
HAL Id: tel-04019636
https://theses.hal.science/tel-04019636v1

Submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Highly imbalanced learning, application to fraud
detection
Rémi Viola

To cite this version:
Rémi Viola. Highly imbalanced learning, application to fraud detection. Cryptography and Security
[cs.CR]. Université de Lyon, 2022. English. �NNT : 2022LYSES021�. �tel-04019636�

https://theses.hal.science/tel-04019636v1
https://hal.archives-ouvertes.fr

UMR • CNRS • 5516 • SAINT-ETIENNE

École Doctorale ED488 Sciences, Ingénierie, Santé
Numéro d’ordre NNT : 2022LYSES021

Highly Imbalanced Learning
Application to Fraud Detection

Apprentissage Fortement Déséquilibré
Application à la Détection de Fraudes

Thèse préparée par Rémi VIOLA
au sein de l’Université Jean Monnet de Saint-Étienne

en collaboration avec la Direction Générale des Finances Publiques
pour obtenir le grade de :

Docteur de l’Université de Lyon
Spécialité : Informatique

Université de Lyon, UJM-Saint-Etienne, CNRS, Institut d’Optique Graduate School,
Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, FRANCE.

Direction Générale des Finances Publiques, Bureau SJCF-1D,
Bâtiment Turgot, 86-92 allée de Bercy, 75574, PARIS, FRANCE.

Thèse soutenue publiquement le 24/06/2022 devant le jury composé de :

Élisa FROMONT Professeure, Université de Rennes Rapporteuse
Amaury HABRARD Professeur, Université de Saint-Étienne Co-Directeur
Jean-Christophe JANODET Professeur, Université d’Évry Rapporteur
Marc SEBBAN Professeur, Université de Saint-Étienne Directeur
Christine SOLNON Professeure, INSA de Lyon Présidente
Haïcheng TAO Responsable Data Science, DGFiP Paris Co-Encadrant

ii

Remerciements

Que de chemin parcouru depuis 2013 et cette formation Éducation Nationale pour enseigner
l’informatique en Lycée. Finalement, heureusement qu’elle était trop superficielle car cela m’a
permis de me retrouver à écrire ces remerciements aujourd’hui. Histoire de rendre à chacun
les mérites qu’il a dans cette grande aventure, je vais donc essayer de les remercier par ordre
chronologique. Cela me permet en même temps de vous raconter cette histoire.

Je vais donc commencer par remercier Hugo Lefeuvre, alors élève en 1S au lycée Honoré
d’Urfé à Saint-Étienne et, aux dernières nouvelles, doctorant dans l’équipe Advanced Processor
Technologies à l’université de Manchester. Sans lui, je ne me serais jamais retrouver ici... En
ayant un niveau largement supérieur au mien à la sortie de ma formation, il m’a poussé à me
remettre en question sur ma capacité à lui enseigner quelque chose et ainsi poussé à m’inscrire
en Licence bien malgré lui.

Après avoir donc fait une L2 Informatique en autonomie, j’ai surtout fait une L3 pour me
mettre au niveau. C’est là que j’ai eu le plaisir et la chance de rencontrer des professeurs
inspirants parmi lesquels je citerai surtout Marc Sebban, qui m’a suivi tout au long de cette
période, et Elisa Fromont. Leurs cours étaient intéressants et bien menés. C’était un réel plaisir
de les retrouver chaque semaine. Et, alors que j’avais seulement envisagé de faire une année
de mise à niveau pour le lycée, ils ont réussi à me vendre leur Master Machine Learning and
Data Mining, lors de leur présentation de la filière. C’est comme ça que je me suis retrouvé
à m’inscrire en MLDM et je les en remercie. Je remercierai par la même occasion l’ensemble
des enseignants du Master et de l’équipe Data Intelligence du Laboratoire Hubert Curien, dont
Amaury Habrard qui, avec Marc, à accepter d’encadrer cette thèse.

Lors de ces trois années de L3 et Master, j’ai également eu la chance de travailler avec de
nombreux étudiants lors de différents projets et c’est aussi en partie grâce à eux que tout ceci
a été possible. Je ne peux bien évidement pas tous les remercier ici, je me contenterai donc
des deux principaux. En premier lieu, je souhaite remercier Valentin, l’un de mes plus fidèles
compagnons de projets. Il m’a beaucoup apporté et je suis content d’avoir pu le rencontrer.
Mais le plus important reste mon petit frère Mathieu Viola. Ensemble, nous avons réussi cette
reprise d’étude commune, afin de donner une nouvelle impulsion à notre vie professionnelle.
Sans lui, rien de tout ceci n’aurait été possible... Il m’était difficile de gérer l’autonomie en L2
en parallèle du travail, alors il me fournissait les cours que je travaillais le soir et le week-end. Il
m’a également énormément aidé pour les cours de L3 ou de Master que je manquais à cause de
mon mi-temps au lycée. En filmant notamment ceux de Master, il m’a permis de ne pas perdre
le fil. Je suis content d’avoir pu partager cela avec lui et je ne l’en remercierai jamais assez.

Ensuite, je souhaite remercier la DGFiP et les différents représentants du bureau SJCF-
1D qui ont proposé cette thèse à Marc et au Laboratoire Hubert Curien. Mon aventure avec
eux a réellement commencé en 2018 lors de mon stage de M2 qui a servi de tremplin à cette
thèse. Ainsi, Sébastien Rioux et Philippe Schall m’ont fait confiance pour améliorer un de leurs
modèles, ce qui m’a permis de mettre un premier pied dans la Mission Requêtes et Valorisa-
tion(MRV). Sébastien avait alors pris le temps de m’expliquer le fonctionnement de la MRV et
du contrôle fiscal en général, ce qui a suscité en moi de plus en plus d’intérêt pour ce travail.
Par la suite, en acceptant mon détachement au Ministère de l’Économie et des Finances, ils

iii

Remerciements

m’ont permis de gérer la thèse plus sereinement. J’en profite aussi pour remercier tous les
autres membres de la MRV qui ont travaillé avec moi lors de ces 4 années, notamment Agathe
Muselet avec qui j’ai beaucoup échangé sur ses modèles, Victor Ng qui a repris ma première
contribution dans un de ces modèles, Cécile Lefevre-Ardant avec qui j’avais plaisir à échanger
sur les différents sujets qui nous liaient et qui m’a en partie transmis le projet Réseaux Sociaux
à son départ ou encore Haicheng Tao qui dirige maintenant l’équipe à la place de Sébastien.
Pour n’oublier personne de l’équipe je remercierai également Alexia Suchet et Jean Cabouat
avec qui je n’ai pas encore vraiment eu la chance de travailler mais cela ne saurait tarder. Avec
le prolongement de mon détachement pour rester avec eux, cela devrait sûrement arriver.

En parallèle de l’équipe MRV, il y a l’ensemble des doctorants et personnels que j’ai eu la
chance de rencontrer au Laboratoire Hubert Curien. Ils m’ont épaulé, écouté et permis d’avancer
et je n’en serai sûrement pas là aujourd’hui s’ils n’avaient pas été là. Je remercierai en premier
lieu Jordan qui m’a inspiré lors de mon stage de M2. Ses explications sur le Gradient Boosting
et l’Average Precision ont été des plus précieuses pour le travail que j’avais à mener à ce moment
là. Valentina a, quant à elle, su maintenir l’ordre dans ce bureau rempli de garçons pas toujours
très concentrés, ce qui nous a permis de maintenir le cap. Thomas qui était régulièrement
mon support technique quand j’avais des problèmes sur les machines de calculs, m’a également
beaucoup apporté. Il faut également citer Paul, Rémi, Jules et Raphaël, qui, même si je les ai un
peu moins côtoyés, font partie intégrante de cette histoire et j’ai eu plaisir à discuter avec eux.
Cependant, quatre doctorants ont une place plus importante sur cette période. Tanguy m’a
appris beaucoup de choses sur le transport optimal et les discussions qu’on avait étaient souvent
très enrichissantes. Ensemble, nous avons encadré un stagiaire, Thibaud, qui a finalement aussi
pris part à cette aventure. J’ai trouvé cette période très intéressante car, même si cela m’a
retardé dans ma rédaction de la thèse, cela m’a fait avancer du côté de mon travail à la DGFiP.
Kévin a toujours été présent pour discuter et se changer les idées. Les seuls regrets que j’ai
avec lui, c’est, d’une part, que l’on n’ait pas pu travailler directement ensemble et d’autre part,
qu’il ne soit jamais venu en soirée avec nous. Enfin, mention spéciale à Léo et Guillaume, avec
qui j’ai eu la chance de discuter, d’échanger, de travailler et de rédiger des articles. Chacun
d’eux m’a apporté ce qu’il pouvait et m’a fait avancer, l’un par sa capacité à coder de manière
optimale, en résolvant tous les petits problème que je rencontrais et l’autre en m’apportant son
expertise théorique sur les sujets que je ne maîtrisais pas ou plus. Sans eux, je ne serai pas en
mesure de soutenir cette thèse et je les en remercie du fond du cœur.

A ce stade, je tiens maintenant à remercier les membres de mon jury. D’abord je re-
mercierai une nouvelle fois Marc et Amaury d’avoir accepté d’encadrer cette thèse. Merci pour
l’opportunité que vous m’avez offert, elle a définitivement changé ma vie. Merci aussi à Elisa
Fromont et Jean-Christophe Janodet d’avoir bien voulu être les rapporteurs de cette thèse.
Enfin, je remercie Christine Solnon d’être la présidente de ce jury.

Finalement, je remercierai la personne la plus importante à mes yeux, Perrine... Sans elle,
tout aurait été beaucoup plus compliqué. En acceptant ma reprise d’étude, elle ne se doutait
pas de ce qui allait arriver. Elle a été mon soutien indéfectible et m’a supporté pendant tout ce
temps, et cela n’a pas été tous les jours facile... Elle a tout géré pendant que je n’étais pas là,
notamment les enfants, et je l’a remercie pour tous les sacrifices auxquels elle a consenti pour
que je puisse y arriver. Maintenant que cette thèse est terminée, j’espère pouvoir lui renvoyer
l’ascenseur. Dans tous les cas, tout ce que je pourrais écrire ne suffirait jamais à la remercier
suffisamment. Je me contenterai donc de finir par ces quelques mots : Merci infiniment pour
ta présence et ton soutien, je t’aime...

iv

Contents

Introduction 1

List of Notations 5

1 Basics of Machine Learning 7
1.1 Supervised Machine Learning . 7

1.1.1 Generalities on Machine Learning . 7
1.1.2 Data as a key ingredient of Machine Learning 8
1.1.3 Loss functions and Risk Minimization 8
1.1.4 Generalization Guarantees . 11

1.2 Parameters tuning and Evaluation of an hypothesis 12
1.2.1 Cross validation . 12
1.2.2 Performance measures . 13

1.3 Popular Learning Algorithms . 14
1.3.1 k−Nearest Neighbor (k−NN) . 14
1.3.2 Support Vector Machine (SVM) . 16
1.3.3 Logistic Regression . 18
1.3.4 Decision Trees . 20
1.3.5 Ensemble Learning . 23
1.3.6 Boosting . 25

1.4 Metric Learning . 27
1.5 Specificities of Imbalanced Learning . 30

1.5.1 Performance Measures . 30
1.5.2 Sampling Strategies . 33
1.5.3 Cost-Sensitive Learning . 40
1.5.4 Specific Ensemble Algorithms . 41

1.6 Conclusion . 43

2 An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification 45
2.1 Introduction . 46
2.2 Notations and Evaluation Measures . 47
2.3 Related Work . 48
2.4 Proposed Approach . 50

2.4.1 An Adjusted k−NN algorithm . 50
2.4.2 Theoretical analysis . 50
2.4.3 Link with cost-sensitive learning . 52
2.4.4 Towards a local approach of γk−NN 53

2.5 Experiments . 54
2.5.1 Experimental setup . 55
2.5.2 Analysis of the results . 56
2.5.3 A qualitative analysis on the MNIST dataset 59

v

Table of Contents

2.5.4 On local-γk−NN using clustering . 60
2.6 Conclusion . 61

3 Metric Learning from Few Positives 67
3.1 Introduction . 67
3.2 Related Work . 69
3.3 Metric Learning for Imbalanced Data . 70

3.3.1 Problem Formulation . 70
3.3.2 On the Impact of the Constraint . 71

3.4 Theoretical Analysis . 72
3.4.1 Uniform Stability . 73
3.4.2 Classification Guarantees . 74

3.5 Experiments . 75
3.5.1 Experimental Setup . 75
3.5.2 Results . 76

3.6 Conclusion . 78
3.7 Proof of Theorems 2 and 3 . 80
3.8 Generalization Guarantees . 80

3.8.1 Uniform Stability . 81
3.8.2 Preliminary Results . 81
3.8.3 Generalization Bound . 82

3.9 Classification Guarantees - Proof . 87

4 Tree-Based Ranking for Interpretable Fraud Detection 89
4.1 Introduction . 89
4.2 Notations and Evaluation Measures . 91
4.3 Related Work . 92
4.4 MetaAP . 95
4.5 Experiments . 96

4.5.1 Datasets and experimental setup . 96
4.5.2 Comparison with Decision Tree methods 97
4.5.3 Analysis of an early stopping strategy 98
4.5.4 Comparison with forest-based methods 99
4.5.5 Compact and interpretable meta-trees 100

4.6 Conclusion and Perspectives . 100

Conclusion and Perspectives 103

Bibliography 105

Abstract 115

vi

Introduction

In the domain of Artificial Intelligence, Machine Learning encompasses methods that allow a
system to learn from training data and address various kinds of problems. Learning techniques
often differ by the nature of the collected data which can be numerical, categorical, structured
and take a large diversity of forms, from images to videos, texts, signals, graphs, time series, etc.
The task to be accomplished on these data is a key ingredient of the Machine Learning process.
One might want to group instances in an unsupervised fashion according to some (dis)similarity
measure, thus addressing a clustering task. Or one might be interested, like in this thesis, in
predicting in a supervised way a specific label assigned to each instance. This label can be
either discrete as encountered in a classification task or continuous as in a regression scenario.
In the former case, when only two possible labels are involved, like in fraud detection, the topic
at the core of this thesis, we usually use the value +1 for describing fraudulent transactions
and -1 for genuine ones. The presence of such a supervision in the form of labeled training
examples is of great interest for guiding the optimization process of the model parameters. In
this thesis, we will focus on supervised binary classification tasks in the specific context of tax
returns fraud detection.

Fraud detection is a major problem for most governments. Indeed, the huge financial losses
penalize them in the execution of their public policies, in Education, Justice or Health. In
France, the 2019 report of the "Cour des Comptes" [31] estimates the amount of VAT fraud at
around 15 billion euros, which is more than the budget allocated to the Ministry of Solidarity
and Health this year... This report also estimates that the amount of Social Security fraud is
more than 9 billion euros, which is slightly less than the budget allocated to the Ministry of
Justice... This shows why fraud detection has become a key challenge nowadays, not only for
governments but also for banks or insurance companies. Thus, for some time now, there has
been a growing interest in research on this topic, especially in Machine Learning [2].

However, fraud detection is a particularly challenging task in general, mainly because the
examples of interest, i.e. the frauds also called positive examples, are very often much less
numerous than the negative examples, corresponding to the non fraudsters. For this reason,
fraud detection is an application that falls into the scope of the so-called Imbalanced Machine
Learning setting. From a scientific perspective, the scarcity of the positive examples makes the
problem interesting, opening the door to new methodological contributions from the Machine
Learning community.

Imbalanced Learning also encompasses anomaly detection problems which covers a large
spectrum of application such as in medicine, computer networks or weather forecasts. However,
while anomaly detection and fraud detection seem similar at first glance, they differ in many
aspects which make the techniques associated to the two domains very different. Indeed, anoma-
lies are somewhat ’just’ some kind of unexpected events with respect to some trend. On the
other hand, fraud detection can be a much more challenging task since for example fraudsters
can try to mimic the best genuine behavior to remain undetected. In this thesis, we propose
to address this challenging problem by developping new contributions that are evaluated in the
context of a specific application representing the main thread of this document and detailed in

1

Introduction

the next paragraphs.

Context of this thesis. This thesis was carried out at the General Directorate of Public
Finances (DGFiP) which is part of the French Ministry of Economy and Finance and in the
Data Intelligence team at the Hubert Curien Laboratory which is a joint research unit (UMR
5516) between the University of Saint-Etienne, the University of Lyon, the CNRS and the
Institut d’Optique Graduate School. It was funded by the DGFiP.

About the DGFiP The Controls Programmation and Data Analysis section of the SJCF-1D
office is part of the DGFiP and is based in Paris. It is mainly in charge of fraud detection and
query management projects. The objective is to improve the efficiency of tax control operations
by renovating the targeting phase of the operations upstream of the control process. This step
largely determines the results of the entire tax control chain. The DGFiP has a large volume
of data in various fields, concerning both companies and individuals. This is why it has been
modernizing its analysis techniques for several years. Since 2017, they use Data Mining and
Machine Learning for analyzing and cross-referencing all the information available to the DGFiP
in order to identify, through statistical or mathematical methods, the criteria that characterize
a fraudulent person or company and thus establish a fraud profile that will be applied to a target
population. For companies, for example, datasets can gather data from income, tax and VAT
returns and are used to detect different types of tax fraud such as overestimated or fake charge
returns, revenue minimization or international VAT frauds such as "VAT carousels" 1. The
DGFiP performs about 50,000 tax audits per year within a panel covering more than 3,000,000
companies. Being able to select the right companies to control each quarter is a crucial issue
with a potential high societal impact. Since 2018, the percentage of controls from the lists
provided by the SJCF-1D office has been steadily increasing and is expected to reach at least
half of these controls by 2022. In 2019, 22% of tax control operations were scheduled by the
office and they resulted in the recovery of a total of 785 million euros. In 2021, the proportion
of audits scheduled by the office should reach 42%.

The overall goal of the DGFiP is to use artificial intelligence to better target the companies
to be controlled, to detect more complex and sophisticated cases of fraud, which would be dif-
ficult or even impossible to detect manually by human beings, in order to diversify the angles
of attack against fraudsters.

The objective of this thesis is to design new Machine Learning models and algorithms
for addressing this challenging task of highly imbalanced learning. Taking into account the
constraints imposed by the applied context of fraud detection, our contributions have been
developped according to three main criteria:

1. Efficiency: All along this thesis, we kept in mind that the capacity of our models to
identify fraudsters will be evaluated eventually in terms of the amount of money recovered
by the DGFiP.

2. Budget constraints: The number of possible tax audits per year remains small compared
to the huge number of companies. The optimization of specific criteria allowing us to take
into account the limited number of controllers has guided our contributions.

3. Interpretability: In fraud detection, models based on Machine Learning mainly aim at
supporting decision making. Being able to explain the alerts generated (in the form of
ranking) by the automatic system becomes more and more important at the DGFiP.

1https://en.wikipedia.org/wiki/Missing_trader_fraud

2

https://en.wikipedia.org/wiki/Missing_trader_fraud

Introduction

Outline of the thesis. These objectives in mind, this manuscript presents, after a first
chapter reviewing the notions and methods in Machine Learning required for the understanding
of the rest of the document, three main contributions.

In Chapter 2, we address the problem of highly imbalanced learning from a geometric
perspective. We propose a simple and intuitive modification of the popular k-Nearest Neighbor
algorithm to modify the decision boundaries in favor of the minority class. By reweighting the
distances to positive examples using a parameter γ, our method allows one to reduce the
False Negative rate (i.e. frauds that would be missed) while controlling the risk to get False
Positives (i.e. non fraudulent companies that would be controlled). From a geometric point of
view, reweighting by γ the distances to positive examples boils down to applying a constant
distortion of the feature space leading to an extension of the zone of influence of the minority
class. If we take a step back, we can see that this process is in fact a special case of Mahalanobis
Metric Learning which aims at optimizing a linear transformation leading to ellipsoids.

In Chapter 3, we generalize this idea by designing a new Metric Learning algorithm dedicated
to improve a k-NN classifier in highly imbalanced scenarios. By using the Uniform Stability
framework, the resulting method comes with theoretical guarantees on the False Positive and
False Negative rates.

In Chapter 4, our last contribution directly addresses the increasing need of the DGFiP to
have access to interpretable ranking models. We present MetaAP, a meta-tree-based ranking
algorithm which directly optimizes the Average Precision. This latter has been shown to be
very efficient to move positive examples at the very top of the ranking, the only part of the list
that will be really exploited by the limited number of controllers. Our model also comes with
the nice feature of generating compact rules supporting the decision making of the agents of
the DGFiP.

The contributions presented in this thesis led to the following publications:

Publications in International Conferences
Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler and Marc Sebban. Learning
from Few Positive: a Provably Accurate Metric Learning Algorithm to Deal with Imbalanced
Data. In International Joint Conferences on Artificial Intelligence (IJCAI), 2020, Virtual,
Japan [118].

Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou and Marc
Sebban. An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced
Data. In IEEE International Conference on Tools with Artificial Intelligence (ICTAI), 2019,
Portland, United States [113].

Publications in Journals
Rémi Viola, Léo Gautheron, Amaury Habrard and Marc Sebban. MetaAP: a Meta-Tree-Based
Ranking Algorithm Optimizing the Average Precision From Imbalanced Data. In Pattern Recog-
nition Letters, (revised version under review). 2022 [116].

Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou and Marc
Sebban. A Nearest Neighbor Algorithm for Imbalanced Classification. In International Journal
on Artificial Intelligence Tools, volume 30, doi:10.1142/S0218213021500135. 2021 [117].

Communications in National Conferences
Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler and Marc Sebban. MLFP:
Un Algorithme d’apprentissage de Métrique pour la Classification de données déséquilibrées.

3

Introduction

In Conférence sur l’Apprentissage automatique (CAp), 2020, Virtual, France [115].

Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou and Marc
Sebban. Une Version Corrigée de l’Algorithme des Plus Proches Voisins pour l’Optimisation
de la F-Mesure dans un Contexte Déséquilibré. In Conférence sur l’Apprentissage automatique
(CAp), 2019, Toulouse, France [114].

4

List of Notations

Notations Descriptions
S a Sample
m Number of examples
x a vector
xi the i-th element of the vector x
X The input space
Y The ouput space
Z The joint space with Z = X × Y
d Dimension of the feature space
D a distance
k an integer
M a matrix
S+ the set of Positive Semi Definite matrix

5

6

Chapter 1

Basics of Machine Learning

Abstract

In this chapter, we present the basics of Supervised Machine Learning, from the notions
of loss function and risk minimization to the theoretical guarantees that can be derived
from finite training sets. We also present some of the most well-known Machine Learning
algorithms including the Nearest-Neighbors and Decision Trees that are at the heart of our
main contributions. Moreover, we introduce the Metric Learning setting which also plays
an important role in this thesis. Finally, we detail the specificities of Imbalanced Learning
which caracterizes the problem of fraud detection.

1.1 Supervised Machine Learning

1.1.1 Generalities on Machine Learning

Like human learning, Machine Learning is often example-based. By exploiting collected train-
ing data, which are the key ingredient of the entire process, Machine Learning gives us different
ways to infer rules and models to avoid solving some tasks by hand. Machine Learning can be
basically (and non exhaustively) divided into three main fields: Supervised Learning, Unsuper-
vised Learning, and Reinforcement Learning [85].

In Supervised Learning, the manipulated data are either annotated with a discrete or con-
tinuous label. The nature of these labels allows us to solve different kinds of tasks including
classification, regression or ranking to cite a few of them. All these settings share a com-
mon feature: they aim at optimizing the parameters of a so-called hypothesis which fits the
best the training data, according to some loss function. Once learned, the induced model can
be deployed on new unknown data. Among the most popular algorithms, we can mention
the k−Nearest Neighbors (k−NN) [42], Decision Trees [72, 90, 91], Support Vector Machines
(SVM) [12, 28, 112], Logistic Regression [11], Boosting [98, 45] or Neural Networks [82, 93, 95].

In Unsupervised Learning, we cannot benefit from labels. The idea is then to discover the
underlying structure of the data. For instance, we can use the similarities in the examples
(i) to group them together and perform a clustering task, (ii) to approximate the underlying
distribution of the data by density estimation or (iii) to project the data from a high-dimensional
to a smaller space, by dimensionality reduction. Among the popular algorithms, we can name
k−Means [77], Principal Component Analysis (PCA) [87, 60] or Matrix Factorization [70].

Finally, in Reinforcement Learning [105], the idea is to find the action or sequence of actions
to perform in a particular context, called a policy, in order to maximise a certain reward. In
this case, the model does not have examples to learn from but proceeds on the principle of trials
and errors to determine the optimal strategy, like a child who learns to stand upright but who
falls a lot before reaching his goal. Popular algorithms include Q-Learning [122] and its Deep
extensions [84], SARSA [96] or the Bandits approaches [18].

7

1.1. Supervised Machine Learning

In this thesis we will only focus on Supervised Learning for binary classification and ranking
tasks.

1.1.2 Data as a key ingredient of Machine Learning

As mentioned before, data is essential in the whole Machine Learning process. In particular,
two important points deserve to be emphasized about the number of required training examples.

First, as formally described later in the generalization bounds, the number of data is key in
Supervised Learning for ensuring a capacity for the hypothesis to correctly classify new data at
test time. Indeed, without enough data, the algorithm could learn a classifier that would not
reflect the reality of the distribution, as can be seen in Figure 1.1, where the decision boundaries
are supposed to be a square centered at zero. On this task, a SVM (see Section 1.3.2) fails to
find the correct hypothesis when the number of examples is small (left). It behaves better as
this number grows (center) and is almost perfect when the size of the training data set is large
(right).

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

Figure 1.1: Impact of the number of training examples in the learning process. In each figure,
the blue points correspond to positive examples and the red points to negatives. Positives are
uniformly draw from the target green square. The decision boundaries of the learned SVM
define blue and red regions correponding to a prediction +1 and −1 respectively. In each of the
three cases, the hypothesis is perfect on the training data but behaves poorly at test time for
the first two. On the right figure, the number of training examples is sufficient to retrieve the
underlying distribution and then classify correctly at test time.

The second important point is related to the notion of ’Curse of Dimensionality’. It corre-
sponds to the fact that as the number of features describing our problem increases, the number
of training examples has to grow exponentially fast. As shown in Figure 1.2, if we want to cover
the [0, 1] interval (1D) uniformly, we need 11 points to have a distance of 0.1 between each
point. In a two dimensional space, the number of points needed is 112 = 121. In 3 dimensions,
1, 331 points are required and in 10 dimensions, almost 26 billion!

Note that if the number of training examples is not large enough, the learning algorithm
might face a so-called overfitting phenomenon consisting in selecting an excessively complex
model, with possibly too many parameters, that would lead to a poor behavior at test time.

1.1.3 Loss functions and Risk Minimization

We consider a set S = {zi = (xi, yi)}mi=1 of m training samples, independently drawn and
identically distributed from an unknown joint distribution DZ , over a space Z = X ×Y, where
X = Rd is the feature space and Y = {−1,+1} is the set of labels. We assume that S = S+∪S−
with m+ positives in S+, m− negatives in S− and m = m+ +m−.

8

Chapter 1. Basics of Machine Learning

Figure 1.2: Impact of the dimension on the needed number of training examples. In each figure,
the black lines delimit the area to be covered uniformly with the red points. On the left figure,
11 points are needed to cover the segment uniformly. In the middle, 121 points are needed for
the square. On the right figure, 1,331 points are used to cover the cube.

We also assume that there exists a target function f such that y = f(x), ∀(x, y) ∈ X × Y.
If we call H, the set of hypotheses, i.e. a set of possible functions to approximate f , the goal of
a Supervised Learning algorithm is to output from S the best hypothesis as close to the target
function f as possible.

Loss functions To pick the best candidate, we need a criterion to evaluate the quality of each
tested hypothesis h ∈ H : X → R. For this purpose, we consider a nonnegative loss function
l : H×Z → R+ measuring the degree of disagreement between h(x) and y. Among the possible
loss functions, the most natural one is the 0/1 loss, represented in Figure 1.3 that counts the
number of classification errors made by the hypothesis h:

l0/1(h, z) =

{
1 if y × h(x) < 0

0 otherwise.

Due to the fact that the 0/1 loss is nonconvex, surrogate convex loss functions are often
used in practice. The most popular ones are:

- the Hinge loss used in Support Vector Machine: lhinge(h, z) = max (0, 1− y × h(x)),

- the Exponential loss used in Boosting: lexp(h, z) = exp−y×h(x),
- or the Logistic loss used in Logistic Regression: llog(h, z) = log

(
1 + exp−y×h(x)

)
.

True Risk and Empirical Risk Given this nonnegative loss function l : H× Z → R+, we
can define the True Risk of h with respect to l, as the expected loss suffered by h over the
distribution DZ :

Rl(h) = Ez∼DZ [l(h, z)]

The optimal hypothesis h∗ can be defined as follows:

h∗ = arg min
h∈H
Rl(h)

Since the computation of the True Risk is not possible because DZ is unknown, we cannot
directly select h∗. One way to overcome this issue consists in using the empirical counterpart
of Rl(h), called the Empirical Risk and computed from the training set S:

R̂l(h) =
1

m

m∑
i=1

[l(h, zi)]

9

1.1. Supervised Machine Learning

2 1 0 1 2
yh(x)

0

1

2

3Lo
ss 0/1 Loss

Hinge Loss
Exponential Loss
Logistic Loss

Figure 1.3: Different loss functions. In black, the natural 0/1 loss. In red, the Hinge Loss used
in the SVM algorithm. In blue, the Exponential loss used in Boosting. In green, the Logistic
loss used in Logistic Regression.

A common strategy is then to find the hypothesis h that minimizes this Empirical Risk. This
strategy is called Empirical Risk Minimization and is defined as follows:

h = arg min
hi∈H

R̂l(hi) (1.1)

Occam’s Razor Principle It is important to note that several hypotheses can be consistent
with S. Thus, for two hypotheses with similar performances, Occam’s Razor principle suggests
to choose the simplest one. Following this principle tends to avoid overfitting phenomena.

One way to do it in practice is to add a regularization term to the Problem 1.1 to penalize
the complexity of the hypothesis. A Supervised Machine Learning problem can then typically
be defined as follows:

h = arg min
hθ∈H

R̂l(hθ) + λ‖θ‖pp (1.2)

where λ is a regularization parameter and ‖.‖p is a p-norm over the parameters θ of the
hypothesis hθ. The selected hypothesis h is the one offering the best trade-off between empirical
risk minimization and simplicity. This strategy, called Regularized Risk Minimization,
limits the risk of overfitting and can also help to solve ill-posed problems when using strongly
convex regularizations and thus speed-up the calculation of the solution.

Bias/Variance trade-off There are two major sources of possible errors between the selected
hypothesis h and the target function f .

The first one is the Inductive Bias. Indeed, there is no guarantee that the chosen hypoth-
esis space H will match the target function f , even if we would be able to find the optimal
hypothesis h∗ ∈ H. The bias expresses the deviation between h∗ and f .

The second source of error is the Variance. As the model is learned on a finite randomly
drawn data set, the optimal hypothesis h∗ is usually not selected.

10

Chapter 1. Basics of Machine Learning

Figure 1.4 illustrates the trade-off between the bias and the variance. As the complexity of
the model increases, the expressiveness of the hypothesis is improved leading to a reduction of
the bias. But this happens at the expense of an increase of the variance due to the expansion of
the set of parameters to be optimized. Learning well boils down to finding a good compromise
between a too simple model (large bias, small variance) that will tend to underfit the data,
and a too expressive model (small bias, large variance) which will suffer from an overfitting
phenomenon.

 model complexity

underfitting
 zone

overfitting
 zone

Bias
Variance
Generalization
Error

Figure 1.4: Illustration of the Bias/Variance trade-off. With a too simple model, we will have a
low variance but a high bias. It corresponds to a situation of underfitting. With a too complex
model, we will have a low bias but a high variance. It corresponds to a situation of overfitting.
A trade-off has to be found between the bias and the variance to have a better model.

1.1.4 Generalization Guarantees

We saw earlier that the learning process is done by minimizing the Empirical Risk on the
training data S, under the assumption that this set is sufficiently large and representative of the
underlying unknown distribution DZ . During the last decades, many theoretical frameworks
have been developed to derive generalization guarantees on the learned hypothesis h [111, 110,
13, 127].

Based on the work of Leslie Valiant [110], the PAC theory, for Probably Approximatively
Correct, gives us the general form of a generalization bound which bounds the probability to
observe a large deviation between the True Risk and the Empirical Risk of h.

P
(∣∣∣Rl(h)− R̂l(h)

∣∣∣ ≥ ε) ≤ δ
where ε > 0 and δ ∈ [0, 1].
Different frameworks have been proposed in the literature, most of them resorting to con-

centration inequalities to derive specific bounds. In the following, we enter into the details of
the Uniform Stability framework that has been used to prove guarantees on our Metric Learning
algorithm presented in Chapter 3.

Uniform Stability The Uniform Stability framework [13] has the particularity to provide
generalization bounds that are specific to the learning algorithm, i.e. that take into account in
particular the nature of the loss function, the model considered and the regularization term.

11

1.2. Parameters tuning and Evaluation of an hypothesis

This framework tries to find out under which conditions an algorithm is uniformly stable.
An algorithm is said to be stable when its predictions do not change significantly in case of
minor modifications of the training set.

Definition 1. An algorithm A has a uniform stability in κ
m with respect to a loss function l

and a parameter set θ, with κ a positive constant if:

∀S,∀i, 1 ≤ i ≤ m, sup
z
|l(θS , z)− l(θSi , z)| ≤ κ

m

with S a learning sample of size m, θS the model parameters learned from S, θSi the model
parameters learned from the sample Si obtained by replacing the ith example zi from S by
another example z′i independent from S and drawn from DZ . Finally, l(θS , z) is the loss suffered
at z.

In [13], the authors provide a generalization bound when an algorithm fulfills the uniform
stability criterion:

Theorem 1. Let A be an algorithm with uniform stability in κ
m with respect to a loss function

l bounded by K. Then, for any m ≥ 1, and any δ ∈ [0, 1], the following bound holds with
probability at least 1− δ over the random draw of the sample S,

Rl(θS) ≤ R̂l(θS) +
2κ

m
+ (4κ+K)

√
ln 1/δ

2m
.

Note that this bound is in O
(

1√
m

)
so, as expected, the greater the number of examples,

the smaller the difference between the Empirical Risk and the True Risk.
The authors have proved that this framework can be used to obtain generalization bounds

for many algorithms, including the k−NN that we will present in the next section.

1.2 Parameters tuning and Evaluation of an hypothesis

Even though the generalization bounds studied in the previous section can be of great inter-
est, e.g. to derive guarantees or to get insight into how to design new algorithms, they are
often pessimistic and thus do not give an objective estimation of the quality of h. Since the
joint distribution DZ is unknown, one has to figure out a solution to empirically estimate the
generalization capacity of the hypothesis h by only using the training set S.

This latter is typically splitted into two subsets S1 ∪ S2, one for learning (S1) and one
for testing and so evaluating the quality of the hypothesis (S2). S1 has to be used for both
learning the parameters θ of the model and tuning the hyperparameters of the algorithm (e.g.
the regularization parameter λ, the number k of neighbors in a k−NN classifier, the number of
layers in a deep neural network, etc.). In order to have a fair process, S1 is usually divided into
two subsets, one for learning the parameters θ according to different sets of hyperparameters,
the training set, and one for selecting the best hyperparameters, usually called the validation
set. The global procedure is summarized in Figure 1.5

In order to be robust to sampling bias, the train/validation procedure can be repeated
several times leading to the well known Cross-Validation method.

1.2.1 Cross validation

As illustrated in Figure 1.6, the principle is to separate the training set (the test set already
kept apart) into k subsets of same size. Then, for each set of parameters that we want to test,
we carry out k learning phases of the model, so that each of the k subsets is considered a test

12

Chapter 1. Basics of Machine Learning

DATASET

TRAIN

Train multiple models:
- different algorithms
- different hyperparameters

VALIDATION

Validate the model:
- Tune hyperparameters
- Select best model

TEST

Evaluate the model:
- Compute the Risk on TEST

Figure 1.5: Illustration of the Train/Validation/Test procedure. In cyan, the set S1 is split into
2 subsets. The first one (plained) used to train the model. The second one (hatched) used to
validate the model. In red, the test set S2 used to evaluate the model.

set. To do this, we select k − 1 subsets and leave one apart to be considered as an unseen set.
Thus, we learn on the set of k−1 selected parts, the training folds, and we evaluate the learned
model on the set apart, the validation fold. Each of these k trainings therefore give k evaluation
measures. Finally, we keep the set of parameters that will offer the best average evaluation over
these k training phases.

Performance 1 Performance 2 Performance 3 Performance 4 Performance 5

Global Performance = 15 i
(Performance i)

test set
training set, training folds
training set, validation fold

Figure 1.6: Illustration of a 5-folds cross validation. In cyan, the training set is split into 5 folds,
used for cross validating. In red, the test set that will not be used during the cross validation.
When all 5 folds have been used in validation, the average of the 5 performances will be taken
to evaluate the global performance of the tested parameter set.

1.2.2 Performance measures

In order to evaluate the classification predictions of a learned model on test data, it is common
to produce the Confusion Matrix. This is the summary of the counts per class according to the
actual labels and the predictions. It allows one to see immediatly the capacity of the model to
classify correctly, and when it fails, which labels are subject to more errors. In the case of a
binary classification, the confusion matrix takes the form of the Table 1.1.

13

1.3. Popular Learning Algorithms

Table 1.1: Confusion Matrix in a binary classification setting.
Predicted labels

+1 −1

True labels +1 True Positive (TP) False Negative (FN)
−1 False Positive (FP) True Negative (TN)

True Positive (TP) and True Negative (TN) correspond to cases where the model correctly
classifies examples by recovering their actual positive and negative labels respectively. False
Positive (FP) and False Negative (FN) correspond to two types of possible errors, also called
false and missed alarms respectively. FP corresponds to negative examples wrongly predicted
as positive and FN to positive examples wrongly predicted as negative.

Since it is often simpler to work with a single value, it is suitable to synthesize the information
from this confusion matrix. There are several ways to do it and this will depend mainly on the
context and the task at hand. The most direct measure to summarize the confusion matrix is
the Accuracy, which measures the proportion of correct predictions and is defined as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
∈ [0, 1]

Note that the complementary of the Accuracy is called the Error Rate which corresponds to
the quantity minimized by the 0/1 loss.

Other performance measures coming from the Confusion Matrix exist and will be presented
in Section 1.5.1 dedicated to the imbalanced data.

1.3 Popular Learning Algorithms

In this section, we present some of the most popular supervised learning algorithms. Among
them, the k−NN classifier and Decision Trees will have an important place in this thesis as
they are at the heart of our contributions.

1.3.1 k−Nearest Neighbor (k−NN)

The Nearest Neighbor algorithm [29] is probably the simplest supervised learning algorithm.
Despite its simplicity, k−NN is theoretically well rooted as it can be shown that it approximates
the Bayesian classifier and its error is upper bounded by twice the (smallest) Bayesian error.
Following the saying ’Birds of a feather flock together’, its principle is that an example should
probably be of the same class as its nearest neighbor(s). Thus, given a training set S and a
distance function D, to label a new example x, the algorithm computes the distances of x to the
m examples in S to retain only the k closest ones. Once this subset of S is selected, a simple
majority vote among the corresponding labels allows us to label the query (see Figure 1.7). One
of the particularities of k−NN is that it does not really require learning. Indeed, once the set
S is stored in memory, only calculations of distances are needed at test time to label x. That
is why k−NN is often called ’lazy algorithm’. The only important parameter is the number of
neighbors considered which can be tuned by cross-validation.

Many adaptations of this algorithm have been proposed. For example, if k > 1, it is
possible to use weights inversely proportional to the distances between the test point and its
neighbors in order to determine its label [34]. In this case, the closer a training example is to
the test example, the more influence it has on the predicted label. This is particularly useful
for managing ties that often occur in majority votes. In Figure 1.8, we illustrate both the
influence of k in the algorithm and the difference between the uniform majority vote and the
distance-weighted version.

14

Chapter 1. Basics of Machine Learning

?

k = 1

k = 3

k = 5

Figure 1.7: Illustration of the classification with a k−NN classifier. The blue circles and red
triangles correspond to the training examples from two classes. The green star corresponds to
the new example to label. If we consider k = 1 or k = 5 neighbors, it will be labeled as a blue
circle while if we consider k = 3, it will be labeled as a red triangle.

1 0 1 2

0.5

0.0

0.5

1.0

1 0 1 2

0.5

0.0

0.5

1.0

1 0 1 2

0.5

0.0

0.5

1.0

Figure 1.8: Impact of the number of considered neighbors and the distances in the k−NN
algorithm. Here, the underlying distributions are two moons with a Gaussian noise of standard
deviation 0.2. (Left) k = 1 with a uniform majority vote. The points of the training set are
properly separated into two subsets corresponding to their labels. (Center) k = 11 with a
uniform majority vote. Here, some points at the tips of the moons are influenced by the centers
of the opposite moons and end up in the other classification area because the majority of their
11 neighbors have a different label. (Right) k = 11 with a distance-weighted vote. By taking
into account the distances to the neighbors, the classifications areas become more appropriate
to the distribution, although the border between the two remains a sensitive area.

15

1.3. Popular Learning Algorithms

An important point of this algorithm is the choice of the distance used. This is essential
and has a great influence on the accuracy of the model. In the case of numerical data, the most
commonly used is the Euclidean distance. However, other distances can be used, often related
and adapted to the task to be solved, such as the Levenshtein distance for strings, trees and
graphs, or the Dynamic Time Warping for time series. A whole branch of Machine Learning
works on how to learn dedicated distances. This field is called Metric Learning [10]. Once these
distances are learned, they can be directly used by the Nearest Neighbor algorithm. In this
case, the performances of the k−NN are usually significantly improved. Metric Learning being
related to the second contribution of this thesis, it will be detailed in Section 1.4.

1.3.2 Support Vector Machine (SVM)

Support Vector Machines were introduced in the mid-1990s from the work of Vladimir Vapnik
on Statistical Learning Theory [12, 28, 112]. SVMs are a generalization of linear separators
and are based on two key notions. The first one is the notion of margin which expresses the
distance between the separation boundary and the nearest examples (called Support Vectors).
SVM aims at maximizing the margin. The second key notion is that of kernel. Since the training
data are not necessarily linearly separable, the idea is to find a space, of higher and possibly
infinite dimension, in which the data are potentially linearly separable. Kernels allow this by
transforming the inner products involved in the optimization problem in the high dimensional
space into a simple function evaluation. This technique is called the kernel trick. In Figure 1.9,
we can see an example of projection of a non linearly separable 2D toy example in a three
dimensional space. In this 3D space, the data seems now to be almost separable by a horizontal
plane.

2 1 0 1 2
2

1

0

1

2

210122 1 0 1 2

25
20
15
10
5

0
5

Figure 1.9: Illustration of the projection of data into a higher dimensional space. (Left) Our
non linearly separable 2D toy dataset. (Right) Its projection in a 3D space with f(x, x′) =
log((0.9 ∗ 〈x, x′〉)4) which almost allows a linear separation.

16

Chapter 1. Basics of Machine Learning

Linear separator To understand how a SVM works, let’s start from the notion of linear
separator. In a d-dimensional space Rd, a linear separator h is of the form:

h : Rd → {−1, 1}
x 7→ h(x) = sign(〈w,x〉+ b)

with 〈., .〉 the inner product, w a weight vector and b the bias.
h defines then a hyperplane of equation 〈w,x〉+ b = 0 which separates Rd into two regions.

This hyperplane can also be noted (w, b). The principle of SVM is then to learn a linear
separator but in an appropriate feature space F .

Large margin In an ideal case where the classes are perfectly separable, it would be possible
to find many hyperplanes reaching a perfect accuracy. This is why [12] proposed to select
the one that allows the largest margin between the separator h and the support vectors, that
correspond in this case to the closest points to the hyperplane.

The margin of an instance zi = (xi, yi), defined as γi = yi × (〈w,xi〉+ b), is positive if zi is
correctly classified. And the margin γ of the hyperplane (w, b) with respect to the training set
S = {(xi, yi)}mi=1 is defined as:

γ = min
1≤i≤m

γi = min
1≤i≤m

yi × (〈w,xi〉+ b).

By maximizing the margin between the separator and the support vectors, we obtain the
primal formulation of Hard Margin SVM:

min
w,b

1

2
||w||22

subject to yi(〈w, xi〉+ b) ≥ 1, for 1 ≤ i ≤ m.

By using the Lagrange duality, we obtain the dual formulation of hard margin SVM:

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj〈xi,xj〉

subject to
m∑
i=1

yiαi = 0 and α � 0.

Kernel trick To find an adequate feature space F where a linear separator is learned, we have
to use a transformation φ : X → F and replace all 〈x,x′〉 by 〈φ(x), φ(x′)〉 in the aformentioned
problem.

The notion of Kernel can then help us to compute this inner product without having to
explicitely apply φ. A function K : X × X → [−1, 1] is a Kernel if there exists a function
φ : X → F such that K(x,x′) = 〈φ(x), φ(x′)〉.

By using this Kernel trick on the hard margin dual formulation, we get the Kernelized SVM
hard margin dual formulation:

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjK(xi,xj)

subject to
m∑
i=1

yiαi = 0 and α � 0.

The Kernelized separator h becomes:

h(x) =
∑
i∈SV

yiαiK(xi,x) + b

with SV the set of support vectors.

17

1.3. Popular Learning Algorithms

Soft Margin SVM In practice, it is very unlikely that the data are perfectly linearly separa-
ble, even when projected into a very high dimensional space. Therefore, it is necessary to relax
this constraint by accepting that some points violate this margin requirement (see Figure 1.10).
This new version of the problem will thus correspond to optimizing a tradeoff between a large
margin and the amount of violations of this margin. To do this, one adds slack variables to the
primal problem, which allow again to switch to the dual problem and use the Kernel Trick.

The SVM soft margin primal formulation is defined as follows:

min
w,b,ξ

1

2
||w||22 + C

m∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, for 1 ≤ i ≤ m
and ξ � 0

with ξ, the slack variables that allow some instances to violate the margin constraint and C ≥ 0
the tradeoff parameter between the size of the margin and the magnitude of the violations.

This formulation is equivalent to the following unconstrained formulation:

min
w,b

1

2
||w||22 + C

m∑
i=1

[1− yi(〈w, xi〉+ b)]+

where [1− a]+ is the hinge loss.
Finally, the Kernelized SVM soft margin dual formulation is defined as follows:

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαjK(xi,xj)

subject to
m∑
i=1

yiαi = 0 and 0 ≤ αi ≤ C, for 1 ≤ i ≤ m

1.3.3 Logistic Regression

Logistic Regression [11] is a popular statistical method for predicting the probability of the
occurence of an event Y from a set of descriptive variables X, i.e. P (Y = 1|X). By threshold-
ing this probability (typically at 0.5), Logistic Regression can thus be easily used in Machine
Learning for binary classification.

Let us consider the logistic (or sigmoïd) function:

s : R → {0, 1}

x 7→ s(x) =
1

1 + exp(−x)
.

Assume that we want to learn a function hθ(x) = s(θTx) such that:

P (y = 1|x) = hθ(x) and P (y = 0|x) = 1− hθ(x).

So, for all y ∈ {0; 1}, we get:

P (y|x) = hθ(x)y × (1− hθ(x))1−y

and thus, the likelihood L and its log are defined as follows:

L(θ) =
∏
i

P (yi|xi) =
∏
i

hθ(xi)
yi × (1− hθ(xi))1−yi

18

Chapter 1. Basics of Machine Learning

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

1

2

Negative
Positive
Support Vectors
separator
margin
violations

Figure 1.10: Illustration of a SVM separator on a toy example, with 2 points that violate
the margin constraint. The black line corresponds to the linear separator. The dashed lines
represent the margin. The circled points are the support vectors. Note that by definition of
the solution of the optimization problem considered, the points leading to margin violations are
also considered as support vectors.

and:

log(L(θ)) =
∑
i

(yi log (hθ (xi)) + (1− yi) log (1− hθ (xi))) .

By maximizing the log of the likelihood with respect to θ, we can find the best parameter
so that hθ fits the best the data.

The Logistic Regression also corresponds to the estimation of the logarithm of the odds, i.e.
the logarithm of the ratio of probabilities, by a linear model h̃θ(x):

log(odds) = log

(
P (y = 1|x)

P (y = 0|x)

)
≈ h̃θ(x).

Once this linear model h̃θ(x) has been learned, we can directly obtain the probability of the
event occurring with the logistic function:

P (y = 1|x) =
exp (h̃θ(x))

1 + exp (h̃θ(x))
=

1

1 + exp (−h̃θ(x))
.

In Figure 1.11, we can find an illustration of the logistic curve that best fits the data. The
corresponding parameter is θT ' (10.173;−22.520) and thus, the logistic function is

hθ(x) =
1

1 + exp(−(10.173x− 22.520))
.

With a threshold of 0.5, all points with x < 2.224 will be labelled as negative and all points
with x ≥ 2.224 will be labelled as positive. In this example, the log of the odds is linearly
estimated with h̃θ(x) ≈ 10.173x− 22.520.

19

1.3. Popular Learning Algorithms

0 1 2 3 4 5 6 7 8 9 10
X

0.0

0.5

1.0

y

Figure 1.11: Example of Logistic Regression on a toy example. (Blue curves) Example of
logistic functions with different θ parameters. (Red curve) Best logistic function, learned from
the data. (Grey line) The threshold. All points of the red curve that are above the threshold
will be labelled 1 while all points below the threshold will be labelled 0.

1.3.4 Decision Trees

Decision Trees (DT) [72, 90, 91] are among the simplest and most widely used methods in
Machine Learning. In their basic form, DT are binary trees that recursively split from a root
the dataset according to some criterion (e.g. Information Gain or Gini Index) until we are left
with pure leaf nodes, that is nodes with examples coming from only one class. Once learned,
DT can be expressed in terms of decision rules (from the root to the leaves) that can be used
to predict the label of new examples.

Figure 1.12 shows an example of DT (left) learned from a toy dataset (right). The condition
in the root node splits the dataset in two groups of examples, those with x1 less than or equal
to −0.986 and the others. This split, represented by the blue line in the Figure on the right,
allows us to have a pure leaf on the left, because all the examples satisfying the condition have
the same label, and a new node on the right where the examples inside do not all have the
same label. A new decision rule ("x1 less than or equal to 0.996" corresponding to the purple
line) is then created for the examples in this node to separate them. And so on, until the data
are clearly separated into subsets of the same label. Here we have obtained five pure leaves in
the tree, which correspond to the five regions of the space R2, obtained from the hyperplanes
corresponding to the decision rules.

A DT algorithm partitions the space Rd into regions in which training examples share some
characteristics and often, identical labels. In order to predict the label of a new example, we
feed it to the DT, following the corresponding path and assign the label of the resulting leaf.

In order to prevent some overfitting phenomenon, pruning stategies can be applied to reduce
the size of the DT and avoid the induction of leaves containing too few examples.

Although DT can be viewed as a simple set of if-then-else statements, note that the decision
rules are learned from the training set in an optimal way. To do this, we typically calculate
the impurity (or uncertainty) of a node. It can be done via the Shannon Entropy [101, 90, 91],
which measures the information contained in a node and defined as follows:

E(node) =
∑
i

− pi log(pi)

20

Chapter 1. Basics of Machine Learning

entropy = 0.0
samples = 49
value = [49, 0]

entropy = 0.0
samples = 152
value = [0, 152]

X[0] <= -1.01
entropy = 0.801
samples = 201

value = [49, 152]

entropy = 0.0
samples = 61
value = [61, 0]

X[0] <= 0.996
entropy = 0.981
samples = 262

value = [110, 152]

entropy = 0.0
samples = 112
value = [112, 0]

entropy = 0.0
samples = 126
value = [126, 0]

X[1] <= 0.996
entropy = 0.975
samples = 374

value = [222, 152]

X[1] <= -0.986
entropy = 0.886
samples = 500

value = [348, 152]

2 1 0 1 2
X[0]

2

1

0

1

2

X[
1]

1

2

34

Figure 1.12: Example of Decision Tree (left) and the corresponding classifier induced by this
DT on a toy dataset (right). Each internal node contains the decision rule linking a feature to a
value, the entropy of the node, the number of examples in the node, as well as the distribution
of classes [red, blue].

with pi the probability of the class i estimated from the subset of examples falling in the node.
If this Entropy is high, the prediction is uncertain. On the contrary, pure leaves have

zero Entropy. The Information Gain IG of a potential split of a parent node is calculated by
subtracting the entropies of its child nodes, weighting by the rate of examples in each child
node. More formally,

IG(split) = E(Parent)−
∑
j

wjE(Childj).

This calculation is done for all features and all possible splits on these features and the best
couple feature/split, that maximizes the Information Gain is selected. An illustration is given
in Figure 1.13. We consider a node that contains 5 blue and 5 red examples, so with an entropy
equal to 1. The computation of the Information Gain of each possible split leads us to select
the 6th split. It will split the dataset into a right node containing the 5 red examples and 1 blue
example while the left node will be pure with 4 blue examples. With this split, the entropy of
the left part will be 0.65 and that of the right part 0, which leads to an Information Gain of
0.61 which is the maximum gain.

Another way to calculate the impurity of a node is to use the Gini Index [21, 72] instead of
the Information Gain. As with the latter, if the Gini Index G is high, the impurity of the node
is large and G equals zero if the node is pure. The definition of the Gini Index is:

G = 1−
∑
i

p2i .

The advantage of the Gini Index over the Information Gain is that it is less expensive to compute
as it does not involve the costly calculation of the logarithm.

In Figure 1.14, we illustrate two different classifiers learned with the two different impurity
criteria on a toy dataset.

Note that a Decision Tree algorithm is a greedy method. It selects the current best split
that maximizes the Information Gain without backtracking and challenging a previous split.
So, there is no guarantee to obtain the global optimal solution. On the other hand, it is worth

21

1.3. Popular Learning Algorithms

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.13: Example of the splitting rule with the Information Gain on a toy example. (Top
line) Projection of the points of a set along one of the axes. (Vertical lines) Lists of possible
splits. In bold, the best split. (Red/blue curve) Entropy of the left/right part of the split.
(Black curve) Information Gain corresponding to the split.

1 0 1 2

0.5

0.0

0.5

1.0

1 0 1 2

0.5

0.0

0.5

1.0

Figure 1.14: Example of classifiers induced by a DT with Information Gain (left) and Gini
Index (right) on a toy example.

22

Chapter 1. Basics of Machine Learning

noting that this method is very fast and achieves very good results despite its simplicity. This
explains why it is widely used. Another important point about Decision Trees is that they are
inherently interpretable by construction. We will benefit from this advantage in Chapter 4.

1.3.5 Ensemble Learning

Ensemble methods are learning algorithms that construct a set of n hypotheses {hi}ni=1 whose
individual predictions are combined in some way to classify new examples. Each of the hypothe-
ses must be accurate, i.e. at least better than random guessing, and diverse, i.e. they must be
complementary by making errors on different examples. It has been shown that such ensemble
methods allow one to reduce the bias and variance. They are derived from the ’Wisdom of the
Crowd’ principle: A crowd of amateurs is more often right than a single expert. The law of large
numbers explains this principle. As the number of individuals increases, the performance of the
majority approaches 100% of correct answers, as long as each individual does better than 50%
correct and there is diversity among the individuals. It is this diversity that makes for strength
in numbers. The crowd must therefore be large, competent and diverse. To make the final
prediction, the individual decisions of the base classifiers can be merged with a meta-learner,
averaged, or weighted according to certain criteria.

There are many ways to achieve diversity in classifiers, by training:

• different kinds of classifiers on the same training set S, such as a mixture of k−NN, SVM,
DT, etc.

• the same type of classifiers on the same training set S but with different hyperparameters,
such as different kernels for the SVM or different numbers of neighbors k for the k−NN.

• the same classifier but varying the training set, by some sampling scheme.

The first two categories correspond to heterogeneous ensemble methods because it is the al-
gorithm that changes and not the distribution of points in the training set. These methods
include Stacked Generalization (also named Stacking) [125], for example. The third category
corresponds to homogeneous ensemble methods because the algorithm remains intrinsically the
same, while the distribution of the points is modified to create diversity. Different methods
fall into the scope of this family, like Boostrap Aggregating (also named Bagging) [15], Random
Forests [16, 59] or Boosting [46, 47, 48, 80].

We briefly introduce Stacking and Bagging below before entering more into details of Boost-
ing in the next Section.

Stacking The idea behind Stacking is to train an ensemble of n different classifiers on the
training set S of size m. Then, m vectors of size n are generated from the decisions of the
n classifiers, one per example in S. Finally, a combiner, or meta-learner, is learned on these
n predictions to predict the final decision (see Figure 1.15). Any algorithm can be used as a
meta-learner although Logistic Regression has been shown to be very efficient in practice.

Bagging The idea in Bagging is to create, in parallel, several models learned from random
subsets of the training set S. To do this, we use a sampling technique called Bootstrapping,
which consists in replacing, after each draw, the selected data into the original dataset. The
learned models are thus diverse since they are learned on slightly different subsets. Once this
set of models has been learned, a majority vote can be applied to determine the final prediction
of the overall model (see Figure 1.16).

Note that bagging can be efficiently used to train Random Forests [16, 59], i.e. a set of DT
learned from various distributions of examples and features generated by sampling.

23

1.3. Popular Learning Algorithms

S

Base Learner 4

Base Learner 3

Base Learner 2

Base Learner 1
Prediction 1

Pre
dic

tio
n n

...

Base Learner n

Meta Learner Final
Prediction

Figure 1.15: Illustration of the stacking of n base learners, trained on the training set S (red).
The n predictions on the test set (pink) are combined by the meta learner to have the final
prediction.

S

Base Learner 4Bootstrap 4

Base Learner 3Bootstrap 3

Base Learner 2Bootstrap 2

Base Learner 1Bootstrap 1
Prediction 1

Pre
dic

tio
n n

...

Bootstrap n Base Learner n

Majority
Vote

Figure 1.16: Illustration of bagging. n subsamples are generated from the dataset S by boot-
strapping. Then, n base learners of the same type are trained on these subsets. A majority
vote is applied on their predictions to have the final prediction.

24

Chapter 1. Basics of Machine Learning

Algorithm 1.1: AdaBoost Algorithm
Input: a learning sample S, a number of iterations T , a weak learner h
Output: a global strong learner H
for i from 1 to m do

W1(xi) = 1/m // Initialization of the weights of the examples
end
for t from 1 to T do

ht = h(S,Wt) // Training of the weak learner ht on the weighted dataset
ε̂t =

∑
xi s.t. yi 6=ht(xi)Wt(xi) // Computation of the weighted empirical error of ht

αt = 1
2 ln 1−ε̂t

ε̂t
// Computation of the weight of ht

for i from 1 to m do
Wt+1(xi) = Wt(xi)× exp(−αtyiht(xi))/Nt // Update of the weights of the examples

// With Nt a normalization coefficient

end
end
f(x) =

∑T
t=1 αtht(x);

return HT : x 7→ HT (x) = sign(f(x));

1.3.6 Boosting

Boosting [98] is an ensemble method which aims at building a strong model by combining so-
called weak hypotheses that are learned step by step. The principle here is to have each new
model to correct the errors of the previous one by changing the distribution of the training data
in favor of the ’hard’ examples.

The most popular boosting algorithms are AdaBoost [46], for Adaptive Boosting, and Gra-
dient Boosting [47, 48, 80].

AdaBoost In AdaBoost, each new classifier corrects the errors of the previous one by in-
creasing the weight of the misclassified examples so that it will focus more on them. AdaBoost
assigns a coefficient to each weak learner in an optimal way, i.e. the weight which minimizes
the training error. The pseudo-code of AdaBoost is presented in Algorithm 1.1. Starting from
a uniform distribution of the data, a new hypothesis ht is learned. Then, the distribution is
updated as follows:

Wt+1(xi) = Wt(xi)×
exp(−αtyiht(xi))

Nt

where αt corresponds to the weight that will be given to the current hypothesis ht in the final
model and Nt is a normalization coefficient. After T iterations, the different learned classifiers
ht are linearly combined to obtain the final classifier HT . An illustration of AdaBoost is shown
in Figure 1.17.

AdaBoost is fast and simple. It comes with many theoretical guarantees, not only on the
training error but also on the generalization risk. In practice, it works very well with decision
stumps (DTs of depth 1), but is subject to overfitting in the presence of outliers.

Gradient Boosting For the past few years, Gradient Boosting has become one of the most
widely used algorithms, especially when working with large amounts of data. An evidence of
its popularity can be illustrated by the list of winners of the big data science competitions, as
Kaggle, or the number of hits from search engines for XGBoost [25], one of the currently most
efficient Gradient Boosting algorithm (already used at the DGFiP), or LightGBM [62].

25

1.3. Popular Learning Algorithms

0.69

h1

0.97

h2

0.65

h3

0.5

h4

0.67

h5

0.33

h6

HT = 0.69 h1 + 0.97 h2 + 0.65 h3 + 0.5 h4 + 0.67 h5 + 0.33 h6

Figure 1.17: Example of 6 iterations of AdaBoost on a toy example when using decision stumps
as weak hypotheses. (Top) The 6 iterations with the corresponding weights αt. (Bottom) The
final classifier as a weighted sum of the 6 decision stumps.

26

Chapter 1. Basics of Machine Learning

Like AdaBoost, Gradient Boosting is an ensemble learning method where a combination
of weak classifiers is improved by adding a new element to it, which corrects the errors of the
current ensemble by learning from the residuals, expressed in the form of gradients. Unlike
AdaBoost which is based on the exponential loss (see Algorithm 1.1), Gradient Boosting can
use any differentiable loss function.

The pseudo-code is presented in Algorithm 1.2. It starts by learning a first model H0 on
the training set S. Once this model is learned, two important steps are repeated T times. The
first one computes the pseudo-residuals ri, which correspond to the error of the model on the
training set, using the gradient of the chosen loss. Once these pseudo-residuals are calculated,
a new weak classifier h is trained to predict them and is added to the global model so that the
combination of the two performs better than the previous model. This new weak classifier is
weighted by an optimal coefficient γt and a learning rate α.

Algorithm 1.2: Gradient Boosting Algorithm
Input: a learning sample S, a number of iterations T , a weak learner h,
a differentiable Loss Function l(y,H(x)) and a learning rate α ∈]0; 1]
Output: a final model HT (x)

H0(x) = arg min
γ

∑m
i=1 l(yi, γ) = h(xi, 1/|S|mi=1) //

Initialization of the model
for t from 1 to T do

for i from 1 to m do
ri,t = −

[
∂ l(yi,H(xi))

∂H(xi)

]
H(x)=Ht−1(x)

// Computation of the pseudo-residuals

end
ht = h({xi, ri,t}mi=1) // Training of the weak learner ht on the pseudo-residuals
γt = arg min

γ

∑m
i=1 l(yi, Ht−1(xi) +γht(xi)) // Computation of the multiplier γt

Ht(x) = Ht−1(x) +αγtht(x) // Update of the model

end
return HT (x);

Following the introduction of the basics of Machine Learning and the main algorithms used
in supervised learning for classification, it seems important to introduce another key concept,
Metric Learning, which is at the heart of our third chapter. The Metric Learning is a field of
Machine Learning that allows us to learn metrics that are better adapted to the algorithms and
problems we are interested in. We introduce it in the next section.

1.4 Metric Learning

In Machine Learning, the notion of distance/metric plays an important role, particularly in
classification algorithms such as SVM or k−NN, but also for ranking algorithms or unsuper-
vised clustering. A metric can be used on different types of data, numerical or more structured
like words or graphs. The problem with standard metrics is that they often fail to capture the
idiosyncrasies of the application at hand because they are not parameterized. Metric Learn-
ing [10] is the field of Machine Learning that consists of learning a distance adapted to the
application and that allows one to enhance classification algorithms. The basic idea of Metric
Learning is to learn a transformation that assigns a small distance to pairs of similar examples
while assigning a large distance to pairs of dissimilar samples, as illustrated in Figure 1.18. This
implicitly induces a change in the representation space so that it can satisfy these constraints.

27

1.4. Metric Learning

Before

After

M

Class 1

Class 2

Figure 1.18: Illustration of the concept of Metric Learning.

Distances To be a true distance the learned metric has to satisfy the following conditions:

Definition 2. A distance D : X × X → R+ is a positive function such that the following
conditions must be satisfied for any (x1,x2,x3) ∈ X3:

• non-negativity: D(x1,x2) ≥ 0

• identity of indiscernibles: D(x1,x2) = 0⇔ x1 = x2

• symmetry: D(x1,x2) = D(x2,x1)

• triangle inequality: D(x1,x3) ≤ D(x1,x2) + D(x2,x3).

Among the metrics that can be learned, the Mahalanobis distance has received a tremendous
interest during the past decade:

Definition 3. A Mahalanobis distance DM is defined as follows:

∀(x,x′) ∈
(
Rd
)2
,DM(x,x′) =

√
(x− x′)T M (x− x′)

with M ∈ Rd×d is a Positive Semi-Definite(PSD) matrix (M � 0).

Note that when M = I, we recover the Euclidean distance. The advantage of these distances
comes from a property of the PSD matrices which allows a decomposition of the matrix M:
If M � 0 then:

• ∀x ∈ Rd,xTMx ≥ 0

• ∃L ∈ Rk×d such that M = LTL, with k the rank of the matrix M.

Indeed, using this property, we notice that a Mahalanobis distance corresponds to the
Euclidean distance after a linear projection of the data by the matrix L in a k dimensional
space.

DM(x,x′) =

√
(x− x′)T M (x− x′)

=

√
(x− x′)T LTL (x− x′)

=

√
(Lx− Lx′)T (Lx− Lx′)

=

√
(x̃− x̃′)T (x̃− x̃′)

= Deuc

(
x̃, x̃′

)
.

28

Chapter 1. Basics of Machine Learning

Problem formulation Based on the initial idea of grouping together similar examples and
separating dissimilar ones, one can define three types of constraints:

S = {(x,x′): x and x′ should be similar (must-link constraints)}
D = {(x,x′): x and x′ should be dissimilar (cannot-link constraints)}
R = {(x,x′,x′′): x should be more similar to x′ than to x′′(relative constraints)}

Given these sets, a Mahalanobis distance problem typically takes the following form:

M∗ = arg min
M�0

l(M,S,D,R) + λR(M)

with:

• l(M,S,D,R) a loss function that penalizes violated constraints,

• R(M) a regularization term on M,

• λ ≥ 0 a regularization parameter.

The choice of the loss function and the regularization term will depend on the problem.
This is also what differentiates the different state-of-the-art methods in Metric Learning. For
the regularization term, it is quite common to take the Frobenius norm of the matrix M,
||M||2F =

∑d
i=1

∑d
j=1M

2
ij .

Among the best known Metric Learning algorithms, one can cite LMNN [123] for Large
Margin Nearest Neighbor. In their paper, the authors define S in a local way, thanks to k−NN.
The k nearest neighbors, called "target neighbors", must be of the same class while the examples
of the other classes, called "impostors", must be distant. The constraint sets can be written as
follows:

S = {(x,x′): y = y′ and x′ is one of the k-NN of x}
R = {(x,x′,x′′): (x,x′) ∈ S, y 6= y′′}.

The formulation of the problem then becomes:

min
M�0,ξ≥0

∑
(xi,xj)∈S

D2
M(xi,xj) + λ

∑
i,j,k

ξijk

such that D2
M(xi,xk)−D2

M(xi,xj) ≥ 1− ξijk ∀(xi,xj ,xj) ∈ R,
and where ξijk are slack variables.

This optimization problem expresses the idea that two points of the same class have to be closer
to each other than to a sample of opposite class.

Another popular Metric Learning algorithm is ITML [30] for Information-Theoretic Metric
Learning. The big difference with LMNN is the way to keep M in the set of Positive Semi-
Definite matrices, a very expensive step in O(d3). While LMNN projects during the gradient
descent the update of M on the cone of PSD matrices at each step, ITML uses the LogDet
divergence as a regularizer to achieve this goal, which is only quadratic in d.

The problem formulation is defined as follows:

min
M�0,ξ≥0

trace(MM−1
0)− log det(MM−1

0)− d+ λ
∑
i,j

ξij

such that D2
M(xi,xj) ≤ u+ ξij ∀(xi,xj) ∈ S

D2
M(xi,xj) ≤ v − ξij ∀(xi,xj) ∈ D

with u and v two thresholds and M0 an initial PSD matrix, often the identity I or the inverse
of the covariance matrix Σ−1.

29

1.5. Specificities of Imbalanced Learning

1.5 Specificities of Imbalanced Learning

All of the above algorithms perform well in a standard classification framework if the data is
balanced, i.e. with approximately as many positives as negatives. However, when it comes
to fraud detection, this assumption does not hold anymore. Indeed, in this case, the class of
interest, i.e. the fraudsters, is very largely under-represented compared to the majority negative
class (the non-fraudsters).

In order to measure this imbalance, it is common to specify the minority/positive ratio
(MR) in the dataset, or the imbalance ratio (IR) i.e. the number of negatives over the number
of positives. They are respectively defined as follows:

MR =
m+

m+ +m−
and IR =

m−

m+

As a result of this imbalance, all the notions we have seen, including the performance mea-
sures and the generalization guarantees, are challenged in this new setting. Different strategies
can be applied to address this problem.

The imbalance can be taken into account by (i) resorting to more suitable performance
measures, (ii) preprocessing the dataset to make it artificially balanced, (iii) reweighting the
examples or (iv) directly considering the imbalance during the learning process. These four
options are detailled in the following subsections.

1.5.1 Performance Measures

As explained previously, standard Machine Learning algorithms optimize the accuracy, or one of
its surrogate versions. However, in an imbalanced context such as fraud detection the accuracy
is not adapted. Let us take the example of a dataset with 99% of negative examples and 1% of
positive samples that the algorithm is looking for as data of interest. If we take a model that
always predicts the negative label, we get an Accuracy of 0.99 while missing all the positive
examples. It is therefore important to optimize a more relevant measure in this context. Note
that all the measures that will be presented in this section will take their values between 0 and
1 and the higher the value the better the model.

Precision and Recall Precision and Recall focus on the positives detected by the model.
The former, also called Positive Predictive V alue, is defined as the ratio:

Precision =
TP

TP + FP
.

Intuitively, this corresponds to the capacity of the model to not classify a negative example as
positive.

On the other hand, Recall, also called Sensitivity or True Positive Rate, is defined as
follows:

Recall =
TP

TP + FN
.

It measures the capacity of the model to retrieve positives.

F1-score As the two previous measures focus on the True Positives in complementary ways,
it may be interesting to synthesize their respective information into one measure. This is what
the F1-score (F1, also called F1-Measure) does by taking the harmonic mean of the Precision
and Recall:

F1-score = 2× Precision×Recall
Precision+Recall

=
TP

TP + 1
2(FP + FN)

.

30

Chapter 1. Basics of Machine Learning

In this case, Precision and Recall are considered homogeneously. More generally, the Fβ-
score (Fβ) can be used to give more importance to one of the two measures, and find a good
compromise between them.

Fβ-score = (1 + β2)× Precision×Recall
β2 × Precision+Recall

.

In this case, β > 1 will be used to give more weight to the Recall (this latter being considered
β times as important as the Precision).

Balanced Accuracy Another measure that can be used in this setting is the Balanced
Accuracy (BA) which avoids a too optimistic estimation of the performance of a model when
classes are not equivalently represented. It corresponds to the average of the Recall scores
per class, and thus, in binary classification, it corresponds to the arithmetic mean of the True
Positive Rate (TPR) and True Negative Rate (TNR).

BA =
1

2

(
TP

TP + TN
+

TN

TN + FP

)
.

Note that if the dataset is balanced, BA is equivalent to the Accuracy. But in case of imbalance,
BA will be more appropriate than Accuracy for model optimization since it will optimize Recall
on each class simultaneously, and not just the overall rate of correct answers. Then, BA is
interesting when you want to predict both the negative and positive class.

G-Measure and G-Mean Two other measures may be of interest in the imbalanced con-
text even if they are less used in practice. Unlike the F1-score which uses the harmonic mean to
synthesize the information of Precision and Recall, the G-Measure is based on the geometric
mean of these measures.

On the other hand, the G-mean takes the geometric mean of the True Positive and True
Negative Rates, thus making the parallel with the Balanced Accuracy.

Their respective formulas are the following:

G-Measure =
√
Precision×Recall and G-Mean =

√
TP

TP + TN
× TN

TN + FP

AUC-ROC An important and widely used measure in the imbalanced context is the Area
Under the Receveir Operator Characteristic Curve (AUC-ROC), especially when looking for a
ranking of the data. The ROC curve (Figure 1.19) is the curve of the True Positive Rate (the
Recall) versus the False Positive Rate, i.e. FP/(TN +FP). To build this curve, it is necessary
to use the predicted probabilities instead of the predicted labels in order to obtain a hierarchy
in the data. This is why AUC-ROC is often used in ranking algorithms. To get a good AUC,
one wants the ROC curve to be as close as possible to the top left corner. This corresponds to
a high True Positive Rate with a low False Positive Rate.

AUC-ROC can be computed as follows:

AUC-ROC =
1

m+ ×m−
m+∑
i=1

m−∑
j=1

I0.5(f(x+i)− f(x−j)),

where x+i is the ith positive sample and x−j is the jth negative example, f is the scoring function
assigning a probability to be positive, and I0.5 is an indicator function equal to 1 when f(x+i)−
f(x−j) > 0, 1

2 when f(x+i)− f(x−j) = 0 and 0 otherwise.

31

1.5. Specificities of Imbalanced Learning

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

SVM (AUC = 0.98)

1 0 1 2

0.5

0.0

0.5

1.0

1.5

Figure 1.19: Example of ROC curve (left) on a toy example (right). The classifier is obtained
by using a SVM. The corresponding AUC is 0.98.

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

SVM (AP = 0.95)

1 0 1 2

0.5

0.0

0.5

1.0

1.5

Figure 1.20: Example of Precision-Recall curve (left) on a toy example (right). The classifier
is obtained by using a SVM. The correponding AP is 0.95.

32

Chapter 1. Basics of Machine Learning

Figure 1.21: Comparaison of the AUC-ROC and AP on two rankings. Blue (resp. grey) lines
represent positive (resp. negative) samples. While AUC-ROC behaves similarly on both cases
(AUC-ROC = 1

2), the Average Precision is equal to 0.43 on the left and 0.68 on the right,
illustrating that AP favors the ranking that put (at least some) positives at the very top of the
list.

Average Precision A second performance measure that can be used in ranking is the
Average Precision (AP). AP is the equivalent of the AUC-ROC but for the Precision-
Recall curve (Figure 1.20).

Indeed, AP is defined as the area under this curve. It can also be defined as:

AP =
1

m+

m+∑
i=1

p(ki)

with p(ki) the Precision at the rank ki, corresponding to the ith positive in the ranking.
Another way to calculate it, especially when the ranking contains ties, is to use Precision

and Recall directly. The formula then becomes:

AP =
∑
t

(rt − rt−1) pt.

with rt and pt the Recall and Precision, respectively, at the tth threshold of distinct prediction
values.

As illustrated in Figure 1.21, unlike AUC-ROC, AP has a greater impact when one wants
to focus on the top of a ranking, especially when one works under constraints, such as a limited
number of possible controls.

1.5.2 Sampling Strategies

The second option to tackle the problem of learning from imbalanced datasets is to use sampling
strategies. In this case, the idea is to modify the dataset to be able to use the classical algorithms
optimizing a surrogate version of the accuracy.

For this, three strategies are typically used. The first one is to reduce the majority class
by undersampling. The second one corresponds to the opposite case where we will increase
the number of examples of the minority class. In this case, we talk about oversampling. The
third one consists of a mix of the two previous by doing both under- and oversampling on the
dataset. In each case, the aim is to obtain a final dataset which is almost balanced or with an
acceptable imbalance rate.

Each of these methods has its pros and cons and their use will depend mainly on the data
and the task at hand. Subsampling will give more weight to the minority class and allow to
speed up the learning phase by reducing the size of the data set. But this will come at the
expense of a loss of information because of the deletion of potentially meaningful examples. On
the other hand, oversampling will give more weight to the minority class but without loosing

33

1.5. Specificities of Imbalanced Learning

any information. However, this will be at the cost of a reduction of the variance (diversity) of
the minority class and an increase in the size of the dataset which will have consequences on
the training time. Below, we present these two strategies and some representative algorithms
introduced in the literature.

Undersampling Undersampling corresponds to the removal of examples from the majority
class in order to get as close as possible to the number of examples in the minority class. To
this end, rather than deleting data randomly, it is preferable to work with the specificities of
the dataset.

The first category of methods includes algorithms that select the irrelevant examples to be
removed from the majority class. Among the main existing methods, one can cite the Edited
Nearest Neighbors (ENN) algorithm [124] or Tomek′s links [108].

In the former, the idea is to remove from the dataset the negative examples that do not
agree with their neighborhood. One looks at the k nearest neighbors of a query point and
classifies it by a majority vote. All misclassified negative points are then removed. Once the
dataset is ’cleaned’, it is possible to repeat the process in an iterative way as proposed by [1].
In this case, we can either continue with the same number of neighbors as the previous iteration
(Repeated ENN), or increase it in order to be less drastic in terms of reduction (Allk−NN).

In [108], Tomek′s link is built between two points if they are each the nearest neighbor of
the other. In other words, there is a Tomek′s link between x1 and x2 if and only if:

∀x ∈ S,D(x1,x2) < D(x1,x) and D(x1,x2) < D(x2,x).

Once the Tomek′s links have been found in the dataset, the points of the majority class which
are linked to a point of the minority class are then removed from the dataset.

As illustrated in Figure 1.22, we can see that both methods focus mainly on the overlapping
areas of the classes to remove examples from the majority class. Since these methods only work
on these areas, it is possible that the dataset is still imbalanced after applying the algorithm.
Their interest is more to be combined with oversampling algorithms to achieve class balance,
as we can see in the paragraph 1.5.2.

The second category consists of methods that select the relevant negative examples to be
kept in the majority class. Among them, one a cite the Condensed Nearest Neighbor al-
gorithm [55] which aims at keeping a minimal subset able to correctly predict all the original
examples by a 1−NN. Thus, one iteratively adds to this subset all the training points that would
not be correctly predicted by the current subset. It starts with a subset containing the entire
minority class to which one iteratively adds relevant negative examples until stabilization.

The Near-Miss method [79] is another strategy which offers three alternatives. The exam-
ples of the majority class are here selected according to a criterion based on their distance from
the minority class. In Near-Miss-1, the selected examples will be those with the smallest aver-
age distance to their three nearest negative neighbors. In Near-Miss-2, they will be those with
the smallest average distance to their three most distant neighbors. Finally, in Near-Miss-3,
only the nearest neighbour of each example in the minority class will be kept.

As illustrated in Figure 1.23, these methods remove a lot of negative data outside the over-
lapping area.

The third family of strategies corresponds to methods composed of a mix of the two previous
ideas. In One Sided Selection [66], Tomek′s links are first used for the deletion of ambiguous
points then a Condensed Nearest Neighbor is performed to reduce the number of negative
examples in ’safe’ zones, i.e. noisy and far from the boundaries.

In the Neighborhood Cleaning Rule proposed by [68], ENN is first used to identify the
noisy data in the majority class. Then, the Condensed Nearest Neighbor is applied to select

34

Chapter 1. Basics of Machine Learning

2 0 2
2

1

0

1

2

3

399 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Original

2 0 2
2

1

0

1

2

3

346 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Edited Nearest Neighbors

2 0 2
2

1

0

1

2

3

386 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Tomek Links

Figure 1.22: Illustrations of ENN and Tomek′s links algorithms for undersampling from a toy
dataset. (Top) The original dataset. (Bottom Left) The dataset after undersampling with ENN
algorithm. (Bottom Right) The dataset after undersampling with Tomek′s links algorithm. For
each algorithm, (Left) the complete dataset after undersampling, with the number of examples
in each class, (Right) a zoom on the intersection area of the two classes.

35

1.5. Specificities of Imbalanced Learning

2 0 2
2

1

0

1

2

3

53 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Condensed Nearest Neighbors

2 0 2
2

1

0

1

2

3

101 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Near Miss 1

2 0 2
2

1

0

1

2

3

101 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Near Miss 2

2 0 2
2

1

0

1

2

3

70 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Near Miss 3

Figure 1.23: Illustrations of the Condensed Nearest Neighbors and Near-Miss algorithms
for undersampling on the same toy dataset as Figure 1.22. (Top Left quarter) The dataset
after undersampling with Condensed Nearest Neighbors. (Top Right quarter) The dataset
after undersampling with the first version of the Near-Miss algorithm. (Bottom Left quarter)
The dataset after undersampling with Near-Miss-2. (Bottom Right quarter) The dataset
after undersampling with Near-Miss-3. For each algorithm, (Left) the complete dataset after
undersampling, with the number of examples in each class, (Right) a zoom on the intersection
area of the two classes.

36

Chapter 1. Basics of Machine Learning

a part of the remaining negative examples.
As we can see in Figure 1.24, these methods work on both areas, the overlapping one and

the safe one, without being as drastic as the previous technics on this latter part of the space.

2 0 2
2

1

0

1

2

3

249 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
One Sided Selection

2 0 2
2

1

0

1

2

3

343 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Neighborhood Cleaning Rule

Figure 1.24: Illustrations of the One Sided Selection method and the Neighborhood Cleaning
Rule for undersampling on the toy dataset of Figure 1.22. (Left) The dataset after undersam-
pling with One Sided Selection. (Right) The dataset after undersampling with Neighborhood
Cleaning Rule. For each algorithm, (Left) the complete dataset after undersampling, with the
number of example in each class, (Right) a zoom on the intersection area of the two classes.

Oversampling Instead of trying to reduce the size of the set of majority examples, oversampling-
based methods aim at increasing the size of the minority class. This can naively be done in a
totally random way by duplicating the existing points, thus giving them more weight. However,
this strategy does not bring enough diversity and therefore does not usually lead to good results.
This is why synthetic example generation methods have been proposed, like SMOTE [23] and
its variants [54, 86] or ADASY N [56].

With SMOTE, for Synthetic Minority Over − sampling TEchnique, artificial positive
points are generated between two points of the minority class. For that, for each positive x,
one randomly chooses another positive x′ in its k nearest neighbors and generates a synthetic
example randomly on the segment [x,x′]. The process is repeated until the desired IR is
reached.

Its main variants are Borderline-SMOTE [54] and Bordeline-SMOTE SVM [86]. In
BorderLine-SMOTE, the idea is to focus only on the decision boundary between classes to
generate the synthetic examples. To do this, only samples from the minority class with a
majority of neighbors in the other class are used for the synthetic point generation. This subset
is noted ’danger’. The others are set aside as being safe enough. In a first version, the synthetic
examples are generated between the points of the ’danger’ set and their nearest neighbors of the
minority class. In a second version, the synthetic examples are also generated from the ’danger’
set, but this time considering all the nearest neighbors, whatever their class. In Borderline-
SMOTE SVM , as its name indicates, an SVM is used to select the points, instead of a k−NN.
Samples of the minority class that are close to the support vectors are used for the generation
of synthetic points.

In ADASY N , for ADAptive SY Nthetic sampling approach, the idea is to generate ex-
amples of the minority class according to their local distribution in the feature space. In the
areas where they are poorly represented compared to the majority class, SMOTE is used to
generate a lot of synthetic examples. Only a few are generated in the areas where the density of
positives is more important. This method again allows us to focus on ambiguous areas, which
are more difficult to label.

37

1.5. Specificities of Imbalanced Learning

In Figure 1.25, we can see that SMOTE generates examples in each zone containing minor-
ity examples, in a more or less homogeneous way to redensify them, whereas its variants focus
more on the overlapping zones.

2 0 2
2

1

0

1

2

3

399 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Original

2 0 2
2

1

0

1

2

3

399 -
399 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
SMOTE

2 0 2
2

1

0

1

2

3

399 -
399 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Borderline SMOTE

2 0 2
2

1

0

1

2

3

399 -
399 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
SVM SMOTE

Figure 1.25: Illustrations of SMOTE, Borderline-SMOTE and Borderline-SMOTE SVM
for oversampling on a toy dataset. (Top Left quarter) The Original dataset. (Top Right quar-
ter) The dataset after oversampling with SMOTE. (Bottom Left quarter) The dataset after
oversampling with Borderline-SMOTE. (Bottom Right quarter) The dataset after oversam-
pling with Borderline-SMOTE SVM . For each algorithm, (Left) the complete dataset after
oversampling, with the number of examples in each class, (Right) a zoom on the intersection
area of the two classes.

Combination of undersampling and oversampling To overcome the limits of each of
the sampling methods, it is quite common to combine them in order to benefit from their
complementary advantages. The main idea always remains the same whatever the combination.
It starts by generating the synthetic data and then cleans the dataset obtained with one of the
undersampling algorithms. All combinations are clearly possible. As an illustration, we only
present two of them in Figure 1.26, the combination of SMOTE with ENN or with the
Tomek′s links, available in the package [71].

In the SMOTE+ENN version, we see that the ENN algorithm cleans up the overlapping
area by removing points from both classes, either real or dummy points for the minority class,
to clear the decision boundary and increases the margin between the two classes. The same
idea holds for the SMOTE+Tomek version but less drastically, which allows to keep a little
more information on this contentious area.

Another strategy to address the imbalance of the dataset consists in introducing cost coef-
ficients in the learning algorithms and so increasing the influence of the minority interest class.
The underlying idea is presented in the next section.

38

Chapter 1. Basics of Machine Learning

2 0 2
2

1

0

1

2

3

399 -
101 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
Original

2 0 2
2

1

0

1

2

3

399 -
399 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
SMOTE

2 0 2
2

1

0

1

2

3

334 -
343 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
SMOTE+ENN

2 0 2
2

1

0

1

2

3

383 -
383 +

1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

3.5
SMOTE+Tomek

Figure 1.26: Illustrations of SMOTE+ENN and SMOTE+Tomek for sampling on a toy
dataset. (Top Left quarter) The Original dataset. (Top Right quarter) The dataset after
oversampling with SMOTE. (Bottom Left quarter) The dataset after sampling with SMOTE
and ENN . (Bottom Right quarter) The dataset after sampling with SMOTE and Tomek′s
links. For each algorithm, (Left) the complete dataset after sampling, with the number of
examples in each class, (Right) a zoom on the intersection area of the two classes.

39

1.5. Specificities of Imbalanced Learning

1.5.3 Cost-Sensitive Learning

In the imbalanced context of fraud detection, it can be more damaging to miss a fraudster
than to check someone who is not. Thus, the errors made by the model will not have the same
impact for the user and a false negative will often lead to a larger loss than a false positive.
The algorithms we have seen above generally assume that each type of error is equivalent. At
the DGFiP, considering that missing a fraud might cost a large amount of money, it appears to
be interesting to weight the two errors (FP , FN) differently in order to make the algorithms
sensitive to the loss suffered by the algorithm for the application at hand. This is the goal of
Cost-Sensitive Learning [36]. The algorithms developed in this sub-field of Machine Learning
can therefore naturally be used in the case of imbalanced classification, even though this domain
of Machine Learning covers a broader spectrum of applications [109].

In Cost-Sensitive Learning for imbalanced classification, instead of assuming that the errors
in the confusion matrix have the same value, they will be weighted differently in order to adapt
to the task. The idea is to attempt to reduce one of the types of error, even if it means slightly
increasing the other, which is supposed to be less damaging. Thus, to each type of error, or
even to each error, we will associate a cost C, as we can see in the following confusion matrix
in Table 1.2.

Table 1.2: Confusion Matrix in a binary classification setting. CTP , CFN , CFP and CTN are
the different costs for TP , FN , FP and TN .

Predicted labels
+1 −1

True labels +1 CTP , TP CFN , FN
−1 CFP , FP CTN , TN

Using this confusion matrix in a learning algorithm boils down to generating a model that
minimizes the global cost. For instance, if we choose to set a cost of 0 for the good predictions
TP and TN , a cost of 3 for the FP and a cost of 100 for the FN , to penalise the latter, we
will then have a total cost to be minimised defined by:

Total Cost = CFN ∗ FN + CFP ∗ FP = 100 ∗ FN + 3 ∗ FP.

These costs depend on the problem at hand and should therefore be carefully chosen. In
practice, setting them is a tricky task. For the DGFiP, for example, it is quite simple to define
the cost of a FP by evaluating the money needed for processing the case by an agent. On the
other hand, the evaluation of the cost of a FN is a complex multidimensional function. Often,
a first starting point is to choose costs that are inversely proportional to the rates of positives
and negatives in the training set. Thus, in the example above, we might start from the fact
that there are 3 positives for 100 negatives in the data set.

Once these basics are established, we can now study the different Cost-Sensitive Learning
methods that can be used for classification in an imbalanced context. These often correspond
to modifications of classical algorithms to make them Cost-Sensitive.

SVM [128] can be used in this context by playing with on the parameter C. Indeed, C is
used to find the trade-off between the size of the margin and the amount of violations. With a
global parameter and the over-representation of the majority class, the latter would be largely
favoured, which does not suit us in the imbalanced context. To prevent this, it is possible to
choose a value per class for C, or even per example, and integrate it directly into the problem
formulation. Thus, by giving a high value for the examples of the minority class and a low value
for the majority samples, we will then allow the algorithm to be more flexible on the poorly
represented examples, thus tolerating a little more violations on this class, and harder for the
others, thus avoiding badly classified examples by penalizing them more.

40

Chapter 1. Basics of Machine Learning

The SVM soft margin primal formulation becomes then:

min
w,b,ξ

1

2
||w||22 +

m∑
i=1

Ciξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, for 1 ≤ i ≤ m
and ξ � 0

with ξ, the slack variables to allow some instances to violate the margin constraint but with a
penalization if it happens, and C ≥ 0 the tradeoff parameters between the size of the margin
and the number of violations. In practice, the Ci’s are tuned by cross-validation.

Cost-Sensitive Learning can also be done directly with Logistic Regression, for which we
can also define a cost per class and integrate it directly into the definition of the optimization
problem which then becomes:

max
θ

∑
i

(w0 yi log (hθ (xi)) + w1 (1− yi) log (1− hθ (xi)))

with w0 the cost associated with the misclassified examples of the majority class and w1

the cost associated with the minority class. By taking a low w0 and a high w1, inversely pro-
portional to the rates of each class, we improve the performance measure (like F1-score) of the
Logistic Regression in the imbalanced context. Indeed, in this case, the majority class will be
considered less important and the coefficients will have a lower update. On the contrary, with
a high coefficient, the minority class will have more weight in the update of the coefficients and
will therefore be better captured by the model.

Finally, we can also mention the case of the Decision Trees for which a Cost-Sensitive version
has also been proposed [107]. By weighting the probabilities during the calculation of the Gini
index or the Entropy, one can take into account the class imbalance and improve the splitting
criterion so that it does not neglect the minority class. The probability pi to be in the class i,
with i ∈ {+,−} in the binary case, which is originally defined by mi

m thus becomes:

pi =
wimi∑
j
wjmj

with wi = Ci
m∑

j
Cjmj

and Ci the cost of misclassifying a class i instance. As in the previous

examples, by giving a cost inversely proportional to the rate of positives and negatives, the
imbalance is better taken into account and the minority class plays a larger role in the splitting
decision.

Note that it is possible to adapt ensemble algorithms by adding this Cost-Sensitive aspect in
order to make them even more powerful in the imbalanced context. This is for example the case
with AdaCost [38] or AdaC1, AdaC2 and AdaC3 [104] which are Cost-Sensitive adaptations of
AdaBoost.

In addition to these Cost-Sensitive algorithms, there are more specific algorithms for learning
in a highly imbalanced context. These algorithms are often combinations of several techniques
that have been proven to work in the imbalanced context separately, and which, when combined,
give even better results. These techniques are briefly presented in the next section with a focus
on two of them.

1.5.4 Specific Ensemble Algorithms

The survey [49] proposes a taxonomy of ensemble methods in the imbalanced context, thus
offering an overview of some possible combinations and adaptations of ensemble algorithms. In

41

1.5. Specificities of Imbalanced Learning

Algorithm 1.3: Easy Ensemble Algorithm
Input: a learning sample S = P ∪N with m+ = |P| minority examples and m− = |N |

majority examples, a number of subsets T and {si}Ti=1 the number of iterations
to train the AdaBoost Ensemble hi.

Output: a final classifier H
for i from 1 to T do

Randomly sample a subset Ni from N such that |Ni| = m+

Learn an AdaBoost classifier hi using P ∪Ni, with si weak classifiers hi,j and
corresponding weights αi,j and threshold θi

hi(x) = sign

 si∑
j=1

αi,jhi,j(x)− θi

end
return The final classifier

H(x) = sign

 T∑
i=1

si∑
j=1

αi,jhi,j(x)−
T∑
i=1

θi

particular, it includes the Cost-Sensitive adaptations of Boosting mentioned above.
Given that preprocessing by sampling methods provides improved results in the imbalanced

context and that ensemble methods are already performing well, trying combinations of the two
appeared quite natural and intuitive.

Thus, methods based on Boosting [24, 100] or Bagging [120, 106, 58] combined with sam-
pling have been widely studied. For combinations with Bagging, the idea is generally to add
sampling to the Boostrap in order to rebalance the classes and thus take better advantage of
the strength of the ensemble of classifiers. For the combinations with Boosting, the sampling is
applied in the learning loop to rebalance the classes in order not to neglect the minority class.

In the following, we briefly present Easy Ensemble and Balance Cascade Classifiers [76].

Easy Ensemble As already mentioned, one of the major problems with undersampling is
the loss of information about the majority class. To overcome this limit, the Easy Ensemble
algorithm trains several classifiers hi on balanced subsets of the training set. These subsets
are composed of all the minority examples and random samples of the majority examples with
replacement. This ensures that all the information contained in the examples of the majority
class is taken into account. Each hi is the output of AdaBoost and the final classifier is a
combination of these hi using the weights learned in each Booster, as shown in Algorithm 1.3.
Thus, Easy Ensemble can be seen as a set of ensembles, which will benefit from both the
strength of Bagging and Boosting.

Balance Cascade While Easy Ensemble takes the information from the majority class in
a random way, Balance Cascade does it in a supervised way. Once the first classifier h1 has
been learned, the algorithm looks for the correctly predicted examples of the majority class and
removes them from the training set, assuming that the information they provide is somehow
redundant with what it already knows. Doing this at each iteration, the training set contains
fewer and fewer examples of the majority class and is eventually balanced. Indeed, since at

42

Chapter 1. Basics of Machine Learning

Algorithm 1.4: Balance Cascade Algorithm
Input: a learning sample S = P ∪N with m+ = |P| minority examples and m− = |N |

majority examples, a number of subsets T and {si}Ti=1 the number of iterations
to train the AdaBoost Ensemble hi.

Output: a final classifier H
f → T−1

√
m+/m− // Initialization of the False Positive rate that hi should achieve

for i from 1 to T do
Randomly sample a subset Ni from N such that |Ni| = m+

Learn an AdaBoost classifier hi using P ∪Ni, with si weak classifiers hi,j and
corresponding weights αi,j and threshold θi

hi(x) = sign

 si∑
j=1

αi,jhi,j(x)− θi

Adjust θi such that hi’s FP rate is f
Remove from N all examples correctly classified by hi

end
return The final classifier

H(x) = sign

 T∑
i=1

si∑
j=1

αi,jhi,j(x)−
T∑
i=1

θi

each iteration we keep f ×m− examples of the majority class (the FP examples), after T − 1
iterations, there will remain fT−1m− = m+ examples of this class. Apart from this particular
sampling phase, the rest of the algorithm is identical to Easy Ensemble, as can be seen in
Algorithm 1.4.

1.6 Conclusion

In this chapter, we have presented the basics of Machine Learning. We started by introducing
some generalities about the principle of Empirical Risk Minimisation with respect to some loss
function. Then we briefly presented the methodology of Supervised Learning, before describing
some popular algorithms, notably the k−NN and Decision Trees which will have an important
role in the rest of this thesis. Given the importance of distance functions in most of the learning
algorithms, we have also presented the field of Metric Learning. Finally, we have pointed out
the specificities of learning in an imbalanced context, highlighting the methods and adaptations
necessary to solve this complex task.

The aim of this thesis is to develop new methods for Imbalance Learning, in particular that
of fraud detection. In the following three chapters, we present our contributions to this field.

Chapter 2 presents an adaptation of the nearest neighbour algorithm so that positive exam-
ples are more important in the decision. By weighting the distance to the examples of interest,
we simulate that these latter are moving closer to the test points, thus allowing them to be
better considered. The intuition behind this first contribution is that fraudsters often try to
mimic the behavior of non-fraudsters and therefore have a borderline attitude. Thus, by arti-

43

1.6. Conclusion

ficially moving the positive examples closer to the query, we modify the decision boundaries of
the classifier.

Chapter 3 goes a step further by optimizing a specific Mahalanobis distance that induces a
distortion of the feature space. This chapter generalizes the first contribution allowing one to
have different weights depending on the dimensions of the space. This formalism prompted us
to derive theoretical guarantees thanks to the Uniform Stability framework.

Finally, in order to fulfill the last expectation of the DGFiP on interpretability, Chapter 4
presents a model based on meta-Decision Trees. The Average Precision is optimized at all
stages of the construction. This measure has been shown to be the most adapted criterion to
the imbalanced context with restricted budget. By reading the leaves of the final tree from left
to right, we obtain a ranking of potential fraudsters that is simple and easily understandable
for end-users.

44

Chapter 2

An Adjusted Nearest Neighbor
Algorithm for Imbalanced
Classification

This chapter is based on the following publications

Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou and Marc
Sebban. A Nearest Neighbor Algorithm for Imbalanced Classification. In International Journal
on Artificial Intelligence Tools, doi:10.1142/S0218213021500135. 2021 [117]. 1

Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou and Marc
Sebban. An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbal-
anced Data. In IEEE International Conference on Tools with Artificial Intelligence (ICTAI),
2019, Portland, United States [113].

Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou and Marc
Sebban. Une Version Corrigée de l’Algorithme des Plus Proches Voisins pour l’Optimisation
de la F-Mesure dans un Contexte Déséquilibré. In Conférence sur l’Apprentissage automatique
(CAp), 2019, Toulouse, France [114].

Abstract

In this chapter, we tackle the challenging problem of imbalanced learning from a Nearest-
Neighbor (NN) classification perspective. Assuming that at the decision boundaries the
positive examples look like the majority samples, we introduce an algorithm based on a
simple geometrical idea of rescaling the distance between a query sample and any positive
training examples. This leads to a modification of the Voronoi regions and thus of the
decision boundaries of the NN classifier. As the Accuracy cannot be used to measure the
effectiveness of our method to address this challenging problem, we use several alternative
measures proposed in the literature and introduced in the previous Chapter. We provide
a theoretical justification about this scaling scheme which inherently aims at reducing the
False Negative rate while controlling the number of False Positives. We further formally
establish a link between the proposed method and cost-sensitive learning. An extensive
experimental study is conducted on many public imbalanced datasets, but also on large-
scale private datasets from the DGFiP on the tax fraud detection task, showing that our
method is very effective with respect to popular NN algorithms, comparable to state-of-
the-art sampling methods and even yields the best performance when combined with them.

1This article is an extended version of the paper presented at ICTAI’2019 and selected among the best paper
to be published in the IJAIT Journal.

45

2.1. Introduction

2.1 Introduction

While the machine learning community can benefit nowadays from larger and larger datasets for
optimizing provably accurate classifiers, we have seen before that in many real world applications
the positive examples are very scarce compared with the number of negative samples [3, 22, 8].
This is typically the case in intrusion detection, health care insurance or bank fraud identifica-
tion, and more generally anomaly detection, e.g., in medicine or in industrial processes. In such
a setting, the training set is composed of a few positive examples (e.g., the frauds) and a huge
amount of negative samples (e.g., the genuine transactions). As explained in the previous Chap-
ter, standard learning algorithms struggle to deal with this imbalance scenario because they are
typically based on the minimization of (a surrogate of) the 0-1 loss. Therefore, a trivial solution
consists in assigning the majority label to any test query, leading to a high performance from an
accuracy perspective but completely missing the (positive) examples of interest. To overcome
this issue, we have seen that several strategies have been developed over the years. The first one
consists in the optimization of loss functions based on measures that are more appropriate for
this context such as the Area Under the ROC Curve (AUC), the Average Precision (AP), the
G-mean (GM), the Balanced Accuracy (BA) or the F-measure to cite a few [17, 41, 103]. The
main pitfalls related to such a strategy concern the difficulty to directly optimize non smooth,
non separable and non convex measures (see [7] for the specific case of the F-measure). A
simple and usual solution to fix this problem consists in using off-the-shelf learning algorithms
(maximizing the accuracy) and a posteriori pick the model with the highest AP , GM , BA or
F-measure. Unfortunately, this might be often suboptimal. A more elaborate solution aims
at designing differentiable versions of the previous non-smooth measures and optimizing them,
e.g., as done by gradient boosting in [43] with a smooth surrogate of the AP . The second
family of methods is based on the modification of the distribution of the training data using
sampling strategies [40], as presented in Section 1.5.2. This is typically achieved by removing
examples from the majority class, as done, e.g., in Edited Nearest Neighbors(ENN) [124] or
Tomek’s Link [108], and/or by adding examples from the minority class, as in SMOTE [23]
and its variants, or by resorting to generative adversarial models [53]. One peculiarity of im-
balanced learning can be interpreted from a geometric perspective. As illustrated in Figure 2.1
(left) which shows the Voronoi cells on an artificial imbalanced dataset (where two adjacent
cells have been merged if they concern examples of the same class), the regions of influence of
the positive examples are much smaller than that of the negatives. This explains why at test
time, in imbalanced learning, the risk to get a False Negative (e.g., a fraud that is wrongly
classified as a genuine transaction) is high. A large number of False Negatives (FN) leads to
a dramatic decrease of the aforementioned measures that all rely on a fine balance between
FN and the number of False Positives FP . Note that increasing the regions of influence of
the positives would mechanically reduce FN . However, not controlling the expansion of these
regions, as illustrated in Figure 2.1 (right), may have a dramatic impact on FP , and thus on
the previous performance measures.

The main contribution of this chapter is about the problem of finding the appropriate trade-
off (Figure 2.1 (middle)) between the two above-mentioned extreme situations (large FP or
FN , both leading to a poor performance at test time). A natural way to increase the influence
of positives may consist in using generative models (like GANs [53]) to sample new artificial
examples, mimicking the negative training samples. However, beyond the issues related to the
parameter tuning, the computation burden and the complexity of such a method, using GANs
to optimize the Precision and Recall is still an open problem (see [97] for a recent study on
this topic). We show in this chapter that a much simpler strategy can be used by modifying
the distance exploited in a k−Nearest Neighbor (k−NN) algorithm [29] which enjoys many
interesting advantages, including its simplicity, its capacity to approximate asymptotically any
locally regular density, and its theoretical rootedness [78, 65, 64]. k−NN also benefited from

46

Chapter 2. An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification

Figure 2.1: Toy imbalanced dataset: On the left, the Voronoi regions around the positives
are small. The risk to generate False Negatives (FN) at test time is large. On the right: by
increasing too much the regions of influence of the positives, the probability to get False Positives
(FP) grows. In the middle: an appropriate trade-off between the two previous situations.

many algorithmic advances during the past decade in the field of metric learning, aiming at
optimizing under constraints the parameters of a metric, typically the Mahalanobis distance, as
done in LMNN [123] or ITML [30] (see [10, 9] for a survey and Section 1.4 of this manuscript).
Unfortunately, existing metric learning methods are dedicated to enhance the k−NN accuracy
and do not focus on the optimization of criteria, like the F-measure or G-mean, in scenarios
where the positive training examples are scarce. A geometric solution to increase, at a very
low cost, the region of influence of the minority class consists in modifying the distance when
comparing a query example to a positive training sample. More specifically, we formally show
in this chapter that the optimization of any (FN ,FP)-based performance measure, which are
well suited to deal with imbalanced scenarios, is facilitated by scaling the distance to any
positive by a coefficient γ ∈ [0, 1] leading to the expansion of the Voronoi cells around the
minority examples. An illustration is given in Figure 2.1 (middle) which might be seen as a
good compromise that results in the reduction of FN while controlling the risk to increase
FP . Note that our strategy boils down to modifying the local density of the positive examples.
For this reason, we claim that it can be efficiently combined with SMOTE -based sampling
methods whose goal is complementary and consists in generating examples on the path linking
two (potentially far) positive neighbors. Our experiments will confirm this intuition.

The rest of the chapter is organized as follows. Section 2.2 briefly reminds some notations
and performance measures already introduced in the previous Chapter. The related work is
presented in Section 2.3. Section 2.4 is devoted to the presentation of our method γk−NN.
This section includes a theoretical analysis of our method as well as a presentation of a local
extension aiming at capturing local specificities of the feature space. We finally establish a
link between γk−NN and cost-sensitive learning. The last part of this chapter is dedicated
to an extensive experimental study performed on 28 imbalanced public datasets and 11 private
datasets from the French Ministry of Economy and Finance on the tax fraud detection task
(see Section 2.5). In this comparative analysis, we give evidence of the complementarity of
our method with sampling strategies. We also present a qualitative analysis on the MNIST
dataset which allows a visualisation of the impact of our algorithm. We finally conclude in
Section 2.6.

2.2 Notations and Evaluation Measures

We consider a training sample S = {(xi, yi), i = 1, ...,m} of size m, drawn from an unknown
joint distribution Z = X × Y, where X = Rd is the feature space and Y = {−1,+1} is the set
of labels. Let us assume that S = S+ ∪ S− with m+ positives ∈ S+, m− negatives ∈ S− and
m = m+ +m−.

Learning from imbalanced datasets requires to optimize appropriate measures that take into
account the scarcity of positive examples. As seen in the previous Chapter, several of them rely
on the following two quantities: the Recall (also called True Positive Rate (TPR) or sensitivity)

47

2.3. Related Work

which measures the capacity of the model to recall/detect positive examples, and the Precision
(also called Positive Prediction Value (PPV)) which is the confidence in the prediction of a
positive label. For the sake of completeness, we recall their definitions here:

Recall =
TP

TP + FN
and Precision =

TP

TP + FP
,

where FP (resp. FN) is the number of false positives (resp. negatives) and TP is the number
of true positives. Since one can arbitrarily improve the Precision if there is no constraint on
the Recall (and vice-versa), they are usually combined into a single measure.
For instance, the F-measure [92] (or Fβ score), which is widely used in fraud and anomaly
detection [52], is defined as the harmonic mean of the Recall and Precision:

Fβ = (1 + β2)
Precision× Recall

β2 × Precision + Recall
,

where β is set such that the Recall is considered β times as important as the Precision. Note
that F1 (i.e. β = 1) considers the Precision and Recall equally.
The G-measure (G1) can also be used for imbalanced data classification [37]. Unlike F1, it
rather considers the geometric mean of Precision and Recall:

G1 =
√
Precision× Recall.

While Fβ and G1 consider both Recall and Precision, the G-mean (GM) [66] rather makes use
of the Recall (or TPR) and the True Negative Rate (TNR) as follows:

GM =
√
TPR× TNR =

√
TP

TP + FN
× TN

TN + FP
.

In other words, it computes the geometric mean of TPR and TNR. Thus, it gives a higher
importance to the negative class, compared to the previous measures. Without being exhaustive,
a last performance measure that can be used in an imbalanced setting is the Balanced Accuracy
(BA) [17] which also relies on TPR and TNR and is defined as the mean accuracy of the two
classes:

BA = (TPR+ TNR)/2

In the experimental section of this chapter, we will resort to these widely used measures to
assess the efficiency of our proposed method to overcome the problem of scarcity of positive
samples.

2.3 Related Work

In this section, we present the main strategies that have been proposed in the literature to
address the problem of learning from imbalanced datasets by resorting to a k−NN classifier.

The oldest method is certainly the one presented in [34] which consists in associating to
each neighbor a voting weight that is inversely proportional to its distance to a query point x.
The assigned label ŷ of x is defined as:

ŷ =

∣∣∣∣∣∣
∑

xi∈kNN(x)

yi ×
1

D(x,xi)

∣∣∣∣∣∣ ,
where kNN(x) stands for the set of the k nearest neighbors of x. A more refined version consists
in taking into account both the distances to the nearest neighbors and the distribution of the
features according to the class p(xi | yi) [75]. Despite these modifications in the decision rule,

48

Chapter 2. An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification

the sparsity of the positives remains problematic and it is possible that no positives fall in the
neighborhood of a new query x. To tackle this issue, a variant of k−NN, called kPNN [133],
is to consider the region of the space around a new query x which contains exactly k positive
examples. By doing so, the authors are able to use the density of the positives to estimate the
probability of belonging to the minority class.

A more recent version has been shown to perform better than the two previous approaches:
kRNN [134]. If the idea remains similar (i.e. estimating the local sparsity of minority examples
around a new query), the posterior probability of belonging to the minority class is adjusted so
that it considers both the local and global disequilibrium for the estimation. In [6], the authors
use both the label and the distance to the neighbors (xi, yi) to define a scaled metric D′ from
the Euclidean distance D, as follows:

D′(x,xi) =
(mi

m

)1/d
D(x,xi),

where mi is the number of examples in the class yi. As we will see later, this method falls in the
same family of strategies as our contribution, aiming at scaling the distance to the examples
according to their label. However, three main differences explain the superiority of our method,
observed in the experiments: (i) kRNN fixes D′ in advance while we will automatically adapt
the scaling factor to optimize the considered performance measure; (ii) because of (i), D′ needs
to take into account the dimension d of the feature space (and so will tend to D as d grows)
while our method captures the intrinsic dimension of the space by selecting the best weight; (iii)
D′ is useless when combined with sampling strategies (indeed, mi

m would tend to be uniform)
while our method will allow us to scale differently the distance to the original positive examples
and the ones artificially generated.

Another way to assign weights to each class, which is close to the sampling methods, is
to duplicate the positive examples according to the Imbalance Ratio IR = m−/m+. Thus, it
can be seen as a uniform over-sampling technique, where all positives are replicated the same
number of times. However, note that this method requires to work with k > 1.

A last family of methods that try to improve k−NN is related to metric learning [9,
10]. LMNN [123] or ITML [30] are two famous examples which optimize under constraints a
Mahalanobis distance DM(x,xi) =

√
(x− xi)>M(x− xi) parameterized by a positive semi-

definite (PSD) matrix M ∈ S+. As presented in Section 1.4, such methods seek a linear
projection of the data in a latent space where the Euclidean distance is applied. As we will
see in the following, our scaling method is a special case of metric learning which looks for a
diagonal matrix (but applied only when comparing a query to a positive example) and which
behaves well whatever the considered performance measure.

Interestingly, we can note that all the previous sampling methods try to overcome the
problem of learning from imbalanced data by resorting to the notion of k-neighborhood. This
is justified by the fact that k−NN has been shown to be a good estimate of the density at a
given point in the feature space.

In our contribution, we also leverage k−NN but with a different approach. Instead of
generating (many) new examples (which would have a negative impact from a complexity per-
spective), we locally modify the density around the positive points. We achieve this by rescaling
the distance between a test sample and the positive training examples. We show that such a
strategy can be efficiently combined with sampling methods, whose goal is complementary, by
potentially generating new examples in regions of the space where the minority class is not
present.

49

2.4. Proposed Approach

2.4 Proposed Approach

In this section, we present our γk−NN method which works by scaling the distance between
a query point and positive training examples by a factor.

2.4.1 An Adjusted k−NN algorithm

Statistically, when learning from imbalanced data, a new query x has more chance to be close to
a negative example due to the rarity of positives in the training set, even around the mode of the
positive distribution. We have seen two families of approaches that can be used to counteract
this effect: (i) creating new synthetic positive examples, and (ii) changing the distance according
to the class. The approach we propose falls into the second category.

We suggest to modify how the distance to the positive examples is computed, in order to
compensate for the imbalance in the dataset. We artificially bring a new query x closer to
any positive data point xi ∈ S+ in order to increase the effective area of influence of positive
examples. The new measure Dγ that we propose is defined using an underlying distance D

(e.g., the Euclidean distance) as follows:

Dγ(x,xi) =

{
D(x,xi) if xi ∈ S−,
γ ·D(x,xi) if xi ∈ S+.

(2.1)

As we will tune the γ parameter, this new way to compute the similarity to a positive example
is close to a Mahalanobis-distance learning algorithm, looking for a PSD matrix, as previously
described. However, the matrix M is restricted here to be γ2 · I, where I refers to the identity
matrix. Moreover, while metric learning typically works by optimizing a convex loss function
under constraints, our γ is simply tuned such as maximizing some non convex performance
measure. Lastly, and most importantly, it is applied only when comparing the query to positive
examples. As such, Dγ is not a proper distance. However, this is what allows it to compensate
for the class imbalance. In the binary setting, there is no need to have a γ parameter for the
negative class, since only the relative distances are used. In the multi-class setting with K
classes, we would have to tune up to K − 1 values of γ.

Before formalizing the γk−NN algorithm that will leverage the distance Dγ , we illustrate
in Figure 2.2, on 2D data, the decision boundary induced by a nearest neighbor binary classifier
that uses Dγ . We consider an elementary dataset with only two points, one positive and one
negative. The case of γ = 1, which is a traditional 1−NN is shown in a thick black line.
Lowering the value of γ below 1 brings the decision boundary closer to the negative point, and
eventually tends to surround it very closely. Fig 2.3 shows, with more complex (toy) datasets,
that γ controls how much we want to push the boundary towards negative examples. Fig 2.3
(right) should be imagined as a zoomed-in boundary between the classes, where one class is 20
times less represented. It shows that, due to sampling, the 1−NN boundary wrongly causes
regions of false negatives, while γk−NN is able to correct the bias.

We can now present γk−NN (see Algorithm 2.1) that is parameterized by the γ parameter.
It has the same overall complexity as k−NN. The first step to classify a query x is to find its
k nearest negative neighbors and its k nearest positive neighbors. Then, the distances to the
positive neighbors are multiplied by γ, to obtain Dγ . These 2k neighbors are then ranked and
the k closest ones are used for classification (with a majority vote, as in k−NN). It should be
noted that, although Dγ does not define a proper distance, we can still use any existing fast
nearest neighbor search algorithm, because the actual search is done only using the original
distance D (but twice, once for S+, once for S−).
2.4.2 Theoretical analysis

In this section, we formally analyze what could be a good range of values for γ in our γk−NN
algorithm. To this aim, we study what impact γ has on the probability to get a False Positive

50

Chapter 2. An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification

0.
20

0

0.4
00

0.
60

0
0.

80
0

2.0
00

Figure 2.2: Evolution of the decision boundary based on Dγ , for a 1−NN classifier, on a 2D
dataset with one positive (resp. negative) instance represented by a blue cross (resp. red point).
The value of γ is given on each boundary (γ = 1 on the thick line).

0.200 0.400

0.600

0.8
00

2.000

2.000

0.200

0.4
00

0.600

0.800

2.0
00

2.
00

0

Figure 2.3: Behavior of the decision boundary according to the γ value for the 1−NN classifier
on toy datasets. Positive points are shown as blue crosses and negatives ones as red dots. The
black line represents the standard decision boundary for the 1−NN classifier, i.e. when γ = 1.

(and False Negative) at test time and explain why it is important to choose γ < 1 when the
imbalance in the data is significant. The following analysis is made for k = 1 but note that the
conclusion still holds for k > 1.

Proposition 1. (False Negative probability) Let Dγ(x,x+) = γ · D(x,x+), ∀γ > 0, be our
modified distance used between a query x and any positive training example x+, where D(x,x+)
is some distance function. Let FNγ(z) be the probability for a positive example z to be a False
Negative using Algorithm (2.1). The following result holds: if γ ≤ 1,

FNγ(z) ≤ FN(z)

Proof. (sketch of proof) Let ε be the distance from z to its nearest-neighbor Nz. z is a false
negative if Nz ∈ S− that is all positives x′ ∈ S+ are outside the sphere S ε

γ
(z) centered at z of

Algorithm 2.1: Classification of a new example with γk−NN.
Input : a query x to be classified, a set of labeled samples S = S+ ∪ S−,

a number of neighbors k, a positive real value γ, a distance function D

Output: the predicted label of x

NN−,D− ← nn(k,x, S−) // nearest negative neighbors with their distances
NN+,D+ ← nn(k,x, S+) // nearest positive neighbors with their distances
D+ ← γ ·D+

NN γ ← firstK
(
k, sortedMerge((NN−,D−), (NN+,D+))

)
y ← if

∣∣NN γ ∩NN+
∣∣ ≥ k

2 else // majority vote based on NN γ

return y

51

2.4. Proposed Approach

radius ε
γ . Therefore,

FNγ(z) =
∏

x′∈S+

(
1− P (x′ ∈ S ε

γ
(z))

)
,

=
(

1− P (x′ ∈ S ε
γ
(z))

)m+

(2.2)

while

FN(z) =
(
1− P (x′ ∈ Sε(z))

)m+ . (2.3)

Solving (2.2) ≤ (2.3) implies γ ≤ 1.

This result means that satisfying γ < 1 allows us to increase the decision boundary around
positive examples (as illustrated in Figure 2.3), yielding a smaller risk to get False Negatives at
test time. An interesting comment can be made from Eq.(2.2) and (2.3) about their convergence.
As m+ is supposed to be very small in imbalanced datasets, the convergence of FN(z) towards
0 is pretty slow, while one can speed-up this convergence with FNγ(z) by increasing the radius
of the sphere S ε

γ
(z), that is taking a small value for γ.

Proposition 2. (False Positive probability) Let FPγ(z) be the probability for a negative example
z to be a False Positive using Algorithm (2.1). The following result holds: if γ ≥ 1,

FPγ(z) ≤ FP (z)

Proof. (sketch of proof) Using the same idea as before, we get:

FPγ(z) =
∏

x′∈S−

(
1− P (x′ ∈ Sγε(z))

)
,

=
(
1− P (x′ ∈ Sγε(z))

)m− (2.4)

while

FP (z) =
(
1− P (x′ ∈ Sε(z))

)m− . (2.5)

Solving (2.4) ≤ (2.5) implies γ ≥ 1.

As expected, this result suggests to take γ > 1 to increase the distance Dγ(z,x+) from a
negative test sample z to any positive training example x+ and thus reduce the risk to get a
False Positive. It is worth noticing that while the two conclusions from Propositions 1 and 2
are contradictory, the convergence of FPγ(z) towards 0 is much faster than that of FNγ(z)
because m− >> m+ in an imbalanced scenario. Therefore, fulfilling the requirement γ > 1 is
much less important than satisfying γ < 1. For this reason, we will impose our Algorithm (2.1)
to take γ ∈ [0, 1]. As we will see in the experimental section, the more imbalance the datasets,
the smaller the optimal γ, confirming the previous conclusion.

2.4.3 Link with cost-sensitive learning

In this section, we show that it is possible to establish a link between the cost-sensitive learning
framework [36] and our algorithm γk−NN. As presented in Section 1.5.3, the goal of cost-
sensitive learning is to assign different costs to each entry of the confusion matrix as depicted in
Table 2.1 for a binary setting where we will denote the 4 costs as cTP , cFN , cFP and cTN . Cost
sensitive methods are widely used, including in imbalanced scenarios, to give more importance
(i.e. higher weights/costs) to the examples of the positive/minority class. By doing so, a learned
classifier will focus more on decreasing the loss associated to the positive samples. We show

52

Chapter 2. An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification

Table 2.1: Cost matrix for a binary classification task.
Predicted positive Predicted negative

Actual positive cTP cFN
Actual negative cFP cTN

here that, despite not being learned by optimizing a loss function, γk−NN can still be seen
through the lens of cost-sensitive learning.

Let us assume that the correct predictions are not penalized, i.e. cTN = cTP = 0 and that
cFP and cFN are such that cFP + cFN = 1 (without loss of generality, as only their relative
values matter here). Let x− (resp. x+) be the nearest negative (resp. positive) neighbor of an
example x. Suppose that we have a model η(x) = P(y = 1 | x) that gives the probability for x
to be positive. Then the positive label will be assigned to x if η(x) > 1/2, without considering
the costs of miss-classification. Taking these latter into account changes the classification rule.
Indeed, to minimize the cost-sensitive risk, an example x must be predicted positive if:

cFP P(y = 0 | x) ≤ cFN P(y = 1 | x),

⇔ cFP (1− η(x)) ≤ cFN η(x),

⇔ η(x) ≥ cFP .

On the other hand, our algorithm γk−NN classifies an example x as positive if D(x,x−) >
γD(x,x+). Given this classification rule, we can show that γk−NN resorts to an approxima-
tion η̂(x) of η(x) for a given weighted problem, as follows:

D(x,x−) > γD(x,x+),

⇔ D(x,x−)(1 + γ) > γ(D(x,x+) + D(x,x−)),

⇔ D(x,x−)

D(x,x+) + D(x,x−)
>

γ

1 + γ
.

Setting cFP =
γ

γ + 1
(and therefore cFN =

1

γ + 1
) and η̂(x) =

D(x,x−)

D(x,x+) + D(x,x−)
finishes

to establish the link between γk−NN and cost-sensitive learning. Note that if γ = 1 then
cFP = cFN = 1

2 implying that we retrieve a standard k−NN classifier which treats positive
and negative samples equally without cost sensitivity.

The reader interested in cost-sensitive k−NN classifiers can refer to [89, 131].

2.4.4 Towards a local approach of γk−NN

In what have been presented so far, we consider a single γ for the whole input space. While
this has the advantage of having a single parameter to tune, it removes the ability to capture
non-stationary class imbalance. Indeed, it is possible that a γ value is optimal in one part of
the space but not in another.

We thus propose a non-stationary version of our algorithm, called local-γk−NN. Conceptu-
ally, we could have a γx for every position x in the space. However, such an over parameterized
model would loose the simplicity of the proposed approach and increase the risk of overfitting.
To deal with these two issues, we rather partition the input space into q ∈ N∗ sub-spaces,
{Cj}qj=1, using a clustering algorithm (e.g., k-means). Then a value γj , for all j = 1, ..., q is
tuned according to the performance measure of interest and using only the available data in
the subspace Cj . To classify a test query that falls in cluster j, we use γk−NN (with γj) in
this cluster. We will show in the experimental Section 2.5.4 two possible variants of this local
approach.

53

2.5. Experiments

Table 2.2: Information about the studied public datasets sorted by imbalance ratio IR. The
target column refers to the label chosen as the minority class (i.e. positive examples) in the
dataset. The short name of each dataset is given first and will be used, for the sake of readability,
in some graphs of this study. (*) The target for Yeast is ME2 vs MIT,ME3,EXC,VAC,ERL.

datasets size dim target IR
bal - Balance 625 4 L 1.2
aut - Autompg 392 7 2,3 1.7
ion - Ionosphere 351 34 b 1.8
pim - Pima 768 8 positive 1.9
gla - Glass 214 9 1 2.1
ger - German 1000 23 2 2.3
ye1 - Yeast1 1484 8 NUC 2.5
hab - Haberman 306 3 positive 2.8
ve3 - Vehicle3 846 18 Class 3 Opel 3.0
hay - Hayes 132 4 3 3.4
seg - Segmentation 2310 19 WINDOW 6
ab8 - Abalone8 4177 10 8 6.4
ye3 - Yeast3 1484 8 ME3 8.1
ec3 - Ecoli3 336 7 imU 8.6
pag - Pageblocks 5472 10 2,3,4,5 8.8
sat - Satimage 6435 36 4 9.3
yea - Yeast-0-5-6-7-9vs4 528 8 (*) 9.4
lib - Libras 360 90 1 14
y17 - Yeast-1vs7 459 7 VAC vs NUC 14.3
arr - Arrhythmia 452 278 6 17
sol - Solar-flare-M0 1389 32 M0 19
oil - Oil 937 49 minority 22
ye4 - Yeast4 1484 8 ME2 28.1
wi4 - Redwinequality4 1599 11 4 29.2
ye5 - Yeast5 1484 8 ME1 32.7
ye6 - Yeast6 1484 8 EXC 41.4
a17 - Abalone17 4177 10 17 71
a20 - Abalone20 4177 10 20 159.7

2.5 Experiments

This part is devoted to an extensive experimental evaluation of γk−NN on public and real
private datasets with comparisons to classic distance-based methods and state-of-the-art sam-
pling strategies able to deal with imbalanced data. All the results for the public datasets are
reported for nearest neighbor classification with k = 1 and 3 by considering the four different
evaluation measures reminded in Section 2.2 (F1, G1, GM and BA). For the private datasets,
we only report the results for k = 3 and the F1 measure. We also conduct, in Section 2.5.3, a
qualitative analysis on the behavior of our approach on the famous MNIST image dataset [69].
Finally, we conclude our experimental study by an evaluation of the performance of the local
version of γk−NN (in Section 2.5.4).

54

Chapter 2. An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification

Table 2.3: Information about the private datasets of the DGFiP, sorted by imbalance ratio IR.
The short name of each dataset is given first and will be used, for the sake of readability, in
some graphs of this study.

datasets size dim IR
DGFiP 19-2 16643 265 1.9
DGFiP 9-2 440 173 3.0
DGFiP 4-2 255 82 3.8
DGFiP 8-1 1028 255 4.6
DGFiP 8-2 1031 254 4.6
DGFiP 9-1 409 171 5.1
DGFiP 4-1 240 76 5.2
DGFiP 16-1 789 162 8.7
DGFiP 16-2 786 164 9.1
DGFiP 20-3 17584 294 19.0
DGFiP 5-3 19067 318 24.9

2.5.1 Experimental setup

For these experiments, we use 28 public datasets from the well-known UCI2 and KEEL3 repos-
itories. The main properties of these datasets are summarized in Table 2.2, including the
imbalance ratio IR defined as: IR= m−/m+. We also use 11 real fraud detextion datasets
provided by the DGFiP. These datasets correspond to data coming from tax and VAT decla-
rations of French companies and are used for tax fraud detection purpose covering declaration
of over-valued, fictitious or prohibited charges, wrong turnover reduction or particular interna-
tional VAT frauds such as ”VAT carousels”. As explained in the introduction of this thesis, the
DGFiP performs about 50,000 tax audits per year within a panel covering more than 3,000,000
companies. Being able to select the right companies to control each year is a crucial issue with
a potential high societal impact. Thus, designing efficient imbalance learning methods is key.
The properties of these private datasets are summarized in Table 2.3.

All the datasets are normalized using a min-max normalization such that each feature lies
in the range [−1, 1]. We randomly draw 80%-20% splits of the data to generate the training
and test sets respectively. Hyperparameters are tuned with a 10-fold cross-validation over the
training set. We repeat the process over 5 runs and average the results in terms of the four
performance measures. In a first series of experiments, we compare our method γk−NN to 6
other distance-based baselines:

• the classic k−Nearest Neighbor algorithm, k−NN,

• the weighted version of k−NN using the inverse distance as a weight to predict the label,
wk−NN [34],

• the class weighted version of k−NN, cwk−NN [6],

• the k−NN version where each positive is duplicated according to the IR of the dataset,
dupk−NN,

• kRNN [134] where the sparsity of minority examples is taken into account by modifying
the way the posterior probability of belonging to the positive class is computed.

• the metric learning method LMNN [123].

2https://archive.ics.uci.edu/ml/datasets.html
3https://sci2s.ugr.es/keel/datasets.php

55

https://archive.ics.uci.edu/ml/datasets.html
https://sci2s.ugr.es/keel/datasets.php

2.5. Experiments

The hyperparameter µ of LMNN , weighting the impact of impostor constraints (see [123] for
more details), is tuned in the range [0, 1] using a step of 0.1. Our γ parameter is tuned in the
range [0, 1]4 using a step of 0.1. For kRNN, we use the parameters values as described in [134].

In a second series of experiments, we compare our method to five oversampling strategies
described in Section 1.5.2: SMOTE, BorderlineSMOTE, ADASYN, SMOTE with ENN and
SMOTE with Tomek’s link. The number of generated positive examples is tuned over the set
of ratios

m+

m−
∈ {0.1, 0.2, ..., 0.9, 1.0} and such that the new ratio is greater than the original

one before sampling. The other parameters of these methods are the default ones used by the
package ImbalancedLearn [71] of Scikit-learn. We report the performance of the best oversampler
that we denote as OS∗.

In order to evaluate how both strategies are complementary, we also combine γk−NN with
oversamplers, and use the notation (OS+γk−NN)∗ to indicate the best combination obtained
by a 10-cross validation. In this latter scenario, we propose to learn a different γ value to be
used with the synthetic positives. Indeed, some of the synthetic examples may be generated in
some True Negative areas and, in this situation, it might be more appropriate to decrease their
influence. The γ parameter for these examples is tuned in the range [0, 2] using a step of 0.1.
Note that the upper bound of the range is now set to 2. This allows γk−NN to adapt to the
different sampling strategies of the oversamplers and enables the possibility to move synthetic
positive examples away from dense regions of negatives by selecting γ > 1.

2.5.2 Analysis of the results

The results on the public datasets using the six baselines are provided in Tables 2.6,2.7,2.8
and 2.9 for the four different performance measures F1, BA, GM and G1 respectively. These
tables report the complete results when k = 1 (in k−NN) and provide only the mean results
over the 28 datasets for k = 3, for the sake of concision and because the behavior for this latter
value is similar. Overall, our γk−NN approach performs much better than its competitors by
achieving an improvement of 0.7 to 5 points on average, compared to the other state-of-the-art
algorithms when k = 1. It is worth noticing that the results are even better when k = 3. But
the certainly most striking result comes from the capacity of γk−NN associated with the Bal-
anced Accuracy (BA) in Table 2.7 and G-mean (GM) in Table 2.8 to address large imbalanced
learning tasks. While the other methods struggle to get good results, γk−NN with BA and
GM gets the best performance 19 and 20 times respectively over the 22 largest imbalanced
datasets (from Yeast1 to Abalone20). Even the metric learning algorithm LMNN fails to
be competitive while it optimizes a representation of the data specifically dedicated to deal with
nearest neighbor classification. Indeed, LMNN suffers from the lack of positive data to learn an
efficient projection when dealing with highly imbalanced tasks. On the other hand, γk−NN
does not seem particularly sensitive to the imbalance ratio.

To see the influence of the imbalance ratio on the optimal γ-parameter, we decide to con-
sider the Balance dataset which has the smallest imbalance ratio and we artificially increase
this ratio by iteratively randomly under-sampling the minority class over the training set. We
report the results on Figure 2.4. As expected, we can observe that the optimal γ value decreases
when the imbalance increases. However, note that from a certain IR (around 15), γ seems to
reach a plateau required to keep a satisfactory performance measure.

The second series of experiments focuses on the use of sampling strategies and the potential
interest of combining γk−NN with a synthetic generation of additional positive examples.
Figure 2.5 compactly summarizes, for the four measures of interest and for both k = 1 (on the

4We experimentally noticed that using a larger range for γ leads in fact to a potential decrease of performances
due to overfitting phenomena. This behavior is actually in line with the analysis provided in Section 2.4.2.

56

Chapter 2. An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
IR

0.5

0.6

0.7

0.8

0.9

 o
pt

im
al

with 3NN

Figure 2.4: Evolution of the optimal γ value with respect to the IR on the Balance dataset, for
k = 3.

F1 BA GM G1
0

10

20

30

40

50

60

70

80

90
k NN
k NN

OS*
(OS+ k NN) *

F1 BA GM G1
0

10

20

30

40

50

60

70

80

90
kNN
k NN

OS*
(OS+ k NN) *

Figure 2.5: Comparison of k−NN, γk−NN, the best oversampler among SMOTE, Border-
lineSMOTE, SMOTE+ENN, SMOTE+Tomek’s links and ADASYN, and the best coupling
oversampler + γk−NN, in terms of mean of F-measure (F1), Balanced Accuracy (BA), Ge-
ometric Mean (GM) and G-measure (G1) over all the datasets, for k = 1 (left) and k = 3
(right).

left) and k = 3 (on the right), the impact of sampling strategies. Two main comments can be
made from these results. First, γk−NN is complementary to the oversamplers. Indeed, for
both k = 1 and k = 3 and for 3 out of 4 measures (G1 excluded), using γk−NN in addition with
a sampler leads to better results and gives evidence of the fact that γk−NN and oversamplers
do not work the same way, focusing on different subparts of the feature space. While γk−NN
aims at expanding the decision boundaries in favor of the positives in the neighborhood of
the test query, oversamplers rather tend to fill in the empty parts of the space by generating
synthetic positive examples. Second, γk−NN (red bars) alone is shown to be very competitive
while benefiting from its simplicity. Indeed, we remind the reader that the performance of OS∗

(resp. (OS+γk−NN)∗) are obtained from the costly selection of the best oversampler (resp.
γk−NN + oversampler) for each dataset. Therefore, the green and black bars in Figure 2.5
give an optimistic usage of an oversampling strategy because it is generated from the average
obtained over a large set of oversamplers (SMOTE, BorderlineSMOTE, ADASYN, SMOTE+
ENN and SMOTE with Tomek’s link) that can be seen as an additional hyperparameter. On
the other hand, in γk−NN, only one parameter (γ) is required to be tuned.

57

2.5. Experiments

0 20 40 60 80 100
γ1 − NN and (OS+γ1 − NN) *

0

20

40

60

80

100

1−
NN

bal

aut
ion

pim

gla

ger

ye1

hab

ve3

hay

seg

ab8

ye3

ec3

pag

sat

yea

lib

y17

arr sol

oil

ye4

wi4

ye5

ye6

a17

a20

F1

γ1 − NN
(OS+γ1 − NN) *

0 20 40 60 80 100
γ1 − NN and (OS+γ1 − NN) *

0

20

40

60

80

100

1−
NN

bal
aut ion

pim

gla

ger

ye1

hab

ve3
hay

seg

ab8

ye3

ec3

pag

sat

yea

lib

y17

arr
sol

oil

ye4

wi4

ye5

ye6

a17

a20

GM
γ1 − NN
(OS+γ1 − NN) *

Figure 2.6: Comparison of k−NN with (i) γk−NN (points in blue) and (ii) γk−NN coupled
with the best sampling strategy (points in orange) for each dataset, in terms of F-measure (left)
and Geometric Mean (right) and for k = 1. Points below the line y = x means that k−NN is
outperformed. A move from left to right illustrates that the joint approach is better.

Figure 2.6 illustrates, for the F1 and GM measures and k = 1, a dataset-wise view of
the advantage of combining γk−NN with an oversampler compared to a standard k−NN. A
blue point (representing one of the 28 datasets) below the line y = x means that k−NN is
outperformed. Moreover, a move of a blue point to an orange point from left to right (illustrated
by a right arrow) illustrates that the joint approach leads to better results. We can see that
even for the least favorable measure (i.e. F1 on the left), most of the datasets are below the
line and benefit from γk−NN associated to an oversampler.

In Fig 2.7 (left), we illustrate how having two γ parameters (γ on reals and γ on synthetics)
gives the flexibility to independently control the influence of the actual and artificial positives
respectively. The other figures (center and right) represent two examples of heatmaps of the
F-measure (note that the trend is the same for the other 3 measures). We can note that while
the γ parameter tuned for the real positives tends to be smaller than 1 (according to the analysis
of Section 2.4.2), the γ parameter required to deal with the synthetic positives is sometimes
smaller (right), sometimes greater than 1 (center), depending on the underlying density and
the peculiarity of the feature space.

Recall that Propositions 1 and 2 in Section 2.4.2 tell us that selecting a γ parameter smaller
than 1 for the real positives should tend to reduce the False Negative (FN) rate while still
optimizing the performance measure. To illustrate our theoretical study, we plot in Figure 2.8
the percentage of FN generated by the 7 compared methods. As expected, we can note that
whatever the performance measure and the value of k (k = 1 on the left and k = 3 on the right),
the number of FN is much smaller than that of the competitors explaining why γk−NN gets
the best results.

The results for the real datasets of the DGFiP are available in Table 2.4. Note that only the
SMOTE algorithm is reported here since the other oversamplers have comparable performances.
The analysis of the results leads to observations similar as the ones made for the public datasets.
Our γk−NN approach outperforms classic k−NN and is better than the results obtained by

58

Chapter 2. An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification

0.6
00

0.8
00

2.0
00

3.0
00

3.000

Figure 2.7: Left: Illustration on a toy dataset of the effect of varying γ for the generated
positive points (in grey) while keeping a fixed γ = 0.4 for the real positives. Center and Right:
Two examples of heatmap for the F-Measure that show the pair of γ (on real and synthetic
positives) corresponding to the best joint approach (OS+ γk−NN)∗ on Abalone8 (center)
and German (right).

F1 BA GM G1
0

1

2

3

4

5

6

7

1NN_FN_mean.pdf

kNN
dup_kNN
w_kNN
cw_kNN
kRNN
LMNN
γk−NN

F1 BA GM G1
0

1

2

3

4

5

6

7

3NN_FN_mean.pdf

kNN
dup_kNN
w_kNN
cw_kNN
kRNN
LMNN
γk−NN

Figure 2.8: Percentage of False Negatives (FN) generated by the 7 compared methods w.r.t.
the four performance measures with 1−NN (left) and 3−NN (right).

the SMOTE strategy. Coupling the SMOTE sampling method with our distance correction
γk−NN allows us to improve the global performance showing the applicability of our method
on real data.

2.5.3 A qualitative analysis on the MNIST dataset

In order to visualize the qualitative impact of γk−NN, we conduct in this section some addi-
tional experiments on the MNIST dataset. To generate a minority class, we build 10 datasets
MNISTi (one for each digit, i = 0, ..., 9) from the original one by considering the label i as the
minority class and all the other classes representing the remaining digits as the majority class.

As previously done, a 10-fold CV is performed to find the optimal value γ. The mean results
of the comparison of γk−NN with k−NN are reported in Table 2.5 where k = 3. We can see
that whatever the performance measure, γk−NN allows us to surpass k−NN. As expected,
the gain on this well-known MNIST dataset is not significant due to the already very high
accuracy reached by the standard k−NN. However, the main objective here is elsewhere. We
aim at showing the quality of both the space and the neighborhoods induced by γk−NN. To
illustrate this purpose and visualize how using Dγ (as defined in Eq.(2.1)) bends the feature
space, we leverage t-SNE to embed the MNISTi points in 2D. Note that even if Dγ is not
an actual distance (the symmetry is not satisfied), it can still be used with t-SNE that only
embeds points while preserving relative pair-wise dissimilarities.

Following the definition of Dγ , we scale the Euclidean distance D when the second point

59

2.5. Experiments

Table 2.4: Results for 3−NN on the DGFiP datasets. The values correspond to the mean
F-measure F1 over 5 runs. The best result on each dataset is indicated in bold while the second
is underlined.

datasets 3−NN γk−NN SMOTE SMOTE+γk−NN
DGFiP 19-2 0.454(0.007) 0.528(0.005) 0.505(0.010) 0.529(0.003)

DGFiP 9-2 0.173(0.074) 0.396(0.018) 0.340(0.033) 0.419(0.029)

DGFiP 4-2 0.164(0.155) 0.373(0.018) 0.368(0.057) 0.377(0.018)

DGFiP 8-1 0.100(0.045) 0.299(0.010) 0.278(0.043) 0.299(0.011)

DGFiP 8-2 0.140(0.078) 0.292(0.028) 0.313(0.048) 0.312(0.021)

DGFiP 9-1 0.088(0.090) 0.258(0.036) 0.270(0.079) 0.288(0.026)

DGFiP 4-1 0.073(0.101) 0.231(0.139) 0.199(0.129) 0.278(0.067)

DGFiP 16-1 0.049(0.074) 0.166(0.065) 0.180(0.061) 0.191(0.081)

DGFiP 16-2 0.210(0.102) 0.202(0.056) 0.220(0.043) 0.229(0.026)

DGFiP 20-3 0.142(0.015) 0.210(0.019) 0.199(0.015) 0.212(0.019)

DGFiP 5-3 0.030(0.012) 0.105(0.008) 0.110(0.109) 0.107(0.010)

mean 0.148(0.068) 0.278(0.037) 0.271(0.057) 0.295(0.028)

Table 2.5: Comparison of γk−NN and k−NN on MNIST for k = 3.
F1 BA GM G1

k−NN 0.9718 0.9831 0.9830 0.9719
γk−NN 0.9721 0.9897 0.9897 0.9721

in the pair is a positive one. Figure 2.9 compares, on the MNIST2 dataset, the output of
t-SNE when using D (left) and Dγ (right). The analysis of this embedding shows that Dγ is
able to gather minority examples together in a denser cluster while the Euclidean distance D

leads to a space where the positive samples are more scattered, some being in the middle of
negative regions. This impact of γk−NN on the decision boundaries, that we see with this
t-SNE experiment, is also illustrated in Figure 2.10 which shows some examples for which, the
γk−NN predictions are different from that of k−NN according to their 3 nearest neighbors
(on the original dataset).

2.5.4 On local-γk−NN using clustering

We now evaluate our local algorithm local-γk−NN (as presented in Section 2.4.4), which
partitions the input space into q clusters (C1, C2, ..., Cq) and uses a parameter γj for each
cluster j. The partitioning is performed using k-means, run on the training set. Note that we
consider two ways of obtaining the γj values. The first version (V1) consists in applying the 10
fold cross-validation (CV) procedure in each cluster Cj to tune γj . At test time, a new point
x′ is first assigned to the nearest cluster Ck based on the closest centroid using the Euclidean
distance, and the corresponding γk value is used to scale the distances to the positives.
We propose a second version (V2) to compensate for the fact that V1 is at risk of generating
very different values of γ for two neighboring clusters. While the test decision is similar to V1,
the γj values are obtained differently, by computing several clusterings. In V2, the 10 fold CV
also includes the clustering, so 10 additional partitionings are performed. Each training point
x will thus fall in 9 clusters (in the 9 different clusterings for which the point is not in the
validation fold). Each point thus has 9 “best” γ values that we average to get a single value γx
for every single point. In the end, γj is computed as

1

|Cj |
∑

x∈Cj γx, i.e. the average γ value of

the training points falling into cluster j.
The results are provided for the 4 performance measures in Figure 2.11, 2.12, 2.13 and 2.14.

Despite an inherent increase of the time complexity, it is worth noting that V2 is better than the
original γk−NN (on average over the 28 datasets), while V1 does not lead to improvements

60

Chapter 2. An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification

Figure 2.9: Visualization onMNIST2 of the influence of the Euclidean distanceD (left) andDγ

(right) with t-SNE. The red (resp. blue) points correspond to negatives (resp. positives). The
blue areas represent the subparts of the space leading to a positive classification by a 3−NN.

k−NN True γk−NN

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Figure 2.10: First three columns: 3 nearest neighbors using k−NN; fourth column: the test
query; last three figures: 3 nearest neighbors using γk−NN.

probably due to overfitting phenomena. Note also that in a huge majority of the datasets
(around 90%), the V2 version of local-γk−NN equals or outperforms γk−NN.

2.6 Conclusion

In this chapter, we have proposed a new approach, γk−NN, that addresses the problem of
learning from imbalanced datasets. It is based on the k−NN algorithm but it modifies the
distance to the positive examples by expanding the decision boundaries around these minority
samples. It has been shown to outperform its competitors in terms of several performance mea-
sures. Furthermore, we gave evidence of the complementarity of γk−NN with oversampling
strategies. Our algorithm, despite its simplicity, is highly effective even on real datasets and its
local version local-γk−NN has shown to be even more efficient by taking the spatial specificity
of the distributions into account.

This work opens the door to two promising lines of research. First, we might extend the
idea of the local variant of γk−NN by proposing a multi-view learning approach, where the
different results of γk−NN obtained with different subsets of features (the different views)
would be combined in some way. Second, we can note that tuning γ is equivalent to building a
diagonal matrix (with γ2 in the diagonal) and applying a Mahalanobis distance only between
a query and a positive example. This comment suggests to make use of metric learning to
optimize a PSD matrix under (FP, FN)-based constraints that could leverage recent metric
learning approaches for imbalanced data [118]. This is the goal of our second contribution
presented in Chapter 3.

61

2.6. Conclusion

Table 2.6: Results for k = 1 with F1 as performance measure over 5 runs. The standard
deviation is indicated after the ± sign and the best results on each dataset is indicated in bold.
Only the mean value when k = 3 is shown in the last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN
Balance 0.845±0.022 0.845±0.022 0.845±0.022 0.844±0.017 0.882±0.012 0.841±0.046 0.844±0.017
Autompg 0.767±0.074 0.767±0.074 0.767±0.074 0.762±0.062 0.825±0.028 0.775±0.031 0.818±0.030
Ionosphere 0.801±0.042 0.801±0.042 0.801±0.042 0.833±0.030 0.833±0.030 0.813±0.033 0.890±0.045
Pima 0.558±0.047 0.558±0.047 0.558±0.047 0.611±0.037 0.623±0.039 0.559±0.028 0.612±0.054
Glass 0.704±0.087 0.704±0.087 0.704±0.087 0.732±0.064 0.762±0.086 0.689±0.077 0.705±0.075
German 0.379±0.050 0.379±0.050 0.379±0.050 0.411±0.036 0.437±0.040 0.410±0.038 0.477±0.019
Yeast1 0.525±0.026 0.525±0.026 0.525±0.026 0.533±0.036 0.525±0.021 0.513±0.037 0.548±0.038
Haberman 0.234±0.067 0.234±0.067 0.234±0.067 0.355±0.100 0.332±0.076 0.246±0.069 0.492±0.044
Vehicle3 0.510±0.034 0.510±0.034 0.510±0.034 0.512±0.037 0.561±0.033 0.547±0.036 0.551±0.034
Hayes 0.659±0.100 0.659±0.100 0.659±0.100 0.875±0.049 0.766±0.083 0.768±0.140 0.787±0.100
Segmentation 0.887±0.029 0.887±0.029 0.887±0.029 0.889±0.028 0.872±0.016 0.912±0.023 0.887±0.029
Abalone8 0.214±0.013 0.214±0.013 0.214±0.013 0.313±0.009 0.238±0.011 0.219±0.017 0.311±0.020
Yeast3 0.651±0.025 0.651±0.025 0.651±0.025 0.630±0.026 0.694±0.012 0.636±0.010 0.659±0.023
Ecoli3 0.529±0.097 0.529±0.097 0.529±0.097 0.541±0.078 0.612±0.058 0.572±0.110 0.539±0.070
Pageblocks 0.816±0.026 0.816±0.026 0.816±0.026 0.811±0.024 0.813±0.044 0.815±0.032 0.812±0.022
Satimage 0.676±0.036 0.676±0.036 0.676±0.036 0.680±0.034 0.688±0.027 0.690±0.045 0.676±0.036
Yeast-0-5-6-7-9vs4 0.409±0.110 0.409±0.110 0.409±0.110 0.497±0.041 0.519±0.073 0.455±0.150 0.534±0.083
Libras 0.789±0.087 0.789±0.087 0.789±0.087 0.789±0.087 0.737±0.060 0.788±0.054 0.891±0.081
Yeast-1vs7 0.484±0.060 0.484±0.060 0.484±0.060 0.238±0.053 0.491±0.088 0.404±0.166 0.472±0.050
Arrythmia 0.161±0.200 0.161±0.200 0.161±0.200 0.156±0.200 0.156±0.200 0.202±0.210 0.089±0.120
Solar-flare-M0 0.156±0.056 0.156±0.056 0.156±0.056 0.184±0.019 0.214±0.063 0.153±0.100 0.186±0.021
Oil 0.535±0.112 0.535±0.110 0.535±0.110 0.572±0.097 0.555±0.052 0.613±0.120 0.583±0.120
Yeast4 0.306±0.113 0.306±0.110 0.306±0.110 0.292±0.019 0.414±0.040 0.324±0.120 0.390±0.084
Redwinequality4 0.104±0.057 0.104±0.057 0.104±0.057 0.124±0.026 0.129±0.070 0.120±0.069 0.132±0.056
Yeast5 0.700±0.110 0.700±0.110 0.700±0.110 0.564±0.082 0.626±0.083 0.701±0.120 0.670±0.098
Yeast6 0.494±0.130 0.494±0.130 0.494±0.130 0.262±0.023 0.499±0.086 0.471±0.190 0.461±0.100
Abalone17 0.148±0.097 0.148±0.097 0.148±0.097 0.105±0.040 0.163±0.069 0.143±0.067 0.173±0.094
Abalone20 0.000±0.000 0.000±0.000 0.000±0.000 0.052±0.035 0.066±0.067 0.000±0.000 0.036±0.047
Mean (k=1) 0.501 0.501 0.501 0.506 0.537 0.514 0.544
Mean (k=3) 0.493 0.540 0.500 0.522 0.532 0.519 0.558

ba
l

au
t

io
n

pi
m gl
a

ge
r

ye
1

ha
b

ve
3

ha
y

se
g

ab
8

ye
3

ec
3

pa
g

sa
t

ye
a lib y1
7 ar
r

so
l

oi
l

ye
4

wi
4

ye
5

ye
6

a1
7

a2
0

m
ea

n

0

20

40

60

80

norm1F1.pdf
local- k NN V1
k NN

local- k NN V2

Figure 2.11: Comparison of γ1−NN with the two versions of local-γ1−NN, in terms of F-
measure.

62

Chapter 2. An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification

Table 2.7: Results for k = 1 with BA as performance measure over 5 runs. The standard
deviation is indicated after the ± sign and the best results on each dataset is indicated in bold.
Only the mean value when k = 3 is shown in the last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN
Balance 0.854±0.021 0.854±0.021 0.854±0.021 0.842±0.019 0.889±0.012 0.855±0.041 0.842±0.019
autompg 0.816±0.061 0.816±0.061 0.816±0.061 0.811±0.052 0.864±0.026 0.819±0.026 0.860±0.029
Ionosphere 0.836±0.030 0.836±0.030 0.836±0.030 0.859±0.021 0.856±0.021 0.846±0.024 0.912±0.036
Pima 0.666±0.034 0.666±0.034 0.666±0.034 0.694±0.033 0.704±0.034 0.667±0.017 0.697±0.037
Glass 0.782±0.065 0.782±0.065 0.782±0.065 0.803±0.048 0.833±0.067 0.771±0.064 0.765±0.043
German 0.571±0.030 0.571±0.030 0.571±0.030 0.580±0.024 0.590±0.031 0.586±0.026 0.577±0.030
Yeast1 0.666±0.019 0.666±0.019 0.666±0.019 0.665±0.032 0.662±0.017 0.658±0.026 0.672±0.038
Haberman 0.498±0.054 0.498±0.054 0.498±0.054 0.527±0.090 0.533±0.062 0.504±0.054 0.611±0.047
Vehicle3 0.673±0.023 0.673±0.023 0.673±0.023 0.674±0.028 0.712±0.027 0.701±0.032 0.726±0.011
Hayes 0.757±0.060 0.757±0.060 0.757±0.060 0.907±0.046 0.824±0.054 0.829±0.087 0.919±0.042
Segmentation 0.935±0.022 0.935±0.022 0.935±0.022 0.951±0.021 0.955±0.009 0.949±0.015 0.962±0.009
Abalone8 0.545±0.007 0.545±0.007 0.545±0.007 0.613±0.008 0.557±0.007 0.549±0.009 0.626±0.018
Yeast3 0.794±0.029 0.794±0.029 0.794±0.029 0.855±0.024 0.834±0.028 0.804±0.025 0.857±0.029
Ecoli3 0.744±0.069 0.744±0.069 0.744±0.069 0.823±0.059 0.812±0.052 0.733±0.035 0.855±0.081
Pageblocks 0.885±0.015 0.885±0.015 0.885±0.015 0.914±0.021 0.904±0.023 0.887±0.019 0.929±0.013
Satimage 0.830±0.020 0.830±0.020 0.830±0.020 0.875±0.017 0.866±0.016 0.838±0.018 0.891±0.012
Yeast-0-5-6-7-9vs4 0.654±0.052 0.654±0.052 0.654±0.052 0.783±0.037 0.716±0.033 0.681±0.074 0.793±0.036
Libras 0.839±0.050 0.839±0.050 0.839±0.050 0.839±0.050 0.834±0.048 0.839±0.047 0.967±0.034
Yeast-1vs7 0.717±0.032 0.717±0.032 0.717±0.032 0.675±0.077 0.731±0.053 0.681±0.010 0.725±0.070
Arrythmia 0.575±0.160 0.575±0.160 0.575±0.160 0.568±0.170 0.572±0.160 0.597±0.160 0.547±0.065
Solar-flare-M0 0.551±0.025 0.551±0.025 0.551±0.025 0.651±0.018 0.582±0.029 0.550±0.043 0.673±0.042
Oil 0.766±0.088 0.766±0.088 0.766±0.088 0.807±0.062 0.834±0.040 0.793±0.097 0.846±0.044
Yeast4 0.649±0.083 0.649±0.083 0.649±0.083 0.787±0.021 0.775±0.035 0.666±0.085 0.793±0.035
Redwinequality4 0.535±0.027 0.535±0.027 0.535±0.027 0.587±0.039 0.557±0.044 0.543±0.032 0.692±0.058
Yeast5 0.872±0.074 0.872±0.074 0.872±0.074 0.914±0.055 0.909±0.057 0.862±0.067 0.951±0.028
Yeast6 0.777±0.100 0.777±0.100 0.777±0.100 0.849±0.093 0.857±0.093 0.790±0.140 0.792±0.070
Abalone17 0.568±0.049 0.568±0.049 0.568±0.049 0.642±0.073 0.632±0.068 0.577±0.037 0.670±0.042
Abalone20 0.497±0.001 0.497±0.001 0.497±0.001 0.588±0.069 0.555±0.064 0.497±0.001 0.688±0.110
Mean (k=1) 0.709 0.709 0.709 0.753 0.748 0.717 0.780
Mean (k=3) 0.696 0.754 0.699 0.755 0.742 0.717 0.797

ba
l

au
t

io
n

pi
m gl
a

ge
r

ye
1

ha
b

ve
3

ha
y

se
g

ab
8

ye
3

ec
3

pa
g

sa
t

ye
a lib y1
7 ar
r

so
l

oi
l

ye
4

wi
4

ye
5

ye
6

a1
7

a2
0

m
ea

n

0

20

40

60

80

100
norm1BA.pdf

local- k NN V1
k NN

local- k NN V2

Figure 2.12: Comparison of γ1−NN with the two versions of local-γ1−NN, in terms of Balanced
Accuracy.

63

2.6. Conclusion

Table 2.8: Results for k = 1 with GM as performance measure over 5 runs. The standard
deviation is indicated after the ± sign and the best results on each dataset is indicated in bold.
Only the mean value when k = 3 is shown in the last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN
Balance 0.853±0.021 0.853±0.021 0.853±0.021 0.828±0.022 0.888±0.012 0.854±0.042 0.828±0.022
Autompg 0.812±0.064 0.812±0.064 0.812±0.064 0.807±0.054 0.862±0.025 0.816±0.026 0.857±0.031
Ionosphere 0.821±0.035 0.821±0.035 0.821±0.035 0.849±0.023 0.847±0.023 0.841±0.022 0.911±0.037
Pima 0.650±0.038 0.650±0.038 0.650±0.038 0.692±0.032 0.703±0.034 0.651±0.023 0.689±0.039
Glass 0.773±0.072 0.773±0.072 0.773±0.072 0.797±0.053 0.826±0.072 0.761±0.068 0.777±0.060
German 0.524±0.042 0.524±0.042 0.524±0.042 0.554±0.030 0.576±0.034 0.551±0.032 0.570±0.030
Yeast1 0.648±0.018 0.648±0.018 0.648±0.018 0.663±0.031 0.656±0.017 0.638±0.027 0.668±0.042
Haberman 0.397±0.064 0.397±0.064 0.397±0.064 0.514±0.098 0.496±0.068 0.409±0.059 0.556±0.079
Vehicle3 0.653±0.031 0.653±0.031 0.653±0.031 0.666±0.031 0.705±0.032 0.684±0.041 0.724±0.016
Hayes 0.718±0.086 0.718±0.086 0.718±0.086 0.902±0.051 0.806±0.066 0.803±0.119 0.915±0.046
Segmentation 0.933±0.023 0.933±0.023 0.933±0.023 0.950±0.022 0.955±0.009 0.949±0.015 0.962±0.009
Abalone8 0.431±0.016 0.431±0.016 0.431±0.016 0.596±0.009 0.472±0.016 0.436±0.021 0.633±0.022
Yeast3 0.774±0.039 0.774±0.039 0.774±0.039 0.852±0.029 0.823±0.036 0.789±0.034 0.853±0.035
Ecoli3 0.710±0.090 0.710±0.090 0.710±0.090 0.819±0.065 0.799±0.061 0.732±0.097 0.851±0.085
Pageblocks 0.879±0.016 0.879±0.016 0.879±0.016 0.912±0.022 0.901±0.025 0.881±0.020 0.929±0.013
Satimage 0.819±0.023 0.819±0.023 0.819±0.023 0.873±0.018 0.862±0.017 0.832±0.027 0.890±0.012
Yeast-0-5-6-7-9vs4 0.569±0.092 0.569±0.092 0.569±0.092 0.775±0.044 0.671±0.047 0.589±0.142 0.785±0.042
Libras 0.821±0.060 0.821±0.060 0.821±0.060 0.821±0.060 0.818±0.057 0.820±0.058 0.966±0.036
Yeast-1vs7 0.670±0.050 0.670±0.050 0.670±0.050 0.658±0.094 0.690±0.075 0.598±0.165 0.684±0.105
Arrythmia 0.293±0.367 0.293±0.367 0.293±0.367 0.292±0.366 0.292±0.366 0.379±0.341 0.543±0.084
Solar-flare-M0 0.365±0.061 0.365±0.061 0.365±0.061 0.639±0.019 0.435±0.059 0.363±0.086 0.682±0.043
Oil 0.724±0.124 0.724±0.124 0.724±0.124 0.786±0.079 0.823±0.050 0.758±0.127 0.803±0.022
Yeast4 0.547±0.135 0.547±0.135 0.547±0.135 0.781±0.024 0.753±0.044 0.576±0.141 0.782±0.043
Redwinequality4 0.263±0.140 0.263±0.140 0.263±0.140 0.501±0.071 0.351±0.179 0.288±0.154 0.695±0.066
Yeast5 0.860±0.084 0.860±0.084 0.860±0.084 0.911±0.060 0.904±0.062 0.850±0.073 0.951±0.028
Yeast6 0.737±0.137 0.737±0.137 0.737±0.137 0.837±0.111 0.841±0.112 0.737±0.211 0.848±0.062
Abalone17 0.368±0.113 0.368±0.113 0.368±0.113 0.569±0.112 0.524±0.121 0.394±0.094 0.682±0.064
Abalone20 0.000±0.000 0.000±0.000 0.000±0.000 0.454±0.118 0.276±0.234 0.000±0.000 0.663±0.126
Mean (k=1) 0.629 0.629 0.629 0.725 0.698 0.642 0.775
Mean (k=3) 0.584 0.716 0.591 0.707 0.676 0.617 0.789

ba
l

au
t

io
n

pi
m gl
a

ge
r

ye
1

ha
b

ve
3

ha
y

se
g

ab
8

ye
3

ec
3

pa
g

sa
t

ye
a lib y1
7 ar
r

so
l

oi
l

ye
4

wi
4

ye
5

ye
6

a1
7

a2
0

m
ea

n

0

20

40

60

80

100
norm1GM.pdf

local- k NN V1
k NN

local- k NN V2

Figure 2.13: Comparison of γ1−NN with the two versions of local-γ1−NN, in terms ofGeometric
Mean.

64

Chapter 2. An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification

Table 2.9: Results for k = 1 with G1 as performance measure over 5 runs. The standard
deviation is indicated after the ± sign and the best results on each dataset is indicated in bold.
Only the mean value when k = 3 is shown in the last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN
Balance 0.845±0.022 0.845±0.022 0.845±0.022 0.854±0.015 0.884±0.012 0.842±0.046 0.854±0.015
Autompg 0.769±0.074 0.769±0.074 0.769±0.074 0.764±0.063 0.829±0.029 0.777±0.031 0.823±0.032
Ionosphere 0.814±0.039 0.814±0.039 0.814±0.039 0.842±0.030 0.838±0.029 0.820±0.031 0.892±0.043
Pima 0.561±0.046 0.561±0.046 0.561±0.046 0.613±0.036 0.626±0.038 0.561±0.026 0.618±0.049
Glass 0.710±0.082 0.710±0.082 0.710±0.082 0.738±0.059 0.774±0.079 0.696±0.076 0.685±0.050
German 0.381±0.050 0.381±0.050 0.381±0.050 0.411±0.036 0.438±0.040 0.411±0.038 0.551±0.011
Yeast1 0.526±0.026 0.526±0.026 0.526±0.026 0.538±0.035 0.529±0.020 0.514±0.036 0.567±0.024
Haberman 0.238±0.070 0.238±0.070 0.238±0.070 0.360±0.103 0.333±0.076 0.251±0.074 0.514±0.049
Vehicle3 0.511±0.034 0.511±0.034 0.511±0.034 0.515±0.037 0.565±0.036 0.548±0.037 0.591±0.012
Hayes 0.689±0.086 0.689±0.086 0.689±0.086 0.880±0.046 0.779±0.076 0.791±0.113 0.756±0.102
Segmentation 0.888±0.029 0.888±0.029 0.888±0.029 0.890±0.028 0.875±0.015 0.909±0.029 0.888±0.029
Abalone8 0.214±0.013 0.214±0.013 0.214±0.013 0.331±0.009 0.239±0.012 0.219±0.017 0.385±0.012
Yeast3 0.654±0.023 0.654±0.023 0.654±0.023 0.649±0.018 0.697±0.010 0.635±0.012 0.670±0.026
Ecoli3 0.530±0.098 0.530±0.098 0.530±0.098 0.567±0.080 0.617±0.062 0.542±0.100 0.549±0.107
Pageblocks 0.817±0.026 0.817±0.026 0.817±0.026 0.813±0.025 0.813±0.044 0.815±0.032 0.812±0.022
Satimage 0.677±0.036 0.677±0.036 0.677±0.036 0.690±0.032 0.693±0.027 0.690±0.045 0.672±0.040
Yeast-0-5-6-7-9vs4 0.422±0.104 0.422±0.104 0.422±0.104 0.519±0.043 0.527±0.075 0.465±0.148 0.476±0.144
Libras 0.802±0.085 0.802±0.085 0.802±0.085 0.802±0.085 0.743±0.060 0.759±0.045 0.880±0.083
Yeast-1vs7 0.487±0.058 0.487±0.058 0.487±0.058 0.292±0.073 0.493±0.088 0.500±0.125 0.479±0.071
Arrythmia 0.171±0.217 0.171±0.217 0.171±0.217 0.167±0.214 0.167±0.214 0.205±0.220 0.171±0.217
Solar-flare-M0 0.165±0.068 0.165±0.068 0.165±0.068 0.243±0.017 0.215±0.064 0.117±0.079 0.267±0.032
Oil 0.546±0.108 0.546±0.108 0.546±0.108 0.580±0.094 0.571±0.048 0.666±0.100 0.597±0.101
Yeast4 0.312±0.116 0.312±0.116 0.312±0.116 0.357±0.021 0.436±0.041 0.350±0.132 0.402±0.087
Redwinequality4 0.108±0.058 0.108±0.058 0.108±0.058 0.152±0.037 0.133±0.071 0.122±0.070 0.192±0.055
Yeast5 0.705±0.110 0.705±0.110 0.705±0.110 0.602±0.081 0.649±0.081 0.720±0.074 0.697±0.096
Yeast6 0.500±0.139 0.500±0.139 0.500±0.139 0.353±0.053 0.529±0.099 0.466±0.181 0.479±0.115
Abalone17 0.150±0.097 0.150±0.097 0.150±0.097 0.150±0.057 0.183±0.078 0.170±0.072 0.147±0.024
Abalone20 0.000±0.000 0.000±0.000 0.000±0.000 0.083±0.052 0.076±0.075 0.000±0.000 0.012±0.024
Mean (k=1) 0.507 0.507 0.507 0.527 0.545 0.520 0.558
Mean (k=3) 0.508 0.552 0.514 0.540 0.546 0.527 0.559

ba
l

au
t

io
n

pi
m gl
a

ge
r

ye
1

ha
b

ve
3

ha
y

se
g

ab
8

ye
3

ec
3

pa
g

sa
t

ye
a lib y1
7 ar
r

so
l

oi
l

ye
4

wi
4

ye
5

ye
6

a1
7

a2
0

m
ea

n

0

20

40

60

80

norm1G1.pdf
local- k NN V1
k NN

local- k NN V2

Figure 2.14: Comparison of γ1−NN with the two versions of local-γ1−NN, in terms of G-
measure.

65

66

Chapter 3

Metric Learning from Few Positives

This chapter is based on the following publications

Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler and Marc Sebban. Learning
from Few Positive: a Provably Accurate Metric Learning Algorithm to Deal with Imbalanced
Data. In International Joint Conferences on Artificial Intelligence (IJCAI), 2020, Virtual,
Japan [118].

Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler and Marc Sebban. MLFP:
Un Algorithme d’apprentissage de Métrique pour la Classification de données déséquilibrées.
In Conférence sur l’Apprentissage automatique (CAp), 2020, Virtual, France [115].

Abstract

As explained before, learning from imbalanced data, where the positive examples are
very scarce, remains a challenging task from both a theoretical and algorithmic perspec-
tive. In this chapter, we extend the idea presented in our first contribution by using a
metric learning strategy. Unlike the state-of-the-art metric learning methods, our algo-
rithm MLFP, for Metric Learning from Few Positives, learns a new representation that is
used only when a test query is compared to a minority training example. From a geometric
perspective, in this projection space, the idea is still to artificially bring positive examples
closer to the query without changing the distances to the negative (majority class) data.
This strategy allows us to expand the decision boundaries around the positives, yielding a
better F -Measure. Beyond the algorithmic contribution provided by MLFP, this chapter
presents generalization guarantees on the False Positive and False Negative rates. Exten-
sive experiments conducted on several public and private imbalanced datasets show the
effectiveness of our method.

3.1 Introduction

Fraud detection in bank or insurance applications [2, 99], and anomaly identification for medical
diagnosis [3] are some societal challenges requiring to address the problem of learning from
highly imbalanced data. When dealing with such a setting, one has to face two major issues:
(i) the scarcity of the class of interest, only composed of a few positive data, which limits the
efficiency of standard margin-based loss functions; (ii) the scattering of positive examples in
the total mass of the training data, which makes the estimation of local densities much more
complicated than in balanced scenarios.

As we said in Chapter 1, several solutions have been proposed in the literature to address
these two problems. Most of them consist in applying sampling strategies which aim to balance
the dataset by reducing the number of negative examples and/or creating new synthetic positive

67

3.1. Introduction

test query

positive examples

negative examples

Neighborhood

Euclidean distance

Mahalanobis distance

Imbalanced dataset compared to

compared to

M

Figure 3.1: Intuition behind our method MLFP: a PSD matrix M is optimized under con-
straints, and is used only when a test query is compared to a positive example. The distance to
the negative examples is kept unchanged. This allows the learned metric to expand the decision
boundaries around the positives and thus to capture more examples of the class of interest.

data [102, 88]. On the other hand, one can resort to cost-sensitive algorithms [63] which assign
a weight to each class (or even to each example) so that the classifier can focus better on the
minority class. Other strategies include the use of ensemble methods [126, 44] or the specific
adaptation of existing approaches such as deep learning [61, 35] or kernel methods [81, 32, 132].

In this chapter, we address the problem of learning from imbalanced data from a metric
learning perspective [9, 67]. Learning a metric specifically designed for the application at hand
may present several advantages in the context of imbalanced datasets: (i) the metric can be
learned under semantic constraints allowing us to expand the decision boundaries around the
positives; (ii) this framework enables to design optimization problems based on the geometry of
the data without suffering from the issues of standard accuracy-based loss functions (e.g., hinge
loss for SVMs, exponential loss for boosting, logistic loss for logistic regression); (iii) metric
learning is a nice setting to derive theoretical guarantees on the learned transformation [10].
Surprisingly, despite these interesting features, metric learning has not received much attention
to address the problem of learning from imbalanced data (see, e.g., the recent papers [39], [119]
and [51]). The goal of this chapter is to bridge this gap from both an algorithmic and a theoret-
ical perspective. As illustrated in Figure 3.1, we propose the algorithm MLFP that optimizes
a linear transformation (via a Positive Semi Definite (PSD) matrix M of a Mahalanobis dis-
tance) only when a test query is compared to a minority training example. A single metric M is
learned for the whole space taking the geometry of the data into account. Unlike the standard
metric learning algorithms (see, e.g., LMNN [123] or ITML [30]), our method boils down to
artificially bringing positive examples closer to the query without challenging the features of the
negatives. This has a direct impact on the decision boundaries around the positives allowing us
to capture more examples of the class of interest yielding a better F -Measure (see Section 3.3
for a formal definition). By using the Uniform Stability Framework, we derive theoretical guar-
antees on the learned matrix M showing the actual capability of MLFP to control the false
positive and false negative rates.

The chapter is organized as follows. In Section 3.2, we report some related work on metric
learning for imbalanced data classification. Section 3.3 is dedicated to the presentation of our
metric learning algorithm MLFP. Section 3.4 presents a theoretical analysis using the Uniform

68

Chapter 3. Metric Learning from Few Positives

Stability Framework and Section 3.5 illustrates the performance of MLFP compared to state-
of-the-art algorithms.

3.2 Related Work

Most of the metric learning algorithms (see [9, 67] for a survey) are based on the optimization
of the Mahalanobis distance between two points xi and xj ∈ Rd:

DM(xi,xj)
2 = (xi − xj)

TM(xi − xj),

where M is a d × d Positive Semi Definite matrix. One can express M as LTL where L is
a r × d matrix where r is the rank of M. Thus, this distance can be seen as the Euclidean
distance in a new feature space Lx.

As explained in Section 1.4, a well-known representative of this family of algorithms is the
Large Margin Nearest Neighbor (LMNN) [123]. For each example of a training set of size
m, the learned metric M aims to bring closer the neighbors of the same class (called target
neighbors) while pushing away the examples of other classes (the impostors). While the number
of constraints is in the order of km2 with k the number of considered nearest neighbors, the
authors proposed an efficient subgradient descent algorithm which benefits from the fact that
many of these constraints are trivially satisfied. This algorithm has been shown to be very
efficient and to scale well with large datasets. However, it is worth noticing that LMNN is not
designed to take into account some imbalance in the data. Indeed, the similarity constraints
constructed from pairs of examples of the same class do not make any difference between the
positive and negative examples. Therefore, in imbalanced scenarios, LMNN is prone to focus
on the majority class and thus is subject to miss the positive examples.
This remark also holds for Information Theoretic Metric Learning (ITML) [30] or Geometric
Mean Metric Learning (GMML) [129]. Like LMNN, they work with pairs of examples. The
main difference for ITML comes from the use of a LogDet regularization which constrains M
to remain close to some prior matrix M0. It can be shown that ITML provides a cheap way to
fulfill the PSD constraint on M. On the other hand, GMML learns a matrix M to compute
the distance between the similar examples and the matrix M−1 to compute the dissimilar ones.
The idea is that if M brings similar examples close to each other (i.e. all the eigenvalues are
less than one), then M−1 will push dissimilar examples away. Built on a geometric intuition,
they learn the metric with a convex optimization problem which has a closed form solution by
seing the latter as an optimization problem on the Riemannian manifold of PSD matrices.

The first attempts to address the problem of learning a metric from imbalanced datasets
have been proposed very recently. [119] introduce an iterative metric learning algorithm (IML)
that aims to define a stable neighborhood used to predict the label of a new test data. The
method repeats two main steps: (i) the learning of a linear transformation, e.g., by using
LMNN, and (ii) a training sample selection given a test example. The procedure is repeated
until stabilization of the neighborhood. By repeating the process several times, IML is able to
locally separate positives from negatives. However, the main issue comes from the algorithmic
complexity of the method, which requires to apply LMNN and to update the pairs used for
the training process at each iteration.

Another approach to learn metrics from imbalanced datasets has been recently proposed [51].
In their Imbalanced Metric Learning algorithm (ImbML), the authors take into account the
nature of the pairwise constraints by using two different sub-losses, one for each label, weighted
according to the number of positive and negative examples respectively. This intuitive and
natural way to proceed prevents the algorithm from favoring the majority class. However, we
will see that applying the learned metric M to all examples is not necessary, focusing only on

69

3.3. Metric Learning for Imbalanced Data

the minority class appears to be much more efficient and allows us notably to better control
the false negatives.

Finally, [39] introduce DMBK for Distance Metric by Balancing KL-divergence. This al-
gorithm resorts to the KL-divergence to represent normalized between-class divergences. Com-
bined with a geometric mean, DMBK is able to make these divergences balanced. Note that
this method makes sense in the multi-class setting, but is meaningless for addressing binary
problems, due to the use of the normalization while computing the KL-divergence.

Beyond the algorithmic limitations of the previous state-of-the-art algorithms, note that
none of them comes with guarantees on the classification error. In this chapter, we address
this problem by studying the capability of MLFP to optimize a metric M which provides
a good compromise between (i) expanding the decision boundaries around the positives which
enables to reduce the false negative rate at test time (one of the main issues faced in imbalanced
learning); (ii) controlling this expansion to prevent the algorithm from detecting too many false
alarms, represented by the false positive rate. The theoretical results take the form of guarantees
on the learned metric using the uniform stability framework [13] which measures the stability
of the output of the algorithm when the training set is subject to slight changes.

3.3 Metric Learning for Imbalanced Data

In this section, we present our algorithm MLFP, for Metric Learning from Few Positives. Let
us remind that we denote by S = {zi = (xi, yi)}mi=1 the set of m training examples drawn i.i.d.
from an unknown joint distribution D over X × Y, where xi ∈ X (here X = Rd) is a feature
vector and yi ∈ Y (here Y = {−1,+1}) corresponds to its associated label. The label +1 is
used to denote the positive or the minority class. We further note S = S+∪S− with S+ the set
of m+ positive examples and S− the set of m− negative examples, such that m = m+ +m−.

3.3.1 Problem Formulation

In our approach, we use the Euclidean distance when comparing a query point to a majority-
class example. The originality comes from the use of an optimized Mahalanobis distance when
comparing a query to a minority-class sample. The objective of this strategy is to formulate a
metric learning problem leading to a classifier (a k−NN here) which is accurate on both classes
even in an imbalanced scenario.

In order to avoid the pitfall of classic metric learning algorithms that are prone to focus
on the majority class, we propose to give more importance to the minority class composed of
the positive instances. Our algorithm MLFP tries to control the false positive (FP) and false
negative (FN) rates thanks to the following constrained optimization problem:

min
M∈S+

1

m3

(1− α)
∑

(xi,xj ,xk)
yi=yj 6=yk=−1

`FN(M, zi, zj , zk) + α
∑

(xi,xj ,xk)
yi=yj 6=yk=1

`FP(M, zi, zj , zk)

+ µ‖M− I‖2F

such that λmax (M) ≤ 1. (3.1)

where S+ is the set of PSD matrices, λmax (M) is the largest eigenvalue of the PSD matrix M,
`FN and `FP are defined by:

`FN(M, zi, zj , zk) = [1− c+ DM(xi,xj)
2 −D(xi,xk)

2]+,

70

Chapter 3. Metric Learning from Few Positives

`FP(M, zi, zj , zk) = [1− c+ D(xi,xj)
2 −DM(xi,xk)

2]+,

where [a]+ = max (0, a), α is the positive rate
m+

m
and µ‖M− I‖2F is a regularization term

which penalizes a large deviation from the Euclidean distance. The hyper-parameter c controls
the margin we want to preserve between pairs of dissimilar examples according to the Euclidean
space and the learned one.

Problem (3.1) is composed of two terms where triplets are involved. Unlike standard metric
learning algorithms, our method takes into account both the Euclidean distance D and the
metric learned DM . More precisely: the first term `FN aims to gather the minority class
examples with respect to the learned metric such that the distance between two positives (using
M) is less than the distance to a negative example (using the Euclidean distance). This subloss
can be seen as a way to prevent the model from generating false negatives (FN). The second
term `FP works in a similar manner. The only difference lies in the fact that the query xi is
a negative example. Thus, we learn M such that the positive queries xk are not brought too
close to xi, i.e. the Euclidean distance between two negatives xi and xj (with respect to the
Euclidean distance) is lower than the distance between xi and xk (with respect to M). This
subloss can be seen as a way to prevent the model from generating false positives (FP).

As presented in Section 1.5.1, minimizing the F -Measure boils down to finding a good
trade-off between FP and FN. However, in a highly imbalanced setting, where the number
of positives is very low, missing only a few positives leads to a dramatic decrease of the F -
Measure. That is why we constrain in Problem (3.1) the largest eigenvalue λmax (M) to be
lower than 1, so that the learned matrix M aims to pay more attention to the positive class.
In the next section, we provide a formal explanation of its use.

3.3.2 On the Impact of the Constraint

We study here the impact of the λmax (M) value on both FN and FP and, thus the influence
of the constraint in the optimization problem.

Proposition 3. Let P[FNM(x)] (resp. P[FPM(x)]) be the probability of a positive query (resp.
a negative query) x of being a false negative (resp. a false positive) using the 1−NN algorithm
with the learned matrix M and P[FN(x)] (resp. P[FP (x)]) the same probability using the
Euclidean distance.
Then, if λmax (M) ≤ 1, we have:

P[FNM(x)] ≤ P[FN(x)] and P[FPM(x)] ≥ P[FP (x)].

Sketch of proof. Let ε be the distance from x to its nearest neighbor Nx. The example x is
a false negative if Nx ∈ S−, that is, all positives x′ ∈ S+ are outside an ellipsoid Eε,M−1(x),
defined by ε and M. Therefore, we have:

P[FNM(x)] = (1− P
[
x′ ∈ Eε,M−1(x)

]
)m+ . (3.2)

When the Euclidean distance is used, we deal with a standard sphere Sε of radius ε, and we
get:

P[FN(x)] = (1− P
[
x′ ∈ Sε(x)

]
)m+ . (3.3)

Having λmax (M) ≤ 1 implies Eq. (3.2) ≤ Eq. (3.3). Indeed λmax (M) ≤ 1 implies that
the sphere Sε is included in the ellipsoid Eε,M−1 as illustrated in Figure 3.2. By this choice, we
expand the decision boundaries around positives and thus capture more minority class examples.

71

3.4. Theoretical Analysis

ε

ε
λmin

ε
λmax

x

Nx

x′

Figure 3.2: Illustration of the constraint λmax (M) ≤ 1. Without learning the matrix M, the
Euclidean distance is used both to compare a query x to a negative Nx and to a positive x′. The
isodistance curves are thus spherical and identical (one in solid black for Nx, one in dashed red
for x′). By learning the matrix M, we virtually change the distance of the query to the positive
examples. The isodistance curves for the positives are now ellipses, like the one represented in
red. In the example, the positive x′, that is outside the sphere, is inside the ellipse and will
thus be considered closer, with the constraint λmax (M) ≤ 1, than the negative Nx that lies on
the black sphere. With this same constraint, we are sure that the ellipse is enclosing the circle
(i.e. ε

λmax
≥ ε) and so that all positives will be brought closer to the query. In the end, this

constraint ensures that we increase the influence of the positives and thus leads to the decrease
of FN.

Using a similar scheme, we can prove the second inequality of Proposition 3. When x is negative
and Nx ∈ S+, we have:

P[FPM(x)] = (1− P
[
x′ ∈ Eε,M−1(x)

]
)m− , (3.4)

and

P[FP (x)] = (1− P
[
x′ ∈ Sε(x)

]
)m− . (3.5)

By looking at Equations (3.2) and (3.4), we can note that they are both exponentially
decreasing w.r.t. to the number of positives and negatives respectively. However, in imbalanced
scenarios, the number of negatives is supposed to be much higher than the number of positives.
Thus, the probability of having a false positive is decreasing faster than the probability of having
a false negative. We then choose to learn a matrix M under the constraint λmax (M) ≤ 1, so that
our algorithm will focus first on reducing FN. An illustration of the impact of this constraint
in terms of decision boundaries is shown in Figure 3.3. The experiments in Section 3.5 will
confirm that the use of this constraint is very relevant from an F -Measure perspective and is
able to reduce the number of FN at test time.

3.4 Theoretical Analysis

In this section, we provide generalization guarantees about the learned metric M using the
Uniform Stability framework [13] adapted to metric learning [10]. Then, we use this result to
derive classification guarantees over a 1−Nearest Neighbor (1−NN) classifier making use of this

72

Chapter 3. Metric Learning from Few Positives

k-NN LMNN

ImbML MLFP

Figure 3.3: Illustration of the impact of the constraint λmax (M) ≤ 1 in MLFP (bottom right)
compared to k−NN (top left), LMNN (top right), ImbML (bottom left) on the autompg
dataset with a 1−NN classifier. We perform a PCA, keeping the two most relevant dimensions,
and plot the test set on a mesh grid of the space. In light grey (resp. white), areas classified as
negative (resp. positive).

metric. Note that the whole study is conducted under the constraint λmax (M) ≤ 1 as used in
Problem (3.1).

First, we denote by ` the weighted combination of `FN and `FP as defined in Problem (3.1)
and FS the objective function to optimize over the training set S = {zi}mi=1. We have:

FS =
1

m3

m∑
i,j,k=1

`(M, (zi, zj , zk)) + µ‖M− I‖2F .

Let RS be the associated empirical risk over S defined as:

RS =
1

m3

m∑
i,j,k=1

`(M, (zi, zj , zk)),

and R be the corresponding expected true risk defined as:

R = E
S∼Dm

[RS] = E
S∼Dm

 1

m3

m∑
i,j,k=1

`(M, (zi, zj , zk))

= E

z,z′,z′′∼D

[
`(M, (z, z′, z′′))

]
.

The last equality is due to the i.i.d. aspect of the expectation.

3.4.1 Uniform Stability

Intuitively, an algorithm is stable if its output, in terms of loss, does not change significantly
under a small modification of the training sample. The supremum of this change must be

73

3.4. Theoretical Analysis

bounded in O(1/m).

Definition 4. A learning algorithm A has a uniform stability in κ
m with respect to a loss

function ` and parameter set θ, with κ a positive constant if:

∀S, ∀i, 1 ≤ i ≤ m, sup
Z
|`(θS , Z)− `(θSi , Z)| ≤ κ

m
,

where S is a learning sample of size m, Z = (z1, z2, z3) = ((x1, y1), (x2, y2), (x3, y3)) is a triplet
of labeled examples, θS the model parameters learned from S, θSi the model parameters learned
from the sample Si obtained by replacing the ith example zi from S by another example z′i
independent from S and drawn from D. Finally, `(θS , Z) is the loss suffered at Z.

In this definition, Si represents the notion of small modification of the training sample. The
next definition aims to study the evolution of the loss function according to the considered
triplets Z and Z ′.

Definition 5. A loss function ` is said to be σ-admissible, w.r.t. the distance metric M if (i)
it is convex w.r.t. its first argument and (ii) if the following condition holds:

∀Z,Z ′ |`(M, Z)− `(M, Z ′)| ≤ σ,

where Z = (zi, zj , zk) and Z ′ = (z′i, z
′
j , z
′
k) are two triplets from a sample S and drawn from D.

From the two above definitions, if we also suppose that for all x, we have ‖x‖ ≤ K, we can
state the following generalization bound.

Theorem 21. Let δ > 0 and m > 2. Let S be a sample of m randomly selected training
examples. Let M be the matrix learned from Problem (3.1) which has a uniform stability in

κ

m
.

The loss function ` as defined above is σ-admissible. With probability 1− δ, the following bound
on the true risk R of ` holds:

R ≤ RS + 2
κ

m
+ (2κ+ 2σ)

√
ln(2/δ)

2m
,

where
κ =

12

µ
× ((1− α)K2)2 and σ = (1− α)(1− c+ 4K2).

The derived bound provides guarantees on the generalization performances of the learned
metric on the distribution D w.r.t. to the loss `. We now make use of this bound to provide
classification guarantees of a 1−NN making use of the learned metric M.

3.4.2 Classification Guarantees

We derive here generalization guarantees on the FP and FN rates for a 1−NN classifier making
use of the metric M learned by MLFP. Let S be the learning sample of size m used by a
nearest-neighbor classifier. Let us define the empirical risks for FP and FN:

RFP (S) = Ez=(x,y)∼D1{DM(x,xp)2≤D(x,xn)2} × 1{y=−1}.

where xp,xn ∈ S are respectively the nearest positive and negative neighbors of x in S. Sym-
metrically, we have:

RFN (S) = Ez=(x,y)∼D1{D(x,xn)2≤DM(x,xp)2} × 1{y=1}.

We consider then the expected true risks averaged over all the training samples of size m:

RFP = ES∼DmRFP (S) and RFN = ES∼DmRFN (S).

We can now introduce our main result.
1The elements of the proof are given at the end of this Chapter, in Section 3.7.

74

Chapter 3. Metric Learning from Few Positives

Theorem 32. Let δ > 0 and m > 0. Let S be a training sample of size m i.i.d. from a distri-
bution D, z a new instance i.i.d. from D, and let M be the learned matrix from Problem (3.1)
which has a uniform stability in

κ

m
with respect to the loss `. Considering that the loss function

` is σ-admissible, let us denote by RS its empirical risk. With probability 1 − δ, we have the
following bounds for the FP and FN rates:

RFP ≤
1

α

[
RS∪{z} +

2κ

m+ 1
+ (2κ+ 2σ)

√
ln(2/δ)

2(m+ 1)

]
,

RFN ≤
1

1− α

[
RS∪{z} +

2κ

m+ 1
+ (2κ+ 2σ)

√
ln(2/δ)

2(m+ 1)

]
.

By comparing these two bounds, one can observe that when the class imbalance becomes
important, i.e. when α takes a low value, the guarantees on the FN rate become better than the
guarantees on FP. This result provides a theoretical confirmation that our approach - thanks
to the constraint λmax (M) ≤ 1 - is able to focus more on reducing FN. An illustration of this
phenomenon will be shown in the next section.

3.5 Experiments

In this section, we compare MLFP to other metric learning algorithms, focusing on (highly)
imbalanced datasets. For all experiments, as done in both [119] and [123], we use a 3−Nearest
Neighbor classifier. The results of the experiments with a 1−Nearest Neighbor classifier are
available at the end of this Chapter. Note that the source code of MLFP, allowing the interested
reader to reproduce these experiments is available3.

3.5.1 Experimental Setup

We use several public datasets from the UCI4 and KEEL5 repositories. These datasets are
diverse in terms of imbalance ratio (IR, number of majority examples per positive example),
dimension, number of examples, as shown in Table 2.2. In addition, we use eight datasets
provided by the French Ministry of the Economy and Finances (DGFiP). We remind the reader
that it corresponds to the tax returns of French companies and are used for fraud detection.
These frauds may correspond to overvalued charges, voluntary reductions in profits or, local
or international, VAT fraud. As the DGFiP can only control a small part of the 3,000,000
companies, it is essential to optimise the selection of these companies in order to reduce errors
as much as possible. Considering the control process, it is less costly for the DGFiP to quickly
control a non-fraudulent company than to let a big fraudster pass. It is therefore important for
it to reduce the number of FN , even if it means increasing the number of FP a little.

All the datasets are standardized by substracting the mean and dividing by the standard
deviation. We use the F -Measure as the performance criterion to compare the different meth-
ods. Furthermore, 80% of the dataset is randomly selected in order to train the model and 20%
to test it. The different hyper-parameters are tuned with a 10-fold-cross-validation over the
training set. The sampling of the test set is repeated 5 times and we report the average results
in terms of F -Measure (F1).

For our MLFP method, the hyper-parameters µ for the regularization and c for the margin
are both tuned in the range [0, 1], using a Bayesian optimization with 400 calls. The Bayesian

2The elements of the proof are given at the end of this Chapter, in Section 3.7.
3https://github.com/RemiViola/MLFP
4https://archive.ics.uci.edu/ml/datasets.html
5https://sci2s.ugr.es/keel/datasets.php

75

https://github.com/RemiViola/MLFP
https://archive.ics.uci.edu/ml/datasets.html
https://sci2s.ugr.es/keel/datasets.php

3.5. Experiments

optimization is done with the Scikit-Optimize library6. As the matrix M can be expressed
as LTL (Cholesky decomposition), we directly learn a diagonal matrix L. Since we are not
particularly interested, in this chapter, in low rank matrices, we do not impose any constraint
on the dimension of L. At each iteration of the optimization process, the spectral radius of the
matrix L is constrained to be less than one so that M = LTL has its largest value less than
one.

We compare MLFP with several methods:

• The 3−Nearest Neighbor algorithm (3−NN), as a baseline.

• LMNN, where the hyper-parameter µ, which controls the trade-off between the two parts
of the loss (see [123] for more details), is tuned in [0, 1] using a Bayesian optimization
with 20 calls.

• ITML [30].

• GMML [129], where the parameter t is tuned in [0, 1] also with 20 calls of a Bayesian
optimization.

• IML [119] where we select 5∗k = 15 points for the sampling selection and we also tune the
hyper-parameter of the LMNN algorithm in [0, 1]. We used 0.8 for the ratio of matching
as suggested in the paper.

• ImbML [51] where the parameter m is tuned in {1, 10, 100, 1000, 10000}, the parameter
λ in {0, 0.01, 0.1, 1, 10} and the parameter a in [0, 1]. We also use a Bayesian optimization
with 400 calls.

3.5.2 Results

The main results are reported in Table 3.1. Unsurprisingly, all metric learning methods perform
better than a 3−NN. Furthermore, in terms of F -Measure, those which were designed to deal
with imbalanced scenarios perform better than LMNN, ITML orGMML. However, the most
competitive method is MLFP: the F -Measure is increased on average by 1.4 points compared
to the second best method (ImbML). More precisely, our MLFP outperforms all the other
methods on 12 (over 28) datasets. The fact that MLFP works better than ImbML shows
the advantage of learning a specific metric when computing distances to positive examples.
So, it is not strictly necessary to take all terms of the F -Measure into account in the loss
function. Focusing on False Negative and False Positive Rates, as we propose here, is enough.
Furthermore, as shown on Figure 3.3, both ImbML and MLFP focuses on the minority class,
but they perform this task in a different way. Our method tries to reduce the number of FN by
increasing the decision boundaries around each of positive example and then reduces the impact
of each negatives by surrounding them. In ImbML, the possibility of having large margins in
the learned space has the disadvantage of creating larger areas of negative classification and
this potentially increases the risk of FN .

For the DGFiP datasets, the results are available in the Table 3.2. We can see that our
method outperforms all other metric learning methods for these datasets. As our algorithm
tends to focus on the positives, and therefore the fraudsters, it is obviously more suitable for
them. This also comes from the fact that we know that, in this kind of context, fraudsters
often try to mimic the behaviour of non-frauders in order to stay undetected. By artificially
increasing the decision boundaries around known positives, it is easier to capture fraudsters in
hiding.

6https://scikit-optimize.github.io/

76

https://scikit-optimize.github.io/

Chapter 3. Metric Learning from Few Positives

Datasets 3−NN LMNN ITML GMML IML ImbML MLFP
Balance 0.880±0.018 0.874±0.019 0.931±0.032 0.888±0.025 0.886±0.029 0.960±0.019 0.874±0.010
Autompg 0.780±0.054 0.792±0.031 0.801±0.018 0.823±0.034 0.785±0.021 0.790±0.044 0.805±0.040
Ionosphere 0.745±0.015 0.803±0.049 0.831±0.054 0.764±0.056 0.823±0.044 0.786±0.053 0.923±0.027
Pima 0.601±0.042 0.591±0.037 0.583±0.022 0.579±0.035 0.591±0.037 0.575±0.026 0.635±0.029
Glass 0.735±0.049 0.710±0.064 0.759±0.051 0.750±0.032 0.710±0.064 0.716±0.043 0.747±0.042
German 0.407±0.049 0.358±0.029 0.430±0.073 0.407±0.030 0.352±0.029 0.388±0.043 0.511±0.013
Yeast1 0.511±0.022 0.493±0.035 0.508±0.014 0.498±0.022 0.506±0.033 0.510±0.009 0.555±0.025
Haberman 0.343±0.093 0.279±0.082 0.296±0.119 0.345±0.104 0.201±0.072 0.327±0.120 0.428±0.042
Vehicle3 0.504±0.049 0.533±0.032 0.569±0.024 0.562±0.024 0.527±0.031 0.612±0.037 0.562±0.045
Hayes 0.581±0.210 0.824±0.089 0.829±0.071 0.876±0.091 0.824±0.089 0.908±0.083 0.930±0.106
Segmentation 0.882±0.031 0.888±0.011 0.866±0.029 0.870±0.029 0.895±0.020 0.909±0.028 0.882±0.025
Abalone8 0.223±0.025 0.220±0.040 0.213±0.025 0.210±0.038 0.228±0.021 0.200±0.023 0.336±0.016
Yeast3 0.719±0.028 0.734±0.020 0.742±0.034 0.747±0.031 0.717±0.032 0.723±0.023 0.725±0.021
Ecoli3 0.487±0.177 0.541±0.169 0.501±0.220 0.600±0.150 0.552±0.201 0.541±0.182 0.550±0.118
Pageblocks 0.855±0.027 0.844±0.027 0.850±0.023 0.864±0.022 0.842±0.027 0.865±0.021 0.860±0.025
Satimage 0.688±0.034 0.707±0.038 0.710±0.024 0.682±0.028 0.710±0.039 0.731±0.030 0.697±0.024
Yeast-0-5-6-7-9vs4 0.364±0.112 0.415±0.184 0.494±0.156 0.383±0.066 0.326±0.144 0.473±0.126 0.519±0.079
Libras 0.694±0.188 0.725±0.105 0.722±0.204 0.667±0.272 0.690±0.120 0.729±0.157 0.694±0.189
Yeast-1vs7 0.455±0.174 0.558±0.134 0.411±0.262 0.402±0.138 0.558±0.134 0.498±0.152 0.531±0.089
Arrhythmia 0.178±0.151 0.308±0.117 0.238±0.217 0.124±0.152 0.216±0.171 0.306±0.208 0.119±0.023
Solar-flare-m0 0.112±0.009 0.141±0.094 0.088±0.044 0.119±0.074 0.110±0.136 0.095±0.008 0.179±0.034
Oil 0.412±0.061 0.612±0.125 0.602±0.083 0.413±0.128 0.631±0.069 0.637±0.066 0.554±0.040
Yeast4 0.250±0.101 0.187±0.108 0.341±0.062 0.327±0.137 0.196±0.098 0.371±0.118 0.378±0.054
Redwinequality4 0.062±0.075 0.057±0.114 0.027±0.053 0.055±0.068 0.000±0.000 0.031±0.062 0.083±0.060
Yeast5 0.612±0.038 0.667±0.035 0.662±0.084 0.588±0.065 0.659±0.029 0.614±0.096 0.605±0.032
Yeast6 0.560±0.205 0.578±0.246 0.523±0.205 0.458±0.307 0.629±0.244 0.606±0.148 0.564±0.193
Abalone17 0.000±0.000 0.000±0.000 0.029±0.057 0.000±0.000 0.000±0.000 0.073±0.093 0.053±0.047
Abalone20 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.044±0.089 0.000±0.000 0.078±0.087
Mean 0.487 0.516 0.520 0.500 0.507 0.535 0.549

Table 3.1: Mean results (and standard deviations) in terms of F -Measure over 5 experiments
for the different Metric Learning methods, with 3−NN as final classifier, on public datasets
sorted by imbalance ratio (IR=m−/m+). The mean over all datasets among ML methods is
given and the best results are in bold, the standard deviation is indicated with the ± sign.

Datasets 3−NN LMNN ITML GMML IML ImbML MLFP
DGFiP 9-2 0.231±0.047 0.266±0.063 0.232±0.102 0.186±0.070 0.306±0.053 0.187±0.057 0.391±0.026
DGFiP 4-2 0.049±0.059 0.076±0.097 0.114±0.097 0.136±0.025 0.099±0.089 0.071±0.094 0.307±0.067
DGFiP 8-1 0.167±0.047 0.164±0.041 0.102±0.048 0.131±0.070 0.203±0.047 0.137±0.058 0.308±0.004
DGFiP 8-2 0.175±0.044 0.161±0.064 0.132±0.067 0.168±0.021 0.129±0.031 0.161±0.047 0.304±0.006
DGFiP 9-1 0.067±0.087 0.064±0.053 0.140±0.059 0.103±0.092 0.150±0.096 0.184±0.109 0.290±0.027
DGFiP 4-1 0.094±0.078 0.029±0.057 0.000±0.000 0.055±0.068 0.000±0.000 0.033±0.067 0.262±0.025
DGFiP 16-1 0.058±0.048 0.139±0.123 0.065±0.080 0.159±0.105 0.282±0.076 0.119±0.102 0.207±0.016
DGFiP 16-2 0.076±0.039 0.035±0.044 0.078±0.040 0.164±0.086 0.107±0.070 0.164±0.164 0.206±0.015
Mean 0.115 0.117 0.108 0.138 0.160 0.132 0.284

Table 3.2: Mean results (and standard deviations) in terms of F -Measure over 5 experiments
for the different Metric Learning methods, with 3−NN as final classifier, on private datasets
sorted by imbalance ratio (IR=m−/m+). The mean over all datasets among ML methods is
given and the best results are in bold, the standard deviation is indicated with the ± sign.

In the theoretical part of this chapter, we have proved that learning a matrix M under the
constraint λmax (M) ≤ 1 allows our algorithm to focus first on reducing FN . An illustration
of the impact of this contraint in terms of False Negatives is shown in Figure 3.4 on the 28
datasets. This figure reports the percentage of false negatives at test time generated by the
3−NN algorithm and MLFP with or without the constraint. The results show that, compared
to a 3−NN algorithm, MLFP systematically reduces the number of false negatives and thus
has the desired effect. When comparing MLFP with and without the constraint, we can note
that on 19 datasets out of 28, the use of the constraint λmax (M) ≤ 1 leads at test time to a
smaller number of false negatives.

77

3.6. Conclusion

ba
la

nc
e

*
au

to
m

pg
io

no
sp

he
re

 *
pi

m
a

gl
as

s *
ge

rm
an

ye
as

t1
ha

be
rm

an
 *

ve
hi

cle
3

ha
ye

s *
se

gm
en

ta
tio

n
*

ab
al

on
e8

 *
ye

as
t3

 *
ec

ol
i3

 *
pa

ge
bl

oc
ks

 *
sa

tim
ag

e
ye

as
t-0

-5
-6

-7
-9

vs
4

*
lib

ra
s

ye
as

t-1
vs

7
ar

rh
yt

hm
ia

 *
so

la
r-f

la
re

-M
0

*
oi

l *
ye

as
t4

 *
re

dw
in

eq
ua

lit
y4

 *
ye

as
t5

ye
as

t6
 *

ab
al

on
e1

7
*

ab
al

on
e2

0
*0

10

20
Av

er
ag

e
%

 o
f F

N
kNN
MLFP with constraint
MLFP without constraint

Figure 3.4: Average percentage of FN for each dataset at test time (see Section 3.5 for more
details), for k−NN and MLFP with or without the constraint on λmax . On 19 datasets (with
∗) over 28, the number of FN is lower for the version with the constraint. Note that the number
of FN is always lower with MLFP compared to k−NN.

3.6 Conclusion

In this chapter, we have proposed a new metric learning algorithm to deal with imbalanced
datasets. In this setting, finding the good compromise between the false negative and false
positive rates is still an open problem. The original contribution of this chapter comes from the
optimization in our algorithm MLFP of a Mahalanobis distance which is only used to compare
a new query to positive examples, while the Euclidean distance is still used when for comparing
that query to negative samples. A constraint on the maximum eigenvalue of the learned matrix
is introduced and has been shown to be provably efficient to reduce the false negative rate. Our
chapter is supported by a theoretical study and an extensive experimental evaluation showing
that MLFP outperforms state-of-the-art metric-learning methods.

This work opens the door to two promising lines of research. First, in MLFP we learn a
linear projection of the data. One interesting perspective would consist in kernelizing our metric
learning algorithm or designing a deep learning version allowing us to capture non linearity. A
simpler solution might also consist in learning different local metrics for different regions of the
input space as done in [130]. Second, as initiated in [102], combining a Mahalanobis distance
with a sampling strategy might lead to a new family of imbalanced learning methods.

78

Chapter 3. Metric Learning from Few Positives

Datasets 1−NN LMNN ITML GMML IML ImbML MLFP
balance 0.855±0.028 0.862±0.033 0.907±0.049 0.857±0.026 0.856±0.032 0.924±0.018 0.850±0.024
autompg 0.751±0.072 0.765±0.056 0.794±0.029 0.797±0.049 0.775±0.073 0.795±0.034 0.795±0.037
ionosphere 0.796±0.032 0.741±0.101 0.790±0.049 0.839±0.047 0.796±0.042 0.849±0.052 0.899±0.053
pima 0.568±0.052 0.579±0.040 0.557±0.043 0.536±0.044 0.547±0.055 0.566±0.053 0.595±0.043
glass 0.753±0.053 0.698±0.114 0.755±0.063 0.732±0.059 0.750±0.048 0.736±0.058 0.743±0.060
german 0.382±0.023 0.422±0.023 0.403±0.043 0.368±0.030 0.444±0.027 0.418±0.046 0.509±0.032
yeast1 0.516±0.027 0.497±0.033 0.499±0.029 0.506±0.018 0.472±0.022 0.499±0.031 0.525±0.024
haberman 0.318±0.024 0.274±0.081 0.295±0.109 0.337±0.062 0.293±0.114 0.261±0.084 0.421±0.039
vehicle3 0.500±0.054 0.551±0.053 0.536±0.076 0.600±0.038 0.599±0.023 0.612±0.027 0.552±0.040
hayes 0.808±0.079 0.782±0.175 0.850±0.050 0.802±0.078 0.693±0.219 0.787±0.062 0.820±0.095
segmentation 0.898±0.029 0.914±0.016 0.905±0.029 0.906±0.032 0.906±0.024 0.922±0.021 0.896±0.031
abalone8 0.223±0.027 0.240±0.022 0.213±0.020 0.218±0.020 0.223±0.049 0.217±0.036 0.295±0.017
yeast3 0.662±0.022 0.643±0.026 0.654±0.034 0.679±0.028 0.650±0.021 0.680±0.009 0.664±0.018
ecoli3 0.548±0.129 0.456±0.141 0.420±0.253 0.452±0.117 0.475±0.091 0.552±0.101 0.563±0.083
pageblocks 0.850±0.012 0.845±0.014 0.840±0.027 0.842±0.018 0.842±0.012 0.845±0.015 0.847±0.013
satimage 0.697±0.037 0.703±0.043 0.693±0.030 0.685±0.032 0.681±0.046 0.725±0.036 0.697±0.033
Yeast-0-5-6-7-9vs4 0.369±0.027 0.383±0.133 0.427±0.138 0.367±0.075 0.362±0.090 0.385±0.112 0.377±0.047
libras 0.706±0.205 0.716±0.208 0.706±0.205 0.750±0.215 0.624±0.165 0.733±0.218 0.756±0.237
yeast-1vs7 0.349±0.122 0.352±0.142 0.485±0.064 0.415±0.091 0.216±0.140 0.469±0.107 0.428±0.134
arrhythmia 0.236±0.114 0.330±0.220 0.216±0.140 0.228±0.145 0.232±0.188 0.160±0.233 0.223±0.139
solar-flare-m0 0.183±0.075 0.181±0.051 0.184±0.089 0.214±0.048 0.160±0.052 0.179±0.025
oil 0.521±0.103 0.705±0.097 0.574±0.105 0.480±0.147 0.518±0.092 0.608±0.112 0.527±0.127
yeast4 0.287±0.091 0.297±0.057 0.246±0.060 0.348±0.096 0.335±0.089 0.303±0.078 0.253±0.046
redwinequality4 0.096±0.086 0.095±0.120 0.040±0.080 0.042±0.052 0.114±0.127 0.097±0.124 0.113±0.027
yeast5 0.660±0.160 0.636±0.155 0.634±0.122 0.667±0.152 0.650±0.119 0.688±0.104 0.678±0.136
yeast6 0.421±0.162 0.480±0.114 0.433±0.166 0.475±0.172 0.378±0.113 0.481±0.091 0.421±0.162
abalone17 0.124±0.074 0.159±0.110 0.055±0.049 0.156±0.115 0.076±0.042 0.117±0.067 0.159±0.068
abalone20 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.095±0.124 0.029±0.026
Mean 0.503 0.511 0.504 0.511 0.500 0.524 0.529

Table 3.3: Mean results (and standard deviations) in terms of F -Measure over 5 experiments
for the different Metric Learning methods, with 1−NN as final classifier, on public datasets
sorted by imbalance ratio (IR=m−/m+). The mean over all datasets among ML methods is
given and the best results are in bold, the standard deviation is indicated with the ± sign.

Datasets 1−NN LMNN ITML GMML IML ImbML MLFP
DGFiP 9-2 0.308±0.081 0.283±0.084 0.281±0.072 0.251±0.124 0.263±0.105 0.278±0.053 0.407±0.026
DGFiP 4-2 0.183±0.109 0.210±0.085 0.309±0.083 0.131±0.111 0.316±0.083 0.176±0.066 0.325±0.051
DGFiP 8-1 0.153±0.064 0.144±0.037 0.171±0.034 0.148±0.059 0.201±0.086 0.165±0.025 0.308±0.006
DGFiP 8-2 0.236±0.068 0.196±0.045 0.156±0.050 0.233±0.042 0.229±0.052 0.215±0.079 0.286±0.014
DGFiP 9-1 0.178±0.128 0.112±0.065 0.131±0.074 0.194±0.109 0.119±0.069 0.146±0.055 0.319±0.040
DGFiP 4-1 0.177±0.098 0.111±0.166 0.183±0.113 0.075±0.093 0.134±0.069 0.104±0.093 0.203±0.108
DGFiP 16-1 0.152±0.094 0.152±0.063 0.189±0.071 0.160±0.108 0.170±0.050 0.126±0.079 0.212±0.044
DGFiP 16-2 0.142±0.033 0.159±0.104 0.121±0.043 0.181±0.036 0.075±0.006 0.165±0.059 0.251±0.029
Mean 0.191 0.171 0.193 0.172 0.188 0.172 0.289

Table 3.4: Mean results (and standard deviations) in terms of F -Measure over 5 experiments
for the different Metric Learning methods, with 1−NN as final classifier, on private datasets
sorted by imbalance ratio (IR=m−/m+). The mean over all datasets among ML methods is
given and the best results are in bold, the standard deviation is indicated with the ± sign.

79

3.7. Proof of Theorems 2 and 3

3.7 Proof of Theorems 2 and 3

Let us remind you the different notations. We will denote by z = (x, y) the couple features-label
where x ∈ Rd and y ∈ {−1, 1} and S = {zi}mi=1 a set of m training examples drawn from an
unknown distribution D. We denote by m+ the number of positives and m− the number of
negatives. Thus the rate of positives α is equal to

m+

m
.

Suppose that x′ is a test instance, we also recall that:

• DM = DM(x′,x) =
√

(x− x′)TM(x− x′) if x is a positive instance,

• D = DI(x
′,x) = D(x′,x) =

√
(x− x′)T (x− x′) otherwise.

We are considering our optimization problem 3.1:

min
M∈S+

1

m3

(1− α)
∑

(xi,xj ,xk)
yi=yj 6=yk=−1

`FN(M, zi, zj , zk) + α
∑

(xi,xj ,xk)
yi=yj 6=yk=1

`FP(M, zi, zj , zk)

+ µ‖M− I‖2F .

Our loss function can thus be seen as :

`(M, (zi, zj , zk)) =

(1− α)× `FN(M, zi, zj , zk) if yi = yj = 1, yk = −1,

α× `FP(M, zi, zj , zk)] if yi = yj = −1, yk = 1,

0 otherwise,
,

where `FN and `FP are defined by:

• `FN(M, zi, zj , zk) = [1− c+ DM(xi,xj)
2 −D(xi,xk)

2]+,

• `FP(M, zi, zj , zk) = [1− c+ D(xi,xj)
2 −DM(xi,xk)

2]+.

In the following, we will also suppose that for all x we have: ‖x‖ ≤ K. Furthermore, we
will denote by RS and R respectively the empirical risk of ` over the training sample S and
the true risk. More precisely, the empirical risk RS is evaluated using a training set of size m
which is used to build all the triplets and the true risk R is its expectation over all the samples
of size m, i.e. R = E

S∼Dm
[RS].

In the following, we will also use the following constraint on M :

λmax (M) ≤ 1, where λmax is the largest eigenvalue of M.

Finally, due to the context of our study, i.e. imbalanced setting, α < 1/2. Thus, α < 1−α.

3.8 Generalization Guarantees

The aim of this section is to provide some generalization guarantees on our loss function ac-
cording to the used loss function. Note that the following results give guarantees on the learned
metric M which aims to find a good compromise between achieving a low False Negatives rate
while keeping a reasonable False Positives rate.

80

Chapter 3. Metric Learning from Few Positives

3.8.1 Uniform Stability

In this section, we briefly restate the definition of stability and the generalization bound based
on this notion.

Roughly speaking, an algorithm is stable if its output, in terms of difference between losses,
does not change significantly under a small modification of the training sample. This variation
must be bounded in O(1/m) in terms of infinite norm where m is the size of the training set S
i.i.d. from an unknown distribution D.

Definition 6. [Definition 6 [13]] A learning algorithm A has a uniform stability in κ
m with

respect to a loss function ` and parameter set θ, with κ a positive constant if:

∀S, ∀i, 1 ≤ i ≤ m, sup
Z
|`(θS , Z)− `(θSi , Z)| ≤ κ

m
,

where S is a learning sample of size m, Z = (z1, z2, z3) = ((x1, y1), (x2, y2), (x3, y3)) is a triplet
of labeled examples, θS the model parameters learned from S, θSi the model parameters learned
from the sample Si obtained by replacing the ith example zi from S by another example z′i
independent from S and drawn from D. `(θS ,x) is the loss suffered at x.

In this definition, Si represents the notion of small modification of the training sample.
The following one aims to study the evolution of the loss function according to the label of the
considered triplet.

Definition 7. A loss function ` is said to be σ-admissible, with respect to the distance metric
M if (i) it is convex with respect to its first argument and (ii) the following condition holds:

∀Z,Z ′
∣∣`(M, Z)− `(M, Z ′)

∣∣ ≤ σ,
where Z = (zi, zj , zk) and Z ′ = (z′i, z

′
j , z
′
k) are two triplets of examples.

3.8.2 Preliminary Results

We now introduce the results we need to derive our generalization guarantees:

Proposition 4. Let X1, ..., Xm be m independent random variables taking values in R and let
U = f(X1, ..., Xm). If, for each 1 ≤ i ≤ m, there exists a constant ci such that:

sup
x1,...,xm∈R

∣∣f(x1, ..., xm)− f(x1, ...x
′
i, ..., xm)

∣∣ ≤ ci,
then, for any positive constant B, we have:

P[|U − E[U]| ≥ B] ≤ 2 exp

(
−2B2∑m
i=1 c

2
i

)
.

In the following, we set DS = R − RS . We then introduce the two following lemmas,
for which the proof can be found in [10] (see the proofs of Lemma 8.9 and 8.10 respectively).
However, note that results have been adapted to our context, i.e. for triplet based loss function.
But the proofs can be easily adapted.

Lemma 1. For any learning method of estimation error DS and satisfying a uniform stability

in
κ

m
, we have ES [DS] ≤ 2κ

m
.

Lemma 2. For any parameter matrix M using m training examples, and any loss function `
satisfying the σ-admissibility, we have the following bound:

∀i, 1 ≤ i ≤ m, |DS −DSi | ≤
2κ

m
+

2σ

m
.

81

3.8. Generalization Guarantees

Using the above Proposition and the two Lemmas, we are able to get the following gener-
alization bound:

Theorem 4. Let δ > 0 and m > 1. Let S be a sample of m randomly selected training
examples and let M be the learned parameter matrix from an algorithm with uniform stability
κ

m
. Assuming that the loss function ` is k-Lipschitz and σ-admissible and let us denote by RS

its empirical risk.
With probability 1− δ, we have the following bound on the true risk R of our loss function `:

R ≤ RS + 2
κ

m
+ (2κ+ 2σ)

√
ln(2/δ)

2m
.

3.8.3 Generalization Bound

We first prove that our function is k-Lipschitz according to the following definition.

Definition 8. A loss function ` is k-Lipschitz with respect to its first argument if for any
parameters matrices M and M′, and for any triplets of labeled examples Z = (z1, z2, z3), we
have: ∣∣`(M, Z)− `(M′, Z)

∣∣ ≤ k ∣∣M−M′∣∣
F .

Lemma 3. We now show that our loss function ` is k-Lipschitz with k = 4(1− α)K2

Proof. We need to study two cases, according to the label of the triplets.

Case 1: yi = yj = 1, yk = −1∣∣`(M, Z)− `(M′, Z)
∣∣ = (1− α)

∣∣[1− c+ DM(xi,xj)
2 −D(xi,xk)

2]+

−[1− c+ DM′(xi,xj)
2 −D(xi,xk)

2]+
∣∣ ,

≤ (1− α)
∣∣DM(xi,xj)

2 −DM′(xi,xj)
2
∣∣ ,

= (1− α)
∣∣(xi − xj)

T (M−M′)(xi − xj)
∣∣ ,

= (1− α)‖xi − xj‖22‖M−M′‖F ,∣∣`(M, Z)− `(M′, Z)
∣∣ ≤ 4(1− α)K2‖M−M′‖F

where the second line uses the fact that the hinge loss is 1-Lipschitz, the third line uses the
linearity of the difference with respect to M,M′, the fourth line uses usual properties on norms
and the last line the fact that ‖x‖ ≤ K.

Case 2: yi = yj = −1, yk = 1

The proof is similar to the proof given in the previous case and leads to the following result:∣∣`(M, Z)− `(M′, Z)
∣∣ ≤ 4αK2‖M−M′‖F .

We conclude by taking the maximum of the two previous values. Thus k = 4(1− α)K2.

Now, we have to prove that our loss function is σ-admissible according to the definition 7.

Lemma 4. The loss function ` defined by (3.1) is σ-admissible with respect to the distance
metric M, with σ = (1− α)(1− c+ 4K2).

Proof. Needless to say that the loss function ` is convex with respect to M as the sum of two
convex functions. Indeed, both of them are linear w.r.t. M and the maximum of two convex
functions remains convex.

82

Chapter 3. Metric Learning from Few Positives

Furthermore, because our loss function can be equal to zero for some labels of our triplets,
we are looking for the greatest value than our loss function ` can achieve.

Using our previous result, we can bound the first part `FN by: (1−α)(1− c+ 4K2) and the
last term `FP by: α(1− c+ 4K2).

Finally:

∀ Z,Z ′
∣∣`(M, Z)− `(M, Z ′)

∣∣ ≤ max ((1− α)(1− c+ 4K2), α(1− c+ 4K2)).

Thus, σ = (1− α)(1− c+ 4K2).

Definition 9. A learning algorithm has a uniform stability in κ
m where κ is a positive constant,

if given any training set S we have:

∀i, sup
Z
|`(M, Z)− `(Mi, Z)| ≤ κ

m
,

where M i is the matrix learned with a training set Si which differs from S of only one example
(xi → x′i).

For the sake of clarity for the following development, let us denote by FS the objective

function to optimize over the training set S, i.e. FS =
1

m3

∑
xi,xj ,xk

`(M, Z) + µ‖M− I‖2F .
To compute the constant of uniform stability, we first need the following technical lemma:

Lemma 5. Let S be a learning sample, let FS and FSi be two objective functions with respect
to two samples S and Si and let M and Mi be their respective minimizers. We also define
∆M = Mi −M and recall that N(M) = µ‖M− I‖2F . For all t ∈ [0, 1], we have:

N(M)−N(M + t∆M) +N(Mi)−N(Mi − t∆M)

≤ 2t

µm3
[3m(m− 1) + 1]×

(
4(1− α)K2

)
× ‖∆M‖F .

Proof. Since ` (the hinge loss) is convex, so is the empirical risk and thus for all t ∈ [0, 1] we
have the two following inequalities:

RSi(M + t∆M)−RSi(M, R) ≤ tRSi(Mi)− tRSi(M).

and
RSi(Mi − t∆M)−RSi(Mi) ≤ tRSi(M)− tRSi(Mi).

We get the second inequality by swapping the role of M and Mi. If we sum these two inequal-
ities, the right hand side vanishes and we obtain:

RSi(M + t∆M)−RSi(M) +RSi(Mi − t∆M)−RSi(Mi) ≤ 0. (3.6)

By assumption on M and Mi we have:

FS(M)− FS(M + t∆M) ≤ 0,

FSi(M
i)− FSi(Mi − t∆M) ≤ 0,

then, summing the two previous inequalities and using (3.6), we get:

RSi(M + t∆M)−RS(M + t∆M)−RSi(M) +RS(M)

+ µ[‖M− I‖2F + ‖Mi − I‖2F − ‖M + t∆M− I‖2F − ‖Mi − t∆M− I‖2F] ≤ 0. (3.7)

83

3.8. Generalization Guarantees

We now focus on the first part of the previous inequality. For the sake of simplicity, let us
set:

H = RS(M + t∆M)−RSi(M + t∆M) +RSi(M)−RS(M)

H ≤ |RS(M + t∆M)−RSi(M + t∆M) +RSi(M)−RS(M)|

≤ 1

m3

∣∣∣∣∣∣
∑

zi,zj ,zk∈Sl
`(M, zli, z

l
j , z

l
k)−

∑
zi,zj ,zk∈S

`(M, zi, zj , zk)

+
∑

zi,zj ,zk∈S
`(M + t∆M, zi, zj , zk)−

∑
zi,zj ,zk∈Sl

`(M + t∆M, zli, z
l
j , z

l
k)

∣∣∣∣∣∣

where S and Sl differ from the l-th example, i.e. ∀i, j, k 6= l, zi = zli, zj = zlj and zk = zlk.

We will now focus on the first difference in the previous expression, i.e. on:

∑
zi,zj ,zk∈Sl

`(M, zli, z
l
j , z

l
k)−

∑
zi,zj ,zk∈S

`(M, zi, zj , zk).

This difference can be decomposed into two parts according to the value of the index i: when
i = l and when i 6= l:

m∑
j=1

m∑
k=1

(
`(M, zll , z

l
j , z

l
k)− `(M, zl, zj , zk)

)
+

m∑
i 6=l

m∑
j=1

m∑
k=1

(
`(M, zli, z

l
j , z

l
k)− `(M, zi, zj , zk)

)

The first part of the decomposition is composed of m2 terms that are at least not equal
to zero. We, thus have to work on the second part of the decomposition has it contains some
terms that are equal to zero. We will have to do this process two times as follows:

84

Chapter 3. Metric Learning from Few Positives

m∑
j=1

m∑
k=1

(
`(M, zll , z

l
j , z

l
k)− `(M, zl, zj , zk)

)
+

m∑
i 6=l

m∑
j=1

m∑
k=1

(
`(M, zli, z

l
j , z

l
k)− `(M, zi, zj , zk)

)
,

=

m∑
j=1

m∑
k=1

(
`(M, zll , z

l
j , z

l
k)− `(M, zl, zj , zk)

)
+

m∑
i 6=l

m∑
k=1

(
`(M, zli, z

l
l , z

l
k)− `(M, zi, zl, zk)

)
+

m∑
i 6=l

m∑
j 6=l

m∑
k=1

(
`(M, zli, z

l
j , z

l
k)− `(M, zi, zj , zk)

)
,

=

m∑
j=1

m∑
k=1

(
`(M, zll , z

l
j , z

l
k)− `(M, zl, zj , zk)

)
+

m∑
i 6=l

m∑
k=1

(
`(M, zli, z

l
l , z

l
k)− `(M, zi, zl, zk)

)
+

m∑
i 6=l

m∑
j 6=l

(
`(M, zli, z

l
j , z

l
l)− `(M, zi, zj , zl)

)
+

m∑
i 6=l

m∑
j 6=l

m∑
k 6=l

(
`(M, zli, z

l
j , z

l
k)− `(M, zi, zj , zk)

)
︸ ︷︷ ︸

=0

.

All these sums are respectively composed of m2, m(m− 1) and (m− 1)2 terms and the last
(m−1)3 terms are all equal to zero. Furthermore: m2 +m(m−1) + (m−1)2 = 3m(m−1) + 1,
so that we have to find a bound on the supremum of the difference:

[3m(m− 1) + 1] sup
Z,Z′
|`(M, Z)− `(M, Z ′) + `(M + t∆M, Z)− `(M + t∆M, Z ′)|.

Thus, H can be upper-bounded by:

H ≤ 1

m3
[3m(m− 1) + 1] (sup

Z,Z′
|`(M, Z)− `(M+, Z ′) + `(M + t∆M, Z)− `(M + t∆M, Z ′)|).

We can then write:

H ≤ 1

m3
[3m(m− 1) + 1] (sup

Z
|`(M + t∆M, Z)− `(M, Z)|

+ sup
Z′
|`(M + t∆M, Z ′)− `(M+, Z ′)|),

≤ 2t

m3
[3m(m− 1) + 1]× ‖∆M‖F ×

(
4(1− α)K2

)
,

where the last lines uses Lemma 3 and properties on norms. Finally, we have :

N(M)−N(M+t∆M)+N(Mi)−N(Mi−t∆M) ≤ 2t

µm3
[3m(m−1)+1]×

(
4(1− α)K2

)
×‖∆M‖F

(3.8)

85

3.8. Generalization Guarantees

We are now able to prove the uniform stability of our algorithm.

Theorem 5. Let S be a learning sample of size m, the algorithm (3.1) has a uniform stability

in
κ

m
with κ =

6

µ
×
(
4(1− α)K2

)2.
Proof. Let us set t =

1

2
in the result of Lemma 5 and we focus on the left hand side of this

result. We have:

f(M) = ‖M− I‖2F + ‖Mi − I‖2F − ‖
1

2
(M + Mi)− I‖2F − ‖

1

2
(M + Mi)− I‖2F ,

= ‖M− I‖2F + ‖Mi − I‖2F −
1

2
‖M + Mi − I‖2F ,

f(M) =
1

2
‖M−Mi‖2F .

Then, using Lemma 5, we get the following bound on ‖∆M‖F .

‖∆M‖2F ≤ 8

µm3
[3m(m− 1) + 1]×

(
(1− α)K2

)
× ‖∆M‖F ,

‖∆M‖F ≤ 8

µm3
[3m(m− 1) + 1]×

(
(1− α)K2

)
.

To prove the uniform stability of our algorithm, it remains to find the value κ such that:

∀S, ∀i, 1 ≤ i ≤ m, sup
Z
|`(M, Z)− `(Mi, Z)| ≤ κ

m
.

To do this, we use the fact that our loss function ` is k-Lipsichtz with k =
(
4(1− α)K2

)
and

our upper-bound on ‖∆M‖F . It gives:

|`(M, Z)− `(Mi, Z)| ≤ k‖∆M‖F ,

≤ 2k2(3m2 − 3m+ 1)

µm3
.

Finally:
∀S, ∀i, 1 ≤ i ≤ m, sup

Z
|`(M, Z)− `(Mi, Z)| ≤ κ

m3
,

with κ =
4(3m2 − 3m+ 1)

µ
×
(
(1− α)K2

)2.
For the sake of simplicity, we will simplify this result in the following. Note that for all

m ≥ 1,
3m2 − 3m+ 1

m3
≤ 3

m
. Thus, our algorithm has a uniform stability in

κ

m
with κ =

12

µ
×
(
(1− α)K2

)2.
We can now apply Theorem 4 to our algorithm and get the following result:

Theorem 6. Let δ > 0 and m > 1. With probability 1− δ, we have the following bound on the
true risk R of our loss function `:

R ≤ RS + 2
κ

m
+ (2κ+ 2σ)

√
ln(2/δ)

2m
,

with:
κ =

12

µ
×
(
(1− α)K2

)2
.

and
σ = (1− α)(1− c+ 4K2).

Proof. The proof is consequence of Theorem 4 and Lemma 4.

86

Chapter 3. Metric Learning from Few Positives

3.9 Classification Guarantees - Proof

We now give a proof of the Theorem 3 provided in the Section 3.4.2.

Proof. We first begin with the FP rate. We can note that the hinge loss can be a surrogate for
the indicator function as follows:

1{dM(x,xpi)≤d(x,xn)} = 1{dM(x,xpi)
2≤d(x,xn)2} ≤

[
1 + d(x,xn)2 − dM(xi,xp)

2
]
+
,

We can recognize one of the term of our optimization Problem (3.1) with the hyper-parameter
c = 0.

We recall that each labeled example is denoted as z = (x, y). Then, we have:

RFP ≤ ES∼DmEz∼D
[
1 + d(x,xn)2 − dM(x,xp)

2
]
+
× 1{y=−1}

≤ ES′∼Dm+1Ezi,zj ,zk∈S′
[
1 + d(xi,xj)

2 − dM(xi,xk)
2
]
+
,×1{yi=yj=−16=yk}

≤ ES′∼Dm+1Ezi,zj ,zk∈S′
[α
α

[
1 + d(xi,xj)

2 − dM(xi,xk)
2
]
+
× 1{yi=yj=−1 6=yk}+

1− α
α

([
1 + dM(xi,xj)

2 − d(xi,xk)
2
]
+
× 1{yi=yj=16=yk}

)]
,

≤ ES′∼Dm+1Ezi,zj ,zk∈S′

[
1

α

(
α
[
1 + d(xi,xj)

2 − dM(xi,xk)
2
]
+
× 1{yi=yj=−16=yk}+

(1− α)
[
1 + dM(xi,xj)

2 − d(xi,xk)
2
]
+
× 1{yi=yj=16=yk}

)]
,

≤ 1

α
R.

The second inequality is obtained by the i.i.d. aspect of the expectation. The third inequality
is due to the fact that the second term in the sum is positive. Finally, one can note that the
right-hand side of the last inequality corresponds to a weighted version of the true risk with
respect to the loss used in Problem (3.1) with c = 0 and where we take an expectation over all
the samples of size m+ 1.

The result is obtained by combining the results of Theorems 2 and 6 over the true risk
defined above.

The bound for the FN rate can be obtained in a similar way. Using the same arguments,
one can show that:

RFN ≤
1

1− α
R.

Applying Theorems 2 and 6 to the above risk leads to the result.

87

88

Chapter 4

Tree-Based Ranking for Interpretable
Fraud Detection

This chapter is based on the following publications

Rémi Viola, Léo Gautheron, Amaury Habrard and Marc Sebban. MetaAP: a Meta-Tree-Based
Ranking Algorithm Optimizing the Average Precision From Imbalanced Data. In Pattern Recog-
nition Letters, (revised version under review). 2022 [116].

Abstract

In this Chapter, we address the challenging problem of learning to rank from highly
imbalanced data. This scenario requires to resort to specific metrics able to account the
scarcity of positive examples, the data of interest that belongs to the minority class. For
this purpose, we present MetaAP, a tree-based ranking algorithm, which induces meta-
trees (in the form of trees of trees) by optimizing the Average Precision (AP). This latter
has been shown in the literature to be more relevant than the area under the ROC curve
(AUC-ROC) when the objective is to push positive examples at the very top of the list.
This effect of the AP in tree-based ranking is particularly desired to address fraud detection
tasks where (i) the budget is often constrained (in terms of number of agents w.r.t. the
number of cases) and (ii) the interpretability of the induced models is required. After an
extensive comparative study on many public datasets showing the ability of MetaAP to
optimize the AP in highly imbalanced situations, we tackle again the tax fraud detection
task coming from our partnership with the French Ministry of Economy and Finance. The
results show that MetaAP is able to make the tax audit process significantly more efficient.

4.1 Introduction

Learning to rank from highly imbalanced datasets where positive examples are very scarce has
received much attention during the past years from the Machine Learning community. Indeed,
this challenging topic opened the door to many methodological questions: Which loss function
to optimize? Can we derive generalization guarantees in such a scenario? How to efficiently
balance the datasets? Can we learn interpretable models? How to rank under budget constraints?
etc.

As seen before, fraud detection [2] falls into this scope of imbalanced learning to rank,
where the number of fraudsters is small compared to the huge amount of normal cases (also
called negative examples). It has become a key issue for e-commerce companies and government
agencies which are facing a tremendous growth of the data collected that have to be processed by
a relatively limited number of human controllers. Therefore, fraud detection is subject nowadays

89

4.1. Introduction

to a compelling need for automatic interpretable systems for supporting human decision making.
Unlike a standard anomaly detection task [4] where an abnormal data often takes the form of
an outlier, the peculiarity of fraud detection is that fraudsters often aim to mimic a normal
behavior that makes the identification much more challenging.

Even so, in fraud detection, we are often faced with the problem of learning from highly im-
balanced data [57] because the number of positive examples, the frauds, is very small compared
to the number of normal examples. As explained before in this thesis, one way to address this
task is to resort to sampling strategies [23, 108, 124]. While oversampling/data augmentation
techniques can be used to generate dummy data artificially like in SMOTE-based methods [23]
or in adversarial approaches [33], undersampling aims at removing samples from the majority
class as done with Tomek’s Link [108] or in ENN [124]. Even though a sampling method has
the indisputable advantage of (re)balancing the datasets and allowing then the use of classical
learning algorithms, in highly imbalanced scenarios, these methods do not succeed in gener-
ating enough diversity for improving significantly the results compared to the required effort,
as recently shown in [20]. Other techniques to deal with the class imbalance problem include
cost-sensitive methods [36] which nevertheless require a difficult tuning of the miss-classification
costs, (deep) metric learning methods [39, 119, 74, 121, 50] which often requires a large amount
of data and/or a costly optimization process, or boosting-based models [25, 49, 43] which are
not easily interpretable. It turns out that interpretability is sometimes a desired property in
fraud detection. Indeed, the detected suspicious cases are typically sent as alerts to the control
department according to their position in the ranking, i.e. their probability of being a fraud.
These top-ranked cases that are judged as frauds by the automatic system are then meticulously
checked by a human controller whose analysis needs to be guided by the criteria that led to this
decision. It is therefore often crucial for the prediction model to be supported by explainable
decisions. As mentioned in [94], it is key to create methods that are readily interpretable rather
than creating black boxes that will have to be explained later, often in imprecise ways.

In this context, decision trees seem to provide a good trade-off between accuracy and in-
terpretability, beyond their natural capacity to deal with both quantitative and qualitative
features. However, in order to address the issues induced by imbalanced datasets, they have to
be optimized according to criteria that are able to take into account the scarcity of the posi-
tive examples compared to the large amount of negative samples (e.g. non fraudulent cases).
Moreover, in a learning to rank perspective, the decision tree should be learned as a scoring
function projecting the data onto the real line. This is the goal of TreeRank, introduced in
the seminal work of Clemençon and Vayatis [27] and exploited in several variants since then.
TreeRank recursively maximizes the area under the ROC curve (AUC-ROC) allowing the in-
duction of a tree that optimizes the probability to rank a positive example above a negative
one. As illustrated in this Chapter, TreeRank seems to behave better when facing imbalanced
datasets than standard decision trees induced by using the classic Gini or Entropy criteria for
recursively splitting the nodes. However, as pointed out by [19, 43], in applications where only
the very top rank will be used because of budget constraints, like in fraud detection where the
number of human controllers is limited, the AUC-ROC does not seem to be the most suitable
criterion. Indeed, a AUC-ROC-based algorithm will put a lot of effort into the enhancement
of the scoring of currently poorly ranked samples at the expense of the positive data that are
already favorably positioned in the ranking. To overcome this issue, Frery et al. [43] have shown
that the Average Precision (AP) is a more adapted metric when we are mainly interested in
the top of the list, even if it is at the price of definitely dropping out positive examples that are
a bit further down in the ranking.

Inspired by TreeRank, we design in this Chapter a new algorithm, called MetaAP, which
optimizes the AP by building a tree of local trees, referred to as meta-trees. A natural but
sub-optimal method (as seen later in the experimental part) to address this task would consist
in optimizing the hyperparameters of the trees (depth, splitting criterion, etc.) according to

90

Chapter 4. Tree-Based Ranking for Interpretable Fraud Detection

the AP . The novelty of MetaAP comes from the direct optimization of this measure, viewed
as a loss function, during the learning process. However, this task is hard because the AP
takes the form of a non convex (even with well-made surrogates) and non separable function
(i.e. the loss for one point depends on the others). The originality of the proposed approach
consists in exploiting the slope coefficient of the tangents to the (1-Precision)-Recall curve
(which plays a key role in the definition of AP) to order and merge the leaves of the local tree.
In this way, MetaAP aims at recursively optimizing the AP and presents the valuable property
of generating compact and interpretable models. Our method is supported by an extensive
comparative study on 28 public datasets showing that the smaller the proportion of positives
we learn from, the better MetaAP outperforms the competing algorithms. This comment is
confirmed when the Precision@k (corresponding to the number of positives among the top k
ordered samples) is used as the evaluation measure that shows that MetaAP is particularly
adapted to applications where the number of possible controls is limited. We further analyze a
random forest version of our method and compare it with classic random forests and gradient
boosting. Finally, we study the behavior of MetaAP to address a tax fraud detection task
coming from our partnership with the French Ministry of Economy and Finance. The results
show that MetaAP is able to make the tax audit process more efficient.

The rest of this Chapter is organized as follows: Section 4.2 is devoted to the presentation
of the notations and evaluation measures. Section 4.3 is dedicated to the state of the art. We
introduce MetaAP in Section 4.4 and present the experiments in Section 4.5.

4.2 Notations and Evaluation Measures

Let us remind that we consider a binary supervised learning task, with a training set S =
{zi = (xi, yi)}mi=1 composed of m labeled examples with xi ∈ X = Rd, a feature vector and
yi ∈ Y = {−1; +1}, a label. When yi = 1 (resp. yi = −1), xi is a positive (resp. negative)
example belonging to the minority (resp. majority). S is supposed to be independently and
identically drawn according to an unknown joint distribution Z = X × Y.

Considering that we aim at addressing the problem through the lens of a learning to rank
model in the context of imbalanced datasets, the choice of the metric to be optimized is key.
As already mentioned in Chapter 1, in such a setting, three measures are usually used: the
AUC-ROC, the Average Precision (AP) and the Precision@k. We briefly recap these three
concepts in the following.

The ROC curve is the representation of the True Positive Rate (TPR / Recall) versus
the False Positive Rate (FPR / False alarm rate) at different thresholds. TPR measures the
capacity of the model to retrieve positive examples while FPR corresponds to the proportion
of false alarms (fraction of negatives predicted as positives). More formally,

TPR = Recall =
TP

TP + FN
and FPR =

FP

FP + TN
, (4.1)

where FP (resp. FN) is the number of false positives (resp. false negatives) and TP (resp. TN)
is the number of true positives (resp. true negatives). The AUC-ROC corresponds to the area
under this ROC-curve and measures the probability of the model to rank a positive example
above a negative one. It can be computed as follows:

AUC-ROC =
1

m+ ×m−
m+∑
i=1

m−∑
j=1

I0.5(f(x+i)− f(x−j)),

- m+ (resp. m−) is the number of positives (resp. negatives) in S,
- x+i is the ith positive sample; x−j is the jth negative example,
- f is the scoring function assigning a probability to be positive,

91

4.3. Related Work

- I0.5 is an indicator function equal to 1 when f(x+i)− f(x−j) > 0, 1
2 when f(x+i)− f(x−j) = 0

and 0 otherwise.

Another important tool when working with imbalanced data is the Precision-Recall curve.
It represents the Precision as a function of Recall for different thresholds, where the former is
defined as follows: Precision = TP

TP+FP .

Unlike the AUC-ROC, the Precision-Recall curve considers via the Precision the confi-
dence in a positive prediction which can play a key role in imbalanced scenarios. The Average
Precision (AP) is a summary of this confidence as the area under the curve [14, 83] and can
be analytically computed as follows: AP = 1

m+

∑m+

i=1 p(ki), where p(ki) is the Precision at the
rank ki corresponding to the ith positive in the ranking. It is worth noting that AP can also
be defined as

AP =
∑
t

(rt − rt−1)pt, (4.2)

with rt and pt the Recall and Precision, respectively, at the tth threshold of distinct prediction
values. It has been shown in [19] that AP focuses more on the top of the ranking, contrary
to the AUC-ROC which takes equally into account the entire ranking and tries to move up as
many positives as possible. This phenomenon is illustrated in Figure 4.1 where two rankings
composed of 4 positives (in blue) and 6 negatives (in grey) are compared in terms of AUC-ROC
and AP . We can note that for both situations, AUC-ROC = 0.5, while AP is higher on the
right than on the left case. Therefore AUC-ROC is not able to distinguish the two situations
while AP highly prefers a scenario where two positives are ranked at the very top of the list
even if this is at the expense of missing the two remaining positives. It turns out that this
latter behavior can be very useful in situations where the constraints related to the application
at hand require to focus on the first part of the ranking. This is the case when the budget in
terms of number of allowed checks by human controllers is limited, like in bank or tax fraud
detection.

The capacity of a system to optimize the number of positives at the very top of the ranking
can be explicitly measured with a third criterion, called Precision@k. This measure corresponds
to the number of positives among the top k of the ranking. As the choice of k for a given
application can vary over time, so requiring to re-train the model, it might appear much more
convenient to directly optimize the AP as a surrogate of this measure. This is what we suggest
to do in our tree-based algorithm. We will see in the experiments that maximizing AP presents
the nice property of optimizing at a cheaper cost the Precision@k.

4.3 Related Work

In this section, we present different methods that can be used for learning to rank from imbal-
anced datasets by inferring tree-based models, in the form of decision trees, meta-trees, random
forests and tree ensembles. While the first two directly provide explicit decision rules, random
forests and tree ensembles learned by gradient boosting are not readily interpretable, so reduc-
ing their benefit in applications like fraud detection despite the fact that they constitute the
state of the art.

Decision Trees Although decision trees (DT), like CART [72], ID3 [90] or C4.5 [91], have
been originally designed to address classification tasks, the discrete predictions can be used to
establish a ranking. The splitting decision of CART is based on the minimization of the Gini
impurity IG. Assuming that the class label takes its value in the discrete set {1, 2, ..., k},

92

Chapter 4. Tree-Based Ranking for Interpretable Fraud Detection

Figure 4.1: Evaluation of the AUC-ROC and AP on two rankings. Blue (resp. grey) lines
represent positive (resp. negative) samples. While AUC-ROC behaves similarly on both cases
(AUC-ROC = 1

2), the average precision is equal to 0.43 on the left and 0.68 on the right,
illustrating that AP favors the ranking that put (at least some) positives at the very top of the
list.

and that fi denotes the fraction of the elements of the set with label i, IG is defined as
IG =

∑k
i=1 fi(1− fi) = 1−

∑k
i=1 f

2
i which is minimal when the leaf is pure, i.e. only composed

of samples of the same class. On the other hand, ID3 and C4.5 make use of the information
gain, based on the Shannon entropy. This latter allows to measure the disorder in a set and
thus to select the threshold of the split that maximizes the information gain IE defined as
IE = −

∑k
i=1 fi log2 fi.

Whatever the splitting criterion, once the decision tree is induced, several strategies can be
applied to get a scoring function providing a ranking. First, the local probability at each leaf
of being positive can be used as a continuous score. The ranking is obtained by sorting the
leaves according to this score. On the other hand, in [5], the authors suggest to assign a score
to each example of a leaf based on its distance to the boundaries of the hypercube representing
the leaf and induced by the DT. The score is defined as the distance to the boundaries for
every leaf with a majority of positive examples, or minus the distance in case of a majority of
negative samples. Like in Support Vector Machines, this signed distance is exploited to rank
the examples. Finally, in [73], the authors introduce a confusion factor at each internal node
and use it to weight the contribution of the leaves and get the probability of an example.

Note that all the aforementioned methods share the same property. The optimization of
the ranking is not part of the learning process. It is obtained by a post-process after the
induction of the tree. In order to be efficient when addressing imbalanced settings, note also
that the hyperparameters of the previous DT-based methods can be tuned by maximizing the
AUC-ROC, AP or Precision@k, as introduced in Section 4.2.

The next paragraph introduces TreeRank [27], a learning to rank algorithm that has been
specifically designed to generate a ranking that directly optimizes the AUC-ROC.

Meta-Trees TreeRank [27] is a decision tree algorithm that comes with theoretical guarantees
for the bipartite ranking problem. A tree of trees (referred to as a meta-tree) is learned by
directly optimizing the AUC-ROC. The principle is as follows. First, TreeRank induces a
classical decision tree using a splitting procedure that takes into account the class imbalance.
Then, the leaves are ordered according to a criterion based on the AUC-ROC curve. More
precisely, for each leaf, the ratio β/α is computed with β (resp. α) the number of positives
(resp. negatives) in the leaf divided by the number of positives (resp. negatives) in the root
node. By assigning the label +1 to the considered leaf and −1 to all the others, we can notice
that β corresponds to TPR and α to FPR as defined in Eq. 4.1. Ordering the leaves according
to the ratio β/α is equivalent to sorting them according to the slope coefficient of the tangent

93

4.3. Related Work

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ordered tangents with number of
positives and negatives in the leaves

0: 23+ and 49-
1: 1+ and 899-
2: 0+ and 32-

3: 0+ and 23-
4: 0+ and 11-

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC for each possible fusions
with corresponding entropy

[0]: e=0.91
[0,1]: e=0.065
[0,..,2]: e=0.034

[0,..,3]: e=0.011
[0,..,4]: e=0.0

TreeRank, root DT
X0 <= 0.655

train n- 1014, n+ 24

train n- 899, n+ 1
X1 <= 0.575

train n- 115, n+ 23

train n- 32, n+ 0
X2 <= 0.355

train n- 83, n+ 23

train n- 23, n+ 0
X7 <= 0.315

train n- 60, n+ 23

train n- 49, n+ 23train n- 11, n+ 0

TreeRank, merged root
X0 <= 0.655

train n- 1014, n+ 24

X1 <= 0.395
train n- 965, n+ 1

X1 <= 0.575
train n- 115, n+ 23

X2 <= 0.355
train n- 83, n+ 23

X7 <= 0.315
train n- 60, n+ 23

X6 <= 0.515
train n- 49, n+ 23

Figure 4.2: Illustration of TreeRank on the yeast6 dataset with maximum depth of 4: (top
left) Some tangents to the ROC curve at 0 to order the leaves. (top right) Corresponding
approximation of the ROC curve by a piece-wise function maximizing AUC-ROC by accumu-
lating the sorted leaves from left to right.Here max(entropy) = 0.91 is achieved by putting the
first leaf on the left and merging all the others on the right. (bottom left) Corresponding root’s
DT with splitting rules that maximize the AUC-ROC. (bottom right) Corresponding merged
DT.

at the origin of the ROC curve, which boils down to maximizing the AUC-ROC. Then the
leaves are partitioned into two sets, left and right, so that the partition maximizes an entropy
defined as β′ − α′ where β′ (resp. α′) is the TPR (resp. FPR) of the left leaves. By doing
so, TreeRank aims at finding the point with coordinates (α′, β′) maximizing the area under the
piecewise function going from the origin (0, 0) to the point (α′, β′) and then to the point (1, 1).
(see an illustration of the process in Figure 4.2).

The procedure is repeated by learning two new DTs, one for all leaves that fall on the left
part and one for all the leaves that fall on the right. Finally, TreeRank assigns to each leaf
a score based on the order in which the leaves were explored from left to right: the first leaf
receives a score of 1 then the scores gradually decrease until the last leaf that receives a score
of 1 divided by the total number of leaves.

94

Chapter 4. Tree-Based Ranking for Interpretable Fraud Detection

Random Forests Random Forests (RF) [16, 59] aim to overcome the risk of overfitting of DTs
by using a collection of partially independent trees. Each tree in the forest is still learned from n
training examples, but the latter are randomly drawn (with replacement) from the training set
S (bootstrap method). A sampling method is also performed over the features. At each node,
the splits are optimized according to a subset of features randomly selected from the original
feature space. A majority vote is finally applied from the predictions of these DTs. Note that
the reduction of the variance in RFs is obtained at the price of loosing the interpretability of
the induced model. In [26], the authors introduced a RF variant of TreeRank, called Ranking
Forest, which aggregates Meta-trees and combines the corresponding rankings to optimize the
AUC-ROC.

Gradient Tree Boosting Gradient Tree Boosting (GB) [48] is an ensemble method that
consists in aggregating DTs, fitted sequentially on the residuals of the linear combination ob-
tained at the previous step. In [43], the authors use a surrogate of the Average Precision
(AP) that can be directly optimized in XGBoost [25], considered as one of the currently most
effective GB methods. The resulting algorithm has been shown to be very efficient to address a
highly imbalanced bank fraud detection task. Like Random Forest, the drawback of GB comes
from its difficulty to induce a model that is directly interpretable.

4.4 MetaAP

In this section, we present our algorithm MetaAP. Inspired by TreeRank, its peculiarity comes
from the optimization of the Average Precision (AP) instead of the AUC-ROC. The objective
is to benefit from the capacity of AP to focus more on the top of the ranking to induce an
interpretable model useful in applications where the budget in terms of human controllers is
limited, like in fraud detection.

Let n be the number of examples of a given node of the current tree and n+ be the corre-
sponding number of positive samples. Let us consider a splitting decision that would send nl
examples in the left child node and resp. nr in the right child node. We aim at selecting the split
that would maximize nlAPleft+nrAPright where APleft and APright are two approximations of
the Average Precision. APleft is computed as if all the examples in the left child are classified
+1 and all the examples in the right child are classified −1. Conversely, APright is calculated as
if all the examples in the right child are classified +1 and all the examples in the left node are
classifies −1. We further define n+l and n+r as the number of positive examples in the left and
right children. In this binary setting, three thresholds are used in the computation of APleft
with the associated Recall and Precision defined as follows:

threshold t0 t1 t2

Recall 0 n+
l
n+ 1

Precision 1 n+
l
nl

n+

n

Plugging these values in Equation (4.2), we get:

APleft =
n+l
n+

n+l
nl

+

(
1−

n+l
n+

)
n+

n
=

n+2
l

n+nl
+
n+r
n

and similarly APright =
n+2
r

n+nr
+
n+l
n

.

In addition to being easy to compute, this splitting criterion allows us to better infer pure
positive leaves that will lead to a better global AP (see Figure 4.3, bottom left).

95

4.5. Experiments

Once a decision tree is learned (called DTAP as shown in Figure 4.3, bottom left), we need
to order the leaves as done in TreeRank. However, since we aim at maximizing AP , we have to
work with the Precision-Recall (PR) curve instead of the ROC curve (see Section 4.2), which
is more challenging for two main reasons. First, the PR curve is not increasing on [0; 1] from 0
to 1. It decreases from 1 to a value corresponding to the positive rate of the dataset. To keep
the same strategy as TreeRank, we rather minimize the area under the (1-P)R curve which boils
down to maximizing the area under the PR curve (Figure 4.3, top right). Second, unlike the
ROC curve, the (1-P)R is not a monotonically increasing function, having local maxima each
time negatives are highly ranked. To overcome this issue, our ordering strategy will relegate the
leaves leading to such a scenario to the end of the list preventing them from being merged on
the left part of the meta-tree, the part that really matter to get a high AP . More precisely, we
rank in ascending order the directing coefficients of the tangents to the (1-P)R curve at 0 by
calculating for each leaf the (1−Precision)/Recall ratio (see Figure 4.3, top left). This implies
that leaves with a majority of positives will appear at the beginning of the list, those with
the most positives first because leading to the lowest directing coefficient corresponding to a
Precision close to 1. Finally, according to the obtained ranking, the merging of the leaves into
two subsets (the left and right parts of the meta-tree) is performed as follows: we accumulate
the positives and negatives according to the ranking of the leaves and we select the merging
threshold that maximizes the AP on the left (Figure 4.3, bottom right).

Note that similarly to DTs, it is possible to adapt our tree-based method to build random
forests by training several times MetaAP from a certain number of bootstraps of the training
set. We denote this adaptation MetaAPForest in the next section.

4.5 Experiments

In this section, we present the experiments conducted on 28 public datasets, more or less
imbalanced, coming from the UCI1 and KEEL2 repositories. We also performed experiments
on private datasets provided by the French Ministry of Economy and Finance (DGFiP).

4.5.1 Datasets and experimental setup

The main characteristics of the 28 public datasets are summarized in Table 4.1. The private
datasets correspond to the tax and VAT declarations of French companies. They are used for the
detection of (i) over-evaluated charges (called 1st fraud in the following) and (ii) international
VAT frauds (2nd fraud). There are 40 datasets with an average of about 7,000 samples and
250 features. The imbalance ratio ranges from 0.3% to 24.3%. The main characteristics of
these private datasets are summarized in Table 4.2 at the end of this Chapter. Note that each
year, only 50,000 controls can be carried out from a panel of more than 3 million companies.
Therefore, the output ranking must contain as many positives as possible in the very top list
in order to optimize the recovery of sums due. Moreover, the model must be interpretable to
justify why a company has been selected. The Python code of the algorithms, experiments,
plots are publicly available3.

For each dataset, we split the data into training (70%) and test (30%) sets. We select the
hyperparameters by maximizing the AP through a 5-folds cross validation over the training
set. We repeat the process over 20 runs and average the results in both terms of AP and
Precision@k. For the latter, we select k as the percentage of the number of positives in the
test set.

1https://archive.ics.uci.edu/ml/datasets.html
2https://sci2s.ugr.es/keel/datasets.php
3https://github.com/LeoGautheron/submission-PRL

96

https://archive.ics.uci.edu/ml/datasets.html
https://sci2s.ugr.es/keel/datasets.php
https://github.com/LeoGautheron/submission-PRL

Chapter 4. Tree-Based Ranking for Interpretable Fraud Detection

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ordered tangents with number of
positives and negatives in the leaves

0: 18+ and 15-
1: 2+ and 15-
2: 2+ and 903-

3: 1+ and 25-
4: 1+ and 56-

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC for each possible fusions
with corresponding AP

[0,..,4]: AP=0.023
[0,..,3]: AP=0.023
[0,..,2]: AP=0.023

[0,1]: AP=0.337
[0]: AP=0.415
AUC

DTAP
X0 <= 0.655

train n- 1014, n+ 24

score = 0.002
train n- 903, n+ 2

X1 <= 0.625
train n- 111, n+ 22

score = 0.018
train n- 56, n+ 1

X6 <= 0.535
train n- 55, n+ 21

X2 <= 0.415
train n- 30, n+ 20

score = 0.038
train n- 25, n+ 1

score = 0.118
train n- 15, n+ 2

score = 0.545
train n- 15, n+ 18

MetaAP
X0 <= 0.655

train n- 1014, n+ 24

X7 <= 0.225
train n- 999, n+ 6

X1 <= 0.625
train n- 111, n+ 22

X6 <= 0.535
train n- 55, n+ 21

X2 <= 0.415
train n- 30, n+ 20

X7 <= 0.315
train n- 15, n+ 18

Figure 4.3: MetaAP run on yeast6 (one of the most imbalanced public dataset) with maximum
depth of 4: (top left) Some tangents to the (1-P)R curve at 0 whose slopes are used to order the
leaves. (top right) Corresponding approximation of the (1-P)R curve by a piece-wise function
maximizing APleft by accumulating the sorted leaves from left to right. MetaAP aims at
maximizing the hatched area above the curve. Heremax(APleft) = 0.415 is achieved by putting
the first leaf on the left and merging all the others on the right. (bottom left) Corresponding
root’s DT with splitting rules that maximize the AP . (bottom right) Corresponding merged
DT.

4.5.2 Comparison with Decision Tree methods

We carried out a first series of experiments consisting in comparing MetaAP to three DT
baselines: the ranking DT algorithm [5] using either (i) the Gini ot (ii) the Entropy criterion,
and (iii) TreeRank [27]. The depths of internal trees and the global tree of TreeRank and
MetaAP are tuned in the set {2, 3, ..., 9, 10} which can lead when building the full tree to a
maximum depth of 10× 10 = 100. To make the experiments fair, the tree depths of Gini and
Entropy-based DTs are tuned in the set {2, 3, ..., 8, 9, 10, 20, ..., 80, 90, 100}.

The mean AP s over the 28 public datasets are reported in Figure 4.4. It shows five com-
parisons from 50% to 10%: the former encompasses the datasets with at most an imbalance
ratio of 50% (thus, considers all the 28 datasets), while the latter takes into account the 6 most

97

4.5. Experiments

Table 4.1: Information about the public datasets, sorted by positive rate. %+: percentage of
positives, n: number of examples, d: number of features.

datasets % + n d datasets % + n d
abalone20 00.62% 4177 10 newthyroid 30.23% 215 5
abalone17 01.39% 4177 10 glass 32.71% 214 9
yeast6 02.36% 1484 8 wine 33.15% 178 13

redwinequality4 03.31% 1599 11 pima 34.90% 768 8
libras 06.67% 360 90 ionosphere 35.90% 351 34

satimage 09.73% 6435 36 wdbc 37.26% 569 30
pageblocks 10.23% 5473 10 autompg 37.50% 392 7
yeast3 10.98% 1484 8 spambase 39.42% 4597 57

bankmarketing 11.70% 45211 51 bupa 42.03% 345 6
abalone8 13.60% 4177 10 heart 44.44% 270 13

segmentation 14.29% 2310 19 australian 44.49% 690 14
hayes 22.73% 132 4 balance 46.08% 625 4
vehicle 23.52% 846 18 sonar 46.63% 208 60
german 30.00% 1000 24 splice 48.09% 3175 60

imbalanced datasets with at most 10% of positives. Whatever the percentage between 50%
and 10%, we can note that our method (in green) outperforms the other competitors. The
superiority of MetaAP seems to be even larger as the imbalance ratio increases. In order to
evaluate the significance of these results, we performed a Wilcoxon signed-rank test in each
scenario by comparing MetaAP with the first best competitor. It is worth noting that at
50%, thus comparing with TreeRank over the 28 datasets, we obtain a p-value smaller than
0.05. For the other imbalance ratios, we get a p-value between 0.1 (for 10%) and 0.2 (for 20%,
30% and 40%).

The usefulness of our method is emphasized by Figure 4.7 (top) which reports the results
in terms of Precision@k (only for the cases 10%, 30% and 50% for the sake of conciseness).
While, as expected, the gap between the methods in terms Precision@k tends to be smaller and
smaller as the percentage of positives grows, for small values of k (the ones that are considered
in the case of budget limitation), MetaAP is most of the time much better that TreeRank
and all the other competitors (green curve above the others). This behavior is confirmed and
even amplified on the fraud detection task. The results in terms of Precision@k reported in
Figure 4.5 show thatMetaAP significantly outperforms all the other methods for the two cases
of studied frauds up to a value of k equivalent to 25% of the number of positives in the test set.
This impressive result opens the door to the use of MetaAP for making the tax audit process
much more efficient.

4.5.3 Analysis of an early stopping strategy

To analyze the impact of the tree depth on the behavior of the methods, we studied an early
stopping in the construction of the models at fixed depths p from 1 to 10 for MetaAP and
TreeRank. For the sake of fairness, we used a depth of p2 for Gini and Entropy-based
DTs which leads to the same expressiveness for all the resulting (meta)-trees. The results on
the public datasets are reported in Figure 4.6. We can note that as soon as MetaAP has a
depth greater than 3, it outperforms all the other methods, at equivalent depth, whatever the
percentage of positives considered.

98

Chapter 4. Tree-Based Ranking for Interpretable Fraud Detection

64.0
60.8

48.0

41.0

24.7

65.5
63.0

51.2

44.9

31.7

66.1
62.9

51.7

44.9

28.0

68.2
65.0

54.1

48.2

34.8

50% 40% 30% 20% 10%
Percentage of positives examples

20

30

40

50

60

70
Av

er
ag

e
Pr

ec
isi

on
Gini
Entropy

TreeRank
MetaAP

Figure 4.4: Mean AP as a function of the percentage of positives.For 50%, AP is computed
from all the 28 datasets. For 10%, only 6 datasets are used.

0 25 50 75 100
Percentage of positive examples used

to compute the size of the top rank

20

25

30

Pr
ec

isi
on

 in
 th

e
to

p
ra

nk

Private Datasets on 1st fraud

0 25 50 75 100
Percentage of positive examples used

to compute the size of the top rank

4

5

6

7

Private Datasets on 2nd fraud
Gini Entropy TreeRank MetaAP

Figure 4.5: Precision@k according to the % of positives in the private datasets.

4.5.4 Comparison with forest-based methods

In a last series of experiments, even though we are mainly interested in interpretable models, we
compared our Random Forest version MetaAPForest with 3 baselines: (i) the RF Entropy-
Forest using the Entropy DT [5], (ii) the ranking version of XGBoost [25]: XGBRanker, (iii)
SGBAP [43] that optimizes the AP . The number of DTs in the forests and in the gradient tree
boosting methods was set to 100 and the depth of the trees is tuned between 2 and 10. For the
forests, we considered a bootstrap of the size of the number of training examples for each tree,
but we did not use bootstrap for the features and considered all of them at each node. We did
not make use of the RF version of TreeRank because its implementation in R has been shown
to be too much memory consuming during the experiments. We neither considered GiniForest

99

4.6. Conclusion and Perspectives

10%

30%

50%

Pe
rc

en
ta

ge
 o

f p
os

iti
ve

 e
xa

m
pl

es

1
1

4
2

9
3

16
4

25
5

36
6

49
7

64
8

81
9

100
10

Depth of the Trees

0
10
20
30
40
50
60
70

Av
er

ag
e

Pr
ec

isi
on

Gini
Entropy

TreeRank
MetaAP

Figure 4.6: Mean AP as a function of the depth on the public datasets with a proportion of
positives of at most 10%, 30% and 50%. The 1st line (resp. 2nd) of the x-axis represents the
depth of the Gini and Entropy-based DTs (resp. TreeRank and MetaAP).

because it led to slightly worse performances than its counterpart EntropyForest.
As expected, Gradient Boosting outperforms the other approaches in terms of AP . Over

the 28 public datasets, XGBRanker reaches 77.0% while MetaAP leads to an AP equal to
74.8%, 74.9% for EntropyForest and 73.3% for SGBAP. However, recall that both Gradient
Boosting and Random Forest methods do not fulfill our requirement of inferring interpretable
models. Interestingly, Figure 4.7 (bottom) shows that in terms of Precision@k, MetaAP is
competitive by outperforming both EntropyForest and SGBAP and being just slightly below
XGBRanker.

4.5.5 Compact and interpretable meta-trees

We end this section by illustrating in Figure 4.8 the fact that MetaAP allows to induce much
more compact models with the same fixed depth than standard DT methods. This compression
comes from the fact that by construction MetaAP allows leaves to be reached by several
paths. In terms of AP , we can see that such compact meta-trees can allow to avoid overfitting
phenomena as illustrated in the Figure by a smaller gap between the AP s at training and test
time (49.82 versus 43.68) compared to that of the Entropy-based DT (58.62 versus 35.16).

4.6 Conclusion and Perspectives

In this Chapter, we address the challenging problem of learning to rank from imbalanced data.
We design an algorithm that builds meta-trees by optimizing during the learning process the
Average Precision (AP). As far as we know, this is the fist attempt to optimize directly this
non-convex and non separable function in a tree-based ranking method. The resulting algorithm
MetaAP shows very promising results on public datasets and on a tax fraud detection task
where the need of generating a short list of alerts maximizing the AP is of great interest.
MetaAP also comes with the valuable property of inducing compact interpretable models. In
future work, we plan to investigate the optimization of the Precision@k. This would allow
us to directly take into account the number of controls k allowed by the application at hand.
However, we will need to figure out solutions, for example using transfer learning methods, to

100

Chapter 4. Tree-Based Ranking for Interpretable Fraud Detection

avoid retraining from scratch a model learned for a given k. Finally, even if our setting in not
as favourable as that of TreeRank (unlike the ROC curve, the (1-P)R is not a monotonically
increasing function), we will investigate the possibility to derive generalization guarantees.

Table 4.2: Information about the private datasets with %+ the percentage of positives, n the
number of examples and d the number of features.
datasets % + n d datasets % + n d datasets % + n d
dgfip11 11.1 4794 249 dgfip81 17.8 1028 255 dgfip151 21.6 7370 273
dgfip12 00.4 4317 241 dgfip82 02.2 872 244 dgfip152 01.9 5960 265
dgfip21 17.0 10033 264 dgfip91 16.4 409 171 dgfip161 10.3 789 162
dgfip22 00.9 8460 257 dgfip92 01.2 346 154 dgfip162 01.0 723 154
dgfip31 14.1 2026 230 dgfip101 13.0 7102 246 dgfip171 17.2 15658 302
dgfip32 00.3 1756 226 dgfip102 00.6 6252 244 dgfip172 00.9 13186 300
dgfip41 16.3 240 76 dgfip111 20.0 14209 328 dgfip181 11.5 2225 260
dgfip42 01.9 208 65 dgfip112 02.9 11964 326 dgfip182 01.9 2023 256
dgfip51 16.4 21717 321 dgfip121 21.4 4244 252 dgfip191 24.3 14377 262
dgfip52 03.8 19117 318 dgfip122 02.8 3477 251 dgfip192 01.3 11124 255
dgfip61 14.5 5006 229 dgfip131 13.5 11114 268 dgfip201 16.5 19867 294
dgfip62 04.6 4499 228 dgfip132 00.4 9710 262 dgfip202 05.0 17584 294
dgfip71 12.2 2314 229 dgfip141 16.2 4344 262
dgfip72 01.4 2068 225 dgfip142 01.4 3718 254

101

4.6. Conclusion and Perspectives

20 40 60 80 100

30

35

40

45

Pr
ec

isi
on

 in
 th

e
to

p
ra

nk

Mean results over the 6 datasets
with less than 10% of positives

Gini Entropy TreeRank MetaAP

20 40 60 80 100
50

55

60

65

Mean results over the 14 datasets
with less than 30% of positives

20 40 60 80 100
65

70

75

Mean results over all the 28 datasets

20 40 60 80 100
Percentage of positive examples used

to compute the size of the top rank

35

40

45

50

55

Pr
ec

isi
on

 in
 th

e
to

p
ra

nk

SGBAP EntropyForest XGBRanker MetaAPForest

20 40 60 80 100
Percentage of positive examples used

to compute the size of the top rank

60

65

70

20 40 60 80 100
Percentage of positive examples used

to compute the size of the top rank

70

75

80

85

Figure 4.7: Precision@k according to the percentage of positives.(Top) Results for DT methods.
(Bottom) Results for RF and Gradient Tree Boosting methods.

Entropy, Train AP: 58.62%, Test AP: 35.16%

X0 <= 0.655
train (1014, 24)

X1 <= 0.395
train (899, 1)

X1 <= 0.625
train (115, 23)

X1 <= 0.385
train (192, 1)

score = 0.0
train (707, 0)

X6 <= 0.58
train (54, 1)

X2 <= 0.405
train (61, 22)

score = 0.0
train (164, 0)

X0 <= 0.485
train (28, 1)

score = 0.0
train (26, 0)

score = 0.333
train (2, 1)

score = 0.0
train (49, 0)

X3 <= 0.37
train (5, 1)

X6 <= 0.445
train (31, 1)

X6 <= 0.525
train (30, 21)

score = 0.0
train (5, 0)

score = 1.0
train (0, 1)

score = 0.2
train (4, 1)

score = 0.0
train (27, 0)

score = 0.576
train (14, 19)

score = 0.111
train (16, 2)

MetaAP, Train AP: 49.82%, Test AP: 43.68%

X0 <= 0.655
train (1014, 24)

X3 <= 0.285
train (953, 2)

X1 <= 0.625
train (115, 23)

X5 <= 0.25
train (672, 0)

X3 <= 0.395
train (281, 2)

X2 <= 0.405
train (61, 22)

score = 0.25
train (822, 0)

score = 0.5
train (131, 2)

score = 0.75
train (47, 3)

X6 <= 0.525
train (30, 21)

score = 1.0
train (14, 19)

Figure 4.8: Trees learned on yeast6 using the Entropy (left) and MetaAP (right). A green
(resp. red) arrow means that the feature considered in the node is lower or equal to (resp. larger
than) the threshold. A black arrow is used when both the green and red arrows are going from
the same parent to the same child. Each node (resp. leave) contains the splitting criterion
(resp. the ranking score) and the number of training negatives and positives (n−, n+).

102

Conclusion and Perspectives

In this manuscript, we presented new supervised methods for addressing the challenging task of
highly imbalanced learning. This thesis has been carried out in the context of a partnership with
the French Ministry of Economy and Finance. Our contributions aimed at tackling the complex
task of fraud detection characterized by the fact that fraudsters often try to have a behavior
as close to non frausters as possible in order to remain undetected. Thus, unlike anomalies,
suspicious positive examples are often hidden in the middle of many negative samples. That is
why detecting frauds can be seen as looking for a needle in a haystack. A second peculiarity
of fraud detection comes from the limitation of the budget in terms of human controllers. This
constraint prompts us to design specific models that minimize the number of false negatives
and reduce as much as possible the number of alerts sent to the agents. The last requirement
we had to take into account in this thesis is the need for the DGFiP to get models that are
interpretable so as to support human decision making.

Based on the assumption that fraudsters try to mimic non-fraudsters and are much scarcer
than the latter, we have developed two strategies that force the model to pay more attention
to the positive examples.

With γk−NN, we adapted the Nearest-Neighbor algorithm so that it favors positive exam-
ples. By weighting the distances to the latter with a coefficient (smaller than 1), we artificially
bring the examples of interest closer to the query, thus simulating an expansion of the Voronoi
cells surrounding them. Through an extensive experimental study, this simple and natural
method has been shown to be very efficient. It is worth noting that this first contribution has
been deployed at the DGFiP and is currently used to improve VAT fraud detection algorithms.
A promising perspective related to this first contribution would be to extend the idea of the
local variant of γk−NN (see Section 2.5.4) to the design of a multi-view learning approach,
where the different results of γk−NN obtained with complementary subsets of features (the
different views) would be combined in some way. Another interesting perspective would consist
in working on a probabilistic version of γk−NN allowing us to prioritize the examples to be
taken into consideration. The exploitation of γ in the definition of such probabilities has not
been studied yet and could be relevant. Finally, as γk−NN artificially extends the Voronoi
cells around the positive examples, it mimics in some way the behavior of a generative model
that would create artificial examples in some particular part of the feature space. Establishing
the link between γk−NN and GANs would be a promising line of research.

With MLFP, a metric learning algorihm, we extended our geometrical analysis by learning
ellipsoids that allow us to better catch positive examples. The idea was to correct the main
drawback of standard Metric Learning methods which focus too much on the majority class.
We addressed this issue by optimizing a Mahalanobis distance under a constraint on the largest
eigenvalue of the PSD matrix that allows us to control False Negative rate. Exploiting the
uniform stability framework, MLFP comes with generalization guarantees. One limitation of
MLFP comes from the assumption that a linear transformation is sufficient to enhance the fea-
ture representation. To overcome this problem, different strategies deserve to be studied. The
first one would consist in kernelizing MLFP, which is not straightforward because requiring

103

Conclusion and Perspectives

to rewrite the Mahalanobis distance-based problem into inner products. One could also design
a deep learning approach at the expense of the generalization guarantees. A more promising
strategy would consist in learning different local metrics for different regions of the input space.
Finally, combining a Mahalanobis distance with a sampling strategy might lead to a new family
of imbalanced learning methods.

In response to the request of the DGFiP, the third contribution of this thesis was guided by
the need of interpretable models to support human decision making. We presented MetaAP, a
ranking algorithm that builds Meta-Decision Trees by directly optimizing theAverage Precision
at each step of the process. MetaAP aims at pushing positive examples at the very top of the
ranking allowing the limited number of agents to control the alerts. A natural extension of this
work is the optimization of the precision@k which seems to be more interesting in the context
of fraud detection when one has a known constrained budget. However, in such a scenario, how
to take into account the parameter "@k" in the construction of the meta-tree? How to avoid
retraining from scratch the model learned each time the number of agents changes? These are
open questions.

Other perspectives are directly related to the activities carried out at the DGFiP where I am
now working full time. For instance, I am expected to work on other settings, like the detection
of frauds on real estate transfers. Currently, the model in place at the DGFiP uses a Nearest-
Neighbor algorithm to predict the market value of real estate, in order to know if the sales
are suspicious. The idea would be to push the research a step further and detect fraudulent
sales by using a more adapted representation space, for which the formalism remains to be
defined. Another research axis would be the detection of fraud in graphs. Indeed, the DGFiP
has recently started to link the different information in its possession. Given the fraudsters
already detected, it could be interesting to look at the interactions between them and the
possible propagation of frauds in this graph. On the other hand, considering the multiplicity
of data sources at my disposal, I will have to work on dimensionality reduction and feature
engineering with the requirement to keep the models interpretable. Finally, I plan to work on
semi-supervised learning techniques. Indeed, considering the difficulty to obtain a significant
number of labeled examples and the selection bias inherent to the process, it seems appropriate
to benefit from the huge amount of unlabeled data at my disposal to improve the whole chain
of controls.

104

Bibliography

[1] An experiment with the edited nearest-neighbor rule. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-6(6):448–452, 1976. 34

[2] Aisha Abdallah, Mohd Aizaini Maarof, and Anazida Zainal. Fraud detection system: A
survey. Journal of Network and Computer Applications, 68:90–113, 2016. 1, 67, 89

[3] Charu C. Aggarwal. Outlier Analysis. Springer International Publishing, 2017. 46, 67

[4] Shikha Agrawal and Jitendra Agrawal. Survey on anomaly detection using data mining
techniques. In Liya Ding, Charles Pang, Mun-Kew Leong, Lakhmi C. Jain, and Robert J.
Howlett, editors, KES, volume 60 of Procedia Computer Science, pages 708–713. Elsevier,
2015. 90

[5] Isabelle Alvarez and Stephan Bernard. Ranking cases with decision trees: a geometric
method that preserves intelligibility. In IJCAI, pages 635–640. Citeseer, 2005. 93, 97, 99

[6] Ricardo Barandela, José Salvador Sánchez, V Garca, and Edgar Rangel. Strategies for
learning in class imbalance problems. Pattern Recognition, 36, 2003. 49, 55

[7] Kevin Bascol, Rémi Emonet, Élisa Fromont, Amaury Habrard, Guillaume Metzler, and
Marc Sebban. From cost-sensitive to tight f-measure bounds. In Kamalika Chaudhuri and
Masashi Sugiyama, editors, The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, volume 89, pages 1245–1253. PMLR, 2019. 46

[8] Richard A Bauder, Taghi M Khoshgoftaar, and Tawfiq Hasanin. Data sampling ap-
proaches with severely imbalanced big data for medicare fraud detection. In 2018 IEEE
30th international conference on tools with artificial intelligence (ICTAI), pages 137–142.
IEEE, 2018. 46

[9] Aurélien Bellet, Amaury Habrard, and Marc Sebban. A survey on metric learning for
feature vectors and structured data. CoRR, abs/1306.6709, 2013. 47, 49, 68, 69

[10] Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric Learning, volume 2015 of
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2015. 16, 27, 47, 49, 68, 72, 81

[11] Joseph Berkson. Application of the logistic function to bio-assay. Journal of the American
Statistical Association, 39(227):357–365, 1944. 7, 18

[12] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 144–152, 1992. 7, 16, 17

[13] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine
learning research, 2(Mar):499–526, 2002. 11, 12, 70, 72, 81

105

Bibliography

[14] Kendrick Boyd, Kevin H Eng, and C David Page. Area under the precision-recall curve:
point estimates and confidence intervals. In Joint European conference on machine learn-
ing and knowledge discovery in databases, pages 451–466. Springer, 2013. 92

[15] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996. 23

[16] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. 23, 95

[17] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann. The balanced accuracy
and its posterior distribution. In 20th International Conference on Pattern Recognition.
IEEE, 2010. 46, 48

[18] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochas-
tic multi-armed bandit problems. arXiv preprint arXiv:1204.5721, 2012. 7

[19] Christopher JC Burges. From ranknet to lambdarank to lambdamart: An overview.
Learning, 11(23-581):81, 2010. 90, 92

[20] Ramiro Camino and Chris Hammerschmidt. Oversampling tabular data with deep gen-
erative models: Is it worth the effort? “I Can’t Believe It’s Not Better!”NeurIPS 2020
workshop, 2020. 90

[21] Lidia Ceriani and Paolo Verme. The origins of the gini index: extracts from variabilità
e mutabilità (1912) by corrado gini. The Journal of Economic Inequality, 10(3):421–443,
2012. 21

[22] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 2009. 46

[23] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16,
2002. 37, 46, 90

[24] Nitesh V Chawla, Aleksandar Lazarevic, Lawrence O Hall, and Kevin W Bowyer. Smote-
boost: Improving prediction of the minority class in boosting. In European conference on
principles of data mining and knowledge discovery, pages 107–119. Springer, 2003. 42

[25] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho,
et al. Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 2015. 25, 90,
95, 99

[26] Stéphan Clémençon, Marine Depecker, and Nicolas Vayatis. Ranking forests. Journal of
Machine Learning Research, 14(Jan):39–73, 2013. 95

[27] Stéphan Clémençon and Nicolas Vayatis. Tree-based ranking methods. IEEE Transactions
on Information Theory, 55(9):4316–4336, 2009. 90, 93, 97

[28] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995. 7, 16

[29] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967. 14, 46

[30] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon.
Information-theoretic metric learning. In Proceedings of the 24th international confer-
ence on Machine learning, pages 209–216. ACM, 2007. 29, 47, 49, 68, 69, 76

106

Bibliography

[31] Cour des Comptes. La fraude aux prélèvements obligatoires. 2019. 1

[32] Shuya Ding, Bilal Mirza, Zhiping Lin, Jiuwen Cao, Xiaoping Lai, Tam V. Nguyen, and
Jose Sepulveda. Kernel based online learning for imbalance multiclass classification. Neu-
rocomputing, 277:139–148, 2018. 68

[33] Georgios Douzas and Fernando Bação. Effective data generation for imbalanced learning
using conditional generative adversarial networks. Expert Syst. Appl., 91:464–471, 2018.
90

[34] Sahibsingh A Dudani. The distance-weighted k-nearest-neighbor rule. IEEE Transactions
on Systems, Man, and Cybernetics, 4, 1976. 14, 48, 55

[35] Sri Harsha Dumpala, Rupayan Chakraborty, and Sunil Kumar Kopparapu. A novel data
representation for effective learning in class imbalanced scenarios. In Proceedings of the
27th International Joint Conference on Artificial Intelligence, pages 2100–2106, 7 2018.
68

[36] Charles Elkan. The foundations of cost-sensitive learning. In International joint conference
on artificial intelligence, pages 973–978. Morgan Kaufmann, 2001. 40, 52, 90

[37] RP Espíndola and NFF Ebecken. On extending f-measure and g-mean metrics to multi-
class problems. WIT Transactions on Information and Communication Technologies, 35,
2005. 48

[38] Wei Fan, Salvatore J Stolfo, Junxin Zhang, and Philip K Chan. Adacost: misclassification
cost-sensitive boosting. In Icml, volume 99, pages 97–105. Citeseer, 1999. 41

[39] Lin Feng, Huibing Wang, Bo Jin, Haohao Li, Mingliang Xue, and Le Wang. Learning a
distance metric by balancing kl-divergence for imbalanced datasets. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, PP:1–12, 01 2018. 68, 70, 90

[40] Alberto Fernández, Salvador Garcia, Francisco Herrera, and Nitesh V Chawla. Smote for
learning from imbalanced data: Progress and challenges, marking the 15-year anniversary.
Journal of Artificial Intelligence Research, 61, 2018. 46

[41] César Ferri, José Hernández-Orallo, and R Modroiu. An experimental comparison of
performance measures for classification. Pattern Recognition Letters, 30, 2009. 46

[42] Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis. nonparametric discrim-
ination: Consistency properties. International Statistical Review/Revue Internationale de
Statistique, 57(3):238–247, 1989. 7

[43] Jordan Fréry, Amaury Habrard, Marc Sebban, Olivier Caelen, and Liyun He-Guelton. Ef-
ficient top rank optimization with gradient boosting for supervised anomaly detection. In
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part I. Springer,
2017. 46, 90, 95, 99

[44] Jordan Frery, Amaury Habrard, Marc Sebban, and Liyun He-Guelton. Non-linear gradient
boosting for class-imbalance learning. In 2nd International Workshop on Learning with
Imbalanced Domains: Theory and Applications, pages 38–51, 2018. 68

[45] Yoav Freund. Boosting a weak learning algorithm by majority. Information and compu-
tation, 121(2):256–285, 1995. 7

107

Bibliography

[46] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139,
1997. 23, 25

[47] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. An-
nals of statistics, pages 1189–1232, 2001. 23, 25

[48] Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data anal-
ysis, 38(4):367–378, 2002. 23, 25, 95

[49] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Francisco
Herrera. A review on ensembles for the class imbalance problem: bagging-, boosting-, and
hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(4):463–484, 2011. 41, 90

[50] Léo Gautheron, Amaury Habrard, Emilie Morvant, and Marc Sebban. Metric learning
from imbalanced data with generalization guarantees. Pattern Recognit. Lett., 133:298–
304, 2020. 90

[51] Léo Gautheron, Emilie Morvant, Amaury Habrard, and Marc Sebban. Metric learning
from imbalanced data. In arXiv. 1909.01651, 2019. 68, 69, 76

[52] Sunder Gee. Fraud and fraud detection: a data analytics approach. 2014. 48

[53] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada.
2014. 46

[54] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling
method in imbalanced data sets learning. In International conference on intelligent com-
puting. Springer, 2005. 37

[55] Peter Hart. The condensed nearest neighbor rule (corresp.). IEEE transactions on infor-
mation theory, 14(3):515–516, 1968. 34

[56] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic
sampling approach for imbalanced learning. In 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, 2008.
37

[57] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions
on knowledge and data engineering, 21(9):1263–1284, 2009. 90

[58] Shohei Hido, Hisashi Kashima, and Yutaka Takahashi. Roughly balanced bagging for
imbalanced data. Statistical Analysis and Data Mining: The ASA Data Science Journal,
2(5-6):412–426, 2009. 42

[59] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on
document analysis and recognition, volume 1, pages 278–282. IEEE, 1995. 23, 95

[60] Harold Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of educational psychology, 24(6):417, 1933. 7

108

Bibliography

[61] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep represen-
tation for imbalanced classification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5375–5384, 2016. 68

[62] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances
in neural information processing systems, 30:3146–3154, 2017. 25

[63] Salman H. Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A. Sohel, and
Roberto Togneri. Cost-sensitive learning of deep feature representations from imbalanced
data. IEEE transactions on neural networks and learning systems, 29(8):3573–3587, 2017.
68

[64] Aryeh Kontorovich, Sivan Sabato, and Ruth Urner. Active nearest-neighbor learning in
metric spaces. In Advances in Neural Information Processing Systems 29. NIPS, 2016. 46

[65] Aryeh Kontorovich and Roi Weiss. A Bayes consistent 1-NN classifier. In Proceedings of the
Eighteenth International Conference on Artificial Intelligence and Statistics, volume 38.
PMLR, 2015. 46

[66] Miroslav Kubat and Stan Matwin. Addressing the curse of imbalanced training sets: One-
sided selection. In Douglas H. Fisher, editor, Proceedings of the Fourteenth International
Conference on Machine Learning (ICML), pages 179–186. Morgan Kaufmann, 1997. 34,
48

[67] Brian Kulis et al. Metric learning: A survey. Foundations and Trends R© in Machine
Learning, 5(4):287–364, 2013. 68, 69

[68] Jorma Laurikkala. Improving identification of difficult small classes by balancing class
distribution. In Silvana Quaglini, Pedro Barahona, and Steen Andreassen, editors, Ar-
tificial Intelligence in Medicine, pages 63–66, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg. 34

[69] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. 54

[70] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999. 7

[71] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal
of Machine Learning Research, 18(17):1–5, 2017. 38, 56

[72] Breiman LI, Jerome Friedman, RA Olshen, and C.J. Stone. Classification and Regression
Trees (CART), volume 40. 09 1984. 7, 20, 21, 92

[73] Charles X Ling and Robert J Yan. Decision tree with better ranking. In Proceedings of
the 20th International Conference on Machine Learning (ICML-03), pages 480–487, 2003.
93

[74] Kun Liu, Jiangrui Han, Haiyong Chen, Haowei Yan, and Peng Yang. Defect detection
on el images based on deep feature optimized by metric learning for imbalanced data. In
2019 25th International Conference on Automation and Computing (ICAC), pages 1–5.
IEEE, 2019. 90

[75] Wei Liu and Sanjay Chawla. Class confidence weighted knn algorithms for imbalanced
data sets. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages
345–356. Springer, 2011. 48

109

Bibliography

[76] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-
imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics), 39(2):539–550, 2008. 42

[77] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information
theory, 28(2):129–137, 1982. 7

[78] Ulrike von Luxburg and Olivier Bousquet. Distance-based classification with lipschitz
functions. Journal of Machine Learning Research, 5, 2004. 46

[79] Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions: a case study
involving information extraction. In Proceedings of workshop on learning from imbalanced
datasets, volume 126. ICML United States, 2003. 34

[80] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms
as gradient descent in function space. In Proc. NIPS, volume 12, pages 512–518, 1999.
23, 25

[81] Josey Mathew, Ming Luo, Chee Khiang Pang, and Hian Leng Chan. Kernel-based smote
for svm classification of imbalanced datasets. In IECON 2015-41st Annual Conference of
the IEEE Industrial Electronics Society, pages 001127–001132. IEEE, 2015. 68

[82] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943. 7

[83] Aditya Krishna Menon and Robert C Williamson. Bipartite ranking: a risk-theoretic
perspective. The Journal of Machine Learning Research, 17(1):6766–6867, 2016. 92

[84] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533,
2015. 7

[85] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018. 7

[86] Hien M Nguyen, Eric W Cooper, and Katsuari Kamei. Borderline over-sampling for
imbalanced data classification. International Journal of Knowledge Engineering and Soft
Data Paradigms, 3(1):4–21, 2011. 37

[87] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–
572, 1901. 7

[88] María Pérez-Ortiz, Peter Tiño, Rafal Mantiuk, and César Hervás-Martínez. Exploit-
ing synthetically generated data with semi-supervised learning for small and imbalanced
datasets. CoRR, abs/1903.10022, 2019. 68

[89] Zhenxing Qin, Alan Tao Wang, Chengqi Zhang, and Shichao Zhang. Cost-sensitive clas-
sification with k-nearest neighbors. In International Conference on Knowledge Science,
Engineering and Management, pages 112–131. Springer, 2013. 53

[90] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986. 7, 20,
92

[91] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014. 7, 20, 92

110

Bibliography

[92] C. J. Van Rijsbergen. Information Retrieval. 1979. 48

[93] F. Rosenblatt. The perceptron: a probabilistic model for information storage and orga-
nization in the brain. Psychological review, 65 6:386–408, 1958. 7

[94] Cynthia Rudin. Stop explaining black box machine learning models for high stakes de-
cisions and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215,
2019. 90

[95] David E Rumelhart, Geoffrey E Hinton, James L McClelland, et al. A general framework
for parallel distributed processing. Parallel distributed processing: Explorations in the
microstructure of cognition, 1(45-76):26, 1986. 7

[96] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist sys-
tems, volume 37. Citeseer, 1994. 7

[97] Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly.
Assessing generative models via precision and recall. In Advances in Neural Information
Processing Systems 31. NeurIPS, 2018. 46

[98] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227,
1990. 7, 25

[99] Jörg Schiller. The impact of insurance fraud detection systems. Journal of Risk and
Insurance, 73(3):421–438, 2006. 67

[100] Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. Rusboost:
A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, 40(1):185–197, 2009. 42

[101] Claude Elwood Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948. 20

[102] Shiven Sharma, Colin Bellinger, Bartosz Krawczyk, Osmar R. Zaïane, and Nathalie Jap-
kowicz. Synthetic oversampling with the majority class: A new perspective on handling
extreme imbalance. IEEE International Conference on Data Mining, pages 447–456, 2018.
68, 78

[103] Harald Steck. Hinge rank loss and the area under the roc curve. In Joost N. Kok, Jacek
Koronacki, Raomon Lopez de Mantaras, Stan Matwin, Dunja Mladenič, and Andrzej
Skowron, editors, Machine Learning: ECML 2007. Springer, 2007. 46

[104] Yanmin Sun, Mohamed S Kamel, Andrew KC Wong, and Yang Wang. Cost-sensitive
boosting for classification of imbalanced data. Pattern recognition, 40(12):3358–3378,
2007. 41

[105] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018. 7

[106] Dacheng Tao, Xiaoou Tang, Xuelong Li, and Xindong Wu. Asymmetric bagging and
random subspace for support vector machines-based relevance feedback in image retrieval.
IEEE transactions on pattern analysis and machine intelligence, 28(7):1088–1099, 2006.
42

[107] Kai Ming Ting. An instance-weighting method to induce cost-sensitive trees. IEEE
Transactions on Knowledge and Data Engineering, 14(3):659–665, 2002. 41

111

Bibliography

[108] Ivan Tomek. Two modifications of cnn. IEEE Transactions on Systems Man and Com-
munications, 6:769–772, 1976. 34, 46, 90

[109] Peter D Turney. Types of cost in inductive concept learning. arXiv preprint cs/0212034,
2002. 40

[110] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984. 11

[111] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and its Applications, 16(2):264–280,
1971. 11

[112] Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on
neural networks, 10(5):988–999, 1999. 7, 16

[113] R. Viola, R. Emonet, A. Habrard, G. Metzler, S. Riou, and M. Sebban. An adjusted
nearest neighbor algorithm maximizing the f-measure from imbalanced data. In 2019
IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pages
243–250, 2019. 3, 45

[114] Rémi Viola, Rémi Emonet, Amaury Habard, Guillaume Metzler, Sébastien Riou,
and Marc Sebban. Une version corrigée de l’algorithme des plus proches voisins
pour l’optimisation de la F-mesure dans un contexte déséquilibré. In Conférence sur
l’Apprentissage automatique (CAp 2019), Toulouse, France, July 2019. 4, 45

[115] Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, and Marc Sebban.
MLFP: Un algorithme d’apprentissage de métrique pour la classification de données
déséquilibrées. In Conférence sur l’Apprentissage automatique (CAp 2020), Vannes,
France, June 2020. 4, 67

[116] Rémi Viola, Léo Gautheron, Amaury Habrard, and Marc Sebban. Metaap: a meta-tree-
based ranking algorithm optimizing the average precision from imbalanced data. Pattern
Recognition Letters, revised version under review, 2022. 3, 89

[117] Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou, and
Marc Sebban. A nearest neighbor algorithm for imbalanced classification. International
Journal on Artificial Intelligence Tools, 30(03):2150013, 2021. 3, 45

[118] Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, and Marc Sebban.
Learning from few positives: a provably accurate metric learning algorithm to deal with
imbalanced data. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, (IJCAI-20), pages 2155–2161. Interna-
tional Joint Conferences on Artificial Intelligence Organization, 7 2020. Main track. 3,
61, 67

[119] Nan Wang, Xibin Zhao, Yu Jiang, Yue Gao, and KLISS BNRist. Iterative metric learning
for imbalance data classification. In 27th International Joint Conference on Artificial
Intelligence, pages 2805–2811, 2018. 68, 69, 75, 76, 90

[120] Shuo Wang and Xin Yao. Diversity analysis on imbalanced data sets by using ensemble
models. In 2009 IEEE symposium on computational intelligence and data mining, pages
324–331. IEEE, 2009. 42

[121] Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Junjie Yan. Dynamic curriculum learning
for imbalanced data classification. In Proceedings of the IEEE International Conference
on Computer Vision, pages 5017–5026, 2019. 90

112

Bibliography

[122] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292,
1992. 7

[123] Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large margin
nearest neighbor classification. Journal of Machine Learning Research, 10(Feb):207–244,
2009. 29, 47, 49, 55, 56, 68, 69, 75, 76

[124] Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems, Man, and Cybernetics, 3, 1972. 34, 46, 90

[125] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992. 23

[126] Fei Wu, Xiao-Yuan Jing, Shiguang Shan, Wangmeng Zuo, and Jing-Yu Yang. Multiset
feature learning for highly imbalanced data classification. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, AAAI’17, page 1583–1589. AAAI Press,
2017. 68

[127] Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86(3):391–
423, 2012. 11

[128] Xulei Yang, Qing Song, and Yue Wang. A weighted support vector machine for data
classification. International Journal of Pattern Recognition and Artificial Intelligence,
21(05):961–976, 2007. 40

[129] Pourya Zadeh, Reshad Hosseini, and Suvrit Sra. Geometric mean metric learning. 07
2016. 69, 76

[130] Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. Metric learning as convex com-
binations of local models with generalization guarantees. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1478–1486, 2016. 78

[131] Shichao Zhang. Cost-sensitive knn classification. Neurocomputing, 391:234–242, 2019. 53

[132] Xiaogang Zhang, Dingxiang Wang, Yicong Zhou, Hua Chen, Fanyong Cheng, and Min
Liu. Kernel modified optimal margin distribution machine for imbalanced data classifica-
tion. Pattern Recognition Letters, 125:325–332, 2019. 68

[133] Xiuzhen Zhang and Yuxuan Li. A positive-biased nearest neighbour algorithm for im-
balanced classification. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 293–304. Springer, 2013. 49

[134] Xiuzhen Zhang, Yuxuan Li, Ramamohanarao Kotagiri, Lifang Wu, Zahir Tari, and Mo-
hamed Cheriet. Krnn: k rare-class nearest neighbour classification. Pattern Recognition,
62:33 – 44, 2017. 49, 55, 56

113

114

Abstract Among the dozen missions of the General Direction of Public Finance, there are the calcula-
tion of taxes, the control of tax returns and the collection of public revenues. This then allows for the
control and execution of public investments. However, as it is often the case in this situation, given the
financial aspects involved, some taxpayers, whether individuals or professionals, try to avoid this obli-
gation to declare their income or pay their taxes. In order to solve this problem, the DGFiP has created
a service to program the controls using, among others things, Machine Learning. This field of Artificial
Intelligence consists in developing algorithms, which will allow a computer to learn, from the collected
data, to automate non-trivial tasks initially done by humans. It will then perform them as well or better
and in a shorter time. The difficulty for the DGFiP lies in the imbalance between the number of interest-
ing cases, the frauds, and the others. This particular context of fraud detection, which is therefore linked
to Imbalanced Learning, requires specific techniques because traditional Machine Learning algorithms
struggle to find the cases of interest due to their too low number. Among the specific methods, we find
notably the optimization of adapted measures to this imbalanced context, resampling, cost sensitive
methods weighting the different errors or even ensemble methods using several algorithms. The goal of
this thesis is to develop new fraud detection methods to help the DGFiP in its tracking of fraudsters.
Our first contribution is an adaptation of the k nearest neighbor algorithm to the imbalanced context.
We show that by weighting the distance between the considered example and its fraudulent neighbors,
we facilitate the detection of new suspicious cases, by simulating an expansion of the zone of influence
of the fraudsters. Our second contribution is an extension of the first one, using a Metric Learning
approach and providing theoretical guarantees through the Uniform Stability framework. The idea is,
once again, to use the learned metric only when comparing the considered example with its fraudulent
neighbors, thus simulating, in the representation space induced by the metric, a rapprochement of the
suspicious examples towards the studied point. Our third contribution concerns an algorithm for pro-
ducing interpretable rankings. By creating Meta-Decision Trees optimizing the Average Precision at
each step of the process, the algorithm addresses one of the problems of the DGFiP which has a limited
number of controllers available: maximizing the number of suspicious cases at the top of the ranking
and obtaining a decision rule that can be easily interpreted by the end user who will perform the control.

Résumé Parmi la douzaine de missions de la Direction Générale des Finances Publiques, il y a le
calcul des impôts, le contrôle des déclarations fiscales et le recouvrement des recettes publiques. Ceci
permettant ensuite de contrôler et d’exécuter les dépenses publiques. Cependant, comme souvent dans
ces cas là, compte tenu des aspects financiers mis en jeu, certains contribuables, qu’ils soient particuliers
ou professionnels, tentent de se soustraire à cette obligation de déclarer leurs revenus ou de payer leurs
impôts. Afin de pallier ce problème, la DGFiP a mis en place un service de programmation des contrôles
se servant entre autre de l’Apprentissage Automatique. Ce champ de l’Intelligence Artificielle consiste à
élaborer des algorithmes, qui vont permettre à un ordinateur d’apprendre, à partir des données récoltées,
à automatiser des tâches non triviales et initialement faites par l’homme. Il les fera alors aussi bien voire
mieux et en un temps souvent moins long. La difficulté pour la DGFiP réside dans le déséquilibre entre
le nombre de cas intéressants, les fraudeurs, et le nombre des non-fraudeurs. Ce contexte particulier
de la détection de fraudes, que l’on rattache donc à l’Apprentissage Déséquilibré, nécessite en effet des
techniques spécifiques car les algorithmes traditionnels peinent à retrouver les cas d’intérêts du fait
de leur trop faible nombre. Parmi les méthodes spécifiques, on retrouve notamment l’optimisation de
mesures adaptées à ce contexte déséquilibré, le ré-échantillonnage, les méthodes sensibles aux coûts,
pondérant les différentes erreurs, ou encore les méthodes ensemblistes, utilisant plusieurs algorithmes.
Le but de cette thèse est de développer de nouvelles méthodes de détection de fraudes afin d’aider la
DGFiP dans sa traque des fraudeurs. Notre première contribution est une adaptation de l’algorithme
des k plus proches voisins au contexte déséquilibré. Nous montrons qu’en pondérant la distance entre
un exemple à étudier et ses voisins fraudeurs, nous facilitons la détection des nouveaux cas suspects, en
simulant une expansion de la zone d’influence des fraudeurs. Notre seconde contribution se veut être
un prolongement de la première, utilisant une approche d’Apprentissage de Métrique et apportant des
garanties théoriques grâce au cadre de Stabilité Uniforme. L’idée est, encore une fois, de n’utiliser la
métrique apprise que lors de la comparaison d’un exemple à étudier avec ses voisins fraudeurs, simulant
ainsi, dans l’espace de représentation induit par la métrique, un rapprochement des exemples suspects
vers le point étudié. Notre troisième contribution porte quant à elle sur un algorithme de génération
de classement interprétable. En créant des Méta-Arbres de Décision optimisant l’Average Precision à
chaque étape du processus, l’algorithme répond à une des problématiques de la DGFiP qui a un nombre
limité de contrôleurs disponibles: maximiser le nombre de cas suspects dans le haut du classement et
obtenir une règle de décision facilement interprétable par l’utilisateur final qui fera le contrôle.

115

	Introduction
	List of Notations
	Basics of Machine Learning
	Supervised Machine Learning
	Generalities on Machine Learning
	Data as a key ingredient of Machine Learning
	Loss functions and Risk Minimization
	Generalization Guarantees

	Parameters tuning and Evaluation of an hypothesis
	Cross validation
	Performance measures

	Popular Learning Algorithms
	k-Nearest Neighbor (k-NN)
	Support Vector Machine (SVM)
	Logistic Regression
	Decision Trees
	Ensemble Learning
	Boosting

	Metric Learning
	Specificities of Imbalanced Learning
	Performance Measures
	Sampling Strategies
	Cost-Sensitive Learning
	Specific Ensemble Algorithms

	Conclusion

	An Adjusted Nearest Neighbor Algorithm for Imbalanced Classification
	Introduction
	Notations and Evaluation Measures
	Related Work
	Proposed Approach
	An Adjusted bold0mu mumu k-k-falsek-k-k-k-NN algorithm
	Theoretical analysis
	Link with cost-sensitive learning
	Towards a local approach of bold0mu mumu k-k-falsek-k-k-k-NN

	Experiments
	Experimental setup
	Analysis of the results
	A qualitative analysis on the MNIST dataset
	On local-bold0mu mumu k-k-falsek-k-k-k-NN using clustering

	Conclusion

	Metric Learning from Few Positives
	Introduction
	Related Work
	Metric Learning for Imbalanced Data
	Problem Formulation
	On the Impact of the Constraint

	Theoretical Analysis
	Uniform Stability
	Classification Guarantees

	Experiments
	Experimental Setup
	Results

	Conclusion
	Proof of Theorems 2 and 3
	Generalization Guarantees
	Uniform Stability
	Preliminary Results
	Generalization Bound

	Classification Guarantees - Proof

	Tree-Based Ranking for Interpretable Fraud Detection
	Introduction
	Notations and Evaluation Measures
	Related Work
	MetaAP
	Experiments
	Datasets and experimental setup
	Comparison with Decision Tree methods
	Analysis of an early stopping strategy
	Comparison with forest-based methods
	Compact and interpretable meta-trees

	Conclusion and Perspectives

	Conclusion and Perspectives
	Bibliography
	Abstract

