Seismic tomography of an amagmatic ultra-slow spreading ridge - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2022

Seismic tomography of an amagmatic ultra-slow spreading ridge

Tomographie sismique d’une dorsale ultra-lente très pauvre en magma

Résumé

Ultra-slow spreading ridges are a new category of spreading ridges characterized by quasi-amagmatic crustal accretion, exposing considerable amounts of mantle derived peridotites on the seafloor. Investigating the contributions of tectonic, magmatic, and other involved processes is necessary to gain a comprehensive conceptual model of ultra-slow spreading ridges. Imaging the crustal and upper mantle structures can help us to understand the past and current geological activities in the ultra-slow spreading ridges. The aim of the project is to understand the oceanic crust formed in an ultra-slow spreading ridge called the Southwest Indian Ridge with a low melt supply. Our research project is based on the processing and modeling of the active and passive seismic data in the easternmost part of Southwest Indian Ridge. The data acquisition took place in 2014 during the SISMOSMOOTH cruise. We analyzed vertical component recordings from 43 ocean-bottom seismometers in our passive seismic approach and the hydrophone components of 16 ocean-bottom seismometers in the active seismic approach. Ambient-noise interferometry and full-waveform inversion (FWI) of refraction data were used to image the internal structures of the lithosphere. In the modeling of ambient-noise interferometry, we find an average crustal thickness of 7 km with a shallow layer of low shear velocities. Moreover, we infer that the uppermost 2 km are highly porous and may be strongly serpentinized. The average shear wave velocity between the base of the crust and the maximum depth of our model (15 km) was less than the global reference value of 4.5 km/s and was explained by the younger age of the seafloor in our area. Our two-dimensional P-wave velocity model obtained from FWI suggests considerable variations in the upper lithospheric compositions along the axis-parallel profile. A transition is expected at a distance of ∼65-95 km along the profile from the predominantly volcanic domain in the western zone to variable serpentinized peridotite in the eastern zone. Dike injections are predicted in this area. A westward increase in melt supply is proposed in the seafloor accretion mode. The serpentinization and P-wave velocity model suggests that the Moho is a gradual transition from hydrated to unaltered peridotite.
Les dorsales ultra-lentes quasi-amagmatiques constituent une nouvelle catégorie de dorsales océaniques caractérisées par une accrétion crustale, exposant sur le fond marin des quantités considérables de péridotites provenant du manteau. L’étude de la contribution des processus tectoniques, magmatiques et d’autres processus impliqués est nécessaire pour obtenir un modèle conceptuel complet des dorsales océaniques à accrétion ultra-lente. L’imagerie des structures de la croûte et du manteau supérieur peut nous aider à comprendre les activités géologiques passées et actuelles sur les dorsales à accrétion océanique ultra-lente. L’objectif du projet est de comprendre la croûte océanique formée dans une dorsale à accrétion ultra-lente appelée ride sud-ouest indienne, à faible apport de magma. Notre projet de recherche est basé sur le traitement et la modélisation de données sismiques actives et passives dans la partie la plus orientale de la dorsale Sud-Ouest Indienne. L’acquisition des données géophysiques a eu lieu en 2014 lors de la campagne SISMOSMOOTH, à bord du N/O Marion-Dufresne. Nous avons analysé les enregistrements des composantes verticales de 43 sismomètres fond de mer (OBS) dans notre approche sismique passive et les composantes hydrophones de 16 sismomètres fond de mer pour l’approche sismique active. L’interférométrie de bruit ambiant et l’inversion de forme d’onde complète (FWI) des données de réfraction ont été utilisées pour imager les structures internes de la croûte et de la lithosphère. Grâce à la modélisation de l’interférométrie de bruit ambiant, on trouve une épaisseur moyenne de croûte de 7 km avec une couche peu profonde de faibles vitesses de cisaillement. De plus, nous en déduisons que les 2 km supérieurs sont très poreux et peuvent être fortement serpentinisés. La vitesse moyenne des ondes de cisaillement entre la base de la croûte et la profondeur maximale de notre modèle (15 km) est inférieure à la valeur de référence globale de 4.5 km/s et peut s’expliquer par le jeune âge des fonds marins de notre zone. Notre modèle bi-dimensionnel de vitesse des ondes P obtenu à partir de notre analyse FWI suggère des variations considérables de composition dans la partie supérieure le long du profil parallèle à l’axe. Notre étude propose un domaine de transition entre un domaine à prédominance volcanique et un non magmatique, entre ∼65 à 95 km de distance sur le profil. Des injections magmatiques dans des dikes sont proposées dans le domaine oriental non volcanique. Une augmentation vers l’ouest de l’apport de matériel magmatique est confirmée pour le mode d’accrétion océanique. Le modèle de vitesse des ondes P associé aux variations de serpentinisation suggère que le Moho est une transition graduelle d’une péridotite hydratéevers une péridotite non altérée.
Fichier principal
Vignette du fichier
MOHAMADIAN_SARVANDANI_2022.pdf (50.93 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04020124 , version 1 (08-03-2023)

Identifiants

  • HAL Id : tel-04020124 , version 1

Citer

Mohamadhasan Mohamadian Sarvandani. Seismic tomography of an amagmatic ultra-slow spreading ridge. Geophysics [physics.geo-ph]. Sorbonne Université, 2022. English. ⟨NNT : 2022SORUS467⟩. ⟨tel-04020124⟩
187 Consultations
6 Téléchargements

Partager

Gmail Facebook X LinkedIn More