
(manually) produced top-to-bottom assignment. For (b), we want to be able to
highlight wrongly assigned cell pairs by assuming that if one pair is wrong then
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Figure 6.6 - When hovering over a specific proposed sister cell in the semi-donut chart
(as we did in Figure 6.4, where the mouse hovers over the proposed sister 23), we show
the detailed view on the chosen pairing as opposed to showing all predictions as before.
Different from Figure 6.5, here we only show which models actually predicted these
two cells as sisters. In this example, three models (Neural Network, SVM, and Random
Forest) proposed cell 23 to be the sister of the target cell 9.

another proposed pair is likely also wrong and would share similar properties
to the first wrong pair. This situation can be captured by the Tanimoto similarity
[2], which we calculate for all possible pairs of mother cells of a given level. Then,
as one target (mother) cell is highlighted (e. g., in the view in Figure 6.3), in the
3D view, we show those other mother cells similar to the target if its Tanimoto
similarity is larger than 25%. We also color-code the similarity with a sequential
color scale (based on magenta (see Figure 6.8). Then the biologists can review
this limited range of possibly wrongly predicted pairs.

6.3.4 Further Interaction Design and Decision Making

We based our new interaction design on our previous tool LineageD [84] (see
Figure 6.9) and added ML model interactions to help the biologists to unders-
tand the decisions of the different models and to make potential adjustments
(as illustrated in Figure 6.10). Before making a new prediction, we now allow bio-
logists to specify custom features based on their background and then to train
the five different ML models with these. Once satisfied with the trained models,
they can load the their dataset and use LineageD's lasso selection to build the
top tree—to constrain the ML later-on and to create better predictions. Then,
the biologists can start to use the models to make predictions. In addition to
the visualization of the different predictions by pair that we discussed in sous-
section 6.3.3, we also provide the possibility to hover over a given ML model
representation to highlight all those pairings that were predicted by this model
(see Figure 6.11). To meet the requirements of some biologists who are used to
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Figure 6.7 - The connection of visualization design in the different information levels.
The gray part is the uncertainty where models can make mistakes about the target cell
(cell g in this example).

doing the lineage assignment top subtree by top subtree, we also enable the ex-
perts to double-click a specific top-level subtree to only display the cells within
this subtree, without all the other cells in the 3D view and with the selected sub-
tree highlighted in the hierarchical tree (Figure 6.12). Finally, for each ML model,
we also allow the biologists to change the weight as desired. Then, we adjust the
corresponding visualizations and future predictions accordingly.

6.4 IMPLEMENTATION DETAILS

We now detail our implementation, including datasets, models, and technical
realization of the visual representations in our tool.

6.4.1 Datasets

We received the original embryo datasets in SURF format from our biology
collaborators, who had processed the data with the biological tool Avizo. This
format includes the names of the cells in the embryo, the surface mesh that
represents each cell, and the corresponding vertex locations. The cell names
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Figure 6.8 - This view shows the similar pairs with the target cell. The left image indicates
the original embryo, and the right image demonstrates the color change of the similar
cell in the detection mode. In these figures, the target cell is highlighted in red, and the
similar cell in pink. In this figure we highlighted the similar cell with a red box.

consist of a string and a unique number (e.g., Ce1l1001 or Materials002). We
extract the unique ID in these names and use them as labels for the cells in Li-
neageD. We number any newly created parent cell by continuing this count, as
suggested by the biologists. For any previously (manually) assigned embryo da-
taset, we also received another text file that records this information. We extract
from this file the corresponding linage hierarchy for the given embryo.

6.4.2 Models

We implemented the neural network model using TensorFlow. js (v. 3.8.0)
to train and predict a sequential model, while for the other four models in our
tool we used the library ml. js. The specific packages we used are 1libsvm-js
(v. 0.2.1), ml1-knn (v. 3.0.0), ml-naivebayes (v. 4.0.0), and ml-random-forest (v.
2.1.0). The neural network model consists of two hidden layers with ReLU activa-
tion functions and one final output layer with softmax. We also used the library
ml. js to get the model performances with a k-fold (k=50) cross-validation ap-
proach. Also, to detect similar pairs (i. e., to help the biologists to efficiently find
error-prone pairs), we used Tanimoto similarity and distance methods with this
library. For the default datasets, we pre-trained and saved the ML models for
quick accessibility. We also support online training with feature sets customi-
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Figure 6.9 - The workflow of using LineageD to do cell lineage. The steps with white
backgrounds are based on our previous work [84], and the steps in orange represents
the new stages we added in LineageD.

zed by the biologists, yet a re-training with a custom feature selection takes a
computation time in the order of hours to days.

6.4.3 Visualizations

We used JavaScript together with Node. js (v. 14.15.0) and Express. js (V.
4.17.1) to build the interface structure including a static back-end server. We im-
plemented the charts that present the model properties and the hierarchical
tree with D3 [21]. For visualizing the embryos in 3D, we used vtk. js (v. 19.0.4)

[163].

6.5 CASE STUDY

To evaluate whether our system can help biologists with better assigning
cells using multiple machine learning algorithms, we conducted a case study
evaluation with six biologists. We extended our existing ethics application for
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our work on cell lineage (AVIS n° 2021-46) to get permission for this human-
subjects evaluation from our institution’s (Inria) ethical review board. We also
pre-registered the study online (osf.io/2f6uc).

6.5.1 Datasets

To allow our participants to get familiar with the LineageD+ interface, we
used a16-cell embryo in the training session. For the actual case study, we used a
larger dataset with 64 cells. As we had found in our previous work [84], biologists
build the hierarchical tree using both a bottom-up and a top-down approach.
Since the purpose of this study is to evaluate the visualizations of machine lear-
ning algorithms (i. e., in the bottom-up approach), we pre-set the top part of the
hierarchical tree in advance so that biologists could focus on interactions with
the bottom-up predictions.

6.5.2 Participants

We recruited 6 biologists (3 females and 3 males), aged 32-61 years (mean :
49.5 years), via social networking and mailing lists. All of them have been conduc-
ting research in plant cell lineage or a related field for 3 to 20 years (mean : 11
years, sd : 6.957 years, median : 12.5 years). We anonymized their personal data
with a participant number (P1-P6). Their specific research focus included bio-
image analysis and modernization (P1), plant gene expression (P2), bio-mathematics
(P3), cytology image analysis (P4), cell division (P5), and cytogenetics (P6). Three
of the participants (P1, P2, and P3) had created cell lineage datasets (daily, once
a week, and several times a year), while the others work on general cell lineage
problems as opposed to establishing the lineage themselves. P1 conducted the
experiment remotely via videoconferencing, while all others participated in per-
son. The in-person attendees used their preferred working PCs or laptops (some
with separate large screens) in a meeting room. P1, P2, and P3 had worked with
our previous tool LineageD before, while the others had not. With respect to ex-
perience in machine learning, P1, P2, and P6 do not use ML in their professional
work, while P4 and P5 have some experience in using deep learning for segmen-
tation, and P3 is familiar with convolutional neural networks (CNNs) for image
processing.

6.5.3 Procedure

The study consisted of three parts : a training session, an observational study,
and a post-study interview. Before the study began, we distributed a consent
form and a background and demographic data collection form for participants
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to fill in. We also asked them four questions about their previous experience
in cell lineage and machine learning. For the offline studies, we let participants
read and sign an image and voice recording consent form to allow us to take
pictures and/or audio-recordings. We started the study only after we received
their formal approval to participate. Our participants were not paid but received
free access to our online tool as compensation.

In the training session, we gave a brief introduction about the purpose and
the process of the study. For the remote participant, we asked them to open the
website on Chrome using the credentials we provided and to follow us during
this training. The training session for this online participant took longer because
the remote communication added difficulty in the expert understanding some of
the functions of the tool. After the initial introduction was complete, we showed
them the procedure of doing the cell lineage for the 16-cell embryo. They could
interrupt us for questions at any time. The overall training part took about 15
minutes for the on-site sessions, and about 20 minutes for the remote session.

After the participants felt that they were familiar with the interface, we in-
troduced them to the task of assigning the 64-cell embryo. For the remote par-
ticipant, we asked them to share the screen with us and talk about what they
were doing and thinking during the assignment process. We also recorded the
screen and audio with the participants’ permission for later analysis. For the in-
person sessions, we observed the participants’ actions and took notes on how
they operated the system. Once they finished the assignments, we conducted
a post-study interview, asking them about their experience with the interface.
We also asked them to fill out a System Usability Scale (SUS) [80] to assess their
experience.

6.5.4 Study Results

The study process took approximately 60-120 minutes, depending on how
fast each expert could get familiar with the tool (ranging from 10 to 15 minutes).
The duration was also subject to their available time slots. All participants fini-
shed the assighments of at least one generation, and could quickly get fami-
liar with the system under our guidance—especially in the in-person cases. Five
participants identified key difficulties in assigning cell pairs for the 64-cell em-
bryo, and reported uncertainty about their decisions. They noted that there were
cases where one cell had two possible sisters. In this case, they would trust the
machine learning first and come back to correct the assignments later if neces-
sary. The other participant had no problem in assignment because they knew
the embryo quite well.

Workflow. We observed how participants operated the system during the
observational portion of the study. Four participants did the assignments with
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similar steps taken using LineageD [84], which means that they did not refer to
the detailed predictions of each cell during the assignments and instead made
decisions on their own. For them, they already had the assignment ideas when
targeting a given cell. When the machine learning algorithm gave incorrect li-
neage assignments, participants corrected them without checking other propo-
sals from the ML. Thus, in short, the experts compared the ML proposal with
their own ideas to make the corrections. Another volunteer only checked the
details when she was not sure about a sister. The final participant, in contrast,
checked all the potential sister cells proposed by the machine learning and then
made a decision. When checking the current pair, whether it was right or wrong,
she would always traverse the proposed sister cells to make sure the other op-
tions were wrong. Unexpectedly, the biologists targeted the children cells ins-
tead of the parent cell to find the wrong pairs. This led to their heavy reliance on
the target and sister view of the tool.

In addition, all experts assigned the lineage based on the pre-set top-down
subtrees. They would finish the assignments of all cells in one subtree (a quarter
in our example data) and then move on to the next one. Four of them used our
subtree view (Figure 6.12) to only focus on a specific quarter, while the other two
went through the cells in the tree order but without engaging the subtree view.

Visual Representations. All participants appreciated the visual information
design for the hierarchy and machine learning. P1 and P5 noted that they can
understand everything in the interface. P3 felt that all elements are useful and
especially favored the tree visualization design because it links with the 3D view
and is easy to understand. P2, P3, and P6 stated that it is really important to have
the 3D view replacing the traditional 2D slice images so that biologists can see
the embryo and have a better understanding of it. P4 also suggested to export
the view in 3D so that she can show her assignments to others. P6 expressed her
appreciation of the tool development because, for older biologists like her, the
toolis easy to use and “cannot be better for her”. The only concern she had is that
the red highlight coloring can be unfriendly for people with color impairments.

P3 and P4 also provided feedback for future work noting that they missed
a view of only the target cell that would have allowed them to carefully check
the shapes of individual cells and their children. P5 was not familiar with the 3D
interaction techniques and needed some time to get used to them. Another po-
tential improvement proposed by P3 was to distinguish the level in the tree from
the division generation of a given cell. In every round, the ML models predict one
level, but this level does not necessarily correspond to the true generation be-
cause, when the data is being captured, the embryo can be in the process of
division. In this case, some cells in the embryo are in a different generation than
the others, and the prediction currently does not consider this situation.
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Machine Learning Design. Before starting our observational study, we as-
ked all participants about their expectations with respect to machine learning.
P1and P3 envisioned the possibilities of two cells being sisters so that they can
better make decisions. P2 hoped that the ML models can do all the work au-
tomatically and only leave the checking job for him. P2 and Ps5 also hoped the
models would be applicable to other datasets (i. e., other species) and tools. P6
assumed that ML can help predict both the past and the future for embryos.
It means that, hopefully, models can predict not only the hierarchical tree, but
also the future fate of the cells.

After our study, we asked the participants what they think of the machine
learning support in LineageD+. Though four of them reported that they did not
have enough time to fully experience the ML in terms of using ML for other more
datasets, all participants appreciated the prediction results. The three biologists
who had used LineageD before said that the performance and experience of
LineageD+ is much better than the previous version. All experts also thought
the visualizations of machine learning are readable and easy to understand. P6
reported that interacting with machine learning made her feel like she was dis-
cussing with the computer in making assignment decisions. She started to look
at one proposed pair and targeted one of the children cell. For her, machine
learning was proposing other options in the semi-donut chart and she would
almost “talk” to the model about whether it is wrong or it makes sense. She felt
she did not have to think much but just traversed the proposals from machine
learning.

As for the improvement of machine learning itself and how it can be de-
ployed, though P1 and P2 did not refer to the detailed predictions of each cell
from machine learning, they were curious about how models worked and why
models gave such predictions. P2 and P6 were also interested in knowing why
models can come up with a specific wrong pair. P3 argued that he cannot decide
the model weights in the very beginning. It required much time interacting with
the system so that users can choose and decide the preferred model weights.
He and P2 would love to see the machine learning do the weight adjusting job for
them. P4 was concerned that she would potentially be influenced by the propo-
sed predictions from the machine learning. Though there are vague situations
where the assignment for one cell has multiple solutions, the ML would pick one
solution automatically for the biologists, and they would need to manually try
out the other possibilities. P2, P3, and P4 would love to have the models upda-
ted based on their corrections and then to predict future pairs using the updated
model. Another wish of P2 and P6 was that the machine learning models should
predict the two directions, top-down and bottom-up, rather than only bottom-
up. Also, P2 thought it would be better to report the feature weights used by
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the models and to enable users to change these weights as well. Since P1 and
P3 were used to assigning embryos section by section, they would have loved to
have the machine learning predict all assignments within a subtree, instead of
only a single level.

Interaction Design. We asked participants about their interaction experience
both with the general interface and with the machine learning models. For the
general system, P1, P2, and P3 favored the interaction connection between the
3D view and the 2D view. P1 said that in traditional tools, such as the TreeJ plu-
gin to Fiji Image), itis hard to find the exact cell with the 2D slices, but LineageD+
perfectly solved this problem for her. P2 and P4 were impressed by the subtree
focusing function. It enabled them to clearly make decisions within the range
constrains and thus reduced potential errors. In addition, P2 appreciated that
he could adjust the ML model weights and that the detailed information about
the ML predictions was not presented all at once but instead in layers that could
interactively be revealed. Also, P3 and P4 appreciated the explosion and pee-
ling function to solve the occlusion problem. P4 and P6 liked the interactions for
comparing different potential sisters in the target and sister view. Interestingly,
P6 appreciated the use of mouse clicks for making re-assignments, yet both P1
and P3 reported that they were confused by the single- and double-click actions
in the tool. Though they could understand the use of these clicks after we ex-
plained the differences to them (single click to target cells and double click to
assign cells), P6 thought it may be better to provide a more detailed manual for
people without technical support. P1, as the only remote participant, expressed
her concern as to whether or not she could finish the assignments without the
experimenter’s help. In addition, P4 and Ps5 felt it was inconvenient to have the
buttons below the hierarchical tree, and P4 would have preferred the tool to
have a right-click menu for the tree interaction.

Potential Influence. In the post-study interview, we asked participants how
fast their construction can be and how confident they felt about the results af-
ter sufficient training. Overall, all participants thought that LineageD+ can help
save time, even though they would check every proposed pair. Also, based on
P1's feedback, the speed of using LineageD+ partially depends on how familiar
a biologist is with the analyzed embryo. When the biologist had never done any
assignments for the specific embryo before, the machine learning predictions
can be a large help for the thinking and decision-making process. Yet, the ef-
fect may not be so obvious for familiar embryos because biologists need to go
through every cell anyway. P4 and P6 would love to try out other datasets to
confirm the assumed improvement of assignment efficiency. Reporting on their
confidence of working with LineageD+, P4, P5, and P6 thought they would feel
very confident because they can easily understand and use the tool to check
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very step. P3 thought that LineageD+ offers the same confidence as if he would
manually establish the lineage. P5 assumed that his confidence in the results
can reach about 9o%. The other participants would feel equally confident with
the results from the traditional tool because they would basically do the same
assignments.

In addition, we asked biologists about whether they thought the tool would
change the traditional approach they used in the assignment process. All of
them believed that LineageD+ can possibly change the strategies they used. P1
and P2 assigned the cell lineage quarter by quarter, and the machine learning
predictions built the tree level by level. They were used to the quarter-based as-
signment because they wanted to move the embryo slices as little as possible in
their traditional tools, but in LineageD+ biologists knew where they are thanks
to the 3D visualizations and they thus may switch to a level-by-level assignment
with some training. P4 specifically emphasized this notion because LineageD+
provided clear visualizations of individual cells as well as how two sister cells
can be combined. P6 noted that tools for biologists should be free and easily
accessible and that LineageD+ meets this requirement.

We also calculated the System Usability Scale rating as 77.67/100 (sd : 15.77)
on average, which is higher than the average SUS score (68) [80]. Yet it can still
be improved via all the aspects mentioned by the participants as we reported.
Among all participants, only one gave a score lower than the average SUS score,
who was the remote attendant—a possible reason being that the networking
and communication affected her experience. Compared with LineageD’s SUS
score of 68, the improved score could be due to LineageD+'s improved model
performance and interaction experience. Another possible reason is that five
participants conducted the study in person (compared to LineageD) so that, if
they encountered problems, they could get timely help.

6.6 DISCUSSION

Based on the study results and biologists’ feedback, we summarize the follo-
wing points as takeaways from our work.

6.6.1 Various Interaction Types with ML Visualizations

First, we observed that experts use machine learning and the visualization
of its details depending on their level of expertise, their familiarity with a given
dataset or task, their background, and the perceived performance of the ML
models. For example, when a biologist was familiar with the species of the em-
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bryo, they would concentrate on checking the ML's assignments and largely only
validate the predictions—provided that the model would perform well. Only if
the model made apparent mistakes they would explore alternative assignments
and quickly settle on an alternative cell pair based on their experience. Biologists
with less experience with the embryo’s species, in contrast, would rely more hea-
vily on the visualizations of the ML predictions to compare alternatives and ul-
timately make decisions. Looking at the specific backgrounds of the biologists,
those who usually do not create cell lineage datasets but focus more on other
qguestionsinthe context of the general problem (e. g., segmentations) were more
likely to explore the other functions, including the machine learning prediction
details. The participants who work on creating cell lineage would primarily use
the lineage assignment or confirmation functionality and would not check the
details of the ML visualization. Despite this diverse expertise and range of expe-
rience, all biologists assigned cells for at least one level using either approach
thanks to our ML visualization and interaction design. Therefore, our staggered
way of presenting an increasing amount of detail about the ML predictions is
effective at supporting this range of potential users and their needs.

During the design and evaluation process, we also found that LineageD+ al-
lowed biologists to interact with the ML predictions in a “communicable” way.
One participant, for instance, treated the ML proposals as if the machine lear-
ning was suggesting the potential sister cells to her in real time, and she “explai-
ned” to ML models (i.e., to us in the think-aloud protocol) the reasons of why
a prediction was reasonable or not. Though she spent more time in traversing
the proposals, such a workflow was appealing to her and may be similarly for
other biologists with less experience and knowledge in constructing cell lineage.
As she described it in the study, the ML served a similar role as a colleague with
whom she would discuss the assignment, and for such a “narrative interaction”
an initial assignment proposal (as provided by the ML) and the human’s control
over the final decision are needed.

6.6.2 Customized ML Interaction Design

Another interesting point we observed is that the experts generally use the
ML models to improve their immediate efficiency, instead of spending time on
other tasks with long-term rewards. For example, in our case the main purpose
is to get the cells assigned. We observed that the biologists tried to complete
the study as soon as possible, rather than checking the detailed prediction from
ML models—even though the information could have helped them to decide on
proper model weights and thus benefit them in the future. To help experts with
such a situation, when designing a system we need to consider recording their
behavior and developing additional ML models to automatically support those



134 Chapitre 6

tasks—such as adjusting the model weights or the weights of the individual fea-
tures for future training.

In addition, based on the varied expectations and preferences of the bio-
logists, we saw that we need to support ML predictions by both levels and sec-
tions, and potentially even top-down predictions. This means that we really need
customized ML support, instead of a single generic black box which cannot ea-
sily meet everyone's requirements. Customized machine learning behaviors and
their corresponding visualization—as we provided it in our approach—can be
helpful (yet further developments need to add the suggested additional functio-
nality). This ML customization and visualization can also be extended to other
scenarios where different target users have diverse working habits. Correspon-
ding interactive visualization can then help users to customize their model use,
in addition to providing assistance in interpreting the ML. For instance, visualiza-
tion can help users to better understand their actual needs to then allow them
to pick a suitable model.

6.6.3 Visualization for Human-Al Teaming

Our case study thus showed us that visualization can play an essential role
in a user’s interaction with ML models. In this context we do not see the Al com-
ponents as a superior authority but instead as a collaborator with whom one
can and one should interact. Our visualizations of the details of the ML model
predictions thus serve as a mechanism to support this human-Al teaming, to
ultimately come to the best possible result in a manageable amount of time.
This concept certainly does not apply to all applications of machine learning or
Al, but it can be useful in those cases where the outcome is crucial, the manual
checking is essential and feasible, or where it is likely that the models can make
mistakes due to the complex nature of the given problem.

In our case, the specific lineage hierarchy that results from the processing
with LineageD+ is important because the biologists need to further analyze it. Yet
even the biologists themselves are occasionally unsure about some cells’ assign-
ments. Moreover, our training datasets come from embryos manually assigned
by biologists and their number is limited (only 93 embryos at this point). Under
such circumstances, a single ML model is likely to make mistakes. Although mul-
tiple ML models can partially make up for this problem, the biologists would feel
more confident if they check all cell pairs of any new dataset to ensure that they
are correctly assigned, as they stated in the study. Consequently, in our applica-
tion the biologists are interacting with the machine learning models to come to
a final conclusion, as opposed to simply accepting a ML-provided result. The hu-
man experts, ultimately, have gained a lot of experience in their education that
we may not be able to capture with ML models even for larger training datasets,
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and in this case the experts still have the choice to overrule the model-suggested
assignments.

6.7 LIMITATIONS

Naturally, our approach is not without limitations. To start, LineageD+ was
built based on LineageD, and some limitations of the latter still apply in our ex-
tended approach. First, we chose to apply the ML models to predict the assi-
gnments level-by-level. Although some biologists preferred to have the sector-
by-sector ML predictions, we designed this because the potential corrections of
the current level would invalidate a complete predicted sector. Yet it would be
interesting to compare biologists’ experience and feedback towards these two
different ML appliances. Second, we do not update the ML models based on the
interaction patterns of the biologists. While this would technically be possible,
the benefit would likely be limited because of the rather small set of training
data. Without such an interactive updating process the interaction with the ML
is not really a “discussion” as was implied by P6 in our study. Thus, we would be
interested in combining our approach with techniques from explainable Al that
would allow us to create an environment in which the ML could participate more
in a “discussion.” Third, in both systems, biologists typically check all cells—even
those with the proposed assignments—because they feel more confident after
checking every pair. As a result, the lineage process still takes time, especially for
large embryos. Finally, we used a limited set of training datasets (93 embryos)
from biologists. A larger number of manually assigned embryos can potentially
improve the model performance.

Our specific human-Al teaming approach in LineageD+ and our evaluation
have limitations as well. Based on the biologists’ traditional workflow, we intro-
duced ML algorithms and improved and designed the usage of LineageD+. This
new way of establishing the cell lineage for an embryo dataset is challenging
for biologists because they are often not familiar with the use of 3D visualiza-
tions and interactions, the use of ML in general or the specific models, and also
our specific interaction design. They need time to understand the representa-
tions of the ML predictions and get trained to do the assignments with such a
system. Also, we used only a certain set of features all with equal weight and
included only 5 ML models in LineageD+, again with the default weight of 1. In-
troducing other features with diverse weights may improve the ML models, and
including more models can possibly increase the overall precision for biologists.
Meanwhile, developing additional ML models to automatically change the fea-
ture and model weights could potentially ease the biologists’ mental workload.
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In our evaluation study, we recruited “only” 6 experts in the specific field (plant
embryo lineage) to validate our system design. Other minor usability issues ad-
dressed by biologists are that, first, the raw data in the first stage may not be
clean, because the snapshot may include cells of different generations. In this
case, the ML models need to detect the differences. Second, there is a format
constraint for the uploaded data file. We used the mesh data from a paid tool
instead of a more generally-used tool, and it adds difficulty to the generalization.

6.8 CONCLUSION

Traditionally, ML models are frequently used to take over otherwise tedious
tasks and can assist people in finishing complicated work. Often, we do not even
change anything about the way the ML does its work but treat it as a black-box
tool. Sometimes, however, people also check the decision-making process, exa-
mine the results, and give feedback to models to improve them. In such sce-
narios, visualization can serve as a bridge to connect people with ML. In such
a process, however, the ML models often dominate the decision, and the other
parties’ (people and visualization) work or are used to improve the ML's perfor-
mance. In our project, in contrast, we did not aim to improve the ML models and
instead treated it as a tool that helps people make decisions but that no longer is
the final authority. Visualization, in this relationship, empowers people to enable
them to find a balance between their own experience and ML models’ proposals
and thus to engage with the ML as if it was another collaborator. As people have
a diverse set of needs, such human-Al teaming allows them to decide to what
degree the ML models should be involved in the decision-making process. More
experienced users may avoid the ML model intervention, while people with less
experience may rely more the ML predictions to a larger degree. In this case,
the procedure to complete tasks is somewhat of a collaboration work, where
the ML models and their visualization are ideally a supportive partner by pro-
viding the desired information and explaining it clearly. To achieve this goal, in
LineageD+ we used five ML models and, in the future, would like to explore other
techniques such as Explainable Al and Interactive ML to allow people to unders-
tand and use the ML collaborator more effectively. Although we worked in the
biological field and in other fields the visualization and needed interaction de-
sign may be different, we are confident that our concept of using visualization
to support human-Al teaming applies to other domains in a similar way.
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Figure 6.10 - The interaction process of checking the model predictions. Biologists can
target one cell from either the 3D view or the 2D hierarchy tree. If they are happy with
the prediction, they can confirm the pair, and the bar then turns green as in o1/a. If they
disagree with the prediction, they can double click to see the details of prediction and
make an informed decision.
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Figure 6.11 - The illustration of the hovering effect. In this figure, users hover the model
Random Forest. All the pairs predicted by this model would be highlighted with red
strokes in the hierarchical tree. Also, the corresponding cell in the thumbnail would turn
red too.
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Figure 6.12 - The illustration of users targeting one subtree. Here a user focuses on Cell
N-11. The 3D view only presents the cells within this part, and in the hierarchical tree, we
make the other cells transparent.



CHAPITRE

DISCUSSION AND
CONCLUSION

In this thesis, we mainly contribute by using diverse techniques (interaction,
visualization, and machine learning) to solve scientific problems such as plant
cell lineage. We conducted a series of design studies as described in the pre-
vious chapters (chapitre 4, chapitre 5, and chapitre 6) to explore how to apply
them in different steps of solutions. The methodologies and the design process
of our systems could potentially be applied to other scientific domains, such as
the way to collaborate with domain experts, the way to link the 3D and 2D repre-
sentations, and the use of Human-Al teaming to deal with the cases where both
algorithms automation and design study are needed. We discuss the takeaways
from our thesis in this chapter.

7.1 INTERACTING WITH DENSELY-PACKED OBJECTS

As we have described in chapitre 4, plant cells in an embryo are densely
packed together without any space between every two adjacent cells. In such
a densely packed environment, it is not possible to use traditional interaction
techniques such as ray-casting [155] for selection, especially in the case where
biologists have no idea which cell to select unless they see it. So the occlusion
of inner cells by the outside largely prevents biologists from accessing them.
Moreover, biologists need to precisely analyze local neighborhood situations of
cells to be able to make correct decisions about their development, and the em-
bryo can be large such as containing more than 200 cells. Hence we need specific
interaction techniques to access and observe cells within an embryo.

139
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We investigated three selection approaches in 1D and 3D as stated in cha-
pitre 4 : a technique that lists all the 3D objects in a separate view (1D List Se-
lection), a technique that uses 3D explosion to generate space between the ob-
jects in the 3D view (3D Explosion Selection), and a combination of these two
techniques. In chapitre 5 and chapitre 6, we also implemented an interaction
technique that iteratively peels off the surface layers of the objects (Peeling Se-
lection). All these approaches translate the interaction in a dense environment
into one that we can work with : either by showing them in a separate list (List
Selection), by spreading the cells out into a more sparse representation (Explo-
sion Selection), or by revealing layers iteratively (Peeling Selection). In addition,
another idea is the slice-based approach that was used by our domain collabo-
rators traditionally, which only shows a single 2D cutting plane for the dense 3D
environment. It is also a possible solution as we could add a cutting plane for
biologists to control and show the corresponding cross-section view of the em-
bryo, but we found it in our pilot studies to not work as an efficient approach.
One possible reason can be that it was difficult for biologists to master how to
freely control the cutting plane as they are not familiar with the 3D interaction
techniques.

We can thus summarize all these approaches into three categories for sol-
ving the selection problem with the densely-packed objects : 1. Display the abs-
tractinformation of datasets in a separate view (List Selection and the traditional
slice-based selection); 2. Adjust the datasets iTn 3D so that the problem is es-
sentially converted to the familiar traditional selection approaches (Explosion
Selection); 3. Display only a part of the whole dataset (Peeling Selection). These
approaches (List Selection, Explosion Selection, and Peeling selection) may also
work for other data such as organs in biology [159] or high-entropy nanoparticles
in chemistry [213]. For other datasets or in other application domains, however,
they may not work as well. Take the Explosion Selection as an example. To apply
this technique, we need to find one/multiple center(s) as geometrically meaning-
ful baseline(s) to explode the object, and it can be difficult for data with other
characteristics. For example, the DNA structure is linearly structured, very long,
interconnected only along the structure, and then folded or packed in many le-
vels of structure. Though we could use the explosion technique to partially di-
vide two chains, it may not work for checking the detailed components. Another
example is machine assemblies, where the parts are not as compact as the cells
in our application, and they usually have inherent assembly directions. In such
cases, we could face non-meaningful explosions unless we use structured data
about the assembly that maintains the meaningful assembly [76, 137]. Another
aspect to consider is that selection purposes can be different, and techniques
may not apply to all scenarios. The purpose can be selecting a specific data point,
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multiple points, or a range of points. The List Selection is especially helpful in tra-
versing the datasets, while it would fail in other cases where people only need
to select a rough range of data points that are spatially close.

Besides these techniques, there are other potential solutions for interacting
with densely-packed objects, as we can shrink these objects while keeping them
in the same positions. Also, we can add a cutting plane with limited rotation
angles and only show objects on one side of the cutting plane [66] instead of one
simple cross section view. We can support combining two/multiple techniques
to interact with the objects. For example, by combining the Explosion Selection
and Shrinking Technique in the interaction with plant cells, we could explode the
embryo and shrink the surface cells so that biologists may better examine the
inner cells.

7.2 DESIGNING FOR LINEAGE

Fundamentally, lineage relates to both structural and temporal information :
it shows the structure (e. g., the cell division relationship) and also encodes part
of the actual temporal change in its very hierarchy (e.g., the embryo division
time stage) [203]. Traditional trees, even rooted, do not necessarily encode tem-
poral data (e.g., a folder structure only encodes a hierarchy). As such the tree
representation in our special case is unique because it encodes both aspects.
The way we designed to visualize this special cell lineage is to encode the tem-
poral division stage with tree levels as we discussed in chapitre 5.

One of the reasons why we chose to represent the temporal information in
the tree itself is that a division generation is a qualitative form of temporal deve-
lopment that the biologists deduct by reasoning backward, and we can assume
thatthere is regular (i. e., taking approximately the same amount of time) and re-
peated waves of cell division. We can then use the hierarchy levels to represent
the division generations. Another reason is that independent of this special case,
a plain abstract tree representation can already use a lot of screen space, in par-
ticular in situations with the exponential growth of the depicted structure as it
is the case for cell lineage. Adding other representations aside would make the
interface too crowded and add difficulties for users to connect multiple views.
Yet, the tree itself can serve as the basis of additional data representations about
the depicted elements. For example, in LineageD (chapitre 5), we used the tree
nodes’ colors, widths, and heights to encode cells’ 3D relative positions, rela-
tive volumes, and division stages. In LineageD+ of chapitre 6, we added stacked
bar charts to tree nodes to represent the overall model predictions. There are
also numerous other examples from literature which use different properties
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of trees to encode other datasets. For example, EVEVis [132] encoded time and
species in the tree, and Zheng et al. [219] added various diagrams, e. g., sunburst
charts and icicle plots, on treemaps. We can see that trees have great potential
in combining with other multiple representations.

Moreover, in our case, each level of the tree actually relates to a cell division
stage and thus to a 3D representation, i.e., when biologists switch the division
level in the tree, the 3D objects need to change accordingly to display the cor-
responding status. With the added components, the tree can then serve as an
interaction medium to control the 3D view when contents in two views are lin-
ked. As in our scenario, every cell has a corresponding object in the 3D environ-
ment and a matching node in the 2D tree. Due to the temporal character of our
specific trees, they show the progress and development of the 3D representa-
tion, i. e., of the embryo as well as the progress of the biologists in doing their
lineage assignments. We also, in fact, encode the progress in LineageD+ with
additional elements overlaid to the tree representation by using horizontal bars
between parent cells and children cells to indicate whether biologists have che-
cked this pair or not. Thus, by referring to the bars, biologists can see how many
remaining pairs to check.

i z L YW T -

Figure 7.1 - The screenshot of GeoTime [90] to combine both temporal and geospatial
visualizations. Image © 2005 SAGE Publications, used with permission.

Not only for establishing a binary hierarchical tree for plant cell lineage, our
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tree design can also be extended to other tree problems because (1) Our tree
contains many components which can be used to encode diverse data (we could,
for instance, also replace stacked bar charts with other types of visual repre-
sentations); (2) Our tree can be established using two approaches : top-down
and bottom-up approaches; (3) Our tree is a control panel for the associated
3D view. For example, we could use the system to represent and study assem-
bly instructions where a large number of parts come from different places. The
tree could then represent the assembly order with approximate delivery time
periods. By using the tree, users can control the 3D view to show the correspon-
ding assemblies on the map in a specific time period, similar to GeoTime [90]
which visualizes locations and events on a map (see Figure 7.1).

7.3 DESIGN FOR DOMAIN EXPERTS

From our working experience with biologists, we found that the essential
part of enhancing the collaboration between visualization people and domain
experts is to try to understand each other. People from diverse backgrounds
would have different ways of thinking. That requires us to have regular mee-
tings and keep track of all the discussions we had so that we could refer back
to them at any time. Also, despite the physical constraints, it would be better
to exchange ideas in person instead of having meetings remotely, as in-person
communication could be smoother and more effective.

Other than the collaboration approach, we also found that experts’ tradi-
tional working process often needs but may not (yet) have access to advanced
interactive visualization techniques. For example, in our case, biologists need vi-
sualization to display the 3D embryos and interaction techniques to explore the
embryo and to build and view the hierarchy.

Such a lack of advanced interactive visualization techniques may cause pro-
blems. For example, in our case, the biologists were not familiar with such tech-
niques, and we found that some thus expected that current technology some-
how magically solves their problem. For instance, they may expect that machine
learning can predict the whole lineage hierarchy for an embryo at the push of
a button. When they then face reality (i.e., that ML cannot predict lineage com-
pletely precisely, such as due to a lack of enough training data), they may lose
confidence in certain techniques, such as ML, once they find out that the results
differ from their expectations. As described in chapitre 5, the biologists told us
that they felt that ML did not perform well, and they would then assign cells by
themselves.

Because experts usually have limited knowledge about advanced visualiza-
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Figure 7.2 - The illustration of balancing traditional workflow and new design with ad-
vanced technologies to solve a scientific problem. The new design usually involves ba-
lancing different techniques inside, e.g., visualization, interaction, and machine lear-
ning.

tion and interaction techniques, they may also want to stick to their traditional
tools. For instance, in our case, they expected to stick to their slice approach and
then wanted the ML to predict the sisters based on the slices. This sticking to
traditional ways of problem solving brings designers a problem as illustrated in
Figure 7.2. On the one hand, their traditional workflow usually keeps drawbacks
such as being tedious and less efficient, and we can address this with better vi-
sualization and interaction design. On the other hand, while an improved work-
flow may be intuitive, experts can take time to get familiar with it. To overcome
this issue, we recommend implementing their needed technology (i. e., machine
learning, even if it is not perfect) and including other techniques (e. g., visualiza-
tion and interaction) that can improve the problem-solving process. During the
design, we need to balance the experts’ familiar workflow and the new one. To
do that, we could design iteratively with domain experts, or we can design one
or several proper workflows in the interface. As in LineageD, we support either
establishing the hierarchical tree manually or checking and updating it based on
ML predictions in 3D or 2D views.
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7.4 COMBINATION DESIGN FOR 3D AND 2D
REPRESENTATIONS

We saw that there are application cases where we need to have both 3D
and 2D representations when we want to refer to spatial datasets and abstract
information. When two views are inherently linked, such as in our case, where
the cells in all views are identical or related, connecting these views is necessary
because viewers can gain a thorough overview of information at a specific stage.
This is inspired by traditional linked views [185], but we apply this concept to 3D-
2D hybrid systems.

Figure 7.3 - The illustrations of potential design with (a) cell names on 3D and (b) both
the names and lines representing the relationship of two cells being sisters.

Constrained by the complicated context and difficult orientation interaction
(e.g., rotation, zooming, and panning), the 3D environment usually contains only
3D information or includes simple 2D abstracted data on that. For instance, in
our plant embryo visualization, if we attach a cell name to each cell, as shown in
Figure 7.3(a), there is a severe overlapping problem which makes the interface
messy. If we add node-linked lines to connect every two potential pairs within
this time stage (see Figure 7.3(b)), the overlapping problem becomes more se-
vere. We could imagine that when users rotate it, the situation could be worse.
We usually have to visualize lots of information (e. g., the hierarchy data for all
the time stages) in addition to the 3D spatial data to solve a complicated scien-
tific problem because all these data are important for decision-making. In these
cases, we then need to encode other additional/abstract data within 2D repre-
sentations. Linking the 3D view with 2D representations is necessary and impor-
tant because with linking, the information related to 3D objects can be better
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received and understood through the 2D view.
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Figure 7.4 - We duplicated this figure from Figure 3.7. In this poster [160], we made five
categories to group literature which contains 3D and 2D representations.

In face, we explored the different ways of linking 2D with 3D views in a sur-
vey of past visualization literature [160]. Here we found that there are three lin-
king relationships between two views (see Figure 7.4). One is data linking, where
views share the same data, but users cannot directly manipulate the views. In
these cases, the 2D representations are usually the abstraction of 3D represen-
tations, e. g., Eulzer et al. [64] used a flattened 2D diagram to represent essential
parameters of 3D mitral valve (see Figure 7.5). Another relationship is the visual
linking where users can rotate, zoom in, or zoom out one view, and the other
view will be updated accordingly, e. g., in the work of Eulzer et al. [63] as shown
in Figure 7.6, the system used 2D diagrams to show the detailed parameters of
spinal anatomy, and rotating the 3D spinal discs would rotate 2D diagrams as
well. The last one is interactive linking. Interactively linking two views has two
aspects. One is that operating with a view can result in changes in the other
view. For example, in previous work, users can select, filter, and brush across
views via interaction. In LineageD, we also supported highlighting one cell in all
views by selecting that cell in any view. We go beyond this highlighting linking
in @ way that 2D representations can, in fact, control the status of 3D models.
That is to say, by picking a specific level in the hierarchical tree, the 3D cells will
be combined/separated to match the corresponding level. The other aspect of
interactively linking is that the operations in either view are the same or equiva-
lent. For instance, a lot of related work links two views with the first approach,
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Figure 7.5 - In the screenshot of the interface developed by Eulzer et al.[64], we can
see that the 2D diagram (part 2) is the flatten representation of 3D mitral valve (part 1).
Image © 2020 IEEE.

e.g., Byska et al. used a 2D collar representation to display the protein tunnel
bottleneck contour and control the 3D view [29]. We still believe that the second
approach, i.e., using the same or equivalent operation in both views, also eases
people’s learning curve. For example, we used the same interaction to correct
assignments in both 3D view and the hierarchical tree for targeting cells and cor-
recting predicted pairs. Once biologists noticed this, they were able to interact
with both views easily. Though designing the same interaction for all views en-
hances people’s awareness of that the views are linked, we have to admit that it
is an added value and designers do not have to pursue it since it can be difficult
to realize.

To design a system with both 2D and 3D representations, we need to first
identify the inner relationship between different types of representations. One
relationship is that one view adds information to the other. In this case, the lin-
king should clearly state what this information is related to. For example, we en-
coded the ML prediction results in the tree, and these predictions are not visible
in the 3D environment. We emphasize for which cell the predictions are made
by using the same colors of cells in both the 3D environment and the hierarchi-
cal tree. Also, when biologists hover over the proposals, the corresponding cell
would be highlighted in the 3D view. Another potential relationship is that the 2D
view visualizes the abstracted information for the 3D view. The specific design
of this visualization of abstract data about 3D objects should provide an over-
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Figure 7.6 - In this example from the work by Eulzer et al. [63], a pack of 2D diagrams
are attached to eight spinal discs, and when users rotate the 3D objects, the 2D repre-
sentations would rotate accordingly. Image © 2020 |EEE.

view of the abstraction and the related 3D model to highlight the abstraction
relationship. For example, in LineageD, the level in the lineage tree represents
the cell division stage, and each node represents one cell in a specific division
stage. By changing the level, cells in the 3D would merge/separate to form the
embryo shape in that time period. With this interaction, biologists can clearly
understand what the level and each node mean for the embryo.

Such combination design for linking 2D and 3D visualization could potentially
be applied to various fields which have spatial data or multi-variable data. We
could use the 3D dimension to encode the additional variable. For example, ba-
sed on a 2D plane, we could encode the temporal trajectory information on top
as Tominski [195] designed to visualize individual and cross sets of trajectories.
Theidea can also be used in genealogies. Previous work such as GeneaQuilts [20]
introduced a diagonally-filled matrix to represent genealogies, but it missed the
geometry information which could be valuable for historians to analyze. Adding
the individual moving path on top of it could potentially bring new insights.

7.5 VISUALIZATION FOR MACHINE LEARNING

Some tasks in the scientific domain can be improved with the help of ML,
especially for those complicated problems which traditionally require tedious
and repetitive manual work like cell lineage. Traditionally, these tools with ML
support make the ML control the tasks, and either the ML is merely a tool (that
works at the push of a button) to complete the task or humans interact with the
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system to improve the performance of the ML models. These cases where ML is
dominant requires ML models to be as precise as possible. However, sometimes
it is impractical or impossible because it would require too much work or a lot
more training data than is available to generate such ML models. For example, in
the cell lineage problem, humans used to manually do cell lineage for numerous
embryos, and thus, the training datasets are limited. In these situations, there
are inherent uncertainties in ML predictions, and humans need to be aware of
them in the decision-making process.

A
o) ALGORITHM
© AUTOMATION
s POSSIBLE
=[] 3
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5|/ 8 || METHODOLOGY
<« || @ | SUITABLE
Q118
- P
= head Com|outer>
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Figure 7.7 - Sedlmair et al. [167] proposed two axes (task clarity and information location)
for identifying the usage scope of design study methodology. © 2012 IEEE.

This situation reminds us of the work of Sedlmair et al. [167], who used two
axes (task clarity and information location) to identify the design study suitability
as shown in Figure 7.7. On the top-right area where the computer has enough
data for a relatively crisp task, algorithms can automatically produce solutions,
while under the borderline, the authors recommended using their design study
methodology. In our case, we have precisely a situation on the boundary bet-
ween the two regions because (1) we do not have enough data for a complete
prediction of the lineage; (2) the task is not so crisp because making the decision
based on experts’ observation and relied on their experience, and the decision-
making is not clear and easy; and (3) ML is possible and crucial to ease experts’
workload, yet the experts disagree occasionally, and the training data is limited.
This situation actually falls in the boundary between the right-top corner and
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Figure 7.8 - Based on the Figure 7.7, we added an area between Algorithm Automation
and Design Study Methodology. In that area, we recommend using human-Al teaming
to combine the advantages of human thinking and Al automation.

the white part in Sedlmair et al.'s model, and we would argue that there is not a
clear cut-off as depicted in their figure (Figure 7.7) but more of a fuzzy transition
zone. Our solution is to use ML paired with additional visualization and interac-
tion for Human-Al Teaming. In a way our approach addresses the problem which
was not posed by Sedlmair et al., i.e., for a task with limited computer data and
undecided task clarity, whether design study or ML alone would be the best so-
lution. We thus propose a new area to replace the fuzzy boundary between the
white part and the top-right area in the suitability diagram proposed by Sedl-
mair et al. as we show in Figure 7.8. In this new area (which in practice also has
a fuzzy boundary), even if complete automation is not possible due to either the
limited computer data or non-crisp tasks, visualization can present the imper-
fect predictions from ML and allow people to understand different possibilities
and potentially correct the ML's results. In addition, for those tasks where ML is
possible according to SedImair et al., but people are unlikely to always be satis-
fied with the results, visualization and interaction then enable people to similarly
freely make final decisions. Thus, in our newly proposed area, humans and Al
are collaborating with each other, and visualization provides humans with the
ability to control the ML models and the task completion process.

This is where visualization can come in as a tool to improve the work. Visuali-
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zation can visualize the results of ML predictions from different models and also
visually highlight the potential errors that ML can possibly make. For example,
in our evaluation study with LineageD+ in chapitre 6, visualization display the
overview and detailed predictions from ML as well as the model confidence of
each predicted pair, and biologists could make decisions based on this infor-
mation. However, from our study with LineageD, we found out that people’s
perceived accuracy rate can largely affect their confidence in models. If people
keep receiving wrongly predicted pairs, they may lose their confidence in ML
models. Yet, in our case, biologists want to check the least confident predictions
from ML. Thus, we need to trade-off between presenting ML predictions with
less confidence and more confidence. The approach we adopted in our system
is to enable biologists to build the hierarchical tree from a top-down way, and
then within each sub-tree, we ordered the predicted pairs from left to the right
according to their model confidence.

Thus, within this relationship, visualization can be a way to allow humans
to remain in control, not by showing the ML's reasoning (explainable Al), but by
showing the results of one/multiple ML model(s) and their certainty, and to allow
the human to make the final decision. We believe that, for complicated scientific
problems such as ours, humans should be in control of the whole task, inclu-
ding the usage of ML, visualization, and interaction. Humans need to combine
all these techniques to make better decisions.

7.6 FUTURE WORK

Our work certainly needs to be continued in the future, and there are plenty
of avenues of future work. The first direction is about our tool. We want to ex-
plore how our tool can be used for other datasets (such as animal embryo data-
sets and organ datasets). However, we talked with animal biologists about the
potential collaboration and found out that, because the division of animal em-
bryos is highly reproducible [75], they have reasonably good techniques to auto-
matically reconstruct the history. Except for the lineage problem, based on bio-
logists, they have challenges in building the history of mutant embryos of plants
and animals. We are interested in how we could use our tool to deal with these
embryos for whom the division may not follow typical patterns, and thus the tree
may deviate quite a bit from the typical binary tree. Moreover, we currently use
traditional devices (computer, mouse, and keyboard) for interaction. We would
like to investigate the interaction methods with advanced techniques, e.g., VR
and AR, to see how it works for solving complicated scientific problems. Also, we
are interested to know whether our design can change biologists’ workflow in
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doing cell lineage in the long run. Thus, we plan to conduct a long-term study
to see whether a well-designed system can change experts’ traditional workflow
and whether their feedback would change or not. Also, we are curious about
how our tool and approach could be adopted in the education field. Unlike ex-
perts, students are at the stage of learning the rules, such as cell division and
cell assignments in our case. From the tools, they can visually learn how cells
divide and check whether their newly assigned cells make sense or not. Having
a study to compare students learning new concepts in a traditional way with a
newly-design approach would be interesting.

Then we want to systematically investigate how researchers usually link 2D
and 3D representations and why they choose that specific approach. For each
approach, we want to investigate the advantages, disadvantages, and applicable
scenarios. Also, we intend to explore whether the number of these views will in-
fluence the linking interaction design. Based on these, we plan to summarize the
design guidelines for future combination system design of 3D and 2D represen-
tations.

The third direction is about how we can better make use of ML in solving
scientific problems. For example, we may need multiple ML models for diverse
steps, e. g., models for cell assignments and models for feature extraction in one
system. Then there could be multiple groups of ML models where each group
aims to solve one step of the task. For such a system, the question of how we can
organize, correlate, visualize, and interact with them remains unclear. One idea
for solving this problem is going through the literature and investigating how
models responsible for diverse steps in the workflow are connected together.

The final direction we are interested in is the collaboration design for Hu-
mans and ML. As we discussed in the paper LineageD+ in chapitre 6, ideally,
ML can serve as a collaborator to help humans to make decisions better. Howe-
ver, we have no idea how to use visualization and interaction to enhance such a
collaboration relationship. For example, in terms of different scenarios, to what
extent should people be able to control ML and the solution process? How could
we support people to control the involvement of ML with the help of visualiza-
tion?

7.7 SUMMARY

In this thesis, we worked on using visualization and interaction to solve scien-
tific problems using the example of the cell lineage problem. We mainly inves-
tigated this question in four parts. First, for such complicated problems, dif-
ferent scientific datasets sometimes have unique properties that demand spe-
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Figure 7.9 - The illustration of the peeling process to solve a scientific problem. The
layers refer to diverse techniques (visualization, machine learning, and interaction) or
combinations of these techniques.

cific interaction/visualization techniques. Second, we need to understand bio-
logists’ actual needs and balance their technique-driven requirements with the
new tool, which has improved but contains unfamiliar interaction and workflow.
Third, since scientific data usually has spatial information, we need to visua-
lize scientific datasets both in 3D and 2D representations. Connecting these two
views visually and interactively enables people to have a better overview of all
the information and thus make better decisions. Lastly, we often need to in-
clude ML support in the system to help experts with problem-solving. Experts
are skilled and knowledgeable, so humans should be in control of the decision-
making process. They should be able to control how to use ML models, what
visualization they want to refer to, and what workflow they want to pursue du-
ring the process. To solve complex scientific problems, we, in the end, would
like to propose the following peeling metaphor to indicate how people could
get access to the solution with different techniques (ML, VIS, and interaction) as
shown in Figure 7.9. Experts who are working on a scientific problem usually
have an idea about the solution, i.e., the core of the image, since they are ex-
perienced and skilled. Yet, they still need enough useful information to make
satisfying decisions while all the information is intertwined together like a sphe-
rical hairball. The process is like they are walking through the sphere to get to
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the core. In their traditional ways, they used to have unorganized information,
and they needed to handle it by themselves. For example, during the plant cell
lineage establishment, though only adjacent cells can be sister cells, when as-
signing a target cell, biologists used to see all the cells because 2D slices from
the microscope cannot filter the adjacent cells for them. In this case, the path
can be complicated, as shown in the image, which means experts spent more
time and energy solving the problem. Thus, we need to provide biologists with
different techniques to filter useful information so that they can follow an ideal
path. Visualization can provide detailed spatial data, abstract information, and
can make patterns apparent. Interaction can correlate different views and help
users to interactively extract the interesting information. ML can do some work
for experts so that users have less work to deal with. These three techniques can
largely help experts to effectively get the necessary information and then solve
the tasks. In this illustration, the path indicates the solving process, and layers
represent the techniques experts used in this process. That s, layers do not have
to be three as in Figure 7.9. For example, in a case where an expert used ML first,
then visualization, ML, and interaction, there should be four layers. Also, when
one step contains multiple techniques, the layer could represent multiple tech-
niques as well. Moreover, the order of experts adopting these three techniques
in getting access to the solution is not strictly limited, so the order of layers are
not constrained as well. Experts could freely operate the system to get the goal.
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Avec le développement des technologies d'in-
fographie, les données spatiales peuvent &tre
mieux visualisées dans leur environnement 3D afin
que les spectateurs puissent observer clairement
les formes et les positions 3D. Parallélement, les
visualisations abstraites en 2D peuvent présenter
des informations résumées, visualiser des données
supplémentaires et controler la vue 3D. La com-
binaison de ces deux représentations en une seule
interface peut aider les utilisateurs a entreprendre
des taches complexes, en particulier dans les do-
maines scientifiques, bien qu'il y ait un manque de
directives générales de conception pour l'interac-
tion. En général, les experts doivent analyser de
volumineuses données scientifiques pour mener a
bien des taches difficiles. Par exemple, dans le do-
maine biologique, les biologistes doivent construire
I'arbre de lignage cellulaire d'un embryon conte-
nant plus de 200 cellules. Dans ce cas, le travail
manuel peut étre long et fastidieux, et les algo-
rithmes d'apprentissage automatique ont le poten-
tiel d'alléger certains des processus manuels fasti-
dieux en fournissant des annotations ou prédic-
tions initiales aux experts. Dans le cas du lignage
cellulaire, ces prédictions contiennent toutefois des
informations hiérarchiques et multicouches, et il
est essentiel de les visualiser de maniére séquen-
tielle ou progressive. De plus, les représentations
3D et 2D, ainsi que les prédictions d'apprentissage
automatique, doivent &tre connectées visuellement
et interactivement dans le systéme.

Dans cette thése, le probléme du lignage cel-
lulaire des embryons de plantes a été le leitmotiv
pour concevoir et étudier un systéme de visuali-
sation qui utilise des combinaisons de représenta-
tions 3D et 2D ainsi que des visualisations pour
I'apprentissage automatique. Nous avons d’'abord
étudié les techniques d'interaction pour la sélec-
tion 3D au sein d'un embryon de plante. Les cel-
lules d'un embryon de plante sont jointives et

Données 3D, visualisation scientifique, visualisation abstraite 2D, interaction/HCI, ap-

constituent un ensemble d'objets 3D dense dans
toutes les dimensions spatiales. Nous avons mené
une étude pour évaluer trois techniques de sé-
lection différentes, et nous avons montré que la
combinaison de la technique de Sélection par Ex-
plosion et de la technique de Sélection par Liste
fonctionne bien pour désigner et observer les cel-
lules d'un embryon. Ces techniques peuvent égale-
ment &tre étendues a d'autres données 3D denses
et similaires. Deuxiémement, nous avons concu un
systéme de visualisations et d'interaction combiné
afin que les biologistes puissent examiner les cel-
lules de I'embryon et enregistrer I'histoire du dé-
veloppement dans I'arbre de lignage hiérarchique.
Nous prenons en charge la construction de la hié-
rarchie dans deux directions, a la fois en construi-
sant |'historique de haut en bas de I'arbre en utili-
sant la sélection lasso dans |'environnement 3D et
de bas en haut selon le flux de travail traditionnel
pour construire un arbre de lignage cellulaire hié-
rarchique. Nous avons également ajouté un modéle
de réseau neuronal pour fournir aux biologistes des
prédictions initiales sur les filiations. Nous avons
réalisé une évaluation avec des biologistes; celle-
ci a montré que les représentations 3D et 2D faci-
litent les prises de décisions et que |'outil peut en-
richir leur vision des embryons. Cependant, la per-
formance du modéle d'apprentissage automatique
n'était pas idéale. Aussi, pour faciliter le processus
et améliorer les performances du modéle, dans une
version plus aboutie de notre systéme, nous avons
entrainé cing modéles de classification différents,
visualisé les prédictions et leurs incertitudes asso-
ciées. Nous avons réalisé une évaluation auprés des
utilisateurs; les résultats ont indiqué que les repré-
sentations des classifieurs que nous avons concues
sont faciles a comprendre, et que le nouvel outil
peut améliorer significativement les prises de déci-
sion pour la validation du lignage cellulaire.
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Abstract : As computer graphics technologies de-
velop, spatial data can be better visualized in the
3D environment so that viewers can observe 3D
shapes and positions clearly. Meanwhile, 2D abs-
tract visualizations can present summarized infor-
mation, visualize additional data, and control the
3D view. Combining these two parts in one in-
terface can assist people in finishing complica-
ted tasks, especially in scientific domains, though
there is a lack of design guidelines for the interac-
tion. Generally, experts need to analyze large scien-
tific data to finish challenging tasks. For example,
in the biological field, biologists need to build
the hierarchy tree for an embryo with more than
200 cells. In this case, manual work can be time-
consuming and tedious, and machine learning al-
gorithms have the potential to alleviate some of
the tedious manual processes to serve as the basis
for experts. These predictions, however, contain
hierarchical and multi-layer information, and it is
essential to visualize them sequentially and pro-
gressively so that experts can control their viewing
pace and validation. Also, 3D and 2D representa-
tions, together with machine learning predictions,
need to be visually and interactively connected in
the system.

In this thesis, we worked on the cell lineage
problem for plant embryos as an example to in-
vestigate a visualization system and its interaction
design that makes use of combinations of 3D and
2D representations as well as visualizations for ma-
chine learning. We first investigated the 3D selec-
tion interaction techniques for the plant embryo.
The cells in a plant embryo are tightly packed to-
gether, without any space in between. Traditional

techniques can hardly deal with such an occlusion
problem. We conducted a study to evaluate three
different selection techniques, and found out that
the combination of the Explosion Selection tech-
nique and the List Selection technique works well
for people to get access and observe plant cells in
an embryo. These techniques can also be extended
to other similar densely packed 3D data. Second,
we explored the visualization and interaction de-
sign to combine the 3D visualizations of a plant
embryo with its associated 2D hierarchy tree. We
designed a system with such combinations for bio-
logists to examine the plant cells and record the
development history in the hierarchy tree. We sup-
port the hierarchy building in two directions, both
constructing the history top-down using the lasso
selection in 3D environment and bottom-up as the
traditional workflow does in the hierarchy tree. We
also added a neural network model to give predic-
tions about the assignments for biologists to start
with. We conducted an evaluation with biologists,
which showed that both 3D and 2D representa-
tions help with making decisions, and the tool can
inspire insights for them. One main drawback was
that the performance of the machine learning mo-
del was not ideal. Thus, to assist the process and
enhance the model performance, in an improved
version of our system, we trained five different ML
models and visualized the predictions and their as-
sociated uncertainty. We performed a study, and
the results indicated that our designed ML repre-
sentations are easy to understand, and that the
new tool can effectively improve the efficiency of
assigning the cell lineage.
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