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1
Introduction

Deep Neural Networks are the current cornerstone of various mod-
ern artificial intelligence applications [LeCun2015]. The growing
number of these applications is due to the breakthroughs they have
achieved in diverse fields [Otter2021, Feng2019], where Deep Neu-
ral Networks may exceed human accuracy. Safety-critical applica-
tions are no exception. In these applications, the system must be
resilient to unexpected events, such as hardware faults. This chapter
introduces the context of the thesis and the need for designing robust
Deep Neural Networks.
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Deep Neural Network (DNN)s are used in many modern Artificial Intelligence (AI) appli-
cations [LeCun2015]. Due to the breakthroughs that DNNs have achieved in natural language
processing [Deng2013, Collobert2008] and image recognition [Krizhevsky2012], the number of
applications employing DNNs has exploded.

The study of the tolerance of DNNs to hardware failures is important for many reasons. DNNs
are already being deployed in critical tasks, where a failure of the system can result in significant
physical harm or financial liability. It is estimated that 25% of passenger car miles will be driven
by autonomous robotaxis by 2042 and their autonomous driving compute systems will employ
multiple DNNs [IDTechEx2022]. It is imperative to ensure that hardware faults in these systems
do not result in incorrect decisions, as human safety is at risk. We also note that DNNs are be-
ing employed in medical diagnostics [Ronneberger2015], another application where human lives
could be impacted by erroneous computations. Even military equipment, such as missiles, are now
employing DNN technology [He2021]; a domain where an incorrect result could be catastrophic.

Although neural networks continue to gain in accuracy for many applications, this comes at
the cost of a huge number of computations, and thus high power consumption. One of the promis-
ing approaches to reduce power, is to operate the compute system at lower voltage [Wu2021a,
Yang2017], however, this tends to introduce more faults as the circuit is operating with tighter
margins. If DNNs can be made tolerant to hardware faults with minimal cost, low-voltage opera-
tion remains a promising path for reducing energy consumption, despite the higher rate of faults.
Post-CMOS process technologies (e.g. [Hills2014]) are promising option for future NN accelera-
tors, but as they are known to prone to faults, the system must be designed accordingly.

Sometimes, it is believed that DNNs are intrinsically fault tolerant – as the algorithms are bio-
inspired. As will be seen in this thesis, the reality is more complex. Many hardware faults have no
impact, but there exist critical faults which can cause a DNN to degenerate to random guessing.
Understanding and identifying these critical faults is one of the focuses of this thesis.

In industry today, when DNN accelerators must be fault tolerant, such as in existing assisted
and autonomous driving systems, manufacturers rely on hardware redundancy. For example, cars
manufactured by Tesla incorporate two fully independent Fully Self Driving (FSD) chips along
with their own power subsystem, DRAM, and flash memory for redundancy. Each chip boots up
from its own storage memory and runs its own independent operating system. These chips are
part of a safety system that incorporates dual-core lockstep [Talpes2020]. This is clearly a costly
approach to achieve high-reliability - particularly when we consider that neural networks never
achieve 100% accuracy, even in the absence of faults. Redundancy based approaches are clearly
incompatible with low-power operation.

The goal of this thesis is to provide new insights into how faults alter the behavior of DNNs
and to propose new, low-cost and innovative means to improve their robustness.

This thesis is structured as follows :

• Chapter 2 provides an overview of the current scientific literature in the field of DNN fault
tolerance, and also gives the necessary background to help understand this thesis.

• Chapter 3 presents a study of the impact of faults in different DNN systolic accelerators.

• Chapter 4 covers a new systolic accelerator specifically designed for fault tolerance.

• Chapter 5 presents a method to protect the contents of weight storage memory with no
storage overhead.

• Chapter 6 describes a statistical technique to detect faults occurring in a DNN by monitor-
ing its data-flow.

• Chapter 7 concludes this manuscript and presents ideas for future work.
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2
Analysis of DNN Robustness - State of the Art

Deep Neural Networks have been widely deployed as they are able to
automate and to exceed human capabilities in many important tasks.
They are frequently deployed in safety critical systems, where hard-
ware fault tolerance is important. This chapter presents an overview
of the existing works on the reliability of Deep Neural Networks
hardware accelerators.
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Deep Neural Network (DNN)s have specificities that must be taken into consideration when
studying their fault tolerance. For example, the accuracy of DNNs is never perfect , even in the ab-
sence of faults, and a certain level of inaccuracy is usually acceptable [LeCun2015]. Furthermore,
due to their structure, DNNs have intrinsic redundancy [Yvinec2021] and their activation func-
tions, for example, are able to mask certain errors [Hoang2020]. These particularities of DNNs
make them different from traditional computer systems, in terms of their robustness.

However, many other parameters associated with a DNN must be considered. Not only ac-
tivation functions, but also pooling layers, normalization layers [Li2017] and also the nature of
computing layers plays a role in the robustness of a DNN [Xu2019]. Even the training process can
alter the fault tolerance capability of a DNN [Zhang2019]. Computational optimizations and the
choice of data-type can impact the fault tolerance of a DNN. Another example is the quantization
of a DNN, that can improve its robustness by several orders of magnitude [Gambardella2019].
Looking at all these parameters, it becomes obvious that evaluating the fault tolerance of DNNs
is a complex task. In the same time, the overall reliability of a system depends on the hardware
platforms and the executed application.

To avoid dealing with the underlying hardware platform, some authors considers abstract
DNN, and study the fault tolerance of DNNs without considering the complexities of the hard-
ware platform.

Publications on DNN fault tolerance focus on specific hardware platforms, such as Graphics
Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs), Application-Specific Inte-
grated Circuits (ASICs) [Reuther2021], each of them having their specific failure modes when
executing DNNs.

The special characteristics of DNNs can be exploited to provide low-cost fault tolerance. As
an example, techniques such as redundancy currently used in state-of-the-art automotive System
on Chip (SoC) solutions [Talpes2020, Matsubara2021] protect all data bits, whereas DNNs are
highly tolerant of faults in their Least Significant Bits (LSBs) [Malekzadeh2021].

The scientific literature on the fault tolerance of DNNs is vast. Three survey articles have
recently been published [Torres-Huitzil2017,Ibrahim2020,Mittal2020]. These surveys provide an
overview of the works in this field of research.

This chapter presents a concise review of the existing state of the art. The remainder of this
chapter is organized as follows :

• Sec.2.1 presents the background for understanding this thesis.

• Sec.2.2 presents existing works that analyze the robustness of DNNs.

• Sec.2.3 presents existing techniques to improve the robustness of DNNs.

• Sec.2.4 quantitatively identifies the current focus of the scientific literature in terms of case
studies, hardware platforms, fault models, and fault detection and mitigation.

• Sec.2.6 situates the contributions of this thesis relative to the existing works.

• Sec.2.5 concludes this chapter.
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Chapter 2. Analysis of DNN Robustness - State of the Art

2.1 Background

This section presents background material that is helpful for understanding this thesis, and
is structured as follows : Sec.2.1.1 presents the background on DNNs. Sec.2.1.2 presents the
background on DNN hardware accelerators. Sec.2.1.3 presents the background on hardware faults.

2.1.1 Background of DNNs

Artificial Intelligence and DNNs

The field of Artificial Intelligence (AI) is wide and covers many different fields of study. The term
AI was coined by John McCarthy, as "the science of creating machines that have ability to achieve
goals like human do" [McCarthy2006].

Machine Learning is a sub-field of AI that has recently stimulated scientific interest, and was
coined by Arthur Samuel as "the ability for a computer to learn to perform better at a task than
the person who programmed the computer" [Samuel1959]. Recent breakthroughs have been made
possible by another sub-field of Machine Learning, DNNs.

Artificial Neuron

Artificial neural networks are mathematical models that are inspired from the study of biological
neural networks. Biological neurons are excited by stimuli from other neurons via theirs synapses.
When this excitation reaches a threshold, a biological neuron emits a spike that reaches other
neurons via other synapses. In artificial neural networks, a neuron computes a weighted sum of
its inputs synapses, performs a non-linear function on the result, and then this result, called an
activation, is passed to other neurons, as illustrated in Fig. 2.1.

Neuron

x,w,b, f ,y are respectively inputs, weights, bias, activation function and activation value

Figure 2.1: Artificial Neuron

Activation function

A non-linear activation function at the output of neurons is essential for the learning process, and
required to build multi-layer networks. Many activation functions exist, but in this thesis, we
only use the ones summarized in Tab.2.1. In the subsequent sections, the output of the activation
function will be referred as an activation.

Different layers

A DNN consists of layers, and all the neurons in a given layer are evaluated simultaneously. The
layers can have different topologies and the most discussed in this thesis are the following :

• Fully connected topology implies that every neurons in the current layer propagates its
activation to every neurons in the subsequent layer. This structure is typically found in the
last layers of a classification DNN.
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2.1. Background

• Convolutional layer implies that a group of neurons in that layer (typically a small 3x3 or
5x5 region) is connected, via a shared set of weights, to the neurons in the next layer. This
set of weights is called a kernel. In terms of implementation, convolutional layers require
fewer weights, because the same kernel pattern is shared between neurons.

Name Function Derivative Range

Sigmoid 1
1+e−x g(x)(1−g(x)) (0,1)

ReLU

0 if x≤ 0

x if x > 0


0 if x < 0

1 if x > 0

undefined if x = 0

[0,∞)

ReLU6


0 if x≤ 0

x if x > 0

6 if x≥ 0


0 if x < 0

1 if x > 0

undefined if x = 0

[0,6]

Table 2.1: Activation Functions Used in this Thesis

Pooling Layers

Convolutional Neural Networks(CNNs) can include pooling layers along with convolutional lay-
ers. Pooling layers reduce the dimensions (height and width) of the layer by combining a cluster
of neurons in one layer into a single neuron in the next layer. Pooling layers are typically used to
combine small windows of 2 x 2 neurons. Two pooling layer are frequently used :

• Max Pooling forwards the maximum value of each local cluster of neurons to the next layer.

• Average Pooling forwards the average value of the local cluster of neurons to the next layer.

Normalization layers

During training, the distribution of values in each layer changes when the weights of the previous
layers are altered. This significantly slows the training by requiring lower learning rate and makes
the training of networks with many layers difficult.

This phenomenon, coined as internal covariate shift by [Ioffe2015], is addressed with Batch
Normalization, which is a trainable layer typically used after each convolutional layer which nor-
malize the values of all neurons in a layer for each training mini-batch. As a result, Batch Nor-
malization (BN) allows to use significantly higher learning rate thus improving the training time,
and facilitating the training of deep networks. Consequently, BN is generally used in state of the
art DNNs [Howard2019].

During the inference process, the trainable parameters of the BN layers are frozen. At this
point, BN is simply a linear transformation of activations and hence can be merged with the pre-
vious convolutions.

Another normalization layer, the Local Response Normalization (LRN) is a layer that behaves
like the Average Pooling layer by normalizing several locally neighbors neurons. Instead of aver-
age pooling layers, LRN layers are not used to change the shape of a layer and usually compute an
average of neighboring pixels on the three axis (X, Y, Z) of the input layer. While no longer used
in recent DNNs, some of the networks that are studied in this thesis have this type layer.
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Training

As with all Machine Learning algorithms, DNNs are trained from input data. Various types of
learning exist such as reinforcement learning that trains a DNN in an environment in order to
maximize the cumulative reward, or unsupervised learning that learns patterns from unlabeled
data. In this document, we mainly consider supervised learning.

In supervised learning, to each data is assigned a value (single or set of label or continuous
value). The behavior of the network is evaluated through a cost function that compares the ex-
pected behavior for the input data and the actual behavior of the network. The value of the cost
function is called the loss.

The training process alters the weights and biases of the network in order to reduce the loss.
During training, the weights are updated with the gradient descent process. After each iteration

of the training process, each weight is updated with gradient descent depending on its partial
derivative of the loss. As the iterations of training progress, the loss should be reduced and the
network should converge.

After the network is trained, its weights are frozen and it can be deployed to analyze data that
has not been used during training. If the training was effective, the DNN will behave as expected
on these new data. This is called the inference.

Dropout

Dropout is a generalized technique performed during the training of state-of-the-art classification
DNNs as it improves the overall accuracy by reducing over-fitting [Srivastava2014].

Dropout is applied on certain layers, typically the last layers of a DNN. For each training
iteration, a predefined fraction of the neurons are randomly disconnected from the learning pro-
cess. During the forward pass, the outputs of these neurons are set to 0. During the backward
pass, the weights of these neurons are not modified. At the next training iteration, the neurons are
reconnected, and new neurons are randomly selected for the Dropout process.

Data-sets

The data-sets used to train DNNs used in this thesis are presented in the following and cover three
types of tasks :

• Image classification relies on data-sets where a label is attributed for each input image.
For example, the ImageNet dataset contains images of different classes of objects, such as,
for example, teapots. In a DNN trained for classification, a label is associated with each
output neuron. For each prediction, each neuron outputs the probability for the input image
to be related to its assigned label. The networks accuracy is evaluated based on its ability
to assign labels to images that the DNN has not processed during training. Two metrics are
used to compute the accuracy of the DNNs in this thesis.

– Top-1, where the neuron with the highest probability is considered to be the prediction
of the model.

– Top-5, where the model is considered accurate if one of the five neurons with the
highest ranked activation value corresponds to the correct label.

• Object detection relies on data-sets where the DNN is trained to detect, localize and assign
a label to objects in the input images. The accuracy is computed with the Intersection over
Union (IoU) metric, that compares the number of pixels that are in the region identified by
the network and the actual object, divided by the total number of pixels. This metric give a
value between 0 and 1. A threshold is then applied (typically 0.5 to 0.95). If the detected
object is detected with an IoU above the threshold and is assigned the label correctly, then
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2.1. Background

this prediction is considered correct. The accuracy is then evaluated with the metric called
precision and recall functions:

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negative

• Image segmentation is a task where the network attributes a label to each pixel in the image.
The output of a DNN trained for image segmentation is an image comparable to the input
image where each output pixel corresponds to a label associated with corresponding pixel in
the input image. The metric for this task is the mean Intersection over Union (mIoU). mIoU
is the average of the classic Precision/Recall for all the classes. For each class, individual
Precision/Recall is computed where true positive is set as the number of pixels correctly
labeled, true negative set as the number of pixels correctly not labeled, and false negative as
the number of pixels that were not labeled when they should have.

Name Task Type Size Input Output

MNIST Classification Handwritten digits 60 K 28x28 gray pixels 10 labels

CIFAR-10 Classification Pictures 60 K 32x32 RGB 10 labels

CIFAR-100 Classification Pictures 60 K 32x32 RGB 100 labels

ImageNet Classification Pictures 14 M Variable 1000 labels

GTSRB Classification Road-signs 52 K 1360×1024 RGB 43 labels

PascalVOC Classification, Detection Pictures 500 K Variable Bounding Boxes

CalTech Classification, Detection Road Video 250 K frames 640x480 Variable

COCO Detection, Segmentation Pictures 328 K frames 640x480 Variable

WoodScape Detection, Segmentation Pictures 8 K frames 3266x2450 Variable

Table 2.2: Data Sets Discussed in this Thesis

Compression Techniques for DNNs

To achieve high accuracy on well-known data-sets, DNN topologies have grown deeper, requiring
a huge number of computations for each inference operation.

Two well known techniques have been developed to reduce the number of computations re-
quired to evaluate a network.

• Pruning consists in removing unnecessary parameters and computations from a DNN dur-
ing inference [Liu2018].

The idea of pruning was made after the observation that, once trained, over-sized networks
typically have a large number of weights whose values are close to zero or a large number
of layers where the data-flow is sparse (many activations are close to zero).

A pruning algorithm typically relies on a three-stage process : 1) Training the model. 2)
Pruning the model by removing weights close to zero. 3) Retraining the network to adapt to
the weight lose.

There exist two techniques for pruning.
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– Irregular Pruning where weights are simply removed based on their value, without
considering the target hardware.

– Structured Pruning where the selection of weights to remove is made, taking into
account the target hardware.

• Quantization and Fixed Point Data-Types improves the power efficiency of a DNN ac-
celerator [Sze2017].

The energy required to perform an arithmetic operation varies with the bit-width and the
choice of operation (addition or multiplication on integers or floating-points). As illustrated
in Fig.2.2, low bit-width operations on integer cost significantly less energy than equivalent
operation on standard precision floating point values.

Consequently, a DNN that is initially trained using floating-point values, can be converted
to operate with integer weights and activations, resulting in a significant improvement in
energy efficiency and memory footprint.

Two strategies exists : The conversion of the DNN to fixed-point arithmetic and the quanti-
zation of the DNN.

The conversion to fixed point changes the data representation without significantly altering
the numerical values of the DNNs. Fixed-point computations are representing fractional
values as integer multiples of some fixed small units. Fixed-point arithmetic operations are
simpler and require less energy than floating point.

Alternatively, the values can be converted to fixed-width integers, by a quantization process
is more complex but allow significant bit-width reduction without altering the accuracy of
DNNs [Yang2019]. To convert the original weights to integers, they must be re-scaled to
the range of the integers. After re-scaling, it is necessary to perform additional training to
correct the artifacts of the quantization. Like the fixed-point conversion, the quantization
convert the weight or/and activations to integers. However, the quantization individually
scales all the layers to use the maximal possible ranges of discretization allowed by the
bit-width.

i8Add
0.03pJ

i32Add
0.1pJ

 

i8Mul
0.2pJ

 

i32Mul
3.1pJ

f16Add
0.4pJ

f32Add
0.9pJ

f16Mul
1.1pJ

f32Mul
3.7pJ

 

C8KB
10pJ

C32KB
20pJ

C1MB
100pJ

DRAM
1.3-2.6nJ

0.1pJ 1pJ 10pJ 100pJ 1nJ

Integer operations Floating-Point Operations Memory Transfer

(a) Rough Energy Costs for Various Operations
Figure adapted from [Horowitz2014] with Logarithmic

scale for measurement in 45nm 0.9V.

int8fp16

fp32

sign exponent mantissa sign value

sign exponent mantissa

(b) Three Numerical Formats Commonly
Used for DNNs

Figure 2.2: Improvement in Power Efficiency of DNNs with Reduced Precision

DNN Models

Many DNN models have been developed over the pact decade. This section briefly presents the
most discussed models in this thesis.

• LeNet was one of the first CNNs and is widely used in many studies. It achieved outstanding
progress in recognition of handwritten digits compared to the models of its time. The most
famous version, LeNet-5, contains two convolution layers and three fully connected layers.
As it is fast to train, LeNet is often used for an initial proof-of-concept in AI research. It is,
however, orders of magnitude smaller than modern DNNs.
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• AlexNet was the first CNN to participate in the ImageNet contest, and it outperformed
all other non-DNN-based algorithms at the time. Although it introduced the LRN layers,
AlexNet is not significantly different from LeNet-5 and can be seen as an eight-layer version
of LeNet-5 adapted to a much harder dataset. CaffeNet is derived from AlexNet.

• VGG goes significantly deeper and proposes up to 19 layers. The most used VGG version
is VGG-16, that is limited to 16 layers. VGG popularized the use of small kernels of size
3x3, which are still used in several modern DNNs. VGG is very big in term of model size
and the number required computations. Researches found that to improve over VGG, it was
not sufficient to simply add more layers, resulting in other strategies.

• Inception also referred as GoogleNet, added the concatenation of several layers to perform
different size filters to the same layer. Each Inception layer is the concatenation of several
convolutional layers on the same input, performing convolution filters of different sizes.
Inception was one of the first DNNs to use the now globally accepted BN.

• ResNet introduced residual layers, that shortcut several layers to finally be concatenated
with the results of parallel layers. This technique, combined with BN, made it possible to
train much deeper networks, with depths up to 152 layers in the original paper.

• MobileNet is a DNN designed for mobile and embedded applications. Its success paved
to way for other compressed models. MobileNet introduced depthwise convolutions, in
which, instead of being the result of the convolution on all input channels, one output chan-
nel specifically focus on a single input channel. Three different versions of MobileNet
currently exists but existing studies on fault tolerance currently only consider MobileNetV1
and MobileNetV2.

• SqueezeNet is another type of compressed DNN. SqueezeNet introduced the fire module,
which is a mix of squeeze convolutional layer (that has 1x1 filters), followed by an expand
layer (that has a mix of 1x1 and 3x3 filters), which can be seen as a light-weight version of
Inception modules.

• DeepLabV3 is a fully CNN designed for image segmentation. Built on top of a MobileNet
or ResNet feature extractor, DeepLabV3 module uses dilated convolutions 1 (filters where
the input pixels are spread out) to perform large filters without increasing the kernel size.

• A few others DNNs are referenced in this thesis, but the most frequently referenced net-
works are summarized in Tab.2.3

Name # of layers # of weights Accuracy

LeNet-5 5 60 K -

AlexNet 8 61 M 84.6%

VGG-16 16 138.4 M 90.1%

ResNet50 50 25.6 M 92.1%

InceptionV1 27 5 M 88.9%

MobileNetV1 28 4.2 M 89.9%

MobileNetV2 53 3.4 M 91.1%

Table 2.3: The Most Considered DNN Models in this Thesis
Accuracy is the Top-5 for ImageNet.

1Dilated convolutions can be equivalently referred as atrous convolutions.
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2.1.2 Background of DNN Hardware Accelerators

The increasing usage of DNNs was historically made possible due to the development of GPUs
that offer huge compute power [LeCun2015]. Other types of integrated circuits have also been
used to execute DNNs and these are summarized below.

Graphics Processing Units

GPUs are parallel architectures that initially employed Single Instruction Multiple Data architec-
tures for accelerating rendering of 2D and 3D graphics. The hardware architectures have evolved
and they are used for many computational intensive tasks, including training DNNs.

Indeed, some modern GPUs are specialized for DNNs. NVIDIA has released new GPUs (e.g.
Volta architectures) that embed special components for DNN acceleration, as well as software
libraries (CuDNN).

Field-Programmable Gate Arrays

Modern FPGAs contain programmable logic (PL) resources consisting of logic blocks that can
implement combinatorial functions and sequential elements. They also contain dedicated random
access memory blocks and specialized, but configurable, compute units for arithmetic operations.
All these components are wired together with a reconfigurable interconnects.

FPGAs are increasingly used as DNN accelerators due to their reprogrammability, their power
efficiency and their ability to perform massive parallel computing [Blaiech2019].

Systolic Architectures

A systolic computer consists of an array of compute units where data flows between neighboring
units, reducing the number of external memory accesses. The evaluation of DNNs requires regular
computations, such as convolutions and matrix multiplications, which can be mapped to systolic
hardware. In a systolic DNN accelerator, typically, each compute unit, called a Processing Element
(PE), can perform a multiply-accumulate Multiply And Accumulate (MAC) operation. There are
different ways to map DNNs to systolic architectures [Sze2017].

2.1.3 Background on Hardware Failures

In this section, we present a brief overview of hardware faults, how they can be modeled, and
common techniques for detection and mitigation.

Hardware Failures

A hardware fault is the result of a physical phenomena which alters the normal operation of the
hardware. A fault may be masked, if the output of the hardware unit is not used, at the time when
the fault occurs. If the fault alters a variable or a state used in the circuit, then an error has occurred.
If an error results in a system failing to achieve its objective, this is classified as a failure.

Fault can be loosely classified into three categories.

• Permanent faults are the result of a permanent change in the hardware and are persistent.

• Transient faults only impact the behavior of the hardware for a limited period of time. They
may be caused by an external disturbance, such as an ionizing particle.

• Intermittent faults occur when the same fault occurs periodically, typically because, the
operating conditions of the circuit are not stable - for example if a it is operating at an
excessively low voltage.

12
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Impact of Hardware Faults

A fault does not necessarily result in an error [Mukherjee2005a]. As the effect of a fault prop-
agates, it may be masked. In compute based systems, the impact of faults is often classified as
shown below :

• Benign fault is a fault that is masked and does not impact the program output.

• Corrected fault is a fault detected and corrected by a fault tolerant mechanism, typically
by an Error Correction Code (ECC).

• Detected Unrecoverable Errors(DUEs) occur when a fault is detected, but the system can
not correct the data. In this case, the system is aware of the fault.

• Silent Data Corruptions(SDCs) occurs when a fault is not detected, and the final result of
the computation is incorrect. This is the most serious consequence of a fault.

Bit Error Rate (BER) is a metric to measure the ratio of erroneous bits in a data stream or in
an unreliable memory. In the context of this thesis, BER is often used to quantify the rate of errors
in a weight storage memory for a DNN model.

Fault Models

A fault is the result of a physical phenomena, however, to evaluate the impact of faults, their effects
are typically abstracted using a fault model. For example, a fault induced by ionizing radiation
can be simplified and modeled as a single bit-flip.

An abstract fault occurring during the evaluation of a DNN can be described by a tuple con-
sisting of:

• Which component is impacted by the fault (e.g. weight memory, arithmetic unit, ...).

• When the fault occurs

• What effect has the fault (e.g. bit-flip, stuck-at-zero, ...).

In this thesis, the focus is on an architectural study of the impact of faults on DNN accelerators.
We have thus adopted high-level fault models which can be easily evaluated. Although such
models do not necessarily reflect the exact behavior of specific hardware faults, they are sufficient
to compare the robustness of different accelerator architectures.

In our fault models, we have considered the following cases :

• Bit-flips model the effect of transient faults. Bit-flips can occurs on a single bit or on multi-
ple, bits that are adjacent. The bit-flip is the most commonly studied model.

• Stuck-at models the effect of permanent faults. Stuck-at faults alters the value of one signal
to a specific value that remains static (e.g. an output of an adder always being one).

Alternatively, another fault model is considered in existing works :

• Noise can be used to model different phenomena, such as inaccuracy in analog-based accel-
erators, adversarial attacks (human-based alteration of the DNN), and may even be used as
very high level of abstraction of transient fault on quantized DNN. The phenomena modeled
by noise are out of the scope of this thesis, but we briefly discuss about few articles that use
this fault model.
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Injection of Actual Faults

When there is an accurate model (hardware description, etc...) of the device under study, the
effects of faults can be studied. When this is not the case, such as for commercial GPU or CPU, it
may be necessary to inject real faults in the actual hardware.

This thesis examine the existing studies that have performed the following fault injections :

• Radiation experiments where an integrated circuit placed in a beam can be used to evaluate
the effect of radiation in a complex integrated circuit.

• Timing faults are injected by increasing the clock frequency of a component above its
maximal threshold.

• Voltage faults are injected by decreasing the voltage below the minimum value required for
correct operation.

Real-world fault injection, for example through beam experiments, have the advantage that the
entire design is subject to faults. As a drawback, such experiments offer limited visibility as there
is no way to precisely know where specific faults occurred. Instead, only the high-level impact on
the application can be observed.

Fault Detection, Fault Tolerance and Mitigation Strategies

The following strategies for improving the robustness of applications are discussed in this thesis.

• Fault masking removes the alteration of the behavior caused by a fault

• Error mitigation reduces the alteration of the behavior caused by an error

• Redundancy is a commonly employed fault detection and mitigation strategy, that relies
on the duplication of components to detect a fault. Temporal and physical redundancies are
considered. Dual Modular redundancy and Triple Modular redundancy (TMR) are often
used as baseline when comparing the hardware overhead of fault mitigation techniques.

• Fault tolerant training aims to improve the fault tolerance of a DNN performing inference,
by modifying the training procedure.

• Razor flip-flop is a flip-flop augmented with a shadow latch which can detect timing faults.

• Error Correction Code (ECC) is used for controlling errors in data over unreliable or noisy
communication channels and memory storage. The central idea is to encodes the message
with redundant information in the form of a code.
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2.2 Understanding the Robustness of DNNs

This section presents works from existing studies that analyze the robustness of DNNs without
proposing methods of improvement. This section is structured as follows :

• Sec.2.2.1 presents the studies that focus on abstract DNNs that do not consider hardware
DNN accelerators.

– Historical Works briefly presents the early papers in the field of fault tolerance of
DNNs.

– Bimodal Behavior of Floating-Point-based DNNs presents the criticality of floating-
point-based DNNs.

– Role of Data Types presents the key role that numerical formats play in the robustness
of DNNs.

– Impact of Pruning presents the impact of this DNN compression method on fault
tolerance.

– Layer-Level Analysis presents the works that analyze which layers are most critical.

– Fault Tolerant DNN Mechanisms presents the inherent error masking ability of DNNs.

– Sensitivity of Weights and Activations presents studies considering faults in weights
and activations.

– Estimation of the Robustness of DNNs presents methodologies for evaluating the
robustness of DNNs without using fault injection.

– Conclusions of the robustness of abstract DNNs concludes this section.

• Sec.2.2.2 presents the existing works that focus on the robustness of actual hardware DNN
accelerators.

– Robustness of GPUs presents the robustness of DNNs executed on GPUs.

– Robustness of Static Random Access Memory (SRAM) Cells considers the poten-
tial for the power supply reduction of SRAM Cells that may be possible with DNNs.

– Robustness of FPGA-based DNN accelerators presents the robustness of DNNs ex-
ecuted on FPGAs.

– Conclusions of the robustness of hardware DNN accelerators concludes this sec-
tion.

2.2.1 Robustness of Abstract DNNs

This section presents the existing studies that consider faults in mathematical models of DNNs.
As illustrated in Fig.2.3, the same DNN model can be executed on many different hardware

platforms. This is one of the challenges when studying the fault tolerance of DNNs : Hardware
faults are dependent on the architecture and implementation technology and may vary across dif-
ferent hardware DNN accelerators. To draw general conclusions on the fault tolerance of DNNs, a
strategy used in the existing works consists of considering the DNNs without a specific hardware
platform. Instead of performing realistic fault injection on models of actual hardware, faults are
injected into the abstract DNN model, typically using weights or activations as target of faults.

We propose to call this approach the study of abstract DNN. This section presents the conclu-
sions that can be drawn from this field of study.
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Figure 2.3: Difference between Abstract and Hardware-Specific Deep
Neural Networks

Historical Works

Observation : The first scientific publications that focused on the fault tolerance of neural net-
works appeared in the 1990s, and most of them were based on abstract neural networks.

Notably : Clay and Sequin (UC Berkeley) published several papers on the fault tolerance of
neural networks. In [Clay1992], the authors randomly removed from one to three hidden neurons
during the training. They show that this technique not only makes the resulting network more tol-
erant to these faults during inference, but they show that it prevents over-fitting and thus improves
generalization. This is comparable to the well-known drop-out technique that is still widely used
in modern networks.

Furthermore : At this time, other authors explored different fault models. [Nijhuis1990]
specifically studied the extent to which a network can be made tolerant to faults in the weight
storage memory by including such faults during the training phase. At the same time, in Japan,
researchers were looking at the impact of faults during training. [Alippi1995] studied a three layer
neural network. They considered five sources of faults : input, weight, multiplier, adder and
activation faults. Using a mathematical approach, they analyzed the effect of faults in a neuron
and how they propagate across layers. [Ito1997] proposed a modification of the training process
to improve the robustness of the model. These authors claimed that this approach requires fewer
training iterations and provides better fault tolerance.

However : Although these studies constitute the cornerstone of the existing studies, the de-
velopment of modern DNNs, new activation functions, normalization and pooling layers, and new
hardware accelerators have triggered a renewed interest in the study of the fault tolerance of mod-
ern DNNs.

Bimodal Behavior of Floating-Point-based DNNs

Observation : Floating-point DNNs exhibit a bimodal behavior in the presence of faults : either
the accuracy is negligibly impacted, or the accuracy drops to random guessing. Several articles
have shown this behavior in the presence of memory faults (bit-flips in weights of DNNs). This
section reviews the papers that have observed this phenomenon and presents an explanation for its
cause.

Notably : This behavior is observed in multiple studies. [Arechiga2018] focused on the im-
pact of SEUs in the weights of recent CNNs. VGG16, ResNet-50 and InceptionV3 are tested and
for each network, the rate of faults causing a graceful degradation of accuracy is low. As shown in
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Fig.2.4, faults cause either a catastrophic loss of accuracy or do not impact the accuracy. The frac-
tion of runs that results in a graceful degradation (drop of accuracy between 10 and 70 percentage
points) never exceeds 2%.

Furthermore : [Malekzadeh2021] performed an in-depth analysis of the effect of faults on
weights on the simpler LeNet-5 CNN, while [Gao2020] injected faults on the weights, bias and
batch normalization parameters on pruned networks and both observed this phenomena. [Li2019]
also confirmed this observation when injecting timing errors induced by overclocking. In all these
cited examples, with an increasing error rate, the accuracy suddenly drops to random guessing.
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Figure 2.4: Bimodal Behavior on Floating Point based VGG-16
The stacked columns represent the percentage of runs that have a minor loss of accuracy (>80%),

catastrophic accuracy (<10%), and a graceful degradation in accuracy (10 to 80%). The fault
model is an increasing bit error rate in the weights. Fault free accuracy is 90%. 100 runs of 50K
images were executed for each bit error rate. These data are taken from [Arechiga2018]. This

publication has equivalent data for other topologies (Inception and ResNet-50).

However : Few papers have focused on the cause of this behavior. [Arechiga2018] compared
the robustness of three CNNs. He concluded that the difference in robustness between them can
be explained by batch normalization. This does not explain the bimodality. A better explanation is
proposed in the study of [Malekzadeh2021]. This article provides insight into the comprehensive
study of the robustness of CNNs to weight errors. While focusing on the simpler LeNet-5 network,
their conclusion is that this observed behavior can be explained by the bit position affected by a
fault. While the DNN appears to be robust to faults in LSBs, one single fault in the MSB of
the exponent of a floating-point value can cause the accuracy of the DNN to collapse to random
guessing.

To test the hypothesis of the criticality of MSBs causing the accuracy to drop to random guess-
ing, we performed our own experiments and analyzed the results of [Arechiga2018]. Our results
are summarized in Fig.2.5. There is a clear correlation between the probability of the MSB of a
positive weight 2 being impacted and the rate of runs resulting in random-guessing accuracy. For
example, for each of the tested networks, for approximately 10 bit-flips, both the rate of runs with
random-guessing accuracy and the probability of a bit-flip altering the MSB of a positive weight
is close to 20%. For approximately 45 bit-flips, the probability increases to 50% in both networks,
while the rate of runs with random-guessing accuracy goes from 60 to 40%, depending on the
network.

2We noticed that errors caused by a fault altering the MSB of a negative weight are likely to be mitigated by the
widespread Rectified Linear Unit (ReLU) activation function, thus making them less critical.
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Consequently, the hypothesis that a sudden loss of accuracy is triggered by a bit-flip in the
MSB of the exponent to explain the bimodal criticality of floating-point-based DNN makes sense.
Faults in the MSB of the exponent cause the accuracy of the DNN to collapse, while faults in the
other bits appear robust to faults.
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Figure 2.5: Behavior of Several DNNs at Increasing Number of
Bit-Flips

The first four traces (blue, orange, green, red) are extracted from [Arechiga2018]
and [Malekzadeh2021]. The pink curve is the calculated probability of the MSB of the exponent

of a positive weight being hit; it is assumed that 50% of the sign bits are zero.

To conclude : The effect of faults on floating-point based DNNs is bimodal. The loss of ac-
curacy is limited when faults impact LSBs. The accuracy is likely to collapse to random guessing
when faults impact MSBs.

Neural networks calculated with other data types, however, appear to have an accuracy that
gradually decreases in the presence of memory faults.

Role of Data Types

Observation : The numeric format used for weights and activations plays an important role in the
robustness of DNNs. An error causing a large numerical deviation is likely to alter the behavior
of a DNN [Li2017, Sabbagh2019]. Consequently, data types that reduce the probability of high
numerical divergence are expected to be the most robust.

Notably : [Li2017] reports a difference in the robustness between different data-types that can
differ by several orders of magnitudes, as seen in Tab.2.4. Networks using fixed-point values with
a large integer bit-width are 9 times less robust than network using floating-point format. The
tested fixed-point, a 32 bits fixed-point with 21 bits used to code integer has more of its bits that
are likely to become SDC than 32 bits floating point when they are altered by an equivalent rate
of transient faults. We note here that even if a floating-point format can cause a higher numerical
divergence in the case of a bit-flip in the MSB of the exponent, they are more robust as they have
a lower number of critical bits (number of bits that cause an SDC if they are altered by a fault).

However : Reducing the numbers of bits used to code the integer portion of the fixed-point
value from 21 to 5 improves the robustness of the resulting DNN by 76×. The authors [Li2017]
explain that the difference in robustness between data-types is explained by two factors, namely the
number of critical bits, which is more important with 32b fixed-point (21b integer) and secondly
by the numerical range, which is more important with 32b floating-point. As a consequence, data
types that can represent an unnecessarily large numerical range should be avoided.
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Data type DNN SDC Probability

32b floating-point CaffeNet 0.46%

32b fixed-point (21b integer) CaffeNet 7.01%

32b fixed-point (5b integer) CaffeNet 0.0875%

Table 2.4: SDC Probability Based on Data Type
Results extracted from [Li2017]. SDC Probability for a single bit-flip in activations.

This problem is addressed by quantization 3. The robustness of quantized DNNs has been ex-
tensively studied. [Sabbagh2019] shows that quantization can improve the robustness of LeNet-5
by three orders of magnitude and VGG-16 by one order of magnitude. [Syed2021] explores dif-
ferent quantization bit-widths to conclude that reducing the bit-width from 32 bits to 4 bits can
improve the robustness by 20.7%. Quantization improves the robustness of DNNs, and the usage
of low-bit-width quantized DNNs is preferred for fault tolerance.

Extreme quantization through binarization further improves the robustness of quantized DNNs.
[Sabbagh2019] claims that binarization can improve the robustness of LeNet-5 and VGG-16 by 4
orders of magnitudes compared to their floating-point baseline. Furthermore [Gambardella2019]
confirms that binarized DNNs record a worst case loss of accuracy of 10% with the unusual
channel-error fault model (all bits of a given channel are stuck-at a faulty value). These studies
confirm that Binarized Neural Networks are several of magnitude more robust than their floating-
point-based counterparts. These theoretical observations regarding binarized DNNs have been
confirmed with experimental tests on FPGAs by [Souvatzoglou2021, Libano2020]. We note how-
ever that binarization process significantly reduced the accuracy of a DNN, or requires the addition
of neurons to maintain an equivalent accuracy compared to a larger numeric format.

To conclude : The data-format of a DNN plays a key role in its fault tolerance. DNNs based
on numeric formats with a small numeric range are less sensitive to faults.

Impact of Pruning

Observation : Pruning 4 is another model compression technique for DNNs that has a minor
impact on the robustness of DNNs.

Notably : Some authors have performed fault-injection studies on pruned networks. [Sab-
bagh2019] performed experiments on pruned versions of LeNet-5 and VGG16. The robustness of
both networks is improved by one order of magnitude by pruning as seen in Fig.2.6.

However : With a pruning rate of nearly 90%, the previously cited paper also reduces the
memory footprint of the DNNs by one order of magnitude. Consequently, pruning does not im-
prove the robustness of the DNNs for a given absolute number of faults. Instead, pruning improves
the robustness by reducing the probability of a fault to occur. To confirm this idea, [Gao2020]
studied the effect of different pruning rates for VGG16, using multiple fault models (bit-flips in
weights, bias, and batch normalization parameters). This study shows that the robustness of DNNs
is hardly altered by the pruning rate, as the accuracy varies by +/-3% for 3 weight bit-flip regard-
less of the pruning rate, while the memory usage of the model is reduced with the higher rate of
pruning.

3As seen in Sec.2.1, quantization is a process that converts both weights and/or activations of a DNN to a discrete
space through the use of integers instead of floating-point computations. It allows a reduction in bit-width, which results
in smaller model size and improves the energy efficiency of computations [Sze2017].

4As seen in Sec.2.1, pruning is a process that removes neurons and weights from the computation with a minimal
degradation of the final accuracy. It allows a reduction in the compute and memory usage of a DNN. There exist several
pruning methodologies that often rely on three steps : 1) The training of a baseline DNN, 2) The removal of nodes
and/or weights of the network, and 3) A re-training for reducing the accuracy loss caused by step 2.
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Figure 2.6: Accuracy of Various Pruned DNNs at Increasing Bit Error
Rate

The data are extracted from [Sabbagh2019].

To conclude : Pruning reduces the computational and/or memory usage usage of DNNs.
While pruning does not impact the per-bit sensitivity to faults, the memory reduction caused by
pruning improves absolute sensitivity, as the memory footprint is reduced.

Layer-Level Analysis

Observation : The robustness of the layers of a DNN can vary.

Notably : [Kwon2016] studied the impact of faults in weights in different layers of LeNet-5.
In this study, the results show that the first layer is three times more robust than the last convolu-
tional one. [Li2017] studied the robustness of different layers in three different DNNs (AlexNet,
CaffeNet and NiN). The output layers of the first two DNNs are more sensitive than the earlier ones
(the last layer has a SDC rate that is twice as high as the third layer). [Xu2019] performed similar
experiments on AlexNet, VGG16 and VGG19, and these results are represented in Fig.2.7. We see
that for each tested DNN, the last fully-connected layer is the most sensitive one. [Wan2021] also
performs a similar analysis using a custom network comparable to LeNet-5, and reaches similar
conclusions.
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Figure 2.7: Probability of SDCs of various Layers of Three DNNs at
Constant Error Rate

These data are extracted from [Xu2019].
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However : Much work remains to be done to understand the robustness of individual layers.
In [Kwon2016], the distribution of the values of the weights is proposed to explain this difference,
as the first layer has a range that is 20x larger than the third layer, being three times more robust
(only two layers are considered in this study). In [Li2017], the distribution of the activations are
considered as a possible explanation. As we will see in chapter 3, this explanation does not con-
sider the topology of DNNs. Modern networks use BN, which results in normalized weights and
activations among all layers, while the difference of robustness between layers remain. Therefore,
there must be another explanation for understanding the robustness of layer.

To conclude : The first layers are generally more robust than the last ones. Typically, the last
fully-connected layer is likely to be the most sensitive in a DNN. However, much works remain to
be done to understand all the factors that contribute to the sensitivity of different layers.

Inherent Robustness of DNNs

Observation : Certain architectural characteristics of DNNs such as activation functions, pooling
layers and normalization layers contribute to the overall fault tolerance of the whole model. This
section explores the role played by these mechanisms.

Activation functions are able to mitigate the effect of certain faults. [Li2017] cited the error
mitigation of certain activation functions but did not quantitatively analyze them. As illustrated in
Fig.2.8, the ReLU activation function is able to mask faults producing negative values of an acti-
vation without changing its sign, as any negative value is set to 0. [Malekzadeh2021] compares the
robustness of two activations functions : ReLU and Sigmoid and concludes that the latter is more
robust. The positive output of ReLU is not bounded. The Sigmoid function, on the other hand, is
bounded between 0 and 1 and thus is expected to mask more faults. This expectation is confirmed
at the cost of a reduced fault-free accuracy. The results show that with comparable error rate, the
Sigmoid prevents the bimodal problem seen in Sec.2.2.1. However, real world applications may
not benefit from these findings, as the ReLU activation function performs significantly better in
many applications (including this study) and is computationally much simpler [Datta2020]. Acti-
vation functions are able to mask some errors. The ReLU function which is currently one of the
most widely used in modern DNNs can mask errors resulting in negative values.
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Figure 2.8: Example of ReLU Masking an Error
ReLU is an activation function defined as ReLU(x) = max(0,x) This activation function is used

in state of the art DNNs trained for computer vision.

Pooling layers play a minor role in robustness. [Li2017] discusses the error-masking ability
of pooling layers without providing quantitative analysis. [Malekzadeh2021] analyzes the error
masking ability of max and average pooling layers. The results of this study show that compared
to max pooling, the usage of average pooling layer reduces the number of catastrophic errors by
approximately 60% but does not mitigate all of them. Consequently, pooling layers are theoreti-
cally able to mitigate certain faults, but are not effective for masking all of them.
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LRN is a layer that normalizes several neighboring neurons. [Li2017] compares three DNNs
(AlexNet, CaffeNet and NiN) and observes that the networks which uses LRN are more robust
than those which do not. Without a quantitative analysis of comparable networks, the authors
conclude that normalization layers play a role in the robustness. We think that such conclusions are
premature, since the three networks are fundamentally different (e.g. NiN is a fully convolutional
DNN, while AlexNet and CaffeNet are more traditional CNNs with a mix of convolutional and
fully-connected layers). In fact, this article only considers LRN, which is rarely used in modern
networks. The authors do not consider BN, which is currently accepted as the best normalization
technique [Moradi2020].

BN is studied by [Arechiga2018]. This author considers three different networks (VGG16,
ResNet-50 and Inception) and observes an order of magnitude difference in robustness between
these DNNs. They conclude that this is caused by the normalization layers. VGG16 which does
not use normalization is ten times more sensitive to faults than the others networks. Based on
our own experiments, we question the conclusion of the authors. The three tested DNNs are
fundamentally different, and a better explanation is proposed by [Mittal2020], who notes that these
DNNs are equivalently robust to the same absolute number of errors. In addition, during inference,
BN performs a simple linear transformation, consequently may be fused with the previous layer
without any impact on the computation [Ioffe2015]. The ability of BN to mask errors therefore is
questionable, since there is no real normalization of the inputs during inference.

Experiments were performed to further analyze the effect of BN on the robustness of a DNN.
The results of our experiments are shown in Fig.2.9. We recorded the average accuracy on 100
runs for increasing bit error rates on VGG-16, with and without BN. Considering the same fault
model (bit-flips in weights) as [Arechiga2018] we see that the usage of BN slightly reduces the ro-
bustness. With the activation fault model however, BN appears to slightly improve the robustness.
However, in all cases the effect of BN on robustness is minor. While previous studies claimed that
BN improves the robustness of DNNs, we think that when analyzed carefully, the effect of BN on
robustness is negligible.
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Figure 2.9: Impact of Batch Normalization on Robustness
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To conclude : Various components of DNNs can individually mitigate faults. Both activation
functions, normalization layers and pooling layers can theoretically reduce the impact of faults.
However, in practice, these observations can not easily be applied to modern DNNs. The widely
used ReLU activation function is less efficient at mitigating faults than the historical Sigmoid
function. Equivalently, the currently globally accepted BN is less efficient to mitigate faults than
the LRN, which is not used anymore in modern DNNs. The ability of pooling layers to mask
errors which provoke a large, erroneous values, is limited.

Sensitivity of Weights and Activations

Observation : For abstract DNNs, the weights and activations are frequently used as the target of
faults injection experiments and studies.

Notably : Being stored in memories, weights typically represent an important fraction of the
memory footprint of a DNN, as seen in Sec.2.1.1. Thus a fault occurring in the memory of a DNN
is likely to impact its weights. Consequently, studying faults in the weights is a way to evaluate
the impact of faults in memory. Equivalently, the activations are the computational result of a
weighted sum between activations from the previous layer (or input) and weights. Thus a fault
occurring in the computational units executing a DNN is likely to impact the activations. Thus,
faults occurring in the activations can be seen as a proxy for faults in the computational data-path
of a DNN.

However : While many studies separately consider these two fault models, there are few
works that extensively compare the robustness of both, and they all report that faults occur-
ring in activations are less likely to alter the behavior of the application than faults occurring
in weights. [Reagen2018] tested the robustness of several models (LeNetFC, LeNetCNN, CI-
FAR10, VGG16, ResNet50 and Tigru) to faults occurring in activations and weights. In every
tested cases, the robustness of activations is better than that of the weights, for equivalent BER.
On bigger networks (ResNet50 and VGG16), activations are more than 50x more robust to faults
than weights. [Neggaz2018], using an equivalent methodology, reaches the same conclusions. This
work focused on LeNet-5, but the results show that faults injected in activations have a smaller
impact as faults injected in weights. To confirm the results of these studies, we performed our own
experiments to assess the robustness of both these components and our results are summarized in
Fig.2.10.
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Figure 2.10: Comparison of the Robustness of Weights and Activations
These data are the results of our own experiments. To reduce the bimodal criticality of DNNs

seen in Sec.2.2.1 , we used the ReLU6, a clipped version of ReLU. ReLU6(x) = min(6,max(0,x))
Equivalent experiments on ReLU were performed, with comparable results. We used the same

fault injection methodology as [Reagen2018] but using floating-point DNNs.
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We applied an equivalent bit error rate in both weights and activations for MobileNetV2,
VGG16 and ResNet50. For each network, at equivalent bit error rate, the accuracy is more im-
pacted by faults occurring in weights than faults in activations. This can be explained by the fact
that a fault occurring in a weight will spread to a whole channel, while a fault occurring in an ac-
tivation only leads to a limited local propagation. Thus, our experiments confirm the conclusions
of the existing works.

To conclude : Weights and activations are two widely used fault targets that exhibit different
levels of robustness. Intuitively, faults in weights can be viewed as a proxy for faults in memory
and faults in activation as a proxy for computational faults. The few articles that quantitatively
compare their robustness conclude that activations are more robust than weights and our own
experiments confirm this observation.

Estimation of the Robustness of DNNs

Observation : A portion of the existing works focuses on estimating the robustness of an abstract
DNN without performing time consuming fault injection campaigns.

Notably : DNNs are complex and the simulation of their hardware accelerations is time con-
suming. Consequently, light-weight techniques to estimate the robustness of a DNN are of scien-
tific interest. For example, [Xiang2019] proposed a statistical analysis of the weights in a DNN
and their importance to the output decision of the network. With the sensitivity of each weight, the
computation of the robustness of the whole application can be deduced. This theoretical approach
relies on the assumption that the input values to the DNN follow a normal distribution.

The study of human generated faults with the intent of causing a DNN to produce an incorrect
result, known as adversarial attacks, is vast. Although this is not the topic of this thesis, certain
ideas from this field of study may be applicable to DNN hardware fault tolerance. [Webb2018,
Yu2019] both propose new metrics to statistically estimate the robustness of a DNN to adversarial
noise at the inputs. [Couellan2021] proposes a probabilistic estimation of the robustness of the
output of a DNN to local variations in its inputs, using a process similar to gradient descent.

However : The cited publications make assumptions which may limit their applicability in
real-world applications. The statistical-based estimation proposed by [Xiang2019] is limited to
weight perturbations (noise) as a fault model. Furthermore, the assumption that the inputs of
a DNN follow a normal distribution may not always be true. The adversarial attacks studied
by [Webb2018, Yu2019, Couellan2021] do not exhaustively cover the fault models studied in the
works that consider hardware faults.

To conclude : Techniques to estimate the robustness of a DNN and avoid costly fault injec-
tion campaigns are of great importance. However, much work remains to be able to estimate the
robustness estimation of a DNN to hardware faults. The existing studies focus on statistical or
probabilistic estimation of the robustness of DNNs and rely on assumptions (e.g. normal distribu-
tion of the inputs) or theoretical fault models (noise) and more work is required to study whether
these results can be applied to the analysis of hardware fault tolerance.

Summary of the Robustness of Abstract DNNs

This section concludes the analysis of the State Of The Art that considers abstract DNN, and
summarizes the conclusions.

Critical faults reducing the accuracy to random guessing is a problem in floating-point based
DNNs. We have seen that on floating-point-based DNNs, faults have virtually no impact on the
DNNs output until a certain threshold is crossed, after which the behavior of the DNNs is reduced
to random-guessing. There even exist rare cases where one single bit-flip in such DNNs results in
complete failure.

Fault Tolerant DNN Mechanisms can contribute to mask faults or mitigate errors. Activa-
tions functions may clip high variations caused by a fault, and the usage of average pooling layers
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over max pooling improves the robustness of DNNs. These components are not specifically de-
signed to mask faults, and many of these mechanisms are no longer used in modern DNNs, such
as average pooling or Sigmoid activation functions.

Data types play a key role in the robustness of DNNs as globally explained in existing works.
When the data type can limit the numerical range available within a DNN, it reduces the worst-case
numerical divergence caused by a fault. Binarized DNN thus appears to be the most robust.

Pruning plays a role in the fault tolerance of DNNs and can further improve the robustness,
by reducing the computational and memory usage of a DNN.

The layers of a DNN are not equally robust. It is generally accepted that the final, fully-
connected layers are more sensitives than the first layers, typically convolutional layers used for
feature extraction

Weights and activations are two common fault targets as they serve as simple proxies for
memory and computational faults, respectively. Errors altering weights are more likely to degrade
the accuracy of a DNN than activation faults. Weights faults propagate through a whole channel,
whereas an activation fault propagates only to downstream neurons.

The estimation of the robustness of DNNs using fast techniques is of interests as fault-
injection campaigns are computationally expensive. Approximative techniques based on statistics
rely on assumptions and more work is required to see whether they can be applied to the analysis
of hardware fault tolerance.

Conclusions drawn from the study of abstract DNN provide useful insight in how to improve
the robustness of DNNs, however abstract DNNs remain an abstraction and do not always reflect
the behavior of faults in actual hardware accelerators.

2.2.2 Robustness of DNNs Accelerated on Hardware Platforms

This section presents the existing works that focus on the robustness of DNNs considering hard-
ware accelerators specificities. For exhaustively estimating the hardware fault tolerance of a DNN,
architectural and technological aspect must be taken into consideration. As a consequence, an im-
portant part of these studies consider the robustness of DNNs when they are executed by hardware
accelerators. This section presents works that analyze the robustness of DNNs when they are
executed on the most used hardware accelerators and is structured as follows :

• Sec.2.2.2 presents the robustness of DNNs executed on GPUs.

• Sec.2.2.2 considers the power consumption reduction that tolerance of DNNs could allow
in case of voltage-down-scaling of SRAM Cells.

• Sec.2.2.2 presents the robustness of DNNs executed on FPGAs.

• Sec.2.2.2 concludes this section.

Robustness of GPUs

Observation : The robustness of GPUs as DNNs accelerators is an active field of research. As
GPUs are commonly used accelerators for DNNs due to their high computing powers and their
accessibility [Strigl2010], study on their robustness are of scientific interest. GPUs are becoming
increasingly subjects to hardware faults due to the shrink of transistors size [Fratin2018] and the
emergence of new computing paradigm for reducing energy consumption [Ganapathy2019]. No-
ticeably, the fault tolerance of GPUs is assessed with software based fault injections frameworks.

Notably : NVIDIA has recently published SASSIFI/NVBitFI, a fault-injection framework for
their GPUs [Hari2017,Tsai2021]. SASSIFI is a low-level assembly-language tool to perform fault
injection during run-time of a GPU application. Faults can be performed on several types of in-
structions that operate on value and address and alter their outputs. This frameworks is used by

25



Chapter 2. Analysis of DNN Robustness - State of the Art

many studies as [Adam2021b], which performs fault injection on AlexNet. The results are pre-
sented in Fig.2.11. Authors conclude that the tested model is more subject to SDC than DUE. All
SASSIFI instructions are tested, and the Floating-points Addition (FADD) and Load (LD) instruc-
tions are by far the most vulnerable to bit-flips. They result in SDC for at least 84% of injected
faults. The instructions STORE, Set Register value (SETP), Floating-point Fused Multiply-Add
instructions (FFMA) are also vulnerable at a lower degree. Condition-Code registers (CC) instruc-
tions, on the other hand, appears to be resilient to errors.
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Figure 2.11: Criticality of Different Instructions of AlexNet on a GPU
The impact of fault on each tested instruction is showed. Fault injection executed with SASSIFI
framework, on NVIDIA GeForce GTX 750 Ti. Instructions are split in the Instruction operating

an Address on the one side, and Instructions operating other values on the other. For each
instruction, rates of fault injection with masked effects, SDC and DUE are reported. Data

extracted from [Adam2021b].

However : Some studies are cautious about the NVIDIA framework, considering that these
software-based fault injections may not efficiently simulate the effect of real faults. [Ito2021] sup-
poses that the control flow (order of instructions) is a weakness of the GPU-based applications,
but considers that the CC control instructions of SASSIFI is not representative of the control flow
of an applications. Instead, authors perform fault injection on the program counter to disturb the
control of the studied DNN. With one single bit-flip, experiments show that the instructions used
for loading arguments, configuring threads and blocks leads to DUE in 53.4% of cases. Instruction
that write data to memory leads to DUE in 66.9% of cases. Arithmetic-related instructions leads
to 3.4% of DUE. Authors thus conclude that the arithmetic-related instructions are the most ro-
bust. [dos Santos2021] compares the software-based framework with beam experiments, and con-
cludes that the fault injection framework of NVIDIA successfully estimate the rate of SDC. DUE
rate, however, is from 60X (ECC-on) to 46.700X (ECC-off) underestimated by software-based
faults injections, compared to beam experiments measurements. Authors explain that components
unreachable by the programmer seem responsible for an important rate of DUE. [Ito2021] reach
the same conclusions. In both of these studies, an important rate of DUEs remains caused by un-
known agents, which could be explained by the fact that hardware components inaccessible to the
programmers (thus to the fault injection framework) are sensitive and lead to an important number
of DUEs.

Furthermore : The role of the resource utilization of GPUs on fault tolerance is considered
by [Badia2021]. The robustness of three different scheduling strategies to radiation-based exper-
iments are compared. The main conclusion of this work is that most of the errors result in DUE,
and they can be reduced by lowering the application latency. In others words, the fastest algorithm
is the strongest, even if it uses intensively the cores of the GPU.
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To conclude : As the robustness of GPUs for DNNs is an active field of study, NVIDIA
has published tools that allow to perform software-based fault injections on applications using
their GPUs. This framework highlight the criticality of instructions related to data-transfer, while
arithmetic operations are robust. Such conclusions are confirmed by other fault injections executed
on the program counter of GPUs. These software-based fault injections successfully simulate the
rate of SDC compared to physical measurements, but fail to efficiently simulate the rate of DUE.
This is caused by the fact that components unreachable by programmers may cause an important
number of undetected DUEs. The resource utilization of GPU also plays a role on the robustness.
The fastest algorithm is the strongest, and full usage of resources of GPUs is advised by the cited
works for improving the robustness.

Robustness of SRAM Cells Used in DNN Accelerators

Observation : SRAM is a type of random-access memory (RAM) that uses latching like circuitry
to store each bit. SRAM cells are being a growing concern for the energy consumption of modern
applications [Kumar2021]. This has triggered the focus of researchers and many strategies have
been found to reduce the power consumption of SRAM 5 at a cost of a reduced reliability. This
section presents the existing works that focus on the energy-consumption vs robustness trade-off
of SRAM cells.

Notably : The power consumption is reduced by lowering the voltage supply used by cells.
[Yang2017] proposes quantitative experiments on a real world 28nm CMOS 8KB SRAM test chip.
On the tested chip (28nm FD-SOI), authors show that supply voltage can efficiently be reduced to a
range from 0.8V to (0.49-0.52V) with limited impact on the classification accuracy of a tested net-
work. This lead to leakage savings of 4.8x to 5.4x and memory access power of 2.6x to 2.9x. Other
authors explore the fault tolerance of DNNs to reduce their power consumption. [Wu2021a] use
existing data in the scientific literature to use a targeted voltage (0.5 V), that induces an important
rate of bit-cell failure rate (0.1%) and make a DNN adapted to it. They experiment a low-bit-width,
floating-point data type. They show that this 7-to-8 bit floating point drives to a robust DNN up to
important bit-cell failure rate (0.1%). The usage of low-bit-width floating point and the strategy
of developing a DNN computational paradigm designed for robustness is of scientific interest.

However : The conclusions of previously cited studies should be considered with prudence.
In [Wu2021a], the fault model used (bit stuck-at) may not be representative of read-error faults
in SRAM caused by low voltage, and all this work rely on assumptions taken from data from
another study (namely 6T SRAM Cell on 65nm technology in [Wilkerson2008]) that may be not
adapted to modern accelerators. In [Yang2017], the considered case-study is a two-layers DNN,
which is not representative of recent applications. This issue is addressed by [Wu2021b], which
use a more recent case study (VGG-16). Authors also simply reduces the reduction of the supply
voltage of SRAM cells to reduce the power consumption. Beyond a tolerance threshold, this
methods induces read-errors, which are simulated as bit-flips. As we have seen in Sec.2.2.1 and
Sec.2.2.1, it can have severe effects on floating-point-based DNNs, but can be more efficiently
endured by quantized DNNs. To tackle this issue, authors use quantized DNNs and simulate
errors in the weights of a quantized neural network. They conclude that quantized DNNs can
tolerate an important number of bit error rate, and thus that the power-supply lowering can reduce
the consumption of both dynamic and leakage power by 30% without effects on the classification
accuracy of the network. These results are illustrated in Fig.2.12. The robustness of quantized
DNNs can be used to reduce the power consumption of DNN without great efforts.

5The development of new technologies and new SRAM Cells is beyond the scope of this thesis, but the reader is
referred to [Rao2022, Kim2021, Abbasi2022] to learn more about emerging SRAM technologies.
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Figure 2.12: Example of SRAM Cell Voltage Down-Scaling for DNNs
The intrinsic robustness of quantized DNNs can be used to reduce the power consumption of an
application without great efforts. Voltage can be reduced by 30% without any effect on accuracy,

and 45% with a minimal loss on accuracy. Model is a ResNet50 trained for CIFAR10 and
quantized to 8 bit computations. The data are extracted from [Wu2021b].

To conclude : Due to the large role played by SRAM in energy consumption of modern
SoC, several papers consider the lowering of the power supply as an efficient power-reduction
strategy. It induces a raise of bit error rate, which makes the floating-point data unadapted due
to their bimodal behavior in presence of faults, as seen in Sec.2.2.1. Existing works consider the
quantized DNNs, and show that a power reduction can lead to significantly improvement of energy
efficiency without significant accuracy loss.

Robustness of FPGA-based DNN accelerators

Observation : FPGAs offer an important hardware reprogrammability, and a better power con-
sumption than GPUs [Reuther2021], which makes them a target of choice for the design of DNNs
accelerators. As a drawback, it has been proven that FPGAs may be sensitive to radiation and
other errors, depending on the mechanism they use to store the configuration data [Wirthlin2015].

Notably : Configuration units of FPGAs are known to be a weak spot of FPGA robustness.
As seen in Sec.2.2.1, binarized DNNs, which have been proven to be resilient to arithmetic and
weight memory errors. For example, [Sabbagh2019] report that binarized DNNs are robust to up
to 10% accumulated faulty bits in their weight. In [Souvatzoglou2021], authors consider reliability
issues that are specifically induced by Configuration Static Random Access Memory (CSRAM)
on FPGA accelerating binarized DNN. Authors perform a vulnerability analysis considering con-
figuration memory of FPGA, user flip-flops and registers. This work concludes that single bit-flip
fault altering CSRAM of such accelerator leads to critical errors with a probability of 0.3% and
crashes with 1.2%. Single bit fault in user flip-flops leads to critical errors with a probability of
0.12% and crashes with 2.25%. The gap of these results with the robustness of binarized DNNs
to computation faults reported by other studies can be explained by the fact that the configuration
memory of FPGAs remains a weak spot of such architectures for the acceleration of DNNs.

However : The FPGA remains a target of choice for studying the fault robustness of DNN
accelerators, as faults can be easily injected in the control units of executed DNN accelerators.
[Xu2021] assess the global robustness of a DNN accelerator, including faults in Direct Memory
Access modules, control unit (that control the execution of the accelerator), instruction memory
and their related exceptions. DNN accelerators are less robust than globally expected when the
fault tolerance of control is taken into considerations. The first components that force the system
to stop considering an increasing bit error rate are the control units, while equivalent level of faults
only slightly reduce the accuracy in the computational units of the DNN. This work concludes that
control units should be considered to compute the robustness of an accelerator. Fortunately, the
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fault tolerance of such units have already been extensively studied 6. Control units play a major
role in the robustness of a DNN. They seems to be a weak spot of DNNs but can be improved with
methods that are out of the scope of this thesis.

Furthermore : The role of resource usage on the robustness of FPGAs was studied by
[Libano2021]. Authors use a CNN trained on the MNIST dataset and test the robustness of dif-
ferent data types and parallelism strategies to fault injected by neutron beam experiments. The
results are reported in Fig.2.13, that represents the rate of critical faults (altering the output of
DNN), crashes and tolerable faults depending on the resources usages (rate of used configurations
bits) and used data-types. The reduction of critical errors depends on the resources usages of
data-types. Compared to FP32, FP16 uses 40% less resources and has 22% less errors. INT8 uses
64% less resources and reduce 72% of errors. The parallelism strategies also impact the robust-
ness. Two strategies are used : Maximal and minimal resources usage. Maximal uses 130x more
resources and is 133x more likely to be affected by errors. While resource utilization directly im-
pact the robustness of the model, the latency also plays a major role as well. Considering that the
maximal resource usage is 1000x faster, authors conclude that the reliability of a DNN depends
more on its latency than the amount of resource it uses. Given the data types, the conclusion is
that quantized DNNs are more robust that floating-point-based implementation. However, we no-
tice that the quantized DNNs are only 6x more robust than other tested data type, whereas many
others studies conclude that this difference of robustness should be measured in several orders of
magnitude, as seen in Sec.2.2.1.

(a) Neutron Cross Section for Different Data-Types (b) Neutron Cross Section for Different Usage of
Resources of FPGA

Figure 2.13: Results of Neutron Beam Experiments on a FPGA
Results extracted from [Libano2021] from experiments on 28nm Zynq7000 (XC7Z020) running
a LeNet-5-like network. Outputs altered by faults are classified as errors. Critical errors change
the classification results, while tolerable does not. Fig.2.13a compare data types. Fig.2.13b plots

the neutron cross section of different levels of parallelism. Min PEs is the minimal version of
FPGA acceleration and use a limited number of resources. Max PEs uses every possible
resources of the FPGA. The latency of the tested DNN is not considered in these figures.

To conclude : FPGAs, which offer unique opportunity as DNN accelerators, suffers from
their complexity. The configuration memory of the FPGAs appears to be a weak spot, and experi-
ments have proven that DNN accuracy is subject to be altered by faults in such component before
being altered by faults in the weight memory, or the computational units of DNNs. The stud-
ies considering FPGAs confirm conclusions reached by works related to the robustness of GPUs.
The implementation of the DNNs that has the lowest latency and the lowest bit-width quantized
data-type is the most robust.

6This is out of the scope of this thesis, and reader is referred to [Mukherjee2005b] to further study the architectural
fault tolerance of modern computing architectures.
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Conclusions on the robustness of hardware DNN accelerators

Observation : Considering hardware specificities is necessary to precisely assess the robustness
of the execution of a DNN.

Notably : The studies that considers only abstract DNNs generally does not considers faults
occurring in control units or configuration of DNN accelerators. Yet theses are a weak spots of
DNN accelerators, as reported by studies that considers faults occurring on GPUs and FPGAs.

However : Fault tolerance of DNN hardware accelerators benefits from discoveries in the
studies that considers abstract DNNs. For example studies consider to benefit the fault robustness
of quantized DNN to reduce the voltage of SRAM Cells of DNN hardware accelerators below
the minimum threshold. This dramatically reduces the power consumption of the accelerator, but
induce errors that robust DNN can absorb in a certain proportion.

To conclude : When deploying a DNN to a safety critical application, the overall hardware
DNN accelerator must be taken into consideration, which induces that architectural and technolog-
ical specific weak points such as configuration and control units must be taken into consideration.

2.3 Improving the robustness of DNNs

This sections presents works from the existing studies that focus on improving of the robust-
ness of DNNs. This section is structured as follows :

• Sec.2.3.1 presents techniques used for detection of faults in DNNs.

– Arithmetic-Based Fault Detection presents code-based arithmetic techniques.
– Symptom-Based Error Detection presents techniques that monitor the DNN for ab-

normal behavior.
– Error Detection During Training presents fault detection techniques that can be ap-

plied during the training process.
– Hardware-based Fault Detection presents hardware-oriented techniques.
– Conclusions on Fault Detection Techniques concludes this section.

• Sec.2.3.2 presents techniques used to mitigate faults occurring in DNNs.

– Zero Masking Technique presents articles that mask erroneous value with zeros.
– Numerical Range Restriction presents articles that limit the range of all the values to

minimize the impact of erroneous values.
– Fault Tolerant Training presents techniques that modify the training procedure to

make the DNN more tolerant to faults during inference.
– Selective Modular Redundancy presents techniques based on the temporal or spatial

redundancy.
– Fault Tolerant Scheduling presents techniques that remove faulty components from

the execution of a DNN.
– Conclusions on Fault Mitigation Techniques concludes this section.

2.3.1 Fault Detection Techniques for DNNs

As fault detection plays a key role in fault tolerance, in the existing works, we find many fault
detection techniques which focus or have been adapted on DNNs. This section presents the most
well-known fault detection techniques for DNNs
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Arithmetic-Based Fault Detection

Observation : AN codes and Algorithm-Based Fault Tolerance (ABFT) are two methods used in
arithmetic operations to detect faults. The AN codes adds redundancy in the data (typically by
multiplying an integer with a prime number and by adding a constant) to detect faults occurring
during arithmetic applications [Brown1960]. ABFT is adapted to matrix multiplications. It adds
an extra column or row to matrices in order to create a check-sum that can be verified in the
product [Huang1984]. The computational and storage overhead for arithmetic techniques is lower
than full duplication.

Notably : A subset of the AN codes is explored in the studies on fault tolerance of DNNs.
[Goldstein2021] applied a 5-bit arithmetic AN codes to the MAC units of conventional DNN ac-
celerators, and tested the resulting strategy on several convolutional networks. Authors test two
different prime codes, 7 and 31, and this technique can detect over 99.5% of faults with a BER
of up to 10e-2, since the detection fails if the fault modifies the MAC result such that it becomes
a multiple of the code (unlikely to happen with prime numbers). [Fu2021] use Residue Num-
ber System AN codes to perform error detection during arithmetic operations. Residue Number
System codes an integer with its modulo, and the initial value became the modulo of the coded
information. Both of theses AN codes can be implemented in software without relying on specific
hardware, but they imply an increase of the bit-width of used integer (for example it imply a 5 bits
overhead for [Goldstein2021]). This make them less suitable for resources constrained embedded
applications.

ABFT appears more adapted to DNNs since it applies to matrix multiplication accelerators,
which are used in many accelerators of DNNs. [Hari2021] uses ABFT for detecting faults occur-
ring in the convolutions of a DNN. By taking into account the existing optimizations operated
during DNNs inference (e.g. fusing several operations on each neuron of certain layers), authors
target to reduce the overhead induced by the usage of ABFT by 6 to 26%. [Kosaian2021] goes
further in the optimization of ABFT, as illustrated in Fig.2.14. The concept of ABFT is illustrated
in Fig.2.14c. Modern GPUs decompose the computations of matrix multiplications at different
hierarchical levels, as illustrated in Fig.2.14a and ABFT can be performed at different level, as
illustrated in Fig.2.14d. Thread level ABFT adds redundant computations, but uses data already
loaded in the accelerator and hence reduces the amount of data transfer, and is adapted to layers
with low arithmetic or with high memory usage. Conversely, global ABFT increases the rate of
data transfer and is adapted to layers with high arithmetic intensity (significantly more arithmetic
operations than memory transfers). The computing and memory usage of layers vary on modern
DNNs, as shown in Fig.2.14b. Taking account of these arithmetic intensities can reduce the over-
head of ABFT. [Ozen2020c] also proposes Sanity-Check,the use of linear algorithmic check sums
to detect errors in computational layers of DNNs. This idea adapts ABFT to DNNs by adding
neurons to the computing layers that will perform check sum and that are compared to neurons
of the next layers to detect errors. The idea, very similar to traditional ABFT, is integrated in the
DNN in a clever way, so it can be performed on any hardware platform.

However : Both of these approaches relying on AN codes and ABFT are derived from the
scientific literature on fault tolerance for scientific computing. They imply significant overhead
and are efficient to detect arithmetic faults. They detect faults inducing negligible numerical dif-
ferences, whereas DNNs are tolerant to faults producing small numerical divergence, as seen in
Sec.2.2.1. Consequently, we think that such techniques do not fully exploit the specificities of
DNNs.

To conclude : AN codes and ABFT have been studied and adapted to DNNs however these
approaches do not consider the fact that DNNs are already robust to a certain level of erroneous
computations. Their deployment induce high cost that might be unnecessary.
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(a) Hierarchical Scopes of Matrix Multiplication on GPUs

(b) Arithmetic Intensity of Layers of a ResNet50 Model (img = 1920x1080, batch size=1)

(c) Example of ABFT (d) ABFT at two Different Execution Scopes

Figure 2.14: Usage of ABFT on GPU-based DNNs
Figures extracted from [Kosaian2021], who proposes an algorithm to choose the best scope for

ABFT for each layer.

Symptom-Based Error Detection

Observation : Syndrome-Based Error Detection (SBED) is based on watching application-specific
symptoms (e.g. unusual values of variables, memory addresses or loop iterations) as an indicator
of the presence of a faults. SBED has been adapted to the specificities of DNNs.

Notably : In existing works, the output value of neurons is frequently monitored. [Li2017]
analyzes the numerical effect of a fault to conclude that an error leading to a SDC typically makes
the magnitude of activations very large. They test a two step methodology to detect SDC. 1)
During training, the maximal numerical value of neuron of each layer is recorded. 2) During
inference, this value is set as threshold to detect abnormal neuron values. With an arbitrary 10%
tolerance threshold (threshold = 1.1× max neuron), 90.2% of faults leading to SDCs are detected.
An equivalent methodology is presented by [dos Santos2018], with an arbitrary ×10 threshold
(threshold = 10× max neuron). With a different DNN, they report a 98% fault detection rate.
[Chen2021] goes further and adds a new layer type to TensorFlow framework 7. The named layer,
Ranger, is trained to detect the numerical range of each layer during training, and can, during
inference, reduce the range of erroneous neurons in the normal range of its layer but the authors
do not clearly presents the rate of detected faults. [Schorn2018] uses the sum of every neurons in
a layer as a fault detection criteria and detects 97.29% of faults.

7TensorFlow is an open-source Python software framework for machine learning.
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SBED can also be adapted to detect faults in DNNs working on video frame. [Draghetti2019]
analyses the fault tolerance of DNNs trained for video stream (e.g. autonomous driving). As
temporal adjacent frames are likely to be similar, the outputs of a DNN performing task on theses
frame are expected to be comparable. A high divergence between the output of DNN in two
temporally adjacent frames is considered as effect of a fault. This method achieves the lowest
overhead of all tested symptom-based error detection techniques as it only compares the inputs
and outputs of the DNN and achieves a fault detection rate of 80%.

However : SBED is a promising technique, although much work remains to considered.
All of these studies suffer from false positives (indicate the presence of a fault while no fault
is present). [Li2017] considers the maximum neuron value of a layer as a fault detection threshold
and reports a fault positive rate of 7.5%. With the same methodology, [dos Santos2018] reports
experimental beam-testing results for GPUs implementing a similar methodology, but do not ex-
plicitly report false positive rates. [Schorn2018], that considers the sum of every neurons as fault
detection threshold, achieves 5.17% false positives. The existing techniques for SBED applied to
DNNs suffer from high false-positive rates, and for this reason, are not ready to be deployed in
industrial applications.

To conclude : SBED can detect faults by monitoring the behavior of a DNN. Abnormal
neuron activation values can be used as symptom of faults, as faults which provoke critical errors
typically result in large activation values. This approach can efficiently detect more than 90%
of critical faults, but induces a false positive rate that is problematic for real-world applications.
Furthermore, this approach is not adapted to highly quantized DNN where the maximal value
of a neuron is limited by the bidwitdh of its integer representation. Other methods consider the
correlation of adjacent outputs of a CNN, but can not be applied to all types of tasks.

Error Detection During Training

Observation : The majority of existing studies focus on fault tolerance during inference, however,
some authors have studied the training process. As seen in Sec.2.1.1, one metric used during
training is the loss. One example of a function to compute the loss is the Multi-Class Cross
Entropy as shown in Tab.2.5 The training process aim to reduce the loss by altering each weight
with the back-propagation process. Unusual loss variation during training can be used to detect
faults.

Formula −∑
M
c=1 yo,c log(po,c)

M Number of classes

y binary indicator (0 or 1) if class label c is the correct classification

p predicted probability observation o is of class c

Table 2.5: Multi-Class Cross Entropy Loss Function

Notably : [Mahmoud2021] monitors the loss during training and detect abnormal variation
of the loss dues to faults, as illustrated in Fig.2.15. Fig.2.15(a) shows an error-free inference that
classify the input correctly. Fig.2.15(b) shows an example of error causing a mismatch. Fig.2.15(c)
shows an example of error altering the loss without causing classification mismatch. This study
considers to use localized fault injection on weights and to monitor the loss variation induced by
the fault to measure the sensitivity of the faulty weight, which can then be used to strengthen the
sensitive weight.

Errors during reinforcement learning can be detected with the monitoring of loss as well.
[Wan2021] considers the rewards during reinforcement learning. Authors found that transient
faults lead to a sudden drop in reward and permanent faults result in continuous low reward during
training.
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Figure 2.15: Fault Detection Based on Loss Monitoring
Example of fault detection based on loss monitoring. These figures are extracted

from [Mahmoud2021].

However : The monitoring of loss during training has a limited interest for two reasons. 1)
The number of cases of critical training are limited. 2) Errors during training can be skipped by
coming back to a previous version of the parameters.

To conclude : The detection of errors during training can be easily detected with the moni-
toring of loss criterion, which can also be used to quantitatively measure the sensitivity of a part
of the DNN. Transient errors can result in a sudden increase of the loss, while permanent errors
may keep the loss continually high, thus preventing the convergence of the DNN. However, the
real world use case of safety critical training is limited.

Other Hardware-based Fault Detection

Observation : Faults can also be detected by the use of dedicated hardware components.

Notably : Several authors propose hardware techniques to detect transient faults. Razor flip-
flops [Ernst2004] are commonly proposed in existing works that consider the fault tolerance of
DNN to detect transient faults. [Reagen2016a] and [Zhang2018a] use Razor flip-flops, as illus-
trated in the Fig.2.16. For example, in [Zhang2018a], in presence of 1.56% of timing errors,
AlexNet on Imagenet has a Top-5 accuracy of 75% on a Razor protected accelerator, while the
accuracy is random guessing without Razor protection (fault-free accuracy is 80%). The detec-
tion of timing faults is possible due to the redundant registers illustrated in Fig.2.16a. When a
timing error is detected, delayed, correctly sampled value can be forwarded, short-circuiting the
next MAC. This effectively results in a synapse being lost, as seen in Fig.2.16c. Razor flip-flops
can efficiently detect transient or timing faults, but introduce a high hardware overhead so Razor
flip-flops should be applied selectively.

However : Specialized hardware to detect permanent faults has been covered in existing stud-
ies. [Li2020a] proposes to take advantage of the fact the hardware units within a hardware acceler-
ator are not always fully utilized and uses the cycles during which processing elements are idle to
perform on-line testing on them. The idea is adapted to DNNs since it has been shown (see [Ko-
saian2021]) that the arithmetic intensity of layers vary significantly. This method is architecture
specific, and it is difficult to guarantee the test coverage as it depends on the workload. [Mota-
man2019] proposes an off-line fault detection technique that considers a scratchpad-based DNN
accelerator, and demonstrates that most of the hardware units can be tested.
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To conclude : Dedicated hardware can be used for testing the components of DNN accelera-
tors, covering both transient and permanent faults. Pre-existing techniques as Razor flip-flops or
off-line test patterns can be used on DNN accelerators.

(a) Block-Level Diagram (b) Impact of Timing Er-
rors on the Waveform of
Components

(c) Impact of Timing Errors
on the Computation of a
Neuron

Figure 2.16: Illustration of Razor Flip-Flop to Detect and Mitigate Timing Errors
Figure extracted from [Zhang2018a].

Conclusions on Fault Detection Techniques

Observation : Many of the fault detection techniques published are adaptions of pre-existing test
techniques.

Arithmetic check-sums, can efficiently detect errors, but no not exploit the tolerance of DNNs
to faults that have a small numerical impact.

Symptom-Based Error Detection techniques consider the output value of neurons, and detect
faults which produce abnormally high activation values. This technique is simple and effective but
is not adapted to quantized neural networks. In some cases, the analysis focuses on the output
values of the final layer. Inter-frame correlation is adapted to DNNs which take video streams
as input. SBED is a promising approach as the compute overhead is often small, but existing
techniques suffer from a high false positive rate.

Detection of errors during training can be achieved with the monitoring of loss criterion (or
reward for reinforcement learning). Both permanent and transient faults can be detected during
training with this methodology.

Hardware approaches for the detection of faults proposed rely on the adaptation of tech-
niques developed for other usages, as the Razor flip-flops, or the usage of off-line functional test,
but they can require custom hardware and can not always be applied on-line.

To conclude : Some approaches to DNN fault detection consist of applying pre-existing tech-
niques (e.g. [Li2017, Goldstein2021, Fu2021, Zhang2018a, Motaman2019]) and work remains to
be done to further adapt these techniques to the specificities of DNNs and to reduce the rate of false
positives, which is essential for industrial adoption. Other authors have developed techniques that
are specific for DNNs (e.g. [Mahmoud2021, Chen2021, Schorn2018, Draghetti2019]). Many of
these approaches are heuristics and require tuning. This is a problem when it is necessary to prove
the safety of a system.
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2.3.2 Fault Mitigation Techniques for DNNs

Improvement of fault tolerance of DNNs is an important field of study for critical systems using
DNNs. It consists either of reducing the probability of an error to occur or to reducing the impact
of errors.

Zero Masking Technique

Observation : In the previous section, many techniques for detecting faults were presented. One
a specific value such as an activation is found to be erroneous, an effective technique to continue
the computation with a minimal impact on accuracy, is to replace the corrupted value with zero.
This simple method is illustrated in Fig.2.17 when a fault detection threshold is exceeded by an
activation.

Figure 2.17: Masking of Neuron that Exceed a Fault Detection Threshold with Zero
Figure extracted from [Hoang2020].

Weights altered by faults can be masked using this technique. [Reagen2016a] proposes several
error masking techniques, including the masking of weight faults detected with Razor flip-flops
which can improve the robustness of the tested network by one to two orders of magnitude in
regard to the BER, depending on the masking scope(bit or word).

Neuron faults can also be mitigated. [Hoang2020] proposes to mask the erroneous value of
a neuron by zeros, and consequently increase the robustness of tested DNNs by five order of
magnitude in regard to the BER for faults occurring in activations, as illustrated in Fig.2.17. This
paper proposes an activation function that masks to zero the value that exceed a fault detection
threshold, following methodology described in Sec.2.3.1.

To conclude : The zero-masking is a simple technique to mitigate the faults occurring in both
weights and activations. DNNs have proven to be able to absorb a certain amount of zero masked
values, thus making this error-mitigating method adapted to DNNs. It can be explained by the fact
that with the usage of activation functions as ReLU or Sigmoid, the zero value is common in the
data-flow of DNN even without faults.

Numerical Range Restriction

Observation : The faults that produce critical errors in DNNs typically result in high numerical
values being propagated in the neurons. Consequently, some researchers consider limiting the
numerical range of neurons to a predefined range to reduce the impact of faults.

Notably : [dos Santos2018] proposed the robust Max Pool layer, that detects faults with the
SBED technique seen in Sec.2.3.1. Once a neuron is detected as being faulty, the robust Max Pool
discards the erroneous value and returns the second highest value, assuming the latter is below the
fault detection threshold. These authors report being able to correct 87% of critical SDCs. Acti-
vation functions can mask errors, as seen in Sec.2.2.1 and the use of clipping activation function,
illustrated in Fig.2.18a, is an effective way to restrict the numerical range of neurons. [Hoang2020]
proposes Clip-Act. It relies on costly fault injection campaigns to adjust the activation function’s
range to obtain optimal robustness. These authors improve the robustness of AlexNet by one or-
der of magnitude, and VGG-16 by three orders of magnitudes. [Ozen2020a] presents a filter after
the activation function that replaces erroneous values with the median of neighboring neurons.
Authors report a robustness improvement comparable to the TMR.
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[Ghavami2021] proposes Fit-act. With this approach, the maximal value of the activation
function to the maximal value for that layer observed during training. Fit-act improves the robust-
ness by one order of magnitude compared to Clip-Act. Finally, [Chen2021] proposes Ranger to
clip erroneous values below a fault detection threshold. Results of these studies are presented in
Fig.2.18b.

(a) Representation of Various Activations Func-
tions Using the Range Restriction

(b) Model Accuracy vs Increasing Bit Error Rate
for Different Numerical Range Restriction Pro-
posed in the Literature

Figure 2.18: Numerical Range Restriction of Neurons Output to Improve Fault Tolerance
Figures extracted from [Ghavami2021].

However : The robust Max Pool Layer proposed by [dos Santos2018] is not adapted to modern
DNNs. as it only works on models that use a important number of pooling layer, while modern
DNNs such as MobileNetV3 [Howard2019] and RegNet [Radosavovic2020] no longer uses Max
Pooling layer. Others works on clipping of activation functions are not as well adapted to quantized
DNN due to their reduced numerical range.

To conclude : The numerical range restriction reduces the impact of errors. Combined with
activation functions, these methods make it possible to replace erroneous values with zeros, a local
median value, or a clipping threshold. Such methods have proven to be efficient for Floating-Point
DNNs and solve the problem of bimodal robustness seen in Sec.2.2.1, but are less adapted to
quantized DNNs.

Fault Tolerant Training

Observation : Modifications to the training process can help improve the robustness of a DNN
during inference.

Training techniques for specific faults are common in existing studies and they consists
of training a DNN in the presence of localized faults. [Kim2018] considers Memory Adaptive
Training, a two-step process. First one considers a voltage down-scaled accelerator. A memory
failure map of the SRAMs that are faulty under Vmin is generated. Then, a training process is
executed, that simulate the faults during training. The trained DNN learns to adapt and recover
from specific faults likely to happen during inference. With this method, the author report a lim-
ited loss of accuracy when performing under Vmin (4% accuracy loss with this training methods
versus 70% for the baseline, for a energy reduction from 0.9V to 0.5V). [Zhang2019] disables
computation of faulty processing elements and performs simulations during training to reproduce
this behavior. The authors report that DNNs can be trained in the presence of permanent faults
(pruned computations) even when half of the processing elements are disabled. These results were
obtained on LeNet-5 and AlexNet models and may not scale as well to compressed DNNs. [Abdul-
lah Hanif2020] proposes a similar technique to train a DNN for faulty hardware. The presented
methodology, Salvage-DNN, allows retraining a DNN to perform in the presence of permanent
faults, based on fault-aware mapping to avoid the usage of faulty components.
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Training technique where the actual faults are not known have also been proposed. As seen
in Sec.2.1.1, Dropout [Gal2016] randomly masks a given fraction of neurons in the last layers of
a DNN to improve generalization, resulting in an improvement in the accuracy. Typically used
on the last fully-connect layers, [Solovyev2019] generalized dropout to all layers to efficiently
improve the robustness of DNN to random errors in weights. With this fault model applied to one
single weight of the first convolutional layer of a VGG-16 model, the rate of SDC goes from 6.83%
without Dropout to 1.09% with a 10% Dropout. Errors caused by emerging hardware are examined
by [Li2020b], who uses fault injection to modify the loss criterion by addition of a random noise, in
order to train a DNN to reliably perform using unreliable component (namely Resistive Random
Access Memory). Finally, the quantization process is studied by [Stutz2021] who proposes the
use of a random bit error rate during quantization process to improve the robustness of quantized
DNNs to various errors.

To conclude : Many authors have shown that modifying the training procedure can improve
the robustness of a DNN. Existing works covers both the fault-aware training, where the focus is to
work around known faulty hardware units and training techniques where the actual faults are not
known during training. Fault aware-training is highly effective ( [Zhang2019] claims that DNNs
perform well even when 50% of the processing elements are faulty). Training a DNN is highly
compute intensive ,thus it is unrealistic to imagine that customized training can be performed for
every faulty components. Training techniques that do not require knowledge of specific faults are
less efficient, but do not impose such strong assumptions.

Selective Modular Redundancy

Observation : Selective modular redundancy can improve robustness and reduce the overhead
compared to full TMR. Selective modular redundancy is adapted to the specificities of DNNs
as it protects only the most sensitive elements. Existing studies consider the selective modular
redundancy of bits, channels, layers or even of the whole model.

Bit level redundancy has been explored in these works. As seen in Sec.2.2.1, all bits are not
equivalently robust and MSBs are more sensitive to faults than LSBs. [Mahdiani2012] protects the
MSB of DNN accelerators with hardware redundancy. The idea is simple and can be customized
as the ratio of overhead to robustness can be adjusted.

Convolutional channel redundancy protects only the most sensitive channels. Authors of
[Gambardella2019] propose a two step method for increasing the robustness of a DNN. 1) A fault
injection campaign is executed to detect the most sensitive channels of a DNN. 2) These channels
can be triplicated with TMR. For the tested 4-bits quantized DNN this method achieves results
equivalent to TMR but require a 179.6% overhead (compared to 200 % for TMR).

Layer redundancy is proposed by [Khoshavi2020]. This study uses FPGA and FINN synthe-
sizer [Umuroglu2017] to add redundancy to the layers that have the most sensitive weights and
neurons. For 100 simultaneous Multiple Bit Upsets, the error resiliency of the tested binarized
model is doubled.

Entire model redundancy is proposed as well. [Gao2022] studies the robustness of ensemble
networks compared to a single larger network. By replacing a ResNet 101 with several smaller
ResNets, the authors can improve the robustness of the DNN, while maintaining equivalent accu-
racy. Compared to TMR applied to the baseline DNN, authors report equivalent robustness while
reducing the hardware overhead by 33%.

To conclude : Selective modular redundancy can improve the fault tolerance of a DNN, and
redundancy can be added at different level of granularity as bit, layer, channel or the whole model.
This approach can reduce the overhead compared to naive redundancy as TMR by 10 to 33% while
obtaining equivalent robustness.
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Fault Tolerant Scheduling

Observation : Some DNN hardware accelerators rely on Single Instruction Multiple Data parallel
execution. On such machines, a means mechanism to mitigate errors consists into of avoiding use
of faulty computing units by altering the scheduling.

Notably : [Abdullah Hanif2020] present a fault aware mapping to a systolic accelerator that
avoids to schedule important weights on processing elements with permanent faults. The proposed
systolic accelerator is derived from [Zhang2019] and can prune the computations of faulty pro-
cessing elements (skipping/masking them to zero). The fault aware mapping is a two-step process.
1) Computation of the sensitivity of each DNN weight. 2) The weight with the least importance
are mapped to components that will get its computations skipped during inference. This is made
possible by the fact that one weight is scheduled on specific processing elements on this archi-
tecture. The usage of this specific scheduling can improve the robustness of the resulting DNN
accelerator. For example, with this scheduling on 8-bit quantized VGG-11 trained for CIFAR-10,
the baseline scheduling does not know any accuracy loss with up to 2% of faulty PEs, while the
same accelerator with fault tolerant scheduling can operate with 6% of faulty PEs without accuracy
loss.

Furthermore : [Liu2021] proposes to simply remap the faulty/skipped operations on reliable
component, thus adding temporal redundancy to avoid any loss of accuracy caused by permanent
faults. Authors report that on average the tested DNN systolic accelerator consisting of an array
of 32x32 PE is fully functional with less of 3.13 % of faulty PE, but does not explicitly show the
latency overhead of this technique.

To conclude : Some authors have considered altering the scheduling of computations of a
DNN accelerators to improve its reliability. Most studies focus on permanent faults on systolic
accelerators. The specificity of DNN allows mapping unimportant weights to faulty PEs. The
simple re-scheduling of operation to non-faulty hardware has been studied, but does not exploit
specificities of DNNs.

Conclusions on Fault Mitigation Techniques

Existing works covers several techniques to improve the robustness of DNNs, that consider the
specificities of DNNs.

The Zero masking technique is a simple but effective method to reduce the impact of a fault.
Due to the inherent redundancy of DNNs, models can endure many values being masked to zero
either in their weights, neurons, or computational value, without exhibiting a significant loss of
accuracy.

Numerical range restriction uses the fault detection threshold seen in Sec.2.3.1 to prevent
excessive large numeric values. These approaches are simple and effective for floating-point-
based DNNs, but their applicability to quantized DNNs remains to be proven.

Fault tolerant training can play a role in the robustness of the final model as well. Existing
studies present different fault tolerant training techniques, that can be divided into two groups.
1) Those aware of the specific faults 2) Those not aware of the actual faults and which use random
faults during training.

Modular redundancy adds redundancy to the most critical parts of a DNN. Redundancy at
different levels of granularity (bit, kernel, channel, layer) have been also proposed. With ensemble
networks, the redundancy is performed at the full network level.

Scheduling strategies were discussed in Sec.2.3.2. Due to the highly parallel nature of mod-
ern DNNs accelerators, scheduling strategies can avoid the use of faulty units for important com-
putations. Temporal redundancy is also considered but does not benefit from the specificities of
DNNs.

39



Chapter 2. Analysis of DNN Robustness - State of the Art

2.4 Summary of Existing Studies

This section quantitatively analyzes topics analyzed by the existing works by studying the
number of articles that address specific topics so the ideas presented in the previous sections can
be put in perspective to highlight the current focus of this field of research. The topics cover the
case study, the hardware platform and the fault model.

This section is organized as follows :

• Sec.2.4.1 presents how the cited articles focus on faults.

• Sec.2.4.2 covers how considered works focus on faults analysis, detection and mitigation.

• Sec.2.4.3 analyzes the use cases (networks and data sets).
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Figure 2.19: Summary of the Fault Models in the Literature

2.4.1 Hardware Targets and Fault Models

Several hardware targets are analyzed in the considered works, as seen in Fig. 2.19a. 57% of the
works consider a specific hardware target, and the others 43% study the effect of faults on Abstract
Deep Neural Networks, seeing the DNN as a mathematical model.

Hardware-focused articles are equally distributed between FPGAs (31.4%), Systolic-ASIC-
based accelerators (25.7%). and GPUs (22.9%). The remainder, labeled Others, (20%) cover
various hardware targets that consider a fault in one hardware element (e.g. specific SRAM Cells
[Azizimazreah2018] or issues with emerging technologies such as memristors [Li2020b]).

A large fraction of the existing studies does not consider specific hardware platforms. 50% of
them focus on faults in the weights. Others analyze theoretical components such as the neuron,
activation, or feature map (7.7%), the inputs (7.7%), and arithmetic faults (7.7%). Several articles
consider the cumulative effect of multiple fault models (19.2%). Finally a few articles inject faults
in abstract DNN without specifically defining the fault target (7.7%).

Many types of faults are currently studied. The most represented fault models are Transient
fault models (40 studies). Among studies that use this fault models, 34 considers single event
upsets, and 6 multiple event upsets. The next most used fault models are Permanent faults, and
the Noise 8 (10 studies each). The rarest fault models are Timing faults (2 article) and Intermit-
tent faults (1 article). Finally, 7 studies consider real-world beam experiments to assess the fault
tolerance of DNNs instead of using simulated fault models.

8Noise fault model is a linear transformation applied to a target.
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2.4.2 Fault Tolerance of DNNs

The most analyzed components or characteristic of DNNs for fault tolerance are the layers ana-
lyzed to compare their individual sensitivity (16 studies) and the role of data-type on the robustness
of the whole model (11 studies). Other studies consider the sensitivity of neurons (5 studies) and
bit positions (4 studies). The estimation of the robustness of the model without performing fault
injection campaign is considered (4 studies), as well as the role of pruning (2 studies) and the
effect of timing faults (2 studies) on the robustness of the studied model.
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Figure 2.20: Report of the Number of Articles that Study Specific Parts of DNNs

The most commonly considered fault detection techniques are the detection of faults based
on abnormal range of neurons (9 articles), the usage of redundancy for fault detection (7 articles)
or the usage of check-sums to detect arithmetic errors (5 articles). Well-known techniques based
on test patterns are used to detect faults (2 articles), as well as the monitoring of loss variation
for detecting training fault during training (2 articles). Finally, 1 article proposes Inter-Frame
Correlation to detect faults occurring on a video-based dataset.
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Figure 2.21: Report of the Number of Articles that Employ Specific Fault Detection

The most popular techniques for improving the robustness of a DNN in cited studies are the
usage of modular redundancy (9 articles), fault tolerant training (9 articles), the usage of zero-
masking to mitigate errors (8 articles) and scheduling strategies to avoid using faulty components
(6 articles). The numerical range restriction (4 articles) as well as the the masking of erroneous
value with median of neighbors (1 article).
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Figure 2.22: Report of the Number of Articles that Use Specific Methods to Improve Robustness

All the techniques in the state of the art are not equally used. The most common analyses of
fault effects in this field of research consider the role of layers and data-types in the robustness of
the model.

The most used method to detect faults are the detection of abnormal numerical range of neu-
rons, the usage of redundancy, and the usage of arithmetic check sums to detect faults occurring
during computations.

The most adopted technique to improve the robustness of a DNN rely on modular redundancy,
scheduling strategies and fault tolerant training. Once errors have been detected, the most common
methods to mitigate it consists into masking the error with zero.

2.4.3 Data-sets and DNN Topologies

This section presents the case study in the works that consider the fault tolerance of DNNs. It
considers the data sets and the topologies of DNNs. The cited works are listed in in Tab.2.7 and
the usage of case studies is represented in Fig.2.23 and 2.24.

A strong tendency that can be observed is that nearly all the studies uses computer vision
data sets, and image classification is by far the most used task (65 articles). A smaller number of
studies consider the object detection (5 articles). To the best of our knowledge, no articles consider
semantic or instance segmentation 9. The three most used data sets are CIFAR (21 articles),
MNIST (20 articles) and ImageNet (19 articles). Others data sets such as GTSRB, Pascal VOC,
Caltech and COCO are less used. The Other category includes various other data sets (Reuters,
flora, etc.) and various tasks (regression, reinforcement learning, classification, etc.) The data sets
used only once are regrouped in this category 10.

A broad number of DNN topologies are considered. Four of them are largely represented :
ResNet (19 articles), VGG (19 articles), LeNet (18 articles) and AlexNet (17 articles). Small con-
volutional neural networks with fewer than six layers are grouped under LeNet, even if they are not
explicitly named so. Aside from these DNNs, several others topologies are sparsely represented.
We note that topologies designed for embedded systems (MobileNet, SqueezeNet and ShuffleNet)
are sparsely represented. Finally, the most modern and efficient topologies (MobileNetV3, MNas-
Net, RegNet) are absent from the studied works.

2.4.4 Summary Table

Tab.2.6 and Tab.2.19a summarizes the best papers in the scientific literature of fault tolerance of
DNN. For each of them, the relation with used fault models and case studies is established.

9COCO is a data set that handles object detection and semantic segmentation tasks. The article that uses the COCO
dataset uses the object detection labels of this data set.

10With an exception of the COCO dataset. We believe that COCO dataset is closer to real-world critical system
than the others data sets merged into the Other category. Consequently, we did not include COCO dataset in the Other
category
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Figure 2.23: Data Sets Used in the Scientific Literature
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[Abdullah Hanif2020] 13 X X X X X X X X
[Adam2021a] 3 X X X X X X
[Adam2021b] 3 X X X

[Arechiga2018] 18 X X X
[Azizimazreah2018] 34 X X X X X X

[Badia2021] 0 X X X
[Chen2021] 9 X X X X X X X

[Couellan2021] 4 X X X X
[Draghetti2019] 3 X X X X X

[Fu2021] 0 X X X X
[Gambardella2019] 18 X X X X X

[Gao2022] 0 X X X
[Gao2020] 3 X X X X X X

[Ghavami2021] 0 X X X X X X
[Goldstein2021] 1 X X X X

[Hari2021] 13 X X X X X X X
[Hoang2020] 35 X X X X X X

[Ito2021] 2 X X X
[Khoshavi2020] 4 X X X X X

[Kim2018] 39 X X X X
[Kosaian2021] 1 X X X X X
[Kwon2016] 11 X X X X

[Li2020a] 7 X X X X X X X
[Li2020b] 14 X X X X X X
[Li2019] 5 X X X
[Li2017] 260 X X X X X X X X X X

[Libano2021] 7 X X X X
[Libano2020] 15 X X X X

[Liu2021] 1 X X X X
[Mahdiani2012] 43 X X X
[Mahmoud2021] 0 X X X X X X X X X

[Malekzadeh2021] 0 X X X X X
[Motaman2019] 6 X X X
[Neggaz2019] 19 X X X X
[Ozen2020a] 6 X X X X X X
[Ozen2020b] 8 X X X X
[Ozen2020c] 3 X X X
[Reagen2018] 174 X X X X X
[Reagen2016a] 545 X X X X X
[Sabbagh2019] 15 X X X X X
[Salami2018] 48 X X X X X X

[dos Santos2021] 2 X X X X
[dos Santos2018] 75 X X X X X X X X X

[Schorn2018] 38 X X X
[Solovyev2019] 8 X X X X

[Souvatzoglou2021] 0 X X X
[Stutz2021] 10 X X X X X
[Syed2021] 0 X X X X X
[Wan2021] 2 X X X X X X X X X X X X

[Webb2018] 38 X X
[Wu2021b] 0 X X X
[Wu2021a] 0 X X X X

[Xiang2019] 3 X X X X
[Xu2021] 8 X X X
[Xu2019] 8 X X X X X X X

[Yang2017] 49 X X X X
[Yu2019] 26 X X X X

[Zhang2018a] 96 X X X X X X X
[Zhang2019] 25 X X X X X

Table 2.6: Summary of Hardware Considerations in the Literature
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[Abdullah Hanif2020] 13 X X X X
[Adam2021a] 3 X X X
[Adam2021b] 3 X X

[Arechiga2018] 18 X X X X
[Azizimazreah2018] 34 X X X X

[Badia2021] 0
[Chen2021] 9 X X X X X X X X X X X

[Couellan2021] 4
[Draghetti2019] 3 X X X

[Fu2021] 0
[Gambardella2019] 18 X X X

[Gao2022] 0 X X
[Gao2020] 3 X X

[Ghavami2021] 0 X X X X
[Goldstein2021] 1 X X X X X X X X

[Hari2021] 13 X X X
[Hoang2020] 35 X X X

[Ito2021] 2 X X
[Khoshavi2020] 4 X X X

[Kim2018] 39 X X
[Kosaian2021] 1 X X X X X X X X
[Kwon2016] 11 X X

[Li2020a] 7 X X X X
[Li2020b] 14 X X X X
[Li2019] 5 X X X
[Li2017] 260 X X X X X X

[Libano2021] 7 X X
[Libano2020] 15 X X

[Liu2021] 1 X X X X X
[Mahdiani2012] 43
[Mahmoud2021] 0 X X X X X X

[Malekzadeh2021] 0 X X
[Motaman2019] 6
[Neggaz2019] 19 X X X X X
[Ozen2020a] 6 X X X X X X
[Ozen2020b] 8 X X X X X X X
[Ozen2020c] 3 X X
[Reagen2018] 174 X X X X X X X X
[Reagen2016a] 545 X X
[Sabbagh2019] 15 X X X X
[Salami2018] 48 X X X

[dos Santos2021] 2 X
[dos Santos2018] 75 X X X X X

[Schorn2018] 38 X X X
[Solovyev2019] 8 X X

[Souvatzoglou2021] 0 X X
[Stutz2021] 10 X X X
[Syed2021] 0 X X
[Wan2021] 2 X

[Webb2018] 38
[Wu2021b] 0 X X
[Wu2021a] 0 X X X X

[Xiang2019] 3
[Xu2021] 8 X X X X X
[Xu2019] 8 X X X

[Yang2017] 49 X
[Yu2019] 26

[Zhang2018a] 96 X X X X X X
[Zhang2019] 25 X X X X X X

Table 2.7: Summary of used DNNs and Data-Sets in the Literature
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2.5 Conclusions on the State Of The Art of Robustness of DNNs to
Hardware Faults

This section concludes the presentation of existing works that focus on the fault tolerance of
DNNs. The field of research of fault tolerance of DNNs is complex and covers many aspects. Be-
cause the hardware robustness of an application is intimately connected to the hardware platform
dedicated to its execution, it appears difficult to draw general conclusions on the robustness of
DNNs. To tackle this issue, part of the existing studies considers abstract DNN, without consider-
ing specific hardware implementation, to draw general conclusions.

Abstract DNNs : Key observations on the articles related to abstract DNN are that data type
used by DNNs plays a major role on their robustness. Quantized DNNs improve the fault tolerance
of a DNNs by several orders of magnitude, mainly because the maximum numerical impact of a
fault is limited by the data type, while floating-point-based DNNs, without a specific fault mitiga-
tion strategy, are subject to critical faults even at a low bit error rate. Pruning, another compression
method for DNNs, also improves the robustness, but less significantly than quantization. DNNs
benefit from an inherent error masking ability due to their activation function and their pooling
layers, but their efficiency to mask faults is limited. All parts of DNNs are not equally robust to
faults. The evaluation of the robustness of specific kernels or channels relies on computationally
expensive fault injection campaigns, and no alternative method to estimate their robustness has
yet proven to be effective. Concerning layers, the last fully-connected layers are more sensitive
than the first convolutional ones. Likewise, a consensus exists on the fact that a fault altering
an activation is less likely to triggers an SDC than a fault occurring in a weight, which could be
explained by the important rate of reuse of weights. However, these conclusions, drawn from the
study of abstract DNNs, can not completely predict a real-world Architectural Vulnerability Factor
of a DNN, as they do not exhaustively cover all possible hardware failures. Yet, they give useful
insight to improve the robustness of topologies of DNNs and their accelerators.

Analysis of DNN hardware accelerators : Specific works that are much closer to real hard-
ware implementation do exist. They mainly focus on GPUs and FPGAs on one side, because these
are common DNN accelerators, and on SRAM cells on the other side, because these cells, gener-
alized among modern accelerators can be voltage-down-scaled to significantly reduce the power
consumption of an accelerator at the cost of degraded reliability. The studies on fault tolerance of
GPU-accelerated-DNN mainly focus on the analysis of the robustness of DNN on fault injection
with general-purpose fault injection tools. The observation was made that such software-based
tools are not enough to model the robustness of GPU-accelerated-DNN, probably because con-
figuration memory are sensitive to faults and faults can not be simulated in these components by
software developers. The studies made for FPGAs come to equivalent conclusions. FPGAs seems
to be sensitive to faults altering their CSRAM, which prevent the FPGA-based DNN accelerators
to benefit from the DNN fault tolerance, because their configuration memory is less robust to the
same bit error rate than DNNs. The studies that consider the globally used SRAM Cells mainly
focus on the power efficiency that can be obtained from the voltage-down-scaling of such cells
without great effort due to the inherent robustness of DNNs.

Fault detection plays a major role in the robustness of DNNs. The studies that focus on fault
detection of DNNs have limited scientific innovation, as most of the related articles rely on the
adaptation of already existing techniques for DNNs. The usage of arithmetic check sums was
tested and can efficiently detect faults, but does not benefit from the specificities of DNNs (e.g.
sparsity or tolerance to errors that have a limited numerical impact). The Symptom-Based Error
Detection techniques, traditionally used in general-purpose computing to watch the value of vari-
ables, memory space addressing or loop iterations were adapted to DNNs. The most widespread
technique consists in watching the value of neurons to detect abnormal magnitude of activations,
classified as effect of errors. This approach is low-cost and effective, but induces false positives
and is not adapted to quantized DNNs, which have a limited range of possible values even without
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faults. Both transient and permanent faults occurring during training can be easily detected by the
watching of loss criterion, but the interest of this method is limited, as the training is stochastic-
step-based and a fault occurring in one epoch can be ignored at next one. Furthermore, there
appears to be less need for fault tolerance during training. Finally, several studies use hardware
approaches to detect faults, such as Razor flip-flops or the usage of test patterns. These methods
can be adapted to DNNs but their applications to DNNs is not different than to general purpose
computers.

Fault mitigation of detected faults has also been studied. Most of these techniques rely
on the specificities of DNNs. The most widespread technique to mask the effect of faults is the
zero masking technique. Due to their inherent redundancy, DNNs can absorb a certain number
of zero masked values either in their weights, neurons, or computational value, without altering
their behaviors. In addition, the intrinsic error masking ability of DNNs seen previously can be
improved. Many works propose to restrict the numerical range of neurons to limit the effect of
faults. This approach is effective for floating-point-based DNNs, but is unadapted to quantized
DNNs. Fault injection during training can be used to improve the robustness of DNNs. The
training methods can be divided into two categories : fault aware training, that known the exact
location and effect of a fault and that is typically used to recover from permanent faults, and fault
unaware training, that considers random faults during training and is typically used to improve the
robustness of DNNs to transient faults. Selective modular redundancy is used to add redundancy
to the most critical part of DNNs. Redundancy can be added at several scopes : bit, channel, layer.
Finally a different approach considers ensemble networks to add redundancy at the topology-level
to improve both robustness and accuracy of models. Finally, as the acceleration of DNNs relies on
massively parallel execution, scheduling strategies avoid the execution of important computation
on unreliable components. Temporal redundancy is considered as well.

To conclude, the scientific literature on fault tolerance of DNNs covers many aspects. The
major aspect to improve the robustness of DNNs relies on the usage of quantized DNNs to limit
the numerical impact of an error. Techniques used to detect faults mainly rely on the usage of
well-known techniques traditionally used in general purpose computing that are adapted to DNNs.
However, techniques for improving the robustness of DNNs intimately rely on specificities of
DNNs, as the fault tolerant training or the usage of modular redundancy to protect the most sen-
sitive parts of DNNs. We note however, that the existing works struggle to significantly improve
the robustness of quantized DNNs, and that most of fault detection techniques are not adapted to
quantized DNNs.

2.6 Contributions of the Thesis

This section put the contributions of this thesis into perspective with respect to the existing
research on the robustness of DNNs.

Chapter 3 includes a study comparing existing architectures of Systolic-Arrays and analyzes
their fault robustness to permanent faults in their data-paths. As seen in Sec.2.4.1, the three most
studied hardware platform in existing studies are : the GPUs, the FPGAs, and the ASIC integrating
on Systolic-Arrays. While these works study the hardware robustness of specific architectures, few
studies compare existing architecture based on Systolic-Array.

Chapter 4 presents a systolic-array-based architecture designed for Fault Tolerance, based
on the conclusions of the previous chapter. This architecture integrates on-line testing to identify
permanent faults, something that has not often been applied to DNN accelerators. The proposal
is also able to mask faults with minimal impact on accuracy. This architecture has led to two
scientific publications [Burel2021b, Burel2022c] and one patent [Burel2021a].

Chapter 5 proposes a fault detection and mitigation mechanism for transient faults in the
weight memory of a DNN. The fault detection of transient faults, as seen in Sec.2.3.1 does not
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always benefit from the specificities of DNNs. Their LSBs, as seen in Sec.2.2.1 are robust to fault.
We provides a technique that codes a bit-parity in the LSB of weights to detect soft errors. This
methodology has led to one scientific publication in an international conference [Burel2021c].

Chapter 6 proposes a new SBED technique that improves fault detection and eliminates al-
most all the false positives. We have seen in Sec.2.3.1 that SBED is a low-cost effective method
but cab produce false positives that are be undesirable in commercial systems. We propose an
improvement to existing SBED techniques that reduces the rate of false positives and increases
the false detection rate. While the existing studies focus on the maximal value of neuron to set an
arbitrary fault detection threshold, we propose to analyze the standard deviation of the dataflow
to set an adaptive fault detection threshold, and to monitor multiple statistics (maximum, aver-
age, minimum and standard deviation) to detect faults. This technique has led to one scientific
publications in an international conference [Burel2022b].

Articles

[Burel2021b]
Stéphane Burel, Adrian Evans et Lorena Anghel. MOZART: Masking Outputs with
Zeros for Architectural Robustness and Testing of DNN Accelerators. In 2021
IEEE 27th International Symposium on On-Line Testing and Robust System Design
(IOLTS), pages 1–6. IEEE, 2021.

[Burel2021c]
Stéphane Burel, Adrian Evans et Lorena Anghel. Zero-Overhead Protection for CNN
Weights. In 2021 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), pages 1–6. IEEE, 2021.

[Burel2022c]
Stéphane Burel, Adrian Evans et Lorena Anghel. MOZART+: Masking Outputs with
Zeros for Improved Architectural Robustness and Testing of DNN Accelerators. IEEE
Transactions on Device and Materials Reliability, 2022. 2022.

[Burel2022b]
Stéphane Burel, Adrian Evans et Lorena Anghel. Improving DNN Fault Tolerance
in Semantic Segmentation Applications. In 2022 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6.
IEEE, 2022.

Patents

[Burel2021a]
Stéphane Burel, Adrian Evans et Lorena Anghel. Accélérateur systolique de réseau de
neurones et système électronique et procédé de test associés. In Patent FR2105808,
2021.

[Burel2022a] Stephane Burel et Adrian Evans. Calendrier de fautes pour accélération de l’analyse
de fiabilité des circuits intégrés. In Patent FR2205817, 2022.

Table 2.8: Contributions of this Thesis Published in Articles and Patents.
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3
Robustness of Deep Neural Network Systolic

Accelerators

Deep Neural Networks are being increasingly used in mission crit-
ical applications making it important to have a clear understanding
of how hardware faults impact their operations and accuracies. In
the past, DNN fault tolerance studies focused on faults in the abstract
network, evaluated with floating point numbers. However, for infer-
ence, DNNs are often executed on custom hardware where an array
of Processing Elements (PEs) is used to execute each layer, typically
performing computations using a fixed-point numeric format. Due to
the re-use of the PEs, a single hardware fault translates to multiple
faults in the abstract network. In this chapter, we study three systolic
hardware architectures and present experimental results from a fault
injection study based on large DNN models.
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As we have seen in chapter 1, Deep Neural Network (DNN)s can be deployed in safety critical
applications, thus, it is essential to understand the impact from hardware faults on accelerator
likely to be used in such applications.

The state of the art regarding the fault tolerance of DNN hardware accelerators has been pre-
sented in Sec.2.2.2 and focuses on three types of platforms : Graphics Processing Unit (GPU)s,
Field-Programmable Gate Arrays and the power-efficiency improvement offered by voltage down-
scaling of Static Random Access Memory (SRAM).

Two well-known industrial DNN accelerators that consider the safety have been publicly pre-
sented. The first is a circuit from Tesla [Talpes2020] incorporating a SIMD systolic DNN accel-
erator and it achieves robustness by using DMR at the chip-level. The other [Matsubara2021], a
commercial automotive SoC from Renesas, utilizes on-chip redundancy to meet safety require-
ments. In both cases, the safety goal is achieved by DMR and neither exploits the intrinsic fault
robustness of DNNs.

In this chapter, we analyze the robustness of existing systolic DNN accelerators to faults oc-
curring in their arithmetic units and we draw conclusions for the design of robust accelerators.

PE 1 FaultyPE PE 3 PE 4

Input
Image

Result

Dog

Cloud

Truck

Convolutional Layers

Fault-Free Abstract Neural Network

Hardware Accelerator w/ Faulty PE

Dog

Cloud

Truck

Figure 3.1: Projection of a Hardware Fault onto the Abstract Network

In practice, DNNs require an large number of identical operations, namely Multiply And Accu-
mulates (MACs). Thus, accelerators with a systolic data-path are well suited to accelerate DNNs.
These accelerators are composed of a large number of Processing Element (PE)s that process and
transfer data to neighboring PEs. However, modern DNNs are composed of millions of neurons,
thus it is not possible to dedicate one hardware PE for each neuron. Consequently, a DNN must
be mapped to the systolic array in such a way that a given PE is re-used for the computation of
multiple neurons. A single hardware fault in a PE can produce multiple errors in the abstract net-
work and thus potentially affect the behavior of the executed DNN. This concept is illustrated in
figure 3.1, where a fault in one PE affects the computations for multiple activations in the abstract
model. Since the same PEs are used for all the layers, every layers will be affected by a hardware
fault. A failure analysis is therefore necessary to understand the behavior of DNN executed on a
systolic architecture.

The contributions of this chapter are : 1) A comparison of the impact of equivalent arithmetic
faults on three different architectures for a DNN accelerator, 2) An analysis methodology based
on considering worst case classification accuracy for batches of images which is important for
understanding the impact of a fault, 3) An analysis of the impact of folding on fault tolerance,
given several type of arithmetic faults.

This chapter is organized as follows : Sec.3.1 presents the hardware architectures that were an-
alyzed. Sec.3.2 presents the fault injection methodology used in our experiments. Sec.3.3 presents
our experimental results. Sec.3.4 compares our results with the scientific literature. Sec.3.5
presents idea for future work. Finally, Sec.3.6 concludes this chapter.
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3.1 Hardware Architectures

In this section, the architecture and data-flow of systolic DNN accelerators is presented, as
they are the focus of our fault injection campaign.

3.1.1 Systolic DNN Accelerator Architectures

Systolic architectures reduce memory transfers by locally reusing data. They consist of a fixed
size array of PEs which perform specific operations. In the case of DNNs, the PEs typically per-
form MAC operations and transfer data to their direct neighbors. The calculations of the abstract
network are mapped to the PE array. Energy efficiency is the key concern and this is achieved by
minimizing the number of external memory accesses, as an access to off-chip Dynamic Random
Access Memory typically costs orders of magnitude more energy than to an on-chip SRAM.

In [Sze2017], three broad spatial architectures are identified : weight, output and row sta-
tionary. They rely on re-use of either weights, activations or both. We briefly present these
architectures, however, the reader is referred to [Sze2020] for details on the implementations.
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Figure 3.2: Data-flow in Systolic DNN Accelerator Architectures

a ) Weight Stationary Data-flow

The Weight Stationary (WS) data-flow is illustrated in Fig.3.2a. Within a WS data-flow (such as
[Park2015]), each column contains weights for a given output channel and performs the calcula-
tions for this channel. Weights are pre-loaded into the PEs and remain stationary. Activations flow
horizontally and partial sums flow upwards. After several cycles, the sums arrive at the top of the
column.

b ) Row Stationary Data-flow

The Row Stationary (RS) data-flow is illustrated in Fig.3.2b. In a RS architecture (such as Ey-
eriss [Chen2016]), 2-D convolutions are broken into 1-D convolutions, which are processed in a
single PE. PEs store multiple weights for the same row and perform simultaneous MAC operations
but only need storage of one partial sum. This architecture achieves re-use of both weights and
partial sums. We consider a PE which stores 4 weights.

c ) Output Stationary Data-flow

The Output Stationary (OS) data-flow is illustrated in Fig.3.2a. Alternatively, in an OS architecture
(such as Shidiannao [Du2015]), the partial sums stay fixed in the PE. The columns share weights,
and rows share input features. Each PE is dedicated to a single output pixel. Weights and input
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features flow between the PEs. Detail on the scheduling of this implementation will be seen in the
following section.

d ) Mapping of PEs on OS data-flow

As discussed in [Chen2016], in an OS architecture, there are different ways to map PEs to the
output feature map channels and pixels. In a Multiple Output Channel-Multiple Output Pixel
(MOC-MOP) mapping, the PE array operates on multiple output channels at a time and the PE
array is scanned across the input feature map. This approach is well adapted for convolutional
layers with a large number of channels because the input features are re-used for multiple channels.
In a Multiple Output Channel-Single Output Pixel (MOC-SOP) mapping, different input images
from the same batch are simultaneously processed in different rows of the array. In other words,
each row process a different image of the input batch. It makes the MOC-SOP adapted to fully
convolutional layers.

In our analysis, we have selected the MOC-MOP mapping for convolutional layers with large
kernels. For the fully connected layers in VGG-16 and in the depth-wise (1x1 kernel) layers in
MobileNet, due to the fact that there is a single output channel, or a single weight in the kernel,
the MOC-MOP is not efficient, thus we used the MOC-SOP mapping for these layers.
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Figure 3.3: Two Variants of the OS Architecture

3.1.2 Folding

Generally, the PE array is too small to simultaneously compute all the operations in a given layer.
The layer must then be folded into smaller parts that fit and can be computed sequentially in the
array. The folding depends on the architecture. For all architectures under study, each column
is dedicated to a specific output channel. In the OS architecture, the rows of PEs correspond to
adjacent pixels of the same row of an output channel. For the WS and the RS architectures, the
rows correspond to the weights of the same input channel. In all architectures, when PEs have
executed all of their MAC operations, the whole array is reloaded with the next folded part of the
layer. After a certain number of iterations, the layer is fully computed. The size of the input image
(OS) or the size of the kernel (WS/RS) may not be a multiple of the number of rows, thus at the
end, some rows of the array will remain unused. Similarly, if the number of output channels is not
a multiple of the number of columns of PEs, some columns will be idle.

Let us consider the case of the computation of the 9th layer of VGG-16 being executed on a
16x16 PE array (16x(4x4) for RS architectures). The mapping of this example on a PE array for
OS and WS architectures is shown in Fig.3.4 (RS architecture is not presented for readability).

At this layer there are 512 input channels of 28×28, the kernels are 3x3 and there are 512
output channels also of dimension 28×28. Since the number of output channels (512) is a multiple
of the number of columns, this layer must be folded horizontally 32 times (= 512÷16).

53



Chapter 3. Robustness of Deep Neural Network Systolic Accelerators

28x28

x512

28x28

x512

layer8 layer9
VGG

k
3x3x512

x512

# ofmap channels
# ifmap channels
ifmap height/width
kernel height/width
ofmap height/width
pixel (x,y) of ofmap
zth weight of ofmap

M
C

H/W
R/S
E/F

p[x,y]
w[z]

512
512

28/28
3/3

28/28

(a) Example of a VGG layer

Output Stationary

p[0,0]

M[0]

p[0,15]

M[0]

p[0,0]

M[15]

p[0,15]

M[15]

...

...

...

...

⌈M/#PE⌉

⌈F/#PE⌉xE

(b) OS Example
Weight Stationary

w[0]

M[0]

w[15]

M[0]

w|15]

M[15]

w[15]

M[15]

...

...

...

...

⌈M/#PE⌉

⌈RxSxC/#PE⌉

(c) WS Example

⌈512/16⌉:folded 32 times

p[0,0]

M[0]

p[0,15]

M[0]

p[0,0]

M[15]

p[0,15]

M[15]

...

...
...

...

⌈28/16⌉x28

folded

56

times

(d) OS Folding

w[0]

M[0]

w[15]

M[0]

w|15]

M[15]

w[15]

M[15]

...

...

...

...

⌈512/16⌉:folded 32 times

⌈3x3x512/16⌉

folded

288

times

(e) WS Folding

Figure 3.4: PE Mapping Depending on Architecture

For the OS architecture, only one row of the of-maps can be computed at a time. Since the
of-map is 28 pixels wide, then the PE array must be folded twice, and 12 rows of PEs are idle
during the second pass. This must be repeated 28 times, once for each of the of-map rows. Thus,
for the OS architecture, the layer must be folded 56 times vertically.

For the WS architecture, each PE row is dedicated to a certain weight of a shared input channel.
As kernels are 3x3, with 512 input channels, each row must process a total of 4608 = 512×9
weights. Thus, in this case, the layer is folded 288 (= 4608÷16) times vertically.

To summarize, in this example, to compute this layer (9th layer) in VGG-16, the array will be
reloaded 1792 (= 32×56) times with the OS architecture, and 9216 (= 288×32) times in the WS
architecture. It is important to note that the total number of MAC operations to be computed for a
layer is independent of the architecture. It is the number of times that the array must be reloaded
and the operations mapped to each PE that changes.

The number of times a layer is folded obviously depends on the size of the PE array. To
understand the impact of folding, we studied two PE array sizes (16x16 and 64x64).

3.2 Fault Injection Methodology

3.2.1 Hardware Fault Abstraction

This chapter considers computational faults in the PE of the tested architectures. To simulate
permanents errors in the data-path of a PE, we use a high-level fault-model illustrated in Fig.3.5.

Our focus is at the architectural level, thus we abstract the various technology dependent per-
manent faults (i.e. defects that manifest as single and multiple stuck-at faults, bridging faults) as
single and multiple stuck-at logic errors.

We inject stuck-at faults on 1 to 8 bits at the output of the tested PEs and these faults are in-
jected using a mask. We do not claim that this model reflects all possible logic errors occurring
in PEs. However, we believe this fault model is sufficient to compare the effect of fault propa-
gation in these architectures, and thus to draw conclusions on the relative fault tolerance of these
architectures.
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Figure 3.5: PE Fault Models in OS, WS and RS Architectures

For the WS and RS architectures, we only inject faults in the 8 Most Significant Bits (MSBs)
of the partial sum, because the 20 Least Significant Bit (LSB)s are inherently discarded in the
data-path of this architecture. A fault in the LSBs could carry into the MSBs, however, to be
able to fairly compare results, we wanted to have the same number of attacked bits (8), in all our
experiments.

3.2.2 Impact of Computational Errors in Systolic Architectures

Due to the architectural differences illustrated in Fig.3.6, we expect the impact of a fault in the
data-path of a systolic architecture to differ significantly from one architecture to another.
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Figure 3.6: Data Flow Through the PEs for One Output Pixel

Every times the array is loaded in an OS architecture, each PE computes the value of a single
output pixel for mapped to that PE. As a consequence, a fault in the data-path of a PE will impact
one single pixel, but the pixel value is expected to be numerically, highly impacted by the fault as
all the computations could be erroneous.

In the WS and RS architectures, the impact will be different. Each PE focuses on a weight
(WS) or row of weights (RS) which are used on every pixels of one output channel. Thus a faulty
PE is expected to affect a limited number of MACs for every pixels of an output channel.

Due to the folding, these impacts are repeated with different pattern on each architecture, as
illustrated in Fig.3.7 As an example, for a PE array of size N*N, one single faulty PE will affect :

• For WS and RS architectures, all the pixels of 1/N output channels.

• For OS architecture, all the pixels of 1/N rows of 1/N column or 1/N input images, while
other pixels will not be affected.
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Theses patterns depend on the scheduling policies seen in Sec.3.1.1. For the purpose of readability,
we present only a limited number of scheduling policies, but we observed that this parameter do
not significantly affect the fault tolerance of the tested architectures.
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Figure 3.7: Propagation of a Fault in a PE in Different Architectures
3.2.3 Analyzing the Errors Produced by Faults

We performed two fault injection campaigns to assess the robustness of the tested architectures.
We used LeNet-5, VGG-16, MobileNet and SqueezeNet models for DNNs, trained for MNIST for
LeNet-5 and Imagenet data-set [Russakovsky2015] for other networks. We tested the RS, OS and
WS architectures on two sizes of PE array (16x16 and 64x64) for analyzing the effect of folding
on fault tolerance.

For each fault injection, an experiment consists of randomly selecting :

• One or multiple PEs in the array

• The target bit position(s)

• The stuck-at logic to apply (0 or 1).

After running a batch of images, the fault is removed and another fault injection is performed.

1st Fault Injection Campaign 2nd Fault Injection Campaign

Selected DNNs LeNet-5, VGG-16, SqueezeNet VGG-16, MobileNet

Nbatch_size 100 100

Nbatch 1000 5000

Tested architectures OS, WS and RS OS and WS

Tested PE Array sizes 16x16 and 64x64 16x16 and 64x64

Number of stuck-at bits 1, 2, 4 or 8 1, 2 and 4

Data-type 8 bit quantized 8 bit quantized

Table 3.1: Parameters for each Fault Injection Campaign

Multiple batches (Nbatch) are then evaluated, where each batch consists of Nbatch_size images.
For each individual batch, we record the accuracy. After all the batches are completed, we eval-
uate the average accuracy and the worst case accuracy. Parameters vary across fault injection
campaigns and are presented in Tab.3.1 The pseudo-code is presented in Algorithm 1.

The choice of Nbatch_size is important to obtain meaningful results for the observed worst case
accuracy. Even without fault injection, the accuracy of a DNN is never perfect and the worst case
accuracy depends on Nbatch_size. To assess whether an observed low accuracy is the effect of the
injected faults, and not of an unfortunate selection of images in the current batch, we performed
a set of preliminary experiments without faults to record the worst case accuracy depending on
the Nbatch_size. The results are plotted in Fig.3.8. For our fault injection campaigns, we set the
Nbatch_size at 100 so that a worst case accuracy degraded by more than 10% compared to average
accuracy can safely be concluded to be the result of injected faults.
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Algorithm 1 Fault Injection Procedure

for all architecture do
for all PE Array Size do

for all DNN do
for i from 1 to Nbatches do

Fault← (random(PE,bits,value))
Inject Fault
Batch← Nbatch_size random test images
Classify Batch
Record accuracy
Clear Fault

end for
Evaluate Average and Worst Case Accuracy

end for
end for

end for
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Figure 3.8: VGG-16 Worst Accuracy versus Batch Size - No Faults
Green line is fault-free average accuracy. Blue line is the observed fault-free worst case accu-
racy. The red-line is the fault-free average accuracy minus 10%. Black dotted line represents the
Nbatch_size chosen for our fault injection experiments.

3.3 Fault Injection Results

3.3.1 Experimental Framework

N2D2 is a C++ based DNN framework that integrates database construction, data pre-processing,
network building, bench-marking, quantization and hardware export to various targets. Export
targets include central processing unit running C/C++ code, Digital Signal Processor and GPU
with Open MP, Open CL, Cuda, CuDNN and TensorRT programming models as well as code
generation for custom hardware [Bichler2017]. We have chosen N2D2 for this study, as it has
support for quantization and the generated code can be modified for injecting faults on simulated
DNNs.

We selected four different networks summarized in Tab.3.2.

• VGG-16 [Simonyan2014] is representative of heavy, redundant networks used in data-
centers and achieve the best accuracy, of the tested networks, at the cost of an important
number of MAC operations and weights.

• MobileNet [Howard2017] and SqueezeNet [Iandola2016] are representative of light-weight
networks used in embedded applications. They are less accurate than VGG-16, but rely on
5 to 3 times less MAC operations and 115 to 33 times less weights.
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Figure 3.9: Fault Injection Methodology

Network
Num. Num. Num.

Data-set
Accuracy

Neurons MACs Weights Top-1 Top-5

LeNet-5 6518 341 K 60 K MNIST 99% -

SqueezeNet 2.6 M 352 M 1.2 M ImageNet 55% 75%

MobileNetV1 4.7 M 569 M 4.2 M ImageNet 69% 88%

VGG-16 13.6 M 15 G 138 M ImageNet 70% 91%

Table 3.2: Characteristics and Accuracy of Selected Networks

• LeNet-5 was used in order to compare with other studies as it is one of the most used DNN
in the literature. It achieves a high accuracy of 99% but can not be directly compared to
other DNN as their data-sets are different.

Except for LeNet-5, all of the weights were obtained from the ONNX open repository [ONNX].
The tool flow is shown in figure 3.9. The trained models were quantized to 8-bits [Nagel2019].

3.3.2 Impact of the Architecture on the Robustness of Accelerator to Computa-
tional Faults

During our fault injection campaigns, we limited the fault injection scenarios from one to four PEs,
as beyond this number, the drop in accuracy is unacceptable. For each data point on the graphs,
1000 randomly selected PEs and bit positions were selected and then 100 randomly selected im-
ages were analyzed in order to evaluate the top-5 classification accuracy (top-1 for LeNet-5). The
results are summarized in Figure 3.10 and we see that in all cases, the OS architecture has a higher
accuracy. Note, when not stated otherwise, we present results for an array of 16x16 PEs.
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Figure 3.10: Average Accuracy of Three Systolic Architectures (OS, RS, WS) in the Presence of a
Single Faulty Bit per PE
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3.3.3 Impact of PE Array Size on Robustness

To study the impact of the size of PE array on the robustness, we performed a second fault injection
campaign. For readability, we only present results for WS and OS architectures as the robustness
of RS is comparable to WS. In Tab.3.3, we present the average and the worst case accuracy for two
array sizes where faults were injected in a single PE using the fault model described in Sec. 3.2.1.

Architecture
Number of VGG MobileNet

stuck-at bits Worst-Case Avg Max Worst-Case Avg Max

0 86 91 95 73 78 85

OS(16x16 PEs) 1 3.5 81 93 0 65 82

OS(16x16 PEs) 2 0 70 93 0 55 82

OS(16x16 PEs) 4 0 59 94 0 36 80

OS(16x16 PEs) 8 0 47 94 0 29 80

OS(64x64 PEs) 1 83 91 93 30 75 82

OS(64x64 PEs) 2 41 89 94 2 72 82

OS(64x64 PEs) 4 36 87 92 2 65 80

OS(64x64 PEs) 8 20 81 93 1 58 82

WS(16x16 PEs) 1 0 40 89 0 12 63

WS(16x16 PEs) 2 0 40 83 0 2 32

WS(16x16 PEs) 4 0 38 79 0 1 4

WS(16x16 PEs) 8 0 31 78 0 1 4

WS(64x64 PEs) 1 0 51 92 0 43 82

WS(64x64 PEs) 2 0 51 91 0 31 77

WS(64x64 PEs) 4 0 43 90 0 21 64

WS(64x64 PEs) 8 0 48 91 0 14 64

Table 3.3: Accuracy with Random Stuck-At-0 and Stuck-At-1 Faults in a Single PE

As illustrated in the Tab.3.3, we observe that as the size of the PE array increases, the impact of
a fault decreases. In a smaller array, more folding generates an increased reuse of a faulty PE. We
also observe that the OS architecture is more robust, to the extent that faults have a limited impact
in a large array as showed on the row OS(64x64 PEs) for 1 such-at bit, where average accuracy
does not reduce the VGG16 accuracy and reduces the accuracy of MobileNet by 3 percentage
points. Conversely, on the similar row with the WS architecture, the average accuracy is decreased
by 51 percentage points for VGG16 and by 66 percentage points for MobileNet.

A notable observation is that the number of stuck at bits at the PE output does not have a major
impact on the reduction in accuracy. This is due to the compact 8-bit numeric format. The worst
case numerical impact of a fault is limited. More important than the magnitude of the impact is
how many output pixels in the calculation are corrupted.

The fact the OS architecture is more tolerant to faults can be explained as each fault in the
computational logic impacts a single activation in a subset of the channels, or a small number of
activations, when the PE is re-used due to folding. In a WS architecture, a faulty PE corrupts all the
pixels in the affected channels, significantly impacting the classification accuracy. We conclude
that the spatial impact of a fault is more significant than the magnitude of the numerical corruption.
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3.3.4 Bit-Level Analysis of the Effect of Faults

Up to this point, the results included both Stuck-At-Zero (SA0) and Stuck-At-One (SA1) faults.
In figure 3.11, we separately reported results for both single bit SA0 and SA1 faults in random bits
of the 8-bit word. As expected, based on previous works [Salami2018], SA0 faults have a much
smaller effect.

With the OS architecture, any Stuck-At (SA) fault on the 4 LSBs has virtually no impact on
classification accuracy. Considering only SA0 faults, the OS architecture is tolerant of faults in
all bit positions. For the WS architecture, the difference in accuracy between SA0 and SA1 is
striking. For VGG all SA1 faults trigger a catastrophic loss in average accuracy.

MobileNet remains quite sensitive to SA0 faults. Since MobileNet is highly compressed, any
further loss in connections, has an immediate impact on accuracy.

Previous studies have shown that SA0 faults have only a minor impact when applied to an
abstract model of a DNN and we have shown this result extends to DNN accelerators. It is re-
markably how tolerant the OS architecture is to SA0 faults, and this finding was our inspiration
for the design of a fault tolerant DNN accelerator presented in chapter 4.
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Figure 3.11: Average Accuracy versus Faulty Bit Position

We also investigated the impact of the number of SA bits on accuracy for the OS architecture.
The results are shown in Figure 3.12. Each graph has curves for the case of one, two or four faulty
PEs. With VGG-16, with a single faulty PE, with four SA bit faults, the accuracy is ≈60%, with
two faulty PEs, each with two SA faults, the accuracy is also ≈60% and with four faulty PEs with
a single SA fault, the accuracy is still ≈60%. For the OS dataflow, it appears, the drop in accuracy
depends on the total number of SA faults, regardless how they are distributed. As the trend in the
drop of accuracy is similar, regardless of the number of SA bits, for the remainder of this chapter,
we limit our fault model to a single SA bit per faulty PE.
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Figure 3.12: Impact of Number of Faulty Bits on Three Networks (OS Architecture)
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3.3.5 Impact of Faults by Layer
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Figure 3.13: Robustness of Various Layer on Tested DNNs
Top-5 Accuracy versus layer, where a single bit fault is applied to one PE in one single layer in a
16x16 PE array. The upper circles show average accuracy and lower bar shows the worst case.

The black line shows fault-free accuracy.

For assessing the robustness of different layers, specific fault injections were performed layer
by layer and the results are presented in Fig.3.13. The results for WS and RS architectures were
comparable. For readability, we present only the results on OS and WS architecture. From this
figure, we see that there is a significant gap between average accuracy (dots) and the worst case
accuracy (lower bars).

It is clear that the OS architecture (in blue) is more robust. With this architecture, the variation
in the average accuracy between layers is small.

For the WS architecture, with VGG-16, we see that the fully-connected layers are quite sen-
sitive, particularly the last one. These observations are consistent with the literature as seen in
Sec.2.2.1. For example in [Xu2019], where faults were injected in the weights, results are compa-
rable with our experiments. Considering the worst case accuracy in the WS architecture, for each
layer, there are some faults which cause the worst case accuracy to drop to zero - an important
finding for safety applications.

In Fig.3.13b, when looking at the average accuracy in the WS architecture, we note an alter-
nating pattern (layers 6 to 18). This is because MobileNet consists of two types of convolutional
layers : traditional ones and depth-wise ones where the kernel is a single weight. As seen in
figure 3.13b, with the WS architecture, the depth-wise layers are more sensitive. This can be ex-
plained because all the pixels in the given output channel are highly impacted. In other words the
link from an input channel to an output channel is completely corrupted.

3.4 Comparison with State of the Art

To the best of our knowledge, there is no similar study that compares the robustness of multiple
systolic DNN accelerators.

As we have seen in Sec.2.2.1, studies agree on the fact that faults on weights are more likely to
decrease the accuracy of the DNN than faults on activations. If we consider the number of pixels
impacted by these faults, we see that they are close to the fault models studied in this chapter
(faults on weights will alter all the pixels of a given output channel like an arithmetic fault on WS
architectures, while faults on activations will alter a limited number of neighboring pixels on the
output channels like an arithmetic fault on OS architectures). Consequently, our conclusions are
consistent with the analysis proposed by previous works, namely that fault with a larger spatial
impact are more likely to alter the accuracy of a DNN.
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Considering systolic accelerators, we note that they are a frequent hardware platform for fault
injection studies [Li2017, Abdullah Hanif2020, Liu2021, Ozen2020a, Ozen2020c, Reagen2016a,
Schorn2018, Wu2021b, Zhang2018a, Zhang2019]. However, none of these studies quantitatively
compares the robustness of different architectures. Instead, they select one existing architecture
(most frequently the WS architecture) and consider another aspect such as fault tolerant training,
detection and mitigation of faults or the reduction of power consumption made possible with the
robustness of DNNs.

3.5 Future Developments

This study on the robustness of systolic accelerators for DNNs is not exhaustive and can be
improved in future works.

We have only focused on permanent faults in the data path of such accelerators. The study
of other fault models would be of great scientific interest. For example, faults occurring in com-
munications channels between PEs would have spatial impacts that are architecture dependent
and, based on our findings, could be very significant. Faults occurring in unprotected control
logic could possibly modify the behavior for a large number of computations and thus must be
considered when designing an accelerator for mission-critical industrial applications.

We only focused on systolic accelerators, however it is difficult to fully utilize a PE array
without increasing the batch size, which complicates their use in real-time applications. The key
observation in our work is that the dataflow significantly impacts how faults propagate and we be-
lieve that these observations can be applied to future studies of other classes of DNN accelerators.

3.6 Conclusions of the Analysis of Fault Tolerance of Systolic Accel-
erators

We have presented a methodology for analyzing the impact of faults in a DNN accelerator.
Our methodology, based on reporting the worst case and average accuracy for batches of images
enabled us to show that certain faults can have a catastrophic impact on the classification accuracy.
This is a key point when analyzing the fault tolerance of DNNs for safety applications. By simply
reporting an average accuracy, the severity of specific faults is missed.

With the 8-bit numeric format, our results show that, in terms of the impact on loss of accuracy,
the spatial scope of a fault is more important than its numerical impact. For example, in a 16x16
PE array running VGG-16 with a single bit SA fault, the average accuracy of an OS architecture is
reduced to 81% versus 61% for RS and 39% for WS. Thus, the OS architecture, where data-path
errors impact a small number of neurons are attractive for fault tolerance.

We used four different networks for this study, VGG-16 which has a huge number of weights
and significant redundancy, SqueezeNet and MobileNet, which are more compact, and LeNet-5
which is frequently used in the literature. Not surprisingly, compressed networks are less tolerant
to faults, as they have less inherent redundancy. For example, with a 64x64 PE array with an OS
architecture, in the presence of a single SA fault, the worst case accuracy of VGG-16 is 83% (3%
loss) versus 30% (43% loss) for MobileNet. This key result must be considered if highly compact
networks are deployed in critical applications.

It is important to note that in our detailed analysis of the impact of the fault multiplicity and
the position of the affected bits, in all cases, the OS architecture was more robust than the WS.
This important observation guided us in the design of the fault tolerant accelerator presented in
the following chapter.
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4
Design of a Fault Tolerant Systolic Accelerator

In this chapter, we present MOZART+, a Deep Neural Network ac-
celerator architecture which provides fault detection and fault tol-
erance. MOZART+ is a systolic architecture based on the Output
Stationary (Output Stationary) data-flow that inherently limits fault
propagation. In addition, MOZART+ achieves fault detection with
on-line functional testing of the Processing Elements (Processing El-
ements). Faulty Processing Elements are swiftly taken off-line with
minimal classification impact. We show how to handle the case of
layers with a small number of neurons which require special atten-
tion. The implementation of our approach on SqueezeNet results in
a loss of accuracy of less than 3% in the presence of a single faulty
Processing Element, compared to 15-33% without fault mitigation.
The area overhead for the test logic does not exceed 8%. More-
over, dropout during training further improves fault tolerance, with-
out a priori knowledge of the faults.
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As seen in the literature described in chapter.2, many types of Deep Neural Network (DNN)
accelerators exist such as Graphics Processing Units, Field-Programmable Gate Arrays and sys-
tolic accelerators. The main focus of the current design of such accelerators is the optimization for
performance and energy efficiency [Reuther2019, Reuther2021]. However, when used in safety
critical applications, the target accelerator must be tolerant to hardware faults. Architectural fault-
tolerance can achieve robustness with minimal overhead.

Integrated circuits used in automotive applications must comply with ISO-26262 [ISO-26262.18]
and need to detect and react to faults in an interval that is shorter than the fault tolerant time in-
terval, the maximum time the fault can be present without posing a safety risk. As on-line testing
becomes mandatory, new techniques must be developed that have lower overhead than traditional
on-line testing. Standards also impose stringent requirements on overall Failure In Time (FIT)
rate (e.g. ≤10 FIT for Automotive Safety Integrity Level D) which are difficult to achieve for
large DNN circuits [Li2017]. State-of-the-art automotive DNN accelerators employ Dual Modu-
lar redundancy [Talpes2020, Matsubara2021], but this strategy is costly and does not exploit the
specificities of DNNs.
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Figure 4.1: MOZART+ Provides On-Line Testing and Fault Masking with Graceful Degradation
in Accuracy

In this chapter, we propose an architecture called MOZART+, which is a systolic based DNN
accelerator specifically designed to achieve fault tolerance. MOZART+ relies on five points :

• It is built upon a Output Stationary systolic dataflow, which was shown in chapter 3 to be
the most robust systolic architecture.

• Additional hardware components in the Processing Element (PE)s perform on-line fault
detection of faults occurring in the data-path.

• A fault mitigation technique inspired by the literature that provides graceful degradation of
the classification accuracy for the tested applications.

• An innovative fault tolerant training to make the DNN robust to permanent faults without
any a priori knowledge of actual faults.

• A fault tolerant scheduling inspired by the literature to further improve the robustness of the
most sensitive layers of the DNN.

This chapter is organized as follows : Sec.4.1 presents MOZART+, the fault tolerant systolic
accelerator designed during this thesis. Sec.4.2 presents the methodology of the fault injection
experiments used to evaluate the ability of MOZART+ to detect and mitigate permanent faults.
Sec.4.3 presents our experimental results. Sec.4.4 compares our architecture with the closest
works in the scientific literature. Sec.4.5 present ideas to improve MOZART+. Finally, Sec.4.6
concludes this chapter.
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4.1 MOZART+ Architecture

MOZART+ is a systolic OS based DNN accelerator with data-path fault detection and miti-
gation. We have seen in chapter 3 that the data-flow in a DNN accelerator influences how faults
propagate and thus has a significant impact on the fault tolerance.

The literature seen in Sec.2.2.1 concludes that in DNNs, faults on weights are more likely
to provoke failures than faults on activations. The conclusion of the previous chapter is that the
OS data-flow is the most robust of the tested systolic architectures because it limits the spatial
propagation of a fault occurring in the data-path. As a consequence, MOZART+ is built upon the
OS systolic architecture.

4.1.1 Fault Detection and Mitigation with MOZART+

MOZART+ integrates an on-line functional testing technique which ensures high coverage for
impacting faults. The online fault detection procedure principle is based on the fact that during
the testing procedure, each PE is taken off-line, one at a time, by setting its output to zero. This
exploits the fact that when a single PE is forced to zero, the impact on classification accuracy
is negligible [Zhang2019, Reagen2016b]. This enables deterministic scheduling of the testing of
every PEs.

Rather than relying on logic Built-In Self Test to generate random inputs, we propose an
approach based on using the application data as stimulus for on-line testing. Fig. 4.2 shows the
principle and added circuitry (fault detection in red and fault masking in blue).

More in details, Fig. 4.2a shows the details of the PE used in MOZART+. Three multiplexers
are added. Two are controlled by the test signal and switch the inputs (weight and activation) of
the multiplier of the PE from the local input to the input of its neighbor The last multiplexer is
used to mask the output of one PE to zero when the PE is set as faulty given its assigned masking
signal. Fig. 4.2b shows MOZART+’s PE array. After computation of a partial sum, an external
comparator checks the result of the PE under test with that of its neighbor. In case of faults, if the
outputs don’t match, the PE under test is taken off-line, meaning that its external outputs remain
set to zero. Once a PE is tested, the next PE starts the test procedure. This fine-grained scheduling
minimizes detection time, quickly detecting the highly impacting faults and has no impact on the
latency of the calculation.
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Figure 4.2: Schematic of MOZART+
A transient fault in a PE could also result in a mis-match and thus needlessly force a given PE

off-line. This is prevented by including all PEs in the periodic test procedure, even those that are
off-line. If an off-line PE shows no further errors after multiple test iterations, it is then taken back
on-line, ensuring that transient faults don’t result in an unnecessary loss of PE resources.

We synthesized a 16x16 PE array, with 8-bit integer multipliers, 32 bit adders, and registers
for the partial sums. Synthesis results show that the overhead for the extra logic required for fault
detection and mitigation is only 8%.
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4.1.2 Unaware Fault-Tolerant Training for Improving Tolerance to Hard Errors

Fault tolerant training, as presented in Sec.2.3.2, can improve the robustness of DNNs by consid-
ering hardware faults during training. The scientific literature covers both training techniques that
have knowledge of the actual faults and training techniques that lack knowledge of the faults that
will occur.

Studies that use training to improve the robustness of DNNs to permanent faults rely on
fault aware retraining [Zhang2019, Abdullah Hanif2020]. We believe that this approach is poorly
adapted to industrial applications, as it is not possible to perform custom training for each instance
of a component.

In an OS based architecture, an abstract neuron is mapped to a single PE. Due to the online test
mechanisms, once a fault is detected, the faulty PE output is masked to zero which corresponds
to disconnecting multiple neurons from the abstract network, similar to dropout. By design, the
hardware architecture of MOZART+ is suited to exploit dropout during training to improve fault
tolerance.

Based on the fact that the same PEs are used to compute all layers, our proposal is to apply
random dropout to all layers which is different to standard dropout which is only applied to the
last layers. In this way, the training can improve the robustness of the model without a priori
knowledge of the location of faults. In the absence of fault, it does not result in a degradation of
accuracy but does increase the training time.

4.1.3 Fault Tolerant Scheduling for the Last Layer

The MOZART+ technique was prototyped and the initial results identified a problem in how faults
in the last layers were handled. If a neuron in the last layer is masked to zero, then an entire output
class is lost, which does have an impact on accuracy, particularly for data-sets with a small number
of classes. We thus integrated an enhancement.

In systolic architectures, the layers are processed sequentially by the PE array. When process-
ing fully-connected layers, in a systolic architecture, it is necessary to use batching to fully utilize
the PE matrix [Sze2017]. Multiple images are processed simultaneously, with each line process-
ing a different image. To avoid the problem of losing an output class, we propose an alternate and
simple technique for the last layer. After one (or several) faulty PE(s) are detected, when process-
ing the last layer, we propose to reduce the batch size. The images in the reduced size batch are
mapped to columns that contain no faulty PEs, as illustrated in Fig.4.3. With this approach, in
the worst case, we can handle up to N/2 faulty PEs where N is the number of columns of the PE
array. The overhead is limited as on modern DNNs, the last layer is computationally much less
expensive than other ones.

PE Array

PE

PE

PE

PE

PE PE

PE

PE PE

(a) Normal behavior

PE Array

PE

PE

PE

PE

PE PE

PE

PE PE

(b) Degraded accelerator for
last layer

PE

PE

PE

Normal PE

Masked PE
(Output = 0)

Disabled PE

(c) Legend

Figure 4.3: Fault Tolerant Scheduling for the Last Layer
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4.2 Mozart Evaluation

To evaluate the MOZART+ architecture, we performed a fault-injection study on three differ-
ent DNNs. To confirm the superior robustness of the Output Stationary (OS) architecture, we also
simulated equivalent on-line testing and fault-masking strategies on Weight Stationary (WS) and
Row Stationary (RS) architectures.

4.2.1 Applications and Data-Sets

We choose three networks for our experimental study that were previously presented in Sec.2.1.1.
1) SqueezeNet [Iandola2016] represents a compact network that could be used in embedded sys-
tems. 2) VGG-16 [Simonyan2014] is a computationally intensive network and represents cloud-
based applications. 3) LeNet-5 is a lighter network that has been chosen to compare our re-
sults with the literature. As other authors [Arechiga2018,Solovyev2019,Zhang2019] have studied
VGG-16 and LeNet-5, we are able to compare our results to similar works in the scientific litera-
ture. .

These networks are summarized in Tab. 4.1. This Table summarize, for each DNN, the num-
ber of neurons, weights and Multiply And Accumulate operations used to execute one image. The
data-sets are MNIST for LeNet-5 and ImageNet for the other DNNs. They are both image clas-
sification data-sets. MNIST is composed of 60 K small images (28x28 pixels) of 10 handwritten
digits. ImageNet is more complex as it is composed of 1.2 M of pictures of variable size which
can be classified into 1000 different categories. Tab. 4.1 reports the Top-1 and Top-5 accuracy of
these networks. In Top-1 accuracy only the neuron with the highest activation value is considered
to be the prediction of the model. In Top-5 accuracy the prediction is considered to be correct if
one of the five neurons with the highest activation values corresponds to the correct label.

For each of these networks an energy-efficient 8-bit integer format was chosen as this data
representation has proven to be more robust than floating point, while maintaining a minimal loss
in accuracy [dos Santos2019].

Network
Num. Num. Num.

Data-set
Accuracy

Neurons MACs Weights Top-1 Top-5

SqueezeNet 2.6 M 352 M 1.2 M ImageNet 55% 75%

VGG-16 13.6 M 15 G 138 M ImageNet 70% 91%

LeNet-5 6518 341 K 60 K MNIST 99% -

Table 4.1: Characteristics and Accuracy of Selected Networks

4.2.2 Hardware Fault Model

The MOZART+ architecture focuses on mitigating the computational errors occurring in the data-
path of the PE. We define a fault model based on SA faults affecting the outputs of the PE, equiva-
lent to the fault model used in chapter 3 but limited to a single bit stuck-at, as illustrated in Fig.4.4.

Our focus is on the accelerator architecture, thus we adopted a higher-level fault-model that
clearly does not model all possible logic errors, but is sufficient to draw architectural conclusions
as the fault propagation is the same, regardless of the underlying cause of the faults.

To be consistent and based on the observations made in previous chapter (see Sec.3.2.1), we
inject faults in the 8 Most Significant Bit (MSB)s of the registers that store the results of the partial
sums in both architectures.

To evaluate the efficiency of our fault detection technique, we voluntarily limit the number of
stuck-at bit to a single bit. A single fault in the computational logic may affect several outputs bits,
but if our technique can detect single bit faults, it can easily detect multi-bit faults, and we saw in
Sec.3.3.4 that the impact of single and multi-bit faults is not that significant for these applications.
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Figure 4.4: PE Fault Models in OS, WS and RS Architectures

4.2.3 Fault Injection Methodology

The objective is to evaluate the fault detection and mitigation of our method. Again we consider
the accuracy as a metric to evaluate the behavior of the tested DNN in the presence of a fault. For
each tested condition, we record the average accuracy and the worst-case accuracy. As seen in
Sec.2.2.1, certain single bit faults can cause the accuracy to drop close to zero.

To be consistent and to be able to compare the impact of our fault mitigation strategy with
the previous chapter, we use the same Nbatch (1000) and Nbatch_size (100), and we used the same
algorithm presented in chapter 3, however, we introduced an additional nested loop to iterate over
between 1 a,d 4 faulty PEs.

Our methodology for choosing the Nbatch_size has been described in chapter 3.

Algorithm 2 Fault Injection Procedure

for all For each architecture (OS, RS, WS) do
for all For each PE Array Size (16x16, 64x64) do

for all For each network (LeNet-5, SqueezeNet, VGG16) do
for all For each number of faulty PE (1,2,4) do

for i from 1 to Nbatch do
Fault← (random(PE,bit,value))
Inject Fault
Batch← Nbatch_size random test images
Classify Batch
Record accuracy
Clear Fault

end for
Evaluate Average and Worst Case Accuracy

end for
end for

end for
end for
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4.3 Fault Injection Results

In this section, we show how the MOZART+ techniques provide effective fault detection and
masking. Sec. 4.3.1 shows the effectiveness of the proposed functional test strategy. Sec. 4.3.2
shows the behavior of the networks when PEs are masked to zero. Sec. 4.1.3 shows the efficiency
of our scheduling strategy. Sec. 4.3.4 analyzes the efficiency of the dropout technique. Finally,
Sec. 4.3.5 demonstrates the scalability of the approach.

4.3.1 Effectiveness of On-Line Test

A key element of the MOZART+ approach is on-line testing, which continuously checks the cor-
rect operation of the PEs Sequentially, the testing procedure disconnects the input (weights and
activations) of a single PE and connect them to those of its neighbor, so they both perform same
operation. Once the PE array has finished the computation of one set of activations (we call this a
round of computations), the results of the PE under test and its neighbor are compared to detect a
fault. Every times the PE array is loaded with a new set of the testing procedure, but we select the
next PE for testing.

To evaluate the detection capability of this technique, we injected Stuck-At-Zero (SA0) and
Stuck-At-One (SA1) faults on every output bits for each of the 256 PEs (4096 faults). For each in-
dividual fault, 100 randomly selected images were evaluated to check if the fault could be detected
by comparing the partial sum of the PE with that of its neighbor. Table 4.2 shows the percentage
of all SA1 faults detected after 1, 2, 4, 8 and 100 images.

Percentage of SA1 Faults Number of Images (N)

Detected After N Images 1 2 4 8 100

SqueezeNet 100% 100% 100% 100% 100%

VGG-16 100% 100% 100% 100% 100%

LeNet-5 94% 98% 99% 100% 100%

Table 4.2: Percentage of SA1 Faults Detected After N Images

For the larger networks, a single image was sufficient to detect all the SA1 faults. This was
true for any of the 100 random images we used as stimulus for VGG16 and SqueezeNet. For
LeNet-5 with a single image, 94% of the SA1 faults could be detected, which is already a good
level of coverage. In fact, for LeNet-5, more images are required because as it is a small network,
the number of operations performed per image is small (see Table 4.1).

As we seen in Sec.3.3.4, SA1 faults have a higher impact than SA0 faults, particularly for the
OS based dataflow, and these experiments show that the low-overhead approach to on-line test can
quickly detect the highly impacting SA1 faults.

Detecting SA0 faults is more difficult because the neuron output values are often zero, es-
pecially the MSBs of the integer representation. In Figure 4.5a, for SqueezeNet, we show the
fraction of Stuck-At (SA) faults that were detected after a single round of computation. SA1 faults
are easily detected, especially in the MSBs. In contrast, SA0 faults in the MSBs are hard to detect
due to application masking. This is not an important issue, as a single SA0 fault has a negligi-
ble impact on classification accuracy, as discussed in section 3.3.4. These results are consistent
with [Reagen2016b, Reagen2018].

To understand if SA0 faults can be detected with functional test, we performed two further ex-
periments, focusing on SqueezeNet and VGG. First, we considered the 2048 possible SA0 faults,
and for each of these faults, we applied 100 randomly selected images. In Figure 4.6a, we report
the percentage of these faults that are detected after a given number of images. We see that after
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100 images, all SA0 faults were detected for VGG-16 and 94% are detected for SqueezeNet. This
difference can be explained since in VGG-16 a typical PE is tested 215 times for every input im-
ages, versus only 42 for SqueezeNet. With LeNet-5, as the 16x16 PE array is under-utilized, the
SA0 detection is poor and not presented.
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Figure 4.6: Number of Images Required to Detect Latent SA0 Faults

To obtain a bound on the worst case number of images required to detect any SA0 faults in
SqueezeNet, we performed a second experiment. For every possible SA0 faults, 10,000 images
were evaluated. We ranked the images from the one which detected the fewest faults to the one
that detected the most. In Figure 4.6b we present the cumulative detection rate, starting on the left,
with the image with the lowest coverage. From this graph, we observe a worst case detection time
for SA0 faults. After 10,000 images, we detect 97% of the SA0 faults, which is reasonable, given
that these faults are benign.

With a more accurate fault model (eg. faults inside the arithmetic logic of the MAC), by
relying on the incoming images as stimuli for the on-line testing, there is a risk that latent faults
which may occur but will not be detected. If such faults exist, and if the current, real-world stimuli
do not activate them, they are not of our immediate concern. If the stimulus changes, and the
previously latent fault is activated, then it is quickly detected by our continuous on-line testing.

4.3.2 Fault Tolerance in MOZART Architecture

In the previous section, we have discussed the procedure for on-line testing. To ensure a fault
tolerant design, after detecting a faulty PE, we suppress the potentially serious impact of a faulty
PE by forcing its outputs to zero, removing it from subsequent computations.
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a ) Average Accuracy

In Figures 4.7a to 4.7c we show the average classification accuracy when the output of one, two
or four PEs are masked to zero, for each of the three architectures. This shows how the accelerator
would behave when one PE is taken off-line during the on-line testing, and how it would behave
if additional PEs are taken off-line due to permanent faults.

A key point is that for these networks, the output masking technique is most effective for
the OS based architecture (shown in red) and for SqueezeNet and VGG-16, the drop in accuracy
when a single PE’s output is masked is very small. As more PEs are masked, with the OS based
architecture, the loss of accuracy is gradual with the number of PE being masked.

LeNet-5 has only 10 neurons in the output layer so if a PE that is used to compute an output
neuron is masked, the impact on accuracy is very significant. In this case the OS architecture is
more sensitive to faults but the loss in accuracy with 4 masked PEs still is only 1.5%.
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Figure 4.7: Average Accuracy with PEs Masked to Zero

b ) Worst Case Accuracy

Figure 4.7 only shows the average accuracy. To study the worst-case, we performed a second series
of experiments. We generated ≈100,000 batches of 100 randomly selected images and analyzed
the accuracy with each architecture. For the unprotected architectures, we injected random faults
(1, 2 or 4 PEs, with 1 SA fault). For the architectures protected with output masking, we set to zero
1,2 or 4 PEs. In Table 4.3, we report the minimal observed accuracy across all the batches. First,
note that with the unprotected architectures, in the worst case, the accuracy drops to zero for the
large networks, even with faults on a single PE. This is a key observation for safety applications.
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The second observation is that, with output of a faulty PE masked to zero, the worst case
accuracy of the MOZART+ architecture is significantly better than RS and WS, especially for
SqueezeNet. With WS and RS architectures, there exist certain faults that cause a drastic drop in
accuracy, unlike the OS architecture which limits the propagation, as shown in Figure 3.7. This is
an important take away for fault tolerant systolic accelerators.

Network Unprotected Zero Masking

Number of Fault OS WS RS OS WS RS

Faulty PE Free (Mozart)

1 PE

SqueezeNet 64 0 0 0 58 2 52

VGG 82 0 0 0 82 82 79

LeNet 95 5 5 4 95 96 77

2 PEs

SqueezeNet 64 0 0 0 53 1 45

VGG 82 0 0 0 80 77 74

LeNet 95 2 3 2 92 95 72

4 PEs

SqueezeNet 64 0 0 0 53 0 16

VGG 82 0 0 0 79 73 63

LeNet 95 4 2 2 90 95 58

Table 4.3: Worst Case Accuracy for Batches of 100 Images

4.3.3 Efficiency of the Fault Tolerant Scheduling

As seen in Sec.4.1.3, out proposed fault mitigation strategy is not adapted for the last fully-
connected layer with an OS data-flow, where each PE is dedicated to an output neuron or image
class. As a consequence, masking a PE used for an output neuron drastically impacts accuracy.

This is why in the previous section, the MOZART+ approach provided improved fault toler-
ance for the larger SqueezeNet and VGG-16 networks, but not for LeNet-5 (Fig. 4.7c) where the
WS architecture actually performs better.

In LeNet-5 there are only ten output neurons. If any one of these is faulty, and thus masked to
zero, an entire output class is lost, resulting in a major loss in accuracy. For example, the LeNet-
5 considered in our studies has an accuracy of 99% without faults or hardware masking but its
accuracy drops to 89.1% when one output neuron is masked to zero.

To address this shortcoming, we propose an alternative scheduling algorithm for the last layer,
described in the Sec.4.1.3. To avoid the problem of mapping an output neuron to a faulty PE, we
propose to schedule the output layer to avoid any columns with a faulty PE. In other words, for the
last layer we do not consider the results of columns of the systolic accelerators that contains faulty
PEs. It results in an additional number of times the array is loaded for the last layer, described in
Tab. 4.4 (SqueezeNet is fully convolutional thus not shown). This results in a limited overhead.

The improved fault tolerance for LeNet-5 is shown in Fig. 4.8. This figure shows the average
accuracy for 1000 batches of 100 images for LeNet-5 without faults and simulated on faulty sys-
tolic accelerators with masking of erroneous PEs. Three accelerators are simulated : WS, Mozart,
and Mozart+ with the usage of new fault tolerant scheduling to disable erroneous PE from the last
layer. The systolic accelerators are composed by 16x16 PEs and 1, 2 and 4 PE are considered
faulty. As we seen earlier in Fig.4.7c, the WS architecture with masked PEs is more fault tolerant
in every cases compared to Mozart. This is due to the fact that when an output neuron assigned
to the expected label is masked to zero, then the prediction of the DNN is almost always false.
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When this issue is prevented with our specific fault tolerant scheduling, our accelerator is more
fault tolerant than the WS architecture and the loss of accuracy is negligible with up to 4 faulty
PEs. 1

Network All but last Last FC Mozart+

FC Layer Layer Overhead

LeNet-5 83 1 1.2%

VGG 55 616 63 0.1%

Table 4.4: Number of Loads of a 16x16 OS PE Array for Each Network
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Figure 4.8: Fault Tolerance of LeNet-5 with Mozart+ Technique

4.3.4 Efficiency of Dropout During Training

Dropout during training can be used to improve the robustness during inference. We trained
SqueezeNet with 5% dropout on all layers, whereas typically dropout is only applied to the last
layers. The training time increased (≈ 3×), but the resulting configuration provided additional
fault tolerance.

Fig. 4.9 shows results comparing SqueezeNet trained with and without random dropout on
every layers when executed with MOZART+ with an increasing number of faulty PEs whose
outputs are masked to zero. With faults in four PEs, due to the new training, the accuracy increased
from 67% to 72%. This modified training was performed with no knowledge of the faults. This
is different from [Zhang2019], where the re-training was done based on specific position of the
faults.
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Figure 4.9: SqueezeNet Average Accuracy with Faulty PEs when Trained with Dropout

1We only simulated up to 4 faulty PEs to be consistent with the other simulations in this chapter, but as our results
with the WS architecture are consistent with [Zhang2019], our accelerators is expected to be more robust to higher rate
of faulty PEs. Further experiments are required to confirm this estimate.
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4.3.5 Scalability of MOZART+ on Bigger PE Array

Up to now, data has been presented for a 256 PE (16x16) array. We tested the MOZART+ archi-
tecture for different PE array sizes and the results are shown in Figure 4.10. These results concern
SqueezeNet with a single SA fault on a single PE. As expected, when the array size increases, the
impact of a single faulty PE is reduced and become important for smaller size of arrays. In all
cases, MOZART+ provides a significant improvement and it is clear that for even larger arrays,
taking a single PE off-line for testing is very much a realistic solution which has negligible impact
on accuracy.
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Figure 4.10: SqueezeNet Average Accuracy for Varying Array Sizes (1 SA fault on 1 PE)

4.4 Comparison with the State of the Art

The MOZART+ architecture was inspired by ideas already present in the scientific literature,
as well as the results of the fault-injection study presented in chapter 3.

The fault tolerance of systolic arrays for general level computing has been extensively studied
in the literature [Kim1989]. For general purpose computing, the requirement is that the computa-
tional result must be exactly correct (bit accurate), but for DNNs, since their prediction are never
perfect, this constraint can be relaxed.

The fault tolerant training of MOZART+ was inspired by existing work on training for fault
tolerance as presented in Sec.2.3.2. Often, fault tolerant training techniques require knowledge of
the actual faults. Instead, our training does not rely on specific faults knowledge and thus is close
to the technique proposed in [Solovyev2019]. Our contribution is that we can detect the highly
impacting SA1 faults and remove them by masking a PE’s output to zero.

The work of Zhang [Zhang2019] is also similar to that presented in this chapter. They propose
fault mitigation for a WS accelerator, using a multiplexer to mask the output of the erroneous
multiplier of a PE and a fault tolerant training technique. Their results, but have certain limitations.
First, they have chosen a WS Architecture, which we have shown is more likely to propagate
faults. Also, their proposed training techniques requires knowledge of the hardware faults prior to
training. Finally, they do not propose test technique to detect faults and only study LeNet-5, which
is not representative of modern DNNs. For these reasons, we believe that MOZART+ represents
an improvement over the work of [Zhang2019].
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4.5 Future Work

We proposed a systolic DNN accelerator specifically designed for robustness in which PEs are
able to perform functional on-line test to identify and mitigate permanent arithmetic errors and
achieve this with a limited overhead. However, this is not sufficient to meet the safety standards,
that require a system to be globally robust to faults [ISO-26262.18]. Our testing and fault miti-
gation strategy focuses on errors in the data-path of the PEs. In future works, an improvement of
MOZART+ that would be able to also detect faults in the communication channels between PEs or
in buffers is considered. We note that there already exist contributions on these two domains [Mo-
taman2019].

Similarly, this chapter only focuses on arithmetic faults, but the memories in accelerators
are subject to faults. With a small overhead, memories can be protected using traditional Error
Correcting Codes and in the next chapter, we present an innovative technique that can mitigate the
impact of faults in memories with zero area zero overhead.

4.6 Conclusions of the Design of MOZART+

In this chapter, we presented MOZART+, a fault-tolerant systolic DNN architecture integrat-
ing fast on-line test and masking of faulty PEs. It also integrates optimizations to handle faults in
the output neurons and a modified training technique. Almost all the impacting SA1 faults can be
detected in the time to process a single image, and we showed that the reduction of accuracy in
the presence of faulty PEs is gradual. This is achieved with a hardware overhead of approximately
8%.

One limitation of MOZART+ is that this architecture is dedicated to the detection and miti-
gation of permanents faults. This highlight the needs to protect the memory of DNNs and guided
us in the design of an adapted fault detection and mitigation technique presented in the following
chapter.
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5
Techniques for Protecting the Weights of DNNs

In the previous chapter, we focused on fault tolerance techniques
for the data-path. In this one, we propose a technique to protect the
weight storage memory, another important component of any DNN
accelerator. We notice that the numerical format used for represent-
ing weights and activations plays a key role in the computational
efficiency and robustness of Convolutional Neural Network (CNN)s.
Comparison of the robustness of state-of-the art Convolutional Neu-
ral Network (CNN)s implemented with 8-bit integer, Brain-Float 16
and 32-bit floating point formats is performed. We also introduce
an error detection method called Opportunistic Parity (OP), which
alters the Least Significant Bit (LSB) of certain weights of a given
Convolutional Neural Network (CNN) to ensure that all the weights
have the same parity code. This technique can detect an odd number
of errors in the weights. By setting the faulty weight to zero, the ro-
bustness of floating point based weights to bit-flips can be improved
by up to three orders of magnitude.
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5.1. Context

Convolutional Neural Network (CNN)s are increasingly used in applications where safety
requirements must be respected, notably in autonomous driving systems. The implementation
of these networks on hardware platforms must thus be tolerant of faults of any kind, including
soft errors. As has been presented in Sec.2.2.1, the data type plays a key-role in the robustness
of DNNs. While quantized DNNs are tolerant to a large number of bit-flips [Schorn2019], there
are cases where a single bit-flip can cause the accuracy of a floating-point based DNN to drop
dramatically [Malekzadeh2021]. Meanwhile, as the quantization process may induce a loss of
accuracy that could be problematic for some applications, then floating point formats still remain
important. In this chapter, we propose Opportunistic Parity (OP), a zero-overhead error detection
technique combined with an error masking strategy.

Several authors have shown that CNNs can tolerate a significant number of errors in the
Least Significant Bit (LSB)s of their weights [Li2017] Based on this observation, we propose
a hardware-based technique to detect and mask errors on the weights of CNNs. The concept is to
use some of the least significant bits in the weights in order to introduce a simple parity code to
detect single (or any odd number) of bit-flips. If the parity code detects an error, the erroneous
weights are replaced with with zero.

In CNNs, it is known that masking an erroneous weight or activation value to zero has a
minimal impact on the classification accuracy [Zhang2018b, Reagen2016a]. Therefore, when a
parity signals a detected error, the impact of the error is minimized by replacing the data with
zero.

This technique was tested on three CNNs with different numerical formats. Our results demon-
strate that the OP technique improves the robustness of floating-point-based CNNs by one to three
orders of magnitude, with zero area storage overhead.

This chapter contains two main contributions. First, we perform a study of the robustness of
three modern CNNs including their execution using the recent bf16 numerical format1. Secondly,
we propose a new fault mitigation technique, OP, that reduces the impact of bit errors in the
weights. Tolerance to bit flips on the weights is important in high-reliability applications, where
safety is a concern. Indeed, by making a CNN resilient to weight errors, we open the path to a
wider acceptation of weight storage using emerging, lower-energy memory technologies, which
are more prone to bit errors due to defects and variations.

This chapter is organized as follows : Sec.5.1 covers relevant background material. Sec.5.2
presents the OP, our zero overhead method to mitigate faults in weights. Sec.5.3 presents our
experimental results that demonstrate the efficiency of our technique. Sec.5.4 compares our tech-
nique with the scientific literature. Sec.5.5 proposes ideas to improve the OP. Finally, Sec.5.6
concludes this chapter.

5.1 Context

5.1.1 Case Study

This subsection presents the tested CNNs and data types.
To improve the adoption of DNNs in embedded systems, the reduction of their power con-

sumption and memory footprint is currently an active field of research. Three main avenues are
being explored :

• 1) Optimization of the network topology, which has resulted in the development of networks
such as MobileNet or SqueezeNet which reach state-of-the-art performance while reducing
the number of operations and weights.

1 [Li2017], studies the IEEE-754 16-bit floating point format, which is slightly different
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Figure 5.1: Three Numerical Formats used for CNN Weight Values

• 2) The development of dedicated hardware accelerators, such as Eyeriss [Chen2016] and
Shidiannao [Du2015], which are optimized for the evaluation of neural networks.

• 3) The usage of custom data-types, like reduced precision floating-point or integer that re-
duce memory bandwidth and storage requirements. brain float 16 (bf16) is a recent 16-bit
floating-point numeric format used in new Intel Xeon processors [Intel]. It has the same
exponent width as a standard IEEE 754 single precision float. The length of the mantissa
is simply reduced to 7 bits. When used in CNN accelerators, the multiply operations are
performed using bf16, however, the sum is accumulated in a standard 32 bits floating point
(fp32) format to limit the rounding error, as described in [Kalamkar2019,Micikevicius2018].
In [Tiwari2022], it was shown that when using bf16, the inference process performs 2.21×
and 4.19× better in terms of area and power compared to 32 bits floating point (fp32) on
equivalent systolic array accelerator. These numerical formats are illustrated in Fig. 5.1 and
considered in our study.

We consider three CNNs : ResNet50 [He2016], SqueezeNetV1 [Iandola2016] and MobileNetV2
[Howard2017]. All three networks are tested with the ImageNet data-set. ResNet50 was chosen
as an example of high performance network. It achieves state-of-the-art performance using deep
residual layers, which consist of shortcut connections between layers to address the problem of a
vanishing gradient during training.

SqueezeNetV1 and MobileNetV2 were chosen as examples of optimized CNNs. SqueezeNetV1
is fully convolutional and uses fire modules, which are composed of squeeze layers with a 1x1 con-
volution followed by an expand layer with 3x3 convolutions. It achieves low latency and has the
lowest number of weights of the three networks. MobileNetV2 is based on an inverted residual
structure with residual connections between bottleneck layers.

For each of the tested networks, we used publicly available DNN models from [ONNX]. In
fact, the weights were converted to bf16 format by simply rounding the mantissa to 7 bits. The
conversion to int-8 format was performed by the N2D2 platform [Bichler2017] using the method-
ology described in [Nagel2019].

The classification accuracy is slightly lower when the numerical format for the weights is re-
duced. In Tab. 5.1, we present the accuracy of the networks, in the absence of faults, as well the
network resources requirements in terms of number of Multiply And Accumulate (MAC) oper-
ations and the number of stored weights. Compared to the compressed networks, ResNet50 is
the most accurate at the cost of significantly more resources usages as it relies on one order of
magnitude more Multiply And Accumulate and weights. The fp32 is the most accurate numerical
format. The compression of the network slightly reduces the accuracy of the Deep Neural Net-
work (DNN) from 0 to 0.36 percentage points for bf16 and from 2.21 to 3.82 percentage points
for int8 quantization.

80



5.2. Opportunistic Parity

Network
Num. Num. Numerical Top-5

MACs Weights Format Accuracy

fp32 91.90%

ResNet50 3.9 G 25.5 M bf16 91.83%

int8 88.08%

fp32 80.35%

SqueezeNetV1 352 M 1.2 M bf16 80.35%

int8 78.74%

fp32 89.91%

MobileNetV2 300 M 3.4 M bf16 89.55%

int8 86.39%

Table 5.1: Characteristics and Accuracy of Selected Networks for ImageNet Data-set

5.1.2 Fault Model

The memory of DNNs could be subject to soft-errors induced by transient fault but also of timing
errors or retention errors due to the memory being operated at an extremely low voltage or in
other worst case corners [Kim2018]. For our experiments, we chose a bit-flip fault model for the
weights, and we evaluate the accuracy of the network, as a function of the bit error rate in the
memory used to store weights.

5.2 Opportunistic Parity

Numerous well known techniques exist for protecting weight storage memories from bit-flips,
including error detection and correction codes with different detection and correction capabilities.
In all standard approaches, additional check bits are added to the initial data, in order to provide
protection or error correction. Unlike these approaches, we propose to directly modify the stored
weights to encode a parity code directly in the data without any additional check bits overhead.
In CNN applications, the least-significant bits of the weights are not critical [Li2017]. Indeed,
flipping a small number of these LSBs, leads to a very small loss in accuracy of the network.
The Fig. 5.2 illustrates the OP techniques. The left matrix represents a set of 8-bits weights stored
in memory before the OP is applied. Each gray case represents a bit that store 1, and each white
case represents a bit that store 0. The OP compute the parity code of each weight. The OP switches
the logic state of the LSBs of each weight that has an odd parity code.
The right matrix represents the same set of weights once the OP has been applied. As a results, all
the weights now have an even number of bit at 1. Since the used parity code can only detect errors
but does not contain enough information to deduct which bit is faulty, OP technique is not able to
correct only the single faulty bit.

This technique requires no additional storage for the weights, as we use the LSBs of the
weights in order for them to match a given parity code. Indeed, we propose a simple parity
technique, rather than a stronger code, as a stronger code would require modifying more bits of
the weights, or adding additional ones, hence increasing the overhead.
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Figure 5.2: Opportunistic Parity : Altering LSB to Obtain Even Parity

5.2.1 Zero Masking Technique

When a parity error is detected, the weight values can be replaced with fault-free values from
the reliable memory. If the weight restoration is not available, we propose to mask the erroneous
weight. Many authors [Zhang2018b,Reagen2016a] have shown that in CNNs, masking erroneous
values to zero is an effective fault mitigation technique, as presented in Sec.2.3.2. We chose this
error masking methods as it prevents error scenarios where one of the Most Significant Bit (MSB)s
gets flipped to one.

The Fig. 5.3 illustrate the OP techniques combined with this error mitigation methods. The left
matrix represents a set of 8-bits weights stored in memory on which OP has been applied before a
fault occurred in one of the bits of the weight e. Each gray case represents 1, and each white case
represents 0. The parity code of each weight is computed, and an error is detected on the weight e
since it has an odd number of bits set at one.

The right matrix represents the same set of weights, once the detected erroneous weights have
been set to zero. Since the used parity code can only detect errors but does not contain enough
information to deduct which bit is faulty, we are not able to correct only the single faulty bit.
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Figure 5.3: Opportunistic Parity : Masking Detected Faults with Zero

At the system level, the parity error can be tested to trigger higher level safety mechanisms. In
this case, the proposed zero masking technique is only used to minimize the impact of the fault,
until the system is able to reach a safe state.
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5.2. Opportunistic Parity

5.2.2 Bit-Width of Opportunistic Parity

As presented, the LSB of every weights could be potentially flipped, which would have an impact
on accuracy. However, we note that the storage word size of most modern memories is quite large
(at least 64 to 256 bits). Therefore Multiple (N) weights are stored in one memory word. We can
cover the entire memory word with a single parity bit, thus only the LSB of one of the N weight
values needs to be flipped. This reduces the number of perturbations on the weights, but decreases
the fault detection granularity from one to N weights.

Different techniques could be used in order to select which of the N weight values to modify.
One strategy would be to pick the weight with the largest absolute value, to minimize the relative
error. Another strategy consists of picking the weight which is the least critical, but this would
imply a costly analysis of the criticality of the weights. In the interest of simplicity, we arbitrarily
pick the LSB of the last weight in the memory word.

5.2.3 Methodology of analysis

We performed a series of fault injection campaigns to analyze the efficiency of OP technique.
We are working with the ImageNet dataset, which is composed of 1000 labels. The trends of

the results are similar for top-1 and top-5 accuracy. In the interests of simplicity, we have chosen
to report only top-5 accuracy.

Due to the fact that the classification rate in the absence of faults is not 100%, the uncertainty
in the fault free accuracy varies with the batch size. We set a Nbatch_size of 400 images so the
fault-free accuracy batch is in the range Average_Accuracy±5point with a confidence interval of
98.518% for SqueezeNet, and more than 99.9% for MobileNetV2 and ResNet50. Consequently,
if a batch has an accuracy under this threshold (rounded at the average accuracy -5 percentage
points for all the tested networks), we can safely conclude that the simulated fault has resulted in
an accuracy loss.

To visually inspect the effect of batch size on the worst case batch accuracy, the minimum
and maximum accuracies were measured for 1000 batches of varying size as shown in Fig. 5.4.
Although a batch size of 50 appears sufficient to ensure a variation of under 5%, we have chosen a
larger batch size of 400. This was done, in order to ensure the uncertainty in the measured results,
is well below 5%, for all three networks and numerical formats.
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Figure 5.4: Range of Accuracy for a given Batch Size for MobileNetV2 using fp32
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5.2.4 Methodology of fault injection

The algorithm for fault injection is presented in Alg. 3.
Each fault injection experiment consists of applying Nbatch_size images and computing the ac-

curacy for that batch.
Each of the data points we present in the following sections is the average accuracy over Nexp=

20 fault injection experiments.
Nexp are executed for each of the following variables :

• Network : ResNet50, MobileNetV2, SqueezeNet.

• Numerical Format : fp32,bf16,8 bits integer numeric format (int8).

• Bit Error Rate : 1e-9 to 9e-1

• Fault Mitigation Strategy : None, OP over individual weights, 64 bits or 256 bits words.

Algorithm 3 Fault Injection Procedure for Analysis of OP

for all Net in (ResNet50, MobileNetV2, SqueezeNetV1) do
for all Numerical_format in (fp32, bf16, int8) do

for all OP in (None, Weight, 64 bits, 256 bits) do
for BER from 1e-9 to 9e-1 do

for i from 1 to Nexp do
N f aults← (num_weights∗BER)
Faults← random(weights,N f aults)
Inject Faults in weights
for j from 1 to Nbatchsize do

Classify Image j

end for
Record average accuracy for batch
Clear Faults in weights

end for
Evaluate average accuracy for Nexp batches

end for
end for

end for
end for

Classification Methodology

When reporting the impact of bit-flips on the weights, we have adopted the maximum Bit Error
Rate with Zero Accuracy Drop (BERZAD) metric proposed by Sabbagh [Sabbagh2019]. BERZAD
is defined as the maximum bit-error rate (number of erroneous weight bits divided by the total
number of weight bits). A higher BERZAD value indicates that the network is more robust.

5.3 Experimental Results

In this section we present the results of the fault injection experiments. First, we present an
analysis of the sensitivity of the weights, per erroneous bit position. This first experiment is done
to validate our approach of inverting the LSBs. Secondly we present the results of experiments
where faults are injected in the weights, both with and without the OP technique.
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5.3. Experimental Results

5.3.1 Analysis of DNNs Sensitivity by Bit Position

The sensitivity of all the bit positions in the weights was studied for the three numerical formats
(fp32, bf16 and int8) for the three networks and the results are shown in Fig. 5.5.

Consistent with previous studies [Li2017], we see that exponent bits are more sensitive than
mantissa bits. Also, for all the formats, including the int8 format, the LSB can withstand a
BERZAD of nearly 10e-1. This observation confirms our hypothesis and justifies the proposed
OP protecton technique.

We note that for both floating point numerical formats, there are cases where a single bit flip
in the MSB of the exponent causes the accuracy to drop to zero. Thus, the BERZAD is zero, and
hence off the graph (shown with a red arrow, due to the log scale). This is not the case for the int8
quantized format, where a small number of bit flips in the MSBs does not produce an accuracy
drop over 5%.

Amongst the three networks, we observe that there is a signficant variation in their tolerance
to bit-flips of the exponent. SqueezenetV1 is more tolerant to these faults and MobileNetV2 and
ResNet50 are more sensitive. One possible explanation is that MobileNetV2 and ResNet50 both
have residual connections whereas SqueezeNetV1 does not. It is worth noting that MobileNetV2
and SqueezeNetV1 have a similar number of weights, so the number of weights alone does not
explain this difference. It is clear that the structure of the network plays a key role in its sensitivity
to weight errors.
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5.3.2 Analysis of the Opportunistic Parity Technique

As discussed previously, OP can be applied based on different memory word sizes. We have
considered three cases : (i) parity is adjusted for each weight individually, (ii) parity is adjusted
for 64-bit words, (iii) parity is adjusted for 256-bit words. For comparison, we also present the
classification accuracy in the absence of fault mitigation. These results are summarized in Tab. 5.2.

In all cases, with both floating point formats, OP greatly increases the BERZAD, indicating
the network is more robust. For example, with MobileNetV2, with the fp32 format, the BERZAD
increases from 1e-8 to 7e-6, due to the OP at individual word level. Note that the impact of the
weight modifications on the fault free classification accuracy is negligible.

For the case where the int8 numeric format is used, when OP is applied at the 8-bit word
granularity, there is a noticeable drop in fault-free accuracy (for example from 88.1% to 86.5% for
ResNet50). However, it does provide a nearly 2.5x (4e-5 to 1e-4) increase in BERZAD. Indeed,
when there is a parity error, only a single weight value is zeroed out, which has a minor impact
on the accuracy. Still, for the same int8 format, when OP is applied over groups of N=8 or N=32
weights (64, 256 bit words, respectively), there is virtually no drop in fault free accuracy, as very
few bits are perturbed. But, in these cases, the BERZAD is actually lower (worse), than with no
protection, since when there is a parity error, N weights get zeroed out and this has a real impact on
the classification accuracy. Considering only the BERZAD metric, the benefits of OP are limited
for the int8 format.

One shortcoming with the BERZAD metric, is that it provides no insights into the behaviour
of the network, after the initial loss of accuracy. In Fig. 5.6, we plot the accuracy, as a function of
the bit error rates. In all these graphs, we can see how the accuracy degrades with increasing bit
error rate.

The black curves show the behaviour in the absence of any protection, and we see that for the
floating point formats, the drop is quite sudden. This is due to the fact that, as soon as one, or a few,
exponent bits are modified, the accuracy drops drastically. However, with OP, we prevent these
extreme cases, and thus typically gain two orders of magnitude in BERZAD, before the accuracy
drops off. In other words, using OP with floating point weights, it is possible to obtain the same
fault tolerance (BERZAD) as a network using quantized weights stored in an int8 format.

For the int8 format, the results are mixed. For example, with ResNet50, Fig. 5.6c, with OP
at the 8-bit word level (blue trace), we see that the accuracy starts to drop at a higher bit-error
rate, and that the drop in accuracy is more gradual. For SqueezenetV1, Fig. 5.6i, OP at the word
level, also provides a slight benefit. Unfortunately, for MobileNetV2, Fig. 5.6f, OP, even at the
word level, degrades the fault tolerance. To summarize, the OP technique is highly effective at
protecting weights stored in floating point formats. For 8-bit integer weights, in some cases, it can
provide an improvement, but the results depend on the type of network.

5.4 Comparison with the State of the Art

The existing work in the literature that proposes the closest methodology to the OP technique
is presented in [Guan2019]. In this article, similar to our idea, the authors propose to map an
Error Correction Code (ECC) in the weights of a network to improve the robustness of the model
with virtually zero overhead. The difference is that these authors only consider quantized DNNs.
They propose to restrict the training and the quantization process to alter the weight distribution
to increase the number of unused MSBs after the quantization. These unused bits are then used
to store an ECC. The strengh of this article is that they can insert an ECC in the weight of a
quantized DNN with no impact on the accuracy. However, we believe that their methodology has
a hidden drawback, as they constrain 7 of 8 weights values to fit in 7 bits range, which restrict the
quantization and induce a 12.28% overhead (bits used to store the ECC)
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5.5. Suggested Improvements

Network
Num. Number of No-Fault

BERZAD
Format Masked Bits Accuracy

MobileNet

fp32

None 89.9 1e-8
32 89.9 7e-6
64 89.9 5e-6

256 89.9 8e-7

bf16

None 89.6 0
16 89.3 2e-6
64 89.6 5e-7

256 89.6 9e-7

int8

None 86.4 2e-5
8 79.0 9e-6
64 85.8 7e-6

256 86.1 6e-8

SqueezeNetV1

fp32

None 80.3 9e-8
32 80.6 4e-5
64 80.5 4e-5

256 80.3 4e-6

bf16

None 80.6 7e-8
16 80.6 4e-5
64 80.6 3e-5

256 80.4 2e-6

int8

None 78.7 1e-4
8 77.9 2e-4
64 78.7 3e-5

256 78.8 8e-6

ResNet50

fp32

None 91.5 2e-9
32 91.9 8e-6
64 91.9 7e-6

256 91.5 2e-6

bf16

None 91.7 0
16 91.8 7e-6
64 91.7 3e-6

256 91.8 4e-6

int8

None 88.1 4e-5
8 86.5 1e-4
64 88.3 1e-5

256 88.2 6e-6

Table 5.2: Characteristics and Accuracy of Opportunistic Parity

5.5 Suggested Improvements

The proposed methodology in this chapter considers parity-bit to detect bit-flips. This tech-
nique only detect an odd number of bit-flips, and once a fault is detected the whole word or range
of words are masked.

This technique could be improved in two ways :
• 1) As seen in Fig.5.5, LSBs of floating-point based DNNs are robust to a large number of

faults. While we only altered the LSB to code a parity error check, we could have used more
bits to use a stronger ECC.

• 2) As seen in Fig.5.6, OP results in a loss of accuracy in int8 quantized DNNs. We could
alter the quantization or the training process so that the DNN adapts to the weight modifi-
cations induced by OP.
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Figure 5.6: Impact of Opportunistic Parity on Accuracy

88



5.6. Conclusion of the Opportunistic Parity

5.6 Conclusion of the Opportunistic Parity

In this chapter, we have presented a fault injection study targetting the weights for three CNN
architectures. Our results show that the sensitivity of modern, highly compressed networks, such
as SqueezeNetV1 and MobileNetV2 to bit-flips in the weights, varies significantly. We believe the
topology and the presence of residual layers plays a role. We also studied three numerical formats
for the weights, including the bf16 format. This numerical format is quite sensitive to bit-flips, as
the exponent occupies a large fraction of the total bits.

We proposed a simple technique, called opportunistic parity, which can be used to protect the
memory used for weight storage for a CNN accelerator and requiring zero storage overhead. In
the case of weights stored in a floating point format, including bf16, it provides an improvement
in bit error rate tolerance between 1-3 orders of magnitude with practically no loss in fault-free
accuracy. For int8 formats, the technique can provide approximately a 5x improvement in bit error
rate tolerance, with a minor loss in fault free accuracy, however, the results depend on the type of
network.
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6
Symptom Based Error Detection

Semantic segmentation of images is essential for autonomous driv-
ing and modern DNNs now achieve high accuracy. In this chap-
ter, we present an analysis of the effect of faults in Google’s
DeepLabV3+ network processing an industrial data-set. A new
symptom-based fault detection algorithm is proposed and show to
detect >99% of critical faults with zero false positives and a com-
pute overhead of 0.2%. Furthermore, these faults can be masked,
virtually eliminating all critical errors.
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6.1. Context

For many years, Deep Neural Network (DNN)s have been used for image classification and
today they achieve better accuracy than humans on well-known data-sets such as ImageNet. Se-
mantic segmentation [Everingham2009] is a more difficult task where the goal is to assign labels
to every pixels in an image. In an autonomous vehicle, semantic segmentation enables the system
to identify the objects in the environment (pedestrians, vehicles, road signs, road) with pixel-level
accuracy.

Advanced Driver Assistance Systems are described in terms of automation levels [Tax2021]
and systems designed for the highest levels of automation must comply with ISO-26262 Au-
tomotive Safety Integrity Level D [ISO-26262.18], requiring a high-level of fault-detection and
reliability.

Another approach to detect hardware faults, called Syndrome-Based Error Detection (SBED),
is based on analyzing the aggregate behavior of the values, when the network is performing infer-
ence, and looking for symptoms that suggest abnormal behavior induced by a fault. Li [Li2017]
proposed a technique based on detecting excessively large activation values and tested it on three
smaller networks for image classification. Li’s approach considered a single statistic (MAXimum
(MAX)) and suffered from a high false positive rate (reporting of a fault, when indeed there was
no fault). To improve on this, we propose a new SBED that considers four different statistics
(MINimum (MIN),MAX,AVeraGe (AVG),STandard Deviation (STD)) and uses a methodology to
set detection thresholds so that false positives can be eliminated.

This chapter provides the following contributions. The work presented in this chapter is one of
the first studies of the fault tolerance of DNNs used for semantic segmentation. We show how an
existing taxonomy [Corneliou2021] for classifying the impact of faults can be extended to seman-
tic segmentation. We analyse the fault tolerance of the state-of-the-art DeepLabV3+ [Chen2018]
network applied to an industrial autonomous driving data-set [Yogamani2019]. We present a new
SBED technique, using multiple statistics, which has close to 100% detection of critical errors and
no false positives using our data-set and fault-models. Finally, we demonstrate that it is possible
to mask the critical faults and virtually prevent critical error cases.

This chapter is organized as follows : Sec.6.1 presents background material. Sec.6.2 presents
our fault injection methodology to assess the robustness of DeepLabV3. Sec.6.3 presents our tech-
nique based on symptoms to detect the propagation of faults. Sec.6.4 presents our fault mitigation
technique. Sec.6.5 compares our technique with the related works. Sec.6.6 proposes ideas to
improve this fault mitigation technique. Finally, Sec.6.7 concludes this chapter.

6.1 Context

6.1.1 Semantic Segmentation and WoodScape

For many years, DNNs have been used to perform image classification, and many researchers
have studied the well-known ImageNet [Krizhevsky2012] data-set. More recently, the computer
vision community has shifted its focus to more difficult tasks such as object detection and semantic
segmentation.

The latter (Image segmentation) consists of labeling each pixel in an image according to a set
of known classes, while tagging the remaining pixels as background. Two of the major hurdles
in image segmentation are to recognize objects at a range of different scales and to achieve a
high output feature resolution. DeepLabV3+ employs an encoder that uses of a series of atrous
convolutions with different rates (a technique known as Atrous Spatial Pyramid Pooling) to address
these issues and, with a relatively simple decoder, it achieves high accuracy and spatial resolution.
We have used a version of DeepLabV3+ based on ResNet-101 [He2015] as the backbone and
Tab. 6.1 summarizes the key network characteristics.
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Layers
Numeric

Weights Neurons FLOPs
Input Output

Format Image Image

109 FP32 58.6M 107M 309 G 640x483 160x121

Table 6.1: Characteristics of DeepLabV3+

To come closer to real industrial problem, we use the Woodscape [Yogamani2019] dataset,
a publicly available multi-camera fish-eye data-set for autonomous driving including annotations
for semantic segmentation. With four cameras, the fish-eye perspective provides a 360° view,
motivating our selection of this data-set containing 6587 training images and 1647 test images.

6.1.2 Fault Model

The final reliability of the system depends on the DNN as well as the processing unit (Graph-
ics Processing Unit (GPU), Field-Programmable Gate Array, Tensor Processing Unit, as seen in
chapter.4). In a fault-tolerance study, the choice of a fault model is important. Common fault
models used previously include faults in external memories [Nguyen2019], on-chip Static Ran-
dom Access Memorys [Kim2018], arithmetic units [Mahdiani2012] as seen in chapter3 and 4,
interconnects [Motaman2019] or abstraction at the level of DNN weights as proxy of memory
errors, as seen in chapter 5.

The focus of this chapter is on the new semantic segmentation application, thus, to remain
independent of a specific hardware platform, we have chosen one fault model on two targets : bit-
flips occurring in the weights (Weight Fault Model (WFM), similar to the study seen in chapter 5)
and in the activations (Activation Fault Model (AFM)). The bit-flips in the weights represent errors
in external memory or on-chip RAMs, while the latter is a proxy for logic errors in the arithmetic
units. These errors are injected after the batch-normalization but prior to the ReLU activation
function as shown in Fig. 6.1. During inference, batch normalization is simply a linear transform
of activations and hence can be merged with the previous convolution [Ioffe2015]. Thus motivate
our choice to inject faults after the batch-normalization.

Image
in

L1 L2
 

L3 L107 L108L106

Conv
Batch
Norm.

ReLU

 

Image
out

Weights

Activations

WFM
AFM

Figure 6.1: Faults Model for Weights and Activations
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6.1.3 Error Taxonomy

Previous authors have classified the impact of faults on micro-processors and in [Weaver2004]
the authors introduced the notions of Silent Data Corruption (SDC) and Detected Unrecoverable
Error, as seen in Sec.2.1. Recently, this has been extended to DNNs performing image classifica-
tion [Corneliou2021]. In image segmentation, the output is a full image, not a single class, thus
this approach can not directly be applied, therefore, we propose a modified taxonomy shown in
Fig. 6.2.

Fault

Masked Error Crash

Detected SDC

No impact
SDC

Tolerable
SDC

Critical
SDC

No bit-level
differences

 

Pixel
labels

identical

< 1% pixels
modified AND

no classes
vanish or
appear 

>= 1% pixels
modified OR

classes
vanish or
appear 

 

Figure 6.2: Taxonomy of Error Outcomes for Semantic Segmentation

In some cases, a fault is completely masked and the final output of the network is identical at
bit level with the fault-free execution. This case is called masked and shown in blue. If a fault is not
detected and the output is modified, then an SDC has occurred. If the change in the floating-point
output values is minor to the point that none of the labels of the pixels is modified, then we denote
this as a No Impact SDC, shown in green. If the labels of only a small number of pixels (less than
1%) are modified and no class appears or disappears as a result of the fault, then we classify the
outcome as a tolerable SDC, shown in yellow. Finally, if more than 1% of the pixels are modified,
or a class vanishes or appears, we say it is a critical SDC, shown in red. Our distinction between
tolerable SDCs and critical SDCs is somewhat subjective. However, visually it is difficult for a
human to observe the impact of the tolerable SDCs. Moreover if no class appears or disappears, the
downstream algorithms are unlikely to make a different decision. Image segmentation algorithms
do not achieve 100% accuracy, so the overall system must be resilient against minor errors.

In Tab. 6.2 we show examples of two different images where two different faults were injected.
In the first row, two different activation faults were injected. One produced a tolerable SDC and
the other a critical SDC. It is remarkable to see how a single fault in the activations can produce an
output image that is massively corrupted. Although DNNs have a certain inherent fault tolerance,
there do exist minor faults that can cause serious errors, as seen in Sec.2.2.1. In the second row,
we shown an example of two different faults in the weights (WFM). These examples show the
importance of analyzing the impact of faults and preventing the critical SDCs going undetected.
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Original Image Segmented Image Tolerable SDC Critical SDC

AFM

WFM

Table 6.2: Examples of Tolerable and Critical SDCs

6.2 Fault Injection Methodology

Fault were injected into randomly selected images from the test data-set, with the fault model
described in Sec.6.1.2 (AFM and WFM). We performed two fault injections campaign, one with
single bit-flip and one with multiple bit-flips (1 to 10 bit-flips, with a normal distribution centered
at 5). Our experiments were performed using PyTorch v1.9 and the effects on the segmented
images were classified using the taxonomy described in the Sec.6.1.3.

6.2.1 Impact of Single Bit-Flip

The single-bit fault injection campaign was performed with 8,000 randomly selected single-bit
faults. In Fig. 6.3 we show an example of a single bit-flip in an activation value that occurred
during our experiments. In this example, the bit-flip impacts a bit in the exponent resulting in an
extremely large erroneous activation value. As seen in the figure, this single erroneous activation
value is sufficient to completely corrupt the segmented image, resulting in a critical SDC.

 
Activation
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Figure 6.3: Impact of Single Bit-flip in MSB of an Activation Resulting in a Critical SDC

The aggregate results of the fault injection study are presented in Fig. 6.4a for faults in the
weights and in Fig. 6.4b for faults in the activations. In the activations, nearly 80% of the faults
are fully masked, whereas in the weights only 23% are fully masked. This can be explained as
each weight is used repeatedly. Even though the weights are used multiple times, a large fraction
(57.8%) of the faults result in No Impact SDCs. The rate of critical faults in both fault models is
similar (2.1% for activations and 3.7% for weights). We also note that Tolerable SDCs are rarely
produced (1.3%) as a result of a single bit flip in an activation, however, they are more common
with weight faults (15.5%), which is again explainable by the re-use of the weights.
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Masked fault (23.0%)

No Impact SDC (57.8%)

Tolerable SDC (15.5%)

Critical SDC (3.7%)

(a) Fault on Weights

Masked fault (79.6%)

No Impact SDC (17.0%)

Tolerable SDC (1.3%)
Critical SDC (2.1%)

(b) Fault on Activations

Figure 6.4: Aggregate Impact of Single Bit Faults

Bit Position Analysis

When working with data in a FP32 numeric format (see Fig. 6.6), upsets in the exponent are
expected to be more critical than those in the mantissa. In Fig. 6.5a and Fig. 6.5b we plot the
impact of faults in each bit position, in the weights and in the activations respectively. As expected,
the results of faults in the 16 Least Significant Bit (LSB)s of the mantissa, are either masked or
a No Impact SDC outcomes. For weight faults, upsets in the Most Significant Bit (MSB)s of the
mantissa, start to produce Tolerable SDCs.
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Figure 6.5: Impact of Single Bit Faults by Bit Position
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Figure 6.6: IEEE-754 32 bit floating point

It is interesting to note that all the Critical SDCs are the result of bit-flips in the exponent
bits. Indeed, for the activations, it is only the MSBs of the exponent (bit 30) that results in Crit-
ical SDCs. From these observations, we see that, with the exception of a few exponent bits, the
application is actually highly tolerant of bit-flips.

Analysis by Bit Value

In the literature [Zhang2018b, Reagen2016b], it has been shown that when values (weights or
activations) in a DNN are replaced with zeroes, the impact on the classification accuracy is small.
To confirm this result for this application we separately analyzed the impact of 1→ 0 and 0→ 1
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faults, in each bit position, for both the weights and the activations. The results are shown in
Fig. 6.7a to Fig. 6.8b. We note that in some figures, for certain bit positions (28-30), no bars are
shown. This is because across the full data-set, there was never a case when the bit took on the
initial value of 0 or 1, as required for the bit-flip.
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Figure 6.7: Impact of Single Bit 1→ 0 Faults
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Figure 6.8: Impact of Single Bit 0→ 1 Faults

The first thing we notice is that all the Critical SDCs are the result of 0→ 1 bit-flips. Con-
versely, the 1→ 0 bit-flips are much less impacting and even the exponent is tolerant. Overall,
nearly 20% of the 0→ 1 bit-flips are fully masked in the weights and close to 80% in the activa-
tions.

Analysis by Layer

We then analyzed the impact of faults in each layer of the network. For this analysis, we injected
3000 single bit faults in either the weights (WFM) or activations (AFM), for each layer. The
results are shown in Fig. 6.9a and Fig. 6.9b. The percentage of critical errors (red) is small, for
all layers and activation faults (AFM in Fig. 6.9b) are much more likely to be masked (taller blue
bars). For the encoder layers (ResNet backbone from layer 1 to 101), we see a pattern that repeats
every three layers that corresponds to the Residual Bottlenecks. For the WFM (Fig. 6.9a), we see
that the initial layers, which extract low level features appear less sensitive (large blue bars).
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Figure 6.9: Impact of Single Bit-Flip on Different Layers
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6.2.2 Impact of Multiple Bit-Flip

A second fault injection campaign was performed where 20,000 randomly selected faults (1 to 10
bit-flips for each). The aggregate results are presented in Tab. 6.3. The results are comparable
with single-bit fault model seen in Sec.6.2.1. Few faults are fully masked and the most common
outcome is a No Impact SDC Between 0.9% and 7.9% of the faults produce Tolerable SDCs. In
line with the literature as described in Sec.2.2.1, faults in the weights have a more significant
impact, as each weight is used many times, and 9.4% of the weight faults produce critical SDCs.

Fault
Masked

No Impact Tolerable Critical
Model SDC SDC SDC
AFM 32.75% 63.55% 0.924% 2.774%
WFM 0.364% 82.35% 7.851% 9.430%

Table 6.3: Aggregate Results of Fault Injection (multi-bit fault model)

6.3 Symptom Based Error Detection Technique

As we have seen in Sec.2.3.1, the idea of SBED is to identify an incorrect behavior based
on a symptom that is abnormal. This concept has been applied to micro-processors [Hari2012]
and Li [Li2017] proposed an extension to DNNs. Authors [Hong2019,Hoang2020], including Li,
report that faults that produce extremely large activation values are the ones most likely to result
in errors. Li proposed a SBED technique where a fault detection threshold is set for each layer,
based on the maximal neuronal value of the layer observed when executing the training data-set.
Li arbitrarily adds 10% to this threshold. With this approach, with a 32-bit fp numeric format,
he reports a false-positive rate of ≈ 3%..5% (called precision in the paper) and a SDC detection
rate of ≈ 92%..97%. The detection rate is good but the false positive rate is not acceptable for
real-world applications. Our focus was to find a SBED technique based on a systematic approach
and that achieves a false positive rate of zero.

6.3.1 Single Statistic Approach

In DeepLabV3+, all the layers (except the final one) are trained with batch normalization, thus,
in the absence of faults, we expect the activations to be normally distributed. We started by an-
alyzing the statistics of the activations with the training data-set. We identified four statistics of
interest : minimum value (MIN), average value (AVG), maximum value (MAX) and standard-
deviation (STD). We calculated these statistics, for each layer and for each image in the training
sequence. This creates a distribution of values based on the input images and the results are plotted
in Fig.6.10. We show the distribution of the values using shades of gray (10th to 90th percentiles)
and the error bars show the extreme values. The activations are analyzed prior to the ReLU, thus
the negative values.

Due to the large number of layers, we broke the graphs into three sections. Layers 1 to 11
correspond to the first part of the encoder. Low level features from the 11th layer are directly
connected to the decoder. In the middle of the ResNet-101 encoder, a repeated pattern can be
observed, two layers with broad distributions, followed by a layer with a narrow distribution,
corresponding to the 3-layer Residual Bottlenecks. The layer with a narrow distribution is the last
1x1 convolution. Finally, layers 101 to 109 are the decoder layers. For most of the layers, the
extreme values are outlined well beyond the 90th percentile.
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Figure 6.10: Statistical Distribution of Activation Values by Layer

Note that the variation of the distributions varies significantly across layers. For each statistic,
and each layer, we propose to fix an error detection threshold that is one standard-deviation beyond
the minimum or maximal value observed during the training set. This allows us to have a better
detection when the distribution is tight and reduces the risk of false positives when the distribution
is wide. Our calculated error detection thresholds are shown with the red dots.

In Tab. 6.4, we present the SBED detection results using each of the four statistics indepen-
dently, both for the AFM (blue) and WFM (yellow). We declare that a fault is detected if a neuronal
value exceeds the threshold (red dots). The results are quite promising. In all cases, well over 99%
of the Critical SDCs are detected. The false positive rate is well below 1%, except in the case of
the MAX statistic. However, in a real application, even this low rate of false positives would be
unacceptable.

False Fault Tolerable Critical
Statistic Positive Model SDC Detection SDC Detection

(FP) (TSDC) (CSDC)

AVG 0.55%
AFM 14.7% 99.8%
WFM 27.1% 99.3%

MIN 0.36%
AFM 16.2% 99.8%
WFM 35.6% 99.4%

MAX 1.15%
AFM 58.1% 99.8%
WFM 13.0% 99.7%

STD 0.24%
AFM 14.1% 99.8%
WFM 28.0% 99.3%

Table 6.4: Fault Detection Capability with Single Statistic
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6.4. Fault Mitigation

6.3.2 Double Statistic Approach

To improve on these results, we decided to combine the statistics and only declare an error when
at least two different statistics are out of range. The results are presented in Tab. 6.5. The results
using the AFM are shown in the blue cells (upper right) while those for the WFM are shown in
the yellow cells (lower left). For each pair of statistics, we show the false positive rate (FP), the
detection rate for Tolerable Silent Data Corruption (TSDC)s and the detection rate for Critical
Silent Data Corruption (CSDC)s. We observe that if we use the combination of AVG and MIN
(bold text), then for both fault models we have no false positives and we have a detection rate
of critical SDCs that is over 99.4%. In terms of critical fault detection rate, these results are
in-line with the expectations of safety standards, while also meeting the expectations of vehicle
manufacturers of having zero false positives.

Statistic Metric AVG MIN MAX STD
FP 0.0% 0.0% 0.18%

AVG TSDC 13.6% 11.1% 14.1%
CSDC 99.8% 99.8% 99.8%

FP 0.0% 0.0% 0.0%
MIN TSDC 25.6% 13.6% 13.7%

CSDC 99.4% 99.8% 99.8%
FP 0.0% 0.0% 0.06%

MAX TSDC 3.39% 3.15% 11.1%
CSDC 99.3% 99.3% 99.8%

FP 0.18% 0.0% 0.06%
STD TSDC 26.8% 26.5% 3.63%

CSDC 99.4% 99.4% 99.3%

Table 6.5: Fault Detection Capability with Two Statistics

6.3.3 Implementation and Overhead

The calculation of the statistics required to implement the techniques that we have presented can
easily be implemented in software on a platform such as a GPU. They can also be calculated
on-the-fly in hardware on a dedicated accelerator1. To calculate all statistics, for all layers, and to
compare the output of each neuron with two thresholds requires a total of 755M FLOPs, a compute
overhead of only 0.2%, compared to the total number of FLOPs to evaluate the network.

6.4 Fault Mitigation

In the previous section, we proposed a fault detection technique. To reduce the impact of faults,
we now propose a fault mitigation technique which masks faults. Similar to ClipAct [Hoang2020],
the ReLU activation function is modified so that if the input value is above a threshold, then the
output is zero. In this way, extreme values can not propagate. In ClipAct, the algorithm for
selecting the threshold is complex, requiring fault injections. In their paper, they demonstrate that
the technique is effective for the small CIFAR-10 data-set.

1Standard deviation can be computed on the fly as σ =
√

∑x2

N − (∑x
N )2
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We propose to use the same threshold for mitigation as we used for fault detection with the
MAX statistic. This threshold is set, per layer, one standard deviation above the maximum ob-
served on the training data-set. If any activation value (prior to ReLU) exceeds this threshold, it
is replaced with a zero. The impact of this technique on fault-free accuracy, as measured with
the mIoU [Fernandez-Moral2018] is so small, that it can barely be measured (63.77255% versus
63.77253%), which is to be expected because the thresholds are set to be beyond the extreme
values seen during the training data-set.

With this mitigation technique in place, over 99% of the critical faults are transformed into
either Masked, No Impact or Tolerable SDCs, as shown in Tab. 6.6. In this table, the rows show
the classification of the fault before mitigation, and the columns show how the image is classified
after the mitigation (clipped ReLU). For example, with the AFM, 95.286% of the critical SDCs
(CSDCs) become No Impact SDCs after mitigation.

aaaaaaaa
Before

After Fault Masked No Impact TSDC CSDC

Masked 98.374% 0.6702% 0.9554% 0%
No Impact 0.0267% 99.074% 0.8893% 0%

TSDC 1.0101% 54.040% 44.949% 0%
CSDC

AFM

3.3670% 95.286% 1.1785% 0.1684%
Masked 98.717% 1.2821% 0% 0%

No Impact 0% 99.025% 0.9754% 0%
TSDC 0% 5.8894% 94.051% 0.0595%
CSDC

WFM

0.0005% 58.742% 40.366% 0.8420%

Table 6.6: Fault Mitigation Effect

We did, however, notice a very small number of cases (0.0595% shown in red) where a fault
in the weights was originally classified as tolerable (TSDC) but with our mitigation technique it
became critical (CSDC), which is obviously undesirable. We studied all the images where this
occurred and concluded that these correspond to borderline cases. The difference in the critical
and non-critical image was always very minor. In Fig. 6.11 we show the most visible example. In
this case, a pixel appeared in a class that was not previously present, thus the image after mitigation
was classified as critical. In total, only 3 pixels (0.015%) were modified. It is important to note,
our detection technique identified the presence of this fault, even though the mitigation could not
render it non-critical.

No Fault With Fault After Mitigation

Figure 6.11: Borderline Non-Critical Fault Becoming Critical
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6.5 Comparison with Related Works

Draghetti [Draghetti2019] proposed a fault detection technique for object detection for auto-
motive image processing. The technique is based on measuring the difference (mean square error)
between two consecutive frames and comparing this with the extent of change in the resulting
bounding boxes. This is a form of temporal redundancy, and may not be well suited to detecting
permanent faults which could corrupt every frames. This technique did not achieve a zero false
positive rate and was not demonstrated for semantic segmentation.

In dos Santos [dos Santos2018] they propose several detection techniques. Their Reliable Max
pooling technique is based on a threshold for the Max Pooling layers that they arbitrarily set at 10x
the maximum value observed during the training. They report a 98% detection rate (compared to
99.4% in this work). Their network has many Max Pooling layers, but DeepLabV3+ has a single
Max Pooling layer, so their technique is not directly applicable. Their mitigation strategy is to
replace the output of the Max Pooling layer with the second largest value but only ≈ 85% of the
critical faults are mitigated, whereas our technique masks more than 99% of the critical faults.

Hoang [Hoang2020] proposed an error mitigation technique based on a clipped Rectified Lin-
ear Unit activation function and they provide an algorithm to optimally set the threshold. This
technique provides error masking but it does not provide fault detection, a requirement in safety
standards. The selected threshold could be below the maximum activation value in the training set,
thus the error-free behavior of the network is modified. Finally, they present results for CIFAR-10,
and it is not clear that their threshold selection scales to larger applications.

The techniques proposed in this chapter achieve high detection (99.4%) with no false positives
(unlike [Draghetti2019]). The proposed technique is compatible with any layers which use batch-
normalization (unlike in [dos Santos2018], which is restricted to Max Pooling Layers). Finally,
our technique require no fault injections, only the one-time calculation of statistics from the train-
ing data-set. Taken together, these represents a significant improvement over the state-of-the-art
in SBED for DNNs.

6.6 Perspective

The methodology presented in this chapter only considers limited fault models on a single
floating-point based DNN. Future work could improve the presented technique in three ways :

1) Quantized DNNs are preferred for applications that require robustness, as discussed in
Sec.2.2.1. Yet, to the best of our knowledge no SBED approach has proven to be effective on
quantized DNNs. With a quantized numeric format, it is more likely that a bit-flip will result in
an overflow rather than an extremely large value. Thus it would be of scientific interest to test our
technique on such quantized models.

2) In this study, we focus on a limited fault model (1 to 10 bit-flips in weights and activa-
tions). Other fault models could be explored, and the technique could be tested on a real hardware
platform, such as a GPU.

3) We only focused on DeepLabV3+ trained for the Woodscape data-set. Demonstration of
our methods on other network topologies and data-sets would indicate that our technique can scale
to other case study. We expect that the technique can be applied to networks which have layers
where batch-normalization is applied.
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Chapter 6. Symptom Based Error Detection

6.7 Conclusion of the Syndrome-Based Error Detection

We have performed a fault-injection study of DNNs performing semantic segmentation and
showed how fault effects can be classified as critical and tolerable SDCs. Using a state-of-the-art
network and an industrial data-set, we analyzed the sensitivity of the network for two fault models
and found that between 3% to 9% of faults produce critical SDCs.

We analyzed four statistics (AVG,MIN,MAX and STD) and using this analysis, set thresholds
for detecting anomalous behavior. This approach is different from previous authors [Li2017, dos
Santos2018], who used only the MAX and set a threshold arbitrarily. By considering the variation
of the activations for each layer, our approach can be applied to other applications. Using mul-
tiple statistics to trigger error detection, we can eliminate false positives, as demonstrated on the
Woodscape data-set, while maintaining a critical fault detection over 99.4%. We also proposed to
combine our error detection technique with a zero-masking technique (similar to [Hoang2020]),
but with a simpler approach for setting the threshold. This mitigation technique allows us to mask
more than 99% of the critical faults. Taken together, the contributions in this chapter provide a
methodology for analyzing the impact of faults in image segmentation applications, providing the
level of fault detection required by safety standards and a technique for masking nearly all critical
faults.
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7
Conclusions

This chapter concludes this manuscript. We briefly review the con-
tributions presented in this thesis, and present ideas for future work.
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The work undertaken in this thesis builds on existing background in the literature, as the fact
that Deep Neural Network (DNN)s are tolerant to certain types of faults had already been well
established. For example, previous works have shown that faults resulting in high numerical di-
vergence are likely to impact the final result, however, this type of fault can be detected by a
statistical analysis of the dataflow.

We presented the current scientific literature in the field of DNN fault tolerance and split
these works into two parts. Many studies simply analyze the intrinsic fault tolerance of DNNs,
while others attempt to improve the robustness. In the literature, we note that authors analyze a
single platform with their selected fault model, but there were few studies which compare different
platforms, using the same fault model and test cases.

The key observation of the works analyzing the fault tolerance of DNNs is that the most im-
pacting faults are those resulting in a high numerical divergence of neurons or weights. This fact
has frequently been exploited in the works focused on improving fault tolerance by restricting the
numerical range, for example by adjusting the numerical format through quantization or through
truncated activation functions. Such techniques can improve the tolerance to bit errors in acti-
vations and weights by several orders of magnitude. For networks which are already quantified,
further improvements in fault tolerance are more difficult to achieve.

To detect hardware faults, many techniques rely on adapting well-known strategies tradition-
ally used in general purpose computing to DNNs, such as Syndrome-Based Error Detection or
Algorithm-Based Fault Tolerance. Once faults have been detected, masking erroneous values with
zeros is a common and effective technique to mitigate the impact of the faults on the accuracy of
the network.

Building on the results of these existing works, we proposed several new contributions. First,
we performed an in-depth analysis of the fault tolerance of several systolic architectures, and drew
conclusions on how data-flow impacts the propagation of faults. Specifically, our results show that
an architecture, such as the Output Stationary dataflow, that limits the spatial propagation of faults
is more robust.

We used these observations to design a fault tolerant systolic accelerator. The proposed ar-
chitecture, coined MOZART+, combines an Output Stationary architecture, on-line testing, fault
tolerant scheduling, fault tolerant training and masking of arithmetic errors with zeros. Our exper-
iments showed that with our test cases, MOZART+ was able to quickly detect all the impacting
Stuck-at-1 faults. We showed that the reduction in accuracy in the presence of faulty Processing
Elements is gradual and MOZART+ drastically limits the worst-case impact. This is achieved
with a hardware overhead of approximately 8%.

While MOZART+ focuses on the arithmetic unit, our next contribution, the Opportunistic
Parity technique, focuses on transient faults altering the weights of DNNs. Our initial studies,
showed that DNNs are robust to changes in the Least Significant Bits (LSBs) of their weights.
Using this idea, we proposed to encode a parity bit in the LSB of the weights, thus introducing
virtually no storage overhead. When combined with the zero-masking technique to mask the
weights with erroneous parity, on floating-point based DNNs, an improvement in bit error rate
tolerance between one to three orders of magnitude was achieved with practically no-loss in fault-
free accuracy. For a 8-bit integer numeric format, the technique is less effective but can still
provide approximately a 5x improvement, with a minor loss in fault free accuracy.

These two techniques are limited to faults in arithmetic units and faults in the weights, so
in order to address a broader scope of faults, we proposed a syndrome based approach to fault
detection, adapted to DNNs. This method is a statistics-based technique to detect faults oc-
curring anywhere in a DNN by monitoring its data-flow. We analyzed four statistics (AVer-
aGe,MINimum,MAXimum and STandard Deviation) on the fault-free data-flow to establish thresh-
olds for detecting anomalous behavior. We tested our method on a dataset for autonomous driving,
and our results show that using multiple statistics to trigger error detection, we can eliminate false
positives while maintaining a critical fault detection rate over 99.4%. We then combined this tech-

105



Chapter 7. Conclusions

nique with the zero-masking strategy, allowing us to mask more than 99% of the critical faults. To
our knowledge, this was the first work to address fault mitigation for image segmentation applica-
tions, one of the key parts of autonomous driving systems.

Some topics related to the fault tolerance of DNNs have barely been explored. In existing
works, the fault tolerance of a platform is evaluated using costly fault injection campaigns. In this
thesis, we developed a technique to accelerate fault injections in DNNs (fault calendar described
in Appendix A), but there is still a need to develop algorithms and methods to quickly predict
the fault tolerance of a DNN on a hardware platform, without resorting to fault injection, and this
problem was not addressed in this thesis. Also, the fault tolerance of other types of DNNs, such
as recurrent neural networks and transformers has not been explored in the existing works. Both
these topics merit further in-depth investigation.

In addition, there are many topics which have been only been partially explored. For example,
we proposed an analysis of systolic accelerators, but we believe that a quantitative exploration of
other architectures such as Single Instruction Multiple Data-type and those inspired from digital
signal processor data-paths is very important. In our study of MOZART+, we only considered
faults in arithmetic units. An exhaustive study of all possible faults (e.g. control path, communi-
cation channels, ...) is needed and would help identify which fault mitigation techniques provide
the most coverage.

Towards the end of this thesis, we identified opportunities to improve our proposed techniques.
For example, our OP technique is effective but could be significantly enhanced. More specifically,
we could consider to code an Error Correction Code (ECC) in the unimportant bits of the weights.
Furthermore, if the constraint of the parity or ECC were imposed in parallel with the training
phase, it is possible that the loss in fault free precision could be eliminated. Regarding the syn-
drome based techniques, in our work, we simply decoded whether or not a fault had occurred. We
believe that an in-depth analysis of the signatures could localize the fault. We believe that further
work on both these techniques could yield further improvements.

Some of the techniques proposed in this thesis improved the fault tolerance of DNNs evaluated
with a floating-point numeric format. Quantized DNNs are intrinsically more robust, however,
identifying new fault tolerance techniques for quantized DNNs is a challenging problem. Due to
the quantization, there is less redundancy and the numeric range of values is already fully utilized,
leaving less opportunity for detecting anomalies. We note that the on-line test proposed with the
MOZART+ does indeed detect faults, regardless of the numeric format.

As we have seen, DNNs are increasingly being used in mission critical applications and there is
a need to ensure fault tolerance, with a minimal hardware overhead. In this thesis, there were three
major contributions: a fault-tolerant systolic architecture, a technique for error detection in weight
storage memories and a syndrome-based error detection method. It is important to note that all
three of these techniques introduce minimal overhead and thus are highly attractive for commercial
DNN accelerators that must be fault tolerant. For society to adopt artificial intelligence, it must
be trustable. Hardware fault tolerance is one of many of the required elements to build trust. The
contributions to fault tolerance in this thesis will help build reliable systems integrating artificial
intelligence.
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Tudor Dumitraş. Terminal Brain Damage: Exposing the Graceless
Degradation in Deep Neural Networks Under Hardware Fault Attacks.
USENIX, 2019.

V



Bibliography

[Horowitz2014] Mark Horowitz. 1.1 Computing’s energy problem (and what we can do
about it). In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2014.

[Howard2017] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto and Hartwig Adam.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. 2017. arXiv:1704.04861.

[Howard2019] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vi-
jay Vasudevanet al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF international conference on computer vision, 2019.

[Huang1984] Kuang-Hua Huang and Jacob A Abraham. Algorithm-based fault toler-
ance for matrix operations. IEEE transactions on computers, vol. 100,
no. 6, 1984.

[Iandola2016] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally and Kurt Keutzer. SqueezeNet: AlexNet-level accu-
racy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint
arXiv:1602.07360, 2016.

[Ibrahim2020] Younis Ibrahim, Haibin Wang, Junyang Liu, Jinghe Wei, Li Chen, Paolo
Rech, Khalid Adam and Gang Guo. Soft errors in DNN accelerators:
A comprehensive review. Microelectronics Reliability, vol. 115, page
113969, December 2020.

[IDTechEx2022] IDTechEx. Autonomous cars, robotaxis and sensors 2022-2042. 2022.

[Intel] Intel. 3rd Generation Intel Xeon Scalable Processors. In
https://ark.intel.com/content/www/us/en/ark/products/series/204098/3rd-
generation-intel-xeon-scalable-processors.html.

[Ioffe2015] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. CoRR,
vol. abs/1502.03167, 2015.

[ISO-26262.18] ISO-26262. Road vehicles – Functional safety, 2018.

[Ito1997] Takehiro Ito and Itsuo Takanami. On fault injection approaches for fault
tolerance of feedforward neural networks. In Proceedings Sixth Asian
Test Symposium (ATS’97). IEEE, 1997.

[Ito2021] Kojiro Ito, Yangchao Zhang, Hiroaki Itsuji, Takumi Uezono, Tadanobu
Toba et Masanori Hashimoto. Analyzing DUE Errors on GPUs With
Neutron Irradiation Test and Fault Injection to Control Flow. IEEE
Transactions on Nuclear Science, vol. 68, no. 8, 2021.

[Kalamkar2019] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar
Das, Kunal Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj
Jammalamadaka, Jianyu Huang, Hector Yuen, Jiyan Yang, Jongsoo
Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srini-
vasan, Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul and Pradeep
Dubey. A Study of BFLOAT16 for Deep Learning Training, 2019.
arXiv:1905.12322.

VI



Bibliography

[Khoshavi2020] Navid Khoshavi, Arman Roohi, Connor Broyles, Saman Sargolzaei,
Yu Bi and David Z Pan. Shieldenn: Online accelerated framework
for fault-tolerant deep neural network architectures. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2020.

[Kim1989] J. H. Kim and S. M. Reddy. On the design of fault-tolerant two-
dimensional systolic arrays for yield enhancement. IEEE Transactions
on Computers, vol. 38, no. 4, 1989.

[Kim2018] Sung Kim, Patrick Howe, Thierry Moreau, Armin Alaghi, Luis Ceze and
Visvesh Sathe. MATIC: Learning around errors for efficient low-voltage
neural network accelerators. In 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), 2018.

[Kim2021] Youngbae Kim, Shreyash Patel, Heekyung Kim, Nandakishor Yadav and
Kyuwon Ken Choi. Ultra-low power and high-throughput SRAM design
to enhance ai computing ability in autonomous vehicles. Electronics,
vol. 10, no. 3, 2021.

[Kosaian2021] Jack Kosaian and KV Rashmi. Arithmetic-intensity-guided fault toler-
ance for neural network inference on gpus. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2021.

[Krizhevsky2012] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Proceedings of
the 25th International Conference on Neural Information Processing Sys-
tems, NIPS’12, 2012.

[Kumar2021] Harekrishna Kumar and VK Tomar. A review on performance evaluation
of different low power SRAM cells in nano-scale era. Wireless Personal
Communications, vol. 117, no. 3, 2021.

[Kwon2016] Sangheon Kwon, Kyungmin Lee, Yoonsoo Kim, Kyungah Kim, Chang-
min Lee and Won Woo Ro. Measuring error-tolerance in SRAM archi-
tecture on hardware accelerated neural network. In 2016 IEEE Inter-
national Conference on Consumer Electronics-Asia (ICCE-Asia), pages
1–4. IEEE, 2016.

[LeCun2015] Yann LeCun, Yoshua Bengio and Geoffrey Hinton. Deep learning. Na-
ture, vol. 521, no. 7553, pages 436–444, May 2015.

[Li2017] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai,
Karthik Pattabiraman, Joel Emer and Stephen W. Keckler. Understand-
ing error propagation in deep learning neural network (DNN) accelera-
tors and applications. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM
Press, 2017.

[Li2019] Li Li, Dawen Xu, Kouzi Xing, Cheng Liu, Ying Wang, Huawei Li and
Xiaowei Li. Squeezing the Last MHz for CNN Acceleration on FPGAs.
In 2019 IEEE International Test Conference in Asia (ITC-Asia), pages
151–156. IEEE, 2019.

VII



Bibliography

[Li2020a] Wenshuo Li, Guangjun Ge, Kaiyuan Guo, Xiaoming Chen, Qi Wei, Zhen
Gao, Yu Wang and Huazhong Yang. Soft error mitigation for deep con-
volution neural network on FPGA accelerators. In 2020 2nd IEEE In-
ternational Conference on Artificial Intelligence Circuits and Systems
(AICAS). IEEE, 2020.

[Li2020b] Wenshuo Li, Xuefei Ning, Guangjun Ge, Xiaoming Chen, Yu Wang and
Huazhong Yang. FTT-NAS: Discovering Fault-Tolerant Neural Archi-
tecture. pages 211–216. IEEE, January 2020.

[Libano2020] F. Libano, B. Wilson, M. Wirthlin, P. Rech and J. Brunhaver. Under-
standing the Impact of Quantization, Accuracy, and Radiation on the
Reliability of Convolutional Neural Networks on FPGAs. IEEE Transac-
tions on Nuclear Science, vol. 67, no. 7, 2020.

[Libano2021] F Libano, P Rech, B Neuman, J Leavitt, M Wirthlin and J Brunhaver.
How reduced data precision and degree of parallelism impact the relia-
bility of convolutional neural networks on fpgas. IEEE Transactions on
Nuclear Science, vol. 68, no. 5, 2021.

[Liu2018] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang and Trevor
Darrell. Rethinking the value of network pruning. arXiv preprint
arXiv:1810.05270, 2018.

[Liu2021] Cheng Liu, Cheng Chu, Dawen Xu, Ying Wang, Qianlong Wang,
Huawei Li, Xiaowei Li and Kwang-Ting Cheng. HyCA: A Hybrid Com-
puting Architecture for Fault Tolerant Deep Learning. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
2021.

[Mahdiani2012] H. R. Mahdiani, S. M. Fakhraie and C. Lucas. Relaxed Fault-Tolerant
Hardware Implementation of Neural Networks in the Presence of Mul-
tiple Transient Errors. IEEE Trans. on Neural Networks and Learning
Systems, August 2012.

[Mahmoud2021] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W
Fletcher, Sarita V Adve, Charbel Sakr, Naresh Shanbhag, Pavlo
Molchanov, Michael B Sullivan, Timothy Tsai and Stephen W Keckler.
Optimizing Selective Protection for CNN Resilience. In 2021 IEEE 32nd
International Symposium on Software Reliability Engineering (ISSRE).
IEEE Computer Society, 2021.

[Malekzadeh2021] Elaheh Malekzadeh, Nezam Rohbani, Zhonghai Lu and Masoumeh
Ebrahimi. The Impact of Faults on DNNs: A Case Study. In 2021 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2021.

[Matsubara2021] Katsushige Matsubara, Lieske Hanno, Motoki Kimura, Atsushi Naka-
mura, Manabu Koike, Kazuaki Terashima, Shun Morikawa, Yoshihiko
Hotta, Takahiro Irita, Seiji Mochizuki, Hiroyuki Hamasaki and Tat-
suya Kamei. A 12nm Autonomous-Driving Processor with 60.4TOPS,
13.8TOPS/W CNN Executed by Task-Separated ASIL D Control. In 2021
IEEE International Solid- State Circuits Conference, volume 64, 2021.

VIII



Bibliography

[McCarthy2006] John McCarthy, Marvin L Minsky, Nathaniel Rochester and Claude E
Shannon. A proposal for the dartmouth summer research project on ar-
tificial intelligence, august 31, 1955. AI magazine, vol. 27, no. 4, pages
12–12, 2006.

[Micikevicius2018] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos,
Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii
Kuchaiev, Ganesh Venkatesh and Hao Wu. Mixed Precision Training,
2018. arXiv:1710.03740.

[Mittal2020] Sparsh Mittal. A survey on modeling and improving reliability of DNN
algorithms and accelerators. Journal of Systems Architecture, vol. 104,
page 101689, March 2020.

[Moradi2020] Reza Moradi, Reza Berangi and Behrouz Minaei. A survey of regulariza-
tion strategies for deep models. Artificial Intelligence Review, vol. 53,
no. 6, 2020.

[Motaman2019] Seyedhamidreza Motaman, Swaroop Ghosh and Jongsun Park. A Per-
spective on Test Methodologies for Supervised Machine Learning Accel-
erators. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 3, September 2019.

[Mukherjee2005a] Shubhendu S Mukherjee, Joel Emer and Steven K Reinhardt. The soft
error problem: An architectural perspective. In 11th International Sym-
posium on High-Performance Computer Architecture. IEEE, 2005.

[Mukherjee2005b] S.S. Mukherjee, J. Emer and S.K. Reinhardt. The Soft Error Problem:
An Architectural Perspective. pages 243–247. IEEE, 2005.

[Nagel2019] Markus Nagel, Mart Van Baalen, Tijmen Blankevoort and Max Welling.
Data-Free Quantization Through Weight Equalization and Bias Correc-
tion. pages 1325–1334. IEEE, October 2019.

[Neggaz2018] Mohamed A. Neggaz, Ihsen Alouani, Pablo R. Lorenzo and Smail Niar.
A Reliability Study on CNNs for Critical Embedded Systems. In 2018
IEEE 36th International Conference on Computer Design (ICCD), 2018.

[Neggaz2019] Mohamed A Neggaz, Ihsen Alouani, Smail Niar and Fadi Kurdahi. Are
cnns reliable enough for critical applications? an exploratory study.
IEEE Design & Test, vol. 37, no. 2, 2019.

[Nguyen2019] Duy-Thanh Nguyen, Nhut-Minh Ho and Ik-Joon Chang. St-DRC:
Stretchable DRAM Refresh Controller with No Parity-overhead Error
Correction Scheme for Energy-efficient DNNs. In 2019 56th ACM/IEEE
Design Automation Conference (DAC), 2019.

[Nijhuis1990] J. Nijhuis, B. Hofflinger, A. van Schaik and L. Spaanenburg. Limits to
the fault-tolerance of a feedforward neural network with learning. In
[1990] Digest of Papers. Fault-Tolerant Computing: 20th International
Symposium, June 1990.

[ONNX] ONNX. Open Neural Network Exchange Model Zoo. In
https://github.com/onnx/models.

IX



Bibliography

[Otter2021] Daniel W. Otter, Julian R. Medina and Jugal K. Kalita. A Survey of
the Usages of Deep Learning for Natural Language Processing. IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 2,
2021.

[Ozen2020a] Elbruz Ozen and Alex Orailoglu. Boosting bit-error resilience of DNN
accelerators through median feature selection. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 11, 2020.

[Ozen2020b] Elbruz Ozen and Alex Orailoglu. Just Say Zero: Containing critical
bit-error propagation in deep neural networks with anomalous feature
suppression. In 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 2020.

[Ozen2020c] Elbruz Ozen and Alex Orailoglu. Low-cost error detection in deep neu-
ral network accelerators with linear algorithmic checksums. Journal of
Electronic Testing, vol. 36, no. 6, 2020.

[Park2015] Seongwook Park, Kyeongryeol Bong, Dongjoo Shin, Jinmook Lee,
Sungpill Choi et Hoi-Jun Yoo. 4.6 A1.93TOPS/W scalable deep learn-
ing/inference processor with tetra-parallel MIMD architecture for big-
data applications. pages 1–3. IEEE, February 2015.

[Qiang2019] Liu Qiang and Li Bochao. Low-cost state control method for hardware
emulation of fault attack. In Patent CN109581207A, 2019.

[Radosavovic2020] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He and
Piotr Dollár. Designing network design spaces. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020.

[Rao2022] M Damodhar Rao, YV Narayana and VVKDV Prasad. Ultra Low Power
Offering 14 nm Bulk Double Gate FinFET Based SRAM Cells. Sustain-
able Computing: Informatics and Systems, 2022.

[Reagen2016a] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, Jose Miguel Hernandez-Lobato, Gu-
Yeon Wei and David Brooks. Minerva: Enabling Low-Power, Highly-
Accurate Deep Neural Network Accelerators. pages 267–278. IEEE,
June 2016.

[Reagen2016b] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, Jose Miguel Hernandez-Lobato, Gu-
Yeon Wei and David Brooks. Minerva: Enabling Low-Power, Highly-
Accurate Deep Neural Network Accelerators. pages 267–278. IEEE,
June 2016.

[Reagen2018] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough,
Sae Kyu Lee, Niamh Mulholland, David Brooks and Gu-Yeon Wei.
Ares: A framework for quantifying the resilience of deep neural net-
works. IEEE, June 2018.

[Reuther2019] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Sid-
dharth Samsi and Jeremy Kepner. Survey and benchmarking of machine
learning accelerators. arXiv preprint arXiv:1908.11348, 2019.

X



Bibliography

[Reuther2021] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Sid-
dharth Samsi and Jeremy Kepner. AI Accelerator Survey and Trends. In
2021 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2021.

[Ronneberger2015] Olaf Ronneberger, Philipp Fischer and Thomas Brox. U-Net: Con-
volutional Networks for Biomedical Image Segmentation. CoRR,
vol. abs/1505.04597, 2015.

[Russakovsky2015] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. arXiv:1409.0575 [cs], January
2015. arXiv: 1409.0575.

[Sabbagh2019] Majid Sabbagh, Cheng Gongye, Yunsi Fei and Yanzhi Wang. Evaluating
Fault Resiliency of Compressed Deep Neural Networks. In 2019 IEEE
International Conference on Embedded Software and Systems (ICESS),
2019.

[Salami2018] Behzad Salami, Osman S Unsal and Adrian Cristal Kestelman. On the re-
silience of rtl nn accelerators: Fault characterization and mitigation. In
2018 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 322–329. IEEE, 2018.

[Samuel1959] Arthur L. Samuel. Some Studies in Machine Learning Using the Game
of Checkers. IBM Journal of research and development, vol. 3, 1959.

[Schorn2018] Christoph Schorn, Andre Guntoro and Gerd Ascheid. Efficient on-line
error detection and mitigation for deep neural network accelerators. In
International Conference on Computer Safety, Reliability, and Security.
Springer, 2018.

[Schorn2019] Christoph Schorn, Andre Guntoro and Gerd Ascheid. An Efficient Bit-
Flip Resilience Optimization Method for Deep Neural Networks. pages
1507–1512. IEEE, March 2019.

[Shitao2017] Peng Shitao. Fault injection time mark unification method, control device
and fault injection system. In Patent CN108023659A, 2017.

[Simonyan2014] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[Solovyev2019] R. A. Solovyev, A. L. Stempkovsky and D. V. Telpukhov. Study of
Fault Tolerance Methods for Hardware Implementations of Convolu-
tional Neural Networks. Optical Memory and Neural Networks, vol. 28,
no. 2, pages 82–88, April 2019.

[Souvatzoglou2021] Ioanna Souvatzoglou, Athanasios Papadimitriou, Aitzan Sari, Vasileios
Vlagkoulis and Mihalis Psarakis. Analyzing the Single Event Upset Vul-
nerability of Binarized Neural Networks on SRAM FPGAs. In 2021 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2021.

XI



Bibliography

[Srivastava2014] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural net-
works from overfitting. The journal of machine learning research, vol. 15,
no. 1, 2014.

[Strigl2010] Daniel Strigl, Klaus Kofler and Stefan Podlipnig. Performance and Scal-
ability of GPU-Based Convolutional Neural Networks. In 2010 18th
Euromicro Conference on Parallel, Distributed and Network-based Pro-
cessing, 2010.

[Stutz2021] David Stutz, Nandhini Chandramoorthy, Matthias Hein and Bernt
Schiele. Bit error robustness for energy-efficient dnn accelerators. Pro-
ceedings of Machine Learning and Systems, vol. 3, 2021.

[Syed2021] R. T. Syed, M. Ulbricht, K. Piotrowski and M. Krstic. Fault Resilience
Analysis of Quantized Deep Neural Networks. In 2021 IEEE 32nd Inter-
national Conference on Microelectronics (MIEL), 2021.

[Sze2017] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang and Joel S. Emer. Efficient
Processing of Deep Neural Networks: A Tutorial and Survey. Proceed-
ings of the IEEE, vol. 105, no. 12, pages 2295–2329, December 2017.

[Sze2020] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang and Joel S. Emer. Efficient
Processing of Deep Neural Networks. vol. 15, no. 2, pages 1–341, 2020.

[Talpes2020] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan, Peter Bannon,
Bill McGee, Benjamin Floering, Ankit Jalote, Christopher Hsiong, Sahil
Arora, Atchyuth Gorti and Gagandeep S. Sachdev. Compute Solution for
Tesla’s Full Self-Driving Computer. IEEE Micro, vol. 40, no. 2, 2020.

[Tax2021] Taxonomy and Definitions for Terms Related to Driving Automation Sys-
tems for On-Road Motor Vehicles. Standard J3016_202104, Society of
Automotive Engineers, 2021.

[Tiwari2022] Ankita Tiwari, Saras Mani Mishra, Prithwijit Guha, Pidanic Jan, Zdenek
Nemec et Gaurav Trivedi. Design of a Low Power and Area Efficient
Bfloat16 based Generalized Systolic Array for DNN Applications. In
2022 32nd International Conference Radioelektronika (RADIOELEK-
TRONIKA). IEEE, 2022.

[Torres-Huitzil2017] Cesar Torres-Huitzil and Bernard Girau. Fault and Error Tolerance in
Neural Networks: A Review. IEEE Access, vol. 5, pages 17322–17341,
2017.

[Tsai2021] Timothy Tsai, Siva Kumar Sastry Hari, Michael Sullivan, Oreste Villa et
Stephen W. Keckler. NVBitFI: Dynamic Fault Injection for GPUs. In
2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2021.

[Umuroglu2017] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre and Kees Vissers. Finn: A framework
for fast, scalable binarized neural network inference. In Proceedings of
the 2017 ACM/SIGDA international symposium on field-programmable
gate arrays, 2017.

XII



Bibliography

[Wan2021] Zishen Wan, Aqeel Anwar, Yu-Shun Hsiao, Tianyu Jia, Vijay Janapa
Reddi et Arijit Raychowdhury. Analyzing and Improving Fault Tolerance
of Learning-Based Navigation Systems. In 2021 58th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2021.

[Weaver2004] C. Weaver, J. Emer, S.S. Mukherjee and S.K. Reinhardt. Techniques
to reduce the soft error rate of a high-performance microprocessor. In
Proceedings. 31st Annual International Symposium on Computer Archi-
tecture, 2004., 2004.

[Webb2018] Stefan Webb, Tom Rainforth, Yee Whye Teh and M Pawan Kumar. A sta-
tistical approach to assessing neural network robustness. arXiv preprint
arXiv:1811.07209, 2018.

[Wilkerson2008] Chris Wilkerson, Hongliang Gao, Alaa R Alameldeen, Zeshan Chishti,
Muhammad Khellah and Shih-Lien Lu. Trading off cache capacity for
reliability to enable low voltage operation. ACM SIGARCH computer
architecture news, vol. 36, no. 3, 2008.

[Wirthlin2015] Michael Wirthlin. High-reliability FPGA-based systems: space, high-
energy physics, and beyond. Proceedings of the IEEE, vol. 103, no. 3,
2015.

[Wu2021a] Jun-Shen Wu, Chi-En Wang and Ren-Shuo Liu. Value-Aware Error
Detection and Correction for SRAM Buffers in Low-Bitwidth, Floating-
Point CNN Accelerators. In 2021 26th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2021.

[Wu2021b] Tony F Wu, Doyun Kim, Daniel H Morris and Edith Beigne. Evaluation
of Low-Voltage SRAM for Error-Resilient Augmented Reality Applica-
tions. In 2021 IEEE Workshop on Signal Processing Systems (SiPS).
IEEE, 2021.

[Xiang2019] Lin Xiang, Xiaoqin Zeng, Yuhu Niu and Yanjun Liu. Study of Sensitivity
to Weight Perturbation for Convolution Neural Network. IEEE Access,
vol. 7, pages 93898–93908, 2019.

[Xu2019] Dawen Xu, Kouzi Xing, Cheng Liu, Ying Wang, Yulin Dai, Long Cheng,
Huawei Li et Lei Zhang. Resilient neural network training for accelera-
tors with computing errors. In 2019 IEEE 30th International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
volume 2160, pages 99–102. IEEE, 2019.

[Xu2021] Dawen Xu, Ziyang Zhu, Cheng Liu, Ying Wang, Shuang Zhao, Lei
Zhang, Huaguo Liang, Huawei Li and Kwang-Ting Cheng. Reliabil-
ity evaluation and analysis of fpga-based neural network acceleration
system. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 29, no. 3, 2021.

[Yang2017] Lita Yang and Boris Murmann. SRAM voltage scaling for energy-
efficient convolutional neural networks. In 2017 18th International Sym-
posium on Quality Electronic Design (ISQED), 2017.

XIII



BIBLIOGRAPHY

[Yang2019] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng,
Jianqiang Huang and Xian-sheng Hua. Quantization networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.

[Yogamani2019] Senthil Yogamani, Ciaran Hughes, Jonathan Horgan, Ganesh Sistu,
Padraig Varley, Derek O’Dea, Michal Uricar, Stefan Milz, Martin Si-
mon, Karl Amende, Christian Witt, Hazem Rashed, Sumanth Chen-
nupati, Sanjaya Nayak, Saquib Mansoor, Xavier Perrotton and Patrick
Perez. WoodScape: A Multi-Task, Multi-Camera Fisheye Dataset for
Autonomous Driving. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

[Yu2019] Fuxun Yu, Zhuwei Qin, Chenchen Liu, Liang Zhao, Yanzhi Wang and
Xiang Chen. Interpreting and evaluating neural network robustness.
arXiv preprint arXiv:1905.04270, 2019.

[Yvinec2021] Edouard Yvinec, Arnaud Dapogny, Matthieu Cord and Kevin Bailly.
RED: Looking for Redundancies for Data-FreeStructured Compression
of Deep Neural Networks. Advances in Neural Information Processing
Systems, vol. 34, 2021.

[Zhang2018a] Jeff Zhang, Kartheek Rangineni, Zahra Ghodsi and Siddharth Garg.
Thundervolt: enabling aggressive voltage underscaling and timing error
resilience for energy efficient deep learning accelerators. In Proceedings
of the 55th Annual Design Automation Conference, 2018.

[Zhang2018b] Jeff Jun Zhang, Tianyu Gu, Kanad Basu and Siddharth Garg. Analyzing
and mitigating the impact of permanent faults on a systolic array based
neural network accelerator. In 2018 IEEE 36th VLSI Test Symposium
(VTS), pages 1–6. IEEE, 2018.

[Zhang2019] Jeff Jun Zhang, Kanad Basu and Siddharth Garg. Fault-Tolerant Systolic
Array Based Accelerators for Deep Neural Network Execution. IEEE
Design & Test, vol. 36, no. 5, pages 44–53, October 2019.

XIV



A
Appendix : Fault Calendar

The design of safety critical systems must include a fault tolerance
analysis. The analysis of the impact of faults occurring in a parallel
computer often requires Register-Transfer Level (RTL) simulations,
in order to model the propagation of data between compute units.
Such RTL simulations are compute intensive and in this Appendix
we present a technique, called the Fault Calendar, to analyze the
impact of faults in a parallel system, using a high-level architectural
model that still takes into account the data-flow.
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Annexe A. Appendix : Fault Calendar

A.1 Introduction

Hardware accelerators for Deep Neural Network (DNN)s often employ highly parallel archi-
tectures, where data flows between compute units. When a fault occurs in such a system, either it
may propagate directly, or an erroneous result may propagate. For this reason, the impact of faults
can not simply be modeled by injecting faults into an abstract model executing the calculations
sequentially. In this appendix, we present a technique called the fault calendar, which allows the
effects of faults in a parallel accelerator to be accurately modeled in a sequential implementation.
In this way, the impact of faults can be modeled using the simpler, abstract model.

A.1.1 Scientific Background

Many authors have studied the fault tolerance of parallel and systolic compute systems. These
works can be divided into three categories:

• 1. Those who have studied the impact of faults on an abstract representation of an algorithm.
In the context of neural networks, these authors view the neural network as a sequence of
mathematical operations, and they inject faults when performing these calculations. The
problem with this approach, is that these abstract faults do not correspond to the actual faults
that would occur in the accelerator. These authors include [Arechiga2018, Reagen2018].
The limit of theses studies it that they do not reflect the impact of faults in a real accelerator.

• 2. Those who have chosen a specific hardware accelerator. These authors evaluate the
impact of faults using digital simulation on their accelerator. [Zhang2019] This approach is
accurate, but the simulations are slow.

• 3. Those who have taken a working system and evaluated the impact of faults by injecting
faults in the actual system, typically using radiation. [dos Santos2018, dos Santos2019]

Our idea makes it possible to obtain the speed of evaluation of the works in group (1) with the
accuracy of the works in group (2).

A.2 Fault Calendar

The main idea of the Fault Calendar is to enumerate every operation performed during the
execution of the algorithm, and to associate a unique number to each operation. The numbers are
assigned so that if operation OPi occurs before OPj then i<j. Without loss of generality, consider
a parallel processing system with 4 parallel processors (P0..P3) which execute over 3 time-steps
(TS0..TS2), with the operations numbered OP0 through OP11, as shown in Fig.A.1.

Figure A.1: Example of Parallel System
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A.2. Fault Calendar

The same computation could be performed sequentially on a single threaded CPU, as shown
in Fig.A.2.

Figure A.2: Example of Sequential Execution

Of course, in real hardware, the parallel execution will be faster. However, during the design
phase, evaluating the parallel implementation requires a simulation tool which can model a parallel
system and such tools are typically slow. The sequential execution can be evaluated on a traditional
CPU, and can be executed faster.

Let us suppose there is a fault in processor P1 in the parallel implementation, as shown in
Fig.A.3.

Figure A.3: Hardware Fault in Parallel System

As we can see, a fault in P1 affects all the operations mapped to this processor, specifically,
OP1, OP5 and OP9 in this example. Assuming that the mapping of operations to processors is
static, then we can emulate a fault in P1 in the sequential execution, as shown in Fig.A.4.

Figure A.4: Projecting Faults onto Sequential Execution

The fault calendar makes it possible to run the sequential execution and know when faults
need to be injected, with a minimal run time overhead. Specifically, it consists of a table with one
entry per actual fault, plus a single counter that must be maintained by the CPU. For, the above,
example, the fault calendar would be initialized as shown in Tab.A.1.

Fault Number F1 F2 F3

Counter 1 3 3

Table A.1: Initial Fault Calendar for Example

When the fault-injection is executed on a single-threaded CPU, only a single counter is re-
quired to track when faults need to be injected. This is shown in Fig.A.5. The counter is loaded
with the initial value for F1, from the fault calendar (1 in this example). After each operation, the
CPU decrements the counter. When the counter reaches zero, it is time to inject a fault. After a
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fault is injected, the counter is reloaded with the next value from the fault calendar, and the process
repeats. Faults are injected each time the counter reaches zero.

Figure A.5: Counter Combined with Fault Calendar for Injecting
Faults

The counter is loaded with the count of the number of operations before the next fault injection.
After each operation, the CPU decrements the counter and checks if it is zero. When it reaches
zero, then the simulation injects a fault into the computation, and reload the counter with the next
value (the new number of operation before the next fault injection). By using a single counter, the
number of simulated fault is scalable (even for an important number of simulated faults, the extra
cost of this method is the simple use of a counter). The algorithm is illustrated in Fig.A.6.

Figure A.6: Algorithm for Decrementing Counter and Injecting Fault

To summarize, in the parallel architecture, shown in Fig.A.3, a single fault can affect multiple
operations. To emulate the same effect on a CPU (architectural level simulator), a static fault
calendar can be built, as shown in Fig.A.1. Using this calendar, the algorithm can be executed on a
single-threaded CPU and faults can be injected on the same operations as those that were affected
by the fault in the parallel architecture.

As presented up to this point, we have dealt with a single, generic type of fault. In fact, there
may be different types of faults, or the faults may have attributes such as which bit position is
affected. The fault calendar can, of course, store this information in each entry. When the counter
reaches zero, the CPU can consult the fault calendar, and inject the appropriate type of fault.
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A.3 Patenting of the Fault Calendar

The following patents proposes idea that are similar to the Fault Calendar.

• CN109581207A Low-cost circuit state control method for fault injection attack hard-
ware simulation [Qiang2019] The focus of this patent is to reduce the energy consumption
of scan chains used for fault injection. Both this patent and our idea rely on the careful study
of time to deduce at which moment to perform fault injection. But this method is for fault
injection in real hardware using a scan chain in a FPGA.

• CN109947609A A software and hardware collaborative acceleration method and sys-
tem for fault injection [Gu2019] This patent describes a technique for injecting faults into
micro-processors. It is focused on a FPGA platform for fault injection, and unlike this
proposal, does not address parallel architectures.

• CN108023659A Fault injection time mark unification method, control device and fault
injection system [Shitao2017] This patent focuses on a methodology for synchronizing
fault injections on several components. The context is testing real-world applications in
post-production. A common point with our proposal is the handling of the time of the fault
injection. However, we differ in the level of application of the fault injection since we focus
on architectural simulation whereas this paper deals with actual hardware.

• US2020301798A1 Fault Injection System and Method of Fault Injection (Huawei) [Car-
doso2017] This patent deals with the fault injection of large-scale distributed systems (e.g.
clouds). A component called the Proxy Manager serves as a proxy between several targets.
The Proxy Manager handles the communication between targets and can send fault injection
orders to synchronize simultaneous fault injection on different targets.

We distinguish ourselves from these patents in two ways.

• 1. Many of the existing patents propose techniques to inject faults in real hardware. In some
cases (CN109581207A) this injection occurs at the logic level in an integrated circuit. In
other cases (US2020301798A), it occurs in a system-level environment. In our proposal,
we address how to inject faults in a high-level model of a data-path accelerator, running on
a CPU.

• 2. Our proposal is focused on parallel hardware implementations, such as systolic data-paths

The key characteristics of our invention are the following :

• Ability to model faults occurring in a parallel, possibly systolic, architecture by running a
high-level, fast model on a single-threaded CPU. This provides high speed execution.

• Use of a data-structure (fault-calendar and down-counter) which requires minimal run-time
overhead to determine the time when to inject the specific faults. This ensures the fidelity
of the fault-injection.

Consequently, the idea behind the Fault Calendar was patented [Burel2022a].
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Architectures pour la sureté de
fonctionnement des systèmes à base
de réseaux de neurones

Architectures to ensure the functional safety of neural
network based systems

Résumé

Les réseaux de neurones sont utilisés dans des systèmes informatiques critiques
tels que ceux utilisés pour la conduite autonome. Ces systèmes doivent respecter
les normes de sûreté de fonctionnement ; il est donc essentiel d’assurer leur bon
fonctionnement même en présence de fautes matérielles. Le même réseau formel
peut être réalisé sur différentes plateformes matérielles (CPU, FPGA, etc), selon les
besoins en performance. La fiabilité des systèmes numériques classiques (micro-
contrôleurs, RAM, etc) est déjà bien étudiée mais les approches de ce domaine ne
sont pas toujours adaptées aux réseaux de neurones. L’objectif de cette thèse est
de trouver des nouvelles approches, à faible coût, pour améliorer la tolérance aux
fautes des réseaux de neurones. Dans un premier temps, un résumé des travaux
existants dans le domaine est présenté. Ensuite, la première contribution scien-
tifique se concentre sur une étude de la robustesse des architectures systoliques
existantes afin de proposer un nouvel accélérateur tolérant aux fautes grâce à des
tests en ligne. Ensuite deux autres techniques de détection de fautes sont présen-
tées : une qui se concentre sur les mémoires des réseaux de neurones et une
autre qui détecte des anomalies statistiques induites par les fautes. Ces méthodes
de détection de fautes sont combinées avec un système de masquage de fautes
préexistant. Ces approches sont étudiées sur plusieurs cas d’étude, et prises dans
leur globalité, elles ouvrent la voie vers la réalisation d’un accélérateur matériel pour
les réseaux de neurones, tolérant aux fautes avec un surcout minimal.

Mots-clés : CNN, Intelligence artificielle, Testabilité, DNN

Abstract

Neural networks are increasingly used in mission critical systems such as those
used in autonomous vehicles. These systems must comply with functional safety
standards; therefore, it is essential to ensure they operate correctly in the presence
of hardware faults. The same formal neural network can be implemented on dif-
ferent hardware platforms (CPUs, FPGAs, etc.), depending on the required level
of performance. The reliability of classical digital circuits (micro-controllers, RAMs,
etc.) has been well studied, but the techniques used in this domain are not always
well adapted for neural networks. The objective in this thesis is to find new, low-
cost, techniques to improve the reliability of neural networks. The thesis starts with
an overview of the existing works in this field. The first scientific contribution is an
analysis of the robustness of systolic accelerators leading to a proposal for a new
architecture that achieves fault tolerance using on-line test. Next, two fault detec-
tion techniques are presented: one that focuses on the memory and the other that
detects statistical anomalies caused by faults. These approaches are studied using
several case studies, and taken together, they pave the way for the development of
a fault tolerant neural network accelerator with minimal hardware overhead.

Keywords : CNN, Testability, Artificial intelligence, DNN
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