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Chapter 1

Clinical Context

1.1 Computed Tomography (CT) Plaque characterization

Coronary artery plaques are asymmetric thickenings of the inner vessel wall due tothe accumulation of varying quantities of foamy macrophages, lipids, blood products,smooth muscle cells, collagen, necrotic debris, and calcium (figure 1.1). Imaging tech-niques have been employed for the clinical investigation of coronary artery plaque find-ings and assessing their associated cardiovascular risk. The ultimate goal is to identifyindividuals at increasing risk of Coronary Artery Disease (CAD) for the prediction of Ma-jor Adverse Cardiovascular Events (MACE): chronic angina, infartus, and sudden death.Among imaging techniques, Intravascular Ultrasounds (IVUS) andOptical Coherence To-mography (OCT) provide the closestmatch to the underlying histopathology of coronaryplaques. However, invasive nature of the techniques and high cost are limiting factorsin practice. Less invasive techniques such as Magnetic Resonance Imaging (MRI) or CT,are more appropriate for prevention and screening purposes. Although CT presentsspecific limitations, it provides valuable information that makes it a potentially usefultechnique for early identification and characterization of coronary plaques and the pre-vention of MACE [1, 2, 3].
1.1.1 CoronaryComputedTomographyAngiography (CCTA) coronaryplaque

detectability

Image quality in cardiac imaging depends on the system’s time resolution in addition toits spatial and contrast resolution. The major limiting factor to achieving optimum tem-poral resolution is cardiac motion. Recent ECG-gated CT data acquisitions are able tocover the entire heart in a single breath-hold. As a result, the ability to breathe andmovethe diaphragm are no longer severely restricting constraints. It is prudent to lower theheart rate to less than 65 beats/min to obtain optimum image quality. In CCTA, the voxelsize is the major determinant of spatial resolution. In the x-y plane, the smallest voxelsize determines spatial resolution at about 0.35mm. Such high resolution necessitatesmore difficult reconstruction methods, thinner collimators, and smaller detector sizes.
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Figure 1.1: Drawing shows morphological characteristics of plaque development: earlypathologic vessel wall intima thickening may develop into stable plaques (calcifications)or ruputerd plaques (atheroma). Stable plaques states can develop in rutpture as aconsequence of hemorhage [1].

Overall, improving spatial resolution requires advancements in all three dimensions andis not an easy undertaking. In reconstruction, noise resolution filters are frequentlyused, which has an impact on the underestimation of intensely low values like lipid in-filtration and overestimation of intensely high values that cause the blooming effect ofcoronary calcification. While the x-y axis resolution depends on the size of the matrixand the FOV reconstructed area, the longitudinal spatial resolution (minimum achiev-able slice thickness) is related to the x-ray collimator and longitudinal dimension of adetector, which is about 0.5mm. An isotropic representation of the coronary anatomyhas interpolated values along one of the dimensions, resulting in an anisotropic voxelthatmay deform. Contrast resolution in CT is the ability of the system to distinguish low-contrast structures in an image and express a relative attenuation in Hounsfield Units(HU). Themost important parameter influencing coronary resolution is noise, which de-pends on the statistical fluctuation in the number of x-ray photons, patient size, qualityof detection, and reconstruction algorithms [4]. Tube voltage (expressed in kV) influ-ence on a reliable depiction of soft-tissue is debated with varying level of HU observedin different studies [5, 6]. More recent CT scanners can simultaneously acquire at twoenergy levels, these Dual-energy CT have the potential to provide additional data forbetter differentiation of plaque components. Image quality and plaque representationcan also be affected by contrast agent parameters, which demonstrates how iodinedose in low- and high-contrast conditions influences the attenuation of both calcifiedand non-calcified plaques. Iodine concentration has an impact on lipid-rich and fibrotic
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plaque representation as well. Iodine concentration has an impact on lipid-rich andfibrotic plaque representation as well. Instead of using filtered back projection, iter-ative reconstruction algorithms are used to minimize noise in thin-cut slices. Plaquerepresentation is unaffected by these procedures, however the measurement of tinycalcifications is hampered by the reconstruction filter selection. In CCTA the HU atten-uation of different coronary plaque composition has been observed to be −30HU to
60HU for lipid plaque, 61HU to 149HU for fibrous plaque, 150HU to 1300HU for cal-cium, these thresholds show good agreement with IVUS [7, 8, 9]. Such discriminantsare mostly valid for vessels with coronary lumen above 2mm. These thresholds, how-ever, have been challenged by several studies and present overlapping intervals (36HUto 91HU for lipid 56HU to 136HU 96 ± 40 HU for fibrous), and can be influenced byall the known factors, the sole HU value is therefore an unreliable characterization fea-ture [1]. Morphological markers that consistently match atherosclerotic plaques includemicro- and macrocalcification, positive remodeling, fibrous cap, necrotic core, and nap-kin ring. [8, 2]. These are better represented in IVUS and OCT. A fibrous cap of 400µm ishardly detectable using current CT spatial and contrast resolution. While carotid hemor-rhage can be detected in CT and MRI with current techniques, it is impossible to detectin coronary structures.The majority of research distinguish between mixed, soft (non-calcified), and calcified plaques. However, there are intra characteristics with differentclinical outcomes. Moreover, the early detection can evolve in different types of plaques,as shown in figure 1.1. Overall CT constitutes a non-invasive option for detection andquantification of coronary plaques. However, CT characterization of coronary plaquesremains challenging even with optimal image quality. Observable findings in CT includespotty calcifications, napkin ring, lipid core, and positive remodeling.
1.1.2 CCTA and OCT plaque evaluation

OCT is an imaging technique that accesses lesion features and plaque morphology forcoronary artery disease by using near-infrared light to produce high-definition images ofthe artery with high precision. OCT is performed bloodless with a catheter that scatterslight impulses for 2D live images acquisition. Although only small incisions are needed tointroduce the catheter, the technique is nonetheless very invasive because an artificialstenosis must be created in order to achieve a bloodless condition. OCT is akin to IVUS:sound waves are substituted by light waves thus, resulting in higher resolution images.In [10] sixty-eight plaques were evaluated by CCTA and OCT. Thin-cap fibro atheromaPlaques associated with positive remodeling in CCTA and low plaque attenuation wereassociated with. CCTA adverse plaque features correlates with OCT findings, while CCTAshows high sensitivity, noisy acquisition still affects the precision (false positives).
1.1.3 Calcium Score Computed Tomography (CSCT) coronary calcium de-

tectability

The variability in the representation of plaques can be mitigated by the fixed image ac-quisition and the absence of contrast agents. For coronary calcifications, cardiac CT im-
5



Figure 1.2: Different visualizations of various types of Coronary Plaques by CCTA. Axialvisualization of coronary plaques (A, D, and G), curved planar reformatted (B, E, and H),and cross-sectional (C, F, and I) views. The 3 main types of coronary plaques are shown:non-calcified plaque, mixed plaque, and calcified plaques.
ages are acquired at 2.5 or 3.0mm slice thickness and an axial resolution of 0.5mm2 anda cropped FOV around the heart (cardiac CT) (fig. 1.3). With this parametrization, acqui-sitions are less noisy, and all voxels above 130 HU are binned to 4 intervals (1=130-199,2=200-299, 3=300-399, 4=400-) and associated with different calcium concentrations.Calcium deposits quantified using this procedure output the Agatston score [11] whichhave been consistently associated with cardiovascular risk, and it is currently used as agolden standard for early detection and stratification of CAD.
1.1.4 CT recent advances

The latest achievement in CT image quality and efficiency in radiation dosing is PhotonCounting Computed Tomography (PCCT). Because of the shorter acquisition times withrespect to solid-state scintillator detector (SSD), PCCT are less subject to artifacts andallow smaller slice thickness, thus potentially increasing the diagnostic confidence forCCTA examinations [12]. A study compared acquisitions with dual layer CT (DLCT) (512matrix, 0.67 slice thickness) with a PCCT (1024 matrix, 0.2 slice thickness). The qualitywas first assessed based on phantom test acquisitions, then on patients that under-went CCTA both with DLCT and PCCT acquisitions. Three cardiologists independentlyassessed the quality score based on their CAD diagnosis confidence in representingcoronary plaques, stents, and clarifications quantification. This study concluded that
6



Figure 1.3: Non-injected CT cardiac examination. This acquisition has fixed parametersof 120 Kvp, a slice thickness from 2.5mm, 3.0mm and an axial reolution of 0.5mm2. Highintensity calcium can be isolated by masking intensities above 130 HU.
CCTA using PCCT provides higher clinical confidence in assessing CAD and lumen quan-tification. However, this study did not provide any feedback concerning OCT imaging,meaning that PCCT allows more reliable findings, but the CT visibility of vulnerabilityfactors like early necrosis and hemorrhages have not been assessed directly.
1.1.5 Coronary Artery Calcium (CAC) Prognostic Value

Prospective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE) is a ran-domized multicenter controlled retrospective Trial published in 2017 [13]. CAC is an es-tablished predictor of MACE in asymptomatic patients. This study aimed to compareanatomical testing (CAC burden estimation) with functional testing (FT) in estimatingthe prognosis of symptomatic patients. In the PROMISE, patients presenting stable chestpain (or dyspnea) and intermediate obstructive CADwere randomized to FT (stress ECG)or anatomic testing CAC. During this study, 4029 patients underwent CAC estimation,and 4602 patients underwent FT (stress ECG). Both populations were stratified as nor-mal or mildly, moderately, or severely abnormal (for CAC: 0, 1-99, 100-400, and >400Agatston score (AS), respectively; for FT: normal, mild=late positive treadmill, moder-ate=early positive treadmill or single-vessel ischemia, and severe=large ischemic regionabnormality). Patients were observed over a median follow-up of 26.1 months. Amongstable outpatients presenting with suspected CAD, most patients experiencing MACEhave measurable CAC at baseline, and fewer than half have any abnormalities on FT.
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Figure 1.4: (A) Bar graph of the frequency of coronary heart disease death or nonfatalmyocardial infarction at 2 and 5 years for patients with normal coronary arteries andnon-obstructive or obstructive disease with and without adverse plaque. (B) Coronarycomputed tomography angiography and invasive coronary angiography images froma patient with non-obstructive coronary artery disease who had a subsequent non-ST-segment elevation myocardial infarction. The red/yellow dotted lines and arrows corre-spond to the location of the plaques in the red/yellow boxes.
However, an abnormal FT had higher MACE specificity, leading to similar discriminatorycapability of both tests. The association of known cardiovascular risk factors and theprognosis of coronavirus 2019 (COVID-19) has been recently emphasized. CAC score isconsidered a risk modifier in the primary prevention of cardiovascular disease. We hy-pothesized that the absence of CAC might have an additional predictive value for animproved cardiovascular outcome in hospitalized COVID-19 patients.
1.1.6 CT coronary plaque relevance in predicting MACE

The investigation of patients with suspected CAD has previously focused on functionalassessments to identify the presence of myocardial ischemia as a consequential sur-rogate marker of coronary artery stenosis in proximal coronary regions. In contrast,non-invasive imaging with CCTA has the ability to provide precise structural informationabout the coronary artery’s inner andouterwall and can reliably depict the presence andconstituents of atherosclerotic plaque even in the absence of proximal stenosis. Clinicalstudies have identified an association between high-cardiovascular-risk plaque ruptureand adverse plaque characteristics that includes positive remodeling, a large necrotic
8



Figure 1.5: Model 2 variables: stenosis severity, number of lesions with mild stenosis,non-calcified plaque volume, high risk plaque features, lumen volume.

core andmicro-calcifications, and a thin fibrous cap (high-risk plaque features) [2]. Anatom-ical and functional analysis implies a comprehensive plaque characterization and themeasure of blood fractional flow reserve (FFR) respectively. While both have the finalgoal of predicting cardiovascular risk in individuals, the anatomical analysis is basedon the non-invasive CCTA technique, while the functional analysis is based on an inva-sive FFR procedure. An empirical study [3] conducted on 612 patients from 23 clinicalsites designed to assess whether the anatomical assessment of high-risk plaques couldpush the productiveness of CAD beyond the FFR functional analysis. The ROC analysisconducted on a binary per-vessel prediction (figure 1.5) shows how a comprehensiveanatomical interpretation with CCTA is superior to the functional imaging and diagnosisof FFR.

1.2 Data collection and annotation

1.2.1 GE Healthcare lesion Dataset

The dataset used in this work includes 150 coronary CCTA scans collected from clinicalsites in France and Italy. Images were acquired with tube voltage ranging from 100 kVto 120 kV, a current from 600mA to 1000mA, a pixel spacing from 0.35mm 0.42mm and
0.6mm slice thickness. Each patient underwent both CCTA and anatomical tests [11] andwas assigned a Coronary Artery Disease Reporting &Data System (CAD-RADS) [14] scoreby trained radiologists. Each scan is paired with annotated coronary centerlines: man-ual annotation was performed internally under clinical supervision. Coronary-arterycenterlines are corrected and labeled by experts during medical examination, and visu-ally assessed findings are reported in a clinical review document. Findings are reported
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by coronary label, and approximate location is given as proximal medial or distal. Astarting and ending point is marked so that each point of the centerline is associated toa finding (Figure 1.6). Each positioned annotation represents an anatomical indicator ofCAD, and it is labeled to encode the information of stenosis degree (lumen occlusion)and plaque characterization (composition) reported in table 1.1. Manual annotationswere carried out to match the clinical report, and the final annotations were submittedto a trained cardiologist for review. Stratification is performed at the patient level toavoid sharing information among different dataset splits. Each patient is assigned ananatomical indicator annotation. In the case of multiple indicators per patient, the lessoccurring in the whole annotation distribution is assigned. A subset of 50 patients with224 annotated segments with plaques (49 soft, 78 mixed, 97 calcified plaques, and 182non-occlusive, 42 occlusive stenoses) was chosen for testing using CAD-RADS as stratifi-cation criteria for random sampling. The remaining 100 patients were split 70-30 usingthe same stratification strategy. The collection was carried out to obtain a CAD-RADS
≤ 4 uniform distribution: 24, 38, 30, 33, 25 patients with CAD-RADS from 0 to 4 respec-tively. This sample contains a higher thannormal concentration of plaques as CAD-RADSdistribution usually follows an exponentially decaying function. For example, in [15]28 non-calcified annotated plaques were found, while for this study, 104 non-calcifiedplaques were annotated. Additionally, a set of 75 semi-annotated examinations hasbeen collected. These examinations contain a corrected centerline but not the plaqueannotations information.

Comp.\Stenosis 0% 1-24% 25-49% 50-69% 70-99% LMA >50% 100%
Calcified 00 01 02 03 04 04B 05
Mixed 10 11 12 13 14 14B 15
Soft 20 21 22 23 24 24B 25
Modifiers S G Vstent graft vulnerable

Table 1.1: Code table for coronary plaque annotations of findings. Each anathomicalindicator of CAD is assigned a tuple of {plaque composition, stenosis degree, modifier}.

1.2.2 Société Française de Radiologie (SFR) challenge Dataset

The dataset provided by the organizers of the SFR data challenge 2020 was composedof three batches of CT acquisitions collected from different clinical sites and providedat different stages of the data challenge. The first batch of 100 CT examinations wasmade available at the beginning of the data challenge (J1 data set), then a second largerbatch of 322 CT examinations was released two days before the end of the challenge (J2data set). A final test data set of 98 CT examinations (J3 data set) was given on the lastday of the data challenge and used as a test set to evaluate in one hour the results sub-mitted by all the participants of the data challenge. All electrocardiogram (ECG)-gatedCT examinations were acquired without contrast material by using a fixed tube voltageof 120 kV, a slice thickness of 2.5mm to 3.0mm and a current ranging from 40mA to
10



Figure 1.6: Annotation visualization tool developed at GE Healthcare for coronary clinicalreview.
200mA, depending on the weight of the subject and the habits of each center to opti-mize image quality. The need for informed consent from the patient was waived by thenational commission in charge of data and privacy protection (CNIL). Furthermore, theSFR ensured data protection to radiologists wishing to participate in the challenge byintegrating an automatic anonymization process into the platform. The challenge or-ganizers ensured a uniform distribution of the examinations between four CT vendorsin order to avoid results depending on image characteristics specific to manufacturers.Expert manual annotation of each patient image series was provided as a set with a listof 3D positions of each coronary calcification. Finally, based on the CAC burden com-putation results, each patient is assigned a standard risk category: A, B, C, D, or E whenthe AS corresponding to zero, 1–10, 11–100, 101–400, > 400, respectively. Categories Aand B thus represented a low level of cardiovascular risk, whereas class C representedthe intermediate-risk group and categories D and E the high-risk group. Patients in-cluded in the final test data set (J3) were classified as intermediate risk by the cliniciansin charge of these subjects from the same preventive medicine center according to the
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(a)

(b) (c)
Figure 1.7: Patient level plaque composition distribution with stenosis degree hue forall the dataset, train/valid, and test (a)(b)(c) respectively. Each patient is labeled with anindicator which is composed of plaque characterization and stenosis degree, in case ofmultiple indicator per patient, the less probable occurring in the whole annotation dis-tribution is assigned. The stratification is based on the CAD-RADS assigned by a trainedcardiologist during examination.
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AS formula proposed by the European Society of Cardiology. The population presenteda mean age of 60 ± 13 (standard deviation) years (range: 43–84 years). However, basedon the manually calculated AS, and unbeknownst to the challenge participants, the dis-tribution of the risk class categories of the subjects selected by the challenge organizerswas homogeneous.
Agatston Score risk categoryDataset # Patients A B C D E Vendor distribution

J1 Train 100 20% 16% 21% 21% 22% GE Healthcare 56%Siemens Healthineers 44%
J2 Train 322 30% 6% 24% 18% 23% GE Healthcare 75%Siemens Healthineers 15%Canon Medical System 10%
AD Train 361 34% 5% 20% 20% 21% GE Healthcare 98%Siemens Healthineers 1%Philips Healthcare 1%J3 Test 98 20% 20% 20% 18% 20% Siemens Helthineers 100%
OS Test 40 20% 30% 20% 30%

GE HealthcareSiemens HealthineersPhilips HealthcareToshiba Medical
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Chapter 2

State of the art

Figure 2.1: Automated Cardiac Workflow Plan: this diagram represents the ideal plan-ning of the tasks involved in Major Adverse Cardiovascular Events (MACE) prediction.A patient with suspect Coronary Artery Disease (CAD) is subject to mainly two exami-nations: a non-injected low radiation dose cardiac examination and a contrast injectedhigh-quality examination, Calcium Score Computed Tomography (CSCT) and CoronaryComputed Tomography Angiography (CCTA), respectively. Tasks can be either enablersof subsequent downstream tasks or have a unique clinical goal. All ultimately convergein the Major Adverse Cardiovascular Events (MACE) prediction.
In this chapter, we will present state-of-the-art deep-learning based methods in car-
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diac imaging-based automated Coronary Artery Disease (CAD) prediction 2.1. Lately,algorithms have shifted from knowledge-based to machine-learning-based approacheswhich are particularly suited for medical imaging applications as these can efficientlyexploit expert annotations to design and validate algorithms. The supervised approachallows both clinicians and algorithm designers to have immediate feedback by directlycomparing the expert clinical assessment against algorithmprediction. With knowledge-based methods, feedback is not direct; once the algorithm has been designed and exe-cuted, the result is subject to review by experts, thus inducing a delay in providing essen-tial feedback to engineers working on the design of the algorithm. A specific clinical taskcorresponds to a data type (volume, image, sequence, graph) that can be processed us-ing various algorithms. Algorithms are often tailored to process one type of data; thus,a tailored algorithm is required for each clinical task. Neural network architectures aredesigned to address issues corresponding to a particular data type; these architecturescan be seen as building blocks to process more complex data types (e.g., sequencesof volumes or graphs with images as nodes). In this chapter, we will also present theneural network architectures that will appear along with the text; most state-of-the-artmethods are either direct applications or present adapted architectures. We will ex-plore the following relevant clinical tasks involved in the prediction of Major AdverseCardiovascular Events (MACE).
Calcium Score Calcium score is a highly validated indicator of MACE in both symp-tomatic and asymptomatic patients. It is used as an exploratory exam for pretext coro-narophaty and overall has the same outcome of ECG stress physical test with a higherthroughput for medical institutions (Section 1.1.5). We propose an approach based onensembling U-net networks to produce a semantic segmentation of the Coronary ArteryCalcium (CAC) to quantify the Agatston score (AS) [16].
Coronary Tracking Coronary Computed Tomography Angiography (CCTA) allows forthe detection of coronary structures and the extraction of coronary centerline for clinicalinspection through advanced visualizations (Section 2.4).

16



2.1 Neural Networks Architectures

2.1.1 U-net

TheU-net [17] architecture has beendesigned for semantic segmentation andhas an en-coder decoder structure, symmetrically contracting and expanding operators allow forthe hierarchical capture of visual features while skip connections allow for the recon-struction of higher resolution details (Figure 2.2). U-net has rapidly become the go-toarchitecture to solve any type of semantic segmentation tasks 2D or 3D due to its sim-plicity of configuration. The main hyper-parameter is the number of blocks or levels inorder to tune the field of view of the object of interest at various scales. Each symmetriclevel is composed by convolutional layers intervaled by batch norm and ReLU activa-tions. For medical images the scale is fixed (no perspective projection) so the numberof levels depends on the size of the object of interest and the fixed resolution of thevoxel (another hyperparameter).

Figure 2.2: U-net architecture example for a 2D segmentation task with a 32× 32 pixelsin the lowest resolution. Each blue box corresponds to the multi-channel convolutionfeature map output. The number of channels expands at each level and it is noted ontop of the box. White boxes are the skip connection maps.
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2.1.2 Recursive Neural Networks

long-short term memory (LSTM)

The recursive neural network (RNN) is an architecture suited for processing sequentialdata or temporal sequencesX = [x0, . . . , xt, . . . , xT ].
ht = σ(Wf [ht−1, xt] + bf )

h0 = 0 (2.1)
RNN is modeled as temporal sequence ht, the parametersWf are fixed in time, thusthe recursion. [.] stands for the concatenation operator (Equation 2.1). Its recursive na-ture implies that gradient based learningmethodmust compute back-propagation withrespect to t thus this procedure is referred to as back-propagation through time (BPTT),for long sequences (big T ) gradient often balances between exploding (depending onthe ∥Wf∥ or vanishing (depending on σ = 1/(1 + e−x). The Long-Short-Term-Memoryarchitecture addresses the issue of exploding or vanishing gradient in BPTT [18]. Bymodifying a recurrent unit with a novel memory cell and a gate unit. In the forwardcomputation memory cells allow to store or overwrite activation corresponding to agiven time step depending on the current activation; in the backward computation thisimplies that gradients can skip time steps thus allowing long term dependencies bothforward and backward.

ft = σ(Wf [ht−1, xt] + bf ) (2.2)
it = σ(Wi[ht−1, xt] + bi) (2.3)
t = tanh (Wc[ht−1, xt] + bc) (2.4)
Ct = ft ∗ Ct−1 + it∗t (2.5)
ot = σ(Wo[ht−1, xt] + bo) (2.6)
ht = ot ∗ tanhCt (2.7)

The forget state 2.2, new information 2.3, and the new memory candidates 2.4 arecomputed from the previous state and the current input [ht−1, xt]. The new memory
Ct is computed as a convex combination of the previous memory state Ct and the newcandidate memory t 2.5. The output is passed through an extra layer before beingupdated 2.7. More recently [19] proposed a simplified LSTM named gated recurrentunit (GRU). This model has fewer parameters than the original LSTM without loss ofperformances.

zt = σ(Uzht−1 +Wzxt + bz) (2.8)
rt = σ(Urht−1,Wrxt + br) (2.9)
t = tanhUh(ht−1 ∗ rt) + (Whxt + bh) (2.10)
ht = zt ∗t +(1− zt) ∗ ht−1 (2.11)
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The most noticeable difference is the absence of the memory unit Ct. The memoryis overwritten in the hidden state ht (2.11) with candidate values t (2.10) by means of thereset gate values zt (2.9).
2.1.3 Graph (Convolutional) Neural Network

A graph is a couple G = (X,E) with n d dimensional nodes X ∈ Rn×d and the set ofedges E ⊂ [1 − n] × [1 − n] which can be represented in an adjacency matrix An×n |
Ai,j = 1 if (i, j) ∈ E. A graph convolutional layer is defined by equation 2.45, where σ isa non-linear activation,A is the adjacency matrix of the graph,D is the degree matrix ofthe graph, a diagonal matrix holding the number of neighbours for each node. H0 = Xwhich are the input features, andW l is a trainable set of parameters.

H l+1 = σ(D− 1
2AD− 1

2H lW l) (2.12)

Each layer is an "hop" in the graph meaning that it aggregates for each node theinformation from its direct neighbours. Thus each layer explore the graph in a BFS(Breadth First Search) order, meaning that Hk holds information from all the networkwith k being the degenerancy of the graph which is the smallest k for each each sub-graph Gk ⊂ G has degree at most k. This operation is also known as message passing.
2.1.4 Transformer

Historically sequence data have been processed using GRU and LSTM units. The draw-backs of these methods are the difficulty to properly capture long term relationshipsand the lack of parallelization capability as each element in the sequence depends onthe hidden state processed by its predecessor (and successor if bi-directional). Self at-tention models have been proposed to model inter data relationship therefore aim-ing to be more general than convolutional and recursive architectures [20]. Lately vi-sion transformers architectures relying completely on self attentionmechanisms [21, 22]have been shown tomatch or even surpass convolutional neural networks, although thedebate is still ongoing in the research community [23].
Multi Head Self Attention (MHSA)

In [20] the authors propose a new transformer architecture equipped with a new atten-tionmechanism. TheMHSAmodule is described as amapping between query and a setof key-value pairs: query, keys, and values are all output vectors. The attention mech-anism is in the scaled dot-product operation which results in the dot-product with thevalues V with the softmax activated normalized queries Q and keys K outer product(Equation 2.13).
19



ScaledDotProduct(Q,K, V ) = Softmax(QKT

√
dk

)

(2.13)
An alternative to thedot-product attentionmechanism is the additive attentionmech-anism in [24] which an attention context vector is computed by a convex combination ofthe hidden states of a RNN sequence encoder weighted by attention coefficients. Thedot-product attention is faster as it can be computed in parallel. While for dk small bothmechanisms perform similarly, when dk grows the additive attention outperforms thedot-product attention. A workaround is to normalize the values of the outer product

QKT by a factor 1/√dk. To illustrate this fact assume that query and key values aresampled Q,K ∼ N (0, 1) than the outer product QKT ∼ N (0, dk), thus high values in-put to the Softmax can make the gradient disappear for certain locations. So far thedescribed computation involves a single self attention unit, multiple heads are used inpractice to conjointly attend to information using different sub-spaces in parallel and toreduce the quadratic computational cost of the outer product (Equation 2.14).

MultiHeadAttention(Q,K, V ) = [head1, . . . , headh]WO

headi = ScaledDotProduct(QWQ
i ,KWK

i , V W V
i ) (2.14)

Where WQ
i ,WK

i ,W V
i are linear projections onto a sub-space Rdmodel 7→ Rdk and

WO Rhdk 7→ Rdmodel where dmodel = hdk. In practice usually h = 8 and dmodel = 64.The MHSA unit is the core layer of the Transformer encoder, the whole encoder con-sists in MHSA blocks followed by residual connection and normalization layers Xt+1 =
Norm(MultiHeadAttention(Xt, Xt, Xt) + Xt). The final output is passed through a feedforward network FFN(x) = max(0, xW1 + b1)W2 + b2.
Positional Encoding

The positional information is not present in the dot-product attention mechanism. Thismakes it able to process generic information like sets, however in order to exploit thepositional information it must be injected in the model. To do so "positional encodings"are added to the input values of the MHSA. These can be learned or fixed. A popularchoice for fixedpositional embedding are sine and cosine transforms (Equation 2.16)(Fig-ure 2.3).

PE(pos, 2i) = sin
(
pos/100002

i/dmodel

)
PE(pos, 2i+ 1) = cos

(
pos/100002

i/dmodel

) (2.15)
(2.16)
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Figure 2.3: The 128-dimensional positional encoding for a sequence with the maximumlenght of 50. The wavelengths form a geometric progression from 2π to 20000π

The PE ∈ Rdmodel×L has the same dimension as the input features X0 therefore theseare added before input to the MHSA unitX ′
0 = X0 + PE.

Attention paradigm

Transformers have the advantage to model long term relationships in one layer. ForRNN and convolutional neural network (CNN) in order to attend to different locationsmulti-layer architecture are necessary. When the sequence length is less than the vec-tor dimension the MHSA is also computationally more efficient than RNN for sequenceprocessing; this is often the case for most NLP translation tasks. The receptive field of aconvolutional neural network depends on the number of subsequent convolutional fil-ters that are applied to the image. These are often expensive as the feature maps needto be retained in memory in order to compute back propagataion. In [21] authors applytransformer to images and completely renounce convolutional filter, thus showing thatfor classification tasks the reliance on convolution is not a necessity while requiring lesscomputation resources to train large model. Another advantage of MHSA is the inter-pretabilty of the activations maps, these can be used to investigate how each elementin a sequence influenced the final output as activation maps are probabilty distributionthese compute P (Xt | Xt0) with t ≥ t0 being any time in the sequence while recur-rent model compute P (Xt | Xt−1) therefore needs t− t0 steps to compute a long termrelationship.
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Figure 2.4: Visual Transformer architecture [21]. The image is split into non overlappingpatches, each patch is processed individually and mapped to a feature vector to whicha learnable positional encoding is added, the obtained sequence of vectors is fed to theTransformer enocoder.
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2.2 Calcium Score

2.2.1 Related Works

In the last few years, semantic segmentation architectures were used to predict densesegmentation maps by extending CNN to Fully Convolutional Neural Networks (FCNN)[25]. They were first applied to 2D biomedical imagery with the so-called U-net [26] andlater with a straightforward extension to 3D and 4D V-Net [27]. From a methodologicalpoint of view, different artificial intelligence methods have been proposed in the auto-mated detection and analysis of CAC score on Computed Tomography (CT). By usingpublic datasets with paired non-enhanced-CT and CCTA obtained for chest examina-tions with CT annotation, a method based on a combination of 3 CNN where each de-tected the heart in a different orthogonal plane obtained 72% of accuracy in predictingpatients CAC score class by using only the enhanced CT and a per-branch calcificationscore and a risk prediction evaluation framework [28]. Among the top performing re-sults of CNN, one approach makes use of fuzzy features and atlas-based information inconjunction with Random Forest Models to exploit the available data at best and get ac-curate quantification and branch-wise location of CAC [29], and only the non-enhanced-CT images are required. To produce a more accurate segmentation of coronary artery[30] anothermethod has been suggested to automatically detect calcified lesions on thenon-enhanced CT images, but the segmentation of the aorta, the heart, and coronary ar-teries was required and obtained by using associated contrast CT images. Because of itsrelevance in CAD screening in a population of smokers, another deep learning methodhas been tested on the NLST (National Lung Screening Trial) [31]. This method uses of a2-stage FCNN prediction [32] to quantify branch-wise calcifications using the sole non-enhanced CT examination. This method, previously trained on manual and segmentallabeling of calcified coronary lesion per coronary artery in a subset population of NLSTpatients, was further tested on multiple cardiac CT protocols as previously mentioned[33]. Finally, a last interesting method still based on CNN [34] has been reported andwas trained on the NLST data set, but it uses only of the CAC score information as super-vision (weakly supervised) and a spatial transformer as a first preprocessing step. Thismethod is less dependent on human supervision because it only takes into account theCAC score results of the initial examination reports, which allowed the NLST data to befully exploited for training and evaluation. The method employs two CNNs, one for reg-istration to align the input images to an atlas image made from cardiac CTs and one fordirect CAC score prediction using regression. This second CNN operates on 2D slicesand does not use the information across slices which, according to the authors, mayaccount for some incorrect identification of CAC near the coronary artery Ostia.
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2.3 Coronary Tracking

Figure 2.5: The straightened vessel, the ideal centered tracking result and a referencetracking are depicted to illustrate the evaluation terms used as performance metrics.The annotated ground truth is depicted as the reference standard straight line, the pre-diction as the path found by method line.
An essential step in analyzing the CCTA examinations is the estimation of coronaryartery centerlines (tracking). It consists of identifying the 3d curve as the sequence ofcoordinate points passing through the barycenter of the coronary lumen cross-section,and it is critical to coronary inspection as it enables advanced curved planar reforma-tion (CPR) visualization (sec. 2.4) and automated diagnosis. This task is often carriedout manually by cardiologists or automatically by placing points on CCTA slices. In theearliest approaches, automatic and semi-automatic centerline extraction is based onshortest path finding [35] from manually detected seed points (extremities). Thesemethods rely on heuristic-based cost functions that model different scenarios (steno-sis, plaques, artifacts). Other approaches aim to obtain the centerline as a byproductof coronary segmentation. Coronary segmentation has mainly exploited analytical andmorphological vesselness filters [36, 37] or has been modeled as an optimization prob-lem [38]. With the advent of machine learning and deep learning, heuristic-based costfunctions are being replaced by supervised models that can exploit annotated data di-rectly [39, 40, 41, 42]. The deep-learning state-of-the-art method extracts the centerlineby iteratively tracking the coronary vessels using CNN for local Orientation Classification(CNN-OC) [43, 44].

2.3.1 Standardized evaluation of coronary artery centerline extraction al-
gorithms

This section will describe our framework for evaluating coronary CCTA centerline ex-traction techniques. Consider the coronary artery centerline as the curve that passesthrough the center of gravity of the lumen cross-section. We define the start point of acenterline as the center of the coronary ostium (i.e., the point where the coronary artery
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originates from the aorta) and the endpoint as the most distal point where the artery isstill distinguishable from the background. The centerline is smoothly interpolated if theartery is partly indistinguishable from the background, e.g., in case of a total occlusionor imaging artifacts.
Prediction and ground truth correspondence

The evaluation metrics are measured on a point-to-point correspondence between theannotated ground truth and the predicted centerline. To determine this correspon-dence both centerlines are resampled to 0.2mm and normalized with respect to the ar-clength to enable accurate comparison. In order to have the same starting position cen-terlines are clipped to a threshold distance to the ostia. The point-to-point correspon-dence is computed by minimizing the Euclidean distance between each valid point-to-point correspondence. A valid correspondence for centerline I, consisting of an orderedset of points pi (0 ≤ i < n, p0 is themost proximal point of the centerline), and centerlineII, consisting in an ordered set of points qj (0 ≤ j < m, p0, q0 is themost proximal point ofthe centerline), is defined as the ordered set of connectionsC = {c0, . . . , cn+m+1}where
ck is a tuple [pa, qb] representing a connection from pa to qb which fulfills the conditions:The first connection c0 connects the starting points c0 = [p0, q0]. The last connectionconnects the endpoints cn+m+1 = [pn, qm]. If connected ck = [pa, pb] then connections
ck+1 = [pa+1, qb] or ck+1 = [pa, qb+1] or ck+1 = [pa+1, qb+1]. This conditions are imposedso that each point of centerline I is connected to another point of centerline II. The min-imum cost path with respect to the Euclidean norm from c0 to cn+m+1 gives the optimalmatching.
Evaluation metrics

The centerline extracted from the coronary artery is used for different clinical purposes.Each has its requirements to be fulfilled. Thus, a global metric is not enough to assesswhether an approach is suited for a particular clinical use. On the other hand, havingtailored metrics for each use makes comparison unfeasible. In order to overcome thisissue, a set of metrics have been designed to cover most of the clinical requirements. Inparticular, these aims to discern between extraction capability and accuracy capability.Accuracy can only be measured when the extraction is successful. Therefore a trackingfailure must not be included in the accuracy of the method (figure 2.5).
True positive, false positive and false negative points All metrics are based on thelabeling of correspondences as a true positive, false negative, or false positive. A pointon the reference prediction is marked as TPROV if the distance of its correspondentground truth is less than the coronary estimated radius, it is false negative otherwise,FNOV . A point on the ground truthmanual is labeled true positive TPMOV if the distancein its correspondent prediction is less than the coronary estimated radius, it is falsepositive otherwise FPOV .
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Overlap (OV) represents the ability to track the complete vessel. This metric has aglobal interest when evaluating different methods.
OV =

TPROV + TPMOVTPROV + TPMOV + FNOV + FPOV
(2.17)

Overlap until first error (OF) This metric determines howmuch of a coronary arteryhas been extracted before making an error. This metric is interesting for image-guidedvessel navigation applications. The first error is defined as the first occurrence of FNOVwhen traversing the ground truth starting from 5mm from the first point. Errors in thefirst 5mm are not taken into account to relax the constraint on the most proximal seg-ment of the coronary, which is usually large and not usually of critical importance.
OF =

TPROFTPROF + FNOF
(2.18)

Overlap with the clinically relevant part of the vessel (OT) This metric is suited tomeasure the tracking capability of the most relevant part of the vessel. In order to keepstenosis, the lumen radius is computed starting from the most distal point. The vesselis traversed in the proximal direction. When the luminal radius is above 1.5mm theremaining part is assumed to be the clinically relevant part. Only points of the predictionand ground truth within the clinical part of the vessel are kept to compute this metric.

OT =
TPROT + TPMOTTPROT + TPMOT + FNOT + FPOT

(2.19)
Average inside (AI) This metric measures how accurately the method closely trackedthe centerline. It consists of the average distance in mm of the connections inside thelumen radius. Therefore provided that the prediction is inside the radius AI metric isproportionally inverse to the accuracy of the method.
2.3.2 Related works

CNN Orientation Classifier

In [44] the authors propose a CNN-based method to determine the orientation and ra-dius of a coronary artery at a specific location x in the CCTA volume I . The methodpredicts the coronary’s local orientation from an isotropic image patch P sampled atthe location x centered around the centerline. The orientation is thus regressed as themost likely given the posterior probability p(D|P ) over a set of discrete directions Dcomputed by the classifier (fig. 2.6). All models are trained on eight CCTA examinationsfrom the publicly available MICCAI 2008 Coronary Artery Tracking Challenge (CAT08)dataset containing 32 manually annotated centerlines. Another 24 CCTA with 96 center-lines were used for the test, and themethod achieved a 93,7% overlap with the clinically
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relevant part of the coronary (luminal radius above 1.5mm). The UMC Utrecht institu-tion provided an additional test set and an annotated subset of the MICCAI 2014 OrcaS-core [45] challenge CCTA examinations. The method achieved an overlap of 92% withthe clinically relevant part of the coronary.
CNN tracker The patch size and the model architecture are chosen with a field ofview of 9.5mm sufficient to cover the coronary lumen at different distalities. The CNNis relatively shallow and employs five 3D convolutional layers and two fully connectedlayers for classification. The CNN classifier is trained on 3d patches sampled aroundthe coronary centerline for robustness noise is added to the central location, and direc-tions are corrected to predict a direction that points towards the centerline. If on thecenterline, themodel will predict the orientation. If themodel is off the centerline, it willpredict a direction towards the nearest centerline. The characteristic of this method isthat the training and inference pipeline differ. The orientation classifier model is one ofthree that compose the algorithmic inference pipeline. Another twomodels are trainedto detect seed points to initialize the tracking. These models are identical to the orien-tation classifier but for the output layer, which outputs an estimated proximity value
d(x).

Figure 2.6: Overview of the coronary tracker based on the CNN orientation classifiermethod. The isotropic patch P is sampled from the CCTA volume I at location x cen-tered about the coronary centerline. The CNN predicts the radius and the direction iscomputed by the maximum of the posterior probabilityD = maxd∈D p(d|P )

d(x) =

{
e
a(1−Dc(x)

dM )− 1 ifDc(x) < dM

0 otherwise
(2.20)

Initialization and termination strategies WhereDc(x) is the distance to the closestcenterline and dM is the max distance (4mm) and a is a gain value (6). Two CNN are em-ployed in the tracking framework: one network is trained to identify the Ostia, and theother network identifies coronaries. Because the method is not given any initialization
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information but the CCTA volume, first seed points are computed by computing prox-imity values from randomly sampled points from the CCTA volume. Once both coronaryand Ostia seed points are localized as the max of the proximity values x∗ = maxx d(x),the CNN orientation classifier is initialized with patches sampled about the seed pointsfrom which to predict the local orientation D. The orientation classifier is iterativelyapplied to patches at location xi = xi−1 + ϵD, x0 = x∗. The tracking is guided by stop-ping criteria based on the measured classifier confidence. At each point the normalizedentropyH(p(D|P )) ∈ [0, 1] of the posterior probability is computed as:

H(p(D|P )) =

∑
d∈D −p(d|P ) log p(d|P )

log |D|
(2.21)

The tracking stops if the entropy of the selected probability distribution crosses athreshold value of ΘH = 0.9. This may happen when near the ostium or the end ofcoronary arteries. However, also stenotic areas may result in low entropy values. Thetermination is determined as a three-step moving average to push the tracking overthese areas. A post-processing routine prunes vessels that are too long or with a smallestimated radius.
Deep Recursive Bayesian Tracking for Fully Automatic Centerline Extraction of
Coronary Arteries in CT Images

Figure 2.7: Overview of the deep particle filtering (Deep-PF) method; at one position thenext direction is estimatedby estimating the vesselness value from2dpatches randomlysampled along the centerline.
This study proposes a method combining a CNN and particle filtering method toidentify the trajectories from the coronary ostium to each distal end from 3D CT im-ages (Deep-PF). The CNN acts as a robust vesselness estimator from 2D tangent patchesrepresenting cross-sections of coronary arteries of circular shapes. The predicted val-ues are integrated as likelihoods in the particle filtering framework for tracking. Thus,2D tangent patches are assumed to include enough features of coronary arteries, andtheir processing is computationally efficient. A method based on clustering the parti-cle locations is employed to solve the issue of bifurcations. This method was tested onthe CAT08 dataset and showed promising results with respect to existing commercialsolutions.
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Particle Filtering The particle filtering method is a sample-based method for trajec-tory estimation. Given the position xt, the next position is estimated utilizing a directionvector computed as the weighted sum of the directions of a set of particles. For a given
location of x(i)t , its estimate is computed as follows:

x
(i)
t = x

(i)
t−1 + ϵ

NT∑
j=1

w
(i,j)
t−i d⃗

(i,j)
t−i (2.22)

The weights are predicted by a Bayesian model of likelihood and prior. The priormodels the probability of transitioning from one sample xt to xt+1, the likelihood isestimated by an observation Y done at location xt+1.

w
(i,j)
t+1 ∝ w

(i)
t p(Y | x(i,j)t+1 )p(x

(i,j)
t+1 | x

(i)
t ) (2.23)

The likelihood p(Y | x(i,j)t+1 ) is computed by a CNN vesselness classifier. 2D Tangentpatches I are randomly sampled from points on the half sphere defined by the currentdirection dt.

p(x
(i,j)
t+1 | x

(i)
t )

= p(d⃗
(i,j)
t ,Φ

(i,j)
t | d⃗(i,j)t−1 ,Φ

(i,j)
t−1 )

= p(d⃗
(i,j)
t | d⃗(i,j)t−1 )p(Φ

(i,j)
t | Φ(i,j)

t−1 ) (2.24)
From the factorization it follows that the relation between directions and tangentpatches over time is independent. The first factor can be computed as the angle be-

tween the two directions p(d⃗(i,j)t | d⃗(i,j)t−1 ) = max(< d⃗
(i,j)
t , d⃗

(i,j)
t−1 >, 0) which implicitly im-poses a smoothness constraint on the estimated trajectory. The second factor employsthe Jensen-Shannon divergence to measure the distance between two distributions as

D(P∥Q) =
1

2
KL(P∥M) +

1

2
KL(Q∥M)

KL(P∥Q) =
∑
x∈X

P (x) log
P (x)

Q(x)

M =
1

2
(P +Q) (2.25)

P ,Q are estimated byΠ(i,j)
t ,Π(i)

t−1 which are the normalized histograms of the tangent
patches Φ

(i,j)
t ,Φ(i)

t−1. A-priori density functions use a mapping function m(x) = 2x3 −
3x2 + 1, as the natural bounds are 0 ≥ D(P∥Q) ≤ ln2 the mapping is bounded onto
[0, 1], thus suits a density function: p(I(i,j)t | I(i,j)t−1 = m(λD(Π

(i,j)
t ∥Π(i)

t−1)).
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Clustering To handle bifurcations the computed weights wt+1 from the sample set
St are used as location densities to detect k ∈ {1, 2} clusters Ω1,2

t ⊂ St, with centroids
µk
t =

∑∥Ωk∥
i=1 wk

t c
k
t which are estimated using the density-based spatial clustering of ap-plications with noise (DBSCAN) algorithm. Thus, the direction for the next position can

be estimated as dkt =
µk
t−xt

∥µk
t−xt∥

.
2.3.3 Centerline extraction using minimal cost path

For each vessel a starting s and an ending e point is computed in an agnostic fashionby a tracking algorithm A. An algorithm B will also compute a probability maskM(x) =
P (x ∈ Coronary Vessel) with x ∈ Ω ⊂ R3 and P (x ∈ Coronary Vessel) the probability ofa voxel position x to be inside a vessel. The maximum probability path on the spatialdomain (regular grid)Ω according to the probability mapM can bemodeled as a searchon the complete graph G.

G = (V,E), V = {x ∈ Ω}, E = {(x, y) ∈ V × V }

P ∗ = max
P

∑
x∈P

M(x)−
∑

xρ(i)∈P
dist(xρ(i), xρ(i+1))

P = {x | (∗, x) ∈ E} (2.26)
where the ordered list P = [x0, . . . , xk, . . . , xN−1] and subscript ρ(i) indicates thenode x is the ith node in P . An exhaustive search on a complete graph is too expensive,the graph can be simplified by considering only neighbourhood connections.

Gϵ =< V,E >, V = {x ∈ Ω}, E = {(x, y) ∈ V × V | dist(x, y) ≤ ϵ} (2.27)
By adjusting ϵ to 1 or √3 we obtain a 6 or a 26 connected neighborhood, respec-tively. A tree is a Directed Acyclic Graph (DAG); therefore, the minimal cost path fromthe starting to the ending point should not contain cycles. Alltough these premises,there is no need to model G directed graph because costs increase monotonically (allways positives). A maximal probability path on a DAG can be computed by any BreadthFirst Search (BFS) routine. Therefore a faster optimal solution can be found utilizing a

A∗ on the graph Gϵ. In [35] the authors proposes a geodesic distance transform on theprobability mapM using a fast marching algorithm; this approach corresponds to BFSon a regular voxel grid and locally computes themaximal probability path from the startto the end point of the vessel, the computation of a local front of propagation is alsoresource-efficient.
2.3.4 Skeletonization

The centerline of coronary structures is closely related to the topological skeleton. Al-though not for centerline extraction, [46] proposed recently a novel topological loss
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(CL-Dice), which enforce connectivity in vessels by exploiting the differentiable morpho-logical Soft-Skeleton. However, this formulation does not guarantee the connectivity oftubular structures. The skeleton has many applications in studying tubular or quasi-tubular objects. It conserves the original topology, provides 1-d dimensionality reduc-tion. In the continuous domain, the skeleton has an ideal set of properties [47]: it shouldbe centered in the object, with the same homotopy-type as the object (in particular con-nectivity), and be thin (e.g. its area or volume is negligible). The grassfire process [48] isthe first historical model that produces a skeleton. In the discrete domain, these idealproperties cannot be guaranteed. Inmathematical morphology, the skeleton can be de-fined through Lantuéjoul’s formula (Equation 2.28), which is thin in the sense that eachpoint of the skeleton is a neighbor of the background (non-simple points) and centeredwith respect to the Euclidean distance transform of the object. The resulting skeletonremains, however, disconnected.
S(X) =

⋃
i∈N

Si(X) = εκi
(X)∖ γκ0

[εκi
(X)], (2.28)

where γκ0 is the unit ball opening, εκi is the erosion with κi an element of a granulomet-ric family of elementary convex structuring elements, i.e. such that ∀(i ≤ j), γκi(κj) =
κj

2.3.5 clDice

Loss functions for semantic segmentation are often based on overlap measures: Preci-sion, Recall, Dice, and Jaccard index. While these are suited for generic object segmen-tation, tubular structure segmentation often requires to conserve connectedness whichis not measurable using overlap-based metrics. From an application point of view, con-nectedness is necessary to preserve the network structure of the segmentation, whichis one of the main functional goals of the identification of tubular structures. In [46] theauthors proposed a novel topology-preserving loss based on a suitedmetric for tubularstructures segmentation: the centerline Dice (clDice). The topology-preserving metricmeans that also connectivity is preserved, and these are based on the notion of theskeleton. For tubular structures, the skeleton corresponds to the centerline, which isthe union of geometrical centers of the lumen sections. Consider the sets VP , VL andtheir respective skeleta SP , SV , the clDice metric can be defined using overlapping met-rics on the skeleta.

prec(SP , VL) =
|SP ∩ VL|
|SP |

sens(SL, VP ) =
|SL ∩ VP |
|SL|

clsDice(VP , VL) = 2× prec(SP , VL)× sens(SP , VL)prec(SP , VL) + sens(SP , VL)
(2.29)
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This metric is topology-preserving as it acts upon the skeleta, which embeds thetopology of the object. The skeleta are a homology class of the object (meaning preservethe original topology) but are thin, meaning that each point of the skeleton is simple,and the absence of any point changes the underlying topology (minimal). The loss isthus suited to match homology classes meaning that it is minimal when the 2 functions
VP , VL have the same connectedness. In [46] authors proposes a theorem that impliesthat at itsmaximum clDice necessarily implies homology. The implication does not workfor theminimum, however (a simple counter-example is a translation). Thus, this metricdoes not measure homology but implies homology at its maximum.
2.3.6 Soft-ClDice

Lantuéjoul’s formula (Equation 2.28), gives an iterative morphological interpretation ofthe skeleton which involves erosion and opening operators. A proxy for the morpho-logical operators (erosion and opening) can be implemented by max and min poolingoperators which can be included in the computation of a gradient in back propagation.
Algorithm 1 Soft-Skeleton
Input: I,K
I ′ ← maxpool(minpool(I))
S ← Relu(I − I ′)
for i← 0 toK do

I ← minpool(I)
I ′ ← maxpool(minpool(I))
S ← S + (1− S)⊙Relu(I − I ′)

end for
Output: S

For continuous values the clDicemust be redefined to operate on prediction featuremasks. Similarly to the Soft-Dice that is maximized to obtain a semantic segmentationfrom continous maps, the Soft-clDice here is proposed (Algorithm 2) to take as input afeature map VP .
Algorithm 2 Soft-ClDice
Input: VP , VL

SP ← Soft-Skeleton(VP )
VP ← Soft-Skeleton(VL)Prec(SP , VL)←

∑
i(SP⊙VL)(i)+ϵ∑

i SP (i)+ϵ

Sens(SL, VP )←
∑

i(SL⊙VP )(i)+ϵ∑
i SL(i)+ϵ

clDice← 2× Prec(SP ,VL)×Sens(SP ,VL)Prec(SP ,VL)+Sens(SP ,VL)

Output: clDice
In general for segmentation when a complete ground truth VL is available, the ob-jective is topological correctness and accurate segmentation thus the loss is composedby two weighted terms.

32



Lα = α(1− Soft-Dice) + (1− α)(1− Soft-ClDice), α ∈ [0, 0.5] (2.30)
2.3.7 Topology preserving loss

Topologymetrics can be computed by using computational topology tools [49] like Bettinumbers and persistence diagrams. These features, however, map discrete binary sets(segmentationmask) onto discrete values and are non-differentiable. In [50] the authorspropose a novel topology-preserving loss function defined on the continuous-valuedfunction, which is differentiable and can thus be integrated into an end-to-end deeplearning framework.
Topology and persistent homology

Given a spatial domainΩ ⊂ R3, the likelihood function f(x) : Ω 7→ [0, 1], and the thresh-old operator fα = {x ∈ Ω | f(x) > α}. Given a set X its homology class is the set of d-dimensional manifolds that can be computed fromX the number of d-manifold ofX iscalled Betti number (d). The set of different segmentations ⊂ fα1 ⊆ fα2 · · · ⊆ fαn ⊆ Ω,for 0 < α1 < α1 . . . αn ≤ 1 constitutes a threshold set. The topology varies as α varies,the location at which topological changes occurs are also critical points of the function.These locations can be mapped to connection nodes in a topological feature represen-tation space of the segmentation (graph of manifolds, NB: in 2d only connections loca-tion occurs as 0-d manifolds of X are 1-d manifold of the complementary space Ω/X).On these graphs one can compute the persistence diagram corresponding to the α atwhich a certain connection ismade or is eliminated (birth and death) which correspondsto the underlying value of f at the critical point (thus time of birth = f(p) with p being acritical point of connection and time of death 1− f(p)), from this diagram it is possibleto compute a loss by measuring the distance between the time of birth and death toa ground truth. From these locations the error is back-propagated to the feature mapthus computing a topological gradient.

min
γ∈Γ

∑
p∈Dgm(f)

∥p− γ(p)2∥=

∑
p∈Dgm(f)

(birth(p)− birth(γ∗(p)))2 + (death(p)− death(γ∗(p)))2 (2.31)

Topological Loss gradient

The loss function depends on time of death and birth of topological structures, which inturn depends on the thresholds α values where these changes happen. These topolog-ical discontinuities happen at certain locations, which are critical points of the function
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Figure 2.8: Topology of the continuous-valued function f. The darker the higher thevalue. (a) an example of a segmentation obtained by filtering f at a value for which thenumber of connected components is 2 and the number of holes is 1. (a) For anotherthreshold the segmentation obtained has a different topology: 1 connected componentand 2 holes. (c) The topological point at which the topology changes are also criticalpoints of the underlying function f . (c) The highlighted critical point of the underlyingfunction f ′ have a deeper gap and therefore a lower value it will thus influence the lossdifferently.
f . Because of the value of birth and death dependency on the function f , the loss canbe rewritten as:

∑
p∈Dgm(f)

(f(cb(p))− birth(γ∗(p)))2 + (f(cd(p))− death(γ∗(p)))2 (2.32)

where cb and cd are functions mapping each point to the critical point of birth ordeath of topological structures. In a training setting the function f is estimated by aneural network with parameters θ, thus the gradient∇θLtopo(f, g) is formulated as:
∑

p∈Dgm(f)

2(f(cb(p))− birth(γ∗(p)))
∂f(cb(p))

∂θ
+ 2(f(cd(p))− death(γ∗(p)))

∂f(cd(p))

∂θ

(2.33)
Thus the error is back-propagated directly to critical points of the function f , whichis piece-wise differentiable (neural network). The intuition of this loss is that the neg-ative gradient ∇θLtopo(f, g) which pushes points from the Dgm(f) towards the pointsin Dgm(g). These points are dependent on the values at critical points cb(p) and cd(p).Intuitively a saddle point is pushed "upwards" to connect the bridge. Empirically thetopological loss is complementary to the cross-entropy by combating the sampling bias.By focusing on critical points, the relative error induced by mistakes at these locationsis magnified while the global cross-entropy counter-balance the over-fitting of solvingfor critical locations.
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Figure 2.9: The point distances in theDgm(f) +Dgm(g) andDgm(f ′) +Dgm(g) showthat the topological loss Ltopo(f, g) < Ltopo(f
′, g).

Figure 2.10: For a sample patch from the CREMI dataset, the likelihoodmaps is shown atdifferent training epochs. The first row corresponds to likelihood maps and the secondto the thresholded likelihood maps.
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2.4 Curved planar reformation

Non-invasive imaging of the vascular system with computed tomography (CT) has be-come a well established alternative to invasive intra-arterial angiography. These data,however,may containmanyobjects of less or nodiagnostic interest. Thismakes volume-rendering (i.e., maximum intensity projection (MIP), ray casting, shaded surface display)without pre-processing often impossible or inaccurate. In addition to that pathologicalfeatures may superimpose diagnostically relevant information. In the case of a circularvessel wall calcification the true vessel lumen can not be determined by conventionalvolume rendering. CPR is a way to visualize vascular structures with small diameters.High level information as the vessel’s centerline is used to re-sample and visualize thedata. By this technique the entire tubular structure is displayed within a single image.Vascular abnormalities, i.e., stenosis, occlusions, aneurysms and vessel wall calcifica-tion, are then investigated by physicians.

Figure 2.11: Different CPR generation methods: Stretched CPR, and Straightened CPR

2.4.1 Stretched CPR

A normalized VOI (Vector Of Interest) and the coordinates points of the vessel centerlinecompose a surface which as a planar projection parallel to the VOI and a curved projec-tion. Stretching the curved projection shows the tubular structure without overlapping(Figure 2.12). This type of CPR is referred to as stretched CPR. The line composed by onepoint of the centerline and the VOI is mapped to a 2d surface. The resulting planar map-ping is isometric. The point vector di = ⃗PiPi+1 represents the path direction at position
i. The vector l is the normalized VOI representing the current rotation. The offset inspace is therefore computed as Equation 2.34.
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∆i =

√
∥di∥2− < l,di >2 (2.34)

The image position of the next line is given by yi+1 = yi + ∆i. The centerline isassumed to be re-sampled to a normalized arclength. This process ensures that tubularstructures are visible along the entire distality. By changing the angle of l with respectto the origin one can obtain different visualizations of the surrounding structures ordifferent portions of the vessel wall. Themain advantage is the preservation of isometry.

Figure 2.12: A tortuous vessel used as example for stretched CPR. This example showshow a small variation in the angle has little visual changes locally but propagates majorchanges in the rest of the image.
2.4.2 Straightened CPR

Straightened CPR is a way to visualize vascular structures. The detected centerline isused to visualize the CCTA data, characterize plaque and assess stenosis. It has beenalso used consistently for automatic coronary analysis as an input for automated diag-nosis [51, 15, 52, 53]. CPR and MPR are often used interchangeably depending on thecontext (another less used name is medial axis reformation MAR). The coronary center-line can be seen as discrete parameterized 3d curve, and arc-length parameterized:
c(s) = x(s), y(s), z(s), i ∈ [0, L]

||c′(s)|| = 1
n∑

i=1

|c′(s)| = L

(2.35)
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For each point c(s) a local frame [t(s), n(s), b(s)] ∈ R3×3, tangent, normal, and binor-mal respectively, is used as orthonormal coordinate system to sample voxel intensitiesalong the plane orthogonal to the curve c. While t(s) = c′(s) is unique there are infinite
n(s) lying in the plane t(s) · n(s) = 0 with n(s) × t(s) = b(s): depending on the needdifferent formulations have been proposed.

• VR: a volume relative (VR) view can be obtained by keeping the closest orthogonalplane to any of the volume planes (axial, coronal, saggital) represented as I =
[e0, e1, e2] ∈ R3×3: the tangent is obtained simply by: t(s)× ei = n(s).

• Freenet: The arclength parameterized curve has a tangent second derivative:
c′(s) · c′′(s) = 1

2
d
ds(c

′(s) · c′(s)) = 1
2

d
ds ||c

′(t)||2 = d
ds1 = 0, the curvature κ(s) =

||c′′(s)|| the normal is obtained as the normalized second derivative n(s) = c′′(s)
κ(s) .

A preferable strategy is to use n(s) = c′(s)×c′′(s)
||c′(s)×c′′(s)|| . A frame is undefined ifK(s) = 0

so only curves that are regular with non-vanishing curvature are considered.

Figure 2.13: Freenet normal flipping depends on the local curvature orientation.
• RMS: In [54] the author propose a rotation minimization sweeps (RMS). This for-mulation assumes κ(s) ̸= 0 and a arclenght parameterized curve ||c′(s)|| = 1.Ideally |n(s) · n(s+∆s)| and |b(s) · b(s+∆s)| are maximized, from these assump-tions it is possible to arrive to the following DOE.

n′(s) = −(c′′(s) · n(s))c′(s)/||c′(s)||
b′(s) = −(c′′(s) · b(s))c′(s)/||c′(s)||

(2.36)
which leads to the following first order iterative scheme n(s+∆s) = n(s)−
(c′′(s) · n(s))c′(s)/||c′(s)|| the binormal can be computed at each step b(s+∆s) =
n(s+∆s)× t(s+∆s).

• RMS-DR: double reflection (DR) method can be used to solve a vector valued DOE
f ′(s) = F (t, f) like RMS [55]: it has been empirically proven to have 2nd orderapproximation error. It can also be implemented in a simple fashion as an iterativemethod but its guarantees have non trivial geometrical justifications.
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(a)

(b)

(c)

(d)
Figure 2.14: A tortuous vessel used as example for multiple frame views results. (a) VR:presents a negligible discontinuity. (b) Freenet: non negligible discontinuities due tonormal flips. (c) RMS: no discontinuities. (d) RMS-DR: no discontinuities.
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2.5 Coronary Labeling

CCTA has been widely used for CAD diagnosis. In a computed-aided diagnosis appli-cation, automated coronary labeling facilitates the diagnostic process for cardiologistsand radiologists. Themost challenging issue in automated coronary labeling is address-ing large individual variability inherited in human cardiovascular anatomy [56]. Long,tortuous vessels branching patterns cause a large inter-patient variation. The Ameri-can Heart Association (AHA) reference model [57] (fig. 2.15) contains a set of main coro-nary arteries: Left Artery Descending (LAD), Left Circumflex (LCX), Posterior DescendingArtery (PDA), Posterior Lateral Branch (PLB), Obtuse Marginal (OM), Ramus IntermediusBranch (RIB), and Diagonals of the left branches among others. Coronary arteries spanover different territories of the myocardium and develop in different combinations ofcoronaries vessels. Coronary trees are therefore often intricate and incomplete due toanatomical variations. The coronary tree branching can bemodeled as a directed acyclicgraph (tree): a common aortic node (root), the intermediate nodes (bifurcations), andthe coronary leaves (vessel branches). Automated coronary labeling consists of assign-ing the correct anatomical identifier to each coronary segment given a representationof the coronaries computed from a CCTA examination. The path from the vessel branchto the aortic root can determine the complete vessel. This session will present an ap-proach based on deep learning and graph convolutional network (GCN) to solve auto-mated coronary labeling. We will compare the proposed oriented graph convolutionalnetwork (ORI-GCN) method against knowledge based (KB) baseline method.

Figure 2.15: The complete coronary tree referencemodel contains a set ofmain coronaryarteries: LAD, LCX, PDA, PLB, OM, RIB, and Diagonals of the left branches.

2.5.1 Related Works

The coronary tree is a graph structure that is computed by a complete tracking of allcoronary branches. Many computer vision based techniques have been developed for
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automated coronary labeling [58, 59, 60, 61, 62, 63, 64]. Atlas-based approaches relyon template matching of tree-like structures [58, 62], while another method proposes amachine learning-based approach relying on feature engineering [59, 60, 61]. However,this method may have unsatisfactory performances when the branching structure isparticularly complex, motivated by the recent application of deep learning on the graphand as more data become available, current methods employed neural network archi-tectures for automatic coronary labeling [63, 65, 64].

Figure 2.16: Bi-TreeLSTM algorithmic pipeline. The positional features are extracted asposition of the coronary segment along the centerline in both Cartesian and polar co-ordinates, these features are then fed to the TreeLab-Net for prediction.

2.5.2 TreeLab-Net

In [63] the centerlines are first extracted as a preprocessing step. A spherical coordi-nates transform is performed based on the centerlines CCTA: 3D intensity features areextracted from the volume as well as the 2D spherical coordinates. These features areused as input of a TreeLab-Net to predict the corresponding coronary label (fig. 2.16).The TreeLab-Net is a dynamic architecture that consists of nodes for each coronary seg-ment. Each node in the network includes three main modules: multi layer perceptron(MLP), Bi-TreeLSTM and a softmax layer. The MLP layer encodes each feature vector toobtain a compact representation of each node. The Tree-LSTM encodes these compactrepresentations to obtain the representation of the current node (state) with respect tothe predecessor nodes (hidden state). By design LSTM architectures are employed toprocess sequential data, the Tree-LSTM is a dynamic architecture that has been used toprocess syntax trees for natural language procesing (NLP) [66]. A Tree-LSTM at node tcontains the input features it (eq. 2.38), output features ot (eq. 2.40), memory features
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mt (eq. 2.41), memory cells ct (eq. 2.42), aggregated hidden stateHt (eq. 2.37), and a setof forget features ftl (eq. 2.39) for each child l of node t and an output hidden state ht(eq. 2.43).

Ht =
∑
l∈Ct

hl (2.37)
it = σ(W (i)xt + U (i)Ht + b(i)) (2.38)
ftl = σ(W (f)xt + U (f)Ht + b(f)) (2.39)
otl = σ(W (o)xt + U (o)Ht + b(o)) (2.40)
mtl = tanh

(
W (m)xt + U (m)Ht + b(m)

) (2.41)
ct = it ∗mt +

∑
l∈Ct

ftl ∗ (1−mt) (2.42)
ht = ot ∗ tanh(ct) (2.43)

whereW (i), b(i),W (f), b(f),W (o), b(o),W (m),b(m) are the trainable weights and biasesof each layer. The bidirectional extension is obtained by making two computationalpathways. For each node the input nodes will be either the children or the predecessorsthus merging two computational pathways ht = h↑t + h↓t . The model was trained tominimize the classification loss (Equation 2.44).

LΘ =
1

N

N∑
k=1

yk log pk +
λ

2
∥Θ∥2 (2.44)

where pi is the ot with t being a leaf node and yi being the ground truth label. Themethod was validated on 436 annotated subjects using 10 fold cross validation.
2.5.3 CPR-GNN

In [65] the authors propose a conditional partial residual graph convolutional network(CPR-GCN) architecture equippedwith a novel discrete partial-residual block. It allows tocompose positional and image features information. Local image features are extractedby sampling patches centered around the centerline. These are processed by a 3D-CNNand an LSTMmodel to output a feature vector y that encodes the segment informationmatching the vector size of the positional features x. The x and y vectors are input tothe model by means of the proposed conditional partial-residual block (fig. 2.17). Byanalytical derivation, the authors show that spatial information is used as conditions ofa partial differential equation influencing the positional features computed via the CPR-GCN layers (eq. 2.46). A graph convolutional residual layer is defined by equation 2.45,where σ is a non-linear activation,A is the adjacencymatrix of the graph,D is the degree
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matrix of the graph, H0 = X which are the input features, and W l is a trainable set ofparameters.

H l+1 = σ(D− 1
2AD− 1

2H lW l) +H l (2.45)

In the CPR-GCN setup, there are two sets of features x(l) and y, which are the posi-tional domain features (spherical and Cartesian coordinates) of a segment and the localimage domain CCTA features respectively extracted through a 3D-CNN and a LSTM.

∇H l(x(l), y) =
∂H l(x, y)

∂x
dx+

∂H l(x, y)

∂y
dy

=
∂H l(x, y)

∂x

dx

dl
dl

= GCNA(x, y)dl

(2.46)

The method was trained to minimize the cross-entropy loss between the predictedvalue of each node and the ground truth label. The authors experimentally show by us-ing a dataset of 511 annotated subjects with 5 fold cross validation that this conditioningsignificantly enhances the performances and ultimately surpasses the Bi-TreeLSTM [63].

Figure 2.17: CPR-CNN architecture shows how conditioning image features are extractedfrom the CCTA volume. ⊗ stands for the sampling operator: patches are sampled fromthe volume using the centerline positions. ⊕ stands for the residual connection. Com-putationally conditioning happens via concatenation of the image features computedby the LSTM and the positional features.
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2.6 Coronary Analysis

CT Coronary Analysis provides the means for evaluating the coronary arteries. Diagno-sis is guided by the localization of anatomical indicators of CAD: stenosis and plaques.While occlusion remains a highly predictive indicator ofMACE, there is growing evidencethat the presence and characteristics of coronary atherosclerosis provide additionalprognostic information. Stenosis is a morphological characteristic consisting of a lo-calized narrowing of the coronary. As a consequence, blood flow is limited, with poten-tially harmful consequences on cardiac functions. Plaques are the result of metabolicactivities building up lipids and calcium deposits within the coronary vessel wall tissues.Depending on their composition, plaques can cause ischemia or stenosis. CCTA is theonly non-invasive imaging technique that reliably depicts the anatomic extent of CAD.In CCTA injected contrast solution highlights morphological characteristics of vessels,furthermore, CT is sensitive to plaque composition (true positives). Calcified plaquesdisplay high-intensity Hounsfield Units (HU) representative features, while more com-plex representations characterize high-risk soft plaques. CT reconstruction noise isdetrimental to the specificity of plaque representation (false positives), thus the needfor clinical expert visual inspection. However, accurate identification and quantifica-tion are burdensome and time-consuming because of X-ray scanners’ limited tempo-ral, spatial, and contrast resolutions. Automated CT Coronary Analysis aims to detectanatomical indicators along the coronary centerline and, based on their composition:position, and degree of stenosis, rule out CAD. Deep learning is an obvious candidatefor automated CT Coronary Analysis because of the robustness to noise and ability toexploit large amounts of annotated data. In this section, we will present a series of deeplearning-based methods for automated CT Coronary Analysis. Neural network modelsare trained to predict different indicators related to the assessment of CAD. These indi-cators can be computed during more invasive procedures (fractional flow reserve (FFR))or provided by expert manual annotation.
2.6.1 Related works

recursive convolutional neural network (RCNN) [15] method CPR coronary volumes topredict coronary plaque characterization and stenosis. The centerline volume is pro-cessed as a sequence first by a shallow 3D CNN and a recursive gated recurrent unit(GRU) sequence classifier. In [67] the authors propose to replace the local feature extrac-tor by Radiomics features [51] computed from the vessel wall segmentation. These fea-tures are then processed together by the same GRU sequence classifier. Subsequently,in [53] the authors proposed to use as input two perpendicular views of the straight-ened CPR volume to a 2D CNN classifier based on VGG-16 features extractor [68]. Themethod achieved similar results to the 3D RCNN in predicting revascularization and ob-struction for a given input lesion, but with a cost-effective pipeline. However, it relies onboth the extracted centerline and the localization of the lesion of interest (starting andending point). The TR [52] method has been recently proposed as the state of the artfor obstructive stenosis (> 50% occlusion) detection against both [51] and [15].
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Figure 2.18: The recurrent CNN recursive convolutional neural network (RCNN) archi-tecture [15]. A sequence of overlapping patches are sampled from the CPR volume com-puted from the CCTA volume by means of the tracked coronary centerline. The patchesare processed individually by a shallow CNN (3 convolutional network interleaved withmaxpooling) for local feature extraction, these features are arranged in a sequence andfed to a unidirectional gated recurrent unit (GRU) with two recurrent layers, the finaloutput is used to predict the plaque characterization and the stenosis degree.

2.6.2 Coronary plaque and stenosis detection with RCNN

In [15] the authors propose to use a RCNN to process straightened CPR volumes ex-tracted from CCTA volumes to detect stenosis and characterize plaque into 4 classes:no-plaque, calcified, mixed and soft, while stenosis is detected if significant (≥ 50% lu-minal narrowing). The straightened CPR volume is processed by extracting overlappingpatches sampled with fixed interleave space of 1.5mm from an isotropic 0.3mm. Thesepatches are processed individually by a 3D-CNN for local feature extraction. A smallinput patch p ∈ R25×25×25 allows for the use of a relatively shallow CNN, which is lessprone to over-fitting. The local feature vectors f ∈ R128 are then arranged in a tempo-ral sequence s ∈ RT,128. The temporal sequence is fed to the gated recursive unit GRUwith two recurrent layers GRU128 ◦GRU128. The GRU analyzes the relevant sequentialdependencies and maps the sequence to an output vector which is tested against theground truth for classification (fig. 2.18). The manual annotation labels the entire seg-ment. In order to achieve finer localization, the inference pipeline is modified to process
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small overlapping subsequences. Each location is thus assigned the corresponding labelpredicted by the model sliding over fixed length subsequences. The network is trainedand tested on 98 and 65 CCTA examinations, respectively. Each CCTA volume is pairedwith coronary centerlines andmanually defined segments (start and end point). For de-tection and characterization of coronary plaque, the method achieved an accuracy of0.77; for stenosis detection, an accuracy of 0.80.
2.6.3 Stenosis detection with transformer (TR)

In [52] the authors propose to use a transformer network (TR) to process straightenedCPR volume extracted from CCTA volumes to detect significant stenosis (≥ 50% luminalnarrowing). The CPR volumes are processed by sampling patches at a fixed interleavedinterval. These are fed to a shallow 3D CNN with a receptive field inspired by [15] forlocal feature extraction. The CNN encoder produces a feature vector x ∈ RC for eachlocation along the coronary segment. These feature vectors are then arranged in a se-quence towhich the positional encoding is added and subsequently fed to a transformerencoder [20]. The transformer encoder is composed by a series of MHSA that outputsa prediction vector ZT ∈ RL×(1) where L is the segment length and T is the number ofMHSA layers (eq. 2.47).

Z0 = [x1 + o1, . . . , xL + oL]R
L×(C)

Z ′
t = MHSA(LN(Zt−1)) ∈ RL×(C)

Zt = FCN(LN(Z ′
t) + Zt−1) + Z ′

t + Zt−1 ∈ RL×(C)

(2.47)

whereL is the length of the sequenceZ0 is obtained by adding the output of the backbone to the trainable order embeddingZ0 = [f0+o0, . . . , fL−1+oL−1]. The advantage isthat the MHSA is bidirectional (all directional) while the GRU used in [15] is not. This is achoice as GRU can be bidirectional. However, the authors did not notice improvementsin using the bidirectional GRU. This method was tested on 76 CCTA examination for 609coronary branches CPR volumes. Each coronary branch was subdivided into segmentsof equal lengths (150mm). The model outperforms the RCNN [15] on the proprietarydata in terms of accuracy (0.87 against 0.94) and specificity (0.89 against 0.96) and MCC(0.60 against 0.74).
2.6.4 Coronary Analysis with 2.5D CNN (2.5D)

Both aforementioned methods exploit the CPR straightened 3D representation of thecoronary, which is computationally expensive to obtain and process by the subsequentmachine learning pipeline. To mitigate this, authors in [53] propose a 2.5D multi-viewapproach as shown in figure (2.20). This method was trained and tested on 95 patients’CCTA examinations paired with the coronary centerline and 345 manually defined le-sions of interest. The evaluation has been carried out by using 5-fold cross-validation.The 2.5 methods trained from scratch obtained an AUC of 0.9 and 0.92 for stenosis and
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Figure 2.19: The transformer network (TR) architecture [52]. A sequence of overlappingpatches is sampled from the CPR volume computed from the CCTA volume through thetracked coronary centerline. The patches are processed individually by a 3D CNN forlocal feature extraction. These features are arranged in a sequence and fed to a multi-head self-attention MHSA unit with the positional encoding of the coronary segment,and the final output is used to predict the stenosis degree.
revascularization classification, respectively, outperforming both 3D CNN and VGG-16and ResNet feature extractors.

Figure 2.20: Two orthogonal views are extracted from the CPR volume of the lesion ofinterest. These are concatenated in a 2.5D view and fed as input of a 2D-CNN. Thismethod relies on both the centerline extraction and the localization of the lesion ofinterest
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Chapter 3

Contributions

Coronary Artery Disease (CAD) and Major Adverse Cardiovascular Events (MACE) auto-matic prediction is a broad-spectrum topic that relies mostly on the analysis of anatom-ical indicators of CAD. Coronary Computed Tomography Angiography (CCTA) is the onlynon-invasive imaging solution which is sensible to the depiction of CAD related anatom-ical indicators (sec. 1.1.1), because of the high through-put this modality is suited for thescreening of CAD and it is essential to develop automated and computer-aided solutionsby retrospective analysis. The goal of our studies is to explore the feasibility of image-based automated diagnosis of coronary artery diseases by the bias of deep-learningtechniques which mostly relies on annotated CCTA data. This is done by evaluating thecapability of automated method to predict relevant clinical indicators from ComputedTomography (CT) images that are predictive of CAD. For the algorithmic pipeline design,in this work we chose to focus on a data-driven approach mostly relying on deep learn-ing techniques. There are several tasks involved in the diagnosis of CAD which are oftenreferred to as cardiac workflow. In this chapter we propose our contributions to Cal-cium score prediction from Calcium Score Computed Tomography (CSCT) and coronarytracking, labeling and analysis from CCTA.
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3.1 Calcium Score

CAD is one of the leading causes of mortality in the world. Coronary Artery Calcium(CAC) has been shown to be associated with the presence of CAD and to be a strong andindependent predictor of cardio-vascular events and mortality [13]. CAC can be quanti-fied or scored with low dose ECG-gated non enhanced CT acquisition namely CSCT. Inclinical practice, the CAC burden is measured by means of the Agatston score (AS). Thepredictiveness of this metric has been widely validated in numerous studies involvingcardiovascular risk [11]. Typically AS is computed using standardized parameters, andnotably a tube voltage of 120 kV and a series of 2.5mm to 3mm thick slices coveringthe entire cardiac volume. The AS is computed from 2D axial connected componentsabove 130 Hounsfield Units (HU) that are manually or semi automatically identified ascoronary calcification by the radiologist. A manual intervention is often required to val-idate a segmentation made beforehand by a software. Beyond the time spent, thisexposes to measurement variability depending on the software and the experience ofthe operator. According to several guidelines, this score is a reliable tool to classify pa-tients into 5 classes for risk assessment and to guide follow-up preventive strategy andtesting [69]. Several recent studies have reported different experiences in automat-ing the procedure of segmentation and quantification using different deep learning ap-proaches [25, 45, 32, 70]. We propose an approach based on Unet architecture ensem-bles for CAC burden assessment of CSCT volumes [16] and evaluate it in the context ofthe data challenge organized by the Société Française de Radiologie (SFR) [71].

3.1.1 Ground truth generation

For each CT volumeof the training set, a ground truthwas created in the formof a binarymask of calcifications obtained from the provided position of each calcification. Thisprocess was performed automatically by selecting the connected components of voxelsabove 130HU connected to the calcification 3D positions provided in the annotation. Toensure the quality of the segmentationmask, the AS was then computed from themaskand compared to the original AS risk category. In case of discrepancy between the tworisk categories, the masks were reviewed, and manually corrected if needed. The ASis then computed by 2d connected component analysis performed on each slice of themask using the following formula:
Agatston Score =

∑
i

∑
j

aijdij
∆z

3

where aij is the area of the jth 2d connected component (of at least three voxels) onthe ith axial slice, dij is a density factor determined by the maximum attenuation in thisconnected component (130−199 HU : 1, 200−299 HU : 2, 300−399 HU : 3,≥ 400 HU : 4),and ∆z is the axial thickness of the acquisition in millimeters. Non matching cases arereviewed by a radiologist.
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3.1.2 Proposed method

Figure 3.1: Pipeline for AS computation. CSCT volumes are downsampled to isotropicresolution of 2.5mm to 3mm depending on the original slice thickness, the calciummaskis downsampled using nearest neighbours in order to keepmagnify small calcifications.The down-sampled volumes are concatenated and fed to eachUneti for prediction. Themax of each prediction is then up-sampled to the original resolution, The original maskis used to refine CAC prediction. Finally the AS is computed.
We propose an approach based on deep learning to predict the CAC segmentationmask given a CSCT scan as input. The training pipeline is based on the training of indi-vidual Uneti in parallel on the same training set using the generated CAC dense masks(section 3.1.1). The inference pipeline consists into ensembling the different predictionto compute a CAC mask from which to compute the binned AS to asses the risk.

Model architecture

The ensemble consists in identical 3D Unet architectures with a depth of 4 levels and 16initial root filters. The encoder consist into 4 convolutional blocks, each composed as
ConvBlockc = Conv3dk,c ◦ Elu ◦ Conv3dk,c ◦ BatchNormc, with k = 3. The decoder is sym-metrically organized. Each block is connected with skip connections, the pre-processingstep of isotropic resolution downsampling allows to use isotropic convolutional kernels.
Inference

Each CSCT volume is first downsampled to an isotropic resolution of either 2.5 mm or3 mm (depending on the original slice spacing). As an effect of the down-sampling, theinformation of low-density calcifications could be lost in the low-resolution image. Inorder to restore this information, intensities above 130 HU in the original image were
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enhanced in the down-sampled image. Finally, the processed volume was clamped be-low−300 HU and above 800 HU, and linearly normalized between 0 and 1. The volumesare concatenated by addition and fed individually to each Uneti to output predictionmasks predi i ∈ [0− 4], The final prediction mask is obtained by applying the max (voteunion) over each voxel pred =
∑

i predi/5. The prediction is then up-sampled to matchthe original resolution of the CSCT volume and the original mask is used to refine theCAC prediction. The output volume is used to compute the AS using the formula (sec-tion 3.1.1).
Training

The training of each Unet model is done independently to allow parallelisation, withoutpre-training, and using a different random initialization. Eachmodel prediction is testedagainst the ground truth using the Dice loss function. A validation set of 20 exams fromJ1 was used to select the best epoch during training. The training process was donewith TensorFlow version 1.14 in Python 3.6, on a NVIDIA® GV100-32GB GPU. We consid-ered 3 different data subsets for training: J1, J1+J2, J1+J2+AD, and trained independently5 models for each of these subsets.
3.1.3 Experiments

Testing

For each test volume, the model predicted a calcification mask on which the AS was fur-ther calculated. Four metrics were computed to compare the scores predicted for eachpatient of the test set (J3) to the ground truth scores: category accuracy, C-index, Cohenlinearly weighted kappa and two-way intraclass correlation coefficient (ICC) for abso-lute agreement. The category accuracy gave the percentage of correct risk category inthe evaluation set. The C-index or Harrel index measured the proportion of concordantpairs divided by the total number of possible evaluation pairs:
C-index = (#concordant pairs)/(#all pairs) = (#(i, j) | pi < pj ∧ ti < tj)/(

(
n

2

)
)

where pi is the predicted risk score category, ti is the true risk score category and n isthe number of elements to compare. The C-index lies between 0.5 (random prediction)and 1 (all scores risk category correctly predicted). The category accuracy, C-index andCohen linearly weighted kappa were computed from the AS risk categories, while theICC was evaluated from the AS. Bland-Altman plots were used to assess agreement be-tween the ground truth AS and the AS predicted by the final ensembled model on eachexamination of the test set (J3). The final ensembled model trained on the full trainingset (J1 + J2 +AD) was also evaluated on the orCaScore [45] test set (OS) with the categoryaccuracy, ICC and F1-score defined as: 2 Precision Recall / (Precision + Recall). Unlike theother metrics that were computed from the AS, the F1-score (equivalent to the Dice sim-ilarity coefficient) was directly computed from the segmentation masks and thereforeevaluated the quality of the CAC segmentation.
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Method MetricsC-index Categorical Accuracy Cohen kappa ICC1 Unet J1 0.932± 0.008 83.2± 1.0% 0.860± 0.011 0.963± 0.0055 Unet J1 0.939 84.7% 0.875 0.9671 Unet J1+J2 0.943± 0.005 84.9± 1.5% 0.881± 0.009 0.963± 0.0025 Unet J1+J2 0.944 84.7% 0.882 0.9641 Unet J1+J2+AD 0.949± 0.006 86.4± 1.0% 0.893± 0.008 0.959± 0.0095 Unet J1+J2+AD 0.951 85.7% 0.894 0.970

Table 3.1: Performance of each model on the test set (J3), 1 Unet versus 5 ensembleUnet. For single models, means and standard deviations across the 5 trained modelsare reported for each metric.

The performance of the different models on the test set (J3) is presented in tab. 3.1.3and fig. 3.3, showing the average performance obtained with a single model comparedto the performance of the ensembled model for the different training sets considered.The C-index of the ensembled models improved with the size of the training set from0.939, 0.944 to 0.951 when using J1, J1 + J2 and J1 + J2 +AD data sets respectively. The en-sembling of five different models improved the performance in terms of C-index com-pared to the average performance of a single model (tab. 3.1.3). On the models trainedwith the full training data set, only a small degradation in accuracy was observed withthe ensembled model, while the C-index, Cohen linearly weighted κ and ICC were im-proved. With those metrics, a large error on the predicted class has more influencethan a small one, whereas this predicted class difference is weighted equally with theaccuracy measure. Thus, the ensembled model made slightly more errors than the av-erage model, but the magnitude of the errors was smaller. The confusion matrix showsthe distribution of errors across the different AS risk categories (Fig. 3.3). With the finalmodel, most of the errors were distributed near the diagonal, corresponding to off-by-one errors. A more detailed view is provided through the Bland-Altman plots in Fig. 3.2which show the agreement between the ground truth AS and the AS score from the fi-nal model. The average difference between the two values is close to zero, showing nosignificant bias between the manual and the automatic score. However, as the scoreincreases, there is a greater dispersion of differences between the two methods. Thus,in practice, a difference of more than 100 on the score was observed in seven subjectshaving already a high score > 100, and the differences may be even higher in the fewsubjects with a score > 10. The largest errors could be reviewed on the CT images andsome recurring failure patterns were observed: small low-density calcifications weremissed in some examinations (6 errors where A is predicted instead of B), and in a fewCT examinations some coronary calcifications were mistaken for calcifications on themitral valve. Examples of both successful and failed predictions are presented in Fig.3.6. These error patterns could indicate the type of examinations that should be addedto the training set in order to further increase the performance. Finally, the final en-sembled model yielded a F1-score of 0.974, an accuracy of 97.5% and an ICC of 0.995on the 40 CT volumes of the orCaScore test set (OS). This confirmed our model could
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generalize well on a wide range of unenhanced-ECG-gated cardiac CT examinations. Anaverage computing time of 1.8 seconds per CT examination was measured for the finalensembled model.

Figure 3.2: Blant-Altman plots show agreement between the ground truth Agatstonscore predicted by the final ensembled model on each examination of the test set (J3)with linear scale (top) and log scale (bottom). Bland-Altman bias and limits of agreementare indicated.

Extension to multi-branch CAC

The proposed method focuses on predicting the total CAC mask of the non-injectedCT volume. A possible extension is to localize the calcium deposits and assign themto a coronary branch. This application allows to quantify the per branch CAC burdenand compute a per branch AS. CSCT is not injected with contrast solutions thereforecoronary structures are indistinguishable from the sorrounding soft tissue of the mio-card. However trained cardiologists are able to estimate, from the sole CSCT volume,the branch of each calcification based on the anatomical context and the region of themiocard where the coronary is supposed to be located. A multi-labeling semantic seg-mentation approach based on a 3D U-net can be therefore employed to output a pre-diction mask for each of the main branches.
Method In order to facilitate the task we proposed to use the heart mask to pre-process the volume and register the heart box to a fixed size in order to mitigate thevariability of the different branch locations. The UNet architecture has been slightlymodified to accommodate for the anisotropic voxel resolution. With a ratio of 1:1:5 theCSCT input is processed by an anisotropicmax-pooling layer in the encoding path and an
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(a) (b)
Figure 3.3: (a) C-index vs accuracy for different models evaluated on the test set (J3). (b)Confusion matrix for the risk score of the final prediction on the test set (J3).
anisotropic linear un-pooling layer in the decoding path. The model predicts locationsrelative to the 3 main coronary branches: Left Artery Descending (LAD), Left Circum-flex (LCX) and Right Coronary Artery (RCA). Training and evaluation of this method hasbeen conducted on a separate internal GE Healthcare owned dataset as the SFR datasetcannot be used outside the context of the challenge.
Testing For each volume a multi-label semantic segmentation is predicted. The test-ing data set population is split into AS intervals corresponding to the risk classes. Themeasurements in Figure 3.6 aim to measure the risk prediction capability and the local-ization capability. For risk prediction accuracy is re-weighted to take into considerationuniform risk distribution thus obtaining a re-weighted accuracy of 0.95. For localizationthe overlapping metric of Dice is measured for the 3 main branches (RCA, LAD, LCX)re-weighting is applied in order to obtain a uniform voxel count for each branch thusobtaining a re-weighted dice of 0.94.
3.1.4 Discussion

Our method based on an ensemble of five 3D U-Net models to detect dense segmen-tation maps has obtained good fully automated detection and quantification of the AS.Indeed, our method was able to correctly classify the cardiovascular risk category in86% of the 98 subjects of the validation database according to the AS level, quantifiedmanually and conventionally by trained operators. As shown in the confusion matrixof the figure 4, a class discrepancy was observed in only 14 subjects, and since the am-plitude of this discrepancy was low and ≤ 1 class on 13 of these subjects, the c-indexobtained with our method was 95%. We have also shown here the importance of thevolume of the training dataset of the different CNNmodels taken alone or combined on
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Figure 3.4: Pipeline for multi-branch CAC prediction. The input consist of the CSCT scanpaired with the heart segmentation used to crop/reshape the input. The cropped inputis fed to the UNet architecture equipped with an-isotropic maxpooling layers matchingthe original an-isotropic voxel resolution. The output is than upsampled and padded(invert crop) to obtain the final output.
the final result. In these conditions, it is not surprising to see that AI model proposalspublished in 2018 on a training data base of 1744 ECG gated CT acquisition dedicated forCAC scoring [32] now obtain results very close to those obtained manually by operatorstrained to detect the coronary calcium score when these databases have been diversi-fied by different types of scanner and when these training databases are much larger[33]. In this large study including 7240 participants with a wide range of CT examinationwith ECG gated CAC scoring CT , diagnostic chest CT , PET attenuation correction CT andradiation therapy CT, the deep learning solution was tested on 4324 CT examination toobtain a weighted kappa value of 0.90 for all test CT scans and ICC yielded 0.79–0.97for CAC across the range of different types of CT examinations. From a methodolog-ical point of view, different methods have been proposed in the automated detectionand analysis of CAC score on CT. A method based on an ensemble of pairs of CNNsobtained 83% of accuracy in predicting patients CAC score risk class by using only theinjected CT when the classification requested to the algorithm was only 4 classes in-stead of 5 [28]. If classes B and C are grouped together in a single class (CAC score from1 to 100) as it is often suggested in clinical practice in non-diabetic subjects, the accuracyof our solution could also increase from 84 to 94%. Another approach makes use of
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(a) (b)
Figure 3.5: (a): confusion matrix of estimated AS category risk. (b) confusion matrix ofthe estimated CAC for each coronary region.

fuzzy features and atlas-based information in conjunction with Random Forest Modelsto exploit the available data at best and get accurate quantification and branch-wiselocation of CAC and only the non-enhanced-CTimages are required [29]. To produce amore accurate segmentation of coronary artery, another method has been suggestedto automatically detect calcified lesions on the non-enhanced CT images, but the seg-mentation of the aorta, the heart and coronary arteries was required and obtained byusing associated contrast CT images [30]. Because of its relevance in CAD screening ina population of smokers, another deep learning method has been tested on the NLST(National Lung Screening Trial) [31]. This method uses of a 2-stage FCNN prediction toquantify branch-wise calcifications using the sole non-enhanced CT examination [32].This method previously trained on manual and segmental labeling of calcified coronarylesion per coronary artery in a subset population of theNLST patients was further testedonmultiple cardiac CT protocols as previously mentioned [33]. Finally, a last interestingmethod still based on CNN [34] was trained on NLST data set using only the CAC scoreinformation as supervision. Themethod employs two CNNs, one for registration to alignthe input images to an atlas imagemade from cardiac CT s and one for direct CAC scoreprediction using regression. This second CNN operates on 2d slices and does not usethe information across slices which according to the authors may account for some in-correct identification of CAC near the coronary artery ostia. By contrast our approach isfully 3D and therefore is capable of better using the information across adjacent slicesto identify CAC. To maintain a large receptive field while limiting the depth of the CNN,we chose to train our model on low-resolution versions of the CT volumes using a singlestandard U-Net architecture, which led to a cost-effective training and inferencing pro-cess (less than 2 seconds per examination). The performance obtained with our modelon the orCaScore test set was very close to the other top performingmethods evaluatedwith this framework [30, 29, 32]. The limitation of ourwork presented herewas that onlydedicated non-enhanced-ECG-gated CT scans for calcium score were trained and eval-
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Figure 3.6: Examples of prediction by the final ensemble model. Green circles are truepositives, red circles are false positives (false detection), yellow circles are false nega-tives (missed calcification). 1-4 are examples of correct predictions, 5-9 are examples ofincorrect predictions with either false detection or missed detection. Examples 5, 6 and9 are typical examples of the confusion made between mitral valve and coronary arterycalcifications.
uated. Given the value of the CAC score in detecting subjects at high cardiovascular riskwho require primary prevention, it would be useful in future studies to test and validatethis method on a wider range of CT acquisition performed for routine examinations forlung disease.
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3.2 Coronary Tracking

Coronary tracking and centerline extraction from CCTA examinations allow for the as-sessment of stenosis and the characterization of plaques in patientswith suspect CAD [72].This section proposes applying deep learning techniques to automatic coronary trackingfrom CCTA volumes. A novel Soft-Persistent Skeletonization (SPS) algorithm that avoidsdisconnections in the discrete setting, a differentiation scheme of the skeletonizationoperator, and aMS_Loss that enforces connectedness of the solution are presented. Wepropose to use the SPS algorithm, the differentiation scheme, and the MS_Loss to traina deep neural network to segment coronary tubular structures using the sole centerlineas supervision. Finally, we design an algorithm based on local semantic segmentation,particle filtering, and recursive tracking for coronary centerline extraction. To this end,we collected a dataset of 225 CCTA examination scans paired with manually annotatedcenterlines. These examinations are split into 100, 55, and 70 for training, validation,and test. The proposed method rivals another baseline deep-learning-based methodpresent in literature and achieves 0.903 overlap (OV), 0.754 overlap until first error (OF),0.910 overlap with the clinically relevant part of the vessel (OT), and 0.46 average inside(AI) on the test set.
3.2.1 Ground truth generation

Manual centerline extraction is a burdensome and time-consuming task requiring yearsof experience in the visual inspection of CCTA examination. For our dataset, coronarycenterlines are first automatically initialized with GE Healthcare software for automaticcoronary segmentation. This segmentation algorithm relies on the manual positioningof the aortic valve central point. Once the point has been manually placed, the cen-terline is computed automatically. Coronary centerline portions in proximity of lesions(plaques, stenosis, and stents) are at the same time the most clinically relevant and thehardest for an automatic method to estimate correctly; therefore a trained cardiologistrefines and corrects the centerline focusing on lesions.
3.2.2 Proposed method

Soft-Persistent-Skeleton

The skeletonization approach proposed in [46] is based on the discretization of Lan-tuéjoul’s formula (2.28). In this case, the algorithm terminates with S(X) such that
γκ0(X) = ∅. In the discrete setting, however, this formulation does not guarantee ho-motopy of the result (same topology). Thus, it is not an ideal skeletonization procedure.For tubular structures, this usually results in disconnections. We propose an improvedSoft-Persistent Skeletonization (SPS) algorithm that enforces connectivity in the discretesetting (fig. 3.7). However, the resulting skeleton S from Algo. 1 may still contain simplepoints.

For S to be a skeleton, the simple points property must apply at each iteration. In
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Algorithm 1 SPS
Input: I,K
I ′ ← maxpool(minpool(I))
S ← Relu(I − I ′)
for i← 0 toK do

S ← max(I ⊙maxpool(S), S) ▷ Add connection
I ← minpool(I)
if I = ∅ then break ▷ Terminates
end if
I ′ ← maxpool(minpool(I))
S ← S + (1− S)⊙Relu(I − I ′)

end for
Output: S

this case the connection added by I ⊙maxpool(S) depends on maxpool(S) which hasa unitary discreet radius. Therefore in the worst-case scenario, the obtained result isincluded in the unitary dilation of the skeleton. To get a thinner output, the algorithmis reapplied S ← SPS(S, k). As the implementation in [46] we used connectivity of 6 forminpool and connectivity of 26 for maxpool.

(a) (b) (c)
Figure 3.7: (a) a tubular synthetic structure I. (b) its skeleton computed with Soft-Skeleton[46] until termination. (c) skeleton computed using Alg. 1.

MS_Loss and efficient back-propagation

Given a set of location in a spatial domainX ⊂ Ω, the skeletonization operator S is anti-extensive S(X) ⊆ X . If we were to define this operator on binary functions X : Ω 7→
[0, 1] the anti-extensive property translates as a masking operator S(X) = S(X) ⊙ Xthus its derivative has a recursive formulation.
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S′(X) = (S(X)⊙X)′ = S(X) + S′(X)⊙X (3.1)
Hereafter we refer to the result of the Soft-Persistent-Skeleton applied on an argu-ment as SPS(∗) and we propose a Dice-like loss suited for centerline segmentation asfollows:

MS_Loss(X,Y ) = 1− 2Prec(X,Y )Sens(SPS(X), Y )

Prec(X,Y ) + Sens(SPS(X), Y )
(3.2)

whereX : Ω 7→ [0, 1], Y : Ω 7→ {0, 1} are binary valued functions defined on a conti-nous image domain Ω ⊆ R3, and Prec(X,Y ) =
∑

iXiYi/
∑

j Xj and Sens(X,Y ) =∑
iXiYi/

∑
j Yj are scalar functions. Equation 3.2 requires the computation of theskeleton employing Algorithm 1. Although being differentiable, it is iterative. Com-puting gradients with back-propagation requires each iteration step to be conservedin memory, thus the memory footprint scales with the number of iterations K. Wepropose an approximate differentiation scheme with constant memory footprint. Theproposed scheme exploits the centered anti-extensive property of the skeleton whichimplies that SPS(X) ⊆ Xand therefore SPS(X)⊙X = SPS(X). By an arbitrary changeof variable we consider a copy of the segmentation as a constant factor with respectto the skeletonization operator SPS(X) = SPS(Xconst) ⊙ X it implies that its deriva-tive is trivial SPS(X)′ = SPS(Xconst) which is indeed a term of the analytical deriva-tive SPS(X)′ = SPS(X) + SPS′(X) ⊙ X . Consider the non linear activation function

σ(x) = 1/(1+ e−x), the neural network feature map Zθ, and the predictionXθ = σ(Zθ):the back-propagation development with respect to θ using the chain rule follows (Equa-tion 3.4).

Sens(SPS(Xθ), Y )

≡ ∂Sens(SPS(Xθ), Y )

∂θ

=
∂Sens(SPS(Xθ), Y )

∂SPS(Xθ)

∂SPS(Xθ)

∂Xθ

∂Xθ

∂θ

=
∂Sens(SPS(Xθ)), Y )

∂SPS(Xθ)
SPS′(Xθ)

∂Xθ

∂θ

=
∂Sens(SPS(Xθ), Y )

∂SPS(Xθ)
⊙ SPS(Xθ)

∂Xθ

∂θ
(3.3)

=
∂Sens(Xθ, Y )

∂Xθ
⊙ SPS(Xθ)

∂Xθ

∂θ
(3.4)

By back-propagating only a selection of values formally it implies a change of variablein the differentiation (this is true only for the Sens function and all pixel-wise metricsin which there is no intra-location dependency at one location), this formulation can
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Figure 3.8: TrainA, ValidA no variation of the iterative method (alg. 1), TrainB , ValidBusing the masked error back-propagation with same K = 8. In terms of training re-sources. Time: 5h:57m vs 4h:47m; GPU-DRAM: 17.89 GB vs 12.02 GB; for TrainA/ValidAvs TrainB/ValidB respectively (GeForce RTX 3070 NVIDIA®).

be thus interpreted as a masking of the back-propagated local error Err: ∂Sens(Xθ,Y )
∂Xθ

⊙SPS(Xθ) = Err ⊙ SPS(Xθ). The practical advantages of this formulation are that thereis no need to fine-tune the number of iterations parameter K for the forward compu-tation, and the back-propagation is resource-efficient (Fig, 3.8). To segment fine/sparsetubular structures themodel is trained using theMS_Loss on both foreground and back-ground to capture the entire 3d topology (connected components, handles and tunnels)
L(Xθ, Y ) = 1

2MS_Loss(Xθ, Y ) + 1
2MS_Loss(1−Xθ, 1− Y ) + λDiceLoss(X,Y ). MS_Losscomplements theDiceLoss by combating the sampling bias, while MS_Loss focuses onthe skeletonization points the DiceLoss counterbalances by preventing over-fitting onthe sole topology.

Topological interpretation of the gradient

Another interpretation can further validate the intuition behind the approximate differ-entiation scheme of the skeletonization operator S′(X) = S(X). Non-simple points arelocations at which topological changes happen: removing a point necessarily means ei-ther the birth of a new connected component (0Dmanifold) or the death of a tunnel (1Dmanifold) or a hole in (2D manifold). Let us define the tubularity likelihood as a functionof the distance from the center. Its filtration corresponds to the normalized distancetransform of the binary segmentation of the tubular structure. Therefore, the topologyremains unchanged until the final erosion, which implies that critical points are singularpoints of the skeleton.
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f = 2d/(1 + d)

d(p) =
|dB(p)− dC(p) + |
max(dB(p), dC(p))+

, p ∈ X

dB(p) = min
x∈∂X

∥x− p∥2

dC(p) = min
x∈S(X)

∥x− p∥2 (3.5)

Figure 3.9: Left to right: the image X with its tubular structures, the distance db fromthe border, the distance from the centerline or skeleton dc, and the likelihood function
f .

Figure 3.10: Dgm(f) f is defined in Equation 3.5, the filtering ∅ ⊆ f0.1 ⊆ f0.5 ⊆ f0.9 ⊆ Ωhas a constant topology (all filtering are in a homology) the critical points appear whenthe filtering corresponds to the skeleton.
Consider the filtering of f as the set of tresholded functions fα = x ∈ Ω | f(x) ≥ αsuch that ∅ ⊂ fα1 ⊂ fα2 · · · ⊂ fαn ⊂ Ω, wich implies that αi ∈ [0, 1]. A persistencediagram Dgm measures at what value of α topological changes occurs (fig. 3.10). Con-sider the persistence diagram of the function defined in eq. 3.5. Topology variationdo not occur for fα<1 the topology vanishes into the spatial domain Ω for fα=1, inother words the topology is constant. The critical points of this function are the non-simple points of the skeleton which are the locations where topological variations oc-curs {(f(x), 1 − f(x)) | x ∈ S(X)} ≡ {p ∈ dgm(f)}. The topological loss is defined aseq.3.6, observe that for a ground truth the filtration has only one value as it is not a con-tinuous function, therefore birth(p) = 1− death(p)∀p ∈ Dgm(GT ) whereG : Ω 7→ [0, 1]
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and ν : Dgm(f) 7→ Dgm(GT ). By design of f all points of the skeleton are critical points,the same is true for the GT .

Ltopo = min
ν∈N

1

2

∑
p∈Dgm(f)

∥p− ν(p))∥22

=
∑

p∈Dgm(f)

1

2
(birth(p)− birth(ν∗(p)))2 +

1

2
(death(p)− death(ν∗(p)))2

=
∑

p∈Dgm(f)

1

2
(birth(p)− birth(ν∗(p)))2 +

1

2
(1− birth(p)− (1− birth(ν∗(p))))2

=
∑

p∈Dgm(f)

(birth(p)− birth(ν∗(p)))2

=
∑

x∈S(fα<1)

(f(x)−GT (x)))2 (3.6)

We approximate the function f by means of a non linear activation function σ(x) =
1/(1 + e−x) and a neural network parameterized by Θ feature map Xθ = σ(Zθ) and,therefore f ∼ Xθ which implies that {Xθ(x), 1−Xθ(x) | x ∈ S(Xθ)} ≡ {p ∈ dgm(Xθ)}.The gradient is therefore defined as

∂Ltopo

∂θ
(3.7)

=
∑

x∈S(Xθ)

2(Xθ(x)−GT (x))
∂Xθ

∂θ
(x) (3.8)

=
∑
x∈Ω

(2Xθ(x)−GT (x))⊙ S(Xθ)(x)
∂Xθ

∂θ
(x) (3.9)

=
∑
x∈Ω

∂(Xθ(x)−GT (x))2

∂Xθ
⊙ S(Xθ)(x)

∂Xθ

∂θ
(x) (3.10)

=
∂Ltopo

∂Xθ
⊙ S(Xθ)

∂Xθ

∂θ
(3.11)
(3.12)

If we substitute the sum of the distances with an overlap measure like sensitivity
Sens(X,Y )topo =

∑
i∈S(X)XiYi than the gradient would read ∂Senstopo

∂θ =
∂Senstopo

∂X ⊙
S(X)∂X∂θ . Conversely from Equation 3.12 if we were to use the L2 norm for the Equa-tion 3.4 we can derive the topological gradient. This result shows how the approxima-tion of the skeleton used in this method can be derived by applying the gradient to atopological loss with a suited likelihood function.
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Tracking Strategy

The skeletonization algorithm proposed in [46] is prone to disconnection and unsuitedfor centerline segmentation. We propose combining the MS-Loss and the resource-efficient scheme for back-propagation to train a U-Net to segment the coronary center-line (MS-Unet). To this end, we collected a dataset of 225 CCTA examination scans pairedwith manually annotated centerlines. These examinations are split into 100, 55, and 70for training, validation, and test. For training: as a preprocessing step, each image isresampled to 0.4mm isotropic voxels, and a windowing (center=400, width=1000) is ap-plied. The MS-Net is fed with 32 voxels-sided cubic patches in a 64 batch. These patchesare sampled around the centerline coordinate position and augmented using randomtranslation, rotation, scaling, and skew. For the inference: the segmentation alone isinsufficient: extremities must be identified to isolate a single coronary centerline.

Figure 3.11: MS-Unet Architecture: The Unet takes as input a patch P ∈ R24,24,24 at aisotropic resolution of 0.4 mm centered about the centerline and outputs a soft seg-mentationmap σ(Zθ), the Skeletonizer block applies 1 to output the final segmentation.
We adapted the recursive tracking proposed in [42] by replacing the convolutionalneural network (CNN) for 2Dorthogonal patches classificationwith aUnet for 3Dpatchescenterline semantic segmentation (MS-Unet): First, the ostia locations are identified bypre-computing the mask of the aorta. Second, the next locations are identified usinga particle filtering sampling technique for statistical estimation: samples are obtainedby intersecting the MS-Unet semantic segmentation with a fixed-diameter sphere ad-justed to the receptive field of the model. The intersected samples are then clusteredusing density-based spatial clustering of applications with noise (DBSCAN) from whichthe centroids of the centerline are obtained. This procedure is carried out for a givencurrent location recursively on the next locations until no intersections are found, andthe current location is marked as an extremity. To avoid early termination, the receptivefield of the MS-Unet is chosen to be large enough to bridge over stenosis. The recursiveinference procedure outputs a set of extremities, locations, and the associated volumevoxel-wise segmentation. The voxel-wise segmentation is used to find the minimumcost path from the extremities to the corresponding ostium. All positive voxels of thesegmentation output constitute the nodes, and the averageMS-Unet output value is theweight of the edge between 2 voxels (see Fig. 3.15).
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(a) (b)
Figure 3.12: (a) Local tracking strategy. A patch centered on the vessel is fed to the net-work for semantic segmentation; the intersection between a fixed radius sphere andthe segmentation is estimated to compute the next central locations. This procedure iscalled recursively on the next locations. (b) Semantic segmentation of the coronary ves-sel before skeletonization. Interestingly the network learns in a unsupervised mannerto avoid calcifications in order to obtain a precise centerline
3.2.3 Experiments

Topology and Homology

Given a continuous image domain Ω ⊆ R3, a segmentation I ⊆ Ω has its d-dimensiontopological structure, called homology as an equivalence class of d-manifolds with thesame topology as I [49]. The homology class for a d-manifold is a countable set under
I and its cardinality is the dth Betti number βd which vanishes above the dimension ofthe domain Ω. For example for 3-d domains, β0, β1, β2 correspond to the number ofconnected components, tunnels and holes respectively. We propose a simple checkfor homotopy (same topology) between two segmentations I and S(I) is to measurethe difference of their Euler number E : Ω 7→ Z as Edist(A,B) = | inf(E(A), E(B)) −
sup(E(A), E(B))| which is a combination of Betti numbers: for 3-d objects, the Eulernumber is obtained as β0+β1-β2. An ideal skeleton S(I) ⊆ I ⊆ Ω is homotopic andbelong to the same homology as I and therefore has same Euler number. Tab. 3.2 holdsthe results of this empirical check on a set of tubular synthetic structures I(fig. 3.7).
Testing

Our dataset employs 225 examinations: 100 for training 55 for validation, and 70 for thetest. The test set was chosen by focusing on the clinical use of coronary tracking; mostCCTA examinations have severe calcifications and present artifacts or stents (40 with
66



Homotopy β0 β1 β2 Edist(*,I)I 1.3 0.1 0 0
S(I) 12.5 0 0 10.3
Sp(I) 5.2 0 0 3.2

Table 3.2: S is Soft-Skeleton as in [46] Sp is Soft-Persistent-Skeleton, each measure isaveraged on a set of synthetic 3-d tubular structures I.

Figure 3.13: Metrics measured on the test set of 70 CCTA patients with manually cor-rected centerlines. These metrics measure the performances of a centerline tracker. AImetric takes account of all points not only the ones within the radius of the coronary.

Method OV OFCNN-OC [44] 0.898 ± 0.099 [0.46;0.99] 0.742 ± 0.219 [0.46;0.99]MS-Unet (ours) 0.903 ± 0.066 [0.66;0.98] 0.754 ± 0.212 [0.17;1.00] ]
Method OT AICNN-OC [44] 0.912 ± 0.099 [0.46;1.00] 0.485 ± 0.146 [0.214;0.7]MS-Unet (ours) 0.910 ± 0.066 [0.66;0.98] 0.460 ± 0.120 [0.204;0.65]

Table 3.3: Metrics on 70 CCTA examinations of the test set compared with 2 deep learn-ing based method: CNN-OC [44] MS-Unet, our proposal. Each metric is computed perpatient and presented asmean± std[min;max].
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Figure 3.14: A sample of extracted centerlines, rough coordinates are used to computeorthogonal frames to inspect the coronary visualized with multi-planar reconstructionsat a sub-voxel resolution of (0.25× 0.25× 0.25).mm3 [73]
> 400 AS, 12 with stents). The proposed tracking method is evaluated on the test (Fig-ure 3.13)(Table 3.3) against a state-of-the-art deep-learning approach [44]1. Predictedcenterlines are evaluated with a standard evaluation method [74] (see 2.3.1). Total over-lap (OV), overlap until first error (OF), and overlap of the extracted centerline with theclinically relevant part of the vessel (radius≥ 0.75mm, OT) are computed using true pos-itive (TP), false positive (FP) and false-negative (FN) detections. A TP point lies within theradius of the closest manually annotated point. An FP point does not lie within the ra-dius of any manually annotated point. An FN point is a manually annotated centerlinepoint with no corresponding automatically extracted point. The average inside accu-racy metric (AI) measures the average distance between the manually annotated andextracted centerline for automatically extracted points. These metrics aim to measurethe tracking capability (fail or pass) and the accuracy of the correctly tracked portionsof the vessel. Our method shows less significant low values outliers than the baseline,while median and high values are comparable. The average performances in Table 3.3are higher for the proposed method, but these are sensible to outliers. Another impor-tant point is the hyperparameter tuning: although both algorithms are initialized withthe same ostia detection routine, these have different inference strategies (iterative andrecursive tracking, step sizes, tracking stop criteria) with different hyperparameters, andexploring all configurations becomes infeasible.
3.2.4 Discussion

We proposed a coronary segmentation method based on deep-learning semantic seg-mentation of centerlines (MS-Unet) and a recursive tracking inference scheme. To trainthe MS-Unet we propose a novel skeletonization algorithm based onmorphological op-erations that empirically shows better properties than the straightforward implemen-tation using discrete erosion and opening operators. We also propose a novel back-propagation scheme that is resource efficient and present a theoretical topological in-
1implementation available at https://github.com/BubblyYi/Coronary-Artery-Tracking-via-3D-CNN-Classification.
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Figure 3.15: Recursive tracking output. Blue: coronary centerline extracted. Yellow:Aorta mask.
terpretation. To infer the centerline we propose to exploit an initial local segmentationto estimate the next location of the centerline recursively, this strategy takes inspira-tion from particle filtering trajectory estimation. The proposed method was tested onan dataset propriety of GE Healthcare. The performances were measured using a stan-dard coronary tracking evaluation framework composed of four metrics designed todescribe tracking capabilities given a ground truth reference. The method was testedagainst a deep-learning based CNN orientation classifier (CNN-OC) present in literature:0.898 and 0.903 OV, 0.742 and 0.754 OF 0.912 and 0.910 OT, and 0.485 and 0.460 AI wereobtained for the baseline CNN-OC andMS-Unet respectively. Themetrics are close how-ever the proposed method has fewer outliers meaning that is less prone to get lost asCNN-OC can sometimes track vessels outside the heart.
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3.3 Coronary Labeling

3.3.1 Ground truth generation

The ground truth labels are manually assigned to the leaves detected by a coronarytracking algorithm from the CCTA volume. When this algorithm fails, missing branchesaremanually addedbyusingmanual ROI annotation and region growing. Due to anatom-ical variability the segmentation algorithmmaydetect short branching, these are anatom-ical results of natural revascularizationprocess but are not considered coronary branches.The resulting coronary computed by inspecting the coronary segmentation volume istherefore pruned of terminal contiguous segments with length below a certain thresh-old fixed in millimeters. Due to the high anatomical variability there might be outliersin branching patterns (more than 4 diagonals, more than 4 marginals). In this case suchanomalies are also pruned to avoid adding noise to the training process.
3.3.2 Proposed Method

Knowledge based (KB)

We present a knowledge-based method consisting in detecting anatomical landmarksof the heart; from these the geometry of the branching and the coronary labels arecomputed inductively. The coronary tree is computed by processing the coronary seg-mentation and tracking. The anatomical landmarks and the coronary tracking are com-puted using the CCTA volume by shape analysis algorithms developed at GE Healthcare.First the aortic central coordinateH is identified by manually placing a point inside theaorta, the leaves of the segmentation are automatically computed and the paths fromthe leaves to the aorta are merged in order to derive the coronary tree composed bycenter-line points. The merging of the paths allows to detect the bifurcation and finallythe coronary segments. Subsequently the heart apex coordinatesA and the ostia P1, P2are computed. Once the short axis −−→AH is identified the ostia points are projected onthe axial plane. The front and the left of the exam are known, therefore it is possibleto discriminate between left and right coronary territory. Once these are detected thesuccessive branches are pruned from the coronary tree graph so that only consecutivesegments with a fixed minimum length are kept for labeling. By proceeding hierarchi-cally the Left Main Artery and Left Main Circumflex are identified using respectively thefront left and the back left most territory. The same inductive approach follows forthe Posterior Descending Artery and the Posterior Lateral branch in the right coronarytree. Finally the diagonals and marginal branches are labeled using the projection onthe short axis (height with respect to the apex) of the leaves of the remaining coronarybranches.
Oriented GCN (ORI-GCN)

We propose a deep learning basedmethod that takes as input the geometrical featuresof the coronary tree: oriented graph convolutional network (ORI-GCN). The coronary
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Figure 3.16: The coronary tree extracted from the CCTA coronary segmentation is sim-plified into contiguous segments (nodes) and the branching patterns of the bifurcations(edges).
tree is simplified so that each node represent a coronary segment (figure 3.16). Eachbranch is composed by a set of segments connected at bifurcations to other branches.The task consists of predicting the label of the leaf given the coronary nodes geometricfeatures and the tree structure. The geometrical features of each node are computedfrom the contiguous segment it represents. These features are: starting and endingcurvilinear coordinates {c0, c1}, ci ∈ R, and 5 uniformly sampled aortic coordinates
{p0, . . . , p4}, pi ∈ R3, additionally the branching factor of the segmentNc and the depthin the graph D are added as features. The aortic coordinates are computed by sub-tracting the aortic center right-anterior-superior (RAS) aRAS RHS coordinates from theRAS coordinate pi = pRAS − aRAS . Although segments do not have the same length thegeometrical features are used to capture the shape and the location of each segmentin a vector x ∈ R17, while the tree structure links these segments together (fig.3.16).

Oi,j,d =


1, i is successor of j, d is succ
−1, i is predecessor of j, d is prec
0, else

(3.13)

The linking of these features is modeled using the normalized adjacency matrix
A = D− 1

2AD− 1
2 computed with the adjacency and the degree matrix A,D ∈ Rn×n

respectively, where n is the number of segments. Tomodel the a-cyclic property we pro-pose an additional orientation matrix O (eq. 3.13): the oriented normalized adjacency
matrix is therefore computed as A = D− 1

2AD− 1
2 ⊙O. Thus the architecture comprises

L = 5 GCN layers which are modified by mean of the oriented adjacency (eq. 3.14).In practice the O matrix masks contributions of either the predecessors (children) orsuccessors (parents) nodes, the two contributions have individual parameters and aresubsequently added and passed to the next layer xl+1.
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x0 = {c0, c1, p0, . . . , p4Nc, D}, ci ∈ R, (Nc, D) ∈ N2, pi ∈ R3

xl+1 = Relu((A ⊙Osucc)x
lW l+1

succ) + Relu((A ⊙Oprec)x
lW l+1

prec) + xl

ỹ = Softmax(xL)
(3.14)

where ỹ is the final output prediction and L = 5 for the network depth.
3.3.3 Experiments

Training

In this section we propose to explore the advantages of a deep learning based approachwith respect to a knowledge-based algorithm. Additionally we propose a slightmodifica-tions of the graph convolutional network (GCN) message passing mechanism ORI-GCNthat we could observe giving better performances than the classical GCN. The modelis evaluated using a large database of annotated coronary trees: 516 examinations areused for training and validation, 318 for test. The model is trained using a cross-entropyloss on the label of each node with a higher weighting on the leave nodes. The outputprediction vector ỹ is tested against the ground truth multi-class label (LAD, LCX, Poste-rior Descending Artery (PDA), Posterior Lateral Branch (PLB), Diagonals (Diag), ObtuseMarginal (OM), Ramus Intermedius Branch (RIB)). As additional supervision the labelsare grouped into super labels or territories. The LAD teritory comprises: LAD, Diag, andRIB, the LCX territory with the LCX, OM, and Left Main Artery (LMA), and the RCA territorywhich is the union of PDA, and PLB.
Testing

The quantitative analysis is carried out globally on the territories bymeasuring and com-paring the accuracy. The test set comprises a total of 318 annotated trees, branch wisenot all trees are complete (99% LAD, 99% LCX, 69% PDA, 70% PLB, 15% RIB) and somepresent anatomical variations (RIB) on which themethod is also tested on. A global met-ric is used to measure the accuracy capability of different methods: knowledge based(KB), ID, GCN, and ORI-GCN. This ablation aims to show the impact on performancesof the proposed oriented method ORI-GCN (tab. 3.4). The identity (ID) is equivalent tousing fully connected network (FCN) on the feature vector x0 of each node to predictthe label. The GCN consists of using the un-directed adjacency matrix. The discrimina-tion capability is tested by means of a confusion matrix (fig.3.17) and a precision recallmeasurement for each branch (tab. 3.4).
3.3.4 Discussion

The results on the experiment show that the ORI-GCN has better performances thanKBmethod based on the detection of anatomical landmarks. In terms of discrimination
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KB ID GCN ORI-GCNBranch Accuracy 0.763 0.112 0.745 0.800Territory Accuracy 0.843 0.327 0.921 0.940

Table 3.4: Result on territories accuracy: comparison among proposed methods:Knowledge-Based (KB), Identity (ID), Graph Convolutional Network (GCN), OrientedGraph Convolutional Network (ORI-GCN).
KB ORI-GCNAccuracy 0.763 0.800label # branches Precision Recall Precision RecallLAD 317 0.869 0.855 0.946 0.943LCX 315 0.748 0.724 0.889 0.892PDA 220 0.909 0.905 0.898 0.918PLB 222 0.922 0.910 0.867 0.910Diag 519 0.758 0.671 0.752 0.946OM 435 0.777 0.520 0.663 0.931RIB 50 N/A N/A 0.500 0.600

Table 3.5: Result on main branches: comparing baseline Legacy method and proposedGCN method

capabilities (Figure 3.17) the RIB remains the hardest to detect. This branch is character-ized as an anatomical variance that occurs in 15% of the test set which is representativeof the normal population [56]; this issue could be solved by artificially augmenting thetraining dataset. In terms of accuracy capability the ORI-GCN not only it improves the KBapproach but also the classical graph neural network GCN approach. To test the impacton the metrics of the proposed approach we also tested a ID approach which consistsof using the positional input features x0 only and discards connections (Table 3.3.3). Anissue with this approach is that it does not take into account the hierarchical structure ofcoronary artery vessels. Each class is treated independently, whereas each label prob-ability is conditioned by the knowledge of the connected branch. A possible solutionto this issue is to incrementally predict branches by following the hierarchical structurefrom the left and right branch down to diagonals and marginal branches. A qualitativeanalysis of the results shows that somemistakes aremore acceptable than others, theremight bemultiple valid labeling for the same tree as observers may give equally reason-able but different labeling. This work is lacking of a comparison with the state of the artapproach [65], the method however has already some advantages as it only relies onpositional features, thus realistic data can be generated in a simple procedural way,from a methodological point of view the proposed approach encodes the bi-directionalnature of the tree in a similar way to [63] which shows to have an impact on the per-formances (Table 3.3.3). The whole training does not need any specific computationalresources and takes 30 minutes in total and up to 1GB or D-RAM on a capability 5 Nvidia
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(a) (b)
Figure 3.17: KB (a) method ORI-GCN (b) performances measured bymeans of the confu-sion matrix. Each model is tested on the multiclass task of labeling the Aorta, RCA, LAD,LCX, and RIB. The background label is predicted when none of the label is identified.
GPU against 13 hours for the conditional partial residual graph convolutional network(CPR-GCN) [65].
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Figure 3.18: Examples of predicted labels and corresponding ground truths.
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3.4 Coronary Analysis

CCTA is the only non-invasive imaging technique that reliably depicts the anatomic ex-tent of CAD.While occlusion remains a highly predictive indicator ofMACE, there is grow-ing evidence that the presence and characteristics of coronary atherosclerosis provideadditional prognostic information. In CCTA calcified plaques display high-intensity HUrepresentative features while more complex representations characterize high-risk softplaques. As such, accurate identification and quantification is burdensome and timeconsuming because of the limited temporal, spatial and contrast resolutions of X-rayscanners. Despite the success of deep learning in medical imaging, automatic local-ization of coronary plaques and especially soft plaques remains a challenging subjectin CCTA vessel analysis. In this section, we present our contribution to automated CTcoronary analysis, in particular on CAD anatomical indicators which entails the localiza-tion and characterization of plaques and stenosis using transformers [75]. We proposea series of deep-learning-based methods for automated localization and characteriza-tion of plaque composition and the assessment of stenosis as classification in occlusiveand non-occlusive 50 % luminal narrowing; thesemethod performances aremeasuredthrough a multi-faced analysis of the localization and characterization capabilities ob-served with respect to different plaque composition and at different scales of interest.While fine segment level is necessary for a thorough quantitative evaluation of coro-naropathy, a coarse coronary scale analysis suffices to rule out CAD and thus holds sig-nificant clinical information. Automated CT coronary analysis relies on the quality of theextracted coronary centerline. A main concern is the quality of the extracted centerlineonwhich the localizationmethods rely. In order to test the robustness of differentmeth-ods to a perturbed centerline, the baseline and the proposed method performancesare observed at increasingly pronounced random noise offsets of the centerline coordi-nates. Additionally we propose an experiment in which coronary plaque characteriza-tion is used as a downstream task following localization of the plaque of interest. 2.5Dmethods represent a valid trade-off in terms of quality of detection and processing timefor coronary plaque characterization and stenosis assessment [53]. We propose a slightvariance of the 2.5D method present in the literature to evaluate the clinical relevanceof the proposed circular pooling curved planar reformation (CPR) (CP-CPR) visualizationtechnique.
3.4.1 Baseline

The baseline consists of 3 recently proposed deep-learning based methods. The recur-sive convolutional neural network (RCNN) [15], TR [52], and the 2.5D method [53], whichare discussed in detail in Sections 2.6.2, 2.6.3 2.6.4, respectively. We are able to refinethe RCNN and TR design by observing that the 3D-CNN receptive field matches the in-terleaving space of the patch sampling. We thus avoid redundant computation with asmaller memory footprint. Another improvement consists into the addition of the EOF(End Of Phrase) token, it is a standard natural language processing (NLP) practice touse a EOF token s′ = [s0, . . . , sT−1, EOF] ∈ RT+1,128 which is usually a constant valued
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vector.
3.4.2 Ground truth generation

The straightened CPR volume (sec. 2.4) is annotated along the centerline by manuallyplacing a starting and an ending point. These points correspond to the beginning andend of findings present in a clinical report filled by an expert cardiologist, issued duringpatient examination. Findings localization is roughly described in terms of proximalityand distality; the manual annotator refines these notations by delineating the findingon the coronary centerline. Themanual annotation task is performed internally by non-clinical GE Healthcare personnel, and a trained cardiologist is then issued the annotatedexam for review, which are either included or excluded. As a proof of concept (POC)we built a custom annotation tool for the visualization of the annotation included theCP-CPR view which presents the circular maximum intensity projection below the cen-terline, and the circular minimum intensity projection above it. This allows the user toperceive at a glance the presence of calciumdeposits or low-attenuation plaquewithouthaving to rotate the view about the centerline (3.19).

Figure 3.19: Circular pooling CPR (CP-CPR) used as an additional view in a custom-buildannotation tool to review coronary plaque annotations, RGB allows to encode thewholeHU scale better than gray-scale values, thus results in better contrast reducing the needfor windowing. Usually the straightened CPR view needs to be rotated around the cen-terline for a complete inspection, CP-CPR view allows to localize high intensity and lowattentions at glance without rotating the CPR volume about the centerline

3.4.3 CCTA data

We briefly recall the different types of data format employed in the following experi-ments that can be generated by pairing CCTA volume with the coronary centerline co-ordinates and measure the performance variability of different methods with respectto data format.
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Straightened CPR

Axial, sagittal, and coronal multi planar reformation (MPR) provide insufficient clinicalinformation to diagnose coronary diseases. CPR has proven a practical solution and inparticular, straightened CPR has been consistently used as a standard view to diagnosecoronaropathies, however, this technique is sensitive to the quality of the extractedcoronary centerline, which relies on the accuracy of automated coronary segmentationand tracking algorithms. A series of orthogonal frames, from which voxels are sampledusing trilinear interpolation, are computed for each point of the centerline sampledwithconstant interleaving. This visualization has 3 main parameters; the interleaving step inmm and the 2D orthogonal frame voxel resolution mm2, the size of the sample grid.The resolution of choice is 0.3mm for the interleaving step and 0.3mm2 for the voxelresolution and a sampling grid of 28 × 28 to capture the whole coronary lumen (5mmdiameter on average).
Circular Pooling CPR (CP-CPR)

The CPR straightened view can be further processed to obtain a 2.5D visualization bypooling intensities on a circular trajectory (e.g. maximum intensity projection (MIP)). A
L×H image from a L×2H×2H CPR volume is obtained bymeans of eq. 3.15 as shownin fig. 3.20. The result is a rotation invariant 2D representation of the vessel (CP-CPR).The morphological features of the vessel are pooled by means of the function used, forexample stenosis is defined as a the minimal local narrowing of the coronary vessel,thus minimum andmaximum circular pooling coincide in absence of stenosis, howeverfalse stenosis due to incorrect centerline estimation is exacerbated. The dimensionalreduction comes at the cost of a loss of spatial coherence, most noticeably the displace-ment of branching (fig. 3.20).

CircPool(f,X)(i, j) = fθX(i, cos(θ)j, sin(θ)j))

i, j ∈ [0, L]× [0, H]

X ∈ RL×2H×2H

f ∈ {min,max,mean}

(3.15)

Figure 3.20: An example of circular pooling, top part of the image displays theminimumcircular intensity HU and the bottom part the maximum HU. Notice the branching dis-placement on the bottom part of the image, which is an artifact of the projection.
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CCTA sampled patches

CCTA is acquired with an anisotropic voxel with high axial resolution and up to 0.6mmslice thickness. In order to sample the coronary centerline uniformly, the coordinatesare normalized with respect to the arc length. Patches centered on the centerline inter-polated points are sampled using trilinear interpolation for accounting for both center-ing and anisotropic resolution.
Graph patch

A set of patches can be either sampled from the centerline along a contiguous segmentof fixed size or from a sub-graph region of the coronary tree, or graph patch. Giventhe graph G = (V,E), V = v1, . . . , vn, E ∈ V × V a k-order neighborhood of a node
vi is Ni = {vj ∈ V |d(vi, vj) ≤ k} If we were to consider an image as a 2D grid a k-hopneighbourhood is what is usually referred to as a patch: we will therefore here refer toa k-order neighborhood as a graph patch. In order to sample a graph patch for a givenlocation, the k-order neighborhood is computed, and the corresponding locations arethen used to sample patches from the volume. In our case, a graph patch is suited toseamlessly model bifurcations and contiguous segments.

Figure 3.21: Three orthogonal views of a sequence of patches sampled with trilinearinterpolation from the coronary resampled centerline.

3.4.4 Proposed method

CNN 2.5D Circular Pooling CPR (2.5D-CP)

In [53], the authors propose to sample orthogonal planes from the straightened CPRvolume to predict revascularization and assess stenosis. Although this method requiresboth the starting and the ending position of the lesion of interest, this approach can beapplied to the case of coronary plaque characterization by simply replacing the 3D-CNNwith a multi-plane 2.5 D input and a 2D CNN. This approach, however, achieves in prac-tice better results with more than four and up to eight different views. This is probably
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Figure 3.22: The genealogy of the explored architectures. We also improved on thebaseline by slightly modifying the implementation using strided convolutions and eoftokens. From top left to bottom left: original RCNN, RCNN with eof, RCNN with straigth-ened CPR volume. From top right to bottom right: the Multi Head Self Attention (MHSA)with straightened CPR volume, 2.5D input.
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due to the fact that the indicator of interest may not be in the sampled plane thereforeinducing a bias in training. Furthermore, the concatenation of sampled planes from thestraightened CPR volume is not rotation invariant; we propose to use a 2D CNNwith the2.5D approach by exploiting the CP-CPR of an entire coronary segment, which allowsdata reduction by pooling intensity following circular trajectories around the coronarycenterline. This method will be tested for plaque localization and characterization (with-out and with the starting and ending point of the lesion, respectively).
CNN PW (patch-wise)

The input format consists of patches sampled from the CCTA volume at centerline coor-dinates. The patches are sampled using an isotropic resolution of 0.35mm and a patchsize of 25× 25× 25. Each patch sampled is individually processed by the same shallow3D CNN and an FCN in sequence to output a local prediction.
Distance Based CNN (DB-CNN)

We propose to a modified CNN by replacing convolutional kernels with distance-basedkernels. The distance-based kernel is designed to be rotational invariant. Becausepatches are sampled in the system of coordinates of the CCTA volume, the coronaryorientation can be different for each patch. This issue is targeted by designing a rota-tional invariant kernel (figure 3.23).

(I ∗ w)[x] =
∑
d∈D

wd

∑
y∈Sd

I[x− y]

Sd = {y ∈ Rn | ∥y∥2 = d}
D = [0, 1,

√
2]

n.b. ∥y∥2 = ∥Ry∥2,R ∈ SO(n)

(3.16)

By this parameter arrangement, these can be regrouped by associativity and thenumber of multiplications depends on the parameter d and not on the size of the ker-nel (Equation 3.16). Once the convolution is defined, the convolutional operator can beembedded in a convolutional layer for learning. This layer operates on 3d patches withfewer parameters.
CNN+ATT

We propose to replace the FCN by an attention mechanism Multi Head Self Attention(MHSA) block to embed the graph patch neighbourhood information (CNN+ATT). 3Dpatches 28×28×28with an isotropic resolution of 0.35mm are sampled from the CCTAvolume along a previously extracted centerline without straightened CPR (figure 3.25)and arranged in a graph patch. Each cube is individually processed for local feature ex-traction by a 3D-CNN comprising of 4 convolutional blocks interleavedwithmax-pooling
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Figure 3.23: A 2d example of distance-based kernel. The parameters are shared amongthe equidistant positions from the center of the kernel.
to achieve spatial reduction: 283 7→ 143 7→ 73 7→ 33. Each convolutional block has 2convolutional layers with residual connections and non-linear activation and batch nor-malization. The last convolutional layers is pooled by a global average pooling layer toobtain a fixed-size feature vector (256 channels). The Self-Attention aggregation blockhas two MHSA blocks with residual connections in sequence followed by a fully con-nected layer for classification. The number of layers is tuned experimentally on theevaluation set to be as small as possible without performance loss. Positional contextinformation is given to the model by computing positional embeddings from the graphpatch structure of the centerline (fig. 3.25). Using the self-attention technique from [20],the layer operating on a graph patch Ni = {vj ∈ V |d(vi, vj) ≤ k} is defined as for eq.3.17:

v0i = vi + posi
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(3.17)

whereWK ,WQ,WV are trainable parameters and σ is a non-linear activation func-tion, where we overload the row vector multiplication to operate on sets as the resultof vl≥1 is the same independently of the ordering of Ni.
Positional Embeddings

Positions posi are computed locally by exploiting the directed tree structure using asigned hop count from the center node (+1 if distal,−1 if proximal); this scalar functionis then mapped to vectors of dimension dk by using sin functions at multiple frequen-cies [20] to obtain positional embeddings. In order to avoid information for the centernode getting diluted in the aggregation step, only the center node value vector Vi isused to compute the output, while the whole neighborhood query Q and keyK vector
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are used to compute the self-attention matrix. There are many options for positionalembeddings in graphs: a simple hop-count suffices for this application as it holds thedesirable property of a constant representation for all sorts of configurations, unlikeeigenvector decomposition [76] and it is order-invariant, unlike learnable embeddings.For example consider 2 simple graph patches g0 and g1 of order k = 2; their representa-tion should be held constant for the predecessor nodes (0,1), however using a non-lineartransform like spectral embeddings does not hold the desired property (Figure 3.24).

Figure 3.24: For two examples of graph patches g0, g1 the embedding distance is com-puted as Demb(g0, g1, v) =
∑F

f=0(T (L(g0))[v, f ] − T (L(g1))[v, f ])
2, v ∈ [0, . . . , n − 1]

where L(g) : (N × E) 7→ Rn×n, n = #N of the graph g, and T is the embedding trans-formation T : Rn×n 7→ Rn×F .

Figure 3.25: 3D patches are extracted from the CCTA volume by sampling points fromthe centerline; for each patch, a 3D-CNN computes a local features vector, and the graphdistance is used. The centerline is extracted as a preprocessing step.
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Figure 3.26: A sample of the inference result displayed along the coronary with CPRreconstruction. For each picture, the top and bottom bars represent the ground truthprediction (calcified, mixed, and soft) overlapped with the prediction of CNN+ATT andstandard CNN, respectively. These examples show the False Positive reduction providedby CNN+ATT. From the top row down, the first example shows False Positives in corre-spondence of the LMA bifurcation and in low contrast distal portions. The same for thefollowing examples with False positives in correspondence of bifurcations and low con-trast distalities. This example is in agreement with the specificity metrics of the CNNmethod and CNN+ATT method shown in table 3.4.5.

3.4.5 Experiments

Testing Segment level plaque localization

The test set is composed of ∼ 500manually annotated segments. In order to avoid thebias of manually selected segments, each segment is of fixed length (30mm) and cancontain either one or multiple labels. In order to simplify the comparison, each modelis tested on the binary task of plaque localization; this also avoids the issue of inter-observer variance in the assessment of plaque characterization. The localization is thenobserved with respect to all plaque classes (Table 3.4.5). A ROC analysis of the CNN+ATTproposedmethod is then performed in isolation against the baseline (RCNN [15], TR [52])(Figure 3.27).
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Method Archi Data No-Plaque Calcsens. spec. prec. f1 sens. spec. prec. f1Baseline RCNN [15] orig. 0.81 0.88 0.81 0.84 0.87 0.97 0.81 0.84Baseline RCNN [15] ours 0.83 0.72 0.69 0.75 0.83 0.94 0.91 0.86Baseline TR [52] ours 0.86 0.52 0.59 0.70 0.86 0.97 0.96 0.88Proposed 2.5D-CP ours 0.89 0.60 0.77 0.68 0.89 0.60 0.77 0.68Proposed CNN ours 0.93 0.70 0.79 0.74 0.93 0.87 0.62 0.72Proposed dbCNN ours 0.90 0.67 0.61 0.63 0.90 0.82 0.59 0.68Proposed CNN+ATT ours 0.88 0.83 0.79 0.83 0.88 0.82 0.79 0.86
Mix No-Calcsens. spec. prec. f1 sens. spec. prec. f1Baseline RCNN [15] orig. 0.81 0.92 0.84 0.85 0.32 0.88 0.25 0.28Baseline RCNN [15] ours 0.83 0.96 0.91 0.86 0.83 0.65 0.57 0.61Baseline TR [52] ours 0.86 0.94 0.92 0.91 0.86 0.58 0.48 0.52Proposed 2.5D-CP ours 0.89 0.83 0.64 0.72 0.89 0.36 0.42 0.39Proposed CNN ours 0.93 0.79 0.63 0.71 0.93 0.45 0.44 0.45Proposed dbCNN ours 0.90 0.65 0.58 0.51 0.90 0.40 0.33 0.36Proposed CNN+ATT ours 0.88 0.83 0.79 0.85 0.88 0.70 0.66 0.75

Table 3.6: Segment level plaque localization.

Testing Coronary level plaque characterization

The CNN+ATT method is tested in isolation against the baseline for plaque characteri-zation at the coronary level. Each coronary is assigned a label based on the highest riskfactor associated with the plaque characterization (Soft, Mixed, Calcified, Healthy). Eachcoronary is split into segments, and the prediction associatedwith the highest risk factoris assigned to the whole coronary and tested against its label. As most coronaries haveplaques, only the correct label assigned is considered, and performance is measuredwith the C-Index or concordance score and confusion matrix (Tab. 3.4.5).

Figure 3.27: Segment level ROC curves: localization ROC analysis is stratified with re-spect to the coronary plaque composition. All models are comparable on the calcified-plaque and mixed-plaque class, while on the class soft-plaque the proposed methodshows better performances.
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Coronary Level PREDICTEDRCNN [15] Healthy Calc Mix No-CalcHealthy 59 5 3 6Calc 8 4 12 10Mix 20 6 29 12No-Calc 15 3 11 14C-Index 0.700
TR [52] Healthy Calc Mix No-CalcHealthy 60 2 1 10Calc 3 10 14 7Mix 21 13 23 10No-Calc 20 10 13 10C-Index 0.697
CNN+ATT Healthy Calc Mix No-CalcHealthy 52 2 9 10Calc 3 11 10 10Mix 6 5 50 6No-Calc 12 3 10 18C-Index 0.720

Table 3.7: Coronary level plaque characterization.

(a) (b)
Figure 3.28: (a) 2.5D and 2.5D-CP data format and architecture. The same CNN takesa different input to predict plaque characterization and stenosis degree. (b) Accuracyas a function of coronary portion. The more distal lesions are included, the lower theaccuracy on both characterization and occlusion detection. The accuracy measure isfor the 2.5D-CP model on the entire test set (75-100%) for only the lesions that occurin the coronary portion up to 3/4 of the total length (50-75%) and finally for half of thecoronary (0-50%).
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(a) (b)
Figure 3.29: (a) On the x-axis, the centerline perturbation term s in voxels. The y-axis isshared by sensitivity, specificity, and a local features e alignment metric, which togetherrepresent the consistency of intermediate and output representation of the inputs asthe centerline is disturbed around its original location. (b) The comparison among differ-ent models with different input data format. CNN+ATT take isotropic patches arrangedon a graph patch, RCNN and TR takes straightened CPR segments. The perturbationon the centerline propagates to the CPR reconstruction which propagates through thenetwork at detriment to the localization capabilities.
Centerline robustness

One of themajor concerns about this method is the robustness to the centerline extrac-tion quality. In order to test how results are affected by centerline quality, our methodunderwent evaluation using increasingly noisy centerline coordinates to ensure that thecontent perceived by the model remains unchanged under random shifts. The consis-tency of intermediate representation local feature extracted by the 3D-CNN ismeasuredusing cosine alignment metrics. Each coordinate point p around the centerline is per-turbed by a uniform noise u ∼ U(−s, s)3. Embeddings ep consistency is measured usingthe cosine similarity as noise increases cossim(ep, ep+u) (Figure 3.29). The results sug-gest that the method is consistent up to a threshold of 2.25mm shift from the originalideal centerline; this result is reasonable considering that the average coronary radiusis about 2.5mm.
2.5D-CP plaque characterization

Plaque characterization is a downstream task of localization. In [53] the author pro-poses to characterize plaques from the identified starting and ending position with theuse of 2D orthogonal views sampled from the CPR straightened volume. We proposeto repeat this experiment and compare the extraction of the 2.5D views with the CPR
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straightened view. Therefore, we observe only how the model performances differwhen the input is switched. The 2D CNN architecture is fixed and can therefore be ar-bitrary. We chose a shallow 2D CNN architecture composed of 3 convolutional blocks:Conv ◦Relu ◦MaxPool. Instead of padding or stretching the input, the final layer consistsof a Maximum Adaptive Pooling MAP layer outputting a feature vector z ∈ R128 whichis fed to a fully connected network (FCN) to output the classification vector y ∈ R5. Thisexperiment is designed to measure the characterization capability of 2D CNN.
Training Each model takes a segment of fixed length (30 mm) and outputs a multi-class label as input. The dataset is highly unbalanced; therefore, sampling is biasedtowards the minority classes in order to obtain a uniform distribution of plaque labels.The alternating procedure proposed by [15] in which batches are alternating did not im-prove the characterization task. Eachmethod is trained on the samedataset of coronarylesions but without the healthy segments; therefore, the model predicts three classes:calcified, mixed, or soft. The input lesion is stretched to the mean lesion length, so theinput is of fixed length. However, this method makes the view non-isotropic; the viewchanges as the length changes; therefore, the method is not scale-invariant (the samelesions at different lengths are processed differently). In order to account for this issue,the views are padded to a maximum size, and the maximum activation along the lengthdimension is taken for classification.
Testing lesion level plaque characterization Plaque characterization can be seenas a downstream task of plaque detection. Thus once a plaque’s starting and endingpoint are localized a plaque can be further discriminated into sub-classes for charac-terization. In our case, there are three main classes: calcified, mixed, and soft plaques.For this task, we propose to compare two methods that rely on the CPR volume and, inparticular, on the extraction of 2.5D views. Themodels are evaluated using amulti-classconfusion matrix; each entry corresponds to a lesion. Lesion classification accuracy isalso measured with respect to distality, which correlates with coronary diameter. Themodel is tested on the set of lesions present in the test set: 49 soft, 78mixed, 97 calcifiedplaques, and 182 non-occlusive, 42 occlusive stenosis.
3.4.6 Discussion

In this section, we presented a set of plaque localization and characterization meth-ods given an input CCTA image paired with coronary centerline coordinates. Coronaryplaques can be subdivided into four main classes: healthy (no-plaque), calcified, mixed,and soft. Both localization and characterization have entangled features; the localiza-tion of a soft plaque necessitate the knowledge of its characteristics; localization is abinary classification task that is simpler to analyze than amulti-faced classification prob-lem. A model that performs well in localization will necessarily perform as suitable forcharacterization, while the converse is not true. As shown in previous section, character-ization is achievable if the localization of a plaque is given. The main issue is, therefore,
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Lesion Level Predicted2.5D[53] CALC MIX SOFT OCCL NON-OCCLCALC 85 23 4MIX 12 38 19SOFT 0 18 26OCCL 30 80NON-OCCL 12 102
Lesion Level Predicted2.5D-CP CALC MIX SOFT OCCL NON-OCCLCALC 82 24 7MIX 15 35 20SOFT 0 19 22OCCL 41 71NON-OCCL 2 111

Table 3.8: Plaque characterization and stenosis degree assessment at the lesion-level.A confusion matrix comparison between two methods (2.5D against 2.5D-CP).

the variability of the healthy (no-plaque) class, which can be indicated by many factors:missing annotations, noise, and anatomical variability. Plaque characterization can thusbe simplified to reduce false positives while keeping true negatives constant. As shownin figure 3.26 the CNN+ATT method reduces false positives concerning a simple CNNlocal method. The localization capability measurements are summarized in Table 3.4.5.The proposed CNN+ATT method shows better performances across the No-plaque andthe Non-Calcified (Soft) plaques which are the hardest to identify. When other meth-ods present higher specificity, the CNN+ATT shows higher sensitivity. For example, formixed plaques the RCNN has a sensitivity of 0.83 and a specificity of 0.96 against theCNN+ATT with 0.88 and 0.83 for sensitivity and specificity, respectively. We hypothesizethat this issue relates to the binary decision boundary being biased towards negatives. AROCanalysis corroborates this observation as the AUC is higher forMixedplaques in iso-lation: 0.96 and 0.94 for CNN+ATT and RCNN, respectively (fig 3.27). The same does nothold for the other methods when observing themetrics on the non-calcified and overallplaque detection. Both the ROC curve and themetrics agree for both classes in isolation.The coronary level analysis (tab. 3.4.5) shows that the CNN+ATT has better discrimina-tive capabilities than the baseline. By correctly identifying patients with soft plaques,the corresponding risk can be better assessed, and a bias towards negatives and non-calcified plaques provides more informative clinical support overall. As an additionalexperiment, we measured the potential clinical use of the CP-CPR for coronary plaquecharacterization and stenosis assessment (Table 3.8). While CPR orthogonal views seembetter suited for plaque characterization, the CP-CPR holds significant information forstenosis assessment. The major issue, however, remains in false-negative detection.Complex cases lie between healthy and soft plaque (Figure 3.30). The inter-operatorvariance in the annotation might also have been an issue as multiple annotators withdifferent skills have been employed. Hard/corner cases can be identified using the T-
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(a) (b)
Figure 3.30: (a) T-SNE on deep-features computed by the CNN encoder highlighted bytrue positive and true negatives, false positives and false nagatives. (b) false negativescount with respect to class.
SNE analysis of deep feature map outputs. The figure suggests that false positives aredistributed almost evenly amongst correctly predicted segments.
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3.5 Coronary Segmentation

The severity of the plaque build-up, also known as plaque burden, necessitates a multi-faceted evaluation of coronary artery plaque content, volume, distribution, and lumenstenosis. To this purpose the segmentation of the coronary and the atheroscleroticplaque have fundamental clinical applications. Coronary artery segmentation can bemono-phase (the whole coronary) or bi-phase (inner lumen and outer wall) thus com-prising the plaque-burden, unlike lumen coronary segmentation, which only focuseson delineating the high-intensity lumen at the inner wall border from the low-intensitywall tissue and surroundings, the segmentation of coronary artery wall and plaquesfrom CCTA images is substantially more challenging. There are various approaches tocoronary segmentation. In this section we explore an approach that necessitates thetracking of the vessel to be performed as a pre-processing step. This approach con-sists of modeling the local appearance of a bright tubular structure. Frameworks forbi-phase coronary segmentation often employ multiple modules from region growingphases, to vesselness mesaurements, the level set method [77] and mesh operationsfor visual refinement. We propose to analyse a simple level set method for preliminaryvessel segmentation and propose a numerical scheme for fast narrow band updates onvolumetric data.

3.5.1 Proposed method

Masked gradient descent

The Chan-Vese [78] method is an iterative algorithm that proposes the following updatefunction of a level set (equation 3.18).

ϕt = H ′
ϵ(ϕ){div(

∇ϕ
|∇ϕ|

)− λ((c1 − f)2 − (c2 − f)2)} (3.18)
Here, the function H is the Heaviside function. In practice a smooth Lipschitz ap-proximation is often used such thatHϵ(x)→ H(x) for ϵ→ 0 (eq. 3.19).
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ϵ2 + x2

(3.19)

The level set function ϕ like the Eikonal function of the phase function Ω ⊂ D has anon null gradient by design and it is zero in ∂Ω. Therefore div( ∇ϕ
|∇ϕ|) is always defined. In[79] the level set function is restricted to u ∈ BV [0, 1] therefore the segmentation canbe formulated as a constrained convex optimization problem (Equation 3.20).
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min
0≤u≤1

∫
D
|∇u(x)|+ λ

∫
D
{(c1 − f(x))2 − (c2 − f(x))2}u(x)dx =

min
u

∫
D
|∇u(x)|+ λ

∫
D
{(c1 − f(x))2 − (c2 − f(x))2}u(x) + αν(u)dx

(3.20)

The first constrained problem has the same set of solutions of the second problemwhere ν(ξ) = max(0, 2|ξ − 1
2 | − 1), α ≥ λ

2 ||s(x)||L∞ . The update function is thereforeexpressed in equation 3.21.

ut = div(
∇u
|∇u|

)− λ((c1 − f))2 − (c2 − f)2)− αν ′(u) (3.21)

We can observe that the update formula is not defined over the whole spatial do-main {x | ∇u(x) ̸= 0} ⊂ D. To circumvent this issue the minimized energy is reformu-lated with a smoothing constant ϵ (equation 3.22).

min
0≤u≤1

∫
D
|∇u(x) + ϵ|+ λ

∫
D
{(c1 − f(x))2 − (c2 − f(x))2}u(x)dx (3.22)

We can observe that for a function u ∈ BV [0, 1], regions with ∇u = 0 are flat con-stant regions (either 0 or 1). For any continuous function f(a) = 0, f(a + ϵ) = 1 =⇒
∇f(a) ̸= 0 ⇐⇒ ϵ→ 0. We can therefore apply a constraint on the gradient descent bymasking a set of variables (Equation 3.23).

ut(x) = div(
∇u(x)
|∇u(x)|

)− λ((c1 − f(x)))2 − (c2 − f(x))2)

x ∈ {x | ∇u(x) ̸= 0}
(3.23)

The set {x | {H ′
ϵ(ϕ(x)) > 0} = {x | ∇u(x) ̸= 0} for ϵ → 0. This implies thatthe local maxima found by the previous method are a subset of the global maximumsolution. Furthermore we can observe that if we were to choose any u0 as initialization:the connected component of the global solution which is connected to u0 is the localminimum found by means of (Equation 3.23).
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Figure 3.31: the set {x|u∗∗(x) = 1} ⊂ {x|u∗(x) = 1}, the local minimum u∗∗ is connectedto the initialization u0. This can be seen as a limitation or an advantage depending onthe application.
An even simpler method is to use the MBO model [80] with the heat equation asregularizer which has a simpler centred discretization by means of the Laplacian kernel(Equation 3.24).

ut(x) = ∆u(x)− λ((c1 − f(x)))2 − (c2 − f(x))2)

x ∈ {x | ∆u(x) ̸= 0}
(3.24)

The conditions {x | ∇u(x) ̸= 0} ⊂ {x | ∆u(x) ̸= 0} and {x | ∆u(x) ̸= 0} − {x |
∇u(x) ̸= 0} are the non-simple points of {x | u(x) > 0}} which do not occur in ourapplication. Narrow band updates is a well known strategy to optimize the computationof the level set method by front evolution [81, 82]. The narrow band here is presentedas a masked iterative scheme in which only a part of the variables are updated withno need to re-compute the level set function for numerical stability. A distantly relatedproblem is the optimization of highly non convex function involving neural networks, itis good practice to stop early the iterative optimization in order to avoid over-fitting, wecan draw similarities with this approach: although in theory the solution is sub-optimalin practice it allows to segment the connected component that intersects the initial u0this is particularly suited for coronary segmentation when the initial segmentation is thecenterline.
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Local Level set Method

The proposed level set method exploits the tracking center-line in 2 ways. First the vox-elized center-line is used as initial segmentation for themethod, secondly small patchesare sampled around the center-line thus allowing to re-sample at a subvoxelic resolu-tion. Another advantage is that the level set method can run on a sparse set of smallpatches rather than the whole volume. Additionally coronary plaque detection meth-ods developed in this work can be used as guide to parameterize the segmentation.When calcified, mixed, or soft plaques are detected, the patches extracted at the lo-cation where the plaque has been detected can be segmented using a better suitedstrategy.
3.5.2 Experiments and Discussion

There is no reason to believe that local minima aremore relevant to this image process-ing task [83]. Furthermore the narrow band computed by the masked gradient descentis computationally convenient, especially for sparse segmentation in general and tubu-lar 3D structure in particular. For coronary segmentation a classic strategy is to initializethe segmentation with the extracted center-line of the tracking (manual or automatic).We propose a qualitative analysis of this method as there is no reference manualsegmentation available for the measurement of the necessary metrics to carry out aquantitative analysis. What can be observed is that the convex formulation with theconstrained binary function is not suited for the problem at hand. Changes in topol-ogy are in general a desirable property of a segmentation algorithm, in our case thecenterline and the final segmentation belong to the same homology class (objects withthe same topology). Level set methods can be seen as a Bayesian model in which theprior term is total variation, the methodology based on the variational model (solutionof the Euler-Lagrange equation) is however considered obsolete and inefficient. Morerecent methods based on dual formulation of the minimization problem and proximaloperators [84] constitute a more modern approach which however do not incorporatethe topological constraint of connectedness to the initialization. What would have beena major addition to this work is the comparison with directional total variation mini-mization for the segmentation of tubular structures proposed in [85, 86], but the lack ofground truth coronary segmentation for quantitative comparison remains as an issue.However, due to time constraints, we could not explore this hypothesis maybe to beexplored in future works.
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Figure 3.32: Pipeline of the segmentation algorithm: patches are sampled from the CTvolume at the coronary centerline locations, from these local statistics are computedfrom the values at the centerline, the level set is executed in parallel on each patch witha fixed number of iterations (10), the whole segmenation is obtained by averaging alllocal patch segmentations.
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Figure 3.33: Left: Level set segmentation according to the convex formulation (equation3.21), Right: Level set segmentation according to the narrow band formulation (equation3.24).

Figure 3.34: Level set segmentation according to the narrowband formulation (equation3.24).

Figure 3.35: Level set segmentation according to the convex formulation (equation 3.21).

Figure 3.36: Level set segmentation according to the narrowband formulation (equation3.24).
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Figure 3.37: Level set segmentation according to the convex formulation (equation 3.21).

Figure 3.38: Level set segmentation according to the narrowband formulation (equation3.24).

Figure 3.39: Level set segmentation according to the convex formulation (equation 3.21).

Figure 3.40: Level set segmentation according to the narrowband formulation (equation3.24).

Figure 3.41: Level set segmentation according to the convex formulation (equation 3.21).
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Figure 3.42: An example of how the convex method global optimum is not as relevantas the local optimum found with the proposed descent method. Top: 10 iterations ofthe global method initialized at the center line. Bottom: 10 iterations of the proposedmethod initialized at the centerline. A portion of another injected structure is visibleand it is integrated in the segmentation while in the proposed method only the correctcoronary tubular structure is segmented.
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Chapter 4

Final remarks

4.1 Conclusion

CCTA has the potential to become the imagingmodality of choice for automated screen-ing of CAD. Its biggest limitation is the presence of artifacts noise that impedes pre-cision and thus reliability of the clinical inference. As the automated diagnosis toolsare limited by spatial and temporal resolution constructors are improving CT resolution(Photon Counting Computed Tomography (PCCT)) opening new possible clinical appli-cations. Any performance can be increased by adding more data and the bugbear ofcatastrophic forgetting can be solved by using bigger models, thus the achievement ofexpert-level automated diagnosis is only limited by today’s computational limits and bythe lack of expert annotation. As the application of deep learning replaces clinical tasksit is important that a structured dialogue is established between clinicians and com-puter scientists. Medicine is an empirical science and as such lacks absolute agreementamong its community members. An uncertainty which is reflected by a high inter andintra observer variance in the annotations which can be only mitigated by averagingcollective observations at the cost of a major logistic bottleneck. On the other end ofthe spectrum there are performance measurements, which are provided to cliniciansto evaluate an automated diagnostic tool. It is the responsibility of the computer sci-entist to have a deeper understanding of the clinical requirements in order to providetailored measurements and the most fitting performance metrics for a fair evaluationand a meaningful feedback for the clinicians. There’s no blueprint for such structureddialogue because of the high combinatorial of clinical requirements and possible auto-mated system. Initiatives like the SFR challenge and MICCAI’s grand challenges aims tosolve precisely that by providing solid foundation for clinicians and computer scientiststo agree upon. However we could observe a lack of structure when dealing with coro-nary CCTA imaging related clinical tasks. In most cases the amount and quality of thedata provided are too scarce to fit the strict requirements provided by the clinical eval-uation frameworks. In the current data-driven historical period CCTA data for coronaryanalysis seems to be one of the few exception as it is becoming scarcer: sadly enoughone of the major contributor to the CCTA coronary segmentation community [45] is no
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longer maintained. The scope of this thesis was to explore how deep learning can bebeneficial to the whole pipeline of CCTA coronary analysis. While performances are notstill satisfying, we can confidently state that with more focus on providing high qual-ity annotation and by defining the scope of the application (segmentation, detection,classes for classification) deep learning based applications could become an effectivediagnostic tool to support clinicians evaluate CAD. Another major issue which has notbeen discussed is the scalability of neural networks. Industrial solutions existing todayare mostly oriented towards 2D image processing which present a much lower dimen-sionality with respect to CT imagery. To reach human level (and beyond) performances,models with tens of millions of parameters are put into production and are constantlyretrained with new data (continuous learning). The computational resources needed totrain these model are the mono-pole of a few industrial actors, thus medical imagingalthough being promising might not still be ready for easily-available real-world diagno-sis. The middle ground is limiting the application to a set of known cases in which theanatomical variability is knownandwell identifiable (e.g. calciumscore or bony structuresegmentation). The issue of balancing learning segmentation of tubular structures re-gardless of their size and or section thus ensuring connectivity have been addressed byformulating a topological interpretation of the skeletonization operator gradient. Thisissue is shared among all medical imaging modalities and anatomies: for example livervessels segmentation. In addition the use of weak supervision by means of the solecentereline is a major practical advantage for all tubular structure segmentation issuesand as a byproduct a whole segmentation can be also obtained. Another unexploredfield which may be beneficial to the whole diagnosis pipeline is uncertainty measur-ing. Because of the high intra-variability of plaque visual features these can be detectedwith varying confidence. This could be addressed by stacking multiple prediction onlyfor those instances falling into a low confidence zone. Such low-confidence zone can beidentified by using geometric projection on low dimensional spaces (embeddings) usingdeep features.

4.2 Resume

This work proposes to explore the vast andmulti-faced topic of automated prediction ofMajor Adverse Cardiovascular Events (MACE). An automated imagingworkflowbasedondeep-learning techniques has been developed by focusing on the clinical tasks linked toidentifying anatomical indicators of Coronary Artery Diseases (CAD). Patients acceptedat ER with CAD suspicions, symptomatic and asymptomatic, undergo examinations thatcan be more or less invasive. One of the objectives of this work is to exploit imagingexamination solutions that are minimally invasive, thus minimizing the stress on boththe patient and the clinical site. Calcium Score Computed Tomography (CSCT) is a non-invasive low-dose exploratory examination aiming to quantify early CAD indicators ofCoronary Artery Calcium CAC burden based on the computation of the Agatston Score(AS). In this work, we propose a robust and efficient approach to quantifying the CACburden based on semantic segmentation provided by an ensemble of U-net neural net-
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work architectures. We could verify that a minimum resolution of 2.5 mm isotropic CTscan is required for the accurate computation of AS score, allowing fast inference andthus little computational requirements for clinical site workstations. Coronary Com-puter Tomography Angiography (CCTA) is the sole minimally invasive imaging modalitythat allows the visualization of morphological features of coronary arteries. The injec-tion of iodine solution in the bloodstream highlights coronary arteries, thus allowingfor the identification of anatomical indicators of CAD. We propose a coronary analysisworkflow that first extracts the coronary centerline (coronary tracking), thus enablingsubsequent tasks linked to identifying coronary lesions (plaques and stenosis). To thisend, we developed a tailored loss function that can learn from the annotated center-line alone to identify tubular structures and a recursive tracking strategy to computethe entire coronary vessel tree. The mapping or labeling of the coronary vessel treeholds important clinical information as the knowledge of the main coronary branchesguides the expert investigation of coronaropathy. In this work, we show that a learningapproach based on Graph Neural Networks (GNN) supplemented with a tree structureapriori can automatically identify the coronary branches of the vessel tree even whenthe tree is incomplete or highly irregular due to anatomical variations that may occurin the patient population. The vessel tree paired with the CCTA volume is then used forcoronary analysis. We propose a transformer neural network architecture that holdsthe tree structure’s local information to predict the localization of coronary plaques andtheir characterization. The proposed method is more robust than the ones in the liter-ature as it is not based on advanced Curved Planar Reformatted (CPR) views that aresensitive to the centerline extraction quality. CSCT and CCTA volumes paired with ex-pert manual annotation have been collected in different clinical sites during the wholeduration of the thesis. Experts provide the requirements and validation for clinical appli-cations. Supervised deep learning is particularly suited for this workflow as it allows tolearn, scale optimally, and validate directly from manual annotation. Overall this workprovides evidence to support the automation of clinical tasks linked to the prediction ofCAD and MACE by exploiting noninvasive imaging data.

4.3 Resume (FR)

Ce travail propose d’explorer le vaste sujet, aux multiples facettes, de la prédiction au-tomatique des événements cardiovasculaires indésirables majeurs (MACE). Un flux detravail automatisé basé sur des techniques d’apprentissage profond a été développé ense concentrant sur les tâches cliniques liées à l’identificationdes indicateurs anatomiquesdes maladies coronariennes (coronary artery diseases CAD). Les patients acceptés auxurgences avec des suspicions de coronaropathie, symptomatiques et asymptomatiques,subissent des examens qui peuvent être plus oumoins invasifs. L’un des enjeuxmajeursde ce travail est d’exploiter des solutions d’examen d’imagerie qui sont peu invasives.La tomographie numerique du score calcique (Calcium Score Computed TomographyCSCT) est un examen exploratoire non invasif à faible dose de radiations qui vise à quan-tifier les indicateurs précoces de la charge calcique des artères coronaires (CAC) en se
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basant sur le calcul du score d’Agatston (AS). Dans ce travail, nous proposons une ap-proche robuste et efficace pour quantifier le fardeau du CAC basé sur la segmenta-tion sémantique fournie par un ensemble d’architectures U-net. Nous avons pu vérifierqu’une résolution minimale de 2,5 mm de tomodensitométrie isotrope est nécessairepour le calcul précis du score AS, ce qui permet une inférence rapide et donc des besoinsde calcul réduits pour les stations de travail des sites cliniques. La Angiographie CT desCoronaires (Coronary CT Angiorgray CCTA) est la seulemodalité d’imagerie peu invasivequi permet de visualiser les caractéristiques morphologiques des artères coronaires.L’injection d’une solution iodée dans le sang met en évidence les artères coronaires, cequi permet d’identifier les indicateurs anatomiques de la maladie coronarienne. Nousproposons un flux de travail d’analyse coronaire qui extrait d’abord la ligne centralecoronaire (suivi coronaire), permettant ainsi les tâches ultérieures liées à l’identificationdes lésions coronaires (plaques et sténoses). À cette fin, nous avons développé unefonction de cout adaptée qui permets d’apprendre de la ligne centrale annotée seulepour identifier les structures tubulaires et une stratégie de suivi récursif pour calculerl’arbre entier des vaisseaux. L’étiquetage de l’arbre des vaisseaux coronaires contientdes informations cliniques importantes, car la connaissance des principales branchesguide l’examen expert de la coronaropathie. Dans ce travail, nous montrons qu’une ap-proche d’apprentissage basée sur les réseaux neuronaux par graph (GNN) complétéepar une structure arborescente apriori peut identifier les branches coronaires de l’arbredes vaisseaux, même lorsque l’arbre est incomplet ou très irrégulier en raison des vari-ations anatomiques qui peuvent se produire dans la population de patients. L’arbrevasculaire associé au volume CCTA est ensuite utilisé pour l’analyse coronaire. Nousproposons une architecture de réseau neuronal transformateur qui retient les infor-mations locales de l’arborescence pour prédire la localisation des plaques coronaires etleur caractérisation. La méthode proposée est plus robuste que celles de la littératurecar elle n’est pas basée sur des vues avancées Curved Planar Reformatted (CPR) qui sontsensibles à la qualité de l’extraction de la ligne centrale. Des volumes de CSCT et CCTAassociés à des annotations manuelles d’experts ont été collectés dans différents sitescliniques pendant toute la durée de la thèse. Les experts fournissent les exigences et lavalidation pour les applications cliniques. L’apprentissage profond supervisé est parti-culièrement adapté à ce flux de travail, car il permet d’apprendre, de mettre à l’échellede manière optimale et de valider directement à partir de l’annotation manuelle. Dansl’ensemble, ce travail fournit des preuves pour soutenir l’automatisation des tâches clin-iques liées à la prédiction du CAD et MACE en exploitant les données d’imagerie noninvasives.

4.4 Compliance with Ethical Standard

4.4.1 Human rights

The authors declare that thework described has been carried out in accordancewith theDeclaration of Helsinki of theWorld Medical Association revised in 2013 for experiments
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involving humans.
4.4.2 Informed consent and patient details

The authors declare that neither this report nor the collected data contain any personalinformation that could lead to the identification of the patient, data has been collectedupon agreement with the clinical sites and patients.
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Titre: Prédiction automatique des épisodes cardio-vasculaires adverses majeurs
Mots clés: 3 à 6 mots clefs (version en français)

Résumé: Dans ce projet de recherche financé en
contrat CIFRE avec GE Healthcare, on cherche a
prédire les épisodes cardio-vasculaire adverses majeurs
(ECAM), c’est à dire typiquement les embolies et les
anévrismes dans l’aorte et les artères coronaires, qui
donnent lieu a une respectivement à une interruption
catastrophique du flux sanguin vers le coeur et donc
un infarctus, ou à une hémorragie interne. Les deux
types d’épisodes sont extrêmement graves. Lorsqu’un
patient est hospitalisé pour une alerte reliée à ces
épisodes, il va subir un examen scanner X, injecté ou

non, plus ou moins invasif. Un objectif majeur de cette
recherche est d’utiliser au mieux l’information obtenue
sous forme d’images 3D ainsi que l’historique du pa-
tient pour éviter de soumettre le patient à des exa-
mens inutiles, invasifs ou dangereux, tout en garan-
tissant le meilleur résultat clinique. Les méthodolo-
gies proposées reposeront sur des techniques d’analyse
et traitement d’image, de vision par ordinateur et
d’imagerie médicale qui seront développée en parte-
nariat entre GE Healthcare et le laboratoire Centre de
Vision Numérique (CVN) de CentraleSupélec.

Title: Automated prediction of major adverse cardiovascular events
Keywords: 3 à 6 mots clefs (version en anglais)

Abstract: This research project is expected to be fi-
nanced by a CIFRE scholarship in collaboration be-
tween GE Healthcare and CentraleSupelec. We are
seeking to predict Major Adverse Cardiovascular Events
(MACE). These are typically embolism and aneurisms
in the aorta and the coronary arteries, that give rise
respectively to interrupted blood flow to the heart and
so a risk of infarctus, or major hemorrhage. Both are
life-threatening. When a patient is brought to hospital
for an alert (angina, etc), they will undergo an X-ray
CAT scan, which can be more or less invasive. A major

objective of this research is to utilize as well as possible
the available information in the form of 3D images to-
gether with patient history and other data, in order to
avoid needless, invasive, irradiating or dangerous ex-
ams, while simultaneously guaranteeing optimal care
and the best possible clinical outcome. The proposed
methodologies include image analysis, image process-
ing, computer vision and medical imaging procedures
and methods, that will be developed in partnership be-
tween GE Healthcare and the CVN lab of CENTRALE
SUPELEC.
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