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RÉSUMÉ ÉTENDU (FRANÇAIS)

Les déĄs sociétaux actuels poussent les industriels à avoir des exigences de plus en plus élevées en termes de propriétés mécaniques des matériaux. Par exemple, on veut des matériaux de plus en plus légers avec la plus grande rigidité possible. Dans cette situation, les matériaux architecturés (M.A.), notamment les structures de type "lattices", peuvent apporter une contribution essentielle.

Un matériau est dit architecturé sŠil présente au moins trois échelles dŠorganisation de la matière : une échelle macroscopique, une ou plusieurs échelles mésoscopiques et une échelle microscopique. On parle de matériau macro-architecturés lorsque lŠordre de grandeur des échelles mésoscopiques est proche de celui de lŠéchelle macroscopique et bien plus grand que celui de lŠéchelle microscopique. Cette thèse sŠintéresse plus particulièrement aux structures de type réseaux de poutres.

Deux catégories ont été largement étudiées dans la littérature : les matériaux aléatoires comme les mousses, et les matériaux périodiques comme les nids dŠabeilles. Les mousses sont faciles à produire et possèdent des propriétés isotropes, mais qui peuvent varier dŠun spécimen à lŠautre. Au contraire, les structures périodiques sont déterministes et leur étude peut être menée sur une cellule élémentaire. Cependant elles ont tendance à avoir un comportement plus anisotrope et une faible ténacité. Les matériaux quasipériodiques, structures combinant désordre local et ordre à longue portée, semblent être particulièrement intéressants car ils combinent les atouts des structures périodiques et apériodiques. En effet, ils sont déterministes, ils peuvent avoir un comportement isotrope, et ils présentent une meilleure ténacité que les M.A. périodiques, du moins pour ceux qui ont une structure de réseau de poutres. Bien que ces matériaux semblent intéressants, lŠétude de leur comportement mécanique nŠen est encore quŠà ses débuts. Par exemple, on sait que les lattices aléatoires et périodiques peuvent être classées en deux catégories en fonction de leurs mécanismes de déformation internes : les structures à traction dominante et celles à Ćexion dominante. LŠappartenance à lŠune ou lŠautre catégorie est principalement déterminée par lŠarchitecture interne du matériau, la forme de la cellule unitaire dans le cas dŠun réseau périodique. Il sŠagit dŠune notion importante car suivant le type dŠapplication souhaité, il faut privilégier une ou lŠautre des catégories. Par exemple, un motif à traction dominante sera choisi pour obtenir une structure raide, et un motif à Ćexion dominante pour faire un absorbeur de choc. Bien que cette propriété soit lŠune des plus basiques, le type de dominance des lattices quasi-périodiques nŠa pas encore été étudié. De façon générale, les quelques études qui sŠintéressent aux matériaux architecturés quasi-périodiques choisissent en général une structure de façon plus ou moins arbitraire sans tenir compte de lŠinĆuence potentielle de la forme du motif élémentaire. Or, celui-ci peut avoir un impact sur les mécanismes de déformation locaux, qui à leur tour auront un impact sur le comportement global de la structure.

Dans tous les cas, si lŠon souhaite un jour généraliser lŠutilisation de ce type de matériau dans lŠindustrie, il faut être capable de réaliser des simulations numériques rapides, ce qui implique dŠêtre capable dŠidentiĄer un milieu homogène équivalent. Les procédés de fabrication de matériaux lattices introduisant de nombreux défauts, cette identiĄcation ne doit pas seulement être possible numériquement, elle doit aussi être réalisée expérimentalement.

Le travail présenté ici vise à caractériser le comportement mécanique élastique de lattices quasi-périodiques. Ses deux principaux objectifs sont les suivants : Ů Comprendre lŠinĆuence du motif sur le comportement mécanique des lattices quasipériodiques ; Ů DéĄnir une méthode pour identiĄer les paramètres constitutifs dŠun milieu effectif représentatif de leur comportement macroscopique.

Ce dernier point implique de :

Ů Proposer une stratégie pour convertir la cinématique discrète en cinématique con-tinue ; Ů DéĄnir un montage théorique Ű géométrie et chargement Ű qui permet de charger les lattices dŠune manière suffisamment riche pour identiĄer les paramètres de manière robuste ; Ů Valider cette stratégie numériquement ; Ů Concevoir un dispositif expérimental permettant dŠappliquer ce chargement ; Ů Analyser les données expérimentales et les comparer aux prédictions numériques.

Cette thèse est divisée en six chapitres. Les deux premiers chapitres ont pour but de présenter lŠétat de lŠart de cette étude.

Le chapitre 1 présente lŠétat général des connaissances sur les matériaux architecturés, cŠest-à-dire la manière dont ils peuvent être déĄnis et dont leur comportement mécanique a été modélisé et caractérisé jusquŠà présent. La démocratisation de leur utilisation passe par la possibilité de réaliser des simulations rapides. Même si la description complète de la structure interne peut être intéressante pour observer certains comportements particuliers, lŠobtention dŠun comportement homogénéisé est nécessaire. Cependant, les techniques classiques dŠhomogénéisation peuvent trouver leurs limites dans le cas des matériaux macro-architecturés poreux en raison de la faible séparation dŠéchelle entre les échelles macroscopique et mésoscopique et des nombreux défauts introduits par les procédés de fabrication. Ce dernier point montre la nécessité dŠune caractérisation expérimentale. Néanmoins, les tests de caractérisation et les techniques de post-traitement ont jusquŠà présent été peu repensés pour les matériaux architecturés.

Le chapitre 2 fait une présentation spéciĄque des structures quasi-périodiques. En particulier, il y est présenté comment les concepts de fonctions et pavages quasi-périodiques ont été introduits et comment la découverte des quasi-cristaux a renouvelé lŠintérêt pour ces structures. Ensuite, une présentation spéciĄque de lŠétendue des recherches sur leur comportement mécanique est réalisée. Il y montre que peu de recherches se sont concentrées jusquŠà présent sur le comportement mécanique des lattices quasi-périodiques, et les rares qui sŠy intéressent ne considèrent généralement pas lŠinĆuence du type de motif : un seul motif est étudié et choisi plus ou moins arbitrairement. EnĄn, une description des différentes méthodes de génération est faite. Ce chapitre permet donc de mieux connaitre les particularités des lattices quasi-périodiques et donc de préparer le terrain pour déĄnir une stratégie pertinente pour étudier leur comportement effectif, et notamment déterminer un essai adapté.

Les chapitres suivants regroupent les contributions spéciĄques de cette thèse.

Le chapitre 3 vise à choisir un test pertinent pour étudier le comportement mécanique global des lattices quasi périodiques. Un essai de compression trois points sur un anneau a été choisi. LŠéprouvette a la possibilité de rouler entre les compressions. Cet essai a été sélectionné car il permet dŠobtenir un champ de contraintes riche qui peut potentiellement permettre dŠidentiĄer les paramètres constitutifs de milieux continus généralisés et de garder une Ćexibilité en termes de matériau considéré et de comportement étudié. Les paramètres géométriques sélectionnés sont résumés dans Figure 2. Les paramètres variables associés à cet essai sont la force de compression appliquée F y et lŠorientation de lŠéchantillon ∆α.

Figure 2 Ű Essai mécanique choisi

Le deuxième objectif de ce chapitre était de déĄnir un jumeau numérique pertinent permettant de réaliser des études préliminaires et de sélectionner des motifs pertinents pour la campagne expérimentale. Compte tenu de lŠéchelle dŠobservation, un modèle mésoscopique a été privilégié pour les études ultérieures : le comportement du matériau lattice est simulé à lŠaide dŠune méthode dŠéléments Ąnis dans laquelle un élément de poutre dŠEuler-Bernoulli est associé à chaque barre réelle composant la structure.

Le chapitre 4 étudie lŠinĆuence du motif sur le type de dominance énergétique des lattices quasi-périodiques. Dans ce chapitre, mais plus généralement dans cette thèse, les motifs ont été choisis pour produire un comportement élastique effectif isotrope. Ce qui diffère entre eux, ce sont les mécanismes de déformation locaux, dont la nature est déterminante pour le comportement non linéaire ou plus généralement leurs mécanismes de déformation préférentiels. Des simulations dŠessais de traction et dŠanneaux ont été réalisées sur des modèles mésoscopiques 2D, et les proportions de lŠénergie de déformation stockées sous forme de traction/compression et de Ćexion ont été calculées.

Il a été montré quŠil est possible de classer les matériaux architecturés quasi-périodiques en trois catégories (cf Figure 3): Ů Complètement à traction dominante : le matériau est à traction dominante quel que soit lŠélancement de ses poutres, et presque toutes se déforment en traction/compression ; Ů Complètement à Ćexion dominante : le matériau est à Ćexion dominante quel que soit lŠélancement de ses poutres, et presque toutes se déforment en Ćexion ; Ů Dominance variable : le type de dominance varie avec lŠélancement, et les différentes poutres constituant lŠéchantillon peuvent avoir différents mécanismes de déformations.

Figure 3 Ű Evolution de la proportion dŠénergie de déformation stockée sous forme de traction/compression dans lŠéprouvette en fonction de lŠélancement de ses poutres internes pour trois motifs différents, chacun représentatif dŠune des classe énergétique observées Cette catégorisation est également pertinente pour les structures périodiques. Cependant, certaines variations dans la distribution de lŠénergie peuvent être observées entre les modèles périodiques et quasi-périodiques dans le cas de comportements complètement à Ćexion dominante et de comportements à dominance variable pour un élancement des poutres internes élevé. Les lattices quasi-périodiques ont tendance à mieux répartir lŠénergie de déformation, ce qui en fait potentiellement de meilleurs absorbeurs dŠénergie.

Le chapitre 5 vise à choisir et à mettre en oeuvre une procédure dŠidentiĄcation du comportement mécanique adaptée aux lattices quasi-périodiques. Sachant que différents mécanismes de déformation peuvent être observés, il a été décidé dŠétudier leur inĆuence sur le comportement élastique effectif global. Le milieu continu de type Cauchy étant potentiellement insuffisant pour décrire le comportement macroscopique des matériaux architecturés, il a été décidé dŠidentiĄer les paramètres élastiques constitutifs de modèles de Cauchy et de Cosserat aĄn de déterminer lequel est le plus adapté aux modèles considérés. Dans ce but, une procédure dŠidentiĄcation FEMU a été mise en oeuvre, adaptée à lŠarchitecture peu commune de ces matériaux et utilisant lŠessai de compression trois points sur un anneau. LŠessai a été réalisé pour plusieurs orientations de lŠéchantillon. Des champs cinématiques moyens ont été calculés à partir de lŠensemble des essais réalisés et utilisés comme champs de référence dans la FEMU. Dans de chapitre, lŠidentiĄcation a été réalisée à lŠaide dŠun jumeau numérique.

Cette étude a montré que le motif, et plus particulièrement la classe de dominance énergétique, inĆuence fortement le comportement mécanique global de ces structures. Contrairement aux motifs périodiques, il nŠinĆuence pas seulement la rigidité globale mais aussi le type de modèle à utiliser. En effet, si un modèle classique de type Cauchy reste suffisant pour les motifs périodiques et pour les motifs quasi-périodiques à traction dominante et à dominance variable, il est nécessaire dŠutiliser un modèle de Cosserat pour les lattices quasi-périodiques à Ćexion dominante. En effet, dans le premier cas, la convergence vers un modèle de type Cosserat est difficile. Elle ne permet pas dŠobtenir de meilleurs résultats que ceux obtenus avec un modèle de type Cauchy, pour lequel la procédure dŠidentiĄcation converge toujours et conduit à des milieux équivalents qui décrivent efficacement le comportement macroscopique. Au contraire, pour les motifs quasi-périodiques à Ćexion dominante, lŠidentiĄcation de Cosserat réussit toujours à converger et permet de mieux décrire leur comportement global que Cauchy. Il a également été démontré que la classe de symétrie a une faible inĆuence sur les comportements identiĄés. Pour Ąnir, le chapitre 6 a pour but de valider expérimentalement la procédure et les résultats obtenus dans le chapitre précédent. En effet ces résultats ont été obtenus avec des géométries parfaites et sans aucun bruit de mesure, alors que de nombreuses perturbations peuvent potentiellement faire échouer la procédure lors dŠessais réels. De même, le comportement réel du matériau peut différer du modèle mésoscopique utilisé. Les sources de perturbations et de différences sont de plusieurs ordres :

Ů ConĄguration expérimentale : les conditions aux limites ne sont ni parfaites ni exactement les mêmes pour toutes les conĄgurations. De plus, des modèles 2D ont été utilisés, alors que les échantillons réels sont nécessairement 3D ; Ů Outils de mesure : du bruit et des incertitudes de mesure sont associés à chaque mesure. Des phénomènes 3D peuvent également perturber les mesures, comme par exemple les mouvements hors plan qui induisent des erreurs sur les mesures des champs cinématiques 2D ; Ů Défauts des matériaux : les simulations sont réalisées en considérant des géométries et des matériaux parfaits. Cependant, les procédés de fabrication de lattices introduisent de nombreux défauts et peuvent modiĄer les propriétés constitutives initiales des matériaux en ajoutant des porosités ou des contraintes thermiques résiduelles, par exemple. De plus, en raison de lŠépaisseur des poutres, lŠélancement apparent est plus court quŠavec le modèle de poutre.

La question est donc : la procédure dŠidentiĄcation est-elle suffisamment robuste et stable face à ces perturbations ? De plus, en raison des défauts du réseau, les phénomènes présents numériquement apparaissent-ils encore dans la réalité ? Pour répondre à ces questions, un banc dŠessai a été conçu, et plusieurs essais ont été réalisés sur des éprouvettes avec des motifs bien choisis. La quasi-totalité des résultats numériques ont été validés. Pour les modèles à traction dominante et à dominance variable, un modèle de Cauchy est mieux adapté pour décrire le comportement macroscopique de la structure. Un modèle de Cauchy reste cependant également suffisant pour les motifs quasi-périodiques à Ćexion dominante si lŠélancement de ses poutres internes est suffisamment petit. Dans le cas contraire, un modèle de Cosserat est plus adapté. Il a ainsi été montré quŠil est possible de mettre en évidence expérimentalement un comportement élastique de Cosserat de manière assez robuste.

INTRODUCTION

Over the years, material property requirements have become increasingly high and have led to the necessity of reaching previously inaccessible zones of Ashby diagrams [START_REF] Fleck | Microarchitectured materials: past, present and future[END_REF] (see Figure 6).

Figure 6 Ű Strength versus density Asbhy diagrams of the materials known in 1945 and 2010 (Ągures issued from this Ąle3 , see also [START_REF] Fleck | Microarchitectured materials: past, present and future[END_REF]). Ashby diagrams are used to display two or three material properties and so compare the characteristic of different materials classes. Each "bubble" represent a different class of materials.

Until now, two principal ways have been explored to fulĄl this goal: (1) modify materials composition by, for example, manufacturing speciĄc alloys and (2) inĆuence the microstructure by controlling the phase repartition or limiting defects [START_REF] Bouaziz | Heterogeneous and architectured materials: A possible strategy for design of structural materials[END_REF], Fleck et al., 2010]. Both methods have been widely studied, leaving little room for innovation. However, the development of new production methods, such as additive manufacturing or laser cutting, has paved the way for a new approach based on the control of the mesostructure [START_REF] Ashby | Designing hybrid materials[END_REF]. A growing interest has thus been observed in architectured materials in recent years, with an expanding range of topics covered (see Figure 7 Ű Evolution of the percentage of publications on architectured materials over the years [Poncelet, 2022] Figure 7).

A material is termed architectured if it presents at least three scales of matter organisation: the classical micro and macroscopic scales, and between those two, one or several intermediate scales called mesoscopic. Furthermore, some call it macro-architectured if its intermediate scales have a characteristic size of the same order of magnitude as the macroscopic one and considerably larger than that of the microscopic. One can refer to a weak scale separation between the macroscopic and mesoscopic (see Figure 8) [START_REF] Bouaziz | Heterogeneous and architectured materials: A possible strategy for design of structural materials[END_REF], Poncelet et al., 2018, Dirrenberger, 2018]. static properties, such as the possibility of obtaining a custom-made overall elasticity tensor [START_REF] Milton | Which elasticity tensors are realizable[END_REF], Amstutz et al., 2010, Kadic et al., 2013, Dirrenberger et al., 2011, Li et al., 2017, Meena and Singamneni, 2019], but also dynamic ones [START_REF] Boutin | Generalized beams and continua. dynamics of reticulated structures[END_REF], Bonnet et al., 2018, Cornaggia and Bellis, 2020]. Indeed, some studies show that they can be used as waveguides [START_REF] Spadoni | Phononic properties of hexagonal chiral lattices[END_REF], reusable energy-absorbing devices [START_REF] Zunker | Soft topological lattice wheels[END_REF] or efficient shock absorbers [START_REF] Schaedler | Designing metallic microlattices for energy absorber applications[END_REF]. One example of practical applications is the Michelin puncture-proof tyres (see Figure 9).

Where non-linearities, such as buckling, are usually a sign of catastrophic failure in usual materials, and so to be avoided, they can become something sought after in the case of architectured materials. Instabilities can be harnessed to obtain speciĄc behaviours like bistable materials [Bertoldi, 2017]. For example, the buckling mechanism can lead to auxetic behaviours [START_REF] Bertoldi | Negative Poisson's ratio behavior induced by an elastic instability[END_REF], Shim et al., 2013, Babaee et al., 2013], or can be used to change the dynamic response of the structure, i.e. the position and width of band gaps [START_REF] Rudykh | Transforming wave propagation in layered media via instability-induced interfacial wrinkling[END_REF], Wang et al., 2014, Shan et al., 2014]. Then, bistable A.M. enable to store energy reversibly and so can be employed as reusable energy-absorbing devices, or actuators [Shan et al., 2015, Rafsanjani andPasini, 2016] (see Figure 10).

Figure 10 Ű Example of a multistable lattice for trapping elastic strain energy [START_REF] Yang | 1D to 3D multi-stable architected materials with zero PoissonŠs ratio and controllable thermal expansion[END_REF] A.M. can be classiĄed in several ways, one being their spatial organisation. In that case, there are two obvious categories: (1) random materials like foams and (2) periodic materials like honeycomb lattices. Each class has its pros and cons. Considering porous architectured materials4 , the foams are easy to produce and have isotropic properties on average, a very interesting feature for engineering applications. However, on the other side, there is randomness in their manufacturing processes, and their properties can vary from one specimen to another and even within a sample. In contrast, the mesostructure of periodic lattices is deterministic, and their study can be conducted on a single unit cell. However, they tend to be more anisotropic [START_REF] Berger | Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness[END_REF] and to have low fracture toughness [START_REF] Fleck | Microarchitectured materials: past, present and future[END_REF], Glacet et al., 2018]. One way to combine the advantages of both categories may be to consider an intermediate one, gathering the aperiodic organisation of cells and determinism, such as quasi-periodic organisations 5 . In fact, they are structures having orientational order but whose class of rotational symmetry is incompatible with the translational one, two conditions required to obtain a periodic structure. Indeed, they are highly deterministic structures that possess long-range order, as shown by their sharp diffraction diagrams, at the same time as they appear to be locally disorganised [START_REF] Shechtman | Metallic phase with long-range orientational order and no translational symmetry[END_REF], Levine and Steinhardt, 1984, Janssen, 1988]. In fact, contrary to periodic structures, a unit cell that is repeated at equal intervals cannot be deĄned. However, quasi-periodic materials are locally isomorphic, which means that any Ąnite pattern can be found elsewhere inĄnite times [Levine, 1986, Senechal, 1996]. As a result, these materials can exhibit a global isotropic behaviour for weak scale separation ratio [START_REF] Gong | Isotropic and anisotropic physical properties of quasicrystals[END_REF]Sigmund, 2020] and a better failure resistance than periodic lattices, these ones having privileged fracture directions, absent in quasi-periodic structures. [START_REF] Glacet | On the failure resistance of quasi-periodic lattices[END_REF]. They also have uncommon wave propagation behaviours [Voisey, 2014, Glacet et al., 2019].

The most famous examples of such lattices are the Penrose and Ammann-Beenker tilings [Penrose, 1974, Penrose, 1979, Ammann et al., 1992, Beenker, 1982]. Numerous kinds of quasi-periodic lattices exist, as one can vary from another at different observation scales: the tiling, pattern and unit cell scales (see Figure 11). The elementary cells ping. The same Ąnite patterns can be found in the two lattices regardless their size, not in the same locations, but with the same occurrence frequency. So, the resulting global tilings are different (see Figure 12 for example). An example of each spatial organisation, periodic, quasi-periodic and random, is given on Figure 13.

Apart from geometrical properties, an other way to classify A.M. is based on their mechanical behaviour. It has been shown that random and periodic cellular architectured materials can be classiĄed into two different categories: so-called stretching-dominated and bending-dominated structures [START_REF] Gibson | Cellular Solids[END_REF], Deshpande et al., 2001a[START_REF] Deshpande | Effective properties of the octet-truss lattice material[END_REF], Fleck et al., 2010, Mazur et al., 2017]. The assignment depends on how the structure deforms when subjected to mechanical loading. One or another behaviour is favoured depending on the situation. For structural applications, stretchingdominated materials are usually favoured as they have higher stiffness and compressive strength for a given density. For example, at a density of 0.1, this kind of pattern will be ten times stiffer and three times stronger than a bending-dominated one [Gibson andAshby, 1997, Deshpande et al., 2001a]. Conversely, when seeking to optimise the energy dissipation of the structure or designing auxetic materials, bending-dominated materials are preferred [Ashby, 2005, Albertini et al., 2019]. This kind of study has not been carried out yet for quasi-periodic lattices while this information could help preselect a pattern among others for a speciĄc application. Generally speaking, the mechanical properties of quasi-periodic lattices have been poorly studied yet, even if they seem to present many assets. Moreover, the few works did usually not take into account the inĆuence of the pattern. Indeed, at best, the effect of the symmetry class is considered [Badiche et al., 2000, Wang andSigmund, 2020], but the pattern is often chosen arbitrarily [START_REF] Glacet | On the failure resistance of quasi-periodic lattices[END_REF], Glacet et al., 2019]. However, some studies are slowly beginning to compare different patterns [START_REF] Eid | Multiscale analysis of brittle failure in heterogeneous materials[END_REF].

In any case, the democratisation of the use of architectured materials requires the possibility to perform fast simulations, which is incompatible with simulating a complex internal architecture. The replacement of the heterogeneous material with an equivalent homogeneous one having, under certain assumptions 8 an equivalent behaviour, is an efficient and well-known strategy referred to as homogenisation [START_REF] Bornert | Homogénéisation en mécanique des matériaux, Tome 1 : Matériaux aléatoires élastiques et milieux périodiques[END_REF], Yvonnet, 2019]. While this approach is now well understood and effective for materials with strong scale separation, its extension to the case of weak scale separation remains an open question. In such a case, the substitution medium may fail to be a classical Cauchy continuum, and generalised continua may have to be considered [Forest, 2006]. The insufficiency of homogenization using the Cauchy continuum is now well understood in both static, [START_REF] Boutin | Experimental evidence of the high-gradient behaviour of Ąber reinforced materials[END_REF], Poncelet et al., 2018, Durand et al., 2022, dellŠIsola et al., 2016] and dynamic situations [Rosi andAuffray, 2016, Rosi et al., 2020]. Therefore, the nature of the overall continuum to be considered is the Ąrst question to be answered. There are essentially two options to extend classical continuum mechanics 9 [Toupin, 1962, Mindlin, 1964, Mindlin, 1965, Eringen, 1968, Mindlin and Eshel, 1968]: Ů Higher-order continua, where the number of degrees of freedom is extended. The Cosserat elasticity in which local rotations are added as degrees of freedom belongs to this family [START_REF] Cosserat | Théorie des corps déformables[END_REF]. This enhancement can be extended further to obtain the micromorphic elasticity [START_REF] Green | Multipolar continuum mechanics[END_REF], Mindlin, 1964, Germain, 1973]. Ů Higher-grade continua, the displacement Ąeld is the only degree of freedom, but higher-order gradients of the displacement Ąeld are added to the energy density.

Mindlin Ąrst strain-gradient elasticity (SGE) [Mindlin, 1964, Mindlin andEshel, 1968], and second strain gradient elasticity [Mindlin, 1965] belongs to this family.

This situation is sketched in Table 1. Four different generalized continua are considered. Two of them have extended degrees of freedom: Cosserat10 and Micromorphic. The two others: Koiter11 and Strain-Gradient, involve higher gradients of the displacement Ąeld. As the Euler-Bernoulli beam model is obtained from the Timoshenko by imposing a kinematic constraint, the Koiter model is the constrained version of the Cosserat one. The same holds for obtaining a Strain-Gradient from a Micromorphic continuum.

Rotation:

Rotation+Strech:

Cosserat ≃ / / Micromorphic ≃

Classical continua

Higher-order 3 3

Higher-grade

+ + Koiter / / Strain-Gradient
Table 1 Ű Basic extensions of a classical continuum. From the left to the right, rotation then Rotation+Stretch are added to the kinematics. For higher-order continua these stretches are independent DOF, for higher-grade continua they are controlled by higherorder gradients of the displacement Ąeld.

The choice of which generalized continuum to consider is generally an open question. From a theoretical point of view, strain gradient and micromorphic models give identical results in static to second order for heterogeneous loads with small gradients and considering elastic behaviour [Trinh, 2011].

Once the nature of the appropriate substitution continuum has been determined, the next problem is to determine the associated constitutive parameters. That is to Ąnd the material properties of a Ąctitious homogeneous material that will have the same macroscopic behaviour as the actual materials within a certain range of parameters. If this procedure is well-established for the classical Cauchy continuum, at least for the case of elastic behaviour, its extension to the generalised continuum remains an open question. Roughly we can distinguish three types of approaches 12 :

1. Mathematical approach, as asymptotic methods [START_REF] Kalamkarov | Asymptotic homogenization of composite materials and structures[END_REF], Bensoussan et al., 2011]; 2. Numerical approach, i.e. based on numerical simulations [Yvonnet, 2019, Dirrenberger et al., 2019] ;

3. Experimental approach, based on data obtained from actual experiments [START_REF] Réthoré | Gradient-elasticity for honeycomb materials: Validation and identi-Ącation from full-Ąeld measurements[END_REF], Dassonville et al., 2020].

Since the beginning of modern science 13 , experimental tests are most of the time used to validate the theoretical or numerical results. The same goes for homogenisation procedures [START_REF] Flores | Analysis of cross-laminated timber by computational homogenisation and experimental validation[END_REF], Pasquale et al., 2018]. Few of these methods are directly and easily transposable to an experimental framework because all loadings and measurements are not easily feasible or not even possible, such as volume loadings or direct measurement of stresses. However, non-experimental approaches can be unrepresentative of the actual behaviour of the materials because of the presence of material and manufacturing defects. Unfortunately, many lattices are built using additive manufacturing, which induces many Ćaws. Thus, obtaining the homogenised parameters directly from the experiment could be interesting 14 . However, adapted experimental setup has to be considered due to the cellular structure of the A.M. and the unconventional behaviour laws considered. For now, most studies are using classical protocols, developed for classical materials initially [START_REF] Réthoré | Gradient-elasticity for honeycomb materials: Validation and identi-Ącation from full-Ąeld measurements[END_REF], Glacet et al., 2018, Réthoré et al., 2017]. A signiĄcant amount of research remains to be done to design tests that are better adapted to architectured materials, both in the linear elastic regime and for non-linear phenomena.

The work presented here aims to characterise the elastic mechanical behaviour of quasi-periodic lattices. Two main goals can be identiĄed: Ů Understand the inĆuence of the pattern on the mechanical behaviour of quasiperiodic lattices; Ů DeĄne a method for identifying the constitutive parameters of a effective medium representative of their macroscopic behaviour.

This last point implies to:

Ů Propose a strategy to convert discrete kinematics into continuous ones; Ů DeĄne a theoretical set-up Ű geometry and loading Ű that allows lattices to be loaded in a way that is rich enough to identify the parameters robustly; Ů Validate this strategy numerically; Ů Design an experimental setup enabled to apply this loading; Ů Analyse experimental data and compare it with numerical predictions. This thesis is divided into six chapters. The Ąrst two chapters aim to present the state-of-the-art of this study: tices using a numerical twin.

Chapter 6 presents the identiĄcation procedure again, but this time experimentally. It will therefore validate the previous results.

Ultimately, some conclusions and openings for future developments are drawn in the two concluding and perspective chapters.

Some technical and technological details are given in the appendices. 

NOTATIONS

) ij = δ ij ; Ů I ≈ : Forth-order identity tensor, (I ≈ ) ijkl = 1 2 [δ ik δ jl + δ il δ jk ].
Tensor spaces: Ů T n : Space of n-th order tensors on R 2 , possibly satisfying index symmetries: Ů T .. .. indicates index symmetry with respect to permutations of the underlined blocks. Ů T i 1 ...ip : Components of T ∈ T n with respect to an orthonormal basis B = ¶e i ♢ 1≤i≤2 ; Ů K n : Space of n-th order harmonic tensors, i.e. totally symmetric and traceless tensors, with:

dim (K n ) =      2 if n > 0, 1 if n ∈ ¶0, -1♢. in R 2 (1) 
Operators: This Ąrst chapter aims to contextualise the work of this PhD by presenting the stateof-the-art about architectured materials.

Ů (A • B) i 1 ...in = A i 1 ...
Ů ∇ • A: divergence of A ⇔ div(A); Ů A ⊗ ∇: gradient of A ⇔ grad(A). Ů ϵ ∼ : 2D Levi-Civita pseudo-tensor: ϵ ij =            1 if ij = 12, -1 if ij = 21, 0 if i = j. =   0 1 -1 0   = r - π 2 ( 
The Ąrst section aims to present what architectured materials are and their main properties. Then, the second section focuses on how to model and simulate their mechanical behaviour. Finally, the methods used to characterise their behaviour will is presented.

1.1 Presentation of architectured materials (A.M.)

DeĄnition

The notion of architectured material has only recently emerged, and its deĄnition may still seem unclear, particularly concerning its difference from a meta-material, composite or lattice.

The common point between the deĄnitions present in the literature is that an architectured material has an internal structure at the mesoscopic scale. However, some deĄnitions are not suitable because they are too reductive. Indeed, some deĄnitions limit the characteristic size of mesoscopic scale structures from 100 µm and to a few centimetres, e.g. [Barthelat, 2015], whereas some very large structures can have an internal architecture larger than that, such as the lattice structures of moving stages or seismic cloaking structures. Some authors also deĄne architected materials by their method of fabrication, such as additive manufacturing [START_REF] Tamburrino | The design process of additively manufactured mesoscale lattice structures: A review[END_REF], while there are other methods for making such structures, such as perforation and folding [Wadley, 2003].

The difference between meta-materials and architectured materials is not clearly de-Ąned. However, the term meta-material is more often used to characterise materials whose structure has been produced in a controlled way and which have interesting multi-physical characteristics (optical, magnetic, or other, cf., for example, [START_REF] Liu | Three-dimensional photonic metamaterials at optical frequencies[END_REF], Landy et al., 2008, Cummer et al., 2016]). This term focuses more on the exotic consequences linked to the presence of an architecture. Initially concentrated on dynamic properties, there have been many recent developments on their static behaviour, for example, with the works on pantographs or origamis [START_REF] Dellšisola | Pantographic metamaterials: an example of mathematically driven design and of its technological challenges[END_REF], Nassar et al., 2022, Durand et al., 2022]. Thus, "metamaterial" is a general term that can stand for "architectured materials". However, the reverse is not true.

The term architectured material is coined on a more geometric point of view. It generally refers to structures with controlled architecture on several scales and usually focuses on mechanical or thermal characteristics [START_REF] Bouaziz | Heterogeneous and architectured materials: A possible strategy for design of structural materials[END_REF], Poncelet et al., 2018]. Hence, contrary to metamaterials, architectured one can exhibit classical overall properties. However, some authors use these two terms synonymously [START_REF] Czech | Systematic design optimization of the metamaterial shear beam of a nonpneumatic wheel for low rolling resistance[END_REF], Khakalo et al., 2018, Li et al., 2017]. The term lattice generally refers to architectured materials composed of structural elements such as beam network structures. The term "architected" material can also be found as a synonym of "architectured" material [START_REF] Shan | Multistable architected materials for trapping elastic strain energy[END_REF], Li et al., 2017].

Figure 1.1 Ű The characteristic sizes associated with architectured materials (from [Dirrenberger, 2018], based on [START_REF] Bouaziz | Heterogeneous and architectured materials: A possible strategy for design of structural materials[END_REF]) Finally, the most appropriate deĄnition to describe an architectured material is close to that given by Bouaziz et al., Poncelet et al. and Dirrenberger, respectively in [Bouaziz et al., 2008, Poncelet et al., 2018, Dirrenberger, 2018]: a material is said to be architectured if it is made up of matter organised in a controlled manner at several scales to achieve technical performance. Furthermore, if at least one of the mesoscopic scales has a characteristic length commensurable with an overall dimension so it will be called macro-architectured (see Figure 8) [START_REF] Bouaziz | Heterogeneous and architectured materials: A possible strategy for design of structural materials[END_REF], Poncelet et al., 2018, Dirrenberger, 2018]. It leaves the possibility of micro-architectured materials related more to the material science domain.

A.M. can be composed of several materials, such as composites [Ashby, 2013]. It can also be "porous". In that case, the mesostructure is formed by the presence of holes. One can refer, for example, to honeycomb lattices or particular cases of structures generated with topology optimisation [Geoffroy Donders, 2018] (see Figure 1.2). In this work, only porous A.M. will be studied, and more precisely, beam lattices.

Spatial organisation categories

A.M. can be classiĄed depending on their spatial organisation modes. Three main categories can be distinguished: periodic, quasi-periodic and aperiodic.

Periodic structures

A structure is periodic if the space is Ąlled from speciĄc translations of a single unit cell. If the space is of dimension N, there will be N independent translations. This kind of organisation combines the orthogonal symmetries of the "primitive cell" with the Bravais group of the lattice. The combination of the associate operations generates the space group of the structure. Let denote by G M the symmetry group of the primitive cell M, i.e. the set of isometries that preserves M 1 :

G M := ¶g ∈ O(d), g(M) = M♢ (1.1)
with O(d) the orthogonal group of R d , the set of invertible transformations g of R 2 satisfying g -1 = g T , i.e.:

O(d) := g ∈ GL(d), g T = g -1 (1.2)
and GL(d) is the general linear group 2 .

From a geometrical point of view, G M contains rotation, mirror transformations and their products.

Let us denote by G R

M the subgroup of G M that only contain rotation. A rotation r(θ) by an angle θ is said to be of order q if r q = I (it corresponds to an angle θ = 2π q ). To obtain a crystal starting from a cell M, G R M cannot be any. The Crystallographic Restriction Theorem [Senechal andPauĆer, 1993, Bamberg et al., 2003] indicates in any dimension the order of rotation that are compatible with the translational invariance. For R 2,3 , q = ¶1, 2, 3, 4, 6♢.

The diffraction Ągure of periodic lattices possesses well-deĄned peaks, synonymous with long-range order. A N -fold rotational symmetry of the pattern leads to a N -fold rotational symmetry of the diffraction Ągure. The periodicity of the diffraction peaks gives information on translational periodicity of the lattice. An example of a periodic pattern and its associated diffraction Ągure is given in Figure 1.4. Thanks to their particular organisation, the physical properties are the same in the whole specimen considering perfect geometries. So, studying their behaviour can be limited to one of their unit cells. This property is widely used in mechanics, for example, with periodic homogenisation [START_REF] Hassani | A review of homogenization and topology optimization IŮhomogenization theory for media with periodic structure[END_REF]], the Fast Fourier Transform (FFT) technics [Moulinec andSuquet, 1994, Vondrejc, 2013] and the Bloch wave homogenisation [START_REF] Allaire | Bloch wave homogenization and spectral asymptotic analysis[END_REF]]. However, periodicity comes also with drawbacks. These have been shown to have weak orientations along which cracks propagate easily, resulting in low toughness [START_REF] Fleck | Microarchitectured materials: past, present and future[END_REF], Réthoré et al., 2015, Glacet et al., 2018]. Indeed, the patterns lead to a structuring of the strain energy distribution. This low tenacity is emphasised because of the many defects introduced by the manufacturing methods: additive manufacturing, laser/water cutting, and corrugating. Moreover, their mechanical behaviour tends to be anisotropic [START_REF] Berger | Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness[END_REF]. They are often transverse isotropic at best as for honeycomb structures. Some example of periodic structures are given in Figure 1.7. 

Quasi-periodic structures

Quasi-periodic organisations are a class where the rotational symmetry of the pattern is incompatible with translational periodicity. It means that G R M can be any, thus the rotational symmetries of the unit cell cannot lead to a periodic tiling (see Figure 1 .8). This rotational symmetry is reĆected in the fact that all edges connecting near neighbours are oriented along a set of star axes3 .

As periodic structures, they possess a long-range order and a diffraction Ągure having rotational and mirror symmetries. However, contrary to periodic patterns, their diffraction Ągure is no longer periodic. Nevertheless, an inĆation relationship exists between the spacing of the peaks, and a hierarchy in their intensities. An illustration of this relation is given in Figure 1.9.

As these patterns cannot have translational periodicity, they seem locally disorganised, but they are deterministic: any Ąnite patterns can be found elsewhere indeĄnitely. In some cases, one global symmetry axis can be found in the patterns, but most of the Figure 1.9 Ű Example of diffraction Ągure of a quasi-periodic structure. The distance between adjacent pairs of dots along each axis scales with a coefficient equal to the golden ration τ [START_REF] Gratias | Discovery of quasicrystals: The early days[END_REF] time, symmetries restricted to a small region are present. An example of a quasi-periodic pattern and its associated diffraction Ągure is given in Figure 1.5.

Note:

One important notion when dealing when quasi-periodic structures is the one of local isomorphism: Two quasi-periodic structures are locally isomorph Ű or belong to the same isomorphism class Ű if every Ąnite pattern of the Ąrst can be found in the second with the same frequency and reciprocally [Levine, 1986].

Numerous kinds of quasi-periodic lattices exist. Two different quasi-periodic lattices can be different because:

Ů they have different unit cells (see Figure 1.10a); i.e. Some patterns in the former never appear in the latter and vice versa (see Figure 1.10b); Ů they belong to the same local isomorphism class, i.e. the same kind of patterns can be found with the same frequency but in different locations (see Figure 1.10b and Figure 12).

Note:

The belonging or not of two tilings to the same isomorphism class depends on the parameters used in the generation methods (see section 2.4).

Quasi-periodic structures constitute an intermediate organisation between periodic and completely aperiodic ones 4 and seem to combine some of their assets. As they are locally disorganised, they can exhibit a global isotropic behaviour for classical elasticity [START_REF] Gong | Isotropic and anisotropic physical properties of quasicrystals[END_REF]Sigmund, 2020] and have a better failure resistance than periodic lattices [START_REF] Glacet | On the failure resistance of quasi-periodic lattices[END_REF]. Then, as they are highly deterministic structures, studying their behaviour does not require statistical approaches as for foams. Some well-known representatives of this category are the Penrose tilings (see Figure 1.11a). The assembly of Ąbres with icosahedral symmetry by [START_REF] Duneau | Quasiperiodic packings of Ąbres with icosahedral symmetry[END_REF] can also be mentionned (see Figure 1.11b). 

Aperiodic structures in Fourier sense

In the case of an aperiodic organisation, nor translational periodicity nor rotational symmetries can be found. No discrete peaks can be observed on their diffraction Ągure, which looks more like a blurry cloud (see Figure 1.6).

Aperiodic structures can be partitioned in two categories: ordered and random. Materials resulting from topology optimisations intended for a particular application or tilings such as random rhombuses (see Figure 1.12) or Wang ones [Berger, 1966, Novák et al., 2013] are found in the Ąrst category. Numerous examples of aperiodic tilings are found in literature [Grünbaum andShephard, 1986, Tyburec andZeman, 2017]. In the second category are found, for example, foams (see Figure 1.12b). Random structures are generally easy to produce and can lead to overall isotropic behaviours. However, there are mechanical properties variabilities between samples and even within them. Moreover, there is a need to take a sufficiently large Representative Volume Element (RVE) to be representative of the global behaviour, and statistical analysis is needed.

If the type of organisation can inĆuence the global behaviour of a structure, so can its symmetry class.

Symmetry classes

The physical anisotropy of a bulk material is dependent on its material symmetry order, and the same is true for architectured materials [Christensen, 1987, Auffray et al., 2015, Auffray et al., 2022]. As this work focuses on 2D patterns, only the symmetry classes with respect to R 2 are presented here.

Let us consider, as previously, a given unit cell M, and G M its symmetry group deĄne as:

G M := ¶g ∈ O(2), g(M) = M♢ (1.3)
and:

π(n) = Ĩ -2n ⊗ n (1.4)
with ∥n∥ = 1, and Ĩ the second order identity tensor. One can identify an inĄnite collection of O(2) closed subgroups:

Ů I d : the identity group, also called Oblique/Biclinic, the pattern or material is asymmetric; Ů Z π,n 2 : the cyclic group with two elements, also called Monoclique. It is generated by π(n). In other words, there is one symmetry plane; Ů Z q (q > 2): the cyclic group with q elements, generated by r 2π q . Examples: Ů Z 2 : Diagonal Ů Z 3 : Trichiral Ů Z 6 : Hexachiral Ů D n q (q > 2): the Dihedral group with 2k elements, generated by r 2π q , π(n) . Examples: Ů D 2 : Orthotropic Ů D 3 : Trigonal Ů D 6 : Hexagonal Ů SO(2) : the special orthogonal group generated by r(θ), also called hemitropic. It can be seen as the inĄnite cyclic group when q tends to inĄnity5 ; Ů O(2) : the full orthogonal group, also called Isotropic. it can be seen as the inĄnite dihedral group when q tends to inĄnity.

The differences between cyclic and dihedral groups can be seen in Figure 1.14. In the case of dihedral groups, the groups D n q and D m q with m = g • n, are different as a set, but have an equivalent physical content. One has:

D m q = g D n q g T = D g.n q (1.5)
D m q is the rotation (conjugate) of D n q by g.

One can deĄne the symmetry (or conjugacy) class of a subgroup H, denoted [H], as the collection of subgroups of O(2) that are conjugate to H, and H > O(2):

[H] := H * = gHg T ∈ O(2), g ∈ O(2) (1.6)
This notion is essential for future discussions as it allows us to characterise the type of symmetry an object has rather than its speciĄc symmetry about a given orientation.

The symmetry classes of O(2)-closed subgroups are [Armstrong, 1988]:

¶[I d ], [Z π 2 ], [Z q ], [D q ], [SO(2)], [O(2)]♢ q>1 (1.7)
Depending on the used behaviour model considered, the value of q required to obtain an isotropic material will be higher or lower. For example, suppose a pattern belonging to the [D q ] or [Z q ] symmetry classes. If q ≥ 4, its elastic behaviour is isotropic when Cauchy and Cosserat laws are considered [Christensen, 1987, Auffray et al., 2022]. To be isotropic within the Second Strain Gradient theory, q should be higher than six [START_REF] Auffray | A complete description of bi-dimensional anisotropic strain-gradient elasticity[END_REF]. As a result, independent parameters number to be identiĄed to obtain the overall behaviour depends on the constitutive law considered and the symmetry class of the patterns (see the Curie principle 6 [START_REF] Zheng | The description, clas-siĄcation, and reality of material and physical symmetries[END_REF] and the HermannŠs theorem 7 [Hermann, 1934]).

It is possible to attribute symmetry classes to quasi-periodic patterns. In that case, the class is known by looking at the associated diffraction Ągure: a pattern belonging to a

[D 2q-1 ] or [D 2(2q-1)
] symmetry classes has a diffraction Ągure with a 2(2q-1)-fold rotational symmetry. Thus, a Penrose-type pattern will belong to the [D 10 ] class, for example (see in Figure 1.5) [Auffray et al., 2009, Baake and[START_REF] Baake | [END_REF].

Mechanical characteristics and applications

The different possible types of A.M. being known, their main mechanical characteristic and applications will be presented. It is worth noting that the studies presented here focus mainly on lattices, particularly periodic and completely aperiodic ones.

It is possible to Ąnd at least four main types of applications for architectured materials. At Ąrst, A.M. began to be studied in order to obtain materials with a good compromise between density and mechanical characteristics, whether it be in terms of compressive strength [START_REF] Wicks | Optimal truss plates[END_REF], Budiansky, 1999, Wadley, 2003] or stiffness [START_REF] Bouaziz | Heterogeneous and architectured materials: A possible strategy for design of structural materials[END_REF], Deshpande et al., 2001a[START_REF] Deshpande | Effective properties of the octet-truss lattice material[END_REF], Wallach and Gibson, 2001, Wicks and Hutchinson, 2001]. In other words, one of the signiĄcant interests of architectured materials is to reach the still empty zones of the Ashby diagrams 6. It states that the material symmetry group is included in the physical symmetry group. 7. It establishes a formal link between the order of symmetry of a material medium and that of a tensor property deĄned on this medium: when the order of an axis of symmetry exceeds the tensor order of the property, then the property is the conjugate of a continuous symmetry class. [START_REF] Bouaziz | Heterogeneous and architectured materials: A possible strategy for design of structural materials[END_REF], Fleck et al., 2010].

Second, they enable to obtain interesting static behaviours. For example, [START_REF] Milton | Which elasticity tensors are realizable[END_REF] and [START_REF] Kadic | On anisotropic versions of three-dimensional pentamode metamaterials[END_REF] designed so-called "pentamode metamaterials", which are solid materials that behave as Ćuid. In other words, they have a vanishing shear modulus but a non-zero bulk modulus, so they can be sheared easily but are dif-Ącult to compress in a isostatic way (see Figure 1.16a). Then auxetic materials can be conceived, i.e. materials with a negative PoissonŠs ratio [START_REF] Dirrenberger | Homogenization of periodic auxetic materials[END_REF], Li et al., 2017, Meena and Singamneni, 2019]. More generally, a custom-made overall elasticity tensor can be obtained [START_REF] Amstutz | Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures[END_REF]. Although most of these applications relate to the elastic behaviour, some works take advantage of non-linear phenomena, such as buckling, to get similar behaviours as the auxetic one (see Figure 1.16b) [START_REF] Bertoldi | Negative Poisson's ratio behavior induced by an elastic instability[END_REF], Shim et al., 2013, Babaee et al., 2013].

Then, they can also have non-classical dynamic properties that can be exploited. They can exhibit particular behaviours such as acoustic and optic branches and band gaps [START_REF] Rosi | Anisotropic and dispersive wave propagation within strain-gradient framework[END_REF], Glacet et al., 2019, McGee et al., 2019]. Thus, they can be used as waveguides [START_REF] Spadoni | Phononic properties of hexagonal chiral lattices[END_REF] and to design an "invisibility cloak" [START_REF] Bückmann | Mechanical cloak design by direct lattice transformation[END_REF] (see Figure 1.17). Once more, non-linearities can be used to change the structuresŠ dynamic response, as the band gapsŠ position and width [START_REF] Rudykh | Transforming wave propagation in layered media via instability-induced interfacial wrinkling[END_REF], Wang et al., 2014, Shan et al., 2014]. Figure 1.17 Ű Example of concept of an invisibility cloak [START_REF] Bückmann | Mechanical cloak design by direct lattice transformation[END_REF] A.M. can also show good energy absorption properties by use of reversible or irreversible non-linearities. They can be used as shock absorbers [START_REF] Schaedler | Designing metallic microlattices for energy absorber applications[END_REF] or replace elastomers to avoid energy losses by viscosity while keeping a high Ćexibility [START_REF] Czech | Systematic design optimization of the metamaterial shear beam of a nonpneumatic wheel for low rolling resistance[END_REF]. Then, bistable A.M. materials enable to store energy reversibly and so be employed as reusable energy-absorbing devices, or actuators [Shan et al., 2015, Rafsanjani andPasini, 2016].

Finally, A.M. have been extensively studied for their multi-physics couplings [START_REF] Bouaziz | Heterogeneous and architectured materials: A possible strategy for design of structural materials[END_REF], Fleck et al., 2010] such as thermal insulation and stiffness, thermally tunable wave propagations or electromagnetic absorption and stiffness [START_REF] Yuan | Multifunctional stiff carbon foam derived from bread[END_REF], Nimmagadda and Matlack, 2019, Bollen et al., 2013].

Despite the presence of a few applications Ű shock absorption structures such as radomes and lightweight structures in aeronautics, for example Ű for the moment, the potential offered by the presence of internal scales in this type of material is not being exploited to the full. However, their use tends to become more widespread. It is, therefore, necessary to be able to characterise and model their behaviour correctly.

Modelling of A.M. mechanical behaviour 1.2.1 Different types of numerical modelling

Three different model types can be used to simulate the behaviour of A.M.

The Ąrst one corresponds to the "full Ąeld model". The internal architecture is thoroughly described, and small elements are used to mesh the structure (see Figure 1.18a). It provides access to the whole behaviour of the material, local and global. As no simpli-Ącations are made concerning the constitutive material, classical behaviour laws can be used at the local scale. However, a sufficient number of elements is needed in the lattice structural elements to ensure the simulation is representative of the actual behaviour. It means using tiny ones and a huge total number of elements, which implies a high numerical cost and memory issues. The use of this type of model should therefore be limited.

The second model type is called "mesoscopic". In this case, the internal structure is modelled using structural elements such as beam or shell elements (see Figure 1.18b). It can be well adapted to porous A.M. It also allows describing the local behaviour of the material less accurately than the Ąne mesh model but with a much lower computation time. Several types of behaviour can be chosen for the structural elements. For example, one can choose between Euler-Bernoulli [START_REF] Glacet | On the failure resistance of quasi-periodic lattices[END_REF], or Timoshenko beams [START_REF] Liebenstein | Determining Cosserat constants of 2D cellular solids from beam models[END_REF] for beam elements. However, this model remains too complex for classical design and dimensioning parts.

The last type of model is the "homogenised one". In this case, the sample is meshed as if it was constituted of a homogeneous material (see Figure 1.18c). The internal structure disappears entirely, and only the effective behaviour is described. Homogenised constitutive laws are used for the mesh elements, i.e. the values of the parameters of the behaviour law are chosen so that the equivalent homogenous material has the same macroscopic behaviour as the A.M. one (see Figure 1.19). This approach was initially developed in the 1960sŠ when new materials like long-Ąber Ű reinforced Ű polymers were invented [Hill, 1963]. This kind of model leads to fast simulations. However, the main issue is to Ąnd what is the most appropriate constitutive law to represent the macroscopic behaviour and then to Ąnd the values of its associated parameters.

In all cases, the chosen model must accurately describe the materialŠs behaviour not only in the elastic domain but also under more severe loading. Although homogenised models are favoured in the industry, models describing the internal architecture of the 

Strain energy storage behaviour

An example of mesoscopic behaviour that pilots the effective one is the strain energy storage mechanisms privileged by the structure.

It has been shown that foams and porous periodic architectured materials can be classi-Ąed into two categories: so-called stretching-dominated and bending-dominated structures [START_REF] Gibson | Cellular Solids[END_REF], Deshpande et al., 2001a[START_REF] Deshpande | Effective properties of the octet-truss lattice material[END_REF], Fleck et al., 2010, Mazur et al., 2017]. The assignment depends on how the structure deforms when subjected to mechanical loading. In other words, if the structure stores energy mainly in stretching, it will be stretching-dominated, and if it stores energy mainly in bending, it will be bending-dominated. Either behaviour is favoured depending on the situation. For applications needing high stiffness, such as structural ones, stretching-dominated materials are usually favoured as they have higher stiffness and compressive strength for a given density. For example, for a density of 0.1, this kind of pattern will be ten times stiffer and three times stronger than a bending-dominated one [Gibson andAshby, 1997, Deshpande et al., 2001a]. Conversely, when seeking to optimise the energy dissipation of the structure or designing auxetic materials, bending-dominated materials are preferred [Ashby, 2005, Albertini et al., 2019].

MaxwellŠs criterion M c is usually used to classify periodic lattice structures [Maxwell, 1864, Deshpande et al., 2001a[START_REF] Deshpande | Effective properties of the octet-truss lattice material[END_REF], Fleck et al., 2010] in "stretchingdominated" or "bending-dominated" categories. Its expression is:

M c = b -d j + d(d + 1) 2 (1.8)
with:

Ů b: the number of pin-jointed struts; Ů j: the number of frictionless nodes; Ů d = 2 in 2D, and d = 3 in 3D.

If M c is greater than or equal to 0, the pattern is said to be stretching-dominated. Otherwise, it is bending-dominated (see Figure 1.20) 8 . Figure 1.20 Ű Example of (a) bending-dominated pattern (M c = -1) and (b) stretchingdominated pattern (M c = 0) (inspired from [Deshpande et al., 2001a]).

The study of the average connectivity Z of an extensive pin-jointed framework easily provides an estimation of M c : Z = 4 implies M c = 0 in 2D [Deshpande et al., 2001a]. Even if designed for articulated structures, the criterion can be applied for slender clamped beams. For periodic lattices, the criterion is commonly computed on the unit cell.

However, this criterion is necessary but not sufficient to determine whether a structure will be stiff, even for periodic ones. In fact, it can consider struts that do not contribute to global rigidity. Furthermore, it does not consider a potential dependence of the stiffness on 8. M c < 0 corresponds to the hypostatic case, i.e. the slightest loading causes the structure to collapse when having pivots at nodes. The case M c = 0 corresponds to the isostatic case, and M c > 0 to the hyperstatic one: when loaded the beams support only axial loads, and thus "maintain" their position.

the loading direction. Actually, some periodic structures exhibit a stretching-dominated behaviour while their criterion indicates a bending-dominated one [START_REF] Mazur | Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM)[END_REF]]. An accurate analysis would require looking at the core of the systemŠs stiffness matrix.

Homogeneous constitutive laws available

Even if the energy dominance can be an interesting information for preselecting a pattern depending on the desired application type, identifying the effective continuum is necessary to democratise the use of A.M. in the industry. The objective here is to replace the heterogeneous material with an equivalent homogeneous one having, under certain assumptions 9 , an equivalent behaviour. This strategy is called "homogenisation". Let S M be the characteristic size of the structure and S m that of the mesoscopic scale. One can thus deĄne η = S m /S M the scale separation ratio between these two scales. While homogenisation is now well understood and effective for materials with strong scale separation Ű i.e. small η Ű its extension to the case of weak scale separation remains an open question. Therefore, the nature of the overall continuum to be considered is the Ąrst question to be answered.

Cauchy continuum

Among the available models, the Cauchy continuum is the most classical used to model and solve mechanical problems.

First, let us consider a deformable and homogeneous media Ω of density ρ, along with its boundary ∂Ω. Considering a Cauchy continuum, three kinds of loading can be applied to it (see Figure 1.21):

Ů imposed displacement u d on part of the boundary ∂Ω u ; Ů applied surface force T d on part of the boundary ∂Ω F ; Ů applied volume force f v throughout the entire body Ω.

Let us then denote u(M ) the displacement at a given point M of Ω, and σ(M ) the stress state, represented by CauchyŠs tensor, at this point. The loading introduced would then induce the following boundary conditions on u and σ

u(M ) = u d (M ), ∀M ∈ ∂Ω u (1.9) σ(M ) • n(M ) = T d (M ), ∀M ∈ ∂Ω F (1.10) 9.
For instance, characteristic size of the loading, scale separation ratio, etc. where n(M ) stands for the outward normal to ∂Ω F at point M .

For the problem to be well-posed, both force and displacement cannot be imposed simultaneously, i.e. ∂Ω u ∩ ∂Ω F = ∅. One can also note that, when no condition is imposed in part of the boundary, it will be considered as a free boundary, i.e. σ • n = 0, thus ensuring that ∂Ω u ∪ ∂Ω F = ∂Ω.

In this framework, the equilibrium equation writes:

div( σ) + f v = ρü, ∀M ∈ Ω (1.11)
and becomes for a quasi-static modeling, i.e. neglecting the inertia terms,

div( σ) + f v = 0, ∀M ∈ Ω (1.12)
At this point, to solve the mechanical problem, i.e. to Ąnd a displacement Ąeld u such that Equation 1.12, Equation 1.9 and Equation 1.10 are veriĄed, one needs to deĄne the link between the stress Ąeld σ and the displacement Ąeld u. Under the small strain assumption, the strain tensor ε is deĄned as the symmetric part of the displacementŠs gradient:

ε = 1 2 grad ∼ (u) + grad ∼ (u) T (1.13)
Finally, the link between the stress and strain Ąelds is given by the constitutive law, which is the HookeŠs law in the elastic case:

σ = C ≈ : ε (1.14)
with C

≈ the elasticity fourth-order tensor. In the isotropic case one has:

σ = 2µ ε + λtr( ε) Ĩ (1.15)
Note: The Ąnite element simulation codes use the principle of virtual work to solve the problem. Let U adm be the set of kinematically admissible Ąelds such as:

U adm := u ∈ H 1 (Ω), u = u d on ∂Ω u (1.16)
and U 0 adm be the set of zero kinematically admissible Ąelds:

U 0 adm := u ∈ H 1 (Ω), u = 0 on ∂Ω u (1.17) Thus one should Ąnd u ∈ U adm such as ∀ u * ∈ U 0 adm : Ω σ : ε(u * ) dV + ∂Ω F T d • u * dS = 0 (1.18)
For A.M. it has been shown that the substitution medium may fail to be a classical Cauchy continuum. The insufficiency of homogenization using the Cauchy continuum is now well understood in both static, [START_REF] Boutin | Experimental evidence of the high-gradient behaviour of Ąber reinforced materials[END_REF], dellŠIsola et al., 2016, Poncelet et al., 2018, Durand et al., 2022] and dynamic situations [Rosi andAuffray, 2016, Rosi et al., 2020]. Generalised continua thus may have to be considered.

Generalised continua

There are essentially two options to extend classical continuum mechanics [Toupin, 1962, Mindlin, 1964, Mindlin, 1965, Eringen, 1968, Mindlin and Eshel, 1968]: Ů Higher-order continua, where the number of degrees of freedom is extended. The Cosserat elasticity in which local rotations are added as degrees of freedom belongs to this family [START_REF] Cosserat | Théorie des corps déformables[END_REF]. This enhancement can be extended further to obtain the micromorphic elasticity [START_REF] Green | Multipolar continuum mechanics[END_REF], Mindlin, 1964, Germain, 1973].

Ů Higher-grade continua, the displacement Ąeld is the only degree of freedom, but higher-order gradients of the displacement Ąeld are added to the energy density. Mindlin Ąrst strain-gradient elasticity (SGE) [Mindlin, 1964, Mindlin andEshel, 1968], and second strain gradient elasticity [Mindlin, 1965] belongs to this family.

The choice of which generalized continuum is to be considered is an open question, constituted of two points:

1. What is the minimal kinematic extension to consider, i.e. what is the predominant mechanism of deformation of the mesostructure that inĆuences the overall behaviour (for the considered scale separation ratio η)?

2. Should this extended kinematic be considered as an independent degree of freedom (micromorphic way), or does it follows the macroscopic transformation (straingradient way)?

The general structure of the kinematic enrichment for a micromorphic continuum in 3D is:

χ ∼ ∈ ⊗ 2 R 3 = χ ∼ D + χ ∼ A + χ ∼ S = χ ∼ D + ϵ ≃ • ϕ + 1 3 α I ∼ with: Ů χ ∼ the micro-deformation tensor; Ů χ ∼ D a deviatoric tensor; Ů χ ∼ A
the orthogonal tensor, also called Cosserat rotation tensor or micro-rotation tensor; Ů χ ∼ S the micro-dilatation tensor; Ů ϕ the micro-rotation vector; Ů α the microdilatation scalar.

Depending on the partial enrichment, intermediate higher-order models are obtained [START_REF] Forest | Nonlinear microstrain theories[END_REF]:

Case 3D 2D Model χ ∼ DOF χ ∼ DOF Cauchy ∅ 3 ∅ 2 Microdilatation 10 α 4 α 3 Cosserat 11 ϕ 6 ϕ 3 Microstretch (ϕ, α) 7 (ϕ, α) 4 Incompressible Microstrain χ ∼ D 8 χ ∼ D 4 Microstrain (χ ∼ D , α) 9 (χ ∼ D , α) 5 Incompressible Micromorphic (χ ∼ D , ϕ) 11 (χ ∼ D , ϕ) 5 Micromorphic (χ ∼ D , ϕ, α) 12 (χ ∼ D , ϕ, α) 6
The "same" applies to higher-grade models. One can, for example, Ąnd the Koiter model 12 [Toupin, 1962, Koiter, 1970], the strain-gradient theory [Mindlin, 1964, Mindlin andEshel, 1968] and the second strain-gradient one [Mindlin, 1965].

The choice of a given minimal kinematic extension can be asserted based on Ů Local kinematics: either numerical or experimental, this is a direct observation of the mechanics involved [START_REF] Poncelet | An experimental evidence of the failure of Cauchy elasticity for the overall modeling of a non-centro-symmetric lattice under static loading[END_REF]; Ů Anisotropic behaviour, some anisotropic phenomena can only be observed for a given kinematic extension. It is an indirect observation of the kinematics induced by the mesostructure [START_REF] Rosi | Anisotropic and dispersive wave propagation within strain-gradient framework[END_REF].

Once the appropriate kinematic extension has been decided, its precise nature must be deĄned. Does this extension constitutes independent degrees of freedom (DOF), or not? In elastodynamics, this point is evident since only higher-order continua can model internal modes of vibration [Mindlin, 1964, Rosi andAuffray, 2016]. The criteria for choosing one approach over another for static applications are not so clear.

If moving from physical motivation to a practical one, the pros and cons of each theory are:

10. Also called void elasticity [Nunziato andCowin, 1979, Passman, 1984] 11. Also called a micropolar or couple-stress continuum [START_REF] Eremeyev | Foundations of Micropolar Mechanics[END_REF] In the literature devoted to the static modelling of the effective properties of porous materials under weak scale separation, the Cosserat approach seems to be the most popular ones [START_REF] Lakes | Noncentrosymmetry in micropolar elasticity[END_REF], Onck, 2002, Spadoni and Ruzzene, 2012, Chen et al., 2014, Trovalusci et al., 2017, Rueger et al., 2019]. The strain-gradient modeling of architectured materials is more recent [START_REF] Trinh | Evaluation of generalized continuum substitution models for heterogeneous materials[END_REF], Bacigalupo and Gambarotta, 2014, Khakalo et al., 2018, Abdoul-Anziz and Seppecher, 2018, Yvonnet et al., 2020, Yang et al., 2022, Durand et al., 2022].

Overview of homogenisation methods

Once the nature of the appropriate substitution continuum has been determined, the next problem is to determine the associated constitutive parameters. That is to Ąnd the material properties of a Ąctitious homogeneous material that will have the same macroscopic behaviour as the actual material within a speciĄc range of parameters. If this procedure is well-established for the classic Cauchy continuum, its extension to the generalised continuum remains an open question. Roughly we can distinguish three types of approaches13 : 1. Mathematical approach; 2. Numerical approach; 3. Experimental approach.

A quick review of the main methods found in the literature follows.

Mathematical approaches

One can Ąnd several kinds of mathematical approaches in the literature. One of the most known and versatile categories is the so-called asymptotic expansion homogenisation methods. These mathematical approaches provide a rigorous deĄnition of the homogenisation process and the homogenised equations.

The principle of these methods is given in [START_REF] Kalamkarov | Asymptotic homogenization of composite materials and structures[END_REF], Kanouté et al., 2009]. Let us call η = S m /S M , the scale ratio between the size of the mesoscopic scale S m , i.e. the size of the heterogeneity or the unit cell, and the size of the macroscopic scale S M , i.e. the size of the structure. Two space variables are then deĄned: the so-called slow coordinate x, which is the classical space variable that describes the global structure, and the fast coordinate y adapted to the mesoscopic scale and linked to x by:

y = x η (1.19)
The unknown functions f of the problem, for example the displacement Ąeld, are expressed by an asymptotic expansion:

f (x, y) = i η i f i (x, y) (1.20)
These developments are then incorporated into the equations of the problem to be solved.

The Ąrst term of the expansions represents the homogeneous part of the solution, and the other terms are the local Ćuctuations. Thus, by making the microstructural parameter η tend to zero, it is possible to keep only some terms of the expansion14 , the others becoming negligible: the Ąelds converge towards the homogeneous macroscopic solution. It is so a limit problem.

Among the most known methods, one can Ąnd the G-, H-and Γ-convergence introduced respectively by Spagnolo [Spagnolo, 1968, Spagnolo, 1976], Murat andTartar [Tartar, 1977, Murat andTartar, 2018] and De Giorgi [Di Giorgi andSpagnolo, 1973, Di Giorgi, 1984]. One can also Ąnd the two-scale asymptotic expansion method [Allaire, 1992]. Some studies adapted these methods to generalised continua [Boutin, 1996, Smyshlyaev and Cherednichenko, 2000, Forest et al., 2001, Forest, 2002, Abdoul-Anziz and Seppecher, 2018, Durand et al., 2022]. However, one problem is that a heuristic approach should be used when dealing with these kinds of media.

Numerical approaches

The numerical approaches are based on the execution of numerical simulations, usually performed using a Finite Element Method (FEM) [Huet, 1990, Kanit et al., 2003, Yvonnet, 2019] or fast Fourier Transforms [Moulinec andSuquet, 1994, Brisard, 2015]. Realising simulations allows considering more complex geometries. This type of method is Ąrst based on the selection of what is called a Representative Volume Element (RVE). The RVE corresponds to a volume Ű a surface for a 2D pattern Ű describing the materialŠs microstructure. The distribution and material properties of each phase composing the micro-structure are supposed to be known. The RVE corresponds to the smallest volume representative of the effective properties of the whole specimen. For periodic structures, it usually corresponds to the unit cell. The different deĄnitions of an RVE found in the literature are resumed in [START_REF] Gitman | Representative volume: Existence and size determination[END_REF].

Once the mechanical problem is posed on the RVE, a criterion should be chosen to link the microscopic Ąelds to the homogenised ones. Several equivalence criteria exist, but the one usually used is the Hill-Mandel energy criterion [Hill, 1963]: It ensures that the mechanical work densities at the microscopic and macroscopic scales are the same.

⟨ σ * : ε′ ⟩ = ⟨ σ * ⟩ : ⟨ ε′ ⟩ (1.21) with: Ů ⟨•⟩ = 1 V V • dV ,
It is necessary to set the boundary conditions to solve the constitutive equations and identify the homogenised constitutive parameters. When making computation over a RVE, Equation 1.21 is not satisĄed for any boundary conditions. The full expression from which Equation 1.21 is obtained involves a boundary integral that should be set to zero by an appropriate choice of boundary conditions. Among these possibilities, three different kinds are usually considered: Ů Kinematic Uniform Boundary Conditions (KUBC). The displacement Ąeld u(x) is imposed at any point of the boundary x ∈ ∂Ω such that:

u(x) = Ẽ • x ∀x ∈ ∂Ω (1.22)
with Ẽ a uniform macroscopic strain tensor. One has:

ε′ = Ẽ (1.23)
Ů Static Uniform Boundary Conditions (SUBC). The traction vector T d (x) is imposed at any point of the boundary x ∈ ∂Ω such that:

T d (x) = Σ • x ∀x ∈ ∂Ω (1.24)
with Σ a uniform macroscopic stress tensor. One has:

σ * = Σ (1.25)
Ů Periodic Boundary Conditions (PBC). The displacement Ąeld u(x) is imposed at any point of the boundary x ∈ ∂Ω such that:

u(x) = Ẽ • x + v(x) ∀x ∈ ∂Ω (1.26)
with Ẽ a uniform macroscopic strain tensor and v(x) a periodic Ćuctuation vector. By taking x + and x -the homologous points belonging to opposite boundaries and n + and n -the associated normals, one have:

     σ+ • n + = -σ-• n - v + = v - (1.27)
The homogenised behaviour obtained with KUBC and SUBC approaches depends on the scale separation ratio but converges toward the effective behaviour when increasing the RVE size [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]. KUBC tends to overestimate the rigidity, while the SUBC underestimates it [Hill, 1963, Huet, 1990, Hazanov and Huet, 1994]. On the contrary, the PBC approach gives the effective behaviour of periodic materials directly regardless of the RVE size [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF]]. For Cauchy continuum, the solution obtained with PBC corresponds to the solution constructed using asymptotic expansion.

For more details on this method, see [Yvonnet, 2019, Dirrenberger et al., 2019].

Experimental approaches

While homogenisation has been extensively studied for theoretical and numerical mechanics, few studies have been conducted on their experimental counterparts. In fact, experimental tests are often used to validate the theoretical or numerical results [START_REF] Flores | Analysis of cross-laminated timber by computational homogenisation and experimental validation[END_REF], Pasquale et al., 2018]. However, non-experimental approaches can be unrepresentative of the actual behaviour of the materials because of manufacturing defects: many lattices are built using additive manufacturing, which induces many material and geometrical defects. Thus, obtaining the homogenised parameters directly from the experiment is crucial for realistic applications.

Few of these methods are directly and easily transposable to an experimental framework because all loadings and measurements are not feasible, such as volume loadings or direct measurement of stresses. Nevertheless, one can Ąnd a study where the numerical approach was transposed into an experimental one. In fact, [START_REF] Dassonville | Toward a homogenizing machine[END_REF] designed an experimental setup capable of applying KUBC-type boundary conditions. However, this test bench is a completely new testing machine and cumbersome, so costly to reproduce (see Figure 1.22).

Another path for experimental homogenisation is to take advantage of the various identiĄcation methods adapted to homogeneous materials (see subsection 1.3.3). In fact, by testing a representative sample of an architectured material instead of a homogenous one, one can directly identify the effective constitutive parameters. This technic has been naturally used for composite materials [START_REF] Rahmani | A new approach to inverse identiĄcation of mechanical properties of composite materials: Regularized model updating[END_REF], and employed for identifying the strain gradient constitutive parameters of honeycomb lattices [START_REF] Réthoré | Gradient-elasticity for honeycomb materials: Validation and identi-Ącation from full-Ąeld measurements[END_REF]. 

Experimental identiĄcation of A.M. mechanical behaviour

There are two main interests in designing a characterisation test: Ů Validate the results obtained by simulation. This point is all the more relevant as today, many lattice-type structures are designed using topological optimisation algorithms and then produced by additive manufacturing. This process leads to many manufacturing defects. Therefore the behaviour of the actual structure will undoubtedly be different from that expected theoretically, especially since some aspects of the behaviour are particularly sensitive to the presence of defects (e.g. instabilities). Ů Obtain the material parameters of the homogenised model, which can be used for rapid dimensioning.

Designing an experimental characterisation test method can be decomposed into three steps: Ů Design the mechanical test. It should be adapted to the material structure, e.g.

to its mesostructure in case of lattice materials, and to the nature of the expected behaviour. Ů Performing the test and measure the Ąelds of interest instead of using only pointwise sensors. Full-Ąeld measurements are particularly appreciated as they allow access to very heterogeneous Ąelds and so to identify complex behaviour more easily. Ů Post-process the data by using an identiĄcation method.

Evolution of characterisation tests

In view of the very speciĄc structure and behaviour of A.M., it is questionable whether traditional characterisation tests are relevant. It is, therefore, interesting to brieĆy review the evolution of experimental techniques used in static elasticity.

Homogeneous tests

For a long time, as the means of measuring strains and stresses were limited and full-Ąeld measurements were difficult and inaccurate, experimenters tried to carry out tests that were as homogeneous as possible, whether for uniaxial Ű based on Saint-Venant [de Saint-Venant, 1855] and Mohr [Mohr, 1882] analysis of the effect of boundary conditions Ű or biaxial tests (see for example [START_REF] Mönch | A method for producing a deĄned uniform biaxial tensile stress Ąeld[END_REF]). The addition of degrees of freedom in the boundary conditions Ű thus allowing the part to deform more freely Ű made it possible to obtain homogeneous stresses and strains in the specimens. These technics were adapted when highly anisotropic materials started to be characterised, for example, in tension [Wu andThomas, 1968, Sun andChung, 1993] or in bi-tension [START_REF] Boehler | A new direct biaxial testing machine for anisotropic materials[END_REF].

During the 20th century, several methods of full-Ąeld measurement were invented, such as the grid method by Fischer in 1932 [Fischer, 1932], the Moiré by Tollenaar in 1945 [Tollenaar, 1945], measurements by interferometry by Leendertz in 1970[Leendertz, 1970] and Ąnally measurements by image correlation by Sutton in 1983[START_REF] Sutton | Determination of displacements using an improved digital correlation method[END_REF]. However, their applications only took off in earnest in the 1980s with the increase in computing power. Initially, the types of tests were not changed, nor were the postprocessing, Ąeld measurements being often reduced to scalars by averaging.

Figure 1.23 Ű Displacement Ąelds in an anisotropic steel specimen subjected to tension using conventional clamping system (left) or allowing free out-of-plane rotation (right) [Boehler andEl AouĄ, 1984, Boehler, 1987] 

Heterogeneous tests after the appearance of full-Ąeld measurements

Efficient methods for solving inverse problems have also been developed to exploit the rich results of these full-Ąeld measurements [START_REF] Avril | Overview of identiĄcation methods of mechanical parameters based on full-Ąeld measurements[END_REF]. These innovations led to new types of tests, and this time deliberately carried out with inhomogeneous gradient Ąelds. The aim of these tests was either to be able to identify more precisely speciĄc material parameters, such as those of orthotropic materials [START_REF] Molimard | IdentiĄcation of the four orthotropic plate stiffnesses using a single open-hole tensile test[END_REF], Lecompte et al., 2007], or to identify more complex models of behaviour [START_REF] Réthoré | Gradient-elasticity for honeycomb materials: Validation and identi-Ącation from full-Ąeld measurements[END_REF]. There are two different techniques for introducing gradient Ąelds: Ů By modifying the geometry of the specimen. For example, in [START_REF] Molimard | IdentiĄcation of the four orthotropic plate stiffnesses using a single open-hole tensile test[END_REF], Lecompte et al., 2007], it was decided to perform tensile tests on specimens having holes, and in [START_REF] Réthoré | Gradient-elasticity for honeycomb materials: Validation and identi-Ącation from full-Ąeld measurements[END_REF], an inclined slot was placed in the centre of the specimen. Some authors have also had the idea of using non-standard geometries to reduce the number of tests required. One example is [START_REF] Doudard | InĆuence of hardening type on self-heating of metallic materials under cyclic loadings at low amplitude[END_REF], who determined the inĆuence of the strain hardening rate on the self-heating of a sample using a single specimen, but with a non-constant cross-section. In [START_REF] Chamoin | Coupling between topology optimization and digital image correlation for the design of specimen dedicated to selected material parameters identiĄcation[END_REF], a specimen is designed using topology optimisation to maximise the measured displacement ĄeldŠs sensitivity to the parameters to be identiĄed. Ů By changing the boundary conditions applied. Indeed, in other rare cases, it is not the specimenŠs shape that is non-standard but the boundary conditions used in the test to allow the gradient Ąelds to express themselves [START_REF] Poncelet | An experimental evidence of the failure of Cauchy elasticity for the overall modeling of a non-centro-symmetric lattice under static loading[END_REF].

Note: From a certain point of view, both approaches act on the boundary conditions. The Ąrst one is based on "free border" type conditions (external shape, holes, slots), whereas the second one is based on "controlled borders" (e.g. imposed displacements or stresses). The advantage of the former is its simplicity. The advantage of the second is the control of several boundary conditions on the same specimen.

Figure 1.24 Ű Sensitivity Ąelds for the PoissonŠs ratio as a function of the chosen radii [START_REF] Bertin | Optimization of a cruciform specimen geometry for the identiĄcation of constitutive parameters based upon full-Ąeld measurements[END_REF] One can notice that the choices made to obtain gradient Ąelds have almost all been arbitrary: very few actual optimisation procedures are used to obtain an ideal specimen shape for a particular test, one can Ąnd [START_REF] Bertin | Optimization of a cruciform specimen geometry for the identiĄcation of constitutive parameters based upon full-Ąeld measurements[END_REF] and [START_REF] Chamoin | Coupling between topology optimization and digital image correlation for the design of specimen dedicated to selected material parameters identiĄcation[END_REF]. However, it only optimises a single geometric parameter of its specimen by optimising the sensitivity of several material parameters to it (see Figure 1.24). This kind of procedure is already very costly for a single parameter, and it is difficult to implement it on a free geometry. Nevertheless, this type of study offers interesting perspectives for the implementation of optimised tests.

The special case of testing architectured materials

It can be noted that most of the tests carried out on architectured materials are rarely rethought, even though they are not necessarily the most relevant. Indeed, the tests generally carried out are already performed and adapted to standard materials: classical tension tests [START_REF] Viard | Propagating material instabilities in planar architectured materials[END_REF], dellŠIsola et al., 2018], compression and bending tests [START_REF] Fan | Compression and bending performances of carbon Ąber reinforced lattice-core sandwich composites[END_REF], torsion tests [START_REF] Misra | Pantographic metamaterials show atypical poynting effect reversal[END_REF]. These tests are usually used either to characterise the elastic and buckling behaviours. Other classical tests are used to characterise the fracture behaviours [START_REF] Réthoré | Anisotropic failure and size effects in periodic honeycomb materials: A gradientelasticity approach[END_REF], Glacet et al., 2018].

Although, some of these classical tests were performed for unclassical purposes or have been slightly adapted to observe speciĄc behaviours. For example, in [START_REF] Marty | Finite strain kinematics of multi-scale material by Digital Image Correlation[END_REF] and [START_REF] Marty | Experimental investigation of higher-order homogenization schemes under large strain[END_REF], a tension test is performed on a plate with holes distributed on a square grid delimited by a circle area at the specimen centre. Different deformation modes can occur by changing the square gridŠs orientation. Then, in [START_REF] Réthoré | Gradient-elasticity for honeycomb materials: Validation and identi-Ącation from full-Ąeld measurements[END_REF] a tension test is performed on a specimen with an inclined slot to induce high strain gradients and be able to identify the constitutive parameters of the Strain-Gradient elasticity model. In [START_REF] Poncelet | An experimental evidence of the failure of Cauchy elasticity for the overall modeling of a non-centro-symmetric lattice under static loading[END_REF], a speciĄc test bench was designed to perform an imposed force tensile test and be able to observe an unusual bending behaviour of the lattice when subjected to a homogeneous tension force.

Finally, some rare cases of new and speciĄc tests for A.M. exist, such as the tests carried out in [Abdoul- Anziz and Seppecher, 2018]. Indeed, in this case, the test conducted has been redesigned to observe a second gradient type behaviour. The boundary conditions applied are unusual, as is the measurement zone (see Figure 1.25).

In conclusion, a great deal of research remains to be done to Ąnd tests more suitable for architectured materials, both in the linear elastic regime and in non-linear phenomena.

Full-Ąeld measurement methods

The democratisation of architectured materials, especially lattices ones, was not only made possible by the development of new manufacturing methods but also by the development of full-Ąeld measurement methods. In fact, the understanding, characterisation and control of their behaviour may require access to the samplesŠ Ąelds and not only punctual measures. Several contactless methods of full-Ąeld measurement exist. A non-exhaustive list will quickly be presented, one can also refer to [Grédiac, 2004, Grédiac et al., 2012]. 

Photelasticity

Photoelasticity is one of the oldest non-destructive full-Ąeld measurement methods, presented by David Brewster in 1816 [Brewster, 1816]. It can measure the static stress Ąelds of some transparent and translucent materials, particularly crystalline-based and amorphous ones. When subjected to stresses, these materialsŠ molecular orientation distribution changes, thus modifying the polarisation of light [START_REF] Nielsen | Estimation of crystallinity of isotactic polypropylene using raman spectroscopy[END_REF]. By placing the specimen in a polariscope (see Figure 1.26), fringe patterns appear, indicating the principal stress directions (see Figure 1.27).

Geometric moiré and grid methods

Grid and geometric moiré methods were introduced respectively by Fischer in 1932 [Fischer, 1932], and by Tollenaar in 1945 [Tollenaar, 1945]. The principle of these two methods is close: they analyse the evolution of a regular network of equispaced and parallel lines which deform with the sample. The displacement Ąeld of the sample is then deduced.

A complete review of the grid method is given in [START_REF] Grédiac | The grid method for in-plane displacement and strain measurement: A review and analysis[END_REF]. This method measures the in-plane displacement Ąeld. A grid is transferred onto the specimen (see Figure 1.28 Ű Example of a grid used for an ultrasonic experiment in [Seghir et al., 2018a] The moiré is a geometric interference phenomenon that appears when two periodic patterns are superimposed (see Figure 1.29). The geometric moiré method uses this phenomenon. A complete description is given in [START_REF] Post | Geometric moiré[END_REF]. Several variants exist, allowing measuring in-plane displacements by using, for example, the in-plane moiré fringes method, or out-of-plane ones by using, for example, the shadow moiré method.

Figure 1.29 Ű Example of moiré pattern

For the in-plane moiré fringes, a grating is applied on the specimen, and a reference grating is placed in front of it (see Figure 1.30a). When the specimen is loaded, the grating on it moves, and so does the relative location of the lines to the reference grating, making appear the fringe pattern (see Figure 1.30b). The displacement Ąeld can then be deduced.

For the shadow moiré, the reference grating in front of the specimen is superimposed with its shadow (see Figure 1.31).

The main drawback of these methods is that the surface of the specimen must be marked with a pattern that should be as regular as possible. Their adaptation to lattice materials thus seems not straightforward. [START_REF] Post | Geometric moiré[END_REF]) Figure 1.31 Ű Shadow moiré method principle (inspired from [START_REF] Brémand | Mesures en mécanique par méthodes optiques. Techniques de lŠingénieur Grandeurs mécaniques, base documentaire[END_REF]) .32 Ű Principle of the moiré interferometry (inspired from [START_REF] Post | Geometric moiré[END_REF]). The virtual grating is formed by constructive and destructive interferences of the two laser beams w 1 and w 2 . The initial frequency of the specimen grating f s , is half that of the virtual reference grating f .

Interferometry methods

The interferometry methods, introduced by [Leendertz, 1970], are based on optical interference phenomena to create fringe patterns that will evolve with the loading. As for the geometric moiré method, several variants of this method can be found. Two of the most known are speckle interferometry and moiré interferometry.

The moiré interferometry, presented in detail in [START_REF] Post | Geometric moiré[END_REF], takes the concepts and technics of the geometrical moiré and combines them with optical interferometry. First, a grating is carved on the specimen (see Figure 1.32a). Two interfering lasers of coherent light illuminate it to create a virtual grid of constructive and destructive interferences (see Figure 1.32b). The specimen and virtual gratings thus interact to form a moiré pattern.

Contrary to the moiré interferometry, the speckle interferometry does not need grating of a smooth surface. A laser beam illuminates the specimen, and the rough surface generates a scattered light. This scattered light then interacts with a reference laser beam, leading to interferences (see Figure 1.33).

Interferometric methods can be very efficient, especially for small displacements. However, they are in practice difficult to implement, as they require a complex optical apparatus which is sensible to external vibration. 

Digital Image Correlation method (DIC)

Digital Image Correlation is one of the last kinematic measurement methods developed [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF], Sutton et al., 1983, Chu et al., 1985]. It consists in Ąnding the grey level variations between two images to Ąnd the displacement and deformation of a specimen. To this effect, a random speckle pattern is applied to the sampleŠs surface, usually using black and white paint (see Figure 1.34).

Figure 1.34 Ű DIC principle

The DIC is based on the idea of grey level conservation, also called optical Ćow. Let us consider a solid surface with a speckle pattern on it. A Ąrst reference picture is taken, called f . The solid is deformed, and another picture is taken, called g. The pattern is supposed to be passively advected by the supporting solid, and the grey levels associated with the speckle are conserved. This conservation of the grey level at any pixel location x can then be written as:

f (x) = g(x + u(x)) (1.28)
with u the displacement vector.

Because the problem has only one equation for at least two unknowns, it is ill-posed. In addition, because of the acquisition noise, the conservation law is never strictly satis-Ąed. The correlation procedure is then resolved on a domain with more than one pixel. Generally, the resolution of the DIC problem consists in minimising the sum of the square differences over a domain Ω:

min u∈U adm C(u) = min u∈U adm Ω [f (x) -g(x + u(x))] 2 dx (1.29)
The picture is divided into several subsets. A Ąrst strategy consists in considering each subset independently, which leads to the so-called local DIC [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]]. Another consists of considering simultaneously all the subsets called global DIC [START_REF] Sun | Finite element formulation for a digital image correlation method[END_REF], Besnard et al., 2006].

This method is relatively easy to set up and can be adapted to many data types and specimen types. It has, in particular, been adapted to lattices, by applying the speckle directly on the sample [START_REF] Réthoré | Gradient-elasticity for honeycomb materials: Validation and identi-Ącation from full-Ąeld measurements[END_REF] or by applying it on a membrane glued to the specimen [START_REF] Poncelet | An experimental evidence of the failure of Cauchy elasticity for the overall modeling of a non-centro-symmetric lattice under static loading[END_REF]. Another study even removes the speckle by following the contours of the lattice [START_REF] Rouwane | Architecture-driven digital image correlation technique (ADDICT) for the measurement of sub-cellular kinematic Ąelds in speckle-free cellular materials[END_REF].

Once the different Ąelds are measured, the next step is to post-process them and identify the constitutive parameters of the material.

Mechanical behaviour identiĄcation methods

According to [START_REF] Avril | Overview of identiĄcation methods of mechanical parameters based on full-Ąeld measurements[END_REF], Grédiac et al., 2012], Ąve main identiĄcation methods of mechanical parameters based on full-Ąeld measurements can be found: Ů The Ąnite element model updating method (FEMU); Ů The constitutive equation gap method (CEGM); Ů The virtual Ąelds method (VFM); Ů The equilibrium gap method (EGM); Ů The reciprocity gap method (RGM).

For the EGM method, the mean reference medium is supposed to be known. It is not the case for this work, so this method will not be presented here.

Note:

The methods presented here will be illustrated solely for the elastic case. However, they have been extended to identify the constitutive parameters of non-linear models [START_REF] Avril | Overview of identiĄcation methods of mechanical parameters based on full-Ąeld measurements[END_REF].

FEMU

The Finite Element Model Updating method performs successive simulations by updating the constitutive parameters until the simulated Ąelds are close enough to a reference ones, minimising the discrepancy between the two considered Ąelds. The reference Ąeld can be analytical, issued from simulations or experimental.

Two main methods can be found: the force balance method (FEMU-F) and the displacement one (FEMU-U) [START_REF] Cottin | On the parameter identiĄcation of elastomechanical systems using input and output residuals[END_REF]. The Ąeld considered in each case is, respectively, the nodal forces and the nodal displacements.

In each case, the approach usually consists in minimising a least-squares functional. For the FEMU-F method its discretised form is:

C( ¶P ♢) = 1 2 ¶F ref ♢ -[K( ¶P ♢)] ¶U ref ♢ T [W] ¶F ref ♢ -[K( ¶P ♢)] ¶U ref ♢ (1.30)
while for the FEMU-U method:

C( ¶P ♢) = 1 2 ¶U ref ♢ - ¶U sim ( ¶P ♢)♢ T [W] ¶U ref ♢ - ¶U sim ( ¶P ♢)♢ (1.31)
with :

Ů ¶P ♢: the vector containing the parameters to be identiĄed; Ů ¶U ref ♢: the vector containing the nodal displacement of the reference Ąeld; Ů ¶F ref ♢: the vector containing the prescribe forces; Ů [K( ¶P ♢)] = [K(C ≈ ( ¶P ♢))]: the stiffness matrix of the sample; Ů ¶U sim ♢: the vector containing all the simulated nodal displacement at the current iteration; Ů [W]: is a symmetric, positive deĄnite weighting matrix.

CEGM

The Constitutive Equation Gap Method minimises the gap between a reference stress Ąeld σref and another σ calculated from the considered constitutive model using the reference displacement Ąeld u ref .

In other words, one wants to minimise the differences between the known and computed stress Ąelds due to the errors in the constitutive law.

Let us call ε(u ref ) the strain Ąeld computed using the reference displacement Ąeld and Ω the sample body. The cost function to minimise is then:

C(P) = 1 2 Ω σref -C ≈ ( ¶P ♢) : ε(u ref ) : C ≈ ( ¶P ♢) -1 : σref -C ≈ ( ¶P ♢) : ε(u ref ) dV (1.32)

VFM

The Virtual Fields Method uses the virtual work principle (PVW) applied to wellchosen virtual Ąelds. In static, the PVW takes the form:

- Ω σ : ε(u * ) dV + ∂Ω F T d • u * dS = 0 (1.33)
with ∂Ω F the sample boundaries, T d the traction force vector and u * a kinematically admissible virtual Ąeld.

The idea is to write N -independent equations governing the constitutive modelŠs N parameters by setting σ = C ≈ ( ¶P ♢) : εref , well choose N virtual Ąelds u * i , i ∈ ¶1, N ♢, and to solve it. In fact, one wants to have:

           Ω εref : C ≈ ( ¶P ♢) : ε(u * 1 ) dV . . . Ω εref : C ≈ ( ¶P ♢) : ε(u * N ) dV            =          ∂Ω F T d • u * 1 dS . . . ∂Ω F T d • u * N dS          (1.34)
which can be rewritten to obtain a system of the form:

[M] ¶P ♢ = ¶b♢ (1.35)

RGM

Once again, the Reciprocity Gap Method is a variation of the VFM. In this case, the kinematics Ąelds are known on the boundaries.

By considering the Maxwell-Betti reciprocity theorem and adjoint Ąelds

(u * i , T * d , C ≈ * ),
one has:

Ω ε(u ref ) : C ≈ -C ≈ * : ε(u * i ) dV = ∂Ω T d,ref • u * i -T * d • u ref dS (1.36)
This equation is supposed to be equal to zero for any adjoint Ąeld and should thus be minimised to Ąnd the constitutive parameters.

Comparison of the methods

The VFM and FEMU-F methods (and EGM) give direct results, i.e. they do not need an iterative procedure, leading to fast resolutions. However, they need a high spatial resolution to work and are sensitive to measurement uncertainties [START_REF] Avril | Overview of identiĄcation methods of mechanical parameters based on full-Ąeld measurements[END_REF].

The other methods are iterative, which can lead to a high computational cost. However, they are less sensitive to measurement uncertainties than the previous ones and can operate with low spatial resolution.

Finally, FEMU and CEGM methods are the only ones that can handle partial data, i.e. they do not need full-Ąeld measurement in the whole specimen.

Note:

The question is which method to choose when considering architectured materials, particularly lattices. In fact, needed data are not necessarily available. This question is even more relevant when considering generalised continua.

Conclusion

The interest in A.M. has signiĄcantly risen for a few years as new manufacturing methods have enabled their production to be simpliĄed, and also thanks to their interesting mechanical properties. This chapter gave a very general presentation of them. In particular, it deĄned what an architectured material is and gave the extent of knowledge on how to model and characterise their mechanical behaviour. In fact, true democratisation of their use is through the possibility of performing fast simulations. Even if the complete description of the internal structure can be interesting to observe some particular behaviours, obtaining a homogenised behaviour is necessary. However, classical homogenisation technics can Ąnd their limits considering porous macro A.M. due to the weak scale separation between the macroscopic and mesoscopic scales and the many defects introduced by the manufacturing processes. This last point shows the need for experimental characterisation too. Nevertheless, characterisation tests and post-processing techniques have so far been little rethought for A.M. Among A.M., quasi-periodic structures have still been little studied, even though they combine many random and periodic lattices assets. However, the characterisation of their behaviour seems the most challenging as their speciĄc matter organisation eliminates even more classical homogenisation or characterisation techniques. This work intends to 

Introduction

Chapter 1 was dedicated to a general overview of architectured materials to present this studyŠs general context and the available tools. Now, this work focuses on the effective elasticity of quasi-periodic lattices. Therefore, it is essential to know more about their particularities, and the extent of the research carried out so far on their mechanical behaviour. It is also necessary to know how to generate patterns. A speciĄc presentation is thus needed. This chapter will be organised as follow. The Ąrst section will be focused on how the concept of quasi-periodicity was introduced and how the quasi-periodic structures were discovered. Then, the extent of knowledge about their mechanical behaviour will be presented. Finally, the different methods available to generate different patterns will be described.

Discovery

The notion of a "quasi-periodic" function appeared in Ernest EsclangonŠs thesis in 1904 [Esclangon, 1904], although the study of this type of function goes back to 1893 with the thesis of Piers Bohl [Bohl, 1893]. As a reminder, a function h i is said periodic of period T i , and of frequency f i = 1/T i , if:

h i (x) = h i (x + T i ) ∀x ∈ R (2.1)
A function h is quasi-periodic if there exist p > 1 periodic functions h 1 , ..., h p (p countable), of respective periods T 1 , .., T p and frequencies f 1 , .., f p , such that:

h(x) = p i=1 h i (x) (2.2)
and there exists a Ąnite set of base frequencies ¶ f1 , ..., fp ♢ such that:

Ů The set is linearly independent over Z:

∀ (k 1 , .., k p ) ∈ Z p , p i=1 k i fi = 0 ⇒ ∀i, k i = 0 (2.3)
Ů it is a generating set for the frequencies f 1 , .., f p :

∀j, ∃ (k 1 , .., k p ) ∈ Z p , f j = p i=1 k i fi (2.4)
In other words, a function is quasi-periodic if it is a Ąnite sum of periodic functions having incommensurate frequencies [START_REF] Parker | Practical Numerical Algorithms for Chaotic Systems[END_REF] 1 . This concept was then extended to the notion of almost periodic functions introduced by Bohr in 1925 [Bohr, 1925]. A function h is almost periodic if:

∀ε > 0, ∃ T ε ∈ R * ♣ ♣h(x + T ε ) -h(x)♣ < ε (2.5)
They are a generalisation of quasi-periodic functions (see Figure 2.1): contrary to them, any countable set of real numbers is allowed for frequencies [START_REF] Ginoux | Des mouvements récurrents de birkhoff aux régimes quasi-périodiques[END_REF]. It was back then primarily mathematical concepts which have proven to be useful for celestial mechanics [Fabre, 1937] and radio engineering applications [van der Pol, 1927, Kryloff andBogoliuboff, 1932].

The interest in quasiperiodicity came back through the one for aperiodic tilings in the sixties, although indirectly at that time.

The notion of aperiodic tiling was Ąrst put forward by Wang in 1961 when he tried to prove the decidability of the "domino problem" [Wang, 1961]. He conjectured that any Ąnite set of tiles could tile the plane, only if it has at least one periodic tiling solution. In other words, a set of tiles can Ąll the space only if there is a way to do it periodically. In 1966, Berger found a set of 20426 tiles that could only aperiodically pave the plane. Thus he proved that WangŠs hypothesis was false and the problem undecidable [Berger, 1966]. Much work was done to Ąnd the minimal number of tiles that could pave the plane aperiodically [Robinson, 1971, Penrose, 1974, Penrose, 1979, Beenker, 1982, Grünbaum and Shephard, 1986, Ammann et al., 1992]. In 1971, Robinson proposed a set of 6 tiles derived from WangŠs tiles [Robinson, 1971]. Among the best-known works are those of Penrose [Penrose, 1974, Penrose, 1979], Ammann [START_REF] Ammann | Aperiodic tiles[END_REF], and Beenker [Beenker, 1982], who proposed sets consisting of only two tiles (see Figure 2.2). These last tilings were found to be quasi-periodic in the sens of BohlŠs deĄnition. The inĆation coefficient linking the diffraction peaks k is equal to the golden ratio τ = First mainly considered as a mathematical entertainment, the interest in quasi-periodic tilings was revived with the discovery of quasi-crystals in 1984 [START_REF] Shechtman | Metallic phase with long-range orientational order and no translational symmetry[END_REF]. Before this Ąnding, a crystal was deĄned as "a solid composed of atoms arranged in a periodic pattern in three dimensions" [Cullity, 1956]. This deĄnition was issued from an empirical approach. Periodicity was then a key to this deĄnition, so, according to the Crystallographic Restriction Theorem, only the assembly of molecules having one, two, three, four, and six-fold rotational axis could be crystal. [START_REF] Shechtman | Metallic phase with long-range orientational order and no translational symmetry[END_REF] discovered a crystal violating two laws of crystallography simultaneously: the diffraction Ągure presented a ten-fold rotational symmetry, and the distance between the peaks did not respect the rules of periodicity. Thus this crystal was not periodic. However, it had quasi-periodicity. This discovery led to a new deĄnition of crystals by the International Union of Crystallographers in 1992: "By crystal we mean any solid having an essentially discrete diffraction diagram, and by aperiodic crystal we mean any crystal in which three dimensional lattice periodicity can be considered to be absent". An example of quasi-crystal is given in Figure 2.3. [START_REF] Bindi | Natural quasicrystal with decagonal symmetry[END_REF] Quasi-periodic tilings can have a diffraction Ągure similar to quasi-crystal diffraction Ągures (see Figure 2.4). Therefore, they seem appropriate to model the behaviour of quasi-crystals.

Mechanical properties

Since their discovery, the properties of quasi-crystals have been widely studied, including mechanical ones. One asset of quasi-crystals compared to classical ones is that their classical elastic properties are isotropic. This property was established theoretically and experimentally, at least for small strains [START_REF] Lubensky | Hydrodynamics of icosahedral quasicrystals[END_REF], Kalugin et al., 1985, Bak, , 1992]. At low temperatures, it was shown that quasi-crystals are brittle [START_REF] Mikulla | Crack propagation in quasicrystals[END_REF], Rösch et al., 2005]. The fracture mechanics of these materials was thus investigated in more detail in some studies. For example, in [START_REF] Sladek | Path-independent integral in fracture mechanics of quasicrystals[END_REF] the authors use the formalism of coupled elasticity of the quasi-crystal 2 developed by Bak [Bak, 1985] and Socolar [START_REF] Socolar | Phonons, phasons, and dislocations in quasicrystals[END_REF] soon after the discovery of quasi-crystals [START_REF] Hu | Point groups and elastic properties of two-dimensional quasicrystals[END_REF]. At high temperatures, quasi-crystals become ductile, and their plastic behaviour have also been studied [START_REF] Shibuya | Plastic deformation of Al-Ru-Cu icosahedral quasicrystals[END_REF], Caillard et al., 2002, Feuerbacher et al., 2001].

Applying these concepts stemming from atoms to architectured material, we move from quasi-crystal to Ąnite quasi-periodic lattices. However, the direct transposition of the previous concepts adapted to quasi-crystals for lattice materials is questionable. It appears that if many studies have been conducted on crystals, few extensions have been conducted so far to lattice materials. Indeed, in addition to being a relatively new type of lattice and, for the moment, not so simple to produce, their complex structure makes it more challenging to study their behaviour. Since quasi-periodic lattices are not periodic, methods that are classically used for investigating their properties are no longer available.

2. In condensed matter physics, the elasticity of quasi-crystals can be written from this notion of superspace. One then distinguishes a deformation in physical space (phonon) and a deformation in complementary space (phason). The resulting elasticity is decomposed into a phononic elasticity, a phasonic elasticity and a coupling between these modes. In the framework of solid mechanics, the elasticity of the quasi-periodic lattices we study is only phononic. The question of what is, in solid mechanics, the meaning of the phasonic elasticity is a completely open question.

For instance, the Block Theorem cannot be used, which is the basis of some mathematical homogenisation methods [START_REF] Allaire | Bloch wave homogenization and spectral asymptotic analysis[END_REF]]. Likewise, applying PBC boundary conditions (see subsection 1.2.4) are not straightforward if not possible. Thus, numerical homogenisation cannot be directly used too.

Several methods have been used to deal with this issue. The Ąrst one completely bypasses the problem by using approximants [Duneau, 1989, Entin-Wohlman et al., 1988]. An approximant of a quasi-periodic lattice is a pattern that has been slightly modiĄed to obtain a unit cell that can be repeated periodically (see Figure 2.5). Periodic classical theorems can thus be used to investigate their properties. This method is the most widespread, particularly in dynamics [Voisey, 2014, Glacet et al., 2019, Chen et al., 2020]. However, although the results may be representative of a Ąrst approximation, their accuracy can be questioned. In fact, since the unit cell becomes compatible with periodicity, the initial symmetry is lost. Therefore, the effective isotropy might be too.

(a) One Ammann-Beenker tiling approximant [Duneau, 1989] (b) One P3 Penrose tiling approximant [START_REF] Bandres | Topological photonic quasicrystals: Fractal topological spectrum and protected transport[END_REF] 

Figure 2.5 Ű Example of quasi-periodic approximants

The second method bypasses the problem by using the properties of the quasi-periodic lattices. As discussed in the following subsection, a quasi-periodic lattice can be viewed as a section of a higher dimensional periodic lattice. With this picture in mind, one can envisage using a periodic approach to this super space before projecting the results. This method can be used to resolve dynamic [START_REF] Rodriguez | Computation and visualization of photonic quasicrystal spectra via BlochŠs theorem[END_REF] or homogenisation problems [START_REF] Wellander | Homogenization of quasiperiodic structures and two-scale cut-and-projection convergence[END_REF]. In particular, some analytical homogenisation procedures have been extended: [START_REF] Braides | Homogenization of penrose tilings[END_REF] with Γ-Convergence, [START_REF] Wellander | Two-scale cut-and-projection convergence; homogenization of quasiperiodic structures[END_REF] with the two-scale convergence, and [START_REF] Ganesh | Bloch wave homogenisation of quasiperiodic media[END_REF] with the Bloch homogenisation.

The last way to study the behaviour of quasi-periodic lattices is to work directly on a representative Ąnite sample. This method is usually favoured in static [START_REF] Wang | Quasiperiodic mechanical metamaterials with extreme isotropic stiffness[END_REF], Moat et al., 2022, Glacet et al., 2018, Eid et al., 2021]. However, the deĄnition of the RVE size remains an open question.

Quasi-periodic lattices have started to be studied in order to solve the drawbacks of periodic ones, the Ąrst of which is anisotropy. The isotropy of the elastic behaviour of quasi-periodic structures was established in static [START_REF] Moat | Compressive behaviour of cellular structures with aperiodic order[END_REF] and dynamic [START_REF] Glacet | Vibrational properties of quasi-periodic beam structures[END_REF], Chen et al., 2020]. As usual, one goal has been to design lightweight structures with high mechanical performance, high stiffness with low mass density for instance, but having an isotropic behaviour, whether within the class of quasi-periodic discrete structures [START_REF] Wang | Quasiperiodic mechanical metamaterials with extreme isotropic stiffness[END_REF], or continuous composites [START_REF] Beli | Mechanics and dynamics of two-dimensional quasicrystalline composites[END_REF]. Concerning their plastic behaviour, even if some localisation band can be observed [START_REF] Badiche | Mechanical properties and nonhomogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials[END_REF], they are less pronounced and more distributed throughout the specimen than in the case of the periodic lattices [START_REF] Moat | Compressive behaviour of cellular structures with aperiodic order[END_REF]. Isotropic stiffness is typically desirable, mainly when the load directions are a priori unknown. Moreover, isotropy provides a relatively uniform distribution of strain energy, reducing stress concentration and the associated potential onsets of fracture. Besides, the better fracture toughness of quasiperiodic lattices compared to the periodic ones was demonstrated in [START_REF] Glacet | On the failure resistance of quasi-periodic lattices[END_REF].

Finally, another interesting feature of this kind of material is the potential control of their behaviour in dynamics. In fact, in a series of papers devoted to higher-order elasticity [START_REF] Auffray | Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior[END_REF], Auffray et al., 2013, Auffray et al., 2015] it has been shown that strain gradient elasticity can be anisotropic for quasi-periodic lattices both in 2D and 3D. It reveals that if the elastic behaviour of quasi-periodic lattices is isotropic for smooth loadings, this apparent isotropy can break down as soon as the mechanical Ąeld variates at the mesostructure scale. This "isotropic to anisotropic" transition of the mechanical response has recently been exploited for elastic wave beaming in [Rosi andAuffray, 2016, Rosi andAuffray, 2019].

One interesting fact when looking at all these studies is that almost none consider the patternŠs inĆuence on the observed behaviour. Usually, only one type of pattern is studied, which has been chosen more or less in an arbitrary manner. In this work, we desire to study this inĆuence on the overall elastic behaviour. Thus, we should be able to generate different types of patterns.

Generating methods of quasi-periodic tilings

The three most widespread quasi-periodic pattern generating methods will be presented here.

Substitution method

The Ąrst method developed to generate quasi-periodic tiling was the direct assembly method using local matching rules. It consists of positioning the different tiles directly with respect to each other. Local matching rules ensure the quasi-periodicity of the tiling (see Figure 2.6). This approach is the initial one used by Penrose in his 1974 [Penrose, 1974] and 1979 [Penrose, 1979] articles. with the same symbol and in the same direction can be adjacent to each other [Penrose, 1979] Penrose then developed the substitution method to prove that it was possible to pave the plane with his tiles [Penrose, 1979]. This method consists of subdividing a basic tile into elementary tiles. A homothetic transformation is then applied to the Ągure (i.e. an "inĆation") to obtain tiles of the same dimensions as the initial ones. The operation of subdivision and inĆation is then repeated.

Robinson simpliĄed the approach in the case of the Penrose tiling by dividing the elementary tiles into two triangles, A and B [START_REF] Grünbaum | Tilings and Patterns[END_REF] can also be used to generate an Ammann-Bennker tiling (see Figure 2.9) [START_REF] Baake | Aperiodic Order[END_REF].

The numerical implementation of this method is given in the appendix section A.1. This method is the simplest to implement, and the computation time required to obtain a tiling of the plane is short. Moreover, it is the only method that allows to directly obtain a kite & dart type pattern, i.e. without having to modify a rhombus type. However, this method is not very versatile. Indeed, the set of paving that can be generated is limited, and making a different generation code for each type is necessary.

Note: If the method is initialised with a pattern having a global rotational symmetry, this global symmetry is kept during the process (see Figure 2.10). Different initial patterns 1986]. The method is also described in [de Bruijn, 1981a]. 

Multi-grid method

This method was introduced by de Bruijn in 1981 [de Bruijn, 1981a, de Bruijn, 1981b]. The basic principle of this method is relatively simple: N grids are superposed, each grid is a network of equidistant parallel lines, and the grids not being parallel to each other. Moreover, each grid i is shifted by a distance γ i from the origin of the marker (cf Figure 2.11).

Figure 2.11 Ű Example of superposition of 3 grids and their associated parameters r is a vector of the plan. The set of lines composing the i-th grid is deĄned by:

r ∈ R 2 ♣r • e i + γ i ∈ Z (2.6)
with e i the grid vector i, i.e. the direction of translation of the lines composing the latter (cf Figure 2.12). For example, in the case of a penta-grid, the set of grid vectors is deĄned by:

e i = cos 2πi 5 , sin 2πi 5 , ∀i ∈ [0, 4] (2.7)
At any point in the plane, it is possible to deĄne N integers z i , i ∈ ¶0, N -1♢ such that:

z i = ⌈r • e i + γ i ⌉ ∀i ∈ ¶0, N -1♢ (2.8)
with ⌈•⌉ the ceiling function deĄne as the least integer greater than or equal to •.

Therefore it is possible to deĄne different zones such that any point M belonging to a zone does not belong to any of the grids and such that the value of the N -tuple (z 0 , ..., z N -1 ) is equal for all the points of the zone. The N -tuple deĄnes the coordinates Figure 2.12 Ű Representation of the different parameters of a grid x of one of the vertices of the tiling:

x = N -1 i=0 z i e i
(2.9)

Thus, areas near an intersection deĄne all the vertices of a tile, and two consecutive intersections of the same line will generate adjacent tiles. Moreover, the tilesŠ edges are orthogonal to the lines forming the intersection (see Figure 2.13). Last, if the distance between lines is the same for the different grids, all the edges of the tiles are of the same length.

The N -grid is considered regular if there are never more than two lines intersecting at the same point. Otherwise, it is said to be singular and leads to the appearance of new types of patterns (for example, see Figure 2.13b). Finally, the tiling will be entirely deĄned by the N -tuples (γ 1 , ..., γ N ) (considering that the angle between the grids is constant and equal to 2π/N rad). The rhombus-like tiling of Penrose is generated by a penta-grid and the tiling of Ammann-Beenker by a quadri-grid (see Figure 2.14). The lines that generate the tiling are easily found on the tiling (see Figure 2.15). The numerical implementation of this method is given in the appendix section A.2. This method is more versatile than the previous one as it allows to carry out a large number of 2D rhombus-type tilings belonging to different local isomorphism classes. In addition, tiling with local rotation symmetries of order greater than Ąve can easily be obtained. Finally, this code is suitable for obtaining singular tiling.

The number of lines per grid is supposed to be inĄnite, which is not the case in practice. Thus some intersection points are missing on the outside of the multi-grid. The tiling generated on the outer edge is therefore false. It is thus necessary to remove all the tiles generated at the border of the tiling (see Figure 2.16).

Note: This method can be slightly modiĄed to obtain approximant [START_REF] Entin-Wohlman | Penrose tiling approximants[END_REF]. 

Cut-and-Project method

[ de Bruijn, 1981a] showed that it was possible to obtain a rhombus-like tiling of Penrose by projecting a hypercubic network of dimension Ąve4 on a subspace of dimension two. This idea was also developed in [START_REF] Kramer | On periodic and non-periodic space Ąllings ofEmobtained by projection[END_REF]. The tiling is obtained by projecting the edges of the cubes cut by a 2D hyperplane onto it. This method was developed and generalised by [START_REF] Duneau | Quasiperiodic patterns[END_REF], and described and used in numerous articles [Janssen, 1988, Rogers et al., 2003, Fang et al., 2017].

The method consists in projecting a lattice-periodic structure belonging to an Ndimensional space, most of the time hypercubic, onto a subspace of dimension n < N . The total space is called E and the subspace E ⊥ . However, not all edges should be projected. Let us called E ∥ the orthogonal complement of the physical space E ⊥ . Only edges whose vertices are included in a W domain (called cut window) when projected in the E ∥ subspace should be selected. Considering a regular network, W corresponds to the domain generated by projecting the Voronoi cell of one of the nodes of the N -dimensional network onto E ∥ . In the case of a hypercubic network, the Voronoi cell corresponds to an N -dimensional hypercube of the same dimension as the elementary hypercube of the network. Figure 2.17 gives a graphical representation of the method in the case where N is 2 and n is 1. N values (γ 1 , ..., γ N ) represent the shift of the lattice in the N directions of space with respect to the origin of the coordinate system. The numerical implementation of this method is given in the appendix section A.3.

It can be noted that the rhombus Penrose tiling can also be projected from 4D space [Voisey, 2014]. However, the lattice in 4D is no longer hypercubic but hyperrhombic. It makes the extension more difficult, as determining the acceptance window via the Voronoi cell is much more complicated. This method is the most versatile of all. In particular, it can be used to obtain 3D tiling. However, the computation time is high, and the code, as implemented, causes generation problems when at least one of the γ i is 0.5. Indeed, some patterns are superimposed. It corresponds to singular tiling.

Note: By adjusting the projection operators, periodic approximant of the quasi-periodic tiling can directly be obtained [Duneau, 1989].

Comparison of generation methods

Depending on the type of tiling desired, it may be wise to favour one method over another. The substitution method is the only one that allows for obtaining a direct tiling kite & dart. This method lacks versatility unless a very speciĄc tiling is desired that cannot be achieved by other means.

Note: This method enables us to obtain very particular aperiodic tilings Ű but not quasi-periodic Ű such as the theoretically D ∞ Pinwheel tiling, potentially of great interest in mechanics (see Figure 2.18). The cut & project method is the most versatile and allows, in particular, the generation of 3D tilings. However, as long as the network used remains a hypercubic network or as long as the projection bases associated with the Ammann-Beenker and Penrose tiling are used, the cut & project and multi-grid methods are capable of providing the same set of regular tiling. Moreover, the cut & project does not seem to manage, or at least poorly, singular tiling. As the multi-grid method has a much shorter calculation time, close to that of the substitution method, the cut & project method is only interesting for obtaining tiling which cannot be achieved using the multi-grid method.

The multi-grid method, therefore, seems to be a good compromise in many cases. The only precaution to be taken with it is to remove the borders of the generated tiling (see Figure 2.16).

The Table 2 

Conclusion

In this chapter, a speciĄc presentation of quasi-periodic structures was done. In particular, it was presented how the concept of quasi-periodicity functions and tilings were introduced and how the discovery of quasi-crystals renewed interest in such structures. Then, a speciĄc presentation of the extent of research on their mechanical behaviour has been made. It was shown that little research focused so far on the mechanical behaviour of quasi-periodic lattices. Moreover, they usually do not consider the inĆuence of the pattern type: only one pattern is studied and chosen more or less arbitrarily. Finally, as we desire to study this inĆuence in this work, a description of the different methods available to generate different patterns was done. Now that the particularities of quasi-periodic lattices are better known, it is possible to think of a relevant strategy to study this effective behaviour, particularly determine an adapted test. 

Introduction

With the knowledge of the particularities of quasi-periodic lattices, one can think of a relevant strategy to study their effective behaviour. One question is: what could be an adapted mechanical test? The following question is how to simulate this test on the lattices correctly. In fact, as testing is expensive and time-consuming, it is essential to know what one wants to observe and choose the most relevant specimens before doing the experiments. Therefore, a representative numerical twin is needed.

The Ąrst section of this chapter aims to choose a suitable and relevant test to characterise the elastic mechanical behaviour of quasi-periodic lattices numerically and experimentally. Then, the second section presents how to set up a numerical model of the testing device to simulate such a test on these unusual materials.

Choice of an adapted characterisation test

This PhD aims to study and characterise the elastic mechanical behaviour of quasiperiodic lattices numerically and experimentally. The choice of a suitable and relevant test is thus essential. Mechanical testing is a process used to determine the mechanical properties of a material. The test is deĄned by the specimen geometry used and the loading applied. It should be adapted to the behaviour wanted to be identiĄed, the type of material and the identiĄcation approach.

SpeciĄcation of requirements

The Ąrst step in designing a mechanical test is to establish a speciĄcation to ensure that:

1. The test is adapted to the material considered;

2. The test is adapted to the constitutive model to be identiĄed, which requires a proper choice of boundary conditions;

3. The data needed for post-processing is measurable;

4. The setup is realistic.

This PhD focuses on the behaviour of quasi-periodic beam lattices supposed to exhibit an isotropic 1 overall behaviour. The sample size should not exceed 250x250x10mm, which is achievable by many manufacturing methods 2 . The choice of a manufacturing process is thus not restricted. Then, as only 2D patterns will be studied, it is possible to consider only in-plane loadings and measurements. Next, even if the effective behaviour should be isotropic, the internal architecture of these materials leads to local Ćuctuation of the Ąelds, and these variations can disturb the identiĄcation. Hence, the test should be performed for different relative positions between the loading device and the sample, more precisely the pattern orientation. The purpose is to combine these different conĄgurations to extract an average response and then to used it to identify the parameter values. As the Ąnal aim is to identify these parameters experimentally, ideally, a unique sample should be used to obtain the different conĄgurations to prevent the occurrence of some biases. In fact, two different specimens do not necessarily have the same defect types and distributions, which can lead to different effective behaviours. So, reorientating the sample between two tests or during the test should be possible.

Note:

This loading with a possible rotation of the main stress frame can also be interesting if wanted to study anisotropic or non-linear behaviours such as buckling.

Then, it is desired to deal with A.MŠs effective quasi-static elastic behaviour. Nevertheless, it has been shown that classical Cauchy-type law can be insufficient to describe the macroscopic behaviour of this kind of structure, and sometimes generalised continuum theories should be privileged [START_REF] Boutin | Experimental evidence of the high-gradient behaviour of Ąber reinforced materials[END_REF], Poncelet et al., 2018, Durand et al., 2022, dellŠIsola et al., 2016]. So, the test should have a loading leading to large areas of stress gradients to ensure it activates kinematics linked to generalised continuum behaviours. This characteristic can also allow identifying all the constitutive parameters with only one test, but then a full-Ąeld measurement method is required. To have a large diversity of stress Ąeld types, keeping some zones of non-zero homogeneous stresses is also desired. It might ensure to be sensitive to a large variety of phenomena, even those solely associated with homogeneous stress Ąelds. It can help to decouple the observed behaviours and so help the identiĄcation.

Finally, it is desired to realise an experimental identiĄcation. So, a realistic experimental setup is sought. It means that the test should be set up in a realistic way, with the minimum number of person needed to prepare and perform it3 and it should be reproducible. Then the data should be measurable, including the applied forces. Finally, multiple disassemblies and reassemblies of the sample should be avoided as much as possible to prevent the occurrence of some biases. The test requirements are summarised in Table 3.1.

Test preselection

As stress gradients are desired, all classical tests leading to homogeneous Ąelds such as tension, compression and shear test are excluded. Bi-tension or bi-compression tests could be considered. However, the cross-shape of the specimen implies using several samples to

Sample size

In -96, 1996] test several pattern orientations with respect to the loading. Moreover, the question of how to grab a lattice structure with grips must be raised.

The Brazilian test seems to be a good candidate, or at least a basis, for the test. It consists of compressing a cylinder-shaped sample between two planes (see Figure 3.1). The contact points induce stress gradients, and the round shape of the sample is compatible with an easy reorientation of the sample.

However, when looking in more details, this test cannot be selected as it is. In fact, stress gradients are concentrated on the boundaries and, more particularly, just under the contact points (see Figure 3.2). Actually, this test imposes a quasi-homogeneous tensile stress Ąeld over 80% of the height of the disc in the central zone [START_REF] Boresi | Elasticity in engineering mechanics[END_REF]. It induces a very low stress in most of the specimen, which is not what is sought as we do not simply want to know the tensile strength (see Figure 3.3). Even though some areas of homogeneous stresses are looked for, a large majority of gradient zones are wanted. Moreover, measuring Ąelds in the boundaries can sometimes be trickier. Finally, only two contact points can raise the question of the stability of the sample during its rolling.

A solution to extend the areas of stress gradient is to perform the test on a ring instead of a disc (see Figure 3.4 and [START_REF] Kourkoulis | Stresses and displacements in a circular ring under parabolic diametral compression[END_REF]).An additional contact point is added to ensure the stability of the sample during the rolling. It also put the centre of rotation in the middle of the sample. In addition, it increases the areas of the stress gradients. The preselected test is given in Figure 3.5. It is a three-point rolling wheel test. A ring is compressed between three contact points, and the sample pattern orientation can be changed easily. The geometric parameters associated with this test are the angle between the two lower contact points and the center of the specimen β and the ratio ρ = R int R exi between the internal and external radii, R int and R ext , of the ring specimen. When testing a heterogeneous material, another parameter is the specimen orientation ∆α.

Establishment of a design criterion for the geometric parameters of the test

Now that the test type has been chosen, it remains to choose the values of the geometric parameters, in particular the angle between the two lower contact points β and the ratio between the inner and outer radii of the sample ρ.

As using a ring-shaped sample and three contact points enlarged the stress gradient areas, it was decided to base the selection of the geometric parameters on the presence and quality of the "homogeneous" zones, i.e. areas where the stress tensor does not vary. To do so, Ąnite element simulations4 were performed for ρ values ranging from 0.05 to 0.2, and values of β varying from 20 • to 120 • . R max was chosen equal to 100 mm and the specimen thickness to 10 mm. An example of mesh5 is given in Figure 3.6 as well as the nodes used for applying the boundary conditions. The red nodes are associated with the upper contact point. A uniform compressive load is applied, and its resultant equals 1 N. The blue nodes are associated with the two lower contact points, and they are clamped. Since the forces and displacements are in the plane and the specimenŠs thickness is thin, plane stresses were assumed. The simulations were performed on materials supposed homogeneous elastic isotropic and for two different values of the PoissonŠs ratio ν: 0.3 and 0.996 .

A homemade design criterion was established to determine the "quality" of non-zero homogeneous stress zones. Let A be a Ąeld of interest for which one wishes to know the uniformity in a zone Ω i . Let M n be the mesh nodes belonging to Ω i , n ∈ ¶1, N ♢. Let A n be the A ĄeldŠs value at the point M n . Optimising the homogeneity of the A Ąeld in a zone Ω i while ensuring that it is non-zero goes by minimising the following criterion:

C A (Ω i ) = SD A (Ω i ) A(Ω i ) (3.1) with: Ů A(Ω i ): the mean value of A in Ω i A(Ω i ) = 1 N N n=1 A n (3.2) Ů SD A (Ω i ): the standard deviation of A in Ω i SD A (Ω i ) = 1 N N n A n=1 -A(Ω i ) 2 (3.3)
The more homogeneous is A, the lower is its standard deviation SD A (Ω i ) in Ω i , and so the lower is C A (Ω i ). However, if A is null and very small, then its mean value decreases and C A (Ω i ) increases. So the lower C A (Ω i ), the better. The Ąrst question is on which Ąeld A to consider for the criterion. It was decided to use the stress invariants I 1 and I 2 to get rid of the orientation of the stress Ąeld:

I 1 = tr( σ) = σ 11 + σ 22 = σ I + σ II (3.4) I 2 = det( σ) = σ 11 • σ 22 -σ 2 12 = σ I σ II (3.5)
σ I and σ II being the principle stresses.

C I 1 (Ω i ) and C I 2 (Ω i ) are computed and the selected criterion to be minimised C(Ω i ) corresponds to the average value of C I 1 (Ω i ) and C I 2 (Ω i ).

The next question is the size of the zones Ω i . It was decided to use zones with a diameter equal to 15% of the sample outer radius (see Figure 3.6):

C(Ω i ) = 1 2 [C I 1 (Ω i ) + C I 2 (Ω i )] (3.6)
The entire specimen is scanned, and the area where the criterion is minimum is found (see Figure 3.7). The minimum value found corresponds to the "homogeneity" quality of the considered conĄguration, and the spatial distribution of the criterion is used to ensure that the homogeneous zones remain sufficiently small. Figure 3.7 Ű Scanning the specimen to calculate the criterion Note: The simulations were performed considering a homogeneous elastic isotropic material. Regardless the selection criterion chosen, it will thus not be perfectly representative of a lattice behaviour. However, as we desire a test adapted to different patterns, optimising it for a precise structure is irrelevant. Nevertheless, using an isotropic homogeneous material and considering several PoissonŠs ratios can give trends. Thus, the idea is to Ąnd a conĄguration where the design criterion is minimal, stable with the constitutive parameters and insensitive to slight variations of β and ρ to be less sensitive to geometric imperfections.

Results

One can see in Figure 3.8 that the minimum value of the criterion tends to decrease when increasing β and decreasing ρ. However, one sees in Table 3.2 and Table 3.3 that the homogeneous areas associated with small centre holes are extensive. It should be avoided, so these conĄgurations are to be discarded. Increasing the hole size isolates the homogeneous zones, but increasing it too much makes them disappear. Then, extreme values of β tend to regroup the homogeneous zones. In addition to isolating the homogeneous areas, it is worth noting that intermediate values of β can increase the homogeneity of some zones.

The conĄguration with ρ = 0.1 and β = 50 • (see Figure 3.9) seemed to be a good compromised and was thus chosen. In fact, it corresponds approximately to the centre of the "Ćat zone" in Figure 3.8, so the criterion is insensitive to small variations of conĄgurations Ű because of the cellular structure, the apparent ρ can be bigger for example. Then, the homogeneous areas remain small and present for the two PoissonŠs ratios considered.

Note: Even with a Ąxed spacing of the lower contact points, it is easy to change the value of β by adjusting the sample diameter. Thus, if another set of parameters is needed to have another stress state better adapted to another material, the set-up is always suit- able. If the spacing can be changed, the test bench can be even more versatile.

β = 20 • β = 70 • β = 120 • ρ = 0.05 ρ = 0.125 ρ = 0.2 Table 3.2 Ű
With the mechanical test being selected, we want to develop a numerical twin of the tested lattices.

Simulation of the test

Implementing a digital twin of this test is essential for several reasons. First, it enables to select relevant patterns among the many available and to determine the last geometric parameters such as the pattern density and the slenderness of its constitutive beams. Then it can be used to estimate the behaviour of many different samples when experiments can be limited by the manufacturing process, the amount of material or time available. The different assumptions and choices made to develop this numerical twin are the following.

Model choice:

As mentioned in the subsection 1.2.1, two types of models can be used to describe the local and global behaviour of architectured materials. One can use a classical Ąne surface meshing or a mesoscopic (or structural) model where the mesh is constructed by associating a beam element with each actual bar composing the structure. The Ąrst approach would yield the full stress and displacement Ąelds, while the second would only provide them at the beam nodes. As this work considers the behaviour of A.M. at the scale of the sample and the scale of their structural elements, but not at the one of the constitutive material, using a mesoscopic model is sufficient. Incidentally, it leads to a short computation time. Finally, it gives direct access to the rotation Ąeld at the nodes which does not need to be reconstructed using the displacement Ąeld. It can be helpful when dealing with constitutive laws that need this extra degree of freedom, like the Cosserat model for instance.

Kinematic assumptions: An Euler-Bernoulli kinematic is associated with the elementary beam model (see Figure 3.10). Let L be the length of the lattice beams and e their in-plane thickness. The slenderness of these beams is deĄned as the ratio L/e. The minimum average slenderness studied was chosen equal to 10 to ensure the representativeness of the model. The kinematic relations are the following:

         ¶u♢ =   u(x)-yϕ(x) v(x)   ϕ = dv dx (3.7)
Figure 3.10 Ű Kinematics of the Euler-Bernoulli beam theory

Constitutive assumptions:

The behaviour is supposed to be linear elastic. As the actual samples are supposed to be made of PMMA, YoungŠs modulus of the material is chosen equal to 3.3 GPa 7 .

Geometry assumptions:

The sample radius is chosen equal to 100 mm. PMMA sheet thickness is equal to 10 mm, so beam out-of-plane thickness is chosen equal to 10 mm.

The PoissonŠs ratio does not intervene in this model

Simulation method A Ąnite element method is used to simulate the complete behaviour of the structure. Each bar of the lattice is modelled by one beam element using the Euler-Bernoulli kinematic with a discretization based on shape functions 8 . Let use consider the beam degrees of freedom in Figure 3.11. The components of the displacement u and v in the beam can be written:

u(x) = [N 1 N 2 ]    u 1 u 2    , v(x) = [N 3 N 4 N 5 N 6 ]                v 1 v 2 ϕ 1 ϕ 2                (3.8)
with:

                                 N 1 = 1 -a N 2 = a N 3 = 1 -3a 2 + 2a 3 N 4 = 3a 2 -2a 3 N 5 = L(a -2a 2 + a 3 ) N 6 = L(-a 2 + a 3 ) (3.9)
the shape functions and a = x L .

8. Linear shape functions are used for the axial displacement. Cubic ones are used for the transverse displacement and the rotations, also called Hermitian shape functions Figure 3.12 Ű Simulation of a cantilever beam deĆection depending on the number of elements used for its discretisation.

So, the displacement Ąeld u can then be expressed as:

u(x) = [N(x)] ¶U ♢ (3.10) with: Ů ¶U ♢ = [u 1 u 2 v 1 v 2 ϕ 1 ϕ 2 ]
T : the vector containing the beam DOF; Ů [N(x)]: the shape function matrix, its form being:

[N(x)] =   N 1 N 2 -y ∂N 3 ∂x -y ∂N 4 ∂x -y ∂N 5 ∂x -y ∂N 6 ∂x 0 0 N 3 N 4 N 5 N 6   (3.11)
As only the Ąelds at the nodes are considered, there is no need to use more than one element per bar since the considered elements are chosen so that they follow the beam kinematics themselves. The displacements at the nodes are thus exact no matter the number of elements (see Figure 3.12). Figure 3.13 gives the result of a simulation carried out on a triangular lattice whose behaviour is supposed to be the same as a homogeneous beam. It can be seen that the These results conĄrm that the mesoscopic model is efficient in representing the behaviour of lattices.

Boundary conditions assumptions: Boundary conditions are applied to the nodes in a zone of radius 10 mm 9 at the contact points to limit the stress concentrations (see Figure 3.14). Moreover, it ensures similar displacement Ąelds no matter the angular position of the sample. The boundary conditions imposed are as follows:

Ů The horizontal displacement U x of the nodes associated with the upper contact point, i.e. where the force is applied, is imposed zero; Ů The displacements associated with the lower contact points are clamped. These conditions are not perfectly representative of the ones in the actual experiment as there is a rolling contact 10 . However, they are easier to apply and ensure equivalent displacement Ąelds no matter the angular position of the sample. Moreover, 9. The radius of this zone should be adapted to the size of the elementary patterns. It was chosen here so that at least two consecutive beams can be included in the zone.

10. One may nonetheless wonder if rolling will be possible if contact points are slightly sunk. knowing that a FEMU procedure will be used for the identiĄcation of constitutive parameters in chapter 5, it will not affect the conclusions of this numerical study, as the one of the key points of a successful FEMU is to have the same boundary conditions between the reference and the simulations. For the experiment, the boundary conditions may be recovered directly from the observed Ąelds; Ů The sum of the vertical forces applied on the top contact point nodes F y is imposed.

The value applied at each node varies linearly depending on their distance to the contact point. The value is zero if this distance is superior to or equal to 10 mm.

Thus the parameters of the test are the applied force F y and the angular position of the specimen ∆α (see Figure 3.15).

Conclusion

This chapter aimed to choose a relevant test to study the overall mechanical behaviour of quasi-periodic lattices. A three-point rolling wheel test was chosen as its rich stress Ąeld can potentially allow to identify the constitutive parameters of generalised continua and to keep Ćexibility in terms of material considered and behaviour studied. The geometric parameters selected are summed-up in Figure 3.15. The variable parameters associated with this test are the applied compression force F y and the sample orientation ∆α.

The second goal of this chapter was to deĄne a relevant numerical twin allowing us to perform preliminary studies and select relevant patterns for the experimental cam-Figure 3.15 Ű Chosen mechanical test paign. Given the observation scale, a mesoscopic model was privileged for the subsequent studies: the lattice behaviour is simulated using a Ąnite element method in which an Euler-Bernoulli beam element is associated with each actual bar composing the structure.

The elements presented in this chapter will be used in all the later chapters. The next and Ąrst focused on the deformation mechanisms of quasi-periodic lattices depending on the pattern considered. 

Introduction

As explained in the Ąrst chapter, subsection 1.2.2, random and periodic lattices can be classiĄed into two categories depending on their intrinsic deformation mechanisms: the stretching-dominated structures and the bending-dominated ones. The belonging to one or another category is mainly determined by the internal architecture of the material, the unit-cell shape in the case of a periodic lattice.

To the best of our knowledge, the dominance type of quasi-periodic structures has not yet been investigated. Very few studies have been dedicated to their mechanical properties, and the role of the elementary pattern is usually not analyzed, favouring the study of the inĆuence of the symmetry class [Badiche et al., 2000, Wang andSigmund, 2020].

In fact, the shape of the elementary patterns is most of the time selected arbitrarily.

Thus, this chapter investigates the inĆuence of the pattern of quasi-periodic lattices on the energy dominance type of the obtained structure. In this chapter, but more generally in this thesis, the patterns have been chosen to produce isotropic effective elastic behaviour. What differs between them are the local deformation mechanisms, the nature of which is decisive for the non-linear behaviour or more generally their preferential deformation mechanisms. The objective of this chapter is not to identify homogenised elastic parameters but rather to go beyond homogenisation and study the local response of the mesostructure. The impact of its symmetry class is also considered.

First, the patterns considered for this study will be given, and then the method used to determine their energy dominance type will then be described. Finally, the associated results will be presented and analysed.

Framework

This section aims to present the patterns that have been selected for this study and why. The Maxwell criterion of these patterns is then estimated to have a basis for comparison.

Patterns considered

This study focuses on 2D patterns, and the symmetry classes are chosen to obtain, at least, a transverse isotropic Ąrst-order linear elastic behaviours by homogenisation [Christensen, 1987]. In fact, it is one of the most sought properties when dealing with quasi-periodic structures. Moreover, it allows to simpliĄed the analysis of the results in the Ąrst instance.

Quasi-periodic lattices with various geometries of elementary patterns and belonging to diverse symmetry classes are considered. Some periodic patterns are also included for comparison purposes. The different patterns and the nomenclature used in this chapter are given in Figure 4.1. One can note that all the patterns belong to a [D k ] type symmetry class. For periodic lattices it means that the unit cell pattern is invariant by rotation of 2π k and possesses k mirror lines [START_REF] Auffray | A complete description of bi-dimensional anisotropic strain-gradient elasticity[END_REF]. For quasi-periodic ones, it means that the Fourier transform of the lattice has these types of symmetry [Janssen, 1988, Janssen andJanner, 2014] (see subsection 1.1.3).

To study the inĆuence of the elementary pattern geometry and the symmetry class independently, the lattices have been grouped into the following categories: Ů patterns belonging to the same symmetry class but having different geometries of elementary patterns:

• ) using the classical cut of kite and dart and rhombus patterns by triangles [START_REF] Grünbaum | Tilings and Patterns[END_REF]. Q D8 r,t is generated with an equivalent arbitrary cutting of the elementary patterns.

Let us call L the length of the latticesŠ constitutive beams and e their in-plane thickness. In addition to the pattern, the beam slenderness, deĄned as the ratio L/e, is a priori one of the parameters that will control the lattice behaviour. It was thus decided to carry out the study for slendernesses from 10 to 500. 500 can be considered a limit case as it is difficult to manufacture.

Q D 10 kd , Q D 10 kd,t , Q D 8 r,t , Q D 10
r,t and Q D 14 r,t patterns being constitute of beams having two slightly different lengths, the average beam length L is used to compute an average slenderness which is taken as reference.

Estimation of the Maxwell criterion

As mentioned earlier, MaxwellŠs criterion M c is usually used to classify periodic lattice structures.

If M c is greater than or equal to 0, the pattern is said to be stretching-dominated. Otherwise, it is bending-dominated. The study of the average connectivity Z of a large pinjointed framework helps to estimate M c easily: Z = 4 implies M c = 0 in 2D [Deshpande et al., 2001a]. Even if designed for articulated structures, the criterion can be applied for slender clamped beams. For periodic lattices, the criterion is commonly computed on the unit cell.

The Maxwell criterion of the considered lattices was estimated using their mean connectivity number to have a Ąrst guess of their dominance type. The results are presented in Table 4.1 and Table 4.2. For quasi-periodic patterns, Z corresponds to the limit value when increasing the framework size, thus making the inĆuence of the boundary conditions negligible. It can be noticed that all the classical quasi-periodic lattices are considered stretching-dominated by the Maxwell criterion.

Type

Group P P 

Pattern P D 6 h P D 6 k P D 6 t Q D 10 r Q D 10 kd Q D 10 r,t Q D 10 kd,t Estimation Z 3 4 6 4 4 6 6 M c < 0 0 > 0 0 0 > 0 > 0 Dominance Bend Stretch Stretch Stretch Stretch Stretch Stretch
Q D 8 r,t Q D 10 r,t Q D 14 r,t Q D 8 r Q D 10 r Q D 12 r Q D 14 r Estimation Z 6 6 6 4 4 4 4 M c > 0 > 0 > 0 0 0 0 0 Dominance Stretch Stretch Stretch Stretch Stretch Stretch Stretch Table 4
.2 Ű Average connectivity, Maxwell criterion and dominances estimated for the patterns of groups T and T .

However, this criterion is not a sufficient condition to determine whether a structure is stiff, even for periodic ones. In fact, it can take into account struts that do not contribute to global rigidity. Furthermore, it does not consider a potential dependence of the stiffness on the loading direction. Actually, some periodic structures exhibit a stretching-dominated behaviour while their criterion indicates a bending-dominated one [START_REF] Mazur | Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM)[END_REF]. The relevance of the criterion for quasi-periodic structures can therefore be questioned. Another method was consequently favoured to establish the dominance type.

Method

This section aims to present the method used to determine in a more reliable way the energy dominance type of the patterns.

Evaluation of the dominance type

A 2D mesoscopic model is employed to represent the behaviour of lattices, using a linear elastic Euler-Bernoulli constitutive law for each latticeŠs beam. The type of dominance of a pattern being linked to its deformation mechanisms, the predominant deformation in a beam can be determined from the analysis of its corresponding strain energy. Let consider the beam loading in Figure 4.2.

Figure 4.2 Ű Beam loading considered

Let N , V and M z be respectively the normal force, shear force and bending moment about the z-axis in the beam. The total elastic strain energy of the beam, whether one considers Euler-Bernoulli or Timoshenko kinematics, is:

w e = 1 2 L 0 N 2 EA + M 2 z EI + T 2 y GA dx (4.1) = 1 2 L 0 F 2 x EA + (F y (L -x) + M ) 2 EI + F 2 y GA dx (4.2)
with:

Ů E: the YoungŠs modulus of the beam; Ů G: its shear modulus; Ů A = et: the section of the beam, with e and t respectively the in-plane and out-ofplane thicknesses; Ů I = te3 12 : the quadratic moment of the beam.

The strain energy can thus be divided into three parts: One assumption of the Euler-Bernoulli kinematics is that the plane sections normal to the beam axis remain plane and normal to the axis after deformation. It means that the shear strain energy w e shear is negligible compared to the other contributions, in particular w e s 3 . The beam strain energy thus becomes:

w e =
w e = w e s + w e b (4.4)
The same splitting is possible when considering a Ąnite element formulation. The expression of w e of a beam element is:

w e = 1 2 ¶u b ♢ T k b ¶u b ♢, (4.5) 
with:

Ů ¶u b ♢ = ¶u b 1 v b 1 ϕ b 1 u b 2 v b 2 ϕ b 2 ♢ T :
the degrees of freedom of the beam; Ů k b : the elementary stiffness matrix of the beam element:

k b =               AE L 0 0 -AE L 0 0 0 12EI L 3 6EI L 2 0 -12EI L 3 6EI L 2 0 6EI L 2 4EI L 0 -6EI L 2 2EI L -AE L 0 0 AE L 0 0 0 -12EI L 3 -6EI L 2 0 12EI L 3 -6EI L 2 0 6EI L 2 2EI L 0 -6EI L 2 4EI L               (4.6)
By computing k b with I = 0 and A = 04 , one can retrieve respectively w e s and w e b :

w e s = 1 2 ¶u b ♢ T k b (I=0) ¶u b ♢ (4.7
)

w e b = 1 2 ¶u b ♢ T k b (A=0) ¶u b ♢ (4.8)
This operation can be transposed for a beam mesh representing a lattice. Let W e be the total strain energy of the sample:

W e = 1 2 ¶u♢ T • [K] • ¶u♢ = N i=1
w e i (4.9)

with ¶u♢ the vector containing the degrees of freedom (DOF), and [K] the global stiffness matrix of the sample, built by assembling the elementary stiffness matrices k b . As previously, this energy can be divided into two parts: the tension-compression and bending contributions, called respectively W e s and W e b :

W e = W e s + W e b , (4.10)

with:

W e s = 1 2 ¶u♢ T • [K (I=0) ] • ¶u♢ (4.11) W e b = 1 2 ¶u♢ T • [K (A=0) ] • ¶u♢ (4.12)
Thus, by normalising W e s and W e b by the total strain energy W e , one can easily determine which contribution prevails.

Test considered

Tensile test simulations are performed on 300×50 mm rectangular specimens, of which the average beam length for each pattern is equal to 3.5 mm (see appendix section B.1). The boundary conditions are given in Figure 4.3. A unitary load is distributed on the nodes belonging to the upper boundary. The lower boundary has been chosen to correspond to a symmetry plane of the pattern, and boundary conditions corresponding to this symmetry condition are applied, i.e. only a horizontal sliding is authorised for the lower boundary. This way, only a 150×50 mm is computed and the calculation is speed up. The geometry parameters of the specimens have been chosen so that they can possibly be manufactured, at least for small slenderness.

The ring test simulations presented in section 3.3 are also performed in order to study the inĆuence of a complex loading and the pattern orientation on the results. The associated specimens are given in appendix section B.2.

The global stretching energy ratio W e s /W e stored in the whole specimen and the local ones in each constitutive beam w e s /w e are evaluated for each simulation. Beams close to the boundaries where the loadings are imposed are not considered for the energy calculation to avoid localisation and numerical singularities effects (see Figure 4.3 and Figure 4.4).

Results

Tensile test case

In Figure 4.5 is given the evolution of the global stretching energy ratio stored in the samples with respect to the slenderness for the T and T groups. One can see that when keeping the same elementary pattern shapes, the symmetry class of the pattern does not inĆuence the results. The lattices with triangle-shaped elementary patterns, so the T group, are stretching-dominated. Those with rhombus-shaped elementary patterns are bending-dominated.

The same conclusion can be made when looking at the local distributions and ratios of energy. The Figure 4.6 displays the local distribution of energy for slenderness equal to 10 and 500. The colour of the beams is linked to the type of energy stored: the red beams store mainly stretching-type of strain energy, the blue ones mainly bending-type, and the green ones store a mix of the two types. The transparency of the beams is linked to the quantity of total strain energy stored in them. The quantity of energy stored in the opaque beams is at least equal to 25 % of the one in the beam that stores the most strain energy. Then the less the beams store energy, the more transparent they are (see Figure 4.7). One can see that the energy is globally distributed similarly within the T and T groups.

In Figure 4.8 is given the evolution of the global stretching energy ratio stored in the samples with respect to the slenderness for the P and P groups. Three kinds of behaviour are observed: two unchanging dominance and one varying dominance with slenderness. The P D 6 h are always bending-dominated. Figure 4.6 shows that the spatial energy distribution seems independent of the slenderness for those two cases. Moreover, almost all the beams store the same kind of energy, tensile or bending one following the global energy. Finally, the strain energy appears to be almost uniformly distributed throughout the specimen.

On the contrary, Q D 10 kd and P D 6 k patterns exhibit a dominance behaviour that depends on the slenderness. The samples are stretching-dominated for small slenderness, and for higher values, they are bending dominated. Then, there is a signiĄcant change in the spatial distribution and type of energy stored. Contrary to the patterns with an unchanging dominance type, for the high slenderness of the beams, one observes that the strain energy distribution is now highly heterogeneous and that almost all the beams deform in bending. Then, for low slenderness, even if the samples are globally stretching-dominated, the spatial distribution is partitioned with beams storing all kinds of energies: tensile, bending or a mix of both.

It is worth noting that consistently stretching-dominated lattices always have an estimated Maxwell criterion higher than zero, see Table 4.3. For periodic patterns, a trend seems to be emerging as P D 6 k has a Maxwell criterion equal to zero and a varying dominance, and P D 6 h is bending dominated with M c lower than zero. However, Q D 10 kd and Q D 10 r have both a zero Maxwell criterion but exhibit different behaviours, respectively, a varying dominance and a bending one. Thus, the idea that MaxwellŠs criterion is a necessary but insufficient condition is conĄrmed for quasi-periodic patterns.

Type Group P P 

Pattern P D 6 h P D 6 k P D 6 t Q D 10 r Q D 10 kd Q D 10 r,t Q D 10 kd,t Estimation Z 3 4 6 4 4 6 6 M c < 0 0 > 0 0 0 > 0 > 0 Dominance Bend

Ring test case

Figure 4.9 gives the evolution of the global stretching energy ratio stored in Q D 10 r,t , P D 6 t , Q D 10 r , P D 6 h , Q D 10 kd and P D 6 k samples with the average slenderness and the pattern orientation ∆α. These samples are representative of the results of their identiĄed dominance categories. The results for the other patterns are given in section C.1.

Table 4.4, Table 4.5 and section C.2 give the spatial distribution of stretching energy ratio for slenderness equal to 10 and 500 and different orientations of the patterns.

Most of the conclusions that have been made for the tensile test can be made again. In fact, the symmetry class still does not inĆuence the results, and when looking at the impact of the elementary pattern shape, three types of behaviour can be observed: Ů Always stretching 5 or bending dominated patterns 6 where the type of energy stored is independent of the slenderness, and all the beams store the same kind of energy; Ů The pattern with a varying dominance 7 , where the global stretching energy ratio changes with the slenderness and their constitutive beams can store different kinds of strain energy.

One can see that for always stretching or bending dominated patterns, the global energy ratio is independent of the slenderness and pattern orientation (see When looking at the spatial distribution of energy, it also remains independent regardless of the slenderness for the always stretching-dominated structures (see, for example,

Q D 10
r,t and P D 6 t patterns in Table 4.4). However, for the always bending-dominated ones, contrary to the tensile test case, two behaviours are observed:

Ů The energy distribution in the periodic pattern P D 6 h is independent of the slenderness; Ů For the quasi-periodic ones, even if the type of energy stored in the beams remains bending dominated, the energy distribution varies with the slenderness (see, for example, Q D 10 r pattern in Table 4.4). One can thus deduce that some deformation mechanisms are only activated with a rich loading for the bending-dominated quasi-periodic structures. So, it shows that homogeneous tests can be insufficient to characterise them completely.

Stretching-dominated patterns

: Q D10 kd,t , Q D8 r,t , Q D10 r,t , Q D14 r,
The particularity of bending-dominated quasi-periodic patterns to change their energy distribution with the slenderness can be interesting if one wants to localise or not the strain energy. In fact, when increasing the slenderness, these patterns distribute better the energy, potentially increasing their energy absorption properties.

Concerning varying dominance patterns Q D 10 kd and P D 6 k , the global energy ratio is independent of the orientation only for small slenderness where they tend to be stretchingdominated (see Figure 4.9e and Figure 4.9f). When increasing it, it is possible to Ąnd some orientation where a privileged path for stretching energy can be found (see Table 4.5). Most of the beams remain bending-dominated. However, a set of beam is sufficiently well oriented along the load Ćow path to withstand the majority of the force by deforming in tension and compression. Thus, one can suppose that the specimen is stiffer for these orientations 8 . The slenderness of the beams is so high that their bending stiffness is very small. So the slightest transverse load will cause the beams to bend, the connectivity number being too small for this slenderness range to prevent it. So, when changing the sample orientation, transverse loads appear, making the beams bend. Therefore, patterns with varying dominance are no longer isotropic for large slenderness.

Note:

The lack of symmetry in the energy repartition of the P D 6 k pattern for ∆α = 135 • can be explained by the fact that, in this conĄguration, the pattern is no longer symmetric with respect to the boundary conditions. So the beams are well oriented only in one of the two load paths.

One can note that the presence of a stretching energy path is more pronounced with the periodic pattern P D 6 k than with the quasi-periodic one Q D 10 kd . In fact, the perfect alignment of the beams helps the transmission of energy in privileged paths when the local disorder associated with quasi-periodicity allows a slight distribution of the energy even if a favoured path can still be found. More generally, for high slendernesses, the periodic pattern P D 6 k tends to localise the strain energy in bands for high slenderness when the quasi-periodic one Q D 10 kd distributes it all over the sample. It might suggest a

8. Look at the load-displacement curve might be a way to verify it.

potential for greater energy absorption. In fact, these observations are reminiscent of those of [START_REF] Glacet | On the failure resistance of quasi-periodic lattices[END_REF], which led to the conclusion that quasi-periodic lattices had better toughness than periodic ones.

Note: For high slenderness the Q D 10 kd is bending dominated, and except for the stretching energy path phenomenon, it distribute energy in the whole sample as it is observed for always bending-dominated quasi-periodic lattices such as Q D 10 r , but with less pronounced localisation bands.

Conclusion

The energetic dominance type of quasi-periodic lattices was investigated using a numerical method. Tensile and ring test simulations were performed on 2D mesoscopic models, and the proportions of the strain energy stored by stretching and bending modes were computed globally and locally. It is subsequently possible to classify quasi-periodic architectured materials into three categories: Ů Completely stretching-dominated: the material is stretching-dominated no matter the slenderness of its beams, and almost all of them deform in stretching; Ů Completely bending-dominated: the material is bending-dominated no matter the slenderness of its beams, and almost all of them deform in bending; Ů Varying dominance: the type of dominance varies with the slenderness, and there may not be a common type of deformation of their beams.

This categorisation is also relevant for periodic structures. However, some variations in the energy distribution can be observed between the periodic and quasi-periodic patterns in the case of always bending-dominated and varying dominance behaviours for high slenderness. Quasi-periodic lattices tend to better distribute the strain energy, making potentially them better strain absorbers and having a better tenacity.

As for periodic lattices, the Maxwell criterion is a necessary but not sufficient condition to obtain stretching-dominated quasi-periodic lattices. In the present study, the cases were selected to exhibit a transverse isotropic Cauchy elasticity to have comparable behaviours. Within this investigation Ąeld, belonging to one or the other category of dominance seems to be independent of the symmetry class of the lattice and depends only on the shape of the elementary patterns considered. Thus, the elementary pattern shape must be taken into account when studying the mechanical behaviour of quasi-periodic lattices. It is even more critical when dealing with macroscopic non-linear lattice properties, such as plasticity, damage, or failure modes since a bending or stretching energy will drastically change the elastic behaviour type. In particular, one can note the vast majority of strain states that can be obtained with varying dominance patterns. In conclusion, a simple formula like MaxwellŠs cannot be obtained for quasi-periodic lattices. In the case of periodic lattices, it is indeed well known that such a formula only gives an idea of the dominance type of the lattice. As we show here, the structural analysis procedure is necessary for periodic lattices and even more so for quasi-periodic structures of any type to evaluate their dominance. For quasi-periodic lattices, a Ąrst idea of the dominance type is obtained by calculating the average connectivity of the elementary patterns. However, this result must be conĄrmed using structural analyses, as detailed here.

Introduction

As mentioned before, generalising the use of lattices in the industry needs the possibility of running fast numerical simulations. However, describing all the internal architecture generally goes against that. The standard solution consists in using instead a Ąctitious homogeneous equivalent medium that will have the same macroscopic behaviour as the actual structure. It is achieved by choosing a suitable homogenised model and identifying the values of its constitutive parameters upstream. This chapter aims to choose and to implement an identiĄcation procedure adapted to quasi-periodic lattices. It should be suitable for experimental data. However, in this chapter, as a Ąrst step, the Ąelds used for the identiĄcation will be obtained using numerical twins. The point is to validate a priori the procedure and to select appropriate patterns and geometric parameters for the experimental validation. Finally, a good numerical twin enables testing of more conĄgurations than possible with experiments, which are limited due to cost and time reasons. It also allows predicting the behaviour of samples, currently difficult to manufacture.

As shown in chapter 4, the pattern type inĆuences the local deformation mechanisms. It is also known that these local mechanisms inĆuence the global behaviour of the structure. The other goal of this chapter is thus to study the inĆuence of the pattern and, more precisely, of the energy dominance class on the overall behaviour of quasi-periodic lattices. This chapter is organised as follows. First, the framework of this study is given, i.e. the patterns and constitutive models considered. Then, the method used to identify the effective elastic parameters is presented. Finally, the associated results are given and analysed.

Framework

Before selecting a method, it is essential to determine:

1. the type of material to be tested, lattices in our case.

2. the nature of the overall continuum model, as it conditions the identiĄcation procedure to be privileged.

Patterns considered

Following the conclusions of the precedent chapter, ten patterns have been selected for the present study. Among quasi-periodic lattices have been chosen:

Ů three bending dominated patterns:

Q D 8 r , Q D 10 r
and Q D 14 r ; Ů the triangulated versions of the previous patterns, which are stretching dominated:

Q D 8
r,t , Q D 10 r,t and Q D 14 r,t ; Ů a pattern with a varying dominance: Q D 10 kd .

Studying several patterns in each category limits the risk of unwisely generalising potential pathological results. The periodic patterns P D 6 h , P D 6 t and P D 6 k have also been considered for comparison. They also belong to different dominance classes. The selected patterns and their energy dominance types are resumed in Figure 5.1. Moreover, as a reminder, all these patterns belong to a [D k>4 ] type symmetry class. So their overall mechanical behaviour is supposed to be isotropic. The study of their behaviour is then simpliĄed, and the number of constitutive parameters of the overall continuum is reduced.

A range of average slendernesses is examined as before. However, this chapterŠs range goes from 10 to 150 as the energetic behaviour of completely stretching and bending dominated patterns seems stabilised. It is not the case for the patterns with varying dominance. However, for slenderness equal to 150 their behaviour has already begun to become anisotropic. Therefore they no longer fall within the scope of this study for higher slendernesses. Moreover, given the sample sizes considered, slenderness of 150 is already practically impossible to achieve.

Overall constitutive models studied

As the effective constitutive model strongly inĆuences homogenisation and identiĄcation procedures, particular attention should be Ąrst place in choosing it.

Several studies demonstrated that the Cauchy continuum could be insufficient to describe the overall behaviour of A.M. [START_REF] Boutin | Experimental evidence of the high-gradient behaviour of Ąber reinforced materials[END_REF], Poncelet et al., 2018, Durand et al., 2022, dellŠIsola et al., 2016, Rosi and Auffray, 2016, Rosi et al., 2020]. The question is then, for the lattices considered in this work, is the classical Cauchy-type law sufficient, or is a generalised continuum needed? Moreover, if so, which one suits them the best? It was explained in the subsection 1.2.3 that two types of generalised continua could be found in the literature: the higher-order continua where degrees of freedom (DOF) are added, and higher grade continua, where the number of dofs is kept the same, but additional gradients are added in the constitutive relations.

Among the Ąrst category, one of the most popular and basic is the Cosserat-type continuum [START_REF] Cosserat | Théorie des corps déformables[END_REF], Mindlin, 1964, Eringen, 2012], also called Couplestress or Micropolar. One can thus naturally consider this law. Another model close to the Cosserat one but belonging to the higher-grade continuum category is the Koiter model [Koiter, 1970, Toupin, 1962], also called the indeterminate or constrained couple stress model (see Table 5.1). With Cosserat, a rotational degree of freedom is added, and with Koiter, rotation gradients are added to the constitutive laws. For slender parts, the It is worth noting that, in the elastic case, the Cosserat continuum is equivalent to a Koiter-type model when one of its parameters, the Cosserat couple modulus G c , tends to inĄnity [START_REF] Forest | Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials[END_REF]]. The Koiter model can thus be considered a particular case of the Cosserat model. Thus, in static elasticity, by identifying a Cosserat model one can directly deduce if the effective material is of Koiter or Cosserat type by looking at the identiĄed parameter values. Therefore, it was decided to identify effective Cauchy and Cosserat elastic constitutive parameters of the different specimens to deduce which models suit their macroscopic behaviour.

Note:

The Cauchy model is also a particular case of Cosserat, with the Cosserat couple modulus G c and Cosserat characteristic length l equal to zero. However, the Cauchy medium will also be directly identiĄed for comparison purposes.

The fundamentals of the Cosserat model are going to be summarised.

Presentation of the Cosserat model

A Cosserat continuum is a medium in which material points are described as a collection of subinĄnitesimal rigid bodies. Let consider Ω an open and bounded domain of R 2 (see Figure 5.2). This domain represents the body in its reference conĄguration. For this conĄguration, the position of each particle is given by its position vector X with respect to O. The orientation of the rigid particle is deĄned by an orthonormal dihedron ¶D k ♢, Figure 5.2 Ű Deformation of a Cosserat body (reference and actual conĄgurations (based on [START_REF] Eremeyev | Foundations of Micropolar Mechanics[END_REF]) k = ¶1, 2♢. During the transformation of the body, the material point initially located in X moves to another point x of space:

x = f (X) (5.1)
with f a diffeomorphism.

Note:

The red parts of the formulas corresponds to the ones in common with Cauchy continua, and the blue ones those speciĄc to the Cosserat model.

The point x associated dihedron turns (without deformation) into another orthonormal dihedron ¶d k ♢. Within this picture, the generalized displacement of a material point is described as follows:

u := x -X, R ∼ := d k ⊗ D k , (5.2)
in which u is the displacement of a particle initially located at X, and R ∼ ∈ so(2)2 is the rotation of the particle from its original orientation ¶D k ♢ to the new one ¶d k ♢. In terms of Ąelds, the transformation is parametrised by a vector Ąeld u and a second-order orthogonal tensor Ąeld R ∼ both over Ω. Hence the degrees of freedom (DOF) of this mechanical theory are:

DOF := ¶u, R ∼ ♢ ∈ R 2 × so(2).
(5.3)

Note: For R ∼ to be an independent DOF, one should have: (5.5)

d n = R ∼ • D n ̸ = R ∼ p • D n (5.
Now let consider the case where the translations and microrotations are point-wisely inĄnitesimally small:

∥u∥ ≪ 1, ∥u ⊗ ∇∥ ≪ 1, ∥ϕ∥ ≪ 1, ∥ϕ ⊗ ∇∥ ≪ 1.
(5.6) with ∥ • ∥ the norm associated with the dot product. Under this hypothesis, the reference and the actual conĄgurations can be associated, u is now the inĄnitesimal linear displacement vector, while the inĄnitesimal rotation can be expressed as:

R ∼ ≃ I ∼ + w ∼ (5.7)
with w ∼ ∈ so(2). In the classical formulation of Cosserat elasticity, the second-order skewsymmetric tensor is usually substituted with the pseudo-scalar ϕ: .8) where ϵ ∼ is the 2D Levi-Civita pseudo-tensor. Hence the linearised DOF are:

w ∼ = -ϕϵ ∼ , ϕ = - 1 2 ϵ ∼ : w ∼ . ( 5 
DOF := ¶u, w ∼ ♢ ∈ R 2 × so(2).
(5.9) 

3. F ∼ = R ∼ p U ∼ = V ∼ R ∼ p ,

Strain measures

The Cosserat elasticity is a Ąrst gradient theory, as such the set of primary state variables is [Forest, 2005]:

V := ¶u ⊗ ∇, ∇ϕ♢.
(5.10)

The classical formulation [Forest, 2005, Eringen, 2012] involves the following set:

e ∼ = u ⊗ ∇ -ϕϵ ∼ ; κ = ∇ϕ, (e ∼ , κ) ∈ ⊗ 2 R 2 × R 2 (5.11)
where e ∼ is the linear stretch tensor and κ the linear curvature tensor.

Notes:

• Let us deĄne the spin tensor ω

∼ = rot(u)ϵ ∼ , with rot(u) = ϵ ∼ : (u ⊗ ∇) T ,

and the shear tensor η

∼ = ω ∼ -ϕϵ ∼ . If η ∼ = 0, then ϕ = rot(u) and κ = ∇rot(u).
One thus retrieve the Koiter theory with κ dependent on the second gradient of u.

• In 2D the rotation of a vector is a pseudo-scalar, and not a vector.

By duality, we deĄne the stress tensors: s ∼ the asymmetric stress tensor, and m the couple-stress tensor. Consequently, (s

∼ , m) ∈ ⊗ 2 R 2 × R 2 ,
and the linear constitutive law between the primary and dual state tensors are expressed as [START_REF] Auffray | Anisotropic Structure Of Two-Dimensional Linear Cosserat Elasticity[END_REF]:

  s ∼ m   =   A ≈ B ≃ B ≃ T d ∼     e ∼ κ   .
(5.12)

In the above notation, the symmetry of the coupled constitutive law comes from the assumption that it derives from a potential energy. As the elasticity is chosen linear, this potential is considered quadratic with respect to the deformation tensors. Let us deĄne the following vector spaces to which the constitutive tensors belong4 :

A ≈ ∈ Cos := ¶T ≈ ∈ S 2 (⊗ 2 R 2 )♣T ij kl ♢, B ≃ ∈ Cou := ¶T ≃ ∈ ⊗ 3 R 2 ♢ d ∼ ∈ Rot := ¶T ∼ ∈ S 2 (R 2 )♢.
(5.13)

From them, we deĄne the complete vector space of the Cosserat elasticity law:

Cos = Cos ⊕ Cou ⊕ Rot. (5.14)
As such, linear Cosserat elastic continuum is deĄned by a triplet

C := A ≈ , B ≃ , d ∼ ∈ Cos.
Even in a two-dimensional framework, the full anisotropic law is quite a complex object.

One can introduce the following family of tensors: 

P ≈ (2) := 1 2 (I ≈ (4) 2 + I ≈ (4) 3 -I ≈ (4) 1 ), P ≈ (0) = 1 2 I ∼ ⊗ I ∼ = 1 2 I ≈ (4) 1 , P ≈ (-1) = 1 2 ϵ ∼ ⊗ ϵ ∼ . ( 5 
I ≈ (4) 1 ijkl = δ ij δ kl , I ≈ (4) 2 ijkl = δ ik δ jl , I ≈ (4) 3 ijkl = δ il δ jk .
(5.16)

In the isotropic case, we directly obtain the following parameterisation: 5.17) which corresponds to the extension of the classical (K, G) parameterisation of the isotropic elasticity. The relation between this convention and the (K, G, G c , l) is:

             A ≈ = α 2 2 P ≈ (2) + 2α 0 P ≈ (0) + 2α -1 P ≈ (-1) B ≃ = 0 ≃ d ∼ = γ I ∼ (
                   α 0 = K α 2 = G 4 α -1 = G c γ = 2Gl 2 (5.18)
with K the bulk modulus, G the shear modulus, G c the Cosserat couple modulus and l the Cosserat characteristic length [START_REF] Providas | Finite element method in plane cosserat elasticity[END_REF], Korepanov et al., 2012, Auffray et al., 2022].

This parameterisation differs from Ű but is equivalent to Ű the one generally used in the literature [Eringen, 2012] which reads:

A ≈ = λI ≈ (4) 1 + (µ + κ)I ≈ (4) 2 + µI ≈ (4) 3 (5.19)
The interest in Equation 5.17 is that it directly provides the eigenvalues of the constitutive law which is positive deĄnite, thus imposing K, G, G c and l to be higher or equal to zero.

As a FEMU method will be used for the parameters identiĄcation (see subsection 5.3.1), one need to implement Ąnite element simulations using this model.

Finite elements implementation

It was shown in [START_REF] Providas | Finite element method in plane cosserat elasticity[END_REF], and [START_REF] Korepanov | Finite element analysis of two-and three-dimensional static problems in the asymmetric theory of elasticity as a basis for the design of experiments[END_REF] that the quadratic/linear triangle provides better results when dealing with Cosserat behaviour. It corresponds to a six-node triangular element with a quadratic approximation of the displacement Ąeld at all six nodes and a linear approximation of the rotation Ąeld, which is computed only on the triangle vertices (see Figure 5.3). This type of elements has been chosen for the numerical FEM model that will be used for the FEMU when considering a Cosserat continuum. with:

[B] =         N 1,1 0 N 2,1 0 N 3,1 0 N 4,1 0 N 5,1 0 N 6,1 0 0 N 1,2 0 N 2,2 0 N 3,2 0 N 4,2 0 N 5,2 0 N 6,2 0 N 1,1 0 N 2,1 0 N 3,1 0 N 4,1 0 N 5,1 0 N 6,1 N 1,2 0 N 2,2 0 N 3,2 0 N 4,2 0 N 5,2 0 N 6,2 0         (5.22) B =         0 0 0 0 0 0 -L 1 -L 2 -L 3 L 1 L 2 L 3        
(5.23) 5.24) in which L i and N i , i ∈ [1, 6] are respectively the shape functions of the linear and quadratic triangle:

B =   L 1,1 L 2,1 L 3,1 L 1,2 L 2,2 L 3,2   ( 
           L 1 = 1 -ξ -η L 2 = ξ L 3 = η ,                                  N 1 = (2ξ + 2η -1)(ξ + η -1) N 2 = ξ(2ξ -1) N 3 = η(2η -1) N 4 = ξ(1 -ξ -η) N 5 = 4ξη N 6 = 4η(1 -ξ -η) (5.25) with (ξ, η) ∈ [0, 1] 2 .
The plane stress hypothesis is chosen for this study, the loading being applied in the plane and the specimen being thin -a thickness of 10 mm for an external radius of 100 mm. It means that the out-of-plane components of the stress tensor s 33 , s 13 , s 31 , s 23 and s 32 are assumed to be zero. This assumption is well adapted for thin geometries and 2D problems. Considering the (ν, G, G c , l) parameters set, ν being the PoissonŠs ratio 5 6 , the constitutive relations are then: 5.26) with:

       ¶s ∼ ♢ = ¶s 11 s 22 s 12 s 21 ♢ T = D ≈ ¶e ∼ ♢ ¶m♢ = ¶m 1 m 2 ♢ T = D ∼ ¶k♢ ( 
D ≈ =              2G 1 -ν 2νG 1 -ν 0 0 2νG 1 -ν 2G 1 -ν 0 0 0 0 G + G c G -G c 0 0 G -G c G + G c             
(5.27)

D ∼ = 2Gl 2   1 0 0 1   (5.28)
Finally, the Ąnite element equation to be resolved are: (5.29) with: (5.30) and:

[K e ]    ¶u♢ ¶ϕ♢    = ¶F ♢
[K e ] = Ve   B T D ≈ B B T D ≈ B BT D ≈ B BT D ≈ B + BT D ∼ B  dV
¶F ♢ = Ve [N] T    ¶f ♢ ¶q♢    dV + Se [N] T    ¶p♢ ¶m♢    dS (5.31)
with V e the area of the triangular element, S e the boundary of the Ąnite element, ¶f ♢ and ¶q♢ the vectors of bulk forces and bulk moments, ¶p♢ and ¶m♢ the vectors of surface 5. ν was favoured over K because if the material is incompressible, K tends to inĄnity, leading to problems of convergence of the identiĄcation procedure. However, the dependence of D ≈ on ν is complicated, whereas it was trivial with K. This may therefore have an impact on the conditioning of the identiĄcation problem.

6. ν ∈] -1, 1[ with the plane stress hypothesis.

forces and moments acting on the element, and [N] the matrix of the shape functions:

[N] =      N 1 0 N 2 0 N 3 0 N 4 0 N 5 0 N 6 0 0 0 0 0 N 1 0 N 2 0 N 3 0 N 4 0 N 5 0 N 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L 1 L 2 L 3     
(5.32)

As for classical FEM resolutions, the integrals are computed numerically using Gauss-Legendre integration:

Ve h(x, y)dV = Ve h(ξ, η) det(J) dξdη ≈ np i w i h(ξ i , η i ) det(J) (5.33)
with n p the number of Gauss points, i.e. the integration points, w i the weight of the point i, (ξ, η) the isoparametric coordinates and [J] the Jacobian transformation matrix: 5.34) ¶x e ♢ being the vector containing the abscissas of the element nodes, and ¶y e ♢ the vector containing the ordinates.

[J] =   [N ,ξ ] [N ,η ]      ¶x e ♢ ¶y e ♢    ( 
The Gauss points are deĄned by the triplet (ξ, η, w). In the case of triangle elements with linear interpolation, there is only one Gauss point: n 1 = ( 1 3 , 1 3 , 1 2 ). For quadratic triangle elements there are three: n 1 = ( 1 6 , 1 6 , 1 6 ), n 2 = ( 2 3 , 1 6 , 1 6 ) and n 3 = ( 1 6 , 2 3 , 1 6 ).

As one wants to solve the global problem, the elementary stiffness matrices [K e ] are assembled to form the global stiffness matrix of the structure [K glob ]. The global form of the Equation 5.35 is then solved:

[K glob ]    ¶u glob ♢ ¶ϕ glob ♢    = ¶F glob ♢ (5.35)
with ¶u glob ♢ and ¶ϕ glob ♢ the vectors containing respectively the displacements and rotations of all the nodes of the structure 7 .

Note:

The Ąnite element implementation for the Cauchy case is given in Appendix D.

7. The sizes of ¶u glob ♢ and ¶ϕ glob ♢ are different because not all the nodes have rotation DOF.

With the patterns and the models considered for this study being known, it is now possible to select an identiĄcation procedure of the effective elastic constitutive parameters.

Method

Now that the pattern and the overall continuum models have been selected, it is possible to establish a strategy to identify the associated constitutive parameters.

Since a unit cell cannot be deĄned for quasi-periodic structures and they are neither random structures, specifying a Representative Volume Element (RVE) is not straightforward without using approximants. Moreover, a versatile method is desired: it should be easily adaptable to other constitutive laws, and the identiĄcation procedure of the overall medium should be possible numerically and experimentally using a unique test-bed. We want to take advantage of the fact that we will have displacement Ąeld data and not only global measurements.

Chosen identiĄcation method

Given the requirements imposed, most classical homogenisation methods were set aside. In fact, it is not desired to use approximant as they can introduce some biases. The methods using the periodic properties are thus excluded, such as the asymptotic and Bloch homogenisation methods. Moreover, it is wanted to eventually perform experimental identiĄcations. So, the methods based on the periodic property of the quasi-periodic lattices in a super-space should be excluded too. In the same way, even if one could Ąnd studies that propose an experimental approach to the numerical homogenisation method [START_REF] Dassonville | Toward a homogenizing machine[END_REF], it cannot be an option for this work. In fact, even for identifying Cauchy constitutive parameters, designing a test bench that can apply the KUBC boundary conditions is not straightforward. So, its adaptation to generalised continua is even more difficult, one of the essential questions being how to apply uniform micro-rotations or micro-couples on the boundaries, for example. It was thus decided to identify the constitutive parameters of the chosen model directly from real or numerical experiments, as one can do for a classical material by adapting the identiĄcation method.

Among the methods presented in the subsection 1.3.3, the FEMU method was selected Figure 5.4 Ű Principle of the FEMU identiĄcation method. In this thesis, experimental reference Ąelds are obtained using DIC measurements (see subsection 6.3.4) and simulated ones are issued from truss calculation (see subsection 5.3.3). The simulated Ąelds come from FEM simulations using 2D continuum meshes (see section 3.3 and subsection 5.3.3).

as it is widespread, easy to set up and versatile. It does not need speciĄc developments. A direct link can be made between testings and simulations, providing direct access to the deviation from the reference. Finally, other methods could need stresses or micro-couples measurement, which could be hard to achieve experimentally. The principle of the FEMU method is quite simple and resumed in Figure 5.4.

The principle is the following. An experiment is performed, an actual or virtual one, and the reference Ąelds, usually the displacement Ąelds, and boundary conditions are extracted from it. The boundary conditions are used to do a FEM simulation of the experiment with an arbitrary set of initial constitutive parameters. The simulated and reference Ąelds are then compared using a cost function C that is sought to be minimised with respect to the constitutive parameters, denoted ¶P ♢. There exist several forms for C, but the most common one is a weighted L 2 -norm: .36) with :

C( ¶P ♢) = 1 2 ( ¶u ref ♢ - ¶u P ♢ k ) T [W] ( ¶u ref ♢ - ¶u P ♢ k ) ( 5 
Ů ¶u ref ♢: the vector containing all the reference nodal displacements obtained experimentally or from simulations; Ů ¶u P ♢ k : the vector containing all the simulated nodal displacements computed using the parameter set ¶P ♢ k at the iteration k; Ů [W]: is a symmetric, positive deĄnite weighting matrix. It can be used, for example, to exclude some nodes.

The minimisation problem is usually solved using a Gauss-Newton method. If the convergence criterion is not reached, the parameters are updated, and a new simulation is performed. The new parameter values are calculated as follow: (5.38) with:

¶∆P ♢ = [S] T [W] [S] -1 [S] T [W] ( ¶u ref ♢ - ¶u P ♢ k ) (5.37) ¶P ♢ k+1 = ¶P ♢ k + ¶∆P ♢
Ů ¶P ♢ k : the vector containing the values of the parameters to be identiĄed at iteration k; Ů ¶P ♢ k+1 : the vector containing the values of the parameters to be identiĄed at iteration k + 1; Ů [S]: the sensitivity matrix of the Ąelds to the parameters. Considering that there are m parameters to identify and n nodes, one has:

[S] =             ∂u 1 x,P ∂P 1 • • • ∂u 1 x,P ∂Pm ∂u 1 y,P ∂P 1 • • • ∂u 1 y,P ∂Pm . . . . . . ∂u n x,P ∂P 1 • • • ∂u n x,P ∂Pm ∂u n y,P ∂P 1 • • • ∂u n y,P ∂Pm             = ∂ ¶u P ♢ ∂ ¶P ♢ (5.39)
As the update is based on a sensitivity matrix, the choice of parameters to be identiĄed signiĄcantly inĆuences the convergence speed and the conditioning. The same applies to the initial parameter values.

Note:

It is essential to have information about the applied force in the simulation. Otherwise, some parameters, such as YoungŠs and shear moduli, cannot be identiĄed. In the simulation, it is therefore necessary to impose either a force or a displacement whose amplitude is adjusted so that the resultant force corresponds to the one measured.

Parametrisation used

To limit parameter dependencies and quickly check the positive-deĄniteness of the matrices, it was decided to identify representative quantities of the material matrix eigenvalues: the shear modulus G, the Cosserat couple modulus G c and the square of the Cosserat characteristic length l. However, the Poisson ratio ν was favoured against the bulk modulus K since some lattices can have an incompressible behaviour. In fact, it would lead K to tend to inĄnity, and so to identiĄcation issues. To ensure the same physical units of the elements of ¶P ♢, they are normalized by their initial value and a multiplier coefficient is therefore sought instead of the parameters themselves. For Cosserat, ¶P ♢ is equal to: Note: l 2 is chosen for the identiĄcation instead of l because this parameter appears in its square form in the constitutive law eigenvalues (see Equation 5.18). The idea of directly identifying the eigenvalues of the elasticity tensor is thus kept.

¶P ♢ = ν ν 0 G G 0 G c G c 0 l 2 l 2 0 T ( 5 
During the identiĄcation process, if the Poisson ratio goes beyond its physical limit Ű 1 in plane-stress conditions Ű it is set to 0.9999 and a new identiĄcation procedure is done to Ąnd the other parameter values.

The choice of the parameter set is essential, but ensuring sensitivity to these parameters goes through a suitable choice of boundary conditions as they activate or not deformation mechanisms.

Obtaining the reference and simulated Ąelds

When using FEMU, one essential question concern the nature of the boundary conditions, hence the test that should be considered, so that the sensitivity to the parameters is sufficiently large. The test considered was presented in the chapter 3 (see Figure 3.15). The samples used are given in section B.2. To compare all the results properly, we desire to have the same displacement amplitude for all the reference Ąelds, chosen equal to -1 mm. However, it is wanted to impose a force and not a displacement. So, preliminary simulations are performed to determine the resultant force to be applied to obtain the wanted displacement amplitude: Ů a Ąrst simulation with a top vertical displacement of the sample U y imposed equal to -1 mm is done; Ů the resultant of the vertical force induced by this displacement F y is computed; Ů the simulations used in the FEMU are carried out with an imposed effort. The sum of the vertical forces applied on the top contact point nodes is imposed equal to F y . The value applied at each node varies linearly depending on their distance to the contact point. The value is zero if this distance is superior to or equal to 10 mm 8 .

It is approximately equal to two L.

The reference Ąelds are obtained in this chapter using the numerical twin presented in section 3.3. Indeed, doing this study Ąrst with a numerical twin allows for validating the concept, choosing the relevant candidates for the experimental validations, and potentially helping to easily study the inĆuence of the pattern density, i.e. the ratio between the sample characteristic size and the average beam length L, on the global behaviour.

Since it is desired to identify the constitutive parameters of the previously mentioned continuum models, the FEM simulation to be updated during the FEMU procedure should then uses a 2D continuum mesh, e.g. a triangulated one, ignoring the lattice "porosities". This surface mesh is thus built using a Delaunay triangulation of the latticeŠs nodes. It enables comparing Ąelds at the nodes directly and avoids extra errors due to interpolation (see Figure 5.5).

Figure 5.5 Ű Building of the surface mesh using Delaunay triangulation performed on the physical nodes (blue) of the mesoscopic model. One mesh element is represented in red in each case.

As mentioned before, quadratic/linear triangle elements are used for the Cosserat behaviour identiĄcation, while quadratic triangle ones are used for the Cauchy identiĄcation. Now the problem is that we are comparing discontinuous Ąelds, associated with the cellular structure of the lattices, and continuous ones, so having different kinematic mechanisms. The identiĄcation procedure can thus be disturbed. This problem must thus be handled.

Orientation-averaging of the Ąelds

Before comparing the beam reference Ąelds and the 2D continuum one, an additional step is added to take into account the cellular structure of the lattice. As mentioned earlier, even if the global behaviour of these lattices is supposed to be isotropic, their internal structure leads to internal local variations of the Ąelds. In fact, with the same load applied, a different orientation of the patterns leads to the same macroscopic response but different local ones as the architecture drives the load transmission. Thus, comparing a heterogeneous Ąeld due to both macroscopic and mesoscopic reasons to another Ąeld, in which heterogeneity is solely due to macroscopic effects, can disturb the identiĄcation procedure and inĆuence the Ąnal identiĄed values of the parameters. It is so wanted to erase those local Ćuctuations and to extract the mean response of the beam-based simulation with respect to the specimen orientation.

So, the method used to obtain the averaged reference Ąeld is illustrated in Figure 5.6. 199 simulations are performed for different orientations ∆α of the lattice spread over 360 • . The number of simulations has been chosen to be sufficiently large to erase the local Ćuctuations, and a prime number was chosen to avoid having similar node distributions between two selected orientations. All these simulations are superimposed, and the nodes of one of these orientations are picked as a reference. The different Ąelds are then averaged locally in zones centred on the selected nodes: the Ąeld values at the nodes included in the selection zone are retrieved for all the orientations (green nodes), and their mean value is computed and attributed to the reference node (red). This procedure is applied for all the Ąelds and all the nodes of the reference orientation. A similar procedure can be found in [START_REF] Liebenstein | Determining Cosserat constants of 2D cellular solids from beam models[END_REF].

Note:

The averaging area can be reminiscent of the coarse-graining scales in [START_REF] Eid | Multiscale analysis of brittle failure in heterogeneous materials[END_REF]. It was shown in this paper that depending on the pattern, some properties became very quickly homogeneous and others not when increasing the coarse-graining scale. In this work, the inĆuence of the size of the averaging area was not considered, but it would be interesting to investigate this in future studies.

A global averaging gap is computed for the averaged displacement and the rotation Ąelds with the beam model 9 , respectively E ♣♣u♣♣ and E ϕ : 5.43) 9. The rotation Ąeld is directly provided by the beam model here.

E ♣♣u♣♣ = i∈nodes (u i -u i ∆α ) 2 i∈nodes ∥u i ∆α ∥ 2 (5.42) E ϕ = i∈nodes ϕ i -ϕ i ∆α 2 i∈nodes (ϕ i ∆α ) 2 ( 
with:

Ů u i the displacement vector of the node i of the averaged Ąeld; Ů u i ∆α the displacement vector of the node i of the beam Ąeld for an orientation ∆α; Ů ϕ i the rotation of the node i of the averaged Ąeld;

Ů ϕ i ∆α the rotation of the node i of the beam Ąeld for an orientation ∆α.

We are computing here gaps and not errors. The high gaps can therefore be signiĄcant since the average Ąelds erase the local effects of the structure. Therefore, the local gaps must also be checked to see whether high global ones only come from the erased structural effects, so the average Ąeld is representative, or if their origin is elsewhere. Some nodes are not taken into account when computing to global gap as they can contribute to increasing the gap only because of numerical issues. It is the case for nodes belonging to the sample border, which can be associated with very short beams. It is also the case for the nodes in an area of radius equal to 15 mm centred at the contact points. The zone exclusion radius is slightly bigger10 than the zone of application boundary conditions to ensure their inĆuence is limited. These Ągures show that the gaps remain contained for stretching and bending dominated patterns. They thus reĆect only local Ąeld Ćuctuations, even if one should remain careful for some patterns for large slenderness, such as the bending-dominated ones.

Note: As a reminder, we are measuring here gaps and not errors. Even if they increase and can have high values Ű until 60% sometimes for the rotation Ąelds Ű the extracted averaged Ąelds remain meaningful. These gaps are present because averaged Ąelds erase local effects of the structure that one does not want. In fact, they can disturb identiĄcation procedures because they are compared to continuum media. patterns for slenderness equal to 10 and 150. For stretching-dominated patterns, the local gaps increase only close to the boundary conditions but remain the same elsewhere. Thus, when a growth is observed it is "Ąctive". It should disappears when increasing the node exclusion radius close to the boundaries. For the bending-dominated patterns, the increase is explained by the appearance of localisation bands.

On the contrary, for varying dominance patterns global gaps tend to increase signiĄcantly with slenderness. The local gap growth is high everywhere in the sample. So when increasing slenderness, the averaged Ąeld may no longer be representative of the pattern behaviour for each orientation ∆α. So the relevance to use such a Ąeld for the identiĄcation of the effective continuum can be questioned in that case.

As the FEMU can be sensitive to the boundary conditions applied, the local averaging of Ąelds procedure is also applied to the 2D continuum Ąelds to prevent possible biases and ensure the same boundary conditions with the averaged reference Ąeld.

Cost function used

The cost function C chosen to identify Cauchy behaviours is the one of the Equation 5.36:

C( ¶P ♢) = 1 2 ¶u ref ♢ - ¶u P Cauchy ♢ k T [W] ¶u ref ♢ - ¶u P Cauchy ♢ k (5.44)
with ¶u P Cauchy ♢ k the computed nodal displacements of the Cauchy homogeneous material at the iteration k, and ¶u ref ♢ the reference nodal displacements. [W] is used to exclude the nodes on the boundaries of the ring in the cost functions because they can be connected to very short beams that can lead to numerical errors.

In the Cosserat case, introducing the rotations as degrees of freedom implies modifying C. An internal length multiplies the rotation Ąeld, enabling coherence with the displacement Ąeld units. 11 The cost function is thus:

C(P ) = 1 2    ¶u ref ♢ - ¶u P Cosserat ♢ k ¶ϕ ref ♢ - ¶ϕ P Cosserat ♢ k    T [W]   [I] [0] [0] [L 2 R ]      ¶u ref ♢ - ¶u P Cosserat ♢ k ¶ϕ ref ♢ - ¶ϕ P Cosserat ♢ k    (5.45)
with L R the internal length and ϕ the rotation Ąeld. The value of L R inĆuences G c and l sensitivities: increasing L R is associated with an increase in l 2 sensitivity and a decrease in G c sensitivity. It was thus chosen equal to 0.5 L moy , with L moy the average beam length of the pattern considered, to have a sensitivity compromise. It also gives it a "physical" meaning.

With this last point, one has everything needed to run the identiĄcations. Cauchy and Cosserat elastic constitutive parameters have been identiĄed for each sample and slenderness.

Results

This section aims to compare the Cauchy and Cosserat homogeneous Ąelds, obtained with the elastic parameters identiĄed, with the reference Ąelds to determine which suits best. The inĆuence of slenderness on the values identiĄed is also analysed.

Completely stretching dominated patterns

The Ąelds issued from the identiĄcation process are compared to the reference ones by computing global and local absolute errors to know which model describes better the macroscopic behaviour of the considered lattices. The global errors on the displacement and rotational Ąelds are respectively computed as follows:

E ♣♣u♣♣ = U sim -U ref 2 U ref 2 ≈ i∈nodes u i sim -u i ref 2 i∈nodes u i ref 2
(5.46) 5.47) 11. Using two different cost functions would be similar since a weighting parameter, interpreted as an internal length, would also be necessary.

E ϕ = ∥ϕ sim -ϕ ref ∥ 2 ∥ϕ ref ∥ 2 ≈ i∈nodes ϕ i sim -ϕ i ref 2 i∈nodes ϕ i ref 2 ( 
Ů u i sim the displacement vector of the node i of the identiĄed continuum Ąeld (Cauchy or Cosserat); Ů u i ref the displacement vector of the node i of the reference Ąeld; Ů ϕ i sim the rotation of the node i of the identiĄed continuum Ąeld (Cauchy or Cosserat); Ů ϕ i ref the rotation of the node i of the reference Ąeld;

Ů ∥U ∥ 2 = ( ω U • U dω) 1/2 , ω ⊂ Ω
As in subsection 5.3.4, nodes belonging to the borders of the sample and those used for the boundary conditions are excluded from the global errorsŠ computations 12 .

Note: In the Cauchy case, the rotational Ąeld is built using the skew-symmetric part of the strain tensor:

w = 1 2 ϵ ∼ : (u ⊗ ∇) (5.48)
As this Ąeld is not directly a DOF but computed from them, the values are obtained at the Gauss points of the elements and not directly at the nodes. So, to compare it to the reference rotation Ąeld, interpolation is needed. It thus leads to some approximations and possible biases. Moreover the formula used computes the macro-rotations and not the micro ones, which are potentially different. The comparison is thus less direct than for the displacement Ąelds.

The evolution of the global errors for Cauchy and Cosserat identiĄed Ąelds with respect to the slenderness for stretching-dominated patterns are given in Figure 5.12. The cases where the identiĄcation did not converge or led to global errors higher than 0.35 for the displacement Ąeld and 1 for the rotational one are not represented on these graphs.

One can observe that identiĄcation of the Cauchy behaviour converges very well and leads to low and broadly constant global errors, regardless of the slenderness. On the contrary, the Cosserat identiĄcation converges with great difficulty or not at all. When the identiĄcation is successful, the associated global errors are at best equivalent to the Cauchy ones but most of the time higher. It is surprising since Cauchy is a particular case of Cosserat. One would expect it to converge toward the Cauchy material, with the Cosserat parameters tending to zero. One explanation for these convergence difficulties might be that the Cosserat parameters being very close to zero, the sensitivity to these 12. As in subsection 5.3.4, the radius of exclusion close to the boundary conditions is equal to 15 mm, while the radius used for selecting the nodes for applying the boundary conditions was equal to 10 mm. r,t for a slenderness equals to 32 and the associated reference Ąelds. The colorbar for rotational errors is restricted to 0.0015 rad maximum. The white dots correspond to the nodes excluded from the global errors computation. parameters is very low, leading to bad conditioning of the sensitivity matrix, which is computed numerically. So, the numerical zeros disturb the convergence towards the Cauchy behaviour. However, just because the value of a parameter is small does not necessarily means that the sensitivity of the response to that parameter is also small. This difficulty of convergence would therefore deserve to be studied in more detail.
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Thus, a Cauchy model better describes the behaviour of stretching-dominated patterns rather than a Cosserat one. Looking at the local absolute errors conĄrms that the Cauchy continuum is well adapted. An example is given in Figure 5.13 in which the displacement errors do not exceed 5 % in that case. Generally speaking, the errors are mainly gathered close to the sample borders and the boundary conditions. .14 gives the evolution of the identiĄed Cauchy parameters with the slenderness of the stretching-dominated patterns. The parameters follow the same evolution law no matter the pattern. The order of magnitude of the shear modulus G for a given slenderness value is the same for all the patterns. As expected, the stretching-dominated patterns are stiffer than the bending-dominated ones and are also stiffer than the patterns with varying dominance (see Figure 5.20, Figure 5.21 and Figure 5.17). The PoissonŠs ratio is almost constant with slenderness, and its values go from 0.3 to 0.41. One can note that the lower the shear modulus G, the higher ν.

Varying dominance patterns

Figure 5.15 gives the evolution of global errors of Cauchy and Cosserat identiĄed Ąelds with the slenderness of patterns with a varying dominance. The cases where the identiĄcation did not converge or led to global errors higher than 0.35 for the displacement Ąeld and 1 for the rotational one are not represented on these graphs. Similar conclusions can be made for the patterns with a varying dominance than for the stretching-dominated patterns. In fact, the Cauchy identiĄcation also converges regardless of the slenderness contrary to Cosserat and it leads to smaller errors than Cosserat. However, the similarities end when increasing the slenderness. In fact, the errors tend to increase until becoming signiĄcant. This evolution is more or less quick depending on the pattern. Here we see that KagomeŠs identiĄcation goes wrong very rapidly. This tends to conĄrm the point made in subsection 5.3.4 that the averaged Ąeld might not represent these patternsŠ behaviour for high slenderness. So, macroscopic isotropyŠs assumption may be challenged in these cases. This point needs to be studied in more details.

For small slenderness, the averaged Ąeld being representative, one can be more conĄdent when analysing the results. It seems logical that the same conclusion can be made as to the one for stretching-dominated patterns. Indeed, these patterns are also stretchingdominated in that slenderness range. So, as for stretching-dominated lattices, a Cauchy model seems to be sufficient and efficient to describe their macroscopic behaviour. This point is conĄrmed when looking at the local errors. An example of the local absolute errors maps of the identiĄed Cauchy Ąeld for slenderness equal to 10 is given in Figure 5.16. As previously, the Ąelds are well described with the Cauchy continuum. The errors are maximum close to the boundaries. Thus, a Cauchy model is better adapted to describe the static elastic behaviour of patterns with varying dominance. However, it is relevant only for small slenderness. .17 gives the evolution of the identiĄed Cauchy parameters with the slenderness of the patterns. The order of magnitude of these specimensŠ stiffness is intermediate between the one of stretching and dominated patterns. Even if the relevance of the results becomes questionable when increasing the slenderness, it is interesting to note that the PoissonŠs ratio of the Q D 10 kd goes from 0.27 to 0.9999. So while it is becoming bendingdominated, it is becoming incompressible, as is the case for completely bending-dominated structures. Nevertheless, another model should probably be used for high slenderness, maybe an anisotropic or heterogeneous one, that better suits the macroscopic behaviour and allows one to interpret results more reliably.

Completely bending dominated patterns

In Figure 5.18 is given the evolution of global errors of Cauchy and Cosserat identiĄed Ąelds with the slenderness of bending-dominated patterns. As in the previous sections, the cases where the identiĄcation did not converge or led to global errors higher than 0.35 for the displacement Ąeld and 1 for the rotational one are not represented on these graphs.

As before, the Cauchy identiĄcation succeeds in converging regardless of the patternsŠ slenderness. For the periodic pattern, the Cosserat identiĄcation fails once again. However, for quasi-periodic ones, the Cosserat identiĄcation succeed to converge regardless the slenderness. Furthermore, it leads to two to three times lower global errors of the displacement Ąeld than the Cauchy model. For the rotational Ąeld, the global errors are of the same order of magnitude for small slenderness, but those of Cosserat become signiĄcantly lower when increasing it. Thus, a Cauchy model is more adapted for the periodic patterns considered in this study, but a Cosserat one suits better to quasi-periodic bending-dominated patterns.
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The beneĄt of Cosserat is evident when looking at the displacement Ąeld local errors map. An example is given in Figure 5.19. The scales are the same. Cauchy fails in describing the displacement Ąeld of the sample, contrary to Cosserat. The beneĄts of Cosserat are more subtle concerning the rotational Ąeld. The major drawback of Cosserat is that it has difficulties with high gradients of the rotational Ąeld close to the hole. In fact, a high value of characteristic length tends to smooth the rotation gradients. One way to solve this problem might be to impose the rotations at the boundaries to be the same as the reference Ąeld. The continuum media would no longer be free to impose its kinematics totally, a part of the discrete nature of the lattice being introduced by the imposed rotational DOF. Further studies should investigate this point. However, even with the rotation gradients issue the balance remains largely in favour of Cosserat.

Figure 5.20 and Figure 5.21 give respectively the evolution of the identiĄed Cauchy and Cosserat parameters with the slenderness of the pattern beams. First, as expected, these patterns lead to lower stiffness than the two previous categories (see Figure 5.14 and Figure 5.17): one can note that Cosserat identiĄes the same PoissonŠs ratios but lower shear modulus than Cauchy. It thus identiĄed stiffer materials as E = 2G(1 + ν), with E the Young modulus. Then, all the beam lengths are the same for all the quasi-periodic patterns here, as the identiĄed shear modulus. Likewise, all the patterns are incompressible. The symmetry class has thus no inĆuence on the classical elastic parameters of the structures. However, even if they evolve similarly, it slightly inĆuences the Cosserat parameters G c and l. The Cosserat couple modulus and characteristic length increase with the slenderness. However, since G c does not tend to inĄnity, a Cosserat model is preferred to Koiter one. One way to conĄrm this last point is to compare the shear components of the strain tensor. In fact, the Koiter model leads to a symmetric strain tensor contrary to Cosserat. So, if the ε 12 and ε 21 Ąelds are the same, a Koiter model should be preferred. Figure 5.22 gives the absolute and relative gaps between ε 12 and ε 21 Ąelds obtained with the identiĄed parameters for slenderness equal to 10 and 150.

One can identify zones where the differences are signiĄcant, sometimes with a relative 

Additional remarks

One can note that the errors of the identiĄed Ąelds increase when the strain energy distribution differs from an "A-shapes" (see Figure 5.23,Table 4.4 and Table 4.5). The energy distribution always has this shape in stretching-dominated patterns, while it changes quickly with the slenderness in the case of the varying dominance patterns. The A-shape also disappears in the bending-dominated patterns when the slenderness become sufficiently high, and one can see that the global errors of the identiĄed Ąelds tend to increase. Thus, the strain energy distribution might indicate whether a homogeneous model can be appropriate or not. However, it does not indicate the nature of the equivalent continuum to choose. As an example, P D 6 h and Q D 10 r patterns have the same type of energy distribution for small slenderness (see Table 4.4). Nevertheless, respectively Cauchy and Cosserat models should be favoured to describe their overall behaviour (see Figure 5.18a for P D 6 h and Figure 5.18c for Q D 10 r ).

Conclusion

In this chapter, a FEMU identiĄcation procedure has been implemented to identify the Cauchy and Cosserat elastic parameters of quasi-periodic lattices and to determine which model describes the best their overall behaviour better depending on their energy dominance type.

This study showed that the pattern, particularly the energy dominance class, strongly inĆuences the overall mechanical behaviour of these structures. Contrary to periodic patterns, it does not just inĆuence the global stiffness of the structure but also the type of model to be used. In fact, while a classical Cauchy-type model remains sufficient for periodic patterns whatever their dominance class and the stretching-dominated and varying dominance quasi-periodic patterns, at least for small slenderness for these last ones, it is necessary to use a Cosserat model for quasi-periodic bending-dominated structures. In fact, for the Ąrst two categories, the convergence toward a Cosserat continuum is difficult. It cannot obtain better results than the Cauchy model, where the identiĄcation procedure always succeeds and leads to equivalent media that efficiently describe the macroscopic behaviour, an exception being the varying patterns with slender beams. On the contrary, for bending-dominated patterns, Cosserat identiĄcation always succeeds in describing better their overall behaviour than Cauchy. It was also shown that the symmetry class has a small inĆuence on the identiĄed behaviours.

A Cosserat model is not adapted to periodic lattices, however a Strain Gradient model can be [START_REF] Réthoré | Gradient-elasticity for honeycomb materials: Validation and identi-Ącation from full-Ąeld measurements[END_REF]. It could thus be interesting to see if it is also the case for stretching-dominated and varying-dominance quasi-periodic patterns in another study.

With the identiĄcation principle being validated numerically, we now want to validate it experimentally and see if these results can still be observed despite all the sample imperfections and measurement incertitudes. 

Introduction

In chapter 5, a procedure was developed to identify the effective elastic media of quasi-periodic lattices. It was applied to numerical twins, and it was shown that the quasi-periodic pattern choice strongly inĆuences the latticeŠs effective behaviour. However, these results were obtained with perfect geometries and without any measurement noise. With the experiments, many disturbances can lead the procedure to fail, or the actual behaviour of A.M. can differ from the previously used mesoscopic model. The sources of perturbations and differences are of many kinds: Ů Experimental setup: the boundary conditions are not perfect and exactly the same for all the conĄgurations. Moreover, 2D models were used, whereas the actual samples are necessarily 3D1 ; Ů Measurement tools: noise and measurement uncertainties are associated with each measure. 3D phenomena can also disturb the mesures, for example, out-ofplane motions that induce measurement errors of 2D kinematic Ąelds; Ů Material defects: the simulations are performed on perfect geometries and materials. However, lattice manufacturing processes introduce many defects and possibly modify the initial constitutive materialsŠ properties by adding porosities or residual thermal stresses, for example. Moreover, because of the thickness of the beams, the apparent slenderness is shorter than with the beam model. Then some out-of-plane bending can happen.

The question is then: is the identiĄcation procedure robust and stable enough against these disturbances? Furthermore, because of the lattice defects, are the phenomenon present numerically still emerging in reality?

The aim of this chapter is thus to design a test bench capable of applying the needed boundary conditions and then to experimentally validate the results obtained in the chapter 5.

First, the design approach of the test bed is presented. Then the test methodology is given: what patterns are considered, the test set-up and protocol, and the Ąeld measurement and post-processing methods used. Finally, the experimental results are presented and analysed.

Design of the test bench

The Ąrst step in this experimental validation is to design a bench test adapted to the wanted boundary conditions and the data to be measured. This design is based on the test principle described in chapter 3 and chapter 5.

Requirements speciĄcation

The detailed functional speciĄcation of the test bench is given in Appendix E. A summary of the design requirements follows:

Ů Withstand loads of up to 5000N to have a safety coefficient and to eventually be able to study non-linear behaviours. This limit was chosen supposing that testing specimens have small stiffnesses. In fact, it was decided to adapt the test to polymer-based A.M. as they are the most widespread and easy to produce, and the cellular structure leads to even smaller apparent stiffness, usually by a factor 10 to 100. Ů Considering potential uses for non-linear tests, the bench test own deformations should be limited, in order not to store too much strain energy, which could disturb the experiments (snap-back effect, etc); Ů The maximum sample diameter should be equal to 250 mm; Ů The sample rolling distance should be at least equal to 630 mm, allowing a 200 mm diameter sample to do a complete rotation; Ů The position of the sample center of rotation sample should be Ąxed. The test piece must remain observable by the measuring equipment throughout the test; Ů The case where the sample is "rolling too far", and thus falls, must be prevented. Ů The out-of-plane sample displacement should be maximum equal to 1mm; Ů The size of the test bench should be limited, and it must be able to be mounted on a standard hydraulic traction machine, such as a MTS 810 machine (see Figure 6.1). Ů In order to be adaptable to other studies, the surface on which the sample rolls must be interchangeable.

Figure 6.1 Ű Elements of a conventional hydraulic testing machine 2

Application of boundary conditions

The specimen must be "compressed". Since it is also to be rolled, it is impossible to use standard grips and a 3-point bending assembly, for example. Therefore, the test bench should be composed of two parts, one mounted in series with the actuator of the testing machine and one with the load cell.

So, the elements used to make three conctact points must be thought so that the specimen can roll. The solution for the two lower contact points is easy as rollers can be used. It was chosen to motorise only the upper contact point. There are several possibilities to achieve the rotation of the specimen. They are resumed in Figure 6.2.

Since it must be possible to change the rolling path to vary its shape and the material used, the pulley-belt solution was rejected.

The slide rail solution was also eliminated as the track must be at least 630 mm long. Indeed, it is challenging to Ąnd motorised slide rails with such a length, and they are costly. Another possibility would have been to motorise a conventional slide, but this would have meant integrating one of the other possible solutions Ű a rack-and-pinion sys-Figure 6.2 Ű Possible technological solutions for rolling the specimen 203 tem, for example Ű into it. This solution was therefore not chosen.

The rack and pinion and the big wheel solutions are the best solutions. They are easy to control, allow standard componentsŠ use and therefore limit machining. Further, changing the raceway with a rack and pinion system is easier and quicker. It was thus favoured. A stepper motor is used to control the pinion. To limit the number of parts and facilitate the machining to be carried out, it was decided to use a standard rack with a cross-section of 30 mmx30 mm and machine a groove to place the raceway. Since the rack found on the market is 1 metre long, the racewayŠs length requirement can be validated by appropriately placing its supports. However, the spacing between the columns is only 533 mm, so the assembly should be mounted slightly turned with respect to the jack vertical axis to avoid collision problems (see Figure 6.3).

Figure 6.3 Ű Orientation of the test bench with respect to the testing machine

The rack is placed on a mini conveyor with three rollers for translating (see Figure 6.4). The rollers are guided in rotation by ball bearings, which reduces friction. The load capacity requirement is met as the rollers have a static load capacity of 14 kN. The roller shafts must be as short as possible to limit their deformations and thus limit the stored elastic energy. Instead of Ąxing the conveyor to the testing machine using a nut and bolt system, it was decided to thread a hole and use a spiral washer set 3 to Ąx the part position. Thus, it limits the Ąxation volume, and the distance between supports is 30mm. In the worst case, where the load would be entirely taken up by the central roller, and considering that the pins are made of steel with a circular section with a diameter of 15 mm, the maximum deĆection would be 5 µm. The deformation of the axles is, therefore, negligible 4 . Figure 6.4 Ű Rack and pinion system Rollers make the two lower contact points5 to ensure the specimen rolling and limit friction (see Figure 6.5). The diameter of the axles is 10 mm, but the force is distributed on the two rollers. The maximum deĆection is 14 µm, which is still acceptable.

Several positions are provided for the rollers to accommodate different specimen sizes or angle of contact β.

Ensuring the guidance of the rack

For the test to succeed, it is necessary to ensure that the rackŠs translation direction is Ąxed and does not tilt. It is, therefore, necessary to add additional support points. The supports to be added are summarised in Figure 6.6 and detailed below.

Guiding the rack

It is necessary to Ąx the translation direction of the rack.

The pinion applies a load normal to the travel direction. It was therefore decided to place three lateral rollers to guide the rack. One is placed in front of the pinion to compensate for the load applied to the rack. A groove was machined in the middle of Figure 6.5 Ű Part of the test bench making the two other contact points Figure 6.6 Ű Scheme of the different supports to be placed on the test bench the rack teeth to ensure contact with the third roller. In addition, to limit the assembly hyperstatism, the chosen lateral rollers are curved to have contacts point and not lines.

The guiding rollers are mounted on a square steel proĄle. The rollers supporting the rack are mounted on another part to limit the length of their support axis. It also facilitates the assembly of the test bench on the testing machine and the orientation adjustment. However, they are positioned with respect to each other using centring pins and held by screws.

Preventing the rack from tilting

As the rack is 1 metre long, it is necessary to prevent it from tipping during the test because its centre of gravity travelling beyond the support of the three central rollers. For this purpose, two additional rollers were placed under the rack. These two rollers are 360 mm apart, which allows the rack to have a total travel of 630 mm.

However, this does not entirely prevent tilting when the centre of gravity of the rack is no longer located between the rollers. Two more rollers have been added above the rack to avoid this problem. To avoid hyperstatic mounting, the axles of these rollers are placed in oblong holes and pressed against the rack with springs. Thus, by adjusting the elongation of the springs, it is possible to adjust the applied preload.

Note:

In order to limit the risk of falling, the most cumbersome part Ű the Ćat track Ű is attached to the lower part of the machine.

Control of the rack position

The control of the rack is ensured by a stepper motor. The rack support is placed on the test machineŠs cylinder and will therefore be mobile during the test. The motor must then be positioned somewhere so that it will not collide with parts of the machine. It was thus placed above the proĄle.

A control panel using an Arduino Uno card has been manufactured. The position can then be monitored manually roughly. A BNC-type connector is also available to possibly trigger a known Ąxed displacement of the rack. Finally, if necessary, a "Python" mode is provided to do more complex displacement proĄles. More details on the control panel are given in Appendix E.

Final test bench

A CAD and a photo of the Ąnal test bench are given in Figure 6.7. Test bench additional Ągures and plans are provided in the Appendix E. No particular trouble were found during its use. The only inconvenient was the possible slight out-ofplane motion that will be discussed later.

Method

The test bench has been designed and manufactured. However, some questions are still opened. First, the relevant patterns to be tested should be chosen as well as their geometric parameters. These ones should be adapted to the manufacturing processes, and the phenomenon intended to be observed. Some questions absent for the numerical work should now be addressed, such as: Ů DeĄning the test protocol; Ů Selecting the kinematic measurement and post-treatment methods; Ů Retrieving the actual boundary conditions to be used in the FEMU from the experiments.

Thus, this section aims to answer these questions.

Pattern considered

As the symmetry class seems to have no signiĄcant inĆuence on the macroscopic mechanical behaviours, it was decided to focus only on classical Penrose patterns: It is desired to have the greatest possible slenderness while keeping a pattern density close to those of the samples studied in the chapter 5. It was thus decided to manufacture the specimens using laser cutting. It allows obtaining smaller beamsŠ thickness than 3D printing. Moreover, additive manufacturing induces high porosities inside the constitutive material, which thus leads to additional discrepancies with respect to the numerical work. 3D printing can also lead to weak or absent links between grains or Ąlaments 6 , so the stiffness of the constitutive material is lower than the bulky one, an issue absent with laser cutting.

Q D 10 r,t , Q D 10
The samples are cut in 10 mm thick PMMA plates. The PMMA is supposed to be a brittle elastic material. It thus prevents the occurrence of plastic behaviours that could disturb the results, and a local failure is easier to detect.

The minimum thickness achievable that prevents almost all beams from buckling is around 0.7 and 0.8 mm. The specimen diameters were thus chosen equal to 224.8 mm 7 6. Mainly in case of 3D printers using wire deposit. 7. This value also follows a calculation error to obtain a value of β, i.e. the angle between the lower twin contact points and the center of the sample, equal to 50 • . Because of this error, the angle β for the One objective of this part is to identify a Cosserat behaviour. However, the Cosserat contribution in the Q D 10 r behaviour decreases when the slenderness decreases too, and the tests on these specimens is actually equal to 42 • . However, as seen in chapter 3, this error is supposed to have little consequence.

8. i.e. without taking into account the beam thicknesses. 9. The ratio between the specimen characteristic size and the average beam length.

intrinsic thickness of the beams leads to an apparent slenderness even smaller. Thus, it was decided to test another specimen with a bigger diameter, a smaller density pattern, and slender beams. This pattern is given in Figure 6.9d. Its diameter is equal to 250 mm10 , the theoretical beam thicknesses are kept equal to 0.8 mm, and so the associated slenderness 10.6. The actual mean thickness measured is equal to 0.72 mm, resulting in a slenderness of 11.8.

Note: 0.8 mm is only a desired mean value of the thickness. The manufacturing process induced a high variability in the beam thickness distribution. The thickness can indeed vary by ±0.15 mm. Moreover, because of the laser deviation, the beam sections have a trapezoidal shape instead of a square one. In addition, the thickness of the same PMMA plate also varies by ±0.5 mm. Those may therefore be the source of differences from the numerical results.

Finally, on the numerical identiĄcations, the specimen had not an external border to avoid the emergence of a potential "chain effect": it could constrain the sample kinematics, leading to a modiĄcation of the global behaviour and thus disturbing the identiĄcation. However, for the experimental test, the absence of an external border can overload the external beams and break them. This phenomenon is ampliĄed by the fact that the specimens need to roll. It was thus decided to put a thin border on the specimenŠs outer diameter Ű the thickness is equal to one of the beams, i.e. 0.8 mmŰ but to cut it regularly to avoid the chain effect (see Figure 6.10).

The geometric and material parameters of the specimens are resumed in the Table 6.1.

Setup

The complete set-up of the mechanical test is shown in Figure 6.11 and Figure 6.12.

The test bench is Ąxed on an MTS hydraulic testing machine. Unfortunately, the load cell available then was one with a capacity of 250 kN. So it was not Ątted for the load range applied in these experiments. The load measurement was yet possible but with higher incertitude levels. One can note that the camera has a very high resolution, allowing to have several pixels in the beam thickness (see Figure 6.13).

Two projectors are used to enlighten the sample from the front. The samples are too big to use telecentric lenses. With a classical lens, the perspective effects cause the out-of-plane thicknesses of the beams to be visible in the pictures, potentially disturbing the post-processing algorithms. Thus, it was decided to put a semi-opaque white panel behind the sample and use a backlighting projector. It provides a uniform background and eliminates perspective effects by saturating white pixels (see Figure 6.14).

Moreover, contrary to telecentric lenses, out-of-plane motions of the sample are noticeable with classical lenses. Thus to limit sensitivity to out-of-plane motions, it was decided to use a 100 mm lens: the specimen being sufficiently big and far from the camera, 1 mm out-of-plane motions are hardly noticeable. The lens characteristics are: Ů Manufacturer: Vieworks Nikon; Eventually, the Ąeld of view (FOV) is 7920×6400 pixels 2 . The parallelism of the cam-eraŠs focal plane array (FPA) and the specimen was ensured using a laser system.

Test protocol

The test protocol can be established now that the test bench and the measurement tools have been introduced. The global procedure is given in Figure 6.15: Ů A Ąrst half loading is performed to stabilise the position of the specimen. Ů The sample is then unloaded until a 15 N load is reached. In fact, a residual load is always maintained to prevent unwanted motions of the sample. As only elastic behaviour is studied, it will not inĆuence the results. The effective load between two photos will be F loaded state -F unloaded state . The unloading state is then reached, and the actuator displacement is stopped. This phase lasts 4 seconds: 1 s of stabilisation and 3 s of measurements. A picture is taken 1.5 s after the end of the stabilisation step. Ů The specimen is loaded using a displacement ramp. The speed is Ąxed to -8 mm/min. The ramp is stopped when the wanted force F max is reached. Then the 4 s loading phase begins: as previously, 1 s of stabilisation, 3 s of measurements, and a picture taken at 2.5 s after the phase starts, i.e. 1.5 s after the end of the stabilisation time. Ů The sample is unloaded until getting a 30 N load. A trigger signal is sent to the rack control box, and the rack does a 3 mm translation. It is essential to have a sufficiently high loading to ensure slip-free rolling but also sufficiently low to prevent the external beams from breaking during the rolling. Ů The sample is again unloaded until 15 N, and the cycle can begin again.

The force measured by the load cell and the displacements of the jack are also measured continuously. The load F max imposed for each specimen are reported in Table 6.2.

F max (N) Average jack displacement (mm) Q D 10 r,t 700 -1.2 Q D 10 kd 275 -0.8 Q D 10 r 200 -1.2 Q D 10 r V2 100 -2.0
Table 6.2 Ű Loadings applied on the samples and associated displacements

The specimens being too big to do a complete rotation, a choice must have been made between keeping the same number of cycles as the numerical study, i.e. 199, or keeping the same angular spacing between two cycles, i.e. 1.81 • . It was initially decided to keep a similar angular spacing, thus leading to 181 cycles 11 , and so a displacement of the rack of 3.5 mm. However, the addition of end-of-travel sensors has reduced the initially 630 mm travel distance of the rack by 20 mm. The 181 cycles was thus no longer achievable with the considered spacing. Therefore, it was decided to keep 181 cycles and reduce the rack travel to keep a sufficiently high number of cycles. The rack displacement was thus Ąxed to 3 mm per cycle. The total angular stroke of specimens with a diameter equal to 224.8 mm is equal to 275 • . For comparison, it was decided to keep the same number of cycle for the bigger specimens. The total angular stroke is thus equal to 248 • for the specimens with a diameter equal to 250 mm. 11. As in chapter 5 a prime number was selected

Full-Ąeld measurement

It was decided to measure the full Ąelds of the kinematic variables using a Digital Image Correlation method (DIC). The general principle of this method is Ąrst introduce, then a modiĄed version of this method, adapted to beam kinematics, is presented DIC principle [START_REF] Sutton | Determination of displacements using an improved digital correlation method[END_REF], Chu et al., 1985, Sutton et al., 2009] The DIC is based on the idea of optical Ćow. Let us consider a solid surface with a speckle pattern on it. A Ąrst reference picture is taken, called f . The solid is deformed, and another picture is taken, called g. The pattern is supposed to be passively advected by the supporting solid, and the grey levels associated with the speckle are conserved. This conservation of the grey level at any pixel location x can then be written as:

f (x) = g(x + u(x)) (6.1)
with u the displacement vector in this case, but the DOF vector can be used.

Because the problem has only one equation for at least two unknowns, it is ill-posed. In addition, because of the acquisition noise, the conservation law is never strictly satis-Ąed. The correlation procedure is then resolved on a domain with more than one pixel. Generally, the resolution of the DIC problem consists in a least square minimisation over a domain Ω:

min u∈U adm C(u) with C(u) = Ω [f (x) -g(x + u(x))] 2 dx (6.2)
The displacement Ąeld being interpolated as;

u(x) = n N n (x) ¶U n ♢ = [N(x)] ¶U ♢ (6.3)
Where n is the number of nodes of the domain, N n (x) are chosen shape functions and ¶U n ♢ the DOF of the domain. The number of unknowns is then reduced. C must then be minimised with respect to the unknown ¶U ♢.

The problem being non-linear, a Gauss-Newton iterative procedure is usually used for the minimisation problem [START_REF] Passieux | Classic and inverse compositional gauss-newton in global DIC[END_REF]. Let u k be the DOF vector at the iteration k:

u k = u k-1 + δu k (6.4)
with:

δu k (x) = [N(x)] ¶δU ♢ k (6.5)
and with ¶δU ♢ the unknown increment of the DOF. By assuming small increments of the solution, a Ąrst order Taylor expansion is used to linearize C:

g(x + u k ) = g(x + u k-1 + δu k ) ≈ g(x + u k-1 ) + δu k • ∇g(x + u k-1 ) (6.6)
with ∇• the gradient of the quantity •.

The pictures being discrete by nature, it is composed of a Ąnite number of pixels, thus the cost can be approximated by:

C ≈ x,y f (x) -g (x + u k-1 ) -δu k • ∇g (x + u k-1 ) 2 (6.7)
∇g can be replace by ∇f : it can affect the convergence speed as the search direction is not recalculated to be optimised at each iteration, but, the gradient computation being a time-consuming operation, it allows for computing it only once at initialisation. So, one should solves:

∂C ∂U ≈ x,y [N(x)]∇f (x) • [N(x)]∇f (x) T ¶δU ♢ k (6.8) - x,y f (x) -g (x + u k-1 ) • [N(x)]∇f (x) = 0
This equation can thus be put in the form:

[M] ¶δU ♢ k = b (6.9)

and thus be resolved at each iteration. Usually, in DIC, the stopping criterion of the algorithm is based on the stagnation of the displacement Ąeld. The iterations stop when the following criterion is lower than a chosen value ϵ [START_REF] Passieux | Classic and inverse compositional gauss-newton in global DIC[END_REF]:

∥δu k ∥ ∥u k-1 ∥ < ϵ (6.10)
This method is well adapted to measure continuum displacement Ąelds. However, as for the numerical study, we would like to obtain all the kinematic Ąelds of the beam model directly instead of reconstructing the rotation Ąeld from the measured displacement Ąelds (see section 3.3 and subsection 5.3.3). It was thus decided to use a beam-based DIC method.

Beam-based DIC [START_REF] Hild | Displacement measurement technique for beam kinematics[END_REF], Leplay et al., 2010] Using a beam-based DIC has several assets. First, it provides directly the kinematic Ąelds of the beam model needed for the Cosserat identiĄcation. In particular, the rotation Ąeld does not need to be reconstructed using the displacement Ąeld. Then, when dealing with lattices, the method is more robust as one needs only a few pixels in the beam thickness. Finally, the procedure is faster than using a Ąne triangular mesh in the whole structure 12 . Figure 6.16 Ű Beam degrees of freedom The beam-based DIC keeps all the principles of the classical method but uses shape functions representative of an Euler-Bernoulli beam kinematics. Let us consider the parameterisation in Figure 6.16. For the record, the kinematic relations associated with an Euler-Bernoulli assumption are the following: 6.11) 12. However, it is slower than using a coarse mesh ignoring the cellular structure of the lattice.

         u =   u(x)-yϕ(x) v(x)   ϕ = dv dx (
Considering that u and v can be written:

u = [N 1 N 2 ]    u 1 u 2    Ω b , v = [N 3 N 4 N 5 N 6 ]                v 1 v 2 ϕ 1 ϕ 2                Ω b
(6.12) with:

                                 N 1 = 1 -a N 2 = a N 3 = 1 -3a 2 + 2a 3 N 4 = 3a 2 -2a 3 N 5 = L(a -2a 2 + a 3 ) N 6 = L(-a 2 + a 3 ) (6.13)
and a = x L and Ω b is the bounding box of the beam.

So, the displacement Ąeld u can then be expressed as: (6.14) with:

u = [N(x)] ¶U ♢
Ů ¶U ♢ = [u 1 u 2 v 1 v 2 ϕ 1 ϕ 2 ] T : the vector containing the beam DOF; Ů [N(x)]: the shape function matrix, its form being:

[N(x)] =   N 1 N 2 -y ∂N 3 ∂x -y ∂N 4 ∂x -y ∂N 5 ∂x -y ∂N 6 ∂x 0 0 N 3 N 4 N 5 N 6   Ω b (6.15)
This shape function matrix is thus used in the beam-based DIC procedure.

Practical procedure [Seghir et al., 2018b]

A modiĄed version of the DIC software UFreckels [Réthoré, 2018] was used. The pro-cedureŠs main steps are given in Figure 6.17.

The mesoscopic mesh of the lattice must be provided. This mesh is Ąrst positioned, oriented and inĆated to correspond to the latticeŠs dimensions, orientation and location on Figure 6.17 Ű Beam DIC procedure the reference picture using a global Virtual Image Correlation method (VIC) [Réthoré andFrançois, 2014, Lachambre et al., 2015]. This method is based on the DIC principle, but the reference image is here compared with a virtual image of the lattice. A virtual image is created from the beam mesh with a white background, the beams are represented in black, and shading is used to make the transition between the background and the beams (see Figure 6.18c). The image correlation method is used to Ąnd the translation, rotation, and dilation to be applied to the virtual image to Ąt perfectly with the reference image (see Figure 6.18b). After the lattice mesh is positioned on the image, the beam DIC analysis has to be initialized. A classical DIC analysis is performed between the image state (F ≈ F max N ) for the same orientation i. A regular square mesh is used. For this work, Ąve mesh scales were used13 and the size of the Ąnal elements is 100×100 pixels 2 . This step gives a Ąrst solution for the displacement Ąelds. This solution is then projected on the lattice mesh to use it as an initial solution for the beam-DIC procedure.

This procedure is done for every loading cycle i.

The different Ąelds being extracted, one can post-process them, in particular, retrieve the averaged Ąelds and the boundary conditions needed for the FEMU identiĄcation.

Obtaining the reference Ąeld and boundary conditions

When the beam-DIC procedures have been performed for the 181 loadings, the reference Ąeld used for the FEMU identiĄcation can be obtained.

The results issued from the DIC are in pixels. The Ąrst step is to convert them into millimetres and remove the rigid body motions (RBM). After the scaling operation, the measured displacement Ąeld should be projected on a Ąeld with only RBM kinematics. Let us call Q the following matrix:

Q =   ¶1♢ ¶0♢ - ¶y♢ ¶0♢ ¶1♢ ¶x♢   (6.16)
with ¶x♢ and ¶y♢ the vectors containing respectively the N node abscissas and ordinates, ¶1♢ the N×1 unity vector and ¶0♢ the N×1 null vector. The RBM displacements are thus estimated using: 

   U RBM x U RBM y    = Q •   Q -1 •    U DIC x U DIC y      (6.17
   U ✘ ✘ ✘ RBM x U ✘ ✘ ✘ RBM y    =    U DIC x -U RBM x U DIC y -U RBM y    (6.18)
For the rotation Ąeld, the RBM are removed by computing the mean value of the Ąeld and subtracting it. Example of Ąelds with and without RBM are given in Figure 6.19.

For each loading, the location of the contact point are identiĄed by Ąnding the three spots where the norm of the displacement Ąeld is the highest. All the nodes in a radius equal to 2.5 times the average beam length around these contact points are selected and their displacements stored (see Figure 6.20). They will be used to apply the experimental boundary conditions for each loading simulation during the FEMU identiĄcation instead of using the averaged ones. We thus once again ensure to have minimum bias between the Finally, the reference Ąeld is obtained using the same averaging procedure as in chapter 5. Example of reference Ąelds is given in Figure 6.21. The reference Ąelds being computed and the boundary conditions extracted, one can proceed with the FEMU identiĄcation.

FEMU identiĄcation procedure

A summary of the complete post-processing procedure is given in Figure 6.22. Table 6.3 Ű Initial parameter sets used for the FEMU

The boundary conditions are retrieved for each orientation i. Let u i BC the boundary conditions of the loading cycle i. u i BC is used to perform the 2D continuum FEM simulation for the orientation i. This operation is done for every orientation. All the Ąelds obtained are used to extract a mean response in the same way it is done for the beam reference Ąelds14 . The reference and simulated Ąelds are therefore post-treated in the same way, the boundary conditions are similar, thus ensuring that the biases are limited. The reference and simulated averaged Ąelds are then compared using the cost function. One has next the classical steps of the FEMU identiĄcation.

For the experimental identiĄcation, the nodes belonging to the specimen border and used for applying the boundary conditions are not taken into account in the cost functions. In fact, one can notably see in Figure 6.19 that nodes on the borders can be a source of errors.

The initial parameter sets that has been used for the identiĄcations are given in the Table 6.3.

Results

In this section, the representativeness of the mesoscopic model is investigated and the results of the experimental identiĄcation are presented. Finally the inĆuence of the measurement noise is analysed.

Representativeness of the mesoscopic model

First, we wanted to ensure that the mesoscopic model used in chapter 5 effectively represents the specimen behaviours, so we can expect to identify Cosserat constitutive Figure 6.23 Ű Difference in apparent slenderness between the beam model and the actual lattice.

parameters.

Before comparing the experiments with the numerical results, the simulationŠs parameters must be checked. The specimen thickness and the Young modulus can easily be measured. However, it is not the case for the beam thicknesses. In fact, as mentioned earlier, the actual beam sections are trapezoidal, and there is an extensive variability of thickness between the beams. Moreover, the mesoscopic model considers the nodes as points, which is not the case because of the beam thickness. The apparent slenderness is then smaller (see Figure 6.23).

As the beam lengths are Ąxed, it was thus decided to identify the apparent beam thickness using a FEMU method. The same procedure as the one in Figure 6.22 was used. The only difference is that the simulations were performed using the beam mesh instead of the 2D continuum one and the parameter to be adjusted is the beam thickness.

Note:

The same thickness is attributed to each beam. One thus sought to identify the apparent mean value.

For each specimen the YoungŠs modulus has been Ąxed to 3.3 GPa and the specimen thickness corresponds to the one in Table 6.1. The identiĄed apparent thickness and the associated slenderness are given in The measured and apparent thicknesses are used to perform beam simulations which are compared with the experimental Ąelds. The simulations are done for each orientation of the specimens, and the Ąelds global errors are computed (see Equation 5.47). Like in chapter 5, the nodes on the specimen borders and those used to apply the boundary conditions are excluded from the computation of the global error15 . However, in this chapter the zone used to apply the boundary conditions has a radius equal to 2.5L and not 2L as in chapter 5 to ensure to have enough selected nodes. Moreover, the pattern density is smaller than the ones in the numerical studies. So, it was decided to not extend the exclusion zone here in order to not encroach too much on the inside of the specimen. The global error values with the specimen orientations are given in Table 6.5. When the global rotation errors are similar, the global displacement Ąeld error is at least 1.6 bigger when using the measured thickness than when using the identiĄed one. Figure 6.24 and Figure 6.25 give an example of a comparison of the experimental and simulated Ąelds respectively with the measured and identiĄed thickness for an arbitrary loading cycle of the second Q D 10 r sample 16 . One can see that the measured thickness leads to completely wrong displacement Ąelds, with local errors up to 30 %. Using the identi-Ąed thickness allows the simulated displacement Ąelds to Ąt the experimental ones: the maximum local error is divided by three. Then, one can see that the local rotation errors are more distributed in the sample with the identiĄed thickness than with the measured one, where areas that concentrate the errors can be found. So the identiĄed thickness also seems to better represent this Ąeld.

Thickness Q D 10 r,t Q D 10 kd Q D 10 r Q D 10 r V2 E ♣♣u♣
One can see that the adjusted mesoscopic model, where no defect is introduce, succeeds in describing the kinematics observed during the experiment despite the many defects of the specimens. Knowing that the mesoscopic models efficiently represent the lattice behaviours, one can expect that the experimental identiĄcations lead to similar results as in chapter 5.

Note:

It is worth noting that the local errors of the rotation Ąeld on the specimenŠs external border are very high. The origin of this phenomenon can be multiple. First, borders can be trickier to measure, potentially leading to higher errors. Then, the beam mesh has some very short beams on the borders, possibly leading to numerical errors. Finally, some nodes on the boundaries are linked even if the external border is regularly cut. However, these external links are not present in the mesh used for the DIC (see Figure 6.23). Thus, the nodes cannot interact as they are supposed to. It thus leads to modelisation errors and, thus, signiĄcant errors in the concerned zones. Another study must be done to conĄrm this theory and to see if modelling the border can help to reduce the errors between the numerical twin and the experiments even more.

16. The averaging procedure is used for the identiĄcation, but in those Ągures the simulated Ąelds compared to the experimental ones are those obtained for a speciĄc orientation i, so not averaged pattern for an arbitrary loading cycle (91), the simulations using the identiĄed beam thickness. The white dots correspond to the nodes excluded from the global errors computation.

Completely stretching dominated pattern -

Q D 10 r,t
We consider here the results of the Q D 10 r,t pattern. The beam-DIC measurements were successful except for one loading cycle on 181, where the mesh positioning failed. This failed measurement was excluded from the Ąeld-averaging step.

The Table 6 One can see that the same conclusion can be made as in chapter 5. The Cauchy iden-tiĄcation converges very well and leads to small global and local errors (see Figure 6.26). The global mechanical behaviour is described correctly.

On the contrary, with Cosserat, convergence is difficult. The global displacement error is 2.7 times higher than with Cauchy, and the global rotation Ąeld is 27 times higher. Actually, one can see in Figure 6.27 that Cosserat converged toward a non-physical solution with fast variations of the Ąelds. These fast Ćuctuations seems to occur when combining high values of G c and small values of l17 (see Figure 6.27, Table 6.7, Table 6.8 and Figure 6.27). This point should be looked at in more detail.

Thus, as yet suggested by the numerical study, Cauchy better suits the mechanical behaviour of this stretching-dominated pattern. Some differences can be observed between the experimental and numerical studies concerning the order of magnitude of the parameters identiĄed. In chapter 5, the stretchingdominated pattern had a PoissonŠs ratio close to 0.3-0.4. Here the value found is equal to 0.7. However, the apparent slenderness is equal to 5.3 when the minimum one was 10 in the numerical study. Maybe in that slender range, the PoissonŠs ratio is no longer constant with the slenderness. Further studies will need to be done to clarify this point. Then, one can see that the errors at the nodes where a displacement is imposed (lower twin contacts) are not null as one can think they are supposed to. This phenomenon occurs for all the patterns and was absent in the numerical study (see example Figure 6.26). It might be due to the averaging process: not only the nodes in the area where the displacements are imposed are used to compute the mean value of the Ąelds in these zones. Some "free" nodes can also be selected, thus preventing the errors in these areas from being completely zero. Moreover, the high errors of the bordersŠ short beams can signiĄcantly impact the average value. If so, this problem might be solved by reducing the averaging zone size or increasing the area used to select the nodes with imposed DOF. This point needs to be veriĄed too.

Varying dominance pattern -

Q D 10 kd
Here will be presented the results concerning the Q D 10 kd pattern. The post-processing of this pattern was more laborious. In fact, the positioning of the mesh step failed for six loadings, and the DIC did not converge toward a physical solution for the 17 last ones, maybe due to the occurrence of a problem during the test. All these failed post-processing were excluded for obtaining the averaged reference Ąelds.

The Table 6 The conclusions made for the stretching-dominated pattern are still valid for the varying-dominance pattern. The global and local Cauchy Ąeld errors are low (see Figure 6.28), while the convergence with Cosserat is difficult and toward a non-physical solution (see Figure 6.31). It is worth noting that for the considered slenderness the pattern is stretching-dominated. kd Also, as the Q D 10 r,t specimen, the identiĄed PoissonŠs ratio is higher than expected, but the order of magnitude of the shear modulus is good. The same further studies as the previous section should be made.

So, the results of the numerical study are globally validated: a Cauchy model suits this varying dominance pattern better in the case it is stretching-dominated. The Table 6 In that case, the Cosserat identiĄcation also converges toward an non-physical solution (see Figure 6.31). The Cauchy errors remain lower once again (see Figure 6.30), and the Ąelds are more realistic, less scattered close to the boundaries. Cauchy is thus better suited.

Completely bending dominated patterns -

Q D 10
Given that it was shown in the numerical study that the Cosserat contribution increases with the slenderness and that the apparent one of this pattern is equal to 6, these results seem consistent: the slenderness must be sufficiently high to activate the "Cosserat mechanisms". 6.33), and the identiĄcation can then be already called a success. When looking at the local errors, one can see that the Cosserat model succeed in representing the displacement Ąeld in the whole specimen contrary to Cauchy. However, one can see in Figure 6.32 that what is lacking at Cosserat is the description of the high rotation gradients. Other than that, the local rotation errors are pretty similar between Cauchy and Cosserat. This observation is the same as the one in the numerical study. As mentioned earlier, this is because the characteristic length identiĄed is large, thus smoothing the gradients. Letting the rotation DOF completely free allows the continuous medium to impose its kinematics completely. Imposing the rotation values at the contact points could help to add infor-mation linked to the discrete nature of the lattice and reduce the characteristic length identiĄed. However, the question is whether to impose discrete or averaged reference values since the discrete ones are scattered and have high errors close to the border. This point should be investigated to analyse all the consequences of these types of boundary conditions. So, as for the numerical study, for slenderness higher than 10, a Cosserat medium seems better suited for this bending-dominated pattern. Finally, the order of magnitude of the identiĄed parameters is the one expected.

Note: Some high errors can be observed where the force is imposed. This may be due to the fact that the effort proĄle imposed does not correspond to reality. What could be done is to impose the measured displacements and modulate their amplitude so that the resultant of the forces is equal to the measured force instead of directly imposing the force with an arbitrary proĄle. This solution can work because only linear elastic behaviour is considered.

A second test was performed on the same specimen to verify the robustness of the identiĄcation: the specimen was completely removed and reinstalled with a different initial angular orientation, and brighter lighting was used. The global results are given in Table 6.10.

One can see that the values identiĄed in the second test are close to the Ąrst. The relative difference on the PoissonŠs ratio is equal to 1.1 %, on the Cosserat couple modulus G c to 15.3 % and on the characteristic lenght to 8.3 %. The shear modules are identical. These differences, therefore, remain reasonable. 
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Finally, we wanted to compare the experimental identiĄcation to the one of a numerical twin using the identiĄed beam thickness and the experimental geometries and boundary conditions. The results are given in Table 6.11. The relative differences are between 1.2 to 67.4%. These differences can mainly be explained by the geometry defects and a moderate sensitivity to G c . However, one can see that the order of magnitude of the values is the good one. Now, the last question to be answered is the inĆuence of the measurement uncertainties on the results.
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Estimation of the inĆuence of measurement uncertainties

When dealing with experimental work, estimating the inĆuence of the measurement uncertainties on the parameter values identiĄed is essential. In fact, there are uncertainties in the load applied, and there is noise in the measured displacement Ąelds.

The load applied F y being the difference between the load applied in the deformed state F loaded and the one applied in the unloaded state F unloaded , the expanded uncertainty

∆F is: ∆F = 2 u B (F loaded ) 2 + u B (F unloaded ) 2 (6.19) with: u B (F loaded ) = u B (F unloaded ) = r √ 3 (6.20)
r being the resolution of the load cell.

In our case r = 3 N, so ∆F is equal to 4.9 N. The experimental and numerical identiĄcations of the big Q D 10 r18 specimen (V2) were performed again using the lower limit19 of the measured loads:

F y = F i + ∆F (6.21)
with F i the load measured at the cycle i. The results are given in Table 6.12. One can see that logically the uncertainty on the load measurement has practically no inĆuence on the PoissonŠs ratio and the Cosserat characteristic length, and the relative differences for the two other parameters remain under 10 % in the experimental and numerical cases. Then, as expected the shear and Cosserat couple moduli decrease with the absolute value of the applied load.

An estimation of the inĆuence of the measurement noise of the kinematic Ąelds was also made. 25 static pictures of the sample were taken, and a DIC measurement was done. Figure 6.34 gives an example of the measured Ąelds which represents the noise level. The standard deviation of the kinematic Ąelds was estimated for each picture, and the maximum value found was used to simulate it (see Figure 6.34). The aspect of the rotational noise Ąeld is retrieved but is one order of magnitude higher. It can be explained by the high noise on the boundaries, increasing the standard deviation. However, it is not a problem as it thus provides an upper limit. The experimental displacement noise does not look like white noise but more like a Ćux that changes for each picture. Nevertheless, to have a Ąrst idea, it was decided to model it by white Gaussian noise with the same standard deviation. In any case, it is worth noting that the noise amplitudes are at least lower by two orders of magnitude compared to the measured Ąelds (see Figure 6.32).

A different random noise was added to the simulated reference Ąelds of the numerical twin for each orientation of the specimen, so before the averaging procedure. The resulting average Ąeld is given in Figure 6.35. One can see that the averaging process decreases the noise amplitude by at least one order of magnitude, resulting in an insigniĄcant variation in the identiĄed parameter values (see Table 6.12). Thus, these experimentsŠ primary sources of incertitude are the incertitude on the load measurement, at least for low load levels, and the differences in boundary conditions between two tests (see Table 6.10). In any case, the order of magnitude of uncertainties remains reasonable.

Conclusion

This section aimed to validate the numerical results of chapter 5. To do so, a test bench was designed, and several tests were performed on well-chosen specimens. A beam-based DIC method was used to measure the beam-Ąeld kinematics of the specimens. Then the FEMU procedure implemented in chapter 5 was used to identify the specimensŠ Cauchy and Cosserat apparent behaviours.

The quasi-majority of the numerical results were validated. For stretching-dominated and varying dominance patterns, a Cauchy model is better adapted to describe the macroscopic behaviour of the structure. A Cauchy model remains sufficient for the bendingdominated lattices if the beam slenderness is small enough. Otherwise, a Cosserat model is more adapted. Finally, in this chapter, it was shown that it is possible to experimentally identify an elastic Cosserat behaviour in a fairly robust manner.

This study left many open questions, such as the inĆuence of boundary conditions on the identiĄed parameters or the necessity to model the external border beam or not. Despite that, the identiĄcation method can be validated, and some perspectives can be identiĄed, such as studying the pattern density inĆuence on the overall behaviour of the lattices or investigating the chain effect. Moreover, one can compare the behaviour of the quasi-periodic lattices with their approximants. Finally, a longer-term perspective would be to study the non-linear behaviour of these structures in more details and experimentally.

CONCLUSION

Current societal challenges are pushing manufacturers to use materials with increasingly antagonistic mechanical properties. For example, one wants increasingly light materials with the greatest possible stiffness. In this situation, architectured materials, especially lattice structures, can make an essential contribution. In particular, quasi-periodic materials, structures combining local disorder and long-range order, seems to be particularly interesting as they combine the assets of periodic and aperiodic structures. In fact, they are deterministic, they can have an isotropic behaviour, and they exhibit better toughness than periodic A.M, at least for the ones having a beam-lattice structure.

Although it seems interesting, the study of their mechanical behaviour is still in its infancy. The few studies dealing with it chose an arbitrary structure without considering the potential inĆuence of the elementary pattern shape. Nevertheless, this can inĆuence the local deformation mechanisms, which in turn will inĆuence the overall behaviour of the structure.

In any case, if one day one wants to generalise this kind of lattice in the industry, one should be able to perform fast numerical simulations. It means to be able to identify a homogeneous equivalent medium. As lattice type A.M. manufacturing processes introduced many defects, this identiĄcation should not only be possible numerically, it must also be carried out experimentally.

The aim of this thesis was thus to study the effective elasticity of quasi-periodic lattices from its microscopic foundations, to understand and study the inĆuence of the elementary pattern on macroscopic mechanical behaviour, and then to validate experimentally an identiĄcation procedure of their apparent elastic properties.

After providing the general state-of-the-art on how to model and characterise the behaviour of A.M. and a speciĄc presentation of quasi-periodic structures, we Ąrst presented the development of a test suited to the study of the mechanical behaviour of lattices, in particular the quasi-periodic ones. This mechanical test had to be: Ů Adapted to the cellular structure of the materials considered. Their discrete structures are associated with local variations of their kinematic Ąelds, which a ho-mogeneous continuum model cannot model and thus disturb the identiĄcation of their associated constitutive parameters. The test should therefore allow us to erase those local Ćuctuations by determining an average response of the lattice to the loading considered with respect to the pattern orientation; Ů Adapted to the constitutive model to be identiĄed. It was shown that the classical Cauchy continuum could be insufficient to describe the macroscopic behaviour of lattices and that a generalised continuum might be needed. The identiĄcation of such a model needs rich solicitations leading to large stress gradient zones; Ů Realistic. It is desired to perform experimental validations. Thus, a test bench must be manufacturable, and the data needed for the studies must be measurable.

One test that met these requirements and that was chosen was a rolling three-point ring compression test. It was used as the basis of all the studies conducted in this PhD.

The Ąrst consisted of analysing the patternŠs inĆuence on the structureŠs local deformation mechanisms. The type of energy stored was analysed depending on the elementary pattern shapes, the symmetry class of the structure and the slenderness of the constitutive beams.

It was shown that the elementary pattern shape strongly inĆuences the way to store energy when the symmetry class has none. The patterns can be classiĄed into three categories:

Ů Completely stretching-dominated: the material is stretching-dominated no matter the slenderness of its beams, and almost all of them deform in stretching; Ů Completely bending-dominated: the material is bending-dominated no matter the slenderness of its beams, and almost all of them deform in bending; Ů Varying dominance: the type of dominance varies with the slenderness, and there may not be a common type of deformation of their beams.

Some variations in the energy distribution can be observed between the periodic and quasi-periodic patterns in the case of always bending-dominated and varying dominance behaviours for high slenderness. Quasi-periodic lattices distribute the strain energy better, potentially making them better strain absorbers and having a better tenacity. In the case of bending-dominated patterns, this difference was observable with the homemade test and not with the classical tensile test. So, the selected test can activate some deformation mechanisms that a classical tensile test cannot. Thus, it conĄrms that it is more relevant for characterising the mechanical behaviour of lattices.

Knowing that different deformation mechanisms can be observed, it was decided to study their inĆuence on the global effective elastic behaviour. The Cauchy continuum being potentially insufficient to describe the macroscopic behaviour of lattices, it was decided to identify the constitutive elastic parameters of both the Cauchy and Cosserat models to determine which one was the most adapted to the considered patterns. With that goal in mind, a FEMU identiĄcation procedure was implemented, adapted to the uncommon architecture of these materials and using the rolling three-point ring compression test. The test was performed for several sample orientations. Averaged kinematic Ąelds were computed from it and used as reference Ąelds in the FEMU. First, the identiĄcation was performed using a numerical twin.

This numerical study showed that the model that describes the best lattices macroscopic behaviour depends on the energetic dominance type of the pattern considered. A Cauchy model is more adapted for periodic patterns no matter their dominance type, quasi-periodic stretching-dominated patterns and those with varying dominance. On the contrary, the bending-dominated patterns need a Cosserat model.

The last work of this PhD was to validate the previous results and the method experimentally. In fact, we had to verify if these phenomena were still present despite the geometric defects and if the method was robust enough with regard to all the perturbations intrinsic to experimental testing, such as measurement noise. An experimental set-up was thus designed, and tests were performed on well-chosen specimens. A beam-based DIC method was used to measure the kinematic Ąelds required for the FEMU procedure.

This study validated most of the numerical results: for stretching-dominated and varying dominance patterns, a Cauchy model is better adapted to describe the macroscopic behaviour of lattices. For the bending-dominated quasi-periodic ones, it is a Cosserat model, but only if the slenderness is high enough. Otherwise, a Cauchy model remains sufficient. Finally, it was shown that it is possible to experimentally identify an elastic Cosserat behaviour.

PERSPECTIVES

This work has left many questions open, most related to the identiĄcation procedure.

The Ąrst questions concern the boundary condition used. In the FEMU identiĄcation, it was decided to impose a force with an arbitrary proĄle, not necessarily representative of the actual one. Since linear elastic behaviour is considered, one could see whether imposing a displacement whose amplitude is modulated to obtain the actual resultant load could be better.

Then, no rotational degrees of freedom were imposed, leading to identifying high values of the Cosserat characteristic length, which fails to describe the high gradients of the rotation Ąelds. Thus, the question is whether imposing the measured rotations could help solve this issue, the following question being whether one should impose the discrete or averaged values of the measured Ąeld, as the discrete one is very scattered and with high errors on the external specimen border.

Another question is linked with this last point: are the high rotation errors on the borders linked to the fact that the external border was not modelled in the mesh used for the DIC measurements?

Then, it was shown that the Cosserat identiĄcation failed to identify the Cauchy particular cases. The reason for this failure must be investigated more. It was also deduced from the results that a Cosserat model should be favoured compared to a Koiter one because of the values identiĄed. However, the question of whether particular cases could be identiĄed with a generalised model when considering numerical identiĄcation must be raised. For example, are there some locking phenomena that prevent it?

The inĆuence of the lever arm used in the FEMU cost function in the Cosserat case and the size of the averaging or boundary conditions zones on the constitutive parameters identiĄed must be investigated more.

Finally, it was shown that strain gradient models described better the behaviour of some periodic lattices than Cauchy. So, is it also the case for all the patterns where the Cosserat identiĄcation failed? Then, could the procedure used here be adapted to the identiĄcations of the Strain Gradient model? This list is not exhaustive, but it does help to identify potential prospects for this work. Several perspectives on this work can be envisaged.

The most immediate ones involve investigating the above open questions, such as studying the chain effect in more detail or the latticesŠ elastic behaviour for very short slenderness. Then, the inĆuence of the pattern density on global behaviour must be analysed. One may notably try to Ąnd the size of the Representative Volume Element.

Another interesting study could be to introduce stiffness variation in a structure by triangulating or not some zones.

The next step is also to investigate dynamic and non-linear behaviours, such as buckling and fracture.

Finally, as it is easier to manufacture periodic structures than quasi-periodic ones, it could be interesting to do this study again but on quasi-periodic approximant and observed how the results are modiĄed.

Generating a Penrose kite & dart type pattern is desired. The elementary tiles used correspond to those in Fig. 2.8a. The number 0 is associated with an acute triangle and 1 with an obtuse triangle. An acute triangle is considered an elementary pattern. The entry lists are, therefore:

X = [x A x B x C ] Y = [y A y B y C ] T = [0] (A.2)

Example

A loop provides the desired N successive cuts. At each stage, all the tiles are examined and subdivided into several smaller tiles. Let us consider tile i. The subdivision steps are as follows:

1. Determining the type of tile from the T list: the i-th component of the list is selected, and the Ągure given will indicate the tile type and, therefore, its number of vertices and the subdivisions to be made on the tile.

2. Selection of the coordinates of the tile vertices considered in the X and Y lists.

3. Computation of the coordinates of the new vertices generated by the subdivision from those of the existing vertices.

4. Updating of the X, Y and T lists by replacing the data of the old tiles with those of the new ones.

Repeat these operations until the desired number of cuts is obtained.

The Ąrst subdivision of the example is considered. The pattern has only one tile in the initial state, so there is no need to iterate on the tiles. Updating the lists X, Y and T is then necessary, paying attention to the order of the vertices:

X = [x A 1 x B 1 x C 1 x A 2 x B 2 x C 2 x α 1 x β 1 x γ 1 ] Y = [y A 1 y B 1 y C 1 y A 2 y B 2 y C 2 y α 1 y β 1 y γ 1 ] T = [0 0 1] (A.4)
Thus (see Fig. 2.8a):

X = [x D x C x A x D x C x E x B x E x D ] Y = [y D y C y A y D y C y E y B y E y D ] T = [0 0 1] (A.5)
4) must be built, in which all the nodes connected by a segment are speciĄed, and thus ultimately gives the different beams that compose the Ąnal structure. B is initially of dimension 2Nx2, with N the Ąnal number of tiles. The Ąrst column contains the number of the Ąrst node of the beam, and the second column the second.

In the example, beams correspond to the AC and CB segments of the tiles. Thus, if we stop the main loop after only one iteration, B will be (see Fig .A.3): 

B =               B 1 C 1 C 1 A 1 B 2 C 2 C 2 A 2 β 1 γ 1 γ 1 α 1               =               C A A D C E E D E D D B               (A.

Example

However, it can be noted that the tiles have vertices and edges in common. It is, therefore, necessary to remove duplicates to be able to carry out our studies afterwards, whether for the vertices or the edges.

In the example, after deleting the duplicates B, X and Y are (see Fig.A.4): 

B =            C A A D C E E D D B            X = [x A x B x C x D x E ] Y = [y A y B y C y D y E ]

Example

The last step is to set the structure to the desired dimensions. To do this, multiply the coordinates of the nodes, i.e. the X and Y lists, by a well-chosen µ coefficient.

A.2 Multi-grid method

The numerical implementation of the multi-grid method will be presented here. This implementation is based on a pragmatic point of view instead of a practical one. Indeed, StampĆiŠs prescriptions indicate that the set of grids creates a mesh and that each element of this mesh corresponds to a vertex. So if two elements have a shared edge, then the vertices generated by them are connected by a straight line of unit length and perpendicular to this edge [StampĆi, 1986, Korepin et al., 1988]. Thus, one can consider that each intersection corresponds to a different tile. The grids to which the intersected lines belong deĄne the type of tile generated: each line deĄnes two of the edges that are parallel to each other and perpendicular to it. Furthermore, as previously mentioned, the edgesŠ lengths are identical if the interline distance is the same for all the grids. Therefore, it is easy to determine the geometry of the tile associated with an intersection point. It is also possible to notice that if two intersection points are adjacent, the associated tiles have a shared edge, orthogonal to the common line forming the intersections. It is then possible to place the tiles correctly with each other. All this is illustrated in Fig. 2.13a.

The Ćowchart associated with the code is given in Ągures A.5, A.6 and A.7.

The code described here only works with regular grids with equal line spacing. Similarly, the angle between each grid is identical and is worth 360 o N , with N the number of grids. Therefore, only two parameters are required to run the generator: Ů γ which corresponds to the list of offsets of each grid from the origin of the coordinate system and must be given in the form :

γ T = [γ 1 γ 2 • • • γ N ] (A.12)
Ů N d which corresponds to the number of lines that compose each grid.

The grid number N is thus directly deducted from the dimension of γ.

To illustrate the point, the case of the multi-grid given in Fig. 2.14b will be studied. In this case, the work is done on four grids, each composed of two straight lines.

The input parameters to be provided are, therefore: α is a coefficient that moves the points away from the origin of the coordinate system. It can be judicious to impose it large enough to ensure that all intersections exist if a dedicated code is used to search for them. In this case, it is still necessary to make it large for the step Determination of the position of the intersections with respect to each other on each straight line. The coefficient ⌊N d /2⌋ centre the grid relatively to the origin of the reference system (with ⌊•⌋ the Ćoor function). (i -1) shifts the lines of the same grid by The intersection Fig. 2.13b is considered. The intersection between three straight lines which will be called l 11 , l 12 and l 13 is visible on the Ągure. The previous step gave three intersections at this location:

γ T = [
Ů Intersection 1 of coordinates I 1 formed by lines l 11 and l 12 . Ů Intersection 2 of coordinates I 2 formed by lines l 11 and l 13 . Ů Intersection 3 of coordinates I 3 formed by lines l 12 and l 31 . The three intersections have coordinates close enough to be considered identical and must be merged. The three previous intersections are deleted and replaced by a single one: the I 1 coordinate intersection formed by the l 11 , l 12 and l 13 lines.

Example

Any duplicate intersections are deleted. The intersections made by the same straight line are then organised with respect to each other. Indeed this step is essential to place the tiles correctly afterwards. For that all the intersections created by a line l ij are located and their distance to the point A ij = (x ij 1 y ij 1 ) is calculated. Each straight lineŠs intersection points are classiĄed from the closest to A ij to the furthest. 

Example

The intersections of the line l 13 will be arranged in the order: 12, 13, 14, 9, 2 and 15.

Knowing the relative positions of the intersection points with each other and the straight lines that form them, all that remains to be known is the type of tile generated by each point. The number of possible shapes is Ąnite. The shape depends solely on the grids to which the lines forming the intersection belong. The Ćowchart of the function giving all the possible types of tiles is given in Fig.A.6. This function creates a database providing for each set of lines the coordinates of the vertices of the generated tile, the associated connectivities and the orientation vectors and direction of the edges.

The Ągures A.9, A.10 and A.11 give all the tiles that can be generated for this example. Knowing the lines generating the intersections makes it possible to associate them with the type of tile they generate. All that remains to be done is to place the tiles. It is directly related to the relative location of the intersections between them. The Ćowchart describing the different tile positioning steps is given in Fig. A.7. It consists of positioning tiles where one neighbour has already been placed until they are all located. The Ąrst tile is placed arbitrarily, then, line by line, the points of intersection are examined, and the tiles are placed one by one. When all line intersections have been processed, the following line is studied. If there are no neighbours, an intersection that has been already processed is searched. The intersections are then dealt with by moving up the line until the problematic one is reached. The matrices X and B, containing respectively the coordinates of the tile nodes and the connectivities, are created and completed each time a tile is placed. Finally, removing the duplicates from the X and B matrices remains.

Crea�on of the 𝑵 dimension network:

Filling in a structure containing the connec�vity of all the nodes in the network: 𝑪. 

E 3 = 1 √ 2 

Generalised Penrose P3 tiling (N even):

The sub-spaces to be used are as follows: .35) And:

E ⊥ = ¶E 1 , E 2 ♢ (A
E ∥ = ¶E 3 , ..., E N ♢ (A.36)
The W cut window associated with the spaces used to generate an Ammann-Beenker type tiling corresponds to a regular octagon, and the one used to generate a Penrose P3 tiling is a rhombic icosahedron (cf 

Example

Another solution has been implemented to overcome the problem: the vertices of a Voronoi cell are projected onto E ∥ and the volume V 1 of the convex envelope associated with the projected points is calculated. The projection of the node which one wishes to know if it is included in W is added to these points. The volume V 2 of the convex envelope is calculated. If V 1 = V 2, then the point is included in W, and if V 1 < V 2, then it is outside it. If the projections of both nodes of an edge are within W, then it can be projected to E ⊥ . This method has a higher calculation cost. However, it is usable whatever the size of E ∥ . Abstract: Architectured materials have received increasing interest over the years, especially by allowing new areas of the Ashby diagrams to be reached. Quasi-periodic lattices combine the advantages of both random and periodic structures: they are deterministic structures, their behaviour is isotropic, and they have better toughness than periodic lattices. However, the study of the mechanical behaviour of such structures is still in its infancy. Thus, this thesis proposes to study the effective elastic behaviour of quasi-periodic lattices.
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First, the local deformation mechanisms of different patterns have been studied. It is shown that the patterns could be separated into three categories: the completely stretching and bendingdominated patterns and the variable dominance ones.

The influence of these local mechanisms on the overall mechanical behaviour was then investigated. For this purpose, an identification procedure of the lattice equivalent effective behaviour, based on a FEMU-type method, was implemented. First performed using a numerical twin, an experimental set-up was then designed to carry out the procedure and validate the numerical results experimentally. It is shown that the most suitable behaviour model depends on the pattern considered. While a classical Cauchy-type law seems sufficient to describe the behaviour of completely stretching-dominated and variable dominance patterns, it is necessary to use a Cosserat-type model for completely bending-dominated ones.
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 1 Figure1Ű Exemple de lattices appartenant à différentes catégories de matériaux architecturés poreux en fonction du type de répartition de leur matière.

  Figure 4 Ű Evolution de lŠerreur global des champs de déplacement des milieux de Cauchy et Cosserat identiĄés à partir des résultats des jumeaux numérique en fonction de lŠélancement des poutres constitutives des éprouvette
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 5 Figure 5 Ű CAO et photo du banc dŠessai conçu

  Standard material with 2 well-separated scales: macroscopic scale M and microscopic scale (constitutive material) µ. Architectured material with weak scale separation: macroscopic scale M , mesoscopic (inner structure) scale m and microscopic scale (constitutive material) µ.

Figure 8 Ű

 8 Figure 8 Ű The different scales of materials. The microscopic scale is considered through the constitutive law.

Figure 9 Ű

 9 Figure 9 Ű Example of practical applications: Michelin puncture-proof tyres (https:// www.michelin.com/news/iaa-munich-la-mobilite-de-demain-selon-michelin/)

  Figure 11 Ű Different scales of a lattice
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 13 Figure13Ű Example of lattices belonging to different categories of porous architectured materials depending on their matter organisation. The green arrows represent translations made to Ąnd identical patterns of the one detoured with a plain red line. In the case of a quasi-periodic organisation, the patterns are not located regularly.
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 1 Figure 1.2 Ű Example of topology optimisation results: matter distribution for having the lowest possible compliance for a bridge problem [Geoffroy Donders, 2018]

  (a) Natural honeycomb (www.sciencesetavenir. fr) (b) Natural mother-of-pearl (https://ressearch. files.wordpress.com)
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 1315 Figure 1.3 Ű Examples of architectured materials
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 1 Figure 1.6 Ű Example of 2D random organisation and the associated diffraction Ągure

  (a) Escher tiling (https://fr.mathigon. org) (b) Octet-truss lattice[Azman, 2017] 
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 1 Figure 1.7 Ű Examples of periodic structures

Figure 1 . 8 Ű

 18 Figure 1.8 Ű Example of an elementary pattern having a rotational symmetry incompatible with periodicity.

( a )

 a Tilings having different unit cells. They also belong to different symmetry classes: [D 10 ] on the left and [D 8 ] on the right (see subsection 1.1.3). (b) Tilings having the same unit cells but belonging to different local isomorphism classes. The blue patterns are present in both tilings but do not appear with the same frequency. (c) Different tilings belonging to the same local isomorphism class. The green patterns are common to both tilings and appear with the same frequency.
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 1 Figure 1.10 Ű Comparison of different quasi-periodic patterns. The green elements represent the common points and the red ones the differences. 56

Figure 1 .

 1 Figure 1.11 Ű Examples quasi-periodic structures

  Figure 1.12 Ű Examples of 2D and 3D aperiodic structures

Figure 1 .

 1 Figure 1.13 Ű π(n) operation representation. It correspond to the mirror transformation with respect to the line normal to ∥n∥.

  Figure 1.14 Ű Difference between [Z 3 ] and [D 3 ] symmetry classes

Figure 1 .

 1 Figure 1.15 Ű (E-ρ) Ashby map -in red is the target zone for the design of new materials

  (a) Example of pentamode structure [Zadpoor, 2016] (b) Example of bistable auxetic material[START_REF] Stavric | Geometrical elaboration of auxetic structures[END_REF] 
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 1 Figure 1.16 Ű Examples of non-classic elastic behaviours obtained using A.M.
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 1 Figure1.18 Ű Different mesh types used to describe the actual behaviour of a lattice. One element is represented in red.
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 1 Figure 1.19 Ű Principle of the equivalent homogeneous material

Figure 1 .

 1 Figure 1.21 Ű Volume forces and boundary conditions applied to Ω

  with V the RVE volume; Ů σ * the local stress Ąeld statically admissible; Ů ε′ the local strain Ąeld kinematically compatible; Ů σ * and ε′ are independent.

Figure 1 .

 1 Figure1.22 Ű KUBC homogenisation testing machine[Dassonville, 2020] 

Figure 1 .

 1 Figure 1.25 Ű Test on a pantograph [AbdoulAnziz, 2018] 
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 1 Figure 1.26 Ű Principle of a planar polariscope (https://intertechnology.com/Vishay/pdfs/Application_Notes/TN-702-2.pdf)

  Figure1.30 Ű Principle of the in-plane moiré fringes method (inspired from[START_REF] Post | Geometric moiré[END_REF] 

  Figure1.32 Ű Principle of the moiré interferometry (inspired from[START_REF] Post | Geometric moiré[END_REF]). The virtual grating is formed by constructive and destructive interferences of the two laser beams w 1 and w 2 . The initial frequency of the specimen grating f s , is half that of the virtual reference grating f .

Figure 1 .

 1 Figure1.33 Ű Principle of the speckle interferometry[START_REF] Francis | A mechanically stable laser diode speckle interferometer for surface contouring and displacement measurement[END_REF] 
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 2 Figure 2.1 Ű Periodic, quasi-periodic, almost and pseudo-periodic functions [Martin and Mailhes, 2010]. T i is the period of the periodic function x i .

  of Penrose tiling [D 10 ] (see Figure 1.9), and equal to √ 2+1 in the case of Ammann-Beenker tiling [D 8 ].

  Figure 2.2 Ű Examples of quasi-periodic tilings

  Figure 2.3 Ű Example of a Al 71 N i 24 F e 5 quasi-crystal[START_REF] Bindi | Natural quasicrystal with decagonal symmetry[END_REF] 

  Figure 2.4 Ű Comparison of diffraction Ągures of a quasi-periodic tiling and a quasi-crystal

  Figure2.6 Ű Examples of local matching rules: only edges with the same color and arrows with the same symbol and in the same direction can be adjacent to each other[Penrose, 1979] 

  Figure 2.7 Ű Cut of the elementary cells of the Penrose tiling into two triangles. ϕ represents the golden ratio: ϕ = 1+ √ 5 2
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 2 Figure 2.8 Ű Cuts to be made for the generation of Penrose tiling by the substitution method. The red edges correspond to those to be kept when re-assembling the triangles to form the elementary patterns

  Figure2.13 Ű Tile generation method using the multi-grid method
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 2 Figure 2.14 Ű Examples of tiling generated by the multi-grid method

  Figure 2.15 Ű Location of the tiles generated by each line

Figure 2 .

 2 Figure 2.18 Ű Pinwheel tiling (https://en.wikipedia.org/wiki/Pinwheel_tiling)
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 31 Figure 3.1 Ű Principle of the Brazilian test (also called Splitting Tension test)
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 3 Figure 3.3 Ű The σ 11 , σ 22 and σ 12 stress Ąeld distributions on the Brazilian disc
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 3 Figure 3.6 Ű Mesh and boundary conditions used for ρ = 0.125 and β = 45 • . The red dotted line represents the size of the zones used to compute the criterion.
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 38 Figure 3.8 Ű Minimum criterion value depending on β and ρ values.

  Figure 3.9 Ű Criterion values in the whole specimen for ρ = 0.1, β = 50 •
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 3 Figure 3.11 Ű Degrees of freedom of the beam element
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 3 Figure 3.13 Ű Simulation of a truss beam deĆection using a mesoscopic model and comparison with the analytical result.

  Figure 3.14 Ű Boundary conditions applied
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 4 Figure 4.1 Ű Patterns studied and nomenclature used.

y

  GA dx: the shear contribution.

Figure 4

 4 Figure 4.3 Ű Boundary conditions applied for the tensile test simulations and beams excluded for the energy computations (in blue).

Figure 4

 4 Figure 4.4 Ű Beams excluded for the energy computations (in blue) for the ring test.
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 45 Figure 4.5 Ű InĆuence of the symmetry class on the evolution of the samplesŠ global stretching energy ratio with the average slenderness of their constitutive beams -Tensile test case.

Figure 4 . 6 Ű

 46 Figure 4.6 Ű Spatial distribution of the strain energy in the different samples for slenderness equals to 10 and 500. Transparency of the beams indicates the quantity of the energy stored, opaque beams store at least 25% of the maximum stored. Color speciĄes the tensile energy ratio.

  Figure 4.7 Ű Beam opacity threshold

Figure 4 . 8 Ű

 48 Figure 4.8 Ű InĆuence of the elementary pattern shapes on the evolution of the samplesŠ global stretching energy ratio with the average slenderness of their constitutive beams.

  Figure 4.9a to Figure 4.9d, Figure C.1 and Figure C.2).

r

  Figure 4.9 Ű Evolution of the global stretching energy ratio with the average slenderness and the pattern orientation -Ring test case.

Figure 5 .

 5 Figure 5.1 Ű Patterns studied and the nomenclature used.

  Link between elastic Cauchy, Cosserat and Koiter continua Cauchy model is equivalent to the bar model 1 [Sabourin and Salle, 2000, Allen, 2013], Koiter corresponds to the Euler-Bernoulli theory and Cosserat to the Timoshenko model.

  R ∼ is known as the micro-rotation Ąeld. For the following, let us denote by ϕ the angle of rotation associated with R ∼ . Since we are in 2D, it is unnecessary to specify the associated axis of rotation. More precisely, sin ϕ sin ϕ cos ϕ   B=(e 1 ,e 2 ).

  with U ∼ and V ∼ the right and left stretch tensors, which are positive deĄnite symmetric.

  : the 2D antisymmetric projector, constructed from ϵ ∼ and the 3 elementary fourth-order isotropic tensors:

Figure 5 .

 5 Figure 5.3 Ű Triangular Ąnite element used for Cosserat parameters identiĄcation

  So, for Cauchy identiĄcation, ¶P ♢ is equal to: ¶P ♢ = Poisson ratio at the step time considered; Ů ν 0 the initial Poisson ratio; Ů G the shear modulus at the step time considered; Ů G 0 the initial shear modulus.

  the Cosserat couple modulus at the step time considered; Ů G c 0 the initial Cosserat couple modulus; Ů l the Cosserat characteristic length; Ů l 0 the initial Cosserat characteristic length.

Figure 5 .

 5 Figure 5.6 Ű Local averaging of the Ąelds. ∆R is chosen equal to 2L, with L the average beam length, and ∆θ is chosen equal to 3 • .

Figure 5 .

 5 Figure 5.7 gives an example of the reference Ąelds before and after the averaging procedure. One can see that the local absolute gaps of the averaged Ąelds reĆect local and not global Ćuctuations.

Figure 5 . 8 ,

 58 Figure 5.8, Figure 5.9 and Figure 5.10 give respectively the evolutions of these global gaps with the slenderness for stretching dominated, varying dominance and bending dominated patterns.

  Absolute gap of the average Ąeld

Figure 5 .Figure 5 . 8 Ű

 558 Figure 5.7 Ű Comparison of the Ąelds obtained for a Q D 10 r lattice with slenderness equal to 32 for a random ∆α before and after the local averaging. ♣♣u♣♣ corresponds to the norm of the displacement Ąeld, and ϕ to the rotational one. The white dots correspond to the nodes excluded from the global averaging gap computation.

Figure 5 .Figure 5 .

 55 Figure 5.10 Ű Evolution of the averaged Ąelds global gaps with the slenderness for bending dominated patterns (∆α = 0)

Figure 5 .

 5 Figure 5.12 Ű Evolution of the global error of Cauchy and Cosserat displacement (left) and rotational (right) identiĄed Ąelds with the average slenderness of stretching dominated patterns

  local absolute errors of the identiĄed Cauchy Ąelds

Figure 5 .

 5 Figure 5.13 Ű Local absolute errors of the identiĄed Cauchy Ąelds of the pattern Q D 10r,t for a slenderness equals to 32 and the associated reference Ąelds. The colorbar for rotational errors is restricted to 0.0015 rad maximum. The white dots correspond to the nodes excluded from the global errors computation.

Figure 5 .

 5 Figure 5.14 Ű Evolution of Cauchy identiĄed constitutive parameters with the average slenderness of stretching dominated patterns

Figure 5 .

 5 Figure 5.15 Ű Evolution of the global error of Cauchy and Cosserat displacement (left) and rotational (right) identiĄed Ąelds with the average slenderness of varying dominance patterns

  local absolute errors of the identiĄed Cauchy Ąelds

Figure 5 .Figure 5 .

 55 Figure 5.16 Ű Local absolute errors of the identiĄed Cauchy Ąelds of the pattern Q D 10 kd for a slenderness equals to 10 and the associated reference Ąelds. The colorbars for displacements and rotational errors are respectively restricted to 0.05 mm and 0.0015 rad maximum. The white dots correspond to the nodes excluded from the global errors computation.

rFigure 5 .

 5 Figure 5.18 Ű Evolution of the global error of Cauchy and Cosserat displacement (left) and rotational (right) identiĄed Ąelds with the average slenderness of bending dominated patterns

  local absolute errors of the identiĄed Cauchy Ąelds (c) local absolute errors of the identiĄed Cosserat Ąelds

Figure 5 .

 5 Figure 5.19 Ű Local absolute errors of the identiĄed Cauchy Ąelds of the pattern Q D 10 r for a slenderness equals to 32 and the associated reference Ąelds. The white dots correspond to the nodes excluded from the global errors computation.
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 5 Figure 5.20 Ű Evolution of Cauchy identiĄed constitutive parameters with the average slenderness of bending dominated patterns

Figure 5 .

 5 Figure 5.21 Ű Evolution of Cosserat identiĄed constitutive parameters with the average slenderness of bending dominated patterns

Figure 5 .

 5 Figure 5.22 Ű The constitutive parameters used are the one identiĄed for slenderness equal to 10 on the left and to 150 on the right

Figure 5 .

 5 Figure 5.23 Ű A-shaped maximum energy distribution zone. The red zone concentrate the strain energy stored.
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 6 Figure 6.7 Ű CAD and photo of the Ąnal test bench

  6.8). These three patterns also present the advantage of belonging to three different energy classes: always stretching-dominated, varying dominance and always bending-dominated.

Figure 6 . 8 Ű

 68 Figure 6.8 Ű Chosen patterns for the experimental study

  Figure 6.9 Ű Ring specimens used for the experimental study

Figure

  Figure 6.10 Ű Notched outer border of the specimens

Figure 6 .

 6 Figure 6.14 Ű Picture taken by the camera

Figure 6 .

 6 Figure 6.15 Ű Test protocol

  Figure 6.18 Ű Example of optimisation of the placement of the beam mesh on the reference image using the VIC method

  from the DIC.Finally, the found Ąeld should be subtracted from the measured one to remove the RBM.

Figure 6

 6 Figure 6.19 Ű Example of Ąelds obtained for the second version Q D 10 r pattern for the 75-th loading cycle

Figure 6 .

 6 Figure 6.20 Ű Nodes (blue) selected for retrieving the boundary conditions

Figure 6 .

 6 Figure 6.22 Ű Experimental identiĄcation procedure. The dashed elements correspond to the steps realised only at the initialisation.

Figure 6 .

 6 Figure 6.24 Ű Example of Ąelds obtained for the second version Q D 10 r pattern for an arbitrary loading cycle (91), the simulations using the measured beam thickness. The white dots correspond to the nodes excluded from the global errors computation.

Figure 6 .

 6 Figure 6.25 Ű Example of Ąelds obtained for the second version Q D 10 r

Figure 6 Figure 6

 66 Figure 6.26 Ű Experimental Ąelds and absolute local errors of the identiĄed Cauchy medium of the stretching-dominated pattern Q D 10 r,t

Figure 6

 6 Figure 6.28 Ű Experimental Ąelds and absolute local errors of the identiĄed Cauchy medium of the varying dominance pattern Q D 10 kd

  post-processing of the bending-dominated patterns was successful without any exception for the two specimen considered, Q D 10 r and Q D 10 r V2.

Figure 6 .

 6 Figure 6.30 Ű Experimental Ąelds and absolute local errors of the identiĄed Cauchy and Cosserat media of the bending-dominated pattern Q D 10 r

Figure 6 .Figure 6

 66 Figure 6.32 Ű Experimental Ąelds and absolute local errors of the identiĄed Cauchy and Cosserat media of the bending-dominated pattern Q D 10 r

  Experimental noise of the rotation Ąeld (c) Simulated noise of the displacement Ąeld (d) Simulated noise of the rotation Ąeld

Figure 6 .

 6 Figure 6.34 Ű Example of experimental and simulated noise Ąelds

Figure 6

 6 Figure 6.35 Ű Simulated averaged reference Ąelds with and without noise addition

  Figure A.2 Ű Subdivision to be achieved and new vertices for the example

  Figure A.3 Ű Subdivision achieved: new vertices for the example and beams with duplicates

  Figure A.4 Ű Subdivision achieved: new vertices for the example and beams without duplicates

γA

  Figure A.6 Ű Algorigram of the step Determination of all the tiles that can appear (1) Fig.A.5 of the code associated with the multi-grid method

  The previous basic example is considered. The identiĄed intersections are given in Fig.A.8. 

Figure A. 8 Ű

 8 Figure A.8 Ű Numbering of multi-grid intersections

Figure A. 9 Ű

 9 Figure A.9 Ű Tiles that can be generated by the intersection of two straight lines

Figures

  Figures A.12 to A.19 graphically illustrate the different steps of tile placement. The solid red dots show the intersections where the tiles have already been placed. The dashed dots show the intersections where the tiles are being placed.

Figure A. 12 Ű

 12 Figure A.12 Ű Arbitrary placement of the 1st tile (i = 1, j = 1, k = 1)

Figure A. 19 Ű

 19 Figure A.19 Ű The normal procedure is then resumed. k = 4 being already placed, k = 5 is directly studied (i = 1, j = 2, k = 5)

1

  Figure A.20 Ű Algorigram of the code using the cut & project method

Fig

  Figure A.21 Ű Rhombic isocahedron: a polyhedron with 20 rhombic faces.

  Figure B.2 Ű 150x50 mm half tensile test sample

  Figure C.6 Ű Spatial distribution of the strain energy in the Q D 10 r,t ring sample. Transparency of the beams indicates the quantity of the energy stored, opaque beams store at least 10% of the maximum stored. Color speciĄes the tensile energy ratio.

  Figure C.7 Ű Spatial distribution of the strain energy in the Q D 14 r,t ring sample. Transparency of the beams indicates the quantity of the energy stored, opaque beams store at least 10% of the maximum stored. Color speciĄes the tensile energy ratio.
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 55 Figure E.2 Ű Funtions of the mounting phase of the test bench
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  . 12. Also called intermediate or constrained couple-stress continuum

	Model	Higher-order	Higher-grade
	Number of DOF	Additionnal DOF ✗ Kept the same ✓
	Number of material parameters	Huge amount ✗	Reduce number ✓
	Boundary conditions	Natural ✓	Intricate ✗
	Numerical implementation	SimpliĄed ✓	Cumbersome ✗

Table 2

 2 .1 recapitulates the global characteristics of each method and the Figure2.19 gives a summary of the tiling that can be done according to the method used.

		Substitution	Multi-grid Cut & Project
	Implementation Computation time Versatility Direct P2 generation Singular case Obtaining [D k ] tilings with k > 10 Link to theoretical concepts	++ ++ --++ No singular case -	+ ++ + -++ ++	----++ --+ ++

.1 Ű Comparison of the general characteristics of each method Figure

2

.19 Ű Tiling that can be carried out according to the method used

Table 4 .

 4 1 Ű Average connectivity, Maxwell criterion and dominances estimated for the patterns of groups P and P .
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Table 6

 6 

	.4.

  .6 gives the Cauchy and Cosserat identiĄed elastic parameters of the Q D 10

					r,t
	stretching dominated specimen. The associated Ąeld global errors are also provided.
	ν Cauchy 0.69	E ϕ 0.291 0.392 G (MPa) G c (MPa) l (mm) E ♣♣u♣♣ 196.2 --
	Cosserat 0.61	152.7	929.3	4.23	0.779 10.733
	Table 6.6 Ű Cauchy and Cosserat identiĄed parameters and global identiĄed Ąeld errors
	of the stretching-dominated pattern Q D 10 r,t			

  .7 gives the Cauchy and Cosserat identiĄed elastic parameters and the identiĄed Ąeld global errors of the Q D 10 kd specimen, which has a varying dominance type.

	ν Cauchy 0.51	E ϕ 0.160 0.290 G (MPa) G c (MPa) l (mm) E ♣♣u♣♣ 92.9 --
	Cosserat 0.70	38.6	157.7	3.60	2.033 4.974
	Table 6.7 Ű Cauchy and Cosserat identiĄed parameters and global identiĄed Ąeld errors
	of the varying dominance pattern Q D 10 kd			

  .8 gives the Cauchy and Cosserat identiĄed elastic parameters and the identiĄed Ąeld errors of the dense Q D 10

		r	bending-dominated specimen.
	ν Cauchy 0.92	E ϕ 0.044 0.177 G (MPa) G c (MPa) l (mm) E ♣♣u♣♣ 16.8 --
	Cosserat 0.93	16.5	25.4	1.42	0.328 28.982
	Table 6.8 Ű Cauchy and Cosserat identiĄed parameters and global identiĄed Ąeld errors
	of the bending-dominated pattern Q D 10 r			

Table 6 .

 6 9. The Cosserat displacement Ąeld error is 0.65 times lower than the Cauchy one, but the Cosserat rotational Ąeld error is 1.4 times higher than the Cauchy one. Looking only at global errors is insufficient to determine the best model.

	ν Cauchy 0.91	E ϕ 0.051 0.279 G (MPa) G c (MPa) l (mm) E ♣♣u♣♣ 3.42 --
	Cosserat 0.89	3.18	1.90	16.40 0.033 0.400
	Table 6.9 Ű Cauchy and Cosserat identiĄed parameters and global identiĄed Ąeld errors
	of the bending-dominated pattern Q D 10		

r V2 One can see that this time the identiĄed Cosserat Ąeld is entirely physical (see Figure

Table 6 .

 6 10 Ű Comparison of the Cosserat identiĄed parameters and global identiĄed Ąeld errors for two different test on the pattern Q D 10

	)

Table 6 .

 6 11 Ű Comparison of the Cosserat identiĄed parameters and global identiĄed Ąeld errors obtained with the pattern Q D 10

	rad)

r

V2 experimental data and with the numerical twin

https://materialseducation.org/educators/matedu-modules/docs/Visualizing_ Material_Properties_Slides.pdf

The production of "lattice-type" architectured materials, i.e composed of structural elements such as beams or plates (see Figure8b, Figure9and Figure13for example), is late in the history of humanity, but at the same time not recent. In fact, corrugated cardboard was invented in 1874 by Olivier Long[Long, 1884] and honeycomb sandwich panels in 1915 by Hugo Junkers[Langley, 1971]. However, the variety of patterns remained limited for a long time. The evolution of manufacturing processes has enabled the fabrication of ad hoc lattices. These types of material are increasingly used by the industry notably due to their good speciĄc properties[Deshpande et al., 2001a, Budiansky, 1999, Bouaziz et al., 2008]. In addition, architectured materials have interesting

In the present work, a porous material is deĄned as an architectured material with a porous geometry, i.e. constituted of matter and void, and does not refer to the possible porosity of the constituent material.

5. This road is also currently explored for the same motivation by U. Grimm and coworkers.

The Cosserat continuum is sometimes also called a micropolar continuum (cf. Eringen) or a couplestress continuum (cf.Toupin and Mindlin).

11. The Koiter continuum is sometimes also called a constrained couple-stress continuum.

Only a Ąnite number of orientations are possible for the edges of the elementary cells, which correspond to the axes of a regular star, i.e. the orientations are equally angularly distributed.

It can be seen as an oriented circle.

This is a very rough classiĄcation, and the boundary between the different methods is not always that clear in practice.

Usually, the two Ąrst ones are kept.

The Equation

2.3 and Equation2.4 are equivalent to saying that the frequencies fi generate a Z-module of Ąnite rank p. Let d be the dimension of the physical space R d . The case p = d corresponds to standard crystallography, and the Z-module represents the lattice in the reciprocal space. Then, Zmodule of rank p > d is the irrational projection into R d of a periodic lattice in the R p space[START_REF] Janner | Symmetry of periodically distorted crystals[END_REF].

It is possible to make a P2 type tiling from a P3 type tiling, and vice versa[Grünbaum and Shephard, 

[i.e.] a Ąve-dimensional cubic cell structure.

More precisely, transverse isotropic because only 2D patterns are considered.

The printing volume of traditional 3D printers does not usually exceed 250x250x250mm. Then, the limiting factor for laser and waterjet cutting is the thickness of the material to be cut. Even if it can be up to 40mm for some materials, given that we want to cut beams with a very thin thickness in the plane, such values cannot be reached. In addition, the cut is made with a draft angle. The greater the thickness of the cut, the greater the draft.

Maximum two people.

The simulations were done using an in-house code implemented in Matlab 2020b.

Quadratic triangle elements are used.

The plane stress hypothesis is considered, so the PoissonŠs ratio limits are -1 and 1.

It can easily be shown that this assumption is valid for slenderness higher than 10, which is why this limit will be considered for this study

By rearranging ¶u b ♢, and thus k b , we can see that k b is a block diagonal matrix and thus the stretching contribution, linked to u 1 and u 2 DOF, and bending one, linked to v 1 , v 2 , ϕ 1 and ϕ 2 , are decoupled.

Beam "without" transverse rigidity.

so(2): Lie algebra of SO(2) ⇔ antisymmetric matrix

To avoid any misunderstanding, these results are speciĄc to the 2D context, in a full 3D setting, all the constitutive tensors would be of order 4.

Around one additional average beam length is added to its radius size.

the term

2.5D is sometimes used as the pattern is 2D and become 3D because it is extruded.

http://docplayer.net/14637997-Mts-810-858-material-testing-systems-versatilemultipurpose-servohydraulic-testing-systems-for-static-and-dynamic-tests.html

https://www.manualsdir.com/manuals/567917/mts-series-244-actuators.html?page=52

The stiffness of the ball bearings themselves is not taken into account because is not easily available and supposed high enough

The contact point positions are reversed on the test bench compared to the simulations. The two lower contact points are thus upper contacts in reality. However, for comparability, the results will be presented in the same conĄguration as in chapter 5.

Correcting, by the way, the error on β

Instead of directly solving the problem with a Ąne mesh, it is Ąrst solved using coarser meshes. The resolution is eased, providing a closer solution for the Ąnner meshes, facilitating convergence towards a solution. The number of scales indicates the number of mesh reĄnements.

This averaging operation on the 2D continuum simulations was also done in chapter 5.

As in the previous chapter, the excluded nodes are represented by white dots in the local error maps.

It seems logic that the lower is the characteristic length, the lower is the possible Ąelds Ćuctuation distance.

It corresponds to the worst scenario as the applied load is the lowest with this specimen: the mean applied load of every cycles is equal to -78.9 N.

the load applied being negative

investigate more the mechanical behaviour of this kind of structure. The next chapter will thus give a more speciĄc presentation of them.

Chapter 5

IDENTIFICATION OF THE OVERALL ELASTIC MECHANICAL BEHAVIOUR USING NUMERICAL TWIN

NUMERICAL IMPLEMENTATION OF

QUASI-PERIODIC TILINGS GENERATING METHODS

A.1 Substitution method

The implementation of this method is inspired by [Hurd, 1994]. The Ćowchart of the method is given in Fig. A.1.

The input parameters required for the code are shown in the 1 box. In order to initialise the generation of the tiling, it is necessary to provide a basic pattern composed of elementary tiles. In particular, the tiles type that forms the pattern and the vertices abscissa and ordinates of the tiles are required. This information is stored respectively in the T, X and Y lists, such as:

Abscissa of the n vertices of the tile 1

Abscissa of the m vertices of the tile j

Ordinates of the n vertices of the tile 1

Ordinates of the m vertices of the tile j

The order in which the coordinates of the vertices of a given tile type are Ąlled in the X and Y lists must be the same. For example, considering a kite & dart pattern, if the tiles and vertices names in Fig. 2.8a are considered, the abscissa and ordinate of an acute triangle will always be given in the order A, B, C, and those of an obtuse triangle in the order α, β, γ. Indeed, considering an element of type cell and dimension Nx1, it would be sufficient to associate each line i a cell with the abscissa or ordinate of the m vertices of the tile j.

It is now possible to proceed to the second cutout.

Note: If, before cutting, the following lists are considered:

With:

0 if the tile is an acute triangle 1 if the tile is an obtuse triangle (A.7) So to subdivide the tile i, it will be sufficient to replace respectively X i , Y i and T i in X, Y and T by:

Once the correct number of cuttings has been reached, the connectivity matrix B (box The next step is to Ąnd the position of all the line intersections. l ij corresponds to the i-th line of the grid j. Let l ij and l kl be two intersecting lines, i.e. with j ̸ = l. The matrix A is deĄned such that:

And the vector b by:

Then the following vector is calculated:

The coordinates of the intersection point between l ij and l kl are, therefore:

The coordinates of each intersection and the straight lines that generated it are stored for later use.

Once all the intersections have been found, their positions are compared to identical ones. They are then merged and their data combined.

A.3 Cut-and-Project method

The Ćowchart of the generating code using the cut & project method is given in Ągure A.20.

The implemented code works only on a hypercubic network, but the algorithm is still adapted to other types of networks. The edges are supposed to be unitary, and if one wishes to change the size of the tiles, it is enough to make a homothety on the coordinates of the tiling. The parameters to be provided to the code are:

Ů N : the dimension of the hypercubic network Ů N c : The number of hypercubes in each direction. In the implemented code the network is centered with respect to the origin of the coordinate system. Ů γ: the list of network translations to be performed in each direction Ů E ⊥ : projection base of the paving Ů E ∥ : base of the cut window

The main difficulty of this method is Ąnding relevant projection bases. However, those allowing to obtain Ammann-Beenker and Penrose rhombus type tiling are known.

Ammann-BeenkerŠs tiling [Rogers et al., 2003]:

The sub-spaces to be used are as follows:

With:

And:

Generalised Penrose P3 tiling (N odd):

The sub-spaces to be used are as follows:

And:

The Ąrst code step consists in creating the hyper-cubic network: an edge is considered a beam, and the coordinates of its nodes are stored. All the nodes are then translated in the N directions of space according to the γ i values provided. The network is then ready to be projected on E ∥ in order to select the edges to be projected on E ⊥ . As noted above, these are the edges included in the W cut window. The latter has been deĄned in two ways in the generation code. In a Ąrst version, the limits of W have been deĄned "by hand" directly in E ∥ . The shape of the area is known from the spaces used for the Ammann-Bennker and Penrose P3 paving. [START_REF] Fang | Methods for calculating empires in quasicrystals[END_REF] gives an example of the conditions to be fulĄlled to know if a point is in the zone. This solution has the advantage that the edges to be projected can be selected relatively quickly. However, it is difficult to deĄne the limits of W, as well as the selection conditions when E ∥ is larger than 3. The versatility of the code is therefore strongly limited.

The selection criterion based on the convex envelope of the projected points is given in Fig. A.22. The node Voronoi cell of a hypercubic network corresponds to a hypercube of the same size as those forming the network and centred around the considered node. 

Example

Note: for N greater than 5 it is necessary to take a small tolerance ε so that the paving is correctly built:

Once the selected edges have been projected to E ⊥ , all that remains to be done is to format the data and remove any duplicates. 

SPECIMENS USED FOR THE STUDIES

C.2.2 Bending-dominated patterns