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Résumé

L’homologie de Hochschild a été introduite par Gerhard Hochschild en 1945. Elle est un invariant im-
portant d’une algèbre associative sur un corps k. La définition s’étend facilement des k-algèbres aux
k-catégories et aux k-catégories différentielles graduées (=dg-catégories). Les catégories des singular-
ités ont été découvertes par Buchweitz dans un contexte algébrique en 1986 et redécouvertes par Orlov
dans un contexte géométrique en 2003. Dans cette thèse, nous étudions l’homologie de Hochschild des
dg-catégories qui enrichissent canoniquement la catégorie dérivée et la catégorie des singularités d’une
algèbre de dimension finie. L’un de nos résultats principaux affirme que l’homologie de Hochschild du dg-
enrichissement de la catégorie des singularités est calculée par le complexe de Hochschild double, qui est
issu de la fusion du complexe de Hochschild classique et de son k-dual. Nous rapportons aussi des appli-
cations de l’homologie de Hochschild et de l’homologie cyclique dans l’étude des structures de Calabi–Yau
relatives et des complétions de Calabi–Yau relatives suivant des travaux récents de Brav–Dyckerhoff et
Yeung.

Mots-clé. Homologie de Hochschild, homologie cyclique, catégorie dérivée, catégorie différentielle graduée,
catégorie des singularités.
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Abstract

Hochschild homology was introduced by Gerhard Hochschild in 1945. It is an important invariant of an
associative algebra over a field k. The definition extends from k-algebras to k-categories and further to
differential graded (=dg) categories. Singularity categories were first introduced by Buchweitz in 1986 in
an algebraic setting and rediscovered by Orlov in 2003 in a geometric setting. In this thesis, we study the
Hochschild homology of the canonical differential graded categories which enhance the bounded derived
category and the singularity category of a finite-dimensional algebra. One of our main results states
that Hochschild homology of the dg enhanced singularity category is computed by the double Hochschild
complex, which is spliced together from the classical Hochschild complex and its k-dual. We also report
on applications of Hochschild and cyclic homology in the study of relative Calabi–Yau structures and
relative Calabi–Yau completions following recent work by Brav–Dyckerhoff and Yeung.

Keywords. Hochschild homology, cyclic homology, derived category, differential graded category, singu-
larity category.
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Résumé détaillé en français

Cette thèse contient plusieurs contributions à l’étude de l’homologie de Hochschild des enrichissements

différentiels gradués de catégories dérivées et de catégories de singularités d’algèbres de dimension finie.

Elle est divisée en quatre chapitres.

Le chapitre 1 sert à introduire les notions et notations principales et à résumer l’état de l’art. Soit k un

corps. L’homologie et la cohomologie de Hochschild sont des invariants classiques associés à une k-algèbre

associative ou, plus généralement, à une (petite) k-catégorie. On peut les interpréter comme les versions

dérivées de l’espace des traces et du centre de l’algèbre. Rappelons rapidement ces constructions : soit

A une k-algèbre associative unifère éventuellement non commutative. Le centre Z(A) de A est formé des

éléments a ∈ A tels que ab = ba pour tous b ∈ A. L’espace des graves Tr(A) est le quotient A/[A,A], où

[A,A] désigne le sous-espace de A engendré par tous les commutateurs [a, b] = ab − ba. Notons que le

centre est naturellement une algèbre commutative tandis que l’espace des traces est seulement un espace

vectoriel. Par exemple, si n ≥ 1 est un entier et Mn(A) l’algèbre des matrices n × n à coefficients dans

A, nous avons un isomorphisme

Z(A) ∼−→ Z(Mn(A))

qui envoie un élément a ∈ A sur la matrice diagonale dont les coefficients diagonaux sont tous égaux à a.

Nous avons aussi un isomorphisme

Tr(Mn(A)) ∼−→ Tr(A)

qui envoie la classe d’une matrice M = (mij) sur la classe de sa trace∑
i

mii,

voir [69]. Notons que par définition, nous avons une suite exacte courte

0 Z(A) A Homk(A,A) ,

où la deuxième application est l’inclusion et la troisième envoie a ∈ A sur le commutateur [a, ?]. De façon
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duale, en quelque sorte, nous avons une suite exacte courte

0 Tr(A) A A⊗k A

où la troisième application envoie a ⊗ b sur les commutateur ab − ba et la deuxième est la projection

naturelle. Ce parallélisme suggère une certaine similarité entre le centre et l’espace des traces mais, au

moins pour des algèbres non commutatives, les deux sont en fait très différents. On voit cela en examinant

leurs propriétés de fonctorialité : clairement, un morphisme d’algèbres f : A→ B induit une application

linéaire Tr(f) : Tr(A) → Tr(B). De l’autre côté, si a ∈ A est central dans A, il n’y a a priori aucune

raison pour que f(a) soit central dans B de façon que l’association A 7→ Z(A) n’est pas un foncteur. On

peut néanmoins constater une fonctorialité restreinte contravariante si on étend la construction du centre

aux petites k-catégories, comme nous allons le voir au Chapitre 1. Notons ⊗ le produit tensoriel ⊗k sur

le corps de base. Le complexe des châınes de Hochschild est le complexe C∗A concentré en des degrés

homologiques ≥ 0

A A⊗A . . . A⊗p A⊗(p+1) . . .

où CpA = A⊗(p+1), p ≥ 0, et la différentielle est donnée par

d(a0, . . . , ap) =

p−1∑
i=0

(−1)i(a0, . . . , aiai+1, . . . , ap) + (−1)p(apa0, . . . , ap−1) ,

où l’on écrit (a0, . . . , ap) pour a0 ⊗ · · · ⊗ ap. Notons que la première différentielle envoie a ⊗ b sur le

commutateur ab− ba. L’homologie de Hochschild HH∗(A) est l’espace gradué avec HHp(A) = Hp(C∗A).

Le complexe des cochâınes de Hochschild est le complexe C∗A concentré en degrés cohomologiques ≥ 0

donné par

A Homk(A,A) Homk(A⊗A,A) . . . Homk(A⊗p, A) . . .

dont la différentielle est donnée par

(df)(a0, . . . , ap) = a0f(a1, . . . , ap)−
p−1∑
i=0

(−1)if(a0, . . . , aiai+1, . . . , ap) + (−1)pf(a0, . . . , ap−1)ap.

Notons que les premières deux différentielles sont données par

a 7→ [a, ?] and f 7→ (a⊗ b 7→ f(a)b− f(ab) + af(b)).

Nous voyons qu’en degré 0, nous retrouvons l’espace des traces Tr(A) = HH0(A) respectivement le centre

Z(A) = HH0(A). Nous constatons également que HH1(A) est égal à l’algèbre de Lie des dérivations

extérieures de A (dont le crochet est induit par le commutateur des dérivations). Les deux structures,

celle d’algèbre commutative sur Z(A) et celle d’algèbre de Lie sur HH1(A) s’étendent à la cohomologie

de Hochschild toute entière, comme nous allons le voir à la section 1.7. Au chapitre 1, nous allons
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étendre ces constructions des k-algèbres A aux petites k-catégories A. Par exemple, si proj (A) désigne

la catégorie des modules projectifs de type fini sur une k-algèbre A, alors son homologie de Hochschild

est bien définie et l’inclusion de k-catégories A→ proj (A) induit des isomorphismes

HH∗(A) ∼−→ HH∗(proj (A))

ce qui donne une autre démonstration de l’invariance de HH∗(A) par équivalences de Morita. A la sec-

tion 1.4, nous allons rappeler la construction de la catégorie dérivée et la notion d’équivalence dérivée.

Nous verrons que l’homologie et la cohomologie de Hochschild sont aussi invariants par équivalences

dérivées. Ces résultats suggèrent qu’on devrait pouvoir les construire directement à partir de la catégorie

dérivée. Ceci n’est pas possible en général mais nous montrons à la section 1.6 qu’on peut les obtenir

à partir de l’enrichissement différentiel gradué canonique de la catégorie dérivée. L’homologie et la co-

homologie de Hochschild sont munies de structures supérieures : le complexe des châınes de Hochschild

est un complexe mixte et le complexe des cochâınes de Hochschild une B∞-algèbre, comme nous le

rappelons à la section 1.7. Dans cette section, nous énonçons également les résultats d’invariance corre-

spondants. A la section finale du Chapitre 1, nous rapportons des résultats récents sur la cohomologie

de Hochschild–Tate (appelée aussi cohomologie de Hochschild singulière) suivant des travaux de Keller

[58] et de Hua–Keller [46]. En particulier, nous esquissons une démonstration du fait que, sous des condi-

tions de séparabilité, la cohomologie de Hochschild–Tate est isomorphe, en tant qu’algèbre graduée, à la

cohomologie de Hochschild classique de la catégorie des singularités avec son enrichissement différentiel

gradué canonique. Dans ce chapitre, nous nous inspirons largement du survol ‘Hochschild (co)homology

and derived categories’ (prépublication 2020) de B. Keller. Nous y rajoutons des rappels de thèorèmes

de localisation pour l’homologie de Hochschild.

Le Chapitre 2 est consacré à l’étude de l’homologie de Hochschild de l’enrichissement différentiel

gradué (=dg-enrichissement) canonique Dbdg(A) de la catégorie dérivée bornée et du dg-enrichissement

sgdg(A) de la catégorie des singularités

sg(A) = Db(A)/per (A).

Ici, le symbole Db(A) désigne la catégorie dérivée bornée de la catégorie modA des modules de dimension

finie (sur k) sur une algèbre de dimension finie A et per (A) sa catégorie dérivée parfaite, c’est-à-dire

la sous-catégorie épaisse de Db(A) formée des complexes quasi-isomorphes à des complexes bornés de

modules projectifs de type fini. Nous observons que nous avons une équivalence

per (A!) ∼−→ Db(A)

entre la catégorie dérivée dérivée parfaite du dual de Koszul A! de A et la catégorie dérivée bornée de A.

Par le thèorème d’invariance, l’homologie de Hochschild de A est donc isomorphe à celle de A!. Par un

thèorème de Van den Bergh (théorème 2.1.1), l’homologie de Hochschild de A! est isomorphe à l’espace
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gradué DHH∗(A) dual sur k de l’homologie de Hochschild de A. Par conséquent, nous obtenons donc

un isomorphisme

HH∗(Dbdg(A)) ∼−→ DHH∗(A).

Par le théorème de localisation (Thèorème 1.7.4), nous en déduisons le résultat principal, à savoir le

thèorème 2.2.2 qui montre que l’homologie de Hochschild de sgdg(A) est calculée par le complexe de

Hochschild double, à savoir le complexe

. . .
b // A⊗A b // A

τ // DA
Db // D(A⊗A)

Db // . . . ,

où DA est placé en degré 0, les différentielles b sont celles du complexe de Hochschild et les différentielles

Db leurs duales.

Au Chapitre 3, nous donnons une nouvelle démonstration d’un théorème dû à Chen–Wang qui décrit

les catégories des singularités des algèbres de dimension finie en termes d’algèbres de chemins de Leavitt

différentielles graduées. Notre démonstration est basée sur

1) la dualité de Koszul–Moore élaborée dans la thèse [68] de Lefèvre-Hasegawa et décrite dans [56] et

2) la théorie de la localisation dérivée développée par Braun–Chuang–Lazarev dans [11].

De façon plus précise, soit A = kQ/I une algèbre de dimension finie sur un corps k donnée comme

quotient de l’algèbre des chemins kQ d’un carquois fini Q par un idéal admissible I. Notons R le quotient

de A par son radical. Il s’identifie canoniquement avec la sous-algèbre de A engendré comme espace

vectoriel par les idempotents associés aux sommets de Q. Alors A devient une algèbre dans la catégorie

monöıdale modRe des R-bimodules munie du produit tensoriel sur R. Comme A est de dimension finie,

nous avons une cogèbre duale C = A∨ = HomRe(A,Re) dans cette catégorie. L’algèbre A et la cogèbre

C sont augmentées sur R et nous avons des décompositions canoniques de R-bimodules A = R ⊕ J et

C = R ⊕ J∨. Si ΩC désigne la construction cobar de C sur R, nous avons une équivalence triangulée

canonique Dc(C) ∼−→ D(ΩC), où Dc désigne la catégorie codérivée de la cogèbre C. Elle envoie R sur ΩC

et induit donc une équivalence

Db(comC) ∼−→ per (ΩC) ,

où comC est la catégorie des C-comodules de dimension finie sur k. Par composition avec l’isomorphisme

Db(modA) ∼−→ Db(comC), nous obtenons une équivalence Db(modA) ∼−→ per (ΩC) qui envoie R sur ΩC.

L’isomorphisme Db(modA) ∼−→ Db(comC) envoie le cogénérateur injectif DA ∼−→ A∨ sur le module

colibre C et l’équivalence Db(comC) ∼−→ per (ΩC) envoie C sur R. Par conséquent, nous obtenons une

équivalence induite

Db(modA)/thick (DA) ∼−→ per (ΩC)/thick (R).

En composant avec le foncteur de dualité

D : Db(modA
op

)
op ∼−→ Db(modA)
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nous trouvons une équivalence

sg(A
op

)
op ∼−→ per (ΩC)/thick (R) ,

où sg(A
op

) désigne la catégorie des singularités de A
op

. Nous appliquons au quotient à droite la théorie de

la localisation dérivée de Braun–Chuang–Lazarev [11]. Ce chapitre a donné lieu à un appendice, rédigé

en collaboration avec B. Keller, à la prépublication [19] de Chen–Wang.

Le chapitre final 4 reproduit des notes prises par l’auteur pour un minicours de trois séances donné

par B. Keller à l’atelier de la conférence internationale sur les représentations d’algèbres (ICRA 2020)

qui s’est tenue en ligne en novembre 2020. Ce minicours portait sur les structures Calabi–Yau relatives,

notion d’abord esquissée par Toën dans [93] en 2014 et développée pleinement par Brav et Dyckerhoff dans

[13, 12]. Une charactéristique essentielle de leur notion de structure de Calabi–Yau relative (à gauche) est

une construction de recollement analogue à celle pour les cobordismes de variétés. Wai-Kit Yeung a montré

comment construire de larges classes d’exemples grâce aux complétions Calabi–Yau relatives [64, 104].

Il a aussi mis en avant l’idée que ces objets devraient être considérés comme des fibrés conormaux non

commutatifs. Ce point de vue a été confirmé de façon rigoureuse par Bozec–Calaque–Scherotzke [10] qui

se servent du critère de Kontsevich–Rosenberg : pour vérifier qu’une version non commutative proposée

est l’analogue ‘correct’ d’une notion donnée pour les variétés commutatives, il suffit de vérifier que sur les

variétés des représentations de dimension finie, elle induit la structure commutative voulue. Le lien entre

ce chapitre et le thème de la thèse consiste en l’utilisation de l’homologie de Hochschild (et l’homologie

cyclique) pour déformer les structures Calabi–Yau et en le lien avec les catégories de singularités : en

effet, les structures Calabi–Yau relatives servent en particulier à la construction de catégories amassées

relatives associées aux carquois glacés à potentiel, voir [102, 100], et celles-ci sont étroitement liées aux

catégories des singularités.
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Introduction

This thesis contains several contributions to the study of the Hochschild homology of the canonical dg

enhancements of derived categories and singularity categories of finite-dimensional algebras. It consists

of four chapters.

Chapter 1 serves to introduce the main notions and notations and to sum up the state of the art. Let

k be a field. Hochschild homology and cohomology are classical invariants of an associative k-algebra

or, more generally, a k-category. They may be viewed as derived versions of the trace space and the

center of the algebra, which we recall in section 1.2. They are invariant under Morita equivalences and

also under derived equivalences, as we show in section 1.5 after a reminder on derived categories in

section 1.4. These invariance results suggest that Hochschild (co)homology should be defined directly

using the derived category. This is not possible in general but we show in section 1.6 that they may

be obtained from the canonical differential graded enhancement of the derived category. Hochschild

homology and cohomology are endowed with higher structure: the Hochschild chain complex is a mixed

complex and the Hochschild cochain complex is a B∞-algebra as we recall in section 1.7, where we also

state the corresponding invariance results. In the final section 1.8 of Chapter 1, we report on recent

results on Tate–Hochschild cohomology after work of Keller [58] and Hua–Keller [46]. In particular, we

sketch a proof of the fact that Tate–Hochschild cohomology of an algebra is isomorphic, as an algebra,

to the classical Hochschild cohomology of its differential graded singularity category. In this chapter, we

largely follow B. Keller’s survey ‘Hochschild (co)homology and derived categories’ (preprint 2020). We

additionally include localization results for Hochschild homology.

Chapter 2 is devoted to the study of the Hochschild homology of the canonical dg enhancement Dbdg(A)

of the bounded derived category Db(A) = Db(modA) and of the canonical dg enhancement sgdg(A) of

the singularity category

sg(A) = Db(A)/per (A).

The main result is theorem 2.2.2 which shows that Hochschild homology is computed by the double
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Hochschild complex obtained by splicing the classical Hochschild complex with its dual using a trace map

from HH0(A) to its k-dual. Our main tools are Koszul duality as described in [59] and the localization

theorem 1.7.4.

In Chapter 3, we give a new proof of Chen–Wang’s theorem 2.4.1 describing singularity categories

of finite-dimensional algebras using dg Leavitt path algebras. The proof is based on Koszul–Moore

duality worked out in Lefèvre-Hasegawa’s thesis [68] (and described in [56]) and on derived localisation

as developped in Braun–Chuang–Lazarev’s [11]. This chapter has given rise to an appendix (co-authored

with Bernhard Keller) to Chen–Wang’s preprint [19].

The final Chapter 4 reproduces notes taken by the author for a series of three lectures by Bernhard

Keller on relative Calabi–Yau structures given at the workshop of the International Conference on Repre-

sentations of Algebras which was held online in November 2020. Relative Calabi–Yau structures serve in

particular to construct relative cluster categories associated with ice quivers with potential, cf. [102, 100],

and these are closely related to singularity categories, which establishes the link to the main theme of

this thesis.
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Chapter 1

Hochschild (co-)homology of dg
categories

1.1 Introduction

Let k be a field. Hochschild homology and cohomology are classical invariants of an associative k-algebra

or, more generally, a k-category. They may be viewed as derived versions of the trace space and the

center of the algebra, which we recall in section 1.2. They are invariant under Morita equivalences and

also under derived equivalences, as we show in section 1.5 after a reminder on derived categories in

section 1.4. These invariance results suggest that Hochschild (co)homology should be defined directly

using the derived category. This is not possible in general but we show in section 1.6 that they may

be obtained from the canonical differential graded enhancement of the derived category. Hochschild

homology and cohomology are endowed with higher structure: the Hochschild chain complex is a mixed

complex and the Hochschild cochain complex is a B∞-algebra as we recall in section 1.7, where we also

state the corresponding invariance results. In the final section 1.8, we report on recent results on Tate–

Hochschild cohomology after work of Keller [58] and Hua–Keller [46]. In particular, we sketch a proof

of the fact that Tate–Hochschild cohomology of an algebra is isomorphic, as an algebra, to the classical

Hochschild cohomology of its differential graded singularity category.
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1.2 Center and trace space for algebras and categories

For simplicity, we work over a field k. Let A be a k-algebra, i.e. an associative, possibly non commutative,

unital k-algebra. The center Z(A) of A is formed by the elements a ∈ A such that

ab = ba

for all b ∈ A. The trace space Tr(A) is the quotient A/[A,A], where [A,A] denotes the subspace of A

generated by all commutators [a, b] = ab− ba, a, b ∈ A. Notice that the center is naturally a commutative

algebra whereas the trace space is just a vector space. For example, if n ≥ 1 and Mn(A) denotes the

algebra of n× n-matrices with coefficients in A, we have an isomorphism

Z(A) ∼−→ Z(Mn(A))

taking an element a to the diagonal matrix whose diagonal coefficients all equal a, and an isomorphism

Tr(Mn(A)) ∼−→ Tr(A)

taking the class of a matrix M = (mij) to the class of its trace∑
i

mii,

cf. [69]. Observe that by definition, we have a short exact sequence

0 Z(A) A Homk(A,A)

where the second map is the inclusion and the third one takes a ∈ A to the commutator [a, ?]. Somehow

dually, we have a short exact sequence

0 Tr(A) A A⊗k A

where the third map takes a⊗ b to the commutator ab− ba and the second map is the natural projection.

This parallelism suggests some similarity between the center and the trace space but we will now argue

that they are actually very different (for non commutative algebras).

Let f : A→ B be an algebra morphism (it need not preserve the unit). Clearly, we have an induced

map Tr(f) : Tr(A) → Tr(B) taking the class of an element a to the class of f(a). Thus, the assignment

A 7→ Tr(A) becomes a functor. The deeper reason for this functoriality is the following universal property:

The map tr : A→ Tr(A) taking a to the class of a is a trace map, i.e. it takes values in a vector space, is

k-linear and satisfies tr(ab) = tr(ba) for all a, b ∈ A, and it is universal1 among all trace maps t : A→ V ,

1The Hattori-Stallings trace [41, 86] is based on an extension of this idea, cf. [38] for a beautiful application.
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i.e. we have t = t ◦ tr for a unique linear map t : Tr(A)→ V :

A

Tr(A) V

tr ∀t

∃1t

On the other hand, for an element a of the center Z(A), there is no reason for f(a) to lie in Z(B) and

there is no induced map between the centers in general. Hence the assignment A 7→ Z(A) is not a functor.

However, we will see below how, by passing from algebras to categories, we do gain some functoriality

for the center.

Recall [29] that a k-category is a category A whose morphism sets are endowed with k-vector space

structures such that the compositions are bilinear. We may (and will) identify a k-algebra A with the

k-category with a single object whose endomorphism algebra is A. A general k-category should be viewed

as a k-algebra with several objects [74]. Recall [29] that a quiver is a quadruple Q = (Q0, Q1, s, t), where

Q0 is a set of ‘vertices’, Q1 a set of ‘arrows’ and s and t are maps Q1 → Q0 taking an arrow to its source

respectively its target. In particular, each (small) k-category A has an underlying quiver and the functor

taking the category to its quiver admits a left adjoint Q 7→ k-cat(Q), where the objects of k-cat(Q) are

the vertices of Q and the space of morphisms x→ y is the vector space of formal linear combinations of

paths (=formal compositions of arrows) of length ≥ 0 from x to y.

Let A be a small k-category. We define the center Z(A) to be the algebra of endomorphisms of the

identity functor 1A : A → A. Thus, an element of the center is a family ϕX, X ∈ A, of endomorphisms

ϕX : X → X of objects of A such that for each morphism f : X → Y , the square

X Y

X Y

f

ϕX ϕY

f

commutes. Thus, we have the short exact sequence

0 Z(A)
∏
X∈AA(X,X)

∏
X,Y ∈AHomk(A(X,Y ),A(X,Y )) , (1.2.0.1)

where the third map takes a family (ϕX) to the family of maps taking f : X → Y to (ϕY )◦f −f ◦ (ϕX).

‘Dually’, we define the trace space Tr(A) of A by the sequence

0 Tr(A)
⊕

X∈AA(X,X)
⊕

X,Y ∈AA(Y,X)⊗A(X,Y ) , (1.2.0.2)

where the third map takes f ⊗ g to f ◦ g − g ◦ f . Notice that the middle terms of the sequences are

isomorphic if and only if A has only finitely many non zero objects.

We may ask whether we can reduce the computation of the center and the trace space of the k-category

A to that of the center and trace space for some k-algebra A. The natural candidate is the matrix algebra
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defined by

k[A] =
⊕

X,Y ∈A
A(X,Y )

and endowed with matrix multiplication. Notice that it is associative but unital only if A has only finitely

many non zero objects. In general, it is still locally unital, i.e. for each finite set of elements ai, i ∈ I, we

may find an idempotent e such that eai = ai = aie for all i, cf. [2] and [76].

Lemma 1.2.1. a) We have a canonical isomorphism Tr(k[A]) ∼−→ Tr(A).

b) We have a natural injective algebra morphism Z(k[A])→ Z(A) which is an isomorphism iff A has

only finitely many non zero objects.

The proof is left to the reader as an exercise. Of course, the assignment A 7→ Tr(A) is functorial with

respect to k-linear functors F : A → B. We also have some functoriality for the assignment A 7→ Z(A).

Indeed, if B ⊂ A is a full subcategory, then the restriction map

(ϕX)X∈A 7→ (ϕX)X∈B

is an algebra morphism Z(A) → Z(B). We see that A 7→ Z(A) is contravariant with respect to fully

faithful embeddings.

Let A be a k-algebra and ModA the k-category of all right A-modules (by choosing suitable universes,

we can dispense with the set-theoretical problem that ModA is not small). We have a fully faithful

embedding A ⊂ ModA taking the unique object to the free A-module of rank one.

Lemma 1.2.2. The restriction along A ⊂ ModA is an isomorphism Z(ModA) ∼−→ Z(A).

Proof. Let ρ denote the restriction. We define σ : Z(A)→ Z(ModA) by sending an element z ∈ Z(A) to

the family σ(z) whose component at a module M is right multiplication by z. Since z is central, the map

σ(z)M is indeed an endomorphism of M and since any f : L → M is A-linear, the family σ(z) does lie

in Z(ModA). It is also clear that ρ(σ(z)) = z for each z ∈ Z(A). Thus, the map ρ : Z(ModA)→ Z(A)

is injective. Suppose that ϕ is in its kernel. Then ϕA = 0 and in fact ϕF = 0 for each free A-module. If

M is an arbitrary A-module, we have an exact sequence

F1
// F0

// M // 0

where F1 and F0 are free. The fact that ϕF1 and ϕF0 vanish then immediately implies that ϕM vanishes.

Thus, the map ρ is also injective.
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Recall that a generator (resp. cogenerator) of ModA is a module G such that each module is a quotient

of a coproduct of copies of G (resp. a submodule of a product of copies of G). Let projA denote the

category of finitely generated projective modules, ProjA the category of all projective modules and InjA

the category of all injective modules. It is easy to adapt the above proof to obtain the

Lemma 1.2.3. Let B ⊂ ModA be a full subcategory containing a generator or a cogenerator of ModA.

Then restriction to B is an isomorphism Z(ModA) ∼−→ Z(B). In particular, we have isomorphisms

Z(A) ∼←− Z(projA) ∼←− Z(ProjA) ∼←− Z(ModA) ∼−→ Z(InjA).

The following lemma shows that the trace space behaves entirely differently. The proof is based on

the ‘Eilenberg swindle’.

Lemma 1.2.4. We have Tr(ModA) = 0. More generally, we have Tr(A) = 0 for any k-category A
admitting countable coproducts.

Proof. We sketch a proof. The details may be filled in using [60]. Let A and B be k-categories and

F,G : A → B k-linear functors. In a first step, one shows that if F and G are isomorphic functors, we

have an equality Tr(F ) = Tr(G) between the induced maps Tr(A) → Tr(B). Now assume that B has

finite direct sums. Then one shows that Tr(F ⊕G) = Tr(F ) + Tr(G). Now assume that A has countable

coproducts. For X ∈ A, let X(N) be the coproduct of a countable set of copies of X. Then we can choose

a functorial isomorphism

X ⊕X(N) ∼−→ X(N).

Thus, if F : A → A is the functor X 7→ X(N), then we have 1A ⊕ F ∼−→ F as functors A → A. It follows

from the two previous steps that we have

Tr(1A) + Tr(F ) = Tr(1A ⊕ F ) = Tr(F )

and therefore

1Tr(A) = Tr(1A) = 0.

On the other hand, if we restrict to finite sums (and summands), this phenomenon does not occur.

Lemma 1.2.5 ([60]). The inclusion A ⊂ projA induces an isomorphism Tr(A) ∼−→ Tr(projA).
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1.3 Hochschild (co)homology of algebras

Let k be a field. We write ⊗ for ⊗k. Let A be a k-algebra. The Hochschild chain complex of A is the

complex C∗A concentrated in homological degrees ≥ 0

A A⊗A . . . A⊗p A⊗(p+1) . . .

with CpA = A⊗(p+1), p ≥ 0, and differential given by

d(a0, . . . , ap) =

p−1∑
i=0

(−1)i(a0, . . . , aiai+1, . . . , ap) + (−1)p(apa0, . . . , ap−1) , (1.3.0.1)

where we write (a0, . . . , ap) for a0⊗· · ·⊗ap. Notice that the first differential takes a⊗b to the commutator

ab− ba. The Hochschild homology HH∗(A) is the graded space with HHp(A) = Hp(C∗A).

The Hochschild [44] cochain complex of A is the complex C∗A concentrated in cohomological degrees

≥ 0

A Homk(A,A) Homk(A⊗A,A) . . . Homk(A⊗p, A) . . .

whose differential is given by

(df)(a0, . . . , ap) = a0f(a1, . . . , ap)−
p−1∑
i=0

(−1)if(a0, . . . , aiai+1, . . . , ap)+(−1)pf(a0, . . . , ap−1)ap. (1.3.0.2)

Notice that the first two differentials are given by

a 7→ [a, ?] and f 7→ (a⊗ b 7→ f(a)b− f(ab) + af(b)).

We see that that in degree 0 we recover the trace space Tr(A) = HH0(A) respectively the center

Z(A) = HH0(A). We also see that HH1(A) is equal to the Lie algebra of outer derivations of A (with

the bracket induced by the commutator of derivations). Both structures, the commutative multiplication

and the Lie bracket, extend to the whole of Hochschild cohomology, as we will see in section 1.7.

Let Ae = Aop ⊗ A. We identify the category Mod (Ae) of right Ae-modules with the (isomorphic)

category of A-A-bimodules via the rule

amb = m(b⊗ a).

In particular, we have the identity bimodule AAA given by the algebra A considered as a bimodule over

itself.

Theorem 1.3.1 (Cartan–Eilenberg [16]). We have canonical isomorphisms

Ext∗Ae(A,A) ∼−→ HH∗(A) and Tor∗Ae(A,A) ∼−→ HH∗(A).
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To prove the theorem, one computes the derived functors using the bar resolution of the first argument:

Recall that the (augmented) bar resolution is the complex of bimodules

AAA A⊗A . . . A⊗p A⊗(p+1) . . .

where the augmentation is the multiplication of A and the differential is given by

d(a0, . . . , ap+1) =

p∑
i=0

(−1)i(a0, . . . , aiai+1, . . . , ap+1).

Corollary 1.3.2. Hochschild cohomology HH∗(A) carries a natural graded multiplication, the cup product,

extending that of Z(A) = HH0(A).

It is shown in [16] that the cup product is induced by the following associative multiplication on

cochains: For f ∈ CpA and g ∈ CqA, define

(f ∪ g)(a1, . . . , ap, ap+1, . . . , ap+q) = (−1)pqf(a1, . . . , ap)g(ap+1, . . . , ap+q).

1.4 Reminder on derived categories

We collect basic definitions and results on derived categories. We refer to [62] for more details and

references. As before, k is a field and A a k-algebra. The category CA = CModA has as objects the

cochain complexes

. . . // Mp dM // Mp+1 // . . .

of (right) A-modules. Notice that each such complex has an underlying Z-graded A-module given by the

sequence of the Mp, p ∈ Z. It is endowed with the differential dM , which is a homogeneous endomorphism

of degree +1. The morphisms of CA are the morphisms f : L → M of graded A-modules which are

homogeneous of degree 0 and satisfy dM ◦ f = f ◦ dL. The suspension functor Σ : CA → CA takes a

complex M to ΣM with components (ΣM)p = Mp+1 and differential dΣM = −dM . Two morphisms f

and g : L→M of CA are homotopic if there is a homogeneous morphism of graded A-modules h : L→M

of degree −1 such that

f − g = dM ◦ h+ h ◦ dL.

The homotopy category HA has the same objects as CA; its morphisms are homotopy classes of morphisms

of CA. A morphism s : L→M of CA or HA is a quasi-isomorphism if the induced morphism in homology

H∗(s) : H∗(L) → H∗(M) is invertible. The derived category is the localization of CA (or HA) at the

class of all quasi-isomorphisms. Thus, it has the same objects as CA and its morphisms are equivalence

classes of formal compositions of morphisms of CA (or HA) and formal inverses of quasi-isomorphisms.
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The homotopy category HA is canonically triangulated with suspension functor Σ. Each componen-

twise split short exact sequence of CA

0 // L // M // N // 0

yields a canonical triangle

L // M // N // ΣL .

The derived category DA is triangulated with suspension functor Σ. Each short exact sequence of CA
yields a canonical triangle.

We identify A-modules M ∈ ModA with complexes concentrated in degree 0

. . . // 0 // M // 0 // . . . .

Then, for A-modules L and M , we have canonical isomorphisms

ExtpA(L,M) ∼−→ HomDA(L,ΣpM)

for all p ∈ Z (with the convention that Extp vanishes for p < 0). Moreover, the composition in DA
identifies with the Yoneda product on Ext.

Theorem 1.4.1. The projection HA → DA admits a fully faithful left adjoint p and a fully faithful right

adjoint i.

Notice that the analogous statement for the category of complexes CA instead of the homotopy

category HA is wrong. This is one of the main reasons for introducing HA. The functors p and i

generalize projective respectively injective resolutions. Indeed, if M is an A-module and P → M a

projective resolution (i.e. a quasi-isomorphism where P is right bounded with projective components),

then we have P ∼−→ pM in HA. Similarly, if M → I is an injective resolution, then iM ∼−→ I in HA.

Now let B be another algebra and X a complex of A-B-bimodules. For M ∈ CA, define the complex

M ⊗A X ∈ CB by

(M ⊗A X)n =
⊕
p+q=n

Mp ⊗A Xq and d(m⊗ a) = (dm)⊗ a+ (−1)pm⊗ (dx).

For L ∈ CB, define HomB(X,L) ∈ CA as the complex whose nth component is formed by the morphisms

f : X → L of graded B-modules, homogeneous of degree n and whose differential is given by

d(f) = dL ◦ f − (−1)nf ◦ dX .

Define objects of the derived categories

L
L
⊗A X = (pL)⊗A X and RHomB(X,L) = HomB(X, iL).
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Example 1.4.2. For example, we have

HH∗(A) = TorA
e

∗ (A,A) = H∗(A
L
⊗Ae A) and HH∗(A) = Ext∗Ae(A,A) = H∗(RHomAe(A,A)).

The following lemma is easy to prove.

Lemma 1.4.3. We have an adjoint pair

?
L
⊗A X : D(A) D(B) : RHomB(X, ?)

It is natural to ask when these adjoints are equivalences. To answer this question, let us observe

that DA has arbitrary coproducts, which are given by coproducts of complexes. An object P of DA is

compact if the functor Hom(P, ?) : DA→ Mod k commutes with arbitrary coproducts. It is perfect if it is

quasi-isomorphic to a bounded complex of finitely generated projective modules. For example, the free

A-module AA is compact because

Hom(A,M) ∼−→ H0M

and of course it is also perfect.

Proposition 1.4.4. An object of DA is compact if and only if it is perfect.

The perfect derived category per (A) is the full subcategory of DA formed by the perfect objects.

Clearly it is a thick subcategory, i.e. a triangulated subcategory stable under taking direct summands.

Proposition 1.4.5. The functor ?
L
⊗A X : DA→ DB is an equivalence if and only if

a) XB is perfect in DB and

b) XB generates DB as a triangulated category with arbitrary coproducts and

c) the natural map A→ HomDB(XB , XB) given by left multiplication is an isomorphism and HomDB(XB ,Σ
pXB) =

0 for all p 6= 0.

By definition, the bimodule complex X is a two-sided tilting complex if these conditions hold. We

have the following important class of examples:

Theorem 1.4.6 (Happel [39]). If T is an A-B-bimodule, then T is a two-sided tilting complex iff TB is a

tilting module and the left action yields an isomorphism A ∼−→ EndB(T ).

For a proof of the theorem in this form, cf. [62].
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Theorem 1.4.7 (Rickard [84, 85]). There is a triangle equivalence DA → DB if and only if there is a

two-sided tilting complex X.

Notice that the theorem does not claim that a given triangle equivalence F : DA ∼−→ DB is isomorphic

to a derived functor ?
L
⊗A X for a two-sided tilting complex X. It is open whether this always holds.

Define rep (A,B) to be the full subcategory of D(Aop⊗B) formed by the bimodule complexes X such

that XB is perfect. We think of the objects of rep (A,B) as ‘representations up to homotopy’ of A in

per (B). Notice that a bimodule complex X belongs to rep (A,B) if and only if the functor ?
L
⊗AX takes

per (A) to per (B). For X ∈ rep (A,B), put

X∨ = RHomB(X,B)

and notice that this is naturally an object of D(Bop ⊗A).

Lemma 1.4.8. We have a canonical isomorphism

?
L
⊗B X∨ ∼−→ RHomB(X, ?).

Thus, the functor ?
L
⊗B X∨ is right adjoint to ?

L
⊗A X. The adjunction morphisms are produced by

the action morphism

α : A→ RHomB(X,X) ∼←− X
L
⊗B X∨ in D(Ae)

and the evaluation morphism

ε : X∨
L
⊗A X = RHomB(X,B)

L
⊗A X → B in D(Be).

Notice that ?
L
⊗A X is fully faithful if and only if the action morphism A→ X

L
⊗B X∨ is invertible.

1.5 Invariance and localization theorems

Let A and B be k-algebras. Let X ∈ rep (A,B) and

X∨ = RHomB(X,B) ∈ D(Bop ⊗A).

Note that in general, X∨ is not perfect over A and so does not belong to rep (B,A). Recall the canonical

action and evaluation morphisms

α : A→ X
L
⊗B X∨ in D(Ae) and ε : X∨

L
⊗A X → B in D(Be).
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Theorem 1.5.1. We have a canonical morphism

HH∗(X) : HH∗(A)→ HH∗(B)

It is an isomorphism if ?
L
⊗A X : DA→ DB is an equivalence.

Sketch of proof. Recall that HH∗(A) = H∗(A
L
⊗Ae A). We have a canonical morphism ψ(X) defined as

the composition

A
L
⊗Ae A A

L
⊗Ae (X

L
⊗B X∨) A

L
⊗Ae (X ⊗k X∨)⊗Be B

B
L
⊗Be B B

L
⊗Be (X∨

L
⊗A X) B

L
⊗Be (X∨ ⊗k X)

L
⊗Ae A

1⊗α

flip

1⊗ε

Then HH∗(X) is H∗(ψ(X)). One shows that ψ(A) = 1 and for X ∈ rep (A,B) and Y ∈ rep (B,C), we

have ψ(X
L
⊗B Y ) = ψ(Y ) ◦ ψ(X), cf. Theorem 2.1 in [5]. This implies the second claim.

Now let A, B and C be k-algebras and suppose that we are given bimodules X ∈ D(Aop ⊗ B) and

Y ∈ D(Bop ⊗ C) such that the sequence

0 // DA
?
L
⊗AX // DB

?
L
⊗BY // DC // 0

is an exact sequence of triangulated categories, i.e. the functor ?
L
⊗A X is fully faithful and the functor

?
L
⊗B Y induces an equivalence from the Verdier quotient of DB by its image onto DC.

Theorem 1.5.2 ([60]). There is a canonical long exact sequence

. . . // HHn(A)
HHn(X)// HHn(B)

HHn(Y )// HHn(C) // HHn−1(A) // . . .

Now recall that a fully faithful functor F : A → B between k-categories yields a restriction morphism

F ∗ : Z(B) → Z(A). Since Hochschild cohomology may be viewed as a ‘derived center’, the following

theorem is quite natural.

Theorem 1.5.3. Suppose we have X ∈ rep (A,B) such that the functor ?
L
⊗A X : DA → DB is fully

faithful. Then we have a canonical ‘restriction’ morphism

HH∗(X) : HH∗(B)→ HH∗(A).

It is an isomorphism if ?
L
⊗A X : DA→ DB is an equivalence.

Below, we will show using other methods that even if XB is not perfect but ?
L
⊗A X : DA → DB is

fully faithful, we still have such a restriction morphism.
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Sketch of proof. It is not hard to show, without any hypothesis on X ∈ rep (A,B), that we have an

adjoint pair

X∨
L
⊗A?

L
⊗A X : D(Ae) D(Be) : X

L
⊗B?

L
⊗B X∨

Now we construct a map from

HHp(B) = HomDBe(B,ΣpB)

to HHp(A) as follows:

HomD(Be)(B,Σ
pB) HomD(Be)(X

∨ L
⊗A X,ΣpB)

HomD(Ae)(A,Σ
pA) HomD(Ae)(A,Σ

pX
L
⊗B X∨)

adj

∼

Each morphism f : A→ ΣpA of DAe induces a morphism

f
L
⊗Ae 1A : A

L
⊗Ae A→ ΣpA

L
⊗Ae A.

In this way, we obtain an action

∩ : HH∗(A)⊗HH∗(A)→ HH∗(A)

called the cap product (not to be confused with the cup product ∪ on Hochschild cohomology).

Theorem 1.5.4 ([4]). Suppose that X ∈ rep (A,B) is such that the functor ?
L
⊗A X : DA → DB is an

equivalence. Then the induced isomorphisms

HH∗(X) : HH∗(A) ∼−→ HH∗(B) and HH∗(X) : HH∗(A) ∼−→ HH∗(B)

are compatible with the cap product.

1.6 Differential graded categories

Recall from Lemma 1.2.2, that for an algebra A, the restriction along the inclusion A ⊂ ModA is an

isomorphism

Z(ModA) ∼−→ Z(A).

It is natural to ask what the derived version of this fact is. In the derived version, Hochschild cohomology

should replace the center and the derived category should replace the module category. So we would
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like to know how to recover Hochschild cohomology from the derived category DA. Unfortunately, this

seems to be an ill-posed question nobody knows how to answer. However, it is easy to recover Hochschild

cohomology from the differential graded (=dg) version of DA, namely the dg category DdgA. Our first

aim in this section is to define the dg category DdgA in an intrinsic way, via a universal property.

1.6.1 Dg categories and their derived categories

Recall that the category of complexes Ck is monoidal, i.e. it is endowed with the bifunctor (L,M) 7→ L⊗M
given by

(L⊗M)n =
⊕
p+q=n

Lp ⊗Mq, d(l ⊗m) = (dl)⊗m+ (−1)|l|l ⊗ dm

enjoying a number of desirable properties. A dg category is a category A enriched in the monoidal category

of complexes. Thus, the morphism spaces A(X,Y ) are complexes and the compositions

A(Y, Z)⊗A(X,Y )→ A(X,Z)

and units k → A(X,X) are morphisms of complexes.

For example, if B is an algebra, the dg category CdgB has the same objects as CB and its morphism

complexes are defined by

(CdgB)(L,M) = HomB(L,M) ,

cf. section 1.4. As in the case of k-categories, we identify dg categories with one object with dg algebras.

If A is a dg category, the category H0A has the same objects as A and the morphism spaces

H0(A(X,Y )) with the natural compositions. For example, this yields another viewpoint on the ho-

motopy category HB via the equality of categories

H0(CdgB) = HB.

A dg functor F : A → B is a functor such that

F : A(X,Y )→ B(FX,FY )

is a morphism of complexes for all X,Y ∈ A. It is a quasi-equivalence if F : A(X,Y ) → B(FX,FY ) is

a quasi-isomorphism for all X,Y ∈ A and the induced functor H0F : H0A → H0B is an equivalence.

The category Hqe is the localization of the category dgcat of small dg categories at the class of all quasi-

equivalences. For example, if f : A → B is a quasi-isomorphism between dg algebras, it may be viewed

as a quasi-equivalence between dg categories with one object.
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Theorem 1.6.2 (Tabuada [90]). The category dgcat carries a (cofibrantly generated) Quillen model struc-

ture whose weak equivalences are the quasi-equivalences. In particular, the morphisms A → B in Hqe

form a set for all small dg categories A, B.

Thanks to the theorem, we can speak about representable functors on the category Hqe without

having to ‘enlarge the universe’.

Theorem 1.6.3 ([61]). Let A be a dg category and N ⊆ A a full dg subcategory. Then there is a morphism

Q : A → A/N of Hqe which kills N (i.e. we have 1QN = 0 in H0(A/N ) for all N ∈ N ) and which is

universal in Hqe among the morphisms killing N .

We define the dg quotient of A by N to be the dg category A/N of the theorem. It is thus unique up

to unique isomorphism in Hqe.

Theorem 1.6.4 (Drinfeld 2004 [25]). The dg category A/N is obtained from A by adjoining a contracting

homotopy hN for each object N on N (i.e. hN is of degree −1 and d(hN ) = 1N ).

For an algebra B, we define the dg derived category of B to be the dg quotient

DdgB = CdgB/AcdgB ,

where AcdgB is the full dg subcategory of CdgB whose objects are the acyclic complexes.

Theorem 1.6.5 ([61, 25]). We have a canonical equivalence H0(DdgB) ∼−→ DB.

Our next aim is to define the derived category DA (as well as its dg version DdgA) of a dg category

A. Define the opposite dg category Aop to be the dg category with the same objects, with the morphism

complexes Aop(X,Y ) = A(Y,X) and the compositions given by

f ◦Aop g = (−1)|f ||g|g ◦ f

for all homogeneous f ∈ Aop(Y,Z) and g ∈ Aop(X,Y ). For two dg functors F,G : A → B, define the

complex Hom(F,G) to be the subcomplex of∏
X∈A

B(FX,GX)

formed by the families (ϕX) such that

(Gf) ◦ (ϕX) = (−1)|ϕ||f |(ϕY ) ◦ (Ff)
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for all X,Y ∈ A and f : X → Y . In this way, the category Fundg(A,B) of dg functors from A to B
becomes a dg category. We define the dg category of dg right A-modules to be

CdgA = Fundg(Aop, Cdgk)

and the category of rightA-modules to be Z0CdgA (same objects as CdgA and morphism spaces Z0(CdgA)(L,M)).

We define the homotopy category of dg A-modules as

HA = H0CdgA.

For example, for each object X ∈ A, we have the representable dg module

X∧ = A(?, X) : Aop → Cdgk.

Whence the dg Yoneda functor

A → CdgA , X 7→ X∧.

As an exercise, the reader may want to prove the dg Yoneda lemma:

Lemma 1.6.6. For X in A and M in CA, we have a natural isomorphism

HomA(X∧,M) ∼−→MX , f 7→ f(1X).

Notice that when B is an ordinary algebra and A the dg category whose endomorphism algebra is B

(concentrated in degree 0), then CdgA = CdgB

Let A be a small dg category. A morphism s : L→M of dg A-modules is a quasi-isomorphism if

sX : LX →MX

is a quasi-isomorphism for each X ∈ A. We define the derived category DA to be the localization of

CA (respectively HA) at the class of quasi-isomorphisms and the dg derived category DdgA to be the dg

quotient

Cdg(A)/Acdg(A).

As in Theorem 1.4.1, the quotient functor HA → DA admits a left adjoint p and a right adjoint i, cf.

[59], and the construction of the derived functors generalizes.

Let us give an example where we have a beautiful description of the derived category of a non trivial

dg category: Let A be a right noetherian algebra (concentrated in degree 0) and modA the abelian

category of finitely generated (right) A-modules. Let Cbdg(modA) ⊂ CdgA be the full dg subcategory of

bounded complexes over modA and

Dbdg(modA) = Cbdg(modA)/Acbdg(modA).
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Let InjA denote the category of all injective modules and HInjA the homotopy category of (unbounded)

complexes of injective modules.

Theorem 1.6.7 (Krause [66]). We have a canonical triangle equivalence

HInjA ∼−→ D(Dbdg(modA)).

1.6.8 Hochschild (co)homology of dg categories

Let A be a small dg category. We have the following generalization of Proposition 1.4.4. Recall that a

thick subcategory of a triangulated category is a full triangulated subcategory stable under taking direct

factors.

Proposition 1.6.9. An object P ∈ DA is compact if and only if it is perfect, i.e. contained in the thick

subcategory generated by the representable modules X∧, X ∈ A.

Let B be another dg category. The tensor product A ⊗ B is the dg category whose objects are the

pairs (X,Y ), X ∈ A, Y ∈ B, and whose morphisms are given by

(A⊗ B)((X,Y ), (X ′, Y ′)) = A(X,X ′)⊗ B(Y, Y ′).

We define rep (A,B) as the full subcategory of D(B⊗Aop) formed by the dg bimodules X whose restriction

to B is perfect.

Let Ae = A⊗Aop. The identity bimodule IA sends (X,Y ) to A(X,Y ), X,Y ∈ A. We put

HH∗(A) = H∗RHomAe(IA, IA) and HH∗(A) = H∗(IA
L
⊗Ae IA).

These may also be computed as the (co)homologies of the complexes C∗A and C∗A constructed as follows:

The complex C∗A is the sum total complex of the bicomplex

. . . //⊕A(X1, X0)⊗A(X0, X1) //⊕A(X0, X0)

whose pth column (p ≥ 0) is the sum⊕
A(Xp, X0)⊗A(Xp−1, Xp)⊗ · · · ⊗ A(X0, X1)

taken over all sequences of objects X0, X1, . . . , Xp of A and whose horizontal differential is given by

formula (1.3.0.1) adjusted following the Koszul sign rule. The complex C∗A is the product total complex

of the bicomplex ∏
A(X0, X0) // ∏Homk(A(X0, X1),A(X0, X1)) // . . .
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whose pth column (p ≥ 0) is∏
Homk(A(Xp−1, Xp)⊗ . . .⊗A(X0, X1),A(X0, Xp))

where the product is taken over all sequences of objects X0, . . . , Xp of A and whose horizontal differential

is given by formula (1.3.0.2) adjusted following the Koszul sign rule.

Theorem 1.6.10 ([60, 54]). Let A and B be dg categories and X ∈ D(B ⊗Aop).

a) If X ∈ rep (A,B) (i.e. X is right perfect), then there is a canonical induced morphism

HH∗(X) : HH∗(A)→ HH∗(B).

It only depends on the class of X in K0(rep (A,B)) and is an isomorphism if the functor ?
L
⊗A X :

DA → DB is an equivalence.

b) Suppose that the functor ?
L
⊗AX : DA → DB is fully faithful (but X is not necessarily right perfect).

Then there is a canonical restriction morphism

resX : HH∗(B)→ HH∗(A).

It is an isomorphism if the functor X
L
⊗B? : D(Bop)→ D(Aop) is also fully faithful.

We will sketch a proof of b) after Theorem 1.7.6.

Corollary 1.6.11 (Lowen–Van den Bergh [71]). Let A be a dg category. The restriction along the Yoneda

functor A → DdgA induces an isomorphism

HH∗(DdgA) ∼−→ HH∗(A).

A similar result was obtained by Toën in [92]. It should be viewed as the derived version of the

isomorphism

Z(ModA) ∼−→ Z(A)

of Lemma 1.2.2 for an algebra A.
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1.7 Higher structure

1.7.1 Higher structure on Hochschild homology

Let A be an algebra (for simplicity). Recall the Connes–Quillen cyclic bicomplex

. . . . . . . . .

A⊗2 A⊗2 A⊗2 . . .

A A A . . .

b −b′
1−t

b

N 1−t

1−t N 1−t

Here we put

t(a1 ⊗ . . .⊗ an) = (−1)n−1a2 ⊗ . . .⊗ an ⊗ a1 and N = 1 + t+ · · ·+ tn−1.

The bicocomplex is 2-periodic in the horizontal direction. Its even columns are copies of the Hochschild

chain complex and its odd columns copies of the bimodule bar resolution of A. The homology of the sum

total complex is the cyclic homology of A. Let MA denote the cone over the subcomplex formed by the

first two columns. Let us write d for its differential. Let d′ : MA → MA be the homogeneous map of

(cohomological) degree −1 given by the projection onto the first column followed by the map N followed

by the inclusion of the second column. We have

d2 = 0 , d′2 = 0 , dd′ + d′d = 0.

This means that MA is a mixed complex, i.e. a dg module over the dg algebra Λ = k[ε]/(ε2), where ε is

of degree −1 and d = 0. Of course, ε acts via d′ in MA. We write DMix for the mixed derived category,

i.e. the category DΛ.

Notice that MA is functorial with respect to algebra morphisms which do not necessarily preserve the

unit like the morphism

A→M2(A) , a 7→
[
a 0
0 0

]
.

The inclusion of the first column clearly yields an isomorphism A
L
⊗Ae A ∼−→MA in Dk. Thus we have

HH∗(A) = H∗(MA). Moreover, the mixed complex MA contains the information on cyclic, negative

cyclic and periodic cyclic homology as shown by the canonical isomorphisms (cf. [53])

HC∗(A) = H∗(MA
L
⊗Λ k) , HN∗(A) = H∗RHomΛ(k,MA) , HP∗(A) = holimn(MA

L
⊗Λ Σ−2nk).
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Here, the transition morphisms of the inverse system are induced by the morphism k → Σ2k of the

canonical triangle

Σk // Λ // k // Σ2k.

This triangle induces the ISB-sequence

HC∗−1
B // HH∗

I // HC∗
S // HC∗−2

B // HH∗−1 .

Now let B be another algebra and X ∈ rep (A,B). We may and will assume that the restriction XB

is right bounded with projective components. Then we have X∧ = RHomB(X,B) = HomB(X,B). We

have natural morphisms of differential graded algebras (not preserving the unit)

A
α //

[
A X
X∧ B

]
B

βoo

taking a to [ a 0
0 0 ] and b to [ 0 0

0 b ].

Lemma 1.7.2 ([60]). The morphism Mβ is invertible in DMix.

We define MX = (Mβ)−1 ◦Mα in DMix.

Theorem 1.7.3 ([60]). a) We have M(AAA) = 1MA and for X ∈ rep (A,B) and Y ∈ rep (B,C), we

have M(X
L
⊗B Y ) = MY ◦MX.

b) The morphism MX only depends on the class of X in K0(rep (A,B)).

It is not hard to generalize the definitions and results of this subsection from algebras to dg categories.

In particular, we have the following generalization of the localization theorem 1.5.2.

Theorem 1.7.4 ([60]). Let

A F // B G // C

be a sequence of dg categories such that the induced sequence of derived categories

0 // DA F∗ // DB G∗ // DC // 0

is exact. Then there is a canonical triangle

MA MF // MB MG // MC // ΣMA

in the mixed derived category and hence long exact sequences in Hochschild and cyclic homology.
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•
c

u v w
• • •

Figure 1.1: The brace operations

1.7.5 Higher structure on Hochschild cohomology

Let A be an algebra (for simplicity) and C∗A its Hochschild cochain complex, cf. section 1.3. If c and

u, v, . . . , w are Hochschild cochains, one defines [52] the brace operation c{u, v, . . . , w} by substituting

the cochains u, v, . . . , w for some of the arguments of c, inserting suitable signs and summing over all

possibilities of doing this, cf. Figure 1.1.

The complex C∗A together with the cup product ∪ and the brace operations is an example of a B∞-

algebra in the sense of Getzler–Jones [32], i.e. a graded vector space V such that the tensor coalgebra

T c(ΣV ) (with the deconcatenation coproduct) is endowed with a dg bialgebra structure whose comulti-

plication is deconcatenation. Here the letter ‘B’ stands for ‘Baues’, in honour of Hans–Joachim Baues,

who showed [8] that the singular cochain complex with integer coefficients of any topological space carries

a natural B∞-algebra structure. Notice that B∞–structures are closely related to monoidal structures

(cf. [70] and the references given there). In the case of the Hochschild cochain complex, the monoidal

category is the derived category D(Ae) with the derived tensor product
L
⊗A over A; in the case of the

singular cochain complex on a topological space X, it is the derived category of sheaves of abelian groups

on X with the derived tensor product. The B∞-algebra structure on C∗A contains in particular the

information on the Gerstenhaber bracket, which may be recovered via

[c, u] = c{u} ∓ u{c}.

By the homotopy category of B∞-algebras we mean the localization of the category of B∞-algebras with

respect to all morphisms of B∞-algebras inducing isomorphisms in homology.

Let B be another algebra and X ∈ D(B ⊗Aop) a complex of A-B-bimodules.

Theorem 1.7.6 ([54]). Suppose that the functor ?
L
⊗A X : DA → DB is fully faithful (but XB is not

35



necessarily perfect). Then there is a canonical restriction morphism

resX : C∗B → C∗A

in the homotopy category of B∞-algebras. It is invertible if the functor X
L
⊗B? : D(Bop)→ D(Aop) is also

fully faithful (for example if ?
L
⊗A is an equivalence).

We sketch the proof: Let G be the ‘glued’ dg category with two objects 1 and 2 such that G(1, 1) = B,

G(2, 2) = A, G(1, 2) = X and G(2, 1) = 0. We have obvious forgetful (or ‘restriction’) maps

C∗B C∗G
resBoo resA // C∗A.

which clearly respect the B∞-structure. It is a classical fact, cf. [40, 21, 73, 34, 22, 36, 9, 33], that we

have a homotopy bicartesian square

C∗ C∗A

C∗B RHomB⊗Aop(X,X)

resA

resB α

We claim that α and hence resB is invertible in Dk. Indeed, we have a commutative square in Dk

C∗A RHomAe(A,A)

RHomB⊗Aop(X,X) RHomAe(A,RHomB(X,X))

∼

α β

∼

where β is induced by the action morphism

A→ RHomB(X,X).

This is invertible by our assumption that the functor ?
L
⊗AX is fully faithful. We put resX = resA ◦ res−1

B .

Corollary 1.7.7. For an algebra A, the isomorphism

HH∗(DdgA) ∼−→ HH∗(A)

of Corollary 1.6.11 lifts to an isomorphism in the homotopy category of B∞-algebras.

1.8 Tate–Hochschild cohomology

Let A be a right noetherian algebra and modA the abelian category of finitely generated (right) A-

modules. Let Db(modA) be its bounded derived category. The perfect derived category per (A) is a thick
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subcategory of Db(modA). They coincide if A is of finite global dimension. We define the singularity

category sg(A) to be the quotient Db(modA)/per (A). This category was first considered by Buchweitz

[14] in 1986 and rediscovered by Orlov [77] in 2003 in a geometric setting. It measures the non regularity

of the algebra A.

As an example, let S = k[x1, . . . , xn] and let A = S/(f) for a non zero f ∈ S. It follows from the

work of Eisenbud [27] that the singularity category sg(A) is triangle equivalent to the homotopy category

of matrix factorizations of f . By definition, this category equals H0(mfdg(f)), where mfdg(f) is the dg

category of matrix factorizations of f : its objects are the 2-periodic diagrams (not complexes!)

. . .
d0 // P1

d1 // P0
d0 // P1

d1 // P0
d0 // . . .

where the Pi are finitely generated projective S-modules and d2 is the multiplication with f . For two such

objects P and Q, the morphism complex Hom(P,Q) has as its nth component the space of homogeneous

S-linear maps g : P → Q of degree n. The differential is given by d(g) = d ◦ g − (−1)ng ◦ d. We leave

it as an exercise for the reader to check that d2(g) = 0. It is an important point that the complexes

Hom(P,Q) are also 2-periodic, so that we may also view mfdg(f) as a differential Z/2Z–graded category!

Now suppose that Ae = A ⊗ Aop is also (right) noetherian. We define Tate–Hochschild coho-

mology of A (sometimes also called singular Hochschild cohomology of A) to be the Yoneda algebra

HH∗sg(A) = Ext∗sg(Ae)(A,A) of the identity bimodule in the singularity category of the enveloping alge-

bra. By definition, it is an algebra and it is not hard to check directly that it is (graded) commutative.

However, the singularity category sg(Ae) is not monoidal in any natural way. We may nevertheless ask

whether Tate–Hochschild cohomology carries the same rich structure as classical Hochschild cohomology.

This problem was open for some time and finally solved in the thesis of Zhengfang Wang:

Theorem 1.8.1 (Zhengfang Wang). a) HH∗sg(A) carries a natural (but intricate!) Gerstenhaber bracket

[99].

b) There is a natural B∞-algebra C∗sgA computing HH∗sg(A) with its Gerstenhaber bracket [98].

Thus, we see that there is a complete structural analogy between Tate–Hochschild cohomology and

classical Hochschild cohomology. It is therefore natural to ask whether Tate–Hochschild cohomology is

not an instance of classical Hochschild cohomology, i.e. whether the Tate–Hochschild cohomology of A

is classical Hochschild cohomology of some more complicated object associated with A in analogy with

Corollary 1.6.11. Recall that a dg category A is smooth if the identity bimodule IA : (X,Y ) 7→ A(X,Y )

is perfect in the derived category D(Ae) of bimodules. Define the dg singularity category of A as the dg

quotient

sgdg(A) = Dbdg(modA)/per dg(A).
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Theorem 1.8.2 ([58]). There is a canonical morphism of graded algebras

HH∗sg(A)→ HH∗(sgdg(A)).

It is an isomorphism if the dg category Dbdg(modA) is smooth.

According to Theorem A of Elagin–Lunts–Schnürer’s [28], the dg category Dbdg(modA) is smooth if A

is a finite-dimensional algebra over any field k such that A/rad(A) is separable over k (which is automatic

if k is perfect). By Theorem B of [loc. cit.], it also holds if the algebra A is right noetherian and finitely

generated over its center and the center is a finitely generated algebra over k.

Conjecture 1.8.3 (Keller). The morphism of the theorem lifts to a morphism in the homotopy category of

B∞-algebras.

Note that this morphism will be an isomorphism if the bounded dg derived category Dbdg(modA) is

smooth. In particular, this should hold for each finite-dimension algebra defined by a quiver with an

admissible ideal of relations. The following theorem confirms the conjecture for radical square 0 algebras.

Theorem 1.8.4 (Chen–Li–Wang [18]). The conjecture holds if A = kQ/(Q1)2, where Q is a finite quiver

without sinks or sources and (Q1)2 the square of the ideal of the path algebra kQ generated by the arrows.

To show why the conjecture is probably not easy to prove, let us sketch the construction of the

isomorphism in Theorem 1.8.2. Let M = Dbdg(modA) and S = sgdg(A). We have natural dg functors

A
i //M

p // S

whose composition vanishes in the homotopy category of dg categories. We construct the following square

(commutative up to isomorphism)

Db(A⊗Aop) D(A⊗Mop) D(M⊗Mop)

sg(A⊗Aop) D(S ⊗ Sop)

(1⊗i)∗ (i⊗1)!

(p⊗p)∗

Here, for a dg functor f : A1 → A2, we denote by f∗ the left adjoint and by f ! the right adjoint of

the restriction functor f∗ : DA2 → DA1. One checks that the dashed triangle functor exists, takes the

identity bimodule A to the identity bimodule S(?,−) and induces an isomorphism between the Yoneda

algebras of these objects. Since the functor is induced by the composition of a right derived with a left

derived functor, it is hard to compute it explicitly and that is why the conjecture is not obvious.
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1.9 Application: two reconstruction theorems

We apply the results of the preceding section to the reconstruction of singularities.

1.9.1 Isolated hypersurface singularities

Theorem 1.9.2 (Hua-Keller [46]). Let S = C[[x1, . . . , xn]] and suppose that R = S/(f) is an isolated

singularity. Then R is determined up to isomorphism by its dimension and the dg singularity category

sgdg(R).

Notice that because of Knörrer periodicity, the dg singularity category alone does not determine R.

Sketch of proof. We consider the center

Z(sgdg(R)) = HH0(sgdg(R)).

By Theorem A of [28], the bounded dg derived category Db(modR) is smooth. By Theorem 1.8.2, the

algebra HH0(sgdg(R)) is isomorphic to HH0
sg(R). Now since R is a hypersurface, the dg singularity

category may be described by matrix factorizations and is therefore 2-periodic. Hence its Hochschild

cohomology is 2-periodic and, again by Theoreom 1.8.2, so is HH∗sg(R). Thus, we have an isomorphism

HH0
sg(R) ∼−→ HH2r

sg (R).

Now by a theorem of Buchweitz [14], for Gorenstein algebras, in sufficiently high degrees, Tate–Hochschild

cohomology agrees with classical Hochschild cohomology and we get an isomorphism

HH2r
sg (R) ∼−→ HH2r(R).

Thus, we are reduced to the computation of Hochschild cohomology of a hypersurface. Thanks to the

results of [37], we find that HH2r(R) and HH0(R) are isomorphic to the Tyurina algebra

S/(f,
∂f

∂x1
, . . . ,

∂f

∂xn
).

Now the Tyurina algebra together with the dimension determine R by the Mather–Yau theorem [72],

more precisely its formal series version proved in [35]. Notice that in this sketch, we have neglected the

technical problems arising from the fact that R is a topological algebra.
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Notice that in the above computation, we have considered the dg singularity category sgdg(R) as a

differential Z-graded category. If one considers it as a differential Z/2-graded category, one obtains a

different result for the center, namely the Milnor algebra

ZZ/2(sgdg(R)) = S/(
∂f

∂x1
, . . . ,

∂f

∂xn
)

as shown by Dyckerhoff [26].

1.9.3 Compound Du Val singularities

Let R be a complete local isolated compound Du Val singularity (thus, it is 3-dimensional, normal and a

generic hyperplane section through the origin is a Kleinian surface singularity). Let

f : Y → X = Spec(R)

be a small crepant resolution (thus, it is birational, an isomorphism in codimension 1, an isomorphism

outside the exceptional fibre and f∗(ωX) ∼= ωY ). Then the reduced exceptional fibre F of f is a tree

of rational curves P1. The morphism f contracts this tree to a point. Associated to this situation is

the contraction algebra Λ introduced by Donovan–Wemyss [24]. It is a finite-dimensional algebra which

represents the deformations with non commutative base of the exceptional fibre of f . It is known that

numerous invariants of the singularity can be computed from the algebra Λ. This has lead Donovan–

Wemyss to conjecture [6] that the derived equivalence class of Λ determines R up to isomorphism. We

show a weakened version: Thanks to work of Van den Bergh and de Thanhoffer de Voelcsey [97], it is

known that Λ is the Jacobian algebra of a quiver Q with potential W . By definition, the potential is an

element of HH0(CQ). Let W be its image in HH0(Λ).

Theorem 1.9.4 (Hua-Keller [46]). The derived equivalence class of the pair (Λ,W ) determines R.

The proof uses, among other things, Theorem 1.9.2 and silting theory.

Let us point out the link to cluster theory: It turns out that the singularity category sg(R) is triangle

equivalent to a generalized cluster category in the sense of Amiot [1], namely the generalized cluster

category CQ,W associated with the quiver Q with potential W . This category has therefore the same

main properties as the categories appearing in the (additive) categorification of Fomin–Zelevinsky cluster

algebras, cf. [65]. However, the quivers that appear are quite different: Whereas the quivers in Donovan–

Wemyss’ theory have many loops and 2-cycles, the quivers appearing in cluster theory never have loops

or 2-cycles.
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Chapter 2

On the Hochschild homology of
singularity categories

Let k be an algebraically closed field and A a finite-dimensional k-algebra. In this chapter, we determine

complexes which compute the Hochschild homology of the canonical dg enhancement Dbdg(A) of the

bounded derived category Db(A) = Db(modA) and of the canonical dg enhancement sgdg(A) of the

singularity category

sg(A) = Db(A)/per (A).

Our main tools are Koszul duality as described in [59] and the localization theorem 1.7.4.

2.1 Hochschild homology and Koszul duality

Let k be an algebraically closed field. We refer to Chapter 1 for the definition and the most important

properties of Hochschild homology of k-algebras and (dg) k-categories. In particular, we denote by

HH(A) the Hochschild complex of a k-algebra A. In the sequel, in addition, we need the computation of

Hochschild homology of the Koszul dual: Let Q be a finite quiver and I an admissible ideal in kQ, i.e. a

two-sided ideal contained in the square of the ideal generated by the arrows and such that the quotient

kQ/I is finite-dimensional. Let R be the quotient of A by its radical. Thus, as an A-module, the algebra

R is the direct sum of the simple A-modules. Following [59], we define the Koszul dual of A to be the dg

algebra

A! = RHomA(R,R).
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Thus, if P is a projective resolution of the A-module R, then the Koszul dual is quasi-isomorphic to the

dg endomorphism algebra HomA(P, P ) of P . The following theorem is a special case of Corollary D.2 of

Van den Bergh’s [95]. We write D for the dual Homk(?, k) over the ground field.

Theorem 2.1.1 (Van den Bergh). We have a canonical isomorphism

HH(A!) ∼−→ DHH(A).

We refer to [43] for a comparison taking into account much more structure.

2.2 Hochschild homology of derived categories and singularity cate-

gories

Let Q be a finite quiver and I an admissible ideal in kQ. Let modA be the category of k-finite-dimensional

right A-modules. Denote by Db(A) = Db(modA) the bounded derived category of A and by per (A) the

perfect derived category, i.e. the thick subcategory generated by the free A-module of rank 1. Following

Buchweitz [14] and Orlov [77], one defines the singularity category of A as the Verdier quotient

sg(A) = Db(A)/per (A).

Using the canonical dg enhancements of Db(A) and per (A), cf. section 1.6, we obtain a canonical exact

sequence of dg categories

0 // per dg(A) // Dbdg(A) // sgdg(A) // 0

It is not hard to see that, in the homotopy category of dg categories, it is functorial with respect to

bimodules complexes X ∈ D(Aop ⊗B) such that XB is perfect over B and AX is perfect over A. From

the localization theorem 1.7.4, we deduce a triangle

HH(per dg(A) // HH(Dbdg(A)) // HH(sgdg(A)) // ΣHH(per dg(A)) (2.2.0.1)

in the derived category of vector spaces.

Theorem 2.2.1. We have a canonical isomorphism HH(Dbdg(A)) ∼−→ DHH(A).

Proof. Recall that we have defined R to be the quotient of A by its radical and the Koszul dual A! as

RHomA(R,R). Since the module R is a classical generator of the bounded derived category Db(A), we

deduce from the results of [59] that we have a triangle equivalence

RHomA(R, ?) : Db(A)
∼ // per (A!).
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This lifts to a quasi-equivalence

Dbdg(A) ∼−→ per dg(A
!).

By Morita invariance of Hochschild homology, we have

HH(A!) ∼−→ HH(per dg(A
!)).

By Van den Bergh’s theorem 2.1.1, we have

HH(A!) ∼−→ DHH(A).

The claim follows if we combine these isomorphisms.

Define a linear map τ : A → DA by sending an element a ∈ A to the linear form which takes b ∈ A
to the trace of the linear map

λaρb : A→ A , x 7→ axb.

Notice that since A is finite-dimensional, this is well-defined. Define the double Hochschild complex of A

to be the complex

. . .
b // A⊗A b // A

τ // DA
Db // D(A⊗A)

Db // . . . ,

where DA sits in degree 0, the differentials b are those of the Hochschild complex and the Db their duals.

Let us abbreviate S = sgdg(A).

Theorem 2.2.2. In Dk, we have a canonical isomorphism between HH(S) and the double Hochschild

complex of A.

Notice that this implies in particular that HHn(S) is finite-dimensional for all n. This is surprising

since the singularity category sg(A) is usually not Hom-finite (except if A is Gorenstein), cf. for example

[17].

Proof. We use the triangle

HH(per dg(A)) // HH(Dbdg(A)) // HH(S) // ΣHH(per dg(A)) .

We have already seen that it is isomorphic to a triangle

HH(A)→ HH(A!)→ HH(S)→ ΣHH(A) ,

where the first morphism is induced by the inclusion per dg(A) → Dbdg(A). Thus, the complex HH(S)

identifies with the mapping cone over the morphism HH(A)→ HH(A!). Let us determine this morphism
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explicitly. Recall that the functor HH, considered as a functor on the homotopy category of small dg

categories with values in the derived category Dk, commutes with tensor products. We have the following

commutative square

per dg(A
op)⊗ per dg(A) per dg(k)

per dg(A)op ⊗Dbdg(A) per dg(k)

Here, a pair (P1, P2), P1 ∈ proj (Aop), P2 ∈ proj (A) is taken to P2 ⊗A P1 by the top arrow and to

(HomA(P1, A), P2) by the left vertical arrow. It follows from Appendix D in [95] that the lower horizontal

arrow induces a non degenerate pairing

HH(A)⊗HH(Dbdg(A))→ HH(k) = k.

A direct computation now shows that the morphism

HH(A)→ DHH(A)

is the composition

HH(A)→ HH0(A)→ DHH0(A)→ DHH(A)

where the middle morphism is induced by the map τ .

Corollary 2.2.3. a) For n ≥ 2, we have canonical isomorphisms

HHn(S) ∼−→ HHn−1(A) ∼−→ DHH1−n(S).

Moreover, we have

HH1(S) ∼−→ ker(HH0(A)
τ→ DHH0(A)) ∼−→ DHH0(S).

b) If A is symmetric, then HH∗(S) agrees with the singular Hochschild homology (=Tate–Hochschild

homology) of A.

2.3 Application: Hochschild homology of dg Leavitt path algebras

Let Q be a finite quiver, for example a quiver with one vertex and a unique loop α. Let A be the

associated radical square zero algebra, i.e. the quotient of kQ by the square of the ideal generated by the

arrows. So for the one-loop quiver, we have A = k[ε]/(ε2). Let Q∗ be the graded quiver obtained from

the opposite quiver of Q by assigning each arrow α∗ : j → i corresponding to an arrow α : i→ j of Q the

degree +1. For each vertex i of Q, consider the arrows α∗s : i→ jis , 1 ≤ s ≤ ti starting in Q∗ at i. Let

ϕi : Pi →
ti⊕
s=1

ΣPjis
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be the morphism with components α∗s , where Pi = eikQ
∗. For example, for the one-loop quiver, we just

have ϕ(1) = α∗ : P1 → ΣP1. Note that if i is a sink of Q, then

ti⊕
s=1

Pjis = 0.

For each vertex i ∈ Q0, let

ϕ(i)−1 = [βi,1, . . . , βi,ti ] :

ti⊕
s=1

ΣPjis → Pi

be the formal inverse of ϕ(i). The graded Leavitt path algebra of Q is obtained from kQ∗ by adjoining all

coefficients βij of all formal inverses ϕ(i)−1, i ∈ Q0. We endow LQ with the grading inherited from Q∗

and with d = 0.

Theorem 2.3.1 (Smith [78] , Chen–Yang [20]). We have a triangle equivalence per (LQ) ∼−→ sg(A) taking

eiLQ to the simple Si.

Corollary 2.3.2. The Hochschild homology HH∗(LQ) of the Leavitt path algebra is computed by the double

Hochschild complex

. . .
b // A⊗A b // A

τ // DA
Db // D(A⊗A)

Db // . . . ,

(with DA in degree 0). In particular, we have

dimHHp(LQ) = 0 <∞

for all p ∈ Z.

A different description of the Hochschild homology of Leavitt path algebras is due to Ara–Cortinñas

[3].

2.4 Beyond radical square zero

Let Q be a finite quiver and A = kQ/I the quotient of its path algebra by an admissible ideal. Let J be

the radical of A and R = kQ0 so that we have A = R ⊕ J as R-bimodules. Let A0 = (TRJ)/(J ⊗R J)

be the radical square zero algebra associated with A. Thus, we have A0 = R ⊕ J = A as R-bimodules

but we have xy = 0 in A0 for any two elements of J . We view A0 as a degeneration of A and A as a

deformation of A0. As pointed out by Chen–Wang [19], this suggests that the singularity category sg(A)

is a deformation of the singularity category sg(A0), which is equivalent to the perfect derived category

per (LA0
) of the graded Leavitt path algebra LA0

. Hence we can hope for the existence of a dg algebra LA

obtained from LA0
by deformation such that per (LA) is equivalent to sg(A). We sum up the situation

in the following diagram
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A0 A
deformation

sg(A0) sg(A)

per (LA0
) per (LA)

deformation

∼ ∼

deformation?

LA0 LAdeformation? ?

?

The following theorem confirms this hope.

Theorem 2.4.1 (Chen–Wang [19]). The graded algebra LA0 admits a canonical differential dA such that

for LA = (LA0 , dA), we have a triangle equivalence

per (LA) ∼−→ sg(A).

In chapter 3, we will give an alternative proof of this theorem.

Corollary 2.4.2. The Hochschild homology of the dg Leavitt path algebra LA is computed by the double

Hochschild complex of A.
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Chapter 3

New proof of a theorem by Chen–Wang

We give a new proof of Chen–Wang’s theorem 2.4.1 describing singularity categories of finite-dimensional

algebras using dg Leavitt path algebras. The proof is based on Koszul–Moore duality worked out in

Lefèvre-Hasegawa’s thesis [68] as described in Keller’s [56] and on derived localisation as developed in

Braun–Chuang–Lazarev’s [11].

3.1 Modules and comodules

Let k be a field and Q a finite quiver. Let A be the quotient kQ/I of the path algebra kQ by an

admissible ideal I, i.e. an ideal contained in the square of the ideal generated by the arrows such that

kQ/I is finite-dimensional. Let R = kQ0 be the subalgebra of A generated by the lazy idempotents ei,

i ∈ Q0, and let J be the Jacobson radical of A (which equals the ideal generated by the arrows). We

have the decomposition A = R ⊕ J in the category of R-bimodules and we view A as an augmented

algebra in the monoidal category of R-bimodules with the tensor product ⊗R. Notice that the vector

space kQ1 whose basis is formed by the arrows of Q is naturally an R-bimodule and that the path algebra

kQ identifies with the tensor algebra TR(kQ1).

For an R-bimodule M , we define the dual bimodule by

M∨ = HomRe(M,Re).

For example, for M = kQ1, the dual bimodule M∨ canonically identifies with kQ∗1, where Q∗ is the quiver

with the same vertices as Q and whose arrows are the α∗ : j → i for each arrow α : i → j of Q. Notice
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that for an arbitrary R-bimodule M , the underlying vector space of M∨ identifies with the dual

DM = Homk(M,k)

via the map taking an R-bilinear map f : M → Re to the linear form t ◦ f , where t : Re → k takes ei⊗ ej
to δij ∈ k.

As an R-bimodule, the algebra A is finitely generated projective so that C = A∨ becomes a coalgebra

in the category of R-bimodules. We have C = R⊕ J∨ and the induced comultiplication

J∨ → J∨ ⊗R J∨

is conilpotent because the Jacobson radical J of A is nilpotent. Thus, we may view C as an augmented

cocomplete differential graded coalgebra (in the sense of section 2 of [56]), which is moreover concentrated

in degree 0.

Since A is finitely generated projective as an R-bimodule, for each right R-module M , we have natural

isomorphisms

HomR(M ⊗R A,M) ∼−→M ⊗R A∨ ⊗R HomR(M,R) ∼−→ HomR(M,M ⊗R C).

This allows us to convert rightA-modules into right C-comodules. More precisely, we have an isomorphism

of categories

ModA ∼−→ ComC ,

where ModA denotes the category of all right A-modules and ComC the category of all right C-

comodules. Clearly, this isomorphism restricts to an isomorphism

modA ∼−→ comC

between the categories of finite-dimensional modules respectively comodules.

3.2 Koszul–Moore duality

We refer to section 4 of [56] for all undefined terminology and for proofs or references to proofs of the

claims we make. Let ΩC be the cobar construction of C over R. Thus, the underlying graded algebra

of ΩC is the tensor algebra TR(Σ−1J∨) on the desuspension Σ−1J∨ = J∨[−1] of J∨ = C/R. The

differential of ΩC encodes the comultiplication J∨ → J∨⊗R J∨. The projection C → J∨ composed with

the inclusion Σ−1J∨ → ΩC is the canonical twisting cochain τ : C → ΩC. It is an R-bimodule morphism

of degree 1 satisfying

d(τ) + τ ∗ τ = 0 ,
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where d(τ) = dΩC ◦τ+τ ◦dC and ∗ is the convolution product on HomRe(C,ΩC). For a dg ΩC-module L,

the twisted tensor product L⊗τ C is defined by twisting the differential on L⊗RC using τ , and similarly,

for a cocomplete dg C-comodule M , the twisted tensor product M ⊗τ (ΩC) is defined by twisting the

differential on M ⊗R (ΩC). We get a pair of adjoint functors

F =?⊗τ (ΩC) : dgCom (C)↔ dgMod (ΩC) : ?⊗τ C = G ,

where dgMod (ΩC) denotes the category of dg right ΩC-modules and dgCom (C) the category of cocom-

plete dg right C-comodules. These functors form in fact a Quillen equivalence for the standard Quillen

model structure on dgMod (ΩC) and a suitable Quillen model structure on dgCom (C), cf. [68]. Thus,

they induce quasi-inverse equivalences

F : Dc(C) ∼−→ D(ΩC) : G ,

where Dc(C) is the coderived category of C and D(ΩC) the derived category of ΩC. The equivalence F

sends C to R and R to ΩC.

Although it is not necessary for the sequel, let us point out that Dc(C) is equivalent to the homotopy

category H(InjA) of complexes of injective A-modules. Indeed, we know from [68] that the fibrant-

cofibrant objects of dgComC are exactly the retracts of the cofree dg comodules (which are automatically

cocomplete since C is conilpotent) and that two morphisms between fibrant-cofibrant dg comodules are

homotopic in the model-theoretic sense if and only if they are homotopic in the classical sense. Thus, the

homotopy category Dc(C) of the Quillen model category dgComC is equivalent to the usual homotopy

category of all complexes of right C-comodules which are retracts of complexes of cofree comodules. It

is not hard to see that this homotopy category is equivalent to the (slightly larger) homotopy category

of complexes of dg comodules with injective components. Via the isomorphism ComC → ModA, the

complexes of C-comodules with injective components correspond exactly to the complexes of A-modules

with injective components so that we get the equivalence

H(InjA) ∼−→ Dc(C).

3.3 Description of the singularity category

Since R generates Db(comC) and ΩC generates per (ΩC), the equivalence Dc(C) ∼−→ D(ΩC) induces an

equivalence

Db(comC) ∼−→ per (ΩC).
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By composition with the isomorphism Db(modA) ∼−→ Db(comC), we get an equivalence Db(modA) ∼−→
per (ΩC) which sends R to ΩC. In particular, we get an induced algebra isomorphism

Ext∗A(R,R) ∼−→ Ext∗ΩC(ΩC,ΩC) ∼−→ H∗(ΩC).

The isomorphism Db(modA) ∼−→ Db(comC) sends the injective cogenerator DA ∼−→ A∨ to the cofree

comodule C and the equivalence Db(comC) ∼−→ per (ΩC) sends C to R. Thus, we get an induced

equivalence

Db(modA)/thick (DA) ∼−→ per (ΩC)/thick (R).

By composing with the duality functor

D : Db(modA
op

)
op ∼−→ Db(modA)

we find an equivalence

sg(A
op

)
op ∼−→ per (ΩC)/thick (R) ,

where sg(A
op

) denotes the singularity category of A
op

.

3.4 Description of the singularity category as a derived localization

We put V = Σ−1J∨ so that ΩC = TR(V ) as a graded algebra. We have an exact sequence of dg

ΩC-modules

0→ K → ΩC → R→ 0.

Its underlying sequence of graded modules identifies with

0→ V ⊗R TR(V )→ TR(V )→ R→ 0 ,

where the morphism V ⊗R TR(V ) → TR(V ) is just multiplication. Notice that the differential on K =

V ⊗R TR(V ) is not 1V ⊗ dΩC but is induced by that of ΩC via the inclusion K → ΩC. It is not hard to

see that the cone over K → ΩC is isomorphic to C ⊗τ ΩC. This shows in particular that this cone lies

in pretr (ΩC), the closure of ΩC under shifts and graded split extensions in the category of dg modules.

It follows that K also lies in this category. Thus, we wish to describe the localization of per (ΩC) with

respect to the thick subcategory generated by the cone over the morphism

V ⊗R (ΩC) = K → ΩC

between two dg ΩC-modules in pretr (ΩC). Let L be the graded algebra obtained from TR(V ) by adjoining

all the matrix coefficients of a formal inverse of the morphism

V ⊗R TR(V )→ TR(V )
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between free graded TR(V )-modules. Since V = Σ−1J∨, we see that via the choice of a basis of J∨

compatible with its isotypical decomposition as a semi-simple Re-module, the algebra L becomes isomor-

phic to a graded Leavitt path algebra. We endow L with the unique differential such that the canonical

morphism

ΩC → L

becomes a morphism of dg algebras. Clearly induction along the morphism ΩC → L induces a triangle

functor

per (ΩC)→ per (L)

which annihilates the cone over K → ΩC (indeed, the image of this morphism in per (L) is invertible and

hence its cone becomes contractible) and thus induces a triangle functor

per (ΩC)/thick (R)→ per (L).

We claim that this functor is an equivalence. Indeed, this follows by combining Theorem 4.36 with (a

slight generalization with a similar proof of) Corollary 4.15 in [11]. In the sections below, we sketch

an alternative, alas not yet complete approach to the proof of the equivalence based on a theorem of

Neeman–Ranicki [75]. By composition, we obtain an equivalence

sg(Aop)op ∼−→ per (L).

It is clear how to obtain a similar description of sg(A) itself.

3.5 Conjectural approach via Neeman–Ranicki’s theorem

3.5.1 For rings concentrated in degree 0

Let R be a hereditary ring and S a set of morphisms s : P1 → P0 between finitely generated projective

(right) R-modules. Let RS be the universal localization of R with respect to S in the sense of Cohn [23].

Thus, the ring RS is endowed with a morphism R → RS which is universal among the ring morphisms

R→ R′ such that s⊗RR′ : P1⊗RR′ → P0⊗RR′ is invertible for each s ∈ S. If s is a morphism between

finitely generated free modules given by left multiplication by a p×q-matrix M , then Rs is obtained from

R by formally adjoining the entries of a matrix M ′ satisfying MM ′ = Ip and M ′M = Iq.

Let R be the localizing subcategory of the derived category S = DR generated by the cones Ns over

the morphisms s ∈ S. Put T = S/R so that we have an exact sequence of triangulated categories

0→ R→ S → T → 0.
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Clearly the extension of scalars functor ?
L
⊗R RS : D(R) → D(RS) kills the Ns, s ∈ S, and commutes

with arbitrary coproducts. Thus, it kills R and we have an induced canonical triangle functor

T = S/R → D(RS).

The following theorem is an immediate consequence of Neeman–Ranicki’s work in [75].

Theorem 3.5.2 (Neeman–Ranicki). The canonical functor T → D(RS) is an equivalence.

Sketch of proof. Let T = D(R)/N and let π : D(R) → D(R)/N be the quotient functor. One first

shows that HomT (π(R),Σnπ(R)) vanishes for n 6= 0. Thus, the image π(R) is a tilting object in T and

we have a triangle equivalence D(E) ∼−→ T , where E = HomT (π(R), π(R)). Now one shows that the

morphism R→ E given by π identifies with the universal localization R→ Rs. The detailed arguments

are contained in [75].

Example 3.5.3. Let k be a field and Q a finite quiver. For each vertex i of Q which is the source of at

least one arrow of Q, let si be the morphism

Pi →
⊕
α:i→j

Pj

where Pi = eikQ and the component of the map associated with α is the left multiplication by α. Let S

be the (finite) set of the si. Clearly the hypotheses of the theorem hold so that D(RS) identifies with the

quotient of D(R) by the localizing subcategory generated by the cokernels (equivalently: cones) of the si.

Let us observe that the above theorem easily generalizes from rings to small categories and to small

graded categories. Of course, its analogue holds for small graded k-categories, where k is a field. So let

P be a small graded k-category whose category of graded modules (i.e. the category of k-linear graded

functors with values in the category of Z-graded vector spaces) is hereditary. Let S be a set of morphisms

of P and PS the localization of P at the set S in the sense of Gabriel–Zisman [30]. For example, if A is

a graded k-algebra and S a set of homogeneous morphisms in the category of finitely generated graded

projective right A-modules, then PS is Morita-equivalent to the universal localization AS of A at S.

Now let us denote by PhS the localization of P as a dg category in the sense of Drinfeld [25]. By the

main result of [25], the canonical functor

T = D(P)/N → D(PhS)

is an equivalence. As a consequence, we obtain the following variant of Neeman–Ranicki’s theorem.

Theorem 3.5.4 (Neeman–Ranicki). The canonical morphism PhS → PS is a quasi-equivalence.
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3.5.5 The differential graded case

Let k be a commutative ring and dgcatk the category of small dg k-categories. Let F : A → B be a

dg functor between small dg categories. The functor F is a derived localization if the induced functor

F ∗ : DA → DB is a Verdier localization. Recall the two main model structures on the category of dg

categories due to Tabuada [87, 89]: the Dwyer-Kan model structure of [87], whose weak equivalences are

the quasi-equivalences, and the Morita model structure of [89], whose weak equivalences are the Morita

functors, i.e. the dg functors F : A → B such that F ∗ : DA → DB is an equivalence. Recall that these

are cofibrantly generated model structures whose sets of generating cofibrations are identical and consist

of the following dg functors:

a) the inclusion ∅ → k of the empty dg category into the one-object dg category given by the dg

algebra k and

b) the dg functors Sn : C(n)→ P(n), defined for n ∈ Z, where C(n) and P(n) are the dg categories with

two objects 1, 2 respectively 3, 4 whose only non trivial morphism complexes are C(n)(1, 2) = Sn−1

respectively P(n) = Dn, where Sn−1 is Σn−1k and Dn the cone over the identity of Sn−1. The dg

functor Sn maps 1 to 3 and 2 to 4 and induces the inclusion Sn−1 → Dn of Sn−1 into the cone over

its identity morphism.

A dg category is finitely cellular if it is obtained from the empty dg category by a finite number of

pushouts along functors in a) or b). Equivalently, it is the path category of a graded quiver Q such that

the set of arrows Q1 admits a filtration

∅ = F0Q1 ⊂ F1Q1 ⊂ · · · ⊂ FnQ1 = Q1

such that the differential maps the graded path category of (Q0, FpQ1) to that of (Q0, Fp−1Q1) for each

1 ≤ p ≤ n.

From now on, let us assume that k is a field and that A is a finitely cellular dg algebra given by a

graded quiver Q and a differential on kQ. Let P be the full subcategory of the dg category of right dg

A-modules whose objects are the finite direct sums of the ΣpPi = eiA, i ∈ Q0, p ∈ Z. Let S be a set of

(closed) morphisms of P.

Conjecture 3.5.6. The canonical dg functor PhS → PS is a quasi-equivalence.

We have not yet proved the conjecture but believe the following strategy is promising: The given

filtration on A yields a filtration on P indexed by N. The localization P admits a filtration indexed by

53



Z such that the functor P → PS becomes universal among the dg functors respecting the filtration and

making the elements of S invertible. We would like to describe the associated graded category gr (PS).

Each morphism s in S is given by a matrix whose entries are linear combinations of paths of Q. The

filtration degree d of s is the maximum of the degrees of the paths appearing with non zero coefficients.

We write σ(s) for the image of s in the dth graded component of gr (P) and we write σ(S) for the set of

morphisms of gr (P) formed by the σ(s), s ∈ S. It is clear that the σ(s) become invertible in gr (PS).

Lemma 3.5.7. The canonical morphism functor

gr (P)σ(S) → gr (PS)

is invertible.

Recall that PhS is obtained from P by adjoining, for each s : P1 → P2 in S,

• a morphism t : P2 → P1 of degree 0,

• endomorphisms hi of Pi homogeneous of degree −1 such that d(h1) = ts−1P1
and d(h2) = st−1P2

,

• a morphism u : P1 → P2 of degree −2 such that d(u) = h2s− sh1.

We see that PhS admits a Z-indexed filtration such that the canonical functor P → PhS becomes universal

among the functors respecting the filtration.

Lemma 3.5.8. The canonical functor

gr (P)hσ(S) → gr (PhS)

is invertible.

Clearly we have a commutative square

gr(P)hσ(S) gr(PhS)

gr(P)σ(S) gr(PS)

By the two preceding lemmas, the horizontal functors are invertible. By Neeman–Ranicki’s theorem, the

left vertical arrow is a quasi-equivalence. Thus, the canonical functor

gr (PhS)→ gr (PS)

is a quasi-equivalence. We would like to conclude that the canonical functor PhS → PS is a quasi-

equivalence. Unfortunately, this is not clear because the filtrations are indexed by Z rather than N.
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Chapter 4

Cyclic homology and relative Calabi–Yau
structures

These are notes taken by the author for a series of three lectures by Bernhard Keller on relative Calabi–

Yau structures given at the workshop of the International Conference on Representations of Algebras

which was held online in November 2020. Relative Calabi–Yau structures serve in particular to construct

relative cluster categories associated with ice quivers with potential, cf. [102, 100], and these are closely

related to singularity categories, which establishes the link to the main theme of this thesis.

4.1 Introduction

In 1957, the Italo-American geometer Eugenio Calabi conjectured [15] that each Kähler manifold whose

first Chern class vanishes admits a Ricci flat metric. His conjecture was proved twenty years later by Shing-

Tung Yau [103]. Algebraic varieties with trivial canonical bundle are now called Calabi–Yau varieties.

The proper ones among these are characterized by the fact that their bounded derived category admits a

Serre functor isomorphic to a power (the dimension) of the suspension functor. Following Kontsevich, a

Hom-finite (algebraic) triangulated category with this property is now called a Calabi–Yau triangulated

category. In these notes, we are concerned with a relative version of this notion that was first sketched by

Toën [93] in 2014 and fully developed by Brav and Dyckerhoff in [13, 12]. One of the key features of their

notion of (left) relative Calabi–Yau structure is a gluing construction analogous to that in cobordism of

manifolds. Wai-Kit Yeung showed how to construct large classes of examples using relative Calabi–Yau

completions in [64, 104] and advocated the idea that these should be viewed as non commutative conormal

bundles. This was justified using Kontsevich–Rosenberg’s criterion by Bozec–Calaque–Scherotzke in [10].
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In the representation theory of quivers and finite-dimensional algebras, the motivations for studying

relative Calabi–Yau structures come from at least three sources:

- applications in the study of Fukaya categories (cf. for example Brav–Dyckerhoff’s [13, 12]),

- the categorification of cluster algebras with coefficients (as in the work of Geiss–Leclerc–Schröer

[31], Leclerc [67], Jensen–King–Su [51], Pressland [81, 80, 79, 82] . . . as well as [101]),

- its close links with higher Auslander–Reiten theory (to be illustrated below, cf. also [101, 102]).

In these notes, after an informal illustration of the main notions and a quick reminder on dg (=dif-

ferential graded) algebras and their derived categories, our first aim will be to present many examples of

dg algebras and morphisms endowed with Calabi–Yau structures, respectively relative Calabi–Yau struc-

tures. These will be obtained using (relative) Calabi–Yau completions and should illustrate the relevance

of these for (higher) Auslander–Reiten theory. Our second aim will be to sketch the foundations of the

subject for which we will need to recall the necessary material on Hochschild and cyclic homology.

4.2 Intuition and first examples

In this purely introductory section, we informally discuss the key notions and constructions to be devel-

oped in the sequel.

There is a close analogy (which actually goes deeper) between the notion of orientation of a (real,

smooth) n-dimensional manifold M and the notion of (absolute) n-Calabi–Yau structure on a dg algebra

A. This extends to a relative setting1 where we obtain a close analogy between an n-dimensional manifold

with boundary ∂M ⊂M both endowed with compatible orientations and a relative n-Calabi–Yau structure

on a morphism B → A of dg algebras.

1Notice that we do not write the relative setting because the setting considered here is not the relative one in the usual
sense of algebraic geometry.
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In differential geometry, we obtain examples of oriented manifolds with boundary by taking the

conormal bundle of the inclusion of a submanifold. In the homological theory of dg algebras, we obtain

examples of morphisms endowed with relative Calabi–Yau structures by forming the n-Calabi–Yau com-

pletion B → A of a morphism i0 : B0 → A0 of smooth dg algebras over a field k. For example, let us take

B0 to be k, the algebra A0 to be the path algebra of the quiver 1 → 2 → 3 and i0 the morphism given

by the inclusion of the vertex 3 into this quiver as in Figure 4.1. If we apply the relative 2-Calabi–Yau

completion to this morphism, we find the algebra morphism from the polynomial algebra k[t] to the

Auslander algebra of the truncated polynomial algebra k[x]/(x3) which takes the unique object to the

indecomposable projective P = k[x]/(x3) and the indeterminate t to the multiplication by x.

In Figure 4.2, we consider an example of a relative 3-Calabi–Yau completion. The given morphism

is the inclusion of the path algebra A of the linearly oriented A3-quiver into its Auslander algebra. The

3-Calabi–Yau completion is a morphism from the 2-dimensional Ginzburg algebra of type A3 to a relative

Jacobian algebra, namely the one associated with the ice quiver in the lower half of the figure endowed

with the potential given by the difference between the sum of the 3-cycles rotating clockwise and those

rotating counter-clockwise.
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Figure 4.1: Relative 2-Calabi–Yau completion
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relative 3-CY-completion

Figure 4.2: Example of a relative 3-Calabi–Yau completion
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4.3 Complements on dg algebra resolutions

Let k be a field. Let Q be a graded quiver, i.e. a quiver (Q0, Q1, s, t) endowed with a function |?| : Q1 → Z.

For n ∈ Z we write Qn1 for the set of arrows α of Q of degree |α| = n. The associated path algebra kQ

then becomes a graded algebra if we define the degree of a path a1 . . . al to be the sum of the degrees of

the composable arrows ai. As a typical example, let A be the path algebra of the quiver

1 2 3b a

subject to the relation ab = 0 (all arrows in degree 0). Let Ã be the graded path algebra of the graded

quiver

1 2 3b

c

a

where a and b have degree 0 and c has degree −1. We endow the graded path algebra Ã with the unique

algebra differential such that d(c) = ab. Then the algebra morphism Ã → A taking a to a, b to b and c

to zero is compatible with the differential (that of A being zero) and is in fact a quasi-isomorphism of dg

algebras. This is an example of a cofibrant dg algebra resolution.

Proposition 4.3.1. For each quotient A = kQ/I of a path algebra with finite Q0, there is a dg algebra

quasi-isomorphism

Ã
ε // A

where Ã = (kQ̃, d) for a non positively graded quiver Q̃ with Q̃0 = Q0, Q0
1 = Q1 such that ε induces the

identity Q̃0 = Q0 and the canonical projection kQ̃1 → kQ1. The morphism ε is a cofibrant dg algebra

resolution.

In general, there is no ‘minimal choice’ for Ã. However, there is if kQ/I is a monomial algebra, cf.

[91], or if we work in the setup of pseudocompact dg algebras, cf. [95].

4.4 Derived categories and the inverse dualizing bimodule

Let k be a perfect field and A a dg algebra. Recall that CA denotes the category of right dg A-modules,

HA the associated category up to homotopy and DA the derived category, i.e. the localization of CA or

HA at the class of all quasi-isomorphisms. It is triangulated with suspension functor Σ : DA→ DA given

by the shift of dg modules and each short exact sequence of dg modules yields a canonical triangle. The

derived category DA admits arbitrary (set-indexed) coproducts. The perfect derived category per (A) is
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its subcategory of compact objects. It equals the thick subcategory of DA generated by the free module

AA of rank 1.

The perfectly valued derived category pvd (A) is the full subcategory of DA whose objects are the dg

modules M whose underlying dg k-module is perfect. Equivalently, we may require that we have∑
p∈Z

dim Hom(P,ΣpM) <∞

for each perfect dg module P or that we have∑
p∈Z

dimHp(M) <∞.

The dg algebra A is proper if it belongs to pvd (A) or, in other words, if the sum of its homologies is

finite-dimensional. For example, if A = A0 is concentrated in degree 0, then A is proper if and only if A0

is finite-dimensional and in this case, we have

pvd (A) = Db(modA0) ,

where modA0 denotes the category of k-finite-dimensional right A0-modules.

The dg algebra A is connective if HpA = 0 for all p > 0. In this case, the canonical morphism

τ≤0A→ A of dg algebras is a quasi-isomorphism so that for most purposes, we may assume that Ap = 0

for p > 0 when A is connective. If A is connective, then DA has a canonical t-structure whose left

(resp. right) aisle is formed by the dg modules M such that HpM = 0 for p > 0 (resp. for p < 0). Its

heart identifies with ModH0(A) via the restriction along the canonical morphism A → H0(A) (we may

suppose Ap = 0 for p > 0). We say that A is a stalk dg algebra or simply stalk algebra if Hp(A) = 0 for all

p 6= 0. In this case, A is linked to the dg algebra H0(A) concentrated in degree 0 via the two dg algebra

quasi-isomorphisms

H0(A)← τ≤0A→ A.

Let A be a dg algebra. Its enveloping algebra is

Ae = A⊗Aop

so that right Ae-modules identify with A-A-bimodules via the rule

m.(a⊗ b) = (−1)|b||m|+|b||a|bma.

For a dg bimodule M , its bimodule dual M∨ is defined by

M∨ = RHomAe(M,Ae).
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We still view it as an object of D(Ae) using the canonical isomorphism (Ae)op = Ae. More explicitly, the

derived Hom-space is computed using the outer bimodule structure on Ae and the bimodule structure on

RHom comes from the inner bimodule structure on Ae. Notice that if P is perfect in D(Ae), we have a

canonical isomorphism

P ∼−→ (P∨)∨.

Indeed, it suffices to check this for P = AA and then it is clear.

The dg algebra A is (homologically) smooth if the identity bimodule AAA is perfect in D(Ae). For

example, if A = A0 is concentrated in degree 0, then A is smooth if and only if AAA has a bounded

resolution by finitely generated projective bimodules. If A = A0 is finite-dimensional, then A is smooth

if and only if it is of finite global dimension (here we use the assumption that k is perfect!).

Lemma 4.4.1. a) If A is smooth, the category pvd (A) is Hom-finite.

b) If Q is a finite non positively graded quiver, then for any choice of algebra differential d on the

graded path algebra kQ, the dg algebra (kQ, d) is smooth.

Suppose that A is a smooth dg algebra. Its inverse dualizing bimodule is

ΩA = A∨ = RHomAe(A,Ae).

Denote by D the duality Homk(?, k) over the ground field. The following is Lemma 4.1 of [63]

Lemma 4.4.2. For L ∈ pvd (A) and M ∈ DA, we have a canonical isomorphism

DHomDA(L,M) ∼−→ HomDA(M
L
⊗A ΩA, L).

Corollary 4.4.3. The functor S−1 =?
L
⊗A ΩA induces an inverse Serre functor on pvd (A), i.e. an autoe-

quivalence such that we have isomorphisms

DHomDA(L,M) ∼−→ HomDA(S−1M,L)

which are bifunctorial in L,M ∈ pvd (A).

4.5 Calabi–Yau completions

Fix a perfect field k. Let A be a dg k-algebra. Fix an integer n ∈ Z. By definition, a bimodule n-Calabi–

Yau structure on A is an isomorphism

ΣnΩA
∼−→ A
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in D(Ae). Notice that by Lemma 4.4.2, the category pvd (A) is then an n-Calabi–Yau category, i.e. it

is Hom-finite and Σn is a Serre functor. We say that A is a bimodule n-Calabi–Yau dg algebra if it is

endowed with a bimodule n-CY structure.

Exercise 4.5.1. Suppose that A is bimodule n-Calabi–Yau and H0(A) is not semi-simple.

a) Show that if A is connective and H0A is finite-dimensional, then HpA 6= 0 for infinitely many

p < 0.

b) Show that if A is a stalk dg algebra, then H0A is infinite-dimensional.

4.5.2 Absolute Calabi–Yau completions

Suppose that B is a smooth dg algebra. Let n ∈ Z be an integer and put

ω = Σn−1ΩB .

We may and will assume that ω is cofibrant as a dg B-bimodule. Following [57], we define the n-Calabi–

Yau completion of B to be the tensor dg algebra

ΠnB = TB(ω) = B ⊕ ω ⊕ (ω ⊗B ω)⊕ · · · ⊕ ω⊗Bp ⊕ · · · .

It is not hard to check that up to quasi-isomorphism, ΠnB does not depend on the choice of ω in its

homotopy class.

Theorem 4.5.3 ([64, 104, 55]). The dg algebra ΠnB is smooth and carries a canonical bimodule n-Calabi–

Yau structure. In particular, the category pvd (ΠnB) is n-Calabi–Yau.

For example, consider B = k. Then ΩB = k and Πn(B) = k[t], where t is of degree 1 − n and ΠnB

carries the zero differential. In particular, Πnk is concentrated in degree 0 iff n = 1. As another example,

let Q be a connected non Dynkin quiver and B = kQ. Then the 2-Calabi–Yau completion Π2B has its

homology concentrated in degree 0 and is quasi-isomorphic to the preprojective algebra of Q.

Connective dg algebras form a particularly important class. It is natural to ask to which extent this

class is stable under forming CY-completions. This question is not hard to answer: Suppose that B is

a smooth and connective dg algebra. Define the bimodule dimension d of B to be the supremum of the

integers p such that HpΩB 6= 0. Then ΠnB is connective if and only if n ≥ d+ 1.

Let us investigate 2-CY-completions. Let B be a smooth dg algebra. For n = 2, the bimodule ω is

ω = ΣΩB and the functor

?
L
⊗B ω =

L
⊗B(ΣΩB) = Σ ◦ (?

L
⊗B ΩB)

62



induces the composed functor

τ−1 = S−1Σ

in the perfect derived category pvd (B), where S−1 is the inverse Serre functor. We denote this functor

by τ−1 because if B is a finite-dimensional algebra of finite global dimension, then it is the inverse

Auslander–Reiten translation of the category pvd (B) = Db(modB). For arbitrary smooth and proper

B, the restriction of Π2(B) to a dg B-module is

(Π2(B))|B = TB(ω)|B = B ⊕ (B
L
⊗B ω)⊕ (B

L
⊗B ω

L
⊗B ω)⊕ · · · =

⊕
p≥0

τ−pB.

Notice that in general, it will not be perfectly valued. Now suppose that B = kQ for a connected non

Dynkin quiver Q. Then we know that τ−pB lies in modB for all p ≥ 0 so that Π2(B) is a stalk dg

algebra:

Π2(B) ∼−→ H0(Π2B) = TB(H0ω).

It follows that Π2(B) is quasi-isomorphic to the classical preprojective algebra of Q by the description of

this algebra as a tensor algebra due to Baer–Geigle–Lenzing [7].

If Q is an arbitrary finite acyclic quiver and B = kQ, then Π2(B) can be described as the 2-dimensional

Ginzburg algebra of B. For example, for the quiver

1 2 3b

c

a

the dg algebra Π2(B) is given by the graded quiver

Q : 1 2 3
b

t1

a

b

t2

a

t3

with the arrows a, b, a and b in degree 0 and the three loops ti in degree −2. The differentials of the

loops yield the preprojective relations:

dt1 = −bb , dt2 = bb− aa , dt2 = aa.

Thus, we always have an isomorphism between H0(Π2(B)) and the classical preprojective algebra but

the homologies Hp(Π2(B)) are non zero in infinitely many degrees p < 0 unless all connected components

of Q are non Dynkin.

Let us now consider an example of a 3-CY-completion. Consider the Auslander algebra B of the
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equioriented A3-quiver given by

•

• •

• • •

Using a cofibrant dg algebra resolution of B (cf. 4.3.1) it is not hard to check that Π3(B) is quasi-

isomorphic to the 3-dimensional Ginzburg algebra of the quiver with potential (R,W ), where R is the

quiver of the ‘relation completion’ of B

•

• •

• • •

and W the difference of the sum of the 3-cycles of R turning clockwise minus the unique 3-cycle turning

counterclockwise. For completeness, let us recall how to construct the 3-dimensional Ginzburg algebra

Γ(R,W ) associated with a quiver with potential (R,W ): starting from R, construct a quiver R̃ as follows:

a) for each arrow a : i→ j of R, add an arrow a : j → i of degree −1 and

b) for each vertex i of R, add a loop ti : i→ i of degree −2.

Now define the differential on the graded path algebra kR̃ by

d(ti) = ei
∑
a∈R1

(aa− aa)ei

for each vertex i of R̃ and

da = ∂aW

for each arrow a of R. Here ∂a : HH0(kR)→ kR is the cyclic derivative defined on a path p by

∂ap =
∑
p=uav

vu

where the sum ranges over all decompositions p = uav with paths u, v of length ≥ 0. For example,

starting from
•

• •

ab

c
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with the potential W = abc we obtain the quiver R̃

•

• •
a

b

t3

b

c
t2

c

a

t2

with the differential determined by

d(t1) = cc− bb , d(t2) = aa− cc , d(t3) = bb− aa

and

d(a) = bc , d(b) = ca , d(c) = ab.

4.6 Relative Calabi–Yau completions

Let k be a perfect field and A and B smooth dg k-algebras. Let f : B → A be a dg algebra morphism.

Recall that we do not require f to preserve the unit. A typical example would be the inclusion of a

finite-dimensional representation-finite algebra of finite global dimension into its Auslander algebra. Let

n be an integer.

Following Yeung [104], we make the following definitions:

a) the relative inverse dualizing bimodule is the bimodule dual of the cone over the natural morphism

A
L
⊗B A→ A

considered as an object in D(Ae).

b) the n-dimensional relative derived preprojective algebra of B → A is

Πn(A,B) = TA(ω) ,

where ω is a cofibrant resolution of Σn−1ΩA,B .

c) the relative n-Calabi–Yau completion of f : B → A is the canonical morphism of dg algebras

Πn−1(B)→ Πn(A,B).
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Let us explain how the canonical morphism in c) is obtained: By construction, we have a triangle in

D(Ae)

ΩA,B → A∨ → (A
L
⊗B A)∨ → ΣΩA,B .

This yields morphisms

ΩB = B∨ → A
L
⊗B B∨

L
⊗B A ∼−→ (A

L
⊗B A)∨ → ΣΩA,B .

The canonical morphism between the tensor algebras is induced by their composition. We will define the

notion of a relative (left) n-CY structure below. Assuming it we can state the following theorem.

Theorem 4.6.1 (Yeung [104], Bozec–Calaque–Scherotzke [10]). The dg algebra Πn(A,B) is smooth and

the morphism

Πn−1(B)→ Πn(A,B)

carries a canonical relative (left) n-CY structure.

Let us emphasize that all constructions and theorems generalize easily from the setting of dg algebras

and morphisms to that of dg categories and dg functors and are proved in this generality in the references.

4.7 Examples of relative 2-Calabi–Yau completions

Let us recall the following example from section 4.2: Let us take B to be k, the algebra A to be the path

algebra of the quiver 1→ 2→ 3 and i the morphism given by the inclusion of the vertex 3 into this quiver

as in Figure 4.3. If we apply the relative 2-Calabi–Yau completion to this morphism, we find a morphism

of dg algebras Π1(B) → Π2(A,B) which, remarkably, are both stalk algebras: the dg algebra Π1(B) is

quasi-isomorphic to the polynomial algebra k[t] and the dg algebra Π2(A,B) to the truncated polynomial

algebra k[x]/(x3). The dg functor Π1(B) → Π2(A,B) takes the unique object to the indecomposable

projective P = k[x]/(x3) and the indeterminate t to the multiplication by x.

More generally, let us consider a finite quiver Q and a subset F ⊂ Q0 of frozen vertices. We consider

F as a subquiver with empty set of arrows. Then we have a natural algebra morphism kF → kQ. We

then find that Π2(kQ, kF ) is the 2-dimensional relative Ginzburg algebra of (Q,F ). For example, for the

quiver

• • •b a

we find that Π2(kQ, kF ) is given by

• • •
b

t1

a

b

t2

a
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Figure 4.3: Relative 2-Calabi–Yau completion

where the arrows a, b, a and b are in degree 0, the loops ti in degree −1 and the differential is determined

by

d(t1) = −bb , d(t2) = bb− aa.

Thus, the algebra H0Π2(kQ, kF ) is the relative preprojective algebra: it has the same quiver as the

classical preprojective algebra but no relations at the frozen vertices. In our example here, we see that

remarkably, Π2(kQ, kF ) is a stalk algebra. Here is another example:

•

• • •

• • • •

•

• • •

• • • •

rel. 2-CY-compl.

Here we start from a ‘framed’ quiver of type D4 and obtain again a relative preprojective algebra (in

particular a stalk algebra) that could be called the ‘Nakajima algebra’ because its (stable) representations

(up to isomorphism) with a given dimension vector identify with the points of the corresponding (regular)

Nakajima quiver variety.

As a final example, let us consider

• • • • • • • •rel. 2-CY-compl.

Again, the dg algebra Π2(A,B) is a stalk algebra. Let us consider its variant Π̂2(A,B) where we

replace the path algebra with the completed path algebra. This is easily seen to be isomorphic to the

Auslander algebra of the Bass order

B3 =

[
R Rx3

R R

]
,
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where R = k[[x]] whose indecomposables are the [R,Rxi], 0 ≤ i ≤ 4. For more information on Bass

orders, we refer to page 72, of [47].

4.8 Examples of relative 3-Calabi–Yau completions

Consider the following example of a 3-CY-completion:

•

•

b

•

• •

ab

•

•

b

b

•

• •
a

b

c

c

a

t

rel. 3-CY-compl.

Here, the morphism B → A on the left hand side is the embedding of the path algebra of the quiver

A2 into its Auslander algebra. On the right hand side, we have the (absolute) 2-dimensional Ginzburg

algebra Π2(B) at the top and the 3-dimensional relative preprojective algebra Π3(A,B) at the bottom. It

is quasi-isomorphic to the relative 3-dimensional Ginzburg algebra of the ice quiver with potential (R,W )

with R given by

•

• •

ab

c

and the potential W = abc. The construction of the relative 3-dimensional Ginzburg algebra is similar

to that of the absolute one but

- we do not add reversed arrows b for frozen arrows b and

- we do not add loops ti for frozen vertices i.
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In the example here, the relative 3-dimensional algebra turns out to be a stalk algebra, i.e. quasi-

isomorphic to the corresponding relative Jacobian algebra, which is given by

•

• •

a

c

b

Note that the second example in section 4.2 is the analogous example for equioriented A4 instead of A2.

In the next section, we will exhibit a general framework into which these examples fit.

4.9 Higher Auslander algebras and the stalk property in dimension ≥ 3

Let n ≥ 1 be an integer and B a finite-dimensional algebra of finite global dimension over a perfect field

k. Denote by S the Serre functor of the bounded derived category Db(B) = Db(modB). Explicitly, we

have

S =?
L
⊗B DB.

The composition of functors

modB
can // Db(B)

ΣnS−1
// Db(B)

H0
// modB

equals by definition τ−1
n , the higher inverse Auslander-Reiten translation introduced by Iyama [48]. Define

M = add {τ−pn B | p ≥ 0}.

The motivating example is the case where n = 1 and B is the path algebra kQ of a Dynkin quiver Q.

Then B is 1-dimensional and mod (B) = M is 2-dimensional and in the previous section, we have seen

examples where Π3(mod (B),proj (B)) is concentrated in degree 0.

Put B = projB and A =M. As shown by Iyama in [48], if modB admits an n-cluster-tilting object

M , then the categoryM equals add (M). Let us assume that the category A (considered as a dg category

concentrated in degree 0) is smooth (this assumption can be weakened to ‘local smoothness’). We consider

the question of when the relative (n+ 2)-dimensional derived preprojective algebra Πn+2(A,B) is a stalk

category, i.e. has its homology concentrated in degree 0. Recall that we have

Πn+2(A,B) = TB(ω) ,

where ω = Σn+1ΩA,B and ΩA,B is a cofibrant replacement of the bimodule dual of the cone over

A
L
⊗B A → A.
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For M ∈M, let us abbreviate

M∧ = HomB(?,M)|A

considered as a finitely generated projective module over A =M. We have the following key lemma.

Key lemma 4.9.1. Suppose that M is n-rigid, i.e. we have

ExtiB(L,M) = 0

for all L,M in M and all 1 ≤ i ≤ n. Then for M ∈M, we have a canonical isomorphism

M∧
L
⊗A ω ∼−→ (τ−n M)∧.

A proof can be found in Proposition 8.6 of [102].

Corollary 4.9.2. If M is n-rigid, then the dg algebra Πn+1(projB,M) is concentrated in degree 0.

Notice that the n-rigidity assumption holds if

- B is n-representation finite in the sense of Iyama–Oppermann [50] or

- Bop is n-complete in the sense of [49] or

- B is n-representation infinite in the sense of Herschend–Iyama–Oppermann [42]

4.10 Relative Calabi–Yau structures

We have announced in the preceding sections that the n-CY-completion Πn(B) of a smooth dg algebra

carries a canonical (left) n-Calabi–Yau structure and that the relative n-CY-completion of a morphism

B → A between smooth dg algebras carries a canonical (left) relative n-CY-structure. Our aim in this

section is to define these structures and their right counterparts.

4.10.1 Absolute left and right Calabi–Yau-structures

Let A be a smooth dg category. We have canonical isomorphisms in Dk

A
L
⊗Ae A ∼−→ A

L
⊗Ae (A∨)∨ ∼−→ RHomAe(A∨,A).

We deduce a canonical morphism

HNn(A)→ HHn(A) ∼−→ H−n(A
L
⊗Ae A) ∼−→ HomDAe(A∨,Σ−nA).
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Definition 4.10.2 (Kontsevich). A left n-CY-structure on A is a class in HNn(A) which yields an iso-

morphism A∨ ∼−→ Σ−nA.

We see that if A carries a left n-CY-structure, it is in particular bimodule n-Calabi–Yau. The negative

cyclic homology group appears naturally when one studies the deformations of bimodule n-CY-algebras,

cf. [96]. One can show that each n-CY-completion of a smooth dg category carries a canonical left

n-CY-structure, cf. [55, 10].

Now let A be a proper dg category (i.e. we have A(X,Y ) ∈ per (k) for all X,Y ∈ A). Let DAop

denote the dg bimodule

(X,Y ) 7→ DA(Y,X).

We have canonical isomorphisms

D(A
L
⊗Ae A) ∼−→ Homk(A

L
⊗Ae A, k) ∼−→ RHomAe(A, DAop).

We deduce morphisms

DHC−n(A)→ DHH−n(A) ∼−→ H−nRHomAe(A, DAop) = HomDAe(A,Σ−nDAop).

Definition 4.10.3 (Kontsevich). A right n-CY-structure on A is a class in DHC−n(A) which yields an

isomorphism A ∼−→ Σ−nDAop.

If A carries a right n-CY-structure, we have the Serre duality formula

DA(X,Y ) ∼−→ ΣnA(Y,X)

bifunctorially in X,Y ∈ A. In particular we see that A is perfectly n-Calabi–Yau, i.e. the perfect

derived category per (A) is n-Calabi–Yau as a triangulated category. The definition above extends to

‘componentwise proper’ dg categories, i.e. dg categories A such that HpA(X,Y ) is finite-dimensional for

all p ∈ Z and all X,Y ∈ A. These are important for our applications. For example, if Q is a finite acyclic

quiver, then the canonical dg enhancement

(CQ)dg = per dg(ΓQ,0)/pvd dg(ΓQ,0)

of the classical cluster category CQ is componentwise proper but not proper. Here the subscripts dg on

the right hand side denote the corresponding subcategories of the dg derived category of ΓQ,0 = Π3(kQ),

cf. section 1.6.1. For ‘componentwise proper’ dg categories endowed with a right n-CY-structure, the

perfect derived category per (A) is still a Hom-finite n-CY triangulated category.
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Suppose that A is a dg category which is both smooth and proper. Then, as shown by Toën–Vaquié

in [94], the Yoneda functor yields a quasi-equivalence

A ∼−→ pvd dg(A).

Now suppose that moreover A is augmented (in the sense of [59]) and pvd dg(A) is generated, as a

triangulated category, by the image of the restriction functor pvd (A) → pvd (A), where A → A is the

augmentation. Then we have a Morita equivalence

A! ∼−→ pvd dg(A).

We deduce an isomorphism

HNn(A) ∼−→ HNn(A!) ∼−→ DHC−n(A).

Proposition 4.10.4. This isomorphism establishes a bijection between the left and the right n-Calabi–Yau

structures on A.

Left CY-structures are inherited by dg localizations whereas right CY-structures are inherited by full

dg subcategories. More precisely, we have the following proposition.

Proposition 4.10.5 ([64]). Let F : A → B be a dg functor. Suppose that F is a localization, i.e. the functor

F ∗ : DA → DB is a Verdier localization. If A is smooth, then so is B and the image under the induced

morphism HNn(A)→ HNn(B) of a left n-CY-structure on A is a left n-CY-structure on B.

As a consequence, if Γ = ΓQ,0 = Π3(kQ) for an acyclic quiver Q, then per dg(Γ) carries a left 3-CY-

structure and so does its localization (CQ)dg, the dg cluster category. This seems to be contradictory

with the well-known fact that the cluster category is 2-Calabi–Yau as a triangulated category. The

explanation is that the 2-Calabi–Yau property of the triangulated category CQ comes from a right 2-

Calabi–Yau structure on (CQ)dg (cf. below). The fact that 2 6= 3 is not a contradiction because (CQ)dg is

smooth (as a localization of per dg(Γ)) but not proper (only componentwise proper).

Theorem 4.10.6 (Brav–Dyckerhoff [13]). Let A be a smooth dg category. Each left n-CY structure on A
yields a canonical right n-CY structure on pvd dg(A).

For example, the canonical left 3-CY structure on Γ as above yields a right 3-CY structure on pvd dg(Γ)

which is responsible for the 3-CY property of the triangulated category pvd (Γ). The right 3-CY structure

on pvd dg(Γ) yields the right 2-CY structure on (CQ)dg via the connecting morphism in cyclic homology

associated with the exact sequence

0→ pvd dg(Γ)→ per dg(Γ)→ (CQ)dg → 0 ,

cf. Theorem 1.7.4.
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4.11 Left and right relative Calabi–Yau structures

4.11.1 The derived category of morphisms

Let k be a perfect field and A a dg k-algebra. Let I = k ~A2 (the letter I stands for ‘interval’). Then the

objects of D(Iop ⊗A) identify with morphisms f : M1 →M2 of dg A-modules. Each object gives rise to

a triangle in D(A)

M1 M2 C(f) ΣM1
f

functorial in (M1 → M2) considered as an object of D(Iop ⊗ A). For two objects f : M1 → M2 and

f ′ : M ′1 →M ′2, consider a diagram

M1 M2 C(f) ΣM1

M ′1 M ′2 C(f ′) ΣM ′1

f

a b c Σa

f ′ g′

It is well-known (and easy to check) that for a given morphism b, there are morphisms a and c making

the diagram commutative if and only if we have g′ba = 0 and that in this case, the pair (a, b) lifts to a

morphism of D(Iop ⊗A). This statement is refined by the following lemma

Lemma 4.11.2. We have a canonical isomorphism bifunctorial in f, f ′ ∈ D(Iop ⊗A)

RHomIop⊗A(f, f ′) ∼−→ fib (RHomA(M2,M
′
2)→ RHomA(M,C(f ′)) ,

where we write fib (g) for Σ−1C(g).

A proof may be found in Lemma 3.1 of [102].

4.11.3 Definition of relative Calabi–Yau structures

Let n ∈ Z be an integer and f : B → A a morphism between smooth dg algebras. Consider the diagram

fib (µ) A
L
⊗B A A . . .

Σ1−nA∨ Σ1−n(A
L
⊗B A)∨ Σ1−ncof (µ∨) . . .

ν µ

Σ1−nµ∨

∼ ∼ ∼ (4.11.3.1)

From Lemma 4.11.2, via isomorphisms like

RHomAe(A∨, A) ∼−→ A
L
⊗Ae A ,
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we get the following chain of morphisms

RHom(µ∨, ν) ∼−→ fib (A
L
⊗Be A→ A

L
⊗Ae A)

← fib (B
L
⊗Be B → A

L
⊗Ae A)

∼−→ Σ−1HH(A,B)

← Σ−1HN(A,B) ,

where HH(A,B) denotes the relative Hochschild complex of B → A.

Definition 4.11.4 (Brav–Dyckerhoff [13]). A relative left n-CY-structure onB → A is a class in HHn(A,B)

giving rise to an isomorphism of triangles in 4.11.3.1.

Notice that for B = 0, we recover the absolute notion. If A and B are concentrated in degree 0, one

easily deduces that A is bimodule internally n-Calabi–Yau (in the sense of Pressland [81]) with respect

to the image e of 1B in A.

Suppose that B → A carries a left relative n-CY structure. Put A = pvd dg(A) and B = pvd dg(B)

and let A → B be the restriction functor.

Theorem 4.11.5 (Brav–Dyckerhoff [13]). The functor A → B inherits a canonical relative right n-CY

structure, i.e. there is a canonical class in DHC1−n(B,A) which yields an isomorphism of triangles

Σn−1A Σn−1B|Ae Σn−1cof (r) . . .

fib (Dr) DBop|Ae DA . . .

Σn−1r

∼ ∼ ∼

Dr

Concretely, for objects L and M of pvd (A), the above diagram becomes

RHomA(L,Σn−1M) RHomB(L,Σn−1M) C(L,Σn−1M) . . .

DRHomA(M,Σ−1L) DC(M,L) DRHomB(M,L) DRHomA(M,L) . . .

res

∼ ∼ ∼

Dres

If we have B = 0, we recover an isomorphism

DRHomA(L,Σ−1M) ∼−→ RHomA(L,Σn−1M)

so the theorem is a generalization of Theorem 4.10.6.
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[3] Pere Ara and Guillermo Cortiñas, Tensor products of Leavitt path algebras, Proc. Amer. Math. Soc.

141 (2013), no. 8, 2629–2639.

[4] Marco Antonio Armenta and Bernhard Keller, Derived invariance of the cap product in Hochschild

theory, C. R. Math. Acad. Sci. Paris 355 (2017), no. 12, 1205–1207.

[5] , Derived invariance of the Tamarkin-Tsygan calculus of an algebra, C. R. Math. Acad. Sci.

Paris 357 (2019), no. 3, 236–240. MR 3945161

[6] Jenny August, On the finiteness of the derived equivalence classes of some stable endomorphism

rings, arXiv:1801.05687 [math.RT].

[7] Dagmar Baer, Werner Geigle, and Helmut Lenzing, The preprojective algebra of a tame hereditary

Artin algebra, Comm. Algebra 15 (1987), no. 1-2, 425–457.

[8] H. J. Baues, The double bar and cobar constructions, Compositio Math. 43 (1981), no. 3, 331–341.

[9] Belkacem Bendiffalah and Daniel Guin, Cohomologie de l’algèbre triangulaire et applications, Alge-
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[22] Claude Cibils, Eduardo Marcos, Maŕıa Julia Redondo, and Andrea Solotar, Cohomology of split

algebras and of trivial extensions, arXiv:math.KT/0102194.

[23] P. M. Cohn, Free rings and their relations, second ed., London Mathematical Society Monographs,

vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 800091

[24] Will Donovan and Michael Wemyss, Noncommutative deformations and flops, Duke Math. J. 165

(2016), no. 8, 1397–1474.

[25] Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691.

[26] Tobias Dyckerhoff, Compact generators in categories of matrix factorizations, Duke Math. J. 159

(2011), no. 2, 223–274.

76



[27] David Eisenbud, Homological algebra on a complete intersection, with an application to group rep-

resentations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64.

[28] Alexey Elagin, Valery A. Lunts, and Olaf M. Schnürer, Smoothness of derived categories of algebras,
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[92] Bertrand Toën, The homotopy theory of dg-categories and derived Morita theory, Invent. Math. 167

(2007), no. 3, 615–667.
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