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Résumé: Nous essayons de trouver une base
du groupe de Grothendieck numérique G d’une
variété de Kiichle de dimension 4 et de type cb
trés générale Xy. Pour ce faire, nous nous in-
téressons d’abord & la géométrie de telles var-
iétés, et nous essayons d’en déduire une famille
F d’éléments de G qui pourrait étre une base.
Ensuite nous essayons de calculer la matrice
dont les coefficients sont les caractéristiques
d’Euler entre les éléments de F. Cette matrice
devrait nous permettre de mieux appréhender

les catégories dérivées bornées des variétés con-
sidérées.

Dans cette thése nous ne parvenons pas a trou-
ver une base de G mais nous proposons deux
familles F; et F5 qui pourraient étre des bases du
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bre d’intersection prés dans un cas et entiére-
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Introduction

0.1 Introduction en francais

Dans cette thése, on s'intéresse aux variétés de Kuchle de type c5 et de dimension 4 sur C. Pour X, une telle
variété tres générale, l'objectif est de calculer la matrice M = (x(e;, e;)) ou x désigne la caractéristique d’Euler
et les e; forment une base du groupe de Grothendieck numérique. Une fois cette matrice calculée, trouver
une autre base dans laquelle M a une forme spécifique, que nous décrirons un peu plus tard, donnerait une
indication sur une possible décomposition semi-orthogonale de la catégorie dérivée bornée des faisceaux co-
hérents sur X,. En effet certaines similitudes avec les cubiques de dimension 4 dans P° et certaines variétés
de Gushel-Mukai de dimension 4 suggérent qu'une telle décomposition pourrait exister.

Bref résumé

Dans son article [22] sur les catégories Calabi-Yau et Calabi-Yau fractionnelles, A. Kuznetsov donne un Théoréme
qui permet dans de multiples cas de trouver des décompositions semi-orthogonales de catégories dérivées
bornées de variétés projectives lisses.

Plus précisément, quand un foncteur ¢ : D*(X) — D°(M) entre les catégories dérivées bornées de deux
variétés projectives lisses satisfait certaines conditions, il est possible de construire une décomposition semi-
orthogonale de D¥(X) & partir d'une décomposition de Lefschetz rectangulaire de D?(M) (la encore sous
certaines conditions techniques que nous n'allons pas détailler ici). Cette décomposition semi-orthognale de
D*(X) consiste principalement en sous-catégories obtenues a partir des sous-catégories de la décomposition
de Lefschetz de D*(M), ainsi que leur orthogonal a droite, une sous-catégorie souvent appelée "composante
de Kuznetsov". De plus, ce méme Théoreme 3.5 de [22] nous permet de calculer le foncteur de Serre de la
composante de Kuznetsov.

Certaines des composantes de Kuznetsov obtenues grace a ce Théoréme sont des catégories K3 non-
commutatives, c'est-a-dire des catégories qui "ressemblent" a des catégories dérivées bornées de surfaces
K3. En fait, tous les exemples non triviaux de catégories K3 non-commutatives qui sont connus jusqu’a présent
nous viennent de composantes de Kuznetsov apparaissant dans les catégories dérivées bornées de certaines
variétés projectives. De plus, ces catégories K3 non-commutatives semblent liées a la géométrie des variétés
qui leur sont associées.

En effet, on peut trouver de telles catégories K3 non-commutatives dans D*(C), ou C est une conique de
dimension 4 dans IP%, sous la forme de composantes de Kuznetsov, et il a été conjecturé par A. Kuznetsov (voir
la Conjecture 1.1 de [18]) qu'une cubique de dimension 4 est rationnelle si et seulement si sa composante de
Kuznetsov est équivalente a la catégotie dérivée bornée d'une surface K3. Cette condition n'est pas satisfaite
pour les cubiques de dimension 4 trés générales : le groupe de Grothendieck numérique de leur composante
de Kuznetsov ne pourrait pas contenir la classe d'un faisceau gratte-ciel, car il ne contient aucun élément non
nul v tel que x(v,v) = 0 (voir par exemple la Remarque 3.19 de [24] pour plus de détails). Cette conjecture
implique donc que les cubiques de dimension 4 trés générales ne sont pas rationnelles.

Les variétés de Gushel-Mukai de dimension 4 ont aussi une composante de Kuznetsov qui est une catégorie



K3 non-commutative, et il a été conjecturé par A. Kuznetsov et A. Perry dans [23] (Conjecture 3.12) que cette
composante est équivalente a la catégorie dérivée bornée d’'une surface K3 quand la variété de Gushel-Mukai
associée est rationnelle.

Une autre caractéristique intéressante des composantes de Kuznetsov qui sont des catégories K3 non-
commutatives est qu'a chacune des trois familles d’exemples (non triviaux) connues jusqu'a présent, on peut
associer une famille de variétés hyperkahlériennes : a une cubique de dimension 4, C, correspond la famille
des droites dans C, a une variété de Gushel-Mukai de dimension 4 correspond une double sextique EPW, et a
une variété de Debarre-Voisin, dont la derniére famille d'exemples est constituée, on peut associer une variété
hyperkahlérienne de dimension 4 dans Gr(6, 10). Tous ces exemples sont listés dans la partie 3.6.1 de [6].

Il serait donc intéressant de trouver une nouvelle famille non triviale de catégories K3 non-commutatives
qui soient des composantes de Kuznetsov dans les catégories dérivées bornées de variétés projectives lisses
: il serait alors possible d'étudier les liens entre ces catégories et la géométrie de leurs variétés associées. De
plus, un espace de modules des objets contenus dans une telle composante de Kuznetsov comporterait une
forme symplectique (voir la partie 4.4 de [22] pour plus de détails), on pourrait donc également espérer trouver
une famille de variétés hyperkahlériennes associées.

Parmitoutes les variétés de Fano de dimension 4 classées par O. Kuichle dans [15], trois types ont un diamant
de Hodge qui suggére que leur catégorie dérivée bornée pourrait contenir une catégorie K3 non-commutative.
Deux de ces trois types ont été étudiés dans [19] et ne donnent pas de nouvelles familles non triviales de
catégories K3 non-commutatives. Cependant pour le troisieme type, c'est-a-dire le type c5, la question reste
ouverte.

Dans [20], Kuznetsov a étudié la géométrie des variétés de Kichle de dimension 4 et de type c5, notées Xy,
et de variétés de dimension 5 associées, appelées variétés de Kiichle de dimension 5 et de type c5. Cela lui
a permis de calculer le motif de Chow de variétés de Kuchle de dimension 5 et de type c5 générales. Cepen-
dant, aucune décomposition de Lefschetz rectangulaire de ces variétés n'a encore été trouvée, ce qui serait
nécessaire pour appliquer le Théoréme 3.5 de [22] mentionné précédemment. Or, nous aurions besoin de ce
Théoréme pour prouver I'existence d'une composante de Kuznetsov dans D’(X).

Méme s'il est assez compliqué de prouver directement l'existence d'une composante de Kuznetsov dans
DP(X,), siune telle composante A existe, il pourrait &tre possible de trouver une base du groupe de Grothendieck
numérique K,um(A), par analogie avec le cas des cubiques de dimension 4. En effet, si cette analogie est cor-
recte, dans une base bien choisie B de K,um(X4) et pour X, trés général, la matrice dont les coefficients sont
les caractéristiques d'Euler entre les éléments de 3 devrait avoir cette forme :

A x *
0 1 * %
M: .
0 .ox
0 0 1

ou A est la matrice dont les coefficients sont les caractéristiques d'Euler entre les éléments d'une base de
Knum(-A)-

Par conséquent, s'il était possible de trouver une base de K,,m(X4) dont la matrice de caractéristiques
d'Euler a la forme ci-dessus, alors les éléments de cette base correspondant au bloc A seraient de "bons can-
didats" pour former une base de K,,;,(A). Cela pourrait alors donner une indication sur ce a quoi une com-
posante de Kuznetsov dans D?(X,) pourrait ressembler.

C'est pourquoi le premier objectif de cette thése était de trouver une base de K,,um(X4) (en tant que réseau
sur Z), calculer la matrice M de caractéristiques d'Euler entre les éléments de cette base, et finalement chercher
une matrice inversible R a coefficients dans Z telle que RM R~! a la forme mentionnée ci-dessus.

Cependant, cela s'est avéré assez difficile. En effet, le diamant de Hodge de X, suggére qu'il devrait y
avoir dans K,.m(X4) quatre classes associées a des surfaces dans Xy. En utilisant des résultats de [20] sur la



géométrie des variétés de Kuchle de dimension 4 et 5 de type ¢5 nous sommes parvenus a trouver des surfaces
dans X4, mais malheureusement nous ne sommes pas capables de calculer certaines des caractéristiques
d’Euler impliquant les faisceaux structurels de ces surfaces.

Malgré tout, nous savons d'aprés [20] qu'il existe un éclatement X, de X, et pourrait étre possible de
retrouver D®(X,) & partir de D®(X,) en utilisant des foncteurs de mutation a droite. Le second objectif de cette
thése a donc été de trouver une base de Knum(f(él) et de calculer la matrice M de caractéristiques d’Euler entre
les éléments de cette base.

Nous avons trouvé deux familles libres de 14 éléments dans Knum(f(4), mais n‘avons pas pu prouver que
ces familles sont des bases. Pour 'une d'entre elles nous avons calculé la matrice associée M & un nombre
(correspondant & une intersection entre sous-variétés de X,) prés, et pour la seconde nous avons calculé la
matrice de caractéristiques d’Euler associée M, entiérement. Cependant ces deux matrices ne peuvent pas
avoir le méme déterminant, ce qui suggere que nos deux familles ne génerent pas les mémes sous-réseaux de
Knum(X4). Il serait donc intéressant de savoir si I'une de ces familles correspond a un sous-réseau primitif de
Kyum(X4) oU non.

Définition des variétés de Kiichle de dimension 4 et 5 de type c5

Pour commencer, notons par G la Grassmannienne Gr(3, C”) et 3 le sous-fibré tautologique de G. Une variété
de Kuchle de dimension 4 et de type c5 est le lieu des zéros d'une section globale générale de U3 (1) © Us(1) &
Og(1), ol U3~ est le quotient de linjection Uz — C” ® Og. Pour une section globale assez générale, cette con-
struction donne une variété de Fano lisse et de dimension 4. L'appellation "type ¢5" vient de la classification,
donnée par O. Kuchle dans [15], des variétés de Fano de dimension 4 et d'index 1 qui peuvent étre obtenues
en considérant le lieu des zéros d'une section globale générale d'une somme directe de fibrés vectoriels irré-
ductibles, homogénes et globalement générés, sur une Grassmannienne. De plus, chaque variété de Kichle
de dimension 4 et de type c5 est une section hyperplane d'une variété de dimension 5, que nous noterons Xj;
et que nous appellerons variété de Kiichle de type ¢5 et de dimension 5. En effet, si X, est le lieu des zéros de
la section globale A @ @ v de Us-(1) ® Us(1) & O(1) alors nous pouvons définir X5 comme le lieu des zéros
de A @ p, laquelle est une section globale de U;-(1) & Us(1). Dans ce cas, puisque v est une section globale de
O¢(1), son lieu des zéros H,, est un hyperplan et X, = X5 N H,. Dans [20], A. Kuznetsov décrit la géométrie
des ces variétées de Kichle de dimension 5, et en déduit certaines propriétés géométriques des variétés de
Kuchle de dimension 4 associées. Nous nous référerons souvent a cet article [20] et conserverons la majeure
partie de ses notations.

Composantes de Kuznetsov et catégories K3 non-commutatives

Il est attendu que la catégorie dérivée bornée des faisceaux cohérents sur Xy, notée D°(X,), admet une dé-
composition semi-orthogonale intéressante, par analogie avec d'autres exemples et a cause du diamant de
Hodge de X,.

Commencons par le cas des cubiques de dimension 4 dans P° : ces variétés sont des sections de variétés
de dimension 5, notons-les Y5, qui admettent une décomposition de Lefschetz rectangulaire, c'est-a-dire une
décomposition semi-orthogonale de leur catégorie dérivée bornée des faisceaux cohérents comme suit :

DY(Ys)=<B,B®L,...,BR L™ >

oum € N, B est une sous-catégorie triangulée de D’(Ys), £ est un fibré en droite de Y5 et une décomposi-
tion semi-orthogonale D =< Ay, ..., A, > est une suite de sous-catégories pleines et admissibles telles que
Hom*®(A;, A;) = 0 pour tout j > ¢, et telles que la plus petite sous-catégorie triangulée pleine de D contenant
tous les A; est équivalente a D (voir la Définition 1.59 de [14]).

Le Théoréme 3.5 de l'article de A. Kuznetsov [22] donne alors une décomposition semi-orthogonale de D®(Y}):

DY) =< A B B oL, ... BoL%%>



ou k € N, A est appelée la composante de Kuznetsov de Y, et le reste de la décomposition est induit par la
décomposition de Lefschetz de D®(Y3). De plus, lorsque Y, est une cubique de dimension 4, sa composante
de Kuznetsov Ay, est une catégorie K3 non-commutative : son foncteur de Serre est [2] et son homologie de
Hochschild est la méme que celle de la catégorie dérivée bornée d'une surface K3. En tant que sous-catégorie
triangulée de D®(Y}), Ay, satisfait donc la Définition 2.31 de [24], donnée par E. Macri et P. Stellari, et est donc
une catégorie K3 non-commuative, autrement dit une catégorie qui "ressemble" a la catégorie dérivée bornée
d’'une surface K3.

Cependant il existe des catégories K3 non-commutatives qui ne peuvent pas étre équivalentes a la catégorie
dérivée bornée d’'une surface K3 (voir par exemple la Proposition 4.8 de [18]), alors que les catégories dérivées
bornées de surfaces K3 sont toutes des catégories K3 non-commutatives. Les catégories K3 non-commutatives
peuvent donc étre considérées comme une "généralisation" de D’(S) ou S est une surface K3.

Revenant aux variétés de Kiichle de dimension 4 et 5, on peut voir en regardant le diamant de Hodge de X :

donné par exemple dans l'introduction de [20], qu'il pourrait "contenir" le diamant de Hodge d'une surface
K3. Les variétés de Kichle de dimension 4 et de type c5 ne sont pas les seules parmi les variétés de Fano de
dimension 4 classées par Kuchle dont le diamant de Hodge suggére que leur catégorie dérivée bornée pourrait
contenir une catégorie K3 non-commutative, mais les deux autres "candidats" a la contenance de telles sous-
catéories (les variétés de Kichle de dimension 4 et de types d3 et c7) sont des exemples déja connus tandis que
les variétés de Kuchle de type ¢5 pourraient donner une nouvelle famille de catégories K3 non-commutatives.

Pourquoi s’'intéresser aux catégories K3 non-commutatives : lien conjecturé avec la rationnalité et var-
iétés hyperkahlériennes

Une telle famille de catégories K3 non-commutatives serait intéressante pour principalement deux raisons.
Tout d'abord, dans le cas d'une cubique C de dimension 4 il a été conjecturé par A. Kuznetsov que C est ra-
tionnelle si et seulement si sa composante de Kuznetsov A¢ est équivalente & D?(S) ou S est une surface
K3.

Il a aussi été conjecturé par A. Kuznetsov et A. Perry que la composante de Kuznetsov d’'une variété GM de
Gushel-Mukai et de dimension 4, qui est aussi une catgorie K3 non-commutative, est équivalente a la catégorie
dérivée bornée d’'une surface K3 lorsque GM est rationnelle.

Ces catégories K3 non-commutatives semblent donc liées a la géométrie des leurs variétés associées et il
pourrait étre intéressant d'en trouver de nouveaux exemples (apparaissant comme composante de Kuznetsov
dans la catéorie dérivée bornée d'une variété), tout particulierement parce qu'a l'exception des catégories
dérivées bornées de surfaces K3, seulement trois familles d'exemples sont connues jusqu’'a présent : les cu-
biques mentionnées ci-dessus, les variétés de Gushel-Mukai de dimension 4 et les variétés de Debarre-Voisin.

De plus, comme détaillé par A. Kuznetsov dans la partie 4.4 de [22], a chaque composante de Kuznetsov qui
est aussi une catégorie K3 non-commutative il pourrait étre possible d'associer une variété hyperkahlérienne.
C'est pourquoi trouver une famille de variétés avec une composante K3 non-commutative pourrait aussi donner
une famille de variétés hyperkahlériennes associée.



A chacune des familles non triviales de catégories K3 non-commutatives connues jusqu’a présent corre-
spond une famille de variétés hyperkahlériennes associée : ces dernieres sont listées dans la partie 3.6.1 de
[6], et nous allons en parler plus en détails un peu plus tard.

Principal obstacle a la preuve de I'existence d’'une composante de Kuznetsov dans D’(X,)

Malheureusement, dans le cas des variétés de Kiichle X, de dimension 4 et de type c5 il est assez difficile
de prouver qu'une telle composante de Kuznetsov existe : en effet dans le cas des trois familles d'exemples
(non-triviales) qui sont connues jusqu'ici, pour prouver l'existence de la composante de Kuznetsov et certaines
des propriétés requises pour étre une catégorie K3 non-commutative, il faut utiliser le Théoréme 3.5 de [22].
Mais dans le cas de X, l'utilisation de ce Théoréme nécessiterait de connaitre une décomposition de Lefschetz
rectangulaire de D?(X5) et une telle décomposition n’est pas connue a ce jour.

Cependant, il est attendu qu'une décomposition de Lefschetz rectangulaire existe bien dans ce cas. Pour
pouvoir utiliser une telle décomposition (avec le Théoréme 3.5 de [22]) dans le but de trouver une décompo-
sition semi-orthogonale d'une variété de Kiichle de type c5 et de dimension 4, il faudrait que la décomposition
soit de la forme décrite dans I'exemple 3.1 de [22]. Puisque notre variété de Kichle X, est le lieu des zéros
d'une section globale de Ox, (1) dans la variété de dimension 5 associée Xj, il faudrait alors que le fibré en
droites £ de la décomposition de Lefschetz rectangulaire soit Ox, (1). D'aprés le Lemme 2.8 de [22] et comme
nous savons d'apres [20] que wx, = Ox,(—2), il n'y a qu'une seule possibilité pour une telle décomposition
de Lefschetz rectangulaire : < By, By(1) >. Dans un tel cas, la preuve de la Proposition 3.4 et le Théoréme 3.5
de [22] impliquent que le foncteur de Serre de la composante de Kuznetsov Ay, est [-4 + 6] = [2]. Combiné
avec le diamant de Hodge mentionné ci-dessus, cela implique que si une variété de Kichle de dimension 5 et
de type ¢5 admet une décomposition de Lefschetz rectangulaire comme décrite précédemment, alors tous les
X, associés ont une composante de Kuznetsov qui est trés probablement une catégorie K3 non-commutative.

En cherchant une décomposition de Lefschetz rectangulaire de X5, A. Kuznetsov a étudié en détails la
géométrie de variétés de Kuchle de type c5 et de dimension 5 générales et prouvé dans le Théoréeme 5.3 de
[20] que le motif de Chow d'un X5 général est de type Lefschetz. Il en a déduit le diamant de Hodge et les
groupes de Chow de X5, affirmant que des générateurs explicites de ces derniers peuvent étre déduits de sa
description géométrique de Xs.

Comment avoir une intuition au sujet d’'une possible composante de Kuznetsov sans connaitre de dé-
composition de Lefschetz rectangulaire de D’(X5)

Cependant, nous allons nous intéresser ici aux X, plutdt qu'aux Xs. En effet, nous savons que si une décom-
position semi-orthogonale de la forme D*(X,) =< Ax,,B,B® L,...,B® L% > existe, alors dans une base
du groupe de Grothendieck numérique K, (X4) dont les éléments (e;); appartiennent dans l'ordre a Ax,, B,
... B® L®, 1a matrice M = (x(e;, e;)):,; devrait étre de la forme :

R
0 By = *
M=1. .
: 0 . *
0 ... 0 By
ou
A= (X(€is€5))e; 056 Knum(Ax,) Bo = (X(€is€5))es e; € Knum(B)s - - - s Bk = (X(€i5€5))e; e; € K (BoLEF) -

De plus, dans le cas des cubiques de dimension 4 il se trouve que la sous-catégorie triangulée 5 est en fait
générée par un objet exceptionnel (un élément E de D*(C) tel que Hom(E, E[m]) = Cdy.,). Dans le cas des
cubiques trés générales on sait également que la matrice A est de taille 2 x 2, donc si les variétés de Kuchle de



dimension 4 et de type c5 ont une décomposition semi-orthogonale similaire a celle des cubiques de dimension
4, pour des variétés tres générales on peut méme espérer que la matrice M soit :

my Mo x ... Xk
m3 Mg x ... Xk

o 0 o0 ... 1
Par conséquence, trouver une base de K,y (X4) dans laquelle M a cette forme nous donnerait une indication
sur ce qu'une décomposition semi-orthogonale de D’(X,) pourrait étre : les deux premiers éléments de la

base pourraient correspondre a des générateurs de la composante de Kuznetsov et les autres éléments a des
objets excetionnels générant les sous-catégories de la forme B @ £L%J de la décomposition.

Lien entre les variétés hyperkahlériennes associées et K,,,,,,(X,) : les exemples déja connus

On peut également espérer que la sous-matrice de M associée a la composante de Kuznetsov de X, soit en

fait :
mp ma2\ 2 -1
ms ma) \—1 4 )°

En effet, a chacune des familles de catégories K3 non-commutatives déja connues correspond une famille de
variétés hyperkahlériennes polarisées, et cette correspondance nous permet de formuler une telle hypothése.

Avant de détailler ceci plus avant, rappelons nous que si A := (H?(X,Z),qx) est le réseau associé a une
variété hyperkahlérienne X de type K31/, muni de sa forme de Beauville (voir par exemple le paragraphe 3.5
de [6]), alors A est I'orthogonal d'un vecteur primitif v de carré 2 dans A := U®* @ Eg(—1)®2. De plus, d'aprés la
partie 3.7.1 de [6] nous savons que Pic(X) = v+ m[\alg. Pour X trés général on peut s'attendre a ce que Pic(X),
qui contient la polarisation h, soit de rang 1. En particulier nous devons alors avoir h.v = 0. Le sous-réseau de
A généré par v et h a alors pour matrice d'intersection :

ol

Comme détaillé sous la Remarque 3.6 dans [6], le plongement de ce sous-réseau dans A est primitif si et seule-

......

ou A est tel que A.v = —1 et A2 = 2d’ avec d’ € N. La matrice d'intersection du réseau généré par v et \ est

alors:
2 -1
-1 2d')"

Finalement, nous avons h? = (v + 2))? = 8d’ — 2.

D'apres la partie 2.1 de [13] et (7) dans [6], nous avons qu'a une cubique lisse de dimension 4 correspond
une variété hyperkahlérienne X comme ci-dessus (plus précisément la variété des droites dans C), avecd’ = 1
dans le "non split case". Cette correspondance est aussi mentionnée dans la partie 3.6.1 de [6] : le cas des
cubiques de dimension 4 correspond a g(h) = 6 et v = 2, alors que les variétés de Debarre-Voisin et leurs
variétés hyperkahlériennes associées (le lieu des zéros d'un certain fibré vectoriel sur Gr(6, 10)) correspondent
aq(h) = 22 ety = 2, cest-a-dire d’ = 3 dans le "non split case". Pour finir, les variétés de Gushel-Mukai cor-
respondent (voir [5]) au cas ou g(h) = 2 et v = 1, autrement dit k2 = 2 dans le "split case" : leurs variétés
hyperkahlériennes associées sont appelées sextiques doubles EPW.

Cependant, nous ne connaissons pas d'exemples du "non split case" quand d’ = 2 (qui correspond a
g(h) = 14 et v = 2 avec les notations de [6]). Puisque les exemples pour d’ = 1 et d = 3 sont reliés a des



familles de variétés de Fano de dimension 4 dont les catégories dérivées bornées admettent une composante
de Kuznetsov K3 non-commutative, on peut espérer que si les catégories dérivées bornées de variétés de
Klchle de dimension 4 et de type c5 contiennent effectivement une nouvelle famille de telles catégories K3,
alors il y a une famille de variétés hyperkhlériennes associées qui pourrait donner un exemple du "non split
case"quand d’ = 2.

Si c'était le cas, la matrice d'intersection de K,,um (Ax, ), pour X, trés général, devrait avoir la forme mention-
née plus haut, a supposer que ce réseau soit, comme dans les cas déja connus, isomorphe au réseau généré
par v et A de la variété hyperkahlérienne associée (voir la partie 3.4 de [24] pour plus de détails).

Il est aussi attendu (comme précédemment, d'aprés ce qu'on peut observer dans le cas des cubiques, var-
iétés de Gushel-Mukai et variétés de Debarre-Voisin) qu'une telle variété hyperkahlérienne pourrait paramétrer
certains objets géométriques, ou étre isomorphe a un espace de modules des conditions de stabilité sur Ax,.
Finalement, dans un tel cas les variétés de Kiichle de dimension 4 et de type c5 trés générales correspondraient

a une famille dans I'espace des modules 4/\/151) des variétés hyperkahlériennes polarisées de dimension 4 et
de type K3 telles que h? = 14 et div(h) = 2, lequel est conjecturé unirationnel, 1 encore par analogie avec
les exemples déja connus.

Premier objectif
Le premier objectif de cette theése était donc le suivant :
* trouver une base (ey,...,e,) de Kyum(X4) surZ;

* calculer la matrice M = (x(e;, e;))1<i,j<n dont les coefficients sont les caractéristiques d’Euler entre les
éléments de notre base;

« trouver une matrice R € GL(n,Z) telle que RM R~! ait la forme mentionnée précédemment.

Comment trouver une famille dans K,,,,(X4) qui pourrait étre une base

D'apreés le diamant de Hodge de Xy, si D’(X4) admet une décomposition semi-orthogonale comme décrite
ci-dessus, et si la composante de Kuznetsov correspond bien a un sous-espace de dimension 2 de Kum(X4),
alors pour X, trés général K,um(X4) devrait étre de dimension 8. De plus, dans ce cas, pour X, trés général,
dans une base de K,.m(X4), cing éléments devraient venir de H2(X,) (en supposant que I'on puisse générer
la classe du faisceau structurel d'une droite et d’'un faisceau gratte-ciel a partir de ces cinq éléments), et trois
de H4(X4)

C'est pourquoi, pour commencer, nous cherchons une famille libre de huit éléments dans K,,m(X4) telle
que cing éléments viennent de faisceaux en droites et les trois autres sont associés a des faisceaux structurels
de surfaces dans Xj.

Comme éléments associés a des faisceaux en droites nous pouvons simplement prendre

{OX47 OX4(1)7 OX4(2)7 OX4 (3)7 OX4 (4)}

(nous verrons plus tard qu’en fait cela ne donnerait qu'un sous-réseau de K,,;,(X4), et nous remplacerons
donc les deux derniers faisceaux en droites par le faisceau structurel d'une droite et un faisceau gratte-ciel);
les coefficients de M correspondants peuvent alors étre calculés grace au Théoreme de Borel-Bott-Weil.

A propos des trois derniers éléments cependant, les choses se compliquent. Nous pouvons utiliser la de-
scrition de la géométrie de variétés générales de Kuchle de dimensions 4 et 5 et de type ¢5 donnée dans [20]
pour trouver des surfaces dont les faisceaux structurels donneront les trois derniers éléments de la base. En
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particulier, comme prouvé dans [20], pour X, général il y a un diagramme :

Dy ——> X, - D,

Sy —> X, X4<LZ3<;F1

l”

So

ou les indices correspondent a la dimension de la variété associée, et w et 7 sont les éclatements de X, et Xy,
respectivement en ¥, et Z3, avec respectivement Ds comme diviseur exceptionnel et D, comme lieu excep-
tionnel. Les morphismes 4, 4, j, 3’ et j sont des injections, les fibres de o : Z3 — S5 sont toutes des P! et D, est
une surface réglée sur la courbe I'y.

Trois surfaces apparaissent dans ce diagramme : X5, D, et So. Cependant ni Sy ni Dy ne sont des surfaces
dans X4; nous pouvons nous en servir pour construire de telles surfaces mais dans les deux cas cela requiert
de projeter des surfaces de X, sur X, a l'aide de la contraction =. Malheureusement, il est assez compliqué
de comprendre si les images de ces surfaces par = ont des "mauvaises" contractions ou pas, ce qui rend trés
difficile le calcul de caractéristiques d'Euler impliquant leurs faisceaux structurels. C'est pourquoi nous n'avons
pas réussi a atteindre notre premier objectif, et avons adopté une nouvelle stratégie, avec l'aide de Benjamin
Sung.

Nous pouvons étudier Knum()h) alaplace de K,y (X4)

D’un autre c6té, il est plus facile de s'intéresser a une matrice de caractéristiques d'Euler entre éléments d'une
base de Knum(X4), plutdt gu'entre éléments d'une base de K, (X4), puisque dans le premier cas il n'y a pas
de problémes de contractions. Il pourrait également étre possible de retrouver la matrice M associée a X,
a partir de celle, notons la M, associée & X,, a I'aide de foncteurs de mutation et de la décomposition semi-
orthogonale de D’(X,) donnée par le Théoréme 3.5 de [2]. En effet ce Théoréme nous permet de trouver une
décomposition semi-orthogonale de catégories dérivées bornées d'éclatements. Tout ceci sera détaillé dans la
partie 2.3.2.

De plus, comme nous allons le voir, les déterminants de ces deux matrices M et M sont égaux, donc s'il y a
bien une base dans laquelle la matrice M a la forme décrite précédemment, alors ce déterminant devrait étre
mim4 — Mmams, que Nous espérons étre en fait 7 d'apres les hypothéses évoquées plus haut.

Deuxiéme objectif

Notre deuxiéme objectif était donc de trouver une base de Knum(f(4) sur Z, puis de calculer la matrice de
caractéristiques d'Euler associée.

Principaux résultats

Dans la partie 2.3.1 nous calculons la matrice suivante :

1
1
]\/[1 = (X(ei,ej))lgi,jgg, =120 1 1 -1 1
0
0
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ou
(617 sy 65) = (0X4a OX4(1)a OX4 (2)a Ol? OP)
avec O, le faisceau structurel d'une droite dans X, et O, un faisceau gratte-ciel. Cette matrice correspond a un
sous-réseau de Kyum(X4), mais malheureusement il n'est pas évident que ce sous-réseau soit primitif.
En ajoutant un sixiéme élément eg := Ox;, a la famille {ey, ..., e5} on trouve la matrice :

1 20 124
1 1 20 O
20 1 1 -1

—_

My = (x(eiej))i<ij<6 =

O OO =
NO O+~

0 0
1 1 1 0
1 7 19 0

Cependant comme détaillé plus haut, il nous manque encore au moins 2 éléments pour pouvoir espérer que
notre famille soit une base de Kum(X4).

Dans la partie 2.1.2, nous considérons une famille libre 7; de 14 éléments dans Knum(X4), qui semble étre
une "bonne candidate" pour étre une base. Nous ne pouvons calculer la matrice de caractéristiques d'Euler
associée qu'a une intersection b prés, ce qui donne :

100 -1 -1 -1 1 2 3 -1 0 3 00

010 -1 -1 -1 1 2 3 -1 0 3 00

001 -1 -1 -1 1 2 3 -1 0 3 00

000 1 3 6 -1 —-7-19 =5 12 10 0 O

000 O 1 3 0 —-3-12 —6 124b 19 0 O

~ 000 O 0 1 0 0 —6 —6 1242b 28 0 0
M = 000 O 0 0 1 20 124 O —-12 1 11
000 O 0 0 1 1 20 0 0 37 01

000 O 0 0 20 1 1 12 156 127 —-11

000 -1 1 4 1 7 19 1 —-36 56 0 0

000 36 36+b36+2b —36 0 180 —156 48 —24 0 O

333 —-42 -33 —24 79 79 206 76 —24 —4 0 O

000 O 0 0 0 -1 -2 0 0 0 00

000 O 0 0 1 1 1 0 0 0 00

Dans la partie 2.2, nous considérons une autre famille libre 7, de 14 éléments dans Knum(X4), qui pourrait
&tre une base si K,um(X4) a pour dimension 8, et la matrice des caractéristiques d’Euler entre les éléments de
cette famille est :

1 20124 1. 0 1 1 1 1 1 =121 11

1 1 20 1 0 10 2 2 2 1 0 011

20 1 1 7 0 43 11 11 11 7 156 —111

0O 0 O 1 1 1 -1-1-10 -84 010

-1 -7-19 -1 1 -2 -2-2-2-212 0 10

_ 0 24 72 10 10 -1 0 0 O O =12 0 0O
M, = 0O 6 20 2 2 0 1 0 0 0 -4 000O0
2 0O 6 20 2 2 0 0 1 0 0 —4 000
0O 6 20 2 2 0 0 0 1 0 -4 000O0

1 7 19 2 0 0 0 0 0 2 0 000

—36 0 180 —6036 —12 —4 -4 -4 0 48 0 00

O -1-2 0 0 0 0 O O O 0 O0®O0O

0O 0 O 11 0 0 0 O 0O 0 00O

1 1 1 0O 0 0 O 0 O O 0O O0©O0O

Il nous manque une intersection (le b mentionné ci-dessus) entre les classes de deux surfaces de X, pour
pouvoir utiliser des foncteurs de mutation a droite et trouver une famille de 7* K, (X4 ) induite par F,. Malgré
tout, nous pouvons exprimer les images de ces foncteurs de mutation qui nous intéressent en fonction de cette
intersection b. La famille et la matrice associées sont détaillées dans la partie 2.3.2, en fonction de b. Cette
nouvelle approche est basée sur les idées de Benjamin Sung.

Ce que l'on pourrait faire ensuite

Avant de pouvoir obtenir une indication sur une possible décomposition semi-orthogonale de D*(X,), ily a
donc au moins quatre étapes manquantes :
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« |l faurait vérifier que les matrices que nous avons obtenues (ou au moins certaines d'entre elles) ne sont
pas associées a des sous-réseaux stricts de Kum(X4) ou Kpum(X4).

+ Il faudrait également calculer l'intersection b qui nous manque. Cela pourrait aussi nous permettre de
trouver une matrice associée a 7" (K,um(X4)) et donc M, comme nous allons le détailler dans la partie
2.3.2.

« Ensuite il faudrait chercher une matrice inversible R € GL(8,N) telle que RM R~ ait la forme décrite
précédemment.

* Enfin, prouver que K,um(X4) est bien de dimension 8 pour X trés général nous assurerait que nous ne
"manquons" aucune partie d'une possible décomposition de D*(X,) en considérant M.

Organisation de la thése

Dans la partie 1 nous rappelons plusieurs résultats et notations de [20], que nous allons utiliser par la suite.
Dans la partie 2.1 nous trouvons une premiere famille 7; de 14 éléments dans Knum()~(4) et calculons la matrice
de caractéristiques d'Euler associée a une intersection entre surfaces pres. Dans la partie 2.2 nous donnons une
autre famille 7, de 14 éléments dans Knum(f(4) et la matrice associée M,. Dans la partie 2.3.1 nous donnons
deux matrices de caractéristiques d’Euler entre respectivemrnt 5 et 6 éléments de K,,m(X4). Pour pouvoir
obtenir une base de K, (X4), il faudrait plus de 6 éléments, comme nous l'avons détaillé précédemment.
Cependant il serait intéressant de savoir si les sous-réseaux générés par nos 5 et 6 éléments sont primitifs
dans K,um(X4). Nous nous intéressons briévement a cette question sans parvenir a une conclusion. Dans la
partie 2.3.2, nous expliquons comment trouver une famille dans K., (X4) et la matrice associée en utilisant
une famille de Knllm(X4), sa matrice associée et des foncteurs de mutation a droite. Nous appliquons cette
méthode a la famille F; et calculons une matrice, qui dépend de l'intersection b et qui devrait correspondre a
une famille dans 7* Ky,um (X4). Dans la partie 3 nous donnons une suite de petits résultats sur la géométrie de
X, dont certains nous seront utiles pour calculer des caractéristiques d’Euler. Dans la partie 4 nous détaillons
les calculs de caractéristiques d'Euler entre éléments de F; et dans la partie 5 nous faisons de méme avec
les éléments de F,. Enfin, dans I'annexe 6.1 nous détaillons brievement certains calculs utilisés dans la partie
2.3, dans I'annexe 6.2 nous donnons une autre maniére (pas nécessairement plus rapide mais que nous avons
utilisée pour vérifier certains calculs) de calculer certaines des caractéristiques d’Euler mentionnées dans la
partie 5, et dans les annexes 6.3 et 6.4 nous donnons les codes que nous avons utilisés, respectivement dans
Macaulay2 et Scilab pour calculer certaines des dimensions mentionnées dans la partie 4.2.

0.2 Introduction in English

In this thesis, we are interested in Kichle fourfolds of type c5 over C. For X, a very general such fourfold, the
aim was to compute the matrix M = (x(e;, e;)) where x is the Euler characteristic and the e; give a basis of
the numerical Grothendieck group. Once this matrix computed, finding another basis in which M has a spe-
cific form that will be described below would give a hint on a possible semi-orthogonal decomposition of the
bounded derived category of coherent sheaves on X,. Indeed some similarities with cubic fourfolds in P> and
some Gushel-Mukai fourfolds suggest that there could be such a decomposition.

Short summary

In his article on Calabi-Yau and fractional Calabi-Yau categories [22], A. Kuznetsov gives a Theorem which allows
in multiple cases to find semi-orthogonal decompositions of the bounded derived categories of some smooth
projective varieties.

More precisely, when a functor ¢ : D*(X) — DY(M) between the bounded derived categories of two
smooth projective varieties satisfies some conditions, one can induce a semi-orthogonal decomposition of
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DP(X) if one knows a rectangular Lefschetz decomposition of D*(M) (again under some technical conditions
which we are not going to detail here). This semi-orthogonal decomposition of D’(X) consists mainly in subcat-
egories induced by those of the Lefschetz decomposition of D(M) and their right orthogonal, a subcategory
often referred to as the "Kuznetsov component". Moreover, this same Theorem 3.5 of [22] allows to compute
the Serre functor of the Kuznetsov component.

Some of the Kuznetsov components obtained thanks to this Theorem turn out to be non-commutative K3-
categories, that is to say categories which "look like" the bounded derived category of a K3 surface. In fact, all
the non trivial examples of non-commutative K3-categories known so far arise as Kuznetsov components in the
bounded derived categories of some projective varieties. Furthermore, these non-commutative K3-categories
are believed to be related to the geometry of their associated variety.

Indeed, such non-commutative K3-categories appear as Kuznetsov components of cubic fourfolds in P, and
it has been conjecture by A. Kuznetsov (see Conjecture 1.1 of [18]) that a cubic fourfold is rational if and only if
its Kuznetsov component is equivalent to the bounded derived category of a K3 surface. This condition is not
satisfied for very general cubic fourfolds : the numerical Grothendieck group of their Kuznetsov component
couldn't contain the class of skyscraper sheaf, since it has no non zero element v such that x(v,v) = 0 (see
for instance Remark 3.19 of [24] for more details). Therefore, this conjecture implies that very general cubic
fourfolds are not rational.

Gushel-Mukai fourfolds also have a Kuznetsov component which is a non-commutative K3-category, and it
has been conjectured by A. Kuznetsov and A. Perry in [23] (Conjecture 3.12) that it is equivalent to the bounded
derived category of a K3 surface when the associated Gushel-Mukai fourfold is rational.

Another interesting feature of non-commutative K3-categories appearing as Kuznetsov components is that
in the three families of (non trivial) examples known so far, one can find a corresponding family of Hyper-Kahler
varieties : to a cubic fourfold C corresponds the family of lines in C, to a Gushel-Mukai fourfold is associated
a double EPW sextic, and to a Debarre-Voisin variety, the last family of examples, one can associate a Hyper-
Kahler fourfold in Gr(6, 10). All these examples are listed in section 3.6.1 of [6].

Therefore, it would be interesting to find a new non trivial family of non-commutative K3-categories, ap-
pearing as Kuznetsov components in the bounded derived categories of some smooth projective varieties :
one could then study the relation between these categories and the geometry of their associated varieties.
Moreover, a moduli space of objects in such a Kuznetsov component would carry a symplectic form (see sec-
tion 4.4 of [22] for more details), hence one could also hope to find a corresponding family of Hyper-Kahler
manifolds.

Among all the Fano fourfolds classified by O. Kiichle in [15], three types have a Hodge diamond suggesting
that their bounded derived category could contain a non-commutative K3-category. Out of these three types,
two have been studied in [19] and do not provide new non trivial families of non-commutative K3-categories.
Yet for the third type, namely the type c5, the question is still open.

In [20], Kuznetsov studied the geometry of Kiichle fourfolds of type c5, denoted X, and of some associated
fivefolds, called Kiichle fivefolds of type c5. This allowed him to compute the Chow motive of general Kiichle
fivefolds of type c5. However, a rectangular Lefschetz decomposition of such fivefolds has not been found yet,
and is necessary to apply the above-mentioned Theorem 3.5 of [22], which would be needed to prove the ex-
istence of Kuznetsov components in D®(X,).

Although it is quite complicated to prove directly the existence of a Kuznetsov componentin D?(X,), if such
a component A exists, using some analogy with the cubic fourfolds case we mentioned earlier, it may be possi-
ble to find a basis of the numerical Grothendieck group K,um(A). Indeed, if the analogy with cubic fourfolds is
correct, in an appropriate basis B of K,,m(X4) for very general X, the matrix of Euler characteristics between
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elements of B should have this form :

A % *

0 1 * ok
M = .

: 0 Lok

0o ... 0 1

where A is a matrix of Euler characteristics between elements of a basis of Kp,um(A).

If one could thus find a basis of K, (X4) whose associated matrix of Euler characteristics has the form
above, then the elements of this basis corresponding to the block A would be "good candidates" for being a
basis of Kyum(A). This could therefore give an indication about what a Kuznetsov component in D*(X,) could
be.

This is why the first goal of this thesis was to find a basis of K,.m(X4) (as a lattice over Z), compute the
matrix M of Euler characteristics between elements of this basis, and then look for an invertible matrix R with
coefficients in Z such that RM R~! has the form mentioned above.

However, it turns out to be quite difficult. Indeed, the Hodge diamond of X, suggests that there should
be in K,um(X4) four classes associated to surfaces in X,. Using some results about the geometry of Kichle
fivefolds and fourfolds of type ¢5 given in [20], we manage to find some surfaces in Xy, but unfortunately we
are unable to compute Euler characteristics involving some of them.

Yet, we know from [20] the existence of a blow-up X, of X4, and it may be possible to recover D(X,) from
D"()Q) using right mutation functors. Hence, the second goal of this thesis was to find a basis of Knum(f(4)
and compute the matrix M of Euler characteristics between elements of this basis.

Although we didn't prove there are basis, we found two free families of 14 elements in Knum(X4). For
one of them we computed the associated matrix M up to an intersection number and for the second family
we did compute the matrix of Euler characteristics M, entirely. Yet these two matrices can’t have the same
determinant, which suggests that our two families don't generate the same sublattices of Ky (X4). It would
thus be interesting to know whether any of these families correspond to a primitive sublattice of Kjum(Xy4) or
not.

Definition of Kiichle fourfolds and fivefolds of type ¢5

To start with, let us denote by G the Grassmannian Gr(3,C") and by U3 the tautological sub-bundle on G. A
Kichle fourfold of type c5 is the zero locus of a general global section of U3- (1) ® Us(1) ® Og(1) where Us- is
the quotient of the injection U3 — C” ® Og. For a general enough global section this gives a smooth Fano
fourfold. The name "type c5" comes from the classification, given by O. Kuchle in [15], of Fano fourfolds of
index 1 that can be obtained as the zero locus of a general global section of a direct sum of globally generated
irreducible homogeneous vector bundles over a Grassmannian. Moreover, each Kichle fourfold of type c5 is
a hyperplane section of a fivefold X5 which we will call Kiichle fivefold of type c5. Indeed if X, is the zero locus
of the global section A @ p @ v of U (1) ® Uz(1) @ O¢(1) then we can define X; to be the zero locus of A @ p,
global section of U3-(1) @ Us(1). Then since v is a global section of Og(1) its zero locus H, is a hyperplane
and X, = X5 N H,. In[20], A. Kuznetsov describes the geometry of such Kiichle fivefolds, which allows him to
deduce some geometrical properties of the associated Kiichle fourfolds. We will often refer to this article [20]
and mostly keep its notations.

Kuznetsov components and non-commutative K3-categories

It is expected that the bounded derived category of coherent sheaves on X, denoted by D®(X,), admits an
interesting semi-orthogonal decomposition, by analogy with some other examples and because of the Hodge
diamond of X}.
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Let us first consider the case of cubic fourfolds in P° : these varieties are sections of fivefolds Y5 with a
rectangular Lefschetz decomposition, that is to say a semi-orthogonal decomposition of their bounded derived
category of coherent sheaves as follows :

DY(Ys) =<B,B®L,...,BR L™ >

where m ¢ N, B is a triangulated subcategory of D’(Y;s), £ is a line bundle on Y; and a semi-orthogonal
decomposition D =< Aj,..., A, > is a sequence of full admissible triangulated subcategories such that
Hom®(A;, A;) = 0 for any j > 4 and such that the smallest full triangulated subcategory of D containing
all the A; is equivalent to D (see Definition 1.59 of [14]).

Applying Theorem 3.5 of A. Kuznetsov's [22] gives then a semi-orthogonal decomposition of D®(Y;) :

DY) =< AB.BoL,. . . BoL%%>

where k € N, A is called the Kuznetsov component of Y, and the rest of the decomposition is induced by the
Lefschetz decomposition of D?(Ys). Moreover when Y; is a cubic fourfold, its Kuznetsov component Ay, is a
non-commutative K3-category : its Serre functor is the shift by 2 and its Hochschild homology is the same as the
one of the bounded derived category of a K3 surface. So as a triangulated subcategory of D?(Y}), Ay, satisfies
the Definition 2.31 of [24] given by E. Macri and P. Stellari and is thus a non-commutative K3 category, that is
to say a category that "looks like" the bounded derived category of a K3 surface.

However there exists non-commutative K3 categories that cannot be equivalent to the bounded derived
category of a K3 surface (see for instance Proposition 4.8 of [18]), while bounded derived categories of K3 sur-
faces are all non-commutative K3 categories. Thus, non-commutative K3 categories can be considered as a
"generalisation" of D*(S) for S a K3 surface.

Coming back to our Kuchle fourfolds and fivefolds, one can see by looking at X4's Hodge diamond :

given for instance in the introduction of [20], that it could "contain" the Hodge diamond of a K3 surface. Kichle
fourfolds of type c5 are not the only ones among the Fano fourfolds classified by Kiichle whose Hodge diamond
suggests that their bounded derived category could have a non-commutative K3 subcategory but the two other
"candidates" for having such subcategories (namely Kuchle fourfolds of type d3 and c7) are already known
examples while the fourfolds of type ¢5 could give a new family of non-commutative K3 categories.

Why are we interested in non-commutative K3-categories : conjectured link to rationality and Hyper-
Kahler varieties

Such families of non-commutative K3-categories are interesting for mainly two reasons. First of all, in the case
of a cubic fourfold C it has been conjectured by A. Kuznetsov that C' is rational if and only if its Kuznetsov
component Ac is equivalent to Db(S) where S is a K3 surface.

It has also been conjectured by A. Kuznetsov and A. Perry that the Kuznetsov component of a Gushel-Mukai
fourfold GM, which is also a non-commutative K3-category, is equivalent to the bounded derived category of
a K3 surface when GM is rational.
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These non-commutative K3 categories seem thus to be linked to the geometry of their associated varieties
and it could be interesting to find new examples of them (appearing as Kuznetsov component in the bounded
derived category of a variety), especially since except for the bounded derived categories of K3 surfaces, there
are only three families of known examples so far : the cubic fourfolds mentioned above, Gushel-Mukai four-
folds and the Debarre-Voisin varieties.

Moreover, as detailed by A. Kuznetsov in section 4.4 of [22], to each Kuznetsov component which is also
a non-commutative K3 category it may be possible to associate a Hyper-Kahler variety, hence finding a family
of varieties with a non-commutative K3-Kuznetsov component could also give an associated family of Hyper-
Kahler varieties.

To each of the non-trivial families of non-commutative K3-categories known so far corresponds an associ-
ated family of Hyper-Kahler varieties : these are listed in section 3.6.1 of [6], and we are going to talk about
them more in detail later.

Main difficulty in proving the existence of a Kuznetsov component in D?(X,)

Unfortunately, in the case of Kuchle fourfolds X, of type c5 it is quite difficult to prove that such a Kuznetsov
component exists : indeed in the three families of (non-trivial) examples which are known so far, to prove the
existence of the Kuznetsov component and some of the properties required to be a non-commutative K3 cat-
egory, one has to use Theorem 3.5 of [22]. But using this Theorem in the case of X, would require to know a
rectangular Lefschetz decomposition of D?(X;) and such a decomposition is still to be found.

Yet, it is expected that such a rectangular Lefschetz decomposition exists. In order to be able to use this
type of decomposition (together with Theorem 3.5 in [22]) to induce a semi-orthogonal decomposition of a
Kichle fourfold of type c5 though, we would need it to be of the form described in Example 3.1 of [22]. Since
our Kuichle fourfold X is the zero locus of a global section of Ox, (1) in the associated fivefold X5, we would
then need the line bundle £ of the rectangular Lefschetz decomposition to be Ox,(1). By Lemma 2.8 of [22]
and since we know from [20] that wx, = Ox,(—2), there is then only one possibility for such a rectangular
Lefschetz decomposition :

< Bo, Bo(l) > .

In this case, the proof of Proposition 3.4 and Theorem 3.5 of [22] yield that the Serre functor of the Kuznetsov
component Ay, is the shift [-4 4+ 6] = [2]. Together with the above-mentioned Hodge diamond, it implies
that if a Kuichle fivefold of type ¢5 admits a rectangular Lefschetz decomposition as just described, then all the
associated X, have a Kuznetsov component which is very likely to be a non-commutative K3 category.

While looking for a rectangular Lefschetz decomposition of X5, A. Kuznetsov studied closely the geometry
of general Kiichle fivefolds of type c5 and proved in Theorem 5.3 of [20] that the Chow motive of a general X5
is of Lefschetz type. He deduced from this result the Hodge diamond and the Chow groups of X5, claiming that
explicit generators of the latter can be deduced from his geometrical description of X5.

How to find a hint at what the Kuznetsov component could be without knowing a rectangular Lefschetz
decomposition of D’(X5)

However, we are going here to look at X, rather than X;. Indeed, we know that if a semi-orthogonal decompo-
sition of the form D¥(X,) =< Ax,,B,B®L, ..., BoLZ* > exists, then in a basis of the numerical Grothendieck
group Ky,um(X4) whose elements (e;); belong in order to Ax,, B, ..., B® L®*, the matrix M = (x(e;, €;))i;
should be of the form :

A x ... %

0 BO * ES
M: .

: 0 L%

0 ... 0 By
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where

A= (X(ei7 ej))ei,e_jelellm(AX4)7 By = (X(ei’ ej))ei,ejeKnu[n(B)7 -, Br = (X(ei> ej))ei,ejGKnum(B®£®"')'

Moreover, in the case of the cubic fourfolds it turns out that the triangulated subcategory B is actually generated
by an exceptional object (an element E in D*(C) such that Hom(E, E[m]) = Cdy,,). Furthermore, in the very
general case the matrix A is then of size 2 by 2 so if the Klchle fourfolds of type ¢5 have a semi-orthogonal
decomposition similar to the one of the cubic fourfolds, one can even expect the matrix M to be:

my Mms k... x*
ms my * *
M=1]0 0 1 *
0 0o 0 ... 1

Thus, finding a basis of K,um(X4) in which M has this form would give us a hint about what a semi-orthogonal
decomposition of D?(X,) could be : the first two elements of the basis could correspond to generators of the
Kuznetsov component and the others to exceptional objects generating the B L%/ parts of the decomposition.

Link between the associated Hyper-Kahler and K,,,,(Ax,) : the already known examples

Furthermore, we hope that the part of M associated to the Kuznetsov component of X, is actually :

myp ma2\ 2 —1
(o m)=(5 %)
Indeed to each of the already known families of non-commutative K3 categories corresponds a family of po-
larized Hyper-Kahler manifolds, in a way that allows us to formulate such a hope.
Before detailing this, let us recall that if A := (H?(X,Z), qx) is the lattice associated to a K 3[-type Hyper-
Kéhler manifold X, endowed with its Beauville form (see for instance part 3.5 of [6]), then A is the orthogonal
of a primitive vector v of square 2in A := U®* @ Eg(—1)®2. Moreover, from 3.7.1 of [6] we know that Pic(X) =

vLﬂfXalg. For very general X one can expect Pic(X), which contains the polarization b, to be rank 1. In particular
we then must have h.v = 0. The sublattice of A generated by v and h has then intersection matrix :

2 0

0 h?)°
As detailed below Remark 3.6 in [6], the embedding of this sublattice in A is primitive if and only if the divisibility
of h is 1, this is the so-called "split case". In the "non split case", when the divisibility is 2, together with the

condition h.v = 0 it implies that we can write h = v + 2\ where X is such that A.v = —1 and \? = 2d’ for some
d’ € N. The intersection matrix of the lattice generated by v and X is then :

2 -1
-1 2d")"

By part 2.1 in[13] and (7) in [6], we have that to a smooth cubic fourfold C' corresponds a HK manifold X as
above (namely the variety of lines in C), in the non-split case and with d’ = 1. This is also mentioned in section
3.6.1 of [6] : the case of cubic fourfolds corresponds to ¢(h) = 6 and v = 2, while Debarre-Voisin varieties
and their associated HK manifolds (namely the zero locus of some vector bundle on Gr(6, 10)) correspond to
q(h) =22 and v = 2, thatis to say d’ = 3 in the non-split case. Finally Gushel-Mukai varieties are in correspon-
dence (see [5]) with the case ¢(h) = 2 and v = 1, in other words h? = 2 in the split case : their associated HK

Finally we have h? = (v + 2)\)? = 8d' — 2.
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varieties are called double EPW sextic.

However, we don't know examples of the non-split case when d’ = 2 (which corresponds to ¢(h) = 14 and
~ = 2 with [6]'s notations). Since the examples for d’ = 1 and 3 both arise in relation with families of Fano
fourfolds whose bounded derived category admits a non-commutative K3-Kuznetsov component, one could
hope that if the bounded derived categories of Kuchle fourfolds of type c5 indeed contain a new family of such
K3-categories, then there is a family of associated HK manifolds which will provide an example of the non-split
case with d’ = 2.

If it was the case, the intersection matrix of K,um(Ax,), for X4 very general, should be of the above-
mentioned form, provided that it is, similarly to the already known cases, isomorphic to the lattice generated
by v and X of the associated HK manifold (see part 3.4 of [24] for more details).

Itis also expected (as before, from what happens in the case of the cubic fourfolds, Gushel-Mukai fourfolds
and Debarre-Voisin varieties) that this HK manifold could parameterize some geometrical objects or be isomor-
phic to a moduli space of stability conditions on Ax,. Finally, in such a case very general Kichle fourfolds of
type ¢5 would give rise to a family in the moduli space 4/\/15? of polarized HK fourfolds of K3[-type such that
h? = 14 and div(h) = 2, which is believed to be unirational, again by analogy with the already known cases.

First goal
The first goal of this thesis was therefore the following :
« find a basis (e1, ..., e,) of Kpum(X4) over Z;

+ compute the matrix M = (x(es, e5))1<i,j<n Whose coefficients are Euler characteristics between elements
of our basis;

« find a matrix R € GL(n,Z) such that RM R~ has the form mentioned earlier.

How to find a family in K,,,,,(X4) which could be a basis

According to the Hodge diamond of X4, if D?(X,) admits a semi-orthogonal decomposition as described above
and if the Kuznetsov component induces a 2-dimensional subspace of K,um(X4), then for X, very general
Kum(X4) should be 8-dimensional. Moreover, in this case, for X, very general we should have that in a basis
of Knum(X4), five elements should come from H?(X,) (assuming we can recover the structure sheaf of a line
and a skyscraper sheaf from these five elements), and three from H*(X,).

Therefore, to start with, we look for a free family of eight elements in K,,m(X4) such that five elements
come from line bundles and the three others are associated to structure sheaves of surfaces in Xj,.

As elements associated to line bundles we can simply take {Ox,, Ox, (1), Ox,(2), Ox,(3), Ox,(4)} (we will
actually see later that this would only give a sublattice of K,,m(X4), and will thus replace the last two line
bundles by the structure sheaf of a line and a skyscraper sheaf); the corresponding coefficients of M can then
be computed using Borel-Bott-Weil Theorem.

Concerning the last three elements however, things become more complicated. We can use the description
of the geometry of general Kiichle fourfolds and fivefolds of type c5 given in [20] to find surfaces whose struc-
ture sheaves will give the last three elements in our basis. In particular, as proved in [20], for general X, there
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is a diagram :

Dy —>X, : D,
AN N

Yo ——= Xy X4<LZ3<7F1

So

where the indices give the dimension of the associated varieties, and = and 7 are blow-ups of the fourfolds X4
and X4, respectively in ¥, and Z3 with respectively exceptional divisor D3 and exceptional locus D5. The maps

o= = - . . - .
i,1, 7,7 and j are embeddings, Z3 is a scroll over Sy and Ds is a ruled surface over the curve I';.

There are three surfaces which appear in this diagram : £, Dy and S,. However neither S, nor D, are
actual surfaces in X,; we can use them to induce such surfaces but in both cases it requires to project surfaces
in X4 to X4 using the contraction «r. Unfortunately, it is quite complicated to understand whether the images of
these surfaces by 7w have "bad" contractions or not, which makes it very hard to compute Euler characteristics
involving them. This is why we didn’t manage to complete our first goal, and adopted a new strategy, with the
help of Benjamin Sung.

We can look at K, (X,) instead

On the other hand, looking at a matrix of Euler characteristics between elements in a basis of Knum(X4) instead
of K,um(X4) turns out to be easier, since in this case we don't have problems with contractions. It may also be
possible to recover the matrix M related to X, from the one, let us denote it M, related to X, using mutation
functors and the semi-orthogonal decomposition of D?(X,) given by Theorem 3.5 of [2]. Indeed this Theorem
allows to find a semi-orthogonal decomposition of bounded derived categories of blow-ups. All this is detailed
in subsection 2.3.2.

Moreover, as we will see, the determinants of these two matrices M and M are equal, hence if there is
indeed a basis in which the matrix M has the above-mentioned form, then we can expect this determinant to
be mim4 — mams, which we hope thus to be 7 as mentioned earlier.

Second goal

Our second goal became then to find a basis of Knum(f(4) over Z and then compute the associated matrix of
Euler characteristics.

Main results

In section 2.3.1 we compute the following matrix :

1 20 124 1
1 1 20 O
My = (x(eiej)h<ijes= (20 11 1
0 -1 -2 0
1 1 1 0

OO~ P~

where
(617 ceey 65) = (OX4, OX4(1), OX4 (2), Ol, Op)

with O, the structure sheaf of aline in £, and O,, a skyscraper sheaf. It corresponds to a sublattice of Kyym(X4),
but unfortunately it is not clear whether this sublattice is primitive or not.
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Adding a sixth element e := Og, to the family {ey, ..., e5} gives then the matrix :

1 20 124 1

My = (X(eiaej))lgi,jge =

OO O ===
N OO 3+

Yet as discussed above, we are still missing at least two elements to be able to hope that we are considering a
basis of Kyum(X4).

In section 2.1.2, we consider a free family F; of 14 elements in Knum(f(4), which seems to be a "good
candidate" for being a basis. We can compute the associated matrix of Euler characteristics only up to an
intersection number b, which gives :

100 -1 -1 -1 1 2 3 -1 0 3 00

010 -1 -1 -1 1 2 3 -1 0 3 00

001 -1 -1 -1 1 2 3 -1 0 3 00

000 1 3 6 -1 —-7-19 -5 12 10 0 O

000 O 1 3 0 —3-12 —6 124b 19 0 O

- 000 O 0 1 0 0 —6 —6 1242b 28 0 O
M = 000 O 0 0 1 20 124 O -12 1 11
000 O 0 0 1 1 20 0 0 37 01

000 O 0 0 20 1 1 12 156 127 —11

000 -1 1 4 1 7 19 1 -36 56 0 O

000 36 36+4b364+2b —36 0 180 —156 48 —24 0 O

333 —-42 -33 —24 79 79 206 76 —24 —4 0 O

000 O 0 0 0 -1 -2 0 0 0 00

000 O 0 0 1 1 1 0 0 0 00

In section 2.2, we consider another free family 7, of 14 elements in Knum(X4) which may be a basis if
K (X4) is 8-dimensional, and the matrix of Euler characteristics between elements of this family is :

1 20124 1. 0 1 1 1 1 1 —-12 1 11

1 1 20 1 010 2 2 2 1 0 011

20 1 1 7 0 43 11 11 11 7 156 —111

0O 0 O 1 1 1 -1-1-10 -84 010

-1 -7-19 -1 1 -2 -2-2-2-212 0 10

_ 0 24 72 10 10 -1 0 0 O 0 =12 0 00
]\42 — 0O 6 20 2 2 0 1 0 0 0 -4 000O0
0O 6 20 2 2 0 0 1 0 0 —4 000

0O 6 20 2 2 0 0 0 1 0 -4 00O00O0

1 7 19 2 0 0 0 0 0 2 0 000

—36 0 180 —6036 —12 —4 -4 -4 0 48 0 00

O -1-2 0 0 0 O O O O O 0O0O

0O 0 O 1 1 0 0 0 0 O 0O 000

1 1 1 0O 0 0 O 0 O O O O0©O0O

We are missing one intersection number (namely b) between two surfaces in X, to be able to use right
mutation functors and find a family in 7* K,,m (X4) induced by F,. Yet we can express the images of these
mutation functors we are interested in, in terms of this intersection number b. The associated family and
matrix are detailed in section 2.3.2, still in terms of b. This new approach is based on the ideas of Benjamin
Sung.

What could be done next

Before being able to get an intuition about a possible semi-orthogonal decomposition of D’(X,) there are thus
at least four steps missing :

* One should check that the matrices we obtained (or at least some of them) do not correspond to strict
sublattices of Kyum (X4) or Knum (X4).
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* One should compute the intersection number b we are missing. This could also allow one to find a matrix
associated to 7* (K,um(X4)) and thus M, as we will discuss in section 2.3.2.

* Then one should look for an invertible matrix R € GL(8,Z) such that RM R~! has the above-mentioned
form.

* Finally, proving that K,um(X4) is 8-dimensional for X, very general would insure us that we would not
be missing any part of a possible decomposition of D*(X,) by studying M.

Organization of the thesis

In section 1 we recall various results and notations from [20] which we are going to use all along. In section 2.1
we find a first family F; of 14 elementsin Knum(X’4) and compute the associated matrix of Euler characteristics
up to an intersection number. In section 2.2 we give another family 7, of 14 elements in Knum(fQ) and the
associated matrix M. In section 2.3.1 we give two matrices of Euler characteristics between respectively 5 and
6 elements in Kyum(X4). In order to get a basis of Ky,,m(X4), one would need more than 6 elements, as we
detailed it previously, yet it would already be interesting to know whether the sublattices generated by our 5 and
6 elements are primitive in K, (X4). We briefly discuss this without reaching a conclusion. In section 2.3.2,
we explain how we hope to find a family in K,,um(X4) and the associated matrix using a family in Knum(X4), its
matrix and right mutation functors. We apply this method to the family 7; and compute a matrix, depending on
the intersection number b, which should correspond to a family in 7* Ky,um (X4). In section 3 we give a collection
of small results about the geometry of X, some of which will be used to compute some Euler characteristics.
In section 4 we detail the computations of Euler characteristics between elements of 7; and in section 5 we do
the same with elements of F5. Finally in Appendix 6.1 we briefly detail some calculations used in section 2.3,
in Appendix 6.2 we give another way (not necessarily faster but which we used to check some calculations) to
compute some of the Euler characteristics appearing in section 5, while in Appendix 6.3 and 6.4 we give the
codes we used in respectively Macaulay2 and Scilab to compute some dimensions mentioned in section 4.2.
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Chapter 1

Some results on the geometry of Kuichle
fourfolds and fivefolds of type c5

In this section we are going to recall some results and notations from [20] which we are going to use in the next
sections.

In his article [20], A. Kuznetsov describes the geometry of general Kiichle fivefolds of type c5, in particular
he shows that under some general assumptions that we are going to mention later, such a Kichle fivefolds X5
contains a threefold F3, such that the blow-up of X5 in F3 is also the blow-up of another fivefold in a smooth
scroll over a del Pezzo surface of degree 6. This will be mentioned in Theorem 1.2.1 below. Moreover, since
each Kuchle fourfold of type c5 X, is a hyperplane section of a Kuchle fivefold of type ¢5, the results about
the geometry of X5 induce similar statements for X4, which are gathered here in Theorem 1.2.3. We will need
Theorem 1.2.3to find elements in Ky,,m(X4) and Knum(fQ) associated to structure sheaves of surfaces (namely
Y2, Do and a blow-up of ;). Since these surfaces actually come from the geometry of X5, we will also need a
lot of the results about X5 in [20] to compute the associated Euler characteristics. We will then keep the same
notations as in [20] in most cases.

1.1 Notations and assumptions

First of all, here is a list of some notations and conventions we are going to keep from [20].

« If V is a vector bundle over a scheme S then p : Pg(V) — S is the associated projective bundle and O(1)
(also denoted sometimes O(Vp,(y))) will be the ample generator of the relative Picard group such that
p.O(1) =2 VY,

Unless otherwise mentioned, all functors will be considered to be derived so for instance f. will actually
mean R* f,.

« W will be a 7-dimensional vector space over C and we will denote by Uy, a k-dimensional vector subspace
of W.

« We will denote by U, the tautological sub-bundle of Gr(k, W) and define U- := (W/Uy)Y where (W/Uj,)
fits in the following short exact sequence : 0 — Uy, — W @ Ogre,wy — W/Ur — 0.

Let ¢ be a p-form on a vector space V and U C V a vector subspace of dimension k. Then we will say that
U is ¢-isotropicif k > pand A*U e ¢ =0, wheree: A"V & A\°VY — A" * V is the convolution induced
by the pairing V@ V¥ — Cforr > s.If k <pand ¢ e /\k U = 0 we will say that U is annihilated by ¢.
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By definition, a Kiichle fivefold of type c5 is the zero locus of a global section of ;- (1) @ Us(1) in Gr(3,7), and
a Kuchle fourfold of type c5 is the zero locus of a global section of ¢3-(1) ® Us (1) ® Oy 3,7y (1) in Gr(3,7). We
will always denote by A, u and v, global sections of respectively ¢3- (1), U3(1) and O(1) on Gr(3, W). Then Xis a
4-formon W, pis a 2-form on W and v is a 3-form on W (see the introduction of [20]). We will also denote by
X! and X! the associated fivefold and fourfold. However when there is no confusion about which global
sections we are considering, we will simply use X5 and Xj.

Moreover, we are going to make the same assumptions as in [20] in order to insure good properties of X5 and
X4 (for instance smoothness). Theses assumptions are mainly taken from section 3 of [20].

+ We assume that the same assumptions on A, 1 and v hold as in the article. In particular this implies, using
again the same notations :

1. rank(u) = 6 and W = Cwy & W where u(wo,.) = 0 on W and p is non degenerate on W.

2. We can write A = wy A XA+ X\ where X is a 4-form on W and X\ is a 3-form on W.

3. We can write W = Ay & Ay with A; =< 1, 29,23 >, Ay =< m4,25,26 > and A= T123 + T456,
N = Ti56 + T1346 + T23s5. Moreover, X induces a non degenerate pairing between A® A; and
A’ As.

4. In the basis mentioned just above, we have u? = A p = My21456 + Mawoase + M3w3as6 + Myw1234 +
Msx1235 + Mew1236 + K172345 + KaT1346 + K37 1256 and

0 MK —Ms Ko M1 M,y My M Ko Ks+M;y Mg
—MiKs 0 MgK, Mo M, K1 K5+MyMs Mo Mg
_ MsKo —MgK, 0 K1 Ko+ MM, M Ms M3 Mg
H= — My My — Mo M, — K1 Ka—MsM, 0 MK, — MoK
— M Ms; — K1 K5—MsMs —Ms5Ms; —M K, 0 MsKs
— Ko K5— My Mg — Mo Mg — M5 Mg MyKo —MsKs 0

Moreover the K; are pairwise distinct, all the M; and K are different from 0 and we assume :
M MgKy + MoMs Ko + MsMyKs + K1 Ko K3 %O (1.1)

5. We assume that x induces a non degenerate pairing between A; and A, and that the A; are not
Lagrangian for p.

6. We will denote by Uy, 4, a k-dimensional vector subspace of A4;.
Moreover if Uz 4, @ Uy 4, is w isotropic then X does not annihilate it. Similarly, if Uy 4, ® Us 4, is i
isotropic then A’ does not annihilate it.

« We will denote by U}, a k dimensional subspace of W and by U, the tautological subbundle of Gr(k, W).
« Unless otherwise mentioned, for any vector space U, U+ will denote the p-orthogonal of U.

Finally here are some more notations and results that we take from section 4 of [20]. We will use them for the
statement of the main results from [20].

* SGr,(3,W) is the subset of Gr(3, W) parametrizing all the U3 C W which are y isotropic.

« Under the above mentioned hypothesis, X5 is a smooth Fano fivefold which parametrizes the Us ¢ W
annihilated by A and p isotropic.

* X5 = SGr,(3,W)x parametrizes all the Us C W which are x and X isotropic.
* SF1,(3,4; W) C SF1(3,4; W) parametrizes all the Us C Uy C W such that Us and U, are p isotropic.
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1.2 Main results

Here are the main results of [20] that we are going to use all along the next sections. Some of these results
are gathered here in one Theorem or Proposition, but it is indicated next to each of these in parenthesis from
which parts of [20] they are taken.

Theorem 1.2.1 (Theorem 4.2, section 4.2, section 4.3, Proposition 4.13, section 4.6, Proposition 4.6, section

4.4). If X5 is a Klichel fivefold as defined in the previous subsection, we have the following diagram :
E4—>X5<—E4 (1.2)
Fy —> X;
Sa
Where
1. i and i are embeddings.
2. The maps having the label P* have fibers isomorphic to P!,
3. wisthe blowup of X5 in F3, E4 is the associated exceptional divisor.
4. 7 is the blowup of X5 in Z3, E, is the associated exceptional divisor.
5 F3 = FI(1,2; Ay) = FI(1,2; Ay) and Fs parametrizes all the Us € X5 such that Us = Cwo @ Us.
6. X5 C SF1,(3,4; W) parametrizes the Us C Uy such that both Us and Uy are v and X isotropic.
7. mis induced by the map SF1,,(3,4; W) — SGr,, (3, W) which is defined by Us C Uy + Us so w(Us, Us) = Us.
8. wisinduced by the map SF1,,(3,4; W) — SGr,,(3, W) which is defined by Us C U3®Cwg — Uz sow(Us, Uy) =
Uy/ < wo >. This is well defined since we assumed that 1 has rank 6 on W, thus a 4-dimensional sub-vector
space Uy is p-isotropic only if it contains wy.
9. Z3 = SGr,(3, W) XGea,w) Grary (5,w) (4, Us) and Zs parametrizes all the Us & Cwo C Uy & Cwy such that
Uyis N\, X and p A pisotropic and Us is i isotropic.
10. 0(Us,U,) = Uy Sz parametrizes the Uy, = Us a, @® Us, a, such that Uy is N-isotropic and U, C Usis
2-dimensional. B . B o o
The fiber of o for a given Uy is then {< U, ,v >C Uy, v € Uy/U, } 2 P(U /U, ) 2 P!
11. Sy is a del Pezzo surface of degree 6. It is cut out by two divisors of bidegree (1,1) in P(A* A1) x P(A\* Ay). If

h; is the hyperplane class on /\ A; then wg = O(—hy — hs).

The following Proposition is a technical result that we will use later.

Proposition 1.2.2 (Section 4.4, Lemma 4.8, Corollary 4.9).

1.

Z3 =Ps(Vs) where Vs is a rank 2 vector bundle on Ss defined by the short exact sequence
0 — O(—h1) @ O(—hg) = Uz, DUz 4, — Vs — 0. (1.3)

Moreover Vs is selfdual (since it is of rank 2 and ¢, (Vs) = 0).
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2. There are smooth rational curves C, Cy C Sy such that C; € |h;| and the following conditions are equivalent

* p=Usa, ®Uz 4, € S2isin C,.
* Us, 4, Is 1 isotropic.

* u; € Us 4, where ; is a generator of AZ# N A; (which is one dimensional since we assumed that A; is not
u-Lagrangian).

* U a, N (Us,a, ® Uz a,)" is 1-dimensional.

3. There exists smooth rational curves Cy, Cy C Zs such that C; = C; (and o(C;) = Ci) and Us C Us, 4, ® Uz, a,
isin C; if and only if Us 4, C Uz with i € {1,2}. Moreover, C; N Cy = 0.

Finally, here are the main results about the geometry of X, that we will use :

Theorem 1.2.3 (Theorem 5.1). /fXjf’A"’ is as defined in the previous subsection, with v defined up to A(w,.) and
wAwvforanyw € Wand v € WY, then we have the following diagram :

D3 H X4 <; D2 (1 4)
Yo —> Xy Xy<—2Zs<—1
a’ipl
So

Where :
1. The maps i, i, ® and 7 are induced by the corresponding maps in (1.2).
2. The maps having the label P have fibers isomorphic to P!,
3. wis the blowup of X4 in X5 and D5 is the associated exceptional divisor.
4. 7 is the blowup of X 4 in Z3 and D is the associated exceptional locus.
5. X4 has singularities along the curve T'y.
6

. X4 = X5 N H, where H, is the hyperplane which is the zero locus of the global section v of Og.(3,w)(1). Thus
X4 parametrizes the Us C W which are p and v isotropic, and annihilated by .

7. 39 = H,NF3is a del Pezzo surface of degree 6. It is cut out by two divisors of bidegree (1,1) inTP(A;) x P(As).
If h; is the hyperplane class on A; then wy, = O(—hy — hi)'
Since X9 C F3 we have that Us € Y5 only if U3 = Cwy @ Us.

8. D3 = Yo X, E4 is the preimage of ¥ by .
9. X4 = X5 xx, X4 is the preimage of X4 by .

10. X4 is cutin X5 by the pull back of v to X, : it is a quadratic section of X 5 containing Zs.
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1.3 Divisors and projective bundles

Here we are going to recall some results and notations about some divisors and projective bundles that appear

in [20] and are also going to be useful for us.

Proposition 1.3.1 (section 4.7, Lemma 4.14, section 4.4). We have Ey = Pr(Vr), E4 2Pz (Vz) and Z = Pg(Vs)

with Vs defined by (1.3), Vr is the monad of

on F3 and there is a short exact sequence

3 2
0= Vz = NUs® \Us — O(=h1) ® O(—hy) — 0

on Zs.
Moreover, we have _ . .
0— O(=h1) ® O(=h2) — U3 — O(=Vz) — 0

on Zs.
Corollary 1.3.2 (Theorem 5.1). As a result, D3 = Px, (Vr|s,) and Dy = Pr(Vz|r).
Definition 1.3.3 (Section 4.7). We are going to use the following notations :

* h; is the hyperplane class on P(A;).
« h; is the hyperplane class on P(\* A;).

* Vg is the hyperplane class on Ey = Pr(VF) (thus the pushforward of Og, (VEg) on F is V).
« Vi is the hyperplane class on E4 = P4 (V) (the pushforward of Oz, (V) on Zs is V).
* Vy is the hyperplane class on Zs = Ps(Vs) (the pushforward of Oz, (V) on S is V).

* his the hyperplane class on Gr(3, W).
« h is the hyperplane class on Xs.

* e s the class of E4 and € is the class of E .

(1.5)

(1.6)

(1.7)

Most of the times pull backs or restrictions of these hyperplane classes to various varieties in (1.2) and (1.4) will keep

the same notation.

Lemma 1.3.4 (Lemma 4.15, Remark 4.7). In Pic(X5) the following holds

In Pic(F3) we have
h = hy + ha.

In Pic(E,) we have
VE = —e€.

In Pic(Zs) and CH?(Z3) we have

R=Vg+hi+hs, Ty =hy="hihy="hh=0.
In Pic(E4) we have
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(1.8)

(1.9)

(1.10)
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In Pic(Ss) and CH?(S,) we have
Tihs =2, hi=Tho=1 (1.13)

In Pic(22) and CH?*(X,) we have
hihy =2, h2=hZ=1. (1.14)

In CH?(Z3) the curve Ty defined in (1.4) has class :
[[1] = 4Vz(hy + hg). (1.15)
Lemma 1.3.5 (Lemma 4.16). In CH?*(E,), CH?*(E4) and CH?(Zs) respectively, the following hold :

VE = —hihy, (1.16)
V2 =3Vz Vi + 2V(ha + ha) — 4Vz(hy + hs), (1.17)
V2= —hihs. (1.18)

1.4 Embeddings of blow-ups

In this subsection we are going to recall a result from A. Kuznetsov, namely Lemma 2.1 of [20], which we are
going to use to find embedded surfaces in a smooth variety X later. In [20] the Lemma is stated for S an
irreducible Cohen-Macaulay scheme but since we are only going to use it for smooth varieties, we are going to
consider only such varieties here. The proof follows very closely the one from [20].

Lemma 1.4.1. Let £ and F be vector bundles of rank respectively r + 1 and r on a smooth variety S. Let ¢ : € — F
be a morphism of vector bundles and let Dy (¢) denote the kth degeneracy locus of ¢. Letp : Ps(E) — S be the
projective bundle and Op £y (1) be such that p.(Op(g)(1)) = EY. If codim(Dy(¢)) > k + 1 for all k > 1 then there
is an isomorphism between the blow-up of S in D1(¢) and the zero locus of the global section of p*(F) @ Opg(1)
induced by ¢ in Ps(&). The line bundle corresponding to the exceptional divisor of this blow-up is then isomorphic to
p*det(£Y) @ p*det(F) ® Opy(e)(—1) restricted to the zero locus of the section induced by ¢ on Pg(E).

Finally if Do(¢) = 0 then the exceptional divisor in Ps(E) is isomorphic to the projectivization of the rank 2 vector
bundle Ker(|p, (4))-

Proof. First of all, the global section of p*(F)(1) induced by ¢ comes from the isomorphisms : H*(£,F) =
H*(O0s, F @ EY) = H*(Os, F @ p.(0(1))) = H*(Os, p«(p*(F) ® O(1))) = H*(Opge), p*(F)(1)).

Let us consider now ¢V : F¥ — EV. Itis injective outside of D;(¢) hence by assumption outside of a codimen-
sion 2 locus. Thus it is an injective morphism, since FV is torsion free. Let C be its cokernel.

Let us show that C is torsion free. We have a short exact sequence 0 — F¥ — &Y — C — 0 that induces (by

dualizing) the long exact sequence 0 — CY — & L F Ext(C,05) — 0, since &Y and FY are both locally free
so Extt(EY,05) = 0 = Ext'(FV, Og) for all i # 0. Moreover since ¢ is surjective outside of D;(¢) we have that
supp(Ext!(C,0s)) = D1(¢) and is thus codimention at least 2. Therefore (see for instance [14] page 78 below
the definition of F*V), Ext?(Ext  (C, Og), Os) = 0 for all ¢ < 1. So splitting the previous long exact sequence in
short exact sequences and dualizing gives the exact sequences :

0 — Ext’(Q,05) = £V = CVY — Ext1(Q,05) = 0 (1.19)

since £ is locally free, and
0 — Ext’(Ext' (C,05),05) =0 = FV = Ext°(Q, Og) — Ext' (2t (C,05),05) =0 — (1.20)
0 — Ext'(Q, Og) — Ext*(Ext' (C, Og),05) — 0 (1.21)

where Q is the cokernel of the map C¥ — &, and since F is locally free. Then (1.20) gives F¥ = £xt%(Q, Os)
and (1.21) gives Ext1(Q, Og) = Ext?(Ext!(C, Og), Os), and plugging these two isomorphisms in (1.19) gives the
short exact sequence :

0= FY =&Y =V — Ext?*(Ext' (C,05),08) — 0.
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So C < CVY hence C is torsion free since CVV is torsion free. §

Let us consider now £¥ = &Y @ A"(EYV ® €) = det(EY) @ A€ A det(EY) @ N"F = det(EY) ® det(F).
The composition (A" ¢) o ¢V is identically zero on FV. Indeed let z € S be a point, then ¢\ : F) — &Y
sends a morphism f : F, — Og,to fo¢: & — Og,. Inother words, ¢ sends Ker(f) € Gr(r — 1, F,) to
Ker(f o ¢) D Ker(¢) # 0 in Gr(r,&;). Thus (A" ¢)(A" Ker(f o ¢)) = 0and (A" ¢) o ¢V = 0. As a result there
is an induced morphism from C to det(€Y) @ det(F) : for each z € S there is an isomorphism C, = £ /¢(F,))
which we can compose with A" ¢, to get a morphism C, — (det(£Y) ® det(F)),.. Moreover, outside of D;(¢),
¢ is surjective so A\" ¢ is surjective on the line bundle det(£Y) @ det(F), and C is of rank one and torsion free so
the induced map C — det(£Y) ® det(F) is an isomorphism outside of D, (¢). Again since by hypothesis D1 (¢)
has codimension at least 2, and since C is torsion free, this map is then injective on all of S. Finally, A" ¢, = 0 if
and only if dim(im(¢,)) < r thatis to say if and only if x € D;(¢), and outside of D;(¢) we have seen that since
¢ is surjective \" ¢ is surjective as well. So we have an exact sequence :

0= F¥ 25 &V AL det(£Y) ® det(F) — (det(€Y) ® det(F))|p, () — 0. (1.22)

Let us denote by S the zero locus of the section of p* F ® O(1) induced by ¢ on Pg(€). Since p* F(1) is a vector
bundle of rank r and Pg (&) is a smooth variety of dimension dim(S)+, then any component of S has dimension
at least dim(.S). Moreover, outside of D;(¢), CY has dimension 1 and on Dy (¢) — Dy11(¢), C;/ has dimension
k + 1, so by definition of Pg(£), the fibers of S over S are projective of dimension k over Dy (¢) — Dy 1(¢) and
S is in bijection with S outside of D;(¢). Therefore p|5 gives an isomorphism between p~1(S — Dy (¢)) N S and
S — Di(¢), and for each k > 1, p~1(Dy(¢)) N S is of dimension dim(Dy(¢)) + k < dim(S) since by hypothesis
Dy(¢) has codimension at least k + 1 in S. So S is irreducible (otherwise it would contradict the irreducibility
of S), it has the same dimension as .S, and p|§ : S — S is birational.

Let us now compute p.Oz(1). Since dim(S) = dim(S) = dim(Ps(E)) —rank(p* F @ Opg(e)(1)), by Exercise 17.20
of 17.6 of [7], the Koszul resolution gives a resolution of Oz as follows :

T 2
0— /\(p*];-V) X O]ps(g)(fr) — ... /\(p*fv) (24 OPs(f)(72) — p*fv (24 O]ps(g)(*l) d)—) Ops(g) — (95-, — 0.

Twisting this resolution by Op, (¢ (1) and taking its pushforward by p gives then the exact sequence :

e PG EY 5 p(04(1) 0

since p.Op()(1) = £ and since p, (p*FY) = F. Indeed, R*p.(Op,(e)) = O : R°p.(Opg(g)) = 0+ (Opy(e)) =
Os (see for instance Proposition 7.11 of 1.7 of [12]) and R*p,.(Op,(e)) = 0 for k # 0 (see for instance Exercice

8.4 a) of 1.8 of [12]). Thus p.(p*F") = F" @ p.Opy(e) = F". Finally we have already seen that 7 2y EVis
injective, so we have a short exact sequence :

0 F eV p«(05(1)) = 0.

But this short exact sequence combined with (1.22) gives us : p,Og(1) = Zp, (4) ® det(EY) ® det(F). Thus since
det(£Y) and det(F) are line bundles, p : S — S is the blow-up of S in D;(¢).

Finally, we have then that p, (p*det(€) ® p*det(F") ® Oz(1)) = Ip, (4) S0 the line bundle corresponding to the
exceptional divisor of this blow-up is p*det(£Y) ® p*det(F) ® Og(—1). Indeed if £ is the line bundle associated
to the exceptional divisor, then by definition, p*Zp, ) = LY, which implies p.p*Zp, () = Ip,(4) ® P+Og5 =
ID1(¢) = p*L\/'

If Do(¢) = 0, then as we have seen before S has projective fibers of dimension 1 over D;(¢) and is isomorphic
to S outside of Dy (¢), so the exceptional divisor is given by the projectivization of C¥ over D;(¢), that is to say
by the projectivization of Ker(¢|p, (4)). This is a rank two vector bundle because D (¢) = (). O
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Chapter 2

Two free families in Knum()Q), a free
family in K,,;,(X,), and the associated
matrices of Euler characteristics

In this section, we describe the partial results we found regarding the study of (K ,um(X4), x) and (Knum(X'4), X)-
In particular, we give all the Euler characteristics which we have computed between elements of Kpum(X4) Or
Kpum(X4) (the calculations are detailed mainly in section 4 and 5).

As explained in the Introduction, our first goal was to find a basis of K,,m(X4) over Z and then compute
the matrix whose coefficients are the Euler characteristics between elements of this basis. Yet this turned out
to be quite difficult, so we tried instead to find a basis of Knum(fQ) and compute the associated matrix of Euler
characteristics.

In subsection 2.1, we find a family F; of 14 elements in Knum(f(él) which will turn out to be free. We then
give the associated matrix up to an intersection number b in Proposition 2.1.5.
In subsection 2.2, we find a second family 7, of 14 elements, whose associated matrix is given in Proposition
2.2.1.

Although we didn't manage to find a basis of K,,um (X4) and compute the corresponding matrix of Euler char-
acteristics, we did find a free family of 6 elements in K,,,;, (X4), and we give the associated matrix in Proposition
2.3.1in subsection 2.3.1.

It would be interesting to know if this family generates a primitive sublattice of K, (X4). Indeed, in such a
case it may be possible to complete our family of 6 elements into a basis of K, (X4) over Z. On the reverse,
if the sublattice is not primitive, one could only complete our family into a basis over Q. This could be an
indication that this family is not the most appropriate one to start studying (K,um(X4), x) as a lattice over Z.

We discuss this issue a little, still in Proposition 2.3.1, and we ask the same question about a subfamily gen-
erated by 5 of our 6 initial elements. Yet we fail to give an answer to this primitivity question in both cases.

Finally, in subsection 2.3.2 we explain why we hope to be able to recover a copy of the lattice (Kyum(X4), X)
in (Kuum(X4), x), using mutation functors. Unfortunately, to do so we need to apply some mutation functors
to a sheaf whose image will then depend on the intersection number b mentioned previously. We thus give a
matrix which should correspond to a family of K,,um(X4) (yet we don't know if this family would correspond to
a primitive sublattice or not), but only up to this number b.
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2.1 Afirstfamilyin Knum(fQ) induced by elementsin K ,,,,,(X,) and K, ()

In this subsection, we consider a first family in K. (X4) which is a "good candidate" for being a basis, and we
give in Proposition 2.1.5 the corresponding matrix of Euler characteristics, up to an intersection number b.

2.1.1 A semi-orthogonal decomposition of D’(X,)

In what follows we use a Theorem from A. Bondal and D. Orlov to find a semi-orthogonal decomposition of
DP(X,). We will then use this decomposition to build a family in K., (X4) which will turn out to be free, and
which may be a basis.

Before going further, let us give more precise names to some of the maps appearing in (1.4). Let us denote:

D3 *j>)~(4

¥, *Z‘>X4
l¢
PQ

where as later in subsection 4.3.1 and Definition 4.3.3, ¢ is the blow-up of P? in three points with exceptional
divisors E1, E5 and E3 in X,.

Lemma 2.1.1. There is a semi-orthogonal decomposition :

D'(%5) =< O, (E1), O, (Bs), O, (Es), ¢* D" (P?) >
=< OEI (El)v OE2 (EQ)v OEs (E3)a 0227 022 (hl)v OEQ (th) >

Proof. This comes from the fact thatif T 1, P2 s the blow-up of P? in a point p with exceptional divisor E, then
by Theorem 3.5 of [2] there is a semi-orthogonal decomposition D*(T) =< Og(E), f*D(P?) >=

< Og(E), f*Opz, f*Op2(1), f*Op2(2) > where for the last equality one can use for instance Corollary 8.29
in [14]. One can then conclude using the fact that X, is the blow-up of P(A;) in three points together with
Definition 1.3.3. Indeed Remark 4.7 of [20] still applies when S, is replaced by ¥, and the /\2 A; by A; for
i € {1,2}, because both S5 and 3, are degree 6 del Pezzo surfaces cut out by two divisors of bidegree (1,1) in
P? x P2, O

Using again Theorem 3.5 from [2] one can then find :

Lemma 2.1.2. Thereis a semi-orthogonal decomposition Db(f(4) =< 5.0g, (E1=VE), j+Og,(E2—VE), j.Op, (E5—
VE)’j*ODS(_VE)7j*OD3 (hl - VE)7j*OD3 (2h1 - VE)aﬂ-*Db(X4) >.

Corollary 2.1.3. for any F €< j.Og, (E1 — Vi), j«Op,(E2 — Vi), j+Og,(E3 — Vi), j+Op, (—=VE), j«Op; (h1 —
Vi), 3:0p,(2h1 — V) > and any 0 < i < 4, one has H*(n*Ox,(ih), F) = 0.
2.1.2 The family 7, and the associated matrix

We can now try to build a family which could be a basis of K,um(X4) (over Q). Indeed, if Kpum(X,) is of di-
mension 8 as we hope for (by analogy with the cubic fourfolds' case mentioned in the Introduction), then by
Lemma 2.1.2, Knum(X'4) should be of dimension 14. We thus look for a family of 14 elements in Knum(X4). If
the determinant of the associated matrix of Euler characteristics is non zero, it will imply that this family is free.
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By Lemma 2.1.2, if we know a basis B of K, (X4) then we can easily find a basis of Knu,n(X4), using 7* 5.
As mentioned in the introduction, a first naive guess for such a basis could be

{OXu OX4 (h)7 OX4 (Qh)a OX4 (Sh)a OX4 (4h)}

together with the structure sheaves of three surfaces. However, we know from [15] that h* = 66, and we want
to be able to recover a skyscraper sheaf (without multiplicity) from our family, hence we will actually replace
Ox, (4h) by a skyscraper sheaf O,, and for the same reason we will replace Ox, (3h) by the structure sheaf of
a line with class E;.Vg.e, which we will call Oy, . Indeed, it corresponds to a curve with class E; in g, whichis a
P! by definition, and moreover E;.h = 1in Xy since by (1.9), h|s, = h1 + hy = 3h; — Ey — Eo — E3 (see Remark
4.1.4 for more details). We won't need to replace Ox,(2h) because 66 = 2.3.11 doesn’t contain any square,
hence we should be able to recover the structure sheaf of a surface induced by h without multiplicity.

About structure sheaves of surfaces, as suggested in the Introduction and detailed below in section 3, we
can consider structure sheaves of X5, D, and a blow-up of S,, namely S (see (1.4) and Corollary 3.2.7).
As explained in the Introduction, the last two surfaces are problematic if we want to study K,,um(X4) because
in such a case we need to consider pushforwards of their structure sheaves and we can't control how badly =
may contract them to X,. This is why we are considering K,.m(X4) now : both D, and S are smooth surfaces
in X,, and we can thus take their structure sheaves as elements in our family.
Then, O, and Og have no particular reason to be pull-backs of sheaves on X4, yet using right mutation func-
tors (see Definition 2.4 in [21]) and Lemma 2.1.2 we may induce a family in 7* Ky, (X4) whose matrix of Euler
characteristics can be deduced from the one associated to Knum()?4). This will be detailed in subsection 2.3.2.

Moreover, by Lemma 2.1.2 and Corollary 2.1.3, if {e1, ..., e, } is a basis of K,,m(X4), then the matrix Moo=
(x(yi,y;))i; with

{1, Unge} ={5:0p, (E1 — VE), jxOg, (B2 — Vi), j+Op, (E3 — Vi), j:Op,(=VE), j+Op, (h1 — Vi),
j*OD3 (2h1 — VE),W*el, e ,W*en}7

is actually M = 0 M

(x(m*e;, m*e;))1<i,j<n IS the matrix we are looking for.
This comes from the fact that 7.0, = Ox,; the projection formula then yields

N . .
y ) where N = (x(vi,v;))1<i,j<6 IS €asy to compute as we will see later, and M =

x(mes mre;) = x(ei; meme;) = x(ei ;)

for any i and j. In particular, it is possible to recover the determinant of M from those of M and N.

A small issue with Knum(f(4) could come from the fact that R*7*Os, has nonzero R?, but since we are already
considering O, and Oz which are notin 7*DP(X,), for convenience we are going to replace the derived pull-
back 7Oy, by Op,(Vg). This is possible because this sheaf doesn't belong to < j.Og, (E1 — Vi), 5.0g, (F2 —
Vi), j+Opy (B3 — VE), jxOp,y (=VE), j+Opy (M — VE), j:Op, (2h1 — Vi) >.

So finally, our goal is to compute Euler characteristics between elements of the following family :

F1 =10, (E1 — Vi), j+OFr,(E2 — Vi), j«Og, (E3 — Vi), j«Op,(~=VE), j+Op, (h1 — Vi), j«Op, (2h1 — Vi),
(95(4, 0)24(h)70X4(2h)7Olh7op70D3(VE)7O§27O§}-

Such computations are detailed in section 4.

Remark 2.1.4. Some Euler characteristics mentioned below involve Oz (3h) and O (4h), which are not going to
be directly useful for us since we are interested in O, and O,, instead. However when such Euler characteristics have
been computed, | will still mention them.
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Moreover, if F is any of the twists of Op, in F1, Oy, the structure sheaf of a hyperplane section of class h and Oz is
defined as follows :

0— Onp(=h) = O = Oz =0

then we cannot recover neither x(Op, F) nor x(Oyz, F) using Euler characteristics between elements of F;. Instead,
those Euler characteristics allow to recover x(Oy2(2h), F) and x(On(h), F).

So computing Euler characteristics between elements of F; or of (Fy U{Op, Op2}) — {O0x,(h),0%,(2h)} is not the
same. To fix this, one could replace O (h) and O (2h) by O (—h) and Oz (—2h)in F;.

Unfortunately, we are not able to compute all the Euler characteristics between elements of F; : some of
them depend on intersection numbers among which one, as mentioned in section 4.7.4, is hard to compute.
However we get the following result :

Proposition 2.1.5. Let us define b := j,h,.[Ds] where [D,] is the class of D in X,.

If
{er,...,e1a} ={)s O, (E1 — Vi), jxOr, (E2 — V), jxOr,(E3 — Vi), j:Op, (= VE), jxOp, (b1 — V),
]*0D3(2h1 - VE)a OX4a OX4(h)a OX4(2h)v ODs(VE)70520§701h70P}a
then :
100 -1 -1 -1 1 2 3 —-1 0 3 00
010 -1 -1 -1 1 2 3 -1 0 3 00
001 -1 -1 -1 1 2 3 —1 0 3 00
000 1 3 6 —1-7-19 -5 12 10 0 0
000 0 1 3 0 —3-12 —6 12%b 19 0 0
~ 000 0 0 1 O 0 —6 —6 1242b 28 0 0
_ o _]lo000 0o 0 1 2124 0 -12 1 11
M = (x(ei,ej)h<ig<1a= 10000 o0 o0 1 1 90 o 0 37 01
000 0 0 0 20 1 1 12 156 127 —11
000 -1 1 4 1 7 19 1 =36 56 00
000 36 36+b36+2b —36 0 180 —156 48 -24 0 0
333-42 33 —24 79 79 205 76 —24 —4 0 0
0000 0 0 0 -1-2 0 0 0 00
000 0 0 o0 1 1 1 0 0 0 00

Proof. The computations are detailed in section 4. The main two Theorems we are using are Hirzebruch-
Riemann-Roch and Borel-Bott-Weil (section 4.2). O

Remark 2.1.6. Even though we cannot compute the determinant of M, we know it can’t be 0. Indeed, b has to be an
integer, and the roots of

det (M) = —72(—4556496 + 102168b + 3869b7)

are not integers (approximately —49.97328 and 23.56646).
Therefore, F is free.

2.2 Asecond family in K, (X,)

In this section, we consider another family of Knum(f(4) which could be a basis, assuming the dimension of
Knum(X4) is 8. The choice of this new family, as well as F; defined in section 2.1.2, is based on suggestions
from Benjamin Sung.

As we saw in subsection 4.7.4 and Proposition 2.1.5, to compute the matrix A defined in section 2.1.2, we
would need to understand some intersections between D, and surfaces in Ds, which turns out to be quite
difficult. This is why we want to consider another family in Knum(X4), whose associated matrix of Euler char-
acteristics is easier to compute. This would yield a new matrix whose determinant should be the same as the
one of M, assuming our family doesn't generate only a strict sublattice of K, (X4). Thus, it could give us a
hint on the number b from Lemma 4.7.18, and the determinant of M.
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As we saw in the introduction and subsection 2.1.2, we expect that for X, very general, K,,m(X4) will be
generated by (or at least will contain) {0z ,Ox, (h), O%,(2h), Oy, O, } and the structure sheaves of three sur-

faces. Since X is the blow-up of X, in 2, its numerical Grothendieck group should consist in the pull-backs of
the above-mentioned elements, the class of D3 for which we will consider Op,, the class of a fiber of D3 over
¥, which we will represent by O;,, where i is a line of class eh? (because by (1.14), h? = 1in X,), and surfaces
corresponding to the pull-backs of divisors in 3.
We have seen in Remark 4.1.4 that Pic(Xs) is generated by four elements, so together with the three surfaces
coming from X4, we need seven structure sheaves of surfaces to complete our family.
Afirst surface can be given by a section of Ds by its relative hyperplane class : we will then consider Op,(—Vg)
since together with Op, it allows us to recover the structure sheaf of such a surface, and we have already com-
puted some Euler characteristics involving it in section 4.
For the last six surfaces, one can notice the following : we will see in the proof of Proposition 4.5.3 that
Pic(Z3) =< Vg, h1, E1, Eo, E5 > and by Lemma 3.2.6, there exists in X, a threefold, namely Z, which is the
blow-up of Z3 in I'y, with exceptional divisor 7~!(I';) = Ds. Thus Pic(Z) has rank 6 and each divisor in it cor-
responds to a surface in X,. We will therefore complete our family with the structure sheaves of six surfaces
in Z : as we will see we can compute all the intersections between divisors there, so we won't have the same
problem as in subsection 4.7.4.

So let us consider the following family in Knum(f(él) :

F2={0%,,0%,(h),0%,(2h),0p,,0p,(=VE), 05, O05,,Op,, 0., Ov,, 05, O1,, O1y, Op }

11,1

where Ok for K € Pic(Z) is the structure sheaf of a surface in X, induced by a surface in Z with class K, I, is
the line in X, mentioned in subsection 2.1.2, I, is a line with class e.h} and O, is the structure sheaf of a point.
This time, we can compute the following (calculations are detailed in section 5) :

Proposition 2.2.1. Let us denote F» = {ey,...,e14}. Then:
1 20124 1 0 1 1 1 1 1 —12 1 11
1 1 20 1 0o 10 2 2 2 1 0 011
20 1 1 7T 0 43 11 11 11 7 156 —111
0 0 0 1 1 1 -1-1-10 -8 010
-1 -7-19 -1 1 -2 -2-2-2-212 010
~ 0 24 72 10 10 =1 0 0 0 0 —12 0 00
_ . o _ 0 6 20 2 2 0 1 0 0 0 -4 000
My = (x(€:,€5))1<ij<1a = 0 6 20 2 2 0 0 1 0 0 —4 000
0 6 20 2 2 0 0 0 1 0 —4 000
1 7 19 2 0 0 0 0 0 2 0 000
—36 0 180 —6036 —12 -4 -4 -4 0 48 0 00
0 -1-2 0 0 0 0 0 00 0 000
00 0 1 1 0 0000 0 000
00 00 0O0 0 000

1 1 1 0
Its determinant is —9510912 = —213 .33 43,

Remark 2.2.2. One can compute the determinant (as a polynomial in b) of the matrix M defined in Proposition 2.1.5
sitis det(M) = —72(—4556496 4 102168b + 3869b2).

One can then look for the possible values of b such that det(M) = det(Ms) = —9510912 = —72.132096 : this could
give a hint on what b could be. Yet the roots of the polynomial

—4688592 + 102168b + 38692

aren'’t integers (approximately —50.43 and 24.03), while b € Z. This could come from the fact that 7, and F» don't
generate the same sublattices of Kyum(X4).

However, if the part of M corresponding to elements in K,.m(X4) can be written, in a good basis, as we hoped
for in the introduction, the matrix M in this good basis completed with the first six elements of F| should be :

mp Mms 0o ... 0
Nt 0 mo My 0o ... 0
(* Mt) with Mt = | * * 1 ... 0
* S T |
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and N the matrix given in Lemma 4.1.5. As a result, M should then have an eigenvector of eigenvalue 1. It turns out
that M" has two eigenvectors with eigenvalue 1, namely —[Op 1 + [Op 1 and —[O | + [0, ].

2.3 Some matrices of Euler characteristics between elements of K, (X})

In this subsection, we focus more on K,,,m(X4). Indeed in subsection 2.3.1, we give two matrices associated to
two families (one being a subfamily of the other) of respectively 5 and 6 elements in K, (X4). These families
are free but should be too small to yield a basis of K,um(X4). Moreover, we don't know whether they corre-
spond to primitive sublattices of K, (X4) or not. In Proposition 2.3.1, we try to find some conditions that
must be satisfied if the associated sublattices are not primitive, yet it is not obvious that this conditions are not
(or are) verified in general.

Finally in subsection 2.3.2, we explain how we can recover a sublattice of 7* K,,um (X4), and the associated
matrix of Euler characteristics, using right mutation functors and the results we obtained in subsection 2.1.2.
However, the result we obtain depends on the same intersection number b which was already mentioned in
Proposition 2.1.5.

2.3.1 Two first "too small" families with five and six elements

As mentioned in the introduction, eventually we are interested in finding a free family of K,um(X4) and com-
puting the associated matrix of Euler characteristics. For the exact same reasons as the ones detailed in the
beginning of section 2.1.2 (and the same problem as mentioned in Remark 2.1.4), one can start building such a
family with {Ox,, Ox, (h), Ox,(2h), O;, O, } where O is the structure sheaf of a line [ of class E;.[X,] in X, and
as before O, is a skyscraper sheaf. The associated matrix of Euler characteristics can then easily be obtained
from calculations we already did to compute M; and M,, or very similar computations in the case of O;.

Furthermore, as we have seen in section 2.1.2, the structure sheaf of ¥, seems to be a natural candidate
to start completing this family into a basis. In the case of X, the associated Euler characteristics are quite
easy to compute with Hirzebruch-Riemann-Roch (contrarily to the case of X, where we would have needed to
understand the pull-back 7*Os,,), and it even turns out that we already know them from calculations we made
for Proposition 2.1.5 (detailed in section 4.3.1).

Let us denote by {u1,...,us} = {Ox,, Ox,(h), Ox,(2h), 01, Op, Os, }. Then we have the following :

Proposition 2.3.1. The following two matrices are :

1 20 124 1
1 1 20 O
Py = (x(ui,uj))i<ij<s = |20 1 1 -1
0o -1 -2 0
1 1 1 0

20 1 1 -1
and Py = (x(us,uj))1<ij<6 =

OO R Rk =
O OO ==
N OO+~ -

0 0
1 1 1 0
1 7 19 0
Let us denote by A1 and A, the sublattices of K,.m(X4) generated by respectively G1 := {u1,...,us} and Gy :=
{uh PN ,UG}.

Then if Ay is not primitive in K,.m(X4), there exists a primitive element v € K,um(X4) such that nv is primitive in
Ay withn € {2,3,6} and x(u1 — 2ug + uz — 66ug — 8us — 11ug,v) = 0.

If A is not primitive in Kpum(X4), it contains a primitive element with divisibility m € N* such that m # 1 and m|96
in Knum(X4)-

Proof. The calculation of the coefficients of P, and P; is detailed in Appendix 6.1.
Let us assume now that the embedding of the sublattice A; — K,,m(X4) is not primitive. Then, there exists a
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5
nonzero primitive element v € K,um(X4) and 1 # n € N* such that nv € A; can be written as nv = Zai“i

=1
with a; € Zforall 1 < i < 5and ged(aq,...,as) = 1. Moreover, at least one of the a; has to be non zero, so let
us assume that a; # 0 for some 1 < j < 5. Then the family < wy, ..., ws >=< nv,{u;, i # j} > generates A;

and one can find a matrix R € GL(5,Z) such that RPiR™! = (x(w;, w;))1<i,j<5 =: S. In particular, one must
then have det(P;) = det(S).

Furthermore, since for any u € A, one must have x(nv,u) = nx(v,u) and x(u,nv) = nx(u,v), the line and
column of S corresponding to nv are multiples of n. As a result, det(S), and thus det(P;), is divisible by n. Since
det(P;) = 66, we must have n € {2,3,11,6,22,33,66}. Using Py, one also finds that the following equations
must be satisfied :

ag = nx(uy,v) —ay — 20ay — 124a3 — a
nx(ui,v) = a1 + 20as + 124a3 + a4 + a5 4 x(u, ) ! 2 3 >

= —66a3 + nx(u1 — uz + 19uy,v)
ny(ug,v) = a1 + as + 20a3 + as

as = nx(uz,v) —a; — az — 20az = —19a3 + nx(uz — us, v)
ny(us,v) = 20a; + as + az — a4 + as &

66as = nx(u; — 2us + ug — 19us, v)
ny(uq4,v) = —ag — 2as

as = —nx(uq,v) — 2a3
nx(us,v) = a1 + ag + a3

a1 = nx(us,v) —az — a3 = az + nx(us + ug,v)

2.1
In particular, the condition ged(ay, . . .,as) = 1 implies then that 0 # as is not divisible by n.

On the other hand, nv € A; C As, hence with the same reasoning as before one finds that n must divide
det(P) = 96 = 3.2°. Hence, n € {2,3,11,6,22,33,66} N {m € N*,m # 1 and % € N} ={2,3,6}.
Finally, P, gives us one more equation for the a; :

nx(ue,v) = a1 + Tag + 19a3 < 6as = nx(6uy — us + ug, v). (2.2)
Together with the third equation on the right of the systems (2.1) above, it yields :
0 = x(u1 — 2us + ug — 66uy — 8us — 11lug, v).

Let us assume now that Ay — Kp,m(X4) is not primitive, without any assumption on A;. The same reason-
ing as in the previous case then yield the existence of a primitive vector r € K,um(X4) such that mr € A, for
some 1 # m € N*. Since det(P,) = 96 we must have m € {2%.3% (a,b) # (0,0),0 < a < 5,0 < b < 1}, and there

6

exists some integers b; for 1 < < 6 such that ged(by,...,bs) = 1land r = Z b;u;. With P, one can then find
i=1
the following system of equations :

b4 = mx(ul,r) — bl — 20b2 — 124b3 — b5 — b6
= —66b3 + mx(u; — ug + 19uy, r
mx(ul,r) = bl +20b2+124b3 +b4+b5 +b6 3 X( ! 2 4 )
bs = mx(uz,7) — b1 — by — 20b3 —bg
mx(uz,r) = bl —+ bg + 20b3 —+ b5 + bG
= —16()3 + mX(UQ — 3’LL4 - 5 — 7,7‘)
mx(us,r) = 20by + bg + by — by + b5 + Tbg
48b3 = mx(u; — 2us + ug — 18u4 — 16us — 3ug, )
mx(uq,r) = —by — 2b3
by = —mx(uq, 1) — 2b3
mx(us,r) = by + by + b3
mx(ug, ) = by + Tby + 19b3 + 2b b =mx(us, ) = bz = by = bs + mx(us + ua,7)
X\ue; - 2 3 6 2b6 = mx(u6,7") - bl — 7b2 — 19b3
= —6bs + mx(6ug — us + ug,r)
(2.3)
Taking bs = 0 reduces to the previous case. O
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Remark 2.3.2. The determinant det(P;) = 66 may seem quite big, but this comes from the fact that h* = 66 (see
[15]). Indeed, let us denote by Oy, the structure sheaf of a hyperplane surface in X4 with class h, and Oy2 the quotient

0— Oh(*h) — Oh — th — 0. (2.4)

Then the matrix of Euler characteristics associated to the family {Ox,, On, Op2, 01, Op}is:

1 X(OX4,Oh) X(OX4,Oh2) 1 1

X(On,O0x,)  x(On,0n)  x(On,0h2)  x(On,01) 0

R = X(th,O)Q) X(th,oh) X(Oh2,oh2) 0 0
0 X(O1, On) 0 0 0

1 0 0 0 0

using Py together with the same arguments as in the proof of Lemma 4.8.1 and Lemma 4.8.2 to find the coefficients
which are O or 1.
Its determinant, which we expect to be the same as det(P;) (because in this specific case, replacing Oy, by Oy (h)
and Oy2 by Op,2(2h) doesn't change the determinant of R, since twisting by a line bundle leaves both ¢, (O},) and
cha(Op2) unchanged) is thus x (O, Or)x(On, O1)x(Opz, Op2).
Using the short exact sequence

0— Ox,(=h) = Ox, - O =0

one can find that
X(O1, On) = x(O1, Ox,) — x(O1, Ox,(—h))

and
X(Oiu Ol) = X(0X4’ Ol) - X(OX4(_h)7 Ol)'

By Serre duality (see Theorem 4.2.14) and Lemma 4.2.13, we also have x (O, Ox,(—h)) = x(Ox,, O) hence
x(0;,0,)=0—1=—-1.
Using the same argument as in the proof of Lemma 6.1.1, one can find that

1 h

X(Ox, (-1, 00) = [ (11,301 3).005

Yo
1 h 1 1
= Fi,1+).(, -, ) =14+ -4+ =-=2.
/22(0; 1a+2>(727) +2+2
As aresult, x(On,0) =1—-2=—1
Finally, using the same argument as in the proof of Lemma 4.6.1 as well as (2.4), one can find that x(Opz, Op2) =
h* = 66.
Altogether, this yield det(R) = 66.
2.3.2 Afamily of eight elements obtained with mutation functors, but still in Knum(fQ)
In this subsection, we try to find a family of eight elements in 7* K,,um (X4), following a method suggested by
Benjamin Sung.
Before going further, let us recall the following definition (see for instance Definition 1.57 and Proposition

2.56 of [14]):

Definition 2.3.3. Let E be an object in a C-linear triangulated category D. Then E is an exceptional object if and
on/y I'fdim(Extl(E, E)) = 51’,0-
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With what we will see in the proof of Lemma 4.1.5 and Proposition 11.16 in [14], one can find that

{61, e ,66} 3:{j*OE1 (El — VE),j*OE2 (Eg — VE),]'*OE3 (E3 — VE),j*OD3(*VE),
j*ODa(hl - VE)aj*OD3(2h1 - VE)}
is a sequence of exceptional objects.

Moreover, if we denote by D the subcategory < ey,...,es >C D(X,), Lemma 2.1.2 yields 7*D*(X4) ¢t D

and }
Knum(X4) =< Knum<D)»7T*Knum(X4) > .

By the statement below Lemma 2.4in [17] there is another semi-orthogonal decomposition Db(f(4) =<D1D>,

hence .
Knurn(X4) =< Knum(D);Knum(J_lD) >

If Knum(f(4) is free this should thus imply m* K um (X4) = Kpum (D).

This is why in this subsection we are going to look for a free family of 8 elements in Ky, (D) : this should
actually yield a family in 7* Kyum (X4). Furthermore, since .03 = Ox,, the projection formula implies that
for any sheaves £ and F in D?(X,), one has H*(n*E,m* F) = H*(E, m.n*F) = H* (&, F), therefore if we could
compute the matrix of Euler characteristics associated to such a family in 7* K ,um (X4), it would directly give us
the matrix associated to the corresponding family in Kyum(X4).

Using Definition 2.4 in [21], one can use a composition of right mutation functors, namely R := R, 0. ..oR,,,
to project elements of K,mm(f(4) to +D. Eventually, this will give a free family of 8 elements in K (+D); if
Knum(f(4) is free and this family doesn't generate a strict sublattice, this could give a basis of Kyum(X4), whose
matrix of Euler characteristics is easily calculable using Propositions 2.1.5 and 2.2.1.

With Proposition 2.1.5 and Definition 2.4 in [21], one finds :
R(Og) = Og — 3e1 — 3ea — 3es + 33eq — 129e5 + 204e6
R(Op,(Vg)) = Op, (Vi) + €4 — 4es + 2e5
R(0Op,) = Op, — 36e4 + (72 — b)es + (=36 + b)eg.
Moreover, if {y1,...,ys} :== {Ox,, O, (h), 0%, (2h), O, , Op, R(Og), R(Op,(VE)), R(Op,)}, then :

1 20 124 1 1 1 0 —12
1 1 20 0 1 37 0 0
20 1 1 -1 1 127 12 156
, 0 —1 -2 0 O 0 0 0

M = (X(yiayj))1§i7j38 =11 1 1 0 0 0 0 0
37 217 —125 0 0 10488 —314 —2616 + 333b
0 12 36 0 O 46 8 —48
0 36+3b 216460 0 0 —24+9b —192 b? + 48

Its determinant is 2(—6188803776 — 70302816b + 1781868b%) = 23.3(—515733648 — 5858568b + 148489b2).

Remark 2.3.4. One could also use the family F, and the associated matrix M, from subsection 2.2, and project
elements from F, on +D with R in order to find a free family of 8 elements. However, computing R(F) for a sheaf
F requires to know all the x(F,e;) for 1 <i <6.

If we want to consider structure sheaves of surfaces in Z among F, this should then cause similar problems as when
we tried to compute R(Og, ) : we would need to understand the intersections between some surfaces in D3 and Z,
which is not so easy in general.

Unfortunately, if we want to project 8 elements from F», we need to consider at least one structure sheaf of a surface in
Z :indeed © ps (—VE) is just e4, SO we cannot consider it (because R(e4) = 0), and then out of the 13 other elements,
6 are structure sheaves of surfaces in Z, so if we want 8 elements we need to take at least one such structure sheaf.
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Chapter 3

Subvarieties of X, X, and X:

In this section we gather some small results about the geometry of X, and X,. Some of these results will be
useful for later, the last part of the section will concern an attempt to describe set theoretically some of what
could be contracted by the map 7 (see (1.2) and (1.4)) in some surfaces in Xj.

3.1 Asurface induced by S; in Z;

As one can see in (1.2) and (1.4), S is a surface which appears to be related both to X, and the associated X,
but is not embedded in any of them. We would like to use it to induce a surface in X; whose structure sheaf
could be used to build a basis of Krlu,,l(X4). In this subsection, we thus try to find a surface in Zs, "induced" by
Sy (as it will turn out to be quite difficult to find a copy of Ss in Z3, we will instead consider a blow-up of S5) and
which we can use later to find a surface in X, related to Ss.

We will first try to find a section of the map o : Z3 — S (see (1.2)) which could help us to find a copy of S,
in Z3 and then use Lemma 1.4.1 to find a blow-up of S; embedded in Zs.

Proposition 3.1.1. It is equivalent to be given a section of the map o : Zs — Sy or a short exact sequence :
0 — L1 — Vs — Lo — 0 where the L; are line bundles on Ss and Vg is as defined in 1. of Lemma 1.2.2.

Proof. First of all, from 1. of Lemma 1.2.2 we know that Z3 = Pg(Vs) and that V¢ = Vgs. So from Exercise 7.8
of 1.7 in [12], we get that there is a bijection between sections of ¢ and line bundles £5 on S5 such that there
is a surjective morphism Vg — L5 — 0. Let us assume that we are given such a surjective morphism. Since
Vs is a rank 2 vector bundle (still from 1. of Lemma 1.2.2), the kernel K of this morphism has to be of rank 1.
Moreover Vg is locally free since it is a vector bundle, so K is a line bundle that we can call £;. Thus we have
a short exact sequence 0 — £; — Vg — Lo — 0. Conversely, such a sequence obviously gives a surjective
morphism from Vs to a line bundle on Ss. O

Lemma 3.1.2. Ifthere is a short exact sequence 0 — L1 — Vg i> Lo — 0 where the L; are line bundles on Ss, then
f induces a global section of 0* L2 ® Oz, (Vz) on Z3 = Ps(Vs) with Vi the relative hyperplane class of Zs as defined
in Definition 1.3.3. The zero locus of this global section is then a surface isomorphic to Sy and with class Vy + [0* L]
in Zs.

Proof. Let us assume that we have a short exact sequence 0 — £; — Vg i> Ls — 0in S;. Then f in-
duces a global section of 6" L2 ® O, (Vz) on Z3 since Hom(Vg, £3) = Hom(Og,,0.(0z,(Vz) ® 0*L3)) =
Hom(Oyz,,07,(Vz) ® 0*Ls). Let us denote by S the zero locus of this section induced by f. Then since
Oz,(Vz) ® 0*Ls is a line bundle, S is a divisor in Z5 so it is 2-dimensional. Moreover over each point p of
S, the kernel of f is £, which is one dimensional, so there is exactly one point over pin S : P(L;,). Thus
olg: S — Sois an isomorphism. By definition of S, its class in Zs is V + [0*L2). O
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Lemma 3.1.3. On Sy, Vs has no non-zero global sections.

Proof. As mentioned in 11. of Theorem 1.2.1, Sy C P? x P? is cut out by two (1,1) divisors. So we have a
resolution
0— Op2><[p=2(—27 —2) — Opzxpz(—l, —1)$2 — Opzyp2 — 052 — 0. (3.1

Moreover if we denote by 2; the cotangent bundle on A; we have a short exact sequence
0— Ql — O]P’(/\2 Ai)(_l)@?) — O]P‘(/\2 Ay — 0. (32)
On the other hand, by the proof of Proposition 4.6 in [20] we have short exact sequences on S :

0— U a, = A1 ®Og, = Og,(h1) = 0 (3.3)

0— Uz a, > A0 0O0g, = Og,(h2) = 0 (3.4)

so on Sy, ; = Uy 4,(—h;). Using now (1.3) and (3.1) we can compute H*(Vs) as follows : (1.3) gives us the
short exact sequence 0 — O(—h1) ® O(—ha) = Q1(h1) & Q2(h2) — Vs — 0and (3.1) allows us to compute the
cohomology of each term of the sequence.

« O(—hy) is the pullback of Opz,p2(—1,0) by definition of h; in Definition 1.3.3. So we get a short exact
sequence

0 — Op2yp2(—3,—2) = Opzyp2(—2, —1)F? — Opayp2(—1,0) — Og,(—h1) — 0.
Finally, using the Kinneth formula : H*(Ozyp2(a,b)) = @D H'(Op2(a)) @ H*~*(Op2 (b)) we get that
H*(O(—hy)) = 0. Similarly H*(O(—hs)) = 0. i
+ We use the same reasoning as before : we have a short exact sequence

0= Q(=1,-2) = 2,(0,-1)%% = Q;(1,0) = Q(h1) = 0

where Q;(a,b) = Q4 (a) K O(b). To compute H*(2;(a)) we use (3.2) which yields :
H*(Qi(-2))=C, HI(Q(-2)=0 for j #2
H(2i(~1)) =0 v
H'Y(Q;) =C, HI(Q)=0 forj #1
H7(2;(1)) =0 v
H(Q;(2)) =C3  HI(%((2)=0 for j # 0.

Finally, Kiinneth formula gives us : H* (€1 (—1,—2)) = H*(Q1(0, —1)) = H*(Q1(1,0)) = 0s0 H*(Q1(h1)) =
0. Similarly, H*(Q2(h2)) = 0.

Therefore, H*(Vs) = 0 and so Vs has no non-zero global sections on S5. O

However there is an injection 0 — Og, — Vs (h; +Ez) which if it gave rise to a copy of S, would be very
convenient because this surface would have class Vz + hy + hg = h by Lemma 3.1.2 and (1.11). Here h, h; and
ho are defined as in Definition 1.3.3. In particular wg = Og,(—h1 — hs) (by 11. of Theorem 1.2.1).

Lemma 3.1.4. On Sy, Vs(hy + hy) has nonzero global sections.

Proof. We use the same method as in the proof of Lemma 3.1.3, except that now everything is twisted by
(h1 + ha). We have then a short exact sequence :

0— O(EQ) D O(El) — 91(251 +E2) D 92(51 + 252) — VS(El +Eg) — 0. (3.5)
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* Thereis a resolution
0 — Opzyp2(—1,=2) = Op2yp2(0, —1)%2 — Op2yp2(1,0) = Og, (h1) — 0.
Using Kinneth formula again, one can find :

H*(Op2yp2(—1,-2)) =0
H*(Op2p2(0,-1)2) =0
HY(Op2yp2(1,0)) = C3,  HI(Op2yp2(1,0)) =0 V5 #0.

So dim(Hj(OSZ (El))) = 350j. Slmllarly, dim(Hj((952 (EQ))) = 360]‘.
* We use now o
0 — 2100, —1) = 21(1,0)%% = Q1(2,1) = Q1(2h1 + hy) — 0.

With the same method as in the previous Lemma we find :

H*(21(0,-1)) =0
H*(Q1(1,00%%) =0
H°(Q1(2,1)) = H*(21(2)) @ H(Op2(1)) =C°  H’(4(2,1)) =0 Vj #0.

So dlm(H](Ql(Qﬁl + EQ))) = 95]'0. Slmllarly dlm(H](QQ(El + 2%2))) = 95]'0.
As aresult, dim(H°(Vs(hy + hg))) =2.9 - 2.3 =18 — 6 = 12. O
Yet, we have the following problem:

Lemma 3.1.5. If we have a short exact sequence 0 — Og, — Vs(hy + ha) — Q — 0 then Q cannot be a line
bundle.

Proof. First of all since rank(Vs) = 2 we must have rank(Q) = 1. We also know from (1.3) that there is a short
exact sequence B B
0— 052(—h1) (o2 (932(—}12) — Z/{Q’Al EBZ/[Q’A2 — Vg — 0.

Moreover, the short exact sequences (3.3) and (3.4) with (1.13) imply that ch(lz, 4,) = (3,0,0) — (1,h1,3) =
(2,—h1,—3) and ch(Us, a,) = (2, —ha, —3). So ch(Vs) = (4, —h1 — ha, —1) — (2, —hy — ho,1) = (2,0, —2). Thus
ch(Q) = (2,0,-2).(1,h1 + ha,3) — (1,0,0) = (1,2hy + 2hs,4). However (2h; + 2h;)* = 4.6 =24 and 3! # 4. As
a result @ cannot be a line bundle. O

So a non-zero map Og,(—h; — hy) — Vs will not induce a surface isomorphic to Sy in Z3. However if we
could prove that there is a short exact sequence 0 — Og, — Vs(hy + ha) — L ® Ip — 0 with £ a line bundle
and Zp the ideal sheaf of some points D, then using Lemma 1.4.1 we could still get a copy of a blow-up of S,
in D inside Z3, with class h. This is what we are going to do now.

Before going further, let us recall some geometrical properties of Sy that we are going to use. First of all,
by 10. of Theorem 1.2.1, the points of S, are exactly the Uy C W of the form Uy = Uz 4, ® Us, 4, such that Uy

is \'-isotropic and Ui C U, is 2-dimensional. Moreover, since we assumed that the A; are not p-Lagrangian,
where 1 is the 2-form associated to the global section of U3(1) we are considering, we have dim(A;- N 4;) = 1.
Let u; denote a generator of A} N A; for i € {1,2}. Then (see Lemma 1.2.2) there are two smooth rational
curves C; and Cy in S, such that the following are equivalent :

* p=Usa, ®Usza, € SpisinC;.

* Uy, 4, is p-isotropic.
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* pi € Uza,.
* Uz a; N (Us,a, ®Us 4,)" is 1-dimensional.

To find whaiID couﬁld complete the short exact sequence above, we need first to look more in details at S, and
the curves C1 and Cs.

Lemma 3.1.6. Ifw, z € Ay are nonzero vectors such that Ker(u(w, .)) N A1 = Ker(p(z,.)) N Ay then w and z are
colinear.
Similarly, if u, v € Ay are nonzero vectors such that Ker(u(u,.)) N Ay = Ker(u(v,.)) N As then w and v are colinear.

Proof. Let us assume that w, z € Ay are nonzero vectors such that Ker(u(w,.)) N A; = Ker(u(z,.)) N A;. Then
let (u, v, s) be a basis of A; such that Ker(pu(w,.))NA; = Ker(u(z,.))NA; =< u,v >. Thensince pinduces a non
degenerate pairing between the A; we have that pu(w, s) = a # 0 and p(z,s) = b # 0. Thus p(bw — az, A;) =0
and so, again since the pairing induced by p between A; and A, is non degenerate, we must have bw — az = 0.
The same reasoning can be used to show the second assertion. O

Before going further, let us define some "properties": avoiding them will make it possible for us to find an
ideal Zp, fitting in the short exact sequence we are looking for. It will also be useful later.

Definition 3.1.7. Let us define :

(P1) py € Ui for one of the two points in Cy N Cs.

(P2) o € Ui for one of the two points in Cy N Cs.

(A1) A1/ < p1 > ®Az/ < p2 >€ Sz (by A;/ < p; > we actually mean the kernel of 1}, so that for instance a point
in Sy such that Uz 4, =< u+ ap1,v > and Us a, =< w + bua,v > would not satisfy (A1)).

(B1) In Q1 - QQ, there is more than one point such that QS/AQ =<y >.

(B2) In Cy — C1, there is more than one point such that Ug/A; =< pg >.

Lemma 3.1.8. The following are equivalent :
« (P1) holds.
* (P2) holds.
* w1 and ps are p-orthogonal.
« MiMgK; + MyMs Ky + MsM, K3 = 0 using the notations of 4. of section 1.1.

Proof. + Let us first see that (P1) < (P2). L -
Letus assumethat (P1)holds. Thenthereisapointp; € CiNCysuchthatp = Uy =< pg,u > ® < pg, w >

with v € 4, w € A5 and Ui =< w1, aw + bug >. In particular, u; is p-orthogonal to p2. Moreover, since
u induces a non degenerate pairing between A; and A, K := Ker(u(usg, .)) N Ay is 2-dimensional. Thus
K =< p1,v > with some v € A; and < po, K > is a Lagrangian for p, by definition of K and p; (by
definition, u(p1, A1) = 0). By 6. of section 1.1, X' (p1, pe, v,.) is non degenerate so there exists, up to
multiplication by a nonzero scalar, a unique z € As/ < pe > such that X (uq, 2, v, z) = 0. Then s is p-
orthogonal to u1, v and z and since z is not colinear to ps, we must have K’ := Ker(u(z,.)) N 4; # K, by
Lemma 3.1.6. But then K’NK must be alinein Ay, so (< 1, ps, v, z >)* contains < ue, KN K’ >. Finally,
(< 1, p2,v,2 >)t =< po, KNK' > because K # K’ and because (v, A1) # 0but u(v, 1) = pu(v,v) =0
and u(z, Az) # 0 but p(z,pue) = p(z,2) = 0. So < g, pe,v,z > is N-isotropic and it contains its 2-
dimensional u-orthogonal : by 10. of Theorem 1.2.1 it means that py :=< pu1, u2,v,2 >€ So. Since it
contains both p; and s, it has to be in C, N Cs.

Moreover p; # p». Indeed, if p, = p; then there exists another point Vy :=< p1,7 > ® < pia, 5 >€ C1NCo.
Therefore, there exists («,8) € C? such that au; + Br is p-orthogonal to V,. In particular, auy + Br is
p-orthogonal to py and since po is p-orthogonal to py, it must then also be p-orthogonal to r. But then
K =< p1,7 > and again by 6. of section 1.1 this implies that < s, s >=< 2,z > and so Vy = py = py,
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which is a contradiction since C'; N C, contains two points. So {p;,p2} = C1 N C5 and if p; satisfies (P1)
it implies that p, satisfies (P2).
By the same reasoning with p; and A; exchanged, (P2) implies (P1).

* Let us see now that (P1) < u(u1, p2) = 0.
We have just seen that (P1) implies that p(u1, 12) = 0, so we only have to show that p(u1, p2) = 0 implies
(P1). Let us assume thus that y; is u-orthogonal to ps. Using the same reasoning and notations as before
we can then construct a point in C; N C satisfying (P1). Indeed as before < K, up > is a Lagrangian for
wif K = Ker(u(usz,.)) N Ay contains uq thus by 6. of section 1.1 there exists a unique (up to a scalar)
z € Ay/ < po > such that X (us, u1,v,2z) = 0. Exactly as before, this gives a point in C; N C satisfying
(P2). Then by what we did before the other point in C; N C5, satisfies (P1).

* Finally, in the proof of Lemma 4.8 in Kuznetsov's article, we have that y; = Mg K 21+ M5 Koxe + My K33,
using the notations of 4. of section 1.1. Similarly, one can compute that us = M3Kszy + Mo Koxs +
M, K. Adirect computation then shows that p(uy, o) = (My Mg K1+MoMs Ko+ M3 My Ks) (M Mg K1+
MoMsKo + MMy K3 + KlKgKg). By 4. of section 1.1, My MgKy + MaMs Ko+ MsMyKs+ K1 Ko K3 7& 0,
so u(u1, ue) = 0if and only if My MgKy + MaMsKs + MsM4Ks = 0.

O

In the following, we are going to assume that (P1) and (P2) don't hold, so from now on we are going to
assume
MiMgK1 + MaMs Ko + M3MyK3 # 0. (3.6)

Definition 3.1.9. We will call K1 := Ker((p(p1,.)) N A2 and K := Ker((u(p2,.)) N A;.

Lemma 3.1.10. We have seen in the proof of Lemma 3.1.8 that K and K are both 2-dimensional. To each line in
K; corresponds a unique point in C; so C; = P(Kj;). - -
Moreover, to each line l in A;/ < p; > corresponds a point p in C; such thatl C Uz 4, so C; 2 P(A;/ < p; >).

Proof. Let v be a nonzero vector in Ky. By hypothesis, K := Ker(u(v,.)) N A2 contains us. Thus, < v, K >
is Lagrangian for p and by 6. of section 1.1 we have, up to a scalar, a unique ©v € A;/ < v > such that
N (u,v, K) = 0. We would like to show that U :=< u,v, K > is a point in S,. For this we need to check that
U+ C U (indeed by constrution X' (U) = 0, and since U = Us, a, @ Us_a,, it is Ad-isotropic). Let us distinguish two
cases:

« w1 ¢ U. Then p(u,v) # 0 since the projections of v and v onto 4;/ < p; > must be non colinear,
and p is non degenerate on A;. Let us denote by K’ := Ker(u(u,.)) N A2. Then since u and v are non
colinear by Lemma 3.1.6 we must have K # K’. Since they are both 2-dimensional (again because of
the non degenerate pairing) in A;, K N K’ must be a line. Let w be a nonzero vector in this line. Then
w € Ut since up € K. Let z be such that K =< w, z >. By construction, v is y-orthogonal to w and z
but u(u,z) # 0. Then z + ZEZZ%@ € U+, Finally, U+ =< w,z + ngfi;v > because ps € K and p is non
degenerate on A, so there should be a vector in K which is not u-orthogonal to A, /K, and because we
have assumed that p; is not p-orthogonal to ps.

« u1 € U.Thenw € U=, For the same reason as in the previous case there should be, up to a scalar, exactly
one vector w in K such that w is y-orthogonal to u and v. Since ps € K, w € U+, Finally, U+ =< v, w >
because p is non degenerate on the A; and in this case u; € Uy 4, and pg € Uz 4, SO the two vectors
generating W /U cannot be in U~ In this case U € C; N Cs.

SoU € Sy and since uz € K, U € C,. Therefore, to each line in Ky corresponds a point in Cs, and so
P(K3) C Cs. But by Proposition 1.2.2, C, is rational so the inclusion is in fact an equality and each point in C,
can be obtained by a similar construction as what we just did.

Moreover, since p induces a non degenerate pairing between the A;, if v and v’ are two non colinear vectors
in K5, then the associated K and K’ are distinct. But they both contain us, so we can write K =< g, w >,
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K' =< pg,z > withw and z non colinear in Ay/ < s >. 'I;hus two different points in C cannot have the same
associated Uz 4,/ < p2 > and therefore to each point in C's corresponds a unique line in A/ < pg >.
The same reasoning exchanging the u; and A; finishes the proof. O

Lemma3.1.11. Letp = Uy = Us 4, ®Us, 4, be apointin C;. Then by 2. of Lemma 1.2.2, Us 4, ﬂﬁi is 1-dimensional.
Let u,, be a generator of this intersection. Then there is a unique point q in C; such that < ug >=< p; > (in other
words ug and p; are colinear). It is not in C1 N C.

Proof. Letp = Uy = Uz a, ® Uz 4, be a pointin Cy. Then by 2. of Lemma 1.2.2 we can write Uz 4, =< 1, u >,
thus we can write u, = aui + puforsome a, 8 € Csuchthat (o, 8) # (0,0). Let us also write Uz 4, =< y1, Y2 >.
Then u, and p; are colinear if and only if 8 = 0.

Let us assume that 5 = 0. As aresult, u; € Uj that is to say p; is u-orthogonal to y; and y,. Since u is a non-
degenerate pairing between A; and A, then there is only one possibility for Uz _4,, namely K. Moreover, since
U, is a pointin S we have that U is ) isotropic by 10. of Theorem 1.2.1, and the linear form X (u1,v1, 2, .) is
zero on A, by 3. of section 1.1. Thus there are two possibilities :

* There exists one v € A;/Cuy such that X (u1,y1,y2,v) # 0 and u must be a nonzero vector in
Ker(\ (p11,91,92,-)) N A1/ < w1 >, which is one dimensional. Moreover in such a case, by a reasoning
similar to the one in the proof of Lemma 3.1.10, U =< puy,u, K; > is a point in C; with 1 € U+, Soin
this case there is exactly one pointin C; such that i, € Ui, and by Lemma 3.1.8, since we assumed (3.6),
this point is actually in C; — Cl.

* N(p1,y1,y2,.) is identically zero. Then by the same reasoning as in the proof of Lemma 3.1.10, each
u € P(Ay/ < pp >) gives a point < ui,u > ®K; € Cy. So P(A4;/Cuy) € Cy, but since O is rational by
Proposition 1.2.2 this yields C'; 22 P(A;/Cpuy). But then, for each U, € Cy, we have that us ¢ Us 4, = K,
by Lemma 3.1.8 and (3.6). Hence by Proposition 1.2.2, C; N Cy = (. Since by (1.13), h1hy = 2, and since
C; € |h;| by 2. of Lemma 1.2.2, this is a contradiction.

So only the first possibility can happen and there is exactly one point p € C; such that u, and x; are colinear.
Since we assumed (3.6) by Lemma 3.1.8 this point has to be in C; — C2. The exact same reasoning switching
the A; and the pu; completes the proof. O

Proposition 3.1.12. I]: (3.6Lholds, and either (A1) is not satisfied, or one of (B1), (B2) is notsatisfigd, thgn there exists
a global section of Vs (h1 + ha) such that in the associated short exact sequence 0 — Os — ]ig(hl + ho) - Q—0,
Q = det(Vs(h1 + ha)) ® Tk where supp(K) = {p1, p2, 2, pa}. Moreover, {p1,pa} = C1 N Cyand ps € C1 — Cy,
ps € Co—Ch.

Proof. By (1.3) we have a short exact sequence
0 — O(—h1) & O(—ha) — Uz 4, DUz 4, — Vs — 0.

Moreover by Lemma 3.1.4, Vs(h1 + hs) has global sections which are induced by the ones of U 4, (h1 + h2) &
Us, 4, (h1 + he). So we need to find a "nice" global section, with which @ as the expected form.

To start with, since there are isomorphisms Uy 4, = L{QVAi (—h;) we get the short exact sequence :
0 — O(h2) & O(h1) — Uy 4, (he) ® Uy 4, (h1) — Vs(hy + ha) — 0. (3.7)

So asection s : Og — Vs(h1 + hy) is induced by a section of Uy 4 (h2) ®Uy 4, (h1). Moreover, a section of Uy 4,
corresponds to a 1-form on A; (which is 0 on the other A;) and a section of O(h;) corresponds to a 2-form on
A; (see the introduction of [20] and page 218 of [10], with Lemma 4.2.6). So let us choose ¢; some 1-forms over
A; and v; some 2-forms over A;. Then the associated section of Vg (h; + hy) corresponds to the restriction of

G109 + o1 to Ug = U4/Ui at any point U, of S, since by the proof of Proposition 4.6 in [20], Vs is the
rank 2 vector bundle parametrizing the U4/Ui and in (1.3), Uz 4, ® Us 4, parametrizes all the U, € S, (and
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O(~Th1) ® O(—Ty) the associated T ).

We would like to show that except for the four points pi, p2, ps and py as described in the proposition, the
fiber of @ is a one dimensional vector space, and that for these points the fiber is 0. Then we should have
Q = L ® Ty, pyps.ps and L has to be the determinant of Q, which is also the determinant of Vs(hy + h2) since
det(0) = O.

To understand what the fibers of @) can be, we use the two following examples :

* On Gr(2, A;), there is a short exact sequence 0 — Ogy(2,4,) — U2V,Ai — R — 0. Here the fiber of R at a
point Uy is Uz /Ker(¢) where ¢ is the 1-form corresponding to the global section Og.(2,4,) — Z/IQV,Ai and

R~ 0O(h;) ®IKer(¢>)-

+ On S, we have the short exact sequence 0 — Og — O(h;) — Oz, (h;) — 0 where the global section
Os — O(h;) corresponds to a 2-form ¢ and /(> Uz.a,) = 0 exactly on C;, if we choose the kernel vector
of ¢ to be p;, by Proposition 1.2.2. For a diffrent choice of ¢ we would get another curve 52 € |hil.

Noticing that since Usg is 2-dimensional at any point of Sa, Vi(N°Us) € C, we can then define the fiber of Q) at
apointUy as Uy/Ker(x') where X' : v € Ug — ¢1(v)wo(wy, wa) + ¢2(v)h1 (wy, wy) where Ug =< wy, wy >.
Let us now look at what the fibers of @ at p can be, depending on the position of p with respect to the curves
61 and 62.

1. Let us first assume that we look at a point U4 which is neither on C'; nor on C. Then by Proposition 1.2.2
we can assume Ug =< x, + y1, T2 + y2 > With 2; € A; and y; € Ay non colinear. Here we will make two
assumptions:

(H1) We assume that for at least one i € {1,2}, Ker(¢;) # Us, 4, for any Usg.

(H2) We assume that the kernel vectors v; of the ¢; (namely generators of Ker(; (., A;))) satisfy v; ¢ Us_a,.
Actually we don't need (H1) and (H2) to hold for exactly all the points in S and we will see later how to
make them hold when we need it.

By the assumption (H1) we have that one at least of Ker(¢1)N < 1,22 > and Ker(¢2)N < y1,y2 > is one
dimensional. Thus the fiber of Q is 0 only if Ug is 1 or v, isotropic. On the other hand, since y; and
y2 are non colinear, U 4, =< y1,y2 > and up to a nonzero scalar, wg(/\2 As) = a(y1,y2) # 0 by (H2).
Similarly, 1/)1(/\2 A1) # 0. Therefore x’ is a nonzero one form, and its kernel (and thus the fiber of @ at
U,) is a one dimensional vector space.

2. fU, e CinCythenUg =< x1,y2 > and§4L =< 2,51 > with z; € Ay and y; € As. In this case the
fibersng are 0 because both ; vanish on Us. Moreover C1 NCy = {p1,p2} since by 2. of Lemma 1.2.2,
C; € |h;| and by (1.13) the intersection of the h; is 2.

3. We assume now that U, is on C; but not on C, (the case for Uy € Cy — C; is similar).

ThenUg =< z1 + y1,y2 > with 21 € A} and y; € A; non colinear. In this case ¢;.1s + ¢2.41 is just ¢1.10o
since 1 (\* Us) = 0. By the same reasoning as before and (H2) we must have 1, (A* Us) # 0. Therefore,
if 1(21) # 0 the fiber of Q is a one dimensional vector space (namely Us/(Us NKer(¢y))), otherwise it is
0. We would like that ¢ (x;) = 0 only at exactly one pointin C; — C5 and ¢»(y1) = 0 at exactly one point
in Cy — C1. These would correspond to ps and py.

By Proposition 1.2.2, U, is in C if and only if u; € Us_a,, therefore we can write z; = apy + Bu where
Us.a, =< p1,u >and (a,B) € C? — {(0,0)}. Since Uz 4, =< p1,u >, we have that o = 0 if and only if

M1 € Ui. By Lemma 3.1.11, it happens for exactly one point p3 € C; — C5. So we have two possibilities :
(a) (A1)doesn't h(lld. TkLen we can take Gi = iy Indeed by what we have seen they will vanish at exactly
one point on C; — C5, respectively Cs — C1. We still need to check that (H1) holds. But since (A1)

doesn't hold, Ker(¢1) @ Ker(¢2) = A1/ < 1 > ©Az/ < pa >¢ S, so (H1) holds when we need it
(namely outside of C'; UC'5). Indeed on C'1NC'5 the ¢; don't matter, and on C'y — C'; since v, vanishes
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again ¢; doesn’t matter. FirEIIy we have seen that on C; — O, ¢1 = p} behaves as we want so we
actually don't need (H1) on C';. For ¢ it is similar.

(b) (A1) holds but at least one of (B1), (B2) doesn't hold. Let us assume that (B1) doesn't hold. We cannot

take ¢; = p as in the previous case, because (A1) would contradict (H1) in a case when we need it
to hold (namely outside of the C;). However, since (B1) doesn't hold there is at most one point p in
C1 such that Ug/As =< p1 >. If such a p exists, letu € A;/ < py > be such that Us 4, associated
to this point is < w, u; >, otherwise let u € A;/ < p; > be any nonzero vector. Finally, let v € A,
be such that < w,v >= A;/ < p; >. Then we can take ¢; = v*. Indeed by Lemma 3.1.10, to each
(a,b) # (0,0) corresponds a point in C; such that Us 4, =< pu1,au + bv >. Moreover since (B1)
doesn't hold there is only one case in which v* vanishes on Ug in C;, namely when we are looking
at p if it exists, or when we look at the point associated to (1,0) otherwise.
We now need to check that this is compatible with (H1). Since ¢1 = v*, u1 € Ker(¢y), so if Uz 4, =
Ker(¢1) then we are in C, but we have already seen that in C, ¢; vanishes exactly at one point
outside of Cy, which is what we wanted, since what happens on C; N C, only depends on the ;. So
(H1) holds when we need it and we can now choose ¢2 = 3.

To satisfy (H2) we can choose the kernel vectors of the v; to be the ; since if u; € Uz 4, then we are necessarily
in C; and ¢;(A\° Usg) = 0 anyway.

Then we have that the fibers of Q are 0in C; N Cy = {p1,p2} and one point of each C; — (C; N Cy), let us call
them p3 and p4. SO0 Q = L ® Tk where L is the determinant of @ and supp(K) = {p1, p2, 3, P4} O

Remark 3.1.13. In Proposition 3.1.12, K # {p1,p2, p3,pa}. Indeed we know from the proof of Lemma 3.1.5 that
ch(Q) = ch(det(Vs(h1 + h2)).(1,0,—8). One possibility would be that all the p; in the support of K have multiplicity
2.

Corollary 3.1.14. If we keep the same notation as in Proposition 3.1.12 there is a surface in Z3 with class h which is
isomorphic to the blow-up of Sy in K. We are going to call this surface S.

Proof. We have seen in the proof of Lemma 3.1.5 that if there is an injection 0 — Og, — Vs(h1 + hy) then its
quotient Q has determinant det(Vs(h1 + hz2)) = Os, (2h1 + 2h2). Hence, by Proposition 3.1.12, there is a map
¢ : Vs — Os,(h1 + h2) which is surjective outside of K. We have also seen that Vg is rank 2, and Z3 = Pgs(Vs)
by 1. of Proposition 1.2.2. We can thus apply Lemma 1.4.1 to ¢, with D,(¢) = K and Dy(¢) = (. As result, the
zero locus of the global section of Oz, (h; + ha + V) induced by ¢ is isomorphic to the blow-up of Sy in K.
By construction this blow-up is embedded in Z3 and has class h; + hy + Vz = h (the last equality comes from
(1.11)). O

Lemma 3.1.15. To avoid (A1) we can assume
MsMyK3 + My MgK3? + MyMsK3 # 0. (3.8)

Proof. We have seen in Lemma 3.6 that we can choose p; = MgK 21+ MsKoxo+ My Kszsand us = M3 Kszy+
My Ksxs + My Kqxg. Thus we can choose basis of A;/ < u; >: A1/ < pg >=< MyKzx1 — MgK 23, MsKoxy —
MK xo >and A/ < po >=< M1 K24 — M3Ksxg, My Koxy — M3Ksxs >. But using 3. of section 1.1 one gets

N(MyK3xq — MoKy 23, Ms Koz — MgKyxo, M1 K124 — M3 K3z, MoKoxy — M3Ksxs)
= MyK3(—Me K1) M3K3(—M3K3) + (—MsKa)(—Me K1) Mo Ko M3 K3 + (— Mg K1) Mg Ky My K1 (— M3 K3)
= (MK \M3K3)(MyK3M3Ks3 + Ms KoMKy + MK M Ky)

Since we have assumed in 4. of section 1.1 that all the M; and K; are non zero, MgK1 M3K3 # 0.

So N (A1) < w1 >, A2/ < uz >) = 0ifand only if M3MyK3 + M1 MgK? + MyMsK3 = 0. Hence if (3.8) holds
then A,/ < p1 > ®As/ < pg > cannot be a pointin Ss. O
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3.2 Blow-up of 7;

We would like now to use this new surface S in Z3 defined in Corollary 3.1.14 to induce a surface in X,. For
this we need a section of 7 or, as we did with S5, a blow-up of Z3 embedded in X,. But as shown in diagram
(1.2), we have that 7 1(Z3) = E4 in X5 with E4 = P2(Vz) where the vector bundle V; is defined by (1.6) in
Proposition 1.3.1. So we are going to proceed as in the previous subsection, and use Lemma 1.4.1 :

Proposition 3.2.1. /tis equivalent to be given a section of 7 : E4 — Z3 or a short exact sequence 0 — L1 — Vy —
Lo — O where the L; are line bundles on Z3 and V is defined by (1.6).

Proof. By Proposition 1.3.1 we have that E; = Pz(Vz). Moreover (1.6) yields that V is the kernel of a map
between a rank 1 + 3 = 4 vector bundle and a rank 2 vector bundle, so rank(Vz) = 2. We can then use the
exact same reasoning as in the proof of Proposition 3.1.1, except for one thing we need to be more careful at :
in the proof of Proposition 3.1.1 we use Exercise 7.8 of 1.7 in [12] but in Proposition 7.11 of I1.7 in [12] we see
that R. Hartshorne has taken a different definition of O(1) and Px(£) where £ is a vector bundle on a variety
X. Indeed in the definition of Hartshorne, if p : Px(£) — X then p.O(1) = & while in section 1.1 we define
O(1) to be such that p.O(1) = £V. So here we need to consider V instead of V. In the case of Proposition
3.1.1 this was not a problem since by 1. of Lemma 1.2.2, Vg = V. g

Lemma 3.2.2. The dimension of H°(V}) is at least 6 so V) has non-zero global sections.

Proof. By (1.6) we have a short exact sequence :

3 2
0= Oz,(7h1) ® Oz, (hz) = \Us & Nty — V¥ — 0. (3.9)

We have also seen in the proof of Lemma 3.1.4 that for i € {1,2}, the dimension of H7(Og,(h;)) is 300 ;.
Moreover, H*(Oz,, 0z, (h;)) = H*(Os,,0.0*Os,(h;)) = H*(Os,, Os, (h;)) by the projection formula and since
0.0z, = Og, (as we will see in Corollary 4.5.5). Thus dim(H*(Oz,, Oz, (h;))) = 380 +-

Furthermore, since by (1.11) we have h = Vz + h; + hy, the short exact sequence 0 — Oz, (—Vz) — Oz, —
Os, — 0induces a short exact sequence :

0 — Oz, (hi 4+ ha) = Oz, (h) = Og,(h) — 0. (3.10)
Moreover twisting the resolution (3.1) by Op2 .2 (h; + ho) One gets a long exact sequence :
0 — Opayp2(—1, =1) = Op2,p2(0,0)%2 = Opayp2(1,1) = Og, (hy + hy) — 0. (3.11)
And similarly to what we did in the proof of Lemma 3.1.3, the Kiinneth formula yields :
* H*(Opaxp2(—1,-1)) = 0.
* H*(Opayp2) = Cd. g 50 dim(H* (O 32)) = 26 0.
© H*(Op2yp2(1,1)) = 3260 = 964.0.
Splitting now (3.11) into short exact sequences gives the two following exact sequences :

0 = Opayp2(—1,—1) = Opayp2(0,0)%? = K — 0 (3.12)
0 — K — Opayp2(1,1) = Og, (hy + h) — 0. (3.13)

Since H*(Opz yp2(—1, —1)) = 0the long exact sequence in cohnomology induced by (3.12) gives H*(Opz xp2 (0, 0)92) =
H*(K). Therefore the long exact sequence in cohomology induced by (3.13) gives an exact sequence :

0—C?—C%— HOg,y(h1 +hs)) =0
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and as a result dim(H*(Os, (h1 + h2))) = 70 0.
Now the long exact sequence in cohomology induced by (3.10) gives the short exact sequence :

0— C" — H°Og,(h)) — H*(Og,(h)) = 0 = H (Oz,(h1 + ha))
since H*(Oz,,0z,(h1 + h2)) = H*(Os,,Os,h1 + ha). Moreover,
H*(Oz,,02,(h)) = H*(0s,,0:(0z,(Vz) ® 0" Os,(h1 + h2)))

= H*(Os,, Vg (h1 + h2))
= H*(Osz,Vs(E1 -I-Eg))

using the definition of Vz, the projection formula and 1. of Proposition 1.2.2. By Lemma 3.1.4, we then know
that dim(H°(O,(h))) = 12. Finally the long exact sequence in cohomology given by (3.9) gives a short exact
sequence :

2
0= H(Oz,(h1)) & H(Oz,(hs)) — H(O,(R)) & HO(\Uy) — H(VY) =0
since we have seen that H(Oz, (h1)) = H'(Oz,(h2)) = 0. Hence

dim(H°(Vy)) >dim(H®(Oz,(h))) — dim(H°(Oz, (h1))) — dim(H®(Oz,(hs))) =12 —3 — 3 = 6.

Lemma 3.2.3. The Chern character of V7, is
- -
ch(V}) = (2,3h — hy — hy, ks + 2Vz(hy + hs),3).

Proof. By (1.6) we have
3 2 B _
0—Vz — N\Us® \Us — O(=h1) & O(~hy) — 0

on Zs. We already know that \> 75 = O(%) (see Lemma 4.2.9 below) but we need to compute ch(A> 3 ).
By (1.7) we have ~ ~ -
0 O(~hy) & O(—hy) — Us — O(—Vy) — 0

on Zs. Thus, using (1.11),

—2 —2
_ h — h — 1
+ 17h17 ?170) + (17h27 ?270) = (37h707_§)

M_l)(
2 T3

(@) = (1,Vz, —
By definition (see for instance page 430 of [12]),

aUs) = (1+ art)(1 + agt)(1 + ast)
=1 + (a1 + as + ag)t + (a1a2 + ajas + agag)t2 + (a1a2a3)t3.
Thus:

Cl(a;/) = aj +a2+a3 :E

7\/ P— P—
_ U )? — h h
02(1/[;/):@1@24-(11&3-1-@2&3:61(23) _Ch2(u§):?_0:7
— V.. Vv,V -3 =3 -3
v —v. alz)?  c(Usz)eaUs) 1 h h h
= 2(ch - =2({—-zc——=4+—)=—+—
C3(1/{3) (C 3(“3) 6 + 9 ) ( 3 6 + 4 ) 3 + 6



Furthermore, by (1.11), (1.18) and (1.13), one gets :
h = (Vg +hy+ hy)? = V2 +Ef +E§ +2Vz(hy + ha) + 2h1hy
= 751%2 + E? + E; + 2VZ(El + EQ) + 2%152
= 2Vz(hy + h2) + 2Ry hs.

As a result, CQ(ZZZ) = %2 = Vz(hy + hy) + hihs. Then

7 = (Vg + By + 1) (2Vz Ry + o) + 2R )
=2V (hy + ha)? + 2Vzhi hy
=264+22=12+4 = 16.

Hence,c3(ﬁg):—§+%3: %‘F%:%:?-
Now by the formula for ¢; (A" H;/) page 430 of [12] we get

/\U3 (14 (a1 4+ a2)t)(1 + (a1 + a3)t)(1 + (ag + a3)t)
=1+ (2a; + 2az + 2a3)t + (a3 + a3 + a2 + 3aias + 3a1a3 + 3agaz)t*+
+ (a?ag + a%ag + a%al + a%ag + a%al + a§a2 + 2a1a2a3)t3

=14 201Uy )t + (1 (U3 )% + ea(U3)E + (e1(U3 ez (Us ) — e3(U3))E

So
27\/
(\Us)
2 —2
—2 h 32
[ A
N\Us 5 =3
—3
—v. h
Ntts G —2=8-2=6

2 2
chi(\Uz) = er(\Us) = 2R
2 2577V\2
cho(\Uy) = Cl(/\%?’) — e /\1,13 = 27°

2 —V —
NG = LT N TNy

32 Ez
2E 7 Zﬁlﬁz +51VZ +EQVZ
)

+3

3 3

Here we used (1.13) and (1.11) again. So finally ch(A\” H;) = (3,2h, hihy + hiVz 4+ haVz, 3).
Thus, using (1.6) and (1.11) we get

ch(Vy) = ch(O(h)) + ch(/\Us ) — ch(O(h1)) — ch(O(hy))

SR - 1 — h — h
)+(372h7h’1h2+h1VZ+h2VZ7§)_(17h17?170)_(17h27?270)'
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So finally, since 7, + oy = hi1 hi2,
-2

—2
—-— - -8 R — 1 — h — h
ch(Vy) = (1, h, hiha + Vz(h1 + ha), g) +(3,2h, hahy + hiVz + haVz, g) — (1, hq, 7170) — (1, ha, 7270)

R S o
= (2,3h — hy — hs, §h1h2 + QVZ(hl + h2),3).

O

Remark 3.2.4. To compute ch( A’ H;) we could have used the following : since ﬁ;j is of rank 2 there is an isomor-
phism N*U, = Us  det(Uy ) = Us ® O, (h). Hence

— - .8
/\ (3,—h,0, )(1,h,h1h2+Vz(h1+h2),§)
1
= (3,20, hihy + Vz(hy + hy), 3)

Corollary 3.2.5. If there is a short exact sequence 0 — Oz, — Vy — Q — 0then ch(Q) = (1,3Vz + 2(hy +
hg), %hlhg + 2VZ(h1 + hz), 3) = ch(det(V%)).(l, 0, —4VZ(h1 + hg), 24)

Proof. If we have a short sequence like the one given just above then ch(Q) = ch(V})—(1,0,0,0) so we just have
to use Lemma 3.2.3 to compute ch(Q). Moreover still from Lemma 3.2.3 we get that det (V) = O, (3Vz+2(h1+
hs)) whose Chern characteris: (1,3Vz+2(h1+ha), 3h1ho+6V7 (hi+hs), 27). Finally (1, 3Vz+2(hy+hs), 2hiho+
6Vz(h1 + h2),27).(1,0,y,2) = (1,3Vz + 2(h1 + ha), 3hiha + 6Vz(hy + ho) + 4,27 + & + y(3Vz + 2(hy + ha))).
So to get the Chern character of Q we need to take y = —4Vy(hy + hy) and z = 3 — 27 + 8.6 = 24. O

As before this shows that a global section of V), cannot induce a copy of Z3 in Ey, yet since 4V451 + hy) is
the class of the curve I'; in Z3 (from (1.15)), it may be possible to find a blow-up of Z3 in T'; inside 4. Indeed :

Proposition 3.2.6. There is a threefold in E, with class [Vz] and which is isomorphic to the blow-up of Zs in the
curve I'y (defined in 5. of Theorem 1.2.3). We are going to call this threefold Z.

Proof. Asdefinedinsection 1.1, let v be a global section of O¢(1) such that X is the zero locus of the sections y,
A and v. Then by definition of k in Definition 1.3.3, v € |h| and in the proof of Theorem 5.1 in [20], one finds that
h|g, corresponds to a global section of V; which for general v vanishes on the curve T'y (where Ty is the curve

defined in Theorem 1.2.3 for Xj’“”’). This global section induces a morphism : Vz ”l> Ogz,. Since rank(Vz) = 2
and rank(Oz,) = 1, with the notations of Lemma 1.4.1 we have that D, (v") = () for & > 2. Moreover, since
the section of V) induced by v vanishes exactly on I'y we have D;(vY) = I'y. Finally, E4 = Pz(Vz) from

Proposition 1.3.1 so we can apply Lemma 1.4.1 to V ﬁ Oz, which yields that the zero locus of the global
section of O (V) induced by vV is isomorphic to the blow-up of Z3 in the curve T';. O

Corollary 3.2.7. There is a blow-up of | S in the points of I'y N S inside E4, and thus inside X5. We are going to call
this blow-up S. Its class in CH*(E) is hV.

Proof. Firstofall, 4V (hy +ha)h = 4V2(hy +ha) +4Vz(h1 + ha)? = 4.6 = 24. So in general S and T intersectin
24 points, in particular their intersection is not empty. By Proposition 3.2.6 there is in E;a blow-up of Z3 in T'y,
namely Z. Let us denote by p : Z — Z3 this blow-up. Then we can take S=28xz Z=2p1(S). By definition of

p it will be the blow-up of S inT'; N S, and its class can be computed using the classes of Z and 5. O

By (1.12) in Pic(E,) we have Vi = h, thus we have found a surface in X5 with class hhe. Since X, = X5.H,,
where H, is the pull back of the hyperplane H, satisfying X, = X5 N H, (see the proof of Theorem 5.1 in [20]),
and since we have used v to build Z (more precisely to induce the global section whose zero locus is Z), this
should then induce an embedding Z < X4.As S — Z by construction, we have then found a surface in X,
which is isomorphic to the blow-up of S5 in some points.
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3.3 Intersections with £,

We would like to understand what is possibly contracted by 7 in both S and Ds. In order to do so, we first try
to compute the intersection between £, and E,. Indeed since Eyis the exceptional divisor of 7 (see Theorem
1.2.1), 7 is an isomorphism outside of E,, and (o o 7)~1(S2) = E4.

Definition 3.3.1. Let p and =z be points in Sy and Z3 respectively. We are going to denote by fz(p) and fz(z) the
fibers respectively over p in Z3 and over z in E4. By Theorem 1.2.1 each of these fibers is a PL.

Similarly, if x is a point in F3 and y a point in 3o, we will denote respectively by fr(x) and fp(y) their fibers in
respectively E4 and Ds.

Before going further we need a quick "technical Lemma" :

Lemma 3.3.2. Let Uy C W. Then U, is -isotropic if and only if we can write Uy =< uy,uy > where u; € A;. Here
A = T193 + Ty56 aNd Ay =< 1,29, 23 > and Ay =< x4, x5, 26 > s defined in 3. of section 1.1.

6 6
Proof. Let us assume that Uy =< u,v > with u = Z a;z; and v = Z Bix;. Since X = x123 + 456 We have that
i—1 i—1
U, is -isotropic if and only if :
0 =27 (a2f3 — azf) — x5(c1 B3 — azfr) + x3(a1fe — az2f1) + xi(asBs — asfs) — x5 (afs — asfBa)+
xg(oufs — asfs)

that is to say if and only if the following equations are all satisfied :

azf3 —azf2 =0 (3.14)
a3 —azf =0 (3.15)
afBy —azf =0 (3.16)
asfe — agfBs =0 (3.17)
ayfe —agBs =0 (3.18)
ayfls — a5y = 0. (3.19)

Let us assume first that these equations are all satisfied. Here we have four possibilities :

1. a1 # 0. Since multiplying u by a non-zero scalar is not going to change U, we can then assume that
a1 = 1. Then (3.16) and (3.15) give respectively 8, = a1 and 83 = a3f1. Since < u,v >=< u,v — f1.u >
we can then take us = B4x4 + Bs75 + Bsxs-

2. a1 = 0and as # 0. As in the previous case we can then assume that a; = 1. Then (3.16) gives 5, = 0 and
(3.14) gives B3 = a3fs. Since < u,v >=< u,v — fy.u > we can then take uy = Byz4 + Bsx5 + Pexe.

3. a1 = a2 = 0 and a3 # 0. As before we can assume a3 = 1 and thus (3.14) and (3.15) give 51 = 32 = 0.
Since < u,v >=< u,v — f3.u > we can then take us = 424 + B5x5 + Bsxs.

4, oy = ag = ag = 0. We can then take us = u = aur4 + 55 + gx6.

Similarly if B4, Bs or g is non-zero then using (3.17), (3.18) and (3.19) we can show that Uy =< u;,v > with
u1 = a1x1 + asxs + asxs. In such a case we cannot have a; = as = a3 = 0 otherwise it would contradict
dim(U3) = 2, hence we are in case 1., 2. or 3. above and we can take u; = o171 + aazs + azzs and ug =
Bawy + Bsws + Bexe.

If B4 = Bs = PBs = 0 then we cannot be in one of the first three cases above since it would contradict again
dim(U,) = 2. Thus we are in case 4. and we can take u; = v and uy = .

Conversely,ifay =as =as =01 =02 =03 =00ra; = as = az = B4 = 5 = B = 0 itis easy to check that
the six equations (3.14), (3.15), (3.16), (3.17), (3.18) and (3.19) are satisfied. O

51



Lemma 3.3.3. The intersection between fibers over C1 U Cy in E4 and Ey is
« two P! intersecting at one point, over a point p such that p ¢ C1 N Cy;

« three P! such that one of them intersects the two others at exactly one point each, these two intersection points
being distinct, over a point p € C; N Cla.

Let us denote by C} and Cy the fibers in Z3 over Cy and Cs. Then the intersection between the fibers over C} U C}
in E4 and E,4 can be described as follows :

* Letp € C; — Cy N Ca. Then there is exaclty one point 2’ € fz(p) such that f(z") C E4. For all the other
points z € fz(p), we have that fz(z) N Ey is exactly one point. Moreover if p = Uz a, ® Uz, a,, then 2 is the
only point Us C Uy in fz(p) such that Us 4, C Us.

« Letp € C; N Cy. Then there are exactly two points z1 and z; in fz(p) such that f&(zi) C E4. For all the other

points z € fz(p), we have that fz(2) N Ey is exactly one point. Moreover, if p = Uy = Uz a, ® Uz a,, then
z1 and z, are respectively the two points Us ; C Ua; in fz(p) such that Uy 4, C Us,;. For all the other points

z € fz(p), the intersection of f#(z) with Ey4 is {Uj @ Cwp}.

Proof. 1. Assume thatp € Cq — Cyissuchthatp = Uy = Uz 4, @ Uz 4, and Uz 4, =< u;,v; >. Then by
hypothesis on p we can assume Uj =< uy,us + ev; > with e # 0. Moreover f(p) is composed by all the
Uj C Uz C Uy (by 10. of Theorem 1.2.1) so each point in fz(p) is of the form :

Ug =< uy,us + €vq, Avqy + Bug > (3.20)

with 4, B € C not vanishing at the same time. On the other hand, the points in E, are all of the form
Uz & Cwy C Us & Cuwy (see 5. and 6. of Theorem 1.2.1) so the points in E, N7~ 1(S) over p correspond
to the Us C Uz which are A = x93 + x456-isotropic. Indeed, they are all automatically ; and )\’ isotropic

— -] = L . . : o
: U3 contains U, and another vector of Uy so it is y-Lagrangian, and X" vanishes on wy so it annihilates
any U, @ Cwy. We have two cases :

Us =< wyg, us + evy, Avy + Bvg > (3.21)
and

Us =< wo,u1 + A(uz + evr) + T'(Avy + Bua), ¢(ug + €v1) + (Avy + Bug) > . (3.22)

3
We need to check when the associated U, = Us/ < wq > is A-isotropic. We will assume : u; = Zaicci,
=1

3 6 6
v = E BiTi, Ug = E viz; and vy = E 0ix;.
i1 ) =1

+ Case (3.21):
By Lemma 3.3.2, U is A-isotropic if and only if it can be written as < wy, we > with w; € A;. If B #0
then since < wuy, vy > is 2-dimensional and dim(U,) = 2 we cannot write Uy =< w;,ws > With
w1 € A;. If B=0we must have A # 0 and we can assume A = 1 since multiplying a generator by a
non-zero scalar doesn't change a vector subspace. In this case

Ug =< uz,v; >

is A-isotropic.

+ Case (3.22):
Here -
Us =< up + Aus + (A6 + FA)’Ul + I'Bvg, pug + (6(15 + 1/)14)1}1 + Y Buvgy > .

Let us consider two cases, using again Lemma 3.3.2:

52



- ¢ # 0, hence we can assume ¢ = 1. Then Uy =< uj + (Ae + TA — Ae — AYA)v, + (B —
’LZJAB)’UQ,UQ-F(E-FwA)’Ul +'IZ)B’[)2 >=<u -‘r—A(F—A’(ﬁ)’Ul -I—B(F—"LZ)A)’UQ,’U,Q-I-(G-I-'LZJA)’Ul +’LZJB’()2 >.
As before and since dim(< uy,v; >) = dim(< ug,v2 >) = 2 we must have : B(I' — A¢y) = 0 and
e+ yYA=0.

If B # 0itgives: ' = Ay and Ay = —e. Since € # 0 this forces A # 0 and ¢ # 0, therefore we
can assume A = 1 which yields : ¢ = —e. Hence we find :

ﬁg =< uy,uy — €Bug > .

If B = 0 this yields Ay = —e so as just before we can assume A = 1 and ¢ = —e. Therefore we
get: Uy =< uj + (' + Ae)vy, us >. Since here there are no conditions on I and A this actually
gives:

UQ =< u +k’U1,U2 >

fork € C.

- ¢ = 0. Then since ¢ and v cannot be zero at the same time, we can assume ¢ = 1. Thus
Uy =< uy + Aug + (Ae + T A)vy + T'Bug, Avy + Bvg >=< uj + Aug + Aevy, Avy + Bug >. For the
same reason as before we thus want A = 0 and A = 0. As a result we can assume B = 1 and
we get :

Ug =<uy,v2 >.

Combining what we found in the two cases (3.21) and (3.22) finally gives :

(a) if B # 0thereis Uy =< uy, Aus — eBvs > that is to say one point.
(b) if B =0thereis Uy =< au; + Bvy,ug > for (o, 8) € C2 — {(0,0)}, that is to say a PL.

Let us denote Nnow 2’ =< uy,ug + €vy,v1 >=< U, uz,v; >C Uy € fz(p). It correspondsto B = 0and itis
the only pointin fz(p) such that Us 4, C Us by the definition of fz(p) given in (3.20). Moreover we have
just seen that fz(2’) N E4 contains a P! and since fz(2') is a P! (see (1.2)) this yields : fz(z') C E,.
Finally we have found : to each Us #< uq,us,v1 > in fz(p) corresponds a unique point in E4, namely
Uy =< uy, Aug — €Bvy >. To Uz =< uy,ug,v; > (that is to say B = 0) corresponds a P! in E,, namely
{< uy +avy,uz >, a € C}U{< ug,v; >}. Since fz(p) is also a P! by Theorem 1.2.1, this gives two P!
intersecting at < uy,us >C< uy,ug,v1 > : one of the P! is isomorphic to fz(p) and the other is f5(2’).

. Letus assume now thatp € C';NC,. For p € Cy — C itis symmetric to the previous case. We can assume

—1 = . . .
now U, =< uj,us >and Ug =< v1,ve > with ug, v1 € 47 and ug, v2 € As. Then the pointsin fz(p) are
given by B
Uz =< uy,us,avy + bug > .

Again we distinguish two types of possible Us.
Ug =< ug, avy + bvy > (3.23)
and -
Us =< uy + Tug + Aavy + Abus, pus + avy + bug > . (3.24)

We need now to find which ones are X isotropic and for this we are going to use Lemma 3.3.2 as before.
* Case (3.23):
Here U, can be written as < wy,wy > with w; € A; if and only if b = 0 since us and v, are not

colinear. This gives :
Us =< ug,v1 >.

+ Case (3.24):
Let us distinguish between two cases again :
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- ¢ # 0sowe can assume ¢ = 1. Then Uy =< uj + Duy + Aavy + Abug, ug + tav, + Ybuy >=<
u1 + a(A — YT)vy + b(A — YT)vg, us + Yavy + by >. So we need b(A — ¥T') = 0 and a = 0.

If b = 0 we can assume a = 1 and thus we want ¢ = 0. This yields :
Uy =< ui + Avi,us > .

If b # 0 we can assume b = 1. Let us assume now that a = 0. Then we get A = ¢I" which gives :
Ugy =< u1,ug + vy > .

Here there are no conditions on .
Ifb#0anda#0wegety =0and A =¢I' =0. Thus:

ﬁQ =< Uy, Uz > .

- ¢ = 0 hence we can assume ¢ = 1. Then Uy =< uy + Tuy + Aavy + Abvg, avy + bugy >=<
u1 4+ Tug, avy + bve >. Therefore we need I' = 0 and a = 0 which gives :

Uy =< ug, vy > .
Finally we have found :
(@) if b =0then Uz =< uy,us,v; > and the possible U, are
{<ug,v1 >}U{< us +Avy,us >, A € C—{0}} U{< up,uz >}.

(b) ifa = 0then Us =< uy,ug, vy > and the possible Uj are {< uy, us + vy >, ¢ € CYU{< uy,vg >}.
(c) ifa # 0and b # 0 then the only possible Uj is < uy, up >.

Let us denote now by z; and z the points in fz(p) with Uz =< uy, up, vy > respectively < wuy,us, vy >.
Then we have seen that for both i = 1 and i = 2, f5(z;) N E4 contains a PL. Since each f5(z;) is itself a
P! this implies that f5(z;) C E4. For the other points z in fz(p) we have f5(z) N By = {< u1,u2, wy >}
Since {< w1, uz,wp >} is also in each fz(2;) N Ey4 (respectively when A = 0and ¢» = 0) and fz(p) is also a
P!, we have found three P! (namely fz(2;) and one isomorphic to fz(p)) intersecting in two points : each
fg(2;) intersects the third P! respectively in < wuy,us >C< up,ug,v; > and < up,uy >C< Uy, ug, vg >.
Finally for i € {1,2}, 2; is the only pointin fz(p) such that the associated U3 contains Us_4,.

O

Lemma 3.3.4. Letp € So — (C1 UC5). Then for each point z € fz(p) we have that f+(z) N E4 contains exactly one
point.

Proof. Let p be a pointin Sy — (C; U C»). Letus assume thatp = Uy = Us 4, @ Uz a, With U 4, =< u;,v; >.
Then by hypothesis up to a good choice of the u; and v; we can assume that Uy =< u; + ug,v; + v2 >. Then
we have :

fz(p) = {< w1 +ug,v1 +v2, Au; + Buy > A,BeC, (A,B)#(0,0)}. (3.25)

Let z € fz(p) be such a Us. By Lemma 3.3.2, the points in fz(z) N E4 correspond to the Uy C< uy + uz,v1 +
vg, Auy + Bv; > which can be written as < w;, w2 > with w; € A;. Since the u; and v; are not colinear
< uy + u2,v1 + vo > doesn't satisfy this property. So if such a Us exists it has to be of the form:

< Auy + Buy + ¢(u1 + uz) + ¥ (v1 + v2), ((u1 4+ u2) + &(v1 +v2) > .

Thatis to say :
< (A+ Q)ur + (B + )1 + duz + Yva, ((ur +uz) +&(v1 +v2) > .

There are two cases :
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* ( =0. Then we can assume £ =1 s0

Uy =< (A+ ¢)ur + (B + ¢)v1 + pug + thva, vy + vz >
=< (A+ P)us + guz + (¢ — B — vz, v1 + vg >
=< (A+¢)U1 +¢’LL2 7B1)2,1)1 + v > .

Since u; and vy are not colinear, we want ¢ = —A which gives Uy =< —Auy — Bvs, vy + v3) >. The only
possibility here is A = 0 which gives : o
Uy =< Vg,V1 > .

* ¢ # 0thus we can assume ¢ = 1. So

Uy =< (A+ ¢)ur + (B + ¢)v1 + dug + hvo, ur + us + &(v1 + v2) >
=< (B+1¢— AL — dC)vi + (¢ — A — P)ug + (VY — AL — p&)va, ur + ug + vy + v > .

To start with, since u; and vy are not colinear we need B + ¢ = £(A + ¢). This implies

Ug =< —Aus — Bug,uy + us + vy + vy > .

If B =0, we can assume A = 1 and thus we have Uy =< uy, u; + £v1 + Evp > SO we want € = 0 and we
get: B
Uy =< Ug, Uy > .

If B# 0and A # 0we can assume A = 1. Thus Uy =< ug + B, u; + &vy + (€ — B)vg >. Hence we need
B =¢andwe get: -
Uy =< us + Bvg,u; + Buy > .

If A =0we have Uy =< vg, u1 + us + &v1 > which cannot be written as < wy, ws > With w; € A4;.

Finally, we have found that for each z =< uy + ua, v1 + v2, Au; + Bvy; >€ fz(p) we have

fz(2) N Ey = {< wo, Aui + Bvy, Aug + By >}.

Combining Lemma 3.3.3 and Lemma 3.3.4 we have found :
Corollary 3.3.5. Let = = U3 C Uy be a point in Zs. Then :

1. ifUsNA; CUsfori=1or2then P! = f=(z) C Ey4 (and o(p) € C,);

2. otherwise, f5(z) N E4 contains one point.

Remﬂ'k 3.3.6. from 3. of Lemma 1.2.2 we hgve that there exists two disjoint curves Ci CZs such that o(C;) = C;
and Uz C Uy € C;ifand only if Uy N A; C Us. Thus Corollary 3.3.5 together with £, = P, (Vz) seem to suggest
that E4 N E4 is isomorphic to the blow-up of Zs3 in Cy and Cs.

Before going further, let us introduce some notations and give names to the various P! described in Lemma
3.33.

Definition 3.3.7. Let@l ﬂéz = {pl,pg}.
For each p; let us denote Ui =<ut,ub>andUg := U4/Ui =< v}, vy > with uj, vi € Aj.
Moreover, let p and q be points in C; — Cs, respectively Co — C. Then we will use the following notations :

— 1 —
. e 0P P P i e P P P P p P .
forp, Uy =<uj,up + vy >with €y # 0, and Uy =< uy, uy, vy, vy >. Here vy, ui € Ay
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=1 , _
* forq Uy =< ug,uf +equg >with e, # 0, and Uy =< uf, ug, v{, v >. Here vy, uj € A;.

When the point to which the u; and v; are associated is obvious, we will sometimes drop the index associated to this
point.

Definition 3.3.8. Let us denote the P* in E, N E, over points in Sy as follows :
* Over p;, AL := {< auy + bvy,ug >C< uy,uz,v; >, (a,b) € C2 —{(0,0)}}.
* Over p;, B; := {< u1, pug + vy >C< uy, uz,ve >, (1, ¢) € C2 —{(0,0)}}.
* Over p;, C! = {< uy,ug >C< uy,us,avy + bvg >, (a,b) € C%—{(0,0)}}.
« Overp e Cy — Cy, E, == {< uy, Aus — €Bvy >C< ug,us + vy, Avy + Bvy >, (A, B) € C? —{(0,0)}}.
» Overp e Cy — Cy, F = {< Buy + avy,ug >C< ug,uz,v1 >, (a, ) € C2—{(0,0)}}.
* Overp e Cy — Cy, Gy := {< uz, Auy — eBvy >C< uz,uj + €va, Avg + By >, (A, B) € C? — {(0,0)}}.
* Overp e Cy — Cy, Hy = {< Buz + ava, ug >C< uz,us,ve >, (a,B) € C*—{(0,0)}}.

3.4 Some contractions by 7

As mentioned before, we want to understand what can be contracted by 7 in S and Ds. Indeed it is necessary
to understand such contractions to be able to compute Euler characteristics between 7,05, 7.0g and other
sheaves in Db(X4). Thus, if we want to use the two pushforwards 7,04 and 7,05 in order to build a basis of
K. (X4) and then compute all the associated Euler characteristics, we need to study what can possibly be
contracted by 7 in S and D,.

In the following subsection we give a partial answer to this question. We first try to understand what can
be contracted by 7 in E; N E,; C X5 in subsection 3.4.1, and then try to understand what remains of these
contractions in B, N E4 N X, = D3 N E,4 in subsection 3.4.2.

3.4.1 Some contractions by 7 in £, N E4

Here we try to understand what is contracted by 7 in E, N E,. We are only able to give a partial description
of these contractions : we can use some geometrical descriptions given in [20] to study contractions in the
preimages of two rational curves in Sy (namely C; and C5).

We start with some technical Lemmas, which we will use in the proof of Lemmas 3.4.6 and 3.4.7, where we
list all the contractions we have found. We will use the notations of Definitions 3.3.7 and 3.3.8 all along this
subsection.

Lemma 3.4.1. With the notations of Definition 3.3.7, we must have :
1. ui and u? are not colinear;
2. ud and u3 are not colinear;
3w ¢<ul, v >andul g¢< uf v? >;
4. u3 ¢< ub, vl >andul ¢< ud, v3 >

Proof. 1. Let us assume that ui and u? are colinear. Then up to rescaling we can assume that ui = u?.
Then since p induces a non degenerate pairing between the A;, and by definition of the u; one gets :
< ud, v >= Ker(u(ul,.))NAz = Ker(u(u?,.))NAs =< u3,v3 >. Moreover, since the p; are in C1NC5, we
must have that us €< ud, v} >=< u3,v3 >, hence < ul, vi, ul >=< 3, v3,u? > is a p-Lagrangian. Then
by 6. of section 1.1, we must have that v} and v% are colinear. Butthen < u}l, ud, vi, vi >=<u? v} v}, 03 >
SO p1 = po, Which is a contradiction.
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2. We use the same reasoning as just before : let us assume that u} and u3 are colinear. Then we can assume
that u3 = u2. Then since u induces a non degenerate pairing between the AZ, and by definition of the
u; one gets : < uj, v >= Ker(u(ud,.)) N 4; = Ker(u(u3,.)) N A; =< U17U1 > Moreover smce the Di
are in C1 N Cq, we must have that u; €< ul,v} >=< u? v} >, hence < ul, v}, ud >=< u?,v?,u} >is
a p-Lagrangian. Then by 6. of section 1.1, we must have that v3 and v3 are colinear. But then p; = po,
which is a contradiction.

3. Letus assume that u? = aui + bv}. We have just seen that ud and 3 are not colinear, so that < u}, v} >=
Ker(u(us,.)) N Ay # Ker(u(u3,.)) N Ay =< u,v? >. So A} =< ui,vi,u}, v >. On the other hand,
p(uf,vf) =0, p(u,uf) = 0, p(ui,v}) = plaui + bvi,vi) = 0and p(ui,ui) = p(au + bvi, ui) = 0since
p(ul,vi) = 0. Therefore, u? is u-orthogonal to A;, so it is u;. But then by Lemma 3.1.8, this contradicts
(3.6).

With the same reasoning, if ul €< u2,v? > then ui = uy, which contradicts (3.6).

4. The same reasoning as for 3. gives us that if u2 €< u},vd >, then u3 = p, and that if ud €< u2,v2 >, then
us = po. So none of them is possible by (3.6).
(I

Lemma 3.4.2. Letp € Cy — Cy. Then Ug =< uf,v§ > and u, is p-orthogonal to < uf, v} >.
Letq € Cy — Cy. Then Ug =< uf, v} > and v} is p-orthogonal to < uh, v >.

Proof. By Definition 3.3.7, we have that Ui =< ul,ub + e,0} >. So we can write Ug =< v} 4 aub + bv}, cub +
dvb >. But since in U4/Ui, o) = _é“I; we can also write Us =< (a — i)ug + o, cub + dvl >=< ub,vh >.
(Since by hypothesis p ¢ Ca, u(ub,v5) # 0 so this is not a contradiction.) Moreover, by hypothesis on uf, we
must have p(ul,uh) = 0and 0 = p(ub + o, o) = p(ub, v7) since p(vy, v}) = 0. So uh is u-orthogonal to uf
and vf.

The same reasoning, "switching" A; and A,, gives us the result for g. O

Lemma 3.4.3. Letp € C; — Co. Then u) and u? are not colinear, and u} and v} are not colinear.
Let g € Cy — Cy. Then w) and uf are not colinear, and u and ul are not colinear.

Proof. 1. Letus assume that ul and u” are colinear : we can then assume u} = u®. Since p € 01 we have
then < ), v) >= Ker(u(u),.)) N Ay = Ker(u (uh,.)) N Ay =< uf,v§ >. Butp; € Cq 50 pg €< uy, vy >=<
ub, vf >. By Proposition 1.2.2 this implies p € Cs, which is a contradiction.

2. Let us assume that u2 and u} are colinear : we can then assume u, = u5. By Lemma 3.4.2 we have then
<l vl >= Ker(u(ul, )N A = Ker( (ub, )N A; =< ub, P >. Butp;, p e C1 50 py €< u,v] >=<
W P >, S0 < ul, vl ul >=< ub vP ub > is p-Lagrangian. By 6. of section 1.1 we then get that vj and v%
are colinear. This implies p = p;, which is a contradiction.

3. The same reasoning gives the statement about g.

Lemma 3.4.4. Letp € Cy — Cy. Then uj ¢< uf, v} >.
Let g € Cy — Cy. Then ul, ¢< ub, v} >.

Proof. 1. Let us first assume that u] e< uf v >. Then we can write v} = au? + bv{’ We have seen in
Lemma 3.4.3 that u; and u;, are not colinear, so by Lemma 3.1.6, < w),v] >#< uy,vp >and 4; =
ul, vl uf,of >, But p(uf, ul) = p(ul,v]) = 0, p(ul, uf) = p(auf + b}, uf) = 0 and U(ulavjlj) = u(aul +
boy,vl) =0 smcep € Cy and so py €< uf, v} > which implies p(u},v}) = 0. Hence u] is u-orthogonal to

A; and thus u] = py, which contradicts (3.6) by Lemma 3.1.8.
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2. For g we can use the same reasoning, "switching" A; and As.
O

Lemma 3.4.5. With the notations of Definition 3.3.7, for any two p, q in C1 U Cy — C1 N Co, u} and u{ are not
colinear. Similarly, ut and ud are not colinear.

Proof. Let us first assume that «} and u{ are colinear. Then up to rescaling we can assume they are equal. By
Lemma 3.4.2 we then have < u}, v} >= Ker(u(uf,.)) N Az = Ker(u(uf,.)) N Ay =< ud,v] >. Then we have two
cases:

* One of pand ¢ isin Cs. Let us assume it is p. Then by Proposition 1.2.2, s €< uf, v >=< ul,vj >, so
q € Co. But then < ub, v} v} >=< ud v uf > is y-Lagrangian, so by 6. of section 1.1, this implies that
v} = v{. So p = g and this contradicts our hypothesis.

* Both p and g are in Cy — Cs. Then p(ub,v5) # 0 so we cannot use the same argument as above. But by
the same argument as in the previous case we must have that u5 and u are not colinear. So by Lemma
3.1.6, < uf,v] >#< uf,v{ >and A; =< uf,v{,uf,v{ >. On the other hand, pu(uf,u}) = p(uf,vy) = 0,
pd ul) = pud,ul) = 0and p(ul,v}) = p(ui,vf) = 0 since both p and ¢ are in C; and thus p; €<
ul ;v >and puy €< uf, vf >. Butthen v} = u! is u-orthogonal to Ay, so u} = u{ = p;. But we have seen
in the proof of Proposition 3.1.12 that there is a unique point p’ in Cy — Cs such that u? = p1, 50 p = ¢
which is a contradiction.

So u} and uf must be non colinear.
With a similar reasoning one can find that «5 and «J are non colinear. O

We can now compute some obvious contractions of &, and list some contractions that cannot occur, using
the P! listed in Definition 3.3.8 :

Lemma 3.4.6. With the notations of Definition 3.3.8 we have :

1. Both C{ and C} are fibers in E,. They are contracted by 7 to the points < ul,ul,wg > and < u?,u3, wy >
respectively.

2. Fori € {1,2}, = doesn't contract anything in A’ or B;. For any fixed p € C; — (C1 N C3), = doesn't contract
anything in E,, F,, G, or Hp,.

Proof. From 7. of Theorem 1.2.1 we have that two points U} c U} and U C U7 in X5 have same image by = if
and only if U} = UZ. Hence, by definition of C} and C} they must be contracted to respectively < u}, ud, wg >
and < u?,u3,wy >. Moreover by (1.2) we know that the fibers in E, are all P! and C} and C} are also P* so
fe(< u%au;wo >) = C{ and fE‘(< u%ungo >) = Cé

Using again the definition of 7 in 7. of Theorem 1.2.1, one finds that = doesn't contract anything in A}, B;, F,
or H, : indeed by Lemma 3.3.3 these are isomorphic to fibers in E4. But by 8. of Theorem 1.2.1, 7#(Us C Uy) =
Us/ < wo > soin a fiber in E, all points have same U, and thus different Us. So 7 should be an isomorphism
from fz(z) to w(fg(2)) forany z € Zs.

Finally, < uy, Auy — eBvy >=< uy, Aus — eBuvy > if and only if Auy — eBv, and Auy — eBu, are colinear, if
and only if < uy,us + evy, Avy + Buy >=< uy, us + €vq, Avy 4+ Bvs > so 7 doesn't contract anythingin any E,.
Similarly, = doesn't contract anything in any G,,. O

In the following Lemma, we try to complete the above-mentioned Lemma 3.4.6 and list all the contractions
which can (or cannot) occur between points in the P! listed in Definition 3.3.8. In order to do so, we study case
by case what can be contracted between two of these P*. There are a lot of cases to consider but most of the
times we can easily understand whether there are contractions or not using the technical Lemmas from the
beginning of the subsection. However, as detailed in the proof, there are some cases in which we don't manage
to conclude.
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Lemma 3.4.7. With the notations of Definition 3.3.8, C'| and C', are contracted to two distinct points by .

If p and q are respectively the unique point in C such that u§ = u; and the unique point in Cy such that ud = s
then E, and G, are contracted to a P! in the unions of respectively all F,. and all H.

There is also a pairing between points in C1 — Cy and Cy — C such that if r and s are paired then w(F,.) N 7 (H)
contains exactly one point. Moreover, w(A}) N w(By) and w(A%) N7 (Bs) also contain exactly one point each.
Finally, there might be somer € C1 — Cq and s € Cy — C such that m(E,) N7 (G,) # 0. Such an intersection would
then contain exactly one point.

Proof. We will use the notations of Definition 3.3.7 and Definition 3.3.8, so we will denote by p; and p, the
points in C; N Cy and by p, q or p’ points in one of the C; but not the other.

We want now to compute what can be contracted by 7 between two distinct P! among those listed in Defi-
nition 3.3.8. Some of these P! already intersect in E, : we have seen in the proof of Lemma 3.3.3 that A;NC! =
{< U1, Uy >C< uUp, U2,v1 >}, B; N Oz/ = {< U, Uy >C< Uy, U2,V >}, Ep n Fp = {< Uy, U2 >C< uUp, U2,v1 >}
and G, N Hy, = {< u1,us >C< ug,uz,v2 >}.

By Theorem 1.2.1 we have that 7(Us @ Cwy C Us®Cwg) = Us@®Cuwy, so to find which points may be contracted
by 7 we need to find which points in the above mentioned P! have the same U,. We are going to proceed case
by case.

« Fori=1andi =2, onehas n(A) N7(B;) = {< wo,ui,ud >}: both A, and B; intersect C! in one point
and the whole C/ is contracted by 7 as we saw in Lemma 3.4.6.

* Fori=1andi =2, we have n(4)) N7 (C}) = n(A;NC}) and n(B;) N7(C}) = w(B; N CY).
« Can7(Ch) =7(Ch)? _
If it is the case then < ui,ul >=< u?,u3 >. But since u! € A, this implies, up to rescaling, u{ = u# and
ud = u3. This contradicts Lemma 3.4.1. So 7(C}) # w(C%).
« m(A]) N (CY)
If this intersection is non empty, then < au® + bvi, vy >=< uj,uj >. As before then we can assume
ub, = uj so this contradicts Lemma 3.4.1. Thus m(A;) N7 (CY) = 0.

+ 7(B) N x(C))
If the intersection is non empty, then < u!, pub + vy >=< u},ul > so we can assume v} = uj, which
contradicts Lemma 3.4.1. Hence n(B;) N 7(C;) = 0.

« m(B1) N7w(B2) . ‘ ‘ , , 4
If the intersection is non empty, < u}, p;uly + Y0y >=< uj, p;ul + vl > therefore we can assume
uf = uf which contradicts Lemma 3.4.1. Therefore, 7(By) N 7(Bz) = 0.

» w(A) N(Bj)
If the intersection is non empty, < au® +bvi, ub >=< u
contradicts Lemma 3.4.1. As a result, 7(A}) N 7(B;) =

»w(A) Nm(Ay) , . o
If < aul + bu},uy >=< auj + pv],u) > then we can assume u}, = uj, which contradicts Lemma 3.4.1.
Hence 7(A}) N w(A%) = 0.

J
1
0.

pud,+1pv} >. In particular, ul €< uf,vi >, which

 m(Ch) N(Ep) o ‘
If the intersection is non empty, < w},u} >=< uY, Aul — eBvY >. In particular we can assume u] = uf,
which contradicts Lemma 3.4.3. Thus 7(C;) N 7w(E,) = 0.

- m(Bj) Nn(Ey) _
If <ul,pul + Yv] >=<ul, Aub — eBvh >, then we can assume u] = u} which contradicts Lemma 3.4.3.
Hence w(B;) Nw(E,) = 0.
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m(Af) N7 (Ey)
If < aul + bvl,ul >=< uf, Aub — eBvb > then, up to rescaling, we can assume au] + bv] = % and
u), = Aub — eBuvb. Then by Lemma 3.4.4, p € C; — Ch.

If u} and u} are not colinear, by Lemma 3.1.6, < u],v] >#< uf, o} > and thus A; =< uf,v], uf, v} >.
On the other hand, ,u(ul,ul) = p(ud o) = 0, p(ul,ul) = plawd + bvl,ul) = 0 and u(ul,vl) = p(au] +
bvl,vl) = 0. Hence u? is - orthogonal to A; and it is therefore equal to p;. So u} = auf + bv] = py and p
is the unique pomt in C such that ufl = ul

Moreover since uj = p; we must have < uy, vy >= K; = Ker( (p11,.)) N Az. On the other hand, since w
is u-orthogonal both to u] and v] it must be orthogonal to au? +b, = ;. So we must have u} €< ub, v} >.
So the intersection is non empty for the unique choice of A and B such that u}, = Au — eBv} and the
unique choice of @ and b such that au? + bv! = p;.

If u}, and u} are colinear, it contradicts Lemma 3.4.4.
Finally :

1. If p is the unique point in C such that u} = p; then m(A}) N7 (E,) = {< p1,ud >} and 7(45) N
7(E,) = {< u1,u3 >}. These are two distinct points since u} # u3 by Lemma 3.4.1.

2. Otherwise, m(A}) N7 (E,) = 0.

m(C5) Nw(Fp)
If < ul,ul >=< pub + av? ub > then we can assume u} = u} but this contradicts Lemma 3.4.3. So

©(Cj) N7(Fy) = 0.

m(Bj) Nw(Fy) ,

If < w),pul + vy >=< fuf + v}, ub > then up to rescaling we can assume that u] = Su} + v} and
ub = pul + pv}. Then by Lemma 3.4.4, p € Cy — C; and by Lemma 3.4.3, o # 0. This contradicts our
hypothesis : p should be in C. Thus «(B;) N7 (F,) = 0.

m(A}) N7(F)
If < aud + bvl,u) >=< Bul + aw®,ub > then we can assume u} = u5 which contradicts Lemma 3.4.3.
Thus 7(A}) N (Fy) = 0.

m(C5) Nm(Gyp)
If < ul,u} >=< uh, Au} — eBv{ > then we can assume u} = w5, which contradicts Lemma 3.4.3. So

©(Cj) N7w(Gp) = 0.

m(B;j) Nm(Gp)
Let us consider two cases :

- <ul,ul >=<ub, AuP — eBvY >. We have just seen it is impossible by Lemma 3.4.3.

- < ul,ul + v} >=< ub, AuP’ — eBv? >. Then we can assume that v} = o¥ + au? (since if u] =
u? it contradicts Lemma 3.4.3) and u5 = ¢uj, + v}. Since here p € Cy — O}, it doesn't contradict
Lemma 3.4.4. Since v/ and u1 are not colinear, by Lemma 3.1.6, < wl,v) >= Ker(pu(ul,.)) N Ay #
Ker(u(uf,.)) N Ay =< uh,vh >. So Ay =< uy,v},uh,v5 >. On the other hand, since p € Cy,
pu(ub,uy) = p(uh, vy) = 0, p(us, U%) = (d’“z +v3,u3) = 0and H(%:U%) = (d’ug"' U27U2) = 0. S0 uj
is u-orthogonal to A, thus we can assume it is uo. Then pis the unique pointin Cs such that ub = ps.
Since py = ub €< ul, v} > and by Lemma 3.4.3 we can then write v} = ¢u + vJ for some ¢.
Moreover, < uf, vy >= Ker(u(pz,.)) N Ay and u{ is p-orthogonal to p2 so by Lemma 3.4.3 again we

can write u]1 = auﬁ’ + U]f.
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Thus :

1. If p is the unique point of Cs such that u} = s, then m(B1) N m(G,) = {< p2,ui >} and 7(B2) N
m(Gp) = {< p2,ui >}
2. Otherwise, 7(B;) N7(G,) = 0.

(A7) N7 (Gp)
If < aud + bvl ul >=< ub, Au¥ — eBv? > then we can assume u, = u3, which contradicts Lemma 3.4.3.
Hence (A}) N7 (G,) = 0.

() 0 7r(H )
If < ul,ul >=< Bub + avh,u? > then we can assume u] = u?, which contradicts Lemma 3.4.3. Hence

n(C;) N7w(Hy) = 0.

m(B; )ﬂW(H )
If < ud, pud, + Yvd >=< Bub + avh, u? > then we can assume u] = u*, which contradicts Lemma 3.4.3.
Therefore n(B;) N w(H,) = 0.

m(Aj) N7 (Hp)
If < aud + bl ul, >=< Bub + o, u? > then we can assume u}, = Bub + avt. Since p € Cy — C1, this
contradicts Lemma 3.4.4. Thus w(A}) N« (Hy) = 0.

m(Ep) N7(Ey)
If it is non empty, then < uf, A ul — €,Bpvh >=< ui, Ajud — ¢,B,vd >. In particular, we can assume
u} = uf which contradicts Lemma 3.4.5. Thus 7(E,) N7 (E,) = 0.

w(Ep) Nm(Fy)
If < uf, Aub—eBvY >=< fuf+av],uj >thenwe canassume v} = puf+av{ with o # 0 and ug = yuh+v}
by Lemma 3.4.5. Moreover, we have p € C; and ¢ € C; by hypothesis.
By Lemma 3.4.5, 5 and ud cannot be colinear so by Lemma 3.1.6, < u}, v} >#< v, v > and 4; =<
uf, o} uf, v{ >. Butsince both pand g are in Cy, p(uf, u}) = p(uf, o)) =0, p(uf, uf) = p(Buf +avi, uf) =
0 and p(uf, v{) = p(Buf + avi,v}) = 0. So u! is p-orthogonal to A;, thus we can assume it is x1. Then p
is the unique point in C; such that uf = pa.
Let g be any other pointin C;. Then u; €< uf v > so u; = uf = aud + bvl with b # 0 by Lemma 3.4.5.
Finally, ud is M orthogonal to uy (because py €< uf,v; >) and since < ub,v) >= Ker(u (Ml, ) N Ay, we
must have uf = cub + dvi, again with d # 0 by Lemma 3.4.5. So n(E,) N 7(F,) = {< p1,ud >}.
The only case when it is not possible is when such a ¢ is actually in C; N 52, but then this has been
considered in the case 7(A}) N7 (E,). Finally :

1. If pis the unique point in C such that u} = u4, and ¢ any other pointin C; — Cs : w(E,) N7 (F,) =
{< p1,ug >}
2. Otherwise, 7(E,) N7 (F,) = 0.

m(Fp) N 7T(Fq)
If < Bpull + v}, uh >=< Bauf + aqvf, ud >, then we can assume that u$ = uf and it contradicts Lemma
3.4.5. Thusw( p) Nw(Fy) = 0.

m(Gp) N7 (Gy)
If < b, Apul — e, Bpvl >=< ud, Aqui —e,Byv] > then we can assume u} = u3, which contradicts Lemma
3.4.5. Thus n(Gp) N7 (Gy) = 0.

m(Gp) N (Hy)
If < u2, Au1 —er1 >=< fud+avi,u] >thenwe can assume u}) = 5u2 +av2 with o # 0 by Lemma 3.4.5
and u{ = v} + yul. Moreover both p and g are in Cy — C;. Since v} and uf are not colinear, by Lemma
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3.1.6 we have < ub, v >=Ker(u(uf,.)) N Ay # Ker(u(u, .))ﬁAQ =< ud,v] >.S0 Ay =< UQ,Ug,ug,vg >,
Moreover, u(uj, ub) = p(us, vy) = 0, p(uf, ug) = p(Bug +avy,u3) = 0 and p(uf, v3) = p(Buj + avs, vg) =

0. So u} is p-orthogonal to A,, thus we can assume it is ps. Then p is the unique point in Cy such that
ub = po.

Then < U1av1 >= Ker(u(uz2,.)) N Ay and since uf is M orthogonal to us because g € Cs, we must have
uf e< ul, vl >. By Lemma 3.4.5 we can then write u{ = v} + yu} for some ~. Moreover, for any q € Cs,
po = ub €< ud,vd > so by Lemma 3.4.5 we can write ub = v + aul. If such a gis in C; N Cy, it has been
considered already in w(B;) N w(G)). Finally,

1. If p is the unique point in Cy such that 5 = pus, then for any other ¢ € Cy — C; we have ©(G,) N
m(Hy) = {< pa, uf >}

2. Otherwise, 7(Gp) Nm(Hy) = 0.

m(Hp) Nm(Hy)

If < uf,Bpub + apvy >=<
3.45. Thus n(Hy) Nw(H,) =

ui, Byud + ayvd >, then we can assume uf = uf, which contradicts Lemma
0.

T(Ep) N7(Gy)
If this intersection is not emptythen < uf, Apuly — €, Bpvy >=< uj, Aqui —e,Bqv{ >. Then we can assume
ul = + aul and uf = v§ + pub. Moreover, p € C; — 02 and g € Cy — Cy. Then, since py €< uf, v} >
but iy ¢< uf,v{ > andsince py €< ui, vy > but po ¢< ub,vh >, we can assume v} = g and v§ = ps. So
we have :

e
p=<v]+oaouf,pu >&<ub,vd > withU, =<of + auf,ub >
Jp—
q=<uf,v{ > & < fuh +v§,p2 > with Uy =<uf,vf + puf >

If uf = o + auf then ug is u-orthogonal to uf since it is y-orthogonal to < u{,v{ >. On the other hand,

Ker(u(uf, .)) N A2 =< ub, v} > so by Lemma 3.4.5 we should have u = v& + Bub.

Similarly if u = v + Suf one can find that u} = v{ + auf.

So if there exists p € C’1 — Cyand ¢ € Cy — Cyp such that u} = o] + auf or u§ = v§ + Bub then
m(Ep) N7(Gy) = {< u¥,ud >}. Otherwise 7(E,) N (G,) = 0.

Since ¢ ¢ C, for any acR by Lemma 3.1.10 there is a unique p € C; such that v{ + aul €< u17vl >,

In this case < v}, v} >=< v + aul, u; > but the problem is that there is no reason for v + auf to be

u} that is to say to be M orthogonal to < w5, v? >. Indeed we choose v} as a nonzero vector in the line

Ker(X (v + aud, p1,ub,.)) N Az/ < ub >andin general it has no reason to be p-orthogonal to v{ + auf.

Similarly there is no specific reason for ud = v% + Sub to happen, but it is not impossible.

m(Ep) Nm(Hyg)
If <uf, Aub — eBvy >=<ui, ful + av] > then we can assume u} = u{, which contradicts Lemma 3.4.5.
Hence, n(E,) N w(H,) = 0.

m(Fp) N(Gy)
If <ub, ful + avl >=<ul, Au] — eBv] > then we can assume u5 = ud, which contradicts Lemma 3.4.5.
Thus ©(F,) N7(Gg) = 0.

m(Fp) N m(Hy)
If < ub, Bpuf + vy >=< Bgug + vy, ui >then we can assume uh, = B,us +aqvs and uf = Bpuf + vy,
Moreover,p € C; — Csand g € Cy — C1.

Let p be any pointin C; —C,. Then u} is not pu-orthogonal to s since p ¢ Ca, so < uf, v} ># Ker(u(pa2,.))N
A;. Since these are both two dimensional in A; which is 3-dimensional, they must intersect in a line. Let
w be a nonzero vector in this line. Then by Lemma 3.1.10 there exists a unique ¢ € Cy such that uf = w.
If this point ¢ is also in Cy, then u = u{ = mul + nvy. Moreover we have assumed u} # p1, hence:

62



< ul,pp >=<uf, v} >= A; Np; = Ay Np. This contradicts Lemma 3.1.10. So let us assume now that
q € Cy — C1. By Lemma 3.4.5 we can assume uf = v} + auf.

Moreover, since u} is p-orthogonal to < uf, v}y >, it is in particular p-orthogonal to v} + au} = u{. So
ub € Ker(u(uf,.)) N Ay =< ud, v >. By Lemma 3.4.5 we can then write u5 = vd + bul.

Therefore, to each p € C; —C5 corresponds a unique ¢ € Co—C1, such that m(F,)Nr(H,) = {< ub,u! >}.
Similarly, to each ¢ € Cy —C corresponds a unique p € C; —Co, such that m(F,) N7 (H,) = {< ub,uf >}.

So finally, let p be the pointin C; — Cy such that u} = p;. Then
C n(A) N 7(By) = {< b >);
C R (AY) O (Ey) = {< 0 >);
- for any other g € Cy — Cy, n(F,) Nw(E,) = {< p1,ud >}.

By Lemma 3.4.5, each of these points of intersection are different. So the A; seem to be an "extension" of the
F, on C;. Moreover we have already seen that 7(E,) N7 (F,) = {< u},uf >} = {< p1,uy >}. Then for any
qc C1, W(Fq) N W(Ep) = {< /JJLUS Z}’

Similarly, let ¢ be the pointin Cy — C such that ud = p5. Then

* m(B) N7(Gy) = {< p2,ui >}
* m(B2) N(Gy) = {< p2,uf >}
- forany otherp € Cy — C1, 7(Gy) Nw(Hy) = {< pz2,uf >}.

By Lemma 3.4.5, each of these points of intersection are different. So the B; seem to be an "extension" of the
H,, on C3. Moreover we have already seen that 7(G,) N 7(H,) = {< uf,ud >} = {< p2,u >}. Then for any
p € Cy, m(Gy) N(Hp) = {< p2,ul >}. o L

More generally, there is a pairing between points in p € 'y — C3 and points ¢ € C'y — C;. For each such
pair, m(F,) N w(H,) = {< ub,u{ >}. The "extension" of this phenomenon is given by : for each i € {1,2},
(A Nm(B;) = {< wo,ul,ub >}

Finally for some points p € C; — C3 and g € C2 — C; there can be 7(E,) N7 (Gy) = {< uf,ud >}.

So both €] and C} are contracted to distinct points by 7. If p is the unique point of C; with u} = p, then
E, is contracted to another P! in {F,, ¢ € C1} = P! x PL. If ¢ is the unique point of Cy with u3 = po, then
G, is contracted to another P! in {H,, p € C2} 2 P! x PL. Finally to each p € C; — C5 corresponds a unique
p' € Cy — C; such that w(F,) N n(H,/) contains one point. And there may exist some other pairs of points
p€ Cy —Cyand g e Cy — Cy such that 7(E,) N 7(G,) contains one point. O

About other points in £, N E, | don't see any reason for them not to be sometimes contracted by « either
on one another or on some points in the P! listed in Definition 3.3.8. | don't see either any reason for such
contractions to have a specific pattern in general.

3.4.2 Contractions in X,

We would like now to try to understand Ds; N E4 and more precisely SN D5 and D, N D3, and what « contracts
in those intersections.

To do so, we can use what we saw in the previous subsection 3.4.1, together with the fact that X, = XN
n~1H, where H, is a hyperplane associated to a hyperplane section v of Ox. (1) (this has been described
more precisely in Theorem 1.2.3). As a result, E4 N D3 consists in all the points of E4 N E, on which the section
v vanishes. Moreover, as mentioned in section 1.1, to each hyperplane section v we can associate a three-form
on W = C7, which we are also going to call v.

We can therefore look at the points in £, N E4 which we had found to be contracted in subsection 3.4.1, and try
to understand when these points also lie in 7= H,, using the 3-form v and the geometric descriptions of fibers
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in both E, and Z3, which we already used in subsection 3.4.1. -
Since we had only found partial results about contractions in E, N E4, we also find only partial results here.

Definition 3.4.8. Let us denote v = U A wy + v/ where U is a 2-form on W and v' is a 3-form on W.

Lemma 3.4.9. Letp € S, — (C1 U Cy). Let us assume that v induces a non-degenerate pairing between Ay and As
(using the notations introduced in subsection 1.1). Then in general there are two distinct points z; and z2 in fz(p)
such that fz(2;) N D3 contains one point for i = 1 and i = 2. For all the other points z € fz(p), fz(z) N D3 = 0.
Itis also possible that f+(z) N D3 contains one point for exactly one z € f(p) or for all z € fz(p).

Proof. Let p € Sy — (C7 U Cy). As we have seen in Lemma 3.3.4, fz(p) = {< u1 + ua,v1 + vo, Aug + Bv; >
. (A,B) € C* — {(0,0)}} and for such a point z, f5(z) N By = {< wo, Auy + Bvy, Auy + Bvy >}. Moreover,
by 7. and 8. of Theorem 1.2.3, D5 consists in all the Us C Uy in E4 such that Us is v-isotropic. Since the
points in Ey are all of the form U,® < wy >C Uz® < wp >, a point in By is v-isotropic if and only if 7(U,) =
0. Finally, 7(Auy + By, Aug + Bvg) = A?D(uy,uz) + AB(D(u1,v2) + U(v1,uz2)) + B*D(v1,v2). If U(ug,uz) =
U(v1,u2) = P(uy,ve) = T(v1,v2) = 0 and ¥ induces a non-degenerate pairing between the A; then we have
Ker(v(uy,.)) N Az =< ug,va >= Ker(v(vy,.)) so by the same reasoning as in Lemma 3.1.6, u; and v; are
colinear which is a contradiction. So under our hypothesis, 7(Au; + Bvy, Aug + Bus) is not identically zero. Let
us consider several cases now :

+ A =0, then we can assume B = 1. In this case, 7(Au; + Bvy, Aus + Buvg) = U(v1, v2).
+ A # 0sowecanassume A = 1. Then
?(Aul + By, Auo + BUQ) = P(Uh UQ) + B(P(ul, UQ) + ﬁ(vl, UQ)) + BQP(Ul, ’UQ). (3.26)

Again there are several possibilities :

If7(v1,v2) # 0then (3.26)= 0is an equation of degree 2 in B so there are either one or two solutions.

If 7(v1,v2) = 0and U(uy,ve) +T(v1,u2) # 0then (3.26)= 0 is an equation of degree 1 if B so there is
one solution.

- IfU(vy,v3) = 0and U(uy,ve) + 7(v1, uz) = 0 then (3.26)= 0 is equivalent to 7(uy, us) = 0.
So finally :
1. If 7(v1,v2) # 0 there is one or two points in f7(p) whose f intersects D3 in one point.

2. Ifo(vy,v2) = 0 and U(u1,v2) + 7(v1, uz) # 0 there are two points in fz(p) whose fz intersects D in one
point, namely A = 0 and A = 1, B is the unique solution of (3.26)= 0.

3. If U(vi,v2) = 0, U(u1,v2) + P(v1,u2) = 0 and T(uy,uz2) # 0 then there is one point in fz(p) whose f4
intersects D3 in one point, namely A = 0.

4. Ifv(vy,v2) = 0, U(u1,v2) + 7(v1,u2) = 0 and 7(u1,uz) = 0 then for all z € fz(p), we have f5(2) N D3 =

O

Lemma 3.4.10. Let P be one of the P! listed in Definition 3.3.8, then if P # CI, in general P N D is one point,
otherwise P C Ds. If P = C/ then in general P N D3 = {, otherwise P C Ds.

Proof. Letp € C; UC,. As we saw in Lemma 3.4.9, the points in some f5 over fz(p) which are in Ds are those
who are in E4 and such that the associated U is v-isotropic. By Lemma 3.3.3 it is thus the points in one of the
P! listed in Definition 3.3.8 whose U, is v-isotropic. Let us proceed case by case :
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* For Al. We look at the < au? + bv}, ub > which are v-isotropic, that is to say such that :
Tlaul + bl ub) = av(ul, ub) + bv(vl, ub) = 0. (3.27)

If one at least of T(u¢, u) and T(vi, ub) is non-zero (3.27) has one solution up to multiplication by a scalar,
otherwise it is satisfied for any a and b.

« For B;. With the same reasoning as for the A, if one at least of 7(u}, u}) and v(u},v4) is non-zero then
B; N D3 contains exactly one point, otherwise B; C Ds.

« For C!. Either v(u},ub) # 0and C! N D3 = @ or v(u},ud) = 0and C! C Ds.
* For E,. We consider the equation :
v(ul, aul + bvb) = av(uf, ub) + br(uf,v5) =0 (3.28)

where a = A and b = —eB with the notations of Definition 3.3.8. Similarly to the cases of A} and B;,
either one at least of 7(uf, u5) and v(u}, v%) is non zero and E, N Dj is exactly one point, or v(u}, ub) =
v(ul,v8) =0and E, C Ds.

Similarly, either one at least of 7(u},u5) and v(v¥, u}) is non zero and F, N Ds is exactly one point, or
v(ul,ub) =v(v],uh) = 0and F, C Ds.

* With the same reasoning, either one at least of 7(u}, u5) and v(v], u}) is non zero and G, N D5 is exactly
one point, or 7(u}, ub) = v(v],ub) = 0and G, C Ds.

* As before, either one at least of v(u}, u}) and v(uf, v%) is non zero and H, N Dj is exactly one point, or
v(ul,ub) = v(uf,vh) = 0and H, C Ds.

O

Remark 3.4.11. Let p and q be the points in C; — C, respectively Cs — C', such that yy, respectively s, is in the
associated Ui. Then we have seen in Lemma 3.4.7 that each point in E, is contracted by 7 to some point in a F,
except for the point in E, N F, and that similarly each point in G, — (G4 N Hy) is contracted to another point in
some H,.. Obviously if a point is in D3 any other point in its fiber in E, is also in D3, hence by Lemma 3.4.10 either
E, C D3 and 7 is contracting a P* onto a another P! in D3 N S, or E, N D3 is one point and unless it is precisely
E, N F,, 7 will contract this point to another point in some F,, in D3 N S. For G, it is similar. So in general 7 should
contract at least a point in S N D,

BefoLe going further, IeLus remember from Theorem 1.23 that D5 is a ruLed surface over the curve I'y :
indeed Dy = PF(VZ\FLSO D5 consists in all the fibers {Us C U3® < wo >} in E4 which are also in Xy, that is
to say all the fibers in F4 such that all their associated Us are v-isotropic.

Lemma 3.4.12. Letp € I'y. If p € C1 U Cy, there are two possibilities :
1. f&(p) C D3,
2. fz(p) N D3 contains one point.

If p ¢ C1 U C, then either f+(p) N D3 is one point or it is empty.

Proof. To start with, since D3 is a hyperplane section of E4, D3 C E4 and to compute f5(p) N Dy it is enough
to compute f5(p) N E4 N Ds.

Let us first consider the case p € C; U Cs. From Lemma 3.3.3 and the definition of the C; given in 3. of
Proposition 1.2.2, we know that f(p) C E, and is either A}, B;, F}, or H,, with the notations of Definition 3.3.8.
In other words, fz(p) is either of the form {< auy + bvy,us >, (a,b) € C? — {(0,0)}} or {< aug + bvg,u; >
, (a,b) € C? — {(0,0)}} with u; € A; and v; € A;. Let us consider the first case : then as in the proof of Lemma
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3.4.9,a point Us = Us® < wo >C Us® < wy >€ fz(p) isin D3 if and only if 7(Us,) = 0. In our case, if and only
if

av(uy,uz) + bv(vy, ue) = 0. (3.29)
Therefore, there are two possibilities :

1. At least one of T(u1, uz) and T(vy, uz) is not zero. Then (3.29) has one solution up to multiplication by a
non zero scalar so fz(p) N D3 is one point.

2. 7(u1,u2) = 0and 7(vy,uz) = 0. Then (3.29) is always satisfied and f4(p) C Ds.

For the second case it is very similar : either at least one of 77(uy, u2) and 7(u1, v2) is not zero and f4(p) N D3 is
one point, or 7(uy,u2) = 0 = T(uy,v2) = 0and fz(p) C Ds.

Let us assume now that p ¢ Cy UCs. Then by Lemma 3.3.3 and Lemma 3.3.4 we have that fz(p) N E4 is exactly
one point : if its associated Uy is v-isotropic then fz(p) N D3 is one point, otherwise it is empty. O

Remark 3.4.13. From the proof of Theorem 5.1 in [20], we know that o(Ty) is a curve of class 4(hy + hs). Hence
in Sy and fori € {1,2}, one has o(T'1).C; = 4h;(h1 + ha) = 12. Since o(C;) = C; there are at most 24 points in
Fl n (Cl U CQ)

3.5 EQ and I'y

In this subsection we are taking a closer look at the curve I'; (see (1.4)), which will be useful to work with the
surface D, later.

The genus of I'; which we find in Lemma 3.5.1 and the fact that ¢(T';) is not smooth, as we will see in Lemma
3.5.2, contradict a statement in Theorem 5.1 of [20]. These two results, as well as advices about the proof of
the two Lemmas, were kindly explained to me by A. Kuznetsov.

Lemma 3.5.1. The curve T'y is smooth in Z3, with genus 13. The Chern character of its ideal sheaf is : ch(Zr,) =
(1, 0, —4VZ(h1 + hg), 24)

Proof. By the proof of Lemma 2.1 in [20] and the proof of Proposition 3.2.6, there is a short exact sequence
0= Oz, 2Vy = det(Vy)®Ip, — 0

where Zr, is the ideal sheaf of I';. This is exactly the short exact sequence mentioned in Corollary 3.2.5, hence
ch(Zr,) = (1,0, —4Vz(hy + h2), 24).

Let us now show that I’y is smooth in Z;. For this, we can show that V) is globally generated and use Bertini's
theorem.

By (1.6) there is a short exact sequence

3 2
0 — Oz, (h1) ® Oz, (hy) — /\H; @AZZZ —=Vy =0

hence by Lemma 2.11 in [3], if A® H; and A’ H; are globally generated then so will be V.

+ First, since s is the tautological bundle of Gr(3,TW) = Gr(3,6), we have that A*Uf; = Ocr(3,6)(h) (see
for instance part 2.1 in [20] or Lemma 4.2.9). Then we have that the set of global sections of A\® ﬁ;
corresponds to the space of 3-forms on W. Let now Us be a point in Gr(3, 6). By definition, (A® H;)m =
/\3 Us = C is generated by a 3-form. As result, taking a basis of the space of 3-forms on W gives a finite
number of global sections of A®Z7; which generate (A\® ﬁ;)ﬁa for any Us € Gx(3,6). So A\*Us is globally
generated on Gr(3,6).
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+ Since Gr(3,6) = Gr(6 — 3,6), by (2.4.1) in [15] we have a natural identification \” H; =~ U3(1), therefore
the space of global sections of A\’ H; corresponds to the space of 2-forms on W (as in the case of the
global sections of U5(1) on Gr(3,7)). Let now Us be a point in Gr(3,6). Then (A’ H;)UB = NUs > C3
is generated by three 2-forms, thus taking a basis of the space of 2-forms on W gives a finite number of
global sections of A%y which generate (A\> ﬁ;)ﬁg for any Us € Gr(3,6). Therefore A2l is globally
generated on Gr(3,6).

Finally, by construction we have Z3 C X5 C Gr(3,6) (see Theorem 4.2 in [20]), and a global section of a sheaf
on Gr(3, 6) thus induces a global section of the restriction of this sheaf to Zs. As a result, both A\® ﬁ; and A\’ H§
are globally generated on Zs.

Finally, one can conclude with Bertini's Theorem, using for instance Proposition A in [26]. For a general X4, the
associated I'; is thus smooth.

To compute the genus of I'; we can then use Hirzebruch-Riemann-Roch (see Theorem 4.1.1). Indeed, let us
denote by ¢ the inclusion of 'y in Z5. We then have :

X(OZS) L*OFl) = X(L*OZ?,?OFl) = 1 - g(rl)

o 1 -
- / (0,0, 4V (s + Fo), ~24).(1,Vy + 3 (g + o), 2, 1) = ~24 412 = 12
Z3

where we used Lemma 4.5.3, which we will see later, and ch(Or,) = (1,0,0,0) — ch(Zr,). This yields ¢g(T'y) =
1+12=13. O

Lemma 3.5.2. Using the notations of (1.4), o(I'1) isn't smooth in S,. Its geometric genus is 13 and its arithmetic
genus is 37.

Proof. Firstofall, by (1.15), G := o(I'y) has class 4(h; + hs) in Sy. The genus formula then yields (by 1.15 of [1]) :

12(hy + hs)?

5 =1+66=1+36=37

1 _ _ _
ga(G) =1 + 5(16(}11 + h2)2 — 4(h1 + hg)z) =1 +
since we know from 11. of Theorem 1.2.1 that Ks = —h; — hy, and using (1.13).
On the other hand, if G was smooth by Proposition 1.1 in IV.1. of [12] we would have that its geometric and
arithmetic genus coincide. Moreover in such a case by Theorem 8.19 in 11.8. of [12] we would have ¢,(G) =
gg(I'1) = 13 # 37 as we saw in Lemma 3.5.1. O
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Chapter 4

Computation of Euler characteristics
between elements of 7;

In this section, we try to compute all the Euler characteristics between elements in the family

Fi1 =4{jsOg, (E1 — V), jxOgr, (B2 — Vi), j+Or, (B3 — Vi), j+Op, (—VE), j+Ops (b1 — Vi), j+Op, (2h1 — VE),
OX4’ OX4 (h), OX4 (2h),0y,,0,,0p,(VE), (952, OS}v

defined in subsection 2.1.2. As there are 14 elements in this family, this requires a lot of computations, for
which the two main Theorems we use are Hirzebruch-Riemann-Roch (either the general version or some more
specific one for curves and surfaces) and Borel-Bott-Weil. This section is thus split into several subsections :
each subsection is devoted to the computation of some of the Euler characteristics we are interested in, for
which we use either the same Theorem or the same geometric characteristics of some of the varieties men-
tioned in section 3.

More precisely : in subsection 4.1 we compute Euler characteristics between the first six elements of Fj,
which are all twists of pull-backs of sheaves from D?(%,). Then in subsection 4.2 we compute some Euler char-
acteristics between line bundles of the form 7#*Ox, (ih) with i € N, using the Theorem of Borel-Bott-Weil. In
subsections 4.3, 4.4 and 4.5 we compute Euler characteristics involving respectively Op, (Vg), Op, and Og. In
subsection 4.6, we compute Euler characteristics between Oz, and Og, and in subsection 4.7, we compute, up
to an intersection number b, Euler characteristics between the first six elements and the lats eight elements of
F1., except for Oy, and O,,. Finally in subsection 4.8 we compute Euler characteristics involving O;, and O,,.

All the results of this section are gathered in Proposition 2.1.5.

4.1 Euler characteristics between sheaves coming from D’(%,)
In this subsection, we compute Euler characteristics between the first six elements of Fj.

Before going further, let us recall the theorem of Hirzebruch-Riemann-Roch (see for instance Corollary 5.27
of [14] and the fourth formula page 84 of [14]).

Theorem 4.1.1 (Hirzebruch-Riemann-Roch). Let X be a smooth projective variety and E, F € D*(X). Then :
X(F,E)=x(0Ox,E®@FY) = / ch(E).ch(FY).td(X)
b's

where td(X) is the Todd class of X, that is to say the Todd class of its tangent sheaf.
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We will need to apply this Theorem of Hirzebruch-Riemann-Roch to compute Euler characteristics in %;
this is why we want now to compute td(X2). But for this we need first to know the canonical bundle of %,.

Lemma 4.1.2. With the same notations as in Definition 1.3.3, the canonical bundle of s is wy = O, (i*(—=h))
which we are going to denote by abuse of notation as Os,(—h).

Proof. First of all, we know from 7. of Theorem 1.2.3 that ¥ is cut out in P(A4;) x P(As) = P2 x P? by two divisors
of bidegree (1,1). Moreover in the proof of Proposition 4.6 in [20], A. Kuznetsov computes the anticanonical
class of S, using the adjunction formula and the fact that S, is cut out in some P? x P2 by two divisors of
bidegree (1, 1) (as recalled in 11. of Theorem 1.2.1). Using the same reasoning with /\2 A, replaced by 4; and
h; replaced by h; one gets that ws, = Ox,(—h; — hy). Finally in Pic(F) one has h = hy + hy by (1.9) and this
equality still holds when restricted to 35 so wy, = Os, (—h). O

Lemma 4.1.3. The Todd class of £, is td(Xs) = (1, 4,1).

Proof. We have seen in Lemma 4.1.2 that wy, = Oy, (—h), hence ¢1(Tx,) = h since wy, = A* T, One can then
conclude that td(3,) = (1, %, 2) with the formula page 432 of [12]. Finally, by Hirzebruch-Riemann-Roch :

X(Ozzaoﬁg) :/ (1,0,0).(1, g,x) =2

Yo
thus « = 1 because as we will see in the proof of Lemma 4.3.5, we have x(Ox,,Ox,) = 1. O
Remark 4.1.4. By [20], we know that So and %5 are two del Pezzo surfaces of degree 6 cut by two divisors of bidegree
(1,1) in respectively P(\* Ay) x P(\® Ay) and P(A;) x P(A,). The same reasoning as in Remark 4.7 of [20] applies
thus to o, which can then be seen as the blow-up of P(A;) in three points, with exceptional divisors Ey, E> and
Es. With the exact same reasoning as later in Remark 4.5.2 and Definition 1.3.3, we then get that Pic(X2) =<

hi, Ev, E2, E5 >. Moreover, by d) of Proposition 4.8 in V.4 of [12], we have wy, = Osx,(—3h; + E1 + Es + Ej).
Together with (1.9) and Lemma 4.1.2, this yields hy = 2hy — E1 — Eo — Es. In particular, for 1 <i,5 < 3, one has :

hE;=0 FE.Ej=-6; h.Ei=1 4.1)
Lemma 4.1.5. Let

(z1,...,26) =(jxOF, (E1 — Vi), j+Og,(E2 — Vi), j:Or, (B3 — Vi), j«Op, (= VE),
J«Op,(h1 — Vi), 3+Op, (2h1 — VE)).

100 -1 -1 -1

010 -1 -1 -1

. .10 01 -1 -1 -1

Then the matrix N = (x(xi, x;))1<i,j<6 IS 000 1 3 6

000 0 1 3

000 0O 0 1
Proof. Let (y1,...,ys) = (Op, (E1),Og,(E2), O, (E3), Os,, Os,(h1),Os,(2h1)). By Proposition 3.2 in [2], we
have that for any 1 < i,j < 6, x(z;,z;) = x(vi,y;). We can use Hirzebruch-Riemann-Roch to compute the

X(¥i, ;) In Xa.
Let 1 < k < 3. There is a short exact sequence

0— 022 — OEQ(Ek) — OE'k (Ek) — 0,

so ch(Og, (Ex)) = (1, By, —%) — (1,0,0) = (0, Ex, —3). The other y; are line bundles so we know their Chern
characters, and we can now compute :

* Let1 < m,n < 3.Then ch(Og, (—E,)" )ch((’)En(—En)) = (0,0,—Ep,.Ey) = (0,0,0,,.,). Since td(X2) =
(1,%,1) by Lemma 4.1.3, we have x(Og,,(=Ey,.), Op, (—Ey)) = 6.
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* Let1l <m <3, then

1 h 1 1
MO (B0). 05,) = [ (0.-Bu=3)(1,5.1) = 5 -5 = -1
1 1 h 1 h
X0k, (). Os, () = [ (0-Bi=3)-(Lhi )50 = [ (0.-Br=5)0,5.1) = -1
22 22
1 h 1 h
X(OEm(EWL)7022(2h1)) :/ (Oa_Eka_g) (1a2h172) (17571) :/ (07 —Ej, 7) (17571) =-1
22 22
1 h 1 1
X5, 05, (B = [ (0B =) (150 = 5+ 5=0
1 1 h 1 h
X(O5.(10). 05, (Bn)) = [ (1= )0, =5)0, 5.0 = [ 0B —3).0. 5.1 =0
22 22
1 h 1 h
(05, (210). O, (B) = [ (1, -2m,2).0. B =91 5.1) = [ (0B =3).(1,5,1) =0
22 E2

where the last three equalities can also be deduced from Lemma 2.1.1.

* Finally,ifi € Z,then H*(Os,, Os, (ih1)) = H*(¢*Op2, ¢*Op2 (1)) = H*(Op2, ¢ d*Op2 (1)) = H*(Op2, Op2(1)).
Therefore :

X(0s,,0s,)
X(Os,, Os, (h1))
x(Os,,O0sx,(2h1))

)
)

X(Os,, Os, (—hy
X(OEQ ) 022 (_2h1

1
3
6
0
0

O

Remark 4.1.6. In particular one can see that det(N) = 1, hence det(M) = det(M) with the notations of section
2.1.2.

4.2 Euler characteristics related to the Oy (ih)

In this subsection we want to compute all the x(e;, e;) with e;, e; € {m*Ox, (kh), 0 < k < 4} = {Ox, (kh), 0 <
k <4},

Lemma 4.2.1. Let 0 < i,j <4, then x(7*Ox, (ih), 7*Ox,(jh)) = x(Ox, (ih), Ox,(jh)).

Proof. Forany 0 < i,j < 4, there are isomorphisms H*(7*Ox, (ih), 7*Ox, (jh)) =2 H*(Ox, (ih), m.7*Ox, (jh)).
Moreover we have W*OX4 = Ox, (seeforinstance Example 11.14ii) in [14]), hence the projection formulayields
mr Ox, (]h) = OX4(jh)' O

As a result we are rather going to compute all the x(Ox, (ih), Ox,(jh)) for 0 < i,5 < 4.

4.2.1 A general version of Borel-Bott-Weil Theorem

We will use the Borel-Bott-Weil Theorem all along this subsection. One can find a general version of this Theo-
rem in Kuchle's [15], along with explanations about how to apply it in the case of Grassmannians. To actually
compute the coefficients of M, we will use a more specific version of the Theorem stated in part 2.6 of [16], but
we will also use some of the information given in [15], so in this subsection we are going to reproduce mainly
definitions, facts and the version of the Theorem from Kichle's [15].
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Theorem 4.2.2 (Borel-Bott-Weil). Let P be a parabolic subgroup of a semi-simple complex group G and E an
irreducible P-module with highest weight \. Let &€ = G xp E denote the vector bundle over G/P which is the
quotient of G x E by the action of P on G x E defined by p.(g,e) = (g.p~ 1, p.e). Let § be the sum of the fundamental
weights, u the unique dominant weight in the Weyl group orbit of A + 6 and ind(X + &) the numbre of positive roots
a € G such that (A + d,a) < 0. Then :

1. if \+ d is singular then H1(G/P,E) = 0 forall g € Z;
2. if X+ § is not singular then H1(G /P, &) = (11 — 6)|% g ina(r+5)-

Here (1 — 6)|¢ denotes the G-module given by the space of algebraic morphisms s : G — R such that s(gp~!) =
p.s(g) forall g € G and p € P, with R the one dimensional representation of the Borel subgroup of G associated to

w— 9.

Moreover, according to [15] part 2.2, if £ is a vector bundle on G/P which is homogeneous with respect
to G, then £ can be written as G xp E as in Theorem 4.2.2. Then £ is called irreducible if E is an irreducible
P-module.

In our case we want to apply this theorem for G/P = Gr(3,7), and we will be interested only in the dimen-
sion of the HY(G/P, ). So following part 2.4 and 2.5 of [15], we can reduce to a specific case of the theorem,
as follows.

A %

Let G = SL(7,C) and P = {(0 ) A €GLEB,C), B € GL(4,C),det(A)det(B) = 1}. Then Gr(3,7) = G/P.

We can then choose the positive roots of G to be {e; —e;,1 < i < j <7} where {ey,...,er} is an orthonormal
basis of R”. In this case the simple roots are {e; — ez, ea — €3,e3 — e4,e4 — 5,65 — €6,€6 — e7} and a weight

7
o= Zo‘iei = (a1, ..., a7) isdominant if and only if a; > «; for all j > i. Moreover the sum of the fundamental
i=1

7
weightsis § = (6,5,4,3,2,1,0). Finally here («, 8) = Zo‘lﬂi and the Weyl group of G is just the permutations
i=1
of the e; so the unique dominant weight in the orbit of a weight a is the weight (a, , ..., i, ) such that a;; > ay,
forall k > j. Then a weight X is non singular if and only if A; # A; for all i # j. Thus the BBW Theorem induces
the following :

Corollary 4.2.3. Let £ be a vector bundle on Gr(3,7) of the form G x p E as in Theorem 4.2.2. Let A be the associated
highest weight and 6 = (6,5,4,3,2,1,0). Then:

1. if there exists i # j such that \; = X\; then H4(Gr(3,7),€) = 0forall g € Z;

2. otherwise let 11 be the unique weight with the same coefficients as X but such that p; > p; if j > 4. Let x be
7

the number of positive roots a« = («y, ..., a) such that Zai()\ +9); < 0. Then dim(H%(Gr(3,7),&)) =
=1

dim(p — 6)[376, .

To compute dim(p — 6)[3"7 (here it is the dimension as a Sl;-representation) in Corollary 4.2.3 we will use
the Weyl formula that can be found in ([27], formula 3.49), which Jean Doucot pointed out to me:

Proposition 4.2.4 (Weyl formula). Let A be a representation of highest weight \. Then

(A+9,0)

dim(A) = [ o)

a>0

(4.2)
where 0 is the sum of the fundamental weights.
We are also going to use the following properties (see [15] and for instance [25] §10.5, Proposition 3 page

345):
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Proposition 4.2.5. Let E and F be vector bundles associated to representations of P as in Theorem 4.2.2 and of high-
est weights o = (a1, ..., a7) and 8 = (B4, ..., B7) respectively. Then EV and E ® F are also associated to representa-
tions of P (not necessarily irreducible) and their highest weights are, respectively, (—as, —ag, —a1, —ar, —ag, —ai5, — i)
and o+ 3 = (a1 + B, . a7 + 67)

Moreover, any \" E is also associated to a representation of P.

Let us go back to the definition of X, now. By the introduction of [20], it is the zero locus of a global section
of Ug-(1) @ Us(1) @ O(1) in Gr(3,7). Here Us is the tautological subbundle of Gr(3,7) and U3- is defined as
follows : there is a short exact sequence 0 — Uz — Ogy(s,7) ®C" — @ — 0 and we define U3- = QV. Using part
2.5 of [15] and part 2.6 of [16] one can find :

Lemma 4.2.6. The vector bundles Uy, U3- and Ocr(3,7)(1) are all of the form described in Theorem 4.2.2, and their
associated highest weights are respectively : (1,0,0,0,0,0,0), (0,0,0,1,0,0,0) and (1,1,1,0,0,0,0).

Remark 4.2.7. The highest weight associated to Og,(3,7) = ng(&?) = Oz ® (’)ér(w) is (1,1,1,1,1,1,1) =
(k,k,k,k,k,k, k) = (0,0,0,0,0,0,0) for any k € Z. In particular since tensoring with Og,s,7) doesn't change a
vector bundle, for any highest weight o = (a1, ..., az) we can write o« = (ay — k, ..., a7 — k) for any k € Z. Then by
convention we usually choose the coordinates (a1, ..., a7) such that one at least of the «; is 0.

Corollary 4.2.8. The highestweights associated tolUs, (U3-)Y and Us(1) andUs- (1) are respectively (0,0, —1,0,0,0,0)
=(1,1,0,1,1,1,1), (0,0,0,0,0,0,—1) = (1,1,1,1,1,1,0), (1,1,0,0,0,0,0) and (1,1,1,1,0,0,0).

Finally we are going to use (see for instance [10] §15 just before Example 15.14, page 221 and [16] part 2.6):

Lemma 4.2.9. The following are also associated to irreducible representations as in Theorem 4.2.2: /\2 uy, /\3 Uy =
Ocrary(1), N Us, N> Ush and N* Us- = Oy (—1). The associated highest weights are respectively :

(1,1,0;0,0,0,0), (1,1,1;0,0,0,0), (0,0,0;1,1,0,0), (0,0,0;1,1,1,0) and (0,0,0;1,1,1, 1).

4.2.2 Application of BBW to Grassmannians

The BBW Theorem stated in section 4.2.1 requires the vector bundle £ to be irreducible. However in our case
we will need to apply the Theorem to tensor products of irreducible representations : these do not remain
irreducible in general. Since it is not necessarily easy to decompose such a tensor product into the sum of its
irreducible factors, we are instead going to use the much easier approach of Kuznetsov given in [16].

In part 2.6 of [16], Kuznetsov uses a slightly different version of the BBW Theorem, which, combined with
Proposition 2.12 and Corollary 2.13 in [16], yields the following Theorem. We are stating the result here only
for Gr(3,7) but in [16] everything is done in the more general case of Gr(k,n). Moreover here we are mainly
going to keep the notations of Kichle's article [15], which we used in section 4.2.1.

Let € be a tensor product of (A"UY)®%:, (N Us)®h, (N UsH)®™ and (A\'(Us-)Y)®™ with i € {1,2,3,4} and
the k;, I;, m; and n; in N. Then by Proposition 4.2.5, Lemma 4.2.6 and Lemma 4.2.9 it is associated to a rep-
resentation of P as in Theorem 4.2.2, whose highest weight is computable by the Proposition and Lemmas
above-mentioned.

Theorem 4.2.10. Let £ be a vector bundle on Gr(3,7) as just above. Let \ be the associated highest weight and
6 =1(6,5,4,3,2,1,0). Then :

1. if there are some i # j such that \; + 9, = \; + 0; then H*(Gx(3,7),&) = 0;

2. if\i+6; # Xj+6; foranyi # j then dim(H(Gr(3,7),&)) = dim((a(6 + A) — 8)|%!7)8,,1(o) With o the unique
permutation in S; such that o (6 + \) satisfies o (6 + X); > o (6 + ), whenever i < j and l(c) the length of o.

This is what we are going to use, along with (4.2) to compute the Euler characteristics related to the Ox, (7).
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4.2.3 Computation of the Euler characteristics

To compute the Euler characteristics associated to the Ox, (i) we are finally going to use the Koszul complex,

thatis to say :
8 7

05 AV = AV 5 V5 O = Ox, =0 4.3)

where V = (Us(1) ®@Us (1) ® OGr(3’7)(1))v is a rank 8 vector bundle and the arrow V % Oci(3,7) Is given by the
dual of the section s of V¥ whose zero locus defines X}.
Thanks to a method that E. Fatighenti kindly taught me, we can now compute the x(Ox, (i), Ox,(j)). Since the
method for computing these doesn't depend on i and j, we are going to detail only one of these computations
here, in Proposition 4.2.11. Other Euler characteristics of the same form can easily (although with possibly a
lot of calculations) be computed with the same method.

The idea consists in the following : first, x(Ox, (i), Ox,(j)) = x(Ox,,Ox,(j — 1)), so we can reduce to
x(0x,,0x,(k)) = x(Ox,(k)) for some k € Z. Then, one can split an appropriate twist of (4.3) into short
exact sequences. In each of these short exact sequences, at least one (twist of an) alternate product of V,
A" V(k), will appear, which we can decompose into direct sums of sheaves of the form (A\° Uy )®* @ (N’ Us)®! @
(A" Uz )®™ @ (N1 (UF)V)®" @ O, (r). Then, one can use Theorem 4.2.10 together with (4.2) to compute the

Euler characteristic of each summand of the decomposition of the A" V(k) we are considering. Finally, using
the fact that for any short exact sequence 0 — & — F — Q — Owe have x(F) = x(€)+x(Q), one can compute
successively the Euler characteristics of all the sheaves appearing in the short exact sequences coming from
(4.3). Eventually, this will allow us to compute the Euler characteristic x(Ox, (k)) of the twist of Ox, we are
interested in. ‘

One can also use Macaulay2 and Scilab to decompose more easily the A" V(k) and to do some computations
faster : this is detailed in Appendix 6.3 and Appendix 6.4.

In the following proof, we even manage to compute H*(Ox, (4)), using long exact sequences in cohomology.
Yet, this is not always possible : sometimes (when the long exact sequences in cohomology have too many non
trivial sheaves) only the Euler characteristic is calculable.

Proposition 4.2.11. With the same notations as above, x(Ox,,Ox,(4)) = 1181.

Proof. Firstof all, ifi : X4 — Gr(3,7) is the injection of X, in the Grassmannian, we have H*(Ox,,Ox,(4)) =
H*(1*(Ogr(3,7)(—4)), Ox,) = H*(Ocr(3,7)(—4),1+0x,) = H*(Ogr3,7), 1+(Ox, ) (4)). By abuse of notation we are
going to note i.Ox, by Ox,; itis the last sheaf on the right in (4.3). Then (4.3) gives us a resolution of Ox, (4) :

8 7
0= (AVE) L5 (AVE) L5 L5 9(4) S Ocuan (4) = Ox, (4) = 0. (4.4)

We are going to use this resolution to compute x(Ogy 3,7, (Ox,)(4)) = x(Ox,, Ox,(4)) (the equality holds
by what we just did), but to do this computation we need to split (4.4) into short exact sequences, as follows :
» we first look at the short exact sequence 0 — (A®V)(4) LN (A"V)(4) — K7 — 0 where K7 is the

cokernel of f7. By definition, V = (Us(1) & U3~ (1) ® OGr(gj)(l))v =UJ (1) & (Us")V(—1) ® Ocr(z,n) (—1).
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Thus, since Uy’ is a rank 3 vector bundle and (U43")" a rank 4 vector bundle this yields :

/\V /\U3 ® OGr(;), 7(=3)® /\ Us)" @ Ocr(s,n)(—4) @ Ocua,ry (1)
= /\LI?,V ® /\(1/13l )Y ®C’)Gr(37 (—8)
/\ V= /\u3 ® Ocr(an)(—3) @ /\ U)Y @ Ocua ) (—4)&
/\L{3 ® Oz, (—3) ® /\ (Us)Y ® Ocr3,7)(—3) ® Oge(z,n(—1)&
/\L{3 ® OGr(g 7n(-2)® /\ UH)v @ OGr(S 7)(—4) ® Ogr(3,7)(—1)
= /\Z/{?)v ® /\(M3 ® Ogrs,n( /\U3 ® /\ Us")Y ® Ogrs,n (7@

2 4
AU @ \U)Y @ Ocrism (=)
Using Lemma 4.2.9 and Proposition 4.2.5 one can find that the highest weight associated to /\3 Uy ®
NN
(1,1,1;0,0,0,0) + (0,0, 0; — -1,-1)=(1,1,1;0,0,0,0) + (1,1,1;0,0,0,0) = (2,2,2;0,0,0,0).

Moreover the highest weight associated to Og,(3,7)(—1) is (-1,-1,-1;0,0,0,0) = (0,0,0;1,1,1,1) so
again by Proposition 4.2.5, the highest weight associated to Og,3,7)(—8) is (0,0,0;8,8,8,8).
So finally the highest weight associated to A* Uy ® A*(U)Y @ Ocrz,n)(—8) is

(2,2,2:0,0,0,0) + (0,0,0;8,8,8,8) = (2,2,2:8,8,8,8) = (0,0,0;6,6,6,6).
Therefore the highest weight associated to (A® V)(4) is
(0,0,0;6,6,6,6) + (4,4,4;0,0,0,0) = (0,0,0;2,2,2,2).
We can now use Theorem 4.2.10 to compute H*((A\® V)(4)), since Ogrs,7(1) = A’ Uy and thus
Ocrsny(—1) = A’ Us. So we compute
§+(0,0,0;2,2,2,2) = (6,5,4,3,2,1,0) 4 (0,0,0;2,2,2,2) = (6,5,4,5,4,3,2).

Here the second and the fourth coefficients are the same so it is part 1. of Theorem 4.2.10 that applies
and H*((A*V)(4)) = 0.
We want now to compute H*((A” V)(4)) with a similar reasoning. By what we have computed above,

7 3 4 3 3
H (AV)@) =H*(\Uy @ \Us")Y (=7 +4) & H (\Us' ® \Us)¥ (=7 +4))
& H (\Uy @ \Us)" (=7 +4)).

So here we will have to apply Theorem 4.2.10 three times. First of all the highest weight associated to
N Uy o NV (=3)is (1,1,1;0,0,0,0) + (1,1,1;0,0,0,0) + (0,0,0;3,3,3,3) = (0,0,0;1,1,1,1).
Butd+(0,0,0;1,1,1,1) = (6,5,4,4,3,2,1). The third and fourth coefficients are the same so H*(A* Uy ®
A (U3)Y (=3)) = 0. The highest weight associated to A* Uy @ A*(U)V(=3) is

(1,1,1;0,0,0,0) + (1,1,1;1,0,0,0) + (0,0,0;3,3,3,3) = (2,2,2,4,3,3,3) = (0,0,0;2, 1,1, 1).
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Buté+(0,0,0;2,1,1,1) = (6,5,4,5,3,2,1). The second and fourth coefficients are the same so H*(A\* Uy ®
N’ (U+)Y(—3)) = 0. The highest weight associated to \* Uy @ A*(Us-)Y(=3) is

(1,1,0;0,0,0,0) + (1,1,1;0,0,0,0) + (0,0,0:3,3,3,3) = (2,2,1:3,3,3,3) = (1,1,0;2,2,2,2).

Butd + (1,1,0;2,2,2,2) = (7,6,4; 5,4,3,2). The third and fifth coefficients are the same so H*(/\2 Uy ®
A U)Y (=3)) = 0. So finally H*((A\"V)(4)) = 0 and thus H*(K7) = 0.

Since f; is injective we have that K7 = (A V)(4) /im(f;) and since (4.4) is a long exact sequence, im( f;) =
ker(fs) so we have another short exact sequence :

6
0 — K7 2% (A\V)(4) = Kg — 0. (4.5)
We already know H*(K~) so we need to compute H*((A°®V)(4)) with Theorem 4.2.10. We first decom-
pose (A°V)(4) as follows :

6 6

(AV@) = A\ (U & Us)Y @ OGr(g 7)) ® Ocray (—1)) (4)
3 2 2 4
= OGran(—6+4) @ /\u3 ® /\ U)o Ny © NUs)Y ® Oceary ® A\ Uy ® \WUs )V e

4
/\U3 ® /\ U3 ® OGr(3,7) ® /\ug X /\(Z/{gl)v 29 OGr(S,?))

Since it can be long to compute such a decomposition a lot of times, and also to avoid making mistakes
while doing it, one can use Macaulay?2 as detailed in annex 6.3. We want now to apply Theorem 4.2.10 to
each summand of the decomposition above.

- The highestweight of A* Uy @ A* (Us-)V (—=2)is (1,1,
(2,2,2:3,2,2,2) = (0,0,0:1,0,0,0). In 5 + (0,0,0;
coefficients are the same so H* (A Uy @ A\® (Ugf)
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=
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(1,1,1;1,0,0,0)4(0,0,0; 2,2,2,2) =
6,5,4;4,2,1,0) the third and fourth
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- The highest weight of \* 1y @ A*(Us-)Y (—2)is (1,1, 1; +(1,1,1;1,1,0,0)+(0,0,0;2,2,2,2) =
(2,2,2:3,3,2,2) = (0,0,0;1, 1,0, 0) Ind+ (0, ,0;1,1,0,0) = (6,5,4;4,3,1,0) the third and fourth
coefficients are the same so H* (A Uy @ N> Ui)Y(-2)) =

- The hlghestwelghtof/\ uy ®/\ (UH)V(—2)is (1,1,0;0,0,0,0)+(1,1,1;0,0,0,0)+(0,0,0;2,2,2,2) =
(2,2,12,2,2,2) = (1,1,0;1,1,1,1). In 6+ (1,1,0:1,1,1,1) = (7,6,4;4,3,2,1) the third and fourth
coefficients are the same so H*(A*Uy @ \* (u3 WV(=2)) =0.

- The highest weight of A” Uy @ A® (Us)V (—2)is (1,1, 0;0,0,0,0)+(1,1,1;1,0,0,0)+(0,0,0;2,2,2,2) =

(2,2,1;3,2,2,2) = (1,1,0;2,1,1,1). In§ + (1,1,0;2,1,1,1) = (7,6,4;5,3,2,1) all the coefficients
are different so we are in part 2. of Theorem 4.2.10. Here A\ = (7,6,4,5,3,2, 1) is not dominant
because A\3 = 4 < Ay = 5 but o34(\) = (7,6,5,4,3,2,1) is dominant. Moreover [(c34) = 1 (this
is also the number of positive roots « such that (A,a) < 0: indeed we have seen in section 1.1
that the positive roots are all the e; — e; with i < j, and (A, e; —e;) = A\; — A;. Itis negative only
fori = 3and j = 4). So dim(H*(A*Uy @ A\*Us)V(~2))) = dim((A — 6)|3'7)d.1. Finally A — & =

) ) 0+ a,a)

1,1,1,1,1,1,1 . H 4.2 —8)®7) = (7’:1

(1,1,1,1,1,1,1) = (0,0,0,0,0,0,0). Hence (4.2) gives dim((A — §)[>'7) };[()(5*0"0‘) and
H (AU © N*(Us)Y(~2)) = C.da.

- The highest weight of Uy ® A" (Us)¥ (=2) is (1,0,0;0,0, 0 ,0)+(1,1,1;0,0,0,0) + (0,0,0; 2,2,2,2) =
(2,1,1;2,2,2,2) = (1,0,0;1,1,1,1). In 5+ (1,0,0;1,1, ) (7,5,4:4,3,2,1) the third and fourth

coefficients are the same so H*(Uy @ N\*(Us-)V(-2)) =
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Finally H*((A°V)(4)) = C.4,1. Therefore, since H*(K;) = 0 the long exact sequence in cohomology
induced by (4.5) gives H*(K;) = C.641.

We are now going to proceed as in the previous step : there is a short exact sequence

0 K 1% (AV)(4) = K5 — 0. (4.6)

Using Macaulay?2 as explained in annex 6.3, or by hand as in the previous step, one finds

5

3 2 3
(/\V><4>:<9Gr<37> —5+4)® /\u3®/\u3 Vo ANuy @ U)o \Nu © \WUs) Ve

3 4
® /\u3 ® /\ Us)Y o uy ®/\ U ) ouy o N o \Us)Y

Now for each summand we apply Theorem 4.2.10. To go faster, one can use scilab as described in annex
6.4 to check if § + A has two identical coefficients : this is what we are going to do here, this is why from
now on the details about this calculation will be skipped.

- The highestweight of A* Uy @ A (Us)V (1) is (1,1,1;0,0,0,0)+(1,1,1;1,1,0,0)+(0,0,0; 1,1,1,1) =
(2,2,2;2,2,1,1) = (1,1,1;1,1,0,0). Using scilab one finds that 6 + (1,1,1;1,1,0,0) has pairwise
dIStInCt coefficients, moreover § + (1,1,1;1,1,0,0) = (7,6, 5;4,3,1,0) is dominant so we will have
dim(H*(A\* Uy @ N*(Us)Y (~1))) = dim(((7,6,5;4,3,1,0)—8)[57)d,0 = dim((1,1,1;1,1,0,0)[57)d,o.
Finally we use (4.2) to compute dim((1,1,1;1,1,0,0)[5'7). Let us denote A = (1,1, 1;1,1,0,0), then :

am a) AL (ei—e) L (Bea—g)
7 7 7

()\ + 4, e3 67) ()\ +6,e4 — 647‘) ()\ + 6, e5 — 647‘) ()\ + 0, e — 67)
1} (6.e5 — €) ng (6.ea—¢)) Xg (Gres—e)  (Ges—er)
(T-6)(T—5) (T—4)(7T—3)(T—1)(7T—0)(6—5)(6—4) (6-3)(6—1)6
T 6-506-46-306-206-106-006-1206-2306-206-15"
(5-4)(5-3)(5-1)5(4-3)(4—-1)4(3-1)31
(4-3)(4-2)4-1)43-2)3-1)3(2-1)21
6.7 5 6 4 5 3 4 2 3 Tx6_,

5767175 3717273 1727 2

To do these long computations one can also use scilab as explained in annex 6.4, so from now on
we will skip details of such calculations. Finally H*(A* Uy @ A*(Us)V(—1)) = C2.6,9

- The highest weight 01‘/\32/{3 ® (UF)V(-1)is (1,1,1;0,0,0,0) +(1,1,1;1,1,1,0) + (0,0,0; 1,1,1,1) =
(2,2,2;2,2,2,1) = (1,1,1;1,1,1,0). 6 + (1,1,1;1,1, 1,0) is dominant and so using scilab one finds
H (N Uy @ (UsH)¥ (1)) = C".4,0.

- The highest weight of AUy @ A*(Us)V (1) is (1,1,0;0,0,0,0)+(1,1,1;1,0,0,0)+(0,0,0; 1,1,1,1) =
(2,2,1;2,1,1,1) = (1,1,0; 1,0, 0, 0). Using scilab one finds that5+( ,1,0;1,0,0,0) has two identical
coefficients so H*(\” Z/lgV ® /\B(L{?})V(f )) = 0.

- The highestweight of AUy @ A*(Us")V (1) is (1,1,0;0,0,0,0)+(1,1,1;1,1,0,0)+(0,0,0; 1,1,1,1) =
(2,2,1;2,2,1,1) = (1,1,0;1,1,0,0). Using scilab one finds that § + (1, 1,0; 1,0, 0,0) has two identical
coefficients so H* (A’ Uy ® /\z(u;)v(—l)) =0.

- The highest weight of 1y ® A*(U3-)V (—1) is (1,0,0;0,0,0,0) + (1,1,1;0,0,0,0) + (0,0,0; 1,1,1,1) =
(2,1,1;1,1,1,1) = (1,0,0;0,0,0,0). 6 + (1,0,0;0,0,0,0) is dominant and so using scilab one finds
H* Uy ® N (Us)Y (1)) = €760,
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The highest weight of 14y @ A*U)Y (—1) is (1,0,0;0,0,0,0) + (1,1,1;1,0,0,0) 4 (0,0,0;1,1,1,1) =
(2,1,1;2,1,1,1) = (1,0,0; 1,0, 0,0). Using scHab one flnds thatd + (1,0,0;1,0,0,0) has two identical
coefficients so H*(Uy @ N*(U)Y(-1)) =

The highest weight of A*@s)Y(—1) is (1 1,1;0,0,0,0) + (0,0,0;1,1,1,1) =
(0,0,0;0,0,0,0). 6+(0,0,0;0,0,0,0) is dominant and so using scilab one finds H
C.d40-

( 11]-a ’ 7171) =

1,1,1;1
(N'(Us)Y (-1) =

So finally dim(H*((A° V)(4))) = (21 4+ 7+ 7+ 1).6,0 = 36.5,0. Since we have also seen at the previous
step that dim(H*(Ks)) = d.1, the long exact sequence in cohomology induced by (4.6) gives :

0—

5 5
H(Kg) =0 — H((/\V)(4)) = C* - H(K;) — H'(Ks) = C — H'((/\V)(4)) 20— H'(K;) -

5

— H*(Kg) 20— H*((\V)(4)) 20— H*(K5) > 0

This yields dim(H*(K5)) = 37.0.0.

+ We now look at the short exact sequence :

4
0— K5 % (AV)(4) = Ki =0 (4.7)

As before we want to compute H*((A\* V)(4)), and we start by decomposing

4

2
(/\V)(4) = OGi(3, 7) —4+4)® /\L{3 69/\1/{3 @/\u:s ®/\ Us) @/\UBV@) Us )"
@u3®/\u3 @u3®/\u3 /\ ea/\u3

Then we proceed as before :

The highest weight of A* 1y ®@ U+)Y is (1,1,1;0,0,0,0) 4 (1,1,1;1,1,1,0) = (2,2,2;1,1,1,0). Since
§+(2,2,2:1,1,1,0) is dominant (4.2) and Theorem 4.2.10 give dim(H*(A* Uy ® (Us-)Y)) = 224.4,0.
The highest weight of /\31/13v is (1,1,1;0,0,0,0). Since 6 + (1,1,1;0,0,0,0) is dominant (4.2) and
Theorem 4.2.10 give dim(H*(A*Uy)) = 35.6,0.

The highest weight of AUy ® A\°WU)Y is (1,1,0;0,0,0,0) + (1,1,1;1,1,0,0) = (2,2,1;1, .
Since § + (2,2, 1;1,1,0,0) is dominant (4.2) and Theorem 4.2.10 give dim(H* (A*Uy @ A*(Us)V)) =
392.6,0.

The highest weight of /\22/{3V ® (U3)Vis (1,1,0;0,0,0,0) + (1,1,1;1, 1, 1,0) (2,2,1;1,1,1,0). Since
5+ (2,2,1;1,1,1,0) is dominant (4.2) and Theorem 4.2.10 give dim(H*(A*Uy  (Us-))) = 140.0,0
The highest weight of .y @ A*(U3-)Y is (1,0,0;0,0,0,0) + (1,1,1;1,0,0,0) = (2,1,1;1,0,0,0). Since
5+ (2,1,1;1,0,0,0) is dominant (4.2) and Theorem 4.2.10 give dim(H*(Uy @ N\*(Us)Y)) = 224.6.¢

The highest weight of .y @ A*(U3-)Y is (1,0,0;0,0,0,0) + (1,1,1;1,1,0,0) = (2,1,1;1,1,0,0). Since
§+4(2,1,1;1,1,0,0) is dominant (4.2) and Theorem 4.2.10 give dim(H* Uy @ A*(Us-)Y)) = 140.5,0.

The highest weight of /\ Uz is (1,1,1;0,0,0,0). Since § + (1,1,1;0,0,0,0) is dominant (4.2) and
Theorem 4.2.10 give dim(H* (A" (Us)")) = 35.8,0.

The highest weight of Ag(uj)v is (1,1,1;1,0,0,0). Since § + (1,1,1;1,0,0,0) is dominant (4.2) and
Theorem 4.2.10 give dim(H* (A\*(Us)V)) = 35.6,0
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Finally dim(H*((A* V)(4))) = 1225.5,0, and the long exact sequence in cohomology induced by (4.7) gives
that dim(H*(K,)) = (1225 — 37).60. = 1188.50..

+ We look now at the short exact sequence

3
0 — Ky 25 (AV)(4) = K3 =0 (4.8)

Using Macaulay2 one can find that the highest weights associated to the decomposition of (A V)(4)
are: (2,2,2;0,0,0,0),(2,2,1;0,0,0,0),(3,3,2;1,1,1,0), (3,2,2; 1,1,1,0), (3,2,2; 1,1,0,0), (2,2,2; 1,1, 0,0)
and (2,2,2;1,0,0,0). For each of these weight, their sum with ¢ is non singular and dominant so using
(4.2) and Theorem 4.2.10 one finds that they contribute to dim(H°((A®V)(4))) respectively by 490, 490,
3024, 1323, 3402, 588 and 784. Therefore, dim(H*((\*V)(4))) = 10101.8, and thus dim(H*(K3)) =
(10101 — 1188).60« = 8913.00.

+ Then we can look at the short exact sequence :
2

0 K5 1% (AV)(4) — Kz — 0. (4.9)

The highest weights associated to (/\2 V)(4) are: (3,3,2;0,0,0,0), (3,2,2;0,0,0,0), (4,3,3;1,1,1,0),
(3,3,3;1,1,1,0), (3,3,3;1,1,0,0). Their sums with ¢ are all dominant so they contribute to
dim(HO((A\V)(4))) by respectively 5292, 2646, 15680, 2940 and 7056. So dim(H*((A\* V)(4))) = 33614.5,
and thus dim(H* (K>)) = (33614 — 8913).50, = 24701.00,.

* We look then at the short exact sequence :

0— Ky 5 V(4) - Ky — 0. (4.10)

The highest weights associated to V(4) are (3,3,3;0,0,0,0), (4,3,3;0,0,0,0) and (4,4,4;1,1,1,0). Their
sums with § are all dominant and non singular, and they contribute to dim(H"(V(4))) respectively by 4116,
20580 and 23520. As a result dim(H*(V(4))) = 48216..9 and so dim(H*(K;)) = (48216 — 24701).50. =
23515.640.

* Finally, there is a short exact sequence :
0 — K1 — Ocyzn)(4) = Ox,(4) = 0. (4.11)

And Og,(3,7)(4) = (/\3 Uy )®* has highest weight (4, 4, 4;0,0,0,0). Its sum with & is dominant and (4.2) and
Theorem 4.2.10 give dim(H*(Ogy(3,7)(4))) = 24696.50.. So using the long exact sequence in cohomology
induced by (4.11) one finds dim(H*(Ox,(4))) = (24696 — 23515).0, = 1181.0¢..

Thus X(OX47 OX4 (4)) = X(OGr(3,7)7 0X4 (4)) = Z(_l)idim(Hi(oGr(B,'T)a OX4 (4))) = 1181. O
1€EZL

With a similar reasoning, but with (4.3) tensored by Oqy(3,7), Ocr(s,7) (1), Oars,7)(2) or Oar(s,7)(3) instead
of Oay(3,7)(4), one can compute the following :

Proposition 4.2.12. The following Euler characteristics are :
X(OX4v OX4) =1 X(OX47 OX4(1)) = 20, X(OX4v Ox, (2)) =124 and x(Ox,, Ox, (3)) = 445.

To be able to compute the rest of the Euler characteristics related to the Ox, (i) we can use Serre duality,
which we are going to recall just below, but for this we need to know the canonical bundle wx, of Xj,.

Proposition 4.2.13. The canonical bundle of X, is wx, = Ox,(—h).
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Proof. By ([20], proof of Lemma 4.1), for any X5, wx, = Ox,(—2h). Since X4 » ..., is a hyperplane section of
X5, We can use the adjunction formula which yields :

wx, = j* ((wx, ® Ox,(h)))
= J"((Ox,(=2h) ® Ox, (h))) = j"(Ox,(~h)) = Ox,(=h)
where j is the injection j : X4 — Xs. O
Let us recall now Serre duality (see for instance Theorem 3.12 of [14]) :

Theorem 4.2.14 (Serre duality). Let X be a smooth projective variety over a field. Then for any E, F € D*(X),
there are isomorphisms H'(E, F) = (H9™(X)~(F, E @ wx))" for all i € Z. Here wx is the canonical bundle of X.

We can now finish to compute the Euler characteristics related to the Ox, (7) :

Proposition 4.2.15. Let M’ be the matrix whose coefficients are (mij = x(Ox,((i — 1)h), Ox,((j — 1)h)))

1 20 124 445 1181
1 1 20 124 445
then M' =20 1 1 20 124
124 20 1 1 20
445 124 20 1 1

1<i,5<5

Proof. From Proposition 4.2.11 and Proposition 4.2.12, we know already the first line of M. Using then

1 20 124 445 1181

* 1 20 124 445
H*(Ox, (i), 0x,(j)) = H*(Ox,,0x,(j —i)) foranyi,j e Zweget M' = [+ * 1 20 124

* % * 1 20

* ok * * 1
Using again x(Ox, (i), Ox,(j)) = x(Ox,,Ox,(j —i)) for any i, j € Z we also get that the missing coefficients
are all equal to one of the following : {x(Ox,,Ox,(j)), —4 < j < —1}. But by the hypothesis we are keeping
from [20], X, is smooth so Serre duality gives : H*(Ox,,Ox,(j)) & H*(Ox,(j),wx,)¥ = H*(Ox,,wx,(—7))".
By Proposition 4.2.13 we know that wx, = Ox, (—1), so finally :

x(0x,,0x,(-1)) = x(Ox,, Ox,)
X(OX47 OX4(_2)) = X(OX4’ OX4(1))
X(0x,, 0x,(=3)) = x(Ox,, Ox,(2))
X(Ox,, O0x,(—4)) = x(Ox,, Ox,(3)).
This allows us to complete M’ as above. O

4.3 Euler characteristics involving Op, (V)

In this subsection, we want to compute the Euler characteristics related to Op, (Vg).
Let us recall the following notations from section 2.1.1 :

Dy $>X4
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Lemma 4.3.1. The following Euler characteristics are :
(x(m*O0x,,0p,(VE)),...,x(7*Ox,(4h), Op,(Vg))) = (0,0, 12,36, 72).

Proof. Let0 < i <4, letus first show that x ¢, (7*Ox, (ih), Op,(VE)) = x5,(0s,, Vrl, (—ih)).
Indeed,

(’/T OX4(Zh) J*OD's(VE)) : OX4(ih)v7r*j*0D3(VE))

H(

= H*(Ox,(ih),isp.Op,(VE))

= H*(i"Ox,,p+Op, (Vg — ih))
= H*(Os,,p«0p, (Vg —ih)).

Finally, since D3 = Py, (Vr|s,) the projection formula yields :
p+Op, (Vi — ih) = p.Op, (Vi) ® Os,(—ih) = Ve|s, (—ih).

We know from Lemma 4.14 of [20] that Vs and Vf are respectively the monads of

2 2
0= Og,(—h1) & Og,(—h2) = (\ A1 & N\ A2) ® Og, = Os,(h1) ® Os, (h2) = 0

and
0 — Og,(—h1) & Ox,(—h2) = (A1 & A3) ® Og, — Oy, (h1) ® Ox, (hs) — 0.

Moreover, A; = Ay = /\2 A = /\2 Ay = C3 and we know from [20] that X, and S, are both degree 6 del Pezzo
surfaces, cut out by two divisors of bidegree (1,1) in P(4;) & P(A,), respectively P(A> 4;) & P(A® A,), with
canonical sheaf Os, (—hy — ha) = Ox, (—h), respectively Og, (—hy — hy).

Hence, ch(Vp|s,) = (2,0,—2) = ch(Vs) and

X(Os,, Vplg, (—ih)) = X(Os,, Vi (=i(h1 + h2))) = x(Os,, Vs(—i(hy + h2)))
since Vs = V¢ by Proposition 1.2.2. Furthermore :
« We saw in Lemma 3.1.3 that x(Os,, Vs) = 0.

* By 11. of Theorem 1.2.1 and Serre duality, we have H*(Og,,Vs(—(h1 + h2))) = H?>7*(Vs,0g,) =
H?7*(0s,,V¢) = 0 again by Lemma 3.1.3 and Vs = V¥. So x(Os,, Vs(—(h1 + hs))) =

» Using again Serre duality and Vg = V¢ one finds H*(Os,,Vs(—2(h1 + h2))) = H*(Os,, Vs(h1 + ha)).
Hence by Lemma 3.1.4, x(Os,, Vs(—2(h1 + h2))) = 12.

* To compute x(Os,, Vs(—3(h1 + hz))) we will use the same method as in the proof of Lemma 3.1.4. We
first look at the short exact sequence induced by (1.3) :

0— OSQ(—451 — 352) D 052(—3E1 — 4%2) — Ql(—2ﬁl — 3%2) D QQ<_3EI — 2%2) — V5<—3E1 — 3%2) — 0.
(4.12)

Moreover, (3.1) induces the following resolution in P? x P? :

0 — O(=6,-5) = O(=5,—4)%* = O(—4, —3) = Og,(—4h; — 3hy) — 0. (4.13)
Using Kinneth formula as in the proof of Lemma 3.1.3, one finds : dim(H*(O(—6, —5))) = 60.0, 4,
dim(H*(O(—5,—4))%2) = 36.5,4 and dim(H*(O(—4, —3))) = 3.0, 4. Splitting (4.13) into short exact se-

quences and computing the Euler characteristics of each term finally yields :

X(Os,(—4h1 — 3hs)) = 3 — (36 — 60) = 27.
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A very similar calculation shows x(Og, (—3h1 — 4hs)) = 27.
The resolution (3.1) also induces the following :

0 — Qi(—4,—5) = Q1 (=3, -4)%% = Q1 (=2, -3) = Q1 (—2h; — 3hy) = 0 (4.14)
and using again Kinneth formula and (3.2) one finds :
dim(H*(Q1(—4,—5))) = 90.0, 4, dim(H* (21 (-3, —4)9?)) = 48.5,. 4 and dim(H*(Q1(—2, —3))) = 3.54 4.
Splitting (4.14) into short exact sequences and computing Euler characteristics then yields
X(1(—=2hy — 3hy)) = 3 — (48 — 90) = 45.

A very similar reasoning gives x (2 (—3h1 - 252)) = 45,
So finally, using (4.12) one finds x(Vs(—3(h1 + h2))) = 90 — 54 = 36.

« We will compute x(Os,, Vs(—4(h1 + h2))) the same way as x(Os,, Vs(—3(h1 + hz))). There is a short
exact sequence :

0— (95’2(—551 — 452) (&) 052(—451 — 5%2) — Ql(—?)ﬁl — 4%2) &) 92(_451 — 3%2) — Vs(—4(51 —|—Eg)) —0
(4.15)

and a resolution
0— O(=7,-6) = O(=6,-5)%* = O(=5,—4) = Og,(—5h; — 4hy) — 0. (4.16)

By Kiinneth formula (and what did before), dim(H*(O(—7,—6))) = 150.6, 4, dim(H*(O(—6,-5)%?)) =
120.0. 4 and dim(H*(O(—5, —4))) = 18.5. 4. As aresult, x(Os, (—5h1 — 4hy)) = 18 — (120 — 150) = 48 and
similarly, x(Os,(—4hy — 5hg)) = 18 — (120 — 150) = 48. We can then look at the resolution :

0— 91(757 76) — 91(747 75)692 — 91(73, 74) — 91(7351 — 452) — 0 (417)

which yields dim(H* (24 (=5, —6))) = 240.6, 4, dim(H*(Q1(—4, —5)%2)) = 180.4, 4 and
dim(H*(Ql(—S, —4D) = 2&.6*’4. . .
Therefore x (21 (—3hy — 4hs)) = 24 — (180 — 240) = 84 and x(Q2(—4hy — 3h2)) = 84.

Finally, x(Os,, Vs(—4(hy + hy))) = 168 — 96 = 72.
0

Remark 4.3.2. /n Lemma 4.3.1, one could also have used Hirzebruch-Riemann-Roch together with Lemma 4.1.3 to
compute the x(Os,, Vr |5, (—ih)).

Before we can compute the other Euler characteristics involving Op, (Vg), we need to look at X. This is
what we will do in the following subsection :
4.3.1 The surface X,

Along this subsection we are going to use the following notations :

Yo —> Xy (4.18)
|5
]P)2
where ¥, and X, are as in Theorem 1.2.3, i is the associated embedding and ¢ is a blow-up of P? in three
points. Indeed we know from 7. of Theorem 1.2.3 that X5 is a smooth degree 6 del Pezzo surface, hence it is

the blow-up of P2 in three points which we are going to call py, p» and ps (see for instance Theorem 4.6 and
Remark 4.7.1inV, 4 of [12]).
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Definition 4.3.3. Let us denote by H the hyperplane class in P2, We will also write H for its pull-back to ¥, by abuse
of notation.

If ¢ is the blow-up of P2 in the three points p1, p» and ps we are going to denote by E; the exceptional divisor associated
top;for1 <i<3.

Lemma 4.3.4. The Chern characters of the derived pushforward ¢. of the following line bundles are :

+ ch(R*¢.Os, (E1 + Ey + E3) = (1,0,0);

« ch(R*¢.Ox, (2E1 + 2E5 + 2E3) = (1,0, —3);

« ch(R*$,0x, (3E1 + 3E, + 3E3) = (1,0, -9);

v ch(R*¢,Ox, (AE; + 4B, + 4E3) = (1,0, —18);
« ch(R*$,Ox, (5E1 + 5E, 4 5E3) = (1,0, —30).

Proof. First of all let us consider f : T — P? the blow-up in a point p with exceptional divisor E. We will first
compute the Chern characters of R* f,Or(aFE) for 1 < o < 5 and then we will deduce from them the Chern
characters of the sheaves listed above.

« To start with, there is a short exact sequenceonT: 0 — Op(—E) — Or — O — 0.Since EisaP!inT
and E? = —1, tensoring by Or(E) gives a short exact sequence :

0—Or = Op(E)— Op:i(—1) >0 (4.19)

which induces a long exact sequence :
0— Rf.Or — R°f,O7(E) = R°f,Op1 (1) = R f,Or — R f.Or(E) = R f.Op: (—1) —  (4.20)
— R*f,0r — R*f.01(E) — R*f,0p1(—1) — 0. (4.21)

On one hand, R*f.Or = f.Or = Op: (see for instance Proposition 3.4 of V.3. in [12]), on the other
hand since f(F) = {p}, f|g has image supported in one point, thus R*f,Og(E) = R*f.Op:(—1) =
Hom™* (P!, Op1(—1)) ® k(p) where k(p) is the skyscraper sheaf supported in p (see for instance the begin-
ning of page 73 of [14]). Thus the long exact sequence (4.20) gives actually :

0— Op2 — R°f,Op(E) - 0—0— R f.Or(E) - 0— 0— R*f,.O7(FE) =0 (4.22)
since Hom™ (Op1, Op1 (—1)) = 0. So finally R* f.O7(F) = Opz and thus ch(R* f.Or(E)) = (1,0,0).

* Tensoring now (4.19) by Or(E) we get the short exact sequence 0 — O7(E) — Or(2E) — Op1(—2) —
0 since 2E% = —2. This gives a long exact sequence similar to (4.20). Since we have just computed
R* f.O7(E) and since by Serre duality Hom* (Op1, Op1 (—2)) = Hom' ™ *(Op1, Op1) = C6; ., this yields

0 — Op2 — R°f,07(2E) = 0 = 0 — R f,0r(2F) = C® k(p) — 0 — R?f,07p(2E) — 0.

So RVf.0Or(2E) = Op: and R'f.Or(2E) = k(p). Therefore ch(R*f.Or(2E)) = (1,0,0) — (0,0,1) =
(1,0,—1).

* Proceeding the same way gives ch(R* f.Or(3E)) = (1,0, —3), ch(R* f.Or(4F)) = (1,0,—6) and
ch(R* f,Or(5E)) = (1,0, —10).

Let us go back to X» now. By what we have just seen (replacing E by F; and p by p1), R*¢.0Ox,(F1) = Op:2
and the equivalent of (4.19) with E», tensored by Oy, (E1), gives the short exact sequence: 0 — Ox,(Fy) —
Os, (E1+ E2) = Op1(—1) — 0since Ey.E3 = 0. Since R*¢,.Os, = R*¢.Ox,(E1) = Op2, by the same reasoning
as above we get that R*¢. Oy, (E1 + E3) = Ope. Exactly the same way, the equivalent of (4.19) with E5 tensored
by Os, (Ey + E») gives a short exact sequence : 0 — Os,(E1 + E2) — Os,(E1 + Es + E3) = Opi(—1) = 0
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since F1.E3 = E5.E3 = 0. S0 R*¢.Os, (E1 + E5 + E3) = Op2 and ch(R*¢.Os, (E1 + E5 + E3)) = (1,0,0).
Similarly, one gets a short exact sequence: 0 — Ox, (E1 + E2) — Ox,(2E; + E3) — Op1(—2) — 0 by tensoring
(4.19) for E; by Os, (E; + E3). We have seen that R*¢.Ox, (E1 + E2) = Op2 so using again the same type of
reasoning as before, one gets that R¢.Os, (2E; + E2) = Op2 and R'¢.0s, (2E; + E2) = C ® k(p1). Thus
ch(R*¢.0x,(2E, + E»)) = (1,0,—1). Tensoring now (4.19) for E5 by Ox,(2E; + E>) one gets a short exact
sequence 0 — Oy, (2E; + E») — Ox,(2E; 4+ 2E3) — Op1(—2) — 0. This yields the long exact sequence :

0— Opz — RO¢*022 (2E1 =+ 2E2) —0— k(pl) — Rl(b*OEQ (2E1 + 2E2) - C® k‘(pg) —
0 = R?¢,0Ox,(2E; + 2F5) — 0.

So R%¢,Ox, (2E; + 2E;) = Op> and ch(R'¢.Ox, (2E; + 2E5)) = (0,0,2) thus ch(R*$,0x,(2E; + 2E,)) =
(1,0,—2).

Finally, from the short exact sequence 0 — Ox, (2E4 4+ 2E5) — Osx,(2E1 +2E5+ E3) — Op1(—1) — 0 one gets
RY¢,0s,(2E; + 2E5 + E3) = Op2 and ch(R'¢.Ox, (2E; + 2F> + E3)) = (0,0,2). Then from the short exact
sequence 0 — Os, (2B +2E5 + E3) — Ox, (2E1 4+ 2E3 +2E3) — Op1(—2) — 0 one gets R%¢.Ox., (2E1 + 2E> +
2F3) = Op2 and ch(R'¢, Oy, (2E; + 2E5 + 2F3)) = (0,0,2) + (0,0,1) = (0,0, 3). Therefore ch(R*¢,Ox, (2E; +
2E5 +2E3)) = (1,0, -3).

The other Chern characters mentioned above can be computed using exactly the same method. O

Lemma 4.3.5. The following holds : (x(Ox,,i.Ox,), ..., x(Ox,(5h),i.0x,)) = (1 1 7 19 37 61).
Proof. Firstof all, since i, is right adjoint to i* and ¢, is right adjoint to ¢* (see for instance iii) of page 83 in [14]),
H*(0x,,1.0x%,) = H*(i"Ox,,Os,) = H*(Ox,,O0x,) = H* (¢*Op2, Ox,) = H*(Op2, ¢, Ox, ).
Moreover, ¢, Oy, = Op= (see for instance Proposition 3.4 of V.3. in [12]) so finally
X(O0x,,1:0sx,) = x(Opz, Opz2) = 1.

Secondly, with a similar reasoning one gets H*(Ox,(h),.0x,) = H*(i*Ox,(h),Os,) = H*(Os,(h),O0s,) =
H*(Os,,Osx,(—h)). By Lemma 4.1.2, ws = Ox,(—h)) and since X5 is smooth we can use Serre duality, which
yields H*(Os,,Os,(—h)) = H?*~*(Os,(—h),Os,(=h))Y = H?*7*(Os,,0s,)". Thus, since for any ¢ € Z,
(—1)7 = (=1)%74 this implies x(Ox, (h),i+Os,) = x(Os,, Os,) = 1 by the computation we did just above.

For the rest of the coefficients we are going to use Hirzebruch-Riemann-Roch’s Theorem.

Let us first start as before : H*(Ox, (2h),i.0x,) = H*(Ox,, Os,(—2h)) = H*(Ox,,ws?). Moreover, if we de-
note by E; the exceptional divisor in X5 associated to p; by the blow-up ¢ as in Definition 4.3.3, then using for
instance Notation 4.7.3 and Proposition 4.8, in V,4 of [12], one gets that wsy, = Osx,(—3H + E1 + E> + E3) where
H is as in Definition 4.3.3. Thus

H*(OEZ,W§2) = H*(Ozz, (922(—61‘] +2F1 +2F5 + 2E3))
= H*(¢*Op2,Ox,(—6H + 2E; + 2E5 + 2E3))
~ H*(Op2, ¢« Ox,(—6H + 2E; + 2F5 + 2E3)).
By the projection formula one gets that ¢.Ox, (—6H+2E1+2F2+2F3) = Opz (—6H )QR0p2 (¢, (2E1+2F2+2E3)).
But since here ¢, is R*¢. (as mentioned in the beginning of section 1.1) by Lemma 4.3.4, ch(Op2 (¢4 (2E1 +2E5+
2E3))) = (1,0,-3).

Moreover, we know that the Chern character of Op2(—6H) is (1, —6H, @) = (1,—6H,18) since H? = 1.
Therefore

ch(Op2 (—6H) ® Op2 (¢4 (2Ey 4 2B, + 2E3))) = (1,0, -3)(1, —6H,18) = (1, —6H, 15).

The Hirzebruch-Riemann-Roch Theorem then gives

X(Opz, Opz (—6H) @ Opz (64 (2B + 2B + 2F3))) = /P (1, —6H,15).td(T)
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where td(7) is the Todd class of the tangent sheaf 7 of P2. Since T is the dual of 2 we have a short exact
sequence: 0 — Op2 — Op2(1)® — T — 0. Thus ¢1(T) = 3H and co(T) = 3. Hence, using the formula for the
Todd class page 432 in Appendix A of [12], one finds that the Todd class of T is :

c1(T) cu(T)? + ca(T) 3

1 =(1,-H,1).

(1, ) = (LS

So finally, [ (1, —6H,15).4d(T) = [p(1,—5H,15+1—9) = [5,(1,—3H,7) =T.

For the remaining Euler characteristics, one can proceed similarly. O

Remark 4.3.6. The Euler characteristics in Lemma 4.3.5 can also be computed using Hirzebruch-Riemann-Roch and
Lemma 4.1.3.

4.3.2 Backto Op,(Vg)
We can now compute the following :

Lemma 4.3.7. The following Euler characteristics are : (x(Op,(Vg),7*Ox,),...,x(Op,(Vg),7*Ox,(4h))) =
(1,7,19,37,61).

Proof. Let0 < < 4. Since X, is the blow-up of X, in the codimension 2 subvariety X, the canonical sheaf of
Xsiswg = mwx(e) = OX4(—h + e) by Lemma 4.2.13 and the fact that D3 has class e in X, (indeed it is the

intersection of X, and E,). By Serre duality and (1.10) this implies :

X(Op,(VE), 7 Ox,(ih))

x(7*Ox,(ih),Op, (Vg + e — h))

= x(7"Ox,(ih), Op,(=h))
= x(m*Ox,((i+ 1)h),Op,).
Finally,
x(m°0x, ((i + 1)h), Op,) = x(Ox, ((i + 1)h), m.Op,) = x(Ox,((i + 1)h), Ox,)
so one can conclude with Lemma 4.3.5. O

Lemma 4.3.8. One has x(Op, (Ve), Op,(Vg)) = 1.

Proof. Since Ds is a divisor in X, there is a short exact sequence: 0 — 0X4(*@) — (9;(4 — Op, — 0. Indeed
Ej4 has class e in Pic(X5) and D3 = ¥y x i, Ey4 so the class of Ds is e in Pic(X4). As a result,

X(Op;(VE),Op,(VE)) = X(Op,, Op,) = x(Ox,,0p;) — x(Ox,(—¢),0p,).
* Letus compute x(Ox,,Op,). One can use that
H*(O)_Q’ ODs) - H*(W*0X47 OD:;)

= H*(0X477T*OD3)
= H*<OX47022)

and Lemma 4.3.5 to find that x(Ox,, Op,) = 1.

* Let us compute now x(Ox, (—e), Op,). For this, one can notice that

H*(0O%,(=€),0p,) = H*(O%,(—¢),jxOp,)
= H"(j"Ox,(=¢),0p;)
= H*(ODs(_e)ﬂoDz)'
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Moreover by (1.10) we have —e = Vi in Pic(E,), hence since D; C E4 we have
H*(ODe,?ODS (e)) = H*(OD3’ ODS(_VE))
= H"(p"Os,, Op,(—VE))
= H*(Ox,,p:0p,(—VE)).
Since p.Op,(—VE) = 0 (see for instance Exercise 8.4 of I11.8. in [12]), we get x(Ox, (—¢),Op,) = 0.
Finally, x(Op,(Vg),0p,(VE)) =1-0=1. O

4.4 The ruled surface D,

To start with, let us remember from Theorem 1.2.3 that D5 is a ruled surface over the curve I'; : indeed Dy =
Pr(Vz|r). We can then use results from part V.2. of [12] to compute the Euler characteristics associated to

%

Lemma 4.4.1. Up to numerical equivalence, the Picard group of D- is generated by two classes & and f such that :
02 =48 f2=0andd.f = 1. B

Moreover the canonical sheaves of D> and I'y are respectively wg = Op,(—20 + 72f) and wr = Or, (24).

Proof. We have just seen that D, = Pr(Vz|r, ), therefore D, is a ruled surface over I'; (see for instance the first
definition and note of V.2. in [12]). By Proposition 2.3 of V.2. in [12] we thus have : Pic(D3) = Z & 7 (Pic(I'1))
and Num(D;) = Z? where Num(D,) = Pic(Dy)/{D, VE € Pic(D3), D.E = 0}. Furthermore we can find two
generators f and ¢ such that f2 = 0 and é.f = 1. By Proposition 2.9 of V.2. in [12] we also get §? = deg(€)
where Dy = Pr, (£). However we have to be careful here : as mentioned in the proof of Proposition 3.2.1, in
[12] R. Hartshorne took a different definition of P(£) than A. Kuznetsov in [20], the latter being the definition
we use. So for us, £ will be VY|r, and not Vz|r,. We also have by Lemma 3.2.3 and (1.11) that det(Vy) =
Oz,(3Vz + 2(hy + hs)), and by (1.15), the class of I'y in Z3 is 4V;.(hy + hs). Finally, in CH(Z3),

4VZ.(E1 +Eg)(3VZ + 2(%1 +Eg)) = 8VZ(51 +Ez)2 = 8.6 = 48.

As a result, det(VY|r,) = Or, (48) and thus §2 = 48.

We also know from Lemma 3.5.1 that I'; has genus 13. Hence (see for instance Example 1.3.3 of IV.1. of [12]),
wr = Or, (29(I'1) — 2) = Or, (24).

Finally, by Lemma 2.10 of V.2. in [12],

wp = O0p, (=20 + (wr +6%)f) = Op, (—20 4 (24 + 48) f) = Op,(—20 + 72f).
O

Before going further, let us recall the Riemann-Roch theorem for surfaces, taken here from V.1. of [12] :

Theorem 4.4.2 (Riemann-Roch). Let X be a non singular projective surface over an aigebraically closed field k. Let
D be a divisor on X and K the canonical class of X. Then :

x(Ox, 0x(D)) = X(Ox) + 3 D.(D ~ K). @23

Definition 4.4.3. For simplicity let us denote |5, : Dy — Ty by ¢.
Lemma 4.4.4. The following holds : x(7*Ox,,0p,) = x(05,, 0p,) = —12.
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Proof. To start with :

H* (7" Ox,,0p,) = H (O

(O Xu i 05 )
= *(ODZ ODz)
H*(¢"Or,,05,)
= H*(Or,, ¢« 52).
In particular, x(7*Ox,, 05,) = x(05,,05,) = x(Or,, $.05,). Moreover 7,05, = Or, : indeed by Lemma
2.1 of V.2. in [12], we have that 1‘%077*(952 = m.0p, = Or, andsince 0.f = 0 > 0, by Lemma 2.4 of V.2.in [12],

R'm.0p, = 0. Asaresult, H*(Or,, $.0p,) = H*(Or,, Or,).
Finally by Riemann-Roch for curves (see for instance Theorem 1.3 of IV.1.in [12]) :

X(Ory, Or,(n)) =n+1-g(I').
Thus, X(OF1>OF1) =1- g(Fl) =1-13=-12. O
Lemma 4.4.5. We have h|5, = V|5, = 6 + 48 f with the notations of Lemma 4.4.1.

Proof. We know from (1.12) that in Pic(E,), h = V5 thus since D, C E, we have k|, = Vi|5,. Moreover we
know by definition of Vg that 7. O, (Vg) = Vy, hence ¢.05, (Vg) = Vy|r,. On the other hand, in Lemma 4.4.1
we defined ¢ as Cp in section V.2. of [12], according to which ¢.05, () = Vz|r, (see Notation 2.8.1.in V.2. and
Proposition 7.11 in I.7. of [12]). We thus have :

$.0p,(Vg) = VzIr, ® det(Vy|r,) = ¢.0p5,(6) @ det(Vy]r,).

Indeed from Corollary 2.7. in V.2. of [12] we know that there exists two invertible sheaves £; and £; and a
short exact sequence 0 — £, — Vz|r, — L2 — 0, inducing the following short exact sequence in Db(Ty) :

0— Ly = Vyp, — L] —0.
Since det(V}|r,) = LY ® L3, tensoring the first short exact sequence with it gives another short exact sequence:
0— ﬁ;/ — det(Vgh'*l) ®Vz|r, — E}/ —0

which yields VY|r, = Vz|r, @ det(VY|r,).
Finally, we have seen in the proof of Lemma 4.4.1 that det(Vy|r,) = Or, (48), therefore,

¢.0p,(Vg) = ¢:0p,(0) @ Or, (48) = ¢.0p, (6 + 48)

(see for instance Proposition 2.3 in V.2. of [12]). Since we have seen in Lemma 4.4.1 that Pic(Dy) = Z5 © Zf, it
implies that h|5, = Vglp, = 0+48f. Indeed, let us assume that there exists awand 8 in Z such that ¢. O3, (ad +
Bf) = Vz|r,(48). Since Vz|r, is not self-dual, by the Remark below Proposition 9.3 in [8] (taking in account the
fact that [8] and [12] have different definitions of the projectivization of a vector bundle), we must have o = 1.
Then f has to be 48 because ¢.05, (6 + Bf) = ¢.(05,(6) ® ¢*Or, (B)) = Vz|r, (B). O

Proposition 4.4.6. One has (x(7*Ox,,0p,), ..., x(7*Ox, (4h), O5,)) = (—12,0, 156, 456, 900).

Proof. We have already seenin Lemma4.4.4that x(7*Ox,, Op,) = —12. Letus now compute x(7*Ox, (ih), Op, )
forl <i<4.
Let us start with x(7*Ox, (h), Op,) : as in the proof of Lemma 4.4.4 we have

H*(1*Ox,(h),0p,) = H (O, (h),1

)7 '*052)
H*(03,(h),05,)

= H*(0p,,05,(~h)).

2 2
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Moreover by Lemma 4.4.5 we have Op (—h) = Op, (—06 — 48f).
So H*(0p,,0p,(—h)) = H*(0p,, Op, (=6 — 48f)).
Using (4.23) and Lemma 4.4.4, one finally finds :

X(m"Ox, (h), 0p,) = x(0p,, Op, (=0 — 48f)) = —12 + %((5 +48f)* + (0 + 48f) Kp,).

By Lemma 4.4.1,6% = 48,6.f = 1, f> = 0 and K55, = —20 + 72f therefore :

1 24
X(Ox,(h), 1. 0p,) = —12+ S (48 +2.48 — 248 + 72— 2.48) = ~12 + T~ = 0.

We will proceed similarly for x(7*Ox, (ih), Op,) with 2 <i < 4:
+ X(7*Ox,(2h),05,) = x(Op,, 05, (—2(5 + 48f))) = —12 + 1(4.144 — 120.2) = —12 + 168 = 156.
+ x(7*Ox,(3h), 0p,) = x(Op,, 05, (—3(6 +48f))) = —12 + 1(9.144 — 120.3) = —12 + 468 = 456.

+ X(7*Ox, (4h), 05,) = x(O5,, 05, (—4(6 + 48f))) = —12 + (16.144 — 120.4) = —12 + 912 = 900.

Before going further, we need to know the canonical bundle of X4, in order to apply Serre duality later.

Lemma 4.4.7. The canonical bundle of X, is wg = Oz, (=h+e).

Proof. We have seen in Lemma 4.2.13 that wx = Ox,(—h) and we know from Theorem 1.2.3 that X is the
blow-up of X, in 35, which is codimension 2 in X,. Finally, the class of D3, which is the exceptional divisor of
this blow-up, is e| 5, which we are still going to denote by e : indeed D is the intersection between X4 and Ej.
Hence wy = 7"Ox,(—h) ® O, (e) = Ox, (—=h +e). O

We are now able to compute :

Proposition 4.4.8. The following Euler characteristics are :
(x(0p,,m0x,), ..., x(0p,, 7 Ox, (4h)) = (=36,0, 180, 504, 972).

Proof. Let0 < i < 4. Then by Serre duality and Lemma 4.4.7, we have :
H*(O0p,, 7 Ox,(ih)) = H**(7*Ox, (ih), Op,(=h +e)).

Since 4 is even we have x(Op,, 7*Ox, (ih)) = x(7*Ox,(ih), O5,(=h + €)) = x(7*Ox,(ih), Op,(—h)) where
we used (1.8) for the last equality. Moreover, using (1.11) and (1.15) one finds that

hlp, = 4Vz(hi + ha).(Vz + by + ha) = 4Vz(hy + hs)*.

Since (hy + ha)? = 6 in CH(S;) we thus have E|52 = 24f. We can now use the same reasoning as in the proof
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of Proposition 4.4.6 to find :

x(0p,,70x,) = x(0p,, 0p,(=h)) = x(05,, 0p,(-24f))
=12+ %((24f)2 +24f(=25 + 72f)) = —12 + %(—48)
x(0p,, 7 0x,(h)) = x(0p,,05,(—h — h)) = x(Op,, Op, (=0 — 72f))

=-12+ %((5 +72f)? + (6 +72f) (=26 + 72f))
=12+ %(48 +2.72 248472 -2.72) =0

X(Op,, 7 0x,(2h)) = x(0p,, Op, (—=h — 2h)) = x(0p,, Op, (=26 — 120f))
=12+ %((25 +120f)% 4 (26 4+ 120f)(—26 + 72f))
=12+ %(4.48 +4.120 — 4.48 4+ 2.72 — 2.120) = 180

X(Op,, 7" 0x,(3h)) = x(0p,, Op, (—=h = 3h)) = x(0p,, Op, (=36 — 168f))
=12+ %((35 + 168)% 4 (36 + 168 f)(—26 + 72f))
=12+ %(9.48 +6.168 — 6.48 + 3.72 — 2.168) = 504

x(0p,, 7 Ox,(4h)) = x(Op,, Op,(—h — 4h)) = x(Op,, Op, (—46 — 216f))
=-12+ %((45 +216£)% + (46 + 216£)(—26 + 72f))

1
=-12 4+ 5(16.48 +8.216 — 8.48 + 4.72 — 2.216) = 972.

Lemma 4.4.9. One has x(Op, (Vk),0p,) = =36 and x(Op,,Op,(VE)) = —156.
Proof. One has the short exact sequence :
0— Og,(~2¢) = Og, (—€) — Op,(—e) =0
and can use (1.10) to find Op,(Vg) = Op,(—e).
* By (4.24), one has
X(Op,(Vi), O0p,) = x(Ox, (=€), 0p,) — x(O%,(=2¢),0p,)

= X(0,.0p, (h = 1)) = x(Ox,, Op, (2h — 2R))

with (1.8). By Lemma 4.4.5, we know that O, (h) = Op, (6+48f), and we saw in the proof of Lemma 4.4.8
that Op, (h) = Ogp,(24f). As a consequence, (4.23) (with the same reasoning as in the proof of Lemma

4.4.6), Lemma 4.4.4 and Lemma 4.4.1 yield :

x(Ox,, 05, (h —h)) = X(0x,,0p5,(0 +24f)) = —12 + %((6 + 24 )2 — (6 + 24f) (=25 + 72f))

1
= —12+§(48+48+2.48—72+48) =72

—36

(4.24)

X(0%,,0p,(2h — 2h)) = x(O,, Op, (20 + 48f)) = —12 + %(4(6 +241)% — 2(6 + 24£) (=26 + 72f))

1
=—-12+ 5(384 — 144) = 108.

Therefore, x(Op,(VEg), Op,) = 72 — 108 = —36.
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* As we saw in the proof of Lemma 4.3.7, wz = O, (—h + ¢), hence by Serre duality

x(05,,0p,(VE)) = x(Op,(VE), Op,(—h +¢))
X(Op,, Op,(—h + 2e))
X(Opy, Op, (h — 2h)).

Using (4.24) twisted by O (e) gives then
X(Op,, Op, (h —2h)) = x(O%,, Op, (h — 2h)) — x(Op ¢, (—e), Op, (h — 2h))
= x(0x,,0p,(h—2h)) — x(O%,, Op, (2h — 3h)).

Riemann Roch then gives :
X(0x,,05,(h —2h)) = x(0%,, 05, (9)) = —12 + %(62 —6(=20+172f))
=12+ %(48 4248 — 72) = 24.
X(Og,,0p,(2h = 3h)) = x(Og,, Op, (26 + 24f)) = —12 + %((25 +241)% — (20 + 24£)(—20 + 72f))
=12+ %(4.48 +4.24 + 4.48 — 2.72 4 48) = 180.

Hence, x(Op,, Op, (Vi) = 24 — 180 = —156.

4.5 The surface S

We would like now to compute the Euler characteristics associated to S. But before doing so we need some
technical results.

Definition 4.5.1. By Remark 4.7 in [20] we know that S, is the blow-up of IP’(/\2 A1) in three points. Let us denote
by E1, E> and Ej the associated exceptional divisors.

Remark 4.5.2. Then Pic(S2) =< hy, Ey, Es, E3 > (see for instance Proposition 4.8 in V.4. of [12]).
On one hand, ws = Os,(—3hy + E1 + Ea + E3) by d) of Proposition 4.8 and Notation 4.7.3 of V.4. in [12]. On the
other hand, by 11. of Theorem 1.2.1, wg = Og,(—h1 — ha). Hence :

hy = 2hy — By — Ey — Ej3. (4.25)
Finally still by Proposition 4.8 of V.4. in [12], we get : hy.E; = 0 and E;.E; = —6; ; for 1 <i,j < 3.

Proposition 4.5.3. The canonical sheaf of Zs is wy = Oz, (—2Vy — 3hy + E1 + Ey + E3) = Oz, (—2Vz — hy — hy)
with the notations of Definition 4.5.1 and where we keep the same notation for a divisor on Sy and its pull-back to Zs
by o.

Proof. Since Z3 = Pg(Vs), we have Pic(Z3) = Z.Vz @ Pic(S2), thus using Definition 4.5.1 and Remark 4.5.2 we
can write : Kz = aVz + bhy + c¢E1 + dEs + eE3 where Kz is the canonical class of Z5. We will now use a very
similar reasoning to the proof of Lemma 2.10 in V.2. of [12], but before going further, since we are going to use

here h; and E; both as a divisors in Z3 and Ss let us fix a notation : Ef and Ef will denote the divisors in Sy
and Elz and E7 their pull-backs to Zs.
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+ Adivisor D in |EIZ| is the set of all fz(p) withp € C, where C € mf\. Hence it is a ruled surface above
C (see for instance the first definition and note of V.2. in [12]). Let us fix such a surface in Z5. Then the
adjunction formula gives :

—7Z —7 —Z
Kp=(h] +Kz)|p = (hy)*+h, .Kgz. (4.26)

On the other hand, we can also use Lemma 2.10 of V.2. in [12] to compute K p. This yields :
Kp =-2Cy+ (K¢ +det(Vs|e)) f (4.27)

where Cj is the relative hyperplane class (using the definition of [12] so here 0.0(Cy) = Vg|¢) and f is
a fiber. Here we also used the fact that since Z; = Pg(Vs), we have D = Po(Vs|¢). Furthermore by
definition of V; we know that 0.0z, (Vz) = V¢ so using the fact that det(Vs) = Og, (by 1. of Proposition

1.2.2) and the same reasoning as in the proof of Lemma 4.4.5 we get: Cy = hy.Vy and f = (ﬁlz)Q.

Moreover, the adjunction formula in Ss gives : K¢ = (Ef + KS)ﬁf = —ha.h; = —2 by 11. of Theorem
1.2.1 and (1.13). We also just saw that from 1. of Proposition 1.2.2, det(Vs) = Og,. Hence (4.27) actually
gives:
—Z —Z .9
Kp = —2h; Vg —2(h} ). (4.28)

Together (4.26) and (4.28) yield : Elz.KZ = aﬁlz.VZ + b(ﬁlz)2 = 7251Z.VZ - B(Elz)Q. Therefore, a = —2 and
b= -3.

* We will now use the same reasoning as just before but this time with D’ a divisor in |EZ| which is thus a
ruled surface above a curve ¢’ € |E¥|. The adjunction formula yields :

Kp = (E? + Ky)|p = (E?)? + EZ K. (4.29)
On the other hand using again Lemma 2.10 of V.2. in [12] gives :
Kpr = —2Ef .V — (Ko + 0)(Ef)? = —2BF .V, + 2(E¥)? (4.30)
since by the adjunction formula :
Ko = (BS — Ty — o). B = —1 — Tip. S

and

T B = (—2h + ES + By + B3).BS = -1
by (4.25). We also used the fact that here the fiber f should be —(E7)?, because in S, we have (EF)? = —1.
To conclude we combine (4.29) and (4.30) and we get :

Kz .EZ =aFE?.Vy + ¢(E?)? = 2EZ.V, + (EZ)2.
As aresult, ¢ = 1.
+ We can then proceed exactly the same way with E, and E5 which gives: d = e = ¢ = 1.
O

Lemma4.5.4. Let £ and F be vector bundles of rank respectively r+1 and r on a smooth variety X andlet¢ : £ — F
be a morphism of vector bundles. By Lemma 1.4.1 we have seen that ¢ induces a global section of p* F(1) whose
zero locus in Px (€) is isomorphic to the blow-up of X in D1(¢), where p is the map p : Px(£) — X. Let us call
X < Px(€) this zero locus. Then p, O = Ox.
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Proof. In the proof of Lemma 1.4.1 we have seen that there is a long exact sequence :

T 2
0— /\(p*]:v) X Opx(g)(fr) — ... /\(p*fv) (24 OPX(E)(72) —)p*]:v (24 O]px(g)(fl) ¢—) O]px(g) — OX —0
and that p.Op, (¢) = Ox. Taking the push-forward of the above resolution thus yields the exact sequence :
2 FY@pu(Opy(g)(—1)) = Ox = p.Og — 0.

But ij*(O[p)X(g)(fl)) = 0forall0 < j < r(see for instance Exercise 8.4 of I11.8 in [12]). Therefore Rp.O
which we just denote by p. O 3 is isomorphic to Ox. O

Corollary 4.5.5. We have the following : 7.0 ; = Oz, 7,05 = Oz and 0,04 = Os,,.
Moreover, since we have seen in the proof of Lemma 1.4.1 that p.Op, ¢y = Ox, we also have : 7,.0p, = Osx,,
ﬁ*OE4 = OZS and O'*(QZ3 = 052.

Lemma 4.5.6. Let T be the tangent sheaf of Z3. Then the Todd class of Zs is

td(Z3) = td(Tz> (1,Vz + hl — §(E1 +E2 +E3) x9,1) = (1 Vz+ = (hl + hg) T2, )

where h.zo = 12 and hy.xy = hy.xy = 3.

Proof. Let us write td(Z3) = (xo,x1,x2,x3). Then using the formula for the Todd class g|ven page 432 of [12],
onegetsthatzy =landz; = %cl(TZ) Moreover, wy = /\ T, hencez; = *KZ =Vz+s h1 (E1+E2+E3)
Vz + 3(h1 + ha).

Moreover, we know by Hirzebruch-Riemann-Roch that x(Oz,,Oz,) = fzs(l,o,0,0).(xo,l‘l,xg,ﬂfg) = x3. But
H*(Og,,0z,) = H*(0*0s,,0z,) = H*(Os,,0.0z,) = H*(Os,,Os,) by Corollary 4.5.5 and we have seen in
the proof of Lemma 4.3.5 that x(Os,, Os,) = x(Opz, Op2) = 1, thus z3 = 1.

Since by definition of Vz and the projection formula

H*(Oz,,0z,(h)) = H*(0s,,0.(0*Og,(h1 + ha) ® Oz,(Vz))) = H*(Os,, Vg (h1 + hy)),

N

= 12.
R By(11), h=Vs+hy + ]
7276-)/ . yh="Vz+ h1+ hg,

)

the fact that Vs = V¢ together with Lemma 3.1.4 yield x(Oz,, Oz, (h))
1

On the other hand, the Chern character of the line bundle Oz, (h) is (
hence by (1.18),

70 = “hiha + 2V (hy + o) + (By + i2)? = 2V (Ry + Fio) + 21 oo
Thus g = Vz(hy + ha) + hihs. Moreover,
= (VZ +El +Eg)(2VZ(El —‘r‘ﬁz) + 251%2) = QVZ(El +EQ)2 + ZVZE:[EQ =2.6+4 =16,
therefore %3 = 2. By Hirzebruch-Riemann-Roch we thus have :

_ o _ 8 3 1.~ o~ -
X(02370Z3(h)):12:/ (Lhahth+VZ(h1+h2)a§)'(1vVZ+§h17§(E1 +E‘2+E‘3)7I2;1) (4.31)
Z3

- 9 3 8 8 -
=1+h. 24— 4 - = — ) 4.32
+ h.xo + +2 2+3 6+3+hx2 (4.32)
- 8 10
= hro=6—-=— 4.33
T2 3= 3 (4.33)

Letnow i € {1,2}. Then

H*(Oz,,0z,(hi)) = H* (0" Os,,0"Os,(hi)) = H*(Os,,0.0" Os,(hi)) = H*(Os,, Os, (hi))
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by the projection formula, since 0.0z, = Os,. We have seen in the proof of Lemma 3.1.4 that
dim(H*(Os,, Os,(hi))) = 3d«,0. therefore x(Oz, (h;)) = 3. Hirzebruch-Riemann-Roch then gives :

-2

— — h 3 1 -~ - -
X(0237OZ3(h1)) =3= / (la hla ?130)(17VZ + §h1 - §(E1 + E2 + E3)5I2a 1)

Z3

:1+h1.$2+*:§+h1.$2

2
_ 3 3
= h1$2:3—§:§
I 3 1
X(ozs,ozg(m)):?):/ (172, 52,000, Vs 4 SFa — L(Bu + By + By),e2,1)
Z3
_ 1 3 _
=1+h2-$2+§=§+h2-$2
_ 3 3
= h2x2:3_§:§

because foy = (2 — By — By — F3)? = 4h) + E? + B2 + B2 andfor 1 < j < 3, E? =0in S, hence E2 = 0in
Zs. As aresult, for bothi =1 and i = 2 we have : h;.x5 = % O

We can now compute Euler characteristics involving Og. The main idea is to relate them to some Euler
characteristics between sheaves in D®(Z3), which we can compute using Hirzebruch-Riemann-Roch together
with the Lemmas from the beginning of the subsection.

Lemma 4.5.7. The following holds : x(7*Ox,,Og) = 1.
Proof. Since X4 = X5 x x, X4, thereisamap i : X4 — X5. This map is an embedding since the map X, — X
is a closed immersion (see for instance Lemma 26.17.6 in The Stacks project). In fact, we even have that X, =

X5 N H, where H, is the pull back of the hyperplane H, such that X, = X5 N H,, by the proof of Theorem 5.1
in [20]. We can then use the following :

H*(1*0x,,04) = H*(Og,,0g) = H*(E*oks,og) = H*(of(s,i*og) = H*(Oy%,,03).

Moreover,

by Corollary 4.5.5. Finally, if we denote now by f : Sy — P? the blow-up of P? in three points mentioned in
Definition 4.5.1, we have H*(Os,, Os,) = H*(f*Op2, Og,) = H*(Op2, [.Os,) = H*(Opz, Op2) (see for instance
Proposition 3.4 of V.3. in [12] for the last equality). As a result, x(7*Ox,, Og) = x(Op2, Op2) = 1. O

Lemma 4.5.8. The canonical sheaf of E, is w; = O, (h — 2V5).
Proof. Since E, is the exceptional divisor of 7 in X3, the adjunction formula gives :

wyy = ;*(% + 0%, (@)
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where Wy, is the canonical sheaf of X5. We know from the proof of Lemma 4.1 in [20] that the canonical sheaf

of X5 is wx, = Ox,(—2h). Therefore, since X; is the blow-up of X5 with exceptional divisor E,, we get that
wg, = Oz, (=2h +e). Finally :

wp = E*OXS(E—F e — Qh)
=7 Og,(2h—h+h—h—2h) by(1.8)
= Og, (h —2Vp) by (1.12).

Lemma 4.5.9. Leti € Z. We have :

x(7*Ox,(ih), 05) = x5, (05, (=iVg)) — xg, (Og, (- (i + Y)VWg)) — xg, (Og, (=iVg — h)+

(
= x25(0z,(h) @ 705, ((i = 2)Vg)) — x2,(Oz,(h) @ 7. 05, ((i — 1)VE))—
x25(0z,(2h) @ 7,05, ((i = 2)VE)) + X 2,(02,(2h) @ 7. 05, ((i — 1) Vg)).

X513E4WZ3GS2

where we saw the existence of j, f and g in Lemma 3.2.6, Corollary 3.2.7 and the remark just after, and the

existence of 7 in the proof of Lemma 4.5.7. Let now i € Z. One can notice

H*(7*Ox, (ih), 0g) = H* (O

)
)

O)?5 Zh)J*f*g* )
)

By (1.12), h = Vi in Pic(E,), therefore H*(O (ih),O5) = H*(Og,, f.9.05(=iV)) = H* (O3, 9.05(~iV)).
So xx, (7" Ox,(ih),Og) = x (04, 9.O5(—iV5)). To compute the latter, we can use the fact that the class of Z
in E, is Vi by Proposition 3.2.6, while the class of S in E, is h.V4 by Corollary 3.2.7. This yields the following
short exact sequencein 7 :

0— Oy(—h) = Oz = g.0g — 0.
Twisting it by O;(—iV%) induces the short exact sequence :
0= Oy4(—h—iVg) = Oz(—iVg) = 9.05(—iVg) —

In particular this implies : (O, 9.05(—iV5)) = x(04,05(—iVg)) — x(Oz, 04 (—iVg — h)).
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* First, let us consider x (O, O;(—iV4)). To start with, we can notice :
H*(0z,0;(-iVg)) = H*(f*Og,,0;(=iVg)) = H*(Og,, f.0z(-iVF)).
We can now use the short exact sequence in E, (given by Lemma 3.2.6) :
0— Og,(-Vg) = O, = f.0z — 0.
Twisting it by O (—iV5) yields the short exact sequence :
0— OE4(—(7; + 1)VE) — OE4(_iVE) — f*OZ(_ZVE) — 0.
Asaresult, x;(0z,04(-iVg)) = xz,(05,(—iVE)) — x5, (0, (- + 1)Vg)).
« To compute x(O3,0;(—iVE — h)), we are going to proceed similarly :
H*(0z,05(=iVg — h)) = H'(Og,, f:Oz(—iVF — h))
and the short exact sequence in E :
0— 054(—(1' + I)VE — E) — 054(_“/@ — E) — f*OZ(_ZVE — E) — 0
yiE|dS XZ(OZ, OZ(_ZVE — E)) = XE, (OE4’ OE4(_7’VE — E)) — XE, (OE4’ OE4(_(Z + I)VE — E))
Finally,
X(0z.9.05(=iVg)) = X(0z,0(=iVg)) = x(Oz, Oz(=iVg — h))
= xg,(05,(=iVg)) — x5, (05, (- + 1)Vg))—
(x5,(05,,05,(=iVg — h)) — x5,(05,, 05, (—(i + 1)V — h)))
=xz,(0g,(=iVg) — x5, (0, (= + D)VE) — x5, (0g,, OF, (=iVg — h))+
xz,(0%,,05,(—(i + )V - h)).
Let us now consider x(Oz, (—iV5)) with i € Z. Here, Serre duality and Lemma 4.5.8 yield :
H*(0g,, 05, (—iVg)) = H* =4O, (—iV5), 05, (h — 2Vg)) = H*(Og,, O, (A + (i — 2)Vg)).

Since 4 is even we thus have x (O, 05, (—iVg)) = x(Og,, Og, (h + (i — 2)Vg)).
Furthermore,

H*(0g,,05,(h+ (i —2)Vg)) = H* (7" Oz,, 05, (

Similarly, for any i € Z, by Serre duality we have

x(0g,, 0g,(=iVg — h)) = x(Og,, 05, ((i — 2)Vg + 2h)) = x(Oz,, Oz, (2h) @ T.0g, ((i — 2)Vg)).

Corollary 4.5.10. One has :
¢ X(0X4 (h)’ o ) = _X(OZS7OZ3( )) + X(0Z37 OZS (2h))
* X(0x,(2h),03) = Xx(Oz,,0z,(h)) = x(Oz,, V(1)) = X(Oz,, 0z,(2h)) + x(Oz,, V(2h));
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‘ X(0X4 (3h)7 OS‘) = X(Ozsa V\Z/ (E)) - X(Ost S2V% (E» - X(OZs ) V\Z/(2E)) + X(Ost S2V§(2ﬁ)),

* X(OfQ <4h)’ OS‘) = X(OZ37 SQV\Z/(E)) - X(Ost S3V}(ﬁ)) - X(0237 S2V%<QE)) + X(OZe,’ S3V%(2E))

Proof. Applying the Remark below Proposition 9.3 in [8] to the formula given in Lemma 4.5.9 for 1 < ¢ < 4 yield
the above-mentioned formulas. O

We need now to know the Chern characters of S?V} and SV, in order to compute with Hirzebruch-
Riemann-Roch the Euler characteristics listed in Corollary 4.5.10.

Lemma 4.5.11. The Chern characters of the following symmetric powers of V3 are :

_ _ _ _ _ 15— —

ch(S?Vy) = (3,9h — 3hy — 3hy, 14V (hy + ho) + =5 T2, 51) (4.34)
ch(S3V}) = (4,18h — 6hy — 6hy, 44V, (hy + hy) 4 21h1hy, 468) (4.35)
ch(S*VY) = (5,30h — 10hy — 10hy, 92V (hy + hy) + 45k ha, 2100). (4.36)

Proof. Let us denote the Chern polynomial of VY by ¢;(VY) = (1 + a1t)(1 + ast) = 1 + (ay + az)t + ajast?.
Then (see for instance page 429 and 430 of [12]), c1(Vy) = a1 + a2 and c2(Vy) = ajas. We also know from

Lemma 3.2.3 that ch(VY) = (2,3h — hy — ha, 2h1h2+2VZ(h1+h2) 3), thus ¢1 (V) = 3h — hy — hy and

a(Vy)?
2

ca(Vy) = — chy(Vy)

-2 —_ - 7 7
9h" 4 (hy + hy)* — 6h(hy + h 3¢ & 7+ h
_ (h1 2) (ha 2)_(§h1h2+2Vz(h1+h2))

18h1hs + 18V, (hy + ha) + 3h1hs — 6V (hy + ha) — 18h1h 3— — -
_ 17462 Z 1 2) 1762 Z( 1 2) 1762 _(§h1h2+2vz(h1+h2))

2
= 4VZ(51 + EQ)

~ N

Moreover by Example 3.2.6. page 57 of [9], the Chern roots of S%(V}) are : 2a;, 2a2 and a; + as. Hence its
Chern polynomial is :

ct(S%Vy) = (1 + 2a1t) (1 + 2ast) (1 + (a1 + a)t)
=1+ (2a1 + 2as + a1 + a2)t + (4daraz + Za% + 2a1as + 2a1a9 + 2a§)t2 + 4araz(ar + ag)t3
=14 (3a1 + 3a2)t + (2a] + 2a3 + 8ajaz)t* + (4a’ay + 4aja3)t?
=1+43c;(VY)t + (2c1(VY)? + dca(VH)E2 + dey (V) ea(Vy)E3
which implies that

Cl(SQVZ) = 361 (VZ) = 9h 3h1 - 3h2

ca(SPVY) = 2c1(VY)? + dea(Vy) = 24Viz(hy + ha) + 6h1ha + 16V (hy + ha) = 40Vz(hy + ha) + 6h1ho
c3(S?VY) = de1(VY)ea(Vy) = 16Viz(hy + h2)(3Vz + 2(h1 + he)) = 32.6 = 192
chy(5%Vy) = 1k(5*Vy) = deg(e:(S*Vy)) =
Chl( ) ( \Z/) 9h 3h1 - 3h2
V 2
chy(52vy) = AV _

c2(8%2V)) = 9(6Vy(hy + ho) + hlhg) 40V (hy + hy) — 6hyhs

= 14VZ(E1 + hg) + 5h1h2

c1(S2VY)3 1 (S?VY)ea(S?VY) C3(52V}) 27
6 B 2 + 2

4.2+ 40.6.
war%‘:g(9.2+24.6)—547720+96:81+648—774+96:51.

((3VZ + 2(h1 + h2))(12VZ(E1 + Eg) + 3%1%2))4‘
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For S3Vy and S$*Vy, one can proceed similarly. O

One can now use Hirzebruch-Riemann-Roch, with Lemma 4.5.6, Lemma 3.2.3, Lemma 4.5.11 and Corollary
4.5.10 to compute the following.

Lemma 4.5.12. One has (x(7*Ox,(h),Og), ..., x(7*Ox,(4h), Og)) = (37,127,271,469).
Lemma 4.5.13. The following holds :
x(03,0%,) = —x(0z,,0z,(2h)) + x(Oz,, Oz,(3h));
x(03,0%,(h)) = =x(Oz,,0z,(2h)) + x(Oz,, 0z, (3h));
x(0g,0%,(2h)) = x(Oz,,0z7,(2h)) — x(Oz,,V}(2h)) — X(Oz,, 0z, (3h)) + x(Oz,, Vy (3h));
* X(0g,0%,(3h) = Xx(Oz,,Vx(2h) — X(Oz,, S*V3(2h)) = X(Oz,,Vy(3h)) + x(Oz,, S*V3 (3h));
X(03,0%,(4h)) = X(Oz,, S*V;(2h)) — x(Oz,, 5V (2h)) — x(Oz,, S*V(3h)) + x(Oz,, SV (3h)).
Proof. Leti € Z. By Serre duality, Lemma 4.4.7 and (1.8) one has

X(0g, 7" Ox,(ih))) = x(7"Ox, (ih), Og(—h + e)) = x (7" Ox, (ih), Og(—h)).

Using the same reasoning as in Lemma 4.5.9 with O3 replaced by Og(—h), one can find :
X(7*Ox, (ih), Og(=h)) = xg,(Og, (=iVg — h)) = xg, (Og,(—(i + 1)V — h))

— x5, (05, (=iVg — 2h)) + x5, (0F, (= (i + 1)V — 2h)
= X2,(0z,(2h) @ 7.0, ((i = 2)V5)) = X2,(0z,(2h) ® 7. Og, ((i — 1)V))
—x25(02,(3h) @ T.O0g, ((i = 2)Vi)) + x2,(Oz,(3h) @ 7. 05, (i — 1) V).

As in Corollary 4.5.10 one can conclude using the Remark below Proposition 9.3 in [8]. O

One can now use Hirzebruch-Riemann-Roch to compute the following.
Lemma 4.5.14. One has (x(Og, 7 Ox,), ..., x(O5, 7 Ox,(4h))) = (79,79,205, 385, 619).

Remark 4.5.15. One could also have computed the Euler characteristics mentioned in Lemma 4.5.12 and Lemma
4.5.14 with Hirzebruch-Riemann-Roch in Z. Indeed, if we denote by j the inclusion of Z in X4, we have, fori € Z
1 x(0x,(ih), j<0g) = x(j *0X4(Zh) O3) = x(0;(ih),03) since S C Z by construction. We know from Corollary

3.2.7thatthe class of S in Z is h, hence we get x (O 1, (1h),.05) = x(O(ih),0z) = x(Oz(ih), Oz (— h)). One can

then conclude with Hirzebruch-Riemann-Roch, Lemma 5.0.7 and the fact that h|; = 3V + 2(h1 + he) — D, as we
will see in Lemma 4.6.2.

For the Euler characteristics computed in Lemma 4.5.14, one can use the same reasoning together with Serre duality
and Lemma 4.4.7.

Lemma 4.5.16. The following Euler characteristics are : x(Op,(Ve),Og) = 56 and x(Og,Op,(VE)) = 76.
Proof. We can use again (4.24) to find
X(Op,(VE),0g) = x(O%,(—€),05) — x(Ox,(—2¢),053)
=X(0g,(h = h),05) = x(Ox,(2h - 2h), Og),

using (1.8) for the last equality.
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1. Using the same reasoning as in the proof of Lemma 4.5.9, one finds

X(7*Ox,(h = h),05) = x2,(0z,(2h) @ 7.0, (=3Vg)) — x2,(0z,(2h) © T.05, (—2V5))
— X25(02,(3h) @ T.0g, (—3Vg)) + Xz, (0z,(3h) @ 7.0, (—2Vg)).

The Remark below Proposition 9.3 in [8] implies then

X(m*Ox,(h = h),05) = =x(Oz,,Vz(2h)) + x(Oz,, Oz,(2h)) + x(Oz,, V2 (3h)) — x(Oz,, Oz,(3h)).

2. Using again the same reasoning as in the proof of Lemma 4.5.9 and the Remark below Proposition 9.3 in
[8], we can get:

(7O, (2R = 2h), 0g) = X2, (0, (3F) © 7, O, (~4V)) — X2, (07, (3h) ® 7. O, (—3V))

— x23(0z,(4h) @ T. 05, (—4Vg)) + X 2,(Oz, (4h) @ 7. O5, (—3V5))
= —x(02z,,5*Vz(3h)) + x(Oz,, Vz(3h)) + x(Oz,, 5*Vz(4h)) — x(Oz,, Vz(4h)).

One can then conclude with Hirzebruch-Riemann-Roch, Lemma 3.2.3, Lemma 4.5.11 and Lemma 4.5.6.

By Serre duality and Lemma 4.4.7, x(Og,0p,(VE)) = x(Op,(Ve),05(—h + ¢€)) = x(Op,(Ve), Og(—h)).
Hence with (4.24), we get
X(OS*’OD?,(VE)) :X(Of( 4
= (O, (27— h), 05) — X(Ox, (3] — 2h), Og).

~
n
N
Q
%))
|
=
|
=
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S
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We can then proceed as in the previous case to find :

1. First,
X(Ox,(2h — h),05) = x2,(0z,(3h) @ T.0g, (=3Vg)) — x2,(0z,(3h) ® T.OF, (—2Vg))
— X2(02,(4Rh) © 7,05, (~3Vg)) + X2, (02, (4F) © 7.05, (~2V5))
_X<OZ3’ VZ(Sh)> + X(OZ37OZS <3E)) + X(OZ37VZ(4E)) - X(OZsa OZS (45))7
2. Secondly,
X(Ox,(3h = 2h), 0g) = x2,(0z,(4h) @ 7. Og, (=4Vg)) — X2,(Oz,(4h) @ 705, (—3Vg))

%)
—X25(0z,(5h) @ T 05, (—4Vg)) + X2, (O, (5h) @ 7. 05, (—3V))
= _X(OZs7 SQVZ(ZUL)) + X(OZg7 Vz(4ﬁ)) + X(023; SQVZ(5h)) — X(OZ3, Vz('{')ﬁ))

As before, one can then conclude with Hirzebruch-Riemann-Roch. O

4.6 Euler characteristics between structure sheaves of surfaces

We would like now to compute the four Euler characteristics between Og, and Og.

Lemma 4.6.1. Let Og and Or be the structure sheaves of two surfaces S and T in X, with possibly S = T. Then
X(Os, OT) = X(OT, Os) = Ch2(0T>.Ch2(Os).
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Proof. Since Og and Or are structure sheaves of surfaces in X, one has cho(Og) = cho(Or) = ch;(Og) =
chy(Or) = 0. Moreover chy(Og) = chy(O¥) and chy(Or) = cha(OF) (see for instance pages 430 and 432 of
[12]), hence Hirzebruch-Riemann-Roch yields :

x(0s,0r) = /

i ch(O%)ch(O7)td(Xy) = / (0,0,0,0,chy(Or).chy(Og))td(Xy)

X4

_ /X ch(Os)ch(O¥)td(X,) = y(Or, Og).

Lemma 4.6.2. One has x(0p,, 05,) = 48, x(0p,,05) = x(05, 0p,) = =24 and x(O5,03) = —4.

Proof. Along this proof, let us denote by a, b, c and d the following embeddings : a : Dy — X4, b: S — Z,
c:Dy— Zandd: Z — X4.
1. First, x(a.05,,a.05,) = x(a"a.05,, Op,) and by Theorem 13.7in [8], ch(a”a. Op,) = (0,0, c2(N5, %, ))-
So by Hirzebruch-Riemann-Roch, x(a.05,,a.05,) = c2(Np, x,)-

Moreover, by Proposition 3.4 in [11], since D, C Z C X, and all these inclusions are smooth, there is a
short exact sequence in Dy :

0= N5,z = Np, %, > Nz/x,l5, = 0. (4.37)

So knowing N3, 7 and Nz, % |55, would allow us to computeNX(a*Oﬁz,a*Oﬁz). Moreover, using th?
equalities just above Proposition 13.1 in [8] and the fact that Z is a divisor in X, and Dy a divisor in Z
(because Z is the blow up of Z3 in I'; and thus by construction D, is its exceptional divisor), one finds :

. NZ/)“Q = O;(e). Indeed, from Proposition 3.2.6 and (1.12) we know that Z has class h in X5, hence
since Xy is cut out in X5 by h we have that the class of Z in X, is €|z which we are still going to
denote by e. With (1.8), this yields : N, z = O;(2h — h).

* With the notations of Lemma 4.4.1, N5, > = O3, (—0). Indeed, by the above mentioned formula in
[81, /\/52/2 = O3([D2])|p, where by [D,] we mean the class of Dy in Z.

So we need to compute [D,]2 in Z. For this one can notice that on one hand by Lemma 4.4.5, hlp, =
0 + 48f. On the other hand, by (1.12) and (1.17) one finds that in E the following holds :

h2 = VEQ = 3VZVE+ QVE(El +Eg) - 4VZ(51 +EQ)
Since Z has class he = Vzein E4, with (1.15) and the formula below Definition 1.7 in [4] this implies
h|Z =3V, + 2(51 +E2) — [52]

(indeed by (1.15) we have that the class of Dy in By is =V2 + 3V Vg + 2(h1 + ho) Vg = Vg(=Vg +
3Vz +2(hy + h2)) and thus [Da] = =V + 3Vz + 2(h1 + he) = —h + 3V + 2(hy + h2)).
But one should have h|5, = (h|;)|5, sofinally:

§ +48f = 3Vyz.[Da] + 2(h1 + h2).[D2] — [D2)*.

By (1.13) and (1.18), Vz.4Vz(h1 + ha) = 01in Zs, 50 Vz.[D3] = 0, and (hy + hy).4Vy(hy + hy) = 24 in
Z350 (h1 + h2).[D2] = 24f. As aresult, § + 48f = 48 f — [D2)?, thatis to say [Ds]? = —4.
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Finally, we saw in the proof of Lemma 4.4.8 that E|52 = 24f, which together with h|5, = ¢ + 48f and
what we did above implies Nz ¢ |5, = Op,(48f — 6 — 48f) = Op,(—0). Then (4.37) gives :

0— Oﬁz(_g) — ./\/—52/)24 — Oﬁz(_a) —0
and so ch(Np, %,) = (1,—6,24) + (1,4, 24) = (2, —24,48). Therefore,

2
@—48:2.48—48:48.

CQ(NEQ/)"Q) =
2. One has x(d.c.Op,, db.0g) = x(d*d.c.Op,,b.0g) and by Theorem 13.7 in [8] we have d*d.c.[D,] =
[ﬁg}.cl(/\/z/&) = [D5].(2h — h). Finally Hirzebruch-Riemann-Roch and the fact that the class of S in Z is

h give :

X(d*dvc.Op,,b.05) = / (0,0, [Ds].(2h — h),%).(0, h, %, %).td(Z) = / (0,0,0, [Da].(2h — h)R).td(Z)

Z Z
= [Ds].(2h — h)h = 2h|%; — hip,hlp, = 2(241)* — 241 (5 + 48f) = —24.
Lemma 4.6.1 then yields x(O5,, O5) = x(Og, Op,).

3. By Lemma 4.6.1, x(03,03) = (eh)? = ehe = h|%e| ; using the formula below Definition 1.7 in [4] for
the last equality. Furthermore, since Z is cut out in E4 by h, we can use [4] again to get : E@é\z =
h|§4ﬁ|%4é\§4. So finally we need to compute hh’Ein E4, which by (1.8), (1.11), (1.13) and (1.12) gives :

hh'e = Vig(2h — )" = (V3 + (R + ha)® + 2V (g + ho)) (2AVy — V2)
= (2%1%2 + 2VZ(51 + EQ))(2(VZ + El + EQ)VE - 3VZVE — 2VE(E1 + Eg) + 4VZ(51 + Eg))
=8+24—-12—24 = —4.

4.7 Euler characteristics between sheaves coming from D’(3,) and...

In this subsection, we try to compute Euler characteristics between the first six elements of F;, namely the
twists of pull-backs of sheaves on X5, and the other sheaves of 7, — {O,,,0,}. Again, as there are a lot of
Euler characteristics to compute, we divide the subsection into smaller subsections, whose titles indicate which
elements of F; are concerned.

In most cases, the methods are not different from those used before, yet we don't manage to compute all the
Euler characteristics between the first six elements of 71 and O, : some depend on an intersection number
which we don't know how to compute.

Before going further, let us compute the Todd class of Dj.

Lemma 4.7.1. The canonical bundle of D3 is wp = Op,(—2Vg —3h1 + E1 + E2 + E3), with the notations of section
2.1.1. By Remark 4.1.4 this /mpl/es wp = ODg(_ZVE —hi — hg)

Proof. One can use the same reasoning as in the proof of Proposition 4.5.3, but with Vg, hy, D3, ¥, Vs,
instead of V, hy, Z3, Sa, Vs. =

Lemma 4.7.2. The Todd class of D3 is td(D3) = (1,VE+%h1—%(E1+E2+E3)7x27 1) =(1, VE+%(h1+h2),x2, 1)

where hi.x9 = ho.o = %, FEi.290 = Ey.x0 = E3.29 = % and Ve.xg = %
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Proof. Using the same reasoning as in the proof Lemma 4.5.6 one can find that td(Ds) = (1, Ve + 2hy — 2(E1 +
Es+ E3),x0,1) = (1, Vg + 2 (h1 + ha), z2,1). We can then use Hirzebruch-Riemann-Roch and some Euler char-
acteristics we have already computed to find some z5.D’ where D’ is a divisor in Ds.

First, H*(Op,, Op,(h1)) = H*(p*¢*Opz, p*d*Op2 (1)) = H*(Opz2, Op2 (1)) using the projection formula, p.Op, =
Os, (see Corollary 4.5.5) and ¢.0Oyx, = Op2 (see for instance the proof of Proposition 3.1 in [2]). As a result,
X(Op,,Op,(h1)) = 3. On the other hand by Hirzebruch-Riemann-Roch :

h2 3 1
X(0D370D3(h1)) :3:/ (l,hl,f 0) (1,VE+§h17 §(E1+E2+E3),I271)
D3

1 3
= 1—|—h1.l’2+§ = §+h1..’L‘2
thUSh1x2_3—§ §
Similarly, H*(OD3,0D3(E1)) = H*(p*¢*Op2,p*Ox,(F1)) = H*(Op2,¢9.O0x,(F1)). We saw in the proof of
Lemma 4.3.4 that ¢.Osx, (E1) = Opz, hence x(Op,,Op,(E1)) = 1. Thus :

2

E 3 1
X(ODsa ODg(El)) =1= / (1,E1, 7170).(1, VE + §h1 - §(E1 + EQ + Eg),.rg, 1)
D3

1 1
:1+E1.$2—§:§+E1.{)§2
1

5"

N =

= Fizs=1-—

The same reasoning then yields Fy.xo = F3.29 =
FinaIIy, H*(0D370D3<VE)) = H*(OZQap*ODg(VE)) = H*(OX}27VF‘\2/)) = H*(Osz,vgw/) =0 using the proof of
Lemma 4.3.1 and Lemma 3.1.3 for the last two equalities. As a result, with (1.16) one gets :

M\»—A

X(Opy. Opy (Vi) = 0 = /D (1, Vi, =2, 2.0,V + Sy — 5 (By + By + By), 1)
s
A Vpas—1— 2= Ly
. 3 3
= Vg.ag = 3
To conclude by Remark 4.1.4 one has hy = 2hy — Ey — E> — Ej, hence hp.zy =3 — 3 = 3. O
Remark 4.7.3. We have found that h;.wy = h;.xo and (Vz +hy +ha).2e = 2 = (Vg + hy + hs).29. These numbers

should only depend on the fact that Sy and X5 are degree 6 del Pezzo surfaces and on Vs and Vr|s, so it is not
surprising.

We can now start to compute Euler characteristics between the sheaves considered in section 4.1 and the
other sheaves of the family 71, — {0, , O, }.

471 .0 (ih)

By Corollary 2.1.3 we already know that x (O, (ih), F') = 0 forany 0 < i < 4 and F’ one of the first six elements
of 7. Let us compute the other Euler characteristics x(F, O, (ih)).
We are going to use the fact that O (ih) = 7*Ox, (ih) for any i € Z.

Proposition 4.7.4. The following Euler characteristics are :

(X(j*OEl (El - VE)vﬂ—*OX4)7 ) X(j*oEl (El - VE)’ 7r*(9)(4(4]1))) = (L 2,3,4, 5)
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Proof. Let 0 < i < 4, we want to compute all the x(5.Og, (E1 — Vi), 7*Ox, (ih)).
We can start by noticing that by Serre duality,

X(J«Op, (Er — VE), 7" Ox,(ih)) = x(7* Ox, (ih), j»Op, (E1 — Vg — h+ €))
= X(W*OX4((i + 1)h)7j*OE1 (El — Ve + 6))
Moreover, taking the derived pushforward by j and twisting by Op, (—VEg+e¢) the following short exact sequence
0— Op, = Op,(E1) = O, (E1) — Oyields :

X(7*Ox, ((i + 1)h), 3. Op, (Ey — Vi + €)) = x(7" Ox, ((i + 1)h), j+Op,(Ey — Vi +¢€))
— X(7"Ox, ((i + 1)), j+Op, (Ve + €)).

Since 7 o j = i o p (with the notations of section 2.1.1), we have

X(m"Ox, ((i + 1)h), j.Opy (E1 — Vi +e)) = x(Ox, ((i + 1)h), m.j«Op, (E1 — VE + €))
(Ox,((i4+1)h),1pOp, (E1 — VE + €))

(" Ox, ((i + 1)h), p<Opy (E1 — Vg +¢€))

(Os, ((i +1)h), psOp, (E1 — Vg +€))

|
= X X

and similarly, x(7*Ox, ((i + 1)h), j.Op, (— VE +e)) =x(0s,((i + 1)h),p.Op,(—VE + €)).
Finally by (1.10), we have Op,(e) = Op,(—VEg) therefore

X(jxOp, (E1 — Vg), 7" Ox,(ih)) = X(Ox,((i + 1)h),p+Op, (E1 — 2VEg)) — x(Os, ((i + 1)h),p.Op, (—2VE)).

By the projection formula, x(Os, ((i + 1)h), p.Op, (E1 — 2VE)) = x(Os,((i + 1)h), O, (E1) @ p.Op, (—2VEk)).
By the Remark below Proposition 9.3 in [8] we have R*p,.Op,(—2VE) = Ox, 04,1 SO

X(j*OEl (El - VE)7 7T*OX4 (2h>) = —X(ng((i + 1)h)’ 022 (El)) + X(Ozz((i + 1)h)’ 022)'
One can conclude with Hirzebruch-Riemann-Roch, Lemma 4.1.3 and (1.14). O

Corollary 4.7.5. The same result holds with F replaced by FEs or Es.

Lemma 4.7.6. The following Euler characteristics are :

(j*OD3( ) *OX4> N (]*OD3( ) *OX4(4h>) -1 -7 -19 =37 -61
(]*OD?’(hl VE) ™ OX4) (j*OD3(h1 VE) ™ 0X4(4h)) = 0 -3 =12 =27 —48
X(j+Op,(2h1 — Vi), 7*0x,) ... x(j.Op,(2h1 — Vi), m*Ox, (4h)) 0 0 —6 -18 —36

Proof. Let0 < k <2and0 <4 < 4. We want to compute x(j.Op, (kh1 — Vg), 7*Ox, (ih)). First, we can use the
same reasoning as in the beginning of the proof of Proposition 4.7.4 to find

NGO, (khy — Vi), 7 O, (ih)) = (7" Oxt, (ih), joOp, (khy — Vis — b+ €))

7T*OX4((i + 1)h), j+Opy (kh1 — 2VE))
1)h), mj«Opy (kh1 — 2VEg))

i+ 1)h),i.p«Op, (kh1 — 2VE))

O, (i + 1)h), p.Op, (khy — 2Vi)

Os, ((i + 1)h), Ox, (kh1) ® p.Op,(—2VE))

—X(Os, ((i + 1)h), Os, (kh1))
= —X(Os,, Os, (kh1 = (i + 1)h)).

(k
(k

We can compute such Euler characteristics using Hirzebruch-Riemann-Roch. O
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472 ..0p,(Vg)
Let us start with a small technical lemma.
Lemma 4.7.7. One has ch(5*Vr|y,) = ch(5?Vr|s,) = (3,0, -8).

Proof. One can use the same reasoning asin the proofs of Lemma 3.1.5and Lemma 4.3.1 to find that ch(Vr |y, ) =
ch(Vrls,) = (2,0, -2). Thisyields ¢; (Vr|y,) = 0 and c2(Vrly,) = 2.
Using the same reasoning as in the proof of Lemma 4.5.11, one then finds :

Since ¢, (S*Vrly,) = 0 we also have ch(S*Vrs,) = ch(S*Vr|y,). O
Lemma 4.7.8. Let

J+F € {j.Op, (E1 = VE), j«Op, (B> — Vi), j+Op, (Es — Vi), j«Op, (=VE), +Op, (M1 — Vi), j+Op, (2h1 — VE)}.
Then :

1. X(j:F,Op, (Ve)) = X(Ox, (h), p« F(=2VE)) — X(Ox, (h), p« F(=3VE)),

2. X(Op,(VE), j+ ) = X(Os,, px F(=VE)) — X(Os,, pF'(=2VE)).

Proof. To start with, let j. ' € {j.Og,(E1 — Vi), j«Og,(E2 — V), j+Op,(E3 — Vi), j«Op,(—VE), j+Op, (h1 —
Vi), 3+Op,(2h1 — VE)}. Then since there is a short exact sequence :

0— OX4(—26) — OX4(_€) — OD3(VE) —0

in X,, we have :

* XU+F, Op, (Vi) = x(4:F, O, (=€) = X[« F, O, (=2¢)) = x(4:F(e), 7" Ox,) — x(j F(2¢), 7 Ox,);

* X(Op;(Ve), jxF) = x(Ox, (=€), 5« ') = x(Ox, (=2€), ju F) = x(7" Ox,, ju F'(€)) — x(7"Ox,, j« F(2¢)).
We can now use the same method as in the proof of Lemma 4.7.6.

+ By Serre duality, (1.10) and since w o j = i o p, one has

X« F(e), 7™ Ox,) = X(7°Ox,, juF(e = h +€)) = x(7" Ox, (h), j. F(2¢)) = x(Ox, (h), mjs F'(2€))
= X(OX4 (h),i*p*F(Qe)) = X(i*OX4 (h)7p*F(26)) = X(Ozz (h)vp*F(_QVE))'
Furthermore, x(j.F(2¢),7*Ox,) = x(Os,(h), p. F(—3VE)).

+ For the second case we can use the same reasoning, we just don't need to use Serre duality here. This
imp“es : X(W*Oij*F(e)) = X(Ozzvp*F(_VE)) and X(W*OX4,j*F(2€)) = X(022>p*F(_2VE>)

O
Lemma 4.7.9. One has : x(j«Og, (E1 — Vi), Op,(Vg)) = =1 and x(Op,(Vg), j.Or, (F1 — Vg)) = 0.
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Proof. + By Lemma 4.7.8, we have :
X (7O, (Ex — Vi), Op,(VE)) = X(Ox, (1), p«Op, (=3VE + E1)) — X(Os,(h), psOp, (—4VE + E1)).
1. Using the short exact sequence 0 — Op, — Op,(EF1) = Og,(F1) — 0in D3, one finds :
X(Os; (1), pOp, (=3VE + E1)) = x(Ox, (h), psOp, (=3VE + E1)) — X(Os, (h), p+Opy (—3VE)).

By the remark below Proposition 9.3 in [8], we know that R*p.Op,(—3VEg) = Vr|s,0.,1. Together
with the projection formula, this gives :

X(Os, (1), p«Op, (=3VE + E1)) = —Xx(Os, (h), Vr|s, (E1)) + X(Os, (h), Vr(s,).

We saw in the proof of Lemma 4.7.7 that ch(Vr|s,) = (2,0, —2), therefore we can compute the
above-mentioned Euler characteristics with Hirzebruch-Riemann-Roch.

2. With the same reasoning as in 1., except that R*p.Op, (—4Vg) = S*Vr|s,0..1, One gets
X(Os, (h), .0, (=4Vg + E1)) = —X(Os, (h), S*Vr[5, (E1)) + x(Os, (h), S*Vr|s, ).
Again these Euler characteristics can be computed with Hirzebruch-Riemann-Roch and Lemma 4.7.7.

. By Lemma 478, X(OD3 (VE)7]*0E1 (El — VE)) = X(OZ2,p*0E1 (El — 2VE)) — X(0227P*OE1 (E1 — 3VE))
With the same reasoning as above, one can find :

1.

X(OZ2;p*OE1 (El - 2VE>) = X(Opr*ODz. (El - QVE)) - X(Ozzvp*ODs(_sz»
= —X(0s,, 05, (E1)) + Xx(Os,, Os,);

X(Ozzap*ofh (El - SVE)) = X(Ozzap*oD?, (El - 3VE)) - X(Ozzap*ODS(_?)VE))
= _X(OEwVF‘Ez (El)) + X(OZW VF|22)'

All these Euler characteristics can again be computed with Hirzebruch-Riemann-Roch.

Corollary 4.7.10. The same results hold when E is replaced by Es or Es.

Lemma4.7.11. Onehas: X(j*ODg(_VE)7OD3 (VE)) = -5, X(j*ODg (hl_VE)7OD3 (VE)) =—6 andx(j*(’)DS (2h1—
Vi), Op,(VE)) = —6.

Proof. Let0 < i < 2. We want to compute x(j«Op, (ih1 — Vi), Op,(Vg)). By Lemma 4.7.8, we have
X(G:Op, (ihy — Vi), 0p, (Vi) = x(Ox, (h), p.Op, (ih1 — 3VE)) — x(Os, (h), p-Op, (ih1 — 4Vg)).
Using the projection formula and the Remark below Proposition 9.3 in [8], we can then say
X (3O, (ih1 = Vi), Op, (VE)) = —x(Os,(h), Vrls, (ih1)) + X(Os, (1), $*Vr|s, (ih1)).
Finally we can use Lemma 4.7.7 and Hirzebruch-Riemann-Roch. O

Lemma 4.7.12. The following holds : x(Op,(Vg),j.Op,(—VE)) = =1, x(Op,(VE), j«Op,(h1 — VE)) = 1 and
X(Op, (VEg), j+Op, (2h1 — VE)) = 4.

Proof. Let0 < i < 2. We want to compute x(Op,(Vr), 7«Op, (ih1 — Vg)). By Lemma 4.7.8, we know
X(ODs (VE)vj*ODJ (Zhl - VE)) = X(OEzap*ODg (Zhl - QVE)) - X(Oxgap*ng (Zhl - 3VE))

Again by the projection formula and the Remark below Proposition 9.3in[8], thisis equal to: —x(Ox,, Ox, (ih1))+
X(OzzvvF‘Ez(ihl))' O
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473 ..0;
Lemma 4.7.13. One has x(j.Op, (E1 — Vg),0g) = x(Og, j+Og, (E1 — Vi)) = 3.
Proof. First, the short exact sequence 0 — Op,(—VEg) = Op,(F1 — Vi) = Og, (F1 — Vg) — 0in D3 gives :

ch(Op, (E1 — Vi) = ch(Op,(E1 — Vi) — ch(Op, (=VE))

E2 — hihy —2E Vg 5 —hihy 2

=(1,E, — ! H-Q,- -

( s 141 VE7 9 56) ( ) VEa 9 ’6)
E?2 —2F\ Vg 7
=(0,F, L% )
(07 1, 2 76)

By Theorem 5.26 in [14], we thus have

. 5 . E? —2FE, Vg 7 3 1
Ch(]*oEl (E1 — VE)).td(X4) = ]*((O,Eh %, 6).(1,VE + §h1 — §(E1 + Fsy + E3),CE2, 1))
7 1 1 1
= -* 7E7 yA T T 57§
3«(0, B, 0 T3 3 2)

2
= 7.(0, E1, 0, g) = (0,0, j.F7, *, %)

where for the last equality we used the definition of pushforward on cohomology page 126 of [14]. Moreover,
we saw in the proof of Corollary 4.6.2 that ch(Og) = (0,0,eh, *, x), hence by Hirzebruch-Riemann-Roch and
(1.8):

X4
=juE1.(h —2¢e).(h —e) = j.E1.(h* — 3e.h + 2¢?).

X(]*OEl (El - VE)a OS’) = / (0> Ovj*Eh *, *)(07 Ovéﬁa *, *) = ]*Eléﬁ

Before going further, let us notice that a divisor D’ in | E'; | corresponds to a ruled surface overa curvein C € |E |
in 35 : namely, D' = Po(Vr|c). Then the Picard group of D’ is generated by two elements fr and g where fg
corresponds to a fiber over a pointin C and d is the relative hyperplane class (see V.2. of [12]). Furthermore,
we know that fg.0p = 1, f& = 0and 6% = det(Vp|c) = 0 because Vr|c = (Vr|s,)|c and det(Vr|s,) = Osx, as
we saw in the proof of Lemma 4.7.7. From now on let us abuse of notations and still denote by F; some closed
subscheme of D3 with class in |Ey|. Then, since h.E; = ho.E; = 1in X3 we have that h|g, = fg and the same
reasoning as in the proof of Lemma 4.4.5 together with det(Vr|s,) = Oy, yield Vg|g, = d5. We can now finish
the computation :

jsE1.(h* = 3e.h +2¢*) = hl|y, + 3VE|g, .hlp, +2Ve|E, = f&+30p.f5 + 263 =3

using (1.10) and FE1 C D3 C Esto find j*El.e = —VE.j*El.
We can do the exact same computation for x(Og, j.Og, (—E1 — VE)) using the same argument as in the proof
of Lemma 4.6.1. O

Corollary 4.7.14. One has x(j.Og,(E2 — Vi),035) = x(0g,j:0p,(E2 — Vi)) = x(j+Or,(E3 — Vg),05) =
X(03,JxOp, (E3 — Vi) = 3.
Lemma 4.7.15. One has x(j+Op,(—Vk),Og) = 10 and x(Og, j.Op,(—VE)) = —42.

Proof. We are going to proceed as in the proof of Lemma 4.5.16. First, using (4.24) twisted by O (2¢) and
(1.10) one can find

X(O0g,j+Op, (=VE)) = x(03, 0%, (e)) — x(05, 0%, )
and
X(J+Ops(—=VE), O5) = x(Ox, (), O5) — x(Ox,, O3).
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+ Let us consider X(Og,j*ODB(*VE)) = X(OS, OX4 (e)) — X(Og, OX4)'
1. We saw in Lemma 4.5.14 that x(Og,0%,) = 79.

2. By Serre duality, x(Og, 0%, (e)) = x(Ox,(€),O5(—=h +¢)) = x(Ox,,05(—h)) = 37 with Lemma
4.512.

As aresult, x(Og, j.Op,(—VE)) = 37 — 79 = —42.
* Letuslook at x(j.Op,(=VE),03) = x(Ox,(e), O5) — x(Ox,, O3).
1. We saw in Lemma 4.5.7 that x(Ox,, Og) = 1.

2. By(1.8)we have x(Ox, (¢),05) = x(Ox,, Og(h—h)) = x(O%,(h), O5(h)). With the same reasoning
as in the proof of Lemma 4.5.9 one finds

X(Ox,(h),05(R) = Xz, (7. O5,(—V5)) — X2, (7 0F,)
— XZ; (OZS (E) ®f*of4(_VE)) + Xz (023 (E) ®ﬁ*0f4)
= —X(0z,,02z,) + X(0z,, 0z,(h)).

By (1.11), the projection formula and Lemma 3.1.4, x(Oz,, Oz, (h)) = x(Os,, V¥ (h1 + h2)) = 12.
As aresult, x(Ox,(e),05) = -1+ 12 =11.

This yields x(j.Op,(=VE),Og) = 11 — 1 = 10.
O

Lemma4.7.16. One has x(j«Op,(h1—VE),Og5) =19, x(Og, j«Op,(h1—VE)) = =33, x(j«Op, (2h1 —VE),Og) =
28 and x(Og, j+Op,(2h) — Vi) = —24.

Proof. * There is a short exact sequence in Ds :
0— Op,(—=Vg) = Op,(h1 — Vg) = Op,(h1 — V) = 0
where by Oy, we mean the structure sheaf of a divisor in |h4|. This implies
X(Og,5.O0p,(h1 — Vi) = x(Og, j«Op,(=VE)) + x(Og, j+Oh, (h1 — VE))

and
X(J«Op;(h1 — Vi), 0g) = x(j«Op, (—VE), Og) + X(j+Oh, (h1 — Vi), Og).

We have seenin Lemma 4.7.15 that x(Og, j.Op,(—VE)) = —42and x(j.Op,(—VEk), Og) = 10. Moreover,
we can use the same method as in the proof of Lemma 4.7.13, writing h; instead of a divisor in || by
abuse of notation, to find : Pic(h1) = Z fr, ® Zdy, with fﬁ =0, fp.0p, = 1 and 5,% = 0. Then, using again the
same method as in the proof of Lemma 4.7.13,

X(Og,jxOh, (h1 — Vi) = X(§.On, (h1 — Vi), O35) = jihi(h® — 3eh + 2¢*) = 9f7 + 364.3fn + 207 = 9

since h.hy = 3in X3 and thus hl,, = 3f,. Therefore, x(Og,7+Op,(h1 — Vg)) = —42+ 9 = —33 and
X(j*OD3(h1 — VE),Osv) =104+9=19.

« With the same method as above,
X(0g, j«Op,(2h1 — Vi) = x(Og, j«Op;(h1 — Vi)) + x(Og, j«On, (2h1 — VE))

and
X(j«Op;(2h1 — Vi), 0g) = X(j«Opy(h1 — V&), Og) + x(j«On, (201 — V&), Og).
Then x(Og, j»Op, (2hy — Vi) = =33 + 9 = —24 and y(j.Op, (2h; — Vi), O3) = 19 + 9 = 28,
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474 ..0p,
Lemma 4.7.17. One has x(j.Op,(—VE), 0p,) = 12 and x(Op,, j«Opy(—VE)) = 36.

Proof. We can proceed as in the proof of Lemma 4.7.15 : (4.24) twisted by O 5 (2¢) and (1.10) give
xX(0p,,3+0p,(=VEr)) = x(0p,, 0%, (e)) = x(0p,, O%,)

and
X(j«Op,(=VE), 05,) = x(O%,(e), 05,) — x(Ox,, 05, )-

* Letus look at x(Og,, j+Op,(—VE)) = x(05,, 0%, (e)) — x(0p,, 0%, )-
We saw in Lemma 4.4.8 that x(Ogp,,0%,) = —36.
By Serre duality, x(Op,,Ox, (€)) = x(Ox, (), Op,(—h +¢€)) = x(Ox,, Op,(—h)) and we saw in Lemma
4.4.6 that x(Ox,,0p,(—h)) = 0.
Therefore, x(05,, j«Op,(=VE)) = 36.

+ Let us look now at (1. Op, (~Vi), Op,) = X(Ox, (¢), Op,) = x(Ox,. Op).
We saw in Lemma 4.4.6 that x(Ox,, Op,) = —12.
By (1.8), x(Ox,(e),05,) = x(Ox%,, 05, (h — h)). Finally, using the same reasoning as in the proof of
Lemma 4.4.9, one finds :

X(0%,.0p,(h = h)) = x(0p,, 05, (=6 — 24f)) = —12+ %((5 +241)2 + (6 + 24) (=20 + 72f))
- —12—&—%(48—&-48—2.484—72—48) = —12+12=0.

Finally, x(j«Op,(—=Vg), 0p,) = 12.

Lemma 4.7.18. Let us define a; := j,E;.[Ds] and b := j,h1.[D,] where [D,] is the class of Dy in X,. Then :
* For1 <i <3, x(j.0p, (Ei — Vi), 05,) = X(O5,,1.0r, (E; — Vi) = ;.
* X(j.Op, (b1 — Vi), Op,) = 12+ band x(Op, , j.Op, (h1 — Vi) = 36 +D.
¢ X(j+Op, (2l — Vi), 0p,) = 12 + 2b and x(Op, . jOp, (2h1 — Vi) = 36 + 2b.

Proof. For the first formula one can use the same reasoning as in the proof of Lemma 4.7.13, and for the last
four formulas one can proceed as in the proof of Lemma 4.7.16, using the results of Lemma 4.7.17. O

To conclude, we would thus need to know ay, az, az and b. However this is not so easy, since we cannot
write the class of D5 has a product of two divisors in X4, as it was the case with S.

About the a;, up to assuming that some equations are not satisfied we can find the following Lemma.

The main idea is that j*EZ—.[Z} should be a linear combination of P! in Z, whose intersection with D (as a
divisor in Z) will give exactly a;. But the P! of 7 either come from P! in Z3, in which case their intersection with
Dis 0, or are fibers in Z over I'y, in which case the intersection with D is non zero. Finally, for very general X,
one can use the geometry and some results from section 3 to show that the intersection j, F;.[Z] should have
no component in the fibers of Z, hence when intersected with D it should give 0.

Lemma 4.7.19. For X, very general, we can assume that p(us,p;) # 0for1 <i < 3.
In such a case, a1 = as = a3 = 0.
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Proof. + Each pointin X5 corresponds to a threefold U, ®C.wq such that U is A-isotropic (see 7. of Theorem
1.2.3). In the basis such that X can be written as x93 + 2456 it implies that Uy =< uy, us > where u; € A;
(see 3. of section 1.1). Furthermore any such Uy € Y5 must satisfy : u(uy,us) = 0 = U(uy,us) with the
notations of Definition 3.4.8.

+ By analogy between ¥, and S (as detailed in Remark 4.1.4), Remark 4.7 in [20] implies that there is a
map ¢ : Y2 — P(A4;) which is the blow up of P(4;) in three points. Let p be one of these three points.
Then the associated exceptional divisor in ¥4 is E, = {Uy =< p,us >€ ¥y}. Since p induces a non-
degenerate pairing between A; and A, we must then have : E, =< p, Ker(u(p,.)) N Az >. Moreover for
each < p,us >€ E, we also must have 7(p, u2) = 0, so Ker(u(p, .)) N Az C Ker(7(p, .)) N Aa. Conversely if
a point p € A; satisfies Ker(u(p,.)) N Ay C Ker(7(p,.)) N Az then any < p, ug > for ug € Ker(u(p,.)) N Ay
is 1 and 7 isotropic (and A and v/ isotropic by construction), hence p (the associated line in P(A;)) must
be one of the three points in which ¢ is blowing up P(A4;).

* Let us fix p € A; one of the points generating a line in which P(A;) is blown up to give 3.
Let Uy = Uz, a, @ Uz a, =< ui,u2,v1,v2 > be a point of Sy. If there is an element 2 € E, such that
oo7(x) = Uy and w(z) € E, then we must have p € Us 4,. Using the same argument as in the proof of
Lemma 4.8 in [20], one can find that the set of U, € Sy such thatp € Us_4, is a curve in |h1|. Let us denote
this curve by C,.

« LetU, € Cp. Then fz(Uy) = {< U:,v >, € U;;/Ui}. There are two possibilities :

1.pe ﬁi. Then any pointin fz(U,) contains p.
2.p¢ Uj. Then there is exactly one point in fz(U4) which contains p, namely < Ui,p >,

Let now ¢ € fz(U,) and assume that p € g, we have fz(q) = {Us C ¢ @ C.wy, (U3 C ¢ @ Cawp) € X5}. If
there is a point v € g such that v € Ker(u(p,.)) N Az then as we saw above < p,v,wy > is a point in s,
thus < p,v,wg >C< g, wp > is a pointin X5 whose image by 7 is in E,. As a result there is a one to one
correspondence between such v € g N Ker(u(p,.)) N Az (up to multiplication by a non zero scalar) and
points z € fg(q) such that (z) € E,,.

Let us now consider the following possibilities for U, € C,, :

-Ifpe ﬁi then U4 € C,. Moreover since u induces a non-degenerate pairing between A; and A,

we have that Uy N Ay = Ker(u(p,.)) N Az and as we did in Definition 3.3.7 we can write Uj =<
p,v1 + ug > With Uz 4, =< p,v; > and uy € As. Hence fz(U4) = {< p,v1 + uz,aug + fvg >}
with Uz 4, =< uz,vs >. For each point < p, vy + uz, aus + Bva >=: qin fz(U,) there is exactly one
z € fz(q) suchthat n(z) € E,, namely < p, aug + fva, wy >C g. So there is a copy of E,, isomorphic
to fz(U,) in E4. In fact this copy lies in Z because 7~ 1(E,) C D3 ¢ X,and Z = E, N X,.

In this case though, since U, € C, we must have either p = u1 or X (p, u1, Ker(u(p,.)) N As) = 0.

—1 - = = . —1 .
- Ifp ¢ U, butU, € C; then we can write Uy =< p, u1, ug, vy > With u; € U, N Ay, ug and vg in Ay

L=l . . .
and u(p, u2) = 0 # p(p,v2). We can also write U =< uy,ap + uz >, hence there is a unique point
gin fz(U4) containing p, namely < ui, ap + ug, u2 >. There is exactly one point z in f5(¢) such that
m(x) € E,, namely < p,ug >.

—1 — — — ,
-Ifp ¢ Uy and Uy € Cy we can write Uy =< p,w, u2,v2 > wWith w € Ay and ug, v2 € A, such that

U, =< wug,ap+ pw+ ve >. There are two possibilities :

1. 8 = 0(and thus a # 0). Then fz(Us) = {< uz,ap + v2,7p + nw >} and < up,vz,p > is
the only pointin fz(U4) containing p. Moreover, in this case we know from Lemma 3.4.2 that
(ug,p) = p(ve,p) = 0. This implies that

fE(< ug,va,p >) = {< o'us + B'va, pywy >C< uz,v2,p,wo >, (o, ') € C*} 2 E,.
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Indeed E, = {< p,d’us + B'vg >, (o', #') € C?}, hence
{< a'us + 've, p,we >C< ug, va, p, wo >, (a/aﬁl) € (C2} C fp(< ug,v2,p >),

and since the fibers in E, are P!, this inclusion is in fact an equality. As in the case p € U, we
also have that f5(< ug,vs,p >) is in factin Z, that is to say a fiber in Ds.
This can happen only if s € Ker(u(p,.)), by definition of C5. By the reasoning in the proof of
Lemma 3.1.10, if u2 € Ker(u(p,.)) then there is a unique U, € C; such that Uy is of the form
< p,Ker(p(p,.)) N Az, w >.

2. B # 0. Then u(p,v2) # 0 and the only point in fz(U,) containing p is < uz, fw + va,p >.
Furthermore < ug, p, wo >C< ug, fw + v, p > is the only pointin fz(< ug, fw+ v, p >) whose
image by 7 is in E,.

-Ifpé Ui and Uy ¢ (C1 U Cy). Then we can write Uy =< p,w, uz,va > With w € Ay and ug, vo € Ay
such that ﬁi_ =< ug + p+ aw,vy + bp + w >. Then u(p, aus + Pva) = —aap(w,us) — fu(p, w).

If a = 0 the only line in < ug,ve > being orthogonal to p is generated by uy. Indeed we must have
p(p, w) # 0'since py ¢< p,w >.

If a # 0 then p(ue, w) # 0 otherwise p(us + p + aw,us) = 0 would imply p(uz,p) = 0 and then
(v + bp + w, uz) = 0 would give u(usg,va) = 0, thatis to say ug € Ui.
Thus in this case —aau(w,us) — Bu(p,w) = 0 if and only if —a = fﬁ‘(‘sjpg‘;;, therefore the only line in

< ug,v2 > orthogonal to p is spanned by — 1pw) 40 1+ 4y, Moreover

ap(w,uz)

fz(Uy) = {< uz +p+ aw,vy + bp + w,ap + Bw >}

hence the only point in fz(U,) containing p is q :=< us + aw, vs + w, p >=< uy — avy, vy + w,p >.
We saw in the proof of Lemma 3.3.4 that there is then only one pointin EsN f5(< ua—ava, va+w, p >)
itis < ug — avg, p, wo >C< ug — avg, v2 + w, p, wo >. This point is mapped to E, by = if and only if

Uy — AUy = —QZEZ’;’Z)Q)’LLQ + vg that is to say if and only if  # 0 and
1 p(p, w)
=) = = +p) =0.
. PR < p(w,uz) = p(p,w)) < plw,us + p)

The last equality holds because us + p + aw € Uj and is thus orthogonal to w.

Finally if a = 0 then the only pointin fz(U,) containing p is < uz, p, v2 +bp+w > and there is exactly
onez € fi(< uz,p,v2 +bp+ w >) such that n(z) € E,, namely < ug,p >C< ug,p,v2 + bp +w >.
As before, if 2 € f5(< ua, p,v2 + bp +w >) is such that 7(x) € E,, then z € Z.

+ Sofinally :

1. If p = py or N (p, p1, Ker(u(p, .)) N Az) = 0, then there is a line in E4 which is mapped isomorphically
by 7 to a fiber in Z3 and by 7 to E,. Moreover as we saw above this line should also be in Z, with
class Ef (since Ef =1inSs).

2. If u(p, p2) = 0 then there is a fiber in Z which is mapped isomorphically to E, by 7. It has class fD
with the notations of Lemma 4.4.1.

3. In any case there is a line in Z which is mapped isomorphically by o o 7 to a line in || and by 7 to
E,. ltsclassin Z is h1 V7.

+ On the other hand, we have E,.Z = E,e = E,(h — 2¢) = h|g, — 2¢|g, = f, + 25, with the same
reasoning as in the proof of Lemma 4.7.13. Hence E, | ; can be written as a linear combination of P!, and
the intersection with this curve and D in Z would give E,.D.

Moreover f, is a fiber of = and thus by definition of 7 and 7 it must be mapped isomorphically to 7(f,).
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« ThePlin Z are:
- the ]P)l in SQ . 51VZ, EiVZ for1 < <3
- afiberin Zs : &;.
- afiberin Dy : fD.

*+ By Lemma 5.0.6 we have : V;D = 0 and Efﬁ = 122f2 = 0. As a result, if we have E,|; = ahVz +
3
> BiEVyz + v + nfD then E, D = nfD’ = —nfs = —n. We saw above that n # 0 if and only if
i=1
w(p, pa) = 0, hence if u(p, p2) # 0 we have E,.D = 0. Finally, the analogous of Remark 4.7 in [20] applied
to ¥ tells us that we can compute the three points py, p2 and p3 in which P(A,) is blown-up to give ¥,
in terms of the basis of W mentioned in 3. of section 1.1. Since we know s from the proof of Lemma
3.1.8, the three equations u(p;, u2) = 0 for 1 < i < 3 can be written in terms of the z;, M; and K; defined
in 3. and 4. of section 1.1. For X, very general we can thus assume that these three equations are not
satisfied, which implies then that E;.D = 0 for any i € {1, 2, 3}.
O

Computing b is more difficult : as for the q;, the intersection j*hl.[Z] should be a linear combination of Pt,
but this time there is no reason for this linear combination to have no component in the fibers of Z. Yet one
can make the following remarks :

+ Since by definition h; is the pull back of the hyperplane class in P(A;) we have that a line in || in X5 is
of the form: {< u,v,wp >,u € H,v € Ay} where H € |hy| in P(A4;). Let us fix one of these H and write
H=<u,w>.

* As in Lemma 4.7.19, we have h,.Z :le.(h — 2e) = 3f + 205, and thus hﬂz is a combination of P!,
Moreover, still as in Lemma 4.7.19, h1.D # 0 only if k1| ; can be written as n fD + P with n # 0 and P the
pull-back of a combination of P! in Z3.

« By definition of 7, a fiber in D, is mapped isomorphically onto its image by 7, hence if there is such a fiber
F'in hq| 5 we must have that F' = fz(< H, z >) with z € Ay and Ker(u(z,.)) N A; = H.

4.8 The line [; and a skyscraper sheaf

In this subsection we will consider the structure sheaf of a line [;, with class F;.Vg.e as explained in section
2.1.1, and a skyscraper sheaf O,. We will compute Euler characteristics between these two sheaves and the
other elements in F3, using Hirzebruch-Riemann-Roch.

Lemma 4.8.1. One has (X(OX47 Olh)? X(0X4 (h)a Olh)7 X(0X4 (Qh)v Olh)) = (17 0, _1) and
(x(01,,0%,),x(O,,0%,(h)), x(O1,, 0%, (2h))) = (0,—1,-2). For F any other of the sheaves in the family F,
mentioned in section 2.1.1, one has x(F,O;,) = x(O,,, F) = 0.

Proof. Let I, be a line in X, with class F;.Vg.e. Then its Chern character is (0,0, 0, E;.Vg.e, z). Moreover by
Lemma 4.4.7 and the definition of the Todd class (see page 432 of [12]) we have that td(X4) = (1, %, *, %, %),
Hence by Hirzebruch-Riemann-Roch for any sheaf 7 whose support has dimension atmost2 one has x(F,0;, ) =
X(Olh,f) =0.

Moreover, since [, is a P! (because E; isaP! in 3y), its genusis g(I,) = 0, hence if we denote by f the embedding
[l = X, we get X(Ox,, [:0n,) = x(f*Ox,,01,) = x(O,,01,) = 1 - g(l,) = 1. By Hirzebruch-Riemann-
Roch, we then get :

h— h—e)E,.Vg.
X(0X4a0lh) =1= /~ (0,0,0, F1.Vg.e,x).(1, Te,*,*,*7) = (e)—lEe

X4 2
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Finally, since e s the class of D5 in X, we have that (h—e)E,.Vg.eisequalto (h—e)E1.Vy = (h1+he+VE).E1.VE
in D3. With the same reasoning as in the proof of Lemma 4.7.13 we then get that (hy + ho + Vg).E1.Vg = 1 and
thusx = % We can now use Hirzebruch-Riemann-Roch to compute the above-mentioned Euler characteristics.
Similarly, one can use the short exact sequence 0 — Ox (—2¢) = Ox (—e) = Op,(Ve) — 0 to find that
ch(Op,(Vr)) = (0,e, %, %, x). Hence by Hirzebruch-Riemann-Roch and (1.9) :

X(Op,(VE),01,) = —e.Vi.Er.e = —e(E1.(=V3)) = 0.
With a similar reasoning to the one in the proof of Lemma 4.6.1 one can then find that
X(Olm OD;, (VE)) = X(ODg(VE)y Olh) = —G.VE.E1.8 =0.

The exact same method thenyields x(O,, , F) = x(F, O;,,) = 0forany F € {Op,(—VE), Op,(h1—VE), Op,(2h1—
VE)}. O

Lemma 4.8.2. for 0 <i < 2we have x(Op, O, (ih)) = x(Ox,(ih), Op) = 1. For any other sheaf F in the family
JF1 mentioned in section 2.1.1, one has x(F, O,) = x(0p, F) = 0.

Proof. Sincech(O,) = (0,0, 0,0, 1) by Hirzebruch-Riemann-Roch for any sheaf 7 one has x (F, 0,) = x(O,, F) =
rk(F). O
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Chapter 5

Computations of Euler characteristics
between elements of 7

In this section, we compute Euler characteristics between elements of the family
F2={05%,,0%,(h),0%,(2h),0p,,0p,(=VE),05,,0p,,0%,, 0., Ov,, 05,01, 01, Op },

defined in subsection 2.2. Some of these Euler characteristics have already been computed in section 4, for
those who haven't, we use similar reasoning as in section 4.
All these results are gathered in Proposition 2.2.1.

We already know from Proposition 4.2.15 and Lemma 4.2.1 that

x(0%,:0%,) ...  0%,,0%,(2h)) 1 20 124
= 1 1 20 .
O%,(2h),0%,) ... Og, (2h),0%,(2h)) 20 1 1

Lemma 5.0.1. Leti € Z then x(Ox, (ih), j«Op,) = x(Os,, Os,(—ih)) and x(j.Op,, O, (ih)) = 0.

Proof. With the notations of section 2.1.1, one has

X(Ox, (ih), j+Op,) = x(j* Ox, (ih), Op,)

OD37 ODz (_ih))

since p.Op, = Oy, (by Corollary 4.5.5).
By Serre duality and Lemma 4.4.7, one also has

X(j«Op,, 0%, (ih)) = x(Ox, (ih), j:Op, (—h + €))
(O%,,+Op,(—(i + 1)h +¢€))
(Op,,Op,(—(i+1)h +¢))
(p"Os,,0p,(=(i + 1)h +¢))

(Os,, p«(p*Os, (= (i + 1)h) @ Op,(—VE)))
(0s,,05,(—(i + 1)h) @ p.Op, (—VE))

X
X
=X
X
X
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where we used (1.10) and the projection formula for the last equalities By the Remark page 328 of [8], we have
p+Op,(=Ve) =0, hence x(Ox,, Oz, (= (i + 1)h) @ p.Op,(~VE)) = 0. O

Corollary 5.0.2. One has (x(Ox,,Op,), x(Ox,(h),0Op,), x(Ox, (2h),Op,)) = (1,1,7) and
( (ODS’ O ) (0D370 (h))7X(OD370X4 (Qh))) = (050’0)'

Proof. We can use Lemma 4.1.3 and Hirzebruch-Riemann-Roch to compute the x(Os,, Os,(—ih)) for0 < i <
2.

O

Remark 5.0.3. The non zero Euler characteristics above had already been computed in Lemma 4.3.5.

As we saw in Lemma 4.3.8, we have x(Op,,Op,) = x(Op,(— VE) (’)DS( B)) =
4.7.6, we have (x(Op,(—VE),0x%,),x(Op,(=VE), O, (h)), x(Op,(~VE), O%, (2h)))
Corollary 2.1.3, we get (x(Ox,, Op,(=VE)), x(Ox, (h),ODB(—VE)),X(OX4(2h) D3 (=V

Lemma 5.0.4. One has x(Op,,Op,(—VEg)) = 1and x(Op,(—Vg),Op,) = —1.

1. reover by Lemma
= ( 7,—19) and by
) = (0 0,0).

Proof. We can use the short exact sequence 0 — (9)34(76) — 0X4 — Op, — 0in X, tofind:

* X(Ob;,0p,(=Ve)) = x(O%,, Op,(=V, )) —x(0Ox,(=€),0p,(=Vg)).
We have just seen that x(Ox,, Op,(—V&)) =0 and by (1.10) we have

x(Ox, (=€), 0p,(=VE)) = x(Ox,, Op,(—2VE)).

By the Remark below Proposition 9.3 in [8], we can find

X(Ox,,7+Op;(—2VE)) = x(Op,, Op, (—2VE))
- X(p*OZwODa(_ZVE))
= —X(OEZ, 022) = —1.

So finally x(Op,,Op,(—=VEg)) =0—(-1) = 1.

X(Opy(=VE),Op,) = x(Op,(=V] ) ) X(Op,(=VE), 0%, (=¢)).
We have seen above that x(Op,(—V; ) %,) = —1and by Serre duality and (1.10) we find

X(Op;(=VE),O0%,(—¢€)) = x(Ox,(=¢),0p,(=VE — h + ¢€))
= X(OX4, Op,(—=Vg — h + 2¢))
=X(0x,,0p,(=3VEe — h)).

Again using the Remark below Proposition 9.3 in [8], one finds

X(Ox,,O0ps(=3Ve — h)) = x(p*Ox,, Op,(=3VE) @ p*Os,(—h)) = —x(Ox,, Vrls, (—h)).

With Hirzebruch-Riemann-Roch, Lemma 4.1.3 and Lemma 4.7.7 one gets :
h h
X(OZQaVFb]‘z(*h)) = (2a0372)'(157}173)'(175’1) = (2772ha4)(17551) =6-6=0.
22 22
Therefore, X(ODS(—VE), OD3) =—1.

Before going further, we need the following technical result and notation :

Definition 5.0.5. Let us denote by D the class of Dy in Z. If D' is a divisor in Zs, let us still denote by D' its pull-back
to Z.
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Lemma 5.0.6. The Picard group of Z is generated by Vy, hy, E1, Es, E5 and D. Moreover, for 1 < i < 3 we have
the following equalities :

Dlp, =-6 Vzlp, =0 Thilp, =holp, =12f Eilp, =Af

D'=48 Dhi=Dhy=-12 DE =4
Proof. The first claim follows from the fact that Pic(Z3) =< Vz, k1, E1, Es, E5 > (see the proof of Proposition
4.5.3) together with Definition 5.0.5 and the fact that Z is the blow-up of Z; in I'; (see Lemma 3.2.6). The

exceptional divisor of this blow-up is then 7= (T'y) = D».
We have already seen the first equality in the proof of Lemma 4.6.2, and in Z5 the following holds :

Vz. 01 =4V2(h1 + ho) =0 hi.[T1] = 4Vzhy(hy + he) =34 =12  E.[[1] = 4VzE;j(hy + hy) = 4

which implies the rest of the first line of equalities. Finally the second line can be deduced from the first line
and Lemma 4.4.1. O

Lemma 5.0.7. The Todd class of Z is
~ 3_ 1.~ - . 1 1 1
td(Z) = (1, Vz + 5hi = S(Er + B2 + B3) = 5D, 42,1) = (1, Vz + S (h1 + he) = 5D, 92, 1)

where hi.ys = 2, Ei.ys = 1, Vz.yo = L and D.y, = —38.
Proof. By Lemma 4.5.3, we have
Kz =-2Vy —3h1 + Ey + Ey + E3 = 2V — by — ho.
Thus, since Z is the blow up of Z3 in 'y, we get
Ky =-2Vy; —3h+E +Ey+E3+D=—2Vy —hy — hy + D.

Using now the formula for the Todd class page 432 of [12] and the fact that ¢;(7;) = —K ;, one finds
- 3— 1 - - 1— 1- - 1—
td(Z) = (1, VZ + §h1 — §(E1 + E2 + Eg) — §D,y2,$3) = (1, VZ + §(h1 + hg) - §D,y2,x3).

Moreover by Hirzebruch-Riemann-Roch x(0;,0;) = [;(1, 0,0,0).td(Z) = x3 and by Corollary 4.5.5 we have
X(0;,0;) = x(T*0z,,03) = xX(Oz,,7.03;) = x(Oz,,0z,) = 1 as we saw in the proof of Lemma 4.5.6. So
T3 = 1. B B B

Let now K € {h1, E1, Eo, E3,Vz}. On one hand, we have ch(O;(K)) = ch(Oz,(K)) = (l,K,KTQ,Kg) so
X(05,05(K)) = [,(1,K, £ £2) td(Z). Moreover, td(Z) — td(Z3) = (0, —1D,y; — 2,0) and from Lemma
5.0.6 we know that 1|55, = 12f, E;|5, = 4f and Vz|5, = 0. Thus::

P pa— —
hD = (llp,)* =12%f2 =0
52D = (Bil5,)? = 16f2 =0
V7D = 0.

As a result,
K? K3 - K? K3

On the other hand, we have

X(OZ’ OZ(K)) = X(ﬁ*ozsaﬁ*ozs (K)) = X(Ozmﬁ*ﬁ*ozs (K)) = X(Ozs’ 023 (K))
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by the projection formula and Corollary 4.5.5. Hence, K.y2 — Kx5 = 0 and so from Lemma 4.5.6, Lemma 4.7.2

and Remark 4.7.3 we get: hy.ys = 3, Ej.yo =  and V.y0 = 1.
Finally, we saw in the proof of Lemma 4.6.2 that h|; = 3V + 2(h1 + h2) — D and that D° = —6 with the

notations of Lemma 4.4.1. In particular this implies
o 3 _ - 1 -
(h)) = (173VZ + 2(h1 + hg) - D, Ehlhz + GVZ(hl + hg) + §D2 — 2D(h1 + hg), —5)

Ch(OZ

Hirzebruch-Riemann-Roch then yields :
- 3 _ - 1 —
(05,05(h)) = / (1,3Vz +2(hs +T2) = D, Safia + 6V (s +F) + 5D° — 2D(Fs + o), =)

Z
3— 1, - - - 1—
(L,Vz + §h1 - §(E1 + Es + E3) — §D7y2; 1)
=14+14+6—Days+3+27T—9—-94+3—-12—-24—5=—18 — D.y,.
On the other hand, let us denote by g the embedding g : Z < E,. Then
x(0z,0z(h)) = x(¢"Og,, 0z(h)) = x(Og,(=h),9.0z).
Using the short exact sequence 0 — O, (=Vz) — O, = g0z — 0in E4 (which comes from the construction
of Zin Proposition 3.2.6) one finds :
x(0g,(=h),9.03) = x(Og,(=h),05,) — x(Og,(—h), 05, (- VF)).
By (1.12) we then get x(Og, (—h), 9:03) = x(Og,, 05, (Vg)) — x(Oz,, 0g,) = x(Oz;,Vy) — x(Oz,,0z,). We
saw in the proof of Lemma 4.5.6 that x(Oz,,0z,) = 1 and Hirzebruch-Riemann-Roch together with Lemma

1 - -
—(FEy + Es + E3),29,1)

3.2.3yields:
3 _ _ 3_
(2, 3h — hy — hs, §h1h2 + QVZ(}M + h2)73).(1, Vg + ihl 3

(02,9 = |
Z3
=2+10-3+3+9-3+3=2L
So x(03,05(h)) =21 —1 =20, and thus 20 = —18 — D.ys, that is to say D.y, = —38. O
Remark 5.0.8. One could also have computed D.y, in Lemma 5.0.7 the following way. B ~
We saw in Lemma 4.4.4 that x(Op,,Op,) = —12, and if we denote by f the embedding f : Dy — Z we have
X(Oz, f:0p,) = x(Op,,0p,) = —12. On the other hand there is a short exact sequence in Z:
0= 0z(-D) = 0z = f.0p, =0
therefore x(Oz, f.05,) = x(03,0;) — x(03,05(—D)). Hence, x(0;,04;(—D)) = 1 — (—12) = 13. Moreover,
ch(O4(-D)) = (1,-D, %2, —8) since D’ = (Dlp,)? = (—6)* = 48. So by Hirzebruch-Riemann-Roch :
D’ 3_ 1 1
13 = / (1,-D, TR —8).(1,Vz + ohi— §(E1 + B> + E3) — 55’ Y2,1)

zZ
~8—-9+4+3-12—D.ays+1=-25—D.yp
and thus D.y, = —25 — 13 = —38.
We can now use Hirzebruch-Riemann-Roch to compute some of the Euler characteristics we are interested

in.
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(x(o&,@hl) MOs.08) | XOs,Ou) ) ( 1)

Lemma 5.0.9. One has | x(Ox, (h),05) x(Ox,(h),05) x(Ox,(h),0v,) 1| and

X(0%,(2h).05,)  x(Ox,(21).05) X(Ox,( 2h ), Ov;) 43 117
x(05,,0%,) x(0g,.O0x,) x(Ov,,0%,) 0 0 1

( x(Og, @ (h)) x(Og,, 0%, (h)) X(OVZ,OX4(h))) (24 6 7)

(O MO 2h) \(Op MOe.h) (O, A(Oc.2n))  \r2 20 19

Proof. Let K € {hy,Ey1, Ey, E3, Vz}. Then for any i € Z one has x(Ox, (ih),Ok) = x(0z(ih),Ok), and by
Serre duality, x(Ok, Ox, (ih)) = x(Ox, (ih), Ok (=h +¢€)) = x(Oz(ih), Ox(— h)). Moreover there is a short
exact sequence 0 — Oz(—K) — Oz — O — 0in Z, which yields, for 1 <i < 3:

EQ

Ch(oﬁl) = (Ovﬁlv 7?1a0)

ch(Op,) = (0, Ei, . 0)
hihe 1

ch(Oy,) = (0, Vs, 227—§).

Together with the fact that h|; = 3V + 2(h1 + ho) — D as we saw in the proof of Lemma 4.6.2, and Lemma
5.0.7, Hirzebruch-Riemann-Roch then allows us to compute the above-mentioned Euler characteristics. O

Lemma 5.0.10. One has
( (0D37O ) (ODJ’OE‘i)vX(ODaaOVZ)) = (1,—1,0)

and
(X(Oﬁl > OD3)’ X(Oﬁ‘i7 ODg)a X(OVZ ) OD?,)) = (107 2, 2)'

Proof. Let K € {hy, E1, E», E3,V;}. We are going to use the following short exact sequence in X, :
0— O, (-e) = 0%, = Op, = 0. (5.1)
Indeed with (1.8), it implies
X(Ok,0p,) = x(Ok,0%,) = x(Ok, 0%, (=€) = x(Ok,O%,) — x(Ok, O, (h — h))

and
X(Op,, Ok) = x(O%,,O0k) = x(Ox,(h = h), Ok).

Finally, by Serre duality and Lemma 4.4.7 we have :
X(Ok, 0%, (—€)) = x(Ox,(=€), Ok (=h + €)) = x(Ox,, Ok (=h + 2h — 2h)) = x(O%,, Ok (h — 2h)).
One can then conclude with Hirzebruch-Riemann-Roch and the proof of Lemma 5.0.9. O

Lemma 5.0.11. Onehas( (Ops(=VE), Of,), x(Opy(=VE),0f.),x(Op,(=VE), Ov,)) = (-2,-2,-2) and
(X(Of,, Op, (=VE), X(O,, Ony(~VE)), X(Ov,, Op,(~Vir))) = (10,2,0).

Proof. By (1.10), twisting (5.1) by O (e) gives a short exact sequence :
0— 0%, = Ox,(e) = Op,(=Ve) = 0
With (1.8), this yields 7
X(Op;(=VE),Ok) = x(O%,(h = h),0k) — x(O%,,Oxk)
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and
X(Ok,0p,(=VE)) = x(Ok, 0%, (h — b)) = x(Ok, O%,).

Moreover by Serre duality,
X(Ok, 0%, (h = h)) = x(Ox,(h = h), Ok (—h + ¢)) = x(Ox, (h — h), Ok (~h)) = x(Ox,, Ok (=h)).

One can then conclude with the same reasoning as in the proof of Lemma 5.0.9. O
-1 0 0 0 O
0 1 0 00
Lemma 5.0.12. /f{l'17...,$5} = {OEI,OE1,0E2,OE”3,OVZ}then (X(mi,wj))lgi,jgg, = 0 01 00
0 0010
0 0 0 0 2
Proof. Using the same reasoning as in 2. of the proof of Lemma 4.6.2 one gets :
-2, = —2 —
X(Oﬁl7 Oﬁl) = h1(2h — h) hl(_VZ + D) =-1
X(05,,05) = x(0s,,05) = ME(=Vz + D) =0
X(Oﬁl,OVZ) = x(Oy,, Oﬁl) = E1V2(—VZ —|—E) =0
X(0,, 05) = EjEi(~Vz + D) = b
X(Ov,,0z) =x(0p,,0v,) =VzE(-Vz + D) =0
X(Ov,,0v,) =VZ(=Vz+ D) =2.

O

WesawinLemma4.4.6that (x(Ox,, O0p,), x(Ox, (h), 05,), x(O%,(2h), 05,)) = (—12,0,156) and in Lemma
4.4.8 that (x(0gp,,0%,), x(0p,, 0%, (h)), x(Op X4(2h))) = (- 36 0 180). Furthermore :

Lemma 5.0.13. One has x(Op,, Op2) = —84 and x(0p,,0p,) = —60.
Proof. We can use (5.1) again together with (1.8) and similar reasoning as in the proof of Lemma 4.4.6 to find :
1.
X(Op,, 0p,) = x(0%,,0p,) = x(0O%,(—€),0p,)
=x(05,,05,) — X(Om Op,(h —h))
=-12—(-12+ = ((5+24f) — (64 241)(—26 + 72f)))

1
=12 (124 5(48 + 48 + 248 — T2+ 48)) = 12— (~12 4 84) = —84.

2. x(0p,,0p;) = x(05,,0%,) — x(0p,,0%,(—¢)).
By Serre duality

(6% — 8(—26 +72f))
=12+ %(48 4248 —72) = —12 4 36 = 24.

So finally, x(Op,, Op;) = —36 — 24 = —60.
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We also know from Lemma 4.7.17 that x(Op, (~VE&), Op2) = 12 and x(Op,, Op,(—VEk)) = 36. Finally :

Lemma 5.0.14. One has x(05,,05,) = 48, x(05,,05,) = x(05,,05,) = —12, x(0p,. E;) = x(E;,0p,) =
—4 and X(Oﬁz, Vz) = X(VZOBZ) =0

Proof. We already saw in Lemma 4.6.2 that x (O, Op,) = 48. Moreover, using the same reasoning as in 2. of
the proof of Lemma 4.6.2 (and Lemma 5.0.12), one finds :

X(05,.05) = x(05,,05,) = D(~Vz + D) = —5.12f = —12
X(0p,, Ei) = X(E;,0p,) = E;D(~V; + D) = —5.4f = —4
X(05,,Vz) = x(Vz05,) = VzD(~Vz + D) =0
0

Since ch(Op,) and ch(Op,(—Vg)) are both of the form (0, e, %, %, *), Lemma 4.8.1 remains unchanged for
our new family of sheaves F.

Lemma 5.0.15. The following holds :
* (X(0%,,015),x(Ox, (1), 01,,), x(Ox, (2h), O1,)) = (1,1,1);
* (X(01p,0%,), X(O1p,, O, (h)), X (O, O, (2R))) = (0,0,0);
* X(Op,,01,) = x(Opy(—=VE), O1,) = X(O1,,, Opy) = X(Ou,, Op, (—VE)) = 1,
* for any other sheaf F in our family F», x(O,,F) = x(F,O;,) = 0.

Proof. Since lp is a line of class eh?, it is a fiber in D3 and thus a P*. We can then use the same reasoning as in
the proof of Lemma 4.8.1 together with (1.10) and (1.9) to find :

- 2(h 2 _ h2(_—
X(O)”(7OZD):1:/ (0,070’eh%7x)_(1’u,*7*7*)_x+m:x+€(h1(h1+h2) hi(=VE))
1 < 2 2 2
!
T+ 3

Thus z = 1 — 1 = . One can then compute the first two equalities above with Hirzebruch-Riemann-Roch.
Furthermore, using again the same method as in the proof of Lemma 4.8.1 and the remark just above this
Lemma, one finds :

X(ODsa OlD) = X(ODs(fvE)a OZD) = X(OID’ ODs) = X(OID’ ODs(ivE)) = 762h% = eth% =1
The last equality comes again from the same reasoning as in the proof of Lemma 4.8.1. O

Using finally the proof of Lemma 4.8.2, one can find the matrix given in Proposition 2.2.1.
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Chapter 6

Appendix

6.1 Computation of the matrix P, from section 2.3.1

In this subsection we give more details about how we obtain the matrix P, (and thus P;) in Proposition 2.3.1.
We mainly use calculations already done in section 4 :

* The submatrix ((P2)i;), -, j<3 €an be deduced from Proposition 4.2.15, together with Lemma 4.2.1.

* The fifth line and column of P, can easily be found using the same reasoning as in the proof of Lemma
4.8.2.

* The (P,);6 for 1 < i < 3 have been computed in Lemma 4.3.5, while the (P»)g; for 1 < ¢ < 3 can be de-
duced from this same Lemma and Serre duality. Indeed for any j € Z, Serre duality yields x(Osx,, Ox, (jh)) =
X(OX4((j + l)h)a 022)'

+ Using the same reasoning as in the proof of Lemma 4.8.1, one can find that since dim(supp(Os,)) = 2,
the coefficients (P2)46 = x(O1, Ox,) and (P)es = x(Os,, O;) are both equal to 0.
Similarly, dim(supp(O;)) = 1 implies x(O;, O;) = 0.

So far we thus now the following coefficients of P, :

1 20 124 x 1 1
1 1 20 x 1 1
20 1 1 * 1 7
* * * 0 0 0
1 1 1 0 0 O
1 7 19 0 0 =

Let us compute the remaining coefficients.

Lemma 6.1.1. The following holds :
* (X(Ox4, O1), x(Ox, (h), Or), x(Ox,(2h), O1)) = (1,0, —1);
* (X(O1,0x,), x(O1, Ox, (h)), x(O1, Ox,(2h))) = (0, -1, -2);
* x(0s,,0s,) =2.
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Proof. * Let us keep the notations of section 4.3 and denote by i the inclusion ¥5 — X4. Then, since by
definition [ is a line in X5 with class E7, what we denote by abuse of notation by O, is actually i,O;. As a
result, for any j € Z one has x(Ox, (jh),4.0;) = x(i*Ox,(jh), O1) = x(Os,(jh), O;). Moreover, we know
the Chern character, in X5, of O, : indeed the short exact sequence

0— Os,(—E1) - Osx, > O, —0

together with ch(Ox, (—E))) = (1,—E1, —3) yields ch(0;) = (0, E1, 3). One can then compute the first
three Euler characteristics mentioned above with Hirzebruch-Riemann-Roch and Lemma 4.1.2.

* Letj € Z. By Serre duality and Lemma 4.2.13, one has x(O,, Ox, (jh)) = x(Ox,((j + 1)h), O;). The other
three Euler characteristics involving O; can then be computed with Hirzebruch-Riemann-Roch.

+ To compute x(i.Os,,.Ox,), we are going to use the same reasoning as in 1. of the proof of Lemma
4.6.2.
By Theorem 13.7in [8], we have that ch(i*i,Osx,) = (0,0, c2(Ny,  x, ). Therefore, by Hirzebruch-Riemann-
Roch we have X(i*ng,i*Ozz) = X(i*i*ng,OEQ) = Cg(NEz/X4).
By pages 251-252 of [14] we know that D3 = Py, (NEQ/X4). On the other hand, we know from [20] that
D3 =Py, (Vr|s,) (here we don't need to worry about which definitions are chosen for the projectivization
of a vector bundle in [14] and [20], because Vg |y, is self-dual : indeed it is a rank 2 vector bundle whose
first Chern class is 0 as we saw in the proof of Lemma 4.7.7). So the normal bundle /\/’EQ/X4 is Vr|s, up to
a twist by a line bundle. Since twisting by a line bundle doesn’'t change the c,, we thus have c3(Ny, /x,) =
c2(Vr|s,). Finally, we saw in the proof of Lemma 4.7.7 that c;(Vr|s,) = 2.

O

Remark 6.1.2. To compute the first six Euler characteristics mentioned in Lemma 6.1.1, one could also have used
the same reasoning as in the proof of Lemma 4.8.1 : indeed since [ is a P! with class E.[3s] in X4, we must have

h
x(O0x,,0) =1= / (0,0,0, E1.[25], 2).(1, 5,*7*,*)
X4

h h|s 1
:Z+E1§[EQ]:IE+E1‘EZ 22 ::E+§
where we used Lemma 4.2.13 as well as the formula for the Todd class page 432 of [12] to find that td(X,) =

(17 %; *, %, *)
As a result, x = % and we can use Hirzebruch-Riemann-Roch to compute the Euler characteristics we are interested
in. For instance, it gives :

1
X(Ol,(’)x4(2h)):/ (O,O,O,—El.[Zg],5).(1,2]1,*,*,*).(17g,*,*,*)
Xy

1 h
= / (0, 0, O, *El.[zg}, - — QhEl[Eg])(L —, %, %, *)
9 2 2

1 ELh[Ss] 1 BEils,hls, 1 1
= RE[Do) - 2 D opfy, By, — 2B 9 — = 9
2 1[ 2] 2 2 |22 1‘22 2 2 2

The other calculations are similar.

6.2 Another way to compute some Euler characteristics between ele-
ments in 7

In this subsection we just give some other way to compute some of the Euler characteristics mentioned in

section 5. This involves in most cases more calculations than simply using Hirzebruch-Riemann-Roch in Z, but
it can be useful to check results obtained in the previous section.
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Lemma 6.2.1. let K € {hy,E\, Ey, F3,Vy}. Then:

* X(0z,0k) = x(Oz,;,0z,) — x(Oz,, 0z,(—K));

* X(Ox,(h),0k) = —x(Oz,,0z,(h)) + x(Oz,, Oz,(K + h));

* X(0x,(2h), Ok) = x(Oz,, Oz,(h)) — x(Oz,, V(1)) = x(Oz,, Oz, (K + h)) + x(Oz,, Vi (K + h)).
Proof. Leti e Z and K € {hy, E1, Es, Es, Vz}. Then with the notations of Lemma 4.5.9, we have

x(Ox,(ih), 1.0k ) = x(§*Ox, (ih), Ok) = x(O3(ih), Ok).

Furthermore, in Z there is a shortexact sequence 0 — O;(—K) — O; — Ok — 0whichinduces x(0;(ih), O) =

X(0z,05(=ih)) = x(Oz,0z(—ih — K)).
If i = 0, since by Corollary 4.5.5, 7.0z = Og,, itimplies the first formula.
Moreover,

xX(0z,0;(=ih — K)) = x([*O0g,,0z(—ih — K)) = x(Og,, [.Oz(—ih — K)).

The short exact sequence 0 — O, (—Vg) — O, — f.O; — 0thenyields
x(0g,, £:0z(=ih — K)) = x(Og,, Og,(=ih - K)) = x(Og,, Og, (—ih — K = Vg))
=x(0g,,05,(=iVg - K)) — x(0g,, 0g, (- (i + 1)Vf — K))

by (1.12). Slmllarly, X(OE47 f*OZ(—Zh)> = X(OE4> OE4(_ZVE)) — X(OE47 OE4(—(’i + 1)VE))
Serre duality, (1.12) and Lemma 4.5.8 then yield

X(Og,, £:0z(~ih — K)) = x(Og,, 05, ((i = 2)Vz + K + 1)) = x(Op,, O, ((i = 1)V + K + h))

and
x(0g,, [:0z(—ih)) = x(Og,, 05, (h+ (i — 2)Vg)) — x(Og,. O, (h+ (i — 1)V)).

By definition, O, (—K) = 7Oz, (—K), thus the projection formula together with a) of Exercice 8.4 in II1.8. of

[12] conclude the proof.

With very a similar reasoning and Serre duality, one can also find the following formulas :
Lemma 6.2.2. let K € {hy, E\, E, E3,Vy}. Then :

* X(Ok, 0%,) = x(Oz,, Oz,(~h)) = x(Oz,,0z,(~h — K));

* X(OK? O)?4(h)) = _X(OZ37OZS (QE)) + X(0237 023 (K + QE))"

* X(OK? O}h (2h)) = X(0Z37 OZg (25)) - X(OZ:MV%(ZE)) - X(OZ37 OZ:; (K + 25)) + X(OZ3, V%(K + QE))'

* X(Ost OK) = X(O X, OK) - X(Ozsv V\Z/(fﬁ)) + X(0Z3, OZs(fﬁ)) + X(Ozsv V\Z/(fﬁ - K))
7X(OZ:;7023(7E7 K))/

* X(Ok,0p,) = x(Ok,0%,) = x(Oz,,Vy(-2h)) + x(Oz,, Oz,(—2h)) + x(Oz,, V3 (—2h — K))
*X(0Z37023(72E7K>);

* X(Op,(=VE),Ok) = —Xx(0z,,0z,) + X(Oz,, 0z (K)) — x(Ox,, Ok);
* X(Ok,O0p,(—VE)) = x(Ox,(h),Ok) — x(Ok,Ox,).
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6.3 Macaulay2

Thanks to E. Fatighenti, | could use Macaulay2 to compute the highest weights of the decomposition of an ex-
ternal power of V = Uy (—1) & (Us")V(—1) & Ocy(s,7(—1). We are going to reproduce here as an example a
way to get the highest weights associated to /\7 V. The parts in blue will be the answers given by Macaulay?2 :
i1: loadPackage "SchurRings"

01=SchurRings

o1: Package

i2: loadPackage "Schubert2"

02=Schubert2

02: Package

i3: R=schurRing(QQ,q,4)

03:R

03: SchurRing

i4: Q=schurRing(R,r,3)

04=Q

04: SchurRing

i5: F=exteriorPower(4,q_1)+r_1*exteriorPower(4,q_1)+exteriorPower(3,q_1)

05=¢1,1,1171 + (q1,1,1,0 + q1,1,1)70)

05: Q

i6 : exteriorPower(7,F)

06=(q7,6,6,6 + 46,6,6,6)71.1,1 + 46,6,6,671,1

06: Q

The commands of i3 and i4 define g_1 and r_1 that will correspond respectively to the highest weights
(0,0,0;1,0,0,0) and (1,0,0;0,0,0,0). Then "exteriorPower(n,q_1)" corresponds to A" of the irreducible rep-
resentation with highest weight (0,0,0;1,0,0,0). Finally r(), r; 1 and r; 1,3 correspond to the irreducible rep-
resentations with highest weight respectively (0,0, 0; 0,0, 0,0), (1,1,0;0,0,0,0) and (1,1, 1;0,0,0,0). For g itis
similar. The line i5 is just defining V' as F, using the highest weight of each summand of V, and the line i6 is just
asking for /\7 V. The answer 06 reads : "The highest weights of the decomposition of /\7 Vare(1,1,1;7,6,6,6),
(1,1,1;6,6,6,6) and (1,1,0;6,6,6,6)". For any A"V one can proceed similarly, just replacing 7 by n in i6, and
for (A" V)(m) one can either compute the highest weights associated to A"V and add (m,m,m;0,0,0,0) if
m > 0, (0,0,0;m,m,m,m) if m <0, or replace i6 by "exteriorPower(n,F)*exteriorPower(3,r_1)" if m > 0 and by
"exteriorPower(n,F)*exteriorPower(4,q_1)" if m < 0.

6.4 Scilab

One can also use scilab to compute the dimension of the irreducible representation of Sl; associated to a high-
est weight )\, using (4.2). Here is the function one can define in scilab :
function d=W(L)

delta=[7,6,5,4,3,2,1];

i=1;

=2

d=1;

while i<7

while j<8

d=d*(L(1,i)+delta(1,i)-L(1,j)-delta(1,j))/(delta(1,i)-delta(1,j));

=i

end

i=i+1;
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j=it1;
end
endfunction

The input is a vector of 7 columns and 1 line, whose coefficients are those of the highest weight A, and the
output is the dimension of the only nonzero HY(€) if it exists, or 0 otherwise, where £ is the vector bundle
associated to A\, when X + ¢ is dominant (including cases when X + § is singular as we will see). If 4 := A+ 4
is not dominant then there are some i < j such that y; < p; and then the associated coefficient in the Weyl
formula (4.2) will be % Here the denominator will always be positive but then the numerator is negative,

H Hi — My
1<i<j<7

II 6-9
1<i<j<7
thus even if p is not dominant the Weyl formula should give the right result up to a sign. Finally, if x is singular
then there exists ¢ # j such that p; = p;. But then the associated coefficient is, up to a sign, “7 g’j = 0. Since
(4.2) is a product, in thIS case the result WI|| be 0 but since p is singular by Theorem 4.2.10 H*(E) = 0. So this

function gives dim(H*(€ @ dim(H'(£)), up to a sign, since by Theorem 4.2.10 again there is at most one

so if ;1 is not dominant the result may be non-positive. Yet in our case the Weyl formula gives

€L
H1(&) # 0. The sign will be correct whenever p is dominant.

Remark 6.4.1. What has just been said above may suggest that one doesn't really need to check A + 4, since the
function W gives either dim(H*(&)) or —dim(H*(E)), and dim(H*(£)) has to be non negative thus it should be
enough to take the absolute value of the result given by W. However, if A+ ¢ is not singular, one still needs to determine
for which o € S7, o(§ + \) is dominant, in order to find for which q one has H(E) # 0. Alternatively one can also
compute the number of positive roots « such that (A + d, «) < 0, but in any case one needs to compute A\ + §. So a
possible way to proceed, for a given highest weight )\, would be :

1. Compute W(\). If it is 0 then \ + ¢ is singular and by Theorem 4.2.10, H*(£) = 0.

2. IfW(N# 0then write down A+ ¢ and use one of the two methods given above (corresponding to Theorem 4.2.10
and Theorem 4.2.2 respectively) to find out for which q € Z one has H(€) # 0. Then dim(H*(€)) = [W())].d4:.
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