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CHAPITRE

SYNTHÈSE

Mots-clés : Données 3D, visualisation scientifique, visualisation abstraite 2D,interaction/HCI, apprentissage automatique

Les technologies graphiques actuelles permettent de visualiser efficacementdes données scientifiques spatiales dans un environnement 3D afin que les uti-lisateurs puissent observer clairement leurs formes et positions 3D. Parallèle-ment, les visualisations abstraites 2D peuvent résumer des informations, mon-trer des données supplémentaires et contrôler une vue 3D. Combiner ces deuxvues en une seule interface peut aider les utilisateurs à entreprendre des tâchescomplexes bien qu’il y ait un manque de recommandations sur l’integration. Engénéral, les experts analysent de grands volumes de données pour des travauxcomplexes, comme la reconstruction du lignage cellulaire d’embryons en biolo-gie. Ici, le travail d’annotation peut être fastidieux, et les algorithmes d’apprentis-sage automatique peuvent l’alléger, en fournissant des prédictions initiales auxexperts. Dans le cas du lignage cellulaire, ces prédictions contiennent toutefoisdes informations hiérarchiques et multicouches qu’il est essentiel de visualiserdemanière séquentielle ou progressive afin d’accompagner les experts. De plus,les représentations 2D et 3D ainsi que les prédictions d’apprentissage automa-tique doivent être connectées visuellement et interactivement.
Dans cette thèse, nous prenons comme exemple le problème du lignage cel-lulaire des embryons de plantes pour concevoir et étudier un système de visua-lisation qui combine des vues 3D et 2D ainsi que des visualisations pour l’ap-prentissage automatique. Les cellules d’un embryon de plante sont jointives etconstituent un ensemble dense d’objets 3D. Tout d’abord, nous évaluons troistechniques de sélection et nous montrons que la combinaison de la Sélection
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4 Chapitre 0
par Explosion et de laSélection par Liste est efficace pour désigner et observerles cellules d’un embryon. Ces techniques sont généralisables à d’autres don-nées 3D similaires. Ensuite, nous décrivons un système hybride de visualisationset d’interaction que nous avons conçu afin que les biologistes puissent examinerles cellules d’un embryon et enregistrer l’histoire du développement dans l’arbrede lignage hiérarchique. Nous gérons la construction de la hiérarchie dans deuxdirections, à la fois en construisant l’historique de l’arbre de haut en bas en utili-sant la sélection lasso, et de bas en haut selon l’approche usuelle des biologistes.Nous avons par ailleurs proposé un modèle de réseau neuronal pour fourniraux biologistes des prédictions initiales sur les filiations. Nous avons évalué lesystème avec des biologistes et concluons que les représentations 3D et 2D faci-litent les prises de décisions et que l’outil enrichit la visualisation des embryons.Cependant, la performance dumodèle d’apprentissage n’était pas idéale. Aussi,pour faciliter le processus de lignage et améliorer les performances du système,nous avons entraîné cinqmodèles de classification différents enmontrant leursprédictions et leurs incertitudes. Notre étude montre que les représentationsdes classifieurs sont faciles à comprendre et que ce nouvel outil peut améliorersignificativement les prises de décision.Nous résumons nos conclusions comme suit. Tout d’abord, dans le contextedu lignage cellulaire, il est essentiel d’adopter de nouvelles techniques d’interac-tion, plus élaborées que les techniques usuelles. Deuxièmement, combiner lesreprésentations 3D avec les visualisations abstraites 2D est bénéfique dans ledomaine scientifique ; nous l’avons montré pour la biologie et le lignage cellu-laire. Troisièmement, les visualisations peuvent aider à la compréhension desprédictions des modèles d’apprentissage sur lesquelles sont basées des déci-sions. Tous ces résultats peuvent inspirer de futurs travaux visant à combiner, demanière transparente, diverses représentations dans une seule interface, ceciafin d’aider les experts à prendre de meilleures décisions.
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CHAPITRE

INTRODUCTION 1
Visualization is the field of research that deals with creating computationalvisual representations to efficiently help with the tasks of users [143]. Today, ithas become a common element of our daily life, such as weather data diagramson our mobile phones and distribution cost charts from our banks. When usedin the professional domain, like biology, visualizations can additionally help ex-perts to gain insights from raw data [79]. Normally the domain-specific datasetsare complicated, and it is challenging for experts to detect the patterns fromsuch raw data. Since human beings are good at dealing with visual information[194], visualizations for raw datasets can help users to have a better understan-ding. For instance, in botany, the structures ofmembranes and cytokinesis couldbe too abstract for students to understand, while visualizations could help illus-trators to visually better demonstrate such processes in the textbook [126]. Asa result, it can potentially assist experts in effective decision making. Among allthe domains, biology is a natural science exploring life which is a complex fieldnot fully understood. Adopting the techniques to present living organs and theirdevelopment process (e. g., the structure of organs and the hierarchical history)could largely improve the expressiveness and inspire viewers with new insights.The specific problem we are addressing in this thesis is the cell lineage pro-blem. Cells in biological organisms generally keep dividing in their development(see Figure 1.1), and such divisions could be symmetric or asymmetric dependingon species, generations, and cells’ positions. The asymmetric division is likely toproduce new cell types that function differently [153]. Such development historyis called cell lineage in biology. Understanding the cell lineage is essential be-cause it could help botanists to (1) check whether an embryo develops normallyor not, (2) specify the functions of different divided parts, (3) predict the fate of
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Figure 1.1 – The illustration of three possible types of cell division : arithmetic increase,geometric increase, and combination of arithmetic and geometric increase. Figure fromthe book [126]. Image © Jones & Bartlett Learning, used with permission.

certain cells in a pluripotent embryo at the early stage, and (4) effectively detectthe potential reasons when one embryo gets abnormal [179]. Researchers havebeen investigating the cell lineage of diverse plant species since the 19th century,and it is still a challenging problemnowbecause theworkflowof establishing thecell lineage is quite time-consuming. Though computer technologies are develo-ping fast, biologists seem to keep their traditional manual approach to makingthe assignments and building the corresponding tree (see Figure 1.2). The majordrawbacks of this process are that, once the tree is set, it is hard to share andcommunicate the tree with others to dynamically and vividly show the divisionprocess. Meanwhile, biologists could even spend hours assigning for a single bigembryo that contains about 256 cells, which means that machine learning algo-rithms have great potential to speed up the process and ease the workload ofbiologists. On the other hand, the number of manually assigned plant embryodatasets is limited, and the resulting lack of training datasets adds difficultiesin getting an optimal model. In this case, visualizations are designed for bet-ter analysis. Thus, we collaborated with biologists to use visualizations, machinelearning, and their related fields to help with this problem.
In this thesis, we collaborated with plant biologists from INRAE (French Na-tional Research Institute for Agriculture, Food, and Environment) to work on theplant embryo datasets, namely Alain Trubuil, Philippe Andrey, Jean-ChristophePalauqui, and Elise Laruelle. At the beginning of the thesis, we had several mee-tings with biologists to understand their problems. We observed how they used
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the traditional tools to do cell lineage and their issues in finishing the assign-ments. They also provided us with initial ideas about the potential solutions.Thenwediscussedwith them the feasibility of these solutions andwhether therewere better solutions. After we had agreements, we started to produce somesketches and prototypes for them to review. The collaboration follows such aprocess. Every timewhenwe had some ideas and implemented some functions,we hadmeetings with biologists to get their feedback. We iteratively refined oursolutions back and forth via such regular meetings with biologists and got thefinal design in the end.

As we found in our iterative design approach, to help biologists with the celllineage process, a tool needs to provide biologists with detailed information forplant embryos (3D embryo data and temporal development data), basic assign-ments predictions to start with, and the ability to interactively target and checkthe predictions and adjust them. There are also additional requirements forthe design. The first is about the display of cells in an embryo. Different frommany other 3D datasets, plant cells are densely packed together without anyspace between each other. This leads to occlusion, which cannot be easily sol-ved by existing 3D selection techniques and tools. The second is about biologists’traditional working habits. Biologists are so used to working with 2D diagramsthat they are not familiar with 3D interactions. Thus, the interaction techniquesconnecting the 3D environment and the 2D tree should be smooth and intuitive.Lastly, there are currently tedious, repetitive steps in doing the cell lineage. A sys-tem should use advanced techniques to reduce redundant work and enhanceworking efficiency.

To conclude, in the field of cell lineage research, there are three major chal-lenges : (1) the cells are tightly packed together in an embryo which makes theinteraction with spatial data difficult, (2) the demand for closely linking 2D hie-
rarchical data and 3D cells requires a new design for an interactive system, and(3) the manual process is time-consuming, and machine learning algorithmscould help speed up the process but for which biologists have to be able tomakeinformed decisions. Our thesis is structured to address these challenges, andwe will explain them in detail below. Note that though we targeted the plantcell lineage problem in this thesis, the methodology and solutions can be usedin other similar problems. For example, the design for the second point can beadopted in other systems with both 3D and 2D. We discuss this in detail in cha-pitre 7.
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Figure 1.2 – The illustration of the hierarchy tree representing the cell division and thecorresponding possible slices from the microscope. Each row represents one genera-tion. Image © Alain Trubuil, used with permission.

1.1 INTERACTIVE VISUALIZATION

First, visualizing biological phenomena is complicated [70]. One reason is thatthe phenomena themselves are complex. The complexity lies in the multiplicityof life’s processes, the diversity of molecular species, and the adaptability to va-riable environments. Another reason is that these datasets usually contain di-verse data types (abstract and concrete, 3D and 2D, and temporal). To illustratethis kind of biological data well, we need to use visualizations to demonstratevarious parts such as the biological structure and the development history inour case so that we can inspire researchers [54]. Therefore, for the first twochallenges mentioned in section 1, adopting interactive visualization is a poten-tial solution because it can help with the occlusion problem and provide visualrepresentations to help people effectively complete the tasks [143]. Interactivevisualization includes two components : interactivity and visualization. As thedefinition of Human-Computer Interaction (HCI) shows, interactivity is an art ofmethods design with which people can communicate with the computer system[49]. Two fundamental factors in the HCI field are functionality and usability [91].Functionality indicateswhat functions the systemcould provide andwhat kind ofproblem could be solved with this tool, while usability is about how friendly and
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efficient the system could be used. In our case, all the functions should serve forthe task, which is cell assignments. Especially for a tightly packed embryo thathas no space between two adjacent cells, the interaction techniques should ef-fectively help users to solve the occlusion problem. Also, experts need intuitiveinteractions to check and edit the assignments. In short, interactivity is crucialfor our system because biologists need to investigate the data and completethe tasks manually. In parallel, general embryo data and its traditional hierarchytree are hard to refer to and recall. Visualizations couldmake full use of people’svisual perception to recognize data shapes and changes and detect potential di-vision patterns [26]. Therefore, combining visualizations with interactivity canlargely increase the visualization’s ability to express and reveal information. Inour specific case, there should be both 3D and 2D visualizations so that the in-teractivity also needs to include the connection between these two parts. Thus,in the thesis, we target to provide interactive visualizations so that biologists canhave a better overview of embryos in the 3D environment and the developinghistory in the hierarchy tree. Also, it could improve the efficiency of examiningcells and assigning sisters to them.For the first challenge in section 1, with the embryo visualized in 3D, we deve-loped selection techniques (1D list, 3D explosion, and the combination of thesetwo techniques)) to target inside cells (see Figure 1.3). We also conducted a studyto investigate the interactions. We present our work for solving the second chal-lenge in the next section.

Figure 1.3 – The interface with two 3D selection techniques (Explosion Selection on theleft side and List Selection on the right side) we developed.
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1.2 COMBINATION OF 3D AND 2D REPRESENTATIONS

As computer graphics technology advances, people can better visualize spa-tial datasets nowadays. 3D representations can intuitively present real spatialinformation, such as 3D shapes and positions. Meanwhile, 3D environmentsusually require 3D operations such as orientating, whichmakes it difficult to exa-mine numerical information. 2D abstract representations could provide additio-nal data or help highlight and summarize the important parts, on the contrary.Combining these two views can provide biologists with detailed 3D informationto make better decisions for assignments and provide an interactive hierarchytree to record the embryo’s development history. Such 2D and 3D combinationsare commonly viewed in Virtual Reality [212, 214]. For example, in work by Hurteret al. [88], the authors used projected 2D interactions on controllers instead ofusing graphical interfaces. Also, in the biological field, Abstractocyte [138] useda 2D panel to control the transition between highly-detailed 3D views and abs-tract 2D views. The essence of the combinations is that the views are connectedin diverse ways : displays, contents, and interactions. The display connections in-clude placing them separately [65], replacing each other [212], and colliding (3Drepresentations on 2D visualizations [217] and 2D on 3D [98, 214]). Contents areconnected via the dataset and visualizations, while interactions are connectedeither via controlling 3D environments with 2D representations [65] or control-ling 2D visualizations with 3D objects [56].In our scenario, the 3D representations provide the basic information, and2D abstract visualizations present additional temporal data as a record. The in-teractions with two views are closely connected, e. g., the encoded colors, cellselections, and generation switching (see Figure 1.4). We explain the details inchapitre 5.

1.3 MACHINE LEARNING

Though visualization systems can solve the first two challengesmentioned insection 1, the third challenge requires additional techniques. For biologists, assi-gning cells is time-consuming, especially for a large embryo with more than 200cells. One reason is that traversing every cell within a big embryo takes time.A potential approach to save time is adopting machine learning algorithms toprovide basic assignments for biologists to check. Other approaches include re-cognizing similar cells and predicting the quarters of an embryo. Machine lear-ning (ML) works on algorithms to help biologists predict and solve the problem
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Figure 1.4 – The design of combining 3D and 2D representations. Selecting cells from ei-ther the abstract view or the 3D environment, the corresponding cell will be highlightedin the other view.

[136]. As we have mentioned in the previous two sections, biologists need todo the assignments manually based on 2D slices from the microscope to solvethe cell lineage problem. This process could be quite time-consuming when em-bryos reach large sizes. Thus, it is essential to include machine learning modelsto provide basic predictions for biologists to start with. Since two adjacent cellsare either sisters or non-sisters, we transferred the prediction problem into thebinary classification problem. Multiple supervised algorithms could help, suchas decision trees, support-vector-machine, single-layered /multilayered percep-trons, and statistical learning algorithms (e. g., naïve Bayes classifier) [101]. Allthese models have different pros and cons, and the choices of models highlydepend on the problem itself. In the cell lineage case, there are lots of pairs topredict. Differentmodels could have diverse results for each pair, so they shouldbe included. We used visualizations to combine these different predictions andprovide an overview with detailed views for biologists to have thorough infor-mation. We explained in detail about these in chapitre 6.

1.4 THESIS STATEMENT

In our thesis, we focus on the methods to help biologists to improve the effi-ciency of the cell lineage process. Thus, we assumed that the image processingpart is completed through other means and worked on the segmented data ins-tead of the raw image data from the microscope. In particular, we focus on de-
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signing visualizations to present the model prediction results and the develop-ment history.With these backgrounds, we investigate the following research questions :

• RQ1How to effectively check cells’ 3D properties of an embryo for decisionmaking?
• RQ2 How to connect 3D representations with 2D abstract information?
• RQ3 How to better visualize temporal information in 2D hierarchical struc-tures?
• RQ4 How to involve machine learning to help with the assignments andbetter visualize the predictions for biologists to refer to?
To conclude, our thesis contributes to : (1) an exploration of the 3D selectiontechniques in picking specific cells among the tightly-packed plant embryos, (2)a web-based tool, namely LineageD, designed for biologists to predict the cellassignments, visualize the cell development history, and interactively correct thepredictions, (3) a new design of visualizations with corresponding interactions toprovide an overview of multiple models’ predictions, compare different models,and support customizing model combinations for reference.

1.5 THESIS OVERVIEW

This thesis consists of seven chapters. The summarized contents of eachchapter are listed below :
• Chapter 2 Background On Plant Cell Lineages describes background in-formation about the plant embryo and the cell lineage problem.
• Chapter 3 Systematic Review provides a thorough review of the relatedwork of the visualizations in the biological field, 3D techniques for the oc-clusion problem, tree visualizations, and visualizations for machine lear-ning.
• Chapter 4 Exploration of 3D Selection Techniques for Plant Embryosexplores three different 3D selection techniques to pick cells from a tightlypacked embryo. We conducted a study to simulate biologists’ assigningdecision-making process and evaluate these techniques with the generalpublic.
• Chapter 5 LineageD : Interactive Visual System for Plant Cell Lineage
Assignments presents an interactive web-based tool to help predict, vi-sualize, and interactively adjust plant embryo cell lineages for biologists.
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The system combines both 3D representations and 2D abstract represen-tations and supports intuitive interactions for themalongwith themachinelearning model. We also did a case study with biologists to evaluate whe-ther the tool could help the assigning and inspire their insights.

• Chapter 6 Comparative Visualization ofMachine Learning Predictions
to Improve Human-AI Teaming on the Example of Cell Lineage pre-sents the work of investigating multiple machine learning models’ interac-tion and visualizations in helping with the cell lineage problem. We trainedfiveMLmodels and used visualizations and interaction techniques to com-pare and understand these different models. We also conducted a studywith six biologists to see whether and how the new design help with un-derstanding and interacting with machine learning models.

• Chapter 7DiscussionandConclusiondiscusses howourwork could contri-bute to the visualization community and the potential future work whichcan inspire researchers. Finally, it provides an overview of our work.
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BACKGROUND 2
In this chapter, we introduce an overview of the plant embryo we worked on,the lineage problem, and considerations to design.

2.1 PLANT EMBRYO DATASETS

For the research described in this thesis, we worked on the ovum cell of Ara-
bidopsis thaliana plants (see Figure 2.1). In exploring the life of plants, biologistscannot investigate all species, and thus they choosemodel species to study. Suchmodel species should generally be representative and easy to conduct experi-ments. Arabidopsis thaliana is one of the model species they are working on.After exploring this species, biologists could easily use the knowledge they gotto study other species. Thus, we chose Arabidopsis thaliana plants and used allthe embryo’s hierarchical division histories and 3D information of that species.Also, there are multiple types of embryo growth, such as arithmetic and geo-metric increase. In an arithmetic increase, only one cell is dividing, while in ageometric increase, all cells are dividing. Geometric growth is common whenthe plant embryo is extremely young and small. Later, the growth can be a com-bination of both arithmetic and geometric growth [126]. We currently target theearly stage of embryo development in consideration that young embryos are ea-sier to find division patterns. Note that, initially, when people are talking aboutan embryo, they are indicating the proper embryo, but actually an embryo in-cludes both the proper embryo (the upper part) and the suspensor (the lowerpart) as shown in Figure 2.2. The suspensor is the suspending part of an embryo,
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and the function of these cells is to support the proper embryo.

Figure 2.1 – The illustration [94] demonstrates the developing history of an Arabidopsisplant. Image © Springer Nature, used with permission.

2.1.1 Embryos
To work on the cell lineage problem, biologists work on different parts se-quentially. They name the external parts as the epidermis layer and inner partsas the internal layer, while the upper part is called as apical part and lower partis basal part. All these parts make the proper embryo. Biologists separate theembryo into these parts because they are more familiar with the cell shapes inthese different parts. Also, traditionally, biologists use a staining technique [196]for imaging entire plant embryos with the confocal laser microscope.Besides these naming habits, biologists typically deal with the images theyget from the microscope via existing tools to segment embryos. The cells’ idsare set in ascending order by tools, starting from 1, and the name has no mea-ning for a specific cell. Each mesh file represents one embryo, including cells’names, every cell’s triangles, and the positions of the vertex of meshes. Sincetools like Avizo help biologists with the segmentation and automatically buildmeshes from labeled images, they could make some errors, especially in thenaming part. For instance, a cell with a unique number could be nonexistent.Also, tools cannot distinguish the suspensor from the proper embryo, and files
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would include all the cells in the slices. These required double-checking whenparsing the datasets. In this thesis, we do not focus on the segmentation partbecause we were more interested in the interaction and visualization aspects ofthe problem. Thus, we assumed that the segmentation part is solved by existingtools, and we extracted the cells’ properties from the mesh files.

Figure 2.2 – The sequential up-down slices from the same 16-cell plant embryo. Contrastenhanced to make the ID colors visible.

2.1.2 Cell Lineage
The plant embryo cell lineage problem is a general problem of interest inbiology. In this thesis, we worked only with Arabidopsis embryos. The designprocess, however, could also be potentially applied to exploring the lineages ofother species because the basic division process is similar : cells divide during thedevelopment process so that the embryo grows and develops. In plant biology,one cell typically divides into two cells, and that initial cell is called parent cellfor the two generated cells, which are children cells or daughter cells. Thesetwo cells could also be called sister cells for each other. We used these termsin the whole manuscript.During this process, however, not all cells necessarily divide in the same timeperiod as themajority. This means that the lineage hierarchy tree is not strictly abinary tree and thus adds difficulties to the reconstruction. To better understanda species’ division patterns, biologists need to work on exploring and rebuildingsuch embryo development history. This process is a bottom-up approach to buil-ding the hierarchy. Since the basic cells from the slices are named ascendingly,when naming a new parent cell, biologists would choose the number of the big-gest number of the existing cells adding one. Thus, the hierarchy tree of a 32-cellembryo could look like that in Figure 2.3.There are several general rules that biologists use when they establish thecell lineage, such as Hertwig’s rule [81] and Errera’s rule [18]. Hertwig’s rule, alsoknown as ‘long axis rule’, indicates that cells divide along their longest axis. Er-rera’s rule describes that “the cell plate, at the time of its formation, adopts thegeometry that a soap film would take under the same conditions” [18, 62]. These
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Figure 2.3 – The typical cell lineage of the plant embryo. The naming rules here followtheir traditional habits. As an embryo divides, the hierarchy tree is built from the toptown, while when biologists are reconstructing the tree, it is built from the bottom up.

rules, together with the biologists’ experiences, provide general guidelines forthem to check the cell shapes and volumes to make decisions.

2.2 CELL LINEAGE PROBLEM

2.2.1 Traditional workflow
For establishing the cell lineage, botanists will cut the slices of a sample andobserve these slices from the microscope first, as shown in Figure 2.6. Basedon our collaborators’ description, with the slices they got from the microscope,they would import them into the existing tools, such asMorphoLibJ [112], Fiji Ima-geJ [162], MorphoGraphX [44], and OsiriX [157]. They use these tools to segmentthe embryo and, based on the segmented 3D meshes, they start to trace backthe developing history of the embryo. They would observe and traverse all thecells in the current generation and observe their positions, shapes, and sharedsurfaces. With existing tools like TreeJ (see Figure 2.4), they need to single-clickthe target cell and the sister cell to make them a pair, and the tool then en-
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(a) (b)
Figure 2.4 – The traditional system TreeJ (a plugin to Fiji ImageJ) that the experts tradi-tionally use to specify the cell lineage : (a) screenshots of the interface. Users primarilyinteract in a 2D slice of the microscopy data, colored by the cell’s assigned ID, to select apair of cells to merge. The resulting tree is then represented in a textual formwith num-bers as cell labels, and it is no interactive. The 3D view (marked A and D) only servesas an additional view and is also not used for interaction, and (b) example cell lineageresult produced with TreeJ that shows several development stages (A–D) of the cell inthe 3D view and the corresponding text-based lineage hierarchy. Image© Elise Laruelle,Philippe Andrey, Jean-Christophe Palauqui, and Alain Trubuil, used with permission.

codes these two cells with the same color. Based on their knowledge and expe-rience, they pick a most likely sister cell and mark these two cells as pairs andwrite down these pairs. Typically, tools do not support the hierarchy tree buil-ding, and biologists need to do it manually. The confidence they get after ma-king such a decision varies among biologists. Still, they are typically confident intheir choices, especially for small embryos. After assigning all the cells in a givengeneration, they would merge the proposed pairs and repeat the process forthe new-merged cells in the temporally previous generation until only one cellremains. Though the cell shapes and positions could only be slightly differentbetween generations, they do not affect the decision-making of biologists. Thecell lineage process is basically a repetition of seeking sister cells. Normally, bio-logists record the ongoing hierarchy history in the text format without any inter-actions with the tools as in Figure 2.5, or they would write down the most likelypairs in the tree format on paper (see Figure 2.7). The text format is actually anarray. The number in each position indicates the parent cell’s id. For example,if the first number in an array is 30, then it means that cell 30 is the parent cell
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Figure 2.5 – The illustration of the recorded format. The upper part is the array biologistswould save in a text file, and below is the corresponding tree in 2D.

of cell 1. These manual characters of the data recording make it hard to connectcells in the hierarchy tree with 3D objects. During this process, it is likely thatdifferent biologists build diverse trees. The only way to be certain about the hie-rarchy tree is to observe the time lapses of plant embryos [73] though the imagequality is not good. However, it is not easy because it happened inside a smallseed.

Figure 2.6 – Embryos slices got from the microscope. From left to right, embryosconsist of 16, 32, and 64 cells respectively. Image© Elise Laruelle, Philippe Andrey, Jean-Christophe Palauqui, and Alain Trubuil, used with permission.
The current usage tools (e. g., OsiriX [157], Fiji ImageJ [162], and the TreeJ plu-gin for Fiji ImageJ) help the biologists with the cell checking and history rebuil-ding. They, however, weremainly designed for checking embryo shapes and seg-menting embryos andmostly relied on 2D images for the biologists tomake deci-
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a b

Figure 2.7 – Traditional trees to record the embryos’ developing history : (a) the hierarchytree biologists wrote on the paper, (b) the tree used in TreeJ. Image © Elise Laruelle,Philippe Andrey, Jean-Christophe Palauqui, and Alain Trubuil, used with permission.

sions. For example, with Fiji ImageJ, biologists input slices, and the tool segmentsthe embryo automatically with different colors (see Figure 2.8). After checking allthe slices being segmented correctly, the biologists reconstruct the embryo mo-del in mind to build the hierarchy tree. Though TreeJ was designed to solve thecell lineage problem, it also lacks 3D shapes for biologists to refer to. The historycould only be built in a 2D format as the Figure 2.7 shows, which means that thehierarchy tree cannot be explored interactively. Even for those tools (e. g., Avizo)which provide 3D environments, it is difficult to examine the inner structure,including the shapes of inside cells, because plant cells (like the cells in mostliving organisms) are densely packed together in an embryo. Moreover, this ma-nual assigning workflow is time-consuming and error-prone, especially for largeembryos with hundreds of cells. In addition, these tools require users to down-load and install the implementations and, thus, have limited accessibility. Thus,developing an elegant and efficient tool for solving the cell lineage problem ischallenging, urgent, and essential.

2.3 CONSIDERATIONS

With all these challenges and backgrounds, next we summarize our conside-rations regarding the specific biological scenario for the design.
The first consideration is that the embryo has different parts, e. g., apicaland basal parts. Biologists have the knowledge of how an embryo could be di-vided into those parts, and this information largely helps with and influencestheir assigning decisions. That means biologists can build the hierarchy tree in
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Figure 2.8 – The screenshot of Fiji ImageJ [162] deals with the slices of a 16-cell embryo.The lower slider bar enables users to target a specific picture among the whole stack ofslices. The figure here illustrates the segmented embryo.

both a bottom-up and a top-down approach. In the system, we should supportsuch grouping for biologists so that when machine learning algorithms are pre-dicting the assignments, they can also provide better predictions. We achievethe grouping function and explain the details in section 5.3.
The second consideration is that the rawdatasets usually include themain

embryos and the suspensors extracted from the slices. We make use of thisfact and help biologists detect the suspensors and hide them from the mainembryo in chapitre 4. In the meantime, we support biologists manually markingthese suspensors.
The third consideration is that biologists have their preferences and ha-

bits. For example, they used to encode random colors to different cells so thatthey could easily distinguish two adjacent cells even though these colors haveno additional meanings. Also, they have their customized approach to doing thelineage, and we take this situation into consideration in chapitre 5.
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The forth consideration is that the system should work for general lineage

problems other than just plant embryo datasets. Biologists are also interestedin the lineage of other tissues or organs. That is to say, the visualization andinteraction design need to meet other datasets. We considered this and discus-sed our detailed visualization in chapitre 5 and chapitre 6. We also discussed thepotential extension in chapitre 7.





CHAPITRE

SYSTEMATIC REVIEW 3
In this chapter, we presentwork that is related to our own research. Based onthe tasks-by-data-types taxonomy proposed by Shneiderman [173], in our the-sis, we include three-dimensional data (spatial information of plant embryos),temporal data (the approximate division periods), and tree data (the relation-ships between parent cells and children cells). Thus, the major challenge for usis to connect all these data types in a visualization system and to provide inter-action techniques that allow users to smoothly manipulate them to finish thetask. We, therefore, investigate different visual systems in biology. Then, we re-view the literature on interactively linking the 2D and 3D representations. Finally,for a better understanding of howmachine learning algorithms can assist userssolving the cell lineage problem, we survey related research projects about pre-dicting object assignments in similar setups.

3.1 VISUAL SYSTEM IN BIOLOGY

There are numerous problems towork on in the biological field, ranging fromspecies-related to multi-scale challenges, which can be somehow solved by vi-sualization techniques. It is because these problems are usually abstract andcomplicated, where visualizations can assist in explorations. For instance, vi-sualization has been proven to help biologists better understand life, and theprocess of organs [54]. Since problems in biology are usually specific, such asanalyzing the gene sets [105], protein interaction [33], and biomolecular interac-tion networks [170, 25], researchers should create tools particularly targeting at
43
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the problem. Thus, many different visual systems were created to solve thosediverse problems. Among them, we are interested in two types of systems. Oneis to use enhanced visualization and interaction with 3D biological models tosolve the problem. The other one is to visualize the biological data in 2D repre-sentations for better analysis. We are interested in these two types because, inthe scenario of the cell lineage, biologists need 3D plant embryos to refer to andpotentially require 2D diagrams for further hierarchy analysis.

Figure 3.1 – The screenshot of MorphoNet [110]. Image permissions by Leggio et al. [110],
cb CC-BY 4.0.

For helping with visualizing the 3D models, one interesting example is Mor-phoNet [110] which enables biologists to observe the multi-scale biological data(see Figure 3.1). It can visualize cells and organs. Other than that, it also allowsbiologists to select specific cells among the whole embryo and make changesto them, such as changing colors or hiding them. MorphoNet was developedin Unity 3D and embedded in a website. This installation-free system also ins-pired us to support an online tool with interactive 3D environments. The tool,however, has constraints in several ways. Firstly, even though it can make cellstransparent, the cell occlusion problem is still challenging. It is difficult to get ac-

https://creativecommons.org/licenses/by/4.0/
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cess to the inner cells. Secondly, the 2D panel was designed to control the 3Dobjects but lacks sufficient summarized information for complicated decision-making. Lastly, the compatibility of the website with Unity is not that smooth,and the interaction has some delays for big embryos. Similarly, 3D-Cardiomicsdeveloped an interactive 3D heart for biologists to examine the gene and com-pare between different heart pieces [140]. It used the expand function to moveparts separately to solve the occlusion problem. Unlike these visualization sys-tems, our purpose is to see not only the 3D structures of plant embryos but alsoto make adjustments to these datasets and produce a dynamic hierarchy tree.

Besides this work, we also investigated other literature on 3D visualizationsfrom different aspects. For example, for better rendering, Mindek et al. develo-ped the visualization pipeline for cell science which enables to process and ren-der the volumetric data sequentially and in parallel so that biologists could getthe visualizations in different degrees of quality [134]. Researchers also investi-gated visualization approaches for other datasets such as multiscale molecular[131]. Such systems to analyze the molecular usually contain diverse techniques,like visual guide [32], distortion [59], extracting abstraction structures [68], andoverview and details [38]. These strategies are also important for our system tosupport embryo examination.
In addition to the 3D-related techniques, these strategies usually require ad-ditional abstract data visualizations. For example, based on MorphoNet [110],researchers added a genome browser to visualize the gene order [40]. Also thevisual representations can also be organized in the 3D environment, such asArena3D [148]. It used the staggered layers in the 3D environment to visualizenetworks. Each layer contains diverse groups of information. Unlike traditional2D images, the design uses a large space and avoids overlapping issues. Becausewe worked on the plant cell lineage problem, we specifically looked into the hie-rarchy visualizations. Wang et al. [204] summarized two categories of visualiza-tion techniques to visualize hierarchies : node-link and space-filling diagrams.Node-link diagrams focus more on the relationships between nodes [187]. Incontrast, the space-filling diagrams can emphasize the relative widths or areasof nodes. Thus, they can provide a clear visual guide to the hierarchy. The com-bination of these two types, such as Elastic Hierarchies [218], saves space andemphasizes the inner relationships (see Figure 3.2). Researchers also investiga-ted the color modes for the tree structures [193].
Plant embryos’ division processes contain the hierarchical structure and thetemporal information. As we have stated before, biologists can roughly groupthe cells with similar division time into one level. It means that the hierarchy hasinherent temporal data, though the information is time periods instead of pre-cise timestamps. Biologists, thus, usually create customized hierarchical trees
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Figure 3.2 – The illustration of typical types of trees. The left image is an example ofa node-link diagram. The middle image is a treemap, a typical instance of space-fillingdiagrams. The right one is the Elastic Hierarchy developed by Zhao et al. [218]. Image ©2005 IEEE.

with generation information emphasized (see Figure 2.7).These projects mainly focused on better andmore efficient rendering of bio-logical objects and helped with the analysis. In some cases, however, biologists’decision-making should base on 3D biological models. For the cell lineage pro-blem, biologists need to analyze the embryo cells’ inter-relationships and buildthe hierarchy tree. These decisions are made after observing the cells’ proper-ties in the 3D environment. Thus, in the following section, we investigated thecombination of design with 3D visualization and 2D abstract representations,which are not necessarily in the biology field.

3.2 HYBRID SYSTEM COMBINING 3D AND 2D
REPRESENTATIONS

As shown in the previous section, 3D visualization normally presents neces-sary information about specific 3D objects, such as the embryonic data [110]. Forcontrolling such complicated systems, designers usually add a 2D control panelwith other 2D representations to show abstract or additional information. Thesetwo parts (the control panel and 2D representations) can be actually merged to-gether to support users in better understanding the dataset and making deci-sions. In this way, besides getting additional knowledge, people can also controlthe 3D visualizations from such 2D representations. Other than separating twoviews, we can also add 3D models directly to the 2D diagrams or the other wayaround. Then within one view, we can visualize extra attribute values intuitivelyas well.In this thesis, we are interested in the design of such combinations of 3D and
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2D representations where 3D and 2D views are not simply control panels for theother view but also represent valuable data. We thus divided all the systemsinto three categories : 1. Two views are mainly adding/highlighting informationfor the other view without interaction connection ; 2. The interaction connectionbetween two views is one-directional ; 3. The interaction connection betweentwo views is bi-directional. The first category includes cases where one view en-codes additional datasets for the other, or the 2D view is an abstract view of3D objects. In this scenario, two views are mainly connected via the datasets orvisual linking. The last two categories include cases where two views are interac-tively connected. These three categories actually demonstrate two questions :1. Why should these tools combine 2D and 3D representations? 2. How couldthey let people understand and intuitively interact with multiple views? We willexplain in detail as follows.

Figure 3.3 – The screenshot of 3D-Cardiomics [140]. The heart model is expanded in theview, and two 2D panels add information to the 3D representations. Users can hoverover specific parts to see the details and use the buttons on the panel to target a specificgene.
The purpose of combining the 3D with 2D representations is mainly to useone view to enhance the expressiveness of the other view via adding additionalinformation or highlighting some part of the data. In this case, 2D visualizationcan help present the extracted data from the 3D models, and 3D representa-
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Figure 3.4 – The illustration of the hybrid 2D and 3D to visualize trajectory attribute data[195]. Image © 2012 IEEE.

tions can encode other datasets for 2D diagrams. For example, Semmo et al.[168] transformed the geo-virtual city into an abstract diagram and combinedthese two seamlessly so that people can effectively observe the city. Similarly,in the paper [106], researchers use the abstracted 2D view to represent the net-work traffic structure for users to find patterns efficiently. The forming of 2Ddiagrams depends on the 3D view, and no additional information is includedin these cases. Also, with 2D abstract representations, a system could add ad-ditional information to help with the expressiveness. A typical example is 3D-Cardiomics [140]. With this tool, when targeting a specific gene, all the similargeneswill be listed in a 2D panel with additional information like the gene namesand the false discovery rate (FDR). Meanwhile, targeting the gene name in the2D panel, the 3Dmodels will be highlighted accordingly (see Figure 3.3). This toolis interesting because the researchers enable to make interaction of 2D and 3Drepresentations closely connected, which largely increases the interfaces’ usa-bility. For designing 3D visualizations on 2D diagrams to represent extra data,we have examples where researchers build 3D visualizations on a 2D map [195]as the Figure 3.4 shows to visualize the trajectory. In their design, the temporaldata is encoded with the ordering of bands, and the speed is represented by dif-ferent colors. It provides an intuitive overview with a dynamic query system tosupport the exploration. Another example is the vessel wall visualizations fromMeuschke et al. [130]. They used a flatted 2D map to represent the aneurysmsurface with color indicating the wall thickness and a 3D bar chart to show oremphasize one attribute, such as the deformation. Different from the 2D dia-grams on 3D visualizations, the 2D representation here serves as a background,and the close placement of 2D and 3D visualizations add to the sense of enga-gement.
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Figure 3.5 – The illustration of Abstractocyte [138]. From left to right, the neurons andastrocytes are abstracted in different levels. Image © 2017 IEEE.

After exploring the reasons why previous tools chose to combine 3D and 2Drepresentations, we investigated how they are linked together. 2D and 3D repre-sentations are both usually important in decision-making and task completion.For systemswith two views that are able to finish the task independently, i. e., thedatasets are shared in 3D and 2D, researchers are likely to put these two viewsin the same place, so people can link them visually. For example, in the biologicalfield, Abstractocyte enables biologists to control the transition between the 3Dmeshes and abstract node-linked diagrams of neurites [138] (see Figure 3.5). The2D and 3D visualizations replace each other in the main view and are connectedvia the datasets. Furthermore, researchers also explore electronic transitions ofthe molecules in two dimensions for better analysis [125]. When both views canonly collaborate together to finish the tasks, researchers tend to put these twoparts side by side, e. g., [138, 159]. In these cases, two views are linked becauseoperations in one view can get feedback from both views. For instance, CeLaViis one of the most related works to visualize the hierarchy tree combined with3D simulated molecules [159]. The hierarchy tree is visualized on the left with anode-linked vertical diagram. Each node represents a cell in a specific genera-tion. The generation information is displayed below the tree. On the right, everycell is simulated with one sphere in 3D, and its position is the center of the cell.Two views are interactively connected as shown in Figure 3.6. Interacting withone of the views will highlight nodes/cells in the other view. Though biologistscould easily target the branches and correlate them to the cells in the 3D envi-ronment on the right, the hierarchical tree is static and has no predictions.
Our co-supervised master’s student Ebrar A. D. Santos worked on exploringthe design space of such combinations and published a poster about it [160]. Wewent through the papers of 2012-2022 from IEEE Vis, EuroVis, and TVCG, and ex-tracted 97 related work. Then, we came up with five dimensions to group thesedesigns, attempting to answer questions of why, where, and how to combine asillustrated in Figure 3.7. The semantic relationship demonstrates "why" to com-pare these two kinds of visualizations. The display medium shows "where" to
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Figure 3.6 – The screenshot of CeLaVi [159] using the default Ciona dataset. The hierarchytree is placed on the left side, while the 3D view of cells is on the right side.

use these two views, and lastly, the layout, linking relationship, and control pa-nel are designed to illustrate the "how" question. In our thesis, the 3D embryoshapes and positions are important for biologists to make a decision on whichtwo cells can potentially be sister cells. At the same time, the machine learningpredictions are visualized in a 2D tree allowing people to check. Thus, based onthe literature, we chose to place these two parts side by side. Also, because thedatasets of our 3D models and the hierarchy tree are different, we decided tointeractively connect these two views to enable controlling the 3D views with the2D abstract tree and support the other way around.

3.3 VISUALIZATIONS FOR MACHINE LEARNING

Machine Learning (ML) has become increasingly important in solving diverseproblems. In our case of plant cell lineage, ML can also assist in predicting thelineage so that biologists do not have to assign every cell with a proper sistercell totally by themselves. However, people may not fully understand the directoutput of ML predictions, and the lack of knowledge of ML models themselvescould also discourage people from trusting models. Visualization, in this case,can help people to generate, evaluate, and understand variousMLmodels [158].



3.3. VISUALIZATIONS FOR MACHINE LEARNING 51

Figure 3.7 – The design space we came up of combining the 3D and abstract 2D repre-sentations [160].

For example, in our case, adding visualization to explain the prediction resultscan assist biologists in making better decisions. In the work [119], the authorsspecified the literature on visualization for ML into three categories : understan-ding, diagnosis, and refining the ML models. To combine visualizations with themachine learning in the workflow, explAIner [176] proposed the pipeline as in Fi-gure 3.8. With this, researchers can improve the interactions between users andML models. Such combinations of visualizations and ML can be used in diversefields, such as biology [15] and medicine and health care [200]. In this section,we will briefly discuss the related work in the following directions to see howvisualizations can assist ML, especially in the results and how our system canlearn from these examples.

Figure 3.8 – The workflow proposed in explAIner [176]. As we can see from the figure,there are multiple explainers being applicable in the process, and visual explanationscan be added in between. Image © 2019 IEEE.
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3.3.1 Understanding

Visualizations help enhance users’ understanding of machine learning in va-rious ways, including the model generation process and model performance.The former partmainly aims to create an optimalmodel, while the latter focuseson the predicted results. In terms of the model generation process, Wongsu-phasawat et al. developed a system to visualize Tensorflow’s architecture [208].As for the model performance, ActiVis designs visualizations to unify instanceand subset-based neuron activation and classification results and support easycomparisons andmistakes reasoning [89]. Another example is Seq2Seq-Vis [182],which visually represents the seq2seqmodel predictions and enables viewers tofind the potential issues.For our cell lineage prediction problem, we transformed it into the classifica-tion problem, and many visualizations were created to understand these clas-sifiers better. We investigated interactive analysis visual approaches in the clas-sification field. For example, based on the clustered branch organization [192],Paiva et al. proposed a visual classification approach to assist in analyzing thesimilarities between classification results [147]. These examples indicate that thevisualizations need to be designed specifically for the requirement, and in ourcase, we should combine the visualizations for ML results with the hierarchytree.
3.3.2 Machine learning for cell lineage

Machine learning can help the biology field in various ways, such as cell seg-mentation and cell clustering [202]. For the cell lineage problem, which is a top-down building approach to the hierarchical tree, researchers investigated dif-ferent MLmodels to predict cells’ division and their potential fates. For example,researchers used ML algorithms combined with cell lineage tracking to disclosethe coordination in the organ regeneration with the sample of superficial neuro-masts [201]. The model they created can help identify the features for determi-ning the cell fates. Similarly, in this work of McDole [127], the authors developeda supervised ML model to detect the dividing activities. As for tracking back thedevelopment history of an embryo which is a bottom-up hierarchy-building pro-cess, we transformed the cell lineage problem into a classification problem, soML models need to decide, for each cell, which are potential sister cells. Otherresearchers treated the cell lineage prediction problem differently. For example,Louveaux et al. explored the methods to predict the cell division plane [120] fol-lowing the biological rule for the division [154]. The rule is that for plant cells thatare going to divide, the cell walls will be built in the orientation along maximaltension.
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As we can see from all these examples, it is essential to use visualizations inexplainingmachine learning to people in terms of theML prediction process andoutput so that people, even without enough knowledge about the dataset, canget an overview of the information and better make decisions. For people whohave limited knowledge of ML, we may need to focus more on providing themwith understandable prediction results and supportive interaction techniques tointeract with these results, especially for complicated problems where ML haslimited ability due to the limited training datasets. As in our scenario, based onbiologists’ feedback, they care more about the results of model prediction thanthe models themselves. We then mainly used visualizations to summarize theprediction results from multiple models. We also supported Human-AI teamingto enable biologists to control the final decision-making.

3.4 SUMMARY

To conclude, we have gone through previous work in diverse visual systemsin biology, visualizations design combining 2D and 3D representations, and ma-chine learning models for the cell lineage problem. With an overview of them,though numerous researchwork is done in these three directions, none of theseprojects systematically focus on combining them to provide an interactive tool.We, thus, are targeting to support biologists with visual systems to better dealwith the cell lineage problem.





CHAPITRE

EXPLORATION OF 3D
SELECTION TECHNIQUES
FOR PLANT EMBRYOS 4

Our first project in my thesis is to try to answer RQ1 : How to effectively exa-mine the 3D properties of embryo cells for decision making? The cells in plantembryos are densely packedwith virtually no space between them,whichmeansthat traditional interactive exploration techniques do not apply in this scenario.We, thus, investigated three established alternative selection techniques, na-mely 1D List Selection, 2D Cross Section Selection, and 3D Explosion Selectionas shown in Figure 4.1. In our pilot study, we found that the Cross Section Selec-tion approach is hard for biologists to control. Thus, excluding this 2D selectiontechnique, we investigated the other two methods in more detail for their suita-bility for densely packed cell environments.
In this chapter, we describe the controlled user study in which we investi-gated and compared two selection techniques in the scenario of cell lineage.We also divide the cell interaction into two parts : discovery and traversal. Wecompare List Selection, 3D Explosion Selection, and a combination of both tech-niques in these two aspects. Our results indicate that the combination wasmostpreferred. List selection has advantages for traversing cells, while we did not finddifferences for surface cells. Our participants appreciated the combination be-cause it supports discovering 3D objects with the 3D explosion technique whileusing the lists to traverse 3D cells.

55



56 Chapitre 4

(a) (b)
Figure 4.1 – Our original system : (a) the main interface with three selection techniquesand (b) the hierarchy tree for 8-cell embryo. The tree contains the 3D interactive modelsof corresponding cells.

4.1 INTRODUCTION

Selection as an interaction technique is fundamental for data analysis and vi-sualization [207]. In 3D space, selection requires users to find and point out oneor more 3D objects (or subspaces), and a sizable amount of research has beencarried out on different 3D selection techniques [6, 13, 17, 5, 59]. Among them,ray-casting [155, 135, 5] and ray-pointing [10, 5, 145] for object selection as wellas lasso techniques [216, 215] for point clouds or volumetric data are commontechniques. These existing techniques come to a limit, however, when data ob-jects are tightly packed and no space exists whatsoever between adjacent dataobjects so that internal structures are inaccessible.
Such selection problems in dense environments arise in many scientific do-mains where researchers deal with data that originates from sampling proper-ties in 3D space. We are motivated, in particular, by botany where cells are den-sely packed in captured data, virtually without any room between them and halfor more of them being enclosed [59] such as in a confocal microscopy datasetof a plant embryo’s cellular structure (Figure 4.2). With such data, botanists ex-plore the development of plant embryos based on their cellular structure. Usinga segmented dataset, they reconstruct the history of the embryo’s cellular de-velopment [142]. This process requires them to select each cell, one by one, exa-
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(a) (b) (c)
Figure 4.2 – Plant embryo dataset with 201 cells (87 “occluded” cells) : (a) a segmentedcross section from confocal microscopy, (b) the 3D model, and (c) a part of the desiredcell lineage tree—the botanists’ goal to be able to study the embryo’ development. Theshared area of any specific cell indicate the shared area between itself with the parentcell. If a cell has no parent cell, like the cell 413 in this case, the shared area is the surfacearea.

mine its immediate neighborhood, select each potential candidate in the neigh-borhood to check the shared surface and relative position, and then decide on alikely sister cell that originated from the same parent as the target cell. This pro-cess is continued for all cells, and potentially previous assignments are revisedif needed. The cells are naturally tightly packed, so we ask the question of howto effectively select 3D objects in such spaces, in particular for realistic datasetswith 200 cells or more.
Currently, botanists use several tools to study cell division, but none of themprovides efficient selection interaction techniques for 3D objects in dense pa-cked environments ; they are unable, e. g., to filter cells in a view for better selec-ting or to support marking based on 3D data rather than just 2D (TIFF) images.Researchers currently manually mark the cells, starting by targeting cells forwhich it is easiest to find the respective sisters. From the set of 2D images, theythen identify all neighbors and examine their shapes and that of the surface thetwo cells share. Based on their past experience, they then decide on the mostlikely sister for the target cell.
We thus worked with them to understand their needs, to investigate intuitiveselection techniques, and to support them to interactively derive the cell divisiontree. To better investigate the effectiveness of the needed selection techniquesin this specific dense packed data scenario, we divided the cell selection into twoparts : discovery and traversal. Discovery means to find a specific cell to assignwithin thewhole embryo, while traversal refers to picking a specific range of cellsin order. With this definition, we can describe the cell division process as repea-tedly discovering target cells and traversing their complete set of neighbors. Wethen evaluated three selection techniques : list selection (List), explosion selec-
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tion (Explosion), and a combination of both (Combination). List provides traditio-nal lists to indirectly select cells, while Explosion displays an explosion view of theembryo and allows to directly select cells. Combination supports both techniquesin one interface. We were also interested in how efficient these techniques arewhen selecting cells in different positions (on the surface and being enclosed).We thus designed an experiment to compare the techniques and the two cell po-sitions. We measured task completion times, assignment accuracy and clickingratios (clicking times for each neighbor). We also gathered subjective feedbackfrom our participants such as their interaction strategies and preference.Our results showmost participants favored the Combination technique : theypreferred to control the cell distance, often discovering targets in the 3D view,and then using the lists to traverse the neighbors. List performed better than
Explosion when assigning occluded cells, while there was no clear performancedifference between these two techniques for the cells on the surface. With ourresults on the techniques’ performance and people’s feedback about interac-tion, we derived suggestions for future 3D selection technique design and dis-cuss current limitations. In summary, we contribute :

• a controlled experiment to study selection of dense 3D datasets with tradi-tional input devices, whose results shed light on the performance of threeselection techniques, for two cell positions (on the surface or occluded),
• an analysis of participants’ preferred strategies for List, Explosion and Com-
bination as well as the involved two steps (discovery and traversal) of cellselection, and

• a discussion of selection techniques for dense 3D environments.

4.2 RELATED WORK

The actual tasks we employed in our work on selection techniques focus onobject discovery and traversal, rather than simple picking. Below we thus firstreview related work about discovery and accessing techniques for 3D objects.We then discuss general interaction techniques besides selection for dense da-tasets, especially for desktop-based interaction. We end this section with a smallsurvey of cell visualization applications—our application domain.
4.2.1 Discovery and Access Techniques

3D discovery is essential for finding the target cells among numerous cells.It needs to be able to deal with occlusion, yet should maintain the spatial rela-tionship of an object and its context [59]. Elmqvist and Tsigas [59] summarized
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a range of techniques to discover objects from densely datasets in virtual envi-ronments. They identified five design patterns : multiple viewports, virtual X-raytools, tour planners, volumetric probes, and projection distorters. One of ourapproaches (explosion selection) falls into the last of these categories, while ourlist selection seems to be a separate category as it uses an abstract representa-tion of the elements.

Though there were ways in dealing with the occlusion problem, the directinteractions including discovering are limited and to completely solve the oc-clusion, usually multiple techniques would be used [6]. To ease discovery, re-searchers have also used object highlighting or dimming the remainder of theobjects. In the past, space distortion [69, 67, 60] and distinguishing the objects ina region [178] have been extensively studied for object highlighting, while objectdeacentuation has been achieved with transparency [47, 57, 60] and selectiveobject hiding [60]. These techniques, however, have not been fully tested fordiscovering a large number of objects such as in our case because the such da-tasets have high needs for orientation and an extreme lack of visual cues. Here,our application has an advantage : it is guaranteed that the sister cell, at anyhierarchy level, is next to its sibling.
Multiple techniques have also been studied for precise accessing [59], andthe spacial occlusion cases are most relevant for us. In 3D environments and,especially, VR, researchers have investigated using dedicated 3D selection toolsto address the occlusion issue [6]. Themost common techniques are ray-casting[107, 135, 121], ray-pointing [145], bubble cursor [121, 36], sphere-casting refinedby QUAD-menu (SQUAD) [100] and virtual hand [152, 151]. Among these four, ray-casting and SQUAD were claimed suitable for dense objects [30] and numerousof studies have explored ways to improve these two techniques. For example,JDCAD [115] allowed people to use the cone selection to freely create the selec-tion volume, which avoided the drawback of ray-casting that uses additional 1Dinput to select 3D objects. Grossman et al. [74] proposed a ray cursor that provi-ded all the intersected targets and allowed users to choose. Later, Baloup et al.[10] developed RayCursor to automatically highlight the closest target and sup-port manually switching the selection of intersected objects. As for the SQUAD,to offset the cumbersome steps in accessing dense objects, Cashion et al. [30]added a dimension called Expand to enable the sphere to zoom. Furthermore,to help accurately select an object users see, researchers have explored advan-ced access techniques that could calculate which object users would possiblyselect. For example, Haan et al.’s [42] IntenSelect technique dynamically calcu-lated a score for objects inside a set volume and allowed people choose fromthe objects with the highest scores. Similarly, Smart Ray [74] continuously cal-culated and updated object weights to help users to determine which object to
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select when multiple targets were intersected. All these techniques are efficientin discovering and accessing objects in sparse datasets, yet are not suitable forthe highly dense environments with no space between possible selection tar-gets. Moreover, in practical scenarios people are typically aware of which targetto select, while in our cell division application the biologists make the decisionby referring to the shared surface between the two cells and thus have to tra-verse a number of potential targets to assess their suitability. Also, the learningeffects of new techniques could be high.
4.2.2 Interaction Techniques for Dense Datasets

In virtual 3D cell manipulations, biologists need to precisely select objectsfrom dense sets, without knowing which objects may need to be selected. Pre-vious studies [141] have demonstrated that users tended to stickwith the familiarmouse interaction. In addition, past work [199, 14] has shown that low-DoF inputdevices such as mouse and keyboard can easily achieve such tasks with highaccuracy. These supported our decision to study cell division with familiar inputdevices. Nonetheless, in virtual 3D environments—especially in VR—discoveringan enclosed object can consume more time [6], even though the selecting is ea-sier due to better depth perception in stereoscopy. In our dense embryo cellsscenario we thus relied on a traditional projected-3D environment with mouseand keyboard input to accommodate our domain’s need for high selection ac-curacy.Researchers have also explored various methods for mouse and keyboardinput tomanipulate the objects. For example, Houde [87] raised the idea of crea-ting a handle box outside the 3D object and, similarly, modern 3D modeling ap-plications such as Blender and Rhino allow users to individually transform the3D objects with mouse and keyboard. Applications also provide layers for orga-nizing the objects and selecting multiple items from a list. Even though in somecontrolled environments the object layout can be rearranged to avoid occlusion[177], in our case the cells’ spatial relationship must not be changed to provideour users with a faithful representation.Past work on selection in dense datasets has focused on structure-awareapproaches (e. g., [45, 46, 58, 215, 216]). Unlike particle or volumetric data whichcontains huge amounts of points or a sampled data gridwithout explicit borders,our embryo cell data has dedicated cells that could be picked—yet are tightlypacked to each other such that many are not accessible for traditional picking.Lasso-based selection is also not appropriate becausewedonot need to encloseregions but need to match two dedicated objects as sister cells. We thus insteadrequire interaction techniques that preserve the respective positioning at leastlocally and allow us to access all cells in an efficient and effective way.
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4.2.3 Cell Visualization

Cell data visualization has been found to be useful in helping biologists getknowledge about cell development. Various academic tools (e. g., OsiriX [157],Fiji ImageJ [162], OpenWorm [186], and Icy [34]) and commercial software (e. g.,Avizo, Imaris) provide advanced live-imaging techniques and computational ap-proaches to allow users to clearly observe and interact with their data. The in-teraction in these tools, however, remains simple : mouse-clicking the cells onthe surface of an embryo provides the users with access to specific variablesand actions. For example, MorphoNet [110] uses Unity to visualize diverse typesof cell data on a website, allowing users to visually explore cells. They left-clickto target a cell, and can rotate and zoom using specific keyboard combinations.This interacting process is smooth for a few cells, while it gets slow and tediousfor large datasets (i. e., with> 100 cells). Though the software can hide and showcells, it only provides access to the current outside of the embryo. No single toolamong the mentioned software is applicable to the cell division annotation, sowe worked to develop and study dedicated selection techniques for the entireembryo.

4.3 STUDY DESIGN

To understand how people can best select objects in densely packed 3Dsettings—in our application domain to discover target cells and traverse theirneighbors—and, ultimately, to process large datasets using these interactiontechniques, we designed the experiment as described below. We pre-registeredthis study (osf.io/cewhn/) including the study design and the data analysis me-thods (supplementarymaterials at osf.io/yze5n/), and it was also approved byour institution’s (Université Paris-Saclay) ethical review board.
4.3.1 Interaction Techniques

We chose all the techniques based on previous related work and implemen-tations biologists are using now. From our decisions to focus on desktop set-tings, an obvious interaction technique to select from a set of segmented ob-jects is to use a list widget (see 4.3(a)). Participants could discover the targetcells from the list only. It has the advantage of mapping the objects distributedin 3D space into a 1D dimension, for a given order in the set. Naturally, there isno such mapping that preserves the objects’ original 3D location, but in our usecase researchers need to access all of the cells from the set eventually. Moreo-

https://osf.io/cewhn
https://osf.io/yze5n
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(a) (b)

(c)
Figure 4.3 – Three main interaction targets for the techniques compared in the study :(a) List, (b) 3D Explosion, and (c) Combination selection. Cells to be assigned are markedin orange, and selected cells are red. In all three cases the 3D view was visible to theparticipants.

ver, this interaction also lends itself easily to the task of marking the cell divisionhistory, as we can algorithmically extract the potential sister cells of a selectedtarget from the segmented dataset and show them in another list widget. Foreach item in the list, we only show a name because, in the real scenario, biolo-gists refer to such names. In addition, we did not include additional data sincethey evaluate the shapes and neighborhoods of cells in the 3D view rather thanmaking decisions based on numeric cell property values such as a shared sur-face area.Nonetheless, the 3D location and 3D shape of the respective cells do play arole, both for the initial target selection (as researchers tend to solve the easycases first) and for the decision on the sister cell (by inspecting the geometry ofthe shared surface). We thus were also interested in the performance of selec-tion techniques directly in the projected 3D view. We solved the inherent objectdensity and occlusion issues by employing 3D explosion techniques [114, 191].Using this approach we created additional space between the cell objects, bothfor the initial selection of a target cell in the embryo (e. g., 4.3(b)), the examina-tion and, ultimately, selection of the sister cells for this target (e. g., Figure 4.4).Another fundamental approach to exploring the inside of 3D objects or vo-



4.3. STUDY DESIGN 63

Figure 4.4 – The focused view of a target cell and the associated number shown nearthe neighbor cell’s surface (red cell is the target cell and yellow cell is the neighbor cellwith its associated number).

lumetric datasets in visualization is the use of cutting planes (e. g., [82]). We alsoexplored this technique as a basis for exploration and selection as it concep-tually relates to the slices of the confocal microscopy approach in our applica-tion domain. With this technique, researchers would be able to move and orienta cutting plane freely in 3D space, and then we would show the intersected cellsin an unprojected slice view where they could be clicked for selection. Pilot testsshowed, however, that this approach was not promising because it was diffi-cult to reason from the intersected cells to their correct 3D shape and correctselections took a long time, so we did not further pursue this technique in ourexperiment.Instead, we also merged the first two techniques into a Combination tech-nique in which participants had the choice between using List and Explosion se-lection.Moreover, in all techniques, including in the List selection, we showed the3D projection of the embryo or a target cell’s direct environment as our collabo-rating biologists always make the decision of which two cells are sisters basedon numerous properties, such as the shape and size of their interface (i. e., theshared surface between the two cells). We thus also used an explosion repre-sentation for the List selection technique, to guarantee that our participants canobserve the shared surface. In the Explosion and Combination techniques, ho-wever, we allow users to freely adjust the explosion degree and to control theamount of space they need for navigating in 3D space.

4.3.2 Tasks
With these interaction techniques we aimed to support the practical task ofderiving the cell lineage for an entire embryo. We thus modeled the tasks in
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our experiment based on the approach our collaborating experts (three plantbiologists, all with more than 20 years of professional experience) take to derivethe cell division history as outlined in section 4.1, using the tools described insection 4.2. We followed the same process in our experiment : participants werefirst asked to select a non-marked target cell from the embryo. We then showedthem this cell’s immediate neighborhood in the focused view (Figure 4.4, bothas a 3D view and, in case of List and Combination techniques, as a list), and thenasked them to select the correct cell based on which cell is most likely the sisterof the target.This approach would naturally limit us to participants with years of expe-rience in plant biology cell lineage analysis and the cell division scenario only. Tocircumvent these restrictions, we implemented a proxy for the biologists’ expe-rience : As we show a target cell’s neighborhood, we asked participants to selecteach potential neighbor, after which we showed a pre-defined “likelihood” (anInteger ∈ [1,99]) of being the correct sister cell. We chose this number randomlyand independent of the specific situation because we were interested in generalfeedback on selection in dense environments with non-expert participants. Wedisplayed this number in the 3D environment hidden from the current view toforce participants to use 3D navigation (i. e., rotation) to reveal the number—thisinteraction mimicking the 3D evaluation of the interface between two cells thatthe biologists would do. Participants would then need to find the cell with the hi-ghest number to make a correct selection. In addition, this highest number wasnot necessarily 99, so that participants would have to examine each potentialneighbor at least once.
4.3.3 Datasets

We used a real embryo data provided by our collaborators, which contai-ned 201 cells. We chose this single dataset as a representative research entitybecause its size is realistic and other plant embryo datasets would contain si-milar cell shapes and arrangements. Experimental time limits, however, meantthat participants could not assign sisters for all cells, we thus created three setsof target cells for them to mark, each with 10 cells. We were interested in theinfluence of the cell position (surface vs. occluded), so we created all three setswith 5 cells on the embryo’s surface and 5 cells that were enclosed by other cells.To reduce learning effects, the three sets did not share a same cell, nor did theyshare any of the respective neighbors. Each set plus its 1-neighborhood (i. e.,direct neighbors) was thus completely distinct from the other sets, plus theirrespective 1-neighborhoods, which guaranteed that any past assignment (evenif done incorrectly) would not affect any future marking. Otherwise, if two tar-get cells would have shared a potential neighbor, then participants marking this
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neighbor as a sister of either target would means that the other target wouldlose a sister candidate.

Instruction Panel

Assignment Button

Explosion Bar

Operation Panel
3D view

Figure 4.5 – Study interface (combination selection shown).

4.3.4 Interface
In three conditions, the interfaces contained three main parts : instructionpanel, 3D view and operation panel (see Figure 4.5). The operation panel in alltechniques contains two buttons. One could be used to auto relocate the wholeembryo to the center of the 3D view, in case participants got lost, and anotherone enabled participants to jump to the next task. In List and Combination, thispanel included a global list of all cells in the left list view and a focused neighborslist, showing only the direct neighbors of a selected target cell. We scaled theinterface to completely fill the screen size of participants’ computers, with theratio of each part’s size to the interface size being fixed. In the instruction panel,we displayed the study progress state and a brief introduction of the interactionin the task. We placed the 3D view on the left, while we showed the operationpanel on the right. We designed the relative to indicate that 3D view was themain reference, and such that it was approximately square. Below the 3D view,we placed a horizontal bar widget to allow participants to control the explosiondistance between the cells. We placed the button to mark two cells as sisters
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on the top and in the center, somewhat in the middle between 3D view andoperation panel such that the distances to travel to the button from 3D viewor lists were about the same. We also allowed participants to assign cells bypressing the space in the keyboard to further reduce the impact of the actualmarking action on completion time.

For indicating cells from the sets to be marked, we highlighted them in thelist via orange icons for List and rendered the cells’ 3D shapes in orange in the3D view for Explosion. In Combinationmode, we used both forms of highlighting.When participants clicked on a cell either in the 3D view or the lists, we alsoshowed the corresponding item in the lists and the cell in 3D view would in red(for target cells) or yellow (for neighbor cells) in the 3D view or highlighted in thelist as shown in Figure 4.5. Finally, we modeled the interaction in the 3D viewafter commercial 3Dmodeling software like Rhinoceros or Blender. Participantscould hold the right mouse button to rotate, scroll the wheel to scale, and holdthe wheel to pan. To distinguish rotating from clicking, the left button of mousein the 3D view could be used to click and double click the cell.

4.3.5 Measures

We assigned a unique participating number to every participant and recor-ded all data based on this number to guarantee participant anonymity. For alltrials, we recorded total completion times, accuracy, every action participantsdid, and tracked the real-time position of the camera.We started the timer whenthe program had loaded the visualization for each trial and stopped once theparticipant triggered the signal of assigning the cell sister (button click or key-board press). We asked participants to activate the assignment once they foundthe sister. After choosing the sister for the target, these two cells would disap-pear in the 3D view and the corresponding items in the lists would also be disa-bled. We then instructed participants to continue with the next assignment andwe restarted the timer. We measured the total trial completion time and ac-curacy by calculating the ratio of correct assignments in all assignments. Asidefrom completion time and accuracy, we also recorded the cell selection ratio (cli-cking times divided by the neighbor count) to better understand the efficiencyof different techniques. A more efficient selection technique was likely to havelower clicking ratio, one that is closer to 1. After participants finished all tasks,the examiner conducted a post-study semi-structured interview, focusing speci-fically on the following questions :Q1—Sort the three techniques by preference ;
Q2—What strategies did you use in doing three tasks? andQ3—Do you have anyother comments on the interaction?
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4.3.6 Participants

As our goal was to generally understand object selection in dense datasetsand to provide recommendations also for non-botany scenarios, we targetednon-expert participants. Also, recruiting such participants ensures that all thedecisions are made by referring to the associated numbers, rather than beingfully or partial based on our participants’ own knowledge of cell division. We re-cruited 24 people via social networking and our local university’s mailing list (8females, 16 males ; 24–31 years old, with a mean age of 26.96 years). All partici-pants had at least a master degree, were right-handed, and were well trainedin the usage of mouse and keyboard interaction. None of them was color defi-cient. Twelve of them had previous experience in 3D manipulation including 3Dvideo games playing, and none of them had knowledge about cell division be-fore. The latter aspect is important as it suggests that all participants made theirassignments only based on the number we showed, rather than their previousknowledge of cell division patterns.
4.3.7 Procedure

We conducted the experiment via remote video calls due to the limitationsthat arose from the Covid-19 pandemic for our research environment and forthe participants. We minimized the remoteness effects by checking in advancewhether every participant could smoothly conduct the experiment with theirpreferred devices. We first explained participants the purpose of our study, as-ked them to fill in basic demographic information, and sign a consent form if theyagreed to participate. Because we conducted the study online, for those parti-cipants who preferred not to install our experimental software by themselves,we asked them to use a dedicated remote interaction software to allow them toremotely control the experimenter’s computer. The others had downloaded thesoftware and installed the software in advance and shared their screen whilethey communicated with the researcher via video conferencing.We divided the experiment into three blocks, one for each technique. Eachblock began with a non-timed training session in which the experimenter firstexplained the task using written instructions in the interface and a study script,and then asked participants to try their best to traverse all the neighbors of atarget cell and to find the correct answer as soon as possible. Before transfer-ring to the main task, the experimenter ensured that participants understoodthe task and were able to conduct the tasks correctly and independently. Afterfinishing all tasks, we conducted the mentioned post-study interview to exploreparticipants’ strategies and individual experiences.Our first objective with the experiment was to compare the List and Explosion
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techniques. We thus only presented these two techniques in the first two studyblocks. We counter-balanced the order of both techniques to reduce order ef-fects. Our second objective was to assess how participants would interact whenhaving the choice of using the Combination technique, after having experiencedthe List and Explosion techniques separately. In the third block we thus alwayspresented the Combination technique to participants. In addition, we were inter-ested in the effect of occluded vs. surface cells, so we alternated between thesetypes and also counter-balanced the type a participant would see first. We didnot expect an effect of the specific order of cells in the list view, so we alwaysused the same order (by name) for all participants. In List and Explosion tasks,we showed the next target cell in orange after participants had finished the for-mer assignment, while we marked all target cells at the start of a Combinationtask to explore in which sequence participants would assign them. The order ofthe specific cell subsets may play a role, so we counter-balanced the order ofthe three subsets. In total, we thus had a 2 techniques× 2 cell types×3 data sub-sets design, resulting in 12 combinations in total, and each possible combinationwas experienced by two participants. We used 10 trials per technique and theresulting experiment lasted about one hour per participant.

4.4 RESULTS

We now present our experimental results of completion time, accuracy, andclicking ratio for the two selection techniques List and Explosion. We then indivi-dually examine the use of Combination, which we cannot analyze together withthe other techniques due to potential order effects. We also compared the per-formance of the different techniques in assigning cells from two positions (onthe surface or occluded). Cells on the surface (surface cells) typically have lessneighbors and clearer layers, while enclosed cells (occluded cells) are hiddenentirely from an outside view. We also discuss our participants’ strategies andsubjective feedback.We gathered totally 720 trials (24 participants×3 tasks× 10 trials). Recent re-commendations from the statistics community made us choose an analysis ofthe results using estimation techniques with confidence intervals (CIs) and effectsizes to avoid the dichotomous decisions [16, 51, 103], instead of using a traditio-nal analysis based on p-values [9]. However, it is still possible to transfer CIs to
p-values [50, 103]. We report all CIs by default as 95% CIs. We did not find allmeasurements to be normally distributed, so we used bootstrapping CI [95] toanalyze completion time, accuracy, and clicking ratio. We visualized our outputdistributions to increase the transparency of our reporting.



4.4. RESULTS 69
6

7

8

9

10

11

12

13

14

15

17

0 100 200 300

18(a)

6

7

8

9

10

11

12

13

14

15

17

0 100 200 300

18(b)

6

7

8

9

10

11

12

13

14

15

17

0 100 200 300

18(c)

6

7

8

9

10

11

12

13

14

15

17

0 100 200 300

18(d)
Figure 4.6 – Completion time (absolute mean time) for different numbers of cell neigh-bors in seconds : (a) overall time, (b) List selection, (c) Explosion selection, and (d) Combi-
nation selection.
4.4.1 Completion Time

We can naturally assume an impact of neighbor count on completion timeand we indeed observed an approximately linear relationship—globally for all
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Figure 4.7 – Completion time (absolute mean time) in seconds (List in yellow and Explo-
sion in red) : (a) the overall results, (b) selection of occluded cells, and (c) selection ofsurface cells.
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Figure 4.8 – Pair-wise differences for completion time : (a) the ratio overall, (b) the ratiofor occluded cells, and (c) the ratio for surface cells.

tasks (4.6(a)) and also for the individual tasks (4.6(b)–(d)). The mean neighborcount per dataset, however, was approximately similar (10.4 vs. 10.1 vs. 10.8). Mo-reover, each combination of task with dataset was seen by the same number ofparticipants (fully counter-balanced), so in our remaining global analysis of com-pletion times this relationship does not play a role.
Techniques. In Figure 4.7 we present the absolute mean values of time inseconds for each technique. With List, the average time is 63.81s (CI [56.25s,74.82s]), while using Explosion, the average time for one target cell is 69.75s (CI[60.64s, 80.26s]). Since the CIs overlap a lot, to better demonstrate the differencein the completion time, we checked the pair-wise ratio for these two techniques(see Figure 4.8). The ratio for List/Explosion is 0.91 (CI [0.86, 1.01]). As we can see,the upper bound CI of List/Explosion is 1.01, close to but above 1, so there is someevidence that the List selection tool less time than Explosion. The absolute diffe-rence, however, is only small as evident in the similar completion times. We alsoinvestigated the completion time differences with these two techniques in twotask parts : discovery and traversal. For the discovery part (i. e., the accumulatedtimes from the start of a trial to the selection of the target cells), the averagemean times are 7.57s (CI [6.79s, 8.52s]) with List and 5.23s (CI [4.31s, 6.36]) with

Explosion (see 4.9(a)). Since the upper bound of CI in Explosion is smaller thanlower bound of CI in List, the Explosion is evidently faster in discovering targetcells than List. We also checked the pair-wise ratio of List/Explosion and it is 1.45(CI [1.27, 1.69]), which confirmed that List selection needed more time than Ex-
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Figure 4.9 – Completion time (absolute mean time) in seconds with two steps (List inyellow and Explosion in red) : (a) the target cell discovery, and (b) neighborhood traversal.
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Figure 4.10 – Pair-wise differences for completion time in two steps : the ratios for (a)discovery and (b) traversal.

plosion (see 4.10(a)) for object discovery. As for traversing (i. e., the accumulatedtimes for checking all neighbors of a cell), the average time for List is 54.84s (CI[47.98s, 65.12s]), while for Explosion it is 62.26s (CI [54.37s, 71.49s]) (see 4.9(b)).Because the CIs overlap a lot, we examined the pair-wise ratio to better analyzethe difference. As 4.10(b) shows, the ratio for List/Explosion is 0.88 (CI [0.82, 0.98]),so there is some evidence that List selection is faster for traversal than Explosion.
Positions.We were also interested in the possible influence of the cell posi-tion on performance. We investigated the average completion time for occludedcells (4.7(b)), which was 79.42s (CI [69.83s, 93.52s]) in List and 88.58s (CI [77.43s,102.33s]) in Explosion. Because this difference of mean completion times is smalland the CIs overlap, we again checked the pair-wise ratio, which is 0.90 (CI [0.84,0.97]). The upper bound of the CI is again close to 1.0, so there is some evidencethat with List participants could finish the task quicker than Explosion when dea-ling with occluded cells. We did the same analysis for surface cells. Here, the ave-rage times are 51.62s (List ; CI [45.05s, 61.23s]) and 54.92s (Explosion ; CI [46.87s,63.27s]), and the pair-wise ratio for List/Explosion is 0.94 (CI [0.86, 1.06]). We thuscannot find much evidence that, in assigning surface cells, List selection wouldbe faster than Explosion.
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Figure 4.11 – Accuracy rate (List in yellow and Explosion in red) : (a) overall, (b) selectionof occluded cells, and (c) selection of surface cells.
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Figure 4.12 – Pair-wise differences for accuracy : (a) the ratio overall, (b) the ratio foroccluded cells, and (c) the ratio for surface cells.

4.4.2 Accuracy

Wemeasured the accuracy of the assignments with two techniques (List and
Explosion) and two positions. We calculated the accuracy by dividing the correctassignments count by the total trials count.

Techniques.We report the absolutemean values of correctness in two tech-niques in Figure 4.11 and the pair-wise ratio for comparison in Figure 4.12. Theaccuracy was high in both techniques so we kept three decimals for a bettercomparison. For the List, the absolutemean value of accuracy is 0.987 (CI [0.963,0.996]), while in Explosion, the value is 0.933 (CI [0.892, 0.958]). From 4.11(a) wecan see that all participants found at least 8 correct sisters (as every participantused each technique to make assignments for 10 cells). In addition, the fact thatCIs do not overlap provides evidence that List resulted in more accurate assi-gnments than Explosion. We also analyzed the pair-wise ratio (List/Explosion) tobetter understand the difference, which was 1.06 (CI [1.03, 1.10]). This result pro-vides evidence that List works more accurate then Explosion, although the meanaccuracy values are similar and are both high.
Positions.We also present the absolutemean values of accuracy for the twopositions in the two techniques in Figure 4.11 and the pair-wise ratios betweenthem in Figure 4.12. For occluded cells, the absolute mean values of List and

Explosion are 1.000 (CI [NA, NA]) and 0.933 (CI [0.858, 0.967]), respectively (4.11(b)).Using the List technique, all participants thus assigned all occluded cells correctly
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Figure 4.13 – Clicking Ratio (List in yellow and Explosion in red) : (a) overall, (b) selectionof occluded cells, and (c) selection of surface cells.

and we can say that the List technique achieved more correct assignments than
Explosion. The pair-wise ratio (List/Explosion), which turned out to be 1.10 (CI [1.03,1.20]), confirms this finding, yet its lower bound being close to 1 makes this resultonly weak evidence. For the surface cells, the absolute mean values for the twoselection techniques (List and Explosion) are 0.975 (CI [0.925, 0.992]) and 0.933(CI [0.883, 0.958]). The largely overlapped CIs show limited information for thedifferences. The pair-wise ratio is 1.05 (CI [1.01, 1.09]) which also only providesweak evidence that List performed more accurately than Explosion for surfacecells.
4.4.3 Clicking Ratio

We also counted the click events in both the lists and on the 3D view. Weseparated the clicks needed for rotation in the 3D view for both techniques asthese were right clicks—in contrast to the left clicks in the list or 3D view forselection. Thus, we only counted clicks to access cells. We defined the clickingratio as the average times participants clicked on every neighbor to get the rightanswer, i. e., the click counts divided by the number of neighbors. Ideally, par-ticipants click all neighbors once to find the right sister, with a clicking ratio of1. In practice, however, participants usually clicked one same cell for multipletimes. We chose this variable as a factor to evaluate the efficiency of the selec-tion techniques. The more this number deviates positively from 1, the worse isthe efficiency.
Techniques.We report the absolute mean values of the clicking ratio for thetwo techniques in 4.13(a). List had the smallest absolute mean value which with1.37 (CI [1.32, 1.45]), while the value for Explosion was 1.70 (CI [1.58, 1.86]). Thoughthe CIs are non-overlapping and there is evidence that supports that List hasa lower clicking ration than Explosion, to further explore the differences we alsocalculated the pair-ratio of List/Explosion (4.14(a)). The ratio turned out to be 0.84(CI [0.77, 0.90]), which provides good evidence that List required less clicks than

Explosion.
Positions. We also examined the absolute mean values of the clicking ra-tio for the two positions. The absolute mean values for occluded cells are 1.31
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Figure 4.14 – Pair-wise differences for clicking ratio : (a) the ratio overall and (b) the ratiofor occluded cells, and (c) the ratio for surface cells.

(List ; CI [1.26, 1.38]) and 1.71 (Explosion ; CI [1.56, 1.88]) respectively. The upperbound CI of List being much smaller than the lower bound CI of Explosion pro-vides evidence that List required fewer clicks than Explosion. The pairwise ratio(List/Explosion) being 0.81 (CI [0.73, 0.89]) confirms this assessment. For the sur-face cells, the mean values are 1.45 (List ; CI [1.37, 1.56]) and 1.69 (Explosion ; CI[1.58. 1.87]) as shown in 4.13(c). The confidence intervals are close to we furtherchecked the pair-wise ratio (List/Explosion), which is 0.88 (CI [0.82, 0.94]). Thisevidence supports that using List required fewer clicks than Explosion also forsurface cells.

4.4.4 Techniques Used in Combination
We analyzed the Combination technique individually because we presentedthis technique to participants always last—participants first had to learn the in-dividual techniques. In Combination, participants were able to complete the taskfreely, with both List and Explosion available to them. We were interested in howparticipants would combine them and whether the neighbor number would in-fluence their choice. We thus calculated the proportions of their click counts inthe List condition (over List plus Explosion clicks together) to present the strategy,which we show in 4.15(a) (top bar ; the Explosion click proportion is the comple-ment of the List proportion). The absolute mean value of the list proportion is0.87 (CI (0.85, 0.90)), meaning that participants clicked more frequently in thelist widgets than in the 3D view (for discovery or traversal). We also calculatedthe proportions for discovery and traversal separately, whose ratios are 0.50(CI [0.37, 0.63]) and 0.79 (CI [0.75, 0.83]). We also analyzed the list clicking pro-portion individually by cell neighbor counts (4.15(b)). As we had noted already,however, the numbers of neighbors varied depending on the dataset and someneighbor counts received only few trials. We thus only analyzed those numberswhich had more than 10 trials. In all cases, the average values of the percentageare higher than 0.5, which means participants clicked more often in the list wid-gets than in the 3D view. Although the differences are small, we observed thatthe List click proportion increases with a growing number of neighbors. Whilethese numbers suggest a strong preference for list interaction, this observationis skewed by the fact that by far themost clicks naturally happened in the traver-
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Figure 4.15 – Clicking proportions of List/(List + Explosion) in the Combination task : (a)overall and (b) by neighbor count (for discovery + traversal ; x represents the numbersof the cell neighbors, and y represents the clicking proportions).

sal phase (0.082% on average). Looking only at target cell discovery, however, inthe post-study interview feedback 13/24 participants stated that, after trying andadjusting their strategies, they finally chose to examine the exploded embryo inthe 3D view to find the target cells, while the other 11/24 participants checked thelist by scrolling from the top to the bottom.We show this difference of strategiesin the click proportions in the two lower bars in 4.15(a). We also investigated, forthe Combination task, the order participants chose to assign the cells. Accordingto our logs, 8 participants always stuck to the list order, without taking the cells’positions into consideration. Another two participants switched the strategiesand finally followed the list order. Others simply clicked on random orange cellsthey saw.

4.4.5 Task Strategies

Wewere also interested in our participants’ approaches to finding target cellsand traversing the neighbors, especially for the Explosion, and their choice ofmethods for the Combination condition. Here we report the strategies based onparticipants’ statements in the post-study interview, combined with our obser-vations of the participants as they interacted during the experiment. In the Listcondition, all participants scrolled up and down the cell list to find the orangeitem and then traversed the neighbors by going through the neighbor list. Par-ticipants memorized the largest associated number and either the cell name orits position in the list to complete the task.
Because we provided no lists in the Explosion condition, participants couldnot rely the same strategies as with the List. We thus specifically asked themabout their detailed strategies in the 3D explosion condition, organized their
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ideas, and grouped similar points. To help with traversal, 8/24 (33.3%) partici-pants stated that theymentally divided neighbors into different layers and zonesbased on the spatial placement. For staying oriented, 7/24 (29.2%) participantsrotated back to the original position every time when they finished checking theassociated number of one neighbor, while 4/24 (16.7%) tried to rotate the em-bryo by only one fixed axis. One participant kept the best candidate cell on topduring traversal. Another participant observed the relative positions of the cellsandmatched them into a special shape like a sphere or triangle. Then he traver-sed neighbors by referring to his chosen shape’s corner cells. Other participantstried to memorize the cell shape, their 3D relative position, and the temporallylargest number during the trial.During the Combination task, 10/24 (41.7%) participants used the same stepsas they did in List because they were afraid to get lost in 3D interaction. One per-son exclusively used the Explosion interaction in the Combination task becauseshe was bored to scroll the long list. Another 10 participants discovered targetcells with Explosion and traversed neighbors with the List technique. Only 3/24(12.5%) participants chose the techniques based on the number of neighbors.When this number was small, they used Explosion, and otherwise the List tech-nique. Among them, two participants discovered target cells with direct interac-tion in the 3D view, while the other one searched the target cells in the list.
4.4.6 Subjective Feedback

In the post-study interview we asked about participants’ preferences for thethree techniques and their general thoughts on the interaction.As Figure 4.16 shows, more than a half of participants (16/24) liked the Com-
bination selection most. Two participants considered the Combination and Listto be equally satisfying, while another one favored the Combination and Explo-
sion techniques equally. The remaining 5/24 participants preferred the List tech-nique. For this technique, participants appreciated its item order (e. g., “much ea-
sier to followwhich have been clicked”). However, the interactionwas troublesome(e. g., “was boring to scroll the list,” “I had to fast move the mouse cursor between the
lists on the right and 3D cells on the left”). Moreover, when the associated numberwas similar to the cell name by chance, it was easy to get confused (e. g., “I got
messed up with the name and associated number. I forgot which one was the tempo-
rally best candidate cell.”). Meanwhile, they stated that they did not pay attentionto information such as the shape and 3D relative position of the cell becausethey only looked at the associated number in the 3D view and otherwise focu-sed on the list (“[I] only remembered the numbers and did not examine the shape”).In the Explosion condition, participants appreciated the convenience to fast clickon the cells (e. g., “all [are] the interactions in the 3D view”) and the usefulness of
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Figure 4.16 – Accumulated participant preference ranks. Note that we allowed partici-pants to rank two techniques as their first choice and then counted none as the second,resulting in ranks 1, 1, and 3.

being able to control the distance between two cells (e. g., “spreading out the cells
is useful in targeting cells”), but they disliked the need to rotate the view becausethis led themget lost and forgetwhich cells they had already examined (e. g., “less
useful in checking out neighbors,” “it was easy to get lost when rotating the embryo
... I am not sure whether I have traversed all the cells or not”). For the Combination,participants liked the freedom to spread out cells and the convenience of thedefault order in the list (“supports both techniques and I could be quicker”). None-theless, some participants would just use the same technique they preferred inthe previous two tasks and thought it was useless. Others reported confusion(“I struggled to choose the technique”). One participant also reported being boredand tired in doing the last task.

Commenting on the whole interaction, participants proposed some changes(e. g., “The interaction is good, and it will be better if there is a mark on the cells I have
checked in all techniques,” “[I] would like to have more context in the background of
the 3D view to help orientation,” “[you should] show the name of cells in 3D view so
that I could have a name order to follow,” and “hiding the least possible candidate
cell manually would accelerate the process”). Some participants thought the twotechniques should not be combined. One participant, e. g., stated that “List has
an order and 3D view has another order (layer). These two orders do not have a
similar logic or strategy and could not be combined. These two techniques in the
same interface will disturb each other’s use ... could present a 3D order based on
the 3D position and link to 2D order in the list.” Though most participants likedthe explosion bar, one argued that horizontally moving the bar, for him, did notintuitively represent the conceptual increase of inter-cell distance.
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4.5 DISCUSSION

4.5.1 Performance Differences

We found evidence that List led to more efficient (faster, fewer clicks) andmoreprecise input than Explosionoverall. This indicates that traditional list-basedselection wasmore familiar to participants, compared with 3D interaction whichwas unfamiliar to many. Moreover, the List condition provided an order of thepotential neighbors of a target, which supported participants in traversing everycell in the list without missing one as well as remembering the cell with the hi-ghest associated number, regardless of potential view manipulations in the 3Dview. In contrast to the overall results and the results for occluded cells, we didnot find clear differences in completion time and accuracy of two techniques forstudying surface cells. This finding may due to the fact that surface cells usuallyhave fewer neighbors and a clear arrangement of the cells such that participantshad less problems when traversing these in the 3D view.
We also found that a direct interaction in the 3D view has advantages. Whilethe List condition enabled participants to traverse neighborhoods faster thanwith the Explosion technique, with the latter participants were faster in discove-ring the next target. This last point probably is due to the 3D view showing allremaining targets in a single view (with only some rotation necessary), in thelists participants had to use scrolling to get to the next target. In the traversal, incontrast, the lists of potential neighbors had a lot fewer entries than the overalllist of cells, so that the participants did not need to scroll and thus their speedimproved. Moreover, the need to rotate the 3D view to traverse all neighbors of-ten led to participants losing orientation such that they no longer rememberedwhich cells they had looked at already.
While this is a problem that was apparent in our pool of participants, thesituation may be very different in our envisioned application domain of plantbiologists constructing lineage trees. Here, the experts will not look for num-bers but instead investigate the potential sister cells based on the cell’s overallshape as well as the size and shape of the shared surface between the cells, pro-perties that are essential for making the lineage decision. This means that theplant biologists not only inherently have to focus much more on the 3D view,but they also do not necessarily traverse all neighbors because they can easilyreject some candidates based on their shape. Because we had to use a numberassociated to the cells as a proxy for the biologists’ experience, our participants,in contrast, only focused on this abstract property and thus could more easilyfocus almost entirely on the list as theirmain reference point, which in turn likely
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led to the List condition’s performance advantage.
4.5.2 Subjective Ratings

We can also find these assumptions supported by our participants’ qualita-tive feedback. In particular, they preferred the List technique because they feltit led to a lower mental load, requiring less memorization. Essentially, becausethey were not experts they turned our envisioned spatial decision into an abs-tract task because they did not need to examine the cell’s shape etc. They thusfocused on and used the arbitrary order of cells in the List condition. Conse-quently, our participants also disliked that they had to move back and forth bet-ween list and 3D view in the List condition.In the Explosion condition, in contrast, participants liked to be able to explodethe embryo, to freely explore it, and to have a whole view and direct access tothe cells. The downside of this aspect was the lack of a clear order of the ele-ments that they could follow to traverse all neighbors. Moreover, the neededrotations made participants more likely to lose the orientation in the 3D view,and consequently also to forget which of the already visited cells had the highestassociated number. Participants had to memorize this intermediate result ba-sed on the cell’s shape and 3D position, which was much harder for them thanmemorizing a position or a label in the 1D list. While these aspects made thetask more mentally demanding for participants compared to the List condition,experts likely will not suffer from the same problems as we noted above.Another problem with the Explosion condition was that the discovery phaseand the traversal phase needed different view configurations : in the former par-ticipants needed to see all cells of the embryo, while in the latter they neededto focus on only the 1-neighborhood of a single cell. We had specifically ensuredthat the positions of the cells did not change when switching between overalland focused view to maintain spatial continuity ; yet this meant that in the Ex-
plosion condition participants had to frequently manipulate the view (adjust thezoom factors). In the List condition, in contrast, we automatically centered theview on a newly selected target because people focused on the overall cell listwhen selecting targets, which lead to much less need for view adjustments.
4.5.3 Implications

Oneof ourmain insights is that 3D interaction techniqueswork best for truly
three-dimensional tasks which have no additional informative tags. When weasked participants to perform a purely 3D action such as to discover coloredobjects among a set of exploded cells of the embryo, e. g., the 3D Explosion tech-nique performedwell and our participants used themwhen they had the choice.
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In contrast, for tasks like the traversal which our participants converted into anabstract search task as we had discussed, the List technique was faster, moreaccurate, and preferred. As we discussed in sous-section 4.5.1, for the realistictask in the biology domain the actual sister cell selection is likely much more a3D task than our proxy, so we hypothesize that the Explosion technique will bea strong competitor (but this will have to be verified in a separate experiment).

We also found that the use of explosion techniques as an interaction me-
taphor makes it possible to access objects in tightly packed 3D environments,such as for selection as in our application. For discovering target cells, our par-ticipants increased the distance between two cells and zoomed out to have aclear overview of the embryo and the relative positions of cells, while for tra-versal, they tended to shorten the distance and zoomed in so that they couldexamine cells and find a structure to traverse. Also, our participants reportedthat they would freely adjust the distance between two cells to have a betteroverview or check cell details.

Next, theCombination seems to combine the advantages of the single tech-
niques. While we always showed it last to participants and thus cannot rule ourorder effects for its performance, participants clearly preferred this type of in-terface over only the (1D) List or the (3D) Explosion interaction. It allows users tofreely choose which technique works best for them, for a given task and dataset,and also allows them to transition to a 3D interaction as they progress and as3D aspects become more important. Nonetheless, even though with the Com-
bination both individual interaction methods were available to participants, aconstant switching between 3D view and lists is inconvenient. Participants whopreferred to use List chose strategies that operating the objects in the right partof the 3D view which is placed close to the lists, while others tried to directlyinteract in 3D view.

While we studied the specific scenario of cell division analysis in botany, webelieve that our results can apply to or, at least, inform many other settings inwhich objects need to be selected from dense environments. Even if more workwill be needed to confirm the applicability, those contexts include machine as-semblies [191] and datasets in brain connectomics [19]. In such settings, expertssimilarly need to be able to select parts with virtually no space in-between, andhave to be able to understand spatial and logical relationships between neigh-bors. Also, we designed our experiment specifically such that participants werenot experts from our application domain of biology, but came from the generalpublic.
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4.5.4 Limitations

Naturally, our work is not without limitations. We already pointed out that,while we aimed to replicate the biologists’ spatial analysis task aswell as possiblein our experimental setting, it turned out that our proxy for “experience” allowedparticipants to turn the 3D spatial analysis task into an abstract search task, andwe have explained the implications of this change in sous-section 4.5.1. While inthe future we plan an empirical validation with experts, we think that our workstill sheds valuable light on howwe can realize selection and access tasks in tight3D environments.Beyond this point, the fact that we were required by our IRB to conduct ourwork via video conferencing alsomay have affected the outcome. Naturally, par-ticipants had different types of equipment (screen resolution and size, PC po-wer, general environment, etc.). An on-site experiment may have resulted in amore controlled environment and procedure. Nonetheless, this spread of envi-ronment reflects real-world working conditions, so we do not see this point as astrong limitation. Next, our specific choice of application case and, consequently,study dataset is a unique setting : all cells in the datasetwere of roughly the samesize and were “well” distributed. Other datasets in other application domains—even if they are densely packed—may have different properties and may thuslead to slightly different selection performance. Yet we believe that our gene-ral conclusions still hold. Finally, we only tested manual selection techniques. Inthe future, however, we foresee the use of machine learning (ML) approaches tosupport the biologists in establishing the cell lineage and, thus, the interactionrequirements will change frommanual selection to ML supervision and verifica-tion.

4.6 CONCLUSION

We have advanced our understanding of interaction techniques for the se-lection of objects in dense 3D environments with our chosen example of celllineage assignment, but completed by members of the general public. We sawthat a list-based selection has advantages when the number of elements is largeand when the needed information can be represented in (or “projected” to) lists.We also saw, however, that if the relevant criteria are three-dimensional proper-ties then an explosion-based selection can have advantages, in particular whenthe target audience is familiar with orienting themselves in 3D space. A combi-nation of both techniques, ultimately, provides the best of both worlds.





CHAPITRE

LINEAGED :
INTERACTIVE VISUAL
SYSTEM FOR PLANT
CELL LINEAGE
ASSIGNMENTS BASED
ON MACHINE LEARNING 5

The previous study described in chapitre 4 uncovered the efficient 3D selec-tion techniques for the densely packed embryos. For assisting the cell lineageproblem, besides supporting the precise cell selection, a system should also pro-vide enough details for decision-making (3D spatial data and hierarchical infor-mation). That requires us to answer RQ2 and RQ3 in chapitre 1. In addition, sincethe manual work is time-consuming, it will be optimal to include a machine lear-ning model to help predict the assignments as well as be easily accessible. We,thus, decided to develop a web-based system with the explored selection tech-niques to systematically support biologists in completing the cell lineage processfor a new embryo dataset.
In this chapter, we describe LineageD—a hybrid web-based system to pre-dict, visualize, and interactively adjust plant embryo cell lineages. Currently, plantbiologists explore the development of an embryo and its hierarchical cell lineagemanually, based on a 3D dataset that represents the embryo status at one pointin time. This human decision-making process, however, is time-consuming, te-dious, and error-prone due to the lack of integrated graphical support for spe-
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cifying the cell lineage. To fill this gap, we developed a new system to supportthe biologists in their tasks using an interactive combination of 3D visualization,abstract data visualization, and correctable machine learning to modify the pro-posed cell lineage. We use existing manually established cell lineages to obtaina neural network model. We then allow biologists to use this model to repea-tedly predict assignments of a single cell division stage. After each hierarchy le-vel prediction, we allow them to interactively adjust the machine learning basedassignment, which we then integrate into the pool of verified assignments forfurther predictions. In addition to building the hierarchy this way in a bottom-up fashion, we also offer users the ability to divide the whole embryo and createthe hierarchy tree in a top-down fashion for a few steps, improving theML-basedassignments by reducing the potential for wrong predictions. We visualize thecontinuously updated embryo and its hierarchical development using both 3Dspatial and abstract tree representations, together with information about themodel’s confidence and spatial properties. We conducted case study validationswith five expert biologists to explore the utility of our approach and to assess thepotential for LineageD to be used in their daily workflow. We found that the vi-sualizations of both 3D representations and abstract representations help withdecision making and the hierarchy tree top-down building approach can reduceassignments errors in real practice.

5.1 INTRODUCTION

How individuals of species develop is an essential question in specific sub-fields of biology. By looking at the historical development of a plant embryo, bo-tanists investigatewhether the plant develops normally or not. As an embryo de-velops, single cells divide into two new cells and these parent-child relationshipscan be described using temporal hierarchies. The process of creating these hie-rarchies is called cell lineage assignment and requires biologists to (1) take imagesof a multi-cell plant embryo using a confocal microscope, (2) segment the resul-ting 3D volumetric data to identify the embryo cells, and (3) indicate pairs toreconstruct the hierarchy backward toward the proper embryo as the first cell(i. e., the ovum) of the embryo. The Figure 5.1 illustrates the overall traditionalprocess further.In our collaboration with botanists, we identified several parts of this work-flow that can be improved with a dedicated visual analytics tool. Existing tools(a) only use two-dimensional slice-based interaction to mark sister cells, (b) donot take advantage of either 3D interaction or interaction with a visual repre-sentation of the hierarchy, (c) do not allow the scientists to interactively divide



5.1. INTRODUCTION 85

Slices from the microscope Segmented embryo Click to assign cells Create tree

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9 10 11

13 14

15

12

Figure 5.1 – An illustration of the traditional way of biologists doing cell lineage based onslices.

the 3D geometry into parts that can be identified as being part of early hierar-chy levels in the cell division, and (d) do not provide any means to automate thecell assignment process based on known cell division patterns (see Figure 2.4).Given these limitations of existing tools, the current, largely manual workflow ofbiologists does not scale to embryos with hundreds of cells (i. e., 7 or more ge-nerations of cell divisions). A purely automatic approach would also not be idealas they want to retain manual control over the process, to be able to deal withincorrect assignments and the special behavior of mutants.
We thus developed LineageD to address these limitations. LineageD is ba-sed on specific domain requirements that we elicited with our collaborator anddescribed in detail later in the paper. Specifically, it was important for our col-laborator that the tool would be interactive to retain control over the hierar-chy construction process, contain the familiar 3D representations of the embryostate, display a temporal hierarchy tree that encodes abstract temporal informa-tion about cell divisions, closely link the 3D and abstract representations, andinclude machine learning approaches to propose cell lineages and reduce repe-titive work. We built the tool based on these requirements, while ensuring thatall views are interactive and proposed cell lineages could be efficiently reviewedand interactively corrected if needed. Our goal was for biologists to arrive at afinal cell lineage more easily and with higher confidence. To better understandwhether our design actually meets these goals, we also conducted an evalua-tion with five experts from the domain and described their feedback and ourobservations of their tool use.
Overall, in this work, we contribute (1) an interactive, web-based approach toestablishing cell lineage, in which we combine 3D spatial and abstract data re-presentations with correctable machine learning ; (2) design considerations anddecisions that led to our approach, including about the visual and interaction
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mappings that we used ; (3) the approach of top-down and bottom-up hierarchybuilding and the interaction concepts that link the 3D and 2D representations atdifferent scale levels ; and (4) the evaluation with five experts to learn about thesuitability of the employed approach, which also generated insights for appliedvisualization at large.

5.2 RELATED WORK

Past work from three major fields is important for our own : the visual enco-ding of hierarchical structures, the use of visualization techniques in biologicalapplications, and the application of machine learning in visualization. We reviewthese fields below.
5.2.1 Visualization of and with Hierarchies

Hierarchical structures are essential for organizing many types of data andexploring inner relationships [166]. Such inner correlations can be, e. g., aboutclassification [12, 24], family development [20], and evolution [85, 108]. Over thepast 40 years, much research has been conducted to design and compare dif-ferent visual representations (e. g., treemaps, sundown charts, sunburst charts,and icicle plots) of both 2D and 3D tree structures (e. g., [156, 144, 165]), to ana-lyze hierarchical data (e. g., [172, 197]), and to help with visual decision making(e. g., [7]). Work has also been done to evaluate the different representations[209] and to propose guidelines for future design in hierarchical trees [99]. Ho-wever, most of these 3D trees were designed to add one dimension to storemore information [161, 190, 116]. Our collaborating biologists are most familiarwith 2D node-linked diagrams for representing the hierarchy, while the actualcell shapes have to be interpreted in 3D views to assist them with making li-neage decisions. We thus rely on a combination of both a 3D view and a 2D tree.One of the most closely related approaches is HyperLabels [102], which uses amodel’s hierarchy to navigate the 3D structures. While Kouřil et al. also combinethe abstract hierarchy data with 3D shapes that represent the actual physicalentities, their abstract data representations do not represent additional infor-mation such as, in our case, the plant embryos’ temporal development.The size of datasets is constantly increasing, so researchers have also explo-red methods to flexibly adjust the space a tree representation takes to increaseits efficiency [113, 27, 3]. For treemaps, for example, Tu et al. [197] used a spirallayout to visualize the updates of the hierarchical data. Similarly, vandeWeteringet al. [198] redesigned the icicle plot to reclaim empty space, to avoid the situa-
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tions where nodes deeper in the hierarchy have less space. These techniquesare not applicable in our scenario because we need to show all nodes equallysuch that we do not have excess empty space. Moreover, we do not have the fullhierarchy at the start, and biologists are not always certain about the cell lineagehierarchy root in the beginning, which is the ovum of an embryo.Another important aspect of our hierarchies is that they represent temporaldevelopment, and researchers have visualized temporal data with trees before.For example, Carvalho et al. [41] combined aspects of treemaps with a calendar,so that users could target data within a certain time slot. In our case, the divisiontime is different for each cell and the former and latter stages should always bepresented for reference, so that we cannot use filters to target at a single level.Shen [171] also used index tomark the cell division within a time interval, but it ishard to read especially the tree is large. We thus encode the generation roundswith the layers.In addition to innovative layout design, somework also focused on improvingthe interaction with trees to adapt the substructures and compare the resultswith the original data, which we also need in our work. AdaptiviTree [189] enco-ded real-time game status information and indicated changes by color. Otherwork [11, 23] used visual cues to allow viewers to compare different trees thatwere shown horizontally, with color-coded similarity metrics based on juxtapo-sed icicle plots. Because we use the trees proposed byML only as an initial guessand there is no ground truth, we do not show multiple trees and simply rely oncolor coding to encode differences. Related to this approach is the encoding ofthe uncertainty of the input data, for which researchers have used, e. g., glyphs[109, 211]. While these methods can handle diverse forms of uncertainty inclu-ding locations [109] and sub-tree structures [109], we can also use color-codingto indicate the ML model’s certainty with respect to its results.
5.2.2 Biology-related Visualization

Biologists often study complex patterns or processes. While various stake-holders have different levels of interest in the respective datasets [108], we focuson interactive tools for experts—specifically botanists interested in plant em-bryo development.Within the biology domain, several visualization approaches and tools arecurrently being used. For example, Briggs et al. [24] combined dendrogramsand heatmaps for the visualization of taxonomic diversity. Such representations,however, are usually not space-efficient [128]. Moreover, we need to show bothabstract cell lineagedata aswell as the actual 3D shapeof the entities. Numerousplatforms (e. g., OsiriX [157], Fiji ImageJ [162], and Avizo) are designed to displaysuch multi-scale 3D data, and these are currently being used by our collabora-
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ting experts to establish the cell lineage (e. g., the TreeJ plugin for Fiji ImageJ).Within academic research, Leeuw et al. [43] explored the visualization of time-dependent confocal data. For visualizing inner cell structures, Mindek et al. [134]proposed a multi-pipeline for visualizing the organelle system. Similarly, otherwork [110, 78, 77] proposed different systems to interact with diverse scales ofcell or genome datasets. In contrast to these approaches, however, we are notinterested in the representation of spatial scale but in the temporal develop-ment in the form of cell lineage. Of course, also general tools exists that couldsupport the representation of 3D shape such as VTK [164] which was used tocreate visual representations of biological data (e. g., [157, 162]) and ParaView[2]. We also use the VTK library for creating the visual representations in ourtool, but our emphasis is on the combination of 3D spatial and abstract data re-presentations and their interactive use for the establishment of cell lineage forplant embryos.

5.2.3 Machine Learning in Visualization

In the visualization field, machine learning is used to create, improve, andassess all kinds of visualizations [61, 206, 4]. Researchers also adopted machinelearning models to develop pipelines for the whole process of visualizations[93, 92]. In our case, we use amachine learningmodel in predicting assignmentsfor a plant embryo and then visualize the predictions in the hierarchy. Unlike in-teractive machine learning (IML) where users could review and refine the modelinteractively [52] (i. e., an interactive correction of mislabeled data with the goalof getting a more accurate result from the model [210]), we treat the ML out-put only as a first suggestion and allow our users to directly interact with theoutput of the model for a more efficient correction. Also, researchers propo-sed different suggestions for designing such interfaces [181, 52, 86]. Inspired bythese, we predict cell inheritance with a neural network model and display par-tial assignments to engage users [53] and reduce manual labor.

5.3 BACKGROUND AND DESIGN CONSIDERATIONS

As we just discussed, trees can be used to visualize cell hierarchies in em-bryos. Our collaborator also confirmed that biologists use and appreciate 3Dviews to assist them with understanding the spatial structure and to make deci-sions on the lineage. Here they rely on actual 3D meshes that they derive fromthe confocalmicroscopy slice data by segmenting and then processing them into
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the shapes of the embryo cells at the time of data capture. Yet, no suitable toolsexist to determine cell lineage for several reasons :
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Merge the pair sisters 
and build the previous 
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Figure 5.2 – A 2D illustration of biologists’ cell lineage workflow.
A cell lineage tree only represents approximate division stages that apply tomost cells, while some cells may remain unchanged from a given level to thenext and the lineage hierarchy needs to account for such cases. Consequently,there exists no single generic (binary) tree that would represent the develop-ment of all embryos. In addition, the tree does not yet exist at the start of theprocess and cannot be computed from the data, instead, it has to be establishedstep-by-step by the experts based on what they observe in the 3D spatial andabstract data. Figure 5.2 illustrates this process, in which the experts reason ba-sed on the embryo’s configuration at a given time to establish how it developedinto this stage from a previous set of cells, and then they repeat the process.Existing tools are usually created to focus either on 3D spatial or on abstractdata representations, while in our case both types of representations are tightlycoupled and biologists need both to make decisions (the spatial cell data as wellas abstract data such as the hierarchy as established so far and information suchas shared area—either type alone is not sufficient).Based on all these constraints, we set out to design a new interactive toolfor establishing and visualizing the development of plant embryos. To reducethe tediousness of having to make many lineage decisions for larger embryos,we targeted a process that relies at least partially on machine learning, yet alsoleaves the biologists in control and allows them to override decisions as needed.We also based our design on inspirations from existing tree representations
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such as icicle plots [209]. Moreover, we followed the principles and advice ondesigning hierarchy structures [99], cell visualization systems [43], and mixed-initiative user interfaces [86]. Next, we summarize our design considerations.

D1 : Provide anoverviewof thehierarchical structure to indicate the cell
division process. We aim to create complete and accurate cell division hierar-chies so that plant biologists can study the division history. Yet every cell dividesin a different time and it is impossible to measure the precise division time froma single confocal microscopy dataset. So we rely on the fact that an embryo’scells roughly divide within similar time ranges, and use these division times tobuild the hierarchy. The tree should also clearly emphasize cells that divide out-side of the regular time range. The tree thus not only needs to contain the parentand children relationships but also represents the time-dependent division pro-cess. As such, any node in the tree represents a given cell and thus its connected3D representation at a certain stage, so navigation in the hierarchy needs to leadto adjustments of the 3D visuals.

D2 : Support the history building in two directions. Biologists traditionallybuild the tree in a bottom-up approach. From the overall shape of the embryo,however, they can also deduct how it divided in the very beginning. Introducingthis knowledge early could improve the ML predictions and make it easier forthe experts to specify assignments. It should thus be possible for biologists tobuild the tree from two directions : bottom-up and top-down (Figure 2.3).
D3 : Show related information to assist with decisionmaking. Accordingto our collaborator, biologists take the cells’ shape, the shared surface betweentwo adjacent cells, their approximate volumes, and the 3D positions into consi-deration when picking the sister for a target cell from its neighbors, andwe needto show all this information. While the spatial properties are most effectivelyshown in a 3D view, the experts need to be able to correlate them to the otherdata. While 2D diagrams would be possible, each cell only has a few neighborsand a color coding thus promises to be better than separate 2D diagrams. In ad-dition, we need to account for cell occlusion in the 3D view, so the system needsto support visibility techniques such as explosion views and layer peeling.
D4 : Provide assistance for building the hierarchy with machine lear-

ning (ML). Our previous work [83] indicated that, even with an interactive sys-tem, traversing neighbors to find sisters for more than 200 cells is too time-consuming, and ML-based assignment suggestions could greatly improve theworkflow. These predictions then need to be checked by the experts with thehelp of an integrated hierarchy and spatial 3D interaction. Any mistake, howe-ver, would invalidate any prediction for earlier cell divisions. The system shouldthus use anMLmodel that predicts themost likely cell pairs for a given hierarchylevel, and bases future levels on verified or corrected assignments. The full po-
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wer of our approach relies on a fluid change between the bottom-up ML-basedprediction, expert correction, and the top-down hierarchy specification so thatthe expert is always in full control over the process. At any time, the hierarchyview should show the status of the lineage, indicate decisions confirmed fromthe ML or corrected by the human, and navigate the temporal development ofthe embryo.

D5 : Provide easy access to biologists who are not computers profes-
sionals. Many experts may be hesitant or not allowed to install extra softwareon their workstations. Moreover, such local installations would require cross-platform system development. We thus aim for a web-based implementationthat facilitates easy access, interaction, and data sharing among researchers[110].

5.4 SYSTEM DESIGN

Based on these considerations, we designed our web-based tool LineageDwith two major components : a front-end for experts to interactively establishthe lineages and a back-end that comprises a module to process the input datafor the analysis, a set of default embryos for testing, a pre-trained classifier, andthe partial lineage data currently being worked on (D4, D5).
5.4.1 Front-end Interface

Our web-based front end needs to allow the biologists to explore the 3Dinformation in its hierarchy-dependent configuration, traverse the cells at thedifferent hierarchy levels and understand their spatial and derived properties,make decisions about the cell lineage for all cells, and then record these deci-sions to specify further hierarchy levels. We thus offer the following elements toassist the experts.Our LineageD system (Figure 5.3) centers around two main views : themain
3D view of the embryo and the hierarchy view that shows the cell lineage treethe biologists are building. The hierarchy on the right of the interface initiallyconsists just of small blocks, where each represents a single cell at the timewhenthe confocal microscopy dataset was captured ; i. e., the leaf nodes of the tree(D1). We chose a tree layout that grows from top to bottom (i. e., root at the top)to match the traditional format used by the biologists (we illustrate the designprocess in Figure 5.4). As the experts work on establishing the hierarchy anddeclaring sister cells, this view actually becomes a hierarchical representationthatwebasedon (completely filled) icicle plots. Unlike node-linkeddiagrams that
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Target and Sister View

Main 3D view

Operation Panel

Hierarchy Tree

Thumbnail View

Figure 5.3 – Screenshot of LineageD, for the example of assigning a 256-cell embryo (inprogress). The core elements are theMain 3D View of the embryo, here exploded andwith the target cell highlighted, and the Hierarchy Tree of the lineage, which is inter-actively established by the biologists. The Target and Sister View shows the relativeposition of the target cell within the whole embryo and its proposed sister. The Thumb-
nail View of the tree provides the context of the full hierarchy. Finally, the Operation
Panel supports further control of the tool.

take more space and are harder to navigate in a wide tree, this mapping has thebenefit of establishing clear layers, which can then be navigated with the helpof the slider on the left of the hierarchy view. We compute the widths of the leafnodes based on their normalized volumes such that the biologists can directlysee the relative sizes of the cells’ volumes in the tree (D3). The icicle mappingthen also nicely reflects that the volume of a mother cell is roughly the sum ofthe volumes of its daughters in consideration that the potential volume loss isnot essential to biologists, and that all cells of a given level together always formthe whole embryo. We chose the vertical direction for the hierarchy layeringbecause the biologists are used to this layout.
The hierarchy view is tightly linked to the main 3D view on the left. In thelatter, we show the whole embryo at the chosen division time, i. e., the level se-lected in the (partial) hierarchy view on the left. A regular 3D representation hasthe problemof the dense packing of the embryo cells, which results in inner cellsbeing fully occluded by the outermost cell layer. To address this visibility issuewe offer two visibility management techniques : explosion views (e. g., [114, 191] ;see Figure 5.3–main 3D view) and layer peeling (e. g., [184] ; see Figure 5.5–3),
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Figure 5.4 – An illustration of our reasoning for how we designed the lineage hierarchytree representation, based on the traditional hand-written or (ASCII) text-based recordsused by the biologists.

both controllable through sliders. The 3D view also provides typical 3D naviga-tion interaction, including zoom, translation, and rotation to allow biologists toexplore the spatial character of the embryo.
We closely coupled both the 3D view and the hierarchy, not only throughcross-linked selections. When we select a given cell in either view, we not onlyselect it in the other as well but also show this cell and its currently assignedsister (if any) in a secondary 3D view on the top, the target and sister view thatshares the same camera orientation as the main view. Here we highlight the se-lected (target) cell in red and its assigned sister in its original color, whilewe showthe rest of the embryo’s cells transparently to illustrate the target and sister cell’relative positions in context. Unlike in themain view, in the target and sister viewwe always show all cells in a tightly packed configuration and do not apply anyexplosion. This way we allow the biologists to understand the combined shapeof the proposed cell match and make it easy for them to identify incorrect assi-gnments. We specifically decided to only provide a single target and sister view.Initially we considered showing just the target and sister cell, a view of the targetcell’s children without context, as well as a view of all direct neighbors of the tar-get cell. In a pilot study, however, we found that these views were confusing toour collaborator, and we settled on only showing the target and sister view as asecondary 3D view and moved some of the other functionality to be accessibleon demand (see below).
We use the same color mapping in all views, both the 3D views and the hie-rarchy. We initially color-code both views by spatial location [146], which we cal-culate based on the relative 3D positions of each cell’s center of mass within thewhole embryo, mapped to RGB. This mapping allows the users to clearly see iftwo cells are located close to each other, even in the abstract hierarchy view. Du-ring the later interaction we also offer color-coding by trust of the ML model, bythe shared area between two matched cells, and a random color mapping thatbiologists are used to from their existing tools and that allows them to easily seethe decomposition of the embryo into the cells of a given hierarchy level (D3).



94 Chapitre 5
Because the biologists can also use a top-down approach to establish thelineage (in addition to bottom-up), we need to represent both the top and thebottom section of the hierarchy at the same time—even if the tree has not beenfully specified. We thus split the hierarchy into a top tree and a bottom tree(D2). For the top tree, we start with the root, i. e., the single ovum cell. As newlayers are established top-down, we add them below the root. We cannot besure about the layer number for the top-down layers at the beginning, so wenamed them N, N-1, etc., until we complete the hierarchy. We know all cell ele-ments at the lowest level, so we can ensure that both representations correctlyreflect this containment relationship. To ensure smooth layer navigation, as longas the hierarchy is not completed we introduce an in-between section betweenthe top and the bottom tree marked by dots. We also add a corresponding layerentry to the hierarchy slider on the left, with newly established bottom-up layersbeing added directly below it and newly established top-down layers being ad-ded directly above it.Due to the exponential nature of cell division, the corresponding cell lineagetree can become very large horizontally very quickly, already for embryos withonly a few generations of development. We thus provided two means to copewith the resulting view limitations. First, we provide a slider on the top of thehierarchy to control the horizontal zoom, allowing the users to see the wholetree in one view or to zoom into details. For the latter case we can ensure thatthe respective labels of the cells (numbers in our case) are visible, yet a viewermay lose the context of what part of the hierarchy they are examining. We thusalso added a horizontal World-in-Miniature thumbnail view to make it easierto navigate the wide icicle plot hierarchy tree and which is often used in virtualreality (e. g., [180, 39]) and, more relevant to our case, in 2D video games (thenoften called “mini-map” ; e. g., [71]). This view, which we include below the hierar-chy view, always shows the whole hierarchy and highlights the subsection thatis currently visible in the detailed hierarchy view and facilitates navigation.Finally, most of the controls for the interaction (which we discuss in moredetail below) are then assembled in the operations panel. It also contains amenu to load new datasets or export results as well as instructions for usersabout our 3D interaction mappings.

5.4.2 Server-side Back-end
Our tool’s server-side takes care of data processing and analysis. Our da-tasets comprise the cells’ names (i. e., numeric labels) and mesh data for theirsurfaces. The experts create these datasets with dedicated tools (e. g., Avizo, Fiji[162]). In the back-end we use this input to build the necessary data structures tolater be able to construct the hierarchy. We also derive the needed information
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Figure 5.5 – Several interaction techniques in LineageD.
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such as the 3D cell locations (centers), neighbor counts and respective neighborlook-up tables, normalized cell volumes, normalized cell surfaces, and normali-zed shared areas between neighboring cells. After the completion of the lineage,the back-end also allows us to export the results in the tree data format neededby the biologists.An essential part of the back-end is the creation of the ML model (D4). Forthis purpose we also maintain a collection of 97 past (manual) cell lineage as-signments provided to us by the biologists. For these we also computed thedata-derived parameters mentioned above and used this data to train a neuralnetwork model to allow us to predict the lineage for future datasets. The clas-sifier computes a probability for all possible direct neighbors to be sister cells,and we then pick the one that has the highest chance. This reduces the numberof possible pairs, and we continue picking the pair with the highest probabilityuntil this probability falls below 50%. This prediction functionality can then beaccessed from the front-end.
5.4.3 Interaction Design

Our interactiondesign centers around theprocesses of proposing newmatchesof likely sister cells (manually and with the help of our neural network model)and the verification of whether these matches are correct. Both processes relyon abstract as well as 3D information, so our expert users have to constantlyswitch back and forth between the abstract hierarchy view and the spatial 3Dviews. Next, we describe how, in LineageD, we support the biologists both in thetop-down and the bottom-up lineage specification.For a new dataset we show all cells as blocks on the lowest hierarchy level onthe right, and in the 3D viewwe show the embryowith the cells colored based ontheir 3D location. Usually the first step of the biologists is to remove those cellsfrom the consideration that are part of the suspensor (i. e., those that connect theplant embryo with the rest of the seed) by selecting them in the 3D or hierarchyview and assigning them a respective label (Figure 5.5–1).With the top-down specification we offer a new functionality not supportedby the traditional tools. We take advantage of the fact that, for most embryos,the first few cell division generations happen in a predictable way—one that canstill be reconstructed from the geometric shape of the embryo and its cell de-composition, even at a later time. For this purpose biologists start to explorethe shape of the embryo in the 3D view, usually via rotations. To better see andunderstand the inner structure, they can also use the explosion functionality.Then they decide on the most likely initial division—often a rather straight sub-division between the existing cells. We then allow them to mark one half usinga spatial lasso selection [122] (Figure 5.5-2) to register the selection as the first
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subdivision, which can also be further refined.As they continue this top-down process, it is important to note that the in-teraction naturally relies on the selected level in the hierarchy. For example, tospecify the third generation N−2 (i. e., the second split), the experts first selectone of the daughters of the ovum in the hierarchy. This highlights all parts of theembryo that belong to this cell at the N−1 level in red, as if this was a single cell.Any potential explosion setting, however, applies to the level currently specifiedin the hierarchy just below; at the beginning this would be level 1. 1 The followinglasso operation on a subset of these cells then selects them for the next split ofonly the selected cell, in a context-aware fashion [216]. This stepwould then haveto be repeated for splitting the second cell of the N−1 level. To mark these fullyhuman-decided divisions, we display blue bars between the divided parent cellsand their children in the hierarchy tree Figure 5.3. Naturally, this top-down pro-cess only works for a few generations, but it provides valuable constraints bothfor a manual and for the ML-supported process that we describe next.For the bottom-up process we follow the biologists’ traditional work process,as illustrated in Figure 5.2. They would start to traverse all cells at the lowest le-vel and specify likely matches by examining each selected cell’s direct neighborsto find its most likely sister. To reduce this workload, we can now use our neu-ral network model and make ML-based predictions for the lineage. Initially wehad used this process to predict the entire lineage, but in pilot studies it quicklyturned out that this approach was not ideal. The experts disagreed with certainmappings, rendering the entire remainder of the path toward the root node ob-solete when they corrected the mistakes. We thus now restrict the classifier toonly predict the lowest non-specified hierarchy level (Figure 5.5-4).After such a ML prediction step, the biologists can traverse the newly foundpairings and either confirm or reject them (D4). To do that they can select adaughter cell in the hierarchy or 3D view, which shows it in a red highlight color,with the rest of the cells retaining their colors according to the chosen colorscale (Figure 5.5-5-left). In the target and sister view, we also show its currentlyassigned sister in color, while the rest is transparent. A single click on a mothercell 2 is similar, only then we highlight the whole mother in red and show nosister. With these techniques the experts can assess themother cell’s shape anddecide if it is plausible. To better understand the alternatives, the experts canalso double-click in either the hierarchy or the 3D view on a daughter cell, whichleads to the 3D view showing a focused view with only the direct neighborhood

1. If the ovum cell was selected instead, however, after a first top-down division specification,the explosion would only separate the two daughter cells of the ovum to emphasize this positionin the lineage tree.2. For performing such a selection in the 3D view one has to first select the correspondinghierarchy level in the hierarchy view, e. g., via the slider.
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of the selected cell (Figure 5.5-5-center), while the target and sister view thenonly shows the cell and its currently specified sister. Upon a further click on oneof the neighbors in themain 3D viewwe show this neighbor also in the target andsister view, along with a potentially assigned sister of the neighbor (Figure 5.5-5-right).With these different mechanisms to see detailed views, the biologists thenmake a decision about whether the pairing is plausible or not. If the biologistthen confirms a proposed mapping when a given mother cell is selected, wemark that pairing as confirmed by showing a green bar between the mothercell and its daughters in the hierarchy (Figure 5.3–right). If they disagree withthe pairing, we break it and, for the time being, treat the cells as non-dividingcells for the chosen hierarchy transition. They can be left as such or can be re-assigned. In the latter case, biologists select one cell, show its neighborhoodwitha double-click, and then pick one of the neighbors tomark it as the new sister. Todistinguish such human specifications from confirmed ML pairs, we mark themwith an orange bar in the hierarchy between the mother and its daughters.After examining all pairs of a given level and confirming or correcting them,the experts can then go on to predict the next level. We treat any pairing thathas not been explicitly confirmed as implicitly confirmed in that case, and alsomark it with a green bar. The process then continues until the whole hierarchyis specified, the top and bottom trees merge, and we can export the result. Thedetailed interaction process is illustrated in Figure 5.6.
5.4.4 Implementation Details

We implemented LineageD in JavaScript and Express.js (v. 4.17.1). For the front-end, we rely on D3 [21] to realize the hierarchy tree rendering and render theembryo in the 3D views with vtk.js (v. 19.0.4) [163]. We implemented the back-end in Node.js and usedMongoDB to create our database. We used TensorFlow’s(v. 2.8.0) Keras library to train the multi-layer sequential neural network modelofflinewith Python. We created two hidden layers with ReLU activation and adop-ted softmax for the final output layer to get the probability score, and the mo-del’s single-pair accuracy reaches approximately 94%. The raw data is producedby Avizo and contains the cells’ information including names, vertices, and tri-angles. We then parsed the raw shape data and set each neighboring pair asone record. For each pair, we extracted features for the training data based onthe recommendations by the biologists : the normalized distance between thecell pair, their normalized shared surface area, their neighbor counts, their nor-malized volumes, normalized surface area, and the directions of neighbors withtarget cells. With TensorFlow.js (v. 3.8.0), we used the trained model to predictassignments in the website back-end. For an embryo with 256 cells, such as one
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100 Chapitre 5
of our default datasets that we show in Figure 5.3, there are more than one mil-lion vertices with more than five million triangles. Depending on the networkspeed when connecting to the Web tool, typical datasets can thus be loaded inless than aminute and can be rendered at interactive speeds (approx. 20 fps forthe 256-cell example on a macOS with AMD Radeon Pro and Intel UHD Graphics630).

5.5 EMPIRICAL CASE STUDY EVALUATION

While we developed our overall approach and our LineageD tool based onconversations with our expert collaborator, we were also interested in feed-back from independent plant biologists, by whom we envisioned our tool to beused. For this purpose it does not make much sense to run a quantitative ex-periment with many participants because, first, we do not have a reasonablealternative technique to which to compare our approach and, second, we wouldnot find enough participants skilled in the traditional lineage process to drawmeaningful conclusions. Instead we conducted case study evaluations [96] withexpert participants, as it has been done in the past in the visualization field (e. g.,[123, 97, 88, 205]). The benefit of this approach is that experts are trained in thetraditional cell lineage process and can thus assess our new tool based on theirexperience.In this section we present the overall experimental setup, our observations,and the user feedback from the biologists interacting with the system. The spe-cific embryo we used in the study was a real Arabidopsis thaliana dataset provi-ded by our collaborators, which comprises 64 cells (not counting the cells of thesuspensor). Datasets that are needed to be analyzed in practice typically rangefrom several tens of cells to several hundreds of cells, so this example data-set is realistic (and still manageable in our study) as well as already challengingto analyze for biologists, and they could compare this experience to their pastwork. Thewhole investigationwas approved by our institution’s (Inria) ethical re-view board (AVIS n° 2021-46) and we pre-registered the study setup and design(osf.io/rhyg4).
5.5.1 Participants

We recruited 5 expert biologists (2 females, 3 males, ages 31–54 years, mean43.4 years) via social networking and mailing lists, denoted as P1–P5. We offe-red prospective biologists free access to our tool as compensation. Before thestudy, we asked them to fill in a consent form, a research media records release

https://osf.io/rhyg4/
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form, and a background and demographic data collection form. All of the par-ticipants had a PhD degree and have been doing post-PhD research on plantbiology or related fields for 2.5–25 years (mean : 14.1 years, sd : 9.4 years, me-dian : 12 years). Two of them were experts in plant biology, while the other onesfocus on computational biology, biomathematics, or bio-images processing. Weconducted our study via videoconferencing due to the COVID19 limitations.
5.5.2 Procedure

Our case study experiment consisted of two parts : first we conducted an ob-servational study of the experts using our tool with the example data, followedby a survey and a semi-structured interview.
Observational study. We conducted the experiment with each participantindividually. We began by presenting a brief introduction about the features ofLineageD. Next, we asked the participant to open the website on Chrome usingthe credentials we provided and to share their screen. We then briefly explainedto them the components of LineageD and introduced the main interaction me-chanisms, as explained in section 5.4. Then the participant could freely exploreand establish the lineage for the 64-cell dataset. We used the think-aloud pro-tocol and with the participant’s permission, we recorded the screen and audioduring the process for our later analysis.
Survey and semi-structured interview. To better understand the usabi-lity of the tool and avenues for future improvement, we distributed a question-naire which was designed based on the System Usability Scale (SUS) [80]. Wealso conducted a semi-structured post-study interview to understand our ex-pert participants’ usage experience and insights they may have gained.

5.5.3 Study results
A whole participant session took 60 to 100 minutes. All biologists reportedthat the 64-cell embryo was challenging for them to assign, and none of themfinished the complete hierarchy history reconstruction within the study session.This was also not to be expected since they had to learn and get used to thenew tool and its interaction concept first as well as answer our questions in theexperiment. All of the participants, however, said that they plan to work with thetool more after the study and try it in practice.
Learning the Functionality. We found that three of our participating ex-perts traditionally used 2D slice-based interaction (i. e., in TreeJ) to navigate theembryo dataset and tomark sister cells, as opposed to using 3D interaction witha surface-based dataset that we offer. This means that participants first had toget used to the fundamental 3D interaction techniques (rotation, translation,
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scaling) in projected 3D views. They also traditionally used text-based node-linkrepresentations of the hierarchy (see Figure 2.7), so they had to get used to theicicle plot representation we used. Web-based implementations as we used forLineageD were also new to one participant : P1 thought that the tool is quite dif-ferent from the traditional software he is using. He stated that they generallyuse desktop software, but he believes that with sufficient time to play with it,most people could learn the new tool quickly. A final aspect was that P3 saidthat it was difficult for her to learn the actions to expect from the system basedon specific input, such as what part of the tree to which the prediction applied.Overall, these observationsmeant that the training phase in our experimentwasrelatively long for four out of the five participants, but we expect that with moretraining, they can get used to the new interaction concepts.

Interaction Design. After the training we observed how the experts freelyspecified the lineage of the cells in the embryo.While they all used different stra-tegies, they all heavily relied on both the 2D abstract tree and the 3D views. Fourof themprimarily used the hierarchy view to select the cells for checking the pre-dicted assignments. They used the 3D view only as a source to understand thecells’ shapes and their locations within the embryo, rather than to select the cellsin this view. P2, in contrast, used the hierarchy and the 3D views evenly to selectthe cells to check. P1 and P4 explicitly stated that they appreciated the linkingbetween the tree and 3D views. Moreover, P2, P4, and P5 specifically expressedthat the approach to creating the hierarchy tree in a top-down fashion was veryinteresting to them—as they do not have this ability with their traditional tools.For example, P4 suggested that, for large embryos, biologists could specify thelineage separately based on the top-down divisions or look only at a subset ofthe top tree as a form of grouping to reduce the complexity. In addition, P2 andP4mentioned that the peeling and explosion functions have a great potential tohelp themwith their decisionmaking. Overall, P1, P2, and P4 stated that using thetool has the potential to reduce assigning time and possible errors, despite re-quiring about double the clicks as the traditional approach according to P1. Thisapplies especially to embryos with more than 20 cells because it is very difficultto do it manually. P2 also believed that LineageD could improve his confidencein assignments.
Interface and Visuals. All participants stated that they appreciated the vi-sual representations, both 3D and 2D. They also liked, for example, the mecha-nisms for encoding the cell volumes in block widths and the coloring by sharedsurfaces or location. Overall, P1 considered LineageDmuch more powerful thanany tool that they currently have, especially in selecting cells from both 3D en-vironments and the tree. P2 specifically appreciated the target and sister viewthat shows the proposed pairing as well as the transparent context. He liked
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the representations and interaction design of the tree, but also thought it maytake time for biologists because they are used to node-link trees. He also addedthat some other functionality may need to be adjusted further to the mentalconcepts of the biologists, but thinks this is a normal process that he would ex-pect for most tools. Overall, all comments about the design were on the positiveside. For instance, P3 thought that all individual components are needed andeasy to use and she liked the hover effects in the hierarchy tree. P4 was happyto see that the tool is versatile, because he could use peeling and explosion in-dependently. P5, finally, liked the hierarchy tree and thought all the options aregood.

Understanding the Embryo’s Development.We also asked biologists whe-ther the tool helps them to better understand the embryo’s development. Allparticipants agreed that this is the case. P1 envisioned that, with the hierarchytree, he could perform quantification, data analysis, and create models becausewe show a lot of additional information about or related to the lineage. P2 wasexcited about the possible insights and wanted to try other datasets with thetool, such as animal embryos. P3 thought that some visualizations, like the targetand sister view,make it easy for her to observe the development of the embryo’sorganization over time. P4 said he better perceived certain features of the em-bryo with the information we presented in the tool, such as the cells’ volumesand shared surfaces. P5, finally, said that 3D views are essential for getting agood understanding of the embryo.
Machine Learning Experience. Next, we inquired whether our participantsthink that the automatic assignment based onmachine learning helps themwiththe lineage process. P1 and P4 thought they cannot fully evaluate it becausethe experience time was not enough for assigning big embryos. Nonetheless,P1 and P5 reported that the ML model was essential and that it worked well forsmall embryos. P2 thought the machine learning can generally help a lot, but hewould prefer the model to predict the lineage from both directions (top-downandbottom-up), rather than onedirection here (bottom-up). P2 andP4 alsowerecurious about how the model actually made the specific assignments. P3, inter-estingly, said that she expects the model to help even more for larger embryoswithmore cells. She was, however, confused about whether the prediction func-tion is applied to the top-down or bottom-up approach, and like P2 also wanteda model to predict the top tree. She also recommended to pre-visualize the mo-del predictions for biologists to choose from before integrating them into thelineage tree. P3 and P4 were not sure whether the time needed to check andcorrect the ML predictions would ultimately be less than manually specifyingthe lineage.
Improvements. We asked the experts what interactions or elements they
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missed in the interface. P1 and P4 would like to have functions to label or cate-gorize the cells so that they would have more features to examine and analyzethe situation. P1 and P3 also missed a function to temporarily hide selected cellsto get access to the inner cells and to distinguish checked pairs from unche-cked ones. Also, P3 wanted the ability to explicitly highlight the shared surfacebetween two neighboring cells to help her to decide between two possible cellpairings. The System Usability Scale rating we received for LineageD was 68 onaverage, which is exactly the average SUS score [129]. This means that we needto improve the overall usability of our tool, but this is to be expected for a re-search prototype. We will use the specific feedback that we received during thestudy to make these improvements.

5.6 DISCUSSION

Based on the responses of our participants we can now summarize and re-flect on the main take-aways from our work.
Influence of past interaction habits of experts. Our specific applicationdomain required us to provide both abstract 2D and spatial 3D representations :the cell lineage hierarchy that the experts constructed along with data such ascell volumes or area of shared surfaces on the one side and the actual shapes ofthe 3D cells that make up the embryo on the other side. Interestingly, it turnedout that most experts were not yet experienced with working with (projected)3D representations, instead they used 2D slices from the segmentedmicroscopydata to interactively mark cells. In addition, traditionally they do not use the hie-rarchy tree as an interaction proxy, and it only serves as the result of the lineagespecification (also see Figure 2.4). This fact may be the reason that many of ourexperts were reluctant to work directly in the 3D view and, instead, primarily in-teracted with the abstract hierarchy as this somewhat resembled a version oftheir previous slice-based view (yet stripped from its spatial properties). Morelongitudinal studies will be needed to see if experts can learn the benefits of in-teracting in 3D space, and to take full advantage of the linked 2D and 3D views.Our observations, however, make this a likely development as some of our par-ticipants already understood the advantages of our 3D visibility techniques suchas explosion and peeling.
Relianceonboth2Dand3D representations.Our specific application exem-plifies a case where both 3D spatial and abstract information and, in particular,the tight connection between both is essential to solve a task. Nonetheless, bothtypes of representations show different aspects. Only the tree view can show in-heritance and, thus, only here can the biologists specify which cell division time
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stage they want to see. At the same time, only the 3D view can show aspectssuch as proposed sisters in a spatial context or the specific shape of a sharedsurface between two cells. Yet only together they provide enough informationfor the biologists to be able to solve their task. Moreover, unlike in many exis-ting 3D interfaces, the navigation of the level in the abstract hierarchy actuallyhas an impact on the shape composition itself (i. e., on the decomposition of theembryo into cells at the different hierarchy levels). In our case the actual compo-sitional information is non-existent at the beginning and incomplete throughoutthe process, so the interaction effects change as further parts of the hierarchyare established. It is also interesting to note that, in both views, it is difficult tosee all information for realistic datasets. In the 3D view we thus need to relyon techniques such as explosion and peeling, while in the 2D view we need theworld-in-miniature thumbnail view.

Complexity of cell lineage. According to one of our participants, it is alreadyvery difficult for biologists to establish the lineage for embryos starting at a fewtens of cells, especially when they want to reconstruct the hierarchy for seve-ral generations (i. e., from the observed generation to the very beginning of thedivision process). Our novel support of also top-down specification made thisprocess easier for the experts, and all our participants took advantage of bothways of establishing the lineage. From their responses it seems that the top-down process makes it easier for them to control their interactions and havemore confidence in the results, in particular since they deal with incomplete in-formation most of the time. Nonetheless, further interactive assistance such asbeing able to focus and restrict operations (including theML suggestions) to onlysubsets of the whole embryo, as suggested by some participants, maymake theprocess even easier for them.

Generalization. Even though we focused on plant embryos, there is no rea-son that our findings could not also apply in a broader scope. In particular, bio-logists that study other kingdoms of life such as animals or fungi may similarlyprofit fromourwork directly. Themost closely related pastwork on the depictionof parts may be research on the creation of assembly instructions [1, 114, 191, 76],even though the actual interactive control of such depictionwas typically not dis-cussed in much detail in such work. Other past work [102] specifically discussesthe navigation of 3D data through hierarchy interaction, yet in our work we ac-tually change the composition of the 3D scene through this input. We thus thinkthat our interactive combination of abstract hierarchy and spatial 3D views caninform future visualization tools that need to support such inter-dependencies.
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5.7 LIMITATIONS AND FUTURE WORK

Both our specific realization of LineageD and our empirical evaluation havesome limitations that we will discuss next. We only focus on major issues, whileminor usability issues as highlighted by our study naturally also need to be ad-dressed. First, the actual shape of the cells depicted in the 3D views is a resultof an approximative surface reconstruction from the segmentation of the origi-nal volumetric data. We only relied on the shapes on the lowest level and mer-ged them for higher stages in the hierarchy. It would be better to actually applyany new hierarchy data to the segmentation masks and then re-extract the cellshapes at the coarser levels, which we also plan to do in the future. Second, forour machine learning support we adopted a neural network model to providepredictions for biologists to interact with. Other machine learning models suchas reinforcement learning agents, however, could also work in our scenario andwe are interested in comparing different models in the future. Also, we are in-terested in improving the interactions with the model, like sorting the pairs withmodel confidence and enabling users to pick to decide. As suggested by the bio-logists, we could also look into showing the reasons for the suggestions of theML model yet we are skeptical if this would lead to a helpful representation—atleast for our current neural networkmodel. Instead, amore promisingway couldbe to take the biologists’ manual corrections into account (which we currently donot do) and to propose and visualize alternative pairings, for the experts to pickfrom.
Our relatively short case study evaluation is also limited. First, we largely didnot get past the initial learning curve for the experts. While this also showedsome interesting aspects about their interaction habits, it would be very inter-esting to conduct a longer-term evaluation with our participants and see howtheir interaction changes over time. Such a longitudinal evaluation would alsoallow us to better understand the challenges and benefits of the 2D-plus-3D in-terface on a deeper level, leading to better design guidelines for future tools.Second, we also only used data of a single species in the experiment, and alonger-term evaluation would allow us to use a variety of embryo tissues andeven non-standard cases such as the scans of mutant embryos—a current re-search topic in the domain.
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5.8 CONCLUSION

Having developed LineageD together with a domain collaborator, we weresurprised to see that most domain experts did not have even basic visual re-presentations such as tree representations [165] as interactive elements in theirtraditional tools. A similar situation happens in the top-down and bottom-up ap-proach where biologists spend reasonable amount of time to get familiar withthe interaction. Moreover, when we provided them with this tool along with astandard 3D representation of their data, they primarily interacted in the 2Dabstracted hierarchy as opposed to the 3D spatial view that showed the rele-vant data (cells within the context of the embryo)—almost like an extension oftheir previous 2D interaction on segmentation slices. So one of the main resultsof our work seems to be that, as a community, we may need to spend moreeffort on studying how established representations (from our perspective) canactually be transferred to tools in our application domains. We plan to continueour work with the biologists to do just that, and to also see how LineageD canevolve over a longer time to better suit the needs of the biologists.Another interesting takeaway is that we may need to look further into waysthat machine learning can be integrated into our tools. It is not necessarily es-sential to get the best or most correct prediction from amodel, but instead howwe can provide means to verify or correct algorithmic suggestions, to speed upor make less tedious otherwise manual processes. For this approach it is notneeded to completely understand why anML techniquemade a specific sugges-tion, but instead to accept that ML is not always perfect and to provide meansto quickly analyze results and adjust them.
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As we found in the evaluation study of chapitre 5, a single ML model maymakemistakes, which could result in biologists losing confidence inML.We thenplanned to create multiple ML models and combine their prediction results toprovide comparably reasonable predictions. Such design requires visualizationto clearly demonstrate the detailed ML predictions from different models andalso an overview of all predictions. Thus, based on LineageD, we created Linea-geD+ to enhance the ML support with visualization in solving the cell lineageproblem and tried to answer RQ4 from chapitre 1.
We visualize the predictions ofmultiplemachine learningmodels to help bio-logists as they interactively make decisions about cell lineage—the developmentof a (plant) embryo from a single ovum cell. Based on a confocal microscopy da-taset, traditionally biologistsmanually constructed the cell lineage, starting from
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this observation and reasoning backward in time to establish their inheritance.To speed up this tedious process, we make use of machine learning (ML) mo-dels trained on a database of manually established cell lineages to assist thebiologist in cell assignment. Most biologists, however, are not familiar with ML,nor is it clear to themwhich model best predicts the embryo’s development. Wethus have developed a visualization system that is designed to support biolo-gists in exploring and comparing ML models, checking the model predictions,detecting possible ML model mistakes, and deciding on the most likely embryodevelopment. To evaluate our proposed system, we deployed our interface withsix biologists in an observational study. Our results show that the visual repre-sentations of machine learning are easily understandable, and our LineageD+can effectively improve the assigning efficiency, reducing the time it takes to as-sign cell lineage and improving biologists’ confidence in the ML models.

6.1 INTRODUCTION

In biology, a plant cell (the parent) normally divides into two daughter (or sis-
ter) cells over time, and an embryo grows to eventually comprise hundreds ofcells. To explore the history of an embryo’s development, biologists utilize a 3Dmicroscopy snapshot and assign sister relationships for every cell in the embryo.This is done backward across a series of snapshots, where biologists iterativelyreason backward in time to arrive at the previous cell division stage. The data-sets used in this process are extremely imbalanced because one cell can onlyhave one correct sister cell, yet the cell usually has a dozen or more neighbors.As such, the manual assignment of the cell lineage for embryos of realistic sizes(several hundreds of cells) is extremely time-consuming and tedious. However,with the help of machine learning (ML), this procedure can bemade significantlyeasier as it is a binary classification problem—two neighboring cells are sistersor not. Different ML classifiers, however, have different performances, so someclassifiers may provide the correct prediction for a given pair while others maynot. Unfortunately, there is no guarantee that the samemodel will perform cor-rectly (or incorrectly) for another cell pair at another division stage. Ideally, thebiologist should train multiple models and explore which model or groups ofmodels are most reliable for a given assignment.In the visualization community, researchers have focused on finding and trai-ning an “optimal” model to solve a given domain problem [188, 118]. Visualizationtools have beendeveloped to illustrate all steps of themachine learning pipeline,including data processing, training, and evaluation (e. g., [158]). However, evenhighly optimized models with high accuracy still have the potential to provide
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wrong predictions. In our cell lineage scenario, if a model wrongly predicts theassignments in the first few generations, the predictions for the following gene-rations are almost certainly incorrect as well. Thus, biologists cannot exclusivelyrely on a completely automatic ML process. Instead, a human-AI teaming ap-proach is preferred where experts can observe, control and update the labelingprocess. However, little work has concentrated on enhancing this human-AI Tea-
ming 1 to assist experts in the decision-making process rather than focus theirefforts on improving a given model’s performance. To fill this gap, we visuallyrepresent the different ML predictions to assist the biologists, allowing them tobetter understand the classifiers and enabling them to more efficiently derivethe correct lineage.

We collaborated with plant biologists, collected 93 embryo datasets withma-nually specified lineage, and extracted 47,132 cell division records with 12 fea-tures. We trained five MLmodels with this data : support-vector-machine (SVM),random forest, k-nearest neighbors (KNN), neural network, and Gaussian naïveBayes (ordered in decreasing cross-validation accuracy rates) as shown in Fi-gure 6.1(a). To help the experts in comparing these models, we provide themwith a prediction overview of every cell in the hierarchical tree along with a de-tailed model view for biologists (Figure 6.1(b, c)). We sorted the hierarchical treeby the models’ overall confidence and support similarity pattern detection fortarget cells such that biologists can easily find possible mistakes. In addition, wevisualize each model’s accuracy rate and recall via cross-validation and also vi-sualize their model weights. We use the user-adjust model weight as a proxy forthe user’s trust in each model. Moreover, we allow the biologists to select newfeatures to train new or updated models online. Finally, we conducted an ob-servational study with six biologists, and our results show that participants un-derstand and appreciate the visualization design of multiple machine learningmodels, and they can check and correct the predictions effectively.
Our contributions include the following : (1) a visualization system to assistbiologists in effectively establishing cell lineage through human-AI teaming ; (2) anovel visual representation to compare multiple ML models and help users de-tect possible model mistakes for improved decision-making ; and (3) operationsto predict cell sisters, assess the prediction results, and interactively revise theassignments.

1. We use the term human-AI Teaming in reference to systems whose machine intelligencemodules can be controlled as well as potentially overruled by the human users based on theirprofessional experience. For more discussion on this point see section 6.6.
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a

b c

Figure 6.1 – The visualization design for our multiple machine learning models. (a) Theoverview of the model performance. Users can customize the features to train models.Also, they can change the model weights via the panel. (b) The detailed prediction of aspecific cell (cell 64 as an example in this figure). (c) The model results of the target cell(cell 64) and the interested proposed sister cell (cell 37) being sisters.

6.2 RELATED WORK

In our work we deal with improving the interaction of domain experts withmultiple machine learning models rather than training better models. In thissection, we summarize the relevant literature with respect to the visualizationof hierarchical information in biology, cell lineage reconstruction in biology, andthe visualization of ML model output.
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6.2.1 Visualization of Hierarchical Information in Biology

Numerous general visualization approaches focus on building different kindsof hierarchy representations [166, 165]. Besides showing the necessary hierar-chical information, biologists usually need to add additional information to thecurrent tree design, e. g., time [55], relative object sizes [84], etc. In our scenariowe also need to add the cells’ volumes andmodel predictions for each cell in thetree. Previous work has dealt with similar requirements, and researchers havecreated various dedicated visual representations for bioinformatics data. Eisenet al. [55], for example, designed a visual representation with colored nodes torepresent DNA data that relies on a basic cluster dendrogram with additionaltemporal data, which resulted in a representation that resembles a heatmap.Based on this design, the Hierarchical Clustering Explorer [169] added scatter-grams to visualize DNA gene samples clustering under different conditions, andprovides an overview of different clustering results and detailed informationwith linked views. These examples inspired us to augment a traditional hierarchyview with other representation techniques such as bar charts.Along with 2D representations, researchers also investigated approaches tovisualize biological data using 3D views. Arena3D [148], for instance, presentsnetwork data both on the 2D graph and in the 3D space. This combination helpsusers in solving the overlapping and intersection problems that are inherent to3D views when the entities reach the thousands. We also use such a combina-tion of 2D and 3D views, but, unlike this and other similar work, in our applica-tion the detailed predictions for individual cells—usually nodes or points in thediagram—are as important as the overview of the results. We employ a tradi-tional 2D icicle plot design for visualizing our hierarchical tree and combine thiswith a 3D view of the actual embryo shape and its cells that can be viewed forany given hierarchy level.
6.2.2 Cell Lineage Reconstruction

This visualization of hierarchies can help with predicting the possible deve-lopments of specific cells [75] in biology. In Salvador et al.’s [159] CeLaVi tool,for example, the assigned cell lineage is visualized in a hierarchical tree, and thecells’ positions are indicated with a circle in a 3D environment. The two views areclosely connected so that biologists can target cells from either the tree or the3D view. In addition, CeLaVi allows researchers to highlight a specific gene andvisualize the overall gene expression pattern in a heatmap. Though it supportsthe efficient analysis of the cell lineage, the tool does not support the building orthe adjustment of the hierarchical tree, which is imported from static file. Also,the 3D view only contains the cells’ positions, without the cell shapes or shared
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surfaces. The lineage hierarchy itself, traditionally, is mostly being establishedmanually with tools such as OsiriX [157], Fiji ImageJ [162], and the TreeJ pluginfor Fiji, ImageJ, but these tools typically rely on 2D slices. Because the hierarchyresulted from numerous cell divisions and each cell division orientation is deci-ded by the position and angle of mitotic spindle [111], researchers have exploreddiverse machine learning models to predict the division planes [133, 124]. Thesepredictionmethods, in the past, have been based on themicroscopy slices [133] ;howver, theML requires specifically prepared training data and the organizationof results is difficult. Therefore, we work with the 3Dmodel instead of the imagedata and use extracted numerical information for our ML training.
6.2.3 Visualization of ML Model Output

Such ML prediction processes can also be assisted by visualization. For ins-tance, researchers have enhanced the interpretability of ML models [28, 158],with problems ranging from clustering [104] to classification [188]. Visual supportcan assist practitioners to better understand where, why, and how ML modelsmake predictions [158]. Such work involves visualizing the steps of model gene-ration as well as the actual prediction, including data preparation [183], modeltraining [117, 188, 118], results evaluation [37], and model comparison [104].In our case, however, biologists are most interested in the final results of themodel predictions—the final cell lineage hierarchy—rather than the ML modelgeneration. Thus, we focus on visualization of the model output. Prior work invisualizing model output focus on illustrating the results and comparing pre-dictions. For evaluating ML model results, designers use different representa-tions depending on the prediction type, such as stacked bar charts to representcounts of data points in a cluster [104], scatter plots to show classification results[89], and histograms for visualizing perplexity [149]. Inspired by these represen-tations, we adopted the hierarchical tree to represent an embryo’s developmenthistory and we enhance this with a variety of view to show the predicted celllineage. Prior work in interactive machine learning uses people’s feedback tore-train the ML model to get better results [176] or to pick the optimal modelamong multiple models [183]—approaches that we do not adopt. EMA propo-sed by Cashman et al. [31], for instance, is a process that asks people to exploredifferent models and to select their preferred ones. Also, Gil et al. [72] proposedhuman-guided machine learning (HGML) to encourage domain experts to fullymake use of relevant knowledge in getting amodel with high quality, even if theyhave no experience in ML. These examples provided us with good examples ofhow to help biologists to understand howmodels perform and how to enhancetheir overall experience : we need to visualize the properties and performanceof the different models. However, in our work, we focus on the comparison bet-
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ween models, rather than the selection of a single model or on improving mo-dels, as there is a limited amount of manually assigned datasets to train the celllineage models. As such, model optimization is not possible at this stage, par-tially because theremay even be disagreements between experts on the correctlineage.We also focus our system design on enhancing trust between the biologistsand themachine learningmodels. Previous work has shown that interaction canbe critical in establishing people’s trust in machine learning models. Dietvorst etal. [48] showed that people will likely trust models more if the system allowsthem to disagree with some of the predictions. Such trust could establish peo-ple’s beliefs and their willingness to use the system and complete specific tasks[174]. When interacting withmultiple models, the examination of various predic-tions and being able to decide on which model to trust are also types of inter-action to control model predictions. Thus, it is essential for biologists to interactwith the prediction results, especially when they have no experience in dealingwith the ML models. As previously stated, it is impossible to produce a singleideal model for cell lineage classification. To overcome this, we produce mul-tiple machine learning models for biologists to compare. Interaction methodsusually include the use of a pre-designed control panel [169] and the direct in-teraction with the visualization itself [148]. Different from the aforementionedwork, our tool provides linked views of both the 3D environment and 2D panel,both of which are needed to determine cell lineage and asses the ML decisions.

6.3 SYSTEM DESIGN

Based on this background, we set out to support our collaborators in theirwork with a system that uses visualization to allow them to interpret theML pre-dictions for their cell lineage tasks. In this Section, we detail the design processof the LineageD+ tool.
6.3.1 Design Considerations

Based on discussions with our collaborator in biology, we set a number ofdesign goals for the new system. First, we want to take the biologists’ tradi-
tional work process into account and support them in getting fully involved.Biologists usually do not have experience in dealing with machine learning mo-dels, and they do not care about the details of such models. Instead, they areconcerned about how much a model can help them with making the assign-ments. Even though they do not care about the details behind the models, en-
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hancing their control over the models, such as selecting customized features,could help us to increase their involvement and establish usage confidence. Assuch, they need intuitive and efficient interactions to detect wrongly-paired cellsand correct them if necessary.As indicated in sous-section 6.2.3, the lack of a sufficient amount of trainingdata prevents us from following the ideal approach, which would be to establishan optimal ML model. Furthermore, even experts can have difficulties decidingthe right sister for a specific cell, and any given manual lineage solution is notnecessarily unique. While, in the future, more research into ML support for celllineage may produce such an optimal model, our focus is on trainingmultiple
models such that biologists can compare their predictions and decide on whichmodel to use in a given assignment. Our visualization and interaction designshould help biologists to compare the different ML models and make informeddecisions.Additionally, the fact that the cell lineage is deducted backward in time fromasingle stage of the plant embryo’s development means that the process is inhe-
rently uncertain. Also, as just noted, even experts sometimes come up withvarious hierarchies for the same dataset that differ in details. The manually-assigned embryos we received from the biologists for generating the trainingdatasets range from 2-cell embryos to 256-cell embryos, covering a wide rangein the development history. Overall we had access to only 93 datasets in totaland this limited amount of samples adds to the uncertainty in the data. So theapplication of ML will inherently also have uncertainty, and it is essential to re-port this information. For example, one model may predict one pairing, whileanother model predicts another pairing. Thus, the user may have several op-tions for selecting cell lineage, or even none at all. Our goal is to showcase themodels’ confidence in their predictions to allow the biologists to understand theuncertainty.Our final major consideration is that we need to give biologists guidance on
the variety of ML predictions at a local level for each proposed pairing. It doesnot make sense to show them one hierarchical tree per ML model as this wouldoverwhelm them. Instead, it makes more sense to show them a single hierarchy(level) based on the most likely prediction, and then to show them the modeldisagreement for each cell or cell pairing. This local presentation of differencesof the ML predictions should augment the global comparison of the differentmodels.
6.3.2 ML Features, Model Training, and Prediction

To determine the features to use for ML, we asked our collaborators aboutwhich properties they refer to when they decide on which cells they assign as
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sisters. We also referred to universal division rules as described in the litera-ture [150, 18]. Finally, we decided to take each pairing in the manually assigneddatasets as a record to be able to produce our training data. Based on theseconsiderations, we extracted 8 properties with 12 features in total from thesecell pairings as follows :
(1) the normalized distance between two neighboring cells, computed from theirrespective centers (mean vertex positions),
(2) the angle between the line that connects both centers and the weighted ave-rage normal of the shared surface,
(3) the number of direct neighbors of each of the two cells (i. e., two features asthe value for the paired cell is independent),
(4) the ratio of the volumes between the two paired cells,
(5) the ratio of the surface area between the two paired cells,
(6) the ratio of the area of the shared surface to the surface of each cell (2 fea-tures),
(7) the layer count from the surface of the embryo in which each of the two cellsare located (2 features), and
(8) the generation of a cell in the division process along with the total cell count inthis generation (2 features).

For the first property we normalize all distances between adjacent cells in ageneration to the interval [0, 1], 0 being the minimum distance and 1 being themaximum. This property encodes how close two sister cells are as comparedwith other adjacent pairs in the same generation. With the second featurewe en-code the orientation of the shared surface with respect to the centers of bothsister cells, and pairings with low angles are more likely to be sisters than thosewith higher angles—as confirmed by our collaborators. As we show schemati-cally in Figure 6.2, we compute the lines that connect both centers of a potentialpairing and then compute the angle of this line to the weighted average normalof the shared surface (Figure 6.2(b)). For the seventh property we first classify allsurface cells as layer 1 and others as internal cells.We then ignore all surface cellsand iterate the algorithm, marking the next layer as layer 2, etc. The reason forthis layer marking is that there are, in fact, two types of cell divisions, periclinaland anticlinal. In periclinal division, cells divide into two in a row, while cells withanticlinal division divide into two columns of cells. Younger embryos usually di-vide periclinally, while anticlinal division usually produces cells with new functio-nality. We capture this feature through the layer property, along with the eighth
property, the generation information.
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Figure 6.2 – Illustration of (a) the first two stages of cell division and (b, c) the angleswe used in our ML training to identify likely sisters (illustrated in 2D for clarity). Here,
angle2 is bigger than angle1, which means that cell2 is more likely to be a sister of cell1,compared to cell4.

We used these 8 properties to pre-train our ML models using all 12 features.In addition, we allow the biologists to customize the feature selection and totrain new models with only a subset of features if they desire. LineageDsup-ports 5 different machine learning techniques : support-vector-machines (SVM),random forest [22], k-nearest neighbors (KNN; we used k= 5), artificial neuralnetwork, and Gaussian naïve Bayes. Based on the datasets, we picked supervi-sedmachine learning classifiers which are applicable to train and predict online.In this way, users could directly re-train the model locally without setting up thecorresponding environment. Models from other families, such as XGBoost [35],could also potentially provide different results. We excluded these, however, be-cause either they require external package installation (e. g., sdk), making the
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website less accessible, or they do not support online real-time training.

To train our models, we treat the cell lineage prediction problem as a clas-sification problem. This means that the ML should predict, for a given potentialpairing, whether these neighboring cells are, in fact, sisters or not. We use ourmanually specified lineage datasets and extract, for each generation in this data,all potential cell pairings of neighboring cells in a given generation and classifythem either as a correct sister pairing or as an incorrect paring. This way, wecapture both positive and negative targets from our input data. In total, we had47,132 records with 43,392 negative targets and 3,740 positive ones. We had a lotmore negative targets than positive targets as each cell has many direct neigh-bors but only a single correct sister. To solve this issue of our highly imbalancedtraining data, we use randomly over-sampling and under-sampling [139]. Finally,to analyze the stability of themodels, we used a k-fold cross-validation approach(k= 50) and derived eachmodel’s accuracy rate and recall value, as shown in Ta-bleau 6.1.
Table 6.1 – The overall accuracy rate and recall value for the five models usingthe cross-validation approach.

model randomforest SVM KNN neuralnetwork Bayesian
accuracy rate 94.24 94.23 93.42 93.30 92.07
recall 44.20 60.96 52.37 67.44 84.22

For our actual prediction of a new hierarchy level, 2 we first use all five mo-dels independently to predict all possible sister cells for any given cell. Then, foreach positive prediction, we weight the prediction by the corresponding model
accuracy. We also weight it with a customizable model weight to allow biologiststo control the influence of each model (1 by default). Thus, for each proposedpair, we can get the average prediction across the five models. We then sort allpairs by their probabilities and filter those with a probability value lower than0.4. This means that we only consider those pairs that at least twomodels agreeon. There are cases, however, when cell A has the most likely sister cell B, whilefor cell B the most likely sister cell is another cell C. In these situations, we sumup the probabilities of these two pairs separately for each child cell and thenpick the pair with higher probability. In this way every cell can be marked with acomparatively most likely sister.

2. We only predict one level at a time as we rely on user feedback to correct this prediction,as a wrong prediction would invalidate any further hierarchy levels [84].
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Figure 6.3 – For each quarter (here we take the quarter Cell N-8 as an example), wepredicted the new level with the quarter constraints and sorted the predictions basedon the overall confidence of models from left to right. As the image shows, the left-mostpair has multiple possible sisters for both affected cells. The position of a cell in thesubtree and the color of the bar indicate the overall certainty of prediction. The parentcell 82 for two children cells 14 and 8, for example, is the least certain prediction asit is placed left-most in the subtree N-8 (i. e., needs to be processed first) and the barbelow the parent is almost black, whereas higher certainties would be indicated with agreenish color. For the cell 83, the ML models are confident about assigning cell 23 andcell 9 as sisters. Also, from the figure, we observe that the MLmodels predict cell 19 andcell 31 to have no sister cell in the current level.

6.3.3 Visualization Design
Based on these design considerations and our ML setup, we created our Li-neageD tool with a particular emphasis on three aspects : the visualization ofML model parameters, features to support mistake detection, and interactivedecision making to improve the biologists’ workflow.

Visualization of ML prediction data

The multi-model prediction process described in sous-section 6.3.2 allowsus to produce a single (partial, bottom-up) hierarchy similar to the previous one-model approach [84]—which can be shown to experts in an icicle plot. Ourmulti-model prediction, however, provides users with more information about eachpairing and the overall model parameters.We summarize the model predictions from the five models and visualizedthem in stacked bar charts that shows the prediction for each cell (Figure 6.3),adjusted bymodelweight.We sort the bar charts descending from top to bottom
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so viewers can focus more on the most likely predictions. In Figure 6.3, the ver-tical stacked bar chart of cell 9 has three parts and an additional gray area. Thisrepresentation means that, for cell 9, the ML models proposed three potentialsisters. The colors of the bar chart elements match the colors of the target cells,so we can see that the majority of the predictions go to cell 23, which actuallywas chosen as the most likely sister in the pairing. The gray area at the bottomof the bar chart represents the accumulated uncertainty of all of the ML mo-dels based on the accuracy rates and model weights. For cell 23, the ML modelspredicted three possible sisters, and the most possible sister cell is cell 9, thusconfirming the match. We place the vertical bar on the side near the proposedsister (i. e., on the “inside” of each paring) to allow biologists to directly comparethe individual predictions of any given pair. For those without predicted sisters,we add a diagonal line texture upon the nodes to indicate that the ML modelsconsider them not to have divided at this stage (or are not confident enough tomake a pairing).

All predicted sisters

Vertical thumbnail of 
all predictions

All the other neigh-
boring cells

Figure 6.4 – The details of model predictions for one cell. Here we take cell 9 as the tar-get cell for example. From the colors, we can also tell the relative distances betweentwo cells. The percentage of each model depends on its accuracy rate and the custo-mized model weight. The colors of cells in the semi-donut chart correspond to the cellcolors as derived from their 3D positions. A small proportion of gray space indicates theuncertainty of model prediction for the cell 9.
While this overview can provide the biologists with a general sense of themodel predictions, the possible alternative matches are not obvious. Also, theMLmodels occasionally do not predict the correct sister, as indicated by the graymark based on our previously determined model accuracy rate. Thus, the biolo-gists need to be able to see all adjacent cells and investigate them individually.For this purpose, we designed a half-donut pie chart (Figure 6.4), inspired byprevious work on necklace maps [175], to show all predicted cell names with theproportions indicating the probabilities. In addition, we list all remaining directneighbors of the selected cell (i. e., those not included in any prediction) in a linebelow the cell for the biologists’ reference. What this representation still does
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Figure 6.5 – We show the overall details of predictions from all models when the userdouble-clicks a child cell in the icicle plot. Taking again the example of cell 9, this viewshows us that Neural Network, SVM, and Random Forest predicted cell 23 as the onlypossible sister, while Bayesian proposed two cells, 8 and 19, to potentially be the sister.KNN, however, does not propose any potential sister for cell 9.

not show is the individual model predictions, i.e., which sisters were predictedby which model. We thus created a pop-up view to show the overall predictionsfrom fivemodels (Figure 6.5). To display whichmodels proposed a specific sistercell, we added another pop-up view to the current interface (Figure 6.6), whichwe show when the biologists hover over one of the bar in the half-donut piechart. In the example in Figure 6.6 which shows the popup upon hovering onthe cell 9 curved bar in Figure 6.4, three models predict cell 23 as the sister cellof 9. For models which do not predict these two cells as sisters, we used diago-nal stripes as the texture. In Figure 6.7 we summarize the connection betweenthe different detail levels and how we derive the necessary proportions that weshow.
Support for detecting possible errors

It is also important to provide guides for the biologists to quickly target po-tential errors in the predictons. We adopted two approaches for this purpose :(a) we sort the newly predicted cell pairs for each top-level subtree based on theoverall model certainty and (b) we use color highlighting in the 3D view to indi-cate cells that are similar to a given target cell. For (a), we show the cells with theleast certainty on the left, with increasing certainty toward the right. We chosethis assignment to first show to the biologists the most likely mistakes that theyneed to address, and, as they move from left to right, they can stop once theyfeel that the remainder of the assignments is reliable. Of course, this can only besorted within each of the top-level subtrees in order to not break this previously(manually) produced top-to-bottom assignment. For (b), we want to be able tohighlight wrongly assigned cell pairs by assuming that if one pair is wrong then
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Figure 6.6 – When hovering over a specific proposed sister cell in the semi-donut chart(as we did in Figure 6.4, where the mouse hovers over the proposed sister 23), we showthe detailed view on the chosen pairing as opposed to showing all predictions as before.Different from Figure 6.5, here we only show which models actually predicted thesetwo cells as sisters. In this example, three models (Neural Network, SVM, and RandomForest) proposed cell 23 to be the sister of the target cell 9.

another proposed pair is likely also wrong and would share similar propertiesto the first wrong pair. This situation can be captured by the Tanimoto similarity[8], which we calculate for all possible pairs of mother cells of a given level. Then,as one target (mother) cell is highlighted (e. g., in the view in Figure 6.3), in the3D view, we show those other mother cells similar to the target if its Tanimotosimilarity is larger than 25%. We also color-code the similarity with a sequentialcolor scale (based on magenta (see Figure 6.8). Then the biologists can reviewthis limited range of possibly wrongly predicted pairs.

6.3.4 Further Interaction Design and Decision Making

Webased our new interaction design on our previous tool LineageD [84] (seeFigure 6.9) and added ML model interactions to help the biologists to unders-tand the decisions of the different models and to make potential adjustments(as illustrated in Figure 6.10). Before making a new prediction, we now allow bio-logists to specify custom features based on their background and then to trainthe five different ML models with these. Once satisfied with the trained models,they can load the their dataset and use LineageD’s lasso selection to build thetop tree—to constrain the ML later-on and to create better predictions. Then,the biologists can start to use the models to make predictions. In addition tothe visualization of the different predictions by pair that we discussed in sous-section 6.3.3, we also provide the possibility to hover over a given ML modelrepresentation to highlight all those pairings that were predicted by this model(see Figure 6.11). To meet the requirements of some biologists who are used to
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Figure 6.7 – The connection of visualization design in the different information levels.The gray part is the uncertainty where models can make mistakes about the target cell(cell 9 in this example).

doing the lineage assignment top subtree by top subtree, we also enable the ex-perts to double-click a specific top-level subtree to only display the cells withinthis subtree, without all the other cells in the 3D view and with the selected sub-tree highlighted in the hierarchical tree (Figure 6.12). Finally, for each ML model,we also allow the biologists to change the weight as desired. Then, we adjust thecorresponding visualizations and future predictions accordingly.

6.4 IMPLEMENTATION DETAILS

Wenowdetail our implementation, including datasets,models, and technicalrealization of the visual representations in our tool.
6.4.1 Datasets

We received the original embryo datasets in SURF format from our biologycollaborators, who had processed the data with the biological tool Avizo. Thisformat includes the names of the cells in the embryo, the surface mesh thatrepresents each cell, and the corresponding vertex locations. The cell names
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Figure 6.8 – This view shows the similar pairs with the target cell. The left image indicatesthe original embryo, and the right image demonstrates the color change of the similarcell in the detection mode. In these figures, the target cell is highlighted in red, and thesimilar cell in pink. In this figure we highlighted the similar cell with a red box.

consist of a string and a unique number (e. g., Cell001 or Materials002). Weextract the unique ID in these names and use them as labels for the cells in Li-neageD. We number any newly created parent cell by continuing this count, assuggested by the biologists. For any previously (manually) assigned embryo da-taset, we also received another text file that records this information. We extractfrom this file the corresponding linage hierarchy for the given embryo.

6.4.2 Models
We implemented the neural network model using TensorFlow.js (v. 3.8.0)to train and predict a sequential model, while for the other four models in ourtool we used the library ml.js. The specific packages we used are libsvm-js(v. 0.2.1), ml-knn (v. 3.0.0), ml-naivebayes (v. 4.0.0), and ml-random-forest (v.2.1.0). The neural network model consists of two hidden layers with ReLU activa-tion functions and one final output layer with softmax. We also used the library

ml.js to get the model performances with a k-fold (k=50) cross-validation ap-proach. Also, to detect similar pairs (i. e., to help the biologists to efficiently finderror-prone pairs), we used Tanimoto similarity and distance methods with thislibrary. For the default datasets, we pre-trained and saved the ML models forquick accessibility. We also support online training with feature sets customi-
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Figure 6.9 – The workflow of using LineageD to do cell lineage. The steps with whitebackgrounds are based on our previous work [84], and the steps in orange representsthe new stages we added in LineageD.

zed by the biologists, yet a re-training with a custom feature selection takes acomputation time in the order of hours to days.
6.4.3 Visualizations

We used JavaScript together with Node.js (v. 14.15.0) and Express.js (v.4.17.1) to build the interface structure including a static back-end server. We im-plemented the charts that present the model properties and the hierarchicaltree with D3 [21]. For visualizing the embryos in 3D, we used vtk.js (v. 19.0.4)[163].

6.5 CASE STUDY

To evaluate whether our system can help biologists with better assigningcells using multiple machine learning algorithms, we conducted a case studyevaluation with six biologists. We extended our existing ethics application for
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our work on cell lineage (AVIS n° 2021-46) to get permission for this human-subjects evaluation from our institution’s (Inria) ethical review board. We alsopre-registered the study online (osf.io/2f6uc).
6.5.1 Datasets

To allow our participants to get familiar with the LineageD+ interface, weused a 16-cell embryo in the training session. For the actual case study, we used alarger dataset with 64 cells. As we had found in our previous work [84], biologistsbuild the hierarchical tree using both a bottom-up and a top-down approach.Since the purpose of this study is to evaluate the visualizations of machine lear-ning algorithms (i. e., in the bottom-up approach), we pre-set the top part of thehierarchical tree in advance so that biologists could focus on interactions withthe bottom-up predictions.
6.5.2 Participants

We recruited 6 biologists (3 females and 3 males), aged 32–61 years (mean :49.5 years), via social networking andmailing lists. All of themhave been conduc-ting research in plant cell lineage or a related field for 3 to 20 years (mean : 11years, sd : 6.957 years, median : 12.5 years). We anonymized their personal datawith a participant number (P1–P6). Their specific research focus included bio-image analysis andmodernization (P1), plant gene expression (P2), bio-mathematics(P3), cytology image analysis (P4), cell division (P5), and cytogenetics (P6). Threeof the participants (P1, P2, and P3) had created cell lineage datasets (daily, oncea week, and several times a year), while the others work on general cell lineageproblems as opposed to establishing the lineage themselves. P1 conducted theexperiment remotely via videoconferencing, while all others participated in per-son. The in-person attendees used their preferredworking PCs or laptops (somewith separate large screens) in a meeting room. P1, P2, and P3 had worked withour previous tool LineageD before, while the others had not. With respect to ex-perience in machine learning, P1, P2, and P6 do not use ML in their professionalwork, while P4 and P5 have some experience in using deep learning for segmen-tation, and P3 is familiar with convolutional neural networks (CNNs) for imageprocessing.
6.5.3 Procedure

The study consisted of three parts : a training session, an observational study,and a post-study interview. Before the study began, we distributed a consentform and a background and demographic data collection form for participants

https://osf.io/2f6uc/
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to fill in. We also asked them four questions about their previous experiencein cell lineage and machine learning. For the offline studies, we let participantsread and sign an image and voice recording consent form to allow us to takepictures and/or audio-recordings. We started the study only after we receivedtheir formal approval to participate. Our participants were not paid but receivedfree access to our online tool as compensation.In the training session, we gave a brief introduction about the purpose andthe process of the study. For the remote participant, we asked them to open thewebsite on Chrome using the credentials we provided and to follow us duringthis training. The training session for this online participant took longer becausethe remote communication addeddifficulty in the expert understanding someofthe functions of the tool. After the initial introduction was complete, we showedthem the procedure of doing the cell lineage for the 16-cell embryo. They couldinterrupt us for questions at any time. The overall training part took about 15minutes for the on-site sessions, and about 20 minutes for the remote session.After the participants felt that they were familiar with the interface, we in-troduced them to the task of assigning the 64-cell embryo. For the remote par-ticipant, we asked them to share the screen with us and talk about what theywere doing and thinking during the assignment process. We also recorded thescreen and audio with the participants’ permission for later analysis. For the in-person sessions, we observed the participants’ actions and took notes on howthey operated the system. Once they finished the assignments, we conducteda post-study interview, asking them about their experience with the interface.We also asked them to fill out a System Usability Scale (SUS) [80] to assess theirexperience.
6.5.4 Study Results

The study process took approximately 60–120 minutes, depending on howfast each expert could get familiar with the tool (ranging from 10 to 15 minutes).The duration was also subject to their available time slots. All participants fini-shed the assignments of at least one generation, and could quickly get fami-liar with the system under our guidance—especially in the in-person cases. Fiveparticipants identified key difficulties in assigning cell pairs for the 64-cell em-bryo, and reporteduncertainty about their decisions. They noted that therewerecases where one cell had two possible sisters. In this case, they would trust themachine learning first and come back to correct the assignments later if neces-sary. The other participant had no problem in assignment because they knewthe embryo quite well.
Workflow. We observed how participants operated the system during theobservational portion of the study. Four participants did the assignments with
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similar steps taken using LineageD [84], which means that they did not refer tothe detailed predictions of each cell during the assignments and instead madedecisions on their own. For them, they already had the assignment ideas whentargeting a given cell. When the machine learning algorithm gave incorrect li-neage assignments, participants corrected them without checking other propo-sals from the ML. Thus, in short, the experts compared the ML proposal withtheir own ideas to make the corrections. Another volunteer only checked thedetails when she was not sure about a sister. The final participant, in contrast,checked all the potential sister cells proposed by the machine learning and thenmade a decision. When checking the current pair, whether it was right or wrong,she would always traverse the proposed sister cells to make sure the other op-tions were wrong. Unexpectedly, the biologists targeted the children cells ins-tead of the parent cell to find the wrong pairs. This led to their heavy reliance onthe target and sister view of the tool.

In addition, all experts assigned the lineage based on the pre-set top-downsubtrees. They would finish the assignments of all cells in one subtree (a quarterin our example data) and then move on to the next one. Four of them used oursubtree view (Figure 6.12) to only focus on a specific quarter, while the other twowent through the cells in the tree order but without engaging the subtree view.
Visual Representations. All participants appreciated the visual informationdesign for the hierarchy and machine learning. P1 and P5 noted that they canunderstand everything in the interface. P3 felt that all elements are useful andespecially favored the tree visualization design because it links with the 3D viewand is easy to understand. P2, P3, and P6 stated that it is really important to havethe 3D view replacing the traditional 2D slice images so that biologists can seethe embryo and have a better understanding of it. P4 also suggested to exportthe view in 3D so that she can show her assignments to others. P6 expressed herappreciation of the tool development because, for older biologists like her, thetool is easy to use and “cannot be better for her”. The only concern she had is thatthe red highlight coloring can be unfriendly for people with color impairments.
P3 and P4 also provided feedback for future work noting that they misseda view of only the target cell that would have allowed them to carefully checkthe shapes of individual cells and their children. P5 was not familiar with the 3Dinteraction techniques and needed some time to get used to them. Another po-tential improvement proposed by P3was to distinguish the level in the tree fromthe division generation of a given cell. In every round, theMLmodels predict onelevel, but this level does not necessarily correspond to the true generation be-cause, when the data is being captured, the embryo can be in the process ofdivision. In this case, some cells in the embryo are in a different generation thanthe others, and the prediction currently does not consider this situation.
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Machine Learning Design. Before starting our observational study, we as-ked all participants about their expectations with respect to machine learning.P1 and P3 envisioned the possibilities of two cells being sisters so that they canbetter make decisions. P2 hoped that the ML models can do all the work au-tomatically and only leave the checking job for him. P2 and P5 also hoped themodels would be applicable to other datasets (i. e., other species) and tools. P6assumed that ML can help predict both the past and the future for embryos.It means that, hopefully, models can predict not only the hierarchical tree, butalso the future fate of the cells.
After our study, we asked the participants what they think of the machinelearning support in LineageD+. Though four of them reported that they did nothave enough time to fully experience theML in terms of usingML for othermoredatasets, all participants appreciated the prediction results. The three biologistswho had used LineageD before said that the performance and experience ofLineageD+ is much better than the previous version. All experts also thoughtthe visualizations of machine learning are readable and easy to understand. P6reported that interacting with machine learning made her feel like she was dis-cussing with the computer in making assignment decisions. She started to lookat one proposed pair and targeted one of the children cell. For her, machinelearning was proposing other options in the semi-donut chart and she wouldalmost “talk” to the model about whether it is wrong or it makes sense. She feltshe did not have to think much but just traversed the proposals from machinelearning.
As for the improvement of machine learning itself and how it can be de-ployed, though P1 and P2 did not refer to the detailed predictions of each cellfrom machine learning, they were curious about how models worked and whymodels gave such predictions. P2 and P6 were also interested in knowing whymodels can come upwith a specific wrong pair. P3 argued that he cannot decidethe model weights in the very beginning. It required much time interacting withthe system so that users can choose and decide the preferred model weights.He and P2would love to see themachine learning do theweight adjusting job forthem. P4 was concerned that she would potentially be influenced by the propo-sed predictions from the machine learning. Though there are vague situationswhere the assignment for one cell hasmultiple solutions, theML would pick onesolution automatically for the biologists, and they would need to manually tryout the other possibilities. P2, P3, and P4 would love to have the models upda-ted based on their corrections and then to predict future pairs using the updatedmodel. Another wish of P2 and P6 was that the machine learning models shouldpredict the two directions, top-down and bottom-up, rather than only bottom-up. Also, P2 thought it would be better to report the feature weights used by
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the models and to enable users to change these weights as well. Since P1 andP3 were used to assigning embryos section by section, they would have loved tohave the machine learning predict all assignments within a subtree, instead ofonly a single level.

InteractionDesign.Weaskedparticipants about their interaction experienceboth with the general interface and with the machine learning models. For thegeneral system, P1, P2, and P3 favored the interaction connection between the3D view and the 2D view. P1 said that in traditional tools, such as the TreeJ plu-gin to Fiji ImageJ, it is hard to find the exact cell with the 2D slices, but LineageD+perfectly solved this problem for her. P2 and P4 were impressed by the subtreefocusing function. It enabled them to clearly make decisions within the rangeconstrains and thus reduced potential errors. In addition, P2 appreciated thathe could adjust the ML model weights and that the detailed information aboutthe ML predictions was not presented all at once but instead in layers that couldinteractively be revealed. Also, P3 and P4 appreciated the explosion and pee-ling function to solve the occlusion problem. P4 and P6 liked the interactions forcomparing different potential sisters in the target and sister view. Interestingly,P6 appreciated the use of mouse clicks for making re-assignments, yet both P1and P3 reported that they were confused by the single- and double-click actionsin the tool. Though they could understand the use of these clicks after we ex-plained the differences to them (single click to target cells and double click toassign cells), P6 thought it may be better to provide a more detailed manual forpeople without technical support. P1, as the only remote participant, expressedher concern as to whether or not she could finish the assignments without theexperimenter’s help. In addition, P4 and P5 felt it was inconvenient to have thebuttons below the hierarchical tree, and P4 would have preferred the tool tohave a right-click menu for the tree interaction.
Potential Influence. In the post-study interview, we asked participants howfast their construction can be and how confident they felt about the results af-ter sufficient training. Overall, all participants thought that LineageD+ can helpsave time, even though they would check every proposed pair. Also, based onP1’s feedback, the speed of using LineageD+ partially depends on how familiara biologist is with the analyzed embryo. When the biologist had never done anyassignments for the specific embryo before, the machine learning predictionscan be a large help for the thinking and decision-making process. Yet, the ef-fect may not be so obvious for familiar embryos because biologists need to gothrough every cell anyway. P4 and P6 would love to try out other datasets toconfirm the assumed improvement of assignment efficiency. Reporting on theirconfidence of working with LineageD+, P4, P5, and P6 thought they would feelvery confident because they can easily understand and use the tool to check



132 Chapitre 6
very step. P3 thought that LineageD+ offers the same confidence as if he wouldmanually establish the lineage. P5 assumed that his confidence in the resultscan reach about 90%. The other participants would feel equally confident withthe results from the traditional tool because they would basically do the sameassignments.In addition, we asked biologists about whether they thought the tool wouldchange the traditional approach they used in the assignment process. All ofthem believed that LineageD+ can possibly change the strategies they used. P1and P2 assigned the cell lineage quarter by quarter, and the machine learningpredictions built the tree level by level. They were used to the quarter-based as-signment because they wanted to move the embryo slices as little as possible intheir traditional tools, but in LineageD+ biologists knew where they are thanksto the 3D visualizations and they thus may switch to a level-by-level assignmentwith some training. P4 specifically emphasized this notion because LineageD+provided clear visualizations of individual cells as well as how two sister cellscan be combined. P6 noted that tools for biologists should be free and easilyaccessible and that LineageD+ meets this requirement.We also calculated the System Usability Scale rating as 77.67/100 (sd : 15.77)on average, which is higher than the average SUS score (68) [80]. Yet it can stillbe improved via all the aspects mentioned by the participants as we reported.Among all participants, only one gave a score lower than the average SUS score,who was the remote attendant—a possible reason being that the networkingand communication affected her experience. Compared with LineageD’s SUSscore of 68, the improved score could be due to LineageD+’s improved modelperformance and interaction experience. Another possible reason is that fiveparticipants conducted the study in person (compared to LineageD) so that, ifthey encountered problems, they could get timely help.

6.6 DISCUSSION

Based on the study results and biologists’ feedback, we summarize the follo-wing points as takeaways from our work.
6.6.1 Various Interaction Types with ML Visualizations

First, we observed that experts use machine learning and the visualizationof its details depending on their level of expertise, their familiarity with a givendataset or task, their background, and the perceived performance of the MLmodels. For example, when a biologist was familiar with the species of the em-
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bryo, they would concentrate on checking theML’s assignments and largely onlyvalidate the predictions—provided that the model would perform well. Only ifthemodel made apparent mistakes they would explore alternative assignmentsand quickly settle on an alternative cell pair based on their experience. Biologistswith less experiencewith the embryo’s species, in contrast, would relymore hea-vily on the visualizations of the ML predictions to compare alternatives and ul-timately make decisions. Looking at the specific backgrounds of the biologists,those who usually do not create cell lineage datasets but focus more on otherquestions in the context of the general problem (e. g., segmentations)weremorelikely to explore the other functions, including the machine learning predictiondetails. The participants who work on creating cell lineage would primarily usethe lineage assignment or confirmation functionality and would not check thedetails of the ML visualization. Despite this diverse expertise and range of expe-rience, all biologists assigned cells for at least one level using either approachthanks to our ML visualization and interaction design. Therefore, our staggeredway of presenting an increasing amount of detail about the ML predictions iseffective at supporting this range of potential users and their needs.During the design and evaluation process, we also found that LineageD+ al-lowed biologists to interact with the ML predictions in a “communicable” way.One participant, for instance, treated the ML proposals as if the machine lear-ning was suggesting the potential sister cells to her in real time, and she “explai-ned” to ML models (i. e., to us in the think-aloud protocol) the reasons of whya prediction was reasonable or not. Though she spent more time in traversingthe proposals, such a workflow was appealing to her and may be similarly forother biologists with less experience and knowledge in constructing cell lineage.As she described it in the study, the ML served a similar role as a colleague withwhom she would discuss the assignment, and for such a “narrative interaction”an initial assignment proposal (as provided by the ML) and the human’s controlover the final decision are needed.
6.6.2 Customized ML Interaction Design

Another interesting point we observed is that the experts generally use theML models to improve their immediate efficiency, instead of spending time onother tasks with long-term rewards. For example, in our case the main purposeis to get the cells assigned. We observed that the biologists tried to completethe study as soon as possible, rather than checking the detailed prediction fromMLmodels—even though the information could have helped them to decide onproper model weights and thus benefit them in the future. To help experts withsuch a situation, when designing a system we need to consider recording theirbehavior and developing additional ML models to automatically support those
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tasks—such as adjusting the model weights or the weights of the individual fea-tures for future training.In addition, based on the varied expectations and preferences of the bio-logists, we saw that we need to support ML predictions by both levels and sec-tions, and potentially even top-down predictions. Thismeans that we really needcustomized ML support, instead of a single generic black box which cannot ea-silymeet everyone’s requirements. Customizedmachine learning behaviors andtheir corresponding visualization—as we provided it in our approach—can behelpful (yet further developments need to add the suggested additional functio-nality). This ML customization and visualization can also be extended to otherscenarios where different target users have diverse working habits. Correspon-ding interactive visualization can then help users to customize their model use,in addition to providing assistance in interpreting theML. For instance, visualiza-tion can help users to better understand their actual needs to then allow themto pick a suitable model.
6.6.3 Visualization for Human-AI Teaming

Our case study thus showed us that visualization can play an essential rolein a user’s interaction with ML models. In this context we do not see the AI com-ponents as a superior authority but instead as a collaborator with whom onecan and one should interact. Our visualizations of the details of the ML modelpredictions thus serve as a mechanism to support this human-AI teaming, toultimately come to the best possible result in a manageable amount of time.This concept certainly does not apply to all applications of machine learning orAI, but it can be useful in those cases where the outcome is crucial, the manualchecking is essential and feasible, or where it is likely that the models can makemistakes due to the complex nature of the given problem.In our case, the specific lineage hierarchy that results from the processingwith LineageD+ is important because the biologists need to further analyze it. Yeteven the biologists themselves are occasionally unsure about some cells’ assign-ments. Moreover, our training datasets come from embryos manually assignedby biologists and their number is limited (only 93 embryos at this point). Undersuch circumstances, a single MLmodel is likely to makemistakes. Althoughmul-tiple MLmodels can partially make up for this problem, the biologists would feelmore confident if they check all cell pairs of any new dataset to ensure that theyare correctly assigned, as they stated in the study. Consequently, in our applica-tion the biologists are interacting with the machine learning models to come toa final conclusion, as opposed to simply accepting a ML-provided result. The hu-man experts, ultimately, have gained a lot of experience in their education thatwemay not be able to capture with MLmodels even for larger training datasets,
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and in this case the experts still have the choice to overrule themodel-suggestedassignments.

6.7 LIMITATIONS

Naturally, our approach is not without limitations. To start, LineageD+ wasbuilt based on LineageD, and some limitations of the latter still apply in our ex-tended approach. First, we chose to apply the ML models to predict the assi-gnments level-by-level. Although some biologists preferred to have the sector-by-sector ML predictions, we designed this because the potential corrections ofthe current level would invalidate a complete predicted sector. Yet it would beinteresting to compare biologists’ experience and feedback towards these twodifferent ML appliances. Second, we do not update the MLmodels based on theinteraction patterns of the biologists. While this would technically be possible,the benefit would likely be limited because of the rather small set of trainingdata. Without such an interactive updating process the interaction with the MLis not really a “discussion” as was implied by P6 in our study. Thus, we would beinterested in combining our approach with techniques from explainable AI thatwould allow us to create an environment in which theML could participatemorein a “discussion.” Third, in both systems, biologists typically check all cells—eventhose with the proposed assignments—because they feel more confident afterchecking every pair. As a result, the lineage process still takes time, especially forlarge embryos. Finally, we used a limited set of training datasets (93 embryos)from biologists. A larger number of manually assigned embryos can potentiallyimprove the model performance.Our specific human-AI teaming approach in LineageD+ and our evaluationhave limitations as well. Based on the biologists’ traditional workflow, we intro-duced ML algorithms and improved and designed the usage of LineageD+. Thisnew way of establishing the cell lineage for an embryo dataset is challengingfor biologists because they are often not familiar with the use of 3D visualiza-tions and interactions, the use of ML in general or the specific models, and alsoour specific interaction design. They need time to understand the representa-tions of the ML predictions and get trained to do the assignments with such asystem. Also, we used only a certain set of features all with equal weight andincluded only 5 ML models in LineageD+, again with the default weight of 1. In-troducing other features with diverse weights may improve the ML models, andincluding moremodels can possibly increase the overall precision for biologists.Meanwhile, developing additional ML models to automatically change the fea-ture and model weights could potentially ease the biologists’ mental workload.
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In our evaluation study, we recruited “only” 6 experts in the specific field (plantembryo lineage) to validate our system design. Other minor usability issues ad-dressed by biologists are that, first, the raw data in the first stage may not beclean, because the snapshot may include cells of different generations. In thiscase, the ML models need to detect the differences. Second, there is a formatconstraint for the uploaded data file. We used the mesh data from a paid toolinstead of amore generally-used tool, and it adds difficulty to the generalization.

6.8 CONCLUSION

Traditionally, ML models are frequently used to take over otherwise tedioustasks and can assist people in finishing complicated work. Often, we do not evenchange anything about the way the ML does its work but treat it as a black-boxtool. Sometimes, however, people also check the decision-making process, exa-mine the results, and give feedback to models to improve them. In such sce-narios, visualization can serve as a bridge to connect people with ML. In sucha process, however, the ML models often dominate the decision, and the otherparties’ (people and visualization) work or are used to improve the ML’s perfor-mance. In our project, in contrast, we did not aim to improve theMLmodels andinstead treated it as a tool that helps peoplemake decisions but that no longer isthe final authority. Visualization, in this relationship, empowers people to enablethem to find a balance between their own experience andMLmodels’ proposalsand thus to engage with the ML as if it was another collaborator. As people havea diverse set of needs, such human-AI teaming allows them to decide to whatdegree the MLmodels should be involved in the decision-making process. Moreexperienced users may avoid the ML model intervention, while people with lessexperience may rely more the ML predictions to a larger degree. In this case,the procedure to complete tasks is somewhat of a collaboration work, wherethe ML models and their visualization are ideally a supportive partner by pro-viding the desired information and explaining it clearly. To achieve this goal, inLineageD+we used fiveMLmodels and, in the future, would like to explore othertechniques such as Explainable AI and Interactive ML to allow people to unders-tand and use the ML collaborator more effectively. Although we worked in thebiological field and in other fields the visualization and needed interaction de-sign may be different, we are confident that our concept of using visualizationto support human-AI teaming applies to other domains in a similar way.
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Figure 6.10 – The interaction process of checking the model predictions. Biologists cantarget one cell from either the 3D view or the 2D hierarchy tree. If they are happy withthe prediction, they can confirm the pair, and the bar then turns green as in 01/a. If theydisagree with the prediction, they can double click to see the details of prediction andmake an informed decision.
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Figure 6.11 – The illustration of the hovering effect. In this figure, users hover the modelRandom Forest. All the pairs predicted by this model would be highlighted with redstrokes in the hierarchical tree. Also, the corresponding cell in the thumbnail would turnred too.

Figure 6.12 – The illustration of users targeting one subtree. Here a user focuses on CellN-11. The 3D view only presents the cells within this part, and in the hierarchical tree, wemake the other cells transparent.
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DISCUSSION AND
CONCLUSION 7

In this thesis, we mainly contribute by using diverse techniques (interaction,visualization, and machine learning) to solve scientific problems such as plantcell lineage. We conducted a series of design studies as described in the pre-vious chapters (chapitre 4, chapitre 5, and chapitre 6) to explore how to applythem in different steps of solutions. The methodologies and the design processof our systems could potentially be applied to other scientific domains, such asthe way to collaborate with domain experts, the way to link the 3D and 2D repre-sentations, and the use of Human-AI teaming to deal with the cases where bothalgorithms automation and design study are needed. We discuss the takeawaysfrom our thesis in this chapter.

7.1 INTERACTING WITH DENSELY-PACKED OBJECTS

As we have described in chapitre 4, plant cells in an embryo are denselypacked together without any space between every two adjacent cells. In sucha densely packed environment, it is not possible to use traditional interactiontechniques such as ray-casting [155] for selection, especially in the case wherebiologists have no idea which cell to select unless they see it. So the occlusionof inner cells by the outside largely prevents biologists from accessing them.Moreover, biologists need to precisely analyze local neighborhood situations ofcells to be able to make correct decisions about their development, and the em-bryo can be large such as containingmore than 200 cells. Hencewe need specificinteraction techniques to access and observe cells within an embryo.
139
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We investigated three selection approaches in 1D and 3D as stated in cha-pitre 4 : a technique that lists all the 3D objects in a separate view (1D List Se-lection), a technique that uses 3D explosion to generate space between the ob-jects in the 3D view (3D Explosion Selection), and a combination of these twotechniques. In chapitre 5 and chapitre 6, we also implemented an interactiontechnique that iteratively peels off the surface layers of the objects (Peeling Se-lection). All these approaches translate the interaction in a dense environmentinto one that we can work with : either by showing them in a separate list (ListSelection), by spreading the cells out into a more sparse representation (Explo-sion Selection), or by revealing layers iteratively (Peeling Selection). In addition,another idea is the slice-based approach that was used by our domain collabo-rators traditionally, which only shows a single 2D cutting plane for the dense 3Denvironment. It is also a possible solution as we could add a cutting plane forbiologists to control and show the corresponding cross-section view of the em-bryo, but we found it in our pilot studies to not work as an efficient approach.One possible reason can be that it was difficult for biologists to master how tofreely control the cutting plane as they are not familiar with the 3D interactiontechniques.
We can thus summarize all these approaches into three categories for sol-ving the selection problem with the densely-packed objects : 1. Display the abs-tract information of datasets in a separate view (List Selection and the traditionalslice-based selection) ; 2. Adjust the datasets iTn 3D so that the problem is es-sentially converted to the familiar traditional selection approaches (ExplosionSelection) ; 3. Display only a part of the whole dataset (Peeling Selection). Theseapproaches (List Selection, Explosion Selection, and Peeling selection) may alsowork for other data such as organs in biology [159] or high-entropy nanoparticlesin chemistry [213]. For other datasets or in other application domains, however,theymay not work as well. Take the Explosion Selection as an example. To applythis technique, we need to find one/multiple center(s) as geometricallymeaning-ful baseline(s) to explode the object, and it can be difficult for data with othercharacteristics. For example, the DNA structure is linearly structured, very long,interconnected only along the structure, and then folded or packed in many le-vels of structure. Though we could use the explosion technique to partially di-vide two chains, it may not work for checking the detailed components. Anotherexample is machine assemblies, where the parts are not as compact as the cellsin our application, and they usually have inherent assembly directions. In suchcases, we could face non-meaningful explosions unless we use structured dataabout the assembly that maintains the meaningful assembly [76, 137]. Anotheraspect to consider is that selection purposes can be different, and techniquesmay not apply to all scenarios. The purpose can be selecting a specific data point,
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multiple points, or a range of points. The List Selection is especially helpful in tra-versing the datasets, while it would fail in other cases where people only needto select a rough range of data points that are spatially close.Besides these techniques, there are other potential solutions for interactingwith densely-packed objects, as we can shrink these objects while keeping themin the same positions. Also, we can add a cutting plane with limited rotationangles and only show objects on one side of the cutting plane [66] instead of onesimple cross section view. We can support combining two/multiple techniquesto interact with the objects. For example, by combining the Explosion Selectionand Shrinking Technique in the interaction with plant cells, we could explode theembryo and shrink the surface cells so that biologists may better examine theinner cells.

7.2 DESIGNING FOR LINEAGE

Fundamentally, lineage relates to both structural and temporal information :it shows the structure (e. g., the cell division relationship) and also encodes partof the actual temporal change in its very hierarchy (e. g., the embryo divisiontime stage) [203]. Traditional trees, even rooted, do not necessarily encode tem-poral data (e. g., a folder structure only encodes a hierarchy). As such the treerepresentation in our special case is unique because it encodes both aspects.The way we designed to visualize this special cell lineage is to encode the tem-poral division stage with tree levels as we discussed in chapitre 5.One of the reasons why we chose to represent the temporal information inthe tree itself is that a division generation is a qualitative form of temporal deve-lopment that the biologists deduct by reasoning backward, and we can assumethat there is regular (i. e., taking approximately the same amount of time) and re-peated waves of cell division. We can then use the hierarchy levels to representthe division generations. Another reason is that independent of this special case,a plain abstract tree representation can already use a lot of screen space, in par-ticular in situations with the exponential growth of the depicted structure as itis the case for cell lineage. Adding other representations aside would make theinterface too crowded and add difficulties for users to connect multiple views.Yet, the tree itself can serve as the basis of additional data representations aboutthe depicted elements. For example, in LineageD (chapitre 5), we used the treenodes’ colors, widths, and heights to encode cells’ 3D relative positions, rela-tive volumes, and division stages. In LineageD+ of chapitre 6, we added stackedbar charts to tree nodes to represent the overall model predictions. There arealso numerous other examples from literature which use different properties
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of trees to encode other datasets. For example, EVEVis [132] encoded time andspecies in the tree, and Zheng et al. [219] added various diagrams, e. g., sunburstcharts and icicle plots, on treemaps. We can see that trees have great potentialin combining with other multiple representations.Moreover, in our case, each level of the tree actually relates to a cell divisionstage and thus to a 3D representation, i. e., when biologists switch the divisionlevel in the tree, the 3D objects need to change accordingly to display the cor-responding status. With the added components, the tree can then serve as aninteraction medium to control the 3D view when contents in two views are lin-ked. As in our scenario, every cell has a corresponding object in the 3D environ-ment and a matching node in the 2D tree. Due to the temporal character of ourspecific trees, they show the progress and development of the 3D representa-tion, i. e., of the embryo as well as the progress of the biologists in doing theirlineage assignments. We also, in fact, encode the progress in LineageD+ withadditional elements overlaid to the tree representation by using horizontal barsbetween parent cells and children cells to indicate whether biologists have che-cked this pair or not. Thus, by referring to the bars, biologists can see howmanyremaining pairs to check.

Figure 7.1 – The screenshot of GeoTime [90] to combine both temporal and geospatialvisualizations. Image © 2005 SAGE Publications, used with permission.
Not only for establishing a binary hierarchical tree for plant cell lineage, our
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tree design can also be extended to other tree problems because (1) Our treecontainsmany componentswhich can be used to encode diverse data (we could,for instance, also replace stacked bar charts with other types of visual repre-sentations) ; (2) Our tree can be established using two approaches : top-downand bottom-up approaches ; (3) Our tree is a control panel for the associated3D view. For example, we could use the system to represent and study assem-bly instructions where a large number of parts come from different places. Thetree could then represent the assembly order with approximate delivery timeperiods. By using the tree, users can control the 3D view to show the correspon-ding assemblies on the map in a specific time period, similar to GeoTime [90]which visualizes locations and events on a map (see Figure 7.1).

7.3 DESIGN FOR DOMAIN EXPERTS

From our working experience with biologists, we found that the essentialpart of enhancing the collaboration between visualization people and domainexperts is to try to understand each other. People from diverse backgroundswould have different ways of thinking. That requires us to have regular mee-tings and keep track of all the discussions we had so that we could refer backto them at any time. Also, despite the physical constraints, it would be betterto exchange ideas in person instead of having meetings remotely, as in-personcommunication could be smoother and more effective.Other than the collaboration approach, we also found that experts’ tradi-tional working process often needs but may not (yet) have access to advancedinteractive visualization techniques. For example, in our case, biologists need vi-sualization to display the 3D embryos and interaction techniques to explore theembryo and to build and view the hierarchy.Such a lack of advanced interactive visualization techniques may cause pro-blems. For example, in our case, the biologists were not familiar with such tech-niques, and we found that some thus expected that current technology some-howmagically solves their problem. For instance, they may expect that machinelearning can predict the whole lineage hierarchy for an embryo at the push ofa button. When they then face reality (i.e., that ML cannot predict lineage com-pletely precisely, such as due to a lack of enough training data), they may loseconfidence in certain techniques, such as ML, once they find out that the resultsdiffer from their expectations. As described in chapitre 5, the biologists told usthat they felt that ML did not perform well, and they would then assign cells bythemselves.Because experts usually have limited knowledge about advanced visualiza-
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Task-driven Design

New Design

Pros: Familiar

Cons: Less e�ective

Pros: More e�ective

Cons: Learning cost

Figure 7.2 – The illustration of balancing traditional workflow and new design with ad-vanced technologies to solve a scientific problem. The new design usually involves ba-lancing different techniques inside, e. g., visualization, interaction, and machine lear-ning.

tion and interaction techniques, they may also want to stick to their traditionaltools. For instance, in our case, they expected to stick to their slice approach andthen wanted the ML to predict the sisters based on the slices. This sticking totraditional ways of problem solving brings designers a problem as illustrated inFigure 7.2. On the one hand, their traditional workflow usually keeps drawbackssuch as being tedious and less efficient, and we can address this with better vi-sualization and interaction design. On the other hand, while an improved work-flow may be intuitive, experts can take time to get familiar with it. To overcomethis issue, we recommend implementing their needed technology (i. e., machinelearning, even if it is not perfect) and including other techniques (e. g., visualiza-tion and interaction) that can improve the problem-solving process. During thedesign, we need to balance the experts’ familiar workflow and the new one. Todo that, we could design iteratively with domain experts, or we can design oneor several proper workflows in the interface. As in LineageD, we support eitherestablishing the hierarchical treemanually or checking and updating it based onML predictions in 3D or 2D views.
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7.4 COMBINATION DESIGN FOR 3D AND 2D
REPRESENTATIONS

We saw that there are application cases where we need to have both 3Dand 2D representations when we want to refer to spatial datasets and abstractinformation. When two views are inherently linked, such as in our case, wherethe cells in all views are identical or related, connecting these views is necessarybecause viewers can gain a thorough overview of information at a specific stage.This is inspired by traditional linked views [185], but we apply this concept to 3D-2D hybrid systems.
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Figure 7.3 – The illustrations of potential design with (a) cell names on 3D and (b) boththe names and lines representing the relationship of two cells being sisters.
Constrained by the complicated context and difficult orientation interaction(e. g., rotation, zooming, and panning), the 3D environment usually contains only3D information or includes simple 2D abstracted data on that. For instance, inour plant embryo visualization, if we attach a cell name to each cell, as shown inFigure 7.3(a), there is a severe overlapping problem which makes the interfacemessy. If we add node-linked lines to connect every two potential pairs withinthis time stage (see Figure 7.3(b)), the overlapping problem becomes more se-vere. We could imagine that when users rotate it, the situation could be worse.We usually have to visualize lots of information (e. g., the hierarchy data for allthe time stages) in addition to the 3D spatial data to solve a complicated scien-tific problem because all these data are important for decision-making. In thesecases, we then need to encode other additional/abstract data within 2D repre-sentations. Linking the 3D view with 2D representations is necessary and impor-tant because with linking, the information related to 3D objects can be better
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received and understood through the 2D view.

Figure 7.4 – We duplicated this figure from Figure 3.7. In this poster [160], we made fivecategories to group literature which contains 3D and 2D representations.
In face, we explored the different ways of linking 2D with 3D views in a sur-vey of past visualization literature [160]. Here we found that there are three lin-king relationships between two views (see Figure 7.4). One is data linking, whereviews share the same data, but users cannot directly manipulate the views. Inthese cases, the 2D representations are usually the abstraction of 3D represen-tations, e. g., Eulzer et al. [64] used a flattened 2D diagram to represent essentialparameters of 3D mitral valve (see Figure 7.5). Another relationship is the visuallinking where users can rotate, zoom in, or zoom out one view, and the otherview will be updated accordingly, e. g., in the work of Eulzer et al. [63] as shownin Figure 7.6, the system used 2D diagrams to show the detailed parameters ofspinal anatomy, and rotating the 3D spinal discs would rotate 2D diagrams aswell. The last one is interactive linking. Interactively linking two views has twoaspects. One is that operating with a view can result in changes in the otherview. For example, in previous work, users can select, filter, and brush acrossviews via interaction. In LineageD, we also supported highlighting one cell in allviews by selecting that cell in any view. We go beyond this highlighting linkingin a way that 2D representations can, in fact, control the status of 3D models.That is to say, by picking a specific level in the hierarchical tree, the 3D cells willbe combined/separated to match the corresponding level. The other aspect ofinteractively linking is that the operations in either view are the same or equiva-lent. For instance, a lot of related work links two views with the first approach,
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Figure 7.5 – In the screenshot of the interface developed by Eulzer et al.[64], we cansee that the 2D diagram (part 2) is the flatten representation of 3D mitral valve (part 1).Image © 2020 IEEE.

e. g., Byška et al. used a 2D collar representation to display the protein tunnelbottleneck contour and control the 3D view [29]. We still believe that the secondapproach, i. e., using the same or equivalent operation in both views, also easespeople’s learning curve. For example, we used the same interaction to correctassignments in both 3D view and the hierarchical tree for targeting cells and cor-recting predicted pairs. Once biologists noticed this, they were able to interactwith both views easily. Though designing the same interaction for all views en-hances people’s awareness of that the views are linked, we have to admit that itis an added value and designers do not have to pursue it since it can be difficultto realize.
To design a system with both 2D and 3D representations, we need to firstidentify the inner relationship between different types of representations. Onerelationship is that one view adds information to the other. In this case, the lin-king should clearly state what this information is related to. For example, we en-coded the ML prediction results in the tree, and these predictions are not visiblein the 3D environment. We emphasize for which cell the predictions are madeby using the same colors of cells in both the 3D environment and the hierarchi-cal tree. Also, when biologists hover over the proposals, the corresponding cellwould be highlighted in the 3D view. Another potential relationship is that the 2Dview visualizes the abstracted information for the 3D view. The specific designof this visualization of abstract data about 3D objects should provide an over-



148 Chapitre 7

Figure 7.6 – In this example from the work by Eulzer et al. [63], a pack of 2D diagramsare attached to eight spinal discs, and when users rotate the 3D objects, the 2D repre-sentations would rotate accordingly. Image © 2020 IEEE.

view of the abstraction and the related 3D model to highlight the abstractionrelationship. For example, in LineageD, the level in the lineage tree representsthe cell division stage, and each node represents one cell in a specific divisionstage. By changing the level, cells in the 3D would merge/separate to form theembryo shape in that time period. With this interaction, biologists can clearlyunderstand what the level and each node mean for the embryo.Such combination design for linking 2D and 3D visualization could potentiallybe applied to various fields which have spatial data or multi-variable data. Wecould use the 3D dimension to encode the additional variable. For example, ba-sed on a 2D plane, we could encode the temporal trajectory information on topas Tominski [195] designed to visualize individual and cross sets of trajectories.The idea can also be used in genealogies. Previouswork such asGeneaQuilts [20]introduced a diagonally-filled matrix to represent genealogies, but it missed thegeometry information which could be valuable for historians to analyze. Addingthe individual moving path on top of it could potentially bring new insights.

7.5 VISUALIZATION FOR MACHINE LEARNING

Some tasks in the scientific domain can be improved with the help of ML,especially for those complicated problems which traditionally require tediousand repetitive manual work like cell lineage. Traditionally, these tools with MLsupport make the ML control the tasks, and either the ML is merely a tool (thatworks at the push of a button) to complete the task or humans interact with the
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system to improve the performance of the MLmodels. These cases where ML isdominant requiresMLmodels to be as precise as possible. However, sometimesit is impractical or impossible because it would require too much work or a lotmore training data than is available to generate suchMLmodels. For example, inthe cell lineage problem, humans used tomanually do cell lineage for numerousembryos, and thus, the training datasets are limited. In these situations, thereare inherent uncertainties in ML predictions, and humans need to be aware ofthem in the decision-making process.

Figure 7.7 – Sedlmair et al. [167] proposed twoaxes (task clarity and information location)for identifying the usage scope of design study methodology. © 2012 IEEE.
This situation reminds us of the work of Sedlmair et al. [167], who used twoaxes (task clarity and information location) to identify the design study suitabilityas shown in Figure 7.7. On the top-right area where the computer has enoughdata for a relatively crisp task, algorithms can automatically produce solutions,while under the borderline, the authors recommended using their design studymethodology. In our case, we have precisely a situation on the boundary bet-ween the two regions because (1) we do not have enough data for a completeprediction of the lineage ; (2) the task is not so crisp becausemaking the decisionbased on experts’ observation and relied on their experience, and the decision-making is not clear and easy ; and (3) ML is possible and crucial to ease experts’workload, yet the experts disagree occasionally, and the training data is limited.This situation actually falls in the boundary between the right-top corner and
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Figure 7.8 – Based on the Figure 7.7, we added an area between Algorithm Automationand Design Study Methodology. In that area, we recommend using human-AI teamingto combine the advantages of human thinking and AI automation.

the white part in Sedlmair et al.’s model, and we would argue that there is not aclear cut-off as depicted in their figure (Figure 7.7) but more of a fuzzy transitionzone. Our solution is to use ML paired with additional visualization and interac-tion for Human-AI Teaming. In away our approach addresses the problemwhichwas not posed by Sedlmair et al., i.e., for a task with limited computer data andundecided task clarity, whether design study or ML alone would be the best so-lution. We thus propose a new area to replace the fuzzy boundary between thewhite part and the top-right area in the suitability diagram proposed by Sedl-mair et al. as we show in Figure 7.8. In this new area (which in practice also hasa fuzzy boundary), even if complete automation is not possible due to either thelimited computer data or non-crisp tasks, visualization can present the imper-fect predictions from ML and allow people to understand different possibilitiesand potentially correct the ML’s results. In addition, for those tasks where ML ispossible according to Sedlmair et al., but people are unlikely to always be satis-fiedwith the results, visualization and interaction then enable people to similarlyfreely make final decisions. Thus, in our newly proposed area, humans and AIare collaborating with each other, and visualization provides humans with theability to control the ML models and the task completion process.
This is where visualization can come in as a tool to improve the work. Visuali-
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zation can visualize the results of ML predictions from different models and alsovisually highlight the potential errors that ML can possibly make. For example,in our evaluation study with LineageD+ in chapitre 6, visualization display theoverview and detailed predictions from ML as well as the model confidence ofeach predicted pair, and biologists could make decisions based on this infor-mation. However, from our study with LineageD, we found out that people’sperceived accuracy rate can largely affect their confidence in models. If peoplekeep receiving wrongly predicted pairs, they may lose their confidence in MLmodels. Yet, in our case, biologists want to check the least confident predictionsfrom ML. Thus, we need to trade-off between presenting ML predictions withless confidence and more confidence. The approach we adopted in our systemis to enable biologists to build the hierarchical tree from a top-down way, andthen within each sub-tree, we ordered the predicted pairs from left to the rightaccording to their model confidence.Thus, within this relationship, visualization can be a way to allow humansto remain in control, not by showing the ML’s reasoning (explainable AI), but byshowing the results of one/multipleMLmodel(s) and their certainty, and to allowthe human tomake the final decision. We believe that, for complicated scientificproblems such as ours, humans should be in control of the whole task, inclu-ding the usage of ML, visualization, and interaction. Humans need to combineall these techniques to make better decisions.

7.6 FUTURE WORK

Our work certainly needs to be continued in the future, and there are plentyof avenues of future work. The first direction is about our tool. We want to ex-plore how our tool can be used for other datasets (such as animal embryo data-sets and organ datasets). However, we talked with animal biologists about thepotential collaboration and found out that, because the division of animal em-bryos is highly reproducible [75], they have reasonably good techniques to auto-matically reconstruct the history. Except for the lineage problem, based on bio-logists, they have challenges in building the history of mutant embryos of plantsand animals. We are interested in how we could use our tool to deal with theseembryos forwhom the divisionmay not follow typical patterns, and thus the treemay deviate quite a bit from the typical binary tree. Moreover, we currently usetraditional devices (computer, mouse, and keyboard) for interaction. We wouldlike to investigate the interaction methods with advanced techniques, e. g., VRand AR, to see how it works for solving complicated scientific problems. Also, weare interested to know whether our design can change biologists’ workflow in
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doing cell lineage in the long run. Thus, we plan to conduct a long-term studyto see whether a well-designed system can change experts’ traditional workflowand whether their feedback would change or not. Also, we are curious abouthow our tool and approach could be adopted in the education field. Unlike ex-perts, students are at the stage of learning the rules, such as cell division andcell assignments in our case. From the tools, they can visually learn how cellsdivide and check whether their newly assigned cells make sense or not. Havinga study to compare students learning new concepts in a traditional way with anewly-design approach would be interesting.Then we want to systematically investigate how researchers usually link 2Dand 3D representations and why they choose that specific approach. For eachapproach, wewant to investigate the advantages, disadvantages, and applicablescenarios. Also, we intend to explore whether the number of these views will in-fluence the linking interaction design. Based on these, we plan to summarize thedesign guidelines for future combination system design of 3D and 2D represen-tations.The third direction is about how we can better make use of ML in solvingscientific problems. For example, we may need multiple ML models for diversesteps, e. g., models for cell assignments andmodels for feature extraction in onesystem. Then there could be multiple groups of ML models where each groupaims to solve one step of the task. For such a system, the question of howwe canorganize, correlate, visualize, and interact with them remains unclear. One ideafor solving this problem is going through the literature and investigating howmodels responsible for diverse steps in the workflow are connected together.The final direction we are interested in is the collaboration design for Hu-mans and ML. As we discussed in the paper LineageD+ in chapitre 6, ideally,ML can serve as a collaborator to help humans to make decisions better. Howe-ver, we have no idea how to use visualization and interaction to enhance such acollaboration relationship. For example, in terms of different scenarios, to whatextent should people be able to control ML and the solution process? How couldwe support people to control the involvement of ML with the help of visualiza-tion?

7.7 SUMMARY

In this thesis, weworked on using visualization and interaction to solve scien-tific problems using the example of the cell lineage problem. We mainly inves-tigated this question in four parts. First, for such complicated problems, dif-ferent scientific datasets sometimes have unique properties that demand spe-
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Solution

Ideal Path

Traditional 
Path

Interaction
Machine Learning

Scientific Problem

Visualization

Figure 7.9 – The illustration of the peeling process to solve a scientific problem. Thelayers refer to diverse techniques (visualization, machine learning, and interaction) orcombinations of these techniques.

cific interaction/visualization techniques. Second, we need to understand bio-logists’ actual needs and balance their technique-driven requirements with thenew tool, which has improved but contains unfamiliar interaction and workflow.Third, since scientific data usually has spatial information, we need to visua-lize scientific datasets both in 3D and 2D representations. Connecting these twoviews visually and interactively enables people to have a better overview of allthe information and thus make better decisions. Lastly, we often need to in-clude ML support in the system to help experts with problem-solving. Expertsare skilled and knowledgeable, so humans should be in control of the decision-making process. They should be able to control how to use ML models, whatvisualization they want to refer to, and what workflow they want to pursue du-ring the process. To solve complex scientific problems, we, in the end, wouldlike to propose the following peeling metaphor to indicate how people couldget access to the solution with different techniques (ML, VIS, and interaction) asshown in Figure 7.9. Experts who are working on a scientific problem usuallyhave an idea about the solution, i. e., the core of the image, since they are ex-perienced and skilled. Yet, they still need enough useful information to makesatisfying decisions while all the information is intertwined together like a sphe-rical hairball. The process is like they are walking through the sphere to get to
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the core. In their traditional ways, they used to have unorganized information,and they needed to handle it by themselves. For example, during the plant celllineage establishment, though only adjacent cells can be sister cells, when as-signing a target cell, biologists used to see all the cells because 2D slices fromthe microscope cannot filter the adjacent cells for them. In this case, the pathcan be complicated, as shown in the image, which means experts spent moretime and energy solving the problem. Thus, we need to provide biologists withdifferent techniques to filter useful information so that they can follow an idealpath. Visualization can provide detailed spatial data, abstract information, andcan make patterns apparent. Interaction can correlate different views and helpusers to interactively extract the interesting information. ML can do some workfor experts so that users have less work to deal with. These three techniques canlargely help experts to effectively get the necessary information and then solvethe tasks. In this illustration, the path indicates the solving process, and layersrepresent the techniques experts used in this process. That is, layers do not haveto be three as in Figure 7.9. For example, in a case where an expert usedML first,then visualization, ML, and interaction, there should be four layers. Also, whenone step contains multiple techniques, the layer could represent multiple tech-niques as well. Moreover, the order of experts adopting these three techniquesin getting access to the solution is not strictly limited, so the order of layers arenot constrained as well. Experts could freely operate the system to get the goal.
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Titre : Visualisation interactive, soutenue par l’apprentissage automatique, de données hybrides 3D
et 2D ; l’exemple de la spécification du lignage cellulaire en biologie végétale
Mots clés : Données 3D, visualisation scientifique, visualisation abstraite 2D, interaction/HCI, ap-
prentissage automatique

Avec le développement des technologies d’in-
fographie, les données spatiales peuvent être
mieux visualisées dans leur environnement 3D afin
que les spectateurs puissent observer clairement
les formes et les positions 3D. Parallèlement, les
visualisations abstraites en 2D peuvent présenter
des informations résumées, visualiser des données
supplémentaires et contrôler la vue 3D. La com-
binaison de ces deux représentations en une seule
interface peut aider les utilisateurs à entreprendre
des tâches complexes, en particulier dans les do-
maines scientifiques, bien qu’il y ait un manque de
directives générales de conception pour l’interac-
tion. En général, les experts doivent analyser de
volumineuses données scientifiques pour mener à
bien des tâches difficiles. Par exemple, dans le do-
maine biologique, les biologistes doivent construire
l’arbre de lignage cellulaire d’un embryon conte-
nant plus de 200 cellules. Dans ce cas, le travail
manuel peut être long et fastidieux, et les algo-
rithmes d’apprentissage automatique ont le poten-
tiel d’alléger certains des processus manuels fasti-
dieux en fournissant des annotations ou prédic-
tions initiales aux experts. Dans le cas du lignage
cellulaire, ces prédictions contiennent toutefois des
informations hiérarchiques et multicouches, et il
est essentiel de les visualiser de manière séquen-
tielle ou progressive. De plus, les représentations
3D et 2D, ainsi que les prédictions d’apprentissage
automatique, doivent être connectées visuellement
et interactivement dans le système.

Dans cette thèse, le problème du lignage cel-
lulaire des embryons de plantes a été le leitmotiv
pour concevoir et étudier un système de visuali-
sation qui utilise des combinaisons de représenta-
tions 3D et 2D ainsi que des visualisations pour
l’apprentissage automatique. Nous avons d’abord
étudié les techniques d’interaction pour la sélec-
tion 3D au sein d’un embryon de plante. Les cel-
lules d’un embryon de plante sont jointives et

constituent un ensemble d’objets 3D dense dans
toutes les dimensions spatiales. Nous avons mené
une étude pour évaluer trois techniques de sé-
lection différentes, et nous avons montré que la
combinaison de la technique de Sélection par Ex-
plosion et de la technique de Sélection par Liste
fonctionne bien pour désigner et observer les cel-
lules d’un embryon. Ces techniques peuvent égale-
ment être étendues à d’autres données 3D denses
et similaires. Deuxièmement, nous avons conçu un
système de visualisations et d’interaction combiné
afin que les biologistes puissent examiner les cel-
lules de l’embryon et enregistrer l’histoire du dé-
veloppement dans l’arbre de lignage hiérarchique.
Nous prenons en charge la construction de la hié-
rarchie dans deux directions, à la fois en construi-
sant l’historique de haut en bas de l’arbre en utili-
sant la sélection lasso dans l’environnement 3D et
de bas en haut selon le flux de travail traditionnel
pour construire un arbre de lignage cellulaire hié-
rarchique. Nous avons également ajouté un modèle
de réseau neuronal pour fournir aux biologistes des
prédictions initiales sur les filiations. Nous avons
réalisé une évaluation avec des biologistes ; celle-
ci a montré que les représentations 3D et 2D faci-
litent les prises de décisions et que l’outil peut en-
richir leur vision des embryons. Cependant, la per-
formance du modèle d’apprentissage automatique
n’était pas idéale. Aussi, pour faciliter le processus
et améliorer les performances du modèle, dans une
version plus aboutie de notre système, nous avons
entraîné cinq modèles de classification différents,
visualisé les prédictions et leurs incertitudes asso-
ciées. Nous avons réalisé une évaluation auprès des
utilisateurs ; les résultats ont indiqué que les repré-
sentations des classifieurs que nous avons conçues
sont faciles à comprendre, et que le nouvel outil
peut améliorer significativement les prises de déci-
sion pour la validation du lignage cellulaire.



Title : Machine Learning Supported Interactive Visualization of Hybrid 3D and 2D Data for the
Example of Plant Cell Lineage Specification
Keywords : 3D data, scientific visualization, 2D abstract visualization, interaction/HCI, machine
learning

Abstract : As computer graphics technologies de-
velop, spatial data can be better visualized in the
3D environment so that viewers can observe 3D
shapes and positions clearly. Meanwhile, 2D abs-
tract visualizations can present summarized infor-
mation, visualize additional data, and control the
3D view. Combining these two parts in one in-
terface can assist people in finishing complica-
ted tasks, especially in scientific domains, though
there is a lack of design guidelines for the interac-
tion. Generally, experts need to analyze large scien-
tific data to finish challenging tasks. For example,
in the biological field, biologists need to build
the hierarchy tree for an embryo with more than
200 cells. In this case, manual work can be time-
consuming and tedious, and machine learning al-
gorithms have the potential to alleviate some of
the tedious manual processes to serve as the basis
for experts. These predictions, however, contain
hierarchical and multi-layer information, and it is
essential to visualize them sequentially and pro-
gressively so that experts can control their viewing
pace and validation. Also, 3D and 2D representa-
tions, together with machine learning predictions,
need to be visually and interactively connected in
the system.

In this thesis, we worked on the cell lineage
problem for plant embryos as an example to in-
vestigate a visualization system and its interaction
design that makes use of combinations of 3D and
2D representations as well as visualizations for ma-
chine learning. We first investigated the 3D selec-
tion interaction techniques for the plant embryo.
The cells in a plant embryo are tightly packed to-
gether, without any space in between. Traditional

techniques can hardly deal with such an occlusion
problem. We conducted a study to evaluate three
different selection techniques, and found out that
the combination of the Explosion Selection tech-
nique and the List Selection technique works well
for people to get access and observe plant cells in
an embryo. These techniques can also be extended
to other similar densely packed 3D data. Second,
we explored the visualization and interaction de-
sign to combine the 3D visualizations of a plant
embryo with its associated 2D hierarchy tree. We
designed a system with such combinations for bio-
logists to examine the plant cells and record the
development history in the hierarchy tree. We sup-
port the hierarchy building in two directions, both
constructing the history top-down using the lasso
selection in 3D environment and bottom-up as the
traditional workflow does in the hierarchy tree. We
also added a neural network model to give predic-
tions about the assignments for biologists to start
with. We conducted an evaluation with biologists,
which showed that both 3D and 2D representa-
tions help with making decisions, and the tool can
inspire insights for them. One main drawback was
that the performance of the machine learning mo-
del was not ideal. Thus, to assist the process and
enhance the model performance, in an improved
version of our system, we trained five different ML
models and visualized the predictions and their as-
sociated uncertainty. We performed a study, and
the results indicated that our designed ML repre-
sentations are easy to understand, and that the
new tool can effectively improve the efficiency of
assigning the cell lineage.
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