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In this PhD thesis we accomplish two objectives:

• We show there is countable dense set at which the integrated density of states of the Anderson-Bernoulli model on Z can be explicitly computed, provided the disorder parameter is large enough.

• We give a partial proof of a conjecture, first stated in a 2012 article by Filoche and Mayboroda, concerning the product of principal eigenvalue and sup-norm of the landscape function of the Anderson model operator restricted to a large box of Z d . For the one dimensional case, we give a full proof of such conjecture.

Résumé

Dans cette thèse de doctorat, nous atteignons deux objectifs :

• Nous montrons qu'il existe un ensemble dense dénombrable auquel la densité d'états intégrée du modèle d'Anderson-Bernoulli sur Z peut être explicitement calculée, à condition que le paramètre de désordre soit suffisamment grand.

• Nous donnons une preuve partielle d'une conjecture, énoncée pour la première fois dans un article de 2012 par Filoche et Mayboroda, concernant le produit de la valeur propre principale et la sup-norme de la fonction landscape de l'opérateur du modèle d'Anderson restreint à une grande boîte de Z d . Pour le cas unidimensionnel, nous donnons une preuve complète de cette conjecture.

λ

Introduction (English)

The aim of this thesis is to study three objects associated to the Anderson model on Z d . The first is the integrated density of states (IDS) when d = 1 and the potential follows a Bernoulli distribution. The second and third, which are intrinsically connected, are the principal eigenvalue and the landscape function of the Anderson Hamiltonian restricted to a large box. The thesis is split in two chapters: Chapter 1 deals with the one dimensional IDS for the Bernoulli potential, while Chapter 2 is for the principal eigenvalue and the landscape function. These two chapters are completely disjoint. For this reason, we use slightly different notations better suited for the results and proofs presented in each chapter.

Some Facts About the Anderson Model

In the mid-fifties, physicist Philip W. Anderson (1923Anderson ( -2020) ) introduced a model to explain insulators. In crystals, the atoms are distributed on a periodic way, forming a lattice. If such lattice is perfect, then the electrons are always allowed to move through the crystal; and therefore perfect crystals are always electrical conductors. However, some crystals found in nature are insulators, which is simply explained by the fact that crystal are never perfect. They always have defects or impurities that deviate them from the idealized model. The grand idea of Anderson was to model the appearance of such impurities by random variables in the simplest of ways: independent and identically distributed random variables, one for each lattice site.

Mathematically, the Anderson model on the lattice Z d is defined as follows. Let {V ω (j)} j∈Z d be independent, identically distributed, real random variables defined over a probability space (Ω, F, P), with common distribution ν. The Anderson model is given by the random Schrödinger operator

H := -∆ + V : ℓ 2 (Z d ) ⊃ D -→ ℓ 2 (Z d ) ϕ -→ Hϕ(j) := |y-x|=1
[ϕ(x)ϕ(y)] + V (x)ϕ(x).

Since V is real valued and -∆ is bounded and self-adjoint we can always define H on the subspace of finitely supported functions, and then find a self adjoint extension. If ν has compact support then H is a bounded self-adjoint operator P-a.s.

A remarkable property of the Anderson model is that its spectrum is not random, in fact, the spectrum is P-a.s. equal to some deterministic set:

Theorem (Corollary 3.13 of [START_REF] Aizenman | Random operators: disorder effects on quantum spectra and dynamics[END_REF]).

σ(H) = σ(-∆) + supp µ = [0, 4d] + supp µ P-a.s.

We can now define our first object of interest, the integrated density of states (IDS), defined by

I(x) := lim n→∞ 1 #Λ n #{λ ∈ σ(H | Λn ) | λ ≤ x}, x ∈ R,
where Λ n := [-n, n] d ∩ Z d , the restricted operator has Dirichlet boundary conditions outside Λ n , and the eigenvalues are counted with multiplicities.

Theorem (Corollary 3.16 of [START_REF] Aizenman | Random operators: disorder effects on quantum spectra and dynamics[END_REF]). The IDS is a deterministic distribution function, whose associated probability measure, called the density of states measure, is supported on the almost sure spectrum of H.

The IDS is known to be exponentially small when x approaches the bottom of the almost sure spectrum of H. This phenomenon is called Lifshitz tails in honor of Ilya M. Lifshitz , the physicist who predicted it. The most usual statement of this behavior is given in the next theorem.

Theorem (Theorem 4.14 of [START_REF] Aizenman | Random operators: disorder effects on quantum spectra and dynamics[END_REF]). Suppose a = inf σ(H) = inf supp ν > -∞ and P [V (0) ≤ a + ε] ≥ Cε η for some C, η > 0. Then

lim x↘a ln |ln I(x)| ln(x -a) = - d 2 .
Lifshitz tails can also be found (under similar hypothesis) at the top of the spectrum or at any other edge of the almost sure spectrum of H. We will see that there are stronger version of Lifshitz tails in Chapters 1 and 2.

Finally, there is the phenomenon of Anderson localization. Under some hypothesis on the regularity of ν (the distribution of the potential), it has been proved that H has only pure point spectrum near a and the corresponding eigenvectors have exponential decay. Localization will not be a part of this thesis, except as part of the motivation for landscape functions.

The IDS of the 1d Anderson-Bernoulli Model

When the potential in the Anderson model follows a Bernoulli distribution we use the name Anderson-Bernoulli model. Chapter 1 is dedicated to the IDS of the one dimensional Anderson-Bernoulli model when the potential takes values the 0 and ζ > 0, with the probability of ζ being some p ∈ (0, 1). The number ζ is called the disorder parameter and measures the strength of the disorder in the model.

Much is known about the Anderson-Bernoulli model on Z. In 1984, Delyon and Souillard [START_REF] Delyon | Remark on the continuity of the density of states of ergodic finite difference operators[END_REF] gave an elementary proof of the continuity of the IDS. Spectral localization on the whole spectrum at any disorder was proven in 1987 by Carmona, Klein and Martinelli [START_REF] Carmona | Anderson localization for bernoulli and other singular potentials[END_REF] using Furstenberg's theorem and multiscale analysis. Later that same year Martinelli and Micheli [START_REF] Martinelli | On the large-coupling-constant behavior of the liapunov exponent in a binary alloy[END_REF] gave a lower Introduction (English) bound, uniform over the spectrum, on the asymptotic of the Lyapunov exponent as the disorder parameter goes to infinity, and in doing so showed the density of states measure is purely singular continuous if the disorder parameter is large enough. More recently, in 2004, Schulz-Baldes [START_REF] Schulz-Baldes | Lifshitz tails for the 1D Bernoulli-Anderson model[END_REF] showed that the IDS exhibits a strong version of Lifshitz tails in which the Lifshitz constant can be computed at all spectral edges.

In Chapter 1 we aim to answer, to some extent, the questions: What value does the IDS assign to a given energy? How does its plot look like? More precisely, we show that for every energy x in a countable dense set (which will be called the set of rational energies), the IDS evaluated at x can be given explicitly and it does not depend on the disorder parameter, whenever the latter is above an x-dependent critical value.

To mathematically state our results we need some notation. We index the IDS with the parameters p, ζ. We define the functions (1p) r a(r + 1) b .

Moreover lim ζ→∞ I p,ζ (x) = I ≤ p (x) for all x ∈ (0, 4).

For the case where a = 1 or a = b -1 we give a better upper bound on the critical ζ:

Theorem. i) ζ c (β -1 (b/1)) ≤ 4 for all b ∈ N \ {1}. ii) ζ c (β -1 (b/(b -1))) ≤ β -1 (b/(b -1)) for all b ∈ N \ {1}.
In addition to this two theorems we obtain a stronger version of Lifshitz tails at every edge of the almost sure spectrum.

Principal Eigenvalue and Landscape Function of the Anderson Model on a Large Box

We now turn our attention to the operator -∆ Λn +V (= H | Λn ) when n is large, and V is non-negative. Physicists are interested in the ground state of this operator as well as the first few (relative to n) excited states. However, computing numerically this eigenvalues and eigenvectors can be computational expensive since one has to solve many equations of the form

(-∆ Λn + V )ϕ = λϕ.
Filoche and Mayboroda proposed in [START_REF] Filoche | Universal mechanism for anderson and weak localization[END_REF] that we can obtain significant information on the eigensystem by solving for the landscape function L Λn,V , defined by the equation

(-∆ Λn + V )L Λn,V = 1 Λn .
They conjectured that if we order the local maxima of the landscape function decreasingly, and the eigenvalues increasingly

L 1 Λn,V ≥ L 2 Λn,V ≥ • • • , λ 1 Λn,V ≤ λ 2 Λn,V ≤ • • • , then we have λ i Λn,V L i Λn,V ≈ C(d) = 1 + d 4 , i ≪ n d .
They also conjectured that the location of the local maxima is the localization center of corresponding ordered eigenvector. Numerical experiments support this conjecture, as can be seen in the next two figures. Λn,V L i Λn,V for i = 1, . . . , 20 in the same potential realization as Figure 1.

In Figure 1 we show a realization of a Bernoulli potential on a one-dimensional box of size 1000, the landscape function, and the first five eigenvectors; in it the correspondence between the location of the maxima of the landscape function and the eigenvectors is evident. In Figure 2 we show the first twenty products λ i Λn,V L i Λn,V of the same realization of the potential, from which we can observe that such products are always of "order 1".

In Chapter 2, we tackle the part of the conjecture that concerns the principal (smallest) eigenvalue and the absolute maxima of the landscape function. We will assume that the distribution function F (t) = P [V (0) ≤ t] satisfies one of the following conditions:

(C1) 0 < F (0) < 1, (C2) F (t) = c t η (1 + o(1)) as t ↓ 0 for some c, η > 0.
Under these hypothesis we claim that

lim n→∞ λ 1 n,V L 1 n,V = µ d 2d P-a.s., (1) 
where µ d is the principal eigenvalue of the continuous Laplacian (-d i=1 ∂ 2 /∂x 2 i ) on the unit ball with Dirichlet boundary conditions. The disagreement between the dimensional constants µ d 2d and 1 + d 4 is simply explained by the fact that 1 + d 4 was "guessed" from the numerical experiments, and the two constants are close to each other. For example, for d = 1 we have 1 + 1 4 = 1.25 and µ 1 2 = π 2 8 ≈ 1.23. In order to prove (1), we first compute the almost sure asymptotic of the principal eigenvalue

Theorem. i) For (C1), lim n→∞ λ 1 Λn,V ω d |ln F (0)| d ln n -2/d = µ d P-a.s., ii) For (C2), lim n→∞ λ 1 Λn,V 2ηω d ln ln n d 2 ln n -2/d = µ d P-a.s.,
where ω d is the volume of the unit ball in R d . Then we use such asymptotic to give a partial proof of (1), with a complete proof for the one-dimensional case: 

Theorem. i) lim n→∞ λ 1 Λn,V L 1 Λn,V ≥ µ d 2d P-a.s. ii) If d = 1 then lim n→∞ Introduction (Français)

Quelques faits sur le modèle d'Anderson

Au milieu des années 50, le physicien Philip W. Anderson (1923 -2020) a introduit un modèle pour expliquer les isolants. Dans les cristaux, les atomes sont répartis de manière périodique, formant un réseau. Si un tel réseau est parfait, alors les électrons sont toujours autorisés à se déplacer à travers le cristal; et donc les cristaux parfaits sont toujours des conducteurs électriques. Cependant, certains cristaux trouvés dans la nature sont des isolants, ce qui s'explique simplement par le fait que les cristaux ne sont jamais parfaits. Ils ont toujours des défauts ou des impuretés qui les différencient du modèle idéalisé. La grande idée d'Anderson était de modéliser l'apparition de telles impuretés par des variables aléatoires indépendantes et identiquement distribuées, une pour chaque site du réseau.

Mathématiquement, le modèle d'Anderson sur Z d est défini comme suit. Soit {V ω (j)} j∈Z d des variables réelles aléatoires indépendantes, identiquement distribuées, définies sur un espace de probabilité (Ω, F, P), avec une distribution commune ν. Le modèle d'Anderson est donné par l'opérateur de Schrödinger aléatoire

H := -∆ + V : ℓ 2 (Z d ) ⊃ D -→ ℓ 2 (Z d ) ϕ -→ Hϕ(j) := |y-x|=1 [ϕ(x) -ϕ(y)] + V (x)ϕ(x).
Puisque V est à valeur réelle et -∆ est borné et auto-adjoint, nous pouvons toujours définir H sur le sous-espace des fonctions à support fini, puis trouver une extension auto-adjointe. Si ν a un support compact alors H est un opérateur auto-adjoint borné P-p.s.

La première propriété remarquable du modèle d'Anderson est que son spectre n'est pas aléatoire, en fait, le spectre est P-p.s. égal à un ensemble déterministe:

Théorème (Corollaire 3.13 de [AW15]). σ(H) = σ(-∆) + supp µ = [0, 4d] + supp µ P-p.s.
Nous pouvons maintenant définir notre premier objet d'intérêt, la densité d'états intégrée (DEI), définie par

I(x) := lim n→∞ 1 #Λ n #{λ ∈ σ(H | Λn ) | λ ≤ x}, x ∈ R, où Λ n := [-n, n] d ∩Z d , l
'opérateur restreint a des conditions aux limites de Dirichlet aux en dehors de Λ n , et les valeurs propres sont comptées avec des multiplicités.

Théorème (Corollaire 3.16 de [START_REF] Aizenman | Random operators: disorder effects on quantum spectra and dynamics[END_REF]). La DEI est une fonction de distribution déterministe, dont la mesure de probabilité associée, appelée mesure de densité d'états, est supportée sur le spectre presque sûr de H.

On sait que l'IDS est exponentiellement petit lorsque x s'approche du bas du spectre presque sûr de H. Ce phénomène est appelé les asymptotiques de Lifshitz en l'honneur d'Ilya M. Lifshitz (1917Lifshitz ( -1982)), le physicien qui l'a prédit. L'énoncé le plus courant de ce comportement est donné dans le théorème suivant.

Théorème (Théorème 4.14 de [START_REF] Aizenman | Random operators: disorder effects on quantum spectra and dynamics[END_REF]). Supposons que a = inf σ(H) > -∞ et

P [V (0) ≤ a + ε] ≥ Cε η pour certains C, η > 0. Alors lim x↘a ln |ln I(x)| ln(x -a) = - d 2 .
Les asymptotiques de Lifshitz peuvent également être trouvées (sous une hypothèse similaire) au sommet du spectre ou à tout autre bord du spectre presque sûr de H. Nous verrons qu'il existe des versions plus fortes des queues de Lifshitz dans les chapitres 1 et 2.

Finalement, il y a le phénomène de localisation d'Anderson. Sous certaines hypothèses sur la régularité de ν (la distribution du potentiel), il a été prouvé que H n'a que du spectre ponctuel près de a et que les vecteurs propres correspondants ont une décroissance exponentielle. La localisation ne fera pas partie de cette thèse, sauf dans le cadre de la motivation des fonctions landscape. 

La DEI du modèle unidimensionnel d'Anderson-Bernoulli

R := β -1 (b/a) a, b ∈ N, a < b .
Avec ces définitions, le résultat principal du chapitre 1 est:

Théorème. Pour tout x ∈ R il existe un ζ c (x) ∈ (0, ∞) critique tel que ζ ≥ ζ c (x) =⇒ I p,ζ (x) = I ≤ p (x). Pour a, b ∈ N avec a < b, gcd(a, b) = 1 nous avons ζ c (β -1 (b/a)) ≤ max 8, 4b π + 4 et I ≤ p (β -1 (b/a)) = p 2 1 -(1 -p) b a(1 -p) b p + b-1 r=0 (1 -p) r a(r + 1) b .

De plus

lim ζ→∞ I p,ζ (x) = I ≤ p (x) pour tout x ∈ (0, 4).
Pour le cas où a = 1 ou a = b -1 nous donnons une meilleure borne supérieure sur le ζ critique :

Théorème. i) ζ c (β -1 (b/1)) ≤ 4 pour tout b ∈ N \ {1}. ii) ζ c (β -1 (b/(b -1))) ≤ β -1 (b/(b -1)) pour tout b ∈ N \ {1}.
En plus de ces deux théorèmes, nous obtenons une version plus forte des asymptotiques de Lifshitz à chaque bord du spectre presque sûr.

Valeur propre principale et fonction landscape du modèle d'Anderson sur une grande boîte

Intéressons-nous maintenant à l'opérateur -∆ Λn + V (= H | Λn ) lorsque n est grand et V non négatif. Les physiciens s'intéressent à l'état fondamental de cet opérateur ainsi qu'aux premiers états excités (par rapport à n). Cependant, le calcul numérique de ces valeurs propres et vecteurs propres peut être coûteux car il faut résoudre de nombreuses équations de la forme (-∆ Λn + V )ϕ = λϕ.

Filoche et Mayboroda ont proposé dans [START_REF] Filoche | Universal mechanism for anderson and weak localization[END_REF] que nous pouvons obtenir des informations significatives sur le système de valeurs propres et de vecteurs propres en résolvant la fonction landscape L Λn,V , définie par l'équation

(-∆ Λn + V )L Λn,V = 1 Λn .
Ils ont conjecturé que si nous ordonnons les maxima locaux de la fonction de landscape de manière décroissante, et les valeurs propres de manière croissante

L 1 Λn,V ≥ L 2 Λn,V ≥ • • • , λ 1 Λn,V ≤ λ 2 Λn,V ≤ • • • , alors nous avons λ i Λn,V L i Λn,V ≈ C(d) = 1 + d 4 , i ≪ n d .
Ils ont également supposé que la position des maxima locaux coïncidait avec le centre de localisation des vecteurs propres ordonnés correspondants. Des expériences numériques soutiennent cette conjecture, comme on peut le voir dans les deux figures suivantes. Dans la figure 3, nous montrons une réalisation d'un potentiel de Bernoulli sur une boîte unidimensionnelle de taille 1000, la fonction landscape et les cinq premiers vecteurs propres. Dans la figure 4, nous montrons les vingt premiers produits λ i Λn,V L i Λn,V de la même réalisation du potentiel, à partir desquels nous pouvons observer que ces produits sont toujours d'ordre 1.

Au chapitre 2, nous abordons la partie de la conjecture qui concerne la valeur propre principale (la plus petite) et les maximum de la fonction landscape. Nous supposerons que la fonction de répartition F (t) = P [V (0) ≤ t] vérifie l'une des conditions suivantes: 

(C1) 0 < F (0) < 1, (C2) F (t) = c t η (1 + o(1)) lorsque t ↓ 0 pour certains c, η > 0.

Sous ces hypothèses nous affirmons que lim

n→∞ λ 1 n,V L 1 n,V = µ d 2d P-p.s., (2) 
Théorème. i) lim n→∞ λ 1 Λn,V L 1 Λn,V ≥ µ d 2d P-p.s. ii) Si d = 1 alors lim n→∞ λ 1 Λn,V L 1 Λn,V = µ 1 2 P-p.s.
Chapter 1

The IDS of the 1d Anderson-Bernoulli Model

The operator we are concerned with is

H p,ζ := -∆ + ζV p : ℓ 2 (N) -→ ℓ 2 (N) (H p,ζ ϕ)(j) := [2ϕ(j) -ϕ(j + 1) -ϕ(j -1)] + ζV p (j)ϕ(j), ϕ ∈ ℓ 2 (N),
where the Laplacian has the Dirichlet boundary condition ϕ(0) = 0, the disorder parameter ζ is assumed to be positive, and the potential {V p (j)} j∈N is an independent and identically distributed (i.i.d.) sequence of random variables defined over a probability space (Ω, F, P) following a non-degenerate Bernoulli(p) distribution, i.e.

P [V p (j) = 1] = p = 1 -P [V p (j) = 0]. The IDS, denoted I p,ζ
, is given by the almost sure limit

I p,ζ (x) := lim L→∞ 1 L # λ ∈ σ H p,ζ | ℓ 2 ({1,...,L}) λ ≤ x , x ∈ R,
where

H p,ζ | ℓ 2 ({1,...,L})
has Dirichlet boundary conditions at j = 0 and j = L + 1. Defining H p,ζ on N instead of Z simplifies the proof of our main results and makes no difference on the IDS, as can be seen from [AW15, Lemma 4.12]. However, it makes a difference on the spectrum, since H p,ζ may not have an almost sure spectrum (see [START_REF] Carmona | Spectral theory of random Schrödinger operators[END_REF]). Regardless of the spectrum of H p,ζ , the support of the density of states measure, i.e. the closure of set of points at which

I p,ζ increases, is [0, 4] + {0, ζ} = [0, 4] ∪ [ζ, ζ + 4].
We will focus on describing I p,ζ on the interval [0, 4] since one can use the unitary map (U ϕ)(j) = (-1) j ϕ(j) to obtain analogous statements for

[ζ, ζ + 4]. 23 Indeed, U transforms H p,ζ as U H p,ζ U * = 4 + ζ -(-∆ + ζ[1 -V p ]), since {1 - V p (j)} j∈N is an i.i.d. Bernoulli(1 -p) potential, we have I p,ζ (x) = 1 -I 1-p,ζ (4 + ζ -x).
(1.1)

This equality exchanges [0, 4] ↔ [ζ, ζ + 4] at the cost of also exchanging p ↔ 1 -p.
Before stating our main results we define the functions

β(x) := π 2 arcsin ( √ x/2) , I ≤ p (x) := p 2 ∞ y=1 (1 -p) y y + 1 β(x) , x ∈ (0, 4),
where ⌊•⌋ is the floor function. We also define the set of rational energies

R := β -1 (b/a) = 4 sin 2 πa 2b a, b ∈ N, a < b ,
which is countable and dense in [0, 4]. The appearance of the floor function makes I ≤ p right-continuous everywhere, but discontinuous at every point of R.

Theorem 1.1. For all x ∈ R there is a critical ζ c (x) ∈ (0, ∞) such that ζ ≥ ζ c (x) =⇒ I p,ζ (x) = I ≤ p (x).
For a, b ∈ N with a < b, gcd(a, b) = 1 we have

ζ c (β -1 (b/a)) ≤ max 8, 4b π + 4 , I ≤ p (β -1 (b/a)) = p 2 1 -(1 -p) b a(1 -p) b p + b-1 r=0 (1 -p) r a(r + 1) b .
Moreover

lim ζ→∞ I p,ζ (x) = I ≤ p (x) for all x ∈ (0, 4).
Remark. 1. We have excluded x = 0 from the definition of R and I ≤ p to avoid the singularity of β, however I p,ζ (0) = 0 for all ζ ≥ 0. We have also excluded x = 4 because (we will later see that) Within R we find the subset of rational energies where a = 1 or a = b -1,

I p,ζ (4) = 1 -p for ζ ≥ 4, but p 2 ∞ y=1 (1 -p) y y + 1 1 = (1 -p)(1 + p) > 1 -p.
R ′ := β -1 (b/1) b ∈ N \ {1} ∪ β -1 (b/(b -1)) b ∈ N \ {1} ⊆ R.
For the energies of R ′ we can give a better upper bound on ζ c (•): 

Theorem 1.2. i) ζ c (β -1 (b/1)) ≤ 4 for all b ∈ N \ {1}. ii) ζ c (β -1 (b/(b -1))) ≤ β -1 (b/(b -1)) for all b ∈ N \ {1}. Theorem 1.2 implies that I p,ζ = I ≤ p on R ′ if ζ ≥ 4,
R n := β -1 (b/a) a, b ∈ N, a < b ≤ n ∪ R ′ ⊆ R,

Proof of Theorem 1.1

We start by giving all the necessary definitions and notations.

We define two sequences of random variables

L 1 := min{j > 0 | V p (j) = 1}, Y 1 := L 1 -1, L n+1 := min{j > L n | V p (j) = 1}, Y n+1 := L n+1 -L n -1,
which give respectively, the position of the 1's of V p and the number of 0's between them, as shown in Figure 1.3. The Y i are i.i.d. following a geometric distribution 

P [Y i = y] = (1 -p) y p for y ∈ N ∪ {0},
= 1 + E [Y 1 ] = 1
p , and therefore we can use the random subsequence {L n } n∈N in the definition of I p,ζ (x).

1 Y4 Y3 Y2 = 0 Y1 L2 L1 L3 L4 Figure 1.3: A possible realization of H p,ζ .
The Laplacian is given by the graph structure and the potential by the color of the vertices. White (resp. black) vertices represent points where V p (j) = 0 (resp. V p (j) = 1).

We order the eigenvalues of any self-adjoint n-dimensional operator O increasingly allowing for multiplicities

λ 1 (O) ≤ λ 2 (O) ≤ • • • ≤ λ n (O),
and introduce the n × n matrices

A n (i, j) := δ 1,i δ 1,j + δ n,i δ n,j and -∆ n :=      2 -1 -1 . . . . . . . . . . . . -1 -1 2      . The eigenvalues of -∆ n are known to be λ k (-∆ n ) = 4 sin 2 πk 2(n+1) . We identify H p,ζ | ℓ 2 ({1,...,Ln})
with -∆ Ln + ζV p (where the restriction of V p is implicit) and remark that the continuity of x → I p,ζ (x) means it can be computed by counting eigenvalues less or equal (≤) or less (<) than x:

I p,ζ (x) = lim n→∞ 1 L n # {λ ∈ σ (-∆ Ln + ζV p ) | λ ≤ x} = lim n→∞ 1 L n # {λ ∈ σ (-∆ Ln + ζV p ) | λ < x} .
The lower bound of I p,ζ just requires an application of the Cauchy Eigenvalue Interlacing Theorem to -∆ Ln + ζV p . Indeed, if we delete from -∆ Ln + ζV p the 1.1. Proof of Theorem 1.1 j-th row and j-th column for all j ∈ {1, . . . , L n } such that V p (j) = 1, the resulting sub-matrix is n i=1 -∆ Y i and therefore

λ k (-∆ Ln + ζV p ) ≤ λ k n i=1 -∆ Y i , k = 1, . . . , n i=1 Y i .
By counting eigenvalues less or equal (≤) than x and applying the Law of Large Numbers we obtain the lower bound

I p,ζ (x) ≥ lim n→∞ 1 L n # λ ∈ σ n i=1 -∆ Y i λ ≤ x = p E [# {λ ∈ σ (-∆ Y 1 ) | λ ≤ x}] , x ∈ R, ζ ≥ 0. (1.2)
The right-hand side of (1.2) is equal to

I ≤ p (x) if x ∈ (0, 4): p E [# {λ ∈ σ (-∆ Y 1 ) | λ ≤ x}] = p ∞ y=0 P [Y 1 = y] # {λ ∈ σ (-∆ y ) | λ ≤ x} = p 2 ∞ y=1 (1 -p) y max{k ∈ N | k ≤ y, λ k (-∆ y ) ≤ x} = p 2 ∞ y=1 (1 -p) y max k ∈ N k ≤ min y, y + 1 β(x) = p 2 ∞ y=1 (1 -p) y y + 1 β(x) = I ≤ p (x).
Hence we have shown

I ≤ p (x) ≤ I p,ζ (x), x ∈ (0, 4), ζ ≥ 0. (1.3)
The upper bound is a bit more involved. From -∆ Ln + ζV p we define a new (dimensionally larger) operator -∆ Ln+n + ζ 2 V ′ where V ′ is constructed by doubling each point at which V p (j) = 1 while maintaining the Y i 's, as shown in Figure 1.4. To be precise,

V ′ (j) := ∞ k=1 (δ L k +k-1,j + δ L k +k,j ) whereas V p (j) = ∞ k=1 δ L k ,j .
In order to compare these two operators we define the linear map

T : ℓ 2 ({1, . . . , L n }) -→ ℓ 2 ({1, . . . , L n + n}) (T ϕ)(j) := ϕ(j -k), if L k + k + 1 ≤ j ≤ L k+1 + (k + 1) -1, ϕ(L k ), if j = L k + k,
with the convention L 0 = 0, which assigns to T ϕ the same values of ϕ according to Figure 1.4.

Y1 Y2 = 0 Y3 Y4 -∆L n +n + (ζ/2)V -∆L n + ζVp ≥ Y2 + 2 n i=2 -∆ N Y i +2 + (ζ/2)AY i +2 Y3 + 2 Y4 + 2 T Figure 1.4:
The first two rows show the of construction of V ′ and the action of T . From the second to the third row we have deleted edges, which lowers the operator and decomposes it into a direct sum.

For all ϕ ∈ ℓ 2 ({1, . . . , L n }) the map T satisfies

T ϕ, -∆ Ln+n + ζ 2 V ′ T ϕ = ⟨ϕ, (-∆ Ln + ζV p )ϕ⟩ , ∥T ϕ∥ ≥ ∥ϕ∥ . (T is injective)
Let ϕ i be the normalized eigenvector associated to λ i -∆ Ln + ζV p . Then, by the Min-Max Principle we have for

k ≤ L n λ k -∆ Ln+n + ζ 2 V ′ ≤ sup ϕ∈Vect{ϕ i ,...ϕ k }\{0} T ϕ, (-∆ Ln+n + ζ 2 V ′ )T ϕ ∥T ϕ∥ 2 ≤ sup ϕ∈Vect{ϕ i ,...ϕ k }\{0} ⟨ϕ, (-∆ Ln + ζV p )ϕ⟩ ∥ϕ∥ 2 = λ k (-∆ Ln + ζV p ) .
We can construct form -∆ Ln+n + ζ 2 V ′ an operator with even lower eigenvalues by disconnecting each Y i (except Y 1 ) together with its two adjacent points at 1.1. Proof of Theorem 1.1 the cost of having Neumann boundary conditions on the Laplacians, as shown in Figure 1.4. Since Y 1 has no point to its left and the right-most point (j = L n + n) ends up isolated, we have a boundary term of dimension Y 1 + 2. This, together with the previous lower bound on λ k (-∆ Ln + ζV p ) and the fact that we can write the Neumann Laplacian as

-∆ N n = -∆ n -A n , gives λ k (Boundary term) ⊕ n i=2 -∆ Y i +2 + ζ 2 -1 A Y i +2 ≤ λ k (-∆ Ln + ζV p ),
for k = 1, . . . , L n . Counting eigenvalues less (<) than x we obtain

I p,ζ (x) ≤ lim n→∞ 1 L n # λ ∈ σ n i=2 -∆ Y i +2 + ζ 2 -1 A Y i +2 λ < x + lim n→∞ Y 1 + 2 L n = p E # λ ∈ σ -∆ Y 1 +2 + ζ 2 -1 A Y 1 +2 λ < x , x ∈ R, ζ ≥ 0.
(1.4)

To further bound (1.4) we need to estimate the eigenvalues that appear in it, which is the purpose of the next proposition. These eigenvalues are always simple since their eigenvectors satisfy a second order difference equation with two boundary conditions.

Proposition 1.3. Let n ∈ N ∪ {0} and define µ k,n+2 (t) := λ k (-∆ n+2 + tA n+2 ). If t ≥ 3 then: i) 0 < λ k (-∆ n+2 ) ≤ µ k,n+2 (t) ≤ λ k (-∆ n ) < 4 for 1 ≤ k ≤ n. ii) 4 ≤ µ n+1,n+2 (t) < µ n+2,n+2 (t). iii) µ k,n+2 (t) ≥ 4 sin 2 π 2(n + 1) k - 2 π(t -1) for 1 ≤ k ≤ n.
Proof.

i) The lower bound on µ k,n+2 (t) follows from tA n+2 ≥ 0, while the upper one follows from the Cauchy Eigenvalue Interlacing Theorem by deleting from -∆ n+2 +tA n+2 the rows (and columns) where t appears.

ii) For n = 0 we compute directly

σ(-∆ 2 + tA 2 ) = σ 2 + t -1 -1 2 + t = {1 + t, 3 + t}.
For n ≥ 1 we apply the Min-Max Principle (Max-Min in this case):

µ n+1,n+2 (t) ≥ min ϕ∈Vect{e 1 ,e n+2 } ∥ϕ∥=1 ⟨ϕ, (-∆ n+2 + tA n+2 )ϕ⟩ = min ϕ∈Vect{e 1 ,e n+2 } ∥ϕ∥=1
(2 + t)

∥ϕ∥ 2 = 2 + t ≥ 4,
where e i denotes the canonical basis of ℓ 2 ({1, . . . , n + 2}).

iii) We recall that the characteristic polynomial of -∆ n can be written as

det(-∆ n -x) = (-1) n U n x -2 2 ,
where U n is the n-th Chebyshev polynomial of the second kind. For completeness we list here the properties of U n (see [MH03, Section 1.2.2]) that we will need:

• Recurrent definition:

U 0 (x) := 1, U 1 (x) := 2x, U n+1 (x) := 2xU n (x) -U n-1 (x).
• Parity:

U n (-x) = (-1) n U n (x).
• Image of (-1, 1):

U n (cos θ) = sin((n + 1)θ) sin θ .
Now we start with the proof. A straight forward computation shows that we can expand the characteristic polynomial of -∆ n+2 + tA n+2 as

det(-∆ n+2 + tA n+2 -x) = (2 + t -x) 2 det(-∆ n -x) -2(2 + t -x) det(-∆ n-1 -x) + det(-∆ n-2 -x) = (-1) n (t -2x ′ ) 2 U n (x ′ ) + 2(t -2x ′ )U n-1 (x ′ ) + U n-2 (x ′ ) ,
where we have used the change of variable x ′ := x-2 2 . Using twice the recurrent definition of U n , the previous expression can be reduced to

det(-∆ n+2 + tA n+2 -x) = (-1) n (t 2 -1)U n (x ′ ) -2(t -x ′ )U n+1 (x ′ ) . (1.5)
By i) and ii), -∆ n+2 + tA n+2 has exactly n simple eigenvalues in (0, 4). With this in mind, we introduce a parameter θ ∈ (0, π) and notice, by evaluating the characteristic polynomial at

x ′ = -cos(θ), that 4 sin 2 (θ/2) ∈ σ(-∆ n+2 + tA n+2 ) if and only if (t 2 -1) sin((n + 1)θ) = -2(t + cos θ) sin((n + 2)θ).
(1.6)

The condition t ≥ 3 and the trigonometric identity sin((n + 2)θ) = sin((n + 1)θ) cos θ + cos((n + 1)θ) sin θ guaranty that there is no solution to (1.6) in the set π n+1 Z, hence we can rewrite the equation as

sin((n + 2)θ) sin((n + 1)θ) = - t 2 -1 2(t + cos θ) , cos θ + cot((n + 1)θ) sin θ = - t 2 -1 2(t + cos θ) , tan((n + 1)θ) = - 2(t + cos θ) sin θ t 2 + 2t cos θ + cos(2θ)
.

(1.7)

To abbreviate we define

f t (θ) := 2(t + cos θ) sin θ t 2 + 2t cos θ + cos(2θ) , θ ∈ (0, π),
and remark that t ≥ 3 implies 0 < f t (θ) < ∞.

Applying arc-tangent to (1.7) and considering that i) actually constrains θ to be in π n+3 , πn n+1 , we conclude for k = 1, . . . , n that

µ k,n+2 (t) = 4 sin 2 (θ k /2) where θ k is defined by θ k = πk -arctan f t (θ k ) n + 1 .
The existence of θ k is a consequence of tangent going from -∞ to +∞ over a period. Uniqueness comes from |θ k+1θ k | ≥ π 2(n+1) and the fact that -∆ n+2 + tA n+2 has exactly n eigenvalues in (0, 4).

After bounding uniformly f t (θ) sup θ∈(0,π)

f t (θ) = sup θ∈(0,π) 2(t + cos θ) sin θ t 2 + 2t cos θ + cos(2θ) ≤ 2 sup θ∈(0,π) t + cos θ t 2 + 2t cos θ + cos(2θ) = 2 t + cos θ t 2 + 2t cos θ + cos(2θ) θ=π = 2 t -1 ,
and using the inequality arctan(x) ≤ x for x ≥ 0 we obtain

µ k,n+2 (t) ≥ 4 sin 2 π 2(n + 1) k - 2 π(t -1) , k = 1, . . . , n.
We now use ii) and iii) of Proposition 1.3 with t = ζ 2 -1 ≥ 3 (equivalently ζ ≥ 8) to further bound (1.4) for x ∈ (0, 4):

I p,ζ (x) ≤ p E [# {λ ∈ σ (-∆ Y 1 +2 + tA Y 1 +2 ) | λ < x}] = p 2 ∞ y=0 (1 -p) y max{k ∈ N | k ≤ y + 2, µ k,y+2 (t) < x} = p 2 ∞ y=1 (1 -p) y max{k ∈ N | k ≤ y, µ k,y+2 (t) < x} ≤ p 2 ∞ y=1 (1 -p) y max k ∈ N 4 sin 2 π 2(y + 1) k - 4 π(ζ -4) < x = p 2 ∞ y=1 (1 -p) y max k ∈ N k < y + 1 β(x) + 4 π(ζ -4) = p 2 ∞ y=1 (1 -p) y y + 1 β(x) + 4 π(ζ -4) -1 , x ∈ (0, 4), ζ ≥ 8, (1.8)
where ⌈•⌉ is the ceiling function. From (1.3), (1.8), the inequality This implies for all y ∈ N

⌈•⌉ -1 ≤ ⌊•⌋,
a(y + 1) b + 4 π(ζ -4) -1 = a(y + 1) b + a(y + 1) b + 4 π(ζ -4) -1 ≤ a(y + 1) b + b -1 b + 1 b -1 = a(y + 1) b ,
where we have used the fractional part {x} = x-⌊x⌋. The last inequality, together with (1.3) and (1.8), gives

I p,ζ (β -1 (b/a)) = I ≤ p (β -1 (b/a)) = p 2 ∞ y=1 (1 -p) y a(y + 1) b .
The existence of ζ c (β -1 (b/a)) and the bound ζ c (β -1 (b/a)) ≤ max 8, 4b π + 4 follow.

It only remains to prove that we can replace the infinite series by a finite sum. This is simply done by using the euclidean division y = bn + r and splitting the series over all possible remainders:

I ≤ p (β -1 (b/a)) = p 2 ∞ y=1 (1 -p) y a(y + 1) b = p 2 b-1 r=0 (1 -p) r ∞ n=0 (1 -p) bn an + a(r + 1) b = p 2 b-1 r=0 (1 -p) r a(1 -p) b [1 -(1 -p) b ] 2 + a(r + 1) b 1 1 -(1 -p) b = p 2 1 -(1 -p) b a(1 -p) b p + b-1 r=0 (1 -p) r a(r + 1) b .

Proof of Theorem 1.2

We start by proving i). From (1.4) evaluated at ζ = 4 we have

I p,4 (x) ≤ p E [# {λ ∈ σ (-∆ Y 1 +2 + A Y 1 +2 ) | λ < x}] ,
x ∈ R, and from (1.5) evaluated at t = 1 and the properties of U n follows that

λ k (-∆ n+2 + A n+2 ) = 4 sin 2 πk 2(n + 2)
.

The derivation of (1.5) required n ≥ 1 but we can easily check that the formula above holds for n = 0:

σ(-∆ 2 + A 2 ) = σ 3 -1 -1 3 = {2, 4}.
Having the explicit eigenvalues, we now compute

I p,4 (x) ≤ p E [# {λ ∈ σ (-∆ Y 1 +2 + A Y 1 +2 ) | λ < x}] = p 2 ∞ y=0 (1 -p) y max{k ∈ N | k ≤ y + 2, λ k (-∆ y+2 + A y+2 ) < x} = p 2 ∞ y=0 (1 -p) y y + 2 β(x) -1 , x ∈ (0, 4).
(1.9)

Evaluating x = β -1 (b/1) for some b ∈ N \ {1} gives I p,4 (β -1 (b/1)) ≤ p 2 ∞ y=0 (1 -p) y y + 2 b -1 = p 2 ∞ y=0 (1 -p) y y + 1 b + y + 1 b + 1 b -1 ≤ p 2 ∞ y=0 (1 -p) y y + 1 b + b -1 b + 1 b -1 = p 2 ∞ y=0 (1 -p) y y + 1 b = p 2 ∞ y=1 (1 -p) y y + 1 b .
The last inequality, (1.3) and the monotonicity of ζ → I p,ζ (x) finish the proof. Now we prove ii). As in the proof of Theorem 1.1, we construct form -∆ Ln + ζV p a lower operator by disconnecting all the Y i and all the point where V p (j) = 1 at the cost of having Neumann boundary conditions on the Laplacians, as shown in Figure 1.5. 

≥ Y1 Y2 = 0 Y3 Y4 -∆L n + ζVp n i=1 -∆ N Y i ⊕ ζ Idn

Proof of Theorem 1.2

From this new operator we have

n i=1 -∆ N Y i ⊕ ζ Id n ≤ -∆ Ln + ζV p , all L n eigenvalues,
which, by counting eigenvalues less (<) than x, leads to

I p,ζ (x) ≤ lim n→∞ 1 L n # λ ∈ σ n i=1 -∆ N Y i λ < x + lim n→∞ n 1 ζ<x L n = p E # λ ∈ σ -∆ N Y 1 λ < x + p 1 ζ<x , x ∈ R, ζ ≥ 0. (1.10)
The eigenvalues of of the Neumann Laplacian -∆

N n = ∆ n -A n are known to be λ k (-∆ N n ) = 4 sin 2 π(k-1)

2

(this also follows from (1.5)), therefore

I p,ζ (x) ≤ p E # λ ∈ σ -∆ N Y 1 λ < x + p 1 ζ<x = p 2 ∞ y=1 (1 -p) y max{k ∈ N | k ≤ y, λ k -∆ N y < x} + p 1 ζ<x = p 2 ∞ y=1 (1 -p) y y β(x) + 1 -1 + p 1 ζ<x , x ∈ (0, 4), ζ ≥ 0.
(1.11)

Plugging in ζ = x = β -1 (b/(b -1)) for some b ∈ N \ {1} we obtain I p,β -1 (b/(b-1)) (β -1 (b/(b -1))) ≤ p 2 ∞ y=1 (1 -p) y y(b -1) b + 1 -1 = p 2 ∞ y=1 (1 -p) y (y + 1)(b -1) b + (y + 1)(b -1) b + 1 b -1 ≤ p 2 ∞ y=1 (1 -p) y (y + 1)(b -1) b + b -1 b + 1 b -1 = p 2 ∞ y=1 (1 -p) y (y + 1)(b -1) b .
Once again, (1.3) and the monotonicity of ζ → I p,ζ (x) finish the proof.

Some Numeric Computations and Insights

The question of exactly determining ζ c (x) for any given x ∈ R seems out of reach from the methods used to proof Theorems 1.1 and 1.2. However, for the case x ∈ R ′ , we can give some insights based on numerical computations.

Concerning the energies of the form

β -1 (b/(b -1), b ∈ N \ {1}, we claim that Theorem 1.2 ii) is sharp, that is, we claim ζ c β -1 (b/(b -1)) = β -1 (b/(b -1)) , b ∈ N \ {1}.
We support this claim with the following reasoning. 

Lifshitz Tails and Other Distributions

In this section we show I p,ζ exhibits, at all spectral edges, a strong version of Lifshitz Tails characterized by the existence of the Lifshitz constant as defined in [AW15, Equation 4.45]. We later extend this to a larger set of distributions on the random potential. All Lifshitz Tails results presented in this section have already been given in [START_REF] Schulz-Baldes | Lifshitz tails for the 1D Bernoulli-Anderson model[END_REF] and/or [BK01, Theorem 1.3] with different proofs and different levels of generality.

We recall the that support of the probability measure defined by

I p,ζ is [0, 4] ∪ [ζ, ζ + 4]
and therefor depending on the value of ζ compared to 4, we have 2 or 4 spectral edges (for the case ζ = 4 we count the energy x = 4 as an edge to both sides). We only need to consider x = 0 and x = 4 (if ζ ≥ 4), thanks to (1.1), which maps the tail at x = 0 to the one at x = ζ + 4 and, (if they exist) the tail at x = 4 to the one at x = ζ.

We start by computing the Lifshitz constants of I ≤ p : Proposition 1.4.

• lim x↓0 √ x ln I ≤ p (x) = π ln(1 -p). • lim x↑4 √ 4 -x ln (1 -p) -I ≤ p (x) = π ln(1 -p).
Proof. By Theorem 1.1 we have

I ≤ p (β -1 (b/1)) = p(1 -p) b-1 1 -(1 -p) b , b ∈ N \ {1}.
Since β -1 (b/1) = 4 sin 2 π 2b for b ∈ N \ {1} is a decreasing sequence converging to 0 we can find for any 0

< x ≤ 2 a b = b(x) ∈ N \ {1} such that β -1 ((b + 1)/1) < x ≤ β -1 (b/1).
Therefore, by using that x → I ≤ p (x) is increasing, we obtain lim

x↓0 √ x ln I ≤ p (x) ≤ lim b→∞ β -1 ((b + 1)/1) ln I ≤ p (β -1 (b/1)) = lim b→∞ 2 sin π 2(b + 1) ln p(1 -p) b-1 1 -(1 -p) b = π ln(1 -p), lim x↓0 √ x ln I ≤ p (x) ≥ lim b→∞ β -1 (b/1) ln I ≤ p (β -1 ((b + 1)/1)) = lim b→∞ 2 sin π 2b ln p(1 -p) b 1 -(1 -p) b+1 = π ln(1 -p).

Lifshitz Tails and Other Distributions

The limit towards x = 4 has exactly the same proof using the increasing sequence β -1 (b/(b-1)). We just need to notice that for b ∈ N\{1} we have β -1 (b/(b-1)) = 4 -4 sin 2 π 2b and

I ≤ p (β -1 (b/(b -1))) = p 2 1 -(1 -p) b (b -1)(1 -p) b p + b-1 r=0 (1 -p) r (b -1)(r + 1) b = p 2 1 -(1 -p) b (b -1)(1 -p) b p + b-1 r=0 (1 -p) r r = 1 -p - p(1 -p) b 1 -(1 -p) b .
As an immediate Corollary of Proposition 1.4 and Theorem 1.2 we have

Corollary 1.5. If ζ ≥ 4 then • lim x↓0 √ x ln I p,ζ (x) = π ln(1 -p). • lim x↑4 √ 4 -x ln [(1 -p) -I p,ζ (x)] = π ln(1 -p).
Remark.

1. From the limit towards x = 4 and the continuity of

x → I p,ζ (x) follows I p,ζ (4) = 1 -p for ζ ≥ 4.
2. This these limits we can recover the the weaker statement of Lifshitz tails lim

x↓0 ln |ln I p,ζ (x)| ln x = - 1 2 , lim x↑4 ln |ln [I p,ζ (4) -I p,ζ (x)]| ln(4 -x) = - 1 2 .
Proof. The map x → I p,ζ (x) is increasing, just as x → I ≤ p (x). Moreover, Theorem 1.2 and ζ ≥ 4 imply that I p,ζ = I ≤ p on R ′ , which contains the incising and decreasing sequences used in the proof of Proposition 1.4. Therefore, the proof of Proposition 1.4 applies also for I p,ζ .

It remains to show that the Lifshitz constant exists at x = 0 when ζ < 4. We present a proof of this that works for any positive ζ. Form (1.4) follows the bound

I p,ζ (x) ≤ p E # λ ∈ σ -∆ Y 1 +2 + ζ 2 -1 A Y 1 +2 λ < x ≤ pE (Y + 2) 1 ν(Y +2)<x , x ∈ R.
(1.12)

where we have introduced ν(n

) := λ 1 -∆ n + ζ 2 -1 A n = λ 1 -∆ N n + ζ 2 A n .
To proceed, we need to bound from below ν(n) for n ∈ N \ {1}. The case n = 2 is special but can be dealt with explicitly:

ν(2) = λ 1 1 + ζ/2 -1 -1 1 + ζ/2 = ζ 2 .
Now, suppose n ≥ 3 and let ϕ be the ground state of -∆ N n + ζ 2 A n which we chose to be positive and normalized (this is always possible). Because of the symmetry of -∆ N n + ζ 2 A n we have ϕ(1) = ϕ(n), so the vector ψ(j) = ϕ(j)ϕ(1) satisfies ψ(1) = ψ(n) = 0. An application of the Min-Max principle gives

ν(n) = ϕ, -∆ N n + ζ 2 A n ϕ = 2ζ 2 ϕ(1) 2 + ϕ, -∆ N n ϕ = ζϕ(1) 2 + ψ, -∆ N n ψ ≥ ζϕ(1) 2 + λ 1 (-∆ n-2 ) ∥ψ∥ 2 .
For the term ∥ψ∥ we use the triangle inequality 1 = ∥ϕ∥ ≤ ∥ψ∥ + √ n ϕ(1) to get

ν(n) ≥ ζϕ(1) 2 + λ 1 (-∆ n-2 ) max 1 - √ n ϕ(1), 0 2 ≥ min 0≤y≤ √ 1/2 ζy 2 + λ 1 (-∆ n-2 ) max 1 - √ n y, 0 2 = min min 0≤y≤ √ 1/n ζy 2 + λ 1 (-∆ n-2 ) 1 - √ n y 2 , min √ 1/n≤y≤ √ 1/2 ζy 2 .

Lifshitz Tails and Other Distributions

The second internal minimum is trivial, and for the first one we need to consider the two boundary points and critical value y

= √ n + ζ λ 1 (-∆ n-2 ) √ n -1 < 1 n to get our desired bound ν(n) ≥ min λ 1 (-∆ n-2 ) 1 + n ζ λ 1 (-∆ n-2 ) , λ 1 (-∆ n-2 ), ζ n = λ 1 (-∆ n-2 ) 1 + n ζ λ 1 (-∆ n-2 ) =: g(n). Since λ 1 (-∆ n ) = 4 sin 2 π 2(n+1)
we can extend g to a function of a continuous

parameter n ∈ [2, ∞). It is straightforward to check that g(2) = ( 1 4 + 2 ζ ) -1 < min{ ζ 2 , 4}, lim n→∞ g(n) = 0 and g ′ (n) = -4ζ sin π 2(n-1) πζ cos π 2(n-1) + 4(n -1) 2 sin 3 π 2(n-1) (n -1) 2 ζ + 2n 1 -cos π n-1 < 0 for n ∈ [2, ∞).
In particular g(n) ≤ ν(n) for all n ∈ N \ {1}, and g is strictly decreasing with range (0, g(2)]. Therefore, as soon as x ≤ g(2) we can use g -1 in (1.12) and get

I p,ζ (x) ≤ pE (Y + 2) 1 ν(Y +2)<x ≤ pE (Y + 2) 1 g(Y +2)<x = pE (Y + 2) 1 Y +2>g -1 (x) = p ∞ y=⌊g -1 (x)⌋-1 (y + 2)P [Y 1 = y] = p 2 ∞ y=⌊g -1 (x)⌋-1 (y + 2)(1 -p) y = (1 -p) ⌊g -1 (x)⌋-1 1 + p + p( g -1 (x) -1) ≤ (1 -p) g -1 (x)-2 1 + p + p(g -1 (x) -1) .
From the definition of g we can write g -1 (x) -1 = β(xδ(x)) where δ(x)

:= 1 + 4 g -1 (x) ζ sin 2 π 2(g -1 (x)-1) . Since lim n→∞ g(n) = 0 we have lim x↓0 δ(x) = 1 and finally lim x↓0 √ x ln I p,ζ (x) ≤ lim x↓0 √ xβ(xδ(x)) ln(1 -p) + lim x↓0 √ x ln β(xδ(x)) = lim x↓0 π δ(x) ln(1 -p) + lim x↓0 √ x ln π xδ(x) = π ln(1 -p).
We finish this chapter by characterizing the existence of the Lifshitz constant, and its value, at the bottom of the spectrum of any 1d discrete Anderson model with a potential bounded from below. Without loss of generality we assume that 0 is the bottom of the spectrum.

Proposition 1.7. Let {V (j)} j∈N be an i.i.d. real random potential satisfying inf supp(V (1)) = 0. Let F be the cumulative distribution function of V (1) and I be the IDS of the operator -∆ + V on ℓ 2 (N), then:

• F (0) > 0 =⇒ lim x↓0 √
x ln I(x) = π ln F (0).

• F (0) = 0 =⇒ lim x↓0 √ x ln I(x) = -∞.
Proof. For any ζ > 0 we have ζ1 V (j)>ζ ≤ V (j) for all j ∈ N. Since {1 V (j)>ζ } j∈N is an i.i.d. random sequence following a Bernoulli(1 -F (ζ)) distribution, we have

I ≤ I 1-F (ζ),ζ and therefore Proposition 1.6 gives lim x↓0 √ x ln I(x) ≤ lim x↓0 √ x ln I 1-F (ζ),ζ (x) = π ln(F (ζ)).
If F (0) = 0, taking ζ → 0 in the above inequality yields lim x↓0 √ x ln I(x) = -∞. Hence, we assume from now on that F (0) > 0, in which case the same limit gives lim x↓0 √

x ln I(x) ≤ π ln(F (0)).

The other inequality follows from deleting from the finite volume restrictions of -∆ + V all rows and columns in which V (j) > 0 and then using the Cauchy Eigenvalue Interlacing Theorem to obtain I ≤ 1-F (0) ≤ I, just as in the proof of (1.2). We conclude, using Proposition 1.4, that

lim x↓0 √ x ln I(x) ≥ lim x↓0 √ x ln I ≤ 1-F (0) = π ln(F (0)).
Chapter 2

Principal Eigenvalue and Landscape Function

We start with some definitions and notation. Given a non-empty and finite A ⊆ Z d and a positive potential W : A → [0, ∞) we consider the Schrödinger operator

-∆ A + W : ℓ 2 (A) -→ ℓ 2 (A), ϕ -→ (-∆ A + W )ϕ(x) := |y-x|=1 [ϕ(x) -ϕ(y)] + W (x)ϕ(x),
where -∆ A has Dirichlet boundary conditions. From it, we define its principal eigenvalue and landscape function

λ A,W := inf σ(-∆ A + W ), L A,W := (-∆ A + W ) -1 1 A .
Notice that λ A,W > 0 and L A,W is always well defined on A since -∆ A > 0 and W ≥ 0.

Let V = {V (x)} x∈Z d be an i.i.d. random non-negative potential whose probability measure and expectation we denote P and E. In addition to V being non-negative (i.e., P [V (0) ∈ (-∞, 0)] = 0) we will always assume the distribution function F (t) = P [V (0) ≤ t] satisfies one of the following mutually exclusive conditions: 1)) as t ↓ 0 for some c, η > 0. (Ex: Uniform(0, 1))

(C1) 0 < F (0) < 1, (Ex: Bernoulli(p)) (C2) F (t) = c t η (1 + o(
Our main objectives are the asymptotics of λ Λn,V and ∥L Λn,V ∥ ∞ as n → ∞, where Λ n := [-n, n] d ∩ Z d . We write n instead of Λ n whenever convenient (e.g. -∆ n = -∆ Λn , λ n,V = λ Λn,V ). We denote by ω d and µ d respectively, the volume of the unit ball in R d and the principal eigenvalue of the continuous Laplacian (-d i=1 ∂ 2 /∂x 2 i ) on such ball with Dirichlet boundary conditions. We now state our conjecture and results. We are always assuming that V is non-negative and satisfies (C1) or (C2). We claim that:

Conjecture A. lim n→∞ λ n,V ∥L n,V ∥ ∞ = µ d 2d P-a.s.
The heuristic argument behind this conjecture is that both λ n,V and ∥L n,V ∥ ∞ are controlled by the largest ball inside of Λ n with zero or very low potential. If the radius of such ball is r then, roughly, λ n,V is proportional to r -2 and ∥L n,V ∥ ∞ is proportional to r 2 , making the product of order one in r. The appearance of the continuous constant µ d 2d is another instance of the solution of a discrete problem converging to the solution of the corresponding continuous one.

Using the Min-Max Principle and our hypothesis on V it is straightforward to show that λ n,V is decreasing in n and converges to 0. Our first result is on the speed of this convergence, depending on whether V satisfies (C1) or (C2):

Theorem 2.1. i) For (C1), lim n→∞ λ n,V ω d |ln F (0)| d ln n -2/d = µ d P-a.s. ii) For (C2), lim n→∞ λ n,V 2ηω d ln ln n d 2 ln n -2/d = µ d P-a.s.
The proof of Theorem 2.1 is given in Section 2.1, and it is divided into the upper and lower bounds of λ n,V . The upper bound follows from the Min-Max Principle and the previously mentioned heuristic of the largest ball with zero or very low potential. The lower bound is a bit more involved; it uses a Lifshitz tails result form [START_REF] Biskup | Long-time tails in the parabolic Anderson model with bounded potential[END_REF] and the connection between the integrated density of states of the (infinite) Anderson model and the distribution function of λ n,V .

In Figure 2 However, the plot does not show accumulation towards µ 1 , suggesting the convergence is very slow. The jumps we observe on the plot are caused by the (n = 100)-step used to construct it, but even these artificial jumps fit well with the heuristic of the largest ball with zero potential. If the size of the largest ball does not increase then the eigenvalue remains (almost) constant, and the growth on the plot is caused by the (ln n) 2 term; but if over one step a new largest ball is introduced then the eigenvalue decreases substantially, producing the jumps. As a complement we present histograms of the empirical distributions

of λ n,V ω 1 |ln F (0)| ln n -2 -µ 1 (resp. λ n,V 2ηω 1 ln ln n ln n -2 -µ 1 )
for n = 10 2 , 10 3 , 10 4 , 10 5 computed from 10 5 realizations. These are given in Figure 2.2, from which we can see that the empirical mean and empirical standard deviation approach very slowly 0, as n increases. Our second result is a partial proof of Conjecture A, and a complete proof when d = 1.

Theorem 2.2. i) lim n→∞ λ n,V ∥L n,V ∥ ∞ ≥ µ d 2d P-a.s. ii) If d = 1 then lim n→∞ λ n,V ∥L n,V ∥ ∞ = µ 1 2 P-a.s.
Remark. The preprint [START_REF] Chenn | Approximating the ground state eigenvalue via the effective potential[END_REF] has a proof of ii) in the continuous setting for the (C1) case. Both proofs follow the heuristic of the largest ball with zero or very low potential, but differ on how to obtain the lower bound of λ n,V and the upper bound of L n,V .

We prove Theorem 2.2 in Section 2.2 after deriving some general properties of landscape functions. Most notable among these properties is Proposition 2.9, which states that λ A,W ∥L A,W ∥ ∞ is bounded from above and below by two dimensional constants uniformly on A and W . This is a consequence of an upper bound of the ℓ ∞ → ℓ ∞ norm of the semigroup generated by the Schrödinger operator, which we adapted from the book [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF] to the discrete setting. The statement i) of Theorem 2.2 follows from domain monotonicity of the landscape function and the asymptotic of λ n,V given in Theorem 2.1, while ii) is based on the geometric resolvent identity and the restrictions of one dimensional geometry. In Figure 2.3 we illustrate Theorem 2.2 ii) by plotting, over a singe realization of the potential, λ n,V ∥L n,V ∥ ∞ v.s. n when d = 1 and V follows a Bernoulli(p) distribution. Once again, the convergence is too slow to be appreciated in the plot, so we also give the corresponding empirical distribution in Figure 2.4. Theorem 2.2 is just a first step towards the full conjecture of Filoche and Mayboroda [START_REF] Filoche | Universal mechanism for anderson and weak localization[END_REF] described in the introduction. The obvious next step is to prove Conjecture A in any dimension. There is still the question of whether the ground state localizes around the position of the absolute maxima of L n,V , as well as the corresponding limits for the excited eigenvalues. It would also be of interest to quantify the speed of convergence in probability in order to obtain confidence intervals on the eigenvalues using only the landscape function. In the proofs that follow, C(d) is a finite positive constant that may only depend on the dimension and can change from line to line. By a t ∼ t b t we mean lim t→∞ at bt = 1.

Principal Eigenvalue (Proof of Theorem 2.1)

Upper Bound of λ n,V

We introduce the sequences 

ε n := 0, (C1), (ln n) -2/d , (C2), y n := d ln n ω d |ln F (ε n )| 1/d ,
Y n := max r ∈ N ∃x ∈ Λ n such that B(x, r) ∩ Z d ⊆ Λ n ∩ V -1 [0, ε n ] , where B(x, r) = {x ′ ∈ R d | |x -x ′ | < r} ⊆ R d . Also, let x n ∈ Λ n be
the center of a ball at which the maximum is attained (it may not be unique). The asymptotic growth of Y n is given in the next proposition, whose proof we delay a short moment.

Proposition 2.3. Y n ∼ n y n P-a.s. Let ϕ ∈ ℓ 2 (B(x n , Y n ) ∩ Z d )
be the normalized eigenvector of -∆ B(xn,Yn) associated to λ B(xn,Yn)∩Z d ,0 and extend it by 0 to Λ n . Then, by the Min-Max Principle, we have

λ n,V ≤ ⟨ϕ, (-∆ n + V ) ϕ⟩ ℓ 2 (Λn) = ϕ, -∆ B(xn,Yn)∩Z d + V ϕ ℓ 2 (B(xn,Yn)∩Z d ) ≤ λ B(xn,Yn)∩Z d ,0 + ε n and therefore lim n→∞ y 2 n λ n,V ≤ lim n→∞ y 2 n λ B(xn,Yn)∩Z d ,0 + ε n = lim n→∞ y 2 n Y 2 n Y 2 n λ B(xn,Yn)∩Z d ,0 = µ d P-a.s.,
where we have used Proposition 2.3, lim r→∞ r 2 λ B(0,r)∩Z d ,0 = µ d and translation invariance. This last limit is a consequence of the discrete Laplacian converging to the continuous one, or random walk converging to Brownian motion. A proof following the latter approach can be found in [LL10, Proposition 8.4.2], where an extra factor d appears as a result of the probabilistic normalization of the Laplacian.

Proof of Proposition

2.3. If Y n < y n (1 -δ) 1/d for some 0 < δ < 1, then the in- scribed ball of each of the 2n 2yn(1-δ) 1/d d (1 + o(1)) disjoint cubes, of side length 2y n (1 -δ) 1/d ,
that make up Λ n contains a point x with V (x) > ε n . Approximating the number of points in such balls by #(B(0, r) ∩ Z d ) ∼ r Vol(B(0, r)) = ω d r d , we obtain for large n

P Y n < y n (1 -δ) 1/d ≤ 1 -F (ε n ) ω d y d n (1-δ)(1+o(1)) n d y d n (1-δ) (1+o(1)) = 1 - 1 n d(1-δ)(1+o(1)) n d ω d |ln F (εn)| d(ln n)(1-δ) (1+o(1)) ≤ exp - n δ ω d |ln F (ε n )| 2d(ln n)(1 -δ) ,
which is summable. Therefore, the Borel-Cantelli Lemma and sending δ → 0 give

1 ≤ lim n→∞ y -1 n Y n P-a.s.
We show the lim sup bound first on an exponential sub-sequence and then we extend it to the whole sequence. The extending argument requires a monotone sequence of random variables, which Y n may fail to be if (C2) holds. For this reason we introduce

Y n,n ′ := max r ∈ N ∃x ∈ Λ n such that B(x, r) ∩ Z d ⊆ Λ n ∩ V -1 [0, ε n ′ ] ,
which is increasing on n, decreasing on n ′ and satisfies Y n,n = Y n . Since for δ > 0 and large m we have

P Y ⌊e m+1 ⌋,⌊e m ⌋ > y ⌊e m ⌋ (1 + δ) 1/d ≤ x∈Λ ⌊e m+1 ⌋ P B(x, y ⌊e m ⌋ (1 + δ) 1/d ) ∩ Z d ⊆ V -1 [0, ε ⌊e m ⌋ ] = #Λ ⌊e m+1 ⌋ F (ε ⌊e m ⌋ ) ω d y d ⌊e m ⌋ (1+δ)(1+o(1)) = #Λ ⌊e m+1 ⌋ ⌊e m ⌋ d(1+δ)(1+o(1)) ≤ C(d)e -mdδ/2 ,
the Borel-Cantelli Lemma and the limit δ → 0 give

lim m→∞ y -1 ⌊e m ⌋ Y ⌊e m+1 ⌋,⌊e m ⌋ ≤ 1 P-a.s. For n ∈ N define m(n) ∈ N by e m(n) ≤ n < e m(n)+1 . Since y n ∼ n y ⌊e m(n) ⌋ and Y n ≤ Y ⌊e m(n)+1 ⌋,⌊e m(n) ⌋ we conclude lim n→∞ y -1 n Y n ≤ lim n→∞ y -1 n Y ⌊e m(n)+1 ⌋,⌊e m(n) ⌋ = lim n→∞ y -1 ⌊e m(n) ⌋ Y ⌊e m(n)+1 ⌋,⌊e m(n) ⌋ ≤ 1 P-a.s.

Lower Bound of λ n,V

In this subsection we show that P-a.s. we have

1 ≤ lim n→∞ λ n,V µ d ω d |ln F (0)| d ln n 2/d and 1 ≤ lim n→∞ λ n,V µ d 2ηω d ln ln n d 2 ln n 2/d (2.2)
for (C1) and (C2) respectively. The main input for this is a Lifshitz tail result on the integrated density of states from [START_REF] Biskup | Long-time tails in the parabolic Anderson model with bounded potential[END_REF]. We recall the integrated density of states of the Anderson model is a deterministic distribution function given by the P-a.s. limit

I(t) := lim n→∞ 1 #Λ n #{λ ∈ σ(-∆ n + V ) | λ ≤ t}, t ∈ R,
where the eigenvalues are counted with multiplicities. The central hypothesis of [START_REF] Biskup | Long-time tails in the parabolic Anderson model with bounded potential[END_REF] is a scaling assumption of the cumulant-generating function H(t) := ln E e -tV (0) of V (0), which we prove in the following proposition. To state it, we first need to define

(1, ∞) ∋ t -→ α(t) := t 1/(d+2) , (C1), t ln t 1/(d+2) , (C2), H := |ln F (0)| , (C1), 2η d+2 , (C2). 
Proposition 2.4. For any compact K ⊆ (0, ∞) we have

lim t→∞ α d+2 (t) t H t α d (t) y = -H uniformly on y ∈ K.
Proof. First assume (C1). In this case α d+2 (t) t = 1 and t α d (t) = t 2/(d+2) . Since for t > 0 we have ln

F (0) ≤ H(t) = ln E e -tV (0) 1 V (0)≤ 1 √ t + E e -tV (0) 1 V (0)> 1 √ t ≤ ln F 1/ √ t + e - √ t , we conclude that sup y∈K α d+2 (t) t H t α d (t) y -ln F (0) ≤ sup y∈K ln F 1 t 1/d+2 √ y + e -t 1/d+2 √ y -ln F (0) = ln F 1 t 1/d+2 √ min K + e -t 1/d+2 √ min K -ln F (0) ---→ t→∞ 0.
Now assume (C2). In this case α d+2 (t) t = 1 ln t and t α d (t) = t 2/(d+2) (ln t) d/(d+2) . We introduce a parameter 0 < δ < 1 and observe

H(t) = ln E e -tV (0) 1 V (0)≤t -δ + E e -tV (0) 1 V (0)>t -δ ≤ ln F t -δ + e -t 1-δ , t > 0, which implies lim t→∞ sup y∈K α d+2 (t) t H t α d (t) y ≤ lim t→∞ sup y∈K 1 ln t ln F t α d (t) y -δ + exp - t α d (t) y 1-δ = lim t→∞ 1 ln t ln F t α d (t) min K -δ + exp - t α d (t) min K 1-δ = - 2δη d + 2 --→ δ→1 - 2η d + 2 .
For the lim t→∞ inf y∈K we use

H(t) = ln E e -tV (0) 1 V (0)≤t -1 + E e -tV (0) 1 V (0)>t -1 ≥ ln e -1 F (t -1 ) , t > 0 to obtain lim t→∞ inf y∈K α d+2 (t) t H t α d (t) y ≥ lim t→∞ inf y∈K 1 ln t ln e -1 F t α d (t) y -1 ≥ lim t→∞ 1 ln t ln e -1 F t α d (t) max K -1 = - 2η d + 2 .
Having checked the scaling assumption on H, we now have the Lifshitz tail result:

Theorem 2.5 (Theorem 1.3 of [BK01]). If V satisfies (C1) or (C2) then lim t↓0 ln I(t) tα -1 (t -1/2 ) = -2 d d/2 χ d + 2 (d+2)/2
, where χ := inf

g∈H 1 (R d ), ∥g∥ 2 =1 ∥∇g∥ 2 2 + H Vol(supp g) .
Remark. The function t → α(t) is eventually increasing so α -1 (t) is well defined for large t. The original statement from [START_REF] Biskup | Long-time tails in the parabolic Anderson model with bounded potential[END_REF] is far more general; our conditions on V make H fall into, what is there called, the (γ = 0)-class.

The constant χ can be explicitly computed by means of the Faber-Krahn inequality:

Proposition 2.6. χ = (d + 2) Hω d 2 2/(d+2) µ d d d/(d+2) . Proof. Starting from χ = inf g∈H 1 (R d ), ∥g∥ 2 =1 ∥∇g∥ 2 2 + D Vol(supp g)
we see that we only need to consider the finite volume case. Hence

χ = inf A⊆R d , Vol(A)<∞ inf g∈H 1 (R d ), ∥g∥ 2 =1, supp g=A ∥∇g∥ 2 2 + H Vol(A) = inf A⊆R d , Vol(A)<∞ µ(A) + H Vol(A) ,
where µ(A) is the principal eigenvalue of the continuous Laplacian (-d i=1 ∂ 2 ∂x 2 i ) defined on A with Dirichlet boundary conditions. The Faber-Krahn inequality states that over all domains of a given volume the one with the lowest principal eigenvalue is the ball, therefore, using µ(B(0, r)) = µ d /r 2 and Vol(B(0, r)

) = ω d r d we obtain χ = inf 0<r<∞ µ d r 2 + Hω d r d .
Evaluating at the only critical point r = 2µ d

Hω d d 1/(d+2)
finishes the proof.

We now exploit the connection between I and the distribution of λ n,V . This is a classic argument that can be found, for instance, in [AW15, Equation 4.46]. We present here a slightly modified version. Let n ∈ N and define a new potential

V ′ (x) := ∞, x ∈ Γ, V (x), x ∈ Z d \ Γ, where Γ := x = (x 1 , . . . , x d ) ∈ Z d x i ∈ (2n + 2)Z for some i = 1, . . . , d ⊆ Z d . Clearly V ≤ V ′ so for any k ∈ N and t ∈ R we have #{λ ∈ σ(-∆ (2n+2)k + V ) | λ ≤ t} #Λ (2n+2)k ≥ #{λ ∈ σ(-∆ (2n+2)k + V ′ ) | λ ≤ t} #Λ (2n+2)k ,
where -∆ (2n+2)k + V ′ has (by definition) Dirichlet boundary conditions at Γ. These Dirichlet boundary conditions at Γ imply that -∆ (2n+2)k + V ′ is a direct sum of (2k) d independent terms, all equal in distribution to -∆ n + V . Therefore, by taking the limit k → ∞ on the above inequality and applying the Law of Large Numbers, we obtain

I(t) ≥ lim k→∞ (2k) d #Λ (2n+2)k E [#{λ ∈ σ(-∆ n + V ) | λ ≤ t}] ≥ 1 2n + 2 d P [λ n,V ≤ t] .
From the previous inequality, Theorem 2.5 and Proposition 2.6 we have

P [λ n,V ≤ t] ≤ C(d)n d I(t) ≤ C(d) n d exp [-f (1/t)(1 + o(1))] as t ↓ 0, (2.3)
where we have introduced f (t) :=

Hω d µ d/2 d α -1 (t 1/2 ) t .
To finish the proof we need the asymptotic of f -1 (t) as t → ∞:

Proposition 2.7.

• For (C1), f -1 (t) = 1 µ d t ω d |ln F (0)| 2/d . • For (C2), f -1 (t) ∼ t 1 µ d d t 2ηω d ln t 2/d . Proof. For (C1) there is nothing to prove since f (t) = ω d |ln F (0)| µ d/2 d t d/2 . For (C2) we have f (t) = kα -1 (t 1/2 ) t = kt d/2 ln α -1 (t 1/2 ),
with all the constants collected in k =

2ηω d µ d/2 d d+2 .
Since α is eventually increasing and has infinite limit, the same is true for f , in particular f -1 (t) exists for large t.

By solving for the α -1 term in the first equality above, applying α and simplifying some exponents we arrive at t =

f (t) k ln[tf (t)/k] 2/d
. Replacing t by f -1 (t) we obtain 

f -1 (t) = t k ln [tf -1 (t)/k] 2/d
[tf -1 (t)] = d + 2 d ln t - 2 d ln k ln tf -1 (t)/k , which implies f -1 (t) ∼ t d t (d + 2)k ln t 2/d = 1 µ d d t 2ηω d ln t 2/d .
Going back to (2.3) with n = ⌊e m ⌋ and t = 1/f -1 ((1 + δ)dm) for some m ∈ N and δ > 0, we see that

P λ ⌊e m ⌋,V f -1 ((1 + δ)dm) ≤ 1 ≤ C(d) (⌊e m ⌋) d exp [-(1 + δ)dm(1 + o(1))] ≤ C(d) e -mdδ/2 ,
which is summable over m ∈ N. Therefore, by the Borel-Cantelli Lemma we have

1 ≤ lim m→∞ λ ⌊e m ⌋,V f -1 ((1 + δ)dm) = (1 + δ) 2/d lim m→∞ λ ⌊e m ⌋,V f -1 (dm) P-a.s.
As in the proof of Proposition 2.3, we define m(n) ∈ N by e m(n) ≤ n < e m(n)+1 , so that ln n ∼ n (m(n) + 1). Since n → λ n,V is monotone decreasing we have

lim n→∞ λ n,V f -1 (d ln n) ≥ lim n→∞ λ ⌊e m(n)+1 ⌋,V f -1 (d ln n) = lim n→∞ λ ⌊e m(n)+1 ⌋,V f -1 (d(m(n) + 1)) ≥ (1 + δ) -2/d P-a.s.
By sending δ → 0 and replacing the f -1 term by its asymptotic given in Proposition 2.7 we obtain the desired result of this subsection.

Landscape Function

We start this section by deriving some general properties of landscape functions by means of the Feynman-Kac formula. Let (X t ) t≥0 be a continuous time simple symmetric random walk on Z d with jump intensity 1, and let P x , E x be the associated probability measure and expectation conditioned on X 0 = x. We remark that (X t ) t≥0 is the Markov process of generator -∆/(2d) on ℓ 2 (Z d ).

For a finite A ⊆ Z d and W : A → [0, ∞), the Feynman-Kac formula lets us write the semigroup generated by -∆ A + W acting on ϕ ∈ ℓ 2 (A) and evaluated at x ∈ A as

exp - t 2d [-∆ A + W ] ϕ(x) = E x ϕ(X t ) exp - t 0 W (X s ) 2d ds 1 t<τ A ,
where τ A := inf{t ≥ 0 | X t / ∈ A} is the exit time of A. By integrating the semigroup we obtain the resolvent, hence

L A,W (x) = (-∆ A + W ) -1 1 A (x) = 1 2d ∞ 0 exp - t 2d [-∆ A + W ] 1 A (x) dt = 1 2d ∞ 0 E x 1 A (X t ) exp - t 0 W (X s ) 2d ds 1 t<τ A dt = 1 2d E x τ A 0 exp - t 0 W (X s ) 2d ds dt , x ∈ A.
(2.4)

From the last line we see that L A,W is positive on A and that it can be naturally extended by 0 outside of A. It also implies monotonicity on both the potential and the domain:

• 0 ≤ W ′ ≤ W =⇒ L A,W ′ ≥ L A,W . • A ′ ⊆ A =⇒ L A ′ ,W ≤ L A,W .
With an application of the strong Markov property we also have for A ′ ⊆ A:

L A,W (x) = 1 2d E x τ A ′ 0 exp - t 0 W (X s ) 2d ds dt + 1 2d E x τ A τ A ′ exp - t 0 W (X s ) 2d ds dt = L A ′ ,W (x) + 1 2d E x exp - τ A ′ 0 W (X s ) 2d ds τ A τ A ′ exp - t τ A ′ W (X s ) 2d ds dt = L A ′ ,W (x) + E x exp - τ A ′ 0 W (X s ) 2d ds L A,W (X τ A ′ ) .
(2.5)

Our last general property is that λ A,W ∥L A,W ∥ ∞ is bounded from above and below by two positive constants uniformly on A and W . This is based on the following upper bound of the ℓ ∞ → ℓ ∞ norm of the semigroup, which can be found, for the continuous setting, in [Szn98, Chapter 3, Theorem 1.2]. We could not find a proof in the literature for the discrete case, so we provide one here.

Theorem 2.8. For any finite A ⊆ Z d and W :

A → [0, ∞) we have for t ≥ 0 exp - t 2d [-∆ A + W ] 1 A ∞ ≤ C(d) 1 + λ A,W t 2d d/2 exp - λ A,W t 2d .
Proof. Given A and W we write λ = λ A,W 2d , K t = exp -t 2d [-∆ A + W ] and k t (x, y) = ⟨δ x , K t δ y ⟩ ℓ 2 (A) (the kernel of the semigroup). Depending on λ we distinguish two cases.

• Case λ ≤ 1 d . Let B ∞ (x, r) := {y ∈ R d | ∥x -y∥ ∞ ≤ r}.
For t ≥ 1 and x ∈ A we have

K t/λ 1 A (x) = K t/λ 1 A∩B∞(x,r) (x) + K t/λ 1 A\B∞(x,r) (x) ≤ k 1/λ (x, •), K (t-1)/λ 1 A∩B∞(x,r) ℓ 2 (A) + P 0 X t/λ / ∈ B ∞ (0, r) ≤ C(d) P 0 X 2/λ = 0 r d/2 e -(t-1) + P 0 X t/λ / ∈ B ∞ (0, r) ,
where we chose r = 2t e λd . The term P 0 X 2/λ = 0 can be estimated using the characteristic function of

X s , which is ϕ s (θ) = exp -s + s d d i=1 cos(θ i ) , by means of P 0 [X s = 0] = 1 (2π) d [-π,π] d ϕ s (θ) dθ = e -s (2π) d [-π,π] exp s d cos θ 1 dθ 1 d .
Laplace's method applied to the right-most integral yields P 0

[X s = 0] s d/2 ---→ s→∞ d 2π d/2 and therefore P 0 X 2/λ = 0 ≤ C(d)λ d/2 .
For the other probability we use the bound (see [START_REF] Barlow | Random walks and heat kernels on graphs[END_REF]Lemma 4.6])

P [S n > y] ≤ e -y 2 /(2n) , y > 0,
where S n is a discrete time simple symmetric random walk on Z starting at 0, and P is its probability measure. Recalling that the first component of X t , which we denote X 1 t , is a continuous time simple symmetric random walk on Z with jump intensity 1/d we have

P 0 X t/λ / ∈ B ∞ (0, r) ≤ 2dP 0 X 1 t/λ > r ≤ 2d n≥0 e -t/(λd) n! t λd n P [S n > r].
We split the series at n = 2et λd and bound the two terms separately: Hence we have shown

n≤ 2et λd e -t
K t/λ 1 A ∞ ≤ C(d) 1 + t d/2 e -t for t ≥ 1. Since K t/λ 1(x)
is always bounded by 1 we can add inf 0≤t≤1 1 + t d/2 e -t -1 to C(d), if necessary, to have

K t/λ 1 A ∞ ≤ C(d) 1 + t d/2 e -t , t ≥ 0.
Replacing t by λt and gives the desired bound.

• Case λ ≥ 1 d .
This case follows from the heat kernel bound (see [START_REF] Barlow | Random walks and heat kernels on graphs[END_REF]Theorem 5.17])

P 0 [X t = y] ≤ C(d) exp -t -∥y∥ 1 ln ∥y∥ 1 et , ∥y∥ 1 ≥ et.
We proceed as before but now we use B 1 (x, r) := {y ∈ R d | ∥x -y∥ 1 ≤ r}. For t ≥ 0 we have

K t 1 A (x) = K t 1 A∩B 1 (x,r) (x) + K t 1 A\B 1 (x,r) (x) ≤ δ x , K t 1 A∩B 1 (x,r) ℓ 2 (A) + P 0 X t / ∈ B 1 (0, r) ≤ C(d)r d/2 e -λt + P 0 X t / ∈ B 1 (0, r) ,
with r = λtde 2 . Clearly r ≥ et, so we can apply the heat kernel bound to obtain

P 0 X 1 t / ∈ B 1 (0, r) ≤ C(d) y∈Z d ∥y∥ 1 >r exp -t -∥y∥ 1 ln ∥y∥ 1 et ≤ C(d) y∈Z d ∥y∥ 1 >r exp [-∥y∥ 1 ln(ed)] ≤ C(d)e -r y∈Z d exp [-∥y∥ 1 ] = C(d)e -r ≤ C(d)e -λt ,
and therefore

∥K t 1 A ∥ ∞ ≤ C(d) 1 + [λt] d/2 e -λt .
As an an immediate consequence we obtain:

Proposition 2.9. For any finite A ⊆ Z d and W : A → [0, ∞) we have

1 ≤ λ A,W ∥L A,W ∥ ∞ ≤ C(d).
Remark. The lower bound is sharp. It is attained when A is a single point of Z d .

Proof. For the lower bound we just need to notice that the second line of (2.4) implies

∥L A,W ∥ ∞ = sup ϕ∈ℓ 2 (A)\{0} ∥(-∆ A + W ) -1 ϕ∥ ∞ ∥ϕ∥ ∞ .
Plugging in the eigenvector associated to λ A,W we obtain ∥L A,W ∥ ∞ ≥ 1 λ A,W . For the upper bound we use (2.4), Theorem 2.8 and the substitution u

= λ A,W t 2d : ∥L A,W ∥ ∞ ≤ 1 2d ∞ 0 exp - t 2d [-∆ A + W ] 1 A ∞ dt ≤ C(d) 2d ∞ 0 1 + λ A,W t 2d d/2 exp - λ A,W t 2d dt = C(d) λ A,W ∞ 0 1 + u d/2 e -u du = C(d) λ A,W . 
Instead of random walks and the Feynman-Kac formula, we can use Green functions to obtain an equivalent expansion of L A,W . We introduce the Green function (with 0 as spectral parameter)

G A,W (x, y) := ⟨δ x , (-∆ A + W ) -1 δ y ⟩ ℓ 2 (A) , (x, y) ∈ A × A, 0, (x, y) ∈ (Z d × Z d ) \ (A × A). = 1 2d E x τ A 0 δ y (X t ) exp - t 0 W (X s ) 2d ds dt
This function is symmetric, non-negative, decreasing on the potential W ; and it satisfies the geometric resolvent identity (see [Kir08, Section 5.3]):

If A ′ ⊆ A then G A,W (x, y) = G A ′ ,W (x, y) + (i,j)∈∂A ′ G A ′ ,W (x, i)G A,W (j, y),
where

∂A ′ := {(i, j) ∈ A ′ × (Z d \ A ′ ) | |i -j| = 1} is the boundary of A ′ . Since L A,W (x) = y∈Z d G A,W (x, y) for all x ∈ Z d , we have for A ′ ⊆ A L A,W (x) = L A ′ ,W (x) + (i,j)∈∂A ′ G A ′ ,W (x, i)L A,W (j). 
(2.6) Equation (2.6) is equivalent to equation (2.5). We will prefer the former in the proof of Theorem 2.2 ii) since G A,W can be computed using basic linear algebra, such as determinants and Cramer's rule for the inverse of a matrix.

Proof of Theorem 2.2 i)

We start with the asymptotic of the sup-norm of the landscape function on balls with 0 potential.

Proposition 2.10. L B(0,r)∩Z d ,0 ∞ ∼ r r 2 2d .

Remark. In one dimension it is straightforward to check that for r ∈ N

L B(0,r)∩Z,0 (x) = r 2 -x 2 2 , x ∈ B(0, r).
Proof. Let r > 0 and consider the function ϕ r (x) := r 2 -|x| 2 2d defined on Z d . Clearly -∆ϕ r (x) = 1 for all x ∈ Z d and therefore L B(0,r)∩Z d ,0ϕ r is harmonic in B(0, r) ∩ Z d . By the Maximum Principle we have

L B(0,r)∩Z d ,0 ∞ - r 2 2d = sup x∈B(0,r)∩Z d L B(0,r)∩Z d ,0 (x) - sup x∈B(0,r)∩Z d ϕ r (x) ≤ sup x∈B(0,r)∩Z d L B(0,r)∩Z d ,0 (x) -ϕ r (x) = sup x∈∂ + [B(0,r)∩Z d ] L B(0,r)∩Z d ,0 (x) -ϕ r (x) = sup x∈∂ + [B(0,r)∩Z d ] |ϕ r (x)| ≤ C(d) r(1 + o(1))
where

∂ + A := x ∈ Z d \ A ∃ y ∈ A such that |x -y| = 1 is the outer boundary of A ⊆ Z d .
Dividing by r 2 2d and taking the limit r → ∞ give the proposition.

Recall the definitions of ε n , Y n , x n and y n from Subsection 2.1 and notice that Theorem 2.1 can be restated as λ n,V ∼ n µ d y 2 n P-a.s. From domain monotonicity of landscape functions we have

L n,V ≥ L B(xn,Yn)∩Z d ,V .
For (C1), V is identically 0 in B(x n , Y n ) ∩ Z d so Theorem 2.1, Proposition 2.10 and translation invariance give

lim n→∞ λ n,V ∥L n,V ∥ ∞ ≥ lim n→∞ λ n,V L B(xn,Yn)∩Z d ,0 ∞ = lim n→∞ µ d y 2 n Y 2 n 2d = µ d 2d P-a.s.
For (C2), we use the second resolvent identity, domain monotonicity of the eigenvalue, and Propositions 2.9, 2.10, 2.3 to obtain

λ n,V L B(xn,Yn)∩Z d ,0 -L B(xn,Yn)∩Z d ,V ∞ = λ n,V (-∆ B(xn,Yn)∩Z d ,0 ) -1 V L B(xn,Yn)∩Z d ,V ∞ ≤ C(d)ε n L B(xn,Yn)∩Z d ,0 ∞ ≤ C(d)ε n Y 2 n P-a.s. ---→ n→∞ 0, which implies lim n→∞ λ n,V ∥L n,V ∥ ∞ ≥ lim n→∞ λ n,V L B(xn,Yn)∩Z d ,V ∞ = lim n→∞ λ n,V L B(xn,Yn)∩Z d ,0 ∞ = µ d 2d P-a.s.
This concludes the proof of Theorem 2.2 i).

Proof of Theorem 2.2 ii)

We assume from this point on that d = 1. We set a, b := [a, b] ∩ Z for any two a, b ∈ Z. This proof is based on the following deterministic bound of the Green function in terms of the values of the potential.

Proposition 2.11. Let n ∈ N and W : 1, n → [0, ∞). For any y ∈ 1, n we have

G 1,n ,W (1, y) ≤ y-1 j=0 (y -j)W (y -j) -1 , G 1,n ,W (y, n) ≤ n-y j=0 (n -y + 1 -j)W (y + j) -1
.

Proof. We only prove the first inequality; the second one follows from reflecting W across the midpoint of 1, n and the symmetry of the Green function.

Fix some y ∈ 1, n . By potential monotonicity we have

G 1,n ,W (1, y) ≤ G 1,n ,W 1 1,y (1, y)
The Cramer's rule lets us write

G 1,n ,W 1 1,y (1, y) = det [-∆ 1,n + W 1 1,y ] 1→δy det(-∆ 1,n + W 1 1,y ) ,
where [-∆ 1,n + W 1 1,y ] 1→δy is the matrix obtained by replacing the first column (in the canonical δ j basis) of -∆ 1,n + W 1 1,y by δ y . By computing the determinant from such first column we see that

det [-∆ 1,n + W 1 1,y ] 1→δy = (-1) y+1 det T 0 M -∆ 1,n-y = (-1) y+1 det(T ) det(-∆ 1,n-y ) = n -y + 1,
since T is a lower triangular square matrix of size y -1 with (-1) on all the diagonal, and det(-∆ 1,k ) = k +1 for all k ∈ N (we use the convention det(-∆ ∅ ) = 1).

Consider det(-∆ 1,n + W 1 1,y ) as a polynomial in (W (j)) y j=1 . It is clear that it does not contain squares, or greater powers, of any W (j). Moreover, a straightforward computation shows that the coefficient of W

(j 1 )W (j 2 ) • • • W (j k-1 )W (j k ), with 1 ≤ j 1 < j 2 < . . . j k-1 < j k ≤ y and 1 ≤ k ≤ y, is det(-∆ 1,j 1 -1 ) det(-∆ j 1 +1,j 2 -1 ) • • • det(-∆ j k-1 +1,j k -1 ) det(-∆ j k +1,n ) = j 1 (j 2 -j 1 ) • • • (j k -j k-1 )(n + 1 -j k ).
The remaining coefficient (the constant one) is det(-∆ 1,n ) = n + 1, which means all coefficients of det(-∆ 1,n + W 1 1,y ) are positive and therefore

G 1,n ,W (1, y) ≤ n + 1 -y det(-∆ 1,n + W 1 1,y ) ≤ n + 1 -y y j=1 j(n + 1 -j)W (x) ≤ y j=1 jW (j) -1 = y-1 j=0 (y -j)W (y -j) -1
.

With the previous proposition in mind we define for δ > 0 and

x ∈ Z d Z + δ (x) := min n ∈ N n j=1 (n + 1 -j)V (x + j) > δ -1 , Z - δ (x) := min n ∈ N n j=1 (n + 1 -j)V (x -j) > δ -1 , A δ (x) := x -Z - δ (x), x + Z + δ (x) .
Notice that V (x) is not included in the definition of Z ± δ (x) and therefore Z + δ (x) and Z - δ (x) are independent for all x ∈ Z. It follows from (2.6), the definitions above, potential monotonicity, and Propositions 2.9, 2.11 that

λ n,V ∥L n,V ∥ ∞ ≤ λ n,V max x∈Λn L A δ (x),0 (x) + 2δ ∥L n,V ∥ ∞ ≤ λ n,V max x∈Λn L A δ (x),0 ∞ + 2δC(1).
By domain monotonicity and translation invariance, the last maximum above is attained at the x ∈ Λ n that also maximises #

A δ (x) = Z + δ (x) + Z - δ (x) + 1. Moreover, V being i.i.d. implies lim n→∞ max x∈Λn Z + δ (x) + Z - δ (x) = ∞ P-a.
s. and therefore Proposition 2.10 and Theorem 2.1 give

lim n→∞ λ n,V ∥L n,V ∥ ∞ ≤ µ 1 2 lim n→∞ max x∈Λn Z + δ (x) + Z - δ (x) 2y n 2 + 2δC(1) P-a.s.
The proof of Theorem 2.2 ii) is finished with the next proposition followed by the limit δ → 0. Proposition 2.12. For all δ > 0, lim

n→∞ 1 2y n max x∈Λn [Z + δ (x) + Z - δ (x)] ≤ 1 P-a.s.
Proof. We will prove this over an exponential subsequence; the extension is done as in the proof of Proposition 2.3 using the monotonicity of n → max x∈Λn [Z + δ (x)+ Z - δ (x)]. In addition to Z + δ (x) being independent of Z - δ (x) for all x ∈ Z d , we also have that all Z ± δ (x) are equal in distribution to Z + δ (0). Assume (C1) and recall y n = ln n 2|ln F (0)| . For all t > 0 we have E e -tV (0) = E e -tV (0) 1 V (0)≤ 1

√ t + E e -tV (0) 1 V (0)> 1 √ t ≤ F 1/ √ t + e - √ t .
With this, we use the exponential Markov inequality and independence to obtain .

For any ε > 0 define t(ε) by ln F 1/ t(ε) + e - √ t(ε) ≤ ln F (0) 1+ε so that 4η ln ln n . We follow the same steps as for (C1) above. To bound the Laplace transform of V (0) we consider the function f (t) := a[F (t)] 1/η for some a > 0. From (C2) follows that there exists t 0 ∈ (0, ∞) such that F (t) ≤ 2 c t η for all t ∈ [0, t 0 ]. Therefore, by choosing a := (t -1 0 + (2c) 1/η ) -1 we obtain 0 ≤ f (t) ≤ a(2c) 1/η t ≤ t, t ∈ [0, t 0 ], a ≤ t 0 ≤ t, t ∈ (t 0 , ∞). (j -1) -2η(j-1) (nj) -2η(n-j) .

The function [2, n -1] ∋ j → (j -1) -(j-1) (nj) -(n-j) attains its unique maximum at j = (n + 1)/2, therefore P Z + δ (0) + Z - δ (0) > n ≤ 2K n-1 δ (n -1) -2η(n-1) + (4 η K δ ) n-1 (n -2)(n -1) -2η(n-1) ≤ (4 η K δ ) n-1 n(n -1) -2η(n-1) . = C(1)n -ε(1+o(1)) , which is summable over the exponential subsequence n = ⌊e m ⌋, m ∈ N.

Alternative Proof of Theorem 2.2 ii) for (C1)

We present an alternative proof of Theorem 2.2 ii) for the (C1) case. This proof is simpler and shorter than the previous one, but when applied to (C2), it fails to give the desired upper bound on lim n→∞ λ n,V ∥L n,V ∥ ∞ .

In the previous subsection we avoided including V (x) in the definitions of Z ± δ (x) to obtain their independence. Here we only need that V (x) > 0 to show L n,V (x) is small. Assume (C1) and recall y n = ln n 2|ln F (0)| . Fix some δ > 0 and define I n,δ := (V -1 ((δ, ∞)) ∩ Λ n ) ∪ {-(n + 1), n + 1}.

For any x ∈ I n,δ we consider the closed ball of radius ⌊δy n ⌋ centered around x. Then equation (2.6), potential monotonicity, and Proposition 2.11 give

L n,V (x) ≤ L x-⌊δyn⌋,x+⌊δyn⌋ ,0 (x) + 2 (⌊δy n ⌋ + 1)V (x) ∥L n,V ∥ ∞ ≤ L -⌊δyn⌋,⌊δyn⌋ ,0 ∞ + 2 δ 2 y n ∥L n,V ∥ ∞ , x ∈ I n,δ .
Multiplying by λ n,V and using Propositions 2.10, 2.9 and Theorem 2.1 we arrive at Let n -1 = x 1 < x 2 < . . . < x #I n,δ -1 < x #I n,δ = n + 1 be an enumeration of the elements of I n,δ so that, for every x ∈ Λ n \ I n,δ we can find an i ∈ 1, #I n,δ -1 that satisfies x i < x < x i+1 . This, together with (2.5) and potential monotonicity, imply

L n,V (x) ≤ L x i ,x i+1 ,0 (x) + max{L n,V (x i ), L n,V (x i+1 )} ≤ max i∈ 1,#I n,δ -1 because of the ln ln n term in y n . Since we also require 1 δynV (x) to be small if V (x) is above a threshold, we set such threshold to be (δ 2 y n ) -1 . More precisely, for a fixed δ > 0 we consider the set I n,(δ 2 yn) -1 . For any x ∈ I n,(δ 2 yn) -1 we have λ n,V L n,V (x)

L x i ,x i+1 ,0 ∞ + max
≤ 2µ 1 + µ 1 δ 2 2 + 2δC(1) P-a.s.

By sending δ → 0 we obtain lim n→∞ λ n,V ∥L n,V ∥ ∞ ≤ 2µ 1 which is 4 times the correct bound. This factor of 4 comes form using (δ 2 y n ) -1 as the threshold of the potential instead of ε n = (ln n) -2 as in the definition of Y n . Since we cannot decrease such threshold without making the term 1 δynV (x) explode, we cannot improve the factor of 4 with the current method.

  ⌋ is the floor function; and the set of rational energiesR := β -1 (b/a) a, b ∈ N, a < b .With this definitions, the main result of Chapter 1 readsTheorem. For all x ∈ R there is a critical ζ c (x) ∈ (0, ∞) such that ζ ≥ ζ c (x) =⇒ I p,ζ (x) = I ≤ p (x).For a, b ∈ N with a < b, gcd(a, b) = 1 we have ζ c (β -1 (b/a)) ≤ max 8

Figure 1 :

 1 Figure 1: One realization of a potential V (0) d = Bernoulli(0.3) (black), its first 5 eigenvectors (colors), and its landscape function (red).

Figure 2 :

 2 Figure 2: The products λ i Λn,V L i Λn,V for i = 1, . . . , 20 in the same potential realization as Figure 1.

Figure 3 :

 3 Figure 3: Une réalisation d'un potentiel V (0) d = Bernoulli(0.3) (noir), ses 5 premiers vecteurs propres (couleurs) et sa fonction landscape (rouge).

Figure 4 :

 4 Figure 4: Les produits λ i Λn,V L i Λn,V pour i = 1, . . . , 20 dans la même réalisation potentielle que la figure 3.

2.

  For any x ∈ R, lim ζ→∞ I p,ζ (x) exits since ζ → I p,ζ (x) is decreasing and bounded from below by 0. Clearly, lim ζ→∞ I p,ζ (x) = 0 for x ≤ 0, and lim ζ→∞ I p,ζ (x) = 1-p for x ≥ 4. In (0, 4) the limit lim ζ→∞ I p,ζ = I ≤ p is only point-wise since I p,ζ is continuous for every ζ while I ≤ p is discontinuous.

  as shown in Figure 1.1. We also can use Theorems 1.1 and 1.2 to obtain a granular idea of the plot of I p,ζ for any given ζ ≥ 8. Indeed, if ζ ≥ 8 and we define n = n(ζ) := π(ζ-4) 4 ∈ N and

  we have I p,ζ = I ≤ p on R n , as shown in Figure 1.2. Naturally, as ζ increases so does n and R n ↑ R.

Figure 1

 1 Figure 1.1: Plot of I p,4 , I ≤ p and the points {(x, I ≤ p (x)) | x ∈ R ′ } for p = 0.3. I p,4 was computed numerically from a 10 5 × 10 5 matrix.

Figure 1 . 2 :

 12 Figure 1.2: Plot of I p,ζ , I ≤ p and the points {(x, I ≤ p (x)) | x ∈ R n } for n = 20, ζ = 4n π + 4, p = 0.3. I p,ζ was computed numerically from a 10 5 × 10 5 matrix.

  the right continuity of ⌊•⌋, and the Dominated Convergence Theorem we conclude lim ζ→∞ I p,ζ (x) = I ≤ p (x), x ∈ (0, 4). Now, fix a, b ∈ N with a < b, gcd(a, b) = 1 and further assume ζ ≥ 4b π + 4.

Figure 1 . 5 :

 15 Figure 1.5: Resulting operator after applying the Neumann part of Dirichlet-Neumann bracketing to -∆ Ln + ζV p in order to disconnect all the Y i 's.

  When ζ < β -1 (b/(b -1) the energy β -1 (b/(b -1) is in the overlap of the two "bands" [0, 4] and [ζ, ζ + 4]. Therefore, the contribution to I p,ζ (β -1 (b/(b -1)) of the eigenvalues coming from connected components with potential identically ζ is not negligible, as it is for I ≤ p (β -1 (b/(b -1)), when the bands and infinitely far apart. Numerical computations also support this claim. We show in Figure 1.6, that when ζ is slightly below β -1 (2/1) = 2 there is a gap between I p,ζ and I ≤ p at 2.

Figure 1 . 6 :

 16 Figure 1.6: Plot of I p,1.9 and I ≤p for p = 0.3. I p,1.9 was computed numerically from a 10 5 × 10 5 matrix.

Figure 1 . 7 :

 17 Figure 1.7: Plot of I p,2 and I ≤ p for p = 0.3. I p,2 was computed numerically from a 10 5 × 10 5 matrix.

Figure 1

 1 Figure 1.8: Plot of I p,3 and I ≤ p for p = 0.3. I p,3 was computed numerically from a 10 5 × 10 5 matrix.

Proposition 1. 6 .

 6 For all ζ > 0 we have π ln(1p) = lim x↓0 √ x ln I p,ζ (x). Proof. Fix ζ > 0. From (1.3) and Proposition 1.4 we have lim x↓0 √ x ln I p,ζ (x) ≥ lim x↓0 √ x ln I ≤ p (x) = π ln(1p).

  .1 we tried to illustrate Theorem 2.1 i) by plotting a single realization of the sequence λ n,V ω 1 |ln F (0)| ln n -2 when d = 1 and V (0) d = Bernoulli(p).

Figure 2 . 1 :

 21 Figure 2.1: One realization of the sequence λ n,V ω 1 |ln F (0)| ln n -2

  Figure 2.2: Empirical distribution of λ n,V ω 1 |ln F (0)| ln n -2 µ 1 for d = 1 and V (0) d = Bernoulli(0.3) computed form 10 5 samples. The empirical mean (m) and empirical standard deviation (s) are shown in red and blue respectively.

Figure 2

 2 Figure 2.3: One realization of the sequence λ n,V ∥L n,V ∥ ∞ for d = 1 and V (0) d = Bernoulli(0.3).

3 Figure 2 . 4 :

 324 Figure 2.4: Empirical distribution of λ n,V ∥L n,V ∥ ∞ -µ 1 2 for d = 1 and V (0) d = Bernoulli(0.3) computed form 10 5 samples. The empirical mean (m) and empirical standard deviation (s) are shown in red and blue respectively.

,

  and then multiplying by t and taking the logarithm leads to ln

≤ e t/δ n j=1 E

 j=1 P Z + δ (0) > n = P n j=1 (n + 1j)V (x + j) ≤ δ -1 [exp(-tjV (0))] ≤ e t/δ F 1/ √ t + e - √ t n, n ∈ N.Now we proceed with the distribution of Z + δ (0) + Z - δ (0) asP Z + δ (0) + Z - δ (0) > n = P Z + δ (0) > n -1 + n-1 j=1 P Z + δ (0) = j P Z - δ (0) > nj ≤ 2P Z + δ (0) > n -1 + n-1 j=2 P Z + δ (0) > j -1 P Z + δ (0) > nj ≤ 2e

  δ (x) + Z - δ (x)] > (1 + ε) 2 2y n ≤ C(1)n P Z + δ (0) + Z - δ (0) > (1 + ε) 2 2y n ≤ C(1)e 2t(ε)/δ n exp (1 + ε) 2 2y n ln F (0) 1 + ε (1 + o(1)) = C(1)e 2t(ε)/δ n -ε(1+o(1)) ,which is summable over the exponential subsequence n = ⌊e m ⌋, m ∈ N.Assume (C2) and recall y n = ln n 2|ln F ((ln n) -2 )| ∼ n ln n

E

  Moreover, since P [f (V (0)) ≤ t] = t a η for t ∈ [0, a], we haveE [exp(-tV (0))] ≤ E [exp(-tf (V (0)))] = η (a) η a 0 e -ty y η-1 dy ≤ η (a) η ∞ 0 e -ty y η-1 dy = ηΓ(η) (at) η , t > 0.The exponential Markov inequality at t = nηδ, independence, and the Stirling bound (n/e) n ≤ n! lead us toP Z + δ (0) > n ≤ e t/δ n j=1 [exp(-tjV (0))] ≤ ηΓ(η) (at) η n e t/δ (n!) η ≤ η 1-η Γ(η)e 2η a η δ n n -2ηn =: K n δ n -2ηn , n ∈ N,from which followsP Z + δ (0) + Z - δ (0) > n ≤ 2P Z + δ (0) > n -1 + n-1 j=2 P Z + δ (0) > j -1 P Z + δ (0) > nj ≤ 2K n-1 δ (n -1) -2η(n-1) + K n-

Finally, for

  ε > 0 we haveP max x∈Λn [Z + δ (x) + Z - δ (x)] > ⌊(1 + ε)2y n ⌋ ≤ C(1)n P Z + δ (0) + Z - δ (0) > ⌊(1 + ε)2y n ⌋ = C(1)n exp [-(1 + ε)4ηy n (ln y n )(1 + o(1))] = C(1)n exp [-(1 + ε)4ηy n (ln ln n)(1 + o(1))]

  x∈I n,δ L n,V (x),x ∈ Λ n \ I n,δ .By domain monotonicity and Proposition 2.10 we have that max i∈ 1,#I n,δ -1L x i ,x i+1 ,0 ∞ ∼ n 1 8 max i∈ 1,#I n,δ -1 x i+1x i 2provided the right-hand side diverges to +∞ as n → ∞. Since the maximum in the right-hand side is, up to ±1 depending on its parity, the diameter of the largest ball inside Λ n with potential uniformly bounded by δ, then by (a slight modification of) Proposition 2.3 we havemax i∈ 1,#I n,δ -1 x i+1x i ∼ n ln n |ln F (δ)| = 2y n |ln F (0)| |ln F (δ)| P-a.s.With the above asymptotics and Theorem 2.1, we now concludelim n→∞ λ n,V ∥L n,V ∥ ∞ ≤ lim n→∞ λSending δ → 0 finishes the proof.Now we try to apply the above reasoning when (C2) holds. Assume (C2) and recall y n = ln n 2|ln F ((ln n) -2 )| ∼ n ln n 4η ln ln n . If we let the δ in I n,δ be constant with respect to n, then we will have lim n→∞

L

  n,V (x) ≤ L x-⌊δyn⌋,x+⌊δyn⌋ ,0 (x) + 2 (⌊δy n ⌋ + 1)V (x) ∥L n,V ∥ ∞ ≤ L -⌊δyn⌋,⌊δyn⌋ ,0 ∞ + 2δ ∥L n,V ∥ ∞ from which follows lim n→∞ max x∈I n,(δ 2 yn) -1 λ n,V L n,V (x) ≤ µ 1 δ 2 2 + 2δC(1) P-a.s.Since max i∈ 1,#I n,(δ 2 yn) -1 -1 x i+1x i is the diameter of the larges ball in Λ n with potential bounded by (δ 2 y n ) -1 , Proposition 2.3 givesmax i∈ 1,#I n,(δ 2 yn) -1 -1 x i+1x i ∼ n 2 ln n 2 |ln F ((δ 2 y n ) -1 )| ∼ n ln n η ln ln n and therefore lim n→∞ λ n,V ∥L n,V ∥ ∞ ≤ lim n→∞ λ n,V 8 max i∈ 1,#I n,δ -1 x i+1x i 2 + lim n→∞ max x∈I n,δ

  Le but de cette thèse est d'étudier trois objets associés au modèle d'Anderson sur Z
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  and by definition L n = n + n i=1 Y i . By applying the Law of Large Numbers we obtain lim n→∞

	Ln
	n

  As usual, getting a sharp upper bound on λ n,V is much easier than a sharp lower bound. It just requires choosing a good test function and applying the Min-Max Principle.Let Y n be the radius of the largest open euclidean ball contained in Λ n in which V is uniformly bounded by ε n , that is,

so we can write the goal of this subsection as lim n→∞ y 2 n λ n,V ≤ µ d P-a.s.

(2.1)
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Résumé en anglais

In this PhD thesis we accomplish two objectives:

-We show there is countable dense set at which the integrated density of states of the Anderson-Bernoulli model on $\Z$ can be explicitly computed, provided the disorder parameter is large enough.

-We give a partial proof of a conjecture, first stated in a 2012 article by Filoche and Mayboroda, concerning the product of principal eigenvalue and sup-norm of the landscape function of the Anderson model operator restricted to a large box of $\Z^d$. For the one dimensional case, we give a full proof of such conjecture.