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Avant-propos / Foreword

Ce document est construit de la manière suivante. La première partie est une
introduction générale, comprenant deux chapitres. Le premier chapitre est une syn-
thèse de mes travaux de recherche, rédigée en français. Le second chapitre en est une
version en anglais. Les chapitres suivants, tous rédigés en anglais, regroupés en 4 par-
ties thématiques, détaillent chacun des travaux présentés dans la partie introductive.
Ils correspondent en général à des articles de recherche, qui ont été publiés dans une
revue ou sont actuellement soumis. Il s’agit la plupart du temps d’une version abré-
gée de l’article, ne contenant pas les démonstrations complètes. Souvent, le texte a
été simplifié, allégé ou réorganisé. Le dernier chapitre présente, de manière plus suc-
cincte, quelques collaborations interdisciplinaires supplémentaires. Le manuscrit se
clôt par une partie conclusive dédiée aux perspectives : un premier chapitre en fran-
çais puis un second chapitre en anglais mentionnent quelques travaux actuellement
en cours ainsi que mes principaux projets de recherche.

This document is constructed as follows. The first part is a general introduction,
consisting of two chapters. The first chapter is a synthesis of my research work, writ-
ten in French. The second chapter is the corresponding English version. Then, the
next chapters, all written in English, grouped in 4 thematic parts, detail each of the
works presented in the introductory part. Most of them correspond to research ar-
ticles, which have been published in a journal or are currently submitted. Usually, a
chapter is an abbreviated version of an article, without complete proofs. Often, the
text has been simplified, lightened or reorganized. The last chapter presents, more suc-
cinctly, some additional interdisciplinary collaborations. The manuscript ends with
a concluding part dedicated to perspectives : a first chapter in French and a second
chapter in English mention some work in progress and future research directions.
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Chapitre I.1

Présentation synthétique des travaux

I.1.1 Introduction

Mes thèmes de recherche concernent l’apprentissage statistique, la statistique
non paramétrique, et la théorie des probabilités. Une partie de mes contributions est
essentiellement théorique, tandis qu’une autre partie est consacrée à des applications
pratiques, dans le cadre de collaborations industrielles ou interdisciplinaires.

Apprentissage supervisé et non supervisé. L’apprentissage statistique com-
porte deux branches, l’apprentissage supervisé et l’apprentissage non supervisé. En
apprentissage non supervisé, on observe des données X1, . . . , Xn, supposées indépen-
dantes, de même loi qu’une variable aléatoire générique X, et le but est d’apprendre
certaines caractéristiques de la structure sous-jacente de X. En apprentissage super-
visé, on dispose de (X1, Y1), . . . , (Xn, Yn), copies indépendantes d’un couple (X, Y ),
et l’objectif est d’apprendre, grâce aux observations, la fonction reliant l’entrée X et
la sortie Y , afin de pouvoir prédire la sortie associée à une nouvelle entrée.

Problèmes étudiés. Le cas non supervisé au sens large correspond ici à la clas-
sification non supervisée (clustering) ainsi qu’à certaines questions concernant les
courbes principales. Un travail en déconvolution est aussi rattaché à ce cadre. Les
problèmes supervisés abordés dans ce document, en classification ou en régression,
sont tous liés à des stratégies d’agrégation et/ou à des problématiques réelles. Hormis
l’apprentissage statistique, les courbes principales sont également considérées avec un
point de vue probabiliste, puis dans un contexte d’estimation de courbe.

Optimalité minimax. Quelquefois, dans la suite, en discutant de la performance
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d’un estimateur, nous évoquerons l’optimalité au sens minimax. Dans un cadre gé-
néral où s ∈ S désigne une quantité inconnue à estimer et où la performance d’un
estimateur est mesurée grâce à un risque R, un estimateur S∗ est dit minimax s’il
vérifie

R(S∗, s) = inf
T

sup
s∈S

R(T, s),

où la borne inférieure est prise sur tous les estimateurs T de s possibles. Dans ce
contexte, supposons qu’un estimateur S vérifie R(S, s) ≤ Cψn pour tout s ∈ S, avec
(ψn)n≥1 une suite convergeant vers 0 et C > 0 une constante. Si, par ailleurs, on peut
trouver s tel que le meilleur estimateur possible ne converge pas à une vitesse plus
rapide que ψn, c’est-à-dire

inf
T

sup
s∈S

R(T, s) ≥ cψn,

où c > 0 est une constante, cette vitesse ψn est appelée vitesse de convergence
minimax, et l’estimateur S est donc optimal au sens minimax.

Dans tout le document, sauf mention contraire, Rd est muni de la norme eucli-
dienne | · |.

I.1.2 Courbes principales

Nous nous intéressons aux propriétés de régularité, ainsi qu’à la performance d’es-
timation des courbes principales contraintes, telles qu’introduites dans Kégl et al.
(2000). Selon la définition introduite par ces auteurs, une courbe principale f pour
une variable aléatoire X de carré intégrable est une fonction à valeurs dans Rd mi-
nimisant un critère E [d2(X, Imf)] sous une certaine contrainte, typiquement une
contrainte sur la longueur de la courbe. Ici, d(·, ·) représente la distance euclidienne
dans Rd et Imf ⊂ Rd désigne l’image de f . Cette notion de courbe principale corres-
pond également à une version du « problème de distance moyenne » étudié dans la
communauté de calcul des variations et d’optimisation de formes (Buttazzo et Stepa-
nov, 2003; Buttazzo et al., 2002). La version empirique du critère, pour un ensemble
d’observations X1, . . . , Xn, est 1

n

∑n
i=1 d

2(Xi, Imf). Dans la suite, nous considérons
aussi des mesures de distance plus générales.
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I.1.2.1 Sélection de modèle

Une première direction de recherche sur les courbes principales, concernant la
sélection de modèle, développée dans Biau et Fischer (2012) et Fischer (2013), est
présentée dans le Chapitre II.2. La construction d’une courbe principale empirique
suppose en effet le choix de certains paramètres de régularité (longueur, courbure,
nombre de segments pour une ligne polygonale...) qui déterminent la forme exacte de
la courbe. Intuitivement, l’objectif est de trouver la structure sous-jacente des don-
nées, en évitant l’interpolation. Considérant deux modèles différents, en estimation
et en apprentissage statistique respectivement, nous effectuons une sélection de para-
mètres basée sur la théorie de sélection de modèle par pénalisation (Massart, 2007).
Une garantie théorique sur l’estimateur sélectionné est fournie sous la forme d’une
inégalité de type oracle, exprimant que sa performance est proche de la meilleure
possible sur la collection de modèles considérée.

Dans Fischer (2013), nous étudions la sélection de la longueur dans l’estimation
par courbes principales dans un modèle gaussien. Plus précisément, nous observons
des vecteurs aléatoires X1, . . . , Xn à valeurs dans Rd tels que

Xi = x∗i + σξi, i = 1, . . . , n,

où les x∗i sont inconnus, les ξi sont des vecteurs gaussiens standards de Rd indépen-
dants, et σ > 0 représente le niveau de bruit, qui est supposé connu.

Soit {w`}`∈L une famille sommable de poids. Supposons que (x̂1,`, . . . , x̂n,`) mi-
nimise 1

n

∑n
i=1 |Xi − xi|2 en (x1, . . . , xn) ∈ (Imf)n où f appartient à une classe F`

de courbes de longueur ` avec les extrémités fixées. Alors, pour σ en-dessous d’un
certain seuil, si

pen(`) ≥ ησ2

[
c1

(
ln
(`1/dλ1−1/d

σ

)
+ c2

)
+

4w`
nd

]
,

où λ dépend de ` et de la distance entre les extrémités, presque sûrement, il existe
un minimiseur ˆ̀ du critère pénalisé

crit(`) =
1

nd

n∑
i=1

|Xi − x̂i`|2 + pen(`).

De plus, si x̃i = x̂iˆ̀ pour tout i = 1, . . . , n, on a

1

nd

n∑
i=1

E|x̃i − x∗i |2 ≤ c(η)
[

inf
`

{
inf
f∈F`

1

nd

n∑
i=1

d2(x∗i , Imf) + pen(`)
}

+
σ2

nd

]
.
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Dans Biau et Fischer (2012), la question de la sélection de paramètres est abor-
dée dans le contexte de l’apprentissage statistique. Les estimateurs sont des lignes
polygonales indexées par le nombre d’arêtes et la longueur ou la courbure. Nous
présentons ici le résultat de sélection de modèle pour la longueur.

Soit X1, . . . , Xn un échantillon d’un vecteur aléatoire générique X tel que P (X ∈
K) = 1, où K est un sous-ensemble convexe compact de Rd, de diamètre δ. On pose

∆(f) = E
[
d2(X, Imf)

]
, ∆n(f) =

1

n

n∑
i=1

d2(Xi, Imf),

et D(f, g) = ∆(g)−∆(f). Soit f ∗ un minimiseur de ∆(f).

On suppose que f̂k,` minimise le critère empirique ∆n(f) sur une classe Fk,` de
lignes polygonales de longueur au plus `, à k segments. Soit {xk,`}k,` une famille
sommable de poids. Il existe c, c0, . . . , c2, tels que, si

pen(k, `) ≥ 1√
n

[
c1

√
k + c2`+ c0

]
+ δ2

√
xk,`
2n

,

alors, si f̃ désigne la ligne polygonale sélectionnée en minimisant crit(k, `) = ∆n(f̂k,`)+
pen(k, `), on a

E[D(f ∗, f̃)] ≤ inf
k,`

[
inf

f∈Fk,`
D(f ∗, f) + pen(k, `)

]
+
δ2c√
n
.

I.1.2.2 Régularité

Dans l’article Delattre et Fischer (2020), exposé dans le Chapitre II.3, nous étu-
dions les propriétés théoriques satisfaites par une courbe principale f ∗ : [0, 1] → Rd

de longueur au plus L, associée à une loi de probabilité ayant un moment d’ordre 2.
On suppose que le support de la loi n’est pas l’image d’une courbe de longueur L.
Considérant des courbes optimales aussi bien ouvertes (ayant des extrémités) que fer-
mées (sans extrémités), nous montrons qu’elles ont une courbure finie et établissons
une équation d’Euler-Lagrange.

Plus précisément, notant

∆(f) = E
[
d2(X, Imf)

]
,

on définit, pour L ≥ 0,
G(L) = min{∆(f), f ∈ CL},
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où CL désigne l’un des deux ensembles de courbes suivants :

{f ∈ [0, 1]→ Rd,L (f) ≤ L},
{f ∈ [0, 1]→ Rd,L (f) ≤ L, f(0) = f(1)}.

Soit L > 0 tel que G(L) > 0 et soit f ∗ ∈ CL telle que ∆(f ∗) = G(L). Alors, la
longueur de f ∗ est égale à L. En supposant f ∗ L-lipschitzienne, nous obtenons les
propriétés suivantes :

— f ∗ est dérivable à droite sur [0, 1), |f ∗r ′(t)| = L pour tout t ∈ [0, 1),
— f ∗ est dérivable à gauche sur (0, 1], |f ∗`

′(t)| = L pour tout t ∈ (0, 1],

et il existe une unique mesure signée f ∗′′ sur [0, 1] (à valeurs dans Rd) telle que
— f ∗′′((s, t]) = f ∗r

′(t)− f ∗r ′(s) pour tout 0 ≤ s ≤ t < 1,
— f ∗′′([0, 1]) = 0.

En outre, si CL = {f : [0, 1]→ Rd,L (f) ≤ L}, on a
— f ∗′′({0}) = f ∗r

′(0),
— f ∗′′({1}) = −f ∗`

′(1).
De plus, il existe un unique λ > 0 et une variable aléatoire t̂ à valeurs dans [0, 1],

définie sur une extension (Ω̃, F̃ , P̃ ) de l’espace de probabilité (Ω,F , P ), tels que
— |X − f ∗(t̂)| = d(X, Imf ∗) p.s.,
— pour toute fonction borélienne bornée g : [0, 1]→ Rd,

E
[
〈X − f ∗(t̂), g(t̂)〉

]
= −λ

∫
[0,1]

〈g(t), f ∗′′(dt)〉.

En utilisant cette équation d’Euler-Lagrange, nous montrons ensuite qu’une courbe
principale avec contrainte de longueur en dimension 2 n’a pas de point multiple.

Enfin, nous présentons deux classes d’exemples de courbes optimales. Nous étu-
dions tout d’abord le problème de courbe principale pour la loi uniforme sur un
épaississement d’une certaine courbe générative.

Pour un ensemble A, on note

A⊕ r =
{
x ∈ Rd | d(x,A) ≤ r

}
l’épaississement de taille r de A. On considère une courbe générative g : [0, 1]→ Rd

et son épaississement de taille r, où r est inférieur au reach de Img. Le reach d’un
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ensemble A ⊂ Rd est la borne supérieure des rayons ρ tels que tout point à distance
au plus ρ de A a une unique projection sur A. Alors, l’image d’une courbe optimale
de longueur L (g) pour la loi uniforme sur un épaississement de taille r de Img est
Img elle-même.

Un autre exemple de courbe principale concerne la loi uniforme sur un cercle.
Considérons le cercle unité centré en l’origine paramétré par

g(t) = (cos(2πt), sin(2πt))

pour t ∈ [0, 1]. Soit U une variable aléatoire uniforme sur [0, 1] et soit X = g(U).

Alors, pour tout L < 2π, le cercle centré en l’origine de rayon
L

2π
est l’unique courbe

principale fermée de longueur L pour X.

I.1.2.3 Estimation

Soit g : [0, 1] → Rd une courbe rectifiable, telle que L (g) ≤ Λ < ∞, |g′(t)| =
L (g) dt−a.e., et L (g) = H1(Img). Pour n ≥ 1, soient Un

i , i = 1, . . . , n, des va-
riable aléatoires indépendantes à valeurs dans [0, 1], de support plein. On considère
le modèle

Xn
i = g(Un

i ) + εni , i = 1, . . . , n,

où g est inconnue et on s’intéresse à l’estimation de l’image de g, en distance de
Hausdorff. On suppose que le bruit est tel que 1

n

∑n
i=1 V (|εni |) converge vers 0 en

probabilité lorsque n tend vers l’infini. Ainsi, dans ce modèle, le bruit n’est pas
supposé borné.

Pour un vecteur aléatoire X tel que E[V (|X|)] < ∞, soit f : [0, 1] → Rd un
minimiseur de

∆(f) = E
[
V (d(X, Imf))

]
sur toutes les courbes de longueur au plus L > 0. Ici, V : R+ → R+ est une
fonction strictement croissante semi-continue inférieurement. Par exemple, on peut
avoir V (x) = xp, où p > 0, ou V (x) = x

1+x
. Cette définition est une généralisation de

la notion de courbe principale de Kégl et al. (2000). Une courbe principale empirique
f̂n,L associée à Xn

1 , . . . , X
n
n peut être définie comme un minimiseur, de longueur au

plus L, du critère

∆n(f) =
1

n

n∑
i=1

V (d(Xn
i , Imf)).
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On choisit f̂n,L L-lipschitzienne.

Nous proposons dans Delattre et Fischer (2021), présenté dans le Chapitre II.4,
une méthode pour construire une suite de courbes principales empiriques générali-
sées, avec sélection de la longueur, telles qu’en distance de Hausdorff, leurs images
convergent en probabilité vers l’image de g.

Plus précisément, soit L̂n définie par

L̂n ∈ arg min
L∈anN∩[0,Λn∧Λ]

[
V (L)D

(
1

n

n∑
i=1

δT (f̂n,L,X
n
i ),Mc

)
+ ∆n(f̂n,L)

]
.

Dans cette expression, an > 0 pour tout n ≥ 1, an → 0 lorsque n→ +∞,

Λn = inf{L ≥ 0, Gn(L) = 0}, où Gn(L) = min
L (f)≤L

∆n(f),

et
T (f, x) = max arg min

t∈[0,1]

|x− f(t)|.

Alors, la distance de Hausdorff

dH(Imf̂n,L̂n , Img)

converge en probabilité vers 0 lorsque n tend vers l’infini.

I.1.2.4 Vitesse de convergence en apprentissage statistique

Soit X un vecteur aléatoire tel que P (X ∈ K) = 1, où K est un sous-ensemble
compact de Rd. On considère un échantillon X1, . . . , Xn de X. On définit

∆(f) = E
[
d2(X, Imf)

]
, ∆n(f) =

1

n

n∑
i=1

d2(Xi, Imf).

On note f une courbe optimale de longueur au plus L pour X et f̂n une courbe
optimale empirique, construite sur l’échantillon X1, . . . , Xn :

f ∗ ∈ arg min
g,L (f)≤L

∆(f), f̂n ∈ arg min
g,L (f)≤L

∆n(f).
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L’objectif du Chapitre II.5 est d’étudier la vitesse de convergence vers 0 de
∆
(
f̂n
)
−∆(f ∗). Jusqu’ici, la meilleure vitesse de convergence avait été obtenue par

Kégl et al. (2000), qui ont construit une suite de courbes f̂n telle que

∆(f̂n)−∆(f ∗) = O(n−1/3).

Grâce à une approximation par des lignes polygonales plus fine, nous obtenons
une vitesse de convergence améliorée O(n−2/5).

I.1.3 Classification non supervisée, segmentation, et
déconvolution

I.1.3.1 Classification non supervisée avec des divergences de
Bregman

Une partie de mon travail de thèse portait sur le problème de quantification
d’une variable aléatoire à valeurs dans un espace de Banach séparable et réflexif,
ainsi que sur la question connexe de classification non supervisée par la méthode des
centres mobiles, en utilisant les divergences de Bregman comme mesures de proximité
(Fischer, 2010). Les résultats sont exposés dans le Chapitre III.1 en dimension finie.
C’est en effet le cadre dans lequel s’inscrit une extension présentée ci-dessous.

Si X désigne une variable aléatoire de loi µ, à valeurs dans un espace métrique
(E , d ), et X1, . . . , Xn sont des variables aléatoires indépendantes de même loi que X,
la quantification consiste à résumer X via un nombre fini k d’éléments de (E , d ), les
centres {c1, . . . , ck}, en minimisant la distorsion

E
[

min
j=1,...,k

d (X, cj)
]
.

Dans le cas où µ est inconnue, on peut effectuer une classification non supervisée des
données X1, . . . , Xn en minimisant la distorsion empirique

1

n

n∑
i=1

min
j=1,...,k

d (Xi, cj).

Une divergence de Bregman associée à la fonction strictement convexe φ est définie
par

dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉,
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où ∇ représente l’opérateur gradient. Cette classe de divergences, indexée par des
fonctions strictement convexes, englobe un large éventail de fonctions distance, qui
sont adaptées au partitionnement de mélanges de lois de la famille exponentielle.
Nous établissons des conditions pour l’existence d’un ensemble de centres optimaux
et démontrons la convergence presque sûre, pour la distorsion, d’un ensemble de
centres empiriques optimaux vers l’optimum théorique. De plus, nous obtenons une
vitesse de convergence 1√

n
.

Dans Brécheteau et al. (2021), résumé dans le Chapitre III.2, nous étudions une
version plus sophistiquée de la classification non supervisée avec les divergences de
Bregman, qui est robuste au bruit : étant donné un niveau de troncature h ∈ (0, 1],
nous recherchons à la fois des centres de classe optimaux et un sous-ensemble de don-
nées de masse au moins h pour µ. Nous étudions les propriétés théoriques de cette
procédure avec troncature. Nous prouvons l’existence d’un ensemble de centres opti-
maux et la convergence presque sûre d’un ensemble de centres empiriques optimaux,
et obtenons également une vitesse de convergence 1√

n
.

D’un point de vue pratique, nous développons une version de l’algorithme de
Lloyd avec un paramètre de troncature, ainsi qu’une heuristique pour sélectionner
ce paramètre et le nombre de classes à partir des données.

I.1.3.2 Une étude de détection de rupture

Dans Fischer et Picard (2020), sujet du Chapitre III.3, nous considérons l’esti-
mation d’un point de rupture dans un modèle gaussien, pour des observations éven-
tuellement de grande dimension, en utilisant une méthode de maximum de vraisem-
blance. Plus précisément, on observe des vecteurs aléatoires indépendants Y1, . . . , Yn
à valeurs dans Rd, tels que

Yi = θi + ηi, ηi ∼ N (0, σ2Id), indépendantes, 1 ≤ i ≤ n,

∀i ≤ nτ, θi = θ−,

∀i > nτ, θi = θ+.

Le but est d’estimer τ . L’estimateur du maximum de vraisemblance, également
appelé dans ce cas estimateur CUSUM, est obtenu en minimisant en k

k∑
i=1

d∑
j=1

(
Yi,j −

1

k

k∑
`=1

Y`,j

)2

+
n∑

i=k+1

d∑
j=1

(
Yi,j −

1

n− k

n∑
`=k+1

Y`,j

)2

.

21



Chapitre I.1 – Présentation synthétique des travaux

Nous nous intéressons à la manière dont une réduction de dimension peut affecter les
performances de la méthode. Ainsi, nous considérons également le critère pour une
dimension de projection p ≤ d au lieu de d. L’estimateur correspondant est noté τ̂(p).
Soient ∆2 =

∑d
j=1(θ−j − θ+

j )2, ∆2
p =

∑p
j=1(θ−j − θ+

j )2 et Ψn(p,∆p) = σ2

n∆2
p

(
1 ∨ σ2p

n∆2
p

)
.

Alors, pour tout γ > 0, il existe des constantes κ(γ, ε) et c(γ, ε) telles que, si

∆2
p ≥ c(γ, ε)

σ2 ln(n)

n
,

alors
P
(
|τ̂(p)− τ | ≥ κ(γ, ε) ln(n)Ψn(p,∆p)

)
≤ cn−γ,

où c est une constante absolue. D’après Korostelev et Lepski (2008), la vitesse de
convergence obtenue est minimax à un facteur logarithmique près. Elle est composée
d’une vitesse rapide, qui ne dépend pas de la dimension, et d’une vitesse lente qui se
détériore avec la dimension.

Ensuite, nous considérons le cas d’observations parcimonieuses, avec une régula-
rité de type Sobolev. Pour s > 0, on définit

Θ(s, L) =

{
θ ∈ Rd, sup

K∈N∗
K2s

∑
k≥K

(θk)
2 ≤ L2

}
,

et on suppose que les moyennes θ− et θ+ appartiennent à l’ensemble Θ(s, L).

Dans ce contexte, pour tout γ > 0, il existe des constantes κ(γ, ε) et c(γ, ε) telles
que, si

∆2 ≥
[
2c(γ, ε)

σ2 ln(n)

n
∨ 8L2p−2s

]
,

alors
P
(
|τ̂(p)− τ | ≥ κ(γ, ε) ln(n)Ψn(p,∆)

)
≤ cn−γ.

De plus, si ps =

(
8L2n

σ2

) 1
1+2s

, pour tout γ > 0, il existe des constantes κ(γ, ε) et

c(γ, ε) telles que, si

∆2 ≥

[
2c(γ, ε)

σ2 ln(n)

n
∨
(
σ2

n

) 2s
1+2s (

8L2
) 1

1+2s

]
,

P
(
|τ̂(ps)− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

)
≤ cn−γ.
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Cela montre qu’il existe un choix optimal de la dimension, conduisant à la vitesse
rapide.

En pratique, le ps optimal est inconnu. Nous proposons ainsi une procédure adap-
tative de réduction de la dimension basée sur la méthode de Lepski. Nous montrons
que l’estimateur obtenu atteint la vitesse de convergence rapide. Enfin, nous propo-
sons des stratégies pour effectuer la réduction de dimension en pratique.

I.1.3.3 Déconvolution Wasserstein en dimension 1

Lors de l’estimation d’une mesure par la mesure empirique associée, ou, dans un
contexte bruité, par un estimateur par déconvolution, il peut être utile de contrôler la
distance de Wasserstein entre les deux mesures, en particulier dans le contexte de l’in-
férence géométrique, en relation avec un outil appelé « distance à la mesure » (Chazal
et al., 2011).

L’article Dedecker et al. (2015), repris dans le Chapitre III.4, traite de l’estima-
tion d’une mesure de probabilité µ sur la droite réelle à partir de données observées
avec un bruit additif. On observe Yi = Xi + εi, où les Xi sont indépendantes, de
loi de probabilité inconnue µ. Les variables aléatoires εi, i = 1, . . . , n, sont indépen-
dantes et distribuées selon une mesure de probabilité connue µε, non nécessairement
symétrique. On suppose que (X1, . . . , Xn) est indépendant de (ε1, . . . , εn).

Nous nous intéressons à la vitesse de convergence pour la distance de Wasserstein
d’ordre p ≥ 1. La loi connue des erreurs est supposée appartenir à une classe de lois
de probabilité ordinairement ou super régulières.

On note µ∗ (respectivement f ∗) la transformée de Fourier de la mesure de pro-
babilité µ (respectivement de la fonction intégrable f), c’est-à-dire

µ∗(x) =

∫
R
eiuxµ(du) et f ∗(x) =

∫
R
eiuxf(u)du.

Soit F la fonction de répartition de µ. On définit l’estimateur µ̃n de la mesure µ
comme la mesure de probabilité avec la fonction de répartition F̃n, un estimateur de
F construit en deux étapes. On construit tout d’abord un estimateur préliminaire
F̂n de F , en utilisant un noyau symétrique positif k avec une régularité appropriée :

F̂n(t) =
1

nh

∫ t

−∞

n∑
k=1

k̃h

(
u− Yk
h

)
du,
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où
k̃h(x) =

1

2π

∫
eiuxk∗(u)

µ∗ε(−u/h)
du.

Observons que cet estimateur F̂n, basé sur l’estimateur de déconvolution standard
à noyau de la densité k̃h, introduit pour la première fois par Carroll et Hall (1988),
n’est pas une fonction de répartition puisqu’il n’est pas nécessairement croissant. Par
conséquent, on choisit pour l’estimateur F̃n un minimiseur approché, sur toutes les
fonctions de répartition, de la quantité

∫
R |x|

p−1|F̂n − G|(x)dx : étant donné ρ > 0,
F̃n est telle que, pour toute fonction de répartition G,∫

|x|p−1|F̂n − F̃n|(x)dx ≤
∫
|x|p−1|F̂n −G|(x)dx+ ρ .

Pour cet estimateur, nous obtenons une borne supérieure améliorée dans le cas ordi-
nairement régulier et des conditions moins restrictives pour la borne existante dans
le cas super régulier.

Soit ρ ≤ n−1/2. On pose rε = 1/µ∗ε. On fait les hypothèses suivantes :∫ ∞
0

|x|p−1
√
P (|Y | ≥ x)dx <∞ et sup

t∈[−2,2]

|r(m0)
ε (t)| <∞.

1. On suppose qu’il existe β > 0, β̃ ≥ 0, γ > 0 et c > 0, tels que pour tout
` ∈ {0, 1, . . . ,m1} et tout t ∈ R,

|r(`)
ε (t)| ≤ c(1 + |t|)β̃ exp(|t|β/γ).

Alors, si h = (4/(γ log n))1/β, il existe une constante C > 0 telle que

E[W p
p (µ̃n, µ)] ≤ C(log n)−p/β.

2. On suppose qu’il existe β > 0 et c > 0, tels que pour tout ` ∈ {0, 1, . . . ,m1} et
tout t ∈ R,

|r(`)
ε (t)| ≤ c(1 + |t|)β.

Alors, si h = n
− 1

2p+(2β−1)+ , il existe une constante C > 0 telle que

E[W p
p (µ̃n, µ)] ≤ Cψn ,

où

ψn =


n−

p
2p+2β−1 si β > 1

2√
logn
n

si β = 1
2

1√
n

si β < 1
2
.
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Dans le cas ordinairement régulier, nous établissons également une borne inférieure.
Soient M > 0, q ≥ 1. On définit D(M, q) comme l’ensemble des mesures µ sur R
telles que

∫
|x|qdµ(x) ≤M . Supposons qu’il existe β > 0 et c > 0, tels que pour tout

` ∈ {0, 1, 2} et tout t ∈ R,

|µ∗ε
(`)(t)| ≤ c(1 + |t|)−β.

Alors, il existe une constante C > 0 telle que, pour tout estimateur µ̂,

lim inf
n→+∞

n
p

2β+1 sup
µ∈D(M,q)

E[W p
p (µ̂, µ)] > C.

I.1.4 Agrégation d’estimateurs

L’intérêt pour l’agrégation de différentes procédures statistiques n’a cessé de
croître ces dernières années. En effet, avec le nombre croissant de méthodes d’es-
timation disponibles, il semble naturel d’essayer de combiner plusieurs procédures,
en recherchant la garantie d’une certaine optimalité. Dans de nombreuses méthodes
d’agrégation, la prédiction pour une nouvelle observation x est calculée à l’aide d’une
combinaison linéaire ou convexe d’une collection d’estimateurs. Les stratégies abor-
dées dans ce document sont basées sur l’idée introduite en classification par Mojirshei-
bani (1999, 2000, 2002a,b). Il s’agit de combiner plusieurs classifieurs, en s’appuyant
sur une notion de consensus. La méthode consiste à calculer la prédiction associée à
une nouvelle observation en combinant les vraies étiquettes de certaines des données
d’apprentissage, une donnée étant sélectionnée si les prédictions calculées pour ce
point avec les différents estimateurs initiaux sont les mêmes que la prédiction pour
la nouvelle observation à classer.

I.1.4.1 Agrégation consensuelle pour la régression

En partant de l’idée de Mojirsheibani (1999) en classification, nous proposons
dans Biau et al. (2016), présenté dans le Chapitre IV.1, une approche connexe dans
le contexte de la régression. Au lieu de demander des prédictions égales pour sé-
lectionner une donnée, ce qui n’a pas de sens pour des sorties continues, on met la
condition qu’elles soient proches, que l’écart ne dépasse pas un certain seuil.

Plus précisément, si r = (r1, . . . , rM) désigne la collection d’estimateurs indivi-
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duels, l’estimateur combiné est donné par

Tn (r(x)) =
n∑
i=1

Wn,i(x)Yi, x ∈ Rd,

où

Wn,i(x) =
1⋂M

m=1{|rm(x)−rm(Xi)|≤ε}∑n
j=1 1⋂M

m=1{|rm(x)−rm(Xj)|≤ε}
.

On montre que l’estimateur est asymptotiquement au moins aussi performant, au
sens L2, que la meilleure combinaison des estimateurs de la liste initiale, et donc, en
particulier, que le meilleur parmi ces estimateurs.

Plus formellement, pour toute loi de (X, Y ) avec E[Y 2] <∞,

E[|Tn(r(X))− r?(X)|]2

≤ E[|Tn(r(X))− T (r(X))|]2 + inf
f
E[|f(r(X))− r?(X)|]2,

où la borne inférieure est prise sur toutes les fonctions de carré intégrable de r(X).
En particulier,

E[|Tn(r(X))− r?(X)|2]

≤ min
m=1,...,M

E[|rm(X)− r?(X)|]2 + E|Tn(r(X))− T (r(X))|2.

De plus, on obtient pour le terme E[|Tn(r(X)) − T (r(X))|]2, qui représente le
prix à payer pour l’agrégation, une vitesse de convergence de n−

2
M+2 . Il s’agit de la

vitesse non paramétrique habituelle, le nombre d’estimateurs initiaux jouant ici le
rôle de la dimension.

I.1.4.2 Prise en compte des distances entre observations

Dans Fischer et Mougeot (2019), exposé dans le Chapitre IV.2, nous introdui-
sons une nouvelle stratégie d’apprentissage, basée sur la même idée de consensus,
impliquant également des informations de distance entre les entrées.

Dans le schéma original introduit dans Mojirsheibani (1999) et Biau et al. (2016),
la condition d’égalité ou de proximité est en fait requise pour tous les estimateurs
individuels, ce qui ne paraît pas très opportun s’il existe un mauvais estimateur
initial. Mojirsheibani (2002a) note que cette règle peut sembler trop restrictive et
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propose donc d’autoriser quelques désaccords (typiquement, un seul). Le classifieur
obtenu demeure convergent à condition que le nombre de classifieurs ne présentant
pas de désaccord tende vers l’infini. De même, dans Biau et al. (2016), nous notons
que la contrainte d’unanimité peut être assouplie en pratique en demandant que la
condition de distance pour conserver une observation soit vérifiée pour une certaine
proportion γ des estimateurs au moins (par exemple, γ = 80%). Ici, nous proposons
une nouvelle approche, basée sur les distances entre les observations, qui vise égale-
ment à réduire l’effet d’un éventuel mauvais estimateur initial. Adoptant un point
de vue « noyau », nous proposons un estimateur combiné avec des poids construits
en associant les distances entre les entrées avec les distances entre les prédictions
provenant des estimateurs individuels.

Soit K : Rd+p 7→ R+ un noyau régulier, et soit g : Rd × Rp → R+ telle que
g(v1, v2) = K(v), où v ∈ Rd+p est la concaténation de v1 ∈ Rd et v2 ∈ Rp.

On note f = (f1, . . . , fp) la collection des estimateurs initiaux. En régression,
l’estimateur combiné est défini par

Tn(x) =

∑n
i=1 Yig

(
Xi−x
α
, f(Xi)−f(x)

β

)
∑n

i=1 g
(
Xi−x
α
, f(Xi)−f(x)

β

) ,

Pour la classification, le classifieur combiné est donné par

Cn(x) =

{
0 si

∑n
i=1 Yig

(
Xi−x
α
, f(Xi)−f(x)

β

)
≤
∑n

i=1(1− Yi)g
(
Xi−x
α
, f(Xi)−f(x)

β

)
1 sinon.

Notre motivation pour introduire une telle stratégie est l’intuition que profiter de
l’efficacité de l’idée de consensus de Mojirsheibani (1999) et Biau et al. (2016) sans
pour autant laisser de côté les informations sur la proximité entre les entrées devrait
permettre d’améliorer la prédiction, surtout en présence d’un estimateur initial peu
performant. Nous prouvons la convergence de la procédure en classification et en
régression. En pratique, pour appliquer cette méthode, il faut trouver les fenêtres α
et β optimales. En particulier, grâce à un équilibre adéquat entre les deux termes
intervenant dans les poids, la procédure reste relativement robuste lorsque les entrées
sont de grande dimension : un plus grand poids est mis sur les sorties dans ce cas.
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I.1.4.3 Classification non supervisée pour les modèles prédic-
tifs

Dans Fischer et al. (2021), qui fait l’objet du Chapitre IV.3, nous nous inté-
ressons aux problèmes d’apprentissage où les données d’entrée sont constituées de
plusieurs groupes inconnus, liés à différents modèles prédictifs sous-jacents. Un tel
cadre est particulièrement pertinent pour modéliser certains phénomènes physiques
avec des transitions de phase, ou dans les situations où certaines informations sont
manquantes en raison des lois sur la protection de la vie privée.

Nous proposons une procédure en trois étapes pour résoudre ce type de problème.
La première étape consiste à appréhender la structure de groupe des données d’entrée,
qui peut être caractérisée par plusieurs lois de probabilité. En utilisant plusieurs
divergences de Bregman comme mesures de proximité pour le partitionnement, nous
espérons récupérer précisément la structure sous-jacente pour une grande variété de
lois possibles. Pour chaque partition obtenue, la deuxième étape consiste à ajuster un
modèle prédictif spécifique basé sur les données contenues dans chaque classe. Ainsi, à
ce stade, nous disposons d’un certain nombre de modèles, correspondant à différentes
partitions de Bregman, chacun de ces modèles étant constitué de plusieurs sous-
modèles simples ajustés sur un certain groupe de la partition. Enfin, le modèle global
est calculé en agrégeant les modèles correspondant aux différentes partitions. Cette
étape de combinaison est basée sur les méthodes présentées dans les Sections I.1.4.1
et I.1.4.2 ci-dessus.

Nous réalisons des expériences numériques sur différents jeux de données simulées
et réelles, mettant en évidence la bonne performance de cette méthode en trois étapes
dans différents problèmes prédictifs.

I.1.5 Collaborations interdisciplinaires

Au cours de ces dernières années, j’ai eu l’occasion de m’investir dans plusieurs
collaborations interdisciplinaires. La majeure partie d’entre elles porte sur les thèmes
de l’énergie ou du climat.
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I.1.5.1 Modélisation de la production d’énergie électrique

Dans l’article Fischer et al. (2017), détaillé dans le Chapitre V.1, nous nous
intéressons à la modélisation de l’énergie éolienne en utilisant des techniques d’ap-
prentissage statistique. Nous disposons de données réelles mesurées sur des éoliennes,
fournies par la société d’énergie éolienne Maïa Eolis (aujourd’hui Engie Green). Les
observations proviennent de 3 parcs différents, de 4 à 6 turbines, situés dans le Nord
et l’Est de la France, pour la période de 2011 à 2014. Dans un parc, chaque éolienne
fournit, avec un pas de temps de 10 minutes, des mesures de la puissance électrique,
de la vitesse et de la direction du vent, de la température, ainsi qu’un indicateur de
l’état de fonctionnement de l’éolienne. La puissance électrique de l’ensemble du parc
est également fournie avec le même pas de temps.

Nous modélisons la puissance électrique en fonction des données de vent et de
température, en testant plusieurs algorithmes, paramétriques ou non paramétriques.
Nous obtenons des résultats particulièrement stables et satisfaisants en agrégeant
plusieurs arbres de décision au moyen d’une procédure bagging. Comme première
étape vers la prévision, nous quantifions également l’impact de l’utilisation de don-
nées moyennées au lieu de mesures locales : l’objectif est d’imiter les données plus
globales fournies par un météorologue.

I.1.5.2 Réduction d’échelle pour la vitesse du vent

Les Chapitres V.2 et V.3, correspondant respectivement aux articles Alonzo et al.
(2018) et Goutham et al. (2021), sont le résultat d’une collaboration avec Riwal
Plougonven, professeur au Laboratoire de Météorologie Dynamique (LMD) à l’École
Polytechnique. Nous avons eu l’occasion d’encadrer ensemble à deux reprises des pro-
jets de troisième année d’étudiants de l’École Polytechnique. Les recherches initiées
lors de ces projets ont ensuite été poursuivies dans le cadre de la thèse de Bastien
Alonzo (actuellement chercheur post-doctoral chez Météo France), et du stage de
Master 1 de Naveen Goutham (actuellement doctorant au LMD sous la direction
de Riwal Plougonven). Nos collaborations portent sur une question de réduction
d’échelle, c’est-à-dire l’estimation d’une quantité locale en se basant sur des observa-
tions réelles à l’endroit considéré et sur des sorties de modèle numérique de prévision
météorologique à plus grande échelle. La variable d’intérêt est la vitesse du vent, à
10m et 100m.

Dans Alonzo et al. (2018), nous comparons les performances de deux méthodes
statistiques de réduction d’échelle, respectivement basées sur la régression linéaire et
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les forêts aléatoires, pour la reconstruction et la prévision de la vitesse du vent dans
un lieu précis, à savoir la plateforme d’observation du SIRTA (Site Instrumental de
Recherche par Télédétection Atmosphérique) située sur le plateau de Saclay. On uti-
lise des sorties de modèles du Centre Européen pour les Prévisions Météorologiques
à Moyen Terme (CEPMMT). Les données provenant du CEPMMT pour la vitesse
du vent à 10m montrent un biais systématique, alors qu’à 100m, la vitesse du vent
est mieux représentée. Notre étude montre que les méthodes d’apprentissage statis-
tique paramétriques et non paramétriques conduisent à des résultats comparables.
Un modèle linéaire associé à un pré-traitement et à une sélection de variables judi-
cieuse montre des performances légèrement supérieures à celles des forêts aléatoires.
Néanmoins, ces dernières constituent une option intéressante minimisant le temps
nécessaire au pré-traitement et au calibrage des modèles.

Dans Goutham et al. (2021), cette méthodologie est étendue à plus de 150 stations
réparties sur les territoires de France métropolitaine et de Corse, correspondant à
plusieurs contextes géographiques. Différentes méthodes d’apprentissage statistique
sont testées : régression linéaire, k plus proches voisins, forêts aléatoires, boosting.
Le modèle basé sur les forêts aléatoires est ensuite exploré plus avant afin de réduire
la liste des variables explicatives. La valeur ajoutée de l’utilisation des méthodes
statistiques est indéniable, et on constate par exemple que l’amélioration est plus
significative pour les stations côtières, où les erreurs des données fournies par le
CEPMMT sont les plus importantes.

I.1.6 Autres collaborations appliquées

J’ai également eu l’opportunité de participer à d’autres collaborations interdis-
ciplinaires, résumées dans le Chapitre V.4, notamment en m’impliquant dans des
activités d’encadrement doctoral. En particulier, j’ai pris part à l’encadrement d’une
thèse en informatique, appliquée à la biologie pour la cancérologie, ainsi qu’à une
thèse en linguistique, plus précisément en phonétique. Par ailleurs, j’ai participé à
des travaux de recherche en astrophysique nécessitant des outils d’apprentissage sta-
tistique, dans le cadre d’une collaboration avec le CEA.
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Chapter I.2

Summary of research directions

I.2.1 Introduction

My research interests focus on statistical learning, nonparametric statistics, and
probability theory. One part of my contributions is essentially theoretical, whereas
another part concerns applications to practical problems, in the frame of industrial
or interdisciplinary collaborations.

Supervised and unsupervised learning. Statistical learning may be divided
in two branches, supervised learning and unsupervised learning. In unsupervised
learning, we observe X1, . . . , Xn, supposed to be independent, with the same distri-
bution as a generic random variable X, and the goal is to learn some features of
the underlying structure of X. In supervised learning, however, we have at hand
(X1, Y1), . . . , (Xn, Yn), independent copies of a generic pair (X, Y ), and the aim is to
learn the relationship between the input X and the output Y , based on the obser-
vations, to be able to predict the output associated with a new input.

Problems considered. Here, the unsupervised scheme in the broad sense cor-
responds to cluster analysis as well as some questions related to principal curves.
A deconvolution study is also attached to this framework. Besides, the supervised
problems of classification and regression investigated in the present document are all
linked to aggregation strategies, and / or to real-life questions. Apart from statistical
learning, principal curves are also considered from a probabilistic point of view, and
then in a curve estimation context.

Minimax optimality. Sometimes, in the sequel, when discussing the performance
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of an estimator, we will refer to optimality in the minimax sense. In a general
framework where s ∈ S denotes an unknown quantity to be estimated and the
performance of an estimator is measured via a risk R, an estimator S∗ is said to be
minimax if it satisfies

R(S∗, s) = inf
T

sup
s∈S

R(T, s),

where the lower bound is taken over all possible estimators T of s. In this context,
suppose that an estimator S is such that R(S, s) ≤ Cψn for every s ∈ S, with (ψn)n≥1

a sequence converging to 0 and C > 0 a constant. If, on the other hand, we can find
s such that the best possible estimator does not converge at a faster rate than ψn,
that is

inf
T

sup
s∈S

R(T, s) ≥ cψn,

where c > 0 is a constant, this rate ψn is called the minimax rate of convergence,
and the estimator S is thus optimal in the minimax sense.

Throughout the document, unless otherwise stated, Rd is equipped with the Eu-
clidean norm | · |.

I.2.2 Principal curves

We are interested in regularity properties as well as estimation capabilities of
constrained principal curves, as introduced in Kégl et al. (2000). According to their
definition, a principal curve f for a square integrable random variable X is an Rd-
valued function minimizing a criterion E [d2(X, Imf)] under some constraint, typ-
ically on the length of the curve. Here, d(·, ·) stand for the Euclidean distance in
Rd and Imf ⊂ Rd is the range of f . Principal curves optimization also corresponds
to a version of the “average-distance problem” studied in the calculus of variation
and shape optimization community (Buttazzo and Stepanov, 2003; Buttazzo et al.,
2002). The empirical version of the criterion, for a set of observations X1, . . . , Xn, is
1
n

∑n
i=1 d

2(Xi, Imf). In the sequel, we also consider more general distance measures.

I.2.2.1 Model selection

A first research direction on principal curves, pertaining to model selection tasks,
developed in Biau and Fischer (2012) and Fischer (2013), is presented in Chapter II.2.
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The construction of an empirical principal curve relies indeed on some regularity pa-
rameters (number of segments, length, turn...) which drive the exact shape of the
curve. Intuitively, the aim is to recover the underlying structure of the data, with-
out interpolating. Considering two different models, in estimation and in statistical
learning respectively, we perform parameter selection based on model selection via
penalization (Massart, 2007). A theoretical guarantee on the selected estimator is
provided by means of a so-called oracle inequality, expressing that its performance
is close to the best possible over the considered collection of models.

In Fischer (2013), we focus on length selection in estimation via principal curves
in a Gaussian model. More specifically, we observe random vectors X1, . . . , Xn with
values in Rd such that

Xi = x∗i + σξi, i = 1, . . . , n,

where the x∗i are unknown, the ξi are independent standard Gaussian vectors of Rd

and σ > 0 stands for the noise level, which is supposed known.

Let {w`}`∈L be a summable family of weights. Assume that (x̂1,`, . . . , x̂n,`) min-
imizes 1

n

∑n
i=1 |Xi − xi|2 among all (x1, . . . , xn) ∈ (Imf)n where f belongs to some

class F` of curves with length ` and fixed endpoints. Then, for σ below a certain
threshold, if

pen(`) ≥ ησ2

[
c1

(
ln
(`1/dλ1−1/d

σ

)
+ c2

)
+

4w`
nd

]
,

where λ depends on ` and the distance between the endpoints, then, almost surely,
there exists a minimizer ˆ̀ of the penalized criterion

crit(`) =
1

nd

n∑
i=1

|Xi − x̂i`|2 + pen(`).

Moreover, if x̃i = x̂iˆ̀ for all i = 1, . . . , n, we have

1

nd

n∑
i=1

E|x̃i − x∗i |2 ≤ c(η)
[

inf
`

{
inf
f∈F`

1

nd

n∑
i=1

d2(x∗i , Imf) + pen(`)
}

+
σ2

nd

]
.

In Biau and Fischer (2012), the parameter selection issue is addressed in a statis-
tical learning framework. The estimators are polygonal lines indexed by their number
of edges and their length or turn. We present here the model selection result for the
length.
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LetX1, . . . , Xn denote a sample from a generic random vectorX satisfying P (X ∈
K) = 1, where K is a convex compact subset of Rd, with diameter δ. We set

∆(f) = E
[
d2(X, Imf)

]
, ∆n(f) =

1

n

n∑
i=1

d2(Xi, Imf),

and D(f, g) = ∆(g)−∆(f). Let f ∗ denote a minimizer of ∆(f).

We suppose that f̂k,` minimizes the empirical criterion ∆n(f) over some class
Fk,` of polygonal lines with k segments and length at most `. Let {xk,`}k,` denote a
summable family of weights. There exist c, c0, . . . , c2, such that, if

pen(k, `) ≥ 1√
n

[
c1

√
k + c2`+ c0

]
+ δ2

√
xk,`
2n

,

then letting f̃ denote the polygonal line selected by minimizing crit(k, `) = ∆n(f̂k,`)+
pen(k, `), we have

E[D(f ∗, f̃)] ≤ inf
k,`

[
inf

f∈Fk,`
D(f ∗, f) + pen(k, `)

]
+
δ2c√
n
.

I.2.2.2 Regularity

In Delattre and Fischer (2020), exposed in Chapter II.3, we investigate the theo-
retical properties satisfied by a principal curve f ∗ : [0, 1]→ Rd with length at most L,
associated to a probability distribution with second-order moment. We suppose that
the probability distribution is not supported on the image of a curve with length L.
Studying open (with endpoints) as well as closed (without endpoints) optimal curves,
we show that they have finite curvature and derive an Euler-Lagrange equation.

More specifically, setting

∆(f) = E
[
d2(X, Imf)

]
,

we define, for L ≥ 0,
G(L) = min{∆(f), f ∈ CL},

where CL will denote either one of the following sets of curves:

{f ∈ [0, 1]→ Rd,L (f) ≤ L},
{f ∈ [0, 1]→ Rd,L (f) ≤ L, f(0) = f(1)}.
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Let L > 0 such that G(L) > 0 and let f ∗ ∈ CL such that ∆(f ∗) = G(L). Then,
the length of f ∗ equals L. Assuming that f ∗ is L-Lipschitz, we obtain that

— f ∗ is right-differentiable on [0, 1), |f ∗r ′(t)| = L for all t ∈ [0, 1),
— f ∗ is left-differentiable on (0, 1], |f ∗`

′(t)| = L for all t ∈ (0, 1],

and there exists a unique signed measure f ∗′′ on [0, 1] (with values in Rd) such that
— f ∗′′((s, t]) = f ∗r

′(t)− f ∗r ′(s) for all 0 ≤ s ≤ t < 1,
— f ∗′′([0, 1]) = 0.

In the case CL = {f : [0, 1]→ Rd,L (f) ≤ L}, we also have
— f ∗′′({0}) = f ∗r

′(0),
— f ∗′′({1}) = −f ∗`

′(1).
Moreover, there exists a unique λ > 0 and there exists a random variable t̂ with

values in [0, 1], defined on an extension (Ω̃, F̃ , P̃ ) of the probability space (Ω,F , P ),
such that

— |X − f ∗(t̂)| = d(X, Imf ∗) a.s.,
— for every bounded Borel function g : [0, 1]→ Rd,

E
[
〈X − f ∗(t̂), g(t̂)〉

]
= −λ

∫
[0,1]

〈g(t), f ∗′′(dt)〉.

Using this Euler-Lagrange equation, we then show that a length-constrained prin-
cipal curve in two dimensions has no multiple point.

Finally, two classes of examples of optimal curves are presented. First, we study
the principal curve problem for the uniform distribution on an enlargement of some
generative curve. For a set A, we denote by

A⊕ r =
{
x ∈ Rd | d(x,A) ≤ r

}
the r-enlargement of A. We consider a generative curve g : [0, 1] → Rd and its
r-enlargement , where r does not exceed the reach of Img. Here, the reach of a set
A ⊂ Rd is the supremum of the radii ρ such that every point at distance at most ρ
of A has a unique projection on A. The image of an optimal curve with length L (g)
for the uniform distribution on an r-enlargement of Img is Img itself.

Another example is about the uniform distribution on a circle. Consider the unit
circle centered at the origin with parameterization given by

g(t) = (cos(2πt), sin(2πt))
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for t ∈ [0, 1]. Let U be a uniform random variable on [0, 1] and let X = g(U). Then,

for every L < 2π, the circle centered at the origin with radius
L

2π
is the unique closed

principal curve with length L for X.

I.2.2.3 Estimation

Let g : [0, 1] → Rd be a rectifiable curve, satisfying L (g) ≤ Λ < ∞, |g′(t)| =
L (g) dt−a.e., and L (g) = H1(Img). For n ≥ 1, let Un

i , i = 1, . . . , n, denote
independent random variables taking their values in [0, 1], with full support. Consider
the model

Xn
i = g(Un

i ) + εni , i = 1, . . . , n,

where g is unknown and we are interested in the estimation of the image of g, in
Hausdorff distance. The noise is supposed to be such that 1

n

∑n
i=1 V (|εni |) tends to 0

in probability as n tends to infinity. Let us stress that the noise is not assumed to
be bounded.

Given a random vector X such that E[V (|X|)] < ∞, let f : [0, 1] → Rd be a
minimizer of

∆(f) = E
[
V (d(X, Imf))

]
over all curves with length not greater than a certain threshold. Here, V : R+ → R+

is a lower semi-continuous strictly increasing function. For instance, V (x) = xp,
where p > 0, or V (x) = x

1+x
. This definition is a generalization of the principal

curve notion of Kégl et al. (2000). An empirical principal curve f̂n,L associated to
Xn

1 , . . . , X
n
n may be defined as a minimizer, with length at most L, of the criterion

∆n(f) =
1

n

n∑
i=1

V (d(Xn
i , Imf)).

We choose f̂n,L L-Lipschitz.

In Delattre and Fischer (2021), presented in Chapter II.4, we propose a method
to build a sequence of generalized empirical principal curves, with selected length, so
that, in Hausdorff distance, the images of the estimating principal curves converge
in probability to the image of g.

More specifically, let L̂n be defined by

L̂n ∈ arg min
L∈anN∩[0,Λn∧Λ]

[
V (L)D

(
1

n

n∑
i=1

δT (f̂n,L,X
n
i ),Mc

)
+ ∆n(f̂n,L)

]
.
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In this expression, an > 0 for every n ≥ 1, an → 0 as n→∞,

Λn = inf{L ≥ 0, Gn(L) = 0}, where Gn(L) = min
L (f)≤L

∆n(f),

and
T (f, x) = max arg min

t∈[0,1]

|x− f(t)|.

Then, the Hausdorff distance

dH(Imf̂n,L̂n , Img)

converges in probability to 0 as n tends to infinity.

I.2.2.4 Rate of convergence in statistical learning

Let X be a random vector such that P (X ∈ K) = 1, where K is a compact
subset of Rd, and let X1, . . . , Xn denote independent realizations of X. We define

∆(f) = E
[
d2(X, Imf)

]
, ∆n(f) =

1

n

n∑
i=1

d2(Xi, Imf),

We denote by f an optimal curve with length at most L for X and by f̂n an empirical
counterpart, built on the sample X1, . . . , Xn:

f ∗ ∈ arg min
g,L (f)≤L

∆(f), f̂n ∈ arg min
g,L (f)≤L

∆n(f).

The purpose of Chapter II.5 is to study the rate of convergence to 0 of ∆
(
f̂n
)
−

∆(f ∗). So far, the best rate of convergence has been obtained by Kégl et al. (2000),
who constructed a sequence of curves f̂n, such that

∆(f̂n)−∆(f ∗) = O(n−1/3).

Thanks to a refined approximation by piecewise linear curves, we obtain an im-
proved rate of convergence, that is O(n−2/5).
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I.2.3 Cluster analysis, segmentation, and deconvo-
lution

I.2.3.1 Bregman clustering

A part of my PhD research work dealt with the quantization problem of a random
variable with values in a separable and reflexive Banach space, and with the related k-
means clustering issue, using Bregman divergences as proximity measures (Fischer,
2010). The results in finite dimension are reported in Chapter III.1. Indeed, the
extension presented below pertains to the finite-dimensional framework. IfX denotes
a random variable with distribution µ, taking its values in a metric space (E , d ), and
X1, . . . , Xn are independent realizations of X, quantization consists in summarizing
X through a finite number k of elements in (E , d ), a so-called codebook {c1, . . . , ck},
by minimizing the distortion

E
[

min
j=1,...,k

d (X, cj)
]
.

The associated clustering task for the data X1, . . . , Xn, in the case where µ is un-
known, relies on the minimization of the empirical distortion

1

n

n∑
i=1

min
j=1,...,k

d (Xi, cj).

A Bregman divergence associated to the strictly convex function φ is defined by

dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉,

where ∇ stands for the gradient operator. This class of divergences, indexed by
strictly convex functions, encompasses a wide range of distance-like functions, which
are well-suited to perform clustering of exponential families mixtures. We provide
conditions for the existence of an optimal codebook and show almost sure conver-
gence, in terms of distortion, of an empirically optimal codebook to the theoretical
optimum. Moreover, we obtain a rate of convergence of 1√

n
. In Brécheteau et al.

(2021), summarized in Chapter III.2, we study a more sophisticated version of clus-
tering with Bregman divergences, which is robust to noise thanks to a trimming
approach: given a trim level h ∈ (0, 1], we search for optimal cluster centers along
with a subset of the data with mass at least h for µ. We investigate the theoretical
properties of this trimmed k-means procedure. We prove the existence of an opti-
mal codebook and almost sure convergence of an empirically optimal codebook. We
obtain again a rate of convergence of 1√

n
.
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From a practical point of view, we derive an associated Lloyd-type algorithm
with a trimming parameter, along with a heuristic to select this parameter and the
number of clusters from the sample.

I.2.3.2 A change-point study

In Fischer and Picard (2020), subject of Chapter III.3, we consider the estimation
of a change-point for possibly high-dimensional data in a Gaussian model, using
a maximum likelihood method. More precisely, we observe independent random
vectors Y1, . . . , Yn with values in Rd, such that

Yi = θi + ηi, ηi ∼ N (0, σ2Id), independent, 1 ≤ i ≤ n,

∀i ≤ nτ, θi = θ−,

∀i > nτ, θi = θ+.

The goal is to estimate τ . The maximum likelihood estimator, also called in this
case CUSUM estimator, is obtained by minimizing in k

k∑
i=1

d∑
j=1

(
Yi,j −

1

k

k∑
`=1

Y`,j

)2

+
n∑

i=k+1

d∑
j=1

(
Yi,j −

1

n− k

n∑
`=k+1

Y`,j

)2

.

We are interested in how dimension reduction can affect the performance of the
method, and thus, we also consider this criterion for a projection dimension p ≤ d
instead of d. The corresponding estimator is called τ̂(p). Let

∆2 =
d∑
j=1

(θ−j − θ+
j )2, ∆2

p =

p∑
j=1

(θ−j − θ+
j )2,

and
Ψn(p,∆p) =

σ2

n∆2
p

(
1 ∨ σ2p

n∆2
p

)
.

Then, for any γ > 0, there exist constants κ(γ, ε) and c(γ, ε) such that, if

∆2
p ≥ c(γ, ε)

σ2 ln(n)

n
,

then
P
(
|τ̂(p)− τ | ≥ κ(γ, ε) ln(n)Ψn(p,∆p)

)
≤ cn−γ,
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where c is an absolute constant. The rate of convergence is minimax up to a loga-
rithmic factor, according to Korostelev and Lepski (2008). It is composed of a fast
rate, dimension-invariant, and a slow rate deteriorating with the dimension.

Then, we consider the case of sparse data, with a Sobolev regularity. For s > 0,
we define

Θ(s, L) =

{
θ ∈ Rd, sup

K∈N∗
K2s

∑
k≥K

(θk)
2 ≤ L2

}
,

and we suppose that the means θ− and θ+ are in Θ(s, L).

In this context, for any γ > 0, there exist constants κ(γ, ε) and c(γ, ε) such that,
if

∆2 ≥
[
2c(γ, ε)

σ2 ln(n)

n
∨ 8L2p−2s

]
,

then
P
(
|τ̂(p)− τ | ≥ κ(γ, ε) ln(n)Ψn(p,∆)

)
≤ cn−γ.

Moreover, setting ps =

(
8L2n

σ2

) 1
1+2s

, for any γ > 0, there exist constants κ(γ, ε)

and c(γ, ε) such that, if

∆2 ≥

[
2c(γ, ε)

σ2 ln(n)

n
∨
(
σ2

n

) 2s
1+2s (

8L2
) 1

1+2s

]
,

P
(
|τ̂(ps)− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

)
≤ cn−γ.

This shows that there exists an optimal choice of the dimension, leading to the fast
rate of estimation.

In practice, the optimal ps is unknown. We thus propose an adaptive dimension
reduction procedure based on Lepski’s method. It is shown that the resulting esti-
mator attains the fast rate of convergence. Finally, practical strategies to perform
dimension reduction are suggested.

I.2.3.3 Wasserstein deconvolution in dimension 1

When estimating a measure by the associated empirical measure, or, in a noisy
context, by a deconvolution estimator, it may be useful to control the Wasserstein
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distance between the two measures, particularly in the context of geometric inference,
in connection with a tool called “distance to measure” (Chazal et al., 2011).

In Dedecker et al. (2015), discussed in Chapter III.4, we deal with the estimation
of a probability measure µ on the real line from data observed with an additive
noise. We observe Yi = Xi + εi, where the Xi’s are independent and identically
distributed according to an unknown probability measure µ. The random variables
εi, i = 1, . . . , n, are independent and identically distributed according to a known
probability measure µε, not necessarily symmetric. We assume that (X1, . . . , Xn) is
independent of (ε1, . . . , εn).

We are interested in rates of convergence for the Wasserstein metric of order
p ≥ 1. The known distribution of the errors is assumed to belong to a class of
supersmooth or ordinary smooth distributions.

We denote by µ∗ (respectively f ∗) the Fourier transform of the probability mea-
sure µ (respectively of the integrable function f), that is

µ∗(x) =

∫
R
eiuxµ(du) and f ∗(x) =

∫
R
eiuxf(u)du.

Let F be the cumulative distribution function of µ. We define the estimator µ̃n of
the measure µ as the probability measure with distribution function F̃n, which is an
estimator of F built in two steps. We first build a preliminary estimator F̂n of F ,
using a symmetric nonnegative kernel k with appropriate smoothness:

F̂n(t) =
1

nh

∫ t

−∞

n∑
k=1

k̃h

(
u− Yk
h

)
du,

where

k̃h(x) =
1

2π

∫
eiuxk∗(u)

µ∗ε(−u/h)
du.

Observe that this estimator F̂n, based on the standard deconvolution kernel density
estimator k̃h first introduced by Carroll and Hall (1988), is not a cumulative distri-
bution function since it is not necessarily non-decreasing. Therefore, we choose the
estimator F̃n as an approximate minimizer over all distribution functions of the quan-
tity

∫
R |x|

p−1|F̂n − G|(x)dx: given ρ > 0, let F̃n be such that, for every distribution
function G, ∫

|x|p−1|F̂n − F̃n|(x)dx ≤
∫
|x|p−1|F̂n −G|(x)dx+ ρ .
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For this estimator, we obtain an improved upper bound in the ordinary smooth case
and less restrictive conditions for the existing bound in the supersmooth one. Let
ρ ≤ n−1/2. We set rε = 1/µ∗ε. Assume that∫ ∞

0

|x|p−1
√
P (|Y | ≥ x)dx <∞ and sup

t∈[−2,2]

|r(m0)
ε (t)| <∞.

1. Assume that there exist β > 0, β̃ ≥ 0, γ > 0 and c > 0, such that for every
` ∈ {0, 1, . . . ,m1} and every t ∈ R,

|r(`)
ε (t)| ≤ c(1 + |t|)β̃ exp(|t|β/γ).

Then, taking h = (4/(γ log n))1/β, there exists C > 0 such that

E[W p
p (µ̃n, µ)] ≤ C(log n)−p/β.

2. Assume that there exist β > 0 and c > 0, such that for every ` ∈ {0, 1, . . . ,m1}
and every t ∈ R,

|r(`)
ε (t)| ≤ c(1 + |t|)β.

Then, taking h = n
− 1

2p+(2β−1)+ , there exists C > 0 such that

E[W p
p (µ̃n, µ)] ≤ Cψn ,

where

ψn =


n−

p
2p+2β−1 if β > 1

2√
logn
n

if β = 1
2

1√
n

if β < 1
2
.

In the ordinary smooth case, a lower bound is also provided. Let M > 0, q ≥ 1, and
define D(M, q) as the set of measures µ on R such that

∫
|x|qdµ(x) ≤ M . Assume

that there exist β > 0 and c > 0, such that for every ` ∈ {0, 1, 2} and every t ∈ R,

|µ∗ε
(`)(t)| ≤ c(1 + |t|)−β.

Then, there exists a constant C > 0 such that, for any estimator µ̂,

lim inf
n→∞

n
p

2β+1 sup
µ∈D(M,q)

E[W p
p (µ̂, µ)] > C.
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I.2.4 Aggregation of estimators

Recent years have witnessed a growing interest in the aggregation of different
statistical procedures. Indeed, the increasing number of available estimation meth-
ods naturally suggests to try to combine several procedures, looking for a certain
guarantee of optimality. In many aggregation methods, the prediction for a new ob-
servation x is computed by building a linear or convex combination over a collection
of estimators. The strategies discussed here are based on the idea introduced in clas-
sification by Mojirsheibani (1999, 2000, 2002a,b), who proposed a smart method for
combining several classifiers, relying on a consensus notion. The procedure consists
in computing the prediction associated to a new observation by combining selected
true labels of the training data. An data point is selected if the predictions computed
for this point with the different initial estimators are the same as the prediction for
the new observation to be classified.

I.2.4.1 Consensual aggregation for regression

Starting from the idea of Mojirsheibani (1999) in classification, we design in
Biau et al. (2016), presented in Chapter IV.1, a related approach in the context of
regression. Roughly, instead of requiring equal predictions to select a data point,
which does not make sense for continuous output values, they are required to be
close, not more distant than some threshold.

More specifically, letting r = (r1, . . . , rM) denote the collection of individual
estimators, the combined estimator is given by

Tn (r(x)) =
n∑
i=1

Wn,i(x)Yi, x ∈ Rd,

where

Wn,i(x) =
1⋂M

m=1{|rm(x)−rm(Xi)|≤ε}∑n
j=1 1

⋂M
m=1{|rm(x)−rm(Xj)|≤ε}

.

The estimator is shown to perform asymptotically at least as well in the L2 sense
as the best combination of the basic estimators in the initial list.

More formally, for all distributions of (X, Y ) with E[Y 2] <∞,

E[|Tn(r(X))− r?(X)|]2

≤ E[|Tn(r(X))− T (r(X))|]2 + inf
f
E[|f(r(X))− r?(X)|]2,
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where the infimum is taken over all square integrable functions of r(X). In particular,

E[|Tn(r(X))− r?(X)|2]

≤ min
m=1,...,M

E[|rm(X)− r?(X)|]2 + E|Tn(r(X))− T (r(X))|2.

Moreover, we obtain for the term E[|Tn(r(X)) − T (r(X))|]2, which represents
the price to pay for combining, a rate of convergence of n−

2
M+2 . This is the usual

nonparametric rate, with the number of initial estimators playing the role of the
dimension.

I.2.4.2 Adding distance information

In Fischer and Mougeot (2019), exposed in Chapter IV.2, we introduce a new
learning strategy, which is based on the same consensus idea, but also involves dis-
tance information between inputs.

In the original scheme investigated in Mojirsheibani (1999) and Biau et al. (2016),
the agreement condition is actually required to hold for all individual estimators,
which appears inadequate if there is one bad initial estimator. Mojirsheibani (2002a)
notes that this rule may seem too restrictive and proposes to allow a few disagree-
ments (typically, a single one). The resulting classifier is still consistent provided
that the number of initial classifiers keeps tending to infinity after removing those
with disagreement. Similarly, in Biau et al. (2016), we note that the unanimity
constraint may be relaxed in practice by demanding that the distance condition for
keeping an observation is true at least for a certain proportion γ of the estimators
(for example, γ = 80%). Here, we propose a new approach, based on distances be-
tween observations, which also aims at reducing the effect of a possibly bad initial
estimator. Roughly, choosing a kernel point of view, we propose a combined esti-
mator with weights constructed by mixing distances between entries with distances
between predictions coming from the individual estimators.

Let K : Rd+p 7→ R+ be a regular kernel, and let the function g : Rd × Rp → R+

be such that g(v1, v2) = K(v), where v ∈ Rd+p is the concatenation of v1 ∈ Rd and
v2 ∈ Rp.

We denote by f = (f1, . . . , fp) the collection of initial estimators. In a regression
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context, the combined estimator is defined by

Tn(x) =

∑n
i=1 Yig

(
Xi−x
α
, f(Xi)−f(x)

β

)
∑n

i=1 g
(
Xi−x
α
, f(Xi)−f(x)

β

) ,

For classification, the combined classifier Cn is defined by

Cn(x) =

{
0 if

∑n
i=1 Yig

(
Xi−x
α
, f(Xi)−f(x)

β

)
≤
∑n

i=1(1− Yi)g
(
Xi−x
α
, f(Xi)−f(x)

β

)
1 otherwise.

Our motivation for introducing such a strategy is the intuition that taking ad-
vantage of the efficiency of the consensus idea of Mojirsheibani (1999) and Biau
et al. (2016) without for all that forgetting the information related to the proximity
between entries shall help improving the prediction, especially in the presence of
an initial estimator that does not perform very well. We prove the consistency of
the procedure in classification and in regression. Applying the method in practice
requires finding optimal bandwidths α and β. In particular, through an adequate
balance between both terms in the weights, the procedure remains relatively robust
when the inputs are high dimensional : more weight is put on the output combination
in this case.

I.2.4.3 Clustering for predictive models

In Fischer et al. (2021), which is the subject of Chapter IV.3, we focus on learning
problems where the input data consists of more than one unknown clusters, linked
to different underlying predictive models. Such a framework is particularly relevant
for modeling some physical phenomena with phase transitions, or in situations when
some information is missing due to privacy laws.

We propose a three-step procedure to automatically solve this problem. The first
step is to catch the clustering structure of the input data, which may be character-
ized by several statistical distributions. By using several Bregman divergences as
proximity measures for the partitioning, we hope to recover precisely the underlying
structure for a large variety of possible distributions. For each obtained partition,
the second step fits a specific predictive model based on the data in each cluster.
Hence, at this stage, we have at hand a certain number of models, corresponding to
different Bregman partitions, each of these models consisting of several simple sub-
models fitted on every cluster of the partition. Finally, the overall model is computed
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by aggregating the models corresponding to the different partitions. This combining
step is based on the methods presented in Sections I.2.4.1 and I.2.4.2 above.

We conduct numerical experiments on different simulated and real data sets,
showing the fine performance of our three-step method in a broad range of prediction
problems.

I.2.5 Interdisciplinary collaborations

During the last few years, I have been involved in several interdisciplinary col-
laborations. Most of them are related to energy or climate issues.

I.2.5.1 Modeling wind energy production

In Fischer et al. (2017), detailed in Chapter V.1, we focus on wind power mod-
eling using machine learning techniques. We deal with real data measured on wind
turbines, provided by the wind energy company Maïa Eolis (now Engie Green). The
observations come from 3 different farms with 4 to 6 turbines, in the North and East
of France, for the period 2011 to 2014. In a farm, each wind turbine provides 10
minute measurements of electrical power, wind speed, wind direction, temperature,
as well as an indicator of the working state of the turbine. The electrical power
output of the whole farm is also provided on a 10 minute basis.

We model the electrical power as a function of the wind and temperature data,
trying several algorithms, parametric or nonparametric. We obtain particularly sta-
ble and satisfactory results by aggregating several decision trees using a bagging
procedure. As a step toward forecast, we also quantify the impact of using averaged
data instead of local measures : the goal is to mimic more global inputs provided by
a weather forecaster.

I.2.5.2 Downscaling wind speed

Chapters V.2 and V.3, corresponding to the articles Alonzo et al. (2018) and
Goutham et al. (2021) respectively, are the result of a collaboration with Riwal
Plougonven, professor at the Laboratoire de Météorologie Dynamique (LMD), at
École Polytechnique. We had twice the opportunity to supervise together third-
year projects of students of École Polytechnique. The research initiated during the
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time of these projects was then pursued in the frame of the PhD dissertation of
Bastien Alonzo (currently postdoctoral fellow at Météo France), and the Master 1
internship of Naveen Goutham (currently PhD student at LMD under the supervision
of Riwal Plougonven). Our collaborations focused on a downscaling issue, that is the
estimation of a local quantity based on past observations at the given location and
on outputs of a Numerical Weather Prediction model. The variable of interest is the
wind speed, at 10m and 100m.

In Alonzo et al. (2018), we compare the performances of two downscaling sta-
tistical methods, respectively based on linear regression and random forests, for re-
constructing and forecasting wind speed at a specific location, namely the SIRTA
observation platform (an atmospheric research observatory) on the Saclay plateau.
We use model outputs from the European Center of Medium-range Weather Forecasts
(ECMWF). The assessment of ECMWF for 10m wind speed displays a systematic
bias, while at 100m, the wind speed is better represented. Our study shows that
both parametric and nonparametric statistical learning methods lead to comparable
results: A linear model associated with a wise preprocessing and variable selection
shows performances that are slightly better than random forests. Nevertheless, the
latter are a valuable option, as they minimize the time required for model prepro-
cessing and calibration.

In Goutham et al. (2021), this methodology is extended to more than 150 stations
over mainland France and Corsica, corresponding to several geographical contexts.
Various statistical learning methods are tried : linear regression, k-nearest neighbors,
random forests, gradient boosting. The random forest model is further explored to
reduce the list of explanatory variables. The added-value of using statistical methods
is undeniable, and we see, for example, that the improvement is more significant for
coastal stations, where the errors of ECMWF data are the largest.

I.2.6 Other applied collaborations

I also had the opportunity to participate in other interdisciplinary collaborations,
summarized in Chapter V.4, especially through an involvement in doctoral supervi-
sion activities. In particular, I took part in the supervision of a Computer Science
PhD, applied to biology for cancer study, as well as a PhD in linguistics, more pre-
cisely phonetics. In addition, I participated in research work in astrophysics requiring
machine learning tools, in the frame of a collaboration with CEA.
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Principal curves
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Chapter II.1

Introduction

Statisticians use various methods in order to sum up information and represent
the data by simpler quantities. Among these methods, Principal Component Analysis
(PCA) aims at determining the maximal variance axes of a data cloud, as a means
to represent the observations in a compact manner revealing as well as possible their
variability (see, e.g., Mardia et al. (1979)). This technique, initiated at the beginning
of the last century by Pearson (1901) and Spearman (1904), and further developed by
Hotelling (1933), is certainly one of the most famous and most widely used procedure
of multivariate analysis. Whether in the context of dimension reduction or feature
extraction, PCA often provides a first important insight in the data structure.

However, in a number of situations, it may be of interest to summarize informa-
tion in a nonlinear manner. This approach leads to the notion of principal curve,
which can be thought of as a nonlinear generalization of the first principal compo-
nent. Roughly, the purpose is to search for a curve passing through the middle of
a probability distribution or a data cloud, as illustrated in Figure II.1.1. Principal
curves have a broad range of applications in many different areas, such as physics
(Hastie and Stuetzle (1989), Friedsam and Oren (1989)), character and speech recog-
nition (Kégl and Krzyżak (2002), Reinhard and Niranjan (1999)), mapping and ge-
ology (Brunsdon (2007), Stanford and Raftery (2000), Banfield and Raftery (1992),
Einbeck et al. (2005a,b)), natural sciences (De’ath (1999), Corkeron et al. (2004),
Einbeck et al. (2005b)) and medicine (Wong and Chung (2008), Caffo et al. (2008)).
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Figure II.1.1 – Example of principal curve for a data cloud

II.1.1 Principal curve definition

The definition of a principal curve typically depends of the principal component
property of interest. In the sequel, we consider mainly principal curves with length
constraint as introduced by Kégl et al. (2000), or extensions of them. Throughout
this part, what we call a curve is a continuous function taking its values in Rd. In
the most general form, given a random vector X ∈ Rd, we aim to study curves
f : [0, 1]→ Rd with length less than L > 0, minimizing a criterion of the form

∆ (f) = E
[
V
(
d(X, Imf)

)]
,

with V : R+ → R+ differentiable and increasing, and d a distance. The definition
of Kégl et al. (2000), which is related to standard vector quantization and k-means
clustering, consists in setting V (x) = x2, and taking the Euclidean distance for d.

The length of a curve f is here defined by

L (f) = sup
m∑
j=1

|f(tj)− f(tj−1)|,

where the supremum is taken over all subdivisions a = t0 < t1 < · · · < tm = b,
m ≥ 1.
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Figure II.1.2 – The projection index tf . For all i, ti stands for tf (Xi)

The original definition of a principal curve goes back to Hastie and Stuetzle
(1989) and relies on the self-consistency property of principal components. In words,
a smooth (infinitely differentiable) curve f(t) = (f1(t), . . . , fd(t)) is a principal curve
for X if f does not intersect itself, if it has finite length inside any bounded subset
of Rd, and if it is self-consistent. This last requirement means that

f(t) = E[X|tf (X) = t],

where the so-called projection index tf (x) is the largest real number t minimizing the
squared Euclidean distance between x and f(t), as depicted in Figure II.1.2. More
formally,

tf (x) = sup
{
t : |x− f(t)| = inf

t′
|x− f(t′)|

}
.

The self-consistency property may be interpreted by saying that each point f(t)
of the curve is the mean of the observations projecting on Imf near this point.
Hastie and Stuetzle (1989) discuss an iterative algorithm, alternating between a pro-
jection and a conditional expectation step, which yields an approximate principal
curve. Modifications of the algorithm are proposed by Banfield and Raftery (1992)
and Chang and Ghosh (1998), whereas Tibshirani (1992) adopts a semiparametric
strategy, defining principal curves in terms of a mixture model. Other points of
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view are considered for instance in Sandilya and Kulkarni (2002) (principal curves
with bounded turn), Verbeek et al. (2001) (k-segments algorithm), Delicado (2001)
(principal curves of oriented points), Einbeck et al. (2005a) (local principal curves),
Ozertem and Erdogmus (2011) (ridge of a density function), Gerber and Whitaker
(2013) (self-consistency and optimization). The reader shall find a detailed presen-
tation of different approaches in Fischer (2014).

A definition relying on the minimization of a criterion like ∆, without any smooth-
ness condition other than continuity for the considered functions, is obviously more
amenable to mathematical analysis than the original one, based on an implicit for-
mulation. In particular, it is possible to show, under very general assumptions, that
∆ admits a minimizer, that is there exists an optimal curve. On the contrary, the
existence of principal curves defined in terms of self-consistency was only proved for
a few particular examples (see Duchamp and Stuetzle, 1996a,b). The existence result
is stated in the next lemma.

Lemma II.1.1.1. Let V : [0,∞) → [0,∞) be a lower semi-continuous, strictly
increasing function, continuous at 0, and such that V (0) = 0. Let X denote a
random vector such that E[V (|X|)] <∞. Then, for any finite length L, there exists
a curve f ∗L : [0, 1] → Rd with length L (f ∗L) ≤ L minimizing over all curves with
length at most L the criterion

∆(f) = E
[
V (d(X, Imf))

]
.

II.1.2 A related problem

Observe that principal curves are related to the constrained problem:

minimize
∫
Rd
d(x,Σ)pdµ(x) over compact connected sets Σ such that

H1(Σ) ≤ L.

Here, H1 denotes the 1-dimensional Hausdorff measure. A connected question is
the minimization of the penalized version of the criterion:∫

Rd
d(x,Σ)pdµ(x) + λH1(Σ).

This issue, called in the calculus of variations and shape optimization community
“average-distance problem” or, for p = 1, “irrigation problem”, has been introduced
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in Buttazzo et al. (2002) and Buttazzo and Stepanov (2003) (see also the survey
Lemenant, 2012, and references therein).

II.1.3 Statistical learning and estimation with prin-
cipal curves

From a statistical point of view, principal curves may be used both in a statistical
learning context and in an estimation context.

In statistical learning, given a sample X1, . . . , Xn, for a length L > 0, we consider
a minimizer f̂n,L of the empirical criterion ∆n(f) = 1

n

∑n
i=1 V

(
d(Xi, Imf)

)
, over all

curves with length at most L. Note that, in this case, existence of a minimizer is
more straightforward since the empirical measure has finite support. Letting ∆∗

denote the minimum of ∆, the purpose is then to study the convergence of ∆
(
f̂n,L

)
to ∆∗.

Besides, empirical principal curves also provide estimation tools. Considering the
model Xi = g (Ui) + εi, i = 1, . . . , n, where g : [0, 1]→ Rd is an unknown curve and
the Ui are independent and uniformly distributed, the aim is to study the convergence
of Imf̂n to Img for some empirically optimal curve f̂n with suitable length.
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Model selection

This chapter is related to articles written for my PhD thesis, Fischer (2013),
published in the Electronic Journal of Statistics and Biau and Fischer (2012), a
collaboration with Gérard Biau (LPSM, Sorbonne Université) published in IEEE
Transactions on Information Theory. The purpose is to help put into perspective
the subsequent chapters of this part, some of which address similar considerations,
with a quite different approach.

Principal curves were studied from a model selection point of view in my doctoral
research. The goal is to select regularity parameters of a principal curve, such as
the length, or the number of segments for polygonal lines. Indeed, a curve passing
through every point of a data cloud would probably not provide a very interesting
summary of the data. This regularization issue is also addressed in Gerber and
Whitaker (2013), based on a different principal curve definition.

Our approach relies on the model selection theory by penalization introduced
by Birgé and Massart (1997) and Barron et al. (1999) (see also the monograph by
Massart, 2007). Two frameworks have been investigated, an estimation issue within
a Gaussian model, and a statistical learning framework for polygonal lines.

Some numerical illustrations are also presented, in Section II.2.3, based on heuris-
tics inspired by the penalty calibration approach proposed by Birgé and Massart
(2007) and Arlot and Massart (2009).
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II.2.1 Length selection for estimation in a Gaussian
model

We investigate a Gaussian model selection method in order to choose the length
of a principal curve. Our context is similar to that of Caillerie and Michel (2011),
who tackle model selection questions for graphs called simplicial complexes. In this
section, the Euclidean space Rd is equipped with the inner product defined by

〈u, v〉 =
1

d

d∑
j=1

ujvj, (II.2.1)

and | · | denotes the associated Euclidean norm.

We assume that we observe random vectorsX1, . . . , Xn with values in Rd following
the model

Xi = x∗i + σξi, i = 1, . . . , n, (II.2.2)

where the x∗i are unknown, the ξi are independent standard Gaussian vectors of Rd

and σ > 0 stands for the noise level, which is supposed known. Let us denote by
X the column vector containing, in order, all components of the random vectors Xi,
i = 1, . . . , n. Defining x∗ and ξ in the same way, the model (II.2.2) can be rewritten
under the form

X = x∗ + σξ.

Let F and G be two fixed points of Rd and L a countable subset of ]0,+∞[.
From a practical point of view, several methods can be employed to choose these
two points from the observations, for example based on the minimum spanning tree
of the data (or of some subset of the data). We introduce a countable collection
{F`}`∈L, where each set F` is a class of parameterized curves f : I → Rd with length
` and endpoints F and G. Our aim is to select the length `. To do this, we consider
the criterion ∆′n defined by

∆′n(f) =
1

n

n∑
i=1

inf
t∈I
|Xi − f(t)|2

=
1

n

n∑
i=1

inf
Xi∈Imf

|Xi − xi|2,

where Imf denotes the range of the curve f . Due to the definition of the norm
| · | chosen above (II.2.1), this is the empirical criterion ∆n(f) normalized by the
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dimension d. Suppose that, for all ` ∈ L, x̂` = (x̂1`, . . . , x̂n`) minimizes

1

n

n∑
i=1

|Xi − xi|2

among all x = (x1, . . . , xn) ∈ C` =
⋃
f∈F`(Imf)n. In order to determine the length `,

our purpose is to minimize in ` a criterion of the type

crit(`) =
1

n

n∑
i=1

|Xi − x̂i`|2 + pen(`),

where pen : L → R+ is a penalty function, which should avoid the selection of
a too large `. Our goal is to design an appropriate penalty. Observe that the
classical asymptotic model selection criteria AIC (Akaike, 1973), BIC (Schwarz, 1978)
or Mallows’Cp (Mallows, 1973), which involve the “number of parameters” to be
estimated, are not suitable in this framework. Therefore, our approach will rely on
the non-asymptotic model selection theory developed by Birgé and Massart (2001)
and Barron et al. (1999).

When the considered models are linear subspaces, the penalty can be chosen
proportional to the dimension of the model, according to Birgé and Massart (2001).
Here, the models C` are not linear subspaces of Rnd and the dimension must be
replaced by another quantity. In order to measure the complexity of these nonlinear
models, we will use metric entropy. The metric entropy of a set S is given by

H(S, | · |, ε) = lnN (S, | · |, ε),

were the covering number N (S, | · |, ε) is the minimal number of balls with radius ε
for the norm | · | needed to cover S.

Our approach is based on a general model selection theorem for nonlinear Gaus-
sian models (Massart, 2007). Let us denote by | · |nd the normalized norm of Rnd,
defined by the inner product 〈u,v〉nd = 1

nd

∑nd
i=1 uivi. For every ` ∈ L, let ϕ` be a

function such that ϕ` ≥ φ`, where φ` is given by

φ`(u) = κ

∫ u

0

√
H(C`, | · |nd, ε)dε, (II.2.3)

with κ an absolute constant. We define d` by the equation

ϕ`

(
2σ

√
d`√
nd

)
=

σd`√
nd
.
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Assume that there exists a family of weights {w`}`∈L satisfying∑
`∈L

e−w` = Σ <∞.

Under these assumptions and with this notation, Theorem 4.18 in Massart (2007)
can be written in the following manner:

Theorem II.2.1.1. Let η > 1 and

pen(`) ≥ η
σ2

nd

(√
d` +

√
2w`

)2

.

Then, almost surely, there exists a minimizer ˆ̀ of the penalized criterion

crit(`) =
1

n

n∑
i=1

|Xi − x̂i`|2 + pen(`).

Moreover, writing x̃i = x̂iˆ̀ for all i=1,. . . ,n, we have

1

n

n∑
i=1

E|x̃i − x∗i |2 ≤ c(η)
[

inf
`∈L

(d2(x∗, C`) + pen(`)) +
σ2

nd
(Σ + 1)

]
,

where d2(x∗, C`) = infy∈C`
1
n

∑n
i=1 |yi − x∗i |2.

This result establishes, for a penalty pen(`) which is large enough, an oracle-type
inequality in expectation for the x̃i, i = 1, . . . , n. Provided a control of the Dudley
integral (II.2.3) (Dudley, 1967), this theorem will apply in our context and allow us
to select the length ` of the curve. To assess this integral, we will need the next
lemmas, shown in Fischer (2013).

The first step consists in controlling the metric entropy of the classes C`, ` ∈ L.
Note that, for all ` ∈ L,

⋃
f∈f` Imf corresponds to an ellipsoid of Rd, as stated in the

next lemma. In the sequel, this ellipsoid will be denoted by E .

Lemma II.2.1.1. Every parameterized curve of Rd with endpoints F and G and
length ` (` > FG), is included in an ellipsoid E with first principal axis of length `,
the other axes having length λ =

√
`2 − FG2.

In particular, in R2, E is an ellipse with foci F and G (see Figure II.2.1), and in
R3, it is a ellipsoid of revolution around the axis passing through these two points.

60



II.2.1. Length selection for estimation in a Gaussian model

•
F

•
G

λ =
√
`2 − FG2

`

Figure II.2.1 – In the plane R2, ellipse E with foci F and G and axes ` and λ

We obtain then the following upper bound for N (C`, | · |nd, ε), ` ∈ L.

Lemma II.2.1.2. Suppose that ` ≥ λ ≥ ε. The covering number of C` for the
normalized norm | · |nd of Rnd satisfies

N (C`, | · |nd, ε) ≤
(

2

ε

)nd
(`λd−1)n.

Bounding the integral

φ`(u) = κ

∫ u

0

√
H(C`, | · |nd, ε)dε

for all ` ∈ L, we can then define an adequate function ϕ` .

Lemma II.2.1.3. The function ϕ` given by

ϕ`(r) =

κr
√
nd

(√
ln

(
2`1/dλ1−1/d

r

)
+
√
π

)
if r ≤ λ

ϕ`(λ) + (r − λ)ϕ′`(λ) if r ≥ λ

satisfies, for all r,
ϕ`(r) ≥ φ`(r).

Finally, in order to apply Theorem II.2.1.1, we have to assess d`, defined by the
equation

ϕ`

(
2σ
√
d`√

nd

)
=

σd`√
nd
,

which is the purpose of the next lemma.
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Lemma II.2.1.4. Let ϕ` be given by Lemma II.2.1.3. Suppose that

σ ≤ λ

4κ

[√
ln 2 +

1

d
ln

(
`

λ

)
+
√
π

]−1

.

Then, equation

ϕ`

(
2σ
√
d`√

nd

)
=

σd`√
nd

admits a solution d` satisfying

d` ≤ 8κ2nd

(
ln

(
`1/dλ1−1/d

2σκ
√
π

)
+ π

)
.

We are now in a position to state the main result of this section.

Theorem II.2.1.2. Assume that there exists a family of weights {w`}`∈L such that∑
`∈L

e−w` = Σ <∞,

and that, for every ` ∈ L,

σ ≤ λ

4κ

[√
ln 2 +

1

d
ln

(
`

λ

)
+
√
π

]−1

. (II.2.4)

Then, there exist constants c1 and c2 such that, for all η > 1, if

pen(`) ≥ ησ2

[
c1

(
ln
(`1/dλ1−1/d

σ

)
+ c2

)
+

4w`
nd

]
, (II.2.5)

then, almost surely, there exists a minimizer ˆ̀ of the penalized criterion

crit(`) =
1

n

n∑
i=1

|Xi − x̂i`|2 + pen(`).

Moreover, if x̃i = x̂iˆ̀ for all i = 1, . . . , n, we have

1

n

n∑
i=1

E|x̃i − x∗i |2 ≤ c(η)
[

inf
`∈L
{d2(x∗, C`) + pen(`)}+

σ2

nd
(Σ + 1)

]
,

where d2(x∗, C`) = infy∈C`
1
n

∑n
i=1 |yi − x∗i |2.
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Let us now comment on the theorem.

The first remark is about the fact that Theorem II.2.1.2 involves unknown con-
stants. Lemma II.2.1.4 indicates that c1 = 16κ2 and c2 = π − ln(2κ

√
π) could be

chosen. However, these values are (likely too large) upper bounds. Furthermore, the
variance noise σ has been supposed known and is involved in the penalty. Neverthe-
less, the noise level is generally unknown in practice. In fact, the expression (II.2.5)
does not provide a penalty function directly, but gives its shape instead. Note that
it is possible to estimate σ separately and then proceed by plug-in. However, there is
another solution to assess c1, c2 and σ, relying on the slope heuristics. This penalty
calibration method introduced by Birgé and Massart (2007) (see also Arlot and Mas-
sart, 2009; Lerasle, 2012; Saumard, 2013) precisely allows to tune a penalty known
up to a multiplicative constant.

According to the formula binding ` and λ, the quantity ln(`1/dλ1−1/d) in the
penalty characterizes each model of curves with length `. The other elements varying
over the collection of models are the weights {w`}`∈L. For linear models C` with
dimension D`, a possible choice for w` is w` = w(D`) where w(D) = cD + ln |{k ∈
L, Dk = D}| and c > 0 (see Massart, 2007). If there is no redundancy in the models
dimension, this strategy amounts to choosing w` proportional to D`. By analogy,
w` may here be chosen proportional to ln(`1/dλ1−1/d). More formally, we set w` =
c ln `1/dλ1−1/d, where the constant c > 0 is such that

∑
`∈L

1
`c/dλc(1−1/d) = Σ < +∞.

This choice finally yields a penalty proportional to ln(`1/dλ1−1/d), which may be
calibrated in practice thanks to the slope heuristics.

In addition, observe that condition (II.2.4) says that the noise level σ should not
be too large with respect to λ. In other words, if λ =

√
`2 − FG2 is of the same

order as σ, it is not possible to obtain a suitable principal curve with length `.

Finally, let us point out that due to the exponent n in the covering number
in Lemma II.2.1.2, the penalty shape obtained does not tend to 0 as n tends to
infinity. This point is intrinsically related to the geometry of the problem. Indeed,
its resolution is not made easier by increasing the size of the sample, since nothing
has been specified about the repartition of the x∗i ’s.

II.2.2 Parameter selection in statistical learning

In this section, the considered estimators are polygonal lines, with the smoothness
driven either by the length or by the turn. In both cases, we show that the polygonal
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line obtained by minimizing some appropriate penalized criterion satisfies an oracle-
type inequality.

LetX be a random vector such that P (X ∈ K) = 1, whereK is a convex compact
subset of Rd, with diameter δ.

We let ∆(f) = E
[
mint∈[0,1] |X − f(t)|2

]
.

The empirical counterpart, based on a sample X1, . . . , Xn of independent random
variables distributed as X, is given by

∆n(f) =
1

n

n∑
i=1

min
t∈[0,1]

|Xi − f(t)|2.

II.2.2.1 Principal curves with bounded length

For any given positive length L, there exists an optimal curve f ∗ for X with
length at most L in K (Kégl, 1999, Lemma 1). We restrict ourselves to curves whose
support is included in K and denote by F the set of such curves.

For L > 0, we set
f ∗ ∈ arg min

f∈F ,L (f)≤L
∆(f).

Next, let L be a countable subset of ]0, L] and Q a grid over C, that is Q = K ∩ Γ,
where Γ is a lattice of Rd. For every k ≥ 1 and ` ∈ L, the model Fk,` is defined as
the collection of polygonal lines with k segments, with length at most `, and with
vertices belonging to Q. We note that each model Fk,` as well as the family of models
{Fk,`}k≥1,`∈L are countable. For k ≥ 1 and ` ∈ L, let

f̂k,` ∈ arg min
f∈Fk,`

∆n(f)

be a curve achieving the minimum of the empirical criterion ∆n(f) over the polygonal
line class Fk,`.

At this stage of the procedure, we have at hand a family of estimates {f̂k,`}k≥1,`∈L
and our goal is to select the best principal curve f̃ among this collection. We set

D(f, g) = ∆(g)−∆(f).

Let pen : N∗ × L → R+ be some penalty function and denote by (k̂, ˆ̀) a pair of
minimizers of the criterion

crit(k, `) = ∆n(f̂k,`) + pen(k, `).
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In order to obtain a suitable curve, we have to design an adequate penalty pen(k, `).
This is done in the following theorem, which is an adaptation of a general model
selection result for statistical learning (Massart, 2007, Theorem 8.1). Another exam-
ple of using this result can be found in Fischer (2011), in the context of finding the
number of groups in k-means clustering.

Theorem II.2.2.1. Consider a family of nonnegative weights {xk,`}k≥1,`∈L such that∑
k≥1,`∈L

e−xk,` = Σ <∞,

and a penalty function pen : N∗ × L → R+. Let f̃ = f̂k̂,ˆ̀. If for all (k, `) ∈ N∗ × L,

pen(k, `) ≥ E

[
sup
f∈Fk,`

(
∆(f)−∆n(f)

)]
+ δ2

√
xk,`
2n

,

then

E[D(f ∗, f̃)] ≤ inf
k≥1,`∈L

[
D(f ∗,Fk,`) + pen(k, `)

]
+
δ2Σ

23/2

√
π

n
,

where D(f ∗,Fk,`) = inff∈Fk,` D(f ∗, f).

Theorem II.2.2.1 offers a nonasymptotic bound, expressing the fact that the ex-
pected loss of the final estimate f̃ is close to the minimal loss over all k ≥ 1 and
` ∈ L, up to a term tending to 0. Thus, in order to apply this theorem to the
principal curve problem, we have to find an upper bound on the quantity

E

[
sup
f∈Fk,`

(
E[∆(f, x)]−∆n(f)

)]
. (II.2.6)

This is achieved by Proposition II.2.2.1 below, which is proved in Biau and Fischer
(2012) by showing that the expected maximal deviation (II.2.6) may be bounded by
a Rademacher average (see, e.g., Bartlett et al., 2001) and by resorting to a Dudley
integral (Dudley, 1967).

Proposition II.2.2.1. Let Fk,` be the set of all polygonal lines with k segments,
length at most `, and vertices in a grid Q ⊂ K. Then there exist nonnegative
constants a0, . . . , a2, depending on the maximal length L, the dimension d and the
diameter δ of the convex set K, such that

E

[
sup
f∈Fk,`

(
∆(f)−∆n(f)

)]
≤ 1√

n

[
a1

√
k + a2`+ a0

]
.
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Finally, combining Theorem II.2.2.1 and Proposition II.2.2.1 leads to the following
result.

Theorem II.2.2.2. Consider a family of nonnegative weights {xk,`}k≥1,`∈L such that∑
k≥1,`∈L

e−xk,` = Σ <∞,

and a penalty function pen : N∗ × L → R+. Let f̃ = f̂k̂,ˆ̀. There exist nonnegative
constants c0, . . . , c2, depending on the maximal length L, the dimension d and the
diameter δ of the convex set K, such that, if for all (k, `) ∈ N∗ × L,

pen(k, `) ≥ 1√
n

[
c1

√
k + c2`+ c0

]
+ δ2

√
xk,`
2n

,

then

E[D(f ∗, f̃)] ≤ inf
k≥1,`∈L

[
D(f ∗,Fk,`) + pen(k, `)

]
+
δ2Σ

23/2

√
π

n
,

where D(f ∗,Fk,`) = inff∈Fk,` D(f ∗, f).

The penalty shape involves a term proportional to
√
k/n and a term proportional

to `/
√
n. This penalty form, which vanishes at the rate 1/

√
n, seems relevant insofar

as the number k of segments and the length ` of the curves measure the complexity
of the models.

Note that the proof of Proposition II.2.2.1 provides possible values for the con-
stants c0, . . . , c2. However, these values are not very helpful since they are upper
bounds which are probably far from being tight. Hence, again, a calibration heuris-
tic is needed in practice. Nevertheless, the proof also reveals that c1 = c′1δ

2, c2 = c′2δ
and c0 = c′0δ

2, where c′0, c′1 and c′2 are constants without dimension, so that the
penalty is in fact homogeneous to a squared length.

Finally, an important practical issue is how to choose the weights {xk,`}k≥1,`∈L.
These weights should be large enough to ensure the finiteness of Σ, but not too large
at the risk of overpenalizing. If the cardinality of the collection of models is not
larger than n2, we may set xk,` = 2 lnn for every (k, `). This choice does not affect
the penalty shape, though modifying the rate, and leads to Σ = 1 in the risk bound.

II.2.2.2 Principal curves with bounded turn

In this section, we considered principal curves indexed by the turn instead of
the length, following Sandilya and Kulkarni (2002). The turn K (f) of a curve
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f : [0, 1]→ Rd, is given by

K (f) = sup
m−1∑
j=1

f̂(tj),

where f̂(tj) denotes the angle between the vectors
−−−−−−−−→
f(tj−1)f(tj) and

−−−−−−−−→
f(tj)f(tj+1), and

the supremum is taken over all subdivisions 0 = t0 < t1 < · · · < tm = 1, m ≥ 1
(Alexandrov and Reshetnyak, 1989). Thus, the turn of a polygonal line with vertices
v1, . . . , vk+1 is the sum of the angles at v2, . . . , vk (see Figure II.2.2).

v1

−→s1

v2
−→s2

v3

−→s3

v4

φ2
φ3

Figure II.2.2 – Denoting by −→sj the vector −−−→vjvj+1 for all j = 1, . . . , k, the angles
involved in the definition of the turn are defined by φj+1 = (−→sj ,−−→sj+1)

For any turn T , there exists an optimal curve f ∗ for X with turn at most T in
K (Sandilya and Kulkarni, 2002, Proposition 1). As above, we consider curves in F .

For T ≥ 0, we set
f ∗ ∈ arg min

f∈F ,T (f)≤T
∆(f),

where T (f) denotes the turn of f . We let T be a countable subset of [0, T ] and
define a countable collection of models {Fk,κ}k≥1,κ∈T : each Fk,κ consists of polygonal
lines with k segments, with turn at most κ, and with vertices belonging to some grid
Q over K. For k ≥ 1 and κ ∈ T , define

f̂k,κ ∈ arg min
f∈Fk,κ

∆n(f)
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to be a polygonal line minimizing the empirical criterion ∆n(f) over Fk,κ. We wish
to design an appropriate penalty function pen : N∗ × T → R+ and minimize the
criterion

crit(k, κ) = ∆n(f̂k,κ) + pen(k, κ).

We let f̃ = f̂k̂,κ̂, where (k̂, κ̂) is a minimizer of the penalized criterion crit(k, κ).

An upper bound on the quantity

E

[
sup
f∈Fk,κ

(
E[∆(f, x)]−∆n(f)

)]
will lead to a result of the form of Theorem II.2.2.2. We will use the fact that
a curve with bounded turn also has bounded length (Alexandrov and Reshetnyak,
1989, Chapter 5).

Lemma II.2.2.1. Let f be a curve with turn κ and let δ be the diameter of K. Then
L (f) ≤ δζ(κ), where the function ζ is defined by

ζ(x) =


1

cos(x/2)
if 0 ≤ x ≤ π

2

2 sin(x/2) if
π

2
≤ x ≤ 2π

3
x

2
− π

3
+
√

3 if x ≥ 2π

3
.

The graph of the function ζ is shown in Figure II.2.3.

Figure II.2.3 – Graph of the function ζ
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Thanks to this result, we obtain Proposition II.2.2.2 below, which is the counter-
part of Proposition II.2.2.1 in the current setting.

Proposition II.2.2.2. Let Fk,κ be the set of all polygonal lines with k segments,
turn at most κ, and vertices in a grid Q ⊂ K, and let δ be the diameter of the
convex set K. Then there exist nonnegative constants a0, . . . , a4, depending only on
the dimension d, such that

E

[
sup
f∈Fk,κ

(
∆(f)−∆n(f)

)]
≤ δ2

[
a1

√
k + a2

√
ζ(κ) + a3

ζ(κ)√
k
1{ ζ(κ)

3k
<1} + a4

√
k ln

ζ(κ)

k
1{ ζ(κ)

3k
≥1} + a0

]
.

Putting finally Theorem II.2.2.1 and Proposition II.2.2.2 together, we obtain:

Theorem II.2.2.3. Consider a family of nonnegative weights {xk,κ}k≥1,κ∈T such
that ∑

k≥1,κ∈T

e−xk,κ = Σ <∞,

and a penalty function pen : N∗ × T → R+. Let f̃ = f̂k̂,κ̂. There exist nonnegative
constants c0, . . . , c2, depending only on the dimension d, such that, if for all (k, κ) ∈
N∗ × T ,

pen(k, κ) ≥ δ2

√
n

[
c1

√
k + c2

√
ζ(κ) + c0 +

√
xk,κ

2

]
,

then

E[D(f ∗, f̃)] ≤ inf
k≥1,κ∈T

[
D(f ∗,Fk,κ) + pen(k, κ)

]
+
δ2Σ

23/2

√
π

n
,

where D(f ∗,Fk,κ) = inff∈Fk,κ D(f ∗, f).

The expression of the penalty shape involves again a term of the order
√
k/n,

whereas the length ` is replaced by
√
ζ(κ), which is an increasing function of the

turn κ. This is relevant, since the number of segments k and the turn κ characterize
the complexity of the models.

II.2.3 Experimental results

This section presents a few numerical experiments, carried out with the software
MATLAB, to illustrate the model selection procedure suggested above. We consider
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a setting where the parameters are the length and the number of segments. The
minimization of the criterion ∆n(f) is achieved through a MATLAB optimization
routine.

As already mentioned, the penalty shapes involve constants which have to be
practically calibrated. We use ideas inspired from the slope heuristics (Arlot and
Massart, 2009; Birgé and Massart, 2007; Lerasle, 2012; Saumard, 2013). In short,
the slope heuristics allows to tune a penalty known up to some multiplicative con-
stant. The slope heuristics assumes that the empirical contrast decreases when the
complexity of the models increases, which is clearly the case in our principal curve
context. The procedure is based on the fact that the graph of the empirical con-
trast as a function of the penalty shape decreases strongly at the beginning and
more slowly later, with a linear trend. The slope of this line is used to compute the
constant.

In our framework, to a first approximation, we deal with a penalty of the form
c1

√
k + c2`. Thus, we assume that, for large values of k and `, ∆n(f̂k,`) behaves

like c1

√
k + c2`. The constants ĉ1 and ĉ2 are chosen via an ordinary least square

regression.

The algorithm may be described as follows.

Algorithm MS

1. For k = 1, . . . , kmax, ` ∈ L, compute f̂k,` by minimizing the empirical criterion
∆n(f) and record ∆n(f̂k,`).

2. Set xk,` = 2 lnn and consider a penalty of the form

pen(k, `) = c1

√
k + c2`.

3. Select the constants ĉ1 and ĉ2 using a bivariate version of the slope heuristics.

4. Retain the curve f̂k̂,ˆ̀ obtained by minimizing the penalized criterion

crit(k, `) = ∆n(f̂k,`)− 2(ĉ1

√
k + ĉ2`).

The results of the algorithm MS are compared to the outputs of the Polygonal
Line Algorithm (PL hereafter) of Kégl et al. (2000), which is a more local procedure.
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II.2.3.1 Simulated digit data

In this first series of experiments, we considered two-dimensional data distributed
with bivariate Gaussian noise around a reference curve.

The generative curves are handwritten digits. The noise variance is set to 0.04,
150 observations were sampled around the digit 2 and the digit 3 and 250 observations
around the digit 5. The observations and the results are depicted in Figure II.2.4.

We observe for the digit 2 data that the MS principal curve follows the observa-
tions more closely than what would be expected. On the other hand, the PL output
looks smoother but a bit too short. Indeed, a comparison with the generative curve
shows that the loop at the top and the angle at the bottom of the digit are not recov-
ered precisely. For the digit 3, we note again that the algorithm MS slightly overfits
the data, whereas the smoother curve PL misses the angle. The same comment
holds for the digit 5, with however a smoother MS curve.

II.2.3.2 NIST database digits

In this second series of experiments, we use data from NIST Special Database
19 (http://www.nist.gov/srd/nistsd19.cfm), containing handwritten characters
from 3600 writers. The data consists in binary images scanned at 11.8 dots per
millimeter (300 dpi), which uniformly fill the area corresponding to the thickness
of the pen stroke. Skeletonization, which consists in reducing foreground regions
in such an image without affecting the general shape of the handwritten character,
often constitutes a preliminary step in character recognition.

The results of both algorithms applied to three NIST database digits are visible
in Figure II.2.5.
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(a)

(b)

(c)

Figure II.2.4 – (a) Observations. (b) Principal curves selected by the method MS:
k̂ = 27, ˆ̀= 24; k̂ = 23, ˆ̀= 23; k̂ = 17, ˆ̀= 21. (c) PL principal curves
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(a)

(b)

(c)

Figure II.2.5 – (a) Three NIST database handwritten digits. (b) Principal curves
selected by the method MS: k̂ = 23, ˆ̀ = 80; k̂ = 38, ˆ̀ = 82; k̂ = 15, ˆ̀ = 66. (c) PL
principal curves
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Some regularity properties of a
principal curve

This chapter is the result of a collaborative work with Sylvain Delattre (LPSM,
Université de Paris), published in the Probability and Statistics section of the Annales
de l’Institut Henri Poincaré (Delattre and Fischer, 2020).

II.3.1 Introduction

II.3.1.1 Context of the problem and motivation

We focus on the problem:

find a curve f : [0, 1]→ Rd minimizing the quantity

E
[
d2(X, Imf)

]
=

∫
d2(x, Imf)dµ(x),

over all curves with length L (f), such that L (f) ≤ L.
(II.3.1)

Here, X is some random vector with distribution µ, taking its values in Rd. This
corresponds to principal curves with length constraint, as described in Kégl et al.
(2000). These authors show that there exists indeed a minimizer whenever X is
square integrable.
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Originally, principal curves were introduced in Hastie and Stuetzle (1989), with a
different definition, based on the so-called self-consistency property. In this point of
view, a curve f is said to be self-consistent for a random vector X with finite second
moment if it satisfies:

f(tf (X)) = E[X|tf (X)] a.s.,

where the projection index tf is given by

tf (x) = max arg min
t
|x− f(t)|.

The self-consistency property may be interpreted as follows: each point on the curve
is the average of the mass of the probability distribution projecting there (for more
details about the notion of self-consistency, see Tarpey and Flury (1996)). Some
regularity assumptions are made in addition: the principal curve is required to be
smooth (C∞), it does not intersect itself, and has finite length inside any ball in
Rd. The existence of principal curves designed according to this definition cannot be
proved in general (see Duchamp and Stuetzle, 1996a,b, for results obtained in the case
of some particular distributions in two dimensions), which is the main motivation
for the least-square minimization definition proposed in Kégl et al. (2000).

Note that several other principal curve definitions, as well as algorithms, were pro-
posed in the literature (Delicado, 2001; Einbeck et al., 2005a; Gerber and Whitaker,
2013; Ozertem and Erdogmus, 2011; Sandilya and Kulkarni, 2002; Tibshirani, 1992;
Verbeek et al., 2001). Note also that principal curves, in their empirical version,
have many applications in various areas (see for example Friedsam and Oren (1989);
Hastie and Stuetzle (1989) for applications in physics, Kégl and Krzyżak (2002);
Reinhard and Niranjan (1999) in character and speech recognition, Banfield and
Raftery (1992); Brunsdon (2007); Einbeck et al. (2005a,b); Stanford and Raftery
(2000) in mapping and geology, Corkeron et al. (2004); De’ath (1999); Einbeck et al.
(2005a) in natural sciences, Caffo et al. (2008) in pharmacology, and Drier et al.
(2013); Wong and Chung (2008) in medicine, for the study of cardiovascular disease
or cancer).

II.3.1.2 Description of our results

We consider general distributions, assuming only that X has a second order
moment, and search for a curve which is optimal for problem (II.3.1). We deal with
open curves (with endpoints), as well as closed curves (f(0) = f(1)). Throughout,
we will assume that the length-constraint is effective, that is the support of X is not

76



II.3.1. Introduction

the image of a curve with length less than or equal to L. In this context, we prove
that a minimizing curve cannot be self-consistent. We also show that, for an optimal
curve, the set of points with several different projections of the curve, called ridge set
in studies about the “average-distance problem” (see Section II.3.1.3), or ambiguity
points in the principal curves literature, is negligible for the distribution of X. Then,
we establish that an optimal curve is right- and left-differentiable everywhere and
has bounded curvature. Moreover, we obtain a first order Euler-Lagrange equation:
we show that there exist λ > 0 and a random variable t̂ taking its values in [0, 1]
such that |X − f(t̂)| = d(X, Imf) a.s. and

E
[
X − f(t̂)|t̂ = t

]
mt̂(dt) = −λf ′′(dt), (II.3.2)

where mt̂ stands for the distribution of t̂. To obtain that λ 6= 0, we use the fact
that an optimal curve is not self-consistent. Equation (II.3.2) allows us to propose
in dimension d = 2 a proof of the injectivity of an open principal curve as well as of
a closed principal curve restricted to [0, 1).

II.3.1.3 Comparison with previous results

Our framework is related to the constrained problem:

minimize
∫
Rd
d(x,Σ)pdµ(x) over compact connected sets Σ such that

H1(Σ) ≤ L.
(II.3.3)

Here, H` denotes `-dimensional Hausdorff measure. A connected question is the
minimization of the penalized version of the criterion:∫

Rd
d(x,Σ)pdµ(x) + λH1(Σ). (II.3.4)

This issue, called in the calculus of variations and shape optimization community
“average-distance problem” or, for p = 1, “irrigation problem”, has been introduced in
Buttazzo and Stepanov (2003); Buttazzo et al. (2002) (see also the survey Lemenant,
2012, and the references therein). Considering a compactly supported distribution,
the penalized form is studied for connected sets, with p = 1, in Lu and Slepcev
(2013), and for curves, with p ≥ 1, in Lu and Slepcev (2016). In the first article,
the authors prove that a minimizer is a tree made of a finite union of curves with
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finite length, and they provide a bound on the total curvature of these curves. In
the second one, they show existence of a curve minimizing the penalized criterion∫

Rd
d(x, Imf)pdµ(x) + λL (f). (II.3.5)

They give a bound on the curvature of the minimizer, and prove that, in two dimen-
sions, if p ≥ 2 or the distribution µ has a bounded density with respect to Lebesgue
measure, a minimizing curve is injective.

For the penalized irrigation problem (II.3.4), under the assumption that the dis-
tribution µ, with compact support, does not charge the sets that have finite Hd−1

measure, which is true for instance if it has a density with respect to Lebesgue mea-
sure, an Euler-Lagrange equation is obtained for p = 1 in Buttazzo et al. (2009),
whereas Lemenant (2011) uses arguments involving endpoints to derive one in the
case of the constrained version (II.3.3), in R2, under the same assumption on µ. This
assumption implies that X is almost surely different from its projection on the curve,
which is required for differentiability when p = 1, and, moreover, it is used to ensure
negligibility of the ridge set.

For the constrained problem (II.3.3), if Σ∗ denotes a minimizer and∫
Rd
d(x,Σ)pdµ(x) > 0,

it is shown in Paolini and Stepanov (2004) that H1(Σ∗) = L. A similar result in our
context is stated in Corollary II.3.3.1 below.

Another related setting is the “lazy travelling salesman problem” of Polak and
Wolansky (2007): in R2, taking for µ an empirical distribution and considering closed
curves, the authors study the penalized problem (II.3.5) for p = 2 (with λL (f)
replaced by λL 2(f)). They show that for λ large enough, the problem is reduced to
a convex optimization.

Recall that we study in this chapter the constrained problem (II.3.1), for open or
closed curves. In our context, the distribution of X is not required to be compactly
supported, and we do not need to assume that µ does not charge the sets with finite
Hd−1 measure to derive an Euler-Lagrange equation. Indeed, our proof does not rely
on the fact that the ridge set is negligible. Besides, we prove that ambiguity points
are actually negligible, which implies in particular that, for a given optimal curve, the
Lagrange multiplier λ in (II.3.2) only depends on the curve f . We decided to focus
on the case p = 2 for which we can state the more complete results. In particular, we
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are only able to show the lack of self-consistency of an optimal curve when p = 2. As
already mentioned, this is a key point to get the main result. Observe that it would
be interesting to define a counterpart of the lack of self-consistency when considering
other values of p.

The rest of the chapter is organized as follows. Section II.3.2 introduces relevant
notation and recalls some basic facts about length-constrained principal curves. In
Section II.3.3, negligibility of ambiguity points is given in Proposition II.3.3.1, and
the main result is stated in his complete form in Theorem II.3.3.1.

Injectivity results are presented in Section II.3.4. Finally, we give in Section II.3.5
explicit examples of optimal curves.

II.3.2 Definitions and notation

Let (Ω,F , P ) be a probability space and X a random vector on (Ω,F , P ) with
values in Rd, such that E[|X|2] < ∞. For r > 0, let B(x, r) and B̄(x, r) denote,
respectively, the open and the closed balls with center x and radius r. For a curve
f : [0, 1]→ Rd, let L (f) ∈ [0,∞] denote its length.

We set
∆(f) = E

[
d2(X, Imf)

]
,

and, for L ≥ 0,
G(L) = min{∆(f), f ∈ CL},

where, in the sequel, CL will denote either one of the following sets of curves:

{f ∈ [0, 1]→ Rd,L (f) ≤ L},
{f ∈ [0, 1]→ Rd,L (f) ≤ L, f(0) = f(1)}.

Curves belonging to the latter set are closed curves. Note that G is well-defined.
Indeed, the existence of an open curve f with L (f) ≤ L achieving the infimum of
the criterion ∆(f) is shown in Kégl et al. (2000), and the same proof applies for
closed curves.

It will be useful to rewrite G(L), for every L ≥ 0, as the minimum of the quantity

E[|X − X̂|2]

over all possible random vectors X̂ taking their values in the image Imf of a curve
f ∈ CL.
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Remark 1. If f : [0, 1] → Rd is Lipschitz with constant L, its length is at most
L. This follows directly from the definition of the length. Conversely, if the curve
f : [0, 1] → Rd has length L (f) ≤ L, then there exists a curve with the same
image which is Lipschitz with constant L. Indeed, a curve with finite length may
be parameterized by arc-length (1-Lipschitz) (see, e.g., Alexandrov and Reshetnyak
(1989, Theorem 2.1.4)).
Remark 2. Let L ≥ 0. Suppose that X̂ satisfies G(L) = E[|X − X̂]|2]. Writing

E[|X − X̂|2] = E[|X − X̂ − E[X − X̂]|2] + |E[X]− E[X̂]|2,

we see that, necessarily,
E[X] = E[X̂], (II.3.6)

since, otherwise, the criterion could be made strictly smaller by replacing X̂ by the
translated variable X̂ + E[X]− E[X̂], which contradicts the optimality of X̂.

Observe that (II.3.6) remains true in a more general setting, as soon as the
constraint corresponds to a quantity invariant by translation.

II.3.3 Main results

II.3.3.1 Negligibility of the ridge set

Given a curve f : [0, 1]→ Rd, consider the set

Pf (x) = {y ∈ Imf, |x− y| = d(x, Imf)} = B̄(x, d(x, Imf)) ∩ Imf.

If Pf (x) has cardinality at least 2, x is called an ambiguity point in the principal
curves literature (see Hastie and Stuetzle (1989)). Properties of the set of such points,
named ridge set in the shape optimization community, have been studied for instance
in Mantegazza and Mennucci (2003). In particular, the ridge set is measurable. Using
property (II.3.6), it may be shown that the ridge set of an optimal curve for X is
negligible for the distribution of X.

Proposition II.3.3.1. Let f ∗ ∈ CL be an optimal curve for X, i.e. ∆(f ∗) = G(L).
1. The set A∗f = {x ∈ Rd,Card(P∗f (x)) ≥ 2} of ambiguity points is measurable.
2. The set A∗f is negligible for the distribution of X.

Remark 3. The fact that the ridge set is negligible for the distribution of X may be
extended to the context of computing optimal trees under H1 constraint. Indeed,
the result relies on property (II.3.6), and H1 measure is translation invariant.
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II.3.3.2 Main theorem and comments

Recall that a signed measure on (Ω,F) is a functionm : F → R such thatm(∅) =
0 and m is σ-additive, that is m

(⋃
k≥1Ak

)
=
∑

k≥1m(Ak) for any sequence (Ak)k≥1

of pairwise disjoint sets. For an Rd-valued signed measure m on [0, 1], that is m =
(m1, . . . ,md), where eachmj is a signed measure, and for g : [0, 1]→ Rd a measurable
function, we will use the following notation:

∫
〈g(t),m(dt)〉 =

∑d
j=1

∫
gj(t)mj(dt).

A probability space (Ω̃, F̃ , P̃ ) will be called an extension of (Ω,F , P ) if there
exists a random vector X̃ defined on (Ω̃, F̃ , P̃ ), with the same distribution µ as X.
For simplicity, we still denote this random vector by X.

The next theorem is proved in Delattre and Fischer (2020).

Theorem II.3.3.1. Let L > 0 such that G(L) > 0 and let f ∗ ∈ CL such that
∆(f ∗) = G(L). Then, L (f ∗) = L. Assuming that f ∗ is L-Lipschitz, we obtain that

— f ∗ is right-differentiable on [0, 1), |f ∗′r(t)| = L for all t ∈ [0, 1),
— f ∗ is left-differentiable on (0, 1], |f ∗′`(t)| = L for all t ∈ (0, 1],

and there exists a unique signed measure f ∗′′ on [0, 1] (with values in Rd) such that
— f ∗′′((s, t]) = f ∗′r(t)− f ∗′r(s) for all 0 ≤ s ≤ t < 1,
— f ∗′′([0, 1]) = 0.

In the case CL = {f : [0, 1]→ Rd,L (f) ≤ L}, we also have
— f ∗′′({0}) = f ∗′r(0),
— f ∗′′({1}) = −f ∗′`(1).
Moreover, there exists a unique λ > 0 and there exists a random variable t̂ with

values in [0, 1], defined on an extension (Ω̃, F̃ , P̃ ) of the probability space (Ω,F , P ),
such that
— |X − f ∗(t̂)| = d(X, Imf ∗) a.s.,
— for every bounded Borel function g : [0, 1]→ Rd,

E
[
〈X − f ∗(t̂), g(t̂)〉

]
= −λ

∫
[0,1]

〈g(t), f ∗′′(dt)〉. (II.3.7)

Remark 4. Letmt̂|X denote the conditional distribution of t̂ givenX. Then, Equation
(II.3.7) can be written in the following form:∫

Rd

∫
[0,1]

〈x− f ∗(t), g(t)〉mt̂|X(x, dt)dµ(x) = −λ
∫

[0,1]

〈g(t), f ∗′′(dt)〉.
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Remark 5. Whenever the function g is absolutely continuous, an integration by parts
shows that Equation (II.3.7) may also be written

E
[
〈X − f ∗(t̂), g(t̂)〉

]
= λ

∫ 1

0

〈g′(t), f ∗′r(t)〉dt. (II.3.8)

To see this, let us write

f ∗′′([0, 1])g(1) = f ∗′′({0})g(0) +

∫
(0,1]

〈g(t), f ∗′′(dt)〉+

∫
(0,1]

〈g′(s), f ∗′′([0, s])〉ds.

Since f ∗′′([0, 1]) = 0, we have

0 =

∫
[0,1]

〈g(t), f ∗′′(dt)〉+

∫
(0,1]

〈g′(s), f ∗′r(s)〉ds,

which, combined with Equation (II.3.7), implies the announced formula Equation
(II.3.8).

Remark 6. If the curve f ∗ has an angle at t, which means that f ∗′r(t) 6= f ∗′`(t), we
see that

E[(X − f ∗(t̂))1{t̂=t}] = −λf ∗′′({t}) = λ(f ∗′`(t)− f ∗
′
r(t)) 6= 0.

So, at an angle, P (t̂ = t) > 0.

Besides, when CL = {f : [0, 1]→ Rd,L (f) ≤ L}, we have

E[(X − f ∗(t̂))1{t̂=0}] = −λf ∗′′({0}) = −λf ∗′r(0),

which cannot be zero, since f ∗′r(0) has norm L > 0. This implies that P (t̂ = 0) > 0.

Remark 7. Regarding the random variable t̂, let us mention that t̂ is unique almost
surely whenever the curve is injective since f ∗(t̂) is unique almost surely (it is the
case in dimension d ≤ 2 ; see Section II.3.4). In general, it is worth pointing out
that Theorem II.3.3.1 does not ensure that it is a function of X, as (X, t̂) is, in fact,
obtained as a limit in distribution of (X, t̂n) for some sequence (t̂n)n≥1. Besides, note
that we do not know whether λ depends on the curve f ∗.

Remark 8 (Principal curves in dimension 1). Let CL = {f : [0, 1]→ Rd,L (f) ≤ L}.
It may be of interest to consider the simplest case of dimension 1, where the problem
may be solved entirely and explicitly Assume thatX is a real-valued random variable,
and that, for some length L > 0, G(L) > 0. Consider an optimal curve f ∗ with length
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L (f ∗) ≤ L. Using Corollary II.3.3.1 below, we have that, in fact, L (f ∗) = L, so
that the image of f ∗ is given by an interval [a, a+L]. In this context, solving directly
the length-constrained principal curve problem in dimension 1 leads to minimizing
in a the quantity

∆(a) = E
[
d2(X, Imf)

]
= E[(X − a)21{X<a}] + E[(X − a− L)21{X>a+L}].

The function ∆ is differentiable in a, with derivative given by

∆′(a) = 2E[(a−X)1{X<a}] + 2E[(a+ L−X)1{X>a+L}].

Moreover, ∆′ admits a right-derivative ∆′′r(a) = 2(P (X < a)+P (X > a+L)), which
is positive since G(L) > 0 implies that we do not have X ∈ [a, a+ L] almost surely.
Hence, ∆ is strictly convex, which shows that the minimizing a is unique, so that
the image of the principal curve f ∗ is also uniquely defined.

Besides, observe that Equation (II.3.7) from Theorem II.3.3.1 takes the following
form in dimension 1: for every bounded Borel function g : [0, 1]→ Rd,

E[(X − a)1{X<a}g(0)] + E[(X − a− L)1{X>a+L}g(1)] = λL(g(1)− g(0)).

In particular, we get

E[(X − a)1{X<a}] = −λL,
E[(X − a− L)1{X>a+L}] = λL,

which characterizes λ. Let us stress that we directly see in this case that λ > 0, since,
otherwise X ∈ [a, a+ L] almost surely, which contradicts the fact that G(L) > 0.

In the next sections, we present two lemmas, which are important both indepen-
dently and for obtaining the main result Theorem II.3.3.1.

II.3.3.3 Properties of the function G

The first lemma is about the monotonicity and continuity properties of the func-
tion G. Observe that G is nonincreasing, since {f : [0, 1]→ Rd,L (f) ≤ L1} ⊂ {f :
[0, 1]→ Rd,L (f) ≤ L2} when L1 < L2, so that G(L2) ≤ G(L1).

Lemma II.3.3.1. 1. The function G is continuous.
2. The function G is strictly decreasing over [0, L0), where

L0 = inf{L ≥ 0, G(L) = 0} ∈ R+ ∪ {∞}.
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In particular, Lemma II.3.3.1 admits the next useful corollary.

Corollary II.3.3.1. For L > 0, if G(L) > 0 and f ∈ CL is such that ∆(f) = G(L),
then L (f) = L.

II.3.3.4 Lack of self-consistency

The next lemma states that a principal curve with length ≤ L does not satisfy
the so-called self-consistency property, provided that the constraint is effective, that
is G(L) > 0.

Lemma II.3.3.2. Let L > 0 such that G(L) > 0, and let f ∗ ∈ CL be such that
∆(f ∗) = G(L). If X̂ is a random vector with values in Imf ∗ such that |X − X̂| =
d(X, Imf ∗) a.s., then P (E[X|X̂] 6= X̂) > 0.

Equipped with Lemmas II.3.3.1 and II.3.3.2, we can present a sketch of the proof
of the main result.

II.3.3.5 Sketch of proof of Theorem II.3.3.1

To obtain a length-constrained principal curve, we have to minimize a function
which may not be differentiable. We propose to build a discrete approximation of the
principal curve f ∗, using a chain of points vn1 , . . . , vnn, n ≥ 1, in Rd. For every n ≥ 1,
linking the points yields a polygonal curve fn. The properties of the principal curve
f ∗ are shown by passing to the limit. The chain of points is obtained by minimizing
a k-means-like criterion, which is differentiable, under a length constraint. This
criterion is based on the distances from the random vector X to the n points and
not to the corresponding segments of the polygonal line fn, which allows to simplify
the computation of the gradients.

Let us focus on open curves, that is in the case CL = {f : [0, 1]→ Rd,L (f) ≤ L}.
The case of closed curves turns out to be even simpler since there are no endpoints
and so all points of the curve play the same role. Note that the normalization factor
“n− 1” below becomes “n” in the closed curve context.

To facilitate understanding, we sketch the proof in a simpler case. Assume that
X has a density with respect to Lebesgue measure, and consider a polygonal line fn
with vertices vn1 , . . . , vnn obtained by minimizing under length constraint the criterion

F 0
n(x1, . . . , xn) = E

[
min

1≤i≤n
|X − xi|2

]
.
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For h = (h1, . . . , hn) ∈ (Rd)n, ∇F 0
n .h =

∑n
i=1 E

[
−2〈X − X̂n, hi〉1{X̂=vni }

]
, where X̂

is such that |X − X̂| = min1≤j≤n |X − vni |. For differentiability, it is convenient to
write the length constraint as follows:

(n− 1)
n∑
i=2

|xi − xi−1|2 ≤ L2.

Let t̂n be defined by t̂n = i−1
n−1

on the event {X̂ = vni }. For a test function g, set
hi = g

(
i−1
n−1

)
for i = 1, . . . , n. Then, we obtain the Euler-Lagrange equation

E
[
〈X − fn(t̂n), g(t̂n)〉

]
= −λn

∫
[0,1]

〈g(t), f ′′n(dt)〉. (II.3.9)

Up to an extraction, fn converges uniformly to an optimal curve and t̂n converges
in distribution. Using the lack of self-consistency Lemma II.3.3.2, it may be shown
that every limit point of the sequence (λn)n≥1 is positive. Together with the discrete
Euler-Lagrange equation (II.3.9), this allows to prove that f ′′n converges weakly to
a signed measure, which is f ∗′′. Finally, the desired Euler-Lagrange equation is
obtained as the limit of (II.3.9).

II.3.4 An application to injectivity

In this section, we present an application of formula (II.3.7) of Theorem II.3.3.1.
We will use this first order condition to show in dimension d = 2 that an open optimal
curve is injective, and a closed optimal curve restricted to [0, 1) is injective, except
in the case where its image is a segment. To obtain the result, we follow arguments
exposed in Lu and Slepcev (2016) in the frame of the penalized problem, for open
curves. The main difference is the fact that we have at hand the Euler-Lagrange
equation, which allows to simplify the proof.

Again, we consider L > 0 such that G(L) > 0 and a curve f ∗ ∈ CL such that
∆(f ∗) = G(L), which is L-Lipschitz. We let t̂ be defined as in Theorem II.3.3.1.
The random vector f ∗(t̂) will sometimes be denoted by X̂. Recall that |X − X̂| =
d(X, Imf ∗) a.s. by Theorem II.3.3.1.

To prove the injectivity of f ∗, we need several preliminary lemmas, proved in
Delattre and Fischer (2020). Let us point out that Lemmas II.3.4.1 to II.3.4.5 below
are valid for every d ≥ 1.
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First of all, we state the next lemma, which will be useful in the sequel, providing
a lower bound on the curvature of any closed arc of f ∗. Recall that the total variation
of a signed measure ν is defined by

|ν| =
( d∑
j=1

|νj|2TV
)1/2

,

where |νj|TV denotes the total variation norm of νj. For 0 ≤ a < b ≤ 1, f ∗(a,b]
′′

denotes the vector-valued signed measure f ∗′′((a, b] ∩ ·).

Lemma II.3.4.1. If 0 ≤ a < b ≤ 1 and f ∗(a) = f ∗(b), then |f ∗(a,b]
′′| ≥ L.

As a first step toward injectivity, we then obtain that, if a point is multiple, it is
only visited finitely many times.

Lemma II.3.4.2. For every t ∈ [0, 1], the set f ∗−1({f ∗(t)}) is finite.

In the case CL = {f : [0, 1] → Rd,L (f) ≤ L}, the endpoints of the curve f ∗
cannot be multiple points.

Lemma II.3.4.3. Let CL = {f : [0, 1]→ Rd,L (f) ≤ L}. We have f ∗−1({f ∗(0)}) =
{0} and f ∗−1({f ∗(1)}) = {1}.

For an open curve, there exists a multiple point which is the last multiple point.

Lemma II.3.4.4. Let CL = {f : [0, 1] → Rd,L (f) ≤ L}. There exists δ > 0 such
that for every t ∈ [1− δ, 1], f ∗−1({f ∗(t)}) = {t}.

We obtain that the two branches of the curve are necessarily tangent at a multiple
point.

Lemma II.3.4.5. (i) If there exist 0 < t0 < t1 < 1 such that f ∗(t0) = f ∗(t1), then
f ∗`
′(t0) = f ∗r

′(t0) = −f ∗r ′(t1) = −f ∗`
′(t1).

(ii) In the case CL = {f : [0, 1] → Rd,L (f) ≤ L, f(0) = f(1)}, if there exists
0 < t < 1 such that f ∗(t) = f ∗(0), then f ∗`

′(t) = f ∗r
′(t) = −f ∗r ′(0) = −f ∗`

′(1).

We introduce the set

D =
{
t ∈ [0, 1) | Card

(
f ∗−1({f ∗(t)}) ∩ [0, 1)

)
≥ 2
}
.
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Lemma II.3.4.6. If f ∗(t), t ∈ (0, 1), is a multiple point of f ∗ : [0, 1] → R2, then t
cannot be right- or left-isolated:
for all t ∈ D ∩ (0, 1), for all ε > 0, (t, t+ ε) ∩D 6= ∅ and (t− ε, t) ∩D 6= ∅.

Finally, we state the injectivity result in dimension 2, for open and closed curves.

Proposition II.3.4.1. (i) If CL = {f ∈ [0, 1] → R2,L (f) ≤ L}, then f ∗ is
injective.

(ii) If CL = {f ∈ [0, 1] → R2,L (f) ≤ L, f ∗(0) = f ∗(1)}, then either f ∗ restricted
to [0, 1) is injective or Imf ∗ is a segment.

II.3.5 Examples of principal curves

This section presents two examples of optimal curves. The proofs are available
in Delattre and Fischer (2020).

II.3.5.1 Uniform distribution on an enlargement of a curve

The purpose of this section is to study the principal curve problem for the uniform
distribution on an enlargement of some generative curve. For A ⊂ Rd and r ≥ 0, we
denote by

A⊕ r =
{
x ∈ Rd | d(x,A) ≤ r

}
the r-enlargement of A. Under some conditions on the generative curve g : [0, 1] →
Rd, for r small enough, it turns out that the image of an optimal curve with length
L (g) for the uniform distribution on an r-enlargement of Img is necessarily Img.
More specifically, the radius r must not exceed the reach of Img.

The reach of a set A ⊂ Rd is the supremum of the radii ρ such that every point
at distance at most ρ of A has a unique projection on A. More formally, following
Federer (1959), we define for A ⊂ Rd

reach(A) = sup
{
ρ ≥ 0 | ∀x ∈ Rd d(x,A) ≤ ρ⇒ ∃!a ∈ A d(x, a) = d(x,A)

}
∈ [0,+∞].

The question of the optimality of the generative curve when considering the uni-
form distribution on an enlargement has been first addressed in dimension d = 2
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in Mosconi and Tilli (2005). Observe that related ideas can be found in Genovese
et al. (2012a). Our proof in arbitrary dimension d ≥ 1 relies on arguments in Federer
(1959), which moreover allow to show uniqueness.

Theorem II.3.5.1. Let g : [0, 1] → Rd be a curve. Suppose that g is injective,
differentiable, g′ is Lipschitz, and there exists c > 0 such that |g′(t)| ≥ c for all
t ∈ [0, 1]. Then, the reach of Img is positive. Let r ∈ (0, reach(Img)] and let X be a
random vector uniformly distributed on Img ⊕ r. Consider a function V : [0,∞) →
[0,∞) continuous, increasing and such that V (0) = 0. Then, for every curve f :
[0, 1]→ Rd such that L (f) ≤ L (g) one has

E
[
V (d(X, Img))

]
≤ E

[
V (d(X, Imf))

]
.

with equality if and only if Imf = Img.

The proof of the theorem is based on the two next lemmas. For k ≥ 1, λk denotes
the Lebesgue measure on Rk and αk the volume of the unit ball in Rk. From (Mosconi
and Tilli, 2005, Lemma 42), we have the next result.

Lemma II.3.5.1. Let A be a compact connected subset of Rd with H1(A) < ∞.
Then for all r ≥ 0 one has

λd(A⊕ r) ≤ H1(A)αd−1r
d−1 + αdr

d.

Lemma II.3.5.2. Let g : [0, 1] → Rd be a curve. Suppose that g is injective, g
is differentiable, g′ is Lipschitz, and there exists c > 0 such that |g′(t)| ≥ c for all
t ∈ [0, 1]. Then, the reach of A = Img is positive and for all r ≤ reach(A) one has

λd (A⊕ r) = L (g)αd−1r
d−1 + αdr

d (II.3.10)

Moreover, one has

{x ∈ A⊕ r | d (x, ∂(A⊕ r)) ≥ r} ⊂ A. (II.3.11)

II.3.5.2 Uniform distribution on a circle

In this section, we investigate the principal curve problem for a particular distri-
bution, the uniform distribution on a circle.
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Proposition II.3.5.1. Consider the unit circle centered at the origin with parame-
terization given by

g(t) = (cos(2πt), sin(2πt))

for t ∈ [0, 1]. Let U be a uniform random variable on [0, 1] and let X = g(U). Then,

for every L < 2π, the circle centered at the origin with radius
L

2π
is the unique closed

principal curve with length L for X.

Remark 9. Observe that radial symmetry of a distribution is not sufficient to guar-
antee that a given circle will be a constrained principal curve for this distribution.
Let us exhibit two counterexamples.

— Let p > 0 and let U denote the uniform distribution on the unit circle. Consider
a random variable X taking its values in R2, distributed according to the
mixture distribution

pδ(0,0) + (1− p)U ,

where δ(0,0) stands for the Dirac mass at the origin (0, 0). Then, for every
circle with center (0, 0) and radius r ∈ (0, 1], because of the atom at the origin,
the projection of X on the circle is not unique almost surely, which implies,
thanks to Proposition II.3.3.1, that none of these circles may be a constrained
principal curve for X.

— We consider the case where X is a standard Gaussian random vector in R2.
Lemma II.3.3.2 ensures that the circle with center (0, 0) and radius E[|X|] =√
π/2 cannot be a constrained principal curve forX because it is self-consistent.
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Estimation via length-constrained
principal curves

This chapter is the result of a collaborative work with Sylvain Delattre, the com-
plete version of which can be found in the article Delattre and Fischer (2021), cur-
rently submitted.

II.4.1 Introduction

II.4.1.1 Preliminary picture of the estimation result

Let n ≥ 1. We observe random vectors Xn
i , given by

Xn
i = g(Un

i ) + εni , i = 1, . . . , n, (II.4.1)

where the unknown function g : [0, 1]→ Rd is continuous. Moreover, g is assumed to
have finite length equal to its 1-dimensional Hausdorff measure and to have constant
speed. Here, the random variables Un

i , i = 1, . . . , n, taking their values in [0, 1], are
independent, and belong to a class of distributions with full support, enclosing for
instance the uniform distribution as a particular case.

We study an asymptotic context, where the noise tends in probability to 0 (in
a sense that will be specified below) when the number of observations n tends to
infinity.
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The main result in this chapter is the construction, relying on the principal curve
notion, of an estimator f̂n, which converges to the unknown curve g in Hausdorff
distance, in the sense that the Hausdorff distance between Imf̂n and Img converges
in probability to 0.

II.4.1.2 Related work

The problem of estimating the image of g may be cast into the general context of
filament or manifold estimation from observations sampled on or near the unknown
shape.

The literature mainly focuses on shapes with a reach bounded away from zero.
The reach ρ, characterizing the regularity of the shape, is the maximal radius of a
ball rolling on it (see Federer, 1959). In Genovese et al. (2012a), an additive noise
model of the form (II.4.1) is studied. The curve g is parameterized by arc-length,
normalized to [0, 1]. The authors assume that the Ui, i = 1, . . . , n, have a common
density with respect to the Lebesgue measure on [0, 1], bounded and bounded away
from zero. The noise has support in a ball B(0, σ), with σ < ρ(g), and admits
a bounded density with respect to the Lebesgue measure, which is continuous on
B̊(0, σ), nondecreasing and symmetric, with a regularity condition on the boundary
of the support. For an open curve (with endpoints), in addition, |f(1)−f(0)|/2 > σ.
In the plane R2, the assumptions made allow to estimate the support S of the
distribution of the observations, the boundary of this set S, in order to find its
medial axis, which is the closure of the set of points in S that have at least two
closest points in the boundary ∂S. In the same article, the authors also consider
clutter noise, corresponding to the situation where one observes points sampled from
a mixture density (1 − η)u(x) + ηh(x), where u is the uniform density over some
compact set, and h is the density of points on the shape. Another additive model
is investigated in Genovese et al. (2012b), for the estimation of manifolds without
boundary, with dimension lower than the dimension of the ambient space, contained
in a compact set. The model may be written

Xi = Gi + εi, i = 1, . . . , n,

where the random vectors Gi are drawn uniformly on the shape M , and the noise is
drawn uniformly on the normal to the manifold, at distance at most σ < ρ(M). The
article Genovese et al. (2012c) is also dedicated to manifold estimation, under reach
condition, first in a noiseless model, where the observations are exactly sampled on
the manifold, according to some density with respect to the uniform distribution on
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the manifold, and then in the presence of clutter noise. An additive noise model,
with known Gaussian noise, is examined as well. This latter case is related to density
deconvolution. Estimating manifolds without boundary, with low dimension and a
lower bound on the reach, is also the purpose of Aamari and Levrard (2018, 2019).
The points sampled on the manifold have a common density with respect to the d-
dimensional Hausdorff measure of the manifold, which is bounded and bounded away
from zero. In Aamari and Levrard (2018), estimation relies on Tangential Delaunay
Complexes. It is performed in the noiseless case, with additive noise, bounded by σ,
and under clutter noise. Aamari and Levrard (2019) deal with compact manifolds
belonging to particular regularity classes. The authors examine the noiseless situa-
tion, as well as centered bounded noise perpendicular to the manifold. Estimators
based on local polynomials are proposed.

To sum up, all these models involve strong conditions on the noise, which is either
bounded, or of type clutter noise. Such assumptions allow the authors to derive rates
of convergence. Here, we investigate a different situation, with a weak assumption
on the noise. In particular, the noise does not need to be bounded. Regarding the
regularity of the curve g, which has constant speed, there is no reach assumption, and
g is not required to be injective. Although rates of convergence cannot be expected
here, this weak framework is worth studying, since it is not obvious at first sight
that it is even possible to build a convergent estimator without knowledge of either
length or noise.

The estimation strategy relies on generalized empirical principal curves.

II.4.1.3 Extension of the notion of length-constrained princi-
pal curve

Recall that, according to Kégl et al. (2000), principal curves with length constraint
are defined as follows. If X denotes a random vector with finite second moment, a
principal curve is a continuous map f ∗ : [0, 1] → Rd minimizing under a length
constraint the quantity

E
[

min
t∈[0,1]

|X − f(t)|2
]

= E
[
d2(X, Imf)

]
.

In order to allow for greater flexibility in the way we measure distances, we con-
sider here the generalized principal curve notion introduced in Chapter II.1. Let
V : [0,∞)→ [0,∞) be a lower semi-continuous, strictly increasing function, contin-
uous at 0, and such that V (0) = 0. For a random vectorX such that E[V (|X|)] <∞,
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we are interested in the minimization over all curves with length at most L of the
criterion

∆(f) = E
[
V (d(X, Imf))

]
.

This framework encloses for instance as particular cases the power functions
V (x) = xp, p > 0. An appropriate choice of V may enhance robustness. A typ-
ical example in this regard is the function defined by V (x) = x

1+x
.

In a statistical context, one has at hand independent observations X1, . . . , Xn,
and a generalized empirical principal curve is defined as a minimizer, under a length
constraint, of the criterion

1

n

n∑
i=1

V (d (Xi, Imf)).

We set up notation and introduce more formally the model in Section II.4.2.
Then, in Section II.4.3, we describe the main result, that is the construction of
a sequence of generalized empirical principal curves converging to the curve to be
estimated in Hausdorff distance.

II.4.2 Definitions and notation

II.4.2.1 Notation

We denote by dH(A,B) the Hausdorff distance between two sets A and B.

Throughout, an interval (a, b) will denote an open interval of [0, 1] equipped with
the induced topology.

Let D denote a metric associated to weak convergence. For a probability measure
µ and a closed set of probability measuresM, let D(µ,M) = minµ′∈MD(µ, µ′).

For two probability measures µ and µ′, we define the bounded Lipschitz metric
between µ and µ′ by

|µ− µ′|BL = sup

{
|µ(h)− µ′(h)| : |h|∞ ≤ 1, sup

x 6=y

|h(x)− h(y)|
|x− y|

≤ 1

}
.
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II.4.2.2 Description of the model

Let g : [0, 1] → Rd be a curve with finite length and constant speed, such that
the length equals the 1-dimensional Hausdorff measure.

Given c > 0, we defineMc as the closed family of probability distributions µ on
[0, 1] satisfying µ ≥ cλ on [0, 1].

For n ≥ 1, we observe random vectors Xn
i , given by the model

Xn
i = g(Un

i ) + εni , i = 1, . . . , n, (II.4.2)

where the Un
i , i = 1, . . . , n, are independent and for every i = 1, . . . , n, the distribu-

tion µni of Un
i belongs toMc.

Let V : R+ → R+ be a lower semi-continuous, strictly increasing function, con-
tinuous at 0, and such that V (0) = 0. Moreover, we assume that V satisfies the
following property: there exist a constant C > 0, such that, for every (x, y) ∈ R+

V (x+ y) ≤ C(V (x) + V (y)).

For a curve f , we define

∆n(f) =
1

n

n∑
i=1

V (d(Xn
i , Imf)).

We also define a function T (f, ·) : Rd → [0, 1], by setting

T (f, x) = max arg min
t∈[0,1]

|x− f(t)|.

For every L > 0, let
Gn(L) = min

L (f)≤L
∆n(f),

and let f̂n,L denote an empirically optimal curve with length at most L, that is a
random variable taking its values in C([0, 1]) such that

∆n(f̂n,L) = Gn(L).

Without loss of generality, we choose f̂n,L L-Lipschitz. Let Λ > 0 and Λn = inf{L ≥
0, Gn(L) = 0}.
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II.4.3 Main result

We consider the estimation of the curve g in Model (II.4.2), using a sequence
of generalized empirical principal curves. These optimal curves with respect to the
criterion ∆n are associated to a particular length selection described in the next
statement, whose proof is to be found in Delattre and Fischer (2021).

Theorem II.4.3.1. Let g : [0, 1] → Rd be a curve, such that L (g) ≤ Λ < ∞,
and |g′(t)| = L (g) dt−a.e.. Assume that L (g) = H1(Img). We consider Model
(II.4.2), with 1

n

∑n
i=1 V (|εni |) tending to 0 in probability as n tends to infinity. Let L̂n

be defined by

L̂n ∈ arg min
L∈anN∩[0,Λn∧Λ]

[
V (L)D

(
1

n

n∑
i=1

δT (f̂n,L,X
n
i ),Mc

)
+ ∆n(f̂n,L)

]
,

where an > 0 for every n ≥ 1 and an → 0 as n → ∞. Then, dH(Imf̂n,L̂n , Img)
converges in probability to 0 as n tends to infinity.

Some comments are in order.

First, let us discuss the assumptions. The requirement L (g) ≤ Λ < ∞ is tech-
nical. It allows, in the proof, to consider limit points of the constructed sequence
of empirical principal curves. From a applied point of view, this is not a limitation
of the procedure. Indeed, in practice, we will always consider a finite grid for the
length. Moreover, with a fixed number of observations, the minimal length needed to
join all points is a finite upper bound for the length. The condition L (g) = H1(Img)
ensures that the image of g is parameterized with minimal possible length. Indeed,
there exist an infinite number of parameterizations, with infinite possibilities for the
length. In words, generically, a portion of image of g cannot be traveled several
times. The case were g is injective is a particular case. Nevertheless, here, an image
with loops is allowed. We also require |g′(t)| = L (g) dt−a.e., which means that the
image of g is parameterized with constant speed L (g). These assumptions about
the parametrization allow to show a key relation between the distribution classMc

and its image by g (see Lemma II.4.4.3 below), the proof of which relies on the
Cauchy-Crofton formula for the length of a rectifiable curve (Cauchy, 1850; Crofton,
1868).

Observe that the main strength of the result is that it provides a convergent
estimator in a very general framework. Neither the length, nor the noise level, con-
verging to 0 in a weak sense, is known. In particular, the noise is not supposed
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bounded. Intuitively, considering a practical situation with a fixed number of ob-
servations, the same data cloud could arise from several different generative curves,
longer or shorter, in a model with more or less noise. This illustrates the benefit of
an estimator construction which does not require the knowledge of any of the two
parameters. Apart from the upper bound Λ, which does not really need calibration
in practice, as already mentioned, the procedure only depends on a single parameter,
namely the constant c characterizing the class of possible sampling distributionsMc.

It should be noticed that the theorem does not guarantee that the procedure
allows to recover the true underlying length. Nevertheless, the proof below shows that
the selected length cannot be too short: for all ε > 0 one has P (L̂n ≤ L (g)−ε)→ 0.

If g is a closed curve (g(0) = g(1)), then Theorem II.4.3.1 still holds when f̂n,L is
chosen as a closed empirically optimal curve with length at most L.

We sketch the proof of Theorem II.4.3.1 in the next section, divided into two
parts, the first of which is dedicated to the equivalence linkingMc and its image by
g, obtained thanks to results related to the Cauchy-Crofton formula.

II.4.4 Sketch of proof of the main result

II.4.4.1 Cauchy-Crofton formula and relation linking Mc to
its image

As g is not supposed to be injective, but satisfies the condition L (g) = H1(Img),
the next results, interesting in themselves, are crucial to enable a change of variables.

We first recall the Cauchy-Crofton formula.

Let Sd−1 = {z ∈ Rd, |z| = 1}. For θ ∈ Sd−1 and r ∈ [0,∞), let

Dθ,r = {z ∈ Rd | 〈θ, z〉 = r}.

Lemma II.4.4.1 (Cauchy-Crofton formula). The length of a rectifiable curve f :
[0, 1]→ Rd is given by

L (f) =
1

cd

∫
Sd−1

∫ ∞
0

Card({t ∈ [0, 1], f(t) ∈ Dθ,r})drdθ,

where cd > 0 is a constant depending on the dimension d.
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Equivalently, we may write:

L (f) =
1

cd

∫
Sd−1

∫ ∞
0

∑
y∈Imf∩Dθ,r

Card(f−1({y}))drdθ.

The next equality corresponds to the Cauchy-Crofton formula applied to an open
subset of the image of a curve.
Remark 10. Let (a, b) ⊂ [0, 1]. Then,

L (f |(a,b)) =
1

cd

∫
Sd−1

∫ ∞
0

Card({t ∈ (a, b), f(t) ∈ Dθ,r})drdθ.

Since

L (f |(a,b)) =

∫ 1

0

1(a,b)(t)|f ′(t)|dt,

we have ∫ 1

0

1(a,b)(t)|f ′(t)|dt =
1

cd

∫
Sd−1

∫ ∞
0

∑
t∈[0,1]

1(a,b)(t)1{f(t)∈Dθ,r}drdθ.

Hence, by linearity, if (ai, bi), i ≥ 1, are pairwise disjoint open intervals of [0, 1], we
have ∫ 1

0

1⋃
i≥1(ai,bi)(t)|f ′(t)|dt =

1

cd

∫
Sd−1

∫ ∞
0

∑
t∈[0,1]

1⋃
i≥1(ai,bi)(t)1{f(t)∈Dθ,r}drdθ.

We also need a Cauchy-Crofton-type formula for the curve g taking the form of
an equality of measures. First, we may show an inequality, stated in the next lemma.

Lemma II.4.4.2. Let f : [0, 1] → Rd be a rectifiable curve. Then, the trace of H1

on Imf satisfies H1 ≤ γ, where γ is the measure defined on every Borel set A ⊂ Imf
by

γ(A) =
1

cd

∫
Sd−1

∫ ∞
0

Card(A ∩Dθ,r)drdθ.

In fact, for a curve g such that H1(Img) = L (g), we have H1 = γ. Indeed,
on the one hand, H1(Img) ≤ γ(Img) by Lemma II.4.4.2, and on the other hand,
γ(Img) ≤ L (g) by the Cauchy-Crofton formula (Lemma II.4.4.1), so that the as-
sumption H1(Img) = L (g) implies H1(Img) = γ(Img). Thus, both measures have
the same mass. Since H1 ≤ γ by Lemma II.4.4.2, they are equal.
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Finally, there is an additional result useful for the change of variables. For g such
that H1(Img) = L (g), since

H1(Img) = γ(Img) =
1

cd

∫
Sd−1

∫ ∞
0

∑
y∈Img∩Dθ,r

1drdθ,

and, by the Cauchy-Crofton formula for g,

L (g) =
1

cd

∫
Sd−1

∫ ∞
0

∑
y∈Img∩Dθ,r

Card(g−1({y}))drdθ,

we obtain that Card(g−1({y})) = 1 for almost every y with respect to the trace of
H1 on Img.

Thanks to all these properties around the Cauchy-Crofton formula, we are able
to characterize the image by g of a distribution belonging to the classMc.

Lemma II.4.4.3. Let g : [0, 1]→ Rd be a curve such that 0 < L (g) <∞, |g′(t)| =
L (g) a.e., and H1(Img) = L (g). Let µ be a probability distribution supported in
[0, 1], and let c > 0 denote a constant. Then,

µ ≥ cλ⇔ ∀A ⊂ B(Rd) ∩ Img, µ ◦ g−1(A) ≥ c
H1(A)

L (g)
. (II.4.3)

Let us denote byMg
c the family of probability distributionsm on Rd, with support

Img, such that ∀A ⊂ B(Rd) ∩ Img,m(A) ≥ cH
1(A)

L (g)
. Hence, the equivalence (II.4.3)

means
µ ∈Mc ⇔ µ ◦ g−1 ∈Mg

c .

Equipped with this key equivalence, we turn to the main part of the proof.

II.4.4.2 Overview of the proof of convergence

Note that L (g)− an < an

⌊
L (g)
an

⌋
≤ L (g). We set, for every n ≥ 1,

f ∗n = f̂
n,anbL (g)

an
c,

f̂n = f̂n,L̂n .

There are two main steps, the first focusing on the f ∗n curve, before considering
f̂n.
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1. In the first step, the goal is to prove that

V (L)D

(
1

n

n∑
i=1

δT (f∗n,X
n
i ),Mc

)
+ ∆n(f ∗n)

converges in probability to 0 as n goes to infinity.
— For the term ∆n(f ∗n), the convergence to 0 follows from the assumption on the

noise.
— We set D∗n(Mc) = D

(
1
n

∑n
i=1 δT (f∗n,X

n
i ),Mc

)
. Let L (g) > 0. We show that

the sequence (D∗n(Mc))n≥1 is tight, and that every limit point for the con-
vergence in distribution is δ0. Let ν∗n = 1

n

∑n
i=1 δ

(
T (f∗n,X

n
i ),g(Uni )

). Since ν∗n
has compact support, f ∗n is L (g)-Lipschitz, and (f ∗n(0))n≥1 is tight, we obtain
tightness of (f ∗n, ν

∗
n)n≥1. Thus, (D∗n(Mc))n≥1 is tight. Considering a weakly

convergent subsequence (D∗σ(n)(Mc))n≥1, we may assume by Prohorov’s theo-
rem, up to a further extraction, that

(
f ∗σ(n), ν

∗
σ(n)

)
n≥1

converges almost surely
to a tuple (ϕ∗, ν∗), using Skorokhod’s representation. Then, we show that
the second marginal of ν∗ belongs to Mg

c . Moreover, ν∗
(
|Z − ϕ∗(T )| =

mint∈[0,1] |Z − ϕ∗(t)|
)

= 1 almost surely, where (T, Z) denotes the identity
on [0, 1] × Rd, and

∫
V (|z − ϕ∗(t)|)dν∗(t, z) = 0 almost surely, leading to

Img = Imϕ∗ and L (ϕ∗) = L (g) almost surely, by lower semi-continuity
of the length. This allows to prove that ϕ∗ satisfies the assumptions of
Lemma II.4.4.3, and it follows that the first marginal of ν∗ belongs to Mc,
meaning that (D∗σ(n)(Mc))n≥1 converges to 0.

2. In the second step, we first observe that, by definition of L̂n, we have the conver-
gences in probability

∆n(f̂n)→ 0 (II.4.4)

V (L̂n)D

(
1

n

n∑
i=1

δT (f̂n,Xn
i ),Mc

)
→ 0. (II.4.5)

Then, considering extractions of the sequence (f̂n)n≥1 converging in distribution,
we show that for every limit point ϕ of (f̂n)n≥1, dH(Imϕ, Img) = 0 almost surely.
To obtain that Img = Imϕ almost surely, we exploit the convergence result (II.4.5),
as well as a series of arguments similar to those in the first part, involving (II.4.4).
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Improved rate of convergence in
statistical learning

This chapter corresponds to a collaboration with Sylvain Delattre.

As the results have not been submitted to a journal yet, the complete proofs are
collected in Section II.5.3.

II.5.1 Notation

We consider the space (Rd, |· |). For an Rd-valued signed measure ν = (ν1, . . . , νd)
on [0, 1], we set

|ν| =
( d∑
j=1

|νj|2TV
)1/2

where |νj|TV denotes the total variation norm of νj.

In the sequel, we consider a random vector X with values in Rd, such that P (X ∈
K) = 1 for some compact set K. We let D denote the diameter of K. Let X1, . . . , Xn

independent random vectors with the same distribution as X. For curves f : [0, 1]→
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Rd, we define

∆(f) = E[d2(X, Imf)],

∆n(f) =
1

n

n∑
i=1

d2(Xi, Imf).

Given a maximal length L > 0, we denote by f ∗ an optimal curve and by f̂n an
empirically optimal curve, that is

f ∗ ∈ arg min
f,L (f)≤L

∆(f).

f̂n ∈ arg min
f,L (f)≤L

∆n(f).

The purpose is to study the rate of convergence to 0 for ∆
(
f̂n
)
−∆(f ∗).

Note that the best rate of convergence so far has been obtained by Kégl et al.
(2000), who constructed a sequence of curves f̂n, such that

∆(f̂n)−∆(f ∗) = O(n−1/3).

II.5.2 Rate of convergence

Let Fn be the set of piecewise linear curves with n segments, with length at most
L. We have

∆(f̂n)−∆(f ∗) = ∆(f̂n)−∆n(f̂n) + ∆n(f̂n)−∆n(f ∗) + ∆n(f ∗)−∆(f ∗)

≤ ∆(f̂n)−∆n(f̂n) + ∆n(f ∗)−∆(f ∗)

≤ sup
f∈Fn

(∆(f)−∆n(f)) + ∆n(f ∗)−∆(f ∗).

Hoeffding’s inequality applied to the second term ∆n(f ∗)−∆(f ∗) shows that, for
every ε > 0,

P (∆n(f ∗)−∆(f ∗) ≥ ε) ≤ exp

(
−2nε2

D4

)
.

The next proposition, proved in Section II.5.3, allows to control the first term
supf∈Fn(∆(f)−∆n(f)).
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Proposition II.5.2.1. For k ≥ 2,

P

(
sup
f∈Fn

(∆(f)−∆n(f)) ≥ C1

k2

)
≤ (Dk2)dk exp

(
−2nC2

k4

)
,

where C1, C2 ≥ 0 only depend on the dimension d and the diameter D.

This upper bound is based on the result stated in the next lemma, about approx-
imation by piecewise linear curves.

Lemma II.5.2.1. Let f : [0, 1]→ Rd be such that L (f) ≤ L, f is right-differentiable
on [0, 1) and left-differentiable on (0, 1] and there is a signed measure f ′′ such that

— f ′′((s, t]) = f ′r(t)− f ′r(s) for 0 ≤ s ≤ t < 1,

— f ′′([0, 1]) = 0,

— f ′′({0}) = f ′r(0),

— f ′′({1}) = −f ′`(1),

Then, for every k ≥ 2, there exists a piecewise linear curve fk with k segments (with
breakpoints f(s), s ∈ {t0 = 0, . . . , t`, . . . , tk = 1}) such that

max
t∈[0,1]

|f(t)− fk(t)| ≤
A

k2
,

for some constant A ≥ 0.

To prove the lemma, in Section II.5.3, we first check that it is enough to consider
smooth functions (C2), and then, we show the piecewise linear approximation when
f is C2.

Finally, the main result may be stated as follows.

Proposition II.5.2.2. The rate of convergence to 0 of ∆(f̂n)−∆(f ∗) is O(n−2/5).

Proof. To see this, let us optimize in k the quantity (Dk2)dk exp
(
−2nC2

k4

)
. Taking

the logarithm, we deal with dk(lnD + 2 ln k)− 2nC2

k4
. Leaving out the constants, we

obtain that k5 should be of the order n, and, thus, k of the order n1/5. Consequently,
we end up with the rate of convergence O(n−2/5).
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II.5.3 Proofs

Proof of Lemma II.5.2.1. 1. Let us first check that it is enough to consider C2 func-
tions. We denote by f ′′+ the positive part of the signed measure f ′′ and f ′′− its negative
part. For each j = 1, . . . , d, f j

′′
+ and f j ′′− are the positive and negative part of the

j-th coordinate of f ′′.

Let Zj denote a random variable with cumulative distribution function t 7→
f j
′′
+(]0, t]) and let hjn denote a density of the random variable Zj + 1

n
ξ, where

ξ ∼ N (0, 1). As Zj + 1
n
ξ converges in distribution to Zj, we may write, for ev-

ery t ∈ [0, 1] such that f j ′′+({t}) = 0,∫ t

−∞
hjn(s)ds→ P (Zj ≤ t) = f j

′′
+(]0, t]).

Yet,
∫ 0

−∞ h
j
n(s)ds = P (Zj+ 1

n
ξ < 0) tends to 0 as n tends to infinity since the random

variable Zj puts no mass at 0. Consequently, for a.e. t ∈ [0, 1],∫ t

0

hjn(s)ds→ f j
′′
+(]0, t]).

By Lebesgue’s dominated convergence theorem, we obtain∫ 1

0

∣∣∣∣∫ t

0

hjn(s)ds− f j ′′+(]0, t])

∣∣∣∣ dt→ 0.

Applying the same argument to the negative part f j ′′−, there also exist a function
h̃jn : [0, 1]→ R+ such that∫ 1

0

∣∣∣∣∫ t

0

h̃jn(s)ds− f j ′′−(]0, t])

∣∣∣∣ dt→ 0.

Hence, ∫ 1

0

∣∣∣∣∫ t

0

(hjn(s)− h̃jn(s))ds− f j ′′(]0, t])
∣∣∣∣ dt→ 0.

Let us write

f j(t) = f j(0) + tf j
′
r(0) +

∫ t

0

f j
′′
(]0, s])ds.
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and set

f jn(t) = f(0) + tf j
′
r(0) +

∫ t

0

∫ s

0

(hjn(u)− h̃jn(u))duds.

Then

max
t∈[0,1]

|f jn(t)− f j(t)| = max
t∈[0,1]

∣∣∣∣∫ t

0

(∫ s

0

(hjn(u)− h̃jn(u))du− f j ′′(]0, s])
)
ds

∣∣∣∣
≤ max

t∈[0,1]

∫ t

0

∣∣∣∣∫ s

0

(hjn(u)− h̃jn(u))du− f j ′′(]0, s])
∣∣∣∣ ds

=

∫ 1

0

∣∣∣∣∫ s

0

(hjn(u)− h̃jn(u))du− f j ′′(]0, s])
∣∣∣∣ ds,

which tends to 0. Consequently, maxt∈[0,1] |fn(t) − f(t)| → 0. Moreover, for every
j = 1, . . . , d, ∫ 1

0

|f jn
′′
(u)|du =

∫ 1

0

|hjn(u)− h̃jn(u)|du ≤ |f j ′′|TV ,

which is finite by assumption, and, hence,

|f ′′n | =

(
d∑
j=1

(∫ 1

0

|f jn
′′
(u)|du

)2
)1/2

≤
( d∑
j=1

|f j ′′|2TV
)1/2

< +∞.

2. Assume that f is C2. Let k ≥ 2. For t0 = 0 < t1 < · · · < tk−1 < tk = 1, we
consider the piecewise linear curve fk, defined by the breakpoints {f(t0), . . . , f(tk)}.
We have

max
t∈[0,1]

|f(t)− fk(t)| = max
`=1,...,k

max
t∈[t`−1,t`]

|f(t)− fk(t)|.

For t ∈ [t`−1, t`],

fk(t) = f(t`−1) +
t− t`−1

t` − t`−1

(f(t`)− f(t`−1)) = f(t`−1) +
t− t`−1

t` − t`−1

∫ t`

t`−1

f ′(u)du.
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We write f(t) = f(t`−1) +
∫ t
t`−1

f ′(u)du. Then,

f(t)− fk(t) =

∫ t

t`−1

f ′(u)du− t− t`−1

t` − t`−1

∫ t`

t`−1

f ′(u)du

=

∫ t

t`−1

(
f ′(s)− 1

t` − t`−1

∫ t`

t`−1

f ′(u)du

)
ds

=

∫ t

t`−1

(
1

t` − t`−1

∫ t`

t`−1

(f ′(s)− f ′(u))du

)
dsg

Thus,

|f(t)− fk(t)| ≤
∫ t

t`−1

(
1

t` − t`−1

∫ t`

t`−1

|f ′(s)− f ′(u)|du

)
ds

≤
∫ t

t`−1

(
1

t` − t`−1

∫ t`

t`−1

∫ t`

t`−1

|f ′′(v)|dvdu

)
ds

≤ (t` − t`−1)

∫ t`

t`−1

|f ′′(v)|dv,

and we obtain

max
t∈[t`−1,t`]

|f(t)− fk(t)| ≤ (t` − t`−1)

∫ t`

t`−1

|f ′′(v)|dv.

The t`, ` = 0, . . . , k, have to be optimized to obtain the best approximating fk. To
minimize max`=1,...,k(t`− t`−1)

∫ t`
t`−1
|f ′′(v)|dv, it is of interest to choose the t` so that

almost all the products (t` − t`−1)
∫ t`
t`−1
|f ′′(v)|dv, ` = 1, . . . , k, are constant. Let

ε > 0. We set t0 = 0 and, for ` ∈ N,

t` = inf

{
t > t`−1 : (t− t`−1)

∫ t

t`−1

|f ′′(v)|dv = ε

}
∧ 1.

By assumption, there exists a constant C ≥ 0, such that
∫ 1

0
|f ′′(v)|dv ≤ C. Hence,

for every p ≥ 1 such that tp < 1,

p∑
`=1

1

t` − t`−1

=

p∑
`=1

∫ t
t`−1
|f ′′(v)|dv
ε

≤ C

ε
.
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Since 1
p

∑p
`=1

1
t`−t`−1

≥ 1
1
p

∑p
`=1 t`−t`−1

= p, we obtain p2 ≤ C
ε
. This shows that 1 is

attained. Now, let k be such that tk−1 < 1 and tk = 1: we have (k− 1)2 ≤ C
ε
, that is

ε ≤ C
(k−1)2

. Finally, letting fk be the piecewise linear curve associated to this choice
of t0 = 0 < t1 < · · · < tk−1 < tk = 1, we get

max
t∈[0,1]

|f(t)− fk(t)| ≤
C

(k − 1)2
≤ C + 3

k2
.

Proof of Proposition II.5.2.1. Let k ≥ 2. Let us build, for the sup-norm, a δ-net
F δk of the set Fn, with δ = 1/k2, made of piecewise linear curves with k segments.
Lemma II.5.2.1 shows that every element f of Fn may be approximated in the sup-
norm by a piecewise linear curve with k segments : there exists fk such that

max
t∈[0,1]

|f(t)− fk(t)| ≤
A

k2
,

where A ≥ 0 is some constant. Moreover, noticing that, provided an adequate
parametrization, the sup-norm between two piecewise linear curves determined by
k + 1 points, {x0, . . . , xk} and {y0, . . . , yk}, is max`=0,...,k |x` − y`|, we obtain that
there exists fk,δ belonging to the δ-net, such that

max
t∈[0,1]

|fk(t)− fk,δ(t)| ≤
√
d

k2
.

Hence, there exists a constant B ≥ 0, such that

max
t∈[0,1]

|f(t)− fk,δ(t)| ≤
B

k2
.

Yet, for f ∈ Fn,

∆(f)−∆n(f) = ∆(f)−∆n(f)−∆(fk,δ) + ∆n(fk,δ) + ∆(gk,δ)−∆n(gk,δ)

≤ E

[
min
t∈[0,1]

|X − g(t)|2 − min
t∈[0,1]

|X − gk,δ(t)|2
]

+
1

n

n∑
i=1

(
min
t∈[0,1]

|Xi − gk,δ(t)|2 − min
t∈[0,1]

|Xi − g(t)|2
)

+ ∆(gk,δ)−∆n(gk,δ)

≤ 4DB

k2
+ ∆(gk,δ)−∆n(gk,δ).
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P

(
sup
g∈Fn

(∆(g)−∆n(g)) ≥ 5DB

k2

)
≤ P

(
sup
g∈Fδk

(∆(g)−∆n(g)) +
4DB

k2
≥ 5DB

k2

)

≤ P

(
sup
g∈Fδk

(∆(g)−∆n(g)) ≥ DB

k2

)

≤ |F δk | exp

(
−2nB2

k4D2

)
= (Dk2)dk exp

(
−2nB2

k4D2

)
.
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Part III

Cluster analysis, segmentation, and
deconvolution
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Chapter III.1

Clustering with Bregman divergences

The content of this chapter is extracted from an article published in the Journal
of Multivariate Analysis (Fischer, 2010) as part of my doctoral work. The goal is to
provide the background for the next chapter.

III.1.1 Introduction

Bregman divergences are a broad class of dissimilarity measures indexed by
strictly convex functions. Introduced by Bregman (1967), these proximity func-
tions are useful in a wide range of areas, among which statistical learning and data
mining (Banerjee et al., 2005b; Cesa-Bianchi and Lugosi, 2006), computational ge-
ometry (Nielsen et al., 2007), natural sciences, speech processing and information
theory (Gray et al., 1980). A lot of well-known proximity measures such as squared
Euclidean, Mahalanobis, Kullback-Leibler and L2 distances are particular cases of
Bregman divergences. In Rd, a Bregman divergence dφ has the form

dφ(x, y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉,

where 〈·, ·〉 denotes the standard inner product, and∇φ(y) the gradient of φ at y. For
example, taking for φ the squared Euclidean norm gives back the squared Euclidean
distance. The same definition is valid in Hilbert spaces, and it even generalizes to
Banach spaces (Alber and Butnariu, 1997; Csiszár, 1995; Frigyik et al., 2008b; Jones
and Byrne, 1990).
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Note that a Bregman divergence is not necessarily a true metric, since it may be
asymmetric or fail to satisfy the triangle inequality. However, Bregman divergences
fulfill an interesting projection property which generalizes the Hilbert projection on a
closed convex set, as shown in Alber and Butnariu (1997); Bregman (1967). Banerjee
et al. (2005b) have highlighted a relation between finite-dimensional Bregman diver-
gences and exponential families, which will be discussed in the numerical section of
Chapter III.2. These divergences are well-suited to measure proximity between ob-
servations arising from a mixture of such distributions. Moreover, the authors have
shown that the standard k-means clustering algorithm (Lloyd, 1982) generalizes to
these divergences. Consequently, clustering with Bregman divergences is particularly
appropriate for mixtures from exponential families.

Following the approach of Banerjee et al. (2005b), we propose to use this class
of proximity measures for quantization and clustering purposes. Quantization, also
called lossy data compression in information theory, is the problem of replacing
data by an efficient and compact representation which allows one to reconstruct
the original observations with a certain accuracy. More formally, for a fixed integer
k ≥ 1, a random variable X with distribution µ, taking values in a set X , will be
represented by a so-called k-quantizer q(X). Here q is a Borel measurable mapping
from X to a finite subset of X with at most k elements. The error committed when
representing X by q(X) is given by the distortion

D(µ, q) = E[d(X, q(X))],

where E denotes expectation with respect to the distribution µ and d(·, ·) is called
the distortion measure. For more information on quantization, we refer the reader
to Gersho and Gray (1992); Graf and Luschgy (2000); Linder (2002). In practice,
the distribution µ is unknown, and D(µ, q) is replaced by the empirical criterion

D(µn, q) =
1

n

n∑
i=1

d(Xi, q(Xi)),

where X1, . . . , Xn are independent random observations with distribution µ, and µn
denotes the empirical measure associated with X1, . . . , Xn, i.e.,

µn(A) =
1

n

n∑
i=1

1{Xi∈A}

for any Borel subset A of X . The goal is to minimize D(µn, q) over all possible
k-quantizers. This context corresponds to a clustering task, that is, the problem of
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grouping data items in k meaningful classes, so that the classes are as homogeneous
and at the same time as well separated as possible (Duda et al., 2000). The partition-
ing depends of course on the choice of the distance-like function d(·, ·) measuring the
notion of proximity between points chosen. The constructed data-based quantizer
qn should have a clustering risk D(µ, qn) “close” to the optimal risk infqD(µ, q) as
the size of the data set grows.

III.1.2 Context and assumptions

In Fischer (2010), we consider the problem of quantization and clustering when
d(·, ·) is a general Bregman divergence dφ(·, ·) defined on a reflexive and separable
Banach space. Our approach completes the more algorithmic-oriented results pre-
sented in Banerjee et al. (2005b). Here, we focus on data in the Euclidean space
(Rd, | · |), since this is the framework of the extension developed in the next chapter.
Let 〈·, ·〉 denote the associated inner product.

Definition III.1.2.1. Let φ be a strictly convex C1 real-valued function defined on
a convex set C ⊂ Rd. The Bregman divergence associated with φ is defined by

dφ(x, y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉,

where ∇f(u) denotes the gradient of f at u.

Although Bregman divergences are not true metrics, they satisfy some interesting
properties, such as non-negativity and separation of points, convexity in the first
argument and linearity (see Bregman, 1967; Frigyik et al., 2008a; Nielsen et al.,
2007). Table III.1.1 collects some most common examples of Bregman divergences.
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Sq R x2 (x− y)2
Expo R ex ex − ey − (x− y)ey
Norm R+ xα xα + (α− 1)yα − αxyα−1

I-div uni R+ x lnx x ln x
y − (x− y)

Logistic [0, 1] x lnx+ (1− x) ln(1− x) x ln x
y + (1− x) ln

(
1−x
1−y

)
I-S uni (0,+∞) − lnx x

y − ln x
y − 1

Sq Eucl Rd |x|2 |x− y|2
Mahal Rd txAx

t
(x− y)A(x− y)

KL (d− 1)-simplex
∑d
`=1 x` lnx`

∑d
`=1 x` ln

x`

y`

I-div (R+)d
∑d
`=1 x` lnx`

∑d
`=1 x` ln

x`

y`
−
∑d
`=1(x` − y`)

Table III.1.1 – Some examples of Bregman divergences : squared loss, exponential loss,
norm-like, I-divergence for d = 1, logistic loss, Itakura-Saito for d = 1, squared Eu-
clidean distance, Mahalanobis distance, with the matrix A supposed to be positive definite,
Kullback-Leibler, multivariate I-divergence.

Now, let X be a random variable with distribution µ, with values in C. We make
the following assumptions:

1. E[|X|] < +∞.
2. E[|φ(X)|] < +∞ and, for all c ∈ C, E[|〈∇φ(c), X〉|] < +∞. This implies in

particular that E[dφ(X, c)] < +∞ for all c.
For k ≥ 1, a k-quantizer is a Borel measurable mapping q : C ⊂ Rd → c,

where c = {c1, . . . , c`}, ` ≤ k, is a subset of C called its codebook. In the sequel,
the elements of c will also be named the centers associated to q. Every x ∈ C
is represented by a unique x̂ = q(x) ∈ c and q induces a partition of C in cells
S1, . . . , S`. Each cell Sj is made of the elements of C whose image by q is cj. Every
k-quantizer is characterized by its codebook c = {c1, . . . , c`} and its partition cells
S1, . . . , S`.

The error committed when representing X by q(X) is assessed by the distortion

D(µ, q) = E[dφ(X, q(X))] =

∫
C
dφ(x, q(x))dµ(x). (III.1.1)

Let
D∗(µ) = inf

q∈Qk
D(µ, q),

where Qk is the set of all k-quantizers. To get a representation that is as accurate
as possible, we look for an optimal quantizer, i.e., a quantizer q∗ satisfying

D(µ, q∗) = D∗(µ).
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In a statistical context, we only have at hand independent random observations
X1, . . . , Xn with distribution µ. The empirical distortion associated with X1, · · · , Xn

is given by

D(µn, q) =
1

n

n∑
i=1

dφ(Xi, q(Xi)), (III.1.2)

where µn is the empirical measure. Observe that this is just the distortion (III.1.1)
calculated with µn instead of µ. Clustering data into k groups means looking for an
optimal quantizer q∗n with respect to the empirical distortion (III.1.2).

Codebook and partition characterize a quantizer. As in the Euclidean case, it
is easy to show that among all quantizers with same codebook, the best one (with
respect to the distortion) is the nearest neighbor quantizer, whose partition S1, . . . , S`
is the Voronoi partition, i.e.,

S1 = {x ∈ C, dφ(x, c1) ≤ dφ(x, cp), p = 1, . . . , `}

and for j = 2, . . . , `,

Sj = {x ∈ C, dφ(x, cj) ≤ dφ(x, cp), p = 1, . . . , `}\
j−1⋃
m=1

Sm

(see Linder, 2002). If an optimal quantizer exists, it is necessarily a nearest neighbor
quantizer. Hence, in the sequel, we will always consider nearest neighbor quantizers.
Conversely, given a partition {Sj}`j=1, with µ(Sj) > 0 for j = 1, . . . , `, the best
quantizer is obtained by setting

cj ∈ arg min
c∈C

E[dφ(X, c)|X ∈ Sj] for j = 1, . . . , `.

The next proposition is due to Banerjee et al. (2005a).

Proposition III.1.2.1. Let dφ be a Bregman divergence. If S is a Borel subset of C
with µ(S) > 0, the function

c 7→ E[dφ(X, c)|X ∈ S]

reaches its infimum at a unique point, E[X|X ∈ S].

Thus, for every Bregman divergence, the minimizer is the conditional expectation,
just as for the squared Euclidean distance. Observe that it is for instance the median
instead of the expectation when the distortion measure is an L1 norm.
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Remark 11. The optimality of the Voronoi partition and Proposition III.1.2.1 are of
computational interest (see Banerjee et al., 2005b). Indeed, even for squared Eu-
clidean distance, minimizing the empirical distortion is generally a computationally
hard problem, the complexity of an exact algorithm being exponential in the dimen-
sion of the space. In practice, a k-means type algorithm converging to local minima
yields approximate solutions, and this adapts to general Bregman divergences. More
precisely, given an initial codebook, which is made for instance of data items cho-
sen at random, the algorithm proceeds by alternating between two steps. The first
one consists in computing the Voronoi partition corresponding to the current cen-
ters. Then, during the second step, the new codebook is obtained by computing the
mean of the data points falling in each cluster, according to Proposition III.1.2.1.
Some numerical experiments about clustering with different Bregman divergences
are available in Fischer (2015).

For ease of exposition, the results in the next section are stated in the case where
C is closed and bounded.

III.1.3 Main results

III.1.3.1 Existence of an optimal quantizer

First, we focus on the question of the existence of an optimal quantizer q∗. Since
a nearest neighbor quantizer is characterized by its codebook c = (c1, . . . , ck), we
may rewrite the distortion

D(µ, c) = E[ min
j=1,...,k

dφ(X, cj)]

and look for an optimal codebook c∗.

Thanks to the continuity of y 7→ dφ(x, y) , the existence of a minimum may be
proved via a compactness argument.

Theorem III.1.3.1. There exists an optimal codebook c∗, that is,

D(µ, c∗) = D∗(µ).

For the empirical measure µn, the existence of an optimal codebook c∗n results
anyway from the fact that the support of µn contain at most n points.
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III.1.4 Convergence

III.1.4.1 Convergence of the distortion

Suppose that there exists an optimal codebook c∗n that achieves the minimum of
the empirical distortion D(µn, c). We study the asymptotic behavior of the “true”
distortion D(µ, c) taken in c = c∗n with respect to the minimal distortion D∗(µ).

Assuming that c∗ exists,

D(µ, c∗n)−D∗(µ) = D(µ, c∗n)−D(µ, c∗)

= D(µ, c∗n)−D(µn, c
∗
n) +D(µn, c

∗
n)−D(µ, c∗)

≤ D(µ, c∗n)−D(µn, c
∗
n) +D(µn, c

∗)−D(µ, c∗)

≤ 2 sup
c∈ri(C)k

|D(µn, c)−D(µ, c)|.

Thus, to show that D(µ, c∗n) converges to D∗(µ) as n tends to infinity, it will be
enough to prove that supc∈Ck |D(µn, c)−D(µ, c)| tends to 0 as n tends to infinity.

Recall that we focus on the compact case.

Theorem III.1.4.1. If, for all c ∈ C, |∇φ(c)| ≤M , then

lim
n→∞

D(µ, c∗n) = D∗(µ) a.s.

and
lim
n→∞

E[D(µ, c∗n)] = D∗(µ).

Remark 12. In the unbounded case, the existence of a minimizer c∗ and the almost
sure convergence of the distortion lim

n→∞
D(µ, c∗n) = D∗(µ) may be proved by exploiting

ideas in Sabin and Gray (1986) based on the Alexandroff one-point-compactification
(see Fischer, 2010).

III.1.4.2 Rates of convergence

The previous section indicates that D(µ, c∗n) gets close to the minimal distortion
when the sample size grows. However, it gives no information about the rates of
convergence. To establish an non-asymptotic upper bound, we use the following
inequality

E[D(µ, c∗n)]− inf
c∈Ck

D(µ, c) ≤ 2E

[
sup
c∈Ck

(D(µn, c)−D(µ, c))

]
,
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together with the next theorem, which is proved in Fischer (2010) by resorting to
Rademacher averages as complexity measure for a function class (see, e.g., Bartlett
et al., 2001).

Theorem III.1.4.2. We have:

E

[
sup
c∈Ck

(D(µn, c)−D(µ, c))

]
≤ 2k√

n

(
sup
c∈C
|〈∇φ(c), c〉 − φ(c)|+ sup

c∈C
|∇φ(c)|(E|X|2)1/2

)
.

Corollary III.1.4.1. If for all c ∈ C, |〈∇φ(c), c〉 − φ(c)| ≤ M1 and |∇φ(c)| ≤ M2,
then

E[D(µ, c∗n)]−D∗(µ) ≤ 4k√
n

(
M1 +M2(E[|X|]2)1/2

)
,

and thus
E[D(µ, c∗n)]−D∗(µ) ≤ 4k√

n
(M1 +M2diam(C)) .

Note that Corollary III.1.4.1 yields dimension-free upper bounds, which is a valu-
able feature when dealing with high-dimensional data.
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Chapter III.2

Robust Bregman clustering

This chapter is the summary of a collaboration with Claire Brécheteau (IRMAR,
Université Rennes 2) and Clément Levrard (LPSM, Université de Paris), published
in The Annals of Statistics (Brécheteau et al., 2021).

III.2.1 Introduction

The theoretical performance of k-means has been studied mostly without par-
ticular considerations about the presence of outliers among the observations. As
for classical mean estimation, the clustering procedure is actually quite sensitive to
outliers. However, in real data sets, the source signal is often corrupted by noise.

To tackle this problem, a trimmed k-means heuristic is introduced by Cuesta-
Albertos et al. (1997) (see also Garcí a Escudero et al. (2008) for trimmed clustering
with Mahalanobis distances). Our purpose is to extend this trimming approach to
the general framework of clustering with Bregman divergences.

Section III.2.2 describes a robust clustering technique, based on the computation
of a trimmed empirically optimal codebook for some fixed trim level). Theoretical
properties of the trimmed empirical codebook are then exposed. In Section III.2.3, a
modified Lloyd’s type algorithm is proposed, along with a heuristic to select both the
trim level h and the number k of clusters from data. The numerical performances of
our algorithm are then investigated on simulated and real data.

119



Chapter III.2 – Robust Bregman clustering

III.2.2 Trimming approach for Bregman clustering

Recall that a Bregman divergence is defined dφ is defined for all x, y ∈ C by
dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉, where φ is a strictly convex C1 real-valued
function defined on a convex set C ⊂ Rd.

Let µ be a distribution on Rd, and c = (c1, . . . , ck) a codebook. The clustering
performance of c is measured via its distortion, namely

D(µ, c) =

∫
min

j=1,...,k
dφ(u, cj)dµ(u).

In the statistical context, when the distribution µ is unknown, but we have at hand
a sample X1, . . . , Xn, only the empirical distortion may be computed, given by

D(µn, c) =
1

n

n∑
i=1

min
j=1,...,k

dφ(Xi, cj)

where µn denotes the empirical measure.

To tackle the noise issue, the general idea proposed in Cuesta-Albertos et al.
(1997); Gordaliza (1991) consists in searching, for a trim level h ∈ (0, 1], both for a
codebook and a subset of µ-mass not smaller than h (trimming set).

For a measure ν on Rd, we write ν ≤ µ if ν(A) ≤ µ(A) for every Borel set A.
Let µh denote the set Ph = { 1

h
ν | ν ≤ µ, ν(Rd) = h}, and P+h = ∪s≥hPs. By

analogy with Cuesta-Albertos et al. (1997), optimal trimming sets and codebooks
are designed to achieve the optimal h-trimmed k-variation:

Vk,h = inf
µ̃∈P+h

inf
c∈Ck

D(µ̃, c).

The h-trimmed k-variation may be thought of as the k-points optimal distortion
of the best “denoised” version of µ, with denoising level 1 − h. For instance, in a
mixture setting, if µ = γµ0 + (1 − γ)N , where µ0 is a signal supported by k points
and N is a noise distribution, then, provided that h ≤ γ, Vk,h = 0.

Now that the setting has been introduced, we present the main results on Breg-
man h-trimmed clustering obtained in Brécheteau et al. (2021). To avoid the use
of cumbersome notation, for the sake of clarity, we decided to summarize them in a
relatively informal way.

We assume that φ is C2 and that the closure of the convex hull of the support of
µ is a subset of the interior of C.
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III.2.3. Numerical experiments

The first result concerns the existence of an optimal codebook.

Theorem III.2.2.1 (Existence of an optimal codebook). Let 0 < h < 1, and assume
that

∫
|u|dµ(u) < +∞. Then, there exists an optimal codebook for trimmed k-means.

The next statement is about the convergence of empirically optimal trimmed
codebooks.

Theorem III.2.2.2 (Convergence of the distortion). Assume that µ is absolutely
continuous with respect to the Lebesgue measure and satisfies

∫
|u|pdµ(u) < ∞ for

some p > 2. Then, almost sure convergence of a sequence of empirically optimal
trimmed codebooks in terms of distortion is ensured.

Moreover, provided that the optimal h-trimmed distortion decreases when adding
a codebook, the convergence rate is 1√

n
.

More specifically, rate of convergence results are stated in Brécheteau et al. (2021)
on the one hand in large probability, and on the other hand in expectation, provided
additional technical assumptions on φ. Note that the moment condition required for
the rate of convergence is

∫
|u|2dµ(u) <∞.

III.2.3 Numerical experiments

III.2.3.1 Description of the algorithm

The algorithm introduced in this section is inspired by the trimmed version of
Lloyd’s algorithm (Cuesta-Albertos et al., 1997), and is also a generalization of the
Bregman clustering algorithm (Banerjee et al., 2005b, Algorithm 1). We assume that
we observe X1, . . . , Xn, and that the mass parameter h equals q

n
for some positive

integer q. We also let Cj denote the subset of {1, . . . , n} corresponding to the j-th
cell Sj.
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Bregman trimmed k-means algorithm

1. Input: X1, . . . , Xn, q, k.
2. Initialization: Sample c1, c2,. . . , ck from the observations without replace-

ment, c(0) ← (c1, . . . , ck).
3. Iterations: Repeat until stabilization of c(t).

— N
(t)
q ← indices of the q smallest values of dφ(x, c(t−1)), x ∈ {X1, . . . , Xn}.

— For j = 1, . . . , k, C(t)
j ← Sj(c

(t−1)) ∩N (t)
q .

— For j = 1, . . . , k, c(t)
j ←

∑
x∈C(t)

j

x

|C(t)
j |

.

4. Output: c(t), C(t)
1 , . . . , C

(t)
k .

Since the algorithm may be quite sensitive to initialization, several random starts
will be proceeded in practice. Note that, in full generality, the output of the algorithm
is not a global minimizer.

III.2.3.2 Exponential Mixture Models

In this section we describe the generative models to which he algorithm will be
applied. We consider mixtures of distributions belonging to some exponential family.
As presented in Banerjee et al. (2005b), a distribution from an exponential family
may be associated to a Bregman divergence via Legendre duality of convex functions.
For a particular distribution, the corresponding Bregman divergence is more adapted
for clustering than other divergences.

Recall that an exponential family associated to a proper closed convex function
ψ defined on an open parameter space Θ ⊂ Rd is a family of distributions Fψ =
{Pψ,θ | θ ∈ Θ}, such that, for all θ ∈ Θ, Pψ,θ, defined on Rd, is absolutely continuous
with respect to some distribution P0, with Radon-Nikodym density pψ,θ defined for
all x ∈ C by

pψ,θ(x) = exp(〈x, θ〉 − ψ(θ)).

The function ψ is called the cumulant function and θ is the natural parameter. For
this model, the expectation of Pψ,θ may be expressed as m(θ) = ∇ψ(θ). We define

φ(m) = sup
θ∈Θ
{〈m, θ〉 − ψ(θ)} .
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By Legendre duality, for all m such that φ is defined, we get φ(m) = 〈θ(m),m〉 −
ψ(θ(m)), with θ(m) = ∇φ(m). The density of Pψ,θ with respect to P0 can be
rewritten using the Bregman divergence associated to φ as follows:

pψ,θ(x) = exp(−dφ(x,m) + φ(x)).

In the next experiments, we use Gaussian, Poisson, Binomial and Gamma mixture
distributions and the corresponding Bregman divergences. Table III.2.1 presents the
4 densities together with the functions ψ and φ, as well as the associated Bregman
divergences dφ.

Distribution pψ,θ(x) θ ψ(θ) m

Gaussian 1√
2πσ2

exp
(
− (x−a)2

2σ2

)
a
σ2

σ2

2
θ2 a

Poisson λx exp(−λ)
x!

log(λ) exp(θ) λ

Binomial N !
x!(N−x)!

qx(1− q)N−x log
(

q
1−q

)
N log (1 + exp(θ)) Nq

Gamma xk−1 exp(−x
b

)

Γ(k)bk
− k
m

k log
(
−1
θ

)
kb

φ(m) dφ(x,m)

Gaussian 1
2σ2m

2 1
2σ2 (x−m)2

Poisson m log(m)−m x log
(
x
m

)
− (x−m)

Binomial m log
(
m
N

)
+ (N −m) log

(
N−m
N

)
x log

(
x
m

)
+ (N − x) log

(
N−x
N−m

)
Gamma −k + k log

(
k
m

)
k
m

(
m log

(
m
x

)
+ x−m

)
Table III.2.1 – Exponential family distributions and associated Bregman divergences

The next remark gives an illustration of the connection between divergences and
distributions in a simple case.
Remark 13. We let k = 2, θ1 6= θ2, z∗1 , . . . , z∗n be hidden labels in {1, 2}, and
X1, . . . , Xn be independent random variables with density

1z∗i =1pψ,θ1(x) + 1z∗i =2pψ,θ2(x),

where pψ,θj(x) = exp(−dφ(x,mj) + φ(x)), for j ∈ {1, 2}. The parameters of this
model are (z∗i )i∈{1,...,n}, θ1, θ2.

Let zi,j, i ∈ {1, . . . , n}, j ∈ {1, 2}, be defined by zi,j = 1 if Xi is assigned to class
j and 0 otherwise. Also set

m =
n∑
i=1

zi,1, n−m =
n∑
i=1

zi,2, X̄1 =
n∑
i=1

Xizi,1/m, X̄2 =
n∑
i=1

Xizi,2/(n−m).
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Maximizing the log-likelihood of the observations corresponds to maximizing in
(zi,j)i,j:

ln
n∏
i=1

exp
[
−zi,1dφ

(
Xi, X̄1

)
− zi,2dφ

(
Xi, X̄2

)
+ φ(Xi)

]
= −

n∑
i=1

zi,1dφ
(
Xi, X̄1

)
−

n∑
i=1

zi,2dφ
(
Xi, X̄2

)
+

n∑
i=1

φ(Xi).

On the other hand, since optimal codebooks are local means of their Bregman-
Voronoi cells, performing Bregman k-means clustering is equivalent to minimizing

n∑
i=1

zi,1dφ
(
Xi, X̄1

)
+

n∑
i=1

zi,2dφ
(
Xi, X̄2

)
.

Thus, clustering with a Bregman divergence is the same as computing a maximum
likelihood estimator for a distribution from the exponential family.

III.2.3.3 Calibration of trimming parameter and number of
clusters

When the number of clusters k is known beforehand, we propose the following
heuristic to select the trimming parameter q, that is, the number of points in the
sample which are assigned to a cluster and not considered as noise. We let q vary
from 1 to the sample size n, plot the curve q 7→ cost[q] where cost[q] denotes the
optimal empirical distortion at trimming level q, and choose q? by seeking for a cut-
point on the curve. Indeed, when the parameter q gets large enough, it is likely that
the procedure starts assigning outliers to clusters

When both k and q are unknown, we propose to select these two parameters
following the same principle as in the algorithm tclust (Fritz et al., 2012). We
draw, for different values of k, the cost curves q 7→ costk[q], for 1 ≤ q ≤ n. For each
curve, the q’s for which there is an abrupt slope increase can correspond to cases
where outliers are assigned to clusters, or where some small clusters are included in
the set of signal points (if k is chosen too small). In the sequel, we split {1, . . . , n}
into several bins {qj, . . . , qj+1}. On every such bin, we select a k that provides a
significant cost decrease, as well as the q yielding a slope jump. Note that this
heuristic may result in several possible pairs (k, q), corresponding to different point
of views, depending on which data points are considered as outliers or not.
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III.2.3.4 Simulated mixture distributions

We replicate some experiments in Banerjee et al. (2005b) and Fischer (2010),
with additional noise. We consider mixture models of Gaussian, Poisson, Binomial,
Cauchy and Gamma distributions in R2. Namely, we sample 100 points from X =
(X1, X2), where X1 and X2 are independent, distributed according to a mixture
distribution with 3 components. In each case, the means of the components are set
to 10, 20, 40. The weights of the components are (1/3, 1/3, 1/3). We also consider a
mixture of 3 different components: Gamma, Gaussian and Binomial, with respective
means 10, 20 and 40. In the Gaussian case, the standard deviation of the components
is set to 5, in the Binomial case, the number of trials is set to 100 and in the Gamma
case the shape parameter is set to 40. For Gaussian and Cauchy distributions, we
discard negative realizations. 20 uniformly distributed outliers are added.

First, we run the clustering algorithm with 20 random starts for each of these
noisy mixture distributions, using the “corresponding” divergence, and also make
the same experiment for the Cauchy distribution with squared Euclidean distance.
We select k and q following the heuristic exposed in Section III.2.3.3. According to
Figure III.2.1, this leads to the choice k = 3, q = 104 for the Gaussian mixture and
q = 110 for the other mixtures. The resulting partitions for the selected parameters
are depicted in Figure III.2.2.

Gaussian mixture Poisson mixture Cauchy mixture

Figure III.2.1 – Cost curves for selection of k and q
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Gaussian Poisson Cauchy

Figure III.2.2 – Clustering associated to the selected parameters k and q, where
cluster 0 refers to noise

Then, we compare the proposed method, in every case, to clustering with other
Bregman divergences (including trimmed k-means Cuesta-Albertos et al. (1997)),
trimmed k-median (Cardot et al., 2013), tclust (Fritz et al., 2012), a single link-
age procedure with ad hoc outlier removal, the ToMATo algorithm (Chazal et al.,
2013) and dbscan (Hahsler et al., 2019). Quality of the partitions is assessed via
the normalized mutual information (hereafter NMI, Strehl and Ghosh (2002)) with
respect to the ground truth clustering, where the “noise” points are all considered as
one single cluster. The results in terms of NMI for 1000 repetitions are exposed in
Figure III.2.3: Algorithm 1 refers to our method with q = 110 and k = 3.

Figure III.2.3 – Comparison of robust clustering methods, for mixtures of Binomial,
Gamma, Gaussian, Poisson, Cauchy, and the “heterogeneous” mixture
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Note that our algorithm with the proper Bregman divergence (almost) system-
atically outperforms other clustering schemes.

III.2.3.5 Authors stylometric clustering

In this section, we perform clustering on texts based on stylometric descriptors
(Arnold and Tilton, 2015, Section 10). To be more precise, raw data consist in 26
annotated texts from 4 authors (Mark Twain, Sir Arthur Conan Doyle, Nathaniel
Hawthorne and Charles Dickens). These texts are available as supplementary ma-
terial for Arnold and Tilton (2015), and are framed as a sequence of lemmatized
string characters (for instance “be” and “is” are instances of the same lemma “be”).
Following Arnold and Tilton (2015), we base our stylometric comparison on lemmas
corresponding to nouns, verbs and adverbs, and split every original text in chunks
of size 5000 of such lemmas that will be considered as data points. Then the 50
overall most frequent lemmas are chosen, and every chunk is described as the vector
of counts of these lemmas within it. Thus, signal points consists of 189 count vectors
with dimension 50, originating from 4 different authors.

Outliers are produced using the same process for the 8 State of the Union Ad-
dresses given by Barack Obama (available in obama dataset from package CleanNLP
in R), resulting in 5 additional points, and for the King James Version of the Bible
(available on Project Gutenberg) that we preliminary lemmatize using the CleanNLP
package, resulting in 15 more additional points. Our final dataset consists of the 189
signal points and the 20 outlier points described above. Of course, these 20 outliers
might also be thought of as two additional small clusters with size 5 and 15.

Since every individual lemma count can be modeled as a Poisson random variable
in the random character sequence model (Evert, 2004), the appropriate Bregman
divergence for this dataset is likely to be the associated divergence, that is relative
entropy. In the sequel, we compare our method with relative entropy to trimmed
k-means, trimmed k-medians, and t-clust.

In Figure III.2.4, we draw the cost of our method as a function of q, for different
cluster numbers k. According to this figure, several choices of k and q are possible.
For values of q up to 175, the significant jumps in the risk function are for k = 3
and k = 6. For k = 3, we obtain q = 175, whereas for k = 6 it seems that no
data point might be considered as an outlier. When q ranges from 175 to 193, the
significant jumps are for k = 4 and k = 6, and another possible choice is then k = 4
and q = 188. When q is larger than 193, the only significant jump is for k = 6. To
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summarize, the pairs (k = 3, q = 175), (k = 4, q = 188), (k = 6, q = n = 209) seem
reasonable.

Figure III.2.4 – Cost curves for authors clustering with relative entropy.

These three solutions correspond to the 3 natural trimmed partitions: clustering
only 3 authors writings (Twain writings being considered as outliers), clustering the 4
authors writings and removing the outliers from the Bible and B. Obama addresses,
and at last, clustering the six sources of writings (none of them being considered
as noise). The two latter situations are depicted in Figure III.2.5 (projection onto
linear discriminant analysis factorial plane).

Figure III.2.5 – Author stylometric clustering with relative entropy.

For k = 6 and q = 209, our clustering globally retrieves the corresponding author.
When k = 4, q = 188 is chosen, outliers are correctly identified and only one sample
text from C. Dickens is labeled as outlier. The sample points seem on the whole
well classified, which is assessed by an NMI of 0.7347. This performance is compared
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with the other clustering algorithms in Table III.2.2. Note that q has been chosen
to minimize the NMI, leading to q = 190 for trimmed k-means, q = 202 for trimmed
k-medians, and q = 184 for tclust.

Method trimmed 4-means trimmed 4-medians tclust Poisson
NMI 0.5336 0.4334 0.4913 0.7347

Table III.2.2 – Comparison of robust clustering methods

The associated partitions for k-median and tclust are depicted in Figure III.2.6,
where we see that these two methods fail in correctly identifying outliers.

Figure III.2.6 – Author stylometric clustering with trimmed k-median and tclust
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Chapter III.3

A change-point study

This chapter corresponds to an article written in collaboration with Dominique
Picard (LPSM, Université de Paris), published in the Electronic Journal of Statistics
(Fischer and Picard, 2020).

III.3.1 Introduction

An important problem in the vast domain of statistical learning is the question of
unsupervised classification of high-dimensional data. Here, we address a framework
where the change between classes occurs on a time scale, that is, a change-point
setting. For the sake of simplicity, we consider the case of exactly two classes.

More specifically, we assume that there exists a change-point τ : before nτ , the
observations are in a certain state, after nτ , they are in another state.

We observe independent random vectors Y1, . . . , Yn with values in Rd, such that

Yi = θi + ηi, ηi ∼ N (0, σ2Id), independent, 1 ≤ i ≤ n,

∀i ≤ nτ, θi = θ−,

∀i > nτ, θi = θ+.

In practice, such a framework may model for instance the monitoring of patients,
where the variables Yi are a bunch of d biological, chemical or clinical observations
collected each ten minutes (for example) on a patient, and nτ reflects a time of
change in the patient’s condition.
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Our aim is to estimate the change-point τ . Using the maximum likelihood ap-
proach, also known in this context as CUSUMmethod, we derive rates of convergence
for the estimation of τ , under conditions specified below.

For high-dimensional data, from a computational point of view, there is an ob-
vious need for dimension reduction when estimating τ . Without such a step, the
segmentation algorithm might be unstable or even not work at all. Here, we consider
the dimension reduction problem from a theoretical point of view: one might suspect
that it should always be better to keep the whole data, to get the best precision on
the estimation of the change-point, but dimension reduction proves to be useful also
on the theoretical side.

We will show that sparsity assumptions, as well as smoothing adaptive methods,
can be directly borrowed from the nonparametric statistical inference and fruitfully
applied in this context.

The change-point problem has a long history, going back at least to Page (1955).
For an introduction to the field, the reader may refer for instance to the monographs
and articles by Shiryaev (1978), Ritov (1990), Müller (1992), Basseville and Nikiforov
(1993), Brodsky and Darkhovsky (1993), Carlstein et al. (1994), Csörgő and Horváth
(1997) or Horváth and Rice (2014) (see also further references in Fischer and Picard,
2020).

Regarding the high-dimensional context, Jirak (2015) considers several dependent
change-point tests and studies the behavior of the maximum over all test statistics
as both the sample size and the number of tests tend to infinity. Cho and Fryzlewicz
(2015) propose a sparse version of binary segmentation. The high dimension problem
is addressed through changes in cross-covariance in Lavielle and Teyssière (2006), Aue
et al. (2009), Bücher et al. (2014), Preuss et al. (2015), Cribben and Yu (2017). In Soh
and Chandrasekaran (2017), convex optimization is used to perform regularization
for solving the high dimensional change-point problem. In Chen and Zhang (2015);
Shi et al. (2017), graph-based approaches which are efficient in high dimension are
designed. Jin et al. (2016) proposes a method based on a statistics inspired by
Hotelling’s T 2 statistics. Enikeeva and Harchaoui (2019) consider high-dimensional
change-point detection, from the testing point of view.

Here, we study the performance of the procedure from a minimax point of view,
in a high-dimensional context. This approach provides an evaluation of the best
expectable performances in a particular framework, and the aim is then to provide
a procedure attaining these performances.

Minimax estimation is considered already in Korostelev (1987), in the Gaussian
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white noise model. High-dimensional change-point problems are also studied in Ko-
rostelev and Lepski (2008), which proposes an asymptotically minimax estimator of
the change-point location, when the Euclidean norm of the gap tends to infinity as
the dimension d goes to infinity.

Our approach is deeply connected to this article and can be considered as a
continuation of this project. The main difference is that in Korostelev and Lepski
(2008), the authors do not question the dimension reduction problem and do not con-
sider the same estimation method. Moreover, Korostelev and Lepski (2008) make
the assumption that the change-point only occurs after a known number of observa-
tions and before another known number of observations. Another related reference
is the article by Wang and Samworth (2018), who proposed a two-stage procedure
based on a projection followed by a univariate change point estimation algorithm
applied to the projected data, providing rates of convergence for the estimator of the
change-point location.

There is a crucial difference between the present setting and the one in Korostelev
and Lepski (2008) since knowing that some observations are in the first or last state
allows to provide an efficient estimation of this state. Without this assumption,
the problem gets more difficult. However, we prove that, for a fixed dimension,
up to a logarithmic term, the maximum likelihood method, has a minimax rate of
convergence. Moreover, we show that if the data is sparse, in a Sobolev sense, there
exists an optimal dimension reduction, depending on the sparsity constants. Since
these constants are not known in practice, we provide a procedure relying on the
Lepski method, which behaves as well as if the sparsity constants were known. The
proposed method has the advantage of being performed off-line, before the main
segmentation step.

Numerical experiments are provided in Section III.3.4.

III.3.2 Main result: minimax convergence rate

III.3.2.1 Change-point model and assumptions

Let n ≥ 3. We observe n independent signals Y1, . . . , Yn. We assume that each
signal Yi, i = 1, . . . , n, is a d dimensional vector: for every i, Yi = (Yi,1, . . . , Yi,d) is a
random vector with values in Rd.

We suppose that there exist a change-point 0 < τ < 1 and two vectors θ− and
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θ+ of Rd, such that the model is given by

Yi = θi + ηi, ηi ∼ N (0, σ2Id), independent, 1 ≤ i ≤ n, (III.3.1)
∀i ≤ nτ, θi = θ−,

∀i > nτ, θi = θ+.

III.3.2.2 Estimation method

We are interested in the behavior of the maximum likelihood estimator, also called
in this case CUSUM estimator:

k̂(d) = arg min
k∈{2,...,n−2}

{
k∑
i=1

d∑
j=1

(
Yi,j −

1

k

k∑
`=1

Y`,j

)2

+
n∑

i=k+1

d∑
j=1

(
Yi,j −

1

n− k

n∑
`=k+1

Y`,j

)2
}
,

To prove some of our results, we will need the following sparsity conditions.

Condition on the means

For s > 0, we define

Θ(s, L) :=

{
θ ∈ Rd, sup

K∈N∗
K2s

∑
k≥K

(θk)
2 ≤ L2

}
.

We will suppose that θ− and θ+ are in Θ(s, L).

Remark 14. This assumption expresses a form of sparsity of the coefficients which is
standard in nonparametric settings. It corresponds to conditions which are directly
connected to the regularity of the function to be estimated in nonparametric esti-
mation. In the more general setting of a high-dimensional physical observation, it
is commonly accepted to solve learning problems by introducing sparsity constraints
(see for instance Huang et al., 2011; Johnstone and Silverman, 2004, among many
others). These constraints can take various forms: we choose here the Sobolev type,
which is among the simplest forms to handle technically. Note that it reflects an
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ordering: the first coefficients are supposed to be more important than the last ones.
This is quite a reasonable assumption since, generally, modeling of high-dimensional
or functional data via a basis expansion results in such a situation.
Example 1. Let s = 1/2 and L = 1. Assume that θ is defined by θk = 1√

2k
for

k = 1, . . . , kmax and θk = 0 for k > kmax. Then, for every K = 1, . . . , kmax,

K2s
∑
k≥K

(θk)
2 ≤ L2 = K

kmax∑
k=K

(
1√
2k

)2

≤ 1.

Hence, θ ∈ Θ(1/2, 1).

To end up this section we introduce the following important parameter:

ε := min{τ, 1− τ}.

We consider a not degenerate case (there exists a change), ε is a strictly positive
quantity, which measures the potential lack of information at the border of the
interval [0, 1]. If the theoretical performances of the procedures depend on ε, the
procedure is agnostic to ε, which therefore is not be supposed to have a known lower
bound.

III.3.2.3 Dimension reduction for the estimation of τ

Our aim is to determine if it is efficient to perform a dimension reduction when
estimating the change-point τ . More specifically, we will investigate the effect of
replacing the vectors Yi = (Yi,1, . . . , Yi,d), i ≤ n (called “raw data”), by, for p < d,
Yi(p) := (Yi,1, . . . , Yi,p), i ≤ n, the vectors of Rp composed of the p first coordinates
of Yi.

For each projection dimension p, we may define:

k̂(p) = arg min
k∈{2,...,n−2}

{
k∑
i=1

p∑
j=1

(
Yi,j −

1

k

k∑
`=1

Y`,j

)2

+
n∑

i=k+1

p∑
j=1

(
Yi,j −

1

n− k

n∑
`=k+1

Y`,j

)2
}
.

We set

τ̂(p) =
k̂(p)

n
.
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In the sequel, we will use the notation

∆2 :=
d∑
j=1

(θ−j − θ+
j )2 = |θ+ − θ−|2.

We also define, for p ≤ d,

∆2
p :=

p∑
j=1

(θ−j − θ+
j )2, Ψn(p,∆p) =

σ2

n∆2
p

(
1 ∨ σ2p

n∆2
p

)
.

Example 2. Let θ+ and θ− be defined by θ+
k = 1√

2k
and θ−k = − 1√

2k
. The rate Ψn is

plotted as a function of n and p in Figure III.3.1.

Figure III.3.1 – Example of plot of Ψn as a function of n and p (n = 1, . . . , 10 ;
p = 1, . . . , 20)

The next result describes the behavior of the estimated change-point τ̂(p).

Proposition III.3.2.1. For any γ > 0, there exist constants κ(γ, ε) and c(γ, ε) such
that, if

∆2
p ≥ c(γ, ε)

σ2 ln(n)

n
,
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then
P
(
|τ̂(p)− τ | ≥ κ(γ, ε) ln(n)Ψn(p,∆p)

)
≤ cn−γ,

where c is an absolute constant.

The proof is available in Fischer and Picard (2020). It is based on Lemma III.3.2.1
below, which shows that τ̂ may be written using Gaussian and chi-square random
variables, and it makes extensive use of standard concentration inequalities for these
distributions.

Lemma III.3.2.1. Under Model (III.3.1), the estimator τ̂(p) may be written:

τ̂(p) = arg min
t∈{ 2

n
,...,n−2

n
}
Kp(t),

where

Kp(t) = −
p∑
j=1

σ2V 2
j (t)−

p∑
j=1

σ2W 2
j (t) +

p∑
j=1

δ2
j

(nt− nτ)nτ

nt
+ 2N1(t)− 2N2(t).

Here, V 2
j (t) and W 2

j (t), j = 1, . . . , p, are independent χ2(1) random variables,

N1(τ) = N2(τ) = 0, for every t 6= τ,

N1(t) ∼ N

(
0,

p∑
j=1

σ2(nt− nτ)δ2
j

)
and N2(t) ∼ N

(
0,

p∑
j=1

σ2(nt− nτ)2δ2
j

nt

)
.

Using this expression τ̂(p), we then build an upper bound for

P (|τ̂(p)− τ | ≥ λΨn) ,

where λ > 0. Since

P

(
|τ̂(p)− τ | ≥ λΨn

)

≤ P

(
inf

k
n
−τ≥λΨn

Kp

(
k

n

)
< Kp(τ)

)
+ P

(
inf

k
n
−τ≤−λΨn

Kp

(
k

n

)
< Kpτ

)
,

we focus on evaluating one term of the right-hand side, the second being treated in
a symmetrical way.
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Remark 15.

Minimax optimality and parameter ε. Thanks to Korostelev and Lepski (2008), we
know that Ψn(p,∆p) is the minimax rate in this framework. Compared to their result,
we are loosing a logarithmic factor. However, in Korostelev and Lepski (2008), a fixed
lower bound on ε is supposed to be known, whereas our estimator τ̂(p) is adaptive
in ε. Looking carefully at the proofs, the constants c(ε, γ) and κ(ε, γ) can be taken
proportional to (γ+1)

ε2
.

Note that ln(n) could be substituted by any sequence rn, provided that the factor
n−γ is simultaneously replaced by exp(−crn) in Proposition III.3.2.1. (Here, c is a
constant which can be made explicit in the proof.)

Fast rate/slow rate. For p = d, Ψn(d,∆d) = Ψn(d,∆). The rate is composed of two
different regimes: a “fast one” σ2 ln(n)

n∆2 , which does not depend on the dimension d and
a “slow one” σ4 ln(n)d

(n∆2)2
, which is rapidly deteriorating with the dimension. From the

results above, we deduce that if c(γ, ε)σ
2 ln(n)
n
≤ ∆2 < σ2d

n
, the rate of convergence

is σ4 ln(n)d
(n∆2)2

(small gap, slow performances), whereas if ∆2 ≥ σ2d
n
∨ c(γ, ε)σ

2 ln(n)
n

, it is
σ2 ln(n)
n∆2 . This last rate is obviously much better, and with this latter condition on ∆,

taking p = d (so raw data) allows to obtain the best rate σ2 ln(n)
n∆2 .

If we introduce sparsity assumptions, that is means θ− and θ+ belonging to Θ(s, L),
then, for p such that ∆2 ≥ 8L2p−2s, ∆p and ∆ are comparable, in the sense that
∆2
p ≥ ∆2/2. Indeed, ∆2 −∆2

p =
∑d

j=p+1(θ−j − θ+
j )2 ≤ 4p−2sL2, so that

∆2
p

∆2
≥ 1− 4p−2sL2

∆2
≥ 1/2.

Note that, if ∆p and ∆ are comparable, then Ψn(p,∆p) ∼ Ψn(p,∆) becomes much
easier to analyze. In particular, we see that, again, there are two regimes —a slow
one and a fast one— and the dependence in p becomes easily understandable: σ2 ln(n)

n∆2

for p ≤ n∆2

σ2 , and σ4 ln(n)p
(n∆2)2

for larger p’s.

Note that two different convergence rates have also been highlighted in other
change-point settings, for instance in Wang et al. (2021).
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III.3.2. Main result: minimax convergence rate

III.3.2.4 Minimax convergence rate under sparsity condition

The following theorem is an immediate consequence of Proposition III.3.2.1 in
the case where one assumes the sparsity condition on the means.

Theorem III.3.2.1. We consider Model (III.3.1), with the means θ+ and θ− in
Θ(s, L). For any γ > 0, there exist constants κ(γ, ε) and c(γ, ε) such that, if

∆2 ≥
[
2c(γ, ε)

σ2 ln(n)

n
∨ 8L2p−2s

]
,

then
P
(
|τ̂(p)− τ | ≥ κ(γ, ε) ln(n)Ψn(p,∆)

)
≤ cn−γ.

If, now,

∆2 ≥
[
2c(γ, ε)

σ2 ln(n)

n
∨ 8L2p−2s ∨ σ

2p

n

]
, (III.3.2)

then
P
(
|τ̂(p)− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

)
≤ cn−γ.

Here, c is an absolute constant.

Here, contrary to Proposition III.3.2.1, the rate is Ψn(p,∆) instead of Ψn(p,∆p).
The price to pay is then, as is intuitive, that p should be large enough. In the second
statement, we look at the condition on ∆ and p to obtain the fast rate. For ∆ fixed,
we see that p must not be too large or too small.

Condition (III.3.2) contains two terms: one is increasing in p, one decreasing.
Hence it can be optimized leading to

popt ∼ ps :=

(
8L2n

σ2

) 1
1+2s

. (III.3.3)

We obtain the next corollary, corresponding to this projection dimension ps.

Corollary III.3.2.1. Under the conditions above, for any γ > 0, there exist con-
stants κ(γ, ε) and c(γ, ε) such that, if

∆2 ≥
[
2c(γ, ε)

σ2 ln(n)

n
∨
(σ2

n

) 2s
1+2s (

8L2
) 1

1+2s

]
,

P
(
|τ̂(ps)− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

)
≤ cn−γ.
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Interpretation is that the quantity
[
2c(γ, ε)σ

2 ln(n)
n
∨
(
σ2

n

) 2s
1+2s

(8L2)
1

1+2s

]
is the

minimal gap between the two regimes ensuring that the “fast” rate σ2 ln(n)
n∆2 can be

obtained, with an appropriate projection dimension.
Remark 16. 1. We see here that there is an obvious advantage in reducing the

dimension, since it allows to obtain the best rate with less restricting conditions
on the gap ∆.

2. Observe that σ2 often has the form σ2
0

d
. In this case, the rate of convergence is

of the order
(
nd
σ2
0

) −2s
1+2s

∆−2.

3. Formula (III.3.3) indicates that the optimal p depends on the sparsity constant
s, which is rarely known, which shows the interest of looking for an adaptive
procedure selecting an optimal p (without knowing the regularity s). Since any
adaptive smoothing performed individually on each signal Yi (such as thresh-
olding, Lasso...) would lead at best to a projection dimension of the form

popt =
(
d
σ2
0

) 1
1+2s , inducing a lost of a polynomial factor in n in the rates, a

procedure performing the smoothing globally (off-line) will be more efficient.

III.3.3 Fast convergence rate: adaptive choice of p

We propose a strategy based on Lepski’s method to adaptively choose p, taking
inspiration from nonparametric statistics.

Note that Wang and Samworth (2018) also prove adaptivity under slightly dif-
ferent conditions.

III.3.3.1 Lepski’s procedure

The Lepski method (Lepski, 1991, 1992, 1993) is a strategy allowing to obtain
adaptivity in various functional estimation settings such as white noise model, re-
gression or density estimation. In these models, minimax optimality is linked with
the regularity assumptions imposed on the functions which are estimated. In these
nonparametric problems, there is a balance to obtain between a “variance” term,
typically of the form p

n
, and a “bias” term, typically of the form p−2s. The Lepski

procedure proposes to choose the minimal p among those such that an estimated
version of the bias is below a bound.
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III.3.3. Fast convergence rate: adaptive choice of p

For the sake of clarity, let us first recall the classical Lepski procedure in the stan-
dard Gaussian white noise model. We will not describe the procedure in the original
form presented in the first articles, corresponding to kernel estimation methods, but
a version adapted to orthogonal series estimation methods, which is more suitable
for a transposition to our case.

Consider the following model:

Zj = βj + εj, j = 1, . . . , d, (III.3.4)

where the εj’s are independent random variables with distribution N (0, ν2). The
Lepski procedure for choosing the optimal projection dimension p consists in defining
p̂ as follows:

p̂ := min

{
k ≥ 1 : ∀d ≥ j ≥ m ≥ k,

j∑
`=m

(Z`)
2 ≤ CLjν

2 ln(d)

}
,

where CL is a tuning constant of the procedure.

In our change-point setting, a transformation of the data is necessary to fall into
the frame of Model (III.3.4). We will apply the Lepski method to a surrogate data
vector built on the whole observation.

III.3.3.2 Preprocessing

Using the complete data set (so off-line), we define a surrogate data vector, which
will be used to find an optimal p̂. We assume, for the sake of simplicity, that n is
even; otherwise, the modifications are elementary.

We set:

Zj =
1

n

n∑
i=1

Yi,j −
2

n

n/2∑
i=1

Yi,j, j = 1, . . . , d.

This vector Z = (Zj)1≤j≤d is a special case of Model (III.3.4), where

βj = (1− τ)(θ+
j − θ−j )1{τ≥1/2} + τ(θ+

j − θ−j )1{τ<1/2}, j = 1, . . . , d

εj =

n/2∑
i=1

−1

n
ηi,j +

n∑
i=n/2+1

1

n
ηi,j, j = 1, . . . , d

ν2 =
σ2

n
.
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III.3.3.3 Adaptive convergence rate

We consider the Lepski procedure applied to the vector Z, producing a projection
dimension p̂. This parameter is then just plugged in the maximum likelihood proce-
dure for estimating τ̂ . Lepski’s procedure provides a projection dimension p̂ which,
with overwhelming probability, is smaller than the optimal ps (defined in (III.3.3)
above) and such that the bias ∆2 − ∆p̂ is controlled. The next theorem, proved in
Fischer and Picard (2020), states that the method leads to an optimal selection, up
to logarithmic terms: though the optimal ps is unknown, we are able to achieve the
same convergence rate as in Corollary III.3.2.1.

Theorem III.3.3.1. We consider Model (III.3.1) and assume that θ+ and θ− belong
to Θ(s, L). We suppose that there exists a constant α > 0 such that

n

σ2
≥ α ln d.

For any γ > 0, there exist constants CL, κ(γ, ε), c(γ, ε) and R such that, letting

p̂ := min

{
k ≥ 1 : ∀d ≥ j ≥ m ≥ k,

j∑
`=m

(Z`)
2 ≤ CLj

σ2

n
ln(d ∨ n)

}
,

if

∆2 ≥ 2c(γ, ε)
σ2 ln(n)

n
∨R

(
σ2 ln(d ∨ n)

n

) 2s
1+2s

,

then

P
(
|τ̂(p̂)− τ | ≥ κ(γ, ε)

σ2 ln(n)

n∆2

)
≤ cn−γ.

Remark 17. The sense of this theorem is that, if CL, which should be considered as a
tuning parameter of the method, is large enough, then an optimal result is obtained.

III.3.4 Numerical study

In this section, we provide some simulations illustrating our theoretical results.
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III.3.4.1 Rate of convergence

In this experiment, we study the rate of convergence of the estimator τ̂ . Let
d = 20, p = 10, σ = 1, τ = 0.3. Let us consider data generated from Model (III.3.1)
with the means θ− and θ+ obtained from the following distribution: θ− ∼ N (0, 1

20j2
)),

θ+ ∼ N (−θ−, 10−4).

To get a first insight about the rate of convergence, we simulate 1000 times a
sample of length n, for n chosen between 20 and 4000, and plot in Figure III.3.2
the mean and median of the error |τ − τ̂ | over the 1000 trials in function of n,
together with the function n 7→ ln(n)Ψn(p,∆p) corresponding to the theoretical rate
of convergence obtained in Proposition III.3.2.1. Note that the rate of convergence
of |τ − τ̂ | is given in the proposition up to a constant κ(γ, ε). Nevertheless, the figure
provides an appropriate illustration of the result as soon as n is large enough.

Figure III.3.2 – Plot of |τ̂ − τ | as a function of n (mean and median over 1000 trials)

Then, simulating 1000 samples, for each value of the sample size n between 500
and 4000, we try to estimate of the rate of convergence by computing the linear
regression of |τ − τ̂ | by ln(n): omitting the logarithmic factor, an exponent −1 is
to be found, corresponding to the rate of convergence 1

n
. Figure III.3.3 provides an

illustration of this linear regression, considering again the mean and the median over
the 1000 trials. On this example, the estimated slope of the regression line is −1.172
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for the mean and −1.098 for the median.

Figure III.3.3 – Plot of ln(|τ̂ − τ |) as a function of ln(n) (mean and median over 1000
trials)

III.3.4.2 Selection of p

In Theorem III.3.3.1, we suggest to select p using Lepski’s method. Before in-
troducing a practical procedure for the selection of p, let us illustrate the fact that
the performance of the estimator τ̂ may indeed vary a lot as a function of p, so that
selecting the right p is a crucial issue in the estimation of τ .

We set d = 200, n = 100, σ = 1, τ = 0.3. We consider data generated from
Model (III.3.1) with means θ− and θ+ built as follows:

— Case A: θ− ∼ N (0, V ), θ+ ∼ N (0, V ), V = diag(v1, . . . , vd), vj = 1
2j2

for
j = 1, . . . , d.

— Case B: θ− is such that θ−j ∼ N (0, 1/2) for j = 1, . . . , 20, θ−j ∼ N
(
0, 1

2(j−20)2

)
for j = 21, . . . , d. θ+ is such that θ+

j N (θ−j , 10−2) for j = 1, . . . , 20, θ+
j ∼

N (0, 1
2(j−20)2

) for j = 21, . . . , d.

We simulated 5000 data sets according to Model (III.3.1) in each of the two cases.
Figures III.3.4 and III.3.5 show the mean and median error |τ̂ − τ | over the 5000
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III.3.4. Numerical study

trials as a function of p. In the first case, the best result is obtained already with
p = 1, whereas for the second, taking p around 30 is a good choice.
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Figure III.3.4 – Mean and median of the error over 5000 trials for Model A
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Figure III.3.5 – Mean and median of the error over 5000 trials for Model B

Theorem III.3.3.1 provides a theoretical way to select p. However, the statement
depends on a tuning constant CL. In practice, it is simpler to try to select directly
p. In the sequel, two procedures are investigated, yielding two estimators p̂1 and p̂2.
Method 1. This method is often used to search for tuning constants in adaptive
methods. The idea is to find a division of the set {1, . . . , d} into {1, . . . , p̂1} and its
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complementary, where the two subsets are corresponding to two “regimes” for the
data, one with “big coefficients”, one with small ones.
Let Z̄(p) = 1

p

∑p
j=1 Zj and Z̄

(−p) = 1
d−p
∑d

j=p+1 Zj, and consider

V (p) =

p∑
j=1

(Zj − Z̄(p))2 +
d∑

j=p+1

(Zj − Z̄(−p))2.

This quantity V is computed for every p = 1, . . . , d and the value p̂1 is chosen such
that

p̂1 ∈ arg min
p=1,...,d

V (p).

Indeed, this procedure, by searching for a change-point along Z1, . . . , Zd, should sep-
arate the first most significative differences θ−j − θ+

j , where j = 1, . . . , p̂1, from the
remaining ones, expected to be less significative for estimating τ̂ , in such a way that
keeping for the estimation all components until p̂1 seems a reasonable choice.
Method 2. The second idea is more computationally involved and based on sub-
sampling. When performing subsampling, the indices drawn at random are sorted,
so that the parameter of interest τ remains indeed approximatively unchanged. For
each p = 1, . . . , d, we compute τ̂(p) for a collection of subsamples. Then, p̂2 is set to
the value of p minimizing the variance of τ̂ over all subsamples. Here, 100 subsamples
are built, each of them containing 80% of the initial sample.

Remark 18. Proportions of data from 50% to 90% have also been tried, with quite
similar results. Observe that picking a quite small proportion of data for subsampling
could be interesting since it provides more variability between the subsamples, but,
at the same time, the fact that the ratio between the dimension d and the sample
size is modified may be annoying when the aim is to select p. We also considered
a version of subsampling where a different subsampling index is drawn for every
p = 1, . . . , d: again, this provides more variability in the subsamples, but τ may also
vary more than in the classical version. The results were not significantly different.

The performance of the two methods is compared with the result obtained using
the value of p minimizing the average value of |τ − τ̂(p)| over a large number of
trials, called hereafter oracle p? (here, p? = 30 as obtained above for 5000 trials). Of
course, p? is not available in practice, since it depends on the true τ . However, it
is introduced as a benchmark. The results, corresponding to 1000 trials, for Model
B, are shown in Figure III.3.6 and Table III.3.1. The performances of the proposed
methods could seem unsatisfactory in absolute terms. Nevertheless, the data has
deliberately been chosen difficult to segment. Indeed, to illustrate the selection of
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p, it seems more appropriate to consider a high-dimensional, hard situation, rather
than an easy one where the true τ is always found exactly. Observe that the two
methods perform very similarly, with a slight advantage of Method 2 over Method
1. However, Method 2 is based on subsampling, and, as such, is more CPU-time
consuming.

Oracle p* p̂1 p̂2

0.
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7

Error |τ− τ̂ | over 1000 trials

Figure III.3.6 – Error of the two selection procedures over 1000 trials, compared with
the error obtained using the oracle p? = 30

Error over 1000 trials Oracle p? p̂1 p̂2

Mean 0.1524 0.2207 0.2047
(Standard deviation) (0.18735) (0.21329) (0.20841)

Table III.3.1 – Mean and standard deviation over 1000 trials of the error obtained
with the oracle p? and the two selection methods
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Chapter III.4

Wasserstein deconvolution in
dimension 1

This chapter is the result of a collaboration with Jérôme Dedecker (MAP5, Uni-
versité de Paris) and Bertrand Michel (LMJL, École Centrale de Nantes), published
in the Electronic Journal of Statistics (Dedecker et al., 2015).

III.4.1 Introduction

Consider the following convolution model: we observe n real-valued random vari-
ables Y1, . . . , Yn such that

Yi = Xi + εi, (III.4.1)

where the Xi’s are independent and identically distributed according to an unknown
probability µ, which we want to estimate. The random variables εi, i = 1, . . . , n, are
independent and identically distributed according to a known probability measure
µε, not necessarily symmetric. Moreover we assume that (X1, . . . , Xn) is independent
of (ε1, . . . , εn).

Our purpose is to investigate rates of convergence for the estimation of the mea-
sure µ under Wasserstein metrics. For p ∈ [1,∞), the Wasserstein distance Wp

between µ and ν is given by

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
R2

|x− y|pπ(dx, dy)

) 1
p

,
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where Π(µ, ν) is the set of probability measures on R×R with marginal distributions
µ and ν (see Rachev and Rüschendorf, 1998; Villani, 2008, ). The distances Wp are
natural metrics for comparing measures. For instance they can compare two singular
measures, which is of course impossible with the functional metrics commonly used
in density estimation. Convergence of measure under Wasserstein distances is an
active domain of research in probability and statistics. For instance, the rate of con-
vergence of the empirical measure under these metrics has been obtained recently by
both Dereich et al. (2013) and Fournier and Guillin (2015) in Rd and also by Bobkov
and Ledoux (2019) in the one-dimensional framework. Moreover, Wasserstein met-
rics are involved in many fields of mathematics and computer sciences. For instance,
in the field of Topological Data Analysis (TDA) (Carlsson, 2009), Wasserstein dis-
tances appear to be natural metrics for controlling the estimation of geometric and
topological features of the sampling measure and its support. Indeed, in Chazal
et al. (2011), a distance function to measures is introduced to solve geometric infer-
ence problems in a probabilistic setting: if a known measure ν is close enough with
respect to W2 to a measure µ concentrated on a given shape, then the topological
properties of the shape can be recovered by using the distance to ν. More generally,
the Wasserstein loss could be used as a guide for inferring the support. Other work
in TDA with stability results involving the Wasserstein distances can be found in
Chazal et al. (2014); Guibas et al. (2013). In practice, the data can be observed with
noise, which motivates the study of the Wasserstein deconvolution problem (Cail-
lerie et al., 2011), in particular if the deconvolved measure and the “true measure”
are singular.

Rates of convergence in deconvolution have mostly been considered in density
estimation, for pointwise or global convergence. Minimax rates can be found for
instance in Butucea and Tsybakov (2008a,b); Fan (1991a) and in the monograph
of Meister (2009). Here, however, we shall not assume that µ has a density with
respect to the Lebesgue measure. In this context, rates of convergence for the W2

Wasserstein distance have first been studied for several noise distributions by Caillerie
et al. (2011). Then, Dedecker and Michel (2013) have obtained optimal rates of
convergence in the minimax sense for a class of supersmooth error distributions,
in any dimension, under any Wasserstein metric Wp. The result relies on the fact
that lower bounds in any dimension can be deduced in this case from the lower
bounds in dimension 1. Such a method cannot be used in the ordinary smooth case,
where the rate of convergence depends on the dimension. As noticed by Fan (1991a),
establishing optimal rates of convergence in the ordinary smooth case is more difficult
than in the supersmooth one, even for pointwise estimation.

150



III.4.1. Introduction

A key fact in the univariate context is that Wasserstein metrics are linked to
integrated risks between cumulative distribution functions (cdf). In dimension 1,
when estimating the density of µ, optimal rates of convergence for integrated risks
can be found in Fan (1991b, 1993). When estimating the cdf F of µ, optimal rates
for the pointwise and integrated quadratic risks are given in Hall and Lahiri (2008),
where it is shown in particular that the rate

√
n can be reached when the error

distribution is ordinary smooth with a smoothness index less than 1/2. Concerning
the pointwise estimation of F (x0), optimal rates for the quadratic risk are also given
in Dattner et al. (2011), when the density of µ belongs to a Sobolev class.

The case β = 0 in the upper bound (3.9) of Hall and Lahiri (2008) corresponds
to the case where no assumption (except a moment assumption) is made on the
measure µ (in particular µ is not assumed to be absolutely continuous with respect
to the Lebesgue measure). This is precisely the case which we want to consider here.
However the results by Hall and Lahiri (2008) cannot be applied to the Wasserstein
deconvolution problems for two reasons: firstly, the integrated quadratic risk for
estimating a cdf is not linked to Wasserstein distances, and secondly, the estimator
of the cdf of µ proposed in Hall and Lahiri (2008) is the cdf of a signed measure, and
is not well defined as an estimator of µ for the Wasserstein metric.

In this chapter, we propose in the univariate situation, when the error is ordinary
smooth, an improved upper bound for deconvolving µ under Wp, as well as a lower
bound. We also recover the optimal rate of convergence in the supersmooth case
with slightly weaker regularity conditions than in Dedecker and Michel (2013). The
estimator of the cdf F of µ is built in two steps: firstly, as in Hall and Lahiri (2008),
we define a preliminary estimator through a classical kernel deconvolution method,
and secondly we take an appropriate isotone approximation of this estimator. For
controlling the random term, we use a moment inequality on the cdfs, which is due
to Èbralidze (1971).

In Section III.4.2, some facts about the case without error are recalled and dis-
cussed. The upper bounds for Wasserstein deconvolution with supersmooth or or-
dinary smooth errors are given in Section III.4.3, and Section III.4.4 is about lower
bounds. Section III.4.5 presents the implementation of the method and some ex-
perimental results. In particular, observed rates of convergence are compared with
the theoretical bounds for the Wasserstein metrics W1 and W2, and we study as an
illustrative example the deconvolution of the uniform measure on the Cantor set.
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III.4.2 On the case without error

We begin by considering the simple case when one observes directly X1, . . . , Xn

with values in R without error. Let us recall some results for the quantitiesWp(µn, µ),
where µn is the empirical measure, given by

µn =
1

n

n∑
i=1

δXi .

Let F be the cdf of X1, Fn the cdf of µn, and let F−1 and F−1
n be their usual cadlag

inverses. Recall that, for any p ≥ 1,

W p
p (µn, µ) =

∫ 1

0

|F−1
n (u)− F−1(u)|pdu , (III.4.2)

and, if p = 1

W1(µn, µ) =

∫
|F−1
n (u)− F−1(u)|du =

∫
|Fn(t)− F (t)|dt .

The case p = 1 has been well understood since the article by del Barrio et al.
(1999). The random variable

√
nW1(µn, µ) converges in distribution to

∫
|B(F (t))|dt,

where B is a standard Brownian bridge, if and only if∫ ∞
0

√
P (|X| > x)dx <∞, (III.4.3)

or equivalently if ∫ ∞
0

√
F (x)(1− F (x))dx <∞.

More recently, Bobkov and Ledoux (2019) have shown that the rate of E[W1(µn, µ)]
can be characterized by the quantities∫

4nF (x)(1−F (x))≤1

F (x)(1− F (x))dx

and ∫
4nF (x)(1−F (x))>1

√
F (x)(1− F (x)) dx.

More precisely, the rate 1/
√
n is achieved if and only if (III.4.3) is satisfied. When

this is not the case, E[W1(µn, µ)] may decay at an arbitrary slow rate.
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For p > 1, the situation is more complicated. Extra conditions are necessary to
ensure that Wp(µn, µ) is of order 1/

√
n. If the random variables take their values

in a compact interval [a, b] and if the cdf F is continuously differentiable on [a, b]
with strictly positive derivative f , then np/2W p

p (µn, µ) converges in distribution to∫ 1

0
|B(u)|p/|f ◦ F−1(u)|pdu (see Lemma 3.9.23 in van der Vaart and Wellner, 1996).

But in general, the rate can be much slower. The convergence in distribution for the
case p = 2 has been studied in detail by del Barrio et al. (2005). Under additional
conditions on F , which must be twice differentiable, the rate of convergence depends
on the behavior of F−1 in a neighborhood of 0 and 1. For instance, if

F (t) =

(
1− 1

tα−1

)
1{t>1},

where α > 3, then
n(α−3)/(α−1)W 2

2 (µn, µ) (III.4.4)
converges in distribution.

The rates of decay of E[Wp(µn, µ)] and
(
E[W p

p (µn, µ)]
)1/p have been studied in

Bobkov and Ledoux (2019). These quantities decay at the standard rate 1/
√
n if

and only if

Jp(µ) =

∫
R

[F (x)(1− F (x))]p/2 dx

f(x)p−1
<∞ ,

where f is the density of the absolutely continuous component of µ. In particular,(
E[W p

p (µn, µ)]
)1/p ≤ 5p√

n+ 2
J1/p
p (µ).

However, this approach cannot be applied when the measure µ and the Lebesgue mea-
sure are singular. An alternative approach to obtain the rate of decay of E[W p

p (µn, µ)]

is to use the following inequality, due to Èbralidze (1971) : for any p ≥ 1,

W p
p (µ, ν) ≤ κp

∫
|x|p−1|Fµ − Fν |(x)dx , (III.4.5)

where κp = 2p−1p. Starting from (III.4.5), we get that

E[W p
p (µn, µ)] ≤

∫
|x|p−1E|Fn(x)− F (x)|dx

≤
∫
|x|p−1

√
E|Fn(x)− F (x)|2dx

≤ 1√
n

∫
|x|p−1

√
F (x)(1− F (x))dx
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where Fn is the empirical cdf. This last integral is finite if and only if∫ ∞
0

|x|p−1
√
P (|X| > x)dx <∞ . (III.4.6)

For instance, taking p = 2, a tail satisfying P (|X| > x) = O
(

1
x4 log x2+ε

)
gives the

rate 1/
√
n. Hence, we obtain the same rate as in (III.4.4) for α = 5, with a slightly

stronger tail condition (due to the fact that we control the expectation), but without
additional assumptions on the cdf F .

Since we want to estimate singular measures, we shall follow this approach in the
sequel.

III.4.3 Upper bounds for Wp in deconvolution

III.4.3.1 Construction of the estimator

Let us start with some notations. For µ a probability measure and ν another
probability measure, with density g, we denote by µ? g the density of µ? ν, given by

µ ? g(x) =

∫
R
g(x− y)µ(dy).

We further denote by µ∗ (respectively f ∗) the Fourier transform of the probability
measure µ (respectively of the integrable function f), that is

µ∗(x) =

∫
R
eiuxµ(du) and f ∗(x) =

∫
R
eiuxf(u)du.

Finally, let F be the cdf of µ.

The estimator µ̃n of the measure µ is built in two steps.
1. First, we build a preliminary estimator of F . Let dpe be the least integer greater

than or equal to p. We first introduce a symmetric nonnegative kernel k such that
its Fourier transform k∗ is dpe times differentiable with Lipschitz dpe-th derivative
and is supported on [−1, 1]. An example of such a kernel is given by

k(x) = Cp

[
(2dp/2e+ 2) sin x

2dp/2e+2

x

]2dp/2e+2

, (III.4.7)
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where Cp is such that
∫
k(x)dx = 1.

We define now a preliminary estimator F̂n of F :

F̂n(t) =
1

nh

∫ t

−∞

n∑
k=1

k̃h

(
u− Yk
h

)
du,

where
k̃h(x) =

1

2π

∫
eiuxk∗(u)

µ∗ε(−u/h)
du.

Let us first give some conditions under which these quantities are well defined.
Clearly, k̃h(x) is well defined as soon as µ∗ε does not vanish, since in that case it is
the Fourier transform of a continuous and compactly supported function (it can
be easily checked that k̃h(x) is a real function). In the sequel, we shall always
assume that rε = 1/µ∗ε is at least two times continuously differentiable. In that
case, the function w(u) = k∗(u)

µ∗ε(−u/h)
is two times differentiable with bounded and

compactly supported derivatives. An integration by parts yields

k̃h(x) = − 1

2πix

∫
eiuxw′(u)du and k̃h(x) = − 1

2πx2

∫
eiuxw′′(u)du.

It follows that k̃h is a continuous function such that k̃h(x) = O(1/(1+x2)). Hence
k̃h belongs to L1(dx) and F̂n is well defined. Now the inverse Fourier formula gives
that k̃∗h(x) = k∗(u)

µ∗ε(u/h)
. Consequently k̃∗h(0) = 1, proving that

∫
k̃h(x)dx = 1 and

that limt→∞ F̂n(t) = 1.
However, this estimator F̂n, based on the standard deconvolution kernel density
estimator k̃h first introduced by Carroll and Hall (1988), is not a cumulative
distribution function since it is not necessarily non-decreasing.

2. We need to define an estimator F̃n of F which is a cumulative distribution function.
We choose the estimator F̃n as an approximate minimizer over all distribution
functions of the quantity

∫
R |x|

p−1|F̂n −G|(x)dx. More precisely, given ρ > 0, let
F̃n be such that, for every distribution function G,∫

|x|p−1|F̂n − F̃n|(x)dx ≤
∫
|x|p−1|F̂n −G|(x)dx+ ρ .

Here, ρ may be chosen equal to 0 (best isotone approximation) but the condition
ρ = O(n−1/2) is the only condition required to get the rates of Section III.4.3.3
below.
Finally, the estimator µ̃n is then defined as follows:

µ̃n is the probability measure with distribution function F̃n. (III.4.8)
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Remark 19. In Dedecker and Michel (2013), µ̃n is chosen as the (normalized) positive
part of µn. We will see that the isotone approximation described here allows to get
better rates of convergence in the ordinary smooth case. However, this approach
works only in the one-dimensional case.

III.4.3.2 First upper bounds for W p
p (µ̃n, µ)

The control of W p
p (µ̃n, µ) is done in three steps:

1. A bias/random decomposition. Denoting by Kh the function h−1k(·/h),
we have

W p
p (µ̃n, µ) ≤ 2p−1W p

p (µ ? Kh, µ) + 2p−1W p
p (µ̃n, µ ? Kh).

The non-random quantity W p
p (µ ? Kh, µ) is the bias of the estimator µ̃n.

2. Control of the bias. Let Vh be a random variable with distribution Kh and
independent of X1, in such a way that the distribution of X1 + Vh is µ ? Kh.
By definition of Wp, we have

W p
p (µ ? Kh, µ) ≤ E[|X1 + Vh −X1|p] = E[|Vh|p] = hp

∫
|x|pk(x)dx.

3. Control of the random term. Note that

E[F̂n(t)] =

∫ t

−∞
µ ? Kh(x)dx

is the cdf of µ ? Kh. Applying Èbralidze’s inequality (III.4.5), we obtain that

W p
p (µ̃n, µ ? Kh) ≤ κp

∫
|x|p−1|F̃n − E[F̂n]|(x)dx .

Now, by the triangle inequality and the definition of F̃n,

W p
p (µ̃n, µ ? Kh) ≤ κp

(∫
|x|p−1|F̃n − F̂n|(x)dx+

∫
|x|p−1|F̂n − E[F̂n]|(x)dx

)
≤ ρ+ 2κp

∫
|x|p−1|F̂n − E[F̂n]|(x)dx .

Consequently, to get explicit rates of convergence for E[W p
p (µ̃n, µ)], it remains to

control the term
E

(∫
|x|p−1|F̂n − E[F̂n]|(x)dx

)
.
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III.4.3.3 Main results

Let rε = 1/µ∗ε, and let r(`)
ε be the `-th derivative of rε. Let m0 denote the least

integer strictly greater than p + 1
2
, and m1 be the least integer strictly greater than

p− 1
2
.

First, we establish an upper bound for E[W p
p (µ̃n, µ)] involving a tail condition on

Y and the regularity of rε. The next proposition is proved in Dedecker et al. (2015).

Proposition III.4.3.1. Let ρ ≤ n−1/2, and let µ̃n be the estimator defined in
(III.4.8). Assume that rε is m0 times continuously differentiable. For any h ≤ 1, we
have

E[W p
p (µ̃n, µ)] ≤ 1√

n
+ hp2p−1

∫
|x|pk(x)dx+

C√
n

(A1 + A2 + A3 + A4)

where

A1 =
(

sup
t∈[−2,2]

1∑
`=0

|r(`)
ε (t)|

)∫ ∞
0

|x|p−1
√
P (|Y | ≥ x)dx

A2 = sup
t∈[−2,2]

m0∑
`=0

|r(`)
ε (t)|

A3 =

[
E|Y |2p−

1
2

∫ 1/h

−1/h

|rε(x)|2

|x|2
1[−1,1]c(x)dx

]1/2

A4 =

[
m1∑
`=0

∫ 1/h

−1/h

|r(`)
ε (x)|2

|x|2
1[−1,1]c(x)dx

]1/2

.

Now, the rates of convergence obtained for the Wasserstein deconvolution, for
a class of supersmooth error distributions and for a class of ordinary smooth error
distributions, are stated in the next theorem.

Theorem III.4.3.1. Let ρ ≤ n−1/2, and let µ̃n be the estimator defined in (III.4.8).
Assume that∫ ∞

0

|x|p−1
√
P (|Y | ≥ x)dx <∞ and sup

t∈[−2,2]

|r(m0)
ε (t)| <∞.
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1. Assume that there exist β > 0, β̃ ≥ 0, γ > 0 and c > 0, such that for every
` ∈ {0, 1, . . . ,m1} and every t ∈ R,

|r(`)
ε (t)| ≤ c(1 + |t|)β̃ exp(|t|β/γ). (III.4.9)

Then, taking h = (4/(γ log n))1/β, there exists C > 0 such that

E[W p
p (µ̃n, µ)] ≤ C(log n)−p/β.

2. Assume that there exist β > 0 and c > 0, such that for every ` ∈ {0, 1, . . . ,m1}
and every t ∈ R,

|r(`)
ε (t)| ≤ c(1 + |t|)β.

Then, taking h = n
− 1

2p+(2β−1)+ , there exists C > 0 such that

E[W p
p (µ̃n, µ)] ≤ Cψn ,

where

ψn =


n−

p
2p+2β−1 if β > 1

2√
logn
n

if β = 1
2

1√
n

if β < 1
2
.

Some comments are in order.
Remark 20. In the ordinary smooth case, when β < 1/2, any bandwidth h =
O(n−1/2p) leads to the rate n−1/2. The fact that there are three different situa-
tions according as β > 1/2, β = 1/2 or β < 1/2 has already been pointed out in
Dattner et al. (2011); Hall and Lahiri (2008) for the estimation of the cdf F .
Remark 21. Since the function HY (x) = P (|Y | ≥ x) is non-increasing, the tail
condition ∫ ∞

0

|x|p−1
√
P (|Y | ≥ x)dx <∞ (III.4.10)

implies that HY (x) = O(1/|x|2p). Hence |Y | has a weak moment of order 2p, which
implies a strong moment of ordrer q for any q < 2p. Note that (III.4.10) is the same as
the tail condition (III.4.6) obtained in Section III.4.2 to get the rate E[W p

p (µn, µ)] ≤
Cn−1/2 in the case without noise. Recall that, in the case without noise when p = 1,
this condition is necessary and sufficient for the weak convergence of

√
nW1(µn, µ).

We have

(III.4.10) holds iff (III.4.6) holds and
∫ ∞

0

|x|p−1
√
P (|ε| ≥ x)dx <∞.
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Remark 22. The rate E[W p
p (µ̃n, µ)] ≤ C(log n)−p/β in the supersmooth case has

already been given in Dedecker and Michel (2013) and is valid in any dimension.
However, in Dedecker and Michel (2013) , the condition (III.4.9) on the regularity of
rε is assumed to be true for ` ∈ {0, 1, . . . , dpe+ 1}. Note that this rate is minimax.

III.4.4 Lower bound

For some M > 0 and q ≥ 1, we denote by D(M, q) the set of measures µ on R
such that

∫
|x|qdµ(x) ≤M .

Theorem III.4.4.1. Let M > 0 and q ≥ 1. Assume that there exist β > 0 and
c > 0, such that for every ` ∈ {0, 1, 2} and every t ∈ R,

|µ∗ε
(`)(t)| ≤ c(1 + |t|)−β.

Then, there exists a constant C > 0 such that, for any estimator µ̂,

lim inf
n→∞

n
p

2β+1 sup
µ∈D(M,q)

E[W p
p (µ̂, µ)] > C.

Remark 23. For W1, this lower bound matches the upper bound given in Theo-
rem III.4.3.1 for β ≥ 1/2. For Wp, p > 1, we conjecture that the upper bounds given
by Theorem III.4.3.1 are appropriate under the assumed tail conditions. Getting
better rates of convergence for Wp (p > 1) is an open question. From Section III.4.2,
it seems reasonable to think that better rates can be obtained when µ has an abso-
lutely continuous component with respect to the Lebesgue measure which is strictly
positive on the support of µ.

III.4.5 Numerical experiments

In this section, we study the W1 and W2 univariate deconvolution problems in
the ordinary smooth case and we compare our numerical results with the upper and
lower bounds given above. We also apply our procedure to the deconvolution of the
uniform measure on the Cantor set.

The complete details about the implementation of the deconvolution estimators
may be found in Dedecker et al. (2015).
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In the experiments, we consider symmetric distributions for µε. Thus, k∗ and µ∗ε
are even functions, and the Fourier coefficients involved in the computation of the
estimators are real. They are computed thanks to the Fast Fourier Transform.

We use the kernel

k(x) =
3

16π

(
8 sin(x/8)

x

)4

,

which corresponds to the kernel given by (III.4.7) with p = 2 and a Fourier support
over [−1/2, 1/2].

The isotone approximation is performed thanks to the function gpava from the
R package isotonic (Mair et al., 2009).

In the sequel, the obtained estimator will be denoted by µ̂isot,p
n,h , and µ̂naive

n will
stand for the “positive part” estimator studied in Dedecker and Michel (2013).

For fixed distributions µ and µε, we simulate Y1, . . . , Yn according to the con-
volution model (III.4.1). For a given bandwidth h and p ≥ 1, we can compute
W p
p (µ̂naive

n , µ) and W p
p (µ̂isot,p

n,h , µ) using the quantile functions of the measures, thanks
to the relation (III.4.2). The Wasserstein risks Rnaive(n, h) := E[W p

p (µ̂naive
n,h , µ)] and

Risot(n, h) := E[W p
p (µ̂isot,p

n,h , µ)] can be estimated via a Monte-Carlo method by repeat-
ing the simulation of the Yi’s and averaging the Wasserstein distances. Let r̄isot

p (n, h)
and r̄naive

p (n, h) be the estimated risks obtained this way, and r̄isot
p,∗ (n) and r̄naive

p,∗ (n) be
the minimal risks over a bandwidth grid.

III.4.5.1 Estimation of the rates of convergence

We study the rates of convergence of the estimators for the deconvolution of three
distributions:

— Dirac distribution at 0,

— Uniform distribution on [−0.5, 0.5],

— Mixture of the Dirac distribution at 0 and the uniform distribution on [−0.5, 0].

We take for µε the ordinary smooth distributions summarized in Table III.4.1. Re-
call that the coefficient β of a symmetrized Gamma distribution is twice the shape
parameter of the distribution.
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Distribution µ∗ε β

Symmetrized Gamma t 7→ (1 + t2)−β/2 0.3, 0.5, 1.2, 2 ,3, 4
Laplace t 7→ (1 + t2)−1 2

Symmetrized χ2 t 7→ (1 + 4t2)(−1/2) 1

Table III.4.1 – Ordinary smooth distributions used for the error

For each error distribution and for n chosen between 100 and 2000, we simulate
200 times a sample of length n from which we compute the estimated minimal risks
r̄isot
p,∗ (n) and r̄naive

p,∗ (n). We study the Wasserstein risks W1 and W2. We obtain some
estimation of the exponent of the rate of convergence for each deconvolution problem
by computing the linear regression of log r̄p,∗(n) by log n. An example is depicted in
Figure III.4.1. Observe that the risks are smaller for the isotone estimators than for
the naive ones.

4.5 5.0 5.5 6.0 6.5 7.0 7.5

-1
.6

-1
.2

-0
.8

-0
.4

log(n)

lo
g
(r̄

1
,∗

(n
))

Naive method
Isotone method

Figure III.4.1 – Estimated rates of convergence to zero of the W1-risk for the naive
method and the isotone method for µ being a Dirac distribution at 0, and the noise
distribution the symmetrized Gamma distribution with β = 2
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The estimated exponents of the convergence rates for W1 and W2 are plotted in
Figure III.4.2 as functions of the ordinary smooth coefficient β, for the naive and the
isotone deconvolution estimator. These estimated rates can be compared with the
upper and lower bounds obtained stated above. Of course, the rates of convergence
of the isotone estimator have no reason to match exactly the lower bounds. However
it can be checked that the estimated rates are consistent with the theoretic bounds
obtained. In particular, the parametric rate is reached for values of β close to 0, at
least in the Dirac case.

III.4.5.2 Cantor set experiment

We now illustrate the deconvolution method by taking for µ the uniform distribu-
tion on the Cantor set C. Remember that the Cantor set can be defined by repeatedly
deleting the open middle thirds of a set of line segments:

C =
⋂
m≥1

Fn

where F0 = [0, 1] and Fm+1 is obtained by cutting out the middle thirds of all the
intervals of Fm: F1 = [0, 1

3
] ∪ [2

3
, 1] and F2 = [0, 1

9
] ∪ [2

9
, 1

3
] ∪ [2

3
, 7

9
] ∪ [8

9
, 1], etc... The

uniform measure µC on C can be defined as the distribution of the random variable
X := 2

∑
k≥1 3−kBk where (Bk)k≥1 is a sequence of independent random variables

with Bernoulli distribution of parameter 1/2. Note that the Lebesgue measure of
C is zero and thus the Lebesgue measure and µC are singular. The deconvolution
estimators being densities for the Lebesgue measure, the Wasserstein distances are
relevant metrics for comparing these with µC.

Let µC,K be the distribution of the random variable defined by the partial sum
X̃ := 2

∑K
k=1 3−kBk where the Bk’s are defined as before. The distribution µC,K is

an approximation of µC which can be computed in practice. We simulate a sample of
n = 104 observations from µC,K with K = 100. These observations are contaminated
by random variables with symmetrized Gamma distribution (the shape parameter is
equal to 1/4 (so that β = 0.5) and the scale parameter is equal to 1/2).

In Figure III.4.3, the isotone estimators and naive estimator for W1 and W2 are
plotted on the first four levels Fm of the Cantor set. We theW1-isotone deconvolution
estimator is able to detect the first three levels of the Cantor set and the three other
deconvolution methods recover the first two levels. A kernel density estimator (with
no deconvolution) only recovers the first level.
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Figure III.4.2 – Estimated exponents of the convergence rates for W1 and W2 decon-
volution, with the χ2 and Laplace noise distributions indicated directly on the graph,
the others experiments corresponding to the symmetrized Gamma distribution
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Figure III.4.3 – Deconvolution of the uniform measure on the Cantor set
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Chapter IV.1

Consensual aggregation for regression

This chapter corresponds to an article in collaboration with Gérard Biau, Ben-
jamin Guedj (INRIA & University College London) and James Malley (National
Institutes of Health, USA), published in the Journal of Multivariate Analysis (Biau
et al., 2016).

Recent years have witnessed a growing interest in the aggregation of statistical
procedures. Indeed, the increasing number of available estimation methods in a wide
range of statistical problems naturally suggests to try to combine several procedures,
all the more so since model and smoothness assumptions under which a particular
method works well are usually unverifiable in practice. If the combined strategy is
known to be optimal in some sense and relatively free of assumptions that are hard
to evaluate, then, this strategy is a valuable and practical research tool.

In this regard, numerous contributions have enriched the aggregation literature
with various approaches, such as model selection (select the optimal single estimator
from a list of models), convex aggregation (searching for the optimal convex com-
bination of given estimators, such as exponentially weighted aggregates) and linear
aggregation (selecting the optimal linear combination).

Model selection, linear-type aggregation strategies and related problems have
been studied by Catoni (2004); Györfi et al. (2002); Juditsky and Nemirovski (2000);
Nemirovski (2000); Wegkamp (2003); Yang (2000, 2001, 2004). Minimax results have
been derived by Nemirovski (2000) and Tsybakov (2003), leading to the notion of
optimal rates of aggregation. Similar results can be found in Bunea et al. (2007).
Further, upper bounds for the risk in model selection and convex aggregation have
been established for instance by Audibert (2004); Birgé (2006); Dalalyan and Tsy-
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bakov (2008).

Beside the usual linear aggregation and model selection methods, a quite different
point of view has been introduced by Mojirsheibani (1999) for classification. The
idea consists in an original combination method, which is non linear in the initial
estimators and is based on a consensus concept between them. More precisely, an
observation is considered to be reliable for contributing to the classification of a new
query point if all initial classifiers predict the same label for both points. Then, the
label for the query point is estimated thanks to a majority vote among the labels of
the observations which have been retained this way. When the initial list contains a
consistent estimator, it is shown that the combined estimator inherits this consistency
property. Note that more regular versions, based on smoothing kernels, have also
been developed (Mojirsheibani, 2000). A numerical comparison study of several
combining schemes is available in Mojirsheibani (2002b), and recently, a variant of
the method has been proposed in Balakrishnan and Mojirsheibani (2015).

In Biau et al. (2016), we have adapted this strategy in the regression framework.
An observation is used in the combination step if all the initial estimators predict
a similar value for the observation and the new point: the difference between both
predictions is required to be less than some prespecified threshold. Then, the new
prediction by the combined estimator is the average of the true outputs corresponding
to the selected entries. Note that the functional data framework has also been
considered, by Cholaquidis et al. (2016).

The resulting regression estimator is a nonlinear data-dependent function of the
basic estimators. in fact, they are used to derive a local distance between a new test
instance and the original training data.

In Section IV.1.1, we describe the combined estimator and derive a nonasymptotic
risk bound. We present the main result, that is, the collective is asymptotically at
least as good as any of the basic estimators. We also provide a rate of convergence
for our procedure. Let us mention that the techniques of proof, and consequently,
the assumptions are quite different in Mojirsheibani (1999) and Biau et al. (2016).
For instance, the number of initial estimators is expected to tend to infinity with the
sample size in Mojirsheibani (1999) whereas it is fixed here. Section IV.1.2 presents
several numerical experiments, on simulated data sets, including high-dimensional
models. Let us mention that the procedure is not too CPU-time consuming, in
particular thanks to the possibility of parallelization. We compare our strategy with
Super Learner (van der Laan et al., 2007) and exponentially weighted aggregation
(see, among many other references see Dalalyan and Tsybakov, 2008).
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IV.1.1 The combined estimator

We assume that we are given a training sample Dn = {(X1, Y1), . . . , (Xn, Yn)}.
Dn of independent random variables, taking their values in Rd × R, and distributed
as a generic random pair (X, Y ) satisfying E

[
Y 2
]
< ∞. Rd is equipped with the

standard Euclidean metric. Our goal is to estimate the regression function r∗(x) =
E
[
Y |X = x], x ∈ Rd, using the data Dn.
The original data set Dn is split into two subsets Dk = {(X1, Y1), . . . , (Xk, Yk)}

and D` = {(Xk+1, Yk+1), . . . , (Xn, Yn)}, with ` = n − k ≥ 1. For simplicity, with a
slight abuse of notation, the elements of D` are renamed {(X1, Y1), . . . , (X`, Y`)}.

We suppose that we are given a collection of p ≥ 1 estimators rk,1, . . . , rk,p, based
on the first subsample Dk.

These estimators can be any among the researcher’s favorite toolkit, such as
linear regression, kernel smoother, SVM, Lasso, neural networks, naive Bayes, or
random forests. They could equally well be any ad hoc regression rule suggested
by the experimental context. They can be parametric, nonparametric, or semi-
parametric, with possible tuning rules. All that is asked for is that each of the
rk,m(x), m = 1, . . . , p, is able to provide an estimation of r∗(x) on the basis of Dk.

Here, the number of estimators p is fixed, it is not expected to grow. In Sec-
tion IV.1.2, there are never more than 10 estimators in the list.

Given the collection of individual estimators rk = (rk,1, . . . , rk,p), we define the
combined estimator Tn to be

Tn (rk(x)) =
∑̀
i=1

Wn,i(x)Yi, x ∈ Rd,

where the random weights Wn,i(x) take the form

Wn,i(x) =
1⋂p

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}∑`
j=1 1

⋂p
m=1{|rk,m(x)−rk,m(Xj)|≤ε`}

.

In this definition, ε` is some positive parameter and, by convention, 0/0 = 0.

Tn is a local averaging estimator. For Yi to be included in the average, it is
required that all basic estimators predict a close value for Xi and for the query point
x.

This approach is motivated by the fact that a major issue in learning problems
consists in finding a metric that is suited to the data (see, e.g., the monograph by
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Chapter IV.1 – Consensual aggregation for regression

Duin and Pekalska, 2005). In this context, ε` plays the role of a smoothing parameter,
so that the practical performance of Tn strongly relies on an appropriate choice of
ε`.

The condition for an observation to be reliable is here required to be satisfied for
all estimators. In Mojirsheibani (2002a), the author notes that this rule may seem
too restrictive and proposes to allow a few disagreements (typically, a single one).
The resulting classifier is still consistent provided that the number of initial classifiers
keeps tending to infinity after removing those with disagreement. Similarly, here, the
unanimity constraint may be relaxed in practice by imposing, for example, that a
fixed fraction γ ∈ {1/p, 2/p, . . . , 1} of the estimators agree on the importance of Xi.
In that case, the weights take the more sophisticated form

Wn,i(x) =
1{∑p

m=1 1{|rk,m(x)−rk,m(Xi)|≤ε`}≥pγ}∑`
j=1 1{

∑p
m=1 1{|rk,m(x)−rk,m(Xj)|≤ε`}≥pγ}

.

It turns out that adding the parameter γ does not change the asymptotic properties
of Tn, provided γ → 1. For simplicity, we have decided to state the results in the case
γ = 1. In Section IV.1.2, the parameters ε and γ are selected via cross-validation.

Let us turn to the theoretical study of the combined estimator Tn.

For ease of exposition, we assume that the estimators are bounded. Let

T (rk(X)) = E [Y |rk(X)] .

By definition of the L2 conditional expectation, we have

E
[
|T (rk(X))− Y |2

]
≤ inf

f
E
[
|f(rk(X))− Y |]2,

where the infimum is taken over all square integrable functions of rk(X).

Our first result, proved in Biau et al. (2016), is a nonasymptotic inequality, which
states that the combined estimator behaves as well as the best one in the original
list, up to a term measuring how far Tn is from T .

Proposition IV.1.1.1. For all distributions of (X, Y ) with E
[
Y 2
]
<∞,

E
[
|Tn(rk(X))− r∗(X)|2

]
≤ E

[
|Tn(rk(X))− T (rk(X))|2

]
+ inf

f
E
[
|f(rk(X))− r∗(X)|2

]
,
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where the infimum is taken over all square integrable functions of rk(X). In partic-
ular,

E
[
|Tn(rk(X))− r∗(X)|2

]
≤ min

m=1,...,p
E
[
|rk,m(X)− r∗(X)|2

]
+ E

[
|Tn(rk(X))− T (rk(X))|2

]
.

Since Proposition IV.1.1.1 holds for any square integrable function of rk(X), it
allows to derive results involving any existing aggregation procedure, including for
instance linear or convex aggregation.

The term minm=1,...,pE
[
|rk,m(X) − r∗(X)|2

]
may be regarded as a bias term,

whereas the term E
[
|Tn(rk(X))−T (rk(X))|2

]
is a variance-type term, which can be

asymptotically neglected, as shown in Biau et al. (2016).

Proposition IV.1.1.2. Assume that ε` → 0 and `εp` →∞ as `→∞. Then

E
[
|Tn (rk(X))− T (rk(X)) |2

]
→ 0 as `→∞,

for all distributions of (X, Y ) with E
[
Y 2
]
<∞. Thus,

lim sup
`→∞

E
[
|Tn (rk(X))− r∗(X)|2

]
≤ min

m=1,...,p
E
[
|rk,m(X)− r∗(X)|2

]
.

Thus, in terms of quadratic risk, the combined estimator Tn does asymptotically
at least as well as the best primitive estimator, regardless of which initial estimator
is actually the best. The result is universal, in the sense that it is true for all
distributions of (X, Y ).

The result does not require any regularity assumption on the basic estimators.
However, this universality comes at a price since we have no guarantee on the rate
of convergence of the variance term. Nevertheless, with light additional smoothness
conditions, one has the following statement.

Theorem IV.1.1.1. Assume that Y and the basic estimators rk are bounded by
some constant R, and that there exists L ≥ 0 such that, for every k ≥ 1,

|T (rk(x))− T (rk(y))| ≤ L|rk(x)− rk(y)|, x, y ∈ Rd.

Then, with the choice ε` ∝ `−
1
p+2 , one has

E
[
|Tn (rk(X))− r∗(X)|2

]
≤ min

m=1,...,p
E
[
|rk,m(X)− r∗(X)|2

]
+ C`−

2
p+2 ,

where C depends on R and L.
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Chapter IV.1 – Consensual aggregation for regression

Theorem IV.1.1.1 offers an oracle-type inequality with leading constant 1, stating
that the risk of the combined estimator is bounded by the lowest risk among those
of the basic estimators, plus a remainder term of the order of `−2/(p+2), which is the
price to pay for aggregating. In our setting, it is important to observe that this term
has a limited impact. Indeed, since the number of basic estimators p is assumed to be
fixed and not too large (the implementation presented in Section IV.1.2 considers p at
most 5), the remainder term is negligible compared to the standard nonparametric
rate `−2/(d+2) in dimension d. While the rate `−2/(d+2) is affected by the curse of
dimensionality when d is large, this is not the case for the term `−2/(p+2). Obviously,
if the distribution of (X, Y ) can in fact be described parametrically, faster rates of
the order of 1/` may appear in the bias term.

If one of the initial estimators is consistent for a given class P of distributions,
then, under appropriate smoothness assumptions, Tn inherits the same property. To
be more precise, assume that one of the original estimators, say rk,m0 , satisfies

E
[
|rk,m0(X)− r∗(X)|

]2 → 0 as k →∞,

for all distribution of (X, Y ) in some class P . Then, under the assumptions of
Theorem IV.1.1.1, with the choice ε` ∝ `−

1
p+2 , one has

lim
k,`→∞

E |Tn (rk(X))− r∗(X)|2 = 0.

IV.1.2 Numerical study

This section is devoted to a series of numerical experiments, conducted with the
R package Cobra (standing for COmBined Regression Alternative) implemented by
Guedj (2013).

The performance of the method is measured using R(Ŷ1, . . . , Ŷm) = 1
m

∑m
j=1(Ŷj−

Yj)
2, where {(Xj, Yj)}mj=1 is a testing sample and Ŷi denotes the predicted value for

Yi.

As raised in the previous section, a precise calibration of the smoothing parameter
ε` is crucial. Clearly, a too small value will discard many estimators, with most
weights equal to zero. Conversely, that is too large just predicts the mean over
the entire sample D`. We consider the relaxed version of the unanimity constraint.
Instead of requiring global agreement over the implemented estimators, we keep
observation Yi in the construction of Tn if there is at least a proportion γ ∈ (0, 1]
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of the estimators agreeing on the importance of Xi. This parameter, which may be
seen as a measure of homogeneity of the estimators, also requires calibration. Both
parameters ε` and γ are chosen by cross-validation, from a grid

{ε`,min, . . . , ε`,max} × {1/p, . . . , 1},

where ε`,min = 10−300 and ε`,max is proportional to the largest absolute difference
between two predictions of the pool of estimators.

We use the following individual estimators.
— Lasso (R package lars, see Hastie and Efron, 2012).
— Ridge regression (R package ridge, see Cule, 2012).
— k-nearest neighbors (R package FNN, see Li, 2013).
— CART algorithm (R package tree, see Ripley, 2012).
— Random Forest algorithm (R package randomForest, see Liaw and Wiener,

2002, RF hereafter).
The training data set was set to 80% of the whole sample, then split into two equal
parts corresponding to Dk and D`. In the first experiments presented, we con-
sider each time 2 different error distributions: Uniform over (−1, 1)d (referred to
as “Uncorrelated” below), and Gaussian with mean 0 and covariance matrix Σ with
Σij = 2−|i−j| (“Correlated”). Let Z N (0, 0.5).

Model 1. n = 800, d = 50, Y = X2
1 + exp(−X2

2 ).

Model 2. n = 600, d = 100, Y = X1X2 +X2
3 −X4X7 +X8X10 −X2

6 + Z.

Model 3. n = 600, d = 100, Y = − sin(2X1) +X2
2 +X3 − exp(−X4) + Z.

Model 4. n = 600, d = 100, Y = X1 + (2X2 − 1)2 + sin(2πX3)/(2 − sin(2πX3)) +
sin(2πX4) + 2 cos(2πX4) + 3 sin2(2πX4) + 4 cos2(2πX4) + Z.

Model 5. n = 700, d = 20, Y = 1{X1>0}+X
3
2 +1{X4+X6−X8−X9>1+X14}+exp(−X2

2 )+Z.

Model 6. n = 600, d = 300, Y = X2
1 +X2

2X3 exp(−|X4|) +X6 −X8 + Z.

Some models are borrowed form the literature: Mod. 2 comes from van der Laan
et al. (2007), Mod. 3 and 4 appear in Meier et al. (2009). Table IV.1.1 presents the
mean squared error and standard deviation over 100 independent replications, for
each model and design. Bold numbers identify the lowest error. Corresponding box-
plots are presented in Figures IV.1.1 and IV.1.2. Further, Figures IV.1.3 and IV.1.4
shows predicted versus true output values. We observe that the procedure performs
at least as well as the best estimator, significantly so in Mod. 3 and 5 for instance.
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Chapter IV.1 – Consensual aggregation for regression

Uncorr. lars ridge FNN tree RF Cobra

Mod. 1 m. 0.1561 0.1324 0.1585 0.0281 0.0330 0.0259
sd. 0.0123 0.0094 0.0123 0.0043 0.0033 0.0036

Mod. 2 m. 0.4880 0.4562 0.3070 0.1746 0.1366 0.1645
sd. 0.0676 0.0233 0.0303 0.0270 0.0161 0.0207

Mod. 3 m. 0.2536 0.5347 1.1603 0.4954 0.4027 0.2332
sd. 0.0271 0.4469 0.1227 0.0772 0.0558 0.0272

Mod. 4 m. 7.6056 6.3271 10.5890 3.7358 3.5262 3.3640
sd. 0.9419 1.0800 0.9404 0.8067 0.3223 0.5178

Mod. 5 m. 0.2943 0.3311 0.5169 0.2918 0.2234 0.2060
sd. 0.0214 0.1012 0.0439 0.0279 0.0216 0.0210

Mod. 6 m. 1.0920 0.5452 0.9459 0.3638 0.3110 0.3052
sd. 0.2265 0.0920 0.0833 0.0456 0.0325 0.0298

Corr. lars ridge FNN tree RF Cobra

Mod. 1 m. 2.3736 1.9785 2.0958 0.3312 0.5766 0.3301
sd. 0.4108 0.3538 0.3414 0.1285 0.1914 0.1239

Mod. 2 m. 8.1710 4.0071 4.3892 1.3609 1.4768 1.3612
sd. 1.5532 0.6840 0.7190 0.4647 0.4415 0.4654

Mod. 3 m. 6.1448 6.0185 8.2154 4.3175 4.0177 3.7917
sd. 11.9450 12.0861 13.3121 11.7386 12.4160 11.1806

Mod. 4 m. 60.5795 42.2117 51.7293 9.6810 14.7731 9.6906
sd. 11.1303 9.8207 10.9351 3.9807 5.9508 3.9872

Mod. 5 m. 6.2325 7.1762 10.1254 3.1525 4.2289 2.1743
sd. 2.4320 3.5448 3.1190 2.1468 2.4826 1.6640

Mod. 6 m. 20.8575 4.4367 5.8893 3.6865 2.7318 2.9127
sd. 7.1821 1.0770 1.2226 1.0139 0.8945 0.9072

Table IV.1.1 – Errors of the implemented estimators and combination: means and
standard deviations over 100 independent replications
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Figure IV.1.1 – Boxplots of errors, uncorrelated design.
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Figure IV.1.2 – Boxplots of errors, correlated design.
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Figure IV.1.3 – Predicted versus true outputs values, uncorrelated design
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Figure IV.1.4 – Predicted versus true outputs values, correlated design
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Since many problems in contemporary statistics involve high-dimensional data,
we have also tested the abilities of our combination method in this context. To this
aim, we simulated 200 independent replications following the next models:

Model 7. n = 500, d = 1000, Y = X1 +3X2
3−2 exp(−X5)+X6. Uncorrelated design.

Model 8. n = 500, d = 1000, Y = X1 + 3X2
3 − 2 exp(−X5) +X6. Correlated design.

Model 9. n = 500, d = 1500, Y = exp(−X1) + exp(X1) +
∑d

j=2X
j/100
j . Uncorrelated

design.

As highlighted by Figure IV.1.5 and Table IV.1.2, the procedure is perfectly able
to deal with high-dimensional data, provided that it is generated over estimators, at
least some of which are known to perform well in such situations, possibly at the
price of a sparsity assumption.
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lars ridge FNN tree RF Cobra

Mod. 7 m. 1.5698 2.9752 3.9285 1.8646 1.5001 0.9996
sd. 0.2357 0.4171 0.5356 0.3751 0.4591 0.1733

Mod. 8 m. 5.2356 5.1748 6.1395 6.1585 4.8667 2.7076
sd. 0.6885 0.7139 0.9192 0.9298 0.6634 0.3810

Mod. 9 m. 0.1584 0.1055 0.1363 0.0058 0.0327 0.0049
sd. 0.0199 0.0119 0.0176 0.0010 0.0052 0.0009

Table IV.1.2 – Errors of the implemented estimators and combination in high-
dimensional situations: means and standard deviations over 200 independent repli-
cations

Finally, we compare our procedure with the Super Learner algorithm (Polley and
van der Laan, 2012) and the exponentially weighted aggregation method (EWA).

The Super Learner algorithm was first described in van der Laan et al. (2007)
and extended in Polley and van der Laan (2010). In short, this ensemble method,
also called stacking, computes a weighted combination of the basic estimators, with
optimization based on V -fold cross-validation.

Table IV.1.3 summarizes the performances. Both methods, Super Learner and our
strategy, use SL.randomForest, SL.ridge and SL.glmnet as individual estimation
procedures, for the fairness of the comparison. On the whole, they show similar
results. However, our procedure turns out to be much more efficient, for instance, on
correlated design in Mod. 2 and Mod. 4. Observe, in Table IV.1.4, that even without
parallelization, Cobra is about five times faster.

Exponentially weighted aggregation method (EWA) for preliminary estimators
rk,1, . . . , rk,p was implemented as follows: for x ∈ Rd,

EWAβ(x) =

p∑
j=1

ŵjrk,j(x), ŵj =
exp(−βRj)∑p
i=1 exp(−βRi)

, j = 1, . . . , p,

where R1, . . . , Rp are the individual mean squared errors computed on a subsample
of D`, and β > 0 is the so-called temperature parameter, selected over a grid. We
conducted 200 independent replications, on Mod. 7 to Mod. 9. We observe that
Cobra leads to results that are roughly comparable to those of the EWA estimator,
as shown in Table IV.1.5 and Figure IV.1.6.
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Uncorr. SL Cobra

Mod. 1 m. 0.0541 0.0320
sd. 0.0053 0.0104

Mod. 2 m. 0.1765 0.3569
sd. 0.0167 0.8797

Mod. 3 m. 0.2081 0.2573
sd. 0.0282 0.0699

Mod. 4 m. 4.3114 3.7464
sd. 0.4138 0.8746

Mod. 5 m. 0.2119 0.2187
sd. 0.0317 0.0427

Mod. 6 m. 0.1705 0.3103
sd. 0.0260 0.0490

Corr. SL Cobra

Mod. 1 m. 0.8733 0.3262
sd. 0.2740 0.1242

Mod. 2 m. 2.3391 1.3984
sd. 0.4958 0.3804

Mod. 3 m. 3.1885 3.3201
sd. 1.5101 1.8056

Mod. 4 m. 25.1073 9.3964
sd. 7.3179 2.8953

Mod. 5 m. 5.6478 4.9990
sd. 7.7271 9.3103

Mod. 6 m. 3.0367 3.1401
sd. 1.6225 1.6097

Table IV.1.3 – Errors of Cobra and
SuperLearner : means and standard
deviations over 100 independent repli-
cations

Uncorr. SL Cobra

Mod. 1 m. 53.92 10.92
sd. 1.42 0.29

Mod. 2 m. 57.96 11.90
sd. 0.95 0.31

Mod. 3 m. 53.70 10.66
sd. 0.55 0.11

Mod. 4 m. 55.00 11.15
sd. 0.74 0.18

Mod. 5 m. 28.46 5.01
sd. 0.73 0.06

Mod. 6 m. 127.80 35.67
sd. 5.69 1.91

Corr. SL Cobra

Mod. 1 m. 61.92 11.96
sd. 1.85 0.27

Mod. 2 m. 70.90 14.16
sd. 2.47 0.57

Mod. 3 m. 59.91 11.92
sd. 2.06 0.41

Mod. 4 m. 63.58 13.11
sd. 1.21 0.34

Mod. 5 m. 31.45 5.02
sd. 0.86 0.07

Mod. 6 m. 145.18 41.28
sd. 8.97 2.84

Table IV.1.4 – Average CPU-times in
seconds (no parallelization): means
and standard deviations over 10 inde-
pendent replications

181



Chapter IV.1 – Consensual aggregation for regression

EWA Cobra

Mod. 7 m. 1.1712 1.1360
sd. 0.2090 0.4568

Mod. 8 m. 9.4789 12.4353
sd. 5.6275 9.1267

Mod. 9 m. 0.0244 0.0128
sd. 0.0042 0.0237

Table IV.1.5 – Errors of EWA and Cobra: means and standard deviations over 200
independent replications
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Chapter IV.2

Adding distance information

This chapter is the result of a collaboration with Mathilde Mougeot (Centre Borelli,
ENS Paris-Saclay), published in the Journal of Statistical Planning and Inference
(Fischer and Mougeot, 2019).

IV.2.1 Introduction

We focus on the question of combining estimators in classification and regression,
using the same consensus idea as in Chapter IV.1.

Recall that, in Mojirsheibani (1999) (for classification), as well as in Chapter IV.1
(for regression), the condition for an observation to be reliable is in principle required
to be satisfied for all estimators. In a further article, Mojirsheibani (2002a) notes
that this rule may seem too restrictive and proposes to allow a few disagreements
(typically, a single one). The resulting classifier is still consistent provided that
the number of initial classifiers keeps tending to infinity after removing those with
disagreement. Similarly, in Chapter IV.1, we have seen that this unanimity constraint
may be relaxed in practice by demanding that the distance condition for keeping an
observation is true at least for a certain proportion α of the estimators (for example,
α = 80%).

Here, our purpose is to investigate a new approach, based on distances between
observations, which also aims to reduce the effect of a possibly bad initial estimator.
Roughly, choosing a kernel point of view, we will propose a combined estimator with
weights constructed by mixing distances between entries with distances between pre-
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dictions coming from the individual estimators. Our motivation for introducing such
a strategy is the intuition that taking advantage of the efficiency of the consensus
idea of Mojirsheibani (1999) and Chapter IV.1 without for all that forgetting the
information related to the proximity between entries shall help improving the pre-
diction, especially in the presence of an initial estimator that does not perform very
well.

Our modified rule is consistent under general assumptions (Section IV.2.3). In
particular, the combined estimator may perfectly be consistent even if the list of ini-
tial estimators does not contain any consistent estimator. We also conduct numerical
experiments, both on simulated and real data, which demonstrate the benefits of our
strategy, with respect to the original combining method and the individual estimators
(Section IV.2.4).

IV.2.2 Notation and definition of the estimator

Let (X, Y ) denote a random pair taking its values in Rd × Y . The variable X
has distribution µ. We are interested in two different situations: Y = {0, 1}, which
corresponds to the binary classification problem, and Y = [0, 1], that is bounded
regression. Let η stand for the regression function η(x) = E[Y |X = x]. Note that
η(x) = P (Y = 1|X = x) in the classification context.

Let ψ∗ denote the Bayes classifier, given by

ψ∗(x) =

{
1 if η(x) > 1/2

0 otherwise.

It is well-known that ψ∗ minimizes over all possible classifiers ψ the missclassification
error L(ψ) = P (ψ(X) 6= Y ).

We assume that we are given a sample Dn = {(X1, Y1) . . . , (Xn, Yn)} of the ran-
dom pair (X, Y ).

Our goal in regression is to estimate the function η using Dn. In classification,
we aim at building a classifier based on Dn whose error mimics the Bayes classifier
error.

Let K : Rd+p 7→ R+ be a kernel, that is a function which is nonnegative and
decreasing along rays *ting from the origin. The next assumption will be made on
the kernel K (see Devroye et al., 1996).
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Assumption 1. We suppose that the kernel K is regular, that is, there exist c > 0
and ρ > 0 such that

— For all z, K(z) ≥ c1Bd+p(0,ρ)(z).

—
∫

supt∈Bd+p(z,ρ) K(t)dz <∞.

Here Bk(x, r) denotes the closed ball of Rd, with center x and radius r.

We propose to combine the predictions of p initial estimators f1, . . . , fp. For
x ∈ Rd, let f(x) = (f1(x), . . . , fp(x)). We suppose that the estimators f1, . . . , fp take
their values in [0, 1] (regression) or {0, 1} (classification). For ease of exposition,
we assume that f1, . . . , fp do not depend on the sample Dn. Using a simple sample-
splitting device as in Chapter IV.1, the results extend to the case where the individual
estimators depend on the sample.

The definition of our combined estimator is first introduced in the regression
framework.

Let the function g : Rd×Rp → R+ be such that g(v1, v2) = K(v), where v ∈ Rd+p

is the concatenation of v1 ∈ Rd and v2 ∈ Rp.

Definition IV.2.2.1. Suppose that we are given a set of initial regression estimators
f1, . . . , fp. The regression combined estimator Tn is defined by

Tn(x) =

∑n
i=1 Yig

(
Xi−x
α
, f(Xi)−f(x)

β

)
∑n

i=1 g
(
Xi−x
α
, f(Xi)−f(x)

β

) ,

We now state the definition of the estimator in the context of classification.

Definition IV.2.2.2. Suppose that we are given a set of initial classifiers f1, . . . , fp.
The combined classifier Cn is defined by

Cn(x) =

{
0 if

∑n
i=1 Yig

(
Xi−x
α
, c(Xi)−c(x)

β

)
≤
∑n

i=1(1− Yi)g
(
Xi−x
α
, c(Xi)−c(x)

β

)
1 otherwise,

Remark 24. In the particular case where K is such that K(x) = H(|x|2) for x ∈
Rd+p, then the quantity g

(
X−x
α
, f(X)−f(x)

β

)
takes the somewhat more explicit form

H
(∣∣X−x

α

∣∣2 +
∣∣ f(X)−f(x)

β

∣∣2). This is the case for a Gaussian kernel for instance.
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Remark 25. It is worth pointing out that further definitions of combining estimate
linking a consensus aggregation part and distances between entries part could be
investigated. A point of view that seem very appealing is to employ general multi-
variate kernels and allow the bandwidth to be different depending on the direction,
that is the machine and also the direction in Rd. The advantage of this method
would be a greater flexibility through his data-driven adaptive nature, whereas the
increase of the number of parameters necessary for the estimation of a bandwidth
matrix would represent a challenge both for estimation and computational aspects.

IV.2.3 Main results

The convergence results in regression and classification, proved in Fischer and
Mougeot (2019), are stated below.

Theorem IV.2.3.1 (Regression case). If α→ 0 and nαdβp →∞ as n→∞, then,
for every ε > 0, there exists n0 such that for n ≥ n0, the following exponential bound
holds:

P

(∫
|η(x)− Tn(x)|µ(dx) > ε

)
≤ 2 exp

(
− nε2

32R2

)
,

where R ≥ 0 depends on K and d+ p.

Let L∗ denote the Bayes error and Ln the missclassification error of Cn.

Theorem IV.2.3.2 (Classification case). If α → 0 and nαdβp → ∞ as n → ∞,
then, for every ε > 0, there exists n0 such that for n ≥ n0, the following exponential
bound holds:

P (Ln − L∗ > ε) ≤ 2 exp

(
− nε2

32R2

)
,

where R ≥ 0 depends on K and d+ p.

These results may be seen as “combining” versions of the strong consistency results
for kernel regression and the kernel classification rule, described in Devroye and
Krzyżak (1989) (see also the monographs of Devroye et al. (1996) and Györfi et al.
(2002)).

Let us provide some insight into the proof. We introduce the notation T ∗n , for the
quantity defined by ∑n

i=1 Yig
(
Xi−x
α
, f(Xi)−f(x)

β

)
nE
[
g
(
X−x
α
, f(X)−f(x)

β

)] .
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For Theorem IV.2.3.1 (regression), let us write∫
|η(x)− Tn(x)|µ(dx) ≤

∫
|η(x)− T ∗n(x)|µ(dx) +

∫
|T ∗n(x)− Tn(x)|µ(dx).

Thus, the result will be obtained by replacing, on the one hand, Tn by T ∗n , and
by controlling, on the other hand, the error due to the difference between the two
terms. This is done respectively in Lemmas IV.2.3.1 and IV.2.3.3 below.

Lemma IV.2.3.1. If α → 0 and nαdβp → ∞ as n → ∞, then there exists R ≥ 0,
depending on K and d+ p, such that for every ε > 0, if n is large enough,

P

(∫
|η(x)− T ∗n(x)|µ(dx) > ε/2

)
≤ exp

(
− nε2

32R2

)
.

To control the quantity
∫
|η(x)− T ∗n(x)|µ(dx) in order to prove Lemma IV.2.3.1,

we may use the following decomposition, for x ∈ Rd:

|η(x)− T ∗n(x)| = E[|η(x)− T ∗n(x)|] + (|η(x)− T ∗n(x)| − E[|η(x)− T ∗n(x)|]).

The term
∫
E[|η(x)− T ∗n(x)|]µ(dx) is studied first and then McDiarmid’s inequality

is employed to handle the deviation
∫
|η(x)−T ∗n(x)|µ(dx)−

∫
E[|η(x)−T ∗n(x)|]µ(dx).

The proof uses the following important result, which extends the covering lemma
of Devroye and Krzyżak (1989) to our context.

Lemma IV.2.3.2 (Covering lemma). 1. There exists R ≥ 0, depending on K
and d+ p, such that

sup
u

∫ g
(
u−x
α
, f(u)−f(x)

β

)
E
[
g
(
X−x
α
, f(X)−f(x)

β

)]µ(dx) ≤ R < +∞.

2. ∀δ, ε, there exists α0 such that

sup
u,α≤α0

∫ g
(
u−x
α
, f(u)−f(x)

β

)
1{|x−u|≥δ}

E
[
g
(
X−x
α
, f(X)−f(x)

β

)] µ(dx) ≤ ε.

The next lemma is devoted to the control of the difference between Tn and T ∗n .
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Lemma IV.2.3.3. If α → 0 and nαdβp → ∞ as n → ∞, then there exists R ≥ 0,
depending on K and d+ p, such that for every ε > 0, if n is large enough,

P

(∫
|T ∗n(x)− Tn(x)|µ(dx) > ε/2

)
≤ exp

(
− nε

2

8R2

)
.

For Theorem IV.2.3.2 (classification), we use the following version of Theorem
2.3 in Devroye et al. (1996) adapted to our context.

Lemma IV.2.3.4. The following upper bound holds:

Ln − L∗ ≤
∫ ∣∣∣∣∣∣1− η(x)−

∑n
i=1 g

(
Xi−x
α
, f(Xi)−f(x)

β

)
nE
[
g
(
X−x
α
, f(X)−f(x)

β

)] + T ∗n(x)

∣∣∣∣∣∣µ(dx)

+

∫
|η(x)− T ∗n(x)|µ(dx).

Consequently, Theorem IV.2.3.2 follows from Lemma IV.2.3.1, applied to Y and
to 1− Y .

IV.2.4 Numerical Experiments

The section presents numerical experiments to illustrate the benefits of using
the new combining approach. The classification case is illustrated with numerical
simulations and the regression case with real operational data recorded from two
applications: modeling of the electrical power consumption of an air compressor and
modeling of the electricity production of different wind turbines in a wind farm.

For comparison purposes, two aggregation strategies are run, the original method
developed in Mojirsheibani (1999) and Chapter IV.1, which only combines output
predictions (Cobra hereafter, from the name of the R package Guedj, 2013), and
the new strategy, which combines input distances and output predictions (called
MixCobra).

IV.2.4.1 Classification

We consider 6 different binary classification models, based on uniform and Gaus-
sian distributions, called “gauss”, “comete”, “nuclear”, “spot”, “circles” and “spirals” in
the sequel. Each time, n = 200 observations (100 per class) were simulated.
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The data shapes are depicted in Figure IV.2.1, with n = 1000 observations in
order to better visualize the distributions.
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Figure IV.2.1 – Simulated data for classification. From left to right, from up to
bottom: “gauss”, “comete”, “nuclear”, “spot”, “circles” and “spirals” examples.

Parametric and nonparametric methods are considered in the combination. For
parametric methods, linear discriminant analysis (lda) and logistic regression (logit)
are used. For nonparametric methods, k-nearest neighbors (knn) (with k = 5), sup-
port vector machines (svm), classification and regression trees (cart) and random
forest (rf) are employed. In the Cobra aggregation procedure, the “unanimity” defi-
nition of the weights is used. For each simulated example, the performances of each
estimator are computed using N = 100 repetitions. From the n = 200 observations
generated, 75% randomly chosen observations are used as training set. The parame-
ters α and β are selected via 5-fold cross-validation, using values on a grid. The 25%
remaining observations are used to compute the test performances.

One first interesting question is whether a specific classifier always shows the best
performance over all the repetitions. In an offline study, if a practitioner observes
that a given classifier always gives the best performance, then aggregation is of course
not necessary.
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Table IV.2.1 shows, for each classifier, the number of runs where this classifier
provides the best model. For each column, corresponding to a simulated example,
the sum of the rows corresponding to the different methods equals the total number
of repetitions (N = 100). We observe that, except for the “circles” example for which
the knn classifier outperforms all the others, almost every classifier wins at least once
over all the runs. Hence, for all simulated examples except the “circles” example, an
aggregation procedure may be interesting.

gauss comete nuclear spot circles spirals
lda 75 9 35 4 0 2
logit 13 0 13 2 0 0
knn 5 46 27 44 100 76
svm 5 20 13 16 0 9
cart 0 18 8 19 0 2
bag 1 5 4 12 0 11
rf 1 2 0 3 0 0

Table IV.2.1 – Number of runs where every classifier provides the best model for the
simulated classification examples (smallest test error).

Table IV.2.2 presents the average performances for all the classification examples.
As expected for the “gauss” example corresponding to the rather well-separated mix-
ture of two Gaussian distributions, both parametric and nonparametric classifiers
perform well; otherwise, the nonparametric methods perform in general better.

The aggregation procedures succeed in yielding very satisfactory performances.
When local behavior provides crucial information about the class label, as in the
“circles” and “spirals” examples, MixCobra outperforms Cobra. This may be explained
by the fact that the input part of MixCobra weights behaves like a nonparametric
kernel-like method, performing well in such cases, as shown by the low error of the
knn classifier.

IV.2.4.2 Regression

For the regression framework, we use the R package Cobra (Guedj, 2013). Recall
that two parameters may drive the behavior of this aggregation strategy: ε sets a
threshold for the distance between the prediction fm(x) given by an estimator fm
for a new observation x and the prediction fm(Xi) given for an observation Xi in
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gauss comete nuclear spot circles spirals
lda 7.0 51.0 12.9 17.6 52.5 34.3

(8.7) (15.6) (10.6) (7.2) (16.5) (15.8)
logit 7.5 51.1 9.6 17.8 52.4 34.4

(8.2) (15.6) (9.0) (7.3) (16.3) (16.0)
knn 7.0 25.0 6.0 9.2 0.0 4.1

(8.1) (14.5) (7.1) (6.6) (0.0) (6.4)
svm 8.7 25.9 5.9 10.3 1.8 12.2

(9.0) (14.6) (8.0) (6.7) (4.1) (10.8)
cart 7.2 23.0 4.0 7.2 0.0 17.8

(8.3) (14.8) (6.0) (5.8) (0.0) (13.7)
bag 8.7 28.3 5.1 7.5 0.5 3.0

(8.8) (15.8) (7.5) (5.5) (2.2) (5.4)
rf 8.9 27.5 4.7 7.4 0.3 2.2

(9.1) (15.3) (6.8) (5.5) (1.7) (5.0)
Cobra 8.6 25.8 8.2 8.5 1.1 6.2

(8.6) (15.2) (8.9) (5.9) (3.5) (8.3)
Mixcobra 7.7 28.2 5.4 7.2 0.3 2.8

(9.2) (15.4) (6.7) (5.8) (1.7) (6.2)

Table IV.2.2 – Average classification error (and standard deviation into brackets) for
the different classifiers and both aggregation methods Cobra and MixCobra, com-
puted for the simulated classification examples (1 unit = 10−2).

the training set, whereas γ is the proportion of estimators for which the consensus
condition should be satisfied. In the sequel, we consider both the case γ = 1 (referred
to as CobraF, for “fixed”, in the sequel) and the case where γ is selected from the
data (CobraA for “adaptive”). Mixcobra also involves two parameters, playing more
symmetric roles in the weights: α and β control respectively the importance given
to the inputs and to the combination of predictions. All parameters are chosen via
cross-validation, as in the classification context.

The next paragraphs illustrate the benefit of combining several regression esti-
mators in two industrial applications.

Modeling Air Compressors The goal is to model the power consumption of an
air compressor, based on the flow, input pressure, output pressure, cooling water
temperature and air temperature (Cadet et al., 2005). We consider p = 8 regression
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estimators: linear regression model (lm), regression tree (cart), bagging regression
trees (bag), random forest (rf), Support Vector Machines (svm) and k-nearest neigh-
bors (knn) with different values of k (k = 2, 5, 10). The data set contains n = 1000
hourly observations of a working air compressor. Each variable is first transformed
to have zero mean and unit variance.

The performances are computed using N = 100 replications, each consisting of
randomly selecting 2/3 of the observations for the training set, with the remaining
1/3 used to estimate the performances of the different estimators. The performances
on the test sets are presented in Table IV.2.3: for each case, the mean squared error is
computed. We observed that the bagging and the svm estimators provide in average
the smallest error. Moreover, we observe that the best estimator changes from run
to run. For N = 100 replications, the best estimator is alternatively the bagging
estimator (49 runs), the svm estimator (49 runs) or the lm estimator (2 runs).
Figure IV.2.2 shows the boxplots computed with the different estimators and the 3
aggregation algorithms: Cobra with unanimity condition, Cobra with an adaptive
number of estimators and MixCobra. The Cobra algorithm with all estimators yields
in average the worst performance among the three aggregation techniques. Choosing
adaptively the number of estimators allows to discard a possibly bad estimator, which
improves the performance. We observe that MixCobra provides, in average, the best
aggregation performance, associated with a low standard deviation.

mean sd
lm 11.64 0.00
cart 26.43 0.02
bag 10.75 0.01
rf 20.05 0.02
svm 10.77 0.01
knn 2 18.35 0.01
knn 5 18.79 0.01
knn 10 20.49 0.01
CobraF 21.63 0.06
CobraA 14.81 0.05
MixCobra 10.85 0.01

Table IV.2.3 – Average test performance and standard deviation for the different
estimators and the aggregation methods, for the air compressor equipment (1 unit
= 10−2).
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Figure IV.2.2 – Boxplots of the performances for the different estimators and the
aggregation methods, for the air compressor equipment

Modeling Wind Turbines The second application aim to model 6 wind turbines
on a wind plant in France. Each turbine is described by 5 variables, representing
half-hourly information. The production of electricity is the target variable. The
explanatory variables are the wind power, the wind direction (sine, cosine), and the
temperature. For each wind turbine, each variable is first transformed to have zero
mean and unit variance.

Table IV.2.4 presents the performances obtained in modeling the 6 wind turbines
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(Wk, 1 ≤ k ≤ 6), for n = 1000 operational data points, using the same set of
p = 8 estimators as in the previous paragraph and the 3 aggregations methods.
We observe that MixCobra shows very satisfactory results. Besides, for all wind
turbines, the bagging estimator provides in average the best performances. However,
Table IV.2.5 presents the number of runs over the N = 100 repetitions where every
given estimator provides the smallest error. The model which provides the smallest
error is never the same, and is alternatively either bagging or svm, with proportions
differing for each wind turbine.

W1 W2 W3 W4 W5 W6
lm 14.39 18.22 16.65 15.72 15.16 16.97

(0.9) (1.2) (1.2) (1.7) (1.2) (1.8)
cart 18.39 19.53 19.46 19.10 19.02 19.22

(1.7) (1.8) (1.9) (2.0) (1.7) (1.8)
bag 9.13 9.95 9.61 9.35 9.75 10.17

(0.7) (1.2) (1.0) (0.7) (0.8) (1.1)
rf 11.43 16.32 15.41 13.89 15.12 14.87

(0.9) (2.7) (2.2) (1.8) (2.0) (1.7)
svm 9.28 13.55 12.72 11.12 12.01 12.00

(1.0) (3.5) (3.5) (2.3) (2.1) (2.6)
knn 2 13.00 15.59 14.65 14.62 15.75 15.70

(0.6) (1.5) (1.1) (1.0) (1.2) (1.1)
knn 5 12.12 15.26 13.90 13.60 14.95 14.75

(0.7) (1.8) (1.1) (1.0) (1.3) (1.3)
knn 10 12.69 16.78 15.00 14.41 15.93 15.66

(0.8) (1.8) (1.3) (1.2) (1.4) (1.5)
CobraF 18.83 29.55 31.76 24.01 24.73 23.92

(4.5) (10.6) (10.9) (8.5) (9.2) (8.4)
CobraA 14.15 17.76 17.38 16.43 17.71 15.29

(5.5) (8.1) (9.8) (7.4) (9.0) (7.2)
MixCobra 9.02 10.47 10.04 9.45 10.37 10.57

(0.6) (1.4) (1.0) (0.8) (0.9) (1.1)

Table IV.2.4 – Average test performance (and standard deviation into brackets) for
the different estimators and the aggregation methods, for the wind turbines (1 unit
= 10−2).

194



IV.2.4. Numerical Experiments

W1 W2 W3 W4 W5 W6
lm 0 0 0 0 0 0
cart 0 0 0 0 0 0
bag 52 89 88 76 93 77
rf 0 0 0 0 0 0
svm 48 11 12 24 7 23
knn 2 0 0 0 0 0 0
knn 5 0 0 0 0 0 0
knn 10 0 0 0 0 0 0

Table IV.2.5 – Number of runs where each estimator provides the best model for the
wind turbines (smallest test error).

Increasing the dimension or the number of estimators Since our combining
method relies on a kernel rule, it is expected to be affected in some sense by the curse
of dimensionality. However, an interesting feature of our approach is that the term
based on the distance between the entries, (X − x)/α, and the term involving the
preliminary estimations, (f(X) − f(x))/β, are not affected the same way, since the
“dimension” in not the same in both cases. Indeed, in the first case, the dimension is
the actual dimension d of the space Rd containing the entries, whereas in the second
case, the role of the dimension is played by the number p of individual estimators.
In fact, the final combined estimator shows an interesting flexibility through the
calibration of α and β. When the dimension d increases, the method will give more
weight to the combining part, which is not affected in itself by increasing d and may
only be affected through the particular behavior of the initial estimators considered.
Conversely, for reasonable values of d, the effect of an increase of the number p of
estimators may be balanced by the distance term between the entries.

To study the effect of dimensionality of the inputs, the original compressor obser-
vations are embedded in successive high-dimensional spaces of size p = 11, 16, 21, 26,
by artificially adding to the 6 initial variables 5, 10, 15, 20 independent random vari-
ables uniformly distributed.

Table IV.2.6 shows the performances computed using N = 100 replications as
above, with again 2/3 of the observations randomly chosen to calibrate the estimators
and 1/3 of the remaining observations used to estimate the performances of the
different estimators. The impact of increasing the dimension differs depending on
the estimator. We observe, as expected, that the performances of the knn estimators
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strongly deteriorate as the dimension increases. On the contrary, the performances
of the lm and cart estimators are stable. Table IV.2.6 shows that MixCobra keep
performing quite well, even if the performances of some estimators decrease, and
adapts to the increase of dimensionality.

E1 d = 6 E2, d = 11 E3, d = 16 E4, d = 21 E5, d = 26
lm 11.6 (0.4) 11.7 (0.3) 11.8 (0.4) 11.9 (0.4) 11.8 (0.3)
cart 26.4 (1.9) 26.0 (2.0) 26.6 (1.9) 26.8 (2.2) 26.2 (1.8)
bag 10.7 (0.6) 11.4 (0.7) 12.2 (0.7) 12.3 (0.6) 12.6 (0.6)
rf 20.1 (1.6) 17.0 (1.3) 17.0 (1.5) 18.8 (1.4) 18.2 (1.7)
svm 10.8 (1.0) 14.8 (1.1) 16.4 (0.7) 16.6 (0.7) 16.2 (0.7)
knn 2 18.4 (1.2) 41.3 (2.1) 52.9 (2.3) 60.3 (2.8) 65.1 (3.4)
knn 5 18.8 (1.0) 36.5 (1.9) 45.5 (1.8) 51.9 (2.5) 56.6 (3.1)
knn 10 20.5 (1.1) 36.3 (2.1) 44.5 (1.9) 50.3 (2.1) 54.4 (3.6)
MixCobra 10.8 (0.7) 13.2 (0.9) 13.9 (0.8) 14.5 (0.9) 14.1 (0.4)

Table IV.2.6 – Average test performance (and standard deviation into brackets) for
the different estimators and Mixcobra, for the initial air compressor data embedded
into high-dimensional spaces, adding respectively 5, 10, 15, 20, 25 random variables.
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Chapter IV.3

Clustering for predictive models

This chapter corresponds to a collaboration with Mathilde Mougeot and Sothea
Has, for whom it is a part of his PhD thesis work, published in the Journal Statistical
Computation and Simulation (Fischer et al., 2021).

IV.3.1 Introduction

IV.3.1.1 Context

The performance of a supervised learning model depends not only on the choice
of the model itself but also on the quality of the data set used to learn a model. The
frequent expression “garbage in, garbage out (GIGO)” highlights that nonsense or
incomplete input data produces nonsense output as it is difficult to build an accurate
model when some information is missing.

Yet, in practical problems, several fields useful for processing or understanding
data may be missing for some reasons. For instance, in hiring processes, the use
of information about individuals, such as gender, ethnicity, place of residence, is
not allowed for ethic reasons, to avoid discrimination. Similarly, when high school
students apply for further studies in higher education, not every information can be
considered for selection. Besides, the General Data Protection Regulation (GDPR)
text regulates data processing in the European Union since May 2018. It strengthens
the French Data Protection Act, establishing rules on the collection and use of data on
French territory (Tikkinen-Piri et al., 2018). As a result, contextual data that could
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characterize individuals a little too precisely is often missing in available databases.
Moreover, in an industrial context, not all recorded fields are made available for
data processing for confidentiality reasons. For example, in the automotive industry,
GPS data could be a valuable tool to provide services such as predictive vehicle
maintenance. However, it is difficult to use such data as they are extremely sensitive.
To sum up, in various areas, databases containing individual information have to
respect anonymization rules before being analyzed.

Mining such databases can then be a particularly complex task as some critical
fields are missing. In this context, the modalities of a missing qualitative variable
correspond to several underlying groups of observations, which are a priori unknown
but should be meaningful for designing a predictive model. In this case, an appro-
priate approach consists of using a two-step procedure: the clusters are computed
in the first step and, in the second step, a predictive model is fit for each cluster.
This two-step procedure has already been used, for instance, to approximate time
evolution curves in the context of nuclear industry in Auder and Fischer (2012), to
forecast electricity consumption using high-dimensional regression mixture models
by Devijver et al. (2020), or to cluster multiblocks before PLS regression by Keita
et al. (2015). The final performance of the model may strongly depend on the first
step, since different configurations of clusters may lead to quite different global mod-
els. Finding an appropriate configuration of clusters is not an easy task which often
requires a deep data investigation and/or human expertise.

IV.3.1.2 Presentation of the model

To build accurate predictive models in situations where the contextual data are
missing, and to avoid an unfortunate choice of clusters, we propose to aggregate
several instances of the two-step procedures where each instance corresponds to a
particular clustering. Our strategy is characterized by three steps, each based on
a fairly simple procedure. The first step aims at clustering the input data into
several groups and is based on the well-known k-means algorithm. As the underlying
group structures are unknown and may be complex, a given Bregman divergence is
used as a distortion measure in the k-means algorithm. As already mentioned in
Chapters III.1 and III.2, these proximity measures are an interesting clustering tool
thanks to the correspondence with distributions of the exponential family. In the
second step, for each divergence, a very simple predictive model is fit per cluster. The
final step provides an adaptive global predictive model by aggregating the models
corresponding to the different Bregman divergences, thanks to the consensus idea
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presented in Chapters IV.1 and IV.2. We name this procedure the KFC procedure
for k-means/Fit/Consensus.

In the sequel, we observe (X1, Y1), . . . , (Xn, Yn), supposed to be realizations from
a random pair (X, Y ) with values in Rd × {0, 1} (binary classification) or in Rd ×R
(regression). For the clustering step, we consider 4 Bregman divergences: Squared
Euclidean distance (Euclid), I-divergence (I-div), Logistic (Logit) and Itakura-Saito
(IS) divergences.

IV.3.2 Aggregation

IV.3.2.1 Description of the different aggregation methods

We enumerate in this section the different aggregation methods that will be used
in our procedure, introduced by Mojirsheibani (1999, 2000) or discussed in Chap-
ters IV.1 and IV.2. For classification and for regression, 3 procedures are considered
each time : weights based on indicator functions, smoother kernel-based weights,
weights involving inputs and outputs. Let dH stand for the Hamming distance:
dH(u, v) measures the number of disagreements in the coordinates of the vectors u
and v. For x ∈ Rd, let f(x) = (f1(x), . . . , fp(x)) denote the vector of predictions for
x given by p preliminary estimators. Let K denote a kernel, with Kh(x) = K(x/h).
Moreover, for u ∈ Rd and v ∈ Rp, K(u, v) stands for the kernel K applied to the
concatenation of u and v.

For regression, we define, for ` ∈ {1, 2, 3}:

CombR` (x) =
1

n

n∑
i=1

W
(`)
n,i (x)Yi,

where

W
(1)
n,i (x) =

1{∑p
s=1 1{|fs(Xi)−fs(x)|<ε}≥pα

}∑n
j=1 1

{∑p
s=1 1{|fs(Xj)−fs(x)|<ε}≥pα

} ,
W

(2)
n,i (x) =

Kh(f(Xi)− f(x))∑n
j=1Kh(f(Xj)− f(x))

,

W
(3)
n,i (x) =

K
(
Xi−x
α
, f(Xi)−f(x)

β

)
∑n

j=1K
(
Xj−x
α
,
f(Xj)−f(x)

β

) .
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The definition chosen forW (1)
n,i is the one for which unanimity of the initial estimators

is not required.

For classification, we set:

CombC1 (x) =

1 if
n∑
i=1

1{f(Xi)=f(x)}1{Yi=1} >

n∑
i=1

1{f(Xi)=f(x)}1{Yi=0}

0 otherwise,

CombC2 (x) =

1 if
n∑
i=1

(2Yi − 1)Kh (dH(f(Xi), f(x))) > 0

0 otherwise,

CombC3 (x) =

1 if
n∑
i=1

(2Yi − 1)K

(
Xi −X

α
,
f(Xi)− f(x)

β

)
> 0

0 otherwise.

IV.3.2.2 Considered kernels

Apart from the naive one, we will use the following kernels:
1. Gaussian kernel: for a given σ > 0 and for all x ∈ Rd,

K(x) = e−
|x|2

2σ2 .

2. Triangular kernel: for all x ∈ Rd,

K(x) = (1− |x|1)1{|x|1≤1}.

where |.|1 is the `1-norm and is defined by: |x|1 =
∑d

i=1 |Xi|
3. Epanechnikov kernel: for all x ∈ Rd,

K(x) = (1− |x|2)1{|x|≤1}.

where |.| is the `-norm and is defined by: |x| =
(∑d

i=1X
2
i

)1/2

4. Bi-weight kernel: for all x ∈ Rd,

K(x) = (1− |x|2)21{|x|≤1}.
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IV.3.3. The KFC procedure

5. Tri-weight kernel: for all x ∈ Rd,

K(x) = (1− |x|2)31{|x|≤1}.

The kernels are plotted in dimension 1 in Figure IV.3.1.
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Figure IV.3.1 – Examples of kernels

IV.3.3 The KFC procedure

The three steps of the KFC strategy may be described as follows.

1. k-means. The input observations are first clustered using the k-means cluster-
ing algorithm with a Bregman divergence.

2. Fit. For every Bregman divergence, a dedicated predictive model is fit per
cluster. Since the clustering step should help building an accurate model, we
deliberately choose simple models to fit on a group, namely linear regression
for regression models, logistic regression for classification.

3. Consensus. As neither the distribution nor the clustering structure of the input
data is known, it is not clear in advance which divergence will be the most
efficient. Thus, we propose to combine all the estimators corresponding to the
different divergences, in order to take the best advantage of the clustering step.
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For the combination task, we try the different procedures described above.
Practically, the different parameters in the combining methods are optimized
on a grid, using cross-validation.

Once the candidate model, which is the collection of all the local models con-
structed on the corresponding clusters, is fitted, in order to make a prediction for a
new observation x, we first affect x to the closest cluster for each divergence, which
yields one prediction per divergence, and then, perform aggregation.

IV.3.4 Simulated data

In this section, we analyze the behavior of the strategy on several simulated data
sets in classification or regression problems.

IV.3.4.1 Description

In both classification and regression cases, we simulate 5 different kinds of input
data sets. We consider 2-dimensional data sets where the two predictors (X1, X2)
are simulated according to Exponential (Expo hereafter), Poisson (Poiss), Geometric
(Geom) and Gaussian (Gauss) distribution respectively. The remaining data set is
3-dimensional, with predictors (X1, X2, X3), distributed according to a Gaussian dis-
tribution. We use 1500 data points for training and 450 for testing. Each time, there
are k = 3 balanced clusters of 500 observations for training and 150 for testing. The
different distribution parameters used in the simulations are listed in Table IV.3.1.

Distribution Parameter Cluster 1 Cluster 2 Cluster 3
Expo λ 0.05; 0.5 0.5; 0.05 0.1; 0.1
Poiss λ 3; 11 10; 2 13; 12
Geom p 0.07; 0.35 0.55; 0.07 0.15; 0.15
2D Gauss µ 4; 12 22; 9 10; 5

σ 1; 1 2; 1 2; 2
3D Gauss µ 6; 14; 6 5; 10; 15 8; 6; 14

σ 1; 2; 1 2; 1; 2 1; 1; 2

Table IV.3.1 – Parameters of the simulated data
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The regression model in cluster k takes the form

Y (k) = βk0 +
d−1∑
j=1

βkjX
(k)
j + ε.

In classification, for cluster k, we set Y (k) = 0 if

1− eβk0+
∑d−1
j=1 β

k
jX

(k)
j +ε

1 + eβ
k
0+

∑d−1
j=1 β

k
jX

(k)
j +ε

≤ 0.

In both situations, ε ∼ N (0, 10). If necessary, we discard negative values or apply
a normalization. In the sequel, the performance of a model is assessed over 20
replications.

IV.3.4.2 Numerical results

This section analyzes the performance of the KFC procedure for classification or
regression on the simulated examples described in Section IV.3.4. Each example is
simulated 20 times. The measures of performance are the missclassification error for
classification and the RMSE (Root Mean Square Error) for regression. We present
the average error over the 20 runs, with the standard deviation into brackets. We
compare the results (column block “kernels” in the tables) with those without ag-
gregation, obtained without any preliminary clustering (column “Single”), or when
clustering with a given Bregman divergence (column block “Bregman divergence”).
Epan, Gauss, Triang, Bi-wgt and Tri-wgt stand for Epanechnikov, Gaussian, Trian-
gular, Bi-weight and Tri-weight kernels respectively. For each example, the first row
corresponds to Comb1, Comb2, and the second to Comb3.

Table IV.3.2 below contains the results in the classification context. Of course,
all models built after a clustering step outperform the model without clustering.
The combined classification methods perform generally better than or similarly to
the best individual estimator. The results of CombC3 , in the second row, seem to be
better compared to the ones of CombC1 and CombC2 , in the first row. We also note
that the Gaussian kernel seems to be a good choice.

In the regression case, the RMSE results are given in Table IV.3.3. We observe
that, for geometric distribution, the estimator based on Generalized Kullback-Leibler
Divergence outperforms the estimator built after clustering with Logistic divergence.
Again, the performance of the estimators is globally improved by combining. It is
clear that Gaussian kernel does the best job.

203



Chapter IV.3 – Clustering for predictive models

D
istr.

S
in

gle
B

regm
an

d
ivergen

ce
K

ern
el

E
uclid

G
K
L

Logit
IS

N
aive

E
pan

G
auss

T
riang

B
i-w

gt
T
ri-w

gt

E
xpo

1
8.8

6
8
.5
8

7.42
4.09

3.92
3
.49

3
.51

3.46
3
.51

3.56
3.56

(0.89)
(0
.94)

(0
.88)

(0.94)
(0.91)

(0
.91)

(1.70)
(1.7

7)
(1.55)

(1.08)
(1.15)

2
.91

2
.63

2.49
2.70

2.56
2.46

(0.81)
(0
.70)

(0
.74)

(0.75)
(0.63)

(0
.66)

P
oiss

4
6.9

3
9
.1
9

8.45
13.33

10.15
8
.59

8.51
8.51

8.51
8
.52

8.52
(1.37)

(1
.46)

(1
.47)

(1.46)
(1.47)

(1
.49)

(3.35)
(1.2

7)
(1.24)

(1.84)
(1.47)

8
.51

8
.46

8.44
8.42

8
.57

8.44
(1.28)

(1
.11)

(1
.17)

(1.15)
(1.28)

(1
.13)

G
eom

1
9.9

0
1
2.57

4.71
3.94

8.12
3
.61

3.60
3.60

3
.61

3.60
3.60

(1.15)
(1
.16)

(1
.16)

(1.15)
(1.16)

(1
.16)

(2.07)
(2.3

9)
(2.37)

(1.15)
(1.57)

3
.76

3
.52

2.94
3
.48

3.47
3.40

(0.92)
(1
.11)

(0
.93)

(1.09)
(1.11)

(1
.06)

2D
G
auss

4
9.0

0
12.37

12.40
14.14

13.05
12.87

12
.82

12.80
12.84

12.84
12.87

(1.60)
(1
.59)

(1
.56)

(1.57)
(1.57)

(1
.60)

(2.52)
(1.5

5)
(1.50)

(1.44)
(1.61)

12.02
12.11

12.06
12.11

12.09
12.10

(1.30)
(1
.24)

(1
.35)

(1.27)
(1.23)

(1
.22)

3D
G
auss

4
3.3

9
10.77

10.99
11.74

11.56
11.08

11
.01

11.00
11.00

11.04
11.03

(1.58)
(1
.52)

(1
.50)

(1.50)
(1.57)

(1
.55)

(2.52)
(1.4

0)
(1.44)

(1.45)
(1.51)

10.23
9
.93

9.76
10.04

9.83
9.84

(1.40)
(1
.47)

(1
.53)

(1.47)
(1.61)

(1
.61)

Table
IV

.3.2
–
M
isclassification

errors
com

puted
over

20
runs

(1
unit

=
10
−

2)

204



IV.3.4. Simulated data

D
is

tr
.

S
in

gl
e

B
re

gm
an

d
iv

er
ge

n
ce

K
er

n
el

E
uc
lid

G
K
L

Lo
gi
t

IS
N
ai
ve

E
pa

n
G
au

ss
T
ri
an

g
B
i-w

gt
T
ri
-w

gt

E
xp

o
10

6
.5
8

68
.7
4

57
.0
6

44
.5
4

44
.4

6
55
.1
1

51
.1
4

40
.2

1
5
2.
99

5
0.
2
4

50
.6
4

(1
5
.8
5)

(1
3.
31

)
(1
4.
4
0)

(1
3.
12

)
(1
3.
7
4)

(1
4
.4
1
)

(7
.1
3)

(6
.8
4
)

(7
.3
7)

(7
.3
7)

(1
0.
96

)
56
.3
4

52
.6
2

39
.1

2
5
1.
31

5
1.
2
0

51
.9
8

(1
7
.4
8)

(1
7.
82

)
(1
4.
9
8)

(1
9.
55

)
(1
9.
6
9)

(2
0
.1
2
)

P
oi
ss

2
6.
76

10
.1
6

8.
22

16
.7
2

12
.1
5

8.
88

9.
18

8.
43

8.
8
5

8.
84

8.
76

(1
.6
5)

(1
.9
8)

(2
.1
8)

(2
.0
6
)

(2
.0
3)

(2
.0
3)

(1
.1
1)

(1
.9
1
)

(2
.2
5)

(1
.6
1)

(1
.8
6)

9.
73

9.
61

9.
13

9.
6
4

9.
40

9.
43

(2
.2
5)

(1
.8
6)

(1
.9
2)

(1
.9
1
)

(1
.8
6)

(1
.9
3)

G
eo
m

7
0.
45

29
.9
9

18
.3

3
22
.9
4

31
.9
4

36
.3
9

32
.4
9

21
.5

1
3
1.
48

3
1.
4
4

30
.8
9

(1
3
.8
1)

(1
3.
49

)
(1
1.
7
9)

(1
4.
31

)
(1
3.
5
1)

(1
2
.2
1
)

(4
.5
2)

(5
.9
5
)

(7
.3
4)

(6
.2
1)

(5
.1
9)

31
.8
3

27
.9
0

17
.8

2
2
6.
82

2
8.
4
5

24
.5
8

(1
2
.8
8)

(1
4.
20

)
(1
2.
5
8)

(1
3.
28

)
(1
4.
0
2)

(1
3
.2
1
)

2D
G
au

ss
2
1.
98

5.
63

6.
46

19
.3
6

9.
38

7.
09

6.
57

5.
57

6.
2
0

6.
41

6.
33

(2
.5
5)

(1
.7
8)

(0
.4
9)

(1
.7
2
)

(1
.7
6)

(1
.7
5)

(1
.2
0)

(1
.2
6
)

(1
.8
1)

(1
.1
1)

(1
.8
6)

9.
75

7.
70

6.
42

7.
4
5

7.
47

7.
34

(1
.3
0)

(2
.2
4)

(1
.4
9)

(2
.4
2
)

(2
.2
8)

(2
.3
1)

3D
G
au

ss
5
3.
55

19
.8

9
20
.9
3

23
.7
1

22
.9
6

18
.1
6

18
.2
0

16
.9

4
1
8.
25

1
8.
0
5

18
.0
0

3.
42

)
(3
.4
5)

(4
.0
6
)

(3
.4
1)

(3
.5
0
)

(3
.4
9
)

(1
.7
4)

(3
.4
9
)

(2
.9
7)

(2
.7
0)

(2
.7
4)

19
.2
4

18
.5
2

17
.5

1
1
8.
64

1
8.
1
9

18
.4
2

(3
.5
4)

(4
.0
2)

(3
.6
4)

(4
.3
7
)

(3
.9
1)

(3
.6
8)

Ta
bl
e
IV

.3
.3

–
R
M
SE

co
m
pu

te
d
ov
er

20
ru
ns

205



Chapter IV.3 – Clustering for predictive models

IV.3.5 Real data

In this section, we study the performance of the KFC procedure on real data and
study the robustness of the procedure with respect to the number k of clusters. The
goal is to model the electrical power consumption of an air compressor equipment,
using data from the same source as in Chapter IV.2 (Cadet et al., 2005). The tar-
get is the electrical power of the machine, and 6 explanatory variables are available:
air temperature, input pressure, output pressure, flow, water temperature. We use
N = 2000 hourly observations of a working air compressor, and consider 20 random
partitions of the sample in training (80%) and testing sets. As the number of clusters
is unknown, we perform the KFC algorithm with different values of the number of
clusters k ∈ {1, 2, ..., 8}. For the aggregation step, we use a Gaussian kernel. The av-
erage RMSE and standard deviations are summarized in Table IV.3.4. Note that for
a simple linear model (k = 1), the average RMSE is 178.67 with standard error de-
viation 5.47. We observe that the performance of the individual estimators improves
as the number k of clusters increases. Note that CombR3 outperforms CombR2 . Re-
gardless of the number of clusters, the combination step allows to reduce the RMSE
in each case to approximately the same level. Hence, our strategy may be interesting
even without the knowledge of the number of clusters.

k Euclid GKL Logistic IS CombR2 CombR3

2 158.85 158.90 159.35 158.96 153.34 116.69
(6.42) (6.48) (6.71) (6.41) (6.72) (5.86)

3 157.38 157.24 156.99 157.24 153.69 117.45
(6.95) (6.84) (6.65) (6.85) (6.64) (5.55)

4 154.33 153.96 153.99 154.07 152.09 117.16
(6.69) (6.74) (6.45) (7.01) (6.58) (5.99)

5 153.18 153.19 152.95 152.25 151.05 117.55
(6.91) (6.77) (6.57) (6.70) (6.76) (5.90)

6 151.16 151.67 151.89 151.75 150.27 117.74
(6.91) (6.96) (6.62) (6.57) (6.82) (5.86)

7 151.08 150.99 152.81 151.85 150.46 117.58
(6.77) (6.84) (7.11) (6.61) (6.87) (6.15)

8 151.27 151.09 152.07 150.90 150.21 117.91
(7.17) (7.01) (6.65) (6.96) (7.03) (5.83)

Table IV.3.4 – Average RMSE for the air compressor data

206



Part V

Interdisciplinary collaborations

207





Chapter V.1

Modeling wind energy production

This chapter corresponds to a numerical study Fischer et al. (2017) carried out
in collaboration with Lucie Montuelle, Mathilde Mougeot and Dominique Picard, in
the frame of the ANR project FOREWER (Modeling, forecasting and risk evaluation
of wind energy production), as part of the postdoc subject of Lucie Montuelle (now
Data Scientist at the French electricity transmission system operator RTE).

The numerical results presented in this chapter are the ones published in the
article. Nevertheless, further experiments conducted in another context tend to show
that different results might be obtained by optimizing the methods a little differently,
so that the order that appears here between the various tested procedures should not
be considered as absolute.

V.1.1 Introduction

In the first quarter of 2020, wind energy represents 10,8% of the French electricity
production. Since electricity can hardly be stored, forecasting tools are essential
to appropriately balance the production of the different renewable energies. The
purpose of this chapter is to quantify the modeling performances of wind production
at a farm scale, using real operational data provided by the company Maïa Eolis
(today Engie Green).

A possible approach relies on physical models of a wind turbine related to an-
alytical equations. Here, our contribution pertains to the more flexible and robust
to noise bunch of strategies base on statistical or data mining methods. The aim is
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to model the power production by learning the phenomenon directly on the data.
This point of view has been investigated in the literature for instance Kramer et al.
(2013); Sideratos and Hatziargyriou (2012) and in Quan et al. (2014), with neural
networks. A special network, called extreme learning machine, has been used in Wan
et al. (2014) for probabilistic interval forecasting. The k-nearest neighbor method
has been studied for wind power modeling by Kusiak et al. (2009). In Mangalova
and Shesterneva (2016), the k-nearest neighbor algorithm is used for probabilistic
forecasts in the frame of the Global Energy Forecasting Competition 2014.

Support vector machines for regression have been proposed in this context in
Kramer and Gieseke (2011), whereas Kusiak et al. (2009) provides a comparison
between several data-mining approaches. Besides, time series-based models have
also contributed to the field of wind power forecast (see, e.g., Milligan et al. (2004);
Wu et al. (2014)). For an overview of different modeling and forecasting methods for
wind power, the reader may further refer to the surveys Costa et al. (2008); Foley
et al. (2012); Giebel et al. (2011); Jung and Broadwater (2014).

We investigate and compare different techniques for modeling the electrical power
for 3 wind farms in France. Each time, we first model the electrical power of each
wind turbine of the farm using local inputs coming from sensors directly installed
on each wind turbine. The predictive power of the farm is then given by the sum of
the predictive powers computed for each wind turbine. In a second step, we quantify
the modeling performances by using more global inputs as may be provided by a
meteorologist forecaster as, for example, Météo France. The goal is to quantify the
performance of the different models running in an operational environment, using
only average input information at a farm scale.

The chapter is organized as follows. In Section V.1.2, we describe the data set.
Section V.1.3 introduces the different methods investigated. Section V.1.4 presents
and discusses the modeling performances obtained using the local information on
each turbine. The results found when replacing this information by the more global
one, relying on averages, are given in Section V.1.5.

V.1.2 Data set

As already mentioned above, the data set has been provided by Maïa Eolis (today
Engie Green). It comes from 3 different farms with 4 to 6 turbines, in the North and
East of France, from 2011 to 2014. In a farm, each wind turbine provides 10 minute
measurements of electrical power, wind speed, wind direction, temperature, as well

210



V.1.3. Predictive methods

as an indicator of the working state of the turbine. The electrical power output of
the whole farm is also provided on a 10 minute basis.

To detect freeze, wind speed is measured on each turbine both by a classical
anemometer and a heated one. Since more measures are available from the heated
anemometer, the study has been conducted with this data. Wind direction is pro-
vided by a weather vane and has been recoded into two variables corresponding to
the cosine and the sine of the angle. The state of the turbine may correspond to start,
stop or full working of the turbine, depending on the wind speed and maintenance
operations. For the sake of simplicity, this study focuses on fully operating times.
Besides, the data has been averaged over 30 minutes in order to slightly smooth the
signals. However, it should be stressed that most often the results obtained on a 10
minute basis are quite similar to those presented in the sequel.

Taking advantage of the 30 minutes averages, two additional variables have been
introduced: the variance of the wind speed, and the variance of the wind direction
over 30 minutes. The second variable (complex-valued), has been decomposed into
its real part and its imaginary part, leading to a total of 7 explanatory variables.

V.1.3 Predictive methods

In this section, our aim is to model the farm power using the 7 explanatory
variables. More precisely, the variables are observed at time t and the sum of the
power of each turbine of the farm at time t is predicted. Then, the estimated farm
power is computed by summing the estimated turbine powers. The error is calculated
at the farm scale.

Our intention is to compare parametric statistical methods inspired from the
related physical equation, to more agnostic nonparametric machine learning methods,
which can easily accommodate non-linear modeling as well as dependence between
variables, which is the case here.

Theoretical equation

According to theoretical studies on wind turbines (see, e.g., Lydia et al., 2014),
the delivered power obeys the following equation :

P (W ) =
1

2
ρScpW

3, (V.1.1)
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where W is the wind speed, ρ the air density, S the rotor surface, which is the area
swept by the blades, and cp the power coefficient, corresponding to the fraction of
wind energy that the wind turbine is able to extract.

Figure V.1.1 shows for a wind turbine the electrical power versus wind-speed as
well as versus the cube of this quantity, with two theoretical curves corresponding
to two different values of cp: the maximal theoretical value (16/27, red curve), and a
more realistic value given in Table 8 of Carrillo et al. (2013) (blue curve). The third
curve (in green) is provided by the turbine builder, based on his experiments. Notice
that the data cloud is quite dispersed. Although the theoretical curves correspond
to some trend, there is room for improvement to provide a better prediction.
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Figure V.1.1 – Empirical observations for a wind turbine and theoretical power curves
for different power coefficient values, compared to the turbine builder curve

Prediction by “persistence”

The so-called “persistence” predictor uses the last observation as prediction: if Yt
denotes the electric production at time t, the predicted production at time t is given
by Ŷt = Yt−1. This very naive method will serve as a benchmark to asses the added
value of statistical predictions.
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V.1.3. Predictive methods

Parametric methods

Several methods have been tested to approximate the power curve and model the
production. In this section, we present the parametric statistical methods, directly
inspired from the physical equation.

Parametric modeling according to the wind speed only We first investigated
the simplest parametric models, namely linear regression and logistic regression, with
the wind speed as unique explanatory variable. If the predicted power at time t is
denoted by Ŷt, the linear model is given by

Ŷt = â0 + â1Wt,

where Wt denotes the wind speed at time t, and â0 and â1 are computed using
ordinary least squares (OLS). The logistic regression model may be written

Ŷt =
Ĉ

1 + exp(â0 + â1Wt)
,

where the parameters â0, â1, Ĉ are obtained using maximum likelihood.

Introducing a third degree polynomial of the wind speed in the logistic regression
has also been considered to mimic more closely Equation (V.1.1). More precisely,
the model is then defined by:

Ŷt =
Ĉ

1 + exp(â0 + â1Wt + â2W 2
t + â3W 3

t )
,

where âi, i = 0, . . . , 3 and Ĉ are estimated parameters. This model is called polyno-
mial logistic regression in the sequel.

Parametric modeling using more variables Linear regression, logistic regres-
sion and polynomial logistic regression have also been studied with the full set of
variables, using not only wind speed as a predictor, but also wind direction (coded
by its cosine and sine : Dcos and Dsin), temperature T and the variances of the wind
speed W S and direction, DS,Re and DS,Im:

Ŷt = â0 + â1Wt + â2D
cos
t + â3D

sin
t + â4Tt + â5W

S
t + â6D

S,Re
t + â7D

S,Im
t (V.1.2)
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Ŷt = Ĉ

[
1 + exp

(
â0 + â1Wt + â2D

cos
t + â3D

sin
t + â4Tt + â5W

S
t + â6D

S,Re
t

+ â7D
S,Im
t

)]−1

Ŷt = Ĉ

[
1 + exp

(
â0 +

3∑
k=1

â1,k(Wt)
k + â2D

cos
t + â3D

sin
t + â4Tt + â5W

S
t

+ â6D
S,Re
t + â7D

S,Im
t

)]−1

(V.1.3)

In the last equation (V.1.3), corresponding to polynomial logistic regression, only the
wind speed Wt occurs in the expression as a polynomial of order 3, to be consistent
with the theoretical equation (V.1.1). A Lasso penalized version of equation (V.1.2)
has been investigated as well (Tibshirani, 1994). More specifically, the coefficients
â1, . . . , â7 are estimated with OLS, under the `1 constraint

∑7
j=1 |aj| ≤ κ for some

constant κ > 0.

Non-parametric methods

Non-parametric methods may be very useful to model complex and non-linear
phenomena. In general, they do not lead to closed-form expressions as in the previous
section.

kNN The k-nearest-neighbor procedure consists in computing

Ŷt =
1

k

k∑
j=1

Y(j),

where Y(j) corresponds to the wind power of the j-th nearest neighbor of the obser-
vation at time t, according to the Euclidean distance of the variables at time t. The
features are standardize to have mean 0 and variance 1 since they are measured in
different units. The number k of neighbors is optimized on a grid.

CART, bagging and RF Tree-based methods are also applied. Growing a binary
tree based on the CART algorithm (Breiman et al. (1984)) consists in defining rect-
angular regions by recursive splitting, the last set of domains corresponding to the
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leafs of the tree. The prediction is provided by the average value in the leaf in which
the observation falls. To avoid over-fitting, the tree is pruned by cross-validation.
To reduce variance, we also use bagging (Breiman (1996)), which consists in aver-
aging the predictions of several trees grown on bootstrap samples: for B bootstrap
samples, the predicted value is given by

Ŷt =
B∑
b=1

Ŷ b
t , (V.1.4)

where Ŷ b
t denotes the prediction for the b-th bootstrap sample. To produce more

diversity in the trees to be averaged, random forests only consider, for each split, a
smaller number of randomly chosen variables. The trees are not pruned (Breiman,
2001).

SVM Through a nonlinear kernel function, the support vector machine method for
regression maps the inputs into a higher dimensional feature space, where an optimal
hyperplane is constructed (see for instance Drucker et al., 1997). The regularization
parameter of the method is calibrated on a grid.

In the next section, all the experiments have been conducted using the R soft-
ware. The previous procedures are implemented respectively in the packages lars,
kernlab, FNN, rpart and randomForest. For random forests, the default parame-
ters, advocated by Breiman, were used: 500 trees were grown in each forest and the
size of the subset of randomly chosen variables, commonly denoted by mtry, is the
floor of the third of the number of variables. Note that bagging is a particular case
of random forests where mtry equals the total number of variables.

V.1.4 Modeling performance

As usual, the data set is split into a training and a test set. In order to quantify the
variability of the predictive ability, several test sets are used: an average performance,
as well as a standard deviation, are then computed. More precisely, the procedures
are trained on around 8000 instant-points and 10 data sets of 724 points are used
to evaluate the performances. The error criterion is the Root Mean Squared Error
(RMSE), defined between a vector of predictions Ŷ and a vector of observed wind
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power productions Y by

RMSE(Ŷ ) =

√√√√ 1

n

n∑
t=1

(Ŷt − Yt)2.

Another quantity of interest for industries is the error as percentage of the installed
power (denoted by % of IP in the tables below), also called “normalized RMSE” in
this context: the RMSE is divided by the theoretical power of the farm.

As already mentioned, procedures have been investigated either using the wind
speed variable only or using all available variables. Figure V.1.2 and Table V.1.1
present the results obtained for one wind farm located in the East of France. Observe
that all the methods show a much better performance than the naive persistence
method, substantially reducing the average error, with generally a lower standard
deviation.

The methods using only the wind speed as predictor show pretty good perfor-
mances. The error is reduced by more than a factor of 2 compared to persistence.
The polynomial logistic regression shows a very good performance, in accordance
with the physical equations, with, however, somewhat high variability. The SVM
and bagging methods show the best results with also better stability. Some of the
parametric methods behave better when adding more variables, namely the wind
direction, the variances of the wind speed and direction, and the temperature, with-
out, however, equaling the performance of polynomial logistic regression. The results
with Lasso are the same as with classical linear regression, all variables being kept.
This may be due to strong correlation between predictors. The CART algorithm
does not take advantage of the additional variables and seems to choose its cuts only
according to the wind speed, which may be explained by the prevailing importance
of the wind speed over other measures. The best kNN method and the best SVM
procedure, tested with several kernels, are not very competitive here. Bagging out-
performs all the investigated statistical models, including random forests with default
settings. This is due to the importance of the wind speed relative to the other vari-
ables. Comparing CART and bagging highlights the advantages of bootstrapping
and averaging. This step allows to reduce the error by a third, when dealing with all
the predictors. Note that, according to the Panorama de l’électricité renouvelable,
French industries obtain in 2015 a root mean squared error of 2.4% of the installed
power of farm productions, which illustrates the benefits of using bagging (1.65%).
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Figure V.1.2 – Boxplots of the RMSE
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Method RMSE % of IP
Persistence 855.52 (141.14) 6.96

us
in
g
w
in
d

sp
ee
d
on

ly

Linear Regression 373.61 (86.91) 3.04
Logistic Regression 404.86 (76.74) 3.29

Polynomial Log. Reg. 290.36 (73.87) 2.36
CART 314.46 (57.74) 2.56

Bagging (=RF) 250.52 (46.52) 2.04
SVM 269.94 (64.21) 2.19

us
in
g
al
lv

ar
ia
bl
es

Linear Regression 364.21 (102.39) 2.96
Logistic Regression 362.76 (107.58) 2.95

Polynomial Log. Reg. 292.57 (100.53) 2.38
Lasso 364.21 (102.39) 2.96
CART 314.46 (57.74) 2.56

Bagging 203.50 (39.72) 1.65
RF 425.78 (161.53) 3.46
SVM 382.16 (134.34) 3.11

kNN (k=2) 355.29 (109.96) 2.89

Table V.1.1 – Average RMSE with standard deviation into brackets and % of installed
power

Comparison of different farms For the two other farms, located in the North
of France, the hierarchy between the procedures is quite similar. The procedure
ranking first most often is bagging.

Next, we compared the farms using a common test set, with observed variables
available at the same time for each farm, with at least one turbine fully operational.
The test set has been divided into ten subsets of 1440 instant-points, each covering a
period of around thirty days, to quantify the average performance and its variability.
The training set consists in around 7200 instant-points, satisfying a ratio of 83% of
the data dedicated to learning and 17% used for test.

Only the best procedure, bagging, has been applied. We also compare the results
with those derived from the turbine builder’s power curve, represented by the green
curve in Figure V.1.1. Figure V.1.3 highlights the good results of bagging on the
first and the third farms. It performs reasonably well on the second farm, but is not
as good as the power curve’s builder. It may be explained by the difference between
the wind speed in the training sample and in the test set. Few high wind speed levels
are observed in the training sample on the second farm compared to the test sample,
so the bagging prediction may not be accurate.

218



V.1.5. Towards forecast : a stability investigation

P
o
w

e
r 

c
u
rv

e

B
a
g
g
in

g

P
o
w

e
r 

c
u
rv

e

B
a
g
g
in

g

P
o
w

e
r 

c
u
rv

e

B
a
g
g
in

g

200

400

600

800

1000

1200

1400

R
M

S
E

Figure V.1.3 – Comparison of the RMSE for the turbine builder’s power curve and
the bagging procedure on several farms using local measures

V.1.5 Towards forecast : a stability investigation

Forecasting electrical power requires two steps: providing forecasts of the explana-
tory variables, and constructing an accurate model to plug these forecasts, which is
our aim here. If we have at hand an efficient model, then the performance of a fore-
casting procedure of electrical wind power will directly depend on wind forecasts.
These meteorological forecasts may be obtained thanks to ensemble methods based
on numerical computations, mostly based on the Navier-Stokes equations, like the
climate reanalyzes performed by the European Centre for Medium-Range Weather
Forecasts (ECMWF) or the French Weather Agency Météo France.
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At a farm scale, as already mentioned, many observations are recorded in real
time on each wind turbine. Thanks to the analysis conducted in the previous section,
we are able to identify an accurate model, built with this kind of observations. In a
wind farm, in general, two wind turbines are at a distance of about 300m from each
other. However, concerning numerical models, the finest grid resolution for forecast
of wind and temperature provided by the French Weather Agency Météo France is
for instance brought by the AROME model, which proposes a resolution of about
1.5 km (5 times larger). Consequently, an interesting question is also to quantify the
predictive power not using very local information, but information on a much broader
scale. To mimic the scale of meteorological wind forecasts, we decided to introduce
virtual sensors: for each variable, a global information is computed by averaging all
the localized variables coming from the set of turbines installed on the wind farm.
This makes it possible to quantify the loss of accuracy due to the replacement of
localized data by global information and is a first step towards forecasting.

The results are available in Table V.1.2. The deterioration of the prediction
can easily be seen in Figure V.1.4. We observe that polynomial logistic regression is
remarkably robust, performing similarly to the context with local measures, contrary
to SVM and kNN. When only wind speed is considered, polynomial logistic regression
competes with bagging, whereas the latter outperforms all the considered procedures
when dealing with all the variables.

Method Mean of RMSE Sd of RMSE % of IP
Persistence 855.52 141.14 6.96

us
in
g
w
in
d

sp
ee
d
on

ly Linear Regression 393.09 77.25 3.20
Logistic Regression 541.37 103.15 4.40

Polynomial Log. Reg. 288.28 75.23 2.34
CART 349.17 53.20 2.84

Bagging (=RF) 293.26 48.96 2.38

us
in
g
al
lv

ar
ia
bl
es

Linear Regression 387.71 89.73 3.15
Logistic Regression 524.30 92.58 4.26

Polynomial Log. Reg. 297.16 92.79 2.42
Lasso 387.44 89.86 3.15
CART 349.17 53.20 2.84

Bagging 228.75 43.35 1.86
RF 447.77 161.84 3.64
SVM 424.15 143.02 3.45
kNN 428.05 125.84 3.48

Table V.1.2 – Modeling performances using deteriorated wind measures (average)
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Figure V.1.4 – Boxplots of the RMSE for the different procedures using averaged
measures

Comparison of different farms Just as in the previous framework, bagging and
the turbine builder’s power curve prediction have been tested on several farms. Fig-
ure V.1.5 stresses the good results obtained with bagging, which seems robust to
data averaging.
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Figure V.1.5 – Comparison of the RMSE for the turbine builder’s power curve and
the bagging procedure on several farms using averaged measures

V.1.6 Conclusion and perspectives

Depending on the wind farm, a method which is the best with true local wind
information inputs may not perform well any more when using averaged data de-
signed to mimic meteorological wind forecasts. So, despite the good performance of
the constructor power curve for one farm, bagging shows to be more robust when
turning to aggregated data.

More generally, this observation raised the following question: in the frame of this
work, the data, provided by the company Maïa Eolis, comes from 3 wind farms, all
located in the North and East of France, the first turbines installed by the company
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being essentially located in these regions, but it could be of prime interest to have
access to wind data from farms in other regions of France. Note that, in the com-
parison of data-mining approaches conducted by Kusiak et al. (2009) for US wind
farm data, the kNN method, which does not perform particularly well in our study,
appears to outperform the other methods.

Here, we calibrated our models using stationary data, that is, data corresponding
to full functioning of the wind turbines. A complementary work may be to enrich our
models including the time slots where wind turbines are working in a non stationary
regime (corresponding essentially to start-up regime). This would allow to com-
pute predictions over a (complete) long time of use, taking into account transitory
phenomena of a turbine.

Regarding effective forecasting, an intermediate step has to be accomplished be-
fore simply plugging in our models the information brought by Météo France or the
ECMWF. Indeed, these previsions suffer inevitably from a bias due to several causes,
which has to be corrected in order to build accurate forecasting at the end. For ex-
ample, the wind speed prevision is provided by the meteorologists for a given height,
but the wind speed at the height of the wind turbine may be different. This shows
that it is necessary to elaborate a so-called downscaling method, in other words
to find the best possible relationship between real wind at a wind turbine and the
meteorological wind forecasts at hand.
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Chapter V.2

Downscaling wind speed: SIRTA data

This chapter corresponds to a collaboration with Mathilde Mougeot and Riwal
Plougonven (LMD, École Polytechnique), in the frame of the 3-year projects of Mehdi
Kechiar and Côme de Lassus Saint-Geniès and the PhD work of Bastien Alonzo
at École Polytechnique. The corresponding article Alonzo et al. (2018) has been
published by Springer as a chapter of the monograph Renewable Energy: Forecasting
and Risk Management.

V.2.1 Introduction

Surface wind speed is a meteorological variable of considerable importance be-
cause it impacts human activities in a number of ways, including damage to buildings,
fallen tower cranes, and injuries due to objects carried by intense winds. Recently,
the significant development of wind energy has created a new motivation and demand
for estimations of the wind speed near the surface.

According to the GWEC (Global Wind Energy Council), 54GW wind capacity
has been installed in 2016, corresponding to an increase of 12.6% of the total installed
capacity. Worldwide, the number of wind farms increases each year, feeding the
electrical network with a larger amount of energy. For instance, in 2016, France has
seen its highest capacity growth rate ever recorded. This sharp increase of connected
wind power has for example allowed the network to receive 8.6 GW from wind power
plants, on November 20th, corresponding to 17.9% of the energy produced this day
as reported by the French electricity transmission system operator RTE (Réseau
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de Transport de l’Électricité). It is very important to be able to anticipate energy
production, in order to plan maintenance operations and manage the balance between
energy production and consumption. Moreover, the evolution of the energy market
regulation, with the end of feeding-in tariffs, make this anticipation crucial for wind
energy producers.

The question of precisely estimating wind speed at specific locations has received
renewed interest from the wind-energy sector since appropriate forecasts at specific
location of a wind farm are required. Very different approaches have been considered
for forecasting the wind speed at locations of wind farms for different lead times: for
short lead times of minutes to a few hours, statistical learning models trained with
the locally observed wind speed have been developed using a variety of techniques
(e.g. Chang, 2014; Foley et al., 2012; Tascikaraoglu and Uzunoglu, 2014; Wang et al.,
2011). For longer lead times, from half a day to several days, outputs from numerical
weather prediction models have been used (Lazic et al., 2014; Mejia et al., 2018;
Ranaboldo et al., 2013). The increasing need for accurate forecasts of the surface
wind speed fortunately comes with the improvement of the NWP models describing
and forecasting atmospheric motions. The skill of NWP models is continuously
increasing (Bauer et al., 2015), as well as their spatial resolutions. They constitute
undoubtedly a key source of information for surface wind speed forecasts.

Nevertheless, these models are not necessarily performing uniformly well for all
atmospheric variables. If we can be very confident in the ability of NWP models
to represent several variables, some others may not be so reliable. More specifi-
cally, variables such as mid-tropospheric pressure which reflect the large-scale mass
distribution, are well understood physically (Vallis, 2006) and efficiently modeled
numerically. However, variables tied to phenomena occurring on smaller scales (such
as cloud-cover or near-surface winds) depend much more directly on processes that
are “parameterized”, represented by a simplified process. In contrast to large-scale
motions (governed by the Navier-Stokes equations), parameterizations are generally
partly rooted in physical arguments, but also in large part empirical. According
to Haiden et al. (2018), surface wind components from NWP models still include
significant errors. When comparing output from a numerical model to a local mea-
surement, there will always be several sources of error: model error, any modeling
involving a simplification (several physical processes, especially parameterized ones,
are not well modeled), representativity error, corresponding to the contrast between
the values over a grid box and the value at a specific point, numerical error (even
if we were describing only processes governed by well-established physical laws, dis-
cretization is unavoidable). It is worth pointing out that finer scale models inevitably
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come with a higher numerical cost.

Strategies to estimate surface winds, or other meteorological variables, from the
output of Numerical Weather Prediction models (NWP) or climate models have
been developed in several contexts, with different motivations, and leading to dif-
ferent methodologies and applications.As NWP models perform now very well in
predicting large-scale systems, there is a strong motivation for taking advantage of
both NWP outputs and local variables at an observation site. Actually estimating
a local quantity based on output of a numerical weather prediction model and past
observations at a given location, mostly via linear models, has been an active field
of research for half a century, called Model Output Statistics (Glahn and Lowry,
1972). Nowadays, it is common for operational centers to carry out MOS to provide
forecasts of quantities where observations are available (Baars and Mass, 2005; Kang
et al., 2011; Schmeits et al., 2005; Wilson and Vallée, 2002; Zamo et al., 2014).

The task of building a procedure to estimate a variable sensitive to small scales
based on information on the large-scale flow is known as downscaling in meteorology
and climatology. When used in the context of climate projections, the aim is to
generate plausible time series of local variables in climate change scenarios Wilby
and Dawson (2013). Downscaling has also been applied to surface winds. In this
framework, different studies have shown the importance of a certain set of vari-
ables to predict surface wind speed. Among them, markers of large-scale systems
(geopotential height, pressure fields) and boundary layer stability drivers (surface
temperature, boundary layer height, wind and temperature gradient) can be cited
(Davy et al., 2010; Devis et al., 2013; Salameh et al., 2009). In terms of methodology,
several methods have been investigated, including linear regression, support vector
regression or neural networks (Jung and Broadwater, 2014; Soman et al., 2010). The
most common method used is linear regression, with a central issue being the choice
of explanatory variables. For instance, Ranaboldo et al. (2013) present a stepwise
procedure to identify the most relevant variables to forecast 10m wind speed at two
locations, showing that variables describing the flow lead to the best performances.

The European Center for Medium-range Weather Forecasts (ECMWF) is an in-
tergovernmental operational center that provides medium-range weather forecasts
on a global scale, and has the largest repository of archived global weather data.
The model has reached a spatial resolution of 0.125◦ in latitude and longitude, corre-
sponding to a resolution of about 9km in the horizontal. While this is a fine resolution
for a global numerical weather prediction model, this remains coarse-grained when
comparing 10m wind speed to measurements at one specific location, given for in-
stance the sensitivity to the local topography. Note that ECMWF now provides a

227



Chapter V.2 – Downscaling wind speed: SIRTA data

100m wind speed output variable, developed mainly for wind energy applications.
Since surface variables such as 10m and 100m wind speed may not be sufficiently well
represented in the ECMWF model, surface wind speed should be corrected by using
the robust information given by some observed variables. Here, we use surface wind
speed observed at 10m, 100m over a long period of 5 years at SIRTA observation
platform (Haeffelin et al., 2005). Our aim is, in particular, to explore how different
statistical models perform in modeling and forecasting the 10m and 100m wind speed
using informations of ECMWF analyses and forecasts outputs at different horizons.

Below, Section V.2.3 focuses on modeling, and Section V.2.4 is dedicated to
forecasts. Before that, Section V.2.2 presents the methodology and the data.

V.2.2 Methodology and data

This section provides an overview of the statistical methodology and describes
the data in more detail.

V.2.2.1 Methodology

Our aim is to model and forecast the real observed wind speed from NWP model
outputs. Our approach will rely on ECMWF analyses, the best estimate of the at-
mospheric state at a given time using a model and observations (Kalnay, 2003), and
ECMWF forecasts. More specifically, analyses are obtained by assimilating observed
data from within a time window around the corresponding time to previous forecasts
made by the numerical weather prediction model. In what follows, the observed wind
speed is the target and the variables retrieved from ECMWF are potential explana-
tory features. Because of the complexity of meteorological phenomena, statistical
modeling provides an appropriate framework for corrections of representativity er-
rors and modeling of site-dependent variability.

The methods chosen are linear regression, because it is a simple, widely used tech-
nique, and random forests, which, to our knowledge, were not deeply studied in the
framework of downscaling surface wind speed. Among the meteorological variables,
some of them provide more important information linked to the target than others,
and some of them may be correlated. For linear regression, performing variable se-
lection, either by applying a stepwise procedure or via the `1 Lasso regularization
method (Tibshirani, 1994), may be useful to keep only the most important variables.
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Regarding random forests, variables are somehow processed automatically, and,
moreover, nonlinear relations are handled very well. Therefore, the comparison of
the two different kinds of statistical models, parametric and nonparametric, should
be very instructive.

V.2.2.2 Data

Observed wind speed In this chapter, we use observations of the wind speed at
the SIRTA observation platform (Haeffelin et al., 2005). Surface wind speed at 10m
height from anemometer recording is available at 5-minutes frequency. The wind
speed at 100m height from Lidar recording is available at 10-minutes frequency.
Both data span for 5 years from 2011 to 2015. We filter observations by a sinusoidal
function over a 6-hour window centered at 00h, 06h, 12h and 18h to obtain a 6-
hourly observed wind speed to be compared to the NWP model outputs available
at this time frequency. We found that the resulting time series are not sensitive to
the filter function. We also try different filtering windows, concluding that 6-hours
is the best to compare to the NWP model outputs. Due to some missing data, two
final time series of 5049 filtered observations are computed (over 7304 if all data
were available). SIRTA observatory is based 20km in south of Paris on the Saclay
plateau (48.7◦N and 2.2◦E). Figure V.2.1 shows the SIRTA observation platform
location, marked by the red point on the map, and its close environment. Regarding
the relief near SIRTA, observe that a forest is located at about 50m north to the
measurement devices. To the south, buildings can be found at about 300m from the
SIRTA observatory. In the east-west axis, no close obstacle are encountered. Further
south, the edge of the Saclay plateau shows a vertical drop of about 70m, from 160m
on top to 90m at the bottom.

ECMWF Analyses Variables are retrieved from ECMWF analyses at 4 points
around the SIRTA platform. Given the spatial resolution of ECMWF analyses,
topography is smoothed compared to the real one. As the surface wind speed is very
influenced by the terrain, the modeled surface wind speed is not necessarily close to
the observed wind speed. The data spans from 01/01/2011 to 31/12/2015 at the
6-hour frequency. It is sampled at each date where a filtered sampled observation is
available.

The near surface wind speed at a given location can be linked to different phe-
nomena. The large-scale circulation brings the flow to the given location explaining
the slowly varying wind speed. The wind speed in altitude, the geopotential height,
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Figure V.2.1 – Map of the SIRTA observation platform and its surroundings
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the vorticity, the flow divergence, sometimes the temperature, can be markers of
large systems like depressions, fronts, storms, or high pressure systems explaining a
large part of the low frequency variations of the surface wind speed (Table V.2.2). At
a finer scale, what is happening in the boundary layer is very important to explain
the intra-day variations of the wind speed. The state and stability of the bound-
ary layer can be derived from surface variables describing the exchanges inside the
layer. Exchanges are driven mostly by temperature gradient and wind shear that
develop turbulent flow (Table V.2.3). These variables are computed from the raw
data. Thermodynamic variables like surface, skin, and dew point temperatures and
surface heat fluxes can also inform on the stability of the boundary layer, as well as
its height and dissipation on its state (Table V.2.1). In the tables, the zonal wind
speed is the component along the local parallel of latitude, whereas the meridional
wind speed is the component along the local meridian.

In the end, 20 output variables are retrieved from ECMWF analyses at the 4
points around the SIRTA observatory and at different pressure levels. Note that we
restrict the study to local variables (at the location of measurements or in the column
above). It might also be possible to take advantage from larger scale information
(Davy et al., 2010; Zamo et al., 2016). The choice of taking 4 points around the
SIRTA platform has the advantage of being simple and straightforward. Providing
instead the explanatory variables by their interpolated value at SIRTA and the two
components of their gradient does not lead to significantly different results.

Altitude (m) Variable Unit
10m/100m Norm of the wind speed m.s−1

10m/100m Zonal wind speed m.s−1

10m/100m Meridional wind speed m.s−1

2m Temperature K
2m Dew point Temperature K

Surface Skin temperature K
Surface Mean sea level pressure Pa
Surface Surface pressure Pa
− Boundary layer height m
− Boundary layer dissipation J.m−2

Surface Surface latent heat flux J.m−2

Surface Surface sensible heat flux J.m−2

Table V.2.1 – Surface variables
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Variable Unit
Zonal wind speed m.s−1

Meridional wind speed m.s−1

Geopotential height m2.s−2

Divergence s−1

Vorticity s−1

Temperature K

Table V.2.2 – Altitude variables (pressure levels: 1000hPa, 925hPa, 850hPa, 700hPa,
500hPa)

Pressure level (hPa) Variable Unit
10m to 925hPa Wind shear m.s−1

10m to 925hPa Temperature gradient K

Table V.2.3 – Computed variables

ECMWF forecasts For the wind speed forecast in Section V.2.4, we will apply
our model to the year 2015 of forecasts from ECMWF model. A forecast is launched
every day at 00:00 UTC. The time resolution retained is 3 hours and the maximum
lead time is 5 days. The same variables as for the analyses are retrieved at the same
points around the SIRTA platform.

V.2.3 The relationship between analyzed and ob-
served winds

V.2.3.1 10m/100m wind speed variability comparison

We compare the observed wind speed at 10m and 100m with the 10m and 100m
wind speed output of the ECMWF analyses at the closest grid point, respectively.
No significant difference can be found when using other grid points, or the mean of
the four surrounding locations.

Figure V.2.2 shows the probability density function (pdf) of the wind speed com-
ing from ECMWF analyses and observations, as well as an example of a time series
of corresponding wind speeds. It appears that the 10m wind speed from ECMWF
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analyses displays a systematic bias by overestimating the 10m observed wind speed
(Figure V.2.2, a and b). The wind at 100m is comparatively well modeled in terms
of variations in the time series, but also in terms of distribution (Figure V.2.2, c and
d). It seems that the errors mainly come from the overestimation of peaked wind
speeds and the underestimation of low wind speeds (Figure V.2.2, c and d). As 10m
wind speed is very influenced by even low topography and surrounding obstacles,
which are smoothed or not represented in ECMWF analyses, some of its variations
are not well described. The effect of the topography and terrain specificity have less
impact on the 100m wind speed, so that it is much better represented in ECMWF
analyses.
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Figure V.2.2 – Comparison between observed wind data and ECMWF analyses: 10m
(top) and 100m (bottom) wind speed time series in summer 2011 (panels a and c,
respectively) and pdfs corresponding to the 5 years of data (panels b and d)
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The ability of the ECMWF model to represent the observed wind speed is quan-
tified in Table V.2.4 by the mean deviation (Dev), the Root Mean Square Error
(RMSE), and the correlation coefficient (Corr). Here, the deviation for the ith ob-
servation is (yi − xi),

RMSE =

√∑n
i=1 (xi − yi)2

n
, Corr =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where xi is the wind speed from the NWP model and yi the observed wind speed, n
is the number of samples (xi, yi), x̄ = 1

n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi.

Periods Dev RMSE Corr
F10 F100 F10 F100 F10 F100

2011-2015 -1.00 0.14 1.41 1.01 0.82 0.93
2011 -1.19 0.04 1.59 1.06 0.80 0.91
2012 -0.94 0.23 1.31 1.03 0.85 0.92
2013 -1.13 0.06 1.52 0.93 0.82 0.94
2014 -0.88 0.26 1.30 1.00 0.80 0.93
2015 -0.87 0.14 1.30 0.97 0.82 0.94

Winter -0.97 0.04 1.41 0.97 0.83 0.94
Spring -1.11 0.27 1.56 1.02 0.71 0.90
Summer -0.92 0.33 1.31 1.04 0.80 0.91
Fall -1.04 -0.10 1.36 1.00 0.87 0.93

Table V.2.4 – Mean deviation, RMSE, and correlation performed by ECMWF anal-
yses for modeling the 10m and 100m wind speed

No clear improvement of the ECMWF analyses over the years from 2011 to 2015
can be detected in Table V.2.4. The correlation stays quite constant over the years
for both 10m and 100m wind speeds. The mean deviation and RMSE seem to
decrease for the 10m wind speed, with nevertheless a notable good score in 2012. The
variations of performance may come only from changes in the predictability of the
weather over Europe (Folland et al., 2012). Seasonal variations of the performance
of ECMWF analyses can be seen, especially on the correlation between the observed
and modeled wind speed. At both 10m and 100m, the analyzed wind speed is better
correlated with the observations in winter and fall than in spring and summer. In all
cases, the scores shown are better for the 100m wind speed than for the 10m wind
speed.

234



V.2.3. The relationship between analyzed and observed winds

Variations of the performance of the ECMWF analyses in representing the ob-
served wind speed are evidenced by Figure V.2.3. The figure shows the 10m wind
speed from ECMWF analyses as a function of the 10m observed wind speed for
different directions of the analyzed wind. It is obvious that the errors made by
the numerical model differ regarding the direction of the wind, which can be easily
linked to the specificity of the terrain. Indeed, when a north wind is recorded, it
has been blocked by the forest north of the anemometer. The same happens for
south winds with the building situated further and which influence is thus not as
substantial as the forest. Figure V.2.4 displays the same as Figure V.2.3 but for the
100m wind speed. It seems that there is no more dependence of the performance of
the ECMWF analyses regarding the direction of the 100m wind speed ; it appears
to be not significantly impacted by the surrounding forests and buildings.
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Figure V.2.3 – 10m wind speed from ECMWF analyses as a function of the 10m
observed wind speed, given cardinal directions: a=west, b=southwest, c=south,
d=southeast, e=east, f=northeast, g=north, h=northwest
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Figure V.2.4 – 100m wind speed from ECMWF analyses as a function of the 10m
observed wind speed, given cardinal directions: a=west, b=southwest, c=south,
d=southeast, e=east, f=northeast, g=north, h=northwest

V.2.3.2 Reconstruction of the observed wind speed based on
NWP outputs

In the sequel, a k-fold cross-validation is performed over 10 different periods taken
within the 5 years of analyses and observations. Each time, statistical downscaling
models are trained on a given period of about 4500 data points and applied over
the remaining period of about 500 data points to reconstruct the 10m and 100m
wind speed. Table V.2.5 summarizes the different statistical models considered:
linear model with only the 10m wind, with all variables, with stepwise or Lasso
selection, and random forests. Moreover, the models may be fitted conditionally to
the direction of the wind speed. All models are evaluated in terms of RMSE and
correlation with the observed wind speed.
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Model type Variables Direction Name
Linear F10 No LRF

Linear All No LRA

Linear Stepwise No LRSW

Linear Lasso No LRLa

Linear F10 Yes LRdir
F

Linear All Yes LRdir
A

Linear Stepwise Yes LRdir
SW

Random forest All No RFA
Random forest All Yes RF dir

A

Table V.2.5 – Statistical models used to downscale 10m and 100m wind speed

10m wind speed reconstruction Figure V.2.6 shows results for the reconstruc-
tion of the 10m wind speed. First, by using only wind speed with a linear model
LRF , RMSE is reduced by about 40%, but the correlation stays constant. Adding
other variables to linear model (i.e. LRA, LRSW and LRLa) allows to reduce the
RMSE by 60%, and to significantly improve correlation from 0.80 to 0.91 between
reconstructed wind speed and observed one. Random forests RFA perform slightly
better than these linear models. Note that variables retained by stepwise selection
are very diverse (wind speed, large scale variables, boundary layer state drivers),
while Lasso mainly selects wind speed and wind component variables, thus using
redundant information. Analyzing the main variables used by random forests shows
that much weight is put on wind component, highlighting the dependence of the
error on the 10m wind speed regarding its direction.

Fitting a linear model in each direction (model denoted by LRdir
SW ), with associ-

ated stepwise variable selection, performs better than any other model (Figure V.2.3).
We obtain a significant improvement of the RMSE and correlation scores. As ex-
pected regarding Figure V.2.3 (g), the best improvement is retrieved for north wind
speed and is of more than 0.1m.s−1 compared to LRSW . No improvement is found
for east winds, surely because the number of data is too small. Fitting a random
forest in each direction does not improve results, probably because the direction is
already well handled by this model by using the zonal and meridional component of
the wind. A big advantage of random forests is that it does not require to explore the
data in depth beforehand for extracting appropriate and relevant features as inputs
to the model.
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Figure V.2.5 shows the time series of the 10m observed wind speed and the NWP
model wind speed output for summer 2011 (panel a) and the probability density
function corresponding to the entire period, 2011 to 2015 (panel b). Panels c and
e show respectively time series of the reconstructed 10m wind speed by LRdir

SW (red
line) and LRSW (blue line), and by RF dir

A (magenta line) and RFA (cyan line).
Panels d and f show the corresponding pdfs. All statistical models allow for a good
bias correction. All models underestimate the small quantiles of the distribution and
give a distribution very peaked around the mode. High percentiles are however well
reconstructed.
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Figure V.2.5 – Timeseries and pdfs of the observed 10m wind speed (straight black
line), ECMWF analyses (dotted black line) (a and b), linear models LRSW (blue)
and LRdir

SW (red) (c and d), random forest models RFA (cyan) and RF dir
A (magenta)

(e and f)
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Figure V.2.6 – RMSE and correlation results when reconstructing 10m wind speed
with the statistical models compared to the ECMWF analyses
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100m wind speed reconstruction Figure V.2.7 shows the 100m wind speed re-
construction results. The model LRF reduces the RMSE of about 15% corresponding
to 0.14m.s−1 and the best model LRdir

SW by 23% corresponding to 0.23m.s−1. The
correlation is improved from 0.92 to 0.94. Adding the direction dependence to linear
model with only 100m wind speed (LRdir

F ) does not improve the results, since the er-
ror on the 100m wind speed does not depend on the direction. Using all explanatory
variables (LRdir

A ) leads to a strong over-fitting, but the model with stepwise variable
selection (LRdir

SW ) performs significantly better. In the case of 100m wind speed, the
best improvement is found for east wind speeds. For random forests, the information
on the direction does not improve the results, as already noticed for 10m wind speed
reconstruction. The most important variables for random forests and stepwise selec-
tion are the 100m wind speed and the wind shear in the boundary layer, whereas the
Lasso technique mainly selects 100m wind speed.

Figure V.2.8 shows the time series of 100m observed wind speed and the NWP
model wind speed output for summer 2011 (panel a) and the probability density
function corresponding to the entire period from 2011 to 2015 (panel b). Panels c
and e show respectively time series of the reconstructed 100m wind speed by LRdir

SW

(red line) and LRSW (blue line), and by RF dir
A (magenta line) and RFA (cyan line).

Panels d and f show the corresponding pdfs. Some peaked wind speeds are less
overestimated after statistical downscaling. As for the 10m wind speed, statistical
models underestimate the small quantiles of the distribution and give a distribution
peaked around the mode.

As a conclusion, we observe that the 100m wind speed is already well represented
in ECMWF analyses, with a good correlation and no systematic bias. Nevertheless,
statistical models reduces the RMSE on the 10m wind speed between 40% and 65%,
and between 15% and 23% for the 100m wind speed, improving at the same time the
correlation between the observed wind speed and the reconstructed one. Note that
random forests give, without specific calibration, results comparable to those of the
best linear models.
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Figure V.2.7 – RMSE and correlation results when reconstructing 100m wind speed
with the statistical models compared to the ECMWF analyses
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Figure V.2.8 – Timeseries and pdfs of the observed 100m wind speed (straight black
line), ECMWF analyses (dotted black line) (a and b), linear models LRSW (blue)
and LRdir

SW (red) (c and d), random forest models RFA (cyan) and RF dir
A (magenta)

(e and f)

V.2.4 Forecasts of surface winds

In this section, we use the previous statistical models based on the knowledge
of the observed wind speed and the outputs of ECMWF analyses to forecast wind
speed at five days horizon with a frequency of 3 hours. We have access to 1 year of
ECMWF forecasts in 2015. We train these statistical models on ECMWF analyses
from 2011 to 2014, and apply the resulting model to the forecasts. Figures V.2.9
and V.2.10 show respectively the RMSE averaged over the 365 days for the 10m
and 100m wind speed. A strong diurnal cycle of the performances of both ECMWF
forecasts and downscaled statistical predictions of the 10m wind speed is evidenced.
This diurnal cycle seems to be observed also for 100m wind speed forecasts, but with
a less important amplitude. As the data set is trained on the ECMWF analyses, it
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seems that diurnal cycle is better represented in ECMWF analyses than in ECMWF
forecasts. This could be explained by the data assimilation system that may help to
correct errors coming from NWP model parameterizations.

Adding the dependence with the direction (LRdir
SW ) allows for a significant re-

duction of the RMSE. Random forests RFA show the best performance. Here, the
robustness of the nonparametric method proves to be a very valuable feature. For
100m wind speed forecasts, all statistical models are quite similar.

For both 10m and 100m wind speed forecasts, statistical downscaling models
allow for significant improvements, at any lead time from 3 hours to 5 days. Here,
the models were trained on analyses, which may not be optimal. Training directly
on ECMWF forecasts, for each lead time separately, should deeply improve results,
by removing the displayed diurnal cycle, and also letting the increase in RMSE with
the lead time be less sharp.
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Figure V.2.9 – RMSE, computed between the 10m observed wind speed, and the
10m forecast wind speed, averaged over the entire set of forecasts
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Figure V.2.10 – RMSE, computed between the 100m observed wind speed, and the
100m forecast wind speed, averaged over the entire set of forecasts
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Chapter V.3

Downscaling wind speed: data over
France

This chapter is the result of a collaboration with Mathilde Mougeot and Riwal
Plougonven, in the frame of the 3-year projects of Rebeca Doctors and Lishan Liao
and the Master 1 internship of Naveen Goutham at École Polytechnique. The corre-
sponding article Goutham et al. (2021) has been published in the journal Boundary-
layer meteorology.

V.3.1 Introduction

As mentioned in Chapter V.2, numerical weather prediction models constitute an
important source of information on surface flows. However, as the latter are turbulent
and strongly influenced by small-scale features absent in the limited representation
of these models, the modeled surface wind components, when compared with local
observations at a given site, generally contain large errors, including biases. As
investigated in Chapter V.2, for a given site where observations are available for a
long enough interval, these observations may be used to correct the biases and errors
of the model for that location. The purpose is to refine the determination of low-level
wind speed, at locations where observations are available, using statistical learning
models to link information from a numerical weather prediction model and from past
observations.

245



Chapter V.3 – Downscaling wind speed: data over France

We aim to explore and improve the estimation for the local 10m wind speed
from recent outputs of the ECMWF model over stations in France sampling different
geographical settings. Specific issues considered are the performance of the numerical
weather prediction model and the improvement gained by using parametric and
nonparametric models.

The data and methods used are described in Section V.3.2. The performance of
the numerical weather prediction model and of its combinations with different post-
processing models are assessed and compared in Section V.3.3. In Section V.3.4,
focusing on the best model, we reduce the number of explanatory variables and iden-
tify what seems, for all stations, to constitute the most informative list of variables.
Finally, we discuss the issue of forecasting for one station in Section V.3.5.

V.3.2 Data and Methodology

The data includes wind speed observations and, as in Chapter V.2, numerical
weather prediction model outputs from ECMWF.

The observations come from the Integrated Surface Database, which is a global
database of observed meteorological data available at an hourly time resolution
(Smith et al., 2011). About 400 weather stations in France provide their meteoro-
logical data in the Integrated Surface Database. In order to better train the models,
we retained stations with over 90% of available data for a span of eight years from
2010 to 2017. The retrieved observed data comes from 171 stations well distributed
across mainland France and Corsica.

The aim is to model the 10m wind speed at these meteorological stations in France
from the outputs of the ECMWF model. The ECMWF explanatory variables are
presented in Tables V.3.1 to V.3.3 below. The local surface wind speed is related to
the synoptic-scale flow. The large-scale (synoptic) systems like depressions, fronts,
and storms are described in terms of physical variables at different pressure levels
in Table V.3.1. However, the intra-day wind speed variations that occur in the
boundary layer may not be fully explained by the synoptic flows. Table V.3.2 collects
variables that convey information about the stability of the boundary layer. Other
important variables that convey information about the vertical-exchange processes
in the boundary layer are the vertical wind shear and the temperature gradient
(Table V.3.3).
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Pressure level (hPa) Variable Unit
1000/925/850/500 Zonal wind component m.s−1

1000/925/850/500 Meridional wind component m.s−1

1000/925/850/500 Geopotential height m2 s−2

1000/925/850/500 Divergence s−1

1000/925/850/500 Vorticity s−1

1000/925/850/500 Temperature K

Table V.3.1 – Explanatory variables, at different pressure levels

Altitude Variable Unit
10m/100m Wind speed m.s−1

10m/100m Zonal wind component m.s−1

10m/100m Meridional wind component m.s−1

2m Temperature K
Surface Skin temperature K
− Mean sea level pressure Pa

Surface Surface pressure Pa
− Boundary layer height m
− Boundary layer dissipation J.m−2

Surface Surface latent heat flux J.m−2

Surface Surface sensible heat flux J.m−2

Table V.3.2 – Explanatory variables retrieved from surface variables of the numerical
weather prediction model. The last three variables are accumulated over the last six
hours.

Vertical level Variable Unit
10m to 100m Bulk wind shear m.s−1

1000hPa to 925hPa Bulk wind shear m.s−1

1000hPa to 925hPa Temperature difference K

Table V.3.3 – Explanatory variables computed as differences in the vertical between
two height or pressure levels
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The data used in the statistical models for a specific station is obtained via linear
interpolation from the closest grid points of the ECMWF model surrounding that
station. We also computed north–south, east–west, and diagonal gradients around
each station, estimated using finite differences. We found that the north–south and
east–west gradients were more significant than the diagonal gradients. Hence, for
each variable, we retained its value interpolated at the station location and the two
gradients (north–south and east–west) to feed into the machine learning models.
This leads to 117 explanatory variables for each station.

The time period covered by the data set is April 2010 – December 2017. In
order for the observed data to match the six-hour frequency of the ECMWF model
outputs, we only consider two-hour averaging windows centered at 00:00, 06:00, 12:00
and 18:00 UTC.

The ability of the ECMWF model to represent the observed wind speed is quan-
tified by the root mean square error (RMSE) denoted by Ew,obs, and Pearson’s cor-
relation coefficient ρw,obs, defined as follows:

Ew,obs =

√∑
t∈S
(
ywt − yobst

)2

|S|
, ρw,obs =

∑
t∈S (ywt − ȳw)

(
yobst − ȳobs

)√∑
t∈S (ywt − ȳw)2

√∑
t∈S
(
yobst − ȳobs

)2
.

Here, w stands for the time series from the ECMWF analyses and obs for the observed
wind speed, S denotes the set of indices of the data, |S| the number of elements of
S, and ȳ = 1

|S|
∑

t∈S yt is the mean of the time series y.

Figure V.3.1 shows the RMSE and correlation coefficient for the 10m wind speed
between the observations and the ECMWF analyses, for all the meteorological sta-
tions under consideration in France. Figure V.3.1 (a) shows that the RMSE of the
wind speed from the ECMWF analyses exceeds 1.0m.s−1 for most of the inland sta-
tions: the minimum at an individual station is 0.95m.s−1, the maximum is 4.58m.s−1.
The average over all stations is 1.74m.s−1, with a standard deviation of 0.79m.s−1.
The coastal stations in the west, south and Corsica have a higher RMSE, greater
than 2m.s−1. In Figure V.3.1 (b), we see that the correlation coefficient for inland
stations in the north is about 0.8, whereas for stations in the south and along the
coasts it hardly reaches 0.7 and can be as low as 0.4. Note that, because of the higher
RMSE and the lower correlation coefficient found along the coasts, special attention
was paid to these stations during interpolation to check if the location of grid points
from the model has an effect. Upon careful examination, it was noticed that the
location of grid points has no significant influence. The poorer performance may be
due to factors that contribute to the difficulty of modeling wind speed at the coast.
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These include the discontinuity in surface conditions and the ensuing complexity of
the boundary layer, and also possibly local phenomena such as sea breeze.

We computed the annual averages of the RMSE and correlation coefficient of
the ECMWF analyses over all stations (see Figure V.3.2). An improvement of the
performance of the model in the year 2014 is observed, resulting from changes in
the ECMWF model, notably a modification of the parametrization of surface drag
and the increase of the vertical resolution from 91 to 137 levels in June 2013 (Rid-
daway, 2013). Nevertheless, these changes did not have an impact on the correlation
coefficient. The average RMSE and the correlation coefficient for the time period
2010–2017 are 1.74m.s−1 and 0.68 respectively. Extreme values for the RMSE are
1.82m.s−1 (in 2010) and 1.68m.s−1 (in 2016), and the average is 1.74m.s−1. The
correlation coefficient is stable during this period. The median of the RMSE for all
stations is 1.42m.s−1, smaller than the average, as can be expected for a positive
variable which can be very large in locations where the model performs very poorly.
These errors are significant given that the time-averaged wind speed averaged over
all stations is 3.4m.s−1. More precisely, we calculated the ratio of the RMSE to the
time-averaged wind speed for each station. The overall mean of these ratios is 0.52,
implying that any significant decrease of the error is worthwhile.

Figure V.3.2 – RMSE (m.s−1) of the ECMWF analyses for the wind speed at 10m
over all the stations in France for the years 2010 to 2017.
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(a)

(b)

Figure V.3.1 – (a) RMSE and (b) correlation coefficient for the 10m wind speed
between the observations and the ECMWF analyses
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V.3.3 Comparison of different parametric and non-
parametric models

The parametric models implemented are linear regression with all explanatory
variables (hereafter LRall), linear regression with stepwise selection of variables
(hereafter LRstep), and with `1-regularization (hereafter Lasso). The nonparametric
models are random forest (hereafter RF) and gradient boosting (hereafter GB) with
all variables, and k-nearest neighbors (hereafter k-NN) using the 10most important
explanatory variables provided by the random forest model. Results from another
k-NN model, with only five wind speed-related explanatory variables, were not sat-
isfactory and are not reported here. The models are summarized in Table V.3.4.
Random forest models with less variables are discussed in Section V.3.4. In order to
train and test the different models, 10-fold cross-validation is used.

Machine learning model Name
Linear regression with all variables LRall

Linear regression with stepwise selection LRstep
Linear regression with Lasso regularization Lasso

Random forest with all variables RF
Gradient boosting with all variables GB
k-nearest neighbors, 10 variables k-NN

Table V.3.4 – The different models

V.3.3.1 Modeling performances for one station

We first study one station, Le Havre-Octeville (49.53◦N, 0.08◦E). The station is
located on the coast, in northern France, and is the northernmost station on the
Greenwhich meridian. Figure V.3.4 displays the time series and scatter plot of 10m
observed and modeled wind speed over a few weeks in 2010. This station was chosen
as qualitatively representative of the overall results, with a rather pronounced, but
not exceptional, improvement. Other individual stations typically display the same
ordering of the performances of the different models, but with rather weaker contrasts
for inland stations, and with comparable or greater improvements for many coastal
stations. The 10m wind speed from the ECMWF analyses shows a significant error,
as illustrated in the time series (purple line of Figure V.3.4). The machine learning
models (green and yellow lines in the time series) closely follow the observed wind

251



Chapter V.3 – Downscaling wind speed: data over France

speed (black line in the time series), suggesting improvements for the RMSE and the
correlation coefficient over the ECMWF analyses. The scatter plot shows that the
ECMWF model usually overestimates the wind speed over 4m.s−1 as can be seen
from the scatter plot (represented by purple dots). The implemented models gener-
ally underestimate the wind speed over 5m.s−1 (illustrated by green and yellow dots).
Figure V.3.3 shows the RMSE and correlation coefficient of all the models (over 8
years) for the reconstruction of the 10m wind speed at the considered station. The
RMSE of the ECMWF analyses is high at 2.3m.s−1 whereas the correlation coeffi-
cient is low at about 0.7. All the implemented models imply improvement, resulting
in RMSE reduced to values between 1.05m.s−1 and 1.35m.s−1, and the correlation
coefficient increased to values between 0.73 and 0.86. Among the implemented mod-
els, three groups can be distinguished. The first group includes the linear regression
models which reduce the RMSE by about 44% and increase the correlation coeffi-
cient by about 6%. The second noticeable group consists of the tree-based machine
learning models, which give the best performance, reducing the RMSE by 55% and
increasing the correlation coefficient by 22%. The performance of the k-NN model
is intermediate between the first and the second groups with an improvement in the
RMSE and the correlation coefficient by 50% and 15% over the ECMWF analyses.
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Figure V.3.3 – (a) RMSE and (b) correlation coefficient of all models for the station
Le Havre-Octeville in France
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(a)

(b)

Figure V.3.4 – Wind speed at 10m at Le Havre-Octeville station: (a) time series of
the observed and modeled wind speed and (b) observed vs modeled wind speed
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V.3.3.2 Performance of the parametric and nonparametric
models over France

Figure V.3.5 displays the RMSE and the correlation coefficient of all models for
all the stations in France. All the models generally perform better than the ECMWF
analyses in representing the 10m wind speed. Overall, the parametric models (LRall,
LRstep, and Lasso) reduce the RMSE relative to the ECMWF analyses by 25% and
increase the correlation coefficient by 8%; all the models reduce the inter-quartile
range of the RMSE by approximately 50% and that of the correlation coefficient
by 20%. For about 25% of the stations, the parametric models lead to an RMSE
lower than the minimum RMSE represented by the ECMWF model. About 25% of
the stations in the ECMWF model display a RMSE higher than the highest value
represented by the parametric models. The correlation coefficient of about 50% of the
stations in the parametric models are above the third quartile of the ECMWF model.
On the whole, the tree-based nonparametric models, such as the random forests
and gradient boosting models significantly reduce the RMSE relative to ECMWF
analyses by 33% and increase the correlation coefficient by 15%. Both reduce the
inter-quartile range of the RMSE by roughly 60% and the correlation coefficient by
50%. About 50% of the stations in the tree-based nonparametric models have RMSE
lower than the lowest value and correlation coefficient higher than the highest value
of the ECMWF model. The RMSE and the correlation coefficient of about 75% of
the stations in the random forests and gradient boosting models are well within the
first quartile and above the third quartile of the ECMWF model, respectively. To
conclude, these models seem to provide positive results with minimal effort.

V.3.3.3 Geographical pattern

The improvements obtained by the machine learning models are not homoge-
neous geographically. To illustrate this, Figure V.3.6 shows the percentage change
in the RMSE and the correlation coefficient for the LRall model with respect to the
ECMWF analyses for stations in France. It is clear that the LRall model performs
significantly better than the ECMWF model everywhere. The strongest reductions
in the RMSE of at least 30% are present on the western coast, the southern coast, and
Corsica where the ECMWF analyses perform poorly (see Figure V.3.1). In general,
the RMSE of inland stations decreases by 15%, with a few local stations showing
reductions of up to 60%. The correlation coefficients follow a similar pattern with
largest increases seen on the coastal stations including Corsica. On average, in-
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Figure V.3.5 – (a) RMSE and (b) correlation coefficient of all models for all the
stations in France

land stations show an increase of 6% for the correlation coefficient. The other two
parametric models show a similar pattern.

The k-NN model performs heterogeneously. The largest reductions of the RMSE
are found at the coastal stations including Corsica, whereas a few inland stations
yield increases of the RMSE relative to the ECMWF analyses. The mean reduction
of the RMSE for the k-NN model at the coastal stations is larger than that of the
parametric models. Yet because of the poor performance of the k-NN model for the
inland stations, parametric models outperform the k-NN model overall. The results
for the correlation coefficient confirm these conclusions.

The performance of tree-based models shows a pattern similar to that of the para-
metric models but with even larger improvements. Changes in RMSE and correlation
coefficients relative to the ECMWF model indicate improvement everywhere. The
largest changes are found on the western coast, the southern coast, and Corsica with
an average reduction of the RMSE of 50% and an increase of the correlation coef-
ficient of 70%. In general, the RMSE of inland stations decreases by 25% with a
few stations showing stronger reductions of up to 60%. The correlation coefficient
increases by 12% on average for the inland stations.
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(a)

(b)

Figure V.3.6 – Percentage change from ECMWF analyses to LRall model for (a)
RMSE and (b) correlation coefficient
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V.3.4 Relevance of the different explanatory vari-
ables

V.3.4.1 Reducing the list of explanatory variables

In order to develop a simplified and more explainable model, the relevance of
explanatory variables in random forests for each station in France is analyzed. It is
found that the variables relating to wind speed dominate the rank table for most of
the stations. It is also noted that the ranking of explanatory variables is unique to
each station with the importance value in every station dropping typically between
the 40th and the 50th variables. This motivated an implementation of the random
forest model with only 50 important explanatory variables specific to each station
(compared with 117 explanatory variables). This model is named RF50. The perfor-
mance of the model is not degraded, rather very slightly enhanced; more importantly,
it is found that over 50% of the original explanatory variables do not provide useful
information. Redundancy in the explanatory variables results from the very high
correlation between many explanatory variables. The RF50 model reduces the list
of explanatory variables for each station, but in a way specific to each station, and
it therefore requires a station-specific analysis.

A more generic approach should use the same list of explanatory variables for all
the stations. Figure V.3.7 shows the number of occurrences of the 50 most impor-
tant explanatory variables for stations in France, obtained from the analysis of the
lists of 50 most important variables for the 171 stations. For readability, we indicate
with colors the categories of variables. Note that the explanatory variables based on
pressure (to be more precise on the geopotential taken on isobaric surfaces) include
the horizontal gradients. These gradients approximate the geostrophic wind compo-
nents, where geostrophic wind denotes the theoretical wind that would result from
an exact balance between the Coriolis force and the pressure gradient force. Hence,
the gradients are very related to wind components.

Let us mention that 107 of the original 117 explanatory variables appear at least
for one station’s list of 50 most important variables.

A model based on a more generic approach named RF50C with 50 explanatory
variables common to all stations was developed and it performs as well as RF50
(Figure V.3.8).

257



Chapter V.3 – Downscaling wind speed: data over France

Figure V.3.7 – Number of occurrences of explanatory variables for the RF50 model
for all the stations in France

To investigate how much the list of variables can be shortened, another model
RF25C, with the 25 most important explanatory variables was developed. At this
point, the performance begins to degrade marginally: the RF25C model performs as
well as the full model, with only a 1% increase of the RMSE overall. However, the
RF10C model with the 10 most important variables not only produces an increase of
the RMSE by 8% and a decrease of the correlation coefficient by 2%, but it also yields
an increase of the inter-quartile range for the RMSE and the correlation coefficient
by 13% and 11%, respectively. Nonetheless, the RF10C model performs significantly
better than all the parametric models described in Section V.3.3.2.

Further analyzing the list of explanatory variables, we find that the wind speed
at 100m (F100), wind speed at 10m (F10) and bulk wind shear between 10m and
100m are the three most significant variables that provide crucial information from
the synoptic flow at any given location. However, using only these three variables
(RF3C) significantly degrades the performance of the model.
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RF RF50 RF50C RF25C RF10C RF3C RF RF50 RF50C RF25C RF10C RF3C

Figure V.3.8 – (a) RMSE and (b) correlation coefficient of the model using random
forests with different lists of explanatory variables for all the stations in France

Regarding the spatial distribution, the percentage change of the RMSE and the
correlation coefficient of the RF25C model with respect to the ECMWF analyses is
shown in Figure V.3.9. From Figure V.3.9 (a) it can be noticed that the RMSE of
inland stations in the north of France is reduced by 30% on average. The RMSE
for stations in the inland south decreases on average by 40%. The largest decreases
of up to 80% are found for coastal stations in the west, the south and Corsica.
Results for the correlation coefficient in Figure V.3.9 (b) confirm these conclusions.
The correlation coefficient for stations in the inland north and inland south show
an increase of 15% and 22%, respectively, and for coastal stations the correlation
coefficient shows an increase of 60%.

In conclusion, the full random forest model used an unnecessarily long list of
explanatory variables, which is not detrimental to its performance. The RF50 model
with 50 explanatory variables specific to each station performs slightly better. The
RF50C model with 50 common explanatory variables performs as well as the RF50
model but is generic in nature. The RF25C model is simple and robust with just 25
important explanatory variables and is comparable to the full model in performance.
Hence, the RF25C model is a good compromise between performance and simplicity.
It is instructive to analyze the list of 25 explanatory variables retained.
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(a)

(b)

Figure V.3.9 – Percentage change from ECMWF analyses to RF25C model for (a)
RMSE and (b) correlation coefficient
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V.3.4.2 List of significant variables

The following are the most significant explanatory variables.

Top 9 list:
— The two horizontal wind components and the wind speed at 10m and 100m

above ground (6 variables),
— The wind shear between 10m and 100m (1 variable),
— The two horizontal wind components at 500hPa (2 variables).

Top 25 list (in addition to the previous 9 variables):
— The horizontal wind components at 850 hPa and 925 hPa (4 variables),
— The horizontal components of the gradients of geopotential at 925hPa, 850hPa

and 500hPa (6 variables),
— The horizontal components of the gradients of mean sea level pressure (2 vari-

ables),
— Skin temperature,
— Temperature at 2m,
— The boundary-layer height,
— One of the components of the gradient of surface pressure.
The top 25 list includes 9 variables corresponding to components of the gradi-

ent of geopotential or pressure. These variables are strongly correlated to the wind
components because geostrophic balance is an excellent approximation at these lat-
itudes. Yet, it is noteworthy that the RF10C model, which does not include these
explanatory variables, did not perform as well as the RF25C model. Finally, it is
interesting that few variables describing temperature and boundary-layer parameters
appear in the top 25 list. As seen from Figure V.3.7, variables ranked between 25
and 35 mainly describe the temperature and the boundary layer, and the comparable
performances of the RF25C and the RF50C models suggest that their contribution is
minor. To conclude, it is striking that the most relevant variables almost all describe
the flow (wind components, wind speed, geopotential gradient). It was expected that,
given the importance of thermal and convective processes in the boundary layer, the
inclusion of information on the temperature and stratification would be helpful. It
turns out that this information does not significantly modify the performance of the
models. A possible explanation is that the numerical weather prediction model of
the ECMWF already describes rather well the surface flow, and the vertical shear
in the first 100m already encompasses the relevant information on the stratification
and mixing in the boundary layer.
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V.3.4.3 Bias

Let us assess the performance of the machine learning models in terms of re-
duction of the bias present in the ECMWF analyses. The bias of the surface wind
speed from the ECMWF analyses is shown in Figure V.3.10 (a). The locations of
the largest RMSE (see Figure V.3.1) coincide with those of the largest bias. There
is mostly a positive bias over coastal stations. There are also a few inland stations
displaying a significant negative bias, associated with unusually large RMSE. Over
the whole set of stations, the bias is on average 0.47m.s−1. For individual stations,
the biases range from −1.61 to 2.50m.s−1. As expected, the machine learning mod-
els prove very efficient at removing the bias. As an illustration, Figure V.3.10 (b)
displays the bias for the RF25C model, which is uniformly negligible, the average
bias being 0.004m.s−1. The bias for individual stations is very weak, ranging for all
but two stations from −0.01 to 0.02m.s−1. The two outliers are stations in the Alps,
with biases between 0.02m.s−1 and 0.04m.s−1.

V.3.5 Exploratory forecast test

This section intends to improve the forecasts of the surface wind speed from the
outputs of the ECMWF model, as investigated at the end of Chapter V.2. Note that
this provides only a lower bound on the potential accuracy of forecasts, because the
machine learning models are not trained on the forecasts.

The ECMWF high-resolution global-forecast model is run twice a day at a base
time of 00:00 and 12:00 UTC and each run forecasts the weather up to 10 days. We
limit this study to the station Le Havre-Octeville, already used in Section V.3.3.1.
Appropriately, the ECMWF forecast data were retrieved at lead times of 0h, 3h, 6h,
12h, and 24h, where 0h corresponds to that of the analyses. The machine learning
models used to reconstruct the wind speed from these forecasts are the same as
described and used previously, they have been trained using model outputs from the
analyses.Figure V.3.11 shows the RMSE and the correlation coefficient of the wind
speed at 10m from ECMWF forecasts at various lead times for the station Le Havre-
Octeville. As seen previously, the RMSE is rather large (nearly 2.5m.s−1), and it
remains fairly constant over the first 24h of the forecast. The RF25C model trained
on the analyses is applied to the outputs of the ECMWF forecasts at lead times from
3 to 24h. The RMSE and correlation coefficient of the reconstructed wind speed are
shown in Figure V.3.12. The RMSE is dramatically reduced (down to 1.2m.s−1 or
less): the average reduction in RMSE over all the lead times is about 55%, and the
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(a)

(b)

Figure V.3.10 – Bias (m.s−1) in the surface wind speed for (a) the ECMWF analyses
and (b) the estimated surface wind speed using the RF25C model
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average increase in correlation coefficient is about 21%. Hence, the improvements
thanks to machine learning carry over to forecasts. As already mentioned in the
previous chapter, The results could be further improved by applying a model that is
trained separately for each lead time directly on the forecasts.

Figure V.3.11 – (a) RMSE (m.s−1) and (b) correlation coefficient of the ECMWF
forecast wind speed at 10m at various time horizons at Le Havre-Octeville.

Figure V.3.12 – (a) RMSE (m.s−1) and (b) correlation coefficient of wind speed at
10m from the RF25C model at various time horizons at Le Havre-Octeville
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Some other applied collaborations

This chapter briefly presents three other interdisciplinary collaborations, mainly
related to supervision activities.

V.4.1 Computer science for cancer pharmacology

The first year after having completed my PhD, I had the opportunity to partici-
pate in the supervision of the statistical part of the Computer Science PhD thesis of
Maya Alsheh-Ali, on topics applied to biology, at Université Paris Descartes. More
specifically, Maya was working with pharmacologists and she studied the structure
of tumoral images. After her PhD defense, Maya joint her family in Sweden, to hold
a position at Karolinska Institutet.

In Alsheh-Ali et al. (2013), we propose an automatic method to quantitatively
describe the spatial organization governing populations of biological objects, such as
cells, which exist in stationary histology images. The goal is to be able to compare
different tumoral models in order to evaluate potential therapies. We compare two
animal models of colorectal cancer thanks to spatial statistics tools and a functional
analysis of variance method. We obtain that there are significant differences in the
considered statistics depending on cancer model, and on the day after tumor implant.
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V.4.2 Statistical tools for phonetics

Nicolas Ballier, professor at the English Department at Université de Paris, con-
tacted me for a collaboration “statistics and linguistics”, and in particular, proposed
me to co-supervise the PhD thesis of Maëlle Amand in the frame of a call for projects
“dual-culture doctoral contracts” (contrats doctoraux double culture de l’Université
Sorbonne Paris Cité). The goal of the thesis was to study audio data, the so-called
“NECTE corpus”, from a sociological and quantitative point of view, which required a
statistical learning analysis. Now, Maëlle is assistant professor in “Phonetics, phonol-
ogy and English linguistics” at Limoges.

More precisely, the goal was to solve a vowel classification issue from recordings
from 1960s. A part of the recordings has indeed been annotated by an “expert”,
meaning that each vowel in this part has a label, assigned by ear. The question was
whether we are able to label the rest of the data using modern machine learning
techniques.

During the PhD, the statistical aspects finally deviated from the initial classifica-
tion question, and focused more on data analysis applied to sociological studies, and
associated visualization methods. Moreover, beside her main PhD subject Maëlle
was also interested, through collaborations with other students, in statistical testing
frameworks applied to studies regarding English-Language Learners.

The original statistical learning question was explored further recently, during
the end-of-study internship of Clarisse Thiard, third-year student at École Nationale
Supérieure Agronomique de Rennes (Thiard, 2021).

V.4.3 Modeling for astrophysics

Recently, I had the opportunity to collaborate with a team from the French Alter-
native Energies and Atomic Energy Commission (Commissariat à l’énergie atomique
et aux énergies alternatives, CEA) on a modeling problem in the field of radiation
belt physics.

The general purpose is the study of the Van Allen radiation belts, two zones
of energetic charged particles surrounding Earth, coming from solar wind or cos-
mic rays. The interaction in the inner magnetosphere between whistler-mode waves
and energetic radiation belt electrons results in the so-called pitch-angle diffusion
process causing electron precipitation onto the atmosphere. Here, the pitch angle
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denotes the angle between the particle’s velocity vector and the local magnetic field
vector. The process can be described by a pitch-angle diffusion or Fokker–Planck
coefficient. The computation of this parameter, relying on quasi-linear theory, is
extremely time-consuming as soon as it is performed at high temporal resolution
from satellite measurements of ambient wave and plasma properties. However, the
knowledge of pitch-angle diffusion coefficients is important for understanding the be-
havior of the Van Allen radiation belts. Using various interpolation and machine
learning strategies, our goal in Kluth et al. (2021) consists in building a global model
of pitch-angle diffusion coefficients for storm conditions based on data corresponding
to storms observed by the NASA Van Allen Probes, two robotic spacecraft dedicated
to the study of the Van Allen radiation belts.
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Chapitre VI.1

Quelques prolongements

Pour conclure, nous présentons quelques directions de recherche, sur lesquelles
nous prévoyons de travailler, à plus ou moins long terme.

VI.1.1 Courbes principales

VI.1.1.1 Propriétés de régularité supplémentaires

Une première question qui se pose naturellement est celle de la relation précise
entre la version contrainte de la définition de courbe principale, étudiée ici, et sa
version variationnelle, c’est-à-dire le problème dans lequel on considère un critère
pénalisé au lieu d’utiliser une contrainte directe de longueur. C’est alors la valeur de
la constante multiplicative devant la pénalité qui induit la longueur. L’équivalence
des deux problèmes serait par exemple appréciable d’un point de vue algorithmique.
Sinon, s’ils sont distincts, cela signifie que chaque question sur les courbes principales
pourrait en fait être traitée dans le cadre de chacune des deux formulations du
problème.

Dans l’article Delattre et Fischer (2020) (Chapitre II.3), nous exploitons la condi-
tion du premier ordre, condition de point critique. Il serait intéressant de pouvoir
également tirer profit de l’information contenue dans la condition du second ordre. De
plus, nous avons montré qu’une courbe principale est toujours injective en dimension
d = 2 : une question ouverte concerne ce qui se passe en dimension d > 2.

Un autre point consiste à se demander si l’on peut obtenir certaines informa-
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tions sur la distribution de t̂. En outre, les courbes principales pour les distributions
classiques, comme la distribution uniforme par exemple, ont une forme particulière,
rappelant un labyrinthe, avec des couloirs de largeur apparemment égale, comme
illustré par la Figure VI.1.1. Là encore, tout résultat théorique serait très instructif.

L’analogie avec la quantification vectorielle, basée sur un critère assez similaire,
pose également d’autres questions. Par exemple, en considérant la situation où la
longueur tend vers l’infini, il serait intéressant, d’un point de vue théorique, de com-
prendre s’il est possible de démontrer un résultat similaire au théorème de Zador.
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Figure VI.1.1 – Deux exemples de courbe principale avec contrainte de longueur :
(a) Loi uniforme sur le carré [0, 1]2 (b) Loi normale standard

VI.1.1.2 Vitesse de convergence en estimation avec petit bruit

À la suite de l’article Delattre et Fischer (2021) (Chapitre II.4), où nous éta-
blissons, dans un modèle additif, la convergence d’une suite de courbes empiriques
optimales vers la courbe générative sous des hypothèses faibles sur le bruit et la
courbe, nous nous intéressons à un cadre où une certaine régularité sur la courbe
inconnue et des conditions appropriées sur le bruit permettent d’obtenir une vitesse
de convergence. On observe des données distribuées selon le modèle suivant :

Xi = g(Ui) + εi, i = 1, . . . , n,

272



VI.1.1. Courbes principales

où la courbe g : [0, 1] → Rd est inconnue, les εi sont des variables aléatoires indé-
pendantes, telles que E[|εi|] ≤ m et V ar(|εi|) ≤ σ2 pour tout i = 1, . . . , n, et les Ui,
i = 1, . . . , n, sont des variables aléatoires indépendantes de loi µi ≥ cλ sur [0, 1]. On
suppose que g est rectifiable et |g(t)| = L (g) dt-a.e. De plus, on fait l’hypothèse que
reach(Img) ≥ r > 0. Pour rappel, le reach de g est le rayon maximal d’une boule que
l’on peut faire rouler le long de la courbe (Federer, 1959). Le but est de construire
dans ce contexte une suite de courbes f̂n, telle que Imf̂n converge vers Img en pro-
babilité, en distance de Hausdorff, avec la longueur L (f̂n) asymptotiquement égale
à L (g), et de calculer la vitesse de convergence associée. Il s’agit d’une convergence
au sens de la double asymptotique où la taille de l’échantillon n est grande et l’erreur
moyenne m est petite.

VI.1.1.3 Vitesse de convergence en apprentissage statistique

Nous avons obtenu une vitesse de convergence améliorée pour les courbes prin-
cipales en apprentissage statistique. Néanmoins, nous ne savons pas si cette vitesse
peut encore être améliorée. Une suite naturelle serait la recherche d’une borne infé-
rieure minimax.

VI.1.1.4 Point de vue algorithmique

Une autre direction de recherche relative à notre contexte de courbes principales
consiste à étudier les performances d’un algorithme permettant de calculer des ap-
proximations des estimateurs que nous avons définis. Pour l’instant, les résultats
que nous avons obtenus sur des exemples, en utilisant un algorithme de descente de
gradient, semblent pertinents et prometteurs.

Notons que l’implémentation de stratégies d’initialisation astucieuses représente
une question importante en soi. En particulier, il faut éviter la formation de brins
inutiles, sur lesquels aucune observation ne se projette.

À partir du cadre considéré dans Delattre et Fischer (2021) (Chapitre II.4), on
fixe V (x) = x2, et on considère la version variationnelle du critère ∆n : le critère
pénalisé est donné par

∆n(f) + λ

∫ 1

0

|f ′(t)|2dt.

Une courbe optimale basée sur cette approche variationnelle peut être approximée en
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pratique par une ligne polygonale avec k ≥ 1 sommets v1, . . . , vk ∈ Rd, en minimisant

1

n

n∑
i=1

[
min

1≤j≤k
|Xi − vj|2

]
+ λ (k − 1)

k−1∑
j=1

|vj+1 − vj|2.

Observons que les seules projections sur la ligne polygonale intervenant dans le critère
sont les projections sur les sommets v1, . . . , vk. Le calcul de v1, . . . , vk peut alors être
effectué par un algorithme de descente de gradient stochastique. Pour la sélection de
la longueur, nous faisons croître le coefficient λ jusqu’à ce qu’un minimum soit atteint
pour le critère global utilisé pour définir la longueur L̂n (voir Theorem II.4.3.1). On
peut noter que la définition de L̂n est beaucoup plus simple, par exemple, lorsque c =
1. Dans ce cas particulier,Mc contient une seule loi de probabilité, la loi uniforme,
de sorte que la distance à évaluer est en fait la distance à la loi uniforme. Dans ce cas,
on peut choisir pour D la distance de Wasserstein L1, ce qui correspond simplement
à la distance L1 entre fonctions de répartition.

VI.1.1.5 Autres objets géométriques en statistique

Nous souhaitons également étudier d’autres « objets principaux », tels que les
graphes ou les surfaces, mais aussi aborder diverses questions reliant la statistique
et la géométrie, un sujet qui sera bientôt particulièrement mis en lumière, lors du
Trimestre Thématique« Geometry and Statistics in Data Sciences », qui se tiendra
à l’Institut Henri Poincaré à l’automne 2022.

Par exemple, nous chercherons à définir des contraintes appropriées permettant
d’étendre les résultats de Delattre et Fischer (2020) aux surfaces, et nous considé-
rerons l’estimation de surfaces. D’une manière générale, la perspective de nouvelles
collaborations avec différents collègues intéressés par les domaines de la statistique
et de la géométrie est extrêmement motivante.

VI.1.2 Classification non supervisée, déconvolution

VI.1.2.1 Clustering spectral

Une collaboration sur le clustering spectral a débuté avec Ilaria Giulini (LPSM,
Université de Paris) et Mathilde Mougeot. Notre objectif est double. La première pré-
occupation consiste à valoriser en pratique tout le potentiel de l’approche introduite
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dans Giulini (2016), avec choix adaptatif du nombre final de classes, cette procédure
ayant été principalement étudiée d’un point de vue théorique jusqu’à présent. Un
deuxième projet consiste à employer l’algorithme de clustering spectral obtenu pour
effectuer une agrégation de partitions dans plusieurs contextes. En effet, le cluste-
ring spectral, qui exploite les éléments propres d’une matrice laplacienne construite
à partir d’une matrice de distances, se prête très bien à l’agrégation : il s’agit de
construire une matrice de similarité basée sur le nombre de fois où des couples d’ob-
servations ont été classés dans un même groupe par les méthodes de partitionnement
préliminaires.

L’objectif peut être d’obtenir une moyenne, un résumé de l’information, ce qui
est pertinent dans des situations pratiques où plusieurs partitions différentes appa-
raissent naturellement, ou de conférer une certaine robustesse au partitionnement,
puisqu’une partition construite en combinant différentes distances aura la propriété
d’être relativement robuste par rapport à la mesure de proximité.

De plus, dans un contexte de grande dimension, appliquer une certaine méthode
de partitionnement à des projections des données est une idée naturelle. Il est alors
intéressant d’étudier, d’un point de vue théorique et pratique, l’apport d’une agré-
gation de partitions obtenues pour plusieurs dimensions de projection relativement
petites.

VI.1.2.2 Déconvolution Wasserstein

Pour compléter les résultats de déconvolution de l’article Dedecker et al. (2015)
(Chapitre III.4), pour des lois de probabilité ordinairement régulières, nous nous
intéressons au cas de la dimension d > 1. Une extension de nos résultats pourrait
s’appuyer sur une inégalité obtenue par Fournier et Guillin (2015), qui semble ap-
propriée pour obtenir des vitesses de convergence minimax en toute dimension.

VI.1.3 Agrégation

VI.1.3.1 Données fonctionnelles et de grande dimension

Dans de nombreuses applications, les observations à traiter sont de grande di-
mension ou fonctionnelles. Nous prévoyons d’étudier l’adaptation de nos stratégies
de combinaison d’estimateurs à ces cadres. Une première tentative pour aborder le
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cas de la grande dimension, utilisant des projections aléatoires, est proposée dans
la thèse de doctorat de Sothea Has, co-encadré avec Mathilde Mougeot (Has, 2021).
Plusieurs idées, reposant sur l’introduction de distances plus adaptées dans les poids,
ou sur une sélection de variables préliminaire, basée par exemple sur une analyse des
corrélations entre la variable cible et les différentes variables explicatives, méritent
d’être explorées. Par ailleurs, une collaboration a débuté avec Pamela Llop (Universi-
dad Nacional del Litoral, Argentine) pour étendre notre procédure d’agrégation aux
données fonctionnelles.

VI.1.3.2 Contexte de données massives

Nous réfléchissons également à l’adaptation de notre méthode dans une situation
de données massives. En effet, être obligé, pour construire les poids, de vérifier des
conditions impliquant toutes les observations va poser problème lorsque la taille de
l’échantillon devient très grande. À cet égard, des stratégies de sous-échantillonnage
peuvent être envisagées, comme initié lors du stage de Master 1 d’Adam Mourjane,
élève de deuxième année à l’École Normale Supérieure (Mourjane, 2021).

VI.1.4 Collaboration en physique pour le climat

La collaboration avec Riwal Plougonven va se poursuivre, notamment à travers
notre projet “Guider les paramétrisations des modèles de climat par le triptyque
observations - IA - simulations”, qui vient d’être accepté dans le cadre d’un appel à
projets de l’Institut des Mathématiques pour la Planète Terre (IMPT). En bref, notre
objectif est d’améliorer la description des ondes de gravité internes dans les modèles
de climat en introduisant une méthodologie d’apprentissage statistique comme dans
Alonzo et al. (2018); Goutham et al. (2021) (Chapitres V.2 et V.3). En effet, dans
l’atmosphère, les ondes de gravité internes sont des mouvements à très petite échelle
qui sont difficiles à intégrer dans les modèles climatiques. Cependant, elles jouent un
rôle crucial dans la circulation atmosphérique au-dessus de 15-20 km. Dans le cadre
de notre projet, nous disposerons d’un jeu de données précieux dans ce contexte,
provenant de mesures par ballons pressurisés stratosphériques, et nous utiliserons
des méthodes statistiques pour estimer les ondes de gravité grâce aux observations
des ballons, à partir de la connaissance de la circulation à grande échelle, telle qu’elle
serait décrite par un modèle climatique.
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Some extensions

As a conclusion to this manuscript, we present some directions for future research,
on which we plan to work, in the long or short term.

VI.2.1 Principal curves

VI.2.1.1 Additional regularity properties

A issue of interest is to learn about the relationship between the constrained
version of the principal curve definition, studied in this document, and its variational
counterpart, that is the problem in which, instead of using a direct length-constraint,
a penalized criterion is considered, with the multiplicative weight on the length
penalty as smoothness parameter. For instance, if the two problems turn out to be
equivalent, it may be nice from an algorithmic point of view. Otherwise, if they
are distinct, it means that each question about principal curves could actually be
addressed under each of the two problem formulations.

In Delattre and Fischer (2020) (Chapter II.3), we exploit the first order condition
of being a critical point. It would be interesting to be able also to take advantage of
the information contained in the second order condition. Moreover, we have shown
that a two-dimensional principal curve is always injective. An open question concerns
what happens in dimension d > 2.

Another problem is whether some information can be obtained about the dis-
tribution of t̂. Furthermore, principal curves for classical distributions, such as the
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uniform one for example, have a particular shape, reminding a labyrinth, with corri-
dors of seemingly equal width, as illustrated in Figure VI.2.1. Again, any theoretical
result would be very informative.

The analogy with vector quantization, based on a quite similar criterion, also
brings further questions. For instance, considering the situation where the length
tends to infinity, it would be interesting, from a theoretical point of view, to under-
stand if a result of the kind of Zador’s Theorem can be shown.
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Figure VI.2.1 – Two examples of principal curves with length constraint: (a) Uniform
distribution over the square [0, 1]2 (b) Standard Gaussian distribution

VI.2.1.2 Rates of convergence in estimation under small noise

As a continuation of the article Delattre and Fischer (2021) (Chapter II.4), where
we establish, in an additive model, the convergence of a sequence of empirically
optimal curves to the generative curve under weak assumptions on the noise and on
the curve, we are interested in a framework where some regularity on the unknown
curve and appropriate conditions on the noise allow to derive rates of convergence .
We observe data distributed according to the following model:

Xi = g(Ui) + εi, i = 1, . . . , n,
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where the curve g : [0, 1] → Rd is unknown, the εi are independent random vari-
ables such that E[|εi|] ≤ m and V ar(|εi|) ≤ σ2 for every i = 1, . . . , n, and the Ui,
i = 1, . . . , n, are independent random variables with distribution µi ≥ cλ on [0, 1].
We assume that g is rectifiable and |g(t)| = L (g) dt-a.e. Moreover, we suppose
that reach(Img) ≥ r > 0. Recall that the reach of g is the maximal radius of a
ball rolling along the curve (Federer, 1959). The aim is to build in this context a
sequence of curves f̂n such that Imf̂n converges in probability to Img, in Hausdorff
distance, with the length L (f̂n) asymptotically equal to L (g), and to compute the
rate of convergence. Here, convergence is to be understood in the sense of the double
asymptotic where the sample size n is large and the expected error m is small.

VI.2.1.3 Rate of convergence in statistical learning

We have obtained an improved rate of convergence for principal curves in sta-
tistical learning. Nevertheless, we do not know whether this rate can be further
improved. A natural continuation is to search for a minimax lower bound.

VI.2.1.4 Computational point of view

Another research direction about our principal curve context is to study the
performance of an algorithm allowing to compute estimators. For now, the results
obtained on examples using a gradient descent algorithm seem relevant and promis-
ing.

Note that designing smart initialization strategies is a important question in itself.
In particular, the formation of unnecessary strands, without observations projecting
onto it, should be avoided.

Starting from the framework in Delattre and Fischer (2021) (Chapter II.4), set
V (x) = x2, and consider the variational version of the criterion ∆n: the penalized
criterion is given by

∆n(f) + λ

∫ 1

0

|f ′(t)|2dt.

Based on this variational approach, an optimal curve may be approximated in prac-
tice by a polygonal line with k ≥ 1 vertices v1, . . . , vk ∈ Rd, by minimizing

1

n

n∑
i=1

[
min

1≤j≤k
|Xi − vj|2

]
+ λ (k − 1)

k−1∑
j=1

|vj+1 − vj|2.
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Observe that the only projections onto the polygonal line involved in the criterion
are projections onto the vertices v1, . . . , vk. The computation of v1, . . . , vk may then
be performed by a stochastic gradient descent algorithm. For the length selection,
we let the weight λ grow until a minimum is reached for the global criterion used
for defining the length L̂n (see Theorem II.4.3.1). Note that the definition of L̂n is
much simpler, for instance, if c = 1. In this particular case, Mc contains a single
distribution, the uniform one, so that the distance to be assessed is the distance to
the uniform distribution. In this case, the L1 Wasserstein metric may be chosen for
the distance D, which simply corresponds to the L1 distance between cumulative
distribution functions.

VI.2.1.5 Other geometric objects in statistics

We will also focus on further principal objects, such as graphs or surface, as
well as on various questions linking statistics and geometry, a topic which will be in
the spotlight soon, at the Institut Henri Poincaré Thematic Quarter “Geometry and
Statistics in Data Sciences” in fall 2022.

For instance, we will try to define appropriate constraints allowing to extend the
results in Delattre and Fischer (2020) to surfaces, and we will investigate estimation
of surfaces. More generally, the possibility of starting new collaborations with differ-
ent colleagues interested in the fields of statistics and geometry is very motivating.

VI.2.2 Clustering, deconvolution

VI.2.2.1 Spectral clustering

A collaboration about spectral clustering has started with Ilaria Giulini (LPSM,
Université de Paris) and Mathilde Mougeot. Our goal is twofold. The first concern
consists in bringing out the full practical potential of the clustering approach intro-
duced in Giulini (2016), with adaptive choice of the final number of clusters. Indeed,
this procedure has mainly been studied from a theoretical point of view up to now.
A second project is to employ the obtained spectral clustering algorithm to perform
clustering aggregation in several contexts. Indeed, spectral clustering, which exploits
the eigenstructure of a Laplacian matrix built from a distance matrix, lends itself
very well to aggregation via the construction of a similarity matrix encoding how
often pairs of points have been clustered together by preliminary methods.
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The aim may be to obtain an average, a summary of the information, which
is relevant in practical situations in which several instances of clustering naturally
emerge, or to enhance a certain robustness of the partitioning, since a partition built
by combining different distances will have the property of being relatively robust
with respect to the proximity measure.

Furthermore, in a high-dimensional context, applying a certain clustering method
to projections of the data is a natural idea. It is then worth studying, from a theo-
retical and from a computational point of view, the benefit of aggregating clustering
results obtained for several small dimension projections.

VI.2.2.2 Wasserstein deconvolution

To complete the deconvolution results in Dedecker et al. (2015) (Chapter III.4),
for ordinary smooth distributions, we are interested in the dimension d > 1 situation.
An extension of our results could be based on an inequality obtained by Fournier
and Guillin (2015), which seems appropriate for deriving minimax convergence rates
in any dimension.

VI.2.3 Aggregation

VI.2.3.1 High-dimensional and functional data

In many applications the observations to be processed are high-dimensional or
functional data. We plan to study adaptation of our combining strategies to these
frameworks. A first attempt to address the high-dimensional case, using random
projections, is proposed in the PhD of Sothea Has, co-supervised with Mathilde
Mougeot (Has, 2021). Several ideas, relying on the introduction of well-suited dis-
tances in the weights, or on a preliminary feature selection, based for example on an
analysis of the correlations between the output and the different explanatory vari-
ables, seem worth exploring. Besides, a collaboration has started with Pamela Llop
(Universidad Nacional del Litoral, Argentina) to extend our aggregation procedure
to functional data.
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VI.2.3.2 Big data framework

We are also thinking about adapting our method to the big data situation. Indeed,
checking conditions involving all data points to construct our weights could be in-
tractable as soon as the sample size becomes very large. In this regard, sub-sampling
strategies may be considered, as was initiated during the Master 1 internship of Adam
Mourjane, second-year student at École Normale Supérieure (Mourjane, 2021).

VI.2.4 Collaboration in physics for climate

The collaboration with Riwal Plougonven will go on, in particular through our
recent accepted project “Triptych observations - AI - simulations to guide the pa-
rameterizations of climate models” in the frame of the Institute of Mathematics for
Planet Earth (Guider les paramétrisations des modèles de climat par le triptyque
observations - IA - simulations, Institut des Mathématiques pour la Planète Terre,
IMPT). In short, our purpose is to improve the description of internal gravity waves
in climate models by introducing a statistical learning methodology as in Alonzo
et al. (2018); Goutham et al. (2021) (Chapters V.2 and V.3). Indeed, in the atmo-
sphere, internal gravity waves are very small-scale movements that are difficult to
integrate into climate models. However, they play a crucial role in the atmospheric
circulation above 15-20 km. In the frame of our project, we will have at hand a
valuable data set in this context, coming from balloon measurements, and we will
use statistical methods to estimate gravity waves thanks to the balloon observations,
from the knowledge of the large-scale flow, as it would be described by a climate
model.
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