
HAL Id: tel-04023774
https://theses.hal.science/tel-04023774

Submitted on 10 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neutron to Hidden Neutron Oscillations in Ultra-Cold
Neutron Beams

William Saenz

To cite this version:
William Saenz. Neutron to Hidden Neutron Oscillations in Ultra-Cold Neutron Beams. Physics
[physics]. Normandie Université, 2022. English. �NNT : 2022NORMC254�. �tel-04023774�

https://theses.hal.science/tel-04023774
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le diplôme de doctorat

Spécialité PHYSIQUE

Préparée au sein de l'Université de Caen Normandie

Νeutrοn tο Ηidden Νeutrοn Οscillatiοns in Ultra-Cοld Νeutrοn
Βeams

Présentée et soutenue par
WILLIAM SAENZ

Thèse soutenue le 02/12/2022
devant le jury composé de

M. KLAUS KIRCH Professeur, Ecole polytechnique fédérale
de Zurich Rapporteur du jury

M. JACOB LAMBLIN Maître de conférences HDR, Université
Grenoble Alpes Rapporteur du jury

MME LEAH BROUSSARD Chercheur, Laboratoire national d'Oak
Ridge Membre du jury

MME SACHA DAVIDSON Directeur de recherche, Université de
Montpellier Membre du jury

M. THOMAS LEFORT Maître de conférences, Université de
Caen Normandie

Membre du jury
Co-encadrant

MME STÉPHANIE ROCCIA Maître de conférences, Université
Grenoble Alpes Membre du jury

M. ETIENNE LIENARD Professeur des universités, Université de
Caen Normandie Président du jury

Thèse dirigée par GILLES BAN (Laboratoire de physique corpusculaire (Caen))





ii



Abstract

Oscillations of the neutron into a hidden sector particle (n− n′) are processes predicted in
various Standard Model extensions. In case of finding evidence of them, models proposing
the existence of hidden sectors, such as those hosting twin copies of all known particles [1, 2],
or those introducing a high dimensional bulk of which slices (branes) represent different
universes [3], would gain importance in particle physics and cosmology. These theories are of
special interest as they could explain big issues in contemporary physics such as baryogenesis
and dark matter [4].

It has been proposed that mixing between ordinary and hidden sectors is possible for neutral
particles. For example, several studies have looked for photon - hidden photon oscillations
with ortho-positronium experiments [5], and for neutrino - hidden neutrino oscillations in
shot-baseline neutrino setups [6]. Neutron - hidden neutron oscillations have been searched for
low and high mass-splitting (δm) in stored ultra-cold neutrons (UCN) [7–11] and regeneration
experiments [12–15], respectively.

Since this extra channel for neutron disappearance has not been tested in large portions
of the oscillation parameter space, we present the development of an experiment searching
for n− n′ oscillations at intermediate δm via the application of magnetic fields in the range
50− 1100 µT. The experiment was performed in autumn 2020 at the Institut-Laue-Langevin
(ILL), using the novel UCN counter GADGET [16] to monitor the UCN beam flux while
scanning the magnetic field. This work, which is the first long-term basis test of the GADGET
detector, allowed a full characterization of its detection efficiency and the development of the
pulse shape analysis technique. Also, as no previous study reports on the UCN flux constancy
at the EDM beam port of ILL’s PF2 at the scale of seconds, we evaluated the UCN beam
stability with a time resolutions of up to µs.

The data revealed non-statistical fluctuations affecting the UCN counting rate, which were
explained by the reactor power variations at the scale of seconds. After accounting for such
fluctuations and by including the magnetic field inhomogeneities in the analysis, no significant
signal of oscillations was found. However, a new limit on the n− n′ model parameters was set
as

τnn′ > 1 s for |δm| ∈ [2− 69]× 10−12 eV (95% C.L.).

Using the same data set, the bound was also computed within the hidden magnetic field
approach [17], which resulted

τnn′ > 1 s for B′ ∈ [50− 1130]µT (95% C.L.).
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Resumen

Las oscilaciones del neutrón en partículas de sectores ocultos (n− n′) son procesos descritos
en varias extensiones del Modelo Estándar. En caso de encontrar evidencia, modelos como
aquellos que proponen la existencia de sectores que albergan copias gemelas de todas las
partículas conocidas [1,2], o los que introducen un volumen multi-dimensional cuyas rebanadas
representan universos diferentes [3], ganarían importancia en física de partículas y cosmología.
Estas teorías son de especial interés, ya que podrían explicar grandes problemas de la física
contemporánea como lo son la bariogénesis y la materia oscura [4].

Se ha propuesto que la mezcla entre sectores ordinarios y ocultos es posible para partículas
neutras. Por ejemplo, varios estudios han buscado oscilaciones de fotones en fotones ocultos
con experimentos de ortopositronios [5], y oscilaciones de neutrinos en neutrinos ocultos con
experimentos a corto rango [6]. Del mismo modo, se han buscado las oscilaciones n − n′,
suponiendo altas y bajas diferencias de masa (δm) en experimentos con neutrones ultra-fríos
(UCN) almacenados [7–11] y en experimentos de regeneración [12–15], respectivamente.

Dado que este canal de desaparición de neutrones no se ha probado en grandes porciones del
espacio de parámetros, este trabajo presenta el desarrollo de un nuevo experimento buscando
las oscilaciones n− n′ con δm intermedias mediante la aplicación de campos magnéticos en el
rango 50− 1100 µT. El experimento, que se llevó a cabo en otoño de 2020 en el Institut-Laue-
Langevin (ILL), utilizó el novedoso contador UCN GADGET [16] para monitorear el flujo
del haz de UCN mientras se escaneaba el campo magnético. Este trabajo, que representó la
primera prueba a largo plazo del detector GADGET, permitió una caracterización completa
de su eficiencia de detección y el desarrollo de la técnica de análisis de forma de pulso. Además,
dado que ningún estudio anterior ha reportado sobre la constancia del flujo de UCN en el ILL
a la escala de segundos, se evaluó aquí su estabilidad con resoluciones de tiempo de hasta
algunos µs.

Los datos revelaron fluctuaciones no estadísticas en la tasa de conteo de UCN debidas a
variaciones de la potencia del reactor en la escala de segundos. Después de tener en cuenta
tales fluctuaciones y de incluir las inhomogeneidades del campo magnético en el análisis, no
se encontró ninguna señal significativa de oscilaciones. Sin embargo, se estableció un nuevo
límite en los parámetros del modelo n− n′, simplificado en

τnn′ > 1 s para |δm| ∈ [2− 69]× 10−12 eV (95% C.L.). (1)

Usando el mismo conjunto de datos, el límite también se calculó dentro del enfoque de campo
magnético oculto [17], lo que resultó

τnn′ > 1 s para B′ ∈ [50− 1130]µT (95% C.L.). (2)
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Resumé
Les oscillations des neutrons vers des secteurs cachés (n− n′) sont des processus décrits dans
diverses extensions du Modèle Standard. Les modèles tels que ceux proposant l’existence de
secteurs abritant des copies jumelles de toutes les particules connues [1,2], et ceux introduisant
un volume multidimensionnel dont les tranches représentent différents univers [3], gagneraient
en importance en physique des particules et en cosmologie en cas de découverte de preuves
d’oscillations n−n′. Ces théories présentent un intérêt particulier car elles pourraient expliquer
des problèmes majeurs de la physique contemporaine tels que la baryogénèse et la matière
noire [4].

Il a été proposé que le mélange entre les secteurs ordinaires et cachés est possible pour les
particules neutres. Par exemple, plusieurs études ont recherché des oscillations de photons vers
des photons cachés avec des expériences d’orthopositons [5], et des oscillations de neutrinos
vers des neutrinos cachés par le biais des expériences à courte distance [6]. De même, des
oscillations n − n′ ont été recherchées en supposant des différences de masse (δm) élevées
avec des neutrons ultra-froids (UCN) stockés [7–11] et δm faibles dans des expériences de
régénération [12–15].

Ce travail présente le développement d’une nouvelle expérience recherchant les oscillations
n − n′ avec une δm intermédiaire en appliquant des champs magnétiques dans la gamme
50− 1100 µT. Ceci, puisque ce canal de disparition des neutrons n’a pas été testé dans une
grande portion de l’espace des paramètres n− n′.

Cette expérience réalisée à l’automne 2020 à l’Institut-Laue-Langevin (ILL), a utilisé
le nouveau compteur UCN GADGET [16] pour surveiller le flux du faisceau UCN tout en
balayant le champ magnétique. Ce travail représente le premier test à long terme du détecteur
GADGET. Ce dernier a permis une caractérisation complète de son efficacité de détection
et le développement de la technique Pulse Shape Analysis. De plus, ce travail fait état de la
constance du flux UCN de l’ILL jusqu’à une échelle de quelques µs. Ceci n’avait jamais été
réalisé auparavant.

Les données ont révélé des fluctuations non statistiques du taux de comptage UCN dues
aux variations de la puissance du réacteur à l’échelle des secondes. Après avoir pris en compte
ces fluctuations et inclus les inhomogénéités du champ magnétique dans l’analyse, aucune
oscillation significative n’a été trouvée. Cependant, une nouvelle limite a été fixée sur les
paramètres du modèle n− n′, simplifiée à

τnn′ > 1 s for |δm| ∈ [2− 69]× 10−12 eV (95% C.L.). (3)

En utilisant le même ensemble de données, la limite a également été calculée dans l’approche
du champ magnétique caché [17], ce qui a entraîné

τnn′ > 1 s for B′ ∈ [50− 1130]µT (95% C.L.). (4)
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Chapter 1

Introduction

Bien que le rôle des neutrons dans la vie quotidienne ne soit pas évident, car leur neutralité
de charge les exempte des interactions électromagnétiques, nous avons appris qu’ils jouent un
rôle important dans la liaison des noyaux atomiques. Etant donné que la teneur en neutrons
de tous les noyaux stables, à part l’hydrogène, est égale ou supérieure à la teneur en protons,
on peut affirmer qu’environ la moitié de la matière de la vie quotidienne est composée de
neutrons, c’est-à-dire qu’ils sont responsables de la moitié de la masse de la matière visible.
Leur contribution est importante en tant que pièce de la matière, et l’étude des propriétés
des neutrons demande des efforts technologiques considérables. Contrairement aux électrons,
qui peuvent être facilement retirés des atomes avec des énergies de l’ordre de l’eV, la forte
liaison entre les neutrons et les noyaux, due à la force nucléaire, nécessite des énergies aussi
importantes que quelques MeV pour expulser un neutron de son noyau d’accueil. De plus,
une fois éjecté d’un noyau, un neutron libre n’a pas beaucoup de temps pour marquer les
esprits. En moyenne, il survit environ 15 minutes avant de se désintégrer en d’autres types
de particules. Par conséquent, lorsque vous regardez votre chat de 2 kg, vous regardez 1 kg
de neutrons piégés dans les noyaux du chat. Tous ces neutrons, formés il y a 13,6 milliards
d’années, ne survivraient pas plus de deux heures s’ils n’étaient pas liés aux protons du chat.

Même à l’heure actuelle, non seulement les propriétaires de chats, mais de nombreux
physiciens nucléaires et des particules sont surpris lorsqu’ils entendent, pour la première fois,
parler des techniques expérimentales permettant la manipulation de neutrons libres pendant
des périodes aussi longues que la durée de vie des neutrons. Bien que l’idée de stocker les
neutrons dans des récipients fermés ait été proposée en 1959 par Zeldovich [18], elle n’a été
réalisée expérimentalement que 9 ans plus tard, simultanément par Shapiro et al. et Steyerl
et al. [19]. Essentiellement, lorsque l’énergie des neutrons libres est réduite en dessous du
potentiel optique neutronique d’un matériau (par exemple 335 neV pour 58Ni), ils subissent
une réflexion totale. Ces propriétés de réflexion, utilisées pour classer les neutrons en tant
que neutrons ultra-froids (UCN), peuvent être décrites par la mécanique quantique classique
et miment les propriétés de réflexion de la lumière. On parle alors d’optique neutronique.

Depuis la construction des premières bouteilles de stockage UCN, et sur plus de 50 ans, de
multiples recherches sur la physique de haute précision ont été menées avec les expériences UCN.
Par exemple, dans la mesure du moment dipolaire électrique des neutrons (EDM), la durée de
vie des neutrons et ses niveaux d’énergie bornés dans le potentiel gravitationnel de la Terre.
Dans ce travail, nous présentons une nouvelle approche pour l’étude des oscillations neutrons

3



4 CHAPTER 1. INTRODUCTION

- neutrons cachés provenant de la disparition des neutrons dans les faisceaux UCN. Les états
cachés de la matière, qui pourraient correspondre à des secteurs parallèles hébergeant des copies
miroir de toutes les particules connues, ou à différentes branes d’un volume multidimensionnel,
sont conçus dans un modèle mathématique simple avec une phénoménologie assez riche en
physique des particules à basse énergie et en cosmologie.

En adoptant le modèle à deux secteurs, l’hamiltonien décrivant le mélange entre neutrons
libres et neutrons libres cachés est

Ĥnn′ =

(
En εnn′

εnn′ En′

)
, (1.1)

avec En (En′) l’énergie du neutron (neutron caché) et εnn′ = τ−1
nn′ le paramètre de mélange de

masse (avec h̄ = c = 1). Les éléments de matrice dans l’équation (1.1) sont en fait des matrices
2× 2 d’états de spin, qui peuvent être supposées diagonales en raison de la conservation du
spin. Néanmoins, si les termes d’énergie En et En′ incluent des interactions dépendantes du
spin pour lesquelles les axes de quantification privilégiés des secteurs ordinaires et cachés ne
coïncident pas, par ex. scénarios avec des champs magnétiques cachés (miroir), un traitement
sensible au spin doit être envisagé [17].

Le phénomène de mélange n− n′ a été formulé en supposant une symétrie Z2 parfaite, à
partir de laquelle les masses des neutrons et des neutrons cachés sont identiques mn = mn,.
Cependant, il peut arriver que Z2 soit spontanément cassé par des corrections quantiques
d’ordre supérieur, donnant lieu à un petit dédoublement de masse δm = mn′ − mn [20].
Supposons un secteur caché dont la densité de matière sur Terre est suffisamment faible pour
que les potentiels cachés de l’environnement, en particulier les champs magnétiques cachés,
puissent être négligés. Par conséquent, l’hamiltonien dans l’équation. (1.1) est exprimé comme

Ĥnn′ =

(
mn +∆E εnn′

εnn′ mn′

)

=

(
∆E εnn′

εnn′ δm

)
+mn

(
I2×2 0
0 I2×2

)

=

(
∆E εnn′

εnn′ δm

)
, (1.2)

où nous avons supprimé le terme mnI4×4 car il ne modifie pas la dynamique d’oscillation
n − n′. Étant donné que tous les éléments de cette dernière expression sont des matrices
diagonales 2 × 2, sa solution sur l’équation de Schrödinger est équivalente au très connu
système quantique à deux niveaux. Les états de masse et leurs énergies (vecteurs propres et
valeurs propres) sont donc donnés par

Ẽ± =
1

2

[
(∆E − δm)±

√
(∆E − δm)2 + 4 epsilon2nn′

]
,

et

|ψ+〉 = cos θ |n〉+ sin θ |n′〉
|ψ−〉 = − sin θ |n〉+ cos θ |n′〉 ,
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respectivement, où l’amplitude de mélange θ est définie comme

sin2 2θ =
4ε2nn′

4ε2nn′ + (∆E − δm)2
.

Suivant cette notation, un neutron libre à t = 0 serait décrit par l’état |ψ(0)〉 = |n〉 =
cos θ |ψ+〉 − sin θ |ψ−〉, dont la propagation dans le temps est

|ψ(t)〉 = cos θe−iẼ+t |ψ+〉 − sin θe−iẼ′
−t |ψ−〉 . (1.3)

Ensuite, la probabilité d’oscillation n− n′ après un temps de vol libre tf est calculée à partir
de l’amplitude | 〈n′|ψ(tf )〉 |, ce qui donne :

Pnn′(tf ) =
4ε2nn′

4ε2nn′ + (∆E − δm)2
sin2


√
(∆E − δm)2 + 4ε2nn′tf

2

 . (1.4)
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Figure 1.1: n− n′ probabilité d’oscillation en fonction du temps de vol libre en
supposant τnn′ = 1 s et δm = 10−14 eV. Le comportement, illustré pour différents
rapports δm/∆E, démontre que l’amplitude de mélange sin2 2θ et la fréquence
d’oscillation 1

2

√
∆2

nn′ + 4ε2nn′ sont respectivement le maximum et le minimum à la
résonance δm/∆E → 1 (∆nn′ = 0) .

Cette dernière expression montre que le mélange maximal est atteint à la condition de
résonance où la dégénérescence d’énergie n − n′ est complètement supprimée, c’est-à-dire
sin2 2θ = 1 avec

∆nn′ = ∆E − δm = 0. (1.5)

Dans ce cas, la probabilité d’oscillation devient 1 toutes les (2n+ 1)πτnn′/2 secondes, avec
n = 0, 1, 2, · · · . Pour les valeurs hors résonance, non seulement l’amplitude diminue comme
∼ 1/∆2

nn′ mais aussi la fréquence d’oscillation augmente proportionnellement à ∆nn′ . Cette
double caractéristique des oscillations n−n′ est représentée sur la figure 1.1 pour quatre valeurs
de ∆E en supposant τnn′ = 1 s et δm = 10−14 eV. À noter que contrairement aux oscillations
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des neutrinos, où l’amplitude de mélange sin2 2θ est fixée par les paramètres du modèle. Le
mélange n − n′ peut être maximal Pnn′ ∼ 1 si nous garantissons ∆E = δm (∆nn′ = 0) et
permettons de longues périodes de temps de vol libre (tf ∼ ε−1

nn′). Par conséquent, pour
sonder efficacement les oscillations n−n′, on pourrait s’intéresser par exemple à la disparition
des neutrons en ajustant expérimentalement ∆E = δm tout en minimisant la fréquence de
diffusion des neutrons avec son environnement. Ces deux idées sont à la base de montages
expérimentaux sondant les oscillations n− n′ avec des neutrons ultra-froids.



Chapter 2

GADGET : Un nouveau compteur
UCN

L’un des principaux objectifs de ce travail était la caractérisation et l’optimisation de l’un
des détecteurs UCN les plus rapides jamais construits : le détecteur gazeux à scintillation
GADGET. Ce nouveau compteur de neutrons a été conçu à l’origine dans le cadre du projet
n2EDM, qui vise à mesurer le moment dipolaire électrique du neutron (dn). Normalement,
une mesure hautement sensible de dn demande des efforts particuliers dans deux directions
principales : réduire les effets systématiques et augmenter les statistiques de comptage.
Ce dernier nécessite la mise en œuvre de détecteurs UCN à haute efficacité capables de
discriminer le bruit de fond et d’effectuer des performances constantes dans des expériences
de longue durée. GADGET apparaît comme un détecteur surclassant dans ces deux exigences
simultanément [21]. De plus, les impulsions de tension rapides produites par la scintillation
dans GADGET en font une option appropriée pour les expériences UCN à flux élevé.

Description et principe de détection

Figure 2.1: Schéma technique du détecteur GADGET indiquant ses composants
principaux. Le côté gauche montre une vue 3D du détecteur déjà monté. A droite,
une vue en coupe permet de voir l’intérieur des étuis et de la chambre. La flèche
rouge indique la direction de l’UCN entrant dans la chambre.

GADGET est un détecteur UCN utilisant deux gaz pour compléter la détection indirecte.

7
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En traversant la feuille d’entrée du détecteur, les neutrons sont absorbés par les noyaux 3He.
Émis après l’absorption, les produits de réaction proton et tritium partagent 764 keV selon

n + 3He → 1H + 3H + 764 keV. (2.1)

Un deuxième gaz est ensuite utilisé pour transformer une partie de cette énergie libérée en
lumière. CF4 est choisi en raison de son rendement photonique élevé, de sa transparence à sa
propre lumière émise, de son ininflammabilité, de son accessibilité et de son prix. Le passage
du proton et du tritium à l’intérieur de ce gaz produit une ionisation et une scintillation
directe à partir des états excités CF4 [22]. Les durées de vie de ces émissions sont proches
de 6 ns [23], ce qui rend la génération d’impulsions de signal très rapide par rapport aux
détecteurs gazeux précédents [24]. La dernière étape du processus de détection, la collecte
de la lumière, est complétée par un ensemble de trois tubes photomultiplicateurs (PMT)
montés sur les fenêtres transparentes en quartz de la chambre à gaz. De la graisse optique est
utilisée pour améliorer le contact optique en augmentant la transmission des photons de la
fenêtre en quartz au PMT qui sont recouverts de boîtiers en plastique noir afin d’éviter la
contamination par la lumière extérieure. La figure 2.1 montre une description générale des
principaux constituants du détecteur.

Les formes d’onde d’impulsion produites par les PMT dépendent du processus d’interaction
de la particule détectée. Le nombre de photons émis à l’intérieur de la chambre à gaz et
la position d’absorption des neutrons sont deux des nombreux paramètres définissant les
caractéristiques de ces impulsions. Les différences entre les formes d’onde sont donc exploitées
pour déterminer le type de particule détectée. FASTER fournit un module spécialisé pour
l’enregistrement d’impulsions qui extrait les principaux paramètres de forme de signal sans
stocker l’intégralité du même. Ce module, nommé Qt2t, est basé sur un composant de
traitement en ligne qui calcule la charge seuil à seuil, l’amplitude maximale, la durée seuil à
seuil, la position du maximum et la charge avant seuil des impulsions [25].

Les principaux paramètres d’impulsion utilisés dans GADGET sont la charge seuil à
seuil (Qt2t) et l’amplitude maximale (At2t). Alors que le premier est proportionnel à la
quantité de lumière détectée et donc à l’énergie de l’événement, le second peut être utilisé
pour établir la rapidité de la collecte de lumière. Les deux paramètres sont déterminés à partir
de l’échantillonnage de tension du signal V (t) tous les 2 ns. Qt2t correspond à l’intégrale
temporelle de V (t) entre les franchissements de seuil de pente positive (t↑) et négative (t↓),
exprimé comme

Qt2t =
1

R

t=t↓∑
t=t↑

V (t)∆t =
2× 10−9s

50Ω

t=t↓∑
t=t↑

V (t), (2.2)

et l’amplitude maximale représente la plus grande tension entre t↑ et t↓ (At2t = Vmax).
La technique de la triple coïncidence dans GADGET a un double objectif : la filtration

en arrière-plan et la classification des événements. Normalement, un événement d’émission
de lumière produit à l’intérieur de la chambre à gaz serait enregistré si les trois PMT sont
déclenchés simultanément dans une fenêtre de temps donnée. Ces événements sont étiquetés
avec un drapeau ‘groupe’ et sont dits in coincidence. Au contraire, les événements détectés
par un seul PMT sont attribués à des phénomènes provenant de l’extérieur de la chambre
à gaz et ne reçoivent aucune étiquette. Dans les événements de coïncidence déclenchés par
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la détection de neutrons, chaque forme d’onde des PMT présente une charge particulière
et une amplitude maximale pour plusieurs raisons. D’un côté, la propagation de la lumière
à l’intérieur de la chambre à gaz après une capture de neutrons dépend des trajectoires
d’ionisation suivies par les produits de réaction. De plus, les sommets de ces trajectoires
sont complètement déterminés par la position de l’absorption des neutrons. De tels facteurs
géométriques font que plus de photons atteignent le PMT se trouvant plus près des chemins
d’ionisation. D’autre part, bien que les trois PMT soient du même type, leurs propriétés
intrinsèques telles que l’efficacité de conversion des photoélectrons et le gain d’amplification
sont différentes. Le résultat global est que les valeurs de Qt2t−i et AQt2t−i transportent une
partie des informations sur l’événement. Pour cette raison, il est naturel de définir la charge
intégrée groupée et l’amplitude maximale comme la somme des trois contributions des PMT.

Qgr =
3∑

i=1

Qt2t−i, Agr =
3∑

i=1

At2t−i, (2.3)

Influence des pressions 3He et CF4

La quantité de 3He et CF4 à l’intérieur de la chambre à gaz définit dans une large mesure
les performances de détection UCN avec GADGET. Ces quantités sont facilement contrôlées
par l’appareil de l’usine de gaz, qui alimente les deux gaz avec des pressions réglables dans
le détecteur. Selon l’expérience, le détecteur GADGET peut fonctionner avec différentes
pressions afin d’optimiser son efficacité de détection. D’un côté, on souhaiterait une pression
3He élevée (P3He) pour s’assurer que tous les neutrons traversant le détecteur sont absorbés
dans le volume de la chambre. De même, une pression CF4 élevée (PCF4

) est envisagée pour
obtenir un arrêt complet des produits de réaction proton et tritium, convertissant ainsi la
majeure partie de leur énergie cinétique en lumière. Bien qu’il existe des effets secondaires
défavorables à l’augmentation des pressions des deux gaz, une première estimation des valeurs
minimales peut être calculée à partir de la section efficace d’absorption 3He et du pouvoir
d’arrêt du proton et du tritium dans le CF4.
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Figure 2.2: (gauche) Parcours du proton et du tritium dans le CF4 calculés avec
SRIM à différentes pressions de gaz. (à droite) Libre parcours moyen des UCNs
dans 3He.
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À partir du libre parcours moyen des UCN dans 3He en fonction de la pression du gaz,
affiché sur la figure 2.2 (à droite), et en tenant compte du fait que la chambre à gaz GADGET
a une profondeur de 8,5 cm, on peut conclure que P3He doit être supérieur à 10 mbar pour
garantir que les UCN sont absorbés avant d’atteindre le côté opposé de la chambre. Cependant,
cette approximation est valable pour des neutrons suivant des trajectoires plus ou moins
parallèles à l’axe de la chambre. Sinon, les UCN avec des trajectoires angulaires pourraient
arriver sur les parois latérales du détecteur avec des trajets inférieurs à quelques centimètres
et ainsi être diffusés ou absorbés par les noyaux des parois sans être détectés. En général,
ce n’est pas un problème puisque les UCN passent par des guides verticaux favorisant les
trajectoires parallèles à l’axe. Néanmoins, dans les configurations qui ne sont pas agencées
avec l’UCN vertical descendant, il convient d’envisager de porter P3He jusqu’à 15 ou 25 mbar.

La pression CF4 joue un rôle important dans la génération des impulsions. Il détermine le
parcours du proton et du tritium dans le mélange gazeux. Si PCF4

est trop faible, les produits
de réaction pourraient s’échapper de la chambre sans produire le dépôt d’énergie partielle
qui conduit à la quantité minimale de lumière détectable par les PMT. L’estimation de la
pression CF4 requise pour assurer un arrêt complet du proton et du tritium est effectuée par
des simulations SRIM [26]. La figure 2.2 (à gauche) montre le parcours calculé pour les deux
particules à différentes pressions CF4 avec des énergies spécifiées par la réaction UCN+3He.
De toute évidence, ces parcours doivent être mesurés par rapport à la position d’absorption
des neutrons, qui se produit principalement à côté de la feuille d’entrée. Étant donné que le
proton et le tritium se déplacent dans des directions opposées, le minimum PCF4

peut être
défini lorsque le parcours des produits de la réaction est égale au libre parcours moyen du
UCN (∼ 1,5 cm à P 3He = 15 mbar), soit PCF4

& 400 mbar.
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Figure 2.3: Spectre de charge UCN mesuré par le détecteur GADGET. La
chambre à gaz était remplie de 3He et CF4 à des pressions P3He = 15 mbar et
PCF4

= 400 mbar. Les événements de bord sont présents à ces pressions, mais ne
dominent pas les événements de dépôt à pleine énergie.

Comme la plupart des captures UCN se produisent près de la fenêtre d’entrée, la probabilité
qu’un des produits de réaction émis par la capture atteigne la fenêtre n’est pas nulle. Dans
ces cas, le produit se déplaçant vers la fenêtre dépose une partie de son énergie dans le gaz,
tandis que le reste est absorbé par les atomes de la fenêtre. Étant donné que seul le premier
processus induit une émission de lumière à l’intérieur de la chambre à gaz, le rendement
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moyen en photons collectés par les PMT est réduit par rapport aux événements de dépôt
à pleine énergie. Ces événements de dépôt partiel, connus sous le nom d’événements de
bord, génèrent des impulsions de tension avec des charges et des amplitudes plus courtes,
mais sont toujours enregistrés par les trois PMT. Leur charge mesurée associée se situe alors
à des valeurs basses proches des événements de fond. La figure 2.3 montre un spectre de
charge UCN ordinaire mesuré avec GADGET rempli de P3He = 15 mbar et PCF4 = 400 mbar.
Des petites aux grandes charges, trois composants du spectre de charge sont grossièrement
identifiés : les événements de fond, de bord et de pleine énergie. Même si les événements de
bord s’ajoutent au comptage des neutrons, il est normalement préférable d’utiliser GADGET
dans des conditions où ils deviennent minimes.
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Chapter 3

n− n′ oscillations : Description
expérimentale

Figure 3.1: Vue de côté de la configuration expérimentale. Le faisceau UCN
est conduit à travers trois guides droits et leurs coudes tournants respectifs. Un
adaptateur de guide conique est utilisé entre les guides principaux de � 15 cm et
de � 8,5 cm.

Le champ magnétique appliqué aux UCNs pour supprimer la dégénérescence de l’énergie
des neutrons cachés ∆nn′ = µnB − δm, a été relevé par un système d’aimantation récupéré
d’un travail antérieur portant sur la recherche de nouvelles forces à l’aide de noyaux 3He
polarisés [27]. Avec ce système, nous avons balayé la plage d’énergie de séparation de masse
δm ∈ [3 − 66] × 10−12 eV, correspondant aux champs magnétiques B ∈ [50 − 1100] µT. Le
système se compose d’un solénoïde principal, d’un blindage magnétique cylindrique et de deux
bobines de compensation placées sur les bords du solénoïde pour augmenter l’uniformité du
champ magnétique. Le solénoïde principal de 4,8 mètres de long et 80 cm de diamètre est
composé de 2270 boucles de 2× 1 mm2 de fil de cuivre de section rectangulaire autour d’un
tube en aluminium de 5 mm d’épaisseur. Les bobines de compensation de 25 cm de long,
avec 112 boucles de ∼ 80 cm de diamètre chacune, sont connectées en série avec le solénoïde.

13
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La pièce de blindage magnétique correspond à l’un des 17 segments du blindage cylindrique
de l’expérience neutron anti-neutron qui s’est déroulée à l’ILL en 1994 [28]. Ce blindage, en
mu-métal, entoure le solénoïde comme le montre la figure 3.1 pour augmenter l’uniformité du
champ magnétique au niveau du guide UCN et expulser les lignes de champ magnétique des
sources externes, en particulier le champ magnétique terrestre. Ses dimensions sont de 4,5 m
de longueur, 94,5 cm de diamètre et 1 mm d’épaisseur.

Figure 3.2: Vue de dessus de la configuration expérimentale. Le guide principal
UCN et le système de magnétisation ont été placés sous la plate-forme EDM.
Photos de Laurent Thion.

Compte tenu de la disponibilité de l’espace et des protocoles de sécurité au PF2, le
système de magnétisation était situé à une altitude inférieure par rapport au port du faisceau
EDM. Pour cette raison, la disposition des guides utilisés pour transporter l’UCN du port au
détecteur en traversant l’axe du solénoïde comprenait trois segments principaux : un guide
horizontal d’un demi-mètre au port EDM, un guide incliné de 1,31 m et un guide horizontal
de 6 m. Deux coudes pliés ont été placés sur les côtés inclinés du guide et un guide conique a
été utilisé pour relier l’un des coudes au guide principal de 6 m (�8, 5 cm −→ �15 cm). Le
détecteur GADGET, dont l’acquisition des données a été réalisée par le système FASTER,
était situé à l’extrémité du guide de 6 m (à 75 cm du solénoïde). La figure 3.2 montre une vue
de dessus du positionnement relatif des éléments de configuration par rapport à la turbine
PF2 et aux orifices de faisceau adjacents.

La séquence de mesure ABBC

Au moment de la prise de données n− n′ (automne 2020), le faisceau UCN de la turbine PF2
a été partagé avec des cycles de 200 s. Pour synchroniser la détection de flux UCN avec les
cycles de livraison de PF2, un signal a été envoyé au système d’acquisition FASTER une fois
le positionnement de la turbine terminé. Ces signaux ont été utilisés pour démarrer et arrêter
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le comptage UCN (aucune donnée n’a été collectée dans la configuration n− n′ pendant les
périodes de partage de faisceau).

Afin de compléter le processus de balayage du champ magnétique, on pourrait suggérer
de sonder un seul champ magnétique à chaque cycle de livraison. Cependant, le comptage
UCN dans ce cas serait sensible aux variations à long terme après plusieurs cycles tels que la
puissance de dérive du réacteur, l’échauffement de la source de neutrons froids, le ralentissement
de la turbine ou encore les changements dans l’efficacité de comptage de GADGET. Ces
comportements de dérive, lorsqu’ils sont corrélés à la source UCN, sont normalement corrigés
dans les expériences de stockage UCN au moyen d’un détecteur de moniteur placé à la sortie
du port du faisceau. Le présent travail n’adopte pas une telle méthode étant donné que le
faible taux de détection habituel dans les moniteurs ajoute de grandes incertitudes statistiques
si l’on utilise leur comptage comme facteurs de normalisation. Au lieu de cela, une séquence
de mesure auto-normalisée est introduite, qui est indépendante des variations à long terme
(d’un cycle à l’autre) et également des dérives linéaires dans les cycles UCN de 200 s. La
séquence divise la durée du cycle (tcycle) en quatre fenêtres équivalentes où trois valeurs de
champ magnétique sont balayées comme

{A,B,B,C} = {B − 20µT, B,B,B + 20µT} → {44 s, 44 s, 44 s, 44 s}. (3.1)

Le pas de champ magnétique en cycle de 20 µT est choisi plus grand que la résonance FWHM
(1µT) de sorte que les oscillations n − n′ ne peuvent se produire qu’à l’une des valeurs de
champ. De cette façon, le rapport entre UCN comptant au champ B (NB +NB) aux champs
A (NA) et C (NC) est

RABC =
NB +NB

NA +NC


= 1, si aucune oscillation
< 1, si oscillations au champ B
> 1, si oscillations au champ A ou C.

(3.2)

Étant donné que trois champs magnétiques sont testés à chaque cycle, la taille du pas
de balayage est définie de telle sorte que le même champ ne soit pas évalué deux fois, mais
que l’espacement de 1 µT requis par la résonance FWHM soit conservé. En rendant la taille
du pas égale à 3 µT, dont 20 µT n’est pas un multiple, on garantit que toutes les valeurs
intermédiaires de B ∈ [70 − 1080] µT sont couvertes par le processus de balayage avec un
espacement de 1 µT.
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Chapter 4

n− n′ oscillations : analyse des
données
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Figure 4.1: Moyenne RABC sur tous les scans mesurés en fonction du champ
central de la séquence ABBC.

Les analyses de cette section sont construites dans le scénario d’une division de masse
de neutrons cachés par des neutrons non nuls (δm 6= 0) et de champs magnétiques cachés
extrêmement petits B′ = 0. Dans ce modèle, le spin est conservé pendant les oscillations et la
condition de résonance ∆nn′ = µnB − δm = 0 n’est remplie que pour un des états de spin.
Cela peut être facilement vu à partir de l’hamiltonien écrit comme

Ĥnn′ =


µnB 0 εnn′ 0
0 −µnB 0 εnn′

εnn′ 0 δm 0
0 εnn′ 0 δm

 , (4.1)

conduisant aux résonances spin-up et spin-down

µnB = δm : n↑ → n′↑

−µnB = δm : n↓ → n′↓.

17
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Par conséquent, à condition que δm > 0, n↑ oscille en n′↑ pour les champs résonnants +B et
n↓ oscille en n′↓ pour les champs résonnants −B. Cependant, cela n’est pas pertinent pour
l’analyse, puisque le faisceau UCN utilisé dans cette expérience est composé de 50% n↑ et
50% n↓ (non polarisé). Nous pouvons ainsi faire la moyenne des mesures RABC disponibles
à partir de tous les scans quelle que soit l’orientation du champ B appliqué (+ ou − ). Le
nombre de neutrons qui disparaissent du faisceau en raison des oscillations n− n′ est le même
pour les deux directions du champ magnétique.
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Figure 4.2: Exclusion de l’espace de paramètres n− n′ incluant tous les résultats
expérimentaux jusqu’en août 2022.

Bien que les données acquises ne contiennent pas de signal significatif, nous pouvons fixer
une nouvelle limite aux paramètres du modèle n− n′. Ces valeurs limites sont construites par
le calcul de la ligne de contour χ2(δm,∞) + 22 qui définit le 95% C.L. région d’exclusion. La
limite d’exclusion est utilisée pour contraster la contribution de ce travail à la vue générale des
oscillations n− n′ avec les mesures passées. En utilisant une sélection de couleurs compatible
avec la dernière comparaison publiée [14], l’espace des paramètres mis à jour est présenté dans
la figure 4.2. La région d’exclusion issue de ce travail devient ainsi la première mesure sondant
les oscillations n − n′ avec des valeurs de dédoublement de masse situées entre le stockage
UCN et les expériences de traversée de paroi. Même si notre sensibilité est d’environ un ordre
de grandeur plus courte que celle des mesures de stockage UCN, la technique expérimentale
introduite avec ce travail permet de balayer efficacement une large gamme de valeurs δm.
Alors que l’expérience de stockage UCN la plus sensible [11] a consacré 40 jours à tester
des oscillations n− n′ à deux amplitudes de champ magnétique, nous avons réussi à scanner
plus d’un millier de champs avec une campagne expérimentale de 25 jours. La sensibilité de
ce nouveau résultat n’est pas négligeable si l’on tient compte du fait que la mesure la plus
sensible dans les expériences de traversée de paroi se situe en dessous de τnn′ = 10 ms. Un
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fait à garder à l’esprit si vous visualisez une future expérience de faisceau UCN pour balayer
des δm plus grands est que la largeur de résonance (∼ 1 µT · µn) et l’étape de balayage ne
devraient pas changer radicalement. Par conséquent, afin de produire une région d’exclusion
importante à δm > 103 µT · µn, l’expérience doit améliorer les statistiques de comptage pour
maintenir le même τnn′ ∼ 1 s sensibilité.
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Introduction

Although the role of neutrons in everyday life is not evident, as their charge neutrality exempts
them from electromagnetic interactions, we have learned that they play an important role in
the binding of atomic nuclei. In fact, since the neutron content of all stable nuclei, besides
hydrogen, is equal or larger than the proton content, one can state that about half of the
everyday-life-matter is composed of neutrons, i.e. they are responsible for half the mass of
visible matter. Despite their large contribution as building blocks of matter, studying neutron
properties demands considerable technological efforts. Unlike electrons, which can be easily
removed from atoms with energies of the order of eV, the strong bounding between neutrons
and nuclei, due to the nuclear force, requires energies as large as a couple MeV to kick a
neutron out of its hosting nucleus. In addition, once ejected from a nucleus, a free neutron
does not have much time to make an impression. On average, it survives about 15 minutes
before decaying into other types of particles. Therefore, when looking at your 2 kg cat, you
are looking at 1 kg of neutrons trapped within the cat’s nuclei. All of those neutrons, formed
13.6 billion of years ago, would not survive more than a couple of hours if they were not
bounded to the cat’s protons.

Even at present, not only cat owners, but many nuclear and particle physicists are surprised
when hearing for the first time about the experimental techniques allowing the manipulation
of free neutrons during time periods as long as the neutron life-time. Although the idea of
storing neutrons in closed vessels was firstly proposed in 1959 by Zeldovich [18], it was only
experimentally achieved 9 years later simultaneously by Shapiro et al. and Steyerl et al. [19].
In essence, when the energy of free neutrons is reduced below the neutron-optical potential of
a given material (for example 335 neV for 58Ni), they undergo total reflection on the surface
independently of the angle of incidence. These reflection properties, used to classify neutrons
as ultra-cold neutron (UCN), can be described by classical quantum mechanics and mimic
the properties of light reflection. One then talks about neutron optics.

Since the construction of the first UCN storage bottles, and over more than 50 years,
multiple searches on high-precision physics have been carried out with UCN experiments. For
example, in the measurement of the neutron electric dipole moment (EDM), the neutron
life-time and even its bounded energy levels in Earth’s gravitational potential. In this work,
we present a new approach to the study of neutron - hidden neutron oscillations from neutron
disappearance in UCN beams. Hidden states of matter, which could correspond to parallel
sectors hosting mirror copies of all known particles, or to different branes of a high-dimensional
bulk, are conceived within a simple mathematical model with a rather rich phenomenology in
low-energy particle physics and cosmology.

In the first chapter, the motivation and mathematical formalism behind hidden sectors
models, as well as a brief introduction to UCN physics, will be presented. At the end of
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the chapter, the state of the art of past n− n′ experimental tests will be discussed. Moving
to a technical study, the second chapter is dedicated to the description of the novel UCN
gaseous detector, GADGET. Special emphasis will be given to its detection efficiency as a
function of the gasses pressure and to the pulse shape analysis. In the third chapter, the new
experimental technique to probe n − n′ oscillations in UCN beams with magnetic fields is
introduced. A detailed explanation of the data collection technique, determination of a n− n′

signal, expected sensitivity, a preliminary analysis on UCN trajectories and a magnetic field
characterization will be exposed. The fourth chapter is separated into two parts. First is a
summary of the data collected during the 2020 experimental campaign at the Intitut Laue
Langevin (ILL), which will be followed by the systematics analysis. In particular, the search
and characterization of non-statistical fluctuations is developed by analyzing the UCN beam
counting rate at different time scales. Evaluation of a possible data correction by means of
the ILL reactor power will be considered. The second part of the fourth chapter focuses on
the data analysis of n− n′ oscillations in the beam experiment. The search for a signal and
exclusion of the model parameters are studied for two different scenarios: a non-negligible
mass splitting δm between neutron and hidden neutron, and the possible influence of hidden
magnetic fields (B′). In the last chapter, an overview of the whole work and some perspectives
regarding future n− n′ UCN beam experiments are presented.



Chapter 1

UCN and hidden sector searches

This chapter exposes the theoretical considerations and experimental implications around
the hidden universe hypotheses. In the first part, we present a chronological description on
how hidden matter models became important in theoretical approaches exploring physics
beyond the standard model. Then, the most likely mechanisms for particle mixing between
our universe and hidden versions are mentioned. In particular, the phenomenology accounting
for the mixing of neutron with hidden sectors is examined, while listing the constraints
imposed on such new interactions. In the third part, the discussion focuses on recalling
past experimental results with UCN and other neutron setups to define the still admissible
hidden sector model parameters. In the last part, in order to explain the fundamentals of the
experimental techniques employed in this work, a brief introduction to UCN physics is given.

1.1 Hidden matter

The introduction of a new sector of hidden particles has been proposed from different contexts
to work around some of the standard model limitations. Initially, hidden particles were
presented as ‘mirror particles’ when Lee & Yang intended to explain the parity symmetry
breaking in the weak sector [29]. In order to provide a mechanism for which parity was still
conserved, they argued the possibility of parity degeneracy. Whereas particles in the ordinary
sector would favor one parity state, mirror particles would prefer the opposite one. In this
way, even if parity is violated locally within both sectors, in the general picture it remains
conserved. Such conception of global parity would also allow explaining why one only observes
left-handed neutrinos: they transform into their twins mirror right-handed neutrinos after
mirror parity inversion.

The recognition of mirror matter as a potential source of new physics was strongly debated
among physicists influenced by symmetric principles (for a thoughtful chronological summary,
see [30]). More than 20 years after the first experiments evidencing P and CP breaking [31,32],
the idea of hidden or mirror matter was recovered by the physicist R. Foot. He developed
the formalism behind the notion of hidden matter as a candidate for dark matter [33]. R.
Foot proposed, assuming the Z2 symmetry which assigns a degenerate hidden particle to
each known particle, the coexistence of two sectors locally governed by the same interactions,
LSM(e, u, d, γ,W,Z, ...) and LSM’(e

′, u′, d′, γ′,W ′, Z ′, ...) in the ordinary and hidden sectors,
respectively, which might potentially mix between each other through extra terms (besides
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gravity) not contained within standard model interactions Lmix. The global Lagrangian of the
joint sectors would then be expressed as

L = LSM(e, u, d, γ,W,Z, ...) + LSM’(e
′, u′, d′, γ′,W ′, Z ′, ...) + Lmix. (1.1)

Note that, given that the Z2 mirror symmetry that copies all masses and decay times from
ordinary to hidden particles, new parameters in this theoretical model appear only in the
mixing term Lmix. Therefore, since interactions between SM’ particles would be exactly the
same as the ones in SM, hidden matter might describe properties similar to ordinary matter.
Although, as stated above, accounting for such properties cannot be done through the known
interactions besides gravity, the last term in the right-hand side of Eq. (1.1) opens a portal
for testing the nature of hidden matter at the quantum level. In other words, if hidden matter
happens to be the same as dark matter, the yet unexplained cosmological phenomena governed
by gravity effects could be further analyzed by particle physics experiments probing SM-SM’
mixing at Earth.

In recent years, the double-degenerated mirror theory of hidden particles has been for-
mulated as the particular case of more extensive models. For example, Dvali & Redi [1]
explain that, in order to solve the hierarchy problem between weak and gravitational scales,
the number of allowed SM copies can go up to 1032, i.e. instead of Z2 one could face multiple
sectors with overall symmetries represented by Z1032 [34]. Similarly, from a rather geometrical
point of view, hidden particles can instead be thought of as ordinary particles transitioning
into different layers (branes) of a high dimensional bulk [35]. The universe as we observe
it would correspond to a three-dimension sheet embedded in a hyperspace, where multiple
versions of SM particles are constrained to live in. Within this picture, dark matter is
conceived as hidden particles located in other layers, thus requiring gravity to propagate along
the bulk. Nevertheless, independently of the physical content of the theoretical approach
followed to describe the matter - hidden matter mixing, the mathematical treatment in all
the aforementioned models yields to the same phenomenology [3].

1.2 Mixing mechanisms

The first attempts to define the mixing terms in Eq. (1.1) were driven by symmetry (Z2, gauge,
Lorenz) laws and renormalization restrictions [2]. Application of these minimal requirements
leads to mixing processes of neutral bosons, such as photon - hidden photon (γ − γ′), Z -
hidden Z and Higgs - hidden Higgs. While the two first raise from kinetic (quadratic) mixing,
the latter is entirely due to quartic interactions:

Lmix =
ε

2
FµνF ′

µν + λφ†φφ′†φ′, (1.2)

where Fµν (F ′
µν) is the ordinary (hidden) U(1) gauge boson field strength tensor and φ (φ′) is

the ordinary Higgs (hidden) field. Note that, in virtue of the Z2 symmetry, the only input
parameters of the hidden model are ε and λ.

Out of the two mixings γ − γ′ and Z −Z ′ included in the first term on the right-hand side
of Eq. (1.2), only the former has a sensitivity large enough to be studied experimentally [33].
After proper diagonalization of this mixing term, one finds out that hidden charged particles
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are given a small electric charge εe, which allows them to couple to ordinary photons∗ [36]. A
direct consequence of this small charge is that hidden particles could be detected in dark matter
experiments such as DAMA/LIBRA [37] and CoGeNT [38]. In fact, the 1-year modulated
signals detected in previous phases of DAMA/LIBRA experiments could correspond to static
hidden matter interacting with the detector as Earth moves back and forth in the galaxy.
Similarly, the −εe charge of hidden electrons permits the creation of hidden electron hidden
positron pairs through the process e+e− → e′+e′− (see Figure 1.1), which would occur with
and amplitude 2ε times the amplitude of the Bhabha annihilation e+e− → e+e− [39]. This
result is relevant in positronium physics given that it represents an invisible channel for
the ortho-positronium decay, thus affecting its life-time. Although past experiments have
not observed a significant deviation from QED calculations, ortho-positronium life-time
measurements have set the bound ε < 1.55× 10−7 [5]. Interestingly, reducing this limit will be
useful to test the value of ε required to explain the DAMA/LIBRA modulated signal ε ∼ 10−9.
Regarding the Higgs - hidden Higgs mixing derived from the second term on the right-hand
side of Eq. (1.2), recent analyses have shown that ATLAS and CMS give Higgs suppression
factors compatible with predictions in case of mass differences between Higgs mass eigenstates
greater than their decay widths [40]. For a more complete discussion, see [41–43].

γ′

γ

ε

e′−e′+

e+ e−

Figure 1.1: Feynman diagram of e+e− → e′+e′−. The cross represents the mixing.

Extra terms could be added to Lmix if considering for example that neutrino oscillations
require including interactions in the SM Lagrangian providing neutrinos with masses. It is then
possible that hidden neutrinos exist with alike sub eV masses and, as long as neutrino masses
are due to the type-I† seesaw mechanism, mass mixing between neutrinos and hidden neutrinos
occur [17,33]. Whereas long-baseline neutrino experiments can be completely explained by
the three-flavor oscillation model, the reactor antineutrino anomaly [44] could represent a hint
for neutrino - hidden neutrino oscillations. Although the hidden (sterile) neutrino hypothesis
has been extensively revised during the last decade with many short-baseline neutrino setups
(see a status review in [6]), most of the results could not positively conclude on the existence
of neutrino - hidden neutrino oscillations. Nowadays, only the SM-3 reactor [45] measurement
is still compatible with the hidden neutrino mixing scenario [46]. If future experiments
manage to stringently exclude the neutrino - hidden neutrino oscillations hypothesis, one

∗The opposite does not hold though: hidden photons do not couple to ordinary matter.
†Compatible with gauge and Z2 symmetries.
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could then think of two possibilities, either these oscillations are extremely tiny or they are
zero (as it happens for type-II and type-II seesaw models [33]). This being said, a different
explanation to the reactor antineutrino anomaly was presented by Serebrov [47]. Instead
of observing an antineutrino counting defect, reactor measurements might overestimate the
number of actual β-decays at the source. This could happen if a fraction of the fission
neutrons rather than decaying through the known channels undergo oscillations into hidden
neutrons (n − n′ oscillations). Such baryonic matter oscillations have been widely studied
in the neutron life-time puzzle context [48] and are currently being tested in short-baseline
neutrinos experiments [14]. They are the main focus of this work.

1.3 Neutron - hidden neutron oscillations

Mixing of the neutron n with its hidden counterpart n′ can be safely included in Lmix as it
respects Z2, gauge and Lorentz symmetries [33]. The effective operator in this case corresponds
to a 9-dimension coupling between three ordinary and three hidden quarks

Lnn′ ∼ 1

M5
(udd)(u′d′d′) + h.c., (1.3)

where M represents the large cutoff scale involving new physics. Using the QCD energy scale
Λ ≈ 200 MeV, one can estimate the n− n′ oscillation time parameter as

τnn′ = ε−1
nn′ ∼

(
M

10 TeV

)5

× 1 s. (1.4)

Following the reasoning in [49], a first bounding on τnn′ can be extracted from neutron -
antineutron oscillation limits, which give τnn′ > 1 s, i.e. M ∼ 10 TeV. This is convenient since
n− n′ oscillations could be even faster than the neutron life-time (τn ≈ 880 s), thus allowing
the probe of τnn′ with free-neutron experiments. Note that, because of the Z2 symmetry,
n− n′ oscillations cannot occur in bound-neutron of stable nuclei as hidden neutron masses
are smaller (mn = mn′ , or at least mn ≈ mn′ as later discussed) than the mass difference
between isotopes (A,Z) and (A− 1, Z).

n− n′ oscillations with characteristic times in the scale of seconds would have a strong
influence on quantities such as the neutron life-time [48], and at the same time they would
play a key role in the description of cosmological phenomena. For example, breaking of B
symmetry by n− n′ mixing (∆B = 1), which is not excluded in beyond the standard models,
could shed some light through the Sakharov conditions on the baryogenesis problem [4]. Note
that although both the baryon and hidden baryon numbers (B and B′, respectively) are
simultaneously violated by Lnn′ , the total quantum number B̄ = B+B′ is conserved. Imposing
such a general symmetric constrain n− n̄ and n′ − n̄′ oscillations are forbidden processes [49].

1.3.1 Oscillation probability: general description

As previously indicated, whether n − n′ oscillations are caused by mixing between two or
1032 sectors, or even if they correspond to neutron swapping into a high dimensional bulk,
their phenomenology is always the same. For this reason, without loss of generality, we adopt
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the two sector model where the Hamiltonian associated to Eq. (1.3) describing the mixing
between free-neutrons and free-hidden-neutrons is

Ĥnn′ =

(
En εnn′

εnn′ En′

)
, (1.5)

with En (En′) the neutron (hidden neutron) energy and εnn′ = τ−1
nn′ the mass mixing parameter

(with h̄ = c = 1). Matrix elements in Eq. (1.5) are in fact 2× 2 matrices of spin states, which
can be assumed diagonal due to spin conservation. Nevertheless, if energy terms En and En′

include spin-dependent interactions for which the privileged quantization axes of ordinary
and hidden sectors do not coincide, e.g. scenarios with hidden (mirror) magnetic fields, a
spin-sensitive treatment should be considered [17].

Value of En and En′

Throughout this work, we will discuss on results from free-neutrons experiments where En

is defined by the neutron interactions with its environment. They are generally determined
by magnetic fields in UCN setups (see section 1.4.1), or by Fermi potentials at nuclear
reactors in passing-through-wall experiments (see section 1.4.2). Following the arguments that
presented hidden matter as dark matter, one could estimate the nature of En′ by revising the
main interactions that a hidden neutron on Earth would have with hypothetical surrounding
hidden/dark matter. Given the low density of dark matter captured by the solar system,
predicted to go up to ρDM = 4 × 10−25 g/cm3 [50], one would attribute hidden neutron
ambient interactions to hidden electromagnetism and gravity (long interaction range forces)
and safely neglect hidden nuclear forces.

On the one hand, hidden electromagnetic fields, which reduce to hidden magnetic fields
due to the charge neutrality of interstellar medium [51], are predicted between 0.01 and 3 µT
assuming the presence of high density hidden H2 clouds [35]. Although magnetic fields fall to
∼ 1 nT in cloud portions with regular densities, it was stated in [17] that, “by chance”, the
solar system might be currently crossing a huge mirror matter cloud for which hidden magnetic
fields can go up to 10 µT. On the other hand, according to the multiple-brane picture [35],
contributions from gravitational interactions are relevant provided that the difference between
the gravitational fields experienced by a neutron in our brane (V+) and in another brane
(V−) is different from zero: |V+ − V−| ≡ h̄|η| 6= 0. In other words, the gravitational potential
of a given mass depends on the brane where it is located. Even if gravity permeates over
the high-dimensional bulk, its strength might be modulated by the branes separation (d)
according to

M ′ ∼Me−kd, (1.6)

with M ′ the apparent mass of an object with ordinary mass M , and k a constant depending
on the brane properties. Although determination of |η| is unachievable in practice, a rough
estimation can be made from ordinary gravitational fields V+ due to Earth, Moon, Sun and
Milky Way: h̄η ∼ 1 meV − 1 keV.

Mass splitting δm

Up to now, the n− n′ mixing phenomenon was formulated assuming perfect Z2 symmetry,
out of which neutron and hidden neutron masses are identical mn = mn′ . However, it might
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happen that Z2 is spontaneously broken by higher order quantum corrections, giving place to
a small mass splitting δm = mn′ −mn [20]. Such interactions could be written as the coupling
of a scalar field η̃ and the ordinary and hidden Higgses (see Eq. (1.2))

λη̃(φ†φ− φ†φ′), (1.7)

with λ a dimensional coupling constant. Berezhiani [52] explains that, depending on the mass
ordering between neutron and proton in both sectors, hidden matter would depict different
properties. If mp′ > mn > mn′ > mp with mp′ > mn′ +me′ , hidden protons would be unstable
while hidden neutrons stable. This would imply a hydrogen-free self-scattering hidden matter
scenario. On the contrary, if |mp′ −mn′ | < me′ , i.e. stable hidden proton and hidden neutron,
hidden matter corresponds to a mixture of self-scattering and dissipative matter. Although
determining the value of mn′ is not possible, the largest allowed magnitude of δm is extracted
from Be9 stability: δmmax ≈ 1.573 MeV [52]. Note that δm adds as an extra model parameter,
which allows rewriting the hidden neutron energy as

En′ = mn + δm+∆E′,

where ∆E′ includes all the aforementioned hidden matter interactions. The reader might
suspect that, from a practical point of view, one has to assume either δm = 0 or ∆E′ = 0 so
that the degeneracy-lifting energy difference, written as

∆nn′ ≡ En − E′
n

= (mn +∆E)− (mn′ +∆E′)

= (∆E)− (δm+∆E′)

with En the environmental neutron energy, only deals with one hidden parameter, namely
δm or ∆E′. If that is not the case, the theoretical model gains one degree of freedom, thus
complicating the parameter exclusion analysis.

1.3.2 Oscillations without environmental hidden potentials (∆E ′ = 0)

Let us first assume a hidden sector whose matter density at Earth is low enough so that
environmental hidden potentials, especially hidden magnetic fields, can be neglected. Hence,
the Hamiltonian in Eq. (1.5) is expressed as

Ĥnn′ =

(
mn +∆E εnn′

εnn′ mn′

)

=

(
∆E εnn′

εnn′ δm

)
+mn

(
I2×2 0
0 I2×2

)

=

(
∆E εnn′

εnn′ δm

)
, (1.8)

where we have dropped the term mnI4×4 as it does not change the n−n′ oscillation dynamics.
Given that all elements in this last expression are 2× 2 diagonal matrices, its solution on the
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Schrödinger equation is equivalent to the very well known two-level quantum system. The
mass states and their energies (eigenvectors and eigenvalues) are thus given by

Ẽ± =
1

2

[
(∆E − δm)±

√
(∆E − δm)2 + 4ε2nn′

]
,

and

|ψ+〉 = cos θ |n〉+ sin θ |n′〉
|ψ−〉 = − sin θ |n〉+ cos θ |n′〉 ,

respectively, where the mixing amplitude θ is defined as

sin2 2θ =
4ε2nn′

4ε2nn′ + (∆E − δm)2
.

Following this notation, a free-neutron released at t = 0 would be described by the state
|ψ(0)〉 = |n〉 = cos θ |ψ+〉 − sin θ |ψ−〉, whose propagation in time is

|ψ(t)〉 = cos θe−iẼ+t |ψ+〉 − sin θe−iẼ′
−t |ψ−〉 . (1.9)

Then, the n − n′ oscillation probability after a free-flight time tf is computed from the
amplitude | 〈n′|ψ(tf )〉 |, which results:

Pnn′(tf ) = sin2(2θ) sin2


√
(∆E − δm)2 + 4ε2nn′tf

2

 . (1.10)

This last expression shows that the maximum mixing is achieved at the resonance condition
where the n− n′ energy degeneracy is completely lifted, i.e. sin2 2θ = 1 with

∆nn′ = ∆E − δm = 0. (1.11)

In such case, the oscillation probability becomes 1 every (2n + 1)πτnn′/2 seconds, with
n = 0, 1, 2, · · · . For off-resonance values, not only the amplitude decreases as ∼ 1/∆2

nn′

but also the oscillation frequency increases proportional to ∆nn′ . This double feature of
n − n′ oscillations is depicted in Figure 1.2 for four values of ∆E assuming τnn′ = 1 s and
δm = 10−14 eV. Note that opposite to neutrino oscillations, where the mixing amplitude
sin2 2θ is fixed by the model parameters, the n − n′ mixing can profit of maximal mixing
Pnn′ ∼ 1 if correctly matching ∆E = δm (∆nn′ = 0) and allowing long free-flight-time periods
(tf ∼ ε−1

nn′). Therefore, to efficiently probe for n−n′ oscillations, one could look for example at
the neutron disappearance by experimentally tuning ∆E = δm while minimizing the frequency
of neutron scattering with its environment. These two ideas are the basis of experimental
setups probing n− n′ oscillations with ultra-cold neutrons.
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Figure 1.2: n − n′ oscillation probability as a function of the free-flight time
assuming τnn′ = 1 s and δm = 10−14 eV. The behavior, illustrated for different
ratios δm/∆E, demonstrates that the mixing amplitude sin2 2θ and oscillation
frequency 1

2

√
∆2

nn′ + 4ε2nn′ are maximum and minimum, respectively, at the reso-
nance δm/∆E → 1 (∆nn′ = 0).

Effective mass splitting

The oscillation phenomenology described above was constructed assuming the more simplistic
scenario where all interactions between the hidden neutron and its environment were neglected.
The hidden neutron energy was then reduced to its rest mass, which could happen to be
different from the neutron mass. However, as it is not possible to distinguish between a pure
mass splitting δm and other spin-independent hidden neutron environmental interactions
(Eq. (1.10) does not change if replacing δm→ ∆E′), one could have included them within an
effective mass splitting defined as

δmeff = δm+ V ′
Fermi + V−h̄+ · · · (1.12)

where V ′
Fermi corresponds to the Fermi potential experienced by n′ in a hidden medium. Since

the n− n′ oscillation probability is invariant under such redefinition, in the present work, δm
refers to the effective mass splitting in Eq. (1.12).

1.3.3 Oscillation in presence of hidden magnetic fields ( ~B′)

Physics underlying n−n′ oscillations when the hidden neutron energy is governed by a hidden
magnetic field has been presented in detail in [17]. The main difference with respect to the
approach followed so far is that no explicit mass-splitting is considered (δm = 0) and ∆E′ is
purely defined by the hidden neutron spin states:

∆E′ = ~µn · ~B′ = µn ~B′ · ~σ, (1.13)

with µn the neutron magnetic‡ moment and ~σ = (σx, σy, σz) the Pauli matrices. In that case,
if the energy degeneracy ∆nn′ is experimentally lifted by means of an ordinary magnetic field

‡Although it might happen µn 6= µ′
n [53], such scenario is not taken into account in this work.
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acting on the ordinary neutron, the n− n′ interaction Hamiltonian reads

Ĥnn′ =

(
µn ~B · ~σ εnn′

εnn′ µn ~B′ · ~σ

)
. (1.14)

The solution to the Schrödinger equation under these conditions deals with the fact that ~B
and ~B′ are not strictly parallel. Given the ignorance on the magnitude and direction of ~B′,
one needs to introduce an extra model parameter, namely the angle between hidden and
ordinary magnetic fields

β = cos−1

(
~B · ~B′

| ~B|| ~B′|

)
. (1.15)

In configurations with β 6= 0, the preferred quantization axes defined by the hidden and
ordinary magnetic fields are not the same. For this reason, n − n′ oscillations with spin
inversions n↑ → n′↓ and n↓ → n′↑ are allowed by the Hamiltonian in Eq. (1.14). The oscillation
probability, which accounts for the spin inversion through the parameter β, is then written
as [54]

Pnn′(t) = =
sin2[(ω − ω′)t]

2τ2nn′(ω − ω′)2
(1 + cosβ) + sin2[(ω + ω′)t]

2τ2nn′(ω + ω′)2
(1− cosβ), (1.16)

with 2ω = |µnB| and 2ω′ = |µnB′|§. Note that in practice, one normally has τnn′(ω+ω′) � 1,
hence the second term on the right-hand side of Eq. (1.16) can be neglected most of the time
(this term becomes significant when β = π). Therefore, n− n′ oscillations in the presence of
hidden magnetic fields describe a time evolution similar to the one expressed through the
mass splitting approach (Eq. (1.10)). The main difference here is the factor 1 + cosβ, which
hinders the n− n′ oscillations.

1.4 State of the art: Past n− n′ oscillation tests
Although the first bound on τnn′ was established in 2006 by Berezhianni [49] using data
from neutron-antineutron oscillations experiments [28], just one year later, Ban et al. [7]
achieved the first test of n − n′ oscillations through a specially dedicated setup. At the
time of this experiment, it was already established that n − n′ could actually be detected
through two different experimental approaches [55], referred to as neutron disappearance and
neutron regeneration [56]. In this section, the detection principle of both approaches and their
individual results are presented. In the end, exclusion regions on the n− n′ model parameter
space constructed from all experiments performed so far are compared.

1.4.1 Neutron disappearance

Up to now, six experiments have been devoted to the search of n− n′ oscillations through
the neutron disappearance method [7–11, 57]. In all of them, the same idea was applied:
look for signals of neutron disappearance in UCN storage bottles (see section 1.5.1). By

§These characteristic frequencies are proportional to the Larmor precession frequencies in both sectors:
ω = ωLarmor/4 and ω′ = ω′

Larmor/4
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carefully accounting for the known channels of UCN losses during storage periods (β-decay,
up-scattering, absorption, etc.), this approach assigns any neutron counting defect to the
process n→ n′. From a theoretical viewpoint, this technique can be said of order one since
neutrons undergoing “half a n− n′ oscillation”, with a probability P (n → n′) ∼ (tf/τnn′)2,
would become hidden neutrons thus crossing and escaping the storage bottle walls¶.

Historically, first experiments by Ban et al. [7] (2007) and Serebrov et al. [8] (2008)
considered negligible hidden magnetic fields and focused on lifting the energy degeneracy
due to the neutron interaction with Earth’s magnetic field. In other words, they aimed
to screen environmental ordinary magnetic fields to fulfill ∆nn′ = µnB ∼ 0. In particular,
tests in [7] (2007) profited from the magnetic shielding system constructed for the nEDM
collaboration [58], which allowed reaching vanishing magnetic fields B � 10 nT associated to
∆nn′ � 10−21 eV (similar small magnetic fields were achieved in [8] (2008)). Limits reported
by both groups were τnn′ > 103s (95 % C.L.) [7] (2007) and τnn′ > 414 s (95 % C.L.) [8]
(2008).
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Figure 1.3: 95% C.L. boundaries of τnn′ from previous UCN storage measurements
through the ratio (top) and asymmetry (bottom) channels. The signals in the
asymmetry channel reported by Berezhiani et al. [10,54] (2018) from data in [7]
(3.1σ Ban (2007)), [8] (5σ Ser. (2012)) and [10] (2.5σ Ber. (2018)) are displayed
with dashed lines. The black solid line represents the global boundary as reported
in [10]. Courtesy: Abel et al. [11]

¶Regeneration processes are of order two, with P (n → n′ → n) ≈ P (n → n′)2. See next subsection.
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Even if B′-fields were neglected in the first tests, their results could be extrapolated to cases
where B′ 6= 0. This was possible thanks to the ratio and asymmetry channels introduced by
Berezhiani [17] (2009). Using Eq. (1.16), he demonstrated that by joining the measurements
of neutron counting at null magnetic field (N0) and at both directions of a given B-field (NB

and N−B), one can express τnn′ as a function of

A↑↓ ≡
NB −N−B

NB +N−B
, (1.17)

E0 ≡
2N0

NB +N−B
, (1.18)

a few experimental parameters and the hypothetical hidden B′-field. These signal channels
are written as

Asymmetry channel:
τ2nn′

cosβ
=

ts
〈tf 〉A↑↓

fA(B,B
′), (1.19)

Ratio channel: τ2nn′ =
ts

〈tf 〉E0
fE(B,B

′), (1.20)

where ts is the storage time, 〈tf 〉 the average UCN free-flight-time within the bottle and
fA(B,B

′) and fE(B,B
′) are basic functions on the applied and hidden magnetic fields. In

this way, if no signal is observed, i.e. |A↑↓| < ζ∆A↑↓ and |E0 − 1| < ζ∆E0 with ζ a constant
depending on the confidence level and ∆A↑↓ (∆E0) the uncertainty of A↑↓ (E0), rather than
constructing a single limit for τnn′ , the asymmetry and ratio channels allow excluding portions
of the parameter spaces (B′, τnn′/

√
cosβ) and (B′, τnn′), respectively. Note that opposite to

the asymmetry channel, which is sensitive to the angle β, the ratio channel leads to a more
general evaluation of n−n′ oscillations as it can be included within the generic two-parameter
model (τnn′ , δm) of Eq. (1.10). This is convenient for the later comparison against neutron
regeneration results.

Reanalysis of data in [7] (2007) and [8] (2008) by allowing the influence of an undetermined
B′-field through the asymmetry channel revealed 3.1σ and 5σ signals, respectively [54] (2012).
The overall fit, including also the non-signal exclusion results by Altarev et al. [9] (2009),
pointed towards a potential signal around B′ = 11 µT, τnn′ = 14 s and τnn′/

√
cosβ = 20 s

(region (a) and (b) in [54] (2012)), but it also favored a wide region of large hidden B′-fields:
[20− 200] µT with τnn′ ∼ 0.1 s (region (c) in [54] (2012)). These potential signals motivated
extra searches through measurements of A↑↓ and E0 in UCN storage experiments at short
magnetic fields (B ∼ 10 µT) to probe regions (a) and (b) (for a detailed overview, see [59]),
and through the UCN flux monitoring at high magnetic fields to probe region (c) (present
work).

Experiments by Berezhiani et al. [10] (2018) reported a new 2.5σ deviation from the
asymmetry channel about B′ = 12 µT, but also excluded portions of the parameter space
in the asymmetry and ratio channels. In addition, this work performed a second reanalysis
of data in [8] (2008) since it was stated that significant B-field spatial gradient had to be
included in the fit. Such a revaluation transformed the favored regions (a), (b) and (c) in [54]
(2012) into the magenta region in [10] (2018). In particular, the (c) region was removed from
the potential favored parameters. More recently, measurements at PSI by Abel et al. [11]
(2021) probed oscillations at B = 10, 20 µT but did not confirm any of the previous significant
signals.
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A summary of all the results up to 2021 are displayed in the exclusion plots of Figure
1.3. The 95% C.L. exclusion regions peaking at the tested magnetic fields are displayed with
filled curves in the ratio channel (top) and asymmetry (bottom) channels. On top of them,
parameters favored by signals reported in the asymmetry channel are contained within the
dashed-line bands, which correspond to the 95% C.L. interval of each signal. Special interest
is given to the 5σ and 2.5σ bands overlapping around B′ ∼ 16− 19 µT.

Besides the experiment introduced in this work, further tests of n − n′ oscillations are
foreseen. For example, new experimental data was recently collected from UCN storage at
PSI [57] and a new proposal has been passed at the European Spallation Source (ESS) [60] to
look for neutron regeneration processes.

1.4.2 Neutron regeneration

Instead of estimating the number of neutron disappearing in a given setup, neutron regeneration
experiments aim at counting neutrons completing an “entire n− n′ oscillation”, i.e. following
the sequence n → n′ → n. In order to guarantee detected that the events correspond to
neutrons undergoing a round trip between the ordinary and hidden sectors, a high density
stopper of ordinary neutrons is placed between the source and the counter. While no ordinary
neutron is expected to cross the stopping wall, the low interacting hidden neutrons would
easily traverse it. Once on the other side of the wall, hidden neutrons might oscillate back
into ordinary neutrons and then be detected. This is the reason why neutron regeneration
experiments are also called passing-through-wall experiments. The reader might suspect that,
given the already low probability of neutron disappearance in UCN storage experiments,
estimated in P (n → n′) < 7× 10−6 [61], the probability of detecting a neutron completing
the process

n
P−→ n′

P−→ n (1.21)

might be even tinier than P (n → n′ → n) ∼ P (n → n′)2 = 10−12. Hence, regeneration
experiments, rather than dealing with deviations from large neutron counting, focus on
separating few neutron detection from background events. That being said, a positive signal
in neutron disappearance experiments can only be attributed to actual n− n′ oscillations if a
regeneration experiment confirms the fitted parameters. If that is not the case, neutron losses
in storage bottles would just indicate a new exotic decay channel.

Experimental efforts in regeneration experiments have raised two different techniques,
initially with cold neutron beams [62,63] and more recently with fission neutrons from reactor
facilities [12–14]. Whereas n− n′ oscillations in the former are induced by tuning magnetic
fields B ≈ B′, the latter can use the Fermi potential of neutrons inside the reactor core,
regeneration blocks‖ and the detector itself to lift the energy degeneracy ∆nn′ = VFermi − δm.
Compared to UCN storage experiments, the n − n′ sensitivity in cold neutron beams and
fission neutron setups profit from larger neutron fluxes, e.g. Φcold ∼ 2× 1010 n/s in the cold
neutron beam at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory
(ORNL) [63], and Φthermal ∼ 1014 − 1015 n/cm2/s within the heavy water moderator at the
ILL [14].

‖These blocks, made of materials with large neutron scattering cross-sections, are placed after the neutron
wall stopper to increase the probability of regeneration n′ → n.
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Figure 1.4: Exclusion regions in the parameter space by neutron disappearance
(UCN storage, see Figure 1.4) and neutron regeneration (CN beams [15] and reactor
thermal neutrons [13,14]) experiments. The dashed (solid) lines of STEREO and
MURMUR limits correspond to δm > 0 (δm < 0).

Although both approaches for neutron regeneration measurements are of order two in the
oscillation probability P (n → n′)2, the time evolution of a neutron state |n〉 = cos θ |ψ+〉 −
sin θ |ψ−〉 is different for CN beams and thermal neutrons. Given that CN beam vessels are
vacuumed, cold neutrons are weakly interacting with matter and therefore the oscillation
probability P (n → n′ → n) is computed in the regime of quasi-degenerate states (|∆nn′ | <
εnn′), i.e. the time evolution of |ψ(t)〉 = (ψ+(t), ψ−(t)) follows slow oscillations and requires
exact estimation of the free-flight-times. On the other hand, fission neutrons inside reactor
moderators experience large environmental potentials, which forces n− n′ oscillations to have
small amplitudes and fast oscillation frequencies (non-degenerate regime: |∆nn′ | � εnn′). In
such case, the oscillation probability for thermal neutrons within reactor moderators (Eq.
(1.10)) is averaged to [12]

Pnn′ =
2ε2nn′

(∆E − δm)2
. (1.22)

By means of this last expression, Stasser et al. [13] probed in 2021 n− n′ oscillations with
the specially dedicated MURMUR experiment at the BR2 research reactor (SCK-CEN, Mol,
Belgium). The setup consisted of the neutron converter at the reactor core, mostly composed
of Be, C and D2O, the biological shielding which acts as a neutron wall, a regenerator block
made of lead, 3He and other neutron scattering materials, and a 3He-based neutron detector.
Analyses of the counting rates yielded to the limit PMURMUR < 4.0 × 10−10 at 95% C.L..
Somewhat similar was done by Almazán et al. [14] in 2022 using the STEREO detector located
at 10 m from the center of the high flux ILL reactor. Although STEREO was originally
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conceived to test for ν − ν ′ oscillations [64] by looking at the flux of reactor antineutrinos,
its detection principle exploits the inverse beta decay, ν̄ + p → n+ e+, hence converting it
into a very sensitive neutron detector (neutron detection in STEREO is due to capture in Gd
and Li scintillators). Comparison of neutron counting rates in reactor ‘power ON’ and ‘power
OFF’ configurations lead to the limit PSTEREO < 3.1× 10−11 at 95% C.L.

Table 1.1: Summary of the Fermi potentials in the converter and regenerator of
MURMUR and STEREO experiments.

VFermi (neV) Γcoll (s−1)
Converter Regenerator Converter Regenerator

MURMUR 252 (Be) 83 (Pb) 2.078× 105 3.3× 10−5

STEREO 167 (D2O) 11 (Scint.) 1.0731× 105 5.2× 10−3

In order to construct the exclusion boundaries in the (δm, τnn′) space from the regeneration
experimental results above, one has to take into account the neutron collision rate at the
reactor core converter Γconv.

coll . Added to the low oscillation probability in the non-degenerate
regime, the swapping of neutrons into hidden neutrons is suppressed by the neutron collision
rate [5, 12], which transforms Eq. (1.22) into [14]

Pnn′ =
2ε2nn′

(∆E − δm)2 + (h̄Γcoll/2)2
, (1.23)

where one normally adds the neutron Fermi potential to account for the neutron-medium
interaction: ∆E = VFermi. Following the same reasoning, the hidden neutron - neutron
swapping would depend on the hidden neutron collision rate within the regenerator (Γrege.

coll )
volume and the detector for the MURMUR setup, and within the scintillators for the STEREO
setup. The total n→ n′ → n probability is then written as

Pn→n′→n ≈ Pnn′ × Pn′n

=
2ε2nn′

(V conv.
Fermi − δm)2 + (h̄Γconv.

coll /2)2
×

2ε2nn′

(V rege.
Fermi − δm)2 + (h̄Γrege.

coll /2)2
. (1.24)

where the values of Γcoll, computationally estimated in [13] and [14], and the Fermi potentials
for both experiments are reported in Table 1.1.

Using Eq. (1.24) and the limiting oscillation probabilities, one can construct the 95%
C.L. exclusion plots in the (δm, τnn′) parameter space by solving εnn′ as a function of δm.
However, depending on whether δm is positive or negative, MURMUR and STEREO results
determine two exclusion boundaries each. If δm > 0, the oscillation probability can be
resonantly increased, thus featuring maximum exclusions at the converter and regenerator
Fermi potentials δm = V conv.

Fermi and δm = V rege.
Fermi, respectively. On the other hand, if δm < 0, the

exclusion boundary is mostly flat. Both cases are displayed for the MURMUR and STEREO
limits next to the overall exclusion from UCN storage limits∗∗ and the recent measurement
with CN at the SNS [15] in Figure 1.4. This representation permits evidencing that the
sensitivity in regeneration experiments is almost 4 orders of magnitude smaller than the one

∗∗See in Appendix A how these limits are converted from the mirror to the hidden context.
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in UCN storage. However, limits from the former extend over a wide range of small and
large δm values. The versatile hidden matter evaluation of the STEREO setup introduces
a new path to test for n − n′ oscillations. In fact, recent analyses have proposed the use
of experiments such as IsoDAR, SNO and Borexino to probe extra portions of the n − n′

parameter space [65].

1.5 UCN physics

Ultra-cold neutrons are interesting quantum systems since their dynamics are sensitive to
the four fundamental forces. As it happens with neutron energies in all ranges, UCNs are
not constrained to a fixed energy interval, but instead they are categorized in virtue of their
macroscopic properties. In this section, we briefly introduce the UCN interactions and describe
their production in two different facilities.

1.5.1 UCN interactions

Opposite to higher energy neutrons, UCN temperatures are not linked to the moderator
temperature [66]. The term ultra-cold is rather assigned to neutrons capable of total reflection
regardless the incidence angle in material surfaces. This phenomenon is possible for neutrons
with very low energies ∼ 300 neV (2 mK), although it is highly dependent on the material
features. If properly chosen, such materials can be used to construct confinement bottles to
store UCN and then perform precise measurements of neutron properties. A few examples
would be the neutron EDM, the neutron life-time, the energy levels of the neutron in Earth’s
gravitational field and of course n−n′ oscillations. During these experiments, UCN physicists
mainly concern on the following UCN interactions.

Weak interaction

The main limitation on the time duration of UCN storage experiments derives from the weak
interaction. With a mass excess of 1.293 332 36 (46) MeV [67] with respect to the proton
mass, the neutron is an unstable system which decays through β-emission. The conversion of
one of its down-quarks into a top-quark leads to the emission of a W− boson, which in turns
decays into an electron and an electron antineutrino. The overall process is resumed as

n→ p+ + e− + νe. (1.25)

The neutron life-time, as reported by the Particle Data Group, is τn = 879.4 ± 0.6 s [68].
Although this value corresponds to the weighted average over several UCN storage measure-
ments, a second estimation from neutron beam experiments yields τn = 888.0 ± 2.1 s [69].
The 3.9σ difference between both results is known as the neutron life-time puzzle [70].

Magnetic interaction

Couplings to magnetic fields are a consequence of the non-zero neutron magnetic moment
µn = 1.91304273(45)µN ≈ −60.3 neV/T. Besides the well-known Larmor precession induced



40 CHAPTER 1. UCN AND HIDDEN SECTOR SEARCHES

by the torque ~τ = ~µn × ~B, the dynamics of a neutron can be affected if the magnetic field
exhibits a gradient. The force acting on a neutron immerse in such a field is written as

~F = −µn∇(~σ · ~B), (1.26)

with σ the neutron spin direction. In the adiabatic limit, i.e. the magnetic field rate of change
much smaller than the Larmor frequency, this last expression can be rewritten as

~F = ±|~µn|∇| ~B|, (1.27)

where the sign ‘+’ corresponds to antiparallel spin orientation ~S ↑↓ ~B, thus giving a neutron
accelerating into high magnetic fields, referred to as high-field seeker, and the sign ‘−’
corresponds to parallel spin orientation ~S ↑↑ ~B leading to a neutron being repulsed from
positive field gradients, referred to as low-field seeker [71]. Therefore, with a magnetic field
of 1 T, one can raise a potential barrier of about 60.3 neV. This effect is normally used to
construct UCN magnetic bottles and spin-sensitive filters.

Gravitational interaction

Probably the most unusual effect in particle physics, Earth’s gravitational potential plays an
important role in UCN dynamics. Using the classical description of Newton’s gravitational
law, the gravitational potential of a neutron at a height h with respect to Earth’s surface is
given by

Vgrav = mngh ≈ 102 neV/m · h, (1.28)

with mn = 939.565 MeV/c2 the neutron mass and g = 9.8 m/s2. Given that such potential is
of the same order as UCN kinetic energies, one can think of UCN traps whose bottom and
side walls are made of magnetic surfaces and which upper confinement results from gravity.
An example of such a device is used at the Los Alamos National Laboratory to measure the
neutron life-time [72]. Gravitational effects are also exploited in experimental setups to shift
in a controlled way UCN energy spectra. For instance, one can let UCNs fall into a vertical
guide so that they gain the energy necessary to cross detectors entrance windows without
being reflected (see section 2.2.2).

Strong interaction

The strong interaction is the responsible for keeping protons and neutrons bound within nuclei,
making possible the existence of stable atoms and all the more complex matter structures.
When a slow free-neutron impinges a nucleus, it is normally repulsed because its wave function
features multiple oscillations within nuclear potential wells, which hardly satisfies the stringent
boundary conditions for effective attraction. Indeed, the large difference between UCN energies
(KUCN ∼ 300 neV) and nuclear well potentials (Unuc ∼ 40 MeV) produces a drastic change on
the wave functions of UCN in the vicinity of nuclei, impeding the use of perturbation theory
to describe the scattering process [73]. However, given that the UCN De Broglie wavelength
is of the same order as the atomic distance in solids, rather than interacting with a single
nucleus UCN experience the short-range nuclear potential of multiple nuclei. In this way, each
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nucleus behaves as a dispersive center of spherical waves allowing to express the UCN matter
interaction through the effective potential known as “Fermi potential”

VFermi =
2πh̄2

mn
Nb, (1.29)

with N the number density of dispersive centers and b the nuclear scattering length associated
to that material. Then, UCNs with energies sufficiently small perceive a material as a potential
step and can be totally reflected from it if their kinetic energies fulfill

KUCN sin2 θinc ≤ VFermi, (1.30)

with θinc the incidence angle. This last expression implies that UCN with kinetic energies
KUCN ≤ VFermi are always reflected under all incidence angles.

Among the most frequent experimental uses of Eq. (1.29), with materials such as 58Ni
whose VFermi = 335 neV, there are the UCN guides and the storage material bottles. Whereas
the former allow transporting UCN from the source to the experimental setups, the latter is
commonly employed in long-lasting measurement such as the neutron EDM and the neutron
life-time. Unlike magnetic bottles, material ones suffer from UCN losses due to the neutron
wave function penetration into the reflecting surface. The overlapping of this evanescent wave
with nuclei in the material can result in UCN absorption or energy transfer. During this last
process, referred to as “up-scattering”, UCN receive energy from the thermal vibrations of
nuclei, making that their kinetic energies exceed the Fermi potential and therefore are no
longer reflected. In either case, the UCN loss probability upon reflection is normally low for
most of the materials used in UCN guide and bottles coverings (10−4 − 10−5).

1.5.2 UCN sources

The short life-time of neutrons makes the finding of free-neutrons in nature very unlikely
events. Therefore, neutron sources focus on extracting these baryons from bound nuclei.
Currently, free-neutron production is efficiently carried out through two different processes:
from fission reactions in nuclear reactors and from spallation reactions in particle accelerators.
In the following, experimental techniques to obtain UCN from these two types of facilities
are presented. In fact, the given examples correspond to the UCN sources employed for the
detector testing in section 2.4 and the analysis of n− n′ oscillations (chapters 3 and 4).

UCN from spallation at the Paul Scherrer Institute

Neutrons produced by this source come from the proton spallation of lead. The Paul Scherrer
Institute (PSI) cyclotron accelerates protons at 590 MeV, with a beam current slightly higher
than 2 mA. The proton beam operates in pulsed mode with kicks that last 8 s, every 300 s.
Product of the proton-to-lead collisions, fast neutrons (∼ 2 MeV) are generated at rates of
about 1017 s−1 [74]. Once liberated, the first stage of neutron moderation is completed by 3.6
m3 of heavy water surrounding the target at room temperature. At this point, neutrons reach
thermal energies (∼ 25 meV). Next, a solid deuterium crystal (sD2) located in the middle of
the heavy water tank with a temperature of about 6 K, continues the moderation process
until leaving the neutrons with energies close to 10 meV. At this energy range, neutrons
start interacting with the crystal as a whole rather than with the individual deuterium nuclei.
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Figure 1.5: UCN source at PSI in Villigen, Switzerland. The 7 m height tank
houses the spallation Pb/Zr target, ∼ 3.6 m3 of heavy water (D2O), ∼ 30 dm3 of
sD2 and the ∼ 2 m3 storage vessel (∼ 2.5 m height).

They transfer their energy to the lattice via phonon excitation. After several scattering
processes of this kind, neutrons emerge from the crystal with energies < 300 neV. Using
diamond-like-carbon (DLC) coatings (VFermi = 304 neV [75]), UCN are transferred from the
sD2 crystal volume through the storage vessel till the delivery ports as shown in Figure 1.5.

UCN from the ILL reactor

Since 1972 the high flux reactor at the ILL has been the center for many projects in a quite vast
variety of research disciplines, going from biology, chemistry and material science to nuclear
and particle physics. Among other neutron facilities, the ILL reactor stands out due to its
large constant neutron flux: ∼ 5× 1018 n/s with a nuclear power of 57 MW. Hot, thermal and
cold sources distribute these neutron fluxes from the reactor core towards the experimental
halls through 16 beam-tubes crossing the reactor biological shielding. Depending on the
spectrum energy of each beam line, different setups exploit the neutron-matter interaction to
study the structure of atoms, molecules and even nuclei. In particular, low energy particle
physics experiments are normally carried out at the PF2 apparatus, located at the highest hall
(level D) within the reactor containment building. These experiments use neutrons extracted
from the reactor core through the vertical cold source (VCS), which delivers PF2 with cold
and ultra-cold neutron beams.

Comparative studies have placed the UCN source at ILL as one with the largest densities
[76]. UCN in this facility have origin in the fission of 93% high-enriched 235U. Following
the induced fission of 235U nuclei at the reactor core, the surrounding heavy water (D2O)
pool generates the first moderation of the fast fission neutrons (En ∼ 2 MeV, vn ∼ 2× 104

km/s). After a few collisions with D nuclei, neutrons reach the thermal regime: En ∼ 0.025
eV (vn ∼ 2.2 km/s). The second cooling process takes place inside the liquid deuterium
cold source at ∼ 20 K [77], placed within the pool in the uranium fuel vicinity (see Figure
1.6). Extra thermalization in this cold volume leaves neutrons with energies of a few µeV
(vn ∼ 50 m/s). At that point, they become cold and are extracted through a bent vertical
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Figure 1.6: UCN source at the Institut Laue-Langevin. The cooling process
starts at the reactor moderating pool and finishes at the PF2 turbine.

guide. Only low energy neutrons capable to afford the guide curvature are transmitted to the
PF2-instrument, which lies 15 m above the reactor core. In fact, the ascending movement
in the gravitational potential makes that neutrons further lose a fraction of their kinetic
energies. The already cold neutron beam at the top of the vertical bent guide is then divided
in two sections: one half is transferred to a very-cold-neutron (VCN) exit port and the other
enters the ILL UCN turbine [78]. Inside this turbine, neutrons are reflected by one of the
690 nickel-covered blades that rotate with a radial velocity vrot = vn/2 = 25 m/s. After
undergoing such Doppler-shift reflection, neutrons finally become ultra-cold: En ∼ 214 neV
(vn ∼ 6.4 m/s) and can be directed towards dedicated high flux UCN beam lines (‘EDM’,
‘UCN’, ‘MAM’). A fourth port (TES) is also always available, but it counts with a low UCN
flux (∼ 15× 103 s−1) and is mainly dedicated to test simple setups.

1.6 Chapter conclusions

Hidden sectors propose an elegant solution to several SM issues, including the explanation of
dark matter and baryogenesis. The construction of these BSM models is rather simplistic from
a mathematical point of view, but at the same time they offer a phenomenology reachable



44 CHAPTER 1. UCN AND HIDDEN SECTOR SEARCHES

from cosmological observation and testable through low and high energy particle physics
experiments. Regardless the theoretical approach used to explain the possible mixing/swapping
of neutral particles into hidden sectors, equations describing the time evolution of such exotic
processes reveal resonant behaviors similar to the Rabi oscillations. Therefore, in order to
prompt the transition of particles into the hidden versions, experimental efforts have focused
on lifting the energy degeneracy raised from the particle interactions in both (or multiple)
sectors.

Evaluation of n− n′ oscillations has been tested in several setups. Historically, they were
firstly searched by looking at the neutron disappearance in UCN storage bottles and more
recently by measuring the neutron regeneration from thermal neutrons at the core of nuclear
reactors. Although results in the last experimental campaign with UCN storage at PSI by
Abel et al. [11] did not confirm the most updated reported signals by Berezhiani et al. [10],
the parameter space still hosts favored regions which have motivated the proposal of new
experiments [57, 60]. In addition, since the parameter exclusion has been mostly bounded
at low mass-splitting (τnn′ ' 10 s for δm < 10−12 eV) in UCN storage experiments, and less
efficiently (τnn′ ' 10−1 s) at large mass-splitting (up to δm ≈ 10−8 eV) from regeneration
measurements, one could wonder whether n−n′ oscillations would indeed happen at the scale
of seconds in the yet unexplored region at large mass-splitting.



Chapter 2

GADGET: A novel UCN counter

One of the main objectives in this work was the characterization and optimization of one
of the fastest UCN detectors ever built: the scintillation gaseous detector GADGET. This
novel neutron counter was originally designed within the n2EDM project, which aims at
the measurement of the neutron electric dipole moment (dn). Normally, a high sensitive
measurement of dn demands special efforts in two main directions: reducing the systematic
effects and increasing the counting statistics. The latter requires implementing high efficiency
UCN detectors capable of background discrimination and constant performing in long-lasting
experiments. GADGET appears as a detector outclassing in both of these requirements
simultaneously [21]. In addition, the fast voltage pulses product of the scintillation in
GADGET make it a suitable option for high-flux UCN experiments.

This chapter focuses on the description of UCN detection with GADGET. In the first part,
an overview on past UCN detectors and their operation is presented. Then, we introduce
the detection principle and a detailed explanation of the main components of the GADGET
detector. The third part is dedicated to the Pulse Shape Analysis technique, specially
developed for this detector with UCN experiments performed at the PSI and ILL sources.
In the end, a study on the influence of the gas admixture pressure in the UCN detection
efficiency is exposed.

2.1 State of the art

Since the discovery of the neutron in 1932 by Chadwick, neutron detectors have been charac-
terized by their indirect working principle. The zero net charge of neutrons excludes them from
processes such as atomic excitation and ionization, that are the most exploited phenomena
in particle detection. Thus, in order to be detected, neutrons have to be either absorbed
or scattered through an initial nuclear reaction out of which reaction products lead to the
desired ionization or light emission. Most of the time, absorption reactions are preferred
over scattering ones because of their larger share of energy release. Following the general
rule stating that the larger the energy released, the higher the detection resolution and
signal-to-noise ratio, neutron detectors are designed while looking for high Q-value reactions
and a mechanism to collect most of the emitted energy. Since the neutron energy is frequently
much shorter than the reaction energy, information of the first is most of the time lost.

45
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2.1.1 Overview of UCN detectors

There are some features of UCN detectors that differentiate them from higher energy neutron
detectors. Often, the sensitive volume size is smaller for the former, since the absorption
cross-section becomes quite larger at such energies. Another difference is the existence of a
critical velocity vc for UCN [24]. This parameter is defined by the material composing the
entrance window of the detector. In order to avoid UCN reflection, this first layer has to have
a Fermi potential low enough so to allow the UCN transmission. In the following, a brief
discussion of some UCN detectors tested and utilized in previous experiments will be given.

6Li-doped glass scintillator
6Li glass scintillator, known in the literature as GSx, contains Ce2O3, SiO2, MgO, Al2O3 and
Li2O oxides. It takes advantage of the 6Li isotopes to capture neutrons (σa = 344667 barn∗)
via the reaction

n + 6Li → 3H (2.74 MeV) + 4He (2.05 MeV). (2.1)

The emitted products, whose energies amount to 4.79 MeV†, trigger the scintillating process
after ionizing the Ce atoms (Ce3+). The scintillated light is characterized with a maximum
wavelength at 395 nm for all the GSx types. Given the fast decay time (60-75 ns) of the
light-emitting states [79], this detector is a good choice in high flux UCN experiments.

The particularity of this detector is found in its double-layer configuration. As shown in
Figure 2.1, the glass front face is 6Li-depleted (GS3 or GS30) while the remaining portion is
6Li-doped (GS10 or GS20). Such partitioning reduces the probability of escape events that
give place to partial energy deposition counts (Edet < 4.79 MeV). Since the first layer is almost
transparent to UCN, neutron capture is more likely in the second layer. Therefore, the energy
deposition tracks of tritium and helium start near the crystal center. Compared to gaseous
detectors, this detector has a larger sensitivity to gamma background (the cross-section for
gamma-ray interaction is larger in crystal materials).

Cascade detector

This kind of detector is based on the 10B neutron capture. The large UCN absorption
cross-section of boron (σa = 1.4× 106 barn) is used to stop neutrons in a 100-µm-thick layer
via the reactions

n + 10B → 11B → 7Li∗ + 4He (∼94%), (2.2)
n + 10B → 11B → 7Li + 4He (∼6%). (2.3)

The 7Li and 4He are emitted with kinetic energies near 1.47 MeV and 0.84 MeV, respectively,
which subsequently are deposited in an argon-CO2 gas mixture through ionization processes.
The reaction product’s tracks, whose lengths are in the order of a few mm at atmospheric
pressure [80], give place to a cascade effect when the primary electrons are drifted towards the

∗Value scaled from thermal energies with the 1/v law: σUCN = σth × vth/vUCN.
†This available energy benefits the discrimination of neutrons against the background, mainly composed of

gamma-radiation.
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Figure 2.1: Graphical representation of UCN interaction in the 6Li-doped glass
scintillator. The first 6Li-depleted layer (GS3 or GS30), transparent to UCN, avoids
the escape of the reaction products. Following, a 6Li-doped layer (GS10 or GS20),
in charge of the UCN absorption. The scintillated photons are collected at the end
of the light guide (bottom part).

holes in a gas electron multiplier (GEM) foil‡. Here, the number of electrons is amplified by
means of a potential difference supplied at both sides of the foil. The electron cloud steaming
from the holes is detected with a readout 2D structure, composed of 256 pixels in a total area
of 200 mm2. Figure 2.2 sketches the main elements in the detection chain. Because the UCN
conversion and the ionization occur in different regions, this detector is characterized with a
dead layer. Around 10-15% of the reaction products are totally absorbed within the finite
thickness boron layer and lost from the counting electronics.

Figure 2.2: Basic representation of the working principle in a cascade detector.
The number of primary electrons is increased after passing through the GEM foil.
The Ar-CO−2 gas mixture circulates in continuous mode to minimize aging effects.

3He gaseous detector (Strelkov)
3He based detectors have been widely used in neutron experiments [81–83]. In fact, the
UCN absorption cross-section by 3He is even larger than that of 10B (σab,10B ≈ 0.8σab,3He).
The detection principle in these detectors exploits the charged particle emission from the
absorption reaction,

n + 3He → 1H + 3H + 764 keV, (2.4)
‡Normally, a GEM is a 50 µm tick kapton foil, copper clad on each side.
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Figure 2.3: Diagram of a Strelkov 3He detector. Figure adapted from [24].

where 573 keV go for the proton (1H) and 191 keV for the tritium (3H). A second gas fed into
the same gas chamber next to 3He works as stopper for the reaction products. The energy
deposition in this gas releases electrons, which are collected by a high-voltage wire electrode
located at the bottom of the gas chamber (see Figure 2.3). Although Strelkov detectors can
be operated with several ionizable gas mixtures, e.g. Ar-CO2, Ar-CH4 and CF4, the pulse
signal duration is determined by the charge collection process, amounting to up to a couple
µs. This long period represents the main limitations of Strelkov detectors when attempting
high counting rates experiments [24].

2.2 Description and detection principle of GADGET

Figure 2.4: Technical drawing of the GADGET detector indicating its mains
components. The left side shows a 3D-view of the already mounted detector. On
the right, a sectional view allows seeing inside the cases and chamber. The red
arrow indicates the direction of UCN entering the chamber.

GADGET is a UCN detector employing two gases to complete the indirect detection.
When crossing the detector entrance foil, neutrons are absorbed by 3He nuclei. Emitted after
the absorption, the reaction products proton and tritium share 764 keV according to Eq.
(2.4). A second gas is then used to transform part of this released energy into light. CF4 is
chosen due to its high photon yield, transparency to its own emitted light, non-flammability,
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accessibility and price. The passage of proton and tritium inside this gas produces ionization
and direct scintillation from the CF4 excited states [22]. The lifetimes of such emissions, close
to 6 ns [23], make the signal pulse generation a very fast process when compared to previous
gaseous detectors whose signals raise from electron collection [24]. The light collection in
GADGET is completed by a set of three photo-multiplier tubes (PMT) mounted on the
transparent quartz windows of the gas chamber. Optical grease is used to improve the optical
contact by increasing the photon transmission from the quartz window to the PMT that are
covered by black plastic cases so to avoid exterior light contamination. Figure 2.4 shows a
general description of the main constituents of this detector.

2.2.1 Data acquisition: FASTER

The voltage signals generated by the PMs are processed with the Fast Acquisition SysTem
for nucleEar Research (FASTER) developed at Laboratoire de Physique Corpusculaire (LPC-
Caen) [84]. This digital data acquisition system is based on Field Programmable Gate Arrays
(FPGA) whose hardware components are designed in a modular fashion. The FASTER
unit module consists of a motherboard (SYROCO_AMC_C5) hosting two daughter boards
(CARAS) each equipped with two analog-to-digital converters, both characterized with a
sampling capacity of 500 MHz with 12-bits. This acquisition system has been successfully
tested in setups where the events counting rate goes up to 106 cts/s [85].

The signal treatment, carried out in the FPGA, includes baseline restoration (BLR), low
and high pass filters, 2-dimensional threshold triggering, charge integration, among others.
The parameters defining these tools are easily manipulated from the visual interface offered
by the software faster_gui, also developed by the FASTER LPC team. Essential for the
GADGET detector is the single clock system, which is synchronized for all the channels (all
the PMs). It allows storing the absolute time of each event with a 2 ns resolution.

Qt2t module
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Figure 2.5: a UCN sample pulse detected by a GADGET PMT. The charge
integration computed within FASTER runs from the time of positive to negative
slope threshold crossings (Eq. (2.5)).

Pulse waveforms produced by GADGET PMTs depend on the interaction process of the
detected particle. The number of photons emitted inside the gas chamber and the neutron
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absorption position are two of the several parameters defining the pulse features. These
differences between waveforms are exploited by a pulse shape technique (see section 2.3).
FASTER provides a specialized module for pulse recording that extracts the main waveform
parameters without storing the entire signal. This module, named Qt2t, is based on an online
processing component that computes the threshold-to-threshold charge, maximum amplitude,
threshold-to-threshold duration, position of the maximum and the before-threshold charge of
pulses [25].

The main pulse parameters used in GADGET are the threshold-to-threshold charge (Qt2t)
and maximum amplitude (At2t). While the former is proportional to the amount of detected
light and therefore to the event energy, the latter can be used to establish the quickness of
the light collection. Both quantities are determined from the 2 ns voltage sampling V (t) of
the signal. Qt2t corresponds to the time integral of V (t) from the positive (t↑) to the negative
(t↓) slope threshold crossings, expressed as

Qt2t =
1

R

t=t↓∑
t=t↑

V (t)∆t =
2× 10−9s

50Ω

t=t↓∑
t=t↑

V (t), (2.5)

and the maximum amplitude represents the largest voltage between t↑ and t↓ (At2t = Vmax).
A sample UCN event detection as seen by a PMT is displayed in Figure 2.5.
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Figure 2.6: Four sample coincidence events measured on a UCN beam using a 50
ns coincidence window.

The triple coincidence technique in GADGET has a double-purpose: background filtration
and event classification. Normally, a light emitting event produced inside the gas chamber
would be recorded if the three PMTs are triggered simultaneously within a given time window.
Those events are labeled with a ‘group’ flag and are said to be in coincidence. On the contrary,
events detected by a single PMT are attributed to phenomena originated outside the gas
chamber and do not receive any label.
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In coincidence events raised by neutron detection, each PMT waveform presents a particular
charge and maximum amplitude for multiple reasons (see four sample pulses in Figure 2.6).
From one side, light propagation inside the gas chamber after a neutron capture depends
on the ionization trajectories followed by the reaction products. In addition, the vertexes of
these trajectories are completely determined by the position of the neutron absorption. Such
geometrical factors make that more photons reach the PMT lying closer to the ionization paths.
On the other side, although the three PMTs are of the same type, their intrinsic properties
such as photo-electron conversion efficiency and amplification gain are different. The overall
result is that individual PMTs Qt2t−i and AQt2t−i carry part of the event information. For this
reason, it comes naturally to define the grouped integrated charge and maximum amplitude
as the sum of the three PMTs contributions

Qgr =

3∑
i=1

Qt2t−i, Agr =

3∑
i=1

At2t−i, (2.6)
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Figure 2.7: Time distribution of second (∆t12) and third (∆t13) events inside
coincidence groups. The time is measured with respect to the absolute time of the
first event.

Data grouping with FASTER can be executed in real-time or offline after the data taking.
In either case, it is convenient to set a reasonable time length τgroup for the coincidences
window. While a too large window would lead to a high pile-up probability, a too short one
might miss actual coincidences with long time delays. Three physical processes involved in
the UCN detection are considered in order to estimate an initial guess for τgroup. They are the
reaction products stopping times, the lifetime of the CF4 excited states, and the travel time
of light inside the gas chamber. The first of these parameters is roughly calculated from the
ranges (R) and kinetic energies (K) of proton and tritium as

tstop ≈ R

v
=

R√
2K/m

∼ 2 ns. (2.7)

The CF∗
4 lifetime τCF4 ≈ 6 ns was already measured and reported in [23], and the gas-chamber
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crossing time of light is conservatively estimated from the chamber diameter as

ttravel ≈
D

c
≈ 0.148 m

c
= 0.5 ns. (2.8)

Then, a window with a minimum width of 10 ns is large enough to give the three PMs
the time to be triggered in coincidence. This is confirmed by the time distribution of events
belonging to the same group and corresponding to a UCN detection, shown in Figure 2.7.
Although the coincidence time window was adjusted to 200 ns, it can be seen that τgroup = 60
ns is wide enough to include most (∼ 99%) of the events. The remaining counts in the flat
tails (∼ 1%) are attributed to uncorrelated events.

2.2.2 Detector entrance window

The UCN transmission through the entrance window is one of the most decisive factors
to achieve a high UCN detection efficiency in all types of detectors. Just as the reflection
experienced by UCN along the transporting guides, the first layer of every detector could
behave as a mirror if its Fermi potential is too large. Different materials and thicknesses
have been tested to establish what entrance foil permits the largest UCN transmission.
Measurements were performed at the ILL on the TEST beam line. The UCN spectrum was
softened using the PSI filter [86] preceding a vertical climb of 90 cm. Then, UCN fall down
116 cm and cross the foil before reaching the detector. The largest transmission was obtained
with aluminum-magnesium foils of 30 µm (see Table 2.1).

Table 2.1: UCN transmission through thin foils.

Material Thickness (µm) Transmission (%)

Al
100 77.40
50 88.46
25 91.64

Al97Mg3
100 81.68
60 87.08
30 92.94

Al6O6 100 78.49

Ti 50 45.03
25 65.29

Ti90Al6V4 50 49.20

In agreement with the tunnel effect, it was observed that the thinner the foil, the higher the
transmission. However, in practice, foils cannot be made excessively thin without considering
the pressure difference that they have to hold between the inside and outside of detectors.
While UCN guides are vacuumed at pressures below 10−6 bar, CF4 is fed into the chamber
with pressures of about 1 bar. To resist such difference of pressure, the GADGET detector
counts with a metallic grid placed on top of the foil. Currently, this grid makes possible the
use of aluminum layers with thicknesses of about 15 µm as the one used in the experiments
for this work (A. Leysens & J. Chen, private communication).
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2.2.3 Influence of the 3He and CF4 pressures

The amount of 3He and CF4 inside the gas chamber define to a large extent the UCN detection
performance with GADGET. These quantities are easily controlled through the gas factory
apparatus, which feeds both gasses with adjustable pressures into the detector. Depending
on the experiment, the GADGET detector can be operated with different pressures in order
to optimize its detection efficiency. From one side, one would desire a high 3He pressure
(P3He) to ensure that all neutrons crossing the detector are absorbed within the chamber
volume. Similarly, a high CF4 pressure (PCF4

) is envisaged to achieve a complete halt of the
reaction products proton and tritium, thus converting most of their kinetic energy into light.
Although there are secondary effects that disfavor the increase of both gasses pressures, a
first estimation of the minimal values can be calculated from the 3He absorption cross-section
and the proton and tritium stopping power in CF4.
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Figure 2.8: (left) Proton and tritium ranges in CF4 calculated with SRIM at
different gas pressures. (right) UCN mean free path in 3He.

To guarantee that UCNs are absorbed before reaching the gas chamber back side, the
gas pressure P3He should be greater than 10 mbar. This can be seen from the UCN mean
free path in 3He as displayed in Figure 2.8 (right) as a function of the gas pressure. Since
UCN entering the gas chamber with angled trajectories could reach the side walls with paths
shorter than a few centimeters, the previous estimation is only valid for neutrons following
trajectories parallel to the chamber axis. In general, this is not a problem given that UCNs
fall through vertical guides favoring the parallel-to-axis trajectories. Nevertheless, in setups
that are not arranged with the vertical UCN falling, taking P3He up to 15 or 25 mbar should
be considered.

The CF4 pressure plays an important role in the pulse generation. It determines the
range of proton and tritium in the gas mixture. If PCF4

is too low, the reaction products
could escape the chamber without producing the partial energy deposition that leads to the
minimum amount of light detectable by the PMTs. Estimation of the required CF4 pressure
to ensure a complete halt of proton and tritium is done through SRIM simulations [26]. Figure
2.8 (left) shows the range computed for both particles at different CF4 pressures with energies
specified by the UCN+3He reaction. Clearly, these ranges should be measured with respect
to the neutron absorption position, which mostly occurs next to the entrance foil. Given
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that proton and tritium travel in opposite directions, the minimum PCF4
can be set when the

reaction products range equals the UCN mean free path (∼ 1.5 cm at P3He = 15 mbar), i.e.
PCF4

& 400 mbar.

0.00

0.01

0.02

0.03

0.04

0.05

0 1 2 3

N
um

be
r

of
ev

en
ts

(a
.u

.)

Charge, Q (×105 a.u.)

Data
Gauss-Fit

0.00

0.01

0.02

0.03

0.04

0.05

0 1 2 3

Edge events

Full-energy events

backg.
(FWHM/Q̄ ≈ 60%)

Figure 2.9: UCN charge spectrum measured by the GADGET detector. The gas
chamber was filled with 3He and CF4 at pressures P3He = 15 mbar and PCF4 = 400
mbar. Edge events are present at these pressures, but not dominant over the
full-energy deposition events.

Since most of the UCN captures occur near the entrance window, the probability that one
of the reaction products emitted from the capture reaches the window is non-zero. In those
cases, the product traveling towards the window deposits part of its energy into the gas, while
the rest is absorbed by the window atoms. Because only the first process induces light emission
inside the gas chamber, the mean photon yield collected by the PMTs is reduced with respect
to the full-energy deposition events. These partial deposition events, known as “edge events”,
generate voltage pulses with shorter charges and amplitudes but are still recorded by the three
PMTs. Their associated measured charge is then located at low values close to background
events. Figure 2.9 shows an ordinary UCN charge spectrum measured with GADGET filled
with P3He = 15 mbar and PCF4 = 400 mbar. From small to large charges, three components
of the charge spectrum are roughly identified: background, edge and full-energy events. Even
though edge events add to the neutron counting, it is normally preferred to operate GADGET
in conditions where they become minimal. As explained in section 2.3, edge events mimic the
pulse shape of γ and β background detection in the gas, making difficult their discrimination.

2.3 Pulse Shape Analysis (PSA)
As other gaseous scintillating detectors, GADGET is sensitive to γ-rays and charged particles.
Interaction of the former with CF4 molecules liberates electrons capable of ionizing the gas
and hence inducing light scintillation. Less likely, γ-rays also interact with the chamber
quartz windows, leading to the emission of Cherenkov radiation. While voltage pulses raised
by γ events are in general smaller than the ones corresponding to full-deposition neutron
detection, Cherenkov events are characterized with fast pulses which allow their removal from
the UCN counting. Charged particles, which in common experimental setups are mainly
β-particles originated from the neutron activation of the detector constituents, can cross the
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gas chamber and provoke scintillation on the CF4 molecules. In this section, we perform a
pulse shape analysis to identify the aforementioned processes. The technique uses the charges
and amplitudes of the three PMT signals when detected in coincidences.

2.3.1 PS parameter
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Figure 2.10: (left) PSA of UCN detection at PSI. Five initial categories are
proposed to separate the main full-energy UCN events from less likely events.
(right) Average pulse waveform of each category and associated exponential fit.

Both, the amplitude and integrated charge of PMT pulses are proportional to the amount
of light released by the prompt emission of CF4. Similar to most of the organic scintillators,
this gas also has a longer-lived component [87] whose contribution to the total light emission
depends on the nature of the ionizing particle. This feature is used to differentiate fast from
slow pulses by computing the pulse-shape (PS) parameter as

PS = Qgr/Agr,

where Qgr and Agr are the grouped charges and amplitudes over the three PMTs (see Eq.
(2.6)). PS, which is proportional to the time duration of pulses, allows identifying different
types of events during ordinary UCN detection as shown in Figure 2.10 (left). The displayed
data corresponds to UCN detection at the West-2 beam port of the UCN source at PSI (see
Figure 2.21). Environmental backgrounds at this site are expected at low rates due to the
large shielding between the experimental hall and the UCN source. Categories shown in the
sample PS-map are simply built from visual contrast in the two-dimensional histogram. The
average waveform associated to each category is presented on the right side of the same figure.
The fitted decay constants of average waveforms demonstrate that events in these categories
originate from diverse physical processes. Proper characterization of the proposed categories,
which justifies their labeling, is thoroughly studied in the next sections.

2.3.2 Dalitz-plots

Granularity, the power to determine the interaction position of events within the sensitive vol-
ume, was not a requirement for the design of GADGET. Nevertheless, the PMTs configuration
around the gas chamber allows estimating with a rather rough precision the light emission
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Figure 2.11: Dalitz-like plot of UCN detection constructed from the relative
PMTs charges of coincidence events displayed in Figure 2.10.

position of detected events. Inherent limitations to accurately apply this technique come from
the fact that solid angles formed by the light emission vertexes towards the PMTs faces are
different. While PMT1 and PMT2 are placed on the curved surface, PMT3 is located on the
chamber back side with respect to the entrance window (see Figure 2.4). In addition, the light
reflection on the vessel inner walls adds a blurring effect to the relative PMT photon collection
that complicates determining the relative distance between PMTs and the emission point.

Inspired on the Dalitz-like plots method for beta decay studies [88], we propose a graphical
representation of the coincidence events where the relative integrated charges (Qt2t-1, Qt2t-2

and Qt2t-3) between the three PMTs is determined by a single point inside an equilateral
triangle. The coordinates of such a point are calculated as

(x, y) =

(
1

2

Qt2t-1 + 2Qt2t-2

Qgr
,

√
3

2

Qt2t-1

Qgr

)
. (2.9)

Therefore, the closer the point to one of the corners, the larger the integrated charge in
one of the PMTs. In this way, coincidence events producing similar Qt2t on all PMTs will
populate the triangle barycenter: (PM1,PM2,PM3) = (33, 33, 33)%. In order to correct for
individual signal amplifications, charges Qt2t-i are normalized by the PMT gain and operating
high-voltage or by its single-photo-electron peak position. As an example, the Dalitz-like plot
associated to events already represented in the PS-map of Figure 2.10 is shown in Figure 2.11.
The largest counting, located near (33, 33, 33)%, indicate that most of the UCN detection
produce alike charges in the three PMTs. This plot allows stating that detected events
originate mostly within the gas chamber with comparable distances to the PMTs. The slight
deviation of the mean value from the barycenter is then attributed to differences between the
effective PMT-covered solid angles.

Although this graphical technique is not entirely necessary to define a UCN category, it
facilitates identifying the origin of detected events. For this reason, Dalitz-like plots are to be
analyzed simultaneously along with PS-maps. In the following, four experimental setups are
examined to determine the signature of background and UCN events.
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Table 2.2: PMTs (type
H13795-100-Y001) features.

Label Series Gain Voltage
×106 (V)

PMT1 ZT8639 7.91 1750
PMT2 ZT8631 6.87 1750
PMT3 ZT7939 8.22 1750 Figure 2.12: PMTs ex-

perimental disposal with
respect to the UCN guide
at the ILL setup.
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Figure 2.13: (left) Dalitz-like plot of UCN coincidence detection with empty
gas chamber. (right) Schematic view of Cherenkov light streams produced in the
quartz interfaces. The conic profile explains the large event counting on the triangle
corners.

2.3.3 UCN beam in empty gas chamber at ILL

Before going through the analysis of pulses created by CF4 scintillation, it is relevant to check
whether a different source of light is capable of producing coincidence events in a bare detector
vessel. To this end, GADGET was vacuumed and mounted on the EDM beam port at ILL as
shown in Figure 3.1. The PMT positioning with respect to the UCN beam guide and their
individual features are resumed in Figure 2.12 and Table 2.2, respectively. Neutrons in this
setup, whose fluxes are estimated at ΦUCN ∼ 3 × 105 s−1, can freely cross the detector gas
chamber reaching the vessel walls, the quartz windows or even the PMTs. In consequence
of this, the neutron absorption by the detector constituents enhances while giving place to
larger γ and β backgrounds. Detected events are thus attributed to the radiation generated
from the de-excitation of activated nuclei.

Electronic noise pulses due to PMT dark currents, with amplitudes of up to ∼ 5 mV, were
discarded by setting a large voltage threshold: Vth = 10 mV. Despite this stringent filtering,
individual PMT counting rates (singles events) with empty chamber were of about 6 kHz
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during UCN delivery cycles. This number reduces by a factor of 100 (60 Hz) once the 60 ns
triple coincidence condition is applied (see section 2.2.1). Such great decimation demonstrates
that most of the detected events are seen by a unique PMT.

Special interest is given to the 60 Hz coincidence events. Their particular distribution on
the Dalitz-like plot for a two-hour measurement of UCN cycles is shown in Figure 2.13 (left).
The first and most evident signature is the counting predominance near the triangle corners.
They correspond to in-coincidence detection, where one of the PMTs registers a substantial
charge while pulses in the other two are just above the threshold. At the same time, but
less likely, coincidences where two PMTs detect similar charges while the third one is still
negligible stack on the triangle sides. The number of events where the three PMTs collect
alike light pulses are scarce for this detector configuration.

Since empty-chamber light pulses are mostly detected by a single PMT, the events are
attributed to Cherenkov radiation emitted within the quartz interface between the chamber and
the PMTs photocathodes. This radiation results from γ-background interacting with quartz
atoms present in the 6-mm thick vessel light outputs and the PMTs entrance windows [89].
In fact, quartz electrons when removed by γ-rays can travel faster than the light in this
medium. While moving, electrons shine light with conic streams focused along their direction
of motion. In principle, these light streams could point towards one or two PMTs, but given
the geometrical PMT arrangement, little light would reach the third PMT left behind the
moving electron. A schematic representation of this idea is illustrated on the right side of
Figure 2.13.

The contribution of each corner to the total counting in the Dalitz-like plot is approximately
16.6%, 16.8% and 66.5% for PMT1, PMT2 and PMT3, respectively. A simple explanation
for such difference is based on the UCN motion when entering the gas chamber. After being
transmitted through the detector entrance foil, neutrons freely cross the empty chamber
with trajectories directed mainly along the UCN guide axis. Recalling that the chamber is
8.5-cm deep, one would expect a considerable fraction of the beam impinging on the PMT3
vessel side and just few neutrons hitting the PMT2 and PMT1 faces. In consequence of this,
more neutron activation occurs near the PMT3 chamber, then increasing the probability of
Cherenkov light on its quartz interface.

The PS-map of empty chamber detection shown in Figure 2.14 reveals that Cherenkov
events spread out on a narrow region with PS parameters between 5 and 8 for coincidence
and single events. On the other hand, pulse amplitudes extend over a rather large range,
going from the voltage threshold up to 600 mV and 1100 mV for single and coincidence events,
respectively. If comparing to other categories, the Cherenkov PS average value results short
(PS ∼ 6.4) with respect to UCN events (see for example Figure 2.10). This is confirmed by the
average pulse waveform of events in the “Cherenkov” category, which have a decay constant
40% smaller than the one computed for Full-UCN events (right side of Figure 2.10). Finally,
one could also remark that the already low coincidence counting rate recorded with empty
chamber further decreases after filling the gas admixture. Since neutrons are absorbed by
3He, less activation and therefore γ-emission is available to induce the Cherenkov light.

2.3.4 γ and β (137Cs source) on CF4

One of the biggest concerns in background identification comes from the CF4 ionization and
excitation by environmental γ-rays. In addition, neutron-activated nuclei composing the
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Figure 2.14: PS-maps of UCN empty chamber detection in singles (top) and
coincidences (bottom). The strong rate reduction after filtering coincidence events
added to the similarities between all maps supports the attribution of events to
Cherenkov light.

detector entrance foil, supporting grid and UCN guides could decay through γ or β emissions
that would be detected with pulses comparable to the ones of UCN edge events. To assess the
signatures of these particles, a 31.79 kBq 137Cs calibration source was placed on top of the
detector entrance foil in an experimental room far from other human-manipulated radiation
sources. This isotope emits β-particles with a maximum energy of 514 keV (94.4%) and 1175.6
keV (5.6%), the former followed by the emission of either a 662 keV γ-ray (85%) or an internal
conversion electron (9.6%). When crossing the 30-µm-thick entrance foil, β-particles reduce
their energies by a factor of 3% and 1% for the large and short branching ratios, respectively.
On the contrary, γ-rays are almost unaltered due to their long mean free path in aluminum
(∼ 5 cm). Once inside the CF4 gas, β-particles with maximum energies have ranges of 49
cm (large branching) and 141 cm (short branching) while the mean free path of γ-rays is of
the order of 3.5 m. Even if γ-rays easily cross the chamber, β-particles might be totally or
partially absorbed by CF4 depending on their initial energies.

Two measurements were performed with 500 mbar of CF4 filling. One with a 1-cm
aluminum slab blocking the passage of β-particles into the detector, the second with no
intermediate material. The counting rate of γ events was 5 times larger than the one recorded
without the 137Cs source (background events), and increased by a factor of 12 after removing



60 CHAPTER 2. GADGET: A NOVEL UCN COUNTER

γ
(A

ls
la

b)
γ
+
β

(N
o

A
ls

la
b)

γ
(A

ls
la

b)
γ
+
β

(N
o

A
ls

la
b)

γ
(A

ls
la

b)
γ
+
β

(N
o

A
ls

la
b)

γ
(A

ls
la

b)
γ
+
β

(N
o

A
ls

la
b)

A
gr

(V
)

PS (a.u.)

0

0.1

0.2

2 4 6 8 10 12

A
gr

(V
)

PS (a.u.)

0

0.1

0.2

2 4 6 8 10 12

100

101

102

co
un

ts

PMT1

75%

50%

25%

PM
T2

75
%

50
%

25
%

PM
T3

75%
50%

25%

PMT1

75%

50%

25%

PM
T2

75
%

50
%

25
%

PM
T3

75%
50%

25%

Figure 2.15: PS-maps and Dalitz-like plots measured with 500 mbar filling for
γ+β (top) and only γ (bottom) radiation emitted from a 137Cs source. β particles
in the latter were stopped by an aluminum slab placed between detector and source.
Event signatures in both cases are equivalent.

the β absorber. PS-maps and Dalitz-like plots of both setups are displayed in Figure 2.15.
The signature of γ and β + γ detection are characterized by an almost homogeneously filled
Dalitz-like plot. This is attributed to two main reasons, the low interaction probability of
γ-rays and the broad trajectories of β-particles across the chamber. In both cases, the energy
deposition has not a preferred location and thus counts add all along the Dalitz triangle.

The PS parameters for both measurements extend over a wide range, but the amplitudes
are always lower than ∼ 100 mV. PS-maps in Figure 2.15 highlight that γ and β radiations
produce similar light signals. This is expected given that the interaction of 662-keV γ-rays
with CF4 occurs mainly through Compton effect, out of which the released electron provokes
the scintillation. Less evident were the Cherenkov events observed with the empty chamber
configuration. Although still present, their counting rate is almost negligible since most of the
γ-rays mainly interact with the CF4 molecules. This is understood if recalling that the gas
volume is much larger than the quartz volume, and that the 137Cs source only covers a small
solid angle into the detector.
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Figure 2.16: (bottom-left) PS-map of UCN detection with GADGET filled with
CF4 at 500 mbar and no 3He. Measurement performed during 200 cycles. Top and
bottom-right figures correspond to the Dalitz-like plots of categories constructed in
the PS map motivated by the local maxima and the previously studied Cherenkov
and γ + β signatures.

This configuration combines the aforementioned events, Cherenkov, γ and β in a different
setup. Here, the GADGET detector was filled with CF4 at 500 mbar and then mounted on
the ILL EDM beam port. Data was acquired during 120 UCN delivery cycles of 200 s each,
resulting in a total counting of 1.6× 107 coincidence events. The lack of 3He gas inside the
chamber contributes to the UCN interaction with CF4 molecules or the detector walls. The
number of CF4 interactions is estimated similarly as done for the neutron absorption probability
in section 2.4. The probabilities for elastic dispersion (up-scattering) and absorption in 500
mbar of CF4 from this simplistic model yield 20% and 0.12%, respectively. According to the
UCN flux, measured at ∼ 300 kHz, about 60× 106 UCN/s are lost due to up-scattering by
the CF4 molecules and about 360 UCN/s are absorbed by the fluorine in them (σabs(

19F) ∼ 3
barn for UCN).
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As previously mentioned, β-radiation could have origin on the neutron activation of the
detector walls and the entrance foil. However, in this setup, it could also emerge from the
neutron absorption of CF4. In fact, after activated (T1/2 = 11 s), 20F emits β-particles with
a maximum energy of 7024.5 keV. It is expected that these particles describe a particular
detection signature for two reasons. First, the decaying isotope also composes the sensitive
volume, making that the β ionization tracks start within the chamber. Second, there are up
to 168 known γ-rays preceding the β-decay in 20F§.

Figure 2.16 (bottom-left) shows the PS-map of UCN detection with pure CF4 filling, where
three categories are defined with the help of the visible local maxima. While “Cherenkov” and
“γ + β” categories are easily recognized from direct comparison against previous Figures 2.14
and 2.15, respectively, the new “19F-absorption” is proposed as representative of the overall
light scintillation yield from the CF4 neutron absorption. Also displayed in the same figure,
the Dalitz-like plots associated to each PS category help confirming the nature of “Cherenkov”
and “γ + β” events explained in previous sections. As for the “19F-absorption”, the spatial
distribution of events appears to have origin mainly in the gas chamber center and less often
in the vicinity of the quartz windows or detector inner walls. This centering in the Dalitz-like
plot serves to emphasize the fact that these events are a product of the UCN interaction with
CF4.

Figure 2.17: Counting rate of categories defined in Figure 2.16 as function of the
time. Delivery cycles of constant UCN flux last 200 s every 400 s. 25 cycles were
measured. Only 19F-absorption events show a non-expected increase of the rate
after several cycles.

A still unexplained feature of 19F-absorption events is their counting rate evolution in
time. One would expect that, as for all processes correlated to the UCN beam except for
emissions from long-lived (T1/2 & τcycle = 400 s) neutron activated nuclei, the rate of these
events remains constant during the 200 s of UCN delivery and drops to almost 0 during
the next 200 s of beam sharing. Figure 2.17 compares the counting rates for the proposed
categories, starting when the beam shutter was opened and stopping three hours later. During
this time, “19F-absorption” is the only category undergoing a rate variation after several
cycles. This cumulative increase would be explained, for example, if the excited states in 20F

§This characterizes the isotope as the one with the largest number of branches reported from any nuclear
bound state [90].
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had a life-time comparable to the cycle period. Since no evidence of such states was found in
the literature, the time description of 19F-absorption events is left to future works.
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Figure 2.18: Absorption and up-scattering probabilities of UCN impinging on
GADGET as a function of the CF4 pressure from a dummy model (see next section).
(left) Gas chamber filled with CF4 only. (right) CF4 plus 15 mbar of 3He admixture.
The neutron absorption by 13C is neglected, as it represents less than 1% of the
absorption in 19F.

Making up the 44% of the total counting rate in this setup, 19F-absorption events become
negligible once 3He is added to the gas admixture. The large absorption cross-section of 3He
dominates over the neutron mean free path. Therefore, as illustrated in Figure 2.18, the
probability of 19F absorption reduces from 0.12% to 0.02%, i.e. to 60 Hz assuming the same
300 kHz UCN flux. Noticing that this contribution is 10 times smaller than the statistical
fluctuations, these events can be simply subtracted from the actual UCN counting without
adding any significant systematic effect.

2.3.6 UCN beam on CF4 (500 mbar) + 3He (15 mbar) admixture

Data acquisition in this section corresponds to UCN detection recorded after filling both 3He
and CF4 gases into GADGET’s chamber. The PMTs arrangement and detector orientation
with respect to the beam guide are shown in Figure 2.12. The resulting PS-map, shown in
Figure 2.19, reveals that all counts spread over a continuous PS range: 2 to 18. No category
completely separates from the rest since charges and amplitudes of UCN edge, full-energy
deposition, γ + β and pile-up events are similar between each other. This, however, does
not prevent defining suitable categories to properly exclude background counting from UCN
detection. A dedicated analysis of such category partitioning is presented in section 4.1.

The total counting rate during delivery cycles in this setup was of 288 kHz. Contributions
from γ + β background and 19F-absorption were conservatively estimated from Figure 2.16 as
400 Hz (0.14%) and 58 Hz (0.02%), respectively. Since these rates are lower than the statistical
fluctuations of the total counting, a large category was constructed enclosing backgrounds and
UCN events, as shown in Figure 2.19 (bottom-left). “Cherenkov” and “pile-up” categories
are also defined given that they are easily recognized with short and long PS parameters,
respectively. Graphical cuts in this section have no purpose different from the study of their
associated Dalitz plots, illustrated on the top and left sides of Figure 2.19. Although they
only confirm what it was already presented in previous sections regarding Cherenkov and
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Figure 2.19: (bottom-left) PS map of events measured by GADGET during one
UCN delivery cycle. The detector gas chamber was filled with 15 mbar of 3He and
500 mbar of CF4. Top and bottom-right figures correspond to the Dalitz-like plots
of categories constructed in the PS map. They were motivated by a previous study
of Cherenkov events and the sample pulses in Figure 2.20.

UCN detection, the “pile-up” category, containing 0.5% of the total counting, requires a more
detailed description.

Given the high UCN flux, the probability of double UCN detection is not negligible. The
“pile-up” category is then added to include these events characterized by light pulses with
amplitudes similar to single UCN detection but with almost twice their charges. A few pile-up
sample voltage waveforms are depicted in Figure 2.20. We point out the fact that pile-up pulses
cannot be separated at the acquisition level. The charge integration in FASTER Qt2t module
(see section 2.2.1) has not a fixed window, but it rather depends on the double threshold
crossing algorithm. If a second UCN produces light before the down-crossing threshold of
a first UCN detection, the algorithm stores a unique event concatenating both signals. In
future analyses, events in this category could be considered as double UCN counting or be
safely discarded.

A summary of the main results exposed in the last four sections is found in Table 2.3. It
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Figure 2.20: Pile up sample pulses and their corresponding map location (white
circle).

Table 2.3: Event contribution to the total counting rate in different setups.

Source GADGET Contribution (%) Total rate (s−1)Cherenkov γ + β 19F-abs. UCN Pile-up
137Cs CF4 - 100 - - - 192

UCN
empty 100 - - - - 60
CF4 13 43 44 - - 1000

CF4+3He 0.003 0.14 0.02 99.338 0.499 288500

includes the relative contribution of the multiple events to the total number of counts. Even
if the definition of categories remains a subjective process, the formulated conclusions are
rather invariable due to the large difference between background and actual UCN rates. Most
of the efforts were put on identifying the origin and physics of the detected events. Therefore,
the reported numbers are just approximations to the exact real values, which are inaccessible
given the categories overlapping. The main conclusion is that the predicted background
contamination in the total UCN rate at the EDM beam port with GADGET detector is
smaller than 1%.

2.4 Optimization of the 3He and CF4 gas pressures

In the previous section, we mentioned the high dependency of the neutron detection on the
amount of absorbing and scintillating gases in GADGET. Two tests were carried out at the
West-2 beam port of the UCN source at the PSI (see section 1.5.2) to evaluate the efficiency
and optimal performance conditions of this detector. In the first (second), the CF4 (3He)
pressure was shifted while keeping the other gas pressure constant. To reduce the sources of
systematic uncertainties, all experiments were recorded with similar conditions. In order to
correct for the UCN source degradation process, which leads to a reduction of the number of
neutron per cycle, the UCN counting with GADGET (CGAD) was normalized by a monitor
counting (Cmon). A diagram of the experimental arrangement is shown in Figure 2.21.
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Figure 2.21: Experimental disposal of GADGET and a monitor 6Li-based UCN
detector at the West-2 beam port of the UCN source at PSI.

2.4.1 Measured signal as a function of P3He and PCF4
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Figure 2.22: Charge spectra at different CF4 (left) and 3He (right) pressures.
The number of edge events (left bump) become shorter as the CF4 (3He) pressure
increases (decreases). 3He (CF4) pressure was kept constant at 15 mbar (1 bar).

Result of the first test, Figure 2.22 (left) shows the charge spectra obtained after varying
the CF4 pressure between 200 mbar and 1 bar while keeping 3He at 15 mbar. The reduction
of edge events at high CF4 pressures is explained by the shortening of the proton and tritium
ionizing trajectories. In particular, the drastic change between 200 mbar and 400 mbar spectra
reflects the large variation of proton and tritium ranges (already reported in Figure 2.8):
2.2 cm → 1.1 cm and 0.9 cm → 0.45 cm, respectively. Another clear behavior is the rise of
the full-energy peak at large PCF4 . This is expected given that events populating the ‘edge’
migrate to the ‘full-energy’ region as PCF4 increases. Figure 2.22 (left) also shows that the
UCN peak center is the same for the multiple measurements. Contrary to conclusions derived
from the study of alpha particles detection with CF4 [91] [J. Chen, private communication],
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this result indicates constant photon yield for the tested CF4 pressures. This difference
between detection of both particles represents a proof of the quenching factor allowing larger
scintillation to heavier particles. Last but not least, at very short charges and slightly less
visible than the edge events, the ‘noise’ region is recognized. Its distribution, with charges
. 0.1× 105, keeps a similar shape for all measurements and is easily removed by increasing
the PMTs threshold voltage. The influence of the CF4 pressure in the total counting rate is
discussed in the next section.

The second test was carried out by shifting the 3He pressure (P3He). Figure 2.22 (right)
illustrates the spectra distribution obtained from runs with P3He going from 5 mbar to 50
mbar, and PCF4 fixed at 1 bar. Once again, edge events are more likely for few measurements.
In particular, the larger the pressure, the greater the ‘edge’ region. In fact, when the helium
pressure is augmented, the mean distance between the UCN absorption position and the
entrance wall is shortened. In such cases, the probability for tritium and proton to escape
the gas becomes higher. In contrast to what happens with CF4, here there is a remarkable
difference between the counting rates of spectra at 5 mbar and 50 mbar. This suggests that
3He at 5 mbar is not high enough to stop all the UCN impinging the gas chamber. Some of
them find their way out after crossing it.

Table 2.4: Cross-sections of gases used in GADGET detector. σup for CF4

reported by Seestrom et al [92]. Other values have been scaled from the NIST
database to the UCN velocity 6.6 m/s.

σab (barn) σup (barn)
3He 1 777 667(2333) 2 000(133)
CF4 14 3 300(660)

2.4.2 Detection efficiency as a function of P3He and PCF4

It should be kept in mind that the joint contribution of edge and full-energy counts corresponds
to the total UCN detection. Indeed, four main mechanisms determine the behavior of UCN
after entering the gas chamber. They are the absorption and up-scattering by 3He and
CF4. While absorption reactions lead to light emitting processes within the gas chamber, in
up-scattering reactions the UCN kinetic energy increases, thus allowing them to escape the
detector.

In order to estimate the relative amount of UCN absorbed and up-scattered by both gases,
we look at the mean free path, calculated as

λ =(Σm)−1 =
(∑

niσi

)−1
, (2.10)

where Σm stands for the macroscopic cross-section accounting for all the possible interaction
mechanisms with microscopic cross-section σi. In particular, for the processes involved in the
chamber, it is written as

Σm =(nσup)CF4 + (nσab)CF4 + (nσup)3He + (nσab)3He, (2.11)

with σab and σup representing the absorption and up-scattering cross-sections, respectively.
This last expression depends not only on the individual cross-sections (whose magnitudes are
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resumed in Table 2.4), but also on the gas densities nCF4 and n3He. Taking into account the
operating conditions considered so far, the relative amount of gases is

n3He

nCF4

=
P3He

PCF4

≈ 10−2. (2.12)

Thus, the macroscopic cross-section can be simplified to

Σm ≈(nσup)CF4
+ (nσab)3He

=nupσup + nabσab

=
1

KBT
(PCF4

σup + P3Heσab) , (2.13)

where the ideal gas law has been used to express densities as function of pressures while
adopting the subscript convention “up” referring to CF4 and “ab” to 3He. Note that the
relative contribution to the macroscopic cross-section for double-gas-filling configurations is
mainly governed by the 3He nuclei:

PCF4
σup

P3Heσab
≈ 6.1%. (2.14)

Eq. (2.13) can be used to estimate the total absorption probability if assuming UCNs
entering parallel to the chamber axis. As explained in Appendix B, the absorption probability
in such simplistic scenario is given by

P tot
ab (P3He, PCF4

) =
P3Heσab

PCF4
σup + P3Heσab

[1− exp (−L/λ)] , (2.15)

with L the length of the gas chamber. This equation shows that while high CF4 pressures
attenuate the absorption, large 3He pressures enhance it.

This dummy model for the neutron absorption probability can be compared against the
total UCN counting of spectra in Figure 2.22. To do so, the total counting of all charges,
including edge and full-energy events, is integrated and denoted as Ntot. For the sake of the
comparison, Ntot and P tot

ab are computed relative to their magnitude at 200 mbar when varying
PCF4

, and to 15 mbar when varying P3He. Figure 2.23 shows behaviors in both situations. The
measured trends agree to a large extent with the ones predicted by the analytical model. First,
one evidences that before being absorbed, some UCN are up-scattered by the CF4 molecules.
Proof of this is the 7% of counts gained when decreasing PCF4

from 1000 mbar to 200 mbar.
This behavior, added to the fact that the gamma-ray background is proportional to the CF4

gas density, suggests avoiding too large PCF4
. Second, raising the helium pressure from 10 to 15

mbar represents an extra 5% gain. More 3He nuclei reduce the influence of CF4 up-scattering.
Experimentally speaking, this might also come from angled UCN trajectories that reach the
wall chamber before being absorbed. The overall effect of setting both pressures properly
(500 mbar CF4, 15 mbar 3He) would signify an increase of 10% of the total UCN counting.
That being said, low PCF4

and large P3He favor the predominance of edge events, which makes
gamma events difficult to identify and remove from the charge spectrum. Nevertheless, it is
also possible to separately measure the background spectrum, without UCN, and remove it
from the measured UCN distribution.
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Figure 2.23: Measured counting rate as a function of the 3He pressure with
respect to 15 mbar result (bottom), and as a function of the CF4 pressure with
respect to 200 mbar result (top). The solid lines correspond to the absorption
probability as determined by Eq. (2.15). The thickness of the lines represents the
uncertainty propagated from σab and σup.

2.5 Chapter conclusions

Among the several UCN detectors developed so far, GADGET proposes a fast counting while
providing a simple detection mechanism which can be optimized via the gas (3He + CF4)
pressures to respond to the different needs in UCN experiments. In particular, the light
scintillation produced inside the mirror-polished gas chamber and the readout from the triple
PMT array give place to fast voltage pulses lasting about 50 ns. Such pulses allow counting
UCN in high-flux beams without leading to a significant pile-up contribution. For example,
in experiments at the ILL, where the UCN detection rate could go up to 300 kHz, the pile-up
rate was estimated below 0.5%.

If coupled to high-speed sampling acquisition systems such as FASTER, GADGET pulses
can be analyzed for an efficient background removal. Firstly, this is done through the filtering
of triple coincidences events. Pulses detected by a single or two PMTs are discarded, as most
of the time they are not linked to light-emitting events generated within the gas chamber. A
more rigorous Pulse Shape Analysis, constructed from the amplitude and integrated charge of
each PMT pulse, has proven to separate events in at least 5 species. They are called ‘UCN
events’, generated by the neutron absorption of 3He (they can be full energy deposition if the
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Table 2.5: Effect on the counting rate and number of edge events that produce
increasing (↗) or decreasing (↘) the gases pressures in GADGET.

Pressure counting rate edge events

CF4
↗ ↘ ↘
↘ ↗ ↗

3He ↗ ↗ ↗
↘ ↘ ↘

reaction products are totally stopped by the scintillator gas, otherwise they are called edge
events), ‘Cherenkov events’, produced by environmental γ-rays impinging on the gas chamber
quartz windows and on PMT’s entrance windows, ‘γ and β events’, due to the radiation
emitted from the neutron-activated constituents of GADGET (entrance foil and inner walls),
‘pile-up events’, from multiple UCN detection within the logic coincidence time window (60
ns), and ‘19F events’, from the neutron capture by fluorine present in the scintillator molecules.
Although it was not always possible to separate all species in non-overlapping PS categories,
the contribution of background events was estimated below 1% at ILL.

It was also shown that, given the multiple factors affecting the detection efficiency, the
optimization of both gas pressures demands a thorough study. In order to summarize the
main results in this chapter concerning the gas pressure influence, we present in Table 2.5
the implications that working at high or low pressures have on the total UCN counting and
edge events. In an ideal scenario with low γ background, the conclusion is straightforward,
one should set low CF4 pressure (500 mbar) to avoid up-scattering and high 3He (15 mbar)
to completely absorb all neutrons. Otherwise, if experiments are to be performed in a noisy
environment, an offline pulse shape analysis should be included.



Chapter 3

n− n′ oscillations: experimental
description, data taking procedure
and expected sensitivity

This chapter covers the description of the new experimental technique employed to probe n−n′
oscillations in UCN beams at high magnetic fields, in particular, in the range B ∈ [50− 1100]
µT. The magnetic field, raised by a 5 m solenoid, was applied on top of a 6 m UCN guide
to induce the n− n′ oscillations in the high-flux UCN beam at ILL. We start the discussion
by giving a technical picture of the magnetization system, UCN guiding pipes and detection
system. This last one composed of the GADGET detector and FASTER acquisition system
(see previous chapter). Then, the data collection technique is presented while pointing at the
main assumptions on the n−n′ oscillation model and the UCN beam features. This is followed
by the sensitivity study of the proposed method and later by a preliminary analysis, conducted
to characterize the trajectories of UCN within the setup, the response of the detector to
magnetic fields and the uniformity of the probing B-field.

3.1 Experimental description of the setup
The UCN delivery at PF2 is alternated among the high-flux beam ports (‘EDM’, ‘UCN’
and ‘MAM’) in cycles with periods defined by the users. When experiments mounted on
these ports operate simultaneously, the PF2 turbine is sequentially aligned with them so
that each setup profits the maximum UCN flux during its own delivery cycle. A negligible
UCN flux is measured in ports not aligned with the turbine, i.e. during the ‘beam sharing’
periods. Previous characterizations of UCN densities at the high-flux beam ports using storage
bottles [78] predicted fluxes of up to 4.2 × 106 s−1. However, these numbers are lower in
specific experiments, for example approximately 105 UCN/s in the first-generation nEDM
experiment [93]. The actual number of neutrons available in a given experimental setup is
defined by the transmission of the UCN guiding system, i.e. the quality and geometrical
arrangement of guides conducting UCN from the turbine to the measuring apparatus. Since
there is a non-zero probability of absorption, up-scattering and transmission upon each UCN
collision, too long and multiple bent guides are frequently characterized by low transmission
factors. In the following, we present the UCN guide arrangement for the n− n′ experiment,

71
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which is mainly shaped by the magnetization system geometry.

3.1.1 Magnetic field and UCN guide arrangement

Figure 3.1: Side view of the experimental setup. The UCN beam is conducted
through three straight guides and their respective turning elbows. A conic guide
adaptor is used between the main � 15 cm and � 8.5 cm guides.

The magnetic field applied to UCN to lift the neutron - hidden neutron energy degeneracy
∆nn′ = µnB − δm and enhance the oscillation probability (see Eq. (1.11)), was raised by a
magnetization system recovered from a past work focused on the search of new forces using
polarized 3He nuclei [27]. With this system, we scanned the mass-splitting energy range
δm ∈ [3− 66]× 10−12 eV, corresponding to magnetic fields B ∈ [50− 1100] µT. The system
consists of a main solenoid, a cylindrical magnetic shielding and two compensation coils placed
at the solenoid edges to increase the magnetic field uniformity. The 4.8-meters-long and
80-cm-diameter main solenoid is made of 2270 loops of 2× 1 mm2 rectangular section copper
wire around a 5-mm-thickness aluminum tube. The 25-cm-long compensation coils, with 112
loops of ∼ 80 cm diameter each, are connected in series with the solenoid. The magnetic
shield piece corresponds to one of the 17 segments of the cylindrical shielding in the neutron
anti-neutron experiment that took place at ILL in 1994 [28]. This shield, made of mu-metal,
surrounds the solenoid as shown in Figure 3.1 to increase the magnetic field uniformity at
the UCN guide and expel the magnetic field lines from external sources, in particular earth’s
magnetic field. Its dimensions are 4.5 m length, 94.5 cm diameter and 1 mm thickness.

Given the space availability and security protocols at PF2, the magnetization system
was located at a lower elevation with respect to the EDM beam port. For this reason, the
arrangement of guides used to transport UCN from the port to the detector while crossing
the solenoid axis included three main segments: a half-meter horizontal guide at the EDM
port, a 1.31 m tilted guide and a 6 m horizontal guide. Two bent elbows were placed at the
tilted guide sides and a conic guide was used to connect one of the elbows to the main 6
m guide (�8.5 cm −→ �15 cm). The UCN GADGET detector, whose data acquisition was
carried out by the FASTER system, was located at the end of the 6 m guide (75 cm from the
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Figure 3.2: Top view of the experimental setup. The main UCN guide and
magnetization system were placed below the EDM platform. Photos by Laurent
Thion.

solenoid). Figure 3.2 shows a top view of the relative positioning of the setup elements with
respect to the PF2 turbine and adjacent beam ports.

Detector magnetic shielding

Figure 3.3: Mu-Ferro-SD magnetic shielding layers mounted on GADGET’s
supporting structure. The UCN guide entrance and back side remain uncovered.

It is well known that PMTs are very sensitive to magnetic fields. The focusing electrodes
and electron multipliers (dynodes) within PMTs are geometrically optimized to maximize
the current generated after the photon detection. If external magnetic fields modify the
trajectories of the electron multiplication cascades, a different signal amplitude might be
read at the PMT output or even lost if the field intensity is too large. PMTs in GADGET
were manufactured by Hamamatsu with 0.5 mm thickness magnetic shielding cases made
of high-permeability permalloy (Ni: 78 %, Fe, Mo and Cu : 22 %). Although the magnetic
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shielding factor in the middle of such cases is of about 103 for magnetic fields comparable to
Earth’s field, it quickly falls to 1 at 5 cm from the PMT entrance window [94], thus leading
to a poor shielding near the photocathode region. Therefore, given that the stray field lines,
raised by a 1.1 mT solenoid magnetic field, can go up to 0.1 mT (three times larger than
Earth’s field) at the detector location, a second magnetic shielding was added. This was done
by covering the GADGET detector with a 0.12 mm thickness Mu-Ferro-SD foil capable of
shielding 0.1 mT fields with a single layer [95]. A detailed view of the shield layers can be
observed in Figure 3.3. Note that no mu-metal is placed in front of the UCN guide and behind
GADGET.

3.2 Data collection technique

The data taking procedure to probe n−n′ oscillations while scanning the applied magnetic field
involves two main discussions. First, the definition of the magnetic field scanning step that
guarantees a common sensitivity over the targeted mass-splitting range δm ∈ [3− 66]× 10−12

eV. Second, the introduction of the analytical method through which one can conclude whether
a UCN flux drop is due to oscillations. Since the latter depends on the former, we start by
determining the cycle step from the resonance width of a n− n′ signal.

3.2.1 Resonance width & scanning step
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Figure 3.4: Oscillation probability as a function of the mass-splitting according
to the analytical solution in Eq. (1.10). The oscillation time has been assumed
τnn′ = 1 s and the free-flight-time corresponds to the mean value extracted from
MC simulations (t̄f = 32 ms, see section 3.4.3). The curve overlapping suggests
scanning the magnetic field with steps of 1 µT.

Defining a reasonable step size for the magnetic field scan requires knowing the resonance
width of the oscillation probability. If the step is too large, the resonance condition δm = µnB
might be missed in between two steps. On the contrary, too short steps would demand a long
nonviable experimental campaign. In order to establish a rough estimate of the resonance
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width, we use the oscillation probability from the analytical solution of Ĥnn′ presented in Eq.
(1.10). Figure 3.4 shows the n−n′ oscillation probability as a function of δm for three probing
magnetic fields, where it has been assumed τnn′ = 1 s and t̄f = 32 ms∗. This plot demonstrates
that scans with 1 µT steps would be sufficient to achieve an oscillation probability as large
as half the in-resonance maximum probability (FWHM(Pnn′) ≈ 1 µT) within the scanned
interval. Based on the probability FWHM, the probe of n− n′ oscillations was carried out by
varying the applied magnetic field every 1 µT. However, before describing the time sequence
designed for such a scan, a few considerations on the UCN flux constancy are exposed.

3.2.2 UCN flux constancy

Following the constant-power (56 MW) operation mode of ILL’s reactor, one might expect
a similarly constant UCN flux at the EDM beam port. However, previous experiments on
n − n′ oscillations with storage bottles in this facility reported fluctuations of up to 0.3%
from the UCN counting over several hours [9, 96]. These fluctuations were as large as the
ones described by the reactor power, but no correlation between both quantities could be
established at that time. One could argue that a short-time-scale correlation between the
reactor power and the UCN counting did exit, but was lost during the storage process (75
s and 150 s). In fact, such a short-time-scale correlation has been evidenced in the present
work and represents the main component on the systematics analysis developed in section 4.3.
Since no characterization of the UCN flux at the EDM beam port has ever been attempted
at the scale of seconds, the current experiment becomes the first evaluation of the UCN flux
constancy at PF2 in long time basis.

3.2.3 The ABBC measuring sequence

At the time of the n − n′ data taking (autumn 2020), a second experiment was operating
on the neighbor ‘UCN’ port (see Figure 3.2). For this reason, the UCN beam from the PF2
turbine was shared with cycles of 200 s, continuously alternated between both experiments.
To synchronize the UCN flux detection with the PF2 delivery cycles, a signal was sent to the
FASTER acquisition system once the turbine positioning was finished. These signals were
used to start and stop the UCN counting (no data was collected in the n− n′ setup during
the beam sharing periods).

In order to complete the magnetic field scanning process, one could suggest probing a
single magnetic field every delivery cycle. However, the UCN counting in that case would be
sensitive to long-term variations after several cycles such as reactor drifting power, heating
of the VCS, turbine slowing down or even changes in the counting efficiency of GADGET.
These drifting behaviors, when correlated to the UCN source, are normally corrected in UCN
storage experiments by means of a monitor detector placed at the beam port output. The
present work does not adopt such a method given that the customary low detection rate in
monitors add large statistical uncertainties if using their counting as normalizing factors†.
Instead, a self-normalized measuring sequence is introduced, which is independent of long-term

∗This free-flight-time corresponds to the mean t̄f extracted from Monte Carlo (MC) simulations of UCN
tracks inside the 6-m-long UCN guide within the solenoid magnetic field. See section 3.4.3

†In case the UCN flux is divide half-and-half into the monitor and the n− n′ probing detector, UCN flux
drifts linked to the source can be corrected while keeping low statistical uncertainties, see discussion 5.2
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Figure 3.5: Illustration of the scanning procedure over consecutive UCN delivery
cycles. The color bars on top are proportional to the time duration (sensitivity)
of each evaluation window. The scanning algorithm leaves an overall B-field
evaluation every 1 µT for B ∈ [70− 1080] µT.

variations (from one cycle to another) and also of linear drifts within the 200 s UCN cycles.
A detailed explanation on how this sequence absorbs linear drifts is presented in Appendix
C. The sequence divides the cycle time span (tcycle) in four equivalent windows where three
magnetic field values are scanned as

{A,B,B,C} = {B − 20µT, B,B,B + 20µT} → {44 s, 44 s, 44 s, 44 s}. (3.1)

The in-cycle magnetic field step of 20 µT is chosen larger than the resonance FWHM (1µT) so
that n− n′ oscillations can only occur at one of the field values. This way, the ratio between
UCN counting at field B (NB +NB) to fields A (NA) and C (NC) is

RABC =
NB +NB

NA +NC


= 1, if no oscillations
< 1, if oscillations at field B
> 1, if oscillations at field A or C.

(3.2)

Given that three magnetic fields are tested every cycle, the scanning step size is set such
that the same field is not evaluated twice, but the 1 µT spacing required by the FWHM
resonance is kept. As shown in Figure 3.5, by making the step size equal to 3 µT, which 20
µT is not a multiple of, one guarantees that all intermediate values of B ∈ [70− 1080] µT are
covered by the scanning process with 1 µT spacing. Starting from B = 50 µT (A = 30 µT and
C = 70 µT), the UCN flux is measured at three magnetic field values A,B and C (separated
by 20 µT) within every cycle. The same measurement was repeated over multiple cycles by
sweeping the three fields with a step of 3 µT until reaching B = 1100 µT (A = 1080 µT and
C = 1120 µT). Note that, even though the scanning spacing is of 3 µT for B ∈ [30− 50] µT
and of 2 µT for B ∈ [50− 70] µT, these are short ranges compared to the main 1 µT interval.
The ABBC sequence in this case completes an entire scan after 350 cycles.
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3.2.4 Synchronization and recording algorithm
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Figure 3.6: Counting rate during a typical UCN cycle. The gray and colored
regions illustrate the beam sharing and UCN counting periods, respectively. The
vertical lines represent the times of field ramping (2 s) and acquisition start-up.

The {A,B,B,C} = {44 s, 44 s, 44 s, 44 s} integration windows presented above were
conveniently defined so that the UCN delivery cycles let 24 spare to wait for an initial beam
stabilization and to ramp the magnetic fields A → B and B → C. The beam stabilization,
which is achieved after a couple of seconds after the turbine alignment, is a physical effect
due to the UCN velocity distribution and the nature of UCN reflections. While slow UCN
and UCN undergoing diffusive reflections take longer times to cross the guide arrangement,
fast UCN and UCN following purely specular reflections need shorter times (see Figure 3.11
in section 3.4.3). In order to avoid systematic effects related to the beam stabilization, the
UCN counting starts 10 seconds after the EDM port alignment of the turbine. Regarding the
field ramping, two seconds are considered for the transitions A→ B and B → C, although
their real duration is expected faster than 1 second. In the end, the recording algorithm is
structured (with t = 0 the synchronization time in FASTER) as

1. t = −10 s: PF2 beam delivered to EDM beam line.

2. t ≈ −9 s: Ramp to magnetic field A.

3. t = 0 s: FASTER synchronization (PF2 delayed signal).

4. t ∈ [1 : 45] s: UCN counting at field A.

5. t = 48 s: A→ B ramp.

6. t ∈ [50 : 138] s: UCN counting at field B.

7. t = 142 s: B → C ramp.

8. t ∈ [143 : 187] s: UCN counting at field C.

Therefore, by neglecting the UCN counting 2.5 seconds before and after each field ramping,
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the integration periods are finally written as

NA : [1− 45] s,
NB +NB : [50− 138] s, (3.3)

NC : [143− 187] s.

Figure 3.6 shows a typical cycle where the beam sharing periods, the magnetic field ramping,
the UCN recording with FASTER and the counting intervals Ni are explicitly depicted.

3.3 Expected sensitivity (ideal case)
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Figure 3.7: Theoretical prediction of a signal signature at |δm|/µm = 145 µT
for three values of τnn′ . The larger the τnn′ the lower the signal notability with
respect to the statistical fluctuations (light-blue band).

According to Eq. (3.2), a n−n′ oscillation signal is identified when |RABC − 1| > ζ∆RABC ,
with ζ a constant depending on the confidence level (CL), and ∆RABC the uncertainty of
RABC . Moreover, the scanning of fields A, B and C makes the signal visible in at least three
different cycles. Moving from small to large fields, the resonance condition would be firstly
fulfilled by C, once again seven cycles later by B (when it has shifted 7× 3 µT∼ ∆B), and
finally after 6 cycles more by A (when it has shifted 13× 3 µT∼ 2∆B). In order to illustrate
this triple-footprint feature of the resonance, we compute the theoretical prediction of RABC

as

R theo
ABC(δm, τnn′) =

N theo
B (δm, τnn′) +N theo

B (δm, τnn′)

N theo
A (δm, τnn′) +N theo

C (δm, τnn′)

=
2N0 exp

[
−RB(δm, τnn′)t 

]
N0 exp

[
−RA(δm, τnn′)t 

]
+N0 exp

[
−RC(δm, τnn′)t 

] , (3.4)

with N0 = ΦUCN · 44 s the UCN flux integrated over the ABBC sequence periods, RB =
Γβ-decay + Γabsorption + Γupscattering + Γnn′

B the total UCN lose rate of the beam during its
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passage through the solenoid magnetic field, and t the total time to cross the field volume.
Not only N0 but also all the Γ terms corresponding to processes which are independent of
the magnetic field cancel out. Therefore, taking into account that the mean number of UCN
collisions within the solenoid can be expressed as n̄coll = t /t̄f , Eq. (3.4) rewrites

R theo
ABC(δm, τnn′) =

2 exp
[
− n̄collPnn′(t̄f , B, δm, τnn′)

]
exp

[
− n̄collPnn′(t̄f , A, δm, τnn′)

]
+ exp

[
− n̄collPnn′(t̄f , C, δm, τnn′)

] ,
(3.5)

where the UCN lose rate caused by n− n′ oscillations has been approximated to

Γnn′
B ≈ 1

t̄f
Pnn′(t̄f , B, δm, τnn′).

Figure 3.7 shows the n − n′ signals computed with Eq. (3.5) for three values of τnn′ if
assuming a mass-splitting |δm|/µn = 145 µT. Whereas the average parameters n̄coll and t̄f
are extracted from MC simulation of UCN trajectories (see section 3.4.3), the oscillation
probability assumes the analytical expression given in Eq. (1.10). The triple axis labelling
in this figure is used to denote the magnetic fields A, B and C, which are consistent with
the values set during the scanning process. Also, displayed in light-blue, the horizontal band
around 0 encloses the uncertainty interval defined by the statistical fluctuations, estimated as

∆R stat
ABC =

√(√
NB +NB

NB +NB

)2

+

(√
NA +NC

NA +NC

)2

∼
√

1

N0
∼ 3.4× 10−4,

with ΦUCN ∼ 200 kHz (see UCN counting rate in section 4.1).
The analytical signals in Figure 3.7 highlight two main features that are worth mentioning.

Firstly, the signal is two times larger when the resonance matches the cycle central field
(|δm|/µn = B) than when it matches fields A and C. This is explained by the flux integration
periods, which last two times longer at B than at A or C. Secondly, large values of τnn′

give place to signals that hide within the statistical fluctuations band. In fact, in the limit
τnn′ → ∞, RABC → 1 and the signal is completely confounded with the no-oscillations null
hypothesis. This first estimation of R theo

ABC shows that the sensitivity of the proposed experiment
is strongly constrained by the statistical sensitivity of the counting rate measurement: with a
counting rate of 200 kHz, signals faster than 8 s can still be revealed.

In the absence of a signal (no-oscillations), all measurements of |RABC − 1| are contained
within their uncertainties. In such case, the model parameters τnn′ and δm can be bounded in
the so-called parameter space. For the present work, this is done by finding the minimum τnn′

at a given δm for which the predicted signal would overcome ∆RABC . Adopting the confidence
interval formalism in [97] (page 131), this problem reduces to finding τnn′ such that

χ2(δm, τnn′) = χ2(δm,∞) +N 2, (3.6)

with

χ2(δm, τnn′) =

Ncycles∑
i

(
R exp

ABC, i −R theo
ABC(δm, τnn′)

∆RABC, i

)2

(3.7)
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Figure 3.8: Construction of the 95% confidence intervals for τnn′ exclusion. The
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different τnn′ limit each time (vertical dashed line). The horizontal dotted line
corresponds to χ2(δm,∞) + 22.

and N the number of standard deviations. Note that χ2(δm,∞) → NDF since τnn′ → ∞
coincides with the null-hypothesis.

Concerning the number of cycles (Ncycles) taken into account for the computation of χ2,
there are two valid approaches which are consistent between each other. In the first one,
one sets Ncycles = i so that the τnn′ boundary is constructed individually for each cycle
measurement. In particular, the boundary on τnn′ resulting from the i-th cycle is characterized
with a large exclusion near δm/µn = Ai, Bi and Ci, and decays asymptotically far from them.
Since each cycle represents an independent measurement, the multiple boundaries can be
overlapped to produce an overall exclusion region. This, for example, can be determined by
joining all the boundaries together. The second option consists in considering all the scan
cycles simultaneously (Ncycles = 350). In such case, the boundary is computed a single time,
but it contains the parameter exclusion with resonances at all the values δm/µn = Ai, Bi, Ci

with i = 1, ..., 350.
Out of the two approaches, the latter is chosen for one main reason: a resonant behavior

affecting Bi implies resonances at Ai−6 and Ci+7, and no-oscillations for the remaining cycles
(see Figure 3.7). In consequence, the boundary of τnn′ is constructed with more stringent
requirements, thus giving place to a larger exclusion region. Although the calculation of
χ2(δm, τnn′) in the next chapter analysis adopts the second approach, the preliminary n− n′

oscillation sensitivity of this experiment is estimated with the single cycle method.
In order to illustrate the τnn′ bounding process, we plot χ2 as a function of 1/τnn′ for the

sample magnetic field B = 140 µT. This is displayed in Figure 3.8 for three values of |δm|,
where three assumptions were made

• R exp
ABC = 1: the most conservative scenario with no signal detection.
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• Uncertainties are purely dominated by statistical fluctuations with a UCN flux ΦUCN ∼
200 kHz, i.e. ∆R stat

ABC ∼ 3.4× 10−4.

• Theoretical predictions are obtained from the analytical solution in Eq. (3.5) (perfectly
uniform magnetic field and average free-flight time t̄f = 32 ms).

The dashed vertical lines in Figure 3.8 are used to show the point of intersection with
χ2(δm,∞) + 22, where N = 2 was chosen so to establish a confidence level of 95%. Hence,
values of 1/τnn′ on the right of these limits are excluded from the n−n′ oscillation hypothesis.
This dummy example shows that the larger the separation between |δm|/µn and the cycle
magnetic field B, the lower the exclusion limit of τnn′ . Since the B-field scanning process
runs over a 3 µT step, this loss of sensitivity at mass-splitting far from the applied field is
recovered by other cycle measurements.

Figure 3.9: Expected sensitivity of the UCN beam experiment. The upper
envelope (red line) is constructed with the 95% C.L. exclusion regions between 125
and 215 µT. Individual contributions of three cycles are displayed with colored
regions to better illustrate the upper envelope shape. The same pattern extends
over the full |δm|/µn range.

A general view of the parameter exclusion results from plotting the bounding τnn′ as a
function of |δm|/µn. This construction defines the contour line separating the accepted and
excluded regions in the (δm, τnn′) space. Figure 3.9 shows the 95% C.L. parameter exclusion
(colored regions) computed for three sample ‘no-signal’ cycles centered at Bi = 148, 169 and
190 µT. This representation allows the observation of how each cycle measurement determines
an exclusion pattern featuring the three maxima at |δm|/µn = Ai, Bi and Ci, with the 20
µT separation between them. In particular, we confirm the two times larger exclusion at
resonances Bi with respect to those at Ai and Ci. Although we only show the exclusion
derived from three cycle measurements, other intermediate and consecutive cycles generate
similar exclusion patterns. In total, the same pattern shifts every 3 µT for the entire scanned
range [50− 1100] µT.

In this preliminary study of the sensitivity, the overall exclusion region is shaped by the
upper envelope resulting from the superposition of all the 350 exclusion regions. The reader



82 CHAPTER 3. PRELIMINARY ANALYSIS

can check, in Figure 3.9, that even with a scanning step of 3 µT, the ABBC sequence lets to
a local maximal sensitivity every 1 µT. Therefore, the shortest limit of τnn′ , which occurs
at the envelope valleys, emerges every 1 µT. The value of τnn′ at such valleys is regarded as
the most conservative single-value limit for the entire scanned interval, i.e. the sensitivity of
the present UCN beam experiment is predicted as τnn′ & 4 s if assuming a uniform solenoid
B-field.

3.4 Preliminary analysis

The discussion of n− n′ oscillations in the next chapter is based on three studies that were
experimentally evaluated before the n − n′ data taking. They are the validation of the
MC-simulation of UCN trajectories used to extract the free-flight-times and number of wall
collisions, the influence of the solenoid magnetic field on GADGET and the magnetic field
non uniformity. In the following, we briefly mention the main conclusion of each study.

3.4.1 Monte Carlo simulation of UCN tracks

The description of the n− n′ oscillations determined by the Hamiltonian in Eq. (1.8) involves
two types of parameters. The inaccessible ones, namely the mixing parameter τnn′ and
the mass splitting δm, and the measurable ones, the neutron energy due to the magnetic
field ∆E = µnB and the free-flight time tf . Evaluation of the first ones, which is the main
objective of this work, can happen with a good knowledge of the second ones. While COMSOL
magnetic field maps inside the main UCN guide (presented in the next subsection) reveal a
good agreement against experimental results, we still need to determine the B-field profiles
that UCN would experience during their passage through the solenoid and the free-flight-time
and number of collisions distributions that characterizes the UCN bouncing in this process.
Addressing these features is possible through Monte Carlo simulation (MC) of UCN tracks.

For the following, the MC based STARucn software [98] was used to simulate UCN
trajectories in a geometry defined by the guide configuration presented in Figure 3.1. UCN
scattering by materials and earth’s gravitational force are the main interactions defining the
simulated tracks. Among the input parameters fed into the simulation there are the materials,
sizes and shapes of the UCN transporting guides, the initial position and velocity distributions
of UCNs, and the characteristic factor accounting for the amount of diffusive reflections (d).
In general, the intrinsic properties of guides, such as their Fermi potential and absorption
coefficient, are well known from theory and past experiments [73]. On the contrary, UCN
beam features, like the initial velocity distribution (velocity spectrum at the beam port),
depend on multiple experimental factors and thus need to be measured.

Velocity spectrum validation through TOF measurements

The time-of-flight technique uses a chopper device to transform the constant beam flux into a
pulsed one. It consists of a high frequency sliding shutter that cuts the UCN flux in equally
separated time periods. A straight UCN guide is positioned between the chopper and the
detector so that, using the time signal of the shutter t0 and the detection time tdet, the
time-of-flight of UCN is calculated as TOF = tdet − t0. One possibility to correctly define the
initial velocity distribution (V0) within the simulation is by comparing the TOF measurement
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Figure 3.10: Time-of-flight from measurement at the EDM beam port and
through STARucn simulation.

at the guide output to the ones obtained from simulated tracks computed with an initial guess
distribution V0,guess. Fortunately, one does not need to determine the real initial distribution
since even a Gaussian shape transforms, after few UCN collision in the simulation, into a more
realistic Boltzmann distribution. This self-consistent shaping process derives from the physics
of UCN reflections: while fast neutrons are more likely lost due to transmission through the
guide walls, slow UCN are easily reflected and thus conducted until the output end. This
process, which can be regarded as a velocity softening, allows reducing the degrees of freedom
to fit an accurate initial distribution V0.

Table 3.1: Input parameters for the STARucn simulation of UCN tracks.

Guide material Steel
Fermi potential 184 neV
Diffusive reflections 1%
Absorption coefficient 5.2× 10−4

Detector entrance foil Al97Mg3
Fermi potential 54 neV
cos(θ0) [0 : 40◦]
φ0 [0 : 360◦]

τβ 888 s

Figure 3.10 shows the TOF distributions obtained from measurements and through the
STARucn simulation. They correspond to a setup with a single 1-m-long guide in the upper
left EDM beam port (see Figure 3.1). The initial UCN velocity distribution follows a Gaussian
form whose parameters (µ and σ) were optimized to minimize χ2 with respect to the TOF
measurement [99]. The resulting optimization writes

V0 ∼ Gauss(µ = 10 m/s, σ2 = 42 m2/s2,) (3.8)

with maximum and minimum velocities vmax
0 = 20 m/s and vmin

0 = 0 m/s, respectively. The
initial direction of propagation is defined by two randomly chosen angles θ0 and φ0 representing
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the polar and azimuthal angles in spherical coordinates, where the zenith direction coincides
with the UCN guide axis. These and other simulation parameters are resumed in Table 3.1.

UCN tracks

EDM port IN OUT GADGET

track 1

track 2

track 3

track 4

track 5

track 6

track 7

track 8

track 9

track 10

0 0.5 1 1.5 2 2.5 3

t (s)

Figure 3.11: Side view of 10 simulated UCN tracks crossing the experimental
setup from the EDM port to the GADGET counter. ‘IN’ and ‘OUT’ coordinates
correspond to the solenoid physical boundaries. The line color represents the guide
crossing time.

Using the simulation parameters above, UCN tracks were computed on the geometry
defined by the UCN beam experiment. Guides and turning elbows were modelled within
STARucn using the ROOT based TGeoVolume class. All the guide chunks were simulated
with stainless steel material properties and perfect vacuum filling. UCN tracks were evolved
until neutron absorption or transmission with a maximum number of bounces equal to 50000.
Out of all the tracks, only those associated to UCN transmitted through the detector entrance
window were studied. UCN which are absorbed or transmitted at the guide walls were
discarded since they do not contribute to the actual detector counting.

Figure 3.11 shows the profile of ten sample tracks reaching the detector volume. The
vertical axis corresponds to the y-coordinate subject to the gravitational potential. Time is
represented by the color evolution of the trajectory paths, starting with blue at t = 0 and
reaching up to a few seconds in red. It can be seen that most of the tracks are constantly
directed towards the detector. This agrees with the expectations since the initial UCN
momentum has no negative z component (horizontal coordinate), and the turning guide
elbows have not large curvatures. However, because of the diffusive reflections represent the
1%, some tracks are deviated. In such cases, both the number of collisions and the time to
reach the detector increase. Tracks 4, 7 and 10 illustrate this phenomenon.
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Figure 3.12: (left) Time-of-flight distribution of 104 MC-simulated UCN tracks.
Its associated number of collisions distribution is displayed on the right-hand side.

MC simulation of UCN tracks has been the preferred method to estimate the average free-
flight-time (t̄f ) and the average number of collisions (n̄coll) in past UCN storage experiments [8]
(t̄f ∼ 100 ms and n̄coll ∼ 4000). Since no n−n′ oscillations are expected outside the solenoid B-
field volume [100], computation of these parameters for the current beam experiment consider
only the trajectory steps contained within the ‘IN’ and ‘OUT’ coordinates (see Figure 3.11),
i.e. free-flight segments within the solenoid volume. Figure 3.12 shows the free-flight-time
and number of collisions distributions for 104 UCN tracks reaching the detector entrance foil.
One can observe that, compared to past storage UCN experiments, (t̄f )storage/(t̄f )beam ∼ 3 and
(n̄coll)storage/(n̄coll)beam ∼ 150. The former is explained by the average length of UCN trajectory
steps, which is longer in UCN storage bottles, while the latter is evidently due to the fact that
UCN are not stored in beam measurements. Since the validation presented above is derived
from the TOF measurement along a 1-m-long guide, the UCN trajectories, along with the
values of t̄f and n̄coll, are not fully constrained. Variations in the experimental sensitivity of
τnn′ produced by uncertainties on the simulation parameters are studied in section 4.4.4.

3.4.2 GADGET performance in magnetic fields

It was an important issue determining whether GADGET was sensitive to magnetic fields in
the scanning range and how its neutron detection would be modified in such case. A dedicated
experiment (see Appendix F) revealed that charge and amplitude PMT spectra could change
in magnetic fields larger or equal to 0.3 mT. However, because of the low counting rate close
to the threshold, no change in the PMT counting efficiency was observed for magnetic fields
smaller than 1 mT.

Even after covering GADGET with the 0.12-mm Mu-Ferro-SD magnetic shielding layers,
it was necessary to test its UCN detection efficiency as a function of the solenoid magnetic
field. n− n′ oscillations should not be confused with a change of the detector efficiency in
response to the applied B-field. To this end, the total counting of GADGET was recorded
while varying B in a range covering the magnetic field magnitudes attempted in this work. No
pulse shape discrimination was applied in order to check for possible spectrum shifting at all
charge values. In particular, B was increased from 1 µT to 1 mT by steps of 0.1 mT, setting
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a single B-field value per UCN cycle. Note that the B = 1 µT corresponds to the magnetic
field inside the solenoid when no current is applied. In that case, the magnetic field at the
detector position would correspond to the Earth’s magnetic field. Figure 3.13 shows that,
despite direct comparison of charge (Qgr) spectra at the different solenoid magnetic fields
(top side) does not reveal clear variations, when focusing at the relative counting per channel
(bottom side) a systematic effect around Qgr ∼ 5000 becomes visible. This effect is clearer as
the field gap between both measurements increases and, as explained in the Appendix F, it
is characteristic of a horizontal-shifted charge spectrum due to improper PMT functioning.
Since some solenoid stray field lines might penetrate GADGET’s magnetic shielding through
the UCN guide, electron cascades inside the PMTs get deviated, thus modifying the final
voltage signal. We also integrated the detection rate during the entire cycle for each magnetic
field and normalized by the counting at the reference field B = 1 µT. The ratios resulting
from this process, displayed in Figure 3.14, reveal that in all cases the error bars contain the
null hypothesis, NB/N1µT = 1, and that no systematics are disguised from the dispersion of
points. This brief study allows asserting that the UCN detection efficiency is independent of
the magnetic field produced by the solenoid in this work. In addition, given that the UCN
flux is evaluated in time sequences where the B-field difference is of 0.04 mT = 2 × 20 µT
(see Eq. (3.1)), systematic effects linked to the charge spectrum shifting can safely be ignored
in the n− n′ analysis.
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3.4.3 Magnetic field inhomogeneities

The main objective of the magnetic field uniformity study is to establish the field profiles
experienced by UCN while crossing the solenoid volume. Even if guaranteeing a high field
uniformity within the 6-m-long UCN guide, all UCN experience a B-field gradient while
entering and exiting the solenoid volume. These gradients have to be considered in the n− n′

oscillation analysis, since they modify the shape of the oscillation probability and then the
sensitivity of the experiment [10]. To characterize the field profiles, we generate a magnetic
field map from COMSOL simulation of the magnetization system including the main solenoid,
compensation coils and magnetic shielding. This 2-dimensional model description, which
is constructed by assuming azimuthal symmetry with respect to the solenoid axis, contains
information of the B-field intensity and direction as a function of the solenoid current for the
entire n− n′ beam setup volume.

Validation of COMSOL simulations

Validation of the COMSOL generated B-field map was done by comparison against mea-
surements performed with a fluxgate probe. They were recorded at the PF2 experimental
hall using a laser positioning reference before the installation of GADGET. Although the
fluxgate measurements were taken for x̂, ŷ and ẑ directions of the field, we report the results
as a function of the cylindrical coordinates, where r̂2 → x̂2 + ŷ2 and ẑ coincides with the
solenoid axis. Following this notation, Figure 3.15 shows the different components of the
magnetic field over the solenoid axis (r = 0) obtained from COMSOL and through the fluxgate
measurements. One can confirm the rather good agreement between both descriptions over
the Bz, although variations of measured points at the field plateau (z ∼ [−2; 2] m) are larger
than ones from the simulation profile. These irregularities might be due to damages in the
magnetic shield or in the solenoid itself, and therefore are included in the n − n′ analysis
(see next subsection). For technical reasons, running the compensation coil at the beam port
solenoid side was not possible. This explains why one observes a ‘bump’ in Bz at z = 2 m but
not at z = −2 m (the coil was also turned off within COMSOL). Regarding the perpendicular
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Figure 3.15: Cartesian components of the solenoid magnetic field along the
solenoid axis (r = 0). Values computed from COMSOL generated maps are
displayed with lines and fluxgate measurements with point-lines. The arrow
represents the normal UCN flux from the EDM port through solenoid volume
(reddish region) until the GADGET counter (light-blue region). The B-field profiles
are raised with a solenoid current of 1.78 A.

magnetic field components (Bx and By), their mean measured values represent less than the
5% of the B-field magnitude. Such small contribution is used as first argument to neglect the
radial B-fields in the n− n′ analysis.

Experienced magnetic field profiles

In order to determine the experienced B-field profiles, we couple the fluxgate field measure-
ments with the COMSOL map and UCN MC tracks. Whereas the first one adds the field
inhomogeneities observed withing the solenoid volume, the second one is used to correctly
extrapolate the field values outside the solenoid volume and off the guide axis. In this way, we
can track the B-field evolution for each UCN bouncing across the 6-m guide by means of its
trajectory coordinates (ri, zi). The magnetic field is updated after each time step, which for
the purposes of this work is made of 10 µs (0.1 mm for UCN traveling at 10 m/s), according
to the interpolation‡:

Bz(ri, zi) =

{
Bz-meas(r = 0, zi)

BCOMSOL(ri,zi)
BCOMSOL(r=0,zi)

, inside the solenoid
Bz-COMSOL(ri, zi), outside the solenoid.

(3.9)

Br(ri, zi) = Br-COMSOL(ri, zi) (3.10)

Note that at r = 0 we recover the measured field profile.
‡To guarantee a soft evolution of the magnetic field profile, we implement a bicubic interpolation of COMSOL

maps.
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Figure 3.16: (Top) Bz field profiles as a function of z computed from 100
UCN tracks through the interpolation in Eq. (3.10). The multiple yellow lines,
corresponding to the realistic trajectories, are bounded by the blue and red curves
associated to the reference profiles at r = 0 and r = 75 mm, respectively. (Bottom)
Relative difference between realistic Bz profiles to the reference on-axis profile
Bz(r = 0, z). The horizontal dashed lines are used to illustrate 1% and 2% limits.

The top side of Figure 3.16 shows the evolution of Bz for 100 UCN tracks as a function of
the horizontal coordinate z (generally, z increases with time. See Figure 3.11). The yellow
lines, which indicate the (Bz,i, zi) paths of all UCN tracks confounded, are enveloped by the
reference field profiles for ideal straight trajectories along the solenoid axis (r = 0) and on
top of the UCN guide wall (r = 75 mm). The bottom side of Figure 3.16, which displays the
absolute relative separation between Bz(ri, zi) and Bz(r = 0, z), demonstrates that all UCN
field profiles deviate up to 2% from the axis-of-symmetry field profile. Such small differences,
which are even lower than 1% at the B−field plateau, reveal the low radial gradient of the
axial magnetic field, i.e.

∇rBz ∼ 0.

An important consequence of this is that the n − n′ analysis can be safely constructed by
assuming a unique field profile: Bz(ri, zi) = Bz(r = 0, zi). That being said, computation of
the n− n′ oscillation probability still has to account for the field gradient ∇zB, especially at
the entrance and exit of the solenoid.

Before finishing this chapter, we examine the experienced B-field distributions obtained by
projecting the pairs (Bz,i, zi) of Figure 3.16 on the vertical Bz axis. This is done for both the
axial Bz and radial Br components using the same 100 UCN tracks. The output distributions,
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Figure 3.17: Frequency histograms of the experienced Bz (left) and Br (right)
field components. The histograms are constructed with the interpolated values
B(ri, zi) extracted from 100 UCN MC trajectories.

shown in Figure 3.17, illustrate the magnetic field values that are more frequently experienced
by UCN if setting a solenoid B-field of 1 mT. For example, one can observe that UCN feel Bz

values all along the range [0− 1045] µT, but the main contribution is due to the field plateau
at Bz ∼ 1000 µT. In particular, the second peak at Bz ∼ 1040 µT is built when UCN travel
through the ‘field bump’ mentioned above (see Figure 3.15). Also, the right-side distribution
in Figure 3.17 allows verifying the negligible magnitude of Br with respect to Bz (< 1%),
thus indicating that n− n′ analyses can be based on magnetic fields purely described by the
Bz component.

3.5 Chapter conclusions

To probe for n− n′ oscillations in UCN beams, one requires experimental setups as simple
as the ones constructed in past UCN storage bottles [7–11]. Oscillations in both cases are
induced by matching the neutron energy due to an external B-field (µnB) and the hidden
neutron energy ∆E′ (δm in the most generic approach). The main differences between both
techniques are found in the size of the oscillation volume, which for the present work is a
6-m-long UCN guide, and the number of UCN counts per second, which went up to 200 kHz
at the EDM beam port at ILL. The latter being the reason for including a UCN detector with
high-counting rate efficiency (GADGET).

The data collection technique was designed such that the scanning over magnetic fields
B ∈ [50 − 1100] µT lead to a common sensitivity on τnn′ within the entire interval δm ∈
[3 − 66] × 10−12. The scanning field step of 3 µT, was determined from the probability
resonance FWHM and the ABBC measuring sequence, which targets at the probe of three
magnetic field values (A,B and C, separated by 20 µT) every UCN delivery cycle (200 s).
By normalizing the number of detected UCN during the counting at each field magnitude
as RABC = (NB +NB)/(NA +NC), one can test for signals in the three field values (see Eq.
(3.2)) while removing linear drifts on the UCN flux within the cycles and avoiding long-term
variations on the UCN counting in between cycles.
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Preliminary analyses on the proposed approach revealed an experimental sensitivity,
governed by the counting statistics ∆Rstat

ABC ∼ 3.4× 10−4, written as τnn′ & 4s, if assuming a
uniform solenoid B-field. The computation of this value is constructed from the ABBC ratio
equation and from MC simulations (validated by experimental TOF measurements) of UCN
tracks. The MC simulation plays an important role as it used to estimate the magnitude of
the free-flight-times and the number of collisions that characterize the UCN trajectories while
traveling inside the magnetic field. In addition, they allowed determining the B-field profiles
experienced by UCN while crossing the solenoid volume. In particular, it was found that such
profiles are mostly defined by the z component of the axial field, i.e. B ≈ Bz(r = 0, z).



92 CHAPTER 3. PRELIMINARY ANALYSIS



Chapter 4

n− n′ oscillations: Data analysis

After describing the phenomenology (chapter 1) and the experimental technique to probe
n− n′ oscillations with UCN beams (chapter 3), the following discussion is dedicated to the
analysis of data collected at the PF2’s EDM beam port at ILL during autumn 2020. In
the first part, the UCN detection with GADGET is examined to define a category in the
pulse shape (PS) map fulfilling both, a high UCN counting rate and a negligible background
contribution. Using this event selection, a brief summary of the collected data is given while
indicating the time sequence followed for its acquisition. Then, in the third part, an exhaustive
characterization of the UCN flux fluctuations which affect the entire UCN counting data set
is performed. In particular, this section is relevant for the final conclusions since it explains
the sources of systematics. In the fourth part, the data fitting and parameter exclusion of
n−n′ signals are exposed, first in the generic double-model scenario and later allowing hidden
magnetic fields. At the end, the perspectives for future experiments are presented.

4.1 UCN category selection

Analyses in this chapter look for a signal confirming the neutron disappearance from the ILL
UCN beam. To do so, two main assumptions were made beforehand. First, the UCN flux is
constant or drifts linearly in time. This is necessary to correctly normalize the number of
neutrons per cycle. Second, any fluctuating behavior in the normalized counting is purely
attributed to UCN events, i.e. there are no background events with time structures at the
scale of the UCN delivery period affecting the measurements.

Previous discussions on background analysis revealed the presence of non UCN events in
the counting of GADGET at the EDM beam port. Although they represent a small fraction
(see Table 2.3), these events might have time structures that could induce systematic errors
in the normalized counts. For example, the well known γ + β background produced from
neutron activation of elements at the experimental site already showed a non-linear increasing
(decreasing) pattern during the UCN delivery (sharing) time. This can be seen in Figure
2.17, where the counting rate of the γ + β category follows a cumulative exponential behavior
during the delivery cycles and an exponential decay elsewhere.

In order to avoid systematic effects of this kind, the detection PS map was partitioned
into 5 categories to isolate the UCN counting from spurious events. These categories were
defined after a parallel comparison of background (UCN beam on CF4) and double-gas-filling

93
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Figure 4.1: PS maps categories. The partitions are motivated by the signatures of
events detection in background (CF4 on the right) and double-gas-filling (CF4+3He
on the left) setups. For a quantitative description, see Table 4.1.

Table 4.1: Categories contribution to the total counting in background (CF4) and
double-gas-filling (CF4+3He) setups. Amount of saturated pulses (Sat.) are also
reported.

Gas filling Rate (kHz) Category contribution (%)
γ + β Cherenkov UCN1 UCN2 Pile-up Sat.

CF4+3He 288.5 13.454 0.773 62.18 23.09 0.48 0.003
CF4 ∼1 43.33 12.77 7.65 29.35 2.62 4.28

UCN (UCN beam on CF4 + 3He admixture) measurements, as shown in Figure 4.1. The
reasons to define such category partitioning are the following:

• γ + β category spans over the large horizontal cloud visible in the background mea-
surement. Since γ and β detection events are contained in this category, even if they
represent a small number, they must be excluded.

• Cherenkov category encloses most of the Cherenkov events in both measurements
2.3.3.

• UCN1 category hosts most of the UCN counts, while excluding the regions of maximum
19F-absorption (see section 2.3.5) and γ+β events. Cherenkov and pile-up contamination
is negligible.

• UCN2 category includes the maximum of 19F-absorption events in background con-
ditions. It contains a large fraction of UCN which could be safely added to UCN1

since most of the 19F-absorption events transform into 3He-absorption when adding this
second gas to the admixture.
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• Pile-up category keeps part of the UCN pile-up and 19F-absorption. Their scarce
contribution justifies excluding them from the UCN counting.

A quantitative description supporting these statements is presented in Table 4.1, where
the most populated categories are highlighted in gray. While the category with maximum
contribution in the double-gas-filling PS map (UCN1) corresponds to the 3He absorption, the
most populated category (γ + β) in the background map is due to γ and β events. If one
wants to estimate the amount of the total background contained within the UCN1 category in
double-gas-filling conditions, in addition to the percent contributions, the relative rates need
to be taken into account:

(background)UCN1
=

[rate ∗ (contribution)UCN1
]background

[rate ∗ (contribution)UCN1
]double-gas-filling

≈ 1000 ∗ 7.65%
288500 ∗ 62.18%

= 0.04%.

Note that not only this final number is extremely low, but it also corresponds to a very conser-
vative approximation: most of the UCN absorption by 19F is transformed into 3He-absorption
when operating with double-gas-filling. According to Figure 2.18, the 19F-absorption re-
duces by a factor of 6 in double-gas-filling and therefore the background in UCN1 becomes
∼ 0.007%, i.e. 10 Hz. For that reason, subsequent analyses on neutron hidden neutron
oscillations constructed with the neutron counting in the UCN1 category can be safely said
“background-free”.

4.2 Acquired data summary

In our experiment, the UCN flux was recorded during 3794 cycles while scanning the solenoid
magnetic field from B = 30 to 1100 µT with steps of 3 µT (this corresponds to a total of 350
cycles). Once a scan was finished, i.e. an entire sweep of the magnetic field range, a new one
was automatically started from the top down while keeping the same step size. Ramp-up and
ramp-down scans were continuously performed until manual halt from the user control system.
After achieving a few scans, the run was stopped and the solenoid current was reversed to
probe negative magnetic fields within the same range. In total, 9 scans were initiated with
+B and 5 with −B polarities, although not all of them completed the 350 cycles. The exact
number of cycles per scan for the whole experiment is summarized in Table 4.2.

Computation of RABC was done for all cycles using the UCN counting in GADGET’s
UCN1 category. Even if the contribution of this category to the total detection is of 62%, its
counting is large enough to significantly conclude on the oscillation analysis while avoiding
any spurious systematic effects produced by background counts. To see this, one could for
example calculate the ratio RABC = (NB +NB)/(NA +NC), assuming the resonance at the
central B-field. Eq. (3.4) would then be rewritten as

NB +NB

NA +NC
=

2N0(e
−n̄coll〈Pnn′ 〉)

N0 +N0
≈ 1− n̄coll〈Pnn′〉 = 1− n̄coll

(
t̄f
τnn′

)2

,
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Table 4.2: Data collection summary.

Run B-field polarity Scan number Cycles in scan Cycles in run

1 + 0 320 320
2 + 0 147 147
3 + 0 163 163
4 + 0 331 331

0 350
5 + 1 350 1212

2 350
3 162
0 350
1 350

6 - 2 350 1490
3 350
4 90

7 + 0 131 131

or equivalently

τnn′ = tf

√
ncoll

(
1− NB +NB

NA +NC

)−1

. (4.1)

Therefore, in the limiting case where the deviation of NB +NB with respect to NA +NC is
due to purely statistical fluctuations, i.e.

NB +NB

NA +NC
=
N0 −

√
N0

N0
= 1−N

−1/2
0 ,

a positive signal should be greater than

τnn′ = tf

√
ncoll

√
N0. (4.2)

One can thus see that by restricting the counting to the UCN1 category, the limit on τnn′ is
shortened to a

√√
62% = 89%. In other words, we reduce the experimental sensitivity by

11%.

4.3 Systematics: UCN flux fluctuations

Analyses posterior to data collection revealed the presence of non-statistical fluctuations in the
UCN flux linked to the reactor power variations. This can be proven by direct comparison of
both data sets: the UCN flux detection with GADGET and the reactor power obtained from
ILL’s neutron detectors at the reactor core. However, before reaching that point, a detailed
characterization of the detected UCN flux and evaluation of possible extra less-relevant sources
of non-statistical fluctuations in RABC are presented.
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Figure 4.2: Mean RABC computed on complete or incomplete B-scans (S) for the
7 runs (R) composing the total collected data. Vertical boxes and lines represent the
uncertainty expected from statistical fluctuations and data dispersion, respectively.
Horizontal sizes show the time duration of each scan.

4.3.1 Flux stability within hours (scan level)

In section 3.3 it was explained that a n− n′ oscillation signal would be observed in one or
two cycle measurements along an entire scan since the resonance width is comparable to the
experimental sensitivity resolution (∼ 1 µT). For such a reason, even if a true positive signal
is comprehended in the data, the mean RABC over the 350 cycles is expected to be consistent
with the null hypothesis: RABC = 1. This is illustrated in Figure 4.2 where RABC is computed
for the 14 experimental scans and plotted as a function of the recording time. The different
scans were discriminated within runs in order to specify which of them are employed in next
higher-resolution fluctuation analysis. The horizontal box sizes represent the time duration of
each scan, and the vertical sizes the uncertainties of RABC expected from counting statistics
only. It is then normal that wider boxes have shorter uncertainties as they include more
cycle measurements. Also shown in the same figure with vertical lines are the 1σ-dispersion
of data points. Their greater magnitude with respect to statistical uncertainties suggest a
systematic effect in the data for both +B and −B configurations. In fact, these non-statistical
fluctuations seem to be present in the whole data set, with alike participation in all scans.

4.3.2 Flux stability within minutes (cycles level)

One possible approach to fluctuations identification is the search for periodic time structures
in quantities which are expected to be constant. It was already suggested that no evidence
of such time patterns was found in RABC at the scale of several days (Figure 4.2). In fact,
since calculation of RABC results from the average over up to 350 cycles recorded during ∼ 35
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Figure 4.3: (Top) RABC as a function of the scan cycle number. (Middle) The
normalized residuals show multiple non-statistical fluctuations all along the scan,
thus suggesting systematic effects with shorter time scales. (Bottom) The data
dispersion is not totally explained by statistical fluctuations, but follows a Gaussian
distribution.

hours, time structures at shorter scales are not visible.
In order to increase the time resolution for fluctuations identification, the top side of

Figure 4.3 presents the individual values of RABC as a function of the cycle number for the
first scan of run 6 (R6-S0). One can observe that non-statistical fluctuations appear all along
the scan, with no particular correlation to the time nor the magnetic field (both linearly
proportional to the cycle number). Considering that the time between two consecutive cycles
is about 8 minutes, and that error bars are purely computed from counting statistics, the
source of non-statistical fluctuations are predicted at time scales even shorter than the cycle
span.

The normalized residuals with respect to the constant fit, shown in the bottom of Figure
4.3, verify that about 50 out of the 350 points lay beyond the ±3σ. Clearly, this issue cannot
be explained by the look-elsewhere effect. However, the frequency histogram of [RABC − 1]
points, on the bottom side of the same figure, demonstrates that even if the data dispersion,
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computed as

s =

√√√√Ncycles∑
i=1

(
RABC, i −RABC

)2
Ncycles − 1

, (4.3)

is 2.23 times greater than the prediction from counting (Poisson) statistics

σPois =

√√√√√Ncycles/

Ncycles∑
i=1

(∆RABC, i)
−2

, (4.4)

with

∆RABC, i = RABC, i

√
1

NB,i +NB,i
+

1

NA,i +NC,i
, (4.5)

where we have assumed no correlation between NA, NB and NC , the data distribution follows
a Gaussian form: µGaus = 0.00016, σGaus ≈ s and χ2/NDF = 6.6/8. In the end, given that
the observed nature of the non-statistical fluctuations support the fact that all cycles are
subject to the same systematic effects, a common scaling factor equals to (s/σPois)RABC

= 2.23
can be safely applied on each RABC error bar. It was noted that this scaling factor is
equivalent to the one obtained from the zeroth polynomial goodness of fit, computed as√
χ2/(NDF − 1) =

√
1713.66/348 ≈ 2.22 [68].
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Figure 4.4: FFT of RABC during run 6. No relevant modulation is perceived
within the displayed frequency range. The 8 minutes data sampling corresponds to
the cycle time span.

For the sake of completeness, before looking for non-statistical fluctuations at shorter
time scales, the Fast-Fourier Transform (FFT) of RABC points during the longest run R6
composed of almost 5 entire scans is presented. Figure 4.4 shows the FFT computed using a
Hann window over the 1490 consecutive cycles that translate into 186 hours, i.e. 1 point every
8 minutes. This result shows no evident periodic phenomena modulating the measurement
of RABC in the displayed frequency range. In particular, no modulation with frequency
f ≈ 1/24h indicates that n − n′ signals are disfavored in the ‘solar system-static hidden
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magnetic field’ scenario explained in section 4.5. Conclusions from this study on RABC in R6
are extended to the rest of the UCN data set.

4.3.3 Flux stability within seconds (within cycles)
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Figure 4.5: (Top) Total UCN rate as a function of the time within one sample
cycle. (Middle) The normalized residuals show multiple non-statistical fluctuations
all along the cycle with no predominance at A, B or C. (Bottom) The data
dispersion is not totally explained by statistical fluctuations, but follows a Gaussian
distribution.

Given that the construction of RABC is done from the flux integration over 200 s, the
search for non-statistical fluctuations at the order of seconds cannot be done through this
quantity. Instead, one can look at the UCN counting rate within delivery cycles. To do so,
linear fits are performed on the detected flux of each cycle as

rate = p0 + p1 · t, (4.6)

with p0 and p1 the fitted parameters. A sample cycle rate and its associated normalized
residuals with respect to the fit are shown in Figure 4.5 (top). Non-statistical fluctuations
appear in the flux measurement during the entire time interval, with no evident predominance
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at a particular time. The UCN rate, which is constructed by binning the time-of-detection
signals achieved with the 2 ns resolution of the FASTER acquisition system, is computed
every second starting from (ending in) the initial (final) time of NA (NC) counting. After
constructing the frequency histogram of residuals (bottom side of Figure 4.5) and computing
the expected data dispersion from Poisson statistics, one concludes that the extra systematics
have to be added to the rate error bars in order to explain the ratio (s/σPois)rate = 1.46. Since
this scaling factor is shorter than the one obtained for RABC data points, (s/σPois)RABC

= 2.23,
one can predict that the non-statistical fluctuations build-up at the scale of seconds to minutes.
Similarly, as for RABC, the rate residuals dispersion follows a Gaussian distribution with
χ2/NDF = 12.6/12.
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fitting procedure of empty-blue-squares data.
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Conclusions from the previous paragraph are extended over all cycles in this experiment.
The distribution of (s/σPois)rate resulting from the linear fit of UCN cycles in run 6, displayed
in Figure 4.6, shows that the rate error bars are underestimated with a mean 〈(s/σPois)rate〉 =
1.482. We point out that the entire distribution lays below (s/σPois)RABC

thus confirming that
non-statistical fluctuations show up at the scale of seconds.

Comparison of the counting rate from multiple cycles is not possible. The long-term drift
of the UCN flux prevents computing any statistics on direct values of the rate. However, this
limitation is removed if calculating the normalized rate residuals, which are obtained with
respect to the linear fit of the UCN counting in each cycle (Eq. (4.6)). Figure 4.7 shows the
average shape of these residuals computed over all the cycles in R6 as a function of time.
Two cases displayed: in red the fitting range is the made equal to the ABBC integration
interval [1− 187] s, and in blue the first 20 s are neglected, [21− 187] s. In both cases, one
observes a decreasing defect on the average residuals during the first 20 s, which is attributed
to the UCN beam ramping-up produced by the PF2 turbine alignment with the EDM beam
port. Although the turbine alignment lasts about 2 seconds, its ramping-up effect might be
noticeable at the detector event at 10 or 15 seconds, caused by the long-lasting trajectories of
slow neutrons or of those undergoing multiple diffusive reflections.
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Figure 4.8: RABC data points dispersion and statistics after reducing the counting
intervals according to Eq. (4.7). Comparison against Figure 4.3 reveal similar
non-statistical fluctuations.

In order to avoid any systematics induced by the residual beam ramping-up effect, the
RABC integration intervals are modified. In particular, the first 20 seconds counting of each
cycle are removed, thus shrinking NA to almost half its original size. In addition, to maintain
the ABBC symmetry needed to absorb linear drifts, the NB and NC integration intervals
are also resized. These new intervals, which are kept for subsequent fluctuations and n− n′

analyses, are rewritten as

NA : [1− 45] s → [20− 45] s,
NB +NB : [50− 138] s → [69− 119] s, (4.7)

NC : [143− 187] s → [143− 168] s.

After such a redefinition, the reduced counting statistics makes RABC error bars ∼
√
2 larger

(see Eq. (4.5)) while the sensitivity is expected to decrease to a ∼
√√

50% ≈ 84% (see
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Eq. (4.2)). Nevertheless, as shown by the residuals frequency histogram of RABC points
after the redefinition in Eq. (4.7), in Figure 4.8, the weight of non-statistical fluctuations
remain unchanged. Since the scaling factor (s/σPois)RABC

results exactly the same as the one
reported with the original 44 s integration windows, it can be concluded that the non-statistical
fluctuations were not linked to the beam ramping-up.
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cycles in R0-S6. Besides the habitual white noise at low frequency, the average
graph shows a short periodic signal with frequency similar to the PF2 turbine
(∼ 4 s−1). This result excludes significant periodic parasite signals on the UCN
detection within cycles.

Last but not least, the FFT computed over the counting rate of a single cycle is compared
to the average FFT over all cycles in scan 0 of run 6 (see Figure 4.9). These plots show that
no significant periodic patterns are evident on individual FFTs. However, after averaging
over multiple runs, one observes a short signal with frequency f = 4.17 s−1 which is directly
linked to the PF2 turbine rotation speed (240 rpm ≈ 4 s−1). Although explanation of this
phenomenon can be cumbersome, it is concluded that its correlation to the non-statistical
fluctuations on single UCN counting cycles is negligible. The fast rotation frequency of the
turbine cannot explain the large fluctuations appearing every few seconds.

4.3.4 Flux stability within milliseconds

Another approach to study the non-statistical fluctuations of the UCN detection rate is based
on the computation of the Allan Deviation (σAllan) [101]. The principle of this technique is to
look at the fluctuations between consecutive averages of the counting rate as a function of
the averaging time window (τ). Although this quantity is mostly employed to quantify the
stability of variables which are assumed constant, its determination could eventually lead
to noise identification. To do so, counting time histograms are constructed with 10 ms bin
size so that the averaging time τ can be made as small as 20 ms. By denoting Yj the UCN
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counting in bin j, the Allan deviation reads

σAllan(τ) =

√√√√ 1

2(M − 1)

M−1∑
i

(
Y i+1,τ − Y i,τ

)2
, (4.8)

with

Y i,τ =
1

[τ/10 ms]

[τ/10 ms]∑
j

Yj (4.9)

and M = [200 s/τ ] the number of time partitions for a given τ .
Using Eq. (4.8), the Allan deviation is computed as a function of τ for 10 UCN cycles

chosen randomly from run 6. Figure 4.10 shows the average Allan deviation shape associated
to these measurements next to the Allan deviation of a reference MC-generated counting
spectrum. The MC spectrum is simulated by assuming purely statistical fluctuations on top of
a slow linear drift of the rate. After direct comparison of the measured against MC simulation,
one sees that the former deviates from statistical fluctuations (white noise) around τ = 0.5 s.
This is compatible with analyses in the next section (4.3.5) where it is demonstrated that the
non-statistical fluctuations are negligible at time scales as small as a couple µs but become
relevant at the order of few seconds (see section 4.3.3). In principle, if such fluctuations
happen to be proportional to the UCN flux, they accumulate in the neutron counting. Hence,
the longer the counting intervals, the larger the non-statistical fluctuations. In fact, this is the
reason why (s/σPois)RABC

= 2.23 and (s/σPois)rate = 1.689. While the former derives from UCN
counting during 44 s periods, the latter corresponds to 1 s binning. A detailed demonstration
of this cumulative process of non-statistical fluctuations is presented in Appendix D.
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4.3.5 Flux stability within microseconds

The high resolution in time of UCN detection with FASTER allows performing a detailed
analysis of the flux fluctuations. Another approach to evaluate the flux constancy is to look
at the time separation between UCN events. In fact, if the detection rate (νdet) is constant,
the probability to find two consecutive events separated by tsep seconds is given by

P (tsep) = νdete
−νdettsep . (4.10)

This expression is used to fit the time separation distribution constructed from a single UCN
cycle (see Figure 4.11). The fitting, [1.5−40] µs, range was chosen smaller than the histogram
span so to ignore the first bin (500 ns), whose counting is underestimated due to pile-up events,
and bins with low statistics at large tsep. The counting defect on the first bin is explained by
the 50 ns coincidence time window programmed within FASTER to group the PMT signals.
Events separated by times shorter than this window are detected as a single one and thus add
as a pile-up. Using Eq. (4.10) and the fitted νdet, the pile-up probability is estimated as

Ppile-up =

50 ns∫
0

P (t)dt = 1− e−νdet∗50 ns ≈ 1%, (4.11)

which is consistent with the ‘pile-up’ category counting reported in section 2.3.6. The
normalized residuals, shown in the bottom side of Figure 4.11, confirm a good agreement
between data and Eq. (4.10) on the entire range besides the first bin. Such congruity is
also reflected on the fitting χ2/NDF (= 75.15/75), demonstrating that the non-statistical
fluctuations cannot be perceived at the µs scale.
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4.3.6 Data correction from reactor power fluctuations

It has been proved that the RABC error bars were underestimated due to a systematic effect
producing non-statistical fluctuations on the detected UCN flux at the scale of seconds. This
fluctuating phenomenon appears all along the UCN delivery cycles without a fixed periodic
time structure. A simple homogeneous scaling of the rate error bars equal to Srate = 1.689
would be sufficient to completely adjust the UCN counting rate per second at each cycle to
linear functions. Likewise, taking into account the accumulation of fluctuations, a homogeneous
scaling of RABC error bars of SRABC

= 2.23 makes the whole data set consistent with the
null-hypothesis of no n− n′ oscillations. In the following, we argue how this scaling can be
safely be applied by attributing the non-statistical fluctuations to the reactor power variations.

Long term variations (t > tcycle)
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Figure 4.12: Average UCN rate and reactor power per cycle as a function of time.
Right-side plots result from the data cleansing performed for correlation studies.
The linear fit is used to compute the residuals on the average UCN rate according
to Eq. (4.12).

Access to the reactor power data was only possible after the n−n′ experimental campaign.
Since computation of the power is managed by the ILL operators to control and survey the
reactor performing, the algorithm for its calculation remains private. The data set consists of
the reactor nominal power with 1-second resolution, sampled during the entire 2020 reactor
cycle. Given that both the power and the UCN detection were recorded with different clock
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systems, there is a time offset between them. Assuming this offset is negligible∗, a first
estimate of the correlation between the UCN rate and the power is computed by looking at
their average values per cycle, 〈YUCN〉cycle and 〈Prea〉cycle, respectively. The left side of Figure
4.12 shows these averages as a function of time during runs 6 and 7, where several remarks
can be mentioned. First, besides the 5-hours drop of 〈Prea〉cycle at t ≈ 55 h, it keeps about
56 MW for the whole time interval. In contrast, 〈YUCN〉cycle decreases continuously from 288
kHz to 280 kHz in the same period. This long-term drift is attributed to the ILL’s vertical
cold source (VCS) decreasing efficiency, which might be linked to a possible heating of the
liquid D2 (see Figure 1.6). Also, multiple quick drops on 〈YUCN〉cycle seem to be independent
of the reactor power. They could be related to changes at the level of the PF2 turbine or
the acquisition system. In order to exclude these spurious points, we limit the correlation
analysis to data points above convenient thresholds (lower horizontal dashed lines). Once
the undesired drops are removed, the progressive falling of 〈YUCN〉cycle is adjusted to a linear
function pol1, which allows defining the average UCN rate residuals as

〈Y res
UCN〉cycle = 〈YUCN〉cycle − pol1. (4.12)

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0 20 40 60 80 100 120 140 160 180 200

(X
−
X
)/
X

time (hour)

Reactor average power
UCN average rate

Figure 4.13: Long-term variation of average UCN counting rate and reactor
power. The point sampling corresponds to the cycle period 400 s. The large
correlation coefficient (0.76) explains the slow UCN rate variations.

Figure 4.13 shows the superposition of 〈Y res
UCN〉cycle and 〈Prea〉cycle after centering and nor-

malizing with respect to their respective mean values. This comparative description permits
looking, for the first time, the matching between ILL’s reactor power and the UCN counting at
the PF2 EDM beam port. The visible correlation in Figure 4.13 (characterized by a Pearson
correlation coefficient ρpea ≈ 0.76) allows assigning the long-term (larger than 400 s) variations
of the UCN flux to the reactor power fluctuations. One could think on correcting the long-term
fluctuations of 〈YUCN〉cycle, for example, by dividing them by 〈Prea〉cycle. However, since the
self-normalized construction of the ratio RABC does compensate for the long-term variations

∗toffset should not be larger than the cycle period (400 s).
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(t > tcycle), it is important to establish whether the non-statistical short-term fluctuations
(t < tcycle) affecting the dispersion of RABC points can be corrected through the reactor data.

Short term variations and correction of RABC (t < tcycle)

-0.4

-0.2

0.0
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Figure 4.14: Correlation coefficient between UCN counting and reactor power
ratios (Eq. (3.2) and (4.13)) as a function of the time offset.

To evaluate the possibility of correcting RABC points at the scale of seconds, an equivalent
quantity is computed from the reactor’s power data:

R̃pow =
PB-pow + PB-pow

PA-pow + PC-pow
, (4.13)

where P pow
i represents the average power during the UCN counting Ni (see Eq. (3.2)). As

RABC , this reactor power ratio is also insensitive (unless non-statistical fluctuations) to linear
drifts at time scales comparable to tcycle and to any long-term variation. Before attempting
the correction of RABC with R̃pow, we conduct a time synchronization between both data sets
by finding the time offset (toffset) for maximum correlation. Figure 4.14 shows the correlation
after shifting the power reference time in steps of 1 second. The resulting behavior depicts a
maximum at toffset = −21s, which is used to calibrate the data set, and also two minima at
−112 s and 71 s. The maximum correlation time offset contains information on the time delay
between both acquisition system clocks. However, it is also affected by physical processes such
as the time for neutron transport from the reactor core to the UCN detector. Nevertheless,
distinguishing each contribution is irrelevant for the synchronization purpose. Concerning the
position of minimum correlation, we notice that their time difference matches the UCN cycle
time span (180 s), and their middle point the maximum correlation. As one would expect, no
correlation is found when the time offset exceeds tcycle.

In virtue of the large correlation ρ
R,R̃

after data synchronization, one would naively think
that the RABC points could be corrected by compensating for the reactor power variations as

R correc
ABC =

NB +NB

(NA +NC)
PB+PB
PA+PC

=
RABC

R̃pow

. (4.14)
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Figure 4.15: Comparison of UCN counting and reactor power normalized ratios
per cycle as a function of time (top) and in frequency histograms (bottom-right).
Both plots include the UCN points corrected as R correc

ABC = RABC/R̃pow. Also shown
(bottom-left) the correlation of both data sets.

However, one has to take into account that, in order to perform a profitable correction, the
correlation coefficient has to fulfill

ρ
R,R̃

>
1

2

s̃pow

sABC

, (4.15)

with sABC and s̃pow the standard deviations of RABC and R̃pow, respectively. Eq. (4.15) can be
derived by recalling that the purpose after the correction is to narrow the RABC distribution
so that the point dispersion gets closer to the prediction from statistical fluctuations, i.e.
sABC → σPois (Eq. (4.3) and (4.4)). Hence, using the definition in Eq. (4.14), the narrowing
requirement is written as

sABC > s correc
ABC = |R correc

ABC |

√√√√( sABC

RABC

)2

+

(
s̃pow

R̃pow

)2

− 2ρ
R,R̃

sABC s̃pow

RABCR̃pow

(4.16)

⇔ s2ABC > s2ABC + s̃2pow − 2ρ
R,R̃

sABC s̃pow

⇔ 0 > s̃pow − 2ρ
R,R̃

sABC

where we have safely assumed R correc
ABC = RABC = R̃pow ≈ 1. This last expression, which is

equivalent to Eq. (4.15), demonstrates that the larger the s̃pow the greater the correlation has to
be to conveniently correct RABC . In our case, when looking at the experimental data, it occurs
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that both RABC and R̃pow present similar dispersion sABC ≈ s̃pow, thus requiring ρ
R,R̃

> 0.5.
However, since the actual measured correlation after synchronization is ρ

R,R̃
= 0.45, the

reactor power data cannot be used for the desired correction†. In particular, the distribution
of R correc

ABC exhibits a dispersion comparable to that of RABC and R̃pow. Figure 4.15 resumes
the three ratio distributions as a function of time next to frequency histograms that allow a
visual comparison of the dispersion after correction.

Even if no correction can be applied, the main result in the analysis above is that the
reactor fluctuations are as large as the UCN detection ones: sABC ≈ s̃pow. Hence, one can
simply argue that the non-statistical fluctuations have origin at the reactor power. As a
consequence of this, we can safely scale the error bars ∆RABC with factors as big as the ones
displayed in Figure 4.8 ((s/σPois)RABC

= 2.23).

4.4 Probing oscillations as a function of δm (B′ = 0)
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Figure 4.16: Average RABC over all measured scans as a function of the central
field of the ABBC sequence. Error bars scaling is performed according to Eq.
(4.20).

Analyses in this section are built within the scenario of non-zero neutron-hidden neutron
mass splitting (δm 6= 0) and vanishingly small hidden magnetic fields B′ = 0, i.e. n − n′

oscillations can be described by the double-parameter model in Eq. (1.10). In this model, the
spin is conserved during oscillations and the resonance condition ∆nn′ = µnB − δm = 0 is
only fulfilled for one of the spin states. This can be easily seen from the Hamiltonian in Eq.
(1.8), written as

Ĥnn′ =


µnB 0 εnn′ 0
0 −µnB 0 εnn′

εnn′ 0 δm 0
0 εnn′ 0 δm

 , (4.17)

†Note that in the ideal scenario, with ρR,R̃ = 1, Eq. (4.16) gives a perfect correction: scorrec
ABC = 0
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leading to the spin-up and spin-down resonances

µnB = δm : n↑ → n′↑

−µnB = δm : n↓ → n′↓.

Therefore, provided δm > 0, n↑ oscillates into n′↑ for +B resonant fields and n↓ oscillates
into n′↓ for −B resonant fields. However, this is not relevant for the analysis, since the UCN
beam used in this experiment is made of 50% n↑ and 50% n↓ (not polarized). We can thus
average over the RABC measurements available from all scans (see Table 4.2) regardless of the
applied B-field orientation (+ or −). The number of neutrons disappearing from the beam
due to n − n′ oscillations is the same for both magnetic field directions. Note that, under
these circumstances, the asymmetry A↑↓ in Eq. (1.17) is expected to be zero: NB = N−B, i.e.
the asymmetry channel is not sensitive to n− n′ oscillations. That would not be the case for
a polarized beam (see discussion in sec 5.2).

Based on the above reasoning, the weighted averages and their uncertainties for every
Bi-field step using the RABC, i, j points available from the multiple j scans were computed as

RABC, i =

1
Nscans

Nscan∑
j=1

RABC, i, j

∆R 2
ABC, i, j

Nscan∑
j=1

1
∆R 2

ABC, i, j

, (4.18)

and

∆RABC, i =

√√√√√ 1
Nscans∑
j=1

1
∆R 2

ABC, i, j

. (4.19)

Whereas the input uncertainties ∆RABC, i, j only include poisonnian statistics, the output
weighted uncertainties ∆RABC, i are scaled after the average calculation. In this case, the
scaling factor obtained from the dispersion of averaged values is comparable to the one already
validated by the reactor power fluctuations (2.23):(

s

σPois

)
RABC,i

=
34× 10−5

15× 10−5
= 2.25. (4.20)

One can confirm that, although the RABC, i points dispersion is reduced after the averaging,
s = 105 × 10−5 −→ s = 34 × 10−5, the scaling factor remains the same. Such invariability
is consistent with our procedure, since Eq. (4.18) and (4.19) only consider poissonian
uncertainties. Thus, it is normal that σPois also shortens as we average over several scan
measurements.

Figure 4.16 shows the average RABC, i points as a function of the central magnetic Bi-field.
We observe that, even after the error bars scaling, there is a slight difference between the null-
hypothesis χ2

null and the number of degree-freedom NDF. This is expected because the scaling
factor is computed throughout the RABC points dispersion (Eq. (4.20)) rather than through
the expression

√
χ2

null/(NDF − 1). While the former involves the sum
∑

(RABC, i − RABC)
2,

the latter computes
∑

(RABC, i − 1)2.
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There are two general approaches for probing n − n′ oscillations as a function of the
solenoid magnetic field. They both propose a fitting function to describe the measured RABC .
The first one assumes a homogeneous solenoid B-field, thus providing an analytical expression
for the oscillation probability PAnal

nn′ . The second one implements the numerical solution for
the Hamiltonian, where the magnetic field is interpolated from the COMSOL - measurement
model as UCN move along the STARucn simulated tracks. For comparison purposes as well
as for defining the sensitivity and accuracy of the conclusions derived here, both approaches
are simultaneously followed in next sections.

4.4.1 Oscillation probability: Numerical and analytical solutions

In section 3.2.1, we evaluated the oscillation probability FWHM through the analytical
solution of Ĥnn′ in Eq. (1.10). In that example, the resonance behavior, plotted as a function
of δm, was described by a sinc2-like pattern with axis of symmetry at ∆nn′ = 0. However,
the use of such a simplistic image is only valid in highly homogeneous B-fields with negligible
gradients ∇~r

~B = 0. For the present work this is not true given that the B-field profiles that
UCN experience while crossing the 6-m guide do not fulfill ∇zBz = 0; although ∇rBz ∼ 0
and Br ∼ 0 (see section 3.4.3). In order to fully expose the dynamics of n− n′ oscillations, we
compare the oscillation probability determined from the analytical solution, with ∇~r

~B = 0,
and through the numerical solution accounting for the field gradient ∇zBz.

Whether the magnetic field is assumed uniform or its simulated and measured inho-
mogeneities are included, the n − n′ oscillation probability, Pnn′ , depends on the multiple
trajectory steps followed by UCN within the solenoid volume. In particular, the oscillation
probability at the trajectory’s i-th step (Pi) is determined by the free-flight-time

tf,i = tcoll
i − tcoll

i−1 (4.21)

and the magnetic field profile experienced between both wall collisions. Since detected
neutrons in the experiment are regarded as neutrons surviving n− n′ oscillations after all the
trajectory steps, computation of Pnn′ is made by selecting the STARucn tracks that end up
at the detector entrance window. Other UCN lost via β-decay, up-scattering, absorption or
transmission at the guide walls do not contribute to the analysis.

To define the fitting function for the experimental points RABC , we have first to compute
the total probability for a UCN to escape the setup as consequence of n− n′ oscillations. For
a UCN describing ncoll wall collisions, this probability is written as

Pnn′ = P1 + (1− P1)P2 + (1− P1)(1− P2)P3 + · · ·+

(
ncoll−1∏
i=1

(1− Pi)

)
Pncoll ,

≈ P1 + P2 + P3 + · · ·+ Pncoll . (4.22)

Non-linear terms in the latter expression can be safely neglected given that, even at resonance,
the oscillation probability is at the most

Pmax ∼ (t̄f/τnn′)2 = (0.032/1)2 = 1.37× 10−5,

if assuming an oscillation time τnn′ = 1 s and t̄f = 32 ms (see Fig. 3.12).
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Eq. (4.22) represents the bifurcating point for the analytical and numerical approaches.
In the former, the i-th step probability is obtained by evaluating the expression in Eq. (1.10)
at the free-flight-time tf,i and characteristic field Bi as

PAnal
i =

4ε2nn′

4ε2nn′ + (µnBi − δm)2
sin2

(
1

2

√
(µnBi − δm)2 + 4ε2nn′tf,i

)
, (4.23)

where the free-flight-times are extracted from STARucn tracks, and Bi can be replaced by
the average B-field over the step segment or simply be considered as the mean solenoid field
B . In the latter approach, the numerical solution provides a more realistic description of the
n− n′ oscillations as it takes into account the magnetic field variations. The probability from
this approach is logged at the wall collisions of UCN MC tracks as

PNum
i = |ψn′(tcoll

i )|2,

where the hidden neutron state ψn′ is determined by

i
d

dt

(
ψn(t)
ψn′(t)

)
=

(
µnB(z(t)) 1/τnn′

1/τnn′ δm

)(
ψn(t)
ψn′(t)

)
, (4.24)

with B(z(t)) the solenoid magnetic field evaluated at the UCN horizontal position z(t). A
complete description of the numerical technique is resumed in Appendix E.

Every evaluation of Pnn′ implies fixing both model parameters τnn′ and δm. Fortunately,
the average oscillation probability per UCN computed over several trajectories is proportional
to 1/τ2nn′ . This is advantageous from a computational point of view since definition of the
average 〈Pnn′(τnn′ , δm)〉 only requires scanning δm for a single τnn′ , e.g. 1 s. The resulting
Pnn′ shape can be thus extrapolated to any τnn′ by making

〈Pnn′(τnn′ , δm)〉 =
(

1 s
τnn′

)2

〈Pnn′(1 s, δm)〉. (4.25)

Although each UCN trajectory determines a unique n− n′ oscillation pattern, looking at
the time evolution of PNum

nn′ for a sample trajectory allows verifying the wave function behavior
as UCN travel across the solenoid. This is shown in Figure 4.17 next to the magnetic field
profile experienced by the UCN and the energy degeneracy factor ∆nn′ (see Eq. (1.11)).
The oscillation probability and ∆nn′ are displayed for three probing δm values, which are
conventionally chosen at the resonance (blue), 10 µT off the resonance (red), and 250 µT far
from the resonance (yellow). Several remarks can be made out of this n− n′ tracking sample:

• If δm/µn is lower than the B-field plateau (Bplat.), the exact energy degeneracy lifting
∆nn′ = 0 is achieved twice, at the solenoid entrance and exit (red and yellow lines). If
δm/µn ≈ Bplat., the lifting happens several times inside the solenoid caused by the field
inhomogeneities (blue line).

• Independently of δm, PNum
nn′ monotonically increases when δm/µn approaches the mag-

netic field B, i.e. ∆nn′ → 0. This growth, which approximately follows (t/τnn′)2, reaches
a maximum shortly after ∆nn′ = 0.
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• When ∆nn′ stays constant during the entire step, i.e. uniform B-field, PNum
nn′ oscillates

according to Eq. (4.23), which can be written as

Pnn′(t) =
4ε2nn′

4ε2nn′ +∆2
nn′

sin2

(
1

2

√
∆2

nn′ + 4ε2nn′t

)
(4.26)

(This can be checked, for example, at t ∼ 0.9 s, where the oscillation amplitude is
proportional to 1/∆2

nn′ and the frequency to ∆nn′ .)

• Even after collisions, PNum
nn′ quickly recovers its previous amplitude if ∆nn′ remains

unchanged. This generally happens while traversing the B-field plateau.

• At the end of the sample trajectory, the total oscillation probability, computed from Eq.
(4.22) gives

PNum
nn′ =


1.7× 10−3, for δm/µn = 1.00 mT
6.8× 10−5, for δm/µn = 0.98 mT
1.5× 10−5, for δm/µn = 0.75 mT.

Whereas the total oscillation probability PNum
nn′ , for a resonant δm, is mostly built at

the B plateau, for off-resonance mass splittings it is mainly due to the two ∆nn′ = 0
crossing points at the entrance and exit of the solenoid volume.

The former analysis, based on a single n − n′ tracking trajectory, can be extrapolated
to all of them. Small variations appear when UCN undergo diffusive scattering that reverse
the traveling path towards the beam port. In those cases (< 1%), UCN cross several times
the solenoid volume, thus making the total trajectory time and total oscillation probability
slightly larger. In order to illustrate the mean behavior of n− n′ oscillations, the cumulative
oscillation probability (abscissa) is plotted against time (ordinate) for 30 UCN trajectories
in Figure 4.18. The distribution of points, which are vertically projected into the upper
histograms, represents the total oscillation probability obtained at the end of 103 trajectories.
Given that these n− n′ tracks are evaluated for the same δm probing parameters as before,
this result contains the sample trajectory studied in Figure 4.17.

In particular, Figure 4.18 points two major features. First, the time required by UCN
to reach the detector’s entrance window describes a wide distribution, ranging from 0.5 s to
2 s. This, however, includes the idle time spent while traveling from the EDM port to the
solenoid magnetic field volume, where no-oscillations are expected [11]. Second, independently
of δm, distributions of the oscillation probability at the end of the trajectories present a large
spreading: Mean/StdDev ∼ 2. In posterior n− n′ oscillations analyses, we assume Pnn′ equal
to the mean value of such distributions.

To construct the mean oscillation probability per UCN, the numerical method has to
be run NUCN ×NB ×Nδm times, with NUCN the number of trajectories, NB the number of
applied magnetic fields and Nδm the number of probing δm parameters. Whereas NB in
this experiment is 1053 (for all A,B and C values combined) and Nδm is conventionally
chosen to have a good resolution near the resonance, the definition of NUCN has to deal with
a compromise between the computational time per UCN track and the error on the mean
〈PNum

nn′ 〉 associated to its rate of convergence. By simulating 5× 104 n−n′ tracks at a resonant
δm parameter, we found that 〈PNum

nn′ 〉 deviates about ∼ 4% (∼ 2%) with respect to the 5× 104
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Figure 4.18: Lines: Cumulative oscillation probability as a function of the time
for 30 sample n − n′ tracks. Dots: Total time and oscillation probability at the
end of 103 tracks. Histograms: Projection of dots on the horizontal axis. All the
tracks are constructed considering a solenoid with B ∼ 1 mT and evaluated for
three probing δm parameters.

estimation if averaging over 102 (103) tracks. Therefore, according to the robustness analysis
in section 4.4.4, we set NUCN = 102 and keep conservative 5% error bars on 〈PNum

nn′ 〉.
Figure 4.19 shows the mean oscillation probability per UCN obtained from the process

described above, explicitly computed as

〈PNum
nn′ (tcoll

i )〉 = 1

NUCN

NUCN∑
i=1

ncoll,i∑
j=1

∣∣ψn′(tcoll
i,j ;B, δm, τnn′)

∣∣2 , (4.27)

and compares it to the probabilities derived from the analytical approach, all built for a
solenoid field of 1000 µT. In particular, the analytical solution is plotted for two scenarios. In
yellow, the oscillation probability per UCN collision determined by Eq. (4.23) is evaluated at
the mean free-flight-time and multiplied by the mean number of collisions:

n̄collP
Anal
nn′ (t̄f ) = n̄collP

Anal
nn′ (t̄f ; 1000 µT, δm, τnn′) (4.28)

with

n̄coll =
1

NUCN

NUCN∑
i=1

1

ncoll,i

ncoll,i∑
j=1

1 (4.29)
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and

t̄f =
1

NUCN

NUCN∑
i=1

1

ncoll,i

ncoll,i∑
j=1

tf,i. (4.30)

In green, we compute its average value over the multiple UCN tracks

〈PAnal
nn′ (tf,i)〉 =

1

NUCN

NUCN∑
i=1

ncoll,i∑
j=1

PAnal
nn′ (tf,i; 1000 µT, δm, τnn′), (4.31)

where each trajectory step contributes with the oscillation probability associated to the step
free-flight-time tf,i. This last calculation is included to demonstrate how the wiggling pattern
of the analytical solutions is washed out after averaging over the tracks with different tf
and ncoll. Among the several differences observed between the curves, we note that the
numerical solution does not show a symmetric shape. This is due to the fact that the magnetic
field experienced by UCN along their paths is not symmetric about 1000 µT (see frequency
histograms in Figure 3.17). This effect is also responsible for the maximum probability
decrease and widening of the FWHM. Since UCN in the numerical solution spend less time at
the solenoid field plateau, the oscillation probability at this value is reduced. In compensation,
a higher Pnn′ is built around 1000 µT thus provoking the widening of the resonance. One
would then expect a reduced experimental sensitivity at the central cycle values A,B and C,
but an improved sensitivity for δm in between them.
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Although not displayed here, we computed the 1053 〈PNum
nn′ (δm)〉 curves, one for each B

value, with Nδm = 300 out of which 200 points were centered around the resonance δm ≈ B .
These are then used to estimate the expected ABBC ratio as

R theo
ABC(δm, τ) =

N0

(
1− 〈PNum

nn′ (B, δm, τ)〉
)
+N0

(
1− 〈PNum

nn′ (B, δm, τ)〉
)

N0

(
1− 〈PNum

nn′ (A, δm, τ)〉
)
+N0

(
1− 〈PNum

nn′ (C, δm, τ)〉
) ,

=
2
(
1− 〈PNum

nn′ (B, δm, τ)〉
)

2− 〈PNum
nn′ (A, δm, τ)〉 − 〈PNum

nn′ (C, δm, τ)〉
, (4.32)

where N0 represents the integrated UCN flux in case of no-oscillations (see Eq. (3.4)). In
next sections, we use this last expression to find the level of agreement between the measured
R exp

ABC and the numerical solution as a function of δm and τnn′ .

4.4.2 Looking for resonances
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Figure 4.20: χ2 (Eq. (4.33)) evaluated within the parameter space. The color
box range is adjusted to stress the contrast of local minima near the null hypothesis
χ2

null/NDF = 348.5/349. Zoomed regions in the top side enclose the three lowest
values α, β and γ detailed in Table 4.3.

The most simplistic method to establish whether n− n′ resonances can be evidenced from
the measured R exp

ABC points is through the calculation of

χ2(δm, τnn′) =

Ncycles∑
i

(
R exp

ABC, i −R theo
ABC(δm, τnn′)

∆RABC, i

)2

, (4.33)
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Table 4.3: Lowest χ2 per degree of freedom within the (δm, τnn′) parameter space
of Figure 4.20. The shape of the predicted signals for each minimum is displayed
in Figure 4.21.

Local minimum |δ̂m|/µn (µT) τ̂nn′ (s) χ2/NDF
α 271.1 3.2 343.9/348
β 949.9 2.1 343.2/348
γ 1092.5 2.2 344.1/348

where i runs over all the cycle steps in the magnetic field scan (see discussion in section 3.3).
One could initially propose minimizing χ2 within the parameter space (δm, τnn′), but given

that the null-hypothesis already matches the R exp
ABC points (see Figure 4.16), any minimizing

pair δ̂m, τ̂nn′ difficulty fulfills
χ2
δ̂m,τ̂nn′

NDF
� χ2

null

NDF
.

In other words, the large compatibility between the null-hypothesis and data can lead to
several χ2 local minima in the parameter space with

χ2
δ̂m,τ̂nn′

NDF
∼ χ2

null

NDF
.
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Figure 4.21: RABC theoretical prediction for the three parameters combination
α, β and γ giving the lowest χ2 in the map of Figure 4.20. The signals raised in all
cases are contained withing the null-hypothesis fluctuations band sABC .
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This phenomenon is displayed in the bottom side of Figure 4.20, where χ2 has been
computed using the numerical approach to Pnn′ , for δm ∈ [20 − 1200]µT · µn and τnn′ ∈
[0− 10]s. The exhaustive evaluation of χ2, which includes Nδm×Nτnn′ = 104× 102 parameter
combinations, reveals multiple local minima with 343 < χ2 < 350, all located above τnn′ = 1.5
s. Clearly, they cannot be regarded as potential signals, but instead they suggest that
the data set does not witness any n − n′ signal. To see this, we focus on the parameter
space regions near the three lowest points of χ2, labeled as α, β and γ (top side of Figure
4.20). The coordinates of such points and their associated χ2 are reported in Table 4.3. We
corroborate that in the three cases, the χ2 per degree of freedom is comparable to the null
hypothesis χ2

null/NDF = 348.5/349. In addition, as illustrated in Figure 4.21, when plotting
R theo

ABC(δ̂m, τ̂nn′) as a function of the cycle central B-field for the minimizing parameters (α, β
and γ), the hypothetical signals in the three cases are contained within the fluctuations band
sABC (green horizontal band). Hence, since none of these minimizing parameter pairs gives
place to a potential signal beyond 1.2sABC , we attribute all the local minima observed within
the parameter space for this experiment to background fluctuations, i.e, they are explained by
the look else where effect.

The reader might remark that the theoretical predictions of RABC, illustrated in Figure
4.21, present the expected symmetric triple-footprint shape at low magnetic fields, but it is
progressively deformed as the field increases (see ideal case in Figure 3.7). This change in
form is caused by the magnetic field inhomogeneities, which are amplified when setting a large
B-field. Such feature is only taken into account within the numerical solution 〈PNum

nn′ 〉 and is
responsible for the parameter exclusion boundary shaping.

4.4.3 Parameter exclusion

Although the acquired data does not contain a significant signal, we can set a new boundary to
the n−n′ model parameters. As explained in section 3.3, such bounding values are constructed
through the calculation of the χ2(δm,∞) + 22 contour line (Eq. (3.6)) that defines the 95%
C.L. exclusion region. This limit, which is displayed on top of the χ2 map in Figure 4.20, shows
various peaks and valleys going from τnn′ = 1 s to τnn′ ∼ 8 s. By recalling the preliminary
sensitivity analysis of Figure 3.9, we link this wavy pattern to the exclusion maxima and
minima achieved at the resonances δm/µn = Bi and at the intermediate magnetic fields
skipped between cycles, respectively. One can see that fixing a single τnn′ limit for the entire
scanned interval in this experiment becomes a cumbersome task if one wants to profit the
maximum exclusion at each δm. Nevertheless, in order to present the result in a simplified
way, the limiting τnn′ is chosen as the lowest valley of the 95% contour line:

τnn′ > 1 s for |δm| ∈ [30− 1143]µT · µn (95% C.L.), (4.34)

or equivalently, in energy units

τnn′ > 1 s for |δm| ∈ [2− 69]× 10−12 eV (95% C.L.). (4.35)

The result above has been derived from the boundary contour computed by means of the
numerical solution of the n − n′ oscillation probability PNum

nn′ . It is then natural to wonder
what the conclusion would have been if we had considered the more simplistic approach, which
assumes a uniform magnetic field and uses the analytical solution PAnal

nn′ . This question is firstly



4.4. PROBING OSCILLATIONS AS A FUNCTION OF δM (B′ = 0) 121

100

101

0 50 100 150 200 250 300

100

101

300 350 400 450 500 550 600

100

101

600 650 700 750 800 850 900

100

101

900 950 1000 1050 1100 1150 1200

τ n
n
′
(s

)

|δm|/µn (µT)

Numerical
Analytical

1 s
2 s

Figure 4.22: Numerical and analytical contour lines corresponding to the 95%
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examined by comparing the exclusion boundaries raised from both approaches (see Figure
4.22). The depicted contours, which extend all along the parameter space, allow highlighting
two main differences. First, the separation between maxima and minima are less pronounced
for the numerical result in the entire δm range. Second, there is a slight decrease on the
numerical exclusion as δm increases. Both of these behaviors are induced by the magnetic
field inhomogeneities affecting the calculation of PNum

nn′ . Given that these inhomogeneities are
more significant when setting a large solenoid field,

δB

B

∣∣∣∣
large B

>
δB

B

∣∣∣∣
small B

, (4.36)

it is reasonable to obtain a lower and wider oscillation resonance curve (Figure 4.19) at
large values of δm. In consequence, the contour line, which reproduces the shapes of the
multiple resonances, features lower and wider exclusion peaks as δm increases. That being
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Table 4.4: Parameters exclusion intervals at 95% C.L. for n − n′ oscillations
assuming δm 6= 0. The two intervals are given in magnetic field and energy units.

τnn′
|δm|

(µT · µn) (×10−12 eV)
> 1 s 30− 1143 2− 69
> 2 s 50− 852 3− 51

said, the lowest common limit of τnn′ for the entire scanned interval is almost the same in
both scenarios. Besides the few analytical contour valleys going below the numerical line, the
exclusion regions are defined using the conservative ‘1 s’ and ‘2 s’ bands in Figure 4.22. The
exclusion ranges for both time limits are resumed in Table 4.4.
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Figure 4.23: Exclusion of the n− n′ parameter space including all experimental
results up to August 2022.

Because of its more realistic description, the exclusion boundary derived from the numerical
approach is used to contrast the contribution of this work to the general view of n − n′

oscillations alongside with past measurements (see section 1.4). Using a color selection
compatible with the last published comparison [14], the updated parameter space is presented in
Figure 4.23. The exclusion region emerging from this work becomes thus the first measurement
probing n − n′ oscillations with mass splittings values located between UCN storage and
passing-through-wall experiments. Even if our sensitivity is about one order of magnitude
shorter than that of UCN storage measurements, the experimental technique introduced with
this work allows efficiently scanning a wide range of δm values. While the most sensitive
UCN storage experiment [11] dedicated 40 days to test n− n′ oscillations at two magnetic
field magnitudes, we achieved scanning more than one thousand fields with an experimental
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campaign lasting 25 days. The sensitivity of this new result is not negligible if taking into
account that the most sensitive measurement in passing-through-wall experiments lays below
τnn′ = 10 ms. One fact to keep in mind if visualizing a future UCN beam experiment to scan
larger δm is that the resonance width (∼ 1 µT · µn) and the scanning step are not expected
to change drastically. Therefore, in order to contribute with a considerable exclusion region
at δm > 103 µT · µn, the experiment has to improve the counting statistics to maintain the
same τnn′ ∼ 1 s sensitivity.

4.4.4 Robustness of the results

In the previous section, we presented the exclusion boundary variations introduced by the
numerical and analytical solutions of Pnn′ . However, given that the former includes a more
realistic estimation of the magnetic field inhomogeneities we opted for the numerical solution
to report our final result. Even if both approaches led to similar conclusions on the large scale
(‘1 s’ and ‘2 s’ bands in Figure 4.22), the numerical method was preferred as it gives a more
detailed description of n− n′ oscillations near the resonances. Independently of the chosen
theoretical approach, there is an extra source of uncertainties affecting the final exclusion
region in this work: the simulated UCN trajectories. In section 3.4.1, it was demonstrated
that STARucn input parameters were calibrated to reproduce the time-of-flight measurement.
Although the calibration of parameters resulted from a χ2 optimization process, the yield
spectrum might suffer from overfitting given the large number of inaccessible STARucn input
parameters (Table 3.1). In order to study the systematic uncertainties added by these “flexible”
parameters, several UCN trajectories sets were generated while varying the parameters that
do not largely alter the time-of-flight calibration, i.e. the number of diffusive reflections (d)
and the initial velocity distribution (v0). In the following, we quantify the final sensitivity
variations using a single cycle measurement.

Amount of diffusive reflections
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Figure 4.24: Time-of-flight (left) and number of collision within the solenoid
magnetic field (right) distributions extracted from MC simulations of UCN trajec-
tories. Three independent runs consider different values of the number of diffusive
reflections d.
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Figure 4.25: 95% C.L. boundaries obtained from the single cycle measurement
(B = 1000 µT) assuming different numbers of the diffusive reflections d. The
boundaries correspond to the MC event distributions depicted in Figure 4.24.

Experimental setups with d < 1%, i.e. highly smooth and clean UCN guides, are technically
difficult to achieve. On the contrary, it might happen that improper guide commissioning
and mounting affect the UCN interactions against the guide inner walls, allowing numerous
diffusive reflections d ∼ 5%. Considering the UCN guide arrangement of this work, one
would expect that d > 1% favors UCN trajectories where the direction of propagation is
reversed. In such cases, neutrons spend longer times within the solenoid magnetic field and
the average n − n′ oscillation probability increases. In the end, this augmentation of the
oscillation probability converts into a larger theoretical signal that extends the 95% C.L.
bounding of τnn′ if no oscillations are observed. Under the same reasoning, for d < 1%,
UCN would mostly travel towards the detector without bouncing back through the guide.
This continuous forward flowing makes the oscillation probability to be merely defined by
the average free-flight-time t̄f of specular reflections and the average number of collision to
cross the setup. The exclusion boundary in this case remains unchanged. To demonstrate
these behaviors, independent STARucn simulations are run by making d = 0.5%, 1% and
10%. The free-flight-time and number of collisions distributions obtained from each run are
displayed in Figure 4.24. Note that whereas t̄f keeps almost the same for the three values of
d, n̄coll drastically increases for d = 10%. This, as mentioned above, echoes on the 95% C.L.
exclusion boundaries, which for the sake of simplicity are computed and plotted for a single
cycle measurement with central field B = 1000 µT in Figure 4.25. One can then confirm
that scenarios with high d give place to more sensitive discriminations of τnn′ . In the current
example, going from d ≤ 1% to d = 10% implies a gain on the sensitivity of 30%. Although
the magnitude of d cannot be experimentally established, the key point of this brief analysis
is that d = 1% corresponds to an optimistic assumption producing a conservative conclusion.
Then, the uncertainty in the final exclusion region induced by d is negligible.
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Figure 4.26: Time-of-flight (left) and number of collision within the solenoid mag-
netic field (right) distributions extracted from MC simulations of UCN trajectories.
Independent runs consider different v0 (top) and ∆v0 (bottom).

Initial velocity distribution

UCN initial velocities in previous sections were randomly chosen from a Gaussian distribution
whose parameters (mean v0 = 10 m/s and standard deviation ∆v0 = 4 m/s) were optimized to
reproduce the TOF measurement presented in section 3.4.1. The UCN velocities measurement
was obtained with a beam chopper device positioned at the end of the 0.5 m horizontal
UCN guide at the level of the EDM beam port. However, since UCN spectrum deformations
produced by the guide bents and the 6 m guide are not taken into account in the TOF
optimization, the simulation validation might not be completely accurate. Therefore, in
order to establish whether the conclusions reported in the previous section are sensitive to
spectrum variations, independent STARucn simulations are run by making v0 = 9, 10, 11 m/s
and ∆v0 = 3.5, 4, 4.5 m/s. The time-of-flight and number of collisions distributions resulting
from all these cases are shown in Figure 4.26. Opposite to the changes observed after varying
the number of diffusive reflections d, variations in tf and ncoll distributions after modifying
v0 (10%) and ∆v0 (12%) are almost imperceptible: t̄f and n̄coll change less than 6% and 3%,
respectively. In addition, these small variations have a negligible impact on the exclusion
boundaries. As shown in Figure 4.27 whereas the boundary is enlarged by a 5% if setting
v0 = 9 m/s, it remains unchanged for v = 11 m/s and for all the tested values of ∆v0. One
can explain the sensitivity augmentation by recalling that soft spectra (v0 < 10 m/s) imply
larger free-flight-times, which in turns increase the n − n′ oscillation probability. On the
contrary, hard spectra (v0 > 10 m/s) are more strongly shifted towards slow velocities since
fast UCN easily escape the guides, then leading to similar sensitivities. Once again, it occurs
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that the velocity parameters used to extract the main result are the most consistent ones
(they result from an optimization process) and also correspond to a conservative scenario.
We can thus conclude that no major uncertainties on the results reported in this work, in
particular the 95% C.L. limits, are due to the MC simulation of UCN trajectories.

4.5 Oscillations in presence of hidden magnetic fields (δm = 0)

In this section, n−n′ oscillations are studied while considering a hidden magnetic field present
at the experimental site and a negligible mass splitting, i.e. ∆E′ = µnB

′ � δm. In such
scenario, the n−n′ Hamiltonian and the oscillation probability depend on the angle formed by
the ordinary and hidden magnetic fields β. The analytical solution to this problem, presented
in section 1.3.3, demonstrates that the oscillation probability PAnal

nn′ (τnn′ , B′) in the presence of
hidden B′-fields is modulated by the factor 1 + cosβ. Since information of β is not accessible,
its influence on the collected data is estimated by separating runs with positive and negative
B-field orientations (see Table 4.2). Note that while maximum mixing occurs at β = 0◦, it
is practically zero for β = 180◦. For the following, we assume β to be constant during the
data taking. This is consistent with the theoretical arguments presented in [17], where hidden
magnetic fields as large as hundreds µT cannot be explained by the low density dark matter
around the solar system, but rather to dark matter trapped by earth’s gravity.

4.5.1 Numerical solution

Unlike past UCN storage experiments where the neutron counting at positive, negative and
zero B-fields is used to compute the parameter exclusion in the spaces (B′, τnn′/

√
cosβ) and
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Figure 4.28: Mean oscillation probability for a single B-field as a function of the
hidden magnetic field B′ computed from the numerical solution of Eq. (4.37).

(B′, τnn′) (asymmetry and ratio channels, respectively [17]), the construction of the observable
RABC prevents defining an analytical expression such that β can be factorized or canceled.
This does not represent a real issue given that we target instead a numeric approach where
the magnetic field inhomogeneities are taken into account in the calculation of Pnn′ . To do so,
we introduce the Liouville-Neumann equation [102]

∂

∂t
ρ̂ = −i[Ĥ, ρ̂] = −iĤρ̂+ iρ̂Ĥ†, (4.37)

where

Ĥnn′ =


µnB 0 1/τnn′ 0
0 −µnB 0 1/τnn′

1/τnn′ 0 µnB
′ cosβ µnB

′ sinβ
0 1/τnn′ µnB

′ sinβ −µnB′ cosβ

 (4.38)

=


2ω 0 1/τnn′ 0
0 −2ω 0 1/τnn′

1/τnn′ 0 2ω′ cosβ 2ω′ sinβ
0 1/τnn′ 2ω′ sinβ −2ω′ cosβ

 (4.39)

is the Hamiltonian in a medium in presence of ordinary B and hidden B′ magnetic fields,
and ρ̂ is the 4× 4 density matrix in the basis (ψ+

n , ψ
−
n , ψ

+
n′ , ψ

−
n′) describing the quantum state

composed of neutrons and hidden neutrons. Note that the diagonal terms of ρ̂ represent the
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probabilities of observing spin-up and spin-down neutrons and hidden neutrons according to

spin-up neutron: P+
n = ρ11,

spin-down neutron: P−
n = ρ22,

spin-up hidden neutron: P+
n′ = ρ33,

spin-down hidden neutron: P−
n′ = ρ44,

while fulfilling Tr(ρ̂) = 1. Following this notation, the system collapse into pure neutron state
produced at wall collisions is manually included in the tracking simulation by making

ρ̂n =


0.5 0 0 0
0 0.5 0 0
0 0 0 0
0 0 0 0

 , (4.40)

where equal probabilities are given to ψ+
n and ψ−

n . In this way, the average n− n′ oscillation
probability per neutron is computed from the third and fourth diagonal elements of ρ̂ as

〈P Num
nn′ 〉 = 1

NUCN

NUCN∑
i=1

Ncoll, i∑
j=1

[ρ33 + ρ44]tcoll
i,j
, (4.41)

with tcoll
i,j the j-th collision time of the i-th UCN trajectory.

Numerical implementation of Eq. (4.37) is a cumbersome task since it deals with 16
coupled complex equations. Computationally speaking, it takes almost two times longer than
the numerical solution of n− n′ oscillations with δm 6= 0 presented in previous sections. The
detailed explanation of the employed method is left to the Appendix E.

Before starting the data analysis within the hidden magnetic field scope, we show in
Figure 4.28 the average oscillation probabilities derived from the Liouville-Neumann numerical
solution for a single magnetic field. This sample plot depicts the resonance curves as a function
of B′ for different β between 0 and 180◦. Even though the resonance shape remains almost
unchanged, it is straightforwardly confirmed that Pnn′ decreases as β → 180◦. This is true for
all angles except β = 180◦, where no resonance peak is observed at any B′. These features
are easily validated by the analytical solution (Eq. (1.16)) which gives

Pnn′(β = 0◦) −−−−→
B′→B

sin2[(ω − ω′)t]

τ2nn′(ω − ω′)2
,

Pnn′(β = 90◦) −−−−→
B′→B

sin2[(ω − ω′)t]

2τ2nn′(ω − ω′)2
,

Pnn′(β = 180◦) =
sin2[(ω + ω′)t]

τ2nn′(ω + ω′)2
,

thus explaining the factor 2 between the maximum probabilities at β = 0◦ and 90◦, and the
monotonic decreasing behavior at β = 180◦.
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Figure 4.29: 95% exclusion boundaries computed as a function of B′ for various
values of β. The general picture allows stating that τnn′ > 1 s for B′ ∈ [50− 1130]
µT.

4.5.2 Parameter exclusion

All scanned magnetic fields in this work were measured with positive and negative orientations.
This allows us to compute the average R+ABC, i and R−ABC, i with i = 1, ..., 350, so to end
up with a single data set composed of 700 points. One could fear that the angle β during
data taking was close to 180◦ thus reducing the oscillation probability and the experimental
sensitivity (see Figure 4.28). However, even if +B measurements were recorded with a
β+ = 180◦, only those data points would be affected by a low sensitivity. The remaining RABC

ratios, recorded with inverted −B field, would profit the maximum sensitivity given that β is
also reversed in this configuration: β− = 180◦ − β+ = 0◦. Therefore, independently of the
actual value of β, the complementary measurements at +B and −B lead to a non-negligible
sensitive analysis if fitting all 700 points simultaneously.

Following a process similar to the one in section 4.4, we compute the 95% exclusion regions
in the parameter space (B′, τnn′) by means of the χ2 statistics. The main difference in this
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case is found on the double summing factor that includes data and predictions at both B-field
directions:

χ2
τnn′ ,B′,β =

350∑
i

[(
R exp

+ABC, i −R theo
ABC(τnn′ , B′, β)

∆R+ABC, i

)2

+

(
R exp

−ABC, i −R theo
ABC(τnn′ , B′, π − β)

∆R−ABC, i

)2
]
.

(4.42)
To work around the ignorance of β, we compute the average oscillation probability for all tested
magnetic fields assuming β = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦. These probabilities are
then feed into Eq. (4.42) to produce the 95% exclusion region of each case. The superposition
of the different exclusion boundaries, depicted in Figure 4.29, allows demonstrating that, in
the large picture, the values of B′ where the exclusion is maximal at β = 0◦ correspond to the
minimal exclusion at β = 180◦ and vice versa. Boundaries associated to intermediate angles
are contained within these envelope curves all along the scanned interval. This behavior is
expected given that, as explained above, whereas the +B subset gains sensitivity at β = 0◦,
the −B subset reaches the minimal sensitivity at β = 180◦. In particular, if β = 90◦, equal
sensitivities are attributed to both field directions subsets.
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Figure 4.30: n− n′ space parameter within the hidden magnetic field hypothesis.

Even if the real value of β cannot be determined, the exclusion boundaries reported in
Figure 4.29 show that a general conservative exclusion can be defined by the lower envelope,
which is common for all values of β. In such case, rather than fitting or canceling the influence
of β, the exclusion limit assumes the worst scenario for each B′. The lower envelope resulting
from this analysis is plotted in Figure 4.30 next to all reported exclusions from past UCN
storage experiments. For a detailed description of previous exclusions, the reader is referred
to [100]. We focus on the exclusion achieved in this work, which can be written in a simplified
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way as
τnn′ > 1 s for B′ ∈ [50− 1130]µT (95% C.L.). (4.43)

In particular, this result is important for two main reasons. First, n − n′ oscillations are
discarded at large hidden magnetic fields, thus confirming that the 5σ anomaly at high hidden
magnetic fields (region c) reported in [54] (2012) is not any more present [10]. Note that all
experimental efforts so far targeted the anomaly at short B′. Second, we proved the high
efficiency of UCN beams to scan n − n′ oscillations in a wide interval of hidden magnetic
fields. Although not discussed in detail, the uncertainty analysis of the aforementioned limit is
analogous to the one exposed in section 4.4.4. This is true given that the STARucn simulation
employed for the construction of exclusion regions in this section is the same as the one in the
δm study. The main difference is that, whereas RABC were averaged over the 14 scans to test
δm, R+ABC and R−ABC shared the same scans to test B′. This explains the overall reduction
on the sensitivity observed in the latter approach (the ‘2s’ band cannot be drawn in Figure
4.29).

4.6 Chapter conclusions

The UCN detection performance of GADGET has demonstrated being stable and reliable.
Even if the PSA developed here does not suggest a UCN category entirely free of background,
we could establish an event selection with large UCN counting (∼ 180 kHz) and a background
contribution far below statistical fluctuations (∼ 0.007%, i.e. 10 Hz). The n−n′ experimental
campaign in 2020 at ILL and its data analysis reported in this chapter position GADGET as
the benchmark of high rate UCN counters. In fact, this successful test supports the inclusion
of GADGET detectors in the future nEDM measurements at PSI [103].

The high counting rate capabilities of GADGET allowed the characterization of the UCN
flux at the PF2’s EDM beam port. Using the 2 ns resolution and the Qt2t pulse shape
parameters featuring the acquisition with FASTER, we could evaluate the time fluctuations
of the UCN flux at the scales of hours, minutes, seconds, milliseconds and microseconds.
Correlation analyses demonstrated that non-statistical fluctuations of the UCN rate, which
become significant at periods ∼ 0.5 seconds (see 4.10), are mostly caused by the reactor power
fluctuations. This permitted the resize of data error bars and revealed the nature of the
systematics that caused their initial underestimation.

We did not observe any significant signal in the RABC data, but instead constructed a new
boundary on the (δm, τnn′) parameter space. The common limit for the entire scanned region
is written as

τnn′ > 1 s for |δm| ∈ [2− 69]× 10−12 eV (95% C.L.). (4.44)

Such a result appears as the most sensitive probe at intermediate effective mass-splitting
between previous exclusions from UCN storage experiments, mainly focused on small δm
[7–10,100], and regeneration experiments, whose resonance peaks show at higher δm [13–15].
Since this is the first time that a UCN beam experiment is used to test n− n′ oscillations,
the results presented above confirm the effectiveness of the proposed technique.

By considering non-negligible hidden B′-fields and δm = 0, the same UCN data set was
used to define a new boundary in the (B′, τnn′) parameter space. Given that the self-normalized
UCN counting sequence {A,B,B,C} evaluates three magnetic fields simultaneously, the data
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could only be compared to previous parameter exclusions through the ratio channel (Eq.
(1.20)); the asymmetry channel would have been achievable if measuring the UCN beam flux
with sequences such as {B,−B,−B,B}. Nevertheless, the limit for the scanned interval of
B′ is written as

τnn′ > 1 s for B′ ∈ [50− 1130]µT (95% C.L.). (4.45)

When compared to past UCN experiments, results in this work demonstrate a superior
sensitivity at large hidden magnetic fields. However, the parameter space regions still
compatible with the latest reported signals [10, 100] were not excluded. That being said,
our limit can be used to confirm the exclusion of the already disfavored 5σ signal contained
within the region c in [54]. This portion of the parameter space, which was consistent with
the 5σ anomaly initially reported in [54], was removed after including the magnetic field
inhomogeneities in the analysis [10].



Chapter 5

Overview and perspectives

The main focus of this work, the probe of n − n′ oscillations at large magnetic fields (B ∈
[50 − 1100] µT), allowed the development of several parallel studies. In particular, the
optimization and characterization of the novel UCN detector GADGET and the evaluation of
the ILL’s UCN beam constancy at the level of seconds.

5.1 Overview

The theoretical fundamentals and state of the art concerning the mixing of matter with hidden
sectors have been introduced in the first part. It was shown how diverse BSM interactions
could be added to the SM Lagrangian to include the swapping of ordinary neutral particles
into undetectable hidden states. Either such processes correspond to oscillations between
ordinary particles and new-sector particles, including mirror universes where each known
particle would have one or multiple (up to 1032) mirror twins, or they are associated to
transitions in a high-dimensional bulk, where each slice (brane) determines a different universe,
the mixing phenomenology is described by the same set of equations. The introduction of
such BSM leads to a simple mathematical treatment of a rich theory capable of shedding
some light into yet unsolved problems in physics, such as the origin of dark matter and the
nature of processes producing baryogenesis.

Great efforts have been made to evaluate the existence of new hidden sectors with dedicated
low energy particle physics experiments. Starting from 2007, this has been done by looking
at the neutron disappearance in UCN storage bottles in at least five different setups [7–11].
More recently, since 2015, experiments at reactor facilities have measured the probability
of neutron regeneration outside the biological shielding of reactor cores [12–14]. A third
method, whose results were published during the production of this work, used VCN beams
to probe the regeneration probability after impinging a VCN beam in a high-density neutron
stopper [15]. Analysis by Berezhiani et al. [54] reported a 5σ anomaly in the asymmetry
channel of UCN experiments, which motivated extra searches using magnetic fields of about
10− 20 µT. Posterior works with UCN bottles updated the analysis and stated extra 2.5σ
and 3.1σ signals [10]. Although the parameter space regions favored from such signals have
been largely constrained [11], there are still unexplored portions that are targeted by new
measurements [57,60]. Also, since the parameter exclusion has been mostly bounded at low
mass-splitting (τnn′ ' 10 s for δm < 10−12 eV) in UCN storage experiments, and less efficiently
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(τnn′ ' 10−1 s) at large mass-splitting (up to δm ≈ 10−8 eV) in regeneration setups, there is a
growing interest on probing n− n′ oscillations at the scale of seconds at large mass-splitting.

To achieve such a sensitive test at large mass-splitting, a fourth experimental technique
was designed with UCN beams and large magnetic fields. Originally conceived for the n2EDM
project [103], the novel UCN gaseous detector GADGET played an important role in the
success of the new beam technique. Given the high flux of UCN beams (up to 300 kHz at the
EDM port at ILL), incorporating a high-rate detector such as GADGET was crucial. During
this work, characterization of the detection properties of GADGET and its optimization were
both deeply studied. From PSA based on conventional amplitude vs. PS parameter maps
and through the Dalitz-like representation of PMT pulses, it has been shown that GADGET
detected events can be separated in at least 5 species. In order of relevance, starting from the
largest contribution one can identify

• UCN events, generated by the neutron absorption of 3He. If the reaction products of
n+3 He are totally stopped by the scintillator gas, they are called full-energy deposition
events, otherwise they are called edge events.

• γ and β events, due to the radiation emitted from the neutron-activated constituents
of GADGET, in particular the entrance foil and gas chamber inner walls.

• Pile-up events, from multiple UCN detection within the logic coincidence time window
(60 ns).

• 19F events, from the neutron capture by the fluorine nuclei present in the scintillator
CF4 molecules.

• Cherenkov events, produced by environmental γ-rays impinging on the gas chamber
quartz windows and on the PMT’s entrance windows.

Although it was not always possible to separate all the species in non-overlapping PS categories,
the contribution of background events was estimated below 1% at ILL. The optimization of
both gas pressures in GADGET, revealed multiple factors affecting the detection efficiency.
However, in an ideal scenario with low γ background, one should operate with low CF4

pressure (500 mbar) to avoid neutron up-scattering and high 3He (15 mbar) to completely
absorb all neutrons crossing the gas chamber. On the contrary, if experiments are to be
performed in a noisy environment, an offline pulse shape analysis should be included.

The UCN beam setup was quite simple as it only required a magnetization system to lift the
n−n′ energy degeneracy and a set of guides to transmit the UCN beam from the EDM port at
PF2 to GADGET. Since no storage stage was attempted, the oscillations were prompted during
the UCN crossing of a 6-m-long and 75-mm-diameter guide surrounded by a 5-m-long solenoid.
The magnetic field produced within the solenoid was isolated from external sources with the
help of a cylindrical mu-metal shielding and shaped at the solenoid edges via compensation
coils. After corroborating that GADGET was insensitive to the magnetic fields produced by
such a magnetization system, the beam flux was recorded while scanning B ∈ [50 − 1100]
µT with steps of 3 µT. The data collection technique, constructed as a function of the UCN
delivery cycles at PF2 (200 s of delivery every 400 s), evaluated the UCN flux at three magnetic
field values A,B and C according to {A,B,B,C} → {44 s, 44 s, 44 s, 44 s}. By normalizing
the number of UCN detected during the counting intervals as RABC = (NB +NB)/(NA+NC),
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one can test for signals in the three field values, remove linear drifts on the UCN flux within
the cycles and avoid long-term variations on the UCN counting in between cycles. The
combination of COMSOL simulations of the magnetization system, fluxgate measurements of
the magnetic field along the solenoid axis and MC simulations of UCN tracks demonstrated
that the B-field profiles experienced by UCN can be safely described by the axial component
Bz as a function of the axial coordinate z along the solenoid axis of symmetry (r = 0).
Evaluation of the oscillation probability can thus assume ∇rB = 0 but should include the
field gradient ∇zBz, especially at the solenoid edges.

The data collected for testing n− n′ oscillations in the UCN beam at PF2’s EDM port
also allowed a high-resolution time study of the UCN flux constancy. In fact, while looking for
n− n′ signals, the data revealed non-statistical fluctuations appearing on the UCN counting
during the entire experimental campaign. The 2 ns sampling resolution of FASTER was
used to quantify these fluctuations at the scale of hours, minutes, seconds, milliseconds and
microseconds. The non-statistical fluctuations influence on the normalized fluxes was found to
be shorter as the analyzing window was reduced till the scale of seconds. At milliseconds and
microseconds time scales, all the fluctuations were described by the counting statistics. In
post data collection analyses, the comparison of the UCN detection against the ILL reactor
power demonstrated equivalent dispersion and a large correlation between both data sets
(ρ

R,R̃
= 0.45) at the scale of seconds. Such a result proved that, although no profitable data

correction can be applied to the UCN data set (ρ
R,R̃

should be larger than 0.5 for a beneficial
correction), the non-statistical fluctuations can be completely attributed to the reactor power
fluctuations. The error bars on the UCN ratios RABC could then be safely enlarged by the
factor (s/σPois)RABC

= 2.23.
Once error bars were resized to account for the reactor power fluctuations, the search

for n− n′ did not point at any potential signal. First, by assuming a negligible contribution
from hidden magnetic fields to the energy degeneracy ∆nn′ , the oscillations were probed as a
function of the mass splitting δm. Since the dynamics are not expected to change by inverting
the applied magnetic field, all the measurements were averaged over the several scans with
+ and - field directions. To precisely bound the (δm, τnn′) parameter space, a numerical
solution to the oscillation Hamiltonian Ĥnn′ was implemented. Within this approach, one
achieves a more realistic estimation of the oscillation probability as the magnetic field gradients
experienced by UCN crossing the solenoid are taken into account. A consequence of this, the
sensitivity is reduced at the resonance values δm = µnB but enlarged in between the field
steps values. In the end, by computing the contour line associated to the exclusion region
with 95% C.L., the overall limit resulting from this work is written as

τnn′ > 1 s for |δm| ∈ [30− 1143]µT · µn (95% C.L.), (5.1)

or equivalently, in energy units

τnn′ > 1 s for |δm| ∈ [2− 69]× 10−12 eV (95% C.L.). (5.2)

By considering non-negligible hidden B′-fields and δm = 0, the same collected data set was
used to define a new boundary in the (B′, τnn′) parameter space. While assuming a constant
hidden magnetic field, the measured points RABC and R−ABC were analyzed as a function of
the angle β contained between applied and hidden magnetic fields. After computing the 95%
C.L. limits for β ∈ [0◦ − 180◦] with steps of 30◦, the overall boundary line was constructed
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from the most conservative result at each value of B′. The common limit after such operation
is written as

τnn′ > 1 s for B′ ∈ [50− 1130]µT (95% C.L.). (5.3)

The aforementioned limits have been proved robust as they correspond to the most conservative
estimations under several circumstances. In particular, after running MC simulations of UCN
tracks with different but yet reasonable input parameters (number of diffusive reflections and
initial velocity distribution), no significant change was found on the exclusion boundaries.

Using the mean UCN free-flight-time (t̄f = 32.2 ms), mean number of wall collisions
(ncoll = 26), detected flux (ΦUCN = 288 kHz) and integration time window (Tint = 44 s), the
experimental sensitivity of τnn′ reached in this work was initially estimated from Eq. (4.2) as

τnn′ = tf

√
ncoll

√
TintΦUCN = tf

√
ncoll

√
N0 ∼ 10 s. (5.4)

However, after the multiple stages of data treatment during the analysis, such sensitivity
dropped to the final reported values due to the following reasons:

1. Category selection: The UCN counting was reduced to the UCN1 category to avoid
any background systematics. The contribution of this category to the total counting is
CUCN-1 = 62.18%

2. Beam ramping-up cutoff: The initial 44 s integration windows were resized to 25
s to remove the residual beam ramping up observed on the UCN counting rate inside
cycles. This time interval reduction is denoted as Cwind = 57%.

3. RABC error bars scaling: It was included to account for the non-statistical fluctuations
linked to the reactor power variations. This scaling reduces the term

√
N0 by Cscale =

1/2.23 = 45%.

4. Averaging over multiple scans: The repeated measurements of RABC make its error
bar to shorten after averaging as ∆RABC → ∆RABC/

√
nscan, with nscan the total number

of measurements. Since almost 14 scans were performed, this factor increases the term√
N0 by Cscan = 3.7.

5. B-field inhomogeneities (∇B): Their contribution to the parameter exclusion was
the decrease of the τnn′ limit of about 2 s.

6. Exclusion limit valleys: The single τnn′ limit was constructed with the lowest points
(valleys) of the exclusion contour lines in both parameter spaces. A factor of 5 (20%)
was found between the sensitivity at the peaks (resonances) and valleys.

Note that the first four of these effects can be included in Eq. (5.4) as

τnn′ = tf

√
ncollCscaleCscan

√
CUCN-1CwindN0. (5.5)

However, since establishing an analytical expression for the contribution of the last two
effects to the τnn′ sensitivity is a cumbersome task, they are not explicitly accounted in the
equation above. Table 5.1 resumes all the described effects while showing their influence on
the sensitivity of τnn′ .
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Table 5.1: Summary of the main effects changing the experimental sensitivity.
The column on the right shows the cumulative effect on τnn′ .

Effect Affects (by) Sensitivity change Cumulative
- - - τnn′ ∼ 10 s

CUCN-1 N0 (62.18%) 89% ∼ 8.9 s
Cwind N0 (57%) 87% ∼ 7.7 s
Cscale

√
N0 (45%) 67% ∼ 5.2 s

Cscan
√
N0 (3.7) 192% ∼ 10 s

∇B τnn′ (+2 s) +2 s ∼ 12 s
Valleys τnn′ (20%) 20% ∼ 2.4 s

5.2 Perspectives
The large sensitivity to n− n′ oscillation of UCN storage experiments has shown to efficiently
bound the (δm, τnn′) parameter space at short mass-splitting ranges. One would then expect
that future works constructed with this technique ascertain the yet-favored regions from past
anomalies. However, in case there is no confirmation of the signals, the evaluation of n− n′

oscillation should focus on the large mass-splitting domain (δm > 10−12 eV). While next
generation neutron-sensitive neutrino setups and VCN experiments could contribute to such
a search through regeneration measurements for δm up to 10−6 eV, neutron disappearance
in UCN beams could be used to probe the interval δm ∈ [10−12 − 10−10] eV with improved
sensitivities. For the latter, a few modifications to the beam setup presented in this work are
worth to be evaluated:

• The use of a wider beam guide to allow larger UCN trajectories with longer free-flight-
times. As expressed in Eq. (4.2), the sensitivity of τnn′ at the exact resonance ∆nn′

is proportional to tf . However, this has to be improved while guarantying a uniform
magnetic field.

• The inclusion of a high efficient monitor detector to correct for the beam non-statistical
fluctuations caused by the reactor power variations. For example, if separating the UCN
beam into two symmetric sides, one for n − n′ oscillations probing and the other for
flux monitoring, the sensitivity on τnn′ at the resonance is reduced to a

√√
50% ≈ 84%,

but the reactor power systematics that enlarge the RABC error bars by a factor of 2.23
are suppressed. Such a monitor detector should be placed just before the magnetic field
volume to assure a large correlation with the principal counter (see Eq. (4.15)).

Since data collected according to the self-normalized {A,B,B,C} sequence cannot be
used to probe n − n′ oscillations through Berezhiani’s asymmetry channel (Eq. (1.19)),
provided that future UCN beam experiments include a beam monitor, sequences with patterns
{B,−B,−B,B} should be considered in order to examine the asymmetry anomalies. Never-
theless, given that A↑↓ is predicted zero within the n− n′ generic approach with δm 6= 0 and
B′ = 0 for non-polarized beams, next generation UCN beam experiments could be designed
with spin analyzers (as the one∗ presented in the Appendix G). In such a scenario, because

∗This model corresponds to the next U-Shape Spin Analyzer for the n2EDM project, which was modeled
using COMSOL simulations in this work.
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the resonance condition ∆nn′ = µnB − δm = 0 is only fulfilled for spin-up neutrons (the
degeneracy is not lifted for spin-down neutrons: ∆nn′ = −µnB − δm), the ratio between the
UCN counting of both spin components would be proportional to

Nspin-up

Nspin-down
≈ 1− ncoll

(
tf
τnn′

)2

. (5.6)

This additional channel for probing n− n′ oscillations by differentiating the spin components
has never been attempted.
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Appendix A

From mirror to hidden neutrons

Although the mirror and hidden n− n′ oscillation models incorporate different interactions,
the observable E0 measured in UCN experiments can be used to conclude in both contexts. In
particular, exclusion bounds in (B′, τnn′) can be directly transformed into the space (δm, τnn′).
To see this, let us recall the definition of the ratio E0, constructed with the neutron counting
in positive (NB), negative (N−B) and zero (N0) magnetic fields as

1 + E0 =
2N0

NB +N−B
=

2e−nsP0

e−nsPB + e−nsP−B
(A.1)

=
exp[−ns(P0 − (PB + P−B)/2)]

cosh[ns(PB − P−B)/2]
, (A.2)

where ns is the number of neutron wall collisions, and P±B and P0 the oscillation probabilities
in ±B and zero magnetic fields. Independently of the oscillation model, these probabilities
are small and therefore allow the approximation

E0

ns
≈ 1

2
(PB + P−B)− P0. (A.3)

Notice that, up to now, no specific form of PB has been established. Indeed, the differences
between the exclusion limits on the spaces (B′, τnn′) and (δm, τnn′) have origin in this last
expression. Whereas the oscillation probability for uniform magnetic fields within the mirror
neutron model is written as

PB(t;B
′, τnn′ , β) =

sin2[(ω − ω′)t]

2τ2nn′(ω − ω′)2
(1 + cosβ) + sin2[(ω + ω′)t]

2τ2nn′(ω + ω′)2
(1− cosβ), (A.4)

with 2ω(′) = µnB
(′), in the hidden neutron model it gives

PB(t; δm, τnn′) =
sin2 [(ω − ω̃)t]

τ2nn′(ω − ω̃)2
, (A.5)

with 2ω̃ = δm. One can corroborate that the latter coincides with the former’s particular case
for β = 0, and that PB(t; δm, τnn′) = P−B(t; δm, τnn′) provided that the analyzed neutrons
are not polarized. Using these oscillation probabilities, Eq. (A.3) can be rewritten as

τ2nn′ =


ns
E0

(
1
2

[
S(ω−ω′)
(ω−ω′)2 + S(ω+ω′)

(ω+ω′)2

]
− S(ω′)

ω′2

)
, for mirror neutrons,

ns
E0

(
S(ω−ω̃)
(ω−ω̃)2

− S(ω̃)
ω̃2

)
, for hidden neutrons,

(A.6)
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with S(ω) = 〈sin2(ωt)〉 as introduced in Eq. (6) of [10].

10−3

10−2

10−1

100

101

102

103

10−1 100 101 102 103 104

τ n
n
′
(s

)

X (µT)

τnn′ vs. Xmirror = B′

τnn′ vs. Xhidden = δm/µn

(τnn′)hidden/(τnn′)mirror

10−3

10−2

10−1

100

101

102

103

10−1 100 101 102 103 104

Figure A.1: 95% C.L. exclusion boundary for the mirror (blue) and hidden (red)
contexts (Eqs. A.6) computed from experimental results of UCN storage reported
in [104]. The dashed line corresponds to the ratio between both limits.

A graphical comparison of these two cases is depicted in Figure A.1, where the boundary
is constructed from the experimental results in [104] as reported in [54]. As expected, the
hidden neutron approach yields to a larger τnn′ exclusion given that in general

S(ω − ω′)

(ω − ω′)2
>
S(ω + ω′)

(ω + ω′)2
. (A.7)

Although the difference is almost negligible close and below the resonance (B = 20 µT),
it grows as X → ∞. This effect, illustrated by the dashed cyan curve can be analytically
quantified by simple calculation of the ratio (τnn′)hidden/(τnn′)mirror from Eqs. A.6. To do so,
let us recall that, if assuming 〈sin2(ωt)〉 ≈ 1/2, the ratio channel in the mirror neutron model
can also be expressed as [17]

(τnn′)2mirror =
ns
E0

η2(3− η2)

2ω′2(1− η2)2
. (A.8)

with η = ω/ω′. By following a similar procedure, the ratio channel in the hidden neutron
approach yields

(τnn′)2hidden =
ns
E0

2η̃ − η̃2

2ω̃2(1− η̃)2
. (A.9)

with η̃ = ω/ω̃. Hence, the factor to transform a mirror neutron boundary into a hidden
neutron one is

Cm→h =
(τnn′)hidden

(τnn′)mirror
=

(2− η̃)(1 + η̃)2

η̃(3− η̃2)
(A.10)

if making ω′ → ω̃, i.e. µnB′ → δm. The accuracy of this procedure is displayed in Figure A.2,
where the mirror neutron boundary presented in Figure A.1 has been transformed into the
hidden neutron context (dashed green line).
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Figure A.2: 95% C.L. exclusion boundary for the hidden context. The dashed
line corresponds to the mirror neutron limit converted to a hidden neutron one
through Eq. A.10.

This result proofs that no extra analysis has to be done on previous UCN experiments
to conclude on the hidden neutron hypothesis, it is sufficient to apply the aforementioned
transformation. That being said, since the conversion factor Cm→h depends on the applied
field B, the proposed method can only be used on mirror neutron boundaries derived from a
single magnetic field magnitude.
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Appendix B

Absorption probability

UCN traveling in a gaseous mixture composed of CF4 and 3He can undergo up-scattering and
absorption from either gas, 3He absorption and CF4 up-scattering being the most probable
processes. The following dummy model allows estimating the overall absorption probability
for UCN impinging normally (x̂) on a gas chamber of length L filled with a gas admixture of
CF4 and 3He.

On the one hand, the probability for a UCN to not interact after crossing a distance x
inside the gas is written as

Psur(x) = exp (−x/λ), (B.1)

with λ the UCN mean free path, calculated as

λ =
1

Σiniσi
=

1

nupσup + nabσab
(B.2)

where nab and nup are the densities of nuclei responsible for the absorption (3He) and up-
scattering (CF4), and σab and σup their corresponding cross-sections. On the other hand, the
UCN absorption probability in an infinitesimal layer of thickness dx is given expressed as

Pab = nabσabdx. (B.3)

Therefore, the probability for absorption between x and x+ dx, once the UCN has reached x,
is calculated as

Pab(x) = Psur(x) · Pab (B.4)
= exp (−x/λ) · (nabσabdx), (B.5)

whose integral, between x = 0 and x = L, represents the total absorption probability in the
chamber:

Ptot
ab =

∫ L

0
exp (−x/λ)nabσabdx (B.6)

= nabσabλ[1− exp (−L/λ)] (B.7)

=
nabσab

nupσup + nabσab
[1− exp (−L/λ)]. (B.8)
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Appendix C

ABBC and linear drifts

Normally, when experimentalist want to test the influence of a given experimental configuration
on a controlled quantity, for example, the influence of applying a magnetic field (B) on the
UCN counting after storage (NB), a deep knowledge of the controlled quantity (the UCN
counting without magnetic fields, N0) is required. Taking the example above, to carry out the
experiment, one could simply propose performing one measurement after the other, e.g. N0

followed by NB ({0, B}simple), and then test the hypothesis by looking at the deviations of

Rsimple =
NB

N0
(C.1)

with respect to 1. This approach is valid provided that the initial number of UCN filled into
the bottle is the same for both measurements. However, if that is not the case and the UCN
source production efficiency drifts in time, one would misinterpret the difference between NB

and N0 as an influence of the applied magnetic field.
One possible solution to work around time drifts is by repeating N0 and NB measurements

in equally separated cycles with alternating sequences. For example, if counting UCN according
to the sequence {0, B,B, 0}seq1, the ratio

Rseq1 =
N 2nd

B +N 3rd
B

N 1st
0 +N 4th

0

(C.2)

is insensitive to linear drifts. To see this, let us first assume that there are not time drifts and
that the counting NB is indeed affected by the B-field:

NB = N0 − γ, (C.3)

with γ the neutron deficit due to the physical influence of B. The ratio in Eq. (C.2) then
reads

Rseq1 =
(N0 − γ) + (N0 − γ)

N0 +N0

= 1− γ

N0
. (C.4)

Now, if on top of the influence of B, the UCN source describes a linear drift in time, i.e. the
zero-field counting is proportional to the experiment cycle i:

N0,i = N0 + ρi, (C.5)
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with ρ a constant, whereas the ratio obtained from the former sequence {0, B}simple yields

Rsimple =
N0 − γ + ρ(i+ 1)

N0 + ρi

≈ 1− γ − ρ

N0
, (C.6)

the ratio from the sequence {0, B,B, 0}seq1 results

Rseq1 =
[N0 − γ + ρ(i+ 1)]2nd + [N0 − γ + ρ(i+ 2)]3rd

[N0 + ρi]1st + [N0 + ρ(i+ 3)]4th

= 1− 2γ

2N0 + ρ(2i+ 3)

≈ 1− γ

N0
, (C.7)

which happens to be equal to the no-drift ratio in Eq. (C.4). In conclusion, the linear drift
constant ρ has been removed. Following a similar procedure, it can be shown that the sequence
{0, B,B, 0, B, 0, 0, B} removes time shifts with quadratic component.



Appendix D

From rate to RABC non-statistical
fluctuations

Similarly to random walk processes, where the walker’s position after many random steps
describes a normal distribution with variance proportional to the elapsed time (σ2 ∝ t), when
integrating the UCN flux (N) whose magnitude depends on the reactor power fluctuations,
the number of non-statistical fluctuations increases as the integration interval enlarges. To
see this, let us write the non-statistical fluctuations proportional to UCN the flux

Φ = Φ0(1 + ρ), (D.1)

with ρ a random variable following a normal distribution N (0,∆ρ2) and Φ0 the average flux.
Following this notation, the integrated flux after T seconds is

N = Φ0T (1 + ρ). (D.2)

One can then compute the expected value and variance of this new random variable:

E[N ] = 〈N〉 = φ0T (D.3)

Var[N ] = ∆N2

= 〈N〉
(
1 + ∆ρ2(1 + 〈N〉)

)
≈ 〈N〉

(
1 + ∆ρ2 〈N〉

)
, (D.4)

Therefore, the ratio between the dispersion of N over multiple UCN cycles normalized to the
expected dispersion from counting statistics (Poison statistics) is

(
s

σPois

)
=

√(
∆N
N

)2
non-st√(

∆N
N

)2
Pois

=

√
1+〈N〉∆ρ2

〈N〉√
1

〈N〉

=
√
1 + 〈N〉∆ρ2

=
√
1 + Φ0∆ρ2T . (D.5)
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Note that the previous ratio, which is used in this work to scale the error bars ∆RABC,
is proportional to the square root of the integration interval T . This explains why the
amount of non-statistical fluctuations is different if computed over the UCN counting rate
((s/σPois)rate = 1.689) or from the RABC points dispersion ((s/σPois)RABC

= 2.23). Whereas the
former corresponds to a sampling rate of 1 second, the latter is based on the 44 s integration
periods.
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Figure D.1: Dispersion of R∗
abbc points normalized by the expected statistical

fluctuations as a function of the integration period Tabbc. The error bars correspond
to the 1σ dispersion from repeated R∗

abbc calculation along the cycle span (when
permitted by Tabbc). The fitted function is included to test the validity of Eq.
(D.5).

In order to corroborate that the description of the reactor power fluctuations above is
valid, a resized R∗

abbc was computed as a function of the integration periods, now denoted as
Tabbc. Forgetting that the magnetic field is ramped as ABBC within the cycles, the resized
ratio is defined as

R∗
abbc =

Nb +Nb

Na +Nc
(D.6)

with Na, Nb and Nc the UCN counting rate integrated during Tabbc/4 seconds according to
the sequence {Na, Nb, Nb, Nc}. Starting from Tabbc = 8 s, which corresponds to the sequence
{2 s, 2 s, 2 s, 2 s}, the ratios R∗

abbc were calculated for all the Run-6 cycles. The resulting
(s/σPois)R∗

abbc
is plotted as a function of Tabbc in Figure D.1. One can finally confirm that

the scaling factor increases almost proportional to
√
Tabbc, just as the random walk variance

evolution.



Appendix E

Numerical solution of Hnn′

Solution to quantum mechanics problems via numerical algorithms need special attention.
The truncation error inherent to any numerical method should not modify the physical
properties, such as the normalization of quantum states linked to the continuity equation and
the probability conservation. The numerical solution to the n−n′ oscillation model within the
mass-splitting approach (B′ = 0) is different from the one within the hidden magnetic field
scenario (δm = 0). The latter requires the definition of an extra parameter: the angle formed
by the ordinary and hidden magnetic fields β. In the following, we present the numerical
algorithms used to solve to calculate the oscillation probability in both scenarios.

E.1 Mass-splitting scenario

The solution to the 2× 2 Hamiltonian, written as

Ĥnn′ =

(
∆E εnn′

εnn′ δm

)
, (E.1)

is proposed through two different approaches. First, using the method derived by Biondi [105],
which is used to compute the n− n′ oscillation probability in [10]. Second, by means of the
Liouville-Neumann equation [102].

E.1.1 Biondi’s method

By making 2a = δm−∆E and 2b = δm+∆E, the oscillation Hamiltonian can be rewritten
as

Ĥnn′ =

(
b− a εnn′

εnn′ b+ a

)
=

(
b 0
0 b

)
+

(
−a εnn′

εnn′ a

)
, (E.2)

out of which the first term bI2×2 can be dropped out as it does not change the dynamics.
Therefore, the Schrödinger, expressed as

i
d

dt

(
ψn(t)
ψn′(t)

)
=

(
−a εnn′

εnn′ a

)(
ψn(t)
ψn′(t)

)
(E.3)
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leads to the discretized equation(
ψn(ti+1)
ψn′(ti+1)

)
=

(
ψn(ti)
ψn′(ti)

)
− i∆t

(
−ai εnn′

εnn′ ai

)(
ψn(ti)
ψn′(ti)

)
=

(
[1 + i∆tai]ψn(ti)− i∆tεnn′ψn′(ti)
[1− i∆tai]ψn′(ti)− i∆tεnn′ψn(ti)

)
, (E.4)

which can be conventionally rewritten as

ψn(ti+1) = cos(ãi+1,i∆t)ψn(ti)

− i sin(ãi+1,i∆t) cos(2θi+1,i)ψn(ti)

− i sin(ãi+1,i∆t) sin(2θi+1,i)ψn′(ti) (E.5)
ψn′(ti+1) = cos(ãi+1,i∆t)ψn′(ti)

+ i sin(ãi+1,i∆t) cos(2θi+1,i)ψn′(ti)

− i sin(ãi+1,i∆t) sin(2θi+1,i)ψn(ti) (E.6)

with

ãi+1,i =
√
a2i+1,i + ε2nn′

ai+1,i = (δm− (∆Ei+1 +∆Ei)/2)/2

sin(2θi+1,i) = εnn′/ãi+1,i

cos(2θi+1,i) = ai+1,i/ãi+1,i.

The n− n′ oscillation probability is then computed as

Pnn′(t) = |ψn′(t)|2.

E.1.2 Liouville-Neumann equation

An alternative to the Biondi’s approach is the numerical solution of the Liouville-Neumann
equation. In this case, the oscillation probability is directly linked to the diagonal terms of
the density matrix ρ̂, which evolves in time according to

∂

∂t
ρ̂ = −i[Ĥ · ρ̂] = −iĤρ̂+ iρ̂Ĥ†, (E.7)

explicitly written for the Hamiltonian in Eq. (E.1) as

d

dt

(
ρ11 ρ12
ρ21 ρ22

)
= −i

[(
∆E εnn′

εnn′ δm

)(
ρ11 ρ12
ρ21 ρ22

)
−
(
ρ11 ρ12
ρ21 ρ22

)(
∆E εnn′

εnn′ δm

)]
= −i

(
εnn′(ρ21 − ρ12) −εnn′(ρ11 − ρ22)− (δm−∆E)ρ12

εnn′(ρ11 − ρ22) + (δm−∆E)ρ21 εnn′(ρ12 − ρ21)

)
.

(E.8)
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By recalling that ρ12 = ρ∗21 and that Tr(ρ̂) = ρ11 + ρ22 = 1, the matrix elements in the last
expression can be written as

ρ̇11 = −2εnn′Im(ρ12)

ρ̇12 = i [εnn′(2ρ11 − 1) + (δm−∆E)ρ12]

ρ̇21 = ρ̇∗12

ρ̇22 = −ρ̇11. (E.9)

Therefore, out of the initial 8 equations for the real and imaginary parts of each ρij , there are
only three independent equations:

ρ̇1 = −2εnn′I2

Ṙ2 = (∆E − δm)I2 (E.10)
İ2 = −(∆E − δm)R2 + εnn′(2ρ1 − 1),

where we have defined ρ1 = ρ11, R2 = Re(ρ12) and I2 = Im(ρ12). This set of equations
completely determines the evolution of the neutron and hidden neutron states, where the
oscillation probability is given by

Pnn′(t) = ρ22(t) = 1− ρ11(t). (E.11)

E.2 Hidden magnetic field scenario
By including a hidden magnetic field (B′) forming an angle β with respect to the applied
magnetic field (B), the n− n′ model requires considering the neutron spins states. If defining
the quantization axis along the ordinary field direction, the neutron and hidden neutron
energies are given by

∆E = µn · ~B = 2ωσ̂z

∆E′ = µn · ~B′ = 2ω′~σ = 2ω′(sinβσ̂x + cosβσ̂z), (E.12)

respectively. In these last equations, we have defined the resonances 2ω = µnB and 2ω′ = µnB
′.

Also, without lose of generality, B′ has been placed in the xz-plane.
The n− n− oscillations are thus described by the Hamiltonian

Ĥnn′ =


2ω 0 εnn′ 0
0 −2ω 0 εnn′

εnn′ 0 2ω′ cosβ 2ω′ sinβ
0 εnn′ 2ω′ sinβ −2ω′ cosβ

 , (E.13)

where ρ̂ is now the 4× 4 matrix:

ρ̂ =


ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

 . (E.14)
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Therefore, the Liouville-Neumann equation represents a set of 2(4× 4)− 4 = 28 (the factor 2
comes from the real and imaginary parts of the non-diagonal terms) coupled equations, which
should fulfill ρij = ρ∗ji and Tr(ρ̂) = ρ11 + ρ22 + ρ33 + ρ44 = 1. Following a process similar
to the one used to derive Eq. (E.10), the set of independent equations in this approach are
written as

Ṙ11 = −2εnn′I13

Ṙ12 = −εnn′(I23 + I14) + 4I12ω

İ12 = −εnn′(R23 +R14)− 4I12ω

Ṙ13 = −2I14 + 2I13(ω − ω′ cosβ)
İ13 = −εnn′(R33 −R11) + 2R14ω

′ sinβ − 2R13(ω − ω′ cosβ)
Ṙ14 = εnn′(I34 − I12)− 2(I13ω

′ sinβ − I14(ω + ω′ cosβ))
İ14 = −εnn′(R34 −R12) + 2(R13ω

′ sinβ −R14(ω + ω′ cosβ))
Ṙ22 = −2εnn′I24

Ṙ23 = −εnn′(I34 − I12)− 2(I24 + I23(ω + ω′ cosβ))
İ23 = −εnn′(R34 −R12) + 2(R24 +R23(ω + ω′ cosβ))
Ṙ24 = −2(I23ω

′ sinβ + I24(ω − ω′ cosβ))
İ24 = −εnn′(1−R11 −R33 − 2R22) + 2(R23ω

′ sinβ +R24(ω − ω′ cosβ))
Ṙ33 = 2(εnn′I13 − 2I34ω

′ sinβ)
Ṙ34 = εnn′(I14 + I23) + 4I34ω

′ cosβ
İ34 = −εnn′(R14 −R23)− 2(2R34ω

′ cosβ + (1−R11 −R22 − 2R33)ω
′ sinβ),

where we have defined Rij = Re(ρij) and Iij = Im(ρij). The oscillation probability over both
spin components is

Pnn′(t) = ρ33(t) + ρ44(t) = 1− ρ11(t)− ρ22(t). (E.15)



Appendix F

PMT inside magnetic fields

Figure F.1: Helmholtz setup for testing the influence of magnetic fields on
GADGET PMTs. The applied field coincides with the axial PMT direction (Bz)
in the left configuration and with the radial direction (Bx and By) in the right
configuration. The same elements are used for both configurations.

A dedicated test to probe the influence of magnetic fields on GADGET PMTs took place
at the dark room at LPC. The setup consisted of an LED placed in front of one of GADGET’s
2” PMTs (type H13795-100-Y001), a 20-cm-diameter Helmholtz coil providing a uniform
magnetic field of up to 1 mT, and a wooden black box within which the setup was installed.
In order to apply the Helmholtz central magnetic field to different regions of the PMT (the
PMT length is about the coil diameter), the PMT readout was recorded while shifting its
position within the Helmholtz coil. A top view of the arrangement is displayed in Figure F.1.
Whereas magnetic fields pointing in the PMT radial direction are denoted as Bx and By (Bx

is obtained from By by rotating the PMT 90◦ about its axis), magnetic fields along PMT’s
axial direction are denoted as Bz. The LED pulses were controlled from a signal generator
that provided voltage pulses of 50 ns width with a frequency of 2 kHz. Variation of the voltage
in the LED circuit are estimated in 0.2%.

The power supplied to the LED was adjusted so to produce a charge distribution in the
PMT readout much larger than the electronic noise. Such charge distributions were recorded
for magnetic fields in the three directions with intensities as large as 1 mT (negative values
correspond to backwards flow of the current). The charge distribution centroids, obtained
from Gaussian fits of each magnetic field configuration, were compared relative to the zero

155



156 APPENDIX F. PMT INSIDE MAGNETIC FIELDS

Figure F.2: Magnetic field influence on the GADGET PMTs readout.

magnetic field configuration. The results, plotted in Figure F.2, show that the most significant
variation are generated by B-fields applied along the PMT’s axial direction (Bz). On the other
hand, radial fields Bx and By in the tested range show little deviations from the zero-field
configuration. This is consistent with the expectations since the PMT electron cascades travel
in trajectories perpendicular to Bz (see linear-focused PMTs in [94]), thus making the Lorentz
force (∝ ~vUCN × ~B) somewhat bigger. Although the pulse counting rate did not change for
the magnetic fields reported here, given the observed charge spectra deviations, PMTs should
not be operated in environments with magnetic fields larger than 0.6 mT.



Appendix G

The n2EDM spin-sensitive counter

Many times, UCN experiments are concerned with the polarization of neutrons. For instance,
the very precise measurement of the UCN precession frequency in the EDM measurement
rely on the counting of spin-up and spin-down populations [103]. Given that the energy
released by the capture reactions in neutron detectors is independent of their polarization,
determination of its spin state is usually not performed at the detection stage∗. Instead, an
extra module composed of a spin-flipper and an analyzing foil has been included in several
UCN setups [71, 100,107]. This appendix is dedicated to expose the COMSOL model of the
next n2EDM U-Shape-Spin-Analyzer (USSA) system.

G.1 Working principle

Figure G.1: Illustration of the spin-flipping process in a reference frame moving
with the UCN and rotating about x̂ = x̂rot with frequency ωRF. The spin-flip is
achieved as the UCN travels (along y(t)) within the static field B(y) (with gradient
∇yB(y(t)) > 0) and the perpendicular RF-field BRF. If the adiabatic condition
is fulfilled (Eq. (G.2)), the UCN precessing spin is capable of following the ~Bef

field inversion. The red axis is used to represent the magnitude of BRF, but not its
direction. The latter is indicated by the red arrows.

Spin sensitive systems are of basic construction. Their functioning is explained by the
∗A 3He-based spin sensitive filter is for example described in [106]
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simultaneous operation of two modules, a spin-flipper, capable of reversing the polarization of
UCN, and a spin-filter (or spin analyzer), responsible for the reflection and transmission of
UCN depending on their polarization. Whereas the latter blocks the passage of UCN with a
spin down component, the former prepares neutrons in either polarization state.

A spin analyzer consists of a thin foil (∼ 10 µm) made of a material with low Fermi
potential (aluminum is normally the case: VFermi = 54 neV) covered by a finer magnetic layer.
Iron is often the most preferred option (VFermi = 210 neV). If applying an external magnetic
field so to fully magnetize the finer layer (larger than 60 mT for iron), added to the Fermi
potential, UCN experience a magnetic potential Umag (see section 1.5.1). When reaching the
foil, UCN would then observe a potential barrier equals to

Utot = VFermi ± Umag = (210± 120) neV, (G.1)

where the sign ‘+’ (‘-’) goes for spin-down (spin-up) UCN and the numerical values correspond
to the materials mentioned above. In this way, whereas spin-up UCN see a 90 neV barrier, spin-
down UCN experience a barrier of 330 neV. Provided that UCN kinetic energies are contained
within this range, all spin-down (spin-up) UCN are reflected of (transmitted through) the
analyzing foil. With such a total barrier, one can determine the number of spin-up neutrons
by counting the UCN behind the analyzing foil. On the other hand, to determine the number
of spin-down neutrons, a spin-flipper is added in the setup just before the spin analyzer. If it
is activated, UCN finding their way through the analyzer are those with initial spin-down
polarization.

Similar to the RF pulses used to invert spin states in Rabi oscillations, a spin-flipper
employs an RF field to adiabatically change the polarization of UCN. This process, illustrated
in Figure G.1, requires a positive static magnetic field ( ~Bstatic = Bstaticx̂) perpendicular to a
RF field ( ~BRF = BRF(cos(ωRF)ŷ+sin(ωRF)ẑ)) and featuring a positive gradient in the direction
of UCN propagation (here chosen ŷ), i.e. ~Bstatic = B(y)x̂ with ∇yB(y) > 0. To see how
the combination of ~Bstatic and ~BRF induce a spin-flip, let us move to the UCN reference
frame rotating with frequency ωRF around x̂ = x̂rot. In such a frame, the effective magnetic
experience by the UCN is

Bx-ef = B(y)− ωRF/γ

By-ef = BRF

Bz-ef = 0,

with γ the neutron gyro-magnetic ratio. Note that in this frame, the RF-field is static along
ŷrot and according to the transformation rules of rotating frames, an additional field −ωRF/γ
appears along x̂rot. One can then see that, as UCN travel towards ŷ through the RF-field,
the effective field Bx-ef goes from −ωRF/γ, far from the static field source (y → −∞), to
Bx-ef ≈ B(y) after crossing the field gradient. UCN spins precessing around the total effective
field follow this Bx-ef field inversion, provided that the Bx-ef rate of change is much smaller
than the Larmor precession frequency. Such condition, referred to as the adiabatic condition,
reads [108]:

k =
γnB

3
ef

d(Bx-ef)/dt ·BRF
� 1. (G.2)
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G.2 Past USSA and new version requirements

Figure G.2: Side view of the static magnetic fields of the nEDM magnetization
system generated from COMSOL simulations. If using 130-mm-diamter UCN
guides, the perpendicularity between ~BRF and ~Bstatic need for a correct spin
flipping within the RF-coil is not fulfilled at the guide edges. UCN flux goes from
top to bottom. A 3D view can be grasped from similar USSA versions in Figure
G.5.

The former USSA design, used in the nEDM experiment [109], consists of a UCN beam
separating piece connected to two symmetric arms. Each arm, dedicated to the counting of one
of the spin components, counts with an RF-coil placed about 20 cm above an analyzing foil (see
a cross-section view of one of the arms in Figure G.2). An iron yoke hosts a set of permanent
magnets which enclose both arms at the level of the analyzing foils. Whereas the RF-coils
produce an alternating field along the UCN guide axis (ŷ), the yoke and magnets provide the
static magnetic field gradient necessary for the spin-flip and to fully magnetize the analyzing
foils. The color map and field arrows in Figure G.2 represent the static field generated by the
permanent magnets and shaped by the yoke obtained from COMSOL simulations.

Previous tests with this USSA and the new n2EDM UCN guides, revealed a low spin-
flipping efficiency: ∼ 73% (private communication, J. Chen). The reason for such a poor
functioning is explained by the static field lines. As stated above, a correct spin-flipping process
is achieved by totally perpendicular RF and static fields. However, this perpendicularity is not
always fulfilled by the small nEDM yoke mounted on the wider n2EDM guides. In nEDM the
UCN guide side (squared cross-section) was 80 mm while in n2EDM, the UCN guide diameter
(circular cross-section) is 130 mm. One can corroborate in Figure G.2 that the static field
arrows do not always point in the x̂ direction. Instead, they have a large vertical component
(By) next to the n2EDM guide edges. Because of this bad coupling between nEDM’s USSA
and the new wider UCN guides, the n2EDM project requires the construction of an updated
spin analyzing system (especially the yoke).
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G.3 Modeling the n2EDM USSA

Figure G.3: Side view of the static magnetic fields of the n2EDM magnetization
system generated from COMSOL simulations. Compared to the previous version,
the yoke top flanges are removed so to fix the field horizontality at the RF-coil
(green box).

The new USSA design takes as reference the nEDM version presented above. First, in
order to fix the non-perpendicularity at the guide edges, the yoke top flanges are removed
from the geometry and the RF-coil is displaced by 10 cm upwards (see Figure G.3). Note
that the static field is mostly horizontal at the new RF-coil position. Although the yoke
top flanges were initially installed to reduce the field intensity at the RF-coil position, their
removal does not represent a big problem. In fact, since the larger the static field, the higher
the RF frequency has to be so to guarantee a zero-crossing point in Bx-ef = B(y) − ωRF/γ,
the top flange suppression translates into larger RF-frequencies. Whereas the static field was
of about 0.7 mT at the RF-coil (whose operation frequency was set to 20 kHz) in nEDM’s
USSA, the model presented in Figure G.3 suggest placing the RF-coil at y = 33.5 cm† where
the static field is of 1.4 mT with a gradient of 0.14 mT/cm. Such a factor 2 between both
static field magnitudes is compensated by a two times larger RF-frequency in the new model:
∼ 42 kHz.

Magnetization foil

A side effect of removing the yoke top flanges is the reduction of the static field intensity in
the middle plane between the magnets. Since the spin-analyzer foils are located within this
region, one has to check that field strength does not go below the minimum value required to
magnetize the thin foil up to saturation (60 mT). To compensate for the static field weakening
at y = 0 and because the UCN guides are guider, the new USSA model adds more magnets
along the ẑ direction. Figure G.4 shows a top view of the magnetic field strength within

†This distance corresponds to the separation between the analyzing foil and the RF-coil center. More details
of the RF-coil geometry are resumed in G.2
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Figure G.4: Static field intensity on the y = 0 plane. The small squares represent
the permanent magnets and the circles the position of the analyzing foils.

the magnetization system at y = 0. One can corroborate that by gathering 13 columns of
magnets, the minimum static field at the foils (black circles) is of ∼ 80 mT and are located
at the outermost sides of the yoke (z = ±17 cm). Provided that the analyzing foils are kept
within these limits, their full magnetization should be attained.

Yoke stray field at the level of the GADGET detector

Figure G.5: 3-dimensional representation of the magnetic field strength on top of
both n2EDM USSA surfaces. The relative position between both USSA is the one
of the n2EDM setup.

GADGET will also be used as UCN counter in the n2EDM project. Therefore, it is
essential to consider the magnetic field constrains required for a correct GADGET performance.
Detailed discussions on the sensitivity of GADGET to magnetic fields were already presented
in section 3.4.2 and in the Appendix F. Results obtained in these studies, are used to shape
the new USSA model within COMSOL simulations. In particular, the yoke bottom flanges
are wider than in the previous USSA version to enclose the field lines within the yoke and
therefore to have a stray field with a lower intensity at the GADGET PMTs level. Also, given
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that the n2EDM project employs two USSA next to each other, it is necessary to guarantee
that the superposition from both magnetization systems does not produce a magnetic field
too large at the PMTs position. Figure G.5 shows a 3-dimensional view of both COMSOL
simulated USSAs, where the color surfaces indicate the magnetic field strength. This color
map results from a geometry with 30 cm between the analyzing foil and the detector entrance
window. Note that the yellow-to-orange boundaries, that correspond to 0.3 mT, leaves PMTs
outside magnetic fields larger than 0.3 mT. Operating the PMTs at such field intensities does
not provoke a change on the counting rate, but might slightly (∼ 1%, see Figure F.1) deviate
the charge spectra. This is not crucial for the n2EDM setup as the position of GADGET is
not expected to change during the data taking.

G.3.1 Shaping the RF-field

Figure G.6: Influence of a cylindrical RF-shielding with height L on the field
strength along the opposite USSA arm.

One last feature to be evaluated for the new USSA model is the cross-talk between the
spin-flippers in both USSA arms: the RF-field in one arm should not induce a spin-flip of UCN
going through the opposite arm. To isolate the RF fields, copper shields are place around
the USSA arms. These shields, designed with cylindrical shapes, should not be too close to
the RF-coils so that the magnetic fields raised by the Lenz effect in the shield are negligible.
Also, they cannot be too large due to space constrains. By leaving a distance between the
UCN guide and the RF-coil of 5 mm and between the RF-coil and the shielding of 25 mm,
each arm shield is free of significant Lenz fields for RF currents of up to 1 A. Optimization
of the shield height (L) is determined by estimating the RF-field generated by one arm (let
us call it Guide A) in the opposite arm (Guide B). Figure G.6 shows the RF-field intensities
on the plane z = 0 for different L. By making L = 40 cm, the parasite RF-field in Guide B
is lower than 0.1 µT, i.e. 3 orders of magnitude lower than the intensity needed for correct
spin-flipping. The validation of this shield height is presented in the next subsection.

G.3.2 Efficiency estimation from spin tracking algorithms

A first characterization of the new USSA model can be made from spin tracking algorithms
which take into account the COMSOL magnetic field maps. A toy simulation of the spin state
of UCN crossing the USSA volume is implemented by solving numerically the spin-evolution
equation

d~S

dt
= γ

[
~S × ~B

]
, (G.3)
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Figure G.7: Sample spin track trajectory obtained from the numerical solution
of Eq. (G.3). The displayed trajectory corresponds to an RF placed at y = 0.29 m.
The spin-flipping probability (Psf ) is computed from the spin projection on the
static field Sst through Eq. (G.9).

equivalently written as ṠxṠy
Ṡz

 = γ

BzSy −BySz
BxSz −BzSx
BySx −BxSy

 . (G.4)

This system of coupled differential equations is solved through the Runge-Kutta-4 algorithm
while updating the magnetic field after each time step. In order to guarantee that the numerical
truncation error does not change the spin magnitude by more than 1/10000, i.e. δ|~S| < 0.01%,
the time step size is conventionally chosen much smaller than the Larmor precession period:
∆t = TLarmor/500. Regarding the magnetic field description, it includes the RF-field and the
static field as

~B = ~BRF + ~Bstatic (G.5)

=BRF(~r)

 0
sin(ωRFt)
cos(ωRFt)

+

Bx(~r)
By(~r)
Bz(~r)


static

, (G.6)

where BRF(~r) and ~Bstatic(~r) are interpolated from the COMSOL simulated maps at each spatial
step ~ri+1 = ~ri +∆~r, with ∆~r = ~vUCN∆t. To keep a simple algorithm, the UCN trajectories
are all constructed by assuming entirely straight paths: ~vUCN = vyŷ = −5 m/s ŷ. UCN initial
positions are defined as ~r0 = (x0, 0.5 m, z0), with x0 and z0 randomly chosen within the UCN
guide section:

x20 + z20 < R2
guide, (G.7)

with Rguide = 65 mm the guide radius.
Since UCN in the n2EDM setup are expected to be immersed in an external magnetic

field which drives the spin polarization from the precession chambers to the USSA (see [16]),
the initial spin polarization within the spin tracking algorithm is determined by the static
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field direction at ~r0. The spin polarization is then written as

Sst = ~S ·
~Bstatic

‖ ~Bstatic‖
. (G.8)

Figure G.7 shows an ordinary UCN spin track obtained from the implemented algorithm as a
function of the y-coordinate. One can evidence how the spin projection onto the static field
direction is inverted as the UCN crosses the RF-coil volume: Sst = 1 at ~r0 = 0.5 m ŷ (t = 0)
becomes Sst = −1 at the analyzing foil ~r = 0 (t = 0.5 m/(5 m/s) = 0.1 s). The wiggling
pattern depicted in the zoomed plot illustrates the precession movement of the spin about the
magnetic field direction. Using the magnitude of Sst, the spin-flipping probability computed
as [110]

Psf =
1

2
(1− Sst). (G.9)

is also plotted in Figure G.7 in light-blue. Note that, for the sample track, the flipping
probability is zero at t = 0, but becomes almost 1 once the UCN crosses the RF-field.
Therefore, if the analyzing foil is fully magnetized, such a spin down UCN would be reflected
from the magnetic barrier.
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Figure G.8: Spin-flipping probability due to the cross-talk between USSA arms
if no RF-shield is included. The left side plot shows the probability as a function
of the number of simulated UCN tracks. The total distribution is illustrated on
the histogram of the right side.

The spin tracking algorithm was used as validation tool at each USSA model modification,
where the simulation of NUCN = 104 UCN tracks was required to yield a large spin-flipping
probability (P̄sf > 99%). Although this spin-flipping study is not reported here for all the
USSA model construction stages, it is presented for the last modification: the RF shielding
length L optimization (see previous section). For example, Figure G.8 shows the spin-flipping
probability of UCN going through the Guide B due to the RF-coil of Guide A if no RF
shielding is used. One can see that after many UCN tracks, the mean spin-flipping is not
negligible (it converges to ∼ 1.33%), i.e. there is a parasite cross-talk between both USSA
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Table G.1: Spin flipping probability generated from cross-talk between USSA
arms for different RF-shield lengths.

Shield length (cm) Mean flipping probability (%)

45 10−5

40 3× 10−5

35 0.35
30 0.53
0 (no shield) 1.33

arms‡. To determine the shield length necessary to suppress this behavior, the mean spin-
flipping probability was evaluated as a function of L. The output from the several simulations
is resumed in Table G.1. It was concluded that a good shielding was achieved with a shield of
40 cm.

G.3.3 Summary

Table G.2: First n2EDM USSA model summary.

Yoke

Magnets
4 rows of 13 magnets each
Magnetization: 900 kA/m
Size: 80× 40× 10 mm3

Iron layers

Thickness: 7 mm
Large side: 110× 559 mm2

Small side: 110× 250 mm2

Bottom flange: 52× 559 mm2

RF-coil

Diameter: 150 mm
Current: 1 A
Frequency: 42 kHz
No. turns: 25
Wire diameter: 1.8 mm
Position: 335 mm (from analyzing foil)

B at the RF-coil center Static Bstatic : 1.44 mT
∇yBx-static : 0.14 mT/cm

RF BRF : 122 µT

RF-shield
Length: 400 mm
Diameter: 200 mm
Thickness: 1 mm

GADGET Entrance window: > 300 mm below the foil

The spin flipping efficiency of the USSA COMSOL model presented in this section was
larger than 99.9% with a cross-talk effect estimated in 3 × 10−5%. Such features are good
enough for finishing this first prototype model, whose main dimensions and most relevant

‡This result was the one that motivated the inclusion of the copper shield.
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quantities are resumed in Table G.2. The yoke system and RF-coils were already commissioned
and experimentally tested at PSI in June 2022. The results will be published in the upcoming
months.
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