On the numerical Grothendieck group of very general Küchle fourfolds of type c5
 Céline Bonandrini

- To cite this version:

Céline Bonandrini. On the numerical Grothendieck group of very general Küchle fourfolds of type c5. Algebraic Geometry [math.AG]. Université Paris-Saclay, 2022. English. NNT: 2022UPASM037. tel-04022272

HAL Id: tel-04022272
https://theses.hal.science/tel-04022272
Submitted on 9 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the numerical Grothendieck group of very general Küchle fourfolds of type c5

 Sur le groupe de Grothendieck numérique des variétés de Küchle de dimension 4 et de type c5 très générales
Thèse de doctorat de l'Université Paris-Saclay

École Doctorale de Mathématiques Hadamard (EDMH) n ${ }^{\circ} 574$
Spécialité de doctorat: Mathématiques fondamentales
Graduate School : Mathématiques.
Référent : Faculté des sciences d'Orsay
Thèse préparée dans l'unité de recherche Laboratoire de Mathématiques d'Orsay (Université Paris-Saclay, CNRS)
sous la direction d'Emanuele MACRİ, Professeur des
universités.

Thèse soutenue à Orsay, le 6 décembre 2022, par
Céline BONANDRINI

Composition du jury :

[^0]Président

Rapporteur et examinateur
Rapporteur et examinateur
Examinatrice

Examinatrice

Directeur de thèse

universitè PARIS-SACLAY
 ÉCOLE DOCTORALE

Titre: Sur le groupe de Grothendieck numérique des variétés de Küchle de dimension 4 et de type c5 très générales

Mots clés: Mathématiques, Géométrie algébrique, variétés de Küchle de dimension 4 et de type c5, caractéristique d'Euler, catégories dérivées

Résumé: Nous essayons de trouver une base du groupe de Grothendieck numérique G d'une variété de Küchle de dimension 4 et de type c5 très générale X_{4}. Pour ce faire, nous nous intéressons d'abord à la géométrie de telles variétés, et nous essayons d'en déduire une famille F d'éléments de G qui pourrait être une base. Ensuite nous essayons de calculer la matrice dont les coefficients sont les caractéristiques d'Euler entre les éléments de F. Cette matrice devrait nous permettre de mieux appréhender
les catégories dérivées bornées des variétés considérées.
Dans cette thèse nous ne parvenons pas à trouver une base de G mais nous proposons deux familles F_{1} et F_{2} qui pourraient être des bases du groupe de Grothendieck numérique d'un éclatement de X_{4}, et à partir desquelles il pourrait être possible de trouver une base de G. Nous calculons les matrices de caractéristiques d'Euler associées à ces deux familles, à un nombre d'intersection près dans un cas et entièrement dans l'autre.

Title: On the numerical Grothendieck group of very general Küchle fourfolds of type c5
Keywords: Mathematics, Algebraic geometry, Küchle fourfolds of type c5, Euler characteristic, derived categories

Abstract: We try to find a basis of the numerical Grothendieck group G of very general Küchle fourfolds of type c5, denoted X_{4}. To do so we first study the geometry of such varieties, and try to deduce from this a family F of elements in G which could be a basis. Then we try to compute the matrix whose coefficients are Euler characteristics between elements in F. This matrix is expected to provide intuition on
the bounded derived category of very general Küchle fourfolds of type c5.
In this thesis we don't manage to find a basis of G but we give two families F_{1} and F_{2} which could be basis of the numerical Grothendieck group of a blow-up of X_{4}, and from which it may be possible to deduce a basis of G. We compute the matrices of Euler characteristics associated to these families, up to an intersection number in one case and entirely in the other case.

Acknowledgements

I would like to thank my advisor, Emanuele Macrì, for his help, all his advice, his encouragements to explore the multiple sides of algebraic geometry and for numerous stimulating discussions.

I would also like to thank Benjamin Sung for very helpful discussions and comments. His ideas allowed me to see things from a different perspective and move on, while I was afraid to be in a dead end.

I am very thankful to Enrico Fatighenti, who helped me greatly to understand how to apply the Borel-BottWeil Theorem and how to use Macaulay2.

Finally I would like to thank all the people who contributed to make these three years interesting and pleasant. Among them, Jean, who helped me to find the Weyl formula, Pietro, who kindly listened to my unfruitful tries to understand some geometrical contractions, Carlo, Luigi, Alessio, Jieao, Amadou, Anne, Vladimiro, Guillaume, Louise, Dorian, Xiaozong, Corinne, Cyril, Nicolas, Brice, Dominique, Calla, Pierre-Louis, Lucien...

Contents

0.1 Introduction en français 4
0.2 Introduction in English 13
1 Some results on the geometry of Küchle fourfolds and fivefolds of type $c 5$ 23
1.1 Notations and assumptions 23
1.2 Main results 25
1.3 Divisors and projective bundles 27
1.4 Embeddings of blow-ups 28
2 Two free families in $K_{\text {num }}\left(\tilde{X}_{4}\right)$, a free family in $K_{\text {num }}\left(X_{4}\right)$, and the associated matrices of Euler characteristics 30
2.1 A first family in $K_{\text {num }}\left(\tilde{X}_{4}\right)$ induced by elements in $K_{\text {num }}\left(X_{4}\right)$ and $K_{\text {num }}\left(\Sigma_{2}\right)$ 31
2.1.1 A semi-orthogonal decomposition of $D^{b}\left(\tilde{X}_{4}\right)$ 31
2.1.2 The family \mathcal{F}_{1} and the associated matrix 31
2.2 A second family in $K_{\text {num }}\left(\tilde{X}_{4}\right)$ 33
2.3 Some matrices of Euler characteristics between elements of $K_{\text {num }}\left(X_{4}\right)$ 35
2.3.1 Two first "too small" families with five and six elements 35
2.3.2 A family of eight elements obtained with mutation functors, but still in $K_{\text {num }}\left(\tilde{X}_{4}\right)$ 37
3 Subvarieties of X_{4}, \tilde{X}_{4} and \tilde{X}_{5} 39
3.1 A surface induced by S_{2} in Z_{3} 39
3.2 Blow-up of Z_{3} 47
3.3 Intersections with E_{4} 51
3.4 Some contractions by π 56
3.4.1 Some contractions by π in $E_{4} \cap \bar{E}_{4}$ 56
3.4.2 Contractions in \tilde{X}_{4} 63
$3.5 \bar{D}_{2}$ and Γ_{1} 66
4 Computation of Euler characteristics between elements of \mathcal{F}_{1} 68
4.1 Euler characteristics between sheaves coming from $D^{b}\left(\Sigma_{2}\right)$ 68
4.2 Euler characteristics related to the $\mathcal{O}_{\tilde{X}_{4}}(i h)$ 70
4.2.1 A general version of Borel-Bott-Weil Theorem 70
4.2.2 Application of BBW to Grassmannians 72
4.2.3 Computation of the Euler characteristics 73
4.3 Euler characteristics involving $\mathcal{O}_{D_{3}}\left(V_{E}\right)$ 79
4.3.1 The surface Σ_{2} 81
4.3.2 Back to $\mathcal{O}_{D_{3}}\left(V_{E}\right)$ 84
4.4 The ruled surface \bar{D}_{2} 85
4.5 The surface \tilde{S} 89
4.6 Euler characteristics between structure sheaves of surfaces 97
4.7 Euler characteristics between sheaves coming from $D^{b}\left(\Sigma_{2}\right)$ and. 99
4.7.1 $\ldots \mathcal{O}_{\tilde{X}_{4}}(i h)$ 100
4.7.2 $\ldots \mathcal{O}_{D_{3}}\left(V_{E}\right)$ 102
4.7.3 $\ldots . \mathcal{O}_{\tilde{S}}$ 104
4.7.4 $\ldots . \mathcal{O}_{\bar{D}_{2}}$ 106
4.8 The line l_{h} and a skyscraper sheaf 109
5 Computations of Euler characteristics between elements of \mathcal{F}_{2} 111
6 Appendix 118
6.1 Computation of the matrix P_{2} from section 2.3.1 118
6.2 Another way to compute some Euler characteristics between elements in \mathcal{F}_{2} 119
6.3 Macaulay2 121
6.4 Scilab 121
Bibliography 123

Introduction

0.1 Introduction en français

Dans cette thèse, on s'intéresse aux variétés de Küchle de type c5 et de dimension 4 sur \mathbb{C}. Pour X_{4} une telle variété très générale, l'objectif est de calculer la matrice $M=\left(\chi\left(e_{i}, e_{j}\right)\right)$ où χ désigne la caractéristique d'Euler et les e_{i} forment une base du groupe de Grothendieck numérique. Une fois cette matrice calculée, trouver une autre base dans laquelle M a une forme spécifique, que nous décrirons un peu plus tard, donnerait une indication sur une possible décomposition semi-orthogonale de la catégorie dérivée bornée des faisceaux cohérents sur X_{4}. En effet certaines similitudes avec les cubiques de dimension 4 dans \mathbb{P}^{5} et certaines variétés de Gushel-Mukai de dimension 4 suggèrent qu'une telle décomposition pourrait exister.

Bref résumé

Dans son article [22] sur les catégories Calabi-Yau et Calabi-Yau fractionnelles, A. Kuznetsov donne un Théorème qui permet dans de multiples cas de trouver des décompositions semi-orthogonales de catégories dérivées bornées de variétés projectives lisses.

Plus précisément, quand un foncteur $\phi: D^{b}(X) \rightarrow D^{b}(M)$ entre les catégories dérivées bornées de deux variétés projectives lisses satisfait certaines conditions, il est possible de construire une décomposition semiorthogonale de $D^{b}(X)$ à partir d'une décomposition de Lefschetz rectangulaire de $D^{b}(M)$ (là encore sous certaines conditions techniques que nous n'allons pas détailler ici). Cette décomposition semi-orthognale de $D^{b}(X)$ consiste principalement en sous-catégories obtenues à partir des sous-catégories de la décomposition de Lefschetz de $D^{b}(M)$, ainsi que leur orthogonal à droite, une sous-catégorie souvent appelée "composante de Kuznetsov". De plus, ce même Théorème 3.5 de [22] nous permet de calculer le foncteur de Serre de la composante de Kuznetsov.

Certaines des composantes de Kuznetsov obtenues grâce à ce Théorème sont des catégories K3 noncommutatives, c'est-à-dire des catégories qui "ressemblent" à des catégories dérivées bornées de surfaces K3. En fait, tous les exemples non triviaux de catégories K3 non-commutatives qui sont connus jusqu'à présent nous viennent de composantes de Kuznetsov apparaissant dans les catégories dérivées bornées de certaines variétés projectives. De plus, ces catégories K3 non-commutatives semblent liées à la géométrie des variétés qui leur sont associées.

En effet, on peut trouver de telles catégories K3 non-commutatives dans $D^{b}(C)$, où C est une conique de dimension 4 dans \mathbb{P}^{5}, sous la forme de composantes de Kuznetsov, et il a été conjecturé par A. Kuznetsov (voir la Conjecture 1.1 de [18]) qu'une cubique de dimension 4 est rationnelle si et seulement si sa composante de Kuznetsov est équivalente à la catégotie dérivée bornée d'une surface K3. Cette condition n'est pas satisfaite pour les cubiques de dimension 4 très générales : le groupe de Grothendieck numérique de leur composante de Kuznetsov ne pourrait pas contenir la classe d'un faisceau gratte-ciel, car il ne contient aucun élément non nul v tel que $\chi(v, v)=0$ (voir par exemple la Remarque 3.19 de [24] pour plus de détails). Cette conjecture implique donc que les cubiques de dimension 4 très générales ne sont pas rationnelles.

Les variétés de Gushel-Mukai de dimension 4 ont aussi une composante de Kuznetsov qui est une catégorie

K3 non-commutative, et il a été conjecturé par A. Kuznetsov et A. Perry dans [23] (Conjecture 3.12) que cette composante est équivalente à la catégorie dérivée bornée d'une surface K3 quand la variété de Gushel-Mukai associée est rationnelle.

Une autre caractéristique intéressante des composantes de Kuznetsov qui sont des catégories K3 noncommutatives est qu'à chacune des trois familles d'exemples (non triviaux) connues jusqu'à présent, on peut associer une famille de variétés hyperkählériennes : à une cubique de dimension $4, C$, correspond la famille des droites dans C, à une variété de Gushel-Mukai de dimension 4 correspond une double sextique EPW, et à une variété de Debarre-Voisin, dont la dernière famille d'exemples est constituée, on peut associer une variété hyperkählérienne de dimension 4 dans $\operatorname{Gr}(6,10)$. Tous ces exemples sont listés dans la partie 3.6.1 de [6].

Il serait donc intéressant de trouver une nouvelle famille non triviale de catégories K3 non-commutatives qui soient des composantes de Kuznetsov dans les catégories dérivées bornées de variétés projectives lisses : il serait alors possible d'étudier les liens entre ces catégories et la géométrie de leurs variétés associées. De plus, un espace de modules des objets contenus dans une telle composante de Kuznetsov comporterait une forme symplectique (voir la partie 4.4 de [22] pour plus de détails), on pourrait donc également espérer trouver une famille de variétés hyperkählériennes associées.

Parmi toutes les variétés de Fano de dimension 4 classées par O. Küchle dans [15], trois types ont un diamant de Hodge qui suggère que leur catégorie dérivée bornée pourrait contenir une catégorie K3 non-commutative. Deux de ces trois types ont été étudiés dans [19] et ne donnent pas de nouvelles familles non triviales de catégories K3 non-commutatives. Cependant pour le troisième type, c'est-à-dire le type c5, la question reste ouverte.

Dans [20], Kuznetsov a étudié la géométrie des variétés de Küchle de dimension 4 et de type c5, notées X_{4}, et de variétés de dimension 5 associées, appelées variétés de Küchle de dimension 5 et de type c5. Cela lui a permis de calculer le motif de Chow de variétés de Küchle de dimension 5 et de type c5 générales. Cependant, aucune décomposition de Lefschetz rectangulaire de ces variétés n'a encore été trouvée, ce qui serait nécessaire pour appliquer le Théorème 3.5 de [22] mentionné précédemment. Or, nous aurions besoin de ce Théorème pour prouver l'existence d'une composante de Kuznetsov dans $D^{b}\left(X_{4}\right)$.

Même s'il est assez compliqué de prouver directement l'existence d'une composante de Kuznetsov dans $D^{b}\left(X_{4}\right)$, si une telle composante \mathcal{A} existe, il pourrait être possible de trouver une base du groupe de Grothendieck numérique $K_{\text {num }}(\mathcal{A})$, par analogie avec le cas des cubiques de dimension 4. En effet, si cette analogie est correcte, dans une base bien choisie \mathcal{B} de $K_{\text {num }}\left(X_{4}\right)$ et pour X_{4} très général, la matrice dont les coefficients sont les caractéristiques d'Euler entre les éléments de \mathcal{B} devrait avoir cette forme :

$$
M=\left(\begin{array}{cccc}
A & * & \ldots & * \\
0 & 1 & * & * \\
\vdots & 0 & \ddots & * \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

où A est la matrice dont les coefficients sont les caractéristiques d'Euler entre les éléments d'une base de $K_{\text {num }}(\mathcal{A})$.

Par conséquent, s'il était possible de trouver une base de $K_{\text {num }}\left(X_{4}\right)$ dont la matrice de caractéristiques d'Euler a la forme ci-dessus, alors les éléments de cette base correspondant au bloc A seraient de "bons candidats" pour former une base de $K_{\text {num }}(\mathcal{A})$. Cela pourrait alors donner une indication sur ce à quoi une composante de Kuznetsov dans $D^{b}\left(X_{4}\right)$ pourrait ressembler.

C'est pourquoi le premier objectif de cette thèse était de trouver une base de $K_{\text {num }}\left(X_{4}\right)$ (en tant que réseau $\operatorname{sur} \mathbb{Z}$), calculer la matrice M de caractéristiques d'Euler entre les éléments de cette base, et finalement chercher une matrice inversible R à coefficients dans \mathbb{Z} telle que $R M R^{-1}$ a la forme mentionnée ci-dessus.

Cependant, cela s'est avéré assez difficile. En effet, le diamant de Hodge de X_{4} suggère qu'il devrait y avoir dans $K_{\text {num }}\left(X_{4}\right)$ quatre classes associées à des surfaces dans X_{4}. En utilisant des résultats de [20] sur la
géométrie des variétés de Küchle de dimension 4 et 5 de type c5 nous sommes parvenus à trouver des surfaces dans X_{4}, mais malheureusement nous ne sommes pas capables de calculer certaines des caractéristiques d'Euler impliquant les faisceaux structurels de ces surfaces.

Malgré tout, nous savons d'après [20] qu'il existe un éclatement \tilde{X}_{4} de X_{4}, et il pourrait être possible de retrouver $D^{b}\left(X_{4}\right)$ à partir de $D^{b}\left(\tilde{X}_{4}\right)$ en utilisant des foncteurs de mutation à droite. Le second objectif de cette thèse a donc été de trouver une base de $K_{\text {num }}\left(\tilde{X}_{4}\right)$ et de calculer la matrice \tilde{M} de caractéristiques d'Euler entre les éléments de cette base.

Nous avons trouvé deux familles libres de 14 éléments dans $K_{\text {num }}\left(\tilde{X}_{4}\right)$, mais n'avons pas pu prouver que ces familles sont des bases. Pour l'une d'entre elles nous avons calculé la matrice associée \bar{M} à un nombre (correspondant à une intersection entre sous-variétés de \tilde{X}_{4}) près, et pour la seconde nous avons calculé la matrice de caractéristiques d'Euler associée \tilde{M}_{2} entièrement. Cependant ces deux matrices ne peuvent pas avoir le même déterminant, ce qui suggère que nos deux familles ne génèrent pas les mêmes sous-réseaux de $K_{\text {num }}\left(\tilde{X}_{4}\right)$. Il serait donc intéressant de savoir si l'une de ces familles correspond à un sous-réseau primitif de $K_{\text {num }}\left(\tilde{X}_{4}\right)$ ou non.

Définition des variétés de Küchle de dimension 4 et 5 de type c5

Pour commencer, notons par G la $\operatorname{Grassmannienne~} \operatorname{Gr}\left(3, \mathbb{C}^{7}\right)$ et \mathcal{U}_{3} le sous-fibré tautologique de G. Une variété de Küchle de dimension 4 et de type c5 est le lieu des zéros d'une section globale générale de $\mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{U}_{3}(1) \oplus$ $\mathcal{O}_{G}(1)$, où \mathcal{U}_{3}^{\perp} est le quotient de l'injection $\mathcal{U}_{3} \hookrightarrow \mathbb{C}^{7} \otimes \mathcal{O}_{G}$. Pour une section globale assez générale, cette construction donne une variété de Fano lisse et de dimension 4. L'appellation "type c5" vient de la classification, donnée par O. Küchle dans [15], des variétés de Fano de dimension 4 et d'index 1 qui peuvent être obtenues en considérant le lieu des zéros d'une section globale générale d'une somme directe de fibrés vectoriels irréductibles, homogènes et globalement générés, sur une Grassmannienne. De plus, chaque variété de Küchle de dimension 4 et de type c5 est une section hyperplane d'une variété de dimension 5 , que nous noterons X_{5} et que nous appellerons variété de Küchle de type c5 et de dimension 5. En effet, si X_{4} est le lieu des zéros de la section globale $\lambda \oplus \mu \oplus \nu$ de $\mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{U}_{3}(1) \oplus \mathcal{O}_{G}(1)$ alors nous pouvons définir X_{5} comme le lieu des zéros de $\lambda \oplus \mu$, laquelle est une section globale de $\mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{U}_{3}(1)$. Dans ce cas, puisque ν est une section globale de $\mathcal{O}_{G}(1)$, son lieu des zéros H_{ν} est un hyperplan et $X_{4}=X_{5} \cap H_{\nu}$. Dans [20], A. Kuznetsov décrit la géométrie des ces variétées de Küchle de dimension 5 , et en déduit certaines propriétés géométriques des variétés de Küchle de dimension 4 associées. Nous nous référerons souvent à cet article [20] et conserverons la majeure partie de ses notations.

Composantes de Kuznetsov et catégories K3 non-commutatives

Il est attendu que la catégorie dérivée bornée des faisceaux cohérents sur X_{4}, notée $D^{b}\left(X_{4}\right)$, admet une décomposition semi-orthogonale intéressante, par analogie avec d'autres exemples et à cause du diamant de Hodge de X_{4}.

Commençons par le cas des cubiques de dimension 4 dans \mathbb{P}^{5} : ces variétés sont des sections de variétés de dimension 5, notons-les Y_{5}, qui admettent une décomposition de Lefschetz rectangulaire, c'est-à-dire une décomposition semi-orthogonale de leur catégorie dérivée bornée des faisceaux cohérents comme suit :

$$
D^{b}\left(Y_{5}\right)=<\mathcal{B}, \mathcal{B} \otimes \mathcal{L}, \ldots, \mathcal{B} \otimes \mathcal{L}^{\otimes m}>
$$

où $m \in \mathbb{N}, \mathcal{B}$ est une sous-catégorie triangulée de $D^{b}\left(Y_{5}\right), \mathcal{L}$ est un fibré en droite de Y_{5} et une décomposition semi-orthogonale $\mathcal{D}=<\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}>$ est une suite de sous-catégories pleines et admissibles telles que $\operatorname{Hom}^{\bullet}\left(\mathcal{A}_{j}, \mathcal{A}_{i}\right)=0$ pour tout $j>i$, et telles que la plus petite sous-catégorie triangulée pleine de \mathcal{D} contenant tous les \mathcal{A}_{i} est équivalente à \mathcal{D} (voir la Définition 1.59 de [14]).
Le Théorème 3.5 de l'article de A. Kuznetsov [22] donne alors une décomposition semi-orthogonale de $D^{b}\left(Y_{4}\right)$:

$$
D^{b}\left(Y_{4}\right)=<\mathcal{A}, \mathcal{B}^{\prime}, \mathcal{B}^{\prime} \otimes \mathcal{L}^{\prime}, \ldots, \mathcal{B}^{\prime} \otimes \mathcal{L}^{\prime \otimes k}>
$$

où $k \in \mathbb{N}, \mathcal{A}$ est appelée la composante de Kuznetsov de Y_{4} et le reste de la décomposition est induit par la décomposition de Lefschetz de $D^{b}\left(Y_{5}\right)$. De plus, lorsque Y_{4} est une cubique de dimension 4, sa composante de Kuznetsov $\mathcal{A}_{Y_{4}}$ est une catégorie K3 non-commutative : son foncteur de Serre est [2] et son homologie de Hochschild est la même que celle de la catégorie dérivée bornée d'une surface K3. En tant que sous-catégorie triangulée de $D^{b}\left(Y_{4}\right), \mathcal{A}_{Y_{4}}$ satisfait donc la Définition 2.31 de [24], donnée par E. Macrì et P. Stellari, et est donc une catégorie K3 non-commuative, autrement dit une catégorie qui "ressemble" à la catégorie dérivée bornée d'une surface K3.

Cependant il existe des catégories K 3 non-commutatives qui ne peuvent pas être équivalentes à la catégorie dérivée bornée d'une surface K3 (voir par exemple la Proposition 4.8 de [18]), alors que les catégories dérivées bornées de surfaces K3 sont toutes des catégories K3 non-commutatives. Les catégories K3 non-commutatives peuvent donc être considérées comme une "généralisation" de $D^{b}(S)$ où S est une surface K3.

Revenant aux variétés de Küchle de dimension 4 et 5 , on peut voir en regardant le diamant de Hodge de X_{4} :

1			
			0
		0	1
	0	0	0
		1	24
	0	0	0
		0	1
		0	0
			1

donné par exemple dans l'introduction de [20], qu'il pourrait "contenir" le diamant de Hodge d'une surface K3. Les variétés de Küchle de dimension 4 et de type c5 ne sont pas les seules parmi les variétés de Fano de dimension 4 classées par Küchle dont le diamant de Hodge suggère que leur catégorie dérivée bornée pourrait contenir une catégorie K3 non-commutative, mais les deux autres "candidats" à la contenance de telles souscatéories (les variétés de Küchle de dimension 4 et de types d3 et c7) sont des exemples déjà connus tandis que les variétés de Küchle de type c5 pourraient donner une nouvelle famille de catégories K3 non-commutatives.

Pourquoi s'intéresser aux catégories K3 non-commutatives : lien conjecturé avec la rationnalité et variétés hyperkählériennes

Une telle famille de catégories K3 non-commutatives serait intéressante pour principalement deux raisons. Tout d'abord, dans le cas d'une cubique C de dimension 4 il a été conjecturé par A . Kuznetsov que C est rationnelle si et seulement si sa composante de Kuznetsov \mathcal{A}_{C} est équivalente à $D^{b}(S)$ où S est une surface K3.

Il a aussi été conjecturé par A. Kuznetsov et A. Perry que la composante de Kuznetsov d'une variété $G M$ de Gushel-Mukai et de dimension 4, qui est aussi une catgorie K3 non-commutative, est équivalente à la catégorie dérivée bornée d'une surface K3 lorsque $G M$ est rationnelle.

Ces catégories K3 non-commutatives semblent donc liées à la géométrie des leurs variétés associées et il pourrait être intéressant d'en trouver de nouveaux exemples (apparaissant comme composante de Kuznetsov dans la catéorie dérivée bornée d'une variété), tout particulièrement parce qu'à l'exception des catégories dérivées bornées de surfaces K3, seulement trois familles d'exemples sont connues jusqu’à présent : les cubiques mentionnées ci-dessus, les variétés de Gushel-Mukai de dimension 4 et les variétés de Debarre-Voisin.

De plus, comme détaillé par A. Kuznetsov dans la partie 4.4 de [22], à chaque composante de Kuznetsov qui est aussi une catégorie $K 3$ non-commutative il pourrait être possible d'associer une variété hyperkählérienne. C'est pourquoi trouver une famille de variétés avec une composante K3 non-commutative pourrait aussi donner une famille de variétés hyperkählériennes associée.

À chacune des familles non triviales de catégories K3 non-commutatives connues jusqu'à présent correspond une famille de variétés hyperkählériennes associée : ces dernières sont listées dans la partie 3.6.1 de [6], et nous allons en parler plus en détails un peu plus tard.

Principal obstacle à la preuve de l'existence d'une composante de Kuznetsov dans $D^{b}\left(X_{4}\right)$

Malheureusement, dans le cas des variétés de Küchle X_{4} de dimension 4 et de type c5 il est assez difficile de prouver qu'une telle composante de Kuznetsov existe : en effet dans le cas des trois familles d'exemples (non-triviales) qui sont connues jusqu'ici, pour prouver l'existence de la composante de Kuznetsov et certaines des propriétés requises pour être une catégorie K3 non-commutative, il faut utiliser le Théorème 3.5 de [22]. Mais dans le cas de X_{4} l'utilisation de ce Théorème nécessiterait de connaître une décomposition de Lefschetz rectangulaire de $D^{b}\left(X_{5}\right)$ et une telle décomposition n'est pas connue à ce jour.

Cependant, il est attendu qu'une décomposition de Lefschetz rectangulaire existe bien dans ce cas. Pour pouvoir utiliser une telle décomposition (avec le Théorème 3.5 de [22]) dans le but de trouver une décomposition semi-orthogonale d'une variété de Küchle de type c5 et de dimension 4, il faudrait que la décomposition soit de la forme décrite dans l'exemple 3.1 de [22]. Puisque notre variété de Küchle X_{4} est le lieu des zéros d'une section globale de $\mathcal{O}_{X_{5}}(1)$ dans la variété de dimension 5 associée X_{5}, il faudrait alors que le fibré en droites \mathcal{L} de la décomposition de Lefschetz rectangulaire soit $\mathcal{O}_{X_{5}}(1)$. D'après le Lemme 2.8 de [22] et comme nous savons d'après [20] que $\omega_{X_{5}}=\mathcal{O}_{X_{5}}(-2)$, il n'y a qu'une seule possibilité pour une telle décomposition de Lefschetz rectangulaire : $<\mathcal{B}_{0}, \mathcal{B}_{0}(1)>$. Dans un tel cas, la preuve de la Proposition 3.4 et le Théorème 3.5 de [22] impliquent que le foncteur de Serre de la composante de Kuznetsov $\mathcal{A}_{X_{4}}$ est $[-4+6]=[2]$. Combiné avec le diamant de Hodge mentionné ci-dessus, cela implique que si une variété de Küchle de dimension 5 et de type c5 admet une décomposition de Lefschetz rectangulaire comme décrite précédemment, alors tous les X_{4} associés ont une composante de Kuznetsov qui est très probablement une catégorie K3 non-commutative.

En cherchant une décomposition de Lefschetz rectangulaire de X_{5}, A. Kuznetsov a étudié en détails la géométrie de variétés de Küchle de type c5 et de dimension 5 générales et prouvé dans le Théorème 5.3 de [20] que le motif de Chow d'un X_{5} général est de type Lefschetz. Il en a déduit le diamant de Hodge et les groupes de Chow de X_{5}, affirmant que des générateurs explicites de ces derniers peuvent être déduits de sa description géométrique de X_{5}.

Comment avoir une intuition au sujet d'une possible composante de Kuznetsov sans connaître de décomposition de Lefschetz rectangulaire de $D^{b}\left(X_{5}\right)$

Cependant, nous allons nous intéresser ici aux X_{4} plutôt qu'aux X_{5}. En effet, nous savons que si une décomposition semi-orthogonale de la forme $D^{b}\left(X_{4}\right)=<\mathcal{A}_{X_{4}}, \mathcal{B}, \mathcal{B} \otimes \mathcal{L}, \ldots, \mathcal{B} \otimes \mathcal{L}^{\otimes k}>$ existe, alors dans une base du groupe de Grothendieck numérique $K_{\text {num }}\left(X_{4}\right)$ dont les éléments $\left(e_{i}\right)_{i}$ appartiennent dans l'ordre à $\mathcal{A}_{X_{4}}, \mathcal{B}$, $\ldots, \mathcal{B} \otimes \mathcal{L}^{\otimes k}$, la matrice $M=\left(\chi\left(e_{i}, e_{j}\right)\right)_{i, j}$ devrait être de la forme :

$$
M=\left(\begin{array}{cccc}
A & * & \ldots & * \\
0 & B_{0} & * & * \\
\vdots & 0 & \ddots & * \\
0 & \ldots & 0 & B_{k}
\end{array}\right)
$$

où

$$
A=\left(\chi\left(e_{i}, e_{j}\right)\right)_{e_{i}, e_{j} \in K_{\mathrm{num}}\left(\mathcal{A}_{X_{4}}\right)}, B_{0}=\left(\chi\left(e_{i}, e_{j}\right)\right)_{e_{i}, e_{j} \in K_{\mathrm{num}}(\mathcal{B})}, \ldots, B_{k}=\left(\chi\left(e_{i}, e_{j}\right)\right)_{e_{i}, e_{j} \in K_{\mathrm{num}}\left(\mathcal{B} \otimes \mathcal{L}^{\otimes k}\right)} .
$$

De plus, dans le cas des cubiques de dimension 4 il se trouve que la sous-catégorie triangulée \mathcal{B} est en fait générée par un objet exceptionnel (un élément E de $D^{b}(C)$ tel que $\operatorname{Hom}(E, E[m])=\mathbb{C} \delta_{0, m}$). Dans le cas des cubiques très générales on sait également que la matrice A est de taille 2×2, donc si les variétés de Küchle de
dimension 4 et de type c5 ont une décomposition semi-orthogonale similaire à celle des cubiques de dimension 4 , pour des variétés très générales on peut même espérer que la matrice M soit :

$$
M=\left(\begin{array}{ccccc}
m_{1} & m_{2} & * & \ldots & * \\
m_{3} & m_{4} & * & \ldots & * \\
0 & 0 & 1 & \ldots & * \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

Par conséquence, trouver une base de $K_{\text {num }}\left(X_{4}\right)$ dans laquelle M a cette forme nous donnerait une indication sur ce qu'une décomposition semi-orthogonale de $D^{b}\left(X_{4}\right)$ pourrait être: les deux premiers éléments de la base pourraient correspondre à des générateurs de la composante de Kuznetsov et les autres éléments à des objets excetionnels générant les sous-catégories de la forme $\mathcal{B} \otimes \mathcal{L}^{\otimes j}$ de la décomposition.

Lien entre les variétés hyperkählériennes associées et $K_{\text {num }}\left(X_{4}\right)$: les exemples déjà connus

On peut également espérer que la sous-matrice de M associée à la composante de Kuznetsov de X_{4} soit en fait:

$$
\left(\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
-1 & 4
\end{array}\right)
$$

En effet, à chacune des familles de catégories K3 non-commutatives déjà connues correspond une famille de variétés hyperkählériennes polarisées, et cette correspondance nous permet de formuler une telle hypothèse.

Avant de détailler ceci plus avant, rappelons nous que si $\Lambda:=\left(H^{2}(X, \mathbb{Z}), q_{X}\right)$ est le réseau associé à une variété hyperkählérienne X de type $K 3{ }^{[2]}$, muni de sa forme de Beauville (voir par exemple le paragraphe 3.5 de [6]), alors Λ est l'orthogonal d'un vecteur primitif v de carré 2 dans $\tilde{\Lambda}:=U^{\oplus 4} \oplus E_{8}(-1)^{\oplus 2}$. De plus, d'après la partie 3.7.1 de [6] nous savons que $\operatorname{Pic}(X)=v^{\perp} \cap \tilde{\Lambda}_{\text {alg }}$. Pour X très général on peut s'attendre à ce que $\operatorname{Pic}(X)$, qui contient la polarisation h, soit de rang 1 . En particulier nous devons alors avoir $h . v=0$. Le sous-réseau de Λ généré par v et h a alors pour matrice d'intersection :

$$
\left(\begin{array}{cc}
2 & 0 \\
0 & h^{2}
\end{array}\right) .
$$

Comme détaillé sous la Remarque 3.6 dans [6], le plongement de ce sous-réseau dans $\tilde{\Lambda}$ est primitif si et seulement si la divisibilité de h est 1 , c'est ce qu'on appelle le "split case". Dans le cas contraire, le "non split case", quand la divisibilité de h est 2 , combiné avec la condition $h . v=0$ cela donne que nous pouvons écrire $h=v+2 \lambda$ où λ est tel que $\lambda . v=-1$ et $\lambda^{2}=2 d^{\prime}$ avec $d^{\prime} \in \mathbb{N}$. La matrice d'intersection du réseau généré par v et λ est alors:

$$
\left(\begin{array}{cc}
2 & -1 \\
-1 & 2 d^{\prime}
\end{array}\right)
$$

Finalement, nous avons $h^{2}=(v+2 \lambda)^{2}=8 d^{\prime}-2$.
D'après la partie 2.1 de [13] et (7) dans [6], nous avons qu'à une cubique lisse de dimension 4 correspond une variété hyperkählérienne X comme ci-dessus (plus précisément la variété des droites dans C), avec $d^{\prime}=1$ dans le "non split case". Cette correspondance est aussi mentionnée dans la partie 3.6.1 de [6] : le cas des cubiques de dimension 4 correspond à $q(h)=6$ et $\gamma=2$, alors que les variétés de Debarre-Voisin et leurs variétés hyperkählériennes associées (le lieu des zéros d'un certain fibré vectoriel sur $\mathrm{Gr}(6,10)$) correspondent à $q(h)=22$ et $\gamma=2$, c'est-à-dire $d^{\prime}=3$ dans le "non split case". Pour finir, les variétés de Gushel-Mukai correspondent (voir [5]) au cas où $q(h)=2$ et $\gamma=1$, autrement dit $h^{2}=2$ dans le "split case" : leurs variétés hyperkählériennes associées sont appelées sextiques doubles EPW.

Cependant, nous ne connaissons pas d'exemples du "non split case" quand $d^{\prime}=2$ (qui correspond à $q(h)=14$ et $\gamma=2$ avec les notations de [6]). Puisque les exemples pour $d^{\prime}=1$ et $d^{\prime}=3$ sont reliés à des
familles de variétés de Fano de dimension 4 dont les catégories dérivées bornées admettent une composante de Kuznetsov K3 non-commutative, on peut espérer que si les catégories dérivées bornées de variétés de Küchle de dimension 4 et de type c5 contiennent effectivement une nouvelle famille de telles catégories K3, alors il y a une famille de variétés hyperkḧlériennes associées qui pourrait donner un exemple du "non split case" quand $d^{\prime}=2$.

Si c'était le cas, la matrice d'intersection de $K_{\text {num }}\left(\mathcal{A}_{X_{4}}\right)$, pour X_{4} très général, devrait avoir la forme mentionnée plus haut, à supposer que ce réseau soit, comme dans les cas déjà connus, isomorphe au réseau généré par v et λ de la variété hyperkählérienne associée (voir la partie 3.4 de [24] pour plus de détails).

Il est aussi attendu (comme précédemment, d'après ce qu'on peut observer dans le cas des cubiques, variétés de Gushel-Mukai et variétés de Debarre-Voisin) qu’une telle variété hyperkählérienne pourrait paramétrer certains objets géométriques, ou être isomorphe à un espace de modules des conditions de stabilité sur $\mathcal{A}_{X_{4}}$. Finalement, dans un tel cas les variétés de Küchle de dimension 4 et de type $c 5$ très générales correspondraient à une famille dans l'espace des modules ${ }^{4} \mathcal{M}_{14}^{(2)}$ des variétés hyperkählériennes polarisées de dimension 4 et de type $K 3^{[2]}$ telles que $h^{2}=14$ et $\operatorname{div}(h)=2$, lequel est conjecturé unirationnel, là encore par analogie avec les exemples déjà connus.

Premier objectif

Le premier objectif de cette thèse était donc le suivant :

- trouver une base $\left(e_{1}, \ldots, e_{n}\right)$ de $K_{\text {num }}\left(X_{4}\right)$ sur \mathbb{Z};
- calculer la matrice $M=\left(\chi\left(e_{i}, e_{j}\right)\right)_{1 \leq i, j \leq n}$ dont les coefficients sont les caractéristiques d'Euler entre les éléments de notre base;
- trouver une matrice $R \in G L(n, \mathbb{Z})$ telle que $R M R^{-1}$ ait la forme mentionnée précédemment.

Comment trouver une famille dans $K_{\text {num }}\left(X_{4}\right)$ qui pourrait être une base

D'après le diamant de Hodge de X_{4}, si $D^{b}\left(X_{4}\right)$ admet une décomposition semi-orthogonale comme décrite ci-dessus, et si la composante de Kuznetsov correspond bien à un sous-espace de dimension 2 de $K_{\text {num }}\left(X_{4}\right)$, alors pour X_{4} très général $K_{\text {num }}\left(X_{4}\right)$ devrait être de dimension 8 . De plus, dans ce cas, pour X_{4} très général, dans une base de $K_{\text {num }}\left(X_{4}\right)$, cinq éléments devraient venir de $H^{2}\left(X_{4}\right)$ (en supposant que l'on puisse générer la classe du faisceau structurel d'une droite et d'un faisceau gratte-ciel à partir de ces cinq éléments), et trois de $H^{4}\left(X_{4}\right)$.

C'est pourquoi, pour commencer, nous cherchons une famille libre de huit éléments dans $K_{\text {num }}\left(X_{4}\right)$ telle que cinq éléments viennent de faisceaux en droites et les trois autres sont associés à des faisceaux structurels de surfaces dans X_{4}.

Comme éléments associés à des faisceaux en droites nous pouvons simplement prendre

$$
\left\{\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(1), \mathcal{O}_{X_{4}}(2), \mathcal{O}_{X_{4}}(3), \mathcal{O}_{X_{4}}(4)\right\}
$$

(nous verrons plus tard qu'en fait cela ne donnerait qu'un sous-réseau de $K_{\text {num }}\left(X_{4}\right)$, et nous remplacerons donc les deux derniers faisceaux en droites par le faisceau structurel d'une droite et un faisceau gratte-ciel); les coefficients de M correspondants peuvent alors être calculés grâce au Théorème de Borel-Bott-Weil.

À propos des trois derniers éléments cependant, les choses se compliquent. Nous pouvons utiliser la descrition de la géométrie de variétés générales de Küchle de dimensions 4 et 5 et de type c5 donnée dans [20] pour trouver des surfaces dont les faisceaux structurels donneront les trois derniers éléments de la base. En
particulier, comme prouvé dans [20], pour X_{4} général il y a un diagramme :

où les indices correspondent à la dimension de la variété associée, et π et $\bar{\pi}$ sont les éclatements de X_{4} et $\overline{X_{4}}$, respectivement en Σ_{2} et Z_{3}, avec respectivement D_{3} comme diviseur exceptionnel et \bar{D}_{2} comme lieu exceptionnel. Les morphismes $i, \bar{i}, j, \bar{j}^{\prime}$ et \bar{j} sont des injections, les fibres de $\sigma: Z_{3} \rightarrow S_{2}$ sont toutes des \mathbb{P}^{1} et \bar{D}_{2} est une surface réglée sur la courbe Γ_{1}.

Trois surfaces apparaissent dans ce diagramme : Σ_{2}, \bar{D}_{2} et S_{2}. Cependant ni S_{2} ni \bar{D}_{2} ne sont des surfaces dans X_{4}; nous pouvons nous en servir pour construire de telles surfaces mais dans les deux cas cela requiert de projeter des surfaces de \tilde{X}_{4} sur X_{4} à l'aide de la contraction π. Malheureusement, il est assez compliqué de comprendre si les images de ces surfaces par π ont des "mauvaises" contractions ou pas, ce qui rend très difficile le calcul de caractéristiques d'Euler impliquant leurs faisceaux structurels. C'est pourquoi nous n'avons pas réussi à atteindre notre premier objectif, et avons adopté une nouvelle stratégie, avec l'aide de Benjamin Sung.

Nous pouvons étudier $K_{\text {num }}\left(\tilde{X}_{4}\right)$ à la place de $K_{\text {num }}\left(X_{4}\right)$
D'un autre côté, il est plus facile de s'intéresser à une matrice de caractéristiques d'Euler entre éléments d'une base de $K_{\text {num }}\left(\tilde{X}_{4}\right)$, plutôt qu'entre éléments d'une base de $K_{\text {num }}\left(X_{4}\right)$, puisque dans le premier cas il n'y a pas de problèmes de contractions. Il pourrait également être possible de retrouver la matrice M associée à X_{4} à partir de celle, notons la \tilde{M}, associée à \tilde{X}_{4}, à l'aide de foncteurs de mutation et de la décomposition semiorthogonale de $D^{b}\left(\tilde{X}_{4}\right)$ donnée par le Théorème 3.5 de [2]. En effet ce Théorème nous permet de trouver une décomposition semi-orthogonale de catégories dérivées bornées d'éclatements. Tout ceci sera détaillé dans la partie 2.3.2.

De plus, comme nous allons le voir, les déterminants de ces deux matrices M et \tilde{M} sont égaux, donc s'il y a bien une base dans laquelle la matrice M a la forme décrite précédemment, alors ce déterminant devrait être $m_{1} m_{4}-m_{2} m_{3}$, que nous espérons être en fait 7 d'après les hypothèses évoquées plus haut.

Deuxième objectif

Notre deuxième objectif était donc de trouver une base de $K_{\text {num }}\left(\tilde{X}_{4}\right)$ sur \mathbb{Z}, puis de calculer la matrice de caractéristiques d'Euler associée.

Principaux résultats

Dans la partie 2.3.1 nous calculons la matrice suivante :

$$
M_{1}=\left(\chi\left(e_{i}, e_{j}\right)\right)_{1 \leq i, j \leq 5}=\left(\begin{array}{ccccc}
1 & 20 & 124 & 1 & 1 \\
1 & 1 & 20 & 0 & 1 \\
20 & 1 & 1 & -1 & 1 \\
0 & -1 & -2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

où

$$
\left(e_{1}, \ldots, e_{5}\right)=\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(1), \mathcal{O}_{X_{4}}(2), \mathcal{O}_{l}, \mathcal{O}_{p}\right)
$$

$\operatorname{avec} \mathcal{O}_{l}$ le faisceau structurel d'une droite dans Σ_{2} et \mathcal{O}_{p} un faisceau gratte-ciel. Cette matrice correspond à un sous-réseau de $K_{\text {num }}\left(X_{4}\right)$, mais malheureusement il n'est pas évident que ce sous-réseau soit primitif.

En ajoutant un sixième élément $e_{6}:=\mathcal{O}_{\Sigma_{2}}$ à la famille $\left\{e_{1}, \ldots, e_{5}\right\}$ on trouve la matrice :

$$
M_{2}=\left(\chi\left(e_{i}, e_{j}\right)\right)_{1 \leq i, j \leq 6}=\left(\begin{array}{cccccc}
1 & 20 & 124 & 1 & 1 & 1 \\
1 & 1 & 20 & 0 & 1 & 1 \\
20 & 1 & 1 & -1 & 1 & 7 \\
0 & -1 & -2 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 7 & 19 & 0 & 0 & 2
\end{array}\right) .
$$

Cependant comme détaillé plus haut, il nous manque encore au moins 2 éléments pour pouvoir espérer que notre famille soit une base de $K_{\text {num }}\left(X_{4}\right)$.

Dans la partie 2.1.2, nous considérons une famille libre \mathcal{F}_{1} de 14 éléments dans $K_{\text {num }}\left(\tilde{X}_{4}\right)$, qui semble être une "bonne candidate" pour être une base. Nous ne pouvons calculer la matrice de caractéristiques d'Euler associée qu'à une intersection b près, ce qui donne :

$$
\tilde{M}=\left(\begin{array}{cccccccccccccc}
1 & 0 & 0 & -1 & -1 & -1 & 1 & 2 & 3 & -1 & 0 & 3 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & -1 & 1 & 2 & 3 & -1 & 0 & 3 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & -1 & 1 & 2 & 3 & -1 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 & 6 & -1 & -7 & -19 & -5 & 12 & 10 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 0 & -3 & -12 & -6 & 12+b & 19 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -6 & -6 & 12+2 b & 28 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 20 & 124 & 0 & -12 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 20 & 0 & 0 & 37 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 20 & 1 & 1 & 12 & 156 & 127 & -1 & 1 \\
0 & 0 & 0 & -1 & 1 & 4 & 1 & 7 & 19 & 1 & -36 & 56 & 0 & 0 \\
0 & 0 & 0 & 36 & 36+b & 36+2 b & -36 & 0 & 180 & -156 & 48 & -24 & 0 & 0 \\
3 & 3 & 3 & -42 & -33 & -24 & 79 & 79 & 205 & 76 & -24 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Dans la partie 2.2, nous considérons une autre famille libre \mathcal{F}_{2} de 14 éléments dans $K_{\text {num }}\left(\tilde{X}_{4}\right)$, qui pourrait être une base si $K_{\text {num }}\left(X_{4}\right)$ a pour dimension 8, et la matrice des caractéristiques d'Euler entre les éléments de cette famille est :

$$
\tilde{M}_{2}=\left(\begin{array}{ccccccccccccccc}
1 & 20 & 124 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & -12 & 1 & 1 & 1 \\
1 & 1 & 20 & 1 & 0 & 10 & 2 & 2 & 2 & 1 & 0 & 0 & 1 & 1 \\
20 & 1 & 1 & 7 & 0 & 43 & 11 & 11 & 11 & 7 & 156 & -1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & -1 & 0 & -84 & 0 & 1 & 0 \\
-1 & -7 & -19 & -1 & 1 & -2 & -2 & -2 & -2 & -2 & 12 & 0 & 1 & 0 \\
0 & 24 & 72 & 10 & 10 & -1 & 0 & 0 & 0 & 0 & -12 & 0 & 0 & 0 \\
0 & 6 & 20 & 2 & 2 & 0 & 1 & 0 & 0 & 0 & -4 & 0 & 0 & 0 \\
0 & 6 & 20 & 2 & 2 & 0 & 0 & 1 & 0 & 0 & -4 & 0 & 0 & 0 \\
0 & 6 & 20 & 2 & 2 & 0 & 0 & 0 & 1 & 0 & -4 & 0 & 0 & 0 \\
1 & 7 & 19 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
-36 & 0 & 180 & -60 & 36 & -12 & -4 & -4 & -4 & 0 & 48 & 0 & 0 & 0 \\
0 & -1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Il nous manque une intersection (le b mentionné ci-dessus) entre les classes de deux surfaces de \tilde{X}_{4} pour pouvoir utiliser des foncteurs de mutation à droite et trouver une famille de $\pi^{*} K_{\text {num }}\left(X_{4}\right)$ induite par \mathcal{F}_{2}. Malgré tout, nous pouvons exprimer les images de ces foncteurs de mutation qui nous intéressent en fonction de cette intersection b. La famille et la matrice associées sont détaillées dans la partie 2.3.2, en fonction de b. Cette nouvelle approche est basée sur les idées de Benjamin Sung.

Ce que l'on pourrait faire ensuite

Avant de pouvoir obtenir une indication sur une possible décomposition semi-orthogonale de $D^{b}\left(X_{4}\right)$, il y a donc au moins quatre étapes manquantes:

- Il faurait vérifier que les matrices que nous avons obtenues (ou au moins certaines d'entre elles) ne sont pas associées a des sous-réseaux stricts de $K_{\text {num }}\left(\tilde{X}_{4}\right)$ ou $K_{\text {num }}\left(X_{4}\right)$.
- Il faudrait également calculer l'intersection b qui nous manque. Cela pourrait aussi nous permettre de trouver une matrice associée à $\pi^{*}\left(K_{\text {num }}\left(X_{4}\right)\right)$ et donc M, comme nous allons le détailler dans la partie 2.3.2.
- Ensuite il faudrait chercher une matrice inversible $R \in G L(8, \mathbb{N})$ telle que $R M R^{-1}$ ait la forme décrite précédemment.
- Enfin, prouver que $K_{\text {num }}\left(X_{4}\right)$ est bien de dimension 8 pour X_{4} très général nous assurerait que nous ne "manquons" aucune partie d'une possible décomposition de $D^{b}\left(X_{4}\right)$ en considérant M.

Organisation de la thèse

Dans la partie 1 nous rappelons plusieurs résultats et notations de [20], que nous allons utiliser par la suite. Dans la partie 2.1 nous trouvons une première famille \mathcal{F}_{1} de 14 éléments dans $K_{\text {num }}\left(\tilde{X}_{4}\right)$ et calculons la matrice de caractéristiques d'Euler associée à une intersection entre surfaces près. Dans la partie 2.2 nous donnons une autre famille \mathcal{F}_{2} de 14 éléments dans $K_{\text {num }}\left(\tilde{X}_{4}\right)$ et la matrice associée \tilde{M}_{2}. Dans la partie 2.3.1 nous donnons deux matrices de caractéristiques d'Euler entre respectivemrnt 5 et 6 éléments de $K_{\text {num }}\left(X_{4}\right)$. Pour pouvoir obtenir une base de $K_{\text {num }}\left(X_{4}\right)$, il faudrait plus de 6 éléments, comme nous l'avons détaillé précédemment. Cependant il serait intéressant de savoir si les sous-réseaux générés par nos 5 et 6 éléments sont primitifs dans $K_{\text {num }}\left(X_{4}\right)$. Nous nous intéressons brièvement à cette question sans parvenir à une conclusion. Dans la partie 2.3.2, nous expliquons comment trouver une famille dans $K_{\text {num }}\left(X_{4}\right)$ et la matrice associée en utilisant une famille de $K_{\text {num }}\left(\tilde{X}_{4}\right)$, sa matrice associée et des foncteurs de mutation à droite. Nous appliquons cette méthode à la famille \mathcal{F}_{1} et calculons une matrice, qui dépend de l'intersection b et qui devrait correspondre à une famille dans $\pi^{*} K_{\text {num }}\left(X_{4}\right)$. Dans la partie 3 nous donnons une suite de petits résultats sur la géométrie de \tilde{X}_{4}, dont certains nous seront utiles pour calculer des caractéristiques d'Euler. Dans la partie 4 nous détaillons les calculs de caractéristiques d'Euler entre éléments de \mathcal{F}_{1} et dans la partie 5 nous faisons de même avec les éléments de \mathcal{F}_{2}. Enfin, dans l'annexe 6.1 nous détaillons brièvement certains calculs utilisés dans la partie 2.3, dans l'annexe 6.2 nous donnons une autre manière (pas nécessairement plus rapide mais que nous avons utilisée pour vérifier certains calculs) de calculer certaines des caractéristiques d'Euler mentionnées dans la partie 5 , et dans les annexes 6.3 et 6.4 nous donnons les codes que nous avons utilisés, respectivement dans Macaulay2 et Scilab pour calculer certaines des dimensions mentionnées dans la partie 4.2.

0.2 Introduction in English

In this thesis, we are interested in Küchle fourfolds of type c5 over \mathbb{C}. For X_{4} a very general such fourfold, the aim was to compute the matrix $M=\left(\chi\left(e_{i}, e_{j}\right)\right)$ where χ is the Euler characteristic and the e_{i} give a basis of the numerical Grothendieck group. Once this matrix computed, finding another basis in which M has a specific form that will be described below would give a hint on a possible semi-orthogonal decomposition of the bounded derived category of coherent sheaves on X_{4}. Indeed some similarities with cubic fourfolds in \mathbb{P}^{5} and some Gushel-Mukai fourfolds suggest that there could be such a decomposition.

Short summary

In his article on Calabi-Yau and fractional Calabi-Yau categories [22], A. Kuznetsov gives a Theorem which allows in multiple cases to find semi-orthogonal decompositions of the bounded derived categories of some smooth projective varieties.

More precisely, when a functor $\phi: D^{b}(X) \rightarrow D^{b}(M)$ between the bounded derived categories of two smooth projective varieties satisfies some conditions, one can induce a semi-orthogonal decomposition of
$D^{b}(X)$ if one knows a rectangular Lefschetz decomposition of $D^{b}(M)$ (again under some technical conditions which we are not going to detail here). This semi-orthogonal decomposition of $D^{b}(X)$ consists mainly in subcategories induced by those of the Lefschetz decomposition of $D^{b}(M)$ and their right orthogonal, a subcategory often referred to as the "Kuznetsov component". Moreover, this same Theorem 3.5 of [22] allows to compute the Serre functor of the Kuznetsov component.

Some of the Kuznetsov components obtained thanks to this Theorem turn out to be non-commutative K3categories, that is to say categories which "look like" the bounded derived category of a K3 surface. In fact, all the non trivial examples of non-commutative K3-categories known so far arise as Kuznetsov components in the bounded derived categories of some projective varieties. Furthermore, these non-commutative K3-categories are believed to be related to the geometry of their associated variety.

Indeed, such non-commutative K3-categories appear as Kuznetsov components of cubic fourfolds in \mathbb{P}^{5}, and it has been conjecture by A. Kuznetsov (see Conjecture 1.1 of [18]) that a cubic fourfold is rational if and only if its Kuznetsov component is equivalent to the bounded derived category of a K3 surface. This condition is not satisfied for very general cubic fourfolds: the numerical Grothendieck group of their Kuznetsov component couldn't contain the class of skyscraper sheaf, since it has no non zero element v such that $\chi(v, v)=0$ (see for instance Remark 3.19 of [24] for more details). Therefore, this conjecture implies that very general cubic fourfolds are not rational.

Gushel-Mukai fourfolds also have a Kuznetsov component which is a non-commutative K3-category, and it has been conjectured by A. Kuznetsov and A. Perry in [23] (Conjecture 3.12) that it is equivalent to the bounded derived category of a K3 surface when the associated Gushel-Mukai fourfold is rational.

Another interesting feature of non-commutative K3-categories appearing as Kuznetsov components is that in the three families of (non trivial) examples known so far, one can find a corresponding family of Hyper-Kähler varieties : to a cubic fourfold C corresponds the family of lines in C, to a Gushel-Mukai fourfold is associated a double EPW sextic, and to a Debarre-Voisin variety, the last family of examples, one can associate a HyperKähler fourfold in $\operatorname{Gr}(6,10)$. All these examples are listed in section 3.6.1 of [6].

Therefore, it would be interesting to find a new non trivial family of non-commutative K3-categories, appearing as Kuznetsov components in the bounded derived categories of some smooth projective varieties: one could then study the relation between these categories and the geometry of their associated varieties. Moreover, a moduli space of objects in such a Kuznetsov component would carry a symplectic form (see section 4.4 of [22] for more details), hence one could also hope to find a corresponding family of Hyper-Kähler manifolds.

Among all the Fano fourfolds classified by O. Küchle in [15], three types have a Hodge diamond suggesting that their bounded derived category could contain a non-commutative K3-category. Out of these three types, two have been studied in [19] and do not provide new non trivial families of non-commutative K3-categories. Yet for the third type, namely the type c5, the question is still open.

In [20], Kuznetsov studied the geometry of Küchle fourfolds of type c5, denoted X_{4}, and of some associated fivefolds, called Küchle fivefolds of type c5. This allowed him to compute the Chow motive of general Küchle fivefolds of type c5. However, a rectangular Lefschetz decomposition of such fivefolds has not been found yet, and is necessary to apply the above-mentioned Theorem 3.5 of [22], which would be needed to prove the existence of Kuznetsov components in $D^{b}\left(X_{4}\right)$.

Although it is quite complicated to prove directly the existence of a Kuznetsov component in $D^{b}\left(X_{4}\right)$, if such a component \mathcal{A} exists, using some analogy with the cubic fourfolds case we mentioned earlier, it may be possible to find a basis of the numerical Grothendieck group $K_{\text {num }}(\mathcal{A})$. Indeed, if the analogy with cubic fourfolds is correct, in an appropriate basis \mathcal{B} of $K_{\text {num }}\left(X_{4}\right)$ for very general X_{4}, the matrix of Euler characteristics between
elements of \mathcal{B} should have this form :

$$
M=\left(\begin{array}{cccc}
A & * & \ldots & * \\
0 & 1 & * & * \\
\vdots & 0 & \ddots & * \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

where A is a matrix of Euler characteristics between elements of a basis of $K_{\text {num }}(\mathcal{A})$.
If one could thus find a basis of $K_{\text {num }}\left(X_{4}\right)$ whose associated matrix of Euler characteristics has the form above, then the elements of this basis corresponding to the block A would be "good candidates" for being a basis of $K_{\text {num }}(\mathcal{A})$. This could therefore give an indication about what a Kuznetsov component in $D^{b}\left(X_{4}\right)$ could be.

This is why the first goal of this thesis was to find a basis of $K_{\text {num }}\left(X_{4}\right)$ (as a lattice over \mathbb{Z}), compute the matrix M of Euler characteristics between elements of this basis, and then look for an invertible matrix R with coefficients in \mathbb{Z} such that $R M R^{-1}$ has the form mentioned above.

However, it turns out to be quite difficult. Indeed, the Hodge diamond of X_{4} suggests that there should be in $K_{\text {num }}\left(X_{4}\right)$ four classes associated to surfaces in X_{4}. Using some results about the geometry of Küchle fivefolds and fourfolds of type c5 given in [20], we manage to find some surfaces in X_{4}, but unfortunately we are unable to compute Euler characteristics involving some of them.

Yet, we know from [20] the existence of a blow-up \tilde{X}_{4} of X_{4}, and it may be possible to recover $D^{b}\left(X_{4}\right)$ from $D^{b}\left(\tilde{X}_{4}\right)$ using right mutation functors. Hence, the second goal of this thesis was to find a basis of $K_{\text {num }}\left(\tilde{X}_{4}\right)$ and compute the matrix \tilde{M} of Euler characteristics between elements of this basis.

Although we didn't prove there are basis, we found two free families of 14 elements in $K_{\text {num }}\left(\tilde{X}_{4}\right)$. For one of them we computed the associated matrix \tilde{M} up to an intersection number and for the second family we did compute the matrix of Euler characteristics \tilde{M}_{2} entirely. Yet these two matrices can't have the same determinant, which suggests that our two families don't generate the same sublattices of $K_{\text {num }}\left(\tilde{X}_{4}\right)$. It would thus be interesting to know whether any of these families correspond to a primitive sublattice of $K_{\text {num }}\left(\tilde{X}_{4}\right)$ or not.

Definition of Küchle fourfolds and fivefolds of type c5

To start with, let us denote by G the Grassmannian $\operatorname{Gr}\left(3, \mathbb{C}^{7}\right)$ and by \mathcal{U}_{3} the tautological sub-bundle on G. A Küchle fourfold of type c5 is the zero locus of a general global section of $\mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{U}_{3}(1) \oplus \mathcal{O}_{G}(1)$ where \mathcal{U}_{3}^{\perp} is the quotient of the injection $\mathcal{U}_{3} \hookrightarrow \mathbb{C}^{7} \otimes \mathcal{O}_{G}$. For a general enough global section this gives a smooth Fano fourfold. The name "type c5" comes from the classification, given by O. Küchle in [15], of Fano fourfolds of index 1 that can be obtained as the zero locus of a general global section of a direct sum of globally generated irreducible homogeneous vector bundles over a Grassmannian. Moreover, each Küchle fourfold of type c5 is a hyperplane section of a fivefold X_{5} which we will call Küchle fivefold of type c5. Indeed if X_{4} is the zero locus of the global section $\lambda \oplus \mu \oplus \nu$ of $\mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{U}_{3}(1) \oplus \mathcal{O}_{G}(1)$ then we can define X_{5} to be the zero locus of $\lambda \oplus \mu$, global section of $\mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{U}_{3}(1)$. Then since ν is a global section of $\mathcal{O}_{G}(1)$ its zero locus H_{ν} is a hyperplane and $X_{4}=X_{5} \cap H_{\nu}$. In [20], A. Kuznetsov describes the geometry of such Küchle fivefolds, which allows him to deduce some geometrical properties of the associated Küchle fourfolds. We will often refer to this article [20] and mostly keep its notations.

Kuznetsov components and non-commutative K3-categories

It is expected that the bounded derived category of coherent sheaves on X_{4}, denoted by $D^{b}\left(X_{4}\right)$, admits an interesting semi-orthogonal decomposition, by analogy with some other examples and because of the Hodge diamond of X_{4}.

Let us first consider the case of cubic fourfolds in \mathbb{P}^{5} : these varieties are sections of fivefolds Y_{5} with a rectangular Lefschetz decomposition, that is to say a semi-orthogonal decomposition of their bounded derived category of coherent sheaves as follows :

$$
D^{b}\left(Y_{5}\right)=<\mathcal{B}, \mathcal{B} \otimes \mathcal{L}, \ldots, \mathcal{B} \otimes \mathcal{L}^{\otimes m}>
$$

where $m \in \mathbb{N}, \mathcal{B}$ is a triangulated subcategory of $D^{b}\left(Y_{5}\right), \mathcal{L}$ is a line bundle on Y_{5} and a semi-orthogonal decomposition $\mathcal{D}=<\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}>$ is a sequence of full admissible triangulated subcategories such that $\operatorname{Hom}^{\bullet}\left(\mathcal{A}_{j}, \mathcal{A}_{i}\right)=0$ for any $j>i$ and such that the smallest full triangulated subcategory of \mathcal{D} containing all the \mathcal{A}_{i} is equivalent to \mathcal{D} (see Definition 1.59 of [14]).
Applying Theorem 3.5 of A. Kuznetsov's [22] gives then a semi-orthogonal decomposition of $D^{b}\left(Y_{4}\right)$:

$$
D^{b}\left(Y_{4}\right)=<\mathcal{A}, \mathcal{B}^{\prime}, \mathcal{B}^{\prime} \otimes \mathcal{L}^{\prime}, \ldots, \mathcal{B}^{\prime} \otimes \mathcal{L}^{\prime \otimes k}>
$$

where $k \in \mathbb{N}, \mathcal{A}$ is called the Kuznetsov component of Y_{4} and the rest of the decomposition is induced by the Lefschetz decomposition of $D^{b}\left(Y_{5}\right)$. Moreover when Y_{4} is a cubic fourfold, its Kuznetsov component $\mathcal{A}_{Y_{4}}$ is a non-commutative K3-category : its Serre functor is the shift by 2 and its Hochschild homology is the same as the one of the bounded derived category of a K3 surface. So as a triangulated subcategory of $D^{b}\left(Y_{4}\right), \mathcal{A}_{Y_{4}}$ satisfies the Definition 2.31 of [24] given by E . Macrì and P . Stellari and is thus a non-commutative K3 category, that is to say a category that "looks like" the bounded derived category of a K3 surface.

However there exists non-commutative K3 categories that cannot be equivalent to the bounded derived category of a K3 surface (see for instance Proposition 4.8 of [18]), while bounded derived categories of K3 surfaces are all non-commutative K3 categories. Thus, non-commutative K3 categories can be considered as a "generalisation" of $D^{b}(S)$ for S a K3 surface.

Coming back to our Küchle fourfolds and fivefolds, one can see by looking at X_{4} 's Hodge diamond :

				1				
			0		0			
		0		1		0		
	0		0		0		0	
0		1		24		1		0
	0		0		0		0	
		0		1		0		
			0		0			
				1				

given for instance in the introduction of [20], that it could "contain" the Hodge diamond of a K3 surface. Küchle fourfolds of type c5 are not the only ones among the Fano fourfolds classified by Küchle whose Hodge diamond suggests that their bounded derived category could have a non-commutative K3 subcategory but the two other "candidates" for having such subcategories (namely Küchle fourfolds of type d3 and c7) are already known examples while the fourfolds of type c5 could give a new family of non-commutative K3 categories.

Why are we interested in non-commutative K3-categories: conjectured link to rationality and HyperKähler varieties

Such families of non-commutative K3-categories are interesting for mainly two reasons. First of all, in the case of a cubic fourfold C it has been conjectured by A. Kuznetsov that C is rational if and only if its Kuznetsov component \mathcal{A}_{C} is equivalent to $D^{b}(S)$ where S is a K3 surface.

It has also been conjectured by A. Kuznetsov and A. Perry that the Kuznetsov component of a Gushel-Mukai fourfold $G M$, which is also a non-commutative K3-category, is equivalent to the bounded derived category of a K3 surface when $G M$ is rational.

These non-commutative K3 categories seem thus to be linked to the geometry of their associated varieties and it could be interesting to find new examples of them (appearing as Kuznetsov component in the bounded derived category of a variety), especially since except for the bounded derived categories of K3 surfaces, there are only three families of known examples so far : the cubic fourfolds mentioned above, Gushel-Mukai fourfolds and the Debarre-Voisin varieties.

Moreover, as detailed by A. Kuznetsov in section 4.4 of [22], to each Kuznetsov component which is also a non-commutative K3 category it may be possible to associate a Hyper-Kähler variety, hence finding a family of varieties with a non-commutative K3-Kuznetsov component could also give an associated family of HyperKähler varieties.

To each of the non-trivial families of non-commutative K3-categories known so far corresponds an associated family of Hyper-Kähler varieties : these are listed in section 3.6.1 of [6], and we are going to talk about them more in detail later.

Main difficulty in proving the existence of a Kuznetsov component in $D^{b}\left(X_{4}\right)$

Unfortunately, in the case of Küchle fourfolds X_{4} of type c5 it is quite difficult to prove that such a Kuznetsov component exists : indeed in the three families of (non-trivial) examples which are known so far, to prove the existence of the Kuznetsov component and some of the properties required to be a non-commutative K3 category, one has to use Theorem 3.5 of [22]. But using this Theorem in the case of X_{4} would require to know a rectangular Lefschetz decomposition of $D^{b}\left(X_{5}\right)$ and such a decomposition is still to be found.

Yet, it is expected that such a rectangular Lefschetz decomposition exists. In order to be able to use this type of decomposition (together with Theorem 3.5 in [22]) to induce a semi-orthogonal decomposition of a Küchle fourfold of type c5 though, we would need it to be of the form described in Example 3.1 of [22]. Since our Küchle fourfold X_{4} is the zero locus of a global section of $\mathcal{O}_{X_{5}}(1)$ in the associated fivefold X_{5}, we would then need the line bundle \mathcal{L} of the rectangular Lefschetz decomposition to be $\mathcal{O}_{X_{5}}$ (1). By Lemma 2.8 of [22] and since we know from [20] that $\omega_{X_{5}}=\mathcal{O}_{X_{5}}(-2)$, there is then only one possibility for such a rectangular Lefschetz decomposition:

$$
<\mathcal{B}_{0}, \mathcal{B}_{0}(1)>
$$

In this case, the proof of Proposition 3.4 and Theorem 3.5 of [22] yield that the Serre functor of the Kuznetsov component $\mathcal{A}_{X_{4}}$ is the shift $[-4+6]=[2]$. Together with the above-mentioned Hodge diamond, it implies that if a Küchle fivefold of type c5 admits a rectangular Lefschetz decomposition as just described, then all the associated X_{4} have a Kuznetsov component which is very likely to be a non-commutative $K 3$ category.

While looking for a rectangular Lefschetz decomposition of X_{5}, A. Kuznetsov studied closely the geometry of general Küchle fivefolds of type c5 and proved in Theorem 5.3 of [20] that the Chow motive of a general X_{5} is of Lefschetz type. He deduced from this result the Hodge diamond and the Chow groups of X_{5}, claiming that explicit generators of the latter can be deduced from his geometrical description of X_{5}.

How to find a hint at what the Kuznetsov component could be without knowing a rectangular Lefschetz decomposition of $D^{b}\left(X_{5}\right)$

However, we are going here to look at X_{4} rather than X_{5}. Indeed, we know that if a semi-orthogonal decomposition of the form $D^{b}\left(X_{4}\right)=<\mathcal{A}_{X_{4}}, \mathcal{B}, \mathcal{B} \otimes \mathcal{L}, \ldots, \mathcal{B} \otimes \mathcal{L}^{\otimes k}>$ exists, then in a basis of the numerical Grothendieck group $K_{\text {num }}\left(X_{4}\right)$ whose elements $\left(e_{i}\right)_{i}$ belong in order to $\mathcal{A}_{X_{4}}, \mathcal{B}, \ldots, \mathcal{B} \otimes \mathcal{L}^{\otimes k}$, the matrix $M=\left(\chi\left(e_{i}, e_{j}\right)\right)_{i, j}$ should be of the form :

$$
M=\left(\begin{array}{cccc}
A & * & \ldots & * \\
0 & B_{0} & * & * \\
\vdots & 0 & \ddots & * \\
0 & \ldots & 0 & B_{k}
\end{array}\right)
$$

where

$$
A=\left(\chi\left(e_{i}, e_{j}\right)\right)_{e_{i}, e_{j} \in K_{\text {num }}\left(\mathcal{A}_{X_{4}}\right)}, B_{0}=\left(\chi\left(e_{i}, e_{j}\right)\right)_{e_{i}, e_{j} \in K_{\text {num }}(\mathcal{B})}, \ldots, B_{k}=\left(\chi\left(e_{i}, e_{j}\right)\right)_{e_{i}, e_{j} \in K_{\text {num }}\left(\mathcal{B} \otimes \mathcal{L}^{\otimes k}\right)} .
$$

Moreover, in the case of the cubic fourfolds it turns out that the triangulated subcategory \mathcal{B} is actually generated by an exceptional object (an element E in $D^{b}(C)$ such that $\operatorname{Hom}(E, E[m])=\mathbb{C} \delta_{0, m}$). Furthermore, in the very general case the matrix A is then of size 2 by 2 so if the Küchle fourfolds of type $c 5$ have a semi-orthogonal decomposition similar to the one of the cubic fourfolds, one can even expect the matrix M to be :

$$
M=\left(\begin{array}{ccccc}
m_{1} & m_{2} & * & \ldots & * \\
m_{3} & m_{4} & * & \ldots & * \\
0 & 0 & 1 & \ldots & * \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right) .
$$

Thus, finding a basis of $K_{\text {num }}\left(X_{4}\right)$ in which M has this form would give us a hint about what a semi-orthogonal decomposition of $D^{b}\left(X_{4}\right)$ could be : the first two elements of the basis could correspond to generators of the Kuznetsov component and the others to exceptional objects generating the $\mathcal{B} \otimes \mathcal{L}^{\otimes j}$ parts of the decomposition.

Link between the associated Hyper-Kähler and $K_{\text {num }}\left(\mathcal{A}_{X_{4}}\right)$: the already known examples

Furthermore, we hope that the part of M associated to the Kuznetsov component of X_{4} is actually :

$$
\left(\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
-1 & 4
\end{array}\right) .
$$

Indeed to each of the already known families of non-commutative $K 3$ categories corresponds a family of polarized Hyper-Kähler manifolds, in a way that allows us to formulate such a hope.

Before detailing this, let us recall that if $\Lambda:=\left(H^{2}(X, \mathbb{Z}), q_{X}\right)$ is the lattice associated to a $K 3^{[2]}$-type HyperKähler manifold X, endowed with its Beauville form (see for instance part 3.5 of [6]), then Λ is the orthogonal of a primitive vector v of square 2 in $\tilde{\Lambda}:=U^{\oplus 4} \oplus E_{8}(-1)^{\oplus 2}$. Moreover, from 3.7.1 of [6] we know that $\operatorname{Pic}(X)=$ $v^{\perp} \cap \tilde{\Lambda}_{\text {alg }}$. For very general X one can expect Pic (X), which contains the polarization h, to be rank 1. In particular we then must have $h . v=0$. The sublattice of $\tilde{\Lambda}$ generated by v and h has then intersection matrix :

$$
\left(\begin{array}{cc}
2 & 0 \\
0 & h^{2}
\end{array}\right) .
$$

As detailed below Remark 3.6 in [6], the embedding of this sublattice in $\tilde{\Lambda}$ is primitive if and only if the divisibility of h is 1 , this is the so-called "split case". In the "non split case", when the divisibility is 2 , together with the condition $h . v=0$ it implies that we can write $h=v+2 \lambda$ where λ is such that $\lambda . v=-1$ and $\lambda^{2}=2 d^{\prime}$ for some $d^{\prime} \in \mathbb{N}$. The intersection matrix of the lattice generated by v and λ is then:

$$
\left(\begin{array}{cc}
2 & -1 \\
-1 & 2 d^{\prime}
\end{array}\right) .
$$

Finally we have $h^{2}=(v+2 \lambda)^{2}=8 d^{\prime}-2$.
By part 2.1 in [13] and (7) in [6], we have that to a smooth cubic fourfold C corresponds a HK manifold X as above (namely the variety of lines in C), in the non-split case and with $d^{\prime}=1$. This is also mentioned in section 3.6.1 of [6] : the case of cubic fourfolds corresponds to $q(h)=6$ and $\gamma=2$, while Debarre-Voisin varieties and their associated HK manifolds (namely the zero locus of some vector bundle on $\operatorname{Gr}(6,10)$) correspond to $q(h)=22$ and $\gamma=2$, that is to say $d^{\prime}=3$ in the non-split case. Finally Gushel-Mukai varieties are in correspondence (see [5]) with the case $q(h)=2$ and $\gamma=1$, in other words $h^{2}=2$ in the split case : their associated HK
varieties are called double EPW sextic.

However, we don't know examples of the non-split case when $d^{\prime}=2$ (which corresponds to $q(h)=14$ and $\gamma=2$ with [6]'s notations). Since the examples for $d^{\prime}=1$ and 3 both arise in relation with families of Fano fourfolds whose bounded derived category admits a non-commutative K3-Kuznetsov component, one could hope that if the bounded derived categories of Küchle fourfolds of type c5 indeed contain a new family of such K3-categories, then there is a family of associated HK manifolds which will provide an example of the non-split case with $d^{\prime}=2$.

If it was the case, the intersection matrix of $K_{\text {num }}\left(\mathcal{A}_{X_{4}}\right)$, for X_{4} very general, should be of the abovementioned form, provided that it is, similarly to the already known cases, isomorphic to the lattice generated by v and λ of the associated HK manifold (see part 3.4 of [24] for more details).

It is also expected (as before, from what happens in the case of the cubic fourfolds, Gushel-Mukai fourfolds and Debarre-Voisin varieties) that this HK manifold could parameterize some geometrical objects or be isomorphic to a moduli space of stability conditions on $\mathcal{A}_{X_{4}}$. Finally, in such a case very general Küchle fourfolds of type c5 would give rise to a family in the moduli space ${ }^{4} \mathcal{M}_{14}^{(2)}$ of polarized HK fourfolds of $K 3{ }^{[2]}$-type such that $h^{2}=14$ and $\operatorname{div}(h)=2$, which is believed to be unirational, again by analogy with the already known cases.

First goal

The first goal of this thesis was therefore the following :

- find a basis $\left(e_{1}, \ldots, e_{n}\right)$ of $K_{\text {num }}\left(X_{4}\right)$ over \mathbb{Z};
- compute the matrix $M=\left(\chi\left(e_{i}, e_{j}\right)\right)_{1 \leq i, j \leq n}$ whose coefficients are Euler characteristics between elements of our basis;
- find a matrix $R \in G L(n, \mathbb{Z})$ such that $R M R^{-1}$ has the form mentioned earlier.

How to find a family in $K_{\text {num }}\left(X_{4}\right)$ which could be a basis

According to the Hodge diamond of X_{4}, if $D^{b}\left(X_{4}\right)$ admits a semi-orthogonal decomposition as described above and if the Kuznetsov component induces a 2-dimensional subspace of $K_{\text {num }}\left(X_{4}\right)$, then for X_{4} very general $K_{\text {num }}\left(X_{4}\right)$ should be 8-dimensional. Moreover, in this case, for X_{4} very general we should have that in a basis of $K_{\text {num }}\left(X_{4}\right)$, five elements should come from $H^{2}\left(X_{4}\right)$ (assuming we can recover the structure sheaf of a line and a skyscraper sheaf from these five elements), and three from $H^{4}\left(X_{4}\right)$.

Therefore, to start with, we look for a free family of eight elements in $K_{\text {num }}\left(X_{4}\right)$ such that five elements come from line bundles and the three others are associated to structure sheaves of surfaces in X_{4}.

As elements associated to line bundles we can simply take $\left\{\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(1), \mathcal{O}_{X_{4}}(2), \mathcal{O}_{X_{4}}(3), \mathcal{O}_{X_{4}}(4)\right\}$ (we will actually see later that this would only give a sublattice of $K_{\text {num }}\left(X_{4}\right)$, and will thus replace the last two line bundles by the structure sheaf of a line and a skyscraper sheaf); the corresponding coefficients of M can then be computed using Borel-Bott-Weil Theorem.

Concerning the last three elements however, things become more complicated. We can use the description of the geometry of general Küchle fourfolds and fivefolds of type c5 given in [20] to find surfaces whose structure sheaves will give the last three elements in our basis. In particular, as proved in [20], for general X_{4} there
is a diagram :

where the indices give the dimension of the associated varieties, and π and $\bar{\pi}$ are blow-ups of the fourfolds X_{4} and $\overline{X_{4}}$, respectively in Σ_{2} and Z_{3} with respectively exceptional divisor D_{3} and exceptional locus \bar{D}_{2}. The maps $i, \bar{i}, j, \bar{j}^{\prime}$ and \bar{j} are embeddings, Z_{3} is a scroll over S_{2} and \bar{D}_{2} is a ruled surface over the curve Γ_{1}.

There are three surfaces which appear in this diagram: Σ_{2}, \bar{D}_{2} and S_{2}. However neither S_{2} nor \bar{D}_{2} are actual surfaces in X_{4}; we can use them to induce such surfaces but in both cases it requires to project surfaces in \tilde{X}_{4} to X_{4} using the contraction π. Unfortunately, it is quite complicated to understand whether the images of these surfaces by π have "bad" contractions or not, which makes it very hard to compute Euler characteristics involving them. This is why we didn't manage to complete our first goal, and adopted a new strategy, with the help of Benjamin Sung.

We can look at $K_{\text {num }}\left(\tilde{X}_{4}\right)$ instead
On the other hand, looking at a matrix of Euler characteristics between elements in a basis of $K_{\text {num }}\left(\tilde{X}_{4}\right)$ instead of $K_{\text {num }}\left(X_{4}\right)$ turns out to be easier, since in this case we don't have problems with contractions. It may also be possible to recover the matrix M related to X_{4} from the one, let us denote it \tilde{M}, related to \tilde{X}_{4}, using mutation functors and the semi-orthogonal decomposition of $D^{b}\left(\tilde{X}_{4}\right)$ given by Theorem 3.5 of [2]. Indeed this Theorem allows to find a semi-orthogonal decomposition of bounded derived categories of blow-ups. All this is detailed in subsection 2.3.2.

Moreover, as we will see, the determinants of these two matrices M and \tilde{M} are equal, hence if there is indeed a basis in which the matrix M has the above-mentioned form, then we can expect this determinant to be $m_{1} m_{4}-m_{2} m_{3}$, which we hope thus to be 7 as mentioned earlier.

Second goal

Our second goal became then to find a basis of $K_{\text {num }}\left(\tilde{X}_{4}\right)$ over \mathbb{Z} and then compute the associated matrix of Euler characteristics.

Main results

In section 2.3.1 we compute the following matrix :

$$
M_{1}=\left(\chi\left(e_{i}, e_{j}\right)\right)_{1 \leq i, j \leq 5}=\left(\begin{array}{ccccc}
1 & 20 & 124 & 1 & 1 \\
1 & 1 & 20 & 0 & 1 \\
20 & 1 & 1 & -1 & 1 \\
0 & -1 & -2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

where

$$
\left(e_{1}, \ldots, e_{5}\right)=\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(1), \mathcal{O}_{X_{4}}(2), \mathcal{O}_{l}, \mathcal{O}_{p}\right)
$$

with \mathcal{O}_{l} the structure sheaf of a line in Σ_{2} and \mathcal{O}_{p} a skyscraper sheaf. It corresponds to a sublattice of $K_{\text {num }}\left(X_{4}\right)$, but unfortunately it is not clear whether this sublattice is primitive or not.

Adding a sixth element $e_{6}:=\mathcal{O}_{\Sigma_{2}}$ to the family $\left\{e_{1}, \ldots, e_{5}\right\}$ gives then the matrix :

$$
M_{2}=\left(\chi\left(e_{i}, e_{j}\right)\right)_{1 \leq i, j \leq 6}=\left(\begin{array}{cccccc}
1 & 20 & 124 & 1 & 1 & 1 \\
1 & 1 & 20 & 0 & 1 & 1 \\
20 & 1 & 1 & -1 & 1 & 7 \\
0 & -1 & -2 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 7 & 19 & 0 & 0 & 2
\end{array}\right)
$$

Yet as discussed above, we are still missing at least two elements to be able to hope that we are considering a basis of $K_{\text {num }}\left(X_{4}\right)$.

In section 2.1.2, we consider a free family \mathcal{F}_{1} of 14 elements in $K_{\text {num }}\left(\tilde{X}_{4}\right)$, which seems to be a "good candidate" for being a basis. We can compute the associated matrix of Euler characteristics only up to an intersection number b, which gives :

$$
\tilde{M}=\left(\begin{array}{cccccccccccccc}
1 & 0 & 0 & -1 & -1 & -1 & 1 & 2 & 3 & -1 & 0 & 3 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & -1 & 1 & 2 & 3 & -1 & 0 & 3 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & -1 & 1 & 2 & 3 & -1 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 & 6 & -1 & -7 & -19 & -5 & 12 & 10 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 0 & -3 & -12 & -6 & 12+b & 19 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -6 & -6 & 12+2 b & 28 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 20 & 124 & 0 & -12 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 20 & 0 & 0 & 37 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 20 & 1 & 1 & 12 & 156 & 127 & -1 & 1 \\
0 & 0 & 0 & -1 & 1 & 4 & 1 & 7 & 19 & 1 & -36 & 56 & 0 & 0 \\
0 & 0 & 0 & 36 & 36+b & 36+2 b & -36 & 0 & 180 & -156 & 48 & -24 & 0 & 0 \\
3 & 3 & 3 & -42 & -33 & -24 & 79 & 79 & 205 & 76 & -24 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

In section 2.2, we consider another free family \mathcal{F}_{2} of 14 elements in $K_{\text {num }}\left(\tilde{X}_{4}\right)$ which may be a basis if $K_{\text {num }}\left(X_{4}\right)$ is 8-dimensional, and the matrix of Euler characteristics between elements of this family is :

$$
\tilde{M}_{2}=\left(\begin{array}{cccccccccccccc}
1 & 20 & 124 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & -12 & 1 & 1 & 1 \\
1 & 1 & 20 & 1 & 0 & 10 & 2 & 2 & 2 & 1 & 0 & 0 & 1 & 1 \\
20 & 1 & 1 & 7 & 0 & 43 & 11 & 11 & 11 & 7 & 156 & 0 & 1 & 1 \\
1 \\
0 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & -1 & 0 & -84 & 0 & 1 & 0 \\
-1 & -7 & -19 & -1 & 1 & -2 & -2 & -2 & -2 & -2 & 12 & 0 & 1 & 0 \\
0 & 24 & 72 & 10 & 10 & -1 & 0 & 0 & 0 & 0 & -12 & 0 & 0 & 0 \\
0 & 6 & 20 & 2 & 2 & 0 & 1 & 0 & 0 & 0 & -4 & 0 & 0 & 0 \\
0 & 6 & 20 & 2 & 2 & 0 & 0 & 1 & 0 & 0 & -4 & 0 & 0 & 0 \\
0 & 6 & 20 & 2 & 2 & 0 & 0 & 0 & 1 & 0 & -4 & 0 & 0 & 0 \\
1 & 7 & 19 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
-36 & 0 & 180 & -60 & 36 & -12 & -4 & -4 & -4 & 0 & 48 & 0 & 0 & 0 \\
0 & -1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

We are missing one intersection number (namely b) between two surfaces in \tilde{X}_{4} to be able to use right mutation functors and find a family in $\pi^{*} K_{\text {num }}\left(X_{4}\right)$ induced by \mathcal{F}_{2}. Yet we can express the images of these mutation functors we are interested in, in terms of this intersection number b. The associated family and matrix are detailed in section 2.3.2, still in terms of b. This new approach is based on the ideas of Benjamin Sung.

What could be done next

Before being able to get an intuition about a possible semi-orthogonal decomposition of $D^{b}\left(X_{4}\right)$ there are thus at least four steps missing :

- One should check that the matrices we obtained (or at least some of them) do not correspond to strict sublattices of $K_{\text {num }}\left(\tilde{X}_{4}\right)$ or $K_{\text {num }}\left(X_{4}\right)$.
- One should compute the intersection number b we are missing. This could also allow one to find a matrix associated to $\pi^{*}\left(K_{\text {num }}\left(X_{4}\right)\right)$ and thus M, as we will discuss in section 2.3.2.
- Then one should look for an invertible matrix $R \in G L(8, \mathbb{Z})$ such that $R M R^{-1}$ has the above-mentioned form.
- Finally, proving that $K_{\text {num }}\left(X_{4}\right)$ is 8-dimensional for X_{4} very general would insure us that we would not be missing any part of a possible decomposition of $D^{b}\left(X_{4}\right)$ by studying M.

Organization of the thesis

In section 1 we recall various results and notations from [20] which we are going to use all along. In section 2.1 we find a first family \mathcal{F}_{1} of 14 elements in $K_{\text {num }}\left(\tilde{X}_{4}\right)$ and compute the associated matrix of Euler characteristics up to an intersection number. In section 2.2 we give another family \mathcal{F}_{2} of 14 elements in $K_{\text {num }}\left(\tilde{X}_{4}\right)$ and the associated matrix \tilde{M}_{2}. In section 2.3 .1 we give two matrices of Euler characteristics between respectively 5 and 6 elements in $K_{\text {num }}\left(X_{4}\right)$. In order to get a basis of $K_{\text {num }}\left(X_{4}\right)$, one would need more than 6 elements, as we detailed it previously, yet it would already be interesting to know whether the sublattices generated by our 5 and 6 elements are primitive in $K_{\text {num }}\left(X_{4}\right)$. We briefly discuss this without reaching a conclusion. In section 2.3.2, we explain how we hope to find a family in $K_{\text {num }}\left(X_{4}\right)$ and the associated matrix using a family in $K_{\text {num }}\left(\tilde{X}_{4}\right)$, its matrix and right mutation functors. We apply this method to the family \mathcal{F}_{1} and compute a matrix, depending on the intersection number b, which should correspond to a family in $\pi^{*} K_{\text {num }}\left(X_{4}\right)$. In section 3 we give a collection of small results about the geometry of \tilde{X}_{4}, some of which will be used to compute some Euler characteristics. In section 4 we detail the computations of Euler characteristics between elements of \mathcal{F}_{1} and in section 5 we do the same with elements of \mathcal{F}_{2}. Finally in Appendix 6.1 we briefly detail some calculations used in section 2.3, in Appendix 6.2 we give another way (not necessarily faster but which we used to check some calculations) to compute some of the Euler characteristics appearing in section 5, while in Appendix 6.3 and 6.4 we give the codes we used in respectively Macaulay2 and Scilab to compute some dimensions mentioned in section 4.2.

Chapter 1

Some results on the geometry of Küchle fourfolds and fivefolds of type $c 5$

In this section we are going to recall some results and notations from [20] which we are going to use in the next sections.

In his article [20], A. Kuznetsov describes the geometry of general Küchle fivefolds of type c5, in particular he shows that under some general assumptions that we are going to mention later, such a Küchle fivefolds X_{5} contains a threefold F_{3}, such that the blow-up of X_{5} in F_{3} is also the blow-up of another fivefold in a smooth scroll over a del Pezzo surface of degree 6 . This will be mentioned in Theorem 1.2.1 below. Moreover, since each Küchle fourfold of type c5 X_{4} is a hyperplane section of a Küchle fivefold of type c5, the results about the geometry of X_{5} induce similar statements for X_{4}, which are gathered here in Theorem 1.2.3. We will need Theorem 1.2.3 to find elements in $K_{\text {num }}\left(X_{4}\right)$ and $K_{\text {num }}\left(\tilde{X}_{4}\right)$ associated to structure sheaves of surfaces (namely Σ_{2}, \bar{D}_{2} and a blow-up of S_{2}). Since these surfaces actually come from the geometry of X_{5}, we will also need a lot of the results about X_{5} in [20] to compute the associated Euler characteristics. We will then keep the same notations as in [20] in most cases.

1.1 Notations and assumptions

First of all, here is a list of some notations and conventions we are going to keep from [20].

- If \mathcal{V} is a vector bundle over a scheme S then $p: \mathbb{P}_{S}(\mathcal{V}) \rightarrow S$ is the associated projective bundle and $\mathcal{O}(1)$ (also denoted sometimes $\mathcal{O}\left(V_{\mathbb{P}_{S}(\mathcal{V})}\right)$) will be the ample generator of the relative Picard group such that $p_{*} \mathcal{O}(1) \cong \mathcal{V}^{\vee}$.
- Unless otherwise mentioned, all functors will be considered to be derived so for instance f_{*} will actually mean $R^{*} f_{*}$.
- W will be a 7 -dimensional vector space over \mathbb{C} and we will denote by U_{k} a k-dimensional vector subspace of W.
- We will denote by \mathcal{U}_{k} the tautological sub-bundle of $\operatorname{Gr}(k, W)$ and define $\mathcal{U}_{k}^{\perp}:=\left(W / \mathcal{U}_{k}\right)^{\vee}$ where $\left(W / \mathcal{U}_{k}\right)$ fits in the following short exact sequence : $0 \rightarrow \mathcal{U}_{k} \rightarrow W \otimes \mathcal{O}_{\operatorname{Gr}(k, W)} \rightarrow W / \mathcal{U}_{k} \rightarrow 0$.
- Let ϕ be a p-form on a vector space V and $U \subset V$ a vector subspace of dimension k. Then we will say that U is ϕ-isotropic if $k \geq p$ and $\bigwedge^{k} U \bullet \phi=0$, where $\bullet: \bigwedge^{r} V \otimes \bigwedge^{s} V^{\vee} \rightarrow \bigwedge^{r-s} V$ is the convolution induced by the pairing $V \otimes V^{\vee} \rightarrow \mathbb{C}$ for $r \geq s$. If $k \leq p$ and $\phi \bullet \wedge^{k} U=0$ we will say that U is annihilated by ϕ.

By definition, a Küchle fivefold of type c5 is the zero locus of a global section of $\mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{U}_{3}(1)$ in $\operatorname{Gr}(3,7)$, and a Küchle fourfold of type $c 5$ is the zero locus of a global section of $\mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{U}_{3}(1) \oplus \mathcal{O}_{\operatorname{Gr}(3,7)}(1)$ in $\operatorname{Gr}(3,7)$. We will always denote by λ, μ and ν, global sections of respectively $\mathcal{U}_{3}^{\perp}(1), \mathcal{U}_{3}(1)$ and $\mathcal{O}(1)$ on $\operatorname{Gr}(3, W)$. Then λ is a 4 -form on W, μ is a 2 -form on W and ν is a 3 -form on W (see the introduction of [20]). We will also denote by $X_{5}^{\mu, \lambda}$ and $X_{4}^{\mu, \lambda, \nu}$ the associated fivefold and fourfold. However when there is no confusion about which global sections we are considering, we will simply use X_{5} and X_{4}.
Moreover, we are going to make the same assumptions as in [20] in order to insure good properties of X_{5} and X_{4} (for instance smoothness). Theses assumptions are mainly taken from section 3 of [20].

- We assume that the same assumptions on λ, μ and ν hold as in the article. In particular this implies, using again the same notations :

1. $\operatorname{rank}(\mu)=6$ and $W=\mathbb{C} w_{0} \oplus \bar{W}$ where $\mu\left(w_{0},.\right)=0$ on W and μ is non degenerate on \bar{W}.
2. We can write $\lambda=w_{0}^{\vee} \wedge \bar{\lambda}+\lambda^{\prime}$ where λ^{\prime} is a 4 -form on \bar{W} and $\bar{\lambda}$ is a 3 -form on \bar{W}.
3. We can write $\bar{W}=A_{1} \oplus A_{2}$ with $A_{1}=<x_{1}, x_{2}, x_{3}>, A_{2}=<x_{4}, x_{5}, x_{6}>$ and $\bar{\lambda}=x_{123}+x_{456}$, $\lambda^{\prime}=x_{1256}+x_{1346}+x_{2345}$. Moreover, λ^{\prime} induces a non degenerate pairing between $\bigwedge^{2} A_{1}$ and $\bigwedge^{2} A_{2}$.
4. In the basis mentioned just above, we have $\mu^{2}=\mu \wedge \mu=M_{1} x_{1456}+M_{2} x_{2456}+M_{3} x_{3456}+M_{4} x_{1234}+$ $M_{5} x_{1235}+M_{6} x_{1236}+K_{1} x_{2345}+K_{2} x_{1346}+K_{3} x_{1256}$ and
$\mu=\left(\begin{array}{cccccc}0 & M_{4} K_{3} & -M_{5} K_{2} & M_{1} M_{4} & M_{1} M_{5} & K_{2} K_{3}+M_{1} M_{6} \\ -M_{4} K_{3} & -M_{6} & M_{6} K_{1} & M_{2} M_{4} & K_{1} K_{3}+M_{2} M_{5} & M_{2} M_{6} \\ M_{5} K_{2} & -M_{6} K_{1} & K_{1} & 0 & K_{1} K_{2}+M_{3} M_{4} & M_{3} M_{5} \\ -M_{1} M_{4} & -M_{2} M_{4} & -K_{1} K_{2}-M_{3} M_{4} M_{6} \\ -M_{1} M_{5} & -K_{1} K_{3}-M_{2} M_{5} & -M_{3} M_{5} & -M_{1} K_{1} & M_{1} K_{1} & -M_{2} K_{2} \\ -K_{2} K_{3}-M_{1} M_{6} & -M_{2} M_{6} & -M_{3} M_{6} & M_{2} K_{2} & -M_{3} K_{3} & M_{3} K_{3}\end{array}\right)$
Moreover the K_{i} are pairwise distinct, all the M_{i} and K_{i} are different from 0 and we assume :

$$
\begin{equation*}
M_{1} M_{6} K_{1}+M_{2} M_{5} K_{2}+M_{3} M_{4} K_{3}+K_{1} K_{2} K_{3} \neq 0 \tag{1.1}
\end{equation*}
$$

5. We assume that μ induces a non degenerate pairing between A_{1} and A_{2}, and that the A_{i} are not Lagrangian for μ.
6. We will denote by $U_{k, A_{i}}$ a k-dimensional vector subspace of A_{i}.

Moreover if $U_{2, A_{1}} \oplus U_{1, A_{2}}$ is μ isotropic then λ^{\prime} does not annihilate it. Similarly, if $U_{1, A_{1}} \oplus U_{2, A_{2}}$ is μ isotropic then λ^{\prime} does not annihilate it.

- We will denote by \bar{U}_{k} a k dimensional subspace of \bar{W} and by $\overline{\mathcal{U}_{k}}$ the tautological subbundle of $\operatorname{Gr}(k, \bar{W})$.
- Unless otherwise mentioned, for any vector space U, U^{\perp} will denote the μ-orthogonal of U.

Finally here are some more notations and results that we take from section 4 of [20]. We will use them for the statement of the main results from [20].

- $\operatorname{SGr}_{\mu}(3, \bar{W})$ is the subset of $\operatorname{Gr}(3, \bar{W})$ parametrizing all the $\bar{U}_{3} \subset \bar{W}$ which are μ isotropic.
- Under the above mentioned hypothesis, X_{5} is a smooth Fano fivefold which parametrizes the $U_{3} \subset W$ annihilated by λ and μ isotropic.
- $\bar{X}_{5}=\operatorname{SGr}_{\mu}(3, \bar{W})_{\bar{\lambda}}$ parametrizes all the $\bar{U}_{3} \subset \bar{W}$ which are μ and $\bar{\lambda}$ isotropic.
- $\operatorname{SFl}_{\mu}(3,4 ; W) \subset \operatorname{SFl}(3,4 ; W)$ parametrizes all the $U_{3} \subset U_{4} \subset W$ such that U_{3} and U_{4} are μ isotropic.

1.2 Main results

Here are the main results of [20] that we are going to use all along the next sections. Some of these results are gathered here in one Theorem or Proposition, but it is indicated next to each of these in parenthesis from which parts of [20] they are taken.

Theorem 1.2.1 (Theorem 4.2, section 4.2, section 4.3, Proposition 4.13, section 4.6, Proposition 4.6, section 4.4). If X_{5} is a Küchel fivefold as defined in the previous subsection, we have the following diagram :

Where

1. i and \bar{i} are embeddings.
2. The maps having the label \mathbb{P}^{1} have fibers isomorphic to \mathbb{P}^{1}.
3. π is the blowup of X_{5} in F_{3}, E_{4} is the associated exceptional divisor.
4. $\bar{\pi}$ is the blowup of \bar{X}_{5} in Z_{3}, \bar{E}_{4} is the associated exceptional divisor.
5. $F_{3} \cong \mathrm{Fl}\left(1,2 ; A_{1}\right) \cong \mathrm{Fl}\left(1,2 ; A_{2}\right)$ and F_{3} parametrizes all the $U_{3} \in X_{5}$ such that $U_{3} \cong \mathbb{C} w_{0} \oplus \bar{U}_{2}$.
6. $\tilde{X}_{5} \subset \operatorname{SFl}_{\mu}(3,4 ; W)$ parametrizes the $U_{3} \subset U_{4}$ such that both U_{3} and U_{4} are μ and λ isotropic.
7. π is induced by the $\operatorname{map} \operatorname{SFl}_{\mu}(3,4 ; W) \rightarrow \operatorname{SGr}_{\mu}(3, W)$ which is defined by $U_{3} \subset U_{4} \mapsto U_{3}$ so $\pi\left(U_{3}, U_{4}\right)=U_{3}$.
8. $\bar{\pi}$ is induced by the map $\operatorname{SFl}_{\mu}(3,4 ; W) \rightarrow \operatorname{SGr}_{\mu}(3, \bar{W})$ which is defined by $U_{3} \subset \bar{U}_{3} \oplus \mathbb{C} w_{0} \mapsto \bar{U}_{3}$ so $\bar{\pi}\left(U_{3}, U_{4}\right)=$ $U_{4} /<w_{0}>$. This is well defined since we assumed that μ has rank 6 on W, thus a 4-dimensional sub-vector space U_{4} is μ-isotropic only if it contains w_{0}.
9. $Z_{3}=\operatorname{SGr}_{\mu}(3, \bar{W}) \times{ }_{\operatorname{Gr}(4, W)} \operatorname{Gr}_{\operatorname{Gr}_{\lambda}(5, W)}\left(4, \mathcal{U}_{5}\right)$ and Z_{3} parametrizes all the $\bar{U}_{3} \oplus \mathbb{C} w_{0} \subset \bar{U}_{4} \oplus \mathbb{C} w_{0}$ such that \bar{U}_{4} is $\bar{\lambda}, \lambda^{\prime}$ and $\mu \wedge \mu$ isotropic and \bar{U}_{3} is μ isotropic.
10. $\sigma\left(\bar{U}_{3}, \bar{U}_{4}\right)=\bar{U}_{4}$. S_{2} parametrizes the $\bar{U}_{4}=U_{2, A_{1}} \oplus U_{2, A_{2}}$ such that \bar{U}_{4} is λ^{\prime}-isotropic and $\bar{U}_{4}^{\perp} \subset \bar{U}_{4}$ is 2-dimensional.
The fiber of σ for a given \bar{U}_{4} is then $\left\{<\bar{U}_{4}^{\perp}, v>\subset \bar{U}_{4}, v \in \bar{U}_{4} / \bar{U}_{4}^{\perp}\right\} \cong \mathbb{P}\left(\bar{U}_{4} / \bar{U}_{4}^{\perp}\right) \cong \mathbb{P}^{1}$.
11. S_{2} is a del Pezzo surface of degree 6. It is cut out by two divisors of bidegree $(1,1)$ in $\mathbb{P}\left(\bigwedge^{2} A_{1}\right) \times \mathbb{P}\left(\bigwedge^{2} A_{2}\right)$. If \bar{h}_{i} is the hyperplane class on $\bigwedge^{2} A_{i}$ then $\omega_{S}=\mathcal{O}\left(-\bar{h}_{1}-\bar{h}_{2}\right)$.

The following Proposition is a technical result that we will use later.
Proposition 1.2.2 (Section 4.4, Lemma 4.8, Corollary 4.9).

1. $Z_{3}=\mathbb{P}_{S}\left(\mathcal{V}_{S}\right)$ where \mathcal{V}_{S} is a rank 2 vector bundle on S_{2} defined by the short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}\left(-\bar{h}_{1}\right) \oplus \mathcal{O}\left(-\bar{h}_{2}\right) \rightarrow \mathcal{U}_{2, A_{1}} \oplus \mathcal{U}_{2, A_{2}} \rightarrow \mathcal{V}_{S} \rightarrow 0 \tag{1.3}
\end{equation*}
$$

Moreover \mathcal{V}_{S} is selfdual (since it is of rank 2 and $c_{1}\left(\mathcal{V}_{S}\right)=0$).
2. There are smooth rational curves $\bar{C}_{1}, \bar{C}_{2} \subset S_{2}$ such that $\bar{C}_{i} \in\left|\bar{h}_{i}\right|$ and the following conditions are equivalent

- $p=U_{2, A_{1}} \oplus U_{2, A_{2}} \in S_{2}$ is in \bar{C}_{i}.
- $U_{2, A_{i}}$ is μ isotropic.
- $\mu_{i} \in U_{2, A_{i}}$ where μ_{i} is a generator of $A_{i}^{\perp} \cap A_{i}$ (which is one dimensional since we assumed that A_{i} is not μ-Lagrangian).
- $U_{2, A_{i}} \cap\left(U_{2, A_{1}} \oplus U_{2, A_{2}}\right)^{\perp}$ is 1-dimensional.

3. There exists smooth rational curves $C_{1}, C_{2} \subset Z_{3}$ such that $C_{i} \cong \bar{C}_{i}$ (and $\sigma\left(C_{i}\right)=\bar{C}_{i}$) and $\bar{U}_{3} \subset U_{2, A_{1}} \oplus U_{2, A_{2}}$ is in C_{i} if and only if $U_{2, A_{i}} \subset \bar{U}_{3}$ with $i \in\{1,2\}$. Moreover, $C_{1} \cap C_{2}=\emptyset$.

Finally, here are the main results about the geometry of X_{4} that we will use :
Theorem 1.2.3 (Theorem 5.1). If $X_{4}^{\mu, \lambda, \nu}$ is as defined in the previous subsection, with ν defined up to $\lambda(w,$.$) and$ $\mu \wedge v$ for any $w \in W$ and $v \in W^{\vee}$, then we have the following diagram :

Where:

1. The maps i, \bar{i}, π and $\bar{\pi}$ are induced by the corresponding maps in (1.2).
2. The maps having the label \mathbb{P}^{1} have fibers isomorphic to \mathbb{P}^{1}.
3. π is the blowup of X_{4} in Σ_{2} and D_{3} is the associated exceptional divisor.
4. $\bar{\pi}$ is the blowup of \bar{X}_{4} in Z_{3} and \bar{D}_{2} is the associated exceptional locus.
5. \bar{X}_{4} has singularities along the curve Γ_{1}.
6. $X_{4}=X_{5} \cap H_{\nu}$ where H_{ν} is the hyperplane which is the zero locus of the global section ν of $\mathcal{O}_{\operatorname{Gr}(3, W)}(1)$. Thus X_{4} parametrizes the $U_{3} \subset W$ which are μ and ν isotropic, and annihilated by λ.
7. $\Sigma_{2}=H_{\nu} \cap F_{3}$ is a del Pezzo surface of degree 6 . It is cut out by two divisors of bidegree $(1,1)$ in $\mathbb{P}\left(A_{1}\right) \times \mathbb{P}\left(A_{2}\right)$. If h_{i} is the hyperplane class on A_{i} then $\omega_{\Sigma_{2}}=\mathcal{O}\left(-h_{1}-h_{2}\right)$. Since $\Sigma_{2} \subset F_{3}$ we have that $U_{3} \in \Sigma_{2}$ only if $U_{3}=\mathbb{C} w_{0} \oplus \bar{U}_{2}$.
8. $D_{3}=\Sigma_{2} \times_{F_{3}} E_{4}$ is the preimage of Σ_{2} by π.
9. $\tilde{X}_{4}=\tilde{X}_{5} \times{ }_{X_{5}} X_{4}$ is the preimage of X_{4} by π.
10. \bar{X}_{4} is cut in \bar{X}_{5} by the pull back of ν to \tilde{X}_{4} : it is a quadratic section of \bar{X}_{5} containing Z_{3}.

1.3 Divisors and projective bundles

Here we are going to recall some results and notations about some divisors and projective bundles that appear in [20] and are also going to be useful for us.

Proposition 1.3.1 (section 4.7, Lemma 4.14, section 4.4). We have $E_{4} \cong \mathbb{P}_{F}\left(\mathcal{V}_{F}\right), \bar{E}_{4} \cong \mathbb{P}_{Z}\left(\mathcal{V}_{Z}\right)$ and $Z \cong \mathbb{P}_{S}\left(\mathcal{V}_{S}\right)$ with \mathcal{V}_{S} defined by (1.3), \mathcal{V}_{F} is the monad of

$$
\begin{equation*}
0 \rightarrow \mathcal{O}\left(-h_{1}\right) \oplus \mathcal{O}\left(-h_{2}\right) \rightarrow \bar{W} \otimes \mathcal{O} \rightarrow \mathcal{O}\left(h_{1}\right) \oplus \mathcal{O}\left(h_{2}\right) \rightarrow 0 \tag{1.5}
\end{equation*}
$$

on F_{3} and there is a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{V}_{Z} \rightarrow \bigwedge^{3} \overline{\mathcal{U}}_{3} \oplus \bigwedge^{2} \overline{\mathcal{U}}_{3} \rightarrow \mathcal{O}\left(-\bar{h}_{1}\right) \oplus \mathcal{O}\left(-\bar{h}_{2}\right) \rightarrow 0 \tag{1.6}
\end{equation*}
$$

on Z_{3}.
Moreover, we have

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}\left(-\bar{h}_{1}\right) \oplus \mathcal{O}\left(-\bar{h}_{2}\right) \longrightarrow \overline{\mathcal{U}}_{3} \longrightarrow \mathcal{O}\left(-V_{Z}\right) \longrightarrow 0 \tag{1.7}
\end{equation*}
$$

on Z_{3}.
Corollary 1.3.2 (Theorem 5.1). As a result, $D_{3} \cong \mathbb{P}_{\Sigma_{2}}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)$ and $\bar{D}_{2} \cong \mathbb{P}_{\Gamma}\left(\left.\mathcal{V}_{Z}\right|_{\Gamma}\right)$.
Definition 1.3.3 (Section 4.7). We are going to use the following notations :

- h_{i} is the hyperplane class on $\mathbb{P}\left(A_{i}\right)$.
- \bar{h}_{i} is the hyperplane class on $\mathbb{P}\left(\bigwedge^{2} A_{i}\right)$.
- V_{E} is the hyperplane class on $E_{4} \cong \mathbb{P}_{F}\left(\mathcal{V}_{F}\right)$ (thus the pushforward of $\mathcal{O}_{E_{4}}\left(V_{E}\right)$ on F_{3} is \mathcal{V}_{F}^{\vee}).
- $V_{\bar{E}}$ is the hyperplane class on $\bar{E}_{4} \cong \mathbb{P}_{Z}\left(\mathcal{V}_{Z}\right)$ (the pushforward of $\mathcal{O}_{\bar{E}_{4}}\left(V_{\bar{E}}\right)$ on Z_{3} is \mathcal{V}_{Z}^{\vee}).
- V_{Z} is the hyperplane class on $Z_{3} \cong \mathbb{P}_{S}\left(\mathcal{V}_{S}\right)$ (the pushforward of $\mathcal{O}_{Z_{3}}\left(V_{Z}\right)$ on S_{2} is \mathcal{V}_{S}^{\vee}).
- h is the hyperplane class on $\operatorname{Gr}(3, W)$.
- \bar{h} is the hyperplane class on \bar{X}_{5}.
- e is the class of E_{4} and \bar{e} is the class of \bar{E}_{4}.

Most of the times pull backs or restrictions of these hyperplane classes to various varieties in (1.2) and (1.4) will keep the same notation.

Lemma 1.3.4 (Lemma 4.15, Remark 4.7). In $\operatorname{Pic}\left(\tilde{X}_{5}\right)$ the following holds

$$
\begin{equation*}
\bar{h}=h-e, \quad h=2 \bar{h}-\bar{e}, \quad \bar{e}=h-2 e, \quad e=\bar{h}-\bar{e} . \tag{1.8}
\end{equation*}
$$

In $\operatorname{Pic}\left(F_{3}\right)$ we have

$$
\begin{equation*}
h=h_{1}+h_{2} . \tag{1.9}
\end{equation*}
$$

In $\operatorname{Pic}\left(E_{4}\right)$ we have

$$
\begin{equation*}
V_{E}=-e \tag{1.10}
\end{equation*}
$$

In $\operatorname{Pic}\left(Z_{3}\right)$ and $\mathrm{CH}^{3}\left(Z_{3}\right)$ we have

$$
\begin{equation*}
\bar{h}=V_{Z}+\bar{h}_{1}+\bar{h}_{2}, \quad \bar{h}_{1}^{3}=\bar{h}_{2}^{3}=\bar{h}_{1} \bar{h}_{2}^{2}=\bar{h}_{1}^{2} \bar{h}_{2}=0 . \tag{1.11}
\end{equation*}
$$

$\ln \operatorname{Pic}\left(\bar{E}_{4}\right)$ we have

$$
\begin{equation*}
h=V_{\bar{E}} . \tag{1.12}
\end{equation*}
$$

In $\operatorname{Pic}\left(S_{2}\right)$ and $\mathrm{CH}^{2}\left(S_{2}\right)$ we have

$$
\begin{array}{ll}
\bar{h}_{1} \bar{h}_{2}=2, & \bar{h}_{1}^{2}=\bar{h}_{2}^{2}=1 . \\
h_{1} h_{2}=2, & h_{1}^{2}=h_{2}^{2}=1 . \tag{1.14}
\end{array}
$$

In $\operatorname{Pic}\left(\Sigma_{2}\right)$ and $\mathrm{CH}^{2}\left(\Sigma_{2}\right)$ we have

In $\mathrm{CH}^{2}\left(Z_{3}\right)$ the curve Γ_{1} defined in (1.4) has class:

$$
\begin{equation*}
\left[\Gamma_{1}\right]=4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right) . \tag{1.15}
\end{equation*}
$$

Lemma 1.3.5 (Lemma 4.16). In $\mathrm{CH}^{2}\left(E_{4}\right), \mathrm{CH}^{2}\left(\bar{E}_{4}\right)$ and $\mathrm{CH}^{2}\left(Z_{3}\right)$ respectively, the following hold:

$$
\begin{align*}
V_{E}^{2} & =-h_{1} h_{2} \tag{1.16}\\
V_{\bar{E}}^{2} & =3 V_{Z} V_{\bar{E}}+2 V_{\bar{E}}\left(\bar{h}_{1}+\bar{h}_{2}\right)-4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), \tag{1.17}\\
V_{Z}^{2} & =-\bar{h}_{1} \bar{h}_{2} \tag{1.18}
\end{align*}
$$

1.4 Embeddings of blow-ups

In this subsection we are going to recall a result from A. Kuznetsov, namely Lemma 2.1 of [20], which we are going to use to find embedded surfaces in a smooth variety X later. In [20] the Lemma is stated for S an irreducible Cohen-Macaulay scheme but since we are only going to use it for smooth varieties, we are going to consider only such varieties here. The proof follows very closely the one from [20].

Lemma 1.4.1. Let \mathcal{E} and \mathcal{F} be vector bundles of rank respectively $r+1$ and r on a smooth variety S. Let $\phi: \mathcal{E} \rightarrow \mathcal{F}$ be a morphism of vector bundles and let $D_{k}(\phi)$ denote the kth degeneracy locus of ϕ. Let $p: \mathbb{P}_{S}(\mathcal{E}) \rightarrow S$ be the projective bundle and $\mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}(1)$ be such that $p_{*}\left(\mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}(1)\right) \cong \mathcal{E}^{\vee}$. If $\operatorname{codim}\left(D_{k}(\phi)\right) \geq k+1$ for all $k \geq 1$ then there is an isomorphism between the blow-up of S in $D_{1}(\phi)$ and the zero locus of the global section of $p^{*}(\mathcal{F}) \otimes \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}(1)$ induced by ϕ in $\mathbb{P}_{S}(\mathcal{E})$. The line bundle corresponding to the exceptional divisor of this blow-up is then isomorphic to $p^{*} \operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes p^{*} \operatorname{det}(\mathcal{F}) \otimes \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}(-1)$ restricted to the zero locus of the section induced by ϕ on $\mathbb{P}_{S}(\mathcal{E})$.
Finally if $D_{2}(\phi)=\emptyset$ then the exceptional divisor in $\mathbb{P}_{S}(\mathcal{E})$ is isomorphic to the projectivization of the rank 2 vector bundle $\operatorname{Ker}\left(\left.\phi\right|_{D_{1}(\phi)}\right)$.
Proof. First of all, the global section of $p^{*}(\mathcal{F})(1)$ induced by ϕ comes from the isomorphisms : $H^{*}(\mathcal{E}, \mathcal{F}) \cong$ $H^{*}\left(\mathcal{O}_{S}, \mathcal{F} \otimes \mathcal{E}^{\vee}\right) \cong H^{*}\left(\mathcal{O}_{S}, \mathcal{F} \otimes p_{*}(\mathcal{O}(1))\right) \cong H^{*}\left(\mathcal{O}_{S}, p_{*}\left(p^{*}(\mathcal{F}) \otimes \mathcal{O}(1)\right)\right) \cong H^{*}\left(\mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}, p^{*}(\mathcal{F})(1)\right)$.
Let us consider now $\phi^{\vee}: \mathcal{F}^{\vee} \rightarrow \mathcal{E}^{\vee}$. It is injective outside of $D_{1}(\phi)$ hence by assumption outside of a codimension 2 locus. Thus it is an injective morphism, since \mathcal{F}^{\vee} is torsion free. Let \mathcal{C} be its cokernel.
Let us show that \mathcal{C} is torsion free. We have a short exact sequence $0 \rightarrow \mathcal{F}^{\vee} \rightarrow \mathcal{E}^{\vee} \rightarrow \mathcal{C} \rightarrow 0$ that induces (by dualizing) the long exact sequence $0 \rightarrow \mathcal{C}^{\vee} \rightarrow \mathcal{E} \xrightarrow{\phi} \mathcal{F} \rightarrow \mathcal{E} x t^{1}\left(\mathcal{C}, \mathcal{O}_{S}\right) \rightarrow 0$, since \mathcal{E}^{\vee} and \mathcal{F}^{\vee} are both locally free so $\mathcal{E} x t^{i}\left(\mathcal{E}^{\vee}, \mathcal{O}_{S}\right)=0=\mathcal{E} x t^{i}\left(\mathcal{F}^{\vee}, \mathcal{O}_{S}\right)$ for all $i \neq 0$. Moreover since ϕ is surjective outside of $D_{1}(\phi)$ we have that $\operatorname{supp}\left(\mathcal{E} x t^{1}\left(\mathcal{C}, \mathcal{O}_{S}\right)\right)=D_{1}(\phi)$ and is thus codimention at least 2. Therefore (see for instance [14] page 78 below the definition of $\left.\mathcal{F}^{\bullet \vee}\right), \mathcal{E} x t^{q}\left(\mathcal{E} x t^{1}\left(\mathcal{C}, \mathcal{O}_{S}\right), \mathcal{O}_{S}\right)=0$ for all $q \leq 1$. So splitting the previous long exact sequence in short exact sequences and dualizing gives the exact sequences :

$$
\begin{equation*}
0 \rightarrow \mathcal{E} x t^{0}\left(Q, \mathcal{O}_{S}\right) \rightarrow \mathcal{E}^{\vee} \rightarrow \mathcal{C}^{\vee \vee} \rightarrow \mathcal{E} x t^{1}\left(Q, \mathcal{O}_{S}\right) \rightarrow 0 \tag{1.19}
\end{equation*}
$$

since \mathcal{E} is locally free, and

$$
\begin{align*}
& 0 \rightarrow \mathcal{E} x t^{0}\left(\mathcal{E} x t^{1}\left(\mathcal{C}, \mathcal{O}_{S}\right), \mathcal{O}_{S}\right)=0 \rightarrow \mathcal{F}^{\vee} \rightarrow \mathcal{E} x t^{0}\left(Q, \mathcal{O}_{S}\right) \rightarrow \mathcal{E} x t^{1}\left(\mathcal{E} x t^{1}\left(\mathcal{C}, \mathcal{O}_{S}\right), \mathcal{O}_{S}\right)=0 \rightarrow \tag{1.20}\\
& 0 \rightarrow \mathcal{E} x t^{1}\left(Q, \mathcal{O}_{S}\right) \rightarrow \mathcal{E} x t^{2}\left(\mathcal{E} x t^{1}\left(\mathcal{C}, \mathcal{O}_{S}\right), \mathcal{O}_{S}\right) \rightarrow 0 \tag{1.21}
\end{align*}
$$

where Q is the cokernel of the map $\mathcal{C}^{\vee} \rightarrow \mathcal{E}$, and since \mathcal{F} is locally free. Then (1.20) gives $\mathcal{F}^{\vee} \cong \mathcal{E} x t^{0}\left(Q, \mathcal{O}_{S}\right)$ and (1.21) gives $\mathcal{E} x t^{1}\left(Q, \mathcal{O}_{S}\right) \cong \mathcal{E} x t^{2}\left(\mathcal{E} x t^{1}\left(\mathcal{C}, \mathcal{O}_{S}\right), \mathcal{O}_{S}\right)$, and plugging these two isomorphisms in (1.19) gives the short exact sequence :

$$
0 \rightarrow \mathcal{F}^{\vee} \rightarrow \mathcal{E}^{\vee} \rightarrow \mathcal{C}^{\vee \vee} \rightarrow \mathcal{E} x t^{2}\left(\mathcal{E} x t^{1}\left(\mathcal{C}, \mathcal{O}_{S}\right), \mathcal{O}_{S}\right) \rightarrow 0
$$

So $\mathcal{C} \hookrightarrow \mathcal{C}^{\vee \vee}$ hence \mathcal{C} is torsion free since $\mathcal{C}^{\vee \vee}$ is torsion free.
Let us consider now $\mathcal{E}^{\vee} \cong \mathcal{E}^{\vee} \otimes \bigwedge^{r}\left(\mathcal{E}^{\vee} \otimes \mathcal{E}\right) \cong \operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes \bigwedge^{r} \mathcal{E} \xrightarrow{\Lambda^{r} \phi} \operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes \bigwedge^{r} \mathcal{F} \cong \operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes \operatorname{det}(\mathcal{F})$. The composition $\left(\bigwedge^{r} \phi\right) \circ \phi^{\vee}$ is identically zero on \mathcal{F}^{\vee}. Indeed let $x \in S$ be a point, then $\phi_{x}^{\vee}: \mathcal{F}_{x}^{\vee} \rightarrow \mathcal{E}_{x}^{\vee}$ sends a morphism $f: \mathcal{F}_{x} \rightarrow \mathcal{O}_{S, x}$ to $f \circ \phi: \mathcal{E}_{x} \rightarrow \mathcal{O}_{S, x}$. In other words, ϕ_{x}^{\vee} sends $\operatorname{Ker}(f) \in \operatorname{Gr}\left(r-1, \mathcal{F}_{x}\right)$ to $\operatorname{Ker}(f \circ \phi) \supset \operatorname{Ker}(\phi) \neq \emptyset$ in $\operatorname{Gr}\left(r, \mathcal{E}_{x}\right)$. Thus $\left(\bigwedge^{r} \phi\right)\left(\bigwedge^{r} \operatorname{Ker}(f \circ \phi)\right)=0$ and $\left(\bigwedge^{r} \phi\right) \circ \phi^{\vee}=0$. As a result there is an induced morphism from \mathcal{C} to $\operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes \operatorname{det}(\mathcal{F}):$ for each $x \in S$ there is an isomorphism $\mathcal{C}_{x} \cong \mathcal{E}_{x}^{\vee} / \phi\left(\mathcal{F}_{x}^{\vee}\right)$ which we can compose with $\bigwedge^{r} \phi_{x}$ to get a morphism $\mathcal{C}_{x} \rightarrow\left(\operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes \operatorname{det}(\mathcal{F})\right)_{x}$. Moreover, outside of $D_{1}(\phi)$, ϕ is surjective so $\bigwedge^{r} \phi$ is surjective on the line $\operatorname{bundle} \operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes \operatorname{det}(\mathcal{F})$, and \mathcal{C} is of rank one and torsion free so the induced $\operatorname{map} \mathcal{C} \rightarrow \operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes \operatorname{det}(\mathcal{F})$ is an isomorphism outside of $D_{1}(\phi)$. Again since by hypothesis $D_{1}(\phi)$ has codimension at least 2 , and since \mathcal{C} is torsion free, this map is then injective on all of S. Finally, $\bigwedge^{r} \phi_{x}=0$ if and only if $\operatorname{dim}\left(\operatorname{im}\left(\phi_{x}\right)\right)<r$ that is to say if and only if $x \in D_{1}(\phi)$, and outside of $D_{1}(\phi)$ we have seen that since ϕ is surjective $\Lambda^{r} \phi$ is surjective as well. So we have an exact sequence :

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{F}^{\vee} \xrightarrow{\phi^{\vee}} \mathcal{E}^{\vee} \xrightarrow{\Lambda^{r} \phi} \operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes \operatorname{det}(\mathcal{F}) \rightarrow\left(\operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes \operatorname{det}(\mathcal{F})\right)\right|_{D_{1}(\phi)} \rightarrow 0 . \tag{1.22}
\end{equation*}
$$

Let us denote by \tilde{S} the zero locus of the section of $p^{*} \mathcal{F} \otimes \mathcal{O}(1)$ induced by ϕ on $\mathbb{P}_{S}(\mathcal{E})$. Since $p^{*} \mathcal{F}(1)$ is a vector bundle of rank r and $\mathbb{P}_{S}(\mathcal{E})$ is a smooth variety of dimension $\operatorname{dim}(S)+r$, then any component of \tilde{S} has dimension at least $\operatorname{dim}(S)$. Moreover, outside of $D_{1}(\phi), \mathcal{C}_{x}^{\vee}$ has dimension 1 and on $D_{k}(\phi)-D_{k+1}(\phi), \mathcal{C}_{x}^{\vee}$ has dimension $\underset{\sim}{k}+1$, so by definition of $\mathbb{P}_{S}(\mathcal{E})$, the fibers of \tilde{S} over S are projective of dimension k over $D_{k}(\phi)-D_{k+1}(\phi)$ and \tilde{S} is in bijection with S outside of $D_{1}(\phi)$. Therefore $\left.p\right|_{\tilde{S}}$ gives an isomorphism between $p^{-1}\left(S-D_{1}(\phi)\right) \cap \tilde{S}$ and $S-D_{1}(\phi)$, and for each $k \geq 1, p^{-1}\left(D_{k}(\phi)\right) \cap \tilde{S}$ is of dimension $\operatorname{dim}\left(D_{k}(\phi)\right)+k<\operatorname{dim}(S)$ since by hypothesis $D_{k}(\phi)$ has codimension at least $k+1$ in S. So \tilde{S} is irreducible (otherwise it would contradict the irreducibility of S), it has the same dimension as S, and $\left.p\right|_{\tilde{S}}: \tilde{S} \rightarrow S$ is birational.
Let us now compute $p_{*} \mathcal{O}_{\tilde{S}}(1)$. Since $\operatorname{dim}(\tilde{S})=\operatorname{dim}(S)=\operatorname{dim}\left(\mathbb{P}_{S}(\mathcal{E})\right)-\operatorname{rank}\left(p^{*} \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}(1)\right)$, by Exercise 17.20 of 17.6 of [7], the Koszul resolution gives a resolution of $\mathcal{O}_{\tilde{S}}$ as follows:

$$
0 \rightarrow \bigwedge^{r}\left(p^{*} \mathcal{F}^{\vee}\right) \otimes \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}(-r) \rightarrow \ldots \rightarrow \bigwedge^{2}\left(p^{*} \mathcal{F}^{\vee}\right) \otimes \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}(-2) \rightarrow p^{*} \mathcal{F}^{\vee} \otimes \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}(-1) \xrightarrow{\phi^{\vee}} \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})} \rightarrow \mathcal{O}_{\tilde{S}} \rightarrow 0
$$

Twisting this resolution by $\mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}(1)$ and taking its pushforward by p gives then the exact sequence :

$$
\ldots \rightarrow \star \rightarrow \mathcal{F}^{\vee} \xrightarrow{\phi^{\vee}} \mathcal{E}^{\vee} \rightarrow p_{*}\left(\mathcal{O}_{\tilde{S}}(1)\right) \rightarrow 0
$$

since $p_{*} \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}(1)=\mathcal{E}^{\vee}$ and since $p_{*}\left(p^{*} \mathcal{F}^{\vee}\right)=\mathcal{F}^{\vee}$. Indeed, $R^{*} p_{*}\left(\mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}\right)=\mathcal{O}_{S}: R^{0} p_{*}\left(\mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}\right)=p_{*}\left(\mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}\right)=$ \mathcal{O}_{S} (see for instance Proposition 7.11 of II.7 of [12]) and $R^{k} p_{*}\left(\mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}\right)=0$ for $k \neq 0$ (see for instance Exercice 8.4 a) of III. 8 of [12]). Thus $p_{*}\left(p^{*} \mathcal{F}^{\vee}\right)=\mathcal{F}^{\vee} \otimes p_{*} \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})}=\mathcal{F}^{\vee}$. Finally we have already seen that $\mathcal{F}^{\vee} \xrightarrow{\phi^{\vee}} \mathcal{E}^{\vee}$ is injective, so we have a short exact sequence :

$$
0 \rightarrow \mathcal{F}^{\vee} \xrightarrow{\phi^{\vee}} \mathcal{E}^{\vee} \rightarrow p_{*}\left(\mathcal{O}_{\tilde{S}}(1)\right) \rightarrow 0
$$

But this short exact sequence combined with (1.22) gives us : $p_{*} \mathcal{O}_{\tilde{S}}(1)=\mathcal{I}_{D_{1}(\phi)} \otimes \operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes \operatorname{det}(\mathcal{F})$. Thus since $\operatorname{det}\left(\mathcal{E}^{\vee}\right)$ and $\operatorname{det}(\mathcal{F})$ are line bundles, $p: \tilde{S} \rightarrow S$ is the blow-up of S in $D_{1}(\phi)$.
Finally, we have then that $p_{*}\left(p^{*} \operatorname{det}(\mathcal{E}) \otimes p^{*} \operatorname{det}\left(\mathcal{F}^{\vee}\right) \otimes \mathcal{O}_{\tilde{S}}(1)\right)=\mathcal{I}_{D_{1}(\phi)}$ so the line bundle corresponding to the exceptional divisor of this blow-up is $p^{*} \operatorname{det}\left(\mathcal{E}^{\vee}\right) \otimes p^{*} \operatorname{det}(\mathcal{F}) \otimes \mathcal{O}_{\tilde{S}}(-1)$. Indeed if \mathcal{L} is the line bundle associated to the exceptional divisor, then by definition, $p^{*} \mathcal{I}_{D_{1}(\phi)}=\mathcal{L}^{\vee}$, which implies $p_{*} p^{*} \mathcal{I}_{D_{1}(\phi)}=\mathcal{I}_{D_{1}(\phi)} \otimes p_{*} \mathcal{O}_{\tilde{S}}=$ $\mathcal{I}_{D_{1}(\phi)}=p_{*} \mathcal{L}^{\vee}$.
If $D_{2}(\phi)=\emptyset$, then as we have seen before \tilde{S} has projective fibers of dimension 1 over $D_{1}(\phi)$ and is isomorphic to S outside of $D_{1}(\phi)$, so the exceptional divisor is given by the projectivization of \mathcal{C}^{\vee} over $D_{1}(\phi)$, that is to say by the projectivization of $\operatorname{Ker}\left(\left.\phi\right|_{D_{1}(\phi)}\right)$. This is a rank two vector bundle because $D_{2}(\phi)=\emptyset$.

Chapter 2

Two free families in $K_{\text {num }}\left(\tilde{X}_{4}\right)$, a free family in $K_{\text {num }}\left(X_{4}\right)$, and the associated matrices of Euler characteristics

In this section, we describe the partial results we found regarding the study of $\left(K_{\text {num }}\left(X_{4}\right), \chi\right)$ and ($\left.K_{\text {num }}\left(\tilde{X}_{4}\right), \chi\right)$. In particular, we give all the Euler characteristics which we have computed between elements of $K_{\text {num }}\left(X_{4}\right)$ or $K_{\text {num }}\left(\tilde{X}_{4}\right)$ (the calculations are detailed mainly in section 4 and 5).

As explained in the Introduction, our first goal was to find a basis of $K_{\text {num }}\left(X_{4}\right)$ over \mathbb{Z} and then compute the matrix whose coefficients are the Euler characteristics between elements of this basis. Yet this turned out to be quite difficult, so we tried instead to find a basis of $K_{\text {num }}\left(\tilde{X}_{4}\right)$ and compute the associated matrix of Euler characteristics.

In subsection 2.1, we find a family \mathcal{F}_{1} of 14 elements in $K_{\text {num }}\left(\tilde{X}_{4}\right)$ which will turn out to be free. We then give the associated matrix up to an intersection number b in Proposition 2.1.5.
In subsection 2.2, we find a second family \mathcal{F}_{2} of 14 elements, whose associated matrix is given in Proposition 2.2.1.

Although we didn't manage to find a basis of $K_{\text {num }}\left(X_{4}\right)$ and compute the corresponding matrix of Euler characteristics, we did find a free family of 6 elements in $K_{\text {num }}\left(X_{4}\right)$, and we give the associated matrix in Proposition 2.3.1 in subsection 2.3.1.

It would be interesting to know if this family generates a primitive sublattice of $K_{\text {num }}\left(X_{4}\right)$. Indeed, in such a case it may be possible to complete our family of 6 elements into a basis of $K_{\text {num }}\left(X_{4}\right)$ over \mathbb{Z}. On the reverse, if the sublattice is not primitive, one could only complete our family into a basis over \mathbb{Q}. This could be an indication that this family is not the most appropriate one to start studying $\left(K_{\text {num }}\left(X_{4}\right), \chi\right)$ as a lattice over \mathbb{Z}.

We discuss this issue a little, still in Proposition 2.3.1, and we ask the same question about a subfamily generated by 5 of our 6 initial elements. Yet we fail to give an answer to this primitivity question in both cases.

Finally, in subsection 2.3 .2 we explain why we hope to be able to recover a copy of the lattice ($\left.K_{\text {num }}\left(X_{4}\right), \chi\right)$ in ($\left.K_{\text {num }}\left(\tilde{X}_{4}\right), \chi\right)$, using mutation functors. Unfortunately, to do so we need to apply some mutation functors to a sheaf whose image will then depend on the intersection number b mentioned previously. We thus give a matrix which should correspond to a family of $K_{\text {num }}\left(X_{4}\right)$ (yet we don't know if this family would correspond to a primitive sublattice or not), but only up to this number b.

2.1 A first family in $K_{\text {num }}\left(\tilde{X}_{4}\right)$ induced by elements in $K_{\text {num }}\left(X_{4}\right)$ and $K_{\text {num }}\left(\Sigma_{2}\right)$

In this subsection, we consider a first family in $K_{\text {num }}\left(\tilde{X}_{4}\right)$ which is a "good candidate" for being a basis, and we give in Proposition 2.1.5 the corresponding matrix of Euler characteristics, up to an intersection number b.

2.1.1 A semi-orthogonal decomposition of $D^{b}\left(\tilde{X}_{4}\right)$

In what follows we use a Theorem from A. Bondal and D. Orlov to find a semi-orthogonal decomposition of $D^{b}\left(\tilde{X}_{4}\right)$. We will then use this decomposition to build a family in $K_{\text {num }}\left(\tilde{X}_{4}\right)$ which will turn out to be free, and which may be a basis.

Before going further, let us give more precise names to some of the maps appearing in (1.4). Let us denote:

where as later in subsection 4.3.1 and Definition 4.3.3, ϕ is the blow-up of \mathbb{P}^{2} in three points with exceptional divisors E_{1}, E_{2} and E_{3} in Σ_{2}.

Lemma 2.1.1. There is a semi-orthogonal decomposition :

$$
\begin{aligned}
D^{b}\left(\Sigma_{2}\right) & =<\mathcal{O}_{E_{1}}\left(E_{1}\right), \mathcal{O}_{E_{2}}\left(E_{2}\right), \mathcal{O}_{E_{3}}\left(E_{3}\right), \phi^{*} D^{b}\left(\mathbb{P}^{2}\right)> \\
& =<\mathcal{O}_{E_{1}}\left(E_{1}\right), \mathcal{O}_{E_{2}}\left(E_{2}\right), \mathcal{O}_{E_{3}}\left(E_{3}\right), \mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(h_{1}\right), \mathcal{O}_{\Sigma_{2}}\left(2 h_{1}\right)>.
\end{aligned}
$$

Proof. This comes from the fact that if $T \xrightarrow{f} \mathbb{P}^{2}$ is the blow-up of \mathbb{P}^{2} in a point p with exceptional divisor E, then by Theorem 3.5 of [2] there is a semi-orthogonal decomposition $D^{b}(T)=<\mathcal{O}_{E}(E), f^{*} D^{b}\left(\mathbb{P}^{2}\right)>=$
$<\mathcal{O}_{E}(E), f^{*} \mathcal{O}_{\mathbb{P}^{2}}, f^{*} \mathcal{O}_{\mathbb{P}^{2}}(1), f^{*} \mathcal{O}_{\mathbb{P}^{2}}(2)>$ where for the last equality one can use for instance Corollary 8.29 in [14]. One can then conclude using the fact that Σ_{2} is the blow-up of $\mathbb{P}\left(A_{1}\right)$ in three points together with Definition 1.3.3. Indeed Remark 4.7 of [20] still applies when S_{2} is replaced by Σ_{2} and the $\bigwedge^{2} A_{i}$ by A_{i} for $i \in\{1,2\}$, because both S_{2} and Σ_{2} are degree 6 del Pezzo surfaces cut out by two divisors of bidegree $(1,1)$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$.

Using again Theorem 3.5 from [2] one can then find :
Lemma 2.1.2. There is a semi-orthogonal decomposition $D^{b}\left(\tilde{X}_{4}\right)=<j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-\right.$ $\left.V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right), \pi^{*} D^{b}\left(X_{4}\right)>$.

Corollary 2.1.3. For any $F \in<j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-\right.$ $\left.V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)>$ and any $0 \leq i \leq 4$, one has $H^{*}\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), F\right)=0$.

2.1.2 The family \mathcal{F}_{1} and the associated matrix

We can now try to build a family which could be a basis of $K_{\text {num }}\left(\tilde{X}_{4}\right)$ (over \mathbb{Q}). Indeed, if $K_{\text {num }}\left(X_{4}\right)$ is of dimension 8 as we hope for (by analogy with the cubic fourfolds' case mentioned in the Introduction), then by Lemma 2.1.2, $K_{\text {num }}\left(\tilde{X}_{4}\right)$ should be of dimension 14. We thus look for a family of 14 elements in $K_{\text {num }}\left(\tilde{X}_{4}\right)$. If the determinant of the associated matrix of Euler characteristics is non zero, it will imply that this family is free.

By Lemma 2.1.2, if we know a basis \mathcal{B} of $K_{\text {num }}\left(X_{4}\right)$ then we can easily find a basis of $K_{\text {num }}\left(\tilde{X}_{4}\right)$, using $\pi^{*} \mathcal{B}$. As mentioned in the introduction, a first naive guess for such a basis could be

$$
\left\{\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(h), \mathcal{O}_{X_{4}}(2 h), \mathcal{O}_{X_{4}}(3 h), \mathcal{O}_{X_{4}}(4 h)\right\}
$$

together with the structure sheaves of three surfaces. However, we know from [15] that $h^{4}=66$, and we want to be able to recover a skyscraper sheaf (without multiplicity) from our family, hence we will actually replace $\mathcal{O}_{X_{4}}(4 h)$ by a skyscraper sheaf \mathcal{O}_{p}, and for the same reason we will replace $\mathcal{O}_{X_{4}}(3 h)$ by the structure sheaf of a line with class $E_{1} . V_{E}$.e, which we will call $\mathcal{O}_{l_{h}}$. Indeed, it corresponds to a curve with class E_{1} in Σ_{2}, which is a \mathbb{P}^{1} by definition, and moreover $E_{1} . h=1$ in Σ_{2} since by (1.9), $\left.h\right|_{\Sigma_{2}}=h_{1}+h_{2}=3 h_{1}-E_{1}-E_{2}-E_{3}$ (see Remark 4.1.4 for more details). We won't need to replace $\mathcal{O}_{X_{4}}(2 h)$ because $66=2.3 .11$ doesn't contain any square, hence we should be able to recover the structure sheaf of a surface induced by h without multiplicity.

About structure sheaves of surfaces, as suggested in the Introduction and detailed below in section 3, we can consider structure sheaves of Σ_{2}, \bar{D}_{2} and a blow-up of S_{2}, namely \tilde{S} (see (1.4) and Corollary 3.2.7).
As explained in the Introduction, the last two surfaces are problematic if we want to study $K_{\text {num }}\left(X_{4}\right)$ because in such a case we need to consider pushforwards of their structure sheaves and we can't control how badly π may contract them to X_{4}. This is why we are considering $K_{\text {num }}\left(\tilde{X}_{4}\right)$ now: both \bar{D}_{2} and \tilde{S} are smooth surfaces in \tilde{X}_{4}, and we can thus take their structure sheaves as elements in our family.
Then, $\mathcal{O}_{\bar{D}_{2}}$ and $\mathcal{O}_{\tilde{S}}$ have no particular reason to be pull-backs of sheaves on X_{4}, yet using right mutation functors (see Definition 2.4 in [21]) and Lemma 2.1.2 we may induce a family in $\pi^{*} K_{\text {num }}\left(X_{4}\right)$ whose matrix of Euler characteristics can be deduced from the one associated to $K_{\text {num }}\left(\tilde{X}_{4}\right)$. This will be detailed in subsection 2.3.2.

Moreover, by Lemma 2.1.2 and Corollary 2.1.3, if $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of $K_{\text {num }}\left(X_{4}\right)$, then the matrix $\tilde{M}:=$ $\left(\chi\left(y_{i}, y_{j}\right)\right)_{i, j}$ with

$$
\begin{aligned}
\left\{y_{1}, \ldots, y_{n+6}\right\}= & \left\{j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right),\right. \\
& \left.j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right), \pi^{*} e_{1}, \ldots, \pi^{*} e_{n}\right\},
\end{aligned}
$$

is actually $\tilde{M}=\left(\begin{array}{cc}N & * \\ 0 & M\end{array}\right)$ where $N=\left(\chi\left(y_{i}, y_{j}\right)\right)_{1 \leq i, j \leq 6}$ is easy to compute as we will see later, and $M=$ $\left(\chi\left(\pi^{*} e_{i}, \pi^{*} e_{j}\right)\right)_{1 \leq i, j \leq n}$ is the matrix we are looking for.
This comes from the fact that $\pi_{*} \mathcal{O}_{\tilde{X}_{4}}=\mathcal{O}_{X_{4}} ;$ the projection formula then yields

$$
\chi\left(\pi^{*} e_{i}, \pi^{*} e_{j}\right)=\chi\left(e_{i}, \pi_{*} \pi^{*} e_{j}\right)=\chi\left(e_{i}, e_{j}\right)
$$

for any i and j. In particular, it is possible to recover the determinant of M from those of \tilde{M} and N.
A small issue with $K_{\text {num }}\left(\tilde{X}_{4}\right)$ could come from the fact that $R^{*} \pi^{*} \mathcal{O}_{\Sigma_{2}}$ has nonzero R^{1}, but since we are already considering $\mathcal{O}_{\bar{D}_{2}}$ and $\mathcal{O}_{\tilde{S}}$ which are not in $\pi^{*} D^{b}\left(X_{4}\right)$, for convenience we are going to replace the derived pullback $\pi^{*} \mathcal{O}_{\Sigma_{2}}$ by $\mathcal{O}_{D_{3}}\left(V_{E}\right)$. This is possible because this sheaf doesn't belong to $<j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-\right.$ $\left.V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)>$.

So finally, our goal is to compute Euler characteristics between elements of the following family :

$$
\begin{aligned}
\mathcal{F}_{1}=\{ & j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right), \\
& \left.\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{l_{h}}, \mathcal{O}_{p}, \mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{S}}\right\}
\end{aligned}
$$

Such computations are detailed in section 4.
Remark 2.1.4. Some Euler characteristics mentioned below involve $\mathcal{O}_{\tilde{X}_{4}}(3 h)$ and $\mathcal{O}_{\tilde{X}_{4}}(4 h)$, which are not going to be directly useful for us since we are interested in \mathcal{O}_{p} and $\mathcal{O}_{l_{h}}$ instead. However when such Euler characteristics have been computed, I will still mention them.

Moreover, if \mathcal{F} is any of the twists of $\mathcal{O}_{D_{3}}$ in $\mathcal{F}_{1}, \mathcal{O}_{h}$ the structure sheaf of a hyperplane section of class h and $\mathcal{O}_{h^{2}}$ is defined as follows:

$$
0 \rightarrow \mathcal{O}_{h}(-h) \rightarrow \mathcal{O}_{h} \rightarrow \mathcal{O}_{h^{2}} \rightarrow 0
$$

then we cannot recover neither $\chi\left(\mathcal{O}_{h}, \mathcal{F}\right)$ nor $\chi\left(\mathcal{O}_{h^{2}}, \mathcal{F}\right)$ using Euler characteristics between elements of \mathcal{F}_{1}. Instead, those Euler characteristics allow to recover $\chi\left(\mathcal{O}_{h^{2}}(2 h), \mathcal{F}\right)$ and $\chi\left(\mathcal{O}_{h}(h), \mathcal{F}\right)$.
So computing Euler characteristics between elements of \mathcal{F}_{1} or of $\left(\mathcal{F}_{1} \cup\left\{O_{h}, \mathcal{O}_{h^{2}}\right\}\right)-\left\{\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{X}_{4}}(2 h)\right\}$ is not the same. To fix this, one could replace $\mathcal{O}_{\tilde{X}_{4}}(h)$ and $\mathcal{O}_{\tilde{X}_{4}}(2 h)$ by $\mathcal{O}_{\tilde{X}_{4}}(-h)$ and $\mathcal{O}_{\tilde{X}_{4}}(-2 h)$ in \mathcal{F}_{1}.

Unfortunately, we are not able to compute all the Euler characteristics between elements of \mathcal{F}_{1} : some of them depend on intersection numbers among which one, as mentioned in section 4.7.4, is hard to compute. However we get the following result :

Proposition 2.1.5. Let us define $b:=j_{*} h_{1} \cdot\left[\bar{D}_{2}\right]$ where $\left[\bar{D}_{2}\right]$ is the class of \bar{D}_{2} in \tilde{X}_{4}. If

$$
\begin{aligned}
\left\{e_{1}, \ldots, e_{14}\right\}= & \left\{j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right),\right. \\
& \left.j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right), \mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\bar{D}_{2}} \mathcal{O}_{\tilde{S}}, \mathcal{O}_{l_{h}}, \mathcal{O}_{p}\right\},
\end{aligned}
$$

then :
then : $\tilde{M}=\left(\chi\left(e_{i}, e_{j}\right)\right)_{1 \leq i, j \leq 14}=\left(\begin{array}{cccccccccccccc}1 & 0 & 0 & -1 & -1 & -1 & 1 & 2 & 3 & -1 & 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & -1 & 1 & 2 & 3 & -1 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & -1 & 1 & 2 & 3 & -1 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 & 6 & -1 & -7 & -19 & -5 & 12 & 10 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 3 & 0 & -3 & -12 & -6 & 12+b & 19 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -6 & -6 & 12+2 b & 28 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 20 & 124 & 0 & -12 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 20 & 0 & 0 & 37 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 20 & 1 & 1 & 12 & 156 & 127 & -1 & 1 \\ 0 & 0 & 0 & -1 & 1 & 4 & 1 & 7 & 19 & 1 & 1536 & -36 & 56 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 36 & 36+b & 36+2 b & -36 & 0 & 180 & -156 & 48 & -24 & 0 & 0 \\ 0 & 3 & 3 & -42 & -33 & -24 & 79 & 79 & 205 & 76 & -24 & -4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$.
Proof. The computations are detailed in section 4. The main two Theorems we are using are Hirzebruch-Riemann-Roch and Borel-Bott-Weil (section 4.2).

Remark 2.1.6. Even though we cannot compute the determinant of \tilde{M}, we know it can't be 0 . Indeed, b has to be an integer, and the roots of

$$
\operatorname{det}(\tilde{M})=-72\left(-4556496+102168 b+3869 b^{2}\right)
$$

are not integers (approximately -49.97328 and 23.56646).
Therefore, \mathcal{F}_{1} is free.

2.2 A second family in $K_{\text {num }}\left(\tilde{X}_{4}\right)$

In this section, we consider another family of $K_{\text {num }}\left(\tilde{X}_{4}\right)$ which could be a basis, assuming the dimension of $K_{\text {num }}\left(X_{4}\right)$ is 8 . The choice of this new family, as well as \mathcal{F}_{1} defined in section 2.1.2, is based on suggestions from Benjamin Sung.

As we saw in subsection 4.7 .4 and Proposition 2.1.5, to compute the matrix \tilde{M} defined in section 2.1.2, we would need to understand some intersections between \bar{D}_{2} and surfaces in D_{3}, which turns out to be quite difficult. This is why we want to consider another family in $K_{\text {num }}\left(\tilde{X}_{4}\right)$, whose associated matrix of Euler characteristics is easier to compute. This would yield a new matrix whose determinant should be the same as the one of \tilde{M}, assuming our family doesn't generate only a strict sublattice of $K_{\text {num }}\left(\tilde{X}_{4}\right)$. Thus, it could give us a hint on the number b from Lemma 4.7.18, and the determinant of M.

As we saw in the introduction and subsection 2.1.2, we expect that for X_{4} very general, $K_{\text {num }}\left(X_{4}\right)$ will be generated by (or at least will contain) $\left\{\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{l_{h}}, \mathcal{O}_{p}\right\}$ and the structure sheaves of three surfaces. Since \tilde{X}_{4} is the blow-up of X_{4} in Σ_{2}, its numerical Grothendieck group should consist in the pull-backs of the above-mentioned elements, the class of D_{3} for which we will consider $\mathcal{O}_{D_{3}}$, the class of a fiber of D_{3} over Σ_{2} which we will represent by $\mathcal{O}_{l_{D}}$ where l_{D} is a line of class $e h_{1}^{2}$ (because by (1.14), $h_{1}^{2}=1$ in Σ_{2}), and surfaces corresponding to the pull-backs of divisors in Σ_{2}.
We have seen in Remark 4.1.4 that $\operatorname{Pic}\left(\Sigma_{2}\right)$ is generated by four elements, so together with the three surfaces coming from X_{4}, we need seven structure sheaves of surfaces to complete our family.
A first surface can be given by a section of D_{3} by its relative hyperplane class : we will then consider $\mathcal{O}_{D_{3}}\left(-V_{E}\right)$ since together with $\mathcal{O}_{D_{3}}$ it allows us to recover the structure sheaf of such a surface, and we have already computed some Euler characteristics involving it in section 4.
For the last six surfaces, one can notice the following : we will see in the proof of Proposition 4.5 .3 that $\operatorname{Pic}\left(Z_{3}\right)=<V_{Z}, \bar{h}_{1}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}>$ and by Lemma 3.2.6, there exists in \tilde{X}_{4} a threefold, namely \tilde{Z}, which is the blow-up of Z_{3} in Γ_{1}, with exceptional divisor $\bar{\pi}^{-1}\left(\Gamma_{1}\right)=\bar{D}_{2}$. Thus $\operatorname{Pic}(\tilde{Z})$ has rank 6 and each divisor in it corresponds to a surface in \tilde{X}_{4}. We will therefore complete our family with the structure sheaves of six surfaces in \tilde{Z} : as we will see we can compute all the intersections between divisors there, so we won't have the same problem as in subsection 4.7.4.

So let us consider the following family in $K_{\text {num }}\left(\tilde{X}_{4}\right)$:

$$
\mathcal{F}_{2}=\left\{\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{\tilde{E}_{1}}, \mathcal{O}_{\tilde{E}_{2}}, \mathcal{O}_{\tilde{E}_{3}}, \mathcal{O}_{V_{Z}}, \mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{l_{h}}, \mathcal{O}_{l_{D}}, \mathcal{O}_{p}\right\}
$$

where \mathcal{O}_{K} for $K \in \operatorname{Pic}(\tilde{Z})$ is the structure sheaf of a surface in \tilde{X}_{4} induced by a surface in \tilde{Z} with class K, l_{h} is the line in \tilde{X}_{4} mentioned in subsection $2.1 .2, l_{D}$ is a line with class e. h_{1}^{2} and \mathcal{O}_{p} is the structure sheaf of a point.

This time, we can compute the following (calculations are detailed in section 5) :
Proposition 2.2.1. Let us denote $\mathcal{F}_{2}=\left\{e_{1}, \ldots, e_{14}\right\}$. Then :

Its determinant is $-9510912=-2^{13} .3^{\frac{1}{1}} .43$.
Remark 2.2.2. One can compute the determinant (as a polynomial in b) of the matrix \tilde{M} defined in Proposition 2.1.5 : it is $\operatorname{det}(\tilde{M})=-72\left(-4556496+102168 b+3869 b^{2}\right)$.
One can then look for the possible values of b such that $\operatorname{det}(\tilde{M})=\operatorname{det}\left(\tilde{M}_{2}\right)=-9510912=-72.132096$: this could give a hint on what b could be. Yet the roots of the polynomial

$$
-4688592+102168 b+3869 b^{2}
$$

aren't integers (approximately -50.43 and 24.03), while $b \in \mathbb{Z}$. This could come from the fact that \mathcal{F}_{1} and \mathcal{F}_{2} don't generate the same sublattices of $K_{\text {num }}\left(\tilde{X}_{4}\right)$.

However, if the part of \tilde{M} corresponding to elements in $K_{\text {num }}\left(X_{4}\right)$ can be written, in a good basis, as we hoped for in the introduction, the matrix \tilde{M}^{t} in this good basis completed with the first six elements of \mathcal{F}_{1} should be :

$$
\left(\begin{array}{cc}
N^{t} & 0 \\
* & M^{t}
\end{array}\right) \quad \text { with } \quad M^{t}=\left(\begin{array}{ccccc}
m_{1} & m_{3} & 0 & \ldots & 0 \\
m_{2} & m_{4} & 0 & \ldots & 0 \\
* & * & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
* & * & * & \ldots & 1
\end{array}\right)
$$

and N the matrix given in Lemma 4.1.5. As a result, \tilde{M}^{t} should then have an eigenvector of eigenvalue 1. It turns out that \tilde{M}^{t} has two eigenvectors with eigenvalue 1, namely $-\left[\mathcal{O}_{\tilde{E}_{1}}\right]+\left[\mathcal{O}_{\tilde{E}_{2}}\right]$ and $-\left[\mathcal{O}_{\tilde{E}_{1}}\right]+\left[\mathcal{O}_{\tilde{E}_{3}}\right]$.

2.3 Some matrices of Euler characteristics between elements of $K_{\text {num }}\left(X_{4}\right)$

In this subsection, we focus more on $K_{\text {num }}\left(X_{4}\right)$. Indeed in subsection 2.3.1, we give two matrices associated to two families (one being a subfamily of the other) of respectively 5 and 6 elements in $K_{\text {num }}\left(X_{4}\right)$. These families are free but should be too small to yield a basis of $K_{\text {num }}\left(X_{4}\right)$. Moreover, we don't know whether they correspond to primitive sublattices of $K_{\text {num }}\left(X_{4}\right)$ or not. In Proposition 2.3.1, we try to find some conditions that must be satisfied if the associated sublattices are not primitive, yet it is not obvious that this conditions are not (or are) verified in general.

Finally in subsection 2.3.2, we explain how we can recover a sublattice of $\pi^{*} K_{\text {num }}\left(X_{4}\right)$, and the associated matrix of Euler characteristics, using right mutation functors and the results we obtained in subsection 2.1.2. However, the result we obtain depends on the same intersection number b which was already mentioned in Proposition 2.1.5.

2.3.1 Two first "too small" families with five and six elements

As mentioned in the introduction, eventually we are interested in finding a free family of $K_{\text {num }}\left(X_{4}\right)$ and computing the associated matrix of Euler characteristics. For the exact same reasons as the ones detailed in the beginning of section 2.1.2 (and the same problem as mentioned in Remark 2.1.4), one can start building such a family with $\left\{\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(h), \mathcal{O}_{X_{4}}(2 h), \mathcal{O}_{l}, \mathcal{O}_{p}\right\}$ where \mathcal{O}_{l} is the structure sheaf of a line l of class E_{1}. [$\left.\Sigma_{2}\right]$ in X_{4} and as before O_{p} is a skyscraper sheaf. The associated matrix of Euler characteristics can then easily be obtained from calculations we already did to compute \tilde{M}_{1} and \tilde{M}_{2}, or very similar computations in the case of \mathcal{O}_{l}.

Furthermore, as we have seen in section 2.1.2, the structure sheaf of Σ_{2} seems to be a natural candidate to start completing this family into a basis. In the case of X_{4} the associated Euler characteristics are quite easy to compute with Hirzebruch-Riemann-Roch (contrarily to the case of \tilde{X}_{4} where we would have needed to understand the pull-back $\pi^{*} \mathcal{O}_{\Sigma_{2}}$), and it even turns out that we already know them from calculations we made for Proposition 2.1.5 (detailed in section 4.3.1).

Let us denote by $\left\{u_{1}, \ldots, u_{6}\right\}=\left\{\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(h), \mathcal{O}_{X_{4}}(2 h), \mathcal{O}_{l}, \mathcal{O}_{p}, \mathcal{O}_{\Sigma_{2}}\right\}$. Then we have the following :
Proposition 2.3.1. The following two matrices are :
$P_{1}=\left(\chi\left(u_{i}, u_{j}\right)\right)_{1 \leq i, j \leq 5}=\left(\begin{array}{ccccc}1 & 20 & 124 & 1 & 1 \\ 1 & 1 & 20 & 0 & 1 \\ 20 & 1 & 1 & -1 & 1 \\ 0 & -1 & -2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0\end{array}\right)$ and $P_{2}=\left(\chi\left(u_{i}, u_{j}\right)\right)_{1 \leq i, j \leq 6}=\left(\begin{array}{cccccc}1 & 20 & 124 & 1 & 1 & 1 \\ 1 & 1 & 20 & 0 & 1 & 1 \\ 20 & 1 & 1 & -1 & 1 & 7 \\ 0 & -1 & -2 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 7 & 19 & 0 & 0 & 2\end{array}\right)$.
Let us denote by Λ_{1} and Λ_{2} the sublattices of $K_{\text {num }}\left(X_{4}\right)$ generated by respectively $G_{1}:=\left\{u_{1}, \ldots, u_{5}\right\}$ and $G_{2}:=$ $\left\{u_{1}, \ldots, u_{6}\right\}$.
Then if Λ_{1} is not primitive in $K_{\text {num }}\left(X_{4}\right)$, there exists a primitive element $v \in K_{\text {num }}\left(X_{4}\right)$ such that $n v$ is primitive in Λ_{1} with $n \in\{2,3,6\}$ and $\chi\left(u_{1}-2 u_{2}+u_{3}-66 u_{4}-8 u_{5}-11 u_{6}, v\right)=0$.
If Λ_{2} is not primitive in $K_{\text {num }}\left(X_{4}\right)$, it contains a primitive element with divisibility $m \in \mathbb{N}^{*}$ such that $m \neq 1$ and $m \mid 96$ in $K_{\text {num }}\left(X_{4}\right)$.

Proof. The calculation of the coefficients of P_{1} and P_{2} is detailed in Appendix 6.1.
Let us assume now that the embedding of the sublattice $\Lambda_{1} \hookrightarrow K_{\text {num }}\left(X_{4}\right)$ is not primitive. Then, there exists a
nonzero primitive element $v \in K_{\text {num }}\left(X_{4}\right)$ and $1 \neq n \in \mathbb{N}^{*}$ such that $n v \in \Lambda_{1}$ can be written as $n v=\sum_{i=1}^{5} a_{i} u_{i}$ with $a_{i} \in \mathbb{Z}$ for all $1 \leq i \leq 5$ and $\operatorname{gcd}\left(a_{1}, \ldots, a_{5}\right)=1$. Moreover, at least one of the a_{i} has to be non zero, so let us assume that $a_{j} \neq 0$ for some $1 \leq j \leq 5$. Then the family $<w_{1}, \ldots, w_{5}>=<n v,\left\{u_{i}, i \neq j\right\}>$ generates Λ_{1} and one can find a matrix $R \in G L(5, \mathbb{Z})$ such that $R P_{1} R^{-1}=\left(\chi\left(w_{i}, w_{j}\right)\right)_{1 \leq i, j \leq 5}=$: S. In particular, one must then have $\operatorname{det}\left(P_{1}\right)=\operatorname{det}(S)$.

Furthermore, since for any $u \in \Lambda_{1}$, one must have $\chi(n v, u)=n \chi(v, u)$ and $\chi(u, n v)=n \chi(u, v)$, the line and column of S corresponding to $n v$ are multiples of n. As a result, $\operatorname{det}(S)$, and thus $\operatorname{det}\left(P_{1}\right)$, is divisible by n. Since $\operatorname{det}\left(P_{1}\right)=66$, we must have $n \in\{2,3,11,6,22,33,66\}$. Using P_{1}, one also finds that the following equations must be satisfied:

$$
\left\{\begin{array} { l }
{ n \chi (u _ { 1 } , v) = a _ { 1 } + 2 0 a _ { 2 } + 1 2 4 a _ { 3 } + a _ { 4 } + a _ { 5 } } \tag{2.1}\\
{ n \chi (u _ { 2 } , v) = a _ { 1 } + a _ { 2 } + 2 0 a _ { 3 } + a _ { 5 } } \\
{ n \chi (u _ { 3 } , v) = 2 0 a _ { 1 } + a _ { 2 } + a _ { 3 } - a _ { 4 } + a _ { 5 } } \\
{ n \chi (u _ { 4 } , v) = - a _ { 2 } - 2 a _ { 3 } } \\
{ n \chi (u _ { 5 } , v) = a _ { 1 } + a _ { 2 } + a _ { 3 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a_{4}=n \chi\left(u_{1}, v\right)-a_{1}-20 a_{2}-124 a_{3}-a_{5} \\
=-66 a_{3}+n \chi\left(u_{1}-u_{2}+19 u_{4}, v\right) \\
a_{5}=n \chi\left(u_{2}, v\right)-a_{1}-a_{2}-20 a_{3}=-19 a_{3}+n \chi\left(u_{2}-u_{5}, v\right) \\
66 a_{3}=n \chi\left(u_{1}-2 u_{2}+u_{3}-19 u_{5}, v\right) \\
a_{2}=-n \chi\left(u_{4}, v\right)-2 a_{3} \\
a_{1}=n \chi\left(u_{5}, v\right)-a_{2}-a_{3}=a_{3}+n \chi\left(u_{5}+u_{4}, v\right)
\end{array}\right.\right.
$$

In particular, the condition $\operatorname{gcd}\left(a_{1}, \ldots, a_{5}\right)=1$ implies then that $0 \neq a_{3}$ is not divisible by n.
On the other hand, $n v \in \Lambda_{1} \subset \Lambda_{2}$, hence with the same reasoning as before one finds that n must divide $\operatorname{det}\left(P_{2}\right)=96=3.2^{5}$. Hence, $n \in\{2,3,11,6,22,33,66\} \cap\left\{m \in \mathbb{N}^{*}, m \neq 1\right.$ and $\left.\frac{96}{m} \in \mathbb{N}\right\}=\{2,3,6\}$.
Finally, P_{2} gives us one more equation for the a_{i} :

$$
\begin{equation*}
n \chi\left(u_{6}, v\right)=a_{1}+7 a_{2}+19 a_{3} \Leftrightarrow 6 a_{3}=n \chi\left(6 u_{4}-u_{5}+u_{6}, v\right) \tag{2.2}
\end{equation*}
$$

Together with the third equation on the right of the systems (2.1) above, it yields :

$$
0=\chi\left(u_{1}-2 u_{2}+u_{3}-66 u_{4}-8 u_{5}-11 u_{6}, v\right)
$$

Let us assume now that $\Lambda_{2} \hookrightarrow K_{\text {num }}\left(X_{4}\right)$ is not primitive, without any assumption on Λ_{1}. The same reasoning as in the previous case then yield the existence of a primitive vector $r \in K_{\text {num }}\left(X_{4}\right)$ such that $m r \in \Lambda_{2}$ for some $1 \neq m \in \mathbb{N}^{*}$. Since $\operatorname{det}\left(P_{2}\right)=96$ we must have $m \in\left\{2^{a} .3^{b},(a, b) \neq(0,0), 0 \leq a \leq 5,0 \leq b \leq 1\right\}$, and there exists some integers b_{i} for $1 \leq i \leq 6$ such that $\operatorname{gcd}\left(b_{1}, \ldots, b_{6}\right)=1$ and $r=\sum_{i=1}^{6} b_{i} u_{i}$. With P_{2} one can then find the following system of equations:

$$
\left\{\begin{array} { l }
{ m \chi (u _ { 1 } , r) = b _ { 1 } + 2 0 b _ { 2 } + 1 2 4 b _ { 3 } + b _ { 4 } + b _ { 5 } + b _ { 6 } } \tag{2.3}\\
{ m \chi (u _ { 2 } , r) = b _ { 1 } + b _ { 2 } + 2 0 b _ { 3 } + b _ { 5 } + b _ { 6 } } \\
{ m \chi (u _ { 3 } , r) = 2 0 b _ { 1 } + b _ { 2 } + b _ { 3 } - b _ { 4 } + b _ { 5 } + 7 b _ { 6 } } \\
{ m \chi (u _ { 4 } , r) = - b _ { 2 } - 2 b _ { 3 } } \\
{ m \chi (u _ { 5 } , r) = b _ { 1 } + b _ { 2 } + b _ { 3 } } \\
{ m \chi (u _ { 6 } , r) = b _ { 1 } + 7 b _ { 2 } + 1 9 b _ { 3 } + 2 b _ { 6 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
b_{4}=m \chi\left(u_{1}, r\right)-b_{1}-20 b_{2}-124 b_{3}-b_{5}-b_{6} \\
=-66 b_{3}+m \chi\left(u_{1}-u_{2}+19 u_{4}, r\right) \\
b_{5}=m \chi\left(u_{2}, r\right)-b_{1}-b_{2}-20 b_{3}-b_{6} \\
=-16 b_{3}+m \chi\left(u_{2}-3 u_{4}-\frac{u_{5}}{2}-\frac{u_{6}}{2}, r\right) \\
48 b_{3}=m \chi\left(u_{1}-2 u_{2}+u_{3}-18 u_{4}-16 u_{5}-3 u_{6}, r\right) \\
b_{2}=-m \chi\left(u_{4}, r\right)-2 b_{3} \\
b_{1}=m \chi\left(u_{5}, r\right)-b_{2}-b_{3}=b_{3}+m \chi\left(u_{5}+u_{4}, r\right) \\
2 b_{6}=m \chi\left(u_{6}, r\right)-b_{1}-7 b_{2}-19 b_{3} \\
=-6 b_{3}+m \chi\left(6 u_{4}-u_{5}+u_{6}, r\right)
\end{array}\right.\right.
$$

Taking $b_{6}=0$ reduces to the previous case.

Remark 2.3.2. The determinant $\operatorname{det}\left(P_{1}\right)=66$ may seem quite big, but this comes from the fact that $h^{4}=66$ (see [15]). Indeed, let us denote by \mathcal{O}_{h} the structure sheaf of a hyperplane surface in X_{4} with class h, and $\mathcal{O}_{h^{2}}$ the quotient :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{h}(-h) \rightarrow \mathcal{O}_{h} \rightarrow \mathcal{O}_{h^{2}} \rightarrow 0 \tag{2.4}
\end{equation*}
$$

Then the matrix of Euler characteristics associated to the family $\left\{\mathcal{O}_{X_{4}}, \mathcal{O}_{h}, \mathcal{O}_{h^{2}}, \mathcal{O}_{l}, \mathcal{O}_{p}\right\}$ is :

$$
R:=\left(\begin{array}{ccccc}
1 & \chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{h}\right) & \chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{h^{2}}\right) & 1 & 1 \\
\chi\left(\mathcal{O}_{h}, \mathcal{O}_{X_{4}}\right) & \chi\left(\mathcal{O}_{h}, \mathcal{O}_{h}\right) & \chi\left(\mathcal{O}_{h}, \mathcal{O}_{h^{2}}\right) & \chi\left(\mathcal{O}_{h}, \mathcal{O}_{l}\right) & 0 \\
\chi\left(\mathcal{O}_{h^{2}}, \mathcal{O}_{X_{4}}\right) & \chi\left(\mathcal{O}_{h^{2}}, \mathcal{O}_{h}\right) & \chi\left(\mathcal{O}_{h^{2}}, \mathcal{O}_{h^{2}}\right) & 0 & 0 \\
0 & \chi\left(\mathcal{O}_{l}, \mathcal{O}_{h}\right) & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

using P_{1} together with the same arguments as in the proof of Lemma 4.8.1 and Lemma 4.8.2 to find the coefficients which are 0 or 1.
Its determinant, which we expect to be the same as $\operatorname{det}\left(P_{1}\right)$ (because in this specific case, replacing \mathcal{O}_{h} by $\mathcal{O}_{h}(h)$ and $\mathcal{O}_{h^{2}}$ by $\mathcal{O}_{h^{2}}(2 h)$ doesn't change the determinant of R, since twisting by a line bundle leaves both $c_{1}\left(\mathcal{O}_{h}\right)$ and $c h_{2}\left(\mathcal{O}_{h^{2}}\right)$ unchanged) is thus $\chi\left(\mathcal{O}_{l}, \mathcal{O}_{h}\right) \chi\left(\mathcal{O}_{h}, \mathcal{O}_{l}\right) \chi\left(\mathcal{O}_{h^{2}}, \mathcal{O}_{h^{2}}\right)$.
Using the short exact sequence

$$
0 \rightarrow \mathcal{O}_{X_{4}}(-h) \rightarrow \mathcal{O}_{X_{4}} \rightarrow \mathcal{O}_{h} \rightarrow 0
$$

one can find that

$$
\chi\left(\mathcal{O}_{l}, \mathcal{O}_{h}\right)=\chi\left(\mathcal{O}_{l}, \mathcal{O}_{X_{4}}\right)-\chi\left(\mathcal{O}_{l}, \mathcal{O}_{X_{4}}(-h)\right)
$$

and

$$
\chi\left(\mathcal{O}_{h}, \mathcal{O}_{l}\right)=\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{l}\right)-\chi\left(\mathcal{O}_{X_{4}}(-h), \mathcal{O}_{l}\right)
$$

By Serre duality (see Theorem 4.2.14) and Lemma 4.2.13, we also have $\chi\left(\mathcal{O}_{l}, \mathcal{O}_{X_{4}}(-h)\right)=\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{l}\right)$ hence

$$
\chi\left(\mathcal{O}_{l}, \mathcal{O}_{h}\right)=0-1=-1
$$

Using the same argument as in the proof of Lemma 6.1.1, one can find that

$$
\begin{aligned}
\chi\left(\mathcal{O}_{X_{4}}(-h), \mathcal{O}_{l}\right) & =\int_{\Sigma_{2}}(1, h, 3) \cdot\left(0, E_{1}, \frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right) \\
& =\int_{\Sigma_{2}}\left(0, E_{1}, 1+\frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right)=1+\frac{1}{2}+\frac{1}{2}=2 .
\end{aligned}
$$

As a result, $\chi\left(\mathcal{O}_{h}, \mathcal{O}_{l}\right)=1-2=-1$.
Finally, using the same argument as in the proof of Lemma 4.6.1 as well as (2.4), one can find that $\chi\left(\mathcal{O}_{h^{2}}, \mathcal{O}_{h^{2}}\right)=$ $h^{4}=66$.
Altogether, this yield $\operatorname{det}(R)=66$.

2.3.2 A family of eight elements obtained with mutation functors, but still in $K_{\text {num }}\left(\tilde{X}_{4}\right)$

In this subsection, we try to find a family of eight elements in $\pi^{*} K_{\text {num }}\left(X_{4}\right)$, following a method suggested by Benjamin Sung.

Before going further, let us recall the following definition (see for instance Definition 1.57 and Proposition 2.56 of [14]) :

Definition 2.3.3. Let E be an object in a \mathbb{C}-linear triangulated category \mathcal{D}. Then E is an exceptional object if and only if $\operatorname{dim}\left(\operatorname{Ext}^{i}(E, E)\right)=\delta_{i, 0}$.

With what we will see in the proof of Lemma 4.1.5 and Proposition 11.16 in [14], one can find that

$$
\begin{aligned}
\left\{e_{1}, \ldots, e_{6}\right\}:= & \left\{j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right),\right. \\
& \left.j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)\right\}
\end{aligned}
$$

is a sequence of exceptional objects.
Moreover, if we denote by \mathcal{D} the subcategory $<e_{1}, \ldots, e_{6}>\subset D^{b}\left(\tilde{X}_{4}\right)$, Lemma 2.1.2 yields $\pi^{*} D^{b}\left(X_{4}\right) \subset^{\perp} \mathcal{D}$ and

$$
K_{\text {num }}\left(\tilde{X}_{4}\right)=<K_{\text {num }}(\mathcal{D}), \pi^{*} K_{\text {num }}\left(X_{4}\right)>.
$$

By the statement below Lemma 2.4 in [17] there is another semi-orthogonal decomposition $D^{b}\left(\tilde{X}_{4}\right)=<\mathcal{D},{ }^{\perp} \mathcal{D}>$, hence

$$
K_{\text {num }}\left(\tilde{X}_{4}\right)=<K_{\text {num }}(\mathcal{D}), K_{\text {num }}\left({ }^{\perp} \mathcal{D}\right)>
$$

If $K_{\text {num }}\left(\tilde{X}_{4}\right)$ is free this should thus imply $\pi^{*} K_{\text {num }}\left(X_{4}\right) \cong K_{\text {num }}\left({ }^{\perp} \mathcal{D}\right)$.
This is why in this subsection we are going to look for a free family of 8 elements in $K_{\text {num }}\left({ }^{\perp} \mathcal{D}\right)$: this should actually yield a family in $\pi^{*} K_{\text {num }}\left(X_{4}\right)$. Furthermore, since $\pi_{*} \mathcal{O}_{\tilde{X}_{4}}=\mathcal{O}_{X_{4}}$, the projection formula implies that for any sheaves \mathcal{E} and \mathcal{F} in $D^{b}\left(X_{4}\right)$, one has $H^{*}\left(\pi^{*} \mathcal{E}, \pi^{*} \mathcal{F}\right)=H^{*}\left(\mathcal{E}, \pi_{*} \pi^{*} \mathcal{F}\right)=H^{*}(\mathcal{E}, \mathcal{F})$, therefore if we could compute the matrix of Euler characteristics associated to such a family in $\pi^{*} K_{\text {num }}\left(X_{4}\right)$, it would directly give us the matrix associated to the corresponding family in $K_{\text {num }}\left(X_{4}\right)$.

Using Definition 2.4 in [21], one can use a composition of right mutation functors, namely $\mathcal{R}:=\mathbb{R}_{e_{6}} \circ \ldots \circ \mathbb{R}_{e_{1}}$, to project elements of $K_{\text {num }}\left(\tilde{X}_{4}\right)$ to ${ }^{\perp} \mathcal{D}$. Eventually, this will give a free family of 8 elements in $K_{\text {num }}\left({ }^{\perp} \mathcal{D}\right)$; if $K_{\text {num }}\left(\tilde{X}_{4}\right)$ is free and this family doesn't generate a strict sublattice, this could give a basis of $K_{\text {num }}\left(X_{4}\right)$, whose matrix of Euler characteristics is easily calculable using Propositions 2.1.5 and 2.2.1.

With Proposition 2.1.5 and Definition 2.4 in [21], one finds :

$$
\begin{aligned}
\mathcal{R}\left(\mathcal{O}_{\tilde{S}}\right) & =\mathcal{O}_{\tilde{S}}-3 e_{1}-3 e_{2}-3 e_{3}+33 e_{4}-129 e_{5}+204 e_{6} \\
\mathcal{R}\left(\mathcal{O}_{D_{3}}\left(V_{E}\right)\right) & =\mathcal{O}_{D_{3}}\left(V_{E}\right)+e_{4}-4 e_{5}+2 e_{6} \\
\mathcal{R}\left(\mathcal{O}_{\bar{D}_{2}}\right) & =\mathcal{O}_{\bar{D}_{2}}-36 e_{4}+(72-b) e_{5}+(-36+b) e_{6} .
\end{aligned}
$$

Moreover, if $\left\{y_{1}, \ldots, y_{8}\right\}:=\left\{\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{l_{h}}, \mathcal{O}_{p}, \mathcal{R}\left(\mathcal{O}_{\tilde{S}}\right), \mathcal{R}\left(\mathcal{O}_{D_{3}}\left(V_{E}\right)\right), \mathcal{R}\left(\mathcal{O}_{\bar{D}_{2}}\right)\right\}$, then :

$$
M^{\prime}=\left(\chi\left(y_{i}, y_{j}\right)\right)_{1 \leq i, j \leq 8}=\left(\begin{array}{cccccccc}
1 & 20 & 124 & 1 & 1 & 1 & 0 & -12 \\
1 & 1 & 20 & 0 & 1 & 37 & 0 & 0 \\
20 & 1 & 1 & -1 & 1 & 127 & 12 & 156 \\
0 & -1 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
37 & 217 & -125 & 0 & 0 & 10488 & -314 & -2616+333 b \\
0 & 12 & 36 & 0 & 0 & 46 & 8 & -48 \\
0 & 36+3 b & 216+6 b & 0 & 0 & -24+9 b & -192 & b^{2}+48
\end{array}\right) .
$$

Its determinant is $2\left(-6188803776-70302816 b+1781868 b^{2}\right)=2^{3} .3\left(-515733648-5858568 b+148489 b^{2}\right)$.
Remark 2.3.4. One could also use the family \mathcal{F}_{2} and the associated matrix \tilde{M}_{2} from subsection 2.2, and project elements from \mathcal{F}_{2} on ${ }^{\perp} \mathcal{D}$ with \mathcal{R} in order to find a free family of 8 elements. However, computing $\mathcal{R}(\mathcal{F})$ for a sheaf \mathcal{F} requires to know all the $\chi\left(\mathcal{F}, e_{i}\right)$ for $1 \leq i \leq 6$.
If we want to consider structure sheaves of surfaces in \tilde{Z} among \mathcal{F}_{2} this should then cause similar problems as when we tried to compute $\mathcal{R}\left(\mathcal{O}_{\bar{D}_{2}}\right)$: we would need to understand the intersections between some surfaces in D_{3} and \tilde{Z}, which is not so easy in general.
Unfortunately, if we want to project 8 elements from \mathcal{F}_{2}, we need to consider at least one structure sheaf of a surface in \tilde{Z} : indeed $\mathcal{O}_{D_{3}}\left(-V_{E}\right)$ is just e_{4}, so we cannot consider it (because $\mathcal{R}\left(e_{4}\right)=0$), and then out of the 13 other elements, 6 are structure sheaves of surfaces in \tilde{Z}, so if we want 8 elements we need to take at least one such structure sheaf.

Chapter 3

Subvarieties of X_{4}, \tilde{X}_{4} and \tilde{X}_{5}

In this section we gather some small results about the geometry of X_{4} and \tilde{X}_{4}. Some of these results will be useful for later, the last part of the section will concern an attempt to describe set theoretically some of what could be contracted by the map π (see (1.2) and (1.4)) in some surfaces in \tilde{X}_{4}.

3.1 A surface induced by S_{2} in Z_{3}

As one can see in (1.2) and (1.4), S_{2} is a surface which appears to be related both to \tilde{X}_{4} and the associated \tilde{X}_{5}, but is not embedded in any of them. We would like to use it to induce a surface in \tilde{X}_{4} whose structure sheaf could be used to build a basis of $K_{\text {num }}\left(\tilde{X}_{4}\right)$. In this subsection, we thus try to find a surface in Z_{3}, "induced" by S_{2} (as it will turn out to be quite difficult to find a copy of S_{2} in Z_{3}, we will instead consider a blow-up of S_{2}) and which we can use later to find a surface in \tilde{X}_{4} related to S_{2}.

We will first try to find a section of the map $\sigma: Z_{3} \rightarrow S_{2}$ (see (1.2)) which could help us to find a copy of S_{2} in Z_{3} and then use Lemma 1.4.1 to find a blow-up of S_{2} embedded in Z_{3}.

Proposition 3.1.1. It is equivalent to be given a section of the map $\sigma: Z_{3} \rightarrow S_{2}$ or a short exact sequence : $0 \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{V}_{S} \rightarrow \mathcal{L}_{2} \rightarrow 0$ where the \mathcal{L}_{i} are line bundles on S_{2} and \mathcal{V}_{S} is as defined in 1. of Lemma 1.2.2.
Proof. First of all, from 1. of Lemma 1.2.2 we know that $Z_{3}=\mathbb{P}_{S}\left(\mathcal{V}_{S}\right)$ and that $\mathcal{V}_{S}^{\mathcal{V}} \cong \mathcal{V}_{S}$. So from Exercise 7.8 of II. 7 in [12], we get that there is a bijection between sections of σ and line bundles \mathcal{L}_{2} on S_{2} such that there is a surjective morphism $\mathcal{V}_{S} \rightarrow \mathcal{L}_{2} \rightarrow 0$. Let us assume that we are given such a surjective morphism. Since \mathcal{V}_{S} is a rank 2 vector bundle (still from 1. of Lemma 1.2.2), the kernel K of this morphism has to be of rank 1. Moreover \mathcal{V}_{S} is locally free since it is a vector bundle, so K is a line bundle that we can call \mathcal{L}_{1}. Thus we have a short exact sequence $0 \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{V}_{S} \rightarrow \mathcal{L}_{2} \rightarrow 0$. Conversely, such a sequence obviously gives a surjective morphism from \mathcal{V}_{S} to a line bundle on S_{2}.

Lemma 3.1.2. If there is a short exact sequence $0 \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{V}_{S} \xrightarrow{f} \mathcal{L}_{2} \rightarrow 0$ where the \mathcal{L}_{i} are line bundles on S_{2}, then f induces a global section of $\sigma^{*} \mathcal{L}_{2} \otimes \mathcal{O}_{Z_{3}}\left(V_{Z}\right)$ on $Z_{3}=\mathbb{P}_{S}\left(\mathcal{V}_{S}\right)$ with V_{Z} the relative hyperplane class of Z_{3} as defined in Definition 1.3.3. The zero locus of this global section is then a surface isomorphic to S_{2} and with class $V_{Z}+\left[\sigma^{*} \mathcal{L}_{2}\right]$ in Z_{3}.
Proof. Let us assume that we have a short exact sequence $0 \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{V}_{S} \xrightarrow{f} \mathcal{L}_{2} \rightarrow 0$ in S_{2}. Then f induces a global section of $\sigma^{*} \mathcal{L}_{2} \otimes \mathcal{O}_{Z_{3}}\left(V_{Z}\right)$ on Z_{3} since $\operatorname{Hom}\left(\mathcal{V}_{S}, \mathcal{L}_{2}\right)=\operatorname{Hom}\left(\mathcal{O}_{S_{2}}, \sigma_{*}\left(\mathcal{O}_{Z_{3}}\left(V_{Z}\right) \otimes \sigma^{*} \mathcal{L}_{2}\right)\right) \cong$ $\operatorname{Hom}\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\left(V_{Z}\right) \otimes \sigma^{*} \mathcal{L}_{2}\right)$. Let us denote by S the zero locus of this section induced by f. Then since $\mathcal{O}_{Z_{3}}\left(V_{Z}\right) \otimes \sigma^{*} \mathcal{L}_{2}$ is a line bundle, \tilde{S} is a divisor in Z_{3} so it is 2 -dimensional. Moreover over each point p of S_{2} the kernel of f is $\mathcal{L}_{1, p}$ which is one dimensional, so there is exactly one point over p in $\tilde{S}: \mathbb{P}\left(\mathcal{L}_{1, p}\right)$. Thus $\left.\sigma\right|_{\tilde{S}}: \tilde{S} \rightarrow S_{2}$ is an isomorphism. By definition of \tilde{S}, its class in Z_{3} is $V_{Z}+\left[\sigma^{*} \mathcal{L}_{2}\right]$.

Lemma 3.1.3. On S_{2}, \mathcal{V}_{S} has no non-zero global sections.
Proof. As mentioned in 11. of Theorem 1.2.1, $S_{2} \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ is cut out by two $(1,1)$ divisors. So we have a resolution

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-2,-2) \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-1,-1)^{\oplus 2} \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}} \rightarrow \mathcal{O}_{S_{2}} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

Moreover if we denote by Ω_{i} the cotangent bundle on A_{i} we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow \Omega_{i} \rightarrow \mathcal{O}_{\mathbb{P}\left(\Lambda^{2} A_{i}\right)}(-1)^{\oplus 3} \rightarrow \mathcal{O}_{\mathbb{P}\left(\wedge^{2} A_{i}\right)} \rightarrow 0 \tag{3.2}
\end{equation*}
$$

On the other hand, by the proof of Proposition 4.6 in [20] we have short exact sequences on S_{2} :

$$
\begin{align*}
& 0 \rightarrow \mathcal{U}_{2, A_{1}} \rightarrow A_{1} \otimes \mathcal{O}_{S_{2}} \rightarrow \mathcal{O}_{S_{2}}\left(\bar{h}_{1}\right) \rightarrow 0 \tag{3.3}\\
& 0 \rightarrow \mathcal{U}_{2, A_{2}} \rightarrow A_{2} \otimes \mathcal{O}_{S_{2}} \rightarrow \mathcal{O}_{S_{2}}\left(\bar{h}_{2}\right) \rightarrow 0 \tag{3.4}
\end{align*}
$$

so on $S_{2}, \Omega_{i} \cong \mathcal{U}_{2, A_{i}}\left(-\bar{h}_{i}\right)$. Using now (1.3) and (3.1) we can compute $H^{*}\left(\mathcal{V}_{S}\right)$ as follows: (1.3) gives us the short exact sequence $0 \rightarrow \mathcal{O}\left(-\bar{h}_{1}\right) \oplus \mathcal{O}\left(-\bar{h}_{2}\right) \rightarrow \Omega_{1}\left(\bar{h}_{1}\right) \oplus \Omega_{2}\left(\bar{h}_{2}\right) \rightarrow \mathcal{V}_{S} \rightarrow 0$ and (3.1) allows us to compute the cohomology of each term of the sequence.

- $\mathcal{O}\left(-\bar{h}_{1}\right)$ is the pullback of $\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-1,0)$ by definition of \bar{h}_{1} in Definition 1.3.3. So we get a short exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-3,-2) \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-2,-1)^{\oplus 2} \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-1,0) \rightarrow \mathcal{O}_{S_{2}}\left(-\bar{h}_{1}\right) \rightarrow 0
$$

Finally, using the Künneth formula : $H^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(a, b)\right) \cong \bigoplus_{i} H^{i}\left(\mathcal{O}_{\mathbb{P}^{2}}(a)\right) \otimes H^{*-i}\left(\mathcal{O}_{\mathbb{P}^{2}}(b)\right)$ we get that $H^{*}\left(\mathcal{O}\left(-\bar{h}_{1}\right)\right)=0$. Similarly $H^{*}\left(\mathcal{O}\left(-\bar{h}_{2}\right)\right)=0$.

- We use the same reasoning as before : we have a short exact sequence

$$
0 \rightarrow \Omega_{1}(-1,-2) \rightarrow \Omega_{1}(0,-1)^{\oplus 2} \rightarrow \Omega_{1}(1,0) \rightarrow \Omega_{1}\left(\bar{h}_{1}\right) \rightarrow 0
$$

where $\Omega_{1}(a, b) \cong \Omega_{1}(a) \boxtimes \mathcal{O}(b)$. To compute $H^{*}\left(\Omega_{i}(a)\right)$ we use (3.2) which yields :

$$
\begin{array}{llr}
H^{2}\left(\Omega_{i}(-2)\right) \cong \mathbb{C}, & H^{j}\left(\Omega_{i}(-2)\right)=0 & \text { for } j \neq 2 \\
H^{j}\left(\Omega_{i}(-1)\right)=0 & & \forall j \\
H^{1}\left(\Omega_{i}\right) \cong \mathbb{C}, & H^{j}\left(\Omega_{i}\right)=0 & \text { for } j \neq 1 \\
H^{j}\left(\Omega_{i}(1)\right)=0 & & \forall j \\
H^{0}\left(\Omega_{i}(2)\right) \cong \mathbb{C}^{3}, & H^{j}\left(\Omega_{i}(2)\right)=0 & \text { for } j \neq 0 .
\end{array}
$$

Finally, Künneth formula gives us: $H^{*}\left(\Omega_{1}(-1,-2)\right)=H^{*}\left(\Omega_{1}(0,-1)\right)=H^{*}\left(\Omega_{1}(1,0)\right)=0$ so $H^{*}\left(\Omega_{1}\left(\bar{h}_{1}\right)\right)=$ 0 . Similarly, $H^{*}\left(\Omega_{2}\left(\bar{h}_{2}\right)\right)=0$.

Therefore, $H^{*}\left(\mathcal{V}_{S}\right)=0$ and so \mathcal{V}_{S} has no non-zero global sections on S_{2}.
However there is an injection $0 \rightarrow \mathcal{O}_{S_{2}} \rightarrow \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ which if it gave rise to a copy of S_{2} would be very convenient because this surface would have class $V_{Z}+\bar{h}_{1}+\bar{h}_{2}=\bar{h}$ by Lemma 3.1.2 and (1.11). Here \bar{h}, \bar{h}_{1} and \bar{h}_{2} are defined as in Definition 1.3.3. In particular $\omega_{S}=\mathcal{O}_{S_{2}}\left(-\bar{h}_{1}-\bar{h}_{2}\right)$ (by 11. of Theorem 1.2.1).

Lemma 3.1.4. On $S_{2}, \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ has nonzero global sections.
Proof. We use the same method as in the proof of Lemma 3.1.3, except that now everything is twisted by $\left(\bar{h}_{1}+\bar{h}_{2}\right)$. We have then a short exact sequence :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}\left(\bar{h}_{2}\right) \oplus \mathcal{O}\left(\bar{h}_{1}\right) \rightarrow \Omega_{1}\left(2 \bar{h}_{1}+\bar{h}_{2}\right) \oplus \Omega_{2}\left(\bar{h}_{1}+2 \bar{h}_{2}\right) \rightarrow \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right) \rightarrow 0 \tag{3.5}
\end{equation*}
$$

- There is a resolution

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-1,-2) \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(0,-1)^{\oplus 2} \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,0) \rightarrow \mathcal{O}_{S_{2}}\left(\bar{h}_{1}\right) \rightarrow 0
$$

Using Künneth formula again, one can find :

$$
\begin{aligned}
& H^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-1,-2)\right)=0 \\
& H^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(0,-1)^{\oplus 2}\right)=0 \\
& H^{0}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,0)\right)=\mathbb{C}^{3}, \quad H^{j}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,0)\right)=0 \forall j \neq 0 .
\end{aligned}
$$

So $\operatorname{dim}\left(H^{j}\left(\mathcal{O}_{S_{2}}\left(\bar{h}_{1}\right)\right)\right)=3 \delta_{0 j}$. Similarly, $\operatorname{dim}\left(H^{j}\left(\mathcal{O}_{S_{2}}\left(\bar{h}_{2}\right)\right)\right)=3 \delta_{0 j}$.

- We use now

$$
0 \rightarrow \Omega_{1}(0,-1) \rightarrow \Omega_{1}(1,0)^{\oplus 2} \rightarrow \Omega_{1}(2,1) \rightarrow \Omega_{1}\left(2 \bar{h}_{1}+\bar{h}_{2}\right) \rightarrow 0 .
$$

With the same method as in the previous Lemma we find :

$$
\begin{aligned}
& H^{*}\left(\Omega_{1}(0,-1)\right)=0 \\
& H^{*}\left(\Omega_{1}(1,0)^{\oplus 2}\right)=0 \\
& H^{0}\left(\Omega_{1}(2,1)\right)=H^{0}\left(\Omega_{1}(2)\right) \otimes H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)=\mathbb{C}^{9} \quad H^{j}\left(\Omega_{1}(2,1)\right)=0 \forall j \neq 0 .
\end{aligned}
$$

So $\operatorname{dim}\left(H^{j}\left(\Omega_{1}\left(2 \bar{h}_{1}+\bar{h}_{2}\right)\right)\right)=9 \delta_{j 0}$. Similarly $\operatorname{dim}\left(H^{j}\left(\Omega_{2}\left(\bar{h}_{1}+2 \bar{h}_{2}\right)\right)\right)=9 \delta_{j 0}$.
As a result, $\operatorname{dim}\left(H^{0}\left(\mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)=2.9-2.3=18-6=12$.
Yet, we have the following problem:
Lemma 3.1.5. If we have a short exact sequence $0 \rightarrow \mathcal{O}_{S_{2}} \rightarrow \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right) \rightarrow Q \rightarrow 0$ then Q cannot be a line bundle.

Proof. First of all since $\operatorname{rank}\left(\mathcal{V}_{S}\right)=2$ we must have $\operatorname{rank}(Q)=1$. We also know from (1.3) that there is a short exact sequence

$$
0 \rightarrow \mathcal{O}_{S_{2}}\left(-\bar{h}_{1}\right) \oplus \mathcal{O}_{S_{2}}\left(-\bar{h}_{2}\right) \rightarrow \mathcal{U}_{2, A_{1}} \oplus \mathcal{U}_{2, A_{2}} \rightarrow \mathcal{V}_{S} \rightarrow 0
$$

Moreover, the short exact sequences (3.3) and (3.4) with (1.13) imply that $\operatorname{ch}\left(\mathcal{U}_{2, A_{1}}\right)=(3,0,0)-\left(1, \bar{h}_{1}, \frac{1}{2}\right)=$ $\left(2,-\bar{h}_{1},-\frac{1}{2}\right)$ and $\operatorname{ch}\left(\mathcal{U}_{2, A_{2}}\right)=\left(2,-\bar{h}_{2},-\frac{1}{2}\right)$. So $\operatorname{ch}\left(\mathcal{V}_{S}\right)=\left(4,-\bar{h}_{1}-\bar{h}_{2},-1\right)-\left(2,-\bar{h}_{1}-\bar{h}_{2}, 1\right)=(2,0,-2)$. Thus $\operatorname{ch}(Q)=(2,0,-2) .\left(1, \bar{h}_{1}+\bar{h}_{2}, 3\right)-(1,0,0)=\left(1,2 \bar{h}_{1}+2 \bar{h}_{2}, 4\right)$. However $\left(2 \bar{h}_{1}+2 \bar{h}_{2}\right)^{2}=4.6=24$ and $\frac{24}{2} \neq 4$. As a result Q cannot be a line bundle.

So a non-zero map $\mathcal{O}_{S_{2}}\left(-\bar{h}_{1}-\bar{h}_{2}\right) \rightarrow \mathcal{V}_{S}$ will not induce a surface isomorphic to S_{2} in Z_{3}. However if we could prove that there is a short exact sequence $0 \rightarrow \mathcal{O}_{S_{2}} \rightarrow \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right) \rightarrow \mathcal{L} \otimes \mathcal{I}_{D} \rightarrow 0$ with \mathcal{L} a line bundle and \mathcal{I}_{D} the ideal sheaf of some points D, then using Lemma 1.4.1 we could still get a copy of a blow-up of S_{2} in D inside Z_{3}, with class \bar{h}. This is what we are going to do now.

Before going further, let us recall some geometrical properties of S_{2} that we are going to use. First of all, by 10. of Theorem 1.2.1, the points of S_{2} are exactly the $\bar{U}_{4} \subset \bar{W}$ of the form $\bar{U}_{4}=U_{2, A_{1}} \oplus U_{2, A_{2}}$ such that \bar{U}_{4} is λ^{\prime}-isotropic and $\bar{U}_{4}^{\perp} \subset \bar{U}_{4}$ is 2 -dimensional. Moreover, since we assumed that the A_{i} are not μ-Lagrangian, where μ is the 2 -form associated to the global section of $\mathcal{U}_{3}(1)$ we are considering, we have $\operatorname{dim}\left(A_{i}^{\perp} \cap A_{i}\right)=1$. Let μ_{i} denote a generator of $A_{i}^{\perp} \cap A_{i}$ for $i \in\{1,2\}$. Then (see Lemma 1.2.2) there are two smooth rational curves \bar{C}_{1} and \bar{C}_{2} in S_{2} such that the following are equivalent:

- $p=U_{2, A_{1}} \oplus U_{2, A_{2}} \in S_{2}$ is in \bar{C}_{i}.
- $U_{2, A_{i}}$ is μ-isotropic.
- $\mu_{i} \in U_{2, A_{i}}$.
- $U_{2, A_{i}} \cap\left(U_{2, A_{1}} \oplus U_{2, A_{2}}\right)^{\perp}$ is 1-dimensional.

To find what \mathcal{I}_{D} could complete the short exact sequence above, we need first to look more in details at S_{2} and the curves \bar{C}_{1} and \bar{C}_{2}.

Lemma 3.1.6. If $w, z \in A_{2}$ are nonzero vectors such that $\operatorname{Ker}(\mu(w,).) \cap A_{1}=\operatorname{Ker}(\mu(z,).) \cap A_{1}$ then w and z are colinear.
Similarly, if u, $v \in A_{1}$ are nonzero vectors such that $\operatorname{Ker}(\mu(u,).) \cap A_{2}=\operatorname{Ker}(\mu(v,).) \cap A_{2}$ then u and v are colinear.
Proof. Let us assume that $w, z \in A_{2}$ are nonzero vectors such that $\operatorname{Ker}(\mu(w,).) \cap A_{1}=\operatorname{Ker}(\mu(z,).) \cap A_{1}$. Then let (u, v, s) be a basis of A_{1} such that $\operatorname{Ker}(\mu(w,).) \cap A_{1}=\operatorname{Ker}(\mu(z,).) \cap A_{1}=<u, v>$. Then since μ induces a non degenerate pairing between the A_{i} we have that $\mu(w, s)=a \neq 0$ and $\mu(z, s)=b \neq 0$. Thus $\mu\left(b w-a z, A_{1}\right)=0$ and so, again since the pairing induced by μ between A_{1} and A_{2} is non degenerate, we must have $b w-a z=0$. The same reasoning can be used to show the second assertion.

Before going further, let us define some "properties": avoiding them will make it possible for us to find an ideal \mathcal{I}_{D} fitting in the short exact sequence we are looking for. It will also be useful later.

Definition 3.1.7. Let us define :
(P1) $\mu_{1} \in \bar{U}_{4}^{\perp}$ for one of the two points in $\bar{C}_{1} \cap \bar{C}_{2}$.
(P2) $\mu_{2} \in \bar{U}_{4}^{\perp}$ for one of the two points in $\bar{C}_{1} \cap \bar{C}_{2}$.
(A1) $A_{1} /<\mu_{1}>\oplus A_{2} /<\mu_{2}>\in S_{2}$ (by $A_{i} /<\mu_{i}>$ we actually mean the kernel of μ_{i}^{*}, so that for instance a point in S_{2} such that $U_{2, A_{1}}=<u+a \mu_{1}, v>$ and $U_{2, A_{2}}=<w+b \mu_{2}, v>$ would not satisfy (A1)).
(B1) In $\bar{C}_{1}-\bar{C}_{2}$, there is more than one point such that $\bar{U}_{S} / A_{2}=<\mu_{1}>$.
(B2) In $\bar{C}_{2}-\bar{C}_{1}$, there is more than one point such that $\bar{U}_{S} / A_{1}=<\mu_{2}>$.
Lemma 3.1.8. The following are equivalent :

- (P1) holds.
- (P2) holds.
- μ_{1} and μ_{2} are μ-orthogonal.
- $M_{1} M_{6} K_{1}+M_{2} M_{5} K_{2}+M_{3} M_{4} K_{3}=0$ using the notations of 4. of section 1.1.

Proof. - Let us first see that (P1) \Leftrightarrow (P2).
Let us assume that (P1) holds. Then there is a point $p_{1} \in \bar{C}_{1} \cap \bar{C}_{2}$ such that $p=\bar{U}_{4}=<\mu_{1}, u>\oplus<\mu_{2}, w>$ with $u \in A_{1}, w \in A_{2}$ and $\bar{U}_{4}^{\perp}=<\mu_{1}, a w+b \mu_{2}>$. In particular, μ_{1} is μ-orthogonal to μ_{2}. Moreover, since μ induces a non degenerate pairing between A_{1} and $A_{2}, K:=\operatorname{Ker}\left(\mu\left(\mu_{2},.\right)\right) \cap A_{1}$ is 2-dimensional. Thus $K=<\mu_{1}, v>$ with some $v \in A_{1}$ and $<\mu_{2}, K>$ is a Lagrangian for μ, by definition of K and μ_{1} (by definition, $\mu\left(\mu_{1}, A_{1}\right)=0$). By 6 . of section $1.1, \lambda^{\prime}\left(\mu_{1}, \mu_{2}, v,.\right)$ is non degenerate so there exists, up to multiplication by a nonzero scalar, a unique $z \in A_{2} /<\mu_{2}>$ such that $\lambda^{\prime}\left(\mu_{1}, \mu_{2}, v, z\right)=0$. Then μ_{2} is μ orthogonal to μ_{1}, v and z and since z is not colinear to μ_{2}, we must have $K^{\prime}:=\operatorname{Ker}(\mu(z,).) \cap A_{1} \neq K$, by Lemma 3.1.6. But then $K^{\prime} \cap K$ must be a line in A_{1}, so $\left.\left(<\mu_{1}, \mu_{2}, v, z\right\rangle\right)^{\perp}$ contains $<\mu_{2}, K \cap K^{\prime}>$. Finally, $\left(<\mu_{1}, \mu_{2}, v, z>\right)^{\perp}=<\mu_{2}, K \cap K^{\prime}>$ because $K \neq K^{\prime}$ and because $\mu\left(v, A_{1}\right) \neq 0$ but $\mu\left(v, \mu_{1}\right)=\mu(v, v)=0$ and $\mu\left(z, A_{2}\right) \neq 0$ but $\mu\left(z, \mu_{2}\right)=\mu(z, z)=0$. So $<\mu_{1}, \mu_{2}, v, z>$ is λ^{\prime}-isotropic and it contains its 2 dimensional μ-orthogonal: by 10. of Theorem 1.2.1 it means that $p_{2}:=<\mu_{1}, \mu_{2}, v, z>\in S_{2}$. Since it contains both μ_{1} and μ_{2} it has to be in $\bar{C}_{1} \cap \bar{C}_{2}$.
Moreover $p_{1} \neq p_{2}$. Indeed, if $p_{2}=p_{1}$ then there exists another point $V_{4}:=<\mu_{1}, r>\oplus<\mu_{2}, s>\in \bar{C}_{1} \cap \bar{C}_{2}$. Therefore, there exists $(\alpha, \beta) \in \mathbb{C}^{2}$ such that $\alpha \mu_{1}+\beta r$ is μ-orthogonal to V_{4}. In particular, $\alpha \mu_{1}+\beta r$ is μ-orthogonal to μ_{2} and since μ_{2} is μ-orthogonal to μ_{1}, it must then also be μ-orthogonal to r. But then $K=<\mu_{1}, r>$ and again by 6 . of section 1.1 this implies that $\left\langle\mu_{2}, s\right\rangle=<\mu_{2}, z>$ and so $V_{4}=p_{2}=p_{1}$,
which is a contradiction since $\bar{C}_{1} \cap \bar{C}_{2}$ contains two points. So $\left\{p_{1}, p_{2}\right\}=\bar{C}_{1} \cap \bar{C}_{2}$ and if p_{1} satisfies (P1) it implies that p_{2} satisfies (P2).
By the same reasoning with μ_{i} and A_{i} exchanged, (P2) implies (P1).

- Let us see now that $(\mathrm{P} 1) \Leftrightarrow \mu\left(\mu_{1}, \mu_{2}\right)=0$.

We have just seen that (P1) implies that $\mu\left(\mu_{1}, \mu_{2}\right)=0$, so we only have to show that $\mu\left(\mu_{1}, \mu_{2}\right)=0$ implies (P1). Let us assume thus that μ_{1} is μ-orthogonal to μ_{2}. Using the same reasoning and notations as before we can then construct a point in $\bar{C}_{1} \cap \bar{C}_{2}$ satisfying (P1). Indeed as before $<K, \mu_{2}>$ is a Lagrangian for μ if $K=\operatorname{Ker}\left(\mu\left(\mu_{2},.\right)\right) \cap A_{1}$ contains μ_{1} thus by 6 . of section 1.1 there exists a unique (up to a scalar) $z \in A_{2} /<\mu_{2}>$ such that $\lambda^{\prime}\left(\mu_{2}, \mu_{1}, v, z\right)=0$. Exactly as before, this gives a point in $\bar{C}_{1} \cap \bar{C}_{2}$ satisfying (P2). Then by what we did before the other point in $\bar{C}_{1} \cap \bar{C}_{2}$ satisfies (P1).

- Finally, in the proof of Lemma 4.8 in Kuznetsov's article, we have that $\mu_{1}=M_{6} K_{1} x_{1}+M_{5} K_{2} x_{2}+M_{4} K_{3} x_{3}$, using the notations of 4. of section 1.1. Similarly, one can compute that $\mu_{2}=M_{3} K_{3} x_{4}+M_{2} K_{2} x_{5}+$ $M_{1} K_{1} x_{6}$. A direct computation then shows that $\mu\left(\mu_{1}, \mu_{2}\right)=\left(M_{1} M_{6} K_{1}+M_{2} M_{5} K_{2}+M_{3} M_{4} K_{3}\right)\left(M_{1} M_{6} K_{1}+\right.$ $M_{2} M_{5} K_{2}+M_{3} M_{4} K_{3}+K_{1} K_{2} K_{3}$). By 4. of section 1.1, $M_{1} M_{6} K_{1}+M_{2} M_{5} K_{2}+M_{3} M_{4} K_{3}+K_{1} K_{2} K_{3} \neq 0$, so $\mu\left(\mu_{1}, \mu_{2}\right)=0$ if and only if $M_{1} M_{6} K_{1}+M_{2} M_{5} K_{2}+M_{3} M_{4} K_{3}=0$.

In the following, we are going to assume that (P1) and (P2) don't hold, so from now on we are going to assume

$$
\begin{equation*}
M_{1} M_{6} K_{1}+M_{2} M_{5} K_{2}+M_{3} M_{4} K_{3} \neq 0 \tag{3.6}
\end{equation*}
$$

Definition 3.1.9. We will call $K_{1}:=\operatorname{Ker}\left(\left(\mu\left(\mu_{1},.\right)\right) \cap A_{2}\right.$ and $K_{2}:=\operatorname{Ker}\left(\left(\mu\left(\mu_{2},.\right)\right) \cap A_{1}\right.$.
Lemma 3.1.10. We have seen in the proof of Lemma 3.1.8 that K_{1} and K_{2} are both 2-dimensional. To each line in K_{i} corresponds a unique point in \bar{C}_{i} so $\bar{C}_{i} \cong \mathbb{P}\left(K_{i}\right)$.
Moreover, to each line l in $A_{i} /<\mu_{i}>$ corresponds a point p in \bar{C}_{i} such that $l \subset U_{2, A_{i}}$ so $\bar{C}_{i} \cong \mathbb{P}\left(A_{i} /<\mu_{i}>\right)$.
Proof. Let v be a nonzero vector in K_{2}. By hypothesis, $K:=\operatorname{Ker}(\mu(v,).) \cap A_{2}$ contains μ_{2}. Thus, $<v, K>$ is Lagrangian for μ and by 6 . of section 1.1 we have, up to a scalar, a unique $u \in A_{1} /<v>$ such that $\lambda^{\prime}(u, v, K)=0$. We would like to show that $U:=<u, v, K>$ is a point in S_{2}. For this we need to check that $U^{\perp} \subset U$ (indeed by constrution $\lambda^{\prime}(U)=0$, and since $U=U_{2, A_{1}} \oplus U_{2, A_{2}}$, it is $\bar{\lambda}$-isotropic). Let us distinguish two cases:

- $\mu_{1} \notin U$. Then $\mu(u, v) \neq 0$ since the projections of u and v onto $A_{1} /<\mu_{1}>$ must be non colinear, and μ is non degenerate on A_{1}. Let us denote by $K^{\prime}:=\operatorname{Ker}(\mu(u,).) \cap A_{2}$. Then since u and v are non colinear by Lemma 3.1.6 we must have $K \neq K^{\prime}$. Since they are both 2-dimensional (again because of the non degenerate pairing) in $A_{1}, K \cap K^{\prime}$ must be a line. Let w be a nonzero vector in this line. Then $w \in U^{\perp}$ since $\mu_{2} \in K$. Let z be such that $K=\langle w, z\rangle$. By construction, v is μ-orthogonal to w and z but $\mu(u, z) \neq 0$. Then $z+\frac{\mu(u, z)}{\mu(v, u)} v \in U^{\perp}$. Finally, $U^{\perp}=<w, z+\frac{\mu(u, z)}{\mu(v, u)} v>$ because $\mu_{2} \in K$ and μ is non degenerate on A_{2} so there should be a vector in K which is not μ-orthogonal to A_{2} / K, and because we have assumed that μ_{1} is not μ-orthogonal to μ_{2}.
- $\mu_{1} \in U$. Then $v \in U^{\perp}$. For the same reason as in the previous case there should be, up to a scalar, exactly one vector w in K such that w is μ-orthogonal to u and v. Since $\mu_{2} \in K, w \in U^{\perp}$. Finally, $U^{\perp}=<v, w>$ because μ is non degenerate on the A_{i} and in this case $\mu_{1} \in U_{2, A_{1}}$ and $\mu_{2} \in U_{2, A_{2}}$ so the two vectors generating \bar{W} / U cannot be in U^{\perp}. In this case $U \in \bar{C}_{1} \cap \bar{C}_{2}$.

So $U \in S_{2}$ and since $\mu_{2} \in K, U \in \bar{C}_{2}$. Therefore, to each line in K_{2} corresponds a point in \bar{C}_{2}, and so $\mathbb{P}\left(K_{2}\right) \subset \bar{C}_{2}$. But by Proposition 1.2.2, \bar{C}_{2} is rational so the inclusion is in fact an equality and each point in \bar{C}_{2} can be obtained by a similar construction as what we just did.
Moreover, since μ induces a non degenerate pairing between the A_{i}, if v and v^{\prime} are two non colinear vectors in K_{2}, then the associated K and K^{\prime} are distinct. But they both contain μ_{2}, so we can write $K=<\mu_{2}, w>$,
$K^{\prime}=<\mu_{2}, z>$ with w and z non colinear in $A_{2} /<\mu_{2}>$. Thus two different points in \bar{C}_{2} cannot have the same associated $U_{2, A_{2}} /<\mu_{2}>$ and therefore to each point in \bar{C}_{2} corresponds a unique line in $A_{2} /<\mu_{2}>$.
The same reasoning exchanging the μ_{i} and A_{i} finishes the proof.
Lemma 3.1.11. Let $p=\overline{U_{4}}=U_{2, A_{1}} \oplus U_{2, A_{2}}$ be a point in \bar{C}_{i}. Then by 2. of Lemma 1.2.2, $U_{2, A_{i}} \cap \bar{U}_{4}^{\perp}$ is 1-dimensional. Let u_{p} be a generator of this intersection. Then there is a unique point q in \bar{C}_{i} such that $<u_{q}>=<\mu_{i}>$ (in other words u_{q} and μ_{i} are colinear). It is not in $\bar{C}_{1} \cap \bar{C}_{2}$.

Proof. Let $p=\overline{U_{4}}=U_{2, A_{1}} \oplus U_{2, A_{2}}$ be a point in \bar{C}_{1}. Then by 2. of Lemma 1.2.2 we can write $U_{2, A_{1}}=<\mu_{1}, u>$, thus we can write $u_{p}=\alpha \mu_{1}+\beta u$ for some $\alpha, \beta \in \mathbb{C}$ such that $(\alpha, \beta) \neq(0,0)$. Let us also write $U_{2, A_{2}}=<y_{1}, y_{2}>$. Then u_{p} and μ_{1} are colinear if and only if $\beta=0$.
Let us assume that $\beta=0$. As a result, $\mu_{1} \in \bar{U}_{4}^{\perp}$ that is to say μ_{1} is μ-orthogonal to y_{1} and y_{2}. Since μ is a nondegenerate pairing between A_{1} and A_{2} then there is only one possibility for $\bar{U}_{2, A_{2}}$, namely K_{1}. Moreover, since \bar{U}_{4} is a point in S_{2} we have that \bar{U}_{4} is λ^{\prime} isotropic by 10 . of Theorem 1.2.1, and the linear form $\lambda^{\prime}\left(\mu_{1}, y_{1}, y_{2},.\right)$ is zero on A_{2} by 3. of section 1.1. Thus there are two possibilities:

- There exists one $v \in A_{1} / \mathbb{C} \mu_{1}$ such that $\lambda^{\prime}\left(\mu_{1}, y_{1}, y_{2}, v\right) \neq 0$ and u must be a nonzero vector in $\operatorname{Ker}\left(\lambda^{\prime}\left(\mu_{1}, y_{1}, y_{2},.\right)\right) \cap A_{1} /<\mu_{1}>$, which is one dimensional. Moreover in such a case, by a reasoning similar to the one in the proof of Lemma 3.1.10, $U=<\mu_{1}, u, K_{1}>$ is a point in \bar{C}_{1} with $\mu_{1} \in U^{\perp}$. So in this case there is exactly one point in \bar{C}_{1} such that $\mu_{1} \in \bar{U}_{4}^{\perp}$, and by Lemma 3.1.8, since we assumed (3.6), this point is actually in $\bar{C}_{1}-\bar{C}_{2}$.
- $\lambda^{\prime}\left(\mu_{1}, y_{1}, y_{2},.\right)$ is identically zero. Then by the same reasoning as in the proof of Lemma 3.1.10, each $u \in \mathbb{P}\left(A_{1} /<\mu_{1}>\right)$ gives a point $<\mu_{1}, u>\oplus K_{1} \in \bar{C}_{1}$. So $\mathbb{P}\left(A_{1} / \mathbb{C} \mu_{1}\right) \subset \bar{C}_{1}$, but since \bar{C}_{1} is rational by Proposition 1.2.2 this yields $\bar{C}_{1} \cong \mathbb{P}\left(A_{1} / \mathbb{C} \mu_{1}\right)$. But then, for each $\bar{U}_{4} \in \bar{C}_{1}$, we have that $\mu_{2} \notin U_{2, A_{2}}=K_{1}$ by Lemma 3.1.8 and (3.6). Hence by Proposition 1.2.2, $\bar{C}_{1} \cap \bar{C}_{2}=\emptyset$. Since by (1.13), $\bar{h}_{1} \bar{h}_{2}=2$, and since $\bar{C}_{i} \in\left|\bar{h}_{i}\right|$ by 2 . of Lemma 1.2.2, this is a contradiction.

So only the first possibility can happen and there is exactly one point $p \in \bar{C}_{1}$ such that u_{p} and μ_{1} are colinear. Since we assumed (3.6) by Lemma 3.1.8 this point has to be in $\bar{C}_{1}-\bar{C}_{2}$. The exact same reasoning switching the A_{i} and the μ_{i} completes the proof.

Proposition 3.1.12. If (3.6) holds, and either (A1) is not satisfied, or one of (B1), (B2) is not satisfied, then there exists a global section of $\mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ such that in the associated short exact sequence $0 \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right) \rightarrow Q \rightarrow 0$, $Q \cong \operatorname{det}\left(\mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right) \otimes \mathcal{I}_{K}$ where $\operatorname{supp}(K)=\left\{p_{1}, p_{2}, p_{2}, p_{4}\right\}$. Moreover, $\left\{p_{1}, p_{2}\right\}=\bar{C}_{1} \cap \bar{C}_{2}$ and $p_{3} \in \bar{C}_{1}-\bar{C}_{2}$, $p_{4} \in \bar{C}_{2}-\bar{C}_{1}$.

Proof. By (1.3) we have a short exact sequence

$$
0 \longrightarrow \mathcal{O}\left(-\bar{h}_{1}\right) \oplus \mathcal{O}\left(-\bar{h}_{2}\right) \longrightarrow \mathcal{U}_{2, A_{1}} \oplus \mathcal{U}_{2, A_{2}} \longrightarrow \mathcal{V}_{S} \longrightarrow 0
$$

Moreover by Lemma 3.1.4, $\mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ has global sections which are induced by the ones of $\mathcal{U}_{2, A_{1}}\left(\bar{h}_{1}+\bar{h}_{2}\right) \oplus$ $\mathcal{U}_{2, A_{2}}\left(\bar{h}_{1}+\bar{h}_{2}\right)$. So we need to find a "nice" global section, with which Q as the expected form.
To start with, since there are isomorphisms $\mathcal{U}_{2, A_{i}} \cong \mathcal{U}_{2, A_{i}}^{\vee}\left(-\bar{h}_{i}\right)$ we get the short exact sequence :

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}\left(\bar{h}_{2}\right) \oplus \mathcal{O}\left(\bar{h}_{1}\right) \longrightarrow \mathcal{U}_{2, A_{1}}^{\vee}\left(\bar{h}_{2}\right) \oplus \mathcal{U}_{2, A_{2}}^{\vee}\left(\bar{h}_{1}\right) \longrightarrow \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right) \longrightarrow 0 \tag{3.7}
\end{equation*}
$$

So a section $s: \mathcal{O}_{S} \rightarrow \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ is induced by a section of $\mathcal{U}_{2, A_{1}}^{\vee}\left(\bar{h}_{2}\right) \oplus \mathcal{U}_{2, A_{2}}^{\vee}\left(\bar{h}_{1}\right)$. Moreover, a section of $\mathcal{U}_{2, A_{i}}^{\vee}$ corresponds to a 1-form on A_{i} (which is 0 on the other A_{j}) and a section of $\mathcal{O}\left(\bar{h}_{i}\right)$ corresponds to a 2-form on A_{i} (see the introduction of [20] and page 218 of [10], with Lemma 4.2.6). So let us choose ϕ_{i} some 1 -forms over A_{i} and ψ_{i} some 2 -forms over A_{i}. Then the associated section of $\mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ corresponds to the restriction of $\phi_{1} \cdot \psi_{2}+\phi_{2} . \psi_{1}$ to $\bar{U}_{S}:=\bar{U}_{4} / \bar{U}_{4}^{\perp}$ at any point \bar{U}_{4} of S_{2}, since by the proof of Proposition 4.6 in [20], \mathcal{V}_{S} is the rank 2 vector bundle parametrizing the $\bar{U}_{4} / \bar{U}_{4}^{\perp}$ and in (1.3), $\mathcal{U}_{2, A_{1}} \oplus \mathcal{U}_{2, A_{2}}$ parametrizes all the $\bar{U}_{4} \in S_{2}$ (and
$\mathcal{O}\left(-\bar{h}_{1}\right) \oplus \mathcal{O}\left(-\bar{h}_{2}\right)$ the associated $\left.\bar{U}_{4}^{\perp}\right)$.
We would like to show that except for the four points p_{1}, p_{2}, p_{3} and p_{4} as described in the proposition, the fiber of Q is a one dimensional vector space, and that for these points the fiber is 0 . Then we should have $Q \cong \mathcal{L} \otimes \mathcal{I}_{p_{1}, p_{2}, p_{3}, p_{4}}$ and \mathcal{L} has to be the determinant of Q, which is also the determinant of $\mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ since $\operatorname{det}(\mathcal{O})=\mathcal{O}$.
To understand what the fibers of Q can be, we use the two following examples :

- On $\operatorname{Gr}\left(2, A_{i}\right)$, there is a short exact sequence $0 \rightarrow \mathcal{O}_{\operatorname{Gr}\left(2, A_{i}\right)} \rightarrow \mathcal{U}_{2, A_{i}}^{\vee} \rightarrow R \rightarrow 0$. Here the fiber of R at a point U_{2} is $U_{2} / \operatorname{Ker}(\phi)$ where ϕ is the 1-form corresponding to the global section $\mathcal{O}_{\operatorname{Gr}\left(2, A_{i}\right)} \rightarrow \mathcal{U}_{2, A_{i}}^{\vee}$ and $R \cong \mathcal{O}\left(\bar{h}_{i}\right) \otimes \mathcal{I}_{\operatorname{Ker}(\phi)}$.
- On S_{2} we have the short exact sequence $0 \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}\left(\bar{h}_{i}\right) \rightarrow \mathcal{O}_{\bar{C}_{i}}\left(\bar{h}_{i}\right) \rightarrow 0$ where the global section $\mathcal{O}_{S} \rightarrow \mathcal{O}\left(\bar{h}_{i}\right)$ corresponds to a 2 -form ψ and $\psi\left(\bigwedge^{2} \bar{U}_{2, A_{i}}\right)=0$ exactly on \bar{C}_{i}, if we choose the kernel vector of ψ to be μ_{i}, by Proposition 1.2.2. For a diffrent choice of ψ we would get another curve $\bar{C}_{i}^{\prime} \in\left|\bar{h}_{i}\right|$.

Noticing that since \bar{U}_{S} is 2-dimensional at any point of $S_{2}, \psi_{i}\left(\bigwedge^{2} \bar{U}_{S}\right) \in \mathbb{C}$, we can then define the fiber of Q at a point \bar{U}_{4} as $\bar{U}_{4} / \operatorname{Ker}\left(\chi^{\prime}\right)$ where $\chi^{\prime}: v \in \bar{U}_{S} \mapsto \phi_{1}(v) \psi_{2}\left(w_{1}, w_{2}\right)+\phi_{2}(v) \psi_{1}\left(w_{1}, w_{2}\right)$ where $\bar{U}_{S}=<w_{1}, w_{2}>$. Let us now look at what the fibers of Q at p can be, depending on the position of p with respect to the curves \bar{C}_{1} and \bar{C}_{2}.

1. Let us first assume that we look at a point \bar{U}_{4} which is neither on \bar{C}_{1} nor on \bar{C}_{2}. Then by Proposition 1.2.2 we can assume $\bar{U}_{S}=<x_{1}+y_{1}, x_{2}+y_{2}>$ with $x_{i} \in A_{1}$ and $y_{i} \in A_{2}$ non colinear. Here we will make two assumptions:
(H1) We assume that for at least one $i \in\{1,2\}, \operatorname{Ker}\left(\phi_{i}\right) \neq \bar{U}_{2, A_{i}}$ for any \bar{U}_{S}.
(H2) We assume that the kernel vectors v_{i} of the ψ_{i} (namely generators of $\operatorname{Ker}\left(\psi_{i}\left(., A_{i}\right)\right)$) satisfy $v_{i} \notin \bar{U}_{2, A_{i}}$. Actually we don't need $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$ to hold for exactly all the points in S_{2} and we will see later how to make them hold when we need it.

By the assumption (H 1) we have that one at least of $\operatorname{Ker}\left(\phi_{1}\right) \cap<x_{1}, x_{2}>$ and $\operatorname{Ker}\left(\phi_{2}\right) \cap<y_{1}, y_{2}>$ is one dimensional. Thus the fiber of Q is 0 only if \bar{U}_{S} is ψ_{1} or ψ_{2} isotropic. On the other hand, since y_{1} and y_{2} are non colinear, $U_{2, A_{2}}=<y_{1}, y_{2}>$ and up to a nonzero scalar, $\psi_{2}\left(\bigwedge^{2} A_{2}\right)=\psi_{2}\left(y_{1}, y_{2}\right) \neq 0$ by $(\mathrm{H} 2)$. Similarly, $\psi_{1}\left(\bigwedge^{2} A_{1}\right) \neq 0$. Therefore χ^{\prime} is a nonzero one form, and its kernel (and thus the fiber of Q at \bar{U}_{4}) is a one dimensional vector space.
2. If $\bar{U}_{4} \in \bar{C}_{1} \cap \bar{C}_{2}$ then $\bar{U}_{S}=<x_{1}, y_{2}>$ and $\bar{U}_{4}^{\perp}=<x_{2}, y_{1}>$ with $x_{i} \in A_{1}$ and $y_{i} \in A_{2}$. In this case the fibers of Q are 0 because both ψ_{i} vanish on \bar{U}_{S}. Moreover $\bar{C}_{1} \cap \bar{C}_{2}=\left\{p_{1}, p_{2}\right\}$ since by 2. of Lemma 1.2.2, $\bar{C}_{i} \in\left|\bar{h}_{i}\right|$ and by (1.13) the intersection of the \bar{h}_{i} is 2 .
3. We assume now that \bar{U}_{4} is on \bar{C}_{1} but not on \bar{C}_{2} (the case for $\bar{U}_{4} \in \bar{C}_{2}-\bar{C}_{1}$ is similar).

Then $\bar{U}_{S}=<x_{1}+y_{1}, y_{2}>$ with $x_{1} \in A_{1}$ and $y_{i} \in A_{i}$ non colinear. In this case $\phi_{1} . \psi_{2}+\phi_{2} . \psi_{1}$ is just $\phi_{1} . \psi_{2}$ since $\psi_{1}\left(\bigwedge^{2} \bar{U}_{S}\right)=0$. By the same reasoning as before and $(\mathrm{H} 2)$ we must have $\psi_{2}\left(\bigwedge^{2} \bar{U}_{S}\right) \neq 0$. Therefore, if $\phi_{1}\left(x_{1}\right) \neq 0$ the fiber of Q is a one dimensional vector space (namely $\bar{U}_{S} /\left(\bar{U}_{S} \cap \operatorname{Ker}\left(\phi_{1}\right)\right.$)), otherwise it is 0 . We would like that $\phi_{1}\left(x_{1}\right)=0$ only at exactly one point in $\bar{C}_{1}-\bar{C}_{2}$ and $\phi_{2}\left(y_{1}\right)=0$ at exactly one point in $\bar{C}_{2}-\bar{C}_{1}$. These would correspond to p_{3} and p_{4}.
By Proposition 1.2.2, \bar{U}_{4} is in \bar{C}_{1} if and only if $\mu_{1} \in \bar{U}_{2, A_{1}}$, therefore we can write $x_{1}=\alpha \mu_{1}+\beta u$ where $\overline{U_{2, A_{1}}}=<\mu_{1}, u>$ and $(\alpha, \beta) \in \mathbb{C}^{2}-\{(0,0)\}$. Since $U_{2, A_{1}}=<\mu_{1}, u>$, we have that $\alpha=0$ if and only if $\mu_{1} \in \bar{U}_{4}^{\perp}$. By Lemma 3.1.11, it happens for exactly one point $p_{3} \in C_{1}-\bar{C}_{2}$. So we have two possibilities:
(a) (A1) doesn't hold. Then we can take $\phi_{i}=\mu_{i}^{*}$. Indeed by what we have seen they will vanish at exactly one point on $\bar{C}_{1}-\bar{C}_{2}$, respectively $\bar{C}_{2}-\bar{C}_{1}$. We still need to check that (H1) holds. But since (A1) doesn't hold, $\operatorname{Ker}\left(\phi_{1}\right) \oplus \operatorname{Ker}\left(\phi_{2}\right)=A_{1} /<\mu_{1}>\oplus A_{2} /<\mu_{2}>\notin S$, so (H1) holds when we need it (namely outside of $\bar{C}_{1} \cup \bar{C}_{2}$). Indeed on $\bar{C}_{1} \cap \bar{C}_{2}$ the ϕ_{i} don't matter, and on $\bar{C}_{2}-\bar{C}_{1}$ since ψ_{2} vanishes
again ϕ_{1} doesn't matter. Finally we have seen that on $\bar{C}_{1}-\bar{C}_{2}, \phi_{1}=\mu_{1}^{*}$ behaves as we want so we actually don't need (H 1$)$ on \bar{C}_{1}. For ϕ_{2} it is similar.
(b) (A1) holds but at least one of (B1), (B2) doesn't hold. Let us assume that (B1) doesn't hold. We cannot take $\phi_{i}=\mu_{i}^{*}$ as in the previous case, because (A1) would contradict (H1) in a case when we need it to hold (namely outside of the \bar{C}_{i}). However, since (B1) doesn't hold there is at most one point p in \bar{C}_{1} such that $\bar{U}_{S} / A_{2}=<\mu_{1}>$. If such a p exists, let $u \in A_{1} /<\mu_{1}>$ be such that $U_{2, A_{1}}$ associated to this point is $<u, \mu_{1}>$, otherwise let $u \in A_{1} /<\mu_{1}>$ be any nonzero vector. Finally, let $v \in A_{1}$ be such that $<u, v>=A_{1} /<\mu_{1}>$. Then we can take $\phi_{1}=v^{*}$. Indeed by Lemma 3.1.10, to each $(a, b) \neq(0,0)$ corresponds a point in \bar{C}_{1} such that $U_{2, A_{1}}=<\mu_{1}, a u+b v>$. Moreover since (B1) doesn't hold there is only one case in which v^{*} vanishes on \bar{U}_{S} in \bar{C}_{1}, namely when we are looking at p if it exists, or when we look at the point associated to $(1,0)$ otherwise.
We now need to check that this is compatible with (H1). Since $\phi_{1}=v^{*}, \mu_{1} \in \operatorname{Ker}\left(\phi_{1}\right)$, so if $U_{2, A_{1}}=$ $\operatorname{Ker}\left(\phi_{1}\right)$ then we are in \bar{C}_{1}, but we have already seen that in \bar{C}_{1}, ϕ_{1} vanishes exactly at one point outside of \bar{C}_{2}, which is what we wanted, since what happens on $\bar{C}_{1} \cap \bar{C}_{2}$ only depends on the ψ_{i}. So $(\mathrm{H} 1)$ holds when we need it and we can now choose $\phi_{2}=\mu_{2}^{*}$.

To satisfy (H2) we can choose the kernel vectors of the ψ_{i} to be the μ_{i} since if $\mu_{i} \in \bar{U}_{2, A_{i}}$ then we are necessarily in C_{i} and $\psi_{i}\left(\bigwedge^{2} \bar{U}_{S}\right)=0$ anyway.
Then we have that the fibers of Q are 0 in $\bar{C}_{1} \cap \bar{C}_{2}=\left\{p_{1}, p_{2}\right\}$ and one point of each $\bar{C}_{i}-\left(\bar{C}_{1} \cap \bar{C}_{2}\right)$, let us call them p_{3} and p_{4}. So $Q \cong \mathcal{L} \otimes \mathcal{I}_{K}$ where \mathcal{L} is the determinant of Q and $\operatorname{supp}(K)=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$.

Remark 3.1.13. In Proposition 3.1.12, $K \neq\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. Indeed we know from the proof of Lemma 3.1.5 that $\operatorname{ch}(Q)=\operatorname{ch}\left(\operatorname{det}\left(\mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right) \cdot(1,0,-8)\right.$. One possibility would be that all the p_{i} in the support of K have multiplicity 2.

Corollary 3.1.14. If we keep the same notation as in Proposition 3.1 .12 there is a surface in Z_{3} with class \bar{h} which is isomorphic to the blow-up of S_{2} in K. We are going to call this surface \hat{S}.

Proof. We have seen in the proof of Lemma 3.1.5 that if there is an injection $0 \rightarrow \mathcal{O}_{S_{2}} \rightarrow \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ then its quotient Q has determinant $\operatorname{det}\left(\mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)=\mathcal{O}_{S_{2}}\left(2 \bar{h}_{1}+2 \bar{h}_{2}\right)$. Hence, by Proposition 3.1.12, there is a map $\phi: \mathcal{V}_{S} \rightarrow \mathcal{O}_{S_{2}}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ which is surjective outside of K. We have also seen that \mathcal{V}_{S} is rank 2 , and $Z_{3}=\mathbb{P}_{S}\left(\mathcal{V}_{S}\right)$ by 1. of Proposition 1.2.2. We can thus apply Lemma 1.4.1 to ϕ, with $D_{1}(\phi)=K$ and $D_{2}(\phi)=\emptyset$. As result, the zero locus of the global section of $\mathcal{O}_{Z_{3}}\left(\bar{h}_{1}+\bar{h}_{2}+V_{Z}\right)$ induced by ϕ is isomorphic to the blow-up of S_{2} in K. By construction this blow-up is embedded in Z_{3} and has class $\bar{h}_{1}+\bar{h}_{2}+V_{Z}=\bar{h}$ (the last equality comes from (1.11)).

Lemma 3.1.15. To avoid (A1) we can assume

$$
\begin{equation*}
M_{3} M_{4} K_{3}^{2}+M_{1} M_{6} K_{1}^{2}+M_{2} M_{5} K_{2}^{2} \neq 0 \tag{3.8}
\end{equation*}
$$

Proof. We have seen in Lemma 3.6 that we can choose $\mu_{1}=M_{6} K_{1} x_{1}+M_{5} K_{2} x_{2}+M_{4} K_{3} x_{3}$ and $\mu_{2}=M_{3} K_{3} x_{4}+$ $M_{2} K_{2} x_{5}+M_{1} K_{1} x_{6}$. Thus we can choose basis of $A_{i} /<\mu_{i}>: A_{1} /<\mu_{1}>=<M_{4} K_{3} x_{1}-M_{6} K_{1} x_{3}, M_{5} K_{2} x_{1}-$ $M_{6} K_{1} x_{2}>$ and $A_{2} /<\mu_{2}>=<M_{1} K_{1} x_{4}-M_{3} K_{3} x_{6}, M_{2} K_{2} x_{4}-M_{3} K_{3} x_{5}>$. But using 3. of section 1.1 one gets

$$
\begin{aligned}
& \lambda^{\prime}\left(M_{4} K_{3} x_{1}-M_{6} K_{1} x_{3}, M_{5} K_{2} x_{1}-M_{6} K_{1} x_{2}, M_{1} K_{1} x_{4}-M_{3} K_{3} x_{6}, M_{2} K_{2} x_{4}-M_{3} K_{3} x_{5}\right) \\
& =M_{4} K_{3}\left(-M_{6} K_{1}\right) M_{3} K_{3}\left(-M_{3} K_{3}\right)+\left(-M_{5} K_{2}\right)\left(-M_{6} K_{1}\right) M_{2} K_{2} M_{3} K_{3}+\left(-M_{6} K_{1}\right) M_{6} K_{1} M_{1} K_{1}\left(-M_{3} K_{3}\right) \\
& =\left(M_{6} K_{1} M_{3} K_{3}\right)\left(M_{4} K_{3} M_{3} K_{3}+M_{5} K_{2} M_{2} K_{2}+M_{6} K_{1} M_{1} K_{1}\right)
\end{aligned}
$$

Since we have assumed in 4. of section 1.1 that all the M_{i} and K_{i} are non zero, $M_{6} K_{1} M_{3} K_{3} \neq 0$.
So $\lambda^{\prime}\left(A_{1} /<\mu_{1}>, A_{2} /<\mu_{2}>\right)=0$ if and only if $M_{3} M_{4} K_{3}^{2}+M_{1} M_{6} K_{1}^{2}+M_{2} M_{5} K_{2}^{2}=0$. Hence if (3.8) holds then $A_{1} /<\mu_{1}>\oplus A_{2} /<\mu_{2}>$ cannot be a point in S_{2}.

3.2 Blow-up of Z_{3}

We would like now to use this new surface \hat{S} in Z_{3} defined in Corollary 3.1.14 to induce a surface in \tilde{X}_{4}. For this we need a section of $\bar{\pi}$ or, as we did with S_{2}, a blow-up of Z_{3} embedded in \tilde{X}_{4}. But as shown in diagram (1.2), we have that $\bar{\pi}^{-1}\left(Z_{3}\right)=\bar{E}_{4}$ in \tilde{X}_{5} with $\bar{E}_{4}=\mathbb{P}_{Z}\left(\mathcal{V}_{Z}\right)$ where the vector bundle \mathcal{V}_{Z} is defined by (1.6) in Proposition 1.3.1. So we are going to proceed as in the previous subsection, and use Lemma 1.4.1:

Proposition 3.2.1. It is equivalent to be given a section of $\bar{\pi}: \bar{E}_{4} \rightarrow Z_{3}$ or a short exact sequence $0 \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{V}_{Z}^{\vee} \rightarrow$ $L_{2} \rightarrow 0$ where the \mathcal{L}_{i} are line bundles on Z_{3} and \mathcal{V}_{Z} is defined by (1.6).

Proof. By Proposition 1.3 .1 we have that $\bar{E}_{4}=\mathbb{P}_{Z}\left(\mathcal{V}_{Z}\right)$. Moreover (1.6) yields that \mathcal{V}_{Z} is the kernel of a map between a rank $1+3=4$ vector bundle and a rank 2 vector bundle, so $\operatorname{rank}\left(\mathcal{V}_{Z}\right)=2$. We can then use the exact same reasoning as in the proof of Proposition 3.1.1, except for one thing we need to be more careful at : in the proof of Proposition 3.1.1 we use Exercise 7.8 of II.7 in [12] but in Proposition 7.11 of II.7 in [12] we see that R. Hartshorne has taken a different definition of $\mathcal{O}(1)$ and $\mathbb{P}_{X}(\mathcal{E})$ where \mathcal{E} is a vector bundle on a variety X. Indeed in the definition of Hartshorne, if $p: \mathbb{P}_{X}(\mathcal{E}) \rightarrow X$ then $p_{*} \mathcal{O}(1)=\mathcal{E}$ while in section 1.1 we define $\mathcal{O}(1)$ to be such that $p_{*} \mathcal{O}(1)=\mathcal{E}^{\vee}$. So here we need to consider \mathcal{V}_{Z}^{\vee} instead of \mathcal{V}_{Z}. In the case of Proposition 3.1.1 this was not a problem since by 1 . of Lemma 1.2.2, $\mathcal{V}_{S} \cong \mathcal{V}_{S}^{\vee}$.

Lemma 3.2.2. The dimension of $H^{0}\left(\mathcal{V}_{Z}^{\vee}\right)$ is at least 6 so \mathcal{V}_{Z}^{\vee} has non-zero global sections.
Proof. By (1.6) we have a short exact sequence :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{Z_{3}}\left(\bar{h}_{1}\right) \oplus \mathcal{O}_{Z_{3}}\left(\bar{h}_{2}\right) \rightarrow \bigwedge^{3} \overline{\mathcal{U}}_{3}^{\vee} \oplus \bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee} \rightarrow \mathcal{V}_{Z}^{\vee} \rightarrow 0 \tag{3.9}
\end{equation*}
$$

We have also seen in the proof of Lemma 3.1.4 that for $i \in\{1,2\}$, the dimension of $H^{j}\left(\mathcal{O}_{S_{2}}\left(\bar{h}_{i}\right)\right)$ is $3 \delta_{0, j}$. Moreover, $H^{*}\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\left(\bar{h}_{i}\right)\right)=H^{*}\left(\mathcal{O}_{S_{2}}, \sigma_{*} \sigma^{*} \mathcal{O}_{S_{2}}\left(\bar{h}_{i}\right)\right)=H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{O}_{S_{2}}\left(\bar{h}_{i}\right)\right)$ by the projection formula and since $\sigma_{*} \mathcal{O}_{Z_{3}}=\mathcal{O}_{S_{2}}$ (as we will see in Corollary 4.5.5). Thus $\operatorname{dim}\left(H^{*}\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\left(\bar{h}_{i}\right)\right)\right)=3 \delta_{0, *}$.
Furthermore, since by (1.11) we have $\bar{h}=V_{Z}+\bar{h}_{1}+\bar{h}_{2}$, the short exact sequence $0 \rightarrow \mathcal{O}_{Z_{3}}\left(-V_{Z}\right) \rightarrow \mathcal{O}_{Z_{3}} \rightarrow$ $\mathcal{O}_{S_{2}} \rightarrow 0$ induces a short exact sequence :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{Z_{3}}\left(\bar{h}_{1}+\bar{h}_{2}\right) \rightarrow \mathcal{O}_{Z_{3}}(\bar{h}) \rightarrow \mathcal{O}_{S_{2}}(\bar{h}) \rightarrow 0 \tag{3.10}
\end{equation*}
$$

Moreover twisting the resolution (3.1) by $\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ one gets a long exact sequence :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-1,-1) \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(0,0)^{\oplus 2} \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,1) \rightarrow \mathcal{O}_{S_{2}}\left(\bar{h}_{1}+\bar{h}_{2}\right) \rightarrow 0 \tag{3.11}
\end{equation*}
$$

And similarly to what we did in the proof of Lemma 3.1.3, the Künneth formula yields :

- $H^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-1,-1)\right)=0$.
- $H^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}\right)=\mathbb{C} \delta_{*, 0}$ so $\operatorname{dim}\left(H^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}^{\oplus 2}\right)\right)=2 \delta_{*, 0}$.
- $H^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,1)\right)=3^{2} \delta_{*, 0}=9 \delta_{*, 0}$.

Splitting now (3.11) into short exact sequences gives the two following exact sequences :

$$
\begin{align*}
& 0 \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-1,-1) \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(0,0)^{\oplus 2} \rightarrow K \rightarrow 0 \tag{3.12}\\
& 0 \rightarrow K \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,1) \rightarrow \mathcal{O}_{S_{2}}\left(\bar{h}_{1}+\bar{h}_{2}\right) \rightarrow 0 \tag{3.13}
\end{align*}
$$

Since $H^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(-1,-1)\right)=0$ the long exact sequence in cohomology induced by (3.12) gives $H^{*}\left(\mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(0,0)^{\oplus 2}\right)=$ $H^{*}(K)$. Therefore the long exact sequence in cohomology induced by (3.13) gives an exact sequence :

$$
0 \rightarrow \mathbb{C}^{2} \rightarrow \mathbb{C}^{9} \rightarrow H^{0}\left(\mathcal{O}_{S_{2}}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right) \rightarrow 0
$$

and as a result $\operatorname{dim}\left(H^{*}\left(\mathcal{O}_{S_{2}}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)=7 \delta_{*, 0}$.
Now the long exact sequence in cohomology induced by (3.10) gives the short exact sequence :

$$
0 \rightarrow \mathbb{C}^{7} \rightarrow H^{0}\left(\mathcal{O}_{Z_{3}}(\bar{h})\right) \rightarrow H^{0}\left(\mathcal{O}_{S_{2}}(\bar{h})\right) \rightarrow 0=H^{1}\left(\mathcal{O}_{Z_{3}}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)
$$

since $H^{*}\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)=H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{O}_{S_{2}} \bar{h}_{1}+\bar{h}_{2}\right)$. Moreover,

$$
\begin{aligned}
H^{*}\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h})\right) & =H^{*}\left(\mathcal{O}_{S_{2}}, \sigma_{*}\left(\mathcal{O}_{Z_{3}}\left(V_{Z}\right) \otimes \sigma^{*} \mathcal{O}_{S_{2}}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right) \\
& =H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}^{\vee}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right) \\
& =H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)
\end{aligned}
$$

using the definition of V_{Z}, the projection formula and 1. of Proposition 1.2.2. By Lemma 3.1.4, we then know that $\operatorname{dim}\left(H^{0}\left(\mathcal{O}_{Z_{3}}(\bar{h})\right)\right)=12$. Finally the long exact sequence in cohomology given by (3.9) gives a short exact sequence :

$$
0 \rightarrow H^{0}\left(\mathcal{O}_{Z_{3}}\left(\bar{h}_{1}\right)\right) \oplus H^{0}\left(\mathcal{O}_{Z_{3}}\left(\bar{h}_{2}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{Z_{3}}(\bar{h})\right) \oplus H^{0}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right) \rightarrow H^{0}\left(\mathcal{V}_{Z}^{\vee}\right) \rightarrow 0
$$

since we have seen that $H^{1}\left(\mathcal{O}_{Z_{3}}\left(\bar{h}_{1}\right)\right)=H^{1}\left(\mathcal{O}_{Z_{3}}\left(\bar{h}_{2}\right)\right)=0$. Hence

$$
\operatorname{dim}\left(H^{0}\left(\mathcal{V}_{Z}^{\vee}\right)\right) \geq \operatorname{dim}\left(H^{0}\left(\mathcal{O}_{Z_{3}}(\bar{h})\right)\right)-\operatorname{dim}\left(H^{0}\left(\mathcal{O}_{Z_{3}}\left(\bar{h}_{1}\right)\right)\right)-\operatorname{dim}\left(H^{0}\left(\mathcal{O}_{Z_{3}}\left(\bar{h}_{2}\right)\right)\right)=12-3-3=6
$$

Lemma 3.2.3. The Chern character of \mathcal{V}_{Z}^{\vee} is

$$
\operatorname{ch}\left(\mathcal{V}_{Z}^{\vee}\right)=\left(2,3 \bar{h}-\bar{h}_{1}-\bar{h}_{2}, \frac{3}{2} \bar{h}_{1} \bar{h}_{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), 3\right)
$$

Proof. By (1.6) we have

$$
0 \longrightarrow \mathcal{V}_{Z} \longrightarrow \bigwedge^{3} \overline{\mathcal{U}}_{3} \oplus \bigwedge^{2} \overline{\mathcal{U}}_{3} \longrightarrow \mathcal{O}\left(-\bar{h}_{1}\right) \oplus \mathcal{O}\left(-\bar{h}_{2}\right) \longrightarrow 0
$$

on Z_{3}. We already know that $\bigwedge^{3} \overline{\mathcal{U}}_{3}^{\vee} \cong \mathcal{O}(\bar{h})$ (see Lemma 4.2.9 below) but we need to compute $\operatorname{ch}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)$. By (1.7) we have

$$
0 \longrightarrow \mathcal{O}\left(-\bar{h}_{1}\right) \oplus \mathcal{O}\left(-\bar{h}_{2}\right) \longrightarrow \overline{\mathcal{U}}_{3} \longrightarrow \mathcal{O}\left(-V_{Z}\right) \longrightarrow 0
$$

on Z_{3}. Thus, using (1.11),

$$
\operatorname{ch}\left(\overline{\mathcal{U}}^{\vee}\right)=\left(1, V_{Z}, \frac{-\bar{h}_{1}^{2}-\bar{h}_{2}^{2}}{2},-\frac{1}{3}\right)+\left(1, \bar{h}_{1}, \frac{\bar{h}_{1}^{2}}{2}, 0\right)+\left(1, \bar{h}_{2}, \frac{\bar{h}_{2}^{2}}{2}, 0\right)=\left(3, \bar{h}, 0,-\frac{1}{3}\right) .
$$

By definition (see for instance page 430 of [12]),

$$
\begin{aligned}
c_{t}\left(\overline{\mathcal{U}}_{3}^{\vee}\right) & =\left(1+a_{1} t\right)\left(1+a_{2} t\right)\left(1+a_{3} t\right) \\
& =1+\left(a_{1}+a_{2}+a_{3}\right) t+\left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right) t^{2}+\left(a_{1} a_{2} a_{3}\right) t^{3}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& c_{1}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)=a_{1}+a_{2}+a_{3}=\bar{h} \\
& c_{2}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)=a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}=\frac{c_{1}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)^{2}}{2}-\operatorname{ch}_{2}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)=\frac{\bar{h}^{2}}{2}-0=\frac{\bar{h}^{2}}{2} \\
& c_{3}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)=2\left(\operatorname{ch}_{3}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)-\frac{c_{1}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)^{3}}{6}+\frac{c_{1}\left(\overline{\mathcal{U}}_{3}^{\vee}\right) c_{2}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)}{2}\right)=2\left(-\frac{1}{3}-\frac{\bar{h}^{3}}{6}+\frac{\bar{h}^{3}}{4}\right)=-\frac{2}{3}+\frac{\bar{h}^{3}}{6} .
\end{aligned}
$$

Furthermore, by (1.11), (1.18) and (1.13), one gets :

$$
\begin{aligned}
\bar{h}^{2} & =\left(V_{Z}+\bar{h}_{1}+\bar{h}_{2}\right)^{2}=V_{Z}^{2}+\bar{h}_{1}^{2}+\bar{h}_{2}^{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+2 \bar{h}_{1} \bar{h}_{2} \\
& =-\bar{h}_{1} \bar{h}_{2}+\bar{h}_{1}^{2}+\bar{h}_{2}^{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+2 \bar{h}_{1} \bar{h}_{2} \\
& =2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+2 \bar{h}_{1} \bar{h}_{2} .
\end{aligned}
$$

As a result, $c_{2}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)=\frac{\bar{h}^{2}}{2}=V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+\bar{h}_{1} \bar{h}_{2}$. Then

$$
\begin{aligned}
\bar{h}^{3} & =\left(V_{Z}+\bar{h}_{1}+\bar{h}_{2}\right)\left(2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+2 \bar{h}_{1} \bar{h}_{2}\right) \\
& =2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}+2 V_{Z} \bar{h}_{1} \bar{h}_{2} \\
& =2.6+2.2=12+4=16 .
\end{aligned}
$$

Hence, $c_{3}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)=-\frac{2}{3}+\frac{\bar{h}^{3}}{6}=-\frac{2}{3}+\frac{8}{3}=\frac{6}{3}=2$.
Now by the formula for $c_{t}\left(\bigwedge^{p} \overline{\mathcal{U}}_{3}^{\vee}\right)$ page 430 of [12] we get

$$
\begin{aligned}
c_{t}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right) & =\left(1+\left(a_{1}+a_{2}\right) t\right)\left(1+\left(a_{1}+a_{3}\right) t\right)\left(1+\left(a_{2}+a_{3}\right) t\right) \\
& =1+\left(2 a_{1}+2 a_{2}+2 a_{3}\right) t+\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+3 a_{1} a_{2}+3 a_{1} a_{3}+3 a_{2} a_{3}\right) t^{2}+ \\
& +\left(a_{1}^{2} a_{2}+a_{1}^{2} a_{3}+a_{2}^{2} a_{1}+a_{2}^{2} a_{3}+a_{3}^{2} a_{1}+a_{3}^{2} a_{2}+2 a_{1} a_{2} a_{3}\right) t^{3} \\
& =1+2 c_{1}\left(\overline{\mathcal{U}}_{3}^{\vee}\right) t+\left(c_{1}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)^{2}+c_{2}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)\right) t^{2}+\left(c_{1}\left(\overline{\mathcal{U}}_{3}^{\vee}\right) c_{2}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)-c_{3}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)\right) t^{3} .
\end{aligned}
$$

So
$c_{1}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=2 \bar{h}$
$c_{2}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=\bar{h}^{2}+\frac{\bar{h}^{2}}{2}=\frac{3}{2} \bar{h}^{2}$
$c_{3}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=\frac{\bar{h}^{3}}{2}-2=8-2=6$
$\operatorname{ch}_{0}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=\operatorname{rk}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=3$
$\operatorname{ch}_{1}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=c_{1}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=2 \bar{h}$
$\operatorname{ch}_{2}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=\frac{c_{1}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)^{2}}{2}-c_{2}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=2 \bar{h}^{2}-\frac{3}{2} \bar{h}^{2}=\frac{\bar{h}^{2}}{2}=\bar{h}_{1} \bar{h}_{2}+\bar{h}_{1} V_{Z}+\bar{h}_{2} V_{Z}$
$\operatorname{ch}_{3}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=\frac{c_{1}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)^{3}}{6}-\frac{c_{1}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right) c_{2}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)}{2}+\frac{c_{3}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)}{2}=\frac{4}{3} \bar{h}^{3}-\frac{3}{2} \bar{h}^{3}+3=\frac{64}{3}-24+3=\frac{64-63}{3}=\frac{1}{3}$.
Here we used (1.13) and (1.11) again. So finally $\operatorname{ch}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)=\left(3,2 \bar{h}, \bar{h}_{1} \bar{h}_{2}+\bar{h}_{1} V_{Z}+\bar{h}_{2} V_{Z}, \frac{1}{3}\right)$.
Thus, using (1.6) and (1.11) we get

$$
\begin{aligned}
\operatorname{ch}\left(\mathcal{V}_{Z}^{\vee}\right) & =\operatorname{ch}(\mathcal{O}(\bar{h}))+\operatorname{ch}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)-\operatorname{ch}\left(\mathcal{O}\left(\bar{h}_{1}\right)\right)-\operatorname{ch}\left(\mathcal{O}\left(\bar{h}_{2}\right)\right) \\
& =\left(1, \bar{h}, \frac{\bar{h}^{2}}{2}, \frac{\bar{h}^{3}}{6}\right)+\left(3,2 \bar{h}, \bar{h}_{1} \bar{h}_{2}+\bar{h}_{1} V_{Z}+\bar{h}_{2} V_{Z}, \frac{1}{3}\right)-\left(1, \bar{h}_{1}, \frac{\bar{h}_{1}^{2}}{2}, 0\right)-\left(1, \bar{h}_{2}, \frac{\bar{h}_{2}^{2}}{2}, 0\right)
\end{aligned}
$$

So finally, since $\bar{h}_{1}^{2}+\bar{h}_{2}^{2}=\bar{h}_{1} \bar{h}_{2}$,

$$
\begin{aligned}
\operatorname{ch}\left(\mathcal{V}_{Z}^{\vee}\right) & =\left(1, \bar{h}, \bar{h}_{1} \bar{h}_{2}+V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), \frac{8}{3}\right)+\left(3,2 \bar{h}, \bar{h}_{1} \bar{h}_{2}+\bar{h}_{1} V_{Z}+\bar{h}_{2} V_{Z}, \frac{1}{3}\right)-\left(1, \bar{h}_{1}, \frac{\bar{h}_{1}^{2}}{2}, 0\right)-\left(1, \bar{h}_{2}, \frac{\bar{h}_{2}^{2}}{2}, 0\right) \\
& =\left(2,3 \bar{h}-\bar{h}_{1}-\bar{h}_{2}, \frac{3}{2} \bar{h}_{1} \bar{h}_{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), 3\right)
\end{aligned}
$$

Remark 3.2.4. To compute $\operatorname{ch}\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)$ we could have used the following : since $\overline{\mathcal{U}}_{3}^{\vee}$ is of rank 2 there is an isomorphism $\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee} \cong \overline{\mathcal{U}}_{3} \otimes \operatorname{det}\left(\overline{\mathcal{U}}_{3}^{\vee}\right)=\overline{\mathcal{U}}_{3} \otimes \mathcal{O}_{Z_{3}}(\bar{h})$. Hence

$$
\begin{aligned}
\operatorname{ch}\left(\bigwedge_{\bigwedge}^{2} \overline{\mathcal{U}}_{3}^{\vee}\right) & =\left(3,-\bar{h}, 0, \frac{1}{3}\right) \cdot\left(1, \bar{h}, \bar{h}_{1} \bar{h}_{2}+V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), \frac{8}{3}\right) \\
& =\left(3,2 \bar{h}, \bar{h}_{1} \bar{h}_{2}+V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), \frac{1}{3}\right)
\end{aligned}
$$

Corollary 3.2.5. If there is a short exact sequence $0 \rightarrow \mathcal{O}_{Z_{3}} \rightarrow \mathcal{V}_{Z}^{\vee} \rightarrow Q \rightarrow 0$ then $\operatorname{ch}(Q)=\left(1,3 V_{Z}+2\left(\bar{h}_{1}+\right.\right.$ $\left.\left.\bar{h}_{2}\right), \frac{3}{2} \bar{h}_{1} \bar{h}_{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), 3\right)=\operatorname{ch}\left(\operatorname{det}\left(\mathcal{V}_{Z}^{\vee}\right)\right) \cdot\left(1,0,-4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), 24\right)$.
Proof. If we have a short sequence like the one given just above then $\operatorname{ch}(Q)=\operatorname{ch}\left(\mathcal{V}_{Z}^{\vee}\right)-(1,0,0,0)$ so we just have to use Lemma 3.2.3 to compute $\operatorname{ch}(Q)$. Moreover still from Lemma 3.2.3 we get that $\operatorname{det}\left(\mathcal{V}_{Z}^{\vee}\right)=\mathcal{O}_{Z_{3}}\left(3 V_{Z}+2\left(\bar{h}_{1}+\right.\right.$ $\left.\bar{h}_{2}\right)$) whose Chern character is: $\left(1,3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right), \frac{3}{2} \bar{h}_{1} \bar{h}_{2}+6 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), 27\right)$. Finally ($1,3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right), \frac{3}{2} \bar{h}_{1} \bar{h}_{2}+$ $\left.6 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), 27\right) \cdot(1,0, y, x)=\left(1,3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right), \frac{3}{2} \bar{h}_{1} \bar{h}_{2}+6 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+y, 27+x+y\left(3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)$. So to get the Chern character of Q we need to take $y=-4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ and $x=3-27+8.6=24$.

As before this shows that a global section of \mathcal{V}_{Z}^{\vee} cannot induce a copy of Z_{3} in \bar{E}_{4}, yet since $4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)$ is the class of the curve Γ_{1} in Z_{3} (from (1.15)), it may be possible to find a blow-up of Z_{3} in Γ_{1} inside \bar{E}_{4}. Indeed:
Proposition 3.2.6. There is a threefold in \bar{E}_{4} with class [$V_{\bar{E}}$] and which is isomorphic to the blow-up of Z_{3} in the curve Γ_{1} (defined in 5. of Theorem 1.2.3). We are going to call this threefold \tilde{Z}.

Proof. As defined in section 1.1, let ν be a global section of $\mathcal{O}_{G}(1)$ such that X_{4} is the zero locus of the sections μ, λ and ν. Then by definition of h in Definition 1.3.3, $\nu \in|h|$ and in the proof of Theorem 5.1 in [20], one finds that $\left.h\right|_{\bar{E}_{4}}$ corresponds to a global section of \mathcal{V}_{Z}^{\vee} which for general ν vanishes on the curve Γ_{1} (where Γ_{1} is the curve defined in Theorem 1.2.3 for $\left.X_{4}^{\lambda, \mu, \nu}\right)$. This global section induces a morphism : $\mathcal{V}_{Z} \xrightarrow{\nu^{\vee}} \mathcal{O}_{Z_{3}}$. Since $\operatorname{rank}\left(\mathcal{V}_{Z}\right)=2$ and $\operatorname{rank}\left(\mathcal{O}_{Z_{3}}\right)=1$, with the notations of Lemma 1.4.1 we have that $D_{k}\left(\nu^{\vee}\right)=\emptyset$ for $k \geq 2$. Moreover, since the section of \mathcal{V}_{Z}^{\vee} induced by ν vanishes exactly on Γ_{1} we have $D_{1}\left(\nu^{\vee}\right)=\Gamma_{1}$. Finally, $\bar{E}_{4}=\mathbb{P}_{Z}\left(\mathcal{V}_{Z}\right)$ from Proposition 1.3 .1 so we can apply Lemma 1.4.1 to $\mathcal{V}_{Z} \xrightarrow{\nu^{\vee}} \mathcal{O}_{Z_{3}}$ which yields that the zero locus of the global section of $\mathcal{O}_{\bar{E}_{4}}\left(V_{\bar{E}}\right)$ induced by ν^{\vee} is isomorphic to the blow-up of Z_{3} in the curve Γ_{1}.
Corollary 3.2.7. There is a blow-up of \hat{S} in the points of $\Gamma_{1} \cap \hat{S}$ inside \bar{E}_{4}, and thus inside \tilde{X}_{5}. We are going to call this blow-up \tilde{S}. Its class in $\mathrm{CH}^{2}\left(\bar{E}_{4}\right)$ is $\bar{h} V_{\bar{E}}$.
Proof. First of all, $4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right) \bar{h}=4 V_{Z}^{2}\left(\bar{h}_{1}+\bar{h}_{2}\right)+4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}=4.6=24$. So in general \hat{S} and Γ_{1} intersect in 24 points, in particular their intersection is not empty. By Proposition 3.2.6 there is in \bar{E}_{4} a blow-up of Z_{3} in Γ_{1}, namely \tilde{Z}. Let us denote by $p: \tilde{Z} \rightarrow Z_{3}$ this blow-up. Then we can take $\tilde{S}=\hat{S} \times{ }_{Z_{3}} \tilde{Z} \cong p^{-1}(\hat{S})$. By definition of p it will be the blow-up of \hat{S} in $\Gamma_{1} \cap \hat{S}$, and its class can be computed using the classes of \tilde{Z} and \hat{S}.

By (1.12) in $\operatorname{Pic}\left(\bar{E}_{4}\right)$ we have $V_{\bar{E}}=h$, thus we have found a surface in \tilde{X}_{5} with class $h \bar{h} \bar{e}$. Since $\tilde{X}_{4}=\tilde{X}_{5} . \tilde{H}_{\nu}$, where \tilde{H}_{ν} is the pull back of the hyperplane H_{ν} satisfying $X_{4}=X_{5} \cap H_{\nu}$ (see the proof of Theorem 5.1 in [20]), and since we have used ν to build \tilde{Z} (more precisely to induce the global section whose zero locus is \tilde{Z}), this should then induce an embedding $\tilde{Z} \hookrightarrow \tilde{X}_{4}$. As $\tilde{S} \hookrightarrow \tilde{Z}$ by construction, we have then found a surface in \tilde{X}_{4}, which is isomorphic to the blow-up of S_{2} in some points.

3.3 Intersections with E_{4}

We would like to understand what is possibly contracted by π in both \tilde{S} and \bar{D}_{2}. In order to do so, we first try to compute the intersection between \bar{E}_{4} and E_{4}. Indeed since E_{4} is the exceptional divisor of π (see Theorem 1.2.1), π is an isomorphism outside of E_{4}, and $(\sigma \circ \bar{\pi})^{-1}\left(S_{2}\right)=\bar{E}_{4}$.

Definition 3.3.1. Let p and z be points in S_{2} and Z_{3} respectively. We are going to denote by $f_{Z}(p)$ and $f_{\bar{E}}(z)$ the fibers respectively over p in Z_{3} and over z in \bar{E}_{4}. By Theorem 1.2.1 each of these fibers is $a \mathbb{P}^{1}$.
Similarly, if x is a point in F_{3} and y a point in Σ_{2}, we will denote respectively by $f_{E}(x)$ and $f_{D}(y)$ their fibers in respectively E_{4} and D_{3}.

Before going further we need a quick "technical Lemma" :
Lemma 3.3.2. Let $\bar{U}_{2} \subset \bar{W}$. Then \bar{U}_{2} is $\bar{\lambda}$-isotropic if and only if we can write $\bar{U}_{2}=<u_{1}, u_{2}>$ where $u_{i} \in A_{i}$. Here $\bar{\lambda}=x_{123}+x_{456}$ and $A_{1}=<x_{1}, x_{2}, x_{3}>$ and $A_{2}=<x_{4}, x_{5}, x_{6}>$ as defined in 3. of section 1.1.

Proof. Let us assume that $\bar{U}_{2}=<u, v>$ with $u=\sum_{i=1}^{6} \alpha_{i} x_{i}$ and $v=\sum_{i=1}^{6} \beta_{i} x_{i}$. Since $\bar{\lambda}=x_{123}+x_{456}$ we have that \bar{U}_{2} is $\bar{\lambda}$-isotropic if and only if:

$$
\begin{aligned}
0= & x_{1}^{*}\left(\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2}\right)-x_{2}^{*}\left(\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}\right)+x_{3}^{*}\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right)+x_{4}^{*}\left(\alpha_{5} \beta_{6}-\alpha_{6} \beta_{5}\right)-x_{5}^{*}\left(\alpha_{4} \beta_{6}-\alpha_{6} \beta_{4}\right)+ \\
& x_{6}^{*}\left(\alpha_{4} \beta_{5}-\alpha_{5} \beta_{4}\right)
\end{aligned}
$$

that is to say if and only if the following equations are all satisfied :

$$
\begin{align*}
& \alpha_{2} \beta_{3}-\alpha_{3} \beta_{2}=0 \tag{3.14}\\
& \alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}=0 \tag{3.15}\\
& \alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}=0 \tag{3.16}\\
& \alpha_{5} \beta_{6}-\alpha_{6} \beta_{5}=0 \tag{3.17}\\
& \alpha_{4} \beta_{6}-\alpha_{6} \beta_{4}=0 \tag{3.18}\\
& \alpha_{4} \beta_{5}-\alpha_{5} \beta_{4}=0 . \tag{3.19}
\end{align*}
$$

Let us assume first that these equations are all satisfied. Here we have four possibilities :

1. $\alpha_{1} \neq 0$. Since multiplying u by a non-zero scalar is not going to change \bar{U}_{2} we can then assume that $\alpha_{1}=1$. Then (3.16) and (3.15) give respectively $\beta_{2}=\alpha_{2} \beta_{1}$ and $\beta_{3}=\alpha_{3} \beta_{1}$. Since $\langle u, v\rangle=\left\langle u, v-\beta_{1} . u\right\rangle$ we can then take $u_{2}=\beta_{4} x_{4}+\beta_{5} x_{5}+\beta_{6} x_{6}$.
2. $\alpha_{1}=0$ and $\alpha_{2} \neq 0$. As in the previous case we can then assume that $\alpha_{2}=1$. Then (3.16) gives $\beta_{1}=0$ and (3.14) gives $\beta_{3}=\alpha_{3} \beta_{2}$. Since $<u, v>=<u, v-\beta_{2} . u>$ we can then take $u_{2}=\beta_{4} x_{4}+\beta_{5} x_{5}+\beta_{6} x_{6}$.
3. $\alpha_{1}=\alpha_{2}=0$ and $\alpha_{3} \neq 0$. As before we can assume $\alpha_{3}=1$ and thus (3.14) and (3.15) give $\beta_{1}=\beta_{2}=0$. Since $\langle u, v\rangle=\left\langle u, v-\beta_{3} . u>\right.$ we can then take $u_{2}=\beta_{4} x_{4}+\beta_{5} x_{5}+\beta_{6} x_{6}$.
4. $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. We can then take $u_{2}=u=\alpha_{4} x_{4}+\alpha_{5} x_{5}+\alpha_{6} x_{6}$.

Similarly if β_{4}, β_{5} or β_{6} is non-zero then using (3.17), (3.18) and (3.19) we can show that $\bar{U}_{2}=<u_{1}, v>$ with $u_{1}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}$. In such a case we cannot have $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$ otherwise it would contradict $\operatorname{dim}\left(\bar{U}_{2}\right)=2$, hence we are in case 1., 2 . or 3. above and we can take $u_{1}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}$ and $u_{2}=$ $\beta_{4} x_{4}+\beta_{5} x_{5}+\beta_{6} x_{6}$.
If $\beta_{4}=\beta_{5}=\beta_{6}=0$ then we cannot be in one of the first three cases above since it would contradict again $\operatorname{dim}\left(\bar{U}_{2}\right)=2$. Thus we are in case 4. and we can take $u_{1}=v$ and $u_{2}=u$.
Conversely, if $\alpha_{4}=\alpha_{5}=\alpha_{6}=\beta_{1}=\beta_{2}=\beta_{3}=0$ or $\alpha_{1}=\alpha_{2}=\alpha_{3}=\beta_{4}=\beta_{5}=\beta_{6}=0$ it is easy to check that the six equations (3.14), (3.15), (3.16), (3.17), (3.18) and (3.19) are satisfied.

Lemma 3.3.3. The intersection between fibers over $\bar{C}_{1} \cup \bar{C}_{2}$ in \bar{E}_{4} and E_{4} is

- two \mathbb{P}^{1} intersecting at one point, over a point p such that $p \notin \bar{C}_{1} \cap \bar{C}_{2}$;
- three \mathbb{P}^{1} such that one of them intersects the two others at exactly one point each, these two intersection points being distinct, over a point $p \in \bar{C}_{1} \cap \bar{C}_{2}$.

Let us denote by C_{1}^{\prime} and C_{2}^{\prime} the fibers in Z_{3} over \bar{C}_{1} and \bar{C}_{2}. Then the intersection between the fibers over $C_{1}^{\prime} \cup C_{2}^{\prime}$ in \bar{E}_{4} and E_{4} can be described as follows:

- Let $p \in \bar{C}_{i}-\bar{C}_{1} \cap \bar{C}_{2}$. Then there is exaclty one point $z^{\prime} \in f_{Z}(p)$ such that $f_{\bar{E}}\left(z^{\prime}\right) \subset E_{4}$. For all the other points $z \in f_{Z}(p)$, we have that $f_{\bar{E}}(z) \cap E_{4}$ is exactly one point. Moreover if $p=U_{2, A_{1}} \oplus U_{2, A_{2}}$, then z^{\prime} is the only point $\overline{U_{3}} \subset \overline{U_{4}}$ in $f_{Z}(p)$ such that $U_{2, A_{i}} \subset \bar{U}_{3}$.
- Let $p \in \bar{C}_{1} \cap \bar{C}_{2}$. Then there are exactly two points z_{1} and z_{2} in $f_{Z}(p)$ such that $f_{\bar{E}}\left(z_{i}\right) \subset E_{4}$. For all the other points $z \in f_{Z}(p)$, we have that $f_{\bar{E}}(z) \cap E_{4}$ is exactly one point. Moreover, if $p=\bar{U}_{4}=U_{2, A_{1}} \oplus U_{2, A_{2}}$, then z_{1} and z_{2} are respectively the two points $\bar{U}_{3, i} \subset \bar{U}_{4, i}$ in $f_{Z}(p)$ such that $U_{2, A_{i}} \subset \bar{U}_{3, i}$. For all the other points $z \in f_{Z}(p)$, the intersection of $f_{\bar{E}}(z)$ with E_{4} is $\left\{\bar{U}_{4}^{\perp} \oplus \mathbb{C} w_{0}\right\}$.

Proof. 1. Assume that $p \in \bar{C}_{1}-\bar{C}_{2}$ is such that $p=\bar{U}_{4}=\bar{U}_{2, A_{1}} \oplus \bar{U}_{2, A_{2}}$ and $\bar{U}_{2, A_{i}}=<u_{i}, v_{i}>$. Then by hypothesis on p we can assume $\bar{U}_{4}^{\perp}=<u_{1}, u_{2}+\epsilon v_{1}>$ with $\epsilon \neq 0$. Moreover $f_{Z}(p)$ is composed by all the $\bar{U}_{4}^{\perp} \subset \bar{U}_{3} \subset \bar{U}_{4}$ (by 10. of Theorem 1.2.1) so each point in $f_{Z}(p)$ is of the form :

$$
\begin{equation*}
\bar{U}_{3}=<u_{1}, u_{2}+\epsilon v_{1}, A v_{1}+B v_{2}> \tag{3.20}
\end{equation*}
$$

with $A, B \in \mathbb{C}$ not vanishing at the same time. On the other hand, the points in E_{4} are all of the form $\bar{U}_{2} \oplus \mathbb{C} w_{0} \subset \bar{U}_{3} \oplus \mathbb{C} w_{0}$ (see 5. and 6. of Theorem 1.2.1) so the points in $E_{4} \cap \bar{\pi}^{-1}(\hat{S})$ over p correspond to the $\bar{U}_{2} \subset \bar{U}_{3}$ which are $\bar{\lambda}=x_{123}+x_{456}$-isotropic. Indeed, they are all automatically μ and λ^{\prime} isotropic : \bar{U}_{3} contains \bar{U}_{4}^{\perp} and another vector of \bar{U}_{4} so it is μ-Lagrangian, and λ^{\prime} vanishes on w_{0} so it annihilates any $\bar{U}_{2} \oplus \mathbb{C} w_{0}$. We have two cases :

$$
\begin{equation*}
U_{3}=<w_{0}, u_{2}+\epsilon v_{1}, A v_{1}+B v_{2}> \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{3}=<w_{0}, u_{1}+\Lambda\left(u_{2}+\epsilon v_{1}\right)+\Gamma\left(A v_{1}+B v_{2}\right), \phi\left(u_{2}+\epsilon v_{1}\right)+\psi\left(A v_{1}+B v_{2}\right)> \tag{3.22}
\end{equation*}
$$

We need to check when the associated $\bar{U}_{2}=U_{3} /<w_{0}>$ is $\bar{\lambda}$-isotropic. We will assume : $u_{1}=\sum_{i=1}^{3} \alpha_{i} x_{i}$, $v_{1}=\sum_{i=1}^{3} \beta_{i} x_{i}, u_{2}=\sum_{i=4}^{6} \gamma_{i} x_{i}$ and $v_{2}=\sum_{i=4}^{6} \delta_{i} x_{i}$.

- Case (3.21):

By Lemma 3.3.2, \bar{U}_{2} is $\bar{\lambda}$-isotropic if and only if it can be written as $<w_{1}, w_{2}>$ with $w_{i} \in A_{i}$. If $B \neq 0$ then since $<u_{2}, v_{2}>$ is 2 -dimensional and $\operatorname{dim}\left(\bar{U}_{2}\right)=2$ we cannot write $\bar{U}_{2}=<w_{1}, w_{2}>$ with $w_{1} \in A_{1}$. If $B=0$ we must have $A \neq 0$ and we can assume $A=1$ since multiplying a generator by a non-zero scalar doesn't change a vector subspace. In this case

$$
\bar{U}_{2}=<u_{2}, v_{1}>
$$

is $\bar{\lambda}$-isotropic.

- Case (3.22):

Here

$$
\bar{U}_{2}=<u_{1}+\Lambda u_{2}+(\Lambda \epsilon+\Gamma A) v_{1}+\Gamma B v_{2}, \phi u_{2}+(\epsilon \phi+\psi A) v_{1}+\psi B v_{2}>.
$$

Let us consider two cases, using again Lemma 3.3.2 :

- $\phi \neq 0$, hence we can assume $\phi=1$. Then $\bar{U}_{2}=<u_{1}+(\Lambda \epsilon+\Gamma A-\Lambda \epsilon-\Lambda \psi A) v_{1}+(\Gamma B-$ $\psi \Lambda B) v_{2}, u_{2}+(\epsilon+\psi A) v_{1}+\psi B v_{2}>=<u_{1}+A(\Gamma-\Lambda \psi) v_{1}+B(\Gamma-\psi \Lambda) v_{2}, u_{2}+(\epsilon+\psi A) v_{1}+\psi B v_{2}>$. As before and since $\operatorname{dim}\left(<u_{1}, v_{1}>\right)=\operatorname{dim}\left(<u_{2}, v_{2}>\right)=2$ we must have $: B(\Gamma-\Lambda \psi)=0$ and $\epsilon+\psi A=0$.

If $B \neq 0$ it gives : $\Gamma=\Lambda \psi$ and $A \psi=-\epsilon$. Since $\epsilon \neq 0$ this forces $A \neq 0$ and $\psi \neq 0$, therefore we can assume $A=1$ which yields : $\psi=-\epsilon$. Hence we find:

$$
\bar{U}_{2}=<u_{1}, u_{2}-\epsilon B v_{2}>.
$$

If $B=0$ this yields $A \psi=-\epsilon$ so as just before we can assume $A=1$ and $\psi=-\epsilon$. Therefore we get : $\bar{U}_{2}=<u_{1}+(\Gamma+\Lambda \epsilon) v_{1}, u_{2}>$. Since here there are no conditions on Γ and Λ this actually gives :

$$
\bar{U}_{2}=<u_{1}+k v_{1}, u_{2}>
$$

for $k \in \mathbb{C}$.

- $\phi=0$. Then since ϕ and ψ cannot be zero at the same time, we can assume $\psi=1$. Thus $\bar{U}_{2}=<u_{1}+\Lambda u_{2}+(\Lambda \epsilon+\Gamma A) v_{1}+\Gamma B v_{2}, A v_{1}+B v_{2}>=<u_{1}+\Lambda u_{2}+\Lambda \epsilon v_{1}, A v_{1}+B v_{2}>$. For the same reason as before we thus want $A=0$ and $\Lambda=0$. As a result we can assume $B=1$ and we get :

$$
\bar{U}_{2}=<u_{1}, v_{2}>.
$$

Combining what we found in the two cases (3.21) and (3.22) finally gives:
(a) if $B \neq 0$ there is $\bar{U}_{2}=<u_{1}, A u_{2}-\epsilon B v_{2}>$ that is to say one point.
(b) if $B=0$ there is $\bar{U}_{2}=<\alpha u_{1}+\beta v_{1}, u_{2}>$ for $(\alpha, \beta) \in \mathbb{C}^{2}-\{(0,0)\}$, that is to say a \mathbb{P}^{1}.

Let us denote now $z^{\prime}=<u_{1}, u_{2}+\epsilon v_{1}, v_{1}>=<u_{1}, u_{2}, v_{1}>\subset \bar{U}_{4} \in f_{Z}(p)$. It corresponds to $B=0$ and it is the only point in $f_{Z}(p)$ such that $U_{2, A_{1}} \subset \bar{U}_{3}$ by the definition of $f_{Z}(p)$ given in (3.20). Moreover we have just seen that $f_{\bar{E}}\left(z^{\prime}\right) \cap E_{4}$ contains a \mathbb{P}^{1} and since $f_{\bar{E}}\left(z^{\prime}\right)$ is a \mathbb{P}^{1} (see (1.2)) this yields : $f_{\bar{E}}\left(z^{\prime}\right) \subset E_{4}$. Finally we have found : to each $\bar{U}_{3} \neq<u_{1}, u_{2}, v_{1}>$ in $f_{Z}(p)$ corresponds a unique point in E_{4}, namely $\bar{U}_{2}=<u_{1}, A u_{2}-\epsilon B v_{2}>$. To $\bar{U}_{3}=<u_{1}, u_{2}, v_{1}>$ (that is to say $B=0$) corresponds a \mathbb{P}^{1} in E_{4}, namely $\left\{\left\langle u_{1}+\alpha v_{1}, u_{2}\right\rangle, \alpha \in \mathbb{C}\right\} \cup\left\{\left\langle u_{2}, v_{1}\right\rangle\right\}$. Since $f_{Z}(p)$ is also a \mathbb{P}^{1} by Theorem 1.2.1, this gives two \mathbb{P}^{1} intersecting at $<u_{1}, u_{2}>\subset<u_{1}, u_{2}, v_{1}>$: one of the \mathbb{P}^{1} is isomorphic to $f_{Z}(p)$ and the other is $f_{\bar{E}}\left(z^{\prime}\right)$.
2. Let us assume now that $p \in \bar{C}_{1} \cap \bar{C}_{2}$. For $p \in \bar{C}_{2}-\bar{C}_{1}$ it is symmetric to the previous case. We can assume now $\bar{U}_{4}^{\perp}=<u_{1}, u_{2}>$ and $\bar{U}_{S}=<v_{1}, v_{2}>$ with $u_{1}, v_{1} \in A_{1}$ and $u_{2}, v_{2} \in A_{2}$. Then the points in $f_{Z}(p)$ are given by

$$
\bar{U}_{3}=<u_{1}, u_{2}, a v_{1}+b v_{2}>.
$$

Again we distinguish two types of possible \bar{U}_{2}.

$$
\begin{equation*}
\bar{U}_{2}=<u_{2}, a v_{1}+b v_{2}> \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{U}_{2}=<u_{1}+\Gamma u_{2}+\Lambda a v_{1}+\Lambda b v_{2}, \phi u_{2}+\psi a v_{1}+\psi b v_{2}>. \tag{3.24}
\end{equation*}
$$

We need now to find which ones are $\bar{\lambda}$ isotropic and for this we are going to use Lemma 3.3.2 as before.

- Case (3.23):

Here \bar{U}_{2} can be written as $<w_{1}, w_{2}>$ with $w_{i} \in A_{i}$ if and only if $b=0$ since u_{2} and v_{2} are not colinear. This gives :

$$
\bar{U}_{2}=<u_{2}, v_{1}>.
$$

- Case (3.24):

Let us distinguish between two cases again :

- $\phi \neq 0$ so we can assume $\phi=1$. Then $\bar{U}_{2}=<u_{1}+\Gamma u_{2}+\Lambda a v_{1}+\Lambda b v_{2}, u_{2}+\psi a v_{1}+\psi b v_{2}>=<$ $u_{1}+a(\Lambda-\psi \Gamma) v_{1}+b(\Lambda-\psi \Gamma) v_{2}, u_{2}+\psi a v_{1}+\psi b v_{2}>$. So we need $b(\Lambda-\psi \Gamma)=0$ and $\psi a=0$.

If $b=0$ we can assume $a=1$ and thus we want $\psi=0$. This yields :

$$
\bar{U}_{2}=<u_{1}+\Lambda v_{1}, u_{2}>
$$

If $b \neq 0$ we can assume $b=1$. Let us assume now that $a=0$. Then we get $\Lambda=\psi \Gamma$ which gives :

$$
\bar{U}_{2}=<u_{1}, u_{2}+\psi v_{2}>
$$

Here there are no conditions on ψ. If $b \neq 0$ and $a \neq 0$ we get $\psi=0$ and $\Lambda=\psi \Gamma=0$. Thus :

$$
\bar{U}_{2}=<u_{1}, u_{2}>.
$$

- $\phi=0$ hence we can assume $\psi=1$. Then $\bar{U}_{2}=<u_{1}+\Gamma u_{2}+\Lambda a v_{1}+\Lambda b v_{2}, a v_{1}+b v_{2}>=<$ $u_{1}+\Gamma u_{2}, a v_{1}+b v_{2}>$. Therefore we need $\Gamma=0$ and $a=0$ which gives :

$$
\bar{U}_{2}=<u_{1}, v_{2}>.
$$

Finally we have found :
(a) if $b=0$ then $\bar{U}_{3}=<u_{1}, u_{2}, v_{1}>$ and the possible \bar{U}_{2} are

$$
\left\{<u_{2}, v_{1}>\right\} \cup\left\{<u_{1}+\Lambda v_{1}, u_{2}>, \Lambda \in \mathbb{C}-\{0\}\right\} \cup\left\{<u_{1}, u_{2}>\right\}
$$

(b) if $a=0$ then $\bar{U}_{3}=<u_{1}, u_{2}, v_{2}>$ and the possible \bar{U}_{2} are $\left.\left.\left\{<u_{1}, u_{2}+\psi v_{2}\right\rangle, \psi \in \mathbb{C}\right\} \cup\left\{<u_{1}, v_{2}\right\rangle\right\}$.
(c) if $a \neq 0$ and $b \neq 0$ then the only possible \bar{U}_{2} is $\left\langle u_{1}, u_{2}\right\rangle$.

Let us denote now by z_{1} and z_{2} the points in $f_{Z}(p)$ with $\bar{U}_{3}=<u_{1}, u_{2}, v_{1}>$ respectively $<u_{1}, u_{2}, v_{2}>$. Then we have seen that for both $i=1$ and $i=2, f_{\bar{E}}\left(z_{i}\right) \cap E_{4}$ contains a \mathbb{P}^{1}. Since each $f_{\bar{E}}\left(z_{i}\right)$ is itself a \mathbb{P}^{1} this implies that $f_{\bar{E}}\left(z_{i}\right) \subset E_{4}$. For the other points z in $f_{Z}(p)$ we have $f_{\bar{E}}(z) \cap E_{4}=\left\{<u_{1}, u_{2}, w_{0}>\right\}$. Since $\left\{<u_{1}, u_{2}, w_{0}>\right\}$ is also in each $f_{\bar{E}}\left(z_{i}\right) \cap E_{4}$ (respectively when $\Lambda=0$ and $\psi=0$) and $f_{Z}(p)$ is also a \mathbb{P}^{1}, we have found three \mathbb{P}^{1} (namely $f_{\bar{E}}\left(z_{i}\right)$ and one isomorphic to $f_{Z}(p)$) intersecting in two points : each $f_{\bar{E}}\left(z_{i}\right)$ intersects the third \mathbb{P}^{1} respectively in $<u_{1}, u_{2}>\subset<u_{1}, u_{2}, v_{1}>$ and $<u_{1}, u_{2}>\subset<u_{1}, u_{2}, v_{2}>$. Finally for $i \in\{1,2\}, z_{i}$ is the only point in $f_{Z}(p)$ such that the associated \bar{U}_{3} contains $U_{2, A_{i}}$.

Lemma 3.3.4. Let $p \in S_{2}-\left(\bar{C}_{1} \cup \bar{C}_{2}\right)$. Then for each point $z \in f_{Z}(p)$ we have that $f_{\bar{E}}(z) \cap E_{4}$ contains exactly one point.

Proof. Let p be a point in $S_{2}-\left(\bar{C}_{1} \cup \bar{C}_{2}\right)$. Let us assume that $p=\bar{U}_{4}=U_{2, A_{1}} \oplus U_{2, A_{2}}$ with $U_{2, A_{i}}=<u_{i}, v_{i}>$. Then by hypothesis up to a good choice of the u_{i} and v_{i} we can assume that $\bar{U}_{4}=<u_{1}+u_{2}, v_{1}+v_{2}>$. Then we have :

$$
\begin{equation*}
f_{Z}(p)=\left\{<u_{1}+u_{2}, v_{1}+v_{2}, A u_{1}+B v_{1}>A, B \in \mathbb{C},(A, B) \neq(0,0)\right\} \tag{3.25}
\end{equation*}
$$

Let $z \in f_{Z}(p)$ be such a \bar{U}_{3}. By Lemma 3.3.2, the points in $f_{\bar{E}}(z) \cap E_{4}$ correspond to the $\bar{U}_{2} \subset<u_{1}+u_{2}, v_{1}+$ $v_{2}, A u_{1}+B v_{1}>$ which can be written as $<w_{1}, w_{2}>$ with $w_{i} \in A_{i}$. Since the u_{i} and v_{i} are not colinear $<u_{1}+u_{2}, v_{1}+v_{2}>$ doesn't satisfy this property. So if such a $\overline{U_{2}}$ exists it has to be of the form :

$$
<A u_{1}+B v_{1}+\phi\left(u_{1}+u_{2}\right)+\psi\left(v_{1}+v_{2}\right), \zeta\left(u_{1}+u_{2}\right)+\xi\left(v_{1}+v_{2}\right)>.
$$

That is to say :

$$
<(A+\phi) u_{1}+(B+\psi) v_{1}+\phi u_{2}+\psi v_{2}, \zeta\left(u_{1}+u_{2}\right)+\xi\left(v_{1}+v_{2}\right)>.
$$

There are two cases :

- $\zeta=0$. Then we can assume $\xi=1$ so

$$
\begin{aligned}
\bar{U}_{2} & =<(A+\phi) u_{1}+(B+\psi) v_{1}+\phi u_{2}+\psi v_{2}, v_{1}+v_{2}> \\
& =<(A+\phi) u_{1}+\phi u_{2}+(\psi-B-\psi) v_{2}, v_{1}+v_{2}> \\
& =<(A+\phi) u_{1}+\phi u_{2}-B v_{2}, v_{1}+v_{2}>.
\end{aligned}
$$

Since u_{1} and v_{1} are not colinear, we want $\phi=-A$ which gives $\left.\bar{U}_{2}=<-A u_{2}-B v_{2}, v_{1}+v_{2}\right)>$. The only possibility here is $A=0$ which gives:

$$
\bar{U}_{2}=<v_{2}, v_{1}>
$$

- $\zeta \neq 0$ thus we can assume $\zeta=1$. So

$$
\begin{aligned}
\bar{U}_{2} & =<(A+\phi) u_{1}+(B+\psi) v_{1}+\phi u_{2}+\psi v_{2}, u_{1}+u_{2}+\xi\left(v_{1}+v_{2}\right)> \\
& =<(B+\psi-A \xi-\phi \xi) v_{1}+(\phi-A-\phi) u_{2}+(\psi-A \xi-\phi \xi) v_{2}, u_{1}+u_{2}+\xi v_{1}+\xi v_{2}>
\end{aligned}
$$

To start with, since u_{1} and v_{1} are not colinear we need $B+\psi=\xi(A+\phi)$. This implies

$$
\bar{U}_{2}=<-A u_{2}-B v_{2}, u_{1}+u_{2}+\xi v_{1}+\xi v_{2}>.
$$

If $B=0$, we can assume $A=1$ and thus we have $\bar{U}_{2}=<u_{2}, u_{1}+\xi v_{1}+\xi v_{2}>$ so we want $\xi=0$ and we get :

$$
\bar{U}_{2}=<u_{2}, u_{1}>.
$$

If $B \neq 0$ and $A \neq 0$ we can assume $A=1$. Thus $\bar{U}_{2}=<u_{2}+B v_{2}, u_{1}+\xi v_{1}+(\xi-B) v_{2}>$. Hence we need $B=\xi$ and we get :

$$
\bar{U}_{2}=<u_{2}+B v_{2}, u_{1}+B v_{1}>
$$

If $A=0$ we have $\bar{U}_{2}=<v_{2}, u_{1}+u_{2}+\xi v_{1}>$ which cannot be written as $<w_{1}, w_{2}>$ with $w_{i} \in A_{i}$.
Finally, we have found that for each $z=<u_{1}+u_{2}, v_{1}+v_{2}, A u_{1}+B v_{1}>\in f_{Z}(p)$ we have

$$
f_{\bar{E}}(z) \cap E_{4}=\left\{<w_{0}, A u_{1}+B v_{1}, A u_{2}+B v_{2}>\right\}
$$

Combining Lemma 3.3.3 and Lemma 3.3.4 we have found :
Corollary 3.3.5. Let $z=\bar{U}_{3} \subset \bar{U}_{4}$ be a point in Z_{3}. Then :

1. if $\bar{U}_{4} \cap A_{i} \subset \bar{U}_{3}$ for $i=1$ or 2 then $\mathbb{P}^{1} \cong f_{\bar{E}}(z) \subset E_{4}$ (and $\sigma(p) \in \bar{C}_{i}$);
2. otherwise, $f_{\bar{E}}(z) \cap E_{4}$ contains one point.

Remark 3.3.6. From 3. of Lemma 1.2.2 we have that there exists two disjoint curves $C_{i} \subset Z_{3}$ such that $\sigma\left(C_{i}\right)=\bar{C}_{i}$ and $\overline{U_{3}} \subset \bar{U}_{4} \in C_{i}$ if and only if $\bar{U}_{4} \cap A_{i} \subset \bar{U}_{3}$. Thus Corollary 3.3.5 together with $\bar{E}_{4}=\mathbb{P}_{Z}\left(\mathcal{V}_{Z}\right)$ seem to suggest that $E_{4} \cap \bar{E}_{4}$ is isomorphic to the blow-up of Z_{3} in C_{1} and C_{2}.

Before going further, let us introduce some notations and give names to the various \mathbb{P}^{1} described in Lemma 3.3.3.

Definition 3.3.7. Let $\bar{C}_{1} \cap \bar{C}_{2}=\left\{p_{1}, p_{2}\right\}$.
For each p_{i} let us denote $\bar{U}_{4}^{\perp}=<u_{1}^{i}, u_{2}^{i}>$ and $\bar{U}_{S}:=\bar{U}_{4} / \bar{U}_{4}^{\perp}=<v_{1}^{i}, v_{2}^{i}>$ with $u_{j}^{i}, v_{j}^{i} \in A_{j}$.
Moreover, let p and q be points in $\bar{C}_{1}-\bar{C}_{2}$, respectively $\bar{C}_{2}-\bar{C}_{1}$. Then we will use the following notations :

- for $p, \bar{U}_{4}^{\perp}=<u_{1}^{p}, u_{2}^{p}+\epsilon_{p} v_{1}^{p}>$ with $\epsilon_{p} \neq 0$, and $\bar{U}_{4}=<u_{1}^{p}, u_{2}^{p}, v_{1}^{p}, v_{2}^{p}>$. Here $v_{j}^{p}, u_{j}^{p} \in A_{j}$;
- for $q, \bar{U}_{4}^{\perp}=<u_{2}^{q}, u_{1}^{q}+\epsilon_{q} v_{2}^{q}>$ with $\epsilon_{q} \neq 0$, and $\bar{U}_{4}=<u_{1}^{q}, u_{2}^{q}, v_{1}^{q}, v_{2}^{q}>$. Here $v_{j}^{q}, u_{j}^{q} \in A_{j}$.

When the point to which the u_{i} and v_{i} are associated is obvious, we will sometimes drop the index associated to this point.

Definition 3.3.8. Let us denote the \mathbb{P}^{1} in $E_{4} \cap \bar{E}_{4}$ over points in S_{2} as follows :

- Over $p_{i}, A_{i}^{\prime}:=\left\{<a u_{1}+b v_{1}, u_{2}>\subset<u_{1}, u_{2}, v_{1}>,(a, b) \in \mathbb{C}^{2}-\{(0,0)\}\right\}$.
- Over $p_{i}, B_{i}:=\left\{<u_{1}, \phi u_{2}+\psi v_{2}>\subset<u_{1}, u_{2}, v_{2}>,(\psi, \phi) \in \mathbb{C}^{2}-\{(0,0)\}\right\}$.
- Over $p_{i}, C_{i}^{\prime}:=\left\{<u_{1}, u_{2}>\subset<u_{1}, u_{2}, a v_{1}+b v_{2}>,(a, b) \in \mathbb{C}^{2}-\{(0,0)\}\right\}$.
- Over $p \in \bar{C}_{1}-\bar{C}_{2}, E_{p}:=\left\{<u_{1}, A u_{2}-\epsilon B v_{2}>\subset<u_{1}, u_{2}+\epsilon v_{1}, A v_{1}+B v_{2}>,(A, B) \in \mathbb{C}^{2}-\{(0,0)\}\right\}$.
- Over $p \in \bar{C}_{1}-\bar{C}_{2}, F_{p}:=\left\{<\beta u_{1}+\alpha v_{1}, u_{2}>\subset<u_{1}, u_{2}, v_{1}>,(\alpha, \beta) \in \mathbb{C}^{2}-\{(0,0)\}\right\}$.
- Over $p \in \bar{C}_{2}-\bar{C}_{1}, G_{p}:=\left\{<u_{2}, A u_{1}-\epsilon B v_{1}>\subset<u_{2}, u_{1}+\epsilon v_{2}, A v_{2}+B v_{1}>,(A, B) \in \mathbb{C}^{2}-\{(0,0)\}\right\}$.
- Over $p \in \bar{C}_{2}-\bar{C}_{1}, H_{p}:=\left\{<\beta u_{2}+\alpha v_{2}, u_{1}>\subset<u_{2}, u_{1}, v_{2}>,(\alpha, \beta) \in \mathbb{C}^{2}-\{(0,0)\}\right\}$.

3.4 Some contractions by π

As mentioned before, we want to understand what can be contracted by π in \tilde{S} and \bar{D}_{2}. Indeed it is necessary to understand such contractions to be able to compute Euler characteristics between $\pi_{*} \mathcal{O}_{\bar{D}}, \pi_{*} \mathcal{O}_{\tilde{S}}$ and other sheaves in $D^{b}\left(X_{4}\right)$. Thus, if we want to use the two pushforwards $\pi_{*} \mathcal{O}_{\tilde{S}}$ and $\pi_{*} \mathcal{O}_{\bar{D}}$ in order to build a basis of $K_{\text {num }}\left(X_{4}\right)$ and then compute all the associated Euler characteristics, we need to study what can possibly be contracted by π in \tilde{S} and \bar{D}_{2}.
In the following subsection we give a partial answer to this question. We first try to understand what can be contracted by π in $E_{4} \cap \bar{E}_{4} \subset \tilde{X}_{5}$ in subsection 3.4.1, and then try to understand what remains of these contractions in $E_{4} \cap \bar{E}_{4} \cap \tilde{X}_{4}=D_{3} \cap \bar{E}_{4}$ in subsection 3.4.2.

3.4.1 Some contractions by π in $E_{4} \cap \bar{E}_{4}$

Here we try to understand what is contracted by π in $E_{4} \cap \bar{E}_{4}$. We are only able to give a partial description of these contractions : we can use some geometrical descriptions given in [20] to study contractions in the preimages of two rational curves in S_{2} (namely \bar{C}_{1} and \bar{C}_{2}).
We start with some technical Lemmas, which we will use in the proof of Lemmas 3.4.6 and 3.4.7, where we list all the contractions we have found. We will use the notations of Definitions 3.3.7 and 3.3.8 all along this subsection.

Lemma 3.4.1. With the notations of Definition 3.3.7, we must have :

1. u_{1}^{1} and u_{1}^{2} are not colinear;
2. u_{2}^{1} and u_{2}^{2} are not colinear;
3. $u_{1}^{2} \notin<u_{1}^{1}, v_{1}^{1}>$ and $u_{1}^{1} \notin<u_{1}^{2}, v_{1}^{2}>$;
4. $u_{2}^{2} \notin<u_{2}^{1}, v_{2}^{1}>$ and $u_{2}^{1} \notin<u_{2}^{2}, v_{2}^{2}>$.

Proof. 1. Let us assume that u_{1}^{1} and u_{1}^{2} are colinear. Then up to rescaling we can assume that $u_{1}^{1}=u_{1}^{2}$. Then since μ induces a non degenerate pairing between the A_{i}, and by definition of the u_{j} one gets: $<u_{2}^{1}, v_{2}^{1}>=\operatorname{Ker}\left(\mu\left(u_{1}^{1},.\right)\right) \cap A_{2}=\operatorname{Ker}\left(\mu\left(u_{1}^{2},.\right)\right) \cap A_{2}=<u_{2}^{2}, v_{2}^{2}>$. Moreover, since the p_{i} are in $\bar{C}_{1} \cap \bar{C}_{2}$, we must have that $\mu_{2} \in<u_{2}^{1}, v_{2}^{1}>=<u_{2}^{2}, v_{2}^{2}>$, hence $<u_{2}^{1}, v_{2}^{1}, u_{1}^{1}>=<u_{2}^{2}, v_{2}^{2}, u_{1}^{2}>$ is a μ-Lagrangian. Then by 6 . of section 1.1, we must have that v_{1}^{1} and v_{1}^{2} are colinear. But then $\left.\left.<u_{1}^{1}, u_{2}^{1}, v_{1}^{1}, v_{2}^{1}\right\rangle=<u_{1}^{2}, u_{2}^{2}, v_{1}^{2}, v_{2}^{2}\right\rangle$ so $p_{1}=p_{2}$, which is a contradiction.
2. We use the same reasoning as just before : let us assume that u_{2}^{1} and u_{2}^{2} are colinear. Then we can assume that $u_{2}^{1}=u_{2}^{2}$. Then since μ induces a non degenerate pairing between the A_{i}, and by definition of the u_{j} one gets : $<u_{1}^{1}, v_{1}^{1}>=\operatorname{Ker}\left(\mu\left(u_{2}^{1},.\right)\right) \cap A_{1}=\operatorname{Ker}\left(\mu\left(u_{2}^{2},.\right)\right) \cap A_{1}=<u_{1}^{2}, v_{1}^{2}>$. Moreover, since the p_{i} are in $\bar{C}_{1} \cap \bar{C}_{2}$, we must have that $\mu_{1} \in<u_{1}^{1}, v_{1}^{1}>=<u_{1}^{2}, v_{1}^{2}>$, hence $<u_{1}^{1}, v_{1}^{1}, u_{2}^{1}>=<u_{1}^{2}, v_{1}^{2}, u_{2}^{2}>$ is a μ-Lagrangian. Then by 6 . of section 1.1 , we must have that v_{2}^{1} and v_{2}^{2} are colinear. But then $p_{1}=p_{2}$, which is a contradiction.
3. Let us assume that $u_{1}^{2}=a u_{1}^{1}+b v_{1}^{1}$. We have just seen that u_{2}^{1} and u_{2}^{2} are not colinear, so that $\left.<u_{1}^{1}, v_{1}^{1}\right\rangle=$ $\operatorname{Ker}\left(\mu\left(u_{2}^{1},.\right)\right) \cap A_{1} \neq \operatorname{Ker}\left(\mu\left(u_{2}^{2},.\right)\right) \cap A_{1}=<u_{1}^{2}, v_{1}^{2}>$. So $A_{1}=<u_{1}^{1}, v_{1}^{1}, u_{1}^{2}, v_{1}^{2}>$. On the other hand, $\mu\left(u_{1}^{2}, v_{1}^{2}\right)=0, \mu\left(u_{1}^{2}, u_{1}^{2}\right)=0, \mu\left(u_{1}^{2}, v_{1}^{1}\right)=\mu\left(a u_{1}^{1}+b v_{1}^{1}, v_{1}^{1}\right)=0$ and $\mu\left(u_{1}^{2}, u_{1}^{1}\right)=\mu\left(a u_{1}^{1}+b v_{1}^{1}, u_{1}^{1}\right)=0$ since $\mu\left(u_{1}^{1}, v_{1}^{1}\right)=0$. Therefore, u_{1}^{2} is μ-orthogonal to A_{1}, so it is μ_{1}. But then by Lemma 3.1.8, this contradicts (3.6).

With the same reasoning, if $u_{1}^{1} \in<u_{1}^{2}, v_{1}^{2}>$ then $u_{1}^{1}=\mu_{1}$, which contradicts (3.6).
4. The same reasoning as for 3 . gives us that if $u_{2}^{2} \in<u_{2}^{1}, v_{2}^{1}>$, then $u_{2}^{2}=\mu_{2}$ and that if $u_{2}^{1} \in<u_{2}^{2}, v_{2}^{2}>$, then $u_{2}^{1}=\mu_{2}$. So none of them is possible by (3.6).

Lemma 3.4.2. Let $p \in \bar{C}_{1}-\bar{C}_{2}$. Then $\bar{U}_{S} \cong<u_{2}^{p}, v_{2}^{p}>$ and u_{2}^{p} is μ-orthogonal to $<u_{1}^{p}, v_{1}^{p}>$.
Let $q \in \bar{C}_{2}-\bar{C}_{1}$. Then $\bar{U}_{S} \cong<u_{1}^{p}, v_{1}^{p}>$ and u_{1}^{p} is μ-orthogonal to $<u_{2}^{p}, v_{2}^{p}>$.
Proof. By Definition 3.3.7, we have that $\bar{U}_{4}^{\perp}=<u_{1}^{p}, u_{2}^{p}+\epsilon_{p} v_{1}^{p}>$. So we can write $\bar{U}_{S}=<v_{1}^{p}+a u_{2}^{p}+b v_{2}^{p}, c u_{2}^{p}+$ $d v_{2}^{p}>$. But since in $\bar{U}_{4} / \bar{U}_{4}^{\perp}, v_{1}^{p}=-\frac{1}{\epsilon_{p}} u_{2}^{p}$ we can also write $\bar{U}_{S}=<\left(a-\frac{1}{\epsilon_{p}}\right) u_{2}^{p}+b v_{2}^{p}, c u_{2}^{p}+d v_{2}^{p}>=<u_{2}^{p}, v_{2}^{p}>$. (Since by hypothesis $p \notin \bar{C}_{2}, \mu\left(u_{2}^{p}, v_{2}^{p}\right) \neq 0$ so this is not a contradiction.) Moreover, by hypothesis on u_{1}^{p}, we must have $\mu\left(u_{1}^{p}, u_{2}^{p}\right)=0$ and $0=\mu\left(u_{2}^{p}+\epsilon_{p} v_{1}^{p}, v_{1}^{p}\right)=\mu\left(u_{2}^{p}, v_{1}^{p}\right)$ since $\mu\left(v_{1}^{p}, v_{1}^{p}\right)=0$. So u_{2}^{p} is μ-orthogonal to u_{1}^{p} and v_{1}^{p}.
The same reasoning, "switching" A_{1} and A_{2}, gives us the result for q.
Lemma 3.4.3. Let $p \in \bar{C}_{1}-\bar{C}_{2}$. Then u_{1}^{j} and u_{1}^{p} are not colinear, and u_{2}^{j} and u_{2}^{p} are not colinear.
Let $q \in \bar{C}_{2}-\bar{C}_{1}$. Then u_{1}^{j} and u_{1}^{q} are not colinear, and u_{2}^{j} and u_{2}^{q} are not colinear.
Proof. 1. Let us assume that u_{1}^{j} and u_{1}^{p} are colinear: we can then assume $u_{1}^{j}=u_{1}^{p}$. Since $p \in \bar{C}_{1}$ we have then $<u_{2}^{j}, v_{2}^{j}>=\operatorname{Ker}\left(\mu\left(u_{1}^{j},.\right)\right) \cap A_{2}=\operatorname{Ker}\left(\mu\left(u_{1}^{p},.\right)\right) \cap A_{2}=<u_{2}^{p}, v_{2}^{p}>$. But $p_{j} \in \bar{C}_{2}$ so $\mu_{2} \in<u_{2}^{j}, v_{2}^{j}>=<$ $u_{2}^{p}, v_{2}^{p}>$. By Proposition 1.2.2 this implies $p \in \bar{C}_{2}$, which is a contradiction.
2. Let us assume that u_{2}^{j} and u_{2}^{p} are colinear : we can then assume $u_{2}^{j}=u_{2}^{p}$. By Lemma 3.4.2 we have then $<u_{1}^{j}, v_{1}^{j}>=\operatorname{Ker}\left(\mu\left(u_{2}^{j},.\right)\right) \cap A_{1}=\operatorname{Ker}\left(\mu\left(u_{2}^{p},.\right)\right) \cap A_{1}=<u_{1}^{p}, v_{1}^{p}>$. But $p_{j}, p \in \bar{C}_{1}$ so $\mu_{1} \in<u_{1}^{j}, v_{1}^{j}>=<$ $u_{1}^{p}, v_{1}^{p}>$. So $<u_{1}^{j}, v_{1}^{j}, u_{2}^{j}>=<u_{1}^{p}, v_{1}^{p}, u_{2}^{p}>$ is μ-Lagrangian. By 6 . of section 1.1 we then get that v_{2}^{j} and v_{2}^{p} are colinear. This implies $p=p_{j}$, which is a contradiction.
3. The same reasoning gives the statement about q.

Lemma 3.4.4. Let $p \in \bar{C}_{1}-\bar{C}_{2}$. Then $u_{1}^{j} \notin<u_{1}^{p}, v_{1}^{p}>$.
Let $q \in \bar{C}_{2}-\bar{C}_{1}$. Then $u_{2}^{j} \notin<u_{2}^{p}, v_{2}^{p}>$.

Proof. 1. Let us first assume that $u_{1}^{j} \in<u_{1}^{p}, v_{1}^{p}>$. Then we can write $u_{1}^{j}=a u_{1}^{p}+b v_{1}^{p}$. We have seen in Lemma 3.4.3 that u_{2}^{j} and u_{2}^{p} are not colinear, so by Lemma 3.1.6, $<u_{1}^{j}, v_{1}^{j}>\neq<u_{1}^{p}, v_{1}^{p}>$ and $A_{1}=<$ $u_{1}^{j}, v_{1}^{j}, u_{1}^{p}, v_{1}^{p}>$. But $\mu\left(u_{1}^{j}, u_{1}^{j}\right)=\mu\left(u_{1}^{j}, v_{1}^{j}\right)=0, \mu\left(u_{1}^{j}, u_{1}^{p}\right)=\mu\left(a u_{1}^{p}+b v_{1}^{p}, u_{1}^{p}\right)=0$ and $\mu\left(u_{1}^{j}, v_{1}^{p}\right)=\mu\left(a u_{1}^{p}+\right.$ $\left.b v_{1}^{p}, v_{1}^{p}\right)=0$ since $p \in \bar{C}_{1}$ and so $\mu_{1} \in\left\langle u_{1}^{p}, v_{1}^{p}>\right.$ which implies $\mu\left(u_{1}^{p}, v_{1}^{p}\right)=0$. Hence u_{1}^{j} is μ-orthogonal to A_{1} and thus $u_{1}^{j}=\mu_{1}$, which contradicts (3.6) by Lemma 3.1.8.
2. For q we can use the same reasoning, "switching" A_{1} and A_{2}.

Lemma 3.4.5. With the notations of Definition 3.3.7, for any two p, q in $\bar{C}_{1} \cup \bar{C}_{2}-\bar{C}_{1} \cap \bar{C}_{2}, u_{1}^{p}$ and u_{1}^{q} are not colinear. Similarly, u_{2}^{p} and u_{2}^{q} are not colinear.

Proof. Let us first assume that u_{1}^{p} and u_{1}^{q} are colinear. Then up to rescaling we can assume they are equal. By Lemma 3.4.2 we then have $<u_{2}^{p}, v_{2}^{p}>=\operatorname{Ker}\left(\mu\left(u_{1}^{p},.\right)\right) \cap A_{2}=\operatorname{Ker}\left(\mu\left(u_{1}^{q},.\right)\right) \cap A_{2}=<u_{2}^{q}, v_{2}^{q}>$. Then we have two cases :

- One of p and q is in \bar{C}_{2}. Let us assume it is p. Then by Proposition 1.2.2, $\mu_{2} \in<u_{2}^{p}, v_{2}^{p}>=<u_{2}^{q}, v_{2}^{q}>$, so $q \in \bar{C}_{2}$. But then $<u_{2}^{p}, v_{2}^{p}, u_{1}^{p}>=<u_{2}^{q}, v_{2}^{q}, u_{1}^{q}>$ is μ-Lagrangian, so by 6 . of section 1.1 , this implies that $v_{1}^{p}=v_{1}^{q}$. So $p=q$ and this contradicts our hypothesis.
- Both p and q are in $\bar{C}_{1}-\bar{C}_{2}$. Then $\mu\left(u_{2}^{p}, v_{2}^{p}\right) \neq 0$ so we cannot use the same argument as above. But by the same argument as in the previous case we must have that u_{2}^{p} and u_{2}^{q} are not colinear. So by Lemma 3.1.6, $<u_{1}^{p}, v_{1}^{p}>\neq<u_{1}^{q}, v_{1}^{q}>$ and $A_{1}=<u_{1}^{p}, v_{1}^{p}, u_{1}^{q}, v_{1}^{q}>$. On the other hand, $\mu\left(u_{1}^{p}, u_{1}^{p}\right)=\mu\left(u_{1}^{p}, v_{1}^{p}\right)=0$, $\mu\left(u_{1}^{p}, u_{1}^{q}\right)=\mu\left(u_{1}^{q}, u_{1}^{q}\right)=0$ and $\mu\left(u_{1}^{p}, v_{1}^{q}\right)=\mu\left(u_{1}^{q}, v_{1}^{q}\right)=0$ since both p and q are in \bar{C}_{1} and thus $\mu_{1} \in<$ $u_{1}^{p}, v_{1}^{p}>$ and $\mu_{1} \in<u_{1}^{q}, v_{1}^{q}>$. But then $u_{1}^{p}=u_{1}^{q}$ is μ-orthogonal to A_{1}, so $u_{1}^{p}=u_{1}^{q}=\mu_{1}$. But we have seen in the proof of Proposition 3.1.12 that there is a unique point p^{\prime} in $\bar{C}_{1}-\bar{C}_{2}$ such that $u_{1}^{p^{\prime}}=\mu_{1}$, so $p=q$ which is a contradiction.

So u_{1}^{p} and u_{1}^{q} must be non colinear.
With a similar reasoning one can find that u_{2}^{p} and u_{2}^{q} are non colinear.
We can now compute some obvious contractions of π, and list some contractions that cannot occur, using the \mathbb{P}^{1} listed in Definition 3.3.8:

Lemma 3.4.6. With the notations of Definition 3.3.8 we have :

1. Both C_{1}^{\prime} and C_{2}^{\prime} are fibers in E_{4}. They are contracted by π to the points $<u_{1}^{1}, u_{2}^{1}, w_{0}>$ and $<u_{1}^{2}, u_{2}^{2}, w_{0}>$ respectively.
2. For $i \in\{1,2\}$, π doesn't contract anything in A_{i}^{\prime} or B_{i}. For any fixed $p \in \bar{C}_{i}-\left(\bar{C}_{1} \cap \bar{C}_{2}\right)$, π doesn't contract anything in E_{p}, F_{p}, G_{p} or H_{p}.

Proof. From 7. of Theorem 1.2.1 we have that two points $U_{3}^{1} \subset U_{4}^{1}$ and $U_{3}^{2} \subset U_{4}^{2}$ in \tilde{X}_{5} have same image by π if and only if $U_{3}^{1}=U_{3}^{2}$. Hence, by definition of C_{1}^{\prime} and C_{2}^{\prime} they must be contracted to respectively $<u_{1}^{1}, u_{2}^{1}, w_{0}>$ and $<u_{1}^{2}, u_{2}^{2}, w_{0}>$. Moreover by (1.2) we know that the fibers in E_{4} are all \mathbb{P}^{1} and C_{1}^{\prime} and C_{2}^{\prime} are also \mathbb{P}^{1} so $f_{E}\left(<u_{1}^{1}, u_{2}^{1}, w_{0}>\right)=C_{1}^{\prime}$ and $f_{E}\left(<u_{1}^{2}, u_{2}^{2}, w_{0}>\right)=C_{2}^{\prime}$.
Using again the definition of π in 7 . of Theorem 1.2.1, one finds that π doesn't contract anything in $A_{i}^{\prime}, B_{i}, F_{p}$ or H_{p} : indeed by Lemma 3.3.3 these are isomorphic to fibers in \bar{E}_{4}. But by 8 . of Theorem 1.2.1, $\bar{\pi}\left(U_{3} \subset U_{4}\right)=$ $U_{4} /<w_{0}>$ so in a fiber in \bar{E}_{4} all points have same U_{4} and thus different U_{3}. So π should be an isomorphism from $f_{\bar{E}}(z)$ to $\pi\left(f_{\bar{E}}(z)\right)$ for any $z \in Z_{3}$.
Finally, $<u_{1}, A u_{2}-\epsilon B v_{2}>=<u_{1}, \tilde{A} u_{2}-\epsilon \tilde{B} v_{2}>$ if and only if $\tilde{A} u_{2}-\epsilon \tilde{B} v_{2}$ and $A u_{2}-\epsilon B v_{2}$ are colinear, if and only if $<u_{1}, u_{2}+\epsilon v_{1}, A v_{1}+B v_{2}>=<u_{1}, u_{2}+\epsilon v_{1}, \tilde{A} v_{1}+\tilde{B} v_{2}>$ so π doesn't contract anything in any E_{p}. Similarly, π doesn't contract anything in any G_{p}.

In the following Lemma, we try to complete the above-mentioned Lemma 3.4.6 and list all the contractions which can (or cannot) occur between points in the \mathbb{P}^{1} listed in Definition 3.3.8. In order to do so, we study case by case what can be contracted between two of these \mathbb{P}^{1}. There are a lot of cases to consider but most of the times we can easily understand whether there are contractions or not using the technical Lemmas from the beginning of the subsection. However, as detailed in the proof, there are some cases in which we don't manage to conclude.

Lemma 3.4.7. With the notations of Definition 3.3.8, C_{1}^{\prime} and C_{2}^{\prime} are contracted to two distinct points by π. If p and q are respectively the unique point in \bar{C}_{1} such that $u_{1}^{p}=\mu_{1}$ and the unique point in \bar{C}_{2} such that $u_{2}^{q}=\mu_{2}$ then E_{p} and G_{q} are contracted to $a \mathbb{P}^{1}$ in the unions of respectively all F_{r} and all H_{s}.
There is also a pairing between points in $\bar{C}_{1}-\bar{C}_{2}$ and $\bar{C}_{2}-\bar{C}_{1}$ such that if r and s are paired then $\pi\left(F_{r}\right) \cap \pi\left(H_{s}\right)$ contains exactly one point. Moreover, $\pi\left(A_{1}^{\prime}\right) \cap \pi\left(B_{1}\right)$ and $\pi\left(A_{2}^{\prime}\right) \cap \pi\left(B_{2}\right)$ also contain exactly one point each.
Finally, there might be some $r \in \bar{C}_{1}-\bar{C}_{2}$ and $s \in \bar{C}_{2}-\bar{C}_{1}$ such that $\pi\left(E_{r}\right) \cap \pi\left(G_{s}\right) \neq \emptyset$. Such an intersection would then contain exactly one point.

Proof. We will use the notations of Definition 3.3.7 and Definition 3.3.8, so we will denote by p_{1} and p_{2} the points in $\bar{C}_{1} \cap \bar{C}_{2}$ and by p, q or p^{\prime} points in one of the \bar{C}_{i} but not the other.

We want now to compute what can be contracted by π between two distinct \mathbb{P}^{1} among those listed in Definition 3.3.8. Some of these \mathbb{P}^{1} already intersect in E_{4} : we have seen in the proof of Lemma 3.3.3 that $A_{i}^{\prime} \cap C_{i}^{\prime}=$ $\left\{<u_{1}, u_{2}>\subset<u_{1}, u_{2}, v_{1}>\right\}, B_{i} \cap C_{i}^{\prime}=\left\{<u_{1}, u_{2}>\subset<u_{1}, u_{2}, v_{2}>\right\}, E_{p} \cap F_{p}=\left\{<u_{1}, u_{2}>\subset<u_{1}, u_{2}, v_{1}>\right\}$ and $G_{p} \cap H_{p}=\left\{<u_{1}, u_{2}>\subset<u_{1}, u_{2}, v_{2}>\right\}$.
By Theorem 1.2.1 we have that $\pi\left(\bar{U}_{2} \oplus \mathbb{C} w_{0} \subset \bar{U}_{3} \oplus \mathbb{C} w_{0}\right)=\bar{U}_{2} \oplus \mathbb{C} w_{0}$, so to find which points may be contracted by π we need to find which points in the above mentioned \mathbb{P}^{1} have the same \bar{U}_{2}. We are going to proceed case by case.

- For $i=1$ and $i=2$, one has $\pi\left(A_{i}^{\prime}\right) \cap \pi\left(B_{i}\right)=\left\{\left\langle w_{0}, u_{1}^{i}, u_{2}^{i}\right\rangle\right\}$: both A_{i}^{\prime} and B_{i} intersect C_{i}^{\prime} in one point and the whole C_{i}^{\prime} is contracted by π as we saw in Lemma 3.4.6.
- For $i=1$ and $i=2$, we have $\pi\left(A_{i}^{\prime}\right) \cap \pi\left(C_{i}^{\prime}\right)=\pi\left(A_{i}^{\prime} \cap C_{i}^{\prime}\right)$ and $\pi\left(B_{i}\right) \cap \pi\left(C_{i}^{\prime}\right)=\pi\left(B_{i} \cap C_{i}^{\prime}\right)$.
- Can $\pi\left(C_{1}^{\prime}\right)=\pi\left(C_{2}^{\prime}\right)$?

If it is the case then $\left\langle u_{1}^{1}, u_{2}^{1}\right\rangle=\left\langle u_{1}^{2}, u_{2}^{2}\right\rangle$. But since $u_{i}^{j} \in A_{i}$ this implies, up to rescaling, $u_{1}^{1}=u_{1}^{2}$ and $u_{2}^{1}=u_{2}^{2}$. This contradicts Lemma 3.4.1. So $\pi\left(C_{1}^{\prime}\right) \neq \pi\left(C_{2}^{\prime}\right)$.

- $\pi\left(A_{i}^{\prime}\right) \cap \pi\left(C_{j}^{\prime}\right)$

If this intersection is non empty, then $\left\langle a u_{1}^{i}+b v_{1}^{i}, u_{2}^{i}\right\rangle=\left\langle u_{1}^{j}, u_{2}^{j}\right\rangle$. As before then we can assume $u_{2}^{i}=u_{2}^{j}$ so this contradicts Lemma 3.4.1. Thus $\pi\left(A_{i}^{\prime}\right) \cap \pi\left(C_{j}^{\prime}\right)=\emptyset$.

- $\pi\left(B_{i}\right) \cap \pi\left(C_{j}^{\prime}\right)$

If the intersection is non empty, then $\left\langle u_{1}^{i}, \phi u_{2}^{i}+\psi v_{2}^{i}\right\rangle=\left\langle u_{1}^{j}, u_{2}^{j}\right\rangle$ so we can assume $u_{1}^{i}=u_{1}^{j}$, which contradicts Lemma 3.4.1. Hence $\pi\left(B_{i}\right) \cap \pi\left(C_{j}\right)=\emptyset$.

- $\pi\left(B_{1}\right) \cap \pi\left(B_{2}\right)$

If the intersection is non empty, $\left\langle u_{1}^{i}, \phi_{i} u_{2}^{i}+\psi_{i} v_{2}^{i}\right\rangle=\left\langle u_{1}^{j}, \phi_{j} u_{2}^{j}+\psi_{j} v_{2}^{j}>\right.$ therefore we can assume $u_{1}^{i}=u_{1}^{j}$ which contradicts Lemma 3.4.1. Therefore, $\pi\left(B_{1}\right) \cap \pi\left(B_{2}\right)=\emptyset$.

- $\pi\left(A_{i}^{\prime}\right) \cap \pi\left(B_{j}\right)$

If the intersection is non empty, $\left\langle a u_{1}^{i}+b v_{1}^{i}, u_{2}^{i}\right\rangle=\left\langle u_{1}^{j}, \phi u_{2}^{j}+\psi v_{2}^{j}\right\rangle$. In particular, $u_{1}^{j} \in\left\langle u_{1}^{i}, v_{1}^{i}\right\rangle$, which contradicts Lemma 3.4.1. As a result, $\pi\left(A_{i}^{\prime}\right) \cap \pi\left(B_{j}\right)=\emptyset$.

- $\pi\left(A_{1}^{\prime}\right) \cap \pi\left(A_{2}^{\prime}\right)$

If $\left\langle a u_{1}^{i}+b v_{1}^{i}, u_{2}^{i}\right\rangle=\left\langle\alpha u_{1}^{j}+\beta v_{1}^{j}, u_{2}^{j}>\right.$ then we can assume $u_{2}^{i}=u_{2}^{j}$, which contradicts Lemma 3.4.1. Hence $\pi\left(A_{1}^{\prime}\right) \cap \pi\left(A_{2}^{\prime}\right)=\emptyset$.

- $\pi\left(C_{j}\right) \cap \pi\left(E_{p}\right)$

If the intersection is non empty, $\left\langle u_{1}^{j}, u_{2}^{j}\right\rangle=\left\langle u_{1}^{p}, A u_{2}^{p}-\epsilon B v_{2}^{p}\right\rangle$. In particular we can assume $u_{1}^{j}=u_{1}^{p}$, which contradicts Lemma 3.4.3. Thus $\pi\left(C_{j}\right) \cap \pi\left(E_{p}\right)=\emptyset$.

- $\pi\left(B_{j}\right) \cap \pi\left(E_{p}\right)$

If $\left\langle u_{1}^{j}, \phi u_{2}^{j}+\psi v_{2}^{j}\right\rangle=\left\langle u_{1}^{p}, A u_{2}^{p}-\epsilon B v_{2}^{p}\right\rangle$, then we can assume $u_{1}^{j}=u_{1}^{p}$ which contradicts Lemma 3.4.3. Hence $\pi\left(B_{j}\right) \cap \pi\left(E_{p}\right)=\emptyset$.

- $\pi\left(A_{j}^{\prime}\right) \cap \pi\left(E_{p}\right)$

If $<a u_{1}^{j}+b v_{1}^{j}, u_{2}^{j}>=<u_{1}^{p}, A u_{2}^{p}-\epsilon B v_{2}^{p}>$ then, up to rescaling, we can assume $a u_{1}^{j}+b v_{1}^{j}=u_{1}^{p}$ and $u_{2}^{j}=A u_{2}^{p}-\epsilon B v_{2}^{p}$. Then by Lemma 3.4.4, $p \in \bar{C}_{1}-\bar{C}_{2}$.

If u_{2}^{j} and u_{2}^{p} are not colinear, by Lemma 3.1.6, $<u_{1}^{j}, v_{1}^{j}>\neq<u_{1}^{p}, v_{1}^{p}>$ and thus $A_{1}=<u_{1}^{j}, v_{1}^{j}, u_{1}^{p}, v_{1}^{p}>$. On the other hand, $\mu\left(u_{1}^{p}, u_{1}^{p}\right)=\mu\left(u_{1}^{p}, v_{1}^{p}\right)=0, \mu\left(u_{1}^{p}, u_{1}^{j}\right)=\mu\left(a u_{1}^{j}+b v_{1}^{j}, u_{1}^{j}\right)=0$ and $\mu\left(u_{1}^{p}, v_{1}^{j}\right)=\mu\left(a u_{1}^{j}+\right.$ $\left.b v_{1}^{j}, v_{1}^{j}\right)=0$. Hence u_{1}^{p} is μ-orthogonal to A_{1} and it is therefore equal to μ_{1}. So $u_{1}^{p}=a u_{1}^{j}+b v_{1}^{j}=\mu_{1}$ and p is the unique point in \bar{C}_{1} such that $u_{1}^{p}=\mu_{1}$.
Moreover since $u_{1}^{p}=\mu_{1}$ we must have $<u_{2}^{p}, v_{2}^{p}>=K_{1}=\operatorname{Ker}\left(\mu\left(\mu_{1},.\right)\right) \cap A_{2}$. On the other hand, since u_{2}^{j} is μ-orthogonal both to u_{1}^{j} and v_{1}^{j} it must be orthogonal to $a u_{1}^{j}+b_{1}^{j}=\mu_{1}$. So we must have $u_{2}^{j} \in<u_{2}^{p}, v_{2}^{p}>$. So the intersection is non empty for the unique choice of A and B such that $u_{2}^{j}=A u_{2}^{p}-\epsilon B v_{2}^{p}$ and the unique choice of a and b such that $a u_{1}^{j}+b v_{1}^{j}=\mu_{1}$.

If u_{2}^{j} and u_{2}^{p} are colinear, it contradicts Lemma 3.4.4.
Finally:

1. If p is the unique point in \bar{C}_{1} such that $u_{1}^{p}=\mu_{1}$ then $\pi\left(A_{1}^{\prime}\right) \cap \pi\left(E_{p}\right)=\left\{<\mu_{1}, u_{2}^{1}>\right\}$ and $\pi\left(A_{2}^{\prime}\right) \cap$ $\pi\left(E_{p}\right)=\left\{<\mu_{1}, u_{2}^{2}>\right\}$. These are two distinct points since $u_{2}^{1} \neq u_{2}^{2}$ by Lemma 3.4.1.
2. Otherwise, $\pi\left(A_{1}^{\prime}\right) \cap \pi\left(E_{p}\right)=\emptyset$.

- $\pi\left(C_{j}\right) \cap \pi\left(F_{p}\right)$

If $<u_{1}^{j}, u_{2}^{j}>=<\beta u_{1}^{p}+\alpha v_{1}^{p}, u_{2}^{p}>$ then we can assume $u_{2}^{j}=u_{2}^{p}$ but this contradicts Lemma 3.4.3. So $\pi\left(C_{j}\right) \cap \pi\left(F_{p}\right)=\emptyset$.

- $\pi\left(B_{j}\right) \cap \pi\left(F_{p}\right)$

If $<u_{1}^{j}, \phi u_{2}^{j}+\psi v_{2}^{j}>=<\beta u_{1}^{p}+\alpha v_{1}^{p}, u_{2}^{p}>$ then up to rescaling we can assume that $u_{1}^{j}=\beta u_{1}^{p}+\alpha v_{1}^{p}$ and $u_{2}^{p}=\phi u_{2}^{j}+\psi v_{2}^{j}$. Then by Lemma 3.4.4, $p \in \bar{C}_{2}-\bar{C}_{1}$ and by Lemma 3.4.3, $\alpha \neq 0$. This contradicts our hypothesis : p should be in \bar{C}_{1}. Thus $\pi\left(B_{j}\right) \cap \pi\left(F_{p}\right)=\emptyset$.

- $\pi\left(A_{j}^{\prime}\right) \cap \pi\left(F_{p}\right)$

If $<a u_{1}^{j}+b v_{1}^{j}, u_{2}^{j}>=<\beta u_{1}^{p}+\alpha v_{1}^{p}, u_{2}^{p}>$ then we can assume $u_{2}^{j}=u_{2}^{p}$ which contradicts Lemma 3.4.3. Thus $\pi\left(A_{j}^{\prime}\right) \cap \pi\left(F_{p}\right)=\emptyset$.

- $\pi\left(C_{j}^{\prime}\right) \cap \pi\left(G_{p}\right)$

If $<u_{1}^{j}, u_{2}^{j}>=<u_{2}^{p}, A u_{1}^{p}-\epsilon B v_{1}^{p}>$ then we can assume $u_{2}^{j}=u_{2}^{p}$, which contradicts Lemma 3.4.3. So $\pi\left(C_{j}\right) \cap \pi\left(G_{p}\right)=\emptyset$.

- $\pi\left(B_{j}\right) \cap \pi\left(G_{p}\right)$

Let us consider two cases :

- $\left.<u_{1}^{j}, u_{2}^{j}\right\rangle=<u_{2}^{p}, A u_{1}^{p}-\epsilon B v_{1}^{p}>$. We have just seen it is impossible by Lemma 3.4.3.
- $<u_{1}^{j}, \phi u_{2}^{j}+v_{2}^{j}>=<u_{2}^{p}, A u_{1}^{p}-\epsilon B v_{1}^{p}>$. Then we can assume that $u_{1}^{j}=v_{1}^{p}+\alpha u_{1}^{p}$ (since if $u_{1}^{j}=$ u_{1}^{p} it contradicts Lemma 3.4.3) and $u_{2}^{p}=\phi u_{2}^{j}+v_{2}^{j}$. Since here $p \in \bar{C}_{2}-\bar{C}_{1}$, it doesn't contradict Lemma 3.4.4. Since u_{1}^{j} and u_{1}^{p} are not colinear, by Lemma 3.1.6, $<u_{2}^{j}, v_{2}^{j}>=\operatorname{Ker}\left(\mu\left(u_{1}^{j},.\right)\right) \cap A_{2} \neq$ $\operatorname{Ker}\left(\mu\left(u_{1}^{p},.\right)\right) \cap A_{2}=<u_{2}^{p}, v_{2}^{p}>$. So $A_{2}=<u_{2}^{j}, v_{2}^{j}, u_{2}^{p}, v_{2}^{p}>$. On the other hand, since $p \in \bar{C}_{2}$, $\mu\left(u_{2}^{p}, u_{2}^{p}\right)=\mu\left(u_{2}^{p}, v_{2}^{p}\right)=0, \mu\left(u_{2}^{p}, u_{2}^{j}\right)=\mu\left(\phi u_{2}^{j}+v_{2}^{j}, u_{2}^{j}\right)=0$ and $\mu\left(u_{2}^{p}, v_{2}^{j}\right)=\mu\left(\phi u_{2}^{j}+v_{2}^{j}, v_{2}^{j}\right)=0$. So u_{2}^{p} is μ-orthogonal to A_{2} thus we can assume it is μ_{2}. Then p is the unique point in \bar{C}_{2} such that $u_{2}^{p}=\mu_{2}$. Since $\mu_{2}=u_{2}^{p} \in<u_{2}^{j}, v_{2}^{j}>$ and by Lemma 3.4.3 we can then write $u_{2}^{p}=\phi u_{2}^{j}+v_{2}^{j}$ for some ϕ. Moreover, $<u_{1}^{p}, v_{1}^{p}>=\operatorname{Ker}\left(\mu\left(\mu_{2},.\right)\right) \cap A_{1}$ and u_{1}^{j} is μ-orthogonal to μ_{2} so by Lemma 3.4.3 again we can write $u_{1}^{j}=\alpha u_{1}^{p}+v_{1}^{p}$.

Thus:

1. If p is the unique point of \bar{C}_{2} such that $u_{2}^{p}=\mu_{2}$, then $\pi\left(B_{1}\right) \cap \pi\left(G_{p}\right)=\left\{<\mu_{2}, u_{1}^{1}>\right\}$ and $\pi\left(B_{2}\right) \cap$ $\pi\left(G_{p}\right)=\left\{<\mu_{2}, u_{1}^{2}>\right\}$.
2. Otherwise, $\pi\left(B_{j}\right) \cap \pi\left(G_{p}\right)=\emptyset$.

- $\pi\left(A_{j}^{\prime}\right) \cap \pi\left(G_{p}\right)$

If $<a u_{1}^{j}+b v_{1}^{j}, u_{2}^{j}>=<u_{2}^{p}, A u_{1}^{p}-\epsilon B v_{1}^{p}>$ then we can assume $u_{2}^{j}=u_{2}^{p}$, which contradicts Lemma 3.4.3. Hence $\pi\left(A_{j}^{\prime}\right) \cap \pi\left(G_{p}\right)=\emptyset$.

- $\pi\left(C_{j}\right) \cap \pi\left(H_{p}\right)$

If $<u_{1}^{j}, u_{2}^{j}>=<\beta u_{2}^{p}+\alpha v_{2}^{p}, u_{1}^{p}>$ then we can assume $u_{1}^{j}=u_{1}^{p}$, which contradicts Lemma 3.4.3. Hence $\pi\left(C_{j}\right) \cap \pi\left(H_{p}\right)=\emptyset$.

- $\pi\left(B_{j}\right) \cap \pi\left(H_{p}\right)$

If $<u_{1}^{j}, \phi u_{2}^{j}+\psi v_{2}^{j}>=<\beta u_{2}^{p}+\alpha v_{2}^{p}, u_{1}^{p}>$ then we can assume $u_{1}^{j}=u_{1}^{p}$, which contradicts Lemma 3.4.3. Therefore $\pi\left(B_{j}\right) \cap \pi\left(H_{p}\right)=\emptyset$.

- $\pi\left(A_{j}^{\prime}\right) \cap \pi\left(H_{p}\right)$

If $<a u_{1}^{j}+b v_{1}^{j}, u_{2}^{j}>=<\beta u_{2}^{p}+\alpha v_{2}^{p}, u_{1}^{p}>$ then we can assume $u_{2}^{j}=\beta u_{2}^{p}+\alpha v_{2}^{p}$. Since $p \in \bar{C}_{2}-\bar{C}_{1}$, this contradicts Lemma 3.4.4. Thus $\pi\left(A_{j}^{\prime}\right) \cap \pi\left(H_{p}\right)=\emptyset$.

- $\pi\left(E_{p}\right) \cap \pi\left(E_{q}\right)$

If it is non empty, then $<u_{1}^{p}, A_{p} u_{2}^{p}-\epsilon_{p} B_{p} v_{2}^{p}>=<u_{1}^{q}, A_{q} u_{2}^{q}-\epsilon_{q} B_{q} v_{2}^{q}>$. In particular, we can assume $u_{1}^{p}=u_{1}^{q}$ which contradicts Lemma 3.4.5. Thus $\pi\left(E_{p}\right) \cap \pi\left(E_{q}\right)=\emptyset$.

- $\pi\left(E_{p}\right) \cap \pi\left(F_{q}\right)$

If $<u_{1}^{p}, A u_{2}^{p}-\epsilon B v_{2}^{p}>=<\beta u_{1}^{q}+\alpha v_{1}^{q}, u_{2}^{q}>$ then we can assume $u_{1}^{p}=\beta u_{1}^{q}+\alpha v_{1}^{q}$ with $\alpha \neq 0$ and $u_{2}^{q}=\gamma u_{2}^{p}+v_{2}^{p}$ by Lemma 3.4.5. Moreover, we have $p \in \bar{C}_{1}$ and $q \in \bar{C}_{1}$ by hypothesis.
By Lemma 3.4.5, u_{2}^{p} and u_{2}^{q} cannot be colinear so by Lemma 3.1.6, $<u_{1}^{p}, v_{1}^{p}>\neq<u_{1}^{q}, v_{1}^{q}>$ and $A_{1}=<$ $u_{1}^{p}, v_{1}^{p}, u_{1}^{q}, v_{1}^{q}>$. But since both p and q are in $\bar{C}_{1}, \mu\left(u_{1}^{p}, u_{1}^{p}\right)=\mu\left(u_{1}^{p}, v_{1}^{p}\right)=0, \mu\left(u_{1}^{p}, u_{1}^{q}\right)=\mu\left(\beta u_{1}^{q}+\alpha v_{1}^{q}, u_{1}^{q}\right)=$ 0 and $\mu\left(u_{1}^{p}, v_{1}^{q}\right)=\mu\left(\beta u_{1}^{q}+\alpha v_{1}^{q}, v_{1}^{q}\right)=0$. So u_{1}^{p} is μ-orthogonal to A_{1}, thus we can assume it is μ_{1}. Then p is the unique point in \bar{C}_{1} such that $u_{1}^{p}=\mu_{1}$.
Let q be any other point in \bar{C}_{1}. Then $\mu_{1} \in<u_{1}^{q}, v_{1}^{q}>$ so $\mu_{1}=u_{1}^{p}=a u_{1}^{q}+b v_{1}^{q}$ with $b \neq 0$ by Lemma 3.4.5. Finally, u_{2}^{q} is μ-orthogonal to μ_{1} (because $\mu_{1} \in<u_{1}^{q}, v_{1}>$) and since $<u_{2}^{p}, v_{2}^{p}>=\operatorname{Ker}\left(\mu\left(\mu_{1},.\right)\right) \cap A_{2}$, we must have $u_{2}^{q}=c u_{2}^{p}+d v_{2}^{q}$, again with $d \neq 0$ by Lemma 3.4.5. So $\pi\left(E_{p}\right) \cap \pi\left(F_{q}\right)=\left\{<\mu_{1}, u_{2}^{q}>\right\}$.
The only case when it is not possible is when such a q is actually in $\bar{C}_{1} \cap \bar{C}_{2}$, but then this has been considered in the case $\pi\left(A_{j}^{\prime}\right) \cap \pi\left(E_{p}\right)$. Finally :

1. If p is the unique point in \bar{C}_{1} such that $u_{1}^{p}=\mu_{1}$, and q any other point in $\bar{C}_{1}-\bar{C}_{2}: \pi\left(E_{p}\right) \cap \pi\left(F_{q}\right)=$ $\left\{<\mu_{1}, u_{2}^{q}>\right\}$.
2. Otherwise, $\pi\left(E_{p}\right) \cap \pi\left(F_{q}\right)=\emptyset$.

- $\pi\left(F_{p}\right) \cap \pi\left(F_{q}\right)$

If $<\beta_{p} u_{1}^{p}+\alpha_{p} v_{1}^{p}, u_{2}^{p}>=<\beta_{q} u_{1}^{q}+\alpha_{q} v_{1}^{q}, u_{2}^{q}>$, then we can assume that $u_{2}^{p}=u_{2}^{q}$ and it contradicts Lemma 3.4.5. Thus, $\pi\left(F_{p}\right) \cap \pi\left(F_{q}\right)=\emptyset$.

- $\pi\left(G_{p}\right) \cap \pi\left(G_{q}\right)$

If $<u_{2}^{p}, A_{p} u_{1}^{p}-\epsilon_{p} B_{p} v_{1}^{p}>=<u_{2}^{q}, A_{q} u_{1}^{q}-\epsilon_{q} B_{q} v_{1}^{q}>$ then we can assume $u_{2}^{p}=u_{2}^{q}$, which contradicts Lemma 3.4.5. Thus $\pi\left(G_{p}\right) \cap \pi\left(G_{q}\right)=\emptyset$.

- $\pi\left(G_{p}\right) \cap \pi\left(H_{q}\right)$

If $<u_{2}^{p}, A u_{1}^{p}-\epsilon B v_{1}^{p}>=<\beta u_{2}^{q}+\alpha v_{2}^{q}, u_{1}^{q}>$ then we can assume $u_{2}^{p}=\beta u_{2}^{q}+\alpha v_{2}^{q}$ with $\alpha \neq 0$ by Lemma 3.4.5 and $u_{1}^{q}=v_{1}^{p}+\gamma u_{1}^{p}$. Moreover both p and q are in $\bar{C}_{2}-\bar{C}_{1}$. Since u_{1}^{p} and u_{1}^{q} are not colinear, by Lemma
3.1.6 we have $<u_{2}^{p}, v_{2}^{p}>=\operatorname{Ker}\left(\mu\left(u_{1}^{p},.\right)\right) \cap A_{2} \neq \operatorname{Ker}\left(\mu\left(u_{1}^{q},.\right)\right) \cap A_{2}=<u_{2}^{q}, v_{2}^{q}>$. So $A_{2}=<u_{2}^{p}, v_{2}^{p}, u_{2}^{q}, v_{2}^{q}>$. Moreover, $\mu\left(u_{2}^{p}, u_{2}^{p}\right)=\mu\left(u_{2}^{p}, v_{2}^{p}\right)=0, \mu\left(u_{2}^{p}, u_{2}^{q}\right)=\mu\left(\beta u_{2}^{q}+\alpha v_{2}^{q}, u_{2}^{q}\right)=0$ and $\mu\left(u_{2}^{p}, v_{2}^{q}\right)=\mu\left(\beta u_{2}^{q}+\alpha v_{2}^{q}, v_{2}^{q}\right)=$ 0 . So u_{2}^{p} is μ-orthogonal to A_{2}, thus we can assume it is μ_{2}. Then p is the unique point in \bar{C}_{2} such that $u_{2}^{p}=\mu_{2}$.
Then $<u_{1}^{p}, v_{1}^{p}>=\operatorname{Ker}\left(\mu\left(\mu_{2},.\right)\right) \cap A_{1}$ and since u_{1}^{q} is μ-orthogonal to μ_{2} because $q \in \bar{C}_{2}$, we must have $u_{1}^{q} \in\left\langle u_{1}^{p}, v_{1}^{p}\right\rangle$. By Lemma 3.4.5 we can then write $u_{1}^{q}=v_{1}^{p}+\gamma u_{1}^{p}$ for some γ. Moreover, for any $q \in \bar{C}_{2}$, $\mu_{2}=u_{2}^{p} \in<u_{2}^{q}, v_{2}^{q}>$ so by Lemma 3.4.5 we can write $u_{2}^{p}=v_{2}^{q}+a u_{2}^{q}$. If such a q is in $\bar{C}_{1} \cap \bar{C}_{2}$, it has been considered already in $\pi\left(B_{j}\right) \cap \pi\left(G_{p}\right)$. Finally,

1. If p is the unique point in \bar{C}_{2} such that $u_{2}^{p}=\mu_{2}$, then for any other $q \in \bar{C}_{2}-\bar{C}_{1}$ we have $\pi\left(G_{p}\right) \cap$ $\pi\left(H_{q}\right)=\left\{<\mu_{2}, u_{1}^{q}>\right\}$.
2. Otherwise, $\pi\left(G_{p}\right) \cap \pi\left(H_{q}\right)=\emptyset$.

- $\pi\left(H_{p}\right) \cap \pi\left(H_{q}\right)$

If $<u_{1}^{p}, \beta_{p} u_{2}^{p}+\alpha_{p} v_{2}^{p}>=<u_{1}^{q}, \beta_{q} u_{2}^{q}+\alpha_{q} v_{2}^{q}>$, then we can assume $u_{1}^{p}=u_{1}^{q}$, which contradicts Lemma 3.4.5. Thus $\pi\left(H_{p}\right) \cap \pi\left(H_{q}\right)=\emptyset$.

- $\pi\left(E_{p}\right) \cap \pi\left(G_{q}\right)$

If this intersection is not empty then $<u_{1}^{p}, A_{p} u_{2}^{p}-\epsilon_{p} B_{p} v_{2}^{p}>=<u_{2}^{q}, A_{q} u_{1}^{q}-\epsilon_{q} B_{q} v_{1}^{q}>$. Then we can assume $u_{1}^{p}=v_{1}^{q}+\alpha u_{1}^{q}$ and $u_{2}^{q}=v_{2}^{p}+\beta u_{2}^{p}$. Moreover, $p \in \bar{C}_{1}-\bar{C}_{2}$ and $q \in \bar{C}_{2}-\bar{C}_{1}$. Then, since $\mu_{1} \in<u_{1}^{p}, v_{1}^{p}>$ but $\mu_{1} \notin<u_{1}^{q}, v_{1}^{q}>$ and since $\mu_{2} \in<u_{2}^{q}, v_{2}^{q}>$ but $\mu_{2} \notin<u_{2}^{p}, v_{2}^{p}>$, we can assume $v_{1}^{p}=\mu_{1}$ and $v_{2}^{q}=\mu_{2}$. So we have:

$$
\begin{aligned}
& p=<v_{1}^{q}+\alpha u_{1}^{q}, \mu_{1}>\oplus<u_{2}^{p}, v_{2}^{p}>\text { with } \bar{U}_{4}^{\perp}=<v_{1}^{q}+\alpha u_{1}^{q}, u_{2}^{p}> \\
& q=<u_{1}^{q}, v_{1}^{q}>\oplus<\beta u_{2}^{p}+v_{2}^{p}, \mu_{2}>\text { with } \bar{U}_{4}^{\perp}=<u_{1}^{q}, v_{2}^{p}+\beta u_{2}^{p}>
\end{aligned}
$$

If $u_{1}^{p}=v_{1}^{q}+\alpha u_{1}^{q}$ then u_{2}^{q} is μ-orthogonal to u_{1}^{p} since it is μ-orthogonal to $<u_{1}^{q}, v_{1}^{q}>$. On the other hand, $\operatorname{Ker}\left(\mu\left(u_{1}^{p},.\right)\right) \cap A_{2}=<u_{2}^{p}, v_{2}^{p}>$ so by Lemma 3.4.5 we should have $u_{2}^{q}=v_{2}^{p}+\beta u_{2}^{p}$.
Similarly if $u_{2}^{q}=v_{2}^{p}+\beta u_{2}^{p}$ one can find that $u_{1}^{p}=v_{1}^{q}+\alpha u_{1}^{q}$.
So if there exists $p \in \bar{C}_{1}-\bar{C}_{2}$ and $q \in \bar{C}_{2}-\bar{C}_{1}$ such that $u_{1}^{p}=v_{1}^{q}+\alpha u_{1}^{q}$ or $u_{2}^{q}=v_{2}^{p}+\beta u_{2}^{p}$ then $\pi\left(E_{p}\right) \cap \pi\left(G_{q}\right)=\left\{<u_{1}^{p}, u_{2}^{q}>\right\}$. Otherwise $\pi\left(E_{p}\right) \cap \pi\left(G_{q}\right)=\emptyset$.
Since $q \notin \bar{C}_{1}$ for any $\alpha \in \mathbb{R}$ by Lemma 3.1.10 there is a unique $p \in \bar{C}_{1}$ such that $v_{1}^{q}+\alpha u_{1}^{q} \in<u_{1}^{p}, v_{1}^{p}>$. In this case $<u_{1}^{p}, v_{1}^{p}>=<v_{1}^{q}+\alpha u_{1}^{q}, \mu_{1}>$ but the problem is that there is no reason for $v_{1}^{q}+\alpha u_{1}^{q}$ to be u_{1}^{p} that is to say to be μ-orthogonal to $\left\langle u_{2}^{p}, v_{2}^{p}\right\rangle$. Indeed we choose v_{2}^{p} as a nonzero vector in the line $\operatorname{Ker}\left(\lambda^{\prime}\left(v_{1}^{q}+\alpha u_{1}^{q}, \mu_{1}, u_{2}^{p},.\right)\right) \cap A_{2} /<u_{2}^{p}>$ and in general it has no reason to be μ-orthogonal to $v_{1}^{q}+\alpha u_{1}^{q}$. Similarly there is no specific reason for $u_{2}^{q}=v_{2}^{p}+\beta u_{2}^{p}$ to happen, but it is not impossible.

- $\pi\left(E_{p}\right) \cap \pi\left(H_{q}\right)$

If $<u_{1}^{p}, A u_{2}^{p}-\epsilon B v_{2}^{p}>=<u_{1}^{q}, \beta u_{2}^{q}+\alpha v_{2}^{q}>$ then we can assume $u_{1}^{p}=u_{1}^{q}$, which contradicts Lemma 3.4.5. Hence, $\pi\left(E_{p}\right) \cap \pi\left(H_{q}\right)=\emptyset$.

- $\pi\left(F_{p}\right) \cap \pi\left(G_{q}\right)$

If $<u_{2}^{p}, \beta u_{1}^{p}+\alpha v_{1}^{p}>=<u_{2}^{q}, A u_{1}^{q}-\epsilon B v_{1}^{q}>$ then we can assume $u_{2}^{p}=u_{2}^{q}$, which contradicts Lemma 3.4.5. Thus $\pi\left(F_{p}\right) \cap \pi\left(G_{q}\right)=\emptyset$.

- $\pi\left(F_{p}\right) \cap \pi\left(H_{q}\right)$

If $<u_{2}^{p}, \beta_{p} u_{1}^{p}+\alpha_{p} v_{1}^{p}>=<\beta_{q} u_{2}^{q}+\alpha_{q} v_{2}^{q}, u_{1}^{q}>$ then we can assume $u_{2}^{p}=\beta_{q} u_{2}^{q}+\alpha_{q} v_{2}^{q}$ and $u_{1}^{q}=\beta_{p} u_{1}^{p}+\alpha_{p} v_{1}^{p}$. Moreover, $p \in \bar{C}_{1}-\bar{C}_{2}$ and $q \in \bar{C}_{2}-\bar{C}_{1}$.

Let p be any point in $\bar{C}_{1}-\bar{C}_{2}$. Then u_{1}^{p} is not μ-orthogonal to μ_{2} since $p \notin \bar{C}_{2}$, so $<u_{1}^{p}, v_{1}^{p}>\neq \operatorname{Ker}\left(\mu\left(\mu_{2},.\right)\right) \cap$ A_{1}. Since these are both two dimensional in A_{1} which is 3 -dimensional, they must intersect in a line. Let w be a nonzero vector in this line. Then by Lemma 3.1.10 there exists a unique $q \in \bar{C}_{2}$ such that $u_{1}^{q}=w$. If this point q is also in \bar{C}_{1}, then $u_{1}^{q}=u_{1}^{i}=m u_{1}^{p}+n v_{1}^{p}$. Moreover we have assumed $u_{1}^{i} \neq \mu_{1}$, hence :
$<u_{1}^{i}, \mu_{1}>=<u_{1}^{p}, v_{1}^{p}>=A_{1} \cap p_{i}=A_{1} \cap p$. This contradicts Lemma 3.1.10. So let us assume now that $q \in \bar{C}_{2}-\bar{C}_{1}$. By Lemma 3.4.5 we can assume $u_{1}^{q}=v_{1}^{p}+a u_{1}^{p}$.
Moreover, since u_{2}^{p} is μ-orthogonal to $<u_{1}^{p}, v_{1}^{p}>$, it is in particular μ-orthogonal to $v_{1}^{p}+a u_{1}^{p}=u_{1}^{q}$. So $u_{2}^{p} \in \operatorname{Ker}\left(\mu\left(u_{1}^{q},.\right)\right) \cap A_{2}=<u_{2}^{q}, v_{2}^{q}>$. By Lemma 3.4.5 we can then write $u_{2}^{p}=v_{2}^{q}+b u_{2}^{q}$.
Therefore, to each $p \in \bar{C}_{1}-\bar{C}_{2}$ corresponds a unique $q \in \bar{C}_{2}-\bar{C}_{1}$, such that $\pi\left(F_{p}\right) \cap \pi\left(H_{q}\right)=\left\{<u_{2}^{p}\right.$, uq $\left.>\right\}$. Similarly, to each $q \in \bar{C}_{2}-\bar{C}_{1}$ corresponds a unique $p \in \bar{C}_{1}-\bar{C}_{2}$, such that $\left.\pi\left(F_{p}\right) \cap \pi\left(H_{q}\right)=\left\{<u_{2}^{p}, u_{1}^{q}\right\rangle\right\}$.
So finally, let p be the point in $\bar{C}_{1}-\bar{C}_{2}$ such that $u_{1}^{p}=\mu_{1}$. Then

- $\pi\left(A_{1}^{\prime}\right) \cap \pi\left(E_{p}\right)=\left\{<\mu_{1}, u_{2}^{1}>\right\} ;$
- $\pi\left(A_{2}^{\prime}\right) \cap \pi\left(E_{p}\right)=\left\{<\mu_{1}, u_{2}^{2}>\right\} ;$
- for any other $q \in \bar{C}_{1}-\bar{C}_{2}, \pi\left(F_{q}\right) \cap \pi\left(E_{p}\right)=\left\{<\mu_{1}, u_{2}^{q}>\right\}$.

By Lemma 3.4.5, each of these points of intersection are different. So the A_{i}^{\prime} seem to be an "extension" of the F_{q} on \bar{C}_{1}. Moreover we have already seen that $\left.\pi\left(E_{p}\right) \cap \pi\left(F_{p}\right)=\left\{\left\langle u_{1}^{p}, u_{2}^{p}\right\rangle\right\}=\left\{<\mu_{1}, u_{2}^{p}\right\rangle\right\}$. Then for any $q \in \bar{C}_{1}, \pi\left(F_{q}\right) \cap \pi\left(E_{p}\right)=\left\{<\mu_{1}, u_{2}^{q}>\right\}$.
Similarly, let q be the point in $\bar{C}_{2}-\bar{C}_{1}$ such that $u_{2}^{q}=\mu_{2}$. Then

- $\pi\left(B_{1}\right) \cap \pi\left(G_{q}\right)=\left\{<\mu_{2}, u_{1}^{1}>\right\} ;$
- $\pi\left(B_{2}\right) \cap \pi\left(G_{q}\right)=\left\{<\mu_{2}, u_{1}^{2}>\right\}$;
- for any other $p \in \bar{C}_{2}-\bar{C}_{1}, \pi\left(G_{q}\right) \cap \pi\left(H_{p}\right)=\left\{\left\langle\mu_{2}, u_{1}^{p}\right\rangle\right\}$.

By Lemma 3.4.5, each of these points of intersection are different. So the B_{i} seem to be an "extension" of the H_{p} on \bar{C}_{2}. Moreover we have already seen that $\pi\left(G_{q}\right) \cap \pi\left(H_{q}\right)=\left\{<u_{1}^{q}, u_{2}^{q}>\right\}=\left\{<\mu_{2}, u_{1}^{q}>\right\}$. Then for any $p \in \bar{C}_{2}, \pi\left(G_{q}\right) \cap \pi\left(H_{p}\right)=\left\{<\mu_{2}, u_{1}^{p}>\right\}$.
More generally, there is a pairing between points in $p \in \bar{C}_{1}-\bar{C}_{2}$ and points $q \in \bar{C}_{2}-\bar{C}_{1}$. For each such pair, $\pi\left(F_{p}\right) \cap \pi\left(H_{q}\right)=\left\{<u_{2}^{p}, u_{1}^{q}>\right\}$. The "extension" of this phenomenon is given by : for each $i \in\{1,2\}$, $\pi\left(A_{i}^{\prime}\right) \cap \pi\left(B_{i}\right)=\left\{<w_{0}, u_{1}^{i}, u_{2}^{i}>\right\}$.
Finally for some points $p \in \bar{C}_{1}-\bar{C}_{2}$ and $q \in \bar{C}_{2}-\bar{C}_{1}$ there can be $\pi\left(E_{p}\right) \cap \pi\left(G_{q}\right)=\left\{<u_{1}^{p}, u_{2}^{q}>\right\}$.
So both C_{1}^{\prime} and C_{2}^{\prime} are contracted to distinct points by π. If p is the unique point of \bar{C}_{1} with $u_{1}^{p}=\mu_{1}$, then E_{p} is contracted to another \mathbb{P}^{1} in $\left\{F_{q}, q \in \bar{C}_{1}\right\} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. If q is the unique point of \bar{C}_{2} with $u_{2}^{q}=\mu_{2}$, then G_{q} is contracted to another \mathbb{P}^{1} in $\left\{H_{p}, p \in \bar{C}_{2}\right\} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Finally to each $p \in \bar{C}_{1}-\bar{C}_{2}$ corresponds a unique $p^{\prime} \in \bar{C}_{2}-\bar{C}_{1}$ such that $\pi\left(F_{p}\right) \cap \pi\left(H_{p^{\prime}}\right)$ contains one point. And there may exist some other pairs of points $p \in \bar{C}_{1}-\bar{C}_{2}$ and $q \in \bar{C}_{2}-\bar{C}_{1}$ such that $\pi\left(E_{p}\right) \cap \pi\left(G_{q}\right)$ contains one point.

About other points in $E_{4} \cap \bar{E}_{4}$ I don't see any reason for them not to be sometimes contracted by π either on one another or on some points in the \mathbb{P}^{1} listed in Definition 3.3.8. I don't see either any reason for such contractions to have a specific pattern in general.

3.4.2 Contractions in \tilde{X}_{4}

We would like now to try to understand $D_{3} \cap \bar{E}_{4}$ and more precisely $\tilde{S} \cap D_{3}$ and $\bar{D}_{2} \cap D_{3}$, and what π contracts in those intersections.
To do so, we can use what we saw in the previous subsection 3.4.1, together with the fact that $\tilde{X}_{4}=\tilde{X}_{5} \cap$ $\pi^{-1} H_{\nu}$ where H_{ν} is a hyperplane associated to a hyperplane section ν of $\mathcal{O}_{X_{5}}(1)$ (this has been described more precisely in Theorem 1.2.3). As a result, $\bar{E}_{4} \cap D_{3}$ consists in all the points of $\bar{E}_{4} \cap E_{4}$ on which the section ν vanishes. Moreover, as mentioned in section 1.1, to each hyperplane section ν we can associate a three-form on $W \cong \mathbb{C}^{7}$, which we are also going to call ν.
We can therefore look at the points in $E_{4} \cap \bar{E}_{4}$ which we had found to be contracted in subsection 3.4.1, and try to understand when these points also lie in $\pi^{-1} H_{\nu}$ using the 3 -form ν and the geometric descriptions of fibers
in both \bar{E}_{4} and Z_{3}, which we already used in subsection 3.4.1.
Since we had only found partial results about contractions in $E_{4} \cap \bar{E}_{4}$, we also find only partial results here.
Definition 3.4.8. Let us denote $\nu=\bar{\nu} \wedge w_{0}^{\vee}+\nu^{\prime}$ where $\bar{\nu}$ is a 2 -form on \bar{W} and ν^{\prime} is a 3-form on \bar{W}.
Lemma 3.4.9. Let $p \in S_{2}-\left(\bar{C}_{1} \cup \bar{C}_{2}\right)$. Let us assume that $\bar{\nu}$ induces a non-degenerate pairing between A_{1} and A_{2} (using the notations introduced in subsection 1.1). Then in general there are two distinct points z_{1} and z_{2} in $f_{Z}(p)$ such that $f_{\bar{E}}\left(z_{i}\right) \cap D_{3}$ contains one point for $i=1$ and $i=2$. For all the other points $z \in f_{Z}(p), f_{\bar{E}}(z) \cap D_{3}=\emptyset$. It is also possible that $f_{\bar{E}}(z) \cap D_{3}$ contains one point for exactly one $z \in f_{Z}(p)$ or for all $z \in f_{Z}(p)$.

Proof. Let $p \in S_{2}-\left(\bar{C}_{1} \cup \bar{C}_{2}\right)$. As we have seen in Lemma 3.3.4, $f_{Z}(p)=\left\{<u_{1}+u_{2}, v_{1}+v_{2}, A u_{1}+B v_{1}>\right.$, $\left.(A, B) \in \mathbb{C}^{2}-\{(0,0)\}\right\}$ and for such a point $z, f_{\bar{E}}(z) \cap E_{4}=\left\{<w_{0}, A u_{1}+B v_{1}, A u_{2}+B v_{2}>\right\}$. Moreover, by 7. and 8. of Theorem 1.2.3, D_{3} consists in all the $U_{3} \subset U_{4}$ in E_{4} such that U_{3} is ν-isotropic. Since the points in E_{4} are all of the form $\bar{U}_{2} \oplus<w_{0}>\subset \bar{U}_{3} \oplus<w_{0}>$, a point in E_{4} is ν-isotropic if and only if $\bar{\nu}\left(\bar{U}_{2}\right)=$ 0. Finally, $\bar{\nu}\left(A u_{1}+B v_{1}, A u_{2}+B v_{2}\right)=A^{2} \bar{\nu}\left(u_{1}, u_{2}\right)+A B\left(\bar{\nu}\left(u_{1}, v_{2}\right)+\bar{\nu}\left(v_{1}, u_{2}\right)\right)+B^{2} \bar{\nu}\left(v_{1}, v_{2}\right)$. If $\bar{\nu}\left(u_{1}, u_{2}\right)=$ $\bar{\nu}\left(v_{1}, u_{2}\right)=\bar{\nu}\left(u_{1}, v_{2}\right)=\bar{\nu}\left(v_{1}, v_{2}\right)=0$ and $\bar{\nu}$ induces a non-degenerate pairing between the A_{i} then we have $\operatorname{Ker}\left(\bar{\nu}\left(u_{1},.\right)\right) \cap A_{2}=<u_{2}, v_{2}>=\operatorname{Ker}\left(\bar{\nu}\left(v_{1},.\right)\right)$ so by the same reasoning as in Lemma 3.1.6, u_{1} and v_{1} are colinear which is a contradiction. So under our hypothesis, $\bar{\nu}\left(A u_{1}+B v_{1}, A u_{2}+B v_{2}\right)$ is not identically zero. Let us consider several cases now :

- $A=0$, then we can assume $B=1$. In this case, $\bar{\nu}\left(A u_{1}+B v_{1}, A u_{2}+B v_{2}\right)=\bar{\nu}\left(v_{1}, v_{2}\right)$.
- $A \neq 0$ so we can assume $A=1$. Then

$$
\begin{equation*}
\bar{\nu}\left(A u_{1}+B v_{1}, A u_{2}+B v_{2}\right)=\bar{\nu}\left(u_{1}, u_{2}\right)+B\left(\bar{\nu}\left(u_{1}, v_{2}\right)+\bar{\nu}\left(v_{1}, u_{2}\right)\right)+B^{2} \bar{\nu}\left(v_{1}, v_{2}\right) . \tag{3.26}
\end{equation*}
$$

Again there are several possibilities :

- If $\bar{\nu}\left(v_{1}, v_{2}\right) \neq 0$ then (3.26) $=0$ is an equation of degree 2 in B so there are either one or two solutions.
- If $\bar{\nu}\left(v_{1}, v_{2}\right)=0$ and $\bar{\nu}\left(u_{1}, v_{2}\right)+\bar{\nu}\left(v_{1}, u_{2}\right) \neq 0$ then (3.26) $=0$ is an equation of degree 1 if B so there is one solution.
- If $\bar{\nu}\left(v_{1}, v_{2}\right)=0$ and $\bar{\nu}\left(u_{1}, v_{2}\right)+\bar{\nu}\left(v_{1}, u_{2}\right)=0$ then (3.26) $=0$ is equivalent to $\bar{\nu}\left(u_{1}, u_{2}\right)=0$.

So finally :

1. If $\bar{\nu}\left(v_{1}, v_{2}\right) \neq 0$ there is one or two points in $f_{Z}(p)$ whose $f_{\bar{E}}$ intersects D_{3} in one point.
2. If $\bar{\nu}\left(v_{1}, v_{2}\right)=0$ and $\bar{\nu}\left(u_{1}, v_{2}\right)+\bar{\nu}\left(v_{1}, u_{2}\right) \neq 0$ there are two points in $f_{Z}(p)$ whose $f_{\bar{E}}$ intersects D_{3} in one point, namely $A=0$ and $A=1, B$ is the unique solution of $(3.26)=0$.
3. If $\bar{\nu}\left(v_{1}, v_{2}\right)=0, \bar{\nu}\left(u_{1}, v_{2}\right)+\bar{\nu}\left(v_{1}, u_{2}\right)=0$ and $\bar{\nu}\left(u_{1}, u_{2}\right) \neq 0$ then there is one point in $f_{Z}(p)$ whose $f_{\bar{E}}$ intersects D_{3} in one point, namely $A=0$.
4. If $\bar{\nu}\left(v_{1}, v_{2}\right)=0, \bar{\nu}\left(u_{1}, v_{2}\right)+\bar{\nu}\left(v_{1}, u_{2}\right)=0$ and $\bar{\nu}\left(u_{1}, u_{2}\right)=0$ then for all $z \in f_{Z}(p)$, we have $f_{\bar{E}}(z) \cap D_{3}=$ $f_{\bar{E}}(z) \cap E_{4}=\{1 \mathrm{pt}\}$.

Lemma 3.4.10. Let P be one of the \mathbb{P}^{1} listed in Definition 3.3.8, then if $P \neq C_{i}^{\prime}$, in general $P \cap D_{3}$ is one point, otherwise $P \subset D_{3}$. If $P=C_{i}^{\prime}$ then in general $P \cap D_{3}=\emptyset$, otherwise $P \subset D_{3}$.

Proof. Let $p \in \bar{C}_{1} \cup \bar{C}_{2}$. As we saw in Lemma 3.4.9, the points in some $f_{\bar{E}}$ over $f_{Z}(p)$ which are in D_{3} are those who are in E_{4} and such that the associated \bar{U}_{2} is $\bar{\nu}$-isotropic. By Lemma 3.3.3 it is thus the points in one of the \mathbb{P}^{1} listed in Definition 3.3.8 whose \bar{U}_{2} is $\bar{\nu}$-isotropic. Let us proceed case by case :

- For A_{i}^{\prime}. We look at the $<a u_{1}^{i}+b v_{1}^{i}, u_{2}^{i}>$ which are $\bar{\nu}$-isotropic, that is to say such that :

$$
\begin{equation*}
\bar{\nu}\left(a u_{1}^{i}+b v_{1}^{i}, u_{2}^{i}\right)=a \bar{\nu}\left(u_{1}^{i}, u_{2}^{i}\right)+b \bar{\nu}\left(v_{1}^{i}, u_{2}^{i}\right)=0 . \tag{3.27}
\end{equation*}
$$

If one at least of $\bar{\nu}\left(u_{1}^{i}, u_{2}^{i}\right)$ and $\bar{\nu}\left(v_{1}^{i}, u_{2}^{i}\right)$ is non-zero (3.27) has one solution up to multiplication by a scalar, otherwise it is satisfied for any a and b.

- For B_{i}. With the same reasoning as for the A_{i}^{\prime}, if one at least of $\bar{\nu}\left(u_{1}^{i}, u_{2}^{i}\right)$ and $\bar{\nu}\left(u_{1}^{i}, v_{2}^{i}\right)$ is non-zero then $B_{i} \cap D_{3}$ contains exactly one point, otherwise $B_{i} \subset D_{3}$.
- For C_{i}^{\prime}. Either $\bar{\nu}\left(u_{1}^{i}, u_{2}^{i}\right) \neq 0$ and $C_{i}^{\prime} \cap D_{3}=\emptyset$ or $\bar{\nu}\left(u_{1}^{i}, u_{2}^{i}\right)=0$ and $C_{i}^{\prime} \subset D_{3}$.
- For E_{p}. We consider the equation :

$$
\begin{equation*}
\bar{\nu}\left(u_{1}^{p}, a u_{2}^{p}+b v_{2}^{p}\right)=a \bar{\nu}\left(u_{1}^{p}, u_{2}^{p}\right)+b \bar{\nu}\left(u_{1}^{p}, v_{2}^{p}\right)=0 \tag{3.28}
\end{equation*}
$$

where $a=A$ and $b=-\epsilon B$ with the notations of Definition 3.3.8. Similarly to the cases of A_{i}^{\prime} and B_{i}, either one at least of $\bar{\nu}\left(u_{1}^{p}, u_{2}^{p}\right)$ and $\bar{\nu}\left(u_{1}^{p}, v_{2}^{p}\right)$ is non zero and $E_{p} \cap D_{3}$ is exactly one point, or $\bar{\nu}\left(u_{1}^{p}, u_{2}^{p}\right)=$ $\bar{\nu}\left(u_{1}^{p}, v_{2}^{p}\right)=0$ and $E_{p} \subset D_{3}$.

- Similarly, either one at least of $\bar{\nu}\left(u_{1}^{p}, u_{2}^{p}\right)$ and $\bar{\nu}\left(v_{1}^{p}, u_{2}^{p}\right)$ is non zero and $F_{p} \cap D_{3}$ is exactly one point, or $\bar{\nu}\left(u_{1}^{p}, u_{2}^{p}\right)=\bar{\nu}\left(v_{1}^{p}, u_{2}^{p}\right)=0$ and $F_{p} \subset D_{3}$.
- With the same reasoning, either one at least of $\bar{\nu}\left(u_{1}^{p}, u_{2}^{p}\right)$ and $\bar{\nu}\left(v_{1}^{p}, u_{2}^{p}\right)$ is non zero and $G_{p} \cap D_{3}$ is exactly one point, or $\bar{\nu}\left(u_{1}^{p}, u_{2}^{p}\right)=\bar{\nu}\left(v_{1}^{p}, u_{2}^{p}\right)=0$ and $G_{p} \subset D_{3}$.
- As before, either one at least of $\bar{\nu}\left(u_{1}^{p}, u_{2}^{p}\right)$ and $\bar{\nu}\left(u_{1}^{p}, v_{2}^{p}\right)$ is non zero and $H_{p} \cap D_{3}$ is exactly one point, or $\bar{\nu}\left(u_{1}^{p}, u_{2}^{p}\right)=\bar{\nu}\left(u_{1}^{p}, v_{2}^{p}\right)=0$ and $H_{p} \subset D_{3}$.

Remark 3.4.11. Let p and q be the points in $\bar{C}_{1}-\bar{C}_{2}$, respectively $\bar{C}_{2}-\bar{C}_{1}$, such that μ_{1}, respectively μ_{2}, is in the associated \bar{U}_{4}^{\perp}. Then we have seen in Lemma 3.4.7 that each point in E_{p} is contracted by π to some point in a $F_{p^{\prime}}$, except for the point in $E_{p} \cap F_{p}$ and that similarly each point in $G_{q}-\left(G_{q} \cap H_{q}\right)$ is contracted to another point in some $H_{q^{\prime}}$. Obviously if a point is in D_{3} any other point in its fiber in E_{4} is also in D_{3}, hence by Lemma 3.4.10 either $E_{p} \subset D_{3}$ and π is contracting a \mathbb{P}^{1} onto a another \mathbb{P}^{1} in $D_{3} \cap \tilde{S}$, or $E_{p} \cap D_{3}$ is one point and unless it is precisely $E_{p} \cap F_{p}, \pi$ will contract this point to another point in some $F_{p^{\prime}}$ in $D_{3} \cap \tilde{S}$. For G_{q} it is similar. So in general π should contract at least a point in $\tilde{S} \cap D_{3}$.

Before going further, let us remember from Theorem 1.2.3 that \bar{D}_{2} is a ruled surface over the curve Γ_{1} : indeed $\bar{D}_{2}=\mathbb{P}_{\Gamma}\left(\left.\mathcal{V}_{Z}\right|_{\Gamma}\right)$. So \bar{D}_{2} consists in all the fibers $\left\{U_{3} \subset \bar{U}_{3} \oplus<w_{0}>\right\}$ in \bar{E}_{4} which are also in \tilde{X}_{4}, that is to say all the fibers in \bar{E}_{4} such that all their associated U_{3} are ν-isotropic.

Lemma 3.4.12. Let $p \in \Gamma_{1}$. If $p \in C_{1} \cup C_{2}$, there are two possibilities :

1. $f_{\bar{E}}(p) \subset D_{3}$;
2. $f_{\bar{E}}(p) \cap D_{3}$ contains one point.

If $p \notin C_{1} \cup C_{2}$ then either $f_{\bar{E}}(p) \cap D_{3}$ is one point or it is empty.
Proof. To start with, since D_{3} is a hyperplane section of $E_{4}, D_{3} \subset E_{4}$ and to compute $f_{\bar{E}}(p) \cap D_{3}$ it is enough to compute $f_{\bar{E}}(p) \cap E_{4} \cap D_{3}$.
Let us first consider the case $p \in C_{1} \cup C_{2}$. From Lemma 3.3.3 and the definition of the C_{i} given in 3 . of Proposition 1.2.2, we know that $f_{\bar{E}}(p) \subset E_{4}$ and is either $A_{i}^{\prime}, B_{i}, F_{p}$ or H_{p} with the notations of Definition 3.3.8. In other words, $f_{\bar{E}}(p)$ is either of the form $\left.\left\{<a u_{1}+b v_{1}, u_{2}\right\rangle,(a, b) \in \mathbb{C}^{2}-\{(0,0)\}\right\}$ or $\left\{<a u_{2}+b v_{2}, u_{1}>\right.$,$\left.(a, b) \in \mathbb{C}^{2}-\{(0,0)\}\right\}$ with $u_{i} \in A_{i}$ and $v_{i} \in A_{i}$. Let us consider the first case : then as in the proof of Lemma
3.4.9, a point $U_{3}=\bar{U}_{2} \oplus<w_{0}>\subset \bar{U}_{3} \oplus<w_{0}>\in f_{\bar{E}}(p)$ is in D_{3} if and only if $\bar{\nu}\left(\bar{U}_{2}\right)=0$. In our case, if and only if :

$$
\begin{equation*}
a \bar{\nu}\left(u_{1}, u_{2}\right)+b \bar{\nu}\left(v_{1}, u_{2}\right)=0 . \tag{3.29}
\end{equation*}
$$

Therefore, there are two possibilities:

1. At least one of $\bar{\nu}\left(u_{1}, u_{2}\right)$ and $\bar{\nu}\left(v_{1}, u_{2}\right)$ is not zero. Then (3.29) has one solution up to multiplication by a non zero scalar so $f_{\bar{E}}(p) \cap D_{3}$ is one point.
2. $\bar{\nu}\left(u_{1}, u_{2}\right)=0$ and $\bar{\nu}\left(v_{1}, u_{2}\right)=0$. Then (3.29) is always satisfied and $f_{\bar{E}}(p) \subset D_{3}$.

For the second case it is very similar : either at least one of $\bar{\nu}\left(u_{1}, u_{2}\right)$ and $\bar{\nu}\left(u_{1}, v_{2}\right)$ is not zero and $f_{\bar{E}}(p) \cap D_{3}$ is one point, or $\bar{\nu}\left(u_{1}, u_{2}\right)=0=\bar{\nu}\left(u_{1}, v_{2}\right)=0$ and $f_{\bar{E}}(p) \subset D_{3}$.
Let us assume now that $p \notin C_{1} \cup C_{2}$. Then by Lemma 3.3.3 and Lemma 3.3.4 we have that $f_{\bar{E}}(p) \cap E_{4}$ is exactly one point : if its associated \bar{U}_{2} is $\bar{\nu}$-isotropic then $f_{\bar{E}}(p) \cap D_{3}$ is one point, otherwise it is empty.

Remark 3.4.13. From the proof of Theorem 5.1 in [20], we know that $\sigma\left(\Gamma_{1}\right)$ is a curve of class $4\left(\bar{h}_{1}+\bar{h}_{2}\right)$. Hence in S_{2} and for $i \in\{1,2\}$, one has $\sigma\left(\Gamma_{1}\right) \cdot \bar{C}_{i}=4 \bar{h}_{i}\left(\bar{h}_{1}+\bar{h}_{2}\right)=12$. Since $\sigma\left(C_{i}\right)=\bar{C}_{i}$ there are at most 24 points in $\Gamma_{1} \cap\left(C_{1} \cup C_{2}\right)$.

$3.5 \quad \bar{D}_{2}$ and Γ_{1}

In this subsection we are taking a closer look at the curve Γ_{1} (see (1.4)), which will be useful to work with the surface \bar{D}_{2} later.
The genus of Γ_{1} which we find in Lemma 3.5.1 and the fact that $\sigma\left(\Gamma_{1}\right)$ is not smooth, as we will see in Lemma 3.5.2, contradict a statement in Theorem 5.1 of [20]. These two results, as well as advices about the proof of the two Lemmas, were kindly explained to me by A. Kuznetsov.

Lemma 3.5.1. The curve Γ_{1} is smooth in Z_{3}, with genus 13. The Chern character of its ideal sheaf is: $\operatorname{ch}\left(\mathcal{I}_{\Gamma_{1}}\right)=$ $\left(1,0,-4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), 24\right)$.
Proof. By the proof of Lemma 2.1 in [20] and the proof of Proposition 3.2.6, there is a short exact sequence

$$
0 \rightarrow \mathcal{O}_{Z_{3}} \xrightarrow{\nu} \mathcal{V}_{Z}^{\vee} \rightarrow \operatorname{det}\left(\mathcal{V}_{Z}^{\vee}\right) \otimes \mathcal{I}_{\Gamma_{1}} \rightarrow 0
$$

where $\mathcal{I}_{\Gamma_{1}}$ is the ideal sheaf of Γ_{1}. This is exactly the short exact sequence mentioned in Corollary 3.2.5, hence $\operatorname{ch}\left(\mathcal{I}_{\Gamma_{1}}\right)=\left(1,0,-4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), 24\right)$.
Let us now show that Γ_{1} is smooth in Z_{3}. For this, we can show that \mathcal{V}_{Z}^{\vee} is globally generated and use Bertini's theorem.
By (1.6) there is a short exact sequence

$$
0 \rightarrow \mathcal{O}_{Z_{3}}\left(\bar{h}_{1}\right) \oplus \mathcal{O}_{Z_{3}}\left(\bar{h}_{2}\right) \rightarrow \bigwedge^{3} \overline{\mathcal{U}}_{3}^{\vee} \oplus \bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee} \rightarrow \mathcal{V}_{Z}^{\vee} \rightarrow 0
$$

hence by Lemma 2.11 in [3], if $\bigwedge^{3} \overline{\mathcal{U}}_{3}^{\vee}$ and $\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}$ are globally generated then so will be \mathcal{V}_{Z}^{\vee}.

- First, since $\overline{\mathcal{U}}_{3}$ is the tautological bundle of $\operatorname{Gr}(3, \bar{W})=\operatorname{Gr}(3,6)$, we have that $\bigwedge^{3} \overline{\mathcal{U}}_{3}^{\vee}=\mathcal{O}_{\operatorname{Gr}(3,6)}(\bar{h})$ (see for instance part 2.1 in [20] or Lemma 4.2.9). Then we have that the set of global sections of $\Lambda^{3} \overline{\mathcal{U}}_{3}^{\vee}$ corresponds to the space of 3-forms on \bar{W}. Let now \bar{U}_{3} be a point in $\operatorname{Gr}(3,6)$. By definition, $\left(\bigwedge^{3} \overline{\mathcal{U}}_{3}^{\vee}\right)_{\bar{U}_{3}} \cong$ $\bigwedge^{3} \bar{U}_{3} \cong \mathbb{C}$ is generated by a 3 -form. As result, taking a basis of the space of 3-forms on \bar{W} gives a finite number of global sections of $\bigwedge^{3} \overline{\mathcal{U}}_{3}^{\vee}$ which generate $\left(\bigwedge^{3} \overline{\mathcal{U}}_{3}^{\vee}\right)_{\bar{U}_{3}}$ for any $\bar{U}_{3} \in \operatorname{Gr}(3,6)$. So $\bigwedge^{3} \overline{\mathcal{U}}_{3}^{\vee}$ is globally generated on $\mathrm{Gr}(3,6)$.
- Since $\operatorname{Gr}(3,6)=\operatorname{Gr}(6-3,6)$, by (2.4.1) in [15] we have a natural identification $\wedge^{2} \overline{\mathcal{U}}_{3}^{\vee} \cong \overline{\mathcal{U}}_{3}(1)$, therefore the space of global sections of $\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}$ corresponds to the space of 2 -forms on \bar{W} (as in the case of the global sections of $\mathcal{U}_{3}(1)$ on $\left.\operatorname{Gr}(3,7)\right)$. Let now \bar{U}_{3} be a point in $\operatorname{Gr}(3,6)$. Then $\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)_{\bar{U}_{3}}=\bigwedge^{2} \bar{U}_{3} \cong \mathbb{C}^{3}$ is generated by three 2 -forms, thus taking a basis of the space of 2 -forms on \bar{W} gives a finite number of global sections of $\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}$ which generate $\left(\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}\right)_{\bar{U}_{3}}$ for any $\bar{U}_{3} \in \operatorname{Gr}(3,6)$. Therefore $\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}$ is globally generated on $\operatorname{Gr}(3,6)$.

Finally, by construction we have $Z_{3} \subset \bar{X}_{5} \subset \operatorname{Gr}(3,6)$ (see Theorem 4.2 in [20]), and a global section of a sheaf on $\operatorname{Gr}(3,6)$ thus induces a global section of the restriction of this sheaf to Z_{3}. As a result, both $\bigwedge^{3} \overline{\mathcal{U}}_{3}^{\vee}$ and $\bigwedge^{2} \overline{\mathcal{U}}_{3}^{\vee}$ are globally generated on Z_{3}.
Finally, one can conclude with Bertini's Theorem, using for instance Proposition A in [26]. For a general X_{4}, the associated Γ_{1} is thus smooth.
To compute the genus of Γ_{1} we can then use Hirzebruch-Riemann-Roch (see Theorem 4.1.1). Indeed, let us denote by ι the inclusion of Γ_{1} in Z_{3}. We then have :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{Z_{3}}, \iota_{*} \mathcal{O}_{\Gamma_{1}}\right) & =\chi\left(\iota^{*} \mathcal{O}_{Z_{3}}, \mathcal{O}_{\Gamma_{1}}\right)=1-g\left(\Gamma_{1}\right) \\
& =\int_{Z_{3}}\left(0,0,4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right),-24\right) \cdot\left(1, V_{Z}+\frac{1}{2}\left(\bar{h}_{1}+\bar{h}_{2}\right), x_{2}, 1\right)=-24+12=-12
\end{aligned}
$$

where we used Lemma 4.5.3, which we will see later, and $\operatorname{ch}\left(\mathcal{O}_{\Gamma_{1}}\right)=(1,0,0,0)-\operatorname{ch}\left(\mathcal{I}_{\Gamma_{1}}\right)$. This yields $g\left(\Gamma_{1}\right)=$ $1+12=13$.

Lemma 3.5.2. Using the notations of (1.4), $\sigma\left(\Gamma_{1}\right)$ isn't smooth in S_{2}. Its geometric genus is 13 and its arithmetic genus is 37.

Proof. First of all, by (1.15), $G:=\sigma\left(\Gamma_{1}\right)$ has class $4\left(\bar{h}_{1}+\bar{h}_{2}\right)$ in S_{2}. The genus formula then yields (by I. 15 of [1]):

$$
g_{a}(G)=1+\frac{1}{2}\left(16\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}-4\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}\right)=1+\frac{12\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}}{2}=1+6.6=1+36=37
$$

since we know from 11. of Theorem 1.2.1 that $K_{S}=-\bar{h}_{1}-\bar{h}_{2}$, and using (1.13).
On the other hand, if G was smooth by Proposition 1.1 in IV.1. of [12] we would have that its geometric and arithmetic genus coincide. Moreover in such a case by Theorem 8.19 in II.8. of [12] we would have $g_{g}(G)=$ $g_{g}\left(\Gamma_{1}\right)=13 \neq 37$ as we saw in Lemma 3.5.1.

Chapter 4

Computation of Euler characteristics between elements of \mathcal{F}_{1}

In this section, we try to compute all the Euler characteristics between elements in the family

$$
\begin{aligned}
\mathcal{F}_{1}=\{ & \left\{j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right),\right. \\
& \left.\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{l_{h}}, \mathcal{O}_{p}, \mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{S}}\right\},
\end{aligned}
$$

defined in subsection 2.1.2. As there are 14 elements in this family, this requires a lot of computations, for which the two main Theorems we use are Hirzebruch-Riemann-Roch (either the general version or some more specific one for curves and surfaces) and Borel-Bott-Weil. This section is thus split into several subsections: each subsection is devoted to the computation of some of the Euler characteristics we are interested in, for which we use either the same Theorem or the same geometric characteristics of some of the varieties mentioned in section 3.

More precisely : in subsection 4.1 we compute Euler characteristics between the first six elements of \mathcal{F}_{1}, which are all twists of pull-backs of sheaves from $D^{b}\left(\Sigma_{2}\right)$. Then in subsection 4.2 we compute some Euler characteristics between line bundles of the form $\pi^{*} \mathcal{O}_{X_{4}}(i h)$ with $i \in \mathbb{N}$, using the Theorem of Borel-Bott-Weil. In subsections 4.3, 4.4 and 4.5 we compute Euler characteristics involving respectively $\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\bar{D}_{2}}$ and $\mathcal{O}_{\tilde{S}}$. In subsection 4.6 , we compute Euler characteristics between $\mathcal{O}_{\bar{D}_{2}}$ and $\mathcal{O}_{\tilde{S}^{\prime}}$, and in subsection 4.7 , we compute, up to an intersection number b, Euler characteristics between the first six elements and the lats eight elements of \mathcal{F}_{1}, except for $\mathcal{O}_{l_{h}}$ and \mathcal{O}_{p}. Finally in subsection 4.8 we compute Euler characteristics involving $\mathcal{O}_{l_{h}}$ and \mathcal{O}_{p}.

All the results of this section are gathered in Proposition 2.1.5.

4.1 Euler characteristics between sheaves coming from $D^{b}\left(\Sigma_{2}\right)$

In this subsection, we compute Euler characteristics between the first six elements of \mathcal{F}_{1}.

Before going further, let us recall the theorem of Hirzebruch-Riemann-Roch (see for instance Corollary 5.27 of [14] and the fourth formula page 84 of [14]).

Theorem 4.1.1 (Hirzebruch-Riemann-Roch). Let X be a smooth projective variety and $E, F \in D^{b}(X)$. Then :

$$
\chi(F, E)=\chi\left(\mathcal{O}_{X}, E \otimes F^{\vee}\right)=\int_{X} \operatorname{ch}(E) \cdot \operatorname{ch}\left(F^{\vee}\right) \cdot \operatorname{td}(X)
$$

where $\operatorname{td}(X)$ is the Todd class of X, that is to say the Todd class of its tangent sheaf.

We will need to apply this Theorem of Hirzebruch-Riemann-Roch to compute Euler characteristics in Σ_{2}; this is why we want now to compute $\operatorname{td}\left(\Sigma_{2}\right)$. But for this we need first to know the canonical bundle of Σ_{2}.

Lemma 4.1.2. With the same notations as in Definition 1.3.3, the canonical bundle of Σ_{2} is $\omega_{\Sigma}=\mathcal{O}_{\Sigma_{2}}\left(i^{*}(-h)\right)$ which we are going to denote by abuse of notation as $\mathcal{O}_{\Sigma_{2}}(-h)$.
Proof. First of all, we know from 7. of Theorem 1.2 .3 that Σ is cut out in $\mathbb{P}\left(A_{1}\right) \times \mathbb{P}\left(A_{2}\right) \cong \mathbb{P}^{2} \times \mathbb{P}^{2}$ by two divisors of bidegree $(1,1)$. Moreover in the proof of Proposition 4.6 in [20], A. Kuznetsov computes the anticanonical class of S_{2} using the adjunction formula and the fact that S_{2} is cut out in some $\mathbb{P}^{2} \times \mathbb{P}^{2}$ by two divisors of bidegree $(1,1)$ (as recalled in 11. of Theorem 1.2.1). Using the same reasoning with $\bigwedge^{2} A_{i}$ replaced by A_{i} and \bar{h}_{i} replaced by h_{i} one gets that $\omega_{\Sigma}=\mathcal{O}_{\Sigma_{2}}\left(-h_{1}-h_{2}\right)$. Finally in $\operatorname{Pic}(F)$ one has $h=h_{1}+h_{2}$ by (1.9) and this equality still holds when restricted to Σ_{2} so $\omega_{\Sigma}=\mathcal{O}_{\Sigma_{2}}(-h)$.
Lemma 4.1.3. The Todd class of Σ_{2} is $\operatorname{td}\left(\Sigma_{2}\right)=\left(1, \frac{h}{2}, 1\right)$.
Proof. We have seen in Lemma 4.1.2 that $\omega_{\Sigma}=\mathcal{O}_{\Sigma_{2}}(-h)$, hence $c_{1}\left(\mathcal{T}_{\Sigma_{2}}\right)=h$ since $\omega_{\Sigma}=\bigwedge^{2} \mathcal{T}_{\Sigma_{2}}^{\vee}$. One can then conclude that $\operatorname{td}\left(\Sigma_{2}\right)=\left(1, \frac{h}{2}, x\right)$ with the formula page 432 of [12]. Finally, by Hirzebruch-Riemann-Roch :

$$
\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\right)=\int_{\Sigma_{2}}(1,0,0) \cdot\left(1, \frac{h}{2}, x\right)=x
$$

thus $x=1$ because as we will see in the proof of Lemma 4.3.5, we have $\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\right)=1$.
Remark 4.1.4. By [20], we know that S_{2} and Σ_{2} are two del Pezzo surfaces of degree 6 cut by two divisors of bidegree $(1,1)$ in respectively $\mathbb{P}\left(\bigwedge^{2} A_{1}\right) \times \mathbb{P}\left(\bigwedge^{2} A_{2}\right)$ and $\mathbb{P}\left(A_{1}\right) \times \mathbb{P}\left(A_{2}\right)$. The same reasoning as in Remark 4.7 of [20] applies thus to Σ_{2}, which can then be seen as the blow-up of $\mathbb{P}\left(A_{1}\right)$ in three points, with exceptional divisors E_{1}, E_{2} and E_{3}. With the exact same reasoning as later in Remark 4.5.2 and Definition 1.3.3, we then get that $\operatorname{Pic}\left(\Sigma_{2}\right)=<$ $h_{1}, E_{1}, E_{2}, E_{3}>$. Moreover, by d) of Proposition 4.8 in V. 4 of [12], we have $\omega_{\Sigma}=\mathcal{O}_{\Sigma_{2}}\left(-3 h_{1}+E_{1}+E_{2}+E_{3}\right)$. Together with (1.9) and Lemma 4.1.2, this yields $h_{2}=2 h_{1}-E_{1}-E_{2}-E_{3}$. In particular, for $1 \leq i, j \leq 3$, one has:

$$
\begin{equation*}
h_{1} \cdot E_{i}=0 \quad E_{i} \cdot E_{j}=-\delta_{i, j} \quad h_{2} \cdot E_{i}=1 \tag{4.1}
\end{equation*}
$$

Lemma 4.1.5. Let

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{6}\right)= & \left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right),\right. \\
& \left.j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)\right) .
\end{aligned}
$$

Then the matrix $N=\left(\chi\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq 6}$ is $\left(\begin{array}{cccccc}1 & 0 & 0 & -1 & -1 & -1 \\ 0 & 1 & 0 & -1 & -1 & -1 \\ 0 & 0 & 1 & -1 & -1 & -1 \\ 0 & 0 & 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$.
Proof. Let $\left(y_{1}, \ldots, y_{6}\right)=\left(\mathcal{O}_{E_{1}}\left(E_{1}\right), \mathcal{O}_{E_{2}}\left(E_{2}\right), \mathcal{O}_{E_{3}}\left(E_{3}\right), \mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(h_{1}\right), \mathcal{O}_{\Sigma_{2}}\left(2 h_{1}\right)\right)$. By Proposition 3.2 in [2], we have that for any $1 \leq i, j \leq 6, \chi\left(x_{i}, x_{j}\right)=\chi\left(y_{i}, y_{j}\right)$. We can use Hirzebruch-Riemann-Roch to compute the $\chi\left(y_{i}, y_{j}\right)$ in Σ_{2}.
Let $1 \leq k \leq 3$. There is a short exact sequence

$$
0 \rightarrow \mathcal{O}_{\Sigma_{2}} \rightarrow \mathcal{O}_{\Sigma_{2}}\left(E_{k}\right) \rightarrow \mathcal{O}_{E_{k}}\left(E_{k}\right) \rightarrow 0
$$

so $\operatorname{ch}\left(\mathcal{O}_{E_{k}}\left(E_{k}\right)\right)=\left(1, E_{k},-\frac{1}{2}\right)-(1,0,0)=\left(0, E_{k},-\frac{1}{2}\right)$. The other y_{i} are line bundles so we know their Chern characters, and we can now compute :

- Let $1 \leq m, n \leq 3$. Then $\operatorname{ch}\left(\mathcal{O}_{E_{m}}\left(-E_{m}\right)^{\vee}\right) \cdot \operatorname{ch}\left(\mathcal{O}_{E_{n}}\left(-E_{n}\right)\right)=\left(0,0,-E_{m} \cdot E_{n}\right)=\left(0,0, \delta_{m, n}\right)$. Since $\operatorname{td}\left(\Sigma_{2}\right)=$ $\left(1, \frac{h}{2}, 1\right)$ by Lemma 4.1.3, we have $\chi\left(\mathcal{O}_{E_{m}}\left(-E_{m}\right), \mathcal{O}_{E_{n}}\left(-E_{n}\right)\right)=\delta_{m, n}$.
- Let $1 \leq m \leq 3$, then

$$
\begin{aligned}
\chi\left(\mathcal{O}_{E_{m}}\left(E_{m}\right), \mathcal{O}_{\Sigma_{2}}\right) & =\int_{\Sigma_{2}}\left(0,-E_{k},-\frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right)=-\frac{1}{2}-\frac{1}{2}=-1 \\
\chi\left(\mathcal{O}_{E_{m}}\left(E_{m}\right), \mathcal{O}_{\Sigma_{2}}\left(h_{1}\right)\right) & =\int_{\Sigma_{2}}\left(0,-E_{k},-\frac{1}{2}\right) \cdot\left(1, h_{1}, \frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right)=\int_{\Sigma_{2}}\left(0,-E_{k},-\frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right)=-1 \\
\chi\left(\mathcal{O}_{E_{m}}\left(E_{m}\right), \mathcal{O}_{\Sigma_{2}}\left(2 h_{1}\right)\right) & =\int_{\Sigma_{2}}\left(0,-E_{k},-\frac{1}{2}\right) \cdot\left(1,2 h_{1}, 2\right) \cdot\left(1, \frac{h}{2}, 1\right)=\int_{\Sigma_{2}}\left(0,-E_{k},-\frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right)=-1 \\
\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{E_{m}}\left(E_{m}\right)\right) & =\int_{\Sigma_{2}}\left(0, E_{k},-\frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right)=-\frac{1}{2}+\frac{1}{2}=0 \\
\chi\left(\mathcal{O}_{\Sigma_{2}}\left(h_{1}\right), \mathcal{O}_{E_{m}}\left(E_{m}\right)\right) & =\int_{\Sigma_{2}}\left(1,-h_{1}, \frac{1}{2}\right) \cdot\left(0, E_{k},-\frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right)=\int_{\Sigma_{2}}\left(0, E_{k},-\frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right)=0 \\
\chi\left(\mathcal{O}_{\Sigma_{2}}\left(2 h_{1}\right), \mathcal{O}_{E_{m}}\left(E_{m}\right)\right) & =\int_{\Sigma_{2}}\left(1,-2 h_{1}, 2\right) \cdot\left(0, E_{k},-\frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right)=\int_{\Sigma_{2}}\left(0, E_{k},-\frac{1}{2}\right) \cdot\left(1, \frac{h}{2}, 1\right)=0
\end{aligned}
$$

where the last three equalities can also be deduced from Lemma 2.1.1.

- Finally, if $i \in \mathbb{Z}$, then $H^{*}\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(i h_{1}\right)\right)=H^{*}\left(\phi^{*} \mathcal{O}_{\mathbb{P}^{2}}, \phi^{*} \mathcal{O}_{\mathbb{P}^{2}}(i)\right)=H^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}, \phi_{*} \phi^{*} \mathcal{O}_{\mathbb{P}^{2}}(i)\right)=H^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(i)\right)$. Therefore :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\right) & =1 \\
\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(h_{1}\right)\right) & =3 \\
\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(2 h_{1}\right)\right) & =6 \\
\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(-h_{1}\right)\right) & =0 \\
\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(-2 h_{1}\right)\right) & =0 .
\end{aligned}
$$

Remark 4.1.6. In particular one can see that $\operatorname{det}(N)=1$, hence $\operatorname{det}(\tilde{M})=\operatorname{det}(M)$ with the notations of section 2.1.2.

4.2 Euler characteristics related to the $\mathcal{O}_{\tilde{X}_{4}}(i h)$

In this subsection we want to compute all the $\chi\left(e_{i}, e_{j}\right)$ with $e_{i}, e_{j} \in\left\{\pi^{*} \mathcal{O}_{X_{4}}(k h), 0 \leq k \leq 4\right\}=\left\{\mathcal{O}_{\tilde{X}_{4}}(k h), 0 \leq\right.$ $k \leq 4\}$.
Lemma 4.2.1. Let $0 \leq i, j \leq 4$, then $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \pi^{*} \mathcal{O}_{X_{4}}(j h)\right)=\chi\left(\mathcal{O}_{X_{4}}(i h), \mathcal{O}_{X_{4}}(j h)\right)$.
Proof. For any $0 \leq i, j \leq 4$, there are isomorphisms $H^{*}\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \pi^{*} \mathcal{O}_{X_{4}}(j h)\right) \cong H^{*}\left(\mathcal{O}_{X_{4}}(i h), \pi_{*} \pi^{*} \mathcal{O}_{X_{4}}(j h)\right)$. Moreover we have $\pi_{*} \mathcal{O}_{\tilde{X}_{4}}=\mathcal{O}_{X_{4}}$ (see for instance Example 11.14 ii) in [14]), hence the projection formula yields $\pi_{*} \pi^{*} \mathcal{O}_{X_{4}}(j h)=\mathcal{O}_{X_{4}}(j h)$.

As a result we are rather going to compute all the $\chi\left(\mathcal{O}_{X_{4}}(i h), \mathcal{O}_{X_{4}}(j h)\right)$ for $0 \leq i, j \leq 4$.

4.2.1 A general version of Borel-Bott-Weil Theorem

We will use the Borel-Bott-Weil Theorem all along this subsection. One can find a general version of this Theorem in Küchle's [15], along with explanations about how to apply it in the case of Grassmannians. To actually compute the coefficients of M, we will use a more specific version of the Theorem stated in part 2.6 of [16], but we will also use some of the information given in [15], so in this subsection we are going to reproduce mainly definitions, facts and the version of the Theorem from Küchle's [15].

Theorem 4.2.2 (Borel-Bott-Weil). Let P be a parabolic subgroup of a semi-simple complex group G and E an irreducible P-module with highest weight λ. Let $\mathcal{E}=G \times_{P} E$ denote the vector bundle over G / P which is the quotient of $G \times E$ by the action of P on $G \times E$ defined by $p .(g, e)=\left(g . p^{-1}, p . e\right)$. Let δ be the sum of the fundamental weights, μ the unique dominant weight in the Weyl group orbit of $\lambda+\delta$ and $\operatorname{ind}(\lambda+\delta)$ the numbre of positive roots $\alpha \in G$ such that $(\lambda+\delta, \alpha)<0$. Then :

1. if $\lambda+\delta$ is singular then $H^{q}(G / P, \mathcal{E})=0$ for all $q \in \mathbb{Z}$;
2. if $\lambda+\delta$ is not singular then $H^{q}(G / P, \mathcal{E})=\left.(\mu-\delta)\right|^{G} \delta_{q, \operatorname{ind}(\lambda+\delta)}$.

Here $\left.(\mu-\delta)\right|^{G}$ denotes the G-module given by the space of algebraic morphisms $s: G \rightarrow R$ such that $s\left(g p^{-1}\right)=$ $p . s(g)$ for all $g \in G$ and $p \in P$, with R the one dimensional representation of the Borel subgroup of G associated to $\mu-\delta$.

Moreover, according to [15] part 2.2, if \mathcal{E} is a vector bundle on G / P which is homogeneous with respect to G, then \mathcal{E} can be written as $G \times_{P} E$ as in Theorem 4.2.2. Then \mathcal{E} is called irreducible if E is an irreducible P-module.

In our case we want to apply this theorem for $G / P=\operatorname{Gr}(3,7)$, and we will be interested only in the dimension of the $H^{q}(G / P, \mathcal{E})$. So following part 2.4 and 2.5 of [15], we can reduce to a specific case of the theorem, as follows.
Let $G=\mathrm{SL}(7, \mathbb{C})$ and $P=\left\{\left(\begin{array}{cc}A & * \\ 0 & B\end{array}\right), A \in \mathrm{GL}(3, \mathbb{C}), B \in \mathrm{GL}(4, \mathbb{C})\right.$, $\left.\operatorname{det}(A) \operatorname{det}(B)=1\right\}$. Then $\operatorname{Gr}(3,7)=G / P$. We can then choose the positive roots of G to be $\left\{e_{i}-e_{j}, 1 \leq i<j \leq 7\right\}$ where $\left\{e_{1}, \ldots, e_{7}\right\}$ is an orthonormal basis of \mathbb{R}^{7}. In this case the simple roots are $\left\{e_{1}-e_{2}, e_{2}-e_{3}, e_{3}-e_{4}, e_{4}-e_{5}, e_{5}-e_{6}, e_{6}-e_{7}\right\}$ and a weight $\alpha=\sum_{i=1}^{7} \alpha_{i} e_{i}=\left(\alpha_{1}, \ldots, \alpha_{7}\right)$ is dominant if and only if $\alpha_{i} \geq \alpha_{j}$ for all $j>i$. Moreover the sum of the fundamental weights is $\delta=(6,5,4,3,2,1,0)$. Finally here $(\alpha, \beta)=\sum_{i=1}^{7} \alpha_{i} \beta_{i}$ and the Weyl group of G is just the permutations of the e_{i} so the unique dominant weight in the orbit of a weight α is the weight ($\alpha_{i_{1}}, \ldots, \alpha_{i_{7}}$) such that $\alpha_{i_{j}} \geq \alpha_{i_{k}}$ for all $k>j$. Then a weight λ is non singular if and only if $\lambda_{i} \neq \lambda_{j}$ for all $i \neq j$. Thus the BBW Theorem induces the following :

Corollary 4.2.3. Let \mathcal{E} be a vector bundle on $\operatorname{Gr}(3,7)$ of the form $G \times_{P} E$ as in Theorem 4.2.2. Let λ be the associated highest weight and $\delta=(6,5,4,3,2,1,0)$. Then :

1. if there exists $i \neq j$ such that $\lambda_{i}=\lambda_{j}$ then $H^{q}(\operatorname{Gr}(3,7), \mathcal{E})=0$ for all $q \in \mathbb{Z}$;
2. otherwise let μ be the unique weight with the same coefficients as λ but such that $\mu_{i}>\mu_{j}$ if $j>i$. Let x be the number of positive roots $\alpha=\left(\alpha_{1}, \ldots, \alpha_{7}\right)$ such that $\sum_{i=1}^{7} \alpha_{i}(\lambda+\delta)_{i}<0$. Then $\operatorname{dim}\left(H^{q}(\operatorname{Gr}(3,7), \mathcal{E})\right)=$ $\left.\operatorname{dim}(\mu-\delta)\right|^{\mathrm{Sl}_{7}} \delta_{q, x}$.
To compute $\left.\operatorname{dim}(\mu-\delta)\right|^{\operatorname{Sl}_{7}}$ (here it is the dimension as a Sl_{7}-representation) in Corollary 4.2 .3 we will use the Weyl formula that can be found in ([27], formula 3.49), which Jean Douçot pointed out to me :

Proposition 4.2.4 (Weyl formula). Let Λ be a representation of highest weight λ. Then

$$
\begin{equation*}
\operatorname{dim}(\Lambda)=\prod_{\alpha>0} \frac{(\lambda+\delta, \alpha)}{(\delta, \alpha)} \tag{4.2}
\end{equation*}
$$

where δ is the sum of the fundamental weights.
We are also going to use the following properties (see [15] and for instance [25] §10.5, Proposition 3 page 345):

Proposition 4.2.5. Let E and F be vector bundles associated to representations of P as in Theorem 4.2.2 and of highest weights $\alpha=\left(\alpha_{1}, \ldots, \alpha_{7}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{7}\right)$ respectively. Then E^{\vee} and $E \otimes F$ are also associated to representations of P (not necessarily irreducible) and their highest weights are, respectively, $\left(-\alpha_{3},-\alpha_{2},-\alpha_{1},-\alpha_{7},-\alpha_{6},-\alpha_{5},-\alpha_{4}\right)$ and $\alpha+\beta=\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{7}+\beta_{7}\right)$.
Moreover, any $\bigwedge^{n} E$ is also associated to a representation of P.
Let us go back to the definition of X_{4} now. By the introduction of [20], it is the zero locus of a global section of $\mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{U}_{3}(1) \oplus \mathcal{O}(1)$ in $\operatorname{Gr}(3,7)$. Here \mathcal{U}_{3} is the tautological subbundle of $\operatorname{Gr}(3,7)$ and \mathcal{U}_{3}^{\perp} is defined as follows : there is a short exact sequence $0 \rightarrow \mathcal{U}_{3} \rightarrow \mathcal{O}_{\operatorname{Gr}(3,7)} \otimes \mathbb{C}^{7} \rightarrow Q \rightarrow 0$ and we define $\mathcal{U}_{3}^{\perp}=Q^{\vee}$. Using part 2.5 of [15] and part 2.6 of [16] one can find:

Lemma 4.2.6. The vector bundles $\mathcal{U}_{3}^{\vee}, \mathcal{U}_{3}^{\perp}$ and $\mathcal{O}_{\operatorname{Gr}(3,7)}(1)$ are all of the form described in Theorem 4.2.2, and their associated highest weights are respectively : $(1,0,0,0,0,0,0),(0,0,0,1,0,0,0)$ and $(1,1,1,0,0,0,0)$.

Remark 4.2.7. The highest weight associated to $\mathcal{O}_{\operatorname{Gr}(3,7)} \cong \mathcal{O}_{\operatorname{Gr}(3,7)}^{\otimes k} \cong \mathcal{O}_{\operatorname{Gr}(3,7)} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}^{\vee}$ is $(1,1,1,1,1,1,1)=$ $(k, k, k, k, k, k, k)=(0,0,0,0,0,0,0)$ for any $k \in \mathbb{Z}$. In particular since tensoring with $\mathcal{O}_{\operatorname{Gr}(3,7)}$ doesn't change a vector bundle, for any highest weight $\alpha=\left(\alpha_{1}, \ldots, \alpha_{7}\right)$ we can write $\alpha=\left(\alpha_{1}-k, \ldots, \alpha_{7}-k\right)$ for any $k \in \mathbb{Z}$. Then by convention we usually choose the coordinates $\left(\alpha_{1}, \ldots, \alpha_{7}\right)$ such that one at least of the α_{i} is 0 .

Corollary 4.2.8. The highest weights associated to $\mathcal{U}_{3},\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}$ and $\mathcal{U}_{3}(1)$ and $\mathcal{U}_{3}^{\perp}(1)$ are respectively $(0,0,-1,0,0,0,0)$ $=(1,1,0,1,1,1,1),(0,0,0,0,0,0,-1)=(1,1,1,1,1,1,0),(1,1,0,0,0,0,0)$ and $(1,1,1,1,0,0,0)$.

Finally we are going to use (see for instance [10] §15 just before Example 15.14, page 221 and [16] part 2.6):
Lemma 4.2.9. The following are also associated to irreducible representations as in Theorem 4.2.2: $\Lambda^{2} \mathcal{U}_{3}^{\vee}, \Lambda^{3} \mathcal{U}_{3}^{\vee} \cong$ $\mathcal{O}_{\operatorname{Gr}(3,7)}(1), \bigwedge^{2} \mathcal{U}_{3}^{\perp}, \bigwedge^{3} \mathcal{U}_{3}^{\perp}$ and $\bigwedge^{4} \mathcal{U}_{3}^{\perp} \cong \mathcal{O}_{\operatorname{Gr}(3,7)}(-1)$. The associated highest weights are respectively :

$$
(1,1,0 ; 0,0,0,0),(1,1,1 ; 0,0,0,0),(0,0,0 ; 1,1,0,0),(0,0,0 ; 1,1,1,0) \text { and }(0,0,0 ; 1,1,1,1) .
$$

4.2.2 Application of BBW to Grassmannians

The BBW Theorem stated in section 4.2.1 requires the vector bundle \mathcal{E} to be irreducible. However in our case we will need to apply the Theorem to tensor products of irreducible representations: these do not remain irreducible in general. Since it is not necessarily easy to decompose such a tensor product into the sum of its irreducible factors, we are instead going to use the much easier approach of Kuznetsov given in [16].
In part 2.6 of [16], Kuznetsov uses a slightly different version of the BBW Theorem, which, combined with Proposition 2.12 and Corollary 2.13 in [16], yields the following Theorem. We are stating the result here only for $\operatorname{Gr}(3,7)$ but in [16] everything is done in the more general case of $\operatorname{Gr}(k, n)$. Moreover here we are mainly going to keep the notations of Küchle's article [15], which we used in section 4.2.1.
Let \mathcal{E} be a tensor product of $\left(\bigwedge^{i} \mathcal{U}_{3}^{\vee}\right)^{\otimes k_{i}},\left(\bigwedge^{i} \mathcal{U}_{3}\right)^{\otimes l_{i}},\left(\bigwedge^{i} \mathcal{U}_{3}^{\perp}\right)^{\otimes m_{i}}$ and $\left(\bigwedge^{i}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)^{\otimes n_{i}}$ with $i \in\{1,2,3,4\}$ and the k_{i}, l_{i}, m_{i} and n_{i} in \mathbb{N}. Then by Proposition 4.2.5, Lemma 4.2.6 and Lemma 4.2.9 it is associated to a representation of P as in Theorem 4.2.2, whose highest weight is computable by the Proposition and Lemmas above-mentioned.

Theorem 4.2.10. Let \mathcal{E} be a vector bundle on $\operatorname{Gr}(3,7)$ as just above. Let λ be the associated highest weight and $\delta=(6,5,4,3,2,1,0)$. Then :

1. if there are some $i \neq j$ such that $\lambda_{i}+\delta_{i}=\lambda_{j}+\delta_{j}$ then $H^{*}(\operatorname{Gr}(3,7), \mathcal{E})=0$;
2. if $\lambda_{i}+\delta_{i} \neq \lambda_{j}+\delta_{j}$ for any $i \neq j$ then $\operatorname{dim}\left(H^{q}(\operatorname{Gr}(3,7), \mathcal{E})\right)=\operatorname{dim}\left(\left.(\sigma(\delta+\lambda)-\delta)\right|^{G 1_{7}}\right) \delta_{q, l(\sigma)}$ with σ the unique permutation in S_{7} such that $\sigma(\delta+\lambda)$ satisfies $\sigma(\delta+\lambda)_{i}>\sigma(\delta+\lambda)_{j}$ whenever $i<j$ and $l(\sigma)$ the length of σ.

This is what we are going to use, along with (4.2) to compute the Euler characteristics related to the $\mathcal{O}_{X_{4}}(i)$.

4.2.3 Computation of the Euler characteristics

To compute the Euler characteristics associated to the $\mathcal{O}_{X_{4}}(i)$ we are finally going to use the Koszul complex, that is to say :

$$
\begin{equation*}
0 \rightarrow \bigwedge^{8} \mathcal{V} \rightarrow \bigwedge^{7} \mathcal{V} \rightarrow \ldots \rightarrow \mathcal{V} \xrightarrow{s^{\vee}} \mathcal{O}_{\operatorname{Gr}(3,7)} \rightarrow \mathcal{O}_{X_{4}} \rightarrow 0 \tag{4.3}
\end{equation*}
$$

where $\mathcal{V}=\left(\mathcal{U}_{3}(1) \oplus \mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{O}_{\operatorname{Gr}(3,7)}(1)\right)^{\vee}$ is a rank 8 vector bundle and the arrow $\mathcal{V} \xrightarrow{s^{\vee}} \mathcal{O}_{\operatorname{Gr}(3,7)}$ is given by the dual of the section s of \mathcal{V}^{\vee} whose zero locus defines X_{4}.
Thanks to a method that E. Fatighenti kindly taught me, we can now compute the $\chi\left(\mathcal{O}_{X_{4}}(i), \mathcal{O}_{X_{4}}(j)\right)$. Since the method for computing these doesn't depend on i and j, we are going to detail only one of these computations here, in Proposition 4.2.11. Other Euler characteristics of the same form can easily (although with possibly a lot of calculations) be computed with the same method.

The idea consists in the following : first, $\chi\left(\mathcal{O}_{X_{4}}(i), \mathcal{O}_{X_{4}}(j)\right)=\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(j-i)\right)$, so we can reduce to $\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(k)\right)=\chi\left(\mathcal{O}_{X_{4}}(k)\right)$ for some $k \in \mathbb{Z}$. Then, one can split an appropriate twist of (4.3) into short exact sequences. In each of these short exact sequences, at least one (twist of an) alternate product of \mathcal{V}, $\bigwedge^{i} \mathcal{V}(k)$, will appear, which we can decompose into direct sums of sheaves of the form $\left(\bigwedge^{i} \mathcal{U}_{3}^{\vee}\right)^{\otimes k} \otimes\left(\bigwedge^{j} \mathcal{U}_{3}\right)^{\otimes l} \otimes$ $\left(\bigwedge^{p} \mathcal{U}_{3}^{\perp}\right)^{\otimes m} \otimes\left(\bigwedge^{q}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)^{\otimes n} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(r)$. Then, one can use Theorem 4.2.10 together with (4.2) to compute the Euler characteristic of each summand of the decomposition of the $\bigwedge^{i} \mathcal{V}(k)$ we are considering. Finally, using the fact that for any short exact sequence $0 \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow \mathcal{Q} \rightarrow 0$ we have $\chi(\mathcal{F})=\chi(\mathcal{E})+\chi(\mathcal{Q})$, one can compute successively the Euler characteristics of all the sheaves appearing in the short exact sequences coming from (4.3). Eventually, this will allow us to compute the Euler characteristic $\chi\left(\mathcal{O}_{X_{4}}(k)\right)$ of the twist of $\mathcal{O}_{X_{4}}$ we are interested in.
One can also use Macaulay2 and Scilab to decompose more easily the $\bigwedge^{i} \mathcal{V}(k)$ and to do some computations faster : this is detailed in Appendix 6.3 and Appendix 6.4.
In the following proof, we even manage to compute $H^{*}\left(\mathcal{O}_{X_{4}}(4)\right)$, using long exact sequences in cohomology. Yet, this is not always possible : sometimes (when the long exact sequences in cohomology have too many non trivial sheaves) only the Euler characteristic is calculable.

Proposition 4.2.11. With the same notations as above, $\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(4)\right)=1181$.
Proof. First of all, if $i: X_{4} \rightarrow \operatorname{Gr}(3,7)$ is the injection of X_{4} in the Grassmannian, we have $H^{*}\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(4)\right)=$ $H^{*}\left(i^{*}\left(\mathcal{O}_{\operatorname{Gr}(3,7)}(-4)\right), \mathcal{O}_{X_{4}}\right)=H^{*}\left(\mathcal{O}_{\operatorname{Gr}(3,7)}(-4), i_{*} \mathcal{O}_{X_{4}}\right)=H^{*}\left(\mathcal{O}_{\operatorname{Gr}(3,7)}, i_{*}\left(\mathcal{O}_{X_{4}}\right)(4)\right)$. By abuse of notation we are going to note $i_{*} \mathcal{O}_{X_{4}}$ by $\mathcal{O}_{X_{4}}$; it is the last sheaf on the right in (4.3). Then (4.3) gives us a resolution of $\mathcal{O}_{X_{4}}(4)$:

$$
\begin{equation*}
0 \rightarrow\left(\bigwedge^{8} \mathcal{V}\right)(4) \xrightarrow{f_{7}}\left(\bigwedge^{7} \mathcal{V}\right)(4) \xrightarrow{f_{6}} \ldots \xrightarrow{f_{1}} \mathcal{V}(4) \xrightarrow{s^{\vee}} \mathcal{O}_{\operatorname{Gr}(3,7)}(4) \rightarrow \mathcal{O}_{X_{4}}(4) \rightarrow 0 \tag{4.4}
\end{equation*}
$$

We are going to use this resolution to compute $\chi\left(\mathcal{O}_{\operatorname{Gr}(3,7)}, i_{*}\left(\mathcal{O}_{X_{4}}\right)(4)\right)=\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(4)\right)$ (the equality holds by what we just did), but to do this computation we need to split (4.4) into short exact sequences, as follows :

- we first look at the short exact sequence $0 \rightarrow\left(\bigwedge^{8} \mathcal{V}\right)(4) \xrightarrow{f_{7}}\left(\bigwedge^{7} \mathcal{V}\right)(4) \rightarrow K_{7} \rightarrow 0$ where K_{7} is the cokernel of f_{7}. By definition, $\mathcal{V}=\left(\mathcal{U}_{3}(1) \oplus \mathcal{U}_{3}^{\perp}(1) \oplus \mathcal{O}_{\operatorname{Gr}(3,7)}(1)\right)^{\vee}=\mathcal{U}_{3}^{\vee}(-1) \oplus\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1) \oplus \mathcal{O}_{\operatorname{Gr}(3,7)}(-1)$.

Thus, since \mathcal{U}_{3}^{\vee} is a rank 3 vector bundle and $\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}$ a rank 4 vector bundle this yields :

$$
\begin{aligned}
\bigwedge^{8} \mathcal{V}= & \bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-3) \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-4) \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-1) \\
= & \bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-8) \\
\bigwedge_{\Lambda}^{7} \mathcal{V}= & \bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \mathcal{O}_{\mathrm{Gr}(3,7)}(-3) \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-4) \oplus \\
& \bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-3) \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-3) \otimes \mathcal{O}_{\mathrm{Gr}(3,7)}(-1) \oplus \\
& \bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-2) \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\mathrm{Gr}(3,7)}(-4) \otimes \mathcal{O}_{\mathrm{Gr}(3,7)}(-1) \\
= & \bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-7) \oplus \bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-7) \oplus \\
& \bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-7)
\end{aligned}
$$

Using Lemma 4.2.9 and Proposition 4.2.5 one can find that the highest weight associated to $\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes$ $\bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}$ is

$$
(1,1,1 ; 0,0,0,0)+(0,0,0 ;-1,-1,-1,-1)=(1,1,1 ; 0,0,0,0)+(1,1,1 ; 0,0,0,0)=(2,2,2 ; 0,0,0,0)
$$

Moreover the highest weight associated to $\mathcal{O}_{\operatorname{Gr}(3,7)}(-1)$ is $(-1,-1,-1 ; 0,0,0,0)=(0,0,0 ; 1,1,1,1)$ so again by Proposition 4.2.5, the highest weight associated to $\mathcal{O}_{\operatorname{Gr}(3,7)}(-8)$ is $(0,0,0 ; 8,8,8,8)$.
So finally the highest weight associated to $\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-8)$ is

$$
(2,2,2 ; 0,0,0,0)+(0,0,0 ; 8,8,8,8)=(2,2,2 ; 8,8,8,8)=(0,0,0 ; 6,6,6,6)
$$

Therefore the highest weight associated to $\left(\bigwedge^{8} \mathcal{V}\right)(4)$ is

$$
(0,0,0 ; 6,6,6,6)+(4,4,4 ; 0,0,0,0)=(0,0,0 ; 2,2,2,2) .
$$

We can now use Theorem 4.2.10 to compute $H^{*}\left(\left(\bigwedge^{8} \mathcal{V}\right)(4)\right)$, since $\mathcal{O}_{\operatorname{Gr}(3,7}(1)=\bigwedge^{3} \mathcal{U}_{3}^{\vee}$ and thus $\mathcal{O}_{\operatorname{Gr}(3,7)}(-1)=\bigwedge^{3} \mathcal{U}_{3}$. So we compute

$$
\delta+(0,0,0 ; 2,2,2,2)=(6,5,4,3,2,1,0)+(0,0,0 ; 2,2,2,2)=(6,5,4,5,4,3,2)
$$

Here the second and the fourth coefficients are the same so it is part 1. of Theorem 4.2.10 that applies and $H^{*}\left(\left(\bigwedge^{8} \mathcal{V}\right)(4)\right)=0$.
We want now to compute $H^{*}\left(\left(\bigwedge^{7} \mathcal{V}\right)(4)\right)$ with a similar reasoning. By what we have computed above,

$$
\begin{aligned}
H^{*}\left(\left(\bigwedge^{7} \mathcal{V}\right)(4)\right)= & H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-7+4)\right) \oplus H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-7+4)\right) \\
& \oplus H^{*}\left(\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-7+4)\right) .
\end{aligned}
$$

So here we will have to apply Theorem 4.2.10 three times. First of all the highest weight associated to $\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-3)$ is $(1,1,1 ; 0,0,0,0)+(1,1,1 ; 0,0,0,0)+(0,0,0 ; 3,3,3,3)=(0,0,0 ; 1,1,1,1)$. But $\delta+(0,0,0 ; 1,1,1,1)=(6,5,4,4,3,2,1)$. The third and fourth coefficients are the same so $H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes\right.$ $\left.\bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-3)\right)=0$. The highest weight associated to $\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-3)$ is

$$
(1,1,1 ; 0,0,0,0)+(1,1,1 ; 1,0,0,0)+(0,0,0 ; 3,3,3,3)=(2,2,2,4,3,3,3)=(0,0,0 ; 2,1,1,1)
$$

But $\delta+(0,0,0 ; 2,1,1,1)=(6,5,4,5,3,2,1)$. The second and fourth coefficients are the same so $H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes\right.$ $\left.\Lambda^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-3)\right)=0$. The highest weight associated to $\Lambda^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-3)$ is

$$
(1,1,0 ; 0,0,0,0)+(1,1,1 ; 0,0,0,0)+(0,0,0 ; 3,3,3,3)=(2,2,1 ; 3,3,3,3)=(1,1,0 ; 2,2,2,2)
$$

But $\delta+(1,1,0 ; 2,2,2,2)=(7,6,4 ; 5,4,3,2)$. The third and fifth coefficients are the same so $H^{*}\left(\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes\right.$ $\left.\bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-3)\right)=0$. So finally $H^{*}\left(\left(\bigwedge^{7} \mathcal{V}\right)(4)\right)=0$ and thus $H^{*}\left(K_{7}\right)=0$.

- Since f_{7} is injective we have that $K_{7} \cong\left(\bigwedge^{7} \mathcal{V}\right)(4) / \operatorname{im}\left(f_{7}\right)$ and since (4.4) is a long exact sequence, $\operatorname{im}\left(f_{7}\right)=$ $\operatorname{ker}\left(f_{6}\right)$ so we have another short exact sequence :

$$
\begin{equation*}
0 \rightarrow K_{7} \xrightarrow{f_{6}}\left(\bigwedge^{6} \mathcal{V}\right)(4) \rightarrow K_{6} \rightarrow 0 \tag{4.5}
\end{equation*}
$$

We already know $H^{*}\left(K_{7}\right)$ so we need to compute $H^{*}\left(\left(\bigwedge^{6} \mathcal{V}\right)(4)\right)$ with Theorem 4.2.10. We first decompose $\left(\bigwedge^{6} \mathcal{V}\right)(4)$ as follows :

$$
\begin{aligned}
\left(\bigwedge^{6} \mathcal{V}\right)(4)= & \bigwedge^{6}\left(\left(\mathcal{U}_{3}^{\vee} \oplus\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \mathcal{O}_{\operatorname{Gr}(3,7)}\right) \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}(-1)\right)(4) \\
= & \mathcal{O}_{\mathrm{Gr}(3,7)}(-6+4) \otimes\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)} \oplus \bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus\right. \\
& \left.\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)} \oplus \bigwedge^{1} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \otimes \mathcal{O}_{\operatorname{Gr}(3,7)}\right)
\end{aligned}
$$

Since it can be long to compute such a decomposition a lot of times, and also to avoid making mistakes while doing it, one can use Macaulay2 as detailed in annex 6.3. We want now to apply Theorem 4.2.10 to each summand of the decomposition above.

- The highest weight of $\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)$ is $(1,1,1 ; 0,0,0,0)+(1,1,1 ; 1,0,0,0)+(0,0,0 ; 2,2,2,2)=$ $(2,2,2 ; 3,2,2,2)=(0,0,0 ; 1,0,0,0)$. In $\delta+(0,0,0 ; 1,0,0,0)=(6,5,4 ; 4,2,1,0)$ the third and fourth coefficients are the same so $H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)\right)=0$.
- The highest weight of $\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)$ is $(1,1,1 ; 0,0,0,0)+(1,1,1 ; 1,1,0,0)+(0,0,0 ; 2,2,2,2)=$ $(2,2,2 ; 3,3,2,2)=(0,0,0 ; 1,1,0,0)$. In $\delta+(0,0,0 ; 1,1,0,0)=(6,5,4 ; 4,3,1,0)$ the third and fourth coefficients are the same so $H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)\right)=0$.
- The highest weight of $\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)$ is $(1,1,0 ; 0,0,0,0)+(1,1,1 ; 0,0,0,0)+(0,0,0 ; 2,2,2,2)=$ $(2,2,1 ; 2,2,2,2)=(1,1,0 ; 1,1,1,1)$. In $\delta+(1,1,0 ; 1,1,1,1)=(7,6,4 ; 4,3,2,1)$ the third and fourth coefficients are the same so $H^{*}\left(\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)\right)=0$.
- The highest weight of $\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)$ is $(1,1,0 ; 0,0,0,0)+(1,1,1 ; 1,0,0,0)+(0,0,0 ; 2,2,2,2)=$ $(2,2,1 ; 3,2,2,2)=(1,1,0 ; 2,1,1,1)$. In $\delta+(1,1,0 ; 2,1,1,1)=(7,6,4 ; 5,3,2,1)$ all the coefficients are different so we are in part 2. of Theorem 4.2.10. Here $\lambda=(7,6,4,5,3,2,1)$ is not dominant because $\lambda_{3}=4<\lambda_{4}=5$ but $\sigma_{34}(\lambda)=(7,6,5,4,3,2,1)$ is dominant. Moreover $l\left(\sigma_{34}\right)=1$ (this is also the number of positive roots α such that $(\lambda, \alpha)<0$: indeed we have seen in section 1.1 that the positive roots are all the $e_{i}-e_{j}$ with $i<j$, and $\left(\lambda, e_{i}-e_{j}\right)=\lambda_{i}-\lambda_{j}$. It is negative only for $i=3$ and $j=4$). So $\operatorname{dim}\left(H^{*}\left(\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)\right)\right)=\operatorname{dim}\left(\left.(\lambda-\delta)\right|^{\mathrm{Sl}_{7}}\right) \delta_{* 1}$. Finally $\lambda-\delta=$ $(1,1,1,1,1,1,1)=(0,0,0,0,0,0,0)$. Hence (4.2) gives $\operatorname{dim}\left(\left.(\lambda-\delta)\right|^{\mathrm{SI}_{7}}\right)=\prod_{\alpha>0} \frac{(\delta+\alpha, \alpha)}{(\delta+\alpha, \alpha)}=1$ and $H^{*}\left(\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)\right)=\mathbb{C} . \delta_{* 1}$.
- The highest weight of $\mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)$ is $(1,0,0 ; 0,0,0,0)+(1,1,1 ; 0,0,0,0)+(0,0,0 ; 2,2,2,2)=$ $(2,1,1 ; 2,2,2,2)=(1,0,0 ; 1,1,1,1)$. In $\delta+(1,0,0 ; 1,1,1,1)=(7,5,4 ; 4,3,2,1)$ the third and fourth coefficients are the same so $H^{*}\left(\mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-2)\right)=0$.

Finally $H^{*}\left(\left(\bigwedge^{6} \mathcal{V}\right)(4)\right)=\mathbb{C} . \delta_{* 1}$. Therefore, since $H^{*}\left(K_{7}\right)=0$ the long exact sequence in cohomology induced by (4.5) gives $H^{*}\left(K_{6}\right)=\mathbb{C} . \delta_{* 1}$.

- We are now going to proceed as in the previous step : there is a short exact sequence

$$
\begin{equation*}
0 \rightarrow K_{6} \xrightarrow{f_{5}}\left(\bigwedge^{5} \mathcal{V}\right)(4) \rightarrow K_{5} \rightarrow 0 \tag{4.6}
\end{equation*}
$$

Using Macaulay2 as explained in annex 6.3, or by hand as in the previous step, one finds

$$
\begin{aligned}
\left(\bigwedge^{5} \mathcal{V}\right)(4) & =\mathcal{O}_{\operatorname{Gr}(3,7)}(-5+4) \otimes\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus\right. \\
& \left.\oplus \bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)
\end{aligned}
$$

Now for each summand we apply Theorem 4.2.10. To go faster, one can use scilab as described in annex 6.4 to check if $\delta+\lambda$ has two identical coefficients : this is what we are going to do here, this is why from now on the details about this calculation will be skipped.

- The highest weight of $\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)$ is $(1,1,1 ; 0,0,0,0)+(1,1,1 ; 1,1,0,0)+(0,0,0 ; 1,1,1,1)=$ $(2,2,2 ; 2,2,1,1)=(1,1,1 ; 1,1,0,0)$. Using scilab one finds that $\delta+(1,1,1 ; 1,1,0,0)$ has pairwise distinct coefficients, moreover $\delta+(1,1,1 ; 1,1,0,0)=(7,6,5 ; 4,3,1,0)$ is dominant so we will have $\operatorname{dim}\left(H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)\right)\right)=\operatorname{dim}\left(\left.((7,6,5 ; 4,3,1,0)-\delta)\right|^{\mathrm{Sl}_{7}}\right) \delta_{* 0}=\operatorname{dim}\left(\left.(1,1,1 ; 1,1,0,0)\right|^{\mathrm{Sl}_{7}}\right) \delta_{* 0}$. Finally we use (4.2) to compute $\operatorname{dim}\left(\left.(1,1,1 ; 1,1,0,0)\right|^{\mathrm{Sl}_{7}}\right)$. Let us denote $\lambda=(1,1,1 ; 1,1,0,0)$, then :

$$
\begin{aligned}
\operatorname{dim}\left(\left.\lambda\right|^{\mathrm{SI}_{7}}\right) & =\prod_{\alpha>0} \frac{(\lambda+\delta, \alpha)}{(\delta, \alpha)}=\prod_{j=2}^{7} \frac{\left(\lambda+\delta, e_{1}-e_{j}\right)}{\left(\delta, e_{1}-e_{j}\right)} \times \prod_{j=3}^{7} \frac{\left(\lambda+\delta, e_{2}-e_{j}\right)}{\left(\delta, e_{2}-e_{j}\right)} \times \\
& \prod_{j=4}^{7} \frac{\left(\lambda+\delta, e_{3}-e_{j}\right)}{\left(\delta, e_{3}-e_{j}\right)} \times \prod_{j=5}^{7} \frac{\left(\lambda+\delta, e_{4}-e_{j}\right)}{\left(\delta, e_{4}-e_{j}\right)} \times \prod_{j=6}^{7} \frac{\left(\lambda+\delta, e_{5}-e_{j}\right)}{\left(\delta, e_{5}-e_{j}\right)} \times \frac{\left(\lambda+\delta, e_{6}-e_{7}\right)}{\left(\delta, e_{6}-e_{7}\right)} \\
& =\frac{(7-6)}{(6-5)} \frac{(7-5)}{(6-4)} \frac{(7-4)}{(6-3)} \frac{(7-3)}{(6-2)} \frac{(7-1)}{(6-1)} \frac{(7-0)}{(6-0)} \frac{(6-5)}{(5-4)} \frac{(6-4)}{(5-3)} \frac{(6-3)}{(5-2)} \frac{(6-1)}{(5-1)} \frac{6}{5} \times \\
& \frac{(5-4)}{(4-3)} \frac{(5-3)}{(4-2)} \frac{(5-1)}{(4-1)} \frac{5}{4} \frac{(4-3)}{(3-2)} \frac{(4-1)}{(3-1)} \frac{4}{3} \frac{(3-1)}{(2-1)} \frac{3}{2} \frac{1}{1} \\
& =\frac{6}{5} \times \frac{7}{6} \times \frac{5}{4} \times \frac{6}{5} \times \frac{4}{3} \times \frac{5}{4} \times \frac{3}{2} \times \frac{4}{3} \times \frac{2}{1} \times \frac{3}{2}=\frac{7 \times 6}{2}=21
\end{aligned}
$$

To do these long computations one can also use scilab as explained in annex 6.4, so from now on we will skip details of such calculations. Finally $H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)\right)=\mathbb{C}^{21} . \delta_{* 0}$.

- The highest weight of $\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)$ is $(1,1,1 ; 0,0,0,0)+(1,1,1 ; 1,1,1,0)+(0,0,0 ; 1,1,1,1)=$ $(2,2,2 ; 2,2,2,1)=(1,1,1 ; 1,1,1,0) . \delta+(1,1,1 ; 1,1,1,0)$ is dominant and so using scilab one finds $H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)\right)=\mathbb{C}^{7} . \delta_{* 0}$.
- The highest weight of $\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)$ is $(1,1,0 ; 0,0,0,0)+(1,1,1 ; 1,0,0,0)+(0,0,0 ; 1,1,1,1)=$ $(2,2,1 ; 2,1,1,1)=(1,1,0 ; 1,0,0,0)$. Using scilab one finds that $\delta+(1,1,0 ; 1,0,0,0)$ has two identical coefficients so $H^{*}\left(\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)\right)=0$.
- The highest weight of $\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)$ is $(1,1,0 ; 0,0,0,0)+(1,1,1 ; 1,1,0,0)+(0,0,0 ; 1,1,1,1)=$ $(2,2,1 ; 2,2,1,1)=(1,1,0 ; 1,1,0,0)$. Using scilab one finds that $\delta+(1,1,0 ; 1,0,0,0)$ has two identical coefficients so $H^{*}\left(\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)\right)=0$.
- The highest weight of $\mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)$ is $(1,0,0 ; 0,0,0,0)+(1,1,1 ; 0,0,0,0)+(0,0,0 ; 1,1,1,1)=$ $(2,1,1 ; 1,1,1,1)=(1,0,0 ; 0,0,0,0) . \delta+(1,0,0 ; 0,0,0,0)$ is dominant and so using scilab one finds $H^{*}\left(\mathcal{U}_{3}^{\vee} \otimes \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)\right)=\mathbb{C}^{7} . \delta_{* 0}$.
- The highest weight of $\mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)$ is $(1,0,0 ; 0,0,0,0)+(1,1,1 ; 1,0,0,0)+(0,0,0 ; 1,1,1,1)=$ $(2,1,1 ; 2,1,1,1)=(1,0,0 ; 1,0,0,0)$. Using scilab one finds that $\delta+(1,0,0 ; 1,0,0,0)$ has two identical coefficients so $H^{*}\left(\mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)\right)=0$.
- The highest weight of $\bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)$ is $(1,1,1 ; 0,0,0,0)+(0,0,0 ; 1,1,1,1)=(1,1,1 ; 1,1,1,1)=$ $(0,0,0 ; 0,0,0,0) . \delta+(0,0,0 ; 0,0,0,0)$ is dominant and so using scilab one finds $H^{*}\left(\bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1)\right)=$ $\mathbb{C} . \delta_{* 0}$.

So finally $\operatorname{dim}\left(H^{*}\left(\left(\bigwedge^{5} \mathcal{V}\right)(4)\right)\right)=(21+7+7+1) \cdot \delta_{* 0}=36 . \delta_{* 0}$. Since we have also seen at the previous step that $\operatorname{dim}\left(H^{*}\left(K_{6}\right)\right)=\delta_{* 1}$, the long exact sequence in cohomology induced by (4.6) gives :

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(K_{6}\right) \cong 0 \rightarrow H^{0}\left(\left(\bigwedge^{5} \mathcal{V}\right)(4)\right) \cong \mathbb{C}^{36} \rightarrow H^{0}\left(K_{5}\right) \rightarrow H^{1}\left(K_{6}\right) \cong \mathbb{C} \rightarrow H^{1}\left(\left(\bigwedge^{5} \mathcal{V}\right)(4)\right) \cong 0 \rightarrow H^{1}\left(K_{5}\right) \rightarrow \\
& \rightarrow H^{2}\left(K_{6}\right) \cong 0 \rightarrow H^{2}\left(\left(\bigwedge^{5} \mathcal{V}\right)(4)\right) \cong 0 \rightarrow H^{2}\left(K_{5}\right) \rightarrow 0
\end{aligned}
$$

This yields $\operatorname{dim}\left(H^{*}\left(K_{5}\right)\right)=37 . \delta_{* 0}$.

- We now look at the short exact sequence :

$$
\begin{equation*}
0 \rightarrow K_{5} \xrightarrow{f_{4}}\left(\bigwedge^{4} \mathcal{V}\right)(4) \rightarrow K_{4} \rightarrow 0 \tag{4.7}
\end{equation*}
$$

As before we want to compute $H^{*}\left(\left(\bigwedge^{4} \mathcal{V}\right)(4)\right)$, and we start by decomposing

$$
\begin{aligned}
\left(\bigwedge^{4} \mathcal{V}\right)(4) & =\mathcal{O}_{\mathrm{Gr}(3,7)}(-4+4) \otimes\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \bigwedge^{3} \mathcal{U}_{3}^{\vee} \oplus \bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus\right. \\
& \left.\oplus \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee} \oplus \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)
\end{aligned}
$$

Then we proceed as before :

- The highest weight of $\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}$ is $(1,1,1 ; 0,0,0,0)+(1,1,1 ; 1,1,1,0)=(2,2,2 ; 1,1,1,0)$. Since $\delta+(2,2,2 ; 1,1,1,0)$ is dominant (4.2) and Theorem 4.2.10 give $\operatorname{dim}\left(H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee} \otimes\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)\right)=224 . \delta_{* 0}$.
- The highest weight of $\bigwedge^{3} \mathcal{U}_{3}^{\vee}$ is $(1,1,1 ; 0,0,0,0)$. Since $\delta+(1,1,1 ; 0,0,0,0)$ is dominant (4.2) and Theorem 4.2.10 give $\operatorname{dim}\left(H^{*}\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee}\right)\right)=35 . \delta_{* 0}$.
- The highest weight of $\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}$ is $(1,1,0 ; 0,0,0,0)+(1,1,1 ; 1,1,0,0)=(2,2,1 ; 1,1,0,0)$. Since $\delta+(2,2,1 ; 1,1,0,0)$ is dominant (4.2) and Theorem 4.2.10 give $\operatorname{dim}\left(H^{*}\left(\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)\right)=$ $392 . \delta_{* 0}$.
- The highest weight of $\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}$ is $(1,1,0 ; 0,0,0,0)+(1,1,1 ; 1,1,1,0)=(2,2,1 ; 1,1,1,0)$. Since $\delta+(2,2,1 ; 1,1,1,0)$ is dominant (4.2) and Theorem 4.2.10 give $\operatorname{dim}\left(H^{*}\left(\bigwedge^{2} \mathcal{U}_{3}^{\vee} \otimes\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)\right)=140 . \delta_{* 0}$.
- The highest weight of $\mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}$ is $(1,0,0 ; 0,0,0,0)+(1,1,1 ; 1,0,0,0)=(2,1,1 ; 1,0,0,0)$. Since $\delta+(2,1,1 ; 1,0,0,0)$ is dominant (4.2) and Theorem 4.2.10 give $\operatorname{dim}\left(H^{*}\left(\mathcal{U}_{3}^{\vee} \otimes \bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)\right)=224 . \delta_{* 0}$.
- The highest weight of $\mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}$ is $(1,0,0 ; 0,0,0,0)+(1,1,1 ; 1,1,0,0)=(2,1,1 ; 1,1,0,0)$. Since $\delta+(2,1,1 ; 1,1,0,0)$ is dominant (4.2) and Theorem 4.2.10 give $\operatorname{dim}\left(H^{*}\left(\mathcal{U}_{3}^{\vee} \otimes \bigwedge^{2}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)\right)=140 . \delta_{* 0}$.
- The highest weight of $\bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}$ is $(1,1,1 ; 0,0,0,0)$. Since $\delta+(1,1,1 ; 0,0,0,0)$ is dominant (4.2) and Theorem 4.2.10 give $\operatorname{dim}\left(H^{*}\left(\bigwedge^{4}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)\right)=35 . \delta_{* 0}$.
- The highest weight of $\bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}$ is $(1,1,1 ; 1,0,0,0)$. Since $\delta+(1,1,1 ; 1,0,0,0)$ is dominant (4.2) and Theorem 4.2.10 give $\operatorname{dim}\left(H^{*}\left(\bigwedge^{3}\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}\right)\right)=35 . \delta_{* 0}$

Finally $\operatorname{dim}\left(H^{*}\left(\left(\bigwedge^{4} \mathcal{V}\right)(4)\right)\right)=1225 . \delta_{* 0}$, and the long exact sequence in cohomology induced by (4.7) gives that $\operatorname{dim}\left(H^{*}\left(K_{4}\right)\right)=(1225-37) \cdot \delta_{0 *}=1188 . \delta_{0 *}$.

- We look now at the short exact sequence

$$
\begin{equation*}
0 \rightarrow K_{4} \xrightarrow{f_{3}}\left(\bigwedge^{3} \mathcal{V}\right)(4) \rightarrow K_{3} \rightarrow 0 \tag{4.8}
\end{equation*}
$$

Using Macaulay2 one can find that the highest weights associated to the decomposition of $\left(\bigwedge^{3} \mathcal{V}\right)(4)$ are : $(2,2,2 ; 0,0,0,0),(2,2,1 ; 0,0,0,0),(3,3,2 ; 1,1,1,0),(3,2,2 ; 1,1,1,0),(3,2,2 ; 1,1,0,0),(2,2,2 ; 1,1,0,0)$ and $(2,2,2 ; 1,0,0,0)$. For each of these weight, their sum with δ is non singular and dominant so using (4.2) and Theorem 4.2.10 one finds that they contribute to $\operatorname{dim}\left(H^{0}\left(\left(\bigwedge^{3} \mathcal{V}\right)(4)\right)\right)$ respectively by 490, 490, $3024,1323,3402,588$ and 784 . Therefore, $\operatorname{dim}\left(H^{*}\left(\left(\bigwedge^{3} \mathcal{V}\right)(4)\right)\right)=10101 . \delta_{0 *}$ and thus $\operatorname{dim}\left(H^{*}\left(K_{3}\right)\right)=$ $(10101-1188) . \delta_{0 *}=8913 . \delta_{* 0}$.

- Then we can look at the short exact sequence :

$$
\begin{equation*}
0 \rightarrow K_{3} \xrightarrow{f_{2}}\left(\bigwedge^{2} \mathcal{V}\right)(4) \rightarrow K_{2} \rightarrow 0 \tag{4.9}
\end{equation*}
$$

The highest weights associated to $\left(\bigwedge^{2} \mathcal{V}\right)(4)$ are : $(3,3,2 ; 0,0,0,0),(3,2,2 ; 0,0,0,0),(4,3,3 ; 1,1,1,0)$, $(3,3,3 ; 1,1,1,0),(3,3,3 ; 1,1,0,0)$. Their sums with δ are all dominant so they contribute to $\operatorname{dim}\left(H^{0}\left(\left(\bigwedge^{2} \mathcal{V}\right)(4)\right)\right)$ by respectively $5292,2646,15680,2940$ and 7056 . So $\operatorname{dim}\left(H^{*}\left(\left(\bigwedge^{2} \mathcal{V}\right)(4)\right)\right)=33614 . \delta_{0 *}$ and thus $\operatorname{dim}\left(H^{*}\left(K_{2}\right)\right)=(33614-8913) \cdot \delta_{0 *}=24701 . \delta_{0 *}$.

- We look then at the short exact sequence :

$$
\begin{equation*}
0 \rightarrow K_{2} \xrightarrow{f_{1}} \mathcal{V}(4) \rightarrow K_{1} \rightarrow 0 \tag{4.10}
\end{equation*}
$$

The highest weights associated to $\mathcal{V}(4)$ are $(3,3,3 ; 0,0,0,0),(4,3,3 ; 0,0,0,0)$ and $(4,4,4 ; 1,1,1,0)$. Their sums with δ are all dominant and non singular, and they contribute to $\operatorname{dim}\left(H^{0}(\mathcal{V}(4))\right)$ respectively by 4116, 20580 and 23520 . As a result $\operatorname{dim}\left(H^{*}(\mathcal{V}(4))\right)=48216 . \delta_{* 0}$ and so $\operatorname{dim}\left(H^{*}\left(K_{1}\right)\right)=(48216-24701) \cdot \delta_{0 *}=$ $23515 . \delta_{* 0}$.

- Finally, there is a short exact sequence :

$$
\begin{equation*}
0 \rightarrow K_{1} \rightarrow \mathcal{O}_{\operatorname{Gr}(3,7)}(4) \rightarrow \mathcal{O}_{X_{4}}(4) \rightarrow 0 \tag{4.11}
\end{equation*}
$$

And $\mathcal{O}_{\operatorname{Gr}(3,7)}(4)=\left(\bigwedge^{3} \mathcal{U}_{3}^{\vee}\right)^{\otimes 4}$ has highest weight $(4,4,4 ; 0,0,0,0)$. Its sum with δ is dominant and (4.2) and Theorem 4.2.10 give $\operatorname{dim}\left(H^{*}\left(\mathcal{O}_{\operatorname{Gr}(3,7)}(4)\right)\right)=24696 . \delta_{0 *}$. So using the long exact sequence in cohomology induced by (4.11) one finds $\operatorname{dim}\left(H^{*}\left(\mathcal{O}_{X_{4}}(4)\right)\right)=(24696-23515) . \delta_{0 *}=1181 . \delta_{0 *}$.

Thus $\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(4)\right)=\chi\left(\mathcal{O}_{\operatorname{Gr}(3,7)}, \mathcal{O}_{X_{4}}(4)\right)=\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{dim}\left(H^{i}\left(\mathcal{O}_{\operatorname{Gr}(3,7)}, \mathcal{O}_{X_{4}}(4)\right)\right)=1181$.
With a similar reasoning, but with (4.3) tensored by $\mathcal{O}_{\operatorname{Gr}(3,7)}, \mathcal{O}_{\mathrm{Gr}(3,7)}(1), \mathcal{O}_{\mathrm{Gr}(3,7)}(2)$ or $\mathcal{O}_{\mathrm{Gr}(3,7)}(3)$ instead of $\mathcal{O}_{\mathrm{Gr}(3,7)}(4)$, one can compute the following:

Proposition 4.2.12. The following Euler characteristics are :

$$
\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}\right)=1, \chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(1)\right)=20, \chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(2)\right)=124 \text { and } \chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(3)\right)=445
$$

To be able to compute the rest of the Euler characteristics related to the $\mathcal{O}_{X_{4}}(i)$ we can use Serre duality, which we are going to recall just below, but for this we need to know the canonical bundle $\omega_{X_{4}}$ of X_{4}.
Proposition 4.2.13. The canonical bundle of X_{4} is $\omega_{X_{4}}=\mathcal{O}_{X_{4}}(-h)$.

Proof. By ([20], proof of Lemma 4.1), for any $X_{5}, \omega_{X_{5}}=\mathcal{O}_{X_{5}}(-2 h)$. Since $X_{4, \lambda, \mu, \nu}$ is a hyperplane section of $X_{5, \lambda, \mu}$, we can use the adjunction formula which yields :

$$
\begin{aligned}
\omega_{X_{4}} & =j^{*}\left(\left(\omega_{X_{5}} \otimes \mathcal{O}_{X_{5}}(h)\right)\right) \\
& =j^{*}\left(\left(\mathcal{O}_{X_{5}}(-2 h) \otimes \mathcal{O}_{X_{5}}(h)\right)\right)=j^{*}\left(\mathcal{O}_{X_{5}}(-h)\right)=\mathcal{O}_{X_{4}}(-h)
\end{aligned}
$$

where j is the injection $j: X_{4} \rightarrow X_{5}$.
Let us recall now Serre duality (see for instance Theorem 3.12 of [14]) :
Theorem 4.2.14 (Serre duality). Let X be a smooth projective variety over a field. Then for any $E, F \in D^{b}(X)$, there are isomorphisms $H^{i}(E, F) \cong\left(H^{\operatorname{dim}(X)-i}\left(F, E \otimes \omega_{X}\right)\right)^{*}$ for all $i \in \mathbb{Z}$. Here ω_{X} is the canonical bundle of X.

We can now finish to compute the Euler characteristics related to the $\mathcal{O}_{X_{4}}(i)$:
Proposition 4.2.15. Let \tilde{M}^{\prime} be the matrix whose coefficients are $\left(m_{i j}=\chi\left(\mathcal{O}_{X_{4}}((i-1) h), \mathcal{O}_{X_{4}}((j-1) h)\right)\right)_{1 \leq i, j \leq 5}$ then $\tilde{M}^{\prime}=\left(\begin{array}{ccccc}1 & 20 & 124 & 445 & 1181 \\ 1 & 1 & 20 & 124 & 445 \\ 20 & 1 & 1 & 20 & 124 \\ 124 & 20 & 1 & 1 & 20 \\ 445 & 124 & 20 & 1 & 1\end{array}\right)$.
Proof. From Proposition 4.2.11 and Proposition 4.2.12, we know already the first line of \tilde{M}^{\prime}. Using then
$H^{*}\left(\mathcal{O}_{X_{4}}(i), \mathcal{O}_{X_{4}}(j)\right)=H^{*}\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(j-i)\right)$ for any $i, j \in \mathbb{Z}$ we get $\tilde{M}^{\prime}=\left(\begin{array}{ccccc}1 & 20 & 124 & 445 & 1181 \\ * & 1 & 20 & 124 & 445 \\ * & * & 1 & 20 & 124 \\ * & * & * & 1 & 20 \\ * & * & * & * & 1\end{array}\right)$.
Using again $\chi\left(\mathcal{O}_{X_{4}}(i), \mathcal{O}_{X_{4}}(j)\right)=\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(j-i)\right)$ for any $i, j \in \mathbb{Z}$ we also get that the missing coefficients are all equal to one of the following : $\left\{\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(j)\right),-4 \leq j \leq-1\right\}$. But by the hypothesis we are keeping from [20], X_{4} is smooth so Serre duality gives : $H^{*}\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(j)\right) \cong H^{*}\left(\mathcal{O}_{X_{4}}(j), \omega_{X_{4}}\right)^{\vee}=H^{*}\left(\mathcal{O}_{X_{4}}, \omega_{X_{4}}(-j)\right)^{\vee}$. By Proposition 4.2.13 we know that $\omega_{X_{4}}=\mathcal{O}_{X_{4}}(-1)$, so finally :

$$
\begin{aligned}
& \chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(-1)\right)=\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}\right) \\
& \chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(-2)\right)=\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(1)\right) \\
& \chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(-3)\right)=\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(2)\right) \\
& \chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(-4)\right)=\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{X_{4}}(3)\right) .
\end{aligned}
$$

This allows us to complete \tilde{M}^{\prime} as above.

4.3 Euler characteristics involving $\mathcal{O}_{D_{3}}\left(V_{E}\right)$

In this subsection, we want to compute the Euler characteristics related to $\mathcal{O}_{D_{3}}\left(V_{E}\right)$. Let us recall the following notations from section 2.1.1:

Lemma 4.3.1. The following Euler characteristics are :

$$
\left(\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right), \ldots, \chi\left(\pi^{*} \mathcal{O}_{X_{4}}(4 h), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)\right)=(0,0,12,36,72)
$$

Proof. Let $0 \leq i \leq 4$, let us first show that $\chi_{\tilde{X}_{4}}\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=\chi_{\Sigma_{2}}\left(\mathcal{O}_{\Sigma_{2}},\left.\mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}(-i h)\right)$. Indeed,

$$
\begin{aligned}
H^{*}\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), j_{*} \mathcal{O}_{D_{3}}\left(V_{E}\right)\right) & =H^{*}\left(\mathcal{O}_{X_{4}}(i h), \pi_{*} j_{*} \mathcal{O}_{D_{3}}\left(V_{E}\right)\right) \\
& =H^{*}\left(\mathcal{O}_{X_{4}}(i h), i_{*} p_{*} \mathcal{O}_{D_{3}}\left(V_{E}\right)\right) \\
& =H^{*}\left(i^{*} \mathcal{O}_{X_{4}}, p_{*} \mathcal{O}_{D_{3}}\left(V_{E}-i h\right)\right) \\
& =H^{*}\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{D_{3}}\left(V_{E}-i h\right)\right)
\end{aligned}
$$

Finally, since $D_{3}=\mathbb{P}_{\Sigma_{2}}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)$ the projection formula yields :

$$
p_{*} \mathcal{O}_{D_{3}}\left(V_{E}-i h\right)=p_{*} \mathcal{O}_{D_{3}}\left(V_{E}\right) \otimes \mathcal{O}_{\Sigma_{2}}(-i h)=\left.\mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}(-i h) .
$$

We know from Lemma 4.14 of [20] that \mathcal{V}_{S} and \mathcal{V}_{F} are respectively the monads of

$$
0 \rightarrow \mathcal{O}_{S_{2}}\left(-\bar{h}_{1}\right) \oplus \mathcal{O}_{S_{2}}\left(-\bar{h}_{2}\right) \rightarrow\left(\bigwedge^{2} A_{1} \oplus \bigwedge^{2} A_{2}\right) \otimes \mathcal{O}_{S_{2}} \rightarrow \mathcal{O}_{S_{2}}\left(\bar{h}_{1}\right) \oplus \mathcal{O}_{S_{2}}\left(\bar{h}_{2}\right) \rightarrow 0
$$

and

$$
0 \rightarrow \mathcal{O}_{\Sigma_{2}}\left(-h_{1}\right) \oplus \mathcal{O}_{\Sigma_{2}}\left(-h_{2}\right) \rightarrow\left(A_{1} \oplus A_{2}\right) \otimes \mathcal{O}_{\Sigma_{2}} \rightarrow \mathcal{O}_{\Sigma_{2}}\left(h_{1}\right) \oplus \mathcal{O}_{\Sigma_{2}}\left(h_{2}\right) \rightarrow 0
$$

Moreover, $A_{1} \cong A_{2} \cong \bigwedge^{2} A_{1} \cong \bigwedge^{2} A_{2} \cong \mathbb{C}^{3}$ and we know from [20] that Σ_{2} and S_{2} are both degree 6 del Pezzo surfaces, cut out by two divisors of bidegree $(1,1)$ in $\mathbb{P}\left(A_{1}\right) \oplus \mathbb{P}\left(A_{2}\right)$, respectively $\mathbb{P}\left(\bigwedge^{2} A_{1}\right) \oplus \mathbb{P}\left(\bigwedge^{2} A_{2}\right)$, with canonical sheaf $\mathcal{O}_{\Sigma_{2}}\left(-h_{1}-h_{2}\right)=\mathcal{O}_{\Sigma_{2}}(-h)$, respectively $\mathcal{O}_{S_{2}}\left(-\bar{h}_{1}-\bar{h}_{2}\right)$.
Hence, $\operatorname{ch}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)=(2,0,-2)=\operatorname{ch}\left(\mathcal{V}_{S}\right)$ and

$$
\chi\left(\mathcal{O}_{\Sigma_{2}},\left.\mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}(-i h)\right)=\chi\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}^{\vee}\left(-i\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)=\chi\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(-i\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)
$$

since $\mathcal{V}_{S} \cong \mathcal{V}_{S}^{\vee}$ by Proposition 1.2.2. Furthermore :

- We saw in Lemma 3.1.3 that $\chi\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\right)=0$.
- By 11. of Theorem 1.2 .1 and Serre duality, we have $H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(-\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right) \cong H^{2-*}\left(\mathcal{V}_{S}, \mathcal{O}_{S_{2}}\right)=$ $H^{2-*}\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}^{\vee}\right)=0$ again by Lemma 3.1.3 and $\mathcal{V}_{S} \cong \mathcal{V}_{S}^{\vee}$. So $\chi\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(-\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)=0$.
- Using again Serre duality and $\mathcal{V}_{S} \cong \mathcal{V}_{S}^{\vee}$ one finds $H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(-2\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right) \cong H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)$. Hence by Lemma 3.1.4, $\chi\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(-2\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)=12$.
- To compute $\chi\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(-3\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)$ we will use the same method as in the proof of Lemma 3.1.4. We first look at the short exact sequence induced by (1.3) :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{S_{2}}\left(-4 \bar{h}_{1}-3 \bar{h}_{2}\right) \oplus \mathcal{O}_{S_{2}}\left(-3 \bar{h}_{1}-4 \bar{h}_{2}\right) \rightarrow \Omega_{1}\left(-2 \bar{h}_{1}-3 \bar{h}_{2}\right) \oplus \Omega_{2}\left(-3 \bar{h}_{1}-2 \bar{h}_{2}\right) \rightarrow \mathcal{V}_{S}\left(-3 \bar{h}_{1}-3 \bar{h}_{2}\right) \rightarrow 0 \tag{4.12}
\end{equation*}
$$

Moreover, (3.1) induces the following resolution in $\mathbb{P}^{2} \times \mathbb{P}^{2}$:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-6,-5) \rightarrow \mathcal{O}(-5,-4)^{\oplus 2} \rightarrow \mathcal{O}(-4,-3) \rightarrow \mathcal{O}_{S_{2}}\left(-4 \bar{h}_{1}-3 \bar{h}_{2}\right) \rightarrow 0 \tag{4.13}
\end{equation*}
$$

Using Künneth formula as in the proof of Lemma 3.1.3, one finds: $\operatorname{dim}\left(H^{*}(\mathcal{O}(-6,-5))\right)=60 . \delta_{*, 4}$, $\operatorname{dim}\left(H^{*}(\mathcal{O}(-5,-4))^{\oplus 2}\right)=36 . \delta_{*, 4}$ and $\operatorname{dim}\left(H^{*}(\mathcal{O}(-4,-3))\right)=3 . \delta_{*, 4}$. Splitting (4.13) into short exact sequences and computing the Euler characteristics of each term finally yields:

$$
\chi\left(\mathcal{O}_{S_{2}}\left(-4 \bar{h}_{1}-3 \bar{h}_{2}\right)\right)=3-(36-60)=27
$$

A very similar calculation shows $\chi\left(\mathcal{O}_{S_{2}}\left(-3 \bar{h}_{1}-4 \bar{h}_{2}\right)\right)=27$.
The resolution (3.1) also induces the following :

$$
\begin{equation*}
0 \rightarrow \Omega_{1}(-4,-5) \rightarrow \Omega_{1}(-3,-4)^{\oplus 2} \rightarrow \Omega_{1}(-2,-3) \rightarrow \Omega_{1}\left(-2 \bar{h}_{1}-3 \bar{h}_{2}\right) \rightarrow 0 \tag{4.14}
\end{equation*}
$$

and using again Künneth formula and (3.2) one finds :

$$
\operatorname{dim}\left(H^{*}\left(\Omega_{1}(-4,-5)\right)\right)=90 . \delta_{*, 4}, \operatorname{dim}\left(H^{*}\left(\Omega_{1}(-3,-4)^{\oplus 2}\right)\right)=48 . \delta_{*, 4} \text { and } \operatorname{dim}\left(H^{*}\left(\Omega_{1}(-2,-3)\right)\right)=3 . \delta_{*, 4}
$$

Splitting (4.14) into short exact sequences and computing Euler characteristics then yields

$$
\chi\left(\Omega_{1}\left(-2 \bar{h}_{1}-3 \bar{h}_{2}\right)\right)=3-(48-90)=45 .
$$

A very similar reasoning gives $\chi\left(\Omega_{2}\left(-3 \bar{h}_{1}-2 \bar{h}_{2}\right)\right)=45$.
So finally, using (4.12) one finds $\chi\left(\mathcal{V}_{S}\left(-3\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)=90-54=36$.

- We will compute $\chi\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(-4\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)$ the same way as $\chi\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(-3\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)$. There is a short exact sequence :
$0 \rightarrow \mathcal{O}_{S_{2}}\left(-5 \bar{h}_{1}-4 \bar{h}_{2}\right) \oplus \mathcal{O}_{S_{2}}\left(-4 \bar{h}_{1}-5 \bar{h}_{2}\right) \rightarrow \Omega_{1}\left(-3 \bar{h}_{1}-4 \bar{h}_{2}\right) \oplus \Omega_{2}\left(-4 \bar{h}_{1}-3 \bar{h}_{2}\right) \rightarrow \mathcal{V}_{S}\left(-4\left(\bar{h}_{1}+\bar{h}_{2}\right)\right) \rightarrow 0$
and a resolution

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-7,-6) \rightarrow \mathcal{O}(-6,-5)^{\oplus 2} \rightarrow \mathcal{O}(-5,-4) \rightarrow \mathcal{O}_{S_{2}}\left(-5 \bar{h}_{1}-4 \bar{h}_{2}\right) \rightarrow 0 \tag{4.16}
\end{equation*}
$$

By Künneth formula (and what did before), $\operatorname{dim}\left(H^{*}(\mathcal{O}(-7,-6))\right)=150 . \delta_{*, 4}, \operatorname{dim}\left(H^{*}\left(\mathcal{O}(-6,-5)^{\oplus 2}\right)\right)=$ $120 . \delta_{*, 4}$ and $\operatorname{dim}\left(H^{*}(\mathcal{O}(-5,-4))\right)=18 . \delta_{*, 4}$. As a result, $\chi\left(\mathcal{O}_{S_{2}}\left(-5 \bar{h}_{1}-4 \bar{h}_{2}\right)\right)=18-(120-150)=48$ and similarly, $\chi\left(\mathcal{O}_{S_{2}}\left(-4 \bar{h}_{1}-5 \bar{h}_{2}\right)\right)=18-(120-150)=48$. We can then look at the resolution :

$$
\begin{equation*}
0 \rightarrow \Omega_{1}(-5,-6) \rightarrow \Omega_{1}(-4,-5)^{\oplus 2} \rightarrow \Omega_{1}(-3,-4) \rightarrow \Omega_{1}\left(-3 \bar{h}_{1}-4 \bar{h}_{2}\right) \rightarrow 0 \tag{4.17}
\end{equation*}
$$

which yields $\operatorname{dim}\left(H^{*}\left(\Omega_{1}(-5,-6)\right)\right)=240 . \delta_{*, 4}, \operatorname{dim}\left(H^{*}\left(\Omega_{1}(-4,-5)^{\oplus 2}\right)\right)=180 . \delta_{*, 4}$ and $\operatorname{dim}\left(H^{*}\left(\Omega_{1}(-3,-4)\right)\right)=24 . \delta_{*, 4}$.
Therefore $\chi\left(\Omega_{1}\left(-3 \bar{h}_{1}-4 \bar{h}_{2}\right)\right)=24-(180-240)=84$ and $\chi\left(\Omega_{2}\left(-4 \bar{h}_{1}-3 \bar{h}_{2}\right)\right)=84$.
Finally, $\chi\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}\left(-4\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\right)=168-96=72$.

Remark 4.3.2. In Lemma 4.3.1, one could also have used Hirzebruch-Riemann-Roch together with Lemma 4.1.3 to compute the $\chi\left(\mathcal{O}_{\Sigma_{2}},\left.\mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}(-i h)\right)$.

Before we can compute the other Euler characteristics involving $\mathcal{O}_{D_{3}}\left(V_{E}\right)$, we need to look at Σ_{2}. This is what we will do in the following subsection:

4.3.1 The surface Σ_{2}

Along this subsection we are going to use the following notations :

where Σ_{2} and X_{4} are as in Theorem 1.2.3, i is the associated embedding and ϕ is a blow-up of \mathbb{P}^{2} in three points. Indeed we know from 7. of Theorem 1.2.3 that Σ_{2} is a smooth degree 6 del Pezzo surface, hence it is the blow-up of \mathbb{P}^{2} in three points which we are going to call p_{1}, p_{2} and p_{3} (see for instance Theorem 4.6 and Remark 4.7.1 in V, 4 of [12]).

Definition 4.3.3. Let us denote by H the hyperplane class in \mathbb{P}^{2}. We will also write H for its pull-back to Σ_{2}, by abuse of notation.
If ϕ is the blow-up of \mathbb{P}^{2} in the three points p_{1}, p_{2} and p_{3} we are going to denote by E_{i} the exceptional divisor associated to p_{i} for $1 \leq i \leq 3$.

Lemma 4.3.4. The Chern characters of the derived pushforward ϕ_{*} of the following line bundles are :

- $\operatorname{ch}\left(R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}+E_{3}\right)=(1,0,0) ;\right.$
- $\operatorname{ch}\left(R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}+2 E_{3}\right)=(1,0,-3) ;\right.$
- $\operatorname{ch}\left(R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(3 E_{1}+3 E_{2}+3 E_{3}\right)=(1,0,-9) ;\right.$
- $\operatorname{ch}\left(R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(4 E_{1}+4 E_{2}+4 E_{3}\right)=(1,0,-18) ;\right.$
- $\operatorname{ch}\left(R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(5 E_{1}+5 E_{2}+5 E_{3}\right)=(1,0,-30)\right.$.

Proof. First of all let us consider $f: T \rightarrow \mathbb{P}^{2}$ the blow-up in a point p with exceptional divisor E. We will first compute the Chern characters of $R^{*} f_{*} \mathcal{O}_{T}(\alpha E)$ for $1 \leq \alpha \leq 5$ and then we will deduce from them the Chern characters of the sheaves listed above.

- To start with, there is a short exact sequence on $T: 0 \rightarrow \mathcal{O}_{T}(-E) \rightarrow \mathcal{O}_{T} \rightarrow \mathcal{O}_{E} \rightarrow 0$. Since E is a \mathbb{P}^{1} in T and $E^{2}=-1$, tensoring by $\mathcal{O}_{T}(E)$ gives a short exact sequence :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{T} \rightarrow \mathcal{O}_{T}(E) \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(-1) \rightarrow 0 \tag{4.19}
\end{equation*}
$$

which induces a long exact sequence :

$$
\begin{align*}
& 0 \rightarrow R^{0} f_{*} \mathcal{O}_{T} \rightarrow R^{0} f_{*} \mathcal{O}_{T}(E) \rightarrow R^{0} f_{*} \mathcal{O}_{\mathbb{P}^{1}}(-1) \rightarrow R^{1} f_{*} \mathcal{O}_{T} \rightarrow R^{1} f_{*} \mathcal{O}_{T}(E) \rightarrow R^{1} f_{*} \mathcal{O}_{\mathbb{P}^{1}}(-1) \rightarrow \tag{4.20}\\
& \quad \rightarrow R^{2} f_{*} \mathcal{O}_{T} \rightarrow R^{2} f_{*} \mathcal{O}_{T}(E) \rightarrow R^{2} f_{*} \mathcal{O}_{\mathbb{P}^{1}}(-1) \rightarrow 0 \tag{4.21}
\end{align*}
$$

On one hand, $R^{*} f_{*} \mathcal{O}_{T}=f_{*} \mathcal{O}_{T}=\mathcal{O}_{\mathbb{P}^{2}}$ (see for instance Proposition 3.4 of V.3. in [12]), on the other hand since $f(E)=\{p\},\left.f\right|_{E}$ has image supported in one point, thus $R^{*} f_{*} \mathcal{O}_{E}(E)=R^{*} f_{*} \mathcal{O}_{\mathbb{P}^{1}}(-1)=$ $\operatorname{Hom}^{*}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \otimes k(p)$ where $k(p)$ is the skyscraper sheaf supported in p (see for instance the beginning of page 73 of [14]). Thus the long exact sequence (4.20) gives actually :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}} \rightarrow R^{0} f_{*} \mathcal{O}_{T}(E) \rightarrow 0 \rightarrow 0 \rightarrow R^{1} f_{*} \mathcal{O}_{T}(E) \rightarrow 0 \rightarrow 0 \rightarrow R^{2} f_{*} \mathcal{O}_{T}(E) \rightarrow 0 \tag{4.22}
\end{equation*}
$$

since $\operatorname{Hom}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)=0$. So finally $R^{*} f_{*} \mathcal{O}_{T}(E)=\mathcal{O}_{\mathbb{P}^{2}}$ and thus $\operatorname{ch}\left(R^{*} f_{*} \mathcal{O}_{T}(E)\right)=(1,0,0)$.

- Tensoring now (4.19) by $\mathcal{O}_{T}(E)$ we get the short exact sequence $0 \rightarrow \mathcal{O}_{T}(E) \rightarrow \mathcal{O}_{T}(2 E) \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(-2) \rightarrow$ 0 since $2 E^{2}=-2$. This gives a long exact sequence similar to (4.20). Since we have just computed $R^{*} f_{*} \mathcal{O}_{T}(E)$ and since by Serre duality $\operatorname{Hom}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}(-2)\right) \cong \operatorname{Hom}^{1-*}\left(\mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}\right) \cong \mathbb{C} \delta_{1-*, 0}$, this yields :

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}} \rightarrow R^{0} f_{*} \mathcal{O}_{T}(2 E) \rightarrow 0 \rightarrow 0 \rightarrow R^{1} f_{*} \mathcal{O}_{T}(2 E) \rightarrow \mathbb{C} \otimes k(p) \rightarrow 0 \rightarrow R^{2} f_{*} \mathcal{O}_{T}(2 E) \rightarrow 0
$$

So $R^{0} f_{*} \mathcal{O}_{T}(2 E)=\mathcal{O}_{\mathbb{P}^{2}}$ and $R^{1} f_{*} \mathcal{O}_{T}(2 E)=k(p)$. Therefore $\operatorname{ch}\left(R^{*} f_{*} \mathcal{O}_{T}(2 E)\right)=(1,0,0)-(0,0,1)=$ $(1,0,-1)$.

- Proceeding the same way gives $\operatorname{ch}\left(R^{*} f_{*} \mathcal{O}_{T}(3 E)\right)=(1,0,-3), \operatorname{ch}\left(R^{*} f_{*} \mathcal{O}_{T}(4 E)\right)=(1,0,-6)$ and $\operatorname{ch}\left(R^{*} f_{*} \mathcal{O}_{T}(5 E)\right)=(1,0,-10)$.

Let us go back to Σ_{2} now. By what we have just seen (replacing E by E_{1} and p by p_{1}), $R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(E_{1}\right)=\mathcal{O}_{\mathbb{P}^{2}}$ and the equivalent of (4.19) with E_{2}, tensored by $\mathcal{O}_{\Sigma_{2}}\left(E_{1}\right)$, gives the short exact sequence : $0 \rightarrow \mathcal{O}_{\Sigma_{2}}\left(E_{1}\right) \rightarrow$ $\mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(-1) \rightarrow 0$ since $E_{1} . E_{2}=0$. Since $R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}=R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(E_{1}\right)=\mathcal{O}_{\mathbb{P}^{2}}$, by the same reasoning as above we get that $R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}\right)=\mathcal{O}_{\mathbb{P}^{2}}$. Exactly the same way, the equivalent of (4.19) with E_{3} tensored by $\mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}\right)$ gives a short exact sequence : $0 \rightarrow \mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}\right) \rightarrow \mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}+E_{3}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(-1) \rightarrow 0$
since $E_{1} \cdot E_{3}=E_{2} \cdot E_{3}=0$. So $R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}+E_{3}\right)=\mathcal{O}_{\mathbb{P}^{2}}$ and $\operatorname{ch}\left(R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}+E_{3}\right)\right)=(1,0,0)$.
Similarly, one gets a short exact sequence : $0 \rightarrow \mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}\right) \rightarrow \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+E_{2}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(-2) \rightarrow 0$ by tensoring (4.19) for E_{1} by $\mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}\right)$. We have seen that $R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(E_{1}+E_{2}\right)=\mathcal{O}_{\mathbb{P}^{2}}$ so using again the same type of reasoning as before, one gets that $R^{0} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+E_{2}\right)=\mathcal{O}_{\mathbb{P}^{2}}$ and $R^{1} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+E_{2}\right)=\mathbb{C} \otimes k\left(p_{1}\right)$. Thus $\operatorname{ch}\left(R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+E_{2}\right)\right)=(1,0,-1)$. Tensoring now (4.19) for E_{2} by $\mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+E_{2}\right)$ one gets a short exact sequence $0 \rightarrow \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+E_{2}\right) \rightarrow \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(-2) \rightarrow 0$. This yields the long exact sequence :

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}} \rightarrow R^{0} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}\right) \rightarrow 0 \rightarrow k\left(p_{1}\right) \rightarrow R^{1} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}\right) \rightarrow \mathbb{C} \otimes k\left(p_{2}\right) \rightarrow \\
& 0 \rightarrow R^{2} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}\right) \rightarrow 0 .
\end{aligned}
$$

So $R^{0} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}\right)=\mathcal{O}_{\mathbb{P}^{2}}$ and $\operatorname{ch}\left(R^{1} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}\right)\right)=(0,0,2)$ thus $\operatorname{ch}\left(R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}\right)\right)=$ $(1,0,-2)$.
Finally, from the short exact sequence $0 \rightarrow \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}\right) \rightarrow \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}+E_{3}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(-1) \rightarrow 0$ one gets $R^{0} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}+E_{3}\right)=\mathcal{O}_{\mathbb{P}^{2}}$ and $\operatorname{ch}\left(R^{1} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}+E_{3}\right)\right)=(0,0,2)$. Then from the short exact sequence $0 \rightarrow \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}+E_{3}\right) \rightarrow \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}+2 E_{3}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(-2) \rightarrow 0$ one gets $R^{0} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}+\right.$ $\left.2 E_{3}\right)=\mathcal{O}_{\mathbb{P}^{2}}$ and $\operatorname{ch}\left(R^{1} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+2 E_{2}+2 E_{3}\right)\right)=(0,0,2)+(0,0,1)=(0,0,3)$. Therefore $\operatorname{ch}\left(R^{*} \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(2 E_{1}+\right.\right.$ $\left.\left.2 E_{2}+2 E_{3}\right)\right)=(1,0,-3)$.
The other Chern characters mentioned above can be computed using exactly the same method.
Lemma 4.3.5. The following holds : $\left(\chi\left(\mathcal{O}_{X_{4}}, i_{*} \mathcal{O}_{\Sigma_{2}}\right), \ldots, \chi\left(\mathcal{O}_{X_{4}}(5 h), i_{*} \mathcal{O}_{\Sigma_{2}}\right)\right)=\left(\begin{array}{llllll}1 & 1 & 7 & 19 & 37 & 61\end{array}\right)$.
Proof. First of all, since i_{*} is right adjoint to i^{*} and ϕ_{*} is right adjoint to ϕ^{*} (see for instance iii) of page 83 in [14]),

$$
H^{*}\left(\mathcal{O}_{X_{4}}, i_{*} \mathcal{O}_{\Sigma_{2}}\right) \cong H^{*}\left(i^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{\Sigma_{2}}\right)=H^{*}\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\right)=H^{*}\left(\phi^{*} \mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\Sigma_{2}}\right) \cong H^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}, \phi_{*} \mathcal{O}_{\Sigma_{2}}\right)
$$

Moreover, $\phi_{*} \mathcal{O}_{\Sigma_{2}} \cong \mathcal{O}_{\mathbb{P}^{2}}$ (see for instance Proposition 3.4 of V.3. in [12]) so finally

$$
\chi\left(\mathcal{O}_{X_{4}}, i_{*} \mathcal{O}_{\Sigma_{2}}\right)=\chi\left(\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}\right)=1
$$

Secondly, with a similar reasoning one gets $H^{*}\left(\mathcal{O}_{X_{4}}(h), i_{*} \mathcal{O}_{\Sigma_{2}}\right) \cong H^{*}\left(i^{*} \mathcal{O}_{X_{4}}(h), \mathcal{O}_{\Sigma_{2}}\right)=H^{*}\left(\mathcal{O}_{\Sigma_{2}}(h), \mathcal{O}_{\Sigma_{2}}\right)=$ $H^{*}\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}(-h)\right)$. By Lemma 4.1.2, $\left.\omega_{\Sigma}=\mathcal{O}_{\Sigma_{2}}(-h)\right)$ and since Σ_{2} is smooth we can use Serre duality, which yields $H^{*}\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}(-h)\right) \cong H^{2-*}\left(\mathcal{O}_{\Sigma_{2}}(-h), \mathcal{O}_{\Sigma_{2}}(-h)\right)^{\vee}=H^{2-*}\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\right)^{\vee}$. Thus, since for any $q \in \mathbb{Z}$, $(-1)^{q}=(-1)^{2-q}$ this implies $\chi\left(\mathcal{O}_{X_{4}}(h), i_{*} \mathcal{O}_{\Sigma_{2}}\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\right)=1$ by the computation we did just above.
For the rest of the coefficients we are going to use Hirzebruch-Riemann-Roch's Theorem.
Let us first start as before : $H^{*}\left(\mathcal{O}_{X_{4}}(2 h), i_{*} \mathcal{O}_{\Sigma_{2}}\right) \cong H^{*}\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}(-2 h)\right)=H^{*}\left(\mathcal{O}_{\Sigma_{2}}, \omega_{\Sigma}^{\otimes 2}\right)$. Moreover, if we denote by E_{i} the exceptional divisor in Σ_{2} associated to p_{i} by the blow-up ϕ as in Definition 4.3.3, then using for instance Notation 4.7.3 and Proposition 4.8, in V,4 of [12], one gets that $\omega_{\Sigma}=\mathcal{O}_{\Sigma_{2}}\left(-3 H+E_{1}+E_{2}+E_{3}\right)$ where H is as in Definition 4.3.3. Thus

$$
\begin{aligned}
H^{*}\left(\mathcal{O}_{\Sigma_{2}}, \omega_{\Sigma}^{\otimes 2}\right) & =H^{*}\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(-6 H+2 E_{1}+2 E_{2}+2 E_{3}\right)\right) \\
& =H^{*}\left(\phi^{*} \mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\Sigma_{2}}\left(-6 H+2 E_{1}+2 E_{2}+2 E_{3}\right)\right) \\
& \cong H^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}, \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(-6 H+2 E_{1}+2 E_{2}+2 E_{3}\right)\right) .
\end{aligned}
$$

By the projection formula one gets that $\phi_{*} \mathcal{O}_{\Sigma_{2}}\left(-6 H+2 E_{1}+2 E_{2}+2 E_{3}\right)=\mathcal{O}_{\mathbb{P}^{2}}(-6 H) \otimes \mathcal{O}_{\mathbb{P}^{2}}\left(\phi_{*}\left(2 E_{1}+2 E_{2}+2 E_{3}\right)\right)$. But since here ϕ_{*} is $R^{*} \phi_{*}$ (as mentioned in the beginning of section 1.1) by Lemma 4.3.4, $\operatorname{ch}\left(\mathcal{O}_{\mathbb{P}^{2}}\left(\phi_{*}\left(2 E_{1}+2 E_{2}+\right.\right.\right.$ $\left.\left.\left.2 E_{3}\right)\right)\right)=(1,0,-3)$.
Moreover, we know that the Chern character of $\mathcal{O}_{\mathbb{P}^{2}}(-6 H)$ is $\left(1,-6 H, \frac{\left(-6 H^{2}\right)}{2}\right)=(1,-6 H, 18)$ since $H^{2}=1$. Therefore

$$
\operatorname{ch}\left(\mathcal{O}_{\mathbb{P}^{2}}(-6 H) \otimes \mathcal{O}_{\mathbb{P}^{2}}\left(\phi_{*}\left(2 E_{1}+2 E_{2}+2 E_{3}\right)\right)\right)=(1,0,-3)(1,-6 H, 18)=(1,-6 H, 15)
$$

The Hirzebruch-Riemann-Roch Theorem then gives

$$
\chi\left(\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(-6 H) \otimes \mathcal{O}_{\mathbb{P}^{2}}\left(\phi_{*}\left(2 E_{1}+2 E_{2}+2 E_{3}\right)\right)\right)=\int_{\mathbb{P}^{2}}(1,-6 H, 15) \cdot \operatorname{td}(\mathcal{T})
$$

where $\operatorname{td}(\mathcal{T})$ is the Todd class of the tangent sheaf \mathcal{T} of \mathbb{P}^{2}. Since \mathcal{T} is the dual of Ω we have a short exact sequence : $0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(1)^{\oplus 3} \rightarrow \mathcal{T} \rightarrow 0$. Thus $c_{1}(\mathcal{T})=3 H$ and $c_{2}(\mathcal{T})=3$. Hence, using the formula for the Todd class page 432 in Appendix A of [12], one finds that the Todd class of \mathcal{T} is :

$$
\left(1, \frac{\mathrm{c}_{1}(\mathcal{T})}{2}, \frac{\mathrm{c}_{1}(\mathcal{T})^{2}+\mathrm{c}_{2}(\mathcal{T})}{12}\right)=\left(1, \frac{3}{2} H, 1\right) .
$$

So finally, $\int_{\mathbb{P}^{2}}(1,-6 H, 15) \cdot \operatorname{td}(\mathcal{T})=\int_{\mathbb{P}^{2}}\left(1,-\frac{9}{2} H, 15+1-9\right)=\int_{\mathbb{P}^{2}}\left(1,-\frac{9}{2} H, 7\right)=7$.
For the remaining Euler characteristics, one can proceed similarly.
Remark 4.3.6. The Euler characteristics in Lemma 4.3 .5 can also be computed using Hirzebruch-Riemann-Roch and Lemma 4.1.3.

4.3.2 Back to $\mathcal{O}_{D_{3}}\left(V_{E}\right)$

We can now compute the following :
Lemma 4.3.7. The following Euler characteristics are : $\left(\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}\right), \ldots, \chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(4 h)\right)\right)=$ $(1,7,19,37,61)$.

Proof. Let $0 \leq i \leq 4$. Since \tilde{X}_{4} is the blow-up of X_{4} in the codimension 2 subvariety Σ_{2}, the canonical sheaf of \tilde{X}_{4} is $\omega_{\tilde{X}}=\pi^{*} \omega_{X}(e)=\mathcal{O}_{\tilde{X}_{4}}(-h+e)$ by Lemma 4.2.13 and the fact that D_{3} has class e in \tilde{X}_{4} (indeed it is the intersection of \tilde{X}_{4} and E_{4}). By Serre duality and (1.10) this implies :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(i h)\right) & =\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{D_{3}}\left(V_{E}+e-h\right)\right) \\
& =\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{D_{3}}(-h)\right) \\
& =\chi\left(\pi^{*} \mathcal{O}_{X_{4}}((i+1) h), \mathcal{O}_{D_{3}}\right) .
\end{aligned}
$$

Finally,

$$
\chi\left(\pi^{*} \mathcal{O}_{X_{4}}((i+1) h), \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{X_{4}}((i+1) h), \pi_{*} \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{X_{4}}((i+1) h), \mathcal{O}_{\Sigma_{2}}\right)
$$

so one can conclude with Lemma 4.3.5.
Lemma 4.3.8. One has $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=1$.
Proof. Since D_{3} is a divisor in \tilde{X}_{4} there is a short exact sequence : $0 \rightarrow \mathcal{O}_{\tilde{X}_{4}}(-e) \rightarrow \mathcal{O}_{\tilde{X}_{4}} \rightarrow \mathcal{O}_{D_{3}} \rightarrow 0$. Indeed E_{4} has class e in $\operatorname{Pic}\left(\tilde{X}_{5}\right)$ and $D_{3}=\Sigma_{2} \times_{F_{3}} E_{4}$ so the class of D_{3} is e in $\operatorname{Pic}\left(\tilde{X}_{4}\right)$. As a result,

$$
\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{D_{3}}\right) .
$$

- Let us compute $\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\right)$. One can use that

$$
\begin{aligned}
H^{*}\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\right) & =H^{*}\left(\pi^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{D_{3}}\right) \\
& =H^{*}\left(\mathcal{O}_{X_{4}}, \pi_{*} \mathcal{O}_{D_{3}}\right) \\
& =H^{*}\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{\Sigma_{2}}\right)
\end{aligned}
$$

and Lemma 4.3 .5 to find that $\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\right)=1$.

- Let us compute now $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{D_{3}}\right)$. For this, one can notice that

$$
\begin{aligned}
H^{*}\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{D_{3}}\right) & =H^{*}\left(\mathcal{O}_{\tilde{X}_{4}}(-e), j_{*} \mathcal{O}_{D_{3}}\right) \\
& =H^{*}\left(j^{*} \mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{D_{3}}\right) \\
& =H^{*}\left(\mathcal{O}_{D_{3}}(-e), \mathcal{O}_{D_{3}}\right)
\end{aligned}
$$

Moreover by (1.10) we have $-e=V_{E}$ in $\operatorname{Pic}\left(E_{4}\right)$, hence since $D_{3} \subset E_{4}$ we have

$$
\begin{aligned}
H^{*}\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}(e)\right) & =H^{*}\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right) \\
& =H^{*}\left(p^{*} \mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right) \\
& =H^{*}\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)
\end{aligned}
$$

Since $p_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)=0$ (see for instance Exercise 8.4 of III.8. in [12]), we get $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{D_{3}}\right)=0$.
Finally, $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=1-0=1$.

4.4 The ruled surface \bar{D}_{2}

To start with, let us remember from Theorem 1.2.3 that \bar{D}_{2} is a ruled surface over the curve Γ_{1} : indeed $\bar{D}_{2}=$ $\mathbb{P}_{\Gamma}\left(\left.\mathcal{V}_{Z}\right|_{\Gamma}\right)$. We can then use results from part V.2. of [12] to compute the Euler characteristics associated to $\mathcal{O}_{\bar{D}_{2}}$.

Lemma 4.4.1. Up to numerical equivalence, the Picard group of \bar{D}_{2} is generated by two classes δ and f such that : $\delta^{2}=48, f^{2}=0$ and $\delta . f=1$.
Moreover the canonical sheaves of \bar{D}_{2} and Γ_{1} are respectively $\omega_{\bar{D}}=\mathcal{O}_{\bar{D}_{2}}(-2 \delta+72 f)$ and $\omega_{\Gamma}=\mathcal{O}_{\Gamma_{1}}(24)$.
Proof. We have just seen that $\bar{D}_{2}=\mathbb{P}_{\Gamma}\left(\left.\mathcal{V}_{Z}\right|_{\Gamma_{1}}\right)$, therefore \bar{D}_{2} is a ruled surface over Γ_{1} (see for instance the first definition and note of V.2. in [12]). By Proposition 2.3 of V.2. in [12] we thus have : $\operatorname{Pic}\left(\bar{D}_{2}\right) \cong \mathbb{Z} \oplus \bar{\pi}^{*}\left(\operatorname{Pic}\left(\Gamma_{1}\right)\right)$ and $\operatorname{Num}\left(\bar{D}_{2}\right) \cong \mathbb{Z}^{2}$ where $\operatorname{Num}\left(\bar{D}_{2}\right)=\operatorname{Pic}\left(\bar{D}_{2}\right) /\left\{D, \forall E \in \operatorname{Pic}\left(\bar{D}_{2}\right), D . E=0\right\}$. Furthermore we can find two generators f and δ such that $f^{2}=0$ and $\delta . f=1$. By Proposition 2.9 of V.2. in [12] we also get $\delta^{2}=\operatorname{deg}(\mathcal{E})$ where $\bar{D}_{2}=\mathbb{P}_{\Gamma_{1}}(\mathcal{E})$. However we have to be careful here : as mentioned in the proof of Proposition 3.2.1, in [12] R. Hartshorne took a different definition of $\mathbb{P}(\mathcal{E})$ than A. Kuznetsov in [20], the latter being the definition we use. So for us, \mathcal{E} will be $\left.\mathcal{V}_{Z}^{\vee}\right|_{\Gamma_{1}}$ and not $\left.\mathcal{V}_{Z}\right|_{\Gamma_{1}}$. We also have by Lemma 3.2.3 and (1.11) that $\operatorname{det}\left(\mathcal{V}_{Z}^{\vee}\right)=$ $\mathcal{O}_{Z_{3}}\left(3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)$, and by (1.15), the class of Γ_{1} in Z_{3} is $4 V_{Z} \cdot\left(\bar{h}_{1}+\bar{h}_{2}\right)$. Finally, in $\mathrm{CH}\left(Z_{3}\right)$,

$$
4 V_{Z} \cdot\left(\bar{h}_{1}+\bar{h}_{2}\right) \cdot\left(3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)=8 V_{Z} \cdot\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}=8.6=48
$$

As a result, $\operatorname{det}\left(\left.\mathcal{V}_{Z}^{\vee}\right|_{\Gamma_{1}}\right)=\mathcal{O}_{\Gamma_{1}}(48)$ and thus $\delta^{2}=48$.
We also know from Lemma 3.5.1 that Γ_{1} has genus 13. Hence (see for instance Example 1.3.3 of IV.1. of [12]), $\omega_{\Gamma}=\mathcal{O}_{\Gamma_{1}}\left(2 g\left(\Gamma_{1}\right)-2\right)=\mathcal{O}_{\Gamma_{1}}(24)$.
Finally, by Lemma 2.10 of V.2. in [12],

$$
\omega_{\bar{D}}=\mathcal{O}_{\bar{D}_{2}}\left(-2 \delta+\left(\omega_{\Gamma}+\delta^{2}\right) f\right)=\mathcal{O}_{\bar{D}_{2}}(-2 \delta+(24+48) f)=\mathcal{O}_{\bar{D}_{2}}(-2 \delta+72 f)
$$

Before going further, let us recall the Riemann-Roch theorem for surfaces, taken here from V.1. of [12] :
Theorem 4.4.2 (Riemann-Roch). Let X be a non singular projective surface over an algebraically closed field k. Let D be a divisor on X and K the canonical class of X. Then :

$$
\begin{equation*}
\chi\left(\mathcal{O}_{X}, \mathcal{O}_{X}(D)\right)=\chi\left(\mathcal{O}_{X}\right)+\frac{1}{2} D \cdot(D-K) \tag{4.23}
\end{equation*}
$$

Definition 4.4.3. For simplicity let us denote $\left.\bar{\pi}\right|_{\bar{D}_{2}}: \bar{D}_{2} \rightarrow \Gamma_{1}$ by ϕ.
Lemma 4.4.4. The following holds : $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}\right)=-12$.

Proof. To start with :

$$
\begin{aligned}
H^{*}\left(\pi^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{\bar{D}_{2}}\right) & =H^{*}\left(\mathcal{O}_{\tilde{X}_{4}}, \bar{i}_{*} \mathcal{O}_{\bar{D}_{2}}\right) \\
& =H^{*}\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}\right) \\
& =H^{*}\left(\phi^{*} \mathcal{O}_{\Gamma_{1}}, \mathcal{O}_{\bar{D}_{2}}\right) \\
& =H^{*}\left(\mathcal{O}_{\Gamma_{1}}, \phi_{*} \mathcal{O}_{\bar{D}_{2}}\right)
\end{aligned}
$$

In particular, $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\Gamma_{1}}, \phi_{*} \mathcal{O}_{\bar{D}_{2}}\right)$. Moreover $\pi_{*} \mathcal{O}_{\bar{D}_{2}}=\mathcal{O}_{\Gamma_{1}}$: indeed by Lemma 2.1 of V.2. in [12], we have that $R^{0} \pi_{*} \mathcal{O}_{\bar{D}_{2}}=\pi_{*} \mathcal{O}_{\bar{D}_{2}}=\mathcal{O}_{\Gamma_{1}}$ and since $0 . f=0 \geq 0$, by Lemma 2.4 of V.2. in [12], $R^{1} \pi_{*} \mathcal{O}_{\bar{D}_{2}}=0$. As a result, $H^{*}\left(\mathcal{O}_{\Gamma_{1}}, \phi_{*} \mathcal{O}_{\bar{D}_{2}}\right)=H^{*}\left(\mathcal{O}_{\Gamma_{1}}, \mathcal{O}_{\Gamma_{1}}\right)$.
Finally by Riemann-Roch for curves (see for instance Theorem 1.3 of IV.1. in [12]) :

$$
\chi\left(\mathcal{O}_{\Gamma_{1}}, \mathcal{O}_{\Gamma_{1}}(n)\right)=n+1-g\left(\Gamma_{1}\right) .
$$

Thus, $\chi\left(\mathcal{O}_{\Gamma_{1}}, \mathcal{O}_{\Gamma_{1}}\right)=1-g\left(\Gamma_{1}\right)=1-13=-12$.
Lemma 4.4.5. We have $\left.h\right|_{\bar{D}_{2}}=\left.V_{\bar{E}}\right|_{\bar{D}_{2}}=\delta+48 f$ with the notations of Lemma 4.4.1.
Proof. We know from (1.12) that in $\operatorname{Pic}\left(\bar{E}_{4}\right), h=V_{\bar{E}}$ thus since $\bar{D}_{2} \subset \bar{E}_{4}$ we have $\left.h\right|_{\bar{D}_{2}}=\left.V_{\bar{E}}\right|_{\bar{D}_{2}}$. Moreover we know by definition of $V_{\bar{E}}$ that $\bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(V_{\bar{E}}\right)=\mathcal{V}_{Z}^{\vee}$, hence $\phi_{*} \mathcal{O}_{\bar{D}_{2}}\left(V_{\bar{E}}\right)=\left.\mathcal{V}_{Z}^{V}\right|_{\Gamma_{1}}$. On the other hand, in Lemma 4.4.1 we defined δ as C_{0} in section V.2. of [12], according to which $\phi_{*} \mathcal{O}_{\bar{D}_{2}}(\delta)=\left.\mathcal{V}_{Z}\right|_{\Gamma_{1}}$ (see Notation 2.8.1. in V.2. and Proposition 7.11 in II.7. of [12]). We thus have:

$$
\phi_{*} \mathcal{O}_{\bar{D}_{2}}\left(V_{\bar{E}}\right)=\left.\mathcal{V}_{Z}\right|_{\Gamma_{1}} \otimes \operatorname{det}\left(\left.\mathcal{V}_{Z}^{\vee}\right|_{\Gamma_{1}}\right)=\phi_{*} \mathcal{O}_{\bar{D}_{2}}(\delta) \otimes \operatorname{det}\left(\left.\mathcal{V}_{Z}^{\vee}\right|_{\Gamma_{1}}\right)
$$

Indeed from Corollary 2.7. in V.2. of [12] we know that there exists two invertible sheaves \mathcal{L}_{1} and \mathcal{L}_{2} and a short exact sequence $\left.0 \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{V}_{Z}\right|_{\Gamma_{1}} \rightarrow \mathcal{L}_{2} \rightarrow 0$, inducing the following short exact sequence in $D^{b}\left(\Gamma_{1}\right)$:

$$
\left.0 \rightarrow \mathcal{L}_{2}^{\vee} \rightarrow \mathcal{V}_{Z}^{\vee}\right|_{\Gamma_{1}} \rightarrow \mathcal{L}_{1}^{\vee} \rightarrow 0
$$

Since $\operatorname{det}\left(\left.\mathcal{V}_{Z}^{\vee}\right|_{\Gamma_{1}}\right)=\mathcal{L}_{1}^{\vee} \otimes \mathcal{L}_{2}^{\vee}$, tensoring the first short exact sequence with it gives another short exact sequence:

$$
\left.0 \rightarrow \mathcal{L}_{2}^{\vee} \rightarrow \operatorname{det}\left(\left.\mathcal{V}_{Z}^{\vee}\right|_{\Gamma_{1}}\right) \otimes \mathcal{V}_{Z}\right|_{\Gamma_{1}} \rightarrow \mathcal{L}_{1}^{\vee} \rightarrow 0
$$

which yields $\left.\mathcal{V}_{Z}^{\vee}\right|_{\Gamma_{1}}=\left.V_{Z}\right|_{\Gamma_{1}} \otimes \operatorname{det}\left(\left.\mathcal{V}_{Z}^{\vee}\right|_{\Gamma_{1}}\right)$.
Finally, we have seen in the proof of Lemma 4.4.1 that $\operatorname{det}\left(\left.\mathcal{V}_{Z}^{\vee}\right|_{\Gamma_{1}}\right)=\mathcal{O}_{\Gamma_{1}}(48)$, therefore,

$$
\phi_{*} \mathcal{O}_{\bar{D}_{2}}\left(V_{\bar{E}}\right)=\phi_{*} \mathcal{O}_{\bar{D}_{2}}(\delta) \otimes \mathcal{O}_{\Gamma_{1}}(48)=\phi_{*} \mathcal{O}_{\bar{D}_{2}}(\delta+48 f)
$$

(see for instance Proposition 2.3 in V.2. of [12]). Since we have seen in Lemma 4.4.1 that $\operatorname{Pic}\left(\bar{D}_{2}\right)=\mathbb{Z} \delta \oplus \mathbb{Z} f$, it implies that $\left.h\right|_{\bar{D}_{2}}=\left.V_{\bar{E}}\right|_{\bar{D}_{2}}=\delta+48 f$. Indeed, let us assume that there exists α and β in \mathbb{Z} such that $\phi_{*} \mathcal{O}_{\bar{D}_{2}}(\alpha \delta+$ $\beta f)=\left.\mathcal{V}_{Z}\right|_{\Gamma_{1}}(48)$. Since $\left.\mathcal{V}_{Z}\right|_{\Gamma_{1}}$ is not self-dual, by the Remark below Proposition 9.3 in [8] (taking in account the fact that [8] and [12] have different definitions of the projectivization of a vector bundle), we must have $\alpha=1$. Then β has to be 48 because $\phi_{*} \mathcal{O}_{\bar{D}_{2}}(\delta+\beta f)=\phi_{*}\left(\mathcal{O}_{\bar{D}_{2}}(\delta) \otimes \phi^{*} \mathcal{O}_{\Gamma_{1}}(\beta)\right)=\left.\mathcal{V}_{Z}\right|_{\Gamma_{1}}(\beta)$.

Proposition 4.4.6. One has $\left(\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{\bar{D}_{2}}\right), \ldots, \chi\left(\pi^{*} \mathcal{O}_{X_{4}}(4 h), \mathcal{O}_{\bar{D}_{2}}\right)\right)=(-12,0,156,456,900)$.
Proof. We have already seen in Lemma 4.4.4 that $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{\bar{D}_{2}}\right)=-12$. Let us now compute $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\bar{D}_{2}}\right)$ for $1 \leq i \leq 4$.
Let us start with $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(h), \mathcal{O}_{\bar{D}_{2}}\right)$: as in the proof of Lemma 4.4.4 we have

$$
\begin{aligned}
H^{*}\left(\pi^{*} \mathcal{O}_{X_{4}}(h), \mathcal{O}_{\bar{D}_{2}}\right) & =H^{*}\left(\mathcal{O}_{\tilde{X}_{4}}(h), \bar{i}_{*} \mathcal{O}_{\bar{D}_{2}}\right) \\
& =H^{*}\left(\mathcal{O}_{\bar{D}_{2}}(h), \mathcal{O}_{\bar{D}_{2}}\right) \\
& =H^{*}\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-h)\right) .
\end{aligned}
$$

Moreover by Lemma 4.4.5 we have $\mathcal{O}_{\bar{D}_{2}}(-h)=\mathcal{O}_{\bar{D}_{2}}(-\delta-48 f)$.
So $H^{*}\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-h)\right)=H^{*}\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-\delta-48 f)\right)$.
Using (4.23) and Lemma 4.4.4, one finally finds :

$$
\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(h), \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-\delta-48 f)\right)=-12+\frac{1}{2}\left((\delta+48 f)^{2}+(\delta+48 f) K_{\bar{D}_{2}}\right)
$$

By Lemma 4.4.1, $\delta^{2}=48, \delta . f=1, f^{2}=0$ and $K_{\bar{D}_{2}}=-2 \delta+72 f$ therefore :

$$
\chi\left(\mathcal{O}_{X_{4}}(h), \pi_{*} \mathcal{O}_{\bar{D}_{2}}\right)=-12+\frac{1}{2}(48+2.48-2.48+72-2.48)=-12+\frac{24}{2}=0
$$

We will proceed similarly for $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\bar{D}_{2}}\right)$ with $2 \leq i \leq 4$:

- $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(2 h), \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-2(\delta+48 f))\right)=-12+\frac{1}{2}(4.144-120.2)=-12+168=156$.
- $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(3 h), \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-3(\delta+48 f))\right)=-12+\frac{1}{2}(9.144-120.3)=-12+468=456$.
- $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(4 h), \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-4(\delta+48 f))\right)=-12+\frac{1}{2}(16.144-120.4)=-12+912=900$.

Before going further, we need to know the canonical bundle of \tilde{X}_{4}, in order to apply Serre duality later.
Lemma 4.4.7. The canonical bundle of \tilde{X}_{4} is $\omega_{\tilde{X}}=\mathcal{O}_{\tilde{X}_{4}}(-h+e)$.
Proof. We have seen in Lemma 4.2.13 that $\omega_{X}=\mathcal{O}_{X_{4}}(-h)$ and we know from Theorem 1.2.3 that \tilde{X}_{4} is the blow-up of X_{4} in Σ_{2}, which is codimension 2 in X_{4}. Finally, the class of D_{3}, which is the exceptional divisor of this blow-up, is $\left.e\right|_{\tilde{X}_{4}}$, which we are still going to denote by e : indeed D is the intersection between \tilde{X}_{4} and E_{4}. Hence $\omega_{\tilde{X}}=\pi^{*} \mathcal{O}_{X_{4}}(-h) \otimes \mathcal{O}_{\tilde{X}_{4}}(e)=\mathcal{O}_{\tilde{X}_{4}}(-h+e)$.

We are now able to compute :
Proposition 4.4.8. The following Euler characteristics are:
$\left(\chi\left(\mathcal{O}_{\bar{D}_{2}}, \pi^{*} \mathcal{O}_{X_{4}}\right), \ldots, \chi\left(\mathcal{O}_{\bar{D}_{2}}, \pi^{*} \mathcal{O}_{X_{4}}(4 h)\right)=(-36,0,180,504,972)\right.$.
Proof. Let $0 \leq i \leq 4$. Then by Serre duality and Lemma 4.4.7, we have :

$$
H^{*}\left(\mathcal{O}_{\bar{D}_{2}}, \pi^{*} \mathcal{O}_{X_{4}}(i h)\right) \cong H^{4-*}\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\bar{D}_{2}}(-h+e)\right)
$$

Since 4 is even we have $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \pi^{*} \mathcal{O}_{X_{4}}(i h)\right)=\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\bar{D}_{2}}(-h+e)\right)=\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\bar{D}_{2}}(-\bar{h})\right)$ where we used (1.8) for the last equality. Moreover, using (1.11) and (1.15) one finds that

$$
\left.\bar{h}\right|_{\bar{D}_{2}}=4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right) \cdot\left(V_{Z}+\bar{h}_{1}+\bar{h}_{2}\right)=4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2} .
$$

Since $\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}=6$ in $\mathrm{CH}\left(S_{2}\right)$ we thus have $\left.\bar{h}\right|_{\bar{D}_{2}}=24 f$. We can now use the same reasoning as in the proof
of Proposition 4.4.6 to find :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\bar{D}_{2}}, \pi^{*} \mathcal{O}_{X_{4}}\right) & =\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-\bar{h})\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-24 f)\right) \\
& =-12+\frac{1}{2}\left((24 f)^{2}+24 f(-2 \delta+72 f)\right)=-12+\frac{1}{2}(-48)=-36 \\
\chi\left(\mathcal{O}_{\bar{D}_{2}}, \pi^{*} \mathcal{O}_{X_{4}}(h)\right) & =\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-\bar{h}-h)\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-\delta-72 f)\right) \\
& =-12+\frac{1}{2}\left((\delta+72 f)^{2}+(\delta+72 f)(-2 \delta+72 f)\right) \\
& =-12+\frac{1}{2}(48+2.72-2.48+72-2.72)=0 \\
\chi\left(\mathcal{O}_{\bar{D}_{2}}, \pi^{*} \mathcal{O}_{X_{4}}(2 h)\right) & =\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-\bar{h}-2 h)\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-2 \delta-120 f)\right) \\
& =-12+\frac{1}{2}\left((2 \delta+120 f)^{2}+(2 \delta+120 f)(-2 \delta+72 f)\right) \\
& =-12+\frac{1}{2}(4.48+4.120-4.48+2.72-2.120)=180 \\
\chi\left(\mathcal{O}_{\bar{D}_{2}}, \pi^{*} \mathcal{O}_{X_{4}}(3 h)\right) & =\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-\bar{h}-3 h)\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-3 \delta-168 f)\right) \\
& =-12+\frac{1}{2}\left((3 \delta+168 f)^{2}+(3 \delta+168 f)(-2 \delta+72 f)\right) \\
& =-12+\frac{1}{2}(9.48+6.168-6.48+3.72-2.168)=504 \\
\chi\left(\mathcal{O}_{\bar{D}_{2}}, \pi^{*} \mathcal{O}_{X_{4}}(4 h)\right) & =\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-\bar{h}-4 h)\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-4 \delta-216 f)\right) \\
& =-12+\frac{1}{2}\left((4 \delta+216 f)^{2}+(4 \delta+216 f)(-2 \delta+72 f)\right) \\
& =-12+\frac{1}{2}(16.48+8.216-8.48+4.72-2.216)=972 .
\end{aligned}
$$

Lemma 4.4.9. One has $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\bar{D}_{2}}\right)=-36$ and $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=-156$.
Proof. One has the short exact sequence :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\tilde{X}_{4}}(-2 e) \rightarrow \mathcal{O}_{\tilde{X}_{4}}(-e) \rightarrow \mathcal{O}_{D_{3}}(-e) \rightarrow 0 \tag{4.24}
\end{equation*}
$$

and can use (1.10) to find $\mathcal{O}_{D_{3}}\left(V_{E}\right)=\mathcal{O}_{D_{3}}(-e)$.

- By (4.24), one has

$$
\begin{aligned}
\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\bar{D}_{2}}\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{\bar{D}_{2}}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-2 e), \mathcal{O}_{\bar{D}_{2}}\right) \\
& =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(h-\bar{h})\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(2 h-2 \bar{h})\right)
\end{aligned}
$$

with (1.8). By Lemma 4.4.5, we know that $\mathcal{O}_{\bar{D}_{2}}(h)=\mathcal{O}_{\bar{D}_{2}}(\delta+48 f)$, and we saw in the proof of Lemma 4.4.8 that $\mathcal{O}_{\bar{D}_{2}}(\bar{h})=\mathcal{O}_{\bar{D}_{2}}(24 f)$. As a consequence, (4.23) (with the same reasoning as in the proof of Lemma 4.4.6), Lemma 4.4.4 and Lemma 4.4.1 yield :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(h-\bar{h})\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(\delta+24 f)\right)=-12+\frac{1}{2}\left((\delta+24 f)^{2}-(\delta+24 f)(-2 \delta+72 f)\right) \\
& =-12+\frac{1}{2}(48+48+2.48-72+48)=72 \\
\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(2 h-2 \bar{h})\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(2 \delta+48 f)\right)=-12+\frac{1}{2}\left(4(\delta+24 f)^{2}-2(\delta+24 f)(-2 \delta+72 f)\right) \\
& =-12+\frac{1}{2}(384-144)=108
\end{aligned}
$$

Therefore, $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\bar{D}_{2}}\right)=72-108=-36$.

- As we saw in the proof of Lemma 4.3.7, $\omega_{\tilde{X}}=\mathcal{O}_{\tilde{X}_{4}}(-h+e)$, hence by Serre duality

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right) & =\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\bar{D}_{2}}(-h+e)\right) \\
& =\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{\bar{D}_{2}}(-h+2 e)\right) \\
& =\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{\bar{D}_{2}}(h-2 \bar{h})\right) .
\end{aligned}
$$

Using (4.24) twisted by $\mathcal{O}_{\tilde{X}_{4}}(e)$ gives then

$$
\begin{aligned}
\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{\bar{D}_{2}}(h-2 \bar{h})\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(h-2 \bar{h})\right)-\chi\left(\mathcal{O}_{D \tilde{X}_{4}}(-e), \mathcal{O}_{\bar{D}_{2}}(h-2 \bar{h})\right) \\
& =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(h-2 \bar{h})\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(2 h-3 \bar{h})\right) .
\end{aligned}
$$

Riemann Roch then gives:

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(h-2 \bar{h})\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(\delta)\right)=-12+\frac{1}{2}\left(\delta^{2}-\delta(-2 \delta+72 f)\right) \\
& =-12+\frac{1}{2}(48+2.48-72)=24 . \\
\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(2 h-3 \bar{h})\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(2 \delta+24 f)\right)=-12+\frac{1}{2}\left((2 \delta+24 f)^{2}-(2 \delta+24 f)(-2 \delta+72 f)\right) \\
& =-12+\frac{1}{2}(4.48+4.24+4.48-2.72+48)=180 .
\end{aligned}
$$

Hence, $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=24-180=-156$.

4.5 The surface \tilde{S}

We would like now to compute the Euler characteristics associated to \tilde{S}. But before doing so we need some technical results.

Definition 4.5.1. By Remark 4.7 in [20] we know that S_{2} is the blow-up of $\mathbb{P}\left(\bigwedge^{2} A_{1}\right)$ in three points. Let us denote by $\tilde{E}_{1}, \tilde{E}_{2}$ and \tilde{E}_{3} the associated exceptional divisors.

Remark 4.5.2. Then $\operatorname{Pic}\left(S_{2}\right)=<\bar{h}_{1}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}>$ (see for instance Proposition 4.8 in V.4. of [12]).
On one hand, $\omega_{S}=\mathcal{O}_{S_{2}}\left(-3 \bar{h}_{1}+\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right)$ by d) of Proposition 4.8 and Notation 4.7.3 of V.4. in [12]. On the other hand, by 11. of Theorem 1.2.1, $\omega_{S}=\mathcal{O}_{S_{2}}\left(-\bar{h}_{1}-\bar{h}_{2}\right)$. Hence :

$$
\begin{equation*}
\bar{h}_{2}=2 \bar{h}_{1}-\tilde{E}_{1}-\tilde{E}_{2}-\tilde{E}_{3} . \tag{4.25}
\end{equation*}
$$

Finally still by Proposition 4.8 of V.4. in [12], we get : $\bar{h}_{1} . \tilde{E}_{i}=0$ and $\tilde{E}_{i} . \tilde{E}_{j}=-\delta_{i, j}$ for $1 \leq i, j \leq 3$.
Proposition 4.5.3. The canonical sheaf of Z_{3} is $\omega_{Z}=\mathcal{O}_{Z_{3}}\left(-2 V_{Z}-3 \bar{h}_{1}+\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right)=\mathcal{O}_{Z_{3}}\left(-2 V_{Z}-\bar{h}_{1}-\bar{h}_{2}\right)$ with the notations of Definition 4.5.1 and where we keep the same notation for a divisor on S_{2} and its pull-back to Z_{3} by σ.
Proof. Since $Z_{3}=\mathbb{P}_{S}\left(\mathcal{V}_{S}\right)$, we have $\operatorname{Pic}\left(Z_{3}\right)=\mathbb{Z} \cdot V_{Z} \oplus \operatorname{Pic}\left(S_{2}\right)$, thus using Definition 4.5.1 and Remark 4.5.2 we can write : $K_{Z}=a V_{Z}+b \bar{h}_{1}+c \tilde{E}_{1}+d \tilde{E}_{2}+e \tilde{E}_{3}$ where K_{Z} is the canonical class of Z_{3}. We will now use a very similar reasoning to the proof of Lemma 2.10 in V.2. of [12], but before going further, since we are going to use here \bar{h}_{1} and \tilde{E}_{1} both as a divisors in Z_{3} and S_{2} let us fix a notation: \bar{h}_{1}^{S} and \tilde{E}_{1}^{S} will denote the divisors in S_{2} and \bar{h}_{1}^{Z} and \tilde{E}_{1}^{Z} their pull-backs to Z_{3}.

- A divisor D in $\left|\bar{h}_{1}^{Z}\right|$ is the set of all $f_{Z}(p)$ with $p \in C$, where $C \in\left|\bar{h}_{1}^{S}\right|$. Hence it is a ruled surface above C (see for instance the first definition and note of V .2 . in [12]). Let us fix such a surface in Z_{3}. Then the adjunction formula gives :

$$
\begin{equation*}
K_{D}=\left.\left(\bar{h}_{1}^{Z}+K_{Z}\right)\right|_{D}=\left(\bar{h}_{1}^{Z}\right)^{2}+\bar{h}_{1}^{Z} \cdot K_{Z} . \tag{4.26}
\end{equation*}
$$

On the other hand, we can also use Lemma 2.10 of V.2. in [12] to compute K_{D}. This yields :

$$
\begin{equation*}
K_{D}=-2 C_{0}+\left(K_{C}+\operatorname{det}\left(\left.\mathcal{V}_{S}\right|_{C}\right)\right) f \tag{4.27}
\end{equation*}
$$

where C_{0} is the relative hyperplane class (using the definition of [12] so here $\sigma_{*} \mathcal{O}\left(C_{0}\right)=\left.\mathcal{V}_{S}\right|_{C}$) and f is a fiber. Here we also used the fact that since $Z_{3}=\mathbb{P}_{S}\left(\mathcal{V}_{S}\right)$, we have $D=\mathbb{P}_{C}\left(\left.\mathcal{V}_{S}\right|_{C}\right)$. Furthermore by definition of V_{Z} we know that $\sigma_{*} \mathcal{O}_{Z_{3}}\left(V_{Z}\right)=\mathcal{V}_{S}^{\vee}$ so using the fact that $\operatorname{det}\left(\mathcal{V}_{S}\right)=\mathcal{O}_{S_{2}}$ (by 1 . of Proposition 1.2.2) and the same reasoning as in the proof of Lemma 4.4.5 we get : $C_{0}=\bar{h}_{1} \cdot V_{Z}$ and $f=\left(\bar{h}_{1}^{Z}\right)^{2}$. Moreover, the adjunction formula in S_{2} gives: $K_{C}=\left(\bar{h}_{1}^{S}+K_{S}\right) \cdot \bar{h}_{1}^{S}=-\bar{h}_{2} \cdot \bar{h}_{1}^{S}=-2$ by 11. of Theorem 1.2.1 and (1.13). We also just saw that from 1. of Proposition 1.2.2, $\operatorname{det}\left(\mathcal{V}_{S}\right)=\mathcal{O}_{S_{2}}$. Hence (4.27) actually gives :

$$
\begin{equation*}
K_{D}=-2 \bar{h}_{1}^{Z} \cdot V_{Z}-2\left(\bar{h}_{1}^{Z}\right)^{2} . \tag{4.28}
\end{equation*}
$$

Together (4.26) and (4.28) yield : $\bar{h}_{1}^{Z} \cdot K_{Z}=a \bar{h}_{1}^{Z} \cdot V_{Z}+b\left(\bar{h}_{1}^{Z}\right)^{2}=-2 \bar{h}_{1}^{Z} \cdot V_{Z}-3\left(\bar{h}_{1}^{Z}\right)^{2}$. Therefore, $a=-2$ and $b=-3$.

- We will now use the same reasoning as just before but this time with D^{\prime} a divisor in $\left|\tilde{E}_{1}^{Z}\right|$ which is thus a ruled surface above a curve $C^{\prime} \in\left|\tilde{E}_{1}^{S}\right|$. The adjunction formula yields :

$$
\begin{equation*}
K_{D^{\prime}}=\left.\left(\tilde{E}_{1}^{Z}+K_{Z}\right)\right|_{D^{\prime}}=\left(\tilde{E}_{1}^{Z}\right)^{2}+\tilde{E}_{1}^{Z} \cdot K_{Z} \tag{4.29}
\end{equation*}
$$

On the other hand using again Lemma 2.10 of V.2. in [12] gives :

$$
\begin{equation*}
K_{D^{\prime}}=-2 \tilde{E}_{1}^{Z} \cdot V_{Z}-\left(K_{C^{\prime}}+0\right)\left(\tilde{E}_{1}^{Z}\right)^{2}=-2 \tilde{E}_{1}^{Z} \cdot V_{Z}+2\left(\tilde{E}_{1}^{Z}\right)^{2} \tag{4.30}
\end{equation*}
$$

since by the adjunction formula :

$$
K_{C^{\prime}}=\left(\tilde{E}_{1}^{S}-\bar{h}_{1}-\bar{h}_{2}\right) \cdot \tilde{E}_{1}^{S}=-1-\bar{h}_{2} \cdot \tilde{E}_{1}^{S}
$$

and

$$
-\bar{h}_{2} \cdot \tilde{E}_{1}^{S}=\left(-2 \bar{h}_{1}^{S}+\tilde{E}_{1}^{S}+\tilde{E}_{2}+\tilde{E}_{3}\right) \cdot \tilde{E}_{1}^{S}=-1
$$

by (4.25). We also used the fact that here the fiber f should be $-\left(\tilde{E}_{1}^{Z}\right)^{2}$, because in S_{2} we have $\left(\tilde{E}_{1}^{S}\right)^{2}=-1$. To conclude we combine (4.29) and (4.30) and we get :

$$
K_{Z} \cdot \tilde{E}_{1}^{Z}=a \tilde{E}_{1}^{Z} \cdot V_{Z}+c\left(\tilde{E}_{1}^{Z}\right)^{2}=-2 \tilde{E}_{1}^{Z} \cdot V_{Z}+\left(\tilde{E}_{1}^{Z}\right)^{2} .
$$

As a result, $c=1$.

- We can then proceed exactly the same way with \tilde{E}_{2} and \tilde{E}_{3} which gives: $d=e=c=1$.

Lemma 4.5.4. Let \mathcal{E} and \mathcal{F} be vector bundles of rank respectively $r+1$ and r on a smooth variety X and let $\phi: \mathcal{E} \rightarrow \mathcal{F}$ be a morphism of vector bundles. By Lemma 1.4.1 we have seen that ϕ induces a global section of $p^{*} \mathcal{F}(1)$ whose zero locus in $\mathbb{P}_{X}(\mathcal{E})$ is isomorphic to the blow-up of X in $D_{1}(\phi)$, where p is the map $p: \mathbb{P}_{X}(\mathcal{E}) \rightarrow X$. Let us call $\tilde{X} \hookrightarrow \mathbb{P}_{X}(\mathcal{E})$ this zero locus. Then $p_{*} \mathcal{O}_{\tilde{X}}=\mathcal{O}_{X}$.

Proof. In the proof of Lemma 1.4.1 we have seen that there is a long exact sequence :

$$
0 \rightarrow \bigwedge^{r}\left(p^{*} \mathcal{F}^{\vee}\right) \otimes \mathcal{O}_{\mathbb{P}_{X}(\mathcal{E})}(-r) \rightarrow \ldots \rightarrow \bigwedge^{2}\left(p^{*} \mathcal{F}^{\vee}\right) \otimes \mathcal{O}_{\mathbb{P}_{X}(\mathcal{E})}(-2) \rightarrow p^{*} \mathcal{F}^{\vee} \otimes \mathcal{O}_{\mathbb{P}_{X}(\mathcal{E})}(-1) \xrightarrow{\phi^{\vee}} \mathcal{O}_{\mathbb{P}_{X}(\mathcal{E})} \rightarrow \mathcal{O}_{\tilde{X}} \rightarrow 0
$$

and that $p_{*} \mathcal{O}_{\mathbb{P}_{X}(\mathcal{E})}=\mathcal{O}_{X}$. Taking the push-forward of the above resolution thus yields the exact sequence :

$$
\ldots \rightarrow \mathcal{F}^{\vee} \otimes p_{*}\left(\mathcal{O}_{\mathbb{P}_{X}(\mathcal{E})}(-1)\right) \rightarrow \mathcal{O}_{X} \rightarrow p_{*} \mathcal{O}_{\tilde{X}} \rightarrow 0
$$

But $R^{j} p_{*}\left(\mathcal{O}_{\mathbb{P}_{X}(\mathcal{E})}(-1)\right)=0$ for all $0 \leq j \leq r$ (see for instance Exercise 8.4 of III. 8 in [12]). Therefore $R p_{*} \mathcal{O}_{\tilde{X}}$ which we just denote by $p_{*} \mathcal{O}_{\tilde{X}}$ is isomorphic to \mathcal{O}_{X}.

Corollary 4.5.5. We have the following : $\bar{\pi}_{*} \mathcal{O}_{\tilde{Z}}=\mathcal{O}_{Z_{3}} \bar{\pi}_{*} \mathcal{O}_{\tilde{S}}=\mathcal{O}_{\hat{S}}$ and $\sigma_{*} \mathcal{O}_{\hat{S}}=\mathcal{O}_{S_{2}}$.
Moreover, since we have seen in the proof of Lemma 1.4.1 that $p_{*} \mathcal{O}_{\mathbb{P}_{X}(\mathcal{E})}=\mathcal{O}_{X}$, we also have : $\pi_{*} \mathcal{O}_{D_{3}}=\mathcal{O}_{\Sigma_{2}}$, $\bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}=\mathcal{O}_{Z_{3}}$ and $\sigma_{*} \mathcal{O}_{Z_{3}}=\mathcal{O}_{S_{2}}$.

Lemma 4.5.6. Let \mathcal{T}_{Z} be the tangent sheaf of Z_{3}. Then the Todd class of Z_{3} is

$$
\operatorname{td}\left(Z_{3}\right)=\operatorname{td}\left(\mathcal{T}_{Z}\right)=\left(1, V_{Z}+\frac{3}{2} \bar{h}_{1}-\frac{1}{2}\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right), x_{2}, 1\right)=\left(1, V_{Z}+\frac{1}{2}\left(\bar{h}_{1}+\bar{h}_{2}\right), x_{2}, 1\right)
$$

where $\bar{h} \cdot x_{2}=\frac{10}{3}$ and $\bar{h}_{1} \cdot x_{2}=\bar{h}_{2} \cdot x_{2}=\frac{3}{2}$.
Proof. Let us write $\operatorname{td}\left(Z_{3}\right)=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Then using the formula for the Todd class given page 432 of [12], one gets that $x_{0}=1$ and $x_{1}=\frac{1}{2} c_{1}\left(\mathcal{T}_{Z}\right)$. Moreover, $\omega_{Z}=\Lambda^{3} \mathcal{T}_{Z}^{\vee}$ hence $x_{1}=\frac{-K_{Z}}{2}=V_{Z}+\frac{3}{2} \bar{h}_{1}-\frac{1}{2}\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right)=$ $V_{Z}+\frac{1}{2}\left(\bar{h}_{1}+\bar{h}_{2}\right)$.
Moreover, we know by Hirzebruch-Riemann-Roch that $\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\right)=\int_{Z_{3}}(1,0,0,0) \cdot\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=x_{3}$. But $H^{*}\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\right)=H^{*}\left(\sigma^{*} \mathcal{O}_{S_{2}}, \mathcal{O}_{Z_{3}}\right)=H^{*}\left(\mathcal{O}_{S_{2}}, \sigma_{*} \mathcal{O}_{Z_{3}}\right)=H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{O}_{S_{2}}\right)$ by Corollary 4.5.5 and we have seen in the proof of Lemma 4.3 .5 that $\chi\left(\mathcal{O}_{S_{2}}, \mathcal{O}_{S_{2}}\right)=\chi\left(\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}\right)=1$, thus $x_{3}=1$.
Since by definition of V_{Z} and the projection formula

$$
H^{*}\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h})\right)=H^{*}\left(\mathcal{O}_{S_{2}}, \sigma_{*}\left(\sigma^{*} \mathcal{O}_{S_{2}}\left(\bar{h}_{1}+\bar{h}_{2}\right) \otimes \mathcal{O}_{Z_{3}}\left(V_{Z}\right)\right)\right)=H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}^{\vee}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)
$$

the fact that $\mathcal{V}_{S} \cong \mathcal{V}_{S}^{\vee}$ together with Lemma 3.1.4 yield $\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h})\right)=12$.
On the other hand, the Chern character of the line bundle $\mathcal{O}_{Z_{3}}(\bar{h})$ is $\left(1, \bar{h}, \frac{\bar{h}^{2}}{2}, \frac{\bar{h}^{3}}{6}\right)$. By (1.11), $\bar{h}=V_{Z}+\bar{h}_{1}+\bar{h}_{2}$, hence by (1.18),

$$
\bar{h}^{2}=-\bar{h}_{1} \bar{h}_{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}=2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+2 \bar{h}_{1} \bar{h}_{2} .
$$

Thus $\frac{\bar{h}^{2}}{2}=V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+\bar{h}_{1} \bar{h}_{2}$. Moreover,

$$
\bar{h}^{3}=\left(V_{Z}+\bar{h}_{1}+\bar{h}_{2}\right) \cdot\left(2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+2 \bar{h}_{1} \bar{h}_{2}\right)=2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}+2 V_{Z} \bar{h}_{1} \bar{h}_{2}=2.6+4=16
$$

therefore $\frac{\bar{h}^{3}}{6}=\frac{8}{3}$. By Hirzebruch-Riemann-Roch we thus have :

$$
\begin{align*}
\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h})\right) & =12=\int_{Z_{3}}\left(1, \bar{h}, \bar{h}_{1} \bar{h}_{2}+V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), \frac{8}{3}\right) \cdot\left(1, V_{Z}+\frac{3}{2} \bar{h}_{1}-\frac{1}{2}\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right), x_{2}, 1\right) \tag{4.31}\\
& =1+\bar{h} \cdot x_{2}+2+\frac{9}{2}-\frac{3}{2}+\frac{8}{3}=6+\frac{8}{3}+\bar{h} \cdot x_{2} \tag{4.32}\\
\Rightarrow \quad \bar{h} \cdot x_{2} & =6-\frac{8}{3}=\frac{10}{3} \tag{4.33}
\end{align*}
$$

Let now $i \in\{1,2\}$. Then

$$
H^{*}\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\left(\bar{h}_{i}\right)\right)=H^{*}\left(\sigma^{*} \mathcal{O}_{S_{2}}, \sigma^{*} \mathcal{O}_{S_{2}}\left(\bar{h}_{i}\right)\right)=H^{*}\left(\mathcal{O}_{S_{2}}, \sigma_{*} \sigma^{*} \mathcal{O}_{S_{2}}\left(\bar{h}_{i}\right)\right)=H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{O}_{S_{2}}\left(\bar{h}_{i}\right)\right)
$$

by the projection formula, since $\sigma_{*} \mathcal{O}_{Z_{3}}=\mathcal{O}_{S_{2}}$. We have seen in the proof of Lemma 3.1.4 that $\operatorname{dim}\left(H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{O}_{S_{2}}\left(\bar{h}_{i}\right)\right)\right)=3 \delta_{*, 0}$, therefore $\chi\left(\mathcal{O}_{Z_{3}}\left(\bar{h}_{i}\right)\right)=3$. Hirzebruch-Riemann-Roch then gives :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\left(\bar{h}_{1}\right)\right) & =3=\int_{Z_{3}}\left(1, \bar{h}_{1}, \frac{\bar{h}_{1}^{2}}{2}, 0\right) \cdot\left(1, V_{Z}+\frac{3}{2} \bar{h}_{1}-\frac{1}{2}\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right), x_{2}, 1\right) \\
& =1+\bar{h}_{1} \cdot x_{2}+\frac{1}{2}=\frac{3}{2}+\bar{h}_{1} \cdot x_{2} \\
\Rightarrow \quad \bar{h}_{1} \cdot x_{2} & =3-\frac{3}{2}=\frac{3}{2} \\
\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\left(\bar{h}_{2}\right)\right) & =3=\int_{Z_{3}}\left(1, \bar{h}_{2}, \frac{\bar{h}_{2}^{2}}{2}, 0\right) \cdot\left(1, V_{Z}+\frac{3}{2} \bar{h}_{1}-\frac{1}{2}\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right), x_{2}, 1\right) \\
& =1+\bar{h}_{2} \cdot x_{2}+\frac{1}{2}=\frac{3}{2}+\bar{h}_{2} \cdot x_{2} \\
\Rightarrow \quad \bar{h}_{2} \cdot x_{2} & =3-\frac{3}{2}=\frac{3}{2}
\end{aligned}
$$

because $\bar{h}_{2}^{2}=\left(2 \bar{h}_{1}-\tilde{E}_{1}-\tilde{E}_{2}-\tilde{E}_{3}\right)^{2}=4 \bar{h}_{1}^{2}+\tilde{E}_{1}^{2}+\tilde{E}_{2}^{2}+\tilde{E}_{3}^{2}$ and for $1 \leq j \leq 3, \tilde{E}_{j}^{3}=0$ in S_{2} hence $\tilde{E}_{j}^{3}=0$ in Z_{3}. As a result, for both $i=1$ and $i=2$ we have : $\bar{h}_{i} \cdot x_{2}=\frac{3}{2}$.

We can now compute Euler characteristics involving $\mathcal{O}_{\tilde{S}}$. The main idea is to relate them to some Euler characteristics between sheaves in $D^{b}\left(Z_{3}\right)$, which we can compute using Hirzebruch-Riemann-Roch together with the Lemmas from the beginning of the subsection.

Lemma 4.5.7. The following holds : $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{\tilde{S}}\right)=1$.
Proof. Since $\tilde{X}_{4}=\tilde{X}_{5} \times X_{5} X_{4}$, there is a map $\tilde{i}: \tilde{X}_{4} \rightarrow \tilde{X}_{5}$. This map is an embedding since the map $X_{4} \rightarrow X_{5}$ is a closed immersion (see for instance Lemma 26.17.6 in The Stacks project). In fact, we even have that $\tilde{X}_{4}=$ $\tilde{X}_{5} \cap \tilde{H}_{\nu}$ where \tilde{H}_{ν} is the pull back of the hyperplane H_{ν} such that $X_{4}=X_{5} \cap H_{\nu}$, by the proof of Theorem 5.1 in [20]. We can then use the following :

$$
H^{*}\left(\pi^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{\tilde{S}}\right)=H^{*}\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{S}}\right)=H^{*}\left(\tilde{i}^{*} \mathcal{O}_{\tilde{X}_{5}}, \mathcal{O}_{\tilde{S}}\right)=H^{*}\left(\mathcal{O}_{\tilde{X}_{5}}, \tilde{i}_{*} \mathcal{O}_{\tilde{S}}\right)=H^{*}\left(\mathcal{O}_{\tilde{X}_{5}}, \mathcal{O}_{\tilde{S}}\right)
$$

Moreover,

$$
\begin{aligned}
H^{*}\left(\mathcal{O}_{\tilde{X}_{5}}, \mathcal{O}_{\tilde{S}}\right) & =H^{*}\left(\mathcal{O}_{\tilde{X}_{5}}, \bar{i}_{*} \mathcal{O}_{\tilde{S}}\right) \\
& =H^{*}\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\tilde{S}}\right) \\
& =H^{*}\left(\mathcal{O}_{Z_{3}}, \bar{\pi}_{*} \mathcal{O}_{\tilde{S}}\right) \\
& =H^{*}\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{\hat{S}}\right) \\
& =H^{*}\left(\mathcal{O}_{S_{2}}, \sigma_{*} \mathcal{O}_{\hat{S}}\right) \\
& =H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{O}_{S_{2}}\right)
\end{aligned}
$$

by Corollary 4.5.5. Finally, if we denote now by $f: S_{2} \rightarrow \mathbb{P}^{2}$ the blow-up of \mathbb{P}^{2} in three points mentioned in Definition 4.5.1, we have $H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{O}_{S_{2}}\right)=H^{*}\left(f^{*} \mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{S_{2}}\right)=H^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}, f_{*} \mathcal{O}_{S_{2}}\right)=H^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}\right)$ (see for instance Proposition 3.4 of V.3. in [12] for the last equality). As a result, $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}\right)=1$.
Lemma 4.5.8. The canonical sheaf of \bar{E}_{4} is $\omega_{\bar{E}}=\mathcal{O}_{\bar{E}_{4}}\left(\bar{h}-2 V_{\bar{E}}\right)$.
Proof. Since \bar{E}_{4} is the exceptional divisor of $\bar{\pi}$ in \tilde{X}_{5}, the adjunction formula gives :

$$
\omega_{\bar{E}}=\bar{i}^{*}\left(\omega_{\tilde{X}_{5}}+\mathcal{O}_{\tilde{X}_{5}}(\bar{e})\right)
$$

where $\omega_{\tilde{X}_{5}}$ is the canonical sheaf of \tilde{X}_{5}. We know from the proof of Lemma 4.1 in [20] that the canonical sheaf of X_{5} is $\omega_{X_{5}}=\mathcal{O}_{X_{5}}(-2 h)$. Therefore, since \tilde{X}_{5} is the blow-up of X_{5} with exceptional divisor E_{4}, we get that $\omega_{\tilde{X}_{5}}=\mathcal{O}_{\tilde{X}_{5}}(-2 h+e)$. Finally:

$$
\begin{aligned}
\omega_{\bar{E}} & =\bar{i}^{*} \mathcal{O}_{\tilde{X}_{5}}(\bar{e}+e-2 h) \\
& =\bar{i}^{*} \mathcal{O}_{\tilde{X}_{5}}(2 \bar{h}-h+h-\bar{h}-2 h) \quad \text { by }(1.8) \\
& =\mathcal{O}_{\bar{E}_{4}}\left(\bar{h}-2 V_{\bar{E}}\right) \quad \text { by }(1.12)
\end{aligned}
$$

Lemma 4.5.9. Let $i \in \mathbb{Z}$. We have :

$$
\begin{aligned}
\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\tilde{S}}\right)= & \chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right)\right)-\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}\right)\right)-\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)+ \\
& \chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}-\bar{h}\right)\right. \\
= & \left.\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(\bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}(i-2) V_{\bar{E}}\right)\right)-\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(\bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left((i-1) V_{\bar{E}}\right)\right)- \\
& \left.\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(2 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left((i-2) V_{\bar{E}}\right)\right)+\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(2 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}(i-1) V_{\bar{E}}\right)\right) .
\end{aligned}
$$

Proof. To start with, let us give names to some of the embeddings we have seen before :

where we saw the existence of j, f and g in Lemma 3.2.6, Corollary 3.2.7 and the remark just after, and the existence of \tilde{i} in the proof of Lemma 4.5.7. Let now $i \in \mathbb{Z}$. One can notice

$$
\begin{aligned}
H^{*}\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\tilde{S}}\right) & =H^{*}\left(\mathcal{O}_{\tilde{X}_{4}}(i h), \mathcal{O}_{\tilde{S}}\right) \\
& =H^{*}\left(\tilde{i}^{*} \mathcal{O}_{\tilde{X}_{5}}(i h), \mathcal{O}_{\tilde{S}}\right) \\
& =H^{*}\left(\mathcal{O}_{\tilde{X}_{5}}(i h), \tilde{i}_{*} \mathcal{O}_{\tilde{S}}\right) \\
& =H^{*}\left(\mathcal{O}_{\tilde{X}_{5}}(i h), \mathcal{O}_{\tilde{S}}\right) \\
& =H^{*}\left(\mathcal{O}_{\tilde{X}_{5}}(i h), \bar{i}_{*} f_{*} g_{*} \mathcal{O}_{\tilde{S}}\right) \\
& =H^{*}\left(\mathcal{O}_{\bar{E}_{4}}(i h), f_{*} g_{*} \mathcal{O}_{\tilde{S}}\right)
\end{aligned}
$$

By (1.12), $h=V_{\bar{E}}$ in $\operatorname{Pic}\left(\bar{E}_{4}\right)$, therefore $H^{*}\left(\mathcal{O}_{\bar{E}_{4}}(i h), \mathcal{O}_{\tilde{S}}\right)=H^{*}\left(\mathcal{O}_{\bar{E}_{4}}, f_{*} g_{*} \mathcal{O}_{\tilde{S}}\left(-i V_{\bar{E}}\right)\right)=H^{*}\left(\mathcal{O}_{\tilde{Z}}, g_{*} \mathcal{O}_{\tilde{S}}\left(-i V_{\bar{E}}\right)\right)$. So $\chi_{\tilde{X}_{4}}\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\tilde{S}}\right)=\chi_{\tilde{Z}}\left(\mathcal{O}_{\tilde{Z}}, g_{*} \mathcal{O}_{\tilde{S}}\left(-i V_{\bar{E}}\right)\right)$. To compute the latter, we can use the fact that the class of \tilde{Z} in \bar{E}_{4} is $V_{\bar{E}}$ by Proposition 3.2.6, while the class of \tilde{S} in \bar{E}_{4} is $\bar{h} . V_{\bar{E}}$ by Corollary 3.2.7. This yields the following short exact sequence in \tilde{Z} :

$$
0 \rightarrow \mathcal{O}_{\tilde{Z}}(-\bar{h}) \rightarrow \mathcal{O}_{\tilde{Z}} \rightarrow g_{*} \mathcal{O}_{\tilde{S}} \rightarrow 0
$$

Twisting it by $\mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}\right)$ induces the short exact sequence :

$$
0 \rightarrow \mathcal{O}_{\tilde{Z}}\left(-\bar{h}-i V_{\bar{E}}\right) \rightarrow \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}\right) \rightarrow g_{*} \mathcal{O}_{\tilde{S}}\left(-i V_{\bar{E}}\right) \rightarrow 0
$$

In particular this implies : $\chi\left(\mathcal{O}_{\tilde{Z}}, g_{*} \mathcal{O}_{\tilde{S}}\left(-i V_{\bar{E}}\right)\right)=\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}\right)\right)-\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)$.

- First, let us consider $\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}\right)\right)$. To start with, we can notice :

$$
H^{*}\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}\right)\right)=H^{*}\left(f^{*} \mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}\right)\right)=H^{*}\left(\mathcal{O}_{\bar{E}_{4}}, f_{*} \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}\right)\right)
$$

We can now use the short exact sequence in \bar{E}_{4} (given by Lemma 3.2.6) :

$$
0 \rightarrow \mathcal{O}_{\bar{E}_{4}}\left(-V_{\bar{E}}\right) \rightarrow \mathcal{O}_{\bar{E}_{4}} \rightarrow f_{*} \mathcal{O}_{\tilde{Z}} \rightarrow 0
$$

Twisting it by $\mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right)$ yields the short exact sequence :

$$
0 \rightarrow \mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}\right) \rightarrow \mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right) \rightarrow f_{*} \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}\right) \rightarrow 0
$$

As a result, $\chi_{\tilde{Z}}\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}\right)\right)=\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right)\right)-\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}\right)\right)$.

- To compute $\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)$, we are going to proceed similarly :

$$
H^{*}\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)=H^{*}\left(\mathcal{O}_{\bar{E}_{4}}, f_{*} \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)
$$

and the short exact sequence in \bar{E}_{4} :

$$
0 \rightarrow \mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}-\bar{h}\right) \rightarrow \mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}-\bar{h}\right) \rightarrow f_{*} \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}-\bar{h}\right) \rightarrow 0
$$

yields $\chi_{\tilde{Z}}\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)=\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)-\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}-\bar{h}\right)\right)$.
Finally,

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{Z}}, g_{*} \mathcal{O}_{\tilde{S}}\left(-i V_{\bar{E}}\right)\right) & =\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}\right)\right)-\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\left(-i V_{\bar{E}}-\bar{h}\right)\right) \\
& =\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right)\right)-\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}\right)\right)- \\
& \left(\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)-\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}-\bar{h}\right)\right)\right) \\
& =\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right)\right)-\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}\right)\right)-\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)+ \\
& \chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}-\bar{h}\right)\right) .
\end{aligned}
$$

Let us now consider $\chi\left(\mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right)\right)$ with $i \in \mathbb{Z}$. Here, Serre duality and Lemma 4.5.8 yield :

$$
H^{*}\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right)\right) \cong H^{*-4}\left(\mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right), \mathcal{O}_{\bar{E}_{4}}\left(\bar{h}-2 V_{\bar{E}}\right)\right)=H^{*-4}\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(\bar{h}+(i-2) V_{\bar{E}}\right)\right)
$$

Since 4 is even we thus have $\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right)\right)=\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(\bar{h}+(i-2) V_{\bar{E}}\right)\right)$. Furthermore,

$$
\begin{aligned}
H^{*}\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(\bar{h}+(i-2) V_{\bar{E}}\right)\right) & =H^{*}\left(\bar{\pi}^{*} \mathcal{O}_{Z_{3}}, \mathcal{O}_{\bar{E}_{4}}\left(\bar{h}+(i-2) V_{\bar{E}}\right)\right) \\
& =H^{*}\left(\mathcal{O}_{Z_{3}}, \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(\bar{h}+(i-2) V_{\bar{E}}\right)\right) \\
& \left.=H^{*}\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}(i-2) V_{\bar{E}}\right)\right) .
\end{aligned}
$$

Similarly, for any $i \in \mathbb{Z}$, by Serre duality we have

$$
\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)=\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left((i-2) V_{\bar{E}}+2 \bar{h}\right)\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(2 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left((i-2) V_{\bar{E}}\right)\right) .
$$

Corollary 4.5.10. One has :

- $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{S}}\right)=-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(2 \bar{h})\right) ;$
- $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(\bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right) ;$
- $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(3 h), \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(\bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}^{\vee}(\bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right)$;
- $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(4 h), \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}^{\vee}(\bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, S^{3} \mathcal{V}_{Z}^{\vee}(\bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, S^{3} \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right)$.

Proof. Applying the Remark below Proposition 9.3 in [8] to the formula given in Lemma 4.5.9 for $1 \leq i \leq 4$ yield the above-mentioned formulas.

We need now to know the Chern characters of $S^{2} \mathcal{V}_{Z}^{\vee}$ and $S^{3} \mathcal{V}_{Z}^{\vee}$, in order to compute with Hirzebruch-Riemann-Roch the Euler characteristics listed in Corollary 4.5.10.
Lemma 4.5.11. The Chern characters of the following symmetric powers of \mathcal{V}_{Z}^{\vee} are :

$$
\begin{align*}
& \operatorname{ch}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right)=\left(3,9 \bar{h}-3 \bar{h}_{1}-3 \bar{h}_{2}, 14 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+\frac{15}{2} \bar{h}_{1} \bar{h}_{2}, 51\right) \tag{4.34}\\
& \operatorname{ch}\left(S^{3} \mathcal{V}_{Z}^{\vee}\right)=\left(4,18 \bar{h}-6 \bar{h}_{1}-6 \bar{h}_{2}, 44 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+21 \bar{h}_{1} \bar{h}_{2}, 468\right) \tag{4.35}\\
& \operatorname{ch}\left(S^{4} \mathcal{V}_{Z}^{\vee}\right)=\left(5,30 \bar{h}-10 \bar{h}_{1}-10 \bar{h}_{2}, 92 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+45 \bar{h}_{1} \bar{h}_{2}, 2100\right) \tag{4.36}
\end{align*}
$$

Proof. Let us denote the Chern polynomial of \mathcal{V}_{Z}^{\vee} by $c_{t}\left(\mathcal{V}_{Z}^{\vee}\right)=\left(1+a_{1} t\right)\left(1+a_{2} t\right)=1+\left(a_{1}+a_{2}\right) t+a_{1} a_{2} t^{2}$.
Then (see for instance page 429 and 430 of [12]), $c_{1}\left(\mathcal{V}_{Z}^{\mathcal{V}}\right)=a_{1}+a_{2}$ and $c_{2}\left(\mathcal{V}_{Z}^{\mathcal{V}}\right)=a_{1} a_{2}$. We also know from Lemma 3.2.3 that $\operatorname{ch}\left(\mathcal{V}_{Z}^{\vee}\right)=\left(2,3 \bar{h}-\bar{h}_{1}-\bar{h}_{2}, \frac{3}{2} \bar{h}_{1} \bar{h}_{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), 3\right)$, thus $c_{1}\left(\mathcal{V}_{Z}^{\vee}\right)=3 \bar{h}-\bar{h}_{1}-\bar{h}_{2}$ and

$$
\begin{aligned}
c_{2}\left(\mathcal{V}_{Z}^{\vee}\right) & =\frac{c_{1}\left(\mathcal{V}_{Z}^{\vee}\right)^{2}}{2}-\operatorname{ch}_{2}\left(\mathcal{V}_{Z}^{\vee}\right) \\
& =\frac{9 \bar{h}^{2}+\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}-6 \bar{h}\left(\bar{h}_{1}+\bar{h}_{2}\right)}{2}-\left(\frac{3}{2} \bar{h}_{1} \bar{h}_{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right) \\
& =\frac{18 \bar{h}_{1} \bar{h}_{2}+18 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+3 \bar{h}_{1} \bar{h}_{2}-6 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)-18 \bar{h}_{1} \bar{h}_{2}}{2}-\left(\frac{3}{2} \bar{h}_{1} \bar{h}_{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right) \\
& =4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)
\end{aligned}
$$

Moreover by Example 3.2.6. page 57 of [9], the Chern roots of $S^{2}\left(\mathcal{V}_{Z}^{\vee}\right)$ are : $2 a_{1}, 2 a_{2}$ and $a_{1}+a_{2}$. Hence its Chern polynomial is :

$$
\begin{aligned}
c_{t}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right) & =\left(1+2 a_{1} t\right)\left(1+2 a_{2} t\right)\left(1+\left(a_{1}+a_{2}\right) t\right) \\
& =1+\left(2 a_{1}+2 a_{2}+a_{1}+a_{2}\right) t+\left(4 a_{1} a_{2}+2 a_{1}^{2}+2 a_{1} a_{2}+2 a_{1} a_{2}+2 a_{2}^{2}\right) t^{2}+4 a_{1} a_{2}\left(a_{1}+a_{2}\right) t^{3} \\
& =1+\left(3 a_{1}+3 a_{2}\right) t+\left(2 a_{1}^{2}+2 a_{2}^{2}+8 a_{1} a_{2}\right) t^{2}+\left(4 a_{1}^{2} a_{2}+4 a_{1} a_{2}^{2}\right) t^{3} \\
& =1+3 c_{1}\left(\mathcal{V}_{Z}^{\vee}\right) t+\left(2 c_{1}\left(\mathcal{V}_{Z}^{\vee}\right)^{2}+4 c_{2}\left(\mathcal{V}_{Z}^{\vee}\right)\right) t^{2}+4 c_{1}\left(\mathcal{V}_{Z}^{\vee}\right) c_{2}\left(\mathcal{V}_{Z}^{\vee}\right) t^{3}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
c_{1}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right) & =3 c_{1}\left(\mathcal{V}_{Z}^{\vee}\right)=9 \bar{h}-3 \bar{h}_{1}-3 \bar{h}_{2} \\
c_{2}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right) & =2 c_{1}\left(\mathcal{V}_{Z}^{\vee}\right)^{2}+4 c_{2}\left(\mathcal{V}_{Z}^{\vee}\right)=24 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+6 \bar{h}_{1} \bar{h}_{2}+16 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)=40 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+6 \bar{h}_{1} \bar{h}_{2} \\
c_{3}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right) & =4 c_{1}\left(\mathcal{V}_{Z}^{\vee}\right) c_{2}\left(\mathcal{V}_{Z}^{\vee}\right)=16 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)\left(3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)=32.6=192 \\
\operatorname{ch}_{0}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right) & =\operatorname{rk}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right)=\operatorname{deg}\left(c_{t}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right)\right)=3 \\
\operatorname{ch}_{1}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right) & =c_{1}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right)=9 \bar{h}-3 \bar{h}_{1}-3 \bar{h}_{2} \\
\operatorname{ch}_{2}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right) & =\frac{c_{1}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right)^{2}}{2}-c_{2}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right)=9\left(6 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+\frac{3}{2} \bar{h}_{1} \bar{h}_{2}\right)-40 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)-6 \bar{h}_{1} \bar{h}_{2} \\
& =14 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+\frac{15}{2} \bar{h}_{1} \bar{h}_{2} \\
\operatorname{ch}_{3}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right) & =\frac{c_{1}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right)^{3}}{6}-\frac{c_{1}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right) c_{2}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right)}{2}+\frac{c_{3}\left(S^{2} \mathcal{V}_{Z}^{\vee}\right)}{2}=\frac{27}{6}\left(\left(3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\left(12 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+3 \bar{h}_{1} \bar{h}_{2}\right)\right)+ \\
& -\frac{54.2+40.6 .6}{2}+96=\frac{9}{2}(9.2+24.6)-54-720+96=81+648-774+96=51 .
\end{aligned}
$$

For $S^{3} \mathcal{V}_{Z}^{\vee}$ and $S^{4} \mathcal{V}_{Z}^{\vee}$, one can proceed similarly.
One can now use Hirzebruch-Riemann-Roch, with Lemma 4.5.6, Lemma 3.2.3, Lemma 4.5.11 and Corollary 4.5.10 to compute the following.

Lemma 4.5.12. One has $\left(\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(h), \mathcal{O}_{\tilde{S}}\right), \ldots, \chi\left(\pi^{*} \mathcal{O}_{X_{4}}(4 h), \mathcal{O}_{\tilde{S}}\right)\right)=(37,127,271,469)$.
Lemma 4.5.13. The following holds :

- $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}\right)=-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(3 \bar{h})\right)$;
- $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}(h)\right)=-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(3 \bar{h})\right)$;
- $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}(2 h)\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(2 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(3 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(3 \bar{h})\right)$;
- $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}(3 h)\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(3 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}^{\vee}(3 \bar{h})\right)$;
- $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}(4 h)\right)=\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, S^{3} \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}^{\vee}(3 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, S^{3} \mathcal{V}_{Z}^{\vee}(3 \bar{h})\right)$.

Proof. Let $i \in \mathbb{Z}$. By Serre duality, Lemma 4.4.7 and (1.8) one has

$$
\left.\chi\left(\mathcal{O}_{\tilde{S}}, \pi^{*} \mathcal{O}_{X_{4}}(i h)\right)\right)=\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\tilde{S}}(-h+e)\right)=\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\tilde{S}}(-\bar{h})\right)
$$

Using the same reasoning as in Lemma 4.5 .9 with $\mathcal{O}_{\tilde{S}}$ replaced by $\mathcal{O}_{\tilde{S}}(-\bar{h})$, one can find :

$$
\begin{aligned}
\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), \mathcal{O}_{\tilde{S}}(-\bar{h})\right) & =\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}-\bar{h}\right)\right)-\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}-\bar{h}\right)\right) \\
& -\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}-2 \bar{h}\right)\right)+\chi_{\bar{E}_{4}}\left(\mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}-2 \bar{h}\right)\right. \\
& =\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(2 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left((i-2) V_{\bar{E}}\right)\right)-\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(2 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left((i-1) V_{\bar{E}}\right)\right) \\
& \left.-\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(3 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left((i-2) V_{\bar{E}}\right)\right)+\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(3 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}(i-1) V_{\bar{E}}\right)\right) .
\end{aligned}
$$

As in Corollary 4.5.10 one can conclude using the Remark below Proposition 9.3 in [8].
One can now use Hirzebruch-Riemann-Roch to compute the following.
Lemma 4.5.14. One has $\left(\chi\left(\mathcal{O}_{\tilde{S}}, \pi^{*} \mathcal{O}_{X_{4}}\right), \ldots, \chi\left(\mathcal{O}_{\tilde{S}}, \pi^{*} \mathcal{O}_{X_{4}}(4 h)\right)\right)=(79,79,205,385,619)$.
Remark 4.5.15. One could also have computed the Euler characteristics mentioned in Lemma 4.5 .12 and Lemma 4.5.14 with Hirzebruch-Riemann-Roch in \tilde{Z}. Indeed, if we denote by j the inclusion of \tilde{Z} in \tilde{X}_{4}, we have, for $i \in \mathbb{Z}$ $: \chi\left(\mathcal{O}_{\tilde{X}_{4}}(i h), j_{*} \mathcal{O}_{\tilde{S}}\right)=\chi\left(j^{*} \mathcal{O}_{\tilde{X}_{4}}(i h), \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{\tilde{Z}}(i h), \mathcal{O}_{\tilde{S}}\right)$ since $\tilde{S} \subset \tilde{Z}$ by construction. We know from Corollary 3.2.7 that the class of \tilde{S} in \tilde{Z} is \bar{h}, hence we get $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(i h), j_{*} \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{\tilde{Z}}(i h), \mathcal{O}_{\tilde{Z}}\right)-\chi\left(\mathcal{O}_{\tilde{Z}}(i h), \mathcal{O}_{\tilde{Z}}(-\bar{h})\right)$. One can then conclude with Hirzebruch-Riemann-Roch, Lemma 5.0.7 and the fact that $\left.h\right|_{\tilde{Z}}=3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)-\bar{D}$, as we will see in Lemma 4.6.2.
For the Euler characteristics computed in Lemma 4.5.14, one can use the same reasoning together with Serre duality and Lemma 4.4.7.

Lemma 4.5.16. The following Euler characteristics are : $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=56$ and $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=76$.
Proof. We can use again (4.24) to find

$$
\begin{aligned}
\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\tilde{S}}\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{\tilde{S}}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-2 e), \mathcal{O}_{\tilde{S}}\right) \\
& =\chi\left(\mathcal{O}_{\tilde{X}_{4}}(\bar{h}-h), \mathcal{O}_{\tilde{S}}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 \bar{h}-2 h), \mathcal{O}_{\tilde{S}}\right)
\end{aligned}
$$

using (1.8) for the last equality.

1. Using the same reasoning as in the proof of Lemma 4.5.9, one finds

$$
\begin{aligned}
\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(\bar{h}-h), \mathcal{O}_{\tilde{S}}\right) & =\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(2 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-3 V_{\bar{E}}\right)\right)-\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(2 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-2 V_{\bar{E}}\right)\right) \\
& -\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(3 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-3 V_{\bar{E}}\right)\right)+\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(3 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-2 V_{\bar{E}}\right)\right) .
\end{aligned}
$$

The Remark below Proposition 9.3 in [8] implies then

$$
\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(\bar{h}-h), \mathcal{O}_{\tilde{S}}\right)=-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}(2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}(3 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(3 \bar{h})\right) .
$$

2. Using again the same reasoning as in the proof of Lemma 4.5.9 and the Remark below Proposition 9.3 in [8], we can get :

$$
\begin{aligned}
\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(2 \bar{h}-2 h), \mathcal{O}_{\tilde{S}}\right) & =\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(3 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-4 V_{\bar{E}}\right)\right)-\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(3 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-3 V_{\bar{E}}\right)\right) \\
& -\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(4 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-4 V_{\bar{E}}\right)\right)+\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(4 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-3 V_{\bar{E}}\right)\right) \\
& =-\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}(3 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}(3 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}(4 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}(4 \bar{h})\right) .
\end{aligned}
$$

One can then conclude with Hirzebruch-Riemann-Roch, Lemma 3.2.3, Lemma 4.5.11 and Lemma 4.5.6.
By Serre duality and Lemma 4.4.7, $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\tilde{S}}(-h+e)\right)=\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{\tilde{S}}(-\bar{h})\right)$. Hence with (4.24), we get

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{\tilde{S}}(-\bar{h})\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-2 e), \mathcal{O}_{\tilde{S}}(-\bar{h})\right) \\
& =\chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 \bar{h}-h), \mathcal{O}_{\tilde{S}}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}(3 \bar{h}-2 h), \mathcal{O}_{\tilde{S}}\right)
\end{aligned}
$$

We can then proceed as in the previous case to find :

1. First,

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 \bar{h}-h), \mathcal{O}_{\tilde{S}}\right) & =\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(3 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-3 V_{\bar{E}}\right)\right)-\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(3 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-2 V_{\bar{E}}\right)\right) \\
& -\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(4 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-3 V_{\bar{E}}\right)\right)+\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(4 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-2 V_{\bar{E}}\right)\right) \\
& =-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}(3 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(3 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}(4 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(4 \bar{h})\right) ;
\end{aligned}
$$

2. Secondly,

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{X}_{4}}(3 \bar{h}-2 h), \mathcal{O}_{\tilde{S}}\right) & =\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(4 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-4 V_{\bar{E}}\right)\right)-\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(4 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-3 V_{\bar{E}}\right)\right) \\
& -\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(5 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-4 V_{\bar{E}}\right)\right)+\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(5 \bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-3 V_{\bar{E}}\right)\right) \\
& =-\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}(4 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}(4 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, S^{2} \mathcal{V}_{Z}(5 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}(5 \bar{h})\right) .
\end{aligned}
$$

As before, one can then conclude with Hirzebruch-Riemann-Roch.

4.6 Euler characteristics between structure sheaves of surfaces

We would like now to compute the four Euler characteristics between $\mathcal{O}_{\bar{D}_{2}}$ and $\mathcal{O}_{\tilde{S}}$.
Lemma 4.6.1. Let \mathcal{O}_{S} and \mathcal{O}_{T} be the structure sheaves of two surfaces S and T in \tilde{X}_{4}, with possibly $S=T$. Then $\chi\left(\mathcal{O}_{S}, \mathcal{O}_{T}\right)=\chi\left(\mathcal{O}_{T}, \mathcal{O}_{S}\right)=\operatorname{ch}_{2}\left(\mathcal{O}_{T}\right) \cdot \operatorname{ch}_{2}\left(\mathcal{O}_{S}\right)$.

Proof. Since \mathcal{O}_{S} and \mathcal{O}_{T} are structure sheaves of surfaces in \tilde{X}_{4}, one has $\operatorname{ch}_{0}\left(\mathcal{O}_{S}\right)=\operatorname{ch}_{0}\left(\mathcal{O}_{T}\right)=\operatorname{ch}_{1}\left(\mathcal{O}_{S}\right)=$ $\operatorname{ch}_{1}\left(\mathcal{O}_{T}\right)=0$. Moreover $\operatorname{ch}_{2}\left(\mathcal{O}_{S}\right)=\operatorname{ch}_{2}\left(\mathcal{O}_{S}^{\vee}\right)$ and $\operatorname{ch}_{2}\left(\mathcal{O}_{T}\right)=\operatorname{ch}_{2}\left(\mathcal{O}_{T}^{\vee}\right)$ (see for instance pages 430 and 432 of [12]), hence Hirzebruch-Riemann-Roch yields:

$$
\begin{aligned}
\chi\left(\mathcal{O}_{S}, \mathcal{O}_{T}\right) & =\int_{\tilde{X}_{4}} \operatorname{ch}\left(\mathcal{O}_{S}^{\vee}\right) \operatorname{ch}\left(\mathcal{O}_{T}\right) \operatorname{td}\left(\tilde{X}_{4}\right)=\int_{\tilde{X}_{4}}\left(0,0,0,0, \operatorname{ch}_{2}\left(\mathcal{O}_{T}\right) \cdot \operatorname{ch}_{2}\left(\mathcal{O}_{S}\right)\right) \operatorname{td}\left(\tilde{X}_{4}\right) \\
& =\int_{\tilde{X}_{4}} \operatorname{ch}\left(\mathcal{O}_{S}\right) \operatorname{ch}\left(\mathcal{O}_{T}^{\vee}\right) \operatorname{td}\left(\tilde{X}_{4}\right)=\chi\left(\mathcal{O}_{T}, \mathcal{O}_{S}\right)
\end{aligned}
$$

Lemma 4.6.2. One has $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}\right)=48, \chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\bar{D}_{2}}\right)=-24$ and $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{S}}\right)=-4$.
Proof. Along this proof, let us denote by a, b, c and d the following embeddings : $a: \bar{D}_{2} \hookrightarrow \tilde{X}_{4}, b: \tilde{S} \hookrightarrow \tilde{Z}$, $c: \bar{D}_{2} \hookrightarrow \tilde{Z}$ and $d: \tilde{Z} \hookrightarrow \tilde{X}_{4}$.

1. First, $\chi\left(a_{*} \mathcal{O}_{\bar{D}_{2}}, a_{*} \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(a^{*} a_{*} \mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}\right)$ and by Theorem 13.7 in [8], $\operatorname{ch}\left(a^{*} a_{*} \mathcal{O}_{\bar{D}_{2}}\right)=\left(0,0, c_{2}\left(\mathcal{N}_{\bar{D}_{2} / \tilde{X}_{4}}\right)\right)$. So by Hirzebruch-Riemann-Roch, $\chi\left(a_{*} \mathcal{O}_{\bar{D}_{2}}, a_{*} \mathcal{O}_{\bar{D}_{2}}\right)=c_{2}\left(\mathcal{N}_{\bar{D}_{2} / \tilde{X}_{4}}\right)$.
Moreover, by Proposition 3.4 in [11], since $\bar{D}_{2} \subset \tilde{Z} \subset \tilde{X}_{4}$ and all these inclusions are smooth, there is a short exact sequence in \bar{D}_{2} :

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{N}_{\bar{D}_{2} / \tilde{Z}} \rightarrow \mathcal{N}_{\bar{D}_{2} / \tilde{X}_{4}} \rightarrow \mathcal{N}_{\tilde{Z} / \tilde{X}_{4}}\right|_{\bar{D}_{2}} \rightarrow 0 . \tag{4.37}
\end{equation*}
$$

So knowing $\mathcal{N}_{\bar{D}_{2} / \tilde{Z}}$ and $\mathcal{N}_{\tilde{Z} / \tilde{X}_{4}} \mid \bar{D}_{2}$ would allow us to compute $\chi\left(a_{*} \mathcal{O}_{\bar{D}_{2}}, a_{*} \mathcal{O}_{\bar{D}_{2}}\right)$. Moreover, using the equalities just above Proposition 13.1 in [8] and the fact that \tilde{Z} is a divisor in \tilde{X}_{4} and \bar{D}_{2} a divisor in \tilde{Z} (because \tilde{Z} is the blow up of Z_{3} in Γ_{1} and thus by construction \bar{D}_{2} is its exceptional divisor), one finds :

- $\tilde{N}_{\tilde{Z} / \tilde{X}_{4}}=\mathcal{O}_{\tilde{Z}}(\bar{e})$. Indeed, from Proposition 3.2 .6 and (1.12) we know that \tilde{Z} has class $\bar{e} h$ in \tilde{X}_{5}, hence since \tilde{X}_{4} is cut out in \tilde{X}_{5} by h we have that the class of \tilde{Z} in \tilde{X}_{4} is $\left.\bar{e}\right|_{\tilde{X}_{4}}$ which we are still going to denote by \bar{e}. With (1.8), this yields : $\tilde{N}_{\tilde{Z} / \tilde{X}_{4}}=\mathcal{O}_{\tilde{Z}}(2 \bar{h}-h)$.
- With the notations of Lemma 4.4.1, $\mathcal{N}_{\bar{D}_{2} / \tilde{Z}}=\mathcal{O}_{\bar{D}_{2}}(-\delta)$. Indeed, by the above mentioned formula in [8], $\mathcal{N}_{\bar{D}_{2} / \tilde{Z}}=\left.\mathcal{O}_{\tilde{Z}}\left(\left[\bar{D}_{2}\right]\right)\right|_{\bar{D}_{2}}$ where by $\left[\bar{D}_{2}\right]$ we mean the class of \bar{D}_{2} in \tilde{Z}.
So we need to compute $\left[\bar{D}_{2}\right]^{2}$ in \tilde{Z}. For this one can notice that on one hand by Lemma 4.4.5, $\left.h\right|_{\bar{D}_{2}}=$ $\delta+48 f$. On the other hand, by (1.12) and (1.17) one finds that in E_{4} the following holds :

$$
h^{2}=V_{\bar{E}}^{2}=3 V_{Z} V_{\bar{E}}+2 V_{\bar{E}}\left(\bar{h}_{1}+\bar{h}_{2}\right)-4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)
$$

Since \tilde{Z} has class $h \bar{e}=V_{\bar{E}} \bar{e}$ in \bar{E}_{4}, with (1.15) and the formula below Definition 1.7 in [4] this implies

$$
\left.h\right|_{\tilde{Z}}=3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)-\left[\bar{D}_{2}\right]
$$

(indeed by (1.15) we have that the class of \bar{D}_{2} in \bar{E}_{4} is $-V_{\bar{E}}^{2}+3 V_{Z} V_{\bar{E}}+2\left(\bar{h}_{1}+\bar{h}_{2}\right) V_{\bar{E}}=V_{\bar{E}}\left(-V_{\bar{E}}+\right.$ $\left.3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)$ and thus $\left.\left[\bar{D}_{2}\right]=-V_{\bar{E}}+3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)=-h+3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)$.
But one should have $\left.h\right|_{\bar{D}_{2}}=\left.\left(\left.h\right|_{\tilde{Z}}\right)\right|_{\bar{D}_{2}}$ so finally:

$$
\delta+48 f=3 V_{Z} \cdot\left[\bar{D}_{2}\right]+2\left(\bar{h}_{1}+\bar{h}_{2}\right) \cdot\left[\bar{D}_{2}\right]-\left[\bar{D}_{2}\right]^{2}
$$

By (1.13) and (1.18), $V_{Z} \cdot 4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)=0$ in Z_{3}, so $V_{Z} \cdot\left[\bar{D}_{2}\right]=0$, and $\left(\bar{h}_{1}+\bar{h}_{2}\right) \cdot 4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)=24$ in Z_{3} so $\left(\bar{h}_{1}+\bar{h}_{2}\right) \cdot\left[\bar{D}_{2}\right]=24 f$. As a result, $\delta+48 f=48 f-\left[\bar{D}_{2}\right]^{2}$, that is to say $\left[\bar{D}_{2}\right]^{2}=-\delta$.

Finally, we saw in the proof of Lemma 4.4.8 that $\left.\bar{h}\right|_{\bar{D}_{2}}=24 f$, which together with $\left.h\right|_{\bar{D}_{2}}=\delta+48 f$ and what we did above implies $\left.\mathcal{N}_{\tilde{Z} / \tilde{X}_{4}}\right|_{\bar{D}_{2}}=\mathcal{O}_{\bar{D}_{2}}(48 f-\delta-48 f)=\mathcal{O}_{\bar{D}_{2}}(-\delta)$. Then (4.37) gives :

$$
0 \rightarrow \mathcal{O}_{\overline{D_{2}}}(-\delta) \rightarrow \mathcal{N}_{\bar{D}_{2} / \tilde{X}_{4}} \rightarrow \mathcal{O}_{\overline{D_{2}}}(-\delta) \rightarrow 0
$$

and so $\operatorname{ch}\left(\mathcal{N}_{\bar{D}_{2} / \tilde{X}_{4}}\right)=(1,-\delta, 24)+(1,-\delta, 24)=(2,-2 \delta, 48)$. Therefore,

$$
c_{2}\left(\mathcal{N}_{\bar{D}_{2} / \tilde{X}_{4}}\right)=\frac{(2 \delta)^{2}}{2}-48=2.48-48=48 .
$$

2. One has $\chi\left(d_{*} c_{*} \mathcal{O}_{\bar{D}_{2}}, d_{*} b_{*} \mathcal{O}_{\tilde{S}}\right)=\chi\left(d^{*} d_{*} c_{*} \mathcal{O}_{\bar{D}_{2}}, b_{*} \mathcal{O}_{\tilde{S}}\right)$ and by Theorem 13.7 in [8] we have $d^{*} d_{*} c_{*}\left[\bar{D}_{2}\right]=$ $\left[\bar{D}_{2}\right] \cdot c_{1}\left(\mathcal{N}_{\tilde{Z} / \tilde{X}_{4}}\right)=\left[\bar{D}_{2}\right] \cdot(2 \bar{h}-h)$. Finally Hirzebruch-Riemann-Roch and the fact that the class of \tilde{S} in \tilde{Z} is \bar{h} give :

$$
\begin{aligned}
\chi\left(d^{*} d_{*} c_{*} \mathcal{O}_{\bar{D}_{2}}, b_{*} \mathcal{O}_{\tilde{S}}\right) & =\int_{\tilde{Z}}\left(0,0,\left[\bar{D}_{2}\right] \cdot(2 \bar{h}-h), *\right) \cdot(0, \bar{h}, *, *) \cdot \operatorname{td}(\tilde{Z})=\int_{\tilde{Z}}\left(0,0,0,\left[\bar{D}_{2}\right] \cdot(2 \bar{h}-h) \bar{h}\right) \cdot \operatorname{td}(\tilde{Z}) \\
& =\left[\bar{D}_{2}\right] \cdot(2 \bar{h}-h) \bar{h}=\left.2 \bar{h}\left|\frac{2}{\bar{D}_{2}}-h\right|_{\bar{D}_{2}} \bar{h}\right|_{\bar{D}_{2}}=2(24 f)^{2}-24 f(\delta+48 f)=-24 .
\end{aligned}
$$

Lemma 4.6 .1 then yields $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\bar{D}_{2}}\right)$.
3. By Lemma 4.6.1, $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{S}}\right)=(\bar{e} \bar{h})^{2}=\bar{e} \bar{h}^{2} \bar{e}=\left.\left.\bar{h}\right|_{\tilde{Z}} ^{2} \bar{e}\right|_{\tilde{Z}}$ using the formula below Definition 1.7 in [4] for the last equality. Furthermore, since \tilde{Z} is cut out in \bar{E}_{4} by h, we can use [4] again to get : $\left.\left.\bar{h}\right|_{\tilde{Z}} ^{2} \bar{e}\right|_{\tilde{Z}}=$ $\left.\left.\left.h\right|_{\bar{E}_{4}} \bar{h}\right|_{\bar{E}_{4}} ^{2} \bar{e}\right|_{\bar{E}_{4}}$. So finally we need to compute $h \bar{h}^{2} \bar{e}$ in \bar{E}_{4}, which by (1.8), (1.11), (1.13) and (1.12) gives :

$$
\begin{aligned}
h \bar{h}^{2} \bar{e} & =V_{\bar{E}}(2 \bar{h}-h) \bar{h}^{2}=\left(V_{Z}^{2}+\left(\bar{h}_{1}+\bar{h}_{2}\right)^{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\left(2 \bar{h} V_{\bar{E}}-V_{\bar{E}}^{2}\right) \\
& =\left(2 \bar{h}_{1} \bar{h}_{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)\left(2\left(V_{Z}+\bar{h}_{1}+\bar{h}_{2}\right) V_{\bar{E}}-3 V_{Z} V_{\bar{E}}-2 V_{\bar{E}}\left(\bar{h}_{1}+\bar{h}_{2}\right)+4 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right) \\
& =8+24-12-24=-4 .
\end{aligned}
$$

4.7 Euler characteristics between sheaves coming from $D^{b}\left(\Sigma_{2}\right)$ and...

In this subsection, we try to compute Euler characteristics between the first six elements of \mathcal{F}_{1}, namely the twists of pull-backs of sheaves on Σ_{2}, and the other sheaves of $\mathcal{F}_{1}-\left\{\mathcal{O}_{l_{h}}, \mathcal{O}_{p}\right\}$. Again, as there are a lot of Euler characteristics to compute, we divide the subsection into smaller subsections, whose titles indicate which elements of \mathcal{F}_{1} are concerned.
In most cases, the methods are not different from those used before, yet we don't manage to compute all the Euler characteristics between the first six elements of \mathcal{F}_{1} and $\mathcal{O}_{\bar{D}_{2}}$: some depend on an intersection number which we don't know how to compute.

Before going further, let us compute the Todd class of D_{3}.
Lemma 4.7.1. The canonical bundle of D_{3} is $\omega_{D}=\mathcal{O}_{D_{3}}\left(-2 V_{E}-3 h_{1}+E_{1}+E_{2}+E_{3}\right)$, with the notations of section 2.1.1. By Remark 4.1.4 this implies $\omega_{D}=\mathcal{O}_{D_{3}}\left(-2 V_{E}-h_{1}-h_{2}\right)$.

Proof. One can use the same reasoning as in the proof of Proposition 4.5.3, but with $V_{E}, h_{1}, D_{3}, \Sigma_{2},\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}$ instead of $V_{Z}, \bar{h}_{1}, Z_{3}, S_{2}, \mathcal{V}_{S}$.
Lemma 4.7.2. The Todd class of D_{3} is $\operatorname{td}\left(D_{3}\right)=\left(1, V_{E}+\frac{3}{2} h_{1}-\frac{1}{2}\left(E_{1}+E_{2}+E_{3}\right), x_{2}, 1\right)=\left(1, V_{E}+\frac{1}{2}\left(h_{1}+h_{2}\right), x_{2}, 1\right)$ where $h_{1} \cdot x_{2}=h_{2 \cdot 2}=\frac{3}{2}, E_{1} \cdot x_{2}=E_{2} \cdot x_{2}=E_{3} \cdot x_{2}=\frac{1}{2}$ and $V_{E} \cdot x_{2}=\frac{1}{3}$.

Proof. Using the same reasoning as in the proof Lemma 4.5.6 one can find that $\operatorname{td}\left(D_{3}\right)=\left(1, V_{E}+\frac{3}{2} h_{1}-\frac{1}{2}\left(E_{1}+\right.\right.$ $\left.\left.E_{2}+E_{3}\right), x_{2}, 1\right)=\left(1, V_{E}+\frac{1}{2}\left(h_{1}+h_{2}\right), x_{2}, 1\right)$. We can then use Hirzebruch-Riemann-Roch and some Euler characteristics we have already computed to find some $x_{2} . D^{\prime}$ where D^{\prime} is a divisor in D_{3}.
First, $H^{*}\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(h_{1}\right)\right)=H^{*}\left(p^{*} \phi^{*} \mathcal{O}_{\mathbb{P}^{2}}, p^{*} \phi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)\right)=H^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right)$ using the projection formula, $p_{*} \mathcal{O}_{D_{3}}=$ $\mathcal{O}_{\Sigma_{2}}$ (see Corollary 4.5.5) and $\phi_{*} \mathcal{O}_{\Sigma_{2}}=\mathcal{O}_{\mathbb{P}^{2}}$ (see for instance the proof of Proposition 3.1 in [2]). As a result, $\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(h_{1}\right)\right)=3$. On the other hand by Hirzebruch-Riemann-Roch :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(h_{1}\right)\right) & =3=\int_{D_{3}}\left(1, h_{1}, \frac{h_{1}^{2}}{2}, 0\right) \cdot\left(1, V_{E}+\frac{3}{2} h_{1}-\frac{1}{2}\left(E_{1}+E_{2}+E_{3}\right), x_{2}, 1\right) \\
& =1+h_{1} \cdot x_{2}+\frac{1}{2}=\frac{3}{2}+h_{1} \cdot x_{2}
\end{aligned}
$$

thus $h_{1} \cdot x_{2}=3-\frac{3}{2}=\frac{3}{2}$.
Similarly, $H^{*}\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(E_{1}\right)\right)=H^{*}\left(p^{*} \phi^{*} \mathcal{O}_{\mathbb{P}^{2}}, p^{*} \mathcal{O}_{\Sigma_{2}}\left(E_{1}\right)\right)=H^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}, \phi_{*} \mathcal{O}_{\Sigma_{2}}\left(E_{1}\right)\right)$. We saw in the proof of Lemma 4.3.4 that $\phi_{*} \mathcal{O}_{\Sigma_{2}}\left(E_{1}\right)=\mathcal{O}_{\mathbb{P}^{2}}$, hence $\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(E_{1}\right)\right)=1$. Thus :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(E_{1}\right)\right) & =1=\int_{D_{3}}\left(1, E_{1}, \frac{E_{1}^{2}}{2}, 0\right) \cdot\left(1, V_{E}+\frac{3}{2} h_{1}-\frac{1}{2}\left(E_{1}+E_{2}+E_{3}\right), x_{2}, 1\right) \\
& =1+E_{1} \cdot x_{2}-\frac{1}{2}=\frac{1}{2}+E_{1} \cdot x_{2} \\
& \Rightarrow E_{1} \cdot x_{2}=1-\frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

The same reasoning then yields $E_{2} \cdot x_{2}=E_{3} \cdot x_{2}=\frac{1}{2}$.
Finally, $H^{*}\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=H^{*}\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=H^{*}\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{V}_{F} \mid \Sigma \Sigma_{\Sigma}\right) \cong H^{*}\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}^{\vee}\right)=0$ using the proof of Lemma 4.3.1 and Lemma 3.1.3 for the last two equalities. As a result, with (1.16) one gets :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right) & =0=\int_{D_{3}}\left(1, V_{E},-\frac{h_{1} h_{2}}{2},-\frac{1}{3}\right) \cdot\left(1, V_{E}+\frac{3}{2} h_{1}-\frac{1}{2}\left(E_{1}+E_{2}+E_{3}\right), x_{2}, 1\right) \\
& =1+V_{E} \cdot x_{2}-1-\frac{1}{3}=-\frac{1}{3}+V_{E} \cdot x_{2} \\
& \Rightarrow V_{E} \cdot x_{2}=\frac{1}{3}
\end{aligned}
$$

To conclude by Remark 4.1.4 one has $h_{2}=2 h_{1}-E_{1}-E_{2}-E_{3}$, hence $h_{2} \cdot x_{2}=3-\frac{3}{2}=\frac{3}{2}$.
Remark 4.7.3. We have found that $h_{i} \cdot x_{2}=\bar{h}_{i} \cdot x_{2}$ and $\left(V_{Z}+\bar{h}_{1}+\bar{h}_{2}\right) \cdot x_{2}=\frac{10}{3}=\left(V_{E}+h_{1}+h_{2}\right) \cdot x_{2}$. These numbers should only depend on the fact that S_{2} and Σ_{2} are degree 6 del Pezzo surfaces and on \mathcal{V}_{S} and $\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}$ so it is not surprising.

We can now start to compute Euler characteristics between the sheaves considered in section 4.1 and the other sheaves of the family $\mathcal{F}_{1}-\left\{\mathcal{O}_{l_{h}}, \mathcal{O}_{p}\right\}$.

4.7.1 $\ldots \mathcal{O}_{\tilde{X}_{4}}(i h)$

By Corollary 2.1.3 we already know that $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(i h), F\right)=0$ for any $0 \leq i \leq 4$ and F one of the first six elements of \mathcal{F}_{1}. Let us compute the other Euler characteristics $\chi\left(F, \mathcal{O}_{\tilde{X}_{4}}(i h)\right)$.
We are going to use the fact that $\mathcal{O}_{\tilde{X}_{4}}(i h)=\pi^{*} \mathcal{O}_{X_{4}}(i h)$ for any $i \in \mathbb{Z}$.
Proposition 4.7.4. The following Euler characteristics are :

$$
\left(\chi\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}\right), \ldots, \chi\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(4 h)\right)\right)=(1,2,3,4,5)
$$

Proof. Let $0 \leq i \leq 4$, we want to compute all the $\chi\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(i h)\right)$. We can start by noticing that by Serre duality,

$$
\begin{aligned}
\chi\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(i h)\right) & =\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}-h+e\right)\right) \\
& =\chi\left(\pi^{*} \mathcal{O}_{X_{4}}((i+1) h), j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}+e\right)\right) .
\end{aligned}
$$

Moreover, taking the derived pushforward by j and twisting by $\mathcal{O}_{D_{3}}\left(-V_{E}+e\right)$ the following short exact sequence $0 \rightarrow \mathcal{O}_{D_{3}} \rightarrow \mathcal{O}_{D_{3}}\left(E_{1}\right) \rightarrow \mathcal{O}_{E_{1}}\left(E_{1}\right) \rightarrow 0$ yields :

$$
\begin{aligned}
\chi\left(\pi^{*} \mathcal{O}_{X_{4}}((i+1) h), j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}+e\right)\right) & =\chi\left(\pi^{*} \mathcal{O}_{X_{4}}((i+1) h), j_{*} \mathcal{O}_{D_{3}}\left(E_{1}-V_{E}+e\right)\right) \\
& -\chi\left(\pi^{*} \mathcal{O}_{X_{4}}((i+1) h), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}+e\right)\right) .
\end{aligned}
$$

Since $\pi \circ j=i \circ p$ (with the notations of section 2.1.1), we have

$$
\begin{aligned}
\chi\left(\pi^{*} \mathcal{O}_{X_{4}}((i+1) h), j_{*} \mathcal{O}_{D_{3}}\left(E_{1}-V_{E}+e\right)\right) & =\chi\left(\mathcal{O}_{X_{4}}((i+1) h), \pi_{*} j_{*} \mathcal{O}_{D_{3}}\left(E_{1}-V_{E}+e\right)\right) \\
& =\chi\left(\mathcal{O}_{X_{4}}((i+1) h), i_{*} p_{*} \mathcal{O}_{D_{3}}\left(E_{1}-V_{E}+e\right)\right) \\
& =\chi\left(i^{*} \mathcal{O}_{X_{4}}((i+1) h), p_{*} \mathcal{O}_{D_{3}}\left(E_{1}-V_{E}+e\right)\right) \\
& =\chi\left(\mathcal{O}_{\Sigma_{2}}((i+1) h), p_{*} \mathcal{O}_{D_{3}}\left(E_{1}-V_{E}+e\right)\right)
\end{aligned}
$$

and similarly, $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}((i+1) h), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}+e\right)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}((i+1) h), p_{*} \mathcal{O}_{D_{3}}\left(-V_{E}+e\right)\right)$.
Finally by (1.10), we have $\mathcal{O}_{D_{3}}(e)=\mathcal{O}_{D_{3}}\left(-V_{E}\right)$ therefore

$$
\chi\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(i h)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}((i+1) h), p_{*} \mathcal{O}_{D_{3}}\left(E_{1}-2 V_{E}\right)\right)-\chi\left(\mathcal{O}_{\Sigma_{2}}((i+1) h), p_{*} \mathcal{O}_{D_{3}}\left(-2 V_{E}\right)\right)
$$

By the projection formula, $\chi\left(\mathcal{O}_{\Sigma_{2}}((i+1) h), p_{*} \mathcal{O}_{D_{3}}\left(E_{1}-2 V_{E}\right)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}((i+1) h), \mathcal{O}_{\Sigma_{2}}\left(E_{1}\right) \otimes p_{*} \mathcal{O}_{D_{3}}\left(-2 V_{E}\right)\right)$. By the Remark below Proposition 9.3 in [8] we have $R^{*} p_{*} \mathcal{O}_{D_{3}}\left(-2 V_{E}\right)=\mathcal{O}_{\Sigma_{2}} \delta_{*, 1}$ so

$$
\chi\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(i h)\right)=-\chi\left(\mathcal{O}_{\Sigma_{2}}((i+1) h), \mathcal{O}_{\Sigma_{2}}\left(E_{1}\right)\right)+\chi\left(\mathcal{O}_{\Sigma_{2}}((i+1) h), \mathcal{O}_{\Sigma_{2}}\right)
$$

One can conclude with Hirzebruch-Riemann-Roch, Lemma 4.1.3 and (1.14).
Corollary 4.7.5. The same result holds with E_{1} replaced by E_{2} or E_{3}.
Lemma 4.7.6. The following Euler characteristics are :

$$
\left(\begin{array}{ccc}
\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}\right) & \cdots & \chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(4 h)\right) \\
\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}\right) & \cdots & \chi\left(j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(4 h)\right) \\
\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}\right) & \cdots & \chi\left(j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(4 h)\right)
\end{array}\right)=\left(\begin{array}{ccccc}
-1 & -7 & -19 & -37 & -61 \\
0 & -3 & -12 & -27 & -48 \\
0 & 0 & -6 & -18 & -36
\end{array}\right) .
$$

Proof. Let $0 \leq k \leq 2$ and $0 \leq i \leq 4$. We want to compute $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(k h_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(i h)\right)$. First, we can use the same reasoning as in the beginning of the proof of Proposition 4.7.4 to find

$$
\begin{aligned}
\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(k h_{1}-V_{E}\right), \pi^{*} \mathcal{O}_{X_{4}}(i h)\right) & =\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(i h), j_{*} \mathcal{O}_{D_{3}}\left(k h_{1}-V_{E}-h+e\right)\right) \\
& =\chi\left(\pi^{*} \mathcal{O}_{X_{4}}((i+1) h), j_{*} \mathcal{O}_{D_{3}}\left(k h_{1}-2 V_{E}\right)\right) \\
& =\chi\left(\mathcal{O}_{X_{4}}((i+1) h), \pi_{*} j_{*} \mathcal{O}_{D_{3}}\left(k h_{1}-2 V_{E}\right)\right) \\
& =\chi\left(\mathcal{O}_{X_{4}}((i+1) h), i_{*} p_{*} \mathcal{O}_{D_{3}}\left(k h_{1}-2 V_{E}\right)\right) \\
& =\chi\left(i^{*} \mathcal{O}_{X_{4}}((i+1) h), p_{*} \mathcal{O}_{D_{3}}\left(k h_{1}-2 V_{E}\right)\right) \\
& =\chi\left(\mathcal{O}_{\Sigma_{2}}((i+1) h), \mathcal{O}_{\Sigma_{2}}\left(k h_{1}\right) \otimes p_{*} \mathcal{O}_{D_{3}}\left(-2 V_{E}\right)\right) \\
& =-\chi\left(\mathcal{O}_{\Sigma_{2}}((i+1) h), \mathcal{O}_{\Sigma_{2}}\left(k h_{1}\right)\right) \\
& =-\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(k h_{1}-(i+1) h\right)\right) .
\end{aligned}
$$

We can compute such Euler characteristics using Hirzebruch-Riemann-Roch.

4.7.2 $\quad \ldots \mathcal{O}_{D_{3}}\left(V_{E}\right)$

Let us start with a small technical lemma.
Lemma 4.7.7. One has $\operatorname{ch}\left(\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}}\right)=\operatorname{ch}\left(\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}}\right)=(3,0,-8)$.
Proof. One can use the same reasoning as in the proofs of Lemma 3.1.5 and Lemma 4.3.1 to find that $\operatorname{ch}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)=$ $\operatorname{ch}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)=(2,0,-2)$. This yields $c_{1}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)=0$ and $c_{2}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)=2$.
Using the same reasoning as in the proof of Lemma 4.5.11, one then finds:

$$
\begin{aligned}
& c_{1}\left(\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)=3 c_{1}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)=3.0=0 \\
& c_{2}\left(\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)=2 c_{1}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)^{2}+4 c_{2}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)=4.2=8 \\
& \operatorname{ch}_{0}\left(\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)=3 \\
& \operatorname{ch}_{1}\left(\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)=0 \\
& \operatorname{ch}_{2}\left(S^{2} \mathcal{V}_{F} \mid{\stackrel{\vee}{\Sigma_{2}}}^{\vee}\right)=\frac{0^{2}}{2}-8=-8 .
\end{aligned}
$$

Since $c_{1}\left(\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)=0$ we also have $\operatorname{ch}\left(\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}}\right)=\operatorname{ch}\left(\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}} ^{\vee}\right)$.

Lemma 4.7.8. Let

$j_{*} F \in\left\{j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)\right\}$.
Then :

1. $\chi\left(j_{*} F, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} F\left(-2 V_{E}\right)\right)-\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} F\left(-3 V_{E}\right)\right)$;
2. $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), j_{*} F\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} F\left(-V_{E}\right)\right)-\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} F\left(-2 V_{E}\right)\right)$.

Proof. To start with, let $j_{*} F \in\left\{j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-\right.\right.$ $\left.\left.V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)\right\}$. Then since there is a short exact sequence :

$$
0 \rightarrow \mathcal{O}_{\tilde{X}_{4}}(-2 e) \rightarrow \mathcal{O}_{\tilde{X}_{4}}(-e) \rightarrow \mathcal{O}_{D_{3}}\left(V_{E}\right) \rightarrow 0
$$

in \tilde{X}_{4}, we have :

- $\chi\left(j_{*} F, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=\chi\left(j_{*} F, \mathcal{O}_{\tilde{X}_{4}}(-e)\right)-\chi\left(j_{*} F, \mathcal{O}_{\tilde{X}_{4}}(-2 e)\right)=\chi\left(j_{*} F(e), \pi^{*} \mathcal{O}_{X_{4}}\right)-\chi\left(j_{*} F(2 e), \pi^{*} \mathcal{O}_{X_{4}}\right)$;
- $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), j_{*} F\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), j_{*} F\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-2 e), j_{*} F\right)=\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, j_{*} F(e)\right)-\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, j_{*} F(2 e)\right)$.

We can now use the same method as in the proof of Lemma 4.7.6.

- By Serre duality, (1.10) and since $\pi \circ j=i \circ p$, one has

$$
\begin{aligned}
\chi\left(j_{*} F(e), \pi^{*} \mathcal{O}_{X_{4}}\right) & =\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, j_{*} F(e-h+e)\right)=\chi\left(\pi^{*} \mathcal{O}_{X_{4}}(h), j_{*} F(2 e)\right)=\chi\left(\mathcal{O}_{X_{4}}(h), \pi_{*} j_{*} F(2 e)\right) \\
& =\chi\left(\mathcal{O}_{X_{4}}(h), i_{*} p_{*} F(2 e)\right)=\chi\left(i^{*} \mathcal{O}_{X_{4}}(h), p_{*} F(2 e)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} F\left(-2 V_{E}\right)\right) .
\end{aligned}
$$

Furthermore, $\chi\left(j_{*} F(2 e), \pi^{*} \mathcal{O}_{X_{4}}\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} F\left(-3 V_{E}\right)\right)$.

- For the second case we can use the same reasoning, we just don't need to use Serre duality here. This implies : $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, j_{*} F(e)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} F\left(-V_{E}\right)\right)$ and $\chi\left(\pi^{*} \mathcal{O}_{X_{4}}, j_{*} F(2 e)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} F\left(-2 V_{E}\right)\right)$.

Lemma 4.7.9. One has: $\chi\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=-1$ and $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right)\right)=0$.

Proof. - By Lemma 4.7.8, we have :

$$
\chi\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} \mathcal{O}_{E_{1}}\left(-3 V_{E}+E_{1}\right)\right)-\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} \mathcal{O}_{E_{1}}\left(-4 V_{E}+E_{1}\right)\right)
$$

1. Using the short exact sequence $0 \rightarrow \mathcal{O}_{D_{3}} \rightarrow \mathcal{O}_{D_{3}}\left(E_{1}\right) \rightarrow \mathcal{O}_{E_{1}}\left(E_{1}\right) \rightarrow 0$ in D_{3}, one finds :

$$
\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} \mathcal{O}_{E_{1}}\left(-3 V_{E}+E_{1}\right)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} \mathcal{O}_{D_{3}}\left(-3 V_{E}+E_{1}\right)\right)-\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} \mathcal{O}_{D_{3}}\left(-3 V_{E}\right)\right) .
$$

By the remark below Proposition 9.3 in [8], we know that $R^{*} p_{*} \mathcal{O}_{D_{3}}\left(-3 V_{E}\right)=\left.\mathcal{V}_{F}\right|_{\Sigma_{2}} \delta_{*, 1}$. Together with the projection formula, this gives:

$$
\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} \mathcal{O}_{E_{1}}\left(-3 V_{E}+E_{1}\right)\right)=-\chi\left(\mathcal{O}_{\Sigma_{2}}(h),\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\left(E_{1}\right)\right)+\chi\left(\mathcal{O}_{\Sigma_{2}}(h),\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right) .
$$

We saw in the proof of Lemma 4.7.7 that $\operatorname{ch}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)=(2,0,-2)$, therefore we can compute the above-mentioned Euler characteristics with Hirzebruch-Riemann-Roch.
2. With the same reasoning as in 1 ., except that $R^{*} p_{*} \mathcal{O}_{D_{3}}\left(-4 V_{E}\right)=\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}} \delta_{*, 1}$, one gets

$$
\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} \mathcal{O}_{E_{1}}\left(-4 V_{E}+E_{1}\right)\right)=-\chi\left(\mathcal{O}_{\Sigma_{2}}(h),\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}}\left(E_{1}\right)\right)+\chi\left(\mathcal{O}_{\Sigma_{2}}(h),\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}}\right)
$$

Again these Euler characteristics can be computed with Hirzebruch-Riemann-Roch and Lemma 4.7.7.

- By Lemma 4.7.8, $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{E_{1}}\left(E_{1}-2 V_{E}\right)\right)-\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{E_{1}}\left(E_{1}-3 V_{E}\right)\right)$. With the same reasoning as above, one can find:

1.

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{E_{1}}\left(E_{1}-2 V_{E}\right)\right) & =\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{D_{3}}\left(E_{1}-2 V_{E}\right)\right)-\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{D_{3}}\left(-2 V_{E}\right)\right) \\
& =-\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(E_{1}\right)\right)+\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\right)
\end{aligned}
$$

2.

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{E_{1}}\left(E_{1}-3 V_{E}\right)\right) & =\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{D_{3}}\left(E_{1}-3 V_{E}\right)\right)-\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{D_{3}}\left(-3 V_{E}\right)\right) \\
& =-\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{V}_{F} \mid \Sigma_{2}\left(E_{1}\right)\right)+\chi\left(\mathcal{O}_{\Sigma_{2}},\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)
\end{aligned}
$$

All these Euler characteristics can again be computed with Hirzebruch-Riemann-Roch.

Corollary 4.7.10. The same results hold when E_{1} is replaced by E_{2} or E_{3}.
Lemma 4.7.11. One has: $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=-5, \chi\left(j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=-6$ and $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-\right.\right.$ $\left.\left.V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=-6$.
Proof. Let $0 \leq i \leq 2$. We want to compute $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(i h_{1}-V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)$. By Lemma 4.7.8, we have

$$
\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(i h_{1}-V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} \mathcal{O}_{D_{3}}\left(i h_{1}-3 V_{E}\right)\right)-\chi\left(\mathcal{O}_{\Sigma_{2}}(h), p_{*} \mathcal{O}_{D_{3}}\left(i h_{1}-4 V_{E}\right)\right) .
$$

Using the projection formula and the Remark below Proposition 9.3 in [8], we can then say

$$
\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(i h_{1}-V_{E}\right), \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=-\chi\left(\mathcal{O}_{\Sigma_{2}}(h),\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\left(i h_{1}\right)\right)+\chi\left(\mathcal{O}_{\Sigma_{2}}(h),\left.S^{2} \mathcal{V}_{F}\right|_{\Sigma_{2}}\left(i h_{1}\right)\right) .
$$

Finally we can use Lemma 4.7.7 and Hirzebruch-Riemann-Roch.
Lemma 4.7.12. The following holds: $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=-1, \chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right)\right)=1$ and $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)\right)=4$.
Proof. Let $0 \leq i \leq 2$. We want to compute $\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(i h_{1}-V_{E}\right)\right)$. By Lemma 4.7.8, we know

$$
\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), j_{*} \mathcal{O}_{D_{3}}\left(i h_{1}-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{D_{3}}\left(i h_{1}-2 V_{E}\right)\right)-\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} \mathcal{O}_{D_{3}}\left(i h_{1}-3 V_{E}\right)\right) .
$$

Again by the projection formula and the Remark below Proposition 9.3 in [8], this is equal to : $-\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\left(i h_{1}\right)\right)+$ $\chi\left(\mathcal{O}_{\Sigma_{2}},\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\left(i h_{1}\right)\right)$.

4.7.3 $\quad . . \mathcal{O}_{\tilde{S}}$

Lemma 4.7.13. One has $\chi\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right)\right)=3$.
Proof. First, the short exact sequence $0 \rightarrow \mathcal{O}_{D_{3}}\left(-V_{E}\right) \rightarrow \mathcal{O}_{D_{3}}\left(E_{1}-V_{E}\right) \rightarrow \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right) \rightarrow 0$ in D_{3} gives :

$$
\begin{aligned}
\operatorname{ch}\left(\mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right)\right) & =\operatorname{ch}\left(\mathcal{O}_{D_{3}}\left(E_{1}-V_{E}\right)\right)-\operatorname{ch}\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right)\right) \\
& =\left(1, E_{1}-V_{E}, \frac{E_{1}^{2}-h_{1} h_{2}-2 E_{1} V_{E}}{2}, \frac{5}{6}\right)-\left(1,-V_{E}, \frac{-h_{1} h_{2}}{2}, \frac{2}{6}\right) \\
& =\left(0, E_{1}, \frac{E_{1}^{2}-2 E_{1} V_{E}}{2}, \frac{7}{6}\right) .
\end{aligned}
$$

By Theorem 5.26 in [14], we thus have

$$
\begin{aligned}
\operatorname{ch}\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right)\right) \cdot \operatorname{td}\left(\tilde{X}_{4}\right) & =j_{*}\left(\left(0, E_{1}, \frac{E_{1}^{2}-2 E_{1} V_{E}}{2}, \frac{7}{6}\right) \cdot\left(1, V_{E}+\frac{3}{2} h_{1}-\frac{1}{2}\left(E_{1}+E_{2}+E_{3}\right), x_{2}, 1\right)\right) \\
& =j_{*}\left(0, E_{1}, 0, \frac{7}{6}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right) \\
& =j_{*}\left(0, E_{1}, 0, \frac{2}{3}\right)=\left(0,0, j_{*} E_{1}, *, *\right)
\end{aligned}
$$

where for the last equality we used the definition of pushforward on cohomology page 126 of [14]. Moreover, we saw in the proof of Corollary 4.6 . 2 that $\operatorname{ch}\left(\mathcal{O}_{\tilde{S}}\right)=(0,0, \bar{e} \bar{h}, *, *)$, hence by Hirzebruch-Riemann-Roch and (1.8) :

$$
\begin{aligned}
\chi\left(j_{*} \mathcal{O}_{E_{1}}\left(E_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right) & =\int_{\tilde{X}_{4}}\left(0,0, j_{*} E_{1}, *, *\right) \cdot(0,0, \bar{e} \bar{h}, *, *)=j_{*} E_{1} \cdot \bar{e} \cdot \bar{h} \\
& =j_{*} E_{1} \cdot(h-2 e) \cdot(h-e)=j_{*} E_{1} \cdot\left(h^{2}-3 e \cdot h+2 e^{2}\right) .
\end{aligned}
$$

Before going further, let us notice that a divisor D^{\prime} in $\left|E_{1}\right|$ corresponds to a ruled surface over a curve in $C \in\left|E_{1}\right|$ in Σ_{2} : namely, $D^{\prime}=\mathbb{P}_{C}\left(\left.\mathcal{V}_{F}\right|_{C}\right)$. Then the Picard group of D^{\prime} is generated by two elements f_{E} and δ_{E} where f_{E} corresponds to a fiber over a point in C and δ_{E} is the relative hyperplane class (see V.2. of [12]). Furthermore, we know that $f_{E} \cdot \delta_{E}=1, f_{E}^{2}=0$ and $\delta_{E}^{2}=\operatorname{det}\left(\left.\mathcal{V}_{F}\right|_{C}\right)=0$ because $\left.\mathcal{V}_{F}\right|_{C}=\left.\left(\mathcal{V}_{F} \mid \Sigma_{2}\right)\right|_{C}$ and $\operatorname{det}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)=\mathcal{O}_{\Sigma_{2}}$ as we saw in the proof of Lemma 4.7.7. From now on let us abuse of notations and still denote by E_{1} some closed subscheme of D_{3} with class in $\left|E_{1}\right|$. Then, since $h \cdot E_{1}=h_{2} \cdot E_{1}=1$ in Σ_{2} we have that $\left.h\right|_{E_{1}}=f_{E}$ and the same reasoning as in the proof of Lemma 4.4.5 together with $\operatorname{det}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)=\mathcal{O}_{\Sigma_{2}}$ yield $\left.V_{E}\right|_{E_{1}}=\delta_{E}$. We can now finish the computation:

$$
j_{*} E_{1} \cdot\left(h^{2}-3 e . h+2 e^{2}\right)=\left.h\right|_{E_{1}} ^{2}+\left.\left.3 V_{E}\right|_{E_{1}} \cdot h\right|_{E_{1}}+\left.2 V_{E}\right|_{E_{1}} ^{2}=f_{E}^{2}+3 \delta_{E} \cdot f_{E}+2 \delta_{E}^{2}=3
$$

using (1.10) and $E_{1} \subset D_{3} \subset E_{4}$ to find $j_{*} E_{1} . e=-V_{E} \cdot j_{*} E_{1}$.
We can do the exact same computation for $\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{E_{1}}\left(-E_{1}-V_{E}\right)\right)$ using the same argument as in the proof of Lemma 4.6.1.

Corollary 4.7.14. One has $\chi\left(j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{E_{2}}\left(E_{2}-V_{E}\right)\right)=\chi\left(j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=$ $\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{E_{3}}\left(E_{3}-V_{E}\right)\right)=3$.
Lemma 4.7.15. One has $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=10$ and $\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=-42$.
Proof. We are going to proceed as in the proof of Lemma 4.5.16. First, using (4.24) twisted by $\mathcal{O}_{\tilde{X}_{4}}(2 e)$ and (1.10) one can find

$$
\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}(e)\right)-\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}\right)
$$

and

$$
\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(e), \mathcal{O}_{\tilde{S}}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{S}}\right) .
$$

- Let us consider $\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}(e)\right)-\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}\right)$.

1. We saw in Lemma 4.5 .14 that $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}\right)=79$.
2. By Serre duality, $\chi\left(\mathcal{O}_{\tilde{S}}, \mathcal{O}_{\tilde{X}_{4}}(e)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(e), \mathcal{O}_{\tilde{S}}(-h+e)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{S}}(-h)\right)=37$ with Lemma 4.5.12.

As a result, $\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=37-79=-42$.

- Let us look at $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(e), \mathcal{O}_{\tilde{S}}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{S}}\right)$.

1. We saw in Lemma 4.5 .7 that $\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{S}}\right)=1$.
2. By (1.8) we have $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(e), \mathcal{O}_{\tilde{S}}\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{S}}(\bar{h}-h)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{S}}(\bar{h})\right)$. With the same reasoning as in the proof of Lemma 4.5.9 one finds

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{S}}(\bar{h})\right) & =\chi_{Z_{3}}\left(\bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-V_{\bar{E}}\right)\right)-\chi_{Z_{3}}\left(\bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\right) \\
& -\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(\bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\left(-V_{\bar{E}}\right)\right)+\chi_{Z_{3}}\left(\mathcal{O}_{Z_{3}}(\bar{h}) \otimes \bar{\pi}_{*} \mathcal{O}_{\bar{E}_{4}}\right) \\
& =-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h})\right)
\end{aligned}
$$

By (1.11), the projection formula and Lemma 3.1.4, $\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h})\right)=\chi\left(\mathcal{O}_{S_{2}}, \mathcal{V}_{S}^{\vee}\left(\bar{h}_{1}+\bar{h}_{2}\right)\right)=12$. As a result, $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(e), \mathcal{O}_{\tilde{S}}\right)=-1+12=11$.

This yields $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=11-1=10$.

Lemma 4.7.16. One has $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=19, \chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right)\right)=-33, \chi\left(j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=$ 28 and $\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)\right)=-24$.
Proof. - There is a short exact sequence in D_{3} :

$$
0 \rightarrow \mathcal{O}_{D_{3}}\left(-V_{E}\right) \rightarrow \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right) \rightarrow \mathcal{O}_{h_{1}}\left(h_{1}-V_{E}\right) \rightarrow 0
$$

where by $\mathcal{O}_{h_{1}}$ we mean the structure sheaf of a divisor in $\left|h_{1}\right|$. This implies

$$
\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)+\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{h_{1}}\left(h_{1}-V_{E}\right)\right)
$$

and

$$
\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)+\chi\left(j_{*} \mathcal{O}_{h_{1}}\left(h_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)
$$

We have seen in Lemma 4.7.15 that $\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=-42$ and $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=10$. Moreover, we can use the same method as in the proof of Lemma 4.7.13, writing h_{1} instead of a divisor in $\left|h_{1}\right|$ by abuse of notation, to find: $\operatorname{Pic}\left(h_{1}\right)=\mathbb{Z} f_{h} \oplus \mathbb{Z} \delta_{h}$ with $f_{h}^{2}=0, f_{h} . \delta_{h}=1$ and $\delta_{h}^{2}=0$. Then, using again the same method as in the proof of Lemma 4.7.13,

$$
\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{h_{1}}\left(h_{1}-V_{E}\right)\right)=\chi\left(j_{*} \mathcal{O}_{h_{1}}\left(h_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=j_{*} h_{1}\left(h^{2}-3 e h+2 e^{2}\right)=9 f_{h}^{2}+3 \delta_{h} .3 f_{h}+2 \delta_{h}^{2}=9
$$

since $h . h_{1}=3$ in Σ_{2} and thus $\left.h\right|_{h_{1}}=3 f_{h}$. Therefore, $\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right)\right)=-42+9=-33$ and $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=10+9=19$.

- With the same method as above,

$$
\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right)\right)+\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{h_{1}}\left(2 h_{1}-V_{E}\right)\right)
$$

and

$$
\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)+\chi\left(j_{*} \mathcal{O}_{h_{1}}\left(2 h_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)
$$

Then $\chi\left(\mathcal{O}_{\tilde{S}}, j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)\right)=-33+9=-24$ and $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right), \mathcal{O}_{\tilde{S}}\right)=19+9=28$.

4.7.4 $\ldots \mathcal{O}_{\bar{D}_{2}}$

Lemma 4.7.17. One has $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\bar{D}_{2}}\right)=12$ and $\chi\left(\mathcal{O}_{\bar{D}_{2}}, j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=36$.
Proof. We can proceed as in the proof of Lemma 4.7.15: (4.24) twisted by $\mathcal{O}_{\tilde{X}_{4}}(2 e)$ and (1.10) give

$$
\chi\left(\mathcal{O}_{\bar{D}_{2}}, j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}(e)\right)-\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}\right)
$$

and

$$
\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(e), \mathcal{O}_{\bar{D}_{2}}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}\right) .
$$

- Let us look at $\chi\left(\mathcal{O}_{\bar{D}_{2}}, j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}(e)\right)-\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}\right)$.

We saw in Lemma 4.4.8 that $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}\right)=-36$.
By Serre duality, $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}(e)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(e), \mathcal{O}_{\bar{D}_{2}}(-h+e)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(-h)\right)$ and we saw in Lemma 4.4.6 that $\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(-h)\right)=0$.

Therefore, $\chi\left(\mathcal{O}_{\bar{D}_{2}}, j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=36$.

- Let us look now at $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(e), \mathcal{O}_{\bar{D}_{2}}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}\right)$.

We saw in Lemma 4.4.6 that $\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}\right)=-12$.
By (1.8), $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(e), \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(\bar{h}-h)\right)$. Finally, using the same reasoning as in the proof of Lemma 4.4.9, one finds :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(\bar{h}-h)\right) & =\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(-\delta-24 f)\right)=-12+\frac{1}{2}\left((\delta+24 f)^{2}+(\delta+24 f)(-2 \delta+72 f)\right) \\
& =-12+\frac{1}{2}(48+48-2.48+72-48)=-12+12=0 .
\end{aligned}
$$

Finally, $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\bar{D}_{2}}\right)=12$.

Lemma 4.7.18. Let us define $a_{i}:=j_{*} E_{i} \cdot\left[\bar{D}_{2}\right]$ and $b:=j_{*} h_{1} \cdot\left[\bar{D}_{2}\right]$ where $\left[\bar{D}_{2}\right]$ is the class of \bar{D}_{2} in \tilde{X}_{4}. Then :

- For $1 \leq i \leq 3, \chi\left(j_{*} \mathcal{O}_{E_{i}}\left(E_{i}-V_{E}\right), \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, j_{*} \mathcal{O}_{E_{i}}\left(E_{i}-V_{E}\right)\right)=x_{i}$.
- $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), \mathcal{O}_{\bar{D}_{2}}\right)=12+b$ and $\chi\left(\mathcal{O}_{\bar{D}_{2}}, j_{*} \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right)\right)=36+b$.
- $\chi\left(j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right), \mathcal{O}_{\bar{D}_{2}}\right)=12+2 b$ and $\chi\left(\mathcal{O}_{\bar{D}_{2}}, j_{*} \mathcal{O}_{D_{3}}\left(2 h_{1}-V_{E}\right)\right)=36+2 b$.

Proof. For the first formula one can use the same reasoning as in the proof of Lemma 4.7.13, and for the last four formulas one can proceed as in the proof of Lemma 4.7.16, using the results of Lemma 4.7.17.

To conclude, we would thus need to know a_{1}, a_{2}, a_{3} and b. However this is not so easy, since we cannot write the class of \bar{D}_{2} has a product of two divisors in \tilde{X}_{4}, as it was the case with \tilde{S}.

About the a_{i}, up to assuming that some equations are not satisfied we can find the following Lemma.
The main idea is that $j_{*} E_{i}$. $[\tilde{Z}]$ should be a linear combination of \mathbb{P}^{1} in \tilde{Z}, whose intersection with \bar{D} (as a divisor in \tilde{Z}) will give exactly a_{i}. But the \mathbb{P}^{1} of \tilde{Z} either come from \mathbb{P}^{1} in Z_{3}, in which case their intersection with \bar{D} is 0 , or are fibers in \tilde{Z} over Γ_{1}, in which case the intersection with \bar{D} is non zero. Finally, for very general X_{4}, one can use the geometry and some results from section 3 to show that the intersection $j_{*} E_{i} \cdot[Z]$ should have no component in the fibers of \tilde{Z}, hence when intersected with \bar{D} it should give 0 .

Lemma 4.7.19. For X_{4} very general, we can assume that $\mu\left(\mu_{2}, p_{i}\right) \neq 0$ for $1 \leq i \leq 3$. In such a case, $a_{1}=a_{2}=a_{3}=0$.

Proof. - Each point in Σ_{2} corresponds to a threefold $\bar{U}_{2} \oplus \mathbb{C} . w_{0}$ such that \bar{U}_{2} is $\bar{\lambda}$-isotropic (see 7 . of Theorem 1.2.3). In the basis such that $\bar{\lambda}$ can be written as $x_{123}+x_{456}$ it implies that $\bar{U}_{2}=<u_{1}, u_{2}>$ where $u_{i} \in A_{i}$ (see 3. of section 1.1). Furthermore any such $\bar{U}_{2} \in \Sigma_{2}$ must satisfy: $\mu\left(u_{1}, u_{2}\right)=0=\bar{\nu}\left(u_{1}, u_{2}\right)$ with the notations of Definition 3.4.8.

- By analogy between Σ_{2} and S_{2} (as detailed in Remark 4.1.4), Remark 4.7 in [20] implies that there is a $\operatorname{map} \phi: \Sigma_{2} \rightarrow \mathbb{P}\left(A_{1}\right)$ which is the blow up of $\mathbb{P}\left(A_{1}\right)$ in three points. Let p be one of these three points. Then the associated exceptional divisor in Σ_{2} is $E_{p}=\left\{\bar{U}_{2}=<p, u_{2}>\in \Sigma_{2}\right\}$. Since μ induces a nondegenerate pairing between A_{1} and A_{2} we must then have : $E_{p}=<p, \operatorname{Ker}(\mu(p,).) \cap A_{2}>$. Moreover for each $<p, u_{2}>\in E_{p}$ we also must have $\bar{\nu}\left(p, u_{2}\right)=0$, so $\operatorname{Ker}(\mu(p,).) \cap A_{2} \subset \operatorname{Ker}(\bar{\nu}(p,).) \cap A_{2}$. Conversely if a point $p \in A_{1}$ satisfies $\operatorname{Ker}(\mu(p,).) \cap A_{2} \subset \operatorname{Ker}(\bar{\nu}(p,).) \cap A_{2}$ then any $<p, u_{2}>$ for $u_{2} \in \operatorname{Ker}(\mu(p,).) \cap A_{2}$ is μ and $\bar{\nu}$ isotropic (and λ and ν^{\prime} isotropic by construction), hence p (the associated line in $\mathbb{P}\left(A_{1}\right)$) must be one of the three points in which ϕ is blowing up $\mathbb{P}\left(A_{1}\right)$.
- Let us fix $p \in A_{1}$ one of the points generating a line in which $\mathbb{P}\left(A_{1}\right)$ is blown up to give Σ_{2}.

Let $\bar{U}_{4}=U_{2, A_{1}} \oplus U_{2, A_{2}}=<u_{1}, u_{2}, v_{1}, v_{2}>$ be a point of S_{2}. If there is an element $x \in \bar{E}_{4}$ such that $\sigma \circ \bar{\pi}(x)=\bar{U}_{4}$ and $\pi(x) \in E_{p}$ then we must have $p \in U_{2, A_{1}}$. Using the same argument as in the proof of Lemma 4.8 in [20], one can find that the set of $\bar{U}_{4} \in S_{2}$ such that $p \in U_{2, A_{1}}$ is a curve in $\left|\bar{h}_{1}\right|$. Let us denote this curve by C_{p}.

- Let $\bar{U}_{4} \in C_{p}$. Then $f_{Z}\left(\bar{U}_{4}\right)=\left\{<\bar{U}_{4}^{\perp}, v>, v \in \bar{U}_{4} / \bar{U}_{4}^{\perp}\right\}$. There are two possibilities :

1. $p \in \bar{U}_{4}^{\perp}$. Then any point in $f_{Z}\left(\bar{U}_{4}\right)$ contains p.
2. $p \notin \bar{U}_{4}^{\perp}$. Then there is exactly one point in $f_{Z}\left(\bar{U}_{4}\right)$ which contains p, namely $<\bar{U}_{4}^{\perp}, p>$.

Let now $q \in f_{Z}\left(\bar{U}_{4}\right)$ and assume that $p \in q$, we have $f_{\bar{E}}(q)=\left\{U_{3} \subset q \oplus \mathbb{C} . w_{0},\left(U_{3} \subset q \oplus \mathbb{C} . w_{0}\right) \in \tilde{X}_{5}\right\}$. If there is a point $v \in q$ such that $v \in \operatorname{Ker}(\mu(p,).) \cap A_{2}$ then as we saw above $<p, v, w_{0}>$ is a point in Σ_{2}, thus $<p, v, w_{0}>\subset<q, w_{0}>$ is a point in \tilde{X}_{5} whose image by π is in E_{p}. As a result there is a one to one correspondence between such $v \in q \cap \operatorname{Ker}(\mu(p,).) \cap A_{2}$ (up to multiplication by a non zero scalar) and points $x \in f_{\bar{E}}(q)$ such that $\pi(x) \in E_{p}$.
Let us now consider the following possibilities for $\bar{U}_{4} \in C_{p}$:

- If $p \in \bar{U}_{4}^{\perp}$ then $\bar{U}_{4} \in \bar{C}_{1}$. Moreover since μ induces a non-degenerate pairing between A_{1} and A_{2} we have that $\bar{U}_{4} \cap A_{2}=\operatorname{Ker}(\mu(p,).) \cap A_{2}$ and as we did in Definition 3.3.7 we can write $\bar{U}_{4}^{\perp}=<$ $p, v_{1}+u_{2}>$ with $U_{2, A_{1}}=<p, v_{1}>$ and $u_{2} \in A_{2}$. Hence $f_{Z}\left(\bar{U}_{4}\right)=\left\{<p, v_{1}+u_{2}, \alpha u_{2}+\beta v_{2}>\right\}$ with $U_{2, A_{2}}=<u_{2}, v_{2}>$. For each point $<p, v_{1}+u_{2}, \alpha u_{2}+\beta v_{2}>=: q$ in $f_{Z}\left(\bar{U}_{4}\right)$ there is exactly one $x \in f_{\bar{E}}(q)$ such that $\pi(x) \in E_{p}$, namely $<p, \alpha u_{2}+\beta v_{2}, w_{0}>\subset q$. So there is a copy of E_{p} isomorphic to $f_{Z}\left(\bar{U}_{4}\right)$ in \bar{E}_{4}. In fact this copy lies in \tilde{Z} because $\pi^{-1}\left(E_{p}\right) \subset D_{3} \subset \tilde{X}_{4}$ and $\tilde{Z}=\bar{E}_{4} \cap \tilde{X}_{4}$. In this case though, since $\bar{U}_{4} \in \bar{C}_{1}$, we must have either $p=\mu_{1}$ or $\lambda^{\prime}\left(p, \mu_{1}, \operatorname{Ker}(\mu(p,).) \cap A_{2}\right)=0$.
- If $p \notin \bar{U}_{4}^{\perp}$ but $\bar{U}_{4} \in \bar{C}_{1}$ then we can write $\bar{U}_{4}=<p, u_{1}, u_{2}, v_{2}>$ with $u_{1} \in \bar{U}_{4}^{\perp} \cap A_{1}, u_{2}$ and v_{2} in A_{2} and $\mu\left(p, u_{2}\right)=0 \neq \mu\left(p, v_{2}\right)$. We can also write $\bar{U}_{4}^{\perp}=<u_{1}, \alpha p+u_{2}>$, hence there is a unique point q in $f_{Z}\left(\bar{U}_{4}\right)$ containing p, namely $<u_{1}, \alpha p+u_{2}, u_{2}>$. There is exactly one point x in $f_{\bar{E}}(q)$ such that $\pi(x) \in E_{p}$, namely $<p, u_{2}>$.
- If $p \notin \bar{U}_{4}^{\perp}$ and $\bar{U}_{4} \in \bar{C}_{2}$ we can write $\bar{U}_{4}=<p, w, u_{2}, v_{2}>$ with $w \in A_{1}$ and $u_{2}, v_{2} \in A_{2}$ such that $\bar{U}_{4}^{\perp}=<u_{2}, \alpha p+\beta w+v_{2}>$. There are two possibilities :

1. $\beta=0$ (and thus $\alpha \neq 0$). Then $f_{Z}\left(\bar{U}_{4}\right)=\left\{<u_{2}, \alpha p+v_{2}, \gamma p+\eta w>\right\}$ and $<u_{2}, v_{2}, p>$ is the only point in $f_{Z}\left(\bar{U}_{4}\right)$ containing p. Moreover, in this case we know from Lemma 3.4.2 that $\mu\left(u_{2}, p\right)=\mu\left(v_{2}, p\right)=0$. This implies that

$$
f_{\bar{E}}\left(<u_{2}, v_{2}, p>\right)=\left\{<\alpha^{\prime} u_{2}+\beta^{\prime} v_{2}, p, w_{0}>\subset<u_{2}, v_{2}, p, w_{0}>,\left(\alpha^{\prime}, \beta^{\prime}\right) \in \mathbb{C}^{2}\right\} \cong E_{p}
$$

Indeed $E_{p}=\left\{<p, \alpha^{\prime} u_{2}+\beta^{\prime} v_{2}>,\left(\alpha^{\prime}, \beta^{\prime}\right) \in \mathbb{C}^{2}\right\}$, hence

$$
\left\{<\alpha^{\prime} u_{2}+\beta^{\prime} v_{2}, p, w_{0}>\subset<u_{2}, v_{2}, p, w_{0}>,\left(\alpha^{\prime}, \beta^{\prime}\right) \in \mathbb{C}^{2}\right\} \subset f_{\bar{E}}\left(<u_{2}, v_{2}, p>\right)
$$

and since the fibers in \bar{E}_{4} are \mathbb{P}^{1}, this inclusion is in fact an equality. As in the case $p \in \bar{U}_{4}$ we also have that $f_{\bar{E}}\left(<u_{2}, v_{2}, p>\right)$ is in fact in \tilde{Z}, that is to say a fiber in \bar{D}_{2}.
This can happen only if $\mu_{2} \in \operatorname{Ker}(\mu(p,)$.$) , by definition of \bar{C}_{2}$. By the reasoning in the proof of Lemma 3.1.10, if $\mu_{2} \in \operatorname{Ker}(\mu(p,)$.$) then there is a unique \bar{U}_{4} \in \bar{C}_{2}$ such that \bar{U}_{4} is of the form $<p, \operatorname{Ker}(\mu(p,).) \cap A_{2}, w>$.
2. $\beta \neq 0$. Then $\mu\left(p, v_{2}\right) \neq 0$ and the only point in $f_{Z}\left(\bar{U}_{4}\right)$ containing p is $<u_{2}, \beta w+v_{2}, p>$. Furthermore $<u_{2}, p, w_{0}>\subset<u_{2}, \beta w+v_{2}, p>$ is the only point in $f_{\bar{E}}\left(<u_{2}, \beta w+v_{2}, p>\right)$ whose image by π is in E_{p}.

- If $p \notin \bar{U}_{4}^{\perp}$ and $U_{4} \notin\left(\bar{C}_{1} \cup \bar{C}_{2}\right)$. Then we can write $\bar{U}_{4}=<p, w, u_{2}, v_{2}>$ with $w \in A_{1}$ and $u_{2}, v_{2} \in A_{2}$ such that $\bar{U}_{4}^{\perp}=<u_{2}+p+a w, v_{2}+b p+w>$. Then $\mu\left(p, \alpha u_{2}+\beta v_{2}\right)=-\alpha a \mu\left(w, u_{2}\right)-\beta \mu(p, w)$.

If $a=0$ the only line in $<u_{2}, v_{2}>$ being orthogonal to p is generated by u_{2}. Indeed we must have $\mu(p, w) \neq 0$ since $\mu_{1} \notin<p, w>$.

If $a \neq 0$ then $\mu\left(u_{2}, w\right) \neq 0$ otherwise $\mu\left(u_{2}+p+a w, u_{2}\right)=0$ would imply $\mu\left(u_{2}, p\right)=0$ and then $\mu\left(v_{2}+b p+w, u_{2}\right)=0$ would give $\mu\left(u_{2}, v_{2}\right)=0$, that is to say $u_{2} \in \bar{U}_{4}^{\perp}$.
Thus in this case $-\alpha a \mu\left(w, u_{2}\right)-\beta \mu(p, w)=0$ if and only if $-\alpha=\frac{\beta b \mu(p, w)}{a \mu\left(w, u_{2}\right)}$, therefore the only line in $<u_{2}, v_{2}>$ orthogonal to p is spanned by $-\frac{\mu(p, w)}{a \mu\left(w, u_{2}\right)} u_{2}+v_{2}$. Moreover

$$
f_{Z}\left(\bar{U}_{4}\right)=\left\{<u_{2}+p+a w, v_{2}+b p+w, \alpha p+\beta w>\right\}
$$

hence the only point in $f_{Z}\left(\bar{U}_{4}\right)$ containing p is $q:=<u_{2}+a w, v_{2}+w, p>=<u_{2}-a v_{2}, v_{2}+w, p>$. We saw in the proof of Lemma 3.3.4 that there is then only one point in $E_{4} \cap f_{\bar{E}}\left(<u_{2}-a v_{2}, v_{2}+w, p>\right)$: it is $<u_{2}-a v_{2}, p, w_{0}>\subset<u_{2}-a v_{2}, v_{2}+w, p, w_{0}>$. This point is mapped to E_{p} by π if and only if $u_{2}-a v_{2}=-\frac{\mu(p, w)}{a \mu\left(w, u_{2}\right)} u_{2}+v_{2}$ that is to say if and only if $a \neq 0$ and

$$
\left.-\frac{1}{a}=-\frac{\mu(p, w)}{a \mu\left(w, u_{2}\right)} \Leftrightarrow \mu\left(w, u_{2}\right)=\mu(p, w)\right) \Leftrightarrow \mu\left(w, u_{2}+p\right)=0 .
$$

The last equality holds because $u_{2}+p+a w \in \bar{U}_{4}^{\perp}$ and is thus orthogonal to w.
Finally if $a=0$ then the only point in $f_{Z}\left(\bar{U}_{4}\right)$ containing p is $<u_{2}, p, v_{2}+b p+w>$ and there is exactly one $x \in f_{\tilde{E}}\left(<u_{2}, p, v_{2}+b p+w>\right)$ such that $\pi(x) \in E_{p}$, namely $<u_{2}, p>\subset<u_{2}, p, v_{2}+b p+w>$. As before, if $x \in f_{\tilde{E}}\left(<u_{2}, p, v_{2}+b p+w>\right)$ is such that $\pi(x) \in E_{p}$, then $x \in \tilde{Z}$.

- So finally :

1. If $p=\mu_{1}$ or $\lambda^{\prime}\left(p, \mu_{1}, \operatorname{Ker}(\mu(p,).) \cap A_{2}\right)=0$, then there is a line in \bar{E}_{4} which is mapped isomorphically by $\bar{\pi}$ to a fiber in Z_{3} and by π to E_{p}. Moreover as we saw above this line should also be in \tilde{Z}, with class \bar{h}_{1}^{2} (since $\bar{h}_{1}^{2}=1$ in S_{2}).
2. If $\mu\left(p, \mu_{2}\right)=0$ then there is a fiber in \tilde{Z} which is mapped isomorphically to E_{p} by π. It has class $f \bar{D}$ with the notations of Lemma 4.4.1.
3. In any case there is a line in \tilde{Z} which is mapped isomorphically by $\sigma \circ \bar{\pi}$ to a line in $\left|\bar{h}_{1}\right|$ and by π to E_{p}. Its class in \tilde{Z} is $\bar{h}_{1} V_{Z}$.

- On the other hand, we have $E_{p} \cdot \tilde{Z}=E_{p} \cdot \bar{e}=E_{p}(h-2 e)=\left.h\right|_{E_{p}}-\left.2 e\right|_{E_{p}}=f_{p}+2 \delta_{p}$ with the same reasoning as in the proof of Lemma 4.7.13. Hence $E_{p} \tilde{Z}_{\tilde{Z}}$ can be written as a linear combination of \mathbb{P}^{1}, and the intersection with this curve and \bar{D} in \tilde{Z} would give $E_{p} \cdot \bar{D}$.
Moreover f_{p} is a fiber of π and thus by definition of π and $\bar{\pi}$ it must be mapped isomorphically to $\bar{\pi}\left(f_{p}\right)$.
- The \mathbb{P}^{1} in \tilde{Z} are :
- the \mathbb{P}^{1} in $S_{2}: \bar{h}_{1} V_{Z}, \tilde{E}_{i} V_{Z}$ for $1 \leq i \leq 3$.
- a fiber in $Z_{3}: \bar{h}_{1}^{2}$.
- a fiber in $\bar{D}_{2}: f \bar{D}$.
- By Lemma 5.0.6 we have : $V_{Z} \bar{D}=0$ and $\bar{h}_{1}^{2} \bar{D}=12^{2} f^{2}=0$. As a result, if we have $\left.E_{p}\right|_{\tilde{Z}}=\alpha \bar{h}_{1} V_{Z}+$ $\sum_{i=1}^{3} \beta_{i} \tilde{E}_{i} V_{Z}+\gamma \bar{h}_{1}^{2}+\eta f \bar{D}$ then $E_{p} \cdot \bar{D}=\eta f \bar{D}^{2}=-\eta f \delta=-\eta$. We saw above that $\eta \neq 0$ if and only if $\mu\left(p, \mu_{2}\right)=0$, hence if $\mu\left(p, \mu_{2}\right) \neq 0$ we have $E_{p} \cdot \bar{D}=0$. Finally, the analogous of Remark 4.7 in [20] applied to Σ_{2} tells us that we can compute the three points p_{1}, p_{2} and p_{3} in which $\mathbb{P}\left(A_{1}\right)$ is blown-up to give Σ_{2}, in terms of the basis of \bar{W} mentioned in 3. of section 1.1. Since we know μ_{2} from the proof of Lemma 3.1.8, the three equations $\mu\left(p_{i}, \mu_{2}\right)=0$ for $1 \leq i \leq 3$ can be written in terms of the x_{i}, M_{i} and K_{i} defined in 3. and 4. of section 1.1. For X_{4} very general we can thus assume that these three equations are not satisfied, which implies then that $E_{i} \cdot \bar{D}=0$ for any $i \in\{1,2,3\}$.

Computing b is more difficult : as for the a_{i}, the intersection $j_{*} h_{1} .[\tilde{Z}]$ should be a linear combination of \mathbb{P}^{1}, but this time there is no reason for this linear combination to have no component in the fibers of \tilde{Z}. Yet one can make the following remarks :

- Since by definition h_{1} is the pull back of the hyperplane class in $\mathbb{P}\left(A_{1}\right)$ we have that a line in $\left|h_{1}\right|$ in Σ_{2} is of the form : $\left\{<u, v, w_{0}>, u \in H, v \in A_{2}\right\}$ where $H \in\left|h_{1}\right|$ in $\mathbb{P}\left(A_{1}\right)$. Let us fix one of these H and write $H=<u, w>$.
- As in Lemma 4.7.19, we have $h_{1} \cdot \tilde{Z}=h_{1} \cdot(h-2 e)=3 f_{h}+2 \delta_{h}$ and thus $h_{1_{1}}$ is a combination of \mathbb{P}^{1}. Moreover, still as in Lemma 4.7.19, $h_{1} \cdot \bar{D} \neq 0$ only if $\left.h_{1}\right|_{\tilde{Z}}$ can be written as $\eta f \bar{D}+P$ with $\eta \neq 0$ and P the pull-back of a combination of \mathbb{P}^{1} in Z_{3}.
- By definition of $\bar{\pi}$, a fiber in \bar{D}_{2} is mapped isomorphically onto its image by π, hence if there is such a fiber F in $\left.h_{1}\right|_{\tilde{Z}}$ we must have that $F=f_{\bar{E}}(<H, z>)$ with $z \in A_{2}$ and $\operatorname{Ker}(\mu(z,).) \cap A_{1}=H$.

4.8 The line l_{h} and a skyscraper sheaf

In this subsection we will consider the structure sheaf of a line l_{h} with class $E_{1} . V_{E}$.e as explained in section 2.1.1, and a skyscraper sheaf \mathcal{O}_{p}. We will compute Euler characteristics between these two sheaves and the other elements in \mathcal{F}_{1}, using Hirzebruch-Riemann-Roch.

Lemma 4.8.1. One has $\left(\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{l_{h}}\right), \chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{l_{h}}\right), \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{l_{h}}\right)\right)=(1,0,-1)$ and
$\left(\chi\left(\mathcal{O}_{l_{h}}, \mathcal{O}_{\tilde{X}_{4}}\right), \chi\left(\mathcal{O}_{l_{h}}, \mathcal{O}_{\tilde{X}_{4}}(h)\right), \chi\left(\mathcal{O}_{l_{h}}, \mathcal{O}_{\tilde{X}_{4}}(2 h)\right)\right)=(0,-1,-2)$. For \mathcal{F} any other of the sheaves in the family \mathcal{F}_{1} mentioned in section 2.1.1, one has $\chi\left(\mathcal{F}, \mathcal{O}_{l_{h}}\right)=\chi\left(\mathcal{O}_{l_{h}}, \mathcal{F}\right)=0$.

Proof. Let l_{h} be a line in \tilde{X}_{4} with class $E_{1} \cdot V_{E} . e$. Then its Chern character is ($\left.0,0,0, E_{1} \cdot V_{E} \cdot e, x\right)$. Moreover by Lemma 4.4.7 and the definition of the Todd class (see page 432 of [12]) we have that $\operatorname{td}\left(\tilde{X}_{4}\right)=\left(1, \frac{h-e}{2}, *, *, *\right)$. Hence by Hirzebruch-Riemann-Roch for any sheaf \mathcal{F} whose support has dimension at most 2 one has $\chi\left(\mathcal{F}, \mathcal{O}_{l_{h}}\right)=$ $\chi\left(\mathcal{O}_{l_{h}}, \mathcal{F}\right)=0$.
Moreover, since l_{h} is a \mathbb{P}^{1} (because E_{1} is a \mathbb{P}^{1} in Σ_{2}), its genus is $g\left(l_{h}\right)=0$, hence if we denote by f the embedding $f: l_{h} \hookrightarrow X_{4}$ we get $\chi\left(\mathcal{O}_{\tilde{X}_{4}}, f_{*} \mathcal{O}_{l_{h}}\right)=\chi\left(f^{*} \mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{l_{h}}\right)=\chi\left(\mathcal{O}_{l_{h}}, \mathcal{O}_{l_{h}}\right)=1-g\left(l_{h}\right)=1$. By Hirzebruch-RiemannRoch, we then get :

$$
\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{l_{h}}\right)=1=\int_{\tilde{X}_{4}}\left(0,0,0, E_{1} \cdot V_{E} \cdot e, x\right) \cdot\left(1, \frac{h-e}{2}, *, *, *,\right)=\frac{(h-e) E_{1} \cdot V_{E} \cdot e}{2}+x .
$$

Finally, since e is the class of D_{3} in \tilde{X}_{4} we have that $(h-e) E_{1} \cdot V_{E} . e$ is equal to $(h-e) E_{1} \cdot V_{E}=\left(h_{1}+h_{2}+V_{E}\right) \cdot E_{1} \cdot V_{E}$ in D_{3}. With the same reasoning as in the proof of Lemma 4.7.13 we then get that $\left(h_{1}+h_{2}+V_{E}\right) \cdot E_{1} \cdot V_{E}=1$ and thus $x=\frac{1}{2}$. We can now use Hirzebruch-Riemann-Roch to compute the above-mentioned Euler characteristics. Similarly, one can use the short exact sequence $0 \rightarrow \mathcal{O}_{\tilde{X}_{4}}(-2 e) \rightarrow \mathcal{O}_{\tilde{X}_{4}}(-e) \rightarrow \mathcal{O}_{D_{3}}\left(V_{E}\right) \rightarrow 0$ to find that $\operatorname{ch}\left(\mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=(0, e, *, *, *)$. Hence by Hirzebruch-Riemann-Roch and (1.9) :

$$
\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{l_{h}}\right)=-e \cdot V_{E} \cdot E_{1} \cdot e=-e\left(E_{1} \cdot\left(-V_{E}^{2}\right)\right)=0 .
$$

With a similar reasoning to the one in the proof of Lemma 4.6.1 one can then find that

$$
\chi\left(\mathcal{O}_{l_{h}}, \mathcal{O}_{D_{3}}\left(V_{E}\right)\right)=\chi\left(\mathcal{O}_{D_{3}}\left(V_{E}\right), \mathcal{O}_{l_{h}}\right)=-e . V_{E} \cdot E_{1} \cdot e=0 .
$$

The exact same method then yields $\chi\left(\mathcal{O}_{l_{h}}, \mathcal{F}\right)=\chi\left(\mathcal{F}, \mathcal{O}_{l_{h}}\right)=0$ for any $\mathcal{F} \in\left\{\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{D_{3}}\left(h_{1}-V_{E}\right), \mathcal{O}_{D_{3}}\left(2 h_{1}-\right.\right.$ $\left.\left.V_{E}\right)\right\}$.

Lemma 4.8.2. For $0 \leq i \leq 2$ we have $\chi\left(\mathcal{O}_{p}, \mathcal{O}_{\tilde{X}_{4}}(i h)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(i h), \mathcal{O}_{p}\right)=1$. For any other sheaf \mathcal{F} in the family \mathcal{F}_{1} mentioned in section 2.1.1, one has $\chi\left(\mathcal{F}, \mathcal{O}_{p}\right)=\chi\left(\mathcal{O}_{p}, \mathcal{F}\right)=0$.

Proof. Since $\operatorname{ch}\left(\mathcal{O}_{p}\right)=(0,0,0,0,1)$ by Hirzebruch-Riemann-Roch for any sheaf \mathcal{F} one has $\chi\left(\mathcal{F}, \mathcal{O}_{p}\right)=\chi\left(\mathcal{O}_{p}, \mathcal{F}\right)=$ $\operatorname{rk}(\mathcal{F})$.

Chapter 5

Computations of Euler characteristics between elements of \mathcal{F}_{2}

In this section, we compute Euler characteristics between elements of the family

$$
\mathcal{F}_{2}=\left\{\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{\tilde{E}_{1}}, \mathcal{O}_{\tilde{E}_{2}}, \mathcal{O}_{\tilde{E}_{3}}, \mathcal{O}_{V_{Z}}, \mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{l_{h}}, \mathcal{O}_{l_{D}}, \mathcal{O}_{p}\right\},
$$

defined in subsection 2.2. Some of these Euler characteristics have already been computed in section 4, for those who haven't, we use similar reasoning as in section 4. All these results are gathered in Proposition 2.2.1.

We already know from Proposition 4.2.15 and Lemma 4.2.1 that

$$
\left(\begin{array}{ccc}
\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{X}_{4}}\right) & \ldots & \left.\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{X}_{4}}(2 h)\right) \\
\vdots & \vdots & \vdots \\
\left.\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{\tilde{X}_{4}}\right) & \ldots & \left.\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{\tilde{X}_{4}}(2 h)\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 20 & 124 \\
1 & 1 & 20 \\
20 & 1 & 1
\end{array}\right) .
$$

Lemma 5.0.1. Let $i \in \mathbb{Z}$ then $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(i h), j_{*} \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}(-i h)\right)$ and $\chi\left(j_{*} \mathcal{O}_{D_{3}}, \mathcal{O}_{\tilde{X}_{4}}(i h)\right)=0$.
Proof. With the notations of section 2.1.1, one has

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{X}_{4}}(i h), j_{*} \mathcal{O}_{D_{3}}\right) & =\chi\left(j^{*} \mathcal{O}_{\tilde{X}_{4}}(i h), \mathcal{O}_{D_{3}}\right) \\
& =\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}(-i h)\right) \\
& =\chi\left(p^{*} \mathcal{O}_{\Sigma_{2}}, p^{*} \mathcal{O}_{\Sigma_{2}}(-i h)\right) \\
& =\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*} p^{*} \mathcal{O}_{\Sigma_{2}}(-i h)\right) \\
& =\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}(-i h)\right)
\end{aligned}
$$

since $p_{*} \mathcal{O}_{D_{3}}=\mathcal{O}_{\Sigma_{2}}$ (by Corollary 4.5.5).
By Serre duality and Lemma 4.4.7, one also has

$$
\begin{aligned}
\chi\left(j_{*} \mathcal{O}_{D_{3}}, \mathcal{O}_{\tilde{X}_{4}}(i h)\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}(i h), j_{*} \mathcal{O}_{D_{3}}(-h+e)\right) \\
& =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, j_{*} \mathcal{O}_{D_{3}}(-(i+1) h+e)\right) \\
& =\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}(-(i+1) h+e)\right) \\
& =\chi\left(p^{*} \mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{D_{3}}(-(i+1) h+e)\right) \\
& =\chi\left(\mathcal{O}_{\Sigma_{2}}, p_{*}\left(p^{*} \mathcal{O}_{\Sigma_{2}}(-(i+1) h) \otimes \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)\right) \\
& =\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}(-(i+1) h) \otimes p_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)
\end{aligned}
$$

where we used (1.10) and the projection formula for the last equalities. By the Remark page 328 of [8], we have $p_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)=0$, hence $\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}(-(i+1) h) \otimes p_{*} \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=0$.

Corollary 5.0.2. One has $\left(\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\right), \chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{D_{3}}\right), \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{D_{3}}\right)\right)=(1,1,7)$ and $\left(\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{\tilde{X}_{4}}\right), \chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{\tilde{X}_{4}}(h)\right), \chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{\tilde{X}_{4}}(2 h)\right)\right)=(0,0,0)$.

Proof. We can use Lemma 4.1.3 and Hirzebruch-Riemann-Roch to compute the $\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}(-i h)\right)$ for $0 \leq i \leq$ 2.

Remark 5.0.3. The non zero Euler characteristics above had already been computed in Lemma 4.3.5.
As we saw in Lemma 4.3.8, we have $\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=1$. Moreover by Lemma 4.7.6, we have $\left(\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{X}_{4}}\right), \chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{X}_{4}}(h)\right), \chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{X}_{4}}(2 h)\right)\right)=(-1,-7,-19)$ and by Corollary 2.1.3, we get $\left(\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)\right.$, $\left.\chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right), \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)\right)=(0,0,0)$.
Lemma 5.0.4. One has $\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=1$ and $\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{D_{3}}\right)=-1$.
Proof. We can use the short exact sequence $0 \rightarrow \mathcal{O}_{\tilde{X}_{4}}(-e) \rightarrow \mathcal{O}_{\tilde{X}_{4}} \rightarrow \mathcal{O}_{D_{3}} \rightarrow 0$ in \tilde{X}_{4} to find :

- $\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)$.

We have just seen that $\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=0$ and by (1.10) we have

$$
\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\left(-2 V_{E}\right)\right) .
$$

By the Remark below Proposition 9.3 in [8], we can find

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{X}_{4}}, j_{*} \mathcal{O}_{D_{3}}\left(-2 V_{E}\right)\right) & =\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(-2 V_{E}\right)\right) \\
& =\chi\left(p^{*} \mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{D_{3}}\left(-2 V_{E}\right)\right) \\
& =-\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\right)=-1
\end{aligned}
$$

So finally $\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=0-(-1)=1$.

- $\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{X}_{4}}\right)-\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{X}_{4}}(-e)\right)$.

We have seen above that $\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{X}_{4}}\right)=-1$ and by Serre duality and (1.10) we find

$$
\begin{aligned}
\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{X}_{4}}(-e)\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{D_{3}}\left(-V_{E}-h+e\right)\right) \\
& =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\left(-V_{E}-h+2 e\right)\right) \\
& =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\left(-3 V_{E}-h\right)\right) .
\end{aligned}
$$

Again using the Remark below Proposition 9.3 in [8], one finds

$$
\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{D_{3}}\left(-3 V_{E}-h\right)\right)=\chi\left(p^{*} \mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{D_{3}}\left(-3 V_{E}\right) \otimes p^{*} \mathcal{O}_{\Sigma_{2}}(-h)\right)=-\chi\left(\mathcal{O}_{\Sigma_{2}},\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}(-h)\right)
$$

With Hirzebruch-Riemann-Roch, Lemma 4.1.3 and Lemma 4.7.7 one gets :

$$
\chi\left(\mathcal{O}_{\Sigma_{2}},\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}(-h)\right)=\int_{\Sigma_{2}}(2,0,-2) \cdot(1,-h, 3) \cdot\left(1, \frac{h}{2}, 1\right)=\int_{\Sigma_{2}}(2,-2 h, 4) \cdot\left(1, \frac{h}{2}, 1\right)=6-6=0 .
$$

Therefore, $\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{D_{3}}\right)=-1$.

Before going further, we need the following technical result and notation:
Definition 5.0.5. Let us denote by \bar{D} the class of \bar{D}_{2} in \tilde{Z}. If D^{\prime} is a divisor in Z_{3}, let us still denote by D^{\prime} its pull-back to \tilde{Z}.

Lemma 5.0.6. The Picard group of \tilde{Z} is generated by $V_{Z}, \bar{h}_{1}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}$ and \bar{D}. Moreover, for $1 \leq i \leq 3$ we have the following equalities :

$$
\begin{aligned}
& \left.\bar{D}\right|_{\bar{D}_{2}}=-\left.\delta \quad V_{Z}\right|_{\bar{D}_{2}}=\left.0 \quad \bar{h}_{1}\right|_{\bar{D}_{2}}=\left.\bar{h}_{2}\right|_{\bar{D}_{2}}=\left.12 f \quad \tilde{E}_{i}\right|_{\bar{D}_{2}}=4 f \\
& \bar{D}^{3}=48 \quad \bar{D}^{2} \bar{h}_{1}=\bar{D}^{2} \bar{h}_{2}=-12 \quad \bar{D}^{2} \tilde{E}_{i}=-4
\end{aligned}
$$

Proof. The first claim follows from the fact that $\operatorname{Pic}\left(Z_{3}\right)=<V_{Z}, \bar{h}_{1}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}>$ (see the proof of Proposition 4.5.3) together with Definition 5.0 .5 and the fact that \tilde{Z} is the blow-up of Z_{3} in Γ_{1} (see Lemma 3.2.6). The exceptional divisor of this blow-up is then $\bar{\pi}^{-1}\left(\Gamma_{1}\right)=\bar{D}_{2}$.
We have already seen the first equality in the proof of Lemma 4.6.2, and in Z_{3} the following holds:

$$
V_{Z} \cdot\left[\Gamma_{1}\right]=4 V_{Z}^{2}\left(\bar{h}_{1}+\bar{h}_{2}\right)=0 \quad \bar{h}_{1} \cdot\left[\Gamma_{1}\right]=4 V_{Z} \bar{h}_{1}\left(\bar{h}_{1}+\bar{h}_{2}\right)=3.4=12 \quad \tilde{E}_{i} \cdot\left[\Gamma_{1}\right]=4 V_{Z} \tilde{E}_{i}\left(\bar{h}_{1}+\bar{h}_{2}\right)=4
$$

which implies the rest of the first line of equalities. Finally the second line can be deduced from the first line and Lemma 4.4.1.

Lemma 5.0.7. The Todd class of \tilde{Z} is

$$
\operatorname{td}(\tilde{Z})=\left(1, V_{Z}+\frac{3}{2} \bar{h}_{1}-\frac{1}{2}\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right)-\frac{1}{2} \bar{D}, y_{2}, 1\right)=\left(1, V_{Z}+\frac{1}{2}\left(\bar{h}_{1}+\bar{h}_{2}\right)-\frac{1}{2} \bar{D}, y_{2}, 1\right)
$$

where $\bar{h}_{1} \cdot y_{2}=\frac{3}{2}, \tilde{E}_{i} \cdot y_{2}=\frac{1}{2}, V_{Z} \cdot y_{2}=\frac{1}{3}$ and $\bar{D} \cdot y_{2}=-38$.
Proof. By Lemma 4.5.3, we have

$$
K_{Z}=-2 V_{Z}-3 \bar{h}_{1}+\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}=-2 V_{Z}-\bar{h}_{1}-\bar{h}_{2} .
$$

Thus, since \tilde{Z} is the blow up of Z_{3} in Γ_{1}, we get

$$
K_{\tilde{Z}}=-2 V_{Z}-3 \bar{h}_{1}+\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}+\bar{D}=-2 V_{Z}-\bar{h}_{1}-\bar{h}_{2}+\bar{D}
$$

Using now the formula for the Todd class page 432 of [12] and the fact that $c_{1}\left(\mathcal{T}_{\tilde{Z}}\right)=-K_{\tilde{Z}}$, one finds

$$
\operatorname{td}(\tilde{Z})=\left(1, V_{Z}+\frac{3}{2} \bar{h}_{1}-\frac{1}{2}\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right)-\frac{1}{2} \bar{D}, y_{2}, x_{3}\right)=\left(1, V_{Z}+\frac{1}{2}\left(\bar{h}_{1}+\bar{h}_{2}\right)-\frac{1}{2} \bar{D}, y_{2}, x_{3}\right)
$$

Moreover by Hirzebruch-Riemann-Roch $\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\right)=\int_{\tilde{Z}}(1,0,0,0) \cdot \operatorname{td}(\tilde{Z})=x_{3}$ and by Corollary 4.5 .5 we have $\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\right)=\chi\left(\bar{\pi}^{*} \mathcal{O}_{Z_{3}}, \mathcal{O}_{\tilde{Z}}\right)=\chi\left(\mathcal{O}_{Z_{3}}, \bar{\pi}_{*} \mathcal{O}_{\tilde{Z}}\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\right)=1$ as we saw in the proof of Lemma 4.5.6. So $x_{3}=1$.
Let now $K \in\left\{\bar{h}_{1}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}, V_{Z}\right\}$. On one hand, we have $\operatorname{ch}\left(\mathcal{O}_{\tilde{Z}}(K)\right)=\operatorname{ch}\left(\mathcal{O}_{Z_{3}}(K)\right)=\left(1, K, \frac{K^{2}}{2}, \frac{K^{3}}{6}\right)$ so $\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(K)\right)=\int_{\tilde{Z}}\left(1, K, \frac{K^{2}}{2}, \frac{K^{3}}{6}\right) \cdot \operatorname{td}(\tilde{Z})$. Moreover, $\operatorname{td}(\tilde{Z})-\operatorname{td}\left(Z_{3}\right)=\left(0,-\frac{1}{2} \bar{D}, y_{2}-x_{2}, 0\right)$ and from Lemma 5.0.6 we know that $\left.\bar{h}_{1}\right|_{\bar{D}_{2}}=12 f,\left.\tilde{E}_{i}\right|_{\bar{D}_{2}}=4 f$ and $\left.V_{Z}\right|_{\bar{D}_{2}}=0$. Thus:

$$
\begin{aligned}
& \bar{h}_{1}^{2} \bar{D}=\left(\left.\bar{h}_{1}\right|_{\bar{D}_{2}}\right)^{2}=12^{2} f^{2}=0 \\
& \tilde{E}_{i}^{2} \bar{D}=\left(\left.\tilde{E}_{i}\right|_{\bar{D}_{2}}\right)^{2}=16 f^{2}=0 \\
& V_{Z}^{2} \bar{D}=0
\end{aligned}
$$

As a result,

$$
\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(K)\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(K)\right)=\int_{\tilde{Z}}\left(1, K, \frac{K^{2}}{2}, \frac{K^{3}}{6}\right) \cdot \operatorname{td}(\tilde{Z})-\int_{Z_{3}}\left(1, K, \frac{K^{2}}{2}, \frac{K^{3}}{6}\right) \cdot \operatorname{td}\left(Z_{3}\right)=K \cdot y_{2}-K x_{2}
$$

On the other hand, we have

$$
\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(K)\right)=\chi\left(\bar{\pi}^{*} \mathcal{O}_{Z_{3}}, \bar{\pi}^{*} \mathcal{O}_{Z_{3}}(K)\right)=\chi\left(\mathcal{O}_{Z_{3}}, \bar{\pi}_{*} \bar{\pi}^{*} \mathcal{O}_{Z_{3}}(K)\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(K)\right)
$$

by the projection formula and Corollary 4.5.5. Hence, $K . y_{2}-K x_{2}=0$ and so from Lemma 4.5.6, Lemma 4.7.2 and Remark 4.7.3 we get: $\bar{h}_{1} \cdot y_{2}=\frac{3}{2}, \tilde{E}_{i} \cdot y_{2}=\frac{1}{2}$ and $V_{Z} \cdot y_{2}=\frac{1}{3}$.

Finally, we saw in the proof of Lemma 4.6.2 that $\left.h\right|_{\tilde{Z}}=3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)-\bar{D}$ and that $\bar{D}^{2}=-\delta$ with the notations of Lemma 4.4.1. In particular this implies

$$
\operatorname{ch}\left(\mathcal{O}_{\tilde{Z}}(h)\right)=\left(1,3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)-\bar{D}, \frac{3}{2} \bar{h}_{1} \bar{h}_{2}+6 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+\frac{1}{2} \bar{D}^{2}-2 \bar{D}\left(\bar{h}_{1}+\bar{h}_{2}\right),-5\right)
$$

Hirzebruch-Riemann-Roch then yields:

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(h)\right) & =\int_{Z}\left(1,3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)-\bar{D}, \frac{3}{2} \bar{h}_{1} \bar{h}_{2}+6 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right)+\frac{1}{2} \bar{D}^{2}-2 \bar{D}\left(\bar{h}_{1}+\bar{h}_{2}\right),-5\right) \\
& .\left(1, V_{Z}+\frac{3}{2} \bar{h}_{1}-\frac{1}{2}\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right)-\frac{1}{2} \bar{D}, y_{2}, 1\right) \\
& =1+1+6-\bar{D} \cdot y_{2}+3+27-9-9+3-12-24-5=-18-\bar{D} \cdot y_{2} .
\end{aligned}
$$

On the other hand, let us denote by g the embedding $g: \tilde{Z} \hookrightarrow \bar{E}_{4}$. Then

$$
\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(h)\right)=\chi\left(g^{*} \mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\tilde{Z}}(h)\right)=\chi\left(\mathcal{O}_{\bar{E}_{4}}(-h), g_{*} \mathcal{O}_{\tilde{Z}}\right)
$$

Using the short exact sequence $0 \rightarrow \mathcal{O}_{\bar{E}_{4}}\left(-V_{\bar{E}}\right) \rightarrow \mathcal{O}_{\bar{E}_{4}} \rightarrow g_{*} \mathcal{O}_{\tilde{Z}} \rightarrow 0$ in \bar{E}_{4} (which comes from the construction of \tilde{Z} in Proposition 3.2.6) one finds:

$$
\chi\left(\mathcal{O}_{\bar{E}_{4}}(-h), g_{*} \mathcal{O}_{\tilde{Z}}\right)=\chi\left(\mathcal{O}_{\bar{E}_{4}}(-h), \mathcal{O}_{\bar{E}_{4}}\right)-\chi\left(\mathcal{O}_{\bar{E}_{4}}(-h), \mathcal{O}_{\bar{E}_{4}}\left(-V_{\bar{E}}\right)\right) .
$$

By (1.12) we then get $\chi\left(\mathcal{O}_{\bar{E}_{4}}(-h), g_{*} \mathcal{O}_{\tilde{Z}}\right)=\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(V_{\bar{E}}\right)\right)-\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\right)$. We saw in the proof of Lemma 4.5 .6 that $\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\right)=1$ and Hirzebruch-Riemann-Roch together with Lemma 3.2.3 yields:

$$
\begin{aligned}
\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}\right) & =\int_{Z_{3}}\left(2,3 \bar{h}-\bar{h}_{1}-\bar{h}_{2}, \frac{3}{2} \bar{h}_{1} \bar{h}_{2}+2 V_{Z}\left(\bar{h}_{1}+\bar{h}_{2}\right), 3\right) \cdot\left(1, V_{Z}+\frac{3}{2} \bar{h}_{1}-\frac{1}{2}\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right), x_{2}, 1\right) \\
& =2+10-3+3+9-3+3=21
\end{aligned}
$$

So $\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(h)\right)=21-1=20$, and thus $20=-18-\bar{D} \cdot y_{2}$, that is to say $\bar{D} \cdot y_{2}=-38$.
Remark 5.0.8. One could also have computed $\bar{D} . y_{2}$ in Lemma 5.0.7 the following way. We saw in Lemma 4.4.4 that $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}\right)=-12$, and if we denote by f the embedding $f: \bar{D}_{2} \hookrightarrow \tilde{Z}$ we have $\chi\left(\mathcal{O}_{\tilde{Z}}, f_{*} \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}\right)=-12$. On the other hand there is a short exact sequence in \tilde{Z} :

$$
0 \rightarrow \mathcal{O}_{\tilde{Z}}(-\bar{D}) \rightarrow \mathcal{O}_{\tilde{Z}} \rightarrow f_{*} \mathcal{O}_{\bar{D}_{2}} \rightarrow 0
$$

therefore $\chi\left(\mathcal{O}_{\tilde{Z}}, f_{*} \mathcal{O}_{\bar{D}_{2}}\right)=\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}\right)-\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(-\bar{D})\right)$. Hence, $\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(-\bar{D})\right)=1-(-12)=13$. Moreover, $\operatorname{ch}\left(\mathcal{O}_{\tilde{Z}}(-\bar{D})\right)=\left(1,-\bar{D}, \frac{\bar{D}^{2}}{2},-8\right)$ since $\bar{D}^{3}=\left(\left.\bar{D}\right|_{\bar{D}_{2}}\right)^{2}=(-\delta)^{2}=48$. So by Hirzebruch-Riemann-Roch :

$$
\begin{aligned}
13 & =\int_{\tilde{Z}}\left(1,-\bar{D}, \frac{\bar{D}^{2}}{2},-8\right) \cdot\left(1, V_{Z}+\frac{3}{2} \bar{h}_{1}-\frac{1}{2}\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right)-\frac{1}{2} \bar{D}, y_{2}, 1\right) \\
& =-8-9+3-12-\bar{D} \cdot y_{2}+1=-25-\bar{D} \cdot y_{2}
\end{aligned}
$$

and thus $\bar{D} \cdot y_{2}=-25-13=-38$.
We can now use Hirzebruch-Riemann-Roch to compute some of the Euler characteristics we are interested in.

Lemma 5.0.9. One has $\left(\begin{array}{ccc}\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{h}_{1}}\right) & \chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\tilde{E}_{i}}\right) & \chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{V_{Z}}\right) \\ \chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\bar{h}_{1}}\right) & \chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\tilde{E}_{i}}\right) & \chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{V_{Z}}\right) \\ \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{\bar{h}_{1}}\right) & \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{\tilde{E}_{i}}\right) & \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{V_{Z}}\right)\end{array}\right)=\left(\begin{array}{ccc}1 & 1 & 1 \\ 10 & 2 & 1 \\ 43 & 11 & 7\end{array}\right)$ and
$\left(\begin{array}{ccc}\chi\left(\mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{\tilde{X}_{4}}\right) & \chi\left(\mathcal{O}_{\tilde{E}_{i}}, \mathcal{O}_{\tilde{X}_{4}}\right) & \chi\left(\mathcal{O}_{V_{Z}}, \mathcal{O}_{\tilde{X}_{4}}\right) \\ \chi\left(\mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{\tilde{X}_{4}}(h)\right) & \chi\left(\mathcal{O}_{\tilde{E}_{i}}, \mathcal{O}_{\tilde{X}_{4}}(h)\right) & \chi\left(\mathcal{O}_{V_{Z}}, \mathcal{O}_{\tilde{X}_{4}}(h)\right) \\ \chi\left(\mathcal{O}_{\bar{h}_{1}}, \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h)\right)\right. & \chi\left(\mathcal{O}_{\tilde{E}_{i}}, \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h)\right)\right. & \chi\left(\mathcal{O}_{V_{Z}}, \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h)\right)\right.\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 1 \\ 24 & 6 & 7 \\ 72 & 20 & 19\end{array}\right)$.
Proof. Let $K \in\left\{\bar{h}_{1}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}, V_{Z}\right\}$. Then for any $i \in \mathbb{Z}$ one has $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(i h), \mathcal{O}_{K}\right)=\chi\left(\mathcal{O}_{\tilde{Z}}(i h), \mathcal{O}_{K}\right)$, and by Serre duality, $\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}(i h)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(i h), \mathcal{O}_{K}(-h+e)\right)=\chi\left(\mathcal{O}_{\tilde{Z}}(i h), \mathcal{O}_{K}(-\bar{h})\right)$. Moreover there is a short exact sequence $0 \rightarrow \mathcal{O}_{\tilde{Z}}(-K) \rightarrow \mathcal{O}_{\tilde{Z}} \rightarrow \mathcal{O}_{K} \rightarrow 0$ in \tilde{Z}, which yields, for $1 \leq i \leq 3$:

$$
\begin{aligned}
\operatorname{ch}\left(\mathcal{O}_{\bar{h}_{1}}\right) & =\left(0, \bar{h}_{1},-\frac{\bar{h}_{1}^{2}}{2}, 0\right) \\
\operatorname{ch}\left(\mathcal{O}_{\tilde{E}_{i}}\right) & =\left(0, \tilde{E}_{i},-\frac{\tilde{E}_{i}^{2}}{2}, 0\right) \\
\operatorname{ch}\left(\mathcal{O}_{V_{Z}}\right) & =\left(0, V_{Z}, \frac{\bar{h}_{1} \bar{h}_{2}}{2},-\frac{1}{3}\right)
\end{aligned}
$$

Together with the fact that $\left.h\right|_{\tilde{Z}}=3 V_{Z}+2\left(\bar{h}_{1}+\bar{h}_{2}\right)-\bar{D}$ as we saw in the proof of Lemma 4.6.2, and Lemma 5.0.7, Hirzebruch-Riemann-Roch then allows us to compute the above-mentioned Euler characteristics.

Lemma 5.0.10. One has

$$
\left(\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{\bar{h}_{1}}\right), \chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{\tilde{E}_{i}}\right), \chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{V_{Z}}\right)\right)=(1,-1,0)
$$

and

$$
\left(\chi\left(\mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{D_{3}}\right), \chi\left(\mathcal{O}_{\tilde{E}_{i}}, \mathcal{O}_{D_{3}}\right), \chi\left(\mathcal{O}_{V_{Z}}, \mathcal{O}_{D_{3}}\right)\right)=(10,2,2)
$$

Proof. Let $K \in\left\{\bar{h}_{1}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}, V_{Z}\right\}$. We are going to use the following short exact sequence in \tilde{X}_{4} :

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\tilde{X}_{4}}(-e) \rightarrow \mathcal{O}_{\tilde{X}_{4}} \rightarrow \mathcal{O}_{D_{3}} \rightarrow 0 \tag{5.1}
\end{equation*}
$$

Indeed with (1.8), it implies

$$
\chi\left(\mathcal{O}_{K}, \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}\right)-\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}(-e)\right)=\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}\right)-\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}(\bar{h}-h)\right)
$$

and

$$
\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{K}\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{K}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}(\bar{h}-h), \mathcal{O}_{K}\right)
$$

Finally, by Serre duality and Lemma 4.4.7 we have :

$$
\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}(-e)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{K}(-h+e)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{K}(-h+2 h-2 \bar{h})\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{K}(h-2 \bar{h})\right) .
$$

One can then conclude with Hirzebruch-Riemann-Roch and the proof of Lemma 5.0.9.
Lemma 5.0.11. One has $\left(\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\bar{h}_{1}}\right), \chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\tilde{E}_{i}}\right), \chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{V_{Z}}\right)\right)=(-2,-2,-2)$ and $\left(\chi\left(\mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right), \chi\left(\mathcal{O}_{\tilde{E}_{i}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right), \chi\left(\mathcal{O}_{V_{Z}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)\right)=(10,2,0)$.
Proof. By (1.10), twisting (5.1) by $\mathcal{O}_{\tilde{X}_{4}}(e)$ gives a short exact sequence :

$$
0 \rightarrow \mathcal{O}_{\tilde{X}_{4}} \rightarrow \mathcal{O}_{\tilde{X}_{4}}(e) \rightarrow \mathcal{O}_{D_{3}}\left(-V_{E}\right) \rightarrow 0
$$

With (1.8), this yields

$$
\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{K}\right)=\chi\left(O_{\tilde{X}_{4}}(h-\bar{h}), \mathcal{O}_{K}\right)-\chi\left(O_{\tilde{X}_{4}}, \mathcal{O}_{K}\right)
$$

and

$$
\chi\left(\mathcal{O}_{K}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}(h-\bar{h})\right)-\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}\right) .
$$

Moreover by Serre duality,

$$
\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}(h-\bar{h})\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(h-\bar{h}), \mathcal{O}_{K}(-h+e)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(h-\bar{h}), \mathcal{O}_{K}(-\bar{h})\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{K}(-h)\right) .
$$

One can then conclude with the same reasoning as in the proof of Lemma 5.0.9.
Lemma 5.0.12. If $\left\{x_{1}, \ldots, x_{5}\right\}=\left\{\mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{\tilde{E}_{1}}, \mathcal{O}_{\tilde{E}_{2}}, \mathcal{O}_{\tilde{E}_{3}}, \mathcal{O}_{V_{z}}\right\}$ then $\left(\chi\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq 5}=\left(\begin{array}{ccccc}-1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right)$.
Proof. Using the same reasoning as in 2 . of the proof of Lemma 4.6.2 one gets :

$$
\begin{aligned}
& \chi\left(\mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{\bar{h}_{1}}\right)=\bar{h}_{1}^{2}(2 \bar{h}-h)=\bar{h}_{1}^{2}\left(-V_{Z}+\bar{D}\right)=-1 \\
\chi\left(\mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{\tilde{E}_{i}}\right)= & \chi\left(\mathcal{O}_{\tilde{E}_{i}}, \mathcal{O}_{\bar{h}_{1}}\right)=\bar{h}_{1} \tilde{E}_{i}\left(-V_{Z}+\bar{D}\right)=0 \\
\chi\left(\mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{V_{Z}}\right)= & \chi\left(\mathcal{O}_{V_{Z}}, \mathcal{O}_{\bar{h}_{1}}\right)=\bar{h}_{1} V_{Z}\left(-V_{Z}+\bar{D}\right)=0 \\
& \chi\left(\mathcal{O}_{\tilde{E}_{i}}, \mathcal{O}_{\tilde{E}_{j}}\right)=\tilde{E}_{j} \tilde{E}_{i}\left(-V_{Z}+\bar{D}\right)=\delta_{i, j} \\
\chi\left(\mathcal{O}_{V_{Z}}, \mathcal{O}_{\tilde{E}_{i}}\right)= & \chi\left(\mathcal{O}_{\tilde{E}_{i}}, \mathcal{O}_{V_{Z}}\right)=V_{Z} \tilde{E}_{i}\left(-V_{Z}+\bar{D}\right)=0 \\
& \chi\left(\mathcal{O}_{V_{Z}}, \mathcal{O}_{V_{Z}}\right)=V_{Z}^{2}\left(-V_{Z}+\bar{D}\right)=2 .
\end{aligned}
$$

We saw in Lemma 4.4.6 that $\left(\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}\right), \chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{\bar{D}_{2}}\right), \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{\bar{D}_{2}}\right)\right)=(-12,0,156)$ and in Lemma 4.4.8 that $\left(\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}\right), \chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}(h)\right), \chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}(2 h)\right)\right)=(-36,0,180)$. Furthermore:

Lemma 5.0.13. One has $\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{\bar{D}^{2}}\right)=-84$ and $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{D_{3}}\right)=-60$.
Proof. We can use (5.1) again together with (1.8) and similar reasoning as in the proof of Lemma 4.4.6 to find : 1.

$$
\begin{aligned}
\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{\bar{D}_{2}}\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{\bar{D}_{2}}\right) \\
& =\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}\right)-\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(h-\bar{h})\right) \\
& =-12-\left(-12+\frac{1}{2}\left((\delta+24 f)^{2}-(\delta+24 f)(-2 \delta+72 f)\right)\right) \\
& =-12-\left(-12+\frac{1}{2}(48+48+2.48-72+48)\right)=-12-(-12+84)=-84 .
\end{aligned}
$$

2. $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}\right)-\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}(-e)\right)$.

By Serre duality

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\tilde{X}_{4}}(-e)\right) & =\chi\left(\mathcal{O}_{\tilde{X}_{4}}(-e), \mathcal{O}_{\bar{D}_{2}}(-h+e)\right) \\
& =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(-h+2 e)\right) \\
& =\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{\bar{D}_{2}}(h-2 \bar{h})\right) \\
& =\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}(\delta)\right) \\
& =-12+\frac{1}{2}\left(\delta^{2}-\delta(-2 \delta+72 f)\right) \\
& =-12+\frac{1}{2}(48+2.48-72)=-12+36=24 .
\end{aligned}
$$

So finally, $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{D_{3}}\right)=-36-24=-60$.

We also know from Lemma 4.7 .17 that $\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{\bar{D}^{2}}\right)=12$ and $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=36$. Finally :
Lemma 5.0.14. One has $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}\right)=48, \chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{h}_{1}}\right)=\chi\left(\mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{\bar{D}_{2}}\right)=-12, \chi\left(\mathcal{O}_{\bar{D}_{2}}, \tilde{E}_{i}\right)=\chi\left(\tilde{E}_{i}, \mathcal{O}_{\bar{D}_{2}}\right)=$ -4 and $\chi\left(\mathcal{O}_{\bar{D}_{2}}, V_{Z}\right)=\chi\left(V_{Z} \mathcal{O}_{\bar{D}_{2}}\right)=0$.
Proof. We already saw in Lemma 4.6 .2 that $\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{D}_{2}}\right)=48$. Moreover, using the same reasoning as in 2 . of the proof of Lemma 4.6.2 (and Lemma 5.0.12), one finds :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\bar{D}_{2}}, \mathcal{O}_{\bar{h}_{1}}\right) & =\chi\left(\mathcal{O}_{\bar{h}_{1}}, \mathcal{O}_{\bar{D}_{2}}\right)=\bar{h}_{1} \bar{D}\left(-V_{Z}+\bar{D}\right)=-\delta .12 f=-12 \\
\chi\left(\mathcal{O}_{\bar{D}_{2}}, \tilde{E}_{i}\right) & =\chi\left(\tilde{E}_{i}, \mathcal{O}_{\bar{D}_{2}}\right)=\tilde{E}_{i} \bar{D}\left(-V_{Z}+\bar{D}\right)=-\delta .4 f=-4 \\
\chi\left(\mathcal{O}_{\bar{D}_{2}}, V_{Z}\right) & =\chi\left(V_{Z} \mathcal{O}_{\bar{D}_{2}}\right)=V_{Z} \bar{D}\left(-V_{Z}+\bar{D}\right)=0
\end{aligned}
$$

Since $\operatorname{ch}\left(\mathcal{O}_{D_{3}}\right)$ and $\operatorname{ch}\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)$ are both of the form $(0, e, *, *, *)$, Lemma 4.8.1 remains unchanged for our new family of sheaves \mathcal{F}_{2}.

Lemma 5.0.15. The following holds :

- $\left(\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{l_{D}}\right), \chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{l_{D}}\right), \chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{l_{D}}\right)\right)=(1,1,1) ;$
- $\left(\chi\left(\mathcal{O}_{l_{D}}, \mathcal{O}_{\tilde{X}_{4}}\right), \chi\left(\mathcal{O}_{l_{D}}, \mathcal{O}_{\tilde{X}_{4}}(h)\right), \chi\left(\mathcal{O}_{l_{D}}, \mathcal{O}_{\tilde{X}_{4}}(2 h)\right)\right)=(0,0,0)$;
- $\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{l_{D}}\right)=\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{l_{D}}\right)=\chi\left(\mathcal{O}_{l_{D}}, \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{l_{D}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=1$;
- for any other sheaf \mathcal{F} in our family $\mathcal{F}_{2}, \chi\left(\mathcal{O}_{l_{D}}, \mathcal{F}\right)=\chi\left(\mathcal{F}, \mathcal{O}_{l_{D}}\right)=0$.

Proof. Since l_{D} is a line of class $e h_{1}^{2}$, it is a fiber in D_{3} and thus a \mathbb{P}^{1}. We can then use the same reasoning as in the proof of Lemma 4.8.1 together with (1.10) and (1.9) to find :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{l_{D}}\right)=1 & =\int_{\tilde{X}_{4}}\left(0,0,0, e h_{1}^{2}, x\right) \cdot\left(1, \frac{h-e}{2}, *, *, *\right)=x+\frac{e h_{1}^{2}(h-e)}{2}=x+\frac{e\left(h_{1}^{2}\left(h_{1}+h_{2}\right)-h_{1}^{2}\left(-V_{E}\right)\right)}{2} \\
& =x+\frac{1}{2}
\end{aligned}
$$

Thus $x=1-\frac{1}{2}=\frac{1}{2}$. One can then compute the first two equalities above with Hirzebruch-Riemann-Roch. Furthermore, using again the same method as in the proof of Lemma 4.8.1 and the remark just above this Lemma, one finds:

$$
\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{l_{D}}\right)=\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{l_{D}}\right)=\chi\left(\mathcal{O}_{l_{D}}, \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{l_{D}}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=-e^{2} h_{1}^{2}=e V_{E} h_{1}^{2}=1
$$

The last equality comes again from the same reasoning as in the proof of Lemma 4.8.1.
Using finally the proof of Lemma 4.8.2, one can find the matrix given in Proposition 2.2.1.

Chapter 6

Appendix

6.1 Computation of the matrix P_{2} from section 2.3.1

In this subsection we give more details about how we obtain the matrix P_{2} (and thus P_{1}) in Proposition 2.3.1. We mainly use calculations already done in section 4 :

- The submatrix $\left(\left(P_{2}\right)_{i j}\right)_{1 \leq i, j \leq 3}$ can be deduced from Proposition 4.2.15, together with Lemma 4.2.1.
- The fifth line and column of P_{2} can easily be found using the same reasoning as in the proof of Lemma 4.8.2.
- The $\left(P_{2}\right)_{i 6}$ for $1 \leq i \leq 3$ have been computed in Lemma 4.3.5, while the $\left(P_{2}\right)_{6 i}$ for $1 \leq i \leq 3$ can be deduced from this same Lemma and Serre duality. Indeed for any $j \in \mathbb{Z}$, Serre duality yields $\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{X_{4}}(j h)\right)=$ $\chi\left(\mathcal{O}_{X_{4}}((j+1) h), \mathcal{O}_{\Sigma_{2}}\right)$.
- Using the same reasoning as in the proof of Lemma 4.8.1, one can find that since $\operatorname{dim}\left(\operatorname{supp}\left(\mathcal{O}_{\Sigma_{2}}\right)\right)=2$, the coefficients $\left(P_{2}\right)_{46}=\chi\left(\mathcal{O}_{l}, \mathcal{O}_{\Sigma_{2}}\right)$ and $\left(P_{2}\right)_{64}=\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{l}\right)$ are both equal to 0 . Similarly, $\operatorname{dim}\left(\operatorname{supp}\left(\mathcal{O}_{l}\right)\right)=1$ implies $\chi\left(\mathcal{O}_{l}, \mathcal{O}_{l}\right)=0$.

So far we thus now the following coefficients of P_{2} :

$$
\left(\begin{array}{cccccc}
1 & 20 & 124 & * & 1 & 1 \\
1 & 1 & 20 & * & 1 & 1 \\
20 & 1 & 1 & * & 1 & 7 \\
* & * & * & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 7 & 19 & 0 & 0 & *
\end{array}\right) .
$$

Let us compute the remaining coefficients.
Lemma 6.1.1. The following holds :

- $\left(\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{l}\right), \chi\left(\mathcal{O}_{X_{4}}(h), \mathcal{O}_{l}\right), \chi\left(\mathcal{O}_{X_{4}}(2 h), \mathcal{O}_{l}\right)\right)=(1,0,-1) ;$
- $\left(\chi\left(\mathcal{O}_{l}, \mathcal{O}_{X_{4}}\right), \chi\left(\mathcal{O}_{l}, \mathcal{O}_{X_{4}}(h)\right), \chi\left(\mathcal{O}_{l}, \mathcal{O}_{X_{4}}(2 h)\right)\right)=(0,-1,-2)$;
- $\chi\left(\mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\right)=2$.

Proof. - Let us keep the notations of section 4.3 and denote by i the inclusion $\Sigma_{2} \hookrightarrow X_{4}$. Then, since by definition l is a line in Σ_{2} with class E_{1}, what we denote by abuse of notation by \mathcal{O}_{l} is actually $i_{*} \mathcal{O}_{l}$. As a result, for any $j \in \mathbb{Z}$ one has $\chi\left(\mathcal{O}_{X_{4}}(j h), i_{*} \mathcal{O}_{l}\right)=\chi\left(i^{*} \mathcal{O}_{X_{4}}(j h), \mathcal{O}_{l}\right)=\chi\left(\mathcal{O}_{\Sigma_{2}}(j h), \mathcal{O}_{l}\right)$. Moreover, we know the Chern character, in Σ_{2}, of \mathcal{O}_{l} : indeed the short exact sequence

$$
0 \rightarrow \mathcal{O}_{\Sigma_{2}}\left(-E_{1}\right) \rightarrow \mathcal{O}_{\Sigma_{2}} \rightarrow \mathcal{O}_{E_{1}} \rightarrow 0
$$

together with $\operatorname{ch}\left(\mathcal{O}_{\Sigma_{2}}\left(-E_{1}\right)\right)=\left(1,-E_{1},-\frac{1}{2}\right)$ yields $\operatorname{ch}\left(\mathcal{O}_{l}\right)=\left(0, E_{1}, \frac{1}{2}\right)$. One can then compute the first three Euler characteristics mentioned above with Hirzebruch-Riemann-Roch and Lemma 4.1.2.

- Let $j \in \mathbb{Z}$. By Serre duality and Lemma 4.2.13, one has $\chi\left(\mathcal{O}_{l}, \mathcal{O}_{X_{4}}(j h)\right)=\chi\left(\mathcal{O}_{X_{4}}((j+1) h), \mathcal{O}_{l}\right)$. The other three Euler characteristics involving \mathcal{O}_{l} can then be computed with Hirzebruch-Riemann-Roch.
- To compute $\chi\left(i_{*} \mathcal{O}_{\Sigma_{2}}, i_{*} \mathcal{O}_{\Sigma_{2}}\right)$, we are going to use the same reasoning as in 1 . of the proof of Lemma 4.6.2.

By Theorem 13.7 in [8], we have that $\operatorname{ch}\left(i^{*} i_{*} \mathcal{O}_{\Sigma_{2}}\right)=\left(0,0, c_{2}\left(\mathcal{N}_{\Sigma_{2} / X_{4}}\right)\right)$. Therefore, by Hirzebruch-RiemannRoch we have $\chi\left(i_{*} \mathcal{O}_{\Sigma_{2}}, i_{*} \mathcal{O}_{\Sigma_{2}}\right)=\chi\left(i^{*} i_{*} \mathcal{O}_{\Sigma_{2}}, \mathcal{O}_{\Sigma_{2}}\right)=c_{2}\left(\mathcal{N}_{\Sigma_{2} / X_{4}}\right)$.
By pages 251-252 of [14] we know that $D_{3}=\mathbb{P}_{\Sigma_{2}}\left(\mathcal{N}_{\Sigma_{2} / X_{4}}\right)$. On the other hand, we know from [20] that $D_{3}=\mathbb{P}_{\Sigma_{2}}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)$ (here we don't need to worry about which definitions are chosen for the projectivization of a vector bundle in [14] and [20], because $\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}$ is self-dual : indeed it is a rank 2 vector bundle whose first Chern class is 0 as we saw in the proof of Lemma 4.7.7). So the normal bundle $\mathcal{N}_{\Sigma_{2} / X_{4}}$ is $\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}$ up to a twist by a line bundle. Since twisting by a line bundle doesn't change the c_{2}, we thus have $c_{2}\left(\mathcal{N}_{\Sigma_{2} / X_{4}}\right)=$ $c_{2}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)$. Finally, we saw in the proof of Lemma 4.7.7 that $c_{2}\left(\left.\mathcal{V}_{F}\right|_{\Sigma_{2}}\right)=2$.

Remark 6.1.2. To compute the first six Euler characteristics mentioned in Lemma 6.1.1, one could also have used the same reasoning as in the proof of Lemma 4.8.1 : indeed since l is a \mathbb{P}^{1} with class E_{1}. $\left[\Sigma_{2}\right]$ in X_{4}, we must have

$$
\begin{aligned}
\chi\left(\mathcal{O}_{X_{4}}, \mathcal{O}_{l}\right)=1 & =\int_{X_{4}}\left(0,0,0, E_{1} \cdot\left[\Sigma_{2}\right], x\right) \cdot\left(1, \frac{h}{2}, *, *, *\right) \\
& =x+E_{1} \cdot \frac{h}{2} \cdot\left[\Sigma_{2}\right]=x+\left.E_{1}\right|_{\Sigma_{2}} \cdot \frac{\left.h\right|_{\Sigma_{2}}}{2}=x+\frac{1}{2}
\end{aligned}
$$

where we used Lemma 4.2.13 as well as the formula for the Todd class page 432 of [12] to find that $\operatorname{td}\left(X_{4}\right)=$ ($1, \frac{h}{2}, *, *, *$).
As a result, $x=\frac{1}{2}$ and we can use Hirzebruch-Riemann-Roch to compute the Euler characteristics we are interested in. For instance, it gives :

$$
\begin{aligned}
\chi\left(\mathcal{O}_{l}, \mathcal{O}_{X_{4}}(2 h)\right) & =\int_{X_{4}}\left(0,0,0,-E_{1} \cdot\left[\Sigma_{2}\right], \frac{1}{2}\right) \cdot(1,2 h, *, *, *) \cdot\left(1, \frac{h}{2}, *, *, *\right) \\
& =\int_{X_{4}}\left(0,0,0,-E_{1} \cdot\left[\Sigma_{2}\right], \frac{1}{2}-2 h \cdot E_{1} \cdot\left[\Sigma_{2}\right]\right) \cdot\left(1, \frac{h}{2}, *, *, *\right) \\
& =\frac{1}{2}-2 h \cdot E_{1} \cdot\left[\Sigma_{2}\right]-\frac{E_{1} \cdot h \cdot\left[\Sigma_{2}\right]}{2}=\frac{1}{2}-\left.\left.2 h\right|_{\Sigma_{2}} \cdot E_{1}\right|_{\Sigma_{2}}-\frac{\left.\left.E_{1}\right|_{\Sigma_{2}} \cdot h\right|_{\Sigma_{2}}}{2}=\frac{1}{2}-2-\frac{1}{2}=-2 .
\end{aligned}
$$

The other calculations are similar.

6.2 Another way to compute some Euler characteristics between elements in \mathcal{F}_{2}

In this subsection we just give some other way to compute some of the Euler characteristics mentioned in section 5 . This involves in most cases more calculations than simply using Hirzebruch-Riemann-Roch in \tilde{Z}, but it can be useful to check results obtained in the previous section.

Lemma 6.2.1. Let $K \in\left\{\bar{h}_{1}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}, V_{Z}\right\}$. Then :

- $\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{K}\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(-K)\right)$;
- $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{K}\right)=-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(K+\bar{h})\right)$;
- $\chi\left(\mathcal{O}_{\tilde{X}_{4}}(2 h), \mathcal{O}_{K}\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(\bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(\bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(K+\bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(K+\bar{h})\right)$.

Proof. Let $i \in \mathbb{Z}$ and $K \in\left\{\bar{h}_{1}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}, V_{Z}\right\}$. Then with the notations of Lemma 4.5.9, we have

$$
\chi\left(\mathcal{O}_{\tilde{X}_{4}}(i h), j_{*} \mathcal{O}_{K}\right)=\chi\left(j^{*} \mathcal{O}_{\tilde{X}_{4}}(i h), \mathcal{O}_{K}\right)=\chi\left(\mathcal{O}_{\tilde{Z}}(i h), \mathcal{O}_{K}\right)
$$

Furthermore, in \tilde{Z} there is a short exact sequence $0 \rightarrow \mathcal{O}_{\tilde{Z}}(-K) \rightarrow \mathcal{O}_{\tilde{Z}} \rightarrow \mathcal{O}_{K} \rightarrow 0$ which induces $\chi\left(\mathcal{O}_{\tilde{Z}}(i h), \mathcal{O}_{K}\right)=$ $\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(-i h)\right)-\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(-i h-K)\right)$.
If $i=0$, since by Corollary 4.5.5, $\bar{\pi}_{*} \mathcal{O}_{\tilde{Z}}=\mathcal{O}_{Z_{3}}$, it implies the first formula.
Moreover,

$$
\chi\left(\mathcal{O}_{\tilde{Z}}, \mathcal{O}_{\tilde{Z}}(-i h-K)\right)=\chi\left(f^{*} \mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\tilde{Z}}(-i h-K)\right)=\chi\left(\mathcal{O}_{\bar{E}_{4}}, f_{*} \mathcal{O}_{\tilde{Z}}(-i h-K)\right) .
$$

The short exact sequence $0 \rightarrow \mathcal{O}_{\bar{E}_{4}}\left(-V_{\bar{E}}\right) \rightarrow \mathcal{O}_{\bar{E}_{4}} \rightarrow f_{*} \mathcal{O}_{\tilde{Z}} \rightarrow 0$ then yields

$$
\begin{aligned}
\chi\left(\mathcal{O}_{\bar{E}_{4}}, f_{*} \mathcal{O}_{\tilde{Z}}(-i h-K)\right) & =\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}(-i h-K)\right)-\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-i h-K-V_{\bar{E}}\right)\right) \\
& =\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}-K\right)\right)-\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}-K\right)\right)
\end{aligned}
$$

by (1.12). Similarly, $\chi\left(\mathcal{O}_{\bar{E}_{4}}, f_{*} \mathcal{O}_{\tilde{Z}}(-i h)\right)=\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-i V_{\bar{E}}\right)\right)-\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(-(i+1) V_{\bar{E}}\right)\right)$.
Serre duality, (1.12) and Lemma 4.5.8 then yield

$$
\chi\left(\mathcal{O}_{\bar{E}_{4}}, f_{*} \mathcal{O}_{\tilde{Z}}(-i h-K)\right)=\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left((i-2) V_{\bar{E}}+K+\bar{h}\right)\right)-\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left((i-1) V_{\bar{E}}+K+\bar{h}\right)\right)
$$

and

$$
\chi\left(\mathcal{O}_{\bar{E}_{4}}, f_{*} \mathcal{O}_{\tilde{Z}}(-i h)\right)=\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(\bar{h}+(i-2) V_{\bar{E}}\right)\right)-\chi\left(\mathcal{O}_{\bar{E}_{4}}, \mathcal{O}_{\bar{E}_{4}}\left(\bar{h}+(i-1) V_{\bar{E}}\right)\right) .
$$

By definition, $\mathcal{O}_{\bar{E}_{4}}(-K)=\bar{\pi}^{*} \mathcal{O}_{Z_{3}}(-K)$, thus the projection formula together with a) of Exercice 8.4 in III.8. of [12] conclude the proof.

With very a similar reasoning and Serre duality, one can also find the following formulas :
Lemma 6.2.2. Let $K \in\left\{\bar{h}_{1}, \tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}, V_{Z}\right\}$. Then :

- $\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(-\bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(-\bar{h}-K)\right)$;
- $\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}(h)\right)=-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(K+2 \bar{h})\right)$;
- $\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}(2 h)\right)=\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(2 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(2 \bar{h})\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(K+2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(K+2 \bar{h})\right)$;
- $\chi\left(\mathcal{O}_{D_{3}}, \mathcal{O}_{K}\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{K}\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(-\bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(-\bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(-\bar{h}-K)\right)$ $-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(-\bar{h}-K)\right)$;
- $\chi\left(\mathcal{O}_{K}, \mathcal{O}_{D_{3}}\right)=\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}\right)-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(-2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(-2 \bar{h})\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{V}_{Z}^{\vee}(-2 \bar{h}-K)\right)$ $-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(-2 \bar{h}-K)\right) ;$
- $\chi\left(\mathcal{O}_{D_{3}}\left(-V_{E}\right), \mathcal{O}_{K}\right)=-\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}\right)+\chi\left(\mathcal{O}_{Z_{3}}, \mathcal{O}_{Z_{3}}(K)\right)-\chi\left(\mathcal{O}_{\tilde{X}_{4}}, \mathcal{O}_{K}\right) ;$
- $\chi\left(\mathcal{O}_{K}, \mathcal{O}_{D_{3}}\left(-V_{E}\right)\right)=\chi\left(\mathcal{O}_{\tilde{X}_{4}}(h), \mathcal{O}_{K}\right)-\chi\left(\mathcal{O}_{K}, \mathcal{O}_{\tilde{X}_{4}}\right)$.

6.3 Macaulay2

Thanks to E. Fatighenti, I could use Macaulay2 to compute the highest weights of the decomposition of an external power of $\mathcal{V}=\mathcal{U}_{3}^{\vee}(-1) \oplus\left(\mathcal{U}_{3}^{\perp}\right)^{\vee}(-1) \oplus \mathcal{O}_{\operatorname{Gr}(3,7)}(-1)$. We are going to reproduce here as an example a way to get the highest weights associated to $\bigwedge^{7} \mathcal{V}$. The parts in blue will be the answers given by Macaulay2 :
i1: loadPackage "SchurRings"
01=SchurRings
o1: Package
i2: loadPackage "Schubert2"
02=Schubert2
02: Package
i3: R=schurRing(QQ,q,4)
03: R
03: SchurRing
i4: $Q=s c h u r \operatorname{Ring}(R, r, 3)$
04=Q
04: SchurRing
i5: F=exteriorPower(4,q_1)+r_1*exteriorPower(4,q_1)+exteriorPower(3,q_1)
$05=q_{1,1,1,1} r_{1}+\left(q_{1,1,1,1}+q_{1,1,1}\right) r_{(}$
05: Q
i6: exteriorPower(7,F)
o6 $=\left(q_{7,6,6,6}+q_{6,6,6,6}\right) r_{1,1,1}+q_{6,6,6,6} r_{1,1}$
o6: Q
The commands of i 3 and i 4 define $q_{-} 1$ and $r_{-} 1$ that will correspond respectively to the highest weights $(0,0,0 ; 1,0,0,0)$ and ($1,0,0 ; 0,0,0,0)$. Then "exteriorPower(n, q_1)" corresponds to \bigwedge^{n} of the irreducible representation with highest weight $(0,0,0 ; 1,0,0,0)$. Finally $r_{()}, r_{1,1}$ and $r_{1,1,1}$ correspond to the irreducible representations with highest weight respectively $(0,0,0 ; 0,0,0,0),(1,1,0 ; 0,0,0,0)$ and $(1,1,1 ; 0,0,0,0)$. For q it is similar. The line i5 is just defining \mathcal{V} as F, using the highest weight of each summand of \mathcal{V}, and the line i6 is just asking for $\bigwedge^{7} \mathcal{V}$. The answer 06 reads: "The highest weights of the decomposition of $\bigwedge^{7} \mathcal{V}$ are $(1,1,1 ; 7,6,6,6)$, $(1,1,1 ; 6,6,6,6)$ and $(1,1,0 ; 6,6,6,6)^{\prime \prime}$. For any $\bigwedge^{n} \mathcal{V}$ one can proceed similarly, just replacing 7 by n in i6, and for $\left(\bigwedge^{n} \mathcal{V}\right)(m)$ one can either compute the highest weights associated to $\bigwedge^{n} \mathcal{V}$ and add $(m, m, m ; 0,0,0,0)$ if $m>0,(0,0,0 ; m, m, m, m)$ if $m<0$, or replace i6 by "exteriorPower(n,F)*exteriorPower(3, r_1)" if $m>0$ and by "exteriorPower(n,F)*exteriorPower(4,q_1)" if $m<0$.

6.4 Scilab

One can also use scilab to compute the dimension of the irreducible representation of Sl_{7} associated to a highest weight λ, using (4.2). Here is the function one can define in scilab :
function $\mathrm{d}=\mathrm{W}(\mathrm{L})$
delta=[7,6,5,4,3,2,1];
$\mathrm{i}=1$;
$\mathrm{j}=2$;
$\mathrm{d}=1$;
while $\mathrm{i}<7$
while $\mathrm{j}<8$
$d=d *(L(1, i)+d e l t a(1, i)-L(1, j)-d e l t a(1, j)) /(d e l t a(1, i)-d e l t a(1, j)) ;$
$j=j+1$;
end
$i=i+1$;
$j=i+1$;
end
endfunction
The input is a vector of 7 columns and 1 line, whose coefficients are those of the highest weight λ, and the output is the dimension of the only nonzero $H^{q}(\mathcal{E})$ if it exists, or 0 otherwise, where \mathcal{E} is the vector bundle associated to λ, when $\lambda+\delta$ is dominant (including cases when $\lambda+\delta$ is singular as we will see). If $\mu:=\lambda+\delta$ is not dominant then there are some $i<j$ such that $\mu_{i}<\mu_{j}$ and then the associated coefficient in the Weyl formula (4.2) will be $\frac{\mu_{i}-\mu_{j}}{\delta_{i}-\delta_{j}}$. Here the denominator will always be positive but then the numerator is negative, so if μ is not dominant the result may be non-positive. Yet in our case the Weyl formula gives $\frac{\prod_{1 \leq i<j \leq 7} \mu_{i}-\mu_{j}}{\prod_{1 \leq i<j \leq 7} \delta_{i}-\delta_{j}}$ thus even if μ is not dominant the Weyl formula should give the right result up to a sign. Finally, if μ is singular then there exists $i \neq j$ such that $\mu_{i}=\mu_{j}$. But then the associated coefficient is, up to a sign, $\frac{\mu_{i}-\mu_{j}}{\delta_{i}-\delta_{j}}=0$. Since (4.2) is a product, in this case the result will be 0 but since μ is singular by Theorem 4.2.10 $H^{*}(\mathcal{E})=0$. So this function gives $\operatorname{dim}\left(H^{*}(\mathcal{E})\right)=\bigoplus_{i \in \mathbb{Z}} \operatorname{dim}\left(H^{i}(\mathcal{E})\right)$, up to a sign, since by Theorem 4.2.10 again there is at most one $H^{q}(\mathcal{E}) \neq 0$. The sign will be correct whenever μ is dominant.
Remark 6.4.1. What has just been said above may suggest that one doesn't really need to check $\lambda+\delta$, since the function W gives either $\operatorname{dim}\left(H^{*}(\mathcal{E})\right)$ or $-\operatorname{dim}\left(H^{*}(\mathcal{E})\right)$, and $\operatorname{dim}\left(H^{*}(\mathcal{E})\right)$ has to be non negative thus it should be enough to take the absolute value of the result given by W. However, if $\lambda+\delta$ is not singular, one still needs to determine for which $\sigma \in \mathcal{S}_{7}, \sigma(\delta+\lambda)$ is dominant, in order to find for which q one has $H^{q}(\mathcal{E}) \neq 0$. Alternatively one can also compute the number of positive roots α such that $(\lambda+\delta, \alpha)<0$, but in any case one needs to compute $\lambda+\delta$. So a possible way to proceed, for a given highest weight λ, would be :

1. Compute $W(\lambda)$. If it is 0 then $\lambda+\delta$ is singular and by Theorem 4.2.10, $H^{*}(\mathcal{E})=0$.
2. If $W(\lambda) \neq 0$ then write down $\lambda+\delta$ and use one of the two methods given above (corresponding to Theorem 4.2.10 and Theorem 4.2.2 respectively) to find out for which $q \in \mathbb{Z}$ one has $H^{q}(\mathcal{E}) \neq 0$. Then $\operatorname{dim}\left(H^{i}(\mathcal{E})\right)=|\mathrm{W}(\lambda)| . \delta_{q i}$.

Bibliography

[1] A. Beauville. Complex algebraic surfaces., volume 34 of Lond. Math. Soc. Stud. Texts. Cambridge: Cambridge Univ. Press, 2nd edition, 1996.
[2] A. Bondal and D. Orlov. Semiorthogonal decomposition for algebraic varieties, 1995. arXiv:alg-geom/9506012.
[3] I. Coskun and J. Huizenga. Brill-Noether theorems and globally generated vector bundles on Hirzebruch surfaces. Nagoya Math. J., 238:1-36, 2020.
[4] O. Debarre. Higher-dimensional algebraic geometry. Universitext. New York, NY: Springer, 2001.
[5] O. Debarre. Gushel-Mukai varieties, 2020. arXiv:2001.03485.
[6] O. Debarre. Hyper-Kähler manifolds. Milan J. Math., 90(2):305-387, 2022.
[7] D. Eisenbud. Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1995.
[8] D. Eisenbud and J. Harris. 3264 and all that - A second course in Algebraic Geometry. Cambridge University Press, 2016.
[9] W. Fulton. Intersection Theory:. Ergebnisse der Mathematik und ihrer Grenzgebiete : a series of modern surveys in mathematics. Folge 3. Springer-Verlag, 1984.
[10] W. Fulton and J. Harris. Representation Theory: A First Course. Graduate Texts in Mathematics. Springer New York, 1991.
[11] W. Fulton and S. Lang. Riemann-Roch Algebra. Grundlehren der mathematischen Wissenschaften. Springer New York, 1985.
[12] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977.
[13] B. Hassett. Special Cubic Fourfolds. PhD thesis, University of Chicago, 1998.
[14] D. Huybrechts. Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. Clarendon Press, 2006.
[15] O. Küchle. On Fano 4-folds of index 1 and homogeneous vector bundles over Grassmannians. Math. Z., 218(4):563-575, 1995.
[16] A. Kuznetsov. Homological projective duality for grassmannians of lines, 2006. arXiv:math/0610957.
[17] A. Kuznetsov. Homological projective duality. Publ. Math., Inst. Hautes Étud. Sci., 105:157-220, 2007.
[18] A. Kuznetsov. Derived categories of cubic fourfolds. In Cohomological and geometric approaches to rationality problems. New Perspectives, pages 219-243. Boston, MA: Birkhäuser, 2010.
[19] A. Kuznetsov. On Küchle varieties with Picard number greater than 1. Izv. Math., 79(4):698-709, 2015.
[20] A. Kuznetsov. Küchle fivefolds of type c5. Math. Z., 284(3-4):1245-1278, 2016.
[21] A. Kuznetsov. Exceptional collections in surface-like categories. Sb. Math., 208(9):1368-1398, 2017.
[22] A. Kuznetsov. Calabi-Yau and fractional Calabi-Yau categories. J. Reine Angew. Math., 753:239-267, 2019.
[23] A. Kuznetsov and A. Perry. Derived categories of Gushel-Mukai varieties. Compos. Math., 154(7):1362-1406, 2018.
[24] E. Macrì and P. Stellari. Lectures on non-commutative K3 surfaces, Bridgeland stability, and moduli spaces. In Birational geometry of hypersurfaces. Lectures given at the "School on Birational Geometry of Hypersurfaces", Gargnano del Garda, Italy, March 19-23, 2018, pages 199-265. Cham: Springer, 2019.
[25] C. Procesi. Lie Groups: An Approach through Invariants and Representations. Universitext. Springer New York, 2006.
[26] M. L. Spreafico. Bertini type theorems for vector bundles in any characteristic. Commun. Algebra, 24(13):4147-4157, 1996.
[27] J-B. Zuber. Invariances en physique et théorie des groupes. Master Course at ENS-PSL of Paris.

universitè PARIS-SACLAY
 ÉCOLE DOCTORALE

Titre: Sur le groupe de Grothendieck numérique des variétés de Küchle de dimension 4 et de type c5 très générales

Mots clés: Mathématiques, Géométrie algébrique, variétés de Küchle de dimension 4 et de type c5, caractéristique d'Euler, catégories dérivées

Résumé: Nous essayons de trouver une base du groupe de Grothendieck numérique G d'une variété de Küchle de dimension 4 et de type c5 très générale X_{4}. Pour ce faire, nous nous intéressons d'abord à la géométrie de telles variétés, et nous essayons d'en déduire une famille F d'éléments de G qui pourrait être une base. Ensuite nous essayons de calculer la matrice dont les coefficients sont les caractéristiques d'Euler entre les éléments de F. Cette matrice devrait nous permettre de mieux appréhender
les catégories dérivées bornées des variétés considérées.
Dans cette thèse nous ne parvenons pas à trouver une base de G mais nous proposons deux familles F_{1} et F_{2} qui pourraient être des bases du groupe de Grothendieck numérique d'un éclatement de X_{4}, et à partir desquelles il pourrait être possible de trouver une base de G. Nous calculons les matrices de caractéristiques d'Euler associées à ces deux familles, à un nombre d'intersection près dans un cas et entièrement dans l'autre.

Title: On the numerical Grothendieck group of very general Küchle fourfolds of type c5
Keywords: Mathematics, Algebraic geometry, Küchle fourfolds of type c5, Euler characteristic, derived categories

Abstract: We try to find a basis of the numerical Grothendieck group G of very general Küchle fourfolds of type c5, denoted X_{4}. To do so we first study the geometry of such varieties, and try to deduce from this a family F of elements in G which could be a basis. Then we try to compute the matrix whose coefficients are Euler characteristics between elements in F. This matrix is expected to provide intuition on
the bounded derived category of very general Küchle fourfolds of type c5.
In this thesis we don't manage to find a basis of G but we give two families F_{1} and F_{2} which could be basis of the numerical Grothendieck group of a blow-up of X_{4}, and from which it may be possible to deduce a basis of G. We compute the matrices of Euler characteristics associated to these families, up to an intersection number in one case and entirely in the other case.

[^0]: Samuel BOISSIÈRE
 Professeur des universités, Université de Poitiers Michele BOLOGNESI
 Professeur des universités, Université de Montpellier Daniele FAENZI
 Professeur des universités, Université de Bourgogne Katia AMERIK
 Professeure des universités, Université Paris-Saclay GS Mathématiques
 Chiara CAMERE
 Maître de conférences, Université de Milan
 Emanuele MACRÌ
 Professeur des universités, Université Paris-Saclay GS Mathématiques

