
HAL Id: tel-04019979
https://theses.hal.science/tel-04019979

Submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstracting Hardware Architectures for Agile Design of
High-performance Applications on FPGA

Jean Bruant

To cite this version:
Jean Bruant. Abstracting Hardware Architectures for Agile Design of High-performance Applications
on FPGA. Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes [2020-..], 2022.
English. �NNT : 2022GRALT096�. �tel-04019979�

https://theses.hal.science/tel-04019979
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEURDE L’UNIVERSITÉ GRENOBLE ALPES

École Doctorale : Électronique, Électrotechnique, Automatique et Traitement du Signal (EEATS)
Spécialité : NANO ÉLECTRONIQUE ET NANO TECHNOLOGIES
Unitée de recherche : Laboratoire Techniques de l’Informatique et de la Microélectronique pour
l’Architectures des systèmes intégrés (TIMA)

Abstracting Hardware Architectures for
Agile Design of High-performance
Applications on FPGA
Abstractions d’architectures matérielles pour une conception
Agile d’applications performantes sur FPGA

Présentée par :

Jean BRUANT
Encadrement de Thèse :

Olivier MULLER Directeur de thèse
Maître de conférences, Grenoble INP, Université Grenoble Alpes
Frédéric PÉTROT Co-encadrant de thèse
Professeur des Universités, Grenoble INP, Université Grenoble Alpes
Pierre-Henri HORREIN Co-encadrant de thèse
Ingénieur Docteur, OVHcloud

Thèse soutenue publiquement le 8 décembre 2022, devant le jury composé de :
Florence MARANINCHI Présidente
Professeur des Universités, Grenoble INP, Université Grenoble Alpes
Matthieu ARZEL Rapporteur
Professeur des Universités, Lab-STICC, IMT Atlantique Bretagne -
Pays de la Loire
Steven DERRIEN Rapporteur
Professeur des Universités, ISTIC, Université Rennes 1
Roselyne CHOTIN Examinatrice
Maître de conférences, LIP6, Sorbonne Université
Megan WACHS Examinatrice
Ph.D., VP of Engineering, Sifive
Olivier MULLER Directeur de thèse
Maître de conférences Grenoble INP, Université Grenoble Alpes
Frédéric PÉTROT Co-encadrant de thèse
Professeur des Universités, Grenoble INP, Université Grenoble Alpes
Pierre-Henri HORREIN Co-encadrant de thèse
Ingénieur Docteur, OVHcloud

To our 24 sq.m,
at least as dense as this manuscript

Abstract

In a context of ever-growing worldwide communication traffic and fast deployment
of IoT devices, network attacks have become a daily challenge with record-breaking

throughput levels. Compared to software solutions based on general purpose CPUs,
FPGA-based mitigation appliances appear as an energy-efficient alternative which combines
configurability with guaranteed high-throughput and low-latency. However, implementation
of such dedicated hardware accelerators based on the register-transfer level (RTL) abstraction
is a much slower and tedious process than functionally equivalent software developments.
The latter have indeed benefited from the introduction of countless high-level paradigms
over the past decades, whereas traditional hardware description languages (HDLs) have
consistently remained rigid and verbose. As a result, the agility gap between hardware
and software developments is expanding at a steady pace, leaving hardware design experts
frustrated by the lack of re-usability of their carefully crafted architectures.

This thesis tackles this generic hardware development issue within the context of high-
performance networking appliance design at OVHcloud. Mimicking the successful trajectory
of software evolution, it aims at leveraging a stack of abstraction levels to instill flexibility
within hardware descriptions. As a key enabler, Hardware Construction Languages (HCLs)
apply some existing software abstractions to hardware design, which permits descriptions of
circuit generators with high-level software paradigms, such as object-oriented and functional
programming. This thesis first exhibits the relevance of such software inherited paradigms
to develop highly re-usable network functions, inspecting both implementation and design
perspectives. Based on this powerful base layer, we introduce an additional hardware-
oriented abstraction focusing on high-performance pipelined applications. Finally, the
integration ability of these novel design methodologies within existing HDL hierarchies is
reviewed in detail, yielding two final contributions aiming at ensuring a smooth cohabitation
of both methodologies. The first one provides a direct path from existing HDL sources to
their functionally equivalent HCL counterparts, thanks to an automated translation tool.
This word-for-word translation is intended as the first step of an iterative manual upgrade
to truly benefit from high-level abstractions of HCLs. The second one focuses on the smooth
integration of HCL-generated hierarchies back into a top-level HDL hierarchy, which is a
key acceptance factor for these new methodologies in long-running projects.

V

Résumé1

Dans un contexte de forte augmentation des communications numériques à travers le
monde et de déploiement rapide de l’internet des objets (IoT), les attaques sur les

réseaux de données sont devenues un défi quotidien avec des niveaux de trafic record. Par
rapport aux solutions logicielles basées sur des processeurs généralistes, les dispositifs de
mitigation construits à partir de FPGA apparaissent comme une alternative économe en
énergie qui combine la configurabilité avec à la fois la garantie d’un haut débit et d’une
faible latence. Cependant, la mise en œuvre de ces accélérateurs matériels dédiés, basée sur
l’abstraction des circuits numériques au niveau registre (RTL), est un processus beaucoup
plus lent et fastidieux que les développements logiciels fonctionnellement équivalents.
Ces derniers ont en effet bénéficié de l’introduction de nombreux paradigmes de haut
niveau au cours des dernières décennies, alors que les langages de description du matériel
(HDL) traditionnels sont restés rigides et verbeux. En conséquence, l’écart d’agilité entre les
développements matériels et logiciels se creuse à un rythme soutenu, laissant les experts
en conception matérielle frustrés par le manque de réutilisabilité de leurs architectures si
soigneusement élaborées.

Cette thèse aborde ce problème générique au développement matériel dans le contexte
de la conception d’équipements réseau haute-performance chez OVHcloud. En imitant la
trajectoire réussie de l’évolution des langages logiciels, elle vise à tirer parti d’un empilement
de niveaux d’abstraction pour insuffler de la flexibilité au sein des descriptions matérielles.
En particulier, les langages de construction matérielle (HCL) appliquent déjà certaines
abstractions logicielles à la conception matérielle, ce qui permet de décrire des générateurs
de circuits avec des paradigmes logiciels de haut niveau, tels que la programmation orientée
objet et fonctionnelle. Cette thèse montre d’abord la pertinence de l’utilisation de tels
paradigmes hérités du monde logiciel pour développer des fonctionnalités réseau hautement
réutilisables, en s’intéressant à la fois aux perspectives de mise en œuvre et de conception. Sur
cette base, nous présentons une abstraction supplémentaire, spécifique aux développements
matériels, qui se concentre sur les applications pipelinées à haute-performance. Enfin, la
capacité d’intégration de ces nouvelles méthodologies de conception dans les hiérarchies
HDL existantes est examinée en détail, ce qui donne lieu à deux contributions finales visant
à assurer une cohabitation harmonieuse entre ces deux méthodologies de développement.
Grâce à un outil de traduction automatique, la première fournit un chemin direct depuis
des sources HDL existantes vers une version HCL fonctionnellement équivalente. Cette
traduction mot à mot est conçue comme la première étape d’une mise à niveau manuelle et
itérative pour réellement bénéficier des abstractions de haut niveau fournies par les HCL.
La seconde se concentre sur l’intégration sans accrocs des hiérarchies générées par les HCL
dans une hiérarchie HDL, ce qui constitue un facteur d’acceptation essentiel de ces nouvelles
méthodologies dans les projets au long cours.

1Traduction basée sur un premier jet fourni par le traducteur DeepL à partir du résumé en langue originale. https:
//www.deepl.com

VI

https://www.deepl.com
https://www.deepl.com

Contents

1 Introduction 1

2 Problem Statement 5
2.1 Introduction . 6
2.2 Network Application Design . 8
2.3 Towards Agile and Efficient Hardware Design 14
2.4 Conclusion . 19

3 State of the Art 21
3.1 Raising the Abstraction Level . 22
3.2 High-level Hardware Design Paradigms . 27
3.3 Implementing Abstractions with Hardware Construction Languages 33
3.4 Conclusion . 40

4 Agile Hardware Design 43
4.1 Hardware Construction Languages Usages and Applications 44
4.2 Bringing Agility to Networking Hardware Development 46
4.3 Towards In-depth Transformation of Circuit Design 53
4.4 Conclusion . 65

5 Pipeline Design Methodology 67
5.1 Introduction . 68
5.2 Towards Latency-aware & Protocol-Polymorphic Pipelines 68
5.3 Model Construction . 73
5.4 Model Resolution: Signal Synchronization . 78
5.5 Results . 83
5.6 Conclusion . 87

6 Integration of Hardware Construction Languages 89
6.1 Problem Statement . 90
6.2 (System)Verilog Upstream Integration by Translation 92
6.3 HCL-as-IP: Downstream Integration of HCL-Generated Architectures 101
6.4 Conclusion . 107

7 Experimentation 109
7.1 Tree Filters Design and SystemVerilog Implementation 110
7.2 Chisel Translation with sv2chisel . 113
7.3 Integrating Pipeline Framework . 122
7.4 Conclusion . 131

8 Conclusion 133

VII

Contents

Appendices 137

Appendix A Abstract Data Type Schemes 139
A.1 Complete Protected Hash-Table ADT Scheme . 139
A.2 ADT Usage Example . 142

Appendix B Port Wrapper 145

Appendix C Tree Filters Architecture Details 147
C.1 Top Level Architecture . 147
C.2 Generated Synchronization-oriented Representations 147
C.3 Pipeline-oriented Representation . 147

Appendix D Chisel Insights 155
D.1 UInt vs Vec[Bool] and Flattening . 155
D.2 Antipatterns Translation . 157

Backmatter

Publications 161

Bibliography 163

VIII

Acknowledgments

I would first like to thank the members of my examining committee for the time they
invested in my work: Florence Maraninchi, who accepted to chair the committee, Steven
Derrien and Matthieu Arzel, who both accepted to report on the manuscript after being also
part of three monitoring committees, Roselyne Chotin and Megan Wachs. The numerous
questions they had prepared for the defense led to passionate discussions. A special mention
to Megan Wachs, who accepted to be part of the committee of an unknown French PhD
candidate on the other side of the world, despite a non-negligible logistical constraint: a
9-hours time difference.

Speaking of a considerable time difference, many thanks to my brother Hugues and
his life companion Lilly who assiduously attended the defense, at a very early time in the
morning for them as well.

I would then like to thank the members of the Chisel/FIRRTL open-source community,
who have warmly welcomed me, despite my small contributions and sparse presence at
the dev meetings. From the very beginning of this PhD journey, we knew we needed to
pick a mature solution and a dynamic ecosystem to build our academic contributions while
retaining viable industrial perspectives. A solution that would not let us down after a
few years, and Chisel did not. Special thanks to Jack Koenig and Schuyler Eldridge who
introduced me to the power of Chisel/FIRRTL annotations and custom transforms in the
Scala FIRRTL compiler. I guess I will again need your help now that Chisel is moving to
Circt and the MLIR-based FIRRTL compiler.

My research journey toward this PhD started well before my time at OVHcloud, with
my one-year internship at WideNorth in Oslo, Norway. I am especially grateful to Helge,
Hallvard and Nicolas who offered my fellow intern Benoît and I the opportunity of a
one-year research project with full autonomy and absolute trust. Thank you, Helge for
inviting me to give my very first scientific talk at the FPGA forum in Trondheim.

Finally, and before continuing in French, I must acknowledge the tremendous proofread-
ing work provided by my beloved wife Clothilde. Her meticulous and rigorous reading
aloud definitively improved the English writing quality of this manuscript.

IX

Remerciements

La thèse est une aventure, certes personnelle, mais non sans jalons, sans repères, sans un
balisage parfois patiemment anticipé par ceux qui en ont été les instigateurs. Tout a com-
mencé dans le bâtiment K2 de Telecom Bretagne au printemps 2015, par la découverte
de l’électronique numérique et des FPGA, encadrée par notamment Matthieu Arzel et
Pierre-Henri Horrein. Alors jeune étudiant, profitant du bon air marin breton et bien loin
de m’imaginer docteur, je m’extasiais devant les résultats – quelques points rouges sur un
fond noir – de l’algorithme de détection de contours Sobel que nous venions fièrement
d’implémenter avec Benoît. Aux côtés de ce binôme indéfectible et passionné, nos chers
encadrants nous vantaient, en toute honnêteté, les mérites de la recherche, tant académique
qu’industrielle. Les perspectives d’une thèse apparaissaient alors loin, vraiment loin, au bout
d’une formation d’ingénieur qui n’en était alors qu’à son commencement. Bien enterrée, la
graine était semée. Une graine que Matthieu et Pierre-Henri ne manqueraient pas de soigner
et d’éveiller à la liberté offerte par la recherche. C’est ainsi que, toujours aux côtés de mon
fidèle compère Benoît, Matthieu nous offrit l’opportunité d’une année de stage en Norvège,
pendant laquelle nous avons pu goûter au grand frisson d’une totale autonomie de recherche.
Dès mon retour à Brest, Pierre-Henri me proposa un contrat de professionnalisation chez
OVH, un cadre définitivement plus industriel, mais toujours guidé par l’ambition d’innover.
C’est dans ce contexte que la thèse est apparue comme une suite logique à ce parcours de
formation. Conçue sur mesure dans une confiance presque aveugle avec Tristan, Olivier,
Frédéric et Pierre-Henri, l’aventure débuta finalement à l’automne 2018 : quatre saisons plus
tard, la dormance était levée. Je manque de mots pour remercier les protagonistes de ce
chemin vers la recherche, qui ne manquèrent d’ailleurs pas de rester des acteurs présents
pendant la thèse.

Merci Matthieu pour le partage de ta passion, ton suivi régulier et toutes les opportunités
que tu m’as offertes jusqu’au surlendemain de la soutenance.

Merci Benoît pour ton amitié sans faille, allant jusqu’à sacrifier les premières heures de
tes vacances pour voler au secours de ma détresse en LATEX. Merci pour ta rigueur, ton goût
donné pour LATEX et les présentations bien faites. Sans cette année à tes côtés en Norvège, je
n’aurais sans doute jamais sauté le pas de la thèse.

Merci Pierre-Henri pour ton accompagnement et ton écoute attentive chaque jour depuis
les prémices de la thèse, jusqu’à la soutenance et encore aujourd’hui pour poursuivre cette
aventure qu’est la recherche, quelles que soient les conditions adverses sur ce noble chemin.
Merci pour ces discussions passionnantes qui attisent ma curiosité et mon envie d’aller
toujours plus loin. Merci pour ce tout, dont je ne me risquerais pas ici à dresser une liste
exhaustive.

Merci à l’équipe FPGA qui m’a accueilli chez OVH, Tristan, Thibault, Clément et
Pierre-Henri, puis Paul-Louis. Merci d’avoir été réceptifs à ma démarche de recherche en
marge de l’équipe, avant, pendant et encore aujourd’hui après ces quatre années de thèse.
Merci également à mes collègues OVHcloud de P19, qui m’ont soutenu jour après jour, en
particulier pendant les longs mois de rédaction, entre cafés et plantations.

X

La thèse est une aventure, certes personnelle, mais surtout faite de rencontres. Merci à
toute l’équipe SLS de TIMA qui malgré ma présence plus que sporadique à Grenoble, m’a
réservé un accueil chaleureux lors de mes séjours trop peu nombreux. Merci Laurence,
Julie, Arthur, Frédéric R., Liliana, Adrien, Maxime, Nathan, Marie, Benjamin et tous les
compères de passage pour ces discussions passionnantes autour d’un thé, d’un café ou
d’une viennoiserie.

Merci Bruno d’avoir été un fidèle co-bureau malgré la distance, et de m’avoir montré
la voie jusqu’à la soutenance – The best thesis defense is a good thesis offense. Merci pour ton
soutien tout au long de ces années avec ces discussions rafraichissantes au milieu de nos
péripéties personnelles.

Merci Frédéric P. pour tes références éclairées dès l’écriture du sujet de thèse, quand
Chisel et HCL étaient encore des termes obscurs. Merci pour tes relectures à toute heure,
mais toujours attentives et efficaces de nos différents articles et de ce manuscrit.

Merci Olivier pour ta confiance absolue, ou quand une seule discussion désintéressée
autour d’un verre suffit à engager une thèse à distance quelques mois plus tard. Merci pour
ton accompagnement et ta présence continue malgré la distance maintenue par le Covid.
Merci pour ton temps et ton dévouement sans faille, notamment dans les derniers jours
jusqu’à la soutenance. Je n’oublierai pas non plus ta relecture marathon du manuscrit !

La thèse est une aventure, certes personnelle, mais partagée. Merci à mes parents, de
m’avoir donné le goût de poursuivre de longues études, à mon Papa de m’avoir initié à la
recherche, dès mon plus jeune âge lorsque je bricolais de petits circuits électriques pour
Playmobil. Merci à mes amis et à ma famille pour leur soutien, j’ai été particulièrement
touché par l’engouement suscité par la soutenance, assidûment suivie à distance par un
grand nombre d’entre vous.

La thèse est une aventure, mais est-elle finalement si personnelle ? Elle finit par embrigader,
bon gré mal gré, ceux qui gravitent de trop près autour. En quatre ans, la vie avance, d’étape
en étape, péripéties après péripéties. Merci Clothilde d’avoir pris part à cette aventure à mes
côtés, depuis 2015, dans le bonheur et dans les épreuves, dans la santé et dans la maladie.

Chapter 1

Introduction

While the need for specialized hardware accelerators arises in various contexts, this preliminary
chapter intentionally focuses on the concrete industrial motivations which have led to the use of Field
Programmable Gate Arrays (FPGAs) at the core of high-performance network devices at OVHcloud.

Built on universality and equality principles, the Internet is expected to provide a free
and unrestricted access to its contents to all individuals. As stated by the IRPC1in

their 10 Internet Rights and Principles, “everyone has an equal right to access and use a secure
and open Internet”. This ideal and philanthropic vision is unfortunately endangered by
many players, from dictatorships and authoritarian states to greedy companies to malicious
individuals. Either to protect their interests or to arbitrary restrain freedom of others, they
are determined to enforce their own rules by all means.

Figure 1.1: Distributed Denial of Service (DDoS) principle

Among the various attack strategies used to disrupt the Internet, one consists in satu-
rating a given service, e.g. a webpage, by throwing at it more requests than it is capable
to process. This results in a Denial of Service for legitimate users whom are not able to use
the service anymore, e.g. they are unable to access the content of the webpage and instead

1“The Internet Rights and Principles Dynamic Coalition is an open network of individuals and organizations based
at the UN Internet Governance Forum (IGF) committed to making human rights and principles work for the online
environment.” Website: https://internetrightsandprinciples.org

1

https://internetrightsandprinciples.org

Chapter 1. Introduction

reach a connection timeout without response. As the capacity of web services are sized
to handle numerous requests from many users at the same time, generating a sufficient
amount of traffic to reach saturation requires a considerable computational power and a
solid network connection. To overcome this technical limitation, attackers instead rely on a
large group of previously compromised devices, referred as a botnet, and order all devices
to send as many requests as they can to the same target at a precise time [MSB+06]. Fig-
ure 1.1 illustrates such a Distributed Denial of Service, based on several kinds of compromised
devices such as unsecured IP cameras or misconfigured home routers. Some malicious
organizations continuously track down vulnerable devices to create large botnets and rent
their harmful powers to the highest bidder, generating attacks above 1.5 terabits per second
(Tbps) [Net20, MXSJ17]. The most famous DDoS victims include public administrations
and controversial websites, however most attacks are now profit-driven [WCCM18]. In
particular, the online gaming industry, which relies on low latencies to provide a satisfying
experience to players, appears particularly prone to attacks [BGG+22].

OVHcloud Network Defense Infrastructure

As there are not only legitimate users of services on the Internet, part of the traffic directed
to cloud provider services such as OVHcloud is ill-intentioned. Service providers must
protect themselves from DDoS attacks, either targeting specific hosted services or even their
own network infrastructure for a larger impact in case of successful disruption. Detecting
rogue traffic and mitigating its impact as soon as it enters the network infrastructure, i.e. at
the external connection points referred as Points of Presence (POP), is required to defend
the network against high-throughput attacks. Early detection and mitigation of such attacks
gives them no opportunity to saturate some network nodes before reaching a dedicated
mitigation infrastructure.

Figure 1.2: OVHcloud’s network defense infrastructure

To protect a worldwide network with more than 20 Tbps connected to the Internet,
OVHcloud has developed its own anti-DDoS protection system which successfully mitigates
thousands of attacks a day. Figure 1.2 illustrates this defense infrastructure, beginning in
POPs with HCAP, a first coarse-grained mitigation stage based on Field Programmable
Gate Arrays (FPGAs). To complete the filtering, it then relies on detection algorithms
(omitted in the figure) which redirects suspicious traffic to a mitigation center composed
of three fine-grained mitigation elements. The last one, Armor, is of particular interest in
the context of this thesis as it combines FPGAs and CPUs to deliver high-performance and

2

advanced mitigation mechanisms at hundreds of gigabits per seconds. This combination of
heterogeneous technologies requires keeping hardware developments synchronized with
agile software development flows and their continuous improvements.

Thesis Goals

In this context of pressing need for high-performance network devices, hardware accel-
erators such as FPGAs appear as energy-efficient alternatives to functionally equivalent
software solutions. However, hardware developments struggle to reach the efficiency of
their software counterparts and improved hardware development flows are required to
deliver regular updates at a steady pace. Among the various available options, this thesis
focuses on raising the level of abstraction of the design description, without compromising
neither on performance nor on control over the hardware implementation. Representative
of this approach, Hardware Construction Languages (HCLs), propose to describe hard-
ware generators with modern software paradigms such as functional and object-oriented
programming.

The overall goal of this thesis consists in evaluating the ability of HCLs to abstract
hardware architectures, first natively and then as a platform for additional hardware-
oriented abstractions. Experimenting with Chisel HCL [BVR+12], this thesis reviews the
relevance of such abstractions to design highly flexible and re-usable high-performance
network devices at OVHcloud.

Thesis Outline

Chapter 2 introduces in greater details the context and the approach of this thesis, and raises
several precise issues we attempt to address with this manuscript.

Chapter 3 reviews prior research regarding hardware-oriented abstraction levels with
a comparison to the evolution of abstraction levels in software. In particular, it focuses on
Hardware Construction Languages (HCLs) as a first level of zero-cost hardware abstraction.

Chapters 4, 5 and 6 detail the contributions of this thesis. Considering both implementa-
tion and design perspectives, we first focus on the abstractions provided by HCLs to develop
high-performance network functions. We then propose our own hardware-oriented ab-
straction to improve parameterization and re-usability of pipelined applications. We finally
review the integration of these novel design methodologies within existing HDL hierarchies,
which results in the introduction of two tools aiming at smoothening the cohabitation of
both methodologies.

Chapter 7 combines the previous contributions in an industrial-scale experimentation. It
follows the successive upgrades of a packet classifier from its original SystemVerilog hierar-
chy, to its re-integration as a pipeline-oriented hardware generator within the surrounding
network devices.

Chapter 8 concludes this manuscript with a summary of contributions and details the
perspectives of potential future works.

3

Chapter 1. Introduction

4

Chapter 2

Problem Statement

In this chapter, we present the issues of existing hardware design techniques with regard to
agility and high-performance requirements of a constantly evolving network environment.

Network devices are expected to flawlessly process very high throughput while providing
configurability for both daily-basis operations and long-term evolutions. Designing devices
matching both requirements is a complex challenge.

In order to apprehend the needs for more agile hardware design techniques, we first
inspect the network ecosystem. Secondly, we detail network device design requirements
which arise from the ecosystem, then we review existing hardware design solutions. Finally,
we focus on hardware generation techniques and question their ability and means to provide
the agility hardware designers are looking for.

Contents
2.1 Introduction . 6

2.1.1 Agile Methodology Definitions . 6
2.1.2 Overview of The Internet . 6

2.2 Network Application Design . 8
2.2.1 Design Principles . 9
2.2.2 Performance Requirements . 10
2.2.3 Agility Requirements . 11
2.2.4 From Architecture to Efficient Implementation 12

2.3 Towards Agile and Efficient Hardware Design 14
2.3.1 Limitations of Leading Hardware Design Methodologies 14
2.3.2 Promises of Advanced Hardware Construction Languages 18

2.4 Conclusion . 19

5

Chapter 2. Problem Statement

2.1 Introduction

The problem tackled in this thesis lies at the confluence of two usually opposed considera-
tions: performance and flexibility. On the one hand, high-speed networks set high standards
of throughput and latency for their devices. On the other hand, their operation requires
flexibility due to a constantly evolving usage, from both user and provider perspectives.
Before digging into the association of these two considerations, this section first introduces
the concept of agility and then provides applicative context about the topology of the Internet
and the typology of the Internet traffic.

2.1.1 Agile Methodology Definitions

Following the publication of the Manifesto for Agile Software Development in 2001 [agi11],
the terms agile and agility have become widely used adjectives to refer to many design
and project management methodologies, not exclusively restricted to software [LWC+16].
These methods are grounded on the spirit of the manifesto, which emphasizes: “individuals
and interactions over processes and tools, working software over comprehensive documentation,
customer collaboration over contract negotiation, and responding to change over following a plan”. In
practice, agile approaches focus on small and fast iterations, each delivering an incomplete
but working prototype. The adjectives small and fast are deliberately vague here as they
heavily depend on the implementation of the agile methodology in a given context. Goals and
principles set up for front-end software development might indeed largely differ from the
one chosen for hardware tape-out.

In this thesis, the terms agile and agility are used to refer to this common base principle:
“small and fast iterations”, without restricting to a specific implementation. As iterations
are at the core of hardware development process, regardless of any project management
considerations, we focus exclusively on agility within the hardware design flow itself. From
design to implementation, to simulation, to synthesis and final testing, each step indeed
requires fine-tuning of the architecture with back and forth to the drawing board. To
accelerate these necessary iterations, responsiveness and flexibility of hardware descriptions,
tools and design flows are key enablers.

The expression “user-story” can sometimes be used to refer to one design iteration, with
the idea to demonstrate a user-impacting feature at the end of the fixed timeframe. Large
and diverse requirements are split into such user-stories, quickly and regularly delivered as
successive minimal functioning prototypes rather than as a single finished product down
the line. Flexibility in the development process is required to allow such deliveries without
impairing the overall consistency and slowing down the entire process. On the contrary, as
these user-stories focus on implementing independent and well-identified features, they are
expected to catch and address issues more efficiently. This leads to an overall improvement
of the design quality and development time.

Practicing agile methodology requires an appropriate development environment to
reach its goals, notably to avoid full redesign for each increment and potential regressions
due to the frequent modifications. In particular, this thesis focuses on applying these
agile principles to the implementation of high-speed networking devices. The following
subsection provides an overview of the wide and heterogeneous ecosystem in which such
devices are intended to be integrated: the Internet.

2.1.2 Overview of The Internet

The Internet is a giant computer network connecting just over half of the world population,
with more than 3.8 billions users as of 2020 for an estimated global bandwidth of 700 terabits

6

2.1. Introduction

Cloud Service
Provider

Cloud Service
Provider

User

Internet Service
Provider

Internet Service
ProviderNetwork Service

Provider

Network Service
Provider

Network Service
Provider

Network Service
Provider

Network Service
Provider

POP

User

User

User

User

User

POP

POP

POP

POP

POP

Figure 2.1: Internet topology

per second (Tbps) [BM+20]. At the opposite of a homogeneous and centralized system, it
gathers thousands of heterogeneous subnetworks respectively providing access to parts of
the world.

2.1.2.1 Topology

Such gigantic—and constantly rising—numbers are made possible thanks to the very nature
of the Internet: a multi-tiered, non-hierarchical network topology. It means that there is no single
point in the network centralizing and processing all these 700 Tbps. Instead, a multitude of
actors operating infrastructures of various scale, contribute to this worldwide connectivity
as Figure 2.1 illustrates. Users usually get an Internet access through a subscription with
an Internet Service Provider (ISP). ISPs are connected to multiple Network Service Providers
(NSPs), in order to reach the various places where services are located. While contents once
used to be hosted on-premise by their respective authors, they are now largely centralized
in datacenters managed by hosting companies. As these hosting companies diversified
their activities during the last decade, offering many services such as compute, storage
or network, they are now best known as cloud service providers. OVHcloud is one of such
cloud service provider, the largest in Europe and worldwide competing with actors such as
Amazon Web Service (AWS), Microsoft Azure and Google Cloud in America or Alibaba
Cloud in Asia.

Each interconnection between two service providers requires a physical connection
between their respective infrastructures which takes place in Points-of-Presence (POPs). In
the decentralized topology of the Internet, these POPs are critical centralization points of
the traffic, in charge of routing high traffic throughput, ranging from tens of gigabits per
second to several terabits per second per interconnection. Due to their strategic value for the
network stability, providers generally rely on redundant and oversized links to guarantee

7

Chapter 2. Problem Statement

IP
header

Header

Ethernet
Frame
header

Ethernet
Frame
footer

Link
Layer

Internet
Layer

Transport
Layer

Payload

Payload

Data

Payload

Application
Layer

Figure 2.2: Typical IP packet structure in the Internet protocol suite (TCP/IP) model from Link
layer to Application layer

their coverage of any given part of the Internet at any time.

2.1.2.2 Traffic typology

In all places of the network infrastructure, and in particular in POPs, measuring and
forecasting the volume of traffic is crucial. This traffic consists in a raw flow of bits, grouped
in independent packets which transit through the network from one source to a destination.
Following the Internet protocol suite (TCP/IP) model, Figure 2.2 illustrates how raw bits are
first interpreted as Ethernet frames whose payloads are in turn interpreted as IP packets,
usually simply referred as packets. To measure throughput and understand the traffic
typology, two key characteristics are considered.

Bitrate (bps) The most commonly used scale to report throughput figures is the amount
of bits passing through a link or a device in a given unit of time. Called bitrate
and measured in bits per second (bps), it offers a raw quantization of the traffic.
In particular, at the link level this value takes into account all the bits required to
transmit a packet over the communication medium, independently of any applicative
intents. This physical bitrate is necessary and sufficient to dimension links capacity
between nodes of the network. On the other hand, applications only consider the
useful payloads and compute a bitrate which is more meaningful to the final user.

Packet rate (pps) This second scale reports the number of packet passing through a link or
a device per second. As each packet requires its own set of processing steps, this scale
is key to dimension the processing capacity of network devices.

Combining packet rate and bitrate offers further insight into the traffic typology. While
bitrate is used to size the capacity of links and buffers, packet rate is directly linked to the
computational power required to process the traffic. For example file storage services are
associated with a flow of big packets meaning relatively high bitrate for relatively low packet
rate. On the contrary logging platforms process a lot of individual events each consisting of
a small packet with little data, leading to relatively high packet rate for low bitrate.

2.2 Network Application Design

Following the introduction of general considerations related to network integration con-
text, this section delves into the design of network devices, from principles to detailed
requirements.

8

2.2. Network Application Design

......
Parser Counter Encap Drop...

Parser Counter Encap Drop...
Parser Counter Encap Drop

Memory

ParserEthernet
Interface

Counter
Request

Checksum
Drop

Packet
Counter

Ethernet
Interface

Bit Rate

Packet Rate

+

Figure 2.3: Network application representation

2.2.1 Design Principles

2.2.1.1 Definitions

Network Application The expression network application relates to the overall functionality
offered by a set of network devices, regardless of the choices made for the actual implemen-
tation of this functionality. Network devices are computers in charge of processing network
flows and can indeed be implemented with various hardware and software technologies.
Moreover, some functionalities might either be implemented within a single device or shared
across multiple devices, each approach providing its own advantages.

Network Flow A network flow is a generic term used to identify a communication between
two nodes of the network. Depending on the network context and the application goals,
these flows will be strictly defined as a set of fields related to the network protocol in use.
For example, in the context of IP networks, a flow is often defined with its so-called 5-tuple,
consisting of:

• 1 field for transport protocol identifier1 (most commonly used are TCP, UDP and
ICMP),

• 2 fields for source and destination port of transport protocol (if any),

• 2 fields for source and destination IP addresses.

The 5-tuple is not fully exhaustive given the diversity of transport protocols, however it is a
strong basis to identify and keep track of a connection from a user to a service.

Stateless The most basic network applications are stateless, meaning that they do not need
to keep track of flows over a period of time. An example of such application would be a set
of static rules in charge of allowing or denying access to some flows: e.g. accept only traffic
towards a given range of public IPs on port number 443 (https), and deny all incoming
packets that are not TCP.

Stateful More complex applications require keeping track of the flows over time. For
example, to compute a throughput, a counter is associated to each flow in a (key, value)
manner. Appropriate memories are then required and their limitations in terms of latency
and throughput are key factors to dimension the implementation according to performance
requirements.

1The transport protocol is the protocol corresponding to the transport layer of the TCP/IP model illustrated
in Figure 2.2. The protocol identifier is contained into the header of this layer.

9

Chapter 2. Problem Statement

2.2.1.2 Generic Architecture

In a network application, some operations such as checksum computation are done at
bitrate, while others such as packet filtering or state storage are done at packet rate. This
leads—independently of any implementation choice—to a conceptually simple architecture
represented in Figure 2.3.

Network packets are provided by the Ethernet interfaces as successive chunks sequen-
tially processed in the application. A reliable and fast interconnection with these interfaces
is crucial to meet performance requirements in terms of bitrate. Operations occurring at bit
level are chained as a pipeline and a sufficient number of these pipelines are instantiated to
reach the required bitrate. These pipelines then access shared operations executed at packet
rate.

Packet rate and bitrate requirements for a network application hence have critical and
distinct implications with respect to solution implementation. For stateful applications such
as Figure 2.3 illustrates, the choice of a memory technology and its characteristics deeply
impacts the worst-case achievable performance in terms of packet rate.

2.2.2 Performance Requirements

2.2.2.1 Throughput

At OVHcloud, the network entry points consist of a few dozens of POPs worldwide,
providing a peering capacity of over 24 Tbps. Typical peering links capacity can range from
tens of gigabits per second (Gbps) for minor actors to tens of terabits per second for large
and tightly coupled actors. A typical value used to dimension network devices in POPs,
is a peering capacity of 1 Tbps. However, while bitrate is sufficient to scale network links,
packet rate is also a primary element to consider for network device design.

Minimal and maximal packet sizes are the key to draw a relationship between these
two rates. Without exposing all the structural details of successive protocol layers, the main
figure to consider is that the smallest IP packet requires 84 bytes2 on the wire. In contrast,
the biggest packets would usually take up to 1538 bytes or even 9038 bytes for so-called
jumbo frames.

A continuous flow of theses jumbo frames at 1 Tbps would require an equivalent packet
rate of:

1 · 1012

9038 · 8 = 13 · 106 pps = 13 Mpps

However the required packet rate quickly increases as soon as the packet size decreases.
Considering the worst-case scenario of a continuous flow of the smallest possible packets, a
device in charge of a 1 Tbps link should be able to process as many packets per second as:

1 · 1012

84 · 8 = 1.5 · 109 pps = 1.5 Gpps

This higher value shall be used, at least as reference, to define the packet rate requirement
of any network device. In the context of attack mitigation, the worst case scenario for
designer is indeed the best-case scenario for any ill-intentioned user and shall be considered
accordingly. Based on statistics of actual traffic typology this requirement might be partially
loosened, following a risk analysis which is beyond the scope of this thesis.

2Minimal size of an Ethernet Frame is 64 bytes (Link layer in Figure 2.2). Transmitting it on the physical
layer—as a full Ethernet packet—requires a 8 bytes header and a 12 bytes inter-packet gap (IPG), adding up to
84 bytes [I+18].

10

2.2. Network Application Design

2.2.2.2 Latency

Latency of a network device is the time for a given packet to fully pass through it, from
the input interface to the output interface. Latency is a significant characteristic of network
applications, as packets transit and are processed by many network devices before reaching
their final destination. Several kinds of Internet uses deeply suffer from high or fluctuant
latency, such as Voice over IP (VoIP) communications or video games.

Apart from the raw compute latency induced by the network application itself, a key
component of the latency is the time spent between the application and the interface. This
duration increases for each intermediate layer in the processing. A latency-optimal network
application architecture, as presented in Figure 2.3 would connect as directly as possible the
application to the interfaces without any third parties.

2.2.3 Agility Requirements

2.2.3.1 Daily Configurability

Immediate configurability of network applications is a key for fast incident response.
Application must therefore be designed in a way to provide instantly adjustable parameters
for network operation. Configurability can also be a service for users, with for example
configurable firewall rules, manipulated through an Application Programming Interface
(API) and potentially updated in a matter of seconds depending on the user’s requirements.

However, this kind of instant configurability allows no time for application upgrade.
This implies either careful planning of all use-cases at the time of application design, in
order to expose all relevant parameters—which would be the opposite of agile methodology,
or designing the application in such way that regular upgrades are part of its lifecycle,
through small and fast iterations. Each of such iteration can then bring new parameterization
options for the end-user, with fast response to emerging and unplanned needs. In this thesis
we focus on this mid- and long-term upgrade requirements, further detailed in the next
subsection.

2.2.3.2 Mid- and Long-term Design Upgrades

High-speed network devices, at the core of the Internet backbone, are expensive and expected
to last for numerous years, when at the same time services and technologies evolve much
faster.

A practical and long-running issue partially caused by outdated network devices is the
slow adoption rate of IPv6 protocol, aiming at superseding IPv4 since 1995 but still very
unevenly deployed in the world [CAZ+14]. Most new network devices now provide IPv6
support, but very few offer the same advanced features for both IPv4 and IPv6 traffic.

Alongside this actually very long-term evolution, many others, with smaller impact
but occurring on a regular basis, punctuate a device lifecycle, such as evolution of the
Internet uses. An example is the introduction of new technologies and platforms, such
as video streaming and videoconferencing services, whose usage has been increasing for
years [BM+20]. Another factor is the implementation of new higher level network protocols
which impact the traffic shape at lower level. The rising utilization of QUIC protocol,
an equivalent of HTTP/TLS over UDP [IT21, LRW+17], is a contemporary example. In
addition, some network applications are built on top of various pieces of hardware, and
their respective lifecycles impact the application evolution. Older hardware might indeed
progressively be discarded, while the application must be adapted to support new references,
from various vendors and slightly different specifications. Finally, the above-mentioned

11

Chapter 2. Problem Statement

incident response which triggers immediate actions sometimes also requires structural
changes to the application, to sustainably mitigate newly detected threats.

Assuming that upgrading application design is an option, confidence in the design flow,
from language expressiveness to automated validation toolchains, is decisive to achieve an
efficient upgrade. The time spent to first, implement a design upgrade, and then validate
it, is indeed a considerable factor of responsiveness. The fewer lines of code are impacted
and the more localized they are, the faster the upgrade is implemented. From then on, an
automated and exhaustive validation flow is a key enabler to efficiently deliver this upgrade.
Confidence stands on the ability of a language and its associated toolchain to catch bugs and
developer mistakes as early as possible in the development flow. Strongly typed languages
with strict compilers and appropriate linters are valuable assets to grow confidence in a
toolchain.

2.2.4 From Architecture to Efficient Implementation

Performance requirements of network devices are measured on various scales: bitrate,
packet rate, latency and resilience to traffic surge. This thesis focuses on the network design
requirements of core network devices, providing the highest standards for each of these
requirements with respect to the power-consumption. Such devices are indeed aiming at
handling continuously large amount of traffic, at network edge in POPs or within cloud
provider network infrastructure. Considering the replication of devices across network
infrastructure to process traffic at scale, performance per watt is a key criterion to compare
their implementation.

2.2.4.1 Network Processing Units

In a network device context, solutions dedicated to packet processing are known as Network
Processing Units (NPUs). One of their key characteristic is their close access to high-speed
network interfaces in order to achieve high throughput and low latency.

The generic architecture presented in Figure 2.3, which serves as reference for the
implementation of NPUs, is based on a pipeline of processing elements. In particular,
usual NPU implementations can be divided in three main categories, depending on the
configurability of both their pipeline and their processing elements [Sta15]:

Fixed pipeline NPUs exhibit the best performance per watt but little configurability and no
evolution ability,

Configurable pipeline elements NPUs still constrain the network processing pipeline but
support greater configurability and minor midterm evolutions, notably at the level of
their processing elements,

Fully-configurable pipeline NPUs are not restricted to any structure of network pipeline
nor to a predefined subset of processing operators.

2.2.4.2 Available Implementation Targets

The diversity of configurability intents of NPU architectures leads to various corresponding
implementation targets.

ASICs Application Specific Integrated Circuits (ASICs) are custom-made integrated cir-
cuits, designed and optimized for the application they serve. Typically chosen to implement
fixed pipeline NPUs, they achieve the best performance per watt at the cost of limited

12

2.2. Network Application Design

configurability and no long-term evolution ability. Their manufacturing cost as well as the
time required from design to production makes them hardly suitable for small and fast
design iterations.

CPUs General purpose Central Processing Units (CPUs) offer full flexibility, with fast short-
term update capabilities and the ability to support long-term evolutions. In charge of both
scheduling and processing, CPUs provide the implementation target for fully-configurable
NPUs. In such case, the NPU is implemented as a software application, leveraging tools
and framework such as DPDK [CAR14], eBPF with XDP [VCP+20] or VPP among many
others [CDPA+18]. These implementations aim at shortening and accelerating the path
between network interfaces and user-space where the application runs. However, this
approach suffers from the physical distance: entire packets have to transit up and down
the software network stack. As a result, this stack becomes a throughput bottleneck which
craves for hardware acceleration.

Mixed Approach To benefit from both ASIC performance and CPUs flexibility, some NPUs
combine both to offer configurability ranging from Configurable pipeline elements NPUs to
Fully-configurable pipeline NPUs. A big agility advantage of these platform is the provided
toolchain used to program them: both daily update and long term update can be compiled
from the provided language(s) to the device in a matter of minutes. They are hence the
most suitable NPUs to match our requirements, however, they come with two pitfalls. First,
the extended configurability comes at the cost of lower performance per watt. Second, the
long-term evolutions remain strictly restricted to the underlying architecture, including but
not restricted to bus sizes and coarse-grain operators available. With respect to the previous
IPv6 deployment example, these restrictions would lead to accept a considerable loss of
throughput in order to enable IPv6 support on an earlier device. Indeed, the support of
IPv6 requires much larger metadata processing: not less than 256 bits instead of 64 bits for a
source-destination IPs tuple. Assuming an existing metadata bus of 64 bits, IPv6 packets
require 3 additional cycles to be processed on such device.

FPGAs Field Programmable Gate Arrays (FPGAs) are reconfigurable devices composed
of numerous programmable logic blocks and interconnects. Arbitrary large FPGAs are
able to implement virtually any digital circuit, at the cost of limited running frequencies
due to their fixed layout of configurable resources. They exhibit an interesting trade-off
between performance per watt and lifetime management, which makes them well-suited to
build network processing systems. In particular, they are able to implement efficient fixed
pipeline NPUs while retaining the ability to support a complete architecture upgrade for an
updated version of the network application. Compared to ASICs, they do not require the
high investments associated with tape-out and are hence able to address niche markets with
cost-effective chips.

2.2.4.3 Conclusion

While providing the best configurability, software solutions based on general purpose CPUs
are falling behind in terms of performance per watt compared to specialized hardware accel-
erators [NSS+16, CS12]. As a result, dedicated hardware solutions are generally preferred, at
least for the wire-rate processing, for development of high-speed network processing units.
As ASICs can hardly be described as agile due to their inherent manufacturing cost, FPGAs
appear as the best suited implementation targets given our requirements. The following
section therefore focus on way to match both agility and performance requirements in the
context of hardware design.

13

Chapter 2. Problem Statement

2.3 Towards Agile and Efficient Hardware Design

2.3.1 Limitations of Leading Hardware Design Methodologies

First steps of digital circuit design flows are identical for ASIC and FPGA targets. They both
rely on a description of the circuit at Register Transfer Level (RTL). This RTL description
can be manually crafted or produced by various tools from a higher-level input. It can
then be used interchangeably for simulation, FPGA synthesis or ASIC synthesis. In this
thesis we focus on the expressiveness and reusability of hardware descriptions at their
various abstraction levels. Therefore, without loss of generality, in our experiments we
specifically report result of FPGA synthesis due to the previously discussed network context
and requirements.

2.3.1.1 Context

Two languages, VHDL and (System)Verilog, have emerged in the 80s to model digital circuits
at the Register Transfer Level. Originally designed for simulation rather than synthesis,
they intend to offer behavioral models of circuits, which are both Cycle-Accurate and
Bit-Accurate (CABA). This level of detail offers the highest fidelity with the actual digital
hardware, and was found precise-enough to be directly used as actual hardware description
and synthesized into hardware netlist.

This high precision level makes these languages quite verbose, and their roots in behav-
ioral simulation leads to two major issues for hardware description. First, only a restricted
subset of the language is supported by synthesis tools, with significant differences among
vendors. Second, the event-driven paradigm, particularly fitted to behavioral modeling,
leaves the inference of events into actual hardware by the tools, which in practice requires
sticking to predefined syntax and code snippets in order to obtain consistent results.

2.3.1.2 HDL Agility Struggle through simple User-stories

In this subsection, we intend to demonstrate that classical HDL such as VHDL and Verilog
are hardly compatible with agile methodology. In order to highlight their low agility, we
review the code modification required by simple user-stories at the level of a basic addition
module. Without loss of generality, the following examples are presented as Verilog code.

Iteration #0 A first version of the module is created, in its simplest expression, as follows:

1 module add(
2 input [5:0] a, input [5:0] b, output [6:0] r
3);
4 assign r = a + b;
5 endmodule

This module add is computing the arithmetic operation r = a + b. The associated
architecture is fully combinational and does not involve any protocol signaling.

Iteration #1 After synthesis of this first module, assuming integration in a larger design,
the timing report indicates a long combinational path linked to this module with regard
to the rest of the design. For the second design iteration a register stage is hence added to
store the result of the addition directly in the module as follows:

14

2.3. Towards Agile and Efficient Hardware Design

Host Module

Host Module

X

Y

Add
0 cycle

Mul
1 cycle

split

merge

regAdd
0 cycle

AddReg
1 cycle

Z

merge
reg

AddReg
1 cycle

Mul
1 cycle

Z

X

Y

split

reg

Figure 2.4: Potential integration issue with submodule latency evolution

1 module addReg(
2 input clock,
3 input [5:0] a, input [5:0] b, output [6:0] r
4);
5 logic [6:0] res;
6 always @(posedge clock) begin
7 res <= a + b;
8 end
9 assign r = res;

10 endmodule

The presence of this additional register is to be considered carefully when integrating this
module in larger designs. While breaking the combinational path helps the place & route
tool, the latency of the module in clock cycles is increased, with no automated propagation
of this information to the rest of the design. Figure 2.4 illustrates how the difference of
latency between add and addReg modules must be compensated according to surrounding
context in the upper hierarchy. However, such simple example is not representative of the
complexity of a real module, in which moving the register in the upper hierarchy might
simply not be feasible.

Iteration #2 While the surrounding design evolves with various needs, a third iteration is
now required to add a ready/valid signaling to the data signal.

1 module addRegDecoupled(
2 input clock,
3 input [5:0] a, output a_ready, input a_valid,
4 input [5:0] b, output b_ready, input b_valid,
5 output [6:0] r, input r_ready, output r_valid
6);
7 logic [6:0] res;
8 logic res_valid = '0;
9 always @(posedge clock) begin

10 if (r_ready) begin
11 res <= a + b;
12 res_valid <= a_valid & b_valid;
13 end
14 end
15 assign a_ready = r_ready;
16 assign b_ready = r_ready;
17 assign r_valid = res_valid;
18 assign r = res;
19 endmodule

15

Chapter 2. Problem Statement

In this new description the three data signals a, b and r are respectively associated with
two protocol signals: ready and valid. This widespread pattern for signaling data/ready/valid
is also referred as a decoupled interface. The introduction of this signaling protocol drastically
increases the number of lines and reduces the readability of the user intent, now only
counting for a single line of code over 19 of them, while at the first iteration it was also a
single line of code but over only 5 in total.

Iteration #3 Later on, the target FPGA for the design is changed for a more recent
technology, allowing longer combinational paths. It is now counter-productive to add a
register stage for every instance of add in the design. For this fourth iteration, the register
stage is therefore removed from the module.

1 module addDecoupled(
2 input [5:0] a, output a_ready, input a_valid,
3 input [5:0] b, output b_ready, input b_valid,
4 output [6:0] r, input r_ready, output r_valid
5);
6 assign r = a + b;
7 assign r_valid = a_valid & b_valid;
8 assign a_ready = r_ready;
9 assign b_ready = r_ready;

10 endmodule

This leads to substantial modification of the module and as above-mentioned, special
care is once again required to carefully adapt the surrounding design to keep all signals
synchronized and meaningful.

Conclusion These four user-stories highlight the major impact of basic implementation-
related design upgrade with traditional hardware description languages. In the current
example, this impact comes from two main factors. First, protocol signaling is very verbose,
it dilutes the essence of the user intent in a lot of additional protocol management, decreasing
clarity of code. As a consequence, swapping one protocol for another means an almost
complete rewrite of the module which drastically limits reusability and increases validation
cost. Second, as Figure 2.4 illustrates, the designer is in charge of mentally inferring and
manually propagating latency in terms of register stages from the innermost modules to
the top module. This time-consuming and error-prone task further increases the cost of
design upgrades, both in terms of development and validation. Developed a few decades
ago assuming fixed requirements and specifications, traditional HDLs such as Verilog do
not prove suitable for the small and fast iterations of agile methodology.

2.3.1.3 Performance Limitations of High-level Design Methods

To overcome the limitations of traditional hardware description language, previous research
focused on increasing the abstraction level of hardware development [BRS13, SAW+10]. A
popular approach consists in expressing functionality instead of describing hardware. This
includes High-Level Synthesis (HLS), where software languages are compiled into hardware
architectures, and Domain-Specific Languages (DSL), where domain-dependent primitives
are provided to describe the design.

High-Level Synthesis High-Level Synthesis is an active research area, in quest of efficient
and generic algorithms to infer hardware architecture from software algorithms [NSP+16].
One of the goal of HLS approach is to open hardware development—in particular FPGA

16

2.3. Towards Agile and Efficient Hardware Design

as acceleration platform—to software developers with little hardware development ex-
perience, leveraging widespread languages such as C or C++. A second objective is the
abstraction of the target: allowing a single piece of code to run indifferently on various
target (CPUs, GPUs or FPGAs), even considering real-time context-switching between these
targets depending on the needs [BMR16]. However, these promising features come at the
expense of the development of a complex compilation toolchain. Inferring a functionally-
equivalent hardware architecture from a given algorithm is indeed a first challenge in
itself but finding an appropriate compromise that fits design constraints among the nu-
merous possible hardware architecture is even harder. To tackle this issue, hints can be
provided to the compiler as code annotations. However, this requires to manually provide
an architecture for many pieces of code, hence defeating the original purpose. This also
considerably slows down the design process, ultimately making it harder to upgrade as
annotation might require to be manually adapted at each functional iteration. As a result,
high-level synthesis is struggling to bring software agility to hardware design by reusing
the exact same languages. In particular this applies to control-oriented design used in
network applications, where architecture annotations are required to match throughput
performance [NSP+16, MMGC20, GRDT+16]. Due to these annotations, the portability of
HLS hardware descriptions between vendors is a complex challenge, which further reduces
the actual reusability of such descriptions [XCC21]. While efficiently closing the gap between
software algorithms and hardware implementations in various contexts, HLS is not suited
to match both performance and agility requirements of high-speed networking applications.

Application-Specific DSLs Domain-Specific Languages regroup all languages designed for
a restricted set of task or tied to a particular application domain. With respect to the
strong network context, we focus here on network application DSLs which are promising
for defining a network device at application level. FlowBlaze [SRC+19] is a DSL that pro-
vides a way to represent stateful applications. Another popular language is P4 [BDG+14],
which is designed to program network pipelines. It relies on an architecture representation
which defines the capabilities of the underlying processing system, and on an application
representation based on required fields and operations applicable on packets. Toolchains
implementing P4 offer real improvements over baseline HDL implementation. They au-
tomate the tedious process of protocol implementation, thus limiting the usual errors in
bit manipulation, and speeding up integration of new protocols. They also provide an
implementation agnostic view of the application, which eases discussion with non-hardware
specialists and helps to focus on the functionality instead of implementation details. How-
ever, while P4 increases agility and expressiveness in this context, it is not sufficient. It relies
on vendor IPs for function implementation, or on HLS when none exists. As HLS is not
really adapted for these control-oriented applications, this leaves the implementation of
missing functions unresolved. The tight performance constraints then lead to the need for
custom implementations of critical functions. This means that agile development cannot be
achieved only through the use of a network-related DSL.

Conclusion Providing advanced ways of representing network devices at application level,
top-down design methods based on compilation of software languages still struggle to
demonstrate clear agility gain when performance guarantees are set as key requirement.
High-level hardware design methodologies presented so far fail to improve agility without
compromising on architecture control and application performance. To that extend, these
approaches are not further considered in this thesis.

17

Chapter 2. Problem Statement

2.3.2 Promises of Advanced Hardware Construction Languages

Hardware Construction Languages—or Frameworks (HCFs)—regroup all languages and
toolchains that aim at providing generation constructs to produce pieces of digital hardware.

To that extent, thanks to their slight evolution since their creation, traditional HDLs
such a (System)Verilog or VHDL can somehow be included in this category as they do
provide some basic generation capabilities. However, as we previously demonstrated, their
capabilities are too restrictive to match agile methodology requirements.

In order to increase abstraction level and provide advanced generation constructs without
losing any control on the resulting architecture, three main approaches have been explored.
The first consists in processing some pieces of existing hardware descriptions with an
external tool to adapt them to various contexts. The second is about introducing new
languages, supporting similar paradigms as traditional HDLs as well as new ones and
enhanced constructs. The third one is about meta-programming: embedding hardware
description languages into existing High-Level Languages (HLLs) which are providing the
constructs to generate and further manipulate the circuits. Differences of these approaches
will be further reviewed in the next chapter, as we now focus on the principles and objectives
they all share.

2.3.2.1 Principles

Generation HCLs are sometimes known as Hardware Generation Languages (HGLs) [Max11]
to highlight one of their common principle: provide advanced generation capabilities
rather than simply describe hardware. Generation capabilities consist of constructs
able to instantiate, duplicate and connect programmatically pieces of circuit.

Parameterization Another shared principle is to focus on providing extended parameter-
ization where traditional HDLs are restricted to fixed patterns and limited types.
Parameterization is no longer to be limited to basic module parameters and HCLs
offer to propagate them in new ways, such as automated negotiation between commu-
nicating parts of the design [CTL17, AAB+16].

Additional paradigms While traditional HDLs hardly evolved since their first introduction,
software languages, originally very close to machine language and its imperative pro-
gramming paradigm have since benefited from many innovations. These innovations
include among others object-oriented programming and functional programming
paradigms. HCLs attempt to make these paradigms available to hardware designers
as relevant tool in a hardware generation context [BKK+10].

Elaboration The previous principles come with the need to close the gap between high-
level parameterized generators, and existing toolchains for hardware simulation and
synthesis. While some works suggest introducing and standardizing an Intermediate
Representation (IR) common to all the hardware design tools [SKGB20], the original
principle of HCLs consist in leveraging the existing toolchains without requiring
them to change. The uneven to nonexistent support among vendors of the features
progressively introduced in traditional HDLs has indeed been a considerable issue
for hardware designer for years. In order to fit in the existing and quite passive
hardware tool ecosystem, HCLs come with their own toolchain to elaborate the high-
level generator into low-level hardware description in the form of traditional HDL
code.

18

2.4. Conclusion

2.3.2.2 Objectives

Reusability A first objective of HCLs is to promote code-reuse rather than code duplication.
Due to their limited parameterization capabilities, code factorization is often hard
to achieve with standard HDLs, which often then leads to code duplication rather
than code refactoring. This prevents the concurrent versions of an almost identical
design to benefit from the improvements made to one of them, whereas HCLs aim at
supporting small and fast iterations on the same pieces of code.

Expressiveness A second objective of HCLs consists in easing the design of complex pieces
of hardware based on expressive description patterns. Such patterns aim at improving
code readability and reducing boilerplate code to describe complex circuits.

Conciseness A transversal objective of HCLs is code conciseness, which helps with both
reusability—shorter code is faster to update and integrate—and expressiveness—as to
achieve conciseness the language must provide powerful constructs able to efficiently
describe circuits.

2.4 Conclusion

In a context of network application setting strong requirements on both performance and
agility, traditional HDLs as well as top-down high-level abstractions do not prove sufficient
to produce efficient hardware at a steady pace.

While providing base hardware primitives close to HDL ones, Hardware Construction
Languages follow a bottom-up approach to increase circuit abstraction. In particular, they
support extended constructs to generate hardware, and promise more expressiveness and
better code-reusability thanks to these new capabilities. Based on solid principles, HCLs
notably claim to efficiently improve the hardware design development flow compared
to traditional HDLs, which has been partially verified on some large projects [AAB+16].
However, HCLs have not yet fully demonstrated their claims, which raise several questions
we aim at answering in this thesis:

• How far can the abstraction level provided by HCLs instill agility into hardware design
flow while preserving fine-grained control over implementation?

• How can this abstraction level significantly remodel the design of hardware circuits
from the earliest stages?

• What higher-level hardware design abstractions and paradigms can be relevant to
improve agility of hardware design?

• How can HCLs provide the foundations to introduce and implement these additional
abstraction levels?

• How to integrate HCLs generation-based flow into large existing codebases and their
established hardware development flow?

19

Chapter 2. Problem Statement

20

Chapter 3

State of the Art

In this chapter we first establish the position of hardware construction languages (HCLs)
in the hardware design ecosystem among the various existing abstraction levels. In

particular, we compare the progressive raise in abstraction levels in hardware design to
similar evolutions in software-engineering.

As the layering of successive abstraction levels has indeed unlocked new design opportu-
nities in software, in a second part we study candidate high-level design paradigms aiming
at remodeling hardware design methodologies. This study focuses notably on pipeline
programming and paradigms leaning towards separation of concerns.

Finally, we review how, from shared principles, the diversity of HCLs implementations
provides a suitable platform to develop and extend these high-level design paradigms
towards increased flexibility and agile development flows.

Contents
3.1 Raising the Abstraction Level . 22

3.1.1 Abstraction Levels in Software Engineering 22
3.1.2 Abstraction Levels in Hardware Design 24
3.1.3 Conclusion . 26

3.2 High-level Hardware Design Paradigms . 27
3.2.1 Pipelining Paradigm . 27
3.2.2 Dataflow-oriented Programming . 30
3.2.3 Transaction-level Modeling . 30
3.2.4 Port and Interface Modeling . 31
3.2.5 Orthogonalization and Separation of concerns 31
3.2.6 Conclusion . 32

3.3 Implementing Abstractions with Hardware Construction Languages . . . 33
3.3.1 Review of techniques . 33
3.3.2 Usage of HCLs towards Agile Development 38

3.4 Conclusion . 40

21

Chapter 3. State of the Art

3.1 Raising the Abstraction Level

Recipient of the Turing Award for her work on data abstraction and abstract data types,
Barbara Liskov

1defines the concept of abstraction as follows: “An abstraction is a many-to-
one map. It ‘abstracts’ from ‘irrelevant’ details, describing only those details that are relevant to the
problem at hand” [LG+86]. In this section we review which details are relevant to preserve
when raising the abstraction level, first in a software engineering context for reference, and
then comparatively in a hardware design context.

3.1.1 Abstraction Levels in Software Engineering

3.1.1.1 Iterative Physical Constraints Abstraction

Since the early days of computer engineering, von Neumann architecture has been widely
adopted to build soft-programmable computers. It remains today the standard architecture
of general purpose computers. At the core of this architecture lies a processor or central
processing unit with a control unit and an arithmetic/logic unit [VN93]. This processor is
associated with a memory containing both data and instructions. From this point onwards,
computers were ready for software programming. However, processor specifications are
unique to each implementation, from the number of registers and their widths to the
available arithmetic and logic operations to architecture of the control unit itself. These fine
architectural details had to be fully understood by the developer to design a software, that
in the end, could only execute on a very specific machine.

To ease the development and improve the reusability of software, additional abstraction
levels are required. Instruction Set Architectures (ISA) provide an abstract model of the
computer which, without constraining all the details of processor implementations, requires
them to execute the same set of instructions. Based on ISAs, assembly languages enabled
the design of software in a human-readable style. Assembler programs support the use of
additional abstractions such as macros, enabling them to convert some generic patterns into
appropriate machine code depending on the actual ISA implementation.

Figure 3.1 illustrates on bottom left these first abstraction levels, progressively alleviating
the physical constraints from the processor and memory to human-readable languages,
easier to develop and maintain. This trend continues with the development of compilers
and languages such as FORTRAN, ALGOL, COBOL and C, steadily providing further
abstractions based on algorithmic concepts such as variables, functions or loops.

Higher-level languages introduce additional algorithmic concepts and new programming
paradigms such as functional, object-oriented or concurrent programming. These paradigms
intend to increase abstraction by providing ways to model programs and focusing on algo-
rithm expressiveness. Runtime and virtual machines provide further physical abstractions
of the underlying hardware. For example languages such as Java—virtual machine—and
Python—interpreted—entirely hide the concept of memory allocation and management
thanks to a garbage collector. This mechanism greatly eases software development at the
cost of runtime overhead. While fine-grained control of performance is definitely a relevant
piece of information and first-class concern of programming language such as C or Rust,
languages such as Python or Java made the choice to forgo this concern in the development
environment they provide. To still provide a respectable performance to their users, substan-

1In 1968, Barbara Liskov became one of the first women in the United States to be awarded a computer
science PhD. She earned the Turing Award in 2009, computer science’s equivalent of the Nobel Prize, “for
contributions to practical and theoretical foundations of programming language and system design, especially
related to data abstraction, fault tolerance, and distributed computing.” She currently heads MIT’s Programming
Methodology Group in the Computer Science and Artificial Intelligence Laboratory. [ACM09]

22

3.1. Raising the Abstraction Level

DSL

machine
code

Processor +
Memory

assembly

C++

application
abstraction

Java Python

human readable
code

bitstream

hardware

application model

Modeling
Languages

C

ISA

assembler

compiler

runtime

programming
 paradigms Rust

Haskell
Qt

Zero-code
development

platforms

Generation from
 model and specs

Formal
specifications

abstraction level
 increase

COMPUTER PROGRAM APPLICATION

physical constraints
abstraction

Component-
based

development

Figure 3.1: Partial visualization of abstraction levels in software engineering focusing on
selected programming languages and techniques

tial efforts regarding this matter have rather been poured into the development of efficient
interpreters and virtual machines.

At this stage, the abstraction is entirely oriented towards building software more effi-
ciently, with a focus on automation of low-level tasks such as choices of registers to use or
fine-grained instruction scheduling.

3.1.1.2 Towards Application Abstraction

Some programming languages shift from the sole abstraction of physical constraints to-
wards abstraction of the application itself. Expressive code intends not only to model
the computer program but also the applicative context it serves. Relevant information
in such context includes domain-specific information and formalism. A lot of initiatives
follow this trend, ranging from graphical libraries such as Qt to Domain-Specific Languages
(DSL) [DKS+12, Vis07], intentionally forgetting the general purpose context to focus on the
tailored expression of precise applicative matters.

All the above-mentioned languages and abstractions take their ground into the context
of computer program development, with more or less abstraction of the execution target.
They are primarily intended for a developer to build some piece of software to match some
requirements to solve a given problem.

3.1.1.3 Application Models

On the other hand, the right side of Figure 3.1 presents techniques which focus on modelling
an application, without integrating the constraints of the target in their representations.
This way of abstracting exhibits a strong discontinuity with the previous approach. In
this context, relevant information only regards the application requirements and design,
and disregards any implementation matter in the model. One of the objectives of such
methodologies is to provide a solution to specify applications without software development
skills, enabling domain-specialists to design applications tailored to their needs. While
previous abstractions remained in the software paradigm, hence leveraging common bases,
application models stand apart. They might be used only to represent the application

23

Chapter 3. State of the Art

specification, and might not be sufficient for complete code generation.
The most advanced generative approach consists in formally-proven code generation

from formal specifications. It does not focus on improving the easiness to build an applica-
tion out of general or domain-specific requirements, but aims at generating safe code for
life-critical systems such as avionic software development [BBF+00].

Component-based development consists in assembling in a high-level representation
some components, picked out of a library of precisely specified and already implemented
components. The generation process is then limited to known patterns for interfacing and
instantiating the components. Zero-code and no-code approaches are typical examples of
component-based development [KMF01, CL+17].

3.1.1.4 Conclusion

Software-engineering began with manual programming of custom computer architectures
and progressively raised the abstraction level to focus, first, on algorithms, and then, on
applicative needs. Highest levels of abstraction enable designers to accurately model
applications while intentionally hiding implementation details. Final code might then be
automatically generated or left to developers, leveraging the advanced software-engineering
techniques available in high-level languages to implement the application.

The history of hardware engineering follows somehow similar evolutions in the definition
and usage of various abstraction levels. We now explore these hardware abstraction levels
and detail how they compare to software abstraction levels.

3.1.2 Abstraction Levels in Hardware Design

This thesis focuses on hardware development agility in the context of reprogrammable
hardware targets. Results and conclusions have been drawn exclusively from FPGA experi-
mentations, therefore we mainly focus here on abstractions levels above FPGA architectures.

3.1.2.1 Base Circuit Abstractions on FPGA

The base abstraction level of digital circuit design is the transistor, an electronic component
serving as a controlled switch. Several transistors can be assembled together to create logic
gates, providing the abstraction level of Boolean algebra as a collection of logic operators,
such as NAND and NOR. Assembly of logic gates in more advanced circuit provide various
functionalities such as memorization with flip-flops (FFs) and logic operations with Look-Up
Tables (LUTs).

FPGAs provide a collection of such functionalities as base reprogrammable elements:
FPGA resources. They include registers, various memory styles, arithmetic operators
and logic operators. The count of each resource and their fine-grained placement with
connection busses on the chip, are fixed by the FPGA architecture and define absolute
capacity limitation for each FPGA. Exact mapping of elements and their routing must be
explicitly specified to implement a circuit. From this point onwards, this limited and bound
set of resources will be considered the base abstraction for the FPGA developer.

Similarly to machine code, FPGAs are programmed with a raw binary file, called bitstream
whose format depends on each device architecture. Most commercial FPGA architectures
and their associated bitstreams are closed-source and proprietary as they are considered
very valuable intellectual property. While a bitstream abstraction level per FPGA family
exists for constructors, FPGA developers have very limited access to this level.

The netlist abstraction makes the physical layout of the circuit irrelevant, and is somehow
equivalent to assembly language of software. This abstraction level enable FPGA developers

24

3.1. Raising the Abstraction Level

to instantiate base logic elements and to define their connections while the painful task of
mapping the circuit to an FPGA architecture is left to a place and route tool.

bitstream

FPGA

HCL

circuit
abstraction

functionality
abstraction

Software

Place & route

physical and logic
synthesis

HDL

Architecture inference from
algorithms and specifications

elaboration

FPGA
Architecture

Netlist
Logic gates

RTL

CIRCUIT / ARCHITECTURE FUNCTIONALITY

Component-
based

Domain Specific
Framework

human readable
code

bitstream

hardware

functional model

abstraction level
 increase

Figure 3.2: Visualization of abstraction levels in hardware design for FPGAs

3.1.2.2 Architectural Abstractions

To abstract circuits as hardware architectures in a generic way, hardware description lan-
guages (HDLs) introduce a basic structural abstraction based on modules. A module is a
simple container with Input and Output ports (IOs), which may contain arbitrary complex
logic and instances of other modules, then referred as submodules. In particular, it may
model any circuit, from a simple transistor to a complex processor. To that extend, HDLs
are able to describe circuits at various levels of abstraction, from the netlist composed of
basic primitives to complex user-defined hierarchies.

To abstract the most basic of these primitives such as adders, multiplexers, and registers,
the Register Transfer Level (RTL) provide generic operators and algorithmic concepts, such as
conditional statements and basic loops. Figure 3.2 illustrates the raise in the abstraction level
in terms of both circuit and application abstractions, thanks to synthesis tools. First, logic
synthesis transforms algorithmic and arithmetic statements, closer to applicative expression,
into basic logic operators. Then, physical synthesis is in charge of mapping these generic
elements to the primitives available on a given target. HDLs also introduce hierarchical
structure of circuits with modules, allowing modular programming and improving code
reusability on a module basis. Modules, also referred as IP for intellectual property, are
used as base components of several higher level abstractions such as system-level design.

Register Transfer Level (RTL) focuses mainly on the description of synchronous circuits
as combinational operations in between clocked registers. Within HDLs such as Verilog
or VHDL, this abstraction is described as behavioral and event-driven patterns to model
registers as processes, triggered by signal value changes. This description style was originally
intended for simulation purposes but has since become the most commonly used abstraction
level.

Elaboration provides a structural abstraction level by offering generation capabilities and
parameterization of the circuit at a module granularity. In particular, it can be applied to
create parameterized RTL modules, which greatly improves the reusability of architectures.
This approach has been partially integrated within traditional HDLs with basic generation

25

Chapter 3. State of the Art

and parameterization constructs.
Hardware Construction Languages (HCLs) are also based on the RTL abstraction to

describe the base hardware primitives, but they raise elaboration capabilities to a whole new
level with highly parameterized hardware generators.

3.1.2.3 Software and Applicative Models

On the other side of the spectrum, the right side of Figure 3.2 presents solutions which fully
abstract the circuit and architectural considerations from the design intent.

High-level synthesis aims at inferring circuit architectures from software-style algorithm
expressions [NSP+16]. This abstraction level places the circuit functionality as the most
relevant information and dismiss all implementation details from the description. This
approach gives access to FPGAs as accelerators to software developers and decreases the
development time for hardware designers thanks to more concise code. However, with
implementation and architectural details removed from the description, control over these
elements—crucial to match performance requirements—becomes quite cumbersome if not
impossible.

Another approach consists in component-based descriptions, providing a high-level
representation of the expected functionalities of a system [GTSB08]. It leverages base blocks,
implemented with any aforementioned methods, and provides an interface, sometimes
graphical [Eri17], to connect and parameterize them. Similarly to component-based software
developments, this technique limits the hardware generation to known patterns at the
interfaces of existing blocks [KVDWDK+08, RKH+20].

3.1.2.4 Transversal Domain-Specific Abstractions

Similarly to software DSLs, some hardware abstractions are tailored for specific applicative
domains and their needs [RMMV10, MML13, SBL+14]. Theses additional application
abstractions can be added on top of any other level of hardware abstractions, including
HCL with Domain-Specific Frameworks [PKB+16] and HLS [GLN+14]. Specific applicative
contexts range from signal processing [TŽ17, CCB+08], to machine learning [GRDT+16], to
networking [AB09, LDC12, BDG+14, LTL+16, SRC+19].

3.1.3 Conclusion

While software abstractions have raised towards algorithm expression first, and then applica-
tion models, circuit abstractions have focused on architecture first, and then functionalities.
However, in both domains, a strong discontinuity appears between the two abstractions
axes illustrated in Figures 3.1 and 3.2. This gap is explained in both cases by opposing
conceptions of abstraction, and associated choices of relevant information to preserve. The
choice of forgetting implementation details in any high-level abstractions opens a huge
design space which reveals hard to fully explore when mapping the model to an actual
implementation. This leads in both domains to a reduction of the operational scope of the
models or to a limitation of performance as finding the optimal solution to any general
purpose problem is considered a NP-hard problem.

Software developers strongly interested in performance and still aiming at improving
language expressiveness have overcome these limitations with zero-runtime-cost abstractions
provided for example with the Rust programming language or C++ templates. In this
approach, the cost of abstraction is assumed by the compiler, resulting in longer compilation
time but guaranteeing no impact on the runtime. Similarly, advanced elaboration capabilities
of HCLs are aiming at providing a zero-cost abstraction in terms of FPGA resource usage

26

3.2. High-level Hardware Design Paradigms

and resulting performances, the abstraction cost being paid by slightly longer elaboration
time. Latest development effort regarding the elaboration stack are following closely the
techniques offered by software compilation stacks, strengthening the comparison [L+21,
LAB+21].

Based on the current panorama of abstraction levels, highlighting the relevance of zero-
cost architectural abstraction to bring agility into hardware design, the next section explores
in further details how another architectural abstraction level could be introduced with higher
level paradigms.

3.2 High-level Hardware Design Paradigms

In this section we attempt to provide a comprehensive overview of high-level hardware
design paradigms. Contributions in this domain are quite scattered and do not follow any
linear evolution, often emerging from domain-specific applicative needs. To our knowledge,
no previous work has provided a classification of such paradigms in hardware. We focus on
paradigms dimmed relevant in the context of high-speed packet processing applications
and their discrete flow of independent packets interspersed with idle periods.

3.2.1 Pipelining Paradigm

Digital circuits are inherently parallel as each part of the circuit is able to process data
independently at the same time. Describing an algorithm as a digital circuit opens a wide
space of possible implementations. The pipelining approach implements it as a chain of
computational units, instantiated and connected in the same order as the original algorithm.
Computational unit are connected through buffers, allowing independent operations. Each
unit in between two buffers is called a pipeline stage. Execution of the sequential algorithm
then consists in successive executions of the pipeline stages. For one execution of the
algorithm, each pipeline stage is only used once. As soon as the input pipeline stage is
empty, another execution flow can begin which follows the previous one all along the
pipeline.

Exploiting chained operation parallelism, the pipeline paradigm maximizes throughput
of streaming applications at the cost of dedicated resources for every stage. It is hence
widely used both for software development [GTA06, LLS+15, KST13] and to leverage the
inherent parallelism of digital circuits, from their earliest expressions [Cot65, HF72].

3.2.1.1 Pipeline Patterns

In traditional HDLs, description of a pipeline follows two main recognizable code patterns.
The first identifiable pattern is the behavioral process associated to the update of a given
signal, de facto describing a register. The second pattern consists of flow control signals,
providing a communication protocol between successive pipeline stages, and might be
omitted. Such signals are used to indicate when some data is available at the output
of current stage, and when current stage can accept some incoming data. A common
implementation consists of a valid signal to indicate upstream data availability and a ready
signal to indicate downstream ability to process new data. A successful handshake occurs
when both signals are high at a same rising clock edge. Apart from this ready-valid protocol
signaling, several well-known protocols can be implemented around the same pipeline
stage functionality, such as Credit-Based, or Carloni [AB18]. The following Verilog excerpt
exhibits a pipeline stage with a single data signal and ready-valid control signaling.

27

Chapter 3. State of the Art

1 // stage1 data and control signal declaration
2 reg [DATA_WIDTH-1:0] stage1_data;
3 reg stage1_valid;
4 wire stage1_ready;
5

6 // stage1 synchronous computational unit and buffering as register
7 always @(posedge clock) begin
8 if (stage1_ready) begin
9 stage1_data <= in_data;

10 stage1_valid <= in_valid;
11 end
12 end
13 // stage1 combinational operations: here control back-propagation
14 assign in_ready = stage1_ready;

Sticking to such patterns makes the pipeline stages appear very clearly in the architecture
description. However, the pipeline only emerge to the trained eyes of the designer and
has no concrete definition within the language. As is, pipelines and pipeline stages do not
provide any reflexivity2over their signals, operations and structure, restricting their existence
to a mental abstraction for the developer. In particular, this prevents any parameterization
and instrumentation of this pipeline pattern.

3.2.1.2 Pipeline Stage Abstractions

To raise the pipeline stage abstraction level above a subjective pattern, a first step consists in
providing a dedicated syntax to describe pipeline stages as first class citizen in the hardware
description. TL-Verilog [Hoo17] provides such a stage-based description, enabling easier
identification and iteration over pipeline stages, with the ability to implement a stage as
either register or wire. However, this approach is based on a simple register pipeline view,
and do not tackle the issue of protocol signaling nor the construction of interconnected
pipelines.

To bring additional consistency to pipelines as formalized abstraction elements, an
approach consists in leveraging a double-sided API. One side defines pipeline stages as
base elements, while their instantiation and structure is specified with its counterpart.
In sc_pipes SystemC library [HP14, Har09], pipeline stages are modeled as independent
processes, which are then connected together with a set of operators. This formalization,
originating from software modeling of pipelines, is based on a strong split between the
stages—providing base functionalities—and their organization—providing both the architec-
ture and the overall functionality. In practice the framework encapsulates software functions
as pipeline stages, and then focuses exclusively on providing a DSL to model functional
pipelines from pipeline stages. The expressiveness of the operators is quite advanced, most
notably providing support for feedback loops and stage reuse with appropriate control
and stall of the pipeline. The pipeline elaboration consists in generating protocol signaling
and registers from the pipeline expression. However, there is no fine-grained model of the
pipeline stages, seen as arbitrary functions. In particular, latency is not inferred from stages
description but must be explicitly declared by the developer.

Finally, both approaches also lack some formalization of the overall pipeline and its
signals as reflexive objects with extended attributes, still preventing parameterization and
instrumentation.

2Reflexivity stands for the ability to provide meta-data about an object being described, such as the latency
between two points of the circuit or protocol signals associated to a data signal. Further descriptions can then
be based on these elements, e.g. to conditionally generate parts of the circuit.

28

3.2. High-level Hardware Design Paradigms

3.2.1.3 Auto-pipelining

While stages are the base component of pipelines, they are no longer considered a relevant
piece of information in further abstractions providing automated pipelining. Such abstrac-
tions indeed aim at removing the split into stages from developer scope. They provide
automated pipeline details generation based on a higher-level expression of the functionality
and the associated timing constraints.

In its most basic form auto-pipelining consists in cutting combinational paths by inserting
registers in order to match timing requirements [IdD17, PE17, Kem20].

More advanced auto-pipelining algorithms are found in HLS, taking advantage of
raw algorithm expression to infer the entire pipeline in association with other paral-
lelization techniques such as loop unrolling [GCW+21, MR01, KP01, DFH+20]. Auto-
pipelining is notably used for micro-architectures, modeled with highly constrained pipeline
specifications, in order to lower these specifications into actual pipelines implementa-
tions [GOCBK10, KKCGO08].

Recent works on dynamic scheduling of dataflow circuits [JGI18], based on the theory
of latency-insensitive designs [CMSV01], target higher circuit performance by inserting
buffers on critical back-pressure paths [JSG+21]. This approach, which forgoes the static
scheduling in favor of protocol signaling in the inferred architecture, provides additional
degrees of freedom to HLS algorithms for enhanced design space exploration. Instead of
ensuring a consistent static scheduling of the complete design, it reproduces the choice
of traditional hardware designers who intentionally release latency-awareness constraints
of individual pipeline stages, in order to keep the description flexible and maintainable.
While this approach provides interesting results, it stands at the precise opposite to our own
approach of latency-aware pipeline modeling, further described in Chapter 5.

Auto-pipelining is suited to infer pipelines or pipeline stages from a loose algorithmic or
arithmetic specification, providing a lot of flexibility to the designer. However, in a context
of packet switching involving only very simple algorithms, it does not provide the relevant
abstraction to handle both performance and complex synchronization needs.

3.2.1.4 Applicative Pipelines

While the aforementioned approaches defined fine-grained pipeline stages, other abstrac-
tions leverage the same paradigm to model coarse-grain domain-specific application
pipelines. A typical application example matches the context of this thesis as it mod-
els network application pipeline. As discussed in the previous chapter, a generic model for
any network application consists of successive steps a network packet goes through from
input interface to output interface. This architecture is used as basis in several network DSLs
with pipeline stages being each a complex function, such as a classifier or an associative
counter [BDG+14, SRC+19]. Similar approaches exist in other applicative domains, such as
signal processing [VG14]. These DSLs focus exclusively on high-level applicative modeling
and aim at constraining as little as possible the implementation of pipeline stages. The direct
consequence is that such applicative pipelines disregard the underlying implementation of
stages, only considering overall specified properties such as throughput or latency. This
approach is perfectly suited to generate complex application based on IPs with a top-down
approach, however it does not provide an upper abstraction level in the bottom-up approach
we are following in this thesis.

Nonetheless, despite current top-down approach of network applicative DSLs, the high
abstraction level they model is extremely relevant for network application design. In partic-
ular, a bottom-up approach reaching such applicative level with appropriate intermediate
abstractions for implementation would be very consistent. Such stacked abstraction levels

29

Chapter 3. State of the Art

would indeed enable extended parameterization and design space exploration at applicative
level while leveraging a model actually inferred from the implementation itself.

3.2.1.5 Conclusion

Pipelining paradigm is suited to describe fine-grained parallel computations as well as a
large variety of applications at a coarse-grained level. In particular, network application and
packet processing can benefit from this model at all abstraction levels. However, there is no
pipelining-oriented abstraction unifying fine-grained pipeline stages with coarse-grained
pipeline application models. This limits the control over implementation details provided
by high-level pipeline models.

3.2.2 Dataflow-oriented Programming

Dataflow abstraction can be seen as a generalization of pipeline modeling. Both focus on
data movement between various operators, but where pipeline stages share a homogeneous
throughput, dataflow processes are heterogeneous and might consume and produce an
arbitrary dynamic number of tokens. Dataflow processes are connected through infinite
buffers to handle any difference of production and consumption. Synchronous Dataflow
(SDF) reduces the scope to constant numbers of tokens consumed and produced by processes
over time, enabling static scheduling [LM87a, LM87b, LP95]. To provide a consistent
implementation with finite buffers of SDFs in hardware, static scheduling consists in
duplicating some processes to match production and consumption rate at any stage of the
flow. This very same approach is used in Fleet framework [THZ20] to provide massive
parallelism based on a sequential user-specified token processor, with automatic generation
of all the duplication and routing logic.

While dataflow is a relevant abstraction level to model applications such as signal
processing of continuous data-streams, it is not suited for network applications and their
discrete streams of variable-size packets interspersed with idle periods. Continuous ho-
mogeneous data-streams indeed benefit from a complex data flow to model advanced
applications. However, the discrete and changing flow of chunks of packets leads to the use
of very basic operators with for example no feedback loops at fine-grained level, i.e. within
the same packet. Data flow modeling does not bring any relevant rise in abstraction level at
this scale.

Nonetheless, the dataflow abstraction can still be relevant in the network context at
applicative level where dataflow tokens consist of complete packets allocated on various
independent packet processors [CB04].

3.2.3 Transaction-level Modeling

While the dataflow approach focuses on modeling data continuously flowing in and out of
operators, transaction-level modeling (TLM) focuses on specifying the interactions between
the operators. This decoupled approach aims at providing a system-level abstraction which
specifies the communication between various modules of the circuit, modeled as concurrent
processes [RSP+05]. These processes are communicating through channels, which provides
an abstraction of protocol implementation details by presenting a common interface to
processes. Data transfers are initiated within processes through function calls on the
interface and the resulting transaction is completed when the function returns.

This functional approach is particularly suited to simulation and verification purposes
[Str17, BFP07]. The generalized use of a common interface abstracting the implementation
details simplifies the description of data transfers between modules and also considerably

30

3.2. High-level Hardware Design Paradigms

helps with design space exploration at system-level to experiment with various communica-
tion protocols and architectures.

While TLM abstraction is tightly linked to SystemC language [Pan01] in which it
has been formalized, other languages such as TL-Verilog [Hoo17] and PDVL [Str17] are
relying on analogous concepts. Similarly, Bluespec Verilog language introduces the concept
of guarded atomic actions to model operations and transactions of various actors in a
circuit [Nik04, Nik08]. Although transaction-level modeling is not explicitly based on nor
intended for pipelines design, both TL-Verilog and sc_pipe leverage TLM concepts within a
stage-based pipeline abstraction.

While TLM incidentally uses interfaces to model and abstract transactions, other ab-
stractions, specifically based on interface and port modeling, are presented in the next
section.

3.2.4 Port and Interface Modeling

Carefully specified and generic interfaces are the basis of reusable modules and subsequently
improved agility. This led to the standardization of interfaces and busses such as AXI and
Avalon, as well as international effort such as the Virtual Socket Interface Alliance [SB99],
aiming at providing specifications ranging from analog interfaces to system on chip design.

While these standards greatly help with ensuring compatibility of hardware IPs for
system-level integration, they do not explicitly aim at providing interface abstraction in
hardware development. In particular, standards are oriented towards design and not
verification. Instrumentation of interfaces with additional constraints such as typing has
been proposed [dMHV19] to help with system-level verification of proper interactions
between IPs. Similarly, BaseJump STL [Tay18] provides a standard template library to
handle communication protocols between modules, defining the notion of demanding and
helpful module interface endpoints. Wire Sorts [CSBH21] is a language abstraction that
further extends these concepts to enforce additional safety in hardware composition, in
particular focusing on avoiding any combinational loop risk when interconnecting modules.

Further abstractions of communication channels provide higher-level interfaces which
handle the abstraction of complex structured data being transmitted on a constrained
communication busses [PBVS+20]. This abstraction level is very relevant in a network
context, where packets are typical complex structured data, passed over constrained busses
as series of data chunks.

3.2.5 Orthogonalization and Separation of concerns

Whereas the paradigms we reviewed so far focused on hardware description and abstraction,
we now focus on pure software engineering and code organization, pursuing the same
effort to improve agility of development. As mentioned in preamble, abstraction is all about
preserving relevant information in a given context. From that definition, we presented
a relatively linear path, progressively preserving less and less low-level details thanks
to successive abstraction levels. However, at any given abstraction level, programs and
architectures are in charge of multiples tasks at the same time. A typical example is ensuring
security of a computation: some input data validation is required to ensure the security
of the program, although it is not required for the computation itself. Dealing all at once
with these various concerns leads to tangled code, more difficult to maintain and upgrade,
hence reducing the development agility. In particular, pieces of code regarding a given
concern are scattered across the entire codebase. Orthogonalization aims at untangling the
unrelated concerns and dealing with them in explicitly separated contexts [HL95]. Various

31

Chapter 3. State of the Art

implementations of orthogonalization have been explored, the next paragraphs further detail
the most relevant ones.

Aspect-oriented Programming (AOP) To distinguish the various concerns a piece of code
is dealing with, Aspect-oriented Programming defines a concern as an aspect and draws a
boundary between the main code and additional cross-cutting concerns with the following
implementation and its associated vocabulary [KLM+97]. On one side, each aspect contains
advice about some implementation details. On the other side, the codebase contains join
points, grouped as a pointcut. Each aspect specifies on which pointcuts their pieces of advices
shall be applied. The action of applying the implementation information is referred as
weaving, which in practice results in the generation of an updated version of the codebase or
of its intermediate representation that is then processed as if the developer had addressed the
concern on each join point. Aspect-oriented programming has been successfully leveraged
in hardware design, most notably for verification [HMN01, Str17], and collateral generation
of a physical floorplanning design [IBA+19].

Feature-oriented Programming (FOP) Presented at the exact same European Conference
on Object-Oriented Programming as AOP, Feature-oriented Programming introduces itself
as an extension of object-oriented programming [Pre97]. It aims at producing programs
as a composition of independent features that can be activated or not at compilation time
depending on the final applicative context. This approach offers high parameterization
and the resulting program is lighter as it ships only with the required features. Original
implementation relies on aggregation or multiple-inheritance of the independent features,
and introduces so-called lifters to resolve feature interactions. A hardware implementation
proposed to parameterize performance counters in a RISC-V core relies on an aspect-
oriented formalization [DC21]. Aspects can indeed be used to capture features, and the
concrete implementation relying on code injection at some join points is similar in both cases.

Separation of concerns is very relevant in hardware design and has been explored to
mix properly cross-cutting concerns into a main design while avoiding both code scattering
for the injected concern and code tangling of the main design. However, as far as we
know, separation of concerns has only focused yet on the introduction of secondary cross-
cutting concerns while the designer is at any time in charge of 1. Describing an overall
functionality, 2. Choosing the appropriate hardware primitives, 3. Guaranteeing performance
(timing, latency, throughput), and 4. Keeping all signals consistent and synchronized.
Creating boundaries between some of these various concerns could highly benefit to design
reusability.

3.2.6 Conclusion

Several high-level paradigms have been proved suitable to hardware design. Based on
different concepts, they aim at achieving a common objective: increasing development
agility by most notably improving the reusability of the designs. While none of them emerge
as an additional architectural abstraction level, combining multiple paradigms and software
engineering techniques remains yet to be explored to introduce consistent design patterns
and abstractions.

Introducing and developing these higher-level abstractions requires a concrete medium
to experiment with. As the highest architectural abstraction level available to design
hardware, HCLs are the natural candidates for the task. The next section reviews in detail
their advanced elaboration capabilities and how they can help with implementing further
abstractions in practice.

32

3.3. Implementing Abstractions with Hardware Construction Languages

3.3 Implementing Abstractions with Hardware Construction Lan-
guages

Hardware construction languages stand as an architectural evolution over traditional hard-
ware description languages, most notably providing advanced elaboration capabilities.
Generation and parameterization are key to achieve improved reusability but are also a tool
to develop further abstractions.

This section reviews software engineering techniques at work behind the diversity of
HCLs and explore how these techniques can help with implementing further abstractions.
It concludes on the choice of an HCL that will be used as a foundation for the contributions
of this thesis.

3.3.1 Review of techniques

Traditional HDLs focus on the description of basic hardware primitives such as modules,
registers and wires. Introduced in the 90s, VHDL and (System)Verilog remain today the
most widespread hardware description languages in the industry, due to their standardized
and efficient support by virtually all Electronic Design Automation (EDA) tools. These
languages are declarative and provide very little reflexivity over the circuit being described.
However, they do provide basic generation and parameterization capabilities, introducing
the concept of circuit elaboration from a somehow generic description [SM13]. This includes
for example, parameterization of signal widths, and conditional or loop generation of
certain parts of the circuit upon parameters combinations. Inclusion of these features in
traditional HDLs lays the ground for hardware generation. In that respect, they could be
seen as forerunner of hardware constructions languages. Nonetheless, by many aspects—
including rather limited tool support—this generality remains quite restricted compared to
the expressiveness available in high level languages used for software programming, which
HCLs aim towards.

We describe in the following paragraphs the evolution towards hardware construction
languages, leveraging various implementations, with more advanced elaboration capabilities.

3.3.1.1 External Pre-Processing

As a first step towards code configurability, external pre-processing offers the ability to
produce various versions of a single hardware description. The result depends on parame-
terization provided to the external pre-processing tool which leverages manually inserted
tokens within the description to interfere with the latter. The hardware descriptions in
between these tokens are considered as simple text strings and are not syntactically nor
semantically analyzed. This approach is quite powerful to structurally modify the descrip-
tion without any limitations imposed by the underlying description language semantics.
For example, it enables swapping one keyword for another, changing the boundaries of a
module or conditionally inserting Input or Output ports. In practice, external pre-processing
occurs before actual lexing and parsing of the hardware descriptions, and their use in the
standard hardware development flow, notably by simulation and synthesis tools. In that
respect, it is supposed to produce syntactically and grammatically correct descriptions, but
has by construction no means to guarantee such properties nor to provide feedback on the
correctness of its actions. This highly impairs the ease of debugging of description which
heavily relies on such pre-processing directives.

While VHDL descriptions have remained monolithic across all standards, Verilog has
included pre-processor directives since standardized version IEEE 1364-1995, exhibiting
similar features to C pre-processor system [Sny10]. Despite being restricted to very basic

33

Chapter 3. State of the Art

definitions, macros and conditions, it outlines the basis of external code generation and is
still heavily in use as part of the standard.

However, the external property of pre-processing systems make them fairly independent
of any standardization which has led to many works on the subject, introducing various
functionalities within hardware descriptions. While most of these efforts have remained
held back in the privacy of research or corporate laboratories to solve very specific issues,
some others have aimed at addressing more generic needs. Those are largely based on
templates and processing languages providing convenient string manipulation capabilities
such as Perl for Genesis 2 [SAW+10, Sha11, SGS+12], Scheme for Verischemelog [JB99], or
Python for PyHDL [HMLT03] and BaseJump STL [Tay18].

While still based on templates and pre-processing, this last example foreshadows the
evolution from external pre-processing directives towards integrated language constructs
which progressively blurs the lines between pre-processor and language features.

3.3.1.2 Enhancing HDLs with New Constructs

One issue with external pre-processing lies in the strict separation of pre-processor directives
and language constructs. Massive usage of macros and templates leads to complex hardware
descriptions and impairs code-base maintainability. To overcome this issue, a solution
consists in introducing the new features as new language constructs, in order to fully
integrate them as part of a single consistent new description language. The description
is monolithic and consistent, forgoing the flexibility of code pre-processing but offering
an integrated experience oriented towards the actual needs of hardware designers. To
achieve this integration, the processing step now requires a full syntactical and semantic
analysis, upgrading its awareness of the code strings as a consistent hardware description.
It becomes a compiler, which leverages various lowering transformations to elaborate a
low-level version of the enhanced description, directly usable by standard EDA tools. This
approach takes advantage of the hardware designers’ existing habits and aims at improving
their design experience, which eases the adoption of new concepts and languages. For
example, Bluespec SystemVerilog [Nik04, Nik08] extends SystemVerilog3while TL-X aims
at introducing similar language extensions for various existing HDLs [Hoo17]. On the
other hand, THDL++ [SWW11] retains VHDL semantics and aims at providing a C++-style
language which focuses on improving the parameterization of hardware modules.

This integrated approach yet requires providing consistent development environments,
which has lead so far to solutions maintained by private companies in the form of
closed-source commercial toolchains such as Bluespec SystemVerilog [Nik04, Nik08] or TL-
Verilog [Hoo17] compilers4. As a result, while these solutions do provide new ways of
designing hardware, they are hardly extendable by their users to cope with their own
specific needs, which calls for more flexible solutions.

3.3.1.3 Extended Meta-programming with Embedded HCLs

Meta-programming consists in having control over the description from an upper perspec-
tive, with ability to interfere with it before it is actually interpreted or compiled in its
standard flow. To that extend, the pre-processing approach we mentioned earlier is a first
step in that direction but while it provides unrestricted modification abilities, it usually lacks
the understanding of the underlying description. To further extend the meta-programming

3The extensions brought by Bluespec and its classification as HCL is discussed in paragraph 3.3.2.1.
4Bluespec Inc. publicly released bsc, the Bluespec compiler on GitHub in January 2020 under BSD-3

license [Inc20]. Earlier works had to rely on their own Bluespec compiler [G+14] in order to make further
extensions to it [Gre19].

34

3.3. Implementing Abstractions with Hardware Construction Languages

ability of external pre-processing, pyverrilog [TY15], and its veriloggen code generator, base
the manipulation of the description on a fully qualified intermediate representation (IR) of
the Verilog language.

On the other hand, building a brand-new hardware construction language as a library
of a high-level programming language means creating a consistent hardware environment
within this language, including defining all base hardware primitives from scratch. Such
approach requires a tremendous amount of development to offer a viable alternative to
existing HDLs, but gives in exchange full control over the semantics of this new language.
Such HCLs are said to be embedded in their host high-level language and usually imply
a much more invasive change in designers’ development habits. While the two previous
approaches introduced respectively external and internal extensions to existing HDLs,
embedded HCLs often appear to hardware designers as completely new languages with a
steep learning curve.

A diversity of host languages The syntax of embedded HCLs is rooted in their host
languages which indeed often largely differs from traditional HDLs. As first HCLs emerged
out of researches undertaken by language and compilation specialists, they are based on high-
level languages such as SML with HML [LL95], OCaml with Hardcaml [uja19], Agda with
Pi-Ware [PFSS15] and the widespread Haskell with Lava [BCSS98] and CλaSH [BKK+10]. As
one of the first HCL, Lava [BCSS98] has been further extended by research initiatives such as
Kansas Lava [GBK+09] and blarney [Nay18]. The widespread usage of Python as a scripting
language has made it popular among hardware designer, advantageously replacing bash
or Tcl within hardware development flows and widely used for integration of hardware
designs as applications. Originally targeting ease of use for software beginners, it has
logically been chosen as the host language for many HCLs including MyHDL [Dec15, JS15],
(n)migen [Bou13], PyMTL [LZB14, JPOB20], Mamba [JIB18], PyRTL [CTD+17] to name only
a few among an abundance of proposals [ES16, DSFE17, MML13, LM10, LKM16, Mas07,
VER19]. Other high-level languages, well-known in the world of software development, have
been considered as hardware description hosts, notably due to the additional programming
paradigms they offer. These include Java with JHDL [BH98], Hardware Join Java [KH06] or
MaxJ HGL [Max11, PM11] and its functional-oriented evolution, Scala, with Chisel [BVR+12],
Spinal HDL [Pap16], Scala HDL [LLX+14], Veriscala [LLX+17] and DFiant [PE17].

Integration of inherited software-engineering features A key advantage of embedded
HCLs is indeed the immediate access they offer to existing high-level language constructs
and programming paradigms of their host. The most commonly exploited feature is the
object-oriented programming paradigm with the definition of hardware primitives as classes
and objects, providing the ground to many HCLs. The functional programming paradigm
is also leveraged in most HCLs embedded in functional languages such as Haskell and
Scala, but also more surprisingly in the more general purpose language Python [VER19].
To provide distinguishable features compared to traditional HDLs, polymorphism and
high-order functions are also key enablers and widely used when available in the host
language. The former provides extended type parameterization of circuit descriptions while
the latter enables much more complex module parameterization, for example passing parts
of the module behavior as functional parameters while its overall architecture remains
identical. Both features bring reusability and flexibility of hardware descriptions to a whole
new level.

Two fundamentally different implementation approaches Embedded HCLs share a
common vision towards highly flexible hardware descriptions, however their actual imple-

35

Chapter 3. State of the Art

Host language as

hardware description

Host language as

hardware framework

host front-end

Host IR

host front-end

host back-end

Host IR

host back-endconversion to custom IR

executable
executable

high-level simulation of
hardware

hardware font-end

custom IR

hardware emission

low-level HDL
Verilog / VHDL

custom IR

hardware emission

low-level HDL
Verilog / VHDL

Transforms

Transforms

Figure 3.3: Implementation principles for embedded HCLs

mentations follow one of two fundamentally different principles, which respectively lead
to various outcomes. Figure 3.3 illustrates the way they respectively operate to generate
hardware in greater details.

1. Integrated approach The flow based on the direct use of the host language IR is described
on the left and presents the way a first category of HCL operate, including notably
CλaSH [BKK+10], Scala HDL [LLX+14] and MyHDL [Dec15, JS15]. The generation of
hardware from the description follows the following steps:

1. Construction of host IR by host front-end,

2. Conversion of this IR into a hardware-oriented custom IR

3. Transformation of this IR, to only retain language constructs expressible with
traditional HDL,

4. Emission of the resulting low-level HDL.

During this hardware generation process, the code of the description is not executed
as a standard program. In particular, the host language constructs are directly mapped
into hardware constructs, de facto providing a high-level description language. How-
ever, it might also be executed as a standard program, then providing a high-level
simulation of the described hardware. As the host IR might arbitrary grow in complex-
ity with advanced software engineering features, the generic transformation of host
IR into hardware is a considerable challenge. As a result, such embedded HCLs are
actually restricted to a particular subset of their host language. This leads to the same
issue of unclear separation between synthesizable subset and remaining constructs
encountered within traditional HDLs.

2. Explicit construction On the right side of Figure 3.3 is depicted the flow followed by
the second category of HCLs, including notably Chisel [BVR+12], (n)migen [Bou13],
and PyRTL [CTD+17]. It is based on the construction of a custom IR from scratch

36

3.3. Implementing Abstractions with Hardware Construction Languages

during the execution of the description as a standard program within the host flow.
The execution then proceeds as follows:

1. An entry point for the generation is explicitly specified within the host language,
consisting of a call to the HCL generation API. It takes as parameters a top level
module and its hardware parameterization,

2. The internal part of the HCL, provided as a library of the host language and
referred as the builder, is activated and initializes an empty circuit,

3. The code corresponding to the hardware description is executed. Hardware
primitives on which the user-code is based are interacting with the builder process
upon execution, progressively building a custom representation of the circuit,

4. Once the execution of user code is over, the circuit in the form of the custom IR is
complete and can be further processed. The compilation of this custom IR into
low-level traditional HDL leverages iterative lowering transformations,

5. The resulting low-level HDL is emitted.

Within this flow, the integrality of the host language can be used, not effectively to
describe hardware but rather to implement a hardware generator based on a predefined
set of hardware primitives provided by the framework. In that respect, the lowering
from initial custom IR into low-level HDL is as complex as required by the offered
hardware primitives, i.e. fully controlled by the designers of these HCLs. On the other
hand, this constructive flow does not provide high-level simulation of the circuit and
implies to create a consistent set of hardware primitives from scratch to provide a
viable hardware description language.

Various description intents All the internal machinery in action within HCLs aims at
providing a flawless hardware description or generation experience to the designer. To that
extend, several approaches are considered.

Behavioral Inherited from traditional HDLs which were initially conceived for hardware
simulation, the behavioral description style is based on event-driven constructs to
model clock, reset and registers without explicitly declaring them as such. This style
of description is notably used by HCLs focusing on simulation such as MyHDL [Dec15,
JS15].

Structural Most HCLs provide explicit hardware primitives as objects, following a structural
approach. Among others, Chisel [BVR+12] leverages explicit hardware bindings as
respectively registers, wires or modules. It also introduces specific Clock and Reset
types.

Siloed Focusing exclusively on synchronous logic, (n)migen [Bou13] introduces a siloed
approach between combinational and synchronous statements, whereas most hardware
description interleaves both.

Gate-level From an entirely different perspective, some approaches such as PHDL [Mas07]
focus on the description of fine-grained circuits, down to the details of operators
implementation as elementary logic gates.

System-level At the other end of the spectrum, some other approaches such as SysPy, focus
on system-level integration and System-on-Chip (SoC) designs [LKM16].

37

Chapter 3. State of the Art

Multi-level While various languages mix several approaches, some are focused on offering
a multi-level approach, with a clearly specified granularity such as functional, cycle
and RTL levels in PyMTL [LZB14, JPOB20].

Towards architectural abstractions On top of the functioning details and design intents,
some HCLs build further abstractions of the circuit. A common built-in feature consists
of the abstraction of clock and reset management, with automatic connection of clocks
to registers and parameterization of reset types across designs. The introduction of more
advanced abstractions is discussed in Section 3.3.2.

3.3.1.4 New languages

The reuse of existing languages, either hardware ones to be pre-processed or extended, or
software ones as hosts, comes with restrictions of syntax, grammar and semantics. These
limitations can be bent to some extent but fuels the willingness to design new languages
from scratch, such as Lola [GL98] or Pyrope [SWS+17, Ski18]. While they do not necessarily
introduces new hardware description or generation concepts, they aim at solving some
practical issues, such as language artifacts of embedded HCLs. However, as pure UFOs to
both hardware engineering and software engineering worlds, they do not benefit from the
library-reuse pattern neither from a hardware description perspective, nor from a software
perspective. They require tremendous amount of effort to implement and maintain, while
lacking community support which comes with the reuse of existing languages. As a result
they are usually short-lived initiatives, hence preventing the ability to explore and implement
further abstractions within these languages.

3.3.2 Usage of HCLs towards Agile Development

This thesis explores the idea that expressiveness and flexibility of hardware descriptions
are providing development agility thanks to improved reusability and code concision.
Traditional HDLs have failed to provide such expressiveness and flexibility and hardware
construction languages, notably embedded HCLs, now appear as a solution [NS96, TH19].
In addition, introducing new design paradigms is expected to unlock higher abstraction
levels and ease expression of complex applicative needs. The previous sections presented
numerous Hardware Construction Languages and detailed their functioning principles, we
now focus on the opportunities they offer towards higher abstractions levels and agile uses.

3.3.2.1 Towards New Paradigms

Design introspection Design introspection is the ability to extract meta-information from
a design, such as the latency between two points of the design and to use this information
for further processing. The latency is indeed not explicitly specified by the designer but is
the result of its description and the relation he describes between signals with registers and
various operators. The ability to extract this information has been successfully experimented
with embedded HCLs, leading to various applications, either directly impacting the genera-
tion process [Pap16] or driving downstream analysis [FMR21]. Reflexivity over the circuit
and free access to its internal representation—permitted by most embedded HCLs—are key
enablers to increase the flexibility of the design flow.

System-on-Chip and Interface Oriented Libraries As part of the re-usability quest among
hardware design world, the support of usual communication interfaces both within the
design and externally is subject to extensive work. At design-level, the most advanced

38

3.3. Implementing Abstractions with Hardware Construction Languages

circuits are often made of large subcomponents, either developed as part of the project
or integrated from third-parties. Proper communication between these heterogeneous
elements is key to successful integration and validation. In particular, homogenization of
parameters among components communicating over shared busses is crucial and greatly
benefits from automatized approach such as parameter negotiation [CTL17]. From a system-
level design point of view, the integration of many components within the same design
is a challenge faced by SoC designers. Approaches such as Chipyard [ABG+20] based on
Chisel [BVR+12] and the Rocket-chip RISC-V generator [AAB+16], or Lite-X [KBBLL19] based
on (n)migen [Bou13] are aiming at providing tools to generate and validate such complex
designs.

Rule Based Hardware: the Case of Bluespec Bluespec SystemVerilog (BSV) introduces a
new way of designing hardware with Atomic Guarded Actions [Nik04, Nik08]. It radically
changes the way to express concurrent combinational operations, which are described as
a set of independent rules to be executed within a clock cycle. The compiler is then in
charge of scheduling these concurrent rules, in particular when reading or writing the
same registers. It generates a circuit taking care of rules priorities thanks to guard signals
associated to rule triggers. To that extend, Bluespec falls outside the scope Hardware
Construction Languages, taking a step closer to High-Level Synthesis, as some control over
the circuit is left to heuristics. The description replaces manual specification of combinational
operations by functional expression of these operations. Despite available only through
proprietary and closed-source tools5, this hardware programming paradigm inspired further
works [BPCC20], most notably in the formal verification domain with Kami, a coq library
which implements a BSV-style hardware description [CVS+17]. According to the authors,
this paradigm abstracts some details of actual hardware implementation, such as explicit
parallelism, which eases the verification of the circuit in its functional form.

HCLs as Experimental Laboratory The previous paragraphs introduced numerous design
concepts and abstractions developed independently, often due to specific applicative needs.
As a conclusion of this part oriented towards new paradigms, HCLs appear to provide
a great development platform to experiment and integrate new design paradigms. In
particular, the flexibility of the embedded HCL was demonstrated with the successful
integration of numerous paradigms, including Bluespec constructs within Chisel [Gre15].

3.3.2.2 The Role of Intermediate Representations (IR)

To serve the introduction of new paradigms, circuit intermediate representations (IRs)
stand at the core of hardware design flows. These representations are the ground for any
analysis and automation of the circuit from an external perspective. They can allow early
reporting of i.e. combinational loops, design introspection as we mentioned earlier, and
also serve as the medium for optimization algorithms such as dead-code elimination and
constant propagation. Executed early in the design flow, these optimizations are crucial to
save time for both simulation and synthesis. A wide diversity of such hardware IR has been
developed, including most notably RTLIL [WGK13], FIRRTL [IKL+17], CoreIR [DTH18],
LGRAPH [WPC+19, PWSR18], LNAST [WSR19], LLHD [SKGB20] and Ahir [SRAD07].
While each of these IR is tightly closed to its own original application, they intend to
provide generic hardware representations, which has lead to some conjoint toolchains such
as CIRCT [L+21] featuring both FIRRTL and LLHD.

5The Bluespec compiler was open-sourced after the cited studies. See footnote 4 on page 34 for further
details.

39

Chapter 3. State of the Art

Hardware IRs are at the core of hardware development flows and are perfectly suited to
analysis and automation, however they stand apart from the designer intent by one big step:
elaboration. In design flows, hardware IRs are indeed the result of elaboration of high-level
hardware generators and hence do not retain generation intents such as programmatic
instantiation. As a result, analysis of the circuit at this level cannot be easily reflected in the
user description and cannot serve as parameter for further elaboration.

3.3.2.3 Agile Development with HCL

From their principles to their implementations, HCLs are oriented towards providing
reusability and flexibility to describe and generate digital circuits. Furthermore, agile
development focuses on delivering small functioning iterations which is achievable but
extremely costly with traditional HDLs. Previous work demonstrated the relevance of HCLs
usage in an agile development context. In particular, a specialized Tensor Processing Unit
(TPU) has been efficiently designed by Google teams with HCLs [JYP+17, JYPP18, LTN+18].
Similarly, HCLs demonstrate fast iterations from design to tape-out of general purpose
applications such as a multicore RISC-V chip [LWC+16, IKL+17], thanks to the flexibility of
the toolchain.

3.4 Conclusion

Providing the current highest architectural abstraction level among hardware design method-
ologies, HCLs and their enhanced elaboration capabilities pave the way for introducing
new hardware-oriented abstractions and paradigms. Numerous of such high-level design
paradigms have been recently explored, and some of them appear particularly relevant in
the context of networking hardware design.

The abstraction level provided by HCLs does instill some agility into hardware devel-
opment flows and preserves, by-design, close control over the implementation. However,
several aspects of HCL-based development flows call for further investigations:

1. While the fine-grained implementation opportunities offered by HCLs are assumed to
introduce flexibility, side-by-side comparisons with traditional HDLs in an iterative
context have not been clearly drawn until now.

2. Beyond implementation details, in-depth transformations of hardware design method-
ologies with higher-level abstractions based on HCLs have not yet been exhibited.

3. Among the various high-level abstractions already proposed with HCLs, a wide
diversity of domain-specific applications context remains to be explored, such as
networking and streaming applications.

4. Although HCLs are presented as a viable replacement of traditional HDLs, their
cohabitation with large existing HDL codebases has been neglected so far. In particular,
neither the translation of existing HDL hierarchies into equivalent hardware generators,
nor the automated integration of HCL-generated hierarchies have been considered.

The next chapters intend to explore these uncharted territories, which first involves to pick
an HCL as foundation of our experiments.

Choice of an HCL for further experimentation

As we previously mentioned, most HCLs share common principles and only differ in
their implementations. The most flexible and advanced implementations are found with

40

3.4. Conclusion

embedded HCLs, in particular those building their custom IR out of hardware primitive
upon execution. To integrate and extend high-level design paradigms within a given HCL,
we expect the following characteristics:

1. An open-source HCL and toolchain to allow unrestricted experimentation,

2. A high degree of maturity to focus on integration of high-level paradigms rather than
HCL engineering,

3. A well documented and flexible hardware intermediate representation to build analysis
and transformations,

4. A widely used host language—in particular in the context of meta-programming—to
benefit from community support and a rich ecosystem of existing software libraries.

The Scala-embedded HCL Chisel [BVR+12], backed by FIRRTL [IKL+17] hardware compiler
framework, perfectly matches these requirements. The next chapters—without loss of
generality—detail our contributions based on this HCL, starting with the application of
agile methodologies to hardware design, from precise implementation matters to high-level
abstractions.

41

Chapter 3. State of the Art

42

Chapter 4

Agile Hardware Design

This chapter reviews the wide range of applicative usages opening up to Hardware
Construction Languages (HCLs) and how they provide the foundations for an in-depth

remodeling of hardware development flows. The induced evolution is not only restricted to
hardware descriptions themselves but applies to the earliest architectural drafts, long before
digging into implementation details.

After a review of existing HCL usages, we first demonstrate how Chisel HCL enables
generating more flexible and more reusable hardware modules, in a network applicative
context while preserving designers’ control on the architecture.

Then, with this technical background gained as simple users of the new language
constructs, we exhibit that HCLs can unleash designers’ creativity, as early in the design
flow as the initial coarse grained architectural sketches.

Contents
4.1 Hardware Construction Languages Usages and Applications 44

4.1.1 Scope Reduction . 44
4.1.2 Previously Validated Use Cases . 44
4.1.3 Expected HCLs Contributions to Network Devices Design 45

4.2 Bringing Agility to Networking Hardware Development 46
4.2.1 Cuckoo Hash-Table Algorithm . 46
4.2.2 Read-Modify-Write Iteration . 49
4.2.3 Experimenting With Hash Functions 50
4.2.4 Hardware Evaluation . 51
4.2.5 Agile-Friendly Design . 52
4.2.6 Conclusion . 53

4.3 Towards In-depth Transformation of Circuit Design 53
4.3.1 Overcoming Hash-table Overflow Scenarios 54
4.3.2 Towards a Generic Protected Hash-table Architecture 55
4.3.3 Designing with Abstract Data Types 57
4.3.4 Implementation & Results . 62
4.3.5 Limitations of Abstract Data Types in Hardware Design 64

4.4 Conclusion . 65

43

Chapter 4. Agile Hardware Design

4.1 Hardware Construction Languages Usages and Applications

As newcomers in hardware development flows, Hardware Construction Languages (HCLs)
have to prove by example their relevance and their suitability to address complex design
issues in practice. To evaluate the applicability of their bottom-up approach, both sides of
the latter must be studied.

At the bottom, an equivalence with existing HDLs In their lowest forms, HCLs must be
able to describe complex designs without loss of control or generality compared to the
traditional HDLs they intend to replace.

Upward, the ability to provide useful abstractions HCLs introduce the latest software de-
velopment techniques, aiming at providing flexible and reusable hardware generators.
This improved expressiveness shall nonetheless prove its relevance in specific business
logic development contexts.

4.1.1 Scope Reduction

Introduced almost four decades ago and widespread in both research and industry since
then, traditional HDLs have been used for a wide range of applications, with varying needs
and intents. The Verilog language in particular is quite versatile, originally intended for
behavioral description of circuits in a simulation context and then extended in numerous
ways with SystemVerilog standards. (System)Verilog usages range from advanced simulation
framework with object-oriented programming [SJR+16, KC11, DCF+14] to low level netlist
structural circuit description to analog and mixed-signal modeling [FO00, PLV05]. While
HCLs might appear as potential drop-in replacements of traditional HDLs, the scope of
such replacement opportunity should be clearly defined. Among the numerous features
and uses of traditional HDLs, the only target context of the HCLs considered in our study
is strictly limited to digital synchronous logic descriptions, based on user-described hardware
generators. In particular, there is no intended analog and mixed signals descriptions
support, and HCLs do not intend to be a universal circuit descriptions used at netlist level.
They instead still rely on Verilog to play this role, although numerous auxiliary researches
efforts are focused on providing a replacement for the use of Verilog as intermediate
circuit representation [SKGB20, WPC+19, WSR19, MB21]. With clock and reset abstractions
provided in most HCLs, the synchronous logic description scope is often further reduced to
positive-edge synchronization. While this is an issue to implement some low-level interfaces
such as DDR memory controllers, it still covers the vast majority of custom circuit design
requirements. This dependency towards the existing EDA stack based on using traditional
HDLs is largely assumed, and HCLs should be regarded as front-ends for description of
advanced hardware generators rather than drop-in replacement of traditional HDLs in
all cases. Chapter 6 further reviews the integration issues raised by HCLs to fit within
the existing EDA stacks, in particular in cases where a large number of traditional HDL
descriptions is already in use.

4.1.2 Previously Validated Use Cases

Despite their inherent limitations, a wide range of applications remains available to HCLs.
The current review, along with the experiments detailed in this chapter, are part of larger
research effort, which started before the introduction of HCLs, exploring concrete use-cases
and analyzing actual benefits of higher level abstractions for hardware design. HCLs
introduce such abstractions but have usually been developed with a more or less concrete
application context in mind. This is the case for Chisel, whose initial developments have

44

4.1. Hardware Construction Languages Usages and Applications

been closely related to those of the rocket-chip RISC-V generator [AAB+16], and hence
oriented towards highly-parameterized processors description, with ASIC tape-out target.
These studies also aim at demonstrating that HCLs can be used to describe hardware
generators, not tied to a specific applicative domain but flexible enough to reveal their
convenience in various use-cases.

Without loss of generality, we only consider here the numerous Chisel-related publica-
tions, which already highlight the large coverage of many applicative use-cases:

• Processor Design [LWC+16, APC15, RPPS19],

• Network-on-Chip (NoC) Design [FFDMS16, TOJ+19, KK17],

• Signal Processing [WRI+18, MP19],

• Other domain specific applications such as DNA sequence alignment [DTCC+18].

These works use Chisel from a hardware designer perspective, and mostly take advantage
of advanced generation features such as extensive parameterization of complex designs,
functional parameterization and type polymorphism. Leveraging these features reportedly
enables their authors to build reusable and flexible designs, while contributing to the quality
of their original researches in their respective domains. However, these works do not aim at
providing further abstractions within the Chisel language nor at comparing implementation
results between their Chisel implementations versus equivalent HDL implementations. The
usability and flexibility of Chisel is demonstrated, which validates the relevance of HCL
bottom-up approach, but still lacks some comparison points between Chisel and Verilog
development flows in terms of performance, resource usage and reusability.

Last but not least, to our knowledge no prior research have explored the relevance of
HCL usage within the specific context of network device design and implementation. In
particular the introduction of high-level software abstractions as an integral part of the
design process remains yet to be explored in this context.

4.1.3 Expected HCLs Contributions to Network Devices Design

To protect a worldwide network with more than 24 Tbps connected to the Internet, at
OVHcloud we have developed a custom anti-DDoS protection system which successfully
mitigates thousands of attacks a day. It consists of multiple custom layers featuring both
high-performance FPGAs and CPUs. Our aim being to keep hardware development
synchronized with software continuous improvement, HDLs have not proven to be efficient
enough, raising a need for an improved agile hardware development flow. We expect such
development flow to be based on simple iterations, following the principle of least power,
which comes with the following philosophy:

1. Complexity is your enemy,

2. Do not fear refactoring,

3. Do not overengineer.

Providing explicit hardware primitives, HCLs have already demonstrated their ability to
exhaustively describe custom digital designs in a quite similar fashion as traditional HDLs for
a large range of applications. Their extensive generation and parameterization capabilities
instill flexibility in hardware implementations, which augurs first-class compliance with our
agility objectives. Besides hardware implementation convenience, we also expect software

45

Chapter 4. Agile Hardware Design

engineering advances provided by HCLs to transpire and expand their influence to the way
hardware architecture are designed from their earliest stages.

As part of the global research effort to exhibit the relevance of HCLs usage in various
fields, our two contributions in this chapter detail the application of the agile methodologies
to networking hardware device design at OVHcloud. The next section details the iterative
design of a core functionality of stateful network devices: a per flow associative storage
implemented with a hash-table. The following one discusses the ability to design another
version of such associative storage from a radically remodeled perspective based on Abstract
Data Types, a software engineering abstraction natively offered by HCLs.

4.2 Bringing Agility to Networking Hardware Development

In this section we aim at presenting how Hardware Construction Languages can increase
agility and allow an iterative process when implementing hardware network applications.
Specifically the proposed network-oriented use-case enables us to:

• demonstrate how HCLs can benefit to hardware development and help build higher
architectural abstractions of circuits,

• evaluate the quality of HCLs generated circuits in terms of latency, throughput and
resource usage against equivalent HDL implementations.

For this first industrial experiment with Chisel HCL, we focus on a central function, a
hash-table, largely used in our network device to store states associated to network flows. It
is a core feature for all stateful network devices, which are much more powerful than simple
stateless network packet processing. We describe the classic cuckoo hashing algorithm and
dig into its iterative implementation as a Chisel hardware module, incrementally introducing
features and parameterizations. We show that the generated hardware is on par with our
current, thoroughly optimized, SystemVerilog implementation both in terms of performance
and resource usage. Finally, we present our analysis of the advantages and drawbacks in
the use of Chisel for this design.

4.2.1 Cuckoo Hash-Table Algorithm

As detailed in Section 2.2, many network applications need to store per flow states, where
a flow is usually defined by its 5-tuple, consisting of source and destination IP addresses,
transport protocol and, source and destination ports. Given the wide range of potential IP
addresses (2128 unique IPv6 addresses available), the total number of flows is far too large
to use a memory with one entry per potential flow. This problem further increases when
the flow is defined with additional parameters, such as traffic category, or internal profile.
In practice, a network device does not process such a wide range of traffic, hence not all
slots are required, and dictionaries can be used instead of exhaustive associations.

While specialized Content-Addressable Memories (CAMs) or Ternary CAM (TCAMs) are
perfectly suited for dictionary hardware implementation, these highly specialized circuits
are ill-suited for FPGAs. Efficient dictionary implementation is usually obtained through
the use of hash-tables, which can be based on external memories, decoupling logic and
storage functions.

We here focus on one particular hash-table implementation, based on the cuckoo hashing
algorithm [PR04]. This dictionary implementation provides worst-case constant lookup time
while focusing on efficient memory space utilization. The present cuckoo hashing algorithm
is based on N independent memory banks, respectively associated with N corresponding

46

4.2. Bringing Agility to Networking Hardware Development

hashing functions. Cuckoo hashing is well suited to hardware implementation, as memory
banks can be accessed in parallel.

Given a (key, value) pair, the N hash functions are applied to the key. Each resulting hash
is the address of a slot in the associated memory bank. Any (key, value) pair can hence be
stored in N different slots.

Given a key, the lookup operation is quite straightforward:

1. N hashes of the key are computed,

2. slots pointed by each hash are retrieved,

3. if the key is found in one of the retrieved slots, the associated value is returned.

The lookup operation execution time does not depend on where or when the data was
stored, ensuring worst-case constant lookup time.

The insert operation is a bit more complex. Given a (key, value) pair to be inserted, the
last step is replaced by:

3. lookup for free slots:

(a) if at least one slot is free, randomly pick one of them for insertion,

(b) otherwise swap the content of one randomly chosen slot with the (key, value) pair
and go back to step 1).

The re-insert operations of overwritten (key, value) pairs are called moves. Having moves
creates a possibly infinite loop in the design, if no free slots are found for each successive
move. This is avoided by limiting the number of re-insertions, dropping the last (key, value)
pair when the limit is reached.

This hash-table was already implemented and used in our anti-DDoS solution, with
many improvements and variations to fit our use-cases. As part of an ongoing migration
of our applications from SystemVerilog to Chisel, we decided to re-implement it, starting
with a very basic specification, and iteratively adding the required features. We target the
following performance requirements:

• a throughput of one operation per clock cycle,

• a latency within hundreds of cycles, which is quite transparent at network scale.

The first design iteration is a core cuckoo hash-table module depicted in Figure 4.1. Move
operations are blocking incoming requests until the move is successful, or when the limit is
reached.

The implementation process for this module is the same with Chisel or with SystemVer-
ilog. The hardware description closely follows the linear pipeline architecture. Expressing
this simple assembly of modules from a coarse-grained point of view is straightforward in
both languages. While this is expected from SystemVerilog, it validates Chisel ability to
provide the necessary constructs to serve as a standard hardware description language. It
also enables the inclusion of existing SystemVerilog modules as black-boxes, a mechanism
used in this initial implementation to integrate our existing custom hash functions. While
there is no significant gain in using Chisel at this point, there is also no loss in hardware
expressiveness.

47

Chapter 4. Agile Hardware Design

0

 i

N-1

+ PRIO -

Hash
0 Hash

i Hash
N-1

Synchro

Legend
Memory Write Req
Memory Read Req/Res

LFSR

MOVE
FIFO

Lock
Lock

Lock

PIPELINED
REQUESTS

LOOKUP
RESULTS

unlock

LFSR

Decision

Get Free
Slots

Get
Matches

Figure 4.1: Global cuckoo hash-table architecture

Hash Table CHISEL

Write

Requests

Lookup
Requests

User
Function

 User-defined
IOs (optional)

Hash Table
SystemVerilog
Write

Requests

Lookup
Requests

 Constrained
pre-defined

IOs

User
Function

Figure 4.2: Illustration of functional parameterization in Chisel

48

4.2. Bringing Agility to Networking Hardware Development

4.2.2 Read-Modify-Write Iteration

As the second design iteration, we extend the initial implementation with the ability to
process user-defined read-modify-write operations. For example, this allows the increment of
a counter with a single request. A read-modify-write operation consists of 3 successive steps:

1. lookup a (key, value) pair,

2. compute updated value given user-defined algorithm,

3. write result back to original memory slot.

The complexity of this iteration lies in the user-defined aspect of the modification.
Adding an atomic read-modify-write is simply a matter of locking the table and inserting the
user-defined function between the decision stage and the actual write to memory. But being
able to externally provide the operation is not as simple. Our SystemVerilog implementation
uses an external module for this operation, and carefully designed hardware ports, which
comes with many pitfalls. First, increasing the number of ports increases the complexity,
reducing overall expressiveness of the source code. Modifying the function means ensuring
that the connection is done correctly. It also implies a complex validation of the modifier,
mocking the expected in-place integration. Secondly, providing a default modifier can only
be done with a wrapper module or with generate statements, which limits code reuse. Lastly,
the resulting hierarchy seen during verification and synthesis analysis presents the modifier
outside the main hash-table pipeline, resulting in harder debug and resources enumeration.
In our anti-DDoS application, we use several hash-tables, with different modifier functions.
Limitations encountered using SystemVerilog for this simple read-modify-write upgrade are
symptomatic of design patterns that prevent code reusability with HDLs. As upgrades come
at high maintainability and verification costs, full rewrites are often preferred in practice.

In contrast, functional parameterization and object inheritance in Chisel provides the
ability to split roles. Figure 4.2 illustrates the difference between both approaches. Users can
instantiate the hash-table with any modifier function, provided that it matches the software
interfaces documented below (for simplicity, we use a UInt as data type).

trait CuckooModifier {
def build(valid: Bool, input: UInt): (UInt, Bool)

}

The build function is the main function called in the hash-table to generate modifier
hardware. An example of concrete modifier implementation is defined as follows:

object Increment extends CuckooModifier {
def build(valid: Bool, input: UInt): (UInt, Bool) = (input + 1.U, valid)

}

Finally, the HashTable module takes a CuckooModifier as parameter, and uses it in its imple-
mentation.

class HashTable(
val modifier : Option[CuckooModifier] = None
// ...

49

Chapter 4. Agile Hardware Design

) extends Module {
//...
modData, modValid = modifier match {

case Some(mod) => mod.build(lookupValid, lookupData)
case None => (lookupValid, lookupData)

}
//..

}

Possible flavors of this parameterization are endless. For example, we could have used
the build function as a parameter, but using a trait allows for more complex modifiers. We
could also use a list of modifiers, along with a modifier selector mechanism, to implement
different modifications in a single hash-table. With this approach, hardware interfaces are
not growing out of control, hierarchy is preserved and a default child module generator
can be provided to the module constructor, thus increasing reusability. Changes in code are
quite limited and confidently integrated into the code base thanks to associated unit-tests.
The flexibility offered by this parameterization hardly suffers from any limitation and greatly
helps with integrating the Chisel implementation within our complex code base.

4.2.3 Experimenting With Hash Functions

The hash function choice is a balance between resource usage and latency on one hand,
and collision avoidance on the other hand. While redesigning our hash-table, we wanted to
experiment with other hash functions, which is the subject of this third iteration.

In SystemVerilog, new hashes can be integrated in several ways: using hardware ports
as above-mentioned; manually selecting the desired hash function within hash-table code;
or with a generic parameter, coupled to an enumeration of known hash functions using
generate statements. However, none of these solutions avoid modification of original code
for each new hash function—or only at the cost of complex and constrained interfaces. In
Chisel, as described through the second iteration, functional parameterization allows fast
integration of user-defined code without internal changes, thus easing design exploration
and increasing reuse.

An interesting hash function candidate is the SipHash algorithm [AB12] which was
deemed one of the most performant hash [SNO13]. Originally designed for software, it is
highly sequential with multiple iterations of a computation—the sipround—over the input
message. To integrate SipHash in our fully pipelined architecture we need to unroll the
sequential loops while duplicating the siprounds and chaining them through register stages.
The number of siprounds is configurable and impacts the hash function properties. Within
SystemVerilog, the usual way to deal with such variable length pipelines is to define an array
of register stages. These stages are then connected using their respective indexes which
results in low readability and highly error-prone code. Resorting to a function to factorize
sipround computations between registers stages is appealing. Unfortunately, SystemVerilog
functions can hardly integrate registers, which prevents exploration of different registers
configuration inside the stages.

In contrast, Chisel supports recursive generating functions which are able to describe
both the functionality and the pipeline details by instantiating either registers or wires
between stages. Hardware stages are defined during elaboration (i.e. the execution of these
generating functions), leading to a very comprehensive match between the algorithm steps
and the generated hardware stages.

This third iteration shows two other aspects of the usefulness of Chisel: the extended
use of functions for both code generation and advanced software configuration. First,

50

4.2. Bringing Agility to Networking Hardware Development

the possibility to instantiate hardware inside a function allows more natural expression
of algorithms. Secondly, configuration functions can be defined as software within the
hardware description, whereas for our SystemVerilog hash functions, a configuration file is
generated using a Python script prior to hardware elaboration. This limits the number of
errors, and interestingly speeds up simulation and synthesis, as the hardware is generated
in a static form, as opposed to the SystemVerilog version in which the configuration file is
read dynamically by the tools.

4.2.4 Hardware Evaluation

The primary goal of languages is to allow efficient implementation in terms of resource usage
and performance. In resource-constrained FPGAs, a language must be chosen carefully in
this respect. As we observed the same trend over numerous possible parameterizations, this
subsection focuses on the result corresponding to the following configuration:

• 75-bit key width

• 21-bit address width

• 69-bit data width

• Synthesis frequency: 200 MHz

• FPGA target: Xilinx VU9P

Base + SipHash + increment

Verilog

Total LUTs 9162 23722 +14560 23894 +172 +0.7%
LLUTs 9162 22043 +12881 22215 +172 +0.8%

MLUTs 0 1679 +1679 1679 = =
FFs 16705 24742 +8037 25135 +393 +1.6%

BRAMs 11.5 11.5 11.5

Chisel

Total LUTs 9411 24331 +14920 24401 +70 +0.3%
LLUTs 9266 22371 +13105 22441 +70 +0.3%

MLUTs 145 1960 +1815 1960 = =
FFs 15393 23636 +8243 23806 +170 +0.7%

BRAMs 11.5 11.5 11.5

Diff

Total LUTs +249 +609 +360 +507 -102 -0.4pt
LLUTs +104 +328 +224 +226 -102 -0.5pt

MLUTs +145 +281 +136 +281
FFs -1312 -1106 -206 -1329 -223 -0.9pt

BRAMs = = =

Diff %

Total LUTs +2.7% +2.6% +2.5% +2.1% -59%
LLUTs +1.1% +1.5% +1.7% +1.0% -59%

MLUTs +∞ +16.7% +8.1% +16.7%
FFs -7.9% -4.5% -5.5% -5.2% -57%

BRAMs = = =

Table 4.1: Hardware resource usage comparison through iterations

51

Chapter 4. Agile Hardware Design

HDL blackbox

HDL blackbox

CI integration

Treadle

Chisel
+ FIRRTL

KO

Scala/Chisel

OK

Verilog

KO

OK

ScalaTest
Synthesis

flow

FPGA

Chisel

test

Verilator

Scala
test-bench

Figure 4.3: Chisel design and validation flow

Table 4.1 summarizes the resource usage for both SystemVerilog and Chisel implementa-
tions at each iteration. We took care to implement similar pipeline in terms of register stages.
This shows that even if SystemVerilog allows to spare a few resources, both technologies
display comparable usage. The discrepancies come from slightly different design choices,
and from the randomization of hash functions. Overall, using Chisel does not come at a
significant cost in resources, which is remarkable given the maturity of the SystemVerilog
implementation.

Moreover, synthesis time, omitted in this table, is up to 5 times shorter for Chisel-
generated Verilog than for SystemVerilog. This is mainly due to the fact that no generation
occurs within Chisel-generated Verilog, which limits the required operations—and possible
tool-related errors. Ease of use is also enhanced: a single Verilog file, without any external
dependency, is generated and can then be used by usual EDA tools, in particular simulators
and synthesis tools.

4.2.5 Agile-Friendly Design

As demonstrated with this study, Chisel parameterization process greatly improves the flexi-
bility and reusability of hardware modules. While agility is achievable with SystemVerilog,
iterations are limited by the low generic nature of the language thus impacting the entire
flow. Low flexibility leads to harder iterations, which in turn lead to bigger increments, as
the integration of a feature overwhelms the time required to develop the said feature. When
using Chisel, the entire focus is on small increments.

This improved agility also applies to the design and validation flow, presented in
Figure 4.3, through the elaboration step. In SystemVerilog, each simulation or synthesis
tool has its own elaboration process, supporting its own subset of the language. Simulation
tools are usually more feature-rich, and synthesis tools limitations are found late in the
flow, possibly requiring in-depth modifications of already validated modules. To avoid

52

4.3. Towards In-depth Transformation of Circuit Design

this, we usually stick to a very basic subset of the language, further limiting code reuse.
Chisel elaboration ensures transformation of Chisel code to this basic subset. It also
provides numerous checks such as types or combinational loop checking. As it occurs
before functional simulation, this flow brings three major benefits. First, these checks do not
need to be asserted during functional validation anymore. Secondly, many mistakes can be
caught in a matter of seconds before any lengthy simulation start-up. Thirdly, the generated
Verilog is compatible with all synthesis and simulation tools.

On the validation side, ScalaTest library natively provides test-cases management and
straightforward integration of pass/failed results into continuous integration (CI) systems.
It allows testing of collections of programmatically defined parameter sets. For example, it is
possible to routinely check all existing hash functions within a single test. Test-benches, also
written in Scala, are fed to the Chisel-tester which provides bindings with fast open-source
hardware simulators such as treadle and verilator.

In conclusion HCLs introduce more checking steps, taking place earlier in the validation
flow, enabling faster iterations and hence improving the overall hardware development
agility and predictability.

4.2.6 Conclusion

In a challenging context of hardware network device design, which targets strong perfor-
mance, an agile hardware development flow is required to cope with constantly evolving
network traffic. This first positive experiment with Chisel in the design of a complex hard-
ware module showcases the relevance of Hardware Construction Languages at the scale of
industrial network device design. The high-level constructs brought by Chisel permit an
actual iterative development, with small increments, and improved validation at each step.

Designing generators instead of describing circuits proves to be an efficient approach
which fully exhibits its agility as soon as successive design iterations occur. HCLs integrate
powerful software engineering concepts into hardware development, unlocking higher
abstraction levels while still mastering generated hardware. As a direct benefit, it becomes
easier to build highly reusable design libraries. Furthermore, these accessible higher
abstractions levels call for a more integrated approach, not limited to an upgrade of the
hardware description itself but with an impact at the earliest architecture design stages.

4.3 Towards In-depth Transformation of Circuit Design

Based on the improved flexibility gained in practice with the use of Hardware Construction
Languages for architecture descriptions, this section reviews their ability to provide the
foundations of a more radical hardware design flow transformation. In particular, the
introduction of development paradigms inherited from software such as Object-Oriented
Programming (OOP) enables hardware designers to model architecture in ways that would
have never been envisioned otherwise.

To illustrate these modeling abilities, we first describe a network-oriented applicative
use-case used as context for this experiment. Then we outline its implementation based
on an Abstract Data Type (ADT) model, which is permitted by Chisel Object-Oriented and
Functional paradigms inherited from its host language Scala. We next showcase the flexibility
of this decoupled implementation, with a design iteration introducing a new complex feature.
Finally, we compare the synthesis results between the original SystemVerilog version of the
module and its Chisel counterpart.

53

Chapter 4. Agile Hardware Design

4.3.1 Overcoming Hash-table Overflow Scenarios

The previous hash-table iterative experiment, depicted in Section 4.2.1, presents the need
to rely on associative memories or dictionaries to store per flow states. The underlying
limitation is driven by the relatively small size of available memories compared to the
gigantic number of potential flows a network device should be able to process. With
hardware dictionaries, which can be implemented as hash-tables, a predefined memory
size is allocated to store the same gigantic potential amount of flows. Besides the issue of
hash conflicts caused by limited memory depth, total capacity of a hardware hash-table is
finite, and data overflow might occur as soon as too many distinct flows are attempted to be
stored.

With regard to the current network context focused on per flow storage, any hash-table
implementation could be potentially overflown by an attacker able to craft network packets.
With a single traffic generator connected to the Internet through a unique IP address, it is
indeed possible to craft packets towards a given destination IP address with any arbitrary
source IP address. Crafting network packets with an arbitrary source IP addresses which
does not correspond to the address of the device sending them is referred as IP spoofing,
with four purposes:

1. hide sender identity,

2. impersonate another computer system identity,

3. redirect the expected response of a request to a selected target (reflective attacks), or

4. artificially generate distinct flows from a single device.

Some transport protocols such as TCP prevent such behavior, or at least mitigate the risk in
practice, with the establishment of a connection through an initial handshake. UDP, a widely
used protocol, does not provide such mechanism and is hence largely exploited by attackers.
Dictionaries used in the implementation of an attack mitigation infrastructure must be
resilient against those phenomena with appropriate protection or fail-over mechanisms.

Besides intentional spoofing, the wide diversity of flows received by a network de-
vice might have a varying relevance to the actual applicative functionality provided by
a hash-table. Considering an application monitoring the amount of traffic per flow, only
flows reaching a predefined threshold are eventually of interest to activate a rate-limiting
mechanism. In particular, in the context of protecting the network against massive traffic
surges, most of the legitimate traffic does not reach one-tenth or even one-hundredth of those
thresholds. Maintaining exact counts for every single flow is thus not required from an
applicative point of view.

Probabilistic counting strategies such as count-min sketches (CMS) have notably been
designed to provide solution to discriminate heavy-hitters in large streams [CM05]. In a nut-
shell, for each (key, value) entry, N hashes of the key are computed, and the N corresponding
memory entries are updated by adding value to their respective counts. If the minimum of
the N resulting counts reaches a given threshold, an alert is raised. This algorithm can be
used as front-end protection to discriminate flows whose traffic reach a given threshold,
and select only these flows for accurate counting with a standard hash-table. The overall
resulting architecture of such Protected Hash-table is the following:

Probabilistic counting Flows are first counted with a probabilistic approach, such as count-
min sketch, raising alert as soon a given threshold is reached. This approach may
trigger false positive cases, which are due to hash conflicts. When this first stage is
triggered, flows are further processed by a deterministic stage (namely, a hash table)
to provide an accurate count.

54

4.3. Towards In-depth Transformation of Circuit Design

Accurate counting Packets for which the alert has been raised are then precisely counted
using a deterministic approach, which maintains an accurate count for each distinct
flow inserted. Based on this accurate information, appropriate action can be taken as
soon as a flow reaches a threshold.

This two-stage strategy provides a decent protection of the deterministic counting structure
against spoofing cases1and permits a proper sizing of memories for storage depending on
applicative needs.

A notable limitation of this methodology lies in its periodic behavior: alert are triggered
when a counter reach a threshold within a given period of time. In practice, all counters are
reset to zero at the beginning of each period, only preserving the knowledge of an existing
alert. For any flow, the first period is spent only in the probabilistic stage whose alert does
not imply an action, resulting in an initial grace period. Then, if an alert was previously raised
on the given flow, this flow is inserted in the standard hash-table, to provide an accurate
counting and eliminate potential false-positive alerts. In network devices, a one-second
period provides a respectable trade-off between aggressive reaction on short peaks and
permissiveness towards dangerous traffic. It also eases the implementation as the rates
(volume per second) are directly equal to the value of the threshold, expressed in number of
bytes or packets.

4.3.2 Towards a Generic Protected Hash-table Architecture

Providing an overflow protection for hash-tables, tailored to their actual purpose, is a
desired feature for several network functions, such as rate-control or zombie detection.

Figure 4.4 illustrates the generic 2-stage architecture of such Protected Hash-table. It is
based on a degenerated version of the count-min sketch algorithm, with a simple sketch
using a single bank of memory for probabilistic stage. Two independent modules are in
charge of the periodic cleaning of the counters. They share their memory accesses with the
modules of the main pipeline through a memory interface manager which is in charge of
guaranteeing the consistency of the memory access at all times. From a black-box perspective,
this architecture exposes only three data structures through its interfaces: a request, a result
and some elements stored within the memory (StoredData).

Based on this simplified block-level view, several functionalities could be implemented.
However, while the business logic would be very different for rate-control or zombie detection
functions, the overall architecture implementation, pipelined and based on the read-modify-write
pattern detailed in Section 4.2.2, is quite similar. This observation calls for an explicit
separation of the business logic and the architecture implementation.

Business Logic Architecture Implementation
Functionality Structure

Data Definition & Interpretation Data Routing & Synchronization
Algorithms Pipeline Hierarchy
Decisions Protocol Signaling

This separation of concerns between functionality and architecture intends to provide
additional flexibility to the resulting implementation, with the following goals:

1This strategy is only intended for self-protection against spoofing and does not aim at protecting destination
network and devices against spoofed packets. Note that the size of memories shall be dimensioned in accordance
with the minimum intended thresholds.

55

Chapter 4. Agile Hardware Design

Protected Hash-Table

Memory Interface Manager

Memory

bank

ProbabilisticStage

DeterministicStage

Memory Interface Manager

Memory

bankMemory

bankMemory

bankMemory

banks

Legend

Memory Write Req

Memory Read Req/Res

Result
 ADT object

Periodic Cleaner

Periodic Cleaner

Result

StoredElt

StoredElt

Result
Request

Request

Figure 4.4: Generic Protected Hash-table architecture

56

4.3. Towards In-depth Transformation of Circuit Design

Reusability The generic architecture can be reused directly in different and non-anticipated
functional contexts.

Readability The business logic is concentrated in a single point, identifiable and not
scattered. Similarly, the architecture implementation is no longer polluted with
functional-related details, suppressing code tangling.

Iterative Independence Thanks to a clearly defined interface, each concern can be iteratively
upgraded without taking its counterpart into account.

On one hand, such separation of concerns could theoretically be implemented with
traditional HDLs, at a very high engineering cost, as these languages lack implementation
flexibility. However, it would lead to an increased complexity of the resulting implementa-
tion, de facto defeating the aforementioned purposes of the separation.

On the other hand, HCLs bring software engineering techniques to hardware generator
implementation. This not only permits to describe hardware with more flexibility but
also gives access to advanced software engineering methodologies, in particular design
abstraction principles. The next section reviews how Abstract Data Types could help with the
integration of this separation of concerns from the earliest design stages.

4.3.3 Designing with Abstract Data Types

Describing hardware generators within a high-level software engineering language unleashes
the power of the software design techniques for hardware architectures and data flows
modelling. Among numerous software engineering concepts available, Abstract Data Types
define a data-oriented paradigm as follows:

“An abstract data type defines a class of abstract objects which is completely
characterized by the operations available on those objects. This means that an
abstract data type can be defined by defining the characterizing operations for
that type.” [LZ74]

Applied to our generic Protected Hash-table architecture, we can define the three main
data objects as follows:

Request Input of Protected Hash-Table pipeline, the request provides the (key, value) pair,

Stored Data (StoredData) At the core of the processing lies the stored data which is re-
trieved from the memory and updated based on the current request,

Result Computed from both previous objects, the result is presented at pipeline output.

Schematically, architectures of probabilistic and deterministic stages are almost identical
and to preserve the conciseness of the code snippets, we consider a single ADT scheme
which can be applied to both stages. The overall architecture can be expressed by the
following equations, based on our three ADT objects:

Request fetch−−→ StoredData (4.1)

StoredData + Request
compute−−−−→ StoredData + Result (4.2)

In practice, the internal architectures can be further detailed as follows:{
Request

getRawID−−−−−→ identi f ier hash−−→ address

Request doLock−−−−→ lock
(4.3)

57

Chapter 4. Agile Hardware Design

lock + address
read memory−−−−−−−→ StoredData (4.4)

StoredData + Request
update−−−→ StoredData (4.5)

StoredData + Request
getResult−−−−−→ Result (4.6)

The three main data types are printed in bold font, while intermediate variables—
belonging to the implementation domain—are printed in italic font. Data oriented functions
are printed in green and implementation related functions remain black.

We observe the central position of StoredData ADT object in these equations, and select
it as the main abstract data type to implement the interface. From a design perspective, it
sets the methods at the core of the computation. In particular, the StoredData might contain
private fields, only stored for business purposes and unrelated to the other ADT objects.
In rate counter case, the running counters and the concept of previous alert are business
critical but are neither related to the Request which only carries a (key, value) and associated
thresholds, nor to the Result which returns the current alert status. Similarly, the Result is
only interested in final binary result: alert raised or not.

As a result, business logic is concentrated within StoredData abstract data type, allowing
to reduce the specifications of Request and Result to a bare minimum. For current ADT
scheme implementation, Result is a bare Chisel type without particular methods or attributes
and Request is detailed in the following code listing.

1 /** Specification of Protected HashTable requests */
2 trait Request {
3 /** returns the raw ID to be hashed for memory addressing */
4 def getRawID: UInt
5

6 /** returns true if the current request require a lock during memory access */
7 def doLock: Bool
8 }

Methods presented within this listing and the following one are documented with
comments above their declaration, and their usage within probabilistic and deterministic
stages implementation is illustrated respectively in Figures 4.5 and 4.6. These architectures
follow the principles of equations 4.3 to 4.6 and exhibit a structure very close to the cuckoo
hash-table pipeline detailed in Section 4.2.1, Figure 4.1.

Here the Request, with methods getRawID and doLock, is providing the values required
to create a memory request to retrieve the main StoredData object.

We retain a mathematical vision of the operations, based on the (key, value) pair, rather
than exhaustively applying abstract data type principles. In particular, usual software
abstract data types would natively provide the hash associated to their object. This approach
is relevant in software because hashes have a predefined size, generally a multiple of 32
bits because their value is computed by 32 or 64 bits processors. These constraints are
platform related and do not depend on the usage of the data type, e.g. when a smaller
hash is required, the same hash is computed and only a subset is used. In hardware,
computations are fully custom and not constrained to any predefined width, it is hence
possible to provide efficient hash implementations at a very low resource cost and precisely
sized to the local needs. In the context of associative memories, the width of hashes usually
equals the memory address width, which is a highly implementation-dependent parameter.

Finally, StoredData, the main ADT object is defined as follows:

58

4.3. Towards In-depth Transformation of Circuit Design

Memory Interface Manager

Legend

Synchronize

ProbabilisticHashTable

getRawID

Memory
bank

Hash

doLock

update

getResult

getRawID

Shit register

Shit register

Memory Write Req

Memory Read Req/Res

ADT methods

hash
 Implementation functions

Result
 ADT object

FIFO

Request

Request

Request

StoredElt

StoredElt

+ Request

StoredElt

 StoredElt + Request

Result

Figure 4.5: Probabilistic hash-table implementation

59

Chapter 4. Agile Hardware Design

Memory Interface Manager

Legend

Synchronize

Select

randChoice

DeterministicHashTable

getRawID

external

memory
banks
external

memory
banks
external

memory
banksMemory
banks

hasHashList

hasHashList

hasHashList
Hash

LFSR

doLock

update

getResult

getRawID

Shit register

Shit register

Memory Write Req

Memory Read Req/Res

ADT methods

hash
 Implementation functions

Result
 ADT object

FIFO

Request

Request

Request

n x StoredElt

n x StoredElt

+ Request

 StoredElt

+ Request

1 x StoredElt

 StoredElt + Request

Result

isValid

sameID

Figure 4.6: Deterministic hash-table implementation

60

4.3. Towards In-depth Transformation of Circuit Design

1 /** Specification of Hashtable Stored Element
2 * type parameter R = underlying Data Type mixed into HTRequest
3 * type parameter T = underlying Data Type mixed into this trait
4 * type parameter U = simple Data Type used as output result type
5 */
6 trait StoredData[R <: Data, T <: Data, U <: Data] {
7 /** D: full data type of request */
8 type D = R with Request
9

10 /** hardware function returning true.B if this is a valid memory entry */
11 def isValid(req: D): Bool
12

13 /** hardware function returning true.B if this element id equals request id */
14 def sameID(req: D): Bool
15

16 /** Indicate the number of clock cycles needed for the update function.*/
17 val updateDelay: Int
18

19 /** Hardware function returning an updated version of this elt */
20 def update(req: D, en: Bool): T with StoredData[R, T, U]
21

22 /** hardware function returning the result expected at output of hash-table */
23 def getResult(req: D): U
24 }

While the Request methods are focused on the identification of the (key, value) pair to
initiate the appropriate memory read request (equation 4.3), the StoredData contains the
core business logic with all operations related to the StoredData update and final Result
computation (equations 4.5 and 4.6). Most StoredData methods are taking a Request as argu-
ment, as the computations require both values. As a result, Requests are forwarded through
shift registers and FIFOs to the lower part of implementation pipelines where StoredData
operations take place, as illustrated respectively for probabilistic and deterministic stages in
Figures 4.5 and 4.6.

Despite the focus of ADT objects on business logic, some implementation details still
emerge in the definition of StoredData due to the limited reflexivity over externally defined
hardware generation functions. The attribute updateDelay and the enable signal en illustrate
the need for the implementation side to keep control over the update function, regarding
both its latency and its ability to support back-pressure. The interface specified here
assumes a uniform back-pressure within the update function and constant latency. These
requirements are quite strong and might hide complex issues as they are purely declarative.
In particular, the implementation side has no ability to check their consistency against the
actual implementation of the update function on the StoredData definition.

The overall ADT structure assumes here that the designer in charge of the architecture
implementation is the user of abstract data type attributes and methods. This implementation
is intended to be compatible with any concrete instantiation of ADT objects and thus
provides a data-agnostic functionality such as deterministic or probabilistic associative
memories. On the other side of the ADT interface, the provider of concrete types defines the
business logic of an application. The final user, integrates and configure both parts of the
ADT scheme to generate an actual piece of hardware with the expected functionality. As a
result, based on an ADT scheme, there are up to three completely decoupled roles in the
construction of a final piece of hardware:

ADT User Design configurable implementations such as probabilistic and deterministic
stages,

ADT Provider Design business logic such as probabilistic rate-counting or zombie detection,

61

Chapter 4. Agile Hardware Design

Integrator Configure implementation and business logic as an actual hardware function, and
integrate the resulting piece of hardware within a larger hierarchy.

This highly decoupled organization, based on one common data-oriented and abstract
specification enables developers and integrators to progress concurrently on their work
without strong timeline synchronization requirements. Similarly, update of respective parts
can occur simultaneously which provides great flexibility in the development flow.

4.3.4 Implementation & Results

The data-oriented design of this new protected hash-table architecture is promising from
the perspective of design flexibility and reusability. Considering the surrounding industrial
context in which this design is to be integrated, and the willingness to preserve an agile
development with reasonable iterations, the following successive steps have been planned
for its integration within the existing code base:

1. Design of the initial ADT scheme,

2. Implementation of a drop-in replacement of the existing probabilistic counting stage,
based on the ADT scheme and integrated as an independent ProbabilisticHashTable
module,

3. Implementation of a drop-in replacement of the existing deterministic counting stage,
based on the ADT scheme and integrated as an independent DeterministicHashTable
module,

4. Design and implementation of the memory interface manager in charge of sharing
memory access between multiple clients (namely here between main pipeline and
periodic cleaner), with lock management,

5. Integration of both stages with memory interface manager and periodic cleaners as
feature-equivalent replacements of the existing rate-counting solution,

6. Implementation of a zombie detection feature, self-contained within the business logic and
requiring no modification to neither probabilistic nor deterministic stage respective
implementations,

7. Unification of the ADT methods and objects to provide a unified Protected Hash-table
module, with ability to store deterministic elements within the probabilistic stage, in
an attempt to reduce the average number of memory access for each packet,

8. Attempt to merge implementations of both stages which exhibit a high degree of
similarities, in order to reduce code duplication. This final step is highly experimental
as reducing duplication within two simple implementations might result in the creation
of one complex and hardly maintainable implementation, at the exact opposite of the
original agility research.

In order to further demonstrate the usability of Chisel outside research-oriented ex-
perimentations, these developments have been carried out by a team of three hardware
engineers of our FPGA team at OVHcloud. To get them started with the Chisel/Scala
stack, and description of hardware generator, we set up several training sessions with short
lectures and various coding exercises, from hardware description basics in Chisel to complex
generation patterns exhibiting the power of Scala. We developed custom pieces of training

62

4.3. Towards In-depth Transformation of Circuit Design

material, adjusted to the uneven experience and appetence for hardware abstraction among
the teammates, and based on Jupyter Notebooks2provided by Chisel community3.

The developments and integrations corresponding to steps 1 to 6 have been achieved
within a reasonable timeline (around 4 months4), however due to external constraints,
iterations 7 and 8 have not been attempted.

The following paragraphs discuss the resource usage reported after place and route on a
Xilinx VU9P FPGA at 220 MHz. The impact of this major upgrade of development flow and
language is observed through the following iterations:

1. Initial Verilog version,

2. Chisel version, after integration of probabilistic and deterministic stages, and with
equivalent features to Verilog version

3. Chisel version, with additional zombie detection feature

The figures present the resource usage of the complete network device in which this new
design has been integrated. As a consequence, the difference in resource between iterations
remain relatively limited in all cases.

Verilog Chisel

Resources

Total LUTs 534,699 537,418 +2,719 +0.5%
LLUTs 478,315 481,934 +3,619 +0.76%

MLUTs 19,901 19,001 -900 -4.5%
SRLs 36,483 36,483 = =

FFs 843,859 843,111 -478 -0.05%
BRAM 1,829 1,856 +27 +1.5%
URAM 156 156 = =

Table 4.2: Verilog and Chisel resource usage comparison after place & route on a Xilinx
VU9P FPGA

Table 4.2 illustrates the first iteration and compares the resource usage of the original
Verilog implementation against its feature-equivalent Chisel counterpart, designed with the
Abstract Data Type methodology. The resource usage is roughly similar for both versions,
with increased Logic LUTs usage and slightly reduced FFs usage in the Chisel version. These
results are almost in line with the evolution observed in the previous cuckoo hash-table
experimentation in Section 4.2.4. The newly introduced custom memory interface manager,
in the Chisel version, also contributes to the considerable Logic LUT count increase. Last
but not least, as the overall implementation pipelines are different, we observe a reduction
of Memory LUTs usage, in favor of an increased usage of Block RAMs primitives.

2A Jupyter Notebook is a web-based interface allowing to experiment with software without requiring user
installation and configuration. It provides a customizable playground and all code snippets are run on the
server. Open-source software freely available at https://jupyter.org/

3Online Chisel Bootcamp https://mybinder.org/v2/gh/freechipsproject/chisel-bootcamp/master
4Time elapsed between design and validation on the FPGA. Internal time tracking reports a grand total of

271 days of work, spread across 8 months, which is equivalent to 14.5 human.months with current OVHcloud
holiday policy (7 weeks/year). These figures highlight the substantial effort poured, not only into this design
but also the development flow. In particular, it includes all the training sessions and many internal tool
developments, which were required to match developers’ requirements in terms of user experience with the
Chisel stack.

63

https://jupyter.org/
https://mybinder.org/v2/gh/freechipsproject/chisel-bootcamp/master

Chapter 4. Agile Hardware Design

Chisel + Zombie

Resources

Total LUTs 537,418 537,590 +172 +0.03%
LLUTs 481,934 481,956 +22 +0.00%

MLUTs 19,001 19,005 +4 +0.02%
SRLs 36,483 36,629 +146 +0.40%

FFs 843,111 844,012 +901 +0.11%
BRAMs 1,856 1,856 = =
URAMs 156 156 = =

Table 4.3: Impact of zombie detection feature addition, after place & route on a Xilinx VU9P
FPGA

Table 4.3 illustrates the impact of the zombie detection feature addition on the Chisel
version. This addition logically contributes to an increase of all resource usage, in relatively
small proportion compared to the size of the design.

However, the key result in this iteration does not regard the amount of resource at stake,
but the validation of the ADT design methodology goals:

Reusability The exact same architecture has been used to introduce the zombie detection
feature, without any change to the implementation side,

Readability The business logic is concentrated in a single point, identifiable and not
scattered. Only several ADT methods have been modified to implement the feature,

Iterative Independence The new feature has been developed as an independent iteration
while other unrelated development were carried out on the implementation side, such
as synchronization issue resolutions and performance optimization.

As a conclusion, the abstract data type methodology meets the objectives initially stated.
The modification of the design flow occurs as soon as the earliest coarse grained block
diagrams and propagates down to the implementation details, providing advanced flexibility
and decoupling implementation and business logic concerns.

4.3.5 Limitations of Abstract Data Types in Hardware Design

The complete ADT scheme corresponding to the current implementation status is included in
Appendix A.1. It differs from the unified approach presented above by introducing specific
functions for probabilistic and deterministic schemes. It also introduces additional functions
that were found useful during optimization phase of the design, such as additional signals
returned by the update result, which allows reducing the number of write operations. As a
result, the current implementation of the abstract data type is not as smooth as originally
expected. In particular, and as detailed in the previous sections, the abstract data type
methodology application to hardware generators suffers from the following limitations:

Limited hardware function reflexivity While high-order functions and object-oriented pro-
gramming enable defining business logic related hardware functions in the data object,
the implementation side requires additional knowledge to integrate them in its fine-
grained architecture. Unfortunately, metadata associated to the function cannot be
natively retrieved from the function itself, due to limited reflexivity towards the circuit
under elaboration in this particular context. As a result, and despite the intended

64

4.4. Conclusion

exclusive focus of ADT objects on business logic, some implementation details are still
required to be defined by the abstract data type provider, such as latency or control
signals.

Cost of standardization Carrying additional information has a very high cost in hardware,
especially for data structures intended to be stored in memory. With abstract data
types, standardization of data structures is quite appealing to provide a smooth and
generic interface, which often involves providing additional methods and attributes.
As a result, while full control over implementation is always preserved, such generic
interface might quickly shift away from a zero-cost abstraction if no extra care is taken
in their implementations.

Deviation from high-level architecture principles Inferred from the earliest coarse grained
sketches of the architecture, ADT objects are defined with methods based on the ex-
pected implementation needs. However, our experience tends to show that in practice
implementation needs cannot be fully anticipated from the drawing board and some
of them arise with the actual development and validation of the circuit. As a result,
the expected iterative independence of implementation and business logic tends to be
limited in practice. Moreover, with back-and-forth between both sides, the final imple-
mentation might progressively deviate from the generic decoupling with introduction
of tangled warts, defeating the original purposes of ADT use.

While exhibiting powerful flexibility and reusability capabilities, implementations of
Abstract Data Types in practice might prove to be more difficult than expected. In particular,
the inherent complexity of hardware development leads towards the introduction of more
fine-grained constraints than expected. This results in a real risk of creating Single-use
Abstract Data Types, with so-called generic interfaces, which in practice appear to remain
tightly coupled between implementation and business logic.

4.4 Conclusion

In this chapter, as part of a global research effort on high-level hardware design methodolo-
gies and in particular on hardware construction languages, we validated the relevance of
HCL design flow in an industrial network context and demonstrated that thanks to HCLs,
software design methodologies can be applied to hardware design.

In direct line with the numerous existing HCL use cases presented in the introduction of
this chapter, our contribution towards the validation of HCLs relevance in a broad range of
applicative contexts has been developed and published in a very active context [BHM+21].
Several other research efforts, published concurrently to our work have contributed to
enlarge the applicative spectrum of HCLs as a relevant high-level hardware development
paradigm. Without loss of generality, here is a curated list of the latest published Chisel
applications, ranging across a wide variety of domains such as:

• Cryptography [GEHM+22],

• Matrix-Multiplication [FMR20],

• Data Serialization [KLK+21],

• Database Query Processing [MFL+21, VRO21],

• Signal Processing [DLL+21, DPM21],

• System-On-Chip [KJA+21],

65

Chapter 4. Agile Hardware Design

• Neural Network [Dan22],

• Secure Processors [MBM+20],

• Memory-oriented Architectures [XLT+22],

• Optimized Graph Traversal [LSW+21],

• Tensor Computation [XZW+21].

These works showcase similar results to ours, highlighting the positive impact of Chisel on
design reusability while preserving equivalent resource (or area) usage in comparison to
feature-equivalent implementations with traditional HDLs [KH21, GEHM+22].

Besides the flexibility gain offered by HCLs for architecture implementations, we demon-
strate that high-level software design methodologies can be applied to remodel the hardware
design flow as early as coarse grained architectural sketches. From the main data structure
appearing on these sketches, Abstract Data Types are defined and take the central role in the
design process, naturally resulting in a data-oriented implementation, with a high-level of
decoupling between implementation and business logic. HCLs natively support this design
paradigm thanks to object-oriented and functional programming paradigms provided by
their host languages. These implementation paradigms indeed provide the appropriate
constructs to define interfaces and objects, to extend them depending on implementation
details and finally to allow advanced parameterization, based on type inheritance or high-
order functions. As a result, separation of concerns offered by abstract data types further
improves reusability, readability and iterative independence of the implementations.

Beyond being yet another way of describing hardware, hardware construction languages
introduce high-level software engineering constructs into architecture descriptions, which
highly improves both flexibility and reusability of these architectures. Application of
advanced software engineering paradigms can even remodel the way of designing hardware
architectures, but they remain distant from core hardware concerns and might induce a
progressive shift away from the zero-cost abstraction desired by hardware designers. To
overcome these limitations, the next chapter focuses on introducing hardware-oriented
abstractions, in order to provide powerful design abstraction and enhanced flexibility while
still guaranteeing control and performance.

66

Chapter 5

Pipeline Design Methodology

This chapter focuses on raising the abstraction level of hardware descriptions based on
a widespread hardware design pattern: pipeline stages.

After a short discussion regarding the relevance of Hardware Construction Languages as
base layer for development of hardware-oriented abstractions, we introduce our abstraction
proposal based on a fine dissection of the pipeline stage pattern.

Then, we detail the implementation of our methodology, first focusing on the construction
of a synchronization model from a pipeline-oriented description and then detailing the
resolution algorithms used to obtain a fully-synchronized synthesis-ready circuit.

Finally, we validate our methodology and its implementation as a Chisel library on
concrete pipeline examples.

Contents
5.1 Introduction . 68
5.2 Towards Latency-aware & Protocol-Polymorphic Pipelines 68

5.2.1 Motivations . 68
5.2.2 Relations as First-Class Citizen . 70
5.2.3 Circuit Resolution Process . 72

5.3 Model Construction . 73
5.3.1 Pipeline Design Methodology . 73
5.3.2 Pipeline Construction Framework Overview 74

5.4 Model Resolution: Signal Synchronization 78
5.4.1 Base Principles . 78
5.4.2 Resolution Strategies . 79

5.5 Results . 83
5.5.1 Running Example . 83
5.5.2 Industrial Use Case . 85

5.6 Conclusion . 87

67

Chapter 5. Pipeline Design Methodology

5.1 Introduction

The previous chapter reviewed usage of HCLs, first from a hardware designer perspective
and then from a software developer perspective, applying a software abstraction pattern
to the description of hardware architectures. While showcasing the relevance of HCLs
to introduce such complex abstraction patterns, it highlights the limitations of applying
software defined abstractions in the specific context of hardware design.

To overcome these limitations and achieve the best design agility and circuit reusability,
hardware description languages must take actual hardware designer needs into account.
Leveraging the flexibility of HCLs as software frameworks, several studies focus on provid-
ing such an enhanced development experience, from hardware description expressiveness
to verification to circuit optimization. Without loss of generality, a summary of such studies
is listed below, based on Chisel HCL stack and providing extension libraries with various
intents.

• Front-end Constructs [CTL17, Gre15].

• Hardware/Software Co-design [VLWA13],

• Test and Verification Frameworks [KMK+18, LKK+18, DGX+19, DGX+17],

• Target-oriented Circuit Optimizations [WIS+18, SHR+19, KZBA19],

All these extensions, libraries and frameworks demonstrate the flexibility, not only of Chisel
as a Hardware Construction Framework, but also of its entire compilation stack down to
Verilog generation. Chisel underlying Intermediate Representation (IR) and its compiler
FIRRTL [IKL+17], have indeed been designed as a highly flexible stack, offering by design
the ability to execute user-defined circuit transformation and analysis, with a comprehensive
API.

Based on this ability to introduce abstraction layers within HCLs, in this chapter we
aim at raising the abstraction level from a hardware development perspective, with a focus
on the pipeline stage pattern. We first introduced this pattern in our problem statement
to exhibit the limitations of traditional HDLs in iterating on such a simple pattern. The
next section details the considerable impact of this pattern in architecture implementations
and introduces some abstraction targets to improve the design reusability of pipelined
architectures.

5.2 Towards Latency-aware & Protocol-Polymorphic Pipelines

5.2.1 Motivations

To introduce the need for latency-aware and protocol-polymorphic designs, and provide
a definition for these terms, we first reproduce and extend the iterative design example
initially detailed in Section 2.3.1.2. The first iteration starts with the following example of an
adder module written in Verilog HDL:

1 module add(
2 input [5:0] a, input [5:0] b, output [5:0] r
3);
4 assign r = a + b;
5 endmodule

As the second iteration in the design process, a register is inserted to break the combina-
tional path from a and b inputs to r output, creating a simple pipeline stage:

68

5.2. Towards Latency-aware & Protocol-Polymorphic Pipelines

Host Module

Host Module

X

Y

Add
0 cycle

Mul
1 cycle

split

merge

regAdd
0 cycle

AddReg
1 cycle

Z

merge
reg

AddReg
1 cycle

Mul
1 cycle

Z

X

Y

split

reg

Figure 5.1: Potential integration issues with submodule latency evolution

1 module addReg(
2 input clock,
3 input [5:0] a, input [5:0] b, output [5:0] r
4);
5 logic [6:0] res;
6 always @(posedge clock) begin
7 res <= a + b;
8 end
9 assign r = res;

10 endmodule

Insertion of such a register requires the modification of no less than 5 non-configurable
lines of code but remains quite straightforward with this single operation. However, the
impact increases once the module is integrated in larger designs, as latency of the module
is increased by 1 clock cycle. Figure 5.1 illustrates an integration example in which the
expected result is z = (2x + y)⊕ xy. Hardware implementation of 2x with an adder (x + x)
rather than a shift (x � 1) is a deliberate choice in order to provide a concise example
in which the latency change requires appropriate compensation to preserve the design
consistency and correctness. The upper part of Figure 5.1 presents a first version of the
design including two instances of the purely combinational add module in parallel of a
1-cycle multiplier. A flattened version of this design, based on operators rather than module
instantiation, can be written as follows:

1 module FlatComputeAdd(
2 input clock,
3 input [5:0] x, input [5:0] y, output [5:0] z
4);
5 logic [5:0] sumXY, sum2XY, mulXY;
6 assign sumXY = x + y;
7 assign sum2XY = sumXY + x;
8 always @(posedge clock) begin
9 mulXY <= x * y;

10 end
11 assign z = sum2XY ^ mulXY;
12 endmodule

The lower part of Figure 5.1 shows the update required to preserve the correctness of the
computation when using addReg instead of add. Similarly, the flattened version below inserts
a register after each sum (1-cycle delay), which calls for compensation of this increased
latency with the insertion of two additional registers: regX to delay x and regMulXY to delay
mulXY.

69

Chapter 5. Pipeline Design Methodology

1 module FlatComputeAddReg(
2 input clock,
3 input [5:0] x, input [5:0] y, output [5:0] z
4);
5 logic [5:0] sumXY, sum2XY, mulXY;
6 logic [5:0] regX, regMulXY;
7 always @(posedge clock) begin
8 sumXY <= x + y;
9 regX <= x;

10 sum2XY <= sumXY + regX;
11 mulXY <= x * y;
12 regMulXY <= mulXY;
13 end
14 assign z = sum2XY ^ regMulXY;
15 endmodule

Colored lines highlight differences from the previous FlatComputeAdd version: green
background for additions and yellow background for modifications. Among the 7 lines
of the original module body (lines 5 to 11 included, in between module(); and endmodule)
only 4 remain unchanged whereas 3 lines were added and 3 were modified in the updated
version, resulting in a 85% rewrite of the original module body.

In practice the designer is left alone in charge of mentally inferring any latency changes
as tools do not provide automated computation of this information. These changes might re-
quire both local updates—as in these short code snippets—and global updates—throughout
the hierarchy from the innermost modules to the top. To preserve design correctness, latency
changes must then be manually compensated and propagated still without any additional
help from EDA tools.

The verbosity and complexity of required changes highly worsen with protocol signaling
usage, i.e. handshake between stages, omitted here for conciseness. From this simple
raw description—without signals dedicated to control the dataflow—several well-known
protocols can be used to provide various control implementation of the same functionality,
such as Ready-Valid, Credit-Based, or Carloni [AB18]. Similarly to register insertion,
introducing or swapping protocols on an existing hardware design is a laborious and
error-prone task.

As a conclusion, this simple design iteration showcases the intricate link between
pipeline operations and implementation in standard descriptions. Inserting a register
stage or introducing protocol signaling induces a complete local refactoring due to the
declarative nature of descriptions and foreshadows probable integration struggles, requiring
full designer’s attention to reflect any latency change to all related parts of the design. To
overcome these fundamental limitations of standard hardware description languages, we
aim at providing two major evolutions over standard descriptions:

Latency-Aware Design Providing reflexivity over latency for integration and guaranteeing
synchronization within an explicit Pipeline framework,

Protocol-Polymorphism More concise and configurable descriptions, providing elaboration-
time choice of protocols, which enables extensive reuse of base design blocks over a
broad range of applications and hardware targets.

5.2.2 Relations as First-Class Citizen

Both latency and protocol relate to the relation between parts of a design. Identifiable
parts are made of consistent signals, i.e. signals on which direct operations are meaningful
from a functionality point of view. Such signals are said to be synchronized or in-sync. In

70

5.2. Towards Latency-aware & Protocol-Polymorphic Pipelines

External...

Main... ...processdelay...

...functiondelay...

Memory

A

B C

D

Figure 5.2: Example pipeline requiring delay for signal synchronization

practice, synchronization is fundamental to provide consistent protocol signaling and to
propagate signals downstream for later use in the pipeline. Figure 5.2 illustrates a typical
example of this synchronization need with a request from a main process to an external
function. The main process retains information associated to the request which is required
to process the response from the external function. Based on an explicit pipeline-oriented
representation, this example highlights the introduction of delays, required to keep signals
synchronized with respective responses of external elements before proceeding to the next
stages. In particular the external function relies on a memory, further extending the required
delay within the main process. Keeping signals synchronized by manually specifying and
propagating those delays is a considerable burden and a source of error.

In that respect, a signal synchronization model based on latency information can provide
the basis for automatic inference of those delays with simple strategies. For constant-latency
operations, a shift-register of the equivalent depth is a solution to keep signals synchronized,
while a FIFO with a depth equivalent to the maximum expected latency is required for
variable latency.

Modeling of pipelines synchronization has been proposed in the literature from a low-
level point of view, down to the synthesis flow to netlist for retiming purposes [LS91] or
down to technology-dependent perspectives [SMBD93]. Based on Leiserson’s [LS91] graph
approach for retiming, we introduce a graph representation of the pipeline as a support to
illustrate how data signals relate to each other. Our approach features protocol and latency,
defined as the number of cycles or number of register stages. Our focus on cycle latency
largely differs from the original study—based on combinational latency—which aims at
minimizing clock periods by moving some registers to cut the longest combinational paths.
We instead aim at enabling insertion of appropriate delays and protocol signals, omitted
from the user description, and provided as backend transformations. To that extend, we
retain the following definitions to establish our signal synchronization model:

Signal At a given point of a circuit, a signal is the carrier of electrical variations which
encode some pieces of information. Within a circuit, a signal is known by its unique
name, it retains no state and its sole property is its type, e.g. simple boolean or complex
structured data types. A signal has a single driver (source) and might drive one or
multiple components of the circuit (sinks).

TimeZone A TimeZone groups signals which are fully synchronized together. It means that
direct operations on these signals is sensible from a functionality perspective, without
requiring any delay or protocol synchronization. All those signals share the exact
same protocol signals, e.g. validity and back-pressure signals.

Relation A Relation represents the synchronization requirements between two given Time-
Zones. To express the synchronization, a Relation defines two properties: latency

71

Chapter 5. Pipeline Design Methodology

model and protocol signaling. A Relation does not always imply an actual hardware
connection between signals nor does it convey the actual operational logic actually
connecting the Signals. In particular, an equivalent Relation can be computed between
any couple of TimeZones as soon as there are actual successive Relations from the source
TimeZone to the sink TimeZone. Synchronization resolution is based on this ability to
compute an equivalent Relation, and will be further detailed in the next section.

Step A step—or PipeStep within a Pipeline—is an oriented functional transition between a
source TimeZone and a sink TimeZone. It defines both the Relation between the two
TimeZones and the actual hardware logic connecting signals of each TimeZones. A
PipeStep can use any signal available in its source TimeZone and might declare new
signals in its sink TimeZone.

Pipeline A pipeline is a functionality-oriented description of streaming hardware oper-
ations, split into steps. A pipeline consists in a collection of PipeSteps and their
associated TimeZones, with sink TimeZones of PipeSteps being the source TimeZones of
other PipeSteps. Multiple PipeSteps sharing a same source TimeZone represent a split of
the pipeline between distinct branches. On the contrary, multiple PipeSteps sharing a
same sink TimeZone represent a merge of pipeline branches.

Synchronization Model The synchronization model consists of a Directed Acyclic Graph
(DAG) composed of TimeZones as nodes and Relations as edges. Obtained from the
pipeline description, this graph is used as intermediate representation of the hardware
and is aimed at being solved to provide a fully-synchronized circuit.

From a pipeline point of view, any delayed version of a given signal retains the same
name and type. As a corollary, any reference by name to a given signal at any stage of
the pipeline can be provided as an appropriately delayed version of the original source.
To guarantee this property and conform with the single driven definition of a signal, the
pipeline is expected to be expressed in a Single-Static-Assignment (SSA) form, in which
each signal is defined and connected only once at a given PipeStep, and can then be used
multiple times downstream in the pipeline.

Within this model, the pipeline description does not retain any implementation details,
such as transfer protocol from one stage to the next. These critical implementation details
often differ from one application context to the next and must be omitted in the pipeline
description to allow the generation of a wide variety of hardware based on the same
functional description.

5.2.3 Circuit Resolution Process

Based on these definitions and in order to provide latency-aware and protocol-polymorphic
designs, synchronization of the circuit can be achieved with the following 3-stage process:

1. Model Construction From an ad-hoc pipeline-oriented description of the circuit, this first
step produces a synchronization model made of TimeZones and Relations. Construction
principles and implementation are further described in Section 5.3.

2. Synchronization Resolution Iterating on the synchronization model as an intermediate
representation, this next step is dedicated to listing all additional hardware and
connections required to achieve complete circuit synchronization. Both compensating
delays and protocol signals are specified in this list. Various resolution strategies and
their implementation are detailed in Section 5.4.

72

5.3. Model Construction

3. Circuit Update Based on the results of synchronization, this final step consists in updat-
ing the actual circuit description, inserting the additional hardware and connections
throughout the circuit.

Some of these steps might get implemented together, most notably hardware can be
updated directly during resolution, however this clear separation insists on the complete
independence of the synchronization model and its resolution from any framework or
hardware description language.

5.3 Model Construction

The goal of this front-end step is to build the synchronization model which ultimately
aims at providing automated signal delaying and protocol-polymorphism in a multi-branch
pipeline context. As a logical starting point, a pipeline-oriented description is designed to
give enough degrees of freedom to both make the description more configurable and the
synchronization resolution relevant. The key challenge here consists in setting the appropri-
ate level of implementation constraints fixed by the designer in the pipeline description. On
the one hand, each omitted piece of information becomes a potential configuration. On the
other hand, a minimal subset is still required to guarantee a purely deterministic generation,
based on parameters and not on explorative heuristics.

5.3.1 Pipeline Design Methodology

To set this appropriate level of description, and with regard to the code tangling analysis from
the previous section, we review the tight link between operations (i.e. functional intent) and
architecture description. The following coarse-grained classification is an attempt to define
the boundaries between these two concerns, based on usual operation and implementation
matters of stream applications.

Operation type Implementation
What? How?

Arithmetic, logic Signal forward/bypass
Branching Protocol

States Synchronization
Correctness Cycle-accuracy

Register Stages Register Stages
(for performance) (for buffering & synchronization)

Register stages take a prime position for both concerns. On the operative side, as part of
the design intent and structure, they provide local memory and are essentials to meet timing
requirements. This classification retains the pipelining for performance on the user-intent side,
as a critical design decision which is not to be automated or inferred.

On the implementation side, register stages are used as buffers and synchronization
elements to maintain consistency between data and control signals originating from various
places of the design. A typical use-case is a pipeline split in several branches which after
some respective operations, get merged again: the split/merge pattern, previously illustrated
by Figures 5.1 and 5.2. Synchronization of such signals is a well-known source of issues in
complex pipelines.

73

Chapter 5. Pipeline Design Methodology

framework

user inputs

API

Pipeline
building

configuration

Config

Pipeline

operation
descriptions

What ?

User

Pipeline

architecture
libraries
How ?

Backend

Figure 5.3: Decoupled pipeline description methodology

To improve the reusability of the pipeline descriptions, we aim at reducing the weight
of implementation within the operational description while providing advanced param-
eterization to retain full control over the generated circuit, with a particular focus on
synchronization and protocol management.

To that extent, Figure 5.3 illustrates our pipeline description methodology which intro-
duces a triple-sided Application Programming Interface (API):

User Pipeline structure and operations are user-described as a dedicated set of classes
and objects, based on a user-facing API defined by the framework. This API provides
explicit pipeline structure creation methods,

Backend Pipelines macro-architectures implement a backend API as another set of classes
and objects, most notably for protocols and signal propagation strategies. These
macro-architectures are intended to be as generic as possible and while usual ones
are included as part of the framework, users retain the ability to develop their own
libraries,

Config An elaboration-time configuration API provides fine-grained configuration abilities
in the mapping between user-facing API and backend API. It drives the actual code
generation from classes and objects available in user and backend APIs.

This entire decoupled methodology is built around the signal synchronization model. It
is the key to bridge the gap between user-API—describing signal interactions—and backend-
API—in charge of guaranteeing their synchronizations. Section 5.4 details the algorithms
used to provide signal synchronization on the back-end side while we focus first on the
implementation of this 3-sided API as a pipeline-oriented hardware generation framework.

5.3.2 Pipeline Construction Framework Overview

The implementation of our methodology requires providing 1. hardware primitives to
describe signals and pipeline stages, 2. hardware modeling and configurable generation
capabilities. Traditional HDLs perfectly fulfill the first criterion but lack reflexivity and
programming paradigms support to conveniently implement hardware modeling and
generation. In line with our previous experimentations, we leverage the generation power
of HCLs to implement our framework as a Chisel library. The following code excerpts

74

5.3. Model Construction

are hence presented in Scala language, including hardware primitives provided by chisel3
library such as UInt type or Module definition.

To distinctly materialize the pipeline as an object, we describe it as a sequence of
transition functions —Relations: edges of the graph—between implicit states—TimeZones:
nodes of the graph.

The application of this design pattern to the motivating example of Section 5.2.1 is
presented on Figure 5.4. This pipeline-oriented version is equivalent to the minified Verilog
module FlatComputeAddReg, which inserts a register after each adder.

This code excerpt introduces the main objects and classes provided by the user API. To
ease code apprehension, code background is colored with the following correspondences:
1. orange for explicit operation on the pipeline object (init, split, merge, build), 2. green
for operations (PipeSteps) on the main (default) branch of the pipeline, and 3. yellow for
PipeSteps on the explicit mul branch.

The concrete class Pipe is the core of this API. Its instantiation at line 5 specifies the source
relation (in) of the pipeline, with type XYZone whose declaration—omitted for conciseness—
simply provides signals x and y with their respective types. These two initial signals are
then available to all downstream operations.

The implementation of Pipe objects provides a default branch—main—on which oper-
ations are successively recorded as explicit functions. To implement the example, three
of such functions (PipeSteps) are declared on the main branch, on lines 13–16 (first adder),
17–20 (second adder) and 23–26 (final xor). Each PipeStep consists of an anonymous function
taking two TimeZones as arguments, here p for previous (source) and n for next (sink). In
the function body at line 14, the Step.Reg function describes the creation of a new signal
sumXY in TimeZone n, with a Relation from TimeZone p of 1-cycle latency, equivalent to a usual
register stage. Actual connection of this signal, as a result of the addition of x and y signals,
is described at line 15. Similarly, at line 24, in the function body of the final xor operation,
the Step.Wire function describes the creation of a new signal z in TimeZone n, with a Relation
from TimeZone p of 0-cycle latency, equivalent to a usual wire—i.e. combinational—stage.
TimeZones p and n are arguments of the PipeStep functions, and not yet actual TimeZones of
the resulting pipeline. Creation of the actual TimeZones occurs during pipeline elaboration.

The Pipe object also provides explicit pipeline-oriented operations such as creation of
new branches, split from the main branch at its current state, i.e. after any previously
recorded operation. That is why the split towards branch mul occurs on line 7, splitting from
the very beginning of the pipeline and creating a parallel branch. Lines 8–11 perform an
operation on this new branch, described in the same manner as the main Pipe operations.
Explicit merge of this branch into the main pipeline occurs on line 22. A last operation, for
which signals from both branches are now available, occurs on lines 23–26.

To return the computation result, on line 27, the Pipe instance declares connection
to external TimeZone at its current state: here, signal n.z declared in last step pipe.xor is
connected to sink Relation out. Underlying type of this relation ZZone—omitted here—simply
consists of the singleton signal z.

Finally, line 28 triggers the pipeline elaboration and actual build of the synchronization
model, based on all the operations previously recorded from initialization to operations
on respective branches to final feed. Actual TimeZones objects are created and passed
as arguments of the PipeStep functions to record signal creation and usage within the
synchronization model.

At this stage, the pipeline description focuses exclusively on the design intent: signal
declarations, connections and operations between these signals. Some register stages have
been explicitly defined after each adder and multiplier, based on prior knowledge of target
performance and application needs. However, there are no mention of protocol signaling

75

Chapter 5. Pipeline Design Methodology

1

1 class FlatComputeAddReg(
2 in: SourceRelation[TZ[_, XYZone]],
3 out: SinkRelation[TZ[_, ZZone]]
4) extends Module {
5 val pipe = Pipe(in, "pipe")
6 // explicitly defining branch "mul"
7 val mul = pipe.split("mul")
8 mul.mul = (p, n) => {
9 n.mulXY = Step.Reg(p.x)

10 n.mulXY := p.x * p.y
11 }
12 // 2 adder stages on main branch
13 pipe.addA = (p, n) => {
14 n.sumXY = Step.Reg(p.x)
15 n.sumXY := p.x + p.y
16 }
17 pipe.addB = (p, n) => {
18 n.sum2XY = Step.Reg(p.sumXY)
19 n.sum2XY := p.x + p.sumXY
20 }
21 // explicit branch merge and final xor
22 pipe.merge(mul)
23 pipe.xor = (p, n) => {
24 n.z = Step.Continue(p.sum2XY)
25 n.z := p.sum2XY ^ p.mulXY
26 }
27 pipe.feed(out)
28 pipe.build
29 }

Figure 5.4: Running example implemented with our pipeline-oriented framework based on
Chisel HCL

pipe

mul

main

mul

mulXY

[?]
[1]

addA

sumXY

x

[1] addB

sum2XY
[1] [?] xor

z

[0] out

z

in

x

y

(a) Graph representation corresponding to Figure 5.4

Signal Status Color Scheme

1 Pending: Local

2 Pending: Downstream

3 Pending: Local & Downstream

4 Available: Unused

5 Available: Local Use

6 Available: Downstream Use (Forward)

7 Available: Local & Downstream Uses

8 Declared: Unused

9 Declared: Local Use

10 Declared: Downstream Use

11 Declared: Local & Downstream Uses

(b) Signal color scheme

Figure 5.5: Design intent

76

5.3. Model Construction

associated to any operation, and no register compensation, in particular to guarantee proper
synchronization between main and mul branches. Figure 5.5a illustrates the corresponding
design intent, with explicit split/merge operations on two branches of the pipeline, while
some relations are intentionally left unspecified. Edge labels illustrate respective Relation
latencies, either unknown [?] or explicitly defined here as registers [1] or simple wires [0].
Each PipeStep results in a Relation towards a node—its output n TimeZone—labelled with
its name as table heading. The node then lists all signals either defined by the upstream
PipeStep or required by the downstream PipeStep. A color code, presented in Figure 5.5b,
provides further insight on the current status of each signal in each TimeZone. Here signal
sumXY, which is defined by addA PipeStep and is immediately used by addB PipeStep, is colored
in green corresponding to status 9: Declared: Local use. Signal x, which is also used by addB
PipeStep but is not provided by addA PipeStep, is colored in red corresponding to status 1:
Pending: Local.

As a result, Figure 5.5a illustrates the base synchronization needed to convert this
simple design intent into a working circuit: delayed connection of signal x and balancing of
branches main and mul.

The pipeline description presented in Figure 5.4 is a hardware generator which requires
parameterization to generate a circuit, here with in and out TimeZones. This elaboration-time
parameterization enables designers to generate various circuits based on the same design
intent and is leveraged here to provide two degrees of freedom: 1. protocol polymorphism,
and 2. extra signal propagation. Protocol polymorphism is available as part of the relation
definition while extra signal propagation is based on the ability to extend the surrounding
in and out TimeZones for additional signal synchronization. The following code excerpt
illustrates the generation of the circuit in its minimal form, without protocol signaling
(RawIO).

1 new FlatComputeAddReg(
2 RawIOFrom(new XYZone),
3 RawIOTowards(new ZZone)
4)

Generating a different circuit based on ready/valid handshakes between each Time-
Zone requires swapping RawIOFrom and RawIOTowards for, respectively, ReadyValidIOFrom and
ReadyValidIOTowards. The following code excerpt illustrates this protocol swap and also
introduces the extra signal propagation by extending both XYZone and ZZone TimeZones
with signal e.

1 trait Extra {
2 val e = UInt(5.W)
3 }
4 new FlatComputeAddReg(
5 ReadyValidIOFrom(new XYZone with Extra),
6 ReadyValidIOTowards(new ZZone with Extra)
7)

Figure 5.6 illustrates the corresponding generation intent, with the introduction of
signal e. Protocol signals, namely ready and valid, are automatically inserted at both input
and output and are intentionally omitted on the graph representation as they are already
implicitly part of the Relations and TimeZones.

Both changes are very concise, yet yielding very different circuits without requiring any
modification of the original pipeline description.

77

Chapter 5. Pipeline Design Methodology

pipe

mul

main

mul

mulXY

merged_mul_mul

mulXY

sum2XY

[?]

init

y

x

e

[1]

addA

sumXY

x

[1]
addB

sum2XY
[1] [?]

xor

z

e

[0]
out

z

e

[0]
in

y

x

e

[0]

Figure 5.6: Generation intent with additional signal e

Similarly, the pipeline description itself is resilient to local changes without requiring
remote manual compensations as previously illustrated with the register insertion exam-
ple in Section 5.2.1. To toggle register stage insertion off, the Step.Reg function, used to
define values sumXY and sum2XY, respectively on lines 14 and 18, can be replaced by the
Step.Wire function. The version with Step.Reg and RawIO is equivalent to the Verilog mod-
ule FlatComputeAddReg, while the Step.Wire version is equivalent to the Verilog module
FlatComputeAdd. These functions define appropriate relations between signals, allowing
automatic latency propagation, path balancing and latency-awareness for surrounding de-
scriptions. Instead of complete refactoring for each use case, the module is now configurable
by protocol and pipeline stages can be converted from register to wire with very little and
local-only effort.

The algorithms leveraged to provide these advanced generation features, based on the
resolution of this elaborated synchronization model, are detailed in the next section.

5.4 Model Resolution: Signal Synchronization

As the pipeline construction is based on partial descriptions, it contains intentional omissions
aimed at providing parameterization as an afterthought or within evolving applicative
contexts. The incomplete description and its associated synchronization model are then
relying on parameterized resolution strategies to solve the synchronization and complete
the circuit accordingly. To introduce the resolution principles of the synchronization model
obtained from the pipeline description, we first explore resolution of the pipeline request
presented on Figure 5.2, and then detail various signal synchronization algorithms and their
application to our example.

5.4.1 Base Principles

Given a pipeline operation description expressing the design intent of Figure 5.2, the model
construction produces an initial incomplete and unbalanced version of the graph represen-
tation as showcased in Figure 5.7.a. Letters A, B, C and D correspond to the four main
TimeZones of this example. Edges illustrate Relations either unknown [?] or with labels
displaying their latencies, which are either constant integers [n] or ranges between minimum
and maximum latencies [min:max]. Latency ranges shall be bound to allow the generation
of strictly latency-equivalent hardware, which is a key requirement in our applicative case
to ultimately guarantee worst-case performance.

From this point onward, a successful synchronization consists in producing a balanced

78

5.4. Model Resolution: Signal Synchronization

[n] latency = n cycles
[m:n] m cycles ≤ latency ≤ n cycles[?] unknown relationship

 a) Initial unbalanced & incomplete raw graph

A

B C

D
[1]

[3:32]

[2]

[?]

[?]

 b) Propagating latencies to balance B -> C relationships

A

B C

D
[1]

[3:32]

[2]

[?]

[3:32]

 c) Propagating latencies to balance A -> D relationships

A

B C

D
[1]

[3:32]

[2]

[6:35]

[3:32]

 d) Reduced graph representing equivalent latency relation

A D
[6:35]

Figure 5.7: Graph corresponding to Figure 5.2 and its transformation

graph without any relation left unspecified. This task is achieved by a set of transformations,
described in the pipeline architecture libraries and set up by the pipeline builder configuration:

1. A first analysis computes the equivalent latencies for each path, in particular following
independent branches from their split to their merge points,

2. Based on signal usage analysis, the main synchronization transformation creates
latency-equivalent hardware in place of equivalent relations as illustrated in Fig-
ures 5.7.b and 5.7.c,

3. Then, a transformation is in charge of propagating and connecting protocol signals
uniformly across the balanced graph,

4. A final pass validates overall synchronization consistency, providing early feedback to
the designer.

Based on this initial setup, transformations can be further edited and extended depending
on specific requirements, development principles or target specificity.

Finally, Figure 5.7.d reveals the equivalent relation of the entire balanced path between
A and D. It contains all the details required to delay a signal around this whole block in a
larger integration.

Following these steps, synchronization of the graph consists of hardware additions in
the circuit from which the graph was originally inferred.

5.4.2 Resolution Strategies

The previous resolution principles outline the coarse-grained steps required to synchronize
TimeZones. In practice, a finer-grained approach, based on signal availability and usage is
required to provide various relevant synchronization algorithms and strategies. Following
our running example, this section exhibits some strategies that can be used to solve the
synchronization, from naive implementations to fully-configurable algorithms.

Pre-requisite The algorithms presented below assume the availability of some base opera-
tions on the graph. First of all, the graph is expected to be a Directed Acyclic Graph (DAG),
i.e. edges (Relation) are oriented and there are no cycles in the graph. Such cycles would

79

Chapter 5. Pipeline Design Methodology

pipe

mul

main

mul

mulXY

merged_mul_mul

mulXY

sum2XY

[1]

[1]

init

y

x

e

[1]

addA

sumXY

x

[1]

[1]

addB

sum2XY

[1] [0]

[0]

xor

z

e

[0]

[2]

(a) Merge resolution, missing relations & no signal prop-
agation

pipe

mul

main

mul

mulXY

y

x

e

merged_mul_mul

mulXY

sum2XY

y

x

e

[1]

[1]

init

y

x

e

[1]

addA

sumXY

y

x

e

[1]

[1]

addB

sum2XY

y

x

e

[1]
[0]

[0]
xor

z

y

x

e

[0]

[2]

(b) Exhaustive forward propagation strategy

pipe

mul

main

mul

mulXY

merged_mul_mul

mulXY

sum2XY

e

[1]

[1]

init

y

x

e

[1]

addA

sumXY

x

e

[1]

[1]

[2]

addB

sum2XY

e

[1] [0]

[0]

xor

z

e

[0]

(c) Peer-to-Peer propagation strategy

pipe

mul

main

mul

mulXY

merged_mul_mul

mulXY

sum2XY

[1]

[1]

init

y

x

e

[1]

addA

sumXY

x

[1]

[1]

addB

sum2XY

[1] [0]

[0]

xor

z

e

[0]

[2]

(d) Direct propagation strategy

Figure 5.8: Resolution steps and options for the running example

have no meaning in our applicative context, as they would defeat the ability to provide
throughput guarantees. Nodes can hence be ordered, and the synchronization model can
provide a forward path among nodes (TimeZone) from a unique input to one or several
outputs. Similarly, this order can be reversed to provide a meaningful backward path from
outputs to input. In practice, the forward path is created with the following traversal: from
input TimeZone on main branch, proceed with the next TimeZone until a split, in which
case proceed with external branches first, then continue on the initial main branch. For our
running example forward order is the following: 1. _init_, 2. mul (on branch mul), 3. addA,
4. addB, 5. merged_mul_mul, 6. xor. The backward path order is simply the reversed version of
this list. Such traversal strategies ensure that all TimeZone are processed in a consistent order
in terms of signal declaration and usage: the forward order ensures signal declarations to
be processed before any usage whereas backward order ensures all usage to be inspected
prior to the declaration, which is convenient for single-pass signal propagation algorithms.

Graph edges (Relations) can be composed to form equivalent relations as presented in
the resolution principles and in Figure 5.7. Each signal within each TimeZone retains an
availability property, representing its usage and connection, as illustrated with corresponding
colors on Figure 5.5. With these two last properties, equivalent missing relations can be defined
from a TimeZone where a signal is available to a TimeZone where it is used. Figure 5.8a
shows the graph representation, still unresolved and ready for signal propagation, of the
running example.

For the sake of conciseness, the pseudocode algorithms depicted below to illustrate
strategies use branches as inputs instead of the full graph, hence not detailing split and
merge management.

80

5.4. Model Resolution: Signal Synchronization

Algorithm 1: Naive approach: exhaustive forward

1 DeclaredSignals := []
2 foreach TimeZone in Branch do
3 foreach Signal in TimeZone do
4 if Signal not in DeclaredSignals then
5 DeclaredSignals += Signal

6 foreach Signal in DeclaredSignals do
7 if Signal not in TimeZone then
8 TimeZone.addAndConnect(Signal)

Exhaustive Forward Signal Propagation Algorithm 1 details this first naive approach,
which consists of forwarding all signals from TimeZone to TimeZone, indiscriminately of
actual downstream usage. The number of signals forwarded along the pipeline grows
linearly stage after stage and a lot of unused hardware is generated. Figure 5.8b illustrates
this phenomenon, resulting in several available but unused signals in most TimeZones. While
synthesis tools might be able to partially remove this dead-code in simple cases, such as
unconnected wires and registers, useless signals won’t necessarily be stripped out if they
are stored in a memory, e.g. in a FIFO explicitly implemented with a vendor primitive.
This first naive strategy is reviewed here mainly to demonstrate the ease of providing
automated signal propagation while highlighting the importance of providing a relevant
implementation to avoid poor results.

Algorithm 2: Backward Peer-to-Peer approach:
Requesting unavailable signals to previous TimeZone

1 MissingSignals := []
2 foreach TimeZone in reversed Branch do
3 foreach Signal in MissingSignals do
4 if Signal not in TimeZone then
5 TimeZone.createPlaceHolder(Signal)

6 TimeZone.createConnectionTo(Signal)
7 if Signal.isAvailable(TimeZone) then
8 MissingSignals −= Signal

9 else
10 MissingSignals.updateTarget(Signal)

11 foreach Signal in TimeZone do
12 if not Signal.isAvailable then
13 MissingSignals += Signal

Peer-to-Peer Backward Propagation Backward graph traversal has a key advantage for
signal propagation: inspecting missing signals as they are used, the resolution consists in
fetching them upstream in the pipeline. The difference between both algorithms lies on the
source selection for the connection. Algorithm 2 presents a first approach which makes
no exhaustive search of an appropriate source. With this backward peer-to-peer approach,
unavailable signals are simply requested to upstream TimeZones. For conciseness in the

81

Chapter 5. Pipeline Design Methodology

algorithm presentation, Signal objects are to be understood as by-name references to fully-
qualified hardware signals associated to their respective TimeZones. If the current TimeZone
cannot provide some pending requested signals, requests are forwarded to the closest
upstream TimeZone, i.e. the next to be processed by the backward traversal of the graph.
In practice, a placeholder signal is created within the current TimeZone, this placeholder is
connected to the signal placeholder from the downstream requesting TimeZone, and finally
the request is updated with actual reference to the newly created placeholder. This is the
role of updateTarget function on line 10. Figure 5.8c illustrates the resolution of the running
example with this strategy. Previously missing relations (red dashed arrows in Figure 5.8a)
have been implemented through the existing relations between TimeZones and now appear
as blue dotted arrows.

Algorithm 3: Backward Direct propagation:
Requesting unavailable signals upstream

1 MissingSignals := []
2 foreach TimeZone in reversed Branch do
3 foreach Signal in TimeZone do
4 if Signal in MissingSignals then
5 TimeZone.createConnectionTo(Signal)
6 if Signal.isAvailable then
7 MissingSignals −= Signal

8 else
9 MissingSignals.updateTarget(Signal)

10 else if not Signal.isAvailable then
11 MissingSignals += Signal

Direct Backward Propagation Algorithm 3 presents a second backward strategy which
directly requests connections from the closest TimeZone where the missing signal is available.
There are two upstream availability cases: either signal declaration itself or simply any
upstream usage. The main difference compared to the previous strategy is the suppression
of local placeholder mechanism for signal propagation in favor of direct connections.
Figure 5.8d highlights this difference, as the signal e no longer appears in addA, addB and
merged_mul_mul TimeZones. Moreover, the missing relation between _init_ and xor TimeZones
is replaced by a concrete relation (plain purple arrow) with a latency of 2.

Hardware Primitive Selection Implementation of direct relations between two TimeZones,
as in the previous strategy, raises the issue of which hardware primitive to pick for a given
delay. While some correspondences are obvious, other offer an interesting parameteriza-
tion potential to finely tune the implementation depending on resource availability. As
example, we propose a parameterization based on a single integer parameter strategy called
fifoThreshold. Variable latency paths, which only appear under certain external constraints
and require appropriate protocol signaling, are always implemented using FIFOs. An
implementation principle for constant latencies is proposed as follows:

82

5.5. Results

Latency Value (Cycles) Primitive

Constant = 0 Wire
Constant = 1 Register

Constant < fifoThreshold ShiftRegister
Constant >= fifoThreshold FIFO

This strategy can then be further adjusted by taking the width of signals into account, e.g.
reserving FIFOs for larger signals.

Towards More Configurable Strategies The three signal propagation strategies aforemen-
tioned are very generic and focus exclusively on propagating individual signals. Another
potential parameterization lies in the management of multiple signals following an identical
relation: should their propagation be implemented as a single concatenated group of bits
(e.g. one large FIFO) or as individual signals (e.g. one FIFO per signal). Some target-
dependent choices might be relevant here depending on depth of the signal propagation
and respective widths of the signals. Thanks to the methodology presented on Figure 5.3,
many distinct implementations of the very same pipeline description can be generated
with target-dependent strategies. Based on the simple strategies presented above, the next
section illustrates the ability to obtain distinct synthesis result with the exact same pipeline
description.

5.5 Results

The following results are obtained through usage of the framework in various conditions.
They aim at validating the relevance of the framework in the high-speed networking
application context, considering the two following criteria:

Architectural Parameterization The choice of a resolution strategy leads to distinct and
overall predictable resource usage,

Zero-cost Pipeline Abstraction Compared to an equivalent exhaustive description, a circuit
generated with the framework exhibits similar resource usage. Strictly tied to the
pipeline description, latency and throughput are identical.

5.5.1 Running Example

Synthesis algorithms leverage inference of hardware patterns with fixed or configurable
thresholds. For example in Xilinx FPGA synthesis, Shift Register LUT (SRL) primitives are
usually inferred for a signal propagation across at least three registers stages sharing the
same write-enable signal. For this very reason, to highlight differences between strategies
even with a very minimal example, the xor stage is here specified with a delay of 2
(equivalent to 2 successive registers) instead of 0 (combinational wire) as originally specified
in Figure 5.4. The total resulting latency of the circuit becomes 4 cycles instead of 2, hence
enabling inference of SRLs. The following result table presents post-synthesis resource
usage on Xilinx VU9P FPGA, exploring generation parameterization with three protocols
and three strategies.

83

Chapter 5. Pipeline Design Methodology

Protocol / Strategy Total LUT LLUT LUTRAM SRL FF

No protocol / Peer-to-Peer 28 23 0 5 45
No protocol / Direct ShiftReg 28 23 0 5 45

No protocol / Direct FIFO 43 35 8 0 45

ReadyValid / Peer-to-Peer 27 27 0 0 61
ReadyValid / Direct ShiftReg 36 30 0 6 52

ReadyValid / Direct FIFO 50 42 8 0 48

Uniform ReadyValid / Peer-to-Peer 29 23 0 6 47
Uniform ReadyValid / Direct ShiftReg 29 23 0 6 47

Uniform ReadyValid / Direct FIFO 41 33 8 0 42

The first protocol implementation, namely No Protocol, corresponds to the absence of
protocol signal (RawIO), while ReadyValid protocol is implemented in two variations:

ReadyValid Branch-level protocol resolution with conservative implementation of split and
merge operations, resulting in noticeable resource usage overhead,

Uniform ReadyValid Overall pipeline-level protocol resolution which requires a single
output TimeZone, i.e. a single downstream back-pressure constraint to be applied
uniformly throughout the pipeline.

The three strategies correspond to the algorithms introduced in the previous section,
with Direct ShiftReg and Direct FIFO corresponding to two distinct fifoThreshold in constant
latency implementations, resp. 16 and 3. Despite being largely suboptimal in terms of
resource for this very simple example, Direct FIFO strategy exhibits the ability to generate
very different circuits from the same pipeline description.

The following paragraphs review the synthesis results obtained with these various
strategies and protocols.

Expected Equivalent Resource Usage No Protocol and Uniform ReadyValid protocols exhibit
identical resource usage for peer-to-peer and Direct ShiftReg strategies. This is expected due
the systematic inference of successive registers as SRLs. On the contrary, with standard
ReadyValid protocol, peer-to-peer strategy prevents SRL inference by generating independent
enable signals for each branch and between each split and merge operation. A contrasting
behavior regarding SRL inference can be observed with Quartus synthesizer for Intel/Altera
FPGAs, and consequently leads to different impacts of resolution strategies on resource
usage. This phenomenon is better exposed through a larger experimentation, thoroughly
detailed in Chapter 7. In any case, both strategies result in distinct structures in the Chisel-
generated Verilog description. A hierarchy with a submodule per omitted relation is created
in the direct propagation case, whereas peer-to-peer propagation results in a single large
module in which all relations are implemented. While the distinct strategies might have no
impact on synthesis in this particular case, the hierarchical structure of a design still has
a direct impact on debugging. Isolating propagated signals in submodules indeed avoids
diluting the user intent in the generated Verilog and improves the readability. Last but not
least, the ability to generate equivalent synthesized design with various strategies paves the
way to experiment more exotic strategies in direct bypass context, such as the Direct FIFO
strategy.

Expected Resource Usage Variations The impact of Direct FIFO strategy appears clearly
with the use of memories (LUTRAMs primitives) instead of registers (FFs) or SRLs. A
signaling protocol is always required around a FIFO to drive read and write control signals.

84

5.5. Results

UPDATE: stElt + req => res

HASH: req.id => addr

LOCK: addr => stall?

Memory

Request

WRITE & UNLOCK

Read Req
Read Res

W
rit

e
R

eq

Result

addr

stElt

Figure 5.9: Associative memory pipeline block-diagram

In order to use FIFO strategy without protocol and still guarantee the exact expected latency
through the FIFO, an additional piece of hardware is inserted. A counter, initially reset to
the expected latency through the FIFO, is decremented at each cycle until it reaches and then
maintains the value 0. The back-pressure signal, i.e. read enable, of the FIFO is activated
only if the counter is equal to 0. Compared to a register-based solution, this mechanism
has a considerable impact on resource usage due to both FIFO and counter overheads. By
forcing usage of memory primitives in register-oriented context, this convoluted strategy
appears to be useful when dealing with local congestion issues on complex design. Local
congestion is indeed due to an unbalanced usage of resource, e.g. an area with a very high
demand for registers whereas the LUTs remain barely used. Leveraging such an enigmatic
strategy can reduce the tension on register by instead implementing the exact same signal
propagation with LUTRAMs. Further exploration of this resolution strategy is detailed in
Section 7.3.3.

Performance The throughput and latency of the resulting pipeline are intended to be
guaranteed by design. The resulting circuit follows exactly the design intent expressed by
the designer without any alteration of the stages and explicit delays between TimeZones.
The resolution process enforced here first precisely balances all concurrent paths—merge
resolution—then propagate the required signals with exact latencies. Then protocol signals
are implemented and connected as part of the fully synchronous circuit. Following this
pattern, there are no compromises on performance: FIFOs are always dimensioned for the
worst case, as this is a requirement for high-throughput network applications. As a side
note, some applicative contexts, which targets average rather than worst-case performance,
could reduce the depth of delaying FIFOs based on expected duty cycle. Implementing such
strategies would provide a trade-off between resource footprint and performance.

As a conclusion, this example highlights the ability to experiment various synchroniza-
tion resolution strategies while preserving both original functionality and performance.

5.5.2 Industrial Use Case

The previous simplified examples illustrated the results of the framework, but not its
capabilities. To further demonstrate the usefulness and performance of the framework, we
apply it to the implementation of the Probabilistic Stage of the Protected Hash-table earlier

85

Chapter 5. Pipeline Design Methodology

presented in Section 4.3. Figure 5.9 illustrates the main pipeline stages of this associative
storage module, which is part of an industrial network processing device.

To set the ground for fair comparison, we first implement this module with vanilla Chisel,
i.e. without using the framework. To highlight the upcoming impact of the framework on the
pipeline management, this first version follows a segmented approach: 1. an independent
memory module provides read and write methods with locking capabilities, 2. an abstract
data type scheme is implemented in order for the pipeline implementation to only handle
scheduling and synchronization. These initial choices make the pipeline stages appear
clearly and separately from data computations. This early separation principle confirmed
that the issues we encountered to validate the module came mostly from timing and
synchronization management. One of these issues came from the need to accommodate the
application on two FPGA targets, one of them requiring additional registers after memory
read to meet timing requirements. While being trivial, this difference implies adaptation of
all synchronized paths to maintain performance. In particular in this example, Figure 5.9
highlights the need for synchronization of the input request, used in several stages which
depend on the memory read response. Many other signals throughout the design faced
similar synchronization issues, not detailed here for the sake of clarity.

The following code excerpt present the outline of the upgraded version leveraging the
framework.

1 val mem = new MemoryInterface()
2 val pipe = new Pipe(req, "main")
3 pipe.hash = (p, n) => {
4 n.addr = HashPipe(p.req)
5 }
6 pipe.read = (p, n) => {
7 n.stElt = mem.readLock(p.addr, p.req.doLock)
8 }
9 pipe.update = (p, n) => {

10 (n.res, n.updatedStElt) = p.stElt.update(p.req)
11 }
12 pipe.feed(mem.writeBack, res)
13 pipe.build

This streamlined version illustrates the PipeSteps presented in Figure 5.9 while only
evading most parameterization and some verbose explicit type-cast temporarily1required by
Scala and Chisel. It allows designers to focus on expression of pipeline stage behaviors
rather than verbose and error-prone signal synchronizations. This statement was confirmed
by experiment as no synchronization fixes were required during the development of this
version.

Complete version of this description generates a resulting Verilog code quite close
to the one previously obtained without the framework, which passes all the existing
validation tests and exhibits similar throughput and latency. As the framework leaves
full control of the pipeline structure to the designer and does not alter it during the
synchronization transformations, identical latency is indeed expected by construction, and
has been confirmed experimentally. The proper throughput confirms that the dimensioning
of synchronization delays is sufficient to reach the expected performance.

With these observations on this simplified example, the methodology and the framework
implementation prove their relevance to improve description flexibility while achieving
similar performance. However, the potential overhead, induced by the framework and

1These temporary casts are only due to the current dynamic implementation of our pipeline objects in Scala,
which prevents static typing at compile in its current version. This limitation is expected to be lifted with an
appropriate integration of the pipeline framework as a compiler plugin.

86

5.6. Conclusion

its automated hardware generation, remains to be asserted. To answer this question both
versions have been synthesized in the same conditions, targeting a Xilinx Virtex Ultrascale+
(VU9P) FPGA with a 200 MHz clock frequency. The table below shows a resource usage
comparison between the original—Vanilla Chisel—and the updated version of the pipeline,
leveraging the framework in its most simple Peer-to-peer (P2P) strategy.

∑ LUT LLUT LUTRAM SRL FF BRAM

Vanilla Chisel 6,077 5,314 88 675 6,793 5

Framework (P2P) 6,063 5,300 88 675 6,743 5

Difference -14 -14 = = -50 =
Difference (%) -0.2% -0.3% = = -0.7% =

Reported resource usage after synthesis of the updated design is on-par with resource
usage reported for the original implementation, with a minor advantage in favor of the
framework. This slight difference is explained by the packing of delayed signals in the
original version whereas the framework treat each signal independently.

A notable side effect is an important reduction in the number of lines of code (excluding
comments and blank lines in both cases), between the original description and the updated
version, of almost 50% in favor of the framework. While less lines of code do not necessarily
mean a more flexible description, as we extracted synchronization and protocol concerns,
this simplification was expected on the description side. More importantly, the evicted
lines are part of the repetitive and error-prone patterns illustrated in Section 5.2.1, as these
concerns are now independently managed by the synchronization backend.

5.6 Conclusion

In this chapter, we have introduced a pipeline design methodology aiming at improving
pipeline description flexibility by providing a readily available pipeline functional abstrac-
tion. It comes in the form of a fully decoupled API, with on one hand expression of pipeline
stages behavior, and on the other hand synchronization strategies and protocol signaling
generic implementations. We close the gap between these two interfaces with a graph-based
synchronization model and by providing, at elaboration-time, user-access for fine control
over the generated design. By leveraging Chisel HCL to implement our methodology as an
automation framework, we have successfully migrated a complex existing pipeline at no
additional resource costs while considerably relieving developers’ synchronization burden.
Moreover, decoupling protocol signaling and synchronization concerns from the pipeline
description highly improves code readability and reusability while advantageously reducing
its volume.

Through this experiment and the ones presented in Chapter 4, Hardware Construction
Languages have demonstrated their ability to produce efficient circuits while improving
architecture reusability. At this stage, we have focused on the design of several complex
architectures, packaged as hardware modules. In our industrial context, these modules are
intended to be integrated within larger hardware hierarchies to build network devices and
provide high-level network functionalities such as rate-limiting or specific DDoS mitigations.
The next chapter discusses the issue related to the integration of these Chisel-generated
blocks into existing HDL hierarchies.

87

Chapter 5. Pipeline Design Methodology

88

Chapter 6

Integration of Hardware Construction
Languages

This chapter focuses on integrating Hardware Construction Languages within existing
hardware development flows. We claim that the adoption of HCLs, as newcomers

in hardware ecosystems, lies in their capacity to integrate themselves effortlessly within
existing flows. Contributions in this chapter arise from pure engineering matters, and
therefore do not intend to provide a generic solution to integrate HCLs, but rather explore
some options for both upstream and downstream integrations.

First, we review the ability to translate existing Verilog projects to Chisel, as the first step
of an iterative upgrade flow, and to integrate existing HDL blocks within Chisel.

Then, we detail the integration of Chisel-generated circuits within larger SystemVerilog
hierarchies, while preserving the ability to parameterize the module instantiations from
SystemVerilog.

Contents
6.1 Problem Statement . 90
6.2 (System)Verilog Upstream Integration by Translation 92

6.2.1 Intended Flow . 92
6.2.2 sv2chisel Translator Structure . 93
6.2.3 Main Transformations . 94
6.2.4 Evaluation . 98
6.2.5 Conclusion . 100

6.3 HCL-as-IP: Downstream Integration of HCL-Generated Architectures . . 101
6.3.1 Motivations . 101
6.3.2 Pseudo-generic Wrapper-based Solution 102
6.3.3 ParamWrapperGenerator Implementation 103
6.3.4 Practical Evaluation: Replicated Hash Function Replacement 107

6.4 Conclusion . 107

89

Chapter 6. Integration of Hardware Construction Languages

6.1 Problem Statement

Integration of Hardware Construction Languages within an existing flow and legacy code-
base, immediately raises three questions depending on the point of view of the observer.

HCL as Top Viewing HCLs as top level hierarchy replacement raises the question of the
integration of existing traditional HDL sources as IP within the HCL hierarchy:

• “How can existing traditional HDL sources be instantiated within HCLs?”

HCL as IP Viewing HCLs as an external IP generator raises the questions of the interoper-
ability of this generator with the development flow, and of the generated content with
the existing code:

• “How can HCL-generated sources be instantiated within traditional HDLs?”

• “How can generation be integrated within the existing flow?”

The first of these three questions finds a straight answer in most HCLs, which provide
the ability to integrate parameterized traditional HDL black-boxes in their descriptions,
simply emitted as module instantiation with parameters and port maps. This typically
works well in Chisel HCL with (System)Verilog black-boxes integration instantiated and
mapped in the emitted Verilog. While this process enables designers to quickly integrate
existing sources within their new HCL-based projects, the interoperability remains restricted
to the underlying emission language capabilities. In particular, it requires maintaining
interface definition on both sides and maintaining sources in both languages. This is not a
disqualifying issue for cohabitation with single-instantiated IP blocks, however it becomes
rather constraining for integration of multiple instances of the same module with various
parameterizations, as further detailed in Section 6.3.

The left side of Figure 6.1 illustrates the integration of such existing traditional HDL IP
blocks within an HCL top level hierarchy. With this approach, the knowledge (configuration
of parameters) can be centralized at the top level of HCL hierarchy and shared to external
IP blocks through parameter maps. The generation process is straightforward, with HCL
top level generator as the single entry point.

While this first approach is perfectly suited to new projects, retaining the ability to
integrate existing IP blocks, it is not an option for large existing projects. Introducing such
a massive dependency at top level, requires a complete upgrade of the development flow
and a massive amount of work to encapsulate existing blocks as IPs, which is simply not
worth it. Advantages of HCLs will indeed not appear until actual business logic is designed
with HCLs. A top level replacement does not even guarantee in itself the ability to integrate
such developments because additional layers of existing HDL hierarchy would also need
to be rewritten to reach actual business logic layers. While the ability to integrate existing
traditional HDL IP blocks is a key functionality for cohabitation between HDLs and HCLs,
the HCL as Top perspective is not suitable for drop-in top level replacement at scale.

The right side of Figure 6.1 illustrates the alternative point of view, with HCLs as
external IP block generators. As generated IP blocks cannot be parameterized from the HDL
hierarchy, this approach requires additional synchronization between parameters passed to
the generators and the parameter-dependent interfaces expected on the top HDL hierarchy
side. While this requirement is constraining and requires custom tool development for
smooth integration of HCL as IP, it enables designers to bring the power of HCLs directly
where the core business logic can take advantage of it. As a result, it showcases the relevance
of HCL-based design integration even in large projects where traditional HDL hierarchy
development benefits from a strong legacy.

90

6.1. Problem Statement

HCL Top Level Hierarchy

HDL IP

HDL IP

HDL Top Level Hierarchy

Generated
HDL IP

Generated
HDL IP

HCL IP HCL IP

params

params

Generated HDL Top Level
Hierarchy

HDL IP

HDL IP

params

params

params params
knowledge

knowledge

knowledge synchronization

required

ports

ports

ports

ports

ports

ports

HCL as Top HCL as IP

Figure 6.1: HCL integration perspectives

Integration of HCLs in large existing code-bases still raises two main engineering
challenges as these code-base cannot simply be rewritten with HCLs over-night. First,
beyond the integration of existing HDL IP blocks as black-boxes, how can these existing blocks
be included in the intended agile upgrade presented in the previous chapters? Secondly,
how can the synchronization between generator parameters and expected parameterization
from HDL hierarchy be solved?

Previous researches regarding these integration issues have focused on component based
integration, such as Chipyard [ABG+20], an integrated System-on-Chip (SoC) design, simu-
lation and implementation framework. While Chipyard is articulated around Chisel/FIRRTL
HCL stack and in particular the rocket-chip RISC-V core generator, LiteX [KBBLL19] is
a similar framework based on (n)migen [Bou13]. Focusing on open-source cores avail-
able as git repositories, FuseSoC [Kin19] is another component-based integration system.
ESP [MGDG+20] extends this compositional approach to integration of IP blocks, ranging
HLS generated to higher-level designed IP to custom RTL blocks, within a custom Network-
on-Chip grid. These solutions provide the ability to integrate heterogeneous components
such as RTL descriptions and HCL generators within a common project, following agile
development principles. However, as they introduce their own top level management to
integrate components together, they are not a solution for a progressive transition of existing
traditional HDL code-bases to HCLs. In addition, their integration of HCL with HDL is
restricted to assembling a collection of independent top level blocks together and is not the
mixed HDL/HCL cohabitation we are targeting here.

To address these unresolved integration challenges, the next section introduces an
automated translation tool to provide an agile transition from existing HDL hierarchies to
idiomatic HCL generators. Then, Section 6.3 discusses the integration of Chisel as IP, in
particular regarding multiple distinct parameterized IP instantiations.

91

Chapter 6. Integration of Hardware Construction Languages

6.2 (System)Verilog Upstream Integration by Translation

6.2.1 Intended Flow

 HCL architecture

Original

HDL architecture

Translated
Low level HCL

equivalent

HDL-based tests

Generated HDL

HCL-based tests

Simulation &
Synthesis tools

Translation

Existing HDL development flow

0 0

0

1

1

Validation2

2

20

2

Idiomatic HCL

Upgraded HCL

...
Iterative upgrades3

3

3

3

3

Figure 6.2: Translation process towards agile integration

While HCL hierarchies can integrate existing HDL blocks, their interoperability remains
limited to the parameterization abilities and interface flexibility offered by the HDL side,
which is admittedly quite low. To push the integration beyond a simple cohabitation and
bring all the benefit of HCLs to the existing HDL architectures, the latter should be rewritten
within the HCL. To automate this tedious task in the context of Chisel integration within
our SystemVerilog hierarchy, this section introduces a (System)Verilog to Chisel translator.
This translator is part of a larger agile upgrade flow from HDL architectures to idiomatic
HCL architectures, illustrated in Figure 6.2 and articulated as follows from an existing HDL
development flow:

Translation Original HDL architecture is translated to a low-level HCL version of the
architecture, whose expression is extremely close to the original description. While
most of the translation is intended to be automatic, some parts might require manual
adjustments due to an absence of a direct equivalence between both languages.

Validation Before further design iterations, the quality of the translated architecture is
validated with the pre-existing HDL test-benches.

Idiomatic Adaptation Automated translation of highly optimized and generic architectures
often results in verbose HCL generators which can be easily improved by leveraging
native HCL generation abilities.

Iterative Upgrade In the direct line of our previous contributions, HCL architectures have
demonstrated their ability to be integrated in agile upgrades to extend their function-
alities.

92

6.2. (System)Verilog Upstream Integration by Translation

Once the initial process is complete, or as soon as the validation is complete, the resulting
HCL architecture can be integrated within a larger HCL hierarchy. Then, the complete
hierarchy, including this new block, might be iteratively upgraded, for example to benefit
from the generation abilities such as functional parameterization.

With these integration objectives clearly stated, we now focus on the implementation of
the translation tool and its application on several architectures.

6.2.2 sv2chisel Translator Structure

Lexing / Parsing

Emission

FIRRTL

+

Extensions

Chisel (scala)

(System)Verilog

T
ra

n
sfo

rm
s

T
ra

n
sfo

rm
s

T
ra

n
sfo

rm
s

Figure 6.3: Main processing steps of sv2chisel

Figure 6.3 presents the structure of our translator sv2chisel, with the classical stages of any
translator or compiler. We parse a synthesizable (System)Verilog file using ANTLR 4 [PF11],
which builds an abstract syntax tree that we eventually map on our custom IR. It is based
on FIRRTL which has been extended most notably to support Verilog generative statements
and syntactic-sugars requiring a few transformations to be mapped to Chisel constructs.
Four kinds of analysis and transformations are then performed on this IR: 1. clock inference,
2. reset inference, 3. types inference, 4. (System)Verilog syntactic-sugar translation.

Finally, the emitter outputs Chisel code, relocating comments and retaining original
layout as much as possible. To enable comment relocation, every node of the IR retains
its initial position in the token stream of the ANTLR lexer. Transformations then have to
carefully take these indexes into account whenever inserting or removing nodes, in order not
to disturb comments relocation. To achieve the final relocation, the emission goes through
two steps. First, every IR node is converted to its Chisel equivalent string and the IR is
flattened as a stream of those Chisel strings, each associated to its position in the original
(System)Verilog token stream. Then, this stream is merged, based on the token indexes,
with the original token stream which retains comments and spaces in special sub-streams.

93

Chapter 6. Integration of Hardware Construction Languages

6.2.3 Main Transformations

6.2.3.1 Clock Inference

Clock inference is a crucial part in the success of a proper translation from (System)Verilog
to Chisel. As a direct consequence of (System)Verilog event-driven paradigm, the distinction
between wires and registers does not come from their declaration but from their assignments
either in a clocked process or as a continuous assignment outside a clocked process.

1 module clock_example(
2 input clock,
3 input rst,
4 input i,
5 output o_w,
6 output o_r
7);
8 /* behavioral description of a wire */
9 logic w;

10 assign w = i;
11 /* event-driven behavioral description of
12 * register r with reset value '0 */
13 logic r;
14 always @(posedge clock) begin
15 if (rst) begin
16 r <= '0;
17 end else begin
18 r <= i;
19 end
20 end
21 /* output connections */
22 assign o_r = r;
23 assign o_w = w;
24 endmodule

Listing 6.1: Verilog for wire and synchronous-
reset register

class ImplicitClockOnly() extends Module {
// implicit input clock, connected to all `Reg`
val rst = IO(Input (Bool()))
val i = IO(Input (Bool()))
val o_w = IO(Output (Bool()))
val o_r = IO(Output (Bool()))

/* declaration of a wire object */
val w = Wire(Bool())
w := i // combinational assignment

/* declaration of a register object */
val r = Reg(Bool()) // type only

when(rst){ // explicit synchronous reset
r := false.B

} .otherwise {
r := i // sequential assignment @(clock)

}

/* output connections */
o_w := w
o_r := r

}

Listing 6.2: Translated Chisel for Listing 6.1
with clock inference

Listing 6.1 illustrates how signals w and r are to be described in the standard synthesizable
(System)Verilog such that a wire is inferred for w and a register for r.

As a side note, we thoughtfully chose the use of logic keyword in our Verilog example
for both declaration of w and r, instead of the misleading reg or wire keywords. Despite
providing those keywords (System)Verilog does not enforce any restriction in their usage,
consequently a register can be inferred from a signal declared as wire but then sequentially
assigned, and conversely a wire can be inferred from a signal declared as reg but then
combinationally assigned. Some tools raise warnings on such misusage, however the rule
remains the same for all of them: behavioral inference is preferred over user wire or reg
hint.

Whereas wire and register are inferred from signal assignment behavior in Verilog,
Chisel provides concrete objects Reg and Wire for signal declaration. These objects are
self-sufficient when it comes to assignments: both Reg and Wire are assigned with the same
operator, in the same context as shown on Listing 6.2.

To infer the main clock of a module, sv2chisel traverses the IR a first time, looking for
ClockRegion blocks corresponding to (System)Verilog always @(posedge clock) blocks. For
each assignment inside such a block, left hand side references are recorded as assigned
within a process clocked by clock. The declaration of these references will then be converted
as a Reg object during a second IR traversal that will also remove ClockRegion blocks in favor

94

6.2. (System)Verilog Upstream Integration by Translation

class ExplicitClockExample() extends RawModule {
val reset = IO(Input(Reset()))
val clock = IO(Output(Clock()))
// inputs as shown Listing 6.2

withClockAndReset(clock, reset){
// statements as shown Listing 6.2

}
}

Listing 6.3: Explicit clock and reset area in Chisel

of simple collections of statements.
Clock might also be inferred from submodules instantiations whenever the actual module

declaration can be processed recursively by sv2chisel.
At the end of this transformation, zero, one or several clocks might have been discovered.

When zero or one clocks are discovered, the clock might be fully implicit within the module
as Listing 6.2 shows. When several distinct clocks have been inferred, no implicit clock is
used for the module and an explicit clock area must surround the register declarations of a
same clock region, leveraging Chisel syntax withClockAndReset as Listing 6.3 introduces.1

This syntax might also be required to deal with some constrained board clock and reset
naming—for example at design top level. Listing 6.3 illustrates this syntax to explicit the
implicit constructs provided by Module in the previous examples.

6.2.3.2 Reset Inference

Several kinds of reset methods can be found in Verilog descriptions:

• Synchronous Reset

• Asynchronous Reset

• FPGA Power-on Reset

Synchronous resets are hard to gracefully infer from a design as they might be hidden
in deep and intricate if/else hierarchies [PK16]. For the simplest and most common
Verilog pattern we perform synchronous reset inference, leveraging RegInit object as shown
in Listing 6.4. In more complex cases, the code is translated literally, keeping the conditional
assignment tree as shown in Listing 6.2. This is less idiomatic but still perfectly acceptable.

Asynchronous resets, on the other hand, are easily understood with a method equivalent
to the one used for clock inference in Section 6.2.3.1, based on the Verilog always blocks
events @(posedge(rst)) or @(negedge(rst)).

Leveraging power-on resets in an FPGA design can save a lot of hardware resources used
by reset trees. However, as Chisel originally targeted ASIC development, these resets were
not natively present in Chisel/FIRRTL stack. We contributed to FIRRTL by adding their
support as an overload of asynchronous resets, with an annotation of the source reset signal
and a FIRRTL transformation to remove the reset tree in favor of declaration of signals with
assignment to the specified reset value.2 This addition allows to straightforwardly translate
them to Chisel RegInit declarations, with the ability for the user to annotate the top level as
power-on reset for equivalent behavior with the Verilog.

1Multi-clock modules support is a work in progress at the time of writing.
2Pull-request on FIRRTL’s GitHub repository: https://github.com/chipsalliance/firrtl/pull/1050

95

https://github.com/chipsalliance/firrtl/pull/1050

Chapter 6. Integration of Hardware Construction Languages

class ImplicitClockReset() extends Module {
// implicit inputs clock & reset
val i = IO(Input (Bool()))
val o_w = IO(Output (Bool()))
val o_r = IO(Output (Bool()))
/* declaration of a register object with reset */
val r = RegInit(false.B) // reset value and type
r := i // sequential assignment @(clock)
/* declaration of a wire object */
val w = Wire(Bool())
w := i // combinational assignment
/* output connections */
o_w := w
o_r := r

}

Listing 6.4: Translated Chisel for Listing 6.1 with reset inference

At the time of writing the sv2chisel support for mixed reset methods within the same
design is still a work in progress.

6.2.3.3 Types Inferences

While (System)Verilog requires explicit clocks and reset signals, it is very permissive towards
data types: there is no typing or explicit cast in most cases. As a base principle every signal
is an array of bits and if it needs to be used in an arithmetic computation, it is automatically
cast as an unsigned, unless explicitly specified by the designer with the $signed cast.

This is very different in Chisel which comes embedded in the strongly typed language
Scala. Chisel has several distinct basic hardware types, such as arrays of hardware boolean
(Vec[Bool]) and hardware (un)signed integers (UInt and SInt).

While both Chisel Vec[Bool] and UInt types would be a valid translation of any (Sys-
tem)Verilog signals, Chisel enforces very constraining rules for the usage of these distinct
types. Chisel’s Vec[Bool] are meant for individual bit manipulations and do not provide
arithmetic operations. On the other hand UInt are intended for such arithmetic operations
and are to be considered as a whole, they hence do not support subrange or subindex
assignments.

To provide the most sensible translation—or at least the less verbose—sv2chisel counts
the uses of each reference in arithmetic or bit operations to choose the proper declaration
types.

Then for each expression, appropriate casting is inserted wherever necessary to guarantee
type consistency.

Listing 6.5 shows a simple Verilog snippet illustrating the absence of typing: both sign
and cnt signals are declared as packed arrays of bits. However, while cnt is used in an
arithmetic expression, sign is assigned one bit at a time. Listing 6.6 is the result of sv2chisel
translation for Listing 6.5 and illustrates type inference of the signals with respect to their
usage: cnt is now declared as a UInt while sign is declared as Vec[Bool]. Moreover, as sign
is declared as Vec[Bool] but used to assign the UInt signal cnt, an explicit asUInt cast is
inserted accordingly.

Although sv2chisel is designed to produce ready-to-use code, the resulting code is mainly
intended to serve as a transition step between (System)Verilog and handcrafted Chisel code,
after manual inspection and refactoring. Listing 6.7 illustrates a small code refactoring,
using a more Chisel-ish way of expressing the same computation. Instead of this complex
iteration on subranges, a more idiomatic expression consists in a simple cast of the 32

96

6.2. (System)Verilog Upstream Integration by Translation

1 module type_example #(param en)(
2 input clock,
3 input reset,
4 output [31:0] counter,
5 output [3:0] sign
6);
7 logic [31:0] cnt;
8 always @ (posedge clock) begin
9 cnt <= &cnt ? sign : cnt + 1;

10 end
11 assign counter = cnt;
12 for(i=0 ; i < 4 ; i++) begin
13 assign sign[i] = en ? ^cnt[(i+1)*8-1:i*8] :
14 '0;
15 end
16 endmodule

Listing 6.5: Untyped verilog input

class TypeExample(en: Int) extends Module {
// implicit inputs clock & reset

val counter = IO(Output (UInt(32.W)))
val sign = IO(Output (Vec(4,Bool())))

val cnt = Reg(UInt(32.W))

cnt := Mux(cnt.andR =/= 0.U, sign.asUInt, cnt + 1.U)

counter := cnt
for(i <- 0 until 4){

sign(i) := if(en != 0) cnt((i+1)*8,i*8).xorR
else false.B

}
}

Listing 6.6: Typed raw Chisel translation of
the untyped Verilog input of Listing 6.5

class TypeExample(en: Boolean) extends Module {
/* see statement above */

val bytes = cnt.asTypeOf(Vec(4, UInt(8.W)))
sign := if(en) VecInit(bytes.map(_.xorR)) else Zeroes

}

Listing 6.7: Chisel for Listing 6.5 after manual refactoring

bits counter cnt to the equivalent array of 4 bytes. Then Scala functional paradigm can be
leveraged to apply a xor reduction on every byte with the map function. The special object
Zeroes is a custom object that is equivalent to O.U.asTypeOf(sign) here.

This kind of refactoring which makes the code clearer cannot be inferred by the tool
but greatly helps with code maintainability. It confirms that both automated translation
and manual expertise are essential to produce a finely-tuned piece of hardware. The
former makes the conversion task realistic even for large code-bases while the latter ensures
simplicity and readability of resulting code.

6.2.3.4 Syntactic Sugar Removal

(System)Verilog is also very permissive with connections of signals of mismatching widths.
Wherever required, it will implicitly infer left-padding, with sign extension for signed
signals and with zeroes otherwise. This automatic padding is then widely used as a feature,
enabling some concise syntactic-sugars.

For example, SystemVerilog bit patterns '0 and '1 are such context-dependent widths.
They are equivalent to a signal whose width is inferred and all bits are set to 0, respectively
all bits set to 1.

wire [31:0] w;
assign w = '0;
assign w = '1;
assign w = '{4{8b'010111}};

When translating to Chisel, actual width is required for all ones bit pattern as follows:

97

Chapter 6. Integration of Hardware Construction Languages

val w = Wire(UInt(32.W));
w := 0.U
w := ~0.U(32.W)
w := VecInit.tabulate(4)(_ => "b010111".U(8.W))

A second example of (System)Verilog concision is the left-hand-side assignment on a
concatenation, which allows straightforward expression of bit unpacking.

wire [15:0] a;
wire [7:0] b;
wire op;
wire [15:0] sum;
assign {op, b, a} = signal;
assign sum = op ? a + b : a - b

Chisel does not offer a word-for-word equivalent, however casting the right-hand-side
into a Bundle provides an equivalent as shown below:

val bdl = Wire(new Bundle {
val a = UInt(16.W)
val b = UInt(8.W)
val op = Bool()

})
val sum = UInt(16.W)
bdl := signal.asTypeOf(bdl)
sum := Mux(bdl.op, bdl.a + bdl.b, bdl.a - bdl.b)

Translating (System)Verilog syntactic-sugars into Chisel code is not always as concise
as the original code but thanks to the previously introduced type inference system, correct
translations are achievable at the cost of a few additional lines. These verbose translations
are then good starting points for manual code refactoring, as the power of Scala and Chisel
constructs bring functional and object-oriented refactoring opportunities.

6.2.4 Evaluation

6.2.4.1 Methodology

Figure 6.4 illustrates all the steps taken to validate a translated design from its original
description to the synthesized design.

The first step is to run the sv2chisel tool to translate the original (System)Verilog into
Chisel. The tool appears to be a great stateful linter, catching wrongly declared and
undeclared signals. Some manual adjustments might be required on the original description
to fix caught issues and to overcome the current limitations of the tool as detailed in
Section 6.2.4.3.

The resulting Scala must then go through the entire Chisel generation flow, each step
coming with its own correctness checks:

1. Scala compilation catches types inconsistencies

2. Chisel elaboration complains on mismatching widths

3. FIRRTL compilation stops on uninitialized references and detects combinational loops

98

6.2. (System)Verilog Upstream Integration by Translation

sv2chisel

(System)Verilog...

Scala compiler

Chisel elaboration

FIRRTL Compilation

Simulation

Chisel (scala)

Java executable

FIRRTL

Verilog

Synthesis

Figure 6.4: Validation process

While the two first steps are expected to pass flawlessly as long as sv2chisel does not
complain during translation, FIRRTL compilation step raises errors that might only be
manually corrected or ignored depending on the intended behavior of the result. Unexpected
combinational loops combined with warnings of sv2chisel about unsupported blocking
assignments might indicate an inaccurate translation and require further inspection of the
original source code. Regarding uninitialized references, among classical examples stand
big arrays, only half-connected, used to implement binary reduction operations. Such
partial initialization can easily be fixed by adding the explicit default connections either in
the original source or in the translated one. However, a rather simple manual refactoring
operation could leverage Chisel power to implement such reduction operation in a functional
way while getting rid of these partially initialized arrays.

To validate the resulting Verilog and hence the correctness of the translation, we integrate
it into the existing test system, leveraging usual simulators.

Last but not least, we compare the resource usage after synthesis on FPGAs.

6.2.4.2 Results

We successfully ran our tool on three different projects to guarantee a consistent coverage of
usual Verilog synthesizable constructs: 1. An internal module, currently used in production
at OVHcloud, 2. A simple MIPS core implementation [Beh17], functional but not actually
suited for synthesis, 3. The size-optimized RISC-V Core PicoRV32 [Wol20].

Translated code for our internal module and the MIPS core passed their respective tests
with minor manual modifications of the input source code. To pass PicoRV32 RISC-V core
tests, some structural code refactoring was necessary to translate the concept of variable and
their blocking assignments, as this feature does not find a straightforward Chisel equivalent.

The table below shows a resource usage comparison between original and translated
versions of the two synthesizable projects. The SimpleCPU MIPS Core is indeed not intended
for synthesis, which results in similar but inconsistent resource evaluation for both versions.

99

Chapter 6. Integration of Hardware Construction Languages

Verilog Chisel

OVHcloud Module LUTs 1681 +7
FFs 2733 =

BRAMs 0 =
DSPs 0 =

PicoRV32 LUTs 2349 +27
FFs 1276 =

BRAMs 0 =
DSPs 0 =

Reported resource usage after synthesis of the translated Chisel designs are on-par with
resource usage reported for their respective original (System)Verilog implementation. The
27 additional LUTs for the Chisel PicoRV32 are inferred in a quickly refactored submodule
which is relying on Verilog’s blocking assignments in its original implementation. Moreover,
as FIRRTL compilation to Verilog is flattening complex structures and expressions, some
slight differences between the two resource counts can be expected.

6.2.4.3 Limitations

The development of sv2chisel followed a test-driven design methodology, starting with a
reduced IR and limited syntactic-sugars support that were sufficient for our first internal
SystemVerilog module. Applying the tool on external open-source examples ensured to
enlarge the diversity of syntax and concepts properly translated up to a decent subset of
(System)Verilog constructs. Each supported input construct comes with a corresponding
unit-test while the presented real world examples serve as integration tests to validate the
correctness of the translation. As a next step, further semantic analysis of Verilog and Chisel
could be leveraged to formally design and prove the correctness of the transformation rules.
At the time of writing our tool empirically covers the (System)Verilog synthesizable subset
except for compiler directives (Verilog pre-processor) and blocking assignments which find
no direct equivalent in Chisel.

Among manual adjustments required to achieve a correct translation, some are due
to currently missing concepts in Chisel while others could be supported and properly
translated without designer’s help. Other translation issues reflect missing concepts in
Chisel, such as (System)Verilog variables associated with blocking assignments. This pattern
requires EDA tools to automatically infer multiple implicit intermediate signals and has
no straightforward equivalent in Chisel. In Chisel, recursive functions or other functional
constructs can be leveraged to implement the same hardware architectures with a more
idiomatic expression.

6.2.5 Conclusion

In this section we introduced sv2chisel, a synthesizable (System)Verilog to Chisel translator.
Producing Chisel code close to a word-for-word translation of the original source and
preserving overall layout and comments, this tool is intended as a first step in migrating
valuable legacy Verilog code-bases to Chisel.

Although it does not aim at fully replacing the fine human expertise required to achieve
a correct translation in the most advanced cases, it appears capable of producing very decent
translation drafts. These drafts are then expected to be manually inspected and refactored to
leverage the power of HCLs, e.g. with the use of object-oriented and functional constructs.

100

6.3. HCL-as-IP: Downstream Integration of HCL-Generated Architectures

As a result, sv2chisel enables designers to integrate SystemVerilog IPs within Chisel,
avoiding the restrictive black-boxing pattern, and permitting to effortlessly propagate any
upgrade through the entire hierarchy.

While this tool brings a solution to the upstream integration challenge, the next section
focuses on its downstream counterpart: integration of HCL-generated HDL sources within
a top level HDL hierarchy.

6.3 HCL-as-IP: Downstream Integration of HCL-Generated Archi-
tectures

6.3.1 Motivations

TOP
V

M1

A(x) B

HDL Configurable
Hierarchy

C(x)?x

Synthesis/simulation

x
x = 2

V(x)x

Synthesis/simulation

Chisel elaboration

TOP

M1

A_x B

Fixed generated
hierarchy

V(x)

HCL Configurable
Hierarchy

TOP
C

M1

A(x) Bx
x = 2

Legend

HCL source file

HDL source file

Parameters
x = 2

Parameters
x = 2

A_2

V(2)

A_4

x = 2 Parameter propagation

A(2x)

Figure 6.5: Parameter propagation compared in HDL and HCL hierarchies

A common principle to most HCLs consists in the elaboration of a high-level description,
during the execution or compilation phase provided by the HCL toolchain. This process—
further detailed in Section 3.3.1.3—produces a lowered version of the description, which
is then usually emitted as a low-level HDL. As this elaboration stage takes place in the
software domain, HCLs are able to natively provide many software engineering features,
such as functional parameterization, type polymorphism and object-oriented programming.

In the case of embedded HCLs based on explicit circuit construction, such as Chisel, the
resulting circuit is elaborated through the software execution of theses high-level constructs.
As a result, these constructs are no longer available in the elaborated hierarchy. In particular,
module parameterizations are lost, making such HCLs unable to produce configurable
hierarchies. The configuration, which can include complex parameters such as high-order
functions, is indeed intended to be passed to the generator, producing a distinct HDL output
for each parameter set.

Figure 6.5 summarizes the differences between HDL hierarchies and HCL-generated ones.
The left side presents parameter propagation in a traditional HDL hierarchy. Parameters
are provided at top level and propagated down to the parameterized instantiations of HDL

101

Chapter 6. Integration of Hardware Construction Languages

module A, in one case parameterized with x and in the other case with 2x. As this very basic
elaboration process is directly handled by simulation and synthesis tools, this parameter
propagation is effortless for the designer. The ability to instantiate a parameterized HCL IP
such as C(x) is the objective of the current section.

To highlight the integration issue, the right side presents a similar parameter propagation
in an HCL hierarchy, which is also effortless for the designer. The lower part of the figure
illustrates the HDL hierarchy obtained after HCL elaboration. The parameterized module
instantiation has been replaced with elaborated instances for each given parameter set,
here for x = 2 and 2x = 4. Integration of HDL black-box V(x) is also pictured, retaining a
parameterized instantiation but with a constant parameter, here x = 2.

Integration of such fixed hierarchy as a configurable HCL IP within an HDL hierarchy
requires to maintain a synchronization between HCL generators and HDL instantiations, as
previously illustrated in Figure 6.1. To solve this synchronization issue at the scale of an
industrial HDL hierarchy, two parameterization cases must be considered:

Global Parameterization Relying on a common source of knowledge

Local Parameterization Based on parameter propagation within the HDL hierarchy, such
as bus widths, which are often locally computed from other parameters.

Implementing a global synchronization mechanism is a pure engineering matter and
highly depends on the overall project organization and needs. For our network device
projects we were already relying on a common configuration defined in Python and produc-
ing SystemVerilog packages for the hardware side and Python packages for the software
side. To integrate Chisel developments in this system, a Scala package generation can
be added as a new generation backend. Another option consists in fully migrating the
configuration in Scala with reflexive generation of SystemVerilog and Python versions of the
constants. This more expensive and intrusive approach would be the most logical from the
perspective of typing: Scala is highly typed and carries the largest amount of information for
each constant. Dropping this information to generate Python and SystemVerilog packages
is then more efficient than annotating a poorly typed Python definition to generate a proper
Scala package.

While a global parameterization might be enough to integrate one parameterized instance
within the HDL hierarchy, local parameterizations remain required to integrate multiple
instances of a same HCL generator. Local parameterizations are highly context dependent.
Migrating all this fine-grained knowledge to a global parameterization would be extremely
constraining and would defeat the reusability purpose of parameterization.

Last but not least, Chisel generation produces flattened versions of all structured signals.
For example, a Vec(N, Bool()) is emitted as N 1-bit width signals instead of an N-bit width
addressable vector [N-1:0]. Similarly, a structured type new Bundle { val a, b = Bool()}
is emitted as two independent signals rather than a SystemVerilog struct. This discrepancy
has a high impact when integrating Chisel-generated modules within a traditional HDL
hierarchy, especially when width parameterization results in a varying number of ports.

As a conclusion, integration of HCL-generated architecture within a top level HDL
hierarchy requires a fine-grained solution which preserves the ability to locally instantiate
parameterized IPs with automated mapping of flattened Input and Output ports (IOs) with
their structured counterparts.

6.3.2 Pseudo-generic Wrapper-based Solution

To solve the integration of multiple parameterized instances of a Chisel generator within a
SystemVerilog hierarchy, without requiring modification of the latter, we rely on a pseudo-
generic wrapper. It is intended as a drop-in replacement of an equivalent parameterized

102

6.3. HCL-as-IP: Downstream Integration of HCL-Generated Architectures

TOP

M1

A(x)

C

[x, y]

B

D

M2

A(y) E

Hierarchical
parameters
propagation

at
submodule

instantiation

x

y

A

ParamWrapper generator

A_x

A_y

Existing HDL Hierarchy

A_x

A_y

A

A(p)
if(p == x)
if(p == y)

Param x

Param y

Redesigning Awith HCL

Figure 6.6: Paramwrapper principles

SystemVerilog module. This approach enables designers to replace widely replicated
instances with their Chisel-generated counterparts with no impact on the existing hierarchy
and at a very low integration cost.

Figure 6.6 illustrates this principle. The wrapper is only generic as far as the correspond-
ing parameterizations have been explicitly generated. From an integration perspective, the
module instantiation in the SystemVerilog hierarchy remains rigorously identical. The only
additional constraint consists in centralizing the parameter sets. While we have not worked
on an automation of this phase, the required parameterization can be extracted from any
EDA tool able to elaborate the HDL hierarchy. More trivially, utilization of an empty shell
simply reporting the expected parameterizations highly reduces this tedious task.

In practice, this pseudo-generic wrapper consists in a basic switch case structure, as
illustrated in listing 6.8.

The input parameters of the wrapper are matched against predefined parameter sets,
and in case of matching parameters the corresponding Chisel-generated module is selected
and connected to the Input and Output ports (IOs) of the wrapper.

While such a wrapper could be written manually, this would defeat the intended
parameterization flexibility by requiring extensive manual modifications. It would also
require maintaining the duplication of configuration parameter sets between the generation
side and this wrapper. Figure 6.6 presents a more elegant and integrated solution, based on
a single entry point to generate both the various Chisel configuration and the associated
wrapper. This entry point is designated as ParamWrapperGenerator and produces a self-
contained SystemVerilog file with the wrapper alongside all the generated modules for
integration convenience. Its implementation is detailed in the next section.

6.3.3 ParamWrapperGenerator Implementation

Figure 6.7 illustrates the implementation of the ParamWrapperGenerator. It first takes
as input a set of parameterized Chisel generators associated to an equivalent Verilog
parameterization, as illustrated in Listing 6.9. Then, each generator is successively processed
in a loop which consists of the following steps:

Chisel Elaboration Handled by Chisel front-end, Chisel elaboration produces an intermedi-

103

Chapter 6. Integration of Hardware Construction Languages

1 module ip_wrapper #(
2 parameter INPUT_WIDTH,
3 parameter OUTPUT_WIDTH
4)(
5 input [INPUT_WIDTH-1:0] in,
6 output [OUTPUT_WIDTH-1:0] out,
7);
8 generate
9 if(INPUT_WIDTH == 85 && OUTPUT_WIDTH == 8) begin

10 ip_0 ip(
11 .in(in),
12 .out(out),
13);
14 end else if(INPUT_WIDTH == 32 && OUTPUT_WIDTH == 11) begin
15 ip_1 ip(
16 .in(in),
17 .out(out),
18);
19 end
20 endgenerate
21 endmodule

Listing 6.8: Wrapper example for a simple ip module with two parameterizations

1 // listing generation config
2 val paramsMap = Seq(
3 Map("inWidth" -> 85, "outWidth" -> 8),
4 Map("inWidth" -> 32, "outWidth" -> 11)
5)
6

7 // mapping generation config against actual parameters and provide associated generator
8 val instances = paramsMap.map(param =>
9 ParamSet(Seq(

10 "INPUT_WIDTH" -> IntParam(param("inWidth")),
11 "OUTPUT_WIDTH" -> IntParam(param("outWidth")),
12)) -> (() => new XorHash(param("inWidth"), param("outWidth")))
13)
14

15 // emit the wrapper and generate all parameterized instances
16 ParamWrapperGenerator.emit(instances, "chisel_xor_hashes")

Listing 6.9: Front-end of ParamWrapperGenerator for a dual configuration of XorHash module

104

6.3. HCL-as-IP: Downstream Integration of HCL-Generated Architectures

 ParamWrapper

parameters
& ports map

Verilog:
Flattened Circuit

FIRRTL:

Elaborated Circuit

Scala Object:
Elaborated Circuit

Chisel IR:

Elaborated Circuit

Scala:
Chisel Generator

Scala Object:
Elaborated Circuit

FIRRTL:

Elaborated Circuit

Chisel IR:

Elaborated Circuit

Verilog:
Flattened Circuit

ParamWrapper

instance analysis

Scala execution =
Chisel elaboration

Chisel IR to FIRRTL

conversion

Circuit Reflexivity

SystemVerilog:

Configurable wrapper

eq

Annotations

FIRRTL compilation

+ emission

Parameter sets

ParamWrapper

wrapper generation

parameters
& ports map

Chisel

Frontend

Chisel/FIRRTL

Stack

ParamWrapper

Verilog

output

Figure 6.7: ParamWrapperGenerator implementation

ate representation of the circuit along with the equivalent Scala objects which provide
reflexivity over the circuit,

Elaborated Circuit Analysis This reflexivity over the elaborated circuit is leveraged to
retrieve the port lists in their two versions: structured and flattened. This information
is internally stored for the final emission of the wrapper.

FIRRTL compilation and emission The elaborated circuit is emitted as Verilog, with a
custom name mangling transformation to ensure uniqueness of all module and
submodule names between parameter sets.

Finally, the wrapper is emitted based on port map information retrieved during the
processing loop. Listing 6.10 presents the obtained wrapper. An error is raised here in case
of mismatch, but a similar pattern could be used to record the required parameter sets, for
example by appending them to a file. The wrapper IO ports are defined with the largest
width encountered among the variety of instances IO ports. To ensure compliance with
various EDA tools, inputs are bit-selected wherever necessary and unused output bits are
connected to the ground.

While implementing this generation system requires a substantial engineering ef-
fort, its principle is permitted by the reflexivity over the elaborated circuit provided by
Chisel/FIRRTL stack. Thanks to this generation API, a fully integrated solution can be
provided to the IP integrator.3

3Appendix B presents a more detailed example, focused on the mapping between flattened and structured
ports for proper integration within the existing HDL hierarchy.

105

Chapter 6. Integration of Hardware Construction Languages

1 module chisel_xor_hashes #(
2 parameter INPUT_WIDTH,
3 parameter OUTPUT_WIDTH
4)(
5 input clock,
6 input [84:0] io_req_bits,
7 output [10:0] io_res_bits,
8);
9 generate

10 if(INPUT_WIDTH == 85 && OUTPUT_WIDTH == 8) begin
11 chisel_xor_hashes_XorHash_0 XorHash(
12 .clock(clock),
13 .io_req_bits(io_req_bits),
14 .io_res_bits(io_res_bits[7:0]),
15);
16 assign io_res_bits[10:8] = '0;
17 end else if(INPUT_WIDTH == 32 && OUTPUT_WIDTH == 11) begin
18 chisel_xor_hashes_XorHash_1 XorHash(
19 .clock(clock),
20 .io_req_bits(io_req_bits[31:0]),
21 .io_res_bits(io_res_bits),
22);
23 end else begin: unmapped_param_set
24 initial begin
25 $info(">INPUT_WIDTH = %d\n >OUTPUT_WIDTH = %d\n", INPUT_WIDTH, OUTPUT_WIDTH);
26 $error("CRITICAL FAILURE: Unmapped parameter set");
27 end
28 end
29 endgenerate
30 endmodule

Listing 6.10: Wrapper generated for the parameterization given in Listing 6.9

106

6.4. Conclusion

6.3.4 Practical Evaluation: Replicated Hash Function Replacement

To demonstrate the relevance of a drop-in replacement of an existing widely replicated HDL
module, we applied our ParamWrapperGenerator to a hash module notably used within the
multiple hash-table instances introduced in the previous chapters.

The original version of this module is based on a custom hash generation algorithm
written in Python. From parameters such as input and output widths of the hash, the Python
script generates a binary configuration for each hash instance, corresponding to several
levels of logic operators between input and output bits. The SystemVerilog module reads
this binary configuration from a file and generates the appropriate connections. Without
diving further in the SystemVerilog implementation, the architecture is fully generic and
based on huge multidimensional vectors which are the usual way of building generic design
with standard HDLs. As a result, the elaboration of this highly generic module and in
particular constant propagation is costly in time for simulation and synthesis tools.

The Scala/Chisel replacement is based on the Python generation script and provides
a fully integrated solution with the exact same limitation: hashes have to be generated in
advance based on a predefined list of configurations. Integration of these Chisel hashes
within our top level SystemVerilog has been effortless and came with interesting benefits,
summarized as follows:

Original Verilog Version Chisel Replacement

Slow Elaboration Fast Chisel-driven elaboration
Requires High-end Simulation Tools Tool Agnostic

Python-based config generation Integrated Scala/Chisel Solution

Pseudo-generic integration Pseudo-generic integration
(due to python generation) (due to ParamWrapper)

As a conclusion, our ParamWrapperGenerator enables designers to smoothly integrate
Chisel modules as IP within an existing SystemVerilog hierarchy. In particular, it unlocks
access to Chisel high-level generating constructs, even when a complete replacement of
upper hierarchy would require too much work to be considered in an industrial context.

6.4 Conclusion

This chapter introduces two contributions to interface Chisel with an existing SystemVer-
ilog hierarchy. As migration of large legacy projects cannot happen overnight, we keep
the perspective of SystemVerilog as top level hierarchy with integration of Chisel IPs as
submodules.

The first contribution occurs upstream of the HCL flow and focuses on an agile upgrade
flow from existing HDL architectures to advanced HCL generators.

The second one takes place downstream of the generation and focuses on integration of
multiple parameterized instances of Chisel-generated architecture within the SystemVerilog
hierarchy. It also solves the integration of generated modules and their flattened IO ports.

As part of the larger research effort aiming at validating the relevance of HCLs as part
of the EDA ecosystem, we published our two contributions as open-source software on
GitHub.4We claim that the adoption of HCLs within existing HDL projects could greatly
benefit from this cohabitation perspective, aiming at a smooth and agile migration of existing
HDL code-bases towards advanced HCL generators. The next chapter presents a complete
experiment, showcasing this approach and integrating our previous agile design upgrades.

4sv2chisel: https://github.com/ovh/sv2chisel; ParamWrapperGenerator as library of sv2chisel: https://
github.com/ovh/sv2chisel/tree/master/helpers/src/main/scala/tools

107

https://github.com/ovh/sv2chisel
https://github.com/ovh/sv2chisel/tree/master/helpers/src/main/scala/tools
https://github.com/ovh/sv2chisel/tree/master/helpers/src/main/scala/tools

Chapter 6. Integration of Hardware Construction Languages

108

Chapter 7

Experimentation

This chapter illustrates the three main contributions presented in this thesis, through a
unified experimentation at an industrial scale. From the large legacy SystemVerilog

codebase at the heart of our network devices at OVHcloud, we select a core network
functionality, a packet classifier, and follow its upgrade journey from Chisel translation, to
pipeline oriented upgrade, to re-integration within the original hierarchy.

First, we detail the tree architecture of this packet classifier, whose original SystemVerilog
implementation turns out to be extremely complex to ensure proper fit on several FPGA
targets.

Then, we review its translation to Chisel, based on our automated translator sv2chisel,
and completed with the necessary manual adjustments to guarantee on-par resource usage
and a reasonable elaboration overhead.

Next, we refactor the implementation of this module to leverage our pipeline framework
and drastically improve the flexibility and readability of the architecture.

Finally, we explore the various resolution strategies and their parameterizations to offer
a very fine-grained control over the generated architectures to the designers, and help with
timing closure.

Contents
7.1 Tree Filters Design and SystemVerilog Implementation 110

7.1.1 Context . 110
7.1.2 Verilog Implementation . 112
7.1.3 Fine-grained Reverse Engineering . 112

7.2 Chisel Translation with sv2chisel . 113
7.2.1 Additional Translating Automation 114
7.2.2 Investigating Translation Overhead 115
7.2.3 Final Results . 119

7.3 Integrating Pipeline Framework . 122
7.3.1 Implementation . 122
7.3.2 Initial Synthesis Results . 125
7.3.3 Further Architectural Parameterization 127

7.4 Conclusion . 131

109

Chapter 7. Experimentation

7.1 Tree Filters Design and SystemVerilog Implementation

7.1.1 Context

Network devices are responsible for packet processing at various place of the network infras-
tructure. They are based on various analysis and operations on the packet stream flowing
through their interfaces. These network functions can be sorted in four main categories:
parsers, classifiers, flow analyzers and operators. The following table details the role of each
of these blocks along concrete practical examples and their implementations.

Network Function Input Output Implementation

Parsers Packet Metadata Ad-hoc

Classifiers Metadata Stateless Labels Trees, MatchersFlow Element

Flow Analyzers Stateless Labels Stateful Labels Hash-table, CAMse.g. counters, patterns Flow Element Flow Behavior

Operators Labels Ad-hoc Action Ad-hoce.g. drop, extract, route

Based on these main network functions, Figure 7.1 illustrates a classical pipelined
architecture for network devices. It highlights data dependencies, and the availability of
various extracted and computed elements through the network pipeline. The order in which
network functions are placed is indeed critical due to these dependencies, from packet to
metadata, to label, to concrete actions.

......
Parser Counter Drop...

Parser Counter Drop...
Parser Counter DropPacket

Parser
Ethernet

Interface

Packet
Classifier

Operator Ethernet

Interface

Counter
Counter

CounterFlow
Analyzer

Counter
Counter

Counter
Operator

Packet
Metadata

Labels

Figure 7.1: Coarse-grained generic architecture of network devices

In this architecture, packets remain available throughout the pipeline, whereas metadata
are only available after ad-hoc parsing and labels are created based on the metadata by
classifiers and flow analyzers. In practice, multiple parsers, classifiers, analyzers might be
used and interleaved in between operators as long as data dependency requirements are
fulfilled.

Implementations of network functions are relying on a relatively small number of critical
base components. In previous chapters we explored and detailed several implementations
of state-based storage functionality, at the core of flow analysis functions. This chapter
focuses on an upstream critical network function: packet classification, i.e. the association of
a packet with one or several labels, also known as packet filtering. These labels are then
used by downstream operators to select the behavior of the device, such as dropping the
packet, extracting it or encapsulating it.

A packet classifier enables defining a flow as a sequence of packets associated to the same
label. A given classification might correspond exactly to a given 5-tuple or match more broad

110

7.1. Tree Filters Design and SystemVerilog Implementation

pkt meta resultstree state

Config.
Memory

Compute
next

Match

Config.
Memory

Compute
next

Match

Config.
Memory

Compute
next

Match

init config

(a) Conceptual design of the classifier illustrated on 3 stages

Config.
Memory

Compute
next

Match

Config.
Memory

Compute
next

Match

Config.
Memory

Compute
next

Match

(b) Actual implemented architecture of the classifier

Figure 7.2: Packet classifier architecture design versus implementation

criteria, such as a range of IP addresses or a given protocol. Many algorithms and associated
architectures can be used to implement packet classifiers, ranging from linear search to
geometric algorithms to advanced heuristics [GM01, Tay05]. As always in hardware design
and implementation, configurability and performance induce considerable resource costs,
and a balance must be found between these parameters to provide efficient packet classifiers.
Using a tree approach such as the one proposed in HyperCuts [SBVW03], classification rules
can be compressed to keep the implementation affordable in resources, even with a one-
packet-per-cycle throughput. The tree structure requires strong synchronization between
packet metadata, internal state and results, which makes it an interesting application for our
framework. Figure 7.2a illustrates its base principle: a succession of configurable processing
stages, each corresponding to a level in the tree. While only three stages are depicted,
the number of stages is fully configurable and depends on the maximum number of rules
expected for a given application. At each stage, based on the result of the previous stage, the
current configuration is retrieved from a memory. This configuration is then combined with
packet metadata and internal tree state to produce the updated tree state, a classification
result, and the address of the configuration for the next stage.

As aforementioned, a network packet metadata usually includes the so-called 5-tuples:
source and destination IP address, protocol, and source and destination ports. For an
IPv6-enabled network device, with 128-bit IP addresses, 8-bit protocol identifier, and 16-bit
ports, it results in a bare minimum of a 296-bit data bus to be distributed to each stage with
proper synchronization. In practice, with an experimentally reasonable number of 40 stages
and 6-cycle latency per stage (2 for memory access, 4 for computations), it requires already
more than 70k registers only to forward and provide metadata to each stage. The impact
on resource usage of the actual implementation of this signal forwarding across the design
is considerable and such architectural choices become critical to eventually meet timing
requirements.

111

Chapter 7. Experimentation

7.1.2 Verilog Implementation

The original implementation of this classifier has been written in SystemVerilog and targets
both Intel and Xilinx/AMD FPGAs, respectively Stratix V and Ultrascale Plus architec-
tures [HG21]. As the number of registers in an ideal implementation, in which data is
forwarded along with computations, is too high to allow efficient placement and routing
of the design, we instead leverage vendor-provided shift registers, which comes with their
own capabilities and limitations. Xilinx provides LUT-based SRL primitives, able to manage
up to 32-bit long and 1-bit wide shift registers. Its toolchain, Vivado, is able to efficiently
infer shift registers as long as they do not cross a hierarchy boundary. On the contrary,
Intel toolchain, Quartus, avoids shit-register inference in most cases because it uses M20K
memory blocks, which are a rather rare and precious resource in the FPGA, often harder to
route. To force the use of appropriate vendor primitive, we had to manually extract data
forwarding parts of the design, and integrate them directly in the top level module, which
breaks the black-box paradigm and requires spreading information on internal pipelines
lengths.

Based on the theoretical architecture presented in Figure 7.2a, Figure 7.2b depicts the
ad-hoc implementation required to set up this explicit signal forward strategy. The three
different streams of data are passed along the stages with their own explicit forward
implementations:

Packet Metadata Read once at the beginning of the stage and not modified internally. A
tapped shift-register is effective here, to forward metadata aside the pipeline, and
supply them synchronously to each stage, after the configuration retrieval.

Compute Results Forwarded within the main pipeline, as they are used and modified all
along the stages. Proper split with computation here is difficult, and can only be done
locally in the design, e.g. in parallel with memory access.

Tree State Modified only once during the compute stage, after the configuration retrieval.
This modification is simple and done in a combinational way, permitting the imple-
mentation of a separate shift-register-based bypass of the depth of a complete stage
latency.

In the end, modularity of the original architecture is greatly restricted with this optimized
implementation, which is hard to maintain and upgrade. For example, adding or removing
a register within a compute block requires recomputing and propagating the latency change
across the entire pipeline, in order to ensure that data remains properly synchronized.

7.1.3 Fine-grained Reverse Engineering

The fine-grained optimizations leveraged by the current SystemVerilog implementation
have been carefully crafted through numerous trials and errors, by a single experienced
hardware engineer. As often in such cases, the documentation is sparse and remains
focused on algorithms and concepts behind the optimizations rather than their practical
implementations. As a result, the module hierarchy is complex and hard to apprehend
for an external observer. To get a precise grasp at the actual synchronization requirements
between each part of this hierarchy, we leveraged a modified version of our sv2chisel tool to
draw the existing hierarchy with a focus on signals and their synchronizations. In particular,
we are interested in registered paths and combinational paths across the hierarchy.

As detailed in Section 6.2.3.1, inference of registers from a SystemVerilog description
requires a semantic analysis, and cannot simply be achieved from a basic parsing and its
resulting syntax tree. Based on the existing capabilities of sv2chisel transforms regarding this

112

7.2. Chisel Translation with sv2chisel

tf_stage_compute

Inputs

tf_stage_compute

cfg_shift_reg (tapped_shift_register)

Inputs

Outputs

Outputs

in_result

in_data

in_pkt

in_pkt_array

in_compute

in_status

in_status_array

in_cfg

in_mask_cfg

out_status_array

shift_res_result node_prev_result

clk

out_data shift_res_cfg

shift_res_compute

in_field

in_field_pos

in_field_value

in_field_shift_size

corrected_field_shift_size

node_cfg

node_leaf_cfg

merge_compute

merge_result
node_mask_cfg

merge_addr

shift_res_field_value

node_result

shift_field_shift_size

shift_field_value

shift_res_mask_cfg

out_computenode_aggreg_result

node_mask_rom

merge_addr_dup out_addr_dup

node_compute

in_mask_size

out_result

out_addr

sr_out_status

Legend

register combinational
signal

DependencyIO Port

Figure 7.3: Generated synchronization-oriented representation of one inner submodule of
Tree-Filters hierarchy

matter, we developed an alternative back-end of sv2chisel, able to draw signal relationships
through registers. Unlike existing circuit drawing utilities, this one is not focused on the
operators and logic operations between signals but only on their synchronizations. Figure 7.3
illustrates the result obtained for one of the internal component of the tree filters hierarchy.1

This preparatory study of the existing SystemVerilog hierarchy highlights how the
strong signal synchronization needs, mixed with target considerations, have led to a highly
complex implementation. A considerable part of the implementation overhead is dedicated
to delay signals from a stage of the pipeline to the next. This is the very context in which
our pipeline framework is relevant to simplify the description and regain control over
architecture parameterization for enhanced flexibility and reusability. However, leveraging
our framework first requires translating the existing implementation to Chisel. The next
section details this translation process.

7.2 Chisel Translation with sv2chisel

As a first step towards advanced evolution of the tree filters architecture, translation of this
complex existing SystemVerilog hierarchy into a more flexible language is a tedious task.
To avoid any regression, it begins with a word-for-word translation and validation of this
initial translated version against the existing test-benches. Then, the validated version, later
referred as Vanilla Chisel, can be confidently upgraded with advanced features such as
pipeline management.

Chapter 6 highlighted some inherent challenges of SystemVerilog to Chisel translation,

1Appendix C relates the fine-grained architecture of all modules in further details.

113

Chapter 7. Experimentation

and detailed the limitations of test-driven development to provide exhaustive coverage of
SystemVerilog constructs. In particular, the existing tree filters hierarchy makes an extensive
use of advanced synthesizable SystemVerilog constructs such as enumerations, functions,
packages and integration of vendors IPs. The description also leverages custom tricks to
circumvent some generation limitations such as iteration over struct fields. As a result,
a substantial effort is required to achieve the proper translation of this hierarchy. First,
additional development of sv2chisel is required to support these constructs, then appropriate
translation of some data-types and manual refactoring of anti-idiomatic patterns is further
discussed.

7.2.1 Additional Translating Automation

Unlike previous uses of sv2chisel which achieved the translation of several independent
(System)Verilog modules into Chisel, the translation of tree filters architecture requires a
project based approach. In particular, as the hierarchy makes an extensive use of packages
to define global variables which are used in various place of the design, type inference
algorithms must take all usages into account. Similarly, the translation must guarantee
consistent type inference for module instantiations, with appropriate casts of ports and
parameters wherever required.

Aside from such a structural improvement of the automated translation process, several
other developments are required, from support of new constructs to enhanced semantic
analysis. Due to the very nature of test-driven development approach, several SystemVerilog
constructs had been left unsupported in previous versions of sv2chisel. Among them, the
following constructs are required to accurately translate the existing tree filters architecture
and are now supported by sv2chisel: function, enum and package. The remaining content of
the present section reviews two semantic analysis improvements, both related to generation
conditions.

1 module wire_or_reg(parameter INSERT_REG = 0)(
2 input clock,
3 input in,
4 output out,
5);
6 logic signal;
7 generate
8 if (INSERT_REG) begin
9 always @(posedge clock) begin

10 signal <= in;
11 end
12 end else begin
13 assign signal = in;
14 end
15 endgenerate
16 assign out = signal;
17 endmodule

Listing 7.11: Conditional register behavior
of a signal in SystemVerilog

class wire_or_reg(INSERT_REG:Boolean = false){
// implicit clock
val in = IO(Input(Bool()))
val out = IO(Output(Bool()))

val signal = if(INSERT_REG) Reg(Bool())
else Wire(Bool())

// Tautologic condition: should be removed
if(INSERT_REG){

signal := in

} else {
signal := in

}

out := signal
}

Listing 7.12: Translation of Listing 7.11 with
sv2chisel

A first automation requiring semantic analysis consists in the correct translation of
parameterized inference of signals, either as simple wire or as register. Listing 7.11
illustrates such parameterized behavioral description in Verilog and Listing 7.12 presents
the equivalent Chisel translation as obtained with sv2chisel. In the Chisel translation, the
condition is now required at the declaration of signal. With additional analysis of equivalent

114

7.2. Chisel Translation with sv2chisel

source in both cases, lines 7–12 could be simplified to merge equivalent statements as a
single one and get rid of the tautological condition.

1 generate
2 if (PARAM_A) begin
3 always @(posedge clock) begin
4 if(signal) begin
5 signal <= in;
6 else begin
7 if (PARAM_B) begin
8 signal <= '0;
9 end else begin

10 signal <= '1;
11 end
12 end
13 end
14 end else begin
15 // ...
16 end
17 endgenerate

Listing 7.13: Nested generation and circuit
conditions in SystemVerilog

// outside a process
if (PARAM_A) { // => generation statement

// within a process and signal is hardware
when(signal) { // => actual hardware multiplexer

signal := in
} .otherwise {

// within a process but PARAM_B is software
if (PARAM_B) { // => generation statement

signal := false.B
} else {

signal := true.B
}

}
} else {

// ...
}
// NB: no explicit generate block required

Listing 7.14: Nested generation and circuit
conditions in translated Chisel

Another semantic improvement consists in the analysis of nested conditions within a
generate block and a clocked process. While this improvement is not required for the proper
translation of tree filters, it generates more idiomatic Chisel code. In a nutshell, in Chisel there
is a distinction between two conditional constructs. The first, if, is provided by Scala and
corresponds to an elaboration or generation condition which does not exist anymore in the
final circuit. The second, when, is provided by Chisel and results in hardware multiplexers.
To provide an idiomatic translation, the designer intent must be retrieved from the overall
context, and in particular take the kind of operands into account. A software kind corresponds
to parameters and all elaboration-related logic, whereas a hardware kind corresponds to actual
signals in the resulting circuits. Listing 7.13 illustrates nested if conditions in SystemVerilog,
where the interpretation as elaboration-time or actual hardware conditions is left to the
designer. Listing 7.14 presents the equivalent translation in Chisel with the design intent
retrieved from operands kinds.

7.2.2 Investigating Translation Overhead

While the previous paragraphs focused on providing effortless and functionally equivalent
translations, this part reviews performance of the translated Chisel in terms of generation
efficiency, simulation speed and resource usage. The following setup has been used for all
experiments in this section:

Generation Chisel/FIRRTL Stack 3.5.0-RC2

• sbt 1.5.7 with -mem 8192 option forwarded to java, required for FIRRTL compilation
• scala 2.12.15
• Ubuntu Java 11.0.13

Simulator Verilator 4.106 with wave tracing enabled, unless otherwise specified

Test Framework cocotb 1.5.1

FPGA Targets with two different architectures

115

Chapter 7. Experimentation

Baseline SV Initial Chisel Diff %

Generated
Files (MB)

Chisel Stack
top.fir - 189
top.v 0.313 22 +21.7 +7,233%

Verilator
top_tb4 22 118 +98 +445%
*.cpp 95 347 +252 +265%

*.h 1.4 15 +13.6 +971%
dump.fst5 2.5GB 4.2GB +1.7GB +68%

Duration
(mm:ss)

Scala compilation - 00:10
Chisel elaboration - 00:18

FIRRTL compilation - 02:11
Verilation6 00:20 ∼16:00 +15:40 +4,705%

C++ compilation 00:40 ∼11:00 +10:20 +1,550%

TOTAL 01:00 ∼29:30 +28:30 +2,850%

Simulation rate7 916ns/s 300ns/s -616ns/s -67%

Table 7.1: Initial overhead of translated Tree filters architecture

• Xilinx Virtex Ultrascale+ @ 200MHz (Vivado 2018.2)

• Altera/Intel Stratix V @ 150MHz (Quartus 15.1)

Table 7.1 compares the initial translation against the original SystemVerilog version,
with a focus on duration of main steps of the test flow and on the volume of generated
files. These first results show a major increase in setup time, from generation to simulation
effective startup, with more than an order of magnitude between SystemVerilog baseline
and initial Chisel translation. The simulation is also drastically slowed down, with a 67%
reduction of the simulation rate. These observations match the massive increase in volume
of the C++ simulation model2generated by Verilator. Comparison of such generated file sizes
without ability to analyze their content is empiric but showcases the structural differences
between handcrafted and generated Verilog, despite an identical functional behavior.

An execution overhead was expected due to the complexity of the original hierarchy and
the loss of parameterizations for the simulator, however, these results make the translation
unfit for re-integration in its current form. Serious actions must be taken to contain this
overhead under reasonable limits.

The comparison in size between handcrafted SystemVerilog and generated Verilog is
included in Table 7.1 to highlight the fact that generated files are already much larger before
their compilation into a simulation model. While the generated Verilog is expected to be
larger than its handcrafted counterpart, its conciseness should still be inspected to ensure a
proper integration with downstream EDA tools.

2Verilator simulator first compiles the Verilog hierarchy into a C++ simulation model, which is in turn
compiled to a self-sustained simulation executable.

3Total handcrafted SystemVerilog files, this total also includes one global generated configuration file of 116K
whose content is only partially used here.

4Final simulation executable file size
5Size of wave dump for simulation of 100,000 requests
6Compilation of Verilog sources into a C++ simulation model by Verilator
7For simulation of 10,000 requests

116

7.2. Chisel Translation with sv2chisel

Initial Chisel Optimized
Inference

Diff %

Occurrences

UInt(<w>.W) 149 328 +179 +120%
Vec(<n>, Bool()) 216 37 -179 -82%

Vec + UInt 365 365 = =
asTypeOf 186 151 -35 -18%

Generated
Files (MB)

Chisel Stack
top.fir 189 80 -109 -58%
top.v 22 6.5 -15.5 -70%

Verilator
top_tb 118 44 -74 -62%
*.cpp 347 141 -206 -59%

*.h 15 4.9 -10.1 -67%
dump.fst 4.2GB 3.6GB -0.6GB -14%

Duration
(mm:ss)

Scala compilation 00:10 00:08 ' '
Chisel elaboration 00:18 00:12 -00:06 -33%

FIRRTL compilation 02:11 00:50 -01:21 -61%
Verilation ∼16:00 00:54 -15:00 -93%

C++ compilation ∼11:00 01:08 -10:00 -91%

TOTAL ∼29:30 03:12 -26:15 -89%

Simulation rate (trace) 300ns/s 610ns/s +310ns/s +103%

Table 7.2: Positive impact of hierarchical type inference on Tree filters architecture

7.2.2.1 Improving Semantic Analysis For Performance

Close inspection of the generated files reveals the critical impact of one particular semantic
choice during the translation process: type inference of Verilog bit-vectors. The semantic
differences regarding the translation of one-dimension bit-vector to Chisel either as UInt
or as Vec[Bool] have been previously detailed in Section 6.2.3.3. While the impact of this
choice on small designs remains limited to a user convenience matter, it appears to be
critical for performance on larger designs. From an elaboration perspective, both hardware
objects are completely different. On the one hand, UInt is a single hardware object, that will
always be processed and emitted as a whole. On the other hand, Vec[Bool] is a collection of
independent hardware objects, that are individually treated at each stage of the compilation
process, down to an emission as individual signals in generated Verilog.

While the individual processing of each bit of a bit-vector might enable further optimiza-
tions, such as constant propagation or dead-code elimination, it comes with a considerable
overhead, from elaboration to emission to simulation.

Inspection of the initial Chisel translation reveals a high count of Vec[Bool] signal
declarations, as reported in the first lines of Table 7.2. In tree filter hierarchy, these declarations
are concentrated in global type declarations, in particular in data structure declarations,
which are shared between many modules and used at their interfaces. Such an intense
usage of suboptimally typed signals mechanically leads to a very high count of independent
signals in the generated Verilog.

To tackle this issue, a cross hierarchy type inference, with support for structural types,
has been added to the translation tool. Table 7.2 showcases the comparison between the
initial translation, and the translation obtained after optimization of the type inference

7A simple optimization case, comparing UInt and Vec[Bool] behavior is presented in appendix D.1.

117

Chapter 7. Experimentation

Initial Chisel Final Chisel Diff %

Generated
Files (MB)

Chisel Stack
top.fir 189 17 -172 -91%
top.v 22 6.4 -15.6 -71%

Verilator
top_tb 118 41 -77 -65%
*.cpp 347 134 -213 -61%

*.h 15 4.8 -11.2 -75%
dump.fst 4.2GB 3.0GB -1.2GB -29%

Duration
(mm:ss)

Scala compilation 00:10 00:06 -00:04 -40%
Chisel elaboration 00:18 00:07 -00:11 -61%

FIRRTL compilation 02:11 00:30 -01:41 -77%
Verilation ∼16:00 00:45 -15:15 -95%

C++ compilation ∼11:00 01:03 -10:00 -91%

TOTAL ∼29:30 02:31 -27:00 -92%

Simulation rate (trace) 300ns/s 656ns/s +356ns/s +118%

Table 7.3: Total improvements of successive iterations on translated Tree filters architecture

algorithm. The considerable reduction of Vec[Bool] signal declarations in favor of their UInt
counterparts has a very beneficial effect of the entire stack from generation to simulation. As
an immediate consequence, the size of Chisel-generated files is substantially reduced. With
much less independent signals to handle, the simulator is now faster to generate its C++

model, which in turn is faster to compile. As a result, the simulation is more than twice as
fast as the original version. While not yet as fast as the original handcrafted SystemVerilog,
this iteration greatly improves the overall user-experience. It enables the integration of the
translated version with a consequent but reasonable overhead.

As this simple change in Chisel description has considerable consequences on the entire
stack, the remaining 37 Vec[Bool] signal declarations require close inspection. In particular,
due to bit-level manipulation of IP addresses in some part of the design, the latter are still
globally declared as Vec[Bool], generating no less than 128 signals for each usage. However,
as part of the current experimentation, we do not attempt to optimize each signal declaration
and focus on other potential improvements with more idiomatic Chisel/Scala generators.

7.2.2.2 From Antipatterns to Idiomatic Approaches

In an attempt to further improve the translation process, a close inspection of the translated
Chisel code reveals some antipatterns, originating from SystemVerilog limited expressiveness.
Appendix D.2 first details the complexity of word-for-word translation of such antipatterns
and provides workarounds to nonetheless achieve a correct automated translation. It
then discusses a manual rewrite in order to better express the original intent in a more
idiomatic Scala/Chisel version, which results in substantial performance increase. Finally,
appendix D.2.3 relates an optimization of the elaboration process based on Chisel idioms.
The respective impact of these manual iterations on the translation overhead is detailed in
associated appendices and included in the final comparison tables below.

118

7.2. Chisel Translation with sv2chisel

Baseline SV Final Chisel Diff %

Generated
Files (MB)

Chisel Stack
top.fir - 17
top.v 0.31 6.4 +6.1 +2,065%

Verilator
top_tb 22 41 +19 +86%
*.cpp 95 134 +39 +41%

*.h 1.4 4.8 +3.4 +242%
dump.fst 2.5GB 3.0GB +0.5GB +20%

Duration
(mm:ss)

Scala compilation - 00:06
Chisel elaboration - 00:07

FIRRTL compilation - 00:30
Verilation 00:20 00:45 +00:25 +125%

C++ compilation 00:40 01:03 +00:23 +58%

TOTAL 01:00 02:31 +01:31 +155%

Simulation rate (trace) 916ns/s 656ns/s -260ns/s -28%
Simulation rate (no traces) 2719ns/s 2350ns/s -369ns/s -14%

Table 7.4: Final overhead of translated Tree filters architecture

7.2.2.3 Conclusion

Table 7.3 summarizes the positive impact of all successive iterations compared to the initial
translation. It highlights the potential hidden cost of a lazy translation which does not take
advantage of Chisel native types and constructs. Following our original approach with
sv2chisel development, efficient translation of hardware architectures does require a human
expertise, with an in-depth analysis of the designer intent.

7.2.3 Final Results

The evaluation of a translation from SystemVerilog to Chisel must take several criteria
into account to guarantee a smooth user-experience. While the most obvious criteria are a
functionally equivalent circuit and similar resource usage after synthesis, the development
flow overhead must first be considered carefully.

7.2.3.1 Development Flow Overhead

From an initial translation with an unacceptable overhead, we detailed successful improve-
ments whose combined impact makes the resulting Chisel a serious candidate for further
developments and re-integration within the surrounding SystemVerilog hierarchy.

Table 7.4 presents the final overhead of Chisel translation, compared to the original
SystemVerilog implementation. Despite substantial efforts to improve the translator and
additional iterations over the resulting Chisel code, this final version still does not achieve on-
par results with the original SystemVerilog implementation. Due to the very nature of HCLs,
elaboration and compilation steps are required to convert the high-level description into
a low-level circuit which can then be fed to usual simulation tools. Both steps necessarily
introduce an initial overhead which might then be compensated by an acceleration of
simulation tools as mentioned in Chapters 4 and 6 with translation of a custom complex
generic hash function into Chisel. However, such compensation cannot be expected here,
and the translated version appears even slower than the original version for two main

119

Chapter 7. Experimentation

1 logic [MASK_W-1:0] node_mask_rom [MASK_W:0];
2

3 initial begin
4 for (int mask_rom_id = 0; mask_rom_id <= MASK_W; mask_rom_id++) begin
5 node_mask_rom[mask_rom_id] = (1 << mask_rom_id) - 1;
6 end
7 end

Listing 7.15: Original Verilog version with ROM initialization loop within initial statement

reasons. First, the original SystemVerilog implementation of tree filters does not contain such
existing elaboration bottleneck that its Chisel counterpart could take charge of. Secondly, the
architecture of tree filters highly relies on massively replicated instantiations of parameterized
modules, which get emitted as distinct lowered Verilog modules. This duplication notably
contributes to the large size of the emitted top.v file. The size of this circuit description as
input of the simulator leads to increased parsing and analysis times to build the simulation
model. This lowered and flattened circuit has lost a part of the designer intent which can no
longer be used by the simulator. In particular, efficient simulators are able to take advantage
of parameterized architectures to re-use some evaluating functions in various parameterized
contexts. In the case of Verilator, some parts of a given parameterized module might get
expressed as a single C++ function which is then called with the appropriate parameters.
This results in an extensive re-use of the same instructions in the simulation executable,
and incidentally in a better use of processor instruction cache. Such optimizations are not
available for elaborated circuits.

As a conclusion, HCL generated circuits are expected to require additional setup time
and to impair execution performance, except for specific cases in which non-elaborated
designs appears too generic for efficient simulation. However, the current overhead remains
acceptable to pursue experiments with the pipeline automation framework.

7.2.3.2 Circuit Quality Evaluation

While the flow overhead is critical from an agile development perspective, the most important
criterion for hardware integration remains guaranteeing equivalent functionality and similar
resource usage.

Regarding functionality, the automated translation successfully achieved functionally
equivalent translation, only requiring a single manual fix, with a warning issued by sv2chisel.
It was due to a memory initialization occurring within an initial statement as illustrated
in Listing 7.15. Raw translated version and functionally equivalent manual fix are presented
in Listing 7.16.

However, with this first functionally equivalent version, the reported resource usage
after synthesis is quite different from the original SystemVerilog version. As presented in
Table 7.5, this RegInit version results in a notable increase of Logic LUTs usage in place of
RAM blocks. This implementation change appears to impact design ability to meet timing
requirements, with only 7 synthesis strategies able to achieve successful routing.

To match the original implementation intent, the initialization of node_mask_rom has been
upgraded to leverage a custom MemInit construct, as illustrated in Listing 7.17. Based on
Chisel Mem primitive, this construct leverages FIRRTL annotations to preset initial values in
the so-created ROM.8 It enforces a Verilog generation close to the original SystemVerilog

8This construct is provided as part of sv2chisel-helpers library available at https://github.com/ovh/
sv2chisel/blob/master/helpers/src/main/scala/MemInit.scala

120

https://github.com/ovh/sv2chisel/blob/master/helpers/src/main/scala/MemInit.scala
https://github.com/ovh/sv2chisel/blob/master/helpers/src/main/scala/MemInit.scala

7.2. Chisel Translation with sv2chisel

1 // Raw Translated version (initial statements are ignored by sv2chisel)
2 val node_mask_rom = Reg(Vec(MASK_W + 1, UInt(MASK_W.W)))
3 // Functionally equivalent manual fix
4 val node_mask_rom = RegInit(VecInit.tabulate(MASK_W+1)(i => ((BigInt(1) << i) - 1).U))

Listing 7.16: Manual fix of translated Chisel to provide pre-initialized Vector

1 import sv2chisel.helpers.MemInit
2 val node_mask_rom = MemInit.tabulate(MASK_W + 1, UInt(MASK_W.W))(i => (BigInt(1) << i) - 1)

Listing 7.17: Final version forcing ROM inference for equivalent resource usage

implementation and results in almost similar resource usage after synthesis, as detailed
in Table 7.5. In particular, it leverages the same behavioral pattern for node_mask_rom
description, which is expected to be inferred as a memory block and implemented with
block RAMs rather than registers. Table 7.5 confirms this expectation and reports the same
amount of block RAM for both implementations.

This new version almost catches up with original SystemVerilog on routing, still un-
expectedly failing to meet timing requirements with one routing strategy. While block
RAM count is now equal to the original one, this imperfect result is probably linked to
the substantial increase in Logic LUTs usage. Closer investigation reveals that this increase
is concentrated in a widely replicated submodule, justifying the global impact of what
seems to be a single translation discrepancy. However, a manual comparison of the original
and translated versions of this submodule was not sufficient to identify the reason of this
mismatching synthesis behavior. Additional comparisons, e.g. with other synthesis tools or
various parameterizations of the module, could probably help to understand the root cause.

As a conclusion, the translation of the complex tree filters hierarchy from its original
handcrafted and optimized SystemVerilog version to a functionally-equivalent low-level
Chisel version is satisfactory. After several iterations, the initial development flow overhead
has been contained under reasonable limits and the resource usage remains similar. Several
areas for improvements have been identified to provide a smoother development experience
and contain resource usage overhead. Nonetheless, based on this decent translation, the
next section pursues the experimentation with the integration of our pipeline framework to
replace all complex and manual signal synchronizations by a pipeline-oriented description.

∑ LUT LLUT LUTRAM SRL FF RAMB36 RAMB18 URAM Timing

SystemVerilog 90,316 59,266 0 31,050 63,945 20 190 92 14/14

Chisel RegInit 95,119 64,127 0 30,992 62,793 20 0 92 7/14
+4,803 +4,861 = -58 -1,152 = -190 =
+5.3% +8.2% = -0.1% -1.8% = -100% =

Chisel MemInit 92,650 61,658 0 30,992 63,363 20 190 92 13/14
+2,334 +2,392 = -58 -582 = = =
+2.5% +4.0% = -0.1% -0.9% = = =

Table 7.5: Comparison of resource usage after implementation between original SystemVer-
ilog and two Chisel equivalent translations

121

Chapter 7. Experimentation

7.3 Integrating Pipeline Framework

7.3.1 Implementation

The Chisel code resulting from abovementioned iterative translation process stands as
reference through this section. Based on this Vanilla Chisel version of the tree filters hi-
erarchy, we aim at implementing a pipeline-oriented version of this hierarchy with our
pipeline automation framework. While the pipeline design methodology associated with
this framework is detailed in Chapter 5, this section intends to demonstrate its relevance on
a large industrial application. As detailed in Section 7.1, tree filters architecture is a natural
candidate for pipeline-oriented implementation because it heavily relies on complex signal
synchronization across its hierarchy.

7.3.1.1 Description Conciseness

1 // input signals
2 input in_compute,
3 input in_result,
4 input tf_word_t in_cfg,
5 /**
6 * several in_cfg usage in
7 * combinational computations
8 **/
9

10 // explicit propagation with shift-registers
11 shift_register #(
12 // ISSUE #1: user-managed synchronization
13 .DEPTH(SHIFTER_LENGTH+1),
14 // ISSUE #2: user-managed widths
15 .WIDTH($bits(tf_word_t) + 2),
16) cfg_shift_reg (
17 .clk(clk),
18 .in_data({in_cfg, in_result, in_compute}),
19 .out_data({sr_cfg, sr_result, sr_compute})
20

21 /**
22 * several computation stages
23 * providing sft_value signal
24 ***/
25 // ISSUE #3: additional signal declarations
26 logic node_prev_result;
27 logic node_compute;
28 tf_word_t node_cfg;
29

30 logic node_result = '0;
31 always_ff @(posedge clk) begin
32 // computation requiring synchronization
33 node_result <= sr_cfg.mask & sft_value
34 // explicit forward of unmodified signals
35 // with on-the-fly renaming
36 node_prev_result <= sr_result;
37 node_compute <= sr_compute;
38 node_cfg <= sr_cfg;
39 end
40 /** final stage using all node_* signals */

Listing 7.18: Original SystemVerilog with
explicit signal propagations

// pipeline aware naming to guarantee SSA
val prevCompute = Bool()
val prevResult = Bool()
val cfg = new TreeFilterWordT

/**
* several in_cfg usage in
* combinational computations
**/

val pipe = Pipe(in, "main")
// no need for explicit propagation

// on-demand synchronization of signals

// width-inference based on reflexivity

/**
* several computation stages
* providing sftValue signal
***/

// no noisy forwarded signal declarations

pipe.node = (p, n) => {
n.currentResult = Step.RegInit(p, false.B)

n.currentResult := p.cfg.mask & p.sftValue
}
// no need for explicit signal forward

/** final stage using previous signals */

Listing 7.19: Pipeline-oriented Chisel version
with implicit signal propagations

122

7.3. Integrating Pipeline Framework

main

main

 init

cfg

prevResult

prevCompute

...

 comb

cfg

...

[0]

 shiftLoop_end

sftValue

cfg

[N+1]
 node

currentResult

prevResult

[N+2]

 ...

finalResult

cfg

prevCompute

[N+2]

[N+2]

 shiftLoop_*

sftValue

sftSize [N]
[1] [1]

[1]

[0]

Figure 7.4: Pipeline representation generated by the framework (edited for conciseness)

Listing 7.18 presents an explicit signal propagation to match such synchronization
requirements as originally implemented in the SystemVerilog version. For the sake of
conciseness, the SystemVerilog version is preferred here over the translated Chisel version
due to the verbosity of the translation of concatenations within instance port maps. This
snippet illustrates several pipeline stages:

Input stage l.1–4, Only three signals considered here for conciseness

Initial combinational stage l.5–8, (omitted)

Explicit signal propagation l.10–19, Shift registers synchronizing inputs with computations

Intermediate computation stages l.21–24, (omitted)

Node stage l.26–39, Requiring synchronization of previous computations with inputs

Final stage l.40, (omitted) Requiring signals from several previous stages, line 40

The explicit signal propagation used in this implementation raises several issues, detailed as
comments in the listing. The root cause for all these issues is the full responsibility of the
developer to manage all details of the synchronization, which results in an error-prone and
verbose description.

To address all these issues at once, Listing 7.19 illustrates the equivalent pipeline-oriented
description of the same processing stages. Based on the explicit Pipe object, this imple-
mentation natively solves the synchronization requirements between computation stages,
without requiring explicit signal propagation. As a result, this refined version is focused
on actual processing operation, and freed of noisy statements whose sole purpose is to
guarantee proper synchronizations. Applied to the complete module, it incidentally reduces
the amount of lines of code by 20%. Omitted signal propagations are then programmatically
implemented, allowing elaboration-time parameterizations and experiments with various
synchronization strategies.

Based on a higher-level abstraction, the framework is able to provide an enriched
representation of pipeline stages and theirs signals, focused on synchronization requirements.
Figure 7.4 presents such a generated representation, manually edited to match the stages
presented in Listing 7.19.9 In particular, generated figures do not include any literal labels

9Full version of the pipeline representation of the current module it depicted in Appendix C.3.

123

Chapter 7. Experimentation

and merged stages, as the framework only accesses elaborated values and treat each stage
independently.

7.3.1.2 Off-the-shelf Resource Usage Optimization of Signal Propagations

This pipeline-oriented representation highlights a potential optimization natively provided
by the framework. The purple arrows illustrate the respective synchronization requirements
for the three signals this snippet focuses on: cfg, prevCompute and prevResult. More
specifically, cfg requires (N + 1)-cycle propagation from init to shiftLoop_end, whereas
prevCompute and prevResult requires (N + 2)-cycle propagation to other stages. The original
SystemVerilog implementation groups them for a first propagation across the intermediate
computation stages (shiftLoop stages with N + 1 total delay in Figure 7.4). Considering the
case of input signal in_compute in the SystemVerilog version, it is first delayed through
explicit shift registers and comes out as sr_compute. Then, it is explicit forwarded with the
node stage as node_compute.

In the pipeline-oriented description which enforces Single-Static Assignment, these
successive copies of the same input signal correspond to the prevCompute signal. Unlike in
the SystemVerilog implementation, the framework does not group signals for propagation.
It implements a dedicated propagation for each purple arrow as they appear on Figure 7.4,
with the corresponding delay.

Different hardware resources might be inferred by synthesis tools for both implemen-
tations. Considering Vivado synthesis in the SystemVerilog case, a wide shift register will
be inferred for the grouped propagation, then individual registers will be inferred for
additional explicit forward of sr_compute and sr_result. On target FPGA architecture, a
single SRL primitive is able to implement shift-registers of up to 16-cycle depth, leading
to a non-linear resource usage. Moreover, the last register of inferred shift-registers is
extracted and implemented with a standard Flip-Flop (FF) to avoid impacting the timing of
combinational operations connected to shift-register output. As a result, the actual resource
usage of a shift-register of width W and depth n ≤ 16 is W SRL + W FFs. With respective
widths of Wc f g, Wc and Wr bits for cfg, compute and result signals, the total resource usage
of the manual SystemVerilog propagations is given as follows:

grouped propagation (Wc f g + Wc + Wr)× (1 SRL + 1 FF)
individual registers Wc FF + Wr FF + W FF

Total (Wc f g + Wc + Wr) SRL + 2(Wc f g + Wc + Wr) FF
(7.1)

Due to shift-register inference for the grouped propagation within a submodule, the subse-
quent explicit forward of compute and results signals requires a flip-flop which cannot be
absorbed as part of the shift-register. As a result, two successive FFs are used for propagation
of compute and results signals after the explicit SystemVerilog propagation. To optimize re-
source usage of this snippet, an individual shift-register should be described for each signal,
which would result in an even more verbose and tangled SystemVerilog implementation.
With the framework and its individual signal propagations, this optimization is natively
guaranteed, sparing (Wc + Wr) FFs in the current case:

cfg Wc f g(1 SRL + 1 FF) + Wc f g FF
compute Wc(1 SRL + 1 FF)

result Wr(1 SRL + 1 FF)

Total (Wc f g + Wc + Wr) SRL + (2Wc f g + Wc + Wr) FF

(7.2)

While the savings remain limited here, such independent signal propagation management
is able to provide considerable savings in larger hierarchies. Moreover, sparing a single

124

7.3. Integrating Pipeline Framework

flip-flop at the right place can have a substantial impact on routing and ability to meet
timing requirements for highly-congested areas of a design.

Last but not least, the pipeline-oriented implementation remains very close to the coarse-
grained architecture, as Figure 7.2a illustrates in Section 7.1. As a result, the implementation
preserves the intended flexibility of this stage-based design while exploration and optimiza-
tions are made easier. Modification of the processing part does not require dealing with the
intricate data forwarding, and improvements of the latter can be independently achieved
with appropriate implementation strategies. In particular, it allowed us to explore custom
data forwarding solutions, one of which showcases the ability to improve resource usage by
using FIFOs instead of shift registers for some signal propagations. This improvement was
designed and implemented without requiring any update of the pipeline-oriented descrip-
tion, whereas the equivalent exploration on the SystemVerilog implementation would have
been laborious and error-prone.

7.3.2 Initial Synthesis Results

Extending the results presented in Section 5.5, this part details various resource usage ob-
tained after synthesis of the pipeline-oriented implementations of the tree filters architecture.
The Vanilla Chisel version serves as the reference to evaluate the impact of the framework
and its multiple implementation strategies. While Section 7.2.3 concludes with a noticeable
overhead of the latter against the original SystemVerilog implementation, the framework
does not intend to compensate existing translation discrepancies.

Three implementation strategies are experimented here, based on the corresponding
synchronization algorithms presented in Section 5.4 and summarized as follows:

Peer-to-Peer Starting with the last stage, each missing signal is requested to immediate
upstream stages. Propagations are implemented with the same hardware primitives
as the existing relation between the current stage and its source, i.e. generally either
simple wire or a register.

Direct Also starting with the last stage but based on knowledge of missing and equivalent re-
lations, for each missing signal it implements a direct latency- and protocol-equivalent
relation from the closest upstream source. The hardware primitive is chosen depending
on further parameterization of the strategy. As the tree filters hierarchy does not require
protocol signaling and relies only on constant-latency relations, we experimented with
the following configurations:

SRL Implement all constant latency paths based on Chisel-generated shift-registers,
regardless of their depth and width of the signals.

FIFO Implement constant latency paths with a FIFO and a counter as soon as the
equivalent depth reaches 6 cycles and the signal width is larger or equal to 16
bits; default to shift-registers otherwise.

TSR Leverage a custom shift-register primitive TappedShiftRegister (TSR), either relying
on inference for Xilinx FPGAs or based on vendor primitives for Intel FPGAs.

As abovementioned, the synthesis results presented in this section target two distinct
FPGA architectures which are currently deployed in production at OVHcloud and imple-
ment the same device, except for performance:

• Xilinx Virtex Ultrascale+ at 200 MHz, for a 400 Gbps throughput. (Vivado 2018.2)

• Altera/Intel Stratix V at 150 MHz, for a 40 Gbps throughput. (Quartus 15.1)

125

Chapter 7. Experimentation

∑ LUT LLUT LUTRAM SRL FF xRAM10

Vanilla Chisel 8,962 5,480 0 3,482 8,166 91

Peer-to-peer 8,774 5,306 0 3,468 8,159 91
Direct SRL 8,756 5,288 0 3,468 8,161 91
Direct TSR 8,838 5,370 0 3,468 8,150 91

Direct FIFO 7,898 5,642 1824 432 5,301 91

Peer-to-peer -2.1% -3.2% = -0.4% -0.1% =
Direct SRL -2.3% -3.5% = -0.4% -0.1% =
Direct TSR -1.4% -2.0% = -0.4% -0.2% =

Direct FIFO -11.9% +3.0% ∞ -87.6% -35.1% =

Table 7.6: Resource usage comparison for an 8-stage packet classifier on Xilinx Ultrascale+

∑ LUT LLUT MLUT FF M20k ALM

Vanilla Chisel 10964 7372 3592 4853 64 7116

Peer-to-peer 5044 5044 0 27294 64 8607
Direct SRL 5061 5061 0 27280 64 8625
Direct TSR 11031 7437 3594 4821 64 7311

Direct FIFO 7865 7865 0 8873 132 5464

Peer-to-peer -54.0% -31.6% -100% +462% = +21%
Direct SRL -53.8% -31.3% -100% +462% = +21%
Direct TSR +0.6% +0.9% +0.06% -0.7% = +2.7%

Direct FIFO -28.3% -6.7% -100% +82.8% +106% -23%

Table 7.7: Resource usage comparison for an 8-stage packet classifier on Intel Stratix V

We first discuss synthesis results for the Xilinx Virtex Ultrascale+ FPGA. While the current
industrial-scale versions leverage between 40 and 60 filtering stages, to ensure resource usage
readability, Table 7.6 presents resource usage of an 8-stage classifier. In accordance with
the original SystemVerilog implementation, this pipeline-oriented version is here generated
without protocol signaling.

Xilinx toolchain reports three categories of LUT: Logical LUT (LLUT), LUTRAM and
Shift register LUT (SRL). The last two are internally sharing the same Memory LUTs resource.
The sum of these three primitives, reported in the leftmost column, is a relevant comparison
criterion between resource usage. Indeed, Xilinx suggests maintaining the ratio between
LUTs and FFs around 1 for best placement and routing performance. All various categories
of block memories are here summarized as xRAM for conciseness as their quantity and
distribution is the same for all implementations.

Due to Vivado default SRL inference, the three first strategies (Peer-to-Peer, Direct SRL
and Direct TSR) show very little difference against the original implementation. The slight
improvement is explained by the flattened hierarchy of the tree stages with the framework,
which enables additional signal optimizations.

However, this flattened hierarchy does not benefit in the same way to Intel toolchain.
Table 7.7 illustrates this behavior after the fitting step with Quartus Prime 20.1 of the same
8-stage classifier, with no protocol signaling, targeting Intel/Altera Stratix V architecture.

10xRAM sums RAMB18, RAMB36 and URAM primitives based on the following equivalences:
1 RAMB18 = 1 xRAM; 1 RAMB36 = 2 RAMB18; 1 URAM(4k× 72b) = 8 RAMB36(4k× 9b).

126

7.3. Integrating Pipeline Framework

The only equivalent comparison point with Vanilla Chisel in this table is the Direct TSR
strategy, which shows a slight increase in resource usage. The excessive use of registers (FFs)
with Peer-to-peer and Direct SRL strategies is due to the absence of shift registers inference.
This default behavior of Quartus synthesis experimentally leads to routing issues. The
rightmost column of the table reports an estimate number of logic elements (ALMs) actually
used on the FPGA. A lower value means a reduced circuit footprint and more efficient
resource packing. Despite a much higher LUT count, the Direct TSR strategy eventually
appears much easier to route within a complete network device.

Last but not least, on both targets, the Direct FIFO strategy exhibits very different
resource usage. On Intel, it highly reduces the overall logic element usage at the cost of
additional memory blocks. On Xilinx, it also reduces the overall footprint, even with FIFO
implemented as LUTRAMs, requiring less memory LUTs (2256 against 3482) and fewer
registers. Interestingly, the Direct FIFO strategy balances the resource usage distribution
between the various FPGA primitives. This preliminary result calls for further experiments
with finer-grained parameterization of this strategy to fully expose its ability to generate a
wide range of architecturally-specific implementations.

7.3.3 Further Architectural Parameterization

Controlling the balance of resource usage distribution between the various FPGA primitives
is a very powerful capability which can help with timing closure of complex designs. Such
control enables the designer to take full advantage the recommendation provided by FPGA
vendors, either generically in their documentation or through advanced synthesis reports of
a given design. As the Direct FIFO strategy already demonstrates the ability to implement
the same functionality—from the exact same pipeline-oriented description—with a very
different distribution of resource usage, this last experiment intends to further explore its
parameterization to offer a wide range of resource usage distributions. In particular, the
goal of this experiment is to provide parameterizations able to balance the use of LUTRAMs
against SRLs in the context of Xilinx FPGA synthesis.

The Direct FIFO strategy introduces two configurable thresholds above which a given
signal propagation will be implemented with a FIFO rather than shift registers.

1. Minimum signal propagation depth threshold

2. Minimum signal width threshold

Leveraging minimum thresholds is a first naive approach which is justified by the non-linear
resource cost of FIFOs in terms of both depth and width. FIFOs are indeed based on
memories which must be selected from a restricted set of (depth, width) couples, and as
further detailed below, they require additional protocol signals which increase their resource
usage.

7.3.3.1 FIFO Implementation as Constant Latency Path without Protocol Signaling

FIFOs (queues) are tailored to act as variable-latency paths, as they provide two independent
interfaces, write (enqueue) and read (dequeue) interfaces. In that regard, they are often used
as buffers to compensate or synchronize with other variable-latency paths, e.g. to accept a
back-pressure at the output of a memory which itself does not accept such a back-pressure.
To play this role, such variable latency paths require protocol signaling to synchronize with
one another. In the case of FIFO, the write interface is connected to the upstream protocol
signals and the read interface is connected to the downstream protocol signals as follows:

upstream.ready := !fifo.full
fifo.write_enable := upstream.valid

127

Chapter 7. Experimentation

downstream.valid := !fifo.empty
fifo.read_enable := downstream.ready

From then on, if we attempt to remove the protocol signaling around this FIFO, considering
that the circuit is uniformly exempt of back-pressure and its data is always valid, the
following connections are observed:

fifo.write_enable := true.B
fifo.read_enable := true.B

As soon as the circuit powers up11, this results in a continuous flow of data through the
FIFO with a 1-cycle latency12between its write and read interfaces, regardless of the depth
of the FIFO. To create a constant N-cycle latency path with such FIFO, we need to delay
the fifo.read_enable activation by N cycles. Such behavior can be obtained with a register
read_start, initially reset to the value N and decremented at each cycles until it reaches and
maintains the value 0. The read interface is then connected as follows:

fifo.read_enable := read_start === 0.U

This results in an equivalent behavior to a shift-register of N-cycle, but it is described based
on a FIFO primitive and thus uses different FPGA primitives.

As a side note, until this point the FIFO is presented with fully decoupled interfaces,
enforcing at least 1-cycle delay between its input and output interfaces and requiring a FIFO
depth of at least N + 1. Maintaining the independence of both interfaces is convenient to cut
the path of back-pressure signals and reduce their fan-out, especially when back-pressure
is combinational and drives numerous register enables. However, without these protocol
signaling constraints, it is possible to couple both interfaces such that a full FIFO will still
be able to accept a write request if there is also a read request at the same cycle. From an
external point of view, this results in the following coupling of back-pressure signals:

upstream.ready := !fifo.full || downstream.ready

With such a behavior, it is possible to operate the FIFO without protocol signaling, only
relying on the full signal provided by the FIFO itself as follows:

fifo.read_enable := fifo.full

Nonetheless, as the internal implementation of full signal usually relies on a counter driven
by both read_enable and write_enable, this second approach has an equivalent resource
overhead. As a result, the first approach is preferred as it makes no assumption on the
FIFO behavior, and hence can be confidently used with any generic or vendor-locked FIFO
primitive.

As previously illustrated in Tables 7.6 and 7.7, leveraging these constant latency FIFOs
enables balancing resource distribution between SRL and LUTRAMs in large designs. To
further demonstrate the flexibility of this FIFO strategy, a fine-grained parameterization of
its two minimum thresholds is to be explored, but it first requires an analysis of the signal
propagation depths and widths through the design. Beyond minimum thresholds, more
advanced parameterization strategies could be proposed, but also require this analysis to
sketch relevant rules.

7.3.3.2 Exhibiting Exploration Opportunities

Based on the figures reported by the framework, Table 7.8 details the occurrences of the
respective (depth, width) couples of all direct signal propagations being implemented by the

11Or is reset, in such case, true.B should be read as !reset for an active-high reset.
121-cycle latency is achieved with simple memory implementation. Without loss of generality, this latency

might be increased as long as this higher latency remains below the signal propagation depth.

128

7.3. Integrating Pipeline Framework

Specification Occurrences
Depth Width TfStageCompute TfTop Total

4 64 1 7
5 1 2 1 15

6 12 1
6 62 1 7
6 264 1

7 6 6 6
7 12 1 1
7 132 6 6
7 246 7 7
7 264 1 1

60 1 1 1

Table 7.8: Distribution of direct signal propagations to be implemented in the design, as
reported by the framework after pipeline elaborations

framework. The module TfStageCompute, appearing in each stage of the classifier with the
exact same parameterization is elaborated only once as an independent pipeline, and is then
instantiated 7 times in the final circuit.

7.3.3.3 Architectural Parameterization for Balancing Resource Usage

From the previous report, generating the relevant parameterization to obtain various
resource usage is as simple as manipulating these numbers to produce the corresponding
(depth, width) minimum thresholds:

val relevantThresholds = Seq(
4 -> Seq(1, 6, 12, 62, 64, 132, 246, 264),
5 -> Seq(1, 6, 12, 62, 132, 246, 264),
6 -> Seq(1, 6, 12, 62, 132, 246, 264),
7 -> Seq(1, 6, 12, 132, 246, 264),
10 -> Seq(1, 2),

).flatMap { case (depth, sWidth) => sWidth.map(w => depth -> w) }

These thresholds are then used as parameterization of the strategy applied to the pipeline-
oriented classifier, and generates in a few minutes, the 30 corresponding Chisel-generated
Verilog hierarchies. A simple script is then sufficient to generate the parameterization, to
launch the corresponding synthesis and to report their respective resource usage, unattended
and in a matter of hours.

Table 7.9 presents the result of this overnight exploration study after synthesis on the
abovementioned Xilinx toolchain. Results are ordered by ascending count of LUTRAMs
whose presence corresponds to FIFOs. As expected, the resource usage of the highest
thresholds (10, 2)—which match none of the signal propagation in this design—is precisely
equal to the resource usage of Direct SRL strategy previously reported in Table 7.6. Simi-
larly, resource usage for the default parameterization (6, 16) of the Direct FIFO strategy is
equal to the (5, 62) parameterization as both match the same signal propagations for this
design. Interestingly, this default parameterization is close to the median value in terms
of LUTRAM count which confirms the relevance of these naively and arbitrarily selected
default thresholds for the current design.

With this exploration of architectural parameterizations, our pipeline automation frame-
work demonstrates its ability to provide both guidance – to select the relevant parameteriza-

129

Chapter 7. Experimentation

Depth Width LUTRAMs SRLs Logic LUTs ∑LUTs FFs RAMB18

10 2 0 3468 5288 8756 8161 14
DirectSRL 0 3468 5288 8756 8161 14

10 1 6 3466 5231 8703 8307 14

7 264 88 3336 5393 8817 8065 14
4 5 6 264 240 3072 5401 8713 7757 14

7 246 952 1860 5451 8263 6649 14
4 5 6 246 1104 1596 5454 8154 6339 14

7 132 1432 1068 5537 8037 5910 14
7 12 1440 1062 5546 8048 5839 14
7 6 1488 1026 5599 8113 5853 14
7 1 1494 1024 5625 8143 5871 14

4 5 6 132 1584 804 5547 7935 5587 14
5 6 62 1824 432 5642 7898 5301 14

Default DirectFIFO (d6;w16) 1824 432 5642 7898 5301 14
5 6 12 1840 414 5682 7936 5313 14

4 64 1864 454 5862 8180 5342 0
5 6 6 1888 378 5716 7982 5319 14

6 1 1894 376 5752 8022 5347 14
5 1 1922 362 5917 8201 5482 14

4 62 2104 82 5950 8136 5065 0
4 12 2120 64 5971 8155 5054 0
4 6 2168 28 6024 8220 5074 0
4 1 2202 12 6225 8439 5237 0

Table 7.9: Resource usage for the relevant threshold parameterizations

130

7.4. Conclusion

tions – and efficiency – to generate different pipeline implementations with a considerable
impact on resource usage. After synthesis of the various implementations, their resource
usage is widely spread across the design space which provides a great flexibility to the
designer. In particular, with these parameterizations, the ratios of LUTs against FFs can be
tuned, which might help the routing step with timing closure.

Finally, Table 7.9 reveals the odd behavior of Vivado 2018.2 which infers a BRAM-based
shift-register for a (5,64) shift-register, effectively swapping 64 SRLs for 2 BRAMs. This
behavior is altered with Vivado 2019.113which results in a major difference in the ability
to meet timing requirements on some of our larger designs. Based on the exploration
capabilities of the framework, this barely documented difference is not only highlighted,
but the framework also provides means to compensate for it. In this precise case, this would
be achieved by implementing 64-bit shift-register-based propagations with explicit Xilinx
BRAM primitives (instantiated as black-boxes) to recover the previous behavior.

While raising the level of hardware abstraction to a convenient pipeline-oriented model-
ing, our framework also increases designers’ control over the finest architectural details of
their designs.

7.4 Conclusion

This chapter delves into the design of a complex packet classifier, which is a core function of
network devices. From a simple high-level architecture based a succession of independent
stages, its original SystemVerilog implementation requires fine-grained signal synchroniza-
tions all along the processing pipeline. As a result, its verbose and tangled SystemVerilog
description appears unflexible and hard to maintain, defeating the original purpose of stage
independence.

To overcome these limitations by leveraging the pipeline automation framework, the
complex tree filters SystemVerilog hierarchy first needs to be translated into a functionally
equivalent Chisel hierarchy. Based on sv2chisel, this word-for-word translation process
turns out to be challenging and requires a substantial effort to first improve the automated
translation tool, and then manually iterate on the result. Several areas for improvement
remain in this Vanilla Chisel version, to reduce overhead on the development flow and
resource usage after synthesis.

Nonetheless, the pipeline-oriented description of this packet classifier delivers consider-
able flexibility, enabling experiments with new signal propagation strategies at no redesign
cost, simply as a new parameterization of the pipeline generation. Without these automation
capabilities, the exotic FIFO strategy, which appears surprisingly relevant in our case, would
have been ruled out without further consideration due to the amount of work needed to
implement it.

Integration of Chisel version within its surrounding SystemVerilog hierarchy is required
early in the process to validate its functionality within existing test suites. Thanks to
the wrapper generators, automatically configured by sv2chisel, it happens effortlessly and
requires very few manual adjustments.

While uncovering several challenges and associated areas for improvement in the trans-
lation process, this chapter demonstrates the relevance of HCLs such as Chisel to base
high-level hardware abstractions. In particular, our Chisel-based pipeline design methodol-
ogy exhibits enhanced design and implementation flexibility, while increasing the control
over the generated architectures to its finest level of detail.

13Reportedly starting with Vivado 2018.3.

131

Chapter 7. Experimentation

132

Chapter 8

Conclusion

The overall goal of this thesis consists in evaluating the ability of Hardware Construction
Languages (HCLs) to abstract hardware architectures, either natively or as a platform

for additional abstractions. Experimenting with Chisel HCL [BVR+12], this thesis focuses on
the relevance of such abstractions to design highly flexible and re-usable high-performance
network devices at OVHcloud. The detailed problem statement concludes on five precise
questions which have driven the research effort, and to which we have attempted to answer
along this manuscript. We now summarize the solutions and perspectives brought by our
contributions to each of these questions, starting with the abstractions inherently featured
in HCLs, as follows:

How far can the abstraction level provided by HCLs instill agility into hardware design
flow while preserving fine-grained control over implementation?

Our detailed review of HCL principles and their various implementations in Chapter 3, first
exhibits the control guarantees which arise from the very nature of parameterized hardware
generation, as opposed to architecture inference. This answer is supported by numerous
developments which rely on HCLs to generate complex, reusable and highly flexible designs
while maintaining a close control on the generated architectures as illustrated in Chapter 4.
Anchored in this research effort, our first contribution depicted in Section 4.2, demonstrates
the agility of successive design iterations to build a configurable associative memory.
The iterative HCL-based implementations match the performance of their SystemVerilog
counterparts, with similar resource usage after FPGA synthesis.

Bolstered by this conclusive preamble, which showcases the efficient tools brought by
HCLs to implement agile hardware architectures, we next question their ability to impact
development flows as early as preliminary design phases.

How can this abstraction level significantly remodel the design of hardware circuits from
the earliest stages?

Our second contribution presented in Section 4.3 illustrates how the application of an existing
software development paradigm, in the design of a two-stage associative memory, enables
decoupling architecture implementation from functionality. Based on an Abstract Data Type
(ADT) interface, the exact implementation can be re-used with arbitrary functionalities,
pushing the parameterization to a complete new level of abstraction. This software pattern
is natively supported by embedded HCLs such as the Scala-embedded Chisel thanks to
the high-level paradigms provided by their host languages, such as functional and object-
oriented programming (OOP).

133

Chapter 8. Conclusion

However, direct application of such software-oriented paradigms to hardware design
comes with some limitations due to their original nature, which raises our next question:

What higher-level hardware design abstractions and paradigms can be relevant to improve
agility of hardware design?

A close examination of the multi-layered hardware abstractions in Chapter 3 reveals that
despite a continuous research effort, their evolution have stalled for decades at the register
transfer level (RTL). Emergence of mature HCLs and inspirations from the evolution of
software abstractions have paved the way for viable hardware-oriented abstractions, aiming
at iterative improvements of hardware development flows.

Our core contribution, detailed in Chapter 5, arises from repeated observations of ver-
bose, inflexible and error-prone RTL patterns as expressed within traditional Hardware
Description Languages (HDLs). In particular, we focus on the register stage pattern which
stands at the heart of pipelined architectures, and is a desired implementation pattern
to build high-performance streaming applications from network to signal processing. To
overcome the limitations of this pattern, we introduce a pipeline design methodology, based
on explicit pipeline objects and a graph modelling of signals and their respective relations.
Thanks to configurable resolution of signal synchronizations, our pipeline design methodol-
ogy provides highly flexible descriptions, able to generate finely tuned implementations for
various targets.

This design methodology could be implemented in the form of a brand-new pipeline
description language, with the pre-processing of customized HDLs, or any other mean detailed
in Chapter 3. However, as part of the iterative improvement of hardware development flows,
HCLs appear as a natural starting point, which the next question explores:

How can HCLs provide the foundations to introduce and implement these additional
abstraction levels?

From our initial exploration of Chisel parameterization capabilities in Section 4.2 to ADT-
based design in Section 4.3 to implementation of pipeline design methodology in Chapter 5,
HCLs demonstrate their ability to stand as foundations of further abstractions. Throughout
experiments with the Scala-embedded Chisel HCL, our implementations leverage the
features of the host language and specifically object-oriented and functional programming.

Last but not least, as newcomers in hardware development flows, the ability to integrate
HCLs within existing hierarchies is discussed by the final question:

How to integrate HCLs generation-based flow into large existing code-bases and their
established hardware development flow?

Design methodologies and tools are designed to address domain-specific issues, no matter
how wide these domains might be. As a result, they rarely focus on their interoperability
with existing solutions, or only as leading from a top-level perspective. Our two final
contributions detailed in Chapter 6 tackle this issue by providing upstream and downstream
integration of Chisel with existing SystemVerilog hierarchies. On the one hand, we introduce
sv2chisel, an automated translation tool enabling a fast integration process of existing
SystemVerilog hierarchies as functionally-equivalent Chisel ones. This translation is intended
as a first step towards manually optimized Chisel generators, benefitting from all the
flexibility and reusability detailed all along this manuscript. On the other hand, we smoothen
integration of Chisel-generated hierarchies into top-level HDL hierarchies with automated
wrapper generators to close the gap between parameterized HDL and low-level generated

134

Verilog. From our industrial perspective, guaranteeing a frictionless cohabitation between
HCLs and HDLs is a key enabler toward the widespread adoption of HCLs and the enhanced
hardware abstractions they deliver.

Finally, we condense our contributions in an integrated experimentation, detailed in
Chapter 7. From a complex SystemVerilog packet classifier design, we first highlight the
desperate need for an automated management of signal synchronizations such as the one
our pipeline design methodology is able to provide. We then review the translation process
of this carefully handcrafted SystemVerilog hierarchy into Chisel, based on sv2chisel and
extended with manual iterations. We finally refactor this Chisel hierarchy, leveraging our
pipeline management framework, and successfully integrate it back into the surrounding
SystemVerilog top-level which defines one of our critical network device.

Perspectives

The adoption of HCLs within both academic and industrial contexts is gaining momentum.
In particular, the Chisel/FIRRTL ecosystem is a mature and evolving alternative to traditional
HDLs in many cases, able to provide real agility to hardware designers, and supported
by a vibrant open-source community. Throughout this thesis, we contributed to some
developments and discussions, and this manuscript is the proof that research efforts can be
iteratively built on top of such massive pieces of engineering.

The scope of HCLs’ recommended uses is widening, and many design domains are
already able to benefit from their advanced functionalities. Based on existing or new
paradigms, developments of custom abstractions are able to provide concrete improvements
for hardware designers. Many software paradigms remain yet to be explored as potential
hardware abstractions, based on the strong base layer provided by existing HCLs. To that
regard, a comprehensive study of software paradigms with evaluation of their relevance as
hardware design methodologies would certainly uncover valuable hardware abstractions.

Already providing pretty decent (System)Verilog to Chisel translations, our sv2chisel
translator keeps track of a long list of desired features; beginning with an enhanced support
of several SystemVerilog constructs from blocking assertions to pre-processor directives.
Beyond simple word-for-word translation, the support of these statements requires a fine-
grained semantic analysis of the description to retrieve the design intent and translate it
into an idiomatic form. In particular, translating looped blocking statements as recursive
hardware generators is a conceptual challenge which requires a subtle mastery of both
traditional circuit descriptions and software paradigms.

One significant challenge for sv2chisel project remains its open-source future activity
and viability. As of today, it has raised limited interest and feedback, even if its sources,
packages and binaries cumulate numerous downloads. To gain visibility and gather a
community, a partnership with some existing open-source libraries eager to move away
from SystemVerilog could help.

Designed with the same modularity as the Scala FIRRTL compiler, sv2chisel relies on
a hardware IR supporting basic elaboration constructs, and a collection of independent
transformations of the latter. To that extend, other input languages such as VHDL could
be supported at the simple cost of a dedicated parser with proper mapping to sv2chisel
IR. Similarly, targeting other backends seems perfectly reasonable at the cost of some
adjustments in the IR and in the existing transformations. As detailed in Chapter 3, there
are countless such potential HCL targets. More importantly, development of this hardware
IR has required the integration of basic elaboration statements such as conditional hardware
generation, de facto introducing one of the first somehow elaboration-aware hardware IR.
Designing a hardware IR able to handle generic high-level elaboration constructs is another

135

Chapter 8. Conclusion

conceptual challenge that would provide major benefits to hardware compiler frameworks
and to the quality of the HDL they generate. In particular, retaining width parameterizations
of busses and basic generation capabilities would promote the substantial work poured into
elaboration-aware simulators and thus contribute to enhanced simulation speeds.

At the core of this thesis, our pipeline design methodology introduces an efficient
hardware-oriented abstraction which could be extended in numerous ways. A first desired
feature would be native pipeline generation constructs such as stage replication with proper
namespaces and signal visibility control. Next, automated signal synchronization could
be extended to pipelines which process data at various levels of granularity, such as bit
and packet levels for network devices. Adding support for automated conversion from
one level to another would greatly ease interaction between cross-level modules and enable
enhanced architectural parameterizations. A direct application of such support would enable
remodeling our current network pipeline architecture, as initially introduced in Figure 2.3.
While retaining the same high-level representation, many optimizations could be handled
by the framework, based on efficient signal synchronizations across the hierarchy. Last
but not least, as our pipeline automation framework provides highly flexible architectural
parameterizations, it could be paired with automated architecture exploration frameworks
such as QECE [Fer22, FMR21]. With a fine-grained parameterization of resolution strategies,
the resulting system would be able to automatically explore an extended architectural design
space and provide optimized implementations.

Abstractions promoting flexibility and re-usability are key enablers for competitive hard-
ware developments. In a context of required and desired energy efficiency, the thoroughness
and precision required to build specialized circuits shall not hide their high performance
per watt when compared to equivalent software solutions. The massive efforts poured into
efficient hardware design of processors are too often wasted by deficient software relying
on always more performant CPUs to support the cost of their unoptimized computations.
As reconfigurable hardware acceleration platforms, FPGAs are undeniable assets in high-
performance device design, certainly not restricted to the network perspective we have
thoroughly explored in this thesis. Following one particularly promising software evolution
trend, zero-cost hardware abstractions are the future of both energy-efficient and agile de-
velopments. By committing to decrease the overhead of custom hardware developments, we
sincerely hope this work will boost their attractiveness and contribute to informed decisions
across organizations. More than ever, it is a timely moment to take energy efficiency into
account in an attempt to contain the carbon footprint of cloud providers and all industries
relying on heavy computational power.

136

Appendices

137

Appendix A

Abstract Data Type Schemes

A.1 Complete Protected Hash-Table ADT Scheme

This appendix reproduces the complete Abstract Data Type (ADT) whose excerpt has been
used to illustrate this methodology on the design of protected hash-table as introduced in
section 4.3. While principles and limitations of ADTs are presented in the same section, this
complete code disclosure provides a finer-grained look at the precise implementation. Inline
comments detail the role of each method and attribute.

1 /** Specification of HashTable requests
2 *
3 * HTRequest implementation are the request given to a module. Allow the usage of stateful
4 * request, of type S, using the getState to get the state of a request. By default a
5 * request will trigger a write to the memory, this mechanism can be deactivated using the
6 * doNotWrite function.
7 *
8 * @tparam R
9 * underlying Data Type mixed into this trait

10 * @tparam S
11 * data type of the state of a request
12 */
13 trait HTRequest[R <: Data, S <: Data] {
14 this: R => // ensure it gets constructed mixed in a concrete Chisel Data Type
15

16 /** returns the raw ID to be hashed for memory addressing */
17 def getRawID: UInt // for Hash input
18

19 /** returns the width of the rawID */
20 def idWidth: Int // for Hash param
21

22 /** returns true if the current request require a lock during memory access not required
23 * for example for a simple "read" operation
24 */
25 def doLock: Bool
26

27 /** return the current state of the request, this is useless for a stateless request */
28 def getState: S
29

30 /** Indicate whether this request requires writing to the memory. */
31 def doNotWrite: Bool
32

33 /** returns true if the request has to go through without using external memory */
34 def ignore: Bool
35 }
36

37 /** Specification of Hashtable Stored DataElement

139

Appendix A. Abstract Data Type Schemes

38 *
39 * HTStoredData implementation are to be entirely stored into memory. If a function may
40 * change an element it must return an element of type Modifiable[_].
41 *
42 * *Dev Warning*: HashTable implementation SHALL NOT, on purpose, take for granted that
43 * the returned type for <prob|det|demote>Update functions is strictly E (it can have
44 * been extended / overloaded).
45 *
46 * See example below, assuming updated has been overloaded from a default value as in
47 * RateCounterHTData:
48 * {{{
49 * val w : E = Wire(<genE>)
50 * val tmp = <this>.<prob|det|demote>Update(req)
51 * w := tmp
52 * assert(res.updated === tmp.updated) // will trigger in some cases
53 * }}}
54 * Note : if this becomes to constraining for implementation we can upgrade this
55 * DataScheme with an explicitly differentiated type for A:memory storage & B:data
56 * manipulation where B is a direct extension of A
57 *
58 * @tparam R
59 * underlying Data Type mixed into HTRequest
60 * @tparam S
61 * underlying Data Type mixed into HTRequest
62 * @tparam T
63 * underlying Data Type mixed into this trait
64 * @tparam U
65 * simple Data Type used as output result type
66 */
67 trait HTStoredData[R <: Data, S <: Data, T <: Data, U <: Data] {
68 this: T => // ensure it gets constructed mixed in a concrete Chisel Data Type
69

70 /** D: full data type of request */
71 type D = R with HTRequest[R, S]
72

73 /** E: this concrete type deliberately not using this.type as it would prevent extending
74 * return type as demonstrated in example implementation RateCounter & Determinist
75 */
76 type E = T with HTStoredData[R, S, T, U]
77

78 /** hardware function returning true.B if this elt is deterministic */
79 def isDeterministic: Bool
80

81 /** hardware function returning true.B if this element requires a deterministic lookup
82 *
83 * Ex: would be false if threshold are not reached in a RateCounter Implem
84 */
85 def needsDeterministic(req: D): Bool
86

87 /** hardware function returning true.B if this element id equals request id */
88 def sameID(req: D): Bool
89

90 /** Allow the usage of sequential detUpdate function.
91 *
92 * Indicate the number of clock cycles needed for the detUpdat function.
93 */
94 val detUpdateDelay: Int
95

96 /** Hardware function returning an updated copy of this in the case of a deterministic
97 * update.
98 *
99 * This function is either combinatorial or sequential. The en parameter must be the ready

100 * signal where this function is called. Meaning that all the clocked processes must happen
101 * when en is true.
102 *
103 * Determinist updates happen in the following cases:

140

A.1. Complete Protected Hash-Table ADT Scheme

104 * - probStage : this.isValid & this.isDeterministic & this.sameID(req)
105 * - probStage : !this.isValid
106 * - deterStage : before every write to memory
107 */
108 def detUpdate(req: D, en: Bool): Modifiable[E]
109

110 /** Allow the usage of sequential probUpdate function.
111 *
112 * Indicate the number of clock cycles needed for the probUpdate function.
113 */
114 val probUpdateDelay: Int
115

116 /** Hardware function returning an updated copy of this in the case of a probabilistic
117 * update.
118 *
119 * This function is either combinatorial or sequential. The en parameter must be the
120 * ready signal of the pipeline stage which call this function. Meaning that all the
121 * clocked processes must happen when en is true.
122 *
123 * probabilistic updates happen in the following cases:
124 * - probStage : this.isValid & !this.isDeterministic & !this.sameID(req)
125 */
126 def probUpdate(req: D, en: Bool): Modifiable[E]
127

128 /** hardware function returning an updated copy of this in the case of a demote update
129 *
130 * demote updates happen in the following cases:
131 * - probStage : this.isValid & this.isDeterministic & !this.sameID(req)
132 */
133 def demoteUpdate(req: D): Modifiable[E]
134

135 /** hardware function returning the equivalent request for the current storedElt in the
136 * case of a move to deterStage
137 *
138 * This function is called on data to be demoted, if needsDeterministic(req), before
139 * demoteUpdate(req)
140 */
141 def toDetReq: D
142

143 /** hardware function returning the result expected at output of HashTable Implementation */
144 def getResult(req: D): U
145

146 /** data type of the result expected at output of HashTable Implementation */
147 def getResultType: U
148

149 /** hardware function returning true.B if this is a valid memory entry */
150 def isValid(req: D): Bool
151

152 /** hardware dictionnary of functions used to clean an element, can be stateful */
153 val tidying: Map[String, S => Modifiable[E]]
154

155 /** data type of the state of a request if needed */
156 def getStateType: S
157 }
158

159 /** Utility class to indicate if a data has been modified or cleaned. A modified data will
160 * be written in the memory. The cleaned bit should be only used for stats computation.
161 * The cleaned bit must be up when the data erased one of the previous period.
162 */
163 case class Modifiable[+D <: Data](private val d: D) extends Bundle {
164 val modified = Bool()
165 val cleaned = Bool()
166 val data = d.cloneType
167 }

141

Appendix A. Abstract Data Type Schemes

A.2 ADT Usage Example

The following code listing showcases an excerpt of a hardware architecture based on the ADT:
the probabilistic stage of the protected hash-table introduced in section 4.3. The declaration
of the module as a type-parameterized Chisel class retains the ability to be used with any
ADT implementation, as illustrated on lines 20–28. Several ADT methods are presented
within this excerpt such as idWidth on line 40, getRawID on line 42, probUpdateDelay on lines
59 and 64, probUpdate on line 69, and getResult on line 84.

1 /** Probabilistic stage of ProtectedHT.
2 *
3 * This stage is based on a single hash, and is sensitive to collision.
4 * It does not provide any collision resolution mechanism
5 * (hence the probabilistic characteristic).
6 *
7 * @param _addrWidth
8 * Width of an address
9 * @param _simultReq

10 * Maximum number of simultaneous request
11 * @param _reqGen
12 * Request data type generator.
13 * @param _storedEltGen
14 * Stored element data type generator, used for the memory's data.
15 * @param _resGen
16 * Result data type generator.
17 * @param genHash
18 * Hash Module generator
19 */
20 class ProbabilisticHT[R <: Data, S <: Data, T <: Data, U <: Data](
21 val _addrWidth: Int,
22 val _simultReq: Int,
23 private val _reqGen: R with HTRequest[R, S],
24 private val _storedEltGen: T
25 with HTStoredElt[R, S, T, U],
26 private val _resGen: U,
27 val genHash: ((Int, Int, Int) => HashModule) = hashes.default,
28) extends Module {
29

30 val io = IO(new Bundle {
31 val req = Flipped(DecoupledIO(_reqGen.cloneType))
32 val res = DecoupledIO(_resGen.cloneType)
33 // External memory
34 val memReadReq = Decoupled(new ReadReqFlow(UInt(_addrWidth.W)))
35 val memReadRes = Flipped(Decoupled(new ReadResFlow(_storedEltGen.cloneType)))
36 val memWriteReq = Decoupled(new CommitFlow(UInt(_addrWidth.W), _storedEltGen.cloneType))
37 })
38

39 // Hash module provided as argument
40 val hash = Module(genHash(_reqGen.idWidth, _addrWidth, 3645))
41 hash.io.req.valid := io.req.valid
42 hash.io.req.bits := io.req.bits.getRawID
43 io.req.ready := hash.io.req.ready
44

45 // Shift register in parallel of hash-module (non-generic known depth of 2)
46 val hashExtra = ShiftRegister(
47 io.req.bits,
48 2,
49 hash.io.res.ready
50)
51

52 val fetchMem = /* ... memory access logic omitted ... */
53

54 /* synchronization logic based on probUpdateDelay */

142

A.2. ADT Usage Example

55

56 val updateReady = Wire(Bool())
57 val updateExist = ShiftRegister(
58 io.memReadRes.bits.data.isValid(fetchMem.bits.req),
59 io.memReadRes.bits.data.probUpdateDelay,
60 updateReady
61)
62 val updateReq = ShiftRegister(
63 fetchMem.bits,
64 io.memReadRes.bits.data.probUpdateDelay,
65 updateReady
66)
67

68 /* call to probUpdate */
69 val updateRes = io.memReadRes.bits.data.probUpdate(fetchMem.bits.req, updateReady)
70

71 /* excerpts of internal decision logic based on ADT methods */
72

73 // Decision
74 val dec = RegDecoupled(new Bundle {
75 val res = _resGen.cloneType
76 val exist = Bool()
77 val write = Bool()
78 val addr = updateReq.addr.cloneType
79 val stored = updateRes.data.cloneType
80 val ignoreMemReady = Bool()
81 })
82 when(updateReady) {
83 dec.valid := updateValid
84 dec.bits.res := updateRes.data.getResult(updateReq.req)
85 dec.bits.exist := updateExist
86 dec.bits.write := updateRes.modified
87 dec.bits.addr := updateReq.addr
88 dec.bits.stored := updateRes.data
89 dec.bits.ignoreMemReady := updateReq.req.ignore
90 }
91 updateReady := dec.ready
92

93 io.memWriteReq.bits.data := dec.bits.stored
94 io.memWriteReq.bits.address := dec.bits.addr
95 io.memWriteReq.bits.memWrReq := dec.bits.write
96

97 // Send result
98 io.res.bits := dec.bits.res
99

100 // Split pipeline synchronization: dec --> io.res + io.memWriteReq
101 io.res.valid := dec.valid && (io.memWriteReq.ready || dec.bits.ignoreMemReady)
102 io.memWriteReq.valid := (dec.valid && !dec.bits.ignoreMemReady) && io.res.ready
103 dec.ready := io.res.ready && (io.memWriteReq.ready || dec.bits.ignoreMemReady)
104

105 }

143

Appendix A. Abstract Data Type Schemes

144

Appendix B

Port Wrapper

This appendix presents the top level generator of the translated tree filters architecture as
produced by sv2chisel, and which was then manually edited. In particular, it includes
additional parameters on lines 8–11.

1 import sv2chisel.helpers.tools.{ChiselGenMain, VerilogPortWrapper}
2

3 object TfTopGen extends ChiselGenMain {
4 VerilogPortWrapper.emit(
5 () => new TfTop(),
6 renameWrapperPorts = Map("clock" -> "clk"),
7 forcePreset = true,
8 initialStatements = Seq("import globals_p::*;"),
9 args = args ++ Seq(

10 "--target:fpga" // enable MemInit in synthesis context (required for nodeMaskRom)
11)
12)
13 }

From this configuration, the following wrapper is generated, focusing here only on
structural port mapping. In this example, the output port out_label is mapped from its
structural type tree_filter_label_t [5:0] to the equivalent flattened output ports of the
underlying instance (12 of them) on lines 52–63. The same behavior applies to signal in_pkt
whose custom type tree_filter_pkt_data_t is a packed struct defined in the SystemVerilog
package globals_p.

1 import globals_p::*;
2 module tf_top (
3 input clk,
4 output in_rdy,
5 input in_valid,
6 input tree_filter_pkt_data_t in_pkt,
7 output out_valid,
8 output [5:0] out_matched,
9 output tree_filter_label_t [5:0] out_label,

10 output ctrl_rdy,
11 input ctrl_commit,
12 input [17:0] ctrl_addr,
13 input ctrl_write,
14 input [63:0] ctrl_write_data,
15 input ctrl_read,
16 output ctrl_read_data_valid,
17 output [63:0] ctrl_read_data
18);

145

Appendix B. Port Wrapper

19 tf_top_raw inst (
20 .clock(clk),
21 .in_rdy(in_rdy),
22 .in_valid(in_valid),
23 .in_pkt_is_portmap_res(in_pkt.is_portmap_res),
24 .in_pkt_is_portmap_req(in_pkt.is_portmap_req),
25 .in_pkt_is_ntp_monlist(in_pkt.is_ntp_monlist),
26 .in_pkt_is_http_res(in_pkt.is_http_res),
27 .in_pkt_known_src(in_pkt.known_src),
28 .in_pkt_is_ts3init(in_pkt.is_ts3init),
29 .in_pkt_is_dns_query(in_pkt.is_dns_query),
30 .in_pkt_is_http_req(in_pkt.is_http_req),
31 .in_pkt_is_fragment(in_pkt.is_fragment),
32 .in_pkt_status(in_pkt.status),
33 .in_pkt_icmp_code(in_pkt.icmp_code),
34 .in_pkt_icmp_type(in_pkt.icmp_type),
35 .in_pkt_valid_ipv6(in_pkt.valid_ipv6),
36 .in_pkt_valid_ipv4(in_pkt.valid_ipv4),
37 .in_pkt_valid_icmp(in_pkt.valid_icmp),
38 .in_pkt_valid_net(in_pkt.valid_net),
39 .in_pkt_valid_trans(in_pkt.valid_trans),
40 .in_pkt_net_size(in_pkt.net_size),
41 .in_pkt_size(in_pkt.size),
42 .in_pkt_ether_type(in_pkt.ether_type),
43 .in_pkt_tcp_flags(in_pkt.tcp_flags),
44 .in_pkt_profile(in_pkt.profile),
45 .in_pkt_proto(in_pkt.proto),
46 .in_pkt_dst_port(in_pkt.dst_port),
47 .in_pkt_src_port(in_pkt.src_port),
48 .in_pkt_dst_ip(in_pkt.dst_ip),
49 .in_pkt_src_ip(in_pkt.src_ip),
50 .out_valid(out_valid),
51 .out_matched(out_matched),
52 .out_label_0_prio(out_label[0].prio),
53 .out_label_0_value(out_label[0].value),
54 .out_label_1_prio(out_label[1].prio),
55 .out_label_1_value(out_label[1].value),
56 .out_label_2_prio(out_label[2].prio),
57 .out_label_2_value(out_label[2].value),
58 .out_label_3_prio(out_label[3].prio),
59 .out_label_3_value(out_label[3].value),
60 .out_label_4_prio(out_label[4].prio),
61 .out_label_4_value(out_label[4].value),
62 .out_label_5_prio(out_label[5].prio),
63 .out_label_5_value(out_label[5].value),
64 .ctrl_rdy(ctrl_rdy),
65 .ctrl_commit(ctrl_commit),
66 .ctrl_addr(ctrl_addr),
67 .ctrl_write(ctrl_write),
68 .ctrl_write_data(ctrl_write_data),
69 .ctrl_read(ctrl_read),
70 .ctrl_read_data_valid(ctrl_read_data_valid),
71 .ctrl_read_data(ctrl_read_data)
72);
73 endmodule

146

Appendix C

Tree Filters Architecture Details

C.1 Top Level Architecture

Figure C.1 illustrates the overall architecture of the tree filters module. This representation
has been manually reverse-engineered from the SystemVerilog implementation. The parame-
terization of the number of tree stages in the pipeline is based on a huge partially initialized
table which provides indexed intermediate signals for each stage. To our knowledge, in
SystemVerilog this is the only available approach to provide such configurable pipeline
length. However, it is very verbose and error-prone due to the extensive manipulation of
signal indexes.

C.2 Generated Synchronization-oriented Representations

To further understand the signal synchronization requirements within the tree filters hierarchy,
we automatically generated a pipeline-oriented representation of the numerous modules, as
illustrated in Figures C.2–C.6. As creating this representation requires a semantic analysis
of the pipeline, we leveraged an ad-hoc modified version of our sv2chisel translator tool
to generate these figures. In addition to the symbols detailed in Figure 7.3, Figure C.6
introduces a new symbol: diamond, which represents an optional register, depending on
the parameterization of the module.

C.3 Pipeline-oriented Representation

Visualization of the pipeline stages and their relations is an interesting feature provided
by the pipeline automation framework we introduced in Chapter 5. Figure C.7 illustrates
the representation generated by the framework of the pipeline-oriented version of the
module TfStageCompute. This representation features colored signals, following the color
scheme detailed in Figure 5.5b, and highlights the dependencies in signal usage and their
synchronization resolutions. Thanks to our framework, it provides much more information
than the pipeline-oriented representation generated from the original SystemVerilog in
Figure 7.3.

147

Appendix C. Tree Filters Architecture Details

pktShiftReg (TSR: TappedShiftRegister)

inPkt

rdy/valid

matched / label

valid
TfTop

TfTop

inPkt

...

stageTotalLatency

...

stageTotalLatency

...

treeMaxStages

ctrl

ctrl R/W/C req ctrl R data

TfStageTop

Table-based cross stage signals

0 1

stageCompute <init: 1>

stageResult <init: 1>

stageAddress <init: 0>

stageMatched <init: 0>

stageLabel <init: 0>

stageStatus <init: 0>

stageTotalLatency =

stageComputeLatency + stageMemoryLatency

TfStageTop
statusShift (TSR)

...

stageTotalLatency

matchedShift (TSR)

labelShift (TSR)

statusShift (TSR)

...

LAST: stageComputeLatency

matchedShift (TSR)

labelShift (TSR)

TfStageTop
TfStageTop

...

stageMemLatency

srInPkt

in{Compute,
Result,

Address}

srIn{Matched,
Label,
Status}

srInPkt

in{Compute,
Result,

Address}

srIn{Matched,
Label,
Status}

stageTotalLatency stageTotalLatency

TfPrioSolver

Inter-stage Shifts synchronize:

- PREVIOUS compute latency

- UPCOMING memory latency

Last Shifts synchronize only:

- PREVIOUS compute latency

First Pkt Shift synchronize only:

- First memory latency

Inter-stage Pkt Shifts synchronize:

- compute latency

- memory latency

STAGE 0

No last Shift

STAGE 1 STAGE i STAGE N-1

Figure C.1: Manual reverse engineering of Top-Level Tree Filters Hierarchy

148

C.3. Pipeline-oriented Representation

TfStageTop

in{Compute, Result, Address}

rdy/valid

ctrl R/W/C req ctrl R data

out{Compute, Result, Address}

srIn{Pkt, Status, Matched, Label} srOut{Status, Matched, Label}

TfStageMatcher
srOut{label, matched}

srIn{Label, Matched}

TfStageMemory

TfStageExtraFifo

memIn{Compute, Address}

TfStageCompute

TfStageTop

tf_stage_top

Inputs

tf_stage_top

labelizer (tf_stage_matcher)

Inputs Outputs

comp_inst_0 (tf_stage_compute)

Inputs Outputs

extra_fifo_inst (tf_stage_extra_fifo)

Inputs Outputs

ram_inst (tf_stage_memory)

Inputs Outputs

comp_inst_1 (tf_stage_compute)

Inputs Outputs

Outputs

in_result

in_result

in_valid

in_valid

sr_in_pkt

in_pkt

in_pkt

in_compute mem_in_compute

sr_in_label

in_label
sr_in_status

in_status

in_status

sr_in_matched
in_matched

first_dual

in_address

mem_in_address

ctrl_read ctrl_in_read

ctrl_write ctrl_in_write

ctrl_addr ctrl_in_addr

ctrl_commit ctrl_commit

ctrl_write_data ctrl_in_data

a_in_read

b_in_read

res_addr out_address

comp_out_first_dual

res_result

res_compute

mem_out_valid

pipe_valid

label_value

sr_out_label

comp_out_compute

sr_out_matchedin_compute

in_cfg

label_matched

sr_out_label

a_in_addr

b_in_addr

in_compute sr_out_status

in_result

in_cfg

int_sr_out_status

out_compute

out_result

comp_out_result

out_addr

comp_out_addr

out_addr_dup

comp_out_addr_dup

out_valid

out_result

mem_out_result

sr_out_status

mem_out_ctrl_data

ctrl_read_data

out_result

in_result

a_out_data

mem_out_data

a_out_read

mem_out_compute

b_out_data

b_out_read

ctrl_out_data

ctrl_out_read

mem_out_ctrl_valid

in_compute

sr_out_status

in_cfg

out_compute

out_result

out_addr

out_addr_dup

out_valid

out_compute

ctrl_read_data_valid

sr_out_matched

in_rdy

stageComputeLatency

SHIFTER_LENGTH + 3

= $clog2(TREE_FILTER_MAX_FIELD_SIZE) /2 + 3

stageMemoryLatency

[1:3] depending on board-related config

Pure combinatory logic

ctrl memOut{Compute, Data}
out{Compute, Result, Address}

Figure C.2: Synchronization-oriented representation of the replicated stages of Tree Filters
Hierarchy

149

Appendix C. Tree Filters Architecture Details

TfStageCompute

tf_stage_compute

Inputs

tf_stage_compute

cfg_shift_reg (tapped_shift_register)

Inputs

Outputs

Outputs

in_result

in_data

in_pkt

in_pkt_array

in_compute

in_status

in_status_array

in_cfg

in_mask_cfg

out_status_array

shift_res_result node_prev_result

clk

out_data shift_res_cfg

shift_res_compute

in_field

in_field_pos

in_field_value

in_field_shift_size

corrected_field_shift_size

node_cfg

node_leaf_cfg

merge_compute

merge_result
node_mask_cfg

merge_addr

shift_res_field_value

node_result

shift_field_shift_size

shift_field_value

shift_res_mask_cfg

out_computenode_aggreg_result

node_mask_rom

merge_addr_dup out_addr_dup

node_compute

in_mask_size

out_result

out_addr

sr_out_status

SHIFTER_LENGTH + 1

= $clog2(TREE_FILTER_MAX_FIELD_SIZE) /2 + 1

stageComputeLatency

SHIFTER_LENGTH + 3

= $clog2(TREE_FILTER_MAX_FIELD_SIZE) /2 + 3

TfStageCompute

in{Status,Pkt,Compute,Status,Result,Cfg}

NO PROTOCOL

out{Compute, Result, Addr, AddrDup}

srOut{Status}

Figure C.3: Synchronization-oriented representation of the core compute submodule TfStage-
Top of Tree Filters Hierarchy

150

C.3. Pipeline-oriented Representation

TfStagePrioSolver

tf_stage_prio_solver

Inputs

tf_stage_prio_solver

Outputs

in_matched

stage_1_matchedpre_sort_matched

pre_sort_label

in_label

stage_1_label
out_matched

stage_0_matched
prio_matched

stage_0_label

out_label

Figure C.4: Synchronization-oriented representation of TfStagePrioSolver module

tf_stage_matcher

Inputs

tf_stage_matcher Outputs

in_compute

comp_matched

comp_label

in_matched

in_label

in_cfg

in_cfg_leaf cfg_is_label

sr_out_matched

sr_out_label

TfStageMatcher

Figure C.5: Synchronization-oriented representation of TfStageMatcher module

151

TfStageMemory

tf_stage_memory

Inputs

tf_stage_memory

ram_inst (dual_port_bram)

Inputs
Outputs

Outputs

ctrl_in_read

b_mem_in_read
(COND)

ctrl_in_addr

b_mem_in_addr
(COND)

b_in_read

b_in_addr

ctrl_in_write

b_mem_in_write
(COND)

a_in_read
a_mem_in_read

(COND)

ctrl_in_data

b_mem_in_data
(COND)

a_in_addr a_mem_in_addr
(COND)

ctrl_commit mem_in_select

mem_select_pipe

reg_mem_select

reg_b_out_data
(COND)

b_out_data
b_data_in

b_mem_out_data reg_ctrl_out_data
(COND)

reg_a_out_data
(COND)

a_out_data

ctrl_out_data

a_mem_out_data

reg_b_out_read
(COND)

b_out_read

ram_is_active

clk
a_data_out

a_addr

a_read_en

b_addr

b_read_en

b_write_en

b_data_out

b_mem_out_read

reg_ctrl_out_read
(COND)

a_mem_out_read

reg_a_out_read
(COND)

a_out_read

ctrl_out_read

Figure C.6: Synchronization-oriented representation of TfStageMemory module

main

main

 init

cfg

prevResult

prevCompute

pkt

status
 init

field

maskSize

pkt

status

[0]

[0]

[0]

 mux

fieldValue

fieldPos

fieldShiftSize

cfg

field

status

[0]

[0]

 shiftLoop_2

shiftFieldValue

cfg

[4]

 node

currentResult

prevResult

[5]

 aggregate

aggregResult

cfg

prevCompute

[5]

[5]

[0]

[0]

[0]

 srOut

outStatus

fieldShiftSize

fieldValue

[0]

[0]

[0]

[4]

[5]

 shiftInit

shiftFieldValue

shiftFieldSize

[1]

 mergeStage

compute

addr

addrDup

result

outStatus

[6]

 shiftLoop_0

shiftFieldValue

shiftFieldSize

[1]
 shiftLoop_1

shiftFieldValue

shiftFieldSize

[1] [1] [1]

[1]

[0]

[1]

 UTZ #1

outStatus

addrDup

addr

result

compute

[0]

 UTZ #0

cfg

prevResult

prevCompute

pkt

status

[0]

Figure C.7: Framework generated representation of the pipeline-oriented version of TfStageCompute module

Appendix D

Chisel Insights

This appendix presents several behaviors of Chisel, from basics to advanced idioms. The
first section focuses on the difference between Vec[Bool] and UInt to represent bit vectors.
The second section details two manual iterations over the sv2chisel-translated version of the
tree filters architecture. These two iterations aim at producing a more idiomatic Chisel code,
in an attempt to reduce the development flow overhead of the translated version against the
original SystemVerilog version.

D.1 UInt vs Vec[Bool] and Flattening

In Chisel, UInt is a type only intended for arithmetic and logic operations. It is always
processed as a whole by both the Chisel front-end and the FIRRTL compiler. This enables
designers to leave the width of a UInt signal unspecified, letting the compiler in charge
of inferring the required width depending on the surrounding context. However, it is not
possible to assign a bit or a range of bits within an UInt, therefore to complete such bit-level
operations, Chisel requires the usage of a Vec type, whose most simple form is a Vec[Bool].
A Bool is a base type corresponding to a single bit.

From a hardware bit-vector perspective the two following declarations are equivalent as
they both manipulate the same number of bits:

1 val uintSignal = Wire(UInt(4.W)) // UInt of 4 bits
2 val vecbSignal = Wire(Vec(4, Bool())) // Vec of 4 elements of 1 bits

In particular, with the appropriate cast, these signals can be connected to one another as
follows:

1 uintSignal := vecbSignal.asTypeOf(UInt(4.W))
2 vecbSignal := uintSignal.asTypeOf(Vec(4, Bool()))

However, from the perspective of Chisel/FIRRTL compilation and emission, these two
types are fundamentally different. While the first—UInt—is treated as a whole, Vec[Bool] is
flattened by the FIRRTL compiler as independent Bool signals, and emitted as such.

This makes the UInt more performant than its Vec[Bool] counterpart as demonstrated in
Section 7.2.2.1. However, this also prevents some bit-level optimizations that are illustrated
through the following code listings.

Beginning with the UInt, the following ExampleUInt module does two computations. The
first, on line 6, computes a bitwise and (&) between input signal in and the constant value 9.

155

Appendix D. Chisel Insights

This value is returned as output out, and also used to compute the second output, condout,
based on its second-lowest significant bit.

1 class ExampleUInt extends Module {
2 val in = IO(Input(UInt(4.W)))
3 val out = IO(Output(UInt(4.W)))
4 val condout = IO(Output(Bool()))
5

6 val tmp = in & "b1001".U
7 out := tmp
8 condout := Mux(tmp(1), false.B, in(1))
9 }

From this description, Chisel/FIRRTL produces the following Verilog output:

1 module ExampleUInt(
2 input clock,
3 input reset,
4 input [3:0] in,
5 output [3:0] out,
6 output condout
7);
8 wire [3:0] tmp = in & 4'h9;
9 assign out = in & 4'h9;

10 assign condout = tmp[1] ? 1'h0 : in[1];
11 endmodule

This version is almost a word-for-word translation of the Chisel description, except for the
in & 4'h9 operation, which is intentionally duplicated here for readability.

The following code listing presents the equivalent version based on Vec[Bool]. As Vec is
a generic container type, it does not provide operations involving the interpretation of its
components as simple bits, such as the bitwise and (&) operator. The description of this basic
operation is then more convoluted as it requires to explicitly iterates on the underlying bits
of the Vec, to literally apply the bitwise and (&) operator on each couple of bits from both
signals:

1 class ExampleVec extends Module {
2 val in = IO(Input(Vec(4, Bool())))
3 val out = IO(Output(Vec(4, Bool())))
4 val condout = IO(Output(Bool()))
5

6 val tmp = in.zip("b1001".U.asBools).map { case (i,m) => i & m }
7 out := tmp
8 condout := Mux(tmp(1), false.B, in(1))
9 }

From this Vec[Bool] description, Chisel/FIRRTL produces the following Verilog output:

1 module ExampleVec(
2 input clock,
3 input reset,
4 input in_0,
5 input in_1,
6 input in_2,
7 input in_3,
8 output out_0,
9 output out_1,

156

D.2. Antipatterns Translation

10 output out_2,
11 output out_3,
12 output condout
13);
14 assign out_0 = in_0;
15 assign out_1 = 1'h0;
16 assign out_2 = 1'h0;
17 assign out_3 = in_3;
18 assign condout = in_1;
19 endmodule

We observe here a complete simplification of the module, with simple mapping of output
bits to input or constant values. This is easily explained by the constant propagation of the
zeroes contained in "b1001".U constant value. After a bitwise and of this value against input
signal in, the two center bits of the result tmp are always equal to 0. This simplification not
only applies to the direct outputs out_1 and out_2, but also propagates to the multiplexer
Mux, thus always selecting the default branch in(1).

With this small example, we highlight the conciseness of UInt against Vec[Bool] in both
the Chisel description and the generated Verilog, with a single signal instead of N in the
generated Verilog. While processing UInt signals as a whole is more performant, some
fine-grained optimization can only be obtained with independent processing of each bit of
the signal.

The next section further delves into Chisel, first focusing on structured types and then
exploring some idiomatic patterns of the language.

D.2 Antipatterns Translation

D.2.1 Automated Word-for-Word Translation for Correctness

SystemVerilog suffers from a major limitation when it comes to its elaboration capabilities:
it is neither able to iterate over structure fields nor to programmatically get or set a field. As
a result, to build a somehow generic architecture with SystemVerilog, the implementation of
a similar functionality consists in a workaround based on pre-computed bit-level sub-range
accesses to the structure as illustrated in the code listing below.

1 /******* pre-computed global param (python-based centralized config generation) ********/
2 localparam MAX_FIELD_SIZE = 64;
3 localparam MAX_STATUS_W = 6;
4 localparam PKT_STATUS_W = 62;
5 localparam FIELDS = 27;
6

7 localparam integer STATUS_OFFSETS [26:0] = '{61, /* ... */ 16, 12, 6, 0};
8 localparam integer STATUS_SIZES [26:0] = '{ 1, /* ... */ 4, 4, 6, 6};
9

10 typedef struct packed {
11 logic [5:0] src_ip;
12 logic [5:0] dst_ip;
13 logic [3:0] src_port;
14 logic [3:0] dst_port;
15 /* ... */
16 logic [0:0] is_pm;
17 } pkt_status_t;
18

19 /********************************** main verilog file **********************************/
20 // vectorized version of pkt_status_t most notably used for dynamic assignment
21 logic [0:FIELDS-1][MAX_STATUS_W-1:0] in_status_array;
22 // packed structure

157

Appendix D. Chisel Insights

23 logic pkt_status_t out_status,
24

25 genvar fid;
26 generate
27 for (fid = 0; fid < FIELDS; fid++) begin
28 localparam FIELD_HIGH = PKT_STATUS_W - STATUS_OFFSETS[fid] - 1;
29 localparam FIELD_LOW = PKT_STATUS_W - STATUS_OFFSETS[fid] - STATUS_SIZES[fid];
30

31 assign out_status[FIELD_HIGH:FIELD_LOW] = in_status_array[fid];
32 end
33 endgenerate

Semantic analysis of this pattern to translate it into a more idiomatic Chisel is complex
as it would require a generic elaboration mechanism, it is hence not worth the effort.
Such pieces of code generally require a larger manual refactoring to benefit from native
generation capabilities as detailed later in this section. However, providing a word-for-word
translation of this bit-level assignment of a structured type is not that obvious with Chisel.
The language indeed has a strong willingness to prevent such direct access to raw bits
within structured types because these antipatterns defeat the purpose of functional and
object-oriented paradigms. Nonetheless, to provide an equivalent version in Chisel, a
workaround based on several implicit conversions is provided as an additional library to be
included in the translated result. This piece of code, too large and specific to Chisel/Scala
to be reproduced in this manuscript1, consists of the following main steps:

1. An implicit class provides a sub-range access method on Chisel structured types which
returns a custom intermediate class,

2. This custom intermediate class implements two methods: direct assignment and
conversion to Chisel type,

3. A final implicit function maps the intermediate class to Chisel type wherever required.

This complex implementation is due to the need to cover both direct usage and assign-
ment use-cases. As further detailed below, this workaround appears to induce a significant
overhead which calls for an in-depth manual refactoring.

D.2.2 Manual Idiomatic Translation For Performance

As aforementioned, iteration over structured types is not an obvious task in SystemVerilog,
neither is the translation to Chisel of bit-level operations on structured types. Nonetheless,
to guarantee a smooth translation process, we provide a rather complex extension of Chisel
to allow some bit-level operations on structured types. These operations are based on a
hidden complete enumeration of the structured type and several levels of computations to
match the requested bit-level access with the available fields. Once replicated through the
design, this pattern appears to come with a consequent overhead.

With a manual analysis and appropriate idiomatic fix, based on the original design
intent rather than the simple translation workaround, the performance of the resulting
Chisel is substantially improved. Table D.1 showcases the positive impact of removing this
translation hack in favor of a more idiomatic manipulation of structured types. In particular,
it improves Chisel elaboration, dividing by two both the size of generated FIRRTL and the
duration of this step. While focused on enhancing the overall user-experience, this iteration
also slightly benefits the simulation execution speed.

1Full source code available at https://github.com/ovh/sv2chisel/blob/master/helpers/src/main/
scala/bundleconvert.scala

158

https://github.com/ovh/sv2chisel/blob/master/helpers/src/main/scala/bundleconvert.scala
https://github.com/ovh/sv2chisel/blob/master/helpers/src/main/scala/bundleconvert.scala

D.2. Antipatterns Translation

Optimized
Inference

Optimized
Bundle

Iterations
Diff %

Generated
Files (MB)

Chisel
top.fir 80 26 -54 -68%
top.v 6.5 6.4 -0.1 -2%

Duration
(mm:ss)

Scala compilation 00:08 00:06 ' '
Chisel elaboration 00:12 00:06 -00:06 -50%

FIRRTL compilation 00:50 00:32 -00:18 -36%
Verilation 00:54 00:45 -00:09 -16%

C++ compilation 01:08 01:03 -00:05 -7%

TOTAL 03:12 02:32 -00:40 -20%

Simulation rate (trace) 610ns/s 652ns/s +42ns/s +7%

Table D.1: Positive impact of antipattern removal on Tree filters architecture

D.2.3 Experimenting With Optimized Patterns

As a final Chisel-oriented idiomatic improvement, this iteration focuses on the high replica-
tion level of the tree filters hierarchy.

A standard Chisel hierarchy generates a FIRRTL module for each instance of a Chisel
module, regardless of the parameterization of these instances. In particular, even if several
instances share the exact same parameter sets, each instance will be independently elaborated
and results in module duplication in the resulting FIRRTL. To reduce this code duplication
in the generated Verilog, the FIRRTL compiler is then able to merge such duplicated
instances within the same Verilog module, instantiated several times through the design.
This approach is counterproductive, with wasted resources for duplicated elaboration, and
additional resources needed to merge the duplicated instances.

Optimized
Bundle

Iterations

Optimized
Instantiation

Diff %

Generated
Files (MB)

Chisel
top.fir 26 17 -9 -34%
top.v 6.4 6.4 = =

Duration
(mm:ss)

Scala compilation 00:06 00:06 ' '
Chisel elaboration 00:06 00:07 +00:01 '

FIRRTL compilation 00:32 00:30 -00:02 '
Verilation 00:45 00:45 =

C++ compilation 01:03 01:03 =

TOTAL 02:32 02:31 -00:01 '
Simulation rate (trace) 652ns/s 656ns/s +4ns/s '

Table D.2: Impact of Definition/Instance pattern on Tree filters architecture

To get rid of this suboptimal process, a dedicated API has recently been introduced in
Chisel. It consists of several annotations and two keywords, Definition and Instance, used
in place of the usual instantiation pattern. For duplicated modules, a single Definition
of a module is created. It elaborates the module only once and returns a reference to be

159

Appendix D. Chisel Insights

instantiated with Instance keyword in several places of the design.
While this pattern yet remains very manual and verbose, it might get implemented as

default behavior at some point in the Chisel stack.
With many replicated modules sharing identical parameterization through tree filters

hierarchy, we expected a noticeable improvement on the generation stack. However, as
illustrated in Table D.2, implementation of this pattern only substantially impacts the size of
the generated FIRRTL. We incidentally notice a slight reduction of FIRRTL compilation time,
which comes at the cost of a roughly equivalent increase of Chisel elaboration time. This
latest paradoxical observation, is probably explained by the quality of JVM implementation,
which is able to cache the result of previous computations, such as previous module
elaboration in the current case.

160

Publications

Journal

D&T2021 IEEE Design & Test, 2021 [BHM+21]
Towards Agile Hardware Designs with Chisel: a Network Use-case

International Conference

RSP’2020 Virtual event [BHM+20]
(System)Verilog to Chisel Translation for Faster Hardware Design

161

Appendix D. Chisel Insights

162

Bibliography

[AAB+16] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David
Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser,
Adam Izraelevitz, et al. The rocket chip generator. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016. (Cited
on pages 18, 19, 39, and 45.)

[AB09] Michael Attig and Gordon Brebner. High-level programming of the fpga on
netfpga. In Proc. NetFPGA Developers’ Workshop, 2009. (Cited on page 26.)

[AB12] Jean-Philippe Aumasson and Daniel J Bernstein. Siphash: a fast short-
input prf. In International Conference on Cryptology in India, pages 489–508.
Springer, 2012. (Cited on page 50.)

[AB18] Mustafa Abbas and Vaughn Betz. Latency insensitive design styles for
fpgas. In 2018 28th International Conference on Field Programmable Logic and
Applications (FPL), pages 360–3607. IEEE, 2018. (Cited on pages 27 and 70.)

[ABG+20] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar
Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou,
Nathan Pemberton, et al. Chipyard: Integrated design, simulation, and
implementation framework for custom socs. IEEE Micro, 2020. (Cited on
pages 39 and 91.)

[ACM09] ACM. Barbara Liskov, A.M. Turing award laureates. Online, https://
amturing.acm.org/award_winners/liskov_1108679.cfm, 2009. (Cited on
page 22.)

[agi11] Manifesto for agile software development. Online, http://
agilemanifesto.org/, 2011. (Cited on page 6.)

[APC15] Krste Asanovic, David A Patterson, and Christopher Celio. The berkeley
out-of-order machine (boom): An industry-competitive, synthesizable,
parameterized risc-v processor. Technical report, University of California
at Berkeley Berkeley United States, 2015. (Cited on page 45.)

[BBF+00] Gérard Berry, Amar Bouali, Xavier Fornari, Emmanuel Ledinot, Eric Nassor,
and Robert De Simone. Esterel: A formal method applied to avionic
software development. Science of Computer Programming, 36(1):5–25, 2000.
(Cited on page 24.)

[BCSS98] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hard-
ware design in haskell. In ACM SIGPLAN Notices, volume 34, pages
174–184. ACM, 1998. (Cited on page 35.)

163

https://amturing.acm.org/award_winners/liskov_1108679.cfm
https://amturing.acm.org/award_winners/liskov_1108679.cfm
http://agilemanifesto.org/
http://agilemanifesto.org/

Bibliography

[BDG+14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese,
et al. P4: Programming protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review, 44(3):87–95, 2014. (Cited on
pages 17, 26, and 29.)

[Beh17] Raul Behl. SimpleCPU. Retrieved July 2020, 2017. (Cited on page 99.)

[BFP07] Nicola Bombieri, Franco Fummi, and Graziano Pravadelli. Incremental
abv for functional validation of tl-to-rtl design refinement. In 2007 Design,
Automation & Test in Europe Conference & Exhibition, pages 1–6. IEEE, 2007.
(Cited on page 30.)

[BGG+22] Clément Boin, Xavier Guillaume, Gilles Grimaud, Tristan Groléat, and
Michaël Hauspie. One year of ddos attacks against a cloud provider: an
overview. In 4th International Conference on Advances in Computer Technology,
Information Science and Communications, 2022. (Cited on page 2.)

[BH98] Peter Bellows and Brad Hutchings. Jhdl-an hdl for reconfigurable systems.
In FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE Symposium
on, pages 175–184. IEEE, 1998. (Cited on page 35.)

[BHM+20] Jean Bruant, Pierre-Henri Horrein, Olivier Muller, Tristan Groleat, and
Frédéric Pétrot. (system) verilog to chisel translation for faster hardware
design. In 2020 International Workshop on Rapid System Prototyping (RSP),
pages 1–7. IEEE, 2020. (Cited on page 161.)

[BHM+21] Jean Bruant, Pierre-Henri Horrein, Olivier Muller, Tristan Groleat, and
Frédéric Pétrot. Towards agile hardware designs with chisel: a network
use-case. IEEE Design & Test, 2021. (Cited on pages 65 and 161.)

[BKK+10] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco
Gerards. Clash: Structural descriptions of synchronous hardware using
haskell. In Digital System Design: Architectures, Methods and Tools (DSD),
2010 13th Euromicro Conference on, pages 714–721. IEEE, 2010. (Cited on
pages 18, 35, and 36.)

[BM+20] Doreen Bogdan-Martin et al. Measuring digital development facts and
figures 2020. Technical report, International Telecommunication Union,
2020. (Cited on pages 7 and 11.)

[BMR16] Alban Bourge, Olivier Muller, and Frédéric Rousseau. Generating efficient
context-switch capable circuits through autonomous design flow. ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 10(1):9, 2016.
(Cited on page 17.)

[Bou13] Sébastien Bourdeauducq. Migen: A python toolbox for building
complex digital hardware. Online, https://m-labs.hk/migen/manual/
introduction.html, 2013. (Cited on pages 35, 36, 37, 39, and 91.)

[BPCC20] Thomas Bourgeat, Clément Pit-Claudel, and Adam Chlipala. The essence
of bluespec: a core language for rule-based hardware design. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 243–257, 2020. (Cited on page 39.)

164

https://m-labs.hk/migen/manual/introduction.html
https://m-labs.hk/migen/manual/introduction.html

Bibliography

[BRS13] David F Bacon, Rodric Rabbah, and Sunil Shukla. Fpga programming
for the masses. Communications of the ACM, 56(4):56–63, 2013. (Cited on
page 16.)

[BVR+12] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Water-
man, Rimas Avižienis, John Wawrzynek, and Krste Asanović. CHISEL:
Constructing hardware in a scala embedded language. In Design Automa-
tion Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 1212–1221. IEEE,
2012. (Cited on pages 3, 35, 36, 37, 39, 41, and 133.)

[CAR14] Ivano Cerrato, Mauro Annarumma, and Fulvio Risso. Supporting fine-
grained network functions through intel dpdk. In 2014 Third European
Workshop on Software Defined Networks, pages 1–6. IEEE, 2014. (Cited on
page 13.)

[CAZ+14] Jakub Czyz, Mark Allman, Jing Zhang, Scott Iekel-Johnson, Eric Osterweil,
and Michael Bailey. Measuring ipv6 adoption. In Proceedings of the 2014
ACM Conference on SIGCOMM, pages 87–98, 2014. (Cited on page 11.)

[CB04] Jakob Carlstrom and Thomas Bodén. Synchronous dataflow architecture
for network processors. IEEE Micro, 24(5):10–18, 2004. (Cited on page 30.)

[CCB+08] Philippe Coussy, Cyrille Chavet, Pierre Bomel, Dominique Heller, Eric Senn,
and Eric Martin. Gaut: A high-level synthesis tool for dsp applications. In
High-Level Synthesis, pages 147–169. Springer, 2008. (Cited on page 26.)

[CDPA+18] Danilo Cerović, Valentin Del Piccolo, Ahmed Amamou, Kamel Haddadou,
and Guy Pujolle. Fast packet processing: A survey. IEEE Communications
Surveys & Tutorials, 20(4):3645–3676, 2018. (Cited on page 13.)

[CL+17] Valter Costa, Bertrand Lefort, et al. Inspector, a zero code ide for control
systems user interface development. In Proc. 16th Int. Conf. on Accelerator
and Large Experimental Physics Control Systems (ICALEPCS’17), pages 861–
865, 2017. (Cited on page 24.)

[CM05] Graham Cormode and Shan Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005. (Cited on page 54.)

[CMSV01] Luca P Carloni, Kenneth L McMillan, and Alberto L Sangiovanni-
Vincentelli. Theory of latency-insensitive design. IEEE Transactions on
computer-aided design of integrated circuits and systems, 20(9):1059–1076, 2001.
(Cited on page 29.)

[Cot65] Leonard W Cotten. Circuit implementation of high-speed pipeline sys-
tems. In Proceedings of the November 30–December 1, 1965, fall joint computer
conference, part I, pages 489–504, 1965. (Cited on page 27.)

[CS12] Doris Chen and Deshanand Singh. Using opencl to evaluate the efficiency
of cpus, gpus and fpgas for information filtering. In 22nd International
Conference on Field Programmable Logic and Applications (FPL), pages 5–12.
IEEE, 2012. (Cited on page 13.)

165

Bibliography

[CSBH21] Michael Christensen, Timothy Sherwood, Jonathan Balkind, and Ben Hard-
ekopf. Wire sorts: a language abstraction for safe hardware composition.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, pages 175–189, 2021. (Cited
on page 31.)

[CTD+17] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph
McMahan, and Timothy Sherwood. A pythonic approach for rapid hard-
ware prototyping and instrumentation. In Field Programmable Logic and
Applications (FPL), 2017 27th International Conference on, pages 1–7. IEEE,
2017. (Cited on pages 35 and 36.)

[CTL17] Henry Cook, Wesley Terpstra, and Yunsup Lee. Diplomatic design patterns:
A tilelink case study. In 1st Workshop on Computer Architecture Research with
RISC-V, 2017. (Cited on pages 18, 39, and 68.)

[CVS+17] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam
Chlipala, et al. Kami: a platform for high-level parametric hardware specifi-
cation and its modular verification. Proceedings of the ACM on Programming
Languages, 1(ICFP):24, 2017. (Cited on page 39.)

[Dan22] Shibo Dang. Chisel-based implementation of high-performance pipelined
priority queue generator. In 2022 14th International Conference on Computer
Research and Development (ICCRD), pages 317–322. IEEE, 2022. (Cited on
page 66.)

[DC21] Justin Deters and Ron Cytron. Performance counter design variation
in rocket chip via feature-oriented programming. In Proceedings of Fifth
Workshop on Computer Architecture Research with RISC-V (CARRV 2021), 2021.
(Cited on page 32.)

[DCF+14] Rolf Drechsler, Christophe Chevallaz, Franco Fummi, Alan J Hu, Ronny
Morad, Frank Schirrmeister, and Alex Goryachev. Panel: Future soc
verification methodology: Uvm evolution or revolution? In 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1–5. IEEE,
2014. (Cited on page 44.)

[Dec15] Jan Decaluwe. MyHDL website. http://www.myhdl.org, 2015. (Cited on
pages 35, 36, and 37.)

[DFH+20] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat
Hanrahan. Type-directed scheduling of streaming accelerators. In Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 408–422, 2020. (Cited on page 29.)

[DGX+17] Shuwen Deng, Doguhan Gümüsoglu, Wenjie Xiong, Y Serhan Gener, Onur
Demir, and Jakub Szefer. Secchisel: Language and tool for practical and scal-
able security verification of security-aware hardware architectures. IACR
Cryptology ePrint Archive, 2017:193, 2017. (Cited on page 68.)

[DGX+19] Shuwen Deng, Doğuhan Gümüşoğlu, Wenjie Xiong, Sercan Sari, Y Serhan
Gener, Corine Lu, Onur Demir, and Jakub Szefer. Secchisel framework for
security verification of secure processor architectures. In Proceedings of the

166

http://www.myhdl.org

Bibliography

8th International Workshop on Hardware and Architectural Support for Security
and Privacy, page 7. ACM, 2019. (Cited on page 68.)

[DKS+12] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and Mikal
Ziane. Robotml, a domain-specific language to design, simulate and deploy
robotic applications. In International Conference on Simulation, Modeling, and
Programming for Autonomous Robots, pages 149–160. Springer, 2012. (Cited
on page 23.)

[DLL+21] Yue Dai, Greg LaCaille, Harrison Liew, James Dunn, and Borivoje Nikolić.
A scalable massive mimo uplink baseband processing generator. In ICC
2021-IEEE International Conference on Communications, pages 1–6. IEEE, 2021.
(Cited on page 65.)

[dMHV19] Jan de Muijnck-Hughes and Wim Vanderbauwhede. A typing discipline for
hardware interfaces. In 33rd European Conference on Object-Oriented Program-
ming (ECOOP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019. (Cited on page 31.)

[DPM21] Vukan D Damnjanović, Marija L Petrović, and Vladimir M Milovanović. A
parameterizable chisel generator of numerically controlled oscillators for
direct digital synthesis. In 2021 24th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), pages 141–144. IEEE,
2021. (Cited on page 65.)

[DSFE17] Keerthikumara Devarajegowda, Johannes Schreiner, Rainer Findenig, and
Wolfgang Ecker. Python based framework for hdsls with an underlying
formal semantics. In Proceedings of the 36th International Conference on
Computer-Aided Design, pages 1019–1025. IEEE Press, 2017. (Cited on
page 35.)

[DTCC+18] Lorenzo Di Tucci, Davide Conficconi, Alessandro Comodi, Steven Hofmeyr,
David Donofrio, and Marco D Santambrogio. A parallel, energy efficient
hardware architecture for the meraligner on fpga using chisel hcl. In 2018
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 214–217. IEEE, 2018. (Cited on page 45.)

[DTH18] Ross Daly, Lenny Truong, and Pat Hanrahan. Invoking and linking genera-
tors from multiple hardware languages using coreir. In Proceedings of the
first Workshop on Open-Source EDA Technology, 2018. (Cited on page 39.)

[Eri17] Jack Erickson. HDL CoderTM Evaluation Reference Guide. The MathWorks,
r2017b edition, 2017. (Cited on page 26.)

[ES16] Wolfgang Ecker and Johannes Schreiner. Introducing model-of-things (mot)
and model-of-design (mod) for simpler and more efficient hardware gener-
ators. In Very Large Scale Integration (VLSI-SoC), 2016 IFIP/IEEE International
Conference on, pages 1–6. IEEE, 2016. (Cited on page 35.)

[Fer22] Bruno Ferres. Leveraging Hardware Construction Languages for Flexible Design
Space Exploration on FPGA. PhD thesis, Université Grenoble Alpes, 2022.
(Cited on page 136.)

167

Bibliography

[FFDMS16] Farzad Fatollahi-Fard, David Donofrio, George Michelogiannakis, and
John Shalf. Opensoc fabric: On-chip network generator. In 2016 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 194–203. IEEE, 2016. (Cited on page 45.)

[FMR20] Bruno Ferres, Olivier Muller, and Frédéric Rousseau. Chisel usecase:
Designing general matrix multiply for fpga. In International Symposium on
Applied Reconfigurable Computing, pages 61–72. Springer, 2020. (Cited on
page 65.)

[FMR21] Bruno Ferres, Olivier Muller, and Frédéric Rousseau. Integrating quick
resource estimators in hardware construction framework for design space
exploration. In 2021 International Workshop on Rapid System Prototyping
(RSP), pages 1–7. IEEE, 2021. (Cited on pages 38 and 136.)

[FO00] Peter Frey and Donald O’Riordan. Verilog-ams: Mixed-signal simulation
and cross domain connect modules. In Proceedings 2000 IEEE/ACM Interna-
tional Workshop on Behavioral Modeling and Simulation, pages 103–108. IEEE,
2000. (Cited on page 44.)

[G+14] David J. Greaves et al. Toy bluespec compiler. https://www.cl.cam.ac.uk/
~djg11/wwwhpr/toy-bluespec-compiler.html, 2014. (Cited on page 34.)

[GBK+09] Andy Gill, Tristan Bull, Garrin Kimmell, Erik Perrins, Ed Komp, and
Brett Werling. Introducing kansas lava. In International Symposium on
Implementation and Application of Functional Languages, pages 18–35. Springer,
2009. (Cited on page 35.)

[GCW+21] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,
Zhiru Zhang, and Jason Cong. Autobridge: Coupling coarse-grained
floorplanning and pipelining for high-frequency hls design on multi-die
fpgas. In ACM, editor, 2021 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA ’21), February 28–March 2, 2021, Virtual
Event, USA., 2021. (Cited on page 29.)

[GEHM+22] Xinfei Guo, Mohamed El-Hadedy, Sergiu Mosanu, Xiangdong Wei, Kevin
Skadron, and Mircea R Stan. Agile-aes: Implementation of configurable
aes primitive with agile design approach. Integration, 85:87–96, 2022. (Cited
on pages 65 and 66.)

[GL98] Stephan W Gehring and Stefan H-M Ludwig. Fast integrated tools for
circuit design with fpgas. In Proceedings of the 1998 ACM/SIGDA sixth
international symposium on Field programmable gate arrays, pages 133–139.
ACM, 1998. (Cited on page 38.)

[GLN+14] Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J Brown,
Arvind K Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo Ienne.
Hardware system synthesis from domain-specific languages. In Field
Programmable Logic and Applications (FPL), 2014 24th International Conference
on, pages 1–8. IEEE, 2014. (Cited on page 26.)

[GM01] Pankaj Gupta and Nick McKeown. Algorithms for packet classification.
IEEE Network, 15(2):24–32, 2001. (Cited on page 111.)

168

https://www.cl.cam.ac.uk/~djg11/wwwhpr/toy-bluespec-compiler.html
https://www.cl.cam.ac.uk/~djg11/wwwhpr/toy-bluespec-compiler.html

Bibliography

[GOCBK10] Marc Galceran-Oms, Jordi Cortadella, Dmitry Bufistov, and Mike
Kishinevsky. Automatic microarchitectural pipelining. In 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010), pages
961–964. IEEE, 2010. (Cited on page 29.)

[GRDT+16] Giulia Guidi, Enrico Reggiani, Lorenzo Di Tucci, Gianluca Durelli, Michaela
Blott, and Marco D Santambrogio. On how to improve fpga-based systems
design productivity via sdaccel. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 247–252. IEEE,
2016. (Cited on pages 17 and 26.)

[Gre15] David J Greaves. Layering rtl, safl, handel-c and bluespec constructs on
chisel hcl. In Formal Methods and Models for Codesign (MEMOCODE), 2015
ACM/IEEE International Conference on, pages 108–117. IEEE, 2015. (Cited on
pages 39 and 68.)

[Gre19] David J Greaves. Further sub-cycle and multi-cycle schedulling support
for bluespec verilog. In Proceedings of the 17th ACM-IEEE International
Conference on Formal Methods and Models for System Design, page 2. ACM,
2019. (Cited on page 34.)

[GTA06] Michael I Gordon, William Thies, and Saman Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism in stream programs.
ACM SIGPLAN Notices, 41(11):151–162, 2006. (Cited on page 27.)

[GTSB08] Sébastien Gérard, François Terrier, Bran Selic, and Pierre Boulet. Marte, the
uml standard extension for real-time and embedded systems. Technical
report, CEA LIST, Laboratory of Model Driven Engineering for Embedded
Systems (LISE), 2008. (Cited on page 26.)

[Har09] Ed Harcourt. Policies of system level pipeline modeling. Electronic Notes in
Theoretical Computer Science, 238(2):13–23, 2009. (Cited on page 28.)

[HF72] Thomas G Hallin and Michael J Flynn. Pipelining of arithmetic functions.
IEEE Transactions on Computers, 100(8):880–886, 1972. (Cited on page 27.)

[HG21] Pierre-henri Horrein and Tristan Groleat. Method and system for classify-
ing data packet fields on FPGA, 2021. US Patent App. 17/105,996. (Cited
on page 112.)

[HL95] Walter L. Hürsch and Cristina Videira Lopes. Separation of concerns.
Technical report, College of Computer Science, Northeastern University,
1995. (Cited on page 31.)

[HMLT03] Per Haglund, Oskar Mencer, Wayne Luk, and Benjamin Tai. Hardware
design with a scripting language. In International Conference on Field Pro-
grammable Logic and Applications, pages 1040–1043. Springer, 2003. (Cited
on page 34.)

[HMN01] Yoav Hollander, Matthew Morley, and Amos Noy. The e language: A
fresh separation of concerns. In Proceedings Technology of Object-Oriented
Languages and Systems. TOOLS 38, pages 41–50. IEEE, 2001. (Cited on
page 32.)

169

Bibliography

[Hoo17] Steven F Hoover. Timing-abstract circuit design in transaction-level verilog.
In Computer Design (ICCD), 2017 IEEE International Conference on, pages
525–532. IEEE, 2017. (Cited on pages 28, 31, and 34.)

[HP14] Ed Harcourt and James Perconti. A systemc library for specifying pipeline
abstractions. Microprocessors and Microsystems, 38(1):76–81, 2014. (Cited on
page 28.)

[I+18] IEEE 802.3 Working Group et al. IEEE std 802.3-2018 standard for ethernet.
IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015), pages 118,161, 2018.
(Cited on page 10.)

[IBA+19] Adam Izraelevitz, Jonathan Bachrach, Krste Asanović, Simon Schleicher,
and Jonathan Ragan-Kelley. Unlocking Design Reuse with Hardware Compiler
Frameworks. phdthesis, University of California at Berkeley, 2019. (Cited
on page 32.)

[IdD17] Matei Iştoan and Florent de Dinechin. Automating the pipeline of arith-
metic datapaths. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, pages 704–709. IEEE, 2017. (Cited on page 29.)

[IKL+17] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert
Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, et al.
Reusability is firrtl ground: Hardware construction languages, compiler
frameworks, and transformations. In Proceedings of the 36th International
Conference on Computer-Aided Design, pages 209–216. IEEE Press, 2017.
(Cited on pages 39, 40, 41, and 68.)

[Inc20] BlueSpec Inc. Github page of bluespec compiler. Online, https://github.
com/B-Lang-org/bsc, 2020. (Cited on page 34.)

[IT21] J. Iyengar and M. Thomson. QUIC: A UDP-based multiplexed and secure
transport. RFC 9000, RFC Editor, May 2021. (Cited on page 11.)

[JB99] James Jennings and Eric Beuscher. Verischemelog: Verilog embedded in
scheme. In ACM SIGPLAN Notices, volume 35, pages 123–134. ACM, 1999.
(Cited on page 34.)

[JGI18] Lana Josipović, Radhika Ghosal, and Paolo Ienne. Dynamically scheduled
high-level synthesis. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 127–136. ACM, 2018.
(Cited on page 29.)

[JIB18] Shunning Jiang, Berkin Ilbeyi, and Christopher Batten. Mamba: closing
the performance gap in productive hardware development frameworks. In
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2018. (Cited on page 35.)

[JPOB20] Shunning Jiang, Peitian Pan, Yanghui Ou, and Christopher Batten. Pymtl3:
A python framework for open-source hardware modeling, generation,
simulation, and verification. IEEE Micro, 2020. (Cited on pages 35 and 38.)

[JS15] Keerthan Jaic and Melissa C Smith. Enhancing hardware design flows
with myhdl. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pages 28–31. ACM, 2015. (Cited on
pages 35, 36, and 37.)

170

https://github.com/B-Lang-org/bsc
https://github.com/B-Lang-org/bsc

Bibliography

[JSG+21] Lana Josipović, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and
Jordi Cortadella. Buffer placement and sizing for high-performance
dataflow circuits. ACM Trans. Reconfigurable Technol. Syst. (TRETS), 15(1),
nov 2021. (Cited on page 29.)

[JYP+17] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor process-
ing unit. In Proceedings of the 44th annual international symposium on computer
architecture, pages 1–12, 2017. (Cited on page 40.)

[JYPP18] Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. Moti-
vation for and evaluation of the first tensor processing unit. ieee Micro,
38(3):10–19, 2018. (Cited on page 40.)

[KBBLL19] Florent Kermarrec, Sébastien Bourdeauducq, Hannah Badier, and Jean-
Christophe Le Lann. Litex: an open-source soc builder and library based
on migen python dsl. In Proceedings of Workshop on Open Source Design
Automation (OSDA 2019), colocated with DATE 2019 Design Automation and
Test in Europe, 2019. (Cited on pages 39 and 91.)

[KC11] Alexander S Kamkin and Mikhail M Chupilko. Survey of modern tech-
nologies of simulation-based verification of hardware. Programming and
Computer Software, 37(3):147–152, 2011. (Cited on page 44.)

[Kem20] Julian Kemmerer. PipelineC. https://github.com/JulianKemmerer/
PipelineC, 2020. (Cited on page 29.)

[KH06] David Kearney and John Hopf. Hardware join java: a unified hard-
ware/software language for dynamic partial runtime reconfigurable com-
puting applications. In Field Programmable Technology, 2006. FPT 2006. IEEE
International Conference on, pages 277–280. IEEE, 2006. (Cited on page 35.)

[KH21] Matti Käyrä and Timo D Hämäläinen. A survey on system-on-a-chip
design using chisel hw construction language. In IECON 2021–47th Annual
Conference of the IEEE Industrial Electronics Society, pages 1–6. IEEE, 2021.
(Cited on page 66.)

[Kin19] Olof Kindgren. A scalable approach to ip management with fusesoc. In
Proceedings of Workshop on Open Source Design Automation (OSDA 2019)
colocated with DATE 2019 Design Automation and Test in Europe, 2019. (Cited
on page 91.)

[KJA+21] Muhammad Hadir Khan, Aireen Amir Jalal, Sajjad Ahmed, Ali Ahmed
Ansari, and Syed Roomi Naqvi. Ibtida: Fully open-source asic implemen-
tation of chisel-generated system on a chip. 2021. (Cited on page 65.)

[KK17] Hyoukjun Kwon and Tushar Krishna. Opensmart: Single-cycle multi-hop
noc generator in bsv and chisel. In Performance Analysis of Systems and
Software (ISPASS), 2017 IEEE International Symposium on, pages 195–204.
IEEE, 2017. (Cited on page 45.)

[KKCGO08] Timothy Kam, Michael Kishinevsky, Jordi Cortadella, and Marc Galceran-
Oms. Correct-by-construction microarchitectural pipelining. In 2008

171

https://github.com/JulianKemmerer/PipelineC
https://github.com/JulianKemmerer/PipelineC

Bibliography

IEEE/ACM International Conference on Computer-Aided Design, pages 434–441.
IEEE, 2008. (Cited on page 29.)

[KLK+21] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh Parimi,
Borivoje Nikolic, Krste Asanovic, and Parthasarathy Ranganathan. A
hardware accelerator for protocol buffers. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 462–478,
2021. (Cited on page 65.)

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented program-
ming. In European conference on object-oriented programming, pages 220–242.
Springer, 1997. (Cited on page 32.)

[KMF01] Emre Kiciman, Laurence Melloul, and Armando Fox. Position summary:
towards zero-code service composition. In Proceedings Eighth Workshop on
Hot Topics in Operating Systems, page 172. IEEE, 2001. (Cited on page 24.)

[KMK+18] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon
Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt,
Aditya Chopra, et al. Firesim: Fpga-accelerated cycle-exact scale-out system
simulation in the public cloud. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, pages 29–42. IEEE Press, 2018. (Cited
on page 68.)

[KP01] Daniel Kroening and Wolfgang J Paul. Automated pipeline design. In
Proceedings of the 38th annual Design Automation Conference, pages 810–815,
2001. (Cited on page 29.)

[KST13] Md Kamruzzaman, Steven Swanson, and Dean M Tullsen. Load-balanced
pipeline parallelism. In SC’13: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, pages 1–12.
IEEE, 2013. (Cited on page 27.)

[KVDWDK+08] Wido Kruijtzer, Pieter Van Der Wolf, Erwin De Kock, Jan Stuyt, Wolfgang
Ecker, Albrecht Mayer, Serge Hustin, Christophe Amerijckx, Serge De Paoli,
and Emmanuel Vaumorin. Industrial ip integration flows based on ip-xact
standards. In 2008 Design, Automation and Test in Europe, pages 32–37. IEEE,
2008. (Cited on page 26.)

[KZBA19] Donggyu Kim, Jerry Zhao, Jonathan Bachrach, and Krste Asanović. Sim-
mani: Runtime power modeling for arbitrary rtl with automatic signal
selection. In Proceedings of the 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 1050–1062. ACM, 2019. (Cited on page 68.)

[L+21] Christopher Lattner et al. CIRCT / Circuit IR Compilers and Tools. online,
2021. (Cited on pages 27 and 39.)

[LAB+21] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. MLIR: Scaling compiler infrastructure for domain
specific computation. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 2–14. IEEE, 2021. (Cited on
page 27.)

172

Bibliography

[LDC12] Maysam Lavasani, Larry Dennison, and Derek Chiou. Compiling high
throughput network processors. In Proceedings of the ACM/SIGDA inter-
national symposium on Field Programmable Gate Arrays, pages 87–96. ACM,
2012. (Cited on page 26.)

[LG+86] Barbara Liskov, John Guttag, et al. Abstraction and specification in program
development, volume 180. MIT press Cambridge, 1986. (Cited on page 22.)

[LKK+18] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and
Koushik Sen. Rfuzz: coverage-directed fuzz testing of rtl on fpgas. In
Proceedings of the International Conference on Computer-Aided Design, page 28.
ACM, 2018. (Cited on page 68.)

[LKM16] Evangelos Logaras, Evangelos Koutsouradis, and Elias S Manolakos.
Python facilitates the rapid prototyping and hw/sw verification of pro-
cessor centric socs for fpgas. In Circuits and Systems (ISCAS), 2016 IEEE
International Symposium on, pages 1214–1217. IEEE, 2016. (Cited on pages 35
and 37.)

[LL95] Yanbing Li and Miriam Leeser. Hml: an innovative hardware description
language and its translation to vhdl. In Design Automation Conference,
1995. Proceedings of the ASP-DAC’95/CHDL’95/VLSI’95., IFIP International
Conference on Hardware Description Languages. IFIP International Conference
on Very Large Scal, pages 691–696. IEEE, 1995. (Cited on page 35.)

[LLS+15] I-Ting Angelina Lee, Charles E Leiserson, Tao B Schardl, Zhunping Zhang,
and Jim Sukha. On-the-fly pipeline parallelism. ACM Transactions on
Parallel Computing (TOPC), 2(3):1–42, 2015. (Cited on page 27.)

[LLX+14] Yao Li, Antonio Roldao Lopes, Zhouyun Xu, Zhengwei Qi, and Haibing
Guan. Scalahdl: Express and test hardware designs in a scala dsl. In
Computer Design (ICCD), 2014 32nd IEEE International Conference on, pages
521–524. IEEE, 2014. (Cited on pages 35 and 36.)

[LLX+17] Yanqiang Liu, Yao Li, Weilun Xiong, Meng Lai, Cheng Chen, Zhengwei
Qi, and Haibing Guan. Scala based fpga design flow. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 286–286. ACM, 2017. (Cited on page 35.)

[LM87a] Edward A Lee and David G Messerschmitt. Synchronous data flow. Pro-
ceedings of the IEEE, 75(9):1235–1245, 1987. (Cited on page 30.)

[LM87b] Edward Ashford Lee and David G Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal processing. IEEE Trans-
actions on computers, 100(1):24–35, 1987. (Cited on page 30.)

[LM10] Evangelos Logaras and Elias S Manolakos. Syspy: using python for
processor-centric soc design. In Electronics, Circuits, and Systems (ICECS),
2010 17th IEEE International Conference on, pages 762–765. IEEE, 2010. (Cited
on page 35.)

[LP95] Edward A Lee and Thomas M Parks. Dataflow process networks. Proceed-
ings of the IEEE, 83(5):773–801, 1995. (Cited on page 30.)

173

Bibliography

[LRW+17] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, et al. The quic transport protocol: Design and internet-scale
deployment. In Proceedings of the conference of the ACM special interest group
on data communication, pages 183–196, 2017. (Cited on page 11.)

[LS91] Charles E Leiserson and James B Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1-6):5–35, 1991. (Cited on page 71.)

[LSW+21] Chenhao Liu, Zhiyuan Shao, Zeke Wang, Kexin Li, Minkang Wu, Jiajie
Chen, Xiaofei Liao, and Hai Jin. Scalabfs: A scalable bfs accelerator on
hbm-enhanced fpgas. arXiv preprint arXiv:2105.11754, 2021. (Cited on
page 66.)

[LTL+16] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo, Ningyi
Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. Clicknp: Highly
flexible and high performance network processing with reconfigurable
hardware. In Proceedings of the 2016 ACM SIGCOMM Conference, pages
1–14. ACM, 2016. (Cited on page 26.)

[LTN+18] Derek Lockhart, Stephen Twigg, Ravi Narayanaswami, Jeremy Coriell,
Uday Dasari, Richard Ho, Doug Hogberg, George Huang, Anand Kane,
Chintan Kaur, Tao Liu, Adriana Maggiore, Kevin Townsend, and Emre
Tuncer. Experiences building edge tpu with chisel. 1st Chisel Community
Conference, CCC2018, 2018. (Cited on page 40.)

[LWC+16] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller,
Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtic, Stevo Bailey, Milovan Blago-
jevic, et al. An agile approach to building risc-v microprocessors. IEEE
Micro, 36(2):8–20, 2016. (Cited on pages 6, 40, and 45.)

[LZ74] Barbara Liskov and Stephen Zilles. Programming with abstract data types.
ACM Sigplan Notices, 9(4):50–59, 1974. (Cited on page 57.)

[LZB14] Derek Lockhart, Gary Zibrat, and Christopher Batten. Pymtl: A unified
framework for vertically integrated computer architecture research. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 280–292. IEEE Computer Society, 2014. (Cited on pages 35
and 38.)

[Mas07] Ali Mashtizadeh. Phdl: A python hardware design framework, 2007. (Cited
on pages 35 and 37.)

[Max11] Maxeler. Maxcompiler white paper, 2011. (Cited on pages 18 and 35.)

[MB21] Kingshuk Majumder and Uday Bondhugula. Hir: An mlir-based interme-
diate representation for hardware accelerator description. arXiv preprint
arXiv:2103.00194, 2021. (Cited on page 44.)

[MBM+20] Kotaro Matsuoka, Ryotaro Banno, Naoki Matsumoto, Takashi Sato, and
Song Bian. Virtual secure platform: A five-stage pipeline processor over
tfhe. arXiv preprint arXiv:2010.09410, 2020. (Cited on page 66.)

174

Bibliography

[MFL+21] Mehdi Moghaddamfar, Christian Färber, Wolfgang Lehner, Norman May,
and Akash Kumar. Resource-efficient database query processing on fpgas.
In Proceedings of the 17th International Workshop on Data Management on New
Hardware (DaMoN 2021), pages 1–8, 2021. (Cited on page 65.)

[MGDG+20] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni,
Joseph Zuckerman, Emilio G Cota, Michele Petracca, Christian Pilato, and
Luca P Carloni. Agile soc development with open esp. In 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pages 1–9. IEEE,
2020. (Cited on page 91.)

[MMGC20] Paolo Mantovani, Robert Margelli, Davide Giri, and Luca P Carloni. Hl5:
A 32-bit risc-v processor designed with high-level synthesis. In 2020 IEEE
Custom Integrated Circuits Conference (CICC), pages 1–8. IEEE, 2020. (Cited
on page 17.)

[MML13] Fabian May and Friedrich Mayer-Lindenberg. Modhdl: A modular and
expandable language for developing synchronous hardware. In Reconfig-
urable Computing and FPGAs (ReConFig), 2013 International Conference on,
pages 1–6. IEEE, 2013. (Cited on pages 26 and 35.)

[MP19] VM Milovanović and ML Petrović. A highly parametrizable chisel hcl
generator of single-path delay feedback fft processors. In 2019 IEEE 31st
International Conference on Microelectronics (MIEL), pages 247–250. IEEE,
2019. (Cited on page 45.)

[MR01] Maria-Cristina V Marinescu and Martin Rinard. High-level automatic
pipelining for sequential circuits. In Proceedings of the 14th international
symposium on Systems synthesis, pages 215–220, 2001. (Cited on page 29.)

[MSB+06] David Moore, Colleen Shannon, Douglas J Brown, Geoffrey M Voelker,
and Stefan Savage. Inferring internet denial-of-service activity. ACM
Transactions on Computer Systems (TOCS), 24(2):115–139, 2006. (Cited on
page 2.)

[MXSJ17] Tasnuva Mahjabin, Yang Xiao, Guang Sun, and Wangdong Jiang. A
survey of distributed denial-of-service attack, prevention, and miti-
gation techniques. International Journal of Distributed Sensor Networks,
13(12):1550147717741463, 2017. (Cited on page 2.)

[Nay18] Matthew Naylor. Blarney github page. https://github.com/
blarney-lang/blarney, 2018. (Cited on page 35.)

[Net20] Netscout. Worldwide infrastructure security report. Web, 2020. (Cited on
page 2.)

[Nik04] Rishiyur Nikhil. Bluespec system verilog: efficient, correct rtl from high
level specifications. In Formal Methods and Models for Co-Design, 2004.
MEMOCODE’04. Proceedings. Second ACM and IEEE International Conference
on, pages 69–70. IEEE, 2004. (Cited on pages 31, 34, and 39.)

[Nik08] Rishiyur S Nikhil. Bluespec: A general-purpose approach to high-level
synthesis based on parallel atomic transactions. In High-Level Synthesis,
pages 129–146. Springer, 2008. (Cited on pages 31, 34, and 39.)

175

https://github.com/blarney-lang/blarney
https://github.com/blarney-lang/blarney

Bibliography

[NS96] Wolfgang Nebel and Guido Schumacher. Object-oriented hardware
modelling-where to apply and what are the objects?’. In Proceedings EURO-
DAC’96. European Design Automation Conference with EURO-VHDL’96 and
Exhibition, pages 428–433. IEEE, 1996. (Cited on page 38.)

[NSP+16] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort,
Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio
Ferrandi, et al. A survey and evaluation of fpga high-level synthesis tools.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
35(10):1591–1604, 2016. (Cited on pages 16, 17, and 26.)

[NSS+16] Eriko Nurvitadhi, Jaewoong Sim, David Sheffield, Asit Mishra, Srivatsan
Krishnan, and Debbie Marr. Accelerating recurrent neural networks in
analytics servers: Comparison of fpga, cpu, gpu, and asic. In 2016 26th
International Conference on Field Programmable Logic and Applications (FPL),
pages 1–4. IEEE, 2016. (Cited on page 13.)

[Pan01] Preeti Ranjan Panda. Systemc-a modeling platform supporting multiple
design abstractions. In International Symposium on System Synthesis (IEEE
Cat. No. 01EX526), pages 75–80. IEEE, 2001. (Cited on page 31.)

[Pap16] Charles Papon. Spinalhdl. Online, https://spinalhdl.github.io/
SpinalDoc/, 2016. (Cited on pages 35 and 38.)

[PBVS+20] Johan Peltenburg, Matthijs Brobbel, Jeroen Van Straten, Zaid Al-Ars, and
Peter Hofstee. Tydi: an open specification for complex data structures over
hardware streams. IEEE Micro, 2020. (Cited on page 31.)

[PE17] Oron Port and Yoav Etsion. Dfiant: A dataflow hardware description
language. In Field Programmable Logic and Applications (FPL), 2017 27th
International Conference on, pages 1–4. IEEE, 2017. (Cited on pages 29
and 35.)

[PF11] Terence Parr and Kathleen Fisher. LL(*) the foundation of the ANTLR
parser generator. ACM Sigplan Notices, 46(6):425–436, 2011. (Cited on
page 93.)

[PFSS15] João Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. Pi-ware:
Hardware description and verification in agda. In 21st International Con-
ference on Types for Proofs and Programs (TYPES 2015), volume 69 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 9:1–9:27. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015. (Cited on page 35.)

[PK16] Panagiotis Patros and Kenneth B. Kent. Automatic detection and elision
of reset sub-circuits. In Proc. of the 27th International Symposium on Rapid
System Prototyping, pages 26–32, 2016. (Cited on page 95.)

[PKB+16] Raghu Prabhakar, David Koeplinger, Kevin J Brown, HyoukJoong Lee,
Christopher De Sa, Christos Kozyrakis, and Kunle Olukotun. Generating
configurable hardware from parallel patterns. ACM SIGARCH Computer
Architecture News, 44(2):651–665, 2016. (Cited on page 26.)

[PLV05] François Pêcheux, Christophe Lallement, and Alain Vachoux. Vhdl-ams
and verilog-ams as alternative hardware description languages for efficient

176

https://spinalhdl.github.io/SpinalDoc/
https://spinalhdl.github.io/SpinalDoc/

Bibliography

modeling of multidiscipline systems. IEEE transactions on Computer-Aided
design of integrated Circuits and Systems, 24(2):204–225, 2005. (Cited on
page 44.)

[PM11] Oliver Pell and Oskar Mencer. Surviving the end of frequency scaling with
reconfigurable dataflow computing. ACM SIGARCH Computer Architecture
News, 39(4):60–65, 2011. (Cited on page 35.)

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004. (Cited on page 46.)

[Pre97] Christian Prehofer. Feature-oriented programming: A fresh look at ob-
jects. In European Conference on Object-Oriented Programming, pages 419–443.
Springer, 1997. (Cited on page 32.)

[PWSR18] Rafael Trapani Possignolo, Sheng Hong Wang, Haven Skinner, and Jose
Renau. Lgraph: A multi-language open-source database for vlsi. In WOSET:
Workshop on Open-Source EDA technology 2018, 2018. (Cited on page 39.)

[RKH+20] Antti Rautakoura, Matti Käyrä, Timo D Hämäläinen, Wolfgang Ecker, Esko
Pekkarinen, and Mikko Teuho. Kamel: Ip-xact compatible intermediate
meta-model for ip generation. In 2020 23rd Euromicro Conference on Digital
System Design (DSD), pages 325–331. IEEE, 2020. (Cited on page 26.)

[RMMV10] Erik Rubow, Rick McGeer, Jeff Mogul, and Amin Vahdat. Chimpp: A
click-based programming and simulation environment for reconfigurable
networking hardware. In Proceedings of the 6th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, page 36. ACM,
2010. (Cited on page 26.)

[RPPS19] Simon Rokicki, Davide Pala, Joseph Paturel, and Olivier Sentieys. What
you simulate is what you synthesize: Designing a processor core from c++
specifications. In ICCAD 2019 - 38th IEEE/ACMInternational Conference on
Computer-Aided Design, 2019. (Cited on page 45.)

[RSP+05] Adam Rose, Stuart Swan, John Pierce, Jean-Michel Fernandez, et al. Trans-
action level modeling in systemc. Open SystemC Initiative, 1(1.297), 2005.
(Cited on page 30.)

[SAW+10] Ofer Shacham, Omid Azizi, Megan Wachs, Wajahat Qadeer, Zain Asgar,
Kyle Kelley, John P Stevenson, Stephen Richardson, Mark Horowitz, Ben-
jamin Lee, et al. Rethinking digital design: Why design must change. IEEE
micro, 30(6):9–24, 2010. (Cited on pages 16 and 34.)

[SB99] Howard Sachs and Mark Birnbaum. Vsia technical challenges. In Pro-
ceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.
99CH36327), pages 619–622. IEEE, 1999. (Cited on page 31.)

[SBL+14] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. Delite: A compiler architec-
ture for performance-oriented embedded domain-specific languages. ACM
Transactions on Embedded Computing Systems (TECS), 13(4s):134, 2014. (Cited
on page 26.)

177

Bibliography

[SBVW03] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet
classification using multidimensional cutting. In Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 213–224, 2003. (Cited on page 111.)

[SGS+12] Ofer Shacham, Sameh Galal, Sabarish Sankaranarayanan, Megan Wachs,
John Brunhaver, Artem Vassiliev, Mark Horowitz, Andrew Danowitz, Wa-
jahat Qadeer, and Stephen Richardson. Avoiding game over: Bringing
design to the next level. In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pages 623–629. IEEE, 2012. (Cited on page 34.)

[Sha11] Ofer Shacham. Chip multiprocessor generator: automatic generation of custom
and heterogeneous compute platforms. phdthesis, Stanford University, 2011.
(Cited on page 34.)

[SHR+19] Amirali Sharifian, Reza Hojabr, Navid Rahimi, Sihao Liu, Apala Guha,
Tony Nowatzki, and Arrvindh Shriraman. µir-an intermediate representa-
tion for transforming and optimizing the microarchitecture of application
accelerators. MICRO-52, 2019. (Cited on page 68.)

[SJR+16] R Sethulekshmi, S Jazir, Riyaz A Rahiman, Ragipati Karthik, MS Abdulla,
et al. Verification of a risc processor ip core using systemverilog. In 2016
International Conference on Wireless Communications, Signal Processing and
Networking (WiSPNET), pages 1490–1493. IEEE, 2016. (Cited on page 44.)

[SKGB20] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. Llhd: a
multi-level intermediate representation for hardware description languages.
arXiv preprint arXiv:2004.03494, 2020. (Cited on pages 18, 39, and 44.)

[Ski18] Haven Blake Skinner. Pyrope: A Latency-Insensitive Digital Architecture
Toolchain. PhD thesis, UC Santa Cruz, 2018. (Cited on page 38.)

[SM13] Stuart Sutherland and Don Mills. Synthesizing SystemVerilog: busting the
myth that SystemVerilog is only for verification. In Proceedings of SNUG
Silicon Valley, page 24, 2013. (Cited on page 33.)

[SMBD93] Karem A Sakallah, Trevor N Mudge, Timothy M Burks, and Edward S
Davidson. Synchronization of pipelines. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 12(8):1132–1146, 1993. (Cited
on page 71.)

[SNO13] Won So, Ashok Narayanan, and David Oran. Named data networking
on a router: Fast and dos-resistant forwarding with hash tables. In Pro-
ceedings of the ninth ACM/IEEE symposium on Architectures for networking
and communications systems, pages 215–226. IEEE Press, 2013. (Cited on
page 50.)

[Sny10] Wilson Snyder. The verilog preprocessor: Force for good and evil. In
Proceedings of SNUG Boston, 2010. (Cited on page 33.)

[SRAD07] Sameer D Sahasrabuddhe, Hakim Raja, Kavi Arya, and Madhav P Desai.
Ahir: A hardware intermediate representation for hardware generation
from high-level programs. In 20th International Conference on VLSI Design
held jointly with 6th International Conference on Embedded Systems (VLSID’07),
pages 245–250. IEEE, 2007. (Cited on page 39.)

178

Bibliography

[SRC+19] Pontarelli Salvatore, Bonola Roberto, Bifulcoand Marco, Cascone Carmelo,
Spaziani Marco, Bruschi Valerio, Sanvito Davide, Siracusano Giuseppe,
Capone Antonio, Honda Michio, Huici Felipe, and Bianchi Giuseppe.
Flowblaze: Stateful packet processing in hardware. In In proceedings of 16th
USENIX Symposium on Networked Systems Design and Implementation, 2019.
(Cited on pages 17, 26, and 29.)

[Sta15] Gavin Stark. Introduction to the nfp architecture. In Proceedings of
P4DEVCON 2015, San Jose, 2015. (Cited on page 12.)

[Str17] Tobias Strauch. An aspect and transaction oriented programming, design
and verification language (pdvl). In 2017 Euromicro Conference on Digital
System Design (DSD), pages 30–39. IEEE, 2017. (Cited on pages 30, 31,
and 32.)

[SWS+17] Haven Skinner, Sheng Hong Wang, Akash Sridhar, Rafael Trapani Possig-
nolo, and Renau Jose. Pyrope, a modern hdl with a live flow. Com-
puter Engineering Department, University of California, Santa Cruz,
https://masc.soe.ucsc.edu/pyrope.html, 2017. (Cited on page 38.)

[SWW11] Ivan Shcherbakov, Christian Weis, and Norbert Wehn. Bringing c++ pro-
ductivity to vhdl world: From language definition to a case study. In
Specification and Design Languages (FDL), 2011 Forum on, pages 1–7. IEEE,
2011. (Cited on page 34.)

[Tay05] David E Taylor. Survey and taxonomy of packet classification techniques.
ACM Computing Surveys (CSUR), 37(3):238–275, 2005. (Cited on page 111.)

[Tay18] Michael Bedford Taylor. Basejump stl: systemverilog needs a standard
template library for hardware design. In Design Automation Conference,
2018. (Cited on pages 31 and 34.)

[TH19] Lenny Truong and Pat Hanrahan. A golden age of hardware description
languages: Applying programming language techniques to improve design
productivity. In 3rd Summit on Advances in Programming Languages (SNAPL
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. (Cited on
page 38.)

[THZ20] James Thomas, Pat Hanrahan, and Matei Zaharia. Fleet: A framework for
massively parallel streaming on fpgas. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 639–651, 2020. (Cited on page 30.)

[TOJ+19] Cheng Tan, Yanghui Ou, Shunning Jiang, Peitian Pan, Christopher Torng,
Shady Agwa, and Christopher Batten. Pyocn: A unified framework for
modeling, testing, and evaluating on-chip networks. In Proceedings of the
37th IEEE Int’l Conf. on Computer Design (ICCD-37), November 2019, 2019.
(Cited on page 45.)

[TY15] Shinya Takamaeda-Yamazaki. Pyverilog: A python-based hardware design
processing toolkit for verilog hdl. In International Symposium on Applied
Reconfigurable Computing, pages 451–460. Springer, 2015. (Cited on page 35.)

179

https://masc.soe.ucsc.edu/pyrope.html

Bibliography

[TŽ17] Andrej Trost and Andrej Žemva. Pipeline circuit synthesis from python
code. In Embedded Computing (MECO), 2017 6th Mediterranean Conference on,
pages 1–4. IEEE, 2017. (Cited on page 26.)

[uja19] HardCaml: Register transfer level hardware design in OCaml. http:
//www.ujamjar.com/hardcaml, 2019. (Cited on page 35.)

[VCP+20] Marcos AM Vieira, Matheus S Castanho, Racyus DG Pacífico, Elerson RS
Santos, Eduardo PM Câmara Júnior, and Luiz FM Vieira. Fast packet
processing with ebpf and xdp: Concepts, code, challenges, and applications.
ACM Computing Surveys (CSUR), 53(1):1–36, 2020. (Cited on page 13.)

[VER19] Bogdan Vukobratovic, Andrea Erdeljan, and Damjan Rakanovic. Pygears:
A functional approach to hardware design. In Proceedings of OSDA, 2019.
(Cited on page 35.)

[VG14] Girish Venkataramani and Yongfeng Gu. System-level retiming and pipelin-
ing. In 2014 IEEE 22nd Annual International Symposium on Field-Programmable
Custom Computing Machines, pages 80–87. IEEE, 2014. (Cited on page 29.)

[Vis07] Eelco Visser. Webdsl: A case study in domain-specific language engineering.
In International summer school on generative and transformational techniques in
software engineering, pages 291–373. Springer, 2007. (Cited on page 23.)

[VLWA13] Huy Vo, Yunsup Lee, Andrew Waterman, and Krste Asanovic. A case for
os-friendly hardware accelerators. In Workshop on the Interaction between
Operating System and Computer Architecture (WIVOSCA), at the International
Symposium on Computer Architecture (ISCA), 2013. (Cited on page 68.)

[VN93] John Von Neumann. First draft of a report on the edvac. IEEE Annals of the
History of Computing, 15(4):27–75, 1993. (Cited on page 22.)

[VRO21] Matthew Vilim, Alexander Rucker, and Kunle Olukotun. Aurochs: An
architecture for dataflow threads. In Proceedings of 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA), 2021. (Cited
on page 65.)

[WCCM18] An Wang, Wentao Chang, Songqing Chen, and Aziz Mohaisen. Delv-
ing into internet ddos attacks by botnets: characterization and analysis.
IEEE/ACM Transactions on Networking, 26(6):2843–2855, 2018. (Cited on
page 2.)

[WGK13] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog syn-
thesis suite. In Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), 2013. (Cited on page 39.)

[WIS+18] Edward Wang, Adam Izraelevitz, Colin Schmidt, Borivoje Nikolic, Elad
Alon, and Jonathan Bachrach. Hammer: Enabling reusable physical design.
In Proceedings of the first Workshop on Open-Source EDA Technology, 2018.
(Cited on page 68.)

[Wol20] Clifford Wolf. PicoRV32 - a size-optimized RISC-V CPU. Retrieved July
2020, 2020. (Cited on page 99.)

180

http://www.ujamjar.com/hardcaml
http://www.ujamjar.com/hardcaml

Bibliography

[WPC+19] Sheng-Hong Wang, Rafael Trapani Possignolo, Qian Chen, Rohan Ganpati,
and Jose Renau. Lgraph: A unified data model and api for productive
open-source hardware design. In Proceedings of Workshop on Open-Source
EDA technology (WOSET) 2019, 2019. (Cited on pages 39 and 44.)

[WRI+18] Angie Wang, Paul Rigge, Adam Izraelevitz, Chick Markley, Jonathan
Bachrach, and Borivoje Nikolić. Aced: a hardware library for generating
dsp systems. In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2018. (Cited on page 45.)

[WSR19] Sheng-Hong Wang, Akash Sridhar, and Jose Renau. Lnast: A language
neutral intermediate representation for hardware description languages.
In Proceedings of Workshop on Open-Source EDA technology (WOSET) 2019,
2019. (Cited on pages 39 and 44.)

[XCC21] Zhili Xiao, Roger D Chamberlain, and Anthony M Cabrera. Hls portability
from intel to xilinx: A case study. In 2021 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–8. IEEE, 2021. (Cited on page 17.)

[XLT+22] Mufan Xiang, Yongjian Li, Sijun Tan, Yongxin Zhao, and Yiwei Chi. Param-
eterized design and formal verification of multi-ported memory. In 2022
26th International Conference on Engineering of Complex Computer Systems
(ICECCS), pages 33–41. IEEE, 2022. (Cited on page 66.)

[XZW+21] Qingcheng Xiao, Size Zheng, Bingzhe Wu, Pengcheng Xu, Xuehai Qian,
and Yun Liang. Hasco: Towards agile hardware and software co-design for
tensor computation. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), pages 1055–1068. IEEE, 2021. (Cited on
page 66.)

181

Abstracting Hardware Architectures for Agile Design of High-performance
Applications on FPGA

Abstract — In a context of ever-growing worldwide communication traffic and fast deployment of IoT
devices, network attacks have become a daily challenge with record-breaking throughput levels. Compared
to software solutions based on general purpose CPUs, FPGA-based mitigation appliances appear as
an energy-efficient alternative which combines configurability with guaranteed high-throughput and
low-latency. However, implementation of such dedicated hardware accelerators based on the register-
transfer level (RTL) abstraction is a much slower and tedious process than functionally equivalent software
developments. The latter have indeed benefited from the introduction of countless high-level paradigms over
the past decades, whereas traditional hardware description languages (HDLs) have consistently remained
rigid and verbose. As a result, the agility gap between hardware and software developments is expanding
at a steady pace, leaving hardware design experts frustrated by the lack of re-usability of their carefully
crafted architectures.

This thesis tackles this generic hardware development issue within the context of high-performance
networking appliance design at OVHcloud. Mimicking the successful trajectory of software evolution,
it aims at leveraging a stack of abstraction levels to instill flexibility within hardware descriptions. As
a key enabler, Hardware Construction Languages (HCLs) apply some existing software abstractions to
hardware design, which permits descriptions of circuit generators with high-level software paradigms, such
as object-oriented and functional programming. This thesis exhibits the relevance of both software inherited
paradigms and hardware-oriented abstractions to develop highly re-usable network functions, inspecting
design, implementation and integration perspectives.

Keywords: FPGA, EDA, Modelling, Abstraction, HCL, HDL, Network, High-performance

Thesis prepared between OVHcloud
6 bis rue Riquet, 75019, PARIS, France

and TIMA laboratory
46 Avenue Félix Viallet, 38031, GRENOBLE Cedex, France

	Front page
	Abstract
	Résumé (FR)
	Table of Contents
	Acknowledgments
	Remerciements (FR)
	Introduction
	Problem Statement
	Introduction
	Network Application Design
	Towards Agile and Efficient Hardware Design
	Conclusion

	State of the Art
	Raising the Abstraction Level
	High-level Hardware Design Paradigms
	Implementing Abstractions with Hardware Construction Languages
	Conclusion

	Agile Hardware Design
	Hardware Construction Languages Usages and Applications
	Bringing Agility to Networking Hardware Development
	Towards In-depth Transformation of Circuit Design
	Conclusion

	Pipeline Design Methodology
	Introduction
	Towards Latency-aware & Protocol-Polymorphic Pipelines
	Model Construction
	Model Resolution: Signal Synchronization
	Results
	Conclusion

	Integration of Hardware Construction Languages
	Problem Statement
	(System)Verilog Upstream Integration by Translation
	HCL-as-IP: Downstream Integration of HCL-Generated Architectures
	Conclusion

	Experimentation
	Tree Filters Design and SystemVerilog Implementation
	Chisel Translation with sv2chisel
	Integrating Pipeline Framework
	Conclusion

	Conclusion
	Appendices
	Appendix Abstract Data Type Schemes
	Complete Protected Hash-Table ADT Scheme
	ADT Usage Example

	Appendix Port Wrapper
	Appendix Tree Filters Architecture Details
	Top Level Architecture
	Generated Synchronization-oriented Representations
	Pipeline-oriented Representation

	Appendix Chisel Insights
	UInt vs Vec[Bool] and Flattening
	Antipatterns Translation

	Publications
	Bibliography
	Back page

