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Titre : Mesure de spins uniques à l’aide de photons uniques

Mots clés : photonique, boîte quantiques semiconductrice, spin, interaction lumière-matière, microcavité

Résumé : L’émergence de technologies quantiques
est favorisée par les progrès dans la manipulation
et le contrôle de qubits uniques. Ces technologies
se construisent autour des principes fondamentaux
de la physique quantique, que sont la superposi-
tion d’états, l’intrication et la mesure projective. Un
réseau quantique reliant des qubits stationnaires
via des canaux photoniques pourrait permettre de
surpasser les protocoles de communication et de
calcul classiques. Une interface entre des qubits
matériels stationnaires et des qubits photoniques
messagers serait alors indispensable pour faire cir-
culer l’information quantique dans le réseau.

Nous présentons ici le développement d’une in-
terface à l’état solide, où un qubit de spin station-
naire, un électron ou un trou unique piégé dans une
boîte quantique semi-conductrice, interagit avec
un qubit photonique dans une cavité micropilier.
L’interaction spin-photon se produit via la rota-
tion Faraday induite sur la polarisation des photons
réfléchis, et dépendante de l’état du spin. Une fois
amplifié par la cavité, cet effet peut permettre de
transférer la totalité de l’information depuis l’état
du spin vers l’état de polarisation des photons, réal-
isant une interface spin-photon.

Nous commençons par décrire la fabrication des
dispositifs. Les propriétés de leur hétérostructure
planaire déterminent, d’une part, la structure de
bande, et donc la possibilité d’injecter électrique-
ment ou optiquement une charge unique dans
la boîte quantique. D’autre part, elles détermi-
nent les spécificités optiques de la cavité, opti-
misée pour amplifier l’interaction spin-photon tout
en extrayant une majeure partie des photons par
le canal d’intérêt. Afin d’amplifier l’interaction
lumière-matière, la technique de lithographie in-
situ développée au C2N permet un couplage spatial
et spectral de la cavité à la transition désirée de la
boîte quantique.

Les dispositifs ainsi réalisés sont dans un premier
temps caractérisés par tomographie de polarisa-
tion afin de reconstruire, dans l’état stationnaire,
l’état de polarisation complet des photons réfléchis.
Les rotations Faraday géantes déduites en font des
candidats de choix pour une interface spin-photon.
Nous estimons également l’intensité du bruit ainsi
que les points de fonctionnement optimaux en ter-
mes d’énergie des photons incidents et de polarisa-
tions réfléchies associées aux états propres de spin.

Ensuite, nous accédons à la dynamique des photons
réfléchis grâce aux corrélations croisées mesurées
dans des polarisations complémentaires, ce qui per-
met de remonter à la dynamique du spin avec lequel
ils ont interagi. Les contributions des dynamiques
de charge et de spin peuvent être isolées en fonc-
tion des polarisations mesurées, et les sources de
bruits rapides et lents sont identifiées. L’ensemble
de ces résultats expérimentaux est comparé aux
prédictions théoriques via une simulation basée sur
l’équation maîtresse, permettant de comprendre et
caractériser les processus en jeu. Celle-ci reproduit
une majorité des observations, et fournit une esti-
mation de l’efficacité de l’interface spin-photon en
quantifiant la projection de spin induite par la dé-
tection des photons.

Les deux dispositifs étudiés révèlent les différences
entre interfaces spin-photons basées sur un élec-
tron ou un trou et l’impact de l’hétérostructure
qui les entoure. En effet, la faible sensibilité des
trous aux fluctuations de spins nucléaires leur con-
fère un temps de vie plus long que celui des élec-
trons. Cependant, le choix d’une injection électrique
des électrons dans la boîte quantique induit une
meilleure stabilité que l’injection optique (choisie
pour les trous) en les protégeant des bruits élec-
triques lents. En parallèle, un régime radiatif transi-
toire rapide qui suit la projection de spin est suscep-
tible de brouiller les dynamiques les plus rapides.
Ceci oriente vers des dispositifs basés sur le spin
d’un trou avec une injection électrique pour concré-
tiser des interfaces spin-photon idéales.
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Abstract: The emerging quantum technologies ben-
efit from the increasingly precise manipulation and
control of single qubits. These technologies are built
upon the core principles of quantum physics that
are the superposition of states, entanglement and
projective measurement. A quantum network link-
ing stationary qubits with photonic channels could
allow outperforming classical communication and
computation schemes. To that end, an interface be-
tween stationary matter qubits and messenger pho-
tonic qubits is required to transfer quantum infor-
mation through the network. Here, we present a
solid-state approach to the development of such an
interface, where a stationary spin qubit, trapped in
a quantum dot, interacts with a photonic qubit in a
micropillar cavity.

In this manuscript, quantum dot-micropillar cavity
devices are investigated as spin-photon interfaces.
A single electron or hole is trapped in a nanomet-
ric semiconductor quantum dot acting as an artifi-
cial atom. Its spin constitutes the stationary qubit
and interacts with photons in a micropillar cavity
through spin-dependent Faraday polarization rota-
tion. As this effect is enhanced by the cavity, pho-
tons might be able to extract the full information on
the spin state, thus encoded on polarization, achiev-
ing a spin-photon interface.

We initially review the fabrication of the devices.
Engineering the planar heterostructure sets, on the
one hand, the energy band structure, and thus
the ability to electrically or optically inject single
charges in the quantum dot. On the other hand,
it determines the optical properties of the cavity,
designed to enhance the spin-photon interaction
as well as the extraction of intracavity photons
to the output channel. The cavity enhancement
of the light-matter interaction requires the spatial
and spectral tuning of the appropriate quantum dot
transition to the optical mode of the micropillar cav-
ity that we achieve through the in-situ lithography
technique developed in the C2N.

The devices thus assembled are first characterized
in the steady state through polarization tomogra-
phy, to measure the full polarization state of the
photons reflected from the device. The inferred gi-
ant Faraday rotations demonstrate their potential
for spin-photon interfaces. We also quantify the in-
tensity of noise, and determine an operating point
in terms of energy of the input photons and output
polarizations associated to the spin eigenstates.

Then, we measure cross-correlations between com-
plementary polarizations of the reflected photons to
access their dynamics, determined by the spin dy-
namics. The contribution of the charge and spin dy-
namics can be isolated depending on the measured
polarizations, and the fast and slow noise sources
are discriminated. The whole set of experimental
results is compared to the theoretical predictions
via a master equation simulation, in order to under-
stand and characterize the involved processes. This
model reproduces most of the experimental obser-
vations. It also allows assessing the quality of the
spin-photon interface by estimating how efficiently
the detection of a photon projects the spin in return.

The two investigated devices reveal the differences
between an electron- and a hole-based spin-photon
interface and the impact of the surrounding het-
erostructure. Indeed, the low sensitivity of holes to
the nuclear spin fluctuations confers them a much
longer spin lifetime than electrons. However, the
choice of an electrical injection of electrons in the
quantum dot demonstrated a better stability than
its optical counterpart (chosen for holes), protect-
ing the electron spin from slow electrical noise. In
parallel, a short radiative transitory regime follow-
ing spin projection blurs out the fastest dynamics.
This supports the case for future hole-based devices
with electrical charge injection as candidates for
ideal spin-photon interfaces.
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κloss Component of the cavity losses through sidewalls
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ηin Input coupling
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|En,±⟩ , En,± Eigenstates and eigenenergies in the Jaynes-Cummings model

Magnetic field parameters

(Bx, By, Bz) Components of the magnetic field in the transverse (x, y) and the longitudinal
(z) directions with respect to the growth axis of the micropillar cavity

(HB,VB) Horizontal and vertical polarizations relative to a transverse magnetic field

Ze, Zh Zeeman splitting of the electron or hole
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Z∥, Z⊥ Zeeman splitting caused by a magnetic field in the z direction (longitudinal)
and or the x and y directions (transverse)

δFSS Fine structure splitting of the exciton

δdia,∥, δdia,⊥ Diamagnetic factor in the longitudinal or transverse directions

Other symbols

|Ψ⟩ Generic pure quantum superposition state
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ρ̂ Generic density matrix
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kBT Energy associated to thermal fluctuations

Ĥ Generic Hamiltonian operator

Ŝ(e), Ŝ(h) Generic electron or hole spin operator

Î Generic nuclear spin operator
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V Volume of the unit cell in the hyperfine interaction

|g⟩ , |e⟩ Ground and excited levels of a generic two-level system

â, â† Annihilation and creation operators for photonic Fock states

σ̂, σ̂† De-excitation and excitation operators for the two-level system

r, t Reflection and transmission coefficients

R, T Reflectivity and transmissivity
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E⃗ Generic electric field vector
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AFM Atomic force microscope
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DNP Dynamic nuclear polarization
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Introduction

In the early 1900s, the problem of the black body spectrum – the temperature-dependent
spectrum emitted by perfectly absorbing objects – was unresolved by what was to become the
classical theories of electromagnetism and statistical physics. Only by hypothesizing that light
should be quantized was Max Planck able to close the gap between the theoretical predictions
and the experimental observations, including for instance the emission spectra of stars and
galaxies. This interpretation established the nature of light as a particle without contradicting
its existing description as a wave: the wave-particle duality gave birth to quantum physics. At
the microscopic scale, what was classically envisioned as a wave could behave as a particle
and vice versa. Quantum physics reshaped how we viewed the structure of atoms, chemical
interactions, light-matter interaction and the behavior of electrons in solids (only to name a
few). Numerous everyday devices were developed following this breakthrough: transistors
and semiconductor devices, GPS, lasers, MRIs and many others. They inherit what is referred
to as the first quantum revolution. However, some of the most advanced and also counterintu-
itive phenomena at the core of quantum mechanics (namely the superposition of states, entan-
glement and projective measurement), hold the promise of a second quantum revolution when
technological novelties mature from the four related domains that emerged: quantum simula-
tion [1], quantum sensing [2], quantum communications [3, 4] and quantum computation [5,
6]. Each of these fields seeks to harness the quantum properties of matter to outperform their
classical counterparts.

The fundamental building block for quantum applications is the qubit, the quantum ana-
log of a classical bit. While in the classical realm, a bit can only take two values (0 and 1), the
quantum superposition of states allows a qubit to take any values α |0⟩ + β |1⟩ where α and β

are two complex numbers such that |α|2 + |β|2 = 1. A qubit can therefore be viewed as a vec-
tor on the surface of a three-dimensional sphere. This change of paradigm from a binary state
to a continuum of superposition states comes, on the one hand, with potentially tremendous
computing capability, but on the other hand, with the vulnerability of the delicate quantum
state to environmental noise. Indeed, classical bits in silicon transistors consist in ensembles of
tens of thousands of atoms, whereas qubits are commonly made up of a relatively low num-
ber of particles (often only a single one) so as to manifest the desired quantum properties.
The most common types of qubits are photons, atoms and ions, electrons and other charged
particles, and superconducting circuits based on Josephson junctions. Fundamental quantum
experiments, such as the entanglement between two matter qubits, were first achieved with
trapped atoms and ions [7], owing to sophisticated trapping schemes and extremely pure op-
erating environments. However, the downside is their lack of scalability – a decisive criterion
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for efficient quantum computation [5]. The interest for qubits trapped by design in solid-state
devices thus grew: nowadays, tech giants Google and IBM focus their efforts towards quan-
tum computing with superconducting qubits [8], and the field of artificial atoms is very active
as well, investigating for instance colored centers in diamond and semiconductor quantum
dots [9]. Photonic qubits, for their part, show an interesting quantum state robustness as they
interact very little with their environment. As such, their most common application is to con-
vey quantum information from one stationary qubit to the other, in freespace or through optical
fibers [3]. They can also be envisioned as standalone qubits for quantum computation through
linear optics [10] (i.e., using only single-photon sources, beam-splitters, phase shifters and pho-
todetectors), however, this paradigm lacks photon-photon gates and has a limited scalability.

An efficient quantum computation scheme relies, on the one hand, on the ability to per-
form quantum operations on qubits (such as initialization, coherent manipulation, gating op-
erations and measurement), but on the other hand, an equally important feature is to transfer
quantum states between stationary qubits over a distance through messenger qubits such as
photons [5]. This requirement gives its relevance to the general idea of a quantum internet [3],
connecting a network of stationary qubit nodes through photons in optical fibers. This opens
the path to increasingly elaborate quantum communication [11] and computation schemes [12]
through highly entangled light-matter states, even with only a few nodes. The first experi-
mental breakthroughs in this framework are owed to the cold atom field, where cavity quan-
tum electrodynamics (cQED) was pioneered through the extremely efficient coupling between
atomic and photonic qubits in optical cavities [13]. Since then, this very active domain has
demonstrated advanced experiments towards an atom-photon interface [14, 15] and more re-
cently, towards a quantum network [16]. The efficiency of cold atoms nonetheless comes at
the price of cumbersome control apparatus, which led to consider other avenues for large-
scale quantum applications. Among them, semiconductor solid-state devices offered a plat-
form of choice, where charged particles can be trapped in quantum dots [17], forming artificial
atoms (stationary qubits). Engineering the light-matter interaction in semiconductor microcav-
ities brought cQED to the solid-state domain [18]. The interest towards such devices grew as
they could provide efficient and practical single-photon sources for quantum optics applica-
tions with an exceptional scalability [19]. The control of a quantum dot charge and spin state in
a microcavity [20] later set the stage to conceive a solid-state interface between a stationary spin
qubit and photons injected into the device. From then, many quantum optics phenomenon in-
volving spins were demonstrated in the solid-state, from coherent spin control by photons [21]
to spin-photon entanglement [22].

The work presented in this manuscript originates from the development of solid-state
single-photon sources in the C2N, driven by the team of P. Senellart who demonstrated the de-
terministic coupling between single quantum dots and micropillar cavities [23]. The assembled
devices led to extremely efficient single-photon sources [24], but also to the coherent control
of a quantum dot state [25] or the generation of peculiar non-classical states of light [26]. The
approach adopted here aims at realizing a spin-photon interface able to coherently transfer the
full quantum state from a quantum dot spin to a photon through the spin-dependent Faraday
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rotation of the photonic polarization, enhanced by the microcavity [27, 28]. Such a device would
in turn provide a deterministic entanglement between a stationary spin and an external pho-
ton [29], to generate complex entangled states between a single spin and multiple photons [30]
or to study the fundamentals of the projective quantum measurement [31, 32].

The manuscript is organized as follows:

Chapter 1 introduces the principle of a quantum dot-based solid-state spin-photon inter-
face, from the confinement and control of a spin qubit in a quantum dot to the cavity-mediated
spin-photon interaction, detailing the current state of the art along the way. We initially present
the semiconductor quantum dot, the fundamental solid-state unit that is to hold the spin qubit
as a single electron or hole. Its nanometric size confers atom-like optical transitions between
charge states of spin determined by the photon polarization: there lies the core principle of
our solid-state spin-photon interface. The electrical control of the structure coupled to an ap-
propriate optical excitation protocol provides the means of controlling both the charge and
spin states of quantum dots. We subsequently examine the direct application to single-photon
source. Then, we focus on the spin qubit per se, described in the Bloch sphere, by analyz-
ing how an operator might manipulate or measure its quantum state and how the influence
of environmental fluctuations manifests. The spin-noise spectroscopy and spin-photon entan-
glement with quantum dots give two initial demonstrations of the spin-photon interaction in
the solid state, historically limited by the absence of an optical cavity. In the third part of this
chapter, we introduce the quantum dot-cavity coupling: its theoretical description in the cQED
framework and its experimental implementation through in-situ lithography. By describing the
quantum state of photons in the Poincaré sphere and detailing the cavity enhancement of the
spin-dependent polarization rotation, we show that such a device might transfer an arbitrary
quantum state of a spin on the polarization state of a photon.

Chapter 2 initially presents the two devices investigated throughout the manuscript: one
couples a single hole spin to a micropillar cavity and the other relies on an electron spin. Their
deterministic fabrication assisted by in-situ lithography demonstrates the successful enhance-
ment of the desired optical transition by the cavity. We then proceed to review the principle
of the main experimental techniques through their preliminary application to the hole-based
device, in anticipation of the in-depth characterization to come in the next chapters. First, the
polarization tomography reconstructs the complete photonic polarization state in the Poincaré
sphere, and its application to measure the cavity birefringence allows to quantify the qual-
ity of the optical alignment. Second, the optimization of the device as a spin-based single-
photon source focuses on the emission rate, purity and indistinguishability criteria: this pro-
vides proper operating conditions to eventually address the device as a spin-photon interface.
Finally, photonic cross-correlation measurements reveal the quantum dot charge and spin dy-
namics imprinted on the photons in specific polarization bases: the former quantifies the oc-
cupation probability of the desired charge state while the latter indirectly evidences the spin
projection induced by the photonic measurement, a key feature of a spin-photon interface.
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Chapter 3 includes the theoretical tools to simulate our devices in the cQED framework
through the numerical resolution of the master equation. The model is built progressively until
it encompasses most of the physical phenomena of interest, from the spin-photon interaction in
a cavity to the effect of fluctuations induced by the solid-state environment. Extracting the pos-
sible outcomes of tomography and cross-correlation experiments from the simulation allows to
study the influence of the parameters at play and to lay the foundations for the interpretation of
real experiments in the next chapters. In particular, focusing first on the steady-state polariza-
tion tomography, we show that a wide range of device parameters lead to an ideal spin-photon
interface in specific configurations of input laser energy and polarization measurement basis.
We then evaluate the spin projection induced by photonic measurement, which is accompanied
by three dynamic phenomena on its way back to equilibrium: a radiative rebalancing between
excited and ground states, spin flips and charge escape. The interplay between these contribu-
tions determines the quality of the spin-photon interface. We finally evaluate the impact of fast
and slow electrical noise, both in steady-state and dynamic regimes, so as to distinguish their
different contributions in the experiments.

In chapter 4, the hole-based device is experimentally characterized as a spin-photon in-
terface. The polarization tomography assesses a giant spin-dependent polarization rotation
as well as a good charge occupation probability, but points out its limitation by noise, bring-
ing it below ideality. We implement cross-correlation experiments to perform spin-noise spec-
troscopy for the first time with single photon detectors. They show a promising long spin life-
time and unambiguously designate slow electrical fluctuations as the main source of noise. We
conclude by simulating a modest overall performance as a spin-photon interface, as quanti-
fied by the measurement-induced spin projection. More precisely, slow noise prevents the pro-
jective measurement from occuring in a determined spin eigenstate. The performance would,
however, significantly be improved by removing the slow fluctuations and would become close
to ideal in the complete absence of noise.

In chapter 5, an analogous study is carried out on the electron-based device. From the to-
mography standpoint, the polarization rotation meets the criterion for ideality with very little
noise and a close to ideal charge occupation probability. For their part, the cross-correlation ex-
periments indicate a partial measurement-induced spin projection, obtained for the first time
through giant Faraday rotation. That is, the measurement of a photon changes the spin popu-
lations. However, this measurement also exposes a complex interplay between fast spin flips
and radiative rebalancing, which greatly limits the potential application of this device as a
spin-photon interface and steers future development towards an implementation of such a low
noise device coupled to a hole spin.

We conclude by presenting perspectives of this work. Immediate improvements of the
experimental techniques in a similar paradigm could be followed by prospects towards spin-
photon gates with current devices. In the long term, projects based on next-generation devices
could include the production of multipartite entangled states involving a spin and a string of
consecutive single photons, as well as the fundamental study of quantum measurement.



1

Chapter 1

Charged quantum dots in microcavities:
an overview

The elementary units of quantum computing are logic gates executing operations on one
or multiple qubits. A spin-photon interface is a device capable of imprinting the quantum state
of a spin on a photon or vice versa: in this regard, it is suited to achieve a wide range of logic
operations involving the two types of qubit, starting with the spin-photon entanglement op-
eration. Transferring this technology from the existing cold atoms experiments [15, 16, 33] to
the domain of solid-state systems holds tremendous promise and challenges. Promise in terms
of scalability and affordability of a device which could become a building block of a complex
quantum information system, and challenges inherent to the orders of magnitude of environ-
mental noise separating an atomic qubit in a vacuum chamber and a spin qubit trapped in a
solid-state quantum dot, surrounded by millions of fluctuating nuclear spins. Throughout this
chapter, we review the technical solutions elaborated over the years to develop cavity quan-
tum electrodynamics (cQED) devices in the solid state. The centerpiece is a quantum dot, act-
ing as an artificial atom and carrying single spins. A microcavity is built around it, enhancing
the light-matter interaction. We give the basic theoretical explanations to unravel the physical
principle of the spin-photon interface, and present the state-of-the-art experiments in related
areas, with a focus on the solid-state applications.

1.1 Confinement of charges in quantum dots

1.1.1 Epitaxial growth

Stranski-Krastanov method

A quantum dot is a semiconductor nanostructure containing approximately 105 atoms em-
bedded in a high-bandgap matrix, acting as an artificial atom [17] by confining charges on dis-
crete energy levels like electrons on atomic orbitals. The structures studied in this manuscript
are self-assembled InGaAs quantum dots grown by the Stranski-Krastanov (SK) method [34,
35], which proceeds as follows: the deposition of InAs on a bulk GaAs substrate, layer by layer,
leads to the formation of nanometric lens-shaped islands, the quantum dots (Fig. 1.1a). The sta-
bility of the structure is explained by the lattice parameter mismatch between InAs (6.06 Å)
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and GaAs (5.65 Å), resulting in the build-up of strain when the InAs film grows: after a critical
thickness of 1.7 monolayers (called the wetting layer), quantum dots form at random positions
to relieve strain. The typical quantum dot size is 3 nm in the growth direction and 10-20 nm in
the lateral plane (Fig. 1.1b) and this flat asymmetric shape has important implications discussed
later in this chapter.

(a) (b)

FIGURE 1.1: (a) Illustration of the strain relief by the formation of InAs quantum
dots on a GaAs substrate by the SK method. The sketch shows a 3 monolayer
thick wetting layer. Figure from [36]. (b) Atomic force microscope (AFM) mea-
surement of the quantum dot landscape after SK growth (vertical scale has been

enlarged for better visibility). Figure from [37].

A capping layer of GaAs encloses the quantum dots. In addition, they are annealed at
high temperature (850-900 °C): the interdiffusion of In and Ga between the quantum dots and
the capping layer ensues, making the dots flatter, more symmetrical in the lateral plane and
with a more homogeneous shape distribution across the whole sample [38]. After this step, the
composition of quantum dots is In1−xGaxAs but we keep the notation InGaAs for clarity.

While the SK method is widely used in the quantum dot community, other growth proto-
cols are worth mentioning, especially the rapidly expanding droplet epitaxy [39], more flexible
than SK as far as the shape and composition of quantum dots are concerned. In addition, con-
trolling the location of the growth site motivated the development of techniques such as the
epitaxy on a substrate patterned with nanoholes [40, 41].

Energy structure of quantum dots

In the same way that electronic orbitals of an atom are quantized, the charge carriers con-
fined in a quantum dot can only access discrete energy levels due to the nanometric scale of
the structure, hence the reference of quantum dots as artificial atoms. An actual quantum dot is
shown in Fig. 1.2a as viewed by a transmission electron microscope, evidencing its flatness in
the growth direction z. The confined electrons and holes (of respective electric charge −e and
+e) experience the energy band structure represented in Fig. 1.2b, with valence and conduc-
tion bands separated by a bandgap evolving along z. At cryogenic temperatures (4 K), the gap
energies of the GaAs 3D bulk and InAs 2D wetting layer are respectively 1.5 eV and 1.45 eV.
The gap of the quantum dot is diminished by its InAs content to constitute a potential well (the
bandgap of pure bulk InAs is 0.42 eV at 4 K).
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While the low bandgap of the quantum dot traps electrons in the valence band and holes
in the conduction band, its nanometric dimensions cause the quantization of the energy levels.
The discrete electronic states of the quantum dot are denoted s, p, d for the conduction band
like their counterparts in natural atoms, and the valence band states are labeled h states due to
their more complex wavefunctions [42]. When the quantum dot and its close surroundings are
undoped semiconductors, the Fermi energy EF lies in the middle of the bandgap, filling the
valence band with electrons and leaving the conduction band empty. In this manuscript, a sin-
gle conduction band electron or a single valence band hole act as solid-state qubits, interacting
with photons (messenger qubits) of specific energy and polarization.
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FIGURE 1.2: (a) Transmission electron microscope image of a quantum dot, with
the growth direction z in the vertical direction. Picture courtesy of G. Patriarche.
(b) Energy band structure of the quantum dot and its surroundings, with z as the

horizontal axis.

1.1.2 Optical transitions in quantum dots

The absorption of photons in a semiconductor structure leads to the creation of electron-
hole pairs. We first describe which combinations of charges a quantum dot can hold, before
connecting them with optical transitions and finally detailing how the charge state of a quan-
tum dot can be controlled.

Charge states zoology

An electron from the conduction band might be promoted to the conduction band by ab-
sorbing a photon, leaving a hole in the valence band. The energy gained by the electron is equal
to the energy of the absorbed photon. The wetting layer and the bulk present a continuum of
levels, so absorbing a photon in these regions requires only the photon’s energy to be higher
than the bandgap. However, in the quantum dot, only photons tuned to the energy difference
between a valence and a conduction level can be absorbed, creating an electron-hole pair on
the corresponding levels.
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Among the variety of possible quantum dot charge states [43], Fig. 1.3 describes the sim-
plest: the empty state ∅, the single electron e−, the single hole h+, the electron-hole (e-h) pair
X, commonly referred to as an exciton1, the positive and negative trions X+ and X− and the
biexciton XX. In the simple description of Fig. 1.3, we ignore the Coulomb interaction slightly
shifting the energy of the quantum dot levels depending on the nature of the confined charge.

h+ X+ XXX−X∅ e−

FIGURE 1.3: Elementary charge states of a quantum dot with zero, one or two
charges in the valence and conduction bands.

Optical transitions between charge states

Unless stated otherwise, we adopt the unit system ℏ = 1, so that pulsations (usually in rad/s) take
the dimension of energies in µeV .

Insofar as the charge of the quantum dot is concerned, optical transitions start from a
given charge state and add an electron-hole pair by absorbing a photon of energy tuned to the
difference between the given valence and conduction levels where the pair is created. Examples
of the transitions between the simple charge states are shown in Fig. 1.4a: the ground states are
∅, h+, e− and X and the corresponding excited states are X, X+, X− and XX. The photon energy
ω is labeled with the excited state (such as ωX+ for the transition h+ → X+) and each of them
is distinct due to the specific ground state electrostatically shifting the energy levels in its own
way.
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FIGURE 1.4: (a) Photonic transitions between the simplest charge states of a quan-
tum dot. Only the first discrete energy level is represented in the valence and
conduction bands. (b) Photoluminescence emitted from a quantum dot, adapted

from [45].

1An exciton usually defines a Coulomb-bound e-h pair [44] whereas in the present case, it is only bound by the
quantum dot confinement.
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Experimentally, a photoluminescence (PL) experiment reveals the energy structure of the
quantum dot: a high-energy laser creates numerous electrons and holes that recombine by all
the allowed canals, each emitting photons at a given energy. Fig. 1.4b represents an example of
PL emission lines from a single quantum dot, identified as the radiative recombinations from
states X, XX and CX (which stands for charged excitons: X+ or X−).

Charge control of quantum dots

Our next aim is to inject a single electron or hole in the quantum dot to interact with
photons of energy ωX− or ωX+ . The charge control of a quantum dot takes two complementary
approaches: the electrical and the optical injection. We introduce both techniques here and
elaborate them in section 2.1 on the devices studied throughout this manuscript.

The heterostructure surrounding the quantum dots is decisive for their ability to trap and
release the electrons and holes flowing in the device. A combination of materials with p-doping
or n-doping, electric gates and potential barriers help controlling the charges and selecting only
the desired quantum dot state.

On the one hand, the electrical injection relies on a bias applied to the whole structure, that
tilts the energy bands to the point where one of the quantum dot levels crosses the Fermi en-
ergy EF , allowing a charge to populate it. Fig. 1.5 shows experimental data from Gerardot et al.
(2008) [20], who studied the photoluminescence emitted by an electrically controlled device:
the voltage is applied between the p-doped side of the sample and the Schottky gate. The emit-
ted light is measured as the voltage is scanned: each stable charge state at a given voltage emits
photons by recombination of one e-h pair brought by the non-resonant laser1. The difference
between ωX , ωX− and ωX+ is worth noticing: even if these transitions involve only the lowest
energy levels of the valence and conduction bands, the electrostatic interaction with the ground
state (respectively empty, single electron and single hole) shifts the energy of the transition.

FIGURE 1.5: (Top) Band structure of an electrically controlled device. (Bottom) PL
measurement as the gate voltage is scanned, showing the multiple charge states

of the quantum dot. Figure from [20].

1The non-radiative relaxation of the e-h pair to the lowest energy levels happens on the ps timescale, followed
by the radiative recombination observed in the experiment, in the ns timescale. The laser power is kept low for the
process to repeat pair after pair.
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On the other hand, the optical injection relies on the absorption of photons to create e-h
pairs in the structure. Controlling whether the structure favors electrons or holes to be trapped
in the quantum dot is achieved by adding a potential barrier made of a high-bandgap material
in the vicinity of the quantum dot. Ardelt et al. (2015) [46] demonstrated that adding such a
barrier on the p-doped side of the structure greatly increased the tunneling time of holes out
of the quantum dot, in favor of the single hole charge state. A barrier placed on the opposite
side of the quantum dot would trap electrons, but the electrical injection of single electrons is
usually implemented without the need for a trapping barrier [47].

In the following, the polarization degree of freedom of the photons is explored, as it con-
strains the spin difference between the initial and final charge states of the optical transitions.

1.1.3 Spin degree of freedom and fine structure of the transitions

Specifics of electrons and holes in quantum dots

The spin of an electron or hole in their fundamental energy level constitutes our solid-state
qubit of interest. The two particles by themselves have different wavefunction properties, but
the peculiar environment of a quantum dot also confers them specific energy characteristics
from which we can clarify the scope of our study. Fig. 1.6 is a dispersion diagram of electrons
and holes confined in a semiconductor like GaAs: it shows the structure of the fundamental
energy level of the conduction and valence bands (the s electronic state and higher energy h-
state from Fig. 1.2b).

FIGURE 1.6: Dispersion diagram (energy - momentum) in a semiconductor like
GaAs: the wavefunctions of the lowest energy states are of s nature for electrons
and p for holes. In addition, holes exhibit three sublevels, split by ∆c in pres-
ence of vertical confinement and ∆SO by the spin-orbit coupling. Figure adapted

from [48].
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Firstly, the wavefunction of each particle has a distinct spatial symmetry around the nuclei
of the solid-state matrix: s type for the electron and p for the hole. The immediate consequence
is a much stronger coupling of the electron spin with the nuclear spins, called the hyperfine
interaction (see subsection 1.2.3). Secondly, the substructure of the energy levels are very dif-
ferent: the fundamental conduction band level is just a single level, whereas the holes are split
in three sublevels: heavy holes, light holes and a split-off band. In a bulk material, the light and
heavy hole states are energy-degenerate, but strong vertical confinement results in the splitting
of the light-hole band [49], far enough in energy to be considered inaccessible throughout this
manuscript (tens of meV [50])1. The split-off band is even further away in energy owing to the
spin-orbit coupling (hundreds of meV [50]) and will also be ignored here.

Spin states and optical selection rules

The spin of the charge carriers is expressed by their angular momentum J and its projec-
tion about a given quantization axis. In our structures, the optical propagation axis is aligned
with the growth axis z, which becomes the natural quantization axis for the light-matter inter-
action. Electrons and holes are fermions of respective angular momentum Je = 1

2 and Jh = 3
2 ,

hence with possible projections about z of ±1
2 for the electron and ±1

2 ,±3
2 for the hole. The

holes with spin ±1
2 are the light holes (ignored in this manuscript) and those with spin ±3

2 ,
heavy holes [50]. The ket notations representing the spin states read:

• |↑⟩z for an electron of spin projection +1
2 about z, |↓⟩z for −1

2 ;

• |⇑⟩z for a hole of spin projection +3
2 about z, |⇓⟩z for −3

2 .

The Pauli exclusion principle allows at most two charges of opposite spins to occupy the same
quantum dot state. What’s more, photons also carry a spin, of projection on their propagation
axis z equal to +1 for the right-handed circular polarization |R⟩ and −1 for the left-handed
one, |L⟩. The conservation of momentum in the spin-photon interaction translates as optical
selection rules, restricting the optical transitions to photons whose spin projection matches the
difference between excited and ground states. The allowed transitions for an electron or a hole
in the ground state, that were considered only from the charge standpoint in Fig. 1.4, become
the systems shown respectively in Figs. 1.7a and 1.7b when the spin is taken into consideration.
The optical selection rules in the case of the hole are elaborated below:

• From the ground state |⇑⟩z (spin +3
2 ) to the excited state |⇑⇓↑⟩z (spin +1

2 ), the spin dif-
ference is −1, so only an L-polarized photon of spin −1 can be absorbed to create an
electron-hole pair: +3

2 − 1 = 1
2 .

• From the ground state |⇓⟩z (spin −3
2 ) to the excited state |⇓⇑↓⟩z (spin −1

2 ), the spin dif-
ference is +1, so only an R-polarized photon of spin +1 can be absorbed to create an
electron-hole pair: −3

2 + 1 = −1
2 .

1An asymmetry in the quantum dot lateral confinement might still result in the mixing of the light and heavy-
hole bands, but we ignore this effect as the annealing strongly reduces such an asymmetry.
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One can also consider a different quantization axis, for example along a transverse direction
such as x. This corresponds to a change of basis to |⇑⟩x =

|⇑⟩z+|⇓⟩z√
2

and |⇓⟩x =
|⇑⟩z−|⇓⟩z√

2
. Since

the left- and right-handed circularly polarized photons still only interact respectively with |⇑⟩z
and |⇓⟩z , the four-level system now accesses four energy-degenerate transitions presented in
Fig. 1.7c, with two in each linear polarization H and V of the photons propagating along z (H
and V being themselves superpositions of R and L, associated to the transitions in the z basis
–see Eq. 1.24).

R L

↑↓⇑ 𝑧𝑧 ↓↑⇓ 𝑧𝑧

↑ 𝑧𝑧 ↓ 𝑧𝑧
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H H
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V

V

(c)

FIGURE 1.7: Allowed optical transitions by photons traveling along z, for a four-
level system constituted by (a) an electron spin quantized in the z direction, (b)
a hole spin quantized in the z direction and (c) a hole spin quantized in the x

direction.

Effect of a magnetic field on the exciton and trion transitions

A magnetic field initiates the precession of spins about its direction, thereby imposing a
spin quantization axis and redefining the optical selection rules. It also shifts the energy of
levels with non-zero spin, lifting the spin degeneracy of the transitions by Zeeman splitting.
Here we consider two magnetic field configurations: Faraday (along z, also called longitudinal
or parallel) and Voigt (oriented in the (x, y) plane, also called transverse or in-plane). In-depth
analyses of the fine structure of quantum dots and how they respond to a magnetic field were
conducted by multiple groups [51–53]. Here, we restrict the study to the exciton and the pos-
itive trion transitions. Their response to a Faraday or Voigt magnetic fields are described re-
spectively in Fig. 1.8 and Fig. 1.9. The figures represent the optical transitions of the system
without any magnetic field (left panel), and with intense Faraday and Voigt magnetic fields1,
respectively Bz (middle panel) and Bx (right panel).

Let us first present the exciton system (Fig. 1.8). Without an external magnetic field, it
has two optically active transitions that are linearly polarized in directions X and Y (quan-
tum dot-dependent), as shown in Fig. 1.8a. The corresponding excited eigenstates are respec-
tively labeled |eX⟩ and |eY ⟩: they represent specific superpositions of the states |⇑↓⟩z and |⇓↑⟩z .
They are separated by a small fine structure splitting δFSS . Applying a Faraday magnetic field
(Fig. 1.8b) mixes the excited states of the system, now labeled |eL⟩ and |eR⟩ as the correspond-
ing polarizations of the transitions become circularly polarized at high magnetic fields [51].
Additionally, the separation between the excited levels becomes the Zeeman splitting Z∥. The
case of a Voigt magnetic field (Fig. 1.8c) differs as the polarization of the transitions transforms

1The value of 9 T is only used here as an indication of the order of magnitude of an intense magnetic field.
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into HB and VB, linear polarizations depending on the orientation of the magnetic field, and
the excited states are accordingly labeled |eHB

⟩ and |eVB
⟩. The separation between the excited

levels now becomes the Zeeman splitting Z⊥ [52].

𝐵𝐵 = 0 𝑇𝑇

𝑒𝑒𝑌𝑌 𝑒𝑒𝑋𝑋

|Ø⟩

Y X

𝛿𝛿𝐹𝐹𝐹𝐹𝐹𝐹

(a)

𝐵𝐵𝑧𝑧 = 9 𝑇𝑇

|Ø⟩

𝑒𝑒𝐿𝐿
𝑒𝑒𝑅𝑅𝑍𝑍∥

L R

(b)

𝐵𝐵𝑥𝑥 = 9 𝑇𝑇

|Ø⟩

HB VB

𝑒𝑒𝐻𝐻𝐵𝐵
𝑒𝑒𝑉𝑉𝐵𝐵𝑍𝑍⊥

(c)

FIGURE 1.8: Effect of a magnetic field on the exciton transition: (a) no magnetic
field; (b) intense Faraday magnetic field; (c) intense Voigt magnetic field.

Regarding the trion system (Fig. 1.9), without an external magnetic field, it has two energy-
degenerate circularly polarized transitions with a helicity depending on the optical selection
rules, as shown in Fig. 1.9a. A Faraday magnetic field (Fig. 1.9b) introduces Zeeman splittings
to the ground and excited states doublets (respectively Zh,∥ and Ze,∥ as their magnitudes are
determined by the hole for the ground state and the electron for the excited state). It preserves
the optical selection rules from the zero magnetic field case as it doesn’t change the spin quan-
tization axis z [51]. On the contrary, a Voigt magnetic field (Fig. 1.9c), imposes a new spin
quantization axis (such as x in the present case), and the interaction with photons propagat-
ing along z allows four linearly polarized transitions in directions HB and VB (quantum dot
and magnetic field-dependent). The Zeeman splittings are then written Zh,⊥ and Ze,⊥ and the
difference between the two results in four distinct transition energies.

L R

⇑⇓↑ 𝑧𝑧 ⇓⇑↓ 𝑧𝑧

⇑ 𝑧𝑧 ⇓ 𝑧𝑧

𝐵𝐵 = 0 𝑇𝑇
(a)

L R
⇓⇑↓ 𝑧𝑧 𝑍𝑍𝑒𝑒,∥

𝑍𝑍ℎ,∥

⇑⇓↑ 𝑧𝑧

⇑ 𝑧𝑧
⇓ 𝑧𝑧

𝐵𝐵𝑧𝑧 = 9𝑇𝑇
(b)

⇓⇑↓ 𝑥𝑥 𝑍𝑍𝑒𝑒,⊥

𝑍𝑍ℎ,⊥

⇑⇓↑ 𝑥𝑥

⇑ 𝑥𝑥
⇓ 𝑥𝑥

𝐵𝐵𝑥𝑥 = 9𝑇𝑇

HB

VB

VB
HB

(c)

FIGURE 1.9: Effect of a magnetic field on the positive trion transition: (a) no mag-
netic field; (b) intense Faraday magnetic field; (c) intense Voigt magnetic field.

A negative trion exhibits an analogous magnetic field dependence, but with splittings Ze

between the ground state and Zh for the excited states. The distinct responses of the exciton and
trion systems to magnetic fields, especially in the Voigt configuration, provide a charge state
identification method. In a photoluminescence experiment with an increasing Voigt magnetic
field, the exciton splits in two orthogonal linearly polarized lines while the trion splits in four
of them, orthogonal two by two. This technique will be applied in particular in chapter 2.
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1.1.4 Spin initialization

In order to initialize the spin of an electron or hole in a quantum dot, after such a charge has
been injected as previously described, we can take advantage of the polarization and energy
selectivity of the positive and negative trion transitions through optical spin pumping schemes.
To this effect, the knowledge of the spin flips naturally occurring in quantum dots is required:
due to environmental effects described later (namely, the hyperfine interaction), the spin of a
hole trapped in an InGaAs quantum dot flips much slower than an electron spin [50, 54, 55].
Two possible optical spin pumping schemes ensue, as shown in Fig. 1.10.

On the left-hand side is the case of a hole spin in the absence of an external magnetic
field, as performed for instance in [20]. The fast electron spin-flip time in the excited state,
compared to the slow hole spin-flip time in the ground state, offers the opportunity to pump the
|⇑⟩z → |⇑⇓↑⟩z transition with a left-handed circularly polarized laser, eventually accumulating
the spin in the |⇓⟩z state. This scheme is also practical with a longitudinal magnetic field (see
subsection 3.4.3 for more details).

The case of the electron spin initialization has inverse constraints as the ground state spin
flips much faster than the excited state: the spin initialization is impossible in the absence of
an external magnetic field. In Fig. 1.10b, we show how a Voigt magnetic field solves this issue
by splitting the energies of |↑⟩x → |↑↓⇑⟩x and |↓⟩x → |↓↑⇓⟩x while also allowing the diagonal
decay channels. An excitation laser tuned to |↑⟩x → |↑↓⇑⟩x selectively pumps this transition as
it is detuned from the other one: the trion state decays either in |↑⟩x and is repumped, or in |↓⟩x
and is shelved in this state as it cannot be re-excited before a ground spin flip. This protocol
incidentally works for both electron and hole spin, and was demonstrated first in [56]. A related
scheme allows the electron spin pumping in a longitudinal magnetic field [57].

L pump R decay

⇑⇓↑ 𝑧𝑧 ⇓⇑↓ 𝑧𝑧

⇑ 𝑧𝑧 ⇓ 𝑧𝑧
AccumulationDepletion

𝐵𝐵 = 0 𝑇𝑇

Fast

Slow

(a)

↓↑⇓ 𝑥𝑥

↑↓⇑ 𝑥𝑥

↑ 𝑥𝑥
↓ 𝑥𝑥

𝐵𝐵𝑥𝑥 = 9𝑇𝑇
AccumulationDepletion

HB pump

HB decay
VB decay

(b)

FIGURE 1.10: Spin initialization protocols: (a) hole spin with no external magnetic
field; (b) electron spin with an external Voigt magnetic field.

1.1.5 Single photon emission and optical excitation schemes

The radiative recombination of charges in quantum dots provides a stream of single pho-
tons emitted one by one, realizing a single-photon source with numerous applications in quan-
tum communications [4, 58] and quantum simulation [1]. Let us go through the general princi-
ples of single-photon sources before detailing different optical excitation techniques.
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Single photon emission

A single-photon source is a device which emits photons one by one. The physical process is
either probabilistic or deterministic in nature: probabilistic types emit single photons at random
times (they are based on non-linear phenomena such as parametric down-conversion [59]),
whereas deterministic sources emit single photons only once they are triggered (it is the case
for trapped atoms [60] and artificial atoms like nitrogen-vacancy centers in diamond [61] and
quantum dots [24]).

A schematic view of a deterministic single-photon source (SPS) is represented in Fig. 1.11:
an optical excitation triggers the device with repeating laser pulses, and each time, the source
reflects one single photon superimposed with the remaining of the triggering pulse. A beam
splitter directs the reflected beam through a filter which isolates the single photons, either in
polarization or in energy. For instance, exciting the trion transition with a horizontally polar-
ized laser produces H and V single photons (see Fig. 1.7c for the optically allowed transitions):
they can be isolated in the collection from the H-polarized triggering pulse by selecting only
the V component, unfortunately losing the H single photons in the process.

Three figures of merit emerge from the principle of a single-photon source:

• The brightness is the probability that the source emits one photon per triggering pulse.

• The purity is the probability that the source doesn’t emit more than one photon per trig-
gering pulse.

• The indistinguishability (also called mean wave-packet overlap) quantifies how identical
the emitted photons are to each other, in terms of spatial and temporal profile, energy and
polarization.

Filter

SPS

Triggering
pulses

Beam 
splitter

Reflected pulses 
+ single photons

Input

Collection

Single photons

FIGURE 1.11: Principle of an optically excited single-photon source triggered by
pulses and reflecting single photons on top of the remaining triggering pulses,

filtered out after a beam splitter.
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Many optical excitation schemes were developed in the framework of single-photon
sources. A comparative study of all these protocols was done by Reindl et al. (2019) [62]. Each
of them relies on specific photon energies to create an electron-hole pair on given quantum dot
levels. In this subsection, we consider a quantum dot initially in the empty charge state and the
creation of an e-h pair by photonic excitation of increasing energy, as represented in Fig. 1.12:

• Resonant excitation in the s-shell level (left red arrow) creates an e-h pair on the highest
valence and lowest conduction levels. The radiative recombination emits a single photon
at the same energy as the excitation, hence the name resonant.

• Quasi-resonant excitation, for instance in the p-shell level (middle red arrow), followed
by non-radiative relaxation to the s-shell and single photon emission. The detuning with
the s-shell transition is typically 13 meV for the p-shell excitation1. Any excitation scheme
through a combination of quantum dot levels other than resonant excitation belongs to
this category.

• Quasi-resonant phonon-assisted excitation in the s-shell (right red arrow): either involv-
ing longitudinal acoustic (LA) phonons (detuning ≃ 1 meV) or longitudinal optical (LO)
phonons (detuning 36 meV). Here, the laser creates a phonon and an e-h pair on the s-
shell, before radiative recombination.

• Non-resonant excitation in the wetting layer or in the bulk continuum of levels (respec-
tively orange and yellow arrows), followed by non-radiative relaxation to the s-shell and
single photon emission.

s
p
d

2D wetting layer

3D bulk

LO

En
er

gy 1.
5	
eV

1.
45
	e
V

1.
35
	e
V

h	states

FIGURE 1.12: Electronic structure of the quantum dot and its surroundings and
possible optical excitation schemes.

1This value is from [62]. It can vary from quantum dot to quantum dot, and it strongly depends on the temper-
ature at which the quantum dots are annealed.
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Even though we focused on the transitions starting from the empty charge state, these
techniques also apply to transitions from any pre-existing charge state, such as the h+ ↔ X+

transition. Indeed, the heterostructure design, the electrical and the optical control can be com-
bined to address any charge state, as will be detailed in section 2.1 where we show devices
purposefully aiming at selecting the single electron or single hole states in the quantum dot.

Based on the figures of merit of a SPS, we can review the specificities of each optical exci-
tation techniques:

• The resonant s-shell excitation is ideal to minimize the disturbance of the quantum dot’s
environment by the input laser, but the trade-off is that multiple polarization states can
be emitted. In this context, cross-polarized filtering absorbs half of the emitted photons.
This scheme is widespread and has led to very high quality single-photon sources [24,
63].

• The quasi-resonant p-shell excitation allows all the photons emitted by the quantum dot
to be collected as the input laser is spectrally filtered, but the relaxation to the s-shell
before recombination induces a time jitter that can be detrimental to the indistinguisha-
bility [64].

• The quasi-resonant phonon-assisted excitation is very efficient as the input laser can be
spectrally filtered and the non-radiative relaxation is very fast: therefore both the bright-
ness and the indistinguishability can be high. The LA excitation scheme has been draw-
ing attention recently as the complex physical process is unraveled by theoretical re-
search [65–68] and highly transmissive spectral filters are becoming narrower. Notice-
able experimental results were obtained at the C2N in 2021 by S. Thomas, M. Billard and
coworkers [69, 70] and also by other research groups [71, 72].

• The high energy non-resonant excitation generates an excess of charge carriers, produc-
ing a fluctuating electric field that randomly shifts the quantum dot energy (also known
as spectral wandering). Additionally, the relaxation to the lowest energy level before re-
combination induces a time jitter that degrades the indistinguishability. It is rarely used
on its own, but an interesting feature is that as an auxiliary laser, it can stabilize the charge
environment of a quantum dot by filling neighboring traps, which leads to an improved
indistinguishability [73].

Other schemes have produced noticeable results, such as the extremely high-purity source
based on the two-photon excitation to the biexciton state XX, which radiatively recombines in
a two-step cascade to the neutral exciton X0 and then to the empty state ∅ [74].
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1.2 Single charges confined in quantum dots as solid-state qubits

The optical or electrical injection of a single electron or hole in a quantum dot, followed by
its spin initialization, produces a solid-state qubit ready for operation in a variety of protocols.
In this section, we first lay out the mathematical framework of the Bloch sphere, describing
any spin qubit, and follow by outlining its dynamics: either under the influence of an external
operator (spin manipulation and measurement) or of environmental fluctuations inherent to a
quantum dot through the hyperfine interaction.

1.2.1 Description of a spin qubit in the Bloch sphere

Coherent superpositions of the basis vectors: pure states

A qubit holds the fundamental property of quantum superposition, whereby it can access
any coherent superposition of its eigenstates, which we call |↑⟩z and |↓⟩z in the case of an elec-
tron spin quantized along the z direction (the formalism can be adapted to a hole described as
a pseudospin 1/2 with the eigenstates |⇑⟩z and |⇓⟩z [47]). Let us consider the arbitrary coherent
superposition state:

|Ψ⟩ = α |↑⟩z + β |↓⟩z (1.1)

where α and β are complex numbers such that |α|2 + |β|2 = 1. Such a coherent quantum
superposition is called pure state. Without loss of generality, we can assume that α is a positive
real number and change the (α, β) set of variables to the angular variables (ϑ, φ) such that:{

α = cos (ϑ/2)

β = eiφ sin (ϑ/2)
(1.2)

Such a state can be represented by a point on the surface of a sphere, called the Bloch sphere,
with the angle ϑ as colatitude and φ as longitude. An example is shown in Fig. 1.13.

In this representation, the axes of the Bloch sphere are labeled x, y, z and the Bloch vector
is defined by its Cartesian coordinates S = (sx, sy, sz). The basis vectors shown in the figure
are expressed as coherent superpositions of |↑⟩z and |↓⟩z :(

|↑⟩x
|↓⟩x

)
=

1√
2

(
1 1

1 −1

)(
|↑⟩z
|↓⟩z

) (
|↑⟩y
|↓⟩y

)
=

1√
2

(
1 i

1 −i

)(
|↑⟩z
|↓⟩z

)
(1.3)

The spin components of a pure spin state in the Bloch sphere are linked with the two sets of
variables by the following equalities:

sx = 2Re{αβ∗} = cos(φ) sin(ϑ)

sy = 2 Im{βα∗} = sin(φ) sin(ϑ) (1.4)

sz = αα∗ − ββ∗ = cos(ϑ)
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sx
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sz

𝜗

𝜑

S

FIGURE 1.13: Bloch sphere representing the quantum state of the spin qubit as
a vector S of Cartesian coordinates sx = −0.35, sy = 0.61, sz = 0.71, and of

colatitude and longitude angles (ϑ = 45◦, φ = 120◦).

A fundamental aspect of the Bloch sphere is its ability to represent coherent superpositions
of the spin components along its quantization axis, |↑⟩z and |↓⟩z . We highlight the fact that,
despite its representation as a 3D vector, the Bloch vector is not a real space vector.

Incoherent superpositions of the basis vectors: mixed states

The Bloch sphere can also model any incoherent superpositions of pure states, also called
mixed states. In quantum mechanical terms, an incoherent superposition is a probabilistic com-
bination of pure states. In the Bloch sphere, this translates as a total state vector equal to a
weighted sum of multiple pure state vectors. Notice that the information on the incoherently
summed vectors cannot be accessed a priori, only the resulting sum.

Mixed states bring the length of the Bloch vector (also called the spin state purity) below
unity. This phenomenon is known as spin depolarization, and a completely depolarized spin
state has a purity of zero. The density matrix is the common approach to describe coherent
and incoherent superposition states; it carries the same information as the Bloch vector, in a
different form. For the pure state from Eq. 1.1, the density matrix in the (|↑⟩z , |↓⟩z) basis reads:

ρ̂ = |Ψ⟩ ⟨Ψ| =
(
ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

)
=

(
αα∗ αβ∗

βα∗ ββ∗

)
(1.5)

For the incoherent superposition of multiple pure states |Ψi⟩ with the respective probabilities
pi, the density matrix reads:

ρ̂ =
∑
i

pi |Ψi⟩ ⟨Ψi| =
(
ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

)
(1.6)
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As far as the Bloch components of a mixed state are concerned, they are expressed either
through the density matrix components, or through the (ϑ, φ) variables. In the latter case, the
below unity length of the vector is included as the purity p =

√
s2x + s2y + s2z and the Bloch

vector components read:

sx = 2Re{ρ↑↓} = p · cos(φ) sin(ϑ)
sy = 2 Im{ρ↓↑} = p · sin(φ) sin(ϑ) (1.7)

sz = ρ↑↑ − ρ↓↓ = p · cos(ϑ)

It is useful to define the scalar product between two Bloch vectors S(1) and S(2) with the fol-
lowing formula: ∣∣∣〈S(1)

∣∣∣S(2)
〉∣∣∣2 = 1 + s

(1)
x s

(2)
x + s

(1)
y s

(2)
y + s

(1)
z s

(2)
z

2
(1.8)

The result ranges from 0 for two opposite vectors to 1 for two identical vectors. This quantity
is also named the fidelity when comparing a measured spin state to a reference state.

Relaxation and dephasing

The state of a spin qubit evolves over time, either by an external operation described next
(optical rotation pulse or external magnetic field), or under the influence of environmental fluc-
tuations. The latter case defines the free evolution of the qubit, determined by two phenomena:

• The relaxation, by which the spin qubit flips from |↑⟩z to |↓⟩z or vice versa in a character-
istic time T1 (or at a rate Γ = 1/T1). The relaxation causes a depolarization of the qubit
towards the center of the sphere1.

• The pure dephasing, by which the phase of a pure state is lost in a characteristic time
T ∗
2 (or at a rate γ∗ = 1/T ∗

2 ). That is, for a given pure state such as |↑⟩z + eiφ |↓⟩z , the
time during which the phase term φ stays well defined. The phase blurring results in the
depolarization of the qubit towards the z-axis, without modifying sz .

In general, the qubit is subject to the two mechanisms and we usually define an empiric
coherence time T2 associated to a rate γ = 1/T2 to take them both into account:

1

T2
=

1

T1
+

1

T ∗
2

⇐⇒ γ = Γ + γ∗ (1.9)

Notice that the empiric definitions of T1 and T ∗
2 are dependent on the chosen basis. In the

presence of an external magnetic field, different eigenstates could be obtained, and we would
define T1 and T ∗

2 accordingly.

1As long as the spin flips |↑⟩z → |↓⟩z and |↓⟩z → |↑⟩z are equally probable, i.e. for a sufficiently low Zeeman
splitting compared to kBT .
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1.2.2 Spin manipulation and measurement

Rotating the qubit in the Bloch sphere and measuring its Bloch components are the first
steps towards more elaborated quantum computation schemes.

Spin manipulation

The spin manipulation by optical means, called coherent control, allows to rotate the quan-
tum state of the spin in the Bloch sphere without loss of purity. In order to implement any
possible rotation, only two complementary rotations are required, for instance one about the
x-axis, and another one about z. The most advanced technique was theoretically proposed by
Economou et al. (2006) [75] and demonstrated in multiple teams consecutively [76–79]. They
combined the two following phenomena:

• A Voigt magnetic field Bx inducing the spin rotation about the x-axis, as seen in Fig. 1.14a.

• A stimulated Raman transition between the spin states |↑⟩x and |↓⟩x described in detail in
Fig. 1.15 for a hole spin in the presence of a transverse magnetic field, effectively acting
as a rotation about the z-axis (see Fig. 1.14b).

An arbitrary spin rotation takes about 20 ps, which is far below the typical dephasing time
of electrons and holes in InGaAs quantum dots (0.5 ns for the electron and 10 ns for the hole
without an external magnetic field [50, 54, 55]), leaving more than enough time to perform
multiple quantum operations on the same qubit during its dephasing time.

(a) (b)

FIGURE 1.14: Examples of qubit rotations, starting from the spin state from the
example above (see Fig. 1.13), and rotating (a) about the x-axis by a Bx magnetic
field and (b) about the z-axis by a stimulated Raman transition. The rotation axes

are drawn in dashed lines.



18 Chapter 1. Charged quantum dots in microcavities: an overview

FIGURE 1.15: Coherent rotation of a hole spin about the z-axis induced by a circu-
larly polarized pulsed laser (in red-orange on the four-level system) in the pres-
ence of a transverse magnetic field, equivalent to precession between |⇑⟩x and
|⇓⟩x, as shown on the right side. The power of the pulse determines the mag-
nitude of the rotation. This technique is also relevant with electron spin qubits.

Figure adapted from [76].

Spin measurement

Reading out the quantum state of the spin requires to probe the Bloch components
(sx,sy,sz) to reconstruct its Bloch vector: this method is referred to as tomography. The ability
to readout a single Bloch component combined to coherent spin rotations is enough to achieve
a full tomography, as demonstrated in the group of Y. Yamamoto [80]. A common spin read-
out technique takes advantage of the Zeeman splitting in a transverse magnetic field [21, 76],
as shown in Fig. 1.16 in the case of a hole. To measure |⇑⟩x (left panel), a laser tuned to the
|⇑⟩x → |⇑⇓↑⟩x transition selectively excites the single hole if its spin state is |⇑⟩x, the consecu-
tive detection of a VB photon lets the operator know that the spin was in state |⇑⟩x before the
readout, while an absence of detection in VB gives no information. The complementary pro-
cess is applied to measure |⇓⟩x (right panel) and gives the rest of the necessary information to
compute sx. The energy of the excitation laser is tuned to differentiate the two situations.

⇓⇑↓ 𝑥𝑥

⇑⇓↑ 𝑥𝑥

⇑ 𝑥𝑥
⇓ 𝑥𝑥

Excitation HB
Collection VB

Measuring ⇑ 𝑥𝑥

HB VB
⇓⇑↓ 𝑥𝑥

⇑⇓↑ 𝑥𝑥

⇑ 𝑥𝑥
⇓ 𝑥𝑥

Excitation HB
Collection VB

VB HB

Measuring ⇓ 𝑥𝑥

FIGURE 1.16: Readout protocol to compute the Bloch coordinate sx of a hole spin
in a Voigt magnetic field. The collection of a VB polarized photon after excitation
in HB ensures that the spin was in either |⇑⟩x (left panel) or |⇓⟩x (right panel)

before the measurement, depending on the excitation energy.



1.2. Single charges confined in quantum dots as solid-state qubits 19

This spin readout technique can be combined with coherent spin rotations, bringing the sy

and sz components to the x-axis to get a full tomography of the spin state. However, a precise
timing of the rotation pulses with the magnetic field is crucial as Bx continuously rotates the
spin about x.

Starting from an initial measurement, one can perform two common sequential experi-
ments described below, the results of which are shown in Fig. 1.17, with insets presenting each
sequence (green squares for measurement of sx and red-orange pulses for coherent rotation
about z).

• Left panel: applying a rotation pulse of varying power Prot and measuring the state of the
qubit after the rotation. This type of evolution is referred to as Rabi oscillation in which a
π rotation translates as a full population inversion.

• Right panel: applying a π/2 pulse, aligning the qubit to the z-axis and letting it precess
about the transverse magnetic field Bx for a time τ before bringing it back to the x-axis
with a second π/2 pulse and finally measuring the qubit state to quantify the loss of
coherence caused by the interactions with the environment. This is known as Ramsey
interferometry and the decay time of the fringes gives T2.

FIGURE 1.17: (Left panel) Rabi oscillations measurement. (Right panel) Ramsey
interferometry. Figure adapted from [76].

Measuring T1 only requires to initialize the spin in |↑⟩ and to measure its population in |↓⟩
after different delays.

Different types of measurement

A quantum measurement influences in return the state of the measured system [81], and
two concepts clarify how the system is left afterwards.

Some measurement methods destroy the measured system, such as the detection of a
photon by a photodetector which absorbs it and converts it into an electrical current. On the
other hand, some techniques preserve the measured system: they are known as quantum non-
demolition measurements (QND), a concept introduced by Grangier et al. (1998) [31]. By defini-
tion, right after a QND, the system can be measured again with the same outcome. The indirect
spin measurement in an ideal spin-photon interface, elaborated later in subsection 1.3.4, can be
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categorized as QND; it is based on the spin-dependent Faraday rotation [57, 82] which imprints
the spin state on the photonic polarization. On the contrary, the spin readout method presented
in Fig. 1.16 can’t be considered a QND as the measurement implies a spin-flip.

The second concept is the wave-packet reduction induced by the projective measurement
of a quantum system. In a strong measurement, the complete information about the spin state
is extracted and it is therefore projected on a given eigenstate, thereby losing any coherent
superposition and restarting its natural evolution from the state is was detected in. Successive
strong measurements close enough to each other could even freeze the evolution of the system,
in what is known as the quantum Zeno effect [32, 83]. By contrast, a weak measurement only
extracts partial information about the spin state, preserving the majority of its coherence [84].
Both weak and strong measurements can be envisioned in the QND definition, as long as the
spin qubit is not destroyed by the measurement and can be measured multiple times with a
constant result. An ideal spin-photon interface based on Faraday rotation would be able to
display the transition between these different measurement regimes.

1.2.3 Interaction between a single quantum dot spin and its environment

The environmental fluctuations limit the coherence of a spin qubit in a quantum dot
through the interaction with the neighboring nuclear spins. The direct environment of a sin-
gle central spin, i.e., confined in a quantum dot (Fig. 1.18a), is composed of 105 atoms of In, Ga
and As, whose nuclei carry spins of 9/2 for In and 3/2 for Ga and As.

(a) (b)

FIGURE 1.18: (a) Central spin qubit (in green) in a quantum dot comprising a mul-
titude of nuclear spins (in red). Figure courtesy of M. Glazov and D. Smirnov [85].
(b) Wavefunction of the central electron spin (in blue) or hole spin (in red) at the
location of the nuclei (black spins with random orientations). The wavefunctions
are shown as solid lines and their envelope functions

∣∣Ψe/h

∣∣2 as dashed lines.
Figure adapted from [47].

The interaction between the spin qubit and its environment is generally referred to as the
hyperfine interaction that comprises two specific contributions explained below [47, 50], depend-
ing on whether the wavefunction of the central spin overlaps the nuclei or not (see Fig. 1.18b).
In the case of an electron spin carrier, with a s-type wavefunction overlapping nuclei, the dom-
inant contribution is the Fermi contact interaction, whereas a hole spin carrier, with a p-type
wavefunction experiences the dipole-dipole interaction.
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The electron spin qubit experiences the Fermi contact interaction

The Fermi contact interaction takes an Ising form, with the carrier electron labeled (e) and
the collection of nuclear spins indexed as (j) [47, 50]:

Ĥ
(e)
hf =V

∑
j

A
(e)
j

∣∣∣Ψ(e) (r⃗j)
∣∣∣2Î(j) · Ŝ(e)

=V
∑
j

A
(e)
j

∣∣∣Ψ(e) (r⃗j)
∣∣∣2 (Î(j)

z Ŝ(e)
z + Î(j)

x Ŝ(e)
x + Î(j)

y Ŝ(e)
y

) (1.10)

where V is the volume of the crystal unit cell, A(e)
j is the coupling constant between the electron

of spin Ŝ(e) and the nucleus j of spin Î(j). The envelope of the electronic wavefunction at the
location of the nuclei j is denoted

∣∣Ψ(e) (r⃗j)
∣∣2 and is represented by the dashed line in Fig. 1.18b.

This interaction is isotropic and the x and y components of the scalar product can lead to spin
flip-flops between the electron and the nuclear spins.

The hole spin qubit experiences the dipole-dipole interaction

The dipole-dipole interaction influences the dynamics of the hole pseudospin Ŝ(h) and can
be accounted for by an anisotropic Ising interaction [47, 50]:

Ĥ
(h)
hf = V

∑
j

∣∣∣Ψ(h) (r⃗j)
∣∣∣2 (A(h)

j,z Î
(j)
z Ŝ(h)

z +A
(h)
j,x Î

(j)
x Ŝ(h)

x +A
(h)
j,y Î

(j)
y Ŝ(h)

y

)
(1.11)

where this time the coupling constant A(h)
j is anisotropic and is decomposed on the x, y and

z directions. The envelope of the hole wavefunction at the location of the nuclei j is denoted∣∣Ψ(h) (r⃗j)
∣∣2 (red dashed line in Fig. 1.18b).

The Fermi contact interaction dominates over the dipole-dipole one: A
(e)
j is ten times

higher than A
(h)
j,z . The latter constant results from the pure heavy-hole component whereas

the relatively smaller terms A
(h)
j,y and A

(h)
j,y come from the residual mixing with the light-hole

band. As a consequence, the hole spin presents a much longer dephasing time than the elec-
tron spin [47].

Dynamics of the hyperfine interaction

The interplay between the spin carrier trapped in a quantum dot and its nuclear spin en-
vironment is shown in Fig. 1.19, where the Overhauser magnetic field (order of magnitude 15-
50 mT) resulting from the randomly oriented and fluctuating nuclei acts on the spin carrier, and
the fluctuations of the spin carrier generate in return the relatively smaller Knight magnetic field
acting on the nuclei1.

1Neither this figure nor Fig. 1.18a present realistic spin vector lengths (1/2 for the central spin and 3/2 or 9/2
for nuclei).
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↑
Electron / hole spin

Overhauser �ield

Knight �ield
Nuclear spins

FIGURE 1.19: Magnetic feedback loop between the central electron or hole spin
and the nuclear spin ensemble: the Overhauser field is the nuclear field acting on
the central spin and the Knight field is the one emerging from the central spin

acting on the nuclear spins.

From this feedback loop, three distinct timescales emerge [50, 86]:

• Short timescale: the electron spin precesses about the seemingly frozen Overhauser field
in the order of 1 ns. In the case of a hole spin, its decreased sensitivity to the hyperfine
interaction increases this precession time to the order of 100 ns.

• Intermediate timescale: the precession of the electron or hole spin, itself creating an inho-
mogeneous magnetic field (Knight field), causes the precession of the Overhauser field.

• Long timescale: the nuclei outside of the quantum dot but in its vicinity are subject to
dipole-dipole interaction, disturbing the Overhauser field in the order of 100 µs.

The contributions of these three phenomena lead to the orders of magnitude of the electron and
hole dephasing times given above without an external magnetic field: 0.5 ns for the electron and
10 ns for the hole [50, 54, 55].

1.2.4 Stabilization of the spin qubit

The hyperfine interaction determines the pure dephasing time of spin carriers, but multi-
ple strategies allow this limitation to be circumvented.

Screening the nuclear field with an external magnetic field

Without an external magnetic field, the spin qubit precesses about the Overhauser field,
as illustrated in the left panel of Fig. 1.20. When an external magnetic field is applied (in the
longitudinal direction for the right panel of the figure), the spin qubit precesses about the total
magnetic field, which is much stronger in the direction of the external magnetic field than any
other. The spin coherence is therefore preserved over longer delays (i.e., the Bloch vector mostly
rotate about z, preserving the superposition states in the sx and sy components).

This technique led to an improvement of an electron dephasing time from 0.5 ns without
an external magnetic field to 4 ns with a 100 mT field [55]. In another experiment, the dephasing
time of a hole spin exceeded 500 ns in a 3 T magnetic field [47, 87].
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FIGURE 1.20: Magnetic screening of the Overhauser field. (Left) Without an ex-
ternal magnetic field, the randomly oriented Overhauser field is the only contri-
bution. (Right) The addition of a high external longitudinal magnetic field Bz

imposes spin rotations mainly about the z-axis, preserving spin coherence in the
sx and sy components. Figure from [50].

Reversing the precession about the Overhauser field with spin echo

The spin echo technique makes use of π-pulses which coherently reverse the spin state
(describing a π rotation in the Bloch sphere). For a spin initially rotating about the frozen Over-
hauser field for a time T , a first π pulse reverses the direction of the spin precession, such that
after a subsequent delay T and a second π pulse, the spin is brought back to its initial state.
This technique decouples the spin from the frozen Overhauser field, and its coherence is pre-
served as long as the Overhauser field is stable (≃ 1µs). The spin echo can extend the electron
dephasing time to a few microseconds [88, 89], using a transverse magnetic field of 3 T to en-
able the spin rotation by optical pulses as presented in subsection 1.2.2. This technique is also
applicable to a heavy hole spin [90].

Polarizing the nuclei to stabilize the Overhauser field

Since the transverse components of the hyperfine interaction mediate spin flip-flops be-
tween the spin carrier and nuclear spins [91], a repeated pumping of the spin carrier (see sub-
section 1.1.4) might progressively polarize a significant part of the quantum dot nuclei. This
phenomenon is called dynamic nuclear polarization (DNP) and was achieved with electron
spins [92] and hole spins [93]. About 60 % of the quantum dot nuclei can be polarized, result-
ing in an additional magnetic field on the spin carrier location that can reach a few Teslas. In
the last years, the group of M. Atatüre showed excellent control of the nuclear spin bath by
an advanced scheme comparable to dynamic nuclear polarization, demonstrating a tenfold in-
crease in an electron coherence time [94]. They also recently explored the ensemble oscillations
of the nuclei as quantum carriers of information, broadening further the scope of the nuclear
spin studies in quantum dots [95].
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1.2.5 Experimental milestones with single spins in semiconductor quantum dots

We outline two major experimental techniques that demonstrated the potential of quan-
tum dot spins as solid-state qubits.

Spin noise spectroscopy

When illuminated with linearly polarized photons propagating in the z direction, the dy-
namics of the quantum dot spin is mapped on the polarization of the transmitted1 photons
through the Faraday rotation effect, discussed later in subsection 1.3.4: a single spin in state
|↑⟩z or |↓⟩z imprints a state-dependent polarization rotation to linearly polarized photons, of a
few tens of µrad [57, 82]. Measuring the noise in the photonic polarization after the spin-photon
interaction therefore translates as a measurement of the spin noise: this is the idea behind the
field of spin noise spectroscopy (SNS) [96–98]. Fig. 1.21 presents an illustration of SNS, where
a sample under a magnetic field in the z or x direction imprints a certain rotation on the pho-
tonic polarization: this rotation fluctuates in time, as shown in the polarization rotation graph
in each case. Its characteristic evolution timescale is accessed by analyzing the autocorrelation
of the polarization rotation signal, or its Fourier transform called the spin noise power.
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FIGURE 1.21: Principle of SNS. A sample with single spins under an external
magnetic field is illuminated with photons, whose polarization is rotated de-
pending on the spin state. The considered magnetic field is longitudinal in (a)
and transverse in (b). The transmitted signal exhibits a polarization rotation fluc-
tuating in time. Its autocorrelation and its Fourier transform (called spin noise
power) both decay in either the relaxation time T1 for Bz or the dephasing time

T2 for Bx. Figure adapted from [97].

1Either reflected or transmitted photons, as appropriate in the experimental configuration.
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When the magnetic field is along z, the spin eigenstates are |↑⟩z and |↓⟩z , each of which
rotates the photonic polarization in one direction or the opposite, so the dynamics imprinted
on the polarization rotation is determined only by the spin flips (timescale T1). However, in the
case of a Bx magnetic field, the spin eigenstates become |↑⟩x and |↑⟩x and the Larmor precession
about this axis causes an oscillation between |↑⟩z and |↓⟩z , itself imprinted on the polarization
rotation. The Larmor precession is damped in the coherence time T2.

In semiconductor physics, spin noise spectroscopy was first applied to a macroscopic en-
semble of spins to study the dynamics of electrons in bulk GaAs [99]. The technique was later
brought to the level of an ensemble of single spins in InGaAs quantum dots [100], and finally
to the ultimate limit of a single spin [101]. However, the variability of the experimental config-
urations makes the comparison of the results difficult.

Pushed to the level of a single spin interacting with single photons, spin noise spectroscopy
is envisioned as a type of quantum non-demolition measurement [31, 102] as the measured sys-
tem (the single spin) is preserved while the measurement only destroys the reflected photons.
This regime is experimentally analyzed with photonic correlation measurements in the next
chapters. Furthermore, as long as the Faraday rotation angles stay very small, this technique
can be viewed as a weak measurement extracting very little information about the spin state,
which is useful to measure the dephasing dynamics of the unperturbed spin.

Spin-photon entanglement

The entanglement between a quantum dot spin and an emitted photon arises when a trion
state such as |⇑⇓↑⟩x decays with equal probabilities to |⇑⟩x or |⇓⟩x in a Voigt magnetic field
(see Fig. 1.9c): the emitted photons are respectively in polarizations H or V, with energy ωH or
ωV , each possibility corresponding to either ground spin state. The combined spin-photon state
after emission is therefore: ∣∣Ψsp-ph

〉
=

|⇑, H, ωH⟩+ |⇓, V, ωV ⟩√
2

(1.12)

One photonic degree of freedom must be erased to achieve spin-photon entanglement: for ex-
ample by using frequency conversion. In that case, the entanglement persists between the spin
and the polarization, in the following inseparable state:

∣∣Ψsp-ph
〉
=

|⇑, H⟩+ |⇓, V ⟩√
2

(1.13)

The entanglement between the spin of a single electron trapped in an InGaAs quantum dot and
the polarization degree of freedom of a photon was achieved by De Greve et al. (2012) [103] in the
group of Y. Yamamoto. As explained above, they erased the photon energy information through
a frequency down-conversion process, reaching a fidelity higher than 80 % to an entangled
state analogous to Eq. 1.13. Similar results were obtained by Schaibley et al. (2013) [104] in the
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group of L. Sham, this time erasing the photon energy information through ultrashort detection
times. Finally, Gao et al. (2012) [22] in the group of A. Imamoglu demonstrated the spin-photon
entanglement by erasing the polarization degree of freedom of photons.

The entanglement procedure described here is limited to a bipartite entanglement: indeed,
in the case of an excitation laser tuned to the |⇑⟩x → |⇑⇓↑⟩x, repeating the procedure inevitably
projects the spin in |⇑⟩x, thereby projecting the first entangled photon to |H⟩ before entangling
a consecutive one. Nevertheless, having multiple devices able to generate an entanglement
between a stationary spin and an emitted photon paves the way to the entanglement of dis-
tant spins, based on the entanglement swapping scheme successfully achieved by Delteil et al.
(2016) [105] with distant hole spins and Stockill et al. (2017) [106] with electrons.

An ideal spin-photon interface could overcome this limitation, by successively entangling
photons impinging on the qubit, based on the spin-dependent Faraday rotation to be described
in subsection 1.3.4, which associates the complementary spin states to complementary polar-
ization states. Such a protocol was proposed by Hu et al. (2008) [29] to generate linear cluster
states, a class of highly entangled states useful for quantum computing (more information on
which are presented in the perspectives of the manuscript). Efforts are also devoted to entangle
a quantum dot spin with the timing of emitted single photons, referred to as time-bin encoding,
which could be generalized to produce linear cluster states [107].

A major limiting factor of the entanglement rate is the efficient extraction of photons from
the solid-state device. This is facilitated by coupling quantum dots to microcavity structures,
as described in the next section.

1.3 Coupling the quantum dot to a cavity

This section focuses on the enhancement of the spin-photon interaction by a cavity. First,
we lay the groundwork by describing the coupling between a two-level system and a cavity
in the formalism of cavity quantum electrodynamics (cQED), through the Jaynes-Cummings
model. We follow by explaining the experimental steps leading to such a quantum dot-cavity
coupling. Next, the polarization qubit is described in the Poincaré sphere, and the core notion
of spin-dependent polarization rotation is physically interpreted. Finally, we give an overview
of experimental realizations towards an ideal spin-photon interface.

1.3.1 The Jaynes-Cummings model of cavity quantum electrodynamics

The light-matter interaction between photons and a quantum dot mediated by a cavity is
interpreted in the Jaynes-Cummings model [108]. Here, the quantum dot is assimilated to a
two-level system and the main results of the model are discussed; the theoretical framework
will be extensively developed in section 3.1.
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Let the energy of the vacuum serve as a reference. We consider a two-level system between
a ground state |g⟩ of null energy and an excited state |e⟩, separated by the energy ωd (model-
ing the quantum dot), interacting with photons in a cavity of fundamental mode tuned to the
same energy ωd. The coherent and incoherent cQED phenomena described next are sketched
in Fig. 1.22.
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FIGURE 1.22: cQED phenomena included in the Jaynes-Cummings model. Pho-
tons interact with a two-level system of energy ωd by coherent absorption and
emission at a rate g; photons escape from the cavity at a rate κ and the two-
level system loses photons outside of the cavity mode at a rate γ. Figure adapted

from [109].

Coherent quantum dot-photon interaction

• The Hamiltonian giving the energy of the intracavity photons reads Ĥcav = ωdâ
†â, where

â is the operator annihilating an intracavity photon and its Hermitian conjugate â† cre-
ates one.

• The Hamiltonian giving the energy of the quantum dot reads Ĥd = ωd |e⟩ ⟨e|.

• The light-matter interaction is described by the Hamiltonian Ĥint = ig
(
â†σ̂ − âσ̂†)

where σ̂ = |g⟩ ⟨e| is the operator bringing the quantum dot from its excited to its ground
state and its Hermitian conjugate σ̂† does the opposite. This interaction coherently ex-
changes photons between the cavity and the quantum dot at a rate g.

After diagonalization, the total Hamiltonian exhibits an eigenenergy spectrum En,±

(n ∈ N∗), where each couple (En,+, En,−) originates from the empty cavity level of energy
nωd. The new eigenstates are called dressed states, and their corresponding energy spectrum is
given by:

En,± = nωd ±
√
ng (1.14)

The associated eigenstates combine the states |g, n⟩ and |e, n− 1⟩ (respectively quantum dot in
the ground state with n intracavity photons, and quantum dot in the excited state with n − 1

photons):

|En,±⟩ =
|g, n⟩ ± |e, n− 1⟩√

2
(1.15)
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The lowest energy is E0 = 0, associated to the single state |E0⟩ = |g, 0⟩. The dressed states
compose the Jaynes-Cummings ladder, the first few rungs of which are represented in Fig. 1.23.
Each (E+, E−) doublet is separated by a splitting of 2

√
ng.
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FIGURE 1.23: Eigenstates of the isolated quantum dot (left), the isolated cavity
photons (middle) and the coupled quantum dot-cavity system in the Jaynes-

Cummings model (right).

Incoherent quantum dot-photon interaction

Two incoherent phenomena break the coherent light-matter interaction: first, the loss of
photons by the cavity at a rate κ, and second, the loss of coherence by the quantum dot at a
rate γ = 1/T2 (dephasing rate). These phenomena are theoretically modeled in section 3.1. Two
regimes emerge when comparing their relative strength [110]:

• Strong coupling: the losses through κ and γ are lower than the coherent interaction:√
κ2 + (2γ)2 < 4g.

• Weak coupling: the losses are higher than the coherent interaction:√
κ2 + (2γ)2 > 4g.

Notice that the dephasing rate defined here is analogous to 1/T2 from subsection 1.2.1, but the
considered qubit is now the two-level system with eigenstates |g⟩ and |e⟩, which would replace
the states |↑⟩z and |↓⟩z in the Bloch sphere of a spin qubit. Specifically, pure dephasing now
relates to the phase blurring of the superposed states |g⟩+ eiϕ |e⟩ at the rate γ∗ = 1/T ∗

2 , and re-
laxation, to T1 phenomena de-exciting the system from |e⟩ to |g⟩. The latter includes the sponta-
neous emission in all directions at a rate γsp, as well as the accelerated spontaneous emission in
the cavity mode (known as the Purcell effect), specific to the weak coupling regime, at the rate
Γ0 = 4g2/κ [111, 112]. The relaxation time presented in subsection 1.2.1 is therefore redefined
as (T1)

−1 = Γ = Γ0 + γsp. On the other hand, the coherence time from Eq. 1.9 now becomes
(T2)

−1 = (2T1)
−1 + (T ∗

2 )
−1 (the relaxation contribution is halved since the two level system

can only decay from excited to ground state, compared to the two-way relaxation through spin
flips). An important figure of merit expressing the relative strength of the coherent and inco-
herent processes is the cooperativity: C = g2/(κγ). Two other figures of merit give essential
information to compare cQED devices together: first, the quality factor Q = ωc/κ (where ωc is
the cavity energy, different from ωd in the general case). Cavities with highly reflective mirrors
present high quality factors and are suited to work in the strong coupling regime as their losses
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κ are very small. Second, the Purcell Factor FP = Γ0/γsp, which compares the spontaneous
emission rate of the isolated two-level system γsp with its Purcell-enhanced emission in the
cavity mode Γ0. A high Purcell factor is crucial to minimize photonic losses in the device.

While the strong coupling regime demonstrated extremely efficient cavity-quantum dot
interaction [113], weak coupling finds applications where an increased light-matter interaction
is as important as an efficient collection of the photons from the device. Single photon sources
and spin-photon interfaces belong to this category. In the scope of this manuscript, we focus
especially on the giant Faraday rotation mediated by a cavity with devices of cooperativity of
the order of unity (or above).

Optical microcavities

A cQED device confines specific electromagnetic modes around a quantum emitter. Com-
pared to an isolated quantum dot, the consequences are twofold: the emission of the quantum
emitter in the cavity modes is accelerated through the Purcell effect and the light-matter in-
teraction is enhanced, leading to strong coupling in extreme cases. Cavities with small mode
volumes favor high values of g and those with highly reflective mirrors favor low values of κ
and high quality factors.

1 𝜇𝑚 2 𝜇𝑚 20 𝜇𝑚2 𝜇𝑚

FIGURE 1.24: (From left to right) Photonic crystal cavity, microdisk cavity, bulls-
eye cavity and micropillar cavity. Figures from the articles cited below.

The development of high precision lithography and etching techniques led to increasingly
detailed solid-state structures. The idea of coupling solid-state emitters to optical microcavities
became achievable, expanding cQED from its historical field of atomic physics to the solid-state
realm. Despite the incomparably more complex environment surrounding a solid-state emitter
compared to those in atomic physics, the benefit of solid-state systems lies in their simpler
operation and their scalability. Let us review the most common optical microcavities presented
in Fig. 1.24. From left to right:

• Photonic crystal cavities [114–119] are defined by a periodic pattern of nanometric holes
in a semiconductor slab with a few holes deliberately skipped to confine light in the cor-
responding region. Light can be injected in and collected from the cavity either with a
free-space beam orthogonal to the surface, or through a 2D waveguide on the slab. In
both cases, the spatial profile of the mode is very different from the Gaussian mode of a
fiber, hindering the coupling from one to the other. Quality factors can reach 105 − 106 in
such structures [118].
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• Microdisks [120–125]: a suspended semiconductor disk exhibits optical resonances
through whispering gallery modes, with quality factors reaching 105 [125]. Injection and
collection of light usually take advantage of a waveguide tangent to the disk. Determinis-
tic coupling of a single emitter to the cavity is difficult as the precise location of the antin-
odes of the whispering gallery mode –where the emitter must be placed– are strongly
mode-dependent.

• Bullseye cavities [126–128]: light is confined in the center of a pattern of circular Bragg
reflectors. Quality factors reach the 103 order of magnitude [127]. This design has been
drawing attention thanks to its low-cost production and scalability; its broadband cavities
and the development of deterministic cavity-quantum dot coupling techniques makes it
a good candidate for single-photon sources.

• Micropillar cavities [129–132] are formed by distributed Bragg reflectors (DBR) sandwich-
ing a central layer acting as a cavity. Quality factors reach 105 [132]. They are well suited
to couple to the spatial mode of a fiber [133]. Devices called nanotrumpets are similar to
micropillars, but their name originates from their conic shape with a thinner base [134].
An extension of the micropillar cavity is the open Fabry-Pérot cavity where the top side
is replaced with a lens-shaped DBR, and the quantum dot layer and bottom mirror com-
pose a planar structure displaceable relatively to the lens to form a cavity wherever the
lens focuses [113, 135]. Quality factors close to 106 were achieved.

Purcell acceleration and strong coupling were achieved for photonic crystals [116, 117],
microdisks [122, 124] and micropillars [129, 131]. Only Purcell acceleration was reached for
bullseye cavities to our knowledge [127]. Our system of choice is the micropillar cavity: its very
good coupling to a fiber makes it an excellent candidate for a fiber-based single-photon source,
its absence of polarization selectivity is ideal for a spin-photon interface, and its versatility in
the design of the heterostructure is key to single out and stabilize the desired charge state in
the quantum dot. Next, we continue with a summary of the fabrication process of a micropillar
cavity deterministically coupled to a quantum dot.

1.3.2 From a distributed Bragg Reflector to a micropillar cavity

Before being shaped into micropillars, the outcome of the epitaxy is a planar heterostruc-
ture composed of distributed Bragg reflectors (DBR) forming a cavity enclosing a quantum dot
layer.

Distributed Bragg Reflector

A distributed Bragg reflector is an optical reflector consisting in a sequence of two materi-
als of indices n1 and n2 as sketched in the top panel of Fig. 1.25 with layers of GaAs (n1 = 3.5)
and AlAs (n2 = 2.9) on a GaAs substrate. An optical beam impinging on the top of the struc-
ture encounters a quarter wavelength optical thickness on each layer, of physical length equal
to λ/(4ni) (i ∈ 1, 2). As a consequence, the optical path difference between the beam impinging
on a material interface and the beam reflected at the next interface is always half a wavelength,
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and with the alternating phase reversal due to reflection on a higher index surface, all the re-
flected components interfere constructively while the transmitted parts interfere destructively.
Semiconductor DBRs can reach reflectivities higher than 1 − 10−6 for a wide range of wave-
lengths known as the stopband, as illustrated in the reflectivity spectrum in the figure.

FIGURE 1.25: Planar heterostructure and simulated reflectivity spectrum for
(Top) a planar DBR with 20 alternating layers of GaAs and AlAs and (Bottom) the
same structure with a layer of physical thickness λ/n, creating a λ-cavity. ωB and
ω0 refer respectively to the central energies of the Bragg reflector and of the cav-

ity. Plots adapted from [136].

Planar cavity

Increasing the physical thickness of one of the DBR layers to Lcav = λ/n creates a Fabry-
Pérot cavity associated to a reflectivity dip, as shown in the bottom panel of Fig. 1.25. Photons
bounce back and forth between the mirrors, forming a standing wave, before escaping the
cavity at the rate κ (giving the width of the dip). Depending on the symmetry of the DBR
stacking on the top and bottom sides of the cavity (Nt and Nb pairs respectively), the structure
can be fully transmissive on resonance if N1 = N2 or have a non-zero reflectivity in other
configurations. The cavity losses through the top and bottom channels are labeled κtop and
κbottom respectively. The free spectral range of the cavity is high enough to allow only a single
Fabry-Pérot mode in the stopband.

It is at the center of the λ-cavity that the quantum dot layer is to be grown, at the antinode
of the electromagnetic field, where it is the most intense. Their density can reach 10-100 dots
per µm2, far too high to isolate a single quantum dot in a micropillar of approximately 3 µm in
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diameter. An annealing step described in subsection 1.1.1 is performed to spectrally shift the
energy distribution of quantum dots, so that only one quantum dot per potential micropillar is
in the appropriate spectral range to interact properly with the cavity.

Deterministic quantum dot-cavity coupling with in-situ lithography

The planar cavity confines light in the z direction only. Etching a pillar of micrometric
radius from this planar cavity leads to the additional confinement in the lateral dimensions,
strongly increasing the light-matter interaction. A micropillar cavity should be spatially cen-
tered on a single quantum dot and the energy of its optical mode tuned to the desired optical
transition. The chances to match these criteria by positioning the micropillars randomly on the
planar sample are very low. Accordingly, an in-situ lithography technique was designed in the
group of P. Senellart by Dousse et al. (2008) [23] with the following protocol:

After the epitaxy of the planar structure, the wafer is coated with a photoresist layer.
The lithography process, described in Fig. 1.26, is twofold: first, the sample is ex-
cited by an 850 nm laser (in red) and the luminescence (in orange) is analyzed by
a spectrometer while the sample is scanned in the lateral plane: this allows to map
quantum dots and to select those emitting close to the cavity energy. Once a quan-
tum dot is selected, a 530 nm laser (in green) exposes the photoresist right above the
quantum dot, marking a disk shape that will result, after etching, in a micropillar
centered on the selected quantum dot with a precision of 50 nm. The diameter of the
pillar is set by the exposure time with the green laser, and it in turn tunes the energy
of the cavity mode (smaller diameters for higher energy cavities) in the appropriate
range for optimal tuning with the quantum dot transition with a spectral precision
of 0.35 nm.

Excitation

Exposition

Luminescence

QD layer
Photoresist

FIGURE 1.26: Experimental configuration to perform in-situ lithography with an
excitation laser (in red) impinging on quantum dots, which in turn emit lumines-
cence (in orange), and a green laser exposing the photoresist on top of a selected

quantum dot.

The in-situ lithography followed by the etching of the sample completes the fabrication
process. A finalized micropillar as seen through an optical microscope is shown in Fig. 1.27: the
zoom on one micropillar on the left side evidences the intersection of four ridges constituting
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the pillar, which is connected to a circular frame, itself joined to a large electrically contacted
mesa to which many micropillars are connected. The H and V axes indicate the eigenpolar-
izations of the cavity that arise from the difference in lateral confinement along those two di-
rections [137]. The energy splitting between the two cavity modes is typically 80 µeV in our
samples. A consequence of the ellipticity of the cavity is that it acts as a birefringent medium
and rotates the polarization of light [138]. Such an asymmetry can be exploited to accelerate
the emission of quantum dots preferentially in one of the modes, by tuning the dots in reso-
nance with this mode and out of resonance with the other. Highly elliptical cavities coupled to
quantum dots have shown high performance as sources of polarized single photons [127, 139].
The right part of Fig. 1.27 shows a zoomed-out view of the sample, where many pillars embed-
ded in circular frames are joined to a mesa. The gold cover is connected by wire bonding to
apply a voltage to the surface. The ground voltage is applied below the sample. The electrical
contact stabilizes the charge environment of the quantum dot and allows a fine-tuning of the
transitions’ energies through Stark shift [140].

V

H

Mesa
connection Gold cover

for electrical contact

FIGURE 1.27: (Left) Micropillar embedded in a circular frame through four
ridges. The asymmetry of the lateral confinement makes two eigenpolarizations
emerge along the H and V axes. (Right) Zoomed out view of a whole electrically
contacted mesa (called "E") with attached micropillars. The gold cover is where
a wire is bonded to apply a voltage and the ground voltage is applied below

the sample.

At this point, the sample is handed from the fabrication team (A. Lemaître, N. Somaschi,
I. Sagnes, A. Harouri) to the optics team (L. Lanco, C. Millet, P. Hilaire, E. Mehdi) to analyze
the spin-photon interaction in the quantum dot-micropillar structures. The micropillar labeled
E46, which we will call the positively charged device in this manuscript was extensively studied
as a spin-photon interface for chapter 4. Additionally, it was used by J. Loredo and C. Anton
to generate non-classical states of light by coherent control of the quantum dot [141], and as
a single-photon source in collaboration with the team of H. Eisenberg to generate photonic
cluster states [142].
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cQED parameters of a micropillar cavity

The different parameters characterizing a quantum dot-micropillar device, described in
Fig. 1.28a, are the following:

• The coupling strength g, already described in the Jaynes-Cummings model.

• The cavity losses κ = κtop + κbottom + κloss, distributed between the losses through the
top and bottom mirrors and through the sidewall of the micropillar caused by surface
roughness (κloss).

• The dephasing rate of the quantum dot, γ = γsp/2 + γ∗, either through spontaneous
emission outside the cavity mode or through pure dephasing.

Three dimensionless parameters commonly characterize a microcavity, as shown in
Fig. 1.28b: the efficiency of the input coupling ηin, quantifying the overlap between the spa-
tial mode of the input beam and the fundamental mode of the micropillar; the cooperativity C

described in subsection 1.3.1; and finally the top mirror output coupling ηtop = κtop/κ, refer-
ring to the probability for intracavity photons to escape by the top mirror through the collection
port, as opposed to the other channels in which they are definitely lost.

𝜅𝜅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡

Light-matter
coupling 𝑔𝑔

QD dephasing
𝛾𝛾 = 𝛾𝛾𝑠𝑠𝑠𝑠

2
+ 𝛾𝛾∗

𝜅𝜅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

(a)

𝜂𝜂𝑖𝑖𝑖𝑖 𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡

𝐶𝐶

(b)

FIGURE 1.28: (a) cQED parameters of a micropillar cavity. (b) Figures of merit
(dimensionless parameters) characterizing a microcavity.

We emphasize that κ relates to purely photonic losses and γ to dephasing of the two-level
system (here, the quantum dot), while g quantifies the coherent interaction. In addition, ηin
pertains only to spatial modes overlap whereas ηtop compares the output canal of interest with
the global photonic losses. In general, we aim at high values of C, ηin and ηtop to reach the best
performance of the device as a single-photon source or spin-photon interface.

• Maximizing g requires small optical mode volumes, and thus micropillars of small radii.

• Minimizing κ while keeping ηtop high is achieved by having high-reflectivity DBRs on
each side of the cavity, with a relatively lower value on the top side.

• Minimizing the dephasing is achieved by stabilizing the charge environment of the quan-
tum dot with the electrical bias.
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We have now reviewed the deterministic light-matter coupling in a solid-state cavity. In or-
der to better grasp the interaction between the spin qubit and the photonic qubit, let us describe
the latter in an analogous manner as we did the former in the Bloch sphere.

1.3.3 Description of the polarization qubit in the Poincaré sphere

Here, we give an overview of the mathematical description of the polarization of light as a
wave and its counterpart in quantum optics, where the photon constitutes a polarization qubit.

Classical description in the (H,V) basis

A monochromatic plane wave traveling in the z direction with a wave vector k⃗ = (ω/c)u⃗z

is described by its electric field that can be written as projections on the horizontal and vertical
directions (u⃗H , u⃗V ), where (u⃗H , u⃗V , u⃗z) is an orthonormal basis:

E⃗(z, t) =

 AHei(kz−ωt)u⃗H

AV e
i(kz−ωt+δ)u⃗V

0 · u⃗z

 (1.16)

where E⃗ is the complex amplitude of the electric field, and AH/V are the maxima of the H and V
components. The electric field oscillates with a phase term (kz−ωt) and a dephasing δ between
its H and V components.

Let us consider normalized electric fields (A2
H + A2

V = 1) and study only the polarization
degree of freedom, which refers to the orientation of the oscillatory electric field in the (u⃗H , u⃗V )

plane. For a classical wave, it takes the form of an ellipse such as that represented in Fig. 1.29a
for an arbitrary case. The ellipse describes all the values of the electric field vector in one oscil-
lation period. Let us now simplify the common oscillatory term ei(kz−ωt). Three specific couples
of polarization states are commonly used as bases to describe all polarizations as linear com-
binations: (H,V), (D,A), (R,L). The first two sets comprise the linear polarizations (horizontal,
vertical, diagonal and anti-diagonal), which are found when the H and V components oscillate
in phase (δ = 0) and the third basis, the circular polarizations (left and right-handed), this time
for an oscillation in opposite phase (δ = ±π/2). In the (H,V) basis, we find:
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(1.17)

In the ellipse representation, the polarization is characterized by an orientation angle Ψ and an
ellipticity angle χ, and we find the basis polarizations for the following angles:

H: (Ψ = 0, χ = 0)

V: (Ψ = π/2, χ = 0)

D: (Ψ = π/4, χ = 0)

A: (Ψ = −π/4, χ = 0)

R: (Ψ = 0, χ = π/4)

L: (Ψ = 0, χ = −π/4)
(1.18)

The transformations of Eq. 1.17 have the same properties as those linking the spin states to-
gether in the Bloch representation (Eq. 1.3). This encourages the representation of polarization
in a sphere called the Poincaré sphere, where each polarization state is mapped to a point on
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the surface of the sphere (Fig. 1.29b shows the location of the arbitrary elliptical state from
Fig. 1.29a). In this representation, a pure polarization state is described by a Poincaré vector
S = (sHV , sDA, sRL) of unity length with a longitude angle Φ = 2Ψ and a latitude angle θ = 2χ.
The (Φ, θ) notations will be used in the rest of this manuscript. In Fig. 1.30, we plot examples
of different polarization states in the two representations.

𝜓 = Φ/2

𝜒 = 𝜃/2

(a)

sHV

sDA

sRL

Φ

𝜃

S

(b)

FIGURE 1.29: Example of a polarization state described by Φ = 120◦ and θ = 45◦

in two representations: (a) ellipse and (b) Poincaré sphere. The associated Stokes
S vector has the Cartesian coordinates sHV = −0.35, sDA = 0.61, sRL = 0.71.

|H⟩

|D⟩
|V ⟩

|R⟩

(a) (b)

FIGURE 1.30: Examples of different polarization states with a color mapping be-
tween (a) the ellipse representation and (b) the Poincaré sphere.
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The Cartesian coordinates of the Poincaré vector are known as the Stokes parameters, they
are expressed as functions of the latitude and longitude angles:

sHV = cos(Φ) cos(θ)

sDA = cos(θ) sin(Φ) (1.19)

sRL = sin(θ)

Quantum description in the (R,L) basis

At the single photon level, the Poincaré sphere describes a polarization qubit. Each photon
carries a spin quantized along the propagation axis u⃗z , of projection +1 or −1 corresponding
respectively to the circular polarizations |R⟩ and |L⟩. All the pure polarization states are super-
positions of the circular polarizations:

|Ψ⟩ = α |R⟩+ β |L⟩ (1.20)

where α and β are complex numbers such that |α|2 + |β|2 = 1. The reasoning done with a spin
qubit holds for the polarization qubit, albeit with different conventions. Let us examine the
consequences.

First, the link between (α, β) and the angular coordinates in the Poincaré sphere is given by
the following expressions, translated from Eq. 1.4 and adapted them for ϕ = φ and θ = π/2−ϑ:

α = cos

(
π

4
− θ

2

)
β = eiϕ sin

(
π

4
− θ

2

) (1.21)

The expression of the Stokes parameters of a pure polarization state can be adapted from
Eq. 1.4:

sHV = 2Re{αβ∗} = cos(ϕ) cos(θ)

sDA = 2 Im{βα∗} = sin(ϕ) cos(θ) (1.22)

sRL = αα∗ − ββ∗ = sin(θ)

An extra precaution is required when writing the basis change relations with kets like |R⟩ that
stand for Fock states with single photons in the given polarization: indeed, we could write
|R⟩ = |1R⟩, and the Fock state would be formed by applying the creation operator to the vac-
uum state |1R⟩ = â†

R |0R⟩. Besides, the creation operator being the hermitian conjugate of the
electric field, it follows the complex conjugate rules of Eq. 1.17. Therefore in the (|H⟩ , |V ⟩) and
(|R⟩ , |L⟩) bases, we have respectively:
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If a photon is in a statistical mixture of pure polarization states, it is characterized in the
Poincaré sphere by a vector that doesn’t reach the surface of the sphere. We write this gen-

eral case S = (sHV , sDA, sRL), and its norm is called the purity p =
√
s2HV + s2DA + s2RL. The

coordinates of the mixed polarization state are:

sHV = p · cos(Φ) cos(θ)
sDA = p · cos(θ) sin(Φ) (1.25)

sRL = p · sin(θ)

This description is analogous to the density matrix approach. A mixed state is the incoherent
sum of multiple pure states, each with their own probability. This incoherent summing can
have multiple causes:

• Fast variations of the phase ϕ that can’t be resolved by the detection apparatus.

• Coherent superposition of pure polarization states associated to other degrees of freedom,
such as spatial modes. For example, the state |Ψs⟩ = |H,m1⟩+|V,m2⟩√

2
appears as a mixed

superposition of |H⟩ and |V ⟩ to a detector that cannot resolve the two spatial modes m1

and m2.

Experimental polarization tomography

We experimentally access the Stokes parameters by measuring the intensity of the electric
field along each polarization X, for X ∈ [H,V,D,A,R,L]. The intensity is IX = |EX |2. The Stokes
vector is reconstructed with the following expressions, valid for pure and mixed states:

sHV =
IH − IV
IH + IV

sDA =
ID − IA
ID + IA

sRL =
IR − IL
IR + IL

(1.26)

1.3.4 Principle of the spin-dependent polarization rotation

The Faraday rotation, briefly mentioned in subsection 1.2.5 for its potential application in
the generation of multipartite entangled states, is now developed. We focus on the case of a
single photon interacting with a single spin in a micropillar cavity. The photon polarization is
a sum of the left- and right-handed circular polarizations, |L⟩ and |R⟩, respectively associated
with a spin projection of the photons of −1 and +1 along its propagation direction. When light
propagates along the growth axis of the micropillar z, the optical selection rules restrict the spin
states it can interact with: as per Fig. 1.7, |R⟩ can only interact with |↑⟩z of an electron or |⇓⟩z
of a hole and the opposites spin projections interact with |L⟩. In fact, the natural quantization
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axis of spins interacting with light is identical to the light propagation axis z, in the absence
of a magnetic field. We now show that a given linearly polarized photonic state undergoes a
rotation in one direction or the other depending on the spin state, as sketched in Fig. 1.31.

or

Reflected polarization

Incident polarization
or

FIGURE 1.31: Principle of the Faraday rotation of a linearly polarized photon by
a quantum dot spin coupled to a micropillar cavity.

Let us consider an input photon of polarization |Ψin⟩ = |H⟩ = |R⟩+|L⟩√
2

impinging on the de-
vice trapping a hole spin is in state |⇑⟩z . The left-handed circular component of |H⟩ experiences
a cavity with a two-level system represented by the |⇑⟩z → |⇑⇓↑⟩z transition, also denoted hot
cavity (loaded with the two-level system), as for the right-handed circular component, it only
experiences an empty cavity called cold cavity (without a two-level system). The corresponding
reflection coefficients can be computed in the semi-classical approximation [143] to model the
response of the device under a low power excitation1. The hot and cold cavities are character-
ized by the following complex reflection coefficients, respectively labeled h and c:

rh(ω) =
Eout(ω)

Ein(ω)
= 1− 2ηtop

(
1− 2i

ω − ωc

κ
+

2C

1− iω−ωd
γ

)−1

(1.27)

rc(ω) = 1− 2ηtop

(
1− 2i

ω − ωc

κ

)−1

(1.28)

where ω, ωc and ωd stand respectively for the energies of the laser, the cavity and the quantum
dot, and ηtop and C were previously introduced. The cold cavity takes C = 0 to remove the
light-matter interaction. Notice in the equations that ηtop brings about the interference between
the light that entered the cavity and left through the top mirror and the light directly reflected
without entering the cavity, as sketched on Fig. 1.31.

Let us simulate the quantum state of the reflected polarization. The set of parameters used
for this simulation is: g = 15µeV, κ = 375µeV, γ = 0.3µeV, ηtop = 0.9, ωd = ωc = ω0; it will
be studied in-depth in chapter 4 as it constitutes a base model of the device we call positively
charged device. We denote the reflected polarization state |Ψ⇑⟩ to indicate the spin state that light
has interacted with. It is given by the following expression, as a function of the laser energy ω:

|Ψ⇑(ω)⟩ =
rc(ω) |R⟩+ rh(ω) |L⟩√

|rc(ω)|2 + |rh(ω)|2
(1.29)

1This approximation starts from the master equation detailed in section 3.1 and ignores the quantum correla-
tions to find analytical solutions of the reflection coefficient in the steady state.
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We can rewrite this expression to highlight the effect of the moduli and phases of the reflection
coefficients with rh/c =

∣∣rh/c∣∣eiϕh/c (the energy dependence is implied for clarity):

|Ψ⇑⟩ =
|rc|eiϕc |R⟩+ |rh|eiϕh |L⟩√

|rc|2 + |rh|2
(1.30)

The modulus and phase of the two reflection coefficients are plotted in Fig. 1.32 as a function
of the laser-quantum dot detuning δω = ω − ω0, as solid green lines for the hot cavity and
dashed black lines for the cold cavity. The moduli exhibit a large cavity-induced dip of width
κ and depth determined by ηtop, and a thin dip originating from the quantum dot, of width Γ

and depth given by C and ηtop. The difference between the hot and cold cavities around the
quantum dot contribution alters the relative contributions of |R⟩ and |L⟩ light in the output.
Here, the incident light is |H⟩ and has equal contributions of |R⟩ and |L⟩, but the spin |⇑⟩z
interacts only with |L⟩ so the reflected light has comparably more |R⟩ than |L⟩ components. As
for the phase of the reflectivity, the hot cavity steeply separates from the slow increase of the
cold cavity at the quantum dot contribution. It impacts the reflected light by creating a relative
dephasing of ei(ϕh−ϕc) between |L⟩ and |R⟩: this is equivalent to an increase of ϕ (introduced in
Eq. 1.20 and 1.21), which causes a rotation of the reflected polarization from |H⟩ towards |D⟩1.
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FIGURE 1.32: Reflection coefficients of the hot and cold cavity (respectively in
solid green lines and dashed black lines) as a function of the laser-quantum dot
detuning δω: (a) in modulus and (b) in phase. Insets show a broader range of

detunings.

In the same fashion, we can calculate |Ψ⇓⟩ by inverting |L⟩ ↔ |R⟩ in the previous para-
graph and its conclusions. The polarization state |Ψ⇓⟩ is therefore rotated towards |A⟩, with a
relatively more important |L⟩ than |R⟩ contribution in the output.

If we identify the values of α and β from |Ψ⇑⟩ and |Ψ⇓⟩ (as in Eq. 1.20) and calculate
the Stokes parameters using Eq. 1.22, we can compute their scalar product using Eq. 1.8 and
conclude that a value of ω exists where ⟨Ψ⇑|Ψ⇓⟩ = 0. This situation is presented in Fig. 1.33
and illustrates the case of an ideal spin-photon interface. Indeed, in that case, any spin state is

1The rotation angle of the linear polarization is close to ϕh − ϕc and it is visibly 0 rad for low detunings, π
rad on resonance with the quantum dot, and 2π rad for high detunings. We see next that this consideration is not
completely rigorous as the output polarization does not stay perfectly linear but becomes slightly elliptical due to
the different reflectivity moduli of the hot and cold cavity applied to |L⟩ and |R⟩.
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translated to an analogous polarization state:

Spin state Polarization state

|⇑⟩ |Ψ⇑⟩
|⇓⟩ |Ψ⇓⟩

α |⇑⟩+ β |⇓⟩ α |Ψ⇑⟩+ β |Ψ⇓⟩

(1.31)

|Ψ⇑⟩
|Ψ⇓⟩

= |Ψin⟩

Poincaré sphereBloch sphere

⟨↑z|↓z⟩ = 0

⟨Ψ⇑|Ψ⇓⟩ = 0

FIGURE 1.33: (a) The two hole spin states |⇑⟩z and |⇓⟩z are represented by arrows
in the Bloch sphere. They imprint a spin-dependent rotation of the polarization
on photons. (b) The Poincaré sphere describes the input state |Ψin⟩ = |H⟩ and
the two reflected states depending on the spin state, |Ψ⇑⟩ and |Ψ⇓⟩, chosen at the

right detuning δω so that ⟨Ψ⇑|Ψ⇓⟩ = 0.

The global spin-photon state after the interaction can exhibit entanglement, but only to the
extent that the spin is in an equal superposition of the basis states, such as

∣∣Ψsp
〉
= |⇑⟩+|⇓⟩√

2
(or

any states on the equator of the Bloch sphere). In that specific case, the global state is maximally
entangled: ∣∣Ψsp-ph

〉
=

|⇑,Ψ⇑⟩+ |⇓,Ψ⇓⟩√
2

(1.32)

The result of this semi-classical model is quite relevant, as we will see in chapter 3 that a
fully quantum model gives very close results (for instance in Fig. 3.6).

1.3.5 Experimental spin-dependent polarization rotation

The first measurements of the spin-dependent polarization rotation induced by charged
quantum dots were achieved in the group of D. Awschalom [82] and A. Imamoglu [57] with
rotation angles close to 0.01◦ and 0.001◦ respectively. They both observed the rotation induced
by ensembles of quantum dots with single electron spins in planar cavities. Since then, much
higher rotation angles were demonstrated by coupling individual quantum dots to a microcav-
ity. Noticeably, micropillars gave exceptional results: 12◦ in the team of L. Lanco in C2N [27],
and 60 − 120◦ in the group of R. Oulton in Bristol [28] (albeit with a post-selection protocol in
the latter case).
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To summarize, micropillar cavities coupled to quantum dots are promising candidates as
solid-state spin-photon interfaces in a quantum network, thanks to their excellent coupling
with the spatial mode of an optical fiber [133], and their absence of polarization selectivity
preserving the polarization qubit in and out of the cavity. Achieving complementary spin-
dependent polarization states such that ⟨Ψ⇑|Ψ⇓⟩ = 0 is within reach as we will justify in the rest
of the manuscript. In addition, the cavity-quantum dot coupling can be controlled deterministi-
cally by in-situ lithography [23]. Many teams have explored the different light-matter coupling
regimes in these devices: on the one hand in the weak coupling to engineer high-efficiency
single-photon sources [24] and giant Faraday rotation [27, 28], and on the other hand, in the
strong coupling [144] with perspectives in photon-photon gates. Other leading groups in this
field are led by D. Bouwmeester in Leiden [145], A. Shields in Cambridge [146] and J.-W. Pan
in Hefei [63].

1.4 Conclusion

Photons and electrons or holes hold the fundamental property of quantum superposition,
in the polarization degree of freedom of the photons and in the spin degree of freedom of the
charges. Harnessing the benefits of both types of qubits paves the way towards quantum net-
works with photons carrying quantum information from one localized spin node to another.
The key takeaway of this chapter is the ability to trap single charges in solid-state quantum
dots, to control their spin and to fabricate microcavities producing an efficient spin-photon in-
teraction. An ideal spin-photon interface would provide the entanglement between a localized
spin and an external photon, a process much sought after for quantum networks and quantum
computing in general. Additionally, the remarkable scalability and relative affordability of such
devices compared to their cold atom counterparts offer potential for large-scale applications in
future photonic quantum technologies. In this chapter, the workings of a spin-photon interface
were laid out as generally as possible, and the state-of-the-art experimental implementations
were presented. Next, we focus more specifically on the work achieved in the group of L. Lanco
and P. Senellart who developed very promising cQED devices in the solid state which we will
seek to study as spin-photon interfaces.
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Chapter 2

Sample structure and experimental
principles

The development of spin-photon interfaces in the solid-state is technologically challeng-
ing and their operation requires combining techniques from the fields of optics and solid-state
physics. From the fabrication standpoint, a single quantum dot must be isolated, loaded with a
single charge carrier, and coupled to a cavity. Specifically, the cavity and the quantum dot need
careful spatial and spectral tuning. From the characterization standpoint, an input beam reso-
nant with the optical cavity mode and the selected quantum dot transition must be precisely
aligned to the micropillar cavity, with a careful polarization control in the input and output
paths.

In this chapter, we first focus on the design of two samples suited to operate as spin-photon
interfaces: one in which a single electron can be trapped by electrical control and the other in
which a single hole can be optically injected. After detailing the specifications of each sample,
we explain how the in-situ lithography technique can be adapted to obtain a deterministic
coupling of an identified quantum dot transition with the optical mode of a micropillar cavity.

We then establish the principle of the optical characterization experiments presented along
this manuscript: starting with the spectroscopic investigation of the device reflectivity in mul-
tiple polarization configurations, to study the effect of the cavity and the quantum dot spin
on the reflected light. By combining several of these reflectivity data, the tomography tech-
nique developed in previous works at the C2N [133, 147] allows a complete characterization
of the reflected polarization state: here, we apply it to the study of the cavity-induced polar-
ization rotation, as it gives insights on the micropillar cavity parameters and the quality of
the optical alignment. It will later enable the study of the spin-induced polarization rotation
in the steady state. Next, we present the experiments used to evaluate the performance of our
devices as spin-based single-photon sources. The first step is to find an excitation protocol to
load the charge in the quantum dot, and then to measure the brightness of the source and the
lifetime, purity and indistinguishability of the emitted photons: high-quality performance as
a spin-based single-photon source ensures the optimal operating conditions of a device as a



44 Chapter 2. Sample structure and experimental principles

spin-photon interface. In the last section, we introduce long-term photonic correlation mea-
surements through which we access the dynamic regime of the quantum dot charge and spin
states.

The general idea behind each type of measurement is described, leaving the complete the-
oretical analysis for chapter 3 and the in-depth experimental exploration of two specific devices
for chapters 4 and 5, in which they will be characterized as spin-photon interfaces by study-
ing the spin-induced polarization rotation in the continuous and dynamic regimes. The optical
characterization experiments presented here were conducted on the positively charged device by
P. Hilaire and myself. The deterministic fabrication of the quantum dot-cavity devices coupling
a trion transition to a micropillar was published in [148] and the results concerning the long-
term photonic correlations from subsection 2.4.3 are the object of a publication in preparation.

2.1 Design and properties of the samples

Two different designs of structures coupling a quantum dot to a micropillar cavity are an-
alyzed throughout this work. They are both tailored to operate as spin-photon interfaces, one
with the spin of a hole in a positively charged quantum dot and the other with the spin of an
electron in a negatively charged quantum dot. These designs inherit the technological knowl-
edge developed by the team of P. Senellart from one generation of samples to the next. The
first major step of the fabrication is the epitaxy of the planar heterostructure, which consider-
ably determines the parameters of the optical cavity and how the charge carriers distribute in
the structure. We start by presenting the heterostructures of the positively charged device and the
negatively charged device and explaining the principle of the confinement of light in the cavity
and of charges in the quantum dot. Then, the modification of the light-matter interaction by
an external magnetic field is analyzed, with the aim of identifying the optical transition of the
single hole or electron charge state. Subsequently, the in-situ lithography technique [23] pro-
duces a micropillar cavity centered on the quantum dot and spectrally tuned to the appropriate
optical transition. The additional parameter that is the external bias applied to the structure is
discussed as it is the final piece to achieve the fine-tuning of the quantum dot transition with
the energy of the cavity mode.

2.1.1 Design of the planar heterostructures

General concepts

In order to fabricate a device comprising a quantum dot coupled to a micropillar cavity,
the planar heterostructure is first epitaxially grown (see subsection 1.1.1 and 1.3.2): layers of
alternating AlAs/GaAs make up the two distributed Bragg reflectors of a Fabry-Pérot cavity
between which a layer of quantum dots is sandwiched. The planar structure sets the funda-
mental properties of the sample through the different optical indices, energy gaps and dopings
of the constitutive layers. Several parameters need to be carefully adjusted to get the desired
outcome:
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• The number of Bragg mirror pairs of the top and bottom sides of the cavity, which sets
the cavity width κ and the top mirror output coupling ηtop.

• The doping of the layers, which allows an external bias to be applied to the structure [140].
It defines the Fermi level and, if the latter is carefully adjusted, the possibility to electri-
cally inject carriers in the quantum dot. The optical losses caused by the additional free
carriers come into play if regions where the optical mode is intense are doped1 (especially
for the p-doped layers [149]).

• The possibility to increase the tunneling time out of the quantum dot for a specific type
of carrier, with a barrier in the vicinity of the quantum dot layer [46].

Negatively charged device

The high value of ηtop, required for an ideal spin-photon interface, is obtained through
the asymmetric design of the cavity to favor the collection of intracavity photons from the
top mirror, as shown in Fig. 2.1a which represents the heterostructure of the negatively charged
device.
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FIGURE 2.1: (a) Heterostructure of the negatively charged device with the simula-
tion of the electric field intensity inside the microcavity. A gradual n-doping from
the λ-cavity to the bottom side tilts the bands to lower energies whereas the anal-
ogous gradual p-doping on the top side tilts the bands to high energies. The QD
layer is drawn in red (not to scale). (b) Corresponding energy band structure in
the vicinity of the quantum dot layer. The proximity of the quantum dot layer to
the n-doped area allows an electron to be electrically injected in the quantum dot
when an external voltage brings the first conduction-band level of the quantum

dot below the Fermi energy EF .

1Additional insights are given in [47], especially on the influence of the p-doping on the rest of the epitaxy
process, and why it is suitable to place it on the top of the structure and not on the bottom.
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The bottom side of the λ-cavity contains 30 mirror pairs, and the top side, 20 (simulations
predict ηtop ≃ 87% for a lossless device where κloss = 0µeV). The simulation of the electro-
magnetic field inside the cavity shows that it is maximal on the quantum dot layer to maximize
the light-matter interaction, extremely weak on the bottom to minimize the losses through the
substrate and not too weak on the top to be able to extract photons efficiently.

The energy band structure in the vicinity of the quantum dot layer is sketched in Fig. 2.1b:
the sample is designed with an n-doped section so that the Fermi energy EF is close to the
first conduction-band level of the quantum dot and, in such a configuration, an external bias
Vbias can tilt the bands enough to push this level below EF , thereby injecting an electron. The
electrical control provides access to a wide range of charge states [20, 43] and additionally
reduces charge noise. It also allows the tuning of the quantum dot energy by Stark shift [140,
150].

Having a doped area this close to the quantum dot (i.e., to the InAs wetting layer) implies
that the optical mode is still intense at this location. In the case of a n-doping, this leads to a
moderate absorption, slightly increasing κloss and decreasing ηtop.

Positively charged device

The heterostructure of the positively charged device is shown in Fig. 2.2a:
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FIGURE 2.2: (a) Heterostructure of the positively charged device with the simulation
of the electric field intensity inside the microcavity. The QD and barrier layers
are drawn in red and blue (not to scale). (b) Corresponding energy band struc-
ture. The doping is placed far away from the quantum dot layer to avoid optical
absorption, which brings the Fermi energy too far away from the quantum dot
conduction and valence levels to enable electrical injection. However, the optical
injection of the positive charge carriers is facilitated by the presence of a trapping
barrier in the vicinity of the quantum dot layer. When an electron-hole pair is
optically created in the quantum dot, the electrons can tunnel out whereas the

trapping barrier prevents the holes from doing so.
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It differs from the previous one in several ways: first, it is adapted for a higher ηtop with 28
mirror pairs on the bottom and 14 on the top of the λ-cavity (simulations predict ηtop ≃ 95%

for a lossless device), second, it should be able to hold positively charged quantum dot states.
However, a hole cannot be electrically injected, because the presence of a p-doped layer in the λ-
cavity would cause detrimental optical losses. Both the p and n-dopings are therefore placed far
away from the quantum dot layer (in the Bragg mirrors). The resulting energy band structure,
sketched in Fig. 2.2b, exhibits a Fermi level mid-gap, far from the quantum dot conduction and
valence levels. However, electron-hole pairs can be injected optically and a trapping barrier,
positioned 10 nm above the quantum dot layer, ensures that electrons can tunnel out rapidly
(typically in 10-100 ns) while holes are trapped for a longer time (≃ 100µs).

2.1.2 Identification of a trion transition by in-plane magnetic field spectroscopy

A fine-tuning between the energy of the trion transition and that of the optical mode of the
cavity is required for an optimal spin-photon interaction. To that end, we begin by identifying
the energies of the optical quantum dot transitions with their respective charge states.

In order to analyze the charge states of the quantum dot, we experimentally measure its
photoluminescence spectrum while scanning the intensity of an in-plane (transverse) magnetic
field. The experimental setup is described in Fig. 2.3a: the excitation is a non-resonant (NR)
850 nm laser, injected into the micropillar through a fibered input. Light is absorbed to create
electron-hole pairs that recombine by multiple quantum dot transitions. The excitation power
is kept reasonably low (around 1 µW on the sample) to avoid the accumulation of carriers in the
quantum dot before they can recombine, which would lead to the manifestation of unwanted
lines in the resulting spectra. The sample stands in a liquid helium cryostat where an in-plane
magnetic field is applied. The PL signal is sent to the collection path through a 90:10 beam
splitter (BS) (a low-pass spectral filter eliminates the reflected laser to keep only the PL signal).
Finally, a half-waveplate (HWP) and a linear polarizer (LP) can be added before the collection
to distinguish polarized lines. The output signal is analyzed with a spectrometer of resolution
25 pm/px.

The result is shown in Fig. 2.3b, for a planar sample, using the heterostructure comprising
a tunnel barrier, in which holes can be optically injected (Fig. 2.2). The bottom panel comprises
a stack of PL spectra as a function of the emission wavelength (horizontal axis) for different
in-plane magnetic fields (vertical axis) from 0 T to 9 T, while collecting all polarizations (no po-
larization analysis on the output path yet). The lines exhibit Zeeman splitting on top of a dia-
magnetic shift of approximately −3.3 pm/T2. The top panel shows the polarization substructure
of the lines, which was not visible on the bottom panel: to do so, the in-plane magnetic field
in set at 4 T and the reflected PL passes through the polarization analysis, while the HWP is
rotated (top vertical axis) so as to resolve doublets of lines that are linearly polarized in two
orthogonal directions and hardly split by one pixel of the spectrometer.
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FIGURE 2.3: (a) Setup of the photoluminescence experiment. BS: beam splitter,
HWP: half-waveplate, LP: linear polarizer. (b) Study of a typical quantum dot in
the planar sample with the heterostructure designed to trap holes: PL spectra as
a function of the intensity of the in-plane magnetic field while collecting all po-
larizations (bottom) and polarization analysis with HWP+LP at 4 T (top). Figure

adapted from [148].

We can identify:

• A trion transition on the left side (λ = 925.1 nm): the magnetic scan shows a splitting into
two lines that are in fact four linearly polarized transitions orthogonal two by two, as
evidenced by the polarization analysis1.

• An unknown transition in the middle (λ = 925.3 nm), splitting into two HB and VB lines
and with a very close VB line that appears around 1 T. The asymmetry in the brightness
of the two lines is an indicator of a more complex charge state such as X2+ [43].

• A line that behaves as an excitonic transition on the right side (λ = 925.7 nm), comprising
two close HB and VB lines.

Here, the trion transition is the only one that we need to identify beyond any doubt for the
purpose of this manuscript.

1The magnetic scan can’t prove if the state in presence is a positive or negative trion, but we are confident that
it is positive based on the heterostructure design.
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2.1.3 Fabrication of deterministically coupled quantum dot-micropillar devices

The fabrication of the sample relies on the in-situ lithography technique [23] to position a
micropillar cavity around a quantum dot and tune the energy of its optical mode to that of a
quantum dot transition. This step is carried out in a custom-designed Attocube Attodry 1000
cryostat that currently operates without a magnetic field, so no identification of the charge state
is possible during the lithography.

Negatively charged device: in-situ lithography without quantum dot state identification

The lithography of the negatively charged device consisted in examining the PL signal from
quantum dots without prior identification of the charge states. While scanning the lateral po-
sition of the planar sample, the emission lines of a single quantum dot are isolated, and one of
the transitions is chosen randomly. The micropillar is then designed around that specific quan-
tum dot and its energy tuned to the designated transition. The outcome was that most of the
micropillars of this sample were tuned to a X0 transition, and only a few of them to X− (in-
cluding the one studied in chapter 5). Nevertheless, multiple devices from this wafer achieved
exceptional results with X0 transitions, in terms of single photon emission [24], coherent con-
trol [25] and single photon non-linearity [26]. For the next generation sample, a novel idea was
experimented in an effort to make the in-situ lithography process more deterministic.

Positively charged device: first attempt at charge-selective in-situ lithography

In order to deterministically engineer micropillars tuned to the X+ transition, the in-plane
magnetic field spectroscopy identification is required to identify the line beforehand: this step
is achieved in a separate cryostat. Unfortunately, it is unfeasible to carry out the magnetic iden-
tification on a specific quantum dot and to locate it during the lithography step after changing
cryostats. An alternative solution is to identify patterns of emission lines from quantum dots on
the planar sample, that are recognizable without a magnetic field, such as the one of Fig. 2.3b.
It was indeed possible to observe a recurring pattern of three bright lines across multiple quan-
tum dots, separated as follows: X+ − 200 pm−X+2(?)− 400 pm−X0. The in-situ lithography
was carried out aiming at the X+ line of the pattern, and was followed by the etching step and
the electrical contacting of the sample. The etched micropillars were shown in Fig. 1.27.

The in-plane magnetic field spectroscopy experiment was performed once again on the
finalized device in a separate cryostat (Fig. 2.4). This time, the polarization was analyzed at the
same time as the magnetic field was scanning, therefore, a modulation between the linearly
polarized lines is visible. We can identify the X+ transition at 925.8 nm. It is centered on the
cavity mode, which strongly enhances the emission in the 925.7 – 926 nm range. The X0 tran-
sition is located at 926.5 nm. The Landé factors of the electron and hole can be calculated from
the Zeeman splitting of the lines since Ze,⊥ = |ge,⊥µBBx| and Zh,⊥ = |gh,⊥µBBx|. Additionally,
the diamagnetic factor δdia,⊥ characterizes the quadratic offset of the lines to high energy as
the in-plane magnetic field increases. We estimate the following parameters, in agreement with
the findings of other groups studying annealed InGaAs quantum dots [151–153]: gh,⊥ = −0.2;
ge,⊥ = −0.5; δdia,⊥ = 4.8µeV/T2.
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FIGURE 2.4: Photoluminescence spectra of a quantum dot in a micropillar (posi-
tively charged device) as a function of the intensity of the in-plane magnetic field.
The presence of the cavity enhances the emission around 925.8 nm. Here, the
polarization analysis is carried out by rotating the collection HWP before a lin-
ear polarizer as the magnetic field increases, so the four lines of the X+ transi-
tion are already evidenced. The X0 transition is also identifiable. Figure adapted

from [148].

This novel technique was applied successfully for the positively charged device, and for other
devices from the same wafer prepared with the same technique, which were involved in var-
ious publications [69, 141, 142, 148, 154]. Further improvements of the technique point to a
live identification of the transitions during the lithography step without the need for an ex-
ternal magnetic field: either by analyzing the voltage dependence of the transitions (requiring
the implementation of the electrical contact beforehand), or by exploring the response to an
LA-phonon-mediated excitation [69], both of which show charge-selective behavior.

Next, we delve into the main experimental techniques which made the results of the next
chapters possible.

2.2 Coherent laser spectroscopy of quantum dot-cavity devices

The coherent laser spectroscopy is a fundamental tool that we employ in a wide range of
characterization experiments, from the analysis of the cavity modes presented in this section,
to the spin-induced polarization rotation, explored in the next chapters. The principle is that a
laser of varying wavelength probes the reflectivity of the sample using various injection and
collection polarizations. The experimental setup is first presented, followed by the reflectivity
of the two eigenmodes of the bare cavity. Then, a complete characterization of the reflected
polarization in the Poincaré sphere with a tomography technique gives additional insights.



2.2. Coherent laser spectroscopy of quantum dot-cavity devices 51

2.2.1 Polarization-resolved reflectivity measurements

The complete characterization of the effect of the device on the input polarization requires
a versatile setup, able to inject a given polarization in the micropillar and to collect the reflected
intensity in the six polarizations HVDARL, to reconstruct the state in the Poincaré sphere. The
input polarization is a pure state |Ψin⟩ associated to a polarization density matrix ρ

(pol)
in and a

Stokes vector Sin, defined by:

ρ
(pol)
in = |Ψin⟩ ⟨Ψin| Sin =

sHV (Ψin)

sDA(Ψin)

sRL(Ψin)

 (2.1)

The reflected polarization (output state) is denoted with the density matrix ρ
(pol)
out associated to

the Stokes vector Sout which may or may not be a pure state.

Optical setup

Let us describe the optical setup presented in Fig. 2.5 from the input fiber to the sample,
and back from the sample to the collection:

• The input beam comes from an optical fiber of numerical aperture NA = 0.13, from which
it is collimated by an aspheric lens (f = 11mm, NA = 0.25). The NA of the lens is higher
than the one of the fiber so that the beam does not cover the whole surface of the lens
and goes through it with minimal aberrations. The beam then propagates in freespace
(in the horizontal plane) with a waist of typically �1.9 mm. This laser is either pulsed to
facilitate alignment or continuous wave (CW) with a scanning wavelength for reflectivity
measurements.

• The linear polarizer (LP) sets the polarization of the excitation beam to s (using the stan-
dard (s, p) notations for the polarizations respectively parallel and orthogonal to the plane
of incidence on the optics). 10 % of the input light is transmitted by the beam splitter (BS).

• The beam size is then adjusted with a telescope (f1 = 125mm, f2 = −100mm) so that
it matches the mode of the micropillar (� 2.7 µm, NA ≃ 0.3) after passing through the
focusing lens right above the sample (f = 3.1mm, NA = 0.7).

• The excitation polarization is set with the quarter- and half-waveplates QWP1, HWP1 to
the state |Ψin⟩. In the following, it will be linearly polarized along a cavity eigenpolariza-
tion H or V to study the spin-induced polarization rotation, or along D or A to study the
cavity anisotropy.

• Between these waveplates and the focusing lens, a mirror not shown on the figure makes
the beam propagate vertically inside the cryostat. There, the sample lies in an enclosure
containing a contact gas (12 mbar helium), which is itself immersed in liquid helium. The
sample is mounted on piezoelectric nanopositioners for a fine alignment with the input
beam.
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• After the interaction with the sample, the beam is reflected with the polarization state
ρ
(pol)
out . 90 % of the output light is reflected to the collection path by the BS and then goes

through a polarization analysis setup: there, the carefully calibrated waveplates QWP2
and HWP2 transpose the three couples of complementary polarizations HV,DA,RL to the
(s, p) directions on which the Wollaston prism projects. The output polarization state is
reconstructed in the Poincaré sphere in three sequential steps, one for each basis.

• The intensities in the s and p polarizations after the Wollaston are measured, either by
freespace avalanche photodiodes (APDs) or fibered detectors such as single photon APDs
(SPAPD, efficiency ηdet ∼ 30%) and superconducting nanowire single photon detectors
(SNSPD, ηdet ∼ 90%). The freespace APDs have a lower efficiency and give a voltage
proportional to the photon flux whereas the fibered detectors give a TTL signal each time
they detect a single photon. In the case of the freespace APDs, the input laser can be
modulated in intensity and the output voltage treated by a lock-in amplifier to reduce
noise.
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FIGURE 2.5: Setup for the polarization-resolved reflectivity measurements.
LP: linear polarizer, BS: beam splitter, QWP: quarter-waveplate, HWP: half-
waveplate, APD: avalanche photodiode. The beam comes from the input fiber,
its polarization is set to s by LP and then to |Ψin⟩ by QWP1 and HWP1. The size
of the beam is adjusted by the telescope. Upon reflection from the sample, the po-
larization state is written ρ

(pol)
out : the beam goes through the polarization analysis

setup, where QWP2, HWP2 and the Wollaston prism split it in any two polar-
ization bases (HV,DA,RL). The intensity in each polarization is then measured
by photodiodes to reconstruct the Stokes vector of the output polarization in the

Poincaré sphere, Sout, or equivalently its density matrix ρ
(pol)
out .
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Reflectivity measurement of the cavity eigenmodes

As mentioned in subsection 1.3.2, the anisotropic optical confinement in the micropillar
creates two cavity eigenmodes at different energies, for two complementary linear polariza-
tions written Hcav and Vcav (simply labeled H and V in this manuscript) [138]. Such an effect is
better known as birefringence and a complete characterization will in turn provide information
to isolate the Faraday rotation induced by a quantum dot when it later comes into play.

We probe the reflectivity of the cavity eigenmodes by using the setup described in Fig. 2.5,
exciting along the cavity eigenpolarizations and each time collecting in the same polarization
(parallel to the excitation). The protocol to prepare the excitation and collection configuration
consists in the following steps:

• Starting from the setup of Fig. 2.5, sending a broadband input source on the sample (typ-
ically a 3 ps Ti:sapph pulsed laser) and collecting light in one of the outputs after the
Wollaston prism.

• Exploring configurations of angles for HWP1, QWP1, HWP2 and QWP2 until the col-
lected light has a minimum of intensity for the whole spectrum of the input source. This
indicates that the excitation is aligned to a cavity axis (say H for the example): the reflected
light is unaltered (also polarized in H) and the collection is cross-polarized (observing in
V).

• A rotation of 45◦ of HWP2 aligns the collection to H, the same polarization as the input.

• The input is replaced with a continuous wave laser of scanning wavelength to proceed to
the measurement of the reflectivity spectrum and the protocol is repeated to characterize
the reflectivity of the V mode.

The experimental reflectivity of the two cavity modes is plotted in Fig. 2.6 and the data
are fitted by the semi-classical formula of the reflection coefficient [143], adapted from Eq. 1.28
with specific parameters for each cavity mode:

rc,H(ω) =
EH,out(ω)

EH,in(ω)
= 1− 2ηtop,H

(
1− 2i

ω − ωc,H

κH

)−1

rc,V (ω) =
EV,out(ω)

EV,in(ω)
= 1− 2ηtop,V

(
1− 2i

ω − ωc,V

κV

)−1
(2.2)

where we introduced individual values of ωc, κ and ηtop for each cavity mode. The abscissa of
the plot is centered on ωc =

ωc,H+ωc,V

2 as will be the case for the following figures of this section.
In addition, the APDs measure the intensity of the electric field in a given polarization, so for
each cavity eigenpolarization, we plot the reflectivity given by:

Iout
Iin

=

∣∣∣∣Eout

Ein

∣∣∣∣2 = Rc(ω) = |rc(ω)|2 (2.3)
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FIGURE 2.6: Reflectivity of a quantum dot-micropillar device of the positively
charged device while exciting the eigenpolarizations of the cavity, H and V.

The fitting parameters converge to:
ηtop,H = 0.85± 0.1 κH = (416± 20)µeV

ηtop,V = 0.85± 0.1 κV = (432± 20)µeV

ωc,H − ωc,V = (74± 10)µeV

(2.4)

This set of parameters will be a starting point, first to model the cavity-induced birefringence
in the next paragraph, and to fit the more complex behavior of the system when a quantum dot
enters into play in chapter 4.

Here, we implicitly assumed a perfect coupling of the input beam to the micropillar. As
was shown in [133], a proper fit of the total reflectivities in H and V exists for multiple val-
ues of the input coupling, providing ηtop is adjusted. We discuss in the next paragraph how a
tomography experiment can give definitive and more precise information on the cavity param-
eters and the quality of the alignment.

2.2.2 Reconstructing the complete reflected polarization state through polarization
tomography

Outline of the experiment

The polarization tomography technique makes use of the calibrated configurations of
HWP2 and QWP2 in the setup from Fig. 2.5 to measure the reflected intensities in (HV, DA,
RL), with which the Stokes parameters are reconstructed (see Eq. 1.26). The result after a wave-
length scan of the input laser consists in a succession of Stokes vectors plotted in the Poincaré
sphere.

In this experiment, we study the wavelength dependence of the reflected light with an
input polarized along D. In fact, the effect of the cavity birefringence is the strongest on the D
and A inputs as they fall in the middle of the two cavity eigenpolarizations H and V. In the
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ideal situation where ηin = 1, the input and output polarization states are given by:
|Ψin⟩ = |D⟩ = |H⟩+ |V ⟩√

2

|Ψout⟩ =
rc,H |H⟩+ rc,V |V ⟩√

|rc,H |2 + |rc,V |2
̸= |D⟩

(2.5)

The reflected polarization state associates the reflection coefficients rc,H and rc,V to their respec-
tive components in |Ψin⟩, reasoning analogously to the Faraday rotation from subsection 1.3.4.
In the specific case where ηin = 1, the output polarization state is pure, i.e., ρ(pol)

out = |Ψout⟩ ⟨Ψout|.
However, this is generally not the case when performing free-space experiments where the col-
lected light is a superposition of light coupled to the cavity mode (with the efficiency ηin) and
light that is not coupled to this mode (efficiency 1−ηin), which is reflected with no polarization
change. The influence of ηin was studied previously in the C2N by Hilaire et al. (2018) [133]: it
was shown that ηin < 1 results in a depolarization of ρ(pol)

out , which cannot be unambiguously
characterized by the reflectivities in H and V alone. Indeed, multiple combinations of ηtop and
ηin give the same reflectivities for a given polarization. Only with a polarization tomography
of the reflected light can the actual combination unequivocally be determined.

The experimental Stokes parameters and tomography data are presented in Figs. 2.7 and
2.8 as a function of the laser-cavity detuning1. Fits are superimposed, first with a perfect input
coupling and then with an imperfect one, explained in the next two paragraphs. The polariza-
tion state is rotated from |D⟩ towards |L⟩ when the laser comes into resonance with the central
cavity energy whereas the input polarization is unchanged for high detunings. Additionally, a
small depolarization is visible, especially in the Stokes parameters.

(a) (b)

FIGURE 2.7: Stokes parameters of the light reflected by the bare cavity (freespace
collection) with an input polarization |Ψin⟩ = |D⟩. Experimental points superim-
posed with fits in black lines. (a) Forcing ηin = 1, the purity is always unity (fit
in dashed lines). (b) Allowing an imperfect input coupling, the fit in solid lines

matches the reduced purity of the experimental points.

1The experimental data shown here were measured in the set of polarizations [HVDARL]coll, specific to the
collection. A rotation was applied to bring them back to the cavity set of polarization [HVDARL]cav , thereby
compensating any ellipticity on the collection paths. To do so, the out-of-resonance points were brought to |D⟩ and
the orientation of the loop in the Poincaré sphere was aligned with the simulated one.
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FIGURE 2.8: Polarization tomography based on the Stokes parameters from
Fig. 2.8. The whole sphere contains only experimental points and the zoomed
windows display the fitting results on top, first with a perfect input coupling
(red line), then with an imperfect one (black line). The sphere is viewed from be-

low the (HDVA) plane, placing |D⟩ in the foreground.

Modeling the ideal case ηin = 1

Let us first assume a perfect injection (ηin = 1). In an analogous way as in Eq. 1.22, we
can write the Stokes parameters of the reflected polarization state as expressions of the input
electric fields and reflection coefficients in the (H,V) basis:

sHV,out =
(
|rHEin,H |2 − |rV Ein,V |2

)/
I

sDA,out = 2 Re
{
rHEin,H · rV Ein,V

}/
I (2.6)

sRL,out = 2 Im
{
rHEin,H · rV Ein,V

}/
I

We can arbitrarily fix I = 1 and then take Ein,H = Ein,V = 1/
√
2 to account for the D-polarized

input. The fit is computed with the expressions of the reflectivity coefficients from Eq. 2.2 and
its outcome is represented by a red line along with the experimental data in the Poincaré sphere
in Fig. 2.8 and the associated Stokes parameters are given in Fig. 2.7a (the purity stays at unity).
The fitting parameters have been constrained to keep the same values of κH/V and ωc,H − ωc,V

as in the fitting of the reflectivities of the two cavity modes (see Eq. 2.4). The results are the same
as the previous fit, except for the top mirror output coupling of which we get a more precise
value: ηtop,H = ηtop,V = 0.94 ± 0.02. The quality of the fit is already high, but it is hindered
by the constraint to stay on the surface of the Poincaré sphere (ηin = 1). In such a case, the
computed polarization state is pure: ρ(pol)

out = |Ψout⟩ ⟨Ψout|.
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Modeling the non-ideal case ηin < 1

We can now refine the model by considering an imperfect input coupling (ηin < 1) that
should reproduce the depolarization effect. The consequence is that starting from a beam of
intensity Iin, a portion ηinIin enters the cavity and undergoes the cavity reflectivity as stud-
ied previously, and another portion (1− ηin) Iin is not coupled in the cavity because its spatial
mode has no overlap with the cavity mode: it is therefore reflected in the input polarization.
The absence of spatial mode overlap between the coupled and uncoupled light implies that
they will not interfere upon reflection1. In terms of Stokes parameters of the reflected polariza-
tion, this translates as incoherently summing a coupled part (labeled c) and an uncoupled part
(labeled u). The Stokes coefficients of the reflected coupled light are given by the expressions of
Eq. 2.6 and those of the uncoupled light are simply the coordinates of |D⟩ (sHV,u = 0, sDA,u = 1,
sRL,u = 0). According to the calculations from [133], the measured Stokes parameters sXY,refl

for XY∈ [HV, DA, RL] result from the sum of the coupled and uncoupled contributions, with
respective weights p and 1− p such that:

p =
ηin ×Rm

(1− ηin) + ηin ×Rm

sXY,refl = p× sXY,c + (1− p)× sXY,u

(2.7)

where we introduced the total mode reflectivity Rm, given for a D excitation by the expression
Rm(ω) = (RH(ω) +RV (ω))/2. The final result is represented by black lines on the tomography
and Stokes parameters figures and the fitting parameters are given below, were the same con-
straints as previously were imposed (κH/V and ωc,H −ωc,V fixed to match Eq. 2.4). In that case,
the fit is closer to the experimental data as the imperfect input coupling introduces depolar-
ization. This set of parameters will be the starting point to model the behavior of the positively
charged device in chapter 4.



ηin = 0.84± 0.02

ηtop,H = 0.92± 0.02 κH = (416± 20)µeV

ηtop,V = 0.92± 0.02 κV = (432± 20)µeV

ωc,H − ωc,V = (74± 10)µeV

(2.8)

2.2.3 Complementary considerations on the cavity birefringence

Cavity-induced rotation for different input polarizations

The analytical model lets us simulate the polarization state of the reflected photons for
different input polarizations, as seen in Fig. 2.9. On the left sphere, we consider the input po-
larizations D,L,A and R and the color code corresponds to the wavelength scan: the trajecto-
ries present a characteristic "droplet" shape, with the output polarization being identical to the

1This holds for free-space collection detectors as they collect both coupled and uncoupled light, as opposed to
a single-mode fiber that performs a spatial filtering
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input one when the laser is far detuned, and rotated to the curved side of the droplet on res-
onance. The right panel shows similar scans, for linear input polarizations from H to V: the
cavity rotation is maximal for D and is null for H and V (if |Ψin⟩ = |H⟩, then |Ψout⟩ = |H⟩, and
similarly for |V ⟩).

View View

ω
−
ω
c
(m

eV
)

FIGURE 2.9: Examples of trajectories of the polarization state while scanning the
wavelength of the input laser, for different input polarizations. The view angle
corresponds to |D⟩ in the foreground. The black points on H and V show that the

cavity has no effect on these polarizations.

Case of a fibered collection

In realistic experiments such as those presented in chapters 4 and 5, the output light is sent
to a fibered single photon detector, which induces a spatial selection that can be modeled by
introducing the overlap between the input mode and the collection mode, ηic, and the overlap
between the cavity mode m and the collection mode, ηmc. It can be demonstrated [155] that the
cavity reflectivity coefficient for mode m, written rc,m in Eq. 2.2 becomes:

rfibered,m =
√
ηic · r(eff)m (2.9)

where r
(eff)
m is an effective reflectivity, with formulae analogous to rc,m modified with an effec-

tive output coupling: η(eff)top = ηtop
√

ηinηmc

ηic
. This factor depends on the optical alignment, and

becomes close to ηtop when a good alignment is obtained.

The choice made for the data fitting in the next chapters is to hypothesize a perfect input
coupling and to allow a small offset of η

(eff)
top compared to the fitted value with a freespace

reflectivity (here, ηtop = 0.92 for the positively charged device).
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2.2.4 Alignment technique using the cavity-induced polarization rotation

Knowing that the cavity rotates in the Poincaré sphere the states that are different from its
eigenpolarizations H and V, one can devise an alignment procedure based on the maximization
of this "cavity-rotated light" in the collection arm. With that intent, we excite the device with
a pulsed laser broader than the cavity width and observe the reflected light in different con-
figurations. The resulting spectra are plotted as solid lines in Fig. 2.10 along with a Gaussian
profile (dashed yellow line) representing the spectrum of the input laser of width 550 µeV. The
two configurations of interest are the following:

• Exciting H and collecting V (red line): in this configuration, the polarization is left un-
changed by the micropillar (|Ψout⟩ = |Ψin⟩ = |H⟩), therefore, a collection arm polarizing
along V maximally attenuates the collected light, as shown in the inset of the figure.

• Exciting D and collecting A (blue line): here, we collect only the contribution from the
light rotated by the cavity, which is produced in a range of around 315 µeV in the present
case (corroborating the width of sDA in Fig. 2.7).

Once the cavity-rotated light is isolated, it can be used to match the collection mode of the setup
to that of the micropillar by maximizing its contribution in the detected signal. That way, we
can ensure that ηin, ηic and ηmc are maximal. The typical value of the output coupling of the
rotated light in the collection fiber is 65 %.

FIGURE 2.10: Spectral shape of the collected light after exciting H and collecting
V (solid red line, also in the inset), or exciting D and collecting A (solid blue line).
The shape of the input laser is plotted as a Gaussian spectrum of width 550 µeV

in a dashed yellow line.
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2.3 The quantum dot-cavity device as a single-photon source

In this section, we first explain how the single charge state is created in the quantum dot,
and we then proceed to the characterization of the device as a single-photon source. As the
charge creation in the negatively charged device is straightforward since it relies only on the ex-
ternal bias, we focus on the more complex optical carrier injection for the positively charged
device.

Then, we characterize the single photon emission, which gives valuable information on the
efficiency of the excitation scheme, on the quality of the filtering of the quantum dot-emitted
photons in the collection, and on the quantum interaction leading to single photon emission.
The figures of merit are the brightness of the source and the lifetime, the purity and the indis-
tinguishability of the emitted photons.

2.3.1 Optical injection of a hole in the positively charged device

The design of the positively charged device implies an optical injection of the single hole
charge state. This is done with a two-color excitation (see subsection 1.1.5), comprising a quasi-
resonant laser to create the single hole charge and a resonant one to probe it. The hole injection
scheme is detailed in Fig. 2.11. The considered levels and transition energies are highlighted
on the left side of the figure, separating the case of a neutral quantum dot and that of a quan-
tum dot with a single hole, which modifies the electromagnetic environment, and therefore the
energy of the quantum dot levels. The excitation sequence is sketched on the right side and
proceeds as follows:

• The quantum dot is initially in the neutral state and an electron-hole pair is pumped with
the quasi-resonant laser at ωQR.

• Then, the electron rapidly relaxes to the ground state of the valence band. At this point,
either the electron-hole pair recombines, emitting a photon at ωX and restarting the cycle,
or the electron tunnels out while the hole is blocked by the barrier.

• After the electron tunnels out, the quantum dot is left with a single hole that can be ad-
dressed with a resonant laser at ωX+ . Because the hole modifies the electromagnetic en-
vironment, the energy required to add an additional electron-hole pair quasi-resonantly
is now ωQR,1h, which cannot be excited by the quasi-resonant laser as it is different from
ωQR.

Experimentally, we first explore the response of the trion emission with a scanning non-
resonant laser: this is known as a photoluminescence excitation (PLE) experiment. The result
gives clues on the energy-level structure of the quantum dots [62, 156, 157]. The PLE spectra
are shown in Fig. 2.12 (left) for an excitation power of PNR = 15µW. The emission of the
trion transition is located around 925.9 nm: it shows a modest intensity for a non-resonant laser
below 885 nm, that we identify as wetting layer excitation, and a few sharp resonances from
899 nm to 912 nm that can correspond to any quasi-resonant transitions.
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FIGURE 2.11: (Left) Schematic electronic structure of the quantum dot and its
surroundings, with a separation between the case of a neutral quantum dot and
that of a quantum dot charged with a single hole. (Right) Excitation sequence,
with (1) the initial injection of an electron-hole pair by quasi-resonant excitation
at ωQR, (2) the relaxation of the electron and either recombination with the hole
(bringing back the sequence to (1)) or tunneling out of the electron, leaving the
quantum dot with a single hole (3). The single hole is addressed with a second
laser at ωX+ , and the quasi-resonant laser doesn’t create additional e-h pairs since

ωQR,1h ̸= ωQR. Figure adapted from [148].

In order to generate single photons from the trion transition, we add a 15 ps pulsed res-
onant excitation (PNR = 1nW) tuned to λX+ and restart the scan of λNR as shown on the
right side of the figure, this time with a much weaker non-resonant excitation (PNR = 50nW)
so as to observe only the resonance fluorescence emission and not the PL emission. The pat-
tern of resonances is modified by the presence of the resonant excitation: short wavelengths
of the non-resonant laser amplify the emission up to 893 nm and longer wavelengths give rise
to multiple narrow resonances. Among all of these, the one for λNR = 901 nm was the most
promising (intense and narrow). This specific wavelength corresponds to ωQR in Fig. 2.11. The
energy difference with the s-shell transition is 35.8 meV, which is very close to the LO-phonon
energy1.

In the following, we explore the performance of such a device as a single-photon source.
The excitation scheme will mostly be resonant s-shell excitation with a pulsed laser coupled to
a CW non-resonant one. The specific 901 nm resonance that is discussed here will be explored
in the long-delay correlation experiments of section 2.4.

1Depending on the electronic structure of our quantum dots, this resonance could also be a p-shell or d-shell
transition.
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FIGURE 2.12: (Left) PLE spectra for a scanning non-resonant laser (PNR

= 15µW). The line λNR = 900 nm is highlighted for visualization. (Right) Reso-
nance fluorescence spectra with a resonant 15 ps laser (PR = 1nW) coupled to a

scanning non-resonant laser (PNR = 50nW).

2.3.2 Characterization techniques related to single-photon emission

We explore the experimental methods to quantify the quality of the single photons emit-
ted by the quantum dot-micropillar cavity devices, taking the data measured on the positively
charged device as an example. Optimizing the single photon operation helps to find the best
excitation conditions which in turn leads to a high-quality spin-photon interface. The perfor-
mance of the sources fabricated at the C2N laboratory was extensively studied by Ollivier et al.
(2020) [154], especially the reproducibility of the characteristics from one device to the other.
The results given in this section pertain to the positively charged device, which is studied as a spin-
photon interface in chapter 4. Here, the device is addressed with a wetting layer (WL) two-color
scheme including a 15 ps pulsed resonant laser (PR = 2nW, repetition rate frr = 81MHz) with
an additional CW non-resonant laser in the wetting layer (λNR = 830 nm, PNR = 0.5 nW);
the excitation is polarized along the cavity axis H and the single photons are extracted in the
cross-polarized collection.

Measuring the first lens brightness

The brightness of the source is defined as the probability that it emits a single photon
when triggered by an excitation pulse. To calculate the first lens brightness, we compensate
the detected photon count rate by the losses on the collection path, from the first lens after
the micropillar to the single photon detector, and divide this number by the repetition rate of
the pulsed excitation laser. By exciting the device with the WL two-color scheme, we obtain a
single photon count of CR = (1.6± 0.2)MHz after the collection fiber. To calculate the first lens
brightness, we must correct by the detector efficiency ηdet = 30% and the overall transmission
of the collection path, evaluated at Tsetup = 35%:
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B =
CR

frr × Tsetup × ηdet
= (19± 2)% (2.10)

Measuring the trion lifetime

The temporal shape of the single photon wave packet allows us to infer the emission
dynamics and to confirm which type of quantum dot transition the single photons originate
from [154]. It is measured by timing the detection events of the single photons after each exci-
tation pulse.

Here, we use SNSPD for the single-photon detection (unlike the other coincidence mea-
surements of this section, which rely on SPAPDs): their very short time jitter minimizes the dis-
tortion of the measurement. The timing of the detection events is treated by a time-correlated
single photon counting (TCSPC) module. The result for the emission of a X+ transition is a fast
increase and a slow decay as shown in Fig. 2.13. The total lifetime is T1 = 200 ps, corresponding
to a spectral width of 3.3µeV. It was computed by fitting the data with a Heaviside function
modeling the trion decay, convolved with a Gaussian detector response of half width at half
maximum (HWHM) 50 ps. We emphasize that the sharp increase of the trion emission comes
from the fact that it can emit photons in the cross-polarization as soon as it is excited by the
input pulse and the slow decay corresponds to the Purcell-enhanced emission and the sponta-
neous emission in the cross-polarization. The behavior of an exciton transition is very different
as it shows a slow increase and a beating in the decay due to the fine structure splitting [154].

−0.25 0.00 0.25 0.50 0.75 1.00 1.25
Time (ns)

0.0

0.2

0.4

0.6

0.8

1.0

C
ou

nt
s

FIGURE 2.13: Lifetime of a trion of the positively charged device excited with the
WL two-color scheme, measured with an SNSPD synchronized with the clock of
the pulsed excitation. The fit comprises a mono-exponential of decay T1 = 200 ps

convolved with a Gaussian detector response of HWHM 50 ps.

The lifetime is sensitive to the excitation scheme, as a non-radiative decay before the emis-
sion can strongly modify the temporal shape of the single photon emission [62]. It is also sen-
sitive to the Purcell enhancement of the emission, which depends on the detuning of the quan-
tum dot transition relative to the H and V modes of the cavity (see appendix A): the lifetime
can therefore significantly vary from one experiment to the other.
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Measuring the single photon purity

The purity is the figure of merit evaluating if the source emits one and not more than one
photon per triggering pulse. It is described by the second order correlation function [158]:

g(2)(τ) =

〈
â†(0)â†(τ)â(τ)â(0)

〉
〈
â†(0)â(0)

〉
·
〈
â†(τ)â(τ)

〉 (2.11)

The photon statistics translate in the second order correlations. Fig. 2.14 represents the different
possibilities: antibunched photons are emitted with a regular time interval between each other,
coherent photons with a random interval and bunched photons are emitted by groups with a
characteristic duration. For a perfect single-photon source, the photons are antibunched and
g(2)(0) = 0 whereas g(2)(0) = 1 for a coherent source and g(2)(0) > 1 for a bunched (thermal)
source.

FIGURE 2.14: Typical photon distributions: a single-photon source emits anti-
bunched photons, a laser, coherent photons and a thermal source, bunched pho-

tons. Figure from [159].

The second order correlation function is evaluated with the experiment introduced by
Hanbury-Brown and Twiss (HBT) [160], in which the stream of photons is sent on a beam
splitter and the coincidences between the detection events in the two outputs provide the g(2)

function. The principle is shown in Fig. 2.15a in the fibered version. The TCSPC module is trig-
gered by the detection of a photon in APD1, then measures the time before the next detection in
APD2 and so on, progressively filling the histogram of time differences. The result in Fig. 2.15b
shows the antibunching at zero delay as expected with a source of single photons.

The purity P is defined as the contrast between the area of the central peak with respect to
the neighboring peaks. We find:

g(2)(0) = 6.5%

P = 93.5%
(2.12)

The favored hypotheses for the imperfect purity are the presence in the collection of photons
from the excitation pulse that were not completely removed by the cross-polarized output, or
multiple excitations of the quantum dot in a single excitation pulse.
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FIGURE 2.15: (a) Fibered version of the HBT experiment with a pulsed excitation
(FBS: fibered beam splitter). (b) Coincidences measured with the HBT setup. The
positively charged device is excited with the WL two-color scheme. The blue peaks

are integrated to compute the purity while the noise is left out (in orange).

Measuring the indistinguishability of single photons

The measurement of the indistinguishability of single photons relies on the coalescence
of identical photons on a beam splitter and was pioneered experimentally by Hong, Ou and
Mandel (HOM) [161]. When applied to the emission triggered by a pulsed laser, we measure
the "mean wave-packet overlap" M , given by the coincidence rate at zero delay after an im-
balanced Mach-Zehnder interferometer, where one path is delayed by the time between two
single photon pulses in order to make consecutively emitted photons interfere on a beam split-
ter (Fig. 2.16). We plot the coincidences between the detection events in the two outputs in
Fig. 2.17.
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∆𝑡𝑡
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FIGURE 2.16: Fibered version of the HOM experiment for a pulsed single-photon
source. The imbalanced Mach-Zehnder interferometer delays one path by the
time between two single photon pulses ∆t and successively emitted single pho-

tons interfere on FBS2.

Here, by the area of the central peak and its contrast with respect to the neighboring peaks,
we measure a raw indistinguishability Mraw = 0.77. This figure of merit can be corrected by
the imperfect purity of the source, as demonstrated by Ollivier et al. (2021) [162]:

Mcorr =
Mraw + g(2)(0)

1− g(2)(0)
= 0.89 (2.13)
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FIGURE 2.17: Coincidences measured after the HOM setup described in Fig. 2.16.
The positively charged device is excited with the WL two-color scheme. The blue
lines are integrated to compute the indistinguishability while the noise is left out

(in orange).

We can notice that the indistinguishability measured this way takes into account only the 12 ns
delay. Longer delays between interfering photons were studied by Loredo et al. (2016) [163] and
the decrease in indistinguishability was below 5 % for delays of a few hundred nanoseconds:
this translates a good stability of the source at these timescales. Indeed, an imperfect indistin-
guishability arises from pure dephasing or other sources of noise at fast timescales compared
to the temporal separation between the emission of the two photons that interfere.

The results from the current section corroborate those found in [154]. Changing the ex-
citation scheme to a quasi-resonant excitation with λQR = 901 nm, PQR = 250µW and the
same pulsed resonant laser resulted in a brighter source B = (27± 3)%, albeit with a trade-off
on the purity: g(2)(0) = 15% and Mcorr = 95%. This scheme will nonetheless be favored for
the further experiments as we expect less spectral wandering with a quasi-resonant excitation
than a non-resonant one: this phenomenon will be modeled in chapter 3 and we will see how
detrimental spectral wandering is to the spin-photon interface, even though its long timescale
doesn’t impact the measured purity and indistinguishability of the single photon emission. Let
us add that a very high-quality single-photon source was reached in the quasi-resonant exci-
tation scheme on the positively charged device by filtering the collected light with a Fabry-Pérot
etalon of width 30 pm: g(2)(0) = 1.6% and Mraw = 97% [148], albeit at the cost of a reduced
brightness.

2.4 Long delay photon-photon correlations

The study of the photon-photon correlations on longer timescales than the typical hun-
dreds of nanoseconds of the previous experiments allows us to access the charge and/or spin
dynamics of the system. We present the results in two different experimental conditions that
separate these effects by detecting photons in different polarization bases.
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2.4.1 Principle of the experiment

In the following experiments, we use the time-correlated single photon counting (TCSPC)
apparatus in "time-tagging" mode to record all the detection events in the two detectors, from
which we calculate the correlations a posteriori in order to access the long timescales. In com-
parison, the short delay data of section 2.3 were measured in real time with a software that
only computes the delays between two consecutive detections in 1 and 2, i.e., starting from a
triggering event at t1 on detector 1, the device waits for a detection event in detector 2 at time
t2 and adds the delay t2 − t1 to the coincidence histogram. Since the photon detection rate is
typically in the MHz range, the probability of observing long delays (≫ 100 ns) is reduced and
does not reflect the actual correlations. This technique is appropriate for fast measurements at
short delays, but long delay studies must take into account all the detection events to compute
the correlations and require more computation time.

Correlations are widely used to uncover the charge dynamics of the system: one can for
example correlate different emission lines of a single quantum dot to each other, by spectrally
selecting one line per detector: the correlations reveal which charge state comes first and the dy-
namics of charge creation [164–166]. Another idea is to spectrally split in half a single quantum
dot emission line and to correlate the two halves to study spectral diffusion effects [167]. Here,
we focus on the single quantum dot in the trion transition with the quasi-resonant two-color
excitation scheme devised in subsection 2.3.1 (λQR = 901 nm). As will be shown theoretically
and experimentally in the next chapters, the photons reflected from the device exhibit both the
charge dynamics (i.e., the dynamics of electrons and holes being injected in or tunneling out
of the quantum dot) and the spin dynamics (resulting from the ground state spin fluctuations).
Since these effects are polarization-specific, as will be demonstrated in chapter 3, the detection
in the (H,V) basis only exhibits the charge dynamics whereas the detection in the (|Ψ⇑⟩ , |Ψ⇓⟩)
basis additionally displays the spin dynamics.

2.4.2 Evaluating the charge state occupation by single photon correlations in the
cross-polarization

Experimental implementation

We first study the autocorrelation of the cross-polarized emission, that is the emitted pho-
tons detected in polarization V when exciting H, for which we expect only the charge dynamics
to manifest. The experimental setup in Fig. 2.18a is based on the HBT configuration for the mea-
surement of the single photon purity: the quantum dot-emitted single photons are isolated in
the cross-polarization, and are split by a non-polarizing beam splitter. The positively charged de-
vice is excited with the quasi-resonant two-color scheme, comprising a 15 ps resonant laser on
the π-pulse power and an auxiliary quasi-resonant laser at 901 nm with varying powers. We ex-
pect the non-resonant laser power to influence the occupation probability of the charge state (a
single hole in the present case). The autocorrelation g

(2)
V V is plotted as a function of the delay in
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Fig. 2.18b, and a zoom on the short delays reproduces Fig. 2.15b, which despite different exci-
tation conditions, shows that the peaks are averaged out on the measurement considered here.
Notice that the upper graph represents coincidences normalized by the maximum value and
the lower graph is the actual second-order correlation function, normalized at infinite delay.

The on/off fluctuations of the hole state (also called blinking) result in the bunching of the
autocorrelation curves at short delays, signaling that photons are detected in bunches of char-
acteristic length given by the decay time to unity. One can view the "start" photon detection as
the indication that the quantum dot is in the single hole state, which in turn increases the prob-
ability to detect a "stop" photon shortly after, coming from the same bunch. Mono-exponential
fits are plotted on top of the experimental data; they will be explained by the simple model we
develop next.

APD 1 (pol. V)
“start”

QD signal
Ψ = 𝑉𝑉

APD 2 (pol. V) 
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BS (50:50)
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FIGURE 2.18: (a) Principle of the characterization of the occupation probability
through autocorrelation of the cross-polarized emission. (b) autocorrelation of
the V-polarized photons as a function of the delay for different non-resonant laser
power, superimposed with mono-exponential fits (lower graph). The plots were
normalized to 1 at a 200 µs delay so any effects at longer timescale are ignored.
The upper graph is a reproduction of Fig. 2.15b to remind that the data measured
here are a zoom out from the correlation data presented above. This result was

published in [148].

Charge escape and capture model

The imperfect occupation probability of the charge can be modeled by a two-state system,
with a charged state and an empty state. The latter is denoted ∅ to symbolize the absence of
charge in the quantum dot. The associated probabilities are written Pc and P∅. The autocorre-
lation that we seek to explain can be written as the conditional probability to detect a "stop"
photon at time τ , knowing that a "start" photon was previously detected at time 0, normalized
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by the unconditioned probability. This mathematically translates as follows:

g
(2)
V V (τ) =

P (V "stop", t = τ |V "start", t = 0)

P (V "stop")
(2.14)

Since the resonant laser is tuned to the energy of the trion transition, only this charge state will
give rise to single photon emission, and therefore to a signal in the cross-polarized collection:
this proves that the initial condition of the autocorrelation is Pc(t = 0) = 1. The occupation
probabilities, and therefore the autocorrelation, will then evolve under the effect of two phe-
nomena: a pumping mechanism (here, the 901 nm laser) that allows the system to capture a
charge with a characteristic time τcapt, and an escape mechanism by which the quantum dot
loses the charge with a time τesc. The rate equations in this model read as follows:

dP∅(t)

dt
= −P∅(t)

τcapt
+

Pc(t)

τesc
(2.15)

dPc(t)

dt
= +

P∅(t)

τcapt
− Pc(t)

τesc
(2.16)

Exploiting the fact that P∅ + Pc = 1, we can combine the two previous equations in:

dPc(t)

dt
=

1

τcapt
−
(

1

τesc
+

1

τcapt

)
Pc(t) (2.17)

Taking the stationary regime gives the average value of Pc:

⟨Pc⟩ =
τesc

τesc + τcapt
(2.18)

With the initial condition Pc(t = 0) = 1, the occupation probability of the charge state therefore
reads:

Pc(t) = ⟨Pc⟩+
(
1− ⟨Pc⟩

)
e−t/Tc (2.19)

where we introduced the effective lifetime of the charge: Tc =
(

1
τcapt

+ 1
τesc

)−1
. In this reason-

ing, according to Eq. 2.14, the second-order autocorrelation is simply given by Pc(t), normal-
ized by its stationary value:

g
(2)
V V (t) =

Pc(t)

⟨Pc⟩
=

(
1

⟨Pc⟩
− 1

)
e−t/Tc + 1 (2.20)

The experimental data in Fig. 2.18b and other analogous experiments at different powers of
the quasi-resonant laser were fitted with Eq. 2.20: the ⟨Pc⟩ and Tc parameters are aggregated
in Fig. 2.19, demonstrating an increasing occupation probability and a decreasing lifetime of
the charge when the power of the QR laser is increased. The average occupation probability
starts at zero and saturates close to unity for powers higher than 300 µW while the lifetime of
the charge is reduced from 50 to 1 µs. This can be interpreted as a single hole charge state more
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efficiently injected in the quantum dot at high QR laser powers, escaping in a shorter time but
present more often in average. Finally, we emphasize that a low occupation probability induces
a bunching of the autocorrelation and, in the opposite case, a flat line is obtained if ⟨Pc⟩ = 1.

𝑃 𝑐

𝑇 𝑐
(𝜇
𝑠)

𝑃𝑄𝑅 (𝜇𝑊) 𝑃𝑄𝑅 (𝜇𝑊)

FIGURE 2.19: Fitting parameters of the autocorrelation experiments at different
quasi-resonant laser powers using formula Eq. 2.20 to extract the average occu-
pation probability (left) and the effective charge lifetime (right). Figure adapted

from [133].

2.4.3 Evaluating the spin statistics by single photon cross-correlations

Cross-correlations as spin noise spectroscopy

Our implementation of spin noise spectroscopy (SNS) is to study the spin dynamics
through cross-correlations in a spin-sensitive basis. More specifically, we focus on the polar-
izations |Ψ⇑⟩ and |Ψ⇓⟩ determined by the spin-dependent polarization rotation from the states
|⇑⟩ and |⇓⟩ (as first introduced in Fig. 1.33).

The experimental setup is presented in Fig. 2.20a: the whole reflected beam is split in a
certain detection basis of orthogonal polarizations (|ΨD⟩ ,

∣∣ΨD

〉
) close to (|Ψ⇑⟩ , |Ψ⇓⟩) by wave-

plates and a polarizing beam splitter. A TCSPC apparatus subsequently measures the cross-
correlations between the photon detection events in each collection arm. The result is plotted
in Fig. 2.20b: the anti-correlation at short delay is explained by the initial partially projective
measurement in |ΨD⟩ ≃ |Ψ⇑⟩, leaving the spin in a state that will continue to rotate the polar-
ization to |Ψ⇑⟩ for as long as it has not flipped. The exponential decay of the anti-correlation is
interpreted as the lifetime of the spin, TS before its return to thermal equilibrium. This exper-
iment was achieved by exciting the sample with a CW resonant laser (PR = 8pW) combined
with a quasi-resonant excitation (λNR = 901 nm, PQR = 2µW) and applying a small longitudi-
nal magnetic field Bz = 30mT to screen the effect of the nuclear spins. The imperfect contrast
of the anti-correlation will be interpreted in chapter 4 as a consequence of charge noise [168] on
an otherwise high-efficiency spin-photon interface.

These data can be interpreted by the definition of the cross-correlation function in terms of
probabilities. Indeed, the second order cross-correlation function is equal to the probability of
detecting a ΨD-polarized photon at time τ conditioned by an initial detection of a ΨD-polarized
photon, normalized by the unconditioned detection probability in ΨD:

g
(2)

ΨDΨD
(τ) =

P (ΨD, t = τ |ΨD, t = 0)

P (ΨD)
(2.21)
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FIGURE 2.20: (a) Principle of the characterization of the spin dynamics through
cross-correlations in the (ΨD,ΨD) basis, determined by the angles of QWP and
HWP. (b) Coincidences as a function of the delay with an external longitudinal
magnetic field Bz = 30mT. The data were normalized to unity at a 60 µs delay so

any effects at longer timescale are ignored.

General case: interplay between the charge and spin dynamics

In order to explain the interplay between the charge and spin dynamics, we develop a
three-level model including the spin states |⇑⟩, |⇓⟩ and the empty state |∅⟩. We ignore the
excited levels of the trion transition as the excitation power stays very weak compared to the
saturation of the transition. The model is represented in Fig. 2.21.

⇑2τSF
2τSF

τesc

2τcapt
τesc

2τcapt ∅⇓

FIGURE 2.21: Three-level model including spin flips and charge escape and cap-
ture effects.

The rate equations linking the occupation probabilities in each state are the following:

dP⇑(t)

dt
= −P⇑(t)− P⇓(t)

2τSF
− P⇑(t)

τesc
+

P∅(t)

2τcapt

dP⇓(t)

dt
= +

P⇑(t)− P⇓(t)

2τSF
− P⇓(t)

τesc
+

P∅(t)

2τcapt

dP∅(t)

dt
= −P∅(t)

τcapt
+

P⇑(t) + P⇓(t)

τesc

(2.22)
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where Pc(t) = P⇑(t) + P⇓(t) and P⇑(t) + P⇓(t) + P∅(t) = 1. We calculate the dynamics of
the charge, given by the same formula as Eq. 2.19, and the dynamics of the spin polarization
sz(t) = P⇑(t) − P⇓(t) (assuming that sz(t = ∞) = 0, corresponding to a thermal equilibrium
between |⇑⟩ and |⇓⟩):

Pc(t) = ⟨Pc⟩+
(
1− ⟨Pc⟩

)
e−t/Tc

sz(t) = sz(0)e
−t/Ts

(2.23)

where we introduced the following expression of the spin characteristic time, featuring both
the charge escape and the spin-flip times:

T−1
s =

(
1

τesc
+

1

τSF

)−1

(2.24)

It is apparent that, while Pc only exhibits the charge dynamics, sz includes both the spin and
charge contributions. A useful expression gives the probability associated to the |⇑⟩ state as a
function of the charge probability and spin polarization:

P⇑(t) =
Pc(t) + sz(t)

2
(2.25)

Translated in terms of cross-correlations, these expressions result in the presence of two distinct
exponential decays, a complete theoretical and experimental study of which follows in the next
chapters.

2.5 Conclusion

We have mapped out the main experimental protocols and applied them for preliminary
experiments on the positively charged device. The continuous regime offers the possibility to fully
characterize the reflected polarization state in the Poincaré sphere, while the dynamic regime
reveals the charge and spin dynamics through cross-correlation experiments. Next, the theo-
retical framework is laid out as it gives an in-depth understanding of the more detailed exper-
iments to follow.
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Chapter 3

Theoretical framework and simulations

The theoretical tools to model the quantum dot-micropillar cavity system are introduced
in this chapter. The mathematical formalism of the Jaynes-Cummings model is solved numeri-
cally by the master equation approach, which includes the incoherent processes that cannot be
ignored experimentally. This leads to the description of a wide range of physical phenomena
known to play a role in quantum dot-based spin-photon interfaces.

The goal of the simulations lies in the explanation of actual experiments that will be at the
center of the next chapters. To do so, the numerical solving is first carried out in the steady state:
this allows quantifying how good a spin-photon interface a given device could be, by comput-
ing the polarization states |Ψ⇑⟩ and |Ψ⇓⟩ which are reflected from the sample, depending on
the spin state: the ideal spin-photon interface criterion is ⟨Ψ⇑|Ψ⇓⟩ = 0. This criterion is studied
with respect to the figures of merit of the device (cavity output coupling and cooperativity) and
we show that multiple configurations fulfill it, albeit with very different reflected polarization
states.

A second experimental aspect is the dynamics of the system, measured through photonic
correlations. We theoretically investigate this principle by disturbing the steady state of the
system with the detection of a reflected photon, and by computing the evolution back to equi-
librium. This evolution is sensitive, in particular, to the different relaxation mechanisms.

Lastly, we separately introduce the effect of an external magnetic field, charge blinking,
pure dephasing and slow charge noise to bring the simulation closer to realistic devices.

3.1 Master equation formalism

The numerical simulation of the quantum dot-micropillar system is based on the theory
of the master equation (ME), which models a quantum system that can be in a coherent or inco-
herent superposition of states [169]. The Jaynes-Cummings model detailed in subsection 1.3.1
lays the mathematical description of the coherent light-matter coupling in a cavity [108]. The
master equation completes this approach by including the incoherent phenomena caused by
the coupling of the quantum system to an environment with a large number of degrees of free-
dom.
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This section starts by extending the Schrödinger equation to the master equation through
the description of the incoherent superposition of quantum states with the formalism of the
density matrix. Then, the collapse operators modeling the coupling to the environment are
introduced: when applied to the density matrix in a specific combination, they constitute the
Lindblad superoperators, which govern the incoherent evolution of the quantum system.

Next, the spin-photon interface is progressively described in this framework: starting by
the empty cavity, followed by the four-level quantum dot and finally the coherent and incoher-
ent couplings between the two. The results of the numerical simulation in the steady state are
given for various cases of cavity and quantum dot configurations, analyzing the requirements
of an ideal spin-photon interface.

3.1.1 Evolution of an open quantum system

Let us consider a quantum system coupled to an environment. The quantum system (S)
is described by a modest number of degrees of freedom: it constitutes the computation space
which must stay within processing capability. By contrast, the environment (E) is a reservoir
with many particles interacting with the system (S): even if it could in principle be represented
by a quantum state, the sheer number of degrees of freedom prevents any attempt at an exact
modeling. A statistical approach is developed instead, based upon the density matrix theory.

Pure quantum states

A pure quantum state is mathematically written as a ket |Ψ⟩, which is a vector in a Hilbert
space H. The measurement of a physical quantity of this state is represented by an observ-
able Â, and the theoretical average outcome of the measurement is given by ⟨Â⟩ = ⟨Ψ|Â|Ψ⟩.
This measurement can only result in an eigenvalue of Â with a given probability, and the state
of the system is projected onto the corresponding eigenvector upon measurement. We work
in the Schrödinger picture that considers state vectors evolving with time and constant opera-
tors. In that case, for an isolated quantum system, the evolution of a pure state is given by the
Schrödinger equation:

d |Ψ(t)⟩
dt

= −iĤ |Ψ(t)⟩ (3.1)

where the Hamiltonian operator Ĥ is the observable for the total energy of the system. This
evolution is described as coherent because the state stays pure at all times.

Mixed quantum states

To account for a statistical mixture of quantum states, the density matrix operator ρ̂ is
introduced: it represents an incoherent superposition of multiple pure quantum states |Ψi⟩,
each with a probability pi:

ρ̂ =
∑
i

pi |Ψi⟩ ⟨Ψi| (3.2)
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In that case, the system cannot be described by a single pure state. The time evolution of the
density matrix is ruled by the Von Neumann equation:

dρ̂(t)

dt
= i
[
ρ̂(t), Ĥ(t)

]
(3.3)

The average value of an operator applied to a quantum system in a statistically mixed state is
given by tracing over the density matrix:

⟨Â⟩ =
∑
i

pi ⟨Ψi|Â|Ψi⟩ = Tr
{
Â · ρ̂

}
(3.4)

Coupling to the environment

So far, we have considered an isolated quantum system. However, in realistic cases, the
system under investigation is coupled to an environment with which it interacts and that could
only be represented as an extremely complex quantum state. The complete isolated system (C)
now comprises the system under investigation (S) and the environment (E). Their interaction
causes disturbances that can be approximated by jumps between the quantum states of (S),
provided the following hypotheses are met [169]:

• The coupling of (S) with the environment is weak – Born approximation.

• The initial state is uncorrelated between (S) and (E). This translates mathematically as the
possibility to write the total initial state of the system as the tensor product C = S ⊗ E.

• The interaction of (S) with the environment does not depend on the history of the com-
plete system – Markov approximation.

A first example of an incoherent process is the case of a random jump that can project the
system from an initial state |i⟩ onto a final state |f⟩ at a rate γif (in s−1). This phenomenon is
accounted for by the collapse operator Ĉif which reads:

Ĉif =
√
γif |f⟩ ⟨i| (3.5)

An incoherent jump performs a measurement-like projection, thereby resetting the coherent
evolution of the system. To apply a collapse operator to the density matrix, the possible transi-
tions it can cause are described by a Lindblad superoperator (or Lindbladian) defined as:

L̂if [ρ̂] = Ĉif ρ̂Ĉ
†
if − 1

2

(
Ĉ†

if Ĉif ρ̂ + ρ̂Ĉ†
if Ĉif

)
(3.6)

When developed, it becomes:

L̂if [ρ̂] = γifP (i) |f⟩ ⟨f | − γif
2

(
|i⟩ ⟨i| ρ̂ + ρ̂ |i⟩ ⟨i|

)
(3.7)
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The first term of Eq. 3.7 projects the system onto the final state |f⟩ at the rate γif proportionally
to the probability to find the system in the initial state, P (i). The consecutive terms reduce
the probability to find the system in the initial state, and ensure that the density matrix stays
normalized at all times.

A second example of incoherent process is when, instead of producing a jump from one
quantum state to another, the process encompasses multiple initial and final states. It is the case
when an intracavity photon is lost: the initial and final states can be any photon number state
separated by one unit, as will be detailed later on.

Finally, when combining independent incoherent processes resulting from independent
interactions between the system and its environment, the Lindblad superoperators L̂k associ-
ated to each of these processes have to be summed and added to the Von Neumann equation
to form the master equation, accounting for both the coherent and incoherent evolution [169]:

dρ̂(t)

dt
= i
[
ρ̂(t), Ĥ

]
+
∑
k

L̂k [ρ̂(t)] (3.8)

In the following paragraphs, we model the quantum dot-micropillar cavity system in the
master equation framework.

3.1.2 Bare cavity

To begin with, we model a bare cavity coupled to an input beam, from which we observe
the reflected light as illustrated in Fig. 3.1, setting aside the polarization degree of freedom.

Description of the electromagnetic fields

The modes of the electromagnetic field involved with the bare cavity are the input and
output modes as well as the intracavity mode. Photons can be removed from these modes by
the annihilation operator â or added by its Hermitian conjugate, the creation operator â†. The
eigenstates of this operator are the Fock states, also called number states as they are defined
by {|N⟩}N∈N with N the number of photons in the considered mode. The annihilation and
creation operators act on the Fock states as follows:

â† |N⟩ =
√
N + 1 |N + 1⟩

â |N⟩ =
√
N |N − 1⟩

â |0⟩ = |0⟩
(3.9)

We label b̂in, b̂out and â the annihilation operators respectively relative to the input, output
and cavity modes as shown in Fig. 3.1. The right side of the figure represents the Fock states of
the cavity mode at energies Nωc. The photon number operator for mode a is n̂ = â†â, whose
average value ⟨n̂⟩ gives the photon flux in the considered mode (in s−1).
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FIGURE 3.1: (Left) Annihilation operators of the considered modes of the electro-
magnetic field (input b̂in, output b̂out and intracavity â). (Right) Representation
of the Fock state basis for the cavity mode in which a photon can be added by â†

or removed by â.

In the practical simulations, the model is restricted to the fundamental optical mode of
the cavity to which the input and output beams couple best. The Hilbert space of the cavity
is in principle infinite dimensional, but it is truncated to a value Nmax. Typically, we choose
Nmax = 3, which is valid for low excitation powers (as long as the populations of the intracavity
Fock states |3⟩ and above stay small compared to that of the lower number states).

Intracavity Hamiltonian

Let ωc be the energy of the cavity mode. The operator whose eigenvalues are the energies
of the corresponding Fock states EN = Nωc constitutes the Hamiltonian of the intracavity
photons and reads [108]:

Ĥcav = ωcâ
†â (3.10)

In general, the energy of the input laser ω is detuned from ωc and the calculations therefore in-
clude electric fields oscillating at the sum and the difference of the two energies. We proceed to
the rotating wave approximation (RWA), by which the fast oscillating terms at ωc+ω are averaged
out and the bare cavity Hamiltonian becomes [170]:

Ĥcav = (ωc − ω)â†â (3.11)

Pumping Hamiltonian

The coherent transfer of photons from the input field to the cavity is described by the
pumping Hamiltonian [171]:

Ĥpump = −i
√
κtop

(
b̂inâ

† − b̂†inâ
)

(3.12)

Reflected field

The output reflected field can be calculated knowing the input and the intracavity fields as
they are linked by the input-output formula [112, 171]:

b̂out − b̂in =
√
κtopâ (3.13)
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In general, the operators b̂in/out act on the quantum states of the corresponding electromagnetic
fields, which should all be included in the simulated Hilbert space. However, a simplification
arises in the case of coherent fields [112]: Eq. 3.13 also applies to reduced operators restricted to
the cavity subspace, replacing b̂in/out by bin/outÎcav where we introduced the identity operator
in the cavity subspace. This simplification makes numerical calculations tractable and will be
applied from now on. For instance, the value of bin is a scalar linked to the input power Pin by:
bin =

√
ηinPin/(ℏω).

Cavity losses

The cavity losses are accounted for by the collapse operator:

Ĉcav =
√
κâ (3.14)

Its effect is to randomly annihilate photons from the cavity at a rate given by κ. The correspond-
ing Lindblad superoperator is labeled L̂cav.

Complete model of the bare cavity

The bare cavity coupled to the input and output fields is completely modeled by:

Ĥbare = Ĥcav + Ĥpump

dρ̂

dt
= i
[
ρ̂, Ĥbare

]
+ L̂cav [ρ̂]

(3.15)

The result of the simulation at this point is typically the photon flux reflected by a standard
Fabry-Pérot cavity in the stationary regime, calculated as a function of the input laser energy:

dρ̂(ω)

dt
= 0 =⇒ ρ̂(ω) = ρ̂ss(ω) (3.16)

In this stationary regime, the output intensity reads:

Iout(ω) = ⟨b̂†outb̂out⟩ρ̂ss(ω) = Tr
{
b̂†outb̂out · ρ̂ss(ω)

}
(3.17)

3.1.3 Elliptical bare cavity

We now add the polarization degree of freedom for all the modes of the electromagnetic
field. To that end, the Hilbert space is extended and the operators duplicated in the basis of the
cavity modes (H,V) whose energies are ωc,H and ωc,V , as represented in Fig. 3.2. An arbitrary
polarization state is fully modeled by its projections on the (H,V) basis. The figure also shows
on the right the double Fock state basis in the general case of an elliptical cavity, for which the
modes are not energy-degenerate. The dimension of the photonic Hilbert space now increases
to Nmax = Nmax,H ×Nmax,V .
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FIGURE 3.2: (Left) Annihilation operators of the H- and V-polarized modes of
the electromagnetic field considering an elliptical cavity. (Right) Representation
of the Fock state basis for the intracavity modes in which a photon can be added

by â†
H/V or removed by âH/V .

The operators take a new form, as they now include terms acting on the H and V subspaces
independently. Those related to the coherent evolution are duplicated within the same operator,
as a coherent superposition [108, 170, 171]:

Ĥcav = (ωc,H − ω)â†
H âH

+(ωc,V − ω)â†
V âV

(3.18)

Ĥpump = − i
√
κtop,H

(
b̂in,H â†

H − b̂†in,H âH

)
− i

√
κtop,V

(
b̂in,V â

†
V − b̂†in,V âV

) (3.19)

The incoherent cavity losses are summed as Lindblad superoperators:

L̂cav = L̂cav,H + L̂cav,V (3.20)

for which the two collapse operators are:

Ĉcav,H/V =
√
κH/V âH/V (3.21)

The evolution of the system is still ruled by Eq. 3.15. Unless stated otherwise, this chapter
will describe only cavities with energy-degenerate polarization modes (ωc = ωc,H = ωc,V );
nevertheless, the duplication of the Hilbert space is mandatory to account for any input and
output polarization state.

3.1.4 Four-level system coupled to a cavity

The four-level system constituting the trion transition is now coupled to the cavity. The di-
mension of the computation space increases to 4Nmax,H ×Nmax,V . The four-level structure and
the physical phenomena covered by the model are represented in Fig. 3.3. The ground state
is a hole spin: the system comprises a branch with a left hand circularly polarized transition
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(L) coupling |⇑⟩z to |⇑⇓↑⟩z and an analogous R branch coupling |⇓⟩z to |⇓⇑↓⟩z . The two tran-
sitions are energy-degenerate in the absence of an applied magnetic field and their energy is
written ωd.

⇑ 𝑧 ⇓ 𝑧

⇑⇓↑ 𝑧 ⇓⇑↓ 𝑧

L R𝛾𝑠𝑝

𝜏𝑆𝐹,𝑔2

𝜏𝑆𝐹,𝑡2

Energy

0

𝜔𝑑

𝛾𝑠𝑝

FIGURE 3.3: Four levels of the quantum dot transition from the hole spin in the
ground state to the positive trion in the excited state and physical phenomena
included in the simulation: coherent interaction in the L and R branches (colored
arrows), spontaneous emission at the rate γsp (wavy black arrows) and ground

and trion spin flips at the rates τSF,g and τSF,t respectively.

The coherent spin-photon interaction is represented by the colored arrows of Fig. 3.3: it is
the energy exchange between the excitation laser and the quantum dot, with spin-dependent
selection rules through which the Faraday rotation emerges (see subsection 1.1.3 and 1.3.4). The
other processes are incoherent, that is they are dissipative in nature:

• The spontaneous emission γsp causes an incoherent de-excitation from the trion states
to the ground states, with an emission of photons in all the modes of the electric field1.
The spontaneous emission rate in the bulk GaAs is typically γsp = 0.6µeV = 1ns−1 and
this rate can be modified in the range [0.3; 1.2]µeV depending on the diameter of the
micropillar [172].

• The spin-flip phenomena randomly switch between the two branches. They are caused
by the interaction with phonons and nuclear spins [54, 173–175].

The Hamiltonian terms developed below are based on the Jaynes-Cummings model of the
light-matter interaction in a cavity [108].

Coherent processes

The operators describing the excitation and de-excitation of the quantum dot are the rais-
ing and lowering operators, respectively denoted σ̂† and σ̂. We define simplified notations for
the ground and trion states that we label g or t and index with the helicity of each branch:

|gL⟩ = |⇑⟩z |gR⟩ = |⇓⟩z
|tL⟩ = |⇑⇓↑⟩z |tR⟩ = |⇓⇑↓⟩z

(3.22)

1Notice that it is different from the Purcell-enhanced spontaneous emission in the cavity mode at the rate
Γ0 = 4g2/κ.
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The raising and lowering operators then take the following form:

σ̂†
L = |tL⟩ ⟨gL| σ̂†

R = |tR⟩ ⟨gR|
σ̂L = |gL⟩ ⟨tL| σ̂R = |gR⟩ ⟨tR|

(3.23)

We also introduce the σ̂z,R/L operators, which represent the population difference between the
excited and ground levels of each branch:

σ̂z,R/L =
∣∣tR/L

〉 〈
tR/L

∣∣− ∣∣gR/L

〉 〈
gR/L

∣∣ (3.24)

These operators will not be used in this chapter but it is important to note that they correspond
to the third Pauli matrices of the subsystems |gL⟩ , |tL⟩ ("L branch") and |gR⟩ , |tR⟩ ("R branch").
Taken independently, both subsystems can be viewed as a qubits, in the same fashion as a qubit
can be constituted by the (|R⟩ , |L⟩) polarizations of a photon, or by the (|⇑⟩z , |⇓⟩z) components
of a spin.

The Hamiltonian of the isolated quantum dot in the RWA reads:

Ĥd = (ωd − ω)
(
σ̂†
Rσ̂R + σ̂†

Lσ̂L

)
(3.25)

The interaction with the intracavity photons is given by the following Hamiltonian, that repre-
sents the coherent exchange of energy between the intracavity field and the (R,L) branches of
the four-level quantum dot at rate g:

Ĥint = ig
(
â†
Rσ̂R − âRσ̂

†
R

)
+ ig

(
â†
Lσ̂L − âLσ̂

†
L

)
(3.26)

The final expression of the Hamiltonian combines all contributions:

Ĥtot = Ĥcav + Ĥpump + Ĥd + Ĥint (3.27)

Incoherent processes

• First, the spontaneous emission in all modes is described by the following collapse oper-
ators:

Ĉsp,R/L =
√
γspσ̂R/L (3.28)

Their effect is to randomly de-excite the corresponding trion state to its ground state at
the rate γsp. The associated Lindblad superoperator reads:

L̂sp = L̂sp,R + L̂sp,L (3.29)
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• Next, the spin flips are accounted for by the four collapse operators that flip the ground
and trion states between the branches R and L:

ĈSF,gR→gL =
1√

2τSF,g
|gL⟩ ⟨gR| ĈSF,tR→tL =

1√
2τSF,t

|tL⟩ ⟨tR|

ĈSF,gL→gR =
1√

2τSF,g
|gR⟩ ⟨gL| ĈSF,tL→tR =

1√
2τSF,t

|tR⟩ ⟨tL|
(3.30)

These operators randomly flip the spin of the hole in the ground states or the electron in
the excited states at rates (2τSF,g/t)−1. The spin-flip Lindblad superoperator combines the
four contributions:

L̂SF = L̂gR→gL + L̂gL→gR + L̂tR→tL + L̂tL→tR (3.31)

The master equation of a four-level quantum dot in a micropillar cavity includes the full Hamil-
tonian (Eq. 3.27) and the Lindblad superoperators of the cavity and quantum dot losses (Eqs.
3.20, 3.29 and 3.31):

L̂tot = L̂cav + L̂sp + L̂SF (3.32)

dρ̂(t)

dt
= i
[
ρ̂(t), Ĥtot

]
+ L̂tot [ρ̂(t)] (3.33)

Conversion to the (H,V) basis

The computation of the photonic polarization state can be implemented in either the (H,V)
basis of the cavity eigenmodes or the (R,L) basis of the quantum dot transitions. The choice to
work in the (H,V) basis is motivated by the fact that it allows the adiabatic elimination of the
cavity to be performed; this approximation reduces the computation Hilbert space by removing
the cavity modes, provided that the intracavity photons can adapt fast enough to the changes
in the quantum dot state. To do so, we translate to the (H,V) basis the quantum dot operators
involved in the photonic subspace through the interaction Hamiltonian of Eq. 3.26 and also
through the spontaneous emission.

• The lowering operators follow the same polarization basis change relations as the electric
fields (see Eq. 1.17): (

σ̂R

σ̂L

)
=

1√
2

(
1 i

1 −i

)(
σ̂H

σ̂V

)
(3.34)

We can therefore convert the Hamiltonian terms of Eq. 3.26 in the (H,V) basis:

Ĥint = ig
(
â†
Hσ̂H − âHσ̂†

H

)
+ ig

(
â†
V σ̂V − âV σ̂

†
V

)
(3.35)

• For the incoherent processes, only the Lindblad superoperators acting in the photonic
subspace need to be translated to the (H,V) basis, so that includes the spontaneous emis-
sion but not the spin flips as they are restricted to the quantum dot subspace. When
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writing the Lindblad superoperator of the spontaneous emission in the (H,V) basis, it ap-
pears that the spontaneous emission in the (R,L) branches, each at a rate γsp, is equivalent
to the emission of H- and V-polarized photons from each trion state at a rate γsp/2, giving
a total rate of emission of γsp in polarization H and the same in V. Eq. 3.29 becomes:

L̂sp = L̂sp,H + L̂sp,V (3.36)

where the superoperators in the (H,V) basis are defined with the collapse operators:

Ĉsp,H/V =
√
γspσ̂H/V (3.37)

Though the model will later be enriched with other loss phenomena (charge blinking, pure
dephasing and slow electric noise), we now proceed to simulate the behavior of realistic devices
as spin-photon interfaces.

3.2 Numerical simulation of the reflected polarization
in the steady state

3.2.1 Outline of the numerical simulation

Steady-state density matrix

The numerical calculations are performed either with the Quantum Optics Toolbox for
Matlab [176] or with the QuTiP library for Python [177, 178]. The steady state value of the
density matrix is computed by numerically solving the master equation (Eq. 3.33) in the steady
state:

dρ̂(t)

dt
= 0 ⇐⇒ ρ̂ = ρ̂ss (3.38)

Simulated Stokes parameters and occupation probabilities

The average value of the intensity in each output polarization is computed as the average
of the operator b̂†outb̂out in the steady state, i.e., for polarization X :

IX = ⟨b̂†out,X b̂out,X⟩ρ̂ss = Tr
{
b̂†out,X b̂out,X · ρ̂ss

}
(3.39)

where b̂out,X = b̂in,X+
√
κtopâX . The Stokes parameters are deduced from the output intensities

in order to reconstruct the complete output polarization state in the Poincaré sphere, which we
study as a function of the energy of the input laser, ω:

sXY (ω) =
IX(ω)− IY (ω)

IX(ω) + IY (ω)
(3.40)

where XY ∈ [HV,DA,RL]. The Stokes parameters are the coordinates of the Stokes vector S,
representing the polarization density matrix in the Poincaré sphere.
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As for the quantum dot, the occupation probabilities of each state of the four-level system
are computed by averaging the spin operators of the appropriate branch:

P (gL) = ⟨σ̂Lσ̂
†
L⟩ρ̂ss P (gR) = ⟨σ̂Rσ̂

†
R⟩ρ̂ss

P (tL) = ⟨σ̂†
Lσ̂L⟩ρ̂ss P (tR) = ⟨σ̂†

Rσ̂R⟩ρ̂ss

(3.41)

Spin state initialization

By excluding some spin-flip processes from the total Lindbladian, it is possible to simulate
an initialization of the quantum dot in any of the charge states. We call L̂(⇑)

SF the total Lindbla-
dian forcing the initialization of the spin in state |⇑⟩ (L branch) and use similar notations for |⇓⟩
(R branch). The spin initialization is accounted for by removing from the general expression of
Eq. 3.31 the spin-flip terms that end up in the unwanted branch; the spin-flip contributions to
the total Lindbladian become:

L̂
(⇑)
SF = L̂gR→gL + L̂tR→tL

L̂
(⇓)
SF = L̂gL→gR + L̂tL→tR

(3.42)

The steady state simulation with these Lindblad superoperators results in density matrices
written for instance ρ̂

(⇑)
ss for a spin initialized in |⇑⟩. The consecutive intensities and Stokes

parameters are labeled I
(⇑)
X and s

(⇑)
XY (pointing to the Stokes vector S(⇑) in the Poincaré sphere).

Common parameters

We take default parameters for the following simulations that are similar to the actual
specifications of the samples studied in chapters 4 and 5, although with simplifications (no
cavity splitting, no cavity-quantum dot detuning, no charge blinking). This set of parameters
will be effective for the rest of the current chapter unless stated otherwise:

∣∣∣∣∣∣∣∣∣∣
Pin = 1pW

|Ψin⟩ = |H⟩
ηin = 1

Pc = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ωc = 1.3392 eV

ωc,H = ωc +∆HV /2

ωc,V = ωc −∆HV /2

∆HV = 0µeV
ωd = ωc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g = 15µeV
γsp = 0.6µeV
γ∗ = 0µeV
γ = 0.3µeV
τSF,g = 2µs
τSF,t = 100 ns

(3.43)

• The input laser is CW, H-polarized and has a low power Pin to avoid saturation of the
quantum dot transition. The input coupling ηin is assumed to be perfect as well as the
charge occupation probability Pc.

• The cavity splitting ∆HV is null and the energy of the quantum dot transition matches
that of the cavity.

• We consider an absence of pure dephasing γ∗ = 0µeV and therefore a total dephasing
rate γ = γ∗ + γsp/2 = 0.3µeV.
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The cavity width κ and the top mirror output coupling ηtop will be adjusted for each example. In
particular, κ will be calculated to match the desired cooperativity: κ = g2/(γC). For the follow-
ing example, we choose the parameters κ = 375µeV and ηtop = 0.9, close to the specifications
of the positively charged device studied later in chapter 4. In the next sections, we compute the
reflected polarization states, first with initialized spin states to model the spin-dependent po-
larization rotation, then without spin initialization to understand the effect of spin averaging,
followed by an explanation of the effect of cavity splitting and finally, a study of the influence
of the two figures of merit C and ηtop.

3.2.2 Reflected polarization state with an initialized quantum dot spin

Spin initialized in |⇑⟩

We first focus on the case where the quantum dot is initialized in the state |⇑⟩ using the
spin-flip Lindbladian L̂

(⇑)
SF from Eq. 3.42, instead of the general expression L̂SF . The reflected

intensities denoted I
(⇑)
X in polarization X are plotted in Fig. 3.4 as a function of the normalized

laser-quantum dot detuning ∆d = (ω − ωd)/Γ, the total emission rate being Γ = 4g2/κ + γsp,
equal in the present case to (220 ps)−1, equivalent to 3µeV. The computed intensities are nor-
malized by the incident one so the result is analogous to the reflectivity measured in Fig. 2.6.

The I
(⇑)
H component is produced by the interference of the photons reflected by the empty

cavity (forming a large Lorentzian dip) with the photons that have interacted with the quantum
dot (deep narrow dip on top of the cavity one). On the other hand, the I

(⇑)
V component corre-

sponds to the polarization orthogonal to the excitation and contains only photons resulting
from the quantum dot cross-polarized emission.

A zoom on the quantum dot to the horizontal axis range ∆d ∈ [−6, 6] is plotted in Fig. 3.5,
where the reflected intensities in each polarization (in solid lines) are superimposed with the
intensities that would be reflected by a cold cavity (in dashed lines). As the quantum dot is
initialized in |⇑⟩ (L branch), the intensity I

(⇑)
R corresponds to the response of the bare cavity

whereas I
(⇑)
L undergoes the quantum dot phase shift (hot cavity), exactly as discussed in sub-

section 1.3.4.

FIGURE 3.4: Normalized reflected intensities in the H,V;D,A;R,L polarizations
as a function of the normalized laser-quantum dot detuning ∆d = (ω − ωd)/Γ
with an H-polarized input and a quantum dot charge state initialized in |⇑⟩. The
broad cavity dip in H,D,A,R,L is superimposed with narrow quantum dot fea-
tures. A zoom on the central energy range (dashed lines) is shown in the next

figure.
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𝐼𝐷,𝑐𝑎𝑣 = 𝐼𝐴,𝑐𝑎𝑣 𝐼𝑅,𝑐𝑎𝑣 = 𝐼𝐿,𝑐𝑎𝑣𝐼𝑅,𝑐𝑎𝑣 = 𝐼𝐿,𝑐𝑎𝑣𝐼𝐻,𝑐𝑎𝑣

𝐼𝑉,𝑐𝑎𝑣

FIGURE 3.5: Normalized reflected intensities as a function of the normalized
laser-quantum dot detuning as presented in the previous figure, focused on the
central detuning range. The intensities for a quantum dot initialized in the |⇑⟩
state, I(⇑)X , are plotted with solid lines along with those for an empty cavity in

dashed lines.

Finally, the Stokes parameters s(⇑)XY defining the coordinates of the Stokes vector S(⇑) in the
Poincaré sphere are calculated from the previous intensities using Eq. 3.40; they are plotted in
Fig. 3.6a and aggregated as Stokes vectors in Fig. 3.6b. In the current case of an initialization in
the |⇑⟩ state, the reflected polarization state is pure and the Stokes vector is equal to |Ψ⇑⟩. Here,
the arrows point to specific values of the Stokes vector for different detunings.

(a)

|Ψ⇑⟩

(b)

FIGURE 3.6: (a) Stokes parameters of the reflected polarization state when the
quantum dot is initialized in |⇑⟩, s(⇑)XY , calculated from the reflected intensities
shown in Fig. 3.5. (b) Trajectory of S(⇑) = |Ψ⇑⟩ in the Poincaré sphere as a func-
tion of the normalized laser-quantum dot detuning. The solid arrows point to the

values of |Ψ⇑⟩ for different color-coded detunings.

Spin initialized in |⇓⟩

Next, we detail the case of a quantum dot initialized in the |⇓⟩ state, enabled by using the
spin-flip Lindbladian L̂

(⇓)
SF . The reflected intensities are plotted in Fig. 3.7. As compared to the

initialization in |⇑⟩, we find that:

I
(⇓)
H = I

(⇑)
H I

(⇓)
V = I

(⇑)
V

I
(⇓)
D = I

(⇑)
A I

(⇓)
A = I

(⇑)
D

I
(⇓)
L = I

(⇑)
R I

(⇓)
R = I

(⇑)
L

(3.44)
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𝐼𝐷,𝑐𝑎𝑣 = 𝐼𝐴,𝑐𝑎𝑣 𝐼𝑅,𝑐𝑎𝑣 = 𝐼𝐿,𝑐𝑎𝑣𝐼𝑅,𝑐𝑎𝑣 = 𝐼𝐿,𝑐𝑎𝑣𝐼𝐻,𝑐𝑎𝑣

𝐼𝑉,𝑐𝑎𝑣

FIGURE 3.7: Normalized reflected intensities as a function of the normalized
laser-quantum dot detuning. The intensities for a quantum dot initialized in the
|⇓⟩ state, I(⇓)X , are plotted with solid lines along with those for an empty cavity in

dashed lines.

By consequence, s(⇓)HV = s
(⇑)
HV , s(⇓)DA = −s

(⇑)
DA and s

(⇓)
RL = −s

(⇑)
RL. The Stokes parameters and

the Poincaré sphere are plotted in Fig. 3.8. The dashed arrows point to specific values of the
Stokes vector for the same detunings as before. The symmetry relations developed here show
not only that |Ψ⇓⟩ is the symmetrical of |Ψ⇑⟩ with respect to the (HVDA) plane, but also with
respect to the (HRVL) plane: this is why as ∆d increases, |Ψ⇑⟩ describes a circle in the clockwise
direction starting from H whereas |Ψ⇓⟩ goes counterclockwise.

(a)

|Ψ⇓⟩

(b)

FIGURE 3.8: (a) Stokes parameters of the reflected polarization state when the
quantum dot is initialized in |⇓⟩, s(⇓)XY , calculated from the reflected intensities
shown in Fig. 3.7. (b) Trajectory of S(⇓) = |Ψ⇓⟩ in the Poincaré sphere as a func-
tion of the normalized laser-quantum dot detuning The dashed arrows point to

the values of |Ψ⇓⟩ for different color-coded detunings.

Working points for an ideal spin-photon interface

In Fig. 3.9, we show the two Stokes vectors S(⇑) and S(⇓) as a function of ∆d in order to
evidence the existence of particular detuning values that allow ⟨Ψ⇑|Ψ⇓⟩ = 0, the criterion for
an ideal spin-photon interface. The scalar product is defined in the Poincaré sphere for pure or
mixed states by: ∣∣∣〈S(1)

∣∣∣S(2)
〉∣∣∣2 = 1 + s

(1)
HV s

(2)
HV + s

(1)
DAs

(2)
DA + s

(1)
RLs

(2)
RL

2
(3.45)
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Therefore, orthogonal Stokes vectors are parallel and pointing in opposite directions in the
Poincaré sphere. The noticeable values of the detuning that meet the condition of the ideal
spin-photon interface are ∆opt = ±0.45 (here equivalent to ω − ωd = ±1.35µeV), and are
highlighted in light blue and yellow in the figure. The arrows corresponding to |Ψ⇑⟩ and |Ψ⇓⟩
at the optimal detunings indeed point in opposite directions.

|Ψ⇑⟩

|Ψ⇓⟩

−∆opt

+∆opt

−∆opt

+∆opt

FIGURE 3.9: Trajectories of |Ψ⇑⟩ and |Ψ⇓⟩ in the Poincaré sphere as a function of
the normalized laser-quantum dot detuning ∆d = (ω − ωd)/Γ. The solid arrows
point to |Ψ⇑⟩ and the dashed arrows to |Ψ⇓⟩ for different detunings. The optimal

detunings to have ⟨Ψ⇑|Ψ⇓⟩ = 0 are indicated at ±∆opt.

3.2.3 Averaging of the spin states

In a situation where the spin state in not initialized, the states |⇑⟩ and |⇓⟩ are equally
likely and the resulting reflected intensities become the average of the initialized intensities:
I
(avg)
X =

(
I
(⇑)
X + I

(⇓)
X

)
/2. The symmetries between the two initialized states described in Eq. 3.44

let us infer that:

s
(avg)
HV =

s
(⇑)
HV + s

(⇓)
HV

2
s
(avg)
DA = s

(avg)
RL = 0 (3.46)

The Stokes vector in the non-initialized case, represented in Fig. 3.10, therefore stays on the
(HV) axis of the Poincaré sphere. The condition ⟨Ψ⇑|Ψ⇓⟩ = 0 is reached for detunings ±∆opt: at
these points, S(avg) = 0, as shown in Fig. 3.11. In fact, the ideal spin-photon interface criterion
can be met only if s(avg)HV (∆d = 0) ≤ 0. A critical experimental step is therefore to measure the
dip of s(avg)HV and to try to maximize its contrast.
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(a)

|Ψ⇑⟩

|Ψ⇓⟩

S(avg)

(b)

FIGURE 3.10: Effect of the averaging of |Ψ⇑⟩ and |Ψ⇓⟩ when the spin is not ini-
tialized: (a) Stokes parameters of the average state S(avg) and (b) Poincaré sphere

representation.

|Ψ⇑⟩

|Ψ⇓⟩

S(avg)

−∆opt

+∆opt

−∆opt

+∆opt

FIGURE 3.11: Trajectories of |Ψ⇑⟩, |Ψ⇓⟩ and S(avg) in the Poincaré sphere as a
function of the normalized laser-quantum dot detuning. The solid arrows point
to |Ψ⇑⟩ and the dashed arrows to |Ψ⇓⟩ for the specific detunings ±∆opt achieving

⟨Ψ⇑|Ψ⇓⟩ = 0.

3.2.4 Influence of the cavity splitting

The previous simulations supposed a null cavity splitting. Introducing this energy differ-
ence between the two modes of the cavity only rotates the trajectories of |Ψ⇑⟩ and |Ψ⇓⟩ about
the (HV) axis of the Poincaré sphere, as shown in Fig. 3.12 for the case of a cavity splitting
∆HV = 70µeV. The averaged Stokes vector S(avg) is identical to the case without cavity split-
ting, owing to its rotational symmetry about (HV).

The optimal detunings ±∆opt to get ⟨Ψ⇑|Ψ⇓⟩ = 0 are detailed in Fig. 3.13: they are identical
to those found without cavity splitting, but the values of |Ψ⇑⟩ and |Ψ⇓⟩ are changed. In the
rest of this chapter, the splitting will be ignored for clarity but it will become relevant when
studying realistic samples in the next chapters.
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(a)

|Ψ⇑⟩

|Ψ⇓⟩

S(avg)

(b)

FIGURE 3.12: (a) Stokes parameters for a spin initialized in |⇑⟩, s(⇑)XY , with a cavity
splitting ∆HV = 70µeV. (b) Poincaré sphere representation of |Ψ⇑⟩, |Ψ⇓⟩ and

S(avg) with a cavity splitting.

|Ψ⇑⟩

|Ψ⇓⟩

S(avg)

−∆opt

+∆opt −∆opt

+∆opt

FIGURE 3.13: Trajectories of |Ψ⇑⟩, |Ψ⇓⟩ and S(avg) in the Poincaré sphere with a
cavity splitting ∆HV = 70µeV. The solid arrows point to |Ψ⇑⟩ and the dashed

arrows to |Ψ⇓⟩ for the specific detunings ±∆opt achieving ⟨Ψ⇑|Ψ⇓⟩ = 0.

3.2.5 Influence of the top mirror output coupling and cooperativity

The efficiency of the spin-photon interaction is governed by the cooperativity C = g2/(κγ)

and the top mirror output coupling ηtop = κtop/κ. We study the effect of these two figures of
merit on the trajectories of |Ψ⇑⟩ and |Ψ⇓⟩ in the Poincaré sphere (Fig. 3.14). The detunings for
which ⟨Ψ⇑|Ψ⇓⟩ = 0 (if they exist) are highlighted by black dots on |Ψ⇑⟩ and |Ψ⇓⟩ and linked by
dashed lines. We start from the figures of merit of three real samples:

(1) C = 0.2 ηtop = 0.4 Sample similar to Arnold et al. (2015) [27]

(2) C = 2 ηtop = 0.9 positively charged device

(3) C = 4 ηtop = 0.7 negatively charged device

We then proceed to simulate all the possible combinations of the two figures of merit. The value
of κ is varied to adjust C, and ηtop is changed independently. To obtain C = 0.2, 2 and 4, the
cavity losses are taken at κ = 3.75meV, 375µeV and 187.5 µeV.



3.2. Numerical simulation of the reflected polarization in the steady state 91
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FIGURE 3.14: Trajectories of |Ψ⇑⟩ and |Ψ⇓⟩ as a function of the normalized laser-
quantum dot detuning ∆d = (ω − ωd)/Γ, for different values of the top mirror
output coupling and of the cooperativity. Black dots show the values of |Ψ⇑⟩ and
|Ψ⇓⟩ if they achieve ⟨Ψ⇑|Ψ⇓⟩ = 0 at certain detunings. (1) is similar to the sample
from [27], (2) to the positively charged device and (3) to the negatively charged device.

For C = 0.2, only the case ηtop = 0.7 achieves ⟨Ψ⇑|Ψ⇓⟩ = 0 at |Ψ⇑⟩ = |R⟩ and |Ψ⇓⟩ = |L⟩. In-
cidentally, there is a reverse of |Ψ⇑⟩ and |Ψ⇓⟩ with respect to the equatorial plane when passing
from ηtop = 0.4 to ηtop = 0.7 and higher.

For C = 2 and C = 4, it is possible to find ⟨Ψ⇑|Ψ⇓⟩ = 0 for ηtop = 0.7 and ηtop = 0.9, but
not for ηtop = 0.4. This time, the inversion of |Ψ⇑⟩ and |Ψ⇓⟩ with respect to the equatorial plane
happens between ηtop = 0.7 and ηtop = 0.9.

This study shows how a quantum dot coupled to a micropillar cavity can constitute an
ideal spin-photon interface provided that device parameters are carefully adjusted to obtain
the appropriate values of C and ηtop. In the next section, the dynamics of the system is explored
with an emphasis on the experimentally measured quantities, which are the reflected intensities
in the different polarizations and their time correlations.
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3.3 Effect of a photon detection on the quantum dot system

The study of the quantum measurement is of particular interest for a spin-photon interface
as its fundamental objective is to imprint the state of a spin on the state of a photon or vice
versa: its performance can therefore be assessed by the quality of the projective measurement
it allows (i.e., how efficiently the spin can be projected by a photonic measurement). In this
section, we use the numerical simulation to predict the evolution of the quantum dot spin
and of the polarization of the reflected photons after a photon is detected in a specific state.
We study the indirect effect of this evolution in the correlations between detected photons in
two complementary polarizations as it will be the experimentally measured quantity in the
framework of spin-noise spectroscopy. In this regard, we introduce the following notations, in
the general case of a first detected photon in the X polarization and a second one in Y : the
conditioned intensity ĨY |X(t) stands for the photon flux in polarization Y at time t when an
X-polarized photon is detected at time t = 0, and the cross-correlation function, giving the
conditioned intensity normalized by the unconditioned one:

g
(2)
XY (τ) =

ĨY |X(τ)

IY

3.3.1 Time-resolved numerical simulations

Principle of the calculation

Before the measurement of a photon, the system comprising the quantum dot and the
cavity field is in its stationary state ρ̂ss and the measured quantities are calculated by tracing
operators over this density matrix (Eq. 3.4). For instance, the intensity reflected in polarization
X is defined as follows, dropping the out subscript for b̂X and using the invariance of the trace
operation under a circular permutation:

IX =
〈
b̂†X b̂X

〉
ρ̂ss

= Tr
{
b̂†X b̂X · ρ̂ss

}
= Tr

{
b̂X · ρ̂ss · b̂†X

}
(3.47)

where b̂X = b̂in,X +
√
κtopâX .The measurement of a photon in polarization X at time t = 0

projects the density matrix along the measured polarization. We translate this phenomenon
mathematically with operators that are conditioned by this measurement, and symbolically
by writing them with a tilde. The density matrix is transformed from ρ̂ss into the conditional
density matrix labeled ˜̂ρX defined at a time t = 0+ right after the photon detection in X at
t = 0, which we write (t = 0+|X, 0) [81, 179]:

˜̂ρX(t = 0+) = ˜̂ρ (t = 0+|X, 0
)
=

b̂X · ρ̂ss · b̂†X
Tr
{
b̂X · ρ̂ss · b̂†X

} =
b̂X · ρ̂ss · b̂†X

IX
(3.48)

The numerical simulation computes the temporal evolution of the density matrix, it therefore
propagates from ˜̂ρX(t = 0+) to ˜̂ρX(t), and when t → ∞, the density matrix evolves back to ρ̂ss.
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Calculation of the reflected intensities

We now deal with the probabilities to detect photons in a detector, which are proportional
to the average intensity in the associated polarization: P (X) ∝ I(X). The average1 intensity in
detector Y at time t, conditioned by the detection of a photon in X at t = 0, is calculated in
the Schrödinger representation by letting the density matrix evolve: ˜̂ρX(t) is computed and the
intensity is calculated as in Eq. 3.47:

ĨY |X(t) =
〈
b̂†Y b̂Y

〉 ˜̂ρX(t)
= Tr

{
b̂†Y b̂Y · ˜̂ρX(t)

}
(3.49)

A similar calculation is carried out to compute the population of the ground and trion states,
conditioned by the detection of an X-polarized photon at time t = 0, by replacing the operator
b̂†Y b̂Y by the appropriate population operator (σ̂†

R/Lσ̂R/L for the trion state populations
∣∣tL/R〉

and σ̂R/Lσ̂
†
R/L for the ground state populations

∣∣gL/R〉).
Calculation of the cross-correlations

The cross-correlations in the (X,Y) basis can be defined by the ratio between the probability
of detecting a photon in polarization Y at a delay τ after a photon was detected in polarization
X at delay 0, divided by the unconditioned probability. We translate this formula in experi-
mental terms by replacing the probabilities with intensities to which they are proportional :

g
(2)
XY (τ) =

˜P (Y |X)(τ)

P (Y )
=

ĨY |X(τ)

IY
(3.50)

It is worth noticing that as τ → ∞, the system loses the memory of the measurement event and˜̂ρX → ρ̂ss, so the cross-correlation tends to unity.

This definition of the cross-correlation is equivalent to the usual one written with the field
operators in the Heisenberg representation:

g
(2)
XY (τ) =

〈
b̂†X(0)b̂†Y (τ)b̂Y (τ)b̂X(0)

〉
ρ̂ss〈

b̂†X(0)b̂X(0)
〉
ρ̂ss

·
〈
b̂†Y (τ)b̂Y (τ)

〉
ρ̂ss

=
Tr
{
b̂†X(0)b̂†Y (τ)b̂Y (τ)b̂X(0) · ρ̂ss

}
IXIY

(3.51)

Indeed, by a circular permutation, the density matrix after a photon detection in X, ρ̂X , can be
identified in the numerator (using Eq. 3.48):

Tr
{
b̂†X(0)b̂†Y (τ)b̂Y (τ)b̂X(0) · ρ̂ss

}
=Tr

{
b̂†Y (τ)b̂Y (τ)b̂X(0) · ρ̂ss · b̂†X(0)

}
=IX Tr

{
b̂†Y (τ)b̂Y (τ) · ˜̂ρX(t = 0+)

} (3.52)

1This is the average over many repetitions of the experiment.



94 Chapter 3. Theoretical framework and simulations

The two definitions of g(2)XY (τ) are thus equivalent, and simply correspond to a choice of repre-
sentation:

Heisenberg representation: g(2)XY (τ) = Tr
{
b̂†Y (τ)b̂Y (τ) · ˜̂ρX(t = 0+)

}/
IY (3.53)

Schrödinger representation: g(2)XY (τ) = Tr
{
b̂†Y b̂Y · ˜̂ρX(τ)

}/
IY =

ĨY |X(τ)

IY
. (3.54)

In our numerical simulations, the cross-correlations are processed in the Schrödinger represen-
tation by computing the density matrix evolving with time and using it to calculate the average
value of constant operators.

3.3.2 Choice of an optimal configuration for perfect spin measurement
with a single detected photon

Let the sample properties be that of example (2) of Fig. 3.14 (C = 2, ηtop = 0.9) and the
input laser be CW, H-polarized with a power of 1 pW and tuned to the optimal detuning −∆opt

such that ⟨Ψ⇑|Ψ⇓⟩ = 0. The working point (WP) is illustrated in Fig. 3.15.

|Ψ⇑⟩

|Ψ⇓⟩WP

−∆opt (WP)

FIGURE 3.15: Trajectories of |Ψ⇑⟩ and |Ψ⇓⟩ in the case C = 2 and ηtop = 0.9,
corresponding to configuration (2) of Fig. 3.14. The working point (WP) for this

section is ∆d = −∆opt.

We measure the reflected photons in polarization bases that we call (θ, θ): these orthogonal
polarization vectors are defined in Fig. 3.16, they are located on the meridian circle comprising
(D,R,A,L) and determined by their latitude angle θ (their longitude is always Φ = π/2). In this
example, the basis characterized by θ = θopt = −6.4◦ is called the optimal basis, since it gives the
following match:

|θopt⟩ = |Ψ⇓⟩ (∆d = −∆opt)∣∣θopt〉 = |Ψ⇑⟩ (∆d = −∆opt)
(3.55)

A perfect projective measurement is therefore expected when measuring a photon in |θopt⟩ or∣∣θopt〉 since
〈
θopt
∣∣θopt〉 = 0. The experimental setup in Fig. 3.16 shows how cross-correlations

are measured in the (θopt, θopt) basis:

1. First, a photon is detected in |θopt⟩ = |Ψ⇓⟩. The measurement projects the spin on the
associated state |⇓⟩.
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2. After a delay τ , a detection event is registered in
∣∣θopt〉 = |Ψ⇑⟩. The histogram of the

delays constitutes the cross-correlations g(2)
θoptθopt

(τ). The deeper the anti-correlation dip at
short delays, the better the measurement-induced spin projection.

The description of the measurement in terms of spin unfolds in the following simplified
sequence:

• Before the measurement (t = 0−), the spin is not initialized, so it has a 50 % probability of
being in state |⇑⟩ (thus rotating the output polarization to |Ψ⇑⟩) and the same probability
of being in state |⇓⟩ (thus rotating the output polarization to |Ψ⇓⟩). The density matrix of
the system is approximately equal to 0.5 |⇑⟩ ⟨⇑|+0.5 |⇓⟩ ⟨⇓| (if we neglect the occupations
of the trion states |⇑⇓↑⟩ and |⇓⇑↓⟩).

• After the measurement of a photon in |θopt⟩ = |Ψ⇓⟩ at time t = 0+, the spin is expected to
be mainly in the state |⇓⟩, (again, provided that the population of the trion states can be
neglected).

• Then, the spin state goes back to equilibrium after the spin-flip mechanisms have aver-
aged it out.

QWP2LP

Telescope

Lens

Sample

QWP1

BS (90:10)

Cryostat (4K)

HWP1

HWP2

Input 𝜔𝜔
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APD 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜

APD 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜

Delay τ

Spin projection

1 – Click in 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜

2 – Click in 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜

Spin projection𝜃̅𝜃

𝑉𝑉

𝑅𝑅

𝐿𝐿
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𝜃𝜃 + 𝜋𝜋/2
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Φ = 𝜋𝜋/2

FIGURE 3.16: (Left) Definition of the polarization bases (θ, θ), comprising couples
of orthogonal polarization states contained in the (DRAL) plane, where θ is the
angle of the first polarization state with respect to the (DA) axis. (Right) Experi-
mental setup for the study of the cross-correlations in the (θopt, θopt) basis. (1) The
measurement of a photon (’click’) by the |θopt⟩ detector projects the spin; (2) then
after a delay τ , the detection of a photon in

∣∣θopt〉 is registered as a correlation
event.
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3.3.3 Master equation simulation of the conditional occupation probabilities

Evolution of the occupation probabilities of the ground and excited states

In the following, the complete evolution of the system is computed from the stationary
regime (for t < 0) that is disturbed by the detection of a photon in |θopt⟩ at time t = 0. The exci-
tation laser is CW, polarized along H and has a low power of 1 pW at a detuning ∆d = −∆opt

to match |θopt⟩ = |Ψ⇓⟩ and
∣∣θopt〉 = |Ψ⇑⟩ (working point from Fig. 3.15). In the master equation

simulation, we compute ρ̂ss and ˜̂ρθopt(t) and use the first density matrix for negative times and
the second one for positive times.

For the rest of this section, we adopt the simplified notations for the four levels of the trion
transition defined in Eq. 3.22. The occupation probability of the ground states and the trion
states are plotted respectively in Figs. 3.17a and 3.17b. We note that the trion population is
much smaller than that of the ground states, owing to the low excitation power; still, it plays a
significant role in the evolution of the cross-correlation at short delays, and we do not neglect
it. Additionally, the total population is normalized: P (gL) + P (gR) + P (tL) + P (tR) = 1.

𝜏𝑖𝑛𝑡

Ground

(a)

𝜏𝑖𝑛𝑡

Trion

(b)

FIGURE 3.17: (a) Occupation probability of the ground states
∣∣gR/L

〉
as a function

of the time t after a click in |θopt⟩, which matches |Ψ⇓⟩ (∆d = −∆opt). The photon
measurement at t = 0 causes a spin projection in |gR⟩ = |⇓⟩. Long timescale on
the top, short timescale on the bottom. (b) Corresponding populations of the ex-
cited state, which follow an analogous evolution as the ground state, with visible

damped Rabi oscillations on short timescale.
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The panels of this figure comprise a long timescale view on the top, and a short timescale
view on the bottom. A separation of the timescales is useful to distinguish between a transient
regime dominated by radiative relaxation and one where spin relaxation is prominent [179]:

• Long timescale (t ≃ µs): upon the measurement of the photon, the ground state is pro-
jected in |gR⟩ and goes back to equilibrium after a few µs. The populations of the trion
states are much smaller than that of the ground states (by four orders of magnitude) but
follow a similar evolution. The exponential decay of the contrast is due to the spin flips:
in this example, τSF,g = 2µs, τSF,t = 100 ns.

• Short timescale (t ≃ ns): right after the photon is detected (t = 0+), the occupations of
both the ground states and the excited states are quickly rebalanced by damped Rabi os-
cillations, with a magnitude around 10−4 as the excitation power is very low. The damp-
ing happens on the timescale of the excited level lifetime (≃ 200 ps). These oscillations are
negligible with respect to the difference of population between the two ground states but
they are significant for the trion states.

As also visible on the bottom panels of the figure, we introduce an intermediate time τint = 5ns

after which the radiative relaxation has settled but before which the spin flips happen.

Dynamics of the branch populations and excitation ratios

The short-timescale behavior is explained by the interplay between the spin projection and
the short radiative dynamics of the system. To interpret this effect, we introduce in Fig. 3.18 the
populations in the left and right branches PR/L = P (gR/L) + P (tR/L) and the excitation ratios
εR/L corresponding to the occupation ratios between excited and ground states of each branch:

εR/L =
P (tR/L)

P (gR/L)
(3.56)

The population of each state is given in Fig. 3.18 as a function of these new variables, whose
values are given for different times with respect to the initial projective measurement on Ta-
ble 3.1.

⇑ 𝑧 ⇓ 𝑧

⇑⇓↑ 𝑧 ⇓⇑↓ 𝑧

L 𝛾𝑠𝑝 R 𝛾𝑠𝑝

𝑃𝐿/(𝜀𝐿 + 1)

𝑃𝐿𝜀𝐿/(𝜀𝐿 + 1) 𝑃𝑅𝜀𝑅/(𝜀𝑅 + 1)

𝑃𝑅/(𝜀𝐿 + 1)

FIGURE 3.18: Definitions of the total populations of each branch PR/L and the
excitation ratios εR/L for each branch of the four-level system, as new variables

to express the populations of each level (in the boxes).
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t = 0− t = 0+ t = τint t = τSF,g t = 5τSF,g

PR 0.5 0.999 0.997 0.681 0.503
PL 0.5 0.001 0.003 0.319 0.497

εR (×10−4) 6.4 3.5 6.4 6.3 6.3
εL (×10−4) 6.4 2500 8.9 6.3 6.3

TABLE 3.1: Populations of each branch PR/L and corresponding excitation ra-
tio εR/L in the stationary regime (t = 0−), right after a photon is detected
(t = 0+), at t = τint = 5ns, and after spin relaxation at t = τSF,g = 2µs and

t = 5τSF,g = 10µs.

• Before the photon is detected (t = 0−), the system is in the steady state regime, with a
radiative equilibrium. In the absence of spin initialization, the L and R branches have
populations of one half (PR = PL = 0.5) with excited state populations close to 0 due to
the low excitation power (εR = εL = 6.4× 10−4 ≪ 1).

• The detection of the photon creates a discontinuity at t = 0 which instantly projects the
ground state in |⇓⟩. At t = 0+, the populations are almost exclusively in the R branch,
with P (gR) ≃ 1 and P (gL) ≃ 0. This sudden imbalance affects the excitation ratios εR/L.
In particular, the absolute population in |tL⟩ is still very low but is now comparable with
the (also low) population in state |gL⟩ (with εL = 0.25, much higher than the value at
radiative equilibrium). This imbalance initiates Rabi oscillations back to equilibrium.

• In each branch, the damped Rabi oscillations are mostly settled at t = τint: the quantities
εR/L are back close to their values imposed by the radiative equilibrium. In particular,
the population in state |tL⟩ has further decreased since both PL and εL are very small at
t = τint (a population P (tL) = 2.7 × 10−6 is observed at t = τint). The spin projection is
still effective.

• At longer timescales (of the order of τSF,g), the spin relaxes and the values of PR/L evolve
back to one half. Since this is a very slow process compared to τint, the excitation ratios
stay very close to their values at radiative equilibrium, with the occupations of |tL⟩ and
|tR⟩ adiabatically following those of |gL⟩ and |gR⟩.

Overall, the transient regime before τint can be thought of as a quick rebalancing of the
populations between the ground and the excited states through Rabi oscillations that arise
in the return to radiative equilibrium of the system after the disturbance of the ground spin
projection.

A distinction must be drawn between this transient regime, which affects the equilibrium
between

∣∣tR/L

〉
↔
∣∣gR/L

〉
on the 100 ps timescale, and the damping of the ground spin occupa-

tion, which affects the equilibrium between |gR⟩ ↔ |gL⟩ on the µs timescale.
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3.3.4 Evolution of the reflected polarization and cross-correlations in the
optimal basis

The measurement-induced spin projection changes in return the subsequent output po-
larization. To study it, we continue to address the system with a CW excitation laser polar-
ized along H, at a power of 1 pW and a detuning ∆d = −∆opt to match |θopt⟩ = |Ψ⇓⟩ and∣∣θopt〉 = |Ψ⇑⟩ (working point from Fig. 3.15 with θopt = −6.4◦).

To characterize the reflected polarization state, we begin by plotting in Fig. 3.19a the Stokes
parameters of the output polarization, perturbed by the measurement of a photon in |θopt⟩ at
t = 0. These Stokes parameters are computed using the conditioned intensities for each po-
larization X ∈ [H,V,D,A,R,L], taking ĨX|θopt(t) for positive times, and the stationary state
values IX for negative times. The top graph shows the long timescales, where the polarization
state right after the photon is measured coincides with |Ψ⇓⟩ = |θopt⟩ and decays exponentially
to a depolarized state (i.e., sHV = sDA = sRL = 0) as the spin flips average out the reflected po-
larization. A zoom on the short timescales is shown on the bottom graph: the Rabi oscillations
of the spin result in short damped oscillations in the reflected polarization before the output
state coincides with S(⇓) (the Stokes vector associated to |Ψ⇓⟩), typically at t = τint.

The cross-correlations between the photon detections in |θopt⟩ and
∣∣θopt〉 are presented in

Fig. 3.19b for negative and positive delays τ (this simulation is purely dynamic and negative
delays are not stationary regime as in previous figures). They are defined by:

g
(2)

θoptθopt
(τ ≥ 0) =

˜Iθopt|θopt(τ)
Iθopt

g
(2)

θoptθopt
(τ ≤ 0) =

˜Iθopt|θopt(−τ)

Iθopt
(3.57)

Here, a positive τ stands for a detection in |θopt⟩ followed by one in
∣∣θopt〉, and conversely for a

negative τ . Most prominently, the data exhibit the spin relaxation on the timescale of a few µs:

• On the long delay plot (upper panel), the cross-correlations dip to zero at short delay
before losing contrast and increasing to unity for long delays. The cause of this perfect
contrast resides in the optimal measurement of the spin state |⇓⟩, as the photon detected
in |θopt⟩ = |Ψ⇓⟩ at τ = 0 prevents any detection in

∣∣θopt〉 = |Ψ⇑⟩, until a spin-flip has
occurred. The spin state returning to thermal equilibrium is the signature of the decay in
the µs timescale.

• Zooming on the short delays, we notice a transient regime behavior by which the cross-
correlation is unity for zero delay and takes its minimal value only around the time
τ = τint. This is the direct counterpart of the quick rebalancing of the trion and ground
populations to reach back the radiative equilibrium. In particular, the residual occupation
of the trion state |⇓⇑↓⟩ = |tL⟩ has to strongly decay between t = 0 and t = τint, which can
happen through the emission of an L-polarized photon. Such a photon can be detected
by the detector in |θopt⟩ as well as the one in

∣∣θopt〉 (since these two polarization states
are nearly linear), which explains the unity value of g(2)

θoptθopt
at very short delays (τ = 0+

or 0−).
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|𝜓⇓⟩

𝜏𝑖𝑛𝑡

|𝜓⇓⟩
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𝜏𝑖𝑛𝑡𝜏𝑖𝑛𝑡

(b)

FIGURE 3.19: (a) Stokes parameters of the reflected polarization state as a func-
tion of the time t after a click in |θopt⟩ = |Ψ⇓⟩. The top figure shows the long
timescale while the bottom figure zooms on the short timescale. We notice the
stabilization in |Ψ⇓⟩ after the radiative transitory regime lasting for a few ns and
the decay to a depolarized state on the µs timescale due to spin flips. (b) Cor-
responding cross-correlations between |θopt⟩ and

∣∣θopt〉 for negative and positive
delays τ .

Influence of the measurement basis and laser-quantum dot detuning

In section 3.2, we showed that ⟨Ψ⇑|Ψ⇓⟩ = 0 could be obtained for two values of the detun-
ing ∆d = ±∆opt, achieving an ideal spin-photon interface. Then we introduced the measure-
ment bases (θ, θ) in Fig. 3.16, and we have shown that θopt = −6.4◦ allows a perfect measure-
ment back action when ∆d = −∆opt.

Here, we start from this optimal situation and study the dependence of the cross-
correlations at intermediate timescale, for different values of the detuning ∆d. We expect the
contrast of the cross-correlations to be perfect at ∆d = −∆opt and θ = θopt as shown above,
and to degrade when deviating from these conditions (see Fig. 3.15 for reference). The result
is plotted in Fig. 3.20. The cross-correlations are calculated by two different means: first with
the full model described above, by taking the value g

(2)

θoptθopt
(∆d, τint), and second by a semi-

analytical method elaborated in the next paragraph. In Fig. 3.20a, we see that regarding to the
cross-correlations in the optimal basis (θopt, θopt):

• The cross-correlation is null at ∆d = −∆opt since ⟨Ψ⇑|Ψ⇓⟩ = 0.

• At ∆d = 0, |Ψ⇑⟩ and |Ψ⇓⟩ are very close to |V ⟩, and are thus equally distant from the
detection polarizations |θopt⟩ and

∣∣θopt〉. This causes the cross-correlation to rise to unity.
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• At ∆d = +∆opt, |Ψ⇑⟩ is actually equal to |−θopt⟩ and |Ψ⇓⟩ to
∣∣−θopt

〉
: the small difference

between the reflected polarizations (−θopt,−θopt) and the measurement basis (θopt, θopt)
explain the non-zero cross-correlation.

• At large detunings, both |Ψ⇑⟩ and |Ψ⇓⟩ are equal to |H⟩ and the cross-correlation is unity.

We now explore the angular dependence of g
(2)

θθ
(−∆opt, τint) in Fig. 3.20b, as a function

of the measurement basis angle θ, for a detuning equal to ∆d = −∆opt. We see that a sine
squared dependence of the cross-correlation contrast is expected when changing the measure-
ment basis in the (DRAL) plane. This dependence arises from the varying scalar products
⟨Ψ⇑|θ⟩ and

〈
Ψ⇓
∣∣θ〉 when θ is varied. The angle θopt gives a perfect contrast since ⟨Ψ⇑|θopt⟩ = 0

and
〈
Ψ⇓
∣∣θopt〉 = 0 (i.e., a click in |θopt⟩ can only be obtained if the spin is |⇓⟩, and a click in

∣∣θopt〉
if the spin is |⇑⟩). On the contrary, choosing θ = θopt ± π/2 removes the effect completely as
such a polarization basis cannot discriminate between |Ψ⇑⟩ and |Ψ⇓⟩, since the scalar products
between spin states and detection polarizations are all equal to 1/2.

(a)

𝜃𝑜𝑝𝑡

(b)

FIGURE 3.20: (a) Cross-correlations at the intermediate time τint as a function
of the normalized laser-quantum dot detuning ∆d, setting θ = −θopt. The best
contrast is found for ∆d = −∆opt. The full model simulation is plotted as a solid
line and the semi-analytical result as a dashed line. (b) Same quantity, this time
setting ∆d = −∆opt and varying the basis angle θ. The best contrast is found for

θopt = −6.4◦.

3.3.5 Semi-analytical calculation of the cross-correlations at intermediate delay

The cross-correlations between photons detected in polarizations X and Y , g(2)XY , is de-
fined by Eq. 3.50 for any delay τ . Here, we use the results of the simulation in the continuous
wave regime to compute the cross-correlations at the intermediate delay τint = 5ns, g(2)XY (τint).
This method saves a significant amount of computation time and gives insight on the mech-
anisms at play. Not only does it confirm the numerical calculations presented above but also
the correct interpretation of the results. The match between the numerical calculation in the
master equation framework and the semi-analytical method developed here is only possible if
the timescales of the radiative and spin relaxations are indeed separable with τint between the
two.
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Let us first discard the delay and consider only probabilities. We start from the simplified
formula of the cross-correlations, which is defined by the normalized probability of detecting
a Y-polarized photon conditioned by the detection of an X-polarized photon:

g
(2)
XY =

P (Y |X)

P (Y )
(3.58)

The data we simulate in the steady-state regime are the reflected intensities in the different
polarizations (X and Y ), with the charge state initialized in each configuration (s ∈ [⇑,⇓])
and the occupation probability for each of these charge states. The intensity in polarization X

when the spin is initialized in the state s is written as I
(s)
X and the occupation probability of s

is written P (s). In order to use these data to calculate the cross-correlations, we perform the
following calculation steps:

• According to the definition of I(s)X , we can assume that it is proportional to P (X|s).

• We initially develop the conditional probability P (Y |X) on the basis of the quantum dot
states: s ∈ [⇑,⇓]:

g
(2)
XY =

∑
s∈[⇑,⇓]

P (Y |s)P (s|X)

P (Y )
(3.59)

• Then, we use the Bayesian inference to invert the probabilities of spin states conditioned
by photon detection (which are not simulated directly):

P (s|X) =
P (X|s)P (s)

P (X)
(3.60)

• Finally, we write the unconditioned probability by taking into account all possible quan-
tum dot states:

P (X) =
∑

s∈[⇑,⇓]

P (X|s)P (s) ∝
∑

s∈[⇑,⇓]

I
(s)
X P (s) (3.61)

After this last step, we can write the cross-correlations g(2)XY as a function of the simulated data,
and regroup the denominator terms in the total intensities IX and IY :

g
(2)
XY =

∑
s I

(s)
Y I

(s)
X P (s)∑

s I
(s)
Y P (s) ·∑s I

(s)
X P (s)

=

∑
s I

(s)
Y I

(s)
X P (s)

IY IX
(3.62)

This semi-analytical expression shows a good agreement with the full simulation as was
demonstrated in Fig. 3.20. As the starting hypothesis is the existence of an intermediate steady
state, the result is valid as long as the spin-flip-times and charge characteristic times are much
longer than the intermediate timescale1: τSF,g; τSF,t ≫ τint.

1Although the charge escape and capture mechanisms are not taken into account here, we explore later in this
chapter how they impact the cross-correlations. In that case, the simulation and the semi-analytical calculation must
include the initialized states |⇑⟩, |⇓⟩ and |∅⟩.



3.4. Effect of a magnetic field 103

Fig. 3.21 shows one value of the semi-analytical cross-correlations in the basis (θopt, θopt),
for ∆d = −∆opt (red dot) and compares it with the cross-correlations as a function of the delay
obtained with the full simulation for different spin-flip times of the ground state. The semi-
analytical model matches the simulation as long as τSF,g ≳ 1µs, which is to say that no spin flip
happens before the transient regime has stabilized to radiative equilibrium1. The ideal cross-
correlation contrast is also preserved for a very short window of time when τSF,g = 0.1µs, but
it is strongly degraded for τSF,g ≤ 10 ns as the separation of timescales is not met anymore.

Semi-analytical

𝜏𝑆𝐹,𝑔
𝑔
𝜃𝑜𝑝𝑡 𝜃𝑜𝑝𝑡

2
,𝜏0.1 𝑛𝑠

1 𝑛𝑠

10 𝑛𝑠

1 𝜇𝑠
0.1 𝜇𝑠

FIGURE 3.21: Cross-correlations in the (θopt, θopt) basis as a function of the delay,
for an input laser in polarization H and tuned to −∆opt (working point from
Fig. 3.15). Comparison between the semi-analytical value (red dot at τint = 5ns)
and the full simulation for different spin-flip times of the ground state (τSF,g from

0.1 ns to 1 µs). The semi-analytical formula is valid for τSF,g ≳ 1µs.

So far, the measurement effect was studied as a function of the energy of the excitation
laser, the measurement basis and the delay between photon detections. For each parameter,
an optimum was found to achieve a perfect working point, and accordingly a perfect mea-
surement basis. Next, we explore other phenomena occurring in quantum dots that impact the
operation of the devices as spin-photon interfaces.

3.4 Effect of a magnetic field

In this section, the Hamiltonian description of an arbitrary external magnetic field inter-
acting with the quantum dot charge is developed. We simulate the consequences of an external
longitudinal magnetic field on the experimentally measured quantities.

3.4.1 Hamiltonian of the magnetic interaction

The interaction between a charge carrier of angular momentum S⃗ and a magnetic field B⃗

is usually described by the Hamiltonian:

Ĥmag = gµBS⃗ · B⃗ (3.63)

where g is the Landé factor and µB is the Bohr magneton.

1This model is also not valid in the presence of a transverse magnetic field, which induces the Larmor precession
of the spin and thus prevents from initializing the spin in |⇑⟩ or |⇓⟩.
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The scalar product can be decomposed in the spatial basis (x,y,z), here with z parallel to
the growth axis of the micropillar device (longitudinal or Faraday magnetic field) and x,y in
the orthogonal plane (transverse or Voigt magnetic field):

S⃗ = Ŝxu⃗x + Ŝyu⃗y + Ŝzu⃗z

B⃗ = Bxu⃗x +Byu⃗y +Bzu⃗z
(3.64)

where we introduced the spin components Ŝi (i ∈ [x, y, z]) which we now label Ŝ(h)
i for the

hole pseudospin or Ŝ(e)
i for the electron spin, both being spin 1/2. They are defined by:

Ŝ(h)
x =

1

2

(
|⇓⟩z ⟨⇑|z + |⇑⟩z ⟨⇓|z

)
Ŝ(e)
x =

1

2

(
|↓⟩z ⟨↑|z + |↑⟩z ⟨↓|z

)
Ŝ(h)
y =

i

2

(
|⇓⟩z ⟨⇑|z − |⇑⟩z ⟨⇓|z

)
Ŝ(e)
y =

i

2

(
|↓⟩z ⟨↑|z − |↑⟩z ⟨↓|z

)
(3.65)

Ŝ(h)
z =

1

2

(
|⇑⟩z ⟨⇑|z − |⇓⟩z ⟨⇓|z

)
Ŝ(e)
z =

1

2

(
|↑⟩z ⟨↑|z − |↓⟩z ⟨↓|z

)
Here, the (x,y,z) basis refers to the spin basis and is not to be confused with the (HV,DA,RL)
basis of the polarization states in the Poincaré sphere.

Since the quantum dots are not spherical but flattened in the z direction, they impose an
anisotropic confinement to the trapped charged particles. On that account, the sensitivity to
a magnetic field depends on its orientation, especially for the hole [151]. Therefore, different
Landé factors are attributed to the contributions of B⃗ parallel to the growth axis (g∥) and in the
orthogonal plane (g⊥). The complete Hamiltonian then reads as follows, for the hole (h) and
the electron (e):

Ĥ(h)
mag = gh,∥ × µBBzŜ

(h)
z + gh,⊥ × µB

(
BxŜ

(h)
x +ByŜ

(h)
y

)
(3.66)

Ĥ(e)
mag = ge,∥ × µBBzŜ

(e)
z + ge,⊥ × µB

(
BxŜ

(e)
x +ByŜ

(e)
y

)
(3.67)

The effect of the magnetic field on the four-level system is to split the ground and excited
doublets in energy and to possibly initiate a precession of the spin about the Zeeman-split
eigenstates. Moreover, we choose to account for the diamagnetic shift, not with a Hamiltonian
term, but by shifting in bulk the energy of the transition manually to an effective value ω

(eff)
d :

ω
(eff)
d = ωd + δdia,∥ ×B2

z + δdia,⊥ ×
(
B2

x +B2
y

)
(3.68)

The experimental Landé and diamagnetic factors in the case of the positively charged device (ex-
perimentally studied in chapter 4) are compiled in Table 3.2. These values were measured from
the splitting at high magnetic fields in the Faraday and Voigt configurations (the latter is pre-
sented in subsection 2.1.3 and the former is derived from an experiment not shown), and we
assume that the electron Landé factor is isotropic and negative [152].
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Orientation Landé factor Diamagnetic factor

Voigt (B⊥)
gh,⊥ = −0.2
ge,⊥ = −0.5

δdia,⊥ = 4.8µeV/T2

Faraday (B∥)
gh,∥ = 0.3

ge,∥ = −0.5
δdia,∥ = 12µeV/T2

TABLE 3.2: Experimentally measured magnetic properties of the positively charged
device according to the orientation of the magnetic field.

3.4.2 Effect of a longitudinal magnetic field on the simulated quantities

A magnetic field can help stabilizing the spin qubit by screening the environmental fluctu-
ations (see subsection 1.2.4) and has important consequence on the workings of a spin-photon
interface. Here, we simulate the effect of a longitudinal magnetic field, which is experimentally
explored in the next chapters. Transverse magnetic fields notably come into play in modeling
the hyperfine interaction with the nuclei (see subsection 1.2.3), which will not be investigated
further in this manuscript.

Zeeman splitting with a non-initialized spin

In Fig. 3.22, the reflected intensity in the V polarization while exciting H (CW, Pin = 1pW)
is simulated for different longitudinal magnetic fields Bz and an absence of spin initialization,
so as to evidence the Zeeman splitting. In this situation, the quantum dot state is averaged over
|⇑⟩ and |⇓⟩, so the reflected intensity in V (denoted I

(avg)
V ) contains photons from both R and L

branches, as per Fig. 1.9b. When the magnetic field increases, the two quantum dot spin states
are separated in energy by the Zeeman splitting:

δZ =
∣∣(ge,∥ − gh,∥)µBBz

∣∣ (3.69)

Two sub-peaks appear at ω(⇑)
d = ω

(eff)
d + δZ/2 and ω

(⇓)
d = ω

(eff)
d − δZ/2, they become visible

when δZ is larger than the quantum dot linewidth; in addition, the diamagnetic shift of ω(eff)
d

becomes slightly visible in the 200 mT curve, centered at ∆d ≃ 0.16.

FIGURE 3.22: Reflected intensity in polarization V as a function of the normalized
laser-quantum dot detuning ∆d = (ω−ωd)/Γ, while exciting H (CW, Pin = 1pW)

and applying a longitudinal magnetic field from Bz = 0mT to 200 mT.
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Shift of the spin-induced polarization rotation

The longitudinal magnetic field also influences the polarization rotation induced by the
initialized spin. In Fig. 3.23, numerical simulations are implemented with a spin initialized in
branch L, corresponding to the ground spin state |⇑⟩. The behavior of S(⇑) in terms of Stokes
parameters and Poincaré vector is plotted, at Bz = 0mT and 50 mT, with arrows representing
the value of S(⇑) for detunings δω = 0,±0.45µeV, i.e., ∆d = 0,±0.15. As the Stokes parameters
are shifted in energy by the Zeeman splitting, the curves in Fig. 3.23 (left panels) are translated
horizontally when Bz is increased, because the resonance with the transition |⇑⟩ ↔ |⇑⇓↑⟩ occurs
at the energy ω

(⇑)
d > ωd. As a result, the trajectory of the Stokes vector remains similar, but the

points are energy-shifted. Therefore, for a fixed detuning between the laser and the quantum
dot energy at Bz = 0mT, the Stokes vector S(⇑) is shifted in the presence of a magnetic field.

Bz = 0mT

Bz = 50mT

FIGURE 3.23: Evolution of the Stokes vector S(⇑) as a function of the normalized
laser-quantum dot detuning ∆d = (ω − ωd)/Γ (centered on the QD energy in the
absence of a magnetic field) (Top) for B = 0mT and (Bottom) B = 50mT. (Left)
Stokes components; (Right) Stokes vector in the Poincaré sphere as seen from the
top of the sphere through the (RL) axis. Solid arrows indicate the values of S(⇑)

for the detunings ∆d = 0,±0.15.
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Consequence for a spin-photon interface

It is useful to examine if a perfect spin-photon interface can hold with a longitudinal mag-
netic field: in Fig. 3.24, we plot the S(⇑) trajectory with solid arrows pointing at its value for
∆d = 0,−0.15, 0.37 (resp. in green, yellow and blue), superimposed with dashed arrows show-
ing S(⇓) for the same detunings. The simulation is plotted for Bz = 0, 20, 50mT: without a
magnetic field, we immediately see the orthogonality of S(⇑) and S(⇓) for ∆d = −0.15 (par-
allel yellow arrows pointing away from each other); when increasing the magnetic field to
20 mT, the two arrows are roughly orthogonal, and with a higher magnetic field, the orthogo-
nality is clearly not preserved. In any case, the measurement basis (θopt, θopt) that is optimal at
Bz = 0mT is not optimal when a longitudinal magnetic field is present, as we examine next.

Bz = 0mT Bz = 20mT Bz = 50mT

-6

-4

-2

0

2

4

6

FIGURE 3.24: Effect of a longitudinal magnetic field of 0 mT, 20 mT and 50 mT
on the reflected polarization vector. The solid line is the full |Ψ⇑⟩ trajectory as
a function of the normalized detuning ∆d. The solid arrows correspond to |Ψ⇑⟩
and the dashed arrows to |Ψ⇓⟩ for detunings ∆d = 0,−0.15, 0.37 (resp. green,
yellow and blue arrows). The green arrows on resonance with the quantum dot

are almost superimposed.

We can surmise that the cross-correlation contrast in the optimal conditions found above at
zero magnetic field (basis (θopt, θopt), detuning −∆opt) will be degraded in the same conditions
when adding a longitudinal magnetic field. To support this point, we start from the detuning
dependence of the cross-correlations at intermediate delay in the optimal basis (θopt, θopt) found
in Fig. 3.20a, and we study their dependence with an external magnetic field in Fig. 3.25. As
Bz increases, the cross-correlation minimum rises and the width of the effect is increased by
the Zeeman splitting. We can notice that the cross-correlation at the central detuning stays at
unity because the Stokes vectors S(⇑) and S(⇓) on resonance with the quantum dot stay close
to identical (as seen in Fig. 3.24 with the green arrows). In addition, the plots are horizontally
shifted at high magnetic fields due to the diamagnetic effect.

The sensitivity of our implementation of a spin-photon interface to a longitudinal mag-
netic field will thus be weighed against its benefit in protecting from the hyperfine inetraftion.
Nevertheless, let us describe further its impact, focusing on the states population.
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𝜃𝑜𝑝𝑡 𝜃𝑜𝑝𝑡 optimal basis 
at B=0mT

FIGURE 3.25: Effect of a longitudinal magnetic field on the cross-correlations in
the optimal basis found without an external magnetic field (θopt, θopt), as a func-

tion of the normalized laser-quantum dot detuning.

3.4.3 Optical spin pumping with a longitudinal magnetic field

Physical principle

We now develop the spin pumping approach presented in subsection 1.1.4 for the hole
spin with a focus on the effect of a longitudinal magnetic field, supported with results from
the master equation simulations. To start with, let us first review the principle in depth: a mag-
netic field changes the populations in the R and L branches, depending on the wavelength
and polarization of the excitation laser. The four-level system of the positive trion transition is
represented in Fig. 3.26 for a non-zero longitudinal magnetic field.

⇑ 𝑧

⇓ 𝑧

⇑⇓↑ 𝑧
⇓⇑↓ 𝑧

𝜏𝑆𝐹,𝑔2

𝜏𝑆𝐹,𝑡2

𝜔

Fast

Slow

Decay

Spin initialized

Energy

0

𝜔𝑑

𝜔

R	branch
L	branch

𝑍ℎ ,∥

𝑍𝑒,∥

FIGURE 3.26: Optical spin pumping of the hole state with a longitudinal mag-
netic field and a linearly polarized excitation laser: depending on the excitation
energy ω, the hole is pumped in one of the ground states (here, |⇑⟩z) owing to the
asymmetric spin-flip rate of the excited and ground states. The linearly polarized
laser could address the two transitions as it contains both R and L components
but the Zeeman splitting prevents it, as the laser cannot be in resonance with both

transitions simultaneously.

The relatively fast spin flip of the excited levels with respect to the ground levels is the fea-
ture we rely on for spin pumping. It can be achieved without an external magnetic field: when
pumping selectively the R or L branch, the spin gets trapped in the ground state of the other
branch [20] (see subsection 1.1.4). Here, we consider a system excited by a linearly polarized
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laser, so that at 0 mT, both branches are symmetrically pumped and remain identically popu-
lated. However, when the longitudinal magnetic field splits the energy levels as represented
in Fig. 3.26, each branch becomes energy-selective. As a consequence, the pumping can work
even with a linearly polarized laser containing both R and L components: when exciting res-
onantly with one branch (the R branch in the figure), the excitation laser is detuned from the
other transition and therefore, the spin is trapped in the ground state of the other branch (here
L), even if the excitation laser has an L-polarized component.

Influence on the simulated quantities

The spin initialization is most evident in the populations of the ground spin states P (gL)

= P (|⇑⟩z) and P (gR) = P (|⇓⟩z), defined in Eq. 3.41. In Fig. 3.27, we plot their simulated values
respectively as solid orange and red lines (or as dashed black lines when they are both constant
and equal to 0.5), as a function of the normalized laser-quantum dot detuning. The excitation is
still a CW laser polarized along H. The two graphs independently present the effect of the two
parameters that influence the spin pumping, namely the intensity of the longitudinal magnetic
field Bz (Fig. 3.27a) and the spin-flip ratio rSF = τSF,g/τSF,t (Fig. 3.27b). Each curve is labeled
with the value of the varying parameter. An efficient pumping results in a high contrast be-
tween the occupations P (gL) and P (gR) and an absence of spin pumping brings them both to
0.5.

𝑔𝐿

𝑔𝑅

rSF = 103

(a)

𝑔𝐿

𝑔𝑅

𝑟𝑆𝐹 = 1

𝑟𝑆𝐹 = 106

𝑟𝑆𝐹 = 103

Bz = 200mT

(b)

FIGURE 3.27: Occupation of the ground spin states with τSF,t = 100 ns (a) for
different magnetic fields at rSF = 103 and (b) for different values of rSF at
Bz = 200mT. A high magnetic field and a high spin-flip ratio both improve the

quality of the spin pumping.

The first feature to notice is that the spin pumping is only efficient when the input laser
is tuned to the energy of one of the branches: on the contrary, at the particular value ∆d = 0,
no asymmetry arises between the population of the two ground states as the two branches are
equally addressed by the H-polarized excitation, thus P (gL) = P (gR) = 0.5. Incidentally, the
dashed black lines at 0.5 evidence that the absence of a magnetic field or a unity spin-flip ratio
preclude any spin pumping. The spin pumping becomes more efficient when the magnetic field
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increases (higher Zeeman splitting, so less crosstalk between the two transitions) or when the
spin-flip ratio increases1 (higher asymmetry between the fast trion and the slow hole spin-flip
rates).

This change in the populations of the ground hole spin states implies a modified average
density matrix, and thus a different Stokes vector of the reflected polarization state when the
spin is not initialized, S(avg). It is plotted in Fig. 3.28 as a function of the laser-quantum dot
detuning, at Bz = 50mT, for different spin-flip ratios from rSF = 1 (no spin pumping) to
rSF = 106 (very efficient spin pumping). Here, the Stokes vector S(avg) is the average between
the trajectories of |Ψ⇑⟩ and |Ψ⇓⟩ at 50 mT seen in Fig. 3.24, with weights corresponding to the
occupation probabilities of states |⇑⟩z and |⇓⟩z analogous to Fig. 3.27b. Specific points of |Ψ⇑⟩
and |Ψ⇓⟩ take identical values regardless of the spin-pumping:

• ∆d = 0: both |Ψ⇑⟩ and |Ψ⇓⟩ are equal to S(avg)(∆d = 0) because the weights of P (gL) and
P (gR) are always 0.5.

• |∆d| ≫ 1: both |Ψ⇑⟩ and |Ψ⇓⟩ are equal to |H⟩ because the spin is too far in energy to
affect on the reflected polarization.

However, the change is quite drastic in between these anchoring points, with an efficient pump-
ing "straightening" the trajectory in the Poincaré sphere (obtained for rSF ≫ 1). This behavior
will help measuring the spin-flip ratios of the real devices.

rSF = 106
rSF = 103
rSF = 1

S(avg)(∆d = 0)

FIGURE 3.28: Effect of the spin flip ratio rSF on the average polarization state
S(avg) under a longitudinal magnetic field of 50 mT. Each trajectory goes from
|H⟩ to S(avg)(∆d = 0) when ∆d increases from -6 to 0 and then back to |H⟩ when

∆d increases to +6.

1Increasing the power of the input laser results in a similar dependence as increasing the spin-flip ratio since
it also favors the spin flip to the branch detuned from the excitation laser through fast electronic spin flip in the
excited state.
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3.5 Effect of the quantum dot charge blinking: escape and capture
mechanisms

In this section, we take into account the possibility that the resident spin carrier is not
always present in the quantum dot, causing a blinking effect in the emission. This phenomenon
arises when the charge creating mechanism is imperfect or the charge state is unstable. In that
regard, we studied in subsection 2.4.2 the case of the optical injection which gets more efficient
as the quasi-resonant excitation increases (leading to a higher charge occupation probability).
We also mentioned in subsection 2.3.1 that a high-energy non-resonant excitation could create
additional charges, thereby resulting in an unwanted charge state. A simple way to describe
such phenomena is to include a fifth "empty" level in our model, as well as charge capture and
escape mechanisms by the quantum dot.

3.5.1 Complete theoretical model

As the quantum dot is not always in the desired charge state (here, the single hole), we ac-
count for the "empty" state of the dot |∅⟩. The updated energy diagram is shown in Fig. 3.29, in-
troducing the charge capture and escape phenomena that populate and depopulate the ground
states. We remind from the rate equations of the simple model in subsection 2.4.2 that the av-
erage charge occupation probability which we now write Pc is linked to the charge escape and
capture times by: Pc = τesc/(τesc + τcapt).

⇑ 𝑧 ⇓ 𝑧

⇑⇓↑ 𝑧 ⇓⇑↓ 𝑧

𝜏𝑆𝐹,𝑔2
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𝜏𝑒𝑠𝑐

Ø

𝜏𝑒𝑠𝑐

𝜏𝑐𝑎𝑝𝑡2
𝜏𝑐𝑎𝑝𝑡2

Energy
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𝜔𝑑

L R𝛾𝑠𝑝 𝛾𝑠𝑝

FIGURE 3.29: Quantum dot levels and physical phenomena present in the five-
level simulation: coherent spin-photon interaction in the L and R branches (col-
ored arrows), spontaneous emission (wavy arrows), spin flips, and capture / es-

cape mechanisms.

The escape and capture mechanisms are incoherent processes that take the form of four
collapse operators that randomly deplete |gL⟩ and |gR⟩ at a rate 1/τesc and populate them at a
rate 1/2τcapt:

Ĉesc,R/L =
1√
τesc

|∅⟩
〈
gR/L

∣∣ Ĉcapt,R/L =
1√
2τcapt

∣∣gR/L

〉
⟨∅| (3.70)
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The associated Lindblad operator modeling the blinking phenomenon, L̂blink, comprises the
contributions of the four collapse operators:

L̂blink = L̂esc,R + L̂esc,L + L̂capt,R + L̂capt,L (3.71)

and the total Lindbladian from Eq. 3.32 now includes this new term:

L̂tot = L̂cav + L̂sp + L̂SF + L̂blink (3.72)

If we seek to initialize the system in the empty state, we can remove the capture components
of the blinking Lindbladian, which becomes L̂(∅)

blink = L̂esc,R + L̂esc,L. Conversely, keeping only
the capture terms initializes the system in the single hole charge state.

3.5.2 Numerical simulation

Effect on the Stokes parameters and detuning-dependent cross-correlations

The imperfect occupation of the ground state materializes in a new Stokes vector of the
output polarization when the spin is not initialized, written S(avg), plotted in the Poincaré
sphere for Pc = 0.56 and |Ψin⟩ = |H⟩ in Fig. 3.30. Compared to the four-level case where Pc = 1

and the trajectory of S(avg) is the average only between |Ψ⇑⟩ and |Ψ⇓⟩ with equal weights
(Fig. 3.10), the average is now between |Ψ⇑⟩ and |Ψ⇓⟩ with a probability Pc/2 and |Ψ∅⟩ = |Ψin⟩
with a probability 1 − Pc. The result is that the trajectory does not go all the way from H to V.
Here, we chose Pc = 0.56 as an example; this specific value results in sHV (∆d = 0) = 0.

|Ψ⇑⟩

|Ψ⇓⟩
= |Ψ∅⟩ ∀∆d

S(avg)

FIGURE 3.30: Effect of the imperfect occupation probability of the charge state
through Pc = 0.56 on the trajectory of the average Stokes vector S(avg). This
non-initialized spin state is now the average of |⇑⟩, |⇓⟩ and |∅⟩, respectively with
probabilities Pc/2; Pc/2; 1 − Pc, leading to an average of the Stokes vector of
the output polarization between |Ψ⇑⟩, |Ψ⇓⟩ and |Ψ∅⟩ with the same respective

probabilities.

The effect on the HV Stokes parameter and on the cross-correlations on the optimal basis
as a function of the normalized detuning is shown in Fig. 3.31. The imperfect occupation prob-
ability results in a loss of contrast in both cases: the value on resonance of sHV goes from -1 for
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Pc = 1 to 0 when Pc = 0.56, as was visible in the Poincaré sphere, while the cross-correlation at
−∆opt goes from 0 to 0.5 (as highlighted by the dashed lines). An ideal spin-photon interface is
still within reach as long as ⟨Ψ↑|Ψ↓⟩ = 0 is verified for a given laser-quantum dot detuning, but
a post-selection scheme might be implemented to discard the detected events when the desired
charge is not present.

sHV

(a)

g
(2)

θoptθopt
(∆d, τint)

(b)

FIGURE 3.31: Effect of the imperfect occupation probability (a) on the Stokes
parameter sHV of S(avg) and (b) on the cross-correlations in the ideal basis
(θopt, θopt) at the intermediate delay τint: g

(2)

θoptθopt
(τint,∆d). The ideal working

point for ∆d = −∆opt is highlighted with dashed lines, the cross-correlation at
this detuning goes from 0 when Pc = 1 to 0.5 when Pc = 0.56.

Effect on time-dependent cross-correlations in the optimal basis

Let us now examine the effect of the imperfect charge occupation on the cross-correlations.
In Fig. 3.32, the simulations in the optimal basis and for an input laser tuned to −∆opt are
shown. The characteristic times are τSF,g = 2µs; τSF,t = 100 ns; Tc = 20µs.

On the left panel, the charge characteristic time is fixed at 20 µs and its occupation prob-
ability is changed: although the exponential decay is similar for all cases, caused by the spin
relaxation in the timescale of τSF,g = 2µs, we observe the loss of contrast of the dip1 owing to
the photons reflected in H when the charge is absent, which the detectors in the optimal basis
measure equally, causing a higher number of coincidence events.

In Fig. 3.32b, we investigate the effect of modifying Tc while Pc is fixed at 0.56 and the
rest of the parameters are kept identical. The reducing of the decay time when decreasing
Tc shows that the dynamics is imposed by the smallest timescale between τSF,g = 2µs and
τesc = Tc/(1 − Pc); the contrast of the dip can even be diminished if Tc becomes close to the
radiative timescale (not shown here, but in a similar fashion as in Fig. 3.21). The combined ef-
fect of spin and charge dynamics was first hinted while describing the spin polarization with a
simple model in Eqs. 2.23 and 2.24.

1The radiative relaxation at the ns timescale as seen in Fig. 3.19b is still present but was removed from the plots
in this paragraph for clarity.
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Pc = 0.56
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FIGURE 3.32: Cross-correlations in the optimal basis for an excitation laser of
detuning −∆opt, as a function of the delay. The case Pc = 0.56, Tc = 20µs studied
in Fig. 3.31b corresponds to the thin blue line, and its cross-correlation value of 0.5
at intermediate timescale τ = τint is highlighted with a dashed line. (a) Exploring
different occupation probabilities of the charge state Pc, with a fixed Tc = 20µs

and (b) different charge characteristic times Tc, with a fixed Pc = 0.56.

Effect on time-dependent cross-correlations in the (H,V) basis

We now turn to the effect of the charge occupation and characteristic time on the cross-
correlations in the (H,V) basis, exploring the exact same parameters as in the last paragraph.
The result is presented in Fig. 3.33. As described in section 2.4, this basis is particularly suited to
study the charge capture and escape processes, and is blind to the spin-flip mechanisms mea-
sured in the (θopt, θopt) basis. This is due to the fact that, when |Ψin⟩ = |H⟩, a photon detection in
polarization |V ⟩ retrieves no information regarding the spin state, indeed: ⟨V |θopt⟩ ≃

〈
V
∣∣θopt〉

≃ 0.5. Yet, since the V photon was emitted after a trion decay, we know that the quantum dot
could not have been in the empty state |∅⟩.

g
(2)
HV (−∆opt, τ)

Tc = 20µs

(a)

g
(2)
HV (−∆opt, τ)

Pc = 0.56

(b)

FIGURE 3.33: Cross-correlations in the (H,V) basis for an excitation laser of de-
tuning −∆opt, as a function of the delay. (a) Exploring different occupation prob-
abilities of the charge state, with a fixed Tc = 20µs and (b) different charge char-

acteristic times, with a fixed Pc = 0.56.

In Fig. 3.33a, we first display g
(2)
HV (−∆opt, τ) for different values of the occupation probabil-

ity Pc. We observe an absence of cross-correlation dip when Pc = 1 and a cross-correlation dip
of increasing depth when Pc is reduced. In all cases, the decay time is given by Tc = 20µs. Then,
in Fig. 3.33b, we show the evolution of the cross-correlation when the value of Tc is changed



3.6. Effect of pure dephasing and slow charge noise 115

from 0.2 µs to 20 µs proving that the decay time only depends on Tc and is not limited by the
spin-flip time τSF,g = 2µs. This figure illustrates that the (H,V) basis is sensitive only to the
charge state since and not the spin state.

3.6 Effect of pure dephasing and slow charge noise

In this section, we compare two sources of noise: pure dephasing and spectral wandering.
They both model the effect of environmental fluctuations on the system but they differ on the
timescale of these fluctuations. Pure dephasing represents fluctuations faster than any dynam-
ics of the system (i.e., radiative decay, spin-flip, charge capture and escape): the resulting mea-
surement is fundamentally blurred out and no measurement apparatus could overcome this
noise source. In our system, this would correspond to fluctuations happening on the timescale
shorter than the nanosecond. By opposition, spectral wandering pertains to fluctuations that
are slow enough that the system can adiabatically adapt, leading to a measurement consti-
tuted by the average over the system’s response to different configurations of the environment.
Therefore, a measurement apparatus fast enough could in principle overcome such a noise. In
our system, the slow noise timescale is of the order of milliseconds or higher.

Pure dephasing is introduced in the numerical simulation with a collapse operator, blur-
ring out the quantum state ahead of the density matrix calculation, whereas spectral wandering
is modeled by the Gaussian averaging of the density matrix. This type of slow noise is frequent
in solid-state quantum devices [168]. The fundamental difference between pure dephasing and
spectral wandering is explored in this section regarding their footprint on the reflected polar-
ization state and cross-correlation measurements. They will be applied to the simulations of
real devices in the next chapters to establish which phenomena are at play.

3.6.1 Pure dephasing

We first examine the effect of the pure dephasing. It is caused by interactions with phonons
and charge carriers on short timescales compared to the lifetime of the excited level [159]. Its
effect is to blur out the energy of the excited levels. The pure dephasing is modeled by a phase
reset of the coherent evolution of the trion state at a rate γ∗, and is mathematically translated
by the following collapse operator:

Ĉdeph =
√
2γ∗
(
|tR⟩ ⟨tR|+ |tL⟩ ⟨tL|

)
=

√
2γ∗

(
σ̂†
Rσ̂R + σ̂†

Lσ̂L

) (3.73)

Here, we account for an in-phase pure dephasing, which can be seen as a fast electric noise1.
In Fig. 3.34a, we examine the case of a pure dephasing γ∗ = 1.2µeV on the Stokes parame-
ter sHV of the stationary state density matrix. This value of γ∗ results in sHV (∆d = 0) = 0.
A reduction of the contrast and a moderate widening of the dip are visible. The effect on the

1A fast magnetic noise results in an opposite phase pure dephasing and is modeled by the collapse operator

Ĉdeph,m =
√
2γ∗

m

(
|tR⟩ ⟨tR| − |tL⟩ ⟨tL|

)
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cross-correlations is shown in Fig. 3.34b: the contrast is reduced by the pure dephasing (much
more than in the case of the spectral wandering examined next), the value on resonance is
unity with and without noise, and the value at ∆d = −∆opt (highlighted with dashed lines)
goes from 0 without noise to 0.8 with noise. The temporal evolution of the cross-correlations
for ∆d = −∆opt is shown in Fig. 3.35: the reduction of the contrast seen in the detuning depen-
dence is also visible, with no change in the evolution back to equilibrium.

sHV

(a)

g
(2)

θoptθopt
(τint,∆d)

(b)

FIGURE 3.34: Effect of pure dephasing (a) on the Stokes parameter of the sta-
tionary state density matrix ρ̂ss and (b) on the cross-correlations at intermediate
timescale in the optimal measurement basis, plotted as a function of the normal-

ized laser-quantum dot detuning ∆d.
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(2)

θoptθopt
(τ,−∆opt)

FIGURE 3.35: Effect of pure dephasing on the cross-correlations versus delay. The
value at intermediate timescale τ = τint is highlighted with a dashed line as it

goes from 0 at γ∗ = 0µeV to 0.8 at γ∗ = 1.2µeV, as is the case in Fig. 3.34b.

3.6.2 Slow spectral wandering induced by electric fluctuations

The case of charge noise inducing slow electrical fluctuations is modeled by a fluctuating
Stark shift of the energy of the quantum dot transition. It is computed by first defining a proba-
bility density function, characterizing the normalized probability that the quantum dot energy
is shifted by δωd around its average value ωd. It is taken as a Gaussian distribution of width
σelec (in µeV):

P (δωd) =
1√

2πσelec
e
− 1

2

(
δωd
σelec

)2

(3.74)

Let ρ̂ss(ωd + δωd) be the density matrix at stationary state corresponding to a quantum dot of
energy shifted by δωd. We calculate the average density matrix by summing over a selected
range of fluctuations δωd ∈ [−N,N ] × dω where N and dω set the range and the step of the
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distribution of samples to average. The averaged density matrix is calculated with the formula:

ρ̂s,avg =
+N∑

k=−N

ρ̂ss(ωd + kdω)P (kdω)× dω (3.75)

The expectation value of the observables are computed on this averaged density matrix. More-
over, the cross-correlations can be computed either this way or by an extended semi-analytical
approach developed in appendix B.

Averaging over a charge noise of width σelec = 2.1µeV results in the Stokes parameter sHV

of the stationary state density matrix presented in Fig. 3.36a: this specific width of the spectral
wandering widens the dip and reduces the contrast so that sHV (∆d = 0) = 0. On the other
side, the cross-correlations at intermediate delay are shown in Fig. 3.36b: the loss of contrast
is apparent, as wells as the convolution between the non-averaged cross-correlation curve and
the Gaussian noise, resulting in a single large dip. The value on resonance is drastically reduced
while the value at −∆opt (highlighted with dashed lines) goes from 0 without noise to 0.4 with
spectral wandering. The time dependence of the cross-correlations for ∆d = −∆opt is simulated
in Fig. 3.37; it features the same loss of contrast at short delays as the one seen in Fig. 3.36b,
without any change in the evolution back to equilibrium.
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θoptθopt
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FIGURE 3.36: Effect of slow electric fluctuations (a) on the Stokes parameter of the
stationary state density matrix ρ̂ss and (b) on the cross-correlations at intermedi-
ate timescale in the optimal measurement basis, plotted as a function of the nor-
malized laser-quantum dot detuning ∆d = (ω − ωd)/Γ. The value at ∆d = −∆opt

is highlighted with a dashed line as it goes from 0 at σelec = 0µeV to 0.4 at
σelec = 2.1µeV.

The case of the spectral wandering is very similar to that of the pure dephasing in its con-
sequence on the Stokes parameters: one cannot distinguish the two sources of noise with such a
measurement. However, the cross-correlations are impacted very differently by these two phe-
nomena, owing to their different physical origin, in particular, the value of the cross-correlation
on resonance (∆d = 0) is unchanged by pure dephasing but drastically reduced by spectral
wandering. Such a cross-correlation measurement can therefore give relevant information on
the sources of noise present in a device.
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θoptθopt
(τ,−∆opt)

FIGURE 3.37: Effect of slow electric fluctuations on the cross-correlations versus
delay. The value at intermediate timescale τ = τint is highlighted with a dashed
line as it goes from 0 at σelec = 0µeV to 0.4 at σelec = 2.1µeV, as is the case in

Fig. 3.36b.

3.7 Conclusion

A rigorous modeling of the spin-photon interface was developed in the theoretical frame-
work of the master equation. The steady state simulation revealed the way that the spin states
rotate the polarization of the reflected photons and the influence of the cooperativity and the
top mirror output coupling. The dynamic simulation showed how the detection of a reflected
photon could modify the system’s density matrix, to the point of a perfect measurement, and
characterized the footprint of this effect in the photonic correlation measurements. Finally, we
explored the impacts of an external magnetic field, charge blinking, pure dephasing and slow
charge noise that are common in quantum dots. In the next chapters, we characterize the real
devices and use the modeling tools developed in this chapter to understand the phenomena at
play.
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Chapter 4

Measuring the spin noise of a single
hole spin with single detected photons

This chapter presents experiments conducted on the positively charged micropillar - quan-
tum dot device (presented in section 2.1), leading to the observation of single spin noise through
the measurement of single photons reflected from the device. To that end, we evaluate both in
the steady-state and dynamic regimes the giant spin-dependent Faraday rotation effect, which
is at the core of a quantum dot-based spin-photon interface. We rely on the experimental prin-
ciples laid out in chapter 2 to characterize the imprint of the spin-photon interaction on the
reflected polarization, and fit the measurements with the master equation simulation follow-
ing the analysis of chapter 3. The simulations provide the cQED parameters of the device by
fitting, in the steady state, the Faraday rotation of the reflected polarization, and then, in the
dynamic regime, the spin measurement induced by the detection of single photons. Further-
more, the latter allows to access the spin dynamics and to discriminate between different types
of noise sources. We eventually suggest solutions to circumvent the noise that would pave the
way to achieving a close to ideal spin-photon interface. The experiments were conducted with
P. Hilaire [155], and I present here a detailed theoretical analysis of the data.

4.1 Overview of the conducted measurements

The first series of measurements reported in this chapter probes the reflected photons in
the steady state with reflectivity and polarization tomography measurements. To that end, we
take advantage of the optical setup presented in Fig. 2.5 to inject an H-polarized laser in the
device and monitor the reflected intensities in the (H,V,D,A,R,L) output polarizations while the
energy of the input laser is scanned. The full polarization state is reconstructed in the Poincaré
sphere, and reveals the Faraday rotation induced in average by the single hole spin in thermal
equilibrium between states up and down.

Secondly, the measurement of intensity cross-correlations is operated on the same setup,
where this time the energy of the input laser is fixed, and the statistics of the photonic detection
events are analyzed in different polarization bases with single photon detectors through cross-
correlations. The basis where the spin state is optimally imprinted on the reflected polarization
state is identified (see subsection 3.3.2). We then proceed to study the effect of the input power
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and of a longitudinal magnetic field on the cross-correlations and demonstrate that a 30 mT
field corresponds to an optimum for the operation as a spin-photon interface, where the spin
is partially shielded from the Overhauser field. The simulation matches best the experimental
data for a specific combination of noise sources. In addition, a discrepancy at low magnetic
fields is interpreted through the lack of a simulated hyperfine interaction.

We recall from the previous chapters that the heterostructure of the positively charged device
facilitates the optical injection of a single hole in the quantum dot by quasi-resonant excitation
(see Fig. 2.2 for the structure and Fig. 2.11 for the excitation scheme). Consequently, in the whole
chapter and unless stated otherwise, we address the device with the two-color CW excitation
scheme comprising an H-polarized, 8 pW resonant laser and a 2 µW, 901 nm quasi-resonant
laser.

4.2 Optical characterization in the steady state with tomography
measurements

The spin-dependent polarization rotation occurring in the positively charged device is now
characterized in the steady state through reflectivity and polarization tomography measure-
ments. In the absence of spin initialization, the quantum dot state naturally evolves in time
between a single hole in states spin up |⇑⟩ or spin down |⇓⟩ and the empty state |∅⟩, leading
to an average of the reflected polarization states. Its measurement and modeling in the master
equation framework gives valuable information on the device cQED parameters and indicates
its strengths and weaknesses regarding the operation as a spin-photon interface.

4.2.1 Reflectivity of the quantum dot-microcavity device

As a preliminary experiment, we follow up on the empty cavity characterization of the
positively charged device presented in section 2.2. In particular, we explore further the reflectivity
spectra of the device with a focus on the quantum dot contribution. Reflectivity spectra were
first analyzed with the polarization-resolved reflectivity setup presented in Fig. 2.5 and aiming
at the characterization of the cavity modes detailed in Fig. 2.6. At this time, a high-power reso-
nant laser polarized along the cavity modes H and V was exciting the device and the reflected
light was collected in the parallel polarization with freespace detectors to observe the char-
acteristic dip associated to each cavity mode. Here, the experiment is carried out again with
much more sensitive detectors (fibered single photon APDs) so as to carry out the reflectivity
measurement with an input power below quantum dot saturation and evidence the quantum
dot contribution.

On the left panel of Fig. 4.1 is shown a wide view of cavity and quantum dot reflectivity
spectra (or normalized reflected intensity), and on the right panel, a zoomed view focusing on the
quantum dot contribution. Two sets of lines are visible: first, we plot in light red and blue the
cavity modes reflectivity spectra, obtained by exciting the device in H and V with the resonant
laser only and collecting the reflected light in the parallel polarization. The corresponding plots
are labeled "IH(cav) (exc. H)" and "IV (cav) (exc. V)". These scans cover the resonances of the
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two cavity eigenmodes, split by 74 µeV. Second, on top of the light curves, we add in bright
red and blue the reflectivity scans including the quantum dot feature, activated by adding the
auxiliary quasi-resonant excitation. This time, the reflected light following an H excitation is
observed in the parallel (H) and cross (V) polarizations, respectively labeled "IH(QD) (exc. H)"
and "IV (QD) (exc. H)". These plots are centered on the spectral region where the quantum dot
is active, respectively forming a narrow dip or peak very close to the center of the H cavity
mode. The quantum dot effect perceived in this experiment is a reduction of the number of
reflected H-polarized photons and an increase in the V polarization.

FIGURE 4.1: Reflected intensity normalized by the input one, in the H and V col-
lection polarizations, as a function of the detuning between the resonant laser and
the quantum dot, ω − ωd. The light-colored curves relate to the cavity modes re-
flectivity with a collection in the parallel polarization. The bright-colored curves
relate to the quantum dot reflectivity, with an H excitation and a collection in H
or V. The right panel shows a zoom on the central detuning range to focus on the

quantum dot contribution.

Even though the charge state occupation is yet to be determined, the 10 µeV linewidth of
the quantum dot feature can give information on the amount of noise by comparing it to the
Fourier-limited width. The latter is estimated at Γ = 3.3µeV, corresponding to the measure-
ment of a 200 ps radiative lifetime presented in Fig. 2.13. The measured linewidth is almost
three times wider than the Fourier limit, suggesting the presence of a noise mechanism such
as pure dephasing or slow electric or magnetic fluctuations. At this point, it is only possible to
assert that the noise averages out the signal with a characteristic time smaller than the typical
acquisition time of 10 ms for each measured reflectivity point.

4.2.2 Polarization tomography and effect of a longitudinal magnetic field

The successive reflectivity scans while exciting in H and collecting in (H,V,D,A,R,L) enable
us to compute the Stokes vector of the reflected photons in order to get the complete picture
of the quantum dot-induced polarization transformation through its analysis in the Poincaré
sphere. Moreover, we study its dependence to a longitudinal magnetic field as it will later prove
relevant in shielding the quantum dot spin from environmental fluctuations.

The Stokes parameters of the reflected polarization are first computed as defined in Eq. 1.26
using the reflectivity spectra, and are plotted in Fig. 4.2 for the longitudinal magnetic fields
Bz = 0, 30, 200mT, as a function of the laser-quantum dot detuning ω − ωd, focusing on the
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detuning range close to the quantum dot contribution. The device is accordingly excited with
the two-color scheme to activate the quantum dot. Then, the associated Stokes vectors are plot-
ted in the Poincaré sphere in Fig. 4.3 as their 3D coordinates are simply defined by the Stokes
parameters. There, we introduce the polarizations |θo⟩ and

∣∣θo〉 in which the cross-correlation
experiments to come exhibit the best contrast: these are the optimal measurement polarizations
as introduced in Fig. 3.16, defining the best working point of the device as a spin-photon in-
terface. Here, the raw experimental data were corrected by a rotation in the Poincaré sphere to
bring the out-of-resonance points to the input polarization H, as detailed in appendix C.

0 mT 30 mT 200 mT

FIGURE 4.2: Detuning dependence of the Stokes parameters characterizing the re-
flected polarization while exciting the positively charged device with the two-color
scheme. The data are plotted as a function of ω − ωd, for longitudinal magnetic

fields of 0, 30, 200mT.

The 0 mT data exhibits a dip in the Stokes parameter sHV (expected from Fig. 4.1) while
sDA and sRL are constantly null. This behavior is explained by the averaging of the spin state
fluctuating in time between |⇑⟩, |⇓⟩ and |∅⟩, resulting in an average of the reflected Stokes
vector between the polarization states |Ψ⇑⟩, |Ψ⇓⟩ and |Ψ∅⟩, associated to the initialized spin
states. More details can be found in the simulation from Fig. 3.11 with a unity charge occupation
probability and from Fig. 3.30 with charge blinking. Here, the trajectory of the Stokes vector
evidences the expected depolarization, as it is brought to the center of the sphere when entering
in resonance with the quantum dot. The noiseless simulation with an ideal charge occupation
predicts that sHV (ω = ωd) ≃ −1 at 0 mT: the value reported here is significantly different,
around 0.5. In section 3.5 and 3.6, we showed that this diminished quantum dot contribution
could come from charge blinking, pure dephasing as well as slow electric fluctuations. The on-
resonance value of sHV observed here implies an average Faraday rotation angle of ±60◦ in the
Poincaré sphere, depending on the spin state, which is a major improvement with respect to
the previous generation of devices [27] (±12◦), comparable with the current state of the art in
the group of R. Oulton [28] who demonstrated rotation amplitudes of 60− 122◦ using a type of
post-selection scheme (the ideal spin-photon interface requires at least a ±90◦ rotation). When
adding a longitudinal magnetic field of 30 mT or 200 mT, the dip in sHV loses contrast and the
sDA and sRL parameters stray from their previously null value. This effect is expected when
the contributions of the spin states (and thus of |Ψ⇑⟩ and |Ψ⇓⟩) are brought out of balance by
the magnetic field (as simulated in Fig. 3.28). Furthermore, it is apparent that the trajectories
of the Stokes vectors are contained in the (HθoV θo) plane with θo = −24◦. As indicated by the
simulation, this is the symmetry plane between the |Ψ⇑⟩ and |Ψ⇓⟩ trajectories, which is tilted
due to cavity splitting as seen in Fig. 3.12.
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FIGURE 4.3: Polarization tomography of the positively charged device excited with
the two-color scheme, scanning the detuning between the resonant laser and the
quantum dot, ω − ωd, for different values of the longitudinal magnetic field. The
(HθoV θo) circle is highlighted in red. The top row contains the full Poincaré
spheres while the next three rows display zoomed views, first with the initial
viewpoint, then as seen from the top of the (HθoV θo) plane (with R in the fore-

ground) and second as seen from the (H,V) axis (facing H).
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4.2.3 Master equation fitting of the tomography data

The master equation (ME) approach developed throughout chapter 3 is carried out to sim-
ulate the experimental results of the positively charged device in order to interpret the tomogra-
phy data from this section as well as the cross-correlation data of the next. Let us introduce the
complete set of parameters which corroborates the measurements best:∣∣∣∣∣∣∣∣∣∣∣∣

ηin = 1

ηtop,H = ηtop,V = 0.90

κH = 416µeV
κV = 432µeV
ωc,H − ωc,V = 74µeV

∣∣∣∣∣∣∣∣∣∣
g = 17.5µeV
γsp = 0.9µeV
γ∗ = 0.7µeV
σelec = 2.6µeV

∣∣∣∣∣∣∣∣∣∣
Pc = 0.75

Tc = 100µs
τSF,t = 36ns

τSF,g/τSF,t = 103

∣∣∣∣∣∣∣
gh,∥ = 0.3

ge,∥ = −0.5

δdia,∥ = 12µeV/T2

(4.1)

This set was built with the following premise:

• The first column relates to the bare cavity, which was fitted analytically in section 2.2,
leading to the parameters from Eq. 2.8. Here, this preliminary experiment imposes the
values of cavity widths and splitting, but we hypothesize a perfect input coupling and
allow a small offset of ηtop due to the fibered collection (see subsection 2.2.3 for more
details).

• The second and third columns pertain to the light-matter interaction, the noise sources
and the charge and spin dynamics: their values will be justified throughout the current
chapter.

• The fourth column characterizes the magnetic sensitivity of the system: the Landé factors
and the diamagnetic shift were measured in a separate experiment not shown here, under
a high longitudinal magnetic field.

We now examine the agreement between the ME simulation and the experimental reflec-
tivity and tomography observations for different magnetic fields. The experimental points will
be superimposed with the fits as solid red lines, and only the value of Bz is to be adapted in
the simulation from one dataset to the other.

The reflectivity data are first analyzed in Fig. 4.4 where RH and RV recall the normalized
reflected intensities first measured in Fig. 4.1 and Rtot is their sum.

Bz = 0mT Bz = 30mT Bz = 200mT

FIGURE 4.4: Experimental reflectivities in H, V and sum of the two, for the longi-
tudinal magnetic fields 0 mT, 30 mT and 200 mT along with fits in solid red lines.
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We highlight that the proportion of H and V photons in the reflected field is qualitatively in-
fluenced by the chosen couple of (g, γsp), which is itself constrained by the radiative lifetime of
the transition (see Eq. A.1). Even though multiple combinations of (g, γsp) allow an acceptable
fit of RH and RV provided an adaptation of the charge occupation probability Pc, we find the
best fit of RH , RV and Rtot simultaneously for g = 17.5µeV, γsp = 0.9µeV and Pc = 0.75.
Cross-correlation experiments to come in subsection 4.3.2 also agree with this estimation of Pc.
It is worth mentioning that the spontaneous emission rate in a micropillar cavity can undergo
a scaling up or down by a factor 2 compared to its value in bulk GaAs, γsp,bulk = 0.6µeV,
depending on the exact pillar geometry (radius, shape, etc.) [172].

The Stokes parameters follow in Fig. 4.5 for multiple magnetic fields, and finally the de-
duced Poincaré vectors in Fig. 4.6 where the viewpoint is set from the top of the (HθoV θo) plane
that contains the experimental and simulated points. The fits agree well with the tomography
data for most explored magnetic fields.

10 mT 20 mT

30 mT 50 mT

200 mT 300 mT

0 mT

100 mT

FIGURE 4.5: Experimental Stokes parameters for the multiple values of the longi-
tudinal magnetic field along with fits in solid red lines.
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FIGURE 4.6: Experimental Stokes vectors for multiple values of the longitudi-
nal magnetic field along with fits in solid red lines, as seen from the top of the
(HθoV θo) plane. The frame isolates a portion of the sphere plotted at each mag-

netic field on the right side.

4.2.4 Fitting the tomography data with different noise sources

As far as the tomography data are concerned, both pure dephasing and slow electric noise
induce a broadening of the quantum dot contribution (see section 3.6). Therefore, the set of fit-
ting parameters from Eq. 4.1 maintains a proper agreement with the experiment when varying
γ∗ and σelec in a complementary way. Let set A be the starting parameters from Eq. 4.1 and sets
B and C the ones respectively taking only slow electric fluctuations or pure dephasing while
still properly fitting the tomography data. We find the following values:

Set A

∣∣∣∣∣ γ∗ = 0.7± 0.1µeV
σelec = 2.6± 0.3µeV

Set B

∣∣∣∣∣ γ∗ = 0µeV
σelec = 3.3± 0.3µeV

Set C

∣∣∣∣∣ γ∗ = 2.0± 0.2µeV
σelec = 0µeV

The simulated Stokes parameters in the three configurations are shown in Fig. 4.7, demonstrat-
ing an accurate fitting in the three cases across the different longitudinal magnetic fields. The
reflectivities RH , RV , Rtot are properly fitted as well (not shown here).
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Set A: [γ∗ = 0.7µeV, σelec = 2.6µeV]

B = 0mT B = 30mT B = 200mT

Set B: [γ∗ = 0µeV, σelec = 3.3µeV]

B = 0mT B = 30mT B = 200mT

Set C: [γ∗ = 2µeV, σelec = 0µeV]

B = 0mT B = 30mT B = 200mT

FIGURE 4.7: Experimentally measured Stokes parameters superimposed with ME
simulations for longitudinal magnetic fields 0, 30 and 200mT (across columns)

and for the sets of parameters A, B, C (across rows).

Moreover, as we explore different combinations of pure dephasing and slow electric fluctu-
ations, a multitude of sets is found to fit the Stokes parameters, provided that the total broaden-
ing is preserved, as reported in Fig. 4.8. The plotted total cost function represents the difference
between the simulation and the experimental data, including the Stokes parameters and the
total reflectivity, for all explored magnetic fields. The values of the total cost function are arbi-
trarily normalized to [0; 1]. The black dots on the figure introduce a series of (γ∗, σelec) couples
that all fit the tomography data and which we come back to later on, when simulating the mag-
netic field dependence of the cross-correlation data. Until then and unless stated otherwise, set
A is applied in all presented simulations.

At this point, the parameters are almost completely constrained: the values left to justify
concern the noise sources (γ∗, σelec) and the spin and charge dynamics (Tc, τSF,t and τSF,g) for
which we turn to cross-correlation measurements and the study of charge noise and spin noise.
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FIGURE 4.8: Total cost function relative to the quality of the simulation of Stokes
parameters and reflectivities for all explored magnetic fields, plotted in an arbi-
trary unit for different (γ∗, σelec) couples. The black points are the sets of param-
eters that will be explored in the cross-correlation section up next, and the sets

A,B,C introduced above are labeled.

4.3 Cross-correlation measurements: spin noise spectroscopy
with single detected photons

The measurement of reflected photons is now used as a tool to investigate the dynamics of
the hole, disturbed by the photonic measurement, on its way back to equilibrium. The statistics
of the reflected photons detected in different measurement bases allow the separation of the
charge and spin dynamics. In the (H,V) basis, sensitive only to the presence or absence of a
charge, we evaluate the occupation of the single hole charge state. Then, in the spin-sensitive
bases contained in the (DRAL) plane, we study how the detection of a reflected photon par-
tially measures the spin state. The quality of the measurement strongly depends on the basis,
and in this regard, the optimal spin-sensitive basis (θo, θo), exhibits the most contrasted anti-
correlation effect and constitutes the best (although not ideal) working point for this device as
a spin-photon interface. Finally, these cross-correlations reveal the nature of the noise sources
and the limitations of the model.

In the whole section, the device is addressed with the two-color excitation scheme (CW,
H-polarized, 8 pW resonant laser and 2 µW, 901 nm quasi-resonant laser), where this time the
resonant laser is constantly tuned to ωd.
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4.3.1 Cross-correlations protocol

The cross-correlation measurements consist in splitting the light reflected from the de-
vice into two complementary polarizations X and Y, in which the photon detection events are
recorded for further statistical analysis. We first described such experiments in subsection 2.4.3
and the complete optical setup in Fig. 3.16.

The cross-correlations are defined as the normalized coincidences between a measured
photon in X at time 0 and one measured in Y at time τ . They are computed as the histogram of
the time delays between events recorded in one output and the other, with a binning time Tbin

of a few hundred ns, normalizing the result at unity for delays considered infinite (longer than
the dynamic timescales of interest). In mathematical terms, the second order cross-correlation
function is experimentally defined as:

g
(2)
XY (τ = kTbin) =

NXY (kTbin)

N∞
(4.2)

where k is an integer, NXY (kTbin) stands for the number of events including a photon detection
in Y at tY and one in X at tX such that (k − 1)Tbin ≤ tY − tX ≤ kTbin, and N∞ is the empirical
normalization factor.

4.3.2 Charge sensitive cross-correlations

The fact that the reflected polarization state without an external magnetic field is contained
in the (HV) axis of the Poincaré sphere (see Fig. 4.3) validates the hypothesis that the effects
of the quantum dot states |⇑⟩ and |⇓⟩ are averaged over time: the cross-correlations in the
(H,V) basis should in principle result only from the presence or absence of the charge state, as
extensively studied in section 3.5. Indeed, either the quantum dot does not contain a single hole
and the reflected polarization is unchanged (H) or it does and the average reflected polarization
S(avg) is brought from H towards V.

Here, the experiment is carried out with the two-color excitation scheme, in the absence of
an external magnetic field. In Fig. 4.9, we plot the cross-correlations in the (H,V) measurement
basis with a binning time Tbin = 512 ns per point, revealing especially long timescales. The
anti-correlation dip evolves back to unity in a characteristic time on the order of 100 µs. The
contrast of the dip is determined by the charge occupation: since the laser is resonant with ωd,
an H-polarized photon can be converted to V by the single hole state, leading to a decrease
in H-V correlations. If a V photon is detected, the system is for sure in the single hole state,
which is maintained for a time set by the interplay between the charge escape and capture
mechanisms of respective timescales τesc and τcapt. The H-V cross-correlations achieve charge
noise spectroscopy with single photons and proved to be a valuable tool to characterize and
optimize Pc in everyday experiments.

The current result firstly relates to the analogous characterization from subsection 2.4.2,
where the autocorrelations of the V-emitted photons lead to peaks whose contrast and decay
time exposed respectively the charge occupation and dynamics, as explained with a simple
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FIGURE 4.9: Cross-correlations in the (H,V) basis without an external magnetic
field, as a function of the delay between the photonic detection in each polariza-
tion. Each experimental point includes a 512 ns time bin. The solid red line is the

ME simulation with the set of parameters A.

analytical charge capture and escape model; in this previous experiment, the resonant laser
was pulsed and the autocorrelation showed peaks instead of the dip observed now, with con-
trast inversely proportional to Pc. Secondly, the effect of the charge occupation probability
and its characteristic time were theoretically investigated in the master equation framework
in Fig. 3.33, which corroborated the fact that the contrast of the cross-correlations decreases
when Pc increases, and that the decay time was set by Tc, even in the presence of shorter spin
dynamics1.

Here, we fit the data with the ME simulation under the set of parameters A (Eq. 4.1),
comprising Tc = 100µs, Pc = 0.75 and an the noise sources (γ∗ = 0.7µeV, σelec = 2.6µeV).
The subsequent charge capture and escape times are τcapt = 133µs and τesc = 400µs, resulting
in the decay of the anti-correlations dip on a timescale around 100 µs. The simulation matches
the experimental data for the most part, with a discrepancy at short delays that we attribute
to experimental imperfections (most likely an offset of the measurement basis compared to
the true (H,V) basis, which introduces residual spin effects on the cross-correlations). A more
elaborate scenario involving the dynamics between the single hole and states with multiple
holes could be considered for a better agreement with the experiment: it should bring about
multiple exponential decays owing to the specific capture and escape timescales of each state.

4.3.3 Implementation of spin noise spectroscopy with cross-correlations

We now turn to the main result of this chapter, i.e., spin-sensitive cross-correlations, mea-
sured with single photons for the first time to our knowledge: the measurement of a single
photon effectively modifies the spin density matrix (see section 3.3), thereby achieving the first
step towards the operation as a spin-photon interface.

1This previous simulation in Fig. 3.33 was carried out in the absence of noise sources and at the specific laser-
quantum dot detuning for a perfect spin-photon interface, but the qualitative interpretation holds.
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The steady-state polarization tomography measurements demonstrate, in agreement with
the simulations, that the spin-dependent polarization rotation is symmetrical with respect to
the (HV) axis for very low magnetic fields. To isolate the spin contribution in cross-correlations,
we then explore the measurement bases included in the (DRAL) plane, which we call (θ, θ) as
defined in Fig. 3.16. Detecting single photons in such bases partially measures the spin, leading
to an anti-correlation dip. Its contrast is expected to depend on the laser-quantum dot detuning
and the angle defining the measurement basis, θ, as simulated in Fig. 3.20 in the noise-free case.

Experimentally, the photon detection times are recorded in the bases (θ, θ), exciting the
device with the two-color scheme, under a 30 mT longitudinal magnetic field stabilizing the
spin: these conditions resulted in the highest contrast of the anti-correlation dip. The cross-
correlations are determined with Eq. 4.2 using a binning time of 128 ns, and the result is shown
in Fig. 4.10: the graph on the left contains the cross-correlations with the best contrast for
θo = −24◦ and the worst for an angle close to θo + π/2, superimposed with the ME simula-
tion using the set of parameters A (Eq. 4.1). The graph on the right sums up the dependence
of the anti-correlation dip as the angle θ of the measurement basis is scanned. The figure also
includes the ME simulation of the cross-correlation at intermediate time g

(2)

θoθo
(t = τint): in the

current experiment, τint = 5ns is considered "zero delay" as the 128 ns binning smooths out the
fast radiative transient regime. The relevance of the simulation parameters is supported by the
good agreement with the experiment.

(a) (b)

FIGURE 4.10: (a) Cross-correlations as a function of the delay with a 128 ns bin-
ning, in the optimal basis (θo, θo) and the complementary one. The continuous
red lines are ME simulations in both graphs. (b) Zero-delay value of the cross-

correlations as a function of θ, centered on θo.

We emphasize that the anti-correlation was best when the resonant laser was tuned to ωd.
Despite the absence of an experimental study with a varying detuning, this feature can be ex-
plained by examining the trajectories of |Ψ⇑⟩ and |Ψ⇓⟩ in the Poincaré sphere, as presented in
Fig. 4.11. In the absence of noise, the resonance values of |Ψ⇑⟩ and |Ψ⇓⟩ are perfectly symmet-
rical with respect to the (θo, θo) basis: the cross-correlation contrast should therefore be null.
However, slow electrical fluctuations shift the reference value of ωd in time around an aver-
age value ωd by the fluctuating amount δωd such that ωd = ωd + δωd. In Fig. 4.11, we plot the
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trajectories of |Ψ⇑⟩ and |Ψ⇓⟩ as a function of δω, along with the optimal cross-correlation ba-
sis just determined. Notice that |Ψ⇑⟩ and |Ψ⇓⟩ are by definition not affected by the noise nor
by imperfect charge occupation. The figure shows that the measurement in the (θo, θo) basis
can discriminate the two spin states depending on the sign of a non-zero δωd: indeed when
δωd > 0, the Stokes vector |Ψ⇑⟩ is shifted towards

∣∣θo〉 and |Ψ⇓⟩ towards |θo⟩, and vice versa
when δωd < 0. As such, the excitation on resonance with the average quantum dot energy ωd

and detection in the (θo, θo) basis can indeed partially measure the spin state in the presence of
slow electrical fluctuations, without indicating whether the spin is projected in |⇑⟩ or |⇓⟩ since
we can’t know the value of δωd when the photon was detected. However, the cross-correlation
dip proves a partial spin projection either in |⇑⟩ or |⇓⟩, induced by the measurement of single
photons.

|Ψ⇑⟩

|Ψ⇓⟩

|θo⟩

∣∣θo〉

FIGURE 4.11: Poincaré representation of |Ψ⇑⟩ and |Ψ⇓⟩, along with the optimal
spin-sensitive measurement basis (θo, θo) determined experimentally. The excita-
tion laser is set to ωd and the quantum dot energy shift δωd is varied, as shown
by the color scale. The quantum dot shifts δωd > 0 and δωd < 0 refer to situations

where a photon detection in |θo⟩ or
∣∣θo〉 partially measures the spin state.

4.3.4 Identification of the noise sources

Although multiple combinations of pure dephasing and slow electric noise properly fit
the tomography data (see Fig. 4.8), the unique ways these noise sources manifest in cross-
correlations are easily identified. Indeed, as detailed in section 3.6, pure dephasing decreases
the cross-correlation contrast whatever the energy of the resonant laser, while slow electric
noise mixes the contributions of different detunings. In particular, when the excitation laser is
on resonance with ωd, the cross-correlation contrast is always null when only pure dephasing
is present, and the anti-correlation dip appears with slow electric noise. This behavior is no-
ticeable in Fig. 4.12 that includes the experimental cross-correlations in the optimal conditions,
and simulations in the sets of parameters A (γ∗ = 0.7µeV, σelec = 2.6µeV), B (γ∗ = 0µeV,
σelec = 3.3µeV) and C (γ∗ = 2.0µeV, σelec = 0µeV) which all fit the tomography data prop-
erly. Only set A with a specific mixture of the two noise sources agrees with the experimental
cross-correlations, while set B with only slow electric noise is overcontrasted and set C with
only pure dephasing exhibits no anti-correlation dip whatsoever.
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C

B

FIGURE 4.12: Cross-correlations in the (θo, θo) basis with the two-color excitation
scheme and a 30 mT longitudinal magnetic field. The scattered points are experi-
mental data, each encompassing a binning time of 128 ns, and the solid lines are

the ME simulations: set A in red, sets B and C in gray.

4.4 Spin dynamics and noise sources probed by spin noise
spectroscopy

Let the spin noise spectroscopy experiment in the optimal basis be the starting point of two
final experiments aiming at confirming the remaining cQED parameters of the device laid out
in set A (Eq. 4.1). First, we access the spin-flip timescales by exploring the input power degree
of freedom. Second, the longitudinal magnetic field dependence of the cross-correlations con-
firms the choice of the (γ∗, σelec) couple but points out a limitation of our model, which doesn’t
include hyperfine interaction.

4.4.1 Power dependence of the cross-correlations and spin dynamics

Modeling the effect of the spin and charge dynamics on the cross-correlations in the op-
timal basis has demonstrated that the effective decay time of the contrast was dictated by
the shortest timescale between spin flips and charge escape and capture mechanisms (see
Fig. 3.32b). Here, the long charge lifetime Tc = 100µs can hardly be mistaken with the much
shorter decay time of the cross-correlations, on the order of 10 µs. In our quantum dots, the
spin-flip phenomena can be dominated by electronic spin flips, as electrons are much more
sensitive than holes to a fluctuating magnetic field (see subsection 1.2.3). For a positive trion
system, spin flips therefore arise from the electron-in-trion, with a rate proportional to the trion
occupation that is determined by the input power of the resonant laser.
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The typical spin-flip ratio for a positive trion is on the order of rSF =
τSF,g

τSF,t
= 103 [50, 54,

55]. Its value shapes the trajectory of the average reflected polarization state in the Poincaré
sphere when an external magnetic field is applied (see Fig. 3.28), a high value of rSF straight-
ening the trajectory and a low value giving it a curved shape. The agreement between our
simulation with rSF = 103 and the tomography data shown in Fig. 4.6 confirms the order of
magnitude of the spin-flip ratio, leaving only the value of τSF,t to be assessed.

The power dependence of the cross-correlations in the optimal basis is displayed in Fig.
4.13, superimposed with the ME simulation in set A (Eq. 4.1). Only the power of the resonant
laser is scanned, from 4 pW to 0.56 nW (8 pW being the standard value in the rest of the chapter),
while the power of the quasi-resonant laser is fixed at 2 µW. The external magnetic field of
30 mT is maintained. As the power increases, the trion state is more and more populated, giving
rise to fast electron spin flips in the excited state before de-excitation: the consequence is a
faster decay of the anti-correlation dip, to the point of even decreasing its contrast at high
powers. The agreement between the experimental data and the simulation confirms the value
of τSF,t = 36ns. As for the ground spin flip time, only a lower bound can be surmised, about
τSF,g ≳ 10µs, since the charge dynamics might come into play at such a long timescale. This is
compatible with the order of magnitude of the spin-flip ratio rSF = 103.
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FIGURE 4.13: Cross-correlations in the optimal basis (θo, θo) as a function of the
delay, for different powers of the resonant laser, ranging from 4 pW to 0.56 nW.
A 30 mT longitudinal magnetic field stabilizes the spin. Each experimental point
includes a 128 ns time bin. The continuous red lines are ME simulations in set A.
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This result concludes the full characterization of the positively charged device in the cQED
framework, proving the consistency of the simulation with the set of parameters A. Next, we
present one of its limitations concerning the interpretation of the magnetic field dependence.

4.4.2 Effect of a longitudinal magnetic field and limitations of the model

An external longitudinal magnetic field has two competing effects in regard to the opera-
tion of our system as a spin-photon interface: on the one hand, it stabilizes the spin by shielding
it from the Overhauser field, which improves the quality of the spin-photon interface, but, on
the other hand, it splits the energy of the two spin states |⇑⟩ and |⇓⟩, which degrades the per-
formance, especially for an excitation laser which energy is fixed at ωd, in the middle of the
Zeeman-split energies (see subsections 1.2.4 and 3.4.2). A trade-off is expected at moderate
magnetic fields, and more precisely around 30 mT, which led to the best contrast of the cross-
correlations in the previously presented experiments.

In Fig. 4.14, we show the cross-correlations in the (θo, θo) basis with an increasing longitudi-
nal magnetic field. The 30 mT configuration demonstrates the highest anti-correlation contrast
(despite a slightly worse value here than in previous experiments, probably due to a lesser
occupation probability of the charge state in this specific experiment). The ME simulation is
plotted in red along with mono-exponential fits (in dark blue), which help quantifying the con-
trast and decay time of the experiments. The ME simulation now starts from set A at 30 mT
but takes a varying trion spin-flip time τSF,t(B) to account for its magnetic field dependence.
To that end, the value of τSF,t was manually set in the simulation to match the decay of the ex-
perimental cross-correlation τeff (resulting from the mono-exponential fits), with the following
formula:

τSF,t(B) = 36 ns× τeff (B)

τeff (30mT)
(4.3)

This way, the value τSF,t(30mT) = 36 ns is preserved while empirically accounting for its in-
crease induced by the magnetic field. For simplicity, we keep applying a fixed spin-flip ra-
tio rSF = 103, though its value does not significantly impact the outcome. The results of the
mono-exponential fits are presented in Fig. 4.15, first in terms of zero-delay value of the cross-
correlations and then in terms of decay time of the anti-correlation (combining the current
experiment and that of Fig. 4.12). It reveals the best contrast at 30 mT, the loss of contrast at
small magnetic fields where the random Overhauser field becomes prominent and the loss of
contrast at high magnetic field where the Zeeman splitting spectrally separates the effect of
each spin state while the excitation laser stays on the central energy. Additionally, the effective
decay time τeff increases with the magnetic field and saturates around 45 µs above 200 mT. We
surmise that this saturation of τeff at high magnetic fields comes from a limitation not by the
spin-flip time, which should continue to increase, but by the charge escape time. Indeed, as the
magnetic field increases, the quasi-resonant excitation gets less efficient, which might decrease
the occupation probability Pc as well as the charge characteristic time Tc, leading to a reduced
charge escape time which could become the limiting factor for τeff .
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FIGURE 4.14: Cross-correlations in the optimal basis (θo, θo) for different longi-
tudinal magnetic fields, ranging from 0 mT to 300 mT. Each experimental point
includes a 128 ns time bin. The dark blue lines are mono-exponential fits of effec-
tive decay times τeff , and the red lines are ME simulations in set A (adapting the

trion spin-flip time to the value of τeff using Eq. 4.3).

(a) (b)

FIGURE 4.15: Results of the mono-exponential fits: (a) zero-delay value of the
cross-correlations g

(2)

θoθo
(0) and (b) decay time τeff as a function of the longitu-

dinal magnetic field, Bz . The red point at 30 mT was measured in a previous
experiment (Fig. 4.12) and the points at 500 mT were not shown in the previous

figure.
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This kind of saturation was also observed in the spin noise spectroscopy of a single hole
by the group of M. Oestreich [101], but at lower magnetic fields (around 30 mT) and for an
effective decay time of 180 µs.

In Fig. 4.16, we show the magnetic field dependence of the zero-delay value of the cross-
correlation, with experimental points resulting from the mono-exponential fits and the ME
simulation gradually changing the noise source from pure dephasing to electric noise while
always fitting the tomography data properly: the explored configurations correspond to the
black points of Fig. 4.8. The set A indeed fits the experimental data best. However we notice
that no set of parameters matches the lowest magnetic fields. The explanation lies in the fact
that the spin-flip phenomena included in the simulation can’t account for a magnetic field
slowly fluctuating in all directions such as the Overhauser field. In an effort to properly fit the
magnetic field dependence, an ongoing work focuses on integrating hyperfine interaction in
the model as the average between multiple orientations and intensities of the nuclear magnetic
field.

A

B
𝛾∗ = 0 𝜇𝑒𝑉

𝜎𝑒𝑙𝑒𝑐 = 3.3 𝜇𝑒𝑉

𝛾∗ = 0,7 𝜇𝑒𝑉
𝜎𝑒𝑙𝑒𝑐 = 2,6 𝜇𝑒𝑉

𝛾∗ = 2 𝜇𝑒𝑉
𝜎𝑒𝑙𝑒𝑐 = 0 𝜇𝑒𝑉
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FIGURE 4.16: Zero-delay value of the cross-correlation as a function of the lon-
gitudinal magnetic field. Experimental points along with the ME simulations
agreeing with the tomography data. Exp. 1 relates to the measurements from
Fig. 4.15 and Exp. 2 to that from Fig. 4.12. The simulated curves correspond to
the (γ∗, σelec) couples found to fit the tomography data in Fig. 4.8 and only the

best agreement with the cross-correlations is highlighted in red for set A.

4.5 Efficiency of the spin measurement induced by photonic
detection: towards the ideal spin-photon interface

In conclusion, we have successfully measured and simulated the imprint of the spin-
induced Faraday rotation on the polarization state reflected by our system. We have shown
that the fluctuating nuclear magnetic field might be circumvented to a certain degree by apply-
ing a longitudinal field of 30 mT, but also that the electric noise present in the device prevents
the operation as a proper spin-photon interface. A solution to address this problem would be to
use a feedback loop based on the gate voltage of the sample to compensate the slow electrical
fluctuations and effectively reduce σelec [180, 181].
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Let us explore the prospects of reducing the noise sources by extrapolating the simulation
results. To do so, we simulate the conditional occupation probabilities, denoted P̃ (⇑) and P̃ (⇓),
defined as the conditional spin state probabilities induced after a time τint = 5ns after the ini-
tial detection of a photon in |θo⟩. At such a timescale, the radiative relaxation has settled but
the spin flips have not yet come into play (see section 3.3). In Fig. 4.17, we present the cross-
correlations and the conditional occupation probabilities as a function of the laser-quantum
dot detuning, for different noise configurations: first in the set of parameters A (in dark blue),
then in the absence of slow electric fluctuations (in red) and finally without any noise source
(in light blue). Even in the presence of noise and with quite a low cross-correlation contrast, the
detuning dependence of the conditional occupation probabilities shows a partial spin initializa-
tion induced by the photonic measurement. The contrast of the spin probabilities is, however,
limited by the imperfect charge occupation Pc = 0.75 and by the magnetic field Bz = 30mT

from which the dip in P̃ (⇑) + P̃ (⇓) originates. This result encourages to look for a reduction of
the noise sources, but also an exploration of the detuning degree of freedom, to maximize the
photonic-induced spin projection even in the presence of noise.
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FIGURE 4.17: ME simulations of the detuning dependence of (a) the cross-
correlations in the (θo, θo) basis and (b,c,d) the conditional occupation proba-
bilities of the spin states. All quantities are computed at the intermediate delay
τint = 5ns after the detection of a photon in the polarization |θo⟩, and with an
external magnetic field of 30 mT. Three configurations of noise sources are color-
coded: starting from set A in dark blue, removing the slow electric fluctuations

in red and removing all noise sources in light blue.

The outcome of these simulations indicates the direction of future experiments: first, a
partial measurement-induced spin projection might be obtained by detuning the excitation
laser from ωd, even in the presence of noise sources. This could be achieved with a time-resolved
experiment where the conditional polarization tomography would be monitored as a function
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of delay a few nano- or microseconds after the projective measurement. Second, all the noise
sources have to be reduced. What we modeled as pure dephasing in this chapter may in fact
be hyperfine interaction; this kind of noise could be tackled by technological improvements
within reach, such as an adaptation of the annealing process, which strongly determines the
sensitivity of the spin states to magnetic fluctuations [38]. Finally, the occupation probability of
the charge state should be further improved to make the device ideal, by adapting the two-color
excitation scheme or designing heterostructures suited for electrical injection.
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Chapter 5

Partial measurement of a single electron
spin with single detected photons

The experimental techniques with which the hole-based device was investigated in the
previous chapter are implemented again, this time to characterize the electron-based (nega-
tively charged) device. The change of sample structure and charge type comes with required
adaptations of the experimental protocol, and yields complementary results, predominantly
determined by the particular sensitivity of the electron to environmental noise [50, 55].

Specifically, the photons reflected from the device are first analyzed in the steady state by
polarization tomography, demonstrating large Faraday rotations from which we infer a drastic
reduction of the charge noise with respect to the positively charged device. Secondly, the cross-
correlation experiments reveal the photon dynamics: with the interpretation through the mas-
ter equation simulations, we indirectly observe the spin fluctuations by measuring photons in
the appropriate basis. The efficiency of the partial spin projection, induced by the detection
of a single photon, is discussed based on the comparison between experiments and numerical
simulations.

Finally, extrapolating the simulations to the ideal case leads to a deeper understanding of
the impact of experimental imperfections and designate the major limiting factor to be the fast
reset of the electron spin, stemming either from the hyperfine interaction with the quantum dot
nuclei or from the fast cotunnelling phenomenon whereby electrons are swapped between the
quantum dot and the Fermi sea.

5.1 Steady state measurements and modeling

The purpose of steady-state measurements is to characterize the optical response of the
device; more precisely, to measure the reflected polarization state in the Poincaré sphere under
specific excitation conditions. Before all else, the cavity-induced polarization shift is investi-
gated so as to separate its effect from the Faraday rotation in further experiments. Then, the
tomography technique is applied to the photons reflected by a non-initialized spin, averaging
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contributions from all the possible quantum dot states. This measurement answers the ques-
tion of whether the device is suited to operate as an ideal spin-photon interface. It is even-
tually substantiated by the numerical simulation, indicating the optimal condition for further
characterization: that is, the polarization basis to which spin states are optimally imprinted on
polarization states and the associated photon energy.

5.1.1 Bare cavity tomography

We remind that our micropillar cavities are slightly birefringent, owing to the ellipticity
of the pillar from which two orthogonal eigenaxes emerge, respectively associated to the lin-
ear polarizations H and V – see subsection 1.3.2. The aim of characterizing the bare cavity is
threefold:

• First, determining the H and V cavity axes offers two choices of input polarizations unper-
turbed by the cavity, for further experiments where we focus on the quantum dot-induced
Faraday rotation;

• Second, the (HV) axis of the Poincaré sphere is oriented to match the cavity polarizations
and DALR are determined accordingly (see Eq. 1.23);

• Third, extracting the cavity parameters through analytical fits and injecting them in fur-
ther simulations account for their impact on the behavior of the spin-dependent polar-
ization rotation (see for example Fig. 3.14), which is valuable to choose the appropriate
photonic measurement basis and detuning.

The cavity tomography is conducted by exciting the sample with a resonant CW laser of
scanning energy in the diagonal polarization, which undergoes the maximal cavity-induced
shift of all polarizations. Here, the excitation is of relatively high power so that the quantum
dot is saturated and the majority of the reflected photons are only affected by the cavity. The
reflected light is measured in the polarizations (H,V,D,A,R,L) to reconstruct the full polarization
state in the Poincaré sphere. The experimental setup was presented in Fig. 2.5 and the analytical
theoretical model is detailed in section 2.2 in its application to the positively charged device. Here,
the collection photodiodes are freespace APDs of moderate efficiency.

In Fig. 5.1, the measured reflected polarization states are plotted in the Poincaré sphere
as a function of the laser-cavity detuning ω − ωc, where ωc is halfway between the energies of
the two eigenmodes, ωc,H and ωc,V . The two spheres contain the same experimental points but
different fits in continuous lines: on the left, the model is constrained to a unity input coupling
ηin = 1 (red line) so the simulated points can only explore the surface of the sphere, whereas
on the right, this constraint is lifted and the fit converges to a value ηin = 0.96: the purity of
the output states is therefore decreased. The rest of the fitting parameters are the same for both
cases and are displayed in Eq. 5.1. The experimental and fitted Stokes parameters are presented
in Fig. 5.2 where the experimental points are superimposed with the fit constraining ηin = 1

on the left and the unconstrained one on the right. As in the case of the positively charged device,
the quality of the simulation is improved when lifting the constraint on the input coupling,
owing to the presence in the reflected beam of light not coupled to the cavity, which degrades
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the overall polarization purity.

ηin = 0.96± 0.02

ηtop,H = 0.63± 0.02 κH = (183± 15)µeV

ηtop,V = 0.59± 0.02 κV = (199± 15)µeV

ωc,H − ωc,V = (147± 10)µeV

(5.1)

The cavity parameters found here are the starting point for numerically simulating the rest
of the experiments in this chapter. However, some differences in the experimental conditions
might justify a certain deviation from the current results, in particular for κ and ηtop.
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FIGURE 5.1: Polarization tomography of the bare cavity of the negatively charged
device with a D excitation, as a function of the laser-cavity detuning, ω − ωc.
(Left) The red line is the fit constrained to ηin = 1. (Right) The solid line is the
unconstrained fit, converging to ηin = 0.96. The view angle sets |D⟩ in the fore-

ground.
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FIGURE 5.2: Stokes parameters and purity of the tomography data from Fig. 5.1
with (a) the fit constrained to ηin = 1 and (b) the unconstrained fit converging
to ηin = 0.96. It is noticeable that the purity stays at unity for the constrained fit,
and is reduced with the unconstrained one, improving the agreement between

simulation and experiment.
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5.1.2 Quantum dot tomography

The quantum dot tomography addresses the spin-induced polarization rotation: in the
same manner as with the positively charged device, no spin initialization is implemented, and the
measurement characterizes the average output state between the optical responses of the quan-
tum dot states |↑⟩, |↓⟩ and |∅⟩. Here, the excitation laser is polarized along H so that the cavity
has no impact on the reflected polarization, and its power is dimmed down to 3 pW (below
quantum dot saturation). The detection apparatus is accordingly switched to the very sensitive
fibered SNSPDs. Contrary to the positively charged device that relies on optical charge injection,
the negatively charged device structure is designed to achieve electrical injection so the resonant
laser is sufficient to probe the quantum dot without any auxiliary input (see the heterostruc-
ture design in Fig. 2.1). To ensure that the considered quantum dot transition is indeed that of
a negative trion, a separate photoluminescence experiment in a transverse magnetic field was
carried out, similarly as in Fig. 2.4.

Let us first examine the reflectivity measurements in Fig. 5.3, where the reflected light
was projected in the H and V polarizations. The left graph contains a wide scan encompassing
the whole cavity and the area inside the dashed frame is zoomed in on the right side. The V
reflectivity RV is cross-polarized from the excitation so it only contains the narrow quantum
dot contribution, while RH also includes the wide Fabry-Pérot dip of the H cavity mode. Both
graphs superimpose the experimental points with the numerical simulation whose parameters
are detailed in Eq. 5.2.

∣∣∣∣∣∣∣
ηtop,H = ηtop,V = 0.70

κH = κV = 168µeV
ωc,H − ωc,V = 147µeV

∣∣∣∣∣∣∣∣∣∣∣∣

g = 12.7µeV
γsp = 0.4µeV
γ∗ = 0µeV
σelec = 0µeV
σmag = 0µeV

∣∣∣∣∣∣∣
Pc = 1

τSF,g = 1.5 ns

τSF,t/τSF,g = 103
(5.2)

The full tomography is presented as Stokes parameters and in the Poincaré sphere1 in
Fig. 5.4. The trajectory is contained in the (HV) axis as sDA and sRL stay null, confirming that the
non-initialized spin reflects an averaged polarization state arising from the optical responses
of the |↑⟩, |↓⟩ and |∅⟩ states, as first introduced in Fig. 3.10. The large increase in contrast of
sHV with respect to the positively charged device indicates a considerable reduction of the noise
in the current device (see Fig. 4.6 to compare the experimental tomography and section 3.6 for
the effect of noise on sHV ). We can infer a ±130◦ Faraday rotation, higher than the requirement
for an ideal spin-photon interface.

The fitting parameters presented in Eq. 5.2 were found starting from the bare cavity re-
sults (Eq. 5.1), by adjusting them manually according to the differences in the experimental
setups. Indeed, whereas the bare cavity tomography was recorded with freespace APDs, the
fibered output to SNSPDs in the current experiment imposes an effective top mirror output

1The raw experimental data were processed to compensate a unitary rotation undergone in the collection path,
so as to bring the out-of-resonance points on H, as mentioned in appendix C relative to the positively charged device.
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(a) (b)

FIGURE 5.3: (a) Normalized reflected intensities in the H and V polarizations
while exciting the negatively charged device with a scanning 3 pW laser (H-
polarized), as a function of the laser-quantum dot detuning ω − ωd. The red line
is the numerical simulation with parameters from Eq. 5.2. The dashed square de-
lineates the area shown on the right side. (b) Same data zoomed on the quantum

dot contribution.

(a) (b)

FIGURE 5.4: (a) Experimental Stokes parameters of the reflected photons along
with the simulation taking the parameters from Eq. 5.2. (b) Poincaré sphere rep-
resentation of the reflected polarization state. The far-detuned points are close to
H and the points enter in the sphere along the (HV) axis when the laser comes

into resonance with the quantum dot.

coupling that might slightly differ from the actual ηtop. In addition, the detector non-linearity
at high count rates leads to small distortions in the effective cavity width. These experimental
imperfections are not compensated in the post-treatment of the data, but as a consequence, we
tolerate a deviation from the bare cavity values of κH/V and ηtop,H/V .

Concerning the quantum dot parameters, the selected couple of g and γsp is linked through
the lifetime expression found in Eq. A.1 of appendix A, for a quantum dot lifetime of 230 ps
measured separately. This corresponds to a Fourier limited width of 2.9 µeV, quite close to that
of RV of approximately 3.6 µeV. Such a narrow quantum dot contribution ascertains that the
noise is indeed far inferior here than in the case of the positively charged device, and as such,
we decided to ignore noise sources in this simulation. Finally, the last two parameters include
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the charge occupation probability (assumed to be perfect thanks to the very efficient electrical
injection), and the spin flip of the ground and trion states, which will be commented later in
the cross-correlation section.

The tomography data might be best fitted by including an electrical noise of width σelec

∼ 1µeV to the simulation, which would broaden the quantum dot contribution spectrally.
Adjusting the (g, γsp) couple and including a slightly decreased Pc could help to improve the
simulation even further. In any case, we adopt the current parameters of Eq. 5.2 a satisfying fit
of the steady-state regime.

5.1.3 Stabilizing the single electron charge state with the external bias

Let us take a detour to examine the effect of the external bias on the negatively charged
device, monitoring it through the quantum dot-induced dip in sHV , knowing its shape in the
single electron state (Fig. 5.4a). We remind that the electrical carrier injection relies on the bias
applied to the sample (Fig. 2.1), which creates a strong electric field inside the micropillar. The
efficiency of the electrical injection can be monitored by plotting sHV for different bias voltages,
as shown in Fig. 5.5. The optimal voltage pointed out on the figure is when the quantum dot-
induced dip in sHV is the deepest and narrowest. The widening of the line at other bias values
might come from a mixture of multiple charge states in the quantum dot. The tight range of
optimal voltage differs from that presented in Fig. 1.5 and might originate from the voltage-
sensitive cotunnelling processes (electron swap between the quantum dot and the Fermi sea).
This measurement proves that the single electron state is stabilized by the bias control, pro-
vided the system is operated at the optimal voltage.

Optimal 
voltage

FIGURE 5.5: Evolution of the Stokes parameter sHV of the reflected polarization
state as a function of the laser-quantum dot detuning ω − ωd (horizontal axis)
when the sample bias is varied (vertical axis). The optimal voltage is pointed out.
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5.1.4 Extending the steady-state model to find the best operating conditions

Starting from the numerical model fitting the tomography data in Fig. 5.4, two working
points for the device as an ideal spin-photon interface can be deduced through the condition
sHV = 0, met for ω−ωd = −2.1µeV and 0.42 µeV. As explained theoretically in section 3.2, this
condition ensures the possibility to find complementary spin-dependent polarizations |Ψ↑⟩ and
|Ψ↓⟩ such that ⟨Ψ↑|Ψ↓⟩ = 0. In the following, the positive-detuning point, ω − ωd = 0.42µeV, is
favored as its higher reflectivity produces more photons on the output, hence a better signal-to-
noise ratio. We note, however, that any uncertainty on the sHV measurement has repercussions
on the precision of the working point, which in fact impaired the experiments presented in the
next section.

Let us extrapolate the polarizations on which the spin states are imprinted when the de-
vice operates as an ideal spin-photon interface. To do so, we use the fitting parameters of the
quantum dot tomography from Eq. 5.2 to simulate the behavior of the device. We focus on the
reflected polarization states |Ψ↑⟩ and |Ψ↓⟩, when the excitation laser is H-polarized: these cor-
respond to the pure polarization states that are reflected when the quantum dot is perfectly ini-
tialized in states |↑⟩ or |↓⟩. The Stokes parameters of |Ψ↑⟩ are plotted as a 2D graph in Fig. 5.6a,
and in the Poincaré sphere in Fig. 5.6b along with the trajectory of |Ψ↓⟩. The color scale maps
the laser-quantum dot detuning ω − ωd, and two sets of points of interest are highlighted: first,
the S1 basis including S1 = Ψ↑(δopt,1) connected to S1 = Ψ↓(δopt,1), and second the S2 basis
with S2 = Ψ↓(δopt,2), connected to S2 = Ψ↑(δopt,2). Following the simulations, the criterion
⟨Ψ↑|Ψ↓⟩ = 0 should be met1 in bases S1 and S2, with the respective laser-quantum dot detun-
ings δopt,1 and δopt,2. The measurement of photonic correlations in these two bases and at the
associated detunings should bring about perfect spin projection, and therefore a perfect anti-
correlation, as simulated in section 3.3. The bases S1 and S2 are characterized by the following
parameters:

Basis S1

∣∣∣∣∣∣∣
δopt,1 = −2.1µeV
Φ = 90◦

θ = 83◦
Basis S2

∣∣∣∣∣∣∣
δopt,2 = 0.42µeV
Φ = 90◦

θ = 60◦
(5.3)

In order to find the best operating conditions, our experimental cross-correlation protocol
will explore the measurement bases located on the (DRAL) circle as well as the different laser-
quantum dot detunings. We shall, however, keep in mind that the uncertainty in the experi-
mental measurement of sHV will propagate to the calibration of these bases: the simulations
will then be adapted accordingly.

1We remind that the orthogonality in the Poincaré sphere characterizes vectors of opposite directions.
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(a)
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S2

S2
δopt,1

δopt,2

(b)

FIGURE 5.6: Simulated polarization states of |Ψ↑⟩ and |Ψ↓⟩ reflected from the de-
vice when the spin is in state |↑⟩ or |↓⟩. (a) Stokes parameters of |Ψ↑⟩. (b) Poincaré
representation of |Ψ↑⟩ and |Ψ↓⟩. Two measurement bases are pointed out as black
dots linked by dashed lines: (S1,S1) and (S2,S2). In these bases, a perfect inter-
face between the spin state and the reflected polarization state is expected, since
the condition ⟨Ψ↑|Ψ↓⟩ = 0 is met when the excitation laser is tuned respectively

to δopt,1 and δopt,2.

5.2 Time-resolved cross-correlation measurements and modeling

The cross-correlation experiment is carried out so as to probe the quality of the spin-photon
interface: by measuring photon correlation in bases close to S1 or S2 and at the appropri-
ate detunings, we expect the spin state to be properly imprinted on the reflected polarization
state, which is indirectly characterized by an anti-correlation dip. This dip indicates a partial
measurement-induced spin projection that prevents a photon to be reflected in the complemen-
tary polarization immediately after a first detection event, as it can only happen once a spin flip
occurred. We start by presenting experimental data and follow by a master equation simula-
tion of the best case. Then, we extend the simulation to test it against the measured basis and
detuning dependence. Finally, we show that the electron spin flip is the main limiting factor
and simulate the hypothetical performance of a similar device with a longer spin-flip time.

5.2.1 Experimental cross-correlations

The experimental cross-correlations are measured in multiple bases and for different laser-
quantum dot detunings, in the absence of an external magnetic field. In Fig. 5.7, we show the
experimentally explored bases: they were initially designed to be located on the (DRAL) cir-
cle, as intended in the protocol from subsection 3.3.2 and like the experiments from subsection
4.3.3. However, an ulterior calibration shed light on a detection flaw, an imbalance between the
collection paths that offset the detection bases to non-zero values of sHV (up to sHV = 0.35)
instead of the ideal sHV = 0. The same experimental flaw has offset the experimental working
point in terms of laser-quantum dot detuning, to the value ω−ωd = 1µeV, compared to the op-
timal value of δopt,2 = 0.42µeV that was deduced a posteriori. We will take these imperfections
into account in the simulation.
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B2
B3

B4B5
B6

B6
B3

B4
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FIGURE 5.7: Experimentally explored measurement bases, labeled from B1 to B6.
The red point is the first polarization state of the basis and the blue point is the
orthogonal polarization state. The cross-correlations will be measured between

the two polarization states of each basis.

In Fig. 5.8 we show the cross-correlation data in three of the measurement bases from
Fig. 5.7, for which the excitation laser was set to ω− ωd = 1µeV. Two main features are visible:

• A fast transient regime on the 100 ps timescale, caused by the radiative relaxation. This
phenomenon was extensively studied in subsection 3.3.3, where we introduced the in-
termediate timescale τint = 5ns after which the radiative relaxation has settled (see for
example Fig. 3.19b). As a reminder, this fast transient corresponds to the rebalancing of
the ratios between each ground state population and its corresponding excited state. We
also notice that this evolution first leads to a decrease of the cross-correlation contrast
(hence the zero-delay peak).

• An anti-correlation dip is expected for a partial spin measurement induced by photon
detection. This dip is damped on the ns timescale, which is compatible with the expected
spin relaxation induced by the hyperfine interaction. This damping is much faster than
what was studied in the previous chapters, decreasing the cross-correlation contrast be-
fore the radiative relaxation is over. This induces a mixing of radiative and spin relaxation,
preventing any direct analysis of the partial spin measurement’s efficiency through the
measured cross-correlation contrast.

Among the explored measurement bases, the one labeled B2 gave the best cross-correlation
contrast, with an anti-correlation dip as low as 0.25, while many other bases gave intermediate
contrasts, such as bases B4 and B6 also presented here. We remind from our simulations that
we could expect the basis S2 to give the best contrast, provided an optimal laser-quantum dot
detuning δopt = 0.42µeV (a value that was found a posteriori, and that slightly differs from the
chosen value ω − ωd = 1µeV that we initially thought as being optimal). The one labeled B2 is
the closest to S2 and is extensively studied next.
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FIGURE 5.8: Cross-correlations in the measurement bases labeled B2, B4 and B6,
with the energy of the excitation laser set to ω − ωd = 1µeV. The experimental
basis B2 gives the highest anti-correlation contrast unlike bases B4 and B6 that are
not as optimal. Only the contrast of the anti-correlation dip seems to be impacted

whereas the maximum of the short delay radiative peak doesn’t change.

In Fig. 5.9, we now explore different laser-quantum dot detunings in the experimental basis
B2. By changing the energy of the input laser, not only is the contrast of the dip reduced, the
relative height of the short-delay peak is also impacted. We expected the detuning to decrease
the spin measurement induced by the photon detection, and therefore the contrast of the dip.
Nevertheless, the anti-correlation dip is maintained for a surprisingly wide range of detunings,
as will be seen in the comparison with numerical simulations in the next section.
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FIGURE 5.9: Detuning dependence of the experimental cross-correlations in basis
B2. Both the contrast of the dip and the height of the short delay peak evolve.

5.2.2 Simulated cross-correlations

In this section, we simulate the cross-correlations in the experimental basis B2, in which
the anti-correlation contrast was the highest of all the measured bases. In Fig. 5.10a, we show
the cross-correlation data in B2, for ω − ωd = 1µeV, and the simulation using the parameters
from Eq. 5.2 as a red line. The ground spin-flip time τSF,g = 1.5 ns is apparent in the decay time
of the dip, while the trion spin flip time is much higher (≃ 1µs) and does not influence the
results. In the Poincaré sphere, illustrated in Fig. 5.10b, the measurement basis B2 is located at
Φ = 38◦ and θ = 63◦ and we also show the already computed trajectories of |Ψ↑⟩ and |Ψ↓⟩ as a
function of the laser-quantum dot detuning.

Let us examine the difference between the best experimental measurement basis B2 and
the best theoretical one, S2. In Fig. 5.11, we plot, under the same viewing angle, the trajecto-
ries of |Ψ↑⟩ and |Ψ↓⟩ along with the basis vectors (B2,B2) on the left and (S2,S2) on the right,
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and the values of |Ψ↑⟩ and |Ψ↓⟩ at the corresponding detunings as solid and dashed arrows
respectively. On the left sphere, we notice that even if B2 is very close to |Ψ↓⟩ (1µeV), the value
of |Ψ↑⟩ (1µeV) is far from orthogonal to |Ψ↓⟩ at this detuning, so its distance from B2 results
in an imperfect match between spin state and polarization state: this is limiting the contrast
of the anti-correlation dip in this basis. On the right sphere, we show the ideal case with the
two orthogonal vectors S2 = |Ψ↓⟩ (0.42µeV) and S2 = |Ψ↓⟩ (0.42µeV), leading to a perfect
spin-photon interface.

(a)

|Ψ↑⟩

B2

B2

|Ψ↓⟩

(b)

FIGURE 5.10: (a) Experimental cross-correlations measured at ω − ωd = 1µeV, in
basis B2 (Φ = 38◦ and θ = 63◦). The fit is superimposed as a solid red line. (b)
Poincaré representation of the simulated |Ψ↑⟩ and |Ψ↓⟩, also showing the basis

vectors (B2,B2).

Basis B2, ω − ωd = 1µeV

B2

B2

|Ψ↑⟩

|Ψ↓⟩

Basis S2, ω − ωd = 0.42µeV

S2

S2

|Ψ↑⟩

|Ψ↓⟩

FIGURE 5.11: (Left) Trajectories of |Ψ↑⟩ and |Ψ↓⟩ as a function of the laser-
quantum dot detuning, along with basis states of B2 as red and blue points, and
blue arrows representing the specific values of |Ψ↑⟩ and |Ψ↓⟩ for the detuning
ω − ωd = 1µeV: B2 is aligned with |Ψ↓⟩ but B2 is offset from |Ψ↑⟩. (Right) Basis
S2, ω − ωd = 0.42µeV: each basis vector is perfectly superimposed either with

|Ψ↑⟩ or |Ψ↓⟩.
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5.2.3 Extending the model to the basis and detuning dependence

Let us compare the experimental and simulated cross-correlations in the bases B1 to B6
with an excitation tuned to ω − ωd = 1µeV, with every parameter fixed in the simulation ex-
cept for the measurement basis determined by its location in the Poincaré sphere (see Fig. 5.7).
The results are compiled in Fig. 5.12: the simulation reproduces the experimental trend of a
lower contrast when the measurement basis is far from B2, but it also shows that the maximum
of the short delay radiative peak should not change much and that the spin-flip timescale on
which the anti-correlation dip loses contrast should be constant. The disagreements between
simulation and experiment could be attributed to complex phenomena slowly changing τSF,g

between experimental recordings. Indeed, the spin-flip time is not only determined by the hy-
perfine interaction, but also by the fast cotunnelling process, resetting the spin evolution by
swapping the electron between the quantum dot and the Fermi sea, which is highly dependent
on the applied voltage (see Fig. 5.5). Furthermore, we have also observed deviations of this
optimal voltage as a function of time, indicating slow fluctuations of the device behavior on a
timescale of a few minutes.
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FIGURE 5.12: Cross-correlations in bases B1 to B6, with simulations accounting
for the change in the measurement basis, with all other parameters unchanged.
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As for the detuning dependence presented in Fig. 5.13, we now fix the simulated measure-
ment basis B2 and change the simulated laser-quantum dot detuning. The decreased contrast
of the anti-correlation dip when ω − ωd strays from its previous value of 1 µeV roughly reflects
in the simulation, but the fast oscillations they include are not visible in the experiment. These
oscillations, however, should necessarily appear in the presence of a non-zero detuning ω−ωd.
Indeed, they arise from the generalized damped Rabi oscillations, induced by the incoming
laser, between each ground state and its corresponding excited state. Since these oscillations
don’t manifest experimentally, and since ω is well measured, there is a possibility that ωd has
varied in between the measurements, to keep a closer-than-expected value compared to ω.
Overall, the simulation partially follows the experiment, and reproduces it very well in the
optimal conditions.
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FIGURE 5.13: Dependence of the experimental cross-correlations with the detun-
ing in basis B2, along with the simulated data.

5.2.4 Towards the ideal device

In the experiments from the current section, two factors have hindered the performance
of the system as a spin-photon interface: first, the difficulty to align the measurement basis to
the best theoretical one and to set the appropriate detuning, and second the short spin memory
time.

We begin by simulating the difference in the measurement basis between B2 and S2 at the
appropriate detuning, all the other parameters left unchanged. In Fig. 5.14, we plot on the left
the experimental cross-correlations in B2 along with the simulation in B2 and S2. In comparison,
the anti-correlation dip is only slightly deeper in S2 than B2. On the right side of the figure is
the simulated conditional spin polarization s̃z after a detected photon, which quantifies the
efficiency of the spin projection:

s̃z =
P̃ (↓)− P̃ (↑)
P̃ (↓)− P̃ (↑)

(5.4)

Ideally, s̃z would reach unity. Here, the spin projection is higher in S2 with s̃z,max(B2)
= 0.75 and s̃z,max(S2) = 0.90, respectively corresponding to values of the conditional occu-
pation of the |↑⟩ state, P̃ (↑), of 0.88 and 0.95. The spin projection is very close to ideal in S2,
and the remaining imperfection is probably due to the interplay between the fast spin flips and
the short radiative transitory regime. The spin polarization is maintained for a few hundred
picoseconds, which is very fast and could be significantly extended using a hole spin.
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(a)

S
pi

n 
po

la
ri

za
ti

on
 (

z)

(b)

FIGURE 5.14: Comparison between measurement bases B2 (experimental) and
S2 (best theoretical). (Left) Cross-correlations (experiment and theory) at the ap-
propriate detunings for the optimal operation as a spin-photon interface. (Right)
Conditional spin polarization s̃z (theory only). The maximum values of the spin

polarization are s̃z,max(B2) = 0.75 and s̃z,max(S2) = 0.90.

Finally, we extend the simulations to a hypothetical increased spin-flip timescale of τSF,g
= 1.5µs and show the result in Fig. 5.15. As mentioned above, such a long timescale would be
accessible by a hole spin qubit, but technological improvements are needed to produce such a
device with as little noise as the negatively charged device. The graphs show a very contrasted
anti-correlation and spin polarization in basis B2, with s̃z,max(B2) = 0.80, which become per-
fect in the case of S2.
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FIGURE 5.15: Comparison between measurement bases B2 (experimental) and S2
(best theoretical) with a hypothetical τSF,g = 1.5µs. (Left) Cross-correlations (ex-
periment and theory). (Right) Spin polarization sz (theory only). The maximum

values of the spin polarization are s̃z,max(B2) = 0.80 and s̃z,max(S2) = 1.0.

The scope of the predicted spin polarization conditioned by photon detection must still
be nuanced. Indeed, the interplay between the short radiative regime and the very fast
decay of the anti-correlation dip becomes complex when both their timescales are similar
(in the ns range): the correspondence between the presence of the anti-correlation dip and
the measurement-induced spin projection might not be as straightforward as when the two
timescales are clearly separated, as was the case in subsection 3.3.3. In addition, our numerical
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simulations do not directly take into account the change of orientation of the Overhauser field
experienced by the electron spin, nor the cotunnelling (escape and capture) processes, since
we used Pc = 1 for simplicity. The estimated value of P̃ (↑) = 0.88 is thus both model- and
parameter-dependent, requiring further analysis to estimate its probably large uncertainty.

5.3 Conclusion

Throughout the chapter, the negatively charged device was progressively characterized as a
spin-photon interface and a first theoretical model was built to fit the whole dataset. We started
with reflectivity and tomography measurements in the steady state to assess the spin-induced
Faraday rotation: the device demonstrated values of sHV far below zero, making it theoretically
suitable to operate as an ideal spin-photon interface. We followed with cross-correlation mea-
surements to probe the system dynamics: as suggested by the simulation, we explored the mea-
surement bases in the (DRAL) plane to isolate the spin effect and observed highly contrasted
anti-correlation dips. The experimental shortcomings were accounted for in the simulation,
and despite imperfect measurement basis and excitation energy, we estimated that the spin ini-
tialization could be as high as 88 % in the |↑⟩ state, induced by the measurement of a reflected
photon, and maintained for a timescale of 1.5 ns (limited by the memory time of the electron
spin in the ground state). We finally extrapolated the device behavior through the simulation to
predict that it could demonstrate a detection-induced spin initialization of 95 % provided that
the appropriate measurement basis and excitation energy are used, though the short electron
dynamics make the interpretation hazardous. Indeed, the estimated performance suffers from
significant uncertainties that would only be mitigated by more precise experiments.

Such a cavity QED system could operate as a nearly ideal spin-photon interface if a hole
spin qubit was used, i.e., if a positively charged device could be implemented with negligible
noise and long charge escape time, to take advantage of the long hole spin memory time.
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Conclusion and perspectives

The experimental studies and theoretical modeling reported in this manuscript demon-
strate the potential of quantum dot-micropillar devices for spin-photon interfaces. The spin-
dependent polarization rotation is brought to the macroscopic scale by cavity enhancement, to
the point where a photon at the right energy and input polarization could extract the whole
information about the quantum dot spin state. The performance of real devices was quanti-
fied by first examining the complete polarization state of the reflected photons in the steady
state, assessing if the polarization rotation is high enough for an ideal spin-photon interface.
Then, observing photon-photon cross-correlations in different polarization bases revealed the
dynamics of the system as well as the noise sources and imperfections it suffers. We concluded
that the device based on a hole spin presented a polarization rotation which, despite macro-
scopic, was not stable enough to achieve an ideal spin-photon interface. However, its dynamics
proved the main limitation to reside in slow charge noise, and simulations predicted a signifi-
cant improvement if charge noise was overcome (for example using a feedback scheme applied
to the sample bias [180, 181]). On the other hand, we showed that the device based on an elec-
tron spin, though presenting a polarization rotation larger than what is required for ideality,
suffered from the hyperfine interaction with the neighboring nuclei. As a consequence, the
short spin lifetime is tainted by the effect of radiative population rebalancing, blurring out the
potentially ideal operation as a spin-photon interface.

The immediate perspectives opened by this manuscript consist, in the short term, in the
elaboration of more robust polarization control and detection accuracy to avoid the experi-
mental flaws encountered in chapter 5. Pursuing this goal, the C2N team showed in results
to be published that the negatively charged device could reflect single photons in arbitrary po-
larization states by properly setting the detuning and longitudinal magnetic field degrees of
freedom [182]. Refining the numerical models is also an interesting prospect, for instance by
rigorously accounting for the hyperfine interaction through a simulated fluctuating magnetic
field. Indeed, we only included in this manuscript an empirical contribution of incoherent spin
flips (see subsection 3.1.4), which does not encompass the entire physical phenomenon. Such
a complete model should thoroughly reproduce the dependence of cross-correlations with a
longitudinal magnetic field from chapter 4 (see Fig. 4.16), where the hyperfine interaction is
progressively screened. An explanation to the mismatch with the detuned cross-correlations
in chapter 5 is pursued as well (see Fig. 5.13), which could bring insights on (and ultimately
separate) the contributions of radiative transitory regime and actual spin flips of the electron.
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Other perspectives are investigated by the extended C2N group led by P. Senellart. On the
sample design and fabrication side, an intermediate heterostructure is sought, benefiting from
the stability of electrical charge injection (and thus of resonant excitation) combined with the
long spin lifetime of holes. Structures analogous to those developed by Najer et al. (2019) [113]
in the group of R. Warburton are currently pursued. On the single-photon sources side, a com-
plementary approach currently investigated uses longitudinal acoustic (LA) phonon excitation
to address trion transitions (see subsection 1.1.5): this peculiar spin-preserving quasi-resonant
excitation exhibits the same optical selection rules as resonant excitation, but with a detuned
laser that can conveniently be spectrally filtered out in the collection. Such a scheme is very
promising, both for single-photon sources and for spin-photon interfaces [69, 183].

The medium to long-term projects pertaining to the spin-photon interface are presented
below, starting with applications of the potentially ideal Faraday rotation of future devices,
which would offer the ability to fundamentally study quantum measurements and to generate
cluster states. Next, the Raman spin-flip phenomenon is presented as an alternative to Faraday
rotation to achieve two-qubit gates with spins and photons.

Exploring the quantum measurement regimes

A spin-photon interface offers a platform of choice to study the back action induced on
the spin when measuring photons reflected from the device. Photonic cross-correlation mea-
surements with single photon detectors in fact directly monitor this effect [179]. Let the spin
state be initialized in |⇑⟩z at t = 0 and evolve in the presence of a transverse magnetic field: the
spin precession between the |⇑⟩z and |⇓⟩z states translates in an oscillation between the corre-
sponding photon polarizations |Ψ⇑⟩ and |Ψ⇓⟩. From this point, the projective measurement of
photons might manifest in different ways:

• The strength of the measurement could be tuned by adapting the overlap between the
measured polarizations and the (|Ψ⇑⟩,|Ψ⇓⟩) basis. The weak measurement [84] of a pho-
ton in a polarization far from these would extract little information on the spin, and the
inefficient projection would leave its coherent evolution mostly undisturbed. On the op-
posite, measuring photons exactly along |Ψ⇑⟩ and |Ψ⇓⟩ would perform a perfectly projec-
tive measurement, resetting the spin evolution. In the extreme case of high-rate projective
measurements, the spin state would in turn be frozen. This corresponds to the quantum
Zeno effect [32, 83].

• The amount of information lost in the environment through unread measurements could
be varied by changing the excitation power and/or the optical losses in the setup. Since
an unread photon applies a random back-action on the spin, high excitation power would
in turn lead to measurement-induced decoherence.

The spin-photon interface provides a textbook illustration to precisely control the measure-
ment and monitor its back action, testing the fundamental principles of quantum mechanics.
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Generating cluster states with a spin-photon interface

The long-term prospect of a perfect spin-photon interface based on Faraday rotation opens
the way to the successive entanglement of multiple photons with a single spin in what is
referred to as a cluster state [29]. The ideal spin-photon interface has the fundamental prop-
erty of mapping the spin states (|⇑⟩z , |⇓⟩z) on two complementary polarization states when
an H-polarized photon impinges on the device. The associated polarization basis was written
(|Ψ⇑⟩ , |Ψ⇓⟩) in previous chapters and we identify it to (|D⟩ , |A⟩) here for convenience. This
property allows to entangle the spin state with an incoming photon, which is notably different
from the spin-photon entanglement with emitted photons summed up in subsection 3.1.4.

Cluster states are multipartite entangled states: they involve multiple particles recursively
entangled together such that the loss of a particle preserves the entanglement of the remaining
state. Proposals for universal quantum computing with photonic cluster states make them very
sought after [184–187]. Pioneering work by the group of D. Gershoni showed the generation of
a five-photon cluster state by successively entangling photons to the confined spin, not of an
electron or hole, but of a dark exciton [188]. The current record based on an atomic qubit involves
12 photons entangled to a single atom [189]. In the C2N team, recent progress demonstrated
the high-rate generation of a spin-photon-photon cluster state [190].

The cluster state generation with a hole-based spin-photon interface would unfold as the
steps described in the figure below. Let the spin coherently evolve in a transverse magnetic field
with the Larmor frequency ΩB after it was prepared in |D⟩ (Step 0). Dropping the z indices for
the spin eigenstates, its coherent evolution is given by:

|Ψs⟩ = cos
ΩBt

2
|⇑⟩+ sin

ΩBt

2
|⇓⟩

0 2 4

1

3

Sequential generation of a linear cluster state using a spin-photon interface.

• Step 1: after a delay, t = π/(2ΩB), the magnetic field has rotated the spin by π/2 about
the x-axis, bringing it to a coherent superposition.

• Step 2: a first H-polarized photon then interacts with the spin to generate the spin-photon
entangled state.
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• Step 3: after a second π/2 rotation, each spin state has again evolved to a coherent super-
position.

• Step 4: when the second H photon interacts with the spin, it is entangled with the spin
and the first photon.

Let us apply a final π/2 rotation to the spin to get the spin-photon-photon cluster state:

|⇑, D,D⟩+ |⇓, D,D⟩+ |⇑, A,D⟩− |⇓, A,D⟩
+ |⇑, D,A⟩+ |⇓, D,A⟩− |⇑, A,A⟩+ |⇓, A,A⟩

Such a recursive entanglement can be generalized to an arbitrary long string of photons, pro-
vided the spin coherence is maintained.

Cluster states are robust against loss in the sense that projecting one of the qubits doesn’t
destroy the remaining entanglement. Let us imagine that the spin is projected in |⇑⟩. The re-
sulting state is written below as a maximally entangled state involving polarizations H and V,
which explains in a simple manner their great interest for quantum computation schemes.

|D,D⟩+ |A,D⟩+ |D,A⟩ − |A,A⟩
= |D,D +A⟩+ |A,D −A⟩
= |D,H⟩+ |A,V ⟩

Harnessing Raman spin-flip transitions

The single-photon Raman interaction (or SPRINT) is a novel approach to achieve spin-
photon and photon-photon gates [33, 191]. Contrary to the Faraday rotation approach, based
on the optical selection rules (see Fig. 1.9a), the SPRINT relies on quantum pathway interference
between the input photons and those scattered from the spin. Let us review its principle and
possible applications to quantum dot-micropillar cavity devices.

Principle

Let us follow the extended analysis by Rosenblum et al. (2017) [192], which starts with the
simple case of a 1D-atom coupled to a waveguide (left panel below): the input mode of ampli-
tude 1 propagates forwards and impinges on the atom, which scatters a portion x of the field
forwards and the same portion backwards. We emphasize that, in this thought experiment, the
forward- and backward-propagating modes don’t interfere. The total transmitted field then re-
sults from the interference of the two forward-propagating fields, of amplitude 1 + x, whereas
the reflected field only contains the x portion scattered backwards. The transmission and re-
flection coefficients read t = 1 + x and r = x. Since the energy conservation imposes that
|t|2 + |r|2 = 1, the only non-trivial solution is x = −1. A 1D-atom therefore fully reflects the in-
put field. A condition must yet be fulfilled for the interference to manifest: the temporal shape
of the input photons must be longer than the lifetime of the excited level.
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(a) A two-level system coupled to a waveguide as a 1D-atom. The probe field
amplitude is fixed at 1, and x quantifies the portion scattered by the atom in
both directions. Figure from [192]. (b) The positive trion 4-level system under a
transverse magnetic field. A Λ-system is isolated when addressing only the two

colored transition and ignoring the (far-detuned) grayed-out ones.

To translate this problem to a quantum dot spin coupled to a micropillar cavity, let us iso-
late two of its transitions of polarization H and V when a transverse magnetic field is applied to
form a Λ-system (right panel above). Let the H-polarized transition correspond to the forward
mode of the previous example and the V-polarized transition, to the backward mode. In this
regime, an H photon couples to |⇑⟩x and the trion state is forced to de-excite through V due to
the destructive interference between the H emission channel and the H-polarized field directly
reflected by the top mirror. As a consequence, a V photon is emitted and the spin is flipped to
|⇓⟩x. This situation is analogous to the Faraday rotation on resonance, where the input |H⟩ is
completely converted in |V ⟩ upon reflection (see Fig. 3.10).

Direct applications

• Ultra-narrow single-photon source: in the Raman spin-flip regime, the emitted single pho-
ton inherits the temporal shape of the excitation [193]: using a continuous laser input
could then bring about extremely narrow single photons sources that would help main-
taining a good entanglement fidelity in a future quantum network, as previously investi-
gated in the so-called Heitler regime [194, 195].

• Spin-photon switch: the Raman spin-flip phenomenon materializes a switch gate, where
an input photon tuned to the |⇑⟩x ↔ |⇑⇓↑⟩x transition and polarized along H is converted
to V in the presence of the spin, but is left unchanged in its absence. A similar gate was
produced with a quantum dot coupled to a photonic crystal cavity [196].

• Photon router: let the spin be initialized in |⇑⟩x and two H-polarized single photons im-
pinge on the device. The Raman spin flip is triggered by the first photon, so the second
one experiences an empty cavity as it can’t address the |⇓⟩x state. This scheme can effec-
tively route the two photons to different detectors, and is an important building block for
photonic-based quantum computation. It was first demonstrated in the cold atom com-
munity [15] and could be translated to the solid-state with realistic devices [196].
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Towards SWAP gates

A spin-photon SWAP gate would coherently swap any quantum superposition state be-
tween a single photon and a single spin: starting with the initial states α1 |H⟩ + α2 |V ⟩ and
β1 |⇑⟩x + β2 |⇓⟩x, the system would end up in β2 |H⟩ + β1 |V ⟩ and α2 |⇑⟩x + α1 |⇓⟩x. The Ra-
man spin-flip process allows to implement such a gate in an energy-degenerate Λ-system, and
even opens the path to photon-photon swap gates using the spin as memory [191]. However,
in our non-degenerate Λ-system, the additional requirement is to encode the polarization qubit
on two energy-split polarizations, written α1 |H,ωH⟩ + α2 |V, ωV ⟩. This could be achieved by
first modulating a continuous laser through an acousto-optic modulator to obtain two contri-
butions, each tuned to one of the transitions of the Λ-system, before setting their amplitude in
the quantum state through a set of spectral filters and waveplates [95, 106, 197].

These various prospects make quantum-dot micropillar devices platforms of choice for the
future of large-scale quantum information.
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Appendix A

Fourier-limited width of a quantum dot
transition

The lifetime of the photons emitted by a single charge trapped in a quantum dot inside a
micropillar cavity is linked with the physical parameters of the system. The Purcell-enhanced
emission rate in the fundamental mode of the cavity is given by Γ0 = 4g2

κ when the cavity is
in resonance with the quantum dot and by Γ0 = 4g2

κ
1

1+∆2 when the quantum dot is detuned
from the cavity by a fraction of the cavity linewidth ∆ = 2

ωQD−ωcav

κ . For the trion transition
in the absence of an external magnetic field, the excited state decays with an equal probability
in H or V. The total lifetime, including the spontaneous emission outside of the cavity mode is
therefore:

Γ =
2g2/κH

1 +
(
2 · ωQD−ωH

κH

)2 +
2g2/κV

1 +
(
2 · ωQD−ωV

κV

)2 + γsp,H + γsp,V (A.1)
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Appendix B

Semi-analytical cross-correlations with
slow electrical fluctuations

The idea of the semi-analytical calculation of the cross-correlations at intermediate time de-
veloped in subsection 3.3.5 can be extended to model any variation slower than τint yet faster
than the measurement apparatus, and which does not induce spin flips. An electric noise or a
longitudinal magnetic noise meet these conditions. Let us examine the case of slow electric fluc-
tuations: it is computed by running the steady state simulation for different values of the quan-
tum dot energy ωd around the average ωd, shifted by the quantity δωd, that is: ωd = ωd + δωd.
The simulated parameters are still the intensities in the output polarizations when the quan-
tum dot is initialized in s ∈ [⇑,⇓,∅] and the probability of these charge states, but this time as
a function of the shift of ωd: we label them IX(s, δωd) and P (s|δωd).

We start by inserting the shift of ωd induced by the noise in Eq. 3.59:

g
(2)
XY =

∑
s∈[⇑,⇓,∅]

δωd

P (Y |s, δωd)P (s, δωd|X)

P (Y )
(B.1)

The probability to detect a photon in X when the quantum dot is in the charge state s and its
energy is ωd + δωd is:

P (X|s, δωd) ∝ IX(s, δωd) (B.2)

We can then follow the same logic in the Bayesian inference:

P (s, δωd|X) =
P (X|s, δωd)P (s, δωd)

P (X)
(B.3)

where this time P (s, δωd) is the probability that the quantum dot is in the charge state s and
that ωd is shifted by δωd. We can then introduce the Gaussian distribution of spectral shifts:

P (s, δωd) = P (s|δωd)P (δωd) (B.4)

P (δωd) =
1√

2πσsw
e
−
(

δωd
2σsw

)2

(B.5)
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We define a distribution of shifts over which to compute the intensities and occupation prob-
abilities : δωd ∈ [−N,N ] × dω, where N and dω set the range and the step of the distribution
of samples to average. For instance, the unconditioned probability to detect an X-polarized
photon reads:

P (X) =
∑

s∈[⇑,⇓,∅]
j∈[−N,N ]

P (X|s, jdω)P (s, jdω)× dω

=
∑

s∈[⇑,⇓,∅]
j∈[−N,N ]

P (X|s, jdω)P (s|jdω)P (jdω)× dω

∝
∑

s∈[⇑,⇓,∅]
j∈[−N,N ]

IX(s, jdω)P (s|jdω)P (jdω)× dω

(B.6)

where we successively injected Eq. B.4 and B.2 to find an expression containing only the sim-
ulated data and the probability distribution of the spectral shifts. The final expression of the
cross-correlations is the following:

g
(2)
XY =

∑
s,δωd

IY (s, δωd)IX(s, δωd)P (s, δωd)∑
s,δωd

IY (s, δωd)P (s, δωd)×
∑

s,δωd
IX(s, δωd)P (s, δωd)

=

∑
s,δωd

IY (s, δωd)IX(s, δωd)P (s, δωd)

IXIY

(B.7)

where the P (s, δωd) terms are summed over the sampling range as in Eq. B.6, and the de-
nominator terms were regrouped in the total intensities IX and IY . This formula was used to
calculate the cross-correlations in the pure electric noise case, it also works for a purely longi-
tudinal magnetic noise. However, a transverse magnetic noise induces spin flips and therefore
differs from this semi-analytical model.
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Appendix C

Correction of the tomography
experimental data

Here we explain why the polarization basis of the collection is not aligned with that at
the quantum dot position and how to compensate for this effect by applying rotations of the
experimental points in the Poincaré sphere.

The natural orientation of the Poincaré sphere is the one defined by [HVDARL]cav in
which Hcav and Vcav coincide with the eigenaxes of the cavity and Rcav and Lcav correspond
to right- and left-handed circular polarizations in the micropillar, quantified along the growth
axis z. If we want to describe the measurement basis defined by QWP2, HWP2 and the Wol-
laston in this Poincaré sphere of reference (see Fig. 2.5 for the optical setup), we need to take
into account the unitary transformation that light undergoes from the micropillar to QWP2.
This unitary transformation is due primarily to the ellipticity induced by the optics that we try
to minimize by using dielectric mirrors with a s polarized input; however, the main source of
ellipticity is the reflection on the beam splitter, on the way to the collection path.

It is important to note that the polarization analysis on the collection path was calibrated
for a set of polarizations [HVDARL]coll that define an orthonormal basis, but this collection
basis does not need to be the same as the reference basis of the microcavity as a rotation can be
applied to the experimental data to correct them by any unitary transformation induced by the
unwanted ellipticity. In Fig. C.1, we show the Stokes parameters and Poincaré representation
of the raw experimental quantum dot tomography corresponding to the corrected data from
Fig. 4.3 at B = 0mT. The correction consists in assuming that the out-of-resonance points
are unaffected by the quantum dot and should be brought back to H by a rotation. The same
rotation is applied for the tomographies at different Faraday magnetic fields.

Another correction that was not applied in this manuscript is to make sure that the circular
polarizations of the collection basis are aligned with that of the cavity basis. This proved to be
difficult to assess experimentally as the preparation of a circular polarization on the location of
the sample is quite challenging. Nevertheless, another factor validates the chosen orientation of
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the sphere: the fact that the measured trajectories of the polarization states at different longitu-
dinal magnetic fields are all contained in the (H, θo, V, θo) circle, as shown in the corrected data
of Fig. 4.3. Indeed, this feature arises from the energy-splitting of the cavity modes as predicted
by the simulation (see Fig. 3.12).
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FIGURE C.1: Raw experimental polarization tomography of the reflected pho-
tons. Excitation laser polarized along Hcav with a power of 8 pW coupled to a
2 µW 901 nm quasi-resonant laser. The out-of-resonance points are assumed to be
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shown on the corrected data in Fig. 4.3.
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[60] D. B. Higginbottom, L. Slodička, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and
R. Blatt. “Pure single photons from a trapped atom source”. In: New Journal of Physics 18
(2016). DOI: 10.1088/1367-2630/18/9/093038.

[61] T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and
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