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Abstract

Humans use their hands for various tasks in daily life and industry, making research in
this area a recent focus of significant interest. Moreover, analyzing and interpreting human
behavior using visual signals is one of the most animated and explored areas of computer
vision. With the advent of new augmented reality technologies, researchers are increasingly
interested in hand activity understanding from a first-person perspective exploring its suitabil-
ity for human guidance and assistance. Our work is based on machine learning technology to
contribute to this research area. Recently, deep neural networks have proven their outstanding
effectiveness in many research fields, allowing researchers to jump significantly in efficiency
and robustness.

This thesis’s main objective is to propose a user’s activity recognition framework includ-
ing four key components, which can be used to assist users during their activities oriented
towards specific objectives: industry 4.0 (e.g., assisted assembly, maintenance) and teaching.
Thus the system observes the user’s hands and the manipulated objects from the user’s
viewpoint to recognize his performed hand activity. The desired framework must robustly
recognize the user’s usual activities. Nevertheless, it must detect unusual ones to feedback
and prevent him from performing wrong maneuvers, a fundamental requirement for user
assistance. This thesis, therefore, combines techniques from the research fields of computer
vision and machine learning to propose comprehensive hand activity recognition compo-
nents essential for a complete assistance tool. This work explores recent advances in neural
network algorithms, which have proven to be effective for classic closed-set supervised
learning problems when a large amount of data is available. However, to detect unusual
(unknown) activities, the system must be learned in an open-set setting, a more realistic and
challenging scenario where incomplete knowledge of the world exists during training time,
and unknown activities can be seen during testing. These detected unknown activities are
collected, automatically annotated, and then incorporated into the system. In this way, the
desired framework learns and gradually expands by making each new activity known to the
system. Much of the work was also devoted to minimizing computation and data acquisition
costs, resulting in cost-effective and easily adaptable components.





Résumé

Les êtres humains utilisent leurs mains pour diverses tâches dans la vie quotidienne et
professionnelle, ce qui fait que la recherche dans ce domaine a récemment suscitée un grand
intérêt. De plus, l’analyse et l’interprétation du comportement humain à l’aide de signaux
visuels est l’un des domaines les plus actifs et les plus explorés de la vision par ordinateur.
Avec l’arrivée des nouvelles technologies de réalité augmentée, les chercheurs s’intéressent
de plus en plus à la compréhension de l’activité de la main d’un point de vue de la première
personne, en explorant la pertinence de son utilisation pour le guidage et l’assistance humaine.
Notre travail est basé sur la technologie de l’apprentissage automatique pour contribuer à ce
domaine de recherche. Récemment, les réseaux neuronaux profonds ont prouvé leur efficacité
exceptionnelle dans de nombreux domaines de recherche, permettant aux chercheurs de faire
un bond en avant en matière de robustesse et d’efficacité de manière significative.

L’objectif principal de cette thèse est de proposer un système de reconnaissance de
l’activité de l’utilisateur incluant quatre composants essentiels, qui peut être utilisé pour
assister les utilisateurs lors d’activités orientées vers des objectifs spécifiques : indus-
trie 4.0 (par exemple, assemblage assisté, maintenance) et enseignement. Ainsi, le sys-
tème observe les mains de l’utilisateur et les objets manipulés depuis le point de vue de
l’utilisateur afin de reconnaître et comprendre ses activités manuelles réalisées. Le système
de réalité augmenté souhaité doit reconnaître de manière robuste les activités habituelles
de l’utilisateur. Néanmoins, il doit détecter les activités inhabituelles afin d’informer
l’utilisateur et l’empêcher d’effectuer de mauvaises manœuvres, une exigence fondamentale
pour l’assistance à l’utilisateur. Cette thèse combine donc des techniques issues des domaines
de recherche de la vision par ordinateur et de l’apprentissage automatique afin de proposer
une brique de reconnaissance de l’activité de l’utilisateur nécessaire à un outil d’assistance
complet. Ce travail explore les avancées récentes des algorithmes de réseaux de neurones, qui
se sont avérés efficaces pour les problèmes classiques d’apprentissage supervisé à ensemble
fermé lorsqu’une grande quantité de données est disponible. Cependant, pour détecter des
activités inhabituelles (inconnues), le système doit être appris dans un ensemble ouvert, un
scénario plus réaliste et plus difficile où la connaissance du monde est incomplète au moment
de l’apprentissage et où des activités inconnues peuvent être observées pendant le test. Ces
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activités inconnues détectées sont collectées, annotées automatiquement, puis intégrées aux
modèles. De cette façon, le système de reconnaissance de l’activité de l’utilisateur proposé
apprend et s’étend progressivement en faisant connaître chaque nouvelle activité au système.
Une grande partie du travail a également été consacrée à la minimisation des coûts de calcul
et d’acquisition de données, ce qui a permis de proposer un système rentable et facilement
adaptable et industrialisable.
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Chapter 1

Introduction

Contents
1.1 Context and background . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objective and challenges . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 First-person hand activity recognition . . . . . . . . . . . . . . . 5

1.2.2 Unknown hand activity detection . . . . . . . . . . . . . . . . . 7

1.2.3 Semi-automatic unknown activity annotation . . . . . . . . . . . 7

1.2.4 Incremental hand activity recognition (models extension) . . . . . 8

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

This thesis takes place at the Institute of Research and Technology irt b-com in collab-
oration with CentraleSupélec Rennes, the Artificial Intelligence for Multimodal Affective
Computing (AIMAC) team part of the Institute of Electronics and Telecommunications
(IETR) of Rennes. The thesis is a part of the irt b-com ARCloud project. This chapter first
introduces the general context in section 1.1. Section 1.2 then presents the scientific research
hypotheses, the objectives, and challenges. Section 1.3 presents the contributions of this
thesis, and section 1.4 provides the organization of the following chapters of this manuscript.



2 Introduction

1.1 Context and background

In recent years, the development of the Internet of Things has allowed digital technologies
to be used in both everyday contexts as well as in the world of "industry 4.0." With the
release of more compact, more powerful, and lighter Augmented Reality (AR) visualization
devices, manufacturing companies are reinvesting in AR and exploring its suitability for the
industrial context. To reduce costs and production times, manufacturers are searching for
solutions to inconveniences associated with the interruption of production machines, e.g.,
due to maintenance reasons, specifications of certain products.

The training of operators is one part of the production process where AR can be integrated
to save time and money. Appropriate and adequate training of industrial operators can be less
costly than a reconfiguration of the whole production process. Because of their flexibility,
operators can respond quite easily and quickly to the particular needs of the manufacturer.
Their training often requires another sufficiently experienced operator and teacher to transmit
the required skills. In the case that such a person is not available, instruction manuals can
be used to train operators. However, they can sometimes be more cumbersome, outdated,
insufficiently informative, and not very comprehensive. These manuals may not meet the
specificities of an apprenticeship nor the technical level of the apprentices. In order to be
effective, complete, and lasting, the training procedure in an industrial context requires our
different senses, notably sight, hearing, and touch. The best way to learn appropriately and
effectively acquire new knowledge is to visualize the task to be performed and to experience
it. The AR can meet these requirements by displaying relevant information at the right time
in the right place. In figure 1.1, the right picture shows a demonstration of operator teaching
using AR device.

On the other hand, assembly is crucial for the entire manufacturing process. The total
cost of a product, the time required to manufacture it, and its quality depend on the efficiency
and precision of the various assembly stages. Assembly operations can often be complex and
require fine adjustments to achieve an acceptable result. The assembly sequence can be long,
with many parts to be assembled in a precise order to ensure the proper functioning of the
product. For these reasons, workers must be skilled and trained to do so within the cycle time
imposed by the production rate. The final product may depend on the variant to be assembled
and may require the consultation of paper manuals. These reference tables can lead to time
loss, distraction, and safety problems. In manual assembly, tasks are performed by human
operators assisted by semi-automatic tools or machines. However, human error is also a
fundamental problem in assembly lines. They can result in increased production waste or
processing time and costs and degraded product quality due to manufacturing defects. Various
methods, such as extensive training sessions or detection devices, are used to overcome this
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Fig. 1.1 The left picture gives an illustration of an AR operator being assisted by the AR
assistance system while performing an assembly task. The right picture shows an illustration
of operator teaching using an AR system. AR projects the learner into a context closer to
reality than traditional learning methods. It makes the task easier for the assembler by more
pleasantly displaying the instructions to be followed.

problem. These approaches are often costly and, in many cases, do not provide complete
assurance of avoiding these annoyances. The likelihood of human error during assembly must
be reduced to avoid potential damage to the entire production system. To this end, the need
to combine traditional manual assembly with a tool capable of improving the effectiveness
and efficiency of the process, such as an AR system, becomes obvious. The operator must
be supported and guided in his activities, e.g., by performing the assembly operations while
being equipped with an intelligent AR assistant system. Such an AR system may prevent the
operator from diverting his attention and not being distracted from the process, which helps
perform tasks efficiently. In figure 1.1, the left picture shows an illustration of an operator
being assisted with an AR system while preforming his assembly activity.

An intelligent AR system may be particularly well suited to address these issues. In this
regard, understanding the operator’s activities from a first-person viewpoint is fundamental
in such an AR system. Understanding performed activities in an AR context allows the
worker to interact with the natural environment and virtual information while guided and
receiving feedback. This may give the ability to replace traditional teaching with AR-based
interactive instructions and paper manuals with AR-based assistance. Motivated by all these
observations, this thesis focuses on the first-person hand activity understanding and its related
challenges. The following section will give more details about the thesis objectives.



4 Introduction

1.2 Objective and challenges

Attempting to address issues discussed in the previous section, this thesis work was devoted
to the design of the main components of a comprehensive framework that recognizes the
activities of AR users to assist them in their complex activities. The desired user activity
recognition framework must robustly recognize usual activities based on the first-person
viewpoint. Moreover, it must detect unusual ones to allow preventing the user from per-
forming wrong maneuvers, a fundamental requirement in teaching and user assistance use
cases.

To this end, we based our research on Machine Learning (ML), and Computer Vision
(CV) approaches as recommended state-of-the-art choices. Much of the work was devoted
to minimizing computational and data acquisition costs, leading to a low-cost and easily
adaptable components. The targeted user activity recognition framework is expected to allow
being learned on a limited amount of data, e.g., it can be first trained on a publicly available
dataset, then quickly adapted to another private use case, such as an industrial application.
This significantly reduces the cost of annotated data acquisition and extends the range of
applications to cover different industrial domains.

Pour juice bottle

Known Activity

Unknown Activity

Recognized activity Label :

(unknown)

(known)

Semi-automatic 
Annotation

Models ExtensionKnown Activity 
Recognition Update

Stored Unknown 
Activities

Stored New Labelled
Activities

Unknown Activity 
Detection 

Fig. 1.2 The four components of the targeted user activity recognition framework. We give
two examples of hand activities: one framed in green, known to the system, and placed in the
class "pour juice bottle"; a second activity framed in orange, unknown to the system, which
is identified as unknown. Detected unknown activities are stored to be annotated in the third
component and reintegrated into the system by the final component. Thus the system will be
able to recognize it in the future.

The targeted framework consists of four main components. Figure 1.2 illustrates the
execution of these four components on given two hand activities known and unknown (i.e.,
previously seen or unseen in the recognition learning procedure, respectively). In the first
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component, the activity is checked if it is known or unknown. Thus, if the activity is identified
as known, the associated class label will be given by the second component that classifies
the known activities. Else, if the activity is unknown, it will be stored. Once a certain
number of detected unknown activities is reached, they will be semi-automatically annotated
in the third component. Finally, the annotated unknown activities will be integrated into the
recognition model in the final component. Thanks to this final component, the annotated
unknown activities will be handled as known and classified in the future. The following
subsections describe each component of the targeted framework and its related challenges.

1.2.1 First-person hand activity recognition

As humans, we are able to recognize the activity of "cutting potatoes" presented in figure 1.3,
in which we see one frame of an activity video. The activity is filmed from the first-person
viewpoint, as though we are the ones performing it. Our understanding of the activity is
perfect without difficulty by simply looking at the hands and the objects they are manipulating.
Furthermore, we would likely be able to repeat the same activity, even if we had never cut
potatoes before, by looking at the hands, the grasp on the objects, and how the person handles
them. This process of understanding human activities is a task that the desired framework
should be able to accomplish.

Fig. 1.3 Someone is cutting potatoes from an egocentric viewpoint. We can recognize the
activity by looking at the hands and the object they are manipulating.

We refer to activity recognition as classifying an activity assuming that the activity video
is temporally segmented and defined by a temporal interval, where the start and the end
instants are known. Otherwise, the problem is usually referred to as online activity detection,
whereby one must determine where and when the action is occurring and identify the activity
class. This thesis focuses on the offline activity recognition of temporally localized and
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defined activities. More precisely, we focus on hand activity recognition as a sub-problem of
egocentric activity recognition (EAR), where activities are supposed to be performed with
the hands.

In this regard, this component aims at recognizing hand activities from the first-person
viewpoint. This particular perspective, also called the egocentric viewpoint, provides a
good field of vision that covers the user’s hand activities and allows observing hand-object
interactions. Moreover, it perfectly meets the AR context requirements and the actual AR
devices. In this thesis, we mainly orientated our research focus on supervised learning
classification approaches to solve the recognition task. More precisely, we used artificial
neural network algorithms to learn classifying activities. Thus, a recognition neural network
model is trained and evaluated using annotated hand activity samples. The main challenges
we faced during this component are the following:

• Recognition Accuracy. Human activity recognition presents challenges such as intra-
class variation and across-class similarities. Intra-class variations include viewpoints,
actor styles, aspects, and execution speeds. Across-class similarities occur when
different action categories share similar characteristics, such as motion or objects
involved, e.g., "Open juice bottle" and "Close juice bottle" where the involved object
"juice bottle" remain the same while the actions "open" and "close" differs. On the
other hand, as another essential characteristic of a first-person viewpoint, the wearable
sensor is not fixed, and abrupt motion might appear, which could complicate the
application of standard state-of-the-art pertinent feature learning methods.

With all these challenges, providing an accurate and generalizable recognition model
applicable to real-world scenarios becomes difficult, which requires a large amount of
data and carefully designed neural network architectures.

• The data scarcity problem. It is one of the most critical problems we faced in this
work. Since annotated samples in real-world activity recognition applications are
usually difficult or expensive to obtain, they require human expert annotators’ efforts.
This is a prevalent problem in most supervised machine learning-based applications.

• Computational cost. The purpose of the recognition model is to be used in real-time
applications. This requires a fast inference and light model that can be embedded in
AR devices with limited computational resources.
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1.2.2 Unknown hand activity detection

As discussed in section 1.2, the desired framework is expected to recognize usual activities.
Nerveless, it also should be capable of detecting unusual ones, which are unknown or, in
other terms, previously unseen by the recognition model during the training procedure. This
allows guiding and providing feedback to the user, e.g., to warn of bad maneuvers in the
case of assembling assistance usage. Moreover, the detected unknown activities are exploited
in the next component of the targeted framework to overcome the data scarcity problem
introduced in the previous section 1.2.1.

To this end, an unknown activity detection model can be learned based on the trained
recognition model and its initial training dataset. We list the following main challenges
encountered in this unknown hand activity detection component:

• The detection of unknown activities. Traditional supervised learning aims to train a
recognition in the closed-set world, where training and test samples are annotated and
share the same label space. In our case, the recognition is performed in the open-set
world, where there exists test samples from the classes that are unseen during training
procedure. These unseen samples are expected to be identified, which is a more
realistic and a very challenging state-of-the-art problem.

• Balance between activities recognition and unknown activities detection. This is
the most important problem that we have faced in this step. It is also a well-known
problem in open-set learning setting. Effectively, the learned model must perfectly
detect unknown activities without deteriorating the performance of the known activities
recognition.

1.2.3 Semi-automatic unknown activity annotation

This component aims to handle and exploit the detected unknown activities. To this end,
these detected activities are semi-automatically annotated based on unsupervised learning
approaches. First, the unknown activities are regrouped automatically by exploiting the
knowledge from the recognition model. Next, a meaningful label is assigned by a human for
each activity group. This results in annotated activities. The main challenges that we have
faced in this component are:

• Unsupervised hand activities clustering. Clustering hand activities without prior
knowledge (supervision) is still a challenging problem, especially when insufficient
data is available. This is due to hand activity’s high intra-class variation and inter-class
similarity.
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• Providing a clustering-friendly manifold. To facilitate the unknown hand activities
clustering, which is a very challenging task, these activities must be mapped into a
highly discriminative features space that allows regrouping them based on similarity
measures. Providing such a learnable mapping function is one of the challenging
problems we have addressed in this step.

1.2.4 Incremental hand activity recognition (models extension)

In real-world applications, the learning is continuous. Thus, the desired user activity recogni-
tion framework must be flexible and adaptable for possible future applications. To this end,
the resulting annotated activities from the previous component are integrated into the initial
recognition model and the unknown activities detection model to be recognized in the future.
Incremental learning poses particular challenges for artificial neural networks that we briefly
introduce as follows:

• Catastrophic forgetting. It is the tendency for knowledge of the previously learned
task to be abruptly forgotten as information relevant to the current task is integrated.
This phenomenon, termed catastrophic forgetting, occurs when the network is trained
sequentially multiple times as a new set of annotated activities arrives. This decreases
the recognition performance and, consequently, the unknown activities detection
performance.

• Computational cost. To fight the catastrophic forgetting problem, a natural direction
is to extend the neural networks progressively by storing training data from previous
old classes. However, this technique can be very demanding in terms of memory and
computing capacity.



1.3 Contributions 9

1.3 Contributions

In this work we have tried to overcome all the challenges mentioned in the previous section.
This led us to a proposal with the following main contributions summarized:

• Hand activity recognition solutions. To address the challenges of hand activity recog-
nition, one of the most important component of the targeted framework, we proposed
two solutions for first-person hand activity recognition. In addition to the robustness
of the recognition, we also considered the data scarcity and computational cost. The
proposed solutions are based on 3D skeletal data and RGB images, respectively:

1. A new hybrid learning pipeline for skeleton-based hand activity recognition
consists of three blocks. First, the spatial features for a given sequence of hand
joint positions are rapidly extracted using a specific combination of our local
and global hand-crafted spatial features. Then, the temporal dependencies are
learned using a multi-stream learning strategy. Finally, a hand activity sequence
classifier is learned using our post-fusion strategy and applied to the previously
learned temporal dependencies. This multi-stage learning pipeline allows training
with a limited number of training samples while ensuring good accuracy, which
addresses the problem of data scarcity. Experiments evaluated on two real-world
datasets show that our approach performs better than state-of-the-art. For another
ablation study, we compared our post-fusion strategy with three traditional fusion
baselines and showed an improvement in accuracy.

2. A novel, low-cost, multi-stage transfer learning pipeline for RGB-based first-
person hand activity recognition data addresses the data scarcity problem. The
first stage extracts regions of interest for a given RGB image activity sequence
using a pre-trained neural network. Unlike existing methods that use visual
attention through Deep Learning and require a large amount of data, we propose
to directly use the right and left hands as relevant regions of interest that provide
information about manipulated objects and performed actions. These regions of
interest are extracted using a transfer learning technique. Our experiments have
shown that this information is key to first-person hand activity recognition. We
propose a data augmentation procedure tailored to these regions of interest to
strengthen the recognition model. Then, high-level spatial features are extracted
in the second stage using a pre-trained deep neural network. In the third stage,
temporal dependencies are learned. Finally, a hand activity sequence classifier
is learned in the last stage by applying a post-fusion strategy to the previously
learned temporal dependencies.
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Adapting transfer learning allows learning with limited training examples while
providing good accuracy. It also reduces the training cost since the transferred
neural network is already pre-trained.

Experiments evaluated on two real-world datasets show that our pipeline achieves
state-of-the-art performance. Moreover, the proposed pipeline achieves good
results even on limited data.

We also experimented the combination of both, 3D skeleton hand joints and RGB
images based pipelines, which significantly improves the accuracy of hand activity
recognition.

• Unknown hand activity detection. The above-presented solutions for hand activity
recognition are based on the classical closed-set recognition paradigm, where train and
test activity samples are supposed to be known. However, one of the components of our
targeted user activity recognition framework aims to perform recognition in an open-set
setting. Thus, it recognizes activities from known classes while, at the same time,
detecting and rejecting unknown activities from unknown classes previously unseen
during the training procedure. In this regard, we presented in this thesis an adopted
consensus-based open-set hand activity recognition that groups three approaches to
deciding whether a test activity sample is from a known or unknown class. To increase
overall open-set recognition performance, we employ a consensus of three outlier
detection approaches and aggregate their decisions via voting.

• Unlabeled hand activity clustering. The third component of our targeted framework
aims to cluster (categorize) detected unknown activities in order to be annotated. In this
regard, we proposed a new and original approach that approximates the unsupervised
domain adaptation to cluster unlabeled hand activities. It uses the knowledge obtained
from labeled samples of the source domain (the known activities) to categorize the
unlabeled samples of the target domain (the detected unknown activities). Thus, we
introduced a novel and original metric learning-based loss function to learn a highly
discriminative representation while maintaining good recognition accuracy of the
activities in the source domain. The learned representation is used as a low-level
manifold to cluster unlabeled activity samples. To achieve the best clustering results,
we also proposed a statistical and consensus-based strategy for clustering.

• Incremental hand activity recognition. The final component of the desired activity
recognition framework aims to make the learned models extendable and adaptable for
future applications. To this end, the resulting clustered and annotated activities from
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the previous component are integrated into the initial recognition and the unknown
activity detection models. Thus, with this component, the framework incrementally
learns and extends its multi-class classifier, making each new class “known” to the
models. To this end, we present our adopted method for incremental hand activity
recognition in this thesis. The proposed method is based on fine-tuning with an efficient
replay memory method to avoid the problem of catastrophic forgeting.
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1.4 Thesis outline

The following chapters of this thesis are organized as follows:
Chapter 2 first reviews the state-of-the-art of existing methods for first-person hand

activity recognition, which we divide into three distinct categories. We give a description,
advantages, and limitations for each category. Then, we present the available state-of-the-art
datasets for hand activity recognition evaluation.

The rest of the chapter is devoted to an overview of the state-of-the-art methods related
to our contributions. Specifically, we address unknown hand activity detection, unknown
hand activity clustering, and incremental learning for hand activity recognition. We analyze
how each method works and show its advantages and limitations.

Chapter 3 details our proposed hand activity recognition methods. First, we present our
temporal multi-stream learning and post-fusion strategy for 3D skeleton-based hand activity
recognition. It is an efficient and cost-effective learning pipeline that falls into the category
of hybrid approaches that combine hand-based and deep learning methods. Then, we present
our second method for hand activity recognition, which is based on RGB images. It is a
new learning pipeline that aims to overcome the problem of data sparsity while providing
low-cost, excellent, and accurate recognition. It consists of four sequential steps that mainly
use transfer learning techniques.

We explain the functioning and methodology of each proposed method. Then, we present
a detailed experiment that includes implementation details, ablation studies, and results
compared to the state-of-art methods. Finally, we discuss the results and point out possible
future improvements.

Chapter 4 presents our proposed methods that correspond to the rest of the desired
activity recognition framework components. First present our adopted method for unknown
hand activity detection. Then, we present our proposed method for unlabeled hand activity
clustering, which concerns the primary contributions of this thesis. Finally, we present our
adopted method for incremental hand activity recognition.

We explain the functioning and methodology of each proposed method. Then, we present
a detailed experiment that includes implementation details, ablation studies, and results
compared to the state-of-art methods. In the end, we discuss the results and point out possible
future improvements.

Chapter 6 concludes with a summary of this thesis and suggests directions for future
research.
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2.1 Introduction

As we explained in the previous chapter, section 1.2, the main objective of this thesis is
to propose the essential components for a hand activity recognition framework, which can
be used to assist AR users. We illustrate these components in the figure 2.1. The first
component aims at detecting unknown activities. The second component aims to recognize
hand activities from the first-person point of view. The third component clusters and annotates
detected unknown hand activities. Finally, the last component integrates these annotated
activities into the recognition and detection models.

By exploring existing related work, we concede that the general idea of our objectives
falls in the fields of lifelong learning [30] or open-world recognition [12]. Following Bendale
et al. [12], the open-world recognition system must recognize objects and associate them
with known classes while also detecting unseen classes as unknown. These “novel unknowns”
must then be collected and labeled (e.g., by humans). When there are sufficient labeled
unknowns for new class learning, the system must incrementally learn and extend the
multi-class classifier, thereby making each new class “known” to the system. Open-world
recognition moves beyond being robust to unknown classes and towards a scalable system
adapting itself and learning in an open world.

Pour juice bottle
Recognized activity Label :

(unknown)

(known)

Semi-automatic 
Annotation

Models Extension
Known Activity Recognition

Update

Stored Unknown 
Activities

Stored New Labelled
ActivitiesUnknown Activity 

Detection 

Unsupervised ClusteringOpen-set Learning

Incremental Learning
Supervised Learning

Classification

Known Activity

Unknown Activity

Fig. 2.1 The four principal components of the desired hand activity recognition framework
introduced in section 1.2. The black box on each component represents the corresponding
related research domain.

Each of the four components can be considered an open-world recognition step, rep-
resenting a complex and extensive research area: open-set learning, supervised learning
classification, unsupervised clustering, and incremental learning. Therefore, in this chapter,
we describe each component’s general idea and present its related existing state-of-the-art
approaches. This chapter is organized as follows:
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• Section 2.2 begins with an introduction to first-person hand activity recognition. Then,
we present related state-of-the-art methods, such as dynamic hand gesture recognition
and human activity recognition. The introduced methods are categorized according
to their input data type and the adapted techniques, deep learning, hand-craft, or
hybrid-based techniques. Finally, we present the widely used datasets and conclude
the section.

• Section 2.3 presents state-of-the-art methods related to the detection of unknown hand
activities. Therefore, we first introduce and formally define the open-set recognition
concept, a fundamental requirement for unknown sample identification. Then we
present two categories of existing methods, traditional ML-based and DNN-based
open-set recognition methods. Finally, we overview the state-of-the-art open-set action
recognition methods and conclude the section.

• Section 2.4 gives related work to our targeted framework step of automatically annotat-
ing detected unknown activities. This step requires using prior knowledge and adapting
the learned models to facilitate clustering these unknown samples. Thus we present
the Unsupervised Domain Adaptation (UDA) paradigm and deep Metric Learning
state-of-the-art related approaches. We then, introduce a selected set of most used
clustering algorithms and their evaluation metrics. Finally we conclude the section.

• Section 2.5 presents the state-of-the-art related approaches to the last step of our
targeted framework. Thus, we give an overview of incremental learning existing
methods and discuss their advantages and disadvantages.

• Section 2.6 concludes the state-of-the-art chapter. We highlight relevant research paths
that can lead us to solve issues related to our objectives.
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2.2 Hand activity recognition

Understanding first-person hand activity is a challenging problem in computer vision that
has attracted much attention due to its extensive research and practical applications, such as
Human-Computer Interaction [190], Humanoid Robotics [152], Virtual/Augmented Reality
[198], and Multi-media for automated video analysis [8]. It aims to recognize the hand
activity performed by the user (the wearer of the sensor) from the first-person viewpoint
to approximate its field of view. The hand activity is supposed to be performed by hand
while manipulating objects (figure 2.2). These objects can be static or dynamic and can be
deformable or rigid.

Fig. 2.2 Illustration of an operator using an AR device while performing a hand activity. The
picture shows the first-person viewpoint that covers the hands and the manipulated object.

This thesis focuses on analyzing and recognizing AR user hand activities performed with
one or two hands. This recognition aims to study the spatial components of the hands, the
possible manipulated objects, and their temporal evolution to determine the activity class. It
is, therefore, a classification problem. We found two types of data commonly used to analyze
activity sequences for a classification task, videos streams and skeleton data:

Video streams. Whether color, depth, or optical [15], are the most easily accessible
data or particularly require very little pre-processing in the case of the RGB color stream.
Primarily, they are accessible to an extensive range of potential users. The RGB cameras that
make up the vast majority of smartphones and depth cameras are, nowadays, very inexpensive
and accessible types of equipment.

Skeleton data. Sequences of the skeleton of the hand constitute much more refined and
precise information, allowing to obtain the temporal evolution of each hand joint. However,
these sequences require either heavy or expensive pre-processing methods. This also requires
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an additional computation time for the classification algorithm, e.g., DeepPrior [128] which
estimates the hand skeleton from a depth stream. The acquisition of this type of data still
requires expensive or not very accessible hardware like Leap Motion cameras which extract
the skeleton from infrared sensors or magnetic sensors attached to each of the hand joint to
track their movements.

These input data are then analyzed and classified using methods that we categorize as
Deep Learning (DL) based, Hand-Crafted (HC) based, and hybrid approaches. Figure 2.3
illustrates the proposed categorization. The feature extraction phase is quite distinct from the
classification phase when using HC-based methods since the classification phase is usually
based on classical machine learning techniques such as support vector machines (SVM)
[10] or decision trees [11]. In contrast, when we talk about DL-based methods, we refer to
methods where these two phases of feature learning and classification are grouped within one
neural network used, which processes both phases simultaneously in an end-to-end manner.
Hybrid methods, combine DL-based and HC-based methods.

Hand-Crafted (HC)

Spatial Features 
Learning 

Temporal Dependencies 
Learning

Classification

HC Temporal Dependencies 
Extraction

Classification

Temporal Dependencies 
Learning

Classification

Deep Learning (DL)

Hand-Crafted (HC) Deep Learning (DL)

Spatial Features 
Extraction

Spatial Features 
Extraction

(a)

(c)

(b)

Fig. 2.3 A categorization of activity recognition methods. (a) Deep learning based methods.
(b) Hand-crafted based methods . (c) Hybrid methods that combine both Deep learning and
Hand-crafted methods.

In addition to the motivation of designing algorithms with better classification results,
there is a need for lighter and less computationally expensive solutions, especially to justify
the application of these algorithms in real-world use cases. This requirement is one of our
concerns in this state-of-the-art study.

The following sections present related work for first-person hand activity recognition.
We also introduce other similar activity recognition approaches: dynamic hand gesture recog-
nition and human activity recognition. Following our categorization, sections 2.2.1, 2.2.2,
and 2.2.3 introduce state-of-the-art DL-based , HC-based and hybrid methods, respectively.
Section 2.2.4 introduces available hand activity recognition and related task datasets.



2.2 Hand activity recognition 19

2.2.1 Deep Learning based methods

Deep learning methods have recently become very popular in many application areas, includ-
ing human activity recognition [219]. In particular, since the beginning of 2010, the AlexNet
neural network [88] has beaten all the HC based methods usually used for the ImageNet
dataset classification task [164].

Convolutional Neural Network (CNN). Lecun et al. [92] were the first to introduce
CNNs, allowing the usage of deep learning methods on image tasks, notably by extracting
and recognizing patterns via convolution operations. The outstanding performance of CNNs
in image classification [231] has motivated [19, 20] to formulate the recognition problem as
an image classification problem by representing a sequence of 3D skeleton joints as a 2D
image input for a deep CNN (Figure 2.4). However, this conversion causes an inevitable loss
of data.

Fig. 2.4 CNN architecture employed for 3D action recognition [19].

Also, attracted by the success of CNNs, [96] proposed CNN-based neural network
architecture for activity detection and classification. First, the raw skeleton coordinates,
as well as skeleton motion, are fed directly into transformer modules that are designed
to rearrange and select important skeleton joints automatically. Then, the output of each
transformer module is fed into a CNN layer. Finally, as shown in figure 2.5, the outputs of the
two-stream CNN are concatenated and followed by a Fully Connected (FC) layer equipped
with Softmax loss for the classification.
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Fig. 2.5 CNN representation of skeleton sequences for action classification [96].

To perform recognition based on RGB sequences instead of 3D skeleton data, Wang et al.
[56] proposed to cut the activity video into multiple windows of consecutive frames of RGB
images. A spatial stream composed of a CNN analyzes each window. Simultaneously, the
same windows are analyzed on the optical flow using a second temporal stream consisting
of another CNN. This technique allows the architecture to classify the activity simply by
merging the classification result of all the windows in the activity video.

Luvizon et al. [111] proposed a 2D CNN-based deep neural network to perform a multi-
task prediction from an image sequence. They used an Inception-V4 [199] based architecture
to estimate 2D/3D human poses and classify activities. Their architecture extracts low-level
visual features from the input color video and probability maps. These two data act as an
attention mechanism and thus allow to focus on pertinent regions of image frames. Their
network also allows, by regression, to determine the 2D or 3D coordinates of the observed
human skeleton. These two data are finally assembled to predict the class of the video as
illustrated in figure 2.6.
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Fig. 2.6 2D/3D Pose estimation and action recognition using multitask deep neural networks
[111].

Recently, Singh et al. [185] proposed a two-stream DL architecture, 2D and 3D CNNs fed
by egocentric cues (hand mask, head motion, and saliency map). The two-streams networks
are followed by a class score fusion strategy to classify activities as shown in figure 2.7.
To make use of the temporal dimension, they added a temporal stream that uses stacked
optical-flow as an input to capture motion information. Hence, these egocentric cues are not
always available.

Fig. 2.7 Activity recognition neural network architecture proposed by [185].

Similarly, Man et al. [113] proposed a two-stream architecture: An appearance stream
for an object classification task by applying hand segmentation and object location; And a
motion stream for action classification using optical-flow. The activity class label is given by
concatenating the action and the object class labels. However, a heavy manual data annotation
was necessary for object region localization and hand segmentation. Moreover, they just used
a single RGB image for encoding appearance without considering the temporal ordering.
As an alternative to optical-flow-based motion information, which is also interpreted as
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temporal dependencies features, Ryoo et al. [166] extracted features from a series of frames
to perform temporal pooling with different operations, including max pooling, sum pooling,
or histogram of gradients. Then, a temporal pyramid structure encodes both long-term and
short-term characteristics. However, these methods do not consider the temporal order of
activity sequence frames.

Graph Neural Network. Other recent works focused on the Graph Convolutional
Networks (GCNs), mainly applied for 3D skeleton data to exploit the connections between
the skeleton joints following their physical structure. These connections are represented as a
matrix that allows convolutions operations. Based on this concept, Yan et al. [233] proposed
an end-to-end Spatial Temporal Graph Convolutional Networks (ST-GCN). Given a sequence
of 2D or 3D coordinate joints, they construct a spatial-temporal graph with joints as graph
nodes. Connectivities in both human body structures and time are represented in blue and
green graph edges, respectively, in Figure 2.8. The layers of the ST-GCN operations are
applied to the input data generating high-level feature maps on the graph, which facilitates
the activity classification.

Fig. 2.8 Spatial Temporal Graph Convolutional Networks (ST-GCN) for skeleton-based
activity recognition [233].

Similarly, Li et al. [99] proposed an Actional-Structural Graph Convolutional Networks
(AS-GCN). Unlike ST-GCN, it considers not only the connections between joints directly
connected via bones but also captures the latent dependencies between any joints via their
proposed actional and structural links, the (A-links) and (S-links) modules, respectively. For
example, hands and feet are strongly correlated while walking, which can be pertinent graph
connections. Figure 2.9, shows the difference between AS-GCN and ST-GCN pertinence of
feature maps.
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Fig. 2.9 Feature learning with generalized skeleton graphs. The actional links and structural
links capture dependencies between joints. For the action “walking”, actional links denotes
that hands and feet are correlated. The semilucent circles on the right bodies are the joint
feature maps for recognition [99].

We also find the use of this type of architecture to solve dynamic hand gesture recognition.
Zhang et al. [246] used GCNs focusing on the spatial aspect of the hand, which is composed
of all the joint connections. They employed a two-stream learning paradigm: temporal graphs
focused on hand joint evolution and a spatial graph focused on the displacement of these
joints. Finally, each GCNs stream is fed into a FC layer. The two outputs of the FC layers are
concatenated and followed by a softmax layer to perform classification as shown in figure
2.10.

Fig. 2.10 Illustration of the two-stream graph convolutional network with spatial-temporal
attention [246]

Unlike [246], Li et al. [95] exploited a recurrent bi-directional network to process the
temporal aspect of the hand skeleton joints. In contrast, the analysis of the spatial component
of the skeleton is done using GCNs architecture in a two-stream manner, as shown in figure
2.11. An attention mechanism is added to the graph architecture to mutually explore the
spatial relationships between all the hand joints.
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Fig. 2.11 Li et al. [95] proposed approach for gesture recognition based on the hand skeleton
and using two branches, one to analyze the spatial component, the second to analyze the
temporality.

However, these methods do not focus on a particular approach considering the hand
joints, their location, and their displacement as mutually related. Especially the hand is a
relatively small object whose relations between joints are pretty direct. Moreover, GCNs are
ineffective in learning long-term temporal dependencies and are very sensitive to noise.

Visual Attention. A particular branch of DL approaches focused on observing and
exploring spatial attention through a deep neural network to recognize activities based on
visual information [195, 197]. Recently, Transformer [211] has attracted much attention
because of its ability to learn temporal dependencies in conjunction with visual attention. It
applies a self-attention mechanism that directly models the relationships between all temporal
elements in a sequence, regardless of their respective positions. This allowed Transformer to
handle longer sequences than RNNs.

Li et al. [100] proposed a Transformer-based RGB-D egocentric action recognition
method called Tear that consists of two modules, an inter-frame attention encoder and
mutual-attentional fusion block, which showed promising results. Hence, the learned spatial
attention is not fully confident since it is learned in an unsupervised manner while learning
a supervised egocentric activity recognition. This has led some researchers to supervise
spatial attention learning by using Gaze information [121] or by manually annotating the
data [113] which is more expensive. In all cases, this has confirmed that in first-person hand
activity recognition problems, the visual points of interest are concentrated around the hands
and manipulated objects. This relevant information can be used to design more robust EAR
algorithms.

Recurrent Neural Networks. Many other works focused on Recurrent Neural Networks
(RNNs) to better exploit information in the temporal dimension. The main difference
between RNN and the feed-forward networks is the presence of feedback loops that produce
the recurrent connection in the unfolded network. With the recurrent structure, RNN can
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model the contextual information of a temporal sequence allowing learning of long and
complex temporal dependencies along the activity sequence. Hence, it is unsafe to train deep
RNNs with the standard activation functions, e.g., Tanh and Sigmoid functions, due to the
vanishing gradient and error-blowing-up problems.

Hochreiter et al. [62, 31], proposed the Long-Short Term Memory (LSTM) and the Gated
Recurrent Unit (GRU) cells, respectively. LSTM and GRU were created as the solution
to short-term memory. They have an internal gated circuit that regulates information flow
by learning which data in a sequence is relevant to keep or throw away. To improve the
long-short term temporal dependencies learning, [178] proposed the bidirectional recurrent
neural network (BRNN), which presents the sequence forwards and backward. This has
motivated [40] to use LSTM-BRNN hierarchically for skeleton-based action recognition, as
illustrated in Figure 2.12.

Fig. 2.12 Hierarchical bidirectional recurrent neural network for skeleton-based activity
recognition [40].

For better control of the temporal aspect, Liu et al.[105] proposed a customized LSTM
gates for 3D human action recognition. [114] exploited the GRUs to recognize 3D skeleton-
based activities, which showed good results.

On the other hand, Sudhakaran et al. [196, 197] proposed Convolutional Long Short-
Term Memory (ConvLSTM), which allows reasoning along the temporal dimension to learn
the temporal dependencies in respect of temporal order while learning spatial features from
image sequences. This has motivated [195] to propose a customized LSTM unit to learn
visual attention along the activity sequence jointly with the temporal dependencies. LSTMs
fed by learned visual features have been shown to be effective in learning long- and short-term
temporal dependencies.

To make use of both the performance of CNNs on spatial features learning and LSTMs
on temporal dependencies learning, Vaudaux-Ruth et al. [212] proposed a reinforcement
learning-based neural network architecture. They used a CNN that takes an image or a video
segment as input to learn the spatial features resulting in a low-dimensional feature vector,
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which is then forwarded to a GRU layer. The resulting hidden state vector of the GRU is
then individually processed by four parallel blocks. The first block deals with the decision of
turning the current frame into a spot frame or skipping it (a detected activity or not). The
second block predicts the activity class related to the spot frame, and the third block outputs
the next video frame. The last block is used to ensure better convergence in the reinforcement
learning framework.

The disadvantage of using recurrent neural networks is that they take low-dimensional
data as input, and only skeleton data meet these criteria in the case of gesture and action
recognition. However, except for particular hardware, such as the Microsoft Kinect or Leap
Motion camera, it is mandatory to use pre-processing methods to extract the skeleton data,
which adds an extra computing time to the recognition inference.

2.2.2 Hand-crafted methods

Despite the success of DL approaches in the last few years, classical methods that mainly
use HC techniques to perform recognition still get attention.

Non-Euclidean manifold representation. It aims to give a highly relevant representation
of skeleton data that facilitates the activity recognition task. A reference work was proposed
by Vemulapalli et al. [213] where they represented the 3D skeleton activity sequence as a
curve in the Lie group. Curves are mapped from the Lie group to its Lie algebra, a vector
space to classify actions. Finally, the classification is performed using a combination of
dynamic time warping, Fourier temporal pyramid representation, and linear SVM.

In [37], a Riemannian manifold is used as a non-Euclidean domain to formulate the
recognition problem as a problem of computing the similarity between the shape of trajecto-
ries using elastic registration and matching in the shape space. Classification using k-NN is
finally performed on this manifold, taking advantage of Riemannian geometry in the open
curve shape space. Similarly and besides, Zhang et al. [249], projected activity sequences
into a Riemannian manifold by using positive definite (PD) regularized Gram matrices of
their Hankel matrices. Thus, the classification can be done by computing distances between
matrices on the PD manifold. In this context, sequences with the same dynamic model are
very close, while those corresponding to different dynamics are far apart. Figure 2.13 show
the diagram of their proposed approach.
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Fig. 2.13 Riemannian manifold representation for skeleton-based activity recognition [249].

Key-points features. In order to exploit the appearance information many works tradi-
tionally used local visual features such as HOF [90], MBH [215], 3D SIFT [179], HOG3D
[84], and extended SURF [226] to encode appearance information so that it can be used as
feature descriptors to recognize activities. The first application of key-point features for EAR
was proposed by [243]. Correspondence features are extracted from sequential frames, and
matches are removed based on a set of constraints imposed by the camera model (epipolar
constraints). Motion histograms are defined and calculated within a frame, defining a new
feature called accumulated motion distribution derived from motion statistics in each frame.
A SVM classifier is trained with this feature and used to classify activities in different scenes.

Key-point-based feature methods are computationally efficient and can handle large
displacements as proven in the related domain, namely Simultaneous Localization and
Mapping (SLAM) [123]. Binary descriptors offer faster key-point matching, which is helpful
in resource-limited platforms such as embedded devices. However, they perform poorly in
first-person videos with poor texture and are often blurred due to the high Egomotion induced
by the camera wearer.

Optical flow based methods. Aiming to exploit the motion information, many ap-
proaches use optical flow as the primary source of motion features [200]. Optical flow can
be obtained using direct motion estimation techniques [71] to achieve frames/sub-frames
sub-pixel accuracy resulting in a dense representation. Hence, this representation has a
high-computational cost and suffers from redundancy. This has led Abebe et al. [2] to pro-
pose motion-feature that combines grid (spars) optical flow-based and video-based inertial
features. They concatenate features extracted from discriminative motion patterns in the
optical flow data, such as magnitude, direction, and frequency. They also include features
extracted from virtual inertial data derived from the movement of intensity centroid across
frames in a video without inertial sensors. Hence, it suffers from an information leak and has
limited discriminative capabilities as specific motion characteristics (e.g., magnitude) are not
exploited [200].



28 State-of-the-art

3D geometrical representations. Some recent work focused on exploiting the 3D
geometrical information. Smedt et al. [186] proposed a set of hand crafted (HC) geometrical
features based on the connection between the hand joints, namely Shape of Connected Joints
(SoCJ) that represent the variation of the hand shape while performing the activity. 3D
vectors between physically connected joints are computed from the wrist up to the fingertips
for each finger. A fisher vector representation is computed from these SoCJ descriptors.
In addition, they proposed two additional HC features, which include histograms of hand
directions (HoHD) and rotations (HoWR). Similarly to [43, 242], they used a Temporal
Pyramid (TP) representation to manage the temporal dimension. Finally, they used SVM
with a linear kernel to classify the dynamic gestures. Figure 2.14 shows the full pipeline of
their proposed approach. Similarly, in [130], joint angles similarities and a Histogram of
Oriented Gradients (HOG) fed into an SVM to classify activities.

Fig. 2.14 3D geometrical-based representation for skeleton-based activity recognition [186].

This category of methods has been proven to be very effective in providing relevant spatial
features, but most of them are still struggling to learn long-term temporal dependencies.

2.2.3 Hybrid methods

This category combines the previously introduced DL-based and HC-based approaches to
overcome their limitations. The concept is first to extract a set of HC features from activity
sequences and then train a deep neural network on these extracted features to classify the
activities. The purpose is to feed the neural network with only relevant features, facilitating
its convergence. This allows training with less complex architectures and fewer data and
avoids the over-fitting problem.

Avola et al. [5] concatenated a set of HC features as an unified input vector to a deep
LSTMs based neural network to classify American Sign Language (ASL) and semaphoric
hand gestures. Similarly, aiming at classifying Human 3D Gaits, [108] concatenated relative
distances and angles as a feature input vector to a LSTM based neural network to manage
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the temporal dimension, while in parallel a CNN is exploited to learn spatial features from
2D Gait Energy Images. Yet, the early fusion of different features spaces (e.g., angles and
distances) increases the input complexity and the learning noise [236], especially when
only few training data are provided. To avoid the early fusion limitations, Chen et al. [29]
proposed an end-to-end slow fusion based architecture. Yet, this type of complex architecture
requires a lot of data.

2.2.4 Hand activity recognition and related domain datasets

In this thesis, we focused on human activity recognition datasets that involve hand-object
interactions. More precisely, the hand activity recognition dedicated datasets. They are
almost exclusively acquired from the first-person point of view, which is very suitable for AR
applications that naturally offer this viewpoint through AR devices. In the state-of-the-art,
we find that the proposed datasets follow two contexts: The first is the study of human grasp
from a robotics perspective [21, 158, 18]. These studies mainly focus on the hand’s positions
to analyze and recognize the grasp type [22]. The second context refers to daily human
activity recognition, which is more popular. The daily activities include but are not limited to
cooking, sport, person-to-person interaction, and person-object interaction [45, 148, 122].
Table 2.1, shows common human activity recognition datasets acquired from the first-person
viewpoint.

RGB images and depth maps are the most common provided data types. For this type of
data, we can find large-scale datasets with at least several thousands of training samples, e.g.,
Something-Something [54], EGTEA [101], or Epic-kitchen [34], which contains several tens
or even hundreds of hours of training samples. These datasets are shown to effectively train a
stable method for most of the minor variations encountered. Hence, they impose difficulties
to be learned on modest configurations, requiring months of training. The hand skeleton
[48] or the gaze direction and hand position [101] can also be found, which provide spatial
characteristics of the hand (e.g., 3D Cartesian coordinate). These data types are beneficial for
hand activity recognition since they allow the analysis of the relationship of joints and their
temporal evolution through the activity sequence. Hence, in the case of real-time applications,
it will be necessary to extract the same high-level data very fast and robustly, which is still a
challenging problem, unlike a simple RGB or depth stream which can be used directly.
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Table 2.1 Commonly used egocentric activity recognition datasets.

Dataset Num of classes Data type Data size Year
GUN-71 [158] 71 RGB, Depth 12,000 2015
UT-Grasp [21] 17 RGB 20 2015
Yale [18] 33 RGB 18,210 2015
GTEA [45] 61 RGB 525 2011
WCVS [122] 10 RGB, Depth 5 2014
Ego-Hand [9] 4 RGB, Depth 48 2015
THU-READ [203] 40 RGB, Depth 1,920 2017
EGETA [101] 106 RGB, Gaz 22Hours 2018
Epic-kitchen [34] 149 RGB 39,596 2018
FPHA [48] 45 RGB, Depth, 3D 1,175 2018
SLS France (our private dataset) 8 RGB 24 2021

In the following, we introduce the dataset that we used to evaluate our proposed methods
for hand activity recognition:

• FPHA dataset. Proposed by [48]. It is the only publicly available dataset for 3D
skeleton-based first-person hand activity recognition. This dataset provides RGB and
depth images with the 3D annotations of the 21 hand joints, the 6 Dof object poses, and
the activity classes. It is a diverse dataset that includes 1175 activity videos belonging
to 45 different activity categories, in 3 different scenarios performed by 6 actors with
high inter-subject and intra-subject variability of style, speed, scale, and viewpoint. It
represents a real challenge for activity recognition algorithms.

• Dynamic Hand Gesture (DHG) 14/28 dataset. Proposed by [186], which is basically
devoted to hand gesture recognition. It contains 14 gestures performed in two ways:
using one finger and the whole hand. Each gesture is performed 5 times by 20
participants in 2 ways, resulting in 2800 sequences. Sequences are labelled following
their gesture, the number of fingers used, the performer and the trial. Each frame
contains a depth image, the coordinates of 22 joints both in the 2D depth image space
and in the 3D world space forming a full hand skeleton.
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Fig. 2.15 In the left, we show examples from the DHG 14/28 dataset [186]. In the right, we
present examples from the FPHA dataset [48].

• EgoHand dataset. Proposed by [9]. It has 48 videos recorded with a Google glass.
Each video has two actors doing one of the 4 activities: playing puzzle, cards, jenga or
chess. These videos are recorded in 3 different environments: office, courtyard and
living room. We chose this small dataset to evaluate our methods in case there is not
enough training data.

Fig. 2.16 Examples from the EgoHand dataset [9].

• SLS France dataset. We have created this private dataset to evaluate our approaches
in a more realistic industrial context. The dataset consists of 8 activity classes of a
complex cleaning procedure of an industrial production machine. The activities are
represented by RGB image sequences acquired with two instruments, an augmented
reality headset (MS HoloLens 2) and smart glasses (Vuzix M400). Figure 2.17 shows
the used acquisition instruments
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Fig. 2.17 Devices used for the SLS France dataset acquisition.

The dataset presents a real challenge for activity recognition since the operator is
equipped with protective gloves, which complicate the detection of the hands. In addi-
tion, the movement of the operator’s head, hands, and handled objects simultaneously
makes the activity recognition more challenging. Figure 2.18 shows examples of the
proposed dataset.

Fig. 2.18 Examples from the proposed SLS France dataset.

2.2.5 Conclusion

In this section, we presented state-of-the-art hand activity recognition-related methods. The
introduced methods are categorized according to their input data type and the adapted
techniques: deep learning-based, hand-craft-based, or hybrid-based. Finally, we presented
widely used datasets for hand activity recognition and related tasks and our proposed SLS
France dataset.

The disadvantage of deep learning-based methods is that, in most cases, the spatial and
temporal feature learning parts of the complex neural network act as a black box. Even if
the classification can be perfectly correct, it is not easy to know how and which features
were extracted by the network. Furthermore, the deep learning method has proven effective
when a large amount of data is available. Therefore, it is still difficult and expensive for some
industrial applications to provide large-scale labeled datasets due to manual data annotation.
Hand-crafted-based methods can be well mastered, allowing debugging and deep analysis,
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and can deal with a limited amount of data. However, they still struggle to learn temporal
dependencies along the activity sequence. Hybrid methods combine deep learning-based and
pure hand-crafted-based methods to overcome their limitations. They can be seen as a tuning
alternative between performance and data acquisition cost. In chapter 3, we introduce two
hand activity recognition solutions that fall in the category of hybrid approaches.

The next section formulates the problem of detecting unknown activities and presents
state-of-the-art existing methods that address this problem.
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2.3 Unknown hand activity detection

In the previous section, we introduced state-of-the-art related methods to hand activity
recognition. The introduced methods are based on the classical closed-set recognition
paradigm, where the train and test activity classes are supposed to be known. However,
one of the essential components of our desired hand activity recognition framework aims
to detect unknown activities from previously unseen classes during the training procedure.
Such a capability allows guidance and feedback to AR users, e.g., to warn of bad maneuvers
by the case of assembling assistance usage. Moreover, the detected unknown activities are
expected to be exploited in the next component to overcome the data scarcity problem.

Detecting and rejecting unknown activities while recognizing the known ones is a pure
open-set recognition problem [52]. It is a realistic scenario where incomplete knowledge
of the world exists at training time, and unknown classes can be presented during testing,
requiring the classifiers to classify the seen classes accurately and effectively deal with unseen
ones [52]. The unknown classes, i.e., classes without any information regarding them during
training, are unseen and have no side information (e.g., semantic/attribute information) during
the training procedure. For simplicity, let us take an example of a binary image classification
of cats and dogs. Classical closed-set image classification and advanced open-set image
classification models are trained with the same dataset containing cat and dog images. Figure
2.19 shows that the open-set recognition model can reject the horse image as an unknown
while perfectly classifying the cat and dog image samples. However, the classical closed-set
classification model cannot reject the unknown horse image sample.
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Fig. 2.19 Illustration of closed-set and open-set recognition models behavior during an
open-set testing phase. The two models are trained with the same dataset, which contains
annotated dog and cat images. In an open-set testing phase, we may have samples from
unknown classes (e.g., horse image), which are unseen during the training phase.

2.3.1 Open-set recognition problem formulation

In the open-set recognition, we find three basic notations, which help to formulate the
problem: (1) the open space that we denote by O . The space of all samples that are far away
from the known classes. (2) The open space risk that we denote by RO . This risk is incurred
when labeling any sample in the O as an arbitrary known sample. Thus, the more samples
from the O are labeled, the more the RO incurs. To approximate the quantity of the RO ,
Scheire et al. [176] proposed a qualitative description, where they formalized the risk RO as
the relative measure of open space O compared to the overall measure space SO , a large ball
containing both the positively labeled open space RO and all of the positive training samples.
The quantitative description is formulated as follows:

RO =

∫
O f (x)dx∫
SO

f (x)dx
(2.1)

where f denotes the measurable recognition function, with f (x) = 1 indicates that the
sample x is recognized, otherwise f (x) = 0. (3) the third basic annotation is the openness
that we denote by O for a particular problem or data. Larger openness corresponds to more
open problems, while the problem is completely closed when the openness equals 0. Scheire
et al. [176] formulated this concept by the following definition:
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Definition 1. (The openness defined in [176]) Let CTA , Let CT R, and Let CT E respectively
represent the set of classes to be recognized, the set of classes used in training and the set of
classes used during testing. Then the openness of the corresponding recognition task O is:

O = 1−

√
2 |CT R|

|CTA|+ |CT E |
(2.2)

where |.| denotes the number of classes in the corresponding set.
The formulation of the open space risk and the openness, allowed [176] to define the

open-set recognition problem as the following minimization problem:
Definition 2. (The open-set Recognition Problem [176]) Let V be the training data, and

let RO , Rε respectively denote the open space risk and the empirical risk. Then the goal of
open-set recognition is to find a measurable recognition function f , where f (x)> 0 implies
correct recognition, and f is defined by minimizing the following open-set risk:

argmin
f
{RO( f )+λrRε( f (V ))} (2.3)

where λr is a regularization constant.
Based on the above theoretical definition of the open-set recognition problem, a series of

open-set recognition solutions have been proposed, generally tried to tunning the empirical
risk and the open space risk over the space of allowable recognition functions.

The open-set recognition is highly confused with various related techniques that involve a
classification with rejection capabilities, such as one-class classification for anomaly detection
and zero/one/few-shot learning. These techniques seem to be related in some sense, but
they are fundamentally different from the open-set recognition. These methods work under
a closed-set assumption. In other words, the corresponding classifier rejects recognizing
samples due to low confidence, avoiding false-positive classification.

The introduction of open-set recognition first appeared in face recognition applications,
where evaluation datasets contain unseen face instances as imposters that should be rejected
[145]. Such open-set protocols are widely used to evaluate face recognition [97]. The
generalization of an open-set scenario for multi-object classification was first introduced by
Schreier et al. [173]. As a step towards a solution, they introduced a 1-vs-Set Machine, which
sculpts a decision space from the marginal distances of a 1-class or binary SVM. Based on
this principle, [174] propose multi-class classifiers that detect unknown instances by learning
SVMs that assign probabilistic decision scores instead of class labels. More recently, Bendale
et al. [13] addressed the more realistic case of a finite set of known objects mixed with many
unknown objects. They adapted a DNN for open-set recognition by introducing a new model
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layer, OpenMax, which computes the probability of a test samples being from an unknown
class. Their key element of estimating the unknown probability is adapting Meta-Recognition
[175] concepts to the activation patterns in the high-level feature space layer of the network.
Generally, in the state-of-the-art, we observe two branches of open-set recognition methods
that aim to solve the minimization problem given in the formula 2.3, traditional machine
learning and DNN-based methods, which we discuss in the following sections.

2.3.2 Traditional ML-based open-set recognition methods

Following the method proposed by Schreier et al. [173], many SVM-based approaches
were proposed to solve the open-set recognition problem. Cevikal et al. [24] added another
constraint on the samples of target classes based on the SVM and proposed the Best Fitting
Hyperplane Classifier (BFHC) model, which directly formed a slab in feature space. In
addition, BFHC can be extended to the nonlinear case using specialized nonlinear kernels.
Hence, as reported in [52], the slab models decrease the region of the known sample for
each binary SVM, and the space occupied by each known class remains unbounded. Thus
the open space risk still exists. To overcome this challenge and control this risk, Scheirer
et al. [174] incorporated nonlinear kernels into a solution that further reduced open space
risk by positively labeling sets with finite measures. They introduced a new formal model of
probabilistic class association for open-set recognition called Compact Abating Probability
(CAP). In a CAP model, the probability of class membership abates as points move from
known data to open space, which accounts for the unknowns without the need to explicitly
model them. They also introduced a novel technique called the Weibull-calibrated SVM
(W-SVM), which combines CAP with the statistical extreme value theory (EVT) [85] for
improved multi-class open-set recognition.

On the other hand, some other works focused on distance-based approaches to solve
open-set recognition problems. Scheirer et al. [176] proposed a Nearest Non-Outlier (NNO)
algorithm for open-set recognition by proposing an extention to the Nearest Class Mean
(NCM) classifier [119]. NNO performs classification based on the distance between the
testing sample and the mean of each known class, where it rejects an input sample when all
classifiers reject it. Further, based on the traditional Nearest Neighbor classifier, Junior et al.
[73] introduced an open-set version of the Nearest Neighbor classifier (OSNN) to deal with
the open-set recognition problem. Their approach extends upon the traditional closed-set
neural network to decide whether or not a test sample can be identified as unknown. Instead
of using a fixed threshold on the similarity score of the most similar classes, their method
uses the ratio of similarity to the two most similar classes by based on a threshold. One
advantage of Junior et al. [73] approach compared to other existing methods for open-set
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scenarios, is that it is inherently multi-class, i.e., the efficiency of the OSNN is not affected
as the number of training classes increases.

The main issue with these traditional methods is that they have difficulty learning a highly
discriminative feature space that allows distinguishing the unknown from known samples.

2.3.3 DNN-based open-set recognition methods

As discussed in section 2.2.1, DNNs have gained significant benefits for various tasks,
especially in the image classification task. Yet, fooling/rubbish unknown images, which
are, to human observers, clearly not from a class of interest, present a difficult challenge to
DNN classifiers. So deep networks produce high confidence but incorrect classification. This
meets the open-set recognition problem.

Bendale et al. [13] proposed the first solution toward open-set Deep Networks. They
replaced the SoftMax layer in DNNs with an OpenMax layer. A key insight in their method
is that they measured the open space risk in feature space rather than in pixel space. Indeed,
a deep neural network is first trained with the standard SoftMax layer with known labeled
samples by minimizing the cross-entropy loss. The pre-trained DNN is then used to map
all the correctly classified training samples into the feature space (the last layer before
the softmax layer). Based on these mapped samples, denoted by Activation Vectors (AV),
each class is represented as a mean activation vector (MAV) . Next, based on the concept
of NCM [119], the training sample distances from their corresponding class MAVs are
computed and used to fit the separate Weibull distribution model for each class. Further,
the activation vector’s values are redistributed according to the Weibull distribution fitting
score and then used to compute a pseudo-activation for unknown samples. Finally, the class
probabilities of known and unknown samples are computed by using SoftMax again on these
new redistributed activation vectors.

Using a generative adversarial network (GAN) to synthesize mixtures of unknown sam-
ples, Ge et al. [51] proposed the generative version of OpenMax denoted by (G-OpenMax),
which can provide explicit probability estimation over the generated unknown samples,
enabling the classifier to locate the decision margin according to the knowledge of both
known and unknown generated samples. This is done by using synthetic samples as an extra
training label apart from known labels. Such generated unknown samples are driven from the
originally known data space. Yet, even if G-OpenMax effectively detects unknown samples
in monochrome digit datasets, it has no significant performance improvement on natural
images.

Oza et al. [135] adapted a class conditioned auto-encoders with specialized training and
testing methodology. They separated the training procedure into two sub-tasks: closed-set
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classification and open-set identification (i.e., identifying a class as known or unknown).
The encoder learns the first task following the closed-set classification training pipeline,
whereas the decoder learns the second task by reconstructing conditioned on class identity.
Furthermore, as in [13], they modeled reconstruction errors using the EVT of statistical
modeling to find the threshold for identifying known/unknown class samples. Similarly, Ryota
et al. [237] proposed Classification-Reconstruction learning for open-set recognition. As
shown in the figure 2.20, their training procedure provides label prediction for the Closed-set
classification and a latent space for unknown samples identification. They further design deep
hierarchical reconstruction nets (DHRNets) to provide effective probability prediction and
discriminative low-dimensional latent space simultaneously. The critical idea in DHRNets
is the bottlenecked lateral connections, which is helpful to learn rich representations for
classification and compact representations for detection of unknowns jointly. DHRNets
learn the reconstruction of each intermediate layer in classification networks using latent
representations.

Fig. 2.20 Ryota et al. [237] proposed Classification-Reconstruction learning for open-set
recognition.

Lei et al. [183] proposed a framework with four components to address the open-set
recognition: (1) An Open Classification Network (OCN), which is used for open classification
(traditional classification with rejection capability), that can produce rejected samples when
tested on both seen and unseen classes. (2) A Pairwise Classification Network (PCN)
classifies whether two input examples are from the same or different classes. (3) An auto-
encoder that is used to learn representations from unlabeled examples. (4) A hierarchical
clustering that clusters the rejected samples from OCN using PCN as the distance measure.
It gives the number clusters or classes embedded in the rejected examples.

DNN-based open-set recognition methods showed promising improvements to open-set
recognition. In contrast to traditional methods, DNNs allow learning a highly discriminative
feature space, which facilitates the identification of unknown samples. Moreover, the
learned feature space gives a low-dimensional representation, which allows using ML-based
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traditional methods in a hybrid manner to enforce the identification of unknown samples.
Our adopted method for open-set hand activity recognition is based on this hybrid concept
following Prakhya et al. [149] method, which we detail in chapter 4, section 4.2.

2.3.4 Open-set activity recognition

In the literature, we find that most open-set recognition applications were devoted to image
recognition tasks. While only a few existing literatures explored it for the activity recognition
task.

Shu et al. [182] was the first to propose an open-set solution for activity recognition,
assuming that applying closed-set recognition methods will lead to unseen-category errors.
Since it is impossible to know all activity classes beforehand and consequently infeasible to
prepare sufficient training samples for those emerging classes, they proposed a multi-class
Triplet thresholding method combining the inter-class association for detecting unknown
samples, which captures how different classes vary in the activation level (the high-level
features vectors). Based on the initial training data, they calculated a Triplet threshold for
each category, the acceptance, the rejection, and the distance rejection thresholds.

Bao et al. [10] proposed a deep evidential activity recognition method to recognize actions
in an open-set context. Given a activity video as input, the evidential neural network head on
top of an activity recognition backbone predicts the class-wise evidence, which formulates a
Dirichlet distribution so that the input’s multi-class probabilities and predictive uncertainty
can be determined. High uncertainty videos can be rejected as unknown actions for the
open-set inference, while the learned categorical probabilities classify low uncertainty videos.
Krishnan et al. [87] utilized the stochastic variational inference technique while training a
Bayesian DNN to infer the approximate posterior distribution around model parameters and
perform Monte Carlo sampling on the posterior of model parameters to obtain the predictive
distribution with uncertainty score. This uncertainty score allows unknown activity rejections.
They showed that the Bayesian inference applied to DNNs provides reliable confidence
measures for visual activity recognition task. Similarly, Subedar et al. [194] proposed an
uncertainty-aware multimodal Bayesian fusion framework for open-set activity recognition.
They focused on audiovisual activity recognition and used Bayesian DNN with stochastic
variational inference to estimate the uncertainty associated with the individual modalities
for multi-modal fusion. According to the resulted uncertainty, activities can be rejected as
unknown.

To address the online activity recognition in an open-set context, Wentao et al. [11]
proposed a multi-task general framework by decoupling the overall objective into three related
tasks: uncertainty-aware action classification, actions prediction, and temporal location
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regression. In essence, the foreground actions are distinguished from the background by the
action prediction and localized by the temporal localization, while, as in [194, 87], the known
and unknown foreground actions are discriminated by the learned evidential uncertainty from
the classification module.

2.3.5 Conclusion

In section 2.3, we presented state-of-the-art methods related to the detection of unknown
hand activities. First, we formulated the problem of open-set recognition. Then, we presented
two categories of existing methods commonly used in the literature, traditional ML-based
and DNN-based open-set recognition. Finally, we gave an overview of existing open-set
activity recognition methods.

From the presented state-of-the-art study, we conclude that, generally, ML-based methods
can be very efficient for identifying unknown samples when the provided data is quite
discriminating to the point that it allows a minimum of distinction between the known and
unknown samples. However, the central issue of these methods is that they struggle to learn
a highly discriminative data representation. In contrast, thanks to sophisticated DNNs (e.g.,
CNN-based), DNN-based methods can learn highly discriminative data representation, which
facilitates the identification of unknown samples. Nevertheless, standard DNN classifiers,
such as the Softmax, can not effectively exploit this representation to identify unknown
samples and perform open-set recognition. A hybrid combination of DNN-based and
traditional ML-based methods can be envisaged as a tunning solution. Thus, the DNN-based
methods can be used to learn a suitable data representation; and the traditional ML-based
methods can exploit this representation and perform unknown sample detection and open-set
recognition.

Following our objectives introduced in the previous chapter, section 1.2, the detected
unknown activities are expected to be exploited to extend the recognition model capability.
This is done by clustering and annotating these unknown activities and then integrating
them into the detection and recognition models. In this regard, in the next section, we
formally define the problem of clustering unknown (unlabeled) activities and present existing
state-of-the-art related approaches.
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2.4 Unlabeled hand activity clustering

The third component of our desired hand activity recognition framework introduced in
the previous chapter, section 1.2 aims to annotate the detected unknown activities semi-
automatically. Once the number of detected unknown activities reaches a fixed threshold,
they will be semi-automatically annotated (labeled). First, we categorize (cluster) them
based on similarities; then, a human expert assigns a class label for each category. By
exploring the state-of-the-art, we found that this clustering procedure overlaps with the field
of unsupervised clustering. Clustering consists in finding the underlying distribution of
samples in their feature space. In other words, the clustering algorithm aims at forming
homogeneous groups (or clusters) from an unlabeled dataset according to a specific notion of
similarity. Observations considered similar are associated with the same group, while those
considered different are associated with different groups.

Clustering high-dimensional unlabeled samples requires mapping them in a lower-
dimension disseminative manifold. This requirement is addressed in Semi-Supervised
Learning (SSL) methods [55, 253], which uses prior knowledge from a labeled dataset to
exploit unlabeled samples. Generally, this is done by pre-training a model in a supervised
manner on labeled data, then using its feature space as a mapping low-dimensional manifold
to categorize unlabeled samples. The primary purpose of SSL is to boost the performance of
an existent recognition model based on the assumption that both the labeled and unlabeled
datasets come from the same domain. This means that the data distribution and the initial
feature space remain the same. However, in real-world applications, the learning process is
continuous. We may need to label samples belonging to new activity classes from a new
related domain to extend the model recognition capability.

Unlike the SSL, in the Unsupervised Domain Adaptation (UDA), the target and source
domain differ [137]. This means that the distribution, the initial features space, or both
differ in the target and the source domains. Our clustering problem can approximate a UDA
problem. Thus, the labeled (known) activity samples can be seen as the source domain; and
the unlabeled (unknown) ones as the target domain. This allows the handling of unlabeled
samples that belong to a new related target domain by leveraging the knowledge of the source
domain. Better usage of prior knowledge from the source domain is essential for UDA.
Therefore, the pre-trained model, which relies on the source domain, must map unlabeled
samples to a highly discriminative feature space. This requirement is highly discussed in
the field of open-set face recognition [107, 217, 35]. Thus, we concluded that the desired
feature space must satisfy two main objectives of metric learning: (1) maximizing inter-class
distances and (2) minimizing intra-class distances for the mapped samples.
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The remainder of this section is organized as follows: subsection 2.4.1 formally defines
the problem of unlabeled sample annotation to facilitate the introduction of state-of-the-art
methods. In subsection 2.4.2, we present state-of-the-art UDA approaches for general ap-
plication, particularly for human activity recognition. Subsection 2.4.3 extensively presents
existing deep metric learning approaches, where we discuss their advantages and disadvan-
tages since one of the major contributions of this thesis work falls in this research field.
Subsections 2.4.4 and 2.4.5 are devoted to introducing six clustering algorithms we selected
for their wide utilization for evaluating metric learning methods and consensus clustering
techniques, respectively. In subsection 2.4.6, we introduce widely used external clustering
evaluation metrics, and subsection 2.4.7 presents the evaluation datasets. Finally, subsection
2.4.8 concludes this section.

2.4.1 Unlabeled sample annotation problem formulation

Let Ds = {X ,Ps(xl)} be the source domain that consist of two components: the initial
features space X and the probability distribution Ps(xl) where xl ∈ X is a particular labeled
sample. Now, let Ts = {Y , fφ ◦gw(.)} be the source activity recognition task, which consists
of two components: Y is the space of all the labels of samples in X , and fφ ◦gw(.) is the
recognition model, where fφ is the features learner backbone, and gw(.) is the classification
layer with a learnable parameters φ and w respectively. The subset of labels Ys ⊂ Y of the
source task is known, so the labeled data of the source domain is formulated as a set of pairs
{xl,yl} where yl ∈ Ys.

For a given set of unlabeled samples X u ⊂ X , we try to exploit the knowledge from Ds

and Ts to find the correspondent unknown subset of labels Yu ⊂ Y . We formulate the target
domain as Du = {X ,Pu(xu)} where xu ∈ X u. In our UDA application, we assume that the
source and the target domain differ Ds ̸=Du since only the distributions differ Ps ̸= Pu. While
the initial features space X and the recognition source/target tasks remain the same [137].

2.4.2 Unsupervised Domain Adaptation (UDA)

UDA methods are based on the assumption that there are no available labels in the target
domain. The concept is that only the label information from the source domain can be
exploited to disseminate shared knowledge across domains and improve model transfer
capability. In recent years, this concept of UDA has attracted increasing attention from
the computer vision community, especially in the field of image classification [209], object
detection [168], and semantic segmentation [172]. A reference work was proposed by [136],
which aims at aligning the source and the target domains by projecting data onto a set of
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learned transfer components. Recently, the success of adversarial learning has influenced
UDA’s proposed methods. They mainly aim at minimizing the domain discrepancy between
the source and the target domain while learning a domain discriminator by maximizing its
loss concerning the discriminant features learner [208].

Generally, most of the introduced UDA methods try to find the best mapping manifold
Z that discriminantly represents unlabeled target domain samples X u. To this end, several
metric learning-based UDA methods have been proposed [147]. Laradji et al. [91], proposed
a metric-based adversarial discriminative domain adaptation for image tasks. First, they used
a metric learning approach to train a supervised model on the source dataset by optimizing the
Triplet loss function [110], which results in a pre-trained model that provides a discriminative
embedding space. Next, they used the adversarial approach (same as in [208]) to make the
extracted features from the source and target datasets indistinguishable.

In this thesis work, we do not need to align the target with the source domain in our UDA
application. We assume that the learning process is continuous, and we may discover new
class categories in the target domain which do not match those in the source domain.

Despite the progress in UDA for third-person activity recognition [98, 154], there have
been few works for the first-person hand activity recognition, which are based on RGB
images modality [14]. Most of these introduced methods share the same goal of learning
discriminative features space by focusing on low-level spatial-temporal feature learning.
However, to enforce the discriminative power of the neural network, which is crucial for
UDA, we must also consider the high-level feature space.

2.4.3 Deep Metric Learning Losses (DML)

Metric learning techniques [72, 223, 207] aim at learning semantic distance measures and
embeddings that help map samples into a highly discriminative features space Z that
facilitate these tasks. The desired feature space is expected to satisfy two main objectives
of metric learning: (1) maximizing inter-class distances and (2) minimizing intra-class
distances.

With the development of DL, deep metric learning methods showed many improvements
in recent years by employing neural networks as a low-dimensional mapping function, which
is nothing but fφ (.). The employed neural networks are optimized with specialized loss
functions to satisfy metric learning objectives on the high-level features space. In this
regard, we found two main categories of loss functions in the state-of-the-art, Contrastive
and penalty-based Softmax losses.

Contrastive approaches. The idea of contrastive approaches is to design a loss function
that directly applies the two metric learning objectives, hence the name “Contrastive.” These
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methods are regarded as “Direct” because they directly apply the metric learning definition.
The distance measure in the embedding space for this type of approaches is fixed as the
l2 Euclidean distance. For xl

1,x
l
2 ∈ X two labeled samples, the distance is formulated as

follows:

ρ fφ (x
l
i,x

l
2) =

∥∥∥zl
1 − zl

2

∥∥∥
2

(2.4)

where fφ (xl
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Chopra et al. [32] are the first to propose a reference constrastive loss to solve the

face identification problem. For xl
1,x

l
2 ∈ X two labeled samples, where yl

1,y
l
2 ∈ Y are the

corresponding labels. let us denote IA as the identity function that is equal to 1 if A is true,
and 0 otherwise. The constrastive loss is then defined as follows:
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where m is the margin parameter that avoids the network fφ to map all samples to the
same point, making distances between samples equal to zero.

Another popular contrastive loss function was proposed by Schroff et al, [177], denoted
by Triplet loss. It enforces the distance of a negative pair to be larger than that of a positive
pair by imposing a given margin manually. More formally, let xl

1,x
l
2,x

l
3 ∈ X and their

corresponding labels yl
1,y

l
2,y

l
3 ∈ Y with y1 = y2 and y1 ̸= y3. Typically, in this case, xl

1 is
called anchor sample, xl

2 is called positive sample because it has the same label as xl
1, and

xl
3 is called negative sample because it has a different label. The Triplet loss is defended as

follows:
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The fundamental problem with the Triplet loss, as noted in [187], is that it only compares
a sample with one negative sample while disregarding negative data from the other classes.
As a result, we may end up distinguishing an example from only a small number of negative
classes while keeping a small distance from many other classes.
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Fig. 2.21 Illustration of the Triplet network using samples from the MNIST dataset [36].

To tackle the Triplet loss limitations, Chen et al. [28] proposed a Quadruplet loss
that requires training the network with four inputs instead of three. The Quadruplet loss
aims at enhancing inter-class variation and minimizing the intra-class variation, unlike the
Triplet Loss that does not focus on the class variation in the feature space. For samples
xl

1,x
l
2,x

l
3,x

l
4 ∈ X and their corresponding labels yl

1,y
l
2,y

l
3,y

l
4 ∈ Y with y1 = y2 = y4 and

y1 ̸= y3 the Quadruplet loss can be defined as:
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(
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The authors in [127] compared the Triplet and Quadruplet loss functions in a healthcare
application. They obtained a better degree of compactness between patients of the same class
while using quadruple loss samples in each training batch compared to Triplet loss.

There have been other attempts to design a better metric learning objective based on the
concept of the Triplet Loss. Wang et al. [218] suggested focusing on angular constraint at the
negative point of Triplet triangles. Their angular loss pushes the negative point away from
the center of the positive cluster and then brings positive points closer to each other while
using an angle that is a rotation and scale-invariant metric [78]. In the same scope, Song et
al. [189] proposed Structured Loss, which improves the sampling effectiveness of Triplet
Loss and makes full use of the samples in each batch of training data. Similarly, N-pair loss
[187] extends the Triplet loss by separating more than one negative sample from the anchor
compared with the positive sample. Multi-similarity loss [220] considers both self-similarity
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and relative similarity for weighting informative pairs in an iterative manner. Other loss
functions includes lifted structured loss [129], Clustering loss [188], Hierarchical Triplet
loss [50], Ranked list loss [221], and Tuplet margin loss [238], and Magnet Loss [157].

Many research works focused on improving the basic idea of Triplet loss in supervised
deep metric learning. Yet, it has become clear that learning to directly minimize/maximize
the Euclidean distance between samples with identical/different labels may not be the right
solution. There are three main problems with these approaches:

• Expansion problem.

We have no guarantee that samples with the same label be mapped closely to a common
region in space, as reported by [187]. On the other hand, Quadruplet Loss [28] only
improves the variability and enhances the inter-class distances. Structured Loss can
impose the structure just locally for the samples in the batch, not globally for all
samples. Attempts to handle this problem directly with a global aim, Magnet Loss
[157], and Clustering Loss [188], were mostly unsuccessful owing to high complexity
and scalability concerns.

• Sampling problem. All the deep metric learning approaches that try to minimize/maximize
the distance between samples require sophisticated sample mining procedures that
select the “most useful” samples for learning for each training batch. These mining
procedures are time-consuming, performance-sensitive, and can become problematic
in a distributed training setting.

• Beyond metric learning applications. All these methods can not be used simultane-
ously for another task (e,g., a classification task ), while it is very suitable to exploit
trained networks to perform classification tasks.

Penalty-based Softmax approaches. A series of deep metric learning methods were
proposed to solve the issues mentioned earlier. Most of these methods are inspired by the
well-known classification Softmax loss function. Generally, they exploit the weight vectors
of the last layer (see figure 2.22) to force the network to learn a discriminative feature space
that satisfies metric learning objectives.

Before getting into the details of these methods, let us formally describe the Softmax
loss function that we denote by LSo f tmax, and we formulate it in combination with the
cross-entropy loss as follows:

LSo f tmax =− 1
N

N

∑
i=1

log
ewyizi+byi

∑
C
j=1 ew jzi+b j

(2.8)
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Fig. 2.22 Illustration of the fully connected classification layer that relies on deep metric
learning loss functions.

Where N is the training batch size, C is the number of labeled classes. zi ∈ Z is the
embedding vector of the i-th sample xi where fφ (xi) = zi. w j is the j-th weight of the last
FC layer and b j ∈ RC is the bias. In other words, the inner product-based logit, which is
formulated as wyizi +byi , is passed through a softmax function that normalizes and results
in a soft probabilistic affinity score. The Softmax loss separates embedding vectors from
different classes by maximizing the posterior probability of the positive ground-truth class.
However, it does not explicitly imply any constraints on the learning procedure to satisfy the
metric learning objectives.

In response to Softmax loss limitations,Wen et al. [224] proposed Center Loss. Their
main idea is to add a new regularization term to the Softmax Loss to pull the features to
corresponding class centers:

LCenter = LSo f tmax +
λ

2

N

∑
i=1

∥∥zi − cyi

∥∥2
2 (2.9)

Where cyi denotes the yi class center of deep features. A scalar λ is used for balancing
the two loss functions. The conventional Softmax loss can be considered a special case of this
joint supervision if λ is set to 0. During the training procedure, the class center cyi is also
updated using gradient descent and can be thought of as the moving mean vector of the set
of feature vectors of class yi. As a result, this will minimize the intra-class variations while
keeping the features of different classes separable. However, there is no guarantee that this
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will result in a good inter-class separation since the clusters closer to zero will benefit less
from the regularization term.

To address the Center loss limitation, Liu et al. [107] proposed the SphereFace loss
function for face recognition. In contrast to Center loss, they enforce the class centers to
be at the same distance from a center by mapping them to a hypersphere. The authors also
proposed a modified version of Softmax. First, they fixed bi = 0 and normalized embedding
vectors ∥zi∥= 1 and the weights

∥∥w j
∥∥= 1. Then, the logit is modified as ∥zi∥cos(θyi) where

θyi = arcos(
wyi zi

∥wyi∥∥zi∥
) is the angle between the embedding zi and the weight vectors w j thus

(0 ≤ θ j,i ≤ π). The modified Softmax objective is defined as follows:

LMSo f tmax =− 1
N

N

∑
i=1

log
e∥zi∥cos(θyi,i)

∑
C
j=1 e∥zi∥cos(θi, j)

(2.10)

This means that the sample xi is assigned to the class j if the angle between w j and
its embedding vector zi is the smallest among all the class centers {w j=1:C}. In this case,
the decision boundary for the modified Softmax is thin, and it will not make the features
discriminative enough since, for very similar classes, the inter-class distance will be too
small. To address this issue, the authors proposed a multiplicative margin m to penalize the
target logit, enhancing inter-class separation and intra-class closeness. Thus the SphereFace
objective can then be expressed as follows:

LSphereFace =− 1
N

N

∑
i=1

log
e∥zi∥cos(mθyi,i)

e∥zi∥cos(mθyi,i)+∑
C
j ̸=yi

e∥zi∥cos(θi, j)
(2.11)

with the requirement that θi ∈
[
0, π

m

]
. For e.g., for two classes C1 and C2, the decision

boundary is given by :

C1 : cos(mθ1)≥ cos(mθ2)

C2 : cos(mθ2)≥ cos(mθ1)
(2.12)

In order to make the optimization possible via neural network, the authors expand
the definition range of cos(θyi,i) by generalizing it to a monotonically decreasing angle
function ψ(θyi,i), which can be defined as ψ(θyi,i) = (−1)kcos(mθyi,i)− 2k with θyi,i ∈
[kπ/m,(k + 1)π/m] and k ∈ [0,m − 1]. The final SphereFace loss can be expressed as
follows:

LSphereFace =− 1
N

N

∑
i=1

log
e∥zi∥ψ(θyi,i)

e∥zi∥ψ(θyi,i)+∑
C
j ̸=yi

e∥zi∥cos(θi, j)
(2.13)
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During the training procedure, the optimization using the SphereFace loss will force the
network to map embedded samples zi closer to their corresponding w j, which makes the
feature space more discriminative. However, the posterior Softmax probability will merely
rely on the cosine of mθyi,i. As a result, different margins apply to different classes. As a
result, in the decision space, certain inter-class traits have a more significant margin of error
than others, reducing discriminating capability. Nevertheless, the success of SphereFace has
led to a series of new methods based on the same idea of using the angular distance with the
angular margin.

Inspired by the SphereFace idea, Wang et al. [217] proposed the CosFace loss function
to overcome the SphereFace limitation. Figure 2.23 illustrates the geometrical interpretation
of the CosFace loss. The authors defined the margin in the cosine space rather than the angle
space to penalize the Softmax logit by modifying it as s(cos(θyi,i)−m), where s is the scaling
parameter. Thus the CosFace objective is then defined as:

LCosFace =− 1
N

N

∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m)+∑
C
j ̸=yi

escos(θi, j)
(2.14)

The choice of scale s and the margin m values is crucial to obtain the expected perfor-
mance.

𝑧 𝑧

Fig. 2.23 A geometrical interpretation of CosFace (Right figure) from feature perspective.
Different color areas represent feature space from distinct classes. CosFace has a relatively
compact feature region compared with Modfied Softmax in left figure.

The CosFace authors proposed a lower bound for the scale parameter. Let PW denote the
expected minimum posterior probability of class center (i.e. W ). The lower bound of s is
given by:

s ⩾
C−1

C
log

(C−1)PW

1−PW
(2.15)
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They also proposed a variable scope of margin m based on two assumptions: (1) In order
to conduct perfect classification, the softmax loss aims to maximize the angle between any
two weight vectors from two different classes; (2) The best solution for the softmax loss
should evenly distribute the weight vectors over a unit hypersphere. The variable scope is
defended as follows:

0 ⩽ m ≤ 1− cos2π

C , (k = 2)
0 ⩽ m ≤ C

C−1 , (C ⩽ dz +1)
0 ⩽ m ≪ C

C−1 , (C > dz +1)
(2.16)

Following the same path, Deng et al. [35] proposed the ArcFace, a very simular loss
function to CosFace. However, instead of defining the margin in the cosine space, it defines
the margin directly in the angle space as follows:

LArcFace =− 1
N

N

∑
i=1

log
es(cos(θyi,i+m))

es(cos(θyi,i)+m)+∑
C
j ̸=yi

escos(θi, j)
(2.17)

Angular distance optimization has become a natural approach employed by most of the
loss functions mentioned above. Indeed, during the training procedure, the weight vectors
of the classification layer that rely on the classification loss function are used as centers of
attraction to the embedded feature vectors regarding the ground-truth supervision. This kind
of optimization encourages the network to enhance the intra-class compactness in the feature
space. However, it does not explicitly force the neural network to maximize inter-class
separation.

2.4.4 Clustering algorithms

In the previous subsection, we introduced a deep metric learning loss function that allows
learning a mapping function fθ that maps unlabeled samples X u of the target domain into
a clustering-friendly manifold Z . This subsection introduces state-of-the-art clustering
algorithms usually used to cluster these mapped samples. In this thesis work, clustering
algorithms are mainly seen and used as tools to evaluate the quality of the learned features
space Z . There exist several clustering approaches. For a comprehensive study of existing
clustering algorithms, we refer the reader to [232]. Each approach is best suited to partic-
ular data distribution. In the following, we introduce six selected widely used clustering
algorithms to validate metric learning methods’ performance:
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K-means clustering algorithm. K-means is the most widely used clustering algorithm
for its simplicity and low computational cost. It is a centroid-based algorithm [232]. The
variable K represents the number of groups or classes the algorithm seeks to create. First, the
K points are placed in the data space representing the group of initial centroids. Then, each
data point is assigned to the nearest K. Once all points are assigned to their corresponding
centroids, the positions of the K centroids are recalculated. These last two steps are repeated
until the positions of the centroids do not move.

With the increasing size of datasets, the computational time of K-means increases due
to its constraint of needing to load dataset in the main memory. For this reason, several
K-means variants have been proposed to reduce the temporal and spatial cost, such as Mini
Batch K-means [180] or Nested Mini-Batch K-Means [124].

The disadvantage of the K-mean clustering algorithm is that it deals very poorly with
high-dimensional data. When the data dimension increases, the distance-based similarity
measure converges to a constant.

DBSCAN clustering algorithm. (Density-based spatial clustering of applications with
noise) is a data clustering algorithm proposed by Ester et al. [42]. It is a density-based
algorithm [232] that relies on the estimated density of clusters to perform the clustering.
DBSCAN searches, for each point, the points that are part of its immediate neighborhood
based on a initialy given radius value, and it groups all the points that can be reached. Once
all the points are grouped, the groups of points are considered clusters if the number of points
in the group is superior or equal to a initialy given minimum number of points. Otherwise,
the points are considered outliers.

One of the advantages of DBSCAN is that it is not necessary to know the number of
desired clusters in advance. Moreover, the algorithm detects and isolates outliers by itself.
The concept of density does with all data distributions. The density may vary in the data
space and may not be the same at all data points. The algorithm may perfoms poorly when
there are no "holes" between the clusters, which makes clusters hardly separable.

OPTICS clustering algorithm. (Ordering Points to Identify the Clustering Structure) is
a density-based clustering algorithm proposed by Ankers et al. [4]. It addresses DBSCAN
limitation of detecting meaningful clusters in data of varying density, while it shares the
same limitations and advantages.

BIRCH clustering algorithm. (Balanced Iterative Reducing and Clustering using
Hierarchies). It is a hierarchy-based clustering algorithm [232] proposed by [245] to process
large datasets. It splits the data into small summaries grouped in place of the original data
points. The summaries contain as much information as possible about the original data points,
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which makes it commonly used with other clustering algorithms to cluster its generated
summaries.

BIRCH only requires a single dataset scan, making working with large datasets fast. It
can incrementally cluster incoming, multi-dimensional data points in respect of a given set
of computational resource constraints. Another advantage is that it does not require knowing
the number of clusters in advance.

Affinity Propagation clustering algorithm. It is a message-passing based clustering
algorithm proposed by Frey et al. [47]. This algorithm is entirely different from the others
in how it clusters data. Each data point corresponds with all other data points by passing
message information. This communication between data points allows each point to know
how similar they are, which starts to form the clusters in the data.

The advantages of Affinity Propagation clustering is that it is insensitive to the outliers,
and the number of clusters does not need to be known. However, it has a high computational
complexity, which makes it unsuitable for a large dataset.

Agglomerative Hierarchical Clustering. Agglomerative clustering is generally used
as a bottom-up clustering process. Initially, every data point forms its cluster. Then, in
each iteration, the two ’closest’ clusters will be merged until only one cluster remains. The
objective is to construct a cluster hierarchy such that given any two distinct clusters, A and B,
from conceivably different levels of the hierarchy, we obtain either A∩B=∅, A<B, or B<A
[191]. Such a hierarchy is useful in many application areas. In particular, for applications that
are interested in the hereditary qualities of clusters, as in some bioinformatics applications. It
can also be very helpful when the precise number of clusters is a priori unknown.

2.4.5 Consensus clustering

Consensus clustering aggregates the results of multiple clustering algorithms or the same
algorithm with multiple runs with varying parameters. It is also called cluster ensemble
[192] or aggregation of clusters and refers to a situation where several different predicted
clusters have been obtained for a given data set, and a single consensus clustering is to be
found that in some sense fits better than the existing clustering results. Figure 2.24 illustrates
the clustering idea.

The most referenced work in this field was proposed by Strehl et al. [192]. Based on graph
representation, the authors propose three consensus clustering algorithms: Cluster-based
Similarity Partitioning Algorithm (CSPA), HyperGraph Partitioning Algorithm (HGPA), and
Meta-Clustering Algorithm (MCLA).



54 State-of-the-art

Fig. 2.24 Illustration of a consensus clustering for M clustering results, which the consensus
takes as an input to generate the final clustering result.

• CSPA. A clustering implies a relationship between samples in the same cluster and
can be used to create a pairwise similarity measure. Then, samples are re-clustered
using this similarity measure, resulting in a combined clustering. First, a similarity
matrix is computed. Then, an induced similarity graph is constructed. Vertices are
represented by data points, and edges by similarity measures, which are partitioned
into K clusters using METIS [76].

• HGPA. The hypergraph is constructed using the ensemble of clustering results, where
the vertices correspond to the data points. Each hyperedge is a cluster from one of
the clustering results in the ensemble. All hyperedges have the same weight. This
algorithm searches for a hyperedge separator that partitions the hypergraph into K
disconnected components of approximately equal size. The hypergraph partitioning
package HMETIS [75] is used for this partitioning.

• MCLA. This algorithm is based on clustering the clustering results in the ensemble.
Each cluster is represented as a hyperedge. The algorithm packs and collapses related
hyperedges into the desired K number of clusters and then assigns each data point to
the cluster (collapsed hyperedge) in which it is most involved.

In the context of our work, we used the Strehl et al. [193] proposed method because of
its efficiency and the availability of its source code. We refer the reader to [25, 125] for more
details on consensus clustering methods.

2.4.6 Clustering evaluation metrics

The evaluation of classification methods (supervised or unsupervised) requires independent
and reliable measurements. It turns out that there is always a gap between theory and practice.



2.4 Unlabeled hand activity clustering 55

The data size, the details of its representation, and classification algorithms make intuitive
assessments impossible. There is no absolute measure for the evaluation of clustering
methods, but a variety of methods depend on the characteristics of the data or the algorithms.
These methods can be divided into two families, internal and external evaluation methods.
Internal methods are used to measure the goodness of a clustering structure without external
information (ground-truth) [206]. External methods measure the agreement between two
partitions where the first partition is the a priori known clustering structure (ground-truth),
and the second results from the clustering procedure [41]

In this thesis work, we used only external methods since we have the ground-truth
information for all the evaluated datasets. In the following, we present the most frequently
used external evaluation methods:

Adjusted Rand Index (ARI). The Rand Index (RI) is a generic clustering evaluation
metric proposed by Randet al. [235]. It is based on the computation of TP, TN, FP, and FN,
where :

• TP: number of true positives (objects correctly grouped and belonging to the same
group).

• TN: number of true negatives (objects not belonging to the same group and annotated
as not belonging to the same group).

• FP: number of false positives (objects grouped together but not belonging to the same
group in the ground truth).

• FN: number of false negatives (objects not grouped but belonging to the same group in
the ground truth).

Thus the RI evaluation metric is formulated as follows:

RI =
T P+T N

T P+T N +FP+FN
(2.18)

It is a performance measure corresponding to the proportion of sample pairs for which
the ground-truth labels and the predicted clustering labels meet. The advantage of RI is that it
considers the number of TN, and thus a system that groups all samples s into a single cluster
has a low RI.

In [68], the authors propose to perform an adjustment of the Rand Index: the Adjusted
Rand Index (ARI). This adjustment uses a calculation of µ, representing the Rand Index’s
mathematical expectation that a random grouping of samples can reach compared to the
ground truth. The ARI is formulated as follows:
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ARI =
RI −µ

1−µ
(2.19)

Normalised Mutual Information (NMI). Mutual information is another evaluation
measure based on information theory that measures the entropy between the ground-truth
labels and the clustering algorithm predicted labels. Its normalized version [192] is defined
as follows:

NMI(G,M) = 2
I(G,M)

H(G)+H(M)
(2.20)

where I is the mutual information, and H ik the entropy.
V-Measure. It is an entropy-based clustering evaluation method proposed by Rosenberg

et al. [160]. It explicitly measures how successfully satisfied the criteria of homogeneity and
completeness are. V-measure is computed as the harmonic mean of distinct Homogeneity
and Completeness score.

• Homogeneity: To satisfy the homogeneity criteria, a clustering must assign only those
data points that belong to a single class to a cluster. Within each cluster, the class
distribution should be skewed to a single class, resulting in zero entropy. Within
each cluster, the class distribution should be shifted to a single class, resulting in zero
entropy [160].

• Completeness : Completeness is symmetrical to homogeneity. To satisfy the complete-
ness criteria, a clustering must assign all of those data points that are members of a
single class to a cluster. To evaluate the completeness, we examine the distribution of
cluster assignments within each class. Each of these distributions will be completely
asymmetric with respect to a single group in a perfectly complete clustering solution
[160].

V-measure can be weighted to favor the contributions of homogeneity or completeness.
Clustering Accuracy (ACC). For clustering algorithms that require the ground-truth number
of classes k (e.g., K-means), the ACC [234] can be used to validate the clustering quality. Let
us denote by ŷi as the clustering result from the clustering algorithm and yi the ground truth
label. The ACC can be defined as follows:

ACC =
∑

n
i=1 δ (yi,map(ŷ))

n
(2.21)

where n is the number of samples to be clustered. δ (a,b) = 1 if a = b and δ (a,b) = 0
otherwise. map(.) is the optimal mapping function that permutes clustering labels to match
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the ground truth labels. The best mapping can be obtained by using the Kuhn-Munkres
algorithm [139].

2.4.7 Deep Metric learning-based clustering datasets

In the context of this thesis work, we have applied metric learning and clustering techniques
for hand activity recognition using the previously introduced FPHA and SLS France datasets.
Nevertheless, in the literature, we find other commonly used datasets to validate the methods
of metric learning methods that we introduce in the following:

CUB200-2011 [214]. Contains 200 classes of birds with 11,788 images. It is usually
divided into the first 100 classes for training (5,864 images) and the remaining classes for
testing (5,924 images). In the training set, the maximum, minimum, mean and standard
deviation of the number of images in each class are 60, 41, 58.6 and 3.5, respectively.

Cars196 [86]. Contains 196 classes of cars with 16,185 images. It is usually divided into
the first 98 classes for training (8,054 images) and the remaining classes for testing (8,131
images). In the training set, the maximum, minimum, mean and standard deviation of the
number of images in each class are 97, 59, 82.2 and 7.2, respectively.

2.4.8 Conclusion

In this section, we have formulated the problem of clustering unlabeled samples. Then, we
presented the state-of-the-art UDA approaches and explained the tendency of researchers
to use metric learning loss functions to solve UDA problems. In subsection 2.4.3, we have
presented existing metric learning approaches in detail and discussed their advantages and
disadvantages. We have also presented a selection of clustering algorithms and evaluation
metrics. Our selection of the algorithms is based on their extensive use in evaluating metric
learning methods. Finally, we presented the commonly used datasets for evaluating metric
learning methods.

From this state-of-the-art study, we retained that approximating the clustering of unlabeled
hand activities to an UDA problem can be a good solution. Thus, the unlabeled classes
we seek to identify can be considered as a target domain, and the labeled classes as the
source domain. Suitable exploitation of the prior knowledge from the source domain is
crucial for UDA. Therefore, the pre-trained model, which relies on the source domain, must
map unlabeled samples into a highly discriminative feature space. We have also concluded
that the desired feature space must satisfy two main objectives of metric learning: (1)
maximizing inter-class distances and (2) minimizing intra-class distances for the mapped
hand activities. A lot of deep metric learning methods have been proposed. They are used to
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optimize neural networks, learning a mapping function that maps unlabeled samples into a
highly discriminative low-dimensional feature space. The resulting feature space facilitates
measuring similarities between pairs of samples in such a discriminative manifold. The most
these existing methods usually try to boost the discriminatory power of neural networks by
enhancing intra-class compactness in the high-level features space. However, they do not
explicitly impose constraints to improve inter-class separation. Based on these observations
in chapter 4, section 4.3, we propose a new composite deep metric learning loss function that,
in addition to the intra-class compactness, explicitly implies regulations to enforce the best
inter-class separation.

In the next section, we present state-of-the-art methods related to incrementally integrating
these clustered and annotated unlabeled samples, which is the goal of the final component of
our desired user activity recognition framework.
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2.5 Incremental Learning for hand activity recognition

In the previous section, we presented state-of-the-art methods related to the semi-automatic
annotation of detected unknown activities. Following our objectives introduced in the
previous chapter, section 1.2, the final component of our desired user activity recognition
framework aims to integrate these annotated activities into the recognition and the unknown
activity detection models. In other words, thanks to this final component, the framework
incrementally learns and extends its multi-class classifier, making each new class “known” to
the models. Observing the state-of-the-art related approaches, we found that this integration
(update) procedure meets the incremental learning paradigm. More precisely, it meets
class-incremental learning, where the system learns progressively newly arrived classes.

In incremental learning, the dataset is not necessarily entirely available at the beginning
of the training. The system receives sets of training samples progressively and must be able
to learn from each of these sets of samples separately. The system must therefore be able to
modify itself and adjust its parameters after observing each set of classes to learn from it, but
without forgetting the knowledge acquired from the previously learned classes. This learning
procedure is used either when the dataset is too large with many classes to be used at once;
or when the entire training set is unavailable, and the training data arrives incrementally.

Many methods have been adapted to the problem of supervised classification to address
incremental learning challenges. They include but are not limited to SVM-based methods
[251], neural networks [140], k-nearest neighbor [230], and decision trees [33]. The choice of
an algorithm depends strongly on the task to be solved and the desired model interpretability.
Following the thesis objectives introduced in the previous chapter, section 1.2, we focus on
neural networks based class-incremental learning approaches. Moreover, these methods are
the most commonly used to solve the incremental learning.

The main challenge in class-incremental learning is learning from data of the current set
of classes in a way that prevents forgetting previously learned classes. The drastic drop in
performance in previously learned classes is a phenomenon known as catastrophic forgetting
[53]. Incremental learning aims to prevent catastrophic forgetting while at the same time
avoiding the problem of intransigence, which inhibits adaptation to new tasks [26]. There
are several causes of catastrophic forgetting, in the following, we present the most common
ones:

Weight drift: When a network has learned to recognize an initial set of patterns, it has
found a point in weight-space, Winitial , for which the network can recognize all the patterns it
has seen. If the same network learns a new set of patterns, even if the new set is small, it will
move to a new solution point in weight-space, Wnew, corresponding to a set of weights that
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allows the network to recognize the new patterns. As a result, performance on previous tasks
often suffers dramatically.

Activation drift: Related to weight drift, activation drift changes lead to changes in
neuron activation and, therefore, in the network output. Focusing on activation rather than
weights can be less restrictive because it allows weights to change as long as they result in
minimal changes in layer activation [118].

Inter-class confusion: The incremental learning objective is to distinguish all classes
from all iterations. However, since classes are not jointly trained, the network weights cannot
optimally discriminate all classes. As a result, the new classes will be highly confused with
the old ones.

Task-recency bias: Separately learned tasks may produce incomparable classifier net-
work results. Thus, the network is biased towards classes of newer learning iterations. This
effect is observed in confusion matrices which illustrate the tendency to miss-classify inputs
from the most recently seen classes, as reported by [118].

In the following section we introduce neural network based class incremental learning
methods.

2.5.1 Fine-tuning based approaches

They are the most popular type of approach in class incremental learning.. Fine-tuning
consists of initializing the model weights with those of the previous model to benefit from
previously acquired knowledge and quickly start learning convergence on new data. Fol-
lowing [89], these methods can be categorized into three main categories: (1) replay-free
methods approaches that do not use the memory of the past, (2) replay-based methods
approaches that use limited memory of the past, and (3) pseudo-replay-based approaches
that generate past images instead of storing them in memory.

Replay-free methods. This family of methods aims to prevent the weight drift of
weights important to the previously learned classes. It also aims at preventing activation drift
problems present in the classification layer. These methods do not re-use past model memory
(initial training samples). They are often based on regularization losses.

A series of weight regularization methods have been proposed to tackle the drift of weights
problem. Generally, these proposed methods compute the importance of each parameter in
the network after each incremental learning iteration. When learning new classes, the more
important the weights are, the more penalized the network is for these changes. Different
techniques were proposed to measure the importance of weights that define the network
changes. Lee et al. [93] used batch normalization layers and proposed a quadratic penalty
method with a Hessian approximation. In [83], the authors proposed an elastic weights
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consolidation technique, representing the weight importance as a diagonal approximation of
the Fisher Information Matrix.

On the other hand, to solve the activation drift, researchers focused more on knowledge
distillation, which was originally designed to solve teacher-to-student learning problems [61].
A reference work was proposed by Li et al. [102], denoted by Learning without Forgetting
(LwF). It is the first state-of-the-art method that does not require memory of past classes.
It leverages knowledge distillation to minimize the discrepancy between representations of
past classes from the previous and current incremental learning iterations. It freezes the past
network parameters, trains only the new ones, and then jointly trains all network parameters
until convergence.

Learning without Memorizing (LwM) [39] is a distillation-based approach that does not
need a memory of past classes. The authors of LwM proposed an information preserving
penalty using attention distillation loss that captures the changes in the classifier attention
maps to preserve past knowledge. Lu et al. [239] proposed a semantic drift compensation.
Instead of preventing drift, which most existing methods do, their method estimates the drift
of previous tasks when training new tasks to compensate for it to improve performance.
The drift is computed at the class-mean-embedding level. This approach is based on a
Nearest-Class-Mean (NCM) classifier that does not need a memory of past classes since the
past class-mean embeddings are estimated using new data only.

Recently, Zhang et al. [244] tackled the activation drift problem by using two models.
Given a pre-trained model on existing classes and labeled data of new classes, they first train
a new model to recognize instances of the new classes; then, they combine the old model
and the new model using the Deep Model Consolidation (DMC) module, which exploits the
external unlabeled auxiliary data. Thus, the final model suffers less from forgetting the old
classes and achieves high recognition accuracy for the new classes. Figure 2.25 illustrates
the functioning of this method.
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Fig. 2.25 Zhang et al. [244] class-incremental learning proposed method.

Replay-based methods. Here we introduce methods that use limited memory of the
past. By observing the state-of-the-art, we distinguish two categories: regularization-based
methods, which rely on the loss function to regularize the weights update, and bias-removal-
based methods, that address recency bias by removing the bias between past and new class
scores.

One of the most popular regularization-based method is the Incremental Classifier and
Representation Learning (iCaRL) [156]. It combines the use of distillation and memory for
past class exemplars. The authors used the nearest mean of samples for the classification
decision instead of the network probability score. Their classification method aims to reduce
the prediction bias due to the imbalance between old and new classes.

Castro et al. [23], addressed the challenge of catastrophic forgetting with an end-to-end
incremental learning approach (E2EIL). They proposed a representative memory component
that can be realized with any deep learning architecture, akin to a sample set for maintaining
a small set of samples corresponding to old classes. Their end-to-end model is learned by
minimizing the cross-distilled loss, combining two loss functions: cross-entropy to learn the
new classes and distillation to retain the previous knowledge corresponding to the old classes.
Similarly, [65] adapted the E2EIL concept and added a sophisticated data augmentation,
which showed more improvement.

In [252], the authors proposed a multi-model and multi-level knowledge distillation
strategy to tackle the catastrophic forgetting problem. Instead of sequentially distilling
knowledge only from the penultimate model, they directly leverage all previous model
snapshots. In addition, they incorporate an auxiliary distillation to preserve further knowledge
encoded at the intermediate feature levels. They adapt mask-based pruning to reconstruct all
previous models with a small memory footprint to make the model more memory efficient.
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Similar to DMC [244], Lee et al. [94] proposed a global distillation method that takes
advantage of an external dataset to tackle catastrophic forgetting using triple distillation.
This method has three main stages. In the first stage, a teacher model is trained on new data,
then calibrated using the exemplars memory and the external dataset. Then, in the second
stage, a triple distillation is applied using the teacher, previous, and ensemble models, which
are used with external data only. Finally, fine-tuning is performed in the last stage to tackle
the recency bias problem. In contrast, Hou et al. [64] proposed an approach that trains a
teacher model separately with new data while distilling knowledge using exemplars memory
to preserve accuracy in past classes.

A set of bias-removal-based methods was proposed to target and directly tackle the
recency bias problem. In [227], a bias correction is proposed. It is a recently proposed
method that uses a classical knowledge distillation term and adds a linear layer after the
prediction layer of the deep model to reduce the bias in favor of new classes.

Maintaining Discrimination and Fairness (MDF), [250] uses distillation loss to maintain
Discrimination between past classes. The method consists of two phases: The first phase aims
to Maintain Discrimination (MD), where they train a new model on the new and rehearsal
data. Thanks to knowledge distillation, this first step allows knowledge transfer from the
old model to the new model and maintains Discrimination within old classes. Knowledge
distillation loss still cannot help the model treat old and new classes fairly, so they designed
a second phase denoted by Maintaining Fairness (MF). In this phase, they propose a method
named Weight Aligning (WA) to correct the model trained in the first phase. The corrected
model treats old and new classes fairly, improving overall performance.

Pseudo-replay-based methods. These approaches do not store exemplars for past
classes in the memory. Instead, they generate synthetic data to represent past classes in
the current incremental state. Attracted by the success of Generative Adversarial Networks
(GANs), Wu et al. [228] used a GAN to create artificial images for past classes. Generated
and real examples are mixed to obtain slightly better performance than that of iCaRL [156].
However, the accuracy drops significantly when relying exclusively on artificially generated
images. Ostapenko et al. [134] introduced a Dynamic Generative Memory (DGM), a synaptic
plasticity-driven framework for continual learning. DGM employs conditional generative
adversarial networks with learnable connection plasticity achieved by neural masking. They
specifically investigate two neural masking variants: applied to layer activation and weights
directly. Moreover, they proposed a dynamic network expansion mechanism that ensures
the model capacity to accommodate for continually incoming tasks. The amount of added
capacity is determined dynamically from the learned binary mask. Instead of storing images
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of past classes, DGM uses previous distributions to learn a single generator of past class
images incrementally.

2.5.2 Fixed-representation based approaches

Parameter-isolation based methods [165] address catastrophic forgetting by allocating spe-
cific model parameters to each learning iteration. They can be seen as a basic variant of
fine-tuning-based methods.

Inspired by biological brain functioning, Kemker et al. [79] proposed a fixed-representation
method based on dual-memory system. Separated networks are used for long- and short-term
memories to represent past and new classes. A decision mechanism is implemented to decide
which network should be used for each test sample. However, memory increases significantly
with time since the algorithm stores detailed statistics for each class learned.

Also inspired by the human brain, Hayes et al. [57] proposed an incremental learning
method called REMIND. The method is also based on an initial representation which is
only partially updated afterward. The approach uses a vector quantization technique to store
compressed intermediate representations of images, which are more compact than the images
themselves. The stored vectors are reconstructed and replayed for memory consolidation.

Deep Streaming Linear Discriminant Analysis (Deep-SLDA) [58] is a recently proposed
method based on SLDA [138] algorithm. The network is trained on the first batch of classes
and is frozen afterward. During the training, a class-specific running mean vector and a
shared covariance matrix are updated. The predictions are made by assigning the label to
the closest Gaussian in the feature space defined by the class-mean vectors and covariance
matrix.

2.5.3 Parameter-isolation based approaches

This group of incremental learning approaches addresses catastrophic forgetting by allocating
specific model weights to each learning iteration. Here we distinguish between two types
of approaches: (1) those where the architecture of the model extends to accommodate new
knowledge (dynamic networks), and (2) those where the complexity of the model is constant
(fixed networks).

Dynamic networks. It increases the size of the neural network model to acquire new
knowledge. Progressive Neural Networks [165] prevents catastrophic forgetting by instanti-
ating a new neural network (a column) for each learning iteration, while deep features are
shared through lateral connections between previously learned columns.



2.5 Incremental Learning for hand activity recognition 65

Roy et al. [163] proposed an adaptive hierarchical network structure consisting of deep
CNN that can extend and learn as new data arrives incrementally. The network grows tree-like
to accommodate new classes of data while retaining the ability to classify the previously
learned classes. The network organizes incrementally available data into feature-driven
superclasses and enhances existing hierarchical CNN models through the ability to self-grow.

Rosenfeld et al. [161] proposed deep network architecture for lifelong learning, which
they refer to as Dynamically Expandable Network (DEN). It can dynamically decide its
network parameters as it trains on a sequence of tasks to learn a compact overlapping
knowledge-sharing structure among tasks. DEN is trained online by performing selective
retraining and dynamically expands network capacity upon arrival of each iteration with only
the necessary number of units (neurons). This prevents semantic drift by splitting/duplicating
units and time-stamping them.

Fixed networks. Unlike dynamic networks, these methods do not modify the neural
network architecture. PackNet [116] is based on a pruning technique that identifies redundant
free weights and uses them to train the network on new classes. The approach cannot learn a
large number of classes since the network can not be strongly compressed without significant
performance loss.

Based on the PackNet idea, Mallya et al. [115], proposed a similar solution Piggy-
back. This solution learns to selectively mask a base network’s fixed weights to improve
performance on a new task. They achieve this by maintaining a set of real-valued weights
passed through a deterministic thresholding function to obtain binary masks that are then
applied to existing weights. They learn binary masks appropriate for the task by updating the
real-valued weights through backpropagation. The approach increases the model complexity
because extra parameters are added each time to include new learning iterations.

2.5.4 Incremental activity recognition

Unlike many incremental learning applications that can be found for the image classification
task, few incremental learning applications focus on activity recognition. Incremental
learning of activities is more complex than static images. This is mainly because the spatial
and temporal features of the activity sequence must not be forgotten when learning new
classes. On the other hand, the representations of activity data (e.g., videos) require more
computational resources for processing and storage, which makes the replay or pseudo-
replay-based incremental learning methods more challenging.

Ryoo et al. [167] have proposed a method for incrementally learning new activity
classes from videos. They represented activities using visual words to describe their videos
and incrementally learned new words for existing/new activities while providing training
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examples. Each word is a set of local spatiotemporal features, and the activity is learned by
modeling the distribution of these words in their videos. They also proposed an algorithm to
learn an optimal set of words per class gradually. New visual words are generated when videos
from an existing or new activity class are provided, while old words are updated or merged
based on the new observations. A histogram of the visual words needed for recognition is
also incrementally generated for each activity class. The histograms are created or updated
after each video arrival, preserving the features of the previous distribution.

Ma et al. [112] proposed a Grow When Required network (GWR) based video class incre-
mental learning framework for action classification. GWR learns knowledge incrementally by
modeling the manifold of video frames for each encountered activity class in feature space.
They also introduce a knowledge consolidation method to separate the feature manifolds of
the old class and the new class.

More recently, based on the previously introduced LwM [39], which is a knowledge
distillation-based incremental learning method, Park et al. [141] proposed a class incremental
learning method for action recognition in videos. To reduce the memory for past class
exemplars storage and the training costs, they adopted a frame-based feature representation
method to store exemplars for the tasks learned in the past. This representation is based on
the Temporal Shift Module (TSM) [103]. In addition to LwM, they exploited an attention
method over a time-channel space to facilitate action recognition in a class-incremental
learning scenario.

The first and the only work that addressed the catastrophic forgetting problem for
egocentric hand gesture recognition was proposed by Wang et al. [222]. Their proposed
method, denoted by (CatNet), is based on the previously introduced iCaRL method [156] and
3D CNN. The key idea of CatNet is that they selected some previous class samples that are
the most pertinent of the old class. Selected video samples and their predictions are stored.
This is achieved by mainly learning the feature representation from RGB and depth hand
gesture sequences. The cached samples play two roles during class-incremental learning.
First, the selected samples are used to compute a feature vector for each class that is used
for inference. Second, following the iCaRL concept, the prediction is used to compute the
distillation loss during the training.

2.5.5 Conclusion

In this section, we presented state-of-the-art methods related to the final component of our
targeted activity recognition framework, which aims at incrementally integrating annotated
unknown samples. We first described the class incremental learning problem. We also
introduced the central issue of neural network-based incremental learning denoted by the
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catastrophic forgetting problem and highlighted its causes. Then, we presented state-of-the-
art approaches to overcome this phenomenon. Finally, we presented state-of-the-art methods
related to incremental human activity recognition.

We can retain from this state-of-the-art study that the most investigated and promising
incremental learning methods are these based on fin-tuning the initial model to learn both
old and new classes simultaneously. The primary issue with this category of methods is that
they require storing information about old training classes to fight the catastrophic forgetting
problem. However, in the long-term continual learning, a naive storing strategy can cause
memory capacity problems. We presented existing solutions to this problem, such as no-reply
memory or pseudo-memory replay methods. Nevertheless, these methods are still struggling
with the catastrophic forgetting problem, and they do not apply to some specific tasks. Based
on these observations, in chapter 4, section 4.4, we present our adopted fin-tuning-based
method for incremental hand activity recognition, which uses a new memory replay solution.
The proposed solution aims to maximize information about old training data to avoid the
catastrophic forgetting problem while minimizing the storage memory usage.
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2.6 Conclusion

Following the four components we propose in this thesis (chapter 1, section 1.2), we in-
troduced in this chapter each component’s general idea and presented its related existing
state-of-the-art approaches. Thus, we began by reviewing state-of-the-art existing first-person
hand activity recognition methods, which we divided into three distinct categories. We
provided a description, advantages, and limitations for each category; and presented the
available state-of-the-art datasets for hand activity recognition evaluation. We also gave an
overview of the state-of-the-art methods related to the rest of the proposed components. Thus,
we explored the following research fields:

• Open-set recognition. To detect unknown hand activities while correctly classifying
the known ones.

• Unsupervised domain adaptation and metric learning. To automatically cluster,
then manually annotate detected unknown hand activities.

• Incremental learning. To integrate annotated unknown activities into the recognition
and unknown activity detection models.

As we mentioned in the conclusion of each section of this chapter, these state-of-the-art
studies allowed us to make the right choices, proposing efficient solutions that satisfy our
objectives. In the following chapters, we introduce our proposed methods.



Chapter 3

Efficient and low-cost Learning Pipelines
for Hand Activity Recognition

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 3D skeleton-based hand activity recognition . . . . . . . . . . . . . . . 72

3.2.1 Hand-crafted features extraction . . . . . . . . . . . . . . . . . . 73

3.2.2 Temporal Dependencies Learning . . . . . . . . . . . . . . . . . 76

3.2.3 Post-fusion Strategy and Classification . . . . . . . . . . . . . . 77

3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 RGB-based and Multi-modal-based (RGB and 3D hand skeleton) hand
activity recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.1 Transfer Learning-based Regions of Interest Extraction (RoIE)
and Data Augmentation . . . . . . . . . . . . . . . . . . . . . . 90

3.3.2 Transfer Learning-based Spatial Features Extraction (SFE) . . . . 91

3.3.3 Temporal Dependencies Learning (TDL) . . . . . . . . . . . . . 92

3.3.4 Post-fusion-based Classification (PFC) . . . . . . . . . . . . . . 94

3.3.5 Multi-modal RGB and 3D hand skeleton for first-person hand
activity recognition . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



70 Efficient and low-cost Learning Pipelines for Hand Activity Recognition



3.1 Introduction 71

3.1 Introduction

As we explained in the first chapter, subsection 1.2.1, hand activity recognition is one of the
main components of the desired user activity recognition framework. The activity recognition
component will enable the framework to comprehend the AR user’s hand activity to help,
direct, and orient him while he performs complicated tasks.

To this end, in this chapter, we present our two solutions for hand activity recognition from
the first-person viewpoint that meet the AR context and address the challenges introduced in
chapter 1, section 1.2.1. The remainder of the chapter will be organized as follows:

• Section 3.2 details our proposed learning pipeline for 3D skeleton-based hand activity
recognition. First, we introduce the approach and its main contributions. Then we
detail each step of the proposed approach. Finally, we present the experiments that
evaluate and validate the approach by discussing and comparing the obtained results
with existing state-of-the-art approaches.

• Section 3.3. introduces our proposed learning pipeline for RGB-based hand activity
recognition. This second solution aims at overcoming the previous one’s imitations.
First, we define the approach and highlight its contributions. Then we detail each
step of the proposed method. Next, we introduce the combination of our RGB-based
and 3D skeleton-based solutions for hand activity recognition. Finally, we present
the experiments that evaluate and validate the proposed approaches by comparing the
results obtained with existing state-of-the-art methods.

• Section 3.4 concludes the chapter.



72 Efficient and low-cost Learning Pipelines for Hand Activity Recognition

3.2 3D skeleton-based hand activity recognition

As discussed in the previous chapter, section 2.2, the 3D skeleton data provide a robust
high-level description of common problems in RGB imaging, such as background subtraction
and light variation. To this end, many skeleton-based approaches have been proposed. Most
of them are based on end-to-end DL process [40, 216], which have been shown to be effective
when a large amount of data is available. Nevertheless, providing large labeled datasets
for some industrial applications is still difficult and expensive due to manual data labeling.
On the other hand, pure HC feature-based approaches [186, 37, 74, 249, 69] can deal with
limited data. However, they have difficulty learning temporal dependencies along the activity
sequence. As an alternative to balance performance and data acquisition cost, hybrid methods
combine DL and pure HC methods [5, 29, 108, 248].

2nd block

Temporal Dependencies
Learning

Spatial Features 
Extraction

Transfer Learning 
Fusion

Classification

3rd block

1St block Pour juice bottle

Transfer Learning  

Our contributions

Fig. 3.1 This figure illustrates our proposed learning pipeline for 3D skeleton-based first-
person hand activity recognition. For a given 3D hand skeleton activity sequence, the spatial
features are extracted using existing and new hand-crafted methods. Then, in the second
block, the temporal dependencies are learned. In the last block, a hand activity sequence
classifier is learned using a post-fusion strategy applied to the previously learned temporal
dependencies. Only the first and last blocks are involved in the test predictions.

Motivated by all these observations, in this section we present our proposed hybrid
approach for 3D skeleton-based first-person hand activity recognition (see figure 3.1). We
highlight the contributions as follows:

• A novel hybrid learning pipeline for first-person hand activity recognition consists
of three sequential blocks (as shown in figure 3.1): In the first block, we extract the
spatial features using our proposed selection of existing and new HC feature extraction
methods. Then, in the second block, we differ from the existing methods by learning
the temporal dependencies independently from each HC feature using a simplified
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separate neural network to avoid the overfitting problem. Finally, we use the knowledge
from the previous block to classify the activities using a tuning post-fusion strategy.
Once learning is complete, only the first and last blocks are used for predictions. This
multi-stage learning pipeline allows training with a limited number of samples while
ensuring good accuracy.

• A combination of three local and global HC feature extraction methods for 3D skeleton-
based first-person hand activity recognition, which we summarize as follows: (1)
Inspired by [186], we use a Shape of Connected Joints (SoCJ) that characterizes the
activity sequence by the variation of the physical hand shape at each time step. (2)
Our proposed Intra/Inter Finger Relative Distances (IIFRD), which also relevantly
characterizes the activity sequence at each time step, by the variation of inter-finger
relative distances between physically adjacent finger pairs, and Intra-Finger Relative
Distances, which belong to the distance between two opposite joints of a pair of
directly connected finger segments. (3) Since SoCJ and IIFRD focus only on the local
features of the hand at each time step, we proposed a complementary HC method
called Global Relative Translations (GRT), which focuses on the global features of the
whole sequence by using the displacement of the hand during activity.

The remainder of this section details our proposed hybrid approach following the illustra-
tion of figure 3.1. Subsection 3.2.1 presents the first block of our proposed pipeline, which
extracts the HC features from 3D hand skeleton data. In subsection 3.2.2, we present the
second block that learns the temporal dependencies. Subsection 3.2.3 presents the last block
of the proposed pipeline. Once the temporal dependencies learning is ended, we transfer
and exploit the knowledge from the previous block to learn classifying activities in the last
block. Subsection 3.2.4 is devoted to experiments and the evaluation of the proposed learning
pipeline. Subsection 3.2.5 concludes the section.

3.2.1 Hand-crafted features extraction

The proposed pipeline inputs a 3D hand skeleton activity sequence that we denote by x(t).
At each time step t, the hand is represented by a configuration of physically connected n
joints {Jt

j} j=1:n. Each joint is represented by 3D Cartesian coordinates forming a set of
segments that yields the hand bones, the phalanges, and metacarpals (figure 3.2). We define
and formulate the activity sequence as follows:

x(t) = {{Jt
j} j=1:n}t=1:T (3.1)
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where T is the max length of the sequence.
In order to exploit the 3D geometrical information in the first block, we use three HC

feature extraction methods that provide relevant features for first-person hand activity recog-
nition. Before proceeding to feature extraction, the 3D hand skeleton data are normalized,
such as all the hands of all the subjects are adjusted to the same average size while keeping
the angles intact. In the following descriptions, we model the hand skeleton by fixing the
number of joints to n = 21.
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Fig. 3.2 The proposed selection of hand-crafted features. (a) 3D vectors between physically
connected joints represent the shape of Connected Joints (SoCJ), the hand shape [186]. (b)
Our proposed Intra/Inter Finger Relative Distances (IIFRD) characterize the activities by the
high variation of intra-finger distances RDa (in black) and inter-finger distances RDe (in red).
(c) Our proposed Global Relative Translation aims to characterize the activity sequence by
translating the joints centroid at each time step.

Shape of Connected Joints (SoCJ). Inspired by [186], we use the SoCJ to represent
the variation of the hand shape during the activity. For each finger, we compute the 3D
vectors between physically connected joints, from the wrist up to the fingertips (Figure 3.2
(a)). Let Finger1 = {J j} j=1:5 be a set of joints that are ordered such as they represent the
physical connections of the thumb finger and wrist joint J1 as shown in figure 3.2 (a), the
SoCJ(Finger1) can be computed as follows:

SoCJ(Finger1) = {J j − J j−1} j=5:2 (3.2)

By applying the SoCJ to all the fingers, as a result, for each time-step t, we obtain a
feature descriptor {SoCJ(Fingert

l)}l=1:5 ∈R4×5×3, where Fingerl is the l-th finger. ΨSoCJ(.)
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denote the SoCJ method applied to the entire activity sequence S(t) that we define as follows:

ΨSoCJ(x(t)) = {{SoCJ(Fingert
l)}l=1:5}t=1:T (3.3)

Intra/Inter Finger Relative Distances (IIFRD). We exploit the periodic variation of the
intra-finger and inter-fingers relative distances, which relevantly characterizes the activity
sequence (figure 3.2 (b)).

• The intra-finger relative distances that we denote RDa give strong internal dependen-
cies between the finger’s connected segments. It represents the distance between two
opposite joints of a pair of directly connected segments from each fingertip down to
the wrist (Figure 3.2 (b) in black). Let us take Finger1 as described previously. The
RDa(Finger1) can be computed as follows:

RDa(Finger1) = {ρ(J j,J j−2)} j=5:3 (3.4)

where ρ is the Euclidean distance. By applying the RDa to all fingers, for each
time-step t, we get a feature descriptor a(t) = {RDa(Fingert

l)}l=1:5 ∈ R15.

• The inter-finger relative distances that we denote by RDe (figure 3.2 (b) in red), give
external dependencies between adjacent fingers pairs. For instance, let us take Finger1

as described previously and Finger2 = {J j} j=7:9, two sets of connected joints that
refers to the thumb and the index fingers, respectively. The RDe(Finger1,Finger2) is
computed as follows:

RDe(Finger1,Finger2) = {d(J j,J j+4)} j=3:5 (3.5)

By applying the RDe to the four pairs of adjacent fingers, for each time-step t, we
obtain a feature descriptor e(t) = {RDe(Fingert

l ,Fingert
l+1)}l=1:4 ∈ R12.

Finally, by concatenating the two descriptors a(t) and e(t), for each time-step t, we obtain
a final feature descriptor {a(t),e(t)} ∈ R15+12. We denote by ΨIIFRD(.) the IIFRD method
applied to the entire activity sequence S(t) that we define as follows:

ΨIIFRD(x(t)) = {a(t),e(t)}t=1:T (3.6)

Global Relative Translations (GRT). Unlike the IIFRD and SoCJ descriptors, which only
consider the local features that belong to the fingers motion at each time step, the GRT
characterizes the activity sequence by computing the relative displacement of all the hand
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joints along the sequence time steps (figure 3.2 (c)). To this end, for each sequence, we fix
the wrist joint J0

1 of the first time-step t = 0 as the origin. Then, we transform all remaining
joints of the sequence to this new coordinate system as follows:

J́t
j = Jt

j − J0
1 (3.7)

where the J́t
j the new transformed j-th joint at the time-step t. Once the transformation is

done, at each time-step, we compute the centroid of the transformed joints µt =
1

21 ∑
21
j=1 J́t

j .
We denote by ΨGRT (.) the application of GRT to the entire sequence S(t), which we define
as follows:

ΨGRT ((x(t)) = {µt}t=1:T (3.8)

The GRT gives discriminate complementary information to the IIFRD and the SoCJ
by considering the global trajectory of the hand along the activity. In subsection 3.2.4 we
quantitatively show the benefit of this complementary information.

3.2.2 Temporal Dependencies Learning

Learning long and complex activities requires considering the temporal dimension to benefit
from the long-term dependencies between sequence time steps. To this end, we use LSTM
cells to learn these long/short-term dependencies for their outstanding success and capabilities.
Moreover, unlike traditional RNNs, LSTMs overcome the vanishing gradient problem by
using a specific circuit of gates [62].
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Fig. 3.3 Illustration of the first and second blocks of the proposed learning pipeline. For each
hand-crafted feature descriptor (SoCJ, RD, and GRT) seen in figure 3.2, a Neural Network
composed of staked LSTM layers and a softmax layer is trained independently to learn
temporal dependencies.

[5, 108] concatenate different types of feature spaces as one input vector, which may
complicate the input and confuse the neural network. In contrast, for each HC features
descriptor (seen in subsection 3.2.1), we train a simple neural network separately that



3.2 3D skeleton-based hand activity recognition 77

consists of staked LSTM layers followed by a softmax layer to classify activities. Therefore,
we train three neural network separately, as shown in figure 3.3.

More formally, lets {Ψk(x)}k=1:3 be the set of the three feature descriptors corresponding
to Eq.3.3, Eq.3.6 and Eq.3.8 defined in subsection 3.2.1, where x is the activity sequence input.
For each feature descriptor Ψk(x), we model the temporal dependencies with a composite
function Gφk(Ψk(x)), where Gφk(·) is the k-th LSTM sub-network with φ the learnable
parameters, while the output of Gφk(·) refers to the last hidden state of the last LSTM unit.
For each network, we define a cross-entropy loss function Lk as follows:

Lk =−
C

∑
j=1

y jlog(ŷ j
k) (3.9)

where C is the number of classes, yc the target label, and ŷc
k the softmax output that refers

to the predicted label. The temporal learning parameters are optimized by minimizing over a
labeled dataset:

φ
∗
k = argmin

φk

Lk(y, ŷk) (3.10)

At the end of the training, as a result, we have a set of three trained LSTM sub-networks
with φ∗

k an optimized parameters:

{Gφ∗
k
(Ψk(x))}k=1:3 (3.11)

We note that this second block aims to learn the temporal dependencies, and all the
classification results ŷk are ignored. Only the results shown in Eq.3.11 are needed for the
next block.

This pre-training strategy of multiple networks avoids the fusion of different feature
spaces, reducing input complexity and noise learning. It also allows the LSTM to focus
only on independently learning over one specific feature input, which also helps to avoid the
over-fitting problem [236].

3.2.3 Post-fusion Strategy and Classification

Once the temporal dependencies are learned in the second block, we proceed to the final
classification. To this end, we train another neural network, a multi-input one this time that
exploits the resulted three pre-trained LSTM layers introduced in subsection 3.2.2 that we
transfer with fixed optimized parameters φ∗ as illustrated in figure 3.4.
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Fig. 3.4 Illustration of the third block of the proposed pipeline. Once the temporal dependen-
cies are learned in the second block. The LSTM layers are transferred to the third block with
fixed parameters. Their outputs are fused and fed into a MLP followed by a softmax layer
for the final classification.

Seeking to ensure the best classification accuracy, the three parallel outputs branches of
the transferred LSTMs are concatenated, then fed into a Multi Layers Perception (MLP) that
consists of two (FC) layers, followed by a softmax layer (Figure 3.4). We model this network
as shown in Eq.3.12, where Fγ is a MLP+softmax with learnable parameters γ , and Concat
is the concatenation function:

Fγ(Concat({Gφ∗
k
(Ψk(x))}k=1:3)) (3.12)

The learnable parameters γ are optimized using the same loss function as in the previous
block by minimizing over the same training dataset. Note that for the test predictions,
only this network is involved using the three HC features descriptors as a multi-input. The
proposed post-fusion strategy ensures a good accuracy score through tuning between the
outputs of the pre-trained network. In subsection 3.2.4, we quantitatively show the efficiency
of this strategy compared to other traditional fusing and classification methods.

3.2.4 Experiments

Datasets

To evaluate the proposed learning pipeline we used the two previously introduced FPHA
[48] and DHG 14/28 [186] datasets.

• FPHA dataset. For the proposed method, we only need the 3D coordinates of the
hand joints. For all the experiments, we used the setting proposed in [48], with the
same data distribution: 600 activity sequences for training and 575 for testing.
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• Dynamic Hand Gesture (DHG) 14/28 dataset. For our experiment, we only need
the 3D hand skeleton joints. We ignored the palm center and only considered the
remaining 21 hand joints. For the training and testing data split, we used the same
configuration proposed in [186].

Implementation details

We detail the implementation used in the experiments as follows:

• The learning of temporal dependencies. For every extracted HC feature, we trained
different configurations of separated neural networks that consist of 1,2,3, and 4 staked
LSTM layers followed by a softmax. We selected the best configuration that gives
the best accuracy score: only one LSTM layer of 100 units for the FPHA dataset and
two staked LSTMs of 200 units for the DHG 14/28 dataset. We set the probability of
dropout to 0.5 (outside and inside the LSTM gates). We use Adam with a learning rate
of 0.001 for the optimization. All the networks are trained with a batch size of 128 for
2000 to 3000 epochs. We also padded all the sequence lengths to 300-time steps per
sequence.

• Post-fusion and classification. Once all the temporal dependencies are learned (end
of block 2), in the post-fusion step, we recover the pre-trained LSTM networks, fix all
their weights, and discard the Softmax layers. Then, the three outputs branches from
the three parallel transferred LSTMs are concatenated and followed by an MLP that
consists of two dense layers of 256 and 128 neurons, respectively, equipped with a
Relu activation function. At the end of the network, a Softmax layer is used for the
final classification. This network is trained until 100 epochs, with the same batch size
and optimization parameters as the previous networks. Our implementations are based
on the Keras framework.

State-of-the-art comparison

Table 3.1 shows the accuracy of our approach compared with the state-of-the-art approaches
on the FPHA dataset. We note that the accuracy results of [46, 131, 133, 151, 240, 213, 40,
249, 44] and [66, 67] are reported by [48] and [126] respectively, where the recognition may
need the full body joints instead of hands and some of them might not be tailored for hand
activities.
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Table 3.1 Test accuracy comparison of our proposed approach and the state-of-the-art ap-
proaches on the FPHA dataset. The bests results are marked in bold.

Method Color Depth Pose Acc.(%)
Feichtenhofer et al., 2016 [46] ✓ ✗ ✗ 61.56
Feichtenhofer et al., 2016 [46] ✓ ✗ ✗ 69.91
Feichtenhofer et al., 2016 [46] ✓ ✗ ✗ 75.30
Ohn-Bar and Trivedi, 2014 [131] ✗ ✓ ✗ 59.83
Ohn-Bar and Trivedi, 2014 [131] ✗ ✓ ✓ 66.78
Oreifej and Liu, 2013 [133] ✗ ✓ ✗ 70.61
Rahmani and Mian, 2016 [151] ✗ ✓ ✗ 69.21
Garcia-Hernando et al., 2018 [48] ✗ ✗ ✓ 78.73
Garcia-Hernando et al., 2018 [48] ✗ ✗ ✓ 80.14
Zanfir et al., 2013 [240] ✗ ✗ ✓ 56.34
Vemulapalli et al., 2014 [213] ✗ ✗ ✓ 82.69
Du et al., 2015 [40] ✗ ✗ ✓ 77.40
Zhang et al., 2016 [249] ✗ ✗ ✓ 85.39
Garcia-Hernando et al., 2018 [48] ✗ ✗ ✓ 80.69
Fang Hu et al., 2015 [44] ✓ ✗ ✗ 66.78
Fang Hu et al., 2015 [44] ✗ ✓ ✗ 60.17
Fang Hu et al., 2015 [44] ✗ ✗ ✓ 74.60
Fang Hu et al., 2015 [44] ✓ ✓ ✓ 78.78
Huang and Gool, 2016 [66] ✗ ✗ ✓ 84.35
Huang et al., 2016 [67] ✗ ✗ ✓ 77.57
Tekin et al., 2019 [205] ✓ ✗ ✗ 82.26
Zhang et al., 2019 [248] ✗ ✗ ✓ 82.26
Lohit et al., 2019 [109] ✗ ✗ ✓ 82.75
Nguyen et al., 2019 [126] ✗ ✗ ✓ 93.22
Rastgoo et al., 2020 [155] ✓ ✗ ✓ 91.12
Our ✗ ✗ ✓ 96.17

The best performing approaches among state-of-the-art methods are the neural network
based on SPD manifold learning [126], and the multi-modal approach proposed by Razieh et
al. [155], which gives 93.22% and 91.12% of accuracy respectively, 3.26% inferior to our
proposed approach. The remaining methods are outperformed by our approach by more than
11% of accuracy.
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Table 3.2 Accuracy comparison of our proposed approach and the state-of-the-art approaches
on the DHG-14/28 dataset. The bests results are marked in bold.

Method Color Depth Pose
Accuracy (%)
14 gest 18 gest

Oreifej and Liu, 2013 [133] ✗ ✓ ✗ 78.53 74.03
Devanne et al., 2015 [37] ✗ ✗ ✓ 79.61 62.00
Huang and Gool, 2016 [66] ✗ ✗ ✓ 75.24 69.64
Ohn-Bar and Trivedi, 2014 [131] ✗ ✗ ✓ 83.85 76.53
Chen et al., 2017 [29] ✗ ✗ ✓ 84.68 80.32
Smedt et al., 2016 [186] ✗ ✗ ✓ 88.24 81.90
Devineau et al., 2018 [38] ✗ ✗ ✓ 91.28 84.35
Nguyen et al., 2019 [126] ✗ ✗ ✓ 94.29 89.40
Maghoumi and LaViola, 2018 [114] ✗ ✗ ✓ 94.50 91.40
Avola et al., 2019 [5] ✗ ✗ ✓ 97.62 91.43
Our ✗ ✗ ✓ 95.21 90.10

Table 3.2 shows that our proposed approach is achieving the state-of-art results on the
DHG-14/28 dataset, even though our selected HC features methods are adapted to the first-
person hand activity recognition and not to the hand gesture recognition problem. The
approach proposed by [5] outperforms all the state-of-the-art approaches, including ours,
thanks to their proposed HC features which are well adapted to American Signe Language
(ASL) and semaphoric hand gestures. Furthermore, the time sampling strategy used in [5]
allows them to better classify the least dynamic and shortest gestures, unlike our proposed
approach, which is adapted to deal with the hand activities where the hand is supposed to be
more dynamic.

Hand-crafted features analysis

SoCJ Vs. IIFRD Vs. GRT. In order to analyze the effectiveness of the selected HC
features, we evaluated each one independently using a simplified end-to-end neural network
architecture composed of one LSTM layer of 100 units with a dropout of 0.5 (outside
and inside the LSTM gates) and a softmax layer. We also evaluated possible HC feature
combinations using our approach with the same configuration introduced in subsection 3.2.4.

The results in table 3.3 show that the SoCJ and IIFRD alone can achieve a good accuracy
of 89.91% and 88.17%, respectively. As expected, the GRT alone cannot classify activities
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Table 3.3 Test accuracy results on the FPHA dataset. The selection of hand-crafted features
independently and the combinations using our proposed approach.

Hand-crafted Feature Acc.(%)
Shape of Connected Joints (SoCJ) 89.91
Intera/Inter Finger Relative Distance (IIFRD) 88.17
Global Relative Translations (GRT) 58.26
IIFRD + GRT 93.73
SoCJ + GRT 92.17
SoCJ + IIFRD 93.91
SoCJ + IIFRD + GRT 96.17

by achieving only 58.26% of accuracy. However, it boosts the performance if combined
with the SoCJ, the IIFRD, or both, by achieving the best accuracy of 96.17%. This can be
explained by the fact that the SoCJ and the IIFRD focus on the local features based on the
motion of the fingers, ignoring translations between the activity sequence time-steps, while
the GRT focuses on the global feature based on the displacement of the hand during the
activity, which provides a piece of crucial complementary information. The combination
of the three selected HC features allowed us to overcome the commonly confused classes
"open wallet" and "use calculator" even if the hand poses are dissimilar but more subtle
[48]. Nevertheless, we still get confusion between "open wallet" and "flip sponge" classes
due to the limited displacement of the hand, the shortness of the activities, and the limited
number of samples in the dataset compared to the other classes [48]. Figure 3.5 shows the
confusion matrices.
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Fig. 3.5 Confusion matrices. (a) using the GRT only. (b) using the IIFRD only. (c) using the
SoCJ only. (d) using the combination of the three hand-crafted features the GRT, the IIFRD,
and the SoCJ.

Confusions made by SoCJ and IIFRD. Figure 3.5 (b) and (c) give the confusion
matrices for the IIFRD and SoCJ, respectively. As we can see, the two local features are
complementary to each other since most of the confusions seen in the IIFRD (e.g., "give
coin" with "take lettefrom enveloppe", and "wash sponge" with "unfold glasses") are solved
in the SoJC. On the other hand, the confusion is seen in the SoJC (e.g., "tear paper" with
"charge cell phone", and "light candle" with "read letter") is solved in the IIFRD.

Hand-crafted Feature best combination. In figure 3.5 (d), we give the confusion matrix
that refers to the combination of the three HC features (the IIFRD, the SoCJ, and the GRT)
using our proposed learning pipeline. As we can see, the matrix is very sparse, ensuring the
best test accuracy score. This combination solved most of the confusion. Nevertheless, we
still get confused about some challenging classes we discussed above. These confusions may
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also occur due to the shortness of the activities and the limited number of samples in the
dataset compared to the other classes [48].

GRT results explanation. The GRT cannot achieve good accuracy on its own because
it does not consider the local features related to the fingers’ motion. Figure 3.6 gives the
variation of the GRT as the total average distance covered by the hand joints centroid for
each class of the FPHA data set that we computed as follows:

1
M

M

∑
i=1

T

∑
t=1

d(µ i
t−1,µ

i
t ) (3.13)

where M is the number of samples of the class, T is the maximum sequence length,
and µt is the hand joints centroid as defined in subsection 3.2.1. Figure 3.5 (a), and figure
3.6 show that most confused classes have a short total distance covered by the hand joints
centroid during the activity.

Fig. 3.6 Bar graphs of the IIFRD and the GRT variations according to each class of the FPHA
dataset.

IIFRD results explanation. Figure 3.6 gives the IIFRD variation for each class of the
FPHA data set, that we computed as follows:

1
M

M

∑
i=1

T

∑
t=1

|SumDistt+1 −SumDistt | (3.14)

Where SumDistt = ∑ a(t)+∑ e(t). From figure 3.6 and figure 3.5 (b), we can see that
the classes with less variation are the same ones with more confusion.
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Post-fusion Strategy and Classification analysis

We compared our post-fusion strategy with three traditional baselines, the early, the slow,
and the late fusion that we define as follows:
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Fig. 3.7 Hybrid fusion and classification baselines, (a) Early fusion is an end-to-end archi-
tecture where the extracted hand-crafted features are concatenated and fed into a temporal
learning network followed by a classifier. (b) Slow fusion is an end-to-end architecture where,
for each extracted hand-crafted feature, the temporal dependencies are learned separately,
then concatenated and fed into a classifier. (c) Late fusion is multi-stream learning, where
an end-to-end temporal network is trained separately for each extracted feature, and at the
end, a majority vote is applied to their classifier outputs.

• Early fusion. (Figure 3.7. (a)) As in [5, 108], we concatenate our extracted HC
features descriptors in one unified vector that we fed into deep-staked LSTM layers of
200 units followed by a softmax layer. We evaluated the baseline with a configuration
of 2, 3, and 4 staked layers, and then the best accuracy results were selected for the
comparison.

• Slow fusion. (Figure 3.7. (b)) As in [29], for each extracted HC features descriptor, we
used two stacked LSTM layers of 200 units, followed by a Fully Connected layer (FC)
of 128 neurons. The outputs from the three parallel FC branches are concatenated and
followed by two sequential FC layers of 256 and 128 neurons, respectively. A softmax
layer is used for the classification at the end of the network. A dropout layer follows
all the layers, and all the FC layers are equipped with a relu activation function.

• Late fusion. (Figure 3.7. (c)) In contrast to the previously introduced end-to-end
baselines, in this architecture, a neural network composed of an LSTM layer of 100
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units and a softmax layer is trained separately for each HC feature. At the end of the
training, a majority vote is applied by summing the softmax outputs scores.

Table 3.4 Accuracy results on 50% and 100% of the 600 FPHA dataset training samples. For
the test, all the 575 testing samples are kept. We compared our proposed approach with three
traditional fusion and classification baselines.

Architecture 300 samples Acc.(%) 600 samples Acc.(%)
Early fusion 75.65 90.95
Slow fusion 63.47 86.43
Late fusion 76.26 93.73

Our 79.78 96.17

We trained our network architecture and the selected baselines with 100%, then only
50% of the 600 training samples of the FPHA dataset that belongs to subjects 1, 3, and 6.
For the test, we kept all the 575 testing samples.

Our proposed approach outperforms the baselines with more than 3.52% using 50%
and 2.44% of accuracy using 100% of 600 training samples, respectively, which confirms
the effectiveness of our fusion strategy. Moreover, our approach is achieving state-of-the-
art performance by using only 300 samples (half) of the FPHA dataset training samples,
confirming the capability of our method to provide a good recognition result while learning on
a limited amount of data. Thanks to its simplified architecture, the early fusion outperforms
the slow fusion, which is more complex and implies the over-fitting problem. The late fusion
outperforms both, thanks to its simplified neural networks trained independently, which helps
to overcome the over-fitting problem. The late fusion performs well, but its naive fusion can
not ensure good tuning between the neural network outputs.

Inference run-time. Table 3.5 shows that the early and the late fusion are more efficient
than the architecture we propose because their neural network architectures are less complex
and have fewer parameters. The slow fusion performs poorly because the architecture is very
complex with more parameters.

Table 3.5 Average prediction run-time comparison of the three selected baselines with our
proposed architecture using FPHA data set test samples.

Architecture Early fusion Slow fusion Late fusion Our
Run-time (s) 0.33 0.64 0.45 0.58
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3.2.5 Conclusion

In this section, we presented a novel learning pipeline for first-person hand activity recog-
nition. The pipeline consists of three blocks. The first block is a novel combination of
hand-crafted feature extraction methods. The second block is our multi-stream learning
strategy for temporal dependencies. In the last block, we present our proposed post-fusion
strategy, which is shown to be more efficient than other traditional fusion methods. The
proposed approach was evaluated on two real datasets and showed good accuracy results.

In the next section, we present our second approach for first-person hand activity recog-
nition, which uses color information in addition to skeletal data to avoid the ambiguous
case where the manipulated objects in different activities may have the same dimension but
different colors.
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3.3 RGB-based and Multi-modal-based (RGB and 3D hand
skeleton) hand activity recognition

In addition to its low-cost acquisition, RGB image sequences consider appearance and
motion information, unlike depth maps or 3D skeletal data, which focus only on the motion.
Whereas most egocentric activities are centered around hand-object interactions, appearance
is essential to perform inter-objects and inter-scenarios differentiation.

As discussed in the previous chapter, section 2.2, a particular branch of DL-based activity
recognition approaches focused on observing and exploring spatial attention through RGB
images using deep neural networks to recognize activities based on visual information
[195, 197]. However, the learned spatial attention is not entirely confident since it is learned
in an unsupervised manner while training a supervised egocentric activity recognition (EAR)
model. This has led some researchers to supervise spatial attention learning by using Gaze
information [121] or by manually annotating the data [113] which is more expensive. In all
cases, this has confirmed that the visual points of interest are concentrated around the hands
and manipulated objects in first-person hand activity recognition problems. This relevant
information can be used to design more robust EAR algorithms.

“Open juice bottle”

TL-based Regions of 
interest Extraction

TL-Based Spatial 
features Extraction

Temporal 
dependences Learning

Post-Fusion-based
Classification

Multi-stream stages

1 2 3

4time

Our contributions

Fig. 3.8 Our proposed learning pipeline for RGB-based first-person hand activity recognition.
The regions of interest are extracted for a given RGB image activity sequence using a pre-
trained neural network in the first stage. Then, high-level spatial features are extracted in the
second stage using a pre-trained deep neural network. Sequentially, in the third stage, the
temporal dependencies are learned. In the last stage, a hand activity sequence classifier is
learned using a post-fusion strategy applied to the previously learned temporal dependencies.

Motivated by all these observations, we introduce in this section a new learning pipeline
for RGB-based first-person hand activity recognition that aims at overcoming the data scarcity
problem while ensuring a low-cost good and accurate recognition, overcoming the limitations
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of our previously introduced method (section 3.2). It is a novel four-stage learning pipeline,
such as each stage is described as follows:

1. Regions of Interest Extraction (RoIE). Unlike existing methods that use DL-based
visual attention and require a large amount of data, we propose directly using the right
and left hands as pertinent regions of interest that give information about manipulated
objects and actions being performed. These regions of interest are extracted using a
transfer learning technique. Our experiments showed that this information is the key to
first-person hand activity recognition. In order to robustify the recognition model, we
propose a data augmentation process, which is specifically adapted to these regions of
interest.

2. Spatial Features Extraction (SFE). Here, we also use transfer learning instead of
end-to-end DL methods. This stage exploits the visual information of the regions of
interest from the previous stage. Adapting transfer learning for RoIE and SFE allows
learning with a limited number of training samples while providing a good accuracy
score. Furthermore, it decreases the training cost since the transferred neural network
is already pre-trained.

3. Temporal Dependencies Learning (TDL). For each extracted deep visual descriptor
(right and left) resulting from the previous stage, we learn the temporal dependencies
in a multi-stream manner, which also avoids the over-fitting problem.

4. Post-Fusion classifier (PFC). In this final stage, we use the post-fusion strategy
proposed in subsection 3.2.3 to learn classifying activities.

In the remainder of this section, we explain our proposed pipeline following the figure
3.8. In the first stage, we extract the regions of interest (subsection 3.3.1). Then, in the
second stage, we extract the spatial features (subsection 3.3.2). In the third stage, we learn the
temporal dependencies (subsection 3.3.3). Once the temporal learning is finished, in the last
stage we transfer and use the knowledge from the previous stage to learn the classification of
activities (subsection 3.3.4). In subsection 3.3.5 we introduce the combination of RGB-based
and 3D skeleton-based solutions for hand activity recognition. Subsection 3.3.6 presents our
experiments on the proposed approach. It also contains the discussion and comparison of the
obtained results. Subsection 3.3.7 concludes the section.
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3.3.1 Transfer Learning-based Regions of Interest Extraction (RoIE)
and Data Augmentation

We use as unique input a sequence of images (frames) representing a first-person hand activity
that we denote by x(t) = {I1, I2, .., IT}, where It is an image frame at time-step t and T the
sequence max length.

𝐻(𝐼𝑡)

𝑟

𝑙

Fig. 3.9 The first stage of the pipeline is Transfer Learning-based Regions of interest Extrac-
tion (RoIE). Each image frame It is fed into a pre-trained neural network H(It) resulting in
two hand region sequences l and r that refer to the left and the right-hand regions respectively.

The main focus of the first-person hand activity is centered around the hands and manipu-
lated objects. To this end, we propose to directly extract and use the left and the right-hand
regions as regions of interest. Let denoting H(It) = {hl

t ,h
r
t } where H(.) is the pre-trained

neural network that takes an image frame It as an input and outputs two sub-images hl
t and hr

t

that refers to the left and the right hand respectively. So, by applying this to all image frames,
the activity sequence will be reformulated by two sequences l and r that belong to the left
and right hand, respectively, such as:

le f t = {hl
t}t=1:T and right = {hr

t }t=1:T (3.15)

Figure 3.9 illustrates the hand region extraction process. The proposed regions of interest
characterize the hand activity sequence in a relevant way since the hand’s visual information
contains information about the type of grasp and the shape of objects being manipulated
(noun), e.g., "Juice bottle." Moreover, passing this information through the time dimension
allows retrieving relevant information about the performed action (verb), e.g., "Open." In
subsection 3.3.6, we quantitatively show the efficiency of the proposed regions of interest.
On the other hand, unlike visual attention methods based on end-to-end neural network [195],
using transfer learning to extract the regions of interest helps to avoid the over-fitting problem
and allows training with a limited number of samples while ensuring a good accuracy score.
In subsection 3.3.6, we give details about the adopted pre-trained neural network.
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In daily/industrial hand activities, one of the two hands, left or right, can be dominant. It
depends on whether the participant is right- or left-handed. This may cause an imbalanced
training dataset and make the model less generalizable. To this end, we proposed an adapted
data augmentation process to balance the training dataset. It is applied to the RoIE stage’s
outputs. If only one hand is detected, e.g., the left hand, we augment the extracted sub-image
of the right-hand hr

t with the mirror effect of the detected left-hand hl
t . The figure 3.10

illustrates the data augmentation process.

Augmentation
for left hand

(a)

(b) Augmentation
for right hand

Fig. 3.10 Illustration of our data augmentation process. (a) the mirror effect of extracted
right-hand sub-images hr

t is used as augmentation for those of the left hand. (b) the mirror
effect of extracted left-hand sub-images hl

t is used as augmentation for those of the right
hand.

In subsection 3.3.6, we quantitatively show this proposed data augmentation process’s
effectiveness.

3.3.2 Transfer Learning-based Spatial Features Extraction (SFE)

One of the problems where deep learning excels is image classification [231]. Image
classification aims to classify a specific picture according to a set of possible categories by
deeply exploring and learning spatial information. This motivated us to use a pre-trained
neural network classifier to extract learned spatial features from the sub-images Eq.3.15
resulted from the previous stage.
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𝑟

E(ℎ𝑡
𝑟)

E(ℎ𝑡
𝑙)

Ψ𝑟

Ψ𝑙
𝑙
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Fig. 3.11 The second stage of the pipeline: Transfer Learning-based Spatial features Ex-
traction (SFE). Each extracted sub-image hl

t ∈ l and hr
t ∈ r is fed into a pre-trained neural

network E(.). This stage results in two deep spatial feature descriptor sequences Ψl and Ψr
for the right and left hand, respectively.

We denote by E(.) this pre-trained neural network. And we formulate the spatial feature
descriptor sequences by Ψl and Ψr referring to the left and the right hands’ regions as
follows:

Ψl = {E(hl
t)}t=1:T and Ψr = {E(hr

t )}t=1:T (3.16)

This stage allows to exploiting the hand visual information resulting from the previous
stage. Using a sophisticated pre-trained neural network reduces the dimension while keeping
pertinent high-level spatial features. Adding to that, all transfer learning benefits, it decreases
the learning cost and avoids the over-fitting problem while learning on a limited number of
training samples. In subsection 3.3.6, we give details about the adopted pre-trained neural
network.

3.3.3 Temporal Dependencies Learning (TDL)

As we do not have a learned neural network for this specific task, we train LSTM-based neural
networks for their great success and capabilities to learn these long/short-term dependencies,
as we have already mentioned in subsection 3.2.2.
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Fig. 3.12 The third stage of the pipeline: Temporal dependencies Learning. For each feature
descriptor sequence Ψl and Ψr, a neural network composed of stacked LSTM layers followed
by a softmax layer is trained independently to learn temporal dependencies by classifying
activities.

Similarly, as we did in the previous approach (section 3.2), for each spatial feature
descriptor Ψl and Ψr (seen in subsection 3.3.2), we train separately a simple neural network
that consists of staked LSTM layers followed by a softmax layer to classify activities.
Therefore, we train two neural networks separately, as shown in figure 3.12.

More formally, for each descriptor sequence Ψl and Ψr, we model the temporal depen-
dencies with a composite function GΨl(Ψl) and GΨr(Ψr) respectively, where Gφ.(·) is a
LSTM network with Ψl and Ψr learnable parameters, while the output of Gφ.(·) refers to
the last hidden state of the last LSTM unit. For each network we define a cross entropy loss
functions Ll and Lr as follows:

Ll =−
C

∑
j=1

y jlog(ŷ j
l ) and Lr =−

C

∑
j=1

y jlog(ŷ j
r) (3.17)

where C is the number of classes and y the target label. The ŷl and ŷr are the softmax
outputs that refers to the predicted label using left and right hand descriptor sequence
respectively. The temporal learning parameters are optimized by minimizing over a labeled
dataset:

φ
∗
l = argmin

Ψl

Ll(y, ŷl) and φ
∗
r = argmin

Ψr

Lr(y, ŷr) (3.18)

At the end of the pre-training, as a result, we have a set of two trained stacked LSTM
layers, with optimised parameters φ∗

l and φ∗
r :

Gφ∗
l
(Ψl),Gφ∗

r (Ψr) (3.19)
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We note that the purpose of this third stage is to learn the temporal dependencies, and all
the classification results ŷl and ŷr are ignored. Only the results shown in Eq.3.19 are needed
for the next stage.

3.3.4 Post-fusion-based Classification (PFC)

Once the temporal dependencies are learned, we proceed to the final classification similarly
as we did in the previous approach (section 3.2). We train another multi-input neural network
that exploits the resulted two pre-trained stacked LSTM layers introduced in (subsection
3.3.3) that we transfer with a fixed optimized parameters φ∗

l and φ∗
r as illustrated in figure

3.13.
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Fig. 3.13 The fourth stage of the pipeline: post-fusion-based Classification. Once the
temporal dependencies are learned in the third stage. The LSTM layers are transferred to the
fourth stage with fixed parameters Ψ∗

l and Ψ∗
r . Their outputs are concatenated and fed into a

MLP+softmax for the final classification.

The two parallel output branches of the transferred LSTMs are concatenated, then fed
into a Multi Layers Perceptron (MLP) that consists of two Fully Connected (FC) layers,
followed by a softmax layer (figure 3.13). We model this network as shown in Eq.3.20, where
Fγ is a MLP+softmax with learnable parameters γ , and Concat is the concatenation function:

Fγ(Concat({Gφ∗
l
,Gφ∗

r })) (3.20)

The learnable parameters γ are optimized using the same loss function as in the previous
stage by minimizing over the same training dataset.

This post-fusion strategy aims at ensuring a good accuracy score by tuning between the
pre-trained LSTMs outputs.
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3.3.5 Multi-modal RGB and 3D hand skeleton for first-person hand
activity recognition

Both the RGB images and 3D hand skeleton-based methods have limitations and advantages.
One of the 3D hand skeleton-based method’s inter-class confusion occurs when different
classes use objects of the same shape but different colors, e.g., "open juice bottle" and "open
milk bottle." The exploitation of RGB images can surpass this limitation since they provide
color information for manipulated objects. On the other hand, an example of inter-class
confusion that can occur while using RGB-based methods is when the handled object in
different classes has the same color. Still, the shape is different. The 3D hand skeleton data
usage can help overcome this limitation since the handled object’s shape can be driven from
the 3D hand skeleton coordinates.

These observations motivated us to use the two modalities, RGB images and 3D hand
skeleton data, for hand activity recognition. This is done by combining our two previously
introduced methods. The spatial features extraction and the temporal dependencies learning
steps are kept unchanged for both methods. Only the last step of post-fusion classification is
changing, as shown in figure 3.14:
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Fig. 3.14 The combination of our proposed RGB-based and 3D skeleton-based methods for
hand activity recognition.

In the following subsection, we quantitatively show the improvement of this combination.
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3.3.6 Experiments

Datasets

Several large-scale datasets have been proposed for EAR, e.g. EGTEA [184] and Charade-
sEgo [45]. In this work, we try to solve a sub-problem of the EAR, namely first-person hand
activity recognition, while activities are supposed to be performed with the hands, which is
not the case for some activity categories of these datasets. With this in mind, to validate our
approach, we used the previously introduced real-world datasets:

• FPHA dataset [48]. It represents a real challenge for activity recognition algorithms.
For all the experiments, we used the setting proposed in [48], with exactly the same
distribution of data: 600 activity sequences for training and 575 for testing.

• EgoHand dataset [9]. We chose this dataset to evaluate our method in case there is
not enough training data. We used the setting proposed by [9] that randomly splits
these videos into 36 samples for training, 4 for validation and 8 for the test.

Implementation details

• Spatial features extraction. We deliberately chose VGG16 [106] for its widespread
use as a standard foundation for transfer learning [202] and domain adaptation [27].
It is a powerful convolutional neural network, mainly designed for large-scale image
recognition. The VGG16 model contains a stack of convolutional layers that capture
basic features like spots, boundaries, and color patterns, followed by three fully-
connected layers (FCL) that provide complex higher-level feature patterns. To this end,
we extracted features from the last FCL, which provides an output vector of dimension
1x4096. VGG16 has shown good results. However, it is highly computational due to its
complex architecture and a large number of parameters. Moreover, the size of its last
FCL output is very large, and multiplying this size by the length of the activity sequence
results in a large input dimension (200x4096) for the LSTM network. This requires
high computing resources and time for the training process. Indeed, we experimented
with a lighter pre-trained model, namely MobileNetV2, based on an inverted residual
structure [171]. Table 3.6 shows the comparison between VGG16 and MobileNetV2.
By using MobileNetV2, the accuracy dropped by 1.5%, but we achieved a gain in
inference/training time and computational resources. The two models VGG16 and
MobileNetV2 are pre-trained for image classification tasks on the ImageNet dataset
[164] achieving 92.7% and 90% accuracy respectively. Keras framework is used for
the implementation.
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• Temporal dependencies learning. For each spatial descriptor sequence that refers
to the right and the left hands, we trained different configurations of separated neural
networks that consist of 1, 2, 3, and 4 staked LSTM layers followed by a softmax. We
selected the best configuration with the best accuracy score: 2 staked LSTM layers of
100 units. We set the dropout probability to 0.5 (outside and inside the LSTM gates).
We used Adam with a learning rate of 0.003 for the optimization. All the networks are
trained with a batch size of 64 for 400 epochs. We also padded all sequence lengths to
200 and 100 time-steps per sequence for the FPHA and EgoHand datasets, respectively.

• Post-fusion-based classification. Once all the temporal dependencies are learned
(end of stage 3), we recover the pre-trained LSTM networks in the PFC stage, fix
all their weights, and discard Softmax layers. Then, the two outputs branches from
the two parallel transferred LSTMs are concatenated and followed by an MLP that
consists of two dense layers of 256 and 128 neurons, respectively, equipped with a relu
activation function. At the end of the network, a Softmax layer is used for the final
classification. This network is trained until 100 epochs, with the same batch size and
optimization parameters as the previous networks. The implementation is based on the
Keras framework.

Table 3.6 Performance comparison of our method on FPHA dataset using two different pre-
trained neural networks for spatial features extraction, namely VGG16 and MobileNetV2.

Model Inference time (ms) Parameters (millions) Last FCL size Acc.(%)
VGG16 5.17 138 1x4069 96.52
MobileNetV2 3.34 3.5 1x1028 95.01

State-of-the-art comparison

Table 3.7 shows the accuracy of our approach compared with state-of-the-art methods on
the FPHA dataset. The best performing approach among state-of-the-art methods is Tear
[100], a transformer-based that consists of two modules, an inter-frame attention encoder
and mutual-intentional fusion block. By exploiting RGB and depth modalities, they achieved
97.04% of accuracy, which is equivalent to our achievement (97.91%) while using the RGB
modality only. The 3D skeleton-based approach that we proposed in the previous section
gives good results, but they used the ground truth of 3D hand joints, which is not always
available. This may conclude that RGB image sequences can provide the necessary elements
to recognize hand activities.
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Table 3.7 Activity recognition accuracy comparison of our proposed approach and the state-
of-the-art on FPHA dataset. Our method outperforms all RGB-based methods, including
end-to-end visual attention methods.

Methods Year Modality Accuracy(%)
Two stream-color [46] 2016 RGB 61.56
H+O [205] 2019 RGB 82.26
Rastgoo et al. [155] 2020 RGB 91.12
Trear [100] 2021 RGB 94.96
HON4D [133] 2013 Depth 59.83
HOG2-depth [132] 2014 Depth 70.61
Novel View [151] 2016 Depth 69.21
Trear [100] 2021 Depth 92.17
Lie Group [213] 2014 3D Pose 82.69
Gram Matrix [249] 2016 3D Pose 85.39
TF [48] 2017 3D Pose 80.69
Nguyen et al. [126] 2019 3D Pose 93.22
Our - 3D Pose 96.17
HOG2-depth+pose [132] 2014 Depth+3D Pose 66.78
JOULE-all [44] 2015 RGB+Depth+3D Pose 78.78
Tear [100] 2021 RGB+Depth 97.04
Our - RGB 97.91

Table 3.8 shows the accuracy of our approach compared to state-of-the-art methods on
the EgoHand dataset. The proposed work by [80] and [9] focused on hand segmentation from
an egocentric viewpoint. Nevertheless, they used the estimated and ground-truth hand masks
to recognize activities. We outperformed their results by more than 5% accuracy, confirming
the effectiveness of the proposed regions of interest over the hand mask. Since the EgoHand
contains only 48 samples, this can also prove the ability of our method to learn on a limited
amount of data.
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Table 3.8 Activity recognition accuracy results in the EgoHand dataset that contains only 48
samples. Results show that our method performs better on a limited amount of data.

Method Acc (%)

Khan et al. [80] + Ground truth hand mask 71.1
Khan et al. [80] 68.4
Bambach et al. [9] + Ground truth hand mask 92.9
Bambach et al. [9] 73.4
Babu et al. [6] 89.0
Our 98.79

Figure 8 shows the confusion matrix while testing our method on FPHA dataset [48]. By
achieving 97.91% of activity recognition accuracy, we overcome the commonly confused
classes ”open wallet” and ”use calculator” [48]. Nevertheless, we still get confusion
between ”open wallet” and ”receive coin” due to the high appearance similarity between
the two activities.

Fig. 3.15 Confusion matrix while evaluating our method on FPHA dataset testing samples.
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Contribution of proposed regions of interest

To better show the contribution of left and right hands regions of interest, we skipped the
RoIE stage. Instead, we used full-image frames. As expected, results presented in table 3.9
show that without our regions of interest, the accuracy dropped by more than 14%, which
confirms RoIE effectiveness. Moreover, we overcome most state-of-the-art methods by using
only the right hand as the region of interest.

Table 3.9 Activity recognition accuracy results on FPHA dataset with and without using our
proposed regions of interest. Results show the significant impact of these regions of interest.

Extracted region of interest Acc.(%)

Full image 82.01
Left hand bounding box 85.00
Right hand bounding box 91.82
Left+Right hands bounding boxes 96.52

Highly relevant information related to manipulated objects (nouns), e.g., "juice bottle,"
can be derived from the visual data of the hand boxes, such as grasp type and object shape.
Furthermore, by learning the temporal dependencies through this information, we can also
relevantly characterize the actions (verbs), e.g., "open." For more ablation studies, we
experimented our method on object and action recognition separately. Table 3.10 shows that
our proposed method gives a good object and action recognition score by achieving 97.56%
and 94.26% of accuracy, respectively.

Table 3.10 Object (noun) and Action (verb) recognition accuracy on FPHA dataset using
our proposed pipeline. The accuracy results show that the proposed regions of interest allow
object and action recognition which facilitates hand activity recognition.

Task Number of classes Region of interest Acc(%)

Left hand 88.69
Objects (nouns) 27 Right hand 95.82

Left+Right hands 97.56

Left hand 85.56
Actions (verbs) 27 Right hand 92.17

Left+Right hands 94.26
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Data augmentation

The results in Table 3.11 show that the accuracy is increased by 1.39% when we used
our adapted data augmentation process. Furthermore, using only the right-hand regions of
interest, we outperform most state-of-the-art methods by achieving 94.26% of accuracy.

Table 3.11 Activity recognition accuracy results in the FPHA dataset. (*) without data
augmentation, (**) using data augmentation.

Extracted region of interest Acc(*) (%) Acc(**) (%)

Left hand bounding box 85.00 88.00
Right hand bounding box 91.82 94.26
Left+Right hands bounding boxes 96.52 97.91

RGB images Vs. 3D hand skeleton data

To experiment with the combination of our proposed RGB-based and 3D hand skeleton-based
methods on first-person hand activity recognition, we used the same implementations settings
previously introduced in subsections 3.2.4 and 3.3.6.

Table 3.12 shows the results for hand activity recognition trained and tested on the
FPHA dataset. As expected, the combination of the two methods provides the best results
by achieving 98.10% of accuracy. This can be explained by the fact that both modalities
complement each other.

Table 3.12 Activity recognition accuracy results in the FPHA dataset. The combination of
the proposed RGB-based and 3D hand skeleton-based methods achieves the best results.

Method Accuracy (%)
3D hand skeleton based method 96.17
RGB images based mehtod 97.91
3D hand skeleton based + RGB images based method 98.10

3.3.7 Conclusion

In this section, a novel learning pipeline for first-person hand activity recognition has been
introduced. The proposed pipeline is composed of four stages. In the first stage, we presented
our Transfer Learning-based regions of interest extraction, the left and right hands regions,
which have proven effective. The second stage is the Transfer Learning-based deep spatial
feature extraction method that exploits the regions of interest in visual information. To
manage the temporal dimension, in the third stage, we trained the temporal neural network in
a multi-stream manner. Then, in the last stage, we applied a post-fusion strategy to classify
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activities. The pipeline was evaluated on two real-world datasets and showed good accuracy
results.

We also presented an experiment combining RGB images and 3D skeleton data based
on the concept of our proposed methods introduced in this section and section 3.2. The
combination achieved the best results, avoiding the ambiguous case of high intra-class
dissimilarity, which occurs when manipulated objects in the same activity class may have
different shapes, grip types, and colors.
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3.4 Conclusion

We presented in this chapter our two solutions for hand activity recognition from the first-
person viewpoint that meet our AR use case context and address its challenges. First, we
detailed our proposed method for 3D skeleton-based hand activity recognition. Then, we
introduced our proposed method for RGB-based and the combination of RGB-based and 3D
skeleton-based solutions for hand activity recognition. We gave extensive experiments that
evaluated and validated each proposed approach by discussing and comparing the obtained
results with existing state-of-the-art methods. The experiments have proven the effective-
ness of our proposed methods on real-world datasets. They also showed the advantages
and disadvantages of the RGB images and 3D hand skeleton modalities on hand activity
recognition. We also experimented with combining the two modalities for hand activity
recognition, which significantly improved the recognition accuracy.

The introduced methods allow the recognition of hand activities, which are expected to be
from known classes, seen during the training procedure. However, one of our desired activity
recognition framework’s main components is to detect and identify unknown activities unseen
by the recognition model during its training procedure. Thus, in the next chapter, we present
the remaining components of our targeted framework: unknown hand activity detection,
unlabeled hand activity clustering, and incremental hand activity recognition.
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4.1 Introduction

In the previous chapter, we presented our proposed methods for hand activity recognition.
The introduced methods are based on the classical closed-set recognition paradigm, where
train and test activity samples are supposed to be from known classes. However, one of the
components of our desired user activity recognition framework is to perform recognition in
an open-set setting. Thus, it recognizes activities from known classes while, at the same time,
detecting and rejecting unknown activities from unknown classes previously unseen during
the training procedure. Such a capability allows guiding and feedbacks AR users, e.g., to
warn of bad maneuvers in the case of assembling assistance usage.

Moreover, another component of our framework is to collect the detected unknown
activities, automatically grouping and annotating them. Thus, the framework exploits
these new annotated hand activity samples to incrementally learn and extend the multi-
class classifier, making each new class “known” to the models. These capabilities allow
overcoming the data sacristy problem and make the user activity recognition framework
scalable and easily adaptable.

This chapter presents our originally proposed and adopted approaches to address the
above-mentioned issues. We organize the remainder of the chapter as follows:

• Section 4.2. In this section, we introduce our adopted consensus-based open-set
recognition that groups three approaches to deciding whether a test activity sample
is from a known or unknown class. Then, we present and discuss the results of our
experiments performed on real-world hand activity datasets.

• Section 4.3. This section presents our main contributions in this thesis. We
introduce our proposed method for automatic grouping and annotating hand activity
samples. From a general perspective, first, we pre-train a recognition model on
labeled hand activity samples. Then, we use the pre-trained model feature space as a
low-dimensional mapping manifold to categorize unlabeled activity samples based on
classical clustering methods. To reach this goal, learning a highly discriminative feature
space is crucial to facilitate the clustering task. Thus, in this section, we propose a new
original loss function that encourages neural networks to learn a mapping function that
maps samples into highly discriminative feature space. Finally, we show the benefit of
the proposed approaches by presenting and discussing the experimental results.

• Section 4.4. Based on the state-of-art study presented in chapter 2, section 2.5, in
this section, we present our adopted method for incremental hand activity recognition.
Then, we present the experiments that evaluate and validate the adopted method. The
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experiments also cover a comparison of our results with those obtained with an existing
state-of-the-art method to enhance the validation.
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4.2 Open-set Hand activity recognition

The previous chapter introduced our proposed methods for recognizing first-person hand
activities. The recognized activity classes are known to the recognition model, which is
trained and tested in closed-set settings. However, one of the main components of our desired
activity recognition framework aims to detect unusual, unknown activities and recognize
known ones. The recognition model must be learned and trained in open-set settings, a more
realistic and challenging scenario. With the open-set assumption, incomplete knowledge
of the world exists at training time, and unknown activities can be seen during testing. We
refer the reader to chapter 2, section 2.3 for more details about the closed- and open-set
recognition settings.

𝑓Φ

Weibull-based

Isolation Forest

Local Outlier Factor

Vote

Unknown

Known activity:
“Pour juice bottle”

Consensus-based
Unknown Activity Detection

Known Activity

Unknown Activity

Spatial-temporal feature 
vector extraction

𝑧

Fig. 4.1 Illustration of our adopted approach for unknown activity detection. For a given
hand activity sample, first, we compute its associated spatial-temporal feature vector using a
pre-trained hand activity recognition model. Then, based on the computed feature vector, we
use our adopted consensus-based unknown activity detection to decide whether the sample is
known or unknown.

Ensemble or consensus-based approaches have attracted the machine learning community
in recent years. Using a consensus of classifiers is a machine learning approach in which
classification decisions are merged to improve the overall classifier performance. The most
straightforward approach to combining decisions is through voting or weighted voting. Thus,
inspired by Prakhya et al. [149], in this section, we introduce our adopted consensus-based
open-set hand activity recognition that groups three approaches to deciding whether a test
activity sample is from a known or unknown class. To increase overall open-set recognition
performance, we employ a consensus of three outlier detection approaches and aggregate
their decisions via voting. Figure 4.1 illustrates the adopted approach.



110 Continual Learning for Hand Activity Recognition

The remainder of this section is organized as follows. In subsection 4.2.1, we formulate
the problem of unknown activity detection. Then, following our adopted method, which
consists of three outlier detection methods, subsections 4.2.2, 4.2.3, 4.2.4 and 4.2.5 present
the probabilistic Weibull-based, the Isolation Forest (IF), the Local Outlier Factor (LOF)
methods and their consensus-based decision, respectively. Subsection 4.2.6, presents our
proposed method to perform open-set hand activity recognition. In subsection 4.2.7 we
present the experiment and discuss the results. Subsection 4.2.8 concludes the section.

4.2.1 Adopted method formulation

Following the mathematical formulation in the previous chapters, we denote by gw∗( fφ∗(.))

the pre-trained hand activity recognition network, where gw∗(.) is the final classification layer
and fφ∗(.) is the spatial-temporal feature learner backbone that we define as follows:

fφ∗ : X → Z

x 7→ fφ∗(x) = z (4.1)

with w∗ and θ ∗ are the optimised (learned) parameters. X is the space of all labeled
samples and x ∈ X is a particular known (labeled) activity sample, and z ∈ Z is its
associated feature vector in the feature space Z .

Now, let us take xu ∈ X u as an unknown activity sample with X u the space of unknown
samples. The recognition neural network model gw∗( fφ∗(.)) is learned in a closed-set
paradigm, and its classifier layer gw∗(.) is not able to identify unknown samples {xu}. Thus,
the adopted method exploits the pre-trained network backbone fφ∗ to generate feature vectors
{zu}, which are used to identify {xu} as unknown samples.

As shown in figure 4.1, for a given hand activity sample, the adopted method computes its
associated feature vector zu using the pre-trained backbone fφ∗ . Then, a consensus decision
is performed based on three unknown activity detection models.

4.2.2 Weibull-based model

The Weibull distribution [77] is a continuous probability distribution commonly used for
reliability life data analysis. Weibull-based models in reliability theory clarify various
observable component failures and phenomena. The formula for the two-parameter Weibull
distribution, which is frequently used in failure analysis, is defined for a variable input A as
follows:
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ω(A,κ,λ ) =
κ

λ

(
A
λ

)κ−1

e−(
A
λ
)

κ

(4.2)

Where κ is the shape parameter that determines the failure rate, and λ is the scale
parameter of the distribution. Following [149], we use the two-parameter Weibull distribution
in our work. Figure 4.2 presents the Weibull distribution for various values of λ and κ . We
chose the Weibull distribution over all other distributions simply because it is best suited to
identifying samples that do not belong to a specific class as reported in [149].

Ƙ

Ƙ
Ƙ
Ƙ

Fig. 4.2 Weibull distribution for various values of λ and κ .

From a general perspective, we compute the distance measure between each training
sample feature vector and its class mean. The Weibull-based model is used to determine the
probability for all distances acquired, which are then used to obtain the Weibull distribution.
A sample close to a particular class has a small distance and, therefore, a high inclusion
probability value. Similarly, a sample far from a particular class has a large distance and
low inclusion probability value. These probabilities are used to determine whether or not
a sample belongs to a known class. When a sample deviates from all classes means, it no
longer belongs to these classes and behaves as an unknown.

We describe the steps of mean feature vector computation, the Weibull-based model
fitting, and its usage to detect unknown samples as follows:

Computing mean feature vectors. We test the pre-trained recognition model gw∗( fφ∗(.))

on all training samples. From this testing procedure, we select training activity samples that
are correctly classified. Then, we map these samples into the feature space Z of the learned
spatio-temporal backbone fφ∗ . As a result, we have feature vectors of N labeled and correctly
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classified training activity samples {zi}i=1:N. Finally for each training class, we compute the
mean feature vectors zmean

j for j ∈ {1, ...,C}, with C the number of classes as follows:

zmean
j =

1
n j

n j

∑
i=1

z j
i (4.3)

Where n j is the number of correctly classified training samples in the j-th class. As a
result, we have a set of mean feature vectors {zmean

j } j=1:C. Thus, each class is represented as
a point, which is the mean feature vector zmean

j , that is to say the mean computed over only
the correctly classified training samples.

Fitting the Weibull model. To identify unknown samples based on feature vectors, as in
[13, 176], we adapt the concept of Nearest Class Mean (NCM) [119] introduced previously
in chapter 2, section 2.3.3. The NCM concept is applied per class within the feature vectors.
Thus, we compute a Weibull model based on distances once the feature and the mean feature
vectors are computed for each training class.

Feature Vectors

Mean Feature
Vectors

Computing Distances
Computing Weibull
Models Distances

Weibull-based
Models 

FitHigh

𝜂

Fig. 4.3 Illustration of Weilbull-based model fitting.

As shown in figure 4.3, we first compute the distances between the feature vector and
their associated mean feature vector that we denote by dist j, and we define them as follows:

dist j = {ρ(zmean
j ,z j

i )}i=1:n j (4.4)

Where ρ is a distance measure. As a result of this step, we have a set of distances for
each training class {dist j} j=1:C.

Then, in the next step, we use the libMR [22] FitHigh function to compute a Weibull
model for each training class based on computed distances. The FitHigh function performs an
optimization to find the optimal Weibull distribution parameters. We denote a Weibull-based
model for the j-th training class by Weibull j and we define it as follows:

Weibull j = (κ j,λ j) = FitHigh(dist j,η) (4.5)
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where λ j and κ j are the shape and the scale parameters, which are used to estimate the
probability inclusion of an activity input being a known with respect to class j-th. η is the
tail parameter that we provide to the FitHigh function.

Unknown activity detection using the Weibull-based model. Given a new activity
sample xnew, we first compute its feature vector fφ∗(xnew)= znew. Then, we compute distances
between this feature vector and all the C mean feature vectors {zmean

j } j=1:C. We denote these
distances by {distnew

j } j=1:C and we define it as follows:

distnew
j = ρ(zmean

j ,znew) (4.6)

Then, we calculate the inclusion probability P(c j|xnew) of the test simple xnew to each
training class c j using the previously computed Weibull parameters {Weibull j} j=1:C as
follows:

P(c j|xnew) = 1−ω j(distnew
j ) = 1− κ

λ

(distnew
j

λ

)k−1

e
−
(

distnew
j

λ

)κ

(4.7)

We evaluate the maximum between all inclusions probabilities {P(c j|xnew)} j=1:C. Then,
we compare it with a fixed threshold ε:

ε ⩽ MAX({P(c j|xnew)} j=1:C) (4.8)

If the maximum probability is greater or equal to ε , the sample is classified as belonging
to a known class; otherwise, the sample is classified as belonging to an unknown class. We
apply the above steps to each test sample. Then, we store the results for the final vote, section
4.2.5.

4.2.3 Isolation Forest (IF)

Unknown samples are often scarce and distinct from known ones. Thus, they are more
sensitive to isolation from other samples. Liu et al. [104] demonstrated how a tree structure
might be efficiently built to isolate every occurrence in a dataset. Outliers points are isolated
closer to the tree’s root due to their sensitivity to isolation, while regular points are isolated
at the tree’s deepest end.

The Isolation Forest builds a set of iTrees for a given data set to find outliers (in our case,
unknown samples). It splits the data recursively at random partition points with randomly
selected features. The heights of the outlier-containing branches are small compared to the
heights of the other data points. As a consequence, the branch height is employed as an
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outlier score. The final step averages the path lengths of the data points in the Isolation
Forest’s trees.

High-dimensional data is a real challenge for outlier detection. In a high-dimensional
space, every point is equally sparse for distance-based approaches, potentially rendering
distance worthless [3]. In contrast, the Isolation Forest method efficiently addresses this
problem, which explains our choice of this method. In the following, we briefly introduce
the Isolation Forest methodology.

As we did with the Weibull-based model, for each training known class c j, we build an
Isolation Forest model. The initial step is to create an isolation tree root node T that contains
all n j feature vectors of correctly classified samples in the class c j. A candidate list Cl of
nodes is formed as a single list that contains the root node. Then, until the candidate list Cl is
empty, the following operations are repeated in order to construct the isolation tree T :

• Select a node Rl at random from Cl and delete it from the Cl list.

• Choose a random attribute i and divide the data in Rl into two sets, Rl1 and Rl2, at a
random value v along that attribute. All Rl data points satisfy zi ⩽ v, and all Rl2 data
points satisfy zi > v. The value v is picked at random from the data points in node Rl
that have the maximum and minimum values of the i-th attribute.

• The nodes Rl1 and Rl2 are children of Rl in T . If Rl1 and Rl2 contain more than one
point, add it to Cl and repeat the previous step. Otherwise, assign the node as an
Isolation tree leaf.

To determine an unknown sample score, the distance from the root to the leaf is averaged
and normalized over all trees. A score of 1 indicates a known, while a number close to 0
indicates an unknown one. For more details about the Isolation Forest method, we refer the
reader to the original paper [104].

Following the above steps, we fit the Isolation Forest model on the correctly classified
training samples; then pass each test sample through the fitted model to determine whether it
is known or unknown. The results are stored for the final vote.

4.2.4 Local Outlier Factor (LOF)

The Local Outlier Factor (LOF) is a score generated using an unsupervised density-based
approach proposed by Breunig et al. [17]. Mainly, it computes the local density deviation
of a particular data point in a multidimensional dataset regarding its neighbors. It considers
a sample as an outlier if it has a significantly lower density than its neighbors. For each
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training class c j, we build a LOF model using feature vectors of correctly classified training
samples. We describe the steps of the LOF method as follows:

k-distance. For each feature vector z, we compute its k-th nearest neighbor, which we de-
note by k-distance(z). The k-distance(z) offers a measure of the density in the surroundings
of the mapped sample z. The area surrounding z is dense when k-distance(z) is small and
sparse when it is large.

k-neighborhood. The mapped samples that are within k-distance(z) of sample z are
referred to as being in its k-neighborhood(z) set. The k-neighborhood(z) of z comprises all
mapped samples with a distance smaller than the k-distance(z). More precisely, we compute
the greatest distance up to the k-th closest mapped sample. For simplicity, we denote the set
of k-neighborhood(z) as Nk(z).

Reachability distance. The introduced k-distance(.) is used to define what is called
reachability distance. In other words, the reachability distance of a vector z from another
vector zo is the real distance between the two vectors, but at the very least, the value of
k-distance(zo). We denote the reachability distance by reach-distk(., .) and we define it as
follows:

reach-distk(z,zo) = max{k-distance(zo),ρ(z,zo)} (4.9)

where ρ(., .) is problem-specific distance measure (e.g., the Euclidean distance).

𝑧𝑜

𝑧2

𝑧1

𝑟𝑒𝑎𝑐ℎ–𝑑𝑖𝑠𝑡𝑘(𝑧2, 𝑧𝑜)

𝑟𝑒𝑎𝑐ℎ–𝑑𝑖𝑠𝑡𝑘(𝑧1, 𝑧𝑜)

Fig. 4.4 Illustration of the reachability distance reach-distk for k = 4. If the feature vector z
is far away from zo (sample z2), the reachability distance between the two samples is just
their actual distance ρ(zo,z2). However, if they are near (sample z1), the actual distance is
replaced by the value of k-distance(z0). This is done to limit the statistical fluctuations of
ρ(z,zo) for all z’s near zo.

Local reachability distance. We denote for a mapped sample z by lrdk(z). It is the
inverse of the average reachability distance from the Nk(z):
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lrdk(z) =
[

∑zi∈Nk(z) reach-distk(z,zi)

|Nk(z)|

]−1

(4.10)

The local reachability density of the vector z is calculated by examining the k-distance of
feature vectors in Nk(z). Thus, the LOF score can be computed based on the local reachability
density.

Local Outlier Factor score. Finally, the Local Outlier Factor LOF is the ratio that
indicates if a feature vector z of a particular activity sample is an outlier in respect to its
surroundings. LOF(z) is the average of the ratios of z’s local reachability distance and the
set Nk(z).

LOFk(z) =
∑zi∈Nk(z)

lrdk(zi)
lrdk(z)

|Nk(z)|
(4.11)

If the LOF score for a particular feature vector is close to 1, it mean that the vector is
in a relatively dense region with its neighbors, whereas if it is close to zero, the samples is
considered as an outlier. For more details about the LOF method, we refer the reader to the
original paper [17].

Following the above steps, we fit the LOF model on the correctly classified training
samples; then pass each test sample through the fitted model to determine whether it is known
or unknown (outlier). The results are stored for the final vote, section 4.2.5.

4.2.5 Consensus-based unknown activity detection

We utilize a voting mechanism to get the final decision after receiving unknown scores from
all three introduced outlier detection methods.

4.2.6 Open-set hand activity recognition

We used the methods introduced above to detect and reject unknown activities. However,
open-set recognition aims at rejecting unknown activities while classifying the known ones
[52].

In our preliminary experiments, we used scores provided by the three previously intro-
duced outlier detection methods to classify known samples. However, it turned out that these
methods are very good at rejecting unknown samples, but they classify very poorly known
ones into their associated classes. To this end, in contrast to Prakhya et al. [149], we propose
to use the classification layer gw∗ , which is used to train the recognition model to classify
known activities. Figure 4.5 illustrates our open-set hand activity recognition method.
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Fig. 4.5 Illustration of our open-set classification strategy. We use the unknown activity
detection only for classifying known or unknown samples (not for activity recognition), and
we use the recognition model classifier to determine its associated class if a test sample is
identified as known.

4.2.7 Experiments

Dataset

To validate our adopted approach for unknown activity detection and open-set activity
recognition, we used FPHA dataset [49]. As introduced in chapter 2 section 2.2.4, it is a
publicly available dataset for first-person hand activity recognition, providing 3D hand joint
and image sequences. It perfectly meets our evaluation and analysis needs since it contains
45 different activity categories distributed in three different scenarios: "kitchen" (25), "office"
(12), and "social" (8), which can be partitioned as known and unknown classes. Table 4.1
shows the two data configurations that we have adopted for the experiments and which we
denote by Config1 and Config2 respectively. We tested our approach on both RGB images
and 3D hand skeleton sequences.

Table 4.1 The adopted data configurations based on the FPHA dataset [49].

Config1 Config2
Scenarios Samples Classes Scenarios Samples Classes

Known kitchen+office
964 divided into:
Train: 496
Test: 468

37 kitchen+social
843 divided into:
Train: 431
Test: 412

32

Unknown social 211 8 office 332 13
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(a) (b)

Fig. 4.6 The adopted FPHA dataset [49] partitioning. (a) Configuration 1: the colored region
is the classes of the "social" scenario which are used as unknown classes, while these of
"kitchen" and the "office" scenarios are used as known classes (b) Configuration 2: the
colored region is the classes of "office" scenario which are used as unknown classes, while
these of "kitchen" and the "social" scenarios are used as known classes.

We also tested our proposed approach on our SLS France dataset. We used all the classes
of the FPHA dataset as known classes and all the SLS France dataset classes as unknown.
We denote this third configuration by Config3. In this way, we test the approach on the
generalization over datasets.

Evaluation protocol

The closed-set assessment evaluates a learned classifier using previously unseen samples
from seen classes during training. The classes provided during testing are the same classes on
which the model was trained, although with new samples. However, in open-set evaluation,
the classifier is evaluated with samples from classes not unseen during training as well
as samples from the seen classes. As a result of being used to make decisions on new
unseen samples during the testing procedure, we claim the classifier might gain incomplete
information during the training procedure.

To this end, we train the recognition model in a limited number of classes throughout the
training procedure. All classes in the ("kitchen" + "office") scenarios are used to train the
model following Config1; and all classes in the ("kitchen"+"social") scenarios are used to
train the model following Config2. During the testing procedure, we generate a test set by
combining test samples of known and unknown classes. Thus, we shuffle testing samples
from ("kitchen" + "office"+"social") scenarios for both configurations Config1 and Config2
(see table 4.1).
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The classifier’s performance is tested by correctly detecting samples from unknown
classes and classifying known ones. Thus, we combine all unknown classes into a single
undifferentiated unknown class and add them to known classes. Using the openness measure
described in chapter 2 section 2.3.1, with the equation 2.2, we may estimate the classifier’s
open-set range. This measure only considers the number of additional classes available, not
the open space itself [176]. The openness = 5% for Config1, 8.83% for Config2 and 5% for
Config3 .

The accuracy measure, commonly employed in closed-set classification tasks, is extended
to the open-set setting by merging all unknown classes into a single unified unknown class,
as explained above.

Implementation details

• Hand activity recognition model. For the hand activity recognition neural network,
we used the RGB- and 3D skeleton-based architectures that we proposed in chapter 3
section 3.3 and 3.2. We kept the same implementation details for the training and the
testing procedures.

• Weibull model. We used feature vectors of correctly classified training samples
to build a Weibull model for each training class, as described in section 4.2.2. We
followed the suggestions provided in [13] to choose the η and the ε parameters. We
tested with the Euclidean and the Cosine similarity distances for the distance measure
ρ . We have excluded the choice of using the Mahalanobis distance, as the datasets we
use do not have much data.

• Isolation Forest. We used feature vectors of correctly classified training samples
to fit the Isolation Forest model described in section 4.2.3. We apply the Isolation
Forest fitted model to test samples’ feature vectors during testing. The Isolation Forest
method returns min-max normalized scores. The lower the test sample’s score, the
more it is suspected to be unknown. We used the Isolation Forest implementation
proposed in the Scikit-learn Framework [142]. We kept the default parameters, which
follow the suggestions of the original paper [104].

• Local Outlier Factor. We used feature vectors of correctly classified training samples
to fit the Local Outlier Factor model described in section 4.2.4. The model generates
a learned boundary that delimits the distribution contour based on the training data.
Any test sample that falls inside the learned boundary is presumed to be of the same
class. Otherwise, it belongs to an unknown class if it sits outside the border. The LOF
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model gives an outlier score for each test sample based on a density concept. We used
the implementation proposed in the Scikit-learn Framework [142] with the default
parameters.

• OpenMax. We implemented the OpenMax [13] open-set recognition method intro-
duced in chapter 2, section 2.3.3 to enhance the state-of-the-art comparison. We kept
the exact implementation details as in the original paper. For the number of “top”
classes to revise based on the Softmax predictions, we tested with 5, 10, and 15, then
we selected the one that gave the best result.

Results and discussion

We separately compared the three outlier detection methods and combined them with the
OpenMax. Table 4.2 shows the unknown activity detection results on the three data configu-
rations. The compared methods must detect all unknown samples of the unknown classes,
samples of the "social" scenario for the "Config1", samples the "office" scenario for the
"Config2" and samples the "kitchen"+ "social"+"office" scenarios for the "Config3".

The IF and LOF reject unknown samples efficiently, but they struggle to identify known
samples, which decreases the overall performance. This is typical behavior that we expect
from outlier detection methods. In contrast, the OpenMax and the Weibull-based method
perform better against the specialized outliers detection methods IF and LOF. This is because
our proposed Weibull-based and OpenMax decisions are based on probabilities, which has
more tolerance in rejecting unknowns. Combining the Cosine similarity-based Weibull, the
LOF, and IF methods provides good results. We also observe that the RGB-based method
achieves the best results compared to the 3D hand skeleton-based method.

Table 4.2 Unknown hand activity detection results comparison on the FPHA [49] and
SLS France datasets following our three data partitioning configurations. The results only
concern unknown activity detection accuracy and not the open-set activity recognition. Our
Consensus-based method performs better than the state-of-the-art OpenMax method.

OpenMax LOF IF
Weiblull

(Euclidean)
Weiblull
(Cosine)

LOF+IF+
Weibull (cosine)

Config1
RGB 96.241 91.239 91.666 94.308 95.210 96.682
3D 95.256 90.811 91.346 93.858 94.866 95.734

Config2
RGB 95.250 88.106 89.199 94.104 95.225 96.084
3D 94.820 87.621 88.470 92.288 92.983 95.632

Config3 RGB 95.398 92.260 92.608 94.963 95.137 97.481
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Table 4.3 shows the open-set activity recognition results on the three data partition-
ing configurations. Thus, the compared methods must recognize (classify) all the known
samples associated to the known classes, samples of the "kitchen"+"social" scenarios
for "Config1" , samples the "kitchen"+"office" scenarios for "Config2" and samples the
"kitchen"+"office"+"social" scenarios for "Config3". In the same time, they must also de-
tect all the unknown samples of the unknown classes, samples of the "social" scenario for
"Config1", samples the "office" scenario for "Config2" and samples the SLS France dataset
"Config3".

We use our proposed method introduced previously in section 4.2.6 to assign samples
identified as known to their associated classes. We can see that the results are proportional to
those presented in the previous table since unknown sample detection plays an essential role
in open-set recognition. Once again, by combining the Cosine similarity-based Weibull, the
LOF, and the IF methods, we achieve the best results on the three configurations.

Table 4.3 Open-set hand activity recognition results comparison on the FPHA [49] and SLS
France datasets following our three data partitioning configurations. Our Consensus-based
method performs better than the state-of-the-art OpenMax method.

OpenMax LOF IF
Weiblull

(Euclidean)
Weiblull
(Cosine)

LOF+IF+
Weibull (cosine)

Config1
RGB 92.693 87.125 87.859 90.637 91.385 92.970
3D 89.980 84.420 85.878 89.432 90.346 90.822

Config2
RGB 91.223 85.632 86.910 90.021 90.266 91.777
3D 89.890 83.075 84.775 88.756 88.169 90.528

Config3 RGB 85.440 81.146 81.648 83.192 84.104 85.575

4.2.8 Conclusion

In this section, we presented our adopted consensus-based open-set recognition component
that gives the targeted framework the ability to perform open-set hand activity recognition.
We used a consensus of three outlier detection approaches to increase open-set recognition
performance: The Weibull model, the Isolation Forest, and the Local Outlier Factor method.
We aggregated results from the three approaches to deciding whether the activity is from
a known or unknown class via majority voting. If a test sample is identified as known, we
propose to assign it to its associated known class using the final classification layer. The final
layer trains the hand activity recognition model to recognize known activities. The adopted
approach was evaluated on two real-world datasets and showed promising results.
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In the next section, we introduce our proposed approaches to exploit these detected un-
known hand activities by clustering and annotating them to be integrated into the recognition
and detection models.
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4.3 Unlabeled hand activity clustering

In the previous section, we introduced our adopted approach to detecting and identifying
unknown activities. Once the number of detected novel activities reaches a specified number,
they will be semi-automatically annotated (labeled). First, we categorize (cluster) them based
on similarities; then, a human expert assigns a class label for each category. Therefore, in
this section, we propose an approach for unlabeled hand activity categorization (clustering),
which follows the Unsupervised Domain Adaptation UDA paradigm. First, we pre-train
a supervised neural network on labeled samples from the source domain. Next, we try
to solve the UDA by using the pre-trained neural network model feature space as a low-
dimensional mapping manifold to categorize unlabeled target domain samples based on
classical clustering methods.

Open wallet
Give coin
Receive coin
Give card
Pour wine
Toast wine
Hand shake
High five

Fig. 4.7 2D features embedding of unlabeled hand activities using our proposed method on
the ”social” scenario of the FPHA dataset [49].

Better usage of the prior knowledge from the source domain is crucial for UDA. Therefore,
the pre-trained model, which relies on the source domain, must map hand activities to a
highly discriminative features space (Figure 4.7). This requirement is highly discussed in
the field of open-set face recognition [107, 217, 35]. Thus, we concluded that the desired
feature space must satisfy two main objectives of metric learning: (1) maximizing inter-class
distances and (2) minimizing intra-class distances for the mapped hand activities. This is
one of the main issues we have addressed in this section. On the other hand, we tackled the
problem of the high sensitivity of clustering algorithms regarding the feature space provided
by the pre-trained model, which we noticed through our experiments.

As we mentioned in chapter 2, section 2.4.3, the development of Deep Learning (DL)
allowed many improvements to deep metric learning (DML) methods. This is mainly by
employing neural networks as low-dimensional mapping functions. The employed neural
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networks are optimized with specialized loss functions to satisfy metric learning objectives on
the high-level features space. In this regard, one of the first research directions was contrastive
pair-based loss functions [56, 63, 189, 187, 220]. Recently, more practical penalty-based
DML loss functions have been proposed [107, 217, 35], which try to map samples and
impose discriminative constraints on a hyper-sphere manifold. This is generally done by
manually applying penalties to the modified Softmax target logit (we refer the reader to
chapter 2, section 2.4.3 for more details). However, these loss functions do not explicitly
imply constraints to satisfy the first metric learning objective of maximizing the distances
between different classes.

𝑑2

𝑑1

𝑑3

𝑑2 > 𝑑1 ≫ 𝑑3

𝑑2 𝑑1

𝑑3

𝑑2 = 𝑑1 = 𝑑3

Softmax Loss APML+MES Loss

Fig. 4.8 Illustration of feature spaces provided while training a neural network using the
Softmax and our APML +MES loss functions. The APML loss function will optimize the
Euclidean distance feature vector and their associated weight vector. Thus, the embedded
feature vectors will be attracted and move closer to their corresponding centers, enhancing
intra-class compactness. As a complement, the MES loss function forces the network to
ensure the best inter-class separation. The combination of APML and MES losses results in a
highly discriminative feature space.

In this section we propose a novel composite DML loss function to address the above
limitations, encouraging Deep Neural Network (DNN) to learn a mapping function that maps
samples into a highly discriminative feature space (Figure 4.8). The proposed loss function
comprises two complementary losses:

1. An Automated Penalty-based Metric Learning loss function that we denote by (APML),
which learns similarity measures in the feature space to ensure the best intra-class
distance minimization. Unlike state-of-the-art losses that manually imply a margin
value to penalize the target logit, APML requires no additional hyperparameters.
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2. Similarly to the state-of-the-art DML loss functions, APML separates different classes
while minimizing intra-class distances. However, this is done in a non-explicit way
without imposing any constraints. To this end, we proposed a complementary Mutu-
ally Equidistant Separation loss function denoted by (MES), which implies a heavy
constraint seeking to achieve an optimal inter-class separation.

We summarize the contributions presented in this section as follows:

• To our humble knowledge, we are the first to propose a comprehensive and generic
UDA approach applied to the categorization of unlabeled 3D skeleton-based hand
activities. The proposed approach is experimented with and evaluated on a real-world
dataset.

• A novel composite (APML+MES) loss function. It aims to learn a discriminative
feature space while maintaining good recognition accuracy. The proposed loss is
experimented and compared with four state-of-the-art losses on hand activity clustering
and classification. It is also tested and compared with state-of-the-art methods on
clustering and image-retrieval tasks on two commonly used real-world datasets.

• To solve the sensitivity problem of clustering algorithms, which to our knowledge is not
addressed in the state-of-the-art, we proposed a Statistical and Consensus Clustering
strategy that we denote by SCC.

The remainder of this section is organized as follows. First, in subsection 4.3.1, we
give a general overview of the proposed method for unlabeled hand activities categorization.
Subsection 4.3.2 presents our adopted discriminative feature space creation method based
on a supervised learning paradigm. We present the clustering technique adopted to cluster
the mapped unlabeled activity samples in subsection 4.3.3 . Then, in subsection 4.3.4, we
introduce our SCC strategy that boosts the clustering performance. Subsection 4.3.5 is
devoted to introducing our proposed composite deep metric learning (APML+MES) loss
function. Then, we show the benefit of the proposed approaches by presenting and discussing
the experimental results in subsections 4.3.6 and 4.3.7. Finally, subsection 4.3.8 concludes
this section.

4.3.1 Proposed method for unlabeled activity categorization

Following the formulation we gave in chapter 2, section 2.4.1, and the previous section, we
overview the method as follows: For a given set of unlabeled hand activity samples {xu} of a
target domain, we exploit the knowledge from labeled samples {x,y} of the source domain to
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find the correspondent unknown set of labels Yu = {yu}. Where xu is a particular unlabeled
sample and yu is its correspondent label that we seek to find. As illustrated in Figure 4.9, the
method proceeds in three main steps.
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Fig. 4.9 The proposed method. We exploit the knowledge from labeled samples of the source
domain {x,y} to categorize the unlabeled ones of the target domain {xu}. Thanks to our
proposed APML+MES loss function, in step1, we learn a discriminative low-dimensional
feature space that we use in step 2 to facilitate the clustering. Following our SCC strategy, we
repeat steps 1 and 2 multiple times then we perform a consensus clustering on the resulting
clustering predictions to generate the final clustering prediction.

4.3.2 Supervised learning for discriminative features space creation

First, we pre-train the hand activity recognition neural network gw( fφ (.)) where gw(.) is the
classification layer equipped with our proposed composite DML loss function (APML+MES)
and fφ (.) is the backbone Spatio-temporal feature learner, with w and φ learnable parameters.
The training is performed on labeled samples of the source domain {x,y} where y is the
label of the particular sample x. This is done in a classical supervised manner as shown in
Figure 4.9 (step 1). For hand activities categorization, we have adopted the neural network
architectures that we proposed in the previous chapter as our backbone fφ (.).
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Thanks to our loss function, this first step results in a pre-trained model fφ∗(.) with
optimized parameters φ∗, which maps activities on a discriminative features space Z ⊂ Rd

z

where dz is the embedding dimension.

4.3.3 Clustering of unlabeled activities

In this second step, we map the set of unlabeled samples {xu} into the Z space. This is
done by passing these activities trough the pre-trained neural network fφ∗(xu) = zu ∈ Z ,
which results in a set of embedded activities {zu}. Next, we apply a classical clustering that
we formulate as h({zu}) = Ŷu where h(.) is the clustering function and Ŷu = {ŷu} are the
predicted pseudo-labels for the unlabeled set of activities {xu}. Figure 4.9 (step 2) gives an
illustration for this step.

As we mentioned in the introduction, in our preliminary experiments, we observed a high
sensitivity of clustering algorithms to the randomness present in the pre-training process
of step 1. It is directly related to the random initialization of weights φ and w, the dropout
layers, and the optimizer. To this end, we proposed a SCC strategy that consists in repeating
steps 1 and 2 sequentially several times. It aims at stabilizing the mean and the standard
variation [146], which results in a set of predicted pseudo-labels {Ŷu}.

4.3.4 Consensus clustering

Motivated by observations that we have introduced in chapter 2, section 2.4.5, we apply a
consensus clustering on the resulted set of predicted pseudo-labels ϒ({Ŷu}) = Ŷ f inal

u where
ϒ(.) is the consensus clustering function and Ŷ f inal

u is the final predicted pseudo-labels of
unlabeled 3D hand activities sequences {xu}. We note that consensus clustering is usually
applied to predictions resulting from different clustering algorithms or the same algorithm
with different hyper-parameters [25]. In our SCC strategy, the clustering algorithms and
their hyper-parameters remain the same while only the data distribution changes. This
strategy allows for achieving the best clustering results. In subsections 4.3.6 and 4.3.7, we
quantitatively show its benefits and give more details about the adopted consensus clustering
method.

4.3.5 Our proposed deep metric learning (APML+MES) loss function

To introduce our proposed loss function, we used the same mathematical symbols that we
used in the previous chapters, primarily subsection 2.4.3, which presents the existing state-
of-the-art loss functions. The introduced methods are based on the well-known classification
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Softmax loss function. As we illustrate in figure 4.10, they generally exploit the weight
vectors of the last classification layer to optimize the angular distance, forcing the network to
learn a discriminative feature space that satisfies metric learning objectives.
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Fig. 4.10 Illustration of the backbone final layer and the fully connected classification layer
that relies on state-of-the-art deep metric learning loss functions, which communly optimize
the angle θi, j between the embedding zi and the weight vectors w j.

We recall that w j is the j-th weight vector of the classification layer, where j ∈ {1, ..,C}
and C is the number of labeled classes. The dimension of w j is the same as the dimension of
zi and is equal to dz. θi, j is the angle between the embedding zi and the weight vectors w j.
Finally, ρi, j is the Euclidean distance between w j and zi.

Automated Penalty-based Metric Learning (APML ) loss function

Following our presentation and discussion of existing state-of-the-art deep metric learning
loss functions (see chapter 2, section 2.4.3), we see that various manually assigned margin
penalties, whether added on the angle or cosine space, all enhance intra-class compactness
by penalizing the target logit [144]. However, it mainly depends on the manually assigned
values of the margin and the re-scaling hyper-parameters. The choice of these values relies
on data distribution and the dimension of embedding space of the used neural network
backbone. We also note that [107, 35, 217] attributed the margin penalty only to the positive
ground-truth classes, while the target logit for false classes is set to cos(θi). This aims to
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improve intra-class compactness, but on the other hand, it favors overfitting, which limits the
classification performance.

Based on these observations, we propose a fully automated penalty-based loss function
that requires no additional hyper-parameters.

Unlike previous methods that focused on the angle between the embedding vectors zi and
the weights w j, we focused on the Euclidean distance between these vectors. We denote it by
ρi, j(., .) and we formulate it as follows:

ρi, j(zi,w j) =
∥∥zi −w j

∥∥
2 (4.12)

Without normalizing w j and zi, the Euclidean norm is adaptively learned for minimizing
the overall loss. Thus, features are learned in the Euclidean space, a widely recognized
state-of-the-art choice.

To imply penalization that enhances the Euclidean margin, we interpret the distance e j

by a Student t-distribution. We fix the degree of freedom to 1, which is the same as a Cauchy
heavy-tailed distribution in the low-dimensional map manifold Z . We denote this distance
probability by pi, j(.) and we formulate it as follows:

pi, j(ρi, j) = (1+ρi, j)
−1 (4.13)

Following [210], we use the Student t-distribution with a single degree of freedom because it
has the particularly nice property of approximating an inverse square law for large pairwise
distances ρ j(w j,zi) in the Z space. This makes the map’s representation of joint probabilities
almost invariant to changes in the map’s scale for embedded samples zi that are far a par (e.g.,
noisy samples).

In contrast to [153, 107, 217, 35] who use the Softmax function to produce the proba-
bilistic affinity score, we directly normalize the computed probabilities pi, j. This is justified
by the fact that our target logit is based on a probability interpretation. It is also justified
because of the incompatibility of losses based on the Euclidean margin with the Softmax loss
as reported in [107, 225]. We formulate the probability normalization as follow:

ŷi, j =
pi, j

∑
C
j=1 pi, j

(4.14)

This results in a probability prediction score that we denote by ŷi = {ŷi,1, ..., ŷi,C}. Finally,
our loss function that we denote by LAPLM, is formulated in combination with the cross-
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entropy loss as follow:

LAPLM =− 1
N

N

∑
i=1

yilog(ŷi) (4.15)

Where yi is the one-hot encoding ground-truth label of the i-th sample xi.
In this manner, the APML loss function will optimize the Euclidean distance. So, the

embedded feature vectors zi will be attracted and move closer to their corresponding centers
(weight vectors w j) in the respect to the ground-truth labels, which results in highly class
compactness.

Mutually equidistantly separation (MES) loss function

As a complement to APML loss, the MES loss function attempts to imply constraints that
forces the network to ensure the best inter-class separation in the feature space. This is done
by maximizing the separation of the C class centers: {w j=1:C}. In the 2-sphere S2 space,
this requirement meets the Tammes’s Problem [Tammes], also called best-packing problem,
which is stated as follows: What arrangement of C points on the surface of a sphere will
maximize the minimum distance between any two points?

The generalization of Tammes’s Problem to d-sphere Sd space was asked by Böröczky
[60], who addressed the problem by proving the following theorem:

Theorem 4.3.5 For the d-sphere Sd , d ≥ 2, and 2 ≤C ≤ d +2, best-packing configura-
tions are uniquely given by the vertices of regular (C− 1)-simplices inscribed in Sd with
centers at the origin.

According to the Theorem 4.3.5, mutually equidistantly separated C points in d-sphere
Sd space, with 2 ≤C ≤ d +2 and d ≥ 2, is the unique optimal solution that maximize the
separation of these C points. This motivated us to separate the C centers {w j=1:C} mutually
equidistantly to maximizes the inter-class sepration in the feature space. To this end, we first
computed mutually all possible Euclidean distances between the centers that we denote by ρl

and we define as follows:
ρl =

∥∥w j1 −w j2

∥∥
2 (4.16)

Where 1 ≤ j1 ̸= j2 ≤C(C−1)/2 and l = 1 : C(C−1)/2 is the l-th number of possible
distances. Once all possible distances {ρl=1:C(C−1)/2} are computed, we calculate the MES
loss that refers to the variation of these distances, which we denote by LMES and define as
follows:

LMES =
1

C(C−1)/2

C(C−1)/2

∑
l=1

(ρl −ρ)2 (4.17)
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Where ρ is the mean value of all the distances {ρl=1:C(C−1)/2}. The minimization of
LMES will leads to the minimization of the variation of the mutual distances, which results
in a mutually equidistantly distribution of the centers {w j=1:C}. This guaranties optimal
inter-class separation (see figure 4.11).

Embedding using Softmax loss Embedding using  our proposed loss (APML+MECD)

(a) (b) (c) (d)

Fig. 4.11 Figures (a) and (b) show the embedding of 4159 test samples into a 3D high-level
feature space using learned NNs, where yellow, blue, green, and red colors refer to classes
1, 2, 3, and 4 of the MNIST dataset [36], respectively. Figure (a) when training the model
using the Softmax loss and figure (b) when using our proposed DML composite loss function
(APML +MES). The embedding in figure (b) shows the impact of our proposed loss function
in enhancing the discriminative power of the neural network. Figure (c) shows the centers
of the classes, which refer to the weight vectors of the last neural network layer at the end
of the training procedure. The proposed loss forced the neural network to distribute the
centers mutually equidistantly in the 3D feature space, resulting in a regular Tetrahedron
configuration. Nevertheless, the regular Tetrahedron 3-samplex (figure (d)) is the unique
optimal solution to the so called Tammes’s Problem [60], which aims at separating the 4
centers to their maximum on a 2-sphere S2 space [7]. Such a solution perfectly meets the
metric learning objective of maximizing the inter-class separation.

In subsection 4.3.7, we show quantitatively the efficiency of the MES loss in combination
with our proposed APML and existing state-of-the-art DML losses.

Convergence constraint of the MES loss function

According to Theorem 4.3.5, by putting the embedding dimension dz = d+1, the convergence
of LMES to the optimal solution constraint is that the total number of classes C must respects
the following inequality:

2 ≤C ≤ dz +1 (4.18)

For C > dz +1, presently, to our knowledge there is no general solution for any number
of C ∈ N. Exceptionally, when dz = 3, optimal solutions that maximize C points separation
in spherical space S2 are known for C = 5, 6, ..., 14 and for C = 24 as reported in [16].
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The composite DML loss function (APML+MES)

Finally, to allow tuning between the two introduced losses APML and MES, we define the
composite DML loss function LAPML+MES as follows:

LAPML+MES = αLAPLM +βLMES (4.19)

Where α and β are weights parameters for each loss. With the simultaneous optimization
of the APML and MES losses, we minimize intra-class distances and explicitly maximize
inter-class separation in the feature space. In subsection 4.3.7, we analyze the tuning between
the two losses.

4.3.6 Experiments on hand activity

Dataset

To validate our proposed approaches on a real-world application, we used the FPHA dataset
[49] and our SLS France dataset. We used the same data partitioning configurations
(Config1, Config2 and Config3) as in the previous section 4.2. The known classes are
considered source domain classes, and the unknown ones as the target domain.

Evaluation protocols and metrics

We adopted two protocols (Protocol 1 and Protocol 2) to evaluate the clustering of the
unlabeled activities of the two target domains "social", "office" and the combination of
("kitchen"+"social"+"office") that belong to the three configurations Config1, Config2 and
Config3, respectively. We describe the two protocols as follows:

• Protocol 1: we assume that the number of possible categories in the target domains
is unknown. Consciously, we performed clustering without giving the ground-truth
number of clusters k by using the Affinity Propagation clustering [47], which we
evaluated using V-measure (Vm) [160] and Adjusted Mutual Information (AMI) [159]
metrics. The V-m metric represents the harmonic mean of the homogeneity and the
completeness metrics. We highlight the homogeneity metric (Vm-h) since it provides
the rate of meaningful detected clusters.

• Protocol 2: we gave the ground-truth number of clusters, and we used the Agglom-
erative clustering [247], which we evaluated using the Clustering Accuracy (ACC)
[234].
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For more details on the used evaluation metrics, we refer the reader to chapter 2, section
2.4.6.

We also evaluated the activity recognition accuracy on the two source domains that belong
to the two configurations Config1 and Config2. This is done by training the recognition
model using our APML+MES loss function on train samples, then testing it based on the
APML loss outputs on test samples.

Implementation details

• Supervised learning (step 1). We pre-trained the neural network architectures pro-
posed in chapter 3 sections 3.2 and 3.3 for 3D skeleton-based and RGB-based hand
activity recognition, respectively. We kept the exact implementation and data normal-
ization settings for all the experiments.

• Clustering of unlabeled hand activities (step 2). We recover the pre-trained model,
discard its final layer, and we use it to project unlabeled samples into the 128D feature
space. Next, we perform clustering on these mapped samples adopting the protocols
Protocol 1 and Protocol 2. Following our SCC strategy, steps 1 and 2 are repeated 100
times. Therefore, in the end, we have 100 predicted sets of labels.

• Consensus clustering (step 3). We adopted the approach proposed by [193] introduced
in chapter 2, section 2.4.5. It combines three efficient heuristics to solve the consensus
clustering problem. The consensus clustering function takes the 100 predicted sets
of labels as an input and outputs the final prediction set of labels that belong to the
unlabeled activity samples.

State-of-the-art comparison

Tables 4.4 and 4.5 show unlabeled hand activity clustering evaluation results following
the evaluation of Protocol 1 and Protocol 2, respectively. We compared the impact of our
APML+MES loss function with four state-of-the-art losses. As expected, the Softmax loss
performs very poorly against metric learning-based losses for both protocols. We can see
that our proposed APML+MES loss function performs a little better than the-state-of-the-art
methods in Config 1 and Config 3, while it still equivalent in Config 2.

We notice a performance drop in Config 2. This can be explained by the fact that in
Config 2, the number of labeled samples decreases while the number of unlabeled samples
and their classes increases. Nevertheless, in contrast, the UDA requires that the number of
labled samples in the source domain be much larger than unlabeled ones in the target domain.
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Table 4.4 Clustering results adopting the Protocol 1. The clustering is performed on unlabeled
activity samples of the three target domains ”social”, ”office” and all samples of the SLS
France dataset, which belong to Config 1, Config 2 and Config 3, respectively. The k̂ is
the number of detected clusters. The AMI, Vm, and Vm-h metrics are computed on the
final clustering result of our SCC strategy. For the FPHA dataset, we tested using RGB and
3D skeleton activities, while for the SLS France dataset we used the provided RGB image
activities (the only provided data type).

Config 1 Config 2 Config 3
AMI Vm Vm-h k AMI Vm Vm-h k AMI Vm Vm-h k

3D

Softmax 62.36 61.55 64.41 11 35.16 45.97 43.77 17 - - - -
SphereFace[107] 66.14 69.54 77.00 13 38.62 46.39 48.33 17 - - - -
CosFace [217] 66.33 69.98 78.98 14 40.07 47.99 50.46 18 - - - -
ArcFace [35] 66.37 69.91 77.83 14 39.63 47.87 50.59 19 - - - -
APML 68.29 71.49 79.56 13 40.16 46.09 49.97 17 - - - -
APML+MES 68.72 72.65 79.96 14 40.56 48.22 50.38 18 - - - -

RGB

Softmax 63.28 62.47 65.70 11 36.61 46.19 44.42 17 32.08 42.14 40.20 14
SphereFace[107] 67.77 70.42 77.12 13 40.03 47.21 49.00 16 35.55 43.49 45.49 14
CosFace [217] 67.71 70.39 80.57 14 41.16 48.70 52.23 18 36.82 44.16 46.00 16
ArcFace [35] 67.69 72.01 81.38 14 40.70 49.15 52.04 19 35.66 44.21 46.01 18
APML 69.86 72.82 81.48 13 42.10 47.73 51.27 17 36.96 44.66 46.43 16
APML+MES 70.03 72.32 81.84 14 42.28 49.88 52.61 18 37.22 45.14 46.75 18

Table 4.5 ACC results adopting the Protocol 2. The min, max and mean values are computed
on a population of 100 tries. The SCC refers to the consensus clustering results based on
the 100 tries following our SCC strategy. The clustering is performed on unlabeled activity
samples of the three target domains ”social”, ”office” and all samples of the SLS France
dataset, which belong to Config 1, Config 2 and Config 3, respectively. For the FPHA dataset,
we tested using RGB and 3D skeleton activities, while for the SLS France dataset, we used
the provided RGB image activities (the only provided data type).

Config 1 Config 2 Config 3
min max mean SCC min max mean SCC min max mean SCC

3D

Softmax 48.34 79.62 64.22 65.87 29.51 49.69 39.37 45.18 - - - -
SphereFace[107] 55.45 76.77 67.26 73.45 34.63 49.09 41.38 50.60 - - - -
CosFace[217] 52.60 79.62 67.37 73.93 32.53 46.08 39.59 47.59 - - - -
ArcFace [35] 54.02 79.62 67.12 71.09 32.83 46.98 39.32 47.28 - - - -
APML 54.97 88.62 67.83 75.82 34.03 47.59 40.37 47.39 - - - -
APML+MES 56.01 79.88 68.15 75.97 34.52 48.81 41.66 47.44 - - - -

RGB

Softmax 50.24 79.51 65.22 65.39 31.83 49.78 42.22 46.60 25.88 45.15 36.32 42.13
SphereFace[107] 56.82 80.61 69.14 75.64 34.39 49.11 42.49 48.00 31.45 46.81 37.19 47.20
CosFace[217] 54.11 81.88 68.31 74.97 34.51 47.39 40.54 48.15 29.16 43.61 36.57 45.71
ArcFace [35] 55.69 81.61 68.71 75.29 34.46 47.32 40.89 48.16 29.70 43.96 36.32 45.66
APML 55.91 90.09 69.11 76.03 35.43 48.23 43.33 49.50 31.86 46.90 37.25 47.77
APML+MES 57.21 91.55 71.25 78.74 36.21 49.98 45.25 51.00 31.98 47.12 37.89 49.85
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Unlabeled activity clustering analysis

Confusion matrices in figure 4.12 show the highly meaningful quality of clustering provided
by our method. Indeed, most of the confused activity classes are meaningfully too close for
e.g., "give coin" and "give card" classes where the performed action "give" remain the same,
while only the objects "card" and "coin" change. We also observe a high confusion between
"toast wine" and "pour wine" classes where the action changes, but the social activity context
is still meaningfully close. Even for the very challenging Config 2, the confusions are still
significant, e.g., "read letter" and "take letter".

When adopting the Protocol 1 (k not given), we still get a high homogeneity score Vm-h
(Table 4.4). This means that regrouped samples in each detected clusters are mostly similar,
confirming the meaningful clustering quality.

Fig. 4.12 The left and right matrices refer to the confusions of unlabeled activities clustering of
the two target domains "social" and "office" that belong to Config1 and Config2 respectively.
The confusions are computed based on the protocol Protocol 2.

Impact of the Statistical and Consensus Clustering (SCC) strategy

As we explained in subsection 4.3.3, in our preliminary experiments, we observed a high
sensitivity of clustering algorithms to the randomness present in the pre-training (step 1).
Figure 4.13 (a) shows the clustering accuracy results (ACC) over 100 tries. We can see the
sensitivity of clustering algorithms regarding the feature space provided by the pre-trained
model equipped with our APML+MES. The sensitivity is also observed using different loss
functions, as shown in Figure 4.13 (b).

This observation motivated us to propose the SCC strategy, which allows selecting a good
clustering prediction among multiple tries concerning the unsupervised learning constraint.



136 Continual Learning for Hand Activity Recognition
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CosFace
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Fig. 4.13 (a) ACC over 100 tries. The clustering algorithms and their hyper-parameters
remain the same while only the data distribution changes. (b) ACC over 100 tries. The
clustering is performed using the Agglomerative clustering algorithm while testing with
different loss functions.

Table 4.4 and 4.5 confirm the advantage of our SCC strategy. For 100 tries, the final
result of the consensus clustering is far from the minimum, above the average, and not so far
from the maximum ACC. The SCC strategy allows selecting a good clustering prediction
among multiple tries with respect to the unsupervised learning constraint.

Performance of the APML+MES loss on activity recognition (classification)

Table 4.6 shows that our proposed loss overcomes all the metric learning-based losses in
classification accuracy, while it is still not too far from the Softmax loss function. These results
validate our APML+MES loss function’s main contribution, which aims to balance learning a
clustering-friendly manifold that facilitates the clustering of the embedded unlabeled samples
of the target domain and good recognition accuracy for the labeled ones of the source domain.

Table 4.6 The average recognition accuracy results over 100 tries. The recognition train/test
is performed on the data of the two source domains that belong to Config 1 and Config 2.

Softmax SphereFace[107] CosFace[217] ArcFace[35] APML APML+MES

3D
Config1 94.80 86.67 84.72 82.53 95.46 91.20
Config2 96.24 90.30 88.88 86.62 96.51 92.42

RGB
Config1 95.23 88.32 85.62 84.88 95.88 92.55
Config2 97.52 91.66 90.19 89.70 97.41 95.21



4.3 Unlabeled hand activity clustering 137

4.3.7 Experiments on clustering and image-retrieval tasks

For fair validation and comparison of our proposed deep metric learning loss function with
the state-of-the-art losses, we present experiments on clustering and image retrieval tasks in
this subsection.

Datasets

Following the experimental protocol in [189], we evaluate the clustering and k nearest
neighbor retrieval on data from previously unseen classes on the following previously
introduced (see chapter 2, subsection 2.4.8) datasets:

• CUB200-2011. [214] It has 200 classes of birds with 11,788 images. We split the first
100 classes for training (5,864 images) and the rest of the classes for testing (5,924
images).

• Cars196. [86] It has 198 classes of cars with 16,185 images. We split the first 98
classes for training (8,054 images) and the other 98 classes for testing (8,131 images).

We also used the (Modified National Institute of Standards and Technology) MNIST
[36] dataset to evaluate and enhance the analysis of the proposed approach. MNIST is a large
collection of handwritten digits. It has a set of 70,000 images.

Evaluation metrics

For the clustering task, we used the K-means clustering with the desired number of clusters
set equal to the number of classes in the test set. The clustering quality is measured with the
standard normalized mutual information NMI metric [170] previously introduced in chapter
2, section 2.4.6. We use the Recall@K [72] metric for the retrieval task. Scikit-learn [143]
framework is used for the clustering and NMI evaluation metric implementations. For the
MNIST dataset, in addition to K-means, we used the previously introduced BIRCH and
Agglomerative clustering algorithms. We refer the reader to chapter 2, subsection 2.4.4 for
more details about the used clustering algorithms.

Implementation details

• Clustering and image retrieval experiment on CUB200-2011 and Cars196 datasets.
For a fair comparison, we use the Resnet50 [59] architecture with batch normalization
[70] as the main backbone for all the compared methods. The Resnet50 model is first
pre-trained on ILSVRC 2012-CLS dataset [164], then fine-tuned for the evaluation. As
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illustrated in figure 4.14, we added an FC layer on top of the final average pooling layer
of the Resnet50 backbone network to learn the mapping of varying dimensionality dz.
To stabilize the sensitivity to the random initialization of the FC layer, we added a
layer normalization before the last FC classification layer.

All the train images of CUB200-2011 and Cars196 are normalized to 256 by 256.
For training data augmentation, all images are randomly cropped at 227 by 227 and
randomly mirrored horizontally. During testing, after images are normalized to 256
by 256, they are center cropped to 227 by 227. Following [241], we used a balanced
class sampling to construct training mini-batches by sampling 25 samples per class
for Cars196 and CUB200. All the methods are trained for 65 epochs using the Adam
optimizer with a learning rate of 0.001 and a 1e-4 weight decay. We note that for
CUB200-2011 and Cars196, we did not use our SCC strategy because the datasets are
large and require significant computation time.
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Fig. 4.14 Illustration of the proposed training neural network architecture. Where dz is the
embedding dimension and C is the number of classes.

• Clustering experiment on the MNIST dataset. For the MNIST dataset, we used a
CNN neural network backbone based on VGG8, where the dimension of the feature
space is fixed to dz = 64. The network is trained for ten epochs with a learning rate of
0.001 and a batch size of 32. To simplify the analysis, we split the dataset as follows:
{"2", "3", "4", "5","6","8"} digits are used as known training classes; while {"0",
"1","9","7"} digits are used as unseen classes that our method seek to cluster. We
have chosen this data split because there is no state-of-the-art partitioning base to rely
on. Moreover, the digit classes "1" and "7" are very similar and this presents a real
challenge for the clustering. As illustrated in figure 4.15, we used our SCC strategy
with 100 runs.
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Fig. 4.15 Illustration of the training (supervised classification) and the testing (unsupervised
clustering) steps on the MNIST dataset. The two steps are repeated 100 times following our
proposed SCC strategy. The network is first pre-trained to classify {"2", "3", "4", "5","6","8"}
digits classes using our proposed AMPL+MES loss function. Then, the pre-trained network
is used to map the unlabeled samples of the {"0", "1","9","7"} digits classes, which are
clustered using classical clustering algorithms. Finally, a consensus clustering is performed
on the 100 clustering predictions to provide the final clustering prediction.

• Clustering experiment using Variational Autoencoder (VAE). We also compared
the effect of our proposed method with a VAE [82]. This comparison aims to determine
how efficient our approach is compared to VAEs since they are shown to be exploitable
for similar image clustering tasks [150]. A VAE is a neural network architecture
that is regularised during an unsupervised training procedure to ensure that its latent
space has suitable properties that allow the generation of new approximative samples.
Moreover, these properties allow performing clustering of unlabeled samples [150].
We implemented a simplified CNN VAE that we trained on the {"0", "1","9","7"} digit
classes, and we tested for clustering the {"0", "1","9","7"} digit classes, as shown in
figure 4.16. The Encoder is composed of 4 convolutional layers, and the weights of the
reconstruction and kullback-leibler losses are fixed to 1 and 0.001, respectively.
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Fig. 4.16 Illustration of the training (unsupervised reconstruction) and the testing (unsuper-
vised clustering) steps on the MNIST dataset. The two steps are repeated 100 times following
our proposed SCC strategy. The pre-trained Encoder part of the VAE is used to map the
unlabeled samples of the {"0", "1","9","7"} digits classes, which are clustered using classical
clustering algorithms. Finally, a consensus clustering is performed on the 100 clustering
predictions to provide the final clustering prediction.

We used Tensorflow [1] package for our implementation for all the methods.

State of the art comparison

Comparaison on CUB200-2011 and CARS-196 datasets. Finally, we compared our
composite APML+MES loss and the baselines [107, 217, 35] that we boosted with the
proposed MES loss against state-of-the-art metric learning approaches on CUB200-2011
and CARS-196 datasets. For the reproduced boosted baselines, we trained two variants:
one with their recommended network architecture of 512-dimensional embeddings and one
with our modifications of 2048-dimensional embeddings, which showed more improvement.
For a fair comparison, we compared the approaches that use Resnet50 as a neural network
backbone for low-level feature learning and the same evaluation metrics.
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Table 4.7 Comparison of clustering and retrieval performance of our approach and modified
baselines against the state-of-the-art metric learning approaches on CUB200-2011 and CARS-
196 datasets. All methods are trained using ResNet50 neural network backbone. The Top-2
results are marked in bold.

CUB-200-2011 CARS196
Method ED NMI R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8
Margin Loss [117] 128 69.0 63.6 74.4 83.1 90.0 69.1 79.6 86.5 91.9 95.1
Normalized Softmax [241] 512 69.7 61.3 73.9 83.5 90.0 74.0 84.2 90.4 94.04 96.9
Divide and Conquer [169] 1028 69.6 65.9 76.6 84.4 90.6 70.3 84.6 90.7 94.1 96.5
Proxy NCA++ [204] 512 71.3 66.3 77.8 87.7 91.3 71.5 84.9 90.6 94.9 97.2
DiVA [120] 512 71.4 69.2 79.3 - - 72.2 87.6 92.9 - -
PADS [162] 128 69.9 67.3 78.0 85.9 - 68.8 83.5 89.7 93.8 -
Proxy Anchor [81] 512 - 69.7 80.0 87.0 92.4 - 87.7 92.9 95.8 97.9
SphereFace [107]+MES 512 70.96 64.46 74.57 83.37 90.47 71.14 83.53 91.1 93.97 95.75
CoseFace [217]+MES 512 66.94 59.75 70.57 80.36 87.4 69.99 84.35 89.7 91.24 94.6
ArcFace [35]+MES 512 72.75 65.42 74.66 84.0 90.68 71.6 86.45 91.93 93.75 96.32
APML+MES 512 72.82 65.31 74.12 84.1 90.72 71.21 86.73 91.43 93.69 96.43
SphereFace [107]+MES 2048 73.24 66.69 75.54 84.23 90.53 74.44 86.25 92.13 94.0 96.63
CoseFace [217]+MES 2048 72.47 67.03 75.67 84.75 91.50 71.39 85.68 91.89 93.40 96.74
ArcFace [35]+MES 2048 73.35 66.74 75.50 83.69 89.73 74.80 87.89 92.24 95.92 97.54
APML+MES 2048 73.26 66.98 75.49 84.45 91.22 74.82 87.69 92.28 95.64 97.62

Table 4.7 shows that our proposed composite loss APML+MES and the boosted baselines
outperform the the-state-of-the-art methods on the clustering task by more than 1.95% and
0.8% of NMI for the CUB200-2011 and CARS-196 datasets respectively. Nerveless, the
performance of the proposed methods is not very far from image retrieval dedicated methods
such as Proxy Anchor [81]. We can see that the combination of ArcFace [35]+MES showed
a good performance on the CARS196 dataset for both clustering and image retrieval tasks.
Hence, our principal composite loss APML+MES gives an equivalent performance without
requiring any additional hyper-parameter, such as the margin and re-scaling values.

Comparaison on MNIST dataset. Table 4.8 shows the clustering results on the MNIST
dataset. We compared the impact of our APML+MES loss function with four state-of-the-art
losses and the VAE architecture. The Softmax loss function and the VAE perform poorly
against metric learning-based losses. Our proposed loss is equivalent to the state-of-the-art or
even better by achieving 98.49% of ACC. Figure 4.17 shows the mapping of test unlabeled
samples of the {"0", "1", "9", "7"} digits classes. Unlabeled samples are mapped using the
neural network pre-trained with our APML+MES loss function. We can see that the classes
are well separated, although the classes "1" and "7" are usually very close. This proves the
ability of our method to learn a friendly clustering feature space.
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The results in table 4.8 also confirm the effectiveness of our SCC strategy again. For 100
tries, the final result of the consensus clustering is far from the minimum, above the average,
and not so far from the maximum ACC.

Table 4.8 ACC results. The min, max and mean values are computed on a population of 100
tries. The SCC refers to the consensus clustering results based on the 100 tries following our
SCC strategy. The clustering is performed on unlabeled samples of the {"0", "1","9","7"}
digits classes of the MNIST Dataset.

K-means Birch Agglomerative
min max mean SCC min max mean SCC min max mean SCC

Softmax 68.25 91.72 86.89 90.74 58.78 94.08 83.26 92.03 58.45 95.22 86.78 92.03
SphereFace [107] 84.51 95.22 92.88 94.22 85.11 98.16 94.93 98.13 85.69 98.52 95.18 98.10
CosFace [217] 87.77 95.07 92.74 94.48 87.59 98.39 93.61 97.37 87.64 97.41 93.80 96.87
ArcFace [35] 91.04 95.22 93.27 94.55 87.47 98.24 93.24 96.41 88.49 98.26 94.44 96.98
VAE 60.47 89.93 85.53 90.82 62.01 90.59 87.38 91.13 62.01 90.59 87.38 92.22
APML+MES 93.24 96.38 94.82 95.62 89.11 98.63 96.13 98.47 89.15 98.89 96.22 98.49

PCA reduction 64D to 3D T-SNE reduction 64D to 2D

0  1 7   9

Fig. 4.17 The mapping (embedding) of unlabeled samples of the {"0", "1","9","7"} digits
classes. The mapping network is trained to classify labeled {"2","3","4","5","6","8"} digits
classes equiped with our APML+MES loss function. We used Principal Component Analysis
(PCA) [181] to reduce the dimension from 64D to 3D, while T-SNE [210] is used to reduce
the dimension from 64D to 2D

Effects of the MES loss function.

To analyse the impact of our proposed MES loss function, we evaluated our proposed APML
loss and existent losses [107, 217, 35] with and without our complementary MES loss. Table
4.9 shows the results of clustering and image retrieval tasks on the CUB200-2011 dataset.
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Indeed, by adding the MES loss, the Recall@1 and the NMI scores has been improved by an
average of 2.1% and 2.7% respectively.

Table 4.9 Clustering and retrieval performance with and without using our MES loss in
combination with our APML loss and existent DML losses. The test was done on the 100
unseen classes of CUB200-2011 dataset. Results show a clear improvement of DML loss
functions when combined we the MES loss.

Methods NMI R@1 R@2 R@4 R@8
SphereFace [107] 70.87 64.97 74.24 79.89 84.72
CosFace [217] 70.25 64.58 74.83 80.77 85.26
ArcFace [35] 70.17 65.07 74.74 80.24 84.60
APML 70.10 64.18 74.56 80.21 88.31
SphereFace[107]+MES 73.24 66.69 75.54 84.23 90.53
CosFace [217]+MES 72.47 67.03 75.67 84.75 91.50
ArcFace[35]+MES 73.35 66.74 75.50 83.69 89.73
APML+MES 73.26 66.98 75.30 84.45 91.22

In addition, we provide more visualizations that support these findings. So, in figure 4.18
we visualize the difference between the embeddings of CUB200-2011 unseen test samples
of a given batch after only one epoch of training: (a) while using only the APML loss and
(b) while using APML+MES. We can observe that training with MES favors the intra-class
compactness and inter-class separation, which facilitates the clustering and retrieval tasks.
This confirms the effectiveness of the optimal separation of class centers in the training
procedure, which is imposed by our MES loss.
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(a) (b)

Fig. 4.18 The figure shows the embeddings of CUB200-2011 unseen test samples of a given
batch after only one epoch of training. For clarity, we selected only the first 10 classes of
100. (a) When training only with the APML loss. (b) when training with both APML+MES.
The t-SNE is used for the 2048D to 2D mapping. As can be seen in (b), the mapped samples
after training with the MES are much more clustered than when training without MES.

Tuning between APML and MES loss functions.

During our experiments on the CUB200-2011 and Car196 datasets, we observed that the MES
loss value is relatively small in the training procedure. The main reason is that the number
of training classes C is very small for both datasets compared to the chosen embedding
dimension of 2048. So selecting a relatively large β could help achieving best optimization.
To this end, we varied β from {1,50,100,200,300,400,500,1000} while keeping α = 1 to
seek an optimal parameter. Figure 4.19, shows the corresponding Recall@1 and NMI scores.
We can observe that that the Recall@1 and NMI scores reaches the maximum when they are
at β = 500 and β = 400 for the CUB200-2011 and Car196 datasets, respectively.
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𝛽 values

Fig. 4.19 Clustering and retrieval performance on CUB200-2011 and Car196 datasets. The
results are given while varying the weight value β of MES loss, with the weight value of the
APML loss kept to α = 1.

Embedding dimensionality.

We study the effects of dimensionality on our method by varying only the embedding
dimension dz (number of neurons of the FC layer before the normalization layer) from
{64,128,256,1024,2048,4056} while keeping all other optimization hyper-parameters fixed.
Figure 4.20 shows the obtained Recall@k1 and NMI scores on the CUB200-2011 dataset.
We can consistently observe that dimensionality is directly related to retrieval and clustering
performance, which can be explained by the fact that the larger the dimension, the richer the
feature vector is of relevant information. We note that for dz = 64, the convergence to an
optimal separation condition of the MES loss (Section 4.3.5) is not verified, since in this case
dz +1 <C with the number of classes C = 100. We observe that the clustering performance
drops at dimension 4056. This is due to the incompatibility of k-means clustering with a high
dimensionality clustering, and the Euclidean distance divergence [3]. We do not go more
than the dimension of 2048, which can be computationally costly for retrieval and clustering
tasks.



146 Continual Learning for Hand Activity Recognition

Embedding dimension 𝑑𝑧

Fig. 4.20 Clustering and retrieval performance on CUB200-2011 while varying embedding
dimensions. Our APML+MES based embeddings improve performance when increasing
dimensionality.

MES loss convergence analysis

To analyze the behavior of our APML+MES loss function when the convergence to a mutually
equidistant distribution condition is not satisfied, we fixed the feature space dimension to dz =

3, and we variated the number of classes C ∈ {4,6,8,12}. Figure 4.21 presents the results.
For C = 4, the APML+MES loss forced the neural network to ensure a mutually equidistantly
separation of the four classes in the 3D feature space, resulting in a regular Tetrahedron
[7]. For C ∈ {6,8,12}, the condition is not satisfied since C > dz + 1. Nevertheless, the
APML+MES loss forced the neural network to find the optimal solutions that maximize
C points separation in S2 spherical space [16], resulting in Platonic solid configurations.
In addition to the optimal separation, we can see the high compactness of the embedded
samples, where similar samples are very close to each other. This proves the effectiveness of
our proposed loss function in encouraging the neural network to learn a highly discriminative
feature space that satisfies the metric learning objectives.
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Fig. 4.21 Column(a) presents the number of classes used to learn classification using a neural
network equipped with our APML+MES loss function. Column (b) shows the embedding of
samples into a 3D high-level feature space using the learned neural network. The training
and the testing samples belong to the MNIST dataset [36], while for C = 12, we added two
classes from the Fashion-MNIST dataset [229]. The embedding in column (b) shows our
loss function’s impact on enhancing the neural network’s discriminative power. Column
(c) shows the centers of the classes, which refer to the weight vectors of the last neural
network layer at the end of the training procedure. The proposed loss forced the neural
network to distribute the centers optimally in the 3D feature space, resulting in Platonic
solid configurations (column (d)). Nevertheless, the Platonic solid configurations represent
optimal solutions that maximize C points separation in S2 spherical space [16].

4.3.8 Conclusion

We presented in this section our proposed method for unlabeled hand activity clustering.
The experiments based on real-world datasets show that the feature space learned using
our APML+MES loss function allows meaningful clustering. We also confirmed that, in
contrast to the state-of-art deep metric learning-based losses, our APML loss preserves a
good recognition accuracy. We solved the clustering sensitivity problem using our SCC



148 Continual Learning for Hand Activity Recognition

strategy, allowing the best clustering result selection. For a fair comparison, we tested and
compared our APML+MES with state-of-the-art methods on clustering and image-retrieval
tasks on two commonly used real-world datasets. The proposed APML+MES loss has shown
very effective in encouraging neural networks to learn a highly discriminative representation.
Furthermore, experiments show that MES loss can improve performance when combined
with existing metric learning loss functions.

In the next section, we exploit the resulting clustered activities by integrating them into
the initial recognition and the unknown activity detection models. Thus, the desired user
activity recognition framework incrementally learns and extends its multi-class classifier,
making each new class “known” to the models.
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4.4 Incremental hand activity recognition

The final component we propose aims to make the user activity recognition framework
adaptable and expansible for possible future applications. To this end, the resulting clustered
and annotated activities from the previous component are integrated into the initial recognition
and the unknown activity detection models. In other words, this final component allows the
framework to learn incrementally and extends its multi-class classifier, making each new
class “known” to the models. Figure 4.22 highlights this model extension component of our
desired user activity recognition framework.

(unknown)

Semi-automatic 
Annotation

Models Extension
Update

Stored Unknown 
Activities

Stored New Labelled
Activities

Unsupervised Clustering

Incremental Learning

Pour juice bottle
Recognized activity Label :

(known)

Known Activity Recognition

Unknown Activity 
Detection 

Open-set Learning

Supervised Learning
Classification

Known Activity

Unknown Activity

Fig. 4.22 Illustration of the targeted hand activity recognition Framework. We highlight
the model extension step. This step aims to update the recognition and unknown activity
detection models, allowing the Framework to incrementally recognize hand activities.

Based on the state-of-art study presented in section 2.5, in this section, we present our
adopted method for incremental hand activity recognition. The proposed method is based on
fine-tuning with replay memory. More precisely, we based our approach on iCaRL [156]
method that we briefly introduced in chapter 2, subsection 2.5.1. As we concluded in chapter
2, section 2.5, the memory replay methods are the most accurate ones. Nevertheless, they
require the storage of information about the old training samples, which can be very costly in
terms of memory. On the other hand, pseudo-replay-based methods generate synthetic data
to represent past classes in the current incremental state. However, in our case, generating
synthetic hand activities is very difficult and requires a lot of data.

Attempting an incremental hand activity recognition solution that balances good recogni-
tion accuracy and reducing the memory cost, we highlight the contributions of our proposed
method as follows:
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• Unlike [156], we propose an efficient memory replay solution that aims at storing all
training samples in a reduced size while keeping a discriminative representation of the
original samples.

• We used our proposed APML+MES loss function instead of the Softmax loss, which
showed more improvements.

The remainder of this section is organized as follows. In subsection 4.4.1, we present
the initialization of the proposed incremental hand activity recognition. Subsection 4.4.2
details the progress of the incremental learning iterations. In subsection 4.4.3, we present
the evaluation of the proposed approach. Thus, we detail our experiments and discuss the
obtained results. Subsection 4.4.4, concludes the section.

4.4.1 Initialization of the incremental learning

Initialization

We first train a neural network to recognize hand activities to initialize incremental hand
activity recognition. Following the mathematic formulation used in the previous sections,
let denote by gw( fφ (.)) the neural recognition network where gw(.) is the classification
layer equipped with our proposed composite DML loss function (APML+MES) and fφ (.)

is the backbone spatial-temporal feature learner, with w and φ learnable parameters. The
training procedure results in a pre-trained hand activity neural network model fφ∗ with φ∗

learned parameter, which will be used next for fine-tuning-based incremental hand activity
recognition. We used the RGB- and 3D skeleton-based neural network architectures proposed
in chapter 3.

Our proposed memory-reply strategy

To prevent the catastrophic forgetting problem, we use the memory of the past. In contrast to
iCaRL [156], which uses a selection of training samples (prototypes), we store all training
samples with their associated ground-truth labels. Consequently, we use the spatial feature
extractor blocks as low-dimensional manifolds to reduce activity sequences size, lowering
the memory cost. Let us formally take the RGB-based hand activity recognition architecture
(introduced in chapter 3, section 3.3) as our primary training network. Instead of storing
activity videos of all training samples, we only store their associated Ψl and Ψr (please
refer to Eq. 3.16 for more details). Similarly, when we use the 3D skeleton-based hand
activity recognition architecture (introduced in chapter 3, section 3.2) as our primary training
network, for each training sample, we only store its corresponding ΨSoCJ , ΨIIFRD and
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ΨGRT introduced in subsection 3.2.1. Thus, we use only this reduced and highly pertinent
hand activity representation in each incremental learning iteration. Figure 4.23 shows the
illustration of the proposed representation of training data.
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Fig. 4.23 Reduced and discriminative fixed representation of training data for fine-tuning
incremental hand activity recognition. (a) when using the RGB-based hand activity method
proposed in section 3.3. (b) when using the 3D skeleton-based hand activity method proposed
in section 3.2.

4.4.2 Incremental learning progress

The adopted fine-tuning strategy

When a set of new annotated hand activities arrives, similarly to the training samples, we
compute the spatial features for each newly arrived sample.
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Fig. 4.24 Illustration of the incremental learning procedure. First, the procedure is initialized
by training the neural network from scratch. Then, at each incremental learning iteration, the
neural network architecture classification layers are modified by adding new neurons outputs
according to the new classes. Finally, the network is fine-tuned using the combination of old
and new data. Where Ci is the number of classes at the i-th iteration.

As illustrated in figure 4.24, to learn the newly arrived classes incrementally, we modify
all the classification layers (CLs), these of the temporal dependencies learning (TDL) and
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the one of the post-fusion classification (PFC). This is by adding the new classes to allow the
classification of the old and new classes.

Next, we fine-tune the recognition networks using our APML+MES loss function and the
distillation loss. The network parameters are updated by minimizing the APML+MES loss.
For each set of new samples, the APML+MES encourages the network to output the correct
class indicator for new classes (classification loss) and for old classes to reproduce the exact
predictions as in the previous iteration (distillation loss).

L = LAPLM+MES +LDistillation (4.20)

The fine-tuning involves training the LSTMs of the temporal dependencies learning
and the MLP of the post-fusion classifier. Thus, to feed the LSTM networks, we use the
reduced representation of samples from old classes with their predicted labels in combi-
nation with samples from new classes with their ground-truth labels. To overcome the
catastrophic forgting problem, the fine-tuning we adopted for incremental learning consists
of two enhancements:

• The training data comprises newly arrived and previously stored training samples.
This ensures information about data distribution from all prior learned classes joins
the training process. As we explained previously, old and new training samples are
saved in low-dimensional representation generated with fixed spatial feature extraction
functions, which are not affected by the change of weight parameters.

• The loss function is also enhanced. It includes the distillation loss, which ensures that
the discriminative information learned previously is not lost during the new learning
iteration, in addition to our APML+MES loss, which encourages improvements in
feature representation that allow the classification of the newly arrived samples.

Classification of new hand activity samples

Inspired by [119], the authors of iCaRL[156] use a nearest-class-mean classifier (NCM) to
classify samples. They first compute the mean vectors zmean

j for each old training class based
on selected mapped samples in feature space. This is exactly as we did in subsection 4.2.2
E.q 4.3. Then, they compute the feature vector of the sample that should be classified and
assigns the class label with the most similar class mean vector. Let us take xnew as a new
sample to be classified, its feature vector is computed by fφ (xnew) = znew, then, its class
assignment ŷ∗ is computed as follows:
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ŷ∗ = argmin
j=1:C

∥∥znew − zmean
j

∥∥ (4.21)

As we briefly presented iCaRL[156] in chapter 2, subsection 2.5.1, their classification
method aims to reduce the prediction bias caused by the imbalance between old and new
classes. However, the classification decision can not be very efficient since it uses a selection
of training prototypes and does not cover all training samples. In contrast, we used a size-
reduced version of all training samples to enhance the classification decision. Instead of
NCM, we use the output of our APML loss to assign the class label for a given new activity
sample as follows:

ŷ∗ = argmin
j=1:C

{
(1+

∥∥znew −w j
∥∥)−1

∑
C
j=1(1+

∥∥znew −w j
∥∥)−1

}
(4.22)

We justify this by the fact that when using our APML+MES loss during the training, the
classification weight vectors w j are not decoupled from the mapping function fφ . Moreover,
our APML -based classification decision is very similar to NCM in the way that the new
sample will be assigned to the nearest class. This is done by measuring the distance between
the feature vector associated with the new example and the classification weights (Eq 4.22).
Thanks to our MES loss, the classification weights w j they are considered the mean feature
vector of each training class zmean

j .

4.4.3 Evaluation of the adopted incremental learning method

Dataset

We used the FPHA [49] and the SLS France datasets to evaluate our approaches. First, we
randomly partitioned the FPHA dataset into five partitions. The first four partitions contain
ten classes, and the last one contains five classes. Each class contains an average of 26
samples, divided into 13 for the train and 13 for the test.

For a more realistic scenario, we adopted the three data configurations presented in
subsection 4.2.7, table 4.1. For the two configurations (Config1 and Config2), we used
the partition of known classes for the initialization and the unknown classes for the first
incremental learning iteration. For Config3, we used all classes of the FPHA dataset for
the initialization and the SLS France classes as newly arrived data for the first incremental
learning iteration. Thus, our adopted approach aims to robustly learn the old classes of the
FPHA dataset and the new ones of the SLS France dataset.
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Implementation details

We implemented three incremental hand activity recognition methods. We used our two
proposed hand activity recognition neural network architectures as backbones for the three
methods. We kept the exact implementation details for the 3D skeleton- and 3D-based
architectures we presented in chapter 3 sections 3.2 and 3.3, respectively. We define the
implementations as follows:

• APML+MES. For the first training step, we kept the same hyper-parameters for the
two 3D skeleton- and 3D-based architectures as in chapter 3 sections 3.3 and 3.2,
respectively. Except for the number of training epochs, which is fixed at 200. The
networks are trained using our APML+MES loss function instead of the Softmax.

At each incremental learning iteration, we fine-tune the network using previously
learned weights in the previous iteration. We fine-tune the network with a small
learning rate value to prevent the network from drastically changing the weights,
causing the catastrophic forgetting problem.

To classify new hand activity samples, we used the APML loss output.

• APML+MES+NCM. We use the same implementation. Except for the classification
of new hand activity samples, we use the NCM as in iCaRL[156] instead of the APML
outputs.

• iCaRL. We used the same implementation details and recommendations as in [156].
For the number of prototypes, we fixed it at 5 for the FPHA dataset since the average
number of training samples per class is 13.

Results and discussion

We compared two variants of our proposed method for incremental learning hand activity
recognition (APML+MES and APML+MES+NCM ) with the state-of-the-art baseline iCaRL
[156]. The comparison is done on the FPHA dataset, streaming data by sets of 10 classes at
each incremental learning iteration and five classes for the final iteration. We performed eight
random selections of the ten classes of streaming sets. Thus the entire incremental learning
process is repeated eight times, and then we computed the average accuracy result.

Figures 4.25 (a) and (b) show that our method outperforms all the methods when using
the NCM with all training samples for classification. The NCM is shown to be better than
the APML for classification. This can be explained by the fact that the mean feature vectors
computed by the NCM are more precise than classification weight centers optimized during
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the training procedure using our APML+MES loss function. The iCaRL [156] method
performs very poorly. Their strategy of using a given number of selected prototypes may be
very effective in the case of using large datasets, as reported in their paper [156]. However,
it performs poorly in our case since the dataset does not contain many training samples.
Moreover, based on their strategy of keeping the original form to store selected training
samples without any dimensionality reduction, storing all training samples may be very
expensive in terms of memory.
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Fig. 4.25 Incremental hand activity recognition accuracy results. (a) Using the RGB-based
spatial-temporal backbone. (b) Using the 3D-based spatial-temporal backbone.

For a more realistic experiment, we tested our method on the FPHA dataset based on the
two configurations (Config1 and Config2). We initialized the incremental leaning with data
of the known classes, ("kitchen" +"office") for the Config1 and ("kitchen"+"social") for the
Config2. Once the incremental learning is initialized, we use the data of the unknown classes
as newly arrived classes of the first incremental learning iteration. The classes of the "social"
scenario for Config1, and the classes of the "office" scenario for Config2, respectively. We
note that for this experiment, we used only RGB image sequences.

Thus, in the first iteration, the network is fine-tuned with known and unknown classes.
Table 4.10 shows the results using our method based on the APML+MES loss for training
and fine-tuning, while the NCM is used for classifying new samples. We can see that the
accuracy between the initialization and the first iteration is very close. A difference of 0.66%
in the Config1 and 0.43% in the Config2. Moreover, we achieve good accuracy results for the
entire FPHA dataset classes ("kitchen" +"office"+ "social" ), 95% and 95.70% for Config1
and Config2, respectively. We note that these results are too close to the results presented in
chapter 3, section 3.3, where the network is trained from scratch, directly on the entire FPHA
dataset classes ("kitchen" +"office"+ "social" ).
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Table 4.10 Accuracy results for the initialization and the first incremental learning iteration.

Config 1 Config 2

kitchen+office
acc (%)

social
acc (%)

kitchen+office
+social
acc (%)

kitchen+social
acc (%)

office
acc (%)

kitchen+social
+office
acc (%)

Initialization 92.55 - - 95.21 - -
First iteration 91.89 98.12 95.00 94.78 96.63 95.705

Similarly, in another experiment, we used all the classes of the FPHA data set for the
initialization and all the classes of the SLS France dataset as newly arrived data for the first
incremental learning iteration. Here again, from table 4.11, we observe that the accuracy
between the classification in the initialization step and the first iteration is very close. This
confirms that our method handles the catastrophic forgetting problem.

Table 4.11 Accuracy results for the initialization and the first incremental learning iteration.
The classes of the FPHA dataset are used for the initialization. Then, the SLS France dataset
classes are used for the first incremental learning iteration.

FPHA dataset
acc (%)

SLS France
dataset
acc (%)

FPHA+SLS France
datasets
acc (%)

Initialization 96.45 - -
First iteration 94.02 62.74 78.38

4.4.4 Conclusion

In this section, we presented our adopted approach addressing the last proposed component
of our desired user activity recognition framework. This last component aims at making hand
activity recognition models extendable and continuous. The presented approach uses the
memory of the past to overcome the problem of catastrophic forgetting. Thus, we proposed
an efficient solution to store learned samples as a memory of the past, which balances the
memory cost and the highly discriminative data representation. The experiments performed
on two real-world hand activity datasets confirmed that our method handles the catastrophic
forgetting problem very well. Particularly when using our proposed APML+MES loss
function for fine-tuning the recognition model.
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5.1 Conclusions

This thesis explores first-person hand activity recognition, proposing four main components
for a comprehensive framework that understands the user’s hand activity to assist them in an
augmented reality context. The proposed components allow the framework to robustly recog-
nizes hand activities from known classes observed during the training procedure based on the
first-person viewpoint. Moreover, these proposed components allow the detection of activities
from unknown classes unseen during the training procedure, a fundamental requirement in
teaching and user assistance use cases. The user activity recognition framework learns in
an open-set setting to identify unknown activities. In this realistic and challenging open-set
scenario, incomplete knowledge of the world exists at training time, and unknown activities
can be seen during testing. These detected unknown activities are collected, automatically
annotated, and then incorporated into the models. In this way, the proposed framework learns
and gradually expands by making each new activity known to the learned models. Much of
the work was also devoted to minimizing computation and data acquisition costs, resulting in
cost-effective and easily adaptable components.

In this regard, we began by reviewing state-of-the-art existing first-person hand activ-
ity recognition methods, which we divided into three distinct categories. We provided a
description, advantages, and limitations for each category; and presented the available state-
of-the-art datasets for hand activity recognition evaluation. We also gave an overview of
the state-of-the-art methods related to our contributions. Thus, we explored the following
research fields:

• Open-set recognition. To detect unknown hand activities while correctly classifying
the known ones.

• Unsupervised domain adaptation and metric learning. To automatically cluster,
then manually annotate detected unknown hand activities.

• Incremental learning. To integrate annotated unknown activities into the recognition
and unknown activity detection models.

Motivated by the state-of-the-art observations, we presented in this thesis our two ap-
proaches for first-person hand activity recognition: First, we detailed our proposed method
for 3D skeleton-based hand activity recognition. Then, we introduced our method for
RGB-based and the combination of RGB- and 3D skeleton-based method for hand activity
recognition. We gave extensive experiments that evaluated and validated each proposed
method by discussing and comparing the obtained results with existing state-of-the-art meth-
ods. The experiments have proven the effectiveness of our proposed methods on real-world
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datasets. They also showed the advantages and disadvantages of the RGB images and 3D
hand skeleton modalities on hand activity recognition. We also experimented with combining
the two modalities for hand activity recognition, which significantly improved the recognition
accuracy.

To give the user activity recognition framework the ability to perform open-set recognition,
we presented our adopted consensus-based open-set recognition component that groups three
approaches to deciding whether an activity is from a known or unknown class. The method
is compared with state-of-the-art methods on two real-world datasets. We showed its benefit
for efficient open-set hand activity recognition by presenting and discussing the experimental
results.

In order to exploit the detected unknown hand activities, we introduced our proposed
unlabeled hand activity clustering method. The experiments based on real-world datasets
show that the feature space learned using our APML+MES composite loss function allows
meaningful clustering. We also confirmed that, in contrast to the state-of-art deep metric
learning-based losses, our APML loss preserves a good recognition accuracy on labeled
activities. We solved the clustering sensitivity problem using our statistical and consensus
clustering strategy, allowing the best clustering result selection. For a fair comparison, we
tested and compared our APML+MES loss with state-of-the-art losses on clustering and
image-retrieval tasks on two commonly used real-world datasets. The proposed APML+MES
loss has shown very effective in encouraging neural networks to lean a highly discriminative
representation. Furthermore, experiments show that MES loss can improve performance
when combined with existing state-of-the-art metric learning loss functions.

Finally, we presented our adopted approach for incremental hand activity recognition
component to make the user activity recognition framework expansible and flexible. The
goal is to make the recognition models extendable and continuously learn newly arrived hand
activities. The presented approach uses the memory of the past to overcome the problem
of catastrophic forgetting. Thus, we proposed an efficient solution to store learned samples
as a memory of the past, which balances the memory cost and the highly discriminative
data representation. The experiments performed on two real-world hand activity datasets
confirmed that our method handles the catastrophic forgetting problem. Particularly when
using our proposed APML+MES loss function for fine-tuning the recognition models.
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5.2 Limitations and future works

In this section, we briefly describe all the approaches proposed in this thesis, followed by the
main limitations and possible future improvements.

5.2.1 Hand activity recognition

3D skeleton-based hand activity recognition. It is a novel learning pipeline for first-person
hand activity recognition. The proposed pipeline is composed of three blocks. The first block
is a new combination of hand-crafted feature extraction methods. The second block is our
multi-stream temporal dependencies learning strategy. In the last block, we introduced our
proposed post-fusion strategy, which has proven to be more efficient than other traditional
fusion methods. During our experiments, we observed the following main limitations:

• Inter-class confusion occurs when different classes use objects of the same shape but
different colors, e.g., "open juice bottle" and "open milk bottle". The usage of RGB
images can surpass this limitation since they provide color information for manipulated
objects.

• We used 3D hand-crafted spatial-feature extraction methods to overcome the data
scarcity problem. However, the hand-crafted proposed methods are problem-specific.
Thus, they perform poorly for other tasks, e.g., hand gesture recognition. This limitation
can be solved by using a learnable and adaptable 3D hand skeleton spatial-feature
extractor. It must provide discriminative spatial-features while learning on a limited
amount of data. This may be the best solution that can replace our hand-crafted
spatial-feature methods.

RGB-based hand activity recognition. A novel learning pipeline for first-person hand
activity recognition. The proposed pipeline is composed of four stages. In the first stage, we
presented our transfer learning-based regions of interest extraction, the left and right hands
regions, which have proven effective. The second stage is the transfer learning-based deep
spatial feature extraction method that exploits the regions of interest in visual information. To
manage the temporal dimension, in the third stage, we trained the temporal neural networks
in a multi-stream manner. Then, in the last stage, we applied the post-fusion strategy to
classify activities. In the following, we highlight the limitations we observed during our
experiments. We also provide possible future improvements:

• Inter-class confusion that can occur while using RGB-based methods is when the
handled object in different classes has the same color. However, the shape is different.
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The 3D hand skeleton data usage can help overcome this limitation since the handled
object’s shape can be driven from the 3D hand skeleton coordinates.

• We assign the hands as left or right based on their position in the image. However, the
hands are not always in a suitable position, which results in bad assignments.

This can be surpassed by using a learned model that can distinguish between the user’s
right and left hands.

• The extracted hands regions contain information about the background, which may
confuse the neural network.

This can be solved by using a learned model that segments only the hands and the
handled object based on their contour.

The proposed methods perform hand activity recognition in offline mode. However, the
targeted augmented reality use case may require an online activity recognition solution to
identify the start and end of the activity.

5.2.2 Open-set hand activity recognition

We introduced our adopted consensus-based open-set hand activity recognition. It groups
three approaches to deciding whether a test activity sample is from a known or unknown
class. We employed a consensus of three outlier detection approaches to increase open-set
recognition performance: The Weibull model, the Isolation Forest, and the Local Outlier
Factor methods. We aggregated results from the three approaches to deciding whether the
activity is from a known or unknown class via majority voting. In the following, we introduce
the limitations we observed during our experiments:

• One of the main limitations is related to the Weibull-based approach since it requires
two hyper-parameters, which are essential to build the model and make decisions.
Mainly for the fixed ε threshold, since a small value of the ε , the model will reject
samples even if they had a small chance of being known. A possible solution is
to design a model that automatically learns and predicts these parameters from the
training data.

5.2.3 Unlabeled hand activity clustering

We proposed a novel approach for unlabeled hand activity clustering. The proposed approach
follows the UDA paradigm. First, we pre-train a supervised neural network on labeled
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samples from the source domain. Next, we try to solve the UDA by using the pre-trained
neural network model feature space as a mapping manifold to cluster unlabeled target domain
samples based on classical clustering methods. The pre-trained model, driven from the source
domain, must map hand activities to a highly discriminative feature space. Thus, we proposed
a composite metric learning loss function (APML+MES) that forces the neural network to
learn a highly discriminative feature space. In the following, we introduce the limitations we
observed during our experiments. We also provide possible future improvements:

• In our experiments, we observed a high sensitivity of clustering algorithms to the
randomness present in the pre-training procedure. It is directly related to the random
initialization of weights, the dropout layers, and the optimizer. To this end, we
proposed a statistical and consensus clustering (SCC) strategy. It consists in repeating
the pre-training and the clustering steps sequentially several times. Thus, in the end,
a consensus clustering is prefomed on resulting clustering predictions to provide the
final one. However, performing a multiple-run of the pre-training and clustering steps
can be computationally highly expensive, especially for large amounts of data and/or
deep neural network architectures. As future improvements, we plan to design a neural
network architecture that provides a clustering-friendly feature space while stabilizing
the clustering sensitivity.

• Our MES loss function has proven its effectiveness in boosting the discriminative
power of neural networks. This is when it is combined with our APML loss function
or other existing state-of-the-art metric learning loss functions. However, our actual
design of the MES loss requires the computation of all mutually possible Euclidean
distances between centers of classes (weights vectors of the final classification layer).
Unfortunately, this can be very costly in computational time for datasets with a large
number of classes. An optimized solution that enforces the mutually equidistant
separation of class centers is necessary.

5.2.4 Incremental hand activity recognition

We presented our adopted method for incremental hand activity recognition. The proposed
method is based on fine-tuning with replay memory. Thus, we proposed a solution to
store learned samples as a memory of the past, which balances the memory cost and the
highly discriminative data representation. The fine-tuning procedure is performed using
our proposed APML+MES loss function, which showed a significant improvement. In the
following, we highlight the limitations we observed during our experiments. We also provide
possible future improvements:
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• To prevent the catastrophic forgetting problem, we used the memory of the past. We
stored all training samples with their associated ground-truth labels. Instead of storing
activity videos of all training samples, we only store their associated extracted spatial-
temporal features. This feature extraction process reduces the size of the data a little
bit, but not enough to allow long-term incremental learning.

• In each fine-tuning iteration, we relearn all network weights, but we keep the network
architecture unchanged. However, an additional number of neurons may be required
with the increasing number of classes and associated training samples. To solve this
problem, we could rely on the concept of dynamic networks introduced in chapter 2,
section 2.5.3.





Résumé en français

Introduction

Le développement de l’Internet des objets a permis d’utiliser les technologies numériques
aussi bien dans des contextes quotidiens que dans l’univers d’industrie 4.0. Avec la sortie de
dispositifs de visualisation de la réalité augmentée (RA) plus compacts, plus puissants et plus
légers, les entreprises industrielles réinvestissent dans la RA et explorent son adéquation au
contexte industriel. Pour réduire les coûts et les temps de production, les fabricants cherchent
des solutions aux problèmes liés à l’interruption des machines de production, par exemple
pour des raisons de maintenance ou de spécifications de certains produits. La formation des
opérateurs est une partie du processus de production où la RA peut être intégré pour gagner
du temps et de l’argent. Une formation appropriée et adéquate des opérateurs industriels
peut être moins coûteuse qu’une reconfiguration de l’ensemble du processus de production.
En raison de leur flexibilité, les opérateurs peuvent répondre assez facilement et rapidement
aux besoins particuliers du fabricant. Leur formation nécessite souvent la présence d’un
autre opérateur enseignant suffisamment expérimenté pour transmettre les compétences
requises. Dans le cas où une telle personne n’est pas disponible, des manuels d’instruction
peuvent être utilisés pour former les opérateurs. Cependant, ils peuvent parfois être plus
lourds, dépassés et insuffisamment informatifs. Ces manuels peuvent ne pas répondre aux
spécificités d’un apprentissage ni au niveau technique des apprentis. Pour être efficace,
complète et durable, la procédure de formation dans un contexte industriel fait appel à nos
différents sens, notamment la vue, l’ouïe et le toucher. La meilleure façon d’apprendre de
manière appropriée et d’acquérir efficacement de nouvelles connaissances est de visualiser
la tâche à accomplir et d’en faire l’expérience. La RA peut répondre à ces exigences en
affichant des informations pertinentes au bon moment et au bon endroit.

D’autre part, l’assemblage est crucial pour l’ensemble du processus de fabrication.
Le coût total d’un produit, le temps nécessaire à sa fabrication et sa qualité dépendent
de l’efficacité et de la précision des différentes étapes de l’assemblage. Les opérations
d’assemblage sont souvent complexes et nécessitent des ajustements fins pour obtenir un
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résultat acceptable. La séquence d’assemblage peut être longue, avec de nombreuses pièces
à assembler dans un ordre précis pour assurer le bon fonctionnement du produit. Pour ces
raisons, les travailleurs assembleurs doivent être qualifiés et formés pour le faire dans le temps
de cycle imposé par la cadence de production. Le produit final peut dépendre de la variante
à assembler et peut nécessiter la consultation de manuel papier. Ces tableaux de référence
peuvent entraîner des pertes de temps, des distractions et des problèmes de sécurité. Dans
l’assemblage manuel, les tâches sont effectuées par des opérateurs humains assistés d’outils
ou de machines semi-automatiques. Cependant, l’erreur humaine est également un problème
fondamental dans les chaînes de montage. Elles peuvent entraîner une augmentation des
déchets de production ou du temps et des coûts de traitement, ainsi qu’une dégradation de la
qualité des produits en raison de défauts de fabrication. Diverses méthodes, telles que des
sessions de formation intensive ou des dispositifs de détection, sont utilisées pour surmonter
ce problème. Ces approches sont souvent coûteuses et, dans de nombreux cas, ne donnent pas
l’assurance complète d’éviter ces désagréments. La probabilité d’une erreur humaine pendant
l’assemblage doit être réduit afin d’éviter tout dommage potentiel à l’ensemble du système
de production. À cette fin, la nécessité de combiner l’assemblage manuel traditionnel avec
un outil capable d’améliorer l’efficacité et l’efficience du processus, tel qu’un système de
Réalité Augmentée (RA), devient évidente. L’opérateur doit être soutenu et guidé dans ses
activités, par exemple en effectuant les opérations d’assemblage tout en étant équipé d’un
système assistant intelligent de RA. Un tel système de RA peut empêcher l’opérateur de
détourner son attention et de ne pas être distrait du processus, ce qui contribue à l’efficacité
des tâches.

Un système de RA intelligent peut être particulièrement bien adapté pour résoudre ces
problèmes. À cet égard, la compréhension des activités de l’opérateur d’un point de vue à la
première personne est fondamentale dans un tel système de RA. La compréhension des activ-
ités réalisées dans un contexte de RA permet au travailleur d’interagir avec l’environnement
naturel et les informations virtuelles tout en étant guidé et en recevant un retour d’information.
Cela peut donner la possibilité de remplacer l’enseignement traditionnel par des instructions
interactives basées sur la RA et les manuels papier par une assistance basée sur la RA. Mo-
tivée par toutes ces observations, cette thèse se concentre sur la compréhension de l’activité
de la main à la première personne et les défis qui y sont liés. La section suivante donne plus
de détails sur les objectifs de la thèse.

Objectifs

Pour résoudre les problèmes abordés dans la section précédente, ce travail de thèse a été
consacré à la conception des principaux composants d’un système complet qui reconnaît les
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activités des utilisateurs de RA afin de les assister dans leurs activités complexes. Le système
de reconnaissance des activités de l’utilisateur souhaité doit reconnaître de manière robuste
les activités habituelles basées sur le point de vue de la première personne. En outre, il doit
détecter les activités inhabituelles afin d’empêcher l’utilisateur d’effectuer de mauvaises
manœuvres, une exigence fondamentale dans les cas d’utilisation de l’enseignement et de
l’assistance aux utilisateurs.

À cette fin, nous avons basé nos recherches sur des approches d’apprentissage automa-
tique et de vision par ordinateur, un choix recommandés de l’état de l’art. Une grande partie
du travail a été consacrée à la minimisation des coûts de calcul et d’acquisition de données,
ce qui a permis de créer des composants peu coûteux et facilement adaptables. Le système
de reconnaissance de l’activité de l’utilisateur devrait permettre d’être appris sur une quantité
limitée de données, par exemple, il peut d’abord être entraîné sur un ensemble de données
disponibles publiquement, puis rapidement adapté à un autre cas d’usage privé, comme
une application industrielle. Cela permet de réduire considérablement le coût d’acquisition
des données annotées et d’étendre la marge d’applications pour couvrir différents domaines
industriels.

Le système souhaité est constitué de quatre composants principaux. Dans la première
composante, l’activité est vérifiée si elle est connue ou inconnue. Ainsi, si l’activité est iden-
tifiée comme connue, l’étiquette de classe associée sera donnée par le deuxième composant
qui classifie les activités connues. Sinon, si l’activité est inconnue, elle sera stockée. Une
fois qu’un certain nombre d’activités inconnues détectées est atteint, elles seront annotées
de manière semi-automatique dans le troisième composant. Enfin, les activités inconnues
annotées seront intégrées au modèle de reconnaissance dans le dernier composant. Grâce à
ce dernier composant, les activités inconnues annotées seront traitées comme des activités
connues et classées dans le futur.

État de l’Art

L’objectif principal de cette thèse est de proposer les composants essentiels d’un système de
reconnaissance d’activité de la main, qui peut être utilisé pour assister les utilisateurs de RA.
Le premier composant vise à détecter les activités inconnues. Le deuxième composant vise à
reconnaître les activités de la main du point de vue de la première personne. Le troisième
composant regroupe et annote les activités inconnues détectées. Enfin, le dernier composant
intègre ces activités annotées dans les modèles de reconnaissance et de détection.

Chacune des quatre composants visés par nos objectifs peut être considérée comme
une étape de reconnaissance en monde ouvert (open-world recognition) [12], représentant
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un domaine de recherche complexe et étendu : apprentissage en milieu ouvert (open-set
learning), classification d’activité de la main par apprentissage supervisé, regroupement non
supervisé et apprentissage incrémental. C’est pourquoi, nous décrivons l’idée générale de
chaque composant et présentons les approches de pointe existantes qui s’y rapportent.

Contributions

Dans ce travail, nous avons essayé de surmonter tous les défis mentionnés dans la section
précédente. Cela nous a conduit à une proposition dont les principales contributions sont
résumées ci-dessous :

• Solutions de reconnaissance d’ctivités de la main. Pour relever les défis de la
reconnaissance de l’activité de la main, l’un des composants les plus importants du
système ciblé, nous avons proposé deux solutions pour la reconnaissance de l’activité
de la main à la première personne. En plus de la robustesse de la reconnaissance,
nous avons également pris en compte la manque des données et le coût de calcul. Les
solutions proposées sont basées sur des données squelettiques 3D et des images RGB,
respectivement :

1. Un nouveau pipeline d’apprentissage hybride pour la reconnaissance de l’activité
de la main basée sur le squelette 3D de la main, qui se compose de trois blocs.
Tout d’abord, les caractéristiques spatiales pour une séquence donnée de positions
d’articulations de la main sont rapidement extraites en utilisant une combinaison
spécifique de nos méthodes d’extraction de caractéristiques spatiales locales
et globale qu’on propose. Ensuite, les dépendances temporelles sont apprises
en utilisant une stratégie d’apprentissage multi-flux. Enfin, un classificateur
de séquence d’activité manuelle est appris en utilisant notre stratégie de post-
fusion et appliqué aux dépendances temporelles précédemment apprises. Ce
pipeline d’apprentissage en plusieurs étapes permet de s’entraîner avec un nombre
limité d’échantillons d’entraînement tout en assurant une bonne précision, ce
qui répond au problème du manque des données. Les expériences évaluées
sur deux ensembles de données du monde réel montrent que notre approche
est plus performante que l’état de l’art. Pour une étude d’ablation, nous avons
comparé notre stratégie de post-fusion avec trois méthodes classiques de fusion
traditionnelles et avons montré une amélioration de la précision.

2. Un nouveau pipeline d’apprentissage par transfert à plusieurs étapes pour la
reconnaissance d’activité de la main de la première personne basées sur des
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séquence d’image RGB, qui aborde le problème de la rareté des données. La
première étape extrait les régions d’intérêt pour une séquence d’activité d’image
RVB donnée en utilisant un réseau neuronal pré-entraîné. Contrairement aux
méthodes existantes qui utilisent l’attention visuelle par le biais du Deep Learn-
ing et nécessitent une grande quantité de données, nous proposons d’utiliser
directement les mains droite et gauche comme régions d’intérêt pertinentes qui
fournissent des informations sur les objets manipulés et les actions effectuées.
Ces régions d’intérêt sont extraites en utilisant une technique d’apprentissage par
transfert. Nos expériences ont montré que ces informations sont essentielles à la
reconnaissance de l’activité des mains à la première personne. Nous proposons
une procédure d’augmentation des données adaptée à ces régions d’intérêt pour
renforcer le modèle de reconnaissance. Ensuite, des caractéristiques spatiales de
haut niveau sont extraites dans la deuxième étape à l’aide d’un réseau neuronal
profond pré-entraîné. Dans la troisième étape, les dépendances temporelles sont
apprises. Enfin, un classificateur de séquence d’activité manuelle est appris dans
la dernière étape en appliquant une stratégie de post-fusion aux dépendances
temporelles précédemment apprises.

L’adaptation de l’apprentissage par transfert permet d’apprendre avec un nombre
limité d’exemples d’entrainement tout en offrant une bonne précision. Il réduit
également le coût d’apprentissage puisque le réseau neuronal transféré est déjà
pré-entrainé.

Les expériences évaluées sur deux ensembles de données du monde réel montrent
que notre pipeline atteint des performances de pointe. De plus, le pipeline proposé
obtient de bons résultats même avec une quantité de données limitées.

Nous avons également expérimenté la combinaison des deux modalités, le squelette 3D
des articulations de la main et les pipelines basés sur les images RGB, ce qui améliore
considérablement la précision de la reconnaissance de l’activité de la main.

• Détection d’activité de la main inconnue. Les solutions présentées ci-dessus
pour la reconnaissance de l’activité des mains sont basées sur le paradigme classique
de la reconnaissance en ensemble fermé (closed-set learning), où les échantillons
d’activité de d’entrainement et de teste sont supposés faire partie des classes connues.
Cependant, l’un des composants de notre système de reconnaissance de l’activité
de l’utilisateur vise à effectuer la reconnaissance dans un ensemble ouvert (open-set
learning). Ainsi, il reconnaît les activités des classes connues tout en détectant et en
rejetant les activités inconnues des classes inconnues qui n’ont pas été vues pendant
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la procédure d’apprentissage. À cet égard, nous avons présenté dans cette thèse une
méthode de reconnaissance d’activité de la main dans un ensemble ouvert, basée sur
un consensus qui regroupe trois approches pour décider si un échantillon d’activité de
teste est d’une classe connue ou inconnue. Afin d’augmenter la performance globale
de la reconnaissance dans un ensemble ouvert, nous utilisons un consensus de trois
approches de détection des aberrations et agrégeons leurs décisions par le biais d’un
vote.

• Regroupement des activités de la main non étiquetées. La troisième composante de
notre système souhaité vise à regrouper (catégoriser) les activités inconnues détectées
afin de les annoter. À cet égard, nous avons proposé une approche nouvelle et originale
qui se rapproche de l’adaptation non supervisée du domaine pour regrouper les activités
de la main non étiquetées. Elle utilise les connaissances obtenues à partir d’échantillons
étiquetés du domaine source (les activités connues) pour catégoriser les échantillons
non étiquetés du domaine cible (les activités inconnues détectées). Ainsi, nous avons
introduit une fonction de perte composée, que nous notons APML+MES. C’est une
fonction de perte nouvelle et originale basée sur l’apprentissage par métrique pour
apprendre une représentation hautement discriminative tout en maintenant une bonne
précision de reconnaissance des activités dans le domaine source. La représentation ap-
prise est utilisée comme un espace de dimension réduite pour regrouper les échantillons
d’activités non étiquetées. Pour obtenir les meilleurs résultats de regroupement, nous
avons également proposé une stratégie de regroupement statistique et consensuelle.
Pour une comparaison équitable, nous avons testé et comparé notre perte APML+MES
avec des méthodes de pointe pour des tâches de regroupement et de recherche d’images
sur deux bases de données réels couramment utilisés. La fonction perte APML+MES
proposée s’est avérée très efficace pour encourager les réseaux neuronaux à apprendre
une représentation hautement discriminante. En outre, les expériences montrent que la
perte MES peut améliorer les performances lorsqu’elle est combinée avec les fonctions
de perte d’apprentissage métrique existantes.

• Reconnaissance incrémentale de l’activité de la main. La dernière composante
du système de reconnaissance d’activité souhaité vise à rendre les modèles appris
extensibles et adaptables à de futures applications. À cette fin, les activités regroupées
et annotées résultant du composant précédent sont intégrées dans les modèles initiaux
de la reconnaissance de détection des activités inconnues. Ainsi, avec ce composant, le
système apprend et étend de manière incrémentielle son classificatrice multi-classe, en
faisant en sorte que chaque nouvelle classe soit "connue". À cette fin, nous présentons
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dans cette thèse la méthode que nous avons adoptée pour la reconnaissance incrémen-
tale de l’activité des mains. La méthode proposée est basée sur un réglage fin avec une
méthode efficace de stockage des échantillons d’entrainement initiaux pour éviter le
problème de l’oubli catastrophique.

Conclusion

Cette thèse explore la reconnaissance de l’activité de la main à la première personne, en
proposant quatre composants principaux pour un système complet qui comprend l’activité
de la main de l’utilisateur pour l’assister dans un contexte de réalité augmentée. Les
composants proposés permettent au système de reconnaître de manière robuste les activités
de la main à partir des classes connues observées pendant la procédure d’entraînement
basée sur le point de vue de la première personne. De plus, ces composants proposés
permettent la détection d’activités de classes inconnues non observées pendant la procédure
d’apprentissage, une exigence fondamentale dans les cas d’utilisation d’enseignement et
d’assistance aux utilisateurs. Le système de reconnaissance des activités de l’utilisateur
apprend à identifier des activités inconnues dans un environnement ouvert. Dans ce scénario
réaliste, la connaissance du monde est incomplète au moment de l’apprentissage, et des
activités inconnues peuvent être observées pendant le teste. Ces activités inconnues détectées
sont collectées, annotées automatiquement, puis incorporées dans les modèles. De cette
façon, le cadre proposé apprend et s’étend progressivement en faisant connaître chaque
nouvelle activité aux modèles appris. Une grande partie du travail a également été consacrée
à la minimisation des coûts de calcul et d’acquisition de données, ce qui permet d’obtenir
des composants efficace et facilement adaptables.

À cet égard, nous avons commencé par examiner l’état de l’art des méthodes existantes
de reconnaissance d’activité de la main à la première personne, que nous avons divisées en
trois catégories distinctes. Nous avons fourni une description, les avantages et les limites
de chaque catégorie et présenté les bases de données disponibles pour l’évaluation de la
reconnaissance de l’activité de la main. Nous avons également donné un aperçu de l’état
de l’art des méthodes liées à nos contributions. Ainsi, nous avons exploré les domaines de
recherche suivants :

• Apprentissage dans un ensemble ouvert (open-set learning). Détecter les activités
inconnues de la main tout en classant correctement les activités connues.
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• Regroupement non supervisé du domaine et apprentissage par métrique. Pour
regrouper automatiquement, puis annoter manuellement les activités manuelles incon-
nues détectées.

• Apprentissage incrémental. Intégration des activités inconnues annotées dans les
modèles de reconnaissance et de détection des activités inconnues.

Motivés par les observations de l’état de l’art, dans cette thèse, nous avons commencé
par l’introduction de nos deux approches pour la reconnaissance d’activité de la main à
la première personne : Tout d’abord, nous avons détaillé notre méthode proposée pour
la reconnaissance de l’activité de la main basée sur le squelette 3D. Ensuite, nous avons
présenté notre méthode de reconnaissance de l’activité de la main basée sur des images RGB
et la combinaison de la méthode basée sur des images RGB et le squelette 3D. Nous avons
présenté des expériences approfondies qui ont évalué et validé chaque méthode proposée
en discutant et en comparant les résultats obtenus avec les méthodes existantes de l’état de
l’art. Les expériences ont prouvé l’efficacité de nos méthodes proposées sur des bases de
données du monde réel. Elles ont également montré les avantages et les inconvénients des
images RGB et des modalités du squelette 3D de la main pour la reconnaissance de l’activité
de la main. Nous avons également expérimenté la combinaison des deux modalités pour
la reconnaissance de l’activité de la main, ce qui a permis d’améliorer considérablement la
précision de la reconnaissance.

Pour donner au système de reconnaissance de l’activité de l’utilisateur la capacité
d’effectuer la reconnaissance d’ensembles ouverts, nous avons présenté le composant de
reconnaissance d’ensembles ouverts basé sur le consensus que nous avons adopté et qui
regroupe trois approches pour décider si une activité appartient à une classe connue ou
inconnue. La méthode est comparée à des méthodes de l’état de l’art sur deux bases de
données du monde réel. Nous avons démontré son avantage pour une reconnaissance efficace
de l’activité de la main dans un ensemble ouvert en présentant et en discutant les résultats
expérimentaux.

Afin d’exploiter les activités de la main inconnues détectées, nous avons présenté notre
méthode de regroupement des activités de la main non étiquetées. Les expériences basées sur
des ensembles de données du monde réel montrent que l’espace des caractéristiques appris en
utilisant notre fonction de perte composite APML+MES permet un regroupement significatif.
Nous avons également confirmé que, contrairement aux fonctions de pertes basées sur
l’apprentissage par métrique profond de l’état de l’art, notre fonction de perte APML préserve
une bonne précision de reconnaissance sur les activités étiquetées. Nous avons résolu le
problème de la sensibilité du regroupement en utilisant notre stratégie de regroupement
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statistique et consensuel, permettant la sélection du meilleur résultat de regroupement. Pour
une comparaison équitable, nous avons testé et comparé notre fonction de perte APML+MES
avec les les fonctions de pertes de l’état de l’art sur des tâches de regroupement et de
recherche d’images sur deux bases de données réelles couramment utilisées. La fonction de
perte APML+MES proposée s’est avérée très efficace pour encourager les réseaux neuronaux
à s’appuyer sur une représentation hautement discriminante. En outre, les expériences
montrent que la perte MES peut améliorer les performances lorsqu’elle est combinée avec les
fonctions de perte d’apprentissage métrique de existantes.

Enfin, nous avons présenté l’approche que nous avons adoptée pour le composant
d’apprentissage incrémental de reconnaissance de l’activité des mains afin de rendre le
système de reconnaissance de l’activité des utilisateurs extensible et flexible. L’objectif
est de rendre les modèles de reconnaissance extensibles et d’apprendre continuellement
des nouvelles activités de la main. L’approche présentée utilise la mémoire du passé pour
surmonter le problème de l’oubli catastrophique. Nous avons donc proposé une solution
efficace pour stocker les échantillons appris en tant que mémoire du passé, ce qui permet
d’équilibrer le coût de la mémoire et la représentation hautement discriminante des données.
Les expériences réalisées sur deux ensembles de données réelles sur l’activité des mains ont
confirmé que notre méthode permet de résoudre le problème de l’( oubli catastrophique ).
En particulier lorsque nous utilisons la fonction de perte APML+MES que nous proposons
pour affiner les modèles de reconnaissance.
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Titre : Les principaux composants d'un système de reconnaissance d'activité de la main, 
exploitable pour l'assistance aux utilisateurs en réalité augmentée. 

Mots clés : Reconnaissance d'activité de la main de la première personne, apprentissage par 
métrique, apprentissage d'ensembles ouverts 

Résumé : Les êtres humains utilisent leurs mains 
pour diverses tâches dans la vie quotidienne et 
professionnelle, ce qui fait que la recherche dans ce 
domaine a récemment suscitée un grand intérêt. De 
plus, l'analyse et l'interprétation du comportement 
humain à l'aide de signaux visuels est l'un des 
domaines les plus actifs et les plus explorés de la 
vision par ordinateur. Avec l'arrivée des nouvelles 
technologies de réalité augmentée, les chercheurs 
s'intéressent de plus en plus à la compréhension de 
l'activité de la main d'un point de vue de la première 
personne, en explorant la pertinence de son 
utilisation pour le guidage et l'assistance humaine. 
L'objectif principal de cette thèse est de proposer un 
système de reconnaissance de l'activité de 
l'utilisateur incluant quatre composants essentiels, 
qui peut être utilisé pour assister les utilisateurs lors 
d'activités orientées vers des objectifs spécifiques : 

industrie 4.0 (par exemple, assemblage assisté, 
maintenance) et enseignement. Ainsi, le système 
observe les mains de l'utilisateur et les objets 
manipulés depuis le point de vue de l'utilisateur afin 
de reconnaître et comprendre ses activités 
manuelles réalisées. Le système de réalité 
augmenté souhaité doit reconnaître de manière 
robuste les activités habituelles de l'utilisateur. 
Néanmoins, il doit détecter les activités inhabituelles 
afin d'informer l'utilisateur et l'empêcher d'effectuer 
de mauvaises manœuvres, une exigence 
fondamentale pour l'assistance à l'utilisateur. Cette 
thèse combine donc des techniques issues des 
domaines de recherche de la vision par ordinateur 
et de l'apprentissage automatique afin de proposer 
des composants de reconnaissance de l'activité de 
l'utilisateur nécessaires à un outil d'assistance 
complet. 

 

Title :  The main components of a hand activity recognition framework, exploitable for augmented 
reality user assistance. 
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Abstract :  Humans use their hands for various tasks 
in daily life and industry, making research in this area 
a recent focus of significant interest. Moreover, 
analyzing and interpreting human behavior using 
visual signals is one of the most animated and 
explored areas of computer vision. With the advent of 
new augmented reality technologies, researchers are 
increasingly interested in hand activity understanding 
from a first-person perspective exploring its suitability 
for human guidance and assistance. Our work is 
based on machine learning technology to contribute 
to this research area. Recently, deep neural networks 
have proven their outstanding effectiveness in many 
research areas, allowing researchers to jump 
significantly in efficiency and robustness.  This 
thesis's main objective is to propose a user’s activity  

recognition framework including four key 
components,   which can be used to assist users 
during their activities oriented towards specific 
objectives: industry 4.0 (e.g., assisted assembly, 
maintenance) and teaching. Thus, the system 
observes the user's hands and the manipulated 
objects from the user's viewpoint to recognize his 
performed hand activity. The desired framework 
must robustly recognize the user's usual activities. 
Nevertheless, it must detect unusual ones to 
feedback and prevent him from performing wrong 
maneuvers, a fundamental requirement for user 
assistance. This thesis, therefore, combines 
techniques from the research fields of computer 
vision and machine learning to propose 
comprehensive hand activity recognition 
components essential for a complete assistance 
tool. 
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