
HAL Id: tel-04017452
https://theses.hal.science/tel-04017452

Submitted on 7 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph-based Algorithms in Computer Vision, Machine
Learning, and Signal Processing

Jhony H. Giraldo

To cite this version:
Jhony H. Giraldo. Graph-based Algorithms in Computer Vision, Machine Learning, and Signal Pro-
cessing. Computer Vision and Pattern Recognition [cs.CV]. La Rochelle Université, 2022. English.
�NNT : �. �tel-04017452�

https://theses.hal.science/tel-04017452
https://hal.archives-ouvertes.fr

LA ROCHELLE UNIVERSITÉ

ÉCOLE DOCTORALE EUCLIDE
Laboratoire Mathématiques, Image et Applications

Ph.D Thesis
Jhony Heriberto Giraldo Zuluaga

Supervisor: Thierry Bouwmans
Discipline : Applied Mathematics

Graph-based Algorithms in Computer
Vision, Machine Learning, and Signal

Processing

Ph.D. Committee:

Laure Tougne, Full Professor, Université Lumière Lyon 2.

Marc Van Droogenbroeck, Full Professor, Université de Liège.

Lucia Maddalena, Director of Research, ICAR-CNR INdAM Research Unit.

Jenny Benois-Pineau, Full Professor, Université Bordeaux.

François Bremond, Director of Research, INRIA Sophia-Antipolis.

Antonino Staiano, Associate Professor, Università degli Studi di Napoli Parthenope.

Laura Toni, Associate Professor, University College London.

Date of Ph.D. Defense: 1st September 2022.

“Imagination will often carry us to worlds that never were, but without it we go

nowhere.”

Carl Sagan

Summary

In this thesis, entitled “Graph-based Algorithms in Computer Vision, Machine Learn-

ing, and Signal Processing”, we propose novel approaches in video and image process-

ing, graph neural networks, and recovery of time-varying graph signals. As a result,

this document is divided into three main parts: 1) computer vision, 2) machine

learning, and 3) signal processing. Our main motivation is to use the geometrical

information that we can capture from the data to avoid data hungry methods, i.e.,

learning with minimal supervision. All our contributions rely heavily on the devel-

opments of Graph Signal Processing (GSP) and spectral graph theory. In particular,

the sampling and reconstruction theory of graph signals play a central role in this

thesis. The main contributions of this thesis are as follows:

1. We propose Graph Moving Object Segmentation (GraphMOS) [1–4] in Chapter

3. GraphMOS is composed of segmentation, background initialization, graph

construction, unseen sampling, and a semi-supervised learning method inspired

by the theory of recovery of graph signals for Moving Object Segmentation

(MOS). GraphMOS has the advantage of requiring less labeled data than deep

learning methods while having competitive results on both static and mov-

ing camera videos. GraphMOS is evaluated on six publicly available datasets

outperforming several state-of-the-art methods in challenging conditions at the

time of publication.

2. We pose MOS as a node classification problem using Graph Convolutional Net-

works (GCNs) [5] in Chapter 4. Our algorithm, dubbed as GraphMOS-Net,

presents several advantages regarding GraphMOS while keeping its good prop-

erties. In particular, GraphMOS-Net requires little labeled information to per-

iii

form well as GraphMOS [1]. However, we train a neural network model in [5],

which makes testing faster than in GraphMOS. Similarly, adding new videos

does not require solving again the optimization problem as in [1].

3. We propose HyperGraph Convolutional Networks for Weakly-supervised Se-

mantic Segmentation (HyperGCN-WSS) [6] in Chapter 5. HyperGCN-WSS

follows the same line of research as in the previous algorithms [1, 5] about

learning with minimal supervision. However, HyperGCN-WSS addresses the

problem of Weakly-supervised Semantic Segmentation (WSS), using a similar

structure as in GraphMOS and GraphMOS-Net. HyperGCN-WSS constructs

hypergraphs from the images in the dataset. Then, we train a specialized Hy-

perGraph Convolutional Network (HyperGCN) architecture using some weak

signals. HyperGCN-WSS is evaluated on the PASCAL VOC 2012 dataset for se-

mantic segmentation. HyperGCN-WSS shows competitive performance against

some state-of-the-art methods at the time of publication.

4. We propose a new scalable convolutional operator for Graph Neural Networks

(GNNs) based on the Sobolev norm of graph signals [7] in Chapter 6. To this

end, we use Hadamard products between matrices to keep the same sparsity

level in graph representations, and therefore we dub our proposed algorithm

as Sparse Sobolev GCN (S-SobGNN). Our architecture computes a cascade of

filters on each layer with increasing Hadamard powers to get a more diverse set of

functions, and then an attention layer selects the best operations. We provide

several mathematical notions of our filtering operation based on the spectral

graph theory and the Schur product theorem. S-SobGNN is evaluated in several

tasks including, semi-supervised learning, and graph node classification. S-

SobGNN shows competitive performance in all applications as compared to

several state-of-the-art methods at the time of publication.

5. We introduce a topological relationship between over-smoothing and over-squashing

in Chapter 7. We use concepts of spectral graph theory and differential geome-

try to show that both problems are intrinsically related to the spectral gap of the

Laplacian representation of the graph. As a result, there is a trade-off between

iv

these two problems from a topological perspective, i.e., we cannot simultane-

ously alleviate both over-smoothing and over-squashing. Similarly, we use one

bound of the Ollivier’s Ricci curvature to propose a new rewiring algorithm for

GNNs. Our proposed algorithm is less computationally expensive than previous

curvature-based rewiring methods in the literature, while keeping fundamental

theoretical properties. We also perform a thorough comparison of our algorithm

with previous methods to alleviate over-smoothing and over-squashing, seeking

to gain a better understanding of both problems and their practical solutions.

6. We introduce a novel algorithm based on the extension of a Sobolev smooth-

ness function for the reconstruction of time-varying graph signals from discrete

samples [8, 9] in Chapter 8. We explore some theoretical aspects of the con-

vergence rate of our Time-varying Graph signal Reconstruction via Sobolev

Smoothness (GraphTRSS) algorithm by studying the condition number of the

Hessian associated with our optimization problem. Our algorithm has the ad-

vantage of converging faster than other methods that are based on Laplacian

operators without requiring expensive eigenvalue decomposition or matrix in-

versions. GraphTRSS is evaluated on several datasets including two COVID-19

datasets and it has outperformed many existing state-of-the-art methods for

time-varying graph signal reconstruction at the time of publication. Graph-

TRSS has also shown excellent performance on two environmental datasets for

the recovery of particulate matter and sea surface temperature signals.

Figure 0-1 shows a graphical summary of the main contributions of this thesis.

v

Graph-based Algorithms

Computer Vision Machine Learning Signal Processing

We pose the problem
of Moving Object

Segmentation (MOS) as
a graph learning

problem. Therefore, we
solve MOS using
concepts of Graph

Signal Processing (GSP)
and Graph Neural
Networks (GNNs).

We pose the problem
of Weakly-supervised

Semantic Segmentation
(WSS) as a hypergraph

learning problem.
Consequently, we solve
WSS using concepts of

hypergraph neural
networks.

We propose a new
graph convolutional
operator for GNNs

based on the Sobolev
norm in GSP. Similarly,

we introduce a new
sparse graph norm

to maintain scalability.

We introduce a
topological relationship

between the
over-smoothing and

over-squashing problems.
In addition, we present

a new rewiring algorithm
to alleviate both issues.

We propose a new
reconstruction algorithm

for graph signals
based on the extension

of a Sobolev smoothness
function from static

to time-varying
graph signals.

Figure 0-1: Main contributions presented in this thesis.

vi

Acknowledgments

First and foremost, I would like to thank Thierry Bouwmans for giving me the

opportunity to pursue a Ph.D under his supervision. I am tremendously grateful for

his continuous support, and specially for giving me the freedom to pursue a variety

of research directions in the past three years. Many thanks also go to Fragkiskos

Malliaros, Sajid Javed, and Arif Mahmood for playing the role of co-supervisor

at different stages of my Ph.D. Fragkiskos, I very much enjoyed my five months

at CentraleSupélec with you. I would like to thank also my lab Mathématiques,

Image et Applications (MIA), the Centre de Vision Numérique (CVN),

the OPIS team from Inria, and the CVPR Lab “Alfredo Petrosino” for the

support provided in my Ph.D.

I also would like to thank Lucia Maddalena and Marc Van Droogenbroeck

for agreeing to review this Ph.D. thesis. Similarly, I would like to thank the rest of

my Ph.D. committee for your valuable time: Thierry Bouwmans, Laure Tougne,

Jenny Benois-Pineau, François Bremond, Antonino Staiano, Laura Toni,

and Fragkiskos D. Malliaros.

I had the chance to work with several talented people closely during my Ph.D,

including: Dorina Thanou, Antonino Staiano, Naoufel Werghi, Ananda S.

Chowdhury, Maryam Sultana, Vincenzo Scarrica, Anindya Mondal, Wieke

Prummel, Marwa Chendeb El Rai, and Shashant R. It was a pleasure and I

learned a lot from working with you.

I would like to thank my friends from High School, and my best friends Luis

David Goyes, Nicanor García, and Alexander Gomez Villa for their emotional

support along this stage of my life. Thanks also go to Viviana Beltrán for helping

vii

me to make the decision to do my Ph.D at La Rochelle, and for being our friend when

my wife and I did not know anyone in France.

My past and present lab mates in the US and France, thank you so much for all

of your friendship and help throughout this process. I will miss the great moments

we lived together: Belmar Garcia-Garcia, Wieke Prummel, Ségolène Martin,

Kavya Gupta, Claire Rossignol, Thomas Guilmeau, and Sagar Verma. From

the US side many thanks go to: Karelia Peña-Peña, Carlos Mendoza, Jhon

Alejandro Castro, Christian Escobar, Carlos Restrepo, Angela Cuadros,

Mariano Burich, and Claudio César Claros, you were the hardest part of leaving

the US. Carlos M. and Angela, you helped me out taking one of the most important

and hardest decisions in my life, thank you very much.

I also thank Pierre Rideau, Alain and Dominique Breysse. You were our

French parents when my wife and I arrived in France without speaking the language.

You taught us French and helped us to navigate the French bureaucracy like if we

were your sons. Many thanks also go to Jean-Christophe and Sophie Pauget,

you welcomed us in your house like if we were family. I am immensely grateful to

you, you all are like my French family, the success of this journey and the love I have

now for French culture is in part thanks to you.

I would like to thank my family: Gloria Zuluaga, Heriberto Giraldo, Diana

Giraldo, Leonor Suarez, Omaira Zuluaga, and Nidia Botello for supporting

me spiritually throughout writing this research work and my life in general. Finally,

I would like to thank my beloved wife Camila Botello. We have walked a long path

together, from Colombia, to the US, and France. You are the person who holds me

together, and the one who gives balance to my life.

The research in Chapter 7 was supported by DATAIA convergence institute as

part of the “Programme d’Investissement d’Avenir”, (ANR-17-CONV-0003) operated

by CentraleSupélec.

viii

List of Publications

This thesis is based on the following publications:

Journal Publications:

• Jhony H. Giraldo, Sajid Javed, Thierry Bouwmans, “Graph Moving Object

Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 44, issue 5, pp. 2485-2503, 2022.

• Jhony H. Giraldo, Arif Mahmood, Belmar Garcia-Garcia, Dorina Thanou,

Thierry Bouwmans, “Reconstruction of Time-varying Graph Signals via Sobolev

Smoothness,” IEEE Transactions on Signal and Information Processing over

Networks, vol. 8, pp. 201-214, 2022.

• Jhony H. Giraldo, Sajid Javed, Arif Mahmood, Fragkiskos D. Malliaros,

Thierry Bouwmans, “Sparse Sobolev Graph Neural Networks,” IEEE Trans-

actions on Knowledge and Data Engineering. (To be submitted).

Conference Publications:

• Jhony H. Giraldo, Thierry Bouwmans, “Semi-supervised Background Sub-

traction of Unseen Videos: Minimization of the Total Variation of Graph Sig-

nals,” IEEE International Conference on Image Processing, 2020.

• Jhony H. Giraldo, Thierry Bouwmans, “On the Minimization of Sobolev

Norms of Time-Varying Graph Signals: Estimation of New Coronavirus Disease

2019 Cases,” IEEE International Workshop on Machine Learning for Signal

Processing, 2020.

• Jhony H. Giraldo, Thierry Bouwmans, “GraphBGS: Background Subtraction

via Recovery of Graph Signals,” International Conference on Pattern Recogni-

tion, 2021.

ix

• Jhony H. Giraldo, Sajid Javed, Maryam Sultana, Soon Ki Jung, Thierry

Bouwmans, “The Emerging Field of Graph Signal Processing for Moving Object

Segmentation,” International Workshop on Frontiers of Computer Vision, 2021.

• Jhony H. Giraldo, Sajid Javed, Naoufel Werghi, Thierry Bouwmans, “Graph

CNN for Moving Object Detection in Complex Environments from Unseen

Videos,” IEEE/CVF International Conference on Computer Vision - Work-

shops, 2021.

• Jhony H. Giraldo, Vincenzo Scarrica, Antonino Staiano, Francesco Camastra,

Thierry Bouwmans, “Hypergraph Convolutional Networks for Weakly-Supervised

Semantic Segmentation,” IEEE International Conference on Image Processing,

2022.

• Jhony H. Giraldo, Fragkiskos D. Malliaros, Thierry Bouwmans, “On the

Trade-off between Over-smoothing and Over-squashing in GNNs". (To be sub-

mitted).

Book Chapters:

• Jhony H. Giraldo, Huu Ton Le, Thierry Bouwmans, “Deep Learning Based

Background Subtraction: A Systematic Survey”, 6th Handbook of Pattern Recog-

nition and Computer Vision, World Scientific Publishing, pp. 51-73, 2020.

• Jhony H. Giraldo, Thierry Bouwmans, “Moving Objects Detection in Video

Processing: A Graph Signal Processing Approach for Background Subtraction,”

Artificial Intelligence Technologies, Applications, and Challenges, CRC Press,

Taylor, Francis Group, pp. 171-181, 2021.

Ideas, text, figures, and experiments originate mostly from the first author. Some

authors had important advisory roles, while others helped with specific coding parts.

The author has further collaborated in other publications during the time of his

Ph.D. However, these publications are not included in this thesis:

• Anindya Mondal, Shashant R., Jhony H. Giraldo, Thierry Bouwmans, Ananda

S. Chowdhury, “Moving Object Detection for Event-based Vision using Graph

Spectral Clustering,” IEEE/CVF International Conference on Computer Vision

- Workshops, 2021.

x

• Maryam Sultana, Thierry Bouwmans, Jhony H. Giraldo, Soon Ki Jung, “Ro-

bust Foreground Segmentation in RGBD Data from Complex Scenes using Ad-

versarial Networks,” International Workshop on Frontiers of Computer Vision,

2021.

• Marwa Chendeb El Rai, Jhony H. Giraldo, Mina Al-Saad, Muna Darweech,

Thierry Bouwmans, “SemiSegSAR: A Semi-supervised Segmentation Algorithm

for Ship SAR Images,” IEEE Geoscience and Remote Sensing Letters, vol. 19,

pp. 1-5, 2022.

xi

xii

Contents

Summary iii

Acknowledgments vii

List of Publications ix

1 Introduction 3

1.1 Graphs . 3

1.2 Scope and Research Questions . 4

2 Background 7

2.1 Mathematical Notation . 7

2.2 Graph Signals . 8

2.3 Sampling and Reconstruction of Graph Signals 9

2.4 Smooth Graph Signals . 10

2.5 Conclusions . 13

Part I: Computer Vision

3 Graph Moving Object Segmentation 17

3.1 Introduction . 17

3.2 Related Works . 21

3.2.1 Graph Signal Processing . 21

3.2.2 Moving Object Segmentation 22

3.3 Moving Object Segmentation and Graph Signal Processing 23

3.3.1 Graph Nodes Representation 24

xiii

3.3.2 Background Initialization and Feature Extraction 27

3.3.3 Graph Construction . 28

3.3.4 Graph Signal . 29

3.3.5 Sampling of Graph signals and Sample Complexity for Semi-

supervised Learning . 30

3.3.6 Minimization of the Sobolev Norm 31

3.3.7 Minimization of the Total Variation 32

3.3.8 GraphMOS in a Nutshell . 34

3.4 Experimental Framework . 34

3.4.1 Datasets . 34

3.4.2 Evaluation Metrics . 36

3.4.3 Experiments . 36

3.4.4 Parameters Settings . 37

3.4.5 Implementation Details . 37

3.5 Results and Discussion . 38

3.5.1 Qualitative Evaluations . 38

3.5.2 Quantitative Results . 39

3.5.3 Ablation Studies . 42

3.5.4 Sample Complexity . 46

3.6 Conclusions . 46

4 Graph Convolutional Networks for Moving Object Segmentation 49

4.1 Introduction . 49

4.2 Moving Object Segmentation and Graph Convolutional Networks . . 50

4.2.1 Segmentation, Feature Extraction, and Graph Construction . 51

4.2.2 Graph Semi-supervised Learning Algorithm 51

4.3 Experimental Framework . 53

4.3.1 Databases . 53

4.3.2 Training, Validation, and Test Nodes 53

4.3.3 Experiments . 53

xiv

4.3.4 Implementation Details . 54

4.4 Results and Discussion . 55

4.5 Conclusions . 58

5 Hypergraph Convolutional Networks for Semantic Segmentation 59

5.1 Introduction . 59

5.2 Proposed Method . 61

5.2.1 Preliminaries . 61

5.2.2 Nodes Representation and Graph Construction 62

5.2.3 Graph and Hypergraph Convolutional Networks 63

5.2.4 HyperGCN Architecture . 63

5.3 Experiments and Results . 64

5.3.1 Dataset and Evaluation Metrics 64

5.3.2 Implementation Details . 64

5.3.3 Experiments . 65

5.3.4 Results and Discussions . 65

5.4 Conclusions . 66

Part II: Machine Learning

6 Sparse Sobolev Graph Neural Networks 71

6.1 Introduction . 71

6.2 Related Work . 73

6.2.1 Inference of Graph Topology 73

6.2.2 Graph Neural Networks . 74

6.3 Learning Graphs from Data . 75

6.3.1 Preliminaries . 75

6.3.2 Inferring Smooth Graphs . 75

6.3.3 Reducing Hyperparameters 76

6.4 Sparse Sobolev Graph Neural Networks 77

6.4.1 Sobolev Norm . 78

xv

6.4.2 Sparse Sobolev Norm . 80

6.4.3 Graph Neural Network Architecture 81

6.5 Experiments and Results . 83

6.5.1 Implementation Details . 83

6.5.2 Semi-supervised Learning . 84

6.5.3 Benchmarking GNNs in Node Classification 88

6.6 Conclusion . 91

7 On the Trade-off between Over-smoothing and Over-squashing in

GNNs 93

7.1 Introduction . 93

7.2 Related Work . 95

7.3 Preliminaries . 96

7.3.1 Cheeger Inequality and Cheeger Constant 96

7.3.2 Over-squashing . 97

7.4 Understanding the Over-smoothing vs. Over-squashing Trade-off . . . 98

7.4.1 The Stationary Distribution on Graphs 98

7.4.2 Over-smoothing and Over-squashing 99

7.5 Jost-Liu Curvature Rewiring . 101

7.5.1 Curvature Rewiring Algorithm 102

7.6 Experimental Framework and Results 104

7.6.1 Experiments . 104

7.6.2 Implementation Details . 105

7.6.3 Results . 106

7.6.4 Limitations . 107

7.7 Conclusions . 108

Part III: Signal Processing

8 Reconstruction of Time-Varying Graph Signals via Sobolev Smooth-

ness 111

xvi

8.1 Introduction . 111

8.2 Related Work . 113

8.3 Reconstruction of Time-Varying Graph Signals 115

8.4 Sobolev Smoothness of Time-Varying Graph Signals 118

8.4.1 Sobolev Reconstruction . 118

8.4.2 Convergence Rate . 121

8.5 Experimental Framework . 124

8.5.1 Datasets . 124

8.5.2 Evaluation Metrics . 126

8.5.3 Experiments . 127

8.6 Results and Discussion . 130

8.6.1 Synthetic Graph and Signals 130

8.6.2 Real Datasets Summary . 131

8.6.3 COVID-19 Datasets . 132

8.6.4 Environmental Datasets . 135

8.6.5 Additional Analysis . 138

8.7 Conclusions . 140

9 Conclusions 143

A Instance Segmentation 145

B Vector of Features 147

C Closed-form Solution Variational Problem 149

D Proof of Theorem 6.4.1 151

E Proof of Lemma 6.4.2 153

F Codebase 155

G Proof of Lemma 7.4.3 157

xvii

H Hyperparameters Search 159

I Proof of Theorem 8.4.1 (Conditioning Number) 163

xviii

List of Figures

0-1 Main contributions presented in this thesis. vi

2-1 Example of elementary frequencies obtained from the Laplacian matrix

on a sensor network of 𝑁 = 500. Each graph shows a frequency 𝜆𝑖

with its corresponding eigenvector. The lowest frequency is 𝜆1 = 0,

corresponding to a constant graph signal, i.e., the Laplacian quadratic

form of eigenvector u1 is given such that uT
1Lu1 = 𝜆1 = 0. 12

3-1 Comparisons of the visual results of the proposed Graph Moving Ob-

ject Segmentation (GraphMOS) algorithm with existing state-of-the-

art methods on five MOS challenging video sequences taken from CD-

Net2014 [10] and UCSD [11] datasets. The compared methods are:

PAWCS [12], IUTIS-5 [13], BSUV-Net [14], ROSL [15], and DECOLOR

[16]. Our proposed algorithm performs significantly better than the

compared methods in these challenging sequences. 19

3-2 The pipeline of the MOS algorithm with the reconstruction of graph

signals. The algorithm uses background initialization and superpixel

segmentation [17, 18]. Each superpixel represents a node in a graph,

and the representation of each node is obtained with motion, intensity,

texture, and deep features. The ground-truth is used to decide if a node

is a moving (green nodes) or a static object (blue nodes). Black nodes

correspond to the non-labeled images in the dataset. Finally, some

nodes are sampled and the semi-supervised algorithm reconstructs all

the labels in the graph. 24

xix

3-3 Results of the semantic, instance, and superpixel segmentation using

DeepLab [19], Mask R-CNN [20], and SLIC [17] methods on the se-

quence fall taken from the CDNet2014 dataset. The green-colored cars

in (b), instances in different colors in (c), and homogeneous regions in

(d) represent the nodes of the graph. 26

3-4 Procedure to represent the nodes of the graph with a Mask R-CNN as

backbone. Each mask of the segmented image represents a node in the

graph, and the representation of the node is achieved with intensity,

optical flow, texture, and deep features. 28

3-5 Comparison of the qualitative results of GraphMOS on CDNet2014 and

UCSD datasets with existing state-of-the-art methods. Our algorithm

performs better than the state-of-the-art methods in these challenging

scenarios. 39

3-6 Results of the experiment related to the sample complexity. Left:

power spectrum of the graph signal ŷ2 related the moving objects,

right: classification error vs sample size of the semi-supervised learn-

ing algorithm. 46

4-1 GraphMOS-Net uses background initialization and instance segmenta-

tion. Each instance represents a node in a graph using motion, inten-

sity, and texture features. Finally, a GCN classifies if each node is a

moving or static object with an unseen scheme. 51

4-2 Visual results in CDNet2014 . 55

4-3 Visual results in UCSD . 56

5-1 The idea of HyperGCN-WSS is to rely both on the spatial and struc-

tural information in the datasets. 60

5-2 The pipeline of HyperGCN-WSS. Our algorithm uses SLIC superpixel

segmentation, VGG16 feature extraction, average pooling, spatial and

𝑘-NN graph construction, a specialized HyperGCN architecture, and

a DeepLabV3+ model. 61

xx

5-3 HyperGCN-WSS architecture with skip connections, as well as several

graph and hypergraph convolutional layers. X is the matrix of features

from VGG16. HyperGCN-WSS is trained in three stages, where we

have three loss functions ℒ𝑖. 63

5-4 Some visual results on PASCAL VOC 2012 with our HyperGCN-WSS,

using scribbles or clicks as weak signals. 65

6-1 The pipeline of our S-SobGNN algorithm with 𝑘-NN or smooth-learned

graphs. Our GNN can be used in a broad range of data such as images,

and text, among others. However, the step of mapping the original

dataset to the data matrix X ∈ R𝑁×𝑀 could be different in each case.

Our framework is composed of (a) inference of the graph topology and

(b) the S-SobGNN architecture. Finally, a loss function (such as the

cross-entropy) is computed for the training procedure. 78

6-2 Basic configuration of our S-SobGNN architecture with 𝑛 layers and 𝛼

filters per layer. 83

6-3 Average training time per epoch (T-Epoch) for several GNNs on 20News

with variations in the number of nodes 𝑁 88

7-1 Mixing steps 𝑓(𝜆2, 𝜖) for 𝜖 = 5× 10−4 vs. number of removed or added

edges for two stochastic block model graphs with a) two clusters, b)

five clusters, and c) one Erdős-Rényi graph. 100

7-2 The pipeline of the proposed Stochastic Jost and Liu curvature Rewiring

(SJLR) algorithm. 101

7-3 Average running time for balanced Forman curvature and Jost and Liu

curvature for variations in the number of nodes in three artificial graphs.107

xxi

8-1 The framework of our algorithm (GraphTRSS) using a matrix of co-

ordinates M ∈ R𝑁×2 to construct a graph with 𝑁 regions in the world

with confirmed cases of COVID-19 by November 18, 2020. The graph

is constructed with a 𝑘-NN method. GraphTRSS uses the operator

Dℎ ∈ R𝑀×(𝑀−1) to capture temporal information in the time-varying

signal X ∈ R𝑁×𝑀 with 𝑀 temporal snapshots, and it also uses differ-

ent sampling strategies J ∈ {0, 1}𝑁×𝑀 according to the desired out-

put (reconstruction or forecasting). Finally, the optimization function,

which includes the error and Sobolev terms, reconstructs or predicts

the missing values, i.e., the indexes of X where J has values zero. . . 120

8-2 Contour plots of two error surfaces of well and ill-conditioned problems

showing the evolution of a gradient descent method. 121

8-3 Eigenvalue penalization of the Laplacian matrix for different values of

𝛽 from the dataset of COVID-19. 123

8-4 Graph with the places in the United States in the Johns Hopkins Uni-

versity dataset [21]. The graph was constructed with a 𝑘-NN with

𝑘 = 10. 125

8-5 Graph with the spots in the sea for the dataset of temperature. The

graph was constructed with a 𝑘-NN with 𝑘 = 10. 126

8-6 Graph Fourier transform of some elements of XDℎ for COVID-19

global dataset. 129

8-7 Comparison of GraphTRSS with several methods in the literature on

synthetic data for four experiments on: a) reconstruction with sev-

eral sampling densities, b) variation of the SNR, c) variation of the

smoothness level in (8.4), and d) 𝜅(∇2
z𝑓𝑆(z)) and 𝜅(∇2

z𝑓𝐿(z)) with

several values of 𝜖 and 𝛽. Our algorithm is compared with Natural

Neighbor Interpolation (NNI) [22], Graph Regularization (GR) [23],

Tikhonov regularization [24, 25], Time-varying Graph Signal Recon-

struction (TGSR) [26], and Random Sampling and Decoder (RSD) [27].131

xxii

8-8 Comparison of GraphTRSS with several methods in the literature on

COVID-19 global dataset for several experiments in terms of: a) ran-

dom sampling, b) entire snapshots sampling, c) forecasting, d) varia-

tion of parameter 𝜖, e) variation of parameter 𝛽, f) several temporal

difference operators, g) convergence comparison, and h) running time. 133

8-9 Comparison of GraphTRSS with several methods in the literature on

COVID-19 USA dataset for several experiments in terms of: a) random

sampling, b) entire snapshots sampling, c) forecasting, d) variation of

parameter 𝜖, e) variation of parameter 𝛽, f) several temporal difference

operators, g) convergence comparison, and h) running time. 134

8-10 Comparison of GraphTRSS with several methods in the literature in

the PM 2.5 dataset for several experiments in terms: a) random sam-

pling, b) entire snapshots sampling, c) forecasting, d) variation of pa-

rameter 𝜖, e) variation of parameter 𝛽, f) several temporal difference

operators, g) convergence comparison, and h) running time. 136

8-11 Comparison of GraphTRSS with several methods in the literature in

the sea surface temperature dataset for several experiments in terms

of: a) random sampling, b) entire snapshots sampling, c) forecasting,

d) variation of parameter 𝜖, e) variation of parameter 𝛽, f) several tem-

poral difference operators, g) convergence comparison, and h) running

time. 137

8-12 Condition number of the Hessian associated with the optimization

problems for GraphTRSS (𝜅(∇2
z𝑓𝑆(z))) and TGSR [26] (𝜅(∇2

z𝑓𝐿(z)))

for all datasets. 139

8-13 Normalized Δ and unnormalized L Laplacian experiments in COVID-

19 global and sea surface temperature, a) reconstruction error using

Δ, b) loss vs number of iterations using Δ, and c) loss vs number of

iterations using L. 140

A-1 Architecture of Mask R-CNN [20] for GraphMOS. 146

xxiii

xxiv

List of Tables

3.1 Summary of the parameters used in our experiments for each dataset. 37

3.2 Comparisons of average F-measure on CDNet2014 dataset. 40

3.3 Comparison of F-measure results over the sequences of I2R dataset. . 40

3.4 Comparison of F-measure results over the sequences of SBI2015 dataset. 41

3.5 Comparison of F-measure results over the videos of UCSD background

subtraction dataset. 41

3.6 Performance comparisons in terms of average F-measure score for dif-

ferent segmentation methods used for graph construction. Only hand-

crafted features are used to report the performance. These ablations

studies involves: graph construction using DeepLab with ResNet 101

(DeepLab), Mask R-CNN with ResNet 50 (Mask R-50), Cascade Mask

R-CNN with ResNeSt 200 (Cascade RS-200), SuBSENSE, and Super-

pixel. 43

3.7 Performance comparison in terms of average F-measure score of super-

pixel and block-based segmentation for graph construction methods.

The performance is reported by using both handcrafted and deep fea-

tures representation of graph nodes. 43

3.8 Performance comparisons in terms of average F-measure score on five

datasets using distinct node features representations. Handcrafted,

deep features, and the concatenation of handcrafted and deep features

(Hand + Deep (Conv-5)) are used to represent graph nodes. 44

3.9 Performance comparisons in terms of average F-measure score for the

number of superpixels in the SLIC method. 44

xxv

3.10 Average F-measure with variations in the construction of the graph.

This ablation involves: 𝑘-NN with 𝑘 = 40, 𝑘 = 30, 𝑘 = 20, and 𝑘 = 10. 45

3.11 Average F-measure with variations in the semi-supervised learning al-

gorithm. This ablation involves: Sobolev minimization (Sob.) with

𝜖 = 50, 𝜖 = 0.5, 𝜖 = 0.2, and Total Variation minimization (TV). . . . 45

4.1 Comparisons of average F-measure over nine challenges of CDNet2014.

GraphMOS-Net is compared with unsupervised and supervised algo-

rithms in MOS. 57

4.2 Comparison of F-measure results over the videos of UCSD background

subtraction dataset. 58

5.1 Accuracy in mIoU (%) in the train set of PASCAL VOC after each loss

function ℒ𝑖 ∀ 𝑖 ∈ {1, 2, 3} in our algorithm. 66

5.2 Accuracy of HyperGCN-WSS and previous methods in the validation

set of PASCAL VOC. S: Scribbles. C: Clicks. 66

6.1 Accuracy (in %) for several state-of-the-art methods and our proposed

S-SobGNN architecture in several datasets for semi-supervised learn-

ing, inferring the graphs with 𝑘-NN and the protocol to learn the graph

as in Section 6.3.3. #Param is the number of learnable parameters,

Acc. means accuracy, s.d. denotes standard deviation, T-Epoch is the

average time per epoch. The best and second-best performing methods

on each category are shown in red and blue, respectively. 87

6.2 Accuracy (in %) for several state-of-the-art methods and our proposed

S-SobGNN architecture in several datasets for semi-supervised learn-

ing, inferring the graphs with 𝑘-NN and the protocol to learn the graph

as in Section 6.3.3. All methods have approximately the same number

of learnable parameters. 87

6.3 Homophily index for the datasets for semi-supervised learning with

different values of 𝑘. 89

xxvi

6.4 Accuracy (in %) of S-SobGNN with variations of the parameters 𝜖

and 𝛼, as well as variations of the parameter 𝑘 for the 𝑘-NN and the

algorithm to learn graphs (Lrnd.) in all datasets for semi-supervised

learning. 90

6.5 Sparsity percentage for the sparse and non-sparse Sobolev filtering ma-

trices. 90

6.6 Benchmarking results for several state-of-the-art methods and S-SobGNN,

where L denotes the number of hidden layers. The results are averaged

over four runs with four different seeds. 90

7.1 Results of the first experiment regarding the comparison of our SJLR

algorithm with several state-of-the-art methods to alleviate over-smoothing

and over-squashing. 106

8.1 Summary of the average error metrics in the real datasets for several

sampling schemes. The best and second-best performing methods on

each category are shown in red and blue, respectively. 132

8.2 The average number of iterations to satisfy the stopping condition for

GraphTRSS and TGSR [26]. 138

H.1 Best hyperparameters for Cornell dataset. 160

H.2 Best hyperparameters for Texas dataset. 160

H.3 Best hyperparameters for Wisconsin dataset. 160

H.4 Best hyperparameters for Chameleon dataset. 160

H.5 Best hyperparameters for Squirrel dataset. 161

H.6 Best hyperparameters for Actor dataset. 161

H.7 Best hyperparameters for Cora dataset. 161

H.8 Best hyperparameters for Citeseer dataset. 161

H.9 Best hyperparameters for Pubmed dataset. 162

xxvii

xxviii

Dedicated to my beloved family: Camila, Gloria,

Heriberto, and Diana.

2

Chapter 1

Introduction

1.1 Graphs

A graph is a mathematical entity that can represent relationships between discrete

objects. These objects are mathematical abstractions called nodes or vertices, where

the relationships between them are captured with the so-called edges or links. A

graph is thus given by a set of nodes and a set of edges. Graphs can be undirected

like in friendship: a person A is friend of a person B, and vice versa. Graphs can

also be directed like in a virtual social network of followers: a person A can follow

a person B, but it could not be the case in the other sense. Similarly, we can have

unweighted graphs where we have a connection or not, like in a social network (we

do not say a person A is 50% friend of a person B). Graphs can also be weighted,

where we represent how strong is the connection between nodes, like in Google Maps

where we know how far is some place A to another place B. Unless explicitly stated

otherwise, we consider undirected, connected, and weighted graphs in this thesis.

The fundamentals and applications of graphs have gained significant attention in

recent years. Notably, Graph Neural Networks (GNNs) and Graph Signal Processing

(GSP) have been extensively studied [28–35]. GNNs extend the concepts of Con-

volutional Neural Networks (CNNs) [36] to non-Euclidean data modeled as graphs.

Similarly, GSP extends the concepts of classical digital signal processing to signals

supported on graphs [28]. GNNs and GSP have numerous applications such as semi-

3

supervised learning [33,34], point cloud semantic segmentation [37,38], prediction of

individual relations in social networks [39], and modeling of proteins for drug discov-

ery [40, 41]. Similarly, other graph techniques have been recently applied to image,

video, and medical image processing applications [1, 42–44].

Even though graph-based algorithms have had a lot of success in recent years,

there are still several open questions. These topics range from fundamental aspects

of the algorithms, to specific issues related to the application domains. In this thesis,

we use graphs to model the complex relationships that exist between instances in some

data. Thus, we exploit this intrinsic information to solve problems in: 1) learning with

minimal supervision in computer vision and machine learning, and 2) reconstruction

of time-varying signals that live on graphs.

1.2 Scope and Research Questions

This thesis is divided into three parts. Part 1 introduces novel concepts of graphs in

some problems of computer vision like moving objects and semantic segmentation.

Part 2 addresses problems of machine learning on graphs. In particular, we introduce

several contributions in GNNs using concepts of GSP, where we study concepts like

homophily [45], graph convolutions [33], over-smoothing [46], and over-squashing [47].

Finally, part 3 presents a new algorithm for the reconstruction of time-varying graph

signals. This algorithm converges faster than other methods in the literature without

requiring expensive eigenvalue decompositions or matrix inversions. This signal pro-

cessing approach is evaluated for the reconstruction of COVID-19 and environmental

data.

The contributions of this thesis have been driven by the following research ques-

tions:

1. Can concepts of GSP be used in the problem of Moving Object Segmentation

(MOS) under the paradigm of learning with minimal supervision? We intro-

duce Graph Moving Object Segmentation (GraphMOS) in Chapter 3. Graph-

MOS uses concepts of sampling and reconstruction in GSP to address MOS.

4

GraphMOS takes a minimal supervision approach leading to a new family of

semi-supervised learning algorithms in MOS. GraphMOS is inspired in the re-

construction of graph signals to solve the semi-supervised learning problem.

Therefore, we have to solve an optimization problem each time we want to

evaluate our algorithm. GraphMOS is evaluated on several datasets for MOS.

2. How can we overcome the limitations of GraphMOS using concepts of GNNs?

GraphMOS requires to solve an optimization problem if new instances are added

to the dataset, which limits its practical applications. To address this prob-

lem, we propose to solve MOS with GCNs (GraphMOS-Net) in Chapter 4.

GraphMOS-Net performs better than GraphMOS in several challenging condi-

tions. Similarly, GraphMOS-Net is faster than GraphMOS in evaluation.

3. Can we address semantic segmentation using the concepts developed in previ-

ous chapters? We introduce HyperGraph Convolutional Networks for Weakly-

supervised Semantic Segmentation (HyperGCN-WSS) in Chapter 5. Our algo-

rithm uses hypergraphs to capture spatial information in the images, as well as

structural information in the dataset. HyperGCN-WSS solves the problem of se-

mantic segmentation with minimal supervision using weak signals like scribbles

and clicks. HyperGCN-WSS is evaluated on the PASCAL VOC 2012 dataset.

4. How can we improve the expressiveness of GNNs while keeping scalability? We

introduce Sparse Sobolev Graph Neural Networks (S-SobGNNs) in Chapter 6.

Our algorithm uses a sparse Sobolev norm using concepts of GSP. Similarly, we

add a linear combination mechanism to make graph convolutions more expres-

sive, while keeping scalability. S-SobGNN is evaluated in several tasks including,

semi-supervised learning, graph node classification, and MOS.

5. What is the relationship between over-smoothing and over-squashing in GNNs?

We introduce a topological relationship between over-smoothing and over-squashing

in Chapter 7. This underlying relationship is linked using the spectral gap of

the Laplacian representation of the graph. We also introduce a new Stochastic

Jost and Liu curvature Rewiring (SJLR) algorithm to alleviate over-smoothing

and over-squashing. SJLR is evaluated in several benchmarking datasets for

5

node classification.

6. How can we increase the convergence rate of GSP algorithms for reconstruc-

tion? We introduce Time-varying Graph signals Reconstruction via Sobolev

Smoothness (GraphTRSS) in Chapter 8. GraphTRSS converges faster than

previous methods for reconstruction of time-varying graph signals, without re-

quiring expensive eigenvalue decompositions or matrix inversions. GraphTRSS

is evaluated on several datasets including two COVID-19 datasets and two en-

vironmental datasets, outperforming many existing methods for time-varying

graph signal reconstruction.

In addition to the contributions listed above, we include in Chapter 2 the math-

ematical notation and background of this thesis. After presenting the main body of

this thesis in Parts 1, 2, and 3, we conclude and show potential directions for future

work in Chapter 9.

6

Chapter 2

Background

In this chapter, we provide an introduction to the mathematical notation and some

background topics that will be used in this thesis. More specifically, Section 2.1

presents the mathematical notation in this thesis. Section 2.2 introduces the basic

concepts and definitions of graphs and graph signals. Section 2.3 explains the fun-

damental concepts of sampling and reconstruction of graph signals, and Section 2.4

explains the concept of smooth graph signals. Finally, Section 2.5 presents some con-

cluding remarks of this chapter. Later chapters in this thesis introduce additional

background concepts whenever required.

2.1 Mathematical Notation

In this thesis, calligraphic letters such as 𝒱 denote sets and |𝒱| represents its cardinal-

ity. Uppercase boldface letters such as A represent matrices, and lowercase boldface

letters such as x denote vectors. I is the identity matrix and 1 is a vector of ones

with appropriate dimensions. (·)T and (·)H represent transposition and Hermitian

transpose. The vectorization of matrix A is denoted as vec (A), and diag(x) is the

diagonal matrix with entries {𝑥1, 𝑥2, . . . , 𝑥𝑁} as its diagonal elements. ‖ · ‖2 is the

ℓ2-norm of a vector, ‖ · ‖𝐹 is the Frobenius norm, and ‖ · ‖1,1 is the entry-wise norm-1

of a matrix. 𝜆max(A) and 𝜆min(A) represent the maximum and minimum eigenval-

ues of matrix A, respectively. 𝜅(·) is the condition number of a matrix, and ≜ is

7

the symbol for “equal by definition”. ∇x𝑓(x) is the gradient of certain vector-valued

function 𝑓(x), and ∇2
x𝑓(x) is its Hessian. Finally, ∘ and ⊗ represent the Hadamard

and Kronecker product between matrices, respectively.

2.2 Graph Signals

Let 𝐺 = (𝒱 , ℰ) be an undirected and weighted graph. 𝒱 = {1, . . . , 𝑁} is the set of 𝑁

nodes and ℰ = {(𝑖, 𝑗)} is the set of edges, where (𝑖, 𝑗) is an edge between the vertices

𝑖 and 𝑗. A ∈ R𝑁×𝑁 is the adjacency matrix of 𝐺 such that A(𝑖, 𝑗) = 𝑎𝑖𝑗 ∈ R+ is the

weight connecting vertices 𝑖 and 𝑗. As a consequence, A is symmetric for undirected

graphs. A graph signal is a function 𝑦 : 𝒱 → R defined on the nodes of 𝐺, and it can be

represented as y ∈ R𝑁 where y(𝑖) is the function evaluated on the 𝑖th node. Moreover,

D ∈ R𝑁×𝑁 is the diagonal degree matrix of 𝐺 such that D(𝑖, 𝑖) =
∑︀𝑁

𝑗=1 A(𝑖, 𝑗) ∀ 𝑖 =

1, . . . , 𝑁 , and 𝑑𝑖 = D(𝑖, 𝑖). There are several definitions in the literature for the

Laplacian matrix. For example, L = D−A is the combinatorial Laplacian matrix,

and Δ = I−D− 1
2AD− 1

2 is the symmetric normalized Laplacian [28]. The Laplacian

matrix is a positive semi-definite matrix for undirected graphs with eigenvalues1 0 =

𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑁 and corresponding eigenvectors {u1,u2, . . . ,u𝑁}.

The graph Fourier basis of 𝐺 is defined by the spectral decomposition of L =

UΛUT [28], where U = [u1,u2, . . . ,u𝑁] and Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑁), where 𝜆𝑖 is

the frequency associated to the 𝑖th eigenvalue [28]. Therefore, the Graph Fourier

Transform (GFT) ŷ of the signal y is defined as ŷ = UTy, and the inverse GFT is

given by y = Uŷ [28].

Definition 2.2.1. A graph signal y is called bandlimited if ∃ 𝜌 ∈ {1, 2, . . . , 𝑁 − 1}

such that its GFT satisfies ŷ(𝑖) = 0 ∀ 𝑖 > 𝜌.

The smallest 𝜌 that holds Definition 2.2.1 is called the bandwidth of y. Using these

notions of frequency, Pesenson [48] defined the space of all 𝜔-bandlimited signals as

𝑃𝑊𝜔(𝐺) = span(U𝜌 : 𝜆𝜌 ≤ 𝜔), where U𝜌 represents the first 𝜌 eigenvectors of L, and

1𝜆𝑁 ≤ 2 in the case of the symmetric normalized Laplacian Δ.

8

𝑃𝑊𝜔(𝐺) is known as the Paley-Wiener space of 𝐺. As a consequence, a graph signal

y has cutoff frequency 𝜔, and bandwidth 𝜌 if y ∈ 𝑃𝑊𝜔(𝐺).

2.3 Sampling and Reconstruction of Graph Signals

Given the definition of graph signals and the notions of bandlimitedness in terms of

𝑃𝑊𝜔(𝐺), the next logical step is to find a bound for the minimum number of samples

required to reach perfect recovery of y ∈ 𝑃𝑊𝜔(𝐺). The answer is that one needs

at least 𝜌 (bandwidth) labeled nodes to achieve perfect reconstruction. Intuitively, a

graph signal y is smooth in 𝐺 when y ∈ 𝑃𝑊𝜔(𝐺). For example, suppose a sensor

network of temperatures in a specific region. One would expect that the temperature

of two or more nearby localities should be similar, i.e., the value of the graph signal

evaluated in two or more strongly connected nodes should not be very different. As

a consequence, probably one just needs the temperature of some of these nodes to

reconstruct the whole graph signal in the other vertices.

To add mathematical precision to the notion of perfect reconstruction, the sam-

pling of a graph signal is defined in terms of a subset of nodes 𝒮 ⊂ 𝒱 with 𝒮 =

{𝑠1, 𝑠2, . . . , 𝑠𝑚}, where 𝑚 = |𝒮| ≤ 𝑁 is the number of sampled nodes. The sampled

graph signal is defined as y(𝒮) = My, where M is a binary decimation matrix whose

entries are given by M = [𝛿𝑠1 , . . . , 𝛿𝑠𝑚]
T and 𝛿𝑣 is the 𝑁−dimensional Kronecker

column-vector centered at 𝑣. The recovery of a graph signal from its samples y(𝒮)

can be represented as ỹ = ΦMy, where Φ ∈ R𝑁×𝑚 is an interpolation matrix. Per-

fect recovery is achievable if ΦM = I, i.e., ỹ = Iy = y. Since rank(ΦM) ≤ 𝑚 ≤ 𝑁 ,

perfect reconstruction is not possible in general. However, perfect reconstruction from

a sampled graph signal y(𝒮) is possible when the sampling size |𝒮| ≥ 𝜌 [49].

Theorem 2.3.1 (Chen’s theorem [49]). Let M satisfy rank(MU𝜌) = 𝜌. For all

y ∈ 𝑃𝑊𝜔(𝐺), perfect recovery, i.e., y = ΦMy, is achieved by choosing:

Φ = U𝜌V, (2.1)

9

with VMU𝜌 a 𝜌× 𝜌 identity matrix.

Proof: see [49].

Theorem 2.3.1 states that perfect reconstruction of graph signal from its samples

is possible when y lies in 𝑃𝑊𝜔(𝐺), and the number of samples is at least 𝜌. Then,

perfect reconstruction is achieved by choosing the interpolation operator as in (2.1).

A common approach to obtain a reconstructed version of y is given by:

argmin
z∈span(U𝜌)

||Mz− y(𝒮)||22 = U𝜌(MU𝜌)
†y(𝒮), (2.2)

where U𝜌 = [u1,u2, . . . ,u𝜌] is the matrix formed of the first 𝜌 graph’s eigenvectors,

and (MU𝜌)
† is the pseudo-inverse of (MU𝜌). In other words, the interpolation oper-

ator is such that Φ = U𝜌(MU𝜌)
†. The computation of the Laplacian eigenvectors in

(2.1) and (2.2) is computationally prohibitive for large graphs (as the ones treated in

this work). In this thesis, the computation of U is avoided, and we resort to concepts

of smooth graph signals to solve the problem of reconstruction of graph signals.

2.4 Smooth Graph Signals

The notion of bandlimitedness in Definition 2.2.1 is related to the smoothness of y.

When y ∈ 𝑃𝑊𝜔(𝐺), the variation of y is smooth in the vertex domain. From Defini-

tion 2.2.1, one knows that the GFT is required to check if y ∈ 𝑃𝑊𝜔(𝐺). However, the

computation of the GFT requires the calculation of the eigenbasis, which is computa-

tionally prohibitive for large graphs. In this thesis, the computation of U is avoided

by leveraging notions of global smoothness in 𝐺.

Formally, notions of smoothness in y were introduced through concepts of local

variation and the discrete 𝑝-Dirichlet form [29]. The local variation of y at vertex 𝑖

is defined as:

‖∇𝑖y‖2 ≜

[︃∑︁
𝑗∈𝒩𝑖

A(𝑖, 𝑗)[y(𝑗)− y(𝑖)]2

]︃ 1
2

, (2.3)

where 𝒩𝑖 is the set of vertices connected to the node 𝑖 by one edge. Thus, the discrete

10

𝑝-Dirichlet form is defined as 𝑆𝑝(y) ≜ 1
𝑝

∑︀
𝑖∈𝒱 ‖∇𝑖y‖𝑝2, then:

𝑆𝑝(y) =
1

𝑝

∑︁
𝑖∈𝒱

[︃∑︁
𝑗∈𝒩𝑖

A(𝑖, 𝑗)[y(𝑗)− y(𝑖)]2

]︃ 𝑝
2

. (2.4)

For example, when 𝑝 = 2:

𝑆2(y) =
∑︁

(𝑖,𝑗)∈ℰ

A(𝑖, 𝑗)[y(𝑗)− y(𝑖)]2 = yTLy. (2.5)

𝑆2(y) is known as the graph Laplacian quadratic form [29]. Notice that 𝑆2(y) =

0 ⇐⇒ y = 𝜏1, where 𝜏 is a constant; and more generally, 𝑆2(y) is small when the

graph signal y has similar values at neighboring nodes connected by an edge, i.e.,

when the signal is smooth.

The Laplacian quadratic form in (2.5) has been used as regularizer in reconstruc-

tion of graph signals, and semi-supervised learning problems [50], where this regular-

izer looks for smooth graph signals. Intuitively, there is a relationship between the

smoothness of a graph signal and its bandwidth. For example, the variational prob-

lem [51] leads to the same solution of Eqn. (2.2) when y holds Definition 2.2.1 [52]

(for further details see Section 3.3.6). Therefore, the minimization of the 𝑝-Dirichlet

form is aligned with the prior assumption of bandlimitedness, without the explicit

computation of the eigenbasis U and the bandwidth 𝜌 of y. Formally, since L is

positive semi-definite for undirected graphs, all the eigenvalues are non-negative and

real, and a full set of orthogonal eigenvectors can be obtained as explained in Section

2.2. The matrix of eigenvectors U is known as the GFT matrix of the graph. The

eigenvalue-eigenvector pairs can be viewed as successive optimizers of the Rayleigh

quotient, where the 𝑖th pair 𝜆𝑖,u𝑖 solves:

u𝑖 = argmin
yTu𝑖′=0,𝑖′=0,...,𝑖−1

yTLy

yTy
, (2.6)

with 𝜆𝑖 = uT
𝑖 Lu𝑖 if uT

𝑖 u𝑖 = 1. The term yTLy is precisely the Laplacian quadratic

form of the graph signal y [29], i.e., the GFT provides an orthogonal basis with in-

11

Figure 2-1: Example of elementary frequencies obtained from the Laplacian matrix on
a sensor network of 𝑁 = 500. Each graph shows a frequency 𝜆𝑖 with its corresponding
eigenvector. The lowest frequency is 𝜆1 = 0, corresponding to a constant graph signal,
i.e., the Laplacian quadratic form of eigenvector u1 is given such that uT

1Lu1 = 𝜆1 = 0.

creased variation [28]. Figure 2-1 shows an example of the eigenvectors of a weighted

undirected sensor network with 500 nodes. One can notice that the eigenvector u𝑖 has

more variations as the value of 𝜆𝑖 increases, where the Laplacian quadratic form of

u1, given as uT
1Lu1 = 𝜆1 = 0, corresponds to a constant-valued eigenvector. Since the

GFT of a graph signal is given such that ŷ = UTy, one can precisely represent a ban-

dlimited graph signal in the Fourier domain as ŷ = [u1, . . . ,u𝜌,0, . . . ,0]
Ty according

to Definition 2.2.1, i.e., a mapping of the first 𝜌 eigenvectors. As a consequence, a

bandlimited graph signal is smooth on undirected graphs.

In semi-supervised learning, the number of samples required to get perfect classi-

fication increases when the bandwidth 𝜌 increases. In practice, graph signals are only

approximately bandlimited [53]. As a consequence, the classification error is bounded

by a value 𝜑 [52].

12

2.5 Conclusions

Graph representation learning and its applications have gained significant attention

in recent years. GNNs and GSP have been extensively studied [28,30,33]. GNNs and

GSP have numerous applications in machine learning [33] and computer vision [1,38].

Despite the success of GNNs and GSP in many applications, there are still several

open problems. For instance, GNNs suffer from the over-smoothing (and maybe the

over-squashing) issue when several graph-convolutional layers are stacked to create

deep models [46]. This problem limits the performance of deep GNN architectures.

The following chapters of this thesis deal with some fundamental problems in graph

representation learning and its applications in several fields of computer science.

13

14

Part I

Computer Vision

16

Chapter 3

Graph Moving Object Segmentation

3.1 Introduction

MOS is a relevant topic in computer vision and video analysis. MOS is a pre-

processing task in many applications such as robotics system, intelligent transporta-

tion, and intelligent visual surveillance systems of human activities in public spaces,

among others [54]. The main objective of MOS is to separate the moving objects

called foreground, from the static component called background [55–58]. In the lit-

erature, MOS has been considered as a classification problem where each pixel is

classified for either background or moving object in a sequence taken from a static or

moving camera, and therefore this problem is also known as background subtraction

and moving object detection [59]. Many efforts have been reported in the literature

to improve the classical methods progressively in applications where challenges are

becoming more complex. However, none of the methods can simultaneously address

all the key challenges that are present in videos during long sequences as in the real

cases [10]. In fact, several studies are focused on designing methods for specific chal-

lenges in MOS such as turbulence [60], dynamic backgrounds [61], and camouflaged

moving objects [62]. Furthermore, many studies are limited to deal with shadows and

the sequences taken from Pan-Tilt-Zoom (PTZ) cameras because of their challenging

nature [54, 63–65].

MOS methods can broadly be categorized into unsupervised and supervised learn-

17

ing schemes. Many unsupervised learning methods have been proposed in the litera-

ture, and they rely on background models to predict the foreground objects [58,63,66].

However, these methods show performance degradation in the presence of dynamic

background scenes. Supervised learning methods are based on CNNs [64]. CNN-based

methods have demonstrated better performance than the unsupervised methods, how-

ever, most of these models fail to get optimal performance when employed on unseen

videos (poor generalization). For example, the FgSegNet method uses 200 images

from the test video for training and the remaining frames from the same video for

evaluation [67]. The performance of FgSegNet dramatically decreases when applied

to unseen videos [14]. Fig. 3-1 shows some visual results of the state-of-the-art meth-

ods for MOS under challenging background scenarios. Despite significant efforts and

competitive performance in particular challenges, there are still several open issues for

the MOS task [54, 64]. 1) None of the methods can effectively handle all MOS chal-

lenges in the presence of static and moving camera sequences. 2) Some CNNs-based

models do not have a good performance on unseen videos, or their generalizations to

other videos are hardly predictable [14]. 3) Deep learning methods lack theoretical

guarantees and explanations about the sample complexity required during the end-

to-end learning process. The classical fundamental theorem of statistical learning,

involving the Vapnik–Chervonenkis dimension, bounds the sample complexity in ma-

chine learning [68]. However, this bound does not guarantee the performance in deep

learning regimen because of the huge amount of parameters in common deep neural

networks.

In recent years, a growing number of graph-based methods have been proposed

for many computer vision and machine learning applications such as object tracking

[43, 69], MOS [70–72], and tissue community detection [44, 73]. Graphs can model

complex relationships on data [28]. These structures capture the intrinsic geometric

structure in data and can model data points and complex interactions among them.

Each node or vertex on the graph represents one data point to which a label can be

associated, and a graph can be formed by connecting vertices with edge weights that

are assigned based on distance values among the data points in the feature space.

18

In
pu

t
Gr

ou
nd

Tr
ut

h
BS

UV
-N

et
Pr

op
os

ed
Gr

ap
hM

OS
PA

W
CS

IU
TI

S-
5

CDNet2014

In
pu

t
Gr

ou
nd

Tr
ut

h
BS

UV
-N

et
Pr

op
os

ed
Gr

ap
hM

OS
RO

SL
DE

CO
LO

R

UCSD
Zoom In Zoom Out Camera Jitters in Traffic People in Shade Skiing

Surfers

Figure 3-1: Comparisons of the visual results of the proposed Graph Moving Object
Segmentation (GraphMOS) algorithm with existing state-of-the-art methods on five
MOS challenging video sequences taken from CDNet2014 [10] and UCSD [11] datasets.
The compared methods are: PAWCS [12], IUTIS-5 [13], BSUV-Net [14], ROSL [15],
and DECOLOR [16]. Our proposed algorithm performs significantly better than the
compared methods in these challenging sequences.

19

Social, financial, ecological networks, and the human brain are few examples of such

data structure that can be modeled on graphs [28,29]. GSP enables different types of

learning and filtering operations on values associated with graph nodes [49,53,74,75].

For inference, these graph models are used to classify graph signals. Therefore, semi-

supervised learning can be modeled as the reconstruction of a graph signal from

its samples [53]. When data labels are presented as signals on a graph, graph signal

regularization techniques can be used in the process of estimating the unknown labels

for graph nodes classification [53,74].

In this chapter, we pose the problem of MOS as a semi-supervised learning prob-

lem on graphs. The nodes in the graph represent the homogeneous regions (known as

superpixels) of the video sequence, and the task is to classify each homogeneous region

to either a background (static component) or a moving object (foreground compo-

nent) node by using the concepts of sampling and reconstruction of graph signals. Our

algorithm thus lies in between the unsupervised and supervised techniques, leading

to a new branch of MOS algorithms. Our proposed algorithm explores a somewhat

radical departure from prior work in MOS, inspired by the theory of GSP [28,29]. We

name the proposed semi-supervised learning algorithm as Graph Moving Object Seg-

mentation (GraphMOS), where grouped regions in the videos are modeled as nodes

of a graph embedded in a high dimensional space, and a graph signal is related to the

class static or moving object. Our proposed GraphMOS algorithm is composed of

superpixel segmentation, background initialization, feature extraction for nodes rep-

resentation, construction of a graph, sampling of graph signals, and finally, a recovery

method is applied to reconstruct the graph signal from its samples. The task of the

reconstruction algorithm is to classify the graph nodes. Moreover, the bandwidth of

the graph signal associated with the problem shows an upper bound for the sample

complexity required in semi-supervised learning [52], assuming bandlimitedness and

no noise in the graph signal. Several configurations of the proposed algorithm are eval-

uated for the MOS task outperforming many state-of-the-art methods on the Change

Detection 2014 (CDNet2014) dataset [10], I2R [76], Scene Background Initialization

(SBI2015) [65], and UCSD background subtraction [11] datasets.

20

The advantages of GraphMOS are: 1) its good performance even when the back-

ground scene rapidly changes, which is difficult to handle using existing MOS methods

(Fig. 3-1), and 2) its theoretical foundation, unlike other state-of-the-art methods.

The main contributions of the current work are summarized as follows:

• The MOS problem is posed as a graph learning problem by using the concepts

of GSP. To the best of our knowledge, this is the first work that exploits the

sampling and reconstruction of graph signals for MOS.

• One theoretical development is introduced, showing the upper-bound for the

sample complexity required in semi-supervised learning under some prior as-

sumptions in Corollary 3.3.1.

• Extensive evaluations are performed on four publicly available MOS bench-

mark datasets, and we compared our algorithms with 20 existing state-of-the-

art methods with rigorous analysis. Unlike previous methods in the literature,

our proposed algorithm can be applied to MOS with static and moving camera

sequences.

3.2 Related Works

This section presents brief reviews for 1) GSP and its application to computer vision,

and 2) unsupervised and supervised MOS algorithms.

3.2.1 Graph Signal Processing

Even though the study of graphs is an ancient field, Sandryhaila and Moura were the

first authors to introduce the term of discrete signal processing on graphs and later

coined with the name of GSP [77]. Graph signal processing emerged with the idea

of developing tools to analyze data living in irregular and complex structures [28].

From one point of view, the first developments of GSP come from the studies of low-

dimensional representations for high-dimensional data through spectral graph theory,

and the graph Laplacian [78]. From another perspective, several authors developed

compression schemes, wavelet decomposition, filter banks on graphs, regression al-

21

gorithms, and denoising using the graph Laplacian motivated by the data collected

from sensor networks [79–83].

GSP has also been widely used in image processing and computer graphics. For

example, Shi and Malik represented images as graphs to treat segmentation as a

graph partitioning problem [84]. In the same way, image filtering techniques can be

interpreted from a graph point of view [85]. Similarly in computer graphics, models

like meshes can be naturally modeled with graphs to apply graph-based filtering and

multi-resolution operations [86,87].

In video processing, GSP is useful to model the spatiotemporal relationships

among frames. For instance, the graph Cartesian product could be useful to pro-

cess videos taking into account the spatiotemporal relationships of the pixels [88].

Interested readers can explore more details about GSP and its machine learning ap-

plications in a recent survey [28]. In our proposed algorithm, graphs are used to

model the relationship among the nodes on videos where the graph signal represents

the class foreground or background of the set of nodes in a dataset. Finally, the

reconstruction of graph signals is applied to classify if a certain node is a moving or

static object for MOS.

3.2.2 Moving Object Segmentation

There are many unsupervised methods in the literature to address the problem of

MOS. These methods can be grouped as statistical [89], fuzzy [90], subspace learning

[91], robust principal component analysis [92,93], neural networks [94], and filtering-

based [95] models. Interested readers may explore a complete review of unsupervised

methods in the survey papers [58], [63], and [66]. With the success of deep CNNs

on a wide variety of computer vision applications [36], several studies have also been

proposed for MOS [64,96,97] applications.

The MOS supervised methods can be classified as basic CNN [96], multiscale

CNN [98, 99], fully CNN [100], 3D CNN [97], and Generative Adversarial Networks

(GANs) [101]. Some studies are also contributed to improving the loss functions

during the training and analysis of the CNNs for the problem of MOS [102]. A

22

complete review of deep learning-based MOS methods can be explored in a recent

survey [64].

Although the results of many fully supervised deep learning-based methods show

impressive performance for MOS task, the performance of the best FgSegNet method

proposed by Lim et al. [67] shows that CNNs methods are not efficient for unseen

videos because of the lack of generalization capabilities as proved by Tezcan et al. [14].

This lack could be due to the limited amount of data available to train these deep

learning methods for MOS, the lack of theoretical developments about the sample

complexity required in deep learning, and the high model complexities of common

deep neural networks. In this chapter, we fill this lack by proposing a semi-supervised

graph learning algorithm for MOS in unseen videos. The question of sample complex-

ity is also solved by using the fundamental concepts of GSP under the assumption

of bandlimitedness of the underlying graph signals in MOS. It is also evident that

a single method, either supervised or unsupervised, cannot effectively handle all the

MOS challenges of unseen videos [14]. Our proposed algorithm also addresses these

challenges for sequences taken from both static and moving cameras.

3.3 Moving Object Segmentation and Graph Signal

Processing

This section presents the basic concepts of our proposed algorithm. Figure 3-2 shows

an overview of GraphMOS. GraphMOS consists of several components including (a)

superpixel segmentation, (b) background model initialization, (c) features extraction,

(d) graph construction, (e) graph signal representation, (f) sampling of graph signals

with an unseen scheme, and (g) a semi-supervised algorithm inspired from the theory

of GSP.

The novices in GSP are referred to the review papers [28,29]. GraphMOS can be

viewed as three-step algorithm as follows: 1) a superpixel segmentation method [17,

103] is used to segment homogeneous regions on each frame; 2) deep and handcrafted

23

(g) Semi-super-
vised Learning

Output

(a) Segmentation

(b) Background Initialization

...

(c) Features
Extraction

(d) Graph
Construction

(f) Graph
Sampling

Unseen Scene

Ground-truth

(e) Graph
Signal

(a) Segmentation

(b) Background Initialization

(c) Features
Extraction

Nodes in distinct colors
represent the instances

...

Figure 3-2: The pipeline of the MOS algorithm with the reconstruction of graph
signals. The algorithm uses background initialization and superpixel segmentation
[17,18]. Each superpixel represents a node in a graph, and the representation of each
node is obtained with motion, intensity, texture, and deep features. The ground-
truth is used to decide if a node is a moving (green nodes) or a static object (blue
nodes). Black nodes correspond to the non-labeled images in the dataset. Finally,
some nodes are sampled and the semi-supervised algorithm reconstructs all the labels
in the graph.

features representation from each superpixel, including optical flow and background

initialization, are used to represent the spatiotemporal information of each superpixel

node; and 3) a graph reasoning algorithm, including graph construction and semi-

supervised learning, is used to classify between the static and moving objects with

few labeled samples.

3.3.1 Graph Nodes Representation

In our proposed algorithm, there is a need for some mechanism to represent the

graph nodes. The pixels of the video frames can represent the nodes of the graph.

However, computational complexity issues arise within the proposed algorithm when

using pixel-level nodes. Therefore, we use a group of pixels to define each node

in a graph. To that end, one common way is to decompose the input sequence

into a regular block structure or superpixels. However, other instance and semantic

24

segmentation methods can also be employed for node representation.

In this chapter, we employ several segmentation methods including, superpixel seg-

mentation [17], semantic segmentation [19], instance segmentation [20], block-based

decomposition, and background subtraction [104] to represent the nodes in a graph,

as well as to compare the performance of each of the methods. However, the afore-

mentioned segmentation methods present a fundamental limitation in the proposed

algorithm. For instance, if the segmentation methods [20], [19], and [104] do not seg-

ment moving objects, the proposed algorithm will not be able to classify background

or foreground objects effectively. On the other hand, superpixel segmentation and

block-based decomposition methods can process all the regions in the frames, however,

these approaches may contain more graph nodes than the segmentation methods. In

the later subsections, we summarize each of these methods in more detail.

Superpixel Segmentation

In our proposed algorithm, we use a Simple Linear Iterative Clustering (SLIC) method

for superpixel segmentation [17]. SLIC adapts a k-means approach to generate a set

of superpixels. The desired number of approximately equally-sized superpixels per

image 𝜁 is an important parameter in SLIC for GraphMOS, because large values

of 𝜁 allow our algorithm to process more detailed regions, but may induce compu-

tational burdens on GraphMOS. Several ablation studies are performed in Section

3.5.3 to show the performance of the proposed algorithms by varying the number of

superpixels.

Instance Segmentation

We also test several configurations of instance segmentation methods in GraphMOS.

We employ Mask Region Convolutional Neural Network (Mask R-CNN) [20] and

Cascade Mask R-CNN [105] with Residual Networks (ResNet) [106] and ResNeSt [107]

for instance segmentation. Mask R-CNN builds upon Faster R-CNN by adding a

branch for predicting an object mask in parallel with the already existing Faster R-

CNN network for bounding box recognition [108]. Cascade Mask R-CNN builds upon

25

(b) Output DeepLab

(c) Output Mask R-CNN

(a) Input Image

Moving
Objects

Static
Objects

(d) Output Superpixels

Figure 3-3: Results of the semantic, instance, and superpixel segmentation using
DeepLab [19], Mask R-CNN [20], and SLIC [17] methods on the sequence fall taken
from the CDNet2014 dataset. The green-colored cars in (b), instances in different
colors in (c), and homogeneous regions in (d) represent the nodes of the graph.

Mask R-CNN by adding a sequence of detectors [105]. Mask R-CNN contains: 1) a

CNN for image feature extraction, 2) a region proposal layer, 3) Region of Interest

(ROI) alignment and 4) fully connected layers in parallel with convolutional layers to

perform bounding box recognition and mask prediction, respectively. The readers are

referred to Appendix A for further details about the instance segmentation methods.

Semantic Segmentation

We use the DeepLab method [19] for semantic segmentation to represent the nodes in

the graph. However, our algorithm explicitly needs to know the exact location of each

segmented instance in a frame to represent each node in a graph. Fig. 3-3 shows the

segmentation results of the DeepLab, Mask R-CNN, and SLIC methods on a video

frame selected from the dynamic backgrounds category of the CDNet2014 dataset.

GraphMOS relies mainly on superpixel and instance segmentation because semantic

segmentation methods do not give information about the location of each specific

instance (for example, cars as shown in Fig. 3-3). As a consequence, GraphMOS is

unable to differentiate between the parked cars in the background just behind the

moving cars in the foreground when relying on semantic segmentation.

26

Other Segmentation Methods

We also decompose each video frame into non-overlapping blocks in GraphMOS. We

use small blocks of size 8 × 8 to represent each node. We have also employed the

background subtraction method SUBSENSE [104] to extract graph nodes. Several

ablation studies are presented in Section 3.5.3 for comparing different segmentation

methods.

3.3.2 Background Initialization and Feature Extraction

The MOS on unseen videos in static camera sequences can use the background of the

scene as additional information. For the sake of simplicity, the temporal median filter

is used as background initialization. The videos are processed in gray-scales in the

current chapter.

The representation of the nodes is achieved with optical flow, intensity, texture,

and deep features. The feature extraction module processes the ROI of the segmented

regions1 in the current frame for the current, previous, and background frames, as well

as the absolute value of the difference between the current and background frames.

Let I𝑡𝑣 and I𝑡−1
𝑣 be the gray-scale crops corresponding to the node 𝑣 ∈ 𝒱 in the current

(𝑡) and previous frames (𝑡 − 1), respectively. Let B𝑣 be the crop of the background

image corresponding to the node 𝑣. Let 𝒫𝑣 be the set of indices corresponding to

the 𝑣th segmented region. Finally, let v𝑡
𝑥(𝒫𝑣) and v𝑡

𝑦(𝒫𝑣) be the optical flow vec-

tors of the current frame with support in the set of indices 𝒫𝑣 for the horizontal

and vertical direction, respectively. We compute the optical flow by employing the

Lucas-Kanade method [109]. Fig. 3-4 shows the procedure to extract the features

of each segmented region when the segmentation algorithm is a Mask R-CNN. The

texture representation is obtained by estimating the local binary patterns [110] in I𝑡𝑣,

I𝑡−1
𝑣 , B𝑣 and |I𝑡𝑣 − B𝑣|. The intensity histograms are computed in I𝑡𝑣(𝒫𝑣), I𝑡−1

𝑣 (𝒫𝑣),

B𝑣(𝒫𝑣) and |I𝑡𝑣(𝒫𝑣)−B𝑣(𝒫𝑣)|. The vectors of orientations and magnitudes obtained

1The segmented regions are: each superpixel for SLIC, each block of pixels for block-based
method, each mask for instance segmentation, distinct regions of one category for semantic segmen-
tation, and distinct foreground regions for SuBSENSE.

27

Instances BackgroundOriginal Frames

LBP
Features

HistogramsDescriptive
Statistics

Deep
Features

Figure 3-4: Procedure to represent the nodes of the graph with a Mask R-CNN as
backbone. Each mask of the segmented image represents a node in the graph, and
the representation of the node is achieved with intensity, optical flow, texture, and
deep features.

from the optical flow vectors v𝑡
𝑥(𝒫𝑣) and v𝑡

𝑦(𝒫𝑣) are used to compute histograms and

some descriptive statistics (the minimum, maximum, mean, standard deviation, mean

absolute deviation, and range). Finally, the deep features of each segmented region

are extracted. Inspired by the visual object tracking community [111, 112], we use a

pre-trained VGG-m model [113] to extract the features from the 5th convolutional

layer (Conv-5) and then a principal component analysis is applied to compress a

high-dimensional feature vector into a low-dimensional vector. The representation of

node 𝑣 is obtained concatenating all the previous features, i.e., optical flow, intensity,

texture, and deep features. Each instance is represented by a 𝑀 -dimensional vector

x𝑣. The readers are referred to Appendix B to see more details about x𝑣.

3.3.3 Graph Construction

The construction of the graph aims to get geometrical information from the datasets,

leading to a reduction in the number of labels required in the learning process. In

28

this chapter, the construction of the graph is achieved with a 𝑘-Nearest Neighborhood

(𝑘-NN) with a Gaussian kernel. Let X ∈ R𝑁×𝑀 be the matrix of 𝑁 nodes, in which

each node is an 𝑀 -dimensional vector and X = [x1,x2, . . . ,x𝑁]
T. Firstly, the 𝑘-NN

algorithm is used to connect the nodes in the graph. Afterward, vertices are connected

to get an undirected and weighted graph. The weight between two connected vertices

𝑖, 𝑗 is given such that 𝑎𝑖𝑗 = exp−‖x𝑖−x𝑗‖22
𝜎2 , where 𝜎 is the standard deviation of the

Gaussian function given as 𝜎 = 1
|ℰ|
∑︀

(𝑖,𝑗)∈ℰ ‖x𝑖 − x𝑗‖2. As a result, the adjacency

matrix A(𝑖, 𝑗) = 𝑎𝑖𝑗 ∀ (𝑖, 𝑗) ∈ ℰ is obtained from this process.

A reasonable thought is to use a complete graph to avoid the optimization of

parameter 𝑘. However, a complete graph requires a prohibitive amount of memory

to store matrices A and L when dealing with huge graphs. For example, a complete

graph with 𝑁 = 200000 would require 320 gigabytes of memory to store A, where

each edge in A is represented with a variable of type double of 8 bytes. Other

strategies for the representation of the graph can be used in GraphMOS. For example,

Gangapure et al. [114] proposed a superpixel based causal multisensor video fusion

method, where the key idea is to leverage temporal information for video and then

construct spatiotemporal graph models.

3.3.4 Graph Signal

The graph signal is a matrix Y ∈ R𝑁×𝑄, where 𝑄 is the number of classes of the

problem. y𝑞 = Y:,𝑞 is the graph signal associated with the 𝑞th class, where Y:,𝑞 is the

𝑞th column vector of matrix Y. Each row of Y represents if certain segmented region

belongs to the 𝑞th class. In this chapter, the graph signal is given by the membership

function Y𝑐 of each class 𝑐, which takes a value of 1 on a node which belongs to the

class and is 0 otherwise. For example, in MOS 𝑄 is equal to 2 that corresponds to the

classes static object [1, 0] and moving object [0, 1]. Given a segmented region, using

some of the methods in Section 3.3.1, we can establish that node is a moving object

if the statistical mode in the ground-truth is the class moving object and vice versa.

Notice this can be easily extended to multiple classes, e.g., in semantic segmentation

with multiple classes.

29

3.3.5 Sampling of Graph signals and Sample Complexity for

Semi-supervised Learning

Given the graph signals related to the problem of MOS and the notions of bandlimit-

edness in terms of 𝑃𝑊𝜔(𝐺) from Section 2.2, we want to know what is the minimum

amount of labeled nodes required to have a perfect classification in semi-supervised

learning, given the prior assumption that the labels of the nodes are in the Paley-

Wiener space of the graph? Similar to the sampling and reconstruction of graph

signals in Section 2.3, the answer is that one needs at least 𝜌 (bandwidth) labeled

nodes to achieve perfect classification. This also holds for regression of graph sig-

nals, i.e., given y ∈ 𝑃𝑊𝜔(𝐺), the number of sampled nodes required to get perfect

reconstruction is 𝜌.

In Section 2.3, we provided Theorem 2.3.1 that states when perfect reconstruction

is possible. One can relate Theorem 2.3.1 to the sample complexity in semi-supervised

learning as follows:

Corollary 3.3.1. Let Y ∈ R𝑁×𝑄 be a graph signal associated with a semi-supervised

learning problem, where 𝑄 is the number of classes; and let 𝑁𝑠 be the sample complex-

ity of the semi-supervised learning problem. Y𝑖,: = 𝛿T
𝑞 , where 𝛿𝑞 is a 𝑄-dimensional

Kronecker column vector centered at 𝑞, and Y𝑖,: is the 𝑖th row of Y. Y has a set of

cutoff frequencies {𝜔1, . . . , 𝜔𝑞}, with corresponding bandwidths {𝜌1, . . . , 𝜌𝑞} for each

graph signal Y:,𝑞 ∀ 1 ≤ 𝑞 ≤ 𝑄. Then, 𝑁𝑠 is bounded such that:

𝑁𝑠 ≤ max{𝜌1, . . . , 𝜌𝑞}. (3.1)

Proof. From theorem 2.3.1, one can get a perfect reconstruction of each graph signal

Y:,𝑖 ∈ 𝑃𝑊𝜔𝑖
(𝐺) ∀ 1 ≤ 𝑖 ≤ 𝑞 using Eqn. (2.2) with at least 𝜌𝑖 samples. As a conse-

quence, the worst-case scenario in the sample complexity 𝑁𝑠 for perfect reconstruction

of Y is max{𝜌1, . . . , 𝜌𝑞}.

30

3.3.6 Minimization of the Sobolev Norm

One of the semi-supervised learning methods in this chapter is based on the variational

splines of Pesenson [51].

Definition 3.3.1. For a fixed 𝜖 ≥ 0 the Sobolev norm is introduced by the following

formula:

‖f‖𝛼,𝜖 = ‖(L+ 𝜖I)𝛼/2f‖2, 𝛼 ∈ R. (3.2)

Given a graph signal of sampled labels y𝑞(𝒮) = My𝑞, a positive 𝛼 > 0, and a

non-negative 𝜖 ≥ 0, the variational problem for semi-supervised learning is stated as

follows: find a vector z𝑞 with the following properties: z𝑞(𝒮) = Mz𝑞 = y𝑞(𝒮), and z𝑞

minimizes functional z𝑞 → ‖(L+ 𝜖I)𝛼/2z𝑞‖2. In other words, the variational problem

solves the following optimization problem:

argmin
z𝑞

‖z𝑞‖2𝛼,𝜖 s.t. Mz𝑞 = y𝑞(𝒮) →

argmin
z𝑞

zT𝑞 (L+ 𝜖I)𝛼z𝑞 s.t. Mz𝑞 − y𝑞(𝒮) = 0. (3.3)

Equation (3.3) is a convex optimization problem since the term zT𝑞 (L + 𝜖I)𝛼z𝑞 is a

quadratic convex function in z𝑞; and the term Mz𝑞 − y𝑞(𝒮) is affine in z𝑞. The

semi-supervised learning problem is solved by determining the solution of (3.3) for

𝑞 = 1, . . . , 𝑄.

The minimization of the Sobolev norm in (3.3) is closely related to the Laplacian

quadratic form. The Laplacian quadratic form of y is given by yTLy as shown in (2.5).

In the same way, yTL𝛼y is known as the empirical iterated Laplacian regularizer or

higher-order regularization [115] and has been used for regression and classification

tasks in semi-supervised learning [50]. On the other hand, the Sobolev norm is such

that yT(L+ 𝜖I)𝛼y. The Sobolev norm of y is the higher-order regularization with an

addition of the semi-definite perturbation matrix 𝜖I. For 𝜖 > 0, (L + 𝜖I) is always

invertible even though det(L) = 0 for undirected and connected graphs. Intuitively,

the value 𝜖 is related to the stability of the inverse of (L+ 𝜖I).

31

For the Laplacian matrix L, we know that:

𝜅(L) =
|𝜆max(L)|
|𝜆min(L)|

≈ 𝜆max(L)

0
→ ∞, (3.4)

where 𝜅(L) is the condition number of L. Since 𝜅(L) → ∞, we have a bad-conditioned

problem when relying on the Laplacian matrix alone. On the other hand, for the

Sobolev term, we have that:

L+ 𝜖I = UΛUT + 𝜖I = U(Λ+ 𝜖I)UT. (3.5)

Therefore, 𝜆min(L+ 𝜖I) = 𝜖, i.e., L+ 𝜖I is positive definite (L+ 𝜖I ≻ 0), and:

𝜅(L+ 𝜖I) =
|𝜆max(L+ 𝜖I)|
|𝜆min(L+ 𝜖I)|

=
𝜆max(L) + 𝜖

𝜖
< 𝜅(L) ∀ 𝜖 > 0. (3.6)

Namely, L + 𝜖I has a better condition number than L, where 𝜖 is fundamentally

related to how well conditioned is the variational problem.

Since (L + 𝜖I)𝛼 is always invertible for 𝛼 > 0 and 𝜖 > 0, one can show that the

semi-supervised learning problem in (3.3) has a closed-form solution given by:

((L+ 𝜖I)−1)𝛼MT(M((L+ 𝜖I)−1)𝛼MT)−1Y(𝒮), (3.7)

where Y(𝒮) is the sub-matrix of Y with rows indexed by 𝒮. The proof is shown in

Appendix C. For small values of 𝑁 , the minimization of the Sobolev norm can be

solved with the closed-form solution in (3.7). For larger values of 𝑁 , this minimization

can be achieved with iterative methods such as the interior-point method.

3.3.7 Minimization of the Total Variation

Another reconstruction algorithm for semi-supervised learning in this chapter is based

on the Total Variation (TV) of graph signals. TV of graph signals is defined as [116]:

‖y‖TV =
∑︁
𝑖∈𝒱

∑︁
𝑗∈𝒩𝑖

√︀
A(𝑖, 𝑗)‖y(𝑗)− y(𝑖)‖1. (3.8)

32

The minimization of the TV of y is related to the cluster assumption [117], and end

ups in piecewise constant signals. The semi-supervised algorithm solves the following

optimization problem:

argmin
z𝑞

‖z𝑞‖TV s.t. Mz𝑞 = y𝑞(𝒮), (3.9)

for 𝑞 = 1, . . . , 𝑄. Basically, Eqn. (3.9) is minimizing the TV of the reconstructed

graph signal such that Mz𝑞 = y𝑞(𝒮). The minimization of the TV in (3.9) involves

a non-differentiable objective function, which discards any gradient descent method.

In the current chapter, the minimization of the TV is solved with a primal dual

approach [118]. Let P ∈ R|ℰ|×𝑁 be the incidence matrix of 𝐺 defined as:

P(𝑒, 𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√︀
A(𝑒) if 𝑖 = min{𝑖, 𝑗}

−
√︀

A(𝑒) if 𝑖 = max{𝑖, 𝑗}

0 otherwise,

(3.10)

where 𝑖 ∈ 𝒱 and 𝑒 ∈ ℰ (in this case the edges are represented by the numbers

{1, . . . , |ℰ|}). The matrix P allows to represent the TV of the graph signal as ‖y‖TV =

‖Py‖1 [117]. As a consequence, Eqn. (3.9) can be formulated as the primal equivalent

unconstrained convex optimization problem:

argmin
z𝑞

𝑔(Pz𝑞) + ℎ(z𝑞), (3.11)

𝑔(x) ≜ ‖x‖1, and ℎ(z𝑞) ≜

⎧⎪⎨⎪⎩∞ if z𝑞 /∈ 𝒬

0 if z𝑞 ∈ 𝒬,

(3.12)

where ℎ(z𝑞) is the indicator function and 𝒬 = {z𝑞 ∈ R𝑁 : Mz𝑞 = y𝑞(𝒮)}.

Definition 3.3.2. Let 𝑓 : R𝑛 → R. The function 𝑓 ′ : R𝑛 → R is the convex conjugate

such that 𝑓 ′(x) ≜ supx̄ x
Tx̄− 𝑓(x̄) [119].

The dual problem associated with the minimization of the TV is given by argmaxx

− ℎ′(−PTx) − 𝑔′(x), where ℎ′ is the convex conjugate of the function ℎ. The mini-

33

mization of the TV is solved with the primal-dual approach of first order [118] using

the Unlocbox toolbox [120]. For further details, the readers are referred to the refer-

ences [117,120,121].

3.3.8 GraphMOS in a Nutshell

GraphMOS is a transductive algorithm because they require that all nodes in the

graph are present to solve the semi-supervised learning problem. Our algorithm is

introduced with a batch method for superpixel segmentation with parameters batch

size 𝜂, and ground-truth size 𝜒, where 𝜂 is the number of frames that will be processed

on each iteration, and 𝜒 is the number of frames with ground-truth that will be

randomly selected from other sequences (unseen scheme) to solve the semi-supervised

learning problem. Algorithm 1 shows the pseudo-code for GraphMOS with batch

processing. GraphMOS can also be solved using the whole dataset to construct the

graph, but in this case, our algorithm will select a subset of nodes 𝒮 ∈ 𝒱 with an

unseen scheme to construct the graph signal Y. Notice that in the case of processing

the whole dataset the parameter 𝜂 is not required, but one has to use instance or

semantic segmentation methods to reduce the number of nodes. Also, notice that

the parameters 𝜖 and 𝛼 are not required when solving the semi-supervised learning

problem with TV minimization.

3.4 Experimental Framework

This section introduces the datasets used in the current chapter, the evaluation met-

rics, the experiments, and the implementation details of GraphMOS.

3.4.1 Datasets

Our proposed algorithm is evaluated on a variety of datasets for MOS. More specifi-

cally, we evaluated the performance of GraphMOS for the sequences taken from static

and moving cameras on several background modeling challenges.

34

Algorithm 1 Graph Moving Object Segmentation
Input: Video sequences in the dataset.
Initialization: Parameters 𝜁, 𝑘, 𝜖, 𝛼, 𝜂, 𝜒.

1: Select 𝑧th video to be segmented
2: while there are still frames to process in video 𝑧 do
3: Select 𝜂 frames, in order, from 𝑧 for batch processing
4: Randomly select 𝜒 frames from other videos
5: Compute 𝜁 superpixels for the 𝜂 + 𝜒 frames
6: Compute X from the 𝜂 + 𝜒 frames
7: Compute Y from the 𝜒 ground-truth frames
8: Find the set of 𝑘-NN of x𝑖 ∀ 𝑖 ∈ 𝒩
9: Compute 𝜎 = 1

|ℰ|
∑︀

(𝑖,𝑗)∈ℰ ‖x𝑖 − x𝑗‖2
10: for (𝑖, 𝑗) in the set of 𝑘-NN do
11: A(𝑖, 𝑗) = exp (−‖x𝑖 − x𝑗‖22/𝜎2)
12: end for
13: D = diag(A1), L = D−A
14: Solve either (3.3) or (3.9) for 𝑞 = 1, . . . , 𝑄
15: Get Z as the solution of the semi-supervised problem
16: Use Z to compute the moving objects of the 𝜂 frames
17: end while

MOS from Static Camera

For sequences taken from static camera, GraphMOS is evaluated on three datasets

including CDNet2014 [10], I2R [76], and SBI2015 [65]. CDNet2014 is the reference

dataset in the MOS community. This dataset is categorized into 11 main challenges

including, bad weather, low frame rate, night videos, turbulence, baseline, dynamic

backgrounds, PTZ, camera jitter, intermittent object motion, shadow, and thermal.

PTZ category presents sequences taken from PTZ cameras, while the camera jitter

category contains sequences of jittering effects. Each challenge contains from four up

to six videos. Every video contains a certain amount of ground-truth frames, in which

the ground truth shows the foreground and background. The average resolution of

the sequences is 320× 240.

I2R dataset contains nine challenging sequences with an average resolution of

240× 192. Each sequence contains only 20 images of ground-truth. SBI2015 dataset

contains 14 sequences with an average resolution of 328× 246. The dataset presents

the challenges of cluttered moving objects and slow object motion. This dataset was

35

originally designed to evaluate background initialization methods. However, Wang et

al. provided the ground-truth for MOS for SBI2015 [99].

MOS for Moving Camera

GraphMOS is also evaluated on the UCSD dataset [11] containing 18 challenging

moving camera sequences. This dataset also presents severe dynamic background

variations. Each video of UCSD is partially or fully annotated with pixel-level ground-

truth images of foreground and background. The average resolution of the dataset is

230× 320.

3.4.2 Evaluation Metrics

The F-measure metric is used for the MOS task to compare the performance of our

algorithm with state-of-the-art methods [10]. The F-measure metric is defined as

follows:

F-measure = 2
Precision × Recall
Precision + Recall

, where (3.13)

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

, (3.14)

where TP, FP, and FN are the number of true positives, false positives, and false

negatives pixels, respectively.

3.4.3 Experiments

A thorough comparison with state-of-the-art methods, along with a set of comprehen-

sive ablation studies of GraphMOS are performed. The ablation studies analyze some

specific elements of the pipeline in Fig. 3-2, like the segmentation method, the number

of superpixels in the case of SLIC, the feature extraction procedure, the construction

of the graph and the semi-supervised learning algorithm. The instance segmentation

methods are performed with Mask R-CNN using ResNet-50 as the backbone, while

Cascade Mask R-CNN is performed using ResNeSt-200.

36

Table 3.1: Summary of the parameters used in our experiments for each dataset.

Dataset 𝜁 𝑘 𝜖 𝛼 𝜂 𝜒
CDNet2014 200 30 0.2 1 100 350
I2R 200 30 0.2 1 100 150
SBI2015 300 30 0.2 1 100 60
UCSD 200 30 0.2 1 100 40

Finally, the last experiment is devoted to testing Corollary 3.3.1. Since the cal-

culation of U is computationally prohibitive for the configurations involved in the

ablation studies, in this case, a graph with 𝑁 = 7443 nodes is constructed with

the sequences backdoor, bungalows, and busStation of the challenge shadow of CD-

Net2014, using a 𝑘-NN with 𝑘 = 30, and a Mask R-CNN. In practice, graph signals

are only approximately bandlimited [53], i.e., the GFT of y has an exponentially de-

caying shape. In this experiment, we compute the bandwidth as the 𝜌 where we have

at least 90% of the spectral energy of y. The spectral energy is defined as
∑︀

𝑖∈𝒱 ŷ
2(𝑖).

As a consequence of this approximation, the classification error can be bounded by

some value 𝜑 [52]. The last experiment computes the classification error in the non-

sampled nodes for the sample sizes in the set 𝑚 = {10, 20, 30, . . . , 400}, using random

sampling and the Sobolev minimization with 𝜖 = 0.2 and 𝛼 = 1. This experiment is

performed with a Monte Carlo cross-validation with 200 repetitions.

3.4.4 Parameters Settings

Our algorithms contain several parameters such as the number of superpixels 𝜁, the

number of k neighbors for k -NN in the graph construction, the parameters 𝜖 and 𝛼 for

the Sobolev norm, the batch size 𝜂, and the number of selected ground-truth frames

𝜒. Table 3.1 shows a summary of the best parameters for GraphMOS within each

dataset in the current work. Table 3.9 shows an ablation study for the parameter 𝜁.

3.4.5 Implementation Details

The instance and semantic segmentation algorithms were implemented using Py-

torch and Detectron2 [122]. The algorithm for the reconstruction of graph signals

37

was implemented using the graph signal processing toolbox [123] and the Matlab

convex optimization toolbox [120]. The code has been made available2. For the com-

parison with our algorithm, most of the MOS methods were implemented with the

BGSLibrary [124] and the LRSLibrary [125] with default parameters by reference.

The experiments are executed on a laptop with a processor Intel Core i7 with 16

gigabytes of memory RAM. Using handcrafted features, GraphMOS algorithm with

Mask R-CNN takes 3.73 FPS, with Cascaded Mask R-CNN it takes 1.76 FPS, with

Deeplab method it takes 13.14 FPS, and with SuBSENSE method GraphMOS takes

15.11 FPS to segment the moving objects. In case of using deep features with block

and superpixel-based segmentation methods, the experiments of GraphMOS are con-

ducted on a powerful Nvidia DGX-2 server machine. GraphMOS takes 1.42 and 2.31

FPS for MOS using superpixel and block-based graph construction.

3.5 Results and Discussion

GraphMOS is compared with 20 state-of-the-art methods including SWCD [126],

FTSG [127], SuBSENSE [104], WeSamBE [128], PAWCS [12], WisenetMD [129],

IUTIS-5 [13], SemanticBGS [130], BSUV-net [14], MoG [89], DECOLOR [16], ViBe

[131], 3WD [60], GRASTA [132], FgSegNet v2 [67], ROSL [15], ADMM [133], non-

cvxRPCA [134], and OR1MP [135] for the MOS task. Mask R-CNN can directly

solve the MOS problem. However, Mask R-CNN does not include temporal informa-

tion, leading to an ill-conditioned problem. In our experiments, we have also trained

Mask R-CNN directly on CDNet2014 sequences with an unseen scheme. Each Mask

R-CNN is trained with 1000 epochs using learning rate of 0.00025 and a batch size

of 2.

3.5.1 Qualitative Evaluations

Fig. 3-5 shows some of the visual results of the proposed algorithms compared with

several state-of-the-art methods on CDNet2014 and UCSD datasets. The CDNet2014
2https://github.com/jhonygiraldo/GraphMOS

38

https://github.com/jhonygiraldo/GraphMOS

Original Ground Truth SuBSENSE PAWCS IUTIS-5 BSUV-Net GraphMOS (ours)

B
ad

 W
ea

th
er

W
et

Sn
ow

in
00

05
00

CDNet2014

D
yn

am
ic

-B
Fa

ll
in

00
25

23

PT
Z

In
te

rm
itt

en
t-

P
in

00
18

73

N
ig

ht
 V

id
eo

s
Fl

ui
dH

ig
hw

ay
in

00
04

40

Original Ground Truth SuBSENSE ROSL DECOLOR ViBe GraphMOS (ours)
UCSD

B
ir

ds
fr

am
e_

4
C

yc
lis

ts
fr

am
e_

9

Figure 3-5: Comparison of the qualitative results of GraphMOS on CDNet2014 and
UCSD datasets with existing state-of-the-art methods. Our algorithm performs better
than the state-of-the-art methods in these challenging scenarios.

sequences WetSnow, Fall, IntermittentPan, and FluidHighway present bad weather

conditions, dynamic background variations, panning of the scene, and nighttime light-

ing variations challenges. GraphMOS shows the best visual results, while BSUV-Net

and SuBSENSE show competitive performance for these sequences. Birds and Cy-

clists sequences of UCSD present highly dynamic background variations challenges,

including rippling water surface and swaying of bushes. The compared methods do

not handle these sequences accurately, while only GraphMOS can handle these se-

quences successfully.

3.5.2 Quantitative Results

Tables 3.2-3.5 show the comparisons of the qualitative results of the GraphMOS

algorithm on CDNet2014, I2R, SBI2015, and UCSD datasets for MOS. Within these

39

Table 3.2: Comparisons of average F-measure on CDNet2014 dataset.

Challenge SWCD FTSG SuBSENSE WeSamBE PAWCS WisenetMD IUTIS-5 SemanticBGS FgSegNet v2 Mask R-CNN BSUV-Net GraphMOS

Bad Weather 0.8233 0.8228 0.8619 0.8608 0.8152 0.8616 0.8248 0.8260 0.3277 0.7952 0.8713 0.9411
Baseline 0.9214 0.9330 0.9503 0.9413 0.9397 0.9487 0.9567 0.9604 0.6926 0.7608 0.9693 0.9710
Camera Jitter 0.7411 0.7513 0.8152 0.7976 0.8137 0.8228 0.8332 0.8388 0.4266 0.7021 0.7743 0.9233
Dynamic-B 0.8645 0.8792 0.8177 0.7440 0.8938 0.8376 0.8902 0.9489 0.3634 0.5880 0.7967 0.8922
I-O Motion 0.7092 0.7891 0.6569 0.7392 0.7764 0.7264 0.7296 0.7878 0.2002 0.4724 0.7499 0.6455
Low-F rate 0.7374 0.6259 0.6445 0.6602 0.6588 0.6404 0.7743 0.7888 0.2482 0.5776 0.6797 0.6910
Night Videos 0.5807 0.5130 0.5599 0.5929 0.4152 0.5701 0.5290 0.5014 0.2800 0.3898 0.6987 0.8211
PTZ 0.4545 0.3241 0.3476 0.3844 0.4615 0.3367 0.4282 0.5673 0.3503 0.6214 0.6282 0.8511
Shadow 0.8779 0.8832 0.8986 0.8999 0.8913 0.8984 0.9084 0.9478 0.5295 0.8781 0.9233 0.9901
Thermal 0.8581 0.7768 0.8171 0.7962 0.8324 0.8152 0.8303 0.8219 0.6038 0.4986 0.8581 0.9010
Turbulence 0.7735 0.7127 0.7792 0.7737 0.6450 0.8304 0.7836 0.6921 0.0643 0.1707 0.7051 0.8233
Overall 0.7583 0.7283 0.7408 0.7446 0.7403 0.7535 0.7717 0.7892 0.3715 0.5868 0.7868 0.8592

Table 3.3: Comparison of F-measure results over the sequences of I2R dataset.

Sequence MoG DECOLOR ViBe 3WD GRASTA SuBSENSE ROSL ADMM noncvxRPCA OR1MP BSUV-Net BSUV-Net+ GraphMOS

Bootstrap 0.6328 0.6248 0.6134 0.5393 0.6017 0.6704 0.6449 0.5085 0.6142 0.6459 0.7133 0.7636 0.9722
Campus 0.2818 0.7652 0.4604 0.2258 0.2152 0.7498 0.1746 0.1913 0.1742 0.1714 0.8468 0.8543 0.9711
Curtain 0.6276 0.8342 0.6781 0.5127 0.7816 0.9436 0.7009 0.5211 0.4747 0.4624 0.9055 0.9373 0.9899
Escalator 0.5204 0.7183 0.5988 0.4706 0.4265 0.5756 0.3967 0.3716 0.4205 0.3673 0.6994 0.7557 0.9081
Fountain 0.7428 0.8618 0.5635 0.3500 0.6620 0.7937 0.2835 0.2185 0.2664 0.2646 0.8644 0.8306 0.8516
Hall 0.6152 0.5597 0.6377 0.5036 0.5355 0.7708 0.6751 0.3898 0.4819 0.5450 0.8118 0.7654 0.8670
Lobby 0.5760 0.5654 0.1488 0.5958 0.4059 0.2412 0.2329 0.1453 0.5157 0.2207 0.7659 0.7213 0.9555
Shopping. 0.6820 0.6800 0.5418 0.6832 0.6724 0.7594 0.6927 0.3764 0.6749 0.6198 0.8070 0.7619 0.7712
WaterSur. 0.6500 0.8873 0.8544 0.3008 0.7725 0.9365 0.6706 0.5479 0.4651 0.3607 0.9358 0.9494 0.9899
Overall 0.5920 0.7219 0.5663 0.4646 0.5635 0.7157 0.4969 0.3634 0.4542 0.4064 0.8166 0.8155 0.9196

tables, the best and second best performing methods are shown in red and blue,

respectively. Our proposed algorithms show competitive performance as compared to

state-of-the-art methods on all datasets.

For the CDNet2014 dataset (Table 3.2), our proposed algorithm GraphMOS ob-

tained the best performance in terms of average F-measure score of 85.92%, which

is 7.0% better than the second-best performing method SemanticBGS. Moreover,

GraphMOS achieved the best results in seven out of eleven challenges including

Bad Weather (94.11%), Baseline (97.10%), Camera Jitter (92.33%), Night Videos

(82.11%), PTZ (85.11%), Shadow (99.01%), and Thermal (90.10%) while it obtained

favorable performance for the remaining attributes including Dynamic Background,

Turbulence, Low Framerate, and Intermittent Object Motion. In all these challenges,

the sequences in NightVideos and PTZ are very challenging since the majority of the

compared methods are not able to achieve more than 70.0% F-measure score, while

GraphMOS achieved significantly high performance for these challenges.

In the I2R dataset (Table 3.3), GraphMOS has obtained the best performance

of 91.96% overall, which is almost 10.0% better than the second-best performing

40

Table 3.4: Comparison of F-measure results over the sequences of SBI2015 dataset.

Sequence MoG DECOLOR ViBe 3WD GRASTA SuBSENSE ROSL ADMM noncvxRPCA OR1MP BSUV-Net BSUV-Net+ GraphMOS

Board 0.7656 0.5033 0.7377 0.3959 0.5592 0.6588 0.6440 0.1420 0.5304 0.5259 0.9560 0.9886 0.9931
CAVIAR1 0.5974 0.9183 0.8051 0.4282 0.2104 0.8783 0.8533 0.5065 0.4204 0.4653 0.9260 0.9358 0.9744
CAVIAR2 0.4597 0.4324 0.7347 0.4470 0.0463 0.8740 0.2966 0.2452 0.1933 0.1813 0.8572 0.8649 0.9210
CaVignal 0.5057 0.4827 0.3497 0.3767 0.3812 0.4080 0.6226 0.4305 0.4720 0.3727 0.4628 0.4773 0.7322
Candela 0.4927 0.5025 0.5020 0.4702 0.1929 0.6959 0.4913 0.4410 0.4730 0.6941 0.8997 0.8597 0.7551
Hall&Mon. 0.5952 0.7826 0.6017 0.4479 0.1491 0.7559 0.6081 0.1521 0.4525 0.4827 0.8931 0.9346 0.9122
HighwayI 0.6272 0.6976 0.4150 0.4123 0.5522 0.5073 0.6836 0.5170 0.5733 0.5660 0.8440 0.8337 0.9880
HighwayII 0.8144 0.8925 0.5554 0.7426 0.4833 0.8779 0.7808 0.7429 0.7335 0.7287 0.9690 0.9592 0.9547
HumanBod. 0.7553 0.8265 0.4268 0.5074 0.5352 0.8560 0.7606 0.3115 0.5765 0.5954 0.9314 0.9503 0.9522
IBMtest2 0.7108 0.8823 0.7001 0.8162 0.3825 0.9281 0.8579 0.5076 0.6714 0.6460 0.9722 0.9643 0.9856
People&Fol. 0.5920 0.2601 0.6111 0.2911 0.3460 0.4251 0.4108 0.0569 0.3924 0.3754 0.8837 0.6930 0.9059
Toscana 0.6093 0.3669 0.7307 0.3132 0.4188 0.8256 0.7083 0.2533 0.6779 0.4320 0.9110 0.9193 0.9411
Foliage 0.5786 0.3178 0.5539 0.3376 0.4148 0.1962 0.4341 0.2105 0.4617 0.4481 0.4371 0.3450 0.7792
Snellen 0.5498 0.4023 0.3083 0.3213 0.4104 0.2467 0.4052 0.1099 0.4345 0.4083 0.3674 0.3786 0.7380
Overall 0.6181 0.5906 0.5737 0.4506 0.3630 0.6524 0.6112 0.3305 0.5045 0.4944 0.8079 0.7932 0.9328

Table 3.5: Comparison of F-measure results over the videos of UCSD background
subtraction dataset.

Sequence MoG DECOLOR ViBe 3WD GRASTA SuBSENSE ROSL ADMM noncvxRPCA OR1MP BSUV-Net BSUV-Net+ GraphMOS

Birds 0.1427 0.1457 0.3354 0.1308 0.1320 0.4832 0.1478 0.0227 0.1432 0.1394 0.3314 0.2625 0.7897
Boats 0.0881 0.2179 0.1854 0.1576 0.0678 0.4550 0.1637 0.1212 0.1380 0.1100 0.4586 0.6621 0.8311
Bottle 0.1856 0.4765 0.4512 0.1364 0.1159 0.6570 0.2069 0.6589 0.1974 0.1795 0.8528 0.5039 0.9011
Chopper 0.3237 0.6214 0.4930 0.3171 0.0842 0.6723 0.2920 0.1250 0.3103 0.2653 0.2805 0.3020 0.8230
Cyclists 0.0915 0.2224 0.1211 0.1003 0.1243 0.1445 0.1366 0.1093 0.1317 0.1242 0.0051 0.4138 0.7911
Flock 0.2706 0.2943 0.2306 0.2007 0.1612 0.2492 0.3409 0.1088 0.3220 0.2605 0.1160 0.0025 0.6722
Freeway 0.2622 0.5229 0.4002 0.5028 0.0814 0.5518 0.3875 0.0816 0.3126 0.1549 0.4780 0.1185 0.4831
Hockey 0.3867 0.3449 0.4195 0.2789 0.3149 0.3611 0.4106 0.2981 0.3411 0.4296 0.6460 0.6908 0.8211
Jump 0.2679 0.3135 0.2636 0.2481 0.4175 0.2295 0.4198 0.0609 0.3180 0.3073 0.5491 0.8697 0.8233
Landing 0.0335 0.0640 0.0433 0.0457 0.0414 0.0026 0.0506 0.0826 0.0480 0.0442 0.0021 0.0012 0.4122
Ocean 0.1113 0.1315 0.1648 0.2055 0.1144 0.2533 0.1422 0.1809 0.1274 0.1252 0.4117 0.5335 0.9422
Peds 0.3731 0.7942 0.5257 0.7536 0.4653 0.5154 0.7418 0.6667 0.4333 0.4297 0.6958 0.6738 0.9411
Skiing 0.2038 0.3473 0.1441 0.1981 0.0927 0.2482 0.1942 0.0519 0.1812 0.1791 0.0841 0.0602 0.7622
Surf 0.0489 0.0647 0.0462 0.0579 0.0523 0.0467 0.0453 0.0162 0.0325 0.0317 0.0884 0 0.7322
Surfers 0.0542 0.1959 0.1189 0.0962 0.0742 0.1393 0.1184 0.1950 0.1083 0.1044 0.2612 0.4776 0.7591
Trafic 0.2188 0.2732 0.1445 0.2032 0.0368 0.1165 0.1042 0.1044 0.0949 0.0882 0 0 0.6670
Overall 0.1914 0.3144 0.2555 0.2271 0.1485 0.3203 0.2439 0.1803 0.2025 0.1858 0.3288 0.3483 0.7595

BSUV-Net method. BSUV-Net+, SuBSENSE, and DECOLOR methods have ob-

tained favorable performance, while the remaining compared methods are not able

to achieve more than 60.0% F-measure score, which further shows the challenging

nature of the sequences present in this dataset.

In the SBI2015 dataset (Table 3.4), the GraphMOS has also achieved the best per-

formance in 11 out of 14 videos. Overall, the proposed algorithm obtained a 93.28%

F-measure score, which is approximately 12.50% larger than BSUV-Net+ (80.79%)

and 13.96% larger than BSUV-Net (79.32%) methods. The sequences in this dataset

show clutter background scenes and slowly moving foreground objects. Therefore, the

majority of the compared methods are not able to handle the overwhelming outliers

of the moving objects in these sequences efficiently as compared to GraphMOS.

41

Similarly, in the case of the UCSD dataset (Table 3.5), GraphMOS also shows the

best performance of 75.95%. The sequences in this dataset are taken from a moving

camera. Therefore, it can be noticed in the performance comparison that none of

the compared methods can perform favorably better since state-of-the-art methods

such as MoG, DECOLOR, ViBe, GRASTA, SuBSENSE, and ADMM are designed

to handle the static camera sequences. Our proposed GraphMOS algorithm shows

better performance because of its generalization capabilities to tackle unseen videos

on both static and moving cameras.

3.5.3 Ablation Studies

Several ablation studies are performed to analyze the performance of our proposed

algorithm. These ablations include the analysis of different segmentation methods

used in graph construction, feature extraction, the number of superpixels used in

the SLIC method, the construction of the graph, and the semi-supervised learning

method.

Segmentation Methods for Graph Nodes

Table 3.6 shows the performance comparison of GraphMOS for I2R, CDNet2014,

SBI2015, and UCSD datasets using different segmentation methods for node rep-

resentation during graph construction. Overall, the superpixel segmentation-based

node representation for graph construction achieves the best performance as com-

pared to other heavyweight semantic and instance segmentation methods. This is

because the superpixel method segments all the homogeneous regions in the video

frames, and then the graph is constructed for the semi-supervised learning task. In

contrast, the instances of the videos such as moving objects, static objects, or other

undesirable objects may or may not be segmented accurately by the heavyweight deep

learning DeepLab and Mask R-CNN methods. Besides, the degradation in the perfor-

mance of DeepLab with respect to the instance segmentation methods also suggests

the unsuitability of semantic segmentation to solve the MOS problem.

42

Table 3.6: Performance comparisons in terms of average F-measure score for different
segmentation methods used for graph construction. Only handcrafted features are
used to report the performance. These ablations studies involves: graph construction
using DeepLab with ResNet 101 (DeepLab), Mask R-CNN with ResNet 50 (Mask
R-50), Cascade Mask R-CNN with ResNeSt 200 (Cascade RS-200), SuBSENSE, and
Superpixel.

Dataset SuBSENSE DeepLab Mask R-50 Cascade RS-200 Superpixel

I2R 0.7527 0.4145 0.8397 0.8196 0.8510
CDNet2014 0.7396 0.6119 0.6466 0.7283 0.8138
SBI2015 0.6488 0.7534 0.7538 0.7832 0.8611
UCSD 0.3388 0.4088 0.5553 0.6751 0.7113

Table 3.7: Performance comparison in terms of average F-measure score of superpixel
and block-based segmentation for graph construction methods. The performance is
reported by using both handcrafted and deep features representation of graph nodes.

Segmentation I2R CDNet2014 SBI2015 UCSD

Block-based 0.8408 0.7494 0.8080 0.6607
Superpixel 0.9196 0.8592 0.9328 0.7595

Table 3.7 shows the performance comparisons of superpixel and block-based node

representation in graph construction. The average F-measure is reported by using

handcrafted plus deep features representation of the node. Superpixel-based method

clearly outperforms the block-based node representation method in all datasets.

Features Analysis

To analyze the effectiveness of the proposed algorithms, we also compare the MOS

results with different features extracted from graph nodes on five different datasets.

Table 3.8 shows the performance comparisons of the proposed algorithms using dif-

ferent features representation. The deep features are extracted from the 4th and 5th

convolutional layers of the VGG-m model [113]. Overall, the deep features show com-

petitive performance as compared to handcrafted features, while the incorporation of

both deep features (Conv-5) and handcrafted features further improves the average

F-measure score in all datasets.

43

Table 3.8: Performance comparisons in terms of average F-measure score on five
datasets using distinct node features representations. Handcrafted, deep features,
and the concatenation of handcrafted and deep features (Hand + Deep (Conv-5)) are
used to represent graph nodes.

Features I2R CDNet2014 SBI2015 UCSD DAVIS2016

Handcrafted features 0.8510 0.8210 0.8611 0.7113 0.8711
Deep Features (Conv-5) 0.8701 0.8491 0.8722 0.7320 0.8993
Deep Features (Conv-4) 0.8665 0.8410 0.8711 0.7222 0.8801
Hand + Deep (Conv-5) 0.9196 0.8673 0.8952 0.7595 0.9121

Table 3.9: Performance comparisons in terms of average F-measure score for the
number of superpixels in the SLIC method.

Superpixels (𝜁) I2R CDNet2014 SBI2015 UCSD DAVIS2016

100 0.9054 0.8397 0.8632 0.7265 0.8810
200 0.9196 0.8592 0.8790 0.7595 0.9020
300 0.9191 0.8555 0.8952 0.7496 0.9120
400 0.9094 0.8473 0.8810 0.7406 0.9030
500 0.8983 0.8442 0.8734 0.7363 0.8821

Number of Superpixels

Table 3.9 shows the performance comparison of the proposed algorithms with varying

number of superpixels. The best performance for each dataset is given by 200 or 300

superpixels per image.

Construction of the Graph

Table 3.10 summarizes the performance of GraphMOS with several configurations of

the construction of the graph in the CDNet2014 dataset. The results suggest that:

the challenges dynamic background, intermittent object motion, low frame rate, and

thermal have the better results with 𝑘 = 10; the challenges camera jitter and shadow

have the better results with 𝑘 = 20; and finally the results with 𝑘 = 30 and 𝑘 = 40

are very similar. These differences between the results can be partially explained

because for 𝑘 = 10 and 𝑘 = 20 some sub-graphs are generated, i.e., for the semi-

supervised learning algorithm is executed independently for each sub-graph. On the

other hand, 𝐺 is connected for 𝑘 = 30 and 𝑘 = 40. As a consequence, for low values

of 𝑘, GraphMOS is losing global information of the database. The good results in

the challenge low frame rate motion can be explained in part because of the nature

44

Table 3.10: Average F-measure with variations in the construction of the graph. This
ablation involves: 𝑘-NN with 𝑘 = 40, 𝑘 = 30, 𝑘 = 20, and 𝑘 = 10.

Challenge 𝑘 = 40 𝑘 = 30 𝑘 = 20 𝑘 = 10
Bad Weather 0.8294 0.8372 0.8307 0.8294
Baseline 0.9398 0.9424 0.9394 0.9307
Camera Jitter 0.7005 0.7001 0.7016 0.6848
Dynamic-B 0.7334 0.7431 0.7799 0.7996
I-O Motion 0.3607 0.4051 0.4632 0.5539
Low-F rate 0.5538 0.5581 0.5584 0.5647
PTZ 0.7599 0.7486 0.7499 0.7595
Shadow 0.9653 0.9658 0.9659 0.9647
Thermal 0.7292 0.7294 0.7306 0.7351
Overall 0.7302 0.7366 0.7466 0.7580

Table 3.11: Average F-measure with variations in the semi-supervised learning algo-
rithm. This ablation involves: Sobolev minimization (Sob.) with 𝜖 = 50, 𝜖 = 0.5,
𝜖 = 0.2, and Total Variation minimization (TV).

Challenge Sob. 𝜖 = 50 Sob. 𝜖 = 0.5 Sob. 𝜖 = 0.2 TV

Bad Weather 0.8096 0.8337 0.8372 0.8291
Baseline 0.8958 0.9301 0.9424 0.9394
Camera Jitter 0.6443 0.6952 0.7001 0.7024
Dynamic-B 0.7706 0.7760 0.7431 0.7486
I-O Motion 0.5306 0.4447 0.4051 0.3500
Low-F rate 0.5254 0.5567 0.5581 0.5928
PTZ 0.7420 0.7495 0.7486 0.7899
Shadow 0.9463 0.9650 0.9658 0.9658
Thermal 0.7158 0.7286 0.7294 0.7229
Overall 0.7312 0.7422 0.7366 0.7379

of these sequences since there is not a smooth change between frames, and perhaps

the optical flow features do not work well in this challenge. As a consequence, the

algorithm may take advantage of the local information of similar sequences in the

same challenge. This is opposite to the idea to leverage global information to reduce

the sample complexity in GraphMOS.

Semi-supervised Learning

Table 3.11 shows the performance of GraphMOS with several configurations of the

semi-supervised learning algorithm. The results suggest that the minimization of the

TV is better in the challenges: camera jitter, low frame rate, PTZ, and shadow; while

the minimization of the Sobolev norm is better for the other challenges. Both Sobolev

norm and TV minimization show complementary results. In a specific application one

45

Figure 3-6: Results of the experiment related to the sample complexity. Left: power
spectrum of the graph signal ŷ2 related the moving objects, right: classification error
vs sample size of the semi-supervised learning algorithm.

can decide between Sobolev norm or TV minimization based on the specific challenges

of the problem; or one can rely on the complexity of the algorithm, notice that the

Sobolev norm minimization problem is a differentiable objective function, while TV

minimization is non-differentiable.

3.5.4 Sample Complexity

Figure 3-6 shows the results of the experiment related to the sample complexity. The

first plot in Fig. 3-6 shows the power spectrum of the graph signal associated with

the moving objects, where the power spectrum is defined as the GFT square ŷ2
𝑖 .

The second plot shows the classification error vs the sample size, and the bound of

the sample complexity in the problem computed as in (3.1). The sample complexity

computed in this experiment is 𝑁𝑠 ≤ 59 with corresponding cutoff frequency 𝜔 =

0.0089. The average errors are 0.0576 and 0.0393 for the sampling sizes 𝑚 = 60

and 𝑚 = 400, respectively, i.e., the change in the classification error is bounded by

𝜑 = 0.0576 after the sample complexity. One can notice from Fig. 3-6 that the

classification error just has a small change after a sample size of 𝑁𝑠.

3.6 Conclusions

In this chapter, we proposed new branch of algorithms for the tasks of MOS based on

graph signal processing concepts. The pipeline of the algorithm involves segmenta-

tion, background initialization, features extraction for the representation of the nodes

in a graph, construction of the graph, and finally semi-supervised learning algorithms

46

inspired by the theory of the graph signals reconstruction. In the same way, several

theoretical insights about the sample complexity and the graph signals reconstruction

are explored in this chapter. More specifically, Corollary 3.3.1 is introduced, showing

a bound for the sample complexity given a smoothness prior assumption. The pro-

posed algorithms are evaluated on four publicly available MOS datasets. Through

an extensive series of experiments, the proposed algorithms have consistently outper-

formed existing state-of-the-art methods by a significant margin.

This chapter opens several future research directions in computer vision and ma-

chine learning. The first important direction is to further explore a generalized theory

of graph signal processing in the field of MOS. The graph signals can be extended

to fuzzy concepts leading to a richer representation of moving and static objects.

The second direction is to explore the graph signal processing concepts applied in

bounding boxes for applications such as multi-object tracking. Another important

direction is to study an inductive learning framework, which aims to address the

problems of real-time processing [136] for MOS. Further questions in these directions

are: how can one use the structure of certain datasets to improve the generaliza-

tion of state-of-the-art deep learning methods? How can one design an algorithm

to train a neural network capable of learning from the labels and the structure of

a dataset? What is the relationship between the sampling of graph signals and the

problems in video analysis? Perhaps, the concepts of graph signal processing, such as

active semi-supervised learning and graph convolutional networks, could lead to new

developments in the field of computer vision and end-to-end architectures for video

analysis with semi-supervised learning.

Chapter 4 addresses the problem of training a neural network capable of learning

from the labels and the structure of a dataset for MOS. Similarly, Chapter 5 focuses

on the problem of using GNNs in the problem of semantic segmentation.

47

48

Chapter 4

Graph Convolutional Networks for

Moving Object Segmentation

4.1 Introduction

We introduced GraphMOS in Chapter 3 for the MOS problem. GraphMOS presents

several advantages regarding previous supervised and unsupervised methods for MOS.

For example, GraphMOS requires less labeled information than supervised models,

and it performs better than unsupervised methods. However, the addition of new

videos or nodes to the problem requires solving again the optimization problem, which

makes GraphMOS unsuitable for practical applications.

In this chapter, we propose a novel semi-supervised algorithm dubbed GraphMOS

Network (GraphMOS-Net) based on Graph Convolutional Networks (GCNs) [33] for

the MOS problem. Similar to GraphMOS in Chapter 3, GraphMOS-Net models the

instances in videos as nodes embedded in a graph. In this chapter, the instances

are obtained with a Cascade Mask R-CNN [105]. The representation of the nodes

is obtained with background initialization, optical flow, intensity, and texture fea-

tures [109, 110]. Moreover, the nodes are associated either with the class moving or

static object using ground-truth information. Finally, a GCN is trained with a small

percentage of labeled nodes to perform a semi-supervised learning classification [33]

with an unseen scheme [14]. After training, GraphMOS-Net can simply evaluate

49

the trained GCN architecture if new videos are added to the problem. Therefore,

GraphMOS-Net overcomes the main limitation of GraphMOS that requires solving

the optimization problem (Sobolev or TV minimization in (3.3) and (3.9)) again if

new nodes are added to the dataset. GraphMOS-Net outperforms some state-of-

the-art methods in several challenges of the CDNet2014 [10] and UCSD background

subtraction [11] datasets. The main contributions of this chapter are summarized as

follows:

• We pose the problem of MOS as a binary classification problem on the graph

where each node is classified into two distinct components including background

and foreground using GCNs.

• We perform rigorous experiments using the CDNet2014 dataset [10] for MOS.

Our results demonstrate that GraphMOS-Net uses a limited amount of labeled

data and outperforms some state-of-the-art classical and deep learning methods.

4.2 Moving Object Segmentation and Graph Convo-

lutional Networks

GraphMOS-Net consists of several components including instance segmentation, back-

ground model initialization, features extraction, graph construction, and GCN train-

ing, as shown in Fig. 4-1. GraphMOS-Net is summarized as follows: a) we com-

pute the instance segmentation mask of the input sequence using the Mask R-CNN

method [20]; b) the instances and background model are used to derive the features

to be used in the graph construction, we use texture features, motion features using

optical flow estimation [109], and intensity features; c) we construct the graph where

a node is assigned to each object instance represented by the group of the aforemen-

tioned features; and d) we train a GCN to classify the nodes into either background

or foreground. The different components of GraphMOS-Net will be described next.

50

(b) Features
Extraction

...

(b) Features
Extraction

(a) Segmentation

(a) Segmentation

Output

(c) Graph
Construction

...

Ground Truth
Cross-Entropy Error

... ...

(d) GCN

Hidden
Layers

...

Original Videos

Original Videos

Figure 4-1: GraphMOS-Net uses background initialization and instance segmenta-
tion. Each instance represents a node in a graph using motion, intensity, and texture
features. Finally, a GCN classifies if each node is a moving or static object with an
unseen scheme.

4.2.1 Segmentation, Feature Extraction, and Graph Construc-

tion

The first stages of GraphMOS-Net are similar to those of GraphMOS in Chapter

3. For segmentation, we use a Cascade Mask R-CNN [105] with ResNeSt of 200

layers [107]. The feature extraction uses the handcrafted features of GraphMOS as

explained in Section 3.3.2 and Appendix B, i.e., no deep features are considered in

this chapter. Finally, the construction of the graph is done with the 𝑘-NN method as

in Section 3.3.3 with 𝑘 = 30.

4.2.2 Graph Semi-supervised Learning Algorithm

GraphMOS algorithm in Chapter 3 relies on the sampling and reconstruction of graph

signals [28,49,52,75]. As a consequence, we defined the sampled nodes (or training set

in our case) in Chapter 3 as a subset of nodes 𝒮 ⊂ 𝒱 with 𝒮 = {𝑠1, 𝑠2, . . . , 𝑠𝑚}, where

𝑚 = |𝒮| ≤ 𝑁 is the number of sampled nodes. GraphMOS applies a variational

or TV method in graphs [51] to solve the semi-supervised learning problem. The

application of these variational methods requires that all inferred nodes are present

at the time of solving the optimization problem. GraphMOS-Net avoids this issue by

training a GCN, and we refer to the set 𝒮 as the training set in this chapter.

51

The layer-wise propagation rule of GraphMOS-Net, inspired from Kipf and Welling

[33] method, is given as follows:

H(𝑙+1) = 𝜎(D̃− 1
2 ÃD̃− 1

2H(𝑙)W(𝑙)) (4.1)

where Ã = A+ I is the adjacency matrix of 𝐺 with added self-connections1, I is the

identity matrix, D̃ is the degree matrix of Ã, W(𝑙) is the matrix of trainable weights

in layer 𝑙, 𝜎(·) denotes an activation function, and H(𝑙) is the matrix of activations

in layer 𝑙 such that H(0) = X is the input matrix denoting the representation of the

nodes. The propagation rule in (4.1) is motivated by the first-order approximation of

localized spectral filters on graphs [31,80]. For further details, the readers are referred

to [33].

GraphMOS-Net uses a GCN with one hidden layer to solve the semi-supervised

learning problem. The forward of our model is computed using the propagation rule

in (4.1) as follows:

Ȳ = 𝑓(X,A) = softmax
(︁
D̃− 1

2 ÃD̃− 1
2 ReLU

(︁
D̃− 1

2 ÃD̃− 1
2XW(0)

)︁
W(1)

)︁
, (4.2)

where Ȳ is the output of the GCN; W(0) ∈ R𝐶×𝐻 is the weights of the first hidden

layer such that 𝐶 is the dimension of vector x𝑣, i.e., 𝐶 = 853, and 𝐻 is the number

of feature maps; W(1) ∈ R𝐻×𝐹 is the weights of the output layer such that 𝐹 is the

number of classes (i.e., 𝐹 = 2: background and foreground); ReLU(·) = max(0, ·)

is the rectified linear unit; and finally the softmax activation function is defined as

softmax(𝑥𝑖) =
1
𝑄
exp (𝑥𝑖) where 𝑄 =

∑︀
𝑖 exp (𝑥𝑖). Here the softmax function is applied

row-wise. We set the number of feature maps 𝐻 in the hidden layer to 16 in our model.

The loss function of this GCN is defined as the cross-entropy error over all labeled

nodes:

ℒ = −
∑︁
𝑖∈𝒮

𝐹∑︁
𝑗=1

Y(𝑖, 𝑗) ln Ȳ(𝑖, 𝑗). (4.3)

1The self-connections given by Ã = A + I were introduced by Kipf and Welling [33] to avoid
numerical instabilities and exploding/vanishing gradients.

52

4.3 Experimental Framework

4.3.1 Databases

In this chapter, we use the CDNet2014 [10] and the UCSD background subtraction [11]

datasets previously introduced in Section 3.4.1. CDNet2014 contains 11 challenges

including, bad weather, low frame rate, night videos, PTZ, turbulence, baseline, dy-

namic background, camera jitter, intermittent object motion, shadow, and thermal.

On the other hand, UCSD contains 18 videos mainly composed of moving camera

sequences, with 30 up to 246 frames each sequence.

4.3.2 Training, Validation, and Test Nodes

For CDNet2014, we evaluate the performance of GraphMOS-Net with a 4-fold cross-

validation strategy using a video agnostic scheme (unseen videos), i.e., the testing

nodes should come from different videos regarding the training nodes. We grouped

the videos in four folds as evenly as possible, using the same partition as in [137].

We use the 4-fold cross-validation strategy in this chapter to have a more direct and

fair comparison against [137]. However, other strategies such as Monte Carlo cross-

validation could be used. For each fold, we randomly take a small percentage of the

nodes in the set ℳ = {0.1%, 0.5%, 5%, 10%} for training, and 1% for validation,

i.e., we use a small portion of the data to train our model. For UCSD, we train our

GraphMOS-Net in a subset of nodes of CDNet2014 and we test in UCSD dataset.

For the training and validation sets we randomly choose nodes from the challenges

baseline, dynamic background, shadow, and PTZ of CDNet2014. We use the F-

measure metric as defined in Section 3.4.2 to evaluate the performance of GraphMOS-

Net.

4.3.3 Experiments

For CDNet2014, GraphMOS-Net constructs a graph for the whole dataset, resulting in

an undirected graph of 310289 nodes. For each partition of the dataset a percentage

53

of the total amount of nodes in the set ℳ is used for training. For example, 𝒮

contains 310 nodes for 0.1% ∈ ℳ (keep in mind that usually each image contains

several nodes as shown in Fig. 4-1). The training of our GCN is validated with a

Monte Carlo cross-validation with 3 repetitions for each training density and split of

the database. As a consequence, we train 4× 3× |ℳ| = 48 GCNs for the validation

of GraphMOS-Net.

For UCSD, GraphMOS-Net constructs a graph with the whole UCSD dataset

plus the challenges baseline, dynamic background, shadow, and PTZ of CDNet2014;

resulting in a graph of 104261 nodes. In this case, the test set is the whole UCSD

dataset, and a small number of nodes in the set ℳ is used for training. A Monte

Carlo cross-validation with 5 repetitions is performed for each training density, i.e., we

train 5×|ℳ| = 20 GCNs for UCSD dataset. For the sake of clarification, the metrics

in the experiments are computed on the unseen set of nodes in each experiment. The

CDNet2014 and UCSD experiments follow the guidelines for the training, validation,

and testing sets of Section 4.3.2.

4.3.4 Implementation Details

The Cascade Mask R-CNN and the GCN were implemented using Pytorch and De-

tectron2 [107, 122]. We train the GCN with: 1) Adam optimizer [138], 2) a learning

rate of 0.01, 3) weight decay of 5e−4, 4) a dropout rate of 0.5 in the first graph-

convolutional layer, and 5) a maximum of 600 epochs. Similarly, we train the GCN

using a learning scheduler that reduces the learning rate when the loss function has

stopped improving in the validation set. Our scheduler has a reducing factor of 0.5,

patience of 5 epochs, and a minimum learning rate of 1e−6 (the GCN stops the learn-

ing procedure either if we reach the maximum number of epochs or if we reach the

minimum learning rate). We set the training batch to the full training set in each

iteration since the whole database fits in memory.

For the comparison with GraphMOS-Net, the background subtraction algorithms

MoG [89], SuBSENSE [104], and ViBe [131] for USCD were implemented with the

BGSLibrary [124]; while GRASTA [132] and DECOLOR [16] were implemented using

54

Original Ground Truth SubSENSE PAWCS IUTIS-5 BSUV-Net GraphMOS-Net

B
ad

 W
ea

th
er

Sk
at

in
g

in
00

19
00

C
am

er
a

Ji
tte

r
B

ad
m

in
to

n
in

00
10

77

D
yn

am
ic

 B
ac

kg
ro

un
d

Fo
un

ta
in

02
in

00
12

67

PT
Z

In
te

rm
itt

en
t P

an
in

00
18

89

T
he

rm
al

D
in

in
g

R
oo

m
in

00
09

92

Figure 4-2: Visual results in CDNet2014

the LRSLibrary [125].

4.4 Results and Discussion

GraphMOS-Net is compared, either in CDNet2014 or UCSD, with the following

state-of-the-art algorithms for MOS: SWCD [126], FTSG [127], SuBSENSE [104],

PAWCS [12], WisenetMD [129], IUTIS-5 [13], SemanticBGS [130], FgSegNet v2 [67],

BSUV-Net [14], GraphBGS-TV2 [8], GraphBGS3 [3], MoG [89], DECOLOR [16],

ViBe [131], 3WD [60], GRASTA [132], ROSL [15], ADMM [133], noncvxRPCA [134],

and OR1MP [135]. The results of FgSegNet v2 [67] for CDNet2014 are reported using

unseen videos for the evaluation of the network, the performance comes from Tezcan

et al. paper [14].

Fig. 4-2 shows some visual results of SubSENSE, PAWCS, IUTIS-5, BSUV-Net,

and GraphMOS-Net in the CDNet2014 dataset. The sequences present challenging

scenarios such as bad weather conditions, dynamic backgrounds, and PTZ cameras,

among others. GraphMOS-Net presents high-quality visual results in all cases. In
2GraphBGS-TV is a particular instance of GraphMOS where the semi-supervised learning prob-

lem is solved with TV minimization as in (3.9).
3GraphBGS is a particular instance of GraphMOS where the segmentation algorithm is a Cascade

Mask R-CNN.

55

B
ir

ds
	

fr
am

e_
4

Original Ground Truth DECOLOR SuBSENSE GraphMOS-Net

B
oa

ts
	

fr
am

e_
12

B
ot

tle
	

fr
am

e_
14

C
ho

pp
er
	

fr
am

e_
47

C
yc

lis
ts
	

fr
am

e_
9

Pe
ds
	

fr
am

e_
25

Figure 4-3: Visual results in UCSD

the same way, Fig. 4-3 shows visual results of GraphMOS-Net on UCSD compared

with DECOLOR and SuBSENSE. The visual results of GraphMOS-Net indicate that

GCNs are better than previous unsupervised and supervised algorithms used for MOS

in some challenges. The improvement of GraphMOS-Net with respect to GraphBGS

is because of the superior modeling capacity of GCNs compared with previous semi-

supervised learning methods.

Tables 4.1 and 4.2 show the comparison of GraphMOS-Net with several state-of-

the-art methods in CDNet2014 and UCSD, respectively. The results of GraphMOS-

Net and GraphBGS are computed with the best F-measures in each sequence from

the experiments (both algorithms have the same instance segmentation method). For

CDNet2014 in Table 4.1, GraphMOS-Net shows the best results in the challenges

baseline, dynamic background, PTZ, and shadow. The results also show that our

algorithm has an overall increment in performance with respect to GraphBGS. For

UCSD in Table 4.2, GraphMOS-Net shows either the best or the second-best results

56

Table 4.1: Comparisons of average F-measure over nine challenges of CDNet2014.
GraphMOS-Net is compared with unsupervised and supervised algorithms in MOS.

Challenge SWCD FTSG SuBSENSE PAWCS WisenetMD IUTIS-5 SemanticBGS FgSegNet v2 BSUV-Net GraphBGS-TV GraphBGS GraphMOS-Net

Bad Weather 0.8233 0.8228 0.8619 0.8152 0.8616 0.8248 0.8260 0.7952 0.8713 0.8072 0.9085 0.9142
Baseline 0.9214 0.9330 0.9503 0.9397 0.9487 0.9567 0.9604 0.6926 0.9693 0.9432 0.9535 0.9627
Camera Jitter 0.7411 0.7513 0.8152 0.8137 0.8228 0.8332 0.8388 0.4266 0.7743 0.7191 0.8826 0.8980
Dynamic-B 0.8645 0.8792 0.8177 0.8938 0.8376 0.8902 0.9489 0.3634 0.7967 0.7365 0.8353 0.8849
I-O Motion 0.7092 0.7891 0.6569 0.7764 0.7264 0.7296 0.7878 0.2002 0.7499 0.4199 0.5036 0.7028
Low-F rate 0.7374 0.6259 0.6445 0.6588 0.6404 0.7743 0.7888 0.2482 0.6797 0.5103 0.6022 0.6945
PTZ 0.4545 0.3241 0.3476 0.4615 0.3367 0.4282 0.5673 0.3503 0.6282 0.8014 0.7993 0.8329
Shadow 0.8779 0.8832 0.8986 0.8913 0.8984 0.9084 0.9478 0.5295 0.9233 0.9658 0.9712 0.9753
Thermal 0.8581 0.7768 0.8171 0.8324 0.8152 0.8303 0.8219 0.6038 0.8581 0.7305 0.8594 0.8647
Overall 0.7764 0.7539 0.7566 0.7870 0.7653 0.7923 0.8320 0.4158 0.8056 0.7371 0.8128 0.8589

across almost all the videos of UCSD. In the overall performance, GraphMOS-Net

comes second, lagging slightly behind GraphBGS. We believe it is a consequence

of increasing the representational power when solving the semi-supervised learning

problem with GCNs leading to a slightly worse generalization. Similarly, GraphMOS-

Net outperforms subspace learning methods such as DECOLOR and GRASTA. Sub-

space learning methods generally have problems when dealing with moving camera

sequences.

We can also notice the degradation of the deep learning method FgSegNet v2

compared to the original results [67] when tested on unseen videos in Table 4.1.

Similarly, the performance of BSUV-Net drops when applied on UCSD, these results

could suggest a weakness of deep learning methods in generalization for MOS (keep in

mind that BSUV-Net uses the output of a fully CNN trained in ADE20K dataset [139]

as input of the network). In Table 4.2, we evaluated the BSUV-Net model provided

by the authors of [14] that was trained in the CDNet2014. In our case, we trained

GraphMOS-Net in a small subset of nodes of CDNet2014 including the challenges

baseline, dynamic background, shadow, and PTZ. This suggests that GraphMOS-Net

generalizes better than BSUV-Net when applied on a different dataset from which it

was trained. For the sake of clarification, we did not use the ground truth of UCSD in

the training procedure. GraphMOS-Net benefits from the higher modeling capacity

of GCNs by improving upon the GraphBGS method as shown in Tables 4.1 and 4.2.

57

Table 4.2: Comparison of F-measure results over the videos of UCSD background
subtraction dataset.

Sequence MoG DECOLOR ViBe 3WD GRASTA SuBSENSE ROSL ADMM noncvxRPCA OR1MP BSUV-Net BSUV-Net+ GraphBGS GraphMOS-Net

Birds 0.1427 0.1457 0.3354 0.1308 0.1320 0.4832 0.1478 0.0227 0.1432 0.1394 0.3314 0.2625 0.7495 0.7391
Boats 0.0881 0.2179 0.1854 0.1576 0.0678 0.4550 0.1637 0.1212 0.1380 0.1100 0.4586 0.6621 0.7765 0.8007
Bottle 0.1856 0.4765 0.4512 0.1364 0.1159 0.6570 0.2069 0.6589 0.1974 0.1795 0.8528 0.5039 0.8741 0.8741
Chopper 0.3237 0.6214 0.4930 0.3171 0.0842 0.6723 0.2920 0.1250 0.3103 0.2653 0.2805 0.3020 0.7766 0.7844
Cyclists 0.0915 0.2224 0.1211 0.1003 0.1243 0.1445 0.1366 0.1093 0.1317 0.1242 0.0051 0.4138 0.7417 0.7479
Flock 0.2706 0.2943 0.2306 0.2007 0.1612 0.2492 0.3409 0.1088 0.3220 0.2605 0.1160 0.0025 0.5903 0.5871
Freeway 0.2622 0.5229 0.4002 0.5028 0.0814 0.5518 0.3875 0.0816 0.3126 0.1549 0.4780 0.1185 0.3719 0.3516
Hockey 0.3867 0.3449 0.4195 0.2789 0.3149 0.3611 0.4106 0.2981 0.3411 0.4296 0.6460 0.6908 0.7664 0.7804
Jump 0.2679 0.3135 0.2636 0.2481 0.4175 0.2295 0.4198 0.0609 0.3180 0.3073 0.5491 0.8697 0.7734 0.7602
Landing 0.0335 0.0640 0.0433 0.0457 0.0414 0.0026 0.0506 0.0826 0.0480 0.0442 0.0021 0.0012 0.2452 0.1840
Ocean 0.1113 0.1315 0.1648 0.2055 0.1144 0.2533 0.1422 0.1809 0.1274 0.1252 0.4117 0.5335 0.8593 0.8593
Peds 0.3731 0.7942 0.5257 0.7536 0.4653 0.5154 0.7418 0.6667 0.4333 0.4297 0.6958 0.6738 0.8518 0.8512
Skiing 0.2038 0.3473 0.1441 0.1981 0.0927 0.2482 0.1942 0.0519 0.1812 0.1791 0.0841 0.0602 0.5963 0.5953
Surf 0.0489 0.0647 0.0462 0.0579 0.0523 0.0467 0.0453 0.0162 0.0325 0.0317 0.0884 0 0.5851 0.6139
Surfers 0.0542 0.1959 0.1189 0.0962 0.0742 0.1393 0.1184 0.1950 0.1083 0.1044 0.2612 0.4776 0.6719 0.6611
Trafic 0.2188 0.2732 0.1445 0.2032 0.0368 0.1165 0.1042 0.1044 0.0949 0.0882 0 0 0.5722 0.5722
Overall 0.1914 0.3144 0.2555 0.2271 0.1485 0.3203 0.2439 0.1803 0.2025 0.1858 0.3288 0.3483 0.6751 0.6727

4.5 Conclusions

This chapter introduces a new algorithm for MOS based on GCN. The pipeline of the

method involves a Cascade Mask R-CNN to get the object instances from the videos;

a graph construction with k-nearest neighbors, where nodes are associated to object

instances, and represented with feature vector encompassing optical flow, intensity

and texture descriptors. We use a compact GCN model trained in a semi-supervised

setting. Our algorithm outperforms previous state-of-the-art unsupervised, semi-

supervised, and supervised learning algorithms for MOS in several challenges of the

CDNet2014 and UCSD datasets.

This chapter opens some avenues for future research. One interesting topic is

the study of an inductive framework [32] for GraphMOS-Net in the context of MOS.

Similarly, other GNN architectures could be explored like Graph Attention Networks

(GAT) [34] and GraphSAGE [32], among others. Chapter 5 further studies the topic

of GNNs in computer vision, but in this case, we will explore the problem of weakly

supervised semantic segmentation using HyperGraph Convolutional Networks (Hy-

perGCNs).

58

Chapter 5

Hypergraph Convolutional Networks

for Semantic Segmentation

5.1 Introduction

We introduced GraphMOS-Net in Chapter 4. GraphMOS-Net deals with the limita-

tion of the former GraphMOS from Chapter 3, where the semi-supervised learning

problem should be solved again when new nodes are added to the optimization func-

tion. In this chapter, we propose a new graph-based learning algorithm for the task

of Weakly-supervised Semantic Segmentation (WSS).

Semantic segmentation is an important task in computer vision with multiple

applications in image, 3D, and video processing [1, 38, 140]. The main objective of

semantic segmentation is to classify all the pixels in the images into some predefined

classes. Deep learning models have dominated the study of semantic segmentation

in recent years [19, 141, 142]. However, these deep learning methods are usually very

complex models containing millions of learnable parameters, and thus they require a

lot of densely annotated images to perform well [1, 2].

Currently, there is an increasing interest in weakly supervised learning [143], where

the predictions are obtained with a limited amount of labels. As a result, several

studies have proposed WSS methods [144–147], where graphical models have played

a central role. In particular, GCNs have been widely explored in WSS, reaching

59

Figure 5-1: The idea of HyperGCN-WSS is to rely both on the spatial and structural
information in the datasets.

state-of-the-art performances [146, 147]. However, these methods have focused on

constructing graphs from individual images using spatial information. Therefore,

these models waste crucial information that can be obtained from other images in the

dataset.

In the current work, we propose a new algorithm named HyperGraph Convolu-

tional Networks for Weakly-supervised Semantic Segmentation (HyperGCN-WSS),

using scribbles and clicks as weak signals. The key idea of our algorithm is to rely on

spatial information as in [146, 147], as well as on structural information that can be

captured from other instances in the dataset. Our algorithm uses HyperGCNs [148]

to capture such spatial-structural information. HyperGCN-WSS is composed of 1)

SLIC superpixel segmentation [17] for node representation, 2) VGG-16 for feature

extraction [149], 3) spatial and 𝑘-NN graph construction, 4) HyperGCN [148] to gen-

erate pseudo-labels, and 5) DeepLabV3+ [150] for semantic segmentation using the

pseudo-labels as the target image. Fig. 5-1 shows the motivation of HyperGCN-WSS,

where one labeled superpixel (with a scribble) is connected to another non-labeled

superpixel in the dataset, allowing the propagation of information between different

instances in the dataset. For clicks, we have some pixels with the ground-truth in-

formation. HyperGCN-WSS is evaluated in the PASCAL VOC 2012 dataset [151]

for semantic segmentation using scribbles and clicks as weak signals. Our algorithm

shows competitive performance against previous methods.

The main contributions of this chapter are presented as follows: 1) we propose

a new algorithm for WSS, 2) we show that using HyperGCNs is better than using

60

...

Average
Pooling

Input Images

k-NN Graph

Hidden
Layers

Output
Matrix

Loss Function

HyperGCN-WSS

Weak Signals

...

Superpixel Segmentation
SLIC Pseudo-labels

Outputs

...

512 Feature Maps
VGG16, ReLU-23

Spatial Graph

DeepLab

Figure 5-2: The pipeline of HyperGCN-WSS. Our algorithm uses SLIC superpixel
segmentation, VGG16 feature extraction, average pooling, spatial and 𝑘-NN graph
construction, a specialized HyperGCN architecture, and a DeepLabV3+ model.

GCNs alone for WSS, and 3) we evaluate our algorithm with two types of weak

signals: scribbles, and clicks, showing competitive performance against some previous

methods.

The rest of this chapter is organized as follows. Section 5.2 explains HyperGCN-

WSS. Section 5.3 introduces the experiments and results. Finally, Section 5.4 presents

the conclusions.

5.2 Proposed Method

Fig. 5-2 shows the pipeline of HyperGCN-WSS, where we have superpixel segmenta-

tion, feature extraction, hypergraph construction, HyperGCN, and a DeepLab model

for semantic segmentation.

5.2.1 Preliminaries

A simple graph 𝐺 = (𝒱 , ℰ) is a mathematical entity where we have a set of nodes

𝒱 ∈ {1, . . . , 𝑁} and a set of edges ℰ = {(𝑖, 𝑗)} as explained in Section 2. Notice

that A (the adjacency matrix) can only represent edges that connect two nodes. A

hypergraph 𝐺ℎ = (𝒱 , ℰ) is a generalization of simple graphs 𝐺, where the edges

can connect multiple nodes. Let W𝑒 ∈ R𝑀×𝑀 be the diagonal matrix of hyperedge

weights, where W𝑒(𝑒, 𝑒) is the weight of the 𝑒th hyperedge and 𝑀 = |ℰ|. Let H𝑖 ∈

61

{0, 1}𝑁×𝑀 be the incidence matrix of 𝐺ℎ such that H𝑖(𝑖, 𝑒) = 1 if the 𝑖th node is

incident to the edge 𝑒, and 0 otherwise, i.e., H𝑖(𝑖, 𝑒) = 1 if the node 𝑖 is connected by

the edge 𝑒. Let Dℎ ∈ R𝑁×𝑁 be the diagonal matrix of node degree, where Dℎ(𝑖, 𝑖) =∑︀𝑀
𝑒=1W𝑒(𝑒, 𝑒)H𝑖(𝑖, 𝑒). Finally, let B ∈ R𝑀×𝑀 be the diagonal matrix of hyperedge

degree, where B(𝑒, 𝑒) =
∑︀𝑁

𝑖=1H𝑖(𝑖, 𝑒). In the current chapter, we use the hypergraphs

to represent two kinds of relationships in the nodes: 1) the spatial relationships of

the nodes on each image and 2) the relationship of nodes from different images in the

dataset.

5.2.2 Nodes Representation and Graph Construction

We use the SLIC superpixel segmentation [17] method to represent the nodes in the

graph 𝐺 (or 𝐺ℎ). Furthermore, the input feature description of each node is obtained

with some pre-trained CNN. In the current chapter, we use the outputs of the 10th

ReLU layer of the VGG16 [149] (the 23th layer of the network), which contains 512

features maps. Additionally, an average pooling is performed on the superpixel regions

of each feature map to obtain the feature representation, i.e., each node is represented

with a 512-dimensional vector.

In the current chapter, we construct two types of graphs: 1) spatial graphs in the

superpixels of each image, and 2) 𝑘-NN graphs with k = 10 on some embedding space.

Let 𝛼 be the number of images in the dataset, let 𝜉 be the number of superpixels for

SLIC, and let 𝜇 be the maximum number of nodes we allow for each graph (𝜇 = 40000

in the experiments). Therefore, we construct 𝜏 = ⌊𝛼×𝜉
𝜇
⌉ graphs, where we have

𝛾 = ⌊𝛼
𝜏
⌉ images per graph. For the spatial graphs, we connect all the nodes that are

in the neighborhood of each superpixel as shown in Fig. 5-2. Therefore, we create

a block diagonal matrix with the 𝛾 adjacency matrices of each image, i.e., we have

𝛾 unconnected subgraphs for each spatial graph. For the 𝑘-NN graph, we use an

embedding representation to compute the Euclidean distances. For example, these

embeddings can be intermediate outputs of a GCN or a HyperGCN. The weights

of the edges for the spatial and 𝑘-NN graphs are given by the Gaussian function

exp (−‖x𝑖 − x𝑗‖22/𝜎2), where x𝑖 is the embedding (or feature representation) of the

62

S
pa

ti
al

G
ra

p
h

k
-N

N
G

ra
ph

H
yp

er
gr

ap
h

G
ra

ph
 C

on
vo

lu
ti

o
na

l
L

ay
er

 5
1

2x
2

56

G
ra

ph
 C

on
vo

lu
ti

o
na

l
L

ay
er

 2
5

6x
2

56

G
ra

ph
 C

on
v

ol
u

ti
on

al
L

ay
er

 2
5

6x
2

56

G
ra

p
h

C
on

v
ol

u
ti

on
al

L
ay

er
 2

56
x2

56

M
u

lt
il

ay
er

P
er

ce
pt

ro
n

G
ra

ph
 C

on
vo

lu
ti

o
na

l
L

ay
er

 2
5

6x
2

56

G
ra

ph
 C

on
vo

lu
ti

o
na

l
L

ay
er

 2
5

6x
2

56

G
ra

ph
 C

on
v

ol
u

ti
on

al
L

ay
er

 2
5

6x
2

56

G
ra

p
h

C
on

v
ol

u
ti

on
al

L
ay

er
 2

56
x2

56

M
u

lt
il

ay
er

P
er

ce
pt

ro
n

H
yp

er
g

ra
ph

 C
o

nv
o

lu
-

ti
o

na
l

L
ay

er
 2

56
x2

56

H
yp

er
g

ra
ph

 C
o

nv
o

lu
-

ti
o

na
l

L
ay

er
 2

56
x2

56

H
yp

er
g

ra
ph

 C
o

nv
o

lu
-

ti
o

na
l

L
ay

er
 2

56
x2

56

H
yp

er
g

ra
ph

 C
o

nv
o

lu
-

ti
o

na
l

L
ay

er
 2

56
x2

56

M
ul

ti
la

ye
r

P
er

ce
p

tr
on

k-
N

N
G

ra
ph

Figure 5-3: HyperGCN-WSS architecture with skip connections, as well as several
graph and hypergraph convolutional layers. X is the matrix of features from VGG16.
HyperGCN-WSS is trained in three stages, where we have three loss functions ℒ𝑖.

𝑖th node, and 𝜎 is the standard deviation given by 𝜎 = 1
|ℰ|
∑︀

(𝑖,𝑗)∈ℰ ‖x𝑖 − x𝑗‖2.

5.2.3 Graph and Hypergraph Convolutional Networks

In this chapter, we use graph convolutions and hypergraph convolutions in our Hy-

perGCN architecture. For the graph convolutions, we use the model of Kipf and

Welling [33]. For the hypergraph convolutions, we use the model of Bai et al. [148].

The graph convolution in [33] was previously introduced in (4.1). Furthermore,

the hypergraph convolution in [148] is given as follows:

X(𝑙+1) = 𝜎(D
− 1

2
ℎ H𝑖W𝑒B

−1HT
𝑖 D

− 1
2

ℎ H(𝑙)W(𝑙)), (5.1)

where H(𝑙) is the matrix of activations in layer 𝑙 (matrix of features or embeddings),

W(𝑙) is the matrix of trainable weights in layer 𝑙, and 𝜎(·) is an activation function.

5.2.4 HyperGCN Architecture

Fig. 5-3 shows the architecture of our HyperGCN-WSS. The input X ∈ R𝑁×512 is the

matrix of features from the VGG16 network. Each Graph Convolutional Layer (GCL)

contains batch normalization [152], Exponential Linear Unit (ELU) [153] as activation

function, and it could have a residual connection [106] as shown in Fig. 5-3. The

GCLs implement the propagation rule in (4.1). The Hypergraph Convolutional Layers

(HCLs) are similar to the GCLs, but instead of using (4.1), they implement (5.1).

Our architecture also contains Multi-layer Perceptrons that classify the embedding of

63

the GCLs or HCLs. We use intermediate embeddings as shown by the dotted lines

in Fig. 5-3 to construct 𝑘-NN graphs. The first 𝑘-NN graph Ak is combined with

the spatial graph to create a hypergraph and the second intermediate embeddings are

used to construct the 𝑘-NN graph Ak2 .

5.3 Experiments and Results

5.3.1 Dataset and Evaluation Metrics

HyperGCN-WSS is evaluated on PASCAL VOC 2012 [151] dataset for semantic seg-

mentation. We also use the dataset of scribbles [145] and random clicks as weak

signals. PASCAL VOC 2012 has 20 semantic classes and one background category.

We use the augmented version of the PASCAL dataset provided by [154], resulting

in 10582 images in the training set, and 1449 images in the validation set. In this

chapter, we use the training set in [154] for training and validation, and we leave

the validation set as the test set. We use the mean Intersection over Union (mIoU)

metric [151] for evaluation.

5.3.2 Implementation Details

HyperGCN-WSS is implemented using PyTorch with a learning rate of 0.01 and

weight decay of 5e−4. Each GCL or HCL has 256 hidden units and a dropout rate of

50%. Each stage of HyperGCN-WSS is trained for a maximum of 1000 epochs using

Adam [138]. For scribbles, we use 5% of the scribbles for validation. For clicks, we use

1% of the clicks for validations. We train HyperGCN-WSS using a learning scheduler

that reduces the learning rate when the loss function has stopped improving in the

validation set. Our scheduler has a reducing factor of 0.5, patience of 25 epochs, and a

minimum learning rate of 1e−6 (HyperGCN-WSS stops the learning procedure either

if we reach the maximum number of epochs or if we reach the minimum learning rate).

The final activation of the Multi-layer Perceptrons are logarithmic softmax, and we

use the negative log-likelihood as loss functions.

64

Input Ground-Truth

20
08

_0
04

65
4

20
08

_0
07

99
4

20
08

_0
02

53
6

Output Scribbles
No CRF

Output Scribbles
CRF

Output Clicks
No CRF

Output Clicks
CRF

Figure 5-4: Some visual results on PASCAL VOC 2012 with our HyperGCN-WSS,
using scribbles or clicks as weak signals.

5.3.3 Experiments

In this chapter, we perform experiments in 1) the dataset of scribbles [145] and 2)

some random clicks that are given by a percentage of 𝑁 . The percentage of clicks

is given by the set ℳ = { 1
32
, 1
16
, 1
8
, 1
4
}. For example, for 1

32
∈ ℳ and 𝜉 = 100

number of superpixels, we have around 3.125 random clicks per image for training.

Similarly, we analyze the impact of the number of superpixels 𝜉 in the set 𝒮 =

{50, 100, 200, 400, 800}, for both scribbles and clicks. We report the mIoU of the

pseudo-labels in the training set for each loss function ℒ𝑖 ∀ 𝑖 ∈ {1, 2, 3} to assess

the propagation of information of our algorithm after each stage. We also report

the mIoU after the DeepLab training in the validation set. We do not perform an

extensive search of semantic segmentation models like in [146, 155] because that is

not the scope of this chapter.

5.3.4 Results and Discussions

Fig. 5-4 shows some visual results of HyperGCN-WSS before and after applying

Conditional Random Field (CRF) [156]. CRFs are commonly applied as a post-

processing step to improve the performance of image segmentation methods, as in

[19, 145, 146]. We employ CRFs in this chapter for visualization purposes, aiming to

have a visual reference regarding previous methods. Similarly, Table 5.1 shows the

mIoU of the pseudo-labels after each loss function ℒ𝑖 ∀ 𝑖 ∈ {1, 2, 3} in the training

65

Table 5.1: Accuracy in mIoU (%) in the train set of PASCAL VOC after each loss
function ℒ𝑖 ∀ 𝑖 ∈ {1, 2, 3} in our algorithm.

Weak
Signals

𝜉 = 50 𝜉 = 100 𝜉 = 200 𝜉 = 400 𝜉 = 800
ℒ1 ℒ2 ℒ3 ℒ1 ℒ2 ℒ3 ℒ1 ℒ2 ℒ3 ℒ1 ℒ2 ℒ3 ℒ1 ℒ2 ℒ3

Scribbles 51.85 54.49 54.23 50.04 54.31 54.51 46.03 49.72 50.72 39.86 44.65 45.51 32.42 37.99 39.51
Clicks 1

32
41.35 42.13 42.05 41.43 42.61 42.30 40.46 43.06 42.97 39.36 43.76 44.28 32.56 37.91 39.87

Clicks 1
16

45.59 46.78 46.70 46.06 47.98 47.72 44.81 49.17 49.19 39.84 45.84 46.98 33.60 38.77 41.48
Clicks 1

8
50.04 51.71 51.48 51.08 54.21 54.15 47.94 52.98 53.18 41.33 46.48 47.98 33.16 38.76 41.24

Clicks 1
4

53.44 55.76 55.52 53.63 57.60 57.51 49.74 54.51 55.26 41.42 46.92 48.82 34.19 37.49 40.07

Table 5.2: Accuracy of HyperGCN-WSS and previous methods in the validation set
of PASCAL VOC. S: Scribbles. C: Clicks.

Method Weak
Signal CRF mIoU (%)

ScribbleSup [145] S ✓ 63.1
RAWKS [157] S ✓ 61.4

NormalizedCutLoss [155] S - 60.5
GraphNet [146] S - 63.3

HyperGCN-WSS (ours) S - 65.3
HyperGCN-WSS (ours) C - 65.4

set of PASCAL VOC with scribbles and clicks. Notice that we do not use the full

labeled annotation of the training set of PASCAL VOC, so Table 5.1 shows how

well the information is propagated to the other nodes in the graph. We notice that

there is a gap in performance between using the GCN alone and the HyperGCN. For

example, in scribbles and clicks, there is a gap of around 4% between ℒ1 and ℒ2. The

best results for each weak signal in Table 5.1 (in bold) correspond to low values of

superpixels 𝜉. The reason is that the dimensions of the features maps of the VGG16

in the 23 layer are around 8 times smaller than the original image. Therefore, having

big values of 𝜉 means smaller superpixels, which are hard to adequately represent

with deep layers of CNNs. Finally, Table 5.2 shows the comparison of HyperGCN-

WSS with previous methods. Our algorithm shows competitive performance against

previous methods.

5.4 Conclusions

In this chapter, we introduced a new WSS algorithm called HyperGCN-WSS. Our

algorithm is composed of SLIC superpixel segmentation, CNN feature extraction, hy-

pergraph construction, a specialized HyperGCN architecture, and the DeepLabV3+

66

model. This new HyperGCN architecture combines graph and hypergraph convolu-

tions. HyperGCN-WSS used spatial graphs constructed in the neighborhood of the

superpixels, and 𝑘-NN graphs constructed in some embedding representation. We

showed that using hypergraph convolutions is better than using graph convolutions

alone. Similarly, our algorithm showed competitive performance against previous

methods.

Chapters 6 and 7 delve into the machine learning part of this thesis. We focus in

two problems of graph-based algorithms in machine learning: 1) Chapter 6 explores

the learning of graphs for GNNs, and how to make graph convolutions more expressive

without compromising scalability, and 2) Chapter 7 studies the well-known problem

of over-smoothing and over-squashing in GNNs under a spectral graph theory and

differential geometry approach.

67

68

Part II

Machine Learning

70

Chapter 6

Sparse Sobolev Graph Neural

Networks

6.1 Introduction

In previous chapters we explored applications of graph-based algorithms in computer

vision. In this chapter and in Chapter 7, we explore machine learning aspects of

GNNs. In particular, this chapter explores topics on learning graphs from data, and

making GNNs more expressive without compromising scalability.

Graph representation learning and its applications have gained significant atten-

tion in recent years. Notably, GNNs have been extensively studied [30–35]. GNNs

have numerous applications such as semi-supervised learning [33,34], point cloud se-

mantic segmentation [37,38], prediction of individual relations in social networks [39],

and modeling of proteins for drug discovery [40,41]. Similarly, other graph techniques

have been recently applied to image, video, and medical image processing applica-

tions [1, 42–44].

GNNs perform well in problems of strong homophily [45]. The homophily of a

graph is higher when neighbor nodes are in the same category or have similar features

[45]. However, most of the state-of-the-art techniques on GNNs focus on problems

where the graph topologies are already given by the problem [33, 34]. Therefore,

we cannot control the homophily level of the datasets. Examples of applications

71

where the graphs are naturally given by the problem include citation, social, and

quantum chemistry networks [158]. As a consequence, interesting tasks where the

graph topologies are not readily available, remain mostly unexplored [159].

In this chapter, we study the inference of smooth graph topologies to promote ho-

mophily. We observe that smooth graphs increase the performance of baseline GNN

architectures compared to the empirical 𝑘-NN method to construct graphs. Similarly,

we propose a new GNN model that computes a cascade of higher-order filtering oper-

ations, allowing a more diverse set of functions on each layer. Our model is inspired

by the Sobolev norm of GSP [9,51]. This norm takes powers of the sparse adjacency

matrix of a graph, converting it into a dense matrix quickly. The densification of the

adjacency matrix results in memory and scalability problems in GNNs. Therefore, we

modify the Sobolev norm using concepts of the Hadamard product between matrices

(also known as the element-wise product) to maintain the sparsity of the adjacency

matrix, and we dub our proposed architecture as Sparse Sobolev GNN (S-SobGNN).

We rely on the spectral graph theory [78] and the Schur product theorem [160] to ex-

plain some properties of our filtering operation and show that this new sparse Sobolev

norm satisfies the properties of vector norms. In our proposed architecture, we employ

a linear combination layer at the end of each cascade of filters to select the best power

functions. S-SobGNN shows good performance improvements in several applications

in the presence of wide instead of deep networks. Therefore, we improve expressive-

ness by 1) learning smooth graphs that promote homophily and 2) computing a more

diverse set of sparse graph-convolutional functions.

We evaluate the generalization capabilities of S-SobGNN in many applications in-

cluding instance and node classification. First, we test S-SobGNN in semi-supervised

learning tasks in several domains including, tissue phenotyping in colon cancer his-

tology images [161], text classification of news [162], activity recognition with sen-

sors [163], and recognition of spoken letters [164]. Finally, we test S-SobGNN in

the benchmark Pattern and Cluster datasets for node classification [165]. Our algo-

rithm outperforms many state-of-the-art methods in semi-supervised learning, node

classification, and MOS in graphs.

72

The main contributions of this chapter are summarized as follows:

1. We demonstrate that the smooth graphs show significant performance improve-

ment compared to 𝑘-NN graphs for GNNs by promoting homophily.

2. We propose a new GNN architecture that computes a cascade of higher-order

filters inspired by the Sobolev norm of GSP.

3. Several mathematical insights of S-SobGNN are introduced using the spectral

graph theory [78] and the Schur product theorem [160].

4. We perform extensive experimental evaluations on six publicly available bench-

mark datasets and compared S-SobGNN with 14 state-of-the-art GNN architec-

tures with rigorous analysis. Our algorithm shows competitive results against

several methods.

The rest of this chapter is organized as follows. Section 6.2 presents the related

work, Section 6.3 introduces the basic concepts and the background on learning graphs

from data. Section 6.4 explains the proposed GNN model. Section 6.5 presents the

experimental framework and results. Finally, Section 6.6 shows the conclusions.

6.2 Related Work

6.2.1 Inference of Graph Topology

Many studies in GNNs assume that the graph topology is naturally given by the

problem. For instance, nodes and edges in citation networks correspond to the docu-

ments and citation links [166]. Nevertheless, learning a graph topology from data is

essential when a natural choice is not readily available. Furthermore, many interest-

ing problems, where the graph topology is not available, have been little studied in

GNNs [159].

Learning (or inferring) graphs from data is an emerging field of study in GSP [167].

The inference of a meaningful graph is crucial for the further processing steps. In the

literature, the 𝑘-NN plus Gaussian kernel method is a typical procedure to construct

a graph [29]. However, some authors have proposed more meaningful methods. For

73

example, Kalofolias showed in 2016 that the typical 𝑘-NN procedure is a particu-

lar case of a more general method of learning smooth graphs from data, where the

smoothness is measured with a function of the Laplacian [168]. Later, other studies,

including [169] and [170], have also used the intuition of learning smooth graphs using

the Laplacian concepts with different optimization procedures. Interested readers can

explore more details about learning graphs from data in a recent survey [167]. In our

proposed algorithm, we explore the inference of smooth graphs in GNNs [168]. We

show that the learned smooth graphs improve the performance of S-SobGNN and

other state-of-the-art methods by promoting homophily.

6.2.2 Graph Neural Networks

The study of graphs is a well-established field in deep learning and mathematics

[78, 171]. With its emergence in 2014 and motivated by the success of CNNs in

regular-structured data like images [36], Bruna et al. proposed the first modern

GNN by extending the convolutional operator of CNNs to graphs [30]. Afterward,

Defferrard et al. used the concepts of GSP to propose localized spectral filtering [31]

in 2016. Subsequently, Kipf and Welling approximated the filtering operation of

spectral filtering to perform efficient convolution operations on graphs [33] in 2017.

Other major GNNs works include the study of inductive representation learning on

graphs [32] in 2017 and the development of GATs [34] in 2018. A complete review of

GNNs can also be explored in the survey [35].

In this chapter, we introduce a new GNN architecture inspired by the Sobolev

norm of GSP as introduced in Definition 3.3.1. This norm adds a matrix 𝜖I to

the Laplacian, where 𝜖 ∈ R+. Then, the Sobolev norm takes powers of the modified

Laplacian matrix. The notion of taking powers of the matrix that represents the graph

has been previously explored in GNNs [172,173]; however, the powers of the adjacency

matrix (or Laplacian) quickly become a dense matrix, resulting in scalability and

memory problems. As a result, we modify the Sobolev norm using the Hadamard

product between matrices to keep the sparsity level of the adjacency matrix.

74

6.3 Learning Graphs from Data

6.3.1 Preliminaries

Given a set of classes for the vertices 𝒱 , the homophily captures the property of a

node to have the same class as its neighbors. Pei et al. [174] proposed a metric to

measure the level of homophily in a graph as follows:

𝐻(𝐺) =
1

|𝒱|
∑︁
𝑖∈𝒱

|𝒩 𝑠
𝑖 |

|𝒩𝑖|
, (6.1)

where 𝒩𝑖 is the set of vertices connected to the 𝑖th node by only one edge, and 𝒩 𝑠
𝑖 is

the set of nodes that share the same labels as the 𝑖th node. 𝐻(𝐺) → 1 when we have

graphs with strong homophily, while 𝐻(𝐺) → 0 for graphs with strong heterophily.

As a consequence, low homophily means high heterophily and vice versa.

6.3.2 Inferring Smooth Graphs

We use the smoothness as a prior assumption to infer the graphs in this chapter.

However, we need to extend the definition of the Laplacian quadratic form in (2.5)

to multiple-dimensional signals to learn graphs from data. Let X ∈ R𝑁×𝑀 be the

data matrix of 𝑁 instances, where each instance is an 𝑀 -dimensional vector and

X = [x1,x2, . . . ,x𝑁]
T. x𝑣 ∈ R𝑀 could be any meaningful 𝑀 -dimensional feature

representation of the 𝑣th instance in the problem we are approaching. For example,

in image classification, this representation could be the features from some CNN.

We can also think of X as a set of 𝑀 one-dimensional graph signals such that X =

[x′
1,x

′
2, . . . ,x

′
𝑀], where x′

𝑖 ∈ R𝑁 is the 𝑖th column vector of X. The extension of the

graph Laplacian quadratic form in Eq. (2.5) to multiple dimensions for X in 𝐺 is

given as follows [168]:

1

2

∑︁
𝑖,𝑗

A(𝑖, 𝑗)‖x𝑖 − x𝑗‖2 = tr(XTLX). (6.2)

75

When we infer graphs based on the minimization of Eq. (6.2), we end up with the

smoothest representation in the columns of X. As a consequence, we refer to Eq.

(6.2) as the smoothness of X. Eq. (6.2) has been used in several studies to infer the

topology of 𝐺 [167–169]. Notice that tr(XTLX) =
∑︀𝑀

𝑖=1 x
′T
𝑖 Lx′

𝑖 in Eq. (6.2), i.e., the

smoothness of the data matrix X is the sum of all graph Laplacian quadratic forms

of each graph signal x′
𝑖 ∀ 𝑖 ∈ {1, . . . ,𝑀}. Furthermore, let Z ∈ R𝑁×𝑁

+ be the pairwise

distances matrix of X such that Z(𝑖, 𝑗) = ‖x𝑖 − x𝑗‖22 ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . We thus can

rewrite (6.2) as follows [168]:

tr(XTLX) =
1

2
tr(AZ) =

1

2
‖A ∘ Z‖1,1. (6.3)

Kalofolias [168] proposed to infer a smooth topology of graphs using the following

optimization function:

argmin
A∈𝒜

‖A ∘ Z‖1,1 − 𝛾1T log(A1) +
𝛽

2
‖A‖2𝐹 , (6.4)

where 𝒜 is the set of valid adjacency matrices (symmetric, with zero diagonal, and

non-negative), and the parameters 𝛾 > 0 and 𝛽 ≥ 0 control the connectivity of the

graph. The term ‖A ∘ Z‖1,1 in Eq. (6.4) is associated with the smoothness of the

data matrix, and therefore we are looking for the smoothest representation out of

X. Moreover, the second and third terms of Eq. (6.4) prevent the trivial solution

and control sparsity. The optimization problem in Eq. (6.4) can be solved using

primal-dual techniques [121].

6.3.3 Reducing Hyperparameters

One can relate the parameters 𝛾 and 𝛽 of Eq. (6.4) with the number of 𝑘 neighbors

of each node as follows:

Proposition 1 (Kalofolias and Perraudin [170]). Let A*(Z, 𝛾, 𝛽) be the solution of

Eq. (6.4) for the matrix of distances Z and parameters 𝛾, 𝛽 > 0. Therefore, the

same solution can be achieved with parameters 𝛾 = 1 and 𝛽 = 1, by multiplying Z by

76

𝜃 = 1/
√
𝛾𝛽 and the resulting A* by 𝛿 =

√︀
𝛾/𝛽.

Proof: see [170].

In some applications, the multiplication of A* by a constant 𝛿 does not change

the functionality of the adjacency matrix, leading to a reduction in the number of

hyperparameters. Similarly, we can find two bounds for the parameter 𝜃 to get

approximately 𝑘 edges per node as follows [170]:

𝑁∑︁
𝑗=1

1

𝑁
√︀

𝑘Z̄2(𝑘 + 1, 𝑗)−C(𝑘, 𝑗)Z̄(𝑘 + 1, 𝑖)
< 𝜃𝑘,

𝜃𝑘 ≤
𝑁∑︁
𝑗=1

1

𝑁
√︀
𝑘Z̄2(𝑘, 𝑗)−C(𝑘, 𝑗)Z̄(𝑘, 𝑗)

, (6.5)

where Z̄ is obtained by sorting each column of Z in increasing order, C(𝑘, 𝑗) =∑︀𝑘
𝑖=1 Z̄(𝑖, 𝑗) ∀ 1 ≤ 𝑘, 𝑗 ≤ 𝑁 , and 𝜃𝑘 is the parameter to scale the matrix Z and get

approximately 𝑘 edges per node in A.

In this chapter, we learn the smooth graph as follows:

argmin
A∈𝒜

‖A ∘ 𝜃𝑘Z‖1,1 − 1T log(A1) +
1

2
‖A‖2𝐹 . (6.6)

The solution of Eq. (6.6) is a smooth adjacency matrix A with approximately 𝑘

edges per node, promoting homophily [45]. For example, the smooth graph in Fig.

6-1 has a clear cluster structure compared to the 𝑘-NN graph. In this chapter, we

feed S-SobGNN and other state-of-the-art methods with smooth graphs learned from

Eq. (6.6) and with 𝑘-NN graphs to assess their performance on graph representation

learning tasks.

6.4 Sparse Sobolev Graph Neural Networks

Figure 6-1 shows an overview of our framework. Our algorithm consists of two steps

1) the inference or learning of a graph topology and 2) the proposed S-SobGNN

architecture applied to semi-supervised learning or node classification.

77

Cancer Detection

Text Classification

Action Recognition

(a) Inference of Graph Topology
(b) S-SobGNN

Hidden
Layers

Data
Matrix

Output
Matrix

Loss Function

Smooth Graph

Empirical k-NN Graph
Gaussian Kernel

Smooth Function

Cancer

No Cancer

Documents about
Autos

Documents about
Medicine

Standing

Walking

......

Figure 6-1: The pipeline of our S-SobGNN algorithm with 𝑘-NN or smooth-learned
graphs. Our GNN can be used in a broad range of data such as images, and text,
among others. However, the step of mapping the original dataset to the data matrix
X ∈ R𝑁×𝑀 could be different in each case. Our framework is composed of (a)
inference of the graph topology and (b) the S-SobGNN architecture. Finally, a loss
function (such as the cross-entropy) is computed for the training procedure.

6.4.1 Sobolev Norm

The Sobolev norm in GSP, introduced in Definition 3.3.1, has been used as a regular-

ization term to solve problems in 1) video processing [1, 3], 2) modeling of infectious

diseases [8], and 3) interpolation of graph signals [9, 51].

When L is symmetric in the Sobolev norm in Definition 3.3.1, we have that ‖x‖2𝜌,𝜖
can be rewritten as follows:

‖x‖2𝜌,𝜖 = xT(L+ 𝜖I)𝜌x. (6.7)

The analysis of Eq. (6.7) is divided into two steps: 1) when 𝜖 = 0, and 2) when

𝜌 = 1. Let U be an orthonormal matrix UTU = I, and for 𝜖 = 0 in Eq. (6.7) we

have:

xTL𝜌x = xTUΛ𝜌UTx = x̂TΛ𝜌x̂ =
𝑁∑︁
𝑖=1

x̂2(𝑖)𝜆𝜌
𝑖 . (6.8)

Notice that the spectral components x̂(𝑖) are penalized with powers of the eigenvalues

𝜆𝜌
𝑖 of L. Since the eigenvalues are ordered in increasing order, the higher frequencies

of x̂ are penalized more than the lower frequencies when 𝜌 = 1, leading to a smooth

function in 𝐺. For 𝜌 > 1, the GFT x̂ is penalized with a more diverse set of eigenval-

78

ues. We can have a similar analysis for the adjacency matrix A using the eigenvalue

decomposition A𝜌 = (VΣVH)𝜌 = VΣ𝜌VH, where V is the matrix of eigenvectors,

and Σ is the matrix of eigenvalues of A. In the case of A, the GFT x̂ = VHx.

For the second analysis of Eq. (6.7), for 𝜌 = 1, we have:

‖x‖2𝜌,𝜖 = xT(L+ 𝜖I)x. (6.9)

The term (L + 𝜖I) in Eq. (6.9) is associated with a better condition number1 than

using L alone. Better condition numbers can be associated with faster convergence

rates in gradient descent methods, as shown in [8]. For the Laplacian matrix L, we

know that 𝜅(L) → ∞ from 3.4, i.e., we have a bad-conditioned problem when relying

on the Laplacian matrix alone. On the other hand, for the Sobolev term, we have

that:

L+ 𝜖I = UΛUT + 𝜖I = U(Λ+ 𝜖I)UT. (6.10)

Therefore, 𝜆min(L+ 𝜖I) = 𝜖, i.e., L+ 𝜖I is positive definite (L+ 𝜖I ≻ 0), and:

𝜅(L+ 𝜖I) =
|𝜆max(L+ 𝜖I)|
|𝜆min(L+ 𝜖I)|

=
𝜆max(L) + 𝜖

𝜖
< 𝜅(L) ∀ 𝜖 > 0. (6.11)

Namely, L + 𝜖I has a better condition number than L. It might not be evident why

a better condition number could help in GNNs, where the inverses of the Laplacian

or adjacency matrices are not required to perform the propagation rules. However,

some authors have seen the adverse effects of bad-behaved matrices. For example,

Kipf and Welling [33] used a renormalization trick such that A+ I is used in their

filtering operation to avoid exploding/vanishing gradients. Similarly, Wu et al. [175]

showed that adding the identity matrix to A shrinks the graph spectral domain,

resulting in a low-pass-type filter.

The previous theoretical analysis shows the benefits of the Sobolev norm regarding

1) the more diverse frequency computation in Eq. (6.8), and 2) the better condition

number in Eq. (6.11).
1The condition number 𝜅(L) associated with the square matrix L is a measure of how well or ill

conditioned is the inversion of L.

79

6.4.2 Sparse Sobolev Norm

The use of L or A in GNNs is computationally efficient because these matrices are

usually sparse. Therefore, we can perform a small number of sparse matrix operations.

For the Sobolev norm, the term (L+ 𝜖I)𝜌 can quickly become a dense matrix for large

values of 𝜌, leading to scalability and memory problems. To mitigate this problem,

we use the sparse Sobolev norm to keep the same sparsity level. Let us first define the

theoretical aspects of the sparse Sobolev norm, and then we will show its application

to GNNs.

Definition 6.4.1. Let L ∈ R𝑁×𝑁 be the Laplacian matrix of a graph 𝐺. For fixed

parameters 𝜖 ≥ 0 and 𝜌 ∈ N, the sparse Sobolev term for GNNs is introduced as the

𝜌 Hadamard multiplications of (L + 𝜖I) (also known as the Hadamard powers) such

that:

(L+ 𝜖I)(𝜌) = (L+ 𝜖I) ∘ (L+ 𝜖I) ∘ · · · ∘ (L+ 𝜖I). (6.12)

For example, (L + 𝜖I)(2) = (L + 𝜖I) ∘ (L + 𝜖I). As a result, the sparse Sobolev norm

is given by:

‖x‖(𝜌),𝜖 ≜ ‖(L+ 𝜖I)(𝜌/2)x‖. (6.13)

Let ⟨x,y⟩(𝜌),𝜖 = xT(L+ 𝜖I)(𝜌)y be the inner product between two graph signals x

and y that induces the associated sparse Sobolev norm.

Theorem 6.4.1. The sparse Sobolev norm ‖x‖(𝜌),𝜖 ≜ ‖(L + 𝜖I)(𝜌/2)x‖ satisfies the

basic properties of vector norms for 𝜖 > 0 (for 𝜖 = 0 we have a semi-norm).

Proof: See Appendix D.

The sparse Sobolev term in (6.12) has the property of keeping the same sparsity

level of L+ 𝜖I for any value of 𝜌. Notice that (L+ 𝜖I)𝜌 is equal to the sparse Sobolev

term if 1) we restrict 𝜌 to be in N, and 2) we replace the common matrix multiplication

with the Hadamard product. The theoretical properties of the Sobolev norm in (6.8)

and (6.11) do not extend trivially to its sparse counterpart. However, we can develop

some theoretical insights using concepts of Kronecker products and the Schur product

theorem [160].

80

Lemma 6.4.2. Let L be any Laplacian matrix of a graph with eigenvalue decompo-

sition L = UΛUT, we have that:

L ∘ L = L(2) = PT
𝑁(U⊗U)(Λ⊗Λ)(UT ⊗UT)P𝑁 , (6.14)

where P𝑁 ∈ {0, 1}𝑁2×𝑁 is a partial permutation matrix.

Proof: See Appendix E.

Eq. (6.14) is a closed-form solution regarding the spectrum of the Hadamard

power for 𝜌 = 2. Thus, the spectrum of the Hadamard multiplication is a compressed

form of the Kronecker product of the spectral components. The sparse Sobolev term

we use in our S-SobGNN is given by (L + 𝜖I)(𝜌) so that the spectral components of

the graph are changing for each value of 𝜌.

For the condition number of the Hadamard powers, we can use the Schur product

theorem (in Appendix D, Theorem D.0.1). We know that (L + 𝜖I)(𝜌) ≻ 0 ∀ 𝜖 > 0

since (L + 𝜖I) ≻ 0 ∀ 𝜖 > 0, and therefore 𝜅((L + 𝜖I)(𝜌)) < ∞. For the case of

the adjacency matrix, the eigenvalues of A lie in the interval [−𝑑, 𝑑], where 𝑑 is the

maximal degree of the vertices in 𝐺 (see Theorem 8.5 in [176]). Therefore, we can

bound the eigenvalues of A into the interval [−1, 1] by normalizing the adjacency

matrix such that A𝑁 = D− 1
2AD− 1

2 . As a result, we know that A𝑁 + 𝜖I ≻ 0 ∀ 𝜖 > 1,

and (A𝑁 + 𝜖I)(𝜌) ≻ 0 ∀ 𝜖 > 1. Finally, we can say that the theoretical developments

of the sparse Sobolev norm hold to some extent the same theoretical developments of

Section 6.4.1, i.e., a more diverse set of frequencies and a better condition number.

6.4.3 Graph Neural Network Architecture

Kipf and Welling [33] proposed one of the most successful yet simple GNN, called

GCN. The propagation rule of GCN and the architectural details were introduced in

Section 4.2.2.

In this chapter, we introduce a new filtering operation based on the sparse Sobolev

81

term such that our propagation rule is given as follows:

B(𝑙+1)
𝜌 = 𝜎(D̄

− 1
2

𝜌 Ā𝜌D̄
− 1

2
𝜌 H̄(𝑙)W(𝑙)

𝜌), (6.15)

where Ā𝜌 = (A+𝜖I)(𝜌) is the 𝜌th sparse Sobolev term of A, D̄𝜌 is the degree matrix of

Ā𝜌, and H̄(1) = X. Notice that Ā𝜌 = Ã when 𝜖 = 1, and 𝜌 = 1, i.e., our propagation

rule is a generalization of Eq. (4.1). S-SobGNN computes a cascade of propagation

rules as in Eq. (6.15) with several values of 𝜌 in the set {1, 2, . . . , 𝛼}, and therefore

a linear combination layer weights the outputs of each filter. The linear combination

layer is implemented as follows:

H̄(𝑙+1) =
𝛼∑︁

𝑖=1

𝜇𝑙,𝑖B
(𝑙+1)
𝑖 , (6.16)

where 𝜇𝑙,𝑖 is the learnable weight associated with B
(𝑙+1)
𝑖 . Figure 6-2 shows the basic

configuration of S-SobGNN. However, we can construct more elaborate architectures

based on our filtering operation. For example, we can add batch normalization,

residual connections, among others. Notice that our graph convolution is efficiently

computed since the term D̄
− 1

2
𝜌 Ā𝜌D̄

− 1
2

𝜌 ∀ 𝜌 ∈ {1, 2, . . . , 𝛼} remains the same in all

layers (so we can compute it offline), and also, these terms are sparse for any value of

𝜌 (given that A is also sparse). S-SobGNN uses ReLU as the activation function for

each filter, softmax at the end of the network, and the cross-entropy loss in Eq. (4.3)

as loss function. The basic configuration of S-SobGNN is defined by the number of

filters 𝛼 in each layer, the parameter 𝜖, the number of hidden units of each W
(𝑙)
𝜌 , and

the number of layers 𝑛. When we construct weighted graphs with Gaussian kernels,

the weights of the edges are in the interval [0, 1]. As a consequence, large values of 𝜌

could make Ā𝜌 = 0, and the diagonal elements of D̄− 1
2

𝜌 could become ∞. Similarly,

large values of 𝛼 make very wide architectures with a high parameter budget, so it is

desirable to maintain a reasonable value for 𝛼. In the experiments, we test S-SobGNN

architectures up to 𝛼 = 6.

82

L
in

ea
r

C
o

m
b

in
at

io
n

L
in

ea
r

C
o

m
b

in
at

io
n

...
...

...

...

...

S
o
f
t

m
a
x

...Sparse Sobolev Term
Learneable
Parameters

Figure 6-2: Basic configuration of our S-SobGNN architecture with 𝑛 layers and 𝛼
filters per layer.

6.5 Experiments and Results

The real performance of new convolutional operations in GNNs becomes illuded be-

cause authors can exhaustively fine-tune hyper-parameters and architectures in spe-

cific applications to improve accuracy. The aim to outperform other state-of-the-art

methods may lead to very complex and computationally expensive models with mil-

lions of parameters [177]. However, our objective is to demonstrate a new useful

filter by performance comparisons in similar data regimens while keeping a compara-

ble amount of parameters. This section presents several experiments and results for

semi-supervised learning, and node classification (the benchmarking datasets).

S-SobGNN is compared with 14 GNN architectures. S-SobGNN is compared

with: Chebyshev filters (Cheby) [31], Topology Adaptive GCNs (TAGConv) [178],

GCN [33], GraphSage [32], MoNet [179], GatedGCN [180], GAT [34], k-Graph Neu-

ral Network (k-GNN) [181], GIN [182], RingGNN [183], GCN via Initial residual

and Identity mapping (GCNII) [184], GCN plus DropEdge (GCN+DE) [185], Graph

Sampling based Inductive learning (GraphSAINT) [186], and SIGN [173].

6.5.1 Implementation Details

S-SobGNN is implemented using PyTorch. The 𝑘-NN and the learned graph methods

are implemented using the GSP toolbox [123] and UNLocBox [120]. The values

of 𝑘 are searched in the set {10, 20, 30, 40}, and then the value 𝜃𝑘 in Eq. (6.6) is

computed as the middle value of the interval in Eq. (6.5). The state-of-the-art GNNs

83

are implemented with PyTorch Geometric [187]. For the semi-supervised learning

experiments, the standard implementation of S-SobGNN has 1) two layers, 2) 16

hidden units in the first convolutional layer (and the output layer contains 𝐹 output

units), 3) a learning rate of 0.01, 4) weight decay of 5e−4, and 5) a dropout rate of 0.5

in the first graph-convolutional layer. S-SobGNN and the other methods are trained

with 500 epochs using Adam optimizer [138]. For the benchmarking, we add some

additional features following the same experimental setting as in [165]: 1) S-SobGNN

has four layers, 2) we restrict 𝛼 = 2 to keep a low parameter budget, 3) we add

residual connections and batch normalization to each graph convolutional layer, and

4) we add a Multi-Layer Perceptron (MLP) at the end of our architecture.

6.5.2 Semi-supervised Learning

Datasets: We test S-SobGNN in several semi-supervised learning tasks includ-

ing, tissue phenotyping in colon cancer histology images [161], text classification of

news [162], activity recognition using sensors [163], and recognition of spoken let-

ters [164]. These are semi-supervised problems because S-SobGNN uses both labeled

and unlabeled data in the training procedure. We also test the smooth learned and

the 𝑘-NN graph representations as inputs of the GNNs in these tasks.

Multi-class in Colorectal Cancer Histology: This cancer dataset comes from 10

anonymized tissue slides from the University Medical Center Mannheim [161]. The

dataset has eight classes: tumor epithelium, simple stroma, complex stroma, immune

cells, debris, normal mucosal glands, adipose tissue, and background (no tissue).

This chapter does not explore the feature representation, and only uses Local Binary

Patterns (LBP) [110] to represent each image. We explore two partitions of this

dataset: 1) Cancer Binary (Cancer-B) considers only tumor epithelium and simple

stroma, and 2) Cancer Multi-class (Cancer-M) tests all classes.

The 20 Newsgroups: The 20 Newsgroups dataset (20News) contains roughly 20000

news from 20 classes [162]. In this chapter, we use a subset of 10 categories: computer

graphics, windows operative system, IBM hardware, MAC hardware, autos, motor-

cycles, cryptography, electronics, medicine, and space. Each news is represented with

84

the Term-Frequency Inverse-Document-Frequency (TFIDF) as in [188].

Human Activity Recognition (HAR): This dataset contains recordings of 30 peo-

ple while they were doing activities of daily living [163]. These people were carrying

waist-mounted smartphones with embedded sensors. HAR contains six classes: stand-

ing, sitting, laying down, walking, walking downstairs, and walking upstairs. Each

recording is represented as in [163].

Isolated Letter Recognition: The Isolet dataset has recordings from 30 speakers of

the 26 letters of the English alphabet. Isolet has 6238 samples represented as 617-

dimensional feature vectors. The feature representation method is explained in [164].

Experiments

Several graphs are inferred for Cancer-B, Cancer-M, 20News, HAR, and Isolet, using a

𝑘-NN method and the algorithm presented in Section 6.3.3 (we refer to this algorithm

as learned graphs in the results). For Cancer-B and Cancer-M, we compute two

graphs with 𝑁 = 1250 and 𝑁 = 5000, respectively. For 20News, HAR, and Isolet,

we infer ten graphs with 𝑁 = 3000. The samples for each dataset are divided evenly

across different classes. For each dataset, we vary the training percentage in the set

{1%, 2%, . . . , 19%, 20%}, and the rest of the samples are for testing. No validation

set is used (we do not fine-tune hyperparameters in this experiment). We compare S-

SobGNN against state-of-the-art GNNs using two strategies. In the first strategy, we

train the state-of-the-art models with default parameters without any restriction. For

the second strategy, 1) we train the state-of-the-art models with approximately the

same amount of learnable parameters, 2) we do not consider any specialized layer,

and 3) we use the same learning rate, number of epochs, dropout, weight decay,

activation layers, and number of layers for each model. Moreover, several ablation

studies analyze the values of 𝜖, 𝛼, and 𝑘 of S-SobGNN. The semi-supervised learning

experiments are tested with a Monte Carlo cross-validation with ten repetitions for

each training percentage. We also compute the sparsity percentages of our filter

for 𝜌 ∈ {1, 2, . . . , 5} for the sparse and non-sparse Sobolev norms. Therefore, we

compute the average training time from ten repetitions on 20News with variations of

85

𝑁 in {100, 200, . . . , 5500}, where the training percentage is set to 20%, and we use

the default implementation of the state-of-the-art GNNs. Finally, we compute the

homophily metric 𝐻(𝐺) for the 𝑘-NN and learned graphs in each dataset.

Results

Table 6.1 shows the summary of the comparison of state-of-the-art methods and S-

SobGNN. The results are computed as the best mean in the set of training percentages

for all datasets without restriction in the number of parameters. S-SobGNN presents

competitive results in all datasets. Furthermore, we can see that smooth learned

graphs present better results than 𝑘-NN graphs. Indeed, k-GNN and GCNII improve

by a large margin their results with learned graphs compared to 𝑘-NN graphs. There-

fore, learned graphs present advantages when we do not have a natural choice for the

construction of the graph.

Table 6.2 presents the comparison of S-SobGNN against state-of-the-art methods

when all GNNs have: 1) approximately the same amount of learnable parameters,

and 2) the same hyperparameters such as learning rate, weigh decays, dropout, and

others. S-SobGNN contains only one filtering operation D̄
− 1

2
𝜌 Ā𝜌D̄

− 1
2

𝜌 per layer in

Table 6.2, and therefore no linear combination layer is required (in this case, we test

S-SobGNN with values of 𝜌 in the set {1, 2, . . . , 6}). S-SobGNN shows competitive

results on all datasets, and in some cases, our architecture presents an improvement

of +2% accuracy regarding the second best method.

Table 6.3 shows the homophily metric for the datasets in the semi-supervised

learning experiments. The learned graphs readily show stronger homophily in all

cases. This explains the fact that all GNNs in Tables 6.1 and 6.2 in almost all cases

performed better in learned graphs than in 𝑘-NN graphs.

86

Table 6.1: Accuracy (in %) for several state-of-the-art methods and our proposed S-SobGNN architecture in several datasets
for semi-supervised learning, inferring the graphs with 𝑘-NN and the protocol to learn the graph as in Section 6.3.3. #Param
is the number of learnable parameters, Acc. means accuracy, s.d. denotes standard deviation, T-Epoch is the average time per
epoch. The best and second-best performing methods on each category are shown in red and blue, respectively.

Model Cancer-B, 𝑁 = 1250 Cancer-M, 𝑁 = 5000 20News, 𝑁 = 3000
#Param Test Acc.±s.d. 𝑘-NN Test Acc.±s.d. Learned T-Epoch #Param Test Acc.±s.d. 𝑘-NN Test Acc.±s.d. Learned T-Epoch #Param Test Acc.±s.d. k-NN Test Acc.±s.d. Learned T-Epoch

Cheby [31] 2486 90.030± 1.441 90.970± 1.141 6.19ms 2486 64.882± 1.086 65.458± 0.957 7.31ms 130016 75.767± 0.981 76.796± 0.639 43.08ms
TAGConv [178] 2578 90.745 ± 1.248 90.930± 0.902 4.83ms 2968 64.848± 0.549 65.993 ± 0.642 7.29ms 128666 75.938 ± 0.652 75.913± 1.173 109.54ms

GCN [33] 658 89.170± 0.765 91.120± 1.037 3.45ms 760 62.812± 1.549 63.295± 1.082 3.40ms 32186 75.767± 0.801 77.213± 0.688 3.40ms
GAT [34] 2758 85.409± 0.955 86.223± 0.652 9.31ms 3160 42.761± 3.903 52.060± 2.692 15.31ms 128862 72.855± 1.213 73.688± 1.543 12.98ms

k-GNN [181] 5186 74.630± 17.36 87.599± 13.32 3.88ms 5960 45.334± 9.267 65.014± 5.089 5.38ms 257354 38.937± 20.89 67.040± 7.687 39.77ms
GCNII [184] 19010 76.403± 10.01 83.686± 0.989 7.52ms 19400 35.517± 7.996 41.998± 2.726 15.15ms 145098 56.958± 3.494 77.313 ± 0.825 11.65ms

GCN+DE [185] 658 90.150± 0.675 92.140 ± 0.769 3.65ms 760 64.571± 0.742 65.786± 0.676 3.93ms 32186 75.679± 1.013 76.863± 0.738 3.56ms
GraphSAINT [186] 283906 88.004± 1.356 89.360± 1.061 7.30ms 288520 65.375 ± 0.734 66.563 ± 0.803 25.21ms 1294602 70.864± 1.032 72.420± 0.925 44.89ms

S-SobGNN 3948 92.430 ± 0.813 92.950 ± 1.183 7.07ms 4560 64.945 ± 1.090 65.488± 1.255 16.29ms 128744 76.938 ± 0.797 77.329 ± 0.719 6.93ms

Model HAR, 𝑁 = 3000 Isolet, 𝑁 = 3000
#Param Test Acc.±s.d. 𝑘-NN Test Acc.±s.d. Learned T-Epoch #Param Test Acc.±s.d. 𝑘-NN Test Acc.±s.d. Learned T-Epoch

Cheby [31] 36481 94.193 ± 1.370 94.835 ± 1.222 18.27ms 40121 88.856 ± 0.462 88.015 ± 0.899 12.52ms
TAGConv [178] 36310 90.898± 0.882 92.583± 1.450 42.66ms 41194 86.216± 1.887 86.054± 1.912 24.67ms

GCN [33] 9094 91.992± 0.589 93.679± 0.778 3.34ms 10330 86.490± 0.679 87.122± 0.711 3.32ms
GAT [34] 36498 90.028± 1.088 91.407± 0.804 14.15ms 41422 85.495± 1.291 86.533± 1.122 11.34ms

k-GNN [181] 72646 22.659± 17.88 42.138± 19.46 17.75ms 82394 43.199± 14.34 75.993± 9.593 10.76ms
GCNII [184] 52742 22.992± 6.596 85.305± 8.714 13.06ms 57626 16.746± 4.172 80.802± 2.624 7.61ms

GCN+DE [185] 9094 92.621± 0.651 94.325± 0.821 3.78ms 9094 87.087± 0.660 87.814± 0.724 3.56ms
GraphSAINT [186] 554758 88.433± 1.769 90.138± 1.025 29.87ms 598810 83.668± 0.670 84.840± 1.040 17.13ms

S-SobGNN 45470 95.104 ± 0.475 95.912 ± 0.682 8.64ms 41320 89.279 ± 0.513 89.157 ± 0.555 7.78ms

Table 6.2: Accuracy (in %) for several state-of-the-art methods and our proposed S-SobGNN architecture in several datasets for
semi-supervised learning, inferring the graphs with 𝑘-NN and the protocol to learn the graph as in Section 6.3.3. All methods
have approximately the same number of learnable parameters.

Model Cancer-B, 𝑁 = 1250 Cancer-M, 𝑁 = 5000 20News, 𝑁 = 3000
#Param Test Acc.±s.d. 𝑘-NN Test Acc.±s.d. Learned #Param Test Acc.±s.d. 𝑘-NN Test Acc.±s.d. Learned #Param Test Acc.±s.d. k-NN Test Acc.±s.d. Learned

Cheby [31] 654 72.015± 19.61 75.923± 14.48 654 44.868± 4.408 45.451± 4.675 34008 62.880± 2.511 63.102± 2.192
GCN [33] 658 89.220± 0.958 91.350 ± 1.022 760 63.444 ± 0.866 64.017 ± 0.897 32186 75.671 ± 0.610 76.971 ± 0.460
GAT [34] 694 85.725± 1.601 87.527± 1.627 808 52.477± 5.168 53.006± 4.232 32238 71.717± 1.389 70.911± 1.185

k-GNN [181] 650 86.782± 2.621 86.447± 12.69 752 48.577± 10.55 56.272± 5.047 32178 47.959± 13.77 58.147± 4.044
SIGN [173] 617 89.870 ± 1.497 90.395± 1.342 713 56.362± 3.799 56.109± 3.447 30175 62.708± 3.364 69.711± 2.117
S-SobGNN 658 91.820 ± 1.251 92.010 ± 0.968 760 62.442 ± 1.174 63.101 ± 0.725 32186 77.008 ± 0.566 77.858 ± 0.452

Model HAR, 𝑁 = 3000 Isolet, 𝑁 = 3000
#Param Test Acc.±s.d. 𝑘-NN Test Acc.±s.d. Learned #Param Test Acc.±s.d. 𝑘-NN Test Acc.±s.d. Learned

Cheby [31] 9545 89.238± 2.684 89.863± 4.649 10497 67.447± 4.341 68.450± 3.614
GCN [33] 9094 91.610 ± 1.036 93.325 ± 1.065 10330 87.113 ± 1.154 86.930 ± 1.370
GAT [34] 9138 83.563± 13.73 89.333± 2.664 10414 84.190± 1.100 84.851± 1.071

k-GNN [181] 9086 28.075± 16.51 59.382± 18.08 10322 5.386± 3.783 29.988± 15.44
SIGN [173] 8526 90.016± 3.680 90.275± 3.556 9686 70.749± 4.350 69.828± 10.93
S-SobGNN 9094 93.976 ± 0.637 95.225 ± 0.931 10330 88.127 ± 0.800 88.570 ± 0.807

87

Figure 6-3: Average training time per epoch (T-Epoch) for several GNNs on 20News
with variations in the number of nodes 𝑁 .

Table 6.4 shows the ablation studies for 𝛼, 𝜖, and 𝑘 of S-SobGNN. Higher values

of the parameter 𝛼 show better performances because we have more diverse frequency

components, i.e., wider S-SobGNNs show better performance than narrow networks.

Notice also that learned graphs outperform the 𝑘-NN graphs in almost all cases.

Similarly, S-SobGNN shows stable results for the 𝑘 values that we tested.

Table 6.5 shows the sparsity percentages of the sparse and non-sparse Sobolev

norm for different values of 𝜌. We can notice how the non-sparse filter loses sparsity

quickly for higher values of 𝜌. Finally, Fig. 6-3 shows the average training time per

epoch (T-Epoch) on 20News for several GNNs with a GPU implementation using an

Nvidia GTX 1070. The GNNs in Fig. 6-3 shows a linear complexity in the number

of nodes for the given range of 𝑁 . S-SobGNN has a low training time compared with

several state-of-the-art GNNs due to the sparsity concepts developed in this chapter.

6.5.3 Benchmarking GNNs in Node Classification

Datasets: S-SobGNN is evaluated in the datasets Pattern and Cluster. These are the

two artificial datasets for node classification of the benchmarking for graph neural net-

88

Table 6.3: Homophily index for the datasets for semi-supervised learning with differ-
ent values of 𝑘.

Dataset 𝑘 = 10 𝑘 = 20 𝑘 = 30 𝑘 = 40
𝑘-NN|Lrnd. 𝑘-NN|Lrnd. 𝑘-NN|Lrnd. 𝑘-NN|Lrnd.

Cancer-B 0.8625|0.8838 0.8447|0.8670 0.8334|0.8568 0.8230|0.8463
Cancer-M 0.6267|0.6534 0.5954|0.6242 0.5765|0.6054 0.5629|0.5921

20News 0.5557|0.6103 0.4968|0.5348 0.4615|0.4919 0.4354|0.4628
HAR 0.8849|0.9087 0.8478|0.8851 0.8211|0.8660 0.8007|0.8500
Isolet 0.7346|0.7619 0.6851|0.7255 0.6454|0.6943 0.6105|0.6664

works [165]. Pattern and Cluster are generated with stochastic block models for node

classification, and they are used to model communities in social networks. For exam-

ple, Pattern dataset tests the accuracy of some method to recognize predetermined

subgraphs, while Cluster evaluates the identification of clusters in a semi-supervised

scheme.

Experiments

For the benchmarking, we follow the same experimental setting as in [165], i.e., we

run our model four times with four different seeds.

Results

Table 6.6 shows the comparison of S-SobGNN with other methods in the benchmark-

ing of graph neural networks for node classification [165]. S-SobGNN shows good

results in Pattern and Cluster. Most importantly, S-SobGNN shows very compet-

itive results in time per epoch (T-Epoch), where we trained our architecture in an

Nvidia GTX 1070 GPU. The results of the other state-of-the-art methods are di-

rectly extracted from [165], where they trained these models with four Nvidia 2080Ti

GPUs, which are more powerful than ours. The computational-time benefits of our

architecture are due to the sparsity concepts developed in this chapter.

89

Table 6.4: Accuracy (in %) of S-SobGNN with variations of the parameters 𝜖 and 𝛼, as well as variations of the parameter 𝑘
for the 𝑘-NN and the algorithm to learn graphs (Lrnd.) in all datasets for semi-supervised learning.

Cancer-B, 𝑁 = 1250 Cancer-M, 𝑁 = 5000 20News, 𝑁 = 3000
𝛼 = 2

𝑘-NN|Lrnd.
𝛼 = 3

𝑘-NN|Lrnd.
𝛼 = 4

𝑘-NN|Lrnd.
𝛼 = 5

𝑘-NN|Lrnd.
𝛼 = 6

𝑘-NN|Lrnd.
𝛼 = 2

𝑘-NN|Lrnd.
𝛼 = 3

𝑘-NN|Lrnd.
𝛼 = 4

𝑘-NN|Lrnd.
𝛼 = 5

𝑘-NN|Lrnd.
𝛼 = 6

𝑘-NN|Lrnd.
𝛼 = 2

𝑘-NN|Lrnd.
𝛼 = 3

𝑘-NN|Lrnd.
𝛼 = 4

𝑘-NN|Lrnd.
𝛼 = 5

𝑘-NN|Lrnd.
𝛼 = 6

𝑘-NN|Lrnd.
𝜖 = 0.5 87.45|89.27 88.83|90.71 89.75|91.86 90.00|92.18 90.95|92.92 57.41|59.46 59.66|62.49 63.20|63.99 63.36|64.63 64.48|65.22 73.17|73.95 75.69|76.17 75.89|76.64 75.38|77.33 75.69|76.71
𝜖 = 1 87.83|89.56 89.35|91.44 90.72|92.35 91.26|92.39 92.00|92.95 56.77|57.97 61.35|62.26 62.27|63.63 63.98|64.78 64.69|64.59 72.73|75.95 75.52|75.24 76.94|76.30 76.49|75.76 76.67|75.63

𝜖 = 1.5 87.82|89.35 90.21|91.42 91.30|92.07 91.89|92.51 92.43|92.94 55.99|57.26 61.00|62.90 61.98|62.99 63.54|64.48 64.02|65.15 73.16|73.23 75.85|75.33 76.57|75.77 76.24|74.85 75.97|74.51
𝜖 = 2 88.34|89.83 90.21|90.91 91.03|91.85 92.12|92.72 92.36|92.73 56.66|56.47 60.56|61.36 62.89|63.62 63.25|63.59 64.95|65.49 73.46|72.84 76.19|75.31 76.53|75.12 76.29|74.55 76.35|75.73

HAR, 𝑁 = 3000 Isolet, 𝑁 = 3000 Dataset 𝑘 = 10
𝑘-NN|Lrnd.

𝑘 = 20
𝑘-NN|Lrnd.

𝑘 = 30
𝑘-NN|Lrnd.

𝑘 = 40
𝑘-NN|Lrnd.

𝛼 = 2
𝑘-NN|Lrnd.

𝛼 = 3
𝑘-NN|Lrnd.

𝛼 = 4
𝑘-NN|Lrnd.

𝛼 = 5
𝑘-NN|Lrnd.

𝛼 = 6
𝑘-NN|Lrnd.

𝛼 = 2
𝑘-NN|Lrnd.

𝛼 = 3
𝑘-NN|Lrnd.

𝛼 = 4
𝑘-NN|Lrnd.

𝛼 = 5
𝑘-NN|Lrnd.

𝛼 = 6
𝑘-NN|Lrnd. Cancer-B 92.83|93.14 92.82|92.84 92.20|92.91 92.07|92.62

𝜖 = 0.5 91.80|94.68 92.53|95.35 92.97|95.82 93.10|95.91 93.02|95.59 84.92|87.66 87.01|88.41 87.03|88.49 86.96|88.06 87.02|88.23 Cancer-M 64.38|64.75 64.08|64.70 64.30|65.11 64.69|65.28
𝜖 = 1 92.64|95.49 93.15|95.57 93.86|95.62 94.17|95.47 94.74|95.40 87.35|89.16 88.42|88.77 88.86|88.16 88.74|88.50 88.47|87.34 20News 76.11|76.16 75.92|76.50 76.40|76.63 76.31|76.36

𝜖 = 1.5 93.13|95.33 94.08|95.43 94.10|95.07 94.96|95.08 95.10|95.03 88.06|88.19 88.87|87.79 89.28|88.26 88.68|87.97 88.85|87.98 HAR 95.52|96.08 95.65|96.30 95.53|95.99 94.92|96.00
𝜖 = 2 93.61|95.29 94.30|95.66 94.41|95.48 95.05|95.18 94.89|95.26 87.83|88.51 89.13|88.67 88.98|87.49 88.41|87.09 88.41|87.25 Isolet 88.13|88.34 88.93|88.53 88.87|88.67 89.01|89.33

Table 6.5: Sparsity percentage for the sparse and non-sparse Sobolev filtering matrices.

Sobolev Filter Cancer-B, 𝑁 = 1250 Cancer-M, 𝑁 = 5000 20News, 𝑁 = 3000 HAR, 𝑁 = 3000 Isolet, 𝑁 = 3000
𝜌 = 1 𝜌 = 2 𝜌 = 3 𝜌 = 4 𝜌 = 5 𝜌 = 1 𝜌 = 2 𝜌 = 3 𝜌 = 4 𝜌 = 5 𝜌 = 1 𝜌 = 2 𝜌 = 3 𝜌 = 4 𝜌 = 5 𝜌 = 1 𝜌 = 2 𝜌 = 3 𝜌 = 4 𝜌 = 5 𝜌 = 1 𝜌 = 2 𝜌 = 3 𝜌 = 4 𝜌 = 5

Sparse 96.63 96.63 96.63 96.63 96.63 99.17 99.17 99.17 99.17 99.17 98.58 98.58 98.58 98.58 98.58 98.03 98.03 98.03 98.03 98.03 99.01 99.01 99.01 99.01 99.01
Non-Sparse 96.63 80.33 53.82 29.32 12.46 99.17 94.05 82.48 67.67 52.55 98.58 65.65 0.615 0 0 98.03 82.29 59.74 46.05 35.07 99.01 92.73 75.92 46.19 20.41

Table 6.6: Benchmarking results for several state-of-the-art methods and S-SobGNN, where L denotes the number of hidden
layers. The results are averaged over four runs with four different seeds.

Pattern Cluster
Model L #Param Test Acc.±s.d. Train Acc.±s.d. #Epoch T-Epoch #Param Test Acc.±s.d. Train Acc.±s.d. #Epoch T-Epoch

MLP 4 105263 50.519± 0.000 50.487± 0.014 42.25 8.95s 106015 20.973± 0.004 20.938± 0.002 42.25 5.83s
GCN [33] 4 100923 63.880± 0.074 65.126± 0.135 105.00 118.85s 101655 53.445± 2.029 54.041± 2.197 70.00 65.72s

GraphSage [32] 4 101739 50.516± 0.001 50.473± 0.014 43.75 93.41s 102187 50.454± 0.145 54.374± 0.203 64.00 53.56s
MoNet [179] 4 103775 85.482± 0.037 85.569± 0.044 89.75 35.71s 104227 58.064± 0.131 58.454± 0.183 76.25 24.29s

GAT [34] 4 109936 75.824± 1.823 77.883± 1.632 96.00 20.92s 110700 57.732± 0.323 58.331± 0.342 67.25 14.17s
GatedGCN [180] 4 104003 84.480± 0.122 84.474± 0.155 78.75 139.01s 104355 60.404 ± 0.419 61.618± 0.536 94.50 79.97s

GIN [182] 4 100884 85.590± 0.011 85.852± 0.030 93.00 15.24s 103544 58.384± 0.236 59.480± 0.337 74.75 10.71s
RingGNN [183] 2 105206 86.245 ± 0.013 86.118± 0.034 75.00 573.37s 104746 42.418± 20.06 42.520± 20.21 74.50 428.24s

S-SobGNN 4 107995 85.616 ± 0.068 85.613± 0.066 105.50 22.47s 107995 61.791 ± 0.371 62.322± 0.411 107.50 16.61s

90

6.6 Conclusion

In this chapter, we inferred smooth graphs and introduced a new GNN architecture

with applications in semi-supervised learning, and node classification. We observed

that smooth inferred graphs improve the performance of baseline GNN architectures

by promoting homophily. Furthermore, our S-SobGNN model used the Sobolev norm

of GSP to compute a more diverse set of functions for GNNs. Then, we extended the

concept of Sobolev norms using the Hadamard product between matrices to keep the

sparsity level of the graph representations. Several theoretical notions of our filtering

operation were provided in Sections 6.4.1 and 6.4.2. Our architecture was designed

with a cascade of filtering operations on each layer with an attention function to select

the best operations. S-SobGNN was evaluated on publicly available data including, 1)

four datasets for semi-supervised learning, and 2) two datasets for node classification.

S-SobGNN outperformed several state-of-the-art methods in all applications.

This chapter opens several research directions. The first direction could be the

application of S-SobGNN in the modeling of proteins for drug discovery [41]. Another

important question is how we can further propose novel functions in the adjacency

matrix to improve the expressiveness of GNNs maintaining sparsity?

Next Chapter 7 studies the relationship between the over-smoothing and over-

squashing problems when stacking multiple graph convolutional layers in GNNs.

91

92

Chapter 7

On the Trade-off between

Over-smoothing and Over-squashing

in GNNs

7.1 Introduction

In the previous Chapter 6, we studied ideas to increase the expressive power of GNNs

without compromising scalability. In this chapter, we study the relationship between

over-smoothing and over-squashing in GNNs from a topological perspective.

Despite the successful developments and applications of GNNs, they can suffer

from the typical limitations of neural networks like over-fitting, and vanishing gra-

dients [38]. Similarly, GNNs have two known inherent limitations that are not fully

understood yet: over-smoothing [46] and over-squashing [47]. Both problems, over-

smoothing and over-squashing, occur when we stack several graph convolutional layers

trying to capture long-range dependencies among samples in the data. The accepted

explanation for over-smoothing is that node representations become indistinguishable

when the number of convolutional layers increases [46, 189]. Similarly, we know that

over-squashing consists of the distortion of an exponentially amount of information

from distant nodes trying to pass through some edges, called “bottlenecks”, in the

93

graph [47, 190]. The solution to these two problems is useful in situations where we

have graphs with large diameters and long-range relationships between nodes, other-

wise, shallow GNNs could be enough [47]. Several methods have been proposed to

address over-smoothing [38,185,191–196] and over-squashing [47,190]. However, both

problems have been studied independently without a precise explanation concerning

the connection between these issues.

In this chapter, we introduce a topological relationship between over-smoothing

and over-squashing. From the side of over-smoothing, we use the random walk matrix

to show how node representations exponentially converge to a stationary distribution

[78]. We observe that the convergence rate of this exponential-decaying function

depends on the first non-zero eigenvalue of the Laplacian matrix of the graph. From

the side of over-squashing, we rely on the work of Topping et al. [190] to show how

bottlenecks (and thus over-squashing) are also closely related to the first non-zero

eigenvalue of the graph. Therefore, we can use the Cheeger inequality1 [197] to show

the underlying trade-off between over-smoothing and over-squashing, i.e., we cannot

arbitrarily improve one of them without worsening the other. Likewise, we propose

a heuristic algorithm to find a good approximation for the trade-off between over-

smoothing and over-squashing. Our algorithm uses a bound of the Ollivier’s Ricci

curvature [198] presented in [199]. We name this bound Jost and Liu Curvature (JLC)

and our algorithm Stochastic Jost and Liu curvature Rewiring (SJLR). JLC is used to

add edges in the graph as a pre-processing step, and then some edges are dropped in

the training step based on the curvature metric and the node embeddings. We rewire

the graph in two different stages to alleviate over-smoothing and over-squashing, so we

try to address both problems simultaneously. The JLC metric is less computationally

complex than the Balanced Forman Curvature (BFC) presented in [190] while keeping

crucial theoretical properties. SJLR algorithm shows competitive performance in

benchmarking homophilous and heterophyllous graph datasets for node classification.

The main contributions of this chapter are summarized as follows: 1) we present

1The Cheeger inequality bounds the first non-zero eigenvalue of the Laplacian with the Cheeger
constant, which is at the same time related to the bottlenecks of the graph.

94

a topological relationship between over-smoothing and over-squashing, 2) we propose

a new rewiring algorithm based on the JLC metric presented in [199] to address both

over-smoothing and over-squashing, 3) we perform extensive experiments showing the

properties of our SJLR algorithm, and 4) we release a codebase2 based on PyG [187]

for training, hyper-parameters tuning, and evaluation of methods aiming to alleviate

over-smoothing or over-squashing (further details of the codebase are discussed in

Appendix F). The rest of the chapter is organized as follows. Section 7.2 presents the

related work. Section 7.3 introduces some preliminary concepts. Section 7.4 presents

the relationship between over-smoothing and over-squashing. Section 7.5 explains the

proposed SJLR algorithm. Finally, Sections 7.6 and 7.7 show the experiments and

conclusions, respectively.

7.2 Related Work

Over-smoothing was first discussed in [46] to explain why node embeddings of dis-

tinct classes become indistinguishable when stacking multiple layers in GNNs. Later,

several methods were proposed to ease over-smoothing [38,185,189,191–196,200,201].

We can briefly classify these approaches as:

1. Graph rewiring methods: Klicpera et al. [191,202] proposed an improved prop-

agation scheme based on personalized PageRank for rewiring the graph as a pre-

processing step. Rong et al. [185] and Huang et al. [201] introduced methods that

drop edges from the graph when training the GNN. Finally, Chen et al. [189]

presented an approach that adaptively changes the graph topology.

2. Normalization techniques: Zhao and Akoglu [193] and Zhou et al. [194] pro-

posed node-embeddings normalization techniques to address over-smoothing di-

rectly, i.e., they tried to avoid nodes becoming indistinguishable. Similarly, Oono

and Suzuki [192] presented a procedure that normalizes the weights of the GNN

architecture.

3. Architectural changes: Li et al. [38] proposed dilated convolutions and resid-

2https://github.com/jhonygiraldo/Stochastic_Jost_Liu_Curvature_Rewiring

95

https://github.com/jhonygiraldo/Stochastic_Jost_Liu_Curvature_Rewiring

ual/dense connections in GNNs to create deep architectures. Chen et al. [195]

introduced an iteratively learning graph structure and graph embedding such that

their method learns a better graph structure based on better node embeddings, and

vice versa. Chien et al. [196] presented a new graph convolutional filter inspired

by the graph signal processing literature [203] to avoid over-smoothing.

4. Subgraphs approaches: Zeng et al. [200] recently proposed a new idea to avoid

over-smoothing, where localized subgraphs are extracted to train GNNs of arbi-

trary depths.

Alon and Yahav [47] introduced over-squashing to explain why GNNs struggle

to propagate information between distant nodes in the graph. They also presented

a rewiring method where a fully-adjacent matrix is added in the last GNN layer.

Later, Topping et al. [190] proposed a theory explaining where the over-squashing

comes from and how to alleviate it from a topological point of view. They presented

a rewiring method using concepts of Ricci flow curvature from differential geometry

[204]. These two studies [47,190] focused only on over-squashing, while in this chapter

we introduce for the first time the trade-off between both issues, over-smoothing and

over-squashing. Similarly, we try to address both problems simultaneously, using JLC

and node-embedding metrics to rewire the graph.

7.3 Preliminaries

In this chapter we only consider unweighted graphs, i.e., A ∈ {0, 1}𝑁×𝑁 .

7.3.1 Cheeger Inequality and Cheeger Constant

Definition 7.3.1. Let 𝐺 = (𝒱 , ℰ) be a graph, and let 𝒮 ⊂ 𝒱 be a subset of nodes.

Let 𝜕𝒮 be the set of edges going from a node in 𝒮 to a node in 𝒱 ∖ 𝒮, i.e., 𝜕𝒮 ≜

{{𝑢, 𝑣} ∈ ℰ : 𝑢 ∈ 𝒮, 𝑣 ∈ 𝒱 ∖ 𝒮}. Therefore, we can define the Cheeger constant ℎ𝐺 of

𝐺 as:

ℎ𝐺 ≜ min
𝒮

ℎ𝐺(𝒮), (7.1)

96

where ℎ𝐺(𝒮) = |𝜕𝒮|/min(vol(𝒮), vol(𝒱 ∖ 𝒮)), vol(𝒮) =
∑︀

𝑖∈𝒮 𝑑𝑖.

Intuitively, the Cheeger constant in Definition 7.3.1 is small when there exists a

bottleneck in 𝐺, i.e., when there are two sets of nodes with few edges between them.

Similarly, we know that ℎ𝐺 > 0 if and only if 𝐺 is a connected graph [78]. We can

relate the Cheeger constant ℎ𝐺 with the first non-zero eigenvalue of ℒ through the

Cheeger inequality:

2ℎ𝐺 ≥ 𝜆2 ≥
ℎ2
𝐺

2
. (7.2)

We notice from (7.2) that for having less “bottleneckness” in the graph, we need to

promote big values of ℎ𝐺, i.e., having large values of 𝜆2 will increase the Cheeger

constant since ℎ𝐺 ≥ 𝜆2/2.

7.3.2 Over-squashing

The over-squashing problem is a more recent and less understood problem than over-

smoothing. A graph learning problem has long-range dependencies when the outputs

of GNNs depend on features of interacting distant nodes. In that scenario, infor-

mation from non-adjacent nodes should be propagated through the network without

distortion. Let ℬ𝑟(𝑖) ≜ {𝑗 ∈ 𝒱 : 𝑑𝐺(𝑖, 𝑗) ≤ 𝑟} be the receptive field of an 𝑟-layer

GNN for the node 𝑖, where 𝑑𝐺(𝑖, 𝑗) is the shortest-path distance between the nodes

𝑖 and 𝑗, and 𝑟 ∈ N. In many graphs, |ℬ𝑟(𝑖)| grows exponentially with 𝑟 and then

representations of an exponential amount of neighboring nodes should be compressed

into fixed-size vectors. This phenomenon is referred to as over-squashing3 of informa-

tion [47,190].

3Further details about over-squashing can be found in Section 2.2 in [190].

97

7.4 Understanding the Over-smoothing vs. Over-

squashing Trade-off

7.4.1 The Stationary Distribution on Graphs

Let P = D−1A be the random walk transition matrix. For any initial distribution

𝑓 : 𝒱 → R with
∑︀

𝑣∈𝒱 𝑓(𝑣) = 1, the distribution after 𝑘 steps is given by fTP𝑘, where

f ∈ R𝑁×1 is the vector of initial distributions such that f(𝑖) is the function evaluated

on the 𝑖th node. The random walk is ergodic when there is a unique stationary

distribution 𝜋 satisfying that lim𝑠→∞ fTP𝑠 = 𝜋 [78].

Lemma 7.4.1 (Chung [78]). Let P be the random walk transition matrix, let 𝜋 be the

stationary distribution of the corresponding walk, and let f be any initial distribution.

For 𝑠 ∈ N+, we know:

‖fTP𝑠 − 𝜋‖2 ≤ 𝑒−𝑠𝜆′ max𝑖
√
𝑑𝑖

min𝑗

√︀
𝑑𝑗
, where 𝜆′ =

⎧⎪⎨⎪⎩𝜆2 if 1− 𝜆2 ≥ 𝜆𝑁 − 1,

2− 𝜆𝑁 otherwise.
(7.3)

Therefore, we can compute the value of 𝑠 such that ‖fTP𝑠 − 𝜋‖2 ≤ 𝜖 as follows:

𝑠 ≥ 1

𝜆′ log

(︃
max𝑖

√
𝑑𝑖

𝜖min𝑗

√︀
𝑑𝑗

)︃
. (7.4)

Proof: See [78].

Notice that 𝜆′ is either 𝜆2 or 2− 𝜆𝑁 in Lemma 7.4.1. However, we can show that

only 𝜆2 is crucial. Suppose that 𝜆𝑁 − 1 > 1 − 𝜆2, so that 𝜆′ = 2 − 𝜆𝑁 . We can

consider the lazy walk on the graph 𝐺′ formed by A + I. Therefore, the new graph

Laplacian has eigenvalues �̃�𝑖 = 𝜆𝑖/2 ≤ 1 [78], and then 1− �̃�2 ≥ 1− �̃�𝑁 ≥ 0.

The key message of Lemma 7.4.1 is a simplified version of the same observations

of previous works [185] and [192], i.e., GNNs converge exponentially to the stationary

distribution when stacking several layers. However, we show that the convergence

of this exponential function depends on the first non-zero eigenvalue of the graph

98

𝜆2. We will use this result later to show the underlying relationship between over-

smoothing and over-squashing. Similarly, we can have a simplified explanation of why

sparsification methods in GNNs, like DropEdge [185], can alleviate over-smoothing.

Lemma 7.4.2 (Chung [78]). Let 𝐺 be a graph with diameter 𝐷𝑖 ≥ 4, then:

𝜆2 ≤ 1− 2

√︀
(max𝑖 𝑑𝑖)− 1

max𝑖 𝑑𝑖

(︂
1− 2

𝐷𝑖

)︂
+

2

𝐷𝑖
. (7.5)

Proof: See [205].

Lemma 7.4.2 shows an upper bound of 𝜆2 so that reducing the maximum degree

of 𝐺 promotes small values of 𝜆2, i.e., having a sparser graph, like the DropEdge

method does, promotes low values of 𝜆2 and thus high values of 𝑠 in (7.4).

7.4.2 Over-smoothing and Over-squashing

We can establish a link between the Cheeger constant ℎ𝐺 and the parameter 𝑠 in

(7.4) as follows:

Lemma 7.4.3. Let ℎ𝐺 be the Cheeger constant of a given graph 𝐺, and let 𝑠 be the

number of required steps such that the ℓ2 distance between fTPs and 𝜋 is at most 𝜖.

Therefore, we have that:

2ℎ𝐺 ≥ 1

𝑠
log

(︃
max𝑖

√
𝑑𝑖

𝜖min𝑗

√︀
𝑑𝑗

)︃
. (7.6)

Proof: see Appendix G.

From Lemma 7.4.3, we notice that if 𝑠 → ∞ then ℎ𝐺 → 0, i.e., if we want to

avoid converging to the stationary distribution, we need to promote a bottleneck-

kind structure in the graph. Similarly, if ℎ𝐺 → ∞ then 𝑠 → 0, i.e., if we want to

promote less “bottleneckness” in the graph, we need to accelerate the convergence to

the stationary distribution.

We can make the connection between over-smoothing and over-squashing using

Lemma 7.4.3, the Simple Graph Convolution (SGC) model [175], and the theoretical

99

Figure 7-1: Mixing steps 𝑓(𝜆2, 𝜖) for 𝜖 = 5 × 10−4 vs. number of removed or added
edges for two stochastic block model graphs with a) two clusters, b) five clusters, and
c) one Erdős-Rényi graph.

developments in [190]. In other words, we can use an SGC with a random walk kernel

to show how the node embeddings converge to the stationary distribution when we

stack several layers according to Lemma 7.4.3. Similarly, Topping et al. [190] explained

how reducing bottlenecks in the graphs can alleviate over-squashing, i.e., the receptive

field of each node in a deep GNN will be polynomial in the hop-distance rather than

exponential (see Corollary 3 in [190]). We leave for future work the analysis of the

relationship between over-smoothing and over-squashing for more complex GNNs

with non-linear activation functions.

Let 𝑓(𝜆2, 𝜖) =
1
𝜆2

log

(︂
max𝑖

√
𝑑𝑖

𝜖min𝑗
√

𝑑𝑗

)︂
be the mixing steps of our graph, i.e., the lower

bound in the maximum number of layers of an SGC such that the difference between

the initial and stationary distribution is at most 𝜖. Figure 7-1 shows, for 𝜖 = 5×10−4,

how 𝑓(𝜆2, 𝜖) and 𝜆2 change when we add or remove edges in two artificial stochastic

block model graphs and one Erdős-Rényi graph. We notice that we can increase the

mixing steps by removing edges, i.e., we can alleviate over-smoothing by making the

graph more “bottleneckness”. This partially explains why DropEdge [185] can alleviate

over-smoothing. On the other hand, we increase 𝜆2 by adding edges as shown in Fig.

7-1, so we promote higher values of the Cheeger constant ℎ𝐺, i.e., we can alleviate

over-squashing by making the graph less “bottleneckness”. This can partially explain

why the methodology by Topping et al. [190] can alleviate over-squashing. However,

we notice that there is a trade-off between 𝑓(𝜆2, 𝜖) and 𝜆2 from a topological point of

view, i.e., we can increase 𝑓(𝜆2, 𝜖) by removing key edges but 𝜆2 will decrease, and

vice versa. The algorithm to add and remove edges is explained in Section 7.5.

100

Input
Graph

Adding
Edges

Hidden Layers

Dropping
Edges

Curvature
Node Embeddings

GNN
Jost & Liu
Curvature

Figure 7-2: The pipeline of the proposed Stochastic Jost and Liu curvature Rewiring
(SJLR) algorithm.

7.5 Jost-Liu Curvature Rewiring

Figure 7-2 shows the pipeline of our Stochastic Jost and Liu curvature Rewiring

(SJLR) algorithm, where edges are added as a pre-processing step, and later edges

are removed while training the GNN using JLC and node-embeddings information.

We keep the addition and removal of edges in two different stages attempting to find

a good solution in the over-smoothing vs. over-squashing trade-off.

Topping et al. [190] proposed a method to alleviate over-squashing using con-

cepts of Ricci flow curvature. We can understand curvature-based methods using the

following analysis:

Theorem 7.5.1 (Theorem 4.2 in [206]). Let 𝐺 be a finite graph, let 𝜆2 be its first non-

zero Laplacian eigenvalue, and let 𝜅(𝑖, 𝑗) be the Ricci curvature as defined in [206].

If for any edge (𝑖, 𝑗), 𝜅(𝑖, 𝑗) ≥ 𝜅 > 0, then 𝜆2 ≥ 𝜅.

Proof: See [206].

Corollary 7.5.2. If 𝜅(𝑖, 𝑗) ≥ 𝜅 > 0 for any edge (𝑖, 𝑗), then 2ℎ𝐺 ≥ 𝜅.

Proof: Using the Cheeger inequality and Theorem 7.5.1, we have that 2ℎ𝐺 ≥ 𝜆2 ≥ 𝜅,

and then 2ℎ𝐺 ≥ 𝜅.

From Theorem 7.5.1 and Corollary 7.5.2, we can conclude that if we have positive

Ricci curvature everywhere, then 2ℎ𝐺 ≥ 𝜅. Therefore, increasing curvature will make

the graph less “bottleneckness”.

101

Toppings et al. [190] defined a new metric, called Balanced Forman Curvature

(BFC), to solve the problem of over-squashing. BFC requires counting triangles, 4-

cycles, and the maximal number of 4-cycles based at edge (𝑖, 𝑗) traversing a common

node for each edge we are processing. This process makes BFC very computationally

complex and unsuitable for practical applications. In this chapter, we use a bound of

the Ollivier’s Ricci curvature [198] presented in [199], namely JLC.

Definition 7.5.1 (Jost and Liu Curvature (JLC) [199]). For any edge (𝑖, 𝑗) in a finite

graph:

JLC(𝑖, 𝑗) = −
(︂
1− 1

𝑑𝑖
− 1

𝑑𝑗
− #(𝑖, 𝑗)

𝑑𝑖 ∧ 𝑑𝑗

)︂
+

−
(︂
1− 1

𝑑𝑖
− 1

𝑑𝑗
− #(𝑖, 𝑗)

𝑑𝑖 ∨ 𝑑𝑗

)︂
+

+
#(𝑖, 𝑗)

𝑑𝑖 ∨ 𝑑𝑗
,

(7.7)

where #(𝑖, 𝑗) is the number of triangles which include (𝑖, 𝑗) as nodes, 𝑐+ ≜ max(𝑐, 0),

𝑐 ∨ 𝑡 ≜ max(𝑐, 𝑡), and 𝑐 ∧ 𝑡 ≜ min(𝑐, 𝑡).

Theorem 7.5.3 (Jost and Liu [199]). On a locally finite graph we have that 𝜅(𝑖, 𝑗) ≥

JLC(𝑖, 𝑗).

Proof: See [199].

Corollary 7.5.4. If JLC(𝑖, 𝑗) ≥ 𝜅 > 0 for any edge (𝑖, 𝑗), then 𝜅(𝑖, 𝑗) ≥ 𝜅 > 0.

Proof: Using Theorems 7.5.1 and 7.5.3 we have that 𝜅(𝑖, 𝑗) ≥ JLC(𝑖, 𝑗) ≥ 𝜅 ≥ 0,

then 𝜅(𝑖, 𝑗) ≥ 𝜅 ≥ 0.

From Corollary 7.5.4 we can conclude that if we have positive JLC everywhere

in the graph, 𝜅(𝑖, 𝑗) will also be positive everywhere. As a result, having positive

JLC in the graph ensures that the receptive field of each node in a deep GNN will be

polynomial in the hop-distance rather than exponential (see Corollary 3 in [190]). As

a result, JLC is less computationally complex than the BFC in [190] while keeping

the same theoretical properties about the polynomial receptive field growth.

7.5.1 Curvature Rewiring Algorithm

Our proposed algorithm uses JLC and features information to perform rewiring, i.e.,

we remove and add edges based on their JLC metric and feature information of the

102

Algorithm 2 Stochastic Jost and Liu Curvature Rewiring
Input: Graph 𝐺, GNN architecture
Initialization: Hyper-parameters 𝑝𝐴, 𝑝𝐷, 𝜏 , 𝛼.

1: Compute JLC(𝑖, 𝑗) ∀ (𝑖, 𝑗) ∈ ℰ1, 𝐴 = 𝑝𝐴|ℰ1|, and 𝐷 = 𝑝𝐷|ℰ1|, where ℰ1 = ℰ
2: for 𝑚 = 1 until 𝑚 = 𝐴 do
3: (𝑖′, 𝑗′) = argmin(𝑖,𝑗) JLC(𝑖, 𝑗)
4: Compute the set of edges 𝒜 = {(𝒩𝑖′ ∖ 𝑗′)× (𝒩𝑗′ ∖ 𝑖′) : (𝒩𝑖′ ∖ 𝑗′)× (𝒩𝑗′ ∖ 𝑖′) /∈ ℰ𝑚}
5: Compute for all 0 < 𝑝 ≤ |𝒜|, 𝜎(𝑝) = JLC′(𝑟, 𝑠)−JLC(𝑖′, 𝑗′), where (𝑟, 𝑠) = 𝒜(𝑝)

6: Add randomly an edge (𝑟′, 𝑠′) ∈ 𝒜 to ℰ𝑚 according to the distribution
softmax(𝜏𝜎)

7: Update JLC(𝑖, 𝑗) ∀ (𝑖, 𝑗) ∈ ℰ𝑚+1, where ℰ𝑚+1 = ℰ𝑚 ∪ (𝑟′, 𝑠′)
8: end for
9: Normalize JLC(𝑖, 𝑗) to be in [0, 1] for all (𝑖, 𝑗) ∈ ℰ𝐴.

10: for each layer 𝑙 in GNN while training do
11: Compute d(𝑙)(𝑝) = ‖h(𝑙)

𝑖 − h
(𝑙)
𝑗 ‖2 ∀ (𝑖, 𝑗) ∈ ℰ𝐴

12: Drop 𝐷 edges according to the probability distribution softmax(𝛼𝜑+(1−𝛼)d
(𝑙)
𝑛)

13: end for

nodes. Topping et al. [190] proposed a method where edges are added and removed

as a pre-processing step. However, the reason for removing edges was not properly

justified in [190]. We can argue that removing edges is also important to alleviate over-

smoothing according to the developments in Section 7.4. Our SJLR algorithm also

adds and removes edges but in a fundamentally different way. We keep both processes

separate so that we can alleviate over-squashing and over-smoothing according to the

dataset as shown in Fig. 7-2. We define a set of hyper-parameters for SJLR: 1) let

𝑝𝐴 be the percentage of added edges, 2) let 𝑝𝐷 be the percentage of dropped edges,

3) let 𝜏 be a variable controlling how stochastic SJLR is when adding edges, and 4)

let 𝛼 ∈ [0, 1] be a variable controlling how important is the JLC metric against the

embedding information while dropping edges. We optimize the hyper-parameters in

the validation set so that SJLR can choose either if the specific dataset requires more

adding or removal of edges, i.e., SJLR tries to find the “sweet point” in the trade-off

between over-squashing and over-smoothing.

Algorithm 2 presents our SJLR approach in detail. The SJLR algorithm has as

input an initial graph 𝐺 and a given GNN architecture. 𝒩𝑙 is the set of neighbors

of node 𝑙, and 𝜎 ∈ R|𝒜| is the vector of JLC improvements if adding an edge from

103

𝒜. Similarly, JLC′(𝑟, 𝑠) is the JLC metric computed in 𝐺′ = (𝒱 , ℰ𝑚 ∪ (𝑟, 𝑠)). H(𝑙) ∈

R𝑁×𝐹 = [h
(𝑙)
1 , . . .h

(𝑙)
𝑁]T is the 𝐹 -dimensional embeddings of all nodes after 𝑙 layers

such that each h
(𝑙)
𝑖 ∈ R𝐹 . Finally, 𝜑 ∈ R|ℰ𝐴| is the vector with the normalized values

of JLC(𝑖, 𝑗) ∀ (𝑖, 𝑗) ∈ ℰ𝐴, and d
(𝑙)
𝑛 ∈ [0, 1]|ℰ𝐴| is the vector of normalized distances

between node embeddings. SJLR algorithm is divided into two parts: 1) the addition

of edges using the JLC metric, and 2) the removal of edges while training the GNN.

Notice that SJLR is general to any GNN architecture. However, we only test our

algorithm using GCNs [33] in Section 7.6 due to limited computational resources.

7.6 Experimental Framework and Results

7.6.1 Experiments

We perform a set of experiments to compare SJLR with several approaches in the lit-

erature, striving to understand the underlying relationship between over-smoothing

and over-squashing. SJLR is compared with seven state-of-the-art methods to al-

leviate over-smoothing or over-squashing, including: Residual/Dense Connections

(RDC) [38], Graph Diffusion Convolution (GDC) with personalized PageRank ker-

nel [202], DropEdge (DE) [185], PairNorm (PN) [193], Differentiable Group Normal-

ization (DGN) [194], Fully-Adjacent (FA) layers [47], and Stochastic Discrete Ricci

Flow (SDRF) [190]. Our GNN base model is GCN [33] for all experiments. We

evaluate all methods in nine datasets: Cornell, Texas, and Wisconsin from the We-

bKB project4, Chameleon [207], Squirrel [207], Actor [208], Cora [209], Citeseer [166],

and Pubmed [210]. These databases are related to data mining problems, where

the objectives are to classify web pages or scientific papers into predefined classes,

for example. We optimize the hyperparameters with a random search procedure by

maximizing the average accuracy in the validation sets. The search space and the

best hyperparameters for each experiment are provided in Appendix H. We consider

the largest connected component of the graph for each dataset as in [190, 202]. We

4http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

104

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

split the data into train/validation/test sets, where we first divide the data into a

development set and a test set. This is done once to avoid using the test set in the

hyperparameter optimization procedure. We follow the same experimental framework

as in [190, 202], i.e., we optimize the hyperparameters for all dataset-preprocessing

combinations separately by random search over 100 data splits. Furthermore, we

report average accuracies on the test set with 95% confidence intervals calculated by

bootstrapping with 1000 samples. The development set contains 1500 nodes and the

rest of the nodes are used for testing in Cora, Citeseer, and Pubmed. The train set

contains 20 nodes of each class while the rest of the nodes are used for validation.

For the other datasets, we use a 60/20/20 split of the nodes, i.e., 60% for training,

20% for validation, and 20% for testing. We use the same method and random seeds

as in [190,202], so we expect to have the same partitions and comparable results.

The search space for the number of layers of the GNN in the first experiment is

{1, 2, 3} as in [190] (for further details please see Appendix H). However, this search

space does not provide insights about the problems we could face when stacking sev-

eral layers. As a result, we perform a second experiment where we stack several layers

in the set ℱ = {2, 8, 32}. We follow the same methodology as in the first experiment

for each method and for each number of layers in ℱ , regarding data partitions and

hyperparameters optimization. Finally, we calculate the average running time over

ten repetitions to compute the metrics BFC and JLC for all edges in three artificial

graphs with different amounts of nodes.

7.6.2 Implementation Details

All methods are implemented using PyTorch and PyG [187]. We use the same archi-

tectural components in all methods for a fair comparison. We use GCN [33] as graph

convolutional layers, notice however that other GNNs like GAT [34] can be used as

well. We use Rectified Linear Unit (ReLU) and log-softmax as activation functions

in our GNN architectures. The number of GNN layers, hidden units, learning rate,

weight decay, and dropout rate for each method are optimized in the validation set

on each experiment (for further details please see Appendix H). For GDC, we apply

105

Table 7.1: Results of the first experiment regarding the comparison of our SJLR
algorithm with several state-of-the-art methods to alleviate over-smoothing and over-
squashing.

Method Cornell Texas Wisconsin Chameleon Squirrel Actor Cora Citeseer Pubmed

Baseline 66.18± 1.64 59.44± 1.22 52.11± 1.08 40.82 ± 0.47 41.77± 0.33 29.16± 0.30 82.02 ± 0.28 69.23± 0.30 78.44± 0.37
RDC [38] 66.77± 1.68 58.52± 1.11 51.85± 1.03 41.50 ± 0.57 41.88 ± 0.35 29.26± 0.33 81.79± 0.27 69.10± 0.34 78.49± 0.36

GDC [202] 67.01± 1.43 56.97± 1.07 59.97± 1.03 38.27± 0.50 36.64± 0.32 32.68 ± 0.17 82.52 ± 0.26 69.28 ± 0.28 78.84 ± 0.38
DE [185] 80.41 ± 1.22 80.12 ± 1.07 84.17 ± 1.08 40.48± 0.51 41.21± 0.31 33.20 ± 0.23 81.59± 0.25 69.04± 0.39 78.27± 0.38
PN [193] 65.26± 1.57 61.40± 1.00 52.77± 0.89 40.56± 0.43 40.92± 0.32 28.74± 0.22 79.62± 0.31 67.27± 0.40 77.29± 0.34

DGN [194] 67.49± 1.64 60.19± 0.93 52.33± 0.97 39.80± 0.57 41.81 ± 0.32 28.26± 0.31 81.55± 0.26 69.13± 0.36 78.39± 0.36
FA [47] 53.57± 0.00 59.26± 0.00 42.98± 0.49 27.28± 0.40 31.51± 0.00 23.84± 0.43* 29.85± 0.00 23.23± 0.00 79.48 ± 0.12*

SDRF [190] 58.26± 1.43 54.88± 1.45 55.62± 0.92 40.11± 0.47 41.78± 0.30 28.83± 0.36 81.05± 0.28 69.21± 0.33 78.40± 0.33

SJLR (ours) 71.90 ± 1.97 66.18 ± 1.44 66.12 ± 1.27 39.11± 0.51 40.64± 0.27 31.29± 0.24 81.27± 0.24 70.51 ± 0.32 78.03± 0.35

* Certain results were copied directly from [190] because of limited computational resources.
The best and second-best performing methods on each dataset are shown in red and blue, respectively.

weight decay regularization only in the first graph convolutional layer, otherwise we

do not get comparable results as in [202]. All methods are trained for 1000 epochs

using Adam optimizer [138]. We do not use early stopping or learning schedulers for

any method. We make all graphs undirected, and we also remove all the self loops

from the input graph. We evaluate all methods under the same configuration unless

otherwise stated. We implemented SDRF [190] at our best understanding because

there was not an official or available implementation of the method at the time of

executing the experiments. However, we used JLC instead of BFC for our imple-

mentation of SDRF [190] because we do not have the computational resources to

run the hyperparameter optimization using BFC. The hyperparameter optimizations

were executed on several GPUs including: two Nvidia GeForce RTX 2080, two Nvidia

GeForce GTX 1070, and two Nvidia Tesla V100.

7.6.3 Results

Table 7.1 shows the results of the first experiment related to the random search with

few convolutional layers. We can notice two general trends: 1) rewiring methods like

DE and SJLR dominate in heterophyllous datasets like Cornell, Texas, Wisconsin,

Chameleon, Squirrel, and Actor; and 2) GDC leads in homophilous datasets like Cora,

Citeseer, and Pubmed, while SJLR and FA offer competitive performances in some

cases. Regarding the comparison between the curvature-based methods SJLR and

SDRF [190], we notice that SJLR outperforms SDRF in six out of nine datasets. Both

106

Figure 7-3: Average running time for balanced Forman curvature and Jost and Liu
curvature for variations in the number of nodes in three artificial graphs.

SJLR and SDRF are executed using the same JLC metric in Table 7.1, and therefore

we are assessing their performance based on the way the edges are added or removed.

We can argue that SJLR is thus a critical improvement over SDRF regarding the

practical adoption of curvature-based methods in GNNs. We can also notice that no

single method can address all kinds of datasets, and perhaps an ensemble of different

algorithms can be more suitable to outperform all previous approaches, which is not

the scope of this chapter and we leave for future work. Finally, we remark that some

methods like GDC [202] and FA [47] require specific architectural changes to work

properly. For example, we achieve the specific results of GDC only when applying

weight decay in the first graph convolutional layer as stated in Section 7.6.2.

Figure 7-3 shows the average running time over ten repetitions to compute the

BFC and JLC for three artificial graphs with different amounts of nodes. We notice

the large gap between the computation time of the JLC and BFC, which makes JLC

more suitable for practical applications.

7.6.4 Limitations

Several studies in GNNs, like the ones reviewed in Section 7.2, have focused on solving

the problems of over-smoothing or over-squashing without a clear idea of their prac-

tical importance. For example, the definitions of homophily in the literature usually

consider only first-neighboring relationships. Similarly, the benchmarking graphs in

Table 7.1 do not have large diameters. Therefore, we do not have mathematical or

practical tools to assess how many “long-range dependencies” exist between samples

in a specific dataset. Perhaps, the benchmarking datasets we have been testing so

107

far do not have many long-range dependencies, and carefully designed GNNs can be

enough in these scenarios [211]. As a consequence, the results in Table 7.1 and also

the results in previous works [38, 47, 185, 190, 193, 194, 202] might be only partially

meaningful.

7.7 Conclusions

In this chapter, we presented a connection between the problems of over-smoothing

and over-squashing in GNNs. We showed how both issues are intrinsically related

to the eigenvalue gap of the normalized Laplacian matrix. As a result, we used

the Cheeger inequality to show that we cannot arbitrarily improve over-smoothing

and over-squashing simultaneously from a topological perspective, i.e., there exists a

trade-off between both problems. We also introduced a new Stochastic Jost and Liu

curvature Rewiring (SJLR) algorithm based on a bound of the Ollivier’s Ricci cur-

vature to alleviate over-smoothing and over-squashing. Our algorithm is less compu-

tationally complex than previous methods while guaranteeing important theoretical

properties. SJLR outperforms some previous methods in homophilous and hetero-

phyllous graph datasets for node classification.

The simple theoretical results presented in this chapter strive to improve our

understanding of the problems we face when training deep GNNs. However, there

are still many open problems in this domain. For example, two interesting questions

for future work could be: 1) do we really need deep GNNs? and 2) when do we need

deep GNNs? The answer to these two questions is practically meaningful and will

prove the practical significance of this and previous works.

The following Chapter 8 explores the signal processing part of this thesis, where

we are concerned with the problem of reconstruction of missing values in time-varying

graph signals.

108

Part III

Signal Processing

110

Chapter 8

Reconstruction of Time-Varying

Graph Signals via Sobolev

Smoothness

8.1 Introduction

The previous Chapters 6 and 7 focused on the machine learning part of this thesis. We

introduced new concepts on graphs trying to overcome some limitations of GNNs such

as expresiveness, over-smoothing, and over-squashing. In this chapter, we explore the

signal processing part of this thesis. Here we focus in the reconstruction of time-

varying graph signals.

The sampling and reconstruction of graph signals are fundamental tasks in GSP

that have recently received considerable attention. Naturally, the mathematics of

sampling theory and spectral graph theory have been combined, leading to generalized

Nyquist sampling principles for graphs [49,53,212,213], where most of these previous

works have focused on static graph signals. The reconstruction of time-varying graph

signals is an important problem that has not been well explored1. The reconstruction

1One can think of the reconstruction of time-varying graph signals as a matrix completion problem
where each row (or column) is associated with a node, and each column (or row) is associated with
time.

111

of time-varying graph signals from discrete samples has several real world applications,

such as the estimation of new cases of infectious diseases [8], or the recovery of the

sea surface temperature for the study of the earth’s climate dynamics [26].

Some recent methods for the reconstruction of time-varying graph signals have

also used the assumption that temporal differences of graph signals are smooth.

For example, Qiu et al. [26] extended the definition of smooth signals from static

to time-varying graph signals, and solved an optimization problem for reconstruc-

tion. However, Qiu’s method may have slow convergence rate because the eigenvalue

spread of the Hessian associated with their optimization problem may be large. The

techniques presented in [214–216] may be used to circumvent the problem of slow

convergence. However, these techniques require eigenvalue decomposition or matrix

inversion, which are computationally expensive for large graphs.

In the current chapter, we propose a new algorithm to reconstruct time-varying

graph signals from samples. Our algorithm is based on the extension of the Sobolev

norm defined in GSP for time-varying graph signals [3, 51]. Therefore, we dub our

algorithm as Time-varying Graph signal Reconstruction via Sobolev Smoothness

(GraphTRSS). Our algorithm uses a Sobolev smoothness function to formulate an

optimization problem for the reconstruction of a time-varying graphs signal from its

samples, where the samples are obtained with a random sampling strategy. The

graph is constructed with a 𝑘-NN method. The optimization problem of GraphTRSS

is solved with the conjugate gradient method. We analyze the convergence rate of

our algorithm by studying the condition number of the Hessian associated with our

optimization function, and we conclude that our algorithm converges faster than its

closest competitor [26] under certain conditions. Moreover, GraphTRSS does not

require expensive eigenvalue decomposition or matrix inversion. Finally, we evaluate

our algorithm on synthetic data, two COVID-19, and two environmental datasets,

where our algorithm outperforms several state-of-the-art methods.

The main contributions of this chapter are summarized as follows:

• We use the concept of Sobolev norms from static graph signals to define a smooth-

ness function for time-varying graph signals, and then we use this new conception

112

to introduce an algorithm for reconstruction.

• We provide several mathematical insights of GraphTRSS. Specifically, we analyze

the convergence rate of our algorithm by studying the condition number of the

Hessian associated with our problem.

• GraphTRSS improves convergence speed without relying on expensive matrix in-

version or eigenvalue decomposition.

• Concepts of reconstruction of graph signals from GSP are introduced in the math-

ematical modeling of infectious diseases for COVID-19, as well as environmental

data.

The rest of this chapter is organized as follows. Section 8.2 shows related work

in time-varying graph signals reconstruction. Section 8.3 presents the theoretical

background of this chapter. Section 8.4 explains the details of GraphTRSS. Section

8.5 introduces the experimental framework. Finally, Sections 8.6 and 8.7 show the

results and conclusions, respectively.

8.2 Related Work

The problems of sampling and reconstruction of graph signals have been widely ex-

plored in GSP [49, 53, 74, 75, 217–220]. Pesenson [48] introduced concepts of Paley-

Wiener spaces in graphs, where a graph signal can be determined by its samples in

a set of nodes called uniqueness set. One can say that a set of nodes is a unique-

ness set of a certain graph if the fact that two graph signals in the Paley-Wiener

space of the graph coincide in the uniqueness set implies that they coincide in the

whole set of nodes. As a result, a bandlimited graph signal can exactly be recon-

structed from its samples if the graph signal is sampled according to its uniqueness

set. However, the bandlimitedness assumption is not realistic, i.e., the graph sig-

nals in real-world datasets tend to be approximately bandlimited instead of strictly

bandlimited. Therefore, several researchers have proposed reconstruction algorithms

based on the smoothness assumption of graph signals [23,221,222], where the smooth-

ness is measured with a Laplacian function. Similarly, other studies have used the

113

Total Variation of graph signals [223], or extensions of the concept of stationarity on

graph signals [25,224] for reconstruction.

For time-varying graph signals, scientists have developed notions of joint har-

monic analysis linking together the time-domain signal processing techniques with

GSP [225], while other researchers have proposed reconstruction algorithms assum-

ing bandlimitedness of the signals at each instant [223, 226]. Most of these methods

do not fully exploit the underlying temporal correlations of the time-varying graph

signals. Qiu et al. [26] proposed an approach where the temporal correlations are cap-

tured with a temporal difference operator in the time-varying graph signal. However,

Qiu’s method may have slow convergence because the optimization problem depends

on the Laplacian matrix. In particular, the eigenvalue spread of the Hessian asso-

ciated with their problem may be large, leading to poor condition numbers. Other

studies have reported the undesirable effects in convergence due to the large eigenvalue

spread when dealing with shift operators derived from the Laplacian or the adjacency

matrix. For example, Hua et al. [215] used a method of second-order moments to

solve the problem of slow convergence speed, and this approach showed improvement

in performance at the expense of additional computational cost by expensive ma-

trix inversion operations. We can also circumvent the problem of slow convergence

by using energy-preserving shift operators as in [214]. For example, Xia et al. [216]

exploited an energy-preserving shift operator for distributed learning problems over

graphs. However, the energy-preserving shift operators require the eigendecomposi-

tion of the adjacency (or Laplacian) matrix, which is computational prohibitive for

large graphs.

In the current chapter, we assume smoothness in the temporal differences of graph

signals as in [26]. However, our algorithm improves the condition number of the Hes-

sian associated with our problem without requiring expensive eigenvalue decompo-

sitions or matrix inversions. We show that GraphTRSS converges faster than Qiu’s

method [26] under some conditions.

114

8.3 Reconstruction of Time-Varying Graph Signals

Several studies have used the smoothness assumption in graphs to solve problems of

reconstruction and sampling of graph signals. Formally, notions of smoothness in x

have been introduced with concepts of local variation [29] as in Section 2.4. Some

researchers have used the graph Laplacian quadratic form as a regularization term

to solve problems of reconstruction of graph signals [27]. For time-varying graph

signals, an extension of the graph Laplacian quadratic form has also been used for

reconstruction [26].

Let X = [x1,x2, . . . ,x𝑀] be a time-varying graph signal, where x𝑖 ∈ R𝑁 is a graph

signal in 𝐺 at time 𝑖. One can extend the concept of graph Laplacian quadratic form

to time-varying graph signals by summing the Laplacian quadratic form of each graph

signal x𝑖. Then, we have:

𝑆2(X) =
𝑀∑︁
𝑖=1

xT
𝑖 Lx𝑖 = tr(XTLX). (8.1)

However, notice that (8.1) does not have temporal relationships between graph signals

at different times 𝑖. To include time information, Qiu et al. [26] introduced the

temporal difference operator Dℎ ∈ R𝑀×(𝑀−1) defined as follows:

Dℎ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

1 −1

1
. . .
. . . −1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝑀×(𝑀−1). (8.2)

As a consequence, the temporal difference graph signal is such that:

XDℎ = [x2 − x1,x3 − x2, . . . ,x𝑀 − x𝑀−1]. (8.3)

Qiu et al. [26] noted that 𝑆2(XDℎ) exhibits better smoothness properties compared to

115

𝑆2(X) in real-world datasets for time-varying graph signals, i.e., the difference signal

x𝑖 − x𝑖−1 exhibits smoothness in the graph even if the signal x𝑖 is not smooth across

the graph. They defined the structure of time-varying graph signals as follows [26]:

Definition 8.3.1. The 𝛼-structured set ℬ𝛼(𝐺) composed of smoothly evolving graph

signals is defined as:

ℬ𝛼(𝐺) =
{︀
X : tr

(︀
(XDℎ)

TLXDℎ

)︀
≤ (𝑀 − 1)𝛼

}︀
, (8.4)

where 𝛼 indicates the smoothness level of the time-varying graph signal.

Qiu et al. [26] used Definition 8.3.1 to introduce a Time-varying Graph Signal

Reconstruction (TGSR) method as follows:

min
X̃

1

2
‖J ∘ X̃−Y‖2𝐹 +

𝜐

2
tr
(︁
(X̃Dℎ)

TLX̃Dℎ

)︁
, (8.5)

where J ∈ {0, 1}𝑁×𝑀 is the sampling matrix of X, 𝜐 is a regularization parameter,

and Y ∈ R𝑁×𝑀 is the matrix of signals that we know (the observed values). The

sampling matrix J is defined as follows:

J(𝑖, 𝑗) =

⎧⎪⎨⎪⎩1 if 𝑖 ∈ 𝒮𝑗,

0 if 𝑖 /∈ 𝒮𝑗,

(8.6)

where 𝒮𝑗 is the set of sampled nodes at column 𝑗.

Theorem 8.3.1 (Qiu et al. [26]). The solution of (8.5) is unique when the following

conditions are satisfied by the sampling matrix J:

1. For any 𝑛 ∈ {1, . . . , 𝑁}, ∃ 𝑚 ∈ {1, . . . ,𝑀} such that J(𝑛,𝑚) = 1.

2. There is a fiducial time 𝑚0 ∈ {1, . . . ,𝑀}, such that for any 𝑚 ∈ {1, . . . ,𝑀},

with 𝑚 ̸= 𝑚0, there exist a node 𝑛𝑚 ∈ {1, . . . , 𝑁} satisfying that J(𝑛𝑚,𝑚0) =

J(𝑛𝑚,𝑚) = 1.

Proof: see [26].

Theorem 8.3.1 provides some properties that J should satisfy to obtain a unique

116

solution for (8.5). Notice that deterministic sampling methods [49, 53, 227, 228] or

sampling on product graphs [229] do not satisfy the first condition of Theorem 8.3.1,

so it is not suitable for these problems. In contrast, in the current chapter we propose

a random sampling strategy as in [26].

Eqn. (8.5) reconstructs a time-varying graph signal X̃ with 1) a small error

‖J∘X̃−Y‖2𝐹 , and 2) a small value of the temporal difference graph signal smoothness

tr((X̃Dℎ)
TLX̃Dℎ). Finally, the parameter 𝜐 in (8.5) weights the importance between

the error and smoothness terms. This parameter 𝜐 is usually tuned experimentally.

In the current chapter, we explore two additional temporal difference operators,

a two-time steps operator:

Dℎ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

2 −1

−1 2
. . .

−1
. . . −1
. . . 2

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝑀×(𝑀−2), (8.7)

and a three-time steps operator:

Dℎ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

−1 −1

4 −1
. . .

−1 4
. . . −1

−1 −1
. . . −1

−1
. . . 4
. . . −1

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R𝑀×(𝑀−4). (8.8)

The objective of introducing (8.7) and (8.8) is to capture different kinds of tempo-

ral relationships besides XDℎ. For example, XDℎ2 = [2x2 − x1 − x3, 2x3 − x2 −

117

x4, . . . , 2x𝑀−1 − x𝑀−2 − x𝑀].

8.4 Sobolev Smoothness of Time-Varying Graph Sig-

nals

In the current chapter, we extend the definition of Sobolev norms in GSP [3,51] from

static graph signals to a smoothness function for time-varying graph signals, and

then we formulate a new reconstruction algorithm. The Sobolev norm was defined

by Pesenson [51], and introduced in Chapter 3, Eqn. (3.2). When L is symmetric (as

is the case in this chapter), we have that:

‖x‖2𝛽,𝜖 = xT(L+ 𝜖I)𝛽x, (8.9)

where 𝜖 ≥ 0, and 𝛼 ∈ R. Notice the Sobolev norm in (8.9) is equal to the Laplacian

quadratic form in (2.5) when 𝜖 = 0 and 𝛽 = 1. We use the Sobolev norm to define a

new smoothness function for time-varying graph signals as follows:

Definition 8.4.1 (Sobolev smoothness of time-varying graph signals). Let X =

[x1,x2, . . . ,x𝑀] be a time-varying graph signal, let Dℎ be the temporal difference op-

erator, and let L be the combinatorial Laplacian matrix of a graph 𝐺. For fixed

parameters 𝜖 ≥ 0 and 𝛽 ∈ R+, the Sobolev smoothness of X is given as follows:

𝑆𝛽,𝜖(X) ≜
𝑀∑︁
𝑖=2

(x𝑖 − x𝑖−1)
T(L+ 𝜖I)𝛽(x𝑖 − x𝑖−1)

= tr
(︀
(XDℎ)

T(L+ 𝜖I)𝛽(XDℎ)
)︀
. (8.10)

8.4.1 Sobolev Reconstruction

We use the Sobolev smoothness in Definition 8.4.1 to formulate two new reconstruc-

tion algorithms. The first algorithm solves the problem for the noiseless case, while

the second algorithm solves the noisy case.

118

In the noiseless case, we assume that the sampling mechanism does not add noise

to the problem. As a consequence, the observed graph signal is given by Y = J ∘ X̃.

One can formulate an optimization problem to get an approximate reconstruction of

the time-varying graph signal as follows:

min
X̃

1

2
tr
(︁
(X̃Dℎ)

T(L+ 𝜖I)𝛽X̃Dℎ

)︁
s.t. J ∘ X̃ = Y. (8.11)

The optimization function in (8.11) reconstructs a smooth spatiotemporal graph sig-

nal X̃ given the constraint Y = J ∘ X̃. The noiseless case can be solved by a gradient

projection algorithm. The iterative update is such that:

X̃𝑡+1 =
(︁
X̃𝑡 − 𝜉∇X̃𝑓𝑠(X̃

𝑡)
)︁+

, (8.12)

where 𝑓𝑠(X̃
𝑡) = 1

2
tr
(︁
(X̃𝑡Dℎ)

T(L+ 𝜖I)𝛽X̃𝑡Dℎ

)︁
, 𝜉 is the step size, ∇X̃𝑓𝑠(X̃

𝑡) is the

gradient of function 𝑓𝑠(X̃
𝑡) given as:

∇X̃𝑓𝑠(X̃
𝑡) = (L+ 𝜖I)𝛽X̃𝑡DℎD

T
ℎ , (8.13)

and (V)+ is the projection of signal V to the signal space Y = J ∘ X̃ given as

follows [26]:

(V)+ = Y +V − J ∘V. (8.14)

The above formulation can be extended to the noisy case as follows. We take into

account the noise by relaxing the constraint in (8.11):

min
X̃

1

2
‖J ∘ X̃−Y‖2𝐹 +

𝜐

2
tr
(︁
(X̃Dℎ)

T(L+ 𝜖I)𝛽X̃Dℎ

)︁
. (8.15)

The optimization problem in (8.15) reconstructs a time-varying graph signal with a

small error (given by the first term) and a small value for the Sobolev smoothness of

its temporal difference signal. Here, we assume that the difference of graph signals

XDℎ presents better smoothness properties than X alone.

In the current chapter, we solve (8.5) and (8.15) using the conjugate gradient

119

CoordinatesTime-varying Signal

Graph Global COVID-19 Cases

k-NN

Temporal Operator
Sampling Matrix

Sobolev TermError Term

Figure 8-1: The framework of our algorithm (GraphTRSS) using a matrix of coordi-
nates M ∈ R𝑁×2 to construct a graph with 𝑁 regions in the world with confirmed
cases of COVID-19 by November 18, 2020. The graph is constructed with a 𝑘-NN
method. GraphTRSS uses the operator Dℎ ∈ R𝑀×(𝑀−1) to capture temporal infor-
mation in the time-varying signal X ∈ R𝑁×𝑀 with 𝑀 temporal snapshots, and it
also uses different sampling strategies J ∈ {0, 1}𝑁×𝑀 according to the desired output
(reconstruction or forecasting). Finally, the optimization function, which includes the
error and Sobolev terms, reconstructs or predicts the missing values, i.e., the indexes
of X where J has values zero.

method as in [26]. Therefore, we update the search direction ∆X̃𝑡 and the step size

𝜇 on each iteration 𝑡 as follows:

𝜇 = − ⟨∆X̃𝑡,∇X̃𝑓𝑢(X̃
𝑡)⟩

⟨∆X̃𝑡,∇X̃𝑓𝑢(∆X̃𝑡) +Y⟩
, (8.16)

where ∇X̃𝑓𝑢(X̃) = J ∘ X̃ − Y + 𝜐LX̃DℎD
T
ℎ to solve (8.5), or ∇X̃𝑓𝑢(X̃) = J ∘ X̃ −

Y + 𝜐(L + 𝜖I)𝛽X̃DℎD
T
ℎ to solve (8.15). Using 𝜇, we have that X̃𝑡+1 = X̃𝑡 + 𝜇∆X̃𝑡,

where ∆X̃𝑡 = −∇X̃𝑓𝑢(X̃
𝑡) + 𝛾∆X̃𝑡−1 and 𝛾 =

‖∇X̃𝑓𝑢(X̃𝑡)‖2𝐹
‖∇X̃𝑓𝑢(X̃𝑡−1)‖2𝐹

. The stopping condition

is given either by achieving a maximum number of iterations or when:

‖∆X̃𝑡‖𝐹 ≤ 𝛿, (8.17)

where 𝛿 = 10−6 in the experiments for both (8.5) and (8.15).

Fig. 8-1 shows the pipeline of our algorithm applied to a graph with the regions in

the world with confirmed cases of COVID-19 by November 18, 2020. The advantage

120

Figure 8-2: Contour plots of two error surfaces of well and ill-conditioned problems
showing the evolution of a gradient descent method.

of the Sobolev minimization in (8.15) is its fast convergence with respect to the

Laplacian minimization in (8.5). In the following section, we analyze some properties

of the convergence rate of the optimization problems described in (8.5) and (8.15).

8.4.2 Convergence Rate

Intuitively, the convergence of a gradient descent method is faster when we have well-

conditioned optimization problems. Fig. 8-2 shows a toy example of the convergence

between well and ill-conditioned problems in the contour of a convex error surface.

One can notice that the well-conditioned problem goes smoothly and faster to the

global minimum, while the ill-conditioned problem has an erratic convergence. Simi-

larly, the ill-conditioned problem can take longer to satisfy the stopping condition of

certain optimization algorithms because of the erratic convergence.

Formally, the rate of convergence of a gradient descent method is at best linear.

We can accelerate this rate if we reduce the condition number of the Hessian associated

with the objective function of the problem [230].

Theorem 8.4.1. Let ∇2
z𝑓𝑆(z) = Q + [𝜐(DℎD

T
ℎ) ⊗ (L + 𝜖I)𝛽] and ∇2

z𝑓𝐿(z) = Q +

[𝜐(DℎD
T
ℎ)⊗L] be the Hessian associated with the Sobolev and Laplacian time-varying

graph signal reconstruction problems in (8.15) and (8.5), respectively, where Q =

diag(vec (J)) ∈ R𝑀𝑁×𝑀𝑁 and J ̸= 0. We have that:

121

1. 0 ≤ 𝜆𝑚𝑖𝑛(∇2
z𝑓𝑆(z)) ≤ (𝜆𝑁 + 𝜖)𝛽𝜆(𝐷)𝑁 and 0 ≤ 𝜆𝑚𝑖𝑛(∇2

z𝑓𝐿(z)) ≤ 𝜆𝑁𝜆(𝐷)𝑁 if

𝜆𝑁 , 𝜆(𝐷)𝑁 ≥ 1, where 𝜆(𝐷)𝑁 = 𝜆𝑚𝑎𝑥(DℎD
T
ℎ).

2. When 𝜐 → ∞, 𝜅(∇2
z𝑓𝑆(z)) → ∞ and 𝜅(∇2

z𝑓𝐿(z)) → ∞.

3. When 𝜖 → ∞ and 𝛽 > 0, or when 𝛽 → ∞ and 𝜆𝑁 +𝜖 > 1, 𝜆𝑚𝑎𝑥(∇2
z𝑓𝑆(z)) → ∞

and so 𝜅(∇2
z𝑓𝑆(z)) → ∞.

Proof: See Appendix I.

The main result of Theorem 8.4.1 is that the upper bound of the minimum eigen-

value for the Hessian associated with GraphTRSS is looser than the corresponding

upper bound of TGSR in [26] for 𝜖 > 0, 𝛽 > 1, and 𝜆𝑁 + 𝜖 ≥ 1, which favors better

condition numbers for the Sobolev problem. In practice, there is a range of values

of 𝜖 and 𝛽 where 𝜅(∇2
z𝑓𝑆(z)) < 𝜅(∇2

z𝑓𝐿(z)), and then the GraphTRSS converges

faster than the problem described in (8.5). We compute the condition numbers of

the Hessian of both GraphTRSS and TGSR in four real-world datasets in Section

8.6, Fig. 8-12 to show that indeed 𝜅(∇2
z𝑓𝑆(z)) < 𝜅(∇2

z𝑓𝐿(z)) in a large range of 𝜖

values. Theorem 8.4.1 also shows some intuitions on how to choose the parameters

for GraphTRSS and TGSR regarding convergence rate in results 2) and 3). For ex-

ample, we should keep small values of 𝜐, 𝜖, and 𝛽 to avoid harming the convergence

rate of these algorithms. Similarly, we should maintain small values of 𝜖 and 𝛽 to get

benefits in the convergence rate of GraphTRSS.

The final question is about the influence of parameter 𝛽 in the Sobolev recon-

struction algorithm in (8.15). Intuitively, the parameter 𝛽 is changing the shape of

the frequencies of L. For simplicity, let us assume 𝜖 = 0, and let us consider only the

time-varying graph signal X without the temporal difference operator Dℎ in (8.15).

Since the matrix of eigenvectors of L is an orthogonal matrix (UTU = I), we have:

tr(XTL𝛽X) = tr(X̂TΛ𝛽X̂) =
𝑀∑︁
𝑡=1

𝑁∑︁
𝑖=1

x̂2
𝑡 (𝑖)𝜆

𝛽
𝑖 , (8.18)

where X̂ = [x̂1, x̂2, . . . , x̂𝑀] = UTX. Eqn. (8.18) is penalizing each Fourier term of

each x̂𝑡 with powers of the eigenvalues of L. For example, when 𝛽 = 1, we penalize

the higher frequencies stronger than the lower frequencies of each x̂𝑡, i.e., a smooth

122

Figure 8-3: Eigenvalue penalization of the Laplacian matrix for different values of 𝛽
from the dataset of COVID-19.

function in 𝐺. For 𝛽 > 1, we also obtain a smooth function, but the penalization in

the higher frequencies is more prominent, while for 𝛽 < 1, we get more penalization

in the lower frequencies. Fig. 8-3 shows the eigenvalues of L𝛽 for several values of

𝛽, where we normalized the eigenvalues such that (𝜆𝑖/𝜆𝑁)
𝛽 ∀ 𝑖 ∈ 𝒱 for visualization

purposes.

There are two important aspects for choosing the parameters 𝜖 and 𝛽 when using

(8.15). From a graph topological point of view, we notice that adding 𝜖I to the Lapla-

cian adds self-loops at the vertices in the graph with weights 𝜖, and from Theorem

8.4.1, we notice that the value of 𝜖 should be small to avoid harming 𝜅(∇2
z𝑓𝑆(z)).

Therefore, it is reasonable to maintain a small value of 𝜖 so that the graph topology is

not heavily modified and also to avoid harming 𝜅(∇2
z𝑓𝑆(z)). Secondly, we also know

from Theorem 8.4.1 that choosing a large value of 𝛽 harms 𝜅(∇2
z𝑓𝑆(z)). In practice,

different datasets can benefit from specific penalization shapes like the ones in Fig.

8-3. As a result, we set 𝛽 = 1 in the experiments to maintain a good 𝜅(∇2
z𝑓𝑆(z))

and be as fair as possible on the comparison with Qiu’s method [26]. However, we

do additional experiments where we see that different values of 𝛽 can improve the

performance of (8.15) in different datasets, i.e., different datasets require different

assumptions. Finally, we can conclude that TGSR by Qiu et al. [26] is a specific case

of GraphTRSS when 𝜖 = 0 and 𝛽 = 1.

123

8.5 Experimental Framework

This section presents the datasets used in this chapter and the experimental frame-

work details. We divide our experiments into three parts: 1) synthetic dataset,

2) COVID-19 datasets, and 3) environmental datasets. The graph 𝐺 can be con-

structed based on the coordinate locations of the nodes in each dataset with 𝑘-NN

algorithm. Let M ∈ R𝑁×2 be the matrix of coordinates of all nodes such that

M = [m1, . . . ,m𝑁]
T, where m𝑖 ∈ R2 is the vector with the latitude and the lon-

gitude of node 𝑖. The weights of each edge (𝑖, 𝑗) are given by the Gaussian kernel:

W(𝑖, 𝑗) = exp

(︂
−‖m𝑖 −m𝑗‖22

𝜎2

)︂
, (8.19)

where ‖m𝑖 − m𝑗‖22 is the Euclidean distance between the vertices 𝑖 and 𝑗, and 𝜎 is

the standard deviation given by 𝜎 = 1
|ℰ|
∑︀

(𝑖,𝑗)∈ℰ ‖m𝑖 − m𝑗‖2. The Gaussian kernel

in (8.19) assigns higher weights to geographically-close locations and vice versa. The

construction of the graph depends on the specific application, and GraphTRSS is not

sensitive to the graph construction methods.

8.5.1 Datasets

GraphTRSS is evaluated on one synthetic dataset and four real-world datasets in-

cluding, 1) a synthetic graph, 2) global COVID-19 cases [21], 3) USA COVID-19

cases [21], 4) mean concentration of Particulate Matter (PM) 2.5 [26], and 5) sea

surface temperature [26].

Synthetic Graph and Signals

We use the synthetic dataset created by Qiu et al. [26], where 100 nodes are gener-

ated randomly from the uniform distribution in a 100× 100 square area. Therefore,

Qiu et al. [26] used a 𝑘-NN to construct the graph. The time-varying graph sig-

nal is generated with the recursive function x𝑡 = x𝑡−1 + L− 1
2 f𝑡, where: 1) x1 is

a low-frequency graph signal with energy 104, 2) L− 1
2 = UΛ− 1

2UT, where Λ− 1
2 =

124

Figure 8-4: Graph with the places in the United States in the Johns Hopkins Univer-
sity dataset [21]. The graph was constructed with a 𝑘-NN with 𝑘 = 10.

diag(0, 𝜆
− 1

2
2 , . . . , 𝜆

− 1
2

𝑁), and 3) f𝑡 is an i.i.d. white Gaussian signal such that ‖f𝑡‖2 = 𝛼.

As a result, the synthetic time-varying graph signal satisfies Definition 8.3.1.

Global COVID-19

We use the global COVID-19 dataset provided by the Johns Hopkins University

[21]. This dataset contains the cumulative number of daily COVID-19 cases for 265

locations in the world (Fig. 8-1 shows the locations in the dataset), and we use the

data between January 22, 2020, and November 18, 2020; i.e., 302 days. The graph

is constructed with the 𝑘-NN method with 𝑘 = 10 using the coordinates of each

place [28].

USA COVID-19

We also use the USA COVID-19 dataset provided by the Johns Hopkins University

[21]. Fig. 8-4 shows the map with the points of the graph in the USA COVID-19

dataset. This dataset is more fine-grained than the global set since the data contain

3232 localities in the US. We use the same temporal window and 𝑘-NN method as in

the global dataset. The experiments related to the US can give us a different view of

our algorithm since several travel restrictions were applied between countries in the

pandemic, while inside countries, there was slightly more freedom to move around.

125

Figure 8-5: Graph with the spots in the sea for the dataset of temperature. The
graph was constructed with a 𝑘-NN with 𝑘 = 10.

Particulate Matter 2.5

In this chapter, we use the daily mean PM 2.5 concentration dataset from California

provided by the US Environmental Protection Agency2. We use the data captured

daily from 93 sensors in California for the first 220 days in 2015.

Sea Surface Temperature

We use the sea surface temperature captured monthly and provided by the NOAA

Physical Sciences Laboratory (PSL) from their website3. In this chapter, we use the

same experimental framework as in [26] for comparison purposes, i.e., we use a subset

of 100 points on the Pacific Ocean within a time frame of 600 months. Fig. 8-5 shows

the locations of the spots in the sea for this dataset.

8.5.2 Evaluation Metrics

We use the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the

Mean Absolute Percentage Error (MAPE) to compare GraphTRSS with the meth-

2https://www.epa.gov/outdoor-air-quality-data
3https://psl.noaa.gov/

126

https://www.epa.gov/outdoor-air-quality-data
https://psl.noaa.gov/

ods of the literature. RMSE =

√︁∑︀𝑁𝑥
𝑖=1(x̂𝑖−x*

𝑖)
2

𝑁𝑥
, MAE =

∑︀𝑁𝑥
𝑖=1 |x̂𝑖−x*

𝑖 |
𝑁𝑥

, and MAPE =

1
𝑁𝑥

∑︀𝑁𝑥

𝑖=1 |
x*
𝑖−x̂𝑖

x*
𝑖

|, where x̂ is the recovered signal, x* is the ground truth signal, and

𝑁𝑥 is the length of the signal.

8.5.3 Experiments

For the synthetic dataset, we perform experiments analyzing several sampling densi-

ties, Signal-to-Noise Ratio (SNR) levels, smoothness 𝛼 of the synthetic time-varying

graph signal, and the condition number of ∇2
z𝑓𝑆(z) and ∇2

z𝑓𝐿(z). For the real dataset,

we perform several experiments for reconstruction and forecasting. In the same way,

we study the convergence, the 𝜖 and 𝛽 parameters, and the temporal difference oper-

ators for GraphTRSS. We compare GraphTRSS with Natural Neighbor Interpolation

(NNI) by Sibson [22], Graph Regularization (GR) by Narang et al. [23], Tikhonov

regularization by Perraudin et al. [24,25], Time-varying Graph Signal Reconstruction

(TGSR) by Qiu et al. [26], and Random Sampling and Decoder (RSD) by Puy et

al. [27]. NNI [22] is based on Voronoi tessellation, where the interpolation is given by

a linear combination of the neighbor points of the element to be interpolated in the

Voronoi partition. GR [23] can be viewed as the solution of (8.5) without the time

component. Tikhonov regularization [24] is based on joint stationarity, where the so-

lution is constrained to be smooth in the graph and in time. RSD method [27] solves

an optimization problem where we have smoothness in the graph and a probability

distribution function for the sampling. The role of RSD and GR in the experiments

is to see how these static graph signal methods compare to time-varying graph signal

algorithms. Similarly, since RSD and GR cannot reconstruct graph signals where we

do not have any sample at a specific time 𝑡, they are not included in some of the

experiments as in forecasting. GR, Tikhonov, TGSR, and GraphTRSS have a maxi-

mum number of 20000 iterations in the optimization algorithm for a fair comparison.

We optimize the parameters of each method in all experiments for a fair comparison.

In the reconstruction experiments, we adopt two sampling strategies. The first

reconstruction experiment performs a random sampling on each temporal snapshots

127

for the number of nodes 𝑁 , i.e., we randomly select a percentage of nodes on each

time step as in [26]. For RSD by Puy et al. [27], we use their optimal sampling

procedure because their reconstruction algorithm depends on their specific sampling

distribution. Puy et al. [27] proposed to estimate the reconstructed static graph signal

xrec by solving the following problem:

xrec = argmin
z

‖P− 1
2 (Mz− x(𝒮))‖2 + 𝜂zT𝑔(L)z, (8.20)

where 𝜂 ∈ R+, 𝑔 : R → R is a non-negative and non-decreasing polynomial func-

tion, M is the sampling matrix, 𝒮 is the set of sampled nodes, and P ∈ R𝑁×𝑁 is a

random matrix that is designed jointly with M. RSD approach samples nodes using

the diagonal of P as the probability distribution where the nodes are drawn, while

the sampling method we use for the other methods uses a uniform distribution. In

the current chapter, we use the optimal computation of P that requires the spec-

tral decomposition of L. However, for large graphs, this optimal approach may be

computationally prohibitive.

The second reconstruction experiment performs a random sampling of entire

time-snapshots for the total number of graph signals 𝑀 . Both experiments com-

pute the error metrics for each method on the non-sampled nodes for a set of sam-

pling densities ℳ. The set ℳ was chosen according to each dataset, for exam-

ple, ℳ = {0.5, 0.6, . . . , 0.9, 0.995} for COVID-19 datasets. Real graph signals tend

to be approximately bandlimited instead of strictly bandlimited. The datasets we

consider in this chapter are challenging because some of the graph signals contain

high-frequency components. For example, Fig. 8-6 shows the graph Fourier trans-

forms of some representative elements of XDℎ in COVID-19 global, where we use

the Hadamard power (x̂𝑖 − x̂𝑖−1)
(2) = (x̂𝑖 − x̂𝑖−1) ∘ (x̂𝑖 − x̂𝑖−1) for visualization pur-

poses. We compute the bandwidth of each x̂𝑖 − x̂𝑖−1 as the index where we have

90% of the spectral energy. Finally, we compute the average of all bandwidths for

x̂𝑖 − x̂𝑖−1 ∀ 1 < 𝑖 ≤ 𝑁 . We get an average bandwidth of 155.73 for COVID-19

global. 155.73 is 58.77% of the total amount of nodes. Therefore, we could expect

128

Figure 8-6: Graph Fourier transform of some elements of XDℎ for COVID-19 global
dataset.

good reconstruction errors after this sampling density on average. However, notice

that real-world datasets are not strictly bandlimited (as shown in Fig. 8-6), and we

have noise, so perfect reconstruction is not possible.

We evaluate each method with a Monte Carlo cross-validation with 100 repetitions

for each sampling density (50 repetitions for the COVID-19 USA dataset). Determin-

istic sampling methods do not work well with these reconstruction methods as stated

in Section 8.3.

In the forecasting experiment, we compute the error metrics for several temporal

snapshots 𝑡 in the set {1, 2, . . . , 10}. For example, since COVID-19 datasets are

sampled daily, we will predict the new COVID-19 cases in the last day, in the two

last days, and so on until the last ten days. However, for the sea surface temperature,

we will predict up to ten months since this dataset is sampled monthly, i.e., we are

interpolating multiple time steps ahead in all datasets.

We perform some studies to analyze the parameters of GraphTRSS. The first

of these studies computes the average RMSE (in ℳ) and the average number of

129

iterations required to satisfy the stopping condition with variations in 𝜖. The second

study performs reconstruction with the three temporal difference operators (one, two,

and three steps). The last study computes reconstruction with several values of 𝛽.

These studies are evaluated with a Monte Carlo cross-validation with ten repetitions.

We also compare the loss function vs the iteration number for TGSR and Graph-

TRSS in reconstruction, where the loss is the evaluation of (8.5) and (8.15) at each

iteration. In this case, 50 repetitions for each sampling densities in ℳ are performed,

where each repetition is computed with the best parameters of each method. For a

fair comparison, GraphTRSS and Qiu’s method use the same sampling matrix J. We

also compute the running times for several sampling densities. Finally, we compute

𝜅(∇2
z𝑓𝑆(z)) and 𝜅(∇2

z𝑓𝐿(z)) for 𝛽 = 1 and several values of 𝜖 in all real datasets.

All experiments were executed in MATLAB R2017b on a 2.3GHz MacBook Pro with

16GB memory. The code of GraphTRSS has been made available4.

8.6 Results and Discussion

This section presents the results of the experiments on the selected datasets. GR

and RSD methods cannot reconstruct entire temporal snapshots because these al-

gorithms only use spatial information. Therefore, GR and RSD are not included in

the experiments of entire snapshots sampling and forecasting. A detailed analysis for

each dataset is provided as follows.

8.6.1 Synthetic Graph and Signals

Fig. 8-7 shows the results in the synthetic dataset. GraphTRSS performs better than

the existing methods for all values in ℳ for the random sampling scheme, as shown in

Fig. 8-7(a). Our algorithm is also more robust against noise than the compared meth-

ods, as shown in Fig. 8-7(b). Similarly, Fig. 8-7(c) shows the benefits of GraphTRSS

regarding different levels of smoothness 𝛼 as given in Definition 8.3.1. Our algorithm

shows better performance than other time-varying graph signal methods as TGSR and
4https://github.com/jhonygiraldo/GraphTRSS

130

https://github.com/jhonygiraldo/GraphTRSS

Synthetic Graph and Signals

Figure 8-7: Comparison of GraphTRSS with several methods in the literature on
synthetic data for four experiments on: a) reconstruction with several sampling den-
sities, b) variation of the SNR, c) variation of the smoothness level in (8.4), and
d) 𝜅(∇2

z𝑓𝑆(z)) and 𝜅(∇2
z𝑓𝐿(z)) with several values of 𝜖 and 𝛽. Our algorithm is

compared with Natural Neighbor Interpolation (NNI) [22], Graph Regularization
(GR) [23], Tikhonov regularization [24, 25], Time-varying Graph Signal Reconstruc-
tion (TGSR) [26], and Random Sampling and Decoder (RSD) [27].

other static graph signal reconstruction schemes as GR. Finally, Fig. 8-7(d) shows

the condition numbers of the Hessian associated with GraphTRSS (𝜅(∇2
z𝑓𝑆(z))) and

TGSR (𝜅(∇2
z𝑓𝐿(z))) with several values of 𝜖 and 𝛽. As noted from Theorem 8.4.1,

we have that: 1) there is a range of values of 𝜖 > 0 where 𝜅(∇2
z𝑓𝑆(z)) < 𝜅(∇2

z𝑓𝐿(z)),

2) 𝜖 > 0 promotes good values of the condition number 𝜅(∇2
z𝑓𝑆(z)) for GraphTRSS,

and 3) big values of 𝛽 harm the condition number 𝜅(∇2
z𝑓𝑆(z)) of GraphTRSS.

8.6.2 Real Datasets Summary

Table 8.1 shows the summary of all error metrics for random, entire snapshots sam-

pling, and forecasting in the real datasets. The results are computed as the mean

131

Table 8.1: Summary of the average error metrics in the real datasets for several
sampling schemes. The best and second-best performing methods on each category
are shown in red and blue, respectively.

Method
Random Sampling

COVID-19 Global COVID-19 USA Sea Surface Temperature PM 2.5 Concentration
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

NNI (Sibson [22]) 1555.14 189.15 4.23 54.92 10.90 2.17 0.77 0.56 0.07 4.95 2.96 0.59
GR (Narang et al. [23]) 4744.25 1119.07 90.95 65.49 13.94 3.47 2.43 1.76 0.40 5.37 3.32 0.67
Tikhonov (Perraudin et al. [24]) 1253.71 183.60 6.07 37.00 6.03 1.03 0.95 0.70 0.12 4.32 2.66 0.55
TGSR (Qiu et al. [26]) 1136.39 213.96 11.30 33.51 6.14 1.19 0.36 0.26 0.03 3.90 2.28 0.39
RSD (Puy et al. [27]) 2045.37 506.30 36.17 58.59 12.05 2.50 5.56 4.62 0.97 5.43 3.46 0.72
GraphTRSS (ours) 1134.15 152.76 2.41 33.47 5.96 1.10 0.36 0.26 0.03 3.83 2.21 0.38

Method
Entire Snapshots Sampling

COVID-19 Global COVID-19 USA Sea Surface Temperature PM 2.5 Concentration
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

NNI (Sibson [22]) 1342.08 170.64 3.40 56.69 11.71 2.60 0.98 0.68 0.08 10.87 4.44 0.85
Tikhonov (Perraudin et al. [24]) 1255.05 182.97 5.94 36.96 6.12 1.04 1.17 0.86 0.13 4.54 2.81 0.56
TGSR (Qiu et al. [26]) 1459.45 788.10 100.06 36.38 13.75 4.74 19.19 19.15 2.13 10.94 9.31 1.49
GraphTRSS (ours) 1114.16 143.69 1.49 32.96 5.45 0.88 0.94 0.67 0.07 4.42 2.70 0.48

Method
Forecasting

COVID-19 Global COVID-19 USA Sea Surface Temperature PM 2.5 Concentration
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

NNI (Sibson [22]) 16722.30 2371.30 6.43 904.23 283.23 19.54 3.04 2.23 0.23 30.71 17.15 2.76
Tikhonov (Perraudin et al. [24]) 3612.06 1190.20 30.48 99.88 31.2 2.03 1.94 1.53 0.30 4.80 3.23 0.67
TGSR (Qiu et al. [26]) 3313.50 2472.08 238.65 91.5 54.36 6.88 18.72 18.69 2.39 10.09 9.11 1.27
GraphTRSS (ours) 2416.30 583.36 4.80 75.33 20.65 0.86 1.20 0.98 0.13 4.36 2.83 0.54

of all results over the set ℳ. GraphTRSS shows the best performance in almost all

cases against the other methods.

8.6.3 COVID-19 Datasets

Fig. 8-8 and 8-9 show the results of the experiments in the COVID-19 datasets.

GraphTRSS is better than the other methods for the reconstruction experiments when

using different sampling strategies. We can notice that the results in the COVID-

19 USA dataset have lower RMSE than the global dataset, i.e., we can get better

estimations if we have more fine-grained data as in the case of the COVID-19 USA

dataset. From the experiment with entire temporal snapshots, we can notice that

TGSR method [26] performs poorly compared to the other methods for what we

observe in random sampling. This behavior is expected because entire snapshots

sampling does not satisfy the second condition of Theorem 8.3.1 for TGSR by Qiu et

al. [26].

All tested methods, including ours, are designed to reconstruct time-varying graph

signals, and therefore these methods do not have prior assumptions about the behavior

in the time domain of the underlying processes. Correspondingly, in forecasting, we

132

COVID-19 Global New Cases

Figure 8-8: Comparison of GraphTRSS with several methods in the literature on
COVID-19 global dataset for several experiments in terms of: a) random sampling,
b) entire snapshots sampling, c) forecasting, d) variation of parameter 𝜖, e) variation
of parameter 𝛽, f) several temporal difference operators, g) convergence comparison,
and h) running time.

133

COVID-19 USA New Cases

Figure 8-9: Comparison of GraphTRSS with several methods in the literature on
COVID-19 USA dataset for several experiments in terms of: a) random sampling,
b) entire snapshots sampling, c) forecasting, d) variation of parameter 𝜖, e) variation
of parameter 𝛽, f) several temporal difference operators, g) convergence comparison,
and h) running time.

134

get weaker results than the performance shown in Fig. 8-8 and 8-9 for random and

entire snapshots sampling. However, our algorithm readily shows better results than

the other methods in both COVID-19 datasets, even forecasting multiple time steps

ahead. Thus, the Sobolev function introduced in Definition 8.4.1 could potentially

improve other graph-based forecasting methods of the literature [231], using proper

time-domain prior assumptions or other machine learning strategies, which we leave

for future work.

From the studies to analyze the parameters of GraphTRSS, one can notice that

values of 𝜖 > 0 improve the condition number; this is reflected in the number of

iterations to satisfy the stopping condition as shown in Fig. 8-8(d) and 8-9(d) for

COVID-19. However, one should be careful since big values of 𝜖 can heavily modify

the structure of the graph leading to a degradation of the performance, as shown

in Fig. 8-8(d) and 8-9(d) for the RMSE. For the variations of 𝛽 and the temporal

difference operators, we notice that values different from 𝛽 = 1 and one time-step for

the temporal difference operator might bring benefits for COVID-19 datasets.

Fig. 8-8(g) shows that GraphTRSS converges faster than TGSR method for

COVID-19 global, where X̃* is the solution of the optimization problem, and X̃𝑡

is the solution at iteration 𝑡. Fig. 8-8(h) and 8-9(h) show the running time for each

method. These experiments were computed with the best parameters of each method

from the random sampling experiment. Arguably, GraphTRSS shows the best com-

promise between accuracy and running time among several methods for COVID-19

datasets, as shown in Fig. 8-8 and 8-9.

8.6.4 Environmental Datasets

Fig. 8-10 and 8-11 show the results for the experiments in the environmental datasets.

The analysis of the comparison between our algorithm and the other methods is

mostly similar to the analysis for Fig. 8-8 and 8-9, i.e., GraphTRSS shows the best

compromise between accuracy and running time. However, we should notice two in-

teresting results in Fig. 8-10 and 8-11. Firstly, we notice that the parameters 𝛽 = 1.5

or 𝛽 = 2 show better results than 𝛽 = 1 in the environmental datasets. Secondly,

135

PM 2.5 Concentration

Figure 8-10: Comparison of GraphTRSS with several methods in the literature in
the PM 2.5 dataset for several experiments in terms: a) random sampling, b) entire
snapshots sampling, c) forecasting, d) variation of parameter 𝜖, e) variation of pa-
rameter 𝛽, f) several temporal difference operators, g) convergence comparison, and
h) running time.

136

Sea Surface Temperature

Figure 8-11: Comparison of GraphTRSS with several methods in the literature in
the sea surface temperature dataset for several experiments in terms of: a) random
sampling, b) entire snapshots sampling, c) forecasting, d) variation of parameter 𝜖,
e) variation of parameter 𝛽, f) several temporal difference operators, g) convergence
comparison, and h) running time.

137

Table 8.2: The average number of iterations to satisfy the stopping condition for
GraphTRSS and TGSR [26].

Method COVID-19 Global COVID-19 USA PM 2.5 Conc. Sea Surface Temp.
TGSR [26] 1735.9 48659 4690.1 418.8
GraphTRSS 510.0 427 4266.6 416.0

the two-time steps temporal operator Dℎ2 shows a big performance improvement

compared to the one-step temporal operator for the sea surface temperature dataset.

Perhaps, we could propose other temporal operators and more elaborated optimiza-

tion functions based on several 𝛽 parameters, which we leave for future work.

8.6.5 Additional Analysis

Table 8.2 shows the number of iterations that TGSR method and GraphTRSS require

to satisfy the stopping condition in (8.17). Table 8.2 shows that GraphTRSS satisfies

the stopping condition around 3.4 times faster than TGSR in global COVID-19;

and about 114 times faster in USA COVID-19. We limit the maximum number

of iterations of TGSR to 60000 for the USA COVID-19 dataset because of time

limitations. The experiments with the lowest sampling densities would take more time

to satisfy the stopping condition if we increase the maximum number of iterations for

TGSR method in COVID-19 USA. This behavior is another undesirable effect of bad

condition numbers.

Fig. 8-12 shows the condition number of the Hessian functions for the COVID

and environmental datasets with random sampling with density 0.5. The condition

number of the Hessian of (8.5) is not displayed in Fig. 8-12 for COVID-19 USA be-

cause, in that case, 𝜅(∇2
z𝑓𝐿(z)) → ∞. Furthermore, as predicted by Theorem 8.4.1:

1) there is a range of values of 𝜖 where 𝜅(∇2
z𝑓𝑆(z)) < 𝜅(∇2

z𝑓𝐿(z)) and then we get

benefits in convergence rate, and 2) 𝜅(∇2
z𝑓𝑆(z)) grows quickly for large values of 𝜖.

Notice that the condition numbers of ∇2
z𝑓𝑆(z) and ∇2

z𝑓𝐿(z) depend on the specific

eigenvalues of the graphs we are addressing. As a consequence, it is reasonable to use

the normalized Laplacian matrix Δ = D− 1
2LD− 1

2 since 𝜆𝑚𝑎𝑥(Δ) ≤ 2. The conclu-

sions of Theorem 8.4.1 still hold with the normalized Laplacian matrix because now

138

Figure 8-12: Condition number of the Hessian associated with the optimization prob-
lems for GraphTRSS (𝜅(∇2

z𝑓𝑆(z))) and TGSR [26] (𝜅(∇2
z𝑓𝐿(z))) for all datasets.

𝜆𝑚𝑎𝑥((DℎD
T
ℎ)⊗Δ) ≤ 2𝜆(𝐷)𝑁 and 𝜆𝑚𝑎𝑥((DℎD

T
ℎ)⊗ (Δ+ 𝜖I)𝛽) ≤ (2+ 𝜖)𝛽𝜆(𝐷)𝑁 instead

of 𝜆𝑚𝑎𝑥((DℎD
T
ℎ) ⊗ L) = 𝜆𝑁𝜆(𝐷)𝑁 and 𝜆𝑚𝑎𝑥((DℎD

T
ℎ) ⊗ (L + 𝜖I)𝛽) = (𝜆𝑁 + 𝜖)𝛽𝜆(𝐷)𝑁

for 𝜆𝑚𝑎𝑥(L), 𝜆𝑚𝑎𝑥(Δ), 𝜆(𝐷)𝑁 ≥ 1. However, notice that the eigenvalue spreading is

smaller if 𝜆𝑚𝑎𝑥(Δ) < 𝜆𝑚𝑎𝑥(L), i.e., we can have better convergences rates in both

GraphTRSS and TGSR method [26]. Fig. 8-13 shows a small experiment where we

compared GraphTRSS and TGSR method [26] when using normalized (Δ) and un-

normalized (L) Laplacian matrices. For the comparison with Δ and L, we notice that

in both datasets and for both GraphTRSS and TGSR, the convergence rate is faster

when using the normalized Laplacian as shown in Fig. 8-13(b) for both COVID-19

and sea surface temperature datasets. However, GraphTRSS is still faster than TGSR

in the COVID-19 dataset when using the normalized Laplacian since the conclusions

of Theorem 8.4.1 still hold.

Notice that the improvement in the condition number depends on the specific

139

COVID-19 Global New Cases

Sea Surface Temperature

Figure 8-13: Normalized Δ and unnormalized L Laplacian experiments in COVID-
19 global and sea surface temperature, a) reconstruction error using Δ, b) loss vs
number of iterations using Δ, and c) loss vs number of iterations using L.

structure of each graph. Therefore, using the normalized Laplacian Δ = D− 1
2LD− 1

2

is reasonable since 𝜆𝑚𝑎𝑥(Δ) ≤ 2. The interested readers are referred to Section

VI in the supplementary material for a small experiment with normalized Laplacian

matrices.

The parameters 𝜖 and 𝜐 are optimized for each dataset to get good performance.

However, we can notice in Fig. 8-12 that an 𝜖 value close to 10−1 is a good starting

point since it improves the condition number, and it does not modify heavily the

Laplacian matrix. Similar analysis about the parameter 𝜐 can be found in [26]. In

practice, the parameters of GraphTRSS can be optimized in a small part of the

dataset.

8.7 Conclusions

In this chapter, a new algorithm called GraphTRSS is introduced for the reconstruc-

tion of time-varying graph signals. The Sobolev norm is used to define a smoothness

function for time-varying graph signals, and therefore this function is used to intro-

140

duce a new optimization problem for reconstruction from samples. We showed the

good convergence properties of GraphTRSS by relying on the condition number of

the Hessian associated with our problem, as shown in Theorem 8.4.1. Our algorithm

improves convergence rate without relying on expensive matrix inversions or eigen-

value decompositions. GraphTRSS shows promising results for the estimation of new

COVID-19 cases in both global and USA datasets, as well as in the reconstruction of

environmental variables (PM 2.5 concentration and sea surface temperature). Graph-

TRSS could be useful in several scenarios, for example, 1) one could try to estimate

the number of new COVID-19 cases where we have missing or unreliable information,

2) we can use our algorithm as a pre-processing step to get more reliable data for

further forecasting of new cases with other well-established models of infectious dis-

eases [232], and 3) we can also use GraphTRSS as a pre-processing step for further

forecasting of new COVID-19 cases with other graph-based techniques such as [231].

GraphTRSS is also evaluated directly on forecasting, showing promising results.

This chapter shows several insights for possible future directions. For example,

our algorithm and other GSP techniques could potentially increase the performance

of various models in infectious disease (not only for COVID-19) for forecasting and

imputation of data, among others. In the same way, this chapter could be the foun-

dation for applying other GSP-based methods in virology. These methods can be, for

example, graph neural networks [33,171] and learning graphs from data [167].

141

142

Chapter 9

Conclusions

We have studied several problems in image and video processing, graph neural net-

works, and time-varying graph signals. This thesis has been divided into three main

parts: 1) computer vision in Chapters 3-5, 2) machine learning in Chapters 6 and

7, and 3) signal processing in Chapter 8. Specifically, addressed some fundamen-

tal questions like: 1) the sample complexity of semi-supervised algorithms based on

graph in Chapter 3, 2) the definition of sparse norms for GNNs in Chapter 6, 3)

the relationship between over-smoothing and over-squashing in Chapter 7, and 4)

the convergence rate of graph reconstruction algorithms in Chapter 8. Similarly, we

have addressed the applications of: 1) moving object segmentation, 2) semantic seg-

mentation, 3) cancer detection in images, 4) text classification, 5) action recognition,

6) node classification in graphs, and 7) reconstruction of time-varying graph signals

for COVID-19 and environmental data. We proposed several algorithms that either:

1) reached state-of-the-art performances at the time of publication, or 2) explained

certain important phenomena in data science.

Even though there is a big variety in the topics addressed in this thesis, most of

them can be motivated by the desire of solving problems in computer vision, machine

learning, or signal processing using limited supervision. To that end, we have used

concepts from spectral graph theory, graph signal processing, graph neural networks,

and also differential geometry specifically in Chapter 7. We summarize several ideas

for future work that can be derived from this thesis as follows:

143

1. How concepts of graph signal processing can contribute to the field of computer

vision, specifically in the problems of moving object segmentation, semantic

segmentation, and object tracking to name a few.

2. How to design inductive graph learning methods to address computer vision

problems in real-time.

3. How can we train convolutional neural networks and graph neural networks

jointly for computer vision.

4. How architectural choices in graph neural networks can impact the performance

in computer vision applications.

5. What is the performance of graph neural network architectures based on sparse

norms in mainstream problems such as drug discovery or other computer vision

problems.

6. How can we further propose novel functions in the adjacency matrix to improve

the expressiveness of graph neural networks maintaining sparsity.

7. How can we solve the question if we really need and when we need deep graph

neural networks.

8. How graph signal processing concepts can improve the performance of various

models in infectious diseases and environmental data for forecasting and data

imputation.

144

Appendix A

Instance Segmentation

The basic building blocks of the instance segmentation methods tested in Chap-

ters 3 and 4 are: Mask R-CNN [20], Cascade Mask R-CNN [105], ResNet [106],

ResNeSt [107], and Feature Pyramid Network (FPN) [233]. Mask R-CNN builds

upon Faster R-CNN [108] by adding a branch for predicting an object mask in par-

allel with the already existing Faster R-CNN network for bounding box recognition.

Furthermore, Cascade Mask R-CNN [105] builds upon Mask R-CNN by adding a se-

quence of detectors. Mask R-CNN contains: 1) a CNN for image feature extraction,

2) a region proposal layer, 3) ROI alignment, and 4) fully connected layers in parallel

with convolutional layers to perform bounding box recognition and mask prediction,

respectively. Figure A-1 shows the architecture of Mask R-CNN, where the CNN layer

is replaced by a ResNet with 50 layers (ResNet-50) with FPN. In the case of Cascade

Mask R-CNN, the CNN layer is replaced with a ResNeSt of 200 layers (ResNeSt-200).

These residual networks are a special architecture of CNN that uses skip connections,

this structure was motivated to avoid the problem of vanishing gradients [106]. For

simplicity, let 𝑓(·) be a function representing a layer of a neural network, and let S

be a matrix of certain dimensions representing the input of 𝑓(·), the skip connection

in residual networks can be denoted by 𝑓(S) + S, i.e., a residual unit adds the input

of 𝑓(·) at the output of that layer.

145

Convolutional Neural Network
Input Image

Output

Region Proposal
& ROI Alignment

Bounding Box
Recognition

Mask
Prediction

Figure A-1: Architecture of Mask R-CNN [20] for GraphMOS.

146

Appendix B

Vector of Features

We introduced in Section 3.3.2 the matrices representing the intensity and background

images I𝑡𝑣, I𝑡−1
𝑣 , and B𝑣 as well as the set of indices corresponding to the 𝑣-th seg-

mented region 𝒫𝑣 and the optical flow vectors of the current frame with support in

the set of indices 𝒫𝑣 for the horizontal and vertical direction v𝑡
𝑥(𝒫𝑣) and v𝑡

𝑦(𝒫𝑣). The

vector x𝑣 is obtained with the following steps:

1. The Local Binary Patterns (LBP) [110] are computed on the matrices: I𝑡𝑣, I𝑡−1
𝑣 ,

B𝑣, and |I𝑡𝑣 − B𝑣|. The LBP for each matrix is computed using 8 neighbors

and a radius of 1 for each pixel in the input image, a linear interpolation to

compute pixel neighbors, and finally a ℓ2 normalization for each LBP cell his-

togram. For each matrix, a vector R1×59 is obtained for LBP representation.

Let 𝑓𝐿𝐵𝑃 : A → R1×59 be the function that represents the process of LBP fea-

ture extraction, the final LBP features lbp𝑣 ∈ R1×236 for a node 𝑣 is given as

[𝑓𝐿𝐵𝑃 (I
𝑡
𝑣), 𝑓𝐿𝐵𝑃 (I

𝑡−1
𝑣), 𝑓𝐿𝐵𝑃 (B𝑣), 𝑓𝐿𝐵𝑃 (|I𝑡𝑣 −B𝑣|)].

2. The vector of orientations 𝜃 ∈ R|𝒫𝑣 | and the vector of magnitudes m ∈ R|𝒫𝑣 | of

the optical flow are computed as follows:

𝜃 = arctan
(︀
v𝑡
𝑦(𝒫𝑣)⊘ v𝑡

𝑥(𝒫𝑣)
)︀
, (B.1)

m =
√︁
v𝑡
𝑥(𝒫𝑣) ∘ v𝑡

𝑥(𝒫𝑣) + v𝑡
𝑦(𝒫𝑣) ∘ v𝑡

𝑦(𝒫𝑣), (B.2)

where ⊘ represents the Hadamard division between matrices. A histogram of 49

147

bins is computed between −𝜋 and 𝜋 for 𝜃, and between 0 and 30 for m. Let 𝑓𝑂𝐹 :

a → R1×49 be the function representing the histogram extraction process for the

optical flow, then the whole representation of the motion mov𝑣 ∈ R1×109 of a

node 𝑣 is obtained as follows [𝑓𝑂𝐹 (𝜃), 𝑓𝑂𝐹 (m),max(m), m̄,max(m)−min(m),

std(m),mad(m),min(𝜃),max(𝜃), �̄�,max(𝜃)−min(𝜃), std(𝜃),mad(𝜃)], where ā,

std(a), and mad(a) are the mean, the standard deviation, and the mean absolute

deviation of vector a, respectively.

3. The intensity features are computed with histograms of 127 bins between 0 and

255 for I𝑡𝑣(𝒫𝑣), I𝑡−1
𝑣 (𝒫𝑣), B𝑣(𝒫𝑣) and |I𝑡𝑣(𝒫𝑣) − B𝑣(𝒫𝑣)|. Let 𝑓𝐼𝑁 : a → R1×127

be the function representing the histogram extraction process for the intensity

vectors, then the whole representation of the intensity in𝑣 ∈ R1×508 of a node

𝑣 is obtained as follows [𝑓𝐼𝑁(I𝑡𝑣(𝒫𝑣)), 𝑓𝐼𝑁(I
𝑡−1
𝑣 (𝒫𝑣)), 𝑓𝐼𝑁(B𝑣(𝒫𝑣)), 𝑓𝐼𝑁(|I𝑡𝑣(𝒫𝑣)−

B𝑣(𝒫𝑣)|)].

4. The deep features are computed using the 5th layer (Conv-5) of the VGG model

[113]. The image I𝑡𝑣 is resized to be compatible with the VGG network, and

then a principal component analysis is applied to compress 512 dimensional

features into 64 features from Conv-5. Let 𝑓𝐷𝐿 : A → R1×10816 be the function

representing the deep feature extraction, then the deep features dl𝑣 ∈ R1×10816

of a node 𝑣 is obtained as dl𝑣 = 𝑓𝐷𝐿(I
𝑡
𝑣).

5. Finally, the feature vector x𝑣 ∈ R1×11669 is obtained as follows [lbp𝑣,mov𝑣, in𝑣,

dl𝑣].

148

Appendix C

Closed-form Solution Variational

Problem

Proof. Let z𝑞 be the graph signal associated with the 𝑞-th class. Formally, the varia-

tional problem can be stated as:

argmin
z𝑞

zT𝑞 (L+ 𝜖I)𝛼z𝑞 s.t. Mz𝑞 − y𝑞(𝒮) = 0, (C.1)

where zT𝑞 (L + 𝜖I)𝛼z𝑞 is a quadratic convex function and Mz𝑞 − y𝑞(𝒮) is affine in

z𝑞, i.e., Eqn. (C.1) is a convex problem. Equation (C.1) can be expressed as an

unconstrained optimization problem using Lagrange multipliers such that:

argmin
z𝑞

zT𝑞 (L+ 𝜖I)𝛼z𝑞 + 𝜇T(Mz𝑞 − y𝑞(𝒮)), (C.2)

where 𝜇 ∈ R|𝒮| is the vector of Lagrange multipliers, and ℒ(z𝑞,𝜇) = zT𝑞 (L+ 𝜖I)𝛼z𝑞 +

𝜇T(Mz𝑞 − y𝑞(𝒮)) is the Lagrange function. For an unconstrained problem, the well

known necessary and sufficient condition for z𝑞 to be optimal [119]:

∇ℒ(z𝑞,𝜇) = 0. (C.3)

149

Now, using Eqn. (C.3):

∇z𝑞ℒ(z𝑞,𝜇) = 2(L+ 𝜖I)𝛼z𝑞 +MT𝜇 = 0

z𝑞 = −1

2
((L+ 𝜖I)−1)𝛼MT𝜇, (C.4)

and also:

∇𝜇ℒ(z𝑞,𝜇) = Mz𝑞 − y𝑞(𝒮) = 0

Mz𝑞 = y𝑞(𝒮). (C.5)

then using Eqn. (C.4) and (C.5):

z𝑞 = ((L+ 𝜖I)−1)𝛼MT(M((L+ 𝜖I)−1)𝛼MT)−1y𝑞(𝒮). (C.6)

Equation (C.6) is the closed-form solution for the reconstruction of the graph

signal associated with the 𝑞-th class. The reconstruction of the whole graph signal

Z = [z1, z2, . . . , z𝑄] is achieved by concatenating the samples such that:

Z = ((L+ 𝜖I)−1)𝛼MT(M((L+ 𝜖I)−1)𝛼MT)−1Y(𝒮), (C.7)

where Y(𝒮) = [y1(𝒮),y2(𝒮), . . . ,y𝑄(𝒮)].

150

Appendix D

Proof of Theorem 6.4.1

Proof. 1) For the triangle inequality we have that:

‖x+ y‖2(𝜌),𝜖 = ⟨x+ y,y + x⟩(𝜌),𝜖 = ‖(L+ 𝜖I)(𝜌/2)(x+ y)‖2

→ ‖x+ y‖2(𝜌),𝜖 = ‖x‖2(𝜌),𝜖 + ‖y‖2(𝜌),𝜖 + 2⟨x,y⟩(𝜌),𝜖, (D.1)

using the Cauchy–Schwarz inequality we have that:

‖x+ y‖2(𝜌),𝜖 ≤ ‖x‖2(𝜌),𝜖 + 2‖x‖(𝜌),𝜖‖y‖(𝜌),𝜖 + ‖y‖2(𝜌),𝜖

→ ‖x+ y‖2(𝜌),𝜖 ≤ (‖x‖(𝜌),𝜖 + ‖y‖(𝜌),𝜖)2. (D.2)

2) Let 𝑠 be a scalar, then for the absolute homogeneity property we have:

‖𝑠x‖(𝜌),𝜖 = ‖(L+ 𝜖I)(𝜌/2)𝑠x‖ = |𝑠|‖(L+ 𝜖I)(𝜌/2)x‖ = |𝑠|‖x‖(𝜌),𝜖. (D.3)

3) For the positive definiteness property, we need the Schur product theorem:

Theorem D.0.1. (Schur product theorem) Let S,T ∈ R𝑛×𝑛 be two positive definite

matrices of dimension 𝑛× 𝑛, then S ∘T is also positive definite.

Proof: see [160].

For 𝜖 = 0 and 𝜌 = 1 the sparse Sobolev norm becomes the graph Laplacian

quadratic form [29], so that ‖x‖2(1),0 = xTLx = 0 ⇐⇒ x = 𝜏1 (with 𝜏 some

151

constant value), and then ‖x‖(𝜌),𝜖 becomes a semi-norm because it satisfies only the

first two conditions of vector norms, i.e., triangle inequality and absolute homogeneity.

However, for 𝜖 > 0, the term L+𝜖I ≻ 0 according to Eq. (3.6), and then (L+𝜖I)(𝜌) ≻ 0

using the Schur product theorem. As a result:

‖x‖2(𝜌),𝜖 = xT(L+ 𝜖I)(𝜌)x = 0 ⇐⇒ x = 0 ∀ 𝜖 > 0. (D.4)

As a consequence, the sparse Sobolev norm satisfies the properties of vector norms

for all 𝜖 > 0 according to Eq. (D.2), (D.3), and (D.4). Similarly, the sparse Sobolev

definition satisfies the properties of semi-norms for 𝜖 = 0 according to Eq. (D.2) and

(D.3).

152

Appendix E

Proof of Lemma 6.4.2

Proof. We can compute the spectral decomposition of the Kronecker product between

matrices using concepts of product graphs [234]. The spectrum of the Kronecker prod-

uct of several graphs is given by the Kronecker products of its spectral components.

For example, the spectral decomposition of L⊗ L is given by [234]:

L⊗ L = (U⊗U)(Λ⊗Λ)(UT ⊗UT). (E.1)

Similarly, there is a relationship between the Kronecker and the Hadamard products

as follows:

Theorem E.0.1. (Visick [235]) For S,T ∈ R𝑛×𝑚, we have:

S ∘T = PT
𝑛(S⊗T)P𝑚, (E.2)

where P𝑛 ∈ {0, 1}𝑛2×𝑛 and P𝑚 ∈ {0, 1}𝑚2×𝑚 are partial permutation matrices. If

S,T ∈ R𝑛×𝑛 are square matrices, we have that S ∘T = PT
𝑛(S⊗T)P𝑛.

Proof: see [235].

We can get a general form of the spectrum of the Hadamard product (for the

Hadamard power of order 2) using Eq. (E.1) and Theorem E.0.1 as follows:

L ∘ L = L(2) = PT
𝑁(U⊗U)(Λ⊗Λ)(UT ⊗UT)P𝑁 . (E.3)

153

154

Appendix F

Codebase

We have created a codebase written in PyTorch and PyG [187] for benchmarking

methods to alleviate over-smoothing and over-squashing. The code contains: 1) a

GNN model, 2) functions to compute the JLC and BFC metrics, 3) a data loader

(a modified version of the code released in [202]) with 12 datasets, 4) a random

hyperparameter search tool, and 5) a main file with the training procedure. The GNN

is fully parameterized and we can do experiments combining several kinds of methods.

For example, we can easily run a random hyperparameter search using PairNorm (PN)

and Residual Dense Connections (RDC) using the following command:

$ python random_search_hyperparameters . py −−PairNorm

−−ResidualDenseConnection −−datase t Cora −−gpu_number 0

This command will execute a hyperparameter random search in the GPU with iden-

tifier 0 with: 1) the PN and RDC methods combined together, and 2) the Cora

dataset.

The full set of arguments that can be modified in a random hyperparameter search

are:

• no_cuda: Flag to run the experiment in the CPU.

• gpu_number: Integer specifying the identifier of the GPU where the experiment is

being executed.

• ResidualDenseConnection: Flag to activate the residual dense connections.

155

• PairNorm: Flag to activate the PairNorm normalization.

• DiffGroupNorm: Flag to activate the differentiable group normalization.

• DropEdge: Flag to activate the DropEdge method.

• JostLiuCurvature: Flag to activate our SJLR algorithm.

• FALayer: Flag to activate the fully adjacent layer.

• GraphDifussion: Flag to activate the graph diffusion convolution with personalized

PageRank kernel.

• RicciCurvature: Flag to activate the SJLR method.

• GNN: String to determine the type of GNN (only ‘GCN’ is included in the first

version of the code).

• dataset: String to determine the dataset for the experiment with the options ‘Cora’,

‘Citeseer’, ‘Pubmed’, ‘Cornell’, ‘Texas’, ‘Wisconsin’, ‘chameleon’, ‘squirrel’, ‘Actor’,

‘Computers’, ‘Photo’, and ‘CoauthorCS’.

The main file has a broad set of arguments for hyperparameter search or for executing

methods with specific hyperparameters—further details can be found in the main

Python file in the repository. For example, we can reproduce the results of the best

hyperparameters found in [202] for GDC with personalized PageRank kernel using

the following command:

$ python main . py −−verbose −− l r 0 .01 −−weight_decay 0 .09

−−hidden_units 64 −−n_layers_set 2 −−dropout 0 .5

−−GraphDifuss ion −−alphaGDC 0.05 −−k 128 −−datase t Cora

−−GNN GCN

Similarly, we can reproduce the results of SJLR in Table 7.1 using the Cornell dataset

with the following command:

$ python main . py −−verbose −− l r 0 .0122 −−weight_decay 4e−4

−−hidden_units 32 −−n_layers_set 2 −−dropout 0 .3109

−−JostLiuCurvature −−pA 0.0495 −−pD 0.8918 −−tau 429 .21

−−alpha 0 .7742 −−datase t Corne l l −−GNN GCN

This codebase is an open source project and is being released under the MIT license.

156

Appendix G

Proof of Lemma 7.4.3

Proof. Let P = D−1A be the random walk transition matrix, and let 𝑓 : 𝒱 → R be

any initial distribution with vector representation f ∈ R𝑁×1. If we want to measure

the distance between fTP𝑠 and the stationary distribution in the ℓ2 norm we need to

compute:

‖fTP𝑠 − 𝜋‖2 = ‖fTP𝑠 − 1TD

vol(𝐺)
‖2. (G.1)

Let 𝜑𝑖 be the orthonormal eigenfunction associated with 𝜆𝑖. We know that 𝜑1 =

1TD
1
2√

vol(𝐺)
.Therefore, we have:

𝑎1𝜑1D
1
2 =

1√︀
vol(𝐺)

1TD
1
2√︀

vol(𝐺)
D

1
2 =

1TD

vol(𝐺)
, where 𝑎1 =

⟨fTD− 1
2 ,1TD

1
2 ⟩

‖1TD
1
2‖2

=
1√︀

vol(𝐺)
.

(G.2)

As a consequence we have that:

‖fTP𝑠 − 1TD

vol(𝐺)
‖2 = ‖fTP𝑠 − 𝑎1𝜑1D

1
2‖2 = ‖fTD− 1

2 (I−Δ)𝑠D
1
2 − 𝑎1𝜑1D

1
2‖2, (G.3)

157

since P = D− 1
2 (I−Δ)D

1
2 . Suppose we write fTD− 1

2 =
∑︀

𝑖 𝑎𝑖𝜑𝑖, then:

‖fTP𝑠 − 𝜋‖2 = ‖
∑︁
𝑖

𝑎𝑖𝜑𝑖(I−Δ)𝑠D
1
2 − 𝑎1𝜑1(1− 𝜆1)

𝑠D
1
2‖2

= ‖
∑︁
𝑖 ̸=1

𝑎𝑖𝜑𝑖(1− 𝜆𝑖)
𝑠D

1
2‖2 = ‖

∑︁
𝑖 ̸=1

(1− 𝜆𝑖)
𝑠𝑎𝑖𝜑𝑖D

1
2‖2

≤ (1− 𝜆′)𝑠
max𝑖

√
𝑑𝑖

min𝑗

√︀
𝑑𝑗

≤ 𝑒−𝑠𝜆′ max𝑖
√
𝑑𝑖

min𝑗

√︀
𝑑𝑗
, where 𝜆′ =

⎧⎪⎨⎪⎩𝜆2 if 1− 𝜆2 ≥ 𝜆𝑁 − 1,

2− 𝜆𝑁 otherwise.
(G.4)

From Section 7.4.1 we know that only 𝜆2 is important in (G.4) since we can apply

lazy walk. As a result, we can compute the value of 𝑠 such that ‖fTP𝑠 − 𝜋‖2 ≤ 𝜖 as

follows:

𝑠 ≥ 1

𝜆2

log

(︃
max𝑖

√
𝑑𝑖

𝜖min𝑗

√︀
𝑑𝑗

)︃
→ 𝜆2 ≥

1

𝑠
log

(︃
max𝑖

√
𝑑𝑖

𝜖min𝑗

√︀
𝑑𝑗

)︃
. (G.5)

Finally, using the Cheeger inequality in (7.2) we have that:

2ℎ𝐺 ≥ 𝜆2 ≥
1

𝑠
log

(︃
max𝑖

√
𝑑𝑖

𝜖min𝑗

√︀
𝑑𝑗

)︃
→ 2ℎ𝐺 ≥ 1

𝑠
log

(︃
max𝑖

√
𝑑𝑖

𝜖min𝑗

√︀
𝑑𝑗

)︃
. (G.6)

158

Appendix H

Hyperparameters Search

We define a range of values or a set of number for the hyperparameter search that

we called the search space: 1) learning rate 𝑙𝑟 ∈ [0.005, 0.02], 2) weight decay 𝑤𝑑 ∈

[0.0001, 0.001], 3) hidden units of each graph convolutional layer ℎ𝑢 ∈ {16, 32, 64, 128},

4) dropout 𝑑 ∈ [0.3, 0.6], and 5) number of layers 𝐿 ∈ {1, 2, 3}. We also define ranges,

or sets, for the hyperparameters in each specific method:

1. Stochastic Jost and Liu curvature Rewiring: 𝑝𝐴 ∈ [0, 1], 𝑝𝐷 ∈ [0, 1], 𝜏 ∈ [1, 500],

and 𝛼 ∈ [0, 1].

2. DropEdge: Probability of dropping an edge 𝑝𝐷 ∈ [0, 1].

3. PairNorm: Scale 𝑠 ∈ {0.1, 1, 10, 50, 100}.

4. Differentiable Group Normalization: number of clusters 𝑐 ∈ {3, 4, . . . , 10}, and

balancing factor 𝑏𝑓 ∈ [0.0005, 0.05].

5. Graph Diffusion Convolution with personalized PageRank kernel: 𝛼GDC ∈ [0.01, 0.2],

and 𝑘 ∈ {16, 32, 64, 128}.

6. Stochastic Discrete Ricci Flow: Stochasticity level 𝜏 ∈ [1, 500], iterations 𝑖𝑡 ∈

[20, 4000], and Ricci curvature upper-bound 𝐶+ ∈ [0.1, 40].

Tables H.1-H.9 show the best hyperparameters computed from the validation sets

in the datasets tested in Section 7.6.

159

Table H.1: Best hyperparameters for Cornell dataset.

Method 𝑙𝑟 𝑤𝑑 ℎ𝑢 𝑑 𝐿 𝑝𝐴 𝑝𝐷 𝜏 𝛼 𝑠 𝑐 𝑏𝑓 𝛼GDC 𝑘 𝑖𝑡 𝐶+

Baseline 0.0199 9𝑒− 4 128 0.5762 2 - - - - - - - - - - -
RDC [38] 0.0190 8𝑒− 4 128 0.5529 2 - - - - - - - - - - -

GDC [202] 0.0101 1𝑒− 3 128 0.3594 1 - - - - - - - 0.1956 128 - -
DE [185] 0.0197 7𝑒− 4 32 0.3574 3 - 0.9722 - - - - - - - - -
PN [193] 0.0169 6𝑒− 4 128 0.5240 2 - - - - 10 - - - - - -

DGN [194] 0.0116 7𝑒− 4 128 0.5270 2 - - - - - 10 0.0293 - - - -
FA [47] 0.0056 2𝑒− 4 32 0.4462 3 - - - - - - - - - - -

SDRF [190] 0.0128 8𝑒− 4 64 0.4990 2 - - 23.49 - - - - - - 555 12.01
SJLR 0.0187 6𝑒− 4 64 0.5844 3 0.0973 0.9976 79.32 0.7035 - - - - - - -

Table H.2: Best hyperparameters for Texas dataset.

Method 𝑙𝑟 𝑤𝑑 ℎ𝑢 𝑑 𝐿 𝑝𝐴 𝑝𝐷 𝜏 𝛼 𝑠 𝑐 𝑏𝑓 𝛼GDC 𝑘 𝑖𝑡 𝐶+

Baseline 0.018 8𝑒− 4 128 0.3425 2 - - - - - - - - - - -
RDC [38] 0.0135 7𝑒− 4 128 0.3059 3 - - - - - - - - - - -

GDC [202] 0.0182 7𝑒− 4 16 0.4499 3 - - - - - - - 0.1357 128 - -
DE [185] 0.0198 7𝑒− 4 64 0.5083 3 - 0.9934 - - - - - - - - -
PN [193] 0.0192 2𝑒− 4 64 0.3593 2 - - - - 10 - - - - - -

DGN [194] 0.01 5𝑒− 4 128 0.3226 2 - - - - - 5 0.0488 - - - -
FA [47] 0.0167 7𝑒− 4 32 0.4446 3 - - - - - - - - - - -

SDRF [190] 0.0075 4𝑒− 4 128 0.4235 2 - - 20.73 - - - - - - 3672 2.72
SJLR 0.0199 1𝑒− 3 128 0.4946 2 0.015 0.9296 90.58 0.3178 - - - - - - -

Table H.3: Best hyperparameters for Wisconsin dataset.

Method 𝑙𝑟 𝑤𝑑 ℎ𝑢 𝑑 𝐿 𝑝𝐴 𝑝𝐷 𝜏 𝛼 𝑠 𝑐 𝑏𝑓 𝛼GDC 𝑘 𝑖𝑡 𝐶+

Baseline 0.0188 1𝑒− 3 128 0.3538 2 - - - - - - - - - - -
RDC [38] 0.019 8𝑒− 4 64 0.494 3 - - - - - - - - - - -

GDC [202] 0.0075 7𝑒− 4 64 0.4594 1 - - - - - - - 0.1946 128 - -
DE [185] 0.0135 8𝑒− 4 32 0.5057 3 - 0.9996 - - - - - - - - -
PN [193] 0.018 2𝑒− 4 128 0.3635 2 - - - - 100 - - - - - -

DGN [194] 0.0184 8𝑒− 4 128 0.3389 2 - - - - - 5 0.0206 - - - -
FA [47] 0.0123 9𝑒− 4 32 0.4565 2 - - - - - - - - - - -

SDRF [190] 0.0082 9𝑒− 4 32 0.3961 2 - - 69.99 - - - - - - 3919 22.99
SJLR 0.0104 1𝑒− 4 32 0.5513 2 0.0644 0.9707 77.54 0.6372 - - - - - - -

Table H.4: Best hyperparameters for Chameleon dataset.

Method 𝑙𝑟 𝑤𝑑 ℎ𝑢 𝑑 𝐿 𝑝𝐴 𝑝𝐷 𝜏 𝛼 𝑠 𝑐 𝑏𝑓 𝛼GDC 𝑘 𝑖𝑡 𝐶+

Baseline 0.02 8𝑒− 4 16 0.4969 3 - - - - - - - - - - -
RDC [38] 0.0174 9𝑒− 4 64 0.5468 2 - - - - - - - - - - -

GDC [202] 0.0113 1𝑒− 3 16 0.3976 3 - - - - - - - 0.0201 128 - -
DE [185] 0.0166 1𝑒− 3 16 0.4696 3 - 0.0678 - - - - - - - - -
PN [193] 0.0189 1𝑒− 3 32 0.4600 3 - - - - 100 - - - - - -

DGN [194] 0.0171 8𝑒− 4 16 0.5591 3 - - - - - 10 0.0475 - - - -
FA [47] 0.0198 4𝑒− 4 128 0.3518 2 - - - - - - - - - - -

SDRF [190] 0.0106 9𝑒− 4 16 0.5253 3 - - 473.78 - - - - - - 479 12.74
SJLR 0.0192 9𝑒− 4 128 0.5164 3 0.1388 0.1754 216.25 0.2388 - - - - - - -

160

Table H.5: Best hyperparameters for Squirrel dataset.

Method 𝑙𝑟 𝑤𝑑 ℎ𝑢 𝑑 𝐿 𝑝𝐴 𝑝𝐷 𝜏 𝛼 𝑠 𝑐 𝑏𝑓 𝛼GDC 𝑘 𝑖𝑡 𝐶+

Baseline 0.014 1𝑒− 3 16 0.5016 3 - - - - - - - - - - -
RDC [38] 0.0177 1𝑒− 3 128 0.4301 3 - - - - - - - - - - -

GDC [202] 0.0195 8𝑒− 4 128 0.5179 1 - - - - - - - 0.0434 128 - -
DE [185] 0.0153 8𝑒− 4 64 0.3963 2 - 0.0415 - - - - - - - - -
PN [193] 0.0193 7𝑒− 4 16 0.4254 3 - - - - 100 - - - - - -

DGN [194] 0.0185 9𝑒− 4 128 0.3887 3 - - - - - 6 0.0079 - - - -
FA [47] 0.0192 5𝑒− 4 32 0.4287 1 - - - - - - - - - - -

SDRF [190] 0.02 9𝑒− 4 32 0.5707 3 - - 446.06 - - - - - - 2136 30.11
SJLR 0.0179 9𝑒− 4 128 0.5786 3 0.1183 0.1746 348.67 0.0147 - - - - - - -

Table H.6: Best hyperparameters for Actor dataset.

Method 𝑙𝑟 𝑤𝑑 ℎ𝑢 𝑑 𝐿 𝑝𝐴 𝑝𝐷 𝜏 𝛼 𝑠 𝑐 𝑏𝑓 𝛼GDC 𝑘 𝑖𝑡 𝐶+

Baseline 0.0177 0.001 32 0.5611 2 - - - - - - - - - - -
RDC [38] 0.0155 1𝑒− 3 32 0.3782 2 - - - - - - - - - - -

GDC [202] 0.0051 2𝑒− 4 32 0.4514 1 - - - - - - - 0.1988 64 - -
DE [185] 0.0199 8𝑒− 4 32 0.3998 1 - 0.9783 - - - - - - - - -
PN [193] 0.0196 6𝑒− 4 128 0.5338 2 - - - - 0.1 - - - - - -

DGN [194] 0.0188 1𝑒− 3 64 0.488 2 - - - - - 9 0.0073 - - - -
FA* [47] 0.0078 0.0134 128 0.7800 2 - - - - - - - - - - -

SDRF [190] 0.0171 8𝑒− 4 128 0.5228 2 - - 456.02 - - - - - - 444 21.78
SJLR 0.0147 5𝑒− 4 32 0.4151 1 0.1049 0.8413 281.1313 0.7295 - - - - - - -

* Certain hyperparameters were copied directly from [190].

Table H.7: Best hyperparameters for Cora dataset.

Method 𝑙𝑟 𝑤𝑑 ℎ𝑢 𝑑 𝐿 𝑝𝐴 𝑝𝐷 𝜏 𝛼 𝑠 𝑐 𝑏𝑓 𝛼GDC 𝑘 𝑖𝑡 𝐶+

Baseline 0.0133 9𝑒− 4 128 0.5196 3 - - - - - - - - - - -
RDC [38] 0.0128 8𝑒− 4 128 0.5771 3 - - - - - - - - - - -

GDC [202] 0.0189 7𝑒− 4 128 0.5905 2 - - - - - - - 0.1058 64 - -
DE [185] 0.0094 1𝑒− 3 64 0.3592 3 - 0.0286 - - - - - - - - -
PN [193] 0.0195 3𝑒− 4 64 0.4613 3 - - - - 100 - - - - - -

DGN [194] 0.0162 1𝑒− 3 128 0.4333 3 - - - - - 3 0.0174 - - - -
FA [47] 0.0120 4𝑒− 4 128 0.3383 1 - - - - - - - - - - -

SDRF [190] 0.0167 9𝑒− 4 32 0.5225 2 - - 239.01 - - - - - - 79 7.37
SJLR 0.0148 8𝑒− 4 128 0.5115 2 0.0276 0.0128 324.40 0.0722 - - - - - - -

Table H.8: Best hyperparameters for Citeseer dataset.

Method 𝑙𝑟 𝑤𝑑 ℎ𝑢 𝑑 𝐿 𝑝𝐴 𝑝𝐷 𝜏 𝛼 𝑠 𝑐 𝑏𝑓 𝛼GDC 𝑘 𝑖𝑡 𝐶+

Baseline 0.014 8𝑒− 4 128 0.4543 2 - - - - - - - - - - -
RDC [38] 0.0197 5𝑒− 4 128 0.5692 2 - - - - - - - - - - -

GDC [202] 0.0144 1𝑒− 3 128 0.4414 2 - - - - - - - 0.1695 64 - -
DE [185] 0.016 6𝑒− 4 128 0.4341 2 - 0.0814 - - - - - - - - -
PN [193] 0.0185 8𝑒− 4 128 0.301 2 - - - - 50 - - - - - -

DGN [194] 0.0189 9𝑒− 4 128 0.3688 2 - - - - - 3 0.0499 - - - -
FA [47] 0.0142 5𝑒− 4 16 0.5567 1 - - - - - - - - - - -

SDRF [190] 0.0137 6𝑒− 4 128 0.4214 2 - - 371.20 - - - - - - 1212 30.18
SJLR 0.0163 5𝑒− 4 64 0.3216 2 0.2273 0.0362 35.30 0.2998 - - - - - - -

161

Table H.9: Best hyperparameters for Pubmed dataset.

Method 𝑙𝑟 𝑤𝑑 ℎ𝑢 𝑑 𝐿 𝑝𝐴 𝑝𝐷 𝜏 𝛼 𝑠 𝑐 𝑏𝑓 𝛼GDC 𝑘 𝑖𝑡 𝐶+

Baseline 0.0194 5𝑒− 4 64 0.5678 3 - - - - - - - - - - -
RDC [38] 0.0198 7𝑒− 4 128 0.4821 3 - - - - - - - - - - -

GDC [202] 0.013 4𝑒− 4 128 0.5693 2 - - - - - - - 0.1915 128 - -
DE [185] 0.0121 8𝑒− 4 128 0.4476 3 - 0.0358 - - - - - - - - -
PN [193] 0.0116 5𝑒− 4 128 0.5268 3 - - - - 10 - - - - - -

DGN [194] 0.0148 5𝑒− 4 128 0.4678 3 - - - - - 7 0.0018 - - - -
FA* [47] 0.0204 0.0215 128 0.3376 2 - - - - - - - - - - -

SDRF [190] 0.0181 5𝑒− 4 128 0.5972 3 - - 102.56 - - - - - - 3233 34.73
SJLR 0.0164 1𝑒− 3 16 0.4486 3 0.0616 0.1734 319.60 0.5751 - - - - - - -

* Certain hyperparameters were copied directly from [190].

162

Appendix I

Proof of Theorem 8.4.1 (Conditioning

Number)

Proof. The problem associated with the Laplacian matrix in (8.5) can be rewritten

as follows [26]:

𝑓𝐿(z) = min
z

1

2
‖Q[z− vec (Y)]‖22 +

𝜐

2
zT[(DℎD

T
ℎ)⊗ L]z, (I.1)

where z = vec (X̃). Moreover, the gradient of 𝑓𝐿(z) in (I.1) is such that:

∇z𝑓𝐿(z) = Q[z− vec (Y)] + 𝜐[(DℎD
T
ℎ)⊗ L]z, (I.2)

and the Hessian matrix of 𝑓𝐿(z) is given as follows:

∇2
z𝑓𝐿(z) = Q+ [𝜐(DℎD

T
ℎ)⊗ L]. (I.3)

Similarly, the Hessian matrix associated with the Sobolev formulation is given by:

∇2
z𝑓𝑆(z) = Q+ [𝜐(DℎD

T
ℎ)⊗ (L+ 𝜖I)𝛽]. (I.4)

DℎD
T
ℎ is a positive semi-definite matrix, so it has a matrix of eigenvalues Λ𝐷 =

diag(𝜆(𝐷)1, 𝜆(𝐷)2, . . . , 𝜆(𝐷)𝑁), with 0 ≤ 𝜆(𝐷)1 ≤ 𝜆(𝐷)2 ≤ · · · ≤ 𝜆(𝐷)𝑁 , and the corre-

163

sponding matrix of eigenvectors U𝐷. As a consequence, from (I.3), we have:

∇2
z𝑓𝐿(z) = Q+ [𝜐(U𝐷Λ𝐷U

T
𝐷)⊗ (UΛUT)],

∇2
z𝑓𝐿(z) = 𝜐

[︂
1

𝜐
Q+ (U𝐷 ⊗U)(Λ𝐷 ⊗Λ)(UT

𝐷 ⊗UT)

]︂
, (I.5)

where we used the property of Kronecker products (A⊗B)(C⊗D) = AC⊗BD [160].

Q is positive semi-definite because it is a diagonal matrix with diagonal elements

either 0 or 1. As a result, from (I.5), we know that 𝜆𝑚𝑖𝑛(
1
𝜐
Q) = 0, 𝜆𝑚𝑎𝑥(

1
𝜐
Q) = 1

𝜐
if

J ̸= 0, 𝜆𝑚𝑖𝑛((DℎD
T
ℎ)⊗ L) = 0, and 𝜆𝑚𝑎𝑥((DℎD

T
ℎ)⊗ L) = 𝜆𝑁𝜆(𝐷)𝑁 if 𝜆𝑁 , 𝜆(𝐷)𝑁 ≥ 1.

For the Sobolev problem, we have that:

(L+ 𝜖I)𝛽 = (UΛUT + 𝜖I)𝛽 = U(Λ+ 𝜖I)𝛽UT, (I.6)

and then:

∇2
z𝑓𝑆(z) = 𝜐

[︂
1

𝜐
Q+ (U𝐷 ⊗U)(Λ𝐷 ⊗ (Λ+ 𝜖I)𝛽)(UT

𝐷 ⊗UT)

]︂
, (I.7)

where 𝜆𝑚𝑖𝑛((DℎD
T
ℎ)⊗ (L+𝜖I)𝛽) = 0 and 𝜆𝑚𝑎𝑥((DℎD

T
ℎ)⊗ (L+𝜖I)𝛽) = (𝜆𝑁 +𝜖)𝛽𝜆(𝐷)𝑁

if (𝜆𝑁 + 𝜖)𝛽, 𝜆(𝐷)𝑁 ≥ 1. We have a summation of two Hermitian matrices in (I.5)

and (I.7) (we can trivially prove that (I.5) and (I.7) are Hermitian matrices since

(A⊗B)T = AT ⊗BT). Therefore, we cannot get an exact value for the eigenvalues

of these Hessian functions. The problem of describing the possible eigenvalues of the

sum of two Hermitian matrices in terms of their spectra has attracted the interest of

mathematicians for decades. The most complete description was conjectured by Horn

et al. [236]. The interested readers are referred to [237] for an interesting discussion

in the topic. However, we can get some bounds using the developments of Weyl [160]:

Theorem I.0.1 (Weyl’s Theorem (4.3.1 in [160])). Let A and B be Hermitian matri-

ces with set of eigenvalues {𝑎1, 𝑎2, . . . , 𝑎𝑁} and {𝑏1, 𝑏2, . . . , 𝑏𝑁}, respectively, where the

eigenvalues are in ascending order. Then, 𝑐𝑖 ≤ 𝑎𝑖+𝑗 + 𝑏𝑁−𝑗, with 𝑗 = 0, 1, . . . , 𝑁 − 𝑖,

and 𝑎𝑖−𝑗+1 + 𝑏𝑗 ≤ 𝑐𝑖, with 𝑗 = 1, . . . , 𝑖, where 𝑐𝑖 is the 𝑖th eigenvalue of A+B.

164

Proof: see [160].

Using Theorem I.0.1 and (I.5), we can have the following inequalities for ∇2
z𝑓𝐿(z):

𝜆𝑁𝜆(𝐷)𝑁 ≤ 𝜆𝑚𝑎𝑥(∇2
z𝑓𝐿(z)) ≤ 𝜆𝑁𝜆(𝐷)𝑁 +

1

𝜐
, (I.8)

0 ≤ 𝜆𝑚𝑖𝑛(∇2
z𝑓𝐿(z)) ≤

1

𝜐
, (I.9)

0 ≤ 𝜆𝑚𝑖𝑛(∇2
z𝑓𝐿(z)) ≤ 𝜆𝑁𝜆(𝐷)𝑁 . (I.10)

Similarly, for ∇2
z𝑓𝑆(z) we have:

(𝜆𝑁 + 𝜖)𝛽𝜆(𝐷)𝑁 ≤ 𝜆𝑚𝑎𝑥(∇2
z𝑓𝑆(z))

≤ (𝜆𝑁 + 𝜖)𝛽𝜆(𝐷)𝑁 +
1

𝜐
, (I.11)

0 ≤ 𝜆𝑚𝑖𝑛(∇2
z𝑓𝑆(z)) ≤

1

𝜐
, (I.12)

0 ≤ 𝜆𝑚𝑖𝑛(∇2
z𝑓𝑆(z)) ≤ (𝜆𝑁 + 𝜖)𝛽𝜆(𝐷)𝑁 , (I.13)

Notice that we ignored the 𝜐 value that multiplies (I.5) and (I.7) in these inequalities

since 𝜅(𝜐A) = 𝜅(A). We can have some asymptotic analysis based on the inequalities

(I.8)-(I.13):

1. For 𝜖 > 0 and 𝛽 > 1 we have that the upper bound in (I.13) is looser than the

upper bound in (I.10) given that 𝜆𝑁+𝜖 ≥ 1, which favors better condition numbers

for the Sobolev problem. For example, if we assume that the eigenvalues are equal

to the upper bounds in (I.8), (I.10), (I.11), and (I.13) we have that:

𝜅(∇2
z𝑓𝑆(z)) =

(︂
1 +

1

𝜐(𝜆𝑁 + 𝜖)𝛽𝜆(𝐷)𝑁

)︂2

≤ 𝜅(∇2
z𝑓𝐿(z)) =

(︂
1 +

1

𝜐𝜆𝑁𝜆(𝐷)𝑁

)︂2

. (I.14)

2. When 𝜐 → ∞, 𝜆𝑚𝑖𝑛(∇2
z𝑓𝐿(z)) → 0 and 𝜆𝑚𝑖𝑛(∇2

z𝑓𝑆(z)) → 0 according to (I.9) and

(I.12), and then 𝜅(∇2
z𝑓𝐿(z)) → ∞ and 𝜅(∇2

z𝑓𝑆(z)) → ∞.

3. When 𝜖 → ∞ and 𝛽 > 0, 𝜆𝑚𝑎𝑥(∇2
z𝑓𝑆(z)) → ∞ according to (I.11) and then

𝜅(∇2
z𝑓𝑆(z)) → ∞. When 𝜖 → ∞ and 𝜆𝑚𝑖𝑛(∇2

z𝑓𝐿(z)) > 0 we have that 𝜅(∇2
z𝑓𝑆(z)) >

165

𝜅(∇2
z𝑓𝐿(z)).

4. when 𝛽 → ∞ and 𝜆𝑁 + 𝜖 > 1, 𝜆𝑚𝑎𝑥(∇2
z𝑓𝑆(z)) → ∞ according to (I.11) and then

𝜅(∇2
z𝑓𝑆(z)) → ∞.

166

Bibliography

[1] J. H. Giraldo, S. Javed, and T. Bouwmans, “Graph moving object segmenta-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
pp. 2485–2503, 2022.

[2] J. H. Giraldo and T. Bouwmans, “Semi-supervised background subtrction of
unseen videos: Minimization of the total variation of graph signals,” in IEEE
International Conference on Image Processing, 2020.

[3] J. H. Giraldo and T. Bouwmans, “GraphBGS: Background subtraction via re-
covery of graph signals,” in International Conference on Pattern Recognition,
2021.

[4] J. H. Giraldo, S. Javed, M. Sultana, S. K. Jung, and T. Bouwmans, “The
emerging field of graph signal processing for moving object segmentation,” in
International Workshop on Frontiers of Computer Vision, 2021.

[5] J. H. Giraldo, S. Javed, N. Werghi, and T. Bouwmans, “Graph CNN for moving
object detection in complex environments from unseen videos,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision Workshops,
2021.

[6] J. H. Giraldo, V. Scarrica, A. Staiano, F. Camastra, and T. Bouwmans, “Hyper-
graph convolutional networks for weakly-supervised semantic segmentation,” in
IEEE International Conference on Image Processing, 2022.

[7] J. H. Giraldo, S. Javed, A. Mahmood, F. D. Malliaros, and T. Bouwmans,
“Sparse Sobolev graph neural networks,” Preprint, 2022.

[8] J. H. Giraldo and T. Bouwmans, “On the minimization of Sobolev norms of
time-varying graph signals: Estimation of new Coronavirus disease 2019 cases,”
in IEEE International Workshop on Machine Learning for Signal Processing,
2020.

[9] J. H. Giraldo, A. Mahmood, B. Garcia-Garcia, D. Thanou, and T. Bouw-
mans, “Reconstruction of time-varying graph signals via Sobolev smoothness,”
IEEE Transactions on Signal and Information Processing over Networks, vol. 8,
pp. 201–214, 2022.

167

[10] Y. Wang, P. M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar, “CD-
net 2014: An expanded change detection benchmark dataset,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, 2014.

[11] V. Mahadevan and N. Vasconcelos, “Spatiotemporal saliency in dynamic
scenes,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 1, pp. 171–177, 2009.

[12] P. L. St-Charles, G. A. Bilodeau, and R. Bergevin, “A self-adjusting approach to
change detection based on background word consensus,” in IEEE/CVF Winter
Conference on Applications of Computer Vision, 2015.

[13] S. Bianco, G. Ciocca, and R. Schettini, “Combination of video change detec-
tion algorithms by genetic programming,” IEEE Transactions on Evolutionary
Computation, vol. 21, no. 6, pp. 914–928, 2017.

[14] O. Tezcan, P. Ishwar, and J. Konrad, “BSUV-Net: A fully-convolutional neural
network for background subtraction of unseen videos,” in IEEE/CVF Winter
Conference on Applications of Computer Vision, 2020.

[15] X. Shu, F. Porikli, and N. Ahuja, “Robust orthonormal subspace learning: Ef-
ficient recovery of corrupted low-rank matrices,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2014.

[16] X. Zhou, C. Yang, and W. Yu, “Moving object detection by detecting contiguous
outliers in the low-rank representation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 3, pp. 597–610, 2012.

[17] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC su-
perpixels compared to state-of-the-art superpixel methods,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274–2282,
2012.

[18] F. Yang, Q. Sun, H. Jin, and Z. Zhou, “Superpixel segmentation with fully
convolutional networks,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020.

[19] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected CRFs,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2017.

[20] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2017.

[21] E. Dong, H. Du, and L. Gardner, “An interactive web-based dashboard to track
COVID-19 in real time,” The Lancet Infectious Diseases, vol. 20, no. 5, pp. 533–
534, 2020.

168

[22] R. Sibson, “A brief description of natural neighbor interpolation,” Interpreting
Multivariate Data, 1981.

[23] S. K. Narang, A. Gadde, E. Sanou, and A. Ortega, “Localized iterative meth-
ods for interpolation in graph structured data,” in IEEE Global Conference on
Signal and Information Processing, 2013.

[24] N. Perraudin, A. Loukas, F. Grassi, and P. Vandergheynst, “Towards stationary
time-vertex signal processing,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, 2017.

[25] A. Loukas and N. Perraudin, “Stationary time-vertex signal processing,”
EURASIP Journal on Advances in Signal Processing, vol. 2019, no. 1, pp. 1–19,
2019.

[26] K. Qiu, X. Mao, X. Shen, X. Wang, T. Li, and Y. Gu, “Time-varying graph
signal reconstruction,” IEEE Journal of Selected Topics in Signal Processing,
vol. 11, no. 6, pp. 870–883, 2017.

[27] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random sampling
of bandlimited signals on graphs,” Applied and Computational Harmonic Anal-
ysis, vol. 44, no. 2, pp. 446–475, 2018.

[28] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proceedings
of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[29] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains,” IEEE Signal Processing
Magazine, vol. 30, no. 3, pp. 83–98, 2013.

[30] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and lo-
cally connected networks on graphs,” in International Conference on Learning
Representations, 2014.

[31] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural net-
works on graphs with fast localized spectral filtering,” in Advances in Neural
Information Processing Systems, 2016.

[32] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” in Advances in Neural Information Processing Systems, 2017.

[33] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-
lutional networks,” in International Conference on Learning Representations,
2017.

169

[34] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” in International Conference on Learning Repre-
sentations, 2018.

[35] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive
survey on graph neural networks,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[36] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[37] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,
“Dynamic graph CNN for learning on point clouds,” ACM Transactions on
Graphics, vol. 38, no. 5, pp. 1–12, 2019.

[38] G. Li, M. Muller, A. Thabet, and B. Ghanem, “DeepGCNs: Can GCNs go as
deep as CNNs?,” in IEEE/CVF International Conference on Computer Vision,
2019.

[39] W. Uwents, G. Monfardini, H. Blockeel, M. Gori, and F. Scarselli, “Neural net-
works for relational learning: An experimental comparison,” Machine Learning,
vol. 82, no. 3, pp. 315–349, 2011.

[40] M. Zitnik and J. Leskovec, “Predicting multicellular function through multi-
layer tissue networks,” Bioinformatics, vol. 33, no. 14, pp. i190–i198, 2017.

[41] P. Gainza, F. Sverrisson, F. Monti, E. Rodola, D. Boscaini, M. M. Bronstein,
and B. E. Correia, “Deciphering interaction fingerprints from protein molecular
surfaces using geometric deep learning,” Nature Methods, vol. 17, no. 2, pp. 184–
192, 2020.

[42] H. E. Egilmez, Y. H. Chao, and A. Ortega, “Graph-based transforms for video
coding,” IEEE Transactions on Image Processing, vol. 29, pp. 9330–9344, 2020.

[43] S. Javed, A. Mahmood, J. Dias, and N. Werghi, “Robust structural low-rank
tracking,” IEEE Transactions on Image Processing, vol. 29, pp. 4390–4405,
2020.

[44] S. Javed, A. Mahmood, N. Werghi, K. Benes, and N. Rajpoot, “Multiplex
cellular communities in multi-gigapixel colorectal cancer histology images for
tissue phenotyping,” IEEE Transactions on Image Processing, vol. 29, pp. 9204–
9219, 2020.

[45] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra, “Beyond
homophily in graph neural networks: Current limitations and effective designs,”
in Advances in Neural Information Processing Systems, 2020.

170

[46] Q. Li, Z. Han, and X. M. Wu, “Deeper insights into graph convolutional net-
works for semi-supervised learning,” in AAAI Conference on Artificial Intelli-
gence, 2018.

[47] U. Alon and E. Yahav, “On the bottleneck of graph neural networks and its
practical implications,” in International Conference on Learning Representa-
tions, 2021.

[48] I. Pesenson, “Sampling in Paley-Wiener spaces on combinatorial graphs,” Trans-
actions of the American Mathematical Society, vol. 360, no. 10, pp. 5603–5627,
2008.

[49] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal pro-
cessing on graphs: Sampling theory,” IEEE Transactions on Signal Processing,
vol. 63, no. 24, pp. 6510–6523, 2015.

[50] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geomet-
ric framework for learning from labeled and unlabeled examples,” Journal of
Machine Learning Research, vol. 7, no. Nov, pp. 2399–2434, 2006.

[51] I. Pesenson, “Variational splines and Paley-Wiener spaces on combinatorial
graphs,” Constructive Approximation, vol. 29, no. 1, pp. 1–21, 2009.

[52] A. Anis, A. El Gamal, A. S. Avestimehr, and A. Ortega, “A sampling theory
perspective of graph-based semi-supervised learning,” IEEE Transactions on
Information Theory, vol. 65, no. 4, pp. 2322–2342, 2018.

[53] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlim-
ited graph signals using graph spectral proxies,” IEEE Transactions on Signal
Processing, vol. 64, no. 14, pp. 3775–3789, 2016.

[54] B. Garcia-Garcia, T. Bouwmans, and A. J. Silva, “Background subtraction in
real applications: Challenges, current models and future directions,” Computer
Science Review, vol. 35, 2020.

[55] D. S. Lee, “Effective Gaussian mixture learning for video background subtrac-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 5,
pp. 827–832, 2005.

[56] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for object detec-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27,
no. 11, pp. 1778–1792, 2005.

[57] T. S. F. Haines and T. Xiang, “Background subtraction with Dirichlet process
mixture models,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 36, no. 4, pp. 670–683, 2013.

171

[58] T. Bouwmans, “Traditional and recent approaches in background modeling for
foreground detection: An overview,” Computer Science Review, vol. 11, pp. 31–
66, 2014.

[59] T. Bouwmans, A. Sobral, S. Javed, S. K. Jung, and E. H. Zahzah, “Decomposi-
tion into low-rank plus additive matrices for background/foreground separation:
A review for a comparative evaluation with a large-scale dataset,” Computer
Science Review, vol. 23, pp. 1–71, 2017.

[60] O. Oreifej, X. Li, and M. Shah, “Simultaneous video stabilization and moving
object detection in turbulence,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 2, pp. 450–462, 2012.

[61] D. S. Pham, O. Arandjelović, and S. Venkatesh, “Detection of dynamic back-
ground due to swaying movements from motion features,” IEEE Transactions
on Image Processing, vol. 24, no. 1, pp. 332–344, 2014.

[62] S. Li, D. Florencio, W. Li, Y. Zhao, and C. Cook, “A fusion framework for
camouflaged moving foreground detection in the wavelet domain,” IEEE Trans-
actions on Image Processing, vol. 27, no. 8, pp. 3918–3930, 2018.

[63] T. Bouwmans and E. H. Zahzah, “Robust PCA via principal component pursuit:
A review for a comparative evaluation in video surveillance,” Computer Vision
and Image Understanding, vol. 122, pp. 22–34, 2014.

[64] T. Bouwmans, S. Javed, M. Sultana, and S. K. Jung, “Deep neural network
concepts for background subtraction: A systematic review and comparative
evaluation,” Neural Networks, 2019.

[65] L. Maddalena and A. Petrosino, “Towards benchmarking scene background ini-
tialization,” in International Conference on Image Analysis and Processing,
2015.

[66] T. Bouwmans, F. El Baf, and B. Vachon, “Background modeling using mixture
of Gaussians for foreground detection-a survey,” Recent Patents on Computer
Science, vol. 1, no. 3, pp. 219–237, 2008.

[67] L. A. Lim and H. Y. Keles, “Learning multi-scale features for foreground seg-
mentation,” Pattern Analysis and Applications, Aug 2019.

[68] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[69] C. Li, L. Lin, W. Zuo, J. Tang, and M. H. Yang, “Visual tracking via dynamic
graph learning,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 41, no. 11, pp. 2770–2782, 2018.

172

[70] S. Javed, A. Mahmood, T. Bouwmans, and S. K. Jung, “Spatiotemporal low-
rank modeling for complex scene background initialization,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 28, no. 6, pp. 1315–1329,
2016.

[71] S. Javed, A. Mahmood, T. Bouwmans, and S. K. Jung, “Background-foreground
modeling based on spatiotemporal sparse subspace clustering,” IEEE Transac-
tions on Image Processing, vol. 26, no. 12, pp. 5840–5854, 2017.

[72] S. Javed, A. Mahmood, S. Al-Maadeed, T. Bouwmans, and S. K. Jung, “Moving
object detection in complex scene using spatiotemporal structured-sparse rpca,”
IEEE Transactions on Image Processing, vol. 28, no. 2, pp. 1007–1022, 2018.

[73] S. Javed, A. Mahmood, M. M. Fraz, N. A. Koohbanani, K. Benes, Y. W.
Tsang, K. Hewitt, D. Epstein, D. Snead, and N. Rajpoot, “Cellular community
detection for tissue phenotyping in colorectal cancer histology images,” Medical
Image Analysis, p. 101696, 2020.

[74] D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction of graph
signals,” IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 764–778,
2016.

[75] A. Parada-Mayorga, D. L. Lau, J. H. Giraldo, and G. R. Arce, “Blue-noise
sampling on graphs,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 5, no. 3, pp. 554–569, 2019.

[76] L. Li, W. Huang, I. Y. Gu, and Q. Tian, “Foreground object detection from
videos containing complex background,” in ACM Multimedia, 2003.

[77] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,”
IEEE Transactions on Signal Processing, vol. 61, no. 7, pp. 1644–1656, 2013.

[78] F. R. K. Chung, Spectral graph theory. No. 92, American Mathematical Society,
1997.

[79] X. Zhu and M. Rabbat, “Approximating signals supported on graphs,” in IEEE
International Conference on Acoustics, Speech and Signal Processing, 2012.

[80] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via
spectral graph theory,” Applied and Computational Harmonic Analysis, vol. 30,
no. 2, pp. 129–150, 2011.

[81] S. K. Narang and A. Ortega, “Local two-channel critically sampled filter-banks
on graphs,” in IEEE International Conference on Image Processing, 2010.

[82] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden, “Distributed
regression: an efficient framework for modeling sensor network data,” in ACM
International Symposium on Information Processing in Sensor Networks, 2004.

173

[83] R. Wagner, V. Delouille, and R. Baraniuk, “Distributed wavelet de-noising for
sensor networks,” in IEEE Conference on Decision and Control, 2006.

[84] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 888–905, Aug
2000.

[85] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image pro-
cessing,” Proceedings of the IEEE, vol. 106, no. 5, pp. 907–930, 2018.

[86] I. Guskov, W. Sweldens, and P. Schröder, “Multiresolution signal processing for
meshes,” in ACM Conference on Computer Graphics and Interactive Techniques
SIGGRAPH, 1999.

[87] K. Zhou, H. Bao, and J. Shi, “3D surface filtering using spherical harmonics,”
Computer-Aided Design, vol. 36, no. 4, pp. 363–375, 2004.

[88] R. Hammack, W. Imrich, and S. Klavžar, Handbook of product graphs. CRC
press, 2011.

[89] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for
real-time tracking,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1999.

[90] F. El Baf, T. Bouwmans, and B. Vachon, “Fuzzy integral for moving object
detection,” in IEEE International Conference on Fuzzy Systems (IEEE World
Congress on Computational Intelligence), 2008.

[91] Y. Dong and G. N. DeSouza, “Adaptive learning of multi-subspace for fore-
ground detection under illumination changes,” Computer Vision and Image
Understanding, vol. 115, no. 1, pp. 31–49, 2011.

[92] F. Shang, J. Cheng, Y. Liu, Z. Q. Luo, and Z. Lin, “Bilinear factor matrix norm
minimization for robust PCA: Algorithms and applications,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 40, no. 9, pp. 2066–
2080, 2017.

[93] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust sub-
space learning: Robust PCA, robust subspace tracking, and robust subspace
recovery,” IEEE Signal Processing Magazine, vol. 35, no. 4, pp. 32–55, 2018.

[94] J. A. Ramirez-Quintana and M. I. Chacon-Murguia, “Self-adaptive SOM-CNN
neural system for dynamic object detection in normal and complex scenarios,”
Pattern Recognition, vol. 48, no. 4, pp. 1137–1149, 2015.

[95] G. T. Cinar and J. C. Príncipe, “Adaptive background estimation using an
information theoretic cost for hidden state estimation,” in IEEE International
Joint Conference on Neural Networks, 2011.

174

[96] M. Braham and M. Van Droogenbroeck, “Deep background subtraction with
scene-specific convolutional neural networks,” in IEEE International Conference
on Systems, Signals and Image Processing, 2016.

[97] M. Mandal, V. Dhar, A. Mishra, and S. K. Vipparthi, “3DFR: A swift 3D
feature reductionist framework for scene independent change detection,” IEEE
Signal Processing Letters, vol. 26, no. 12, pp. 1882–1886, 2019.

[98] L. A. Lim and H. Y. Keles, “Foreground segmentation using convolutional neural
networks for multiscale feature encoding,” Pattern Recognition Letters, vol. 112,
pp. 256–262, 2018.

[99] Y. Wang, Z. Luo, and P. M. Jodoin, “Interactive deep learning method for
segmenting moving objects,” Pattern Recognition Letters, vol. 96, pp. 66–75,
2017.

[100] J. Garcia-Gonzalez, J. M. Ortiz-de Lazcano-Lobato, R. M. Luque-Baena, M. A.
Molina-Cabello, and E. López-Rubio, “Foreground detection by probabilistic
modeling of the features discovered by stacked denoising autoencoders in noisy
video sequences,” Pattern Recognition Letters, 2019.

[101] M. Sultana, A. Mahmood, S. Javed, and S. K. Jung, “Unsupervised deep context
prediction for background estimation and foreground segmentation,” Machine
Vision and Applications, vol. 30, no. 3, pp. 375–395, 2019.

[102] J. I. Jung, J. Jang, and J. Hong, “Cosine focal loss-based change detection for
video surveillance systems,” in IEEE Conference on Advanced Video and Signal
Based Surveillance, 2019.

[103] J. E. Vargas-Muñoz, A. S. Chowdhury, E. B. Alexandre, F. L. Galvão, P. A. V.
Miranda, and A. X. Falcão, “An iterative spanning forest framework for super-
pixel segmentation,” IEEE Transactions on Image Processing, vol. 28, no. 7,
pp. 3477–3489, 2019.

[104] P. L. St-Charles, G. A. Bilodeau, and R. Bergevin, “SuBSENSE: A universal
change detection method with local adaptive sensitivity,” IEEE Transactions
on Image Processing, vol. 24, no. 1, pp. 359–373, 2014.

[105] Z. Cai and N. Vasconcelos, “Cascade R-CNN: High quality object detection and
instance segmentation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019.

[106] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2016.

[107] H. Zhang et al., “ResNeSt: Split-attention networks,” arXiv preprint
arXiv:2004.08955, 2020.

175

[108] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Advances in Neural Infor-
mation Processing Systems, 2015.

[109] B. D. Lucas, T. Kanade, et al., “An iterative image registration technique with
an application to stereo vision,” 1981.

[110] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and ro-
tation invariant texture classification with local binary patterns,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, no. 7, pp. 971–987, 2002.

[111] M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg, “ECO: Efficient
convolution operators for tracking,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2017.

[112] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Robust visual tracking via
hierarchical convolutional features,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 41, no. 11, pp. 2709–2723, 2018.

[113] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the devil
in the details: Delving deep into convolutional nets,” in British Machine Vision
Conference, 2014.

[114] V. N. Gangapure, S. Nanda, and A. S. Chowdhury, “Superpixel-based causal
multisensor video fusion,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 28, no. 6, pp. 1263–1272, 2017.

[115] X. Zhou and M. Belkin, “Semi-supervised learning by higher order regulariza-
tion,” in International Conference on Artificial Intelligence and Statistics, 2011.

[116] F. Mahmood, N. Shahid, U. Skoglund, and P. Vandergheynst, “Adaptive graph-
based total variation for tomographic reconstructions,” IEEE Signal Processing
Letters, vol. 25, no. 5, pp. 700–704, 2018.

[117] A. Jung, A. O. Hero III, A. C. Mara, S. Jahromi, A. Heimowitz, and Y. C.
Eldar, “Semi-supervised learning in network-structured data via total varia-
tion minimization,” IEEE Transactions on Signal Processing, vol. 67, no. 24,
pp. 6256–6269, 2019.

[118] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex
problems with applications to imaging,” Journal of Mathematical Imaging and
Vision, vol. 40, no. 1, pp. 120–145, 2011.

[119] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[120] N. Perraudin, D. I. Shuman, G. Puy, and P. Vandergheynst, “UNLocBoX a
Matlab convex optimization toolbox using proximal splitting methods,” arXiv
preprint arXiv:1402.0779.

176

[121] N. Komodakis and J. C. Pesquet, “Playing with duality: An overview of recent
primal-dual approaches for solving large-scale optimization problems,” IEEE
Signal Processing Magazine, vol. 32, no. 6, pp. 31–54, 2015.

[122] Y. Wu, A. Kirillov, F. Massa, W. Y. Lo, and R. Girshick, “Detectron2.” https:
//github.com/facebookresearch/detectron2, 2019.

[123] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, “GSPBOX: A toolbox for signal processing
on graphs,” arXiv preprint arXiv:1408.5781, 2014.

[124] A. Sobral and T. Bouwmans, “BGS library: A library framework for algorithm’s
evaluation in foreground/background segmentation,” in Handbook on "Back-
ground Modeling and Foreground Detection for Video Surveillance”, Chapter
23, 2014.

[125] A. Sobral, T. Bouwmans, and E. Zahzah, “LRSLibrary: Low-rank and sparse
tools for background modeling and subtraction in videos,” in Robust Low-Rank
and Sparse Matrix Decomposition: Applications in Image and Video Processing,
CRC Press, Taylor and Francis Group, 2015.

[126] S. Isik, K. Özkan, S. Günal, and Ö. N. Gerek, “SWCD: a sliding window and
self-regulated learning-based background updating method for change detection
in videos,” Journal of Electronic Imaging, vol. 27, no. 2, pp. 1–11, 2018.

[127] R. Wang, F. Bunyak, G. Seetharaman, and K. Palaniappan, “Static and moving
object detection using flux tensor with split gaussian models,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, 2014.

[128] S. Jiang and X. Lu, “WeSamBE: A weight-sample-based method for background
subtraction,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 28, no. 9, pp. 2105–2115, 2017.

[129] S. H. Lee, G. C. Lee, J. Yoo, and S. Kwon, “WisenetMD: motion detection
using dynamic background region analysis,” Symmetry, vol. 11, no. 5, p. 621,
2019.

[130] M. Braham, S. Piérard, and M. Van Droogenbroeck, “Semantic background
subtraction,” in IEEE International Conference on Image Processing, 2017.

[131] O. Barnich and M. Van Droogenbroeck, “ViBe: A universal background subtrac-
tion algorithm for video sequences,” IEEE Transactions on Image Processing,
vol. 20, no. 6, pp. 1709–1724, 2010.

[132] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the grassman-
nian for online foreground and background separation in subsampled video,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2012.

177

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

[133] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in
Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[134] Z. Kang, C. Peng, and Q. Cheng, “Robust PCA via nonconvex rank approxi-
mation,” in IEEE International Conference on Data Mining, 2015.

[135] Z. Wang, M. J. Lai, Z. Lu, W. Fan, H. Davulcu, and J. Ye, “Orthogonal rank-
one matrix pursuit for low rank matrix completion,” SIAM Journal on Scientific
Computing, vol. 37, no. 1, pp. A488–A514, 2015.

[136] A. Cioppa, M. Van Droogenbroeck, and M. Braham, “Real-time semantic back-
ground subtraction,” in IEEE International Conference on Image Processing,
2020.

[137] M. O. Tezcan, P. Ishwar, and J. Konrad, “BSUV-Net 2.0: Spatio-temporal data
augmentations for video-agnostic supervised background subtraction,” IEEE
Access, vol. 9, pp. 53849–53860, 2021.

[138] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
International Conference on Learning Representations, 2015.

[139] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene
parsing through ADE20K dataset,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2017.

[140] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical Image
Computing and Computer Assisted Intervention, 2015.

[141] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2015.

[142] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[143] Z. H. Zhou, “A brief introduction to weakly supervised learning,” National Sci-
ence Review, vol. 5, no. 1, pp. 44–53, 2018.

[144] F. Z. Xing, E. Cambria, W. B. Huang, and Y. Xu, “Weakly supervised semantic
segmentation with superpixel embedding,” in IEEE International Conference in
Image Processing, 2016.

[145] D. Lin, J. Dai, J. Jia, K. He, and J. Sun, “ScribbleSup: Scribble-supervised
convolutional networks for semantic segmentation,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2016.

178

[146] M. Pu, Y. Huang, Q. Guan, and Q. Zou, “GraphNet: Learning image pseudo
annotations for weakly-supervised semantic segmentation,” in ACM Multime-
dia, 2018.

[147] B. Zhang, J. Xiao, J. Jiao, Y. Wei, and Y. Zhao, “Affinity attention graph neural
network for weakly supervised semantic segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.

[148] S. Bai, F. Zhang, and P. H. Torr, “Hypergraph convolution and hypergraph
attention,” Pattern Recognition, vol. 110, p. 107637, 2021.

[149] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in International Conference on Learning Representa-
tions, 2015.

[150] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder
with atrous separable convolution for semantic image segmentation,” in Euro-
pean Conference on Computer Vision, 2018.

[151] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The PASCAL visual object classes challenge: A retrospective,”
International Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, 2015.

[152] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in International Conference on Ma-
chine Learning, 2015.

[153] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (ELUs),” in International Conference on
Learning Representations, 2016.

[154] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Semantic con-
tours from inverse detectors,” in IEEE/CVF International Conference on Com-
puter Vision, 2011.

[155] M. Tang, A. Djelouah, F. Perazzi, Y. Boykov, and C. Schroers, “Normalized
cut loss for weakly-supervised CNN segmentation,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018.

[156] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected CRFs with
Gaussian edge potentials,” in Advances in Neural Information Processing Sys-
tems, 2011.

[157] P. Vernaza and M. Chandraker, “Learning random-walk label propagation for
weakly-supervised semantic segmentation,” in IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2017.

179

[158] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec, “OGB-
LSC: A large-scale challenge for machine learning on graphs,” arXiv preprint
arXiv:2103.09430, 2021.

[159] B. Jiang, Z. Zhang, D. Lin, J. Tang, and B. Luo, “Semi-supervised learning with
graph learning-convolutional networks,” in IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019.

[160] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press,
2012.

[161] J. N. Kather et al., “Multi-class texture analysis in colorectal cancer histology,”
Scientific Reports, vol. 6, p. 27988, 2016.

[162] K. Lang, “NewsWeeder: Learning to filter netnews,” in Journal of Machine
Learning Research, 1995.

[163] D. Anguita, A. Ghio, L. Oneto, X. Parra Perez, and J. L. Reyes Ortiz, “A
public domain dataset for human activity recognition using smartphones,” in
International European Symposium on Artificial Neural Networks, Computa-
tional Intelligence and Machine Learning, 2013.

[164] M. Fanty and R. Cole, “Spoken letter recognition,” in Advances in Neural In-
formation Processing Systems, 1991.

[165] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Bench-
marking graph neural networks,” arXiv preprint arXiv:2003.00982, 2020.

[166] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
“Collective classification in network data,” AI Magazine, vol. 29, no. 3, pp. 93–
93, 2008.

[167] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs from data:
A signal representation perspective,” IEEE Signal Processing Magazine, vol. 36,
no. 3, pp. 44–63, 2019.

[168] V. Kalofolias, “How to learn a graph from smooth signals,” in International
Conference on Artificial Intelligence and Statistics, 2016.

[169] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning Laplacian
matrix in smooth graph signal representations,” IEEE Transactions on Signal
Processing, vol. 64, no. 23, pp. 6160–6173, 2016.

[170] V. Kalofolias and N. Perraudin, “Large scale graph learning from smooth sig-
nals,” in International Conference on Learning Representations, 2019.

[171] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Ge-
ometric deep learning: going beyond euclidean data,” IEEE Signal Processing
Magazine, vol. 34, no. 4, pp. 18–42, 2017.

180

[172] S. Abu-El-Haija et al., “MixHop: Higher-order graph convolutional architec-
tures via sparsified neighborhood mixing,” in International Conference on Ma-
chine Learning, 2019.

[173] E. Rossi, F. Frasca, B. Chamberlain, D. Eynard, M. Bronstein, and F. Monti,
“SIGN: Scalable inception graph neural networks,” in International Conference
on Machine Learning - Workshops, 2020.

[174] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-GCN: Geometric
graph convolutional networks,” in International Conference on Learning Rep-
resentations, 2020.

[175] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying
graph convolutional networks,” in International Conference on Machine Learn-
ing, 2019.

[176] B. Nica, A brief introduction to spectral graph theory. European Mathematical
Society Publishing House, 2018.

[177] D. Patterson et al., “Carbon emissions and large neural network training,” arXiv
preprint arXiv:2104.10350, 2021.

[178] J. Du, S. Zhang, G. Wu, J. M. Moura, and S. Kar, “Topology adaptive graph
convolutional networks,” arXiv preprint arXiv:1710.10370, 2017.

[179] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein,
“Geometric deep learning on graphs and manifolds using mixture model CNNs,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017.

[180] X. Bresson and T. Laurent, “Residual gated graph ConvNets,” arXiv preprint
arXiv:1711.07553, 2017.

[181] C. Morris et al., “Weisfeiler and Leman go neural: Higher-order graph neural
networks,” in AAAI Conference on Artificial Intelligence, 2019.

[182] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?,” in International Conference on Learning Representations, 2019.

[183] Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence between graph
isomorphism testing and function approximation with GNNs,” in Advances in
Neural Information Processing Systems, 2019.

[184] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph con-
volutional networks,” in International Conference on Machine Learning, 2020.

[185] Y. Rong, W. Huang, T. Xu, and J. Huang, “DropEdge: Towards deep graph
convolutional networks on node classification,” in International Conference on
Learning Representations, 2020.

181

[186] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “GraphSAINT:
Graph sampling based inductive learning method,” in International Conference
on Learning Representations, 2020.

[187] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch
Geometric,” in International Conference on Learning Representations - Work-
shops, 2019.

[188] A. Gadde, A. Anis, and A. Ortega, “Active semi-supervised learning using sam-
pling theory for graph signals,” in ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, 2014.

[189] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view,”
in AAAI Conference on Artificial Intelligence, 2020.

[190] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein,
“Understanding over-squashing and bottlenecks on graphs via curvature,” in
International Conference on Learning Representations, 2022.

[191] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph
neural networks meet personalized PageRank,” in International Conference on
Learning Representations, 2019.

[192] K. Oono and T. Suzuki, “Graph neural networks exponentially lose expressive
power for node classification,” in International Conference on Learning Repre-
sentations, 2020.

[193] L. Zhao and L. Akoglu, “PairNorm: Tackling oversmoothing in GNNs,” in
International Conference on Learning Representations, 2020.

[194] K. Zhou, X. Huang, Y. Li, D. Zha, R. Chen, and X. Hu, “Towards deeper graph
neural networks with differentiable group normalization,” in Advances in Neural
Information Processing Systems, 2020.

[195] Y. Chen, L. Wu, and M. Zaki, “Iterative deep graph learning for graph neural
networks: Better and robust node embeddings,” in Advances in Neural Infor-
mation Processing Systems, 2020.

[196] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal generalized
PageRank graph neural network,” in International Conference on Learning Rep-
resentations, 2021.

[197] J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian,” Prob-
lems in analysis, vol. 625, no. 195-199, p. 110, 1970.

[198] Y. Ollivier, “Ricci curvature of markov chains on metric spaces,” Journal of
Functional Analysis, vol. 256, no. 3, pp. 810–864, 2009.

182

[199] J. Jost and S. Liu, “Ollivier’s Ricci curvature, local clustering and curvature-
dimension inequalities on graphs,” Discrete & Computational Geometry, vol. 51,
no. 2, pp. 300–322, 2014.

[200] H. Zeng et al., “Decoupling the depth and scope of graph neural networks,” in
Advances in Neural Information Processing Systems, 2021.

[201] W. Huang, Y. Li, W. Du, R. Y. Da Xu, J. Yin, L. Chen, and M. Zhang, “Towards
deepening graph neural networks: A GNTK-based optimization perspective,”
in International Conference on Learning Representations, 2022.

[202] J. Klicpera, S. Weißenberger, and S. Günnemann, “Diffusion improves graph
learning,” in Advances in Neural Information Processing Systems, 2019.

[203] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs:
Frequency analysis,” IEEE Transactions on Signal Processing, vol. 62, no. 12,
pp. 3042–3054, 2014.

[204] R. Hamilton, “The Ricci flow on surfaces,” Mathematics and General Relativity,
vol. 71, pp. 237–262, 1998.

[205] A. Nilli, “On the second eigenvalue of a graph,” Discrete Mathematics, vol. 91,
no. 2, pp. 207–210, 1991.

[206] Y. Lin, L. Lu, and S. T. Yau, “Ricci curvature of graphs,” Tohoku Mathematical
Journal, Second Series, vol. 63, no. 4, pp. 605–627, 2011.

[207] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node embed-
ding,” Journal of Complex Networks, vol. 9, no. 2, pp. 1–22, 2021.

[208] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence analysis in large-scale
networks,” in ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2009.

[209] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating the
construction of internet portals with machine learning,” Information Retrieval,
vol. 3, no. 2, pp. 127–163, 2000.

[210] G. Namata, B. London, L. Getoor, B. Huang, and U. Edu, “Query-driven active
surveying for collective classification,” in International Workshop on Mining and
Learning with Graphs, 2012.

[211] Y. Ma, X. Liu, N. Shah, and J. Tang, “Is homophily a necessity for graph neural
networks?,” in International Conference on Learning Representations, 2022.

[212] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theorem for signals on
arbitrary graphs.,” in IEEE International Conference on Acoustics, Speech and
Signal Processing, 2014.

183

[213] H. Shomorony and A. S. Avestimehr, “Sampling large data on graphs,” in IEEE
Global Conference on Signal and Information Processing, 2014.

[214] A. Gavili and X. P. Zhang, “On the shift operator, graph frequency, and optimal
filtering in graph signal processing,” IEEE Transactions on Signal Processing,
vol. 65, no. 23, pp. 6303–6318, 2017.

[215] F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, “Online distributed
learning over graphs with multitask graph-filter models,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 6, pp. 63–77, 2020.

[216] W. Xia, J. Chen, and L. Yu, “Distributed adaptive multi-task learning based on
partially observed graph signals,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 7, pp. 522–538, 2021.

[217] P. Di Lorenzo, S. Barbarossa, P. Banelli, and S. Sardellitti, “Adaptive least
mean squares estimation of graph signals,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 2, no. 4, pp. 555–568, 2016.

[218] S. P. Chepuri and G. Leus, “Graph sampling for covariance estimation,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 3, no. 3,
pp. 451–466, 2017.

[219] D. Valsesia, G. Fracastoro, and E. Magli, “Sampling of graph signals via ran-
domized local aggregations,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 5, no. 2, pp. 348–359, 2018.

[220] A. Venkitaraman, S. Chatterjee, and P. Händel, “Predicting graph signals using
kernel regression where the input signal is agnostic to a graph,” IEEE Trans-
actions on Signal and Information Processing over Networks, vol. 5, no. 4,
pp. 698–710, 2019.

[221] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-supervised
learning on large graphs,” in International Conference on Computational Learn-
ing Theory, 2004.

[222] S. Chen, R. Varma, A. Singh, and J. Kovačević, “Signal recovery on graphs:
Fundamental limits of sampling strategies,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 2, no. 4, pp. 539–554, 2016.

[223] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovačević, “Signal recovery
on graphs: Variation minimization,” IEEE Transactions on Signal Processing,
vol. 63, no. 17, pp. 4609–4624, 2015.

[224] N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,”
IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3462–3477, 2017.

184

[225] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, “A time-vertex signal
processing framework: Scalable processing and meaningful representations for
time-series on graphs,” IEEE Transactions on Signal Processing, vol. 66, no. 3,
pp. 817–829, 2017.

[226] X. Wang, M. Wang, and Y. Gu, “A distributed tracking algorithm for recon-
struction of graph signals,” IEEE Journal of Selected Topics in Signal Process-
ing, vol. 9, no. 4, pp. 728–740, 2015.

[227] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: Uncer-
tainty principle and sampling,” IEEE Transactions on Signal Processing, vol. 64,
no. 18, pp. 4845–4860, 2016.

[228] P. Di Lorenzo, S. Barbarossa, and P. Banelli, “Sampling and recovery of graph
signals,” in Cooperative and Graph Signal Processing, pp. 261–282, Elsevier,
2018.

[229] G. Ortiz-Jiménez, M. Coutino, S. P. Chepuri, and G. Leus, “Sampling and
reconstruction of signals on product graphs,” in IEEE Global Conference on
Signal and Information Processing, 2018.

[230] J. S. Arora, “More on numerical methods for unconstrained optimum design,”
in Introduction to Optimum Design, pp. 455–509, Boston: Academic Press,
fourth ed., 2017.

[231] E. Isufi, A. Loukas, N. Perraudin, and G. Leus, “Forecasting time series
with VARMA recursions on graphs,” IEEE Transactions on Signal Processing,
vol. 67, no. 18, pp. 4870–4885, 2019.

[232] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Review,
vol. 42, no. 4, pp. 599–653, 2000.

[233] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2017.

[234] R. A. Varma and J. Kovačević, “Sampling theory for graph signals on prod-
uct graphs,” in IEEE Global Conference on Signal and Information Processing,
2018.

[235] G. Visick, “A quantitative version of the observation that the Hadamard product
is a principal submatrix of the Kronecker product,” Linear Algebra and its
Applications, vol. 304, no. 1-3, pp. 45–68, 2000.

[236] A. Horn, “Eigenvalues of sums of hermitian matrices,” Pacific Journal of Math-
ematics, vol. 12, no. 1, pp. 225–241, 1962.

[237] A. Knutson and T. Tao, “Honeycombs and sums of hermitian matrices,” Notices
American Mathematical Society, vol. 48, no. 2, 2001.

185

	Summary
	Acknowledgments
	List of Publications
	Introduction
	Graphs
	Scope and Research Questions

	Background
	Mathematical Notation
	Graph Signals
	Sampling and Reconstruction of Graph Signals
	Smooth Graph Signals
	Conclusions

	Graph Moving Object Segmentation
	Introduction
	Related Works
	Graph Signal Processing
	Moving Object Segmentation

	Moving Object Segmentation and Graph Signal Processing
	Graph Nodes Representation
	Background Initialization and Feature Extraction
	Graph Construction
	Graph Signal
	Sampling of Graph signals and Sample Complexity for Semi-supervised Learning
	Minimization of the Sobolev Norm
	Minimization of the Total Variation
	GraphMOS in a Nutshell

	Experimental Framework
	Datasets
	Evaluation Metrics
	Experiments
	Parameters Settings
	Implementation Details

	Results and Discussion
	Qualitative Evaluations
	Quantitative Results
	Ablation Studies
	Sample Complexity

	Conclusions

	Graph Convolutional Networks for Moving Object Segmentation
	Introduction
	Moving Object Segmentation and Graph Convolutional Networks
	Segmentation, Feature Extraction, and Graph Construction
	Graph Semi-supervised Learning Algorithm

	Experimental Framework
	Databases
	Training, Validation, and Test Nodes
	Experiments
	Implementation Details

	Results and Discussion
	Conclusions

	Hypergraph Convolutional Networks for Semantic Segmentation
	Introduction
	Proposed Method
	Preliminaries
	Nodes Representation and Graph Construction
	Graph and Hypergraph Convolutional Networks
	HyperGCN Architecture

	Experiments and Results
	Dataset and Evaluation Metrics
	Implementation Details
	Experiments
	Results and Discussions

	Conclusions

	Sparse Sobolev Graph Neural Networks
	Introduction
	Related Work
	Inference of Graph Topology
	Graph Neural Networks

	Learning Graphs from Data
	Preliminaries
	Inferring Smooth Graphs
	Reducing Hyperparameters

	Sparse Sobolev Graph Neural Networks
	Sobolev Norm
	Sparse Sobolev Norm
	Graph Neural Network Architecture

	Experiments and Results
	Implementation Details
	Semi-supervised Learning
	Benchmarking GNNs in Node Classification

	Conclusion

	On the Trade-off between Over-smoothing and Over-squashing in GNNs
	Introduction
	Related Work
	Preliminaries
	Cheeger Inequality and Cheeger Constant
	Over-squashing

	Understanding the Over-smoothing vs. Over-squashing Trade-off
	The Stationary Distribution on Graphs
	Over-smoothing and Over-squashing

	Jost-Liu Curvature Rewiring
	Curvature Rewiring Algorithm

	Experimental Framework and Results
	Experiments
	Implementation Details
	Results
	Limitations

	Conclusions

	Reconstruction of Time-Varying Graph Signals via Sobolev Smoothness
	Introduction
	Related Work
	Reconstruction of Time-Varying Graph Signals
	Sobolev Smoothness of Time-Varying Graph Signals
	Sobolev Reconstruction
	Convergence Rate

	Experimental Framework
	Datasets
	Evaluation Metrics
	Experiments

	Results and Discussion
	Synthetic Graph and Signals
	Real Datasets Summary
	COVID-19 Datasets
	Environmental Datasets
	Additional Analysis

	Conclusions

	Conclusions
	Instance Segmentation
	Vector of Features
	Closed-form Solution Variational Problem
	Proof of Theorem 6.4.1
	Proof of Lemma 6.4.2
	Codebase
	Proof of Lemma 7.4.3
	Hyperparameters Search
	Proof of Theorem 8.4.1 (Conditioning Number)

