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A study on progression of MPI communications using dedicated resources

Résumé : De nos jours, MPI est de facto le standard pour la programmation à mémoire
distribuée pour les supercalculateurs. Les communications non bloquantes sont un des modèles
proposés par le standard MPI.
Ces opérations peuvent être utilisées pour recouvrir les communications avec du calcul (ou
d’autres communications) afin d’amortir leurs coûts. Cependant, pour être utilisées efficacement,
ces opérations nécessitent une progression asynchrone pouvant régulièrement utiliser un montant
non négligeable de ressources de calcul (particulièrement les collectives non bloquantes). De plus,
partager les ressources de calcul avec l’application peut provoquer un ralentissement global. Les
mécanismes utilisés pour cette progression asynchrone parviennent difficilement à concilier un
bon recouvrement en gardant un impact minimal sur l’application, ce qui raréfie leur utilisation.
Afin de résoudre ces différents problèmes, nous avons suivi plusieurs étapes. Premièrement, nous
proposons une étude approfondie de la progression asynchrone dans les implémentations MPI, en
utilisant de nouvelles métriques se concentrant sur l’évaluation des mécanismes de progression et
de leur impact sur le système global.
Après avoir exposé les faiblesses de ces implémentations MPI, nous proposons une nouvelle
solution pour la progression des collectives non bloquantes en utilisant des cœurs dédiés combinés
à des algorithmes de collectives basés sur des évènements. Nous avons mesuré l’efficacité de cette
solution en utilisant nos métriques, pour nous comparer avec les implémentations MPI étudiées
dans la première étape. Enfin, nous avons développé un modèle permettant de prédire le gain
potentiel et le surcout induit par l’utilisation d’opérations non bloquantes avec des cœurs dédiés.
Ce modèle peut être utilisé pour évaluer l’utilité de transformer une application basée sur des
opérations bloquantes en opérations non bloquantes pour bénéficier du recouvrement. Nous
évaluons ce modèle sur plusieurs benchmarks.

Mots-clés : MPI, Progression, Non bloquantes, Collectives



A study on progression of MPI communications using dedicated resources

Abstract: Nowadays, MPI is the de-facto standard for distributed-memory parallelism on
supercomputers. One of the communication models offered by the MPI standard is MPI
nonblocking communications.
These communications can be used to overlap communication with computation (or other
communications) in order to reduce their impact. However, to perform efficiently, these operations
require asynchronous progression, which can need non negligible amount of computation resources
regularly (especially for nonblocking collectives). However, sharing the compute resources with
the application may cause an overall slowdown. The current mechanisms used to achieve
this asynchronous progression struggle to reconcile a good overlap and minimal impact on
the application, which leads to nonblocking collective operations being very seldom used in
applications.
To address this issue, we followed several steps. First, we proposed a thorough study of
asynchronous progression in MPI implementations using newly defined metrics, focusing on the
evaluation of progression mechanisms and their impact on the global runtime. After exposing
the shortcomings of these MPI implementations, we propose a new solution for the progression
of nonblocking collectives using dedicated cores combined with event-based collective algorithms.
We measured the efficiency of this solution using our metrics, to compare ourselves with the
MPI implementations studied in the first step. Finally, we developed a model to predict the
potential gain and the overhead induced by the use of nonblocking operations with a dedicated
core. This model can be used to evaluate the usefulness of transforming an application based
on blocking operation to nonblocking ones to benefit from overlap. We evaluate this model on
several benchmarks.
Keywords: MPI, Progression, Nonblocking, Collectives
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Résumé en français

0.1 Introduction

L’utilisation de communications non bloquantes afin de gagner en performance représente
un enjeu du fait de leur complexité. Il est en effet nécessaire de progresser ces commu-
nications afin de pouvoir recouvrir leur coût par du calcul. Cependant, la progression
requiert du temps CPU habituellement utilisé par l’application. Partager ces ressources
entre l’application et le runtime MPI mène le plus souvent à un recouvrement faible
voir inexistant, ainsi qu’a des ralentissements du coté de l’application. Enfin avoir du
recouvrement nécessite une conception particulière de ces codes. Cette conception n’est le
plus souvent pas présente.
L’ensemble de ces raisons à conduit les opérations non bloquantes à n’être utilisées seule-
ment que dans de rares cas, n’étant la plupart du temps pas rentables. La principale
motivation de cette thèse est de proposer des solutions pour la progression de ces commu-
nications, afin de réunir recouvrement et gestion efficace des ressources de calcul. Cette
association à pour but final de permettre un gain de performances grâce a ces opérations
dans un plus grand nombre de cas.

0.1.1 Contributions

Pour réaliser ces objectifs, cette thèse propose un ensemble de contributions:

• La conception d’une méthode globale pour évaluer non seulement le recouvrement
obtenu, mais aussi les performances des différents mécanismes de progression de
l’état de l’art. Nous proposons une étude des méthodes de mesures existantes et de
leur fonctionnement. Nous proposons différentes métriques complémentaires pour
analyser et comprendre les causes d’un mauvais recouvrement, et plus largement
des problèmes de performances rencontrés lors de l’utilisation de mécanismes de
progression.

• Nous proposons la modification d’un runtime dans l’objectif de progresser les
collectives non bloquantes de manière efficace. Cette modification s’appuie sur un
mécanisme de progression optimisé pour s’exécuter sur un cœur physique dédié au
runtime MPI, ainsi que sur l’implémentation d’algorithmes de collectives optimisés
pour être exécuté sur un cœur dédié.

• Enfin, nous proposons un modèle de performance conçu pour prédire l’efficacité de
l’utilisation du cœur dédié avec différentes applications hybrides MPI + OpenMP.

9



Ce modèle est aussi conçu pour assister la décision d’investir dans une reconception
d’une application existante pour l’utilisation d’opérations non bloquantes.

0.2 Évaluer le recouvrement des collectives non blo-
quantes

Avant de pouvoir développer un mécanisme performant pour la progression des communi-
cations non bloquantes, il est nécessaire de définir ce qu’est la performance d’une collective.

0.2.1 Définition et mesure de la performance d’une collective

La durée de la collective est le premier point nécessaire. Cependant, une collective concerne
par définition un ensemble de processus MPI. Ainsi chaque processus impliqué dans la
collective possède sa propre durée d’exécution.

Afin d’avoir une valeur globale, il faut donc agréger cet ensemble de durées. Les
outils de l’état de l’art ont pour cela fait le choix d’utiliser la moyenne des durées des
processus. Cette valeur de temps manque cependant les potentiels écarts de variances
entre les différents processus.

Le démarrage synchronisé entre les processus est aussi nécessaire afin d’avoir un com-
portement stable de la collective. Sans synchronisation, le comportement de la collective
risque d’être impacté par un processus retardataire. Certains outils de mesures existants
reposent sur l’utilisation d’une collective MPI Barrier dont le but est d’attendre l’ensemble
des processus avant de continuer l’exécution. Cependant, rien ne garantie que l’ensemble
des processus sortent en simultané de cette opération.

Plusieurs benchmarks se reposent sur l’opération MPI de prise de temps MPI Wtime.
Cette opération est définie par le standard et implantée par les différentes implémentations
MPI existantes. Si le standard définit une précision minimale à respecter, les implémenta-
tions peuvent se baser sur différentes méthodes de prise de temps. Ainsi, la comparaison
entre différentes implémentations peut être faussée.

La mesure du recouvrement est réalisée par ratio de recouvrement. Ce ratio impose
l’utilisation de temps de calculs et de communication équivalent peu similaire aux cas réels
d’applications. De plus ces ratios omettent un potentiel ralentissement dû à un mauvais
recouvrement.

0.2.2 Définition de métriques

Pour répondre à ces problèmes de mesure, nous proposons un ensemble de métriques pour
la mesure des collectives non bloquantes.
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Ratio de surcoût

Pour mesurer le recouvrement dans des cas déséquilibrés en tenant compte de potentiels
ralentissements, nous utilisons un ratio de surcoût dont la formule est:

roverhead =
tmeasured −max(tcomp_ref , tcomm_ref)

min(tcomp_ref , tcomm_ref)
(1)

Ce ratio a pour valeur 0 si les communications et calculs sont totalement recouverts.
Il prend la valeur 1 si les communications et calculs sont équivalents ou égaux à une
exécution séquentielle. Enfin tout ratio supérieur à 1 exprime un ralentissement par
rapport au temps séquentiel.

Ratio d’impact passif

Le runtime MPI a besoin durant l’exécution d’une application de s’exécuter sur les
ressources de calculs. Cette exécution peut même se dérouler dans des phases ou il n’y a
pas de communications.

rMPI_impact =
tcomp_passive_mpi

tcomp_ref

(2)

Ce ratio vaut 1 si les performances de calculs sont égales avec et sans runtime MPI.
Un ratio supérieur à 1 témoigne cependant d’un ralentissement du calcul par le runtime.

Ratios d’impact concurrenciels

Essayer de recouvrir un montant de calcul et de communication peut avoir un impact
sur leur durée propre. Cela est dû aux interactions entre les deux. Pour mesurer ce
phénomène, nous proposons les métriques suivantes:

rcomp_slowdown =
tcomp

tcomp_ref

(3)

Ce premier ratio mesure l’impact sur le calcul. Un ratio de 1 montre qu’il n’y a aucun
impact des communications sur le calcul. Un ratio supérieur à 1 exprime le ralentissement
du calcul par rapport à une exécution sans recouvrement.

rcomm =
tcall + twait

tcomm_ref

(4)

Ce deuxième ratio mesure l’impact du calcul sur les communications. Un ratio de 0
montre que les communications ont été recouvertes par le calcul. Un ratio de 1 montre
une exécution équivalente au séquentiel. Un ratio supérieur à 1 montre un impact des
calculs sur la durée des communications.
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0.2.3 Étude des mécanismes de progression

À l’aide de ce benchmark, nous avons pu réaliser une évaluation des performances de
plusieurs mécanismes de progression de l’état de l’art. Cette étude a permis de tirer les
conclusions suivantes:

• Ne pas utiliser de mécanismes de progression ne permet pas de progresser les
communications en tâche de fond. Le benchmark montre une exécution séquentielle
dans l’ensemble de ces cas.

• L’utilisation de threads de progression est cependant capable de réaliser cette progres-
sion pour recouvrir les communications. Cependant, les métriques complémentaires
au ratio de surcoût montrent un impact trop important sur les performances pour
en tirer bénéfice.

0.3 Un cœur dédié pour la progression des communica-
tions

L’évaluation des mécanismes actuels a montré des difficultés à associer un bon recouvrement
et des gains de performances. La principale cause de ces problèmes est la complexité de
gérer le partage des différentes ressources entre le mécanisme de progression et l’application.

0.3.1 Utilisation d’un cœur dédié pour la progression des commu-
nications

Dans le but de pallier le problème de partage des ressources, nous proposons de retirer
un cœur de l’application. Ce cœur peut ainsi être utilisé par le runtime MPI pour la
progression des communications.
Le principal avantage de cette solution est de cloisonner chacun des runtime sur un
ensemble de ressources fixe et défini. De cette manière, les interactions de partages de
ressources sont minimisées. Le runtime MPI a, de plus, en permanence la possibilité
d’exécuter le travail de progression sans être interrompu.
En contrepartie, l’application est exécutée sur un nombre restreint de ressources. On
s’attend donc à observer un ralentissement des calculs. Le principe de ce cœur dédié repose
donc sur le pari de recouvrir plus de calcul que le ralentissement provoqué par le cœur dédié.

Nous avons implémenté ce cœur dédié au sein du gestionnaire d’entrée sortie PIOman.
PIOman repose sur l’utilisation de tâches légères (ltask) pour l’exécution de handlers
d’évènements. Ces tâches sont exécutées par des workers utilisant les ressources. Pour
tirer parti d’une ressource dédiée, nous avons ainsi développé un worker optimisé pour
être exécuté dans cette configuration.

0.3.2 Implémentation d’algorithmes de collectives non bloquantes

Afin de pouvoir exécuter le travail de progression à l’aide de notre worker PIOman,
nous nous reposons sur la bibliothèque de communication NewMadeleine et son interface
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MPI Madmpi. Cette bibliothèque repose sur un ensemble d’opérations point-à-point non
bloquantes pour ses communications.

L’implémentation d’algorithmes de collectives repose donc sur l’association de ces
opérations non bloquantes de manière optimisée. On peut de plus découper l’exécution
d’une collective en de multiples étapes composées chacune d’un ensemble de point-à-point.
Le principe de fonctionnement mis en œuvre ici est donc de se servir des événements
déclenchés par la terminaison des opérations point-à-point d’une étape pour ordonnancer
l’étape suivante lorsque tout les handlers ont été exécuté.

0.3.3 Étude de la progression avec cœur dédié

À l’aide du benchmark défini dans la section précédente, nous avons évaluer les per-
formances du cœur dédié. Ce mécanisme a montré de bonnes capacités à recouvrir
communication et calculs y compris sur des cas déséquilibrés. De plus, les métriques
complémentaires montrent un impact minimal sur les performances. Ce mécanisme est
donc prometteur pour gagner des performances par recouvrement.

0.4 Modèle de performance des applications pour l’utilisation
de cœur dédié

L’utilisation de cœur dédié pour la progression des communications montre de bonnes
performances du point de vue du benchmark. Pour valider l’efficacité du cœur dédié, il
nous faut maintenant confirmer ces performances sur des cas réels d’utilisation et donc
des applications HPC. Ces applications possèdent des profils très différents en termes de
proportion de temps MPI, de communication bloquante et non bloquantes ou encore de
collective ou point-à-point. Nous proposons donc un modèle de performance permettant
à partir de ces profils de déterminer l’impact positif ou négatif du cœur dédié sur ces
applications.

0.4.1 Vue globale du modèle

L’idée de ce modèle est de prendre en compte deux phénomènes distincts, la perte de
performance sur le calcul causée par le cœur manquant et le potentiel gain dû au recou-
vrement induit par le mécanisme de progression.

Pour la partie calcul, nous avons étudié le passage à l’échelle de plusieurs applications
HPC afin d’observer le coût de voler un cœur. La multiplication du nombre de cœurs sur
les processeurs modernes rend ardue leur utilisation à plein potentiel: On observe dans les
meilleurs cas un passage à l’échelle linéaire. De multiples applications ont cependant un
gain de performance inférieur voir une perte.
Nous modélisons donc le surcoût à l’aide d’une fonction de passage à l’échelle linéaire. De
cette manière, nous sommes en mesure de borner le gain potentiel des applications. Cette
solution pessimiste nous garanti donc de ne pas sous estimer l’impact du cœur dédié.
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Pour la deuxième partie du modèle, nous voulons estimer l’impact sur le temps MPI
du cœur dédié. La totalité du temps MPI est cependant composée de diverses parties
réagissant différemment au cœur dédié:

• Le temps passé dans les appels bloquants.

• Le temps passé dans les appels non bloquants.

• Le temps passé dans les appels de complétion.

• Le reste du temps MPI.

Si a priori les communications bloquantes ne sont pas affectées par le cœur dédié,
nous avons choisi de modéliser une potentielle transformation de ces appels en appels
non bloquant recouvert. En effet, la plupart des applications ne sont pas conçues pour le
recouvrement. Profiter de cette solution requiert ainsi une reconception. Cette modélisa-
tion permet ainsi une estimation des gains avant un investissement dans cette reconception.

Les communications non bloquantes sont en revanche affectées par le cœur dédié.
Sans cœur dédié le temps passé dans les appels d’initialisation et de complétion non
bloquant inclut le temps de ces initialisations et complétions, mais aussi le temps de la
progression réalisée. Avec un cœur dédié, ce travail de progression n’est plus fait dans ces
appels. On s’attend donc à une réduction du temps passé dans l’ensemble de ces opérations.

Le reste du temps MPI correspond à l’initialisation du runtime, des communicateurs
et des datatypes. Cette partie n’est pas affectée par le cœur dédié.

Nous avons donc le modèle de performance suivant avec en noir la modélisation du
calcul, en rouge la partie affectée de MPI, et en bleu la partie constante de MPI.

tdedicated = tcomp ×
Ncore

Ncore − 1
+

Nnonblocking × tminMPInonblock +Ntest × tminMPItest+

Nwait × tminMPIwait + α×Nblocking × (tminMPInonblock + tminMPIwait)

+ (1− α)×Nblocking × tMPIblockingcom + tMPIother

0.4.2 Validation du modèle

Afin de valider les bonnes performances du modèle, nous avons réalisé une étude sur
plusieurs applications de l’état de l’art. Nous avons pour cela réalisé deux types
d’exécutions: une première basée sur une configuration hybride basique avec un thread
OpenMP par cœur et un processus MPI par nœud. La seconde reprends la configuration
mise au point pour le cœur dédié. Un cas test correspond donc à l’ensemble de ces deux
exécutions lancé avec les mêmes paramètres de l’application. Le modèle prend ainsi en
entrée les exécutions de la configuration par défaut, et cherche à approcher l’exécution
avec cœur dédié.
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Les résultats obtenus montrent que le modèle est capable de discriminer les cas gagnants
et perdants. Le modèle est donc capable de définir pour quels cas utiliser les cœur dédié
ou non.
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Chapter 1

Introduction

Experimenting is at the base of innovation and development in numerous field of works.
For the industry, running such tests can rapidly become expansive or hard to implement.
Some of these experiments indeed would require to use prototypes requiring to afford raw
materials and building costs. As an example, the development of a rocket need to ensure
that it would respect constraints needed to operate. It should be expected to launch
multiple prototypes before the real one.
Sometimes, experiments are just impossible to drive considering danger issues or non
reproducible conditions. For example, trying to reproduce the entry landing of a capsule
in Mars atmosphere is not possible in real conditions as conditions are not present on
Earth.
To bypass these issues, the industry can rely on multiple tools and particularly on the
simulation. The purpose of simulating phenomena is to computationally reproduce the
characteristics of the experiments such as objects, environmental and physical conditions
to fit the reality. These simulations are thus able to reduce the costs of implementation,
and reproduce impossible parameters.
However, virtually running these simulations with a precision high enough to fit the reality
require to take account of millions of variables. To be able to run such simulation within a
reasonable amount of time, it is necessary to develop specific powerful hardware to compute
these numerous variables. These big an powerful machines are call supercomputers, and
the field of work created to operate them is called the "High Performance computing"
field (HPC).

Nowadays supercomputers are composed of multiple machines working together called
nodes, over a high performance network. To be able to run a global simulation on such
distributed resources, it is necessary to split this global workload among the machines
composing the supercomputer. Moreover, to make these machines working together, a
software layer is required to communicate intermediary results between these machines.
The most common software used to perform these communications is "Message Passing
Interface" (MPI). This standard use messages to communicate the data needed by nodes.
The cost of these communications remains however higher than memory transfer used
inside each node. Thus, the communication performance is a major issue as it is usually a
bottleneck in the overall performance of the system.
One solution to reduce the impact of the communication on the performance is to hide these
communications with simultaneous computation. MPI propose nonblocking primitives
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allowing the application developer to perform computation between the communication ini-
tiation and its termination. Such simultaneous computation on nodes and communication
on the network is called communication and computation overlap.

1.1 Objectives of this thesis
The complexity of these communication operations brought issues when trying to use it
in the purpose of getting a performance gain. They indeed require to be progressed to
perform overlap using the computation resources typically dedicated on the application.
This resource sharing have for main consequence of either get poorly overlapped operations
or have a performance drop on the application side. Moreover, the applications are not
designed to enable overlap in most of the cases.
All these factors have made these operations to not being used often, as it does not bring
performance gain most of the time. The main idea of this thesis is to propose solutions to
progress communications in order to conciliate overlap and an efficient management of
computation resources with the final purpose of improving performances.

Contributions

In this thesis, we thus propose some elements to answer the need for effective progression
of communications with:

• The design of a global method to assess the performance of state-of-the-art progres-
sion mechanisms used and designed to progress nonblocking collectives. We make a
survey of existing benchmarks and how they measure overlap and communication
performance. We propose complementary metrics to be used to understand the
causes of bad overlap and more widely the causes of bad performances usually
encountered when using nonblocking collective and progression mechanism. We give
an implementation of these metrics taking into account multiple issues met when
measuring collectives.

• We propose a full runtime modification to efficiently progress nonblocking collective,
including a progression mechanism based on dedicating a physical core to the MPI
runtime in order to run the progression engine. We also propose new collective
algorithms designed to be efficiently progressed using this dedicated core.

• We finally propose a model designed to predict the efficiency of this solution on
real applications with hybrid MPI + OpenMP design. This model can then be
used to give a clue on the relevancy of investing a re-design of applications to use
nonblocking collectives.

1.1.1 Organisation of the document

This document is split in six subsequent chapters. The chapter 2 introduce all of the
prerequisites to fully understand the context and the problematic discussed in this thesis.
The chapter 3 present some relevant work made around the problematic and the existing
solutions already implemented.
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The next three chapters focus on the contributions made during this thesis with respectively:
The chapter 4 introducing the new metrics and the implementation of the benchmark.
The chapter 5 presenting the implementation of the dedicated core solution and the
collective algorithms in the NewMadeleine communication library. The chapter 6 give
the conception of the predicting model, its validation and use cases on common HPC
applications. Finally, the chapter 7 summarise the work presented in this document and
open to other perspective to develop in the future.
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Chapter 2

Context around high performance
computing and the problematic

Contents
2.1 Simulation in of high performance computing . . . . . . . . . 21

2.2 The evolution of hardware . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Computer-scale developments . . . . . . . . . . . . . . . . . . . 22

2.2.2 Advent of distributed computing . . . . . . . . . . . . . . . . . 24

2.3 The evolution of software . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Managing multiple models resource usage . . . . . . . . . . . . 26

2.3.2 The fork/join model . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 The task model . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Message passing model . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Problematic of this thesis . . . . . . . . . . . . . . . . . . . . . . 35

To have a good understanding of the issues addressed in this thesis, it is necessary to
introduce some global ideas around the High Performance Computing field (HPC). To
have faster and effective computation, the high performance computing field always relied
on the evolution of technologies. The following sections will introduce the basics from the
evolution of processors and supercomputers to the software stack developed to operate
them.

2.1 Simulation in of high performance computing

Science and industry are fields where experimentation is one of the starting point of inno-
vation. However, the complexity of implementing some experiments due to environmental,
technical, or financial issue can hinder the progress of knowledge. Since the start of
computer science, the development of computer technology have made possible to bypass
those issues by modelling and simulate those complex experiments.
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The seek for performance toward simulating various phenomena is at the origin of the
high performance computing field. This research of performance is powered by enhancing
computers on multiple sides from the physical components (hardware) to the algorithms
and their implementation (software). In this first chapter we introduce both hardware
and software knowledge needed for the good understanding of this thesis.

2.2 The evolution of hardware

One of the main factor of improving performance of computer is the evolution of the
hardware composing it. Cutting edge machines used in high performance computing are
then in constant evolution to follow the increasing need of computation power. In this
section we will first focus on computer-wide improvements made, then presenting the
distributed computing advent.

2.2.1 Computer-scale developments

At the scale of one computer, multiple enhancements have been done on its components
to improve the performance, among which we can especially cite the processor or the
memory.

Enhancement of microprocessors

At the origins of the computer, there is a need of fast and automatic computation.
To answer this need, the computer relies on its processor or central processing unit
(CPU) which is designed to execute various operations. From the base of circuit boards
using transistors, the evolution made nowadays microprocessors with more and more
computation capability and power efficiency.

In the pursuit of performance since the seventies, the microprocessor has become faster
and smaller. This evolution of hardware has been theorised first by Gordon E. Moore in
1965 as doubling the transistors density every year. This pace was revised ten years later
in 1975 as doubling every two years. Looking at the actual evolution of microprocessors
transistor number, the pace follow this forecast (figure 2.1).

This multiplication of transistor was possible due to the miniaturisation of these
components. The Dennard scaling state that with the reduced transistor dimension, the
voltage is reduced proportionally which is at the origin of increasing the clock frequency.
Until around 2000-2005, the improvements were essentially based on this increasing clock
rate. During this period, the reduction of voltage started to hit a physical limit. As a
consequence, since the middle of 2000’s, the clock rate increasing pace stagnates. As of
2021, microprocessors used in industry do not exceed 5Ghz.

Notion of parallel computing

With the stagnation of the frequency of processors, an idea was to make multiple processors
work together. Multiple methods have been developed to allow multiple simultaneous
executions context to work together on. This can be defined as multiple execution units
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Figure 2.1
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Figure 2.2: Example of an SMP architecture with 8 cores

working simultaneously on one big problem. This problem must be split between all
these execution units. Usually, these units must share resources depending on the type of
parallelism.

Inside a machine, multiple processor can then work on top of a memory accessed via
one or multiple bus.

Parallelism with shared memory

The computer architecture is then adapted to permit the access to memory for multiple
processors. The Symmetric shared memory processor (SMP) rely on multiple processors on
top of one single memory(figure 2.2). This memory must be protected against concurrent
writings at the same memory address. Also, the algorithm must be developed to ensure
that multiple parts of the code can be executed by multiple workers.

Multi-core microprocessors

The number of instruction per cycle(IPC) represent the average number instruction done
in one clock cycle. The evolution of microprocessors also reached physical limits preventing
the increase of IPC. To keep increasing the performance of processor it was necessary to
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Figure 2.3: Example of an NUMA architecture with 8 cores

rely on new technologies.

In 2001, IBM released the POWER4 which was the first commercially available multi-
core processor. The "core" refers to a physical execution unit that are on the same chip.
Multicore processors have made it possible to maintain the evolution of the computing
capacities with the multiplication of PU on chips.

As of today, modern processor feature numerous cores on one chip. The multiplication
of cores increased the complexity of programming. To address these issues and benefit
from multiple cores, several programming models have been created. We will introduce
one of the most used in section 2.3.2.

The non-uniform memory access

The multiplication of processing units on the SMP architecture eventually bring some
issues. The multiplication of execution units accessing the unique memory from one single
bus causing congestion and degrading the performance. To address this issue, a new
architecture was designed were each core have its own local memory (figure 2.3). The
memory as a whole is still sharedi, but the non-local memory is longer to access. This
type of architecture allow the user to develop software respecting constraints of locality in
order to reduce the congestion as each core use his own memory in priority and access
non-local memory only when needed.

2.2.2 Advent of distributed computing

In 1989 with the creation of PVM [1], the exponential growing need of computation power
was at the origin of another form of parallelism. As the simulations and mathematical
applications became greedier, the use of multiple processors and thus of multiple machines
became necessary.

Massively parallel clusters

These sets of machine are linked using networking technologies. They can then communi-
cate intermediate results and work together on one problem. Thus, this group of machine
is considered as one computer and is called a cluster computer. Inside those cluster, each
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physical machine is called a node. To take advantage of those distributed node, a global
workload is split between them. Structurally, this can be seen as a unique application
software designed to be separated on multiple machines. This introduced a different level
of parallelism to be exploited, the distributed memory parallelism, and therefore new
programming models such as MPI presented in section 2.3.4.

Parallelism with distributed memory

The distributed memory architecture is based on the use of each node memory from a global
point of view. As each node can only access its own memory, it needs to communicate
necessary data between them. This data transfer is performed on the network using
message passing protocol.
In this way, the global cluster is able to split a global problem on each node and gather
all parts to get the global result.

Evolution of network interfaces

The idea of getting high performance cluster based on network linked node instead of
one specific supercomputer emerged from the mid 1990s and the Beowulf cluster architec-
ture [2]. This evolution was completed with the first high speed dedicated networks such
as Myrinet [3].

With the evolution of clusters, being able to communicate efficiently between nodes
became a key challenge. As each node became faster and faster due to improvements
introduces in section 2.2.1, the communication time must be the fastest possible to min-
imise the CPU waiting for incoming data. Otherwise, the network communication will
make the CPU not operate at maximum capacity, and then slow the execution. More
generally, having performances of the entire system limited by the slowest component is
known as a bottleneck issue and are a major problem in HPC.

In terms of network interface performance the effectiveness will be measured with
its bandwidth i.e, the amount of data transferred over time, and its data transfer time.
Multiple solution are used, from high-end common hardware such as Gigagbyte Ethernet
card, to specialised hardware such as Infiniband or Omnipath. This kind of hardware are
designed to achieve high bandwdith and most importantly low data transfer time.

These fast networks also rely on specific technologies such as zero-copy communications.
This technology make it possible from network interface to directly transfer the data from
and to the application memory of each process. Without it, the data must be copied from
the application to a specific network buffer to be transferred.

During the last decade, one of the most important changes in network hardware is
the increasingly complex integration of components allowing the management of com-
munications by the network interface to reduce the impact on application computation.
This kind of hardware such as Atos BXI is able to fully offload communication, i.e, the
communication progression work is fully done by the BXI card. The processor is then
relieved from this work, and fully available for the application.
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2.3 The evolution of software
With the hardware evolution and the creation of new architectures, it was necessary to
bring a software layer to abstract the growing complexity of systems. The main idea
behind these softwares is to free an application or simulation designer from the change of
hardware with the use of an application programming interface (API) or a standard.

To comply with the different parallel architectures exposed in the last section, mul-
tiple programming model have been developed. This section present different of these
programming model. The shared memory architecture is usually exploited using models
such as task or fork/join model, and the distributed memory architecture rather rely on
message passing model.

2.3.1 Managing multiple models resource usage

In most situations, to have an optimal use of the available hardware, HPC applications
chose to mix multiple programming models to cover both shared and distributed memory.
To be able to work, each programming model will require to use resources during the
execution. As a consequence, each model only know its own existence on the system.
Thus, by default, they all see the entire set of resource to be executed on. Without the
specific intervention of the user, each model can then try to use the same resources at the
same time and cause overall performance loss.

The user can manually manage the resources using built-in tools of each program-
ming model, to restrain the resources allowed for each one. Another solution is to
have a framework managing multiple programming models to have a global vision of
the multiple programming model used. This is solution used by MPC [4] which can
have its own MPI and OpenMP implementation. These two standards cover both share
and distributed memory, and we will then introduce them in section 2.3.4 and section 2.3.2.

A need for topology aware management

HPC clusters may usually highly differ in terms of hardware constitution. The combinations
of CPU, network adapters, accelerators give for each cluster its own architecture. Thus,
the multiple programming models running on these systems have to get a global vision of
the components constituting each compute node. This hardware constitution is referred
as the machine topology and describe the number of components in nodes such as cores,
NUMA nodes, sockets.
The hwloc [5] framework is conceived to gather information about HPC platforms, and
describe the topology on the running machine. It can bes used via the lstopo command
or directly in applications in C.

2.3.2 The fork/join model

To exploit multicore processors, different models of parallel execution were designed. One
of the most used is the fork-join model. The fork join model relies on taking a sequential
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Figure 2.4: Example of a fork/join program

execution and creating multiple thread working simultaneously on a predetermined parallel
region (fork). At the end of this parallel region, resume to a sequential execution (join).
This cycle can then be repeated to have multiple parallel regions when needed(figure 2.4).
The sequential part of the execution is executed by the designated master thread. The
repeating cycles of fork/join does not require creating threads each time. The threads are
only created once and are asleep on the sequential part. These threads kept available for
further tasks are called a thread pool.

OpenMP is a programming model for shared-memory multiprocessing programming
implementing the fork/join model. It supports C/C++ and Fortran language. The first
version of OpenMP was released in 1997. Current version is 5.2 released in 2021. OpenMP
is used in HPC field to exploit intra-node parallelism of multicore processors. Multiple
OpenMP implementations exist such as GNU OpenMP (GOMP) [6] for gcc compiler,
LLVM and icc also have their own OpenMP implementation.

OpenMP core elements

OpenMP allows users to manage parallel regions, thread creation, data sharing and thread
synchronisation. It features different directives to declare how to parallelize the code.
An execution thread is a software unit with an execution context. Each thread has its
own execution context but shares the memory with other threads. The figure 2.5 show
an example code with creation of a parallel region. In these regions, multiple thread will
execute the code in that zone. More directives help to control the threads behaviour and
data management. For example the global workload can be split between different threads.
One most common way to do so is to split independent iterations from a loop like in the
example code (figure 2.6).

Resource sharing and concurrency

Having simultaneous execution of code sharing the same memory is yet not innocuous. As
an example, letting multiple threads incrementing a single variable once with no control
will eventually break the intended behaviour. This happens as basic increment operation
is not atomic, i.e, multiple step are required to perform an increment: reading the value,
add one to this value, and write the new value.

With no control, threads can read the same value and then write the same increment
multiple times. The figure 2.7 show an example of using non-atomic incrementation
operations. The operation is divided in three different atomic sub operations, read (green),
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int main ( int argc , char∗∗ argv )
{

#pragma omp p a r a l l e l
{

//some p a r a l l e l code
// each thread w i l l e xecu te

}
}

Figure 2.5: creation of parallel region

int main ( int argc , char∗∗ argv )
{

int tab [ 1 0 0 0 ] ;
#pragma omp p a r a l l e l for

for ( int i = 0 ; i < 1000 ; i++)
{

tab [ i ] = i ∗ i ;
}

}

Figure 2.6: splitting workload in “parallel
for”

Figure 2.7: Basic increment with four
threads

Figure 2.8: Atomic increment with four
threads

arithmetic operation (light blue), and finally write (red). Without control when used on
the same memory address, these operations can be mixed and give various behaviour.
In this case a four threads incrementation from zero would expect a value of four. This
example show a possibility where the final value is two.

To address this issue, the concurrent programming model introduces different tools.
One is to lock the variable for one thread during the execution. One other is to create
atomic operation which cannot be interrupted during their execution. The figure 2.8 show
the same execution as before, but where all operations, read, arithmetic operation and
write, respectively green, light blue and red are one indivisible operation represented as
the big orange box. This operation ensure that read and write cannot be interleaved and
thus ensure that the result is always the expected value of four.
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Thread placement and management

OpenMP threads need to be scheduled on cores to be executed. Sometimes the number of
threads is greater than the number of core, in this situation, threads need to share the
resources. This resource sharing implies that thread will need to alternatively sleep to
let other threads run on cores. This eventually leads to slowdown with the concerned
threads. In some situations, threads that are placed on nearby cores will share memory
registers, i,e, fastest but smallest temporary memory for computation, and erase other
thread intermediate results to stock their ones. This is known as cache trashing and have
a huge impact on overall performances.

To avoid this kind of issues, OpenMP let the user control the thread number and place-
ment on each core. OMP_NUM_THREADS global variable control the total number of thread to
be created by OpenMP. It is also possible to restrict the cores on which threads will be exe-
cuted using OMP_PLACES. Finally, threads can migrate from one core to another, this can be
activated or deactivated using OMP_PROC_BIND. The combination of all these variable allow
the user to tune the OpenMP runtime and make it coexist with other programming models.

When focusing on a more general scope, OpenMP creates threads that exist in a global
environment. The cores needed to execute threads have to be shared by all software
running on the machine. Having multiple cores executing threads allow the application
to parallelise the global workload. However, even in the application/simulation scope,
threads from other programming models may exist. Having multiple threads trying to
execute on the same core will cause slowdown as threads will execute alternately and lose
the benefits of parallelism.

2.3.3 The task model

The task model is a different way of programming where work to do is separated in
independent chunks. Each chunk of work is a task, and each task can be scheduled when
it is ready to execute. A task is considered ready when all of these dependencies are
fulfilled. The advantage of task is to be easily executed by any thread in the runtime. The
figure 2.9 show that each application thread can create tasks, tasks are put in a task list
and task engine threads can take tasks from the list. It is also possible to have multiple
tasks list with a specific granularity, this can be done to take profit from the hardware
topology. For example with a manycore node, it is possible to have a task list per NUMA
node as, inter NUMA memory exchange are more expensive.
To control the task availability, task engine typically rely on dependencies with task
requiring the end of parent tasks to be executed. It is also possible to schedule task based
on specific events.

StarPU [7] is a unified platform based on task model designed for task scheduling. It
allows user to develop task based application to take advantage of heterogeneous multicore
architecture.
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Figure 2.9: Example of task model runtime with four cores

OpenMP tasks

OpenMP proposes directives using the task model to parallelise code. Each OpenMP
parallel region have a task pool. The threads executing the parallel region execute tasks
from the pool when they reach a barrier. The directive #pragma omp task is used to
create a task and add it to the task pool or execute it directly.
Tasks are used in OpenMP to have a better sharing of execution resources concerning the
work to do, as each thread can execute any task when available.

2.3.4 Message passing model

With distributed memory architecture, the memory cannot be directly accessed from one
node to another. The message passing model uses message send over the network to
communicate data necessary for work. Program using this model sends messages to other
processes to pilot their code execution. This can be used to achieve a global work as each
process can be set to a specific sub-task of this work. This model is used for example in
the NewMadeleine [8] library, which is a multithreaded communication library. The most
used message passing programming model in HPC is Message Passing interface (MPI).

Message passing interface

Message Passing Interface (MPI) is a standard designed for communication in distributed
memory. It allows user to send data between different processes in the same node or in
different nodes with message passing technique. It was originally released in 1994 and last
version is MPI 4.0 released in 2021. MPI is based on MPI process and communicators.
MPI process are initialised using MPI_Init and each MPI process is part of one or
several communicators with an identifier (rank) inside each communicator. The base
communicator with all MPI processes registered is MPI_COMM_WORLD.
This standard has multiple implementations which are open source such as OpenMPI [9],
mpich [10],mpc mpi [4], madmpi [11] and mvapich [12]. Some proprietary implementation
also exists as intelMPI [13].

Point-to-point Blocking communication

MPI proposes many communication modes. The simplest one are blocking point-to-point
where two processes want to exchange data, from a sender to a receiver. Two primitives
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Figure 2.10: Scheme of eager protocol with the use of temporary buffer
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Figure 2.11: Scheme of rendezvous protocol with pending request

are needed to perform such communication: MPI_Send called by the sender and MPI_Recv
by receiver. The processes implicated in a blocking communication call their respective
primitive and then, the runtime initiate the communication by allowing buffers, copy data
to the network interface and then wait for the communication to be done before returning
and continue the application execution (figure 2.14)

Communication protocols

According to the amount data to be transferred, multiple communication protocols can
be used to be more efficient. The eager protocol is particularly used when message size
is small. With this protocol, the communication is done asynchronously as the sender
directly transfer the data to the receiver without pre agreement. If the receive is posted
before the send, the data may directly be sent in the destination buffer. This may not be
the case when data require a header to know the packet content, or in function of the
message matching.
In other cases, the data is transferred in a temporary buffer which is copied to the
destination buffer when receive is posted(figure 2.10).
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Figure 2.12: Basic MPI_Bcast from rank
0 with 4 MPI process

Figure 2.13: Tree-based MPI_Bcast from
rank 0 with 4 MPI process

With large messages, this protocol quickly become ineffective as the size of the
temporary buffers get bigger. The copy could also become more expensive if the memory
is faster than the network. The rendezvous protocol is used for these large messages.
With this protocol the message is transferred synchronously: the sender send a transfer
request to the receiver which can be accepted by the receiver. The communication can
then be directly done without in a zero copy way without the need of a temporary buffer
(figure 2.11).

Collective operations

Along with point-to-point operations, MPI proposes communicator-wide operations. These
operations are named collective operations and bring most common action needed to
communicate between all nodes in a cluster. The most basic example is MPI_Bcast which
performs a broadcast, i.e, one node sends data to all processes in the communicator.
Collective operations also necessitate more complex algorithms to be implemented than
point-to-point operations. These algorithms rely on multiple point-to-point operations
optimised to perform the global operation. To return to the example of the broadcast, for
a n process broadcast, n− 1 point-to-point communications will need to be done. More
than that, collectives are optimised to be as fast as possible.
The broadcast typically can use a tree-based algorithm to save time by using all rank with
data available at each step. The figure 2.12 show the most basic algorithm broadcast on 4
MPI processes: The root rank just send the value to every other ranks one by one. With
4 rank a total of 3 steps is required to complete the collective. The figure 2.13 perform
the very same operation using a tree-based algorithm where at each step, every process
having the value send it to a missing value process. The value can thus be propagated
among the entire communicator in only 2 steps. It is important to note that the more
processes in the communicator the greater the difference between these two algorithms
will be. For n processes the first one will take O(n) steps and the second one will take
O(log2(n)) steps.
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Overlap of communications

One of the main limit of blocking communication is by design the waste of CPU time
implied when the communication is performed. After the communication initialisation
and the actual end of network transfer, blocking calls wait for the buffer to be usable
again end losing precious CPU cycles.
MPI introduces nonblocking operations which will let the application continue some
computations not related to the data transfer until a defined point where the data
transferred will be needed. During the network transfer controlled by the network adapter,
the independent computation is done by the CPU in application. This simultaneous work
done by both network and CPU on computation and communication is called overlap.
The overlap of communication and computation allows hiding the communication with
computation to amortise its cost on the execution time.

For example, MPI_Isend and MPI_Irecv which are respectively nonblocking send and
receive only initiates communication and return. The application then can continue its
execution until the data transferred are needed. The user either can test if the communi-
cation is complete using MPI_Test or wait for it using MPI_Wait (figure 2.15).

MPI 3 introduced nonblocking collectives (NBC). Just like their blocking version,
NBC have complex algorithms and require initiating multiple communications in the
collective lifetime. These multiple initialisations are spread along the collective. For both
point-to-point and collectives nonblocking operations, modification in the runtime are
necessary to be executed efficiently. This is especially true for NBC due to their more
complex structure.
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Progression in MPI

Indeed, the nonblocking call cannot be overlapped without resources and specific mecha-
nism designed for it, as the initialisation and data transfer to the network adapter need
CPU to be performed. Without further mechanism to take care of this work, the runtime
will only be able to do it when having control of the execution resources. This will likely
end by eventually execute this progression task in the final MPI_Wait. In this situation,
the communication is performed after the end of the computation and thus no overlap is
done.
The progression will have a different impact for the different communication protocols used.
The rendezvous protocol presented in section 2.3.4 used in a nonblocking call requires
progression to be efficient as the call may return before the end of negotiation. Without
a progression engine, the communication itself likely will start after the computation.
The NBC with their multiple communications to be initialised during the collective add
a reactivity constraint. At the end of one communication, the faster the next one is
initialised, the better the performance will be.

This need of progression can be defined manually in the application. The use of multiple
MPI_Test placed between independent computation parts will let the MPI runtime the
opportunity to progress potentially pending communication initialisations. However, this
requires to modify the code and introduce slowdown as some tests will have nothing to do
but returning as communication is not over.
One other way is to use a background progression mechanism to test the collective state,
initiate intermediate communications, and send it to the network interface. Modern,
network adapter as defined in section 2.2.2 can themselves initiate the communication.
With NBC, the progression work is much more important and require using the CPU
to perform efficiently. The runtime then can create a specific thread regularly scheduled
to do the progression work. These progression threads are effective for the progression
but tends to slow the application down due to sharing processing units or cores with
application threads.

Combination with OpenMP for hybrid shared distributed parallelism

To be able to benefit from a whole system using both shared and distributed memory, it
is a common practise to mix multiple programming models. As an example, MPI can be
associated with other programming models such as OpenMP, this type of conception is
known as hybrid programming. In this case, multiple threads can call MPI primitives. MPI
standard define multiple thread level support, from MPI_THREAD_SINGLE which deactivate
hybrid support, to MPI_THREAD_MULTIPLE which gives no restriction. This association
of MPI + OpenMP is very common as it can cover both distributed (MPI) and shared
(OpenMP) memory programming. This is one of the most used combinations in HPC,
and will also be used in this thesis.
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2.4 Problematic of this thesis

We presented the global context needed to consider the problematic of this thesis, including
the multiple programming model used in this field and the different issues concerning
resource sharing and hardware interactions. Especially, the cohabitation of multiple
programming models makes it difficult to manage resources for each programming model
used. As an example, let’s focus on hybrid MPI + OpenMP applications. One of the
best case scenario is to have, for each compute node, one OpenMP thread per core,
with an MPI process mainly using the network card with very few interferences on the
computation. However, some issues with computation resources occupation may occur
when nonblocking communications are used. As we described in section 2.3.4, nonblocking
communications, especially collectives, need an efficient progress mechanism to offer per-
formance. Such progress mechanism can be the use of a progress thread. In this case, the
progress thread will run among the OpenMP threads, hence causing some oversubscribing
on the computation resources. This interference between MPI-generated threads and
OpenMP-generated threads may lead to a degradation of the application performance
instead of the speedup expected with the use of nonblocking communications.

The problematic of this thesis is to study the progression of MPI communication
using dedicated resources. The progression of communication and especially of collec-
tives requires setting up specific mechanisms to have overlap. The cohabitation of these
mechanisms and other programming models such as OpenMP also require to efficiently
manage resources to avoid bad resource sharing. On the other side, the complexity of
these runtime mixing both shared and distributed memory make the performance hard to
measure. Also, the dedication of resources modify the application set of resources to be
executed on, and the impact must be evaluated. Finally, the MPI + OpenMP applications
design does not always suit the requirements to get overlap, as most of them are derived
from blocking operation based codes.

In this thesis, we will answer the following issues included in this problematic:

• How to develop reliable metrics to assess the global behaviour of MPI runtime
concerning background progression ?

• What are the interactions between computation managed by an OpenMP runtime
and the progression mechanism ?

• The dedicated core could be effective for progression and limit the impact on
computation by canceling application/ runtime resource sharing ?

• Is the re-design of an existing applicative code worth it to benefit from overlap
compared to the overhead caused by a dedicated core ?

To this end, we first study the impact of progression mechanisms existing in current
MPI implementations on the communication and computation of hybrid applications. We
design new metrics adapted to this study and implement a set of benchmarks based on
these metrics. Then, we use our benchmarks to profile the progression of nowadays MPI
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implementations. This whole process is presented in chapter 4.

We then introduce a new progression mechanism using a dedicated core on top of
task-based collective algorithm for the progression of NBC. In the chapter 5, we first
introduce the task-based collective algorithms, before presenting the implementation of a
dedicated core worker and the management of resources to ensure its exclusive on the
dedicated core. We also measure its performance using the metrics introduced in the
chapter 4.
Finally, in the chapter 6, we propose a model to predict the efficiency of transforming
a hybrid MPI+OpenMP application based on blocking calls into an application using
nonblocking calls. We detail the different part of the model from the overhead estimation
based on OpenMP scaling model, to the estimation of overlap gain based on MPI primitive
timings.
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The measurement of collectives, and especially nonblocking collectives is not straight-
forward. Depending on multiple factors such as the type of progression mechanism used, if
MPI processes are on the same node or not, different benchmarks can implement different
measuring methods. Usually, these methods are developed to be pertinent in their scope,
but may not be well suited for different usages.
In this chapter we will first introduce the existing benchmarking tools designed to measure
MPI and more specifically the overlap of communication and computation.
The progression of MPI nonblocking operations is necessary to get overlap. We will
then present the existing mechanisms which have been developed to answer the need for
asynchronous progression.
Finally, the progression itself is not sufficient to gain time with overlapped communication
and computation. The internal design of MPI + OpenMP hybrid application is often not
suited to gain time from overlap. It can be helpful to model the parallel areas of a hybrid
application to find out if the current algorithms in this application is compatible with
efficient overlap. The last section of this chapter will introduce the work done around
MPI applications, OpenMP application and hybrid applications modelling.
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Figure 3.1: "Ping-pong" protocol scheme for point-to-point send/receive

3.1 Benchmarking MPI

To be able to improve the performance of a runtime, it is crucial to base the measure of the
performance on reliable benchmarking tools. MPI benchmarks consist of a set of metrics
conceived to gather the performance of different features in the specified MPI runtime.
Typically, measures done with such MPI benchmarks on several MPI implementations
are compared to each other, with the one having the best results being considered better
than the other MPI implementations. As such, one can consider that MPI benchmark
are used to define what are good performances. To realistically define the best MPI
implementation, metrics must be exhaustive, must be able to detect every variation
between executions and must be representative of every execution behaviour.

However, assessing the performance of MPI primitives, and especially the most complex
ones, may be discussed. The definition of what is measured can have multiple interpreta-
tions, thus have different implementations in multiple benchmark suites.
In this section we will introduce the existing methods of MPI benchmarking and focus on
the potential lacks these methods have.

3.1.1 Benchmarking of blocking communications

Blocking point-to-point communication are the simplest type of MPI communications, as
there is only two MPI processes involved in the communication. The performance can be
described as the amount of transferred data over a period of time (bandwidth) between
these two MPI processes, and how fast it is transferred (data transfer time).
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Several benchmarks exist for measuring blocking point-to-point MPI communications.
NetPipe [14] is a network performance evaluator which have a module to measure MPI and
MPI-2 operations. The Intel MPI benchmark (IMB) [15] and OSU microbenchmark [16]
proposes different metrics such as network data transfer time and throughput. The
measure protocol is based on a "ping-pong" between two MPI processes. One process will
send a message to the other one, then the latest will send back a message. The measured
data transfer time is the mean of the total duration of the two messages (figure 3.1). This
“ping pong” method have the advantage of measuring the time on only one of the two
processes involved in the communication. With internode communications (when the
two processes are located on different nodes) this allows the measure to be done without
taking care of synchronising clocks on each node.

Benchmarking of blocking collectives also relies on bandwidth and data transfer time
metrics. However, the introduction of multiple ranks and thus potentially multiple nodes
make it impossible to use a “ping-pong” method to have only single rank timing.

OSU microbenchmark and IMB also define methods to measure blocking collectives.
Both of these benchmarks run their measurement on multiple iterations to avoid the
overhead observed for first iterations. They also test a specific range of message sizes to
observe the scaling of data amount on the network.
With collectives and multiple MPI processes involved, the measurement become much
harder than for point-to-point. The following paragraphs will introduce some issues
concerning collective measurement, and the way state-of-art answer to them.

Multi rank measurement aggregation

Opposed to point-to-point operations, collective cannot rely on a “ping pong” method.
The presence of more than two ranks implies to find other methods involving all MPI
processes in the collective to measure a representative performance of said collective.
Moreover, the start and the end of a collective can be calculated with different methods
considering each MPI process starts and ends at different time. Thus, using the average
the minimum or the maximum to define the start and the end of the collective gives
different valid collective times.
OSU microbenchmark and IMB both evaluate collectives by measuring the duration of a
performed collective on each MPI process. However, reporting the timings for all MPI
processes in the collective can be overwhelming. Thus, they both only report the average
data transfer time by default. This can be flawed as tree-based algorithms may induce
very different workloads on each rank. Using the average in this situation can lead to the
same value for different behaviour, as the average do not take account of variance in MPI
process time.
As an example, A 4 rank collective being executed in 20ms on two ranks and in 10ms
on the two other will have an average execution time of 15ms. If the execution is done
in 15ms on each rank, the average execution time will also be 15ms. However, the first
execution is less effective. The faster rank will eventually have to wait for the slower ones
and the overall execution will be closer to 20ms.

OSU microbenchmark add an option to also report the minimum and maximum data
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Figure 3.2: Shifted start of MPI_Reduce impact

transfer time. Looking at the average coupled with minimum and maximum allow to
differentiate those cases. Thus, to correctly use the measures reported by such benchmark
to perform a performance comparison, all of these values have to be used, and not only
the average time.

Synchronised start need

MPI processes execute independently of each other. Each MPI process will experience
its own set of system interruptions, concurrent computations, and other events that will
affect their execution.

Thus, when performing a collective operation, they may call the initiating primitive at
different times, and then either directly start working or wait, depending on their role in
the collective operation. This may cause some shifting between all MPI processes.
This shift when starting the collective also cannot be just corrected by offsetting the
timing at then end as the whole collective may be influenced by the initial shift. The
figure 3.2 shows a MPI_Reduce with a shifted start. The MPI reduce wait for all value to
be reduced in the root(here rank 0). The shifted start from the rank 3 will here delay the
global gathering of reduced value. This chain effect, will finally cause a slowdown of the
entire collective. The figure 3.3 shows the expected behaviour with a simultaneous start,
which lead to a faster execution.

Moreover, the more MPI process are involved, the largest the slowdown chain effect
could be. This makes the measurement of numerous MPI processes collective even harder.

To have a consistent measure, it is then necessary to have a synchronised start. The
use of MPI_Barrier to synchronise the MPI processes does not imply that each rank will
start the measured collective at the same time, as all the MPI processes may not leave
the MPI_Barrier simultaneously.
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Figure 3.3: Synchronised start of MPI_Reduce

SkaMPI benchmark [17] uses a window-based starting protocol. The window-based
starting protocol consist of all ranks agreeing on a date in the future to start simultaneously.
This can lead to some issue as the date can be passed when all ranks get it. This is
especially true when a lot of rank are implied in the collective.

OSU microbenchmark use a MPI_Barrier to synchronise the start of the collective.
The standard define this operation as waiting for each MPI process before returning and
continuing the execution. However, nothing is done to make all process leave this collective
at the same time.

Synchronised start handling

Having multiple nodes involved in a collective implies that each start time defined on
different nodes will not be comparable. Each node will rely on its processor clock to
get time. However, all nodes may not have been started at the same time, and they
may have different speed over time due to power consumption. Thus, time coming from
different clock cannot be mixed as nothing guarantee the same origin. To avoid this
kind of problem, it is possible to set a shared origin point to all clock and do a clock
synchronization [18]. This clock synchronisation is achieved by gathering the start time
of each node and compute the delta between them. These deltas can then be applied to
correct each time from the reference.

It has also been demonstrated [19, 20] that correcting clock offsets at the start is
not sufficient to keep a good synchronisation. The time of the CPU clocks may diverge
between nodes after the correction, and this skewness needs to be taken into account
for the end of the time measure. This divergence is caused by the physical condition
of the clock preventing a perfect precision. This precision can for example vary from
temperature variation in the processor. One solution to this issue is to resynchronise each
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clock periodically between measures. If the measure is too long and time start to diverge
before the end of the measure, another solution is to model each clock skew to correct it.
However, such method will delay the end of the measure, hence invalidate the measured
collective timing.

Analysing timing primitives

Timing issues may also come directly from the timing primitives. A recent paper, trying
to achieve overlap through overloading, highlighted the problem of using traditional MPI
timer calls (e,g,. MPI_Wtime()) with this configuration [21]. The MPI_Wtime() primitive
is also implementation dependant. As each MPI runtime can have its own version with
different characteristics, using these primitives prevent the comparison between multiple
runtimes in addition to change benchmark characteristics.
It is then needed to use an independent timing methods. Most common and known
primitives such as gettimeofday can work for coarse measures, but the precision is not
high enough for an accurate benchmark.
A solution is to rely on high precision integrated mechanism. For example, x86 and x86-64
processors have the RDTSC or RDTSCP instructions.

3.1.2 Benchmarking of nonblocking communications

If data transfer time and bandwidth are sufficient to efficiently measure blocking com-
munications, nonblocking ones require other metrics to assess their global behaviour.
Indeed, with the possibility of computation/communication overlap, a slower but perfectly
overlapable nonblocking communication can accelerate the global application. To have a
complete measure, the nonblocking collective must then have a combination of overlap
metric and data transfer time/bandwidth metric.

The pure data transfer time of the nonblocking communication is the total duration of
the communication without any computation in between the MPI call and the correspond-
ing wait. It can be measured with the same method as for blocking communications, with
the exception of adding an MPI_Wait just after the nonblocking call. This is a mandatory
reference time as it can be used as comparison to evaluate a potential slowdown due to
computation/communication interaction. It can also be used to measure the slowdown
against the equivalent blocking call.

On the contrary, the measurement of overlap introduces new methods and parameters.
The main difference being the necessary introduction of computation to have overlap. The
benchmarks cited above propose their measurement method for overlap and nonblocking
collectives.

Analysing benchmark structure and metric relevance

Some benchmarks implement metrics working on a very specific case. OSU microbench-
mark uses an overlap ratio designed as the time spent in nonblocking calls with simul-
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taneous computation, relative to the pure communication time (i.e, the measure of the
collective data transfer time alone). This metric is designed to measure the overlap of
equal computation and communication amount, and then cannot evaluate the impact of
unbalanced computation/communication on overlap. This metric is also based on the
pure communication time based only on the mean between all MPI processes. As stated
in section 3.1.1, this can lead to missing a potential variance difference as it do not include
min and max in the ratio. OSU microbenchmark also doesn’t compute a fixed amount of
work but perform while communication is not over. This ensures that computation and
communication have a similar execution time but miss the potential slowdowns due to
communication and computation interactions.

OSU microbenchmark is structurally designed to measure the active progression of a
runtime and perform a defined number of MPI_Test during the measure. The number of
MPI_Test can be set with the “-t” option but cannot be zero. This is suitable for measuring
manual progression of nonblocking collective. However, when focusing on background
progression, the presence of MPI_Test will alter the measure and hinder the background
progression mechanism.

The Intel MPI Benchmark (IMB) [15] use a combination of an overlap ratio and the
pure communication duration to evaluate MPI nonblocking collective performance. OSU
microbenchmarks [16] propose a similar approach with the addition of possible GPU
computation.
NBCBench [22] uses a similar overlap measurement, but it focuses on the measurement
of one issued collective at a time, instead of pipe-lining N collectives. It also divides
the communication time in two parts: an overlappable time and a non-overlappable
time, which allows measuring the overlap efficiency only on the overlappable time. The
benchmark was later updated to also check the CPU overhead [23], based on lessons
learned from the SkaMPI benchmarks [17] which does not handle nonblocking collectives.

MadMPI benchmark [24] relies on an overhead ratio to measure the overlap of point-
to-point communications. This overhead ratio is a more flexible metric than the overlap
ratio used in other benchmarks, as it is usable even when communication and computation
do not take the same time, and it highlights cases where the overlap slows down compu-
tations or communications. However, it requires to be adapted to work for collective timing.

3.1.3 Overview and link to the progression mechanisms

In this section, we presented the most used MPI benchmarks. The state-of-the-art
benchmarks implementing methods to measure the nonblocking collectives have shown
weaknesses to highlight the real behaviour of nonblocking collectives. Especially the
calculation of metrics to evaluate the overlap capacity remains incomplete. We highlighted
cases where existing metrics were not sufficient to fully assess the performance:

• Collectives are designed to be executed on numerous MPI processes, gathering the
performance of every part of this collective is sometimes incomplete. In particular,
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the calculation of metrics conceived to evaluate specific parts of MPI such as overlap
ratio are only based on average time.

• The parallel execution of collective may cause a shifted start between all MPI
processes involved. This shift of start time influence the course of the collective
algorithm and impact the performance. To get rid of this, it is necessary to
synchronise the start on each MPI process. Multiple state-of-the-art benchmarks
use MPI_Barrier which do not synchronise the processes.

• To measure the local time, methods must take care of internodes measurements as
each node rely on a local clock to get time. To efficiently synchronise the start of the
collective, it is necessary to set a global time by using clock synchronisation system.
However, state-of-the-art benchmarks which relies on MPI_Barrier are based on
locally calculated durations.

• Finally, the timing primitives used have a great impact on the performance mea-
surement. Multiple benchmarks use MPI_Wtime to get time, which is a MPI imple-
mentation dependant tool. Thus, evaluating MPI implementation using their own
tools is not reliable.

The section 2.3.4 introduced the necessity to add specific mechanism to progress the
nonblocking communications in the purpose of getting overlap.

3.2 Progression mechanism for overlap

In this section we present the different mechanism that have been developed to address
the need for progression. We discuss how efficient they are to progress the communication
and contrast it with their performance impact on the global applications.

The need of progression for the different nonblocking operations is not necessarily
equivalent. We will first introduce mechanisms done for point-to-point progression before
introducing more complex ones. For both purposes, the solutions can be classified in two
categories: they can directly rely on specialised hardware or develop specific software to
perform the progression work.

3.2.1 Point-to-point communication overlap

Nonblocking communications have been available in MPI for point-to-point communication
since the first version of the standard [25] for more than two decades. Even the progression
of point-to-point communication is not straightforward. Different solutions have been
released both on hardware and software side.

Hardware based progress of point-to-point

Hardware solutions relies on physical components developed to relieve general hardware
such as CPU. Specific integrated microcontrollers are able to perform basic operations on
network adapter. This is used to progress communication without the need of the CPU.
Some network adapters such as Infiniband have been specifically designed to copy send
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buffer to receive buffer with direct access memory (DMA). Some work have been done to
write directly to the receiver memory using the “Remote Direct memory access” (RDMA)
technology [26],[27].
All these hardware technologies have the advantage of not using the CPU, hence all the
CPU capability can focus on the application during the communication progress. This
allows the application to have efficient overlap. However, these hardware solutions require
having the specific network adapter to use these technologies. Moreover, to follow the
enhancement of these hardware capacities, it is necessary to change this network adapter
to the newest version. Thus, this solution is hardly expandable to collective operations as
microcontrollers are not able to manage collective messages.

Software based progress of point-to-point

To have a more generic and easily applicable solution, it is necessary to use software.
These solutions can be applied without the necessity of changing supercomputer hardware.
The most common mechanism developed for communication and computation overlap
are progress threads. T. Hoefler and A. Lumsdaine [28] showed that creating a thread
in MPI runtime make the communication progress without requiring MPI_Test in the
application. The use of a progress thread have a counterpart as it require having access
to computation resources to be executed. These resources must then be shared with the
application. The overall performance can then be degraded [24].

It is also possible to build multithreaded MPI runtime [29]. This solution also schedule
threads in an opportunistic way for MPI + OpenMP hybrid application on manycore
architecture. The MPC framework [4] also rely on multithreaded MPI runtime by imple-
menting user threads for multiple programming models.

Tasklets can be used to manage the point-to-point progression. PIOMan [30] is an
I/O manager used to opportunistically schedule progression tasks on available cores. This
allows a better cohabitation with the application threads as the progress engine can
poll every task. The context needed for the progression is included in these tasks, so
the engine does not have to migrate to get it. This limitation of migration reduces the
bad interactions with application threads. However, The use of tasklets require specific
algorithms to perform operations, and they are currently developed only for point-to-point.
New implementations for collectives must then be designed to be efficiently progressed
using tasklets.

Work have been done to use hyperthreading to progress communication [31],[32].
The hyperthreading use the unused computation facilities of a core to execute multiple
execution context on one core at the same time. This is particularly efficient with different
tasks. The thread use for progress can then be executed with less impact on application
thread. However, if the same logical units are used, the performance will decrease as both
application and progression mechanism will compete for resources.
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3.2.2 Collective communication overlap

The advent of nonblocking collectives [33] has pushed asynchronous progression to its
limit. The nonblocking collective need specific progression mechanisms which tends to
have a greater impact on applications, as stated in section 2.3.4.

Hardware based progress of collectives

Hardware solution for collectives are less effective than for point-to-point. As the collectives
represent much more complex algorithms, the integrated microcontrollers need to be
enhanced to scale for the efficient progression of these primitives. Some solutions have
been developed: Derradji et Al. proposed the BXI [9] network adapter designed to allow a
full offload of communication primitives and especially nonblocking collectives on hardware.
The main difference with other network adapter is to not only offload the communication
work required by the collectives, but to run the entire algorithm on the card. BXI, thus
support tree-based, pipeline and ring algorithms. However, this is limited to systems
including this specific hardware.

Software based progress of collectives

The libNBC [22] is a portable implementation of nonblocking collective. It works us-
ing a progress thread with specific fine tuning to have a better management of spread
progression along the communication duration. Progress threads are efficient for col-
lective progression but tends to slow the application down due to threads sharing resources.

To ensure actual background progression, it has been proposed to use multi-threading [32],
using a dedicated core [28], using special tasks or threads in the runtime [34, 35, 36] or
in the application [37], with some optimizations such as running the thread only when
a nonblocking communication operation is in progress [38].All these solutions relies on
threads to progress, the possible interactions with application thread must then be handled
to remains efficient.

Threading support is usually not a well-supported feature of MPI implementations
regarding performances [39]. To allow for an efficient mixing of MPI with a threading
models, two approaches were studied. The first approach aims to mitigate the full OS
process implementation of usual MPI libraries. Several MPI implementations relying on
threading or tasking were developed with the purpose of improving intranode communica-
tions [40, 41] or leveraging better runtime stacking support [42, 43]. The second approach
aims to improve the support of multi-threaded communications in standard process-based
implementation [44, 45]. It leads to the adoption of Partitioned communications in the
latest MPI standard [46].

3.2.3 Overview of progression

The overlap of communication requires progression to be efficient. The collective com-
munications are especially complex to overlap as they require more computation power
more often than point-to-point. In this section, we showed the different state-of-the-art
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mechanisms implemented to answer this problem. Most of these mechanisms still have
remaining issues:

• Some mechanism such as progress threads are able to progress collective with good
reactivity, and thus are able to get overlap. However, they have issues with sharing
the available resources of the system. Since the application compete for the same
resources, progress threads tends to globally slow the application down.

• Opportunistically-scheduled tasklets have also been used as progression mechanisms.
They have demonstrated a good efficiency for overlap but currently do not implement
collective algorithms.

• Hardware-based progression is also an existing solution. They are able to fully
offload the collective algorithm to allow the CPU to fully focus on the application.
However, these solutions needs to rely on specific hardware and are expansive to
update, as it require to directly update the hardware.

3.3 Modelling hybrid applications performance
Most of the application using NBC today are modified blocking communication based
application. The conception of applications using nonblocking communication require
thinking about the independent computation, i.e, the computation not linked to the
performing communications. On the contrary, applications usually have computation
parts followed by a communication part based on the computation results. To have an
efficient progress, application thus need deep redesign.
Specific work has been done in some applications [37, 47, 48] to utilize nonblocking
communications so as to get overlap. However, the deep redesign of application is not
simple nor fast. These applications often rely on old compute kernel code which need to
be modified in order to discloses computation part available for overlap. Indeed, one the
main factor of profitability when transforming to nonblocking operations is the amount of
computation which will be available to overlap.
Understanding the characteristics of applications is then a good way to help to take the
decision of transforming a code or not. Modelling applications gives the opportunity to
extract these characteristics from executions. As applications may mix programming
models, we will introduce in this section modelling work on both OpenMP and MPI
runtime to focus on hybrid applications.

3.3.1 Analysing and modelling MPI performance

Modelling MPI may be executed using numerous approaches. Different models have
been created using a general approach of modelling[26],[49],[50] which are not specifically
designed to simulate overlap. These models focus on the global functioning of MPI
application, but the counterpart is that they tend to be very complex and not designed to
assess precise behaviour.

An alternative solution is to model the specific part of the runtime wanted to be
improved. These models are simpler to implement and use and are by nature focused on
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the interesting point. Previous work exists to estimate the gain obtained from overlapping
communications and computation. They either estimate [51] the potential overlap from
an algorithmic point of view, or focus [52] on networks with offloading capabilities and
non-threaded applications. However, These models stay on MPI modelling only and
cannot simulate the specific interactions with OpenMP runtime such as slowdown. The
section 2.3.1 introduced that multiple programming models have an effect on each other.
As a consequence, missing these interactions in modelling will make it difficult to accurately
simulate the exact behaviour of the application.

3.3.2 OpenMP scaling of applications

Modelling OpenMP application try to predict the evolution of performance with a given
amount of work and compute resources. The evolution of those parameters are important
to handle as this is the key to predict the OpenMP scaling. Work has already been
published [53],[54],[55],[56],[57] about the scalability of OpenMP applications. These
models propose very complete and complex simulation of OpenMP. However, to simulate
a specific behaviour, simpler models focused on that part would be enough.

3.4 Summary of items to address in contribution
Numerous models exist concerning MPI and OpenMP runtimes. We showed that these
models are great to simulate a global runtime. The simulation of a whole system including
multiple of these runtimes remains difficult. The chapter 6 proposes to simulate the
precise part of hybrid application we worked on. This would be achieved by combining
simpler models of theses runtimes. The state-of-the-art showed many possibilities on
the way of getting overlap for MPI collectives operations. Theses solution either have a
good overlap capability but tends to have a non-negligible impact on the global system
such as progress threads, or are not sufficiently evolved to efficiently progress complex
collectives such as hardware progression. The use of taskslets for progression showed
a great potential for progression, but do not implement collectives. In the chapter 5,
we will introduce new collective implementation using tasklets, and introduce a method
based on dedicating a core to execute these tasklets. Benchmarking MPI, and especially
collectives still have some issues presented in section 3.1.3. In the following chapter 4,
we introduce a new benchmarking method trying to address these issues. We propose
new metrics to assess the performance and the overall behaviour of collectives. We then
propose an implementation for this benchmark. Finally, we give a survey of most used
MPI implementation and especially ones using the progression mechanism presented in
section 3.2.
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The problematic of this thesis is to study the progression of MPI communication using
dedicated resources. Evaluating the performances of asynchronous progression implies
to study the behaviour of applications using nonblocking communications, through a
set of metrics and measurement methods. As described in section 3.1, benchmarks and
metrics to evaluate such communications already exist. Unfortunately, they either have
shortcomings, or are not suited for collective operations. Moreover, if they give a general
overview of the behaviour, they do not allow to understand why the observed behaviour
is happening, especially in the case of bad performances. In this chapter we propose a
method to not only measure the overlap of computation and communication, but also
their impact on the global system. The main idea of this method is then to be used not
only to measure the performance of progression mechanisms, but to give the causes of
bad performances.
We will first introduce a new set of metrics, not only designed for the performance
measurement of collective but also to identify the causes of bad performances. We will
then introduce our implementation of our benchmarks using the new metrics. We will take
into account the benchmarking problems showed in section 3.1.3 such as the management
of multiple ranks value, the synchronisation of clocks for internodes operations and the
simultaneous start. To show the pertinence of these metrics, we will then showcase
situations measured with both our benchmarks and common state of the art benchmark
to analyse the information extracted from each one. Finally, we will present a survey of
various MPI implementations and progression mechanisms, used on multiple networks
and hardware.

4.1 Metrics for Overlap and its Impact on Performance
In this section, we define our metrics to assess communication / computation overlap, and
to measure the impact of overlap on both communication and computation performance.

4.1.1 Measuring Overlap

To measure overlap, we use the overhead ratio metric already defined [24] for point-to-
point communication. This metric shows the overhead of the actual performance when
overlapping, compared to the ideal case with perfect overlap. This ratio is actually not
specific to point-to-point communication and can be used for nonblocking collectives too.
It is defined as follows and as depicted in Figure 4.1. Consider tcomp_ref the reference time
of computation and tcomm_ref the reference time of communication, without overlap. Then,
in case of overlap, the ideal total time assuming perfect overlap is:

tideal = max(tcomp_ref , tcomm_ref)

The overhead of the actual measured performance is then:

∆measured = tmeasured − tideal

= tmeasured −max(tcomp_ref , tcomm_ref)
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Figure 4.1: Overhead ratio metrics details

This value is an absolute time, hard to interpret since it depends on network speed
and computation time. We normalize it relative to the serialized case, i.e. the case where
computation and communication are run in sequence without overlap. The overhead for
the serialized time is defined as:

∆serialized = tserialized − tideal

= tcomm_ref + tcomp_ref −max(tcomp_ref , tcomm_ref)

= min(tcomp_ref , tcomm_ref)

We thus define the overhead ratio as:

roverhead =
∆measured

∆serialized

and thus we get:

roverhead =
tmeasured −max(tcomp_ref , tcomm_ref)

min(tcomp_ref , tcomm_ref)
(4.1)

In case no overlap happens and computation and communication have been done
sequentially, we have tmeasured = tcomp_ref + tcomm_ref and thus roverhead = 1. In the case
of perfect overlap, we have tmeasured = max(tcomp_ref , tcomm_ref), and thus roverhead = 0. A
ratio greater than 1 means that tmeasured is slower than sequential execution, which may
happen in case of interference between computation and communication. Finally, in some
cases, we get a negative ratio, which happens if the measured time is faster than expected
for perfect overlap; it is mostly observed when there are imprecisions in the measure of
reference time for computation and/or communication.
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4.1.2 Interference between Computation and Communication

Low performance when overlapping computation and communication is not always a sign
of bad communication progression in the background. It may be caused by performance
degradation of either computation or communication (or both!) because of contention or
interferences. It may be especially the case when the mechanisms used for communication
progression steal CPU cycles to computation.

While all cases of bad overlap performance will be captured by the overhead ratio
defined in the previous section, this ratio cannot show whether the degradation is caused
by lack of communication progression or by computation or communication slowdown.
Thus, we propose additional metric that will help diagnose the cause of low overlap
performance.

Impact of Inactive MPI Runtime on Computation

First, the MPI runtime system itself may have an impact on computation even without
any communication, by the sole effect of the network polling mechanisms running in the
background. It may be especially the case with MPI libraries that rely on an asynchronous
progress thread for communication progression. Such a thread will use CPU time, which
may slow down computation or cause load imbalance.

To quantify the slowdown of the application caused by background MPI execution,
we propose a metric called the MPI impact ratio. We define it as the ratio between the
computation time with and without the MPI library loaded and initialized.

To measure it, we first measure the reference computation time without MPI tcomp_ref .
Then, we run the exact same computation code with the addition of enclosing MPI_Init
and MPI_Finalize, and compiled and linked with the mpicc wrapper provided by the
tested MPI implementation. We then get tcomp_passive_mpi , the computation time with the
MPI runtime. The time is computed by running the largest square matrix multiplication
in a given time on one core. Each core determines its own time by running one OpenMP
thread. We define the MPI impact ratio as follows:

rMPI_impact =
tcomp_passive_mpi

tcomp_ref

(4.2)

If the presence of the MPI runtime causes no performance penalty, the ratio is 1.
Otherwise, a ratio higher than 1 indicates that the active MPI runtime impacts the
computation.

Impact of Active Progression and Computation Concurrency

Actual background progression of communication is likely to have more impact on compu-
tation than only polling. Running nonblocking collectives operations involve more than
data transfer that can be offloaded to the Network Interface Card (NIC): it executes the
collective algorithm. If the NIC does not directly support the offload of collective commu-
nications [58], the algorithm will take CPU time to execute, and it must be periodically
scheduled to trigger all the transfers at the right time. Thus, it is expected to actually
consume more CPU time than progression of point-to-point nonblocking communication.
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To assess this phenomenon, we propose a metric to measure the slowdown caused on
computation by the progression of communication in the background. Not all applications
are expected to suffer from the same impact, we can nonetheless evaluate the runtime
tendency to disturb the application, and conversely the communication disturbed by
computation.

We suppose we have a fixed amount of computation between a nonblocking MPI
initialisation call and the related MPI_Wait, and measure the time spent in each part of
the execution, as depicted in Figure 4.2:

• tcall the time taken by the nonblocking MPI call itself,

• tcomp the time of the compute function with communication running in the back-
ground,

• twait the time spent in MPI_Wait after computation. It must be noted that if
communication did not progress in the background at the same time as computation,
this time may be significantly high.

Figure 4.2: Definition of times with overlap

To evaluate the slowdown of computation and communication caused by overlap, we
compare these times with reference time of computation and communication without
overlap. We use the same reference values as defined in section 4.1.1, namely tcomm_ref
the collective communication time without overlapping computation, and tcomp_ref the
computation time without overlapping communication, as depicted in Figure 4.3.

Figure 4.3: Definition of reference times

To measure the slowdown of computation in the presence of overlapping communication,
we define the computation slowdown ratio as:

rcomp_slowdown =
tcomp

tcomp_ref

(4.3)

This ratio measures the time taken by the computation to complete while the commu-
nication is running. It does not tell whether the computation is actually slower (because
of contention, etc.) or whether CPU cycles have been stolen by the MPI library to make
communication progress hence delaying the end of the computation. A slowdown in the
computation is not necessarily an overwhelming obstacle since it may be counterbalanced
by the time gained thanks to an efficient overlap, i.e. less time spent in the MPI_Wait
function to finish the communication.

53



We couple this computation slowdown ratio with another metric used to evaluate the
time spent in communication primitives compared to the reference situation. We use the
exact same principle as for computation slowdown: we compare the time spent in MPI
primitives tcall + twait in the overlap case, with the communication time without overlap
tcomm_ref .

rcomm =
tcall + twait

tcomm_ref

(4.4)

It is expected that, in the case of overlap, most of the communication is done in the
background at the same time as computation. Thus, the time taken by MPI primitives
should be shorter. Since this ratio measures the time spent in the MPI primitives, in case
of good overlap, rcomm is expected to be significantly lower than 1 thanks to a much lower
twait . A ratio greater than 1 is always the sign that communication is slower than without
overlap.

Finally, a ratio around 1 can have two explanations. The first reason to have such
ratio is that no communication overlap happened, hence the time for the communication
tcomm_ref is directly split between the initiation call time tcall and the completion call time
twait . It must also be noted that a ratio around 1 may reveal that communication is slower
than without overlap, caused by interference with computation. In this case, the extra
time taken by the communication is hidden in the computation time due to actual overlap,
hence it is not included in tcall + twait .

4.1.3 Using these Metrics to Diagnose Bad Overlap

In this section, we will show how the metrics we just defined may be used to diagnose cases
of bad computation/communication overlap. Bad overlap is defined by an overhead ratio,
as given by equation 4.1, greater than 0. With good overlap, we expect rcomp_slowdown ≈ 1

and rcomm ≈ 0.

No progression

The most common case of bad overlap happens when the MPI library does not have
any progression mechanism to make communication actually progress in the background.
The same behaviour may happen with an MPI library that features a progression thread
for communications, but because of thread placement, the progression thread was not
scheduled at the right time and thus did not have the opportunity to make communication
progress.

Without any communication progression running alongside the computation function,
the whole communication is ultimately done in the MPI_Wait call, which results in an
execution as depicted in Figure 4.4. In this case, rcomm ≈ 1 as defined in equation 4.4,
which is roughly the same situation as in the serialized case, despite the use of nonblocking
communications. In this scenario, nothing disturbs computation and thus rcomp_slowdown ≈
1.

In some cases, even without progression mechanisms, some overlap happens thanks to
DMA: the first step of the collective algorithm is started in the MPI call and is executed by
the NIC in the background. However, the following steps in the algorithm need the CPU
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Figure 4.4: Protocol execution with no overlap

to be performed, and they will be started only once the communication is done, hence
once the CPU is free, if there is no progression. In this case, rcomm is a little bit lower
than 1, but converges to 1 for large number of nodes, while overlap becomes negligible.

Computation slowdown

Another cause of inefficient overlap is when the progression mechanism actually does
overlap, but hinders the computation to a point where the overall time is higher than
serialized computation and communication. The main clue to detect this problem is
looking up the impact on the computation overhead: since the progression takes CPU
time, it slows down the computation, which results in rcomp_slowdown > 1.

Since communication progresses alongside the computation, in this case communication
is already over when we reach MPI_Wait and thus we have rcomm ≈ 0. This case is depicted
in Figure 4.5.

Figure 4.5: Protocol execution with communication significantly hindering computation

The bottom line is: in the presence of communication progression mechanisms, com-
putation is slower, and thus overlap may not be worth it.

Contention without overlap

The last possible case is both rcomp_slowdown > 1 and rcomm > 1. A possible scenario
for this case is communication was serialized, without any overlap, but at the same
time computation was slowed down. MPI process imbalance with an aggressive progress
thread can lead to such a result. If the progression thread is scheduled very often, it will
greatly delay the completion of the computation. However, it is possible that while being
scheduled, the progress thread has nothing to progress. If the mandatory first operation
of the algorithm on the local rank is to receive data, the progress thread may wait for
these data each time it is scheduled. In case of MPI process imbalance, the data might be
sent very late by the other MPI rank. If the expected data arrive once the computation
is done on the local MPI process, then the whole collective communication will happen
without any overlap, and the computation time would have been hindered by the progress
thread.
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4.2 Our methodology for assessing computation/com-
munication overlap of NBC

In this section, we describe some points about methodology on how to measure performance
and overlap on nonblocking collectives.

4.2.1 Multiple MPI processes Time Variation

By design, collective operations usually involve more than two MPI processes. Depending
on the algorithm used for the collective operations, all MPI processes do not have
necessarily the same amount of work. Some collectives will be very unbalanced such as
MPI_Gather or MPI_Bcast when they use tree-based algorithms. In a gather implemented
with a tree-based algorithm, the root will be receiving data on each step of the algorithm,
while the leaves will only send data at operation start. These different workload will lead
to different completion times on each MPI process.

Since many MPI applications are loosely based on the BSP model, or at least rely on
collective communications to synchronize MPI processes, any late MPI process will delay
the other ones. Thus, the overall performance depends on the slowest MPI process. We
thus define the completion time of a collective as the time the last MPI process involved
in this collective completes it locally.

Conversely, the start time of a collective is defined as the time where the first MPI
process enters the MPI initiation call.

Hence, we define the collective global time as max(end_times)−min(start_times).

4.2.2 Clock Synchronisation and Barriers

To measure the time taken by the collective on each node, and to implement the afor-
mentioned synchronized barrier, we need a global clock, i.e. a clock that gives the same
time across nodes, as much as possible. In practice, each node has its own clock. Local
clocks of each node may be set to different times, and even if they are set to the same
time, they may drift (the time flows at a different speed) like any clock even though they
are quartz-based. This problem is usually solved at the sytem level using NTP [59] to
synchronize clocks. However, the synchronisation provided by NTP is not precise enough
to measure communication times in the microsecond range. To effectively be able to
synchronize all MPI processes across the multiple nodes used by the application, one must
use a global clock synchronized between nodes.

We implement a global synchronized clock, taking into account both clock offset and
drift using a method similar to the state of the art [19, 20]. Our method uses the clock
of node #0 as reference clock and computes offset and skew for the clock of each other
node. At initialization time, each node go through a calibration phase where it exchange
its local time with node #0 with thousands of roundtrips. We are then able to compute
the offset between the local clock and the reference clock, as well as the network latency
to compensate for latency in clock exchanges.

Then, to compute global clocks, we use two different methods depending on the
context:
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• for timestamps used only in post-mortem analysis, like the duration of collectives, we
perform another calibration phase at exit, to precisely determine the offset of clocks
at the end of the benchmark in addition to offsets at the beginning. Then we are
able to interpolate each date in local time, by knowing its offset with the reference
clock at the beginning and at the end, if we assume that the drift is constant.

• for timestamps that we need to translate to global clock in real time, as used for
synchronizing barriers, we perform a calibration phase at the beginning of the barrier,
then we extrapolate each local time, by knowing its offset relative to reference clock
at initialisation and at the beginning of the barrier, and assuming the time on each
node will continue to flow at the same speed in the next seconds. To get a result
precise enough, we ensure that the time between the barrier and initialisation is
large enough so that extrapolation does not amplify errors. We insert sleep phases
if needed.

With this mechanism, we are able to synchronize all nodes with node #0. It uses a
simple loop for now, but could be extended to be hierarchical [60] in future work.

4.2.3 Fixed Computation and Communication Time

To thoroughly study nonblocking communications overhead ratio defined in Section 4.1.1,
it is better to perform experiments with varying computation amount and communication
data size, hence communication time. However, it can be very hard just looking at
computation and communication sizes to assess their time, and which pair of sizes actually
offer a fair matching. The time of communication depends on the number of nodes, the
considered collective operation, the network hardware, just to name a few parameters.
It is even worse when studying multiple MPI implementations. Each of them can use
different algorithms, protocols or network interface. It can render a valid comparison
point for a specific MPI implementation completely useless for another one.

Since it is not relevant to assess overlap in the case of computation time and com-
munications time that are different by several orders of magnitude, we propose to have
both scales, for computation and communication, use times rather than the number of
operations for computation, and data size for communication. That way, we ensure the
explored parameter space is relevant and it makes the results easier to interpret since we
always know whether computation is shorter or longer than communication.

In our benchmark described in the next section, the size of data in computation and
the exchanged data size in the collective are calibrated so as to reach the wanted duration.

4.3 Presentation of the BenchNBC Benchmark

In this Section, we present BenchNBC [61], the implementation of our NBC overlap
benchmark, to measure the metrics defined in Section 4.1 and following the methodology
presented in Section 4.2. We also describe how each metric is presented.
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4.3.1 Benchmark Implementation

Estimation of Reference Times We measure the reference communication time
tcomm_ref first. It is defined as the duration of an MPI NBC initialisation call directly
followed by an MPI_Wait. The wait ensures that the communication has completed. We
use a NBC followed by a wait and not its blocking counterpart to be sure the same
algorithm is used for the calibration and for the overlap benchmark. Then, as described in
Section 4.2.3, we automatically find the data size to give to the collective so that it takes
a given target time. We execute multiple runs and keep the median of all runs. Using the
size and the time obtained this way, we approach the target time iteratively. We consider
that this step has converged as soon as the error is below 10%, as a compromise between
precision and estimation time. It is important to note that to compute all the metrics
defined in Section 4.1, we take for tcomm_ref the actual measured communication time, not
the target time.

The second reference time needed for this benchmark is the reference computation
time tcomp_ref . The computation in the benchmark is supposed to be representative of a
typical HPC application. We use a multi-threaded workload, with one OpenMP thread
per core. Each thread executes a sequential GeMM. We measure the time on each thread.
Then, as for communication, we automatically find the matrix size so that the matrix
multiplication of two square matrices takes the target time (as reference we use the time
on the slowest core). Then, for tcomp_ref we take the actual measured computation time,
not the target time.

In all of our benchmark, we did not use hyperthreading and kept one thread per
physical core.

Overlap Benchmark The overlap benchmark itself is a combination of the same
code used to measure communication and computation reference times except they are
now interleaved. The goal is to have both communication and computation running
concurrently.

Algorithm 1: Algorithm for overlap benchmark
Input: S1 // collective data size
Input: S2 // computation data size
t1 ← get_Time();
MPI_Icollective(S1);
t2 ← get_Time();
Compute(S2);
t3 ← get_Time();
MPI_Wait();
t4 ← get_Time();

The actual implementation is shown in Algorithm 1. Using the data and matrix size
estimated with the technique described above, we first call the MPI collective function
and the compute function just after. Finally, we call the MPI_Wait at the end of the last
one.
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The purpose of this test is to evaluate the ability of the runtime to make background
progression. Thus, there is no call to explicit progression functions such as MPI_Test.

Then, using the time measured in the overlap benchmark shown in Algorithm 1, we are
able to compute the inputs for our metric: tmeasured = t4− t1, tcomp = t3− t2, tcall = t2− t1,
twait = t4 − t3.

The benchmark is designed to run with 1 MPI process per node, with all cores occupied
with OpenMP threads. It is possible to reduce the number of OpenMP threads to leave
one (or several) cores free for any MPI progress thread.

4.3.2 Metrics Display

We display the metrics described in Section 4.1 with different methods.

Overhead ratio display The main metric we show is the overhead ratio roverhead as
defined in Section 4.1.1. We represent it using a 2-D heat-map, with communication
time as X-axis and computation time as Y-axis. The color map ranges from green
(roverhead = 0, perfect overlap) to yellow (roverhead = 1, serialized execution), and further to
red (roverhead > 1, slowdown). Blue means roverhead < 0 (faster than reference time), which
usually indicates measure imprecision1.

X-axis and Y-axis follow the same scale, hence the bottom left to top right diagonal
represents cases where computation and communication times are equal. In the opposite
corners, the two timings differ from several orders of magnitude (500µs v.s. 1 s). Hence,
the measures and their ratios are very sensible to execution noise, which leads to less
meaningful observations. We didn’t crop them for completeness, but they may be safely
ignored when looking the 2-D heat-maps.

Impact on computation display The impact on computation, rMPI_impact is shown
as a histogram, as in Figure 4.10; the red line highlights a ratio of 1 (no impact).

Concurrency ratios display Concurrency ratios, rcomm and rcomp_slowdown , are also
presented as 2-D heat-maps, with the same axes as for the overhead ratio. The color
map ranges from blue for the best case (for communication ratio, perfect overlap with
rcomm = 0%; for computation ratio, no impact with rcomp_slowdown = 100%) to red for
the worst case (communication slowdown with rcomm > 100%; impact on computation
with rcomp_slowdown > 100%). We show these ratios in pairs, with communication ratio
heat-map on the left, and computation ratio heat-map on the right, as in Figure 4.7.

4.3.3 Experimental setups

We present here our experimental setups for the tests with our benchmark. We run
experimentations on various MPI implementations and network hardware. Our test
platforms are:

1Warning to Mac users. The Apple Quartz engine tends to blur the figures displayed in this section,
even for printing. To correctly view and print the figures, use a non-Quartz PDF renderer (e.g. Adobe or
Chrome).
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• inti/skylake: 32 nodes, with dual-socket Intel Xeon Platinum 8168, each with 24
cores at 2.7GHz, equipped with Mellanox MT27700 (Connect-IB) InfiniBand boards;

• inti/haswell : 8 nodes, with dual-socket Intel Xeon E5-2698, each with 16 cores at
2.3GHz, equipped with Mellanox MT27600 (Connect-IB) InfiniBand boards;

• inti/sandy : 64 nodes with dual-socket Intel Xeon E5-2680, each with 8 cores at
2.7GHz, equipped with Mellanox MT25400 (ConnectX-2) InfiniBand boards;

• irene/bxi : 64 nodes, with Intel Xeon Phi 7250 with 68 cores at 1.4GHz, equipped
with Bull BXI v1.2 network adapters;

• bora/omnipath: 8 nodes with dual-socket Xeon Gold 6240 each with 18 cores at
2.60GHz, equipped with Omni-Path HFI Silicon 100 Series network adapters.

We run one thread per physical core, without hyperthreading. We tested four differ-
ent collectives for each configuration: MPI_Ibcast, MPI_Ireduce, MPI_Iallgather and
MPI_Ialltoall.

4.4 Benchmark cases study

In this section, we present some benchmark results in two typical cases: OpenMPI/In-
finiBand in basic configuration and MPICH with async progress ; and detail how to use
our metrics to diagnose pathological behaviours. We then compare these results and the
approach of our benchmark with state-of-the-art benchmarks presented in section 3.1:
IMB [15] and OSU [16]. We will then apply these benchmarks to the same cases.

4.4.1 Case study: OpenMPI/InfiniBand

We present here results for the specific case of OpenMPI 4.0.2 on the two machines
inti/haswell (using 8 nodes) and inti/sandy (using 64 nodes), both with an InfiniBand
network.

Figure 4.6 shows overhead ratio results for MPI_Ibcast and MPI_Ireduce. In most
cases, we observe no overlap at all (yellow areas), with roverhead ≈ 1, and even slowdown
in some cases (red areas, with roverhead > 1. This poor performance may be surprising
for some users, but it gets easily explained: OpenMPI does not feature mechanisms
for asynchronous progression. It is expected to observe no overlap in case there is no
background progression mechanisms in the MPI library, like described in Section 4.1.3.

To explain the lack of overlap, Figure 4.7 shows concurrency ratios rcomm and
rcomp_slowdown for OpenMPI on MPI_Ibcast and MPI_Ireduce. MPI_Ibcast on 8 in-
ti/haswell nodes exhibits an rcomm typical of a purely sequential behaviour: MPI calls
are as long as without overlap, which shows it was not executed in background; the
computation is unaffected. For MPI_Ireduce, rcomm (left) is red, indicating that the
communication is slowed down by the computation, while the computation (right) is not
impacted. The difference between MPI_Ireduce and MPI_Ibcast is that MPI_Ireduce
needs to execute the reduction operation on the CPU; these results show that the reduction
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Figure 4.6: OpenMPI 4.0.2 overlap results on InfiniBand for MPI_Ibcast and MPI_Ireduce
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Figure 4.7: OpenMPI concurrency ratios rcomm (left) and rcomp_slowdown (right)
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Figure 4.8: OpenMPI all ranks global ratios MPI_Ibcast on 8 nodes
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speed actually suffers from being run alongside computation. MPI_Ireduce on 64 nodes
is the case where the communication time is the most impacted.

Moreover, we observe some green areas with roverhead < 1 (or even blue) for MPI_Ireduce
on inti/haswell on Figure 4.6, which indicates successful overlap in this part of the pa-
rameters space. The green area is located below the diagonal, thus with computation
time larger than communication time. We can guess that a single step of the collective
algorithm actually overlaps communications with computation, thanks to hardware pro-
gression for point-to-point operations, then the remainder of the collective does not have
the opportunity to be scheduled on the CPU while the computation is running and is
scheduled only at the end. Such mechanism only works when the computation is shorter
than a single step of the collective algorithm, so much shorter than the full collective time
(computation 4 times shorter than communication, which corresponds to a single level
in a reduction tree on 8 nodes). Obviously, the more nodes, the more insignificant this
phenomenon becomes.

The figure 4.8 feature the all rank global ratios. This figure features detailed and
gathered results for a sub part of heatmap results. Each bar represent a case along
the diagonal of equals computation and communication times. The total height of the
bar represent the median overhead ratios for all ranks. There is also an upper extreme
representing the highest overhead ratio among all ranks and lower extreme for the smallest
overhead ratio among all ranks. Finally, the colours composing the bar plot gives the
proportion of time spent in MPI call (light blue), MPI_Wait (purple) and computation
(dark blue). For example in this case, median overhead ratio is below 1.0, meaning that
most of the rank actually overlap a bit. The max overhead ratio is equal to 1.0 for most
cases, so for each execution at least one rank is not able to overlap which make the whole
collective not winning time. The proportion of the bar is half blue and purple meaning
that half of time have been spent in computation and wait. As the experiment used the
same computation and communication time, we can then conclude that the execution was
serialized.

As a conclusion, in most cases no overlap is observed with OpenMPI, which is not
surprising given that it does not implement asynchronous progression mechanisms. We
have shown that there is overlap in some anecdotal cases with very short computation and
a low nodes count. We have exhibited pathological cases (e.g. MPI_Ireduce) where the
communication is slower than if no overlap would have been attempted. In the general
case, the observed performance is roughly the same as if computation and communication
would have been run sequentially.

4.4.2 Case study: MPICH with MPICH_ASYNC_PROGRESS=1

MPICH features an optional progress thread that can be activated through the
MPICH_ASYNC_PROGRESS environment variable. Results for the overhead ratio are shown
on Figure 4.9. As expected, we observe successful overlap in some cases. However, it only
works for large compute sizes and large communication sizes. With smaller sizes, there is
a significant slowdown, worse than without the progress threads. Actually, the behaviour
looks like it is chaotic, with intermixed zones with roverhead � 1 and zones with roverhead < 0.
This is due to huge variability of performance, with standard deviation between 4ms and
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Figure 4.9: MPICH overlap results with async progress thread
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Figure 4.10: Runtime impact comparison on 512ms computation time, for MadMPI (left
2 bars - dedicated core and no dedicated core) and MPICH (right 2 bars - async progress
enabled and disabled)

11ms. For larger sizes, these variations become negligible and overlap can be seen. For
small sizes, these variations prevent from having meaningful times and observations. We
assume that the high variability of performance comes from perturbations from the MPI
runtime with its progression thread.

To confirm this hypothesis, we measured the impact of the MPI implementation
on the computation, using the rMPI_impact introduced in Section 4.1.2. The ratio is
shown in Figure 4.10 for estimated compute times of 512ms, on the right two bars for
MPICH with asynchronous progression and without progression. Overall, for all estimated
compute times, MPICH with an asynchronous progress thread has a huge impact on the
computation, even without actually doing any MPI communications, with a computation
slowdown up to 50% for the worst case. This is explained by the progress thread being
scheduled by the kernel on cores performing computation, stealing CPU cycles and thus
delaying computation.

To understand the impact of MPICH progress thread in the case of overlap, we take a
look at the concurrency ratios rcomm and rcomp_slowdown , as introduced in Section 4.1.2, for
the MPI_Ireduce case, in Figure 4.11. We observe that the bad overhead ratio observed
for small compute sizes and small communication sizes comes from two different reasons.
For small compute times, the overhead comes from the impact on computation. It confirms
that the MPICH runtime in this configuration has a huge impact on the computation.
Hence, the slowdown induced on the computation jeopardizes the global performance,
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Figure 4.11: MPICH concurrency ratios with async progress thread rcomm (left) and
rcomp_slowdown (right)

even with perfect overlap. For communications, above a 8ms threshold, we observe that
the larger the times, the smaller the communication time spend in the MPI_Wait function,
until the communication time is completely overlapped by the computation. For small
communication sizes, the observed overhead comes from communication slowdown. In
these cases, the extra cost necessary to use a progress thread is too high to be hidden by
the communication overlap gain when CPU computations are required.

4.4.3 Comparison with state-of-the-art

We compare here our metrics and benchmark with state-of-the-art benchmarks for non-
blocking collectives: IMB [15] and OMB (OSU microbenchmark) [16]. To do so, we
compare the results on both cases studied in sections 4.4.1 and 4.4.2.

General idea. The general principle of both OMB and IMB is the use of an overlap ratio,
defined as the ratio of time spent in the MPI primitives with overlap, relative to the same
time with blocking MPI calls. Overlap is done with a computation running approximately
the same time as the reference communication time. This way, they evaluate how much
time spent in the MPI primitives has decreased. In essence, this is very similar to our
rcomm metric.

In contrast, the overhead ratio, our main metric, compares what we get on the
overall time with what we expected if perfect overlap would happen. As a consequence,
our benchmark captures behaviours where the progression mechanisms interfere with
computations and make them less efficient.

Comparison of benchmarks using OpenMPI/InfiniBand. The first case for our
comparison is OpenMPI as described in section 4.4.1. The results obtained with OSU
benchmark v5.7 for 1MB MPI_Ibcast and MPI_Ireduce are depicted in Figure 4.12.
It shows a 41.70% overlap ratio for the broadcast and 23.79% for the reduction. In
comparison, our results for the same reduction case shown in Figure 4.6 are in 2-D,
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OSU MPI Non-Blocking Broadcast Latency Test v5.7
# Size Overall(us) Compute(us) Pure Comm.(us) Overlap(%)
1048576 665.10 424.78 412.18 41.70

# Size Overall(us) Compute(us) Pure Comm.(us) Overlap(%)
1048576 1226.44 706.79 681.85 23.79

Figure 4.12: OSU benchmark results for OpenMPI on 8 nodes

OSU MPI Non-Blocking Broadcast Latency Test v5.7
# Size Overall(us) Compute(us) Pure Comm.(us) Overlap(%)
1048576 2098.49 1888.42 1832.79 88.54

# Size Overall(us) Compute(us) Pure Comm.(us) Overlap(%)
1048576 851.56 663.64 643.58 70.80

Figure 4.13: OSU benchmark results for MPICH on 8 nodes with asynchronous progression

with computation time tcomp_ref and communication time tcomm_ref not necessary equal.
We observe on our graphs that results are non-uniform, thus it is valuable to measure
overlap for a computation time different than the communication time. In practice, an
application programmer tries to overlap communications with computation, but he/she
has no guarantee their duration will be equal, depending on the CPU speed, network
speed, and number of nodes, performance is hard to predict. Our results cover a wider
range of values, though the conclusion is not radically different: overlap is not very good
in this case.

Because we display various computation time and communication time, we can observe
that a better overhead ratio is available for the reduction case (middle left 2-D heat-map
in Figure 4.6, labeled openmpi ireduce 8 haswell). If the communication time is greater
than the computation, then we have a greener diagonal, indicating a better overlap.
This is easily explained thanks to the two concurrency ratios, rcomm and rcomp_slowdown ,
as described in Section 4.4.1. In the bottom 2-D heat-maps of Figure 4.7, rcomm (left)
is red, indicating that the communication is slowed down by the computation, while
the computation (right) is not impacted. Hence, to have a perfect overlap, the slowed
communication should not take more time than the computation. Because the slowed
communication takes twice (or more) the amount of time of the communication without
computation, having an initial communication time smaller than the computation time will
bring a better overlap. If a user can influence the nonblocking communication/computation
time ratio in its program, having such information can help leverage better performance.

Such information cannot be deduced from the IMB or OSU measurements, but only
with our extended metrics.

Comparison of benchmarks using MPICH +asynchronous progression. The
second case is MPICH with asynchronous progress thread. We consider MPI_Ialltoall
and MPI_Ireduce, with 1MB of data, on 8 nodes of the inti/skylake platform. Our results
are described in section 4.4.2 (Figure 4.9), and OSU benchmark and IMB results are
shown in Figure 4.13 and Figure 4.14 respectively.
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# Intel(R) MPI Benchmarks 2018, MPI-NBC part
#bytes #repet. t_ovrl[usec] t_pure[usec] t_CPU[usec] overlap[%]
1048576 40 2281.20 1888.82 2052.86 80.89

#bytes #repet. t_ovrl[usec] t_pure[usec] t_CPU[usec] overlap[%]
1048576 40 981.55 790.55 803.90 76.24

Figure 4.14: IMB benchmark results for MPICH on 8 nodes with asynchronous progression

We can see that there is a huge difference between OSU/IMB-NBC and our benchmark:
our benchmark shows that overlap causes an overall 10× slow down (roverhead = 10.96
for MPI_Ialltoall and 13.07 for MPI_Ireduce, on the considered data size), while other
benchmarks tend to show it overlaps successfully (overlap = 70.80% to 88.54%). It is
explained by multiple factors:

• nature of metric: our metric, which is an overhead relative to perfect overlap, is an
open scale; it can express the fact that an overlap leads to worse performance than
if no overlap would have been attempted.

• realistic computation: the computation method in our benchmark uses OpenMP,
and thus exploits all cores, compared to the single-threaded computation in other
benchmarks. We believe our approach is closer to real applications, and is able to
show thread interaction (applications threads and MPI progress threads) that other
benchmarks would overlook.

• computation fixed time v.s. fixed amount: our benchmark runs a predefined amount
of work, so as to be able to compare the duration of computation with and without
overlap, and thus be able to detect the impact of overlap on computation speed.
For computation, the other benchmarks use a loop that runs for a given time,
without being able to tell whether the amount of computation was hindered by
communication progression mechanisms. Our metric rcomp_slowdown is designed to
pinpoint this issue.

• timing issues: other benchmarks take the average of time between nodes as the
collective time, while we take the time of the last rank to complete the collective. It is
important especially for collectives implemented as trees, with a huge load-imbalance
between nodes. Moreover, thanks to our synchronized clocks, we take the median
time of a number of iterations, while others use simply the average.

Our interpretation on this MPICH +progression case, as explained in section 4.5.3, is
that activating the progress thread makes him collide with OpenMP application threads,
causing a huge overhead: the progress thread needs to be woken up, then it competes with
application threads, leading to slow computation, and slow communication. We observe
that this slowed-down communication is actually overlapped, even though this is probably
not what the user wants. All these phenomenons are overlooked by other benchmarks
that simply conclude that there is overlap.

More generally, IMB and OSU benchmarks try to measure whether there is overlap
or not in the case of perfectly matching computation and communication time. Our
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Figure 4.15: OpenMPI 4.0.2 overlap results on InfiniBand for MPI_Ialltoall

benchmark consider more realistic cases (various computation and communication times)
and tries not only to assess overlapping but to diagnose pathological behaviours. It may be
useful for MPI library developers, but for end-users too, e.g. to diagnose thread conflicts
between the MPI library and the application.

4.5 Survey of Overlap Benchmark Results with Various
MPI Implementations and Networks

We present here a survey of the results obtained with our benchmarks on a large set of
configurations and MPI libraries described in Section 4.3.3. See [61] for more complete
results.

We distinguish three different deployment configurations:

• basic with computation on all cores, and default configuration of MPI library;

• progress with computation on all cores, and asynchronous progression mechanisms
enabled if available;

• dedicated with computation on n− 1 cores, with progress thread enabled and bound
to the free core if possible.

4.5.1 Results with basic configuration

We present here results for the overhead ratio we get with widespread MPI implementations
and their default configuration. Due to space constraints, we cannot include results for all
MPI implementations, on all machines, for all collective operations. The selected results
are typical of what we obtained.

These results are obtained on InfiniBand network, on machines inti/haswell and
inti/sandy. Figure 4.15 shows results for OpenMPI 4.0.2, in addition to Figure 4.6 already
studied in Section 4.4.1, Figure 4.16 for MVAPICH 3.2.1, Figure 4.17 for MPICH 3.3, and
Figure 4.18 for MPC.
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Figure 4.16: MVAPICH 3.2.1 overlap results on InfiniBand for MPI_Ibcast
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Figure 4.17: MPICH 3.3 overlap results on InfiniBand for MPI_Ibcast
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Figure 4.18: MPC overlap results on InfiniBand for MPI_Ialltoall and MPI_Ibcast
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Figure 4.19: OpenMPI 4.0.2 overlap results on TCP-Ethernet for MPI_Ibcast and
MPI_Ireduce
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Figure 4.20: OpenMPI 4.0.2 overlap results on Omni-Path for MPI_Ibcast and
MPI_Iallreduce
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Figure 4.21: OpenMPI concurrency ratios rcomm (left) and rcomp_slowdown (right) on Omni-
Path

We also present results obtained for OpenMPI with TCP-Ethernet on inti/sandy on
Figure 4.19, and with Omni-Path on bora/omnipath on Figure 4.20.

Since we are in the basic configuration here, the MPI implementations do not feature
mechanisms for asynchronous progression. Most of these results are similar to the case
studied in Section 4.4.1: no progression is observed and communication and computations
are serialized (yellow areas), or they are contending with each other so the overall
performance is slower than serialized (red areas). We get the same green areas with
roverhead < 1, which is a sign of successful overlap, in the bottom right portion of graphs,
where computation is much shorter than communication.

We observe another green area for OpenMPI on small communication and short com-
putation for MPI_Ialltoall on sandy (Figure 4.15), probably because without rendezvous
and without dependency between messages as in MPI_Ialltoall, progression is performed
fully by the hardware as independent point-to-point operations.

The overlap results for Omni-Path are worse than the other OpenMPI results. The
corresponding concurrency ratios in Figure 4.21 show that both communication and
computation are impacted on this machine, jeopardizing any chance of performance
improvement through overlap.
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As a conclusion, with basic configuration, for a large set of MPI libraries (OpenMPI,
MVAPICH, MPICH, MPC), on various networks (InfiniBand, TCP-Ethernet, Omni-Path),
no overlap is observed except in some insignificant cases. We even observe performance
degradation in some cases.

4.5.2 In depth interpretation of these results using complementary
metrics

The overhead ratio is able to tell us if we gain time or not in an overlap situation. For
example, the figure 4.15 with 8 haswell node tell us that there is no gain nor loss time, i.e,
that the total execution time is equivalent to a serialized execution. This can be caused
by no progression being done in background causing an actual serialized execution, but it
can also be caused by a progress mechanism slowing down the computation to actually
take the same time as the serialized execution. These two cases must be discriminated
as they need different solution to be addressed. Respectively, enhancing the progression
engine in the first case, and managing the resource sharing in the second case.

The figure 4.22 show the concurrency ratios for the same execution. These results
show that the global time spent in MPI_Wait for the overlapped situation is equal to
the reference communication time. Also, the computation is not impacted at all. All
these results lead to the conclusion that the execution is finally serialized. In the second
case where the progression mechanism allow overlap but slow the application down, the
communication concurrency would be closer to 0 with blue zones and the computation
concurrency ratio higher with red zones. The all rank global ratio figure lead to the same
interpretation with overhead ratio equal to 1 and time proportion split equitably between
computation and communication.

Finally, the figure 4.23 shows the same ratios for the 64 nodes execution of MPI_Ialltoall.
The communication concurrency ratio shows the limit between both eager and rendezvous
protocol, as the vertical frontier between 16ms and 32ms. The all rank overhead ratio
figure shows that for value under this frontier, the majority of time spent is in the compu-
tation part. This reinforce the hypothesis that for these small cases, MPI_Ialltoall is
separated in point to point operation successfully handled by hardware.

4.5.3 Results with asynchronous progression enabled

We present here results with asynchronous progression enabled.

MPICH with MPICH_ASYNC_PROGRESS=1

MPICH with MPICH_ASYNC_PROGRESS=1 has been detailed previously in Section 4.4.2. In
some cases, overlap is successful; in other cases, it causes contention between the progress
thread and computation, which causes a huge performance drop.
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Figure 4.22: Concurrency ratios and all ranks overhead ratio for MPI_Ialltoall on 8
Haswell nodes
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Figure 4.23: Concurrency ratios and all ranks overhead ratio for MPI_Ialltoall on 64
Sandy Bridge nodes 73
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Figure 4.24: MadMPI overlap results with progress thread

MVAPICH on InfiniBand

MVAPICH also provides a version supporting progress threads: MVAPICH2-X. Unfortu-
nately, it is distributed as binary-only and we were unable to correctly install and use
MVAPICH2-X 3.2 on our test machines, thus we cannot provide any result with it.

MPC

Recently, MPC exhibited good performances when activating its progress thread [62].
However, this support appears to be broken in the tested version, thus no results can be
provided.

MadMPI with default progression

MadMPI enables progression mechanisms [30] by default. Figure 4.24 shows its overhead
ratio for MPI_Ibcast. We can observe successful overlap on 8 nodes, but no overlap or
even slowdown on 64 nodes.

Figure 4.10 (in Section 4.4.2) shows that MadMPI progression mechanism has nearly no
impact on computation when no communications occur, since its background progression
mechanisms are designed to have more gentle polling strategy than busy-waiting. Progres-
sion mechanisms in MadMPI were initially designed to handle nonblocking point-to-point.
The workload of collective being heavier, sometimes its progression mechanisms are not
enough to achieve good overlap.

Figure 4.25 displays the concurrency ratios for MPI_Ibcast on 64 nodes. We observe on
these figures that the reason for the bad overhead ratio for this case is twofold. First, with
a rcomm around 100% for the most part, it seems communications are not overlapped at all.
For the cases where communications are overlapped, the purplish spots for rcomp_slowdown
indicates computation is impacted. Since on this part of the figure, computation time is
larger than communication times, no performance gain is visible.

This behaviour may be explained by the fact that in this configuration, progression
is performed by a thread with uncontrolled placement, thus colliding with computation
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Figure 4.25: MadMPI concurrency ratios
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Figure 4.26: MPICH overlap results with dedicated core

threads.

4.5.4 Results with dedicated core for progression

We present here results with a core dedicated to communication progression.

MPICH on InfiniBand with dedicated core

We tried to dedicate a core to MPI progression with MPICH, by running computation on
all cores except one, and enabling MPICH_ASYNC_PROGRESS=1. Unfortunately, we found no
mechanism to bind the progress thread to the dedicated core, so its placement was handled
by the kernel thread scheduler. The observed overhead ratios are shown in Figure 4.26.
They are very similar to the ones depicted in Figure 4.9 without the dedicated core.
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Figure 4.27: OpenMPI overlap results on BXI

4.5.5 Results with hardware-based progression

Bull BXI [58] network is designed to handle progression in hardware. Overhead ratios for
Bull BXI v1.2 interconnect with OpenMPI 2.0.4.5-bull on machine irene/bxi are shown
on Figure 4.27.

We observe mostly a sequential behaviour on MPI_Ialltoall and other collectives.
The worst case happens with MPI_Ibcast, where the ratios show a slowdown compared
to sequential execution. This strange behaviour was observed only for this collective.

BXI is designed to handle collective offload to the network card. Unfortunately
BXI v1.2 cards do not properly support this feature. BXI v2 cards have been announced,
and should fix support for hardware-assisted progression for collectives, so as to reach
better overlap in the future.

Metrics use to address the existing mechanisms issues

In this chapter, we introduced metrics designed to evaluate the performance of progression
mechanisms and their impact on the overall performances. The section 4.5 showed that
existing progression mechanism fail to associate a good overlap and a restricted impact on
the application. Without addressing these two issues in a single mechanism, using overlap
to gain performance stays difficult.
In the next chapter, we use these metrics to conceive a progression mechanism with a
reduced impact on the overall and a good overlap capability in order to gain performances.
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Chapter 5

A dedicated core mechanism for
communication progression
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The progression mechanisms benchmarked in the previous chapter have shown issues
when trying to get overlap. Efficiently progressing nonblocking collective communications
remains a problem with existing mechanisms, especially without degrading performance
on the application computation part. It needs to often use CPU time to execute collective
communication algorithms, and it also needs reactivity as the progression required for the
algorithm execution is spread along the communications.

We saw in 4.5.4 that dedicating a core itself does not always implies good performances.
However, the use of appropriate collective implementations and a specific progression
engine should allow the dedicated core to perform efficiently. In this chapter, we will study
the effect of a dedicated core on the progression. Based on this, we propose an event-based
implementation of collective algorithms, and a progression engine for dedicated core.
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5.1 Using a dedicated core for asynchronous communi-
cation progression

To ensure overlap of communications with computation, HPC application programmers
use MPI nonblocking primitives to let communication operations perform in background
while the computation is running on the CPU. However, the MPI specification [63] only
guarantees that these primitives will not block; it does not ensure that progression will
actually happen in background.

The actual behaviour depends on the implementation of the MPI library, but generally,
progression is poor as stated in chapter 4. If no explicit mechanism for progression is
implemented in the MPI library, then progression only occurs inside the calls to the
MPI library. Therefore, if a user calls MPI_Isend, then performs some computation, and
finally calls MPI_Wait to check for completion, chances are high that communication will
actually begin in the MPI_Wait, which jeopardizes any tentative of communication and
computation overlap.

The idea of dedicating a core to the progression is to steal one core usually allocated for
the application computation to restrict its use to the MPI runtime only. Thus, the runtime
is always up to progress communications. The use of a core dedicated to communications is
of interest since it is an application-independent mechanism. It is a background progression
mechanisms as it does not require specific calls (e.g., MPI_Test) inside the application
source code to progress communications.

5.1.1 Analysing core dedication relevance for progression

The section 4.5 showed that state-of-the-art progression mechanisms for nonblocking
collectives often do not associate a good overlap and an optimised sharing of resources
with the application threads. The polling have the tendency to slow the overall down due
to the frequent need for resources used by application.

The introduction of an additional thread beside a multi-threaded runtime typically
causes some performance degradation due to conflicts in thread scheduling as shown in
section 4.5.3. Dedicating a core to this progress thread is an elegant solution to this
issue. Dedicating a core resolve this resource sharing as it isolate each threads on different
resources. However, the section 4.5.4 showed that dedicating a core is not a trivial solution.
The implementation of optimised workers and a good management of available resources
can lead to successfully associate good overlap and performance gain.

Resource need for collective operation overlap

It has been shown [24] that what hinders progression is not a large amount of work to run
on a CPU, but instead very small tasks to be scheduled when needed. Thus, a progression
mechanism does not require a lot of computation power at one time, but needs to execute
multiple small tasks with reactivity.
Moreover, this mechanism requires being effectively isolated from potential threads created
by the application. This imply to restrict the resource used by both MPI progression
engine and application threads to non-intersecting resources.
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Effect of a dedicated core on progression

Having a full dedicated core following these instructions ensures that the MPI library will
be able to schedule these tasks at any time, whenever required, and should guarantee
that progress is maximized. This solution ensure that the engine can always be up and
execute available tasks with reactivity.
From the application point of view, the problem is that it is executed on pre-determined
smaller amount of core. The hindrance between progress threads and application threads
causes chaotic and consequent slowdown. As they originate from the scheduling policy of
the system, they are hardly predictable. In contrast, the slowdown created by removing
a core from the application is accurately predictable using scaling models and should
remains moderate.

5.1.2 Implementation of dedicated cores

Although the “dedicated core” refers to the resource itself, the objective is to have a
software worker using it to take care of the progression. This worker is in charge of
executing the progression work. It must then take care of each MPI implementations
characteristics concerning how the progression communication is handled. For example,
for a task based dedicated core worker, the worker can perform active waiting to execute
each newly available task with reactivity, as the resource is only used for this purpose.

A generic approach of dedicated core

The dedicated core is thus a generic concept which can be applied to every MPI imple-
mentation. One idea was to adapt one of the most common MPI implementation to use
dedicated core. Different possibilities were available to work on, the major ones being
MPICH and OpenMPI.

The considered solution was to rely on the progress threads used in those implementa-
tions to modify their binding to restrict it to the dedicated resource, and then tune the
worker used on progress thread to run efficiently on a dedicated core. OpenMPI had an
option to explicitly enable a progress thread, but this option was discarded in the 1.4
version. MPICH feature a progress thread that can be enabled using the environment
variable MPICH_ASYNC_PROGRESS, however, there is no binding method for this thread
and thus no easy way to restrict it to the dedicated resource. Moreover, the section 4.4.2
showed that this progress thread does not allow smooth progression.

To be able to reunite the best conditions to have an efficient dedicated core, we chose
to rely on the Madmpi MPI implementation. This implementation is an interface to the
NewMadeleine communication library which is closely integrated with the PIOman I/O
manager. The use of this association of PIoman and NewMadeleine allows to accurately
bind resources and benefit from the implementation of point-to-point operations used as
a base for collectives.
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Use of tasks and task lists

PIOman relies on ltasks (user space tasklets equivalent) to organise the submitted work.
Ltasks are chunk of code with their own context made to be executed in user space. When
ltasks are available for execution they are put in lists to be executed by PIOman workers.
Multiple lists are used for locally polling from workers if there is active waiting and for
contention issues.
PIOman wait for various incoming events such as data transmission completion to make
ltasks available.

A Pioman worker for dedicated core

The base principle of this dedicated core implementation is to be associated with the
event-based algorithms we will present in section 5.2.2. Pioman is an event manager
relying on tasklets to execute event handlers. The Pioman engine already feature different
workers used to execute pending tasks. However, these workers were developed to respect
constraints concerning their scheduling as they are likely to disturb other threads from
the application on the same resource. Thus, the timer worker is designed to ensure a
periodical polling every several milliseconds in order to avoid famine. The idle worker is
configured with the SCHED_IDLE policy from pthread created for very low priority threads
able to opportunistically poll tasks.
Using a dedicated resource remove these scheduling constraints as the resource we want to
run our worker on is by definition dedicated for this purpose. However, the worker must
be bound to the dedicated resources to prevent the scheduler to migrate it to another
place. This new type of worker is then called a bound worker. Without any restriction
in terms of scheduling, the worker remains very simple. The worker get the list of task
associated with the topology, then the worker can poll tasks without restrictions. This
allows this worker to be ready to execute newly submitted task with reactivity, unlike a
timer worker which do it every several milliseconds.

5.1.3 Dedicated core cohabitation with OpenMP threads

As stated in last section, the bound worker is designed to use the resource it is placed on
without restriction. However, with hybrid applications, other programming models such
as OpenMP may schedule thread on the dedicated resource. Indeed, to actually have a
dedicated resource, each programming model must be configured to avoid the resource
chosen for dedication. To focus on the common example of MPI + OpenMP hybrid associ-
ation, the OpenMP runtime must be configured to not impinge on the dedicated core space.

To do so, each OpenMP implementation propose its own binding threads facility. The
different OpenMP implementations propose multiple non-standard solutions with a more
easy to use conception than the standard one we will present here. The choice of using
this standard solution have been made as it is applicable to every implementation.

The first thing we do to dedicate a core is to restrict the chosen resource from the
OpenMP resource set. OpenMP define places where threads are located and executed.
The environment variable OMP_PLACES allows the user to specify abstract names such as
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“threads”, “cores” or “socket“ to set the granularity of places. It can be combined with a
number in parentheses to specify the number of places. A number inferior to the total
number of available core will then let unused resources usable for dedication. However, this
solution does not let the user explicitly set the exact places to put the threads on. With a
n cores processor, OMP_PLACES=cores (n-1) will create the good number of places, but
the actual core not used is not explicitly defined. The solution which can be used is then
the comma-separated list of places. For example, OMP_PLACES = {1:n-1} will ensure that
the first core will not be used by OpenMP as it specify that places available are on core 1
to n.

It is also important to adapt the number of threads to create with one less core
available for computation. Creating more threads than the number of places would let
two threads on the same places. This will slow the application down as each thread
will alternatively be scheduled with a non-negligible overhead. Applications usually split
the work to do equitably between all threads. Thus, with two threads running on one
core, the actual work to be done by this core may be twice the other in function of
OpenMP parameters. This unbalance has an impact on the performance as all threads
often wait in a barrier at then end of a parallel region. However, removing one thread
will slow the application down in a more moderate way as the work will be split effi-
ciently on each core. We can then set the number of thread using OMP_NUM_THREADS= n-1.

Finally, a good practice to have better performance in this configuration is to set the
environment variable OMP_PROC_BIND = true to prevent threads to migrate between cores.
Indeed, with a thread number equal to the number of places, most of the applications will
benefit from sparing the migration cost and keeping each thread on one resource.

5.2 Implementing NBC in NewMadeleine
NewMadeleine, through its MPI interface MadMPI, proposes blocking and nonblocking
implementation of MPI point-to-point operations. In this section, we present collective
algorithms based on the NewMadeleine point-to-point operations. We will give the general
ideas of the implementation of these algorithms and illustrate it with some examples.

5.2.1 NewMadeleine algorithms for nonblocking collectives

The NewMadeleine communication library relies on event handlers to manage the progres-
sion work. These handlers are triggered following driver notifications on the communication
status (e.g. send or receive complete). This allows the mechanism in charge of the pro-
gression to react wherever it is on the system. The Pioman event manager can be used
to manage these event handlers. Tasklets are then used to execute drivers code. Driver
events are then sent to NewMadeleine using upcalls.

Pioman tasklet-based worker for event handling

The Pioman engine is conceived to schedule tasklets to opportunistically execute the
handlers on the available resources. When paired with NewMadeleine, it can execute
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the progression handlers to bring the reactivity and computation resources needed. As a
consequence, it allows an efficient resource management and limit the progression impact
on the application. Its event-based structure give a better handle with multiple threads in
comparison to active waiting for each thread. The main purpose is thus to simplify the re-
source management by making this progress work doable by any of the available CPU core.

The aggressive polling policy used by this dedicated worker can however have an
impact on the application by flooding the memory bus. This could have for effect to
generate contention for the task submission. The Pioman list used for this purpose are
actually split in two, one using spinlock for the polling, and the other using lock free
mechanisms used for the submission. The submitted tasks are then transferred from
one queue to the other when the lock is held. This ensures to minimise the potential
contention between them.

Event-based collective algorithms

The collective progression work consist of multiple pre-determined point-to-point opera-
tions. This set of operations achieve the expected collective purpose with optimisation.
Following this idea, the collective algorithm need to schedule the multiple point-to-point
operations following specific events. This must take into account the state of the collective
between these operations (e.g, A rank must wait to receive a value before sending it to the
next one in the algorithm). The communication scheme is known since the initialisation
of the collective, meaning that every point-to-point operation at every step is defined
from the beginning of the collective. We can then define the algorithm as a sequence of
states transformed through events. For example, in a tree-based broadcast, to respect the
required state defined by the algorithm, let us say that the rank y will have to send the
value to rank z, but also receive the value from the rank x. The collective algorithm must
ensure that the operation xsendtoy is done before ysendtoz.

To respect these constraints, the collective algorithm is divided in multiple steps. Each
step include the operations ready to be performed. The events corresponding to the end of
receptions or sending are triggered to assess that all these operations are done. When all
the events needed for one step are triggered, they make new operations available. These
newly available operations are included in the next step to be executed.

To be able to run the available handlers, it is necessary to keep track of the context
of the collective. To be executed anywhere on the system, handlers include a context of
the current state of the collective, the rank it is associated with, and other information
required. MPI use request for nonblocking communications which is wrapped in a bigger
NewMadeleine object including the current state of the collective.

Similar to the functioning of other nonblocking implementation, the MPI calls have
the purpose of initialising the necessary structures for the collective. The previous cited
request is initialised in this function. After this initialisation the MPI call can start
the collective algorithm by scheduling the first step. The progression engine then have
to execute newly available handlers and run the next step in function of the collective state.

83



Name Description
MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit− wise and
MPI_LOR logical or
MPI_BOR bit− wise or
MPI_LXOR logical xor
MPI_BXOR bit− wise xor

MPI_MAXLOC max value and location
MPI_MINLOC min value and location

Table 5.1: MPI operators with their descriptions

To summarise, the collective algorithm have the role of splitting the necessary com-
munications in handlers. It ensures that all these handlers are executed in a good order
to perform the purpose of the collective. These handlers can be executed by an engine
composed by one or multiple execution units using tasklets. The split of the total workload
among handlers then allows all the resources involved to execute them wherever they are
in the system.

5.2.2 Implementation of collectives in NewMadeleine

Collectives feature different communication schemes that can be classified as the following:
Some collectives called ‘Nto1 will communicate from the N ranks involved in the collective
to the root. This is the case for MPI_Ireduce for example. On the contrary, Some
collective such as MPI_Ibcast will communicate data from the root to the n ranks (1toN).
Finally, the last kind of collective move data from the N nodes to the N nodes. This is
the case for the MPI_Ialltoall.

Collective algorithms greatly differ to achieve these 3 type of collectives. 1toN orNto1
collectives will usually use tree-based algorithms to efficiently spread or gather data from
the root. N to N collectives are typically trickier to optimise as sending from N to N
implies that all ranks will have work to do during the entire duration of the collective. Some
of these, such as MPI_Allgather and MPI_Allreduce use step-based algorithm(reduce
followed by broadcast or recursive halving). The MPI_Ialltoall can introduce a lot of
simultaneous communications. We give the implementation for two examples of algorithms
respectively in the next sections.

MPI_Ireduce Implementation

To illustrate the general process of these N to 1 algorithms, we will detail in this section
the algorithm of MPI_Ireduce. The reduce collective take values from all ranks involved

84



step 2

step 1

3 2 1 0ranks

SEND
to
1

SEND
to
0

RECEIVE
from

3

RECEIVE
from

2

SEND
to
0

RECEIVE
from

1

send done send done recv done recv done

network send task

event

... ... ... ...

recv done

...

send done

...
network recv task

send notifier

recv notifier

network transfer

Figure 5.2: Task creation and order of an MPI_Ireduce
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in the collective, and merge them on the root rank using a predefined operation chosen by
user such as sum, product. . . (table 5.1)

This ireduce implementation is developed from a tree-based algorithm similar to the
one used for broadcast. In a reduce however, the tree will be browsed backward i.e, from
the leaf to the root, as data is gathered on the root instead of being spread.

The figure 5.2 depicts the two steps required to perform the ireduce using tasks. The
initialisation done in MPI_Ireduce allocate the structures needed for the collective such
as the request containing the global context of the collective. The first step can then be
set up by initiating the tree-based corresponding point-to-point communications. The
communication is then handle by Pioman which split the total data in tasks. Depending
on the amount of data to send, multiple tasks will be created to send (red square) and
receive (green square) the packets.
The completion of the communication then generates an event for both receive and send
side. This event schedules a send (light blue square) or receive (purple square) notifier
task to handle the communication termination. For the reduce the receive notifier is in
charge of performing the local reduce operation between the received and the current
process value. The last notifier to be executed also has the charge to set up the next step.

Network intensive collective management

Some collectives are not naturally step-based, This type of collectives such as Allgather,
Allreduce and Alltoall are designed to communicate data from every nodes to every nodes
(N to N collectives). This type of communication are usually much more network intensive
than 1 to N as every node can be considered as the root. The nonblocking versions of these
collective can initiate all the ready communication at the initialisation of the collective and
try to perform then at the same time. Moreover, some of these such as IAlltoall have no
data dependencies to regulate the readiness of the needed point-to-point communications:
from the initialisation every node is able to communicate the value to every other node,
in contrast to a tree-based communication, such as reduce, where values must be received
and reduced before being sent to the tree child. This amount of ready communication can
then cause a communication burst, especially with a great number of process. This burst
can then greatly degrade the network performance and slow the collective execution.
The implementation of MPI_Ialltoall in MadMPI restricts the number of submission of
send for each process at the same time. At the opposite all receive are already pre posted
at the initialisation of the collective. In this way, the total point-to-point communications
needed are split between multiple step. When one send is completed, the send notifier
can take a pending communication to continue the progress of the collective.
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Figure 5.3: MadMPI overlap with dedicated core
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5.3 Pioman dedicated core benchmarking

5.3.1 MadMPI dedicated core performance using BenchNBC

We enabled the dedicated core configuration in MadMPI and bound the worker on a
free core. Overhead ratio of this configuration is shown in Figure 5.3. We observe
that MadMPI with a dedicated core manages to overlap perfectly communications with
computation, for any computation/communication sizes with every collective on 8 Haswell
nodes. The efficient overlap also scales up to the tested 64 nodes, though the computation
and communication times need to be closer than on 8 nodes. This can be observed as
upper left and bottom right corners of each graph with 64 nodes tends to have an overhead
ratio superior to 2. This can be explained as order of magnitude between computation
and communication make the measure imprecise. This will eventually slow the overall
collective down and penalise where the overlap conditions are not tasks. Figure 4.10 shows
rMPI_impact , the impact of MadMPI on computation (left 2 bars), with the dedicated core
and without the dedicated core. The default configuration presented in section 4.5.3 has
little impact on computation but the configuration with dedicated core reduces this impact,
which is not surprising considering that the default uses the same cores as computation,
whereas having a dedicated core should avoid any interaction.

5.3.2 Analysis of collective behaviour using concurrency and all
ranks metrics

The global performance of a dedicated core progressing collectives are satisfying, but
the metrics such as communication and computation concurrency ratios and the all rank
results can give a clue about the remaining obstacles for a perfect overlap.

Ibcast

The different metrics for the broadcast represent an archetype of this perfect overlap.
The figures 5.4 and 5.5 which represent respectively the execution on 8 Haswell cores and
on 64 Sandy Bridge cores shows very little differences. This shows that the progression
mechanism is able to scale on numerous nodes.
The communication concurrency ratio is split in two parts, the upper left part shows that
with enough computation, the collective time is totally hidden. The lower right part tends
to have a sequential communication. This can be easily explained as this part represent
when the experiment does not have enough computation to overlap all the communication
part. Then the less computation is available the more the progression is done by the
MPI_Wait.
Finally, the all rank view, show a perfectly flat shape, except for the 500 microseconds
experiment.
The communication concurrency ratio for the entire 500 microseconds shows that the
MPI_Wait is poorly reduced with overlap. The combination of very small communication
and computation time is highly impacted by variations in measure. With this kind of
value, the dedicated core can sometimes lack of reactivity making it hard to perfectly
overlap for very small executions All these slowed down values can be then be explained
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Figure 5.4: Concurrency ratios for MPI_Ibcast on 8 Haswell nodes
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Figure 5.5: Concurrency ratios for MPI_Ibcast on 64 Sandy Bridge nodes89



by the combination of variation and the measure of very small cases. The flat boxes show
that every rank have a perfect overlap as minimum, maximum and median rank overhead
ratio are merged at value 0.

Ireduce

The ireduce collective show a global equivalent for both set of figures 5.6 and 5.7. The
communication concurrency ratio for both figures shows that the ratio is split diagonally
for the same reasons as for the broadcast. However, we can also see a frontier from 64
microseconds to 128 microseconds for the 8 nodes execution and from 128 microseconds
to 256 microseconds for the 64 nodes execution. This can be explained as the MPI reduce
include a reduce operation. It is likely due to the operation execution hindering the
computation on these cases.
The all rank view show a very good but not perfect overlap, there is difference between
the two executions as the maximum overhead ratio is significantly higher for multiple
values. This shows that the reduce is more affected by the number of ranks involved in
the collective.

Ialltoall

The section 5.2.2 showed that collective such as Ialltoall are based on a "NtoN" commu-
nication pattern. These collectives are then more likely to be impacted by scalability
problems. The figures 5.8 and 5.9 show some differences especially for the all ranks graphs.
For the 8 nodes results, the global behaviour present near zero overhead ratios and is very
similar to the 8 node execution of the broadcast. The 64 nodes results introduce close
to 0 but negative ratios. With a great number of nodes involved in the collective, the
MPI_Ialltoall require achieving a lot of communication. This make it more sensible to
variations between all executions. At the end, the time get from each execution of the
collective can be different. If the variation imply a shorter time than the reference time, a
good overlapped experiment must be faster than the reference and give these negative
ratios.

Global overview of the impact of node count on progression

A good thing to note is that most of the NBC have actually a modified behaviour as node
and MPI process count implied in the collective grow. The more nodes are implied in
the collective, the more complex the execution will be. This has a double effect on the
interpretation of these results. First, the multiplication of nodes have an effect on the
measure itself. As node number increases, the global communication count needed grows
up. The impact on the measure can be seen on the global overview of figure 5.9. The
benchmark in this situation more likely get an error delta on the metric calculation and
can give these negative ratios.

Another effect is that collective tends to be harder to overlap when the node count
increases. Indeed, the benchmark is conceived to calculate the global time of the collective
based on the maximum value of all MPI processes. Following this, the chances of having
scheduling events or more generally system noise increase. This may eventually delay the
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Figure 5.6: Concurrency ratios for MPI_Ireduce on 8 Haswell nodes
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Figure 5.7: Concurrency ratios for MPI_Ireduce on 64 Sandy Bridge nodes91
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Figure 5.8: Concurrency ratios for MPI_Ialltoall on 8 Haswell nodes
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Figure 5.9: Concurrency ratios for MPI_Ialltoall on 64 Sandy Bridge nodes
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progression of one node. Thus, one node being late will give higher maximum and poorer
results, as observed on the global overview on figure 5.7.

Effect of unbalanced computation and communication on the measure

This benchmark implementation experiment cases where computation and communication
are unbalanced. Looking at all the heatmaps presented in this document, the upper
left and lower right corner of each heatmap introduce the most unbalanced cases. One
thing to note is that these cases are the most difficult to interpret. As the order of size
become more different, the variation in measure become more impacting. For example,
trying to overlap 1 second of computation with 500 microseconds of communication
will have an incertitude on both time. The variation on the second of computation can
however be around 500 microseconds or even more. In this situation the variation can to-
tally override the communication time making the metrics go on very high or very low ratio.

If the precise interpretation of this case is difficult, keeping this results and related
ones with similar sizes remains useful. The global look at these extreme values gives a
clue on the capacity of the runtime to remains stable with extreme cases.

The dedicated core is a reliable way to progress communication in the purpose of
getting overlap. The evaluation of its performance was based on the benchmark introduced
in chapter 4. Even when trying to be as close as possible from real application, trying to
get overlap remains difficult. Using an efficient progression mechanism is just the half of
the whole problem, as application may not be conceived to permit overlap.
Using a dedicated core in those situations where no overlap is possible is not free. As it
has to steal resources from applications, knowing when to enable it is very important to
ensure the best performances in all cases.
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Chapter 6

A model for application performance
with a dedicated core for
communication progression

Contents
6.1 Modelling dedicated core impact on hybrid applications . . . 96

6.1.1 Overview of the performance model . . . . . . . . . . . . . . . . 96

6.1.2 Impact of a dedicated core on computation . . . . . . . . . . . 97

6.1.3 Modeling MPI performance with dedicated core . . . . . . . . . 100

6.1.4 Global model with MPI and computation . . . . . . . . . . . . 103

6.2 Gathering applications information to use the model . . . . . 104

6.3 Evaluation of the model . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Using the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.1 Understanding the computation-slowdown/communication-speedup
ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.2 Evaluating the effectiveness of nonblocking communication . . . 110

6.4.3 Potential gain of transforming blocking call to nonblocking . . . 111

Modelling is a powerful tool to predict the performance of applications. The previous
chapter showed the efficiency of stealing a core from the application to progress the
communications. However, the missing core from the application reduce the computation
performances. To be valuable, the overlap of computation and communication must be
greater than the computation performance loss. Based on this, we can design a model,
evaluating the behaviour of both the communication and computation parts, to predict if it
is worth it to use a dedicated core for the application communication progression. Hybrid
MPI + OpenMP applications are composed of OpenMP parallel computation parts and
MPI communication parts that need to be merged to execute independent computation
during the communications. The applications used in HPC thus propose multiple profiles
considering the duration of both communication and computation part in these potential
overlap situations, the number of these overlap situations and their proportion in relation
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to the total time of the application. These different profile of application can have very
different reactions to a dedicated core, from winning time to degrading the performances.
In this this chapter, we will design such model. Then, we will describe how to gather the
information needed to use the model, and for which purposes the model can be useful.

6.1 Modelling dedicated core impact on hybrid applica-
tions

In this section, we will design our model. First, we will give a general overview of the
model, then we will detail how the model is built for both computation and communication
parts.

6.1.1 Overview of the performance model

To sort out cases where overlap with dedicated core is beneficial from cases where it is
detrimental to performance, we propose a model to predict performance. This model
takes into account two phenomena:

• the impact on computation performance of having one less core because the core
dedicated to communications is not available for computation anymore. We will
study this aspect in section 6.1.2;

• the impact on communication performance and on overlap of communication and
computation of having a dedicated core. It will be described in section 6.1.3.

The first part about computation is expected to be a performance degradation. The
second part, about overlap, is expected to be a performance improvement; it may be
negligible if communication may not be overlapable, or if communications constitute a
small part of the total application execution time. Then, the computation slowdown may
overcome the communication speedup. For this reason, the dedicated core cannot just be
a “enabled and forget” feature. The actual challenge is to know whether the degradation
is compensated by the gain. To be used in the relevant situations, we must be able to
predict its behaviour.

Unfortunately, the behaviour of HPC applications diverges greatly with regard to com-
putation and communication. Even on the same application, different inputs (parameters,
data...) may lead to different performance behaviour. Worse, two set of parameters can
seem to be similar, showing very close computation time when run without dedicated
core. However, with the use of dedicated core, only one set of parameters will give a
significant time gain. This is due to the input parameters, which may drastically change
communications/computation scheme and proportions.

To cover these cases and be oblivious to input parameters, we will design our model
to be independent of the application. To do so, our model decomposes an application
as a sum of specialized parts, each with a different behaviour when a dedicated core for
communication progression is involved. These parts will be presented in section 6.1.2 and
section 6.1.3.
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Thanks to our model, we aim at predicting if the use of a dedicated core for progression
is beneficial for an application. To apply our model, we will first run the application on all
cores without a progression thread to get a reference time tnoprogress . Details on how the
exact timings are measured on the different MPI ranks is given in Sec. 6.2. This tnoprogress
is composed of:

• tcomp the time spent by the application in computation;

• tMPI the time spent in the MPI library. This time is itself composed of tMPIoverlapable
for communications that may benefit from overlap (nonblocking point-to-point
and collective primitives) and progress in background, and tMPInotoverlapable for the
remaining communications and all MPI management time.

This distinction will help us model and analyse precisely the behaviour of applications
with and without dedicated core. It is clear that the expected speedup from the use of a
dedicated core will be limited to the time spent in the MPI library.

Let tdedicated the execution time of the application with a dedicated core for communi-
cations. It will diverge from tnoprogress as follows:

• on the tcomp part, computation will be slowed down by an overhead toverhead ;

• on the tMPI part, we expect the nonblocking communication primitives to be fully
overlapped and thus the gain should be tMPIoverlapable .

Thus, the general formulation for our model is:

tdedicated = tnoprogress + toverhead − tMPIoverlapable

This formulation helps to get an intuitive idea of the model. However, instead of computing
toverhead and tMPIoverlapable , in the later sections we will decompose tcomp and tMPI .

6.1.2 Impact of a dedicated core on computation

The evolution of modern processors exhibits an increase in the number of cores. With more
and more cores, it becomes more difficult to optimize applications and fully exploit those
CPUs. Thus stealing a core to an application becomes less impacting for computation
performances.

Study of OpenMP applications scalability

To quantify the loss caused by stealing a core to the application, we ran a study on the
scalability of OpenMP threading for several well-known benchmarks :

• from the NAS Parallel benchmarks [64]:

– BT-MZ: a Block Tri-diagonal solver app;

– LU-MZ: a Lower-Upper Gauss-Seidel solver app;

– SP-MZ: a Scalar Penta-diagonal solver app;

• and from the CORAL Benchmarks:
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Figure 6.1: Study of OpenMP scalability on several well-known benchmarks (red plain
line) against theoretical linear scaling (blue dotted line)

– MiniMD: a simple parallel molecular dynamics (MD) code [65];
– MiniFE: a proxy application for unstructured implicit finite element codes [65];
– Lulesh: the Livermore Unstructured Lagrangian Explicit Shock Hydrodynam-

ics [66];
– Kripke: a simple scalable 3D Sn deterministic particle transport code [67].

We tested those benchmarks on several test platforms:

• inti/sandy-bridge: 234 nodes, with dual-socket Intel Xeon E5-2680, each with 8
cores at 2.7GHz, equipped with Mellanox QDR Infiniband (used for the LU-MZ,
SP-MZ, MiniFE and MiniMD benchmarks),

• inti/haswell : 8 nodes, with dual-socket Intel Xeon E5-2698, each with 16 cores at
2.3GHz, equipped with Mellanox MT27600 (Connect-IB) InfiniBand boards (used
for BT-MZ benchmark),

• inti/skylake: 32 nodes, with dual-socket Intel Xeon Platinum 8168, each with 24
cores at 2.7GHz, equipped with Mellanox MT27700 (Connect-IB) InfiniBand boards
(used for the Lulesh benchmark),

• inti/KNL: 24 nodes, with Intel Xeon Phi 7250, each with 68 cores at 1.4GHz,
equipped with Mellanox EDR InfiniBand boards (used for the Kripke benchmark).

OpenMP scalability results for all benchmarks are displayed in figure 6.1. From these
graphs, we observe two types of behaviour. On the one hand, benchmarks on the top
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row show the expected behaviour : the execution time follows a 1/(δ ×Ncore) slope (with
δ often very close to 1). On the other hand, the first three benchmarks of the bottom
row show bad OpenMP scalability, as they all lose performance when the number of
threads is greater than a given threshold (specific to each application). We can see on
some benchmarks (LU-MZ and Lulesh) that the last point of the curve shows a greater
speedup than the previous points. However, since those points are outliers, we consider
they do not impact the general slope of the curve.

One can observe that the Kripke benchmark displays the behaviour we described in
section 6.1.1: two set of input parameters cause different OpenMP scalability. When
executed with small sizes (i.e. x=16, y=8 and z=8, in figure 6.1g), the bad OpenMP
scalability causes a slowdown instead of a speedup when large number of threads are
used. However, when executed with large sizes (i.e. x=400, y=200, z=200, in figure 6.1h),
we observe speedup even with a large number of threads, and the scalability follows the
1/Ncore slope.

We consider that taking a core from the parallel computation will cause slowdown
induced by the loss of computational power. As we have seen, if the OpenMP scalability
is not good, taking a core from the computation will not cause a slowdown, but a speedup!
Hence, since the impact on computation time is supposed to hinder the speedup gained
thanks to the communication progression, we will consider the worst-case scenario for our
model : good OpenMP scalability. This case is the one actually producing a slowdown
which may prevent a dedicated core for progression to be effective.

As we have seen, most applications with a good OpenMP scalability exposes a
1/(δ ×Ncore) slope (with δ very close to 1). Hence, in our model, we will approximate the
computation slowdown induced by the removal of one computational core with the linear
equation 1/Ncore .

Modeling manycore cpu impact on thread scalability

The overhead expectation toverhead due to the core stealing impact can be modelled using
the computation time (tcomp) from no progression execution. With our approximation,
we estimate that the new computation time when removing Ndedcore cores among Ncore is
tnewcomp = tcomp ×

Ncore
Ncore−Ndedcore

. Specifically, it means that when taking one dedicated

core for progression, the expected computation time is tnewcomp = tcomp ×
Ncore

Ncore−1
. The

induced slowdown is then computed with toverhead = tnewcomp − tcomp . This equation can
be simplified to toverhead =

tcomp
Ncore−1

. For a 16-core node, taking a computational core will

cause a
tcomp
15

slowdown, and on a 64-core node, the slowdown will be
tcomp
63

. Thus, the
more core a processor has, the more negligible the slowdown will be.

Link to the measures and metrics in chapter 4

The model for computation is thus constructed using the tcomp get from the execution.
The chapter 4 introduced a timing for computation called tcomp that also represent com-
putation. However, theses two timings do not represent the same computation part: tcomp
represent the computation part to be overlapped and placed between MPI call and MPI
Wait. Thus, tcomp is a sub part of tcomp and is interesting for modelling MPI part as the
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amount of computation between initialisation and wait impact the overlap capacity. This
timing is however hard to measure as it have sense only from the MPI runtime point of
view: i.e, this is a computation part defined by its both MPI calls bounds, but is also
code executed outside the runtime. An envisaged solution would be to instrument the
runtime to calculate this time from its two bounds.

The section 4.1.2 presented a concurrency ratio designed to measure the direct impact
from the progression mechanism on the benchmark parallel computation. For dedicated
core, this impact is minimal as resources are not shared and each core is not disturbed.
However, the real slowdown caused by the dedicated core is the removal of one core to the
application. This slowdown has the advantage of being much easier to model and predict
than a slowdown due to threads interactions, as these interaction prediction would require
to simulate the scheduling of each thread, the effects on caches and more.

6.1.3 Modeling MPI performance with dedicated core

The second part of the model estimates the decrease of the time spent in MPI functions
thanks to a dedicated core.

An MPI distributed application usually includes different MPI calls. These MPI calls
will not display the same behaviour when a core dedicated for background progression is
used. To build an accurate model for the communication part when using a dedicated
core, we need to classify the MPI functions regarding their response to the use of said
dedicated core.

Classification of MPI calls

For our model we distinguish four types of MPI calls:

• blocking communication calls

• nonblocking communication initialisation calls

• nonblocking communication completion calls (e.g. MPI_Test, MPI_Wait)

• other MPI calls (e.g. runtime initialisation, communicators management, datatypes
management, etc.)

With this classification, we decompose the total time spent in MPI in the following
categories:

tMPI = tMPIblocking + tMPInonblocking + tMPItest + tMPIwait + tMPIother

with the following definitions:

• tMPIblocking is the time spent in blocking communication calls;

• tMPInonblocking is the time spent in nonblocking initialisation calls such as MPI_Isend,
MPI_Irecv or MPI_Iallgather;
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• tMPItest + tMPIwait , the time spent in active progression functions such as MPI_Test
and MPI_Wait;

• tMPIother is the remaining time spent in the MPI runtime (e.g. initialisation, commu-
nicators management, datatypes management, etc.).

In the following sections, we will describe how each category of MPI call will behave
when a dedicated core is used for background progression.

Impact of dedicated core on each MPI call category

Impact on nonblocking initialisation and completion calls As we presented in sec-
tion 5.1, when the MPI library implements no progression mechanisms, then nonblocking
communications only progress inside MPI calls. These calls can be nonblocking initialisa-
tion calls (e.g. MPI_Isend, MPI_Irecv, MPI_Iallgather), completion calls (e.g. MPI_Test,
MPI_Wait), or any MPI calls involved in communications (even blocking primitives).

With a dedicated core, nonblocking communications are expected to progress on said
dedicated core, thus not consuming computational power from the other cores. However,
even if the communication itself takes place on the dedicated core, the time taken by
the actual involved MPI calls is not completely nullified: the requests still have to be
initialized and the associated operation registered in the MPI runtime for initialisation
calls, ; the status of the request has to be fetched, with the relevant synchronisation, for
completion calls.

We define tminMPInonblockinit , tminMPItest and tminMPIwait to be the minimum time required
to execute a nonblocking initialisation call, a test call and a wait call respectively, without
performing any progression.

The minimum time for nonblocking initialisation calls and MPI_Test calls is easy to
meet. When an asynchronous progression mechanism is involved, the initialisation call
job is to just fill in the request argument, then let the progression happen in background.
So no extra time is taken for progression. For a MPI_Test call, its job is just to test if the
associated operation is finished. If not, it will let the background mechanism to progress
the operation, and will not take extra time to realize such progression.

However, a call to MPI_Wait actually has to wait until the operation is done. If the
operation is not finished when the call is performed, then it will block until the operation
completes. Even if the progression happens in background, it cannot be overlapped by
computations and it will not be hidden. Our model aims at predicting if an application
will benefit from the use of nonblocking communications with a dedicated core for
asynchronous progress. Because of the semantics of the MPI_Wait procedure, nonblocking
communications by themselves are useful only if there is enough computation to hide
the communications. Hence, in our model, we consider the best-case scenario for using
nonblocking communications. We assume that, when transformed to use said nonblocking
communications, the application exhibits enough computations between an initialisation
call and its corresponding completion call to completely overlap the communication time.
In this case, when using a dedicated core for progression, the execution time for the
MPI_Wait calls will always be the minimum time.

Thus, if we consider that the application embeds Nnonblocking nonblocking initialisation
calls, Ntest MPI_Test calls and Nwait MPI_Wait calls, we model the time for all calls
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involved in nonblocking communications to be:

tMPInonblockdedicated = Nnonblocking × tminMPInonblock+

Ntest × tminMPItest +Nwait × tminMPIwait

Impact on blocking calls We have seen so far how the nonblocking calls already in
the application will behave with a dedicated core. We will now see what would happen
if blocking calls would be changed into nonblocking calls to benefit from the use of a
dedicated core.

Due to algorithmic constraints, it is expected that even with a large refactoring
of the application, not all blocking calls may be changed to nonblocking with overlap.
Thus blocking communications in the original application will either remain blocking
communications, or be changed in their nonblocking counterparts (hence adding the
necessary initialisation and completion calls). Both cases will behave differently when a
dedicated core is used.

For the first case, one can think that it is trivial, as dedicated core is used to progress
nonblocking calls and not blocking calls. This is wrong. As we said in the previous part,
blocking calls may help progress nonblocking communications. We decided to decompose
the time of a blocking call tMPIblocking in the time of the actual blocking communica-
tion tMPIblockingcom and the time spend to progress pending nonblocking communications
tMPIblockprogress :

tMPIblocking = tMPIblockingcom + tMPIblockprogress

If a dedicated core is used for progress, then blocking calls will not progress nonblocking
communications anymore. Thus, tMPIblockprogress becomes null, and we have :

tMPIblockingdedicated = tMPIblockingcom

For the second case, as the blocking communication is transformed in a nonblocking
communication, its time becomes similar to nonblocking communications. The most
direct way to change a blocking communication to its nonblocking counterpart is to
call the corresponding initialisation call, then MPI_Wait as its completion call. Thus,
the new time when using a dedicated core for progression is : tMPIblockingtransformed =
tminMPInonblock + tminMPIwait .

Let us consider an application with Nblocking MPI blocking communications, and
that a ratio α of these blocking communications are transformed in their nonblocking
counterparts, the new time for these communications are:

tMPIoldblocking = α×Nblocking × tMPIblockingtransformed

+ (1− α)×Nblocking × tMPIblockingdedicated

which can be developed in:

tMPIoldblocking = α×Nblocking × (tminMPInonblock + tminMPIwait)

+ (1− α)×Nblocking × tMPIblockingcom
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Impact on the other MPI calls and full MPI model The last type of MPI calls in
our classification is other, which are the MPI calls that handle the library and internal
structures management, but perform no communications and no progression. These calls
are not impacted by the use of a dedicated core for progress, and the time tMPIother remains
the same.

Thus, when putting together all parts of the MPI model and considering that a ratio
α of blocking calls will be changed between the initial version of the application and the
version we want to model, the MPI time when using a dedicated core is:

tMPIdedicated = tMPInonblockdedicated + tMPIoldblocking + tMPIother

which can be developed in:

tMPIdedicated = Nnonblocking × tminMPInonblock +Ntest × tminMPItest+

Nwait × tminMPIwait + α×Nblocking × (tminMPInonblock + tminMPIwait)

+ (1− α)×Nblocking × tMPIblockingcom + tMPIother

Link to the measures in chapter 4

The chapter 4 defined the MPI time in two parts: the tcall is the time spent in the MPI
initialisation call and the twait time spent in the MPI Wait. Theses two parts defined to
compute metrics represent the duration on a single place of overlap. In real applications,
overlap situations can be multiple. The definition of tMPInonblocking can then be defined
as the sum of the tcall from each MPI initialisation call in the application. Similarly, the
tMPIwait can be defined as the sum of all twait .

6.1.4 Global model with MPI and computation

The final model is the combination of the estimated computation slowdown modelled in
section 6.1.2, and the communication evolution modelled in section 6.1.3:

tdedicated = tnewcomp + tMPIdedicated

which can be developed in:

tdedicated = tcomp ×
Ncore

Ncore − 1
+

Nnonblocking × tminMPInonblock +Ntest × tminMPItest+

Nwait × tminMPIwait + α×Nblocking × (tminMPInonblock + tminMPIwait)

+ (1− α)×Nblocking × tMPIblockingcom + tMPIother

The good cases where the dedicated core brings some improvement in the execution
time should have a gain on the MPI part (coloured part in the model) higher than the
overhead estimated in the computation part (black part in the model).
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6.2 Gathering applications information to use the model

The whole model is based on timings for each part of the original application. These
timings need to be measured on an execution of the original application. Several methods
can be used to gather these timings, such as using a tool wrapping MPI calls, or having
probes inside the MPI runtime.

In our experiments, we used the former method with the mpiP [68] tool. mpiP is a
light-weight profiling library for MPI applications.

It generates logs gathering time spent in each MPI functions, number of calls, message
sizes with minimum, maximum and average value. Information are collected for each
MPI rank. This tool is generic enough to gather information on any tested application.
However, because we only have application-level timings and not runtime-level timings,
we will approximate some terms of our model.

First, we have to approximate the minimum time for nonblocking initialisation calls,
MPI_Test and MPI_Wait calls. To do so, we consider the minimum measured time of each
type of call when executing the application. Even when no dedicated core is used for
progress, completion calls may not perform progress. When a completion call is used on a
request, the associated operation may already be done, because it has been progressed
by other previous MPI calls (blocking calls, or completion calls for other operations). If
there is no other pending operation, then the completion call will just check the status
of the request, and its timing will be the minimum. We assume this case happens at
least once in an MPI run for nonblocking initialisation, MPI_Test and MPI_Wait calls.
Thus, we take the minimum measured time for each of these as the respective timings for
tminMPInonblock , tminMPItest and tminMPIwait .

Second, without having probes in the MPI runtime, it is not possible to know which
part of the time spend in a blocking call actually relates to the execution of the associated
blocking operation, or if some of the measured times correspond to progression of pending
nonblocking operations. For this reason, we consider that the time measured for each
blocking call is fully dedicated to the associated operation, and that tMPIblockprogress is
always null.

These approximations may cause some discrepancies between our model forecasts and
measured runs, but we will show that it remains accurate enough for our purpose.

6.3 Evaluation of the model

In this section, we evaluate how close to reality the model we propose is. We run the
applications presented in section 6.1.2 on various data sets and number of nodes; it is
especially important to use various data sets since the behaviour of some applications
depends on inputs. Each run is performed in hybrid MPI+OpenMP mode, with one MPI
process per node, and each compute resources of a node used by the OpenMP threads for
computation. We performed our tests with the MPI implementation MadMPI, as it allows
activating and deactivating asynchronous progression and use of a dedicated core [30].
The machines used are inti/sandy-bridge presented in section 6.1.2.

To evaluate the model, we compare its output to the real results obtained when running
the applications with a dedicated core. This evaluation is limited to applications that
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Figure 6.2: Comparison of the model prediction and the dedicated core case (Speedup to
the time with no progression) for the Kripke application for different problem sizes on
inti/sandy-bridge.
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Figure 6.3: Comparison of the model prediction and the dedicated core case (Speedup to
the time with no progression) for NAS BT-MZ for different configurations on inti/sandy-
bridge.
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Figure 6.4: Comparison of the model prediction and the dedicated core case (Speedup to
the time with no progression) MiniMD for different configurations on inti/sandy-bridge.
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already leverage nonblocking communications. Since we only run unmodified applications,
in this section we have α = 0.

Each combination of applications/parameters were run twice:

• First, we collect data to calibrate our model. We run the application without a
dedicated core, and without any progression mechanisms for communications. This
run is similar to what a user obtains with a regular MPI library without progression.
We measure tnoprogress and we gather all the input parameters needed by the MPI
model as explained in section 6.1.3, with the help of mpiP. We used bash scripts to
get the data necessary to compute our predicted tmodel with an R script1 building
our model presented in section 6.1.4.

• The second run uses one dedicated core mapped on the first logical core (e.g. core
#0). We configure the OpenMP runtime to use Ncore − 1 threads and they are
bound on all other available cores (1 to Ncore − 1). All progression mechanisms are
enabled. This execution gives us the real value for tdedicated .

The closer tmodel is to tdedicated , the better the model is.

We run the model on three applications: BT-MZ from the NAS Parallel Benchmark,
and Kripke and MiniMD from the CORAL benchmarks. The results are shown in
Figure 6.2 for Kripke, Figure 6.3 for NAS BT-MZ, and Figure 6.4 for MiniMD. On these
figures, the x-axis corresponds to executions on various data sets, and various number
of nodes for BT-MZ and MiniMD. The y-axis shows the performance represented as a
speedup compared to the basic execution without dedicated core. For each configuration,
we display two values. The red cross corresponds to the real execution with a dedicated
core, defined as sdedicated =

tnoprogress
tdedicated

; the green bullet represents the performance predicted

by the model, defined as smodel =
tnoprogress

tmodel
. Thus, the closer the red cross is from the

green bullet, the more accurate our model is.
Kripke was run with 52 different data sets, depicted in Figure 6.2. We distinguish two

types of behaviour: cases where the dedicated core brings a significant speedup (> 1.1),
and cases where the dedicated core does not bring any benefit (speedup below or very
close to 1). Note that beneficial cases are not grouped together, so it may be hard for a
user to know specifically which case is a good candidate for running with a dedicated core.
We observe that our model accurately predicts the behaviour of the application for each
data set. For all cases where the model predicts a significant speedup, it is confirmed by
the experimental execution. And, for all cases where the predicted speedup is close to 1,
we see this exact behaviour with the experimental run.

For NAS BT-MZ (figure 6.3) and MiniMD (figure 6.4), the results are less identical.
On NAS BT-MZ, the results for class C and D on 16 nodes, the predictions from the
model are correct — the dedicated core brings no gain. However, for class D on 128 nodes,
the model predicts a speedup higher than 3 where the reality is a mere 0.96. This is
due to the communication scheme. Our model makes the assumption that nonblocking
operations are always overlapped by computation. Unfortunately, in this application the
nonblocking operations are not designed to overlap communications and computation;

1The source code is available at <suppress for double-blind evaluation>
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they are used to overlapping multiple communications. Indeed, the code calls a series of
MPI_Isend and MPI_Irecv with a final MPI_Waitall, and no computation in between.

For MiniMD we observe that the first two predictions are correct and the third is
much too optimistic. For the first two cases, the execution with a dedicated core is slower
than without (see Fig 6.1a) and the model is accurate. For the last cases, when looking
at the detailed values for all parameters of the model and compare them to the real
execution, we observe an increased time spent in MPI_Wait with dedicated core (4,19 s
with no progression against 8,69 s with dedicated core). This behaviour is sometimes
observed when there is an interaction between the dedicated core and the MPI_Wait: they
try to progress simultaneously. In those cases, the progression is not just done by the
dedicated core and hence the gain is less than expected by the model.

We have shown here that the proposed model successfully predicts performance of a
hybrid MPI application using a core dedicated to communication when the hypotheses are
fulfilled. It exhibits a very good precision in this case, as seen with the Kripke application.

However, the user should be wary of using it blindly. It may give wrong results
when hypotheses are not fulfilled: when no computation is executed at the same time as
nonblocking communications, like in NAS BT-MZ; when the progression is still performed
in MPI_Wait like in MiniMD, and when the OpenMP scalability is too far from linear.

In conclusion, the model is strong enough so as to be used to predict performance of
dedicated core, but the user should always check all terms of the model and not only rely
blindly on the total. These differences due to the approximation made in the model can
help application developers find suboptimal behaviour related to the use of nonblocking
communications in their applications.

6.4 Using the model

In this section, we will detail how to use the model to understand the compromise between
computation slowdown and the communication speedup, to evaluate the effectiveness of
nonblocking communication usage, and to predict the maximum performance we would
get if blocking communications were converted to nonblocking.

6.4.1 Understanding the computation-slowdown/communication-
speedup ratio

As we have seen for Kripke in figure 6.2, the application exhibits two types of behaviour
with a dedicated core: either a significant speedup, or no gain at all. The beneficial cases
are spread along the x-axis, showing that it does not depend on the problem sizes but
instead on the communication scheme.

To understand this specific behaviour, we analyse all the different timings gathered in
the basic run displayed in table 6.1, and the real value for tdedicated in addition. The case
#1 is an example of successful use of dedicated core with 20% speedup; case #2 is typical
of situations where the dedicated core does not bring performance gain. In both cases,
the prediction of the model is correct with an error less than 2%.

Kripke features some calls to MPI_Isend and MPI_Irecv; they are progressed using
MPI_Testany between computation phases. The communication is ended by a final call
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Case #1 Case #2
tnoprogress 147 155
tMPI 73.4 8.3
tmodel 119.82 156.75
tdedicated 117 154

Ncore 16 16
tcomp 73.6 145.7
Nnonblocking 480000 96

tminMPInonblock 2.14e− 05 2.16e− 05
Ntest 1119810 109679
tminMPItest 2.05e− 05 2.2e− 05
Nwait 10000 2
tminMPIwait 3.2e− 05 7.19e− 05
tMPIblocking 11.7 4.98

tMPIother 0.0 0.34

Table 6.1: Values of model parameters for two sets of parameters of Kripke (times in
seconds).

to MPI_Waitall. We observe in the table the main differences between the two runs is
Nnonblocking : the first case uses a lot of nonblocking operations while the second has very
few of them. It should be noticed that both cases execute approximately in the same
duration, even though once decomposed, the timing details are very different.

In the first case, the application uses enough nonblocking operations for the communi-
cation speedup to overcome the computation slowdown. On the contrary, in the second
case, the small number of nonblocking operations does not successfully counterbalance the
computation slowdown. With our model, an application developer can better understand
the dynamic behaviour of its code, and know the cases where the nonblocking operations
are used. The real impacting factor is the communication scheme and the amount of
communications compared to computation.

6.4.2 Evaluating the effectiveness of nonblocking communication

An application may have everything theoretically to gain time in terms of MPI overlappable
communication and computation, and structurally never put computation and nonblocking
communication in parallel. This is the case for NAS BT-MZ. As we have seen in Figure 6.3,
on 128 nodes the model is too optimistic. This is due to the nonblocking operations
being used not to overlap with computation, but to overlap multiple communications.
Hence, even if globally there would be enough computation to overlap all nonblocking
communications, it is not placed at the same time as the nonblocking communication.

If an application already uses nonblocking communications, the model may be used to
diagnose pathological cases: by comparing an actual run and the prediction of the model,
we can check whether overlap performs as expected or not, whether the computation
inserted between the nonblocking operation and the corresponding wait is long enough or
not. If the actual run is far from the prediction, there may be room for improvement in
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Case #1 Case #2 Case #3
number of nodes 16 128 128
problem size 2003 2003 3003

tnoprogress 112 17.9 57.3
tMPI 23.4 8.17 22.4
tmodel 98 12.61 54.9
tdedicated 122 16.9 63.7

Ncore 16 16 16
tcomp 94.55 9.73 34.9
Nblocking 5863 5863 263

tminMPInonblock 2.50e− 05 7.49e− 05 1.03e− 05
Nwait 5862 5862 5862
tminMPIwait 5.33e− 06 5.47e− 06 5.59e− 06
tMPIblocking 19.16 4.99 0.41

tMPIother 2.20 1.42 17.8

Table 6.2: Values of model parameters for three sets of parameters of MiniMD (times in
seconds).

the organization of communications and computations.
We have observed the symmetrical case, where the application performs actually

better with a dedicated core than predicted by the model. It is especially the case with
Kripke, on the points of figure 6.2 with a speedup higher than 1.1. When looking at
the detailed parameters we measured, we observe that with the dedicated core, Ntest
drops compared to the reference run. The model assumes that MPI_Test will be shorter
with dedicated core, because it will not have to make communication progress in the call
itself. But, in addition, Ntest is decreased, because the communication finished earlier. A
more progression-compliant version of Kripke should remove the calls to MPI_Test and
let the dedicated core do all the progress work in the background. However, this requires
a refactoring of the application. The lesson learned is that we may gain more than the
sole cost of communication progression. In addition, we may gain the cost of all tests
scattered throughout the code.

6.4.3 Potential gain of transforming blocking call to nonblocking

Finally, the model is able to predict the potential gain of transforming blocking operations
to nonblocking ones. As described in section 6.1.3, the model can take into account
the behaviour of an application if a ratio α of blocking operations are changed to their
nonblocking counterparts.

We apply the model on MiniMD, on the three configurations used in section 6.3.
MiniMD uses mostly blocking calls, with very few nonblocking operations. The figures for
the three configurations are gathered in table 6.2. The predicted speedups for varying
α for each configuration are displayed in figure 6.5. A ratio α = 0 is equivalent to the
original unmodified application. A value α = 1 means that all blocking communications
are transformed to their nonblocking counterparts. However, the ability to transform
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blocking to nonblocking calls depends on having available data-independent computation
between the call and the wait. For most applications, α = 1 is not reachable; we need to
study the full range of values for α.

The results for the first and third sets of parameters (red and blue line) show that,
even in the unlikely event of being able to convert all communications to nonblocking, the
expected gain is poor. Values shown in table 6.2 reveal that the number of blocking calls
Nblocking is low and the time spent in blocking communication tMPIblocking is low compared
to the 1/16th overhead on computation. In the first case, for realistic values of α, no gain
may be expected. In the third case (blue line), the model predicts a very small gain for
any value of α. However, we know that there would be actually no gain at all, considering
that we have already seen in section 6.3 that our model is optimistic and overestimate by
12% the potential gain for this precise application.

The second set of parameters (green line) is the same as the first, except for the
higher number of nodes. The predictions of the model, however, are very different, with a
predicted significant performance improvement, even for moderate values of α. With the
higher number of nodes compared to the first case, the computation time is lower, and
thus the communication time gets a higher proportion of the total time, which is enough
to compensate for the slowdown cause by one less core for computation with a dedicated
core.

The slope of each case plot is the most interesting metric as it represents the efficiency
of blocking to nonblocking transformation. The first and the second cases have a positive
slope since the time spent in blocking communications tMPIblocking is much larger than
what is lost in computation speed with a dedicated core; in contrast, the third case
has a quasi-neutral slope. Even with tMPI representing a large part of the total time,
the proportion of tMPIblocking is negligible. As a consequence, α has a very low impact
on the potential gain and the transformation is not efficient. Thus, for every case, we
have to evaluate the potential gain by running the model with the parameters from the
application.

This model is thus able to discriminate the cases where a transformed application
will be effective or not. Taking into account the base point of the α plot, it can show
the current state of the dedicated core effect on the application. At last, looking at the
slope for used case of the application will show the impact of the transformation on the
performances using a dedicated core.
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Chapter 7

Conclusion

MPI is one of the most used programming model to exploit distributed memory systems.
It allows the nodes composing the cluster to communicate using messages. However,
performing communication has a cost and impact the overall performance. The overlap of
computation and communication is a method used to reduce the impact of the commu-
nications MPI include notably nonblocking operations designed to execute independent
computation during the communication on the network and enable overlap.

We showed that to efficiently have communication and computation operate simul-
taneously, the MPI runtime needs computation power to progress the communications.
Moreover, MPI in its 3.0 version implement nonblocking collectives. The need for pro-
gression of these collectives is greater as these algorithms can’t be only launched and let
running on their own: they need to be run regularly all along the collective duration.

The necessity of progression to efficiently overlap nonblocking collectives is at the
origin of new mechanisms developed for this purpose in MPI runtimes. Indeed, the
application often rely on shared memory programming model such as OpenMP to benefit
from multicore nodes. Thus associate a good overlap and a minimal impact on the
global performance remains an issue. This thesis focused on the idea of progressing MPI
communications using dedicated resources. The use of a dedicated core to remedy this
problem come with multiple aspects that need to be taken into account such as:

• Creating a mechanism able to efficiently progress communications without degrading
the performance

• Managing the resources required by both MPI runtime for the progression and the
application computation.

• Understanding the causes and find solutions to diagnose bad overlap.

• Give a clue on the effect of a dedicated core in function of the application and
system configuration.

We first presented the bases of high performance computing including hardware archi-
tectures and their evolution to the current problem we face up to. We saw the different
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software technologies such as programming models used to operate these complex hardware
systems. We saw that benchmarking methods used to evaluate the MPI runtimes may
miss important behaviour to assess the performance of progression mechanisms.

In this thesis, we propose a global solution to efficiently progress communications and
especially nonblocking collective in order to overlap communication and computation. The
final purpose is then to benefit from this overlap to improve the performance of hybrid
applications. This solution is composed of multiple axis: we propose a new benchmarking
method and metrics focusing on the evaluation of nonblocking collective progression.
This benchmarking method have for purpose to be use as a base to measure the overlap
capability and monitor the effects of progression mechanism on overall performances.
We thus propose a new mechanism to progress nonblocking collective, relying on task-based
algorithm and dedicated core. The use of dedicated core have shown an efficient capability
of gaining performances through overlap, but requires to be used in the good conditions
concerning the system and application structure.
Thus, we finally propose a model to predict the effects of using this dedicated core
mechanism on real hybrid MPI + OpenMP applications. This model can be used to
simulate the potential gain when converting blocking communication application to use
nonblocking operations.

7.1 Contributions
The contributions made in this thesis have followed three main axes: the benchmarking
method for nonblocking collective, the conception of a progression mechanism based on a
dedicated core and the modelling of this mechanism on the performance of hybrid MPI +
OpenMP applications.

7.1.1 Nonblocking collective benchmarking

We first proposed a full methodology to not only measure the overlap capability of
mechanisms but also their impact on the overall system. This methodology relies first on
new metrics to accurately measure the performance of nonblocking collective with the
definition of an overhead ratio. They also assess the global behaviour of the runtime with
the computation and communication concurrency ratio.
We then proposed an implementation addressing multiple common issues encountered
when benchmarking distributed operations. Such problems include the time variation
between MPI processes, the management of time synchronisation between nodes clocks,
the requirement of a simultaneous start, and finally the necessity of controlling the variable
amount of computation and communication done in the overlapped situation compared to
the sequential one.
Finally we used this benchmark to run a survey on the state-of-the-art most common MPI
libraries, and the different progression mechanisms they use. This showed the impact of
these mechanisms on the system and how they fail to manage resources in order to gain
performances: the progression mechanism usually consume a non-negligible amount of
computation power and hinder the application running on the whole system. This brings
the necessity to create a new mechanism focusing on these points.
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7.1.2 Dedicated core for progression

The chapter 5 presented an overview of software necessities required to progress commu-
nication using dedicated cores. We then illustrated this overview with the conception
needed for adapting the NewMadeleine + Pioman runtime to use dedicated core for the
progression of nonblocking collective. We first analysed the benefits of using a dedicated
core for this purpose and how this mechanism fits for this work.
We then proposed an implementation of a specific worker in Pioman tuned and adapted
to be executed on a dedicated core. We proposed an implementation of nonblocking
collective algorithms in NewMadeleine based on event handlers to be efficiently executed
by the Pioman dedicated core worker.
Finally, we evaluated the progression capacity of this global configuration using the
BenchNBC benchmark on the madMPI MPI interface on top of NewMadeleine.
The dedicated core evaluation showed a good capability of progressing communications
to gain performances. However, to be used in a real context, applications must repsect
constraints that need to be precisely defined to benefit from this solution.

7.1.3 Hybrid application with dedicated core modelling

The final chapter proposed a solution to classify applications following their relevance
to be progressed with dedicated core in order to gain performances. We focused on the
modelling of hybrid MPI + OpenMP applications performance using the dedicated core
progression mechanism.
We defined a predicting model focusing on analysing the performance evolution of appli-
cation using a dedicated core. The model is split in two parts One computing the loss
due to the removal of one core from the application, and the other the gain of overlapping
the application computation and communication using the dedicated core.
We introduced the methodology used to gather the necessary input from application to
feed the model. This model thus rely on universal input which can be found in every MPI
+ OpenMP applications such as MPI operation or computation duration.
We evaluated this model using multiple common and representative HPC applications,
such as Kripke, MiniMD and Lulesh. Finally, we ran our model to predict the benefit
of transforming blocking calls to nonblocking calls on these applications based on the
understanding of computation slowdown and communication speed-up ratio.

The evaluation of the model demonstrated its capacity to distinguish cases to use
dedicated core and cases to not use it. It also showed its usage to hint developers about
the efficiency to re-design blocking applications to nonblocking ones.

7.1.4 Answers about the dedicated core usage

The set of contributions presented in this thesis bring answers to the problem of the
effective progression of nonblocking collectives. The combination of theses contributions
not only helps the effective progression of nonblocking collective to gain performances,
but also gives clues about the requirements to do so. It also defines an environment to
use these primitives.
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Globally, these contributions gives an answer to the questions of the nonblocking
collective usage such as: How to gain performance using a dedicated core, what are the
runtime requirements to gain performance with nonblocking collectives and when to use
the dedicated core.

7.2 Perspectives

The contributions presented in this thesis open multiple opportunities and perspectives
concerning MPI benchmarking and modelling. There are also works to continue concerning
the dedicated core implementation.

7.2.1 Use of MPI nonblocking collectives benchmark for MPI
library improvement

The benchmark method and implementation presented in the chapter 4 propose to diagnose
the behaviour of MPI library. It could however be enhanced to fully cover the need of a
complete benchmark.

Implementation of all MPI nonblocking collectives benchmark

The benchmark currently covers multiple collectives, however some remains not supported
for now. Especially the support of collective with various data size (e.g, MPI_Igatherv,
MPI_Ialltoallv) is an interesting point as these operations introduce the exchange of
different data length. The main purpose of benchmarking these functions is to measure
the impact of the communication unbalance on the progression, overlap, and overall
behaviour of the system. To do so, the benchmark must introduce a new feature to assess
the variation of different deltas between lengths used.

Work on a microbenchmark feature

The current implementation is conceived to test an overall set of computation and
communication time, in order to give a general overview of the performance.
Another perspective is to be able to test specific cases of overlap. These test cases could
be an association of a computation time, a communication time and a collective. Such
microbenchmark would be useful to stick to the numerous real cases of actual applications.

Improve MPI libraries

The use of this complete methodology has for purpose to be used to expose weak points
of MPI libraries concerning their progress mechanisms, in order to improve these points.
This benchmark has shown performance issues concerning these progress mechanisms and
identified the causes of these issues.
The combinations of existing metrics and future ones presented in this section could then
be used as a tool to correct future implementation of multiple MPI libraries such as
MPICH or OpenMPI.

118



7.2.2 Evolution of the dedicated core impact model

The current model presented in chapter 6 uses the mpiP framework to gather the infor-
mation needed as input for the model. mpiP is a generic tool and lacks some timings that
could greatly improve the model.

Get more timing on the computation part

One point to be refined in the model is the management of computation time. Indeed, with
the current instrumentation, we have no idea of the actual amount of the computation
respecting the constraint to be overlapped with communication The first mandatory one
being the part of the computation located between the MPI initialisation call and the
MPI Wait. Among this computation part, another constraint is to be sure that the data
computed is actually independent of the data transferred over the network. However, this
must already be the case from the conception of the code.

The section 4.4 showed that the computation have a direct impact on the overlap
capability of a runtime. Especially in function of the unbalance between computation and
communication time, the progression mechanism can be much less effective than with a
balanced case.
This independent computation timing would thus be a precious addition to the model as
it would allow it to simulate this efficiency loss calculated from the unbalance ratio.

Instrumenting the runtime

One solution envisaged to get these timings is to rely directly on a specific mode of an
MPI runtime to gather the information we need. The modification of MPI initialisation
calls and MPI_Wait would allow to measure the time between those two calls.
Coupled with the use of a dedicated core, we ensure that the time between these two
bounds is not hindered by the MPI runtime.

Study on application transformation to overlap

The model in its current state is able to help to decide on the efficiency of transforming
blocking application to nonblocking application. It could then be interesting to run a
study on common and most used applications to evaluate the possibility of transforming
these applications in order to gain performances.
Based on the proposed improvements, the enhanced model could gather quantitative
information on the performance of these applications. Thus, it could be possible to
measure the potential gain of this transformation to give a clearer hint on the cost/gain
ratio of this operation.

7.2.3 Multiple runtime centralisation of resources management

The seek of performance in high performance computing imply to rely on clusters composed
of numerous processors sharing memory and distributed nodes. To make the best of these
complex hardware architectures, simulations and most widely applications may use and
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associate multiple programming models. This combination of different runtimes on system
bring issues for the management of computation resources provided by the cluster.

A tool for global resource allocation

To distribute the resources between the runtime we used along this thesis, we relied on
manually setting the placement of threads for each used runtime. Despite being a fully
working solution, this has the disadvantage of requiring to resolve the resource problem
with every different cases. The potential case of having more than two runtimes could
make this resource issue even more complicated. To allow the good cooperation between
those runtimes, an idea could be to develop a tool with the global overview of the available
resources. From this global view, it could then take decision on how to allocate resources
for the given runtimes used by applications.

A task based global runtime

Different runtimes may sometimes propose features with a similar workload management.
The use of tasks has shown a great capacity for the progression of communications.
Moreover, we presented hybrid MPI + OpenMP applications which represent a very
common association of runtimes. OpenMP, on its side, also features tasks to be executed
by its runtime. Thus, it is possible to have both OpenMP running a task engine to
execute parallel tasks, and an MPI runtime relying on tasks to achieve the communication
progression work.
The use of a global runtime implementing both OpenMP and MPI standard could thus
unify the task engine to be used by all runtimes when needed. The conception of that
solution would allow runtime to thus share resources for similar work. However, conceiving
a global task engine requires combining the requirements for each runtime. For instance,
OpenMP tasks usually rely on data dependencies to organise and execute the "taskified"
workload. On its side, the MPI implementation presented in this thesis use events to
trigger the available tasks. Thus, the design differences of each task engine is an issue in
order to implement such global engine.
The notion of unifying runtimes into a global implementation have already been covered.
MPC is a framework including implementations for both MPI and OpenMP. It could be
used as a base to develop a task-based progression environment for MPI using a global
task engine for both the OpenMP and MPI runtimes.
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