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Abstract

In this manuscript I present the experimental studies of the physics of ultracold bosonic
ytterbium atoms trapped in an optical lattice, driven on their clock transition. The
existence of this ultranarrow transition is a feature shared by the alkaline-earth like
atoms, to which belongs ytterbium. The coherent driving of this transition enables an
internal degree of freedom for the atoms without spontaneous emission and is of great
interest in the context of metrology and quantum simulation.

Firstly I use the properties of this clock transition to characterize the coherent driving
of isolated atoms. Then I use Ramsey spectroscopy to probe the dynamics taking place
in unidimensional lattices in the strong interactions regime. Secondly I present exper-
iments performed on pairs of bosons where the coupling on the ultranarrow transition
is adiabatically branched, which leads to a strong suppression of the inelastic collision-
induced losses. This phenomenon is a manifestation of the quantum Zeno effect that
restricts the dynamics of the system to a reduced-loss subspace of the total Hilbert
space. Finally I experimentally study the manifestation of the quantum Zeno effect for
a many-body system, namely an unidimensional lattice in presence of strong inelastic
interactions, resulting in the hindering of the atomic loss dynamics.

Résumé

Dans ce manuscrit je décris les différentes études expérimentales portant sur la physique
des gaz atomiques d’ytterbium dégénérés piégés dans un réseau optique et excités sur
leur transition d’horloge. L’existence de cette transition étroite, propriétée commune
aux atomes alcalino-terreux et aux éléments ayant une structure électronique similaire,
comme l’ytterbium, confère à ces atomes un degré de liberté interne sans voir apparaitre
des phénomènes d’émission spontanée, ouvrant des perspective prometteuses dans les
domaines de la simulation quantique et de le métrologie.

Dans le travail présenté ici, je commence par tirer avantage des propriétés de la tran-
sition horloge pour caractériser l’évolution de la cohérence de l’état interne d’atomes
d’ytterbium excités sur cette transition. Ensuite, j’utilise la spectroscopie Ramsey pour
étudier la dynamique de réseaux unidimensionels dans le régime des fortes interactions.
Dans un second temps je présente les expériences conduites sur des paires de bosons,
où le couplage sur la transition étroite est branchée adiabatiquement, conduisant à
une forte supression des pertes liées aux collisions inélastiques. Ce phénomène relève
de l’effet Zénon quantique qui restreint la dynamique du système à un sous-espace de
l’espace de Hilbert. Enfin je présente l’étude expérimentale de l’effet Zéno quantique
dans un système à N -corps soumis à de fortes interactions inélastiques, qui se manifeste
par une inhibition de la dynamique de pertes atomiques.
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Notations used in this manuscript

1BZ First Brillouin zone,

AEL Alkaline-earth-like,

AOM Acousto-optic modulator,

BEC Bose-Einstein condensate,

BH Bose-Hubbard,

CDT Crossed dipole trap,

EP Exceptional point,

EOM Electro-optic modulator,

HCB Hard-core bosons,

LDA Local density approximation,

MI Mott insulator,

MOT Magneto-optical trap,

OD Optical density,
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TOF Time-of-flight,

ULE Ultra-low expansion.

The notation Cp
n refers to the binomial coefficient "n choose p", defined as

Cp
n =

(
n

k

)
=

n!

k!(n− k)!
. (1)

ix





Introduction

In 1925 A. Einstein, following the work of S. N. Bose that had proposed a statistical
description of photons as an ideal gas of identical particles to derive the Planck’s law
(Bose 1924), extended it to the ideal monoatomic gas and predicted the existence
of a phase transition for low enough temperatures at which all the atoms would fall
into the same state of minimal energy: the Bose-Einstein condensation was introduced
(Einstein 1925). However the very low expected condensation temperatures led him to
wonder "It’s a great theory, but does it contain a truth ?" in his correspondence with
P. Ehrenfest. Indeed, even if F. London in 1938 argued a link between the recently
discovered superfluidity of liquid helium and the Bose-Einstein condensation (London
1938), the direct observation of this phenomenon appeared to be beyond reach.

The invention of the laser in 1960 (Maiman 1960) opened up new possibilities in a large
panel of fields of physics. More particularly this invention, from the seminal work of
Hänsch et al. 1975, is at the origin of the development of different laser cooling tech-
niques in the 80’s (Phillips 1998; Cohen-Tannoudji 1998; Chu 1998). These techniques,
coupled with the evaporative cooling technique (Hess 1986; Masuhara et al. 1988) led
to the achievement of Bose-Einstein condensation (Anderson et al. 1995; Bradley et al.
1995; Davis et al. 1995) and the realization of the first degenerate Fermi gas (DeMarco
et al. 1999) a few years later. These pioneering experiments have paved the way for
the study of a whole new scope of phenomena, leading to the emergence of the new
branch of physics of ultracold atoms.

In the two decades that followed the first production of a degenerate quantum gas, the
properties of these new states of matter have been extensively studied. The ondulatory
nature of the Bose-Einstein condensates was demonstrated in experiments involving
matter wave interference (Andrews et al. 1997) or revealing the existence of a long-
range phase coherence (Bloch et al. 2000). In the meantime, experiments have brought
to light their superfluid behavior (Matthews et al. 1999; Madison et al. 2000) by the
observation of vortices. Experimentalists have also taken advantage of the tunability
of inter-particle interactions in degenerate quantum gases provided by the existence
of Feschbach resonances (Cornish et al. 2000; Bloch et al. 2008; Chin et al. 2010) to
brought these dilutes gases in the strong interaction regime.

An alternative way to reach the strong interaction regime is to apply an optical lattice
potential to a degenerate quantum gas. This approach has been implemented for the
first time in the seminal experiment of Greiner et al. 2002 that showed the quantum
phase transition from a superfluid to Mott-insulating phase, according to the proposal
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of Jaksch et al. 1998. More generally ultracold atoms trapped in optical lattices of-
fer a reliable and versatile platform to study systems described by condensed-matter
models such as Hubbard models, spin models and disordered or frustrated systems
(Lewenstein et al. 2012), possibly in regimes that would be difficult to reach for stan-
dard condensed-matter system, e.g. strong magnetic fields for the study of fractional
quantum Hall effect (Tsui et al. 1982). They can also be used to simulate systems from
domains beyond condensed-matter such as cosmology or nuclear physics (Georgescu et
al. 2014). Thanks to their versatility and high control level (Bloch et al. 2012), much
more important than most condensed-matter systems, the optical lattices appears as
a promising tool in the perspective of quantum simulation.

This concept of quantum simulation was introduced by R. Feynman, depicting a "com-
puter itself [...] built of quantum mechanical elements which obey quantum mechanical
laws." (Feynman 1982), i.e. a quantum system replicating the dynamics of a system
of interest in order to study is dynamics, with direct access to the relevant observ-
ables. It is particularly interesting when it comes to simulate many-body physics,
often described by models that do not admit an exact analytic solution, to overcome
the difficulties arisen by the exponential growth of the Hilbert space dimension with
the number of particles, preventing the use of classical computers.

In the past years, in order to overcome the limitations of the first experiments on
degenerate quantum gases performed with alkali atoms, such as spontaneous emission-
induced heating, two new categories of atoms has begun to receive growing attention.
The first category gathers atoms, such as Cr, Dy and Er, featuring an important mag-
netic dipole moment in the ground state (Griesmaier et al. 2005; Lu et al. 2011; Aikawa
et al. 2012) that allows to probe the physics of long-range dipole-dipole interactions (La-
haye et al. 2009). The second category corresponds to two-electron atoms (Takasu et al.
2003) that includes alkaline-earth atoms such as Sr, Ca and Mg, and alkaline-earth-like
atoms such as Yb (Takasu et al. 2003). These elements feature an ultranarrow optical
transition coupling their ground state to a long-lived excited metastable state (Ludlow
et al. 2015) that has been in a first time used in the field of metrology (Takamoto et al.
2005; Hinkley et al. 2013). More recently the advantages offered by the properties
of these atomic species in the context of simulation of quantum many-body physics
have been pointed out in several proposals (Cazalilla et al. 2009; Gorshkov et al. 2010;
Foss-Feig et al. 2010). In the particular case of our experiments, ytterbium has been
chosen for its properties (besides the clock transition, the existence of reachable magic
and anti-magic wavelengths) that could be used for the simulation of artificial gauge
fields in optical lattice, following the proposal of Gerbier et al. 2010.

In the work presented in this thesis, emphasis is laid on the use of Yb optical lattice
clock to probe the physics described by the Bose-Hubbard model (Fisher et al. 1989;
Jaksch et al. 1998; Jaksch et al. 2005). This model is a paradigm in condensed-matter
physics for it can describes a panel of systems including, besides ultracold atoms,
Josephson junction arrays (Langen et al. 2015), optomechanical arrays (Tomadin et al.
2012), interacting polaritons in hybrid optical systems (Hartmann et al. 2008; Leib
et al. 2010). More particularly, in this thesis work we take advantage of the tunability
offered by optical lattices to freeze the motion of atoms along two of the three spatial
directions, leading to the realization of a quasi unidimensional system. For such sys-
tems, the constraints imposed on the motion of the atoms gives an increased role to
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Introduction

play to the interactions, notably compared to higher dimensions. If the interactions
are sufficiently strong, the dynamics of the system can be described by the theory of
the Tonks-Girardeau gases (Tonks 1936; Girardeau 1960), where the atoms interacting
in the 1D lattice behave as impenetrable hard-core bosons. This causes the emergence
of strong correlations between the bosons of the gas that reminds those induced by the
Pauli’s exclusion principle in the fermionic case. A Bose-Fermi mapping is thus made
possible (Girardeau 1960), allowing to theoretically describe the bosons thanks to a
fermionization approach (Efetov et al. 1976; Korepin et al. 1997). The interplay be-
tween the bosonic and the fermionic properties in a Tonks-Girardeau has been observed
in its first experimental realization made by Paredes et al. 2004.

In order to probe the dynamics of ultracold 174Yb atoms trapped in a quasi unidimen-
sional optical lattice, ruled by the unidimensional Bose-Hubbard Hamiltonian, it is
possible to take advantage of the existence of an ultranarrow clock transition for these
atoms, that can be used to perform Ramsey spectroscopy (Ramsey 1950). Since the in-
troduction of this technique for Nuclear Magnetic Resonance (NMR) experiments and
its variants, including Ramsey with spin echo spectroscopy (Hahn 1950), their use has
been extended to many field of physics, e.g. metrology, cavity quantum electrodynam-
ics (Bertet et al. 2001), superconducting qubits (Wallraff et al. 2005; Leek et al. 2007)...
More recently Ramsey spectroscopy and Ramsey with spin echo techniques have been
used to characterize the many-body dynamics of strongly interacting ultracold atoms
trapped in unidimensional optical lattices. More precisely the evolution of the Ramsey
fringes contrast can be linked to the evolution of coherence of the system over time,
and can be used to reveal SU (N) orbital magnetism (Zhang et al. 2014) or to study
spin-orbit coupling effects (Bromley et al. 2018) in fermionic optical lattices. In this
work presented in this manuscript, the Ramsey spectroscopy is used to characterize
the motion in a Mott insulator.

In experiments, such as Ramsey spectroscopy, that rely on the coherent driving of the
ultra-narrow transition of 174Yb , atoms in the metastable excited state (with respect
to this transition) interact through both elastic and inelastic collisions. The resulting
two-body losses are responsible for the emergence of a dissipative dynamics alongside
with the coherent driving of these atoms. Although such effect is generally considered
as detrimental in ultracold atoms experiments, it is possible to take advantage of the
presence of two-body losses to study non-Hermitian physics. It is indeed possible to
describe an ensemble bosons interacting through inelastic collisions by a non-Hermitian
Hamiltonian. These systems, whose dynamics is ruled by a non-Hermitian Hamilto-
nian, exhibit some interesting features, such as exceptional points (Kato 1966; Heiss
2012) or a complex spectrum (Ashida et al. 2020). The latter property offers a suitable
framework to study behaviors that can be interpreted as a generalization of the quan-
tum Zeno effect (Misra et al. 1977), experimentally demonstrated for the first time by
Itano et al. 1990 according to the proposal of Cook 1988. This counter-intuitive effect
states that repeated measurements (to which losses can be assimilated) performed on a
quantum system can to a certain extent hinder or even freeze its internal dynamics. An
optical lattice deep enough to treat its sites as isolated traps can be used as a platform
to probe the quantum Zeno dynamics for interacting pairs of bosons.

This idea of engineering the state of a quantum system thanks to dissipation, developed
in Verstraete et al. 2009, can be extended from few-body to many-body system, in par-
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ticular for many bosons evolving in an unidimensional lattice in the strong interaction
regime. The very low probability associated with the presence of two particles at the
same position is one of properties characterizing a Tonks-Girardeau gas. More recent
experimental (Syassen et al. 2008) and theoretical (García-Ripoll et al. 2009) works
have shown that this property can be emulated by bosons trapped in a 1D optical
lattice interaction through strong inelastic collisions. These strong inelastic collisions
are responsible for losses that suppresses the probability for two bosons to be at the
same position. This effect features a behavior that can be interpreted as an extension
for many-body physics of the quantum Zeno effect.

Thesis outline

This manuscript aims at presenting the work carried out during my thesis made at
laboratoire Kastler-Brossel in Paris. The experiments performed during the last three
years have focused on two phenomena introduced above: the physics of strongly inter-
acting bosons trapped in a unidimensional optical lattice and the quantum Zeno effect.
In a first time, experiments implementing one of the two physics separately has been
conducted, providing a better understanding of their effects. Then both have been
involved in an experiment probing the quantum Zeno effect in a Tonks-Girardeau gas.
Finally these experiments gave us some useful insight of our experimental platform in
the long-term perspective of realizing artificial gauge fields with ytterbium atoms.

The thesis is organized as follow

Chapter 1 reminds the main theoretical notions required for the description of the
physics of ultracold bosons trapped in an optical lattice. These elements are then used
to discuss the adiabaticity of the preparation of an optical lattice in the ground state.

Chapter 2 presents the setup used to perform the experiments presented throughout
this manuscript. Starting from the properties of bosonic 174Yb atoms, the main steps
leading to the production of a Bose-Einstein condensate are reminded. Finally the
loading of the Bose-Einstein condenstate in the optical lattice potential is presented.

Chapter 3 presents the main features of the optical clock transition of 174Yb . Then
the coherent driving of the transition for individual atoms is introduced along with
a theoretical description of Rabi and Ramsey experiments. Lastly we show how such
experiments can be used to probe the frequency fluctuations of our narrow laser source.

Chapter 4 describes the use of Ramsey spectroscopy introduced in the previous chap-
ter to probe the dynamics of bosons trapped in a unidimensional optical lattice in the
strongly interacting regime.

Chapter 5 introduces the quantum Zeno effect in its original formulation and its
extension to open quantum systems. This effect is then harnessed to prepare selectively
isolated pairs of bosons driven on their clock transition in a superposition of the ground
and metastable states.

Chapter 6 presents experiments performed to probe another manifestation of the
quantum Zeno effect arising for an ensemble of bosons trapped in a unidimensional

4



Introduction

optical lattice, subject to strong elastic and inelastic collisions. The results of the
experiments are compared with two theoretical models, which are briefly introduced.
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CHAPTER 1

Ytterbium atoms in optical lattices

In this chapter, the main theoretical notions underlying the physics of ultracold
bosons trapped in an optical lattice are presented, along with some specificities related
to the implementation of optical lattices with 174Yb atoms.

In the first part of this chapter I start by a reminder of the building blocks of the
physics of particles evolving in a periodic potential. I progressively introduce the
approximations leading us to the Bose-Hubbard model, that will be at the center of
the theoretical analysis of the experiments presented in this dissertation.

In the second part, I present the Bose-Hubbard model and its phase diagram. A par-
ticular emphasis will be put on the limiting cases: the weakly interacting limit, where
particles are delocalized all over the lattice sites and the strongly interacting limit,
where particles are localized due to strong repulsive interactions (the Mott insulator
phenomenon). This will lead us to study the transition between the superfluid and the
Mott insulator regimes. Finally the effects of the confining potential used to trap the
atoms will be discussed with the phase diagram.

1.1 Reminder on band theory

1.1.1 Bloch waves for a 1D periodic potential

We start by considering a single particle of massm evolving in a 1D periodic potential
along the z direction, of the form :

Vlat (z) = −V0 cos2 (kLz) . (1.1)

Such a potential can be produced by the interference of two counter-propagating plane
waves along the z direction, with wave number kL. We introduce the wavelength of
the plane wave λL = 2π

kL
and the associated recoil energy ER =

~2k2
L

2m
. The Hamiltonian

describing the motion of the particle in this periodic potential :

Ĥ =
p̂2

2m
+ Vlat (ẑ) (1.2)

with p̂ = −i~∇ the momentum operator.
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1.1. Reminder on band theory

Figure 1.1 – Sketch of the interference of two counter-propagating plane waves. The
resulting standing plane wave of period d = λL/2 forms the 1D lattice potential.

Since the system is invariant by a discrete translation of step d = π/kL = λL/2,
the Hamiltonian and the d-step discrete translation operator T̂d = eip̂d/~ commute :[
T̂d, Ĥ

]
= 0. According to the Bloch’s theorem, the Hilbert space in which evolves the

system admits a basis of wavefunctions, called Bloch waves (Ashcroft et al. 1976):

φq (z) = eiqzuq (z) . (1.3)

The Bloch waves are eigenvectors of for both Ĥ and T̂d. Here the uq (z) are d-periodic
complex functions called Bloch functions.

The basis states are labeled by the quantity q, called quasi-momentum, which is
analogous (up to a factor ~) to the momentum for a plane wave in free space. Re-
placing q by q + m2π

d
, with m ∈ Z, results in the same eigenvalue for the operator

T̂d. Consequently it is possible to restrict the quasi-momenta q domain to the interval]
−π
d
, π
d

]
, called the first Brillouin zone (1BZ) and introduce the integer n to label, in

the ascending order, the different energies εn,q (i.e. the eigenvalues of Ĥ) for a given
quasi-momentum q. This band index labels the bands of accessible energies for the
particles and separated by energy gaps. The Bloch functions basis reads now:

φn,q (z) = eiqzun,q (z) (1.4)

I assume, as is common, periodic boundary conditions for a lattice withNs sites. Conse-
quently the quasi-momenta become quantized and the first Brillouin Zone corresponds
to the discrete set of quasi-momenta of the form qp = p π

dNs
with −Ns

2
< p ≤ Ns

2
(for

Ns even). Although no fully analytical solution of the Bloch-Schrödinger equation is
known, it is possible to diagonalize numerically the Hamiltonian. Figure 2.2 shows the
few lowest Bloch energy bands for different lattice depths V0. As can be observed from
this figure the gaps widen and the bands flatten as the lattice depth increases.
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Figure 1.2 – Band structure of a 1D lattice for different lattice depths V0 =
2, 10, 20, 30ER. The six lower energy bands εn,q are displayed and the blue shaded
region corresponds to the energies below the lattice depth V0.

1.1.2 Wannier basis

The Bloch wavefunctions describe quantum states that are delocalized over the whole
lattice, analogous to plane waves in the continuum. It is often then more convenient to
switch to another basis of orthogonal and normalized wavefunctions, called the Wan-
nier basis (Wannier 1937). On the contrary to the Bloch wavefunctions, the Wannier
functions are maximally localized around the lattice sites. The Wannier functions
are derived from the Bloch waves by a discrete Fourier transform with respect to the
quasi-momentum:

wn (z − zi) =

√
d

2π

ˆ kL

−kL

φn,qe
−iqzi dq. (1.5)

Here the zj = jd are the position of the lattice sites (assuming for simplicity that
the origin of our coordinates correspond to a minimum for the periodic potential). In
practice in order to perform numerical calculations, we take a finite size lattice of Ns

sites with periodic boundary conditions. The definition of the Wannier functions (1.5)
now reads:

wn (z − zi) =
1√
Ns

∑
q∈BZ1

e−iqziφn,q (z) . (1.6)

The Wannier functions are not eigenvectors of the Hamiltonian. However they allow
a more convenient description of (short range) interaction and of localized many-body
states, in the limit of deep lattices V0 � ER.
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Figure 1.3 – Solid lines: Wannier functions in the lowest energy (blue) and first
excited (red) bands, centered at z = 0 for different lattice depths V0 = 2, 10, 20ER.
The Wannier functions of the neighboring sites are also represented as faded lines.

The Wannier functions are defined up to a phase factor. Kohn 1959 proved that
for centrosymmetric lattices in one dimension, they can be defined as real-valued,
symmetric or anti-symmetric functions, exponentially decaying with the distance from
the origin. The last property has later been generalized to non-centrosymmetric 1D
lattices (Cloizeaux 1964) and single-band 3D lattices (Nenciu 1983).

The single-particle Hamiltonian (1.2) can be rewritten using the second quantifica-
tion formalism :

Ĥ0 =

ˆ
dz Ψ̂† (z)

[
− ~2

2m
∇2 + Vlat (z)

]
Ψ̂ (z) . (1.7)

Here Ψ̂ (z) is the field operator annihilating a particle located in z. The decomposition
of this operator along the Wannier basis writes:

Ψ̂ (z) =
∑
j,n

wn (z − zj) âj,n (1.8)

with âj,n the annihilation operator for a particle in the Wannier state wn (z − zj).
Injecting the previous expression (1.8) in (1.7) the exact representation:

Ĥ0 = −
∑
i,j,n

Jn (i− j) â†i,nâj,n (1.9)
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Chapter 1. Ytterbium atoms in optical lattices

with the tunneling matrix elements

Jn (i− j) = −
ˆ

dz w∗n (z − zi)
[
− ~2

2m
∇2 + Vlat (z)

]
wn (z − zj) . (1.10)

The matrix elements Jn (i− j) /~ can be interpreted as the characteristic hopping rate
from site i to site j by quantum tunneling through the potential barrier of the lattice.
In 1D the energies Jn (i− j) only depend on the relative distance between the two sites
|zi− zj|. It is possible to express them as a discrete Fourier transform of the dispersion
relation, using the inverse of the relation (1.6):

Jn (i− j) = − 1

Ns

∑
q,q′∈1BZ

e−i(qzi−q′zj)
ˆ

dz φ∗n,q (z − zi)
[
−~2∇2

2m
+ Vlat (z)

]
φn,q′ (z − zj)

(1.11)

= − 1

Ns

∑
q∈1BZ

εn,q e−iq(zi−zj). (1.12)
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Figure 1.4 – Comparison of the tunneling energies in the fundamental band, using the
notation : J0 (|i− j|). For the lattice depths represented here, corresponding to the
typical lattices depths considered in this thesis, higher order tunneling matrix element
can be neglected compared to the nearest-neighbor tunneling term.

In order to have some insight on the behavior of the tunneling energy, it may be useful
to use the approximate formula for the hopping matrix element J0 = J0 (1) found for
the sinusoidal case (Bloch et al. 2008) :

J0

ER

≈ 4√
π

(
V0

ER

)3/4

e
−2

√
V0
ER . (1.13)

It allows us to have a good approximation of the tunnel energy between nearest-
neighbors without having to compute all the ε0,q in the first Brillouin zone.
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1.1.3 Tight binding approximation

The interpretation of the experimental results exposed in this works is considerably
simplified in the tight-binding limit, where the lattice potential is deep enough so that
hopping beyond nearest-neighbors becomes negligible. The Wannier basis is then very
adequate since Wannier functions decay exponentially from the lattice site central
position. Secondly the tunneling energies Jn (i− j) decay very fast with the distance
between sites, as seen in Fig. 1.4, and only the matrix elements coupling one site to its
few closest neighbors will play a significant role. If we keep only the nearest-neighbors
matrix elements , i.e. set Jn (i− j) = 0 if |i − j| > 1 the simplified tight-binding
Hamiltonian reads:

Ĥ0 = −
∑
n

Jn
∑
〈i,j〉

â†n,j ân,i, (1.14)

with Jn = Jn (1).

Moreover, in the following we will only consider systems at very low temperature so that
only the fundamental band is significantly populated. From now on, unless otherwise
specified, we drop the band index n and only consider the fundamental band n = 0.

The combination of the nearest-neighbor hopping and the single-band approxima-
tions leads us to write the tight-binding hamiltonian:

ĤTB = −J
∑
j

(
â†j+1âj + h.c.

)
, (1.15)

with J = J0 (1) the dominant tunneling matrix element.

The tight-binding approximation allows us to simplify considerably the expression of
most physical quantities. For instance the energy bands have a cosine form and the
dispersion relation in the lowest band is given by

εq = −2J cos (qz) (1.16)

Consequently the energy width of the fundamental band is given by 4J .

1.1.4 Generalization to cubic lattices of higher dimensions

All developments above have been conducted for one-dimensional lattices. It is
possible to extend to lattice potentials of higher dimensions, more particularly for the
2D and 3D cases. The relevant example for our experiment is the potential for a 3D
cubic lattice,

Vlat (r) = V0

∑
α=x,y,z

sin (kαxα)2 . (1.17)

Since the total potential is separable, the eigenvalue problem can be solved along each
direction independently. The eigenvectors are obtained by taking the tensor product,

φn,q (r) = eiq.r
∏

α=x,y,z

unα,qα (rα) . (1.18)
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Chapter 1. Ytterbium atoms in optical lattices

The Bloch’s functions are now labeled by the triplet of integers n indexing the band
and the tridimensional quasi-momentum q = (qx, qy, qz), belonging to the first Brillouin
zone (

]
−π
d
, π
d

]3
)1. The energy of a Bloch wave is

εn,q =
∑

α=x,y,z

εnα,qα (1.19)

with εnα,qα the energy defined in the one dimensional case.

1.2 The Bose-Hubbard model

This section aims at presenting the Bose-Hubbard model and at introducing the main
results about its phase diagram. The limiting cases of weakly and strongly interactive
regimes will be presented, along with the superfluid-to-Mott-insulator transition that
occurs in between. Finally we will describe the spatial distribution of these phases in
the optical lattice in presence of an additional trapping harmonic potential, as in the
experiment.

1.2.1 Bose-Hubbard model

So far we have only discussed single particle physics. We now introduce two-body
interactions and consider a system of N spinless bosons in a tridimensional cubic op-
tical lattice, interacting only via s-wave contact interactions. The second-quantized
Hamiltonian is

Ĥ = Ĥ0 + Ĥint (1.20)

Ĥ0 =

ˆ
dr Ψ̂† (r)

[
− ~2

2m
∇2 + Vlat (r)

]
Ψ̂ (r) (1.21)

Ĥint =
g

2

ˆ
dr Ψ̂† (r) Ψ̂† (r) Ψ̂ (r) Ψ̂ (r) . (1.22)

Here g is the coupling parameter, defined by

g =
4π~2a

m
, (1.23)

that characterizes the s-wave contact interactions between atoms (with a the associated
scattering length). Ψ̂ (r) is the field operator annihilating a boson at position r in the
fundamental band,

Ψ̂ (r) =
∑
j

w (r− rj) âj, (1.24)

with rj labeling the positions of the lattice sites. From (1.24) the tight-binding version
of the non-interacting Hamiltonian Ĥ0 can be derived similarly to (1.15),

Ĥ0 = −J
∑
〈i,j〉

â†i âj (1.25)

1This expression is valid for cubic lattices. For more general lattice geometries, the Brillouin zone
is defined as the primitive cell in reciprocal space (Ashcroft et al. 1976).
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1.2. The Bose-Hubbard model

where 〈i, j〉 indicates that the sum runs over all pairs nearest-neighbors sites.

The interaction Hamiltonian Ĥint is

Ĥint =
∑
i,j,k,l

Ui,j,k,l

2
â†i â
†
j âkâl (1.26)

with interaction matrix elements

Ui,j,k,l = g

ˆ
drw∗ (r− ri)w

∗ (r− rj)w (r− rk)w (r− rl) (1.27)

As explained in section 1.1.3, the tight-binding approximation assumes that the Wan-
nier functions are strongly localized around lattices sites. When it holds, the overlap
between the Wannier function associated with different lattice sites is very small. As a
consequence the matrix elements Ui,j,k,l may be neglected excepted in the case where
all the indices are equal : i = j = k = l. We call this matrix element U , the on-site
interaction energy,

U = g

ˆ
dr |w (r) |4. (1.28)

In the end, the many-body Hamiltonian (1.20) under all these assumptions reduces to
the well-known the Bose-Hubbard Hamiltonian (Fisher et al. 1989; Jaksch et al. 1998):

ĤBH = −J
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i (n̂i − 1) . (1.29)

We introduced here the one-site number operator n̂i = â†i âi.
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Figure 1.5 – Parameter U and J of the Bose-Hubbard model as a function of the
lattice depth. The calculations are here performed for a cubic optical lattice of 174Yb ,
using the scattering length a ≈ 105 a0 for 174Yb atoms in the ground state measured
in Kitagawa et al. 2008. Here a0 is the Bohr’s radius.
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Remark: In the limit of very deep lattices, it is possible to approximate the trapping
potential of a single site by a harmonic trap, and consequently the Wannier function
by a gaussian. It allows us to find an approximate expression for U in the limit of deep
lattices (Bloch et al. 2008):

U

ER

≈
√

8

π
kLa

(
V0

ER

)3/4

. (1.30)

1.2.2 Ground state of the Bose-Hubbard model

The Bose-Hubbard Hamiltonian is not analytically solvable for finite values of U/J
but can be studied with several numerical methods, most notably Monte-Carlo sim-
ulations (Pollet 2012). Here we will adopt an alternative approximate approach that
follows the work of Gutzwiller for fermions. This Gutzwiller ansatz (Rokhsar et al.
1991; Krauth et al. 1992; Sheshadri et al. 1993) will allow us to understand the essential
physics of the model. This variational mean field method postulates a site-factorized
form for the ground state wavefunction:

|ΨG〉 =
⊗
sites i

|φ〉i, (1.31)

with the one-site wavefunction

|φ〉i =
∞∑
n=0

c (ni) |ni〉i. (1.32)

There |n〉j denotes the Fock state with n bosons occupying the Wannier state w0 (r− rj)
(that we usually refer to as "occupying site j" from now on).

Since the total atom number is not fixed for such a state, we move from the canonical
ensemble to the grand canonical ensemble, by introducing a chemical potential µ to
fix the value of the average particle number. The best variational ground state is
determined by minimizing the average free energy, defined by

〈GBH〉Gutzwiller = 〈ΨG|ĤBH − µ
∑
i

n̂i|ΨG〉. (1.33)

Combining (1.33) and (1.31) leads to the expression:

〈GBH〉Gutzwiller = −J
∑
〈i,j〉

α∗iαj +
∑
i

∞∑
ni=0

[
U

2
ni (ni − 1)− µni

]
|c (ni) |2. (1.34)

where αi is the expectation value of the matter wave field at site i,

αi = 〈φi|âi|φi〉 =
∞∑
ni=0

√
ni + 1c∗ (ni) c (ni + 1) (1.35)

Assuming that the lattice withN bosons evolving amongNs sites is uniform, the system
is translation invariant, each site is equivalent and the expression of the average free
energy defined in (1.34) may be simplified,

〈GBH〉Gutzwiller = Ns

[
−zJ |α|2 +

U

2
〈n2〉 −

(
µ+

U

2

)
〈n〉
]

(1.36)
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where z is the number of nearest-neighbors for the sites of the lattice, |α|2 = α∗iαi, and

〈np〉 =
∞∑
n=0

np|c (n) |2. (1.37)

The condensed fraction fc is defined as the normalized population in the fundamental
band of the Bloch state of quasi-momentum q = 0, i.e

fc =
1

N
〈b̂†q=0b̂q=0〉. (1.38)

We introduced here b̂q the annihilation operator for a particle in the Bloch state of the
fundamental band (n = 0) associated with the quasi momentum q = 0

The condensed fraction of the Gutzwiller ansatz is given by

fc =
1

NNs

∑
i j

〈â†i âj〉 −→
N,Ns→∞

|α|2

n
. (1.39)

In the thermodynamic limit (Ns, N → ∞) the condensate fraction is determined by
the modulus |α| which plays the role of the superfluid order parameter, vanishing when
the system enters the Mott-Insulating phase.
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Figure 1.6 – Phase transition in the Bose-Hubbard model with the Gutzwiller ansatz.
Left: normalised density fluctuations. Right: Order parameter. Both are plotted for
unity filling n = 1 (blue line) and n = 2 (dashed red line). The transition from the
superfluid phase to the Mott insulator phase occurs at U/zJ = 5.8 for n = 1 and at
U/zJ = 9.9 for n = 2.

The Gutzwiller ansatz is exact in two limiting cases (Zwerger 2003) :

• J/U → 0 : the strongly interacting limit. The system may be seen as a collection
of independent wells in which the atoms are fully localized. In case of commen-
surate fillings, i.e. when n = N/Ns ∈ N, the ground state a product over all sites

16



Chapter 1. Ytterbium atoms in optical lattices

of identical Fock states |n〉i:

|ΨMI〉 =
⊗
sites i

|n〉i. (1.40)

• U/J → 0 : the weakly interacting limit, all the atoms are condensed in the
|q = 0,n = 0〉 Bloch state. The N particles state is given by:

|ΨSF〉 =
1√
N !

(
b̂†q=0

)⊗N

|∅〉 =
1√
N !

(
1√
Ns

∑
i

â†i

)⊗
N

|∅〉. (1.41)

In the thermodynamic limit N,Ns → ∞, the ground state |ΨSF〉 can be shown to
reduce to a product over the lattice sites:

|ΨSF〉 =
N,Ns→∞

⊗
i

|α =
√
n〉i (1.42)

of coherent states

|α〉i = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉i. (1.43)

Consequently the probability p (n) to have n atoms in a lattice site follows a Poisson
distribution with mean value n and standard deviation

√
n.

The site-factorized Gutzwiller ansatz is no longer exact between these two limits but
give some insights on the quantum phase transition occurring for commensurate fillings
between the superfluid (SF) phase characterized by a macroscopic occupation of the
Bloch state of the fundamental band with q = 0, and the localized Mott-Insulator (MI)
phase where atoms are localized on lattice sites.

1.2.3 Phase diagram
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Figure 1.7 – Phase diagram of the Bose-Hubbard model at zero temperature. The
left figure shows the filling factor n. The right figure shows the order parameter |α|2.
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The phase diagram of the Bose-Hubbard model (Fig. 1.7) computed from the
Guntzwiller ansatz features two distinct thermodynamics phases. For small zJ/U we
observe incompressible lobes, corresponding to the Mott phase, where the occupation
number remains constant in a finite interval of chemical potential. In the J → 0 limit
these intervals are of the form [µ− = pU, µ+ = (p+ 1)U ]. Outside is the realm of the
superfluid phase where the atoms are delocalized over the whole lattice.

The transition from superfluid to Mott insulator has been observed for the first time
in Greiner et al. 2002. In our experiment we follow a similar experimental protocol,
described is described further in Sec 2.3.4.

1.2.4 External confinement

Experimentally the periodic potentials are realized by the interference of two counter-
propagating laser beams along each spatial direction. The laser beams cannot be
described by a plane wave but instead by a gaussian beam. The dipole potential
they produce is then not strictly space-periodic. This introduces a serious difficulty,
since the whole band theory relies on the (now broken) discrete translation symmetry.
Fortunately, a perturbative approach allows one to retain the band theory picture. The
amplitude of the light field for a beam propagating along the z direction has the form
E (r) = E0 exp (−r2

⊥/w
2 (z)) with r2

⊥ = x2 + y2. Consequently the potential for the 1D
case becomes:

V1D = −V0 cos2 (kLz) e
−2

r2⊥
w2(z) . (1.44)

In cold atoms experiments, the waist of the laser beam typically varies slowly at
the scale of the atomic cloud, and its spatial dependency can therefore be neglected:
w (z) ≈ w. Moreover w is almost always chosen large compared to characteristic size

of the atomic cloud (r2
⊥ � w2), so that the factor e−2

r2⊥
w2 can be approximated by its

first order expansion in r2
⊥
w2 :

e−2
r2⊥
w2 ≈ 1− 2

r2
⊥
w2
. (1.45)

It shows that the effect of the Gaussian geometry of the laser beams can be accounted
for by adding a non-periodic correction to the sinusoidal potential created by the in-
terference of plane waves,

δVz = 2V0 cos2 (kLz)
x2 + y2

w2
. (1.46)

This expression is easily generalized for a 3D cubic lattice made of two counter-
propagating plane waves along the x and y directions and a self-reflected gaussian
beam along the z direction, since the contributions of each dimension are just summed
up according to (1.17). The dipole potential can be rewritten in term of operators in
the second quantization formalism and the expansion of field operator on the Wannier
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basis reads :

δV̂z ≈
2V0

w2

∑
i

[ˆ
x2w2 (x− xi) dx×

ˆ
cos2 (kLz)w2 (z − zi) dz

]
â†i âi

+
2V0

w2

∑
i

[ˆ
y2w2 (y − yi) dy ×

ˆ
cos2 (kLz)w2 (z − zi) dz

]
â†i âi.

(1.47)

We introduce σ2
x, σ2

y, σ2
z the second order moments associated to the probability den-

sities |wx (x) |2, |wy (y) |2, |wz (z) |2 respectively and rewrite the correction term as:

δV̂z ≈
∑
i

2V0

w2

[
x2
i + y2

i + σ2
x + σ2

y

]ˆ
cos2 (kLz)w2

z (z) dz × â†i âi. (1.48)

In the regime where the Bose-Hubbard model is valid, the Wannier functions are
strongly-localized around their sites. It is then possible to approximate each lattice
site by a harmonic trap and, consequently, the square modulus of the Wannier func-
tion by a Gaussian function. Neglecting uniform energy offsets, equation (1.48) then
becomes:

δV̂z =
2V0

w2

∑
i

1

2

[
1 + e−2k2

Lσ
2
z

] (
x2
i + y2

i

)
â†i âi. (1.49)

δV̂z ≈
∑
i

1

2
mΩ2

z

(
x2
i + y2

i

)
â†i âi, (1.50)

with
Ω2
z =

4V0

mw2

[
1− 1

2
(kLσz)

2

]
. (1.51)

In the harmonic oscillator approximation we have kLσz = (ER/V0)1/4, (kLσz)
2 � 1 and

Ω2
z =

4V0

mw2
. (1.52)

The same reasoning can be applied to the x and y axis. In the end the Gaussian
envelope of the laser beams produces an "extra" harmonic potential term to the Bose-
Hubbard Hamiltonian:

Ĥ ′BH = −J
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i (n̂i − 1)

+
1

2
m
∑
i

[
Ω2
x

(
y2
i + z2

i

)
+ Ω2

y

(
z2
i + x2

i

)
+ Ω2

z

(
x2
i + y2

i

)]
â†i âi

. (1.53)

i.e.
Ĥ ′BH = ĤBH +

∑
i

Vh (ri) â
†
i âi, (1.54)
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1.2. The Bose-Hubbard model

where Vh is

Vh (ri) =
1

2
m
[(

Ω2
y + Ω2

z

)
x2
i +

(
Ω2
x + Ω2

z

)
y2
i +

(
Ω2
x + Ω2

y

)
z2
i

]
(1.55)

1.2.5 Local Density Approximation (LDA)

The superposition of an auxiliary harmonic trapping potential Vh (r) = 1
2
mΩ2r2

(isotropic here for the sake of simplicity) on the plane wave potential breaks the dis-
crete translational invariance of the lattice, required hypothesis for the Bloch theo-
rem. However if the variations associated to the harmonic confining potential are
smooth enough, one can mentally partition the whole system as a collection of nearly-
independent patches. For large enough systems the patch size (chosen large compared
to the typical correlation length) is still small compared to the system size and the
density within each patch is almost homogeneous. In this Local Density Approxima-
tion (LDA) a chemical potential µloc is defined for each patch around the position r,
for a fixed ratio zJ/U :

µloc (r) = µ− Vh (r) . (1.56)

The injection of this local chemical potential in the expression of the density for the
homogeneous case n [µ], allows us to express the density profile nloc for the atomic
cloud in an optical lattice with a superimposed trapping harmonic potential :

nloc (r) = n [µloc (r)] . (1.57)

As an illustration we consider the the atomic limit where J → 0. The Mott insulator
phase with n = p ∈ N atoms per site is reached when µloc = pU . In the lattice
in presence of the auxiliary harmonic trapping potential this occurs on the sphere of
radius:

Rp =

√
2U

MΩ2

√
µ0

U
− p = RU

√
µ0

U
− p (1.58)

with µ0 = µ the chemical potential at the center of the cloud and RU =
√

2U
MΩ2 the

characteristic radius.

Regions between the sphere of radius Rp and Rp−1 are filled with lattices with filling
factor n = p. The radius R0 corresponds to the radius of the spatial extension of
the atomic cloud, that presents a pièce montée structure, with concentric shells of
increasing filling from the edge to the center of the cloud, as shown in Fig. 1.8. When
we get away from the atomic limit, layers of superfluid appears between the Mott
insulator spatial domains. The intermediate regions are characterized by finite density
fluctuations.
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Figure 1.8 – Shell structure for a trapped Mott insulator for zJ/U =
0.01, 0.05, 0.1, 0.2 and µ0/U = 2.5.
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Figure 1.9 – (a): Scheme of the optical lattice in the Mott insulator regime in presence
of an auxiliary harmonic confining potential (red dotted line). (b): Energy shift ∆E
between neighboring sites, for sites distant of {0, 10, 20, 30 40} sites away from the
center of the cloud, compared with the tunneling energy J (blue dashed line). The
calculation is performed along the x axis of the optical lattice, for different Vy = V0

and at fixed Vz = 27ER, using the notations and the parameters of section 2.3.

Remark: The introduction of a site-depend energy shift by the Gaussian envelope of
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1.3. Adiabatic preparation of an optical lattice

the laser beams constituting the optical lattice can lead to an effective suppression of
tunneling at large lattice depths. The energy shift between the site indexed by j and
the site indexed by j + 1

∆E (j) = Vh (jd+ d)− Vh (jd) =
1

2
mΩ2(1 + 2j)d2 (1.59)

is bigger at the edge of the atomic cloud, of radius R = djmax, where it becomes
approximately ∆E (jmax) ≈ mΩ2Rd than in the center of the cloud ∆E (0) ≈ 1

2
mΩ2d2.

When the shift ∆E becomes much larger than the tunneling energy J , the tunneling
is suppressed and the local density approximation is no longer completely valid. The
most restrictive condition to ensure the validity of the local density approximation is
thus:

mΩ2Rd ≤ J. (1.60)

The computations preformed in Fig. 1.9 the tunneling energy J is compared to the
energy shift between neighboring lattice sites. It shows for which transverse lattice
depth range the condition (1.60) is satisfied at different position in the optical lattice.

1.3 Adiabatic preparation of an optical lattice

The production of a quantum gas directly in optical lattice by evaporation cooling,
the method usually used to prepare a Bose-Einstein condensate, is difficult to imple-
ment (Blakie et al. 2004; Ho et al. 2009). Consequently the common procedure to
load an optical lattice in its fundamental band relies on the transfer of a Bose-Einstein
condensate (BEC) in the lattice potential. The transfer procedure consist then into
ramping up the lattice potential the harmonic potential in which the BEC has been
prepared is ramped down (the details of our particular implementation of the transfer
are detailed later in 2.3.3).

In this section we discuss the condition that the transfer procedure need to satisfy in
order to end up with a system as close as possible to the ground state of the Bose-
Hubbard model.

1.3.1 The adiabatic approximation

For a system evolving according to a time-dependent Hamiltonian Ĥ (t) which, for
the sake of simplicity, admits the time dependent eigenvectors |φj (t)〉 associated to the
instantaneous eigenenergies εj (t) and initially the the state |φk (0)〉, the system will be
found in the state |φk (t)〉 at time t with a probability 1 if the inequality

~|〈φj|
d

dt
|φk〉| � |εj − εk| ∀j 6= k (1.61)

or equivalently

~|〈φj|
dĤ

dt
|φk〉| � |εj − εk|2 ∀j 6= k (1.62)

is satisfied at every instant (Messiah 1999). In the rest of this section we use this
criterion to determine if the system stays in the ground state at every instant of the
transfer of the BEC into the optical lattice.
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Chapter 1. Ytterbium atoms in optical lattices

1.3.2 Adiabaticity for an ideal gas

The question of adiabaticity can be firstly tackled in absence of interactions (g = 0)
(Greiner 2003): the atoms in the BEC all lies around the zero-momentum state |p = 0〉
in the momentum space, i.e. the state |n = 0,q = 0〉 in the Bloch basis, with associated
energy εn,q. When the lattice is raised up, the quasi-momenta of the particles remain
unchanged and the non-adiabaticity consists in populating higher energy bands (n 6= 0),
and the adiabaticity criterion (1.61) reads

∣∣∣∣∂V0

∂t

∣∣∣∣� |εn,q − ε0,q|/~ ∀n > 0 (1.63)

with V0 the time dependent lattice depth.

More particularly, if we consider 174Yb atoms trapped in an optical lattice at 759
nm, the previous expression becomes, for shallow lattices with depths V0 < ER ≈
h× 1973 Hz (Ben Dahan et al. 1996),∣∣∣∣ 1

ER

∂V0

∂t

∣∣∣∣� 32
√

2
ER

~
≈ 5.6× 105 s−1. (1.64)

In our experiment, the ramp speed is on the order of 3 × 103 s−1 and this criterion is
satisfied. For deeper lattices, the gap between band becomes larger and this condition
for adiabaticity is more easily verified. this criterion is fulfilled.

1.3.3 Adiabaticity in presence of interactions

However this criterion is no longer enough when interactions are taken into account
and becomes a necessary but not sufficient condition. In the framework of the Bose-
Hubbard approximation for an optical lattice in presence of an external confinement
potential (we assume the LDA to be valid), three energy scales are to be taken into
account for a discussion on adiabaticity:

• the interaction energy U ∝ (V0/ER)3/4

• the tunneling energy J ∝ (V0/ER)3/4 e−2
√
V0/ER

• the auxillary trap frequency Ω ∝
√
V0/ER.

From theses quantities it is possible to define different criteria for the adiabaticity of the
transfer of the BEC from the crossed-dipole trap to the optical lattice. We distinguish
several regimes:

Low lattice depths regime: V0 � µ

In this regime the mean field description of the system prevails (interactions are a
priori weak) and the contribution of the excited bands have to be taken into account.
The system can be seen as a "spatially modulated condensate". The band structure
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1.3. Adiabatic preparation of an optical lattice

in this regime still exists but can be very different from the single particle situation
(Morsch et al. 2006).

The Bose-Hubbard regime

When the Bose-Hubbard regime is reached, i.e. for V0 > 5ER, the single band
and the tight-binding approximation are valid and the adiabaticity criterion can be
discussed with respect to the many-body excitations that can appear in the system.
To study the adiabaticity of the transfer, we can use the work of Kajtoch et al. 2018 for
infinite homogeneous optical lattice in the regime of weak interactions, that we extend
to our non-homogeneous case thanks to the use of the LDA. In this reference the time
dependent Bose-Hubbard Hamiltonian is treated within the Bogoliubov framework,
leading to the Bogoliubov dispersion relation

E (q, r, t) =
√
ε (q, t) [ε (q, t) + 2U (t)n (r, t)] (1.65)

with
ε (q, t) = 2J (t)

∑
α=x, y

[1− cos (qαd)] (1.66)

the single-particle dispersion relation in the tight-binding limit. In the limit of small
q, this expression becomes

ε (q, t) ≈ 2J (t)q2d2 (1.67)

and the Bogoliubov dispersion relation becomes approximately linear

E (q, r, t) ≈
√

4U (t)n (r, t) ε (q, t)2 (1.68)

≈ 2
√
J (t)U (t)n (r, t)qd. (1.69)

The adiabaticity criterion (1.61) reads

~
∣∣∣dĤ

dt

∣∣∣� |E (qmin, r, t)− E (0, r, t) |2. (1.70)

Taking |qmin| = qmin ≈ 2π
RU

, with RU the characteristic radius of the atomic cloud
defined in Sec. 1.2.5, the adiabaticity criterion becomes

~
∣∣∣dJ

dt

∣∣∣� 8π2J (t)Kn (r, t) (1.71)

with K = 1
2
mΩ2d2. The adiabaticity criterion can be reformulated with respect to the

lattice depth as

~
dV0

dt

∣∣∣ 1
J

dJ

dV0

∣∣∣� 8π2Kn (r, t) . (1.72)

In Fig. 1.10 we compare the evolution of the ratio

B = ~
∣∣∣dJ

dt

∣∣∣. (8π2J (t)Kn (r, t)
)−1 (1.73)

during the ramp we typically use to raise the horizontal optical lattice, with a fixed
vertical lattice depth of 25 ER (see Sec. 2.3 ) for a r where n = 1. We observe that the
abiabaticity condition is satisfied.
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Figure 1.10 – Computation of the adiabaticity criterion B for the ramp of the hori-
zontal arms of our optical lattice, for ramps of 100 ms, assuming n (r) = 1.

Very high lattice depths regime

When the lattice depth V0 increases, U and Ω increase while J decreases exponen-
tially. As a consequence a criterion for the adiabaticity of the lattice ramp, for a deep
optical lattice, is the ability of the system to redistribute via tunneling the atoms across
the sites according to the Thomas-Fermi distribution. This criterion can be formalised
as (Gericke et al. 2007 ):

A = max
~
J2

∣∣∣dJ
dt

∣∣∣� 1 (1.74)

and can be computed from the actual form of the ramp used in our experiment. As
shown in Fig. 1.11, this criterion is fulfilled for lattice depths below 20ER with ramps
duration of 100 ms.
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Figure 1.11 – Computation of the adiabaticity criterion A for the ramp of the hori-
zontal arms of our optical lattice, for ramps of (a) 100 ms and (b) 300 ms.
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CHAPTER 2

Experimental setup

This chapter aims at presenting some experimental and technical aspects specific to
the atoms and the experimental setup that will be used throughout this dissertation.
The key aspects of the production of a BEC and its loading in an optical lattice is
described in many instances (for instance, Metcalf et al. 1999; Ketterle et al. 1999;
Bloch et al. 2008). Some additional elements specific to the experimental setup used
for this work. Most of the technical notions presented here were discussed in details in
the work of the previous PhD students: Scholl 2014, Dareau 2015, Bouganne 2018 and
Bosch Aguilera 2019.

The first part of the chapter presents the properties of the bosonic isotope of ytterbium
used in our experiment and emphasizes its most interesting features in our experimental
perspective. The second part of this chapter details firstly the experimental setup and
the procedure used to produce a Bose-Einstein condensate and load it into an optical
lattice. Then some experiments used to characterize the system created at the end of
the procedure described in the first place are presented.

2.1 Properties of Ytterbium

Ytterbium (atomic number Z = 70) is a rare-earth element which belongs to the
lanthanide series and presents seven stable isotopes : five bosonic( 168Yb, 170Yb, 172Yb,
174Yb, 176Yb ) with nuclear spin I = 0 and two fermionic ( 171Yb, 173Yb) with non zero
nuclear spin. Their respective natural abundances are detailed in the table 2.1.
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2.1. Properties of Ytterbium

Isotope Abundance Nuclear spin Statistics
168Yb 0.13 % 0 boson
170Yb 3.05 % 0 boson
171Yb 14.3 % 1/2 fermion
172Yb 21.9 % 0 boson
173Yb 16.1 % 5/2 fermion
174Yb 31.8 % 0 boson
176Yb 12.7 % 0 boson

Figure 2.1 – Natural abundance of the stable isotopes of ytterbium

In the work presented in this dissertation, the most abundant bosonic isotope 174Yb
has been used.

2.1.1 Electronic structure of Ytterbium

An interesting feature of ytterbium is its electronic structure ([Xe]4f 146s2) with
completely filled inner shells and two electrons in the outer s-shell. This is similar
to the electronic structure of helium and earth-alkaline atoms like strontium. Indeed,
since the two valence electrons are responsible for most of the low energy physics (Bethe
et al. 1957), ytterbium exhibits electronic properties similar to earth-alkaline elements
and is consequently referred as an alkaline-earth like (AEL) atom.

Figure 2.2 – Scheme of the lowest energy levels of ytterbium. The solid arrows
represent the optical transitions that are laser-driven in our experimental setup. The
dashed ones indicate possible decay channels, with the branching ratio for some of
them.
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The ground state of ytterbium is a singlet state 1S0 with a null total electronic spin2.
The first excited states correspond to the promotion of one electron to the 6p shell,
leading to the electronic structure [Xe]4f 146s16p1. This configuration corresponds to
one singlet state 1P1 and three triplet states 3P0, 3P1, 3P2. A scheme of the energy
levels is represented in 2.2.

The electronic transitions used in this work are detailed below.

Blue transition

The blue transition 1S0 → 1P1 (λb = 399 nm), that leaves the total electronic spin
invariant (∆S = 0) is the only electric-dipole allowed transition from the ground state
to a low lying excited state. This transition presents a broad linewidth Γb = 2π × 29
MHz and an saturation intensity Isat = 60 mW/cm2. This transition is not completely
closed, for the state 3P1 is weakly coupled to 3DJ manifold states (Honda et al. 1999),
from which the atoms can decay to the ground state via the 3PJ states. Although this
leakage is very weak, it limits the size of the magneto-optical traps operating on this
transition alone.

Green inter-combination transition

In absence of spin-orbit coupling, transitions between spin-singlet and spin-triplet
states would be electric-dipole forbidden according to the Wigner-Eckart theorem, since
they do not conserve the total spin quantum number (∆S 6= 0). However for heavy,
many-electrons atoms like ytterbium, such transition can be enabled thanks to the
effect of the spin orbit coupling. In this case J is the relevant quantum number to
consider and the appropriate selection rule is ∆J = 1. The 1S0 → 3P1 transition
(λg = 555.8 nm) with a narrow linewidth Γg = 2π × 182 kHz and saturation intensity
Isat = 0.14 mW/cm2 is thus weakly allowed. Electric-dipole transitions not conserving
the spin are called inter-combination transition.

Yellow "clock" transition

In the L.S coupling regime, the transition from 1S0 to the spin-triplet meta-stable
state 3P0 is doubly forbidden, as it violates simultaneously two selection rules: ∆S = 0
and J = 0←→ J = 0 is forbidden. As seen for the 1S0 →1 P1 transition the spin-orbit
coupling allows one to bypass the first rule, but the second one remains.

The fermionic isotopes of ytterbium have an non-zero nuclear angular momentum I 6=
0. The hyperfine interaction mixes a small fraction of the 3P1 state into the 3P0,
and makes the transition possible (Porsev et al. 2004). This feature, used for high
quality factor optical clocks (Ludlow et al. 2015), does not naturally exists for bosonic
ytterbium due to their null nuclear angular momentum. However it can be artificially
emulated with the method of magnetic mixing described in Taichenachev et al. 2006.
The authors propose to use an external static magnetic field B = Bez to realize the
high-field coupling. The introduction of the static magnetic field adds an extra Zeeman
term on the Hamiltonian ĤB = −µ̂.B, where µ̂ is the magnetic dipole operator, that

2We are here using the spectroscopic notation 2S+1LJ , where S is the total electronic spin, L the
total electronic orbital momentum and J = L + S the total electronic angular momentum.
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couple the 3P0 and 3P1 states with the matrix element (Taichenachev et al. 2006):

~ΩB = 〈3P0|µ̂.B|3P1〉 =

√
2

3
µBB (2.1)

with µB the Bohr magneton.

Figure 2.3 – Scheme of the magnetic mixing technique : (a) A static magnetic field
couples the atomic states 3P0 and 3P1 with strength ΩB. (b) Effective two level system
created by magnetic mixing.

In the regime where this coupling term is small compared to the energy difference
( |ΩB| � ∆ ) the levels 3P0 and 3P1 (|ΩB

∆
| � 1), the eigenstates of the modified

Hamiltonian are given in first order perturbation theory by :

|1S′0〉 ≈ |1S0〉 (2.2)

|3P′0〉 ≈ |3P0〉+
ΩB

∆
|3P1〉 (2.3)

The small contamination of the 3P0 by the 3P1 state opens the 1S0 −→ 3P′0 transition.
Indeed the states 1S0 and 3P1 can be coupled by an optical field of amplitude E with the
associated Rabi frequency ~ΩE = 〈1S0|d̂.E|3P1〉 where d̂ is the electric-dipole operator.

From these expressions the Rabi frequency for transition created by magnetic mixing
writes,

~Ωclock = 〈1S′0|d̂.E|3P′0〉 =
ΩB

∆
〈1S0|d̂.E|3P1〉 = ~

ΩBΩE

∆
(2.4)

The expression of ΩE can be made explicit :

ΩE =

√
6πΓgc2

~ω3
g

√
Icl (2.5)
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where Icl is the light intensity. The effective Rabi frequency associated with the clock
transition is therefore defined by

Ωclock = αB
√
Icl. (2.6)

For 174Yb one has

α =

√
4πc2Γgµ2

B

~ω3
g∆2

≈ 2π × 18.7 mHz.G−1.
(
mW.cm−2

)− 1
2 . (2.7)

The small admixture of state 3P1, that makes the forbidden transition possible, is also
responsible for a broadening of the 3P′0, due to the finite linewidth Γg of the 3P1 state.
The effective spontaneous lifetime is

Γeff ≈ Γg
Ω2

B

∆2
= 2π × 535 pHz×

[
B

1G

]2

(2.8)

Power [mW] Ωclock [Hz] δE [Hz] δB [Hz] Γeff [Hz] Ω2
E/Ω

2
B

12 1200 1800 -2200 1.8× 10−5 ∼ 10−1

0.2 150 30 -2200 1.8× 10−5 ∼ 10−3

Figure 2.4 – Values of the quantities related to the yellow clock transition, computed
for the main power values used in the experiment presented in this thesis. The com-
putation have been made for magnetic field B ≈ 182 G and beam waist w = 80µm
actually used in our experiment.

As seen in Fig. 2.4, the values for the magnetic field B ≈ 182 G and the light intensity
Icl ≈ 120 W/cm2 allows us to neglect the spontaneous decay rate at the timescales of
our experiments. Moreover the power broadening due to the laser light is neglected,
since Ω2

E � Ω2
B.

The presence of the static magnetic field also causes a quadratic Zeeman shift on the
resonance,

δB = −βB2. (2.9)

In addition the coupling laser also induces a differential light shift of the 1S0 → 3P0

transition,
δE = κIcl. (2.10)

The magnetic mixing technique has firstly been described in Barber et al. 2006, where
the value of β = 2π × 66 mHz/G2 has been measured. The value of κ = 2π ×
15 mHz/ (mW/cm2) has been measured in Barber et al. 2008.
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2.1.2 Polarizability of the 1S0 and 3P0 states

The interaction of a monochromatic light field E (r) = E (r) cos (ωLt) with an atom
induces an atomic dipole moment, which interacts with the electromagnetic field. It re-
sults in the apparition of a conservative force derived from the dipole potential (Grimm
et al. 2000) :

Vdip (r, ωL) = −1

4
α (ωL) |E (r) |2 = − 1

2ε0c
α (ωL) I (r) . (2.11)

Here α is the real part of the dynamic complex atomic polarizability α.

The atomic polarizability depends on the light angular frequency ωL and on the internal
state of the atom. Due to their different electronic structures, the polarizabilities of
the 1S0 and 3P0 states, respectively denoted αg and αe present different behavior at a
given wavelength. The values of αg and αe as functions of the wavelength λ can be
computed by summing the contribution to the real part of the complex polarizability
of each optical transition coupling the considered state to higher-lying energy levels.
The result of the computations made from the data in Dzuba et al. 2010 is displayed
in Fig. 2.5.
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Figure 2.5 – Real parts of the dynamic complex atomic polarizability for the ground
state 1S0 (solid blue line) and the excited metastable state 3P0. The vertical dash-
dotted line points the magic wavelength λm while the two vertical dotted lines point
the anti-magic wavelengths λam and λ′am . The polarizabilites are represented here in
units of α0 the atomic unit of electric polarizability.

Another interesting feature of ytterbium atoms is the existence of reachable wavelengths
where the absolute values of the real part of the dynamic polarizabilities for the 1S0

and 3P0 states are equal. More precisely:

• The magic wavelength where αg (λm) = αe (λm). It occurs for 174Yb around
λm ≈ 759.35 nm and has been precisely measured in Barber et al. 2008. The
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magic wavelength are essential in the context of optical clocks, since they allow
to cancel differential light shifts Ludlow et al. 2015.

• The anti-magic wavelength where αg (λam) = −αe (λam). Such wavelengths occur
for 174Yb around λam ≈ 617 nm and λ′am ≈ 1122 nm. This property plays a core
role in the perspective of creating state dependent optical lattices and artificial
gauge fields, pursued by the group (Gorshkov et al. 2010, Gerbier et al. 2010,
Cooper 2011).

2.2 Production of a 174Yb Bose-Einstein condensate

This section presents the main technical aspects involved in the process leading to
the loading of a Bose-Einstein condensate in an optical lattice and the methods used
to characterize the system thereby created.

2.2.1 Vacuum system

In ultracold atomic physics experiments, the collision of the atomic ensemble consti-
tutive of the system under study with the residual background gas may strongly alter
the phenomenon under study. It is necessary to operate under a ultra high vacuum
(UHV) regime. For this purpose our experimental setup is composed of 3 main sections,
separated by differential pumping stages in which very low pressures are maintained.
In our working conditions, these pressures are:

• the oven section (Poven ≈ 10−8 mbar)

• the Magneto-optical trap (MOT) chamber (PMOT ≈ 10−10 mbar)

• the science chamber (Pscience chamber < 10−11 mbar).

The atomic vapor is generated in the oven, where solid ytterbium chips are heated up
to 450 ◦C, the melting point for ytterbium under standard pressure conditions is at 824
◦C. In this section of the experiment, the pressure is maintained around 10−8 mbar by
two 20 L/s ion pumps 3. The oven is separated from the tube surrounded by the coils
of the Zeeman slower by a differential pumping stage. Here the pumping is provided
by another 20 L/s ion pump and the pressure in the Zeeman tube is of the order of
10−9 mbar. The pressure in the MOT chamber is lowered down to 10−10 thanks to
the action of a 40 L/s ion pump assisted by a non-evaporative getter pump. Finally a
pressure under 10−11 mbar is reached in the science chamber, where the experiments
on the optical lattice are performed, thanks to a pump combining a 2 L/s ion pump
and a non-evaporative getter pump.

2.2.2 Laser cooling of 174Yb atoms

We compare here the merits of the different transitions from the perspective of
atoms trapping, cooling and condensation before going in the details of the experi-
mental realization of a Bose-Einstein condensate of 174Yb . The absence of hyperfine

3Medium Vaclon Plus Pumps. Agilent
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2.2. Production of a 174Yb Bose-Einstein condensate

Figure 2.6 – Scheme of the experimental setup: (a) Representation of the oven, the
Zeeman slower and the MOT chamber. The atomic flux generated at the output of
the oven is slowed along the Zeeman slower by the blue laser beam (blue arrow). In
the MOT chamber the atoms are trapped cooled and loaded in the dipole trap DT1
to be transported in the science chamber. (b) Top view of the science chamber. The
atoms routed in the science chamber are loaded in a crossed dipole trap, formed by the
beams DT1 and DT2 and evaporated to reach Bose-Einstein condensation. The BEC
can be loaded in the optical lattice formed by the counter-propagating laser beams HL
(×2) and VL. (c) Front view of the science chamber. The atoms can be probed by the
yellow clock laser and imaged thanks to different imaging beam tuned operating on the
blue transition.
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structure (I = 0) for the ground state of bosonic ytterbium atoms prevents the use of
sub-Doppler cooling techniques. Doppler cooling relies on radiation pressure induced
friction force to cool down the atoms. The achievable minimum temperature is limited
by the fluctuations introduced by the random nature of spontaneous emission to the
Doppler temperature Metcalf et al. 1999 :

TD =
~Γ

2kB
(2.12)

with Γ the linewidth of the transition.

The capture speed vc of a magneto-optical trap is another important experimental
quantity. It corresponds to the maximal speed of an atoms that can be stopped in a
magneto-optical trap (MOT) on the scale of the trap size (i.e. the MOT beam waist
w),

vc =

√
w~kΓ

m
(2.13)

Armed with theses considerations we can have a look on the merits of the different
available transitions.

The large linewidth of the blue transition enables efficient cooling of thermal atoms
with high capture speed (on the order of tens of m/s) and is thus the best candidate
for the Zeeman cooling step. Nevertheless it is not well suited for the cooling and
trapping of atoms in the Magneto-Optical trap: with the broad linewidth comes a high
Doppler temperature, and the leakage of the transition limits the number of atoms
that could be trapped in a magneto-optical trap (in absence of a repumper). The
narrow green inter-combinaison transition enables a much lower Doppler temperature
but also presents a much lower capture velocity vc. Consequently the MOT loading
rate is expected to be somewhat reduced due to this low vc . This transition is a good
candidate for the magneto optical trapping, given a prior precooling step that will be
realized with the blue transition.

2.2.3 Atomic beam and Zeeman slower

The outgoing atomic beam exiting the oven is collimated by a metallic tube of
length L = 10 mm and diameter d = 4 mm, which results in a divergence angle
θ = d/(2L) ≈ 11.5◦ at the entrance of the Zeeman slower.

The average speed of atoms in the thermal vapor that exits the oven is too high
(v0 ≈ 300 m/s) to be trapped by the Magneto Optical Trap. The atoms are thus
slowed down by a counter propagating laser beam resonant with the "blue" 1S0 → 1P1

transition. Two coils wrapped around the slower axis create a magnetic field gradient
and offset to shift the Zeeman sublevels. This shift compensates the change of the
Doppler shift experienced by the atoms when they are slowed down, in order to keep
the transition frequency close to the laser frequency. At the end of the Zeeman slower,
the average axial speed of the atoms has been lowered down to about 10 m/s. The blue
laser beam is made slightly convergent in order to approximately match the transverse
spatial divergence of the atomic beam.
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2.2. Production of a 174Yb Bose-Einstein condensate

The blue laser light at 399 nm is obtained by doubling frequency: 1.5 W of infrared
light at 798 nm provided by a commercial laser source 4 are sent in a bow tie cavity
with a non-linear crystal 5 inside (Scholl 2014;Dareau 2015). We obtain in typical
working condition 240 mW of blue light. A feedback loop driving a piezoelectric ac-
tuator mounted on one of the cavity mirror maintains the resonance condition for the
cavity. The frequency of the blue light is controlled thanks to a modulation transfer
spectroscopy scheme, more extensively described in Dareau 2015, performed in a ytter-
bium hollow cathode lamp with Yb inside and stabilized by correcting the laser current
Bouganne 2018.

2.2.4 Magneto-Optical Trap (MOT)

The atoms emerging from the Zeeman slower are slow enough to be trapped using
the "green" 1S0 → 3P1 inter-combination transition. An optical molasses, applying a
friction force F (r) = −αṙ on the atoms, is created by three counter propagating laser
beams with circular polarization, slightly red detuned compared with the 1S0 → 3P1

transition frequency. In order to actually trap the atoms, a quadrupole magnetic field
is added that introduce a spatial dependency of the light force. The combination of the
light beams and the quadrupole magnetic field forms a Magneto-Optical Trap (MOT).

As mentioned earlier, the inter-combination transition is very narrow and consequently
the capture velocity is small. In order to widen the extent of velocity classes that are
trapped, the transition is artificially broadened by optical saturation and by adding
frequency sidebands.

In practice, we load the magneto-optical trap for 6 ms and end up with about 2× 108

atoms trapped at a temperature on the order of 10µK (Dareau 2015; Scholl 2014 ).
The loading of the MOT can be modelled as a competition between the loading process
at a rate R and one-body losses at a rate κ, which can be formalized by the equation

dN

dt
= R− κN. (2.14)

The solution is :
N (t) =

(
1− e−κt

) R
κ
. (2.15)

In our current experimental configuration, the loading rate is of the order of R ∼ 107 s−1

and the lifetime of the atoms is of the order of κ−1 ≈ 50 s. The working conditions
are thus far from the regime of saturation, N∞ = R/κ ≈ 2× 109. However they allow
to saturate the optical dipole trap in a dozen of seconds, which is sufficient in the
perspective of the production of a Bose-Einstein condensate.

The green light at 556 nm is also obtained using frequency doubling. A narrow-line
distributed feedback fiber laser 6 at 1122 nm delivers 1.7 W of infrared light at 1112
nm after its passage trough a fiber amplifier 7. This laser is sent to another bow-tie

4TA pro, Toptica.
5ppKTP (periodically poled potassium titanyl phosphate) crystal from Raicol crystals.
6Koheras Adjustik. NKT photonics
7Elysa. Quantel laser.
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doubling cavity with a non-linear crystal 8 inside, analogous to the one used for the
blue laser light. The resonance of the cavity is ensured by a similar feedback loop and
the frequency is stabilized thanks to another feedback loop that uses the signal of a
saturated absorption spectroscopy in a glass cell containing iodine (Dareau 2015) to
retro-act on the laser current.

2.2.5 Dipole trap loading and transport

At the end of the MOT loading step, the trapped atomic cloud is compressed by an
increase of the magnetic gradient and its position is shifted to coincide with the focal
point of a high-intensity (P ≈ 45 W) infrared (λ = 1070 nm) fibered laser 9 beam. The
laser beam intensity distribution can be approximated by the one of a focused Gaussian
beam:

I (r) =
2P

πw2 (z)
e−2r2/w2(z). (2.16)

Here z is the propagation axis coordinate, r is the radial distance from the propagation
axis, P the beam power and w (z) the 1/e2 radius defined by

w (z) = w0

√
1 +

z2

z2
R

, (2.17)

with w0 the beam waist and zR = πw2
0/λ the Rayleigh length. The induced dipole

potential, described earlier in 2.1.2, forms a dipole trap, denoted DT1, whose expression
is

VDT1 (r) ≈ −V0 +
1

2
M
(
ω2

radr
2 + ω2

axz
2
)
. (2.18)

Here V0 = Pα (λDT1) / (πε0cw
2
0) is the trap depth and ωax and ωrad are the axial and

radial frequencies, given by:

ωax =
λDT

2πw2
0

√
8V0

M
, ωrad =

√
4V0

Mw2
0

(2.19)

The polarizability of the ground state of 174Yb at the wavelength λDT is αg (λDT) ≈
164α0, with α0 ≈ 1.65× 10−41 C2m2/J the atomic unit of electric polarizability. From
this value we can estimate that the trap created by the laser beam has a depth V0 ≈
kB × 600µK, much higher than the measured temperature of the MOT. The trapping
frequencies ωax and ωrad have been measured (Bouganne 2018; Bosch Aguilera 2019)
thanks to, respectively, center-of-mass oscillations and parametric heating (Savard et
al. 1997) techniques. For the max power of 45 W the measurements give:

ωax ≈ 2π × 8 Hz ωrad ≈ 2π × 1.4 kHz (2.20)

These values are consistent with the ones calculated with a beam waist w = 40µm,
which is independently measured by imaging of the laser beam on CCD camera. The
temperature of the cloud can be measured to be TDT = 40µK, using time of flight

8ppSLT (periodically poled stoichiometric lithium tanalate) crystal from Covesion
9YLR-50-LP-AC-Y12.IPG Photonics
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2.2. Production of a 174Yb Bose-Einstein condensate

expansion (Ketterle et al. 1999). In our operating regime we succeed to saturate the
loading of the dipole trap for loading time for the MOT on the order of ten milliseconds
(see Fig. ??)
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Figure 2.7 – Loading curves for the magneto-optical trap and the dipole trap. The
points are the experimentally measured number of atoms in the traps and the solid
lines are the results of the fits performed according to the model described in 2.14. The
extracted loading rates are RMOT = 3.7×107 s−1 for the MOT and RDT = 4.7×106 s−1.

After loading, the trapped atomic cloud is then transported to the science chamber,
where the vacuum is better and where more optical access is available. The transport
is realized by moving a corner cube mirror on which the dipole trap beam is reflected
before entering in the experiment using a precision translation stage 10. The focus of
the beam is translated over 18 cm in 1.5 s as the stage moves. Almost 80 % of the
atoms are successfully transported to the science chamber, where further evaporative
cooling will takes place (Scholl 2014).

2.2.6 Transfer in a crossed dipole trap and evaporative cooling

In order to achieve quantum degeneracy in the science chamber, we rely on the
evaporative cooling technique. This technique consists in reducing progressively the
depth of the trap to remove the most energetic atoms while letting the remaining ones
thermalize thanks to the inter-atomic collisions. A more comprehensive description of
the experimental procedures used for the evaporative cooling described below can be
found in Dareau 2015 and Scholl 2014.

The use of optical trap to condensate the 174Yb is imposed by the absence of nuclear
spin for this isotope. One of the main drawback of this kind of trap is the impossi-
bility to reduce its depth without reducing its trapping frequency during the whole
evaporative cooling ramp. The slackness of the single-beam dipole trap in the axial
direction prevents the collision rate in the trapped atomic cloud to be high enough
for a proper thermalization during the evaporative cooling. In order to increase the

1027XMS160. Newport
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trapping frequency along the loose direction, a second laser beam 11 at wavelength
λDT2 = 532 nm of power P = 1 W and waist w ≈ 16µm, is applied perpendicularly to
the first one in the horizontal plane, the ensemble forming a crossed dipole trap (CDT).
The real part of the polarizability at λDT2 is equal to α (λDT2) = 262.5α0, that gives
calculated value for the depth of the second trap V0 = kB × 100µK. The focus the
two beams are matched so that the resulting trap total depth is equal to the sum of
each individual trap depth and the trapping frequencies along each axis j are given by
: ω2

j = ω2
j,DT + ω2

j,DT2.

Forced evaporative cooling is performed by ramping down the power of the dipole
traps. The power of the second dipole trap at λDT2 = 556 nm is ramped down to
approximatively 40 mW by controlling the radio-frequency amplitude of an AOM with
a feedback loop on the power measured on a photodiode. The evaporation on the
first infra-red dipole trap requires to control the power on a important dynamic range,
from Pinit ≈ 45 W to Pfin ≈ 200 mW , that is complicated to achieved with a single
feedback loop on an intensity signal. Instead a dual control is used : the power is firstly
reduced down to 10 % of its initial value, slightly above its lasing threshold, by directly
lowering the current send on the laser. Then, in order to reach the desired final value
for the power, a feedforward ramp is sent to a motorized rotation stage 12 to rotate a
half-wave waveplate associated with a Glan-Taylor polarizer 13. At the very end of the
evaporation ramp, when the power goes below 1 % of the initial power, its evolution
is monitored on a photodiode whose signal is send to a feedback loop (Scholl 2014).

The geometry of a crossed dipole trap also makes it critical to minimize the fluctuations
of the pointing of its constitutive laser beams. In our experiment the position of the
foci are imaged on position detectors that are coupled in a feedback loop to motorized
mirror mounts on the optical path of the laser beams in order to keep their crossing
position stable14. In practice, this correction is not done constantly but only performed
several times per day, to counter long timescale (presumably thermal) drifts.

2.2.7 Characterization of the Bose-Einstein condensate

During the forced evaporative cooling step, the depth of the dipole trap is lowered.
The temperature of the atomic cloud decreases and end up reaching the critical phase
space density where Bose-Einstein condensation occurs. This phase transition is exper-
imentally characterized by the appearance of a bimodal distribution on the observed
atomic density profiles. This distribution can be used to extract the condensed fraction
and the temperature of the thermal part (Ketterle et al. 1999). In practice, at the end
of the 4 s evaporation ramp, a Bose-Einstein condensate of 9 × 104 atoms, without a
detectable thermal fraction is obtained. The relative fluctuations on the atom number
in the BEC stay below 5 % when monitored over a period of several minutes.

The final trapping frequencies for the CDT are (ωx, ωy, ωz) = 2π×(80, 240, 250) Hz and
we introduce their geometric average ω = (ωxωyωz)

1/3 = 2π × 153 Hz. At and below
the condensation point, the dynamics of the BEC is dominated by the interaction

11Verdi V-6. Coherent
12DRTM-40. OWIS
13GL15-C26. Thorlabs
14Aligna 4D. TEM Messtechnik
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between the atoms and the Thomas Fermi approximation becomes relevant (Dalfovo
et al. 1999). In this regime the spatial density profile then mirror the shape of the trap
according to

n (r) = max

[
µ− Vtrap (r)

g
, 0

]
(2.21)

Here g is the coupling constant seen earlier 1.2.1 and µ the chemical potential. For an
harmoni trapping potential Vtrap, the density profile can be rewritten as an inverted
parabola,

n (r) = n0 ×max

[
1− x2

R2
x

− y2

R2
y

− z2

R2
z

, 0

]
. (2.22)

Here n0 is the maximum density and the

Rj =

√
2µ

mω2
j

(2.23)

are the Thomas-Fermi radii in each direction j ∈ {x, y, z}. The chemical potential
can be determined as

µ =
~ω
2

(
15aNat

aho

) 2
5

(2.24)

with Nat is the total number of atoms in the BEC, a is the scattering length, and aho =√
~
mω

is the average harmonic oscillator length. For 174Yb atoms in the ground state
the scattering length has been measured in Kitagawa et al. 2008 and Borkowski et al.
2017: a = 105a0. We typically find a chemical potential µ ≈ h×3700 Hz, a peak density
n0 ≈ 9× 1014 atoms/cm3 and Thomas-Fermi radii (Rx, Ry, Rz) ≈ (8.2, 2.7, 2.6)µm.

2.2.8 Imaging system

This section presents the method of absorption imaging used to study the atomic
cloud. To image the atoms, a pulse of light resonant with the transition 1S0 → 1P1

with wavelength λb = 399 nm and linewidth Γ = 2π × 29 MHz is sent on the atoms.
The atoms experience several absorption spontaneous emission cycles that scatter light
randomly and reduce the number of photons measured on the photo-detector. The
spatial density distribution of atoms n along the light propagation direction is related
to the light intensity by the Beer-Lambert law :

dI

dz
= −nσ0

I

1 + I/Isat

(2.25)

where σ0 = 3λ2
b/2π is the resonant cross section, I the light intensity, and Isat =

~Γbω
3
b/ (12πc2) the saturation intensity for the transition, with ωb = 2πc

λb
. The integra-

tion of this relation along the propagation direction of the imaging light pulse, gives
the optical depth of the atomic cloud OD:

OD (r⊥) = σ0

ˆ
n (r⊥, z) dz = − ln

(
If (r⊥)

I0 (r⊥)

)
+
If (r⊥)− I0 (r⊥)

Isat

(2.26)

where I0 is the initial intensity profile and If the intensity profile after the atomic
cloud. One may notice that for intensities small compared to Isat, the second term of
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Figure 2.8 – Absorption pictures (left) and horizontal OD integrated along the vert
direction (right) taken at different times along the evaporation ramp. The red dashed
line fits the remaining thermal fraction while the red dotted line represent the result of
the fit of the integrated density (shown as a solid blue line) by a weighted sum of the
thermal bosonic and of the Thomas-Fermi distribution. The condensed fraction and
the temperature of the thermal fraction are then extracted from the weight and width
of the distribution. Adapted from Bosch Aguilera 2019
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the right-hand side of the equation is negligible and the expression of the optical depth
becomes OD = − ln (If/I0).

In practice, the intensities are measured by taking two successive pictures at the same
position: a first picture in presence of the atoms is taken, that gives If and destruct
the system. Then the camera waits a few milliseconds, the time needed for the atoms
to leave the camera field of view under the action of the gravity, and a second picture
is taken as reference, that gives I0.

Limitations on the exposition time

During the imaging pulse, the atoms probed experience several absorption-spontaneous
cycles that can modify the atomic density distribution of atoms and alter the absorption
signal. Two effects more particularly have to be considered: the Doppler shift and
the heating of the atoms. Indeed the Nph photons absorbed by an atom during the
imaging pulse confer it a momentum Nph~kb that is responsible for a Doppler shift of
∆ω = Nph~k2

b/m. In order to be able to image the atoms, this shift must remains
smaller that the blue transition linewidth Γb, which gives the following upper limit on
the number of absorbed photons:

Nph ≤
mΓb

~k2
b

. (2.27)

Moreover the spontaneous emission of Nph photons by an atom induces a heating in
the two transverse directions of E⊥ = ER/3Nph = ~2k2

bNph/(6m) Grimm et al. 2000
which corresponds to a broadening ∆p⊥ = ~kb

√
Nph/3 of the momentum distribution.

Assuming that the associated spatial broadening during the pulse of duration τ reads
∆r⊥ = ∆p⊥τ/m, we set the limit for the pulse duration so that ∆r⊥ ≤ ps, with ps
the size of a pixel of the imaging device (for the numerical application here we take
ps = 2µm). We end up with the following condition for the imaging pulse:

~kbτ

m

√
Nph

3
≤ ps (2.28)

For I ≈ Isat, the number of absorbed-spontaneously emitted photons for a pulse of
duration τ reads Nph = Γbτ/4 and the previous conditions on the number of absorbed
photons can be translated in terms of pulse duration as:

• τ ≤ 44µs for the Doppler shift

• τ ≤ 20µs for the heating.

The experiments presented in this thesis have been performed with imaging pulse
durations between 10 µs and 20 µs with beam intensities on the order or smaller than
Isat.

Computation of the reference image

As explained above, the computation of the optical density (OD), relies on the hy-
pothesis that the intensity profile I0 taken a few milliseconds after the first one If
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gives a good approximation of the intensity profile of the first beam imaging the atoms
before the atomic cloud: in absence of atoms we would expect to find I0 = If . In
practice the imaging pulse is subject to some fluctuations and the bare computation of
the OD according to the relation (2.26) results in the appearance of spurious fringes,
as observed in Fig. 2.9.

Hopefully, an experiment usually requires to take an important number Nruns of these
pairs {If,i, I0,i} with 1 ≤ i ≤ Nruns. In the following we will treat these 2D images
as 1D vectors of size npixels and assume, in order to lighten the notations, that all the
pictures If,i do not present any atoms. Our aim is to compute a reference image Ĩ0,i

for If,i as a linear combination of all reference images:

Ĩ0,i = β0 +
Nruns∑
i=1

βiI0,i = Xβ, (2.29)

with β = [β0, β1, ... , βNruns ]
> the Nruns× 1 vector and X = [1, I0,1, I0,2, ... , I0,Nruns ] the

npixels× (Nruns + 1) matrix of reference images. Here 1 is the vector of dimension npixels

with all its coefficients equal to 1.

We choose β to be the solution of the minimization problem:

β∗ = argmin
β
‖If,i −Xβ‖2 , (2.30)

which is
β∗ =

(
X>X

)−1
X>If,i. (2.31)

Consequently, ∀ i, the best reference image Ĩ0,i can be computed from If,i by the linear
relation:

Ĩ0,i = X
(
X>X

)−1
X>If,i (2.32)

Finally in presence of atoms we apply the same procedure to If,i deprived from its
pixels in the region of interest to compute the vector

(
X>X

)−1
X>If,i and then we

apply it to the matrix X.

2.3 Experimental realization of the optical lattice

2.3.1 Loading of the optical lattice

Experimental aspects of the optical lattice

The Bose-Einstein Condensate produced in the crossed-dipole trap at the end of
the evaporative cooling step is finally transferred in a cubic optical lattice (OL). The
three retro-reflected laser beams used to form the cubic optical lattice are derived
from the same source, a 5 W TiSaph laser 15 at λL = 759 nm. This laser is split
between three optical paths, each associated with an axis of the lattice {x, y, z} (z
the vertical axis). In each path, an AOM shifts the frequency of the laser beam by

15Titanium-sapphire laser: SolsTiS. M Squared Lasers.
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Figure 2.9 – Comparison between the OD computed with the bare reference image
I0 (a) and the OD computed using the best reference algorithm (b). We observe the
disappearance of the fringes and of the offset on the OD.

(δx, δy, δz) = 2π×(80,−80, 110) MHz so that any interference between two beams from
different arms of the lattice oscillates at very high frequency (tens of MHz) compared
to the motion of atoms (at most tens of kHz), and consequently average out to a
negligible perturbation. In order to further prevent the apparition of such cross-axis
terms, the polarization of the arms of the optical lattice has also been chosen mutually
orthogonal. The intensity of the lasers are controlled by a feedback loop.

Moreover, the laser beam are coupled to polarization maintaining optical fibers with
polarizing beam splitter at the output in order to select the proper polarization prior
to the science chamber. Polarization fluctuations are converted into power fluctuations
and compensated by the intensity feedback loop active on each axis. These feedback
loops monitor the power on each axis thanks to photodiodes and change accordingly
the diffraction efficiency of the AOMs.

We end up with the working parameters for the optical lattice liste in Table 2.10.

Axis Power (mW) Waist (µm) Depth (ER) Trap frequency (2π × Hz)

x 400 115 24.0 42
y 400 125 25.6 38
z 600 150 27.0 33

Figure 2.10 – Typical lattice parameters used in our experiment. Here ER =
~2k2

L

2m
is

the recoil energy at λL the lattice wavelength. The quoted trap frequencies correspond
to the auxiliary potential associated with the gaussian envelope of the laser beams.
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Figure 2.11 – Kapitza Dirac diffraction to calibrate the lattice depth : (a) Absorp-
tion images after TOF of the atomic cloud submitted to a lattice pulse of increasing
duration. Diffraction peaks appears on the positions associated with integer multiples
of the lattice reciprocal vector. (b) The population in each peak is measured and its
evolution with respect to the lattice pulse duration is fitted according to the model
presented in (2.36).

2.3.2 Optical lattice calibration

To calibrate the lattice depths along each axis, of each lattice axis we use a method
known as Kapitza-Dirac diffraction (Kapitza et al. 1933; Ovchinnikov et al. 1999).
This method consists in pulsing the optical lattice on the BEC for a duration τ and
measuring the resulting momentum distribution. In practice we let the atoms fall after
the pulse under the action of gravity and observe the resulting pattern. The principle
is to diffract the matter wave of the condensate on the standing wave. The initial
condensate can be modeled for simplicity as a plane wave with zero momentum p = 0.
When the lattice is switched on abruptly, this plane wave is projected on the Bloch
basis (Denschlag et al. 2002) :

|Ψ (t = 0)〉 =
∞∑
n=0

|φn,q=0〉〈φn,q=0|p = 0〉 (2.33)
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During the lattice pulse, the wavepacket evolves as

|Ψ (τ)〉 =
∞∑
n=0

ũ∗n,q=0 (0) exp

(
− iεn,0τ

~

)
|φn,q=0〉. (2.34)

Here the ũn,q are the (Fourier) coefficients of the Bloch function in the plane wave basis

un,q =
∑
m∈Z

ũn,q (m) e2imkL . (2.35)

After the lattice is suddenly switched off, the momentum distribution

n (p = 2m~kL) =
∣∣∣ ∞∑
n=0

ũ∗n,0 (0) ũn,0 (m) exp

(
− iεn,0τ

~

) ∣∣∣, m ∈ Z (2.36)

remains constant (if one neglect the role of interactions between the atoms, which is the
main limitation of this method). The measured fractions of atoms in each diffraction
n (2m~kL) order oscillate at a rate, function of the lattice depth V0. We use the this
feature of the diffraction pattern to extract the lattice depth. Such measurement is
presented in Fig. 2.11.

Figure 2.12 – Scheme of the evolution in time of the intensity of the trapping laser,
i.e. the crossed dipole-trap (DT), the vertical (VL) and the horizontal (HL) axes of
the lattice, during the loading sequence.

2.3.3 Optical lattice loading

Loading sequence

The experimental parameters of our optical lattice having been measured or cali-
brated, we describe the protocol used for the loading of a Bose-Einstein condensate of
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Chapter 2. Experimental setup

174Yb into it. Firstly we raise quickly (20 ms) the vertical axis z of the optical lattice to
its maximum depth (27ER), slicing the Bose-Einstein condensate in quasi 2D planes.
The goal is to compensate the effects of the gravity on the atoms using the lattice alone.
The crossed dipole trap is then progressively extinguished in 200 ms. The horizontal
arms of the optical lattice are ramped up in 100 ms and the system is finally kept in
this configuration for 50 ms before performing any experiment.

Model for the optical lattice loading
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Figure 2.13 – Distribution of atoms among the singly n = 1, doubly n = 2 and triply
n = 3 occupied sites for different atoms numbers in the BEC. (a) Number of sites with
filling n. (b) Number of atoms in sites with filling n. (c) Fraction of sites with filling n.
(d) Fraction of atoms in sites with filling n. The computations have been performed for
the typical depths V0 = {25, 25, 27}ER used in our experimental setup for an optical
lattice in the Mott-insulator regime, with the trapping frequencies listed in Table 2.10.
The "wiggles" on the curve are a consequence of the fact that the number of lattice
sites is a discrete in the calculation.
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2.3. Experimental realization of the optical lattice

From the protocol used to load the optical lattice a model to compute numerically
the spatial distribution of the atoms over the lattices sites can be inferred. In the model
we assume that the spatial density of the Bose-Einstein condensate evaporated in the
crossed dipole trap can be described according to the Thomas-Fermi approximation
(2.24). The BEC occupies a spatial domain that correspond to an ellipsoid whose
principal axes have lengths 2Rx, 2Ry and 2Rz, with Rj the Thomas-Fermi radius
defined in (2.22). We also assumes that the fast ramp-up of the vertical lattice "slices"
the Bose-Einstein condensate into vertically stacked layers of width d = λL/2, centered
on the position zj = jd corresponding to the minima of the potential. The number of
atoms in the layer centered around zj is given by the relation:

Nj =

ˆ zj+d/2

zj−d/2

ˆ ˆ
nTF (r) dx dy dz ≈ 15Natd

16Rz

[
1−

(
jd

Rz

)2
]

for Rz � d. (2.37)

In the model we assume the absence of redistribution of atomic populations between
the different planes. This assumption is relevant since gravity helps suppress tunneling
which otherwise would not be necessarily negligible at all times. As a result redistri-
bution is negligible at all times.
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Figure 2.14 – Spatial distribution of the atomic density for deep optical lattices loaded
with BEC of (a) 8×103 and (b) 8×104 atoms, using the parameters in 2.10. Only one
quarter of the upper "hemisphere" of the domain populated with atoms is represented.

After the extinction of the crossed-dipole trap, the horizontal axes of the optical lattice
are ramped up adiabatically and the atoms in each layer are distributed over the raising
2D horizontal lattice following its ground state. We end up with a vertical stack of
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Chapter 2. Experimental setup

independent 2D quantum gases that can each be described by a 2D Bose-Hubbard
model with an additional harmonic confining potential, as discussed in 1.2.4. We
consequently combine the local density approximation ( see ?? ) and the Gutzwiller
ansatz to compute the atomic density in each layer, with the population in each layer
determined by 2.37.

The model allows us in particular to determine the total amount (Fig. 2.13) as well
as the spatial distribution (Fig. 2.14) of singly, doubly and triply occupied sites. For
the sake of simplicity we discuss these distribution in the strongly interacting limit
J/U → 0 where the atoms are localized around the lattice sites. We present below the
spatial distribution computed for systems with Nat = 8×103 and Nat = 8×104 atoms.

2.3.4 Superfluid to Mott insulator transition

After the different calibrations of the experimental parameters mentioned above,
one can use time of flight imaging to study the superfluid to Mott insulator transition.
This phase transition has been observed for the first time in Greiner et al. 2002 after a
proposal of Jaksch et al. 1998. The experiment consists in observing the disappearance
of interference peaks of the atoms after a time of flight as the lattice depth V0 is
increased.

For long time of flight, the inter atomic interaction do not play a significant role during
the expansion (Gerbier et al. 2008). The field operator describing the atoms released
from an optical lattice of depth V0 after a free fall of duration t can be expressed on
the Wannier basis (restricted to the fundamental band) as :

Ψ̂ =
∑
i

w (r− ri, t) âi ≈
(m
~t

)3/2

w̃
(mr

~t

)∑
i

ei
mr.ri
~t âi. (2.38)

This asymptotic expression (formally valid in the limit t→∞) establishes a mapping
between the position of atoms in the real space after the time of flight and their initial
momentum in the lattice K :

K =
mr

~t
. (2.39)

This mapping allows us to express the observed atomic density after the time of flight

〈nTOF (K)〉 ≈ G (K)S (K) (2.40)

with the Wannier envelope function

G (K) =
(m
~t

)3

|w̃ (K) |2 (2.41)

and the structure factor

S (K) =
∑
i,j

eiK.(rj−ri)〈â†i âj〉 (2.42)

that determines the fine structure of the interference pattern. Note that S (K) is also
the Fourier transform of the first order correlation function g1 (i, j) = 〈â†i âj〉. This ex-
pression, analogous to the one for the structure factor found for Bragg diffraction exper-
iments on solids, points out privileged vectors in the reciprocal latticeK. (rj − ri) /2π ∈
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2.3. Experimental realization of the optical lattice

Z where the terms of the structure factor add up coherently to form sharp peaks, while
the sum vanishes in the others regions of the reciprocal space.

In order to study the transition, it is useful to consider the expression of the structure
factor S (K) for the two limiting case for the Bose-Hubbard model introduced in 1.2.2:

• In the deep superfluid regime (U/J → 0), we have g1 (i, j) ≈ n i.e. the phase
coherence extends over the whole lattice and the structure factor reads:

SSF (K) ≈ n
∑
i,j

eiK.(rj−ri). (2.43)

The distribution pattern is then made of sharp peaks corresponding to the sites
of the reciprocal lattice, modulated by the Wannier envelope function G. The
Wannier envelope function imposes a cutoff on the sum over the lattice sites in
(2.43) too, responsible for the finite width of the peaks.

• In the deep Mott insulator phase (J/U → 0), there is no phase coherence over
the lattice and the first order correlation function becomes g1 (i, j) ≈ n0δi j. The
the structure factor reads:

SMI (K) ≈ Nsn0 = N. (2.44)

We expect a uniform distribution of atoms, only modulated by the Wannier
envelope G.

In the end the disappearance of the Bragg peaks, whose intensity is a signature of the
transition from the superfluid to the Mott insulator phase, as it reflects the behavior of
the first order correlation function g1. The results of such experiment are presented in
Fig.2.15 . In practice we study the evolution of the visibility defined as (Gerbier et al.
2005)

V =
nTOF (K1)− nTOF (K2)

nTOF (K1) + nTOF (K2)
(2.45)

where K1 = 2kLex is the center of the first order diffraction peak (the center of the
second Brillouin zone) and K1 =

√
2kLex +

√
2kLey on the angle bisector between the

axes, on the same circle of radius 2kL. This non-standard definition of the visibility
normalizes away the contribution of Wannier envelope. Finally we have verified that
the disappearance of the peaks has been proven to be reversible, i.e. it is possible to
restore the superfluid interference pattern by ramping down the lattice depth from the
Mott insulator regime.

Remark: The vanishing of q1 is a necessary but not sufficient condition for the transition
to a Mott-insulator. Indeed the emergence of a uniform structure factor similar to
(2.44) could be a consequence of a heating of the atomic gas. To discard this possible
cause for the vanishing of the interference pattern, we perform experiments consisting
is ramping up the lattice into the Mott-insulator regime. Then we ramp the lattice
down to the superfluid regime and observe the reappearance of the diffraction peaks.
This points out the reversibility of the disappearance of the coherence.

50



Chapter 2. Experimental setup

3 6 9 12 15 18 21
V⊥ [ER]

0.00

0.25

0.50

0.75

1.00

V
isi
bi
lit
y
V

V0 =3 V0 =5 V0 =8 V0 =11

V0 =13 V0 =16 V0 =18 V0 =21

−1

0

1

O
D

Figure 2.15 – Top: Decay of the visibility of the atomic interference peaks when the
lattice depth is increased, as signature of the superfluid to Mott insulator transition.
Bottom : Recorded interference peaks for some of the lattice depths.
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CHAPTER 3

Coherent driving of the clock transition

This chapter focuses on some technical and experimental aspects involved in the
coherent driving of 174Yb atoms on the 1S0 ←→ 3P0 transition: after a brief description
of the experimental setup used to generate the clock laser that probes the atoms on
the clock transition, we introduce a first description for the dynamics of single two-
level atoms evolving in a near resonant monochromatic light field. Then we propose
to study the driving of individual atoms trapped in isolated sites of our optical lattice
using Rabi and Ramsey experiments. The results of the experiments perfomed are
presented along with the formalism used to describe them. From these experimental
results we finally perform the characterization of effects that could alter the coherent
driving of individual atoms trapped on the sites of the optical lattice and, if possible,
propose a protocol to reduce their impact.

3.1 The clock laser experimental setup and
techniques

We present here the optical setup we use to produce a narrow enough laser source
to drive the clock transition. More detail about the setup may be found in the thesis
of previous PhD students on the Yb experiment, in particular in Dareau 2015.

3.1.1 Experimental setup

The light at λclock ' 578 nm is generated using sum frequency generation (SFG). 5
W of light at 1030 nm, generated by an amplified fiber laser16, and 200 mW of light at
1319 nm, generated by a Nd:Yag laser17, are both focused (to about 40µm) inside a
non linear crystal18. The SFG produces about 65 mW of light at λclock ' 578 nm at the
output. This light is sent trough a first AOM, used as fast actuator in the frequency
locking loop. A part of the beam is sent in an iodine spectroscopy setup, used to
calibrate the absolute frequency of the cavity (Dareau 2015). The rest is coupled into
an optical fiber to be sent on the experiment table. The outgoing light from this fiber

16Koheras BoostiK Y10, NKT Photonics
17Mephisto, Coherent
18ppLN (periodically poled lithium niobate) crystal from Coherent
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3.1. The clock laser experimental setup and techniques

is split between a path going to the science chamber via another AOM that controls
the frequency seen by the atoms, and another path going to the high finesse cavity19

(Dareau 2015) used for frequency locking. A scheme of the laser optical chain used to
produce the light at λclock ' 578 nm is displayed in Fig. 3.1.

EOM
PDH

Figure 3.1 – Optical laser chain for the clock laser. The laser light at λclock ' 578 nm
is generated by frequency sum in the crystal. The outgoing light is split between the
iodine spectroscopy setup and a fiber going to the experiment table. The power at the
output of the fiber is then again split between two paths: one used to probe the atoms
in the science chamber and another sent to the ULE cavity for the frequency lock of
the laser. A part of this light is sent back to the experiment table to correct the phase
shift that the propagation in the optical fiber may create. Adapted from Dareau 2015.

In addition, a small part of the light sent to the cavity platform is retro-reflected to the
experiment table where it is used as the second arm of a Michelson interferometer in
order to perform a phase lock. The aim here is to correct the phase changes occurring
in the fiber between the experiment table and the cavity box because of thermal or
mechanical perturbations.

The ultra-low expansion (ULE) cavity consists in a plano-concave Fabry-Perot cavity
made of two high-reflectivity mirrors separated of 47.6 cm by a spherical ULE glass
body. The finesse of the cavity F ' 257000 and the free spectral range ∆FSR '
2π× 3144366(2) kHz have been measured in Dareau 2015. Both are in good agreement
with the specifications. The full width at half-maximum for the cavity resonances is
then δωcav = ∆FSR/F ' 2π × 12 kHz.

ULE cavity temperature control

The ULE cavity is mounted inside a thermal shield whose temperature is regulated
thanks to a Peltier cooler associated with a feedback loop. This device allows us to
set the temperature of the ULE cavity around the zero crossing temperature TZC =
4.13(2) ◦C, experimentally measured in Bouganne 2018 and Bosch Aguilera 2019, where

19ATF-6301, Advanced Thin Films
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Chapter 3. Coherent driving of the clock transition

the thermal expansion coefficient of the cavity vanishes (see Fig. 3.2). At this zero-
crossing point, the cavity length, and consequently its frequency, is the least sensitive
to the temperature fluctuations. In our experimental setup, if the set point of the
regulated temperature of the cavity falls withing one standard deviation away from
the estimate of the zero-crossing temperature (shaded region in Fig. 3.2), the thermal
fluctuation translates into frequency fluctuations whose r.m.s. is smaller than 15 Hz
(Bosch Aguilera 2019).
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Figure 3.2 – Determination of the zero-crossing point of the cavity. The red curve
has been taken by increasing the temperature while the blue curve has been taken
by decreasing it. The vertical line corresponds to the zero-crossing temperature, T0 =
4.13(2) ◦C. The shaded region around it indicates one standard deviation. (Taken from
Bosch Aguilera 2019)

In order to decouple the ULE cavity from the laboratory environment and reduce the
acoustic and thermal noise, it is placed inside a ultra-high vacuum chamber20 where
a pressure on the order of 1 × 10−8 mbar is established. The chamber is mounted on
a vibration isolation platform21. The platform sits inside a wooden box, itself placed
inside a soundproof box22. The temperature inside the wooden box is stabilized thanks
to a chill plate cooled by circulating water from a thermo-regulated chiller23. However,
in spite of all these precautions, the atmospheric conditions (temperature and pressure)
in the laboratory still have a small but measurable influence on the cavity frequency,
on the order of a dozen of Hz. Furthermore a slow linear drift (about −2.3 kHz/day)
of the resonance frequency has been observed over the past 4 years and is imputed to
the aging of the ULE cavity (see Fig. 3.3). The combination of this slow drift and
the environment-related fluctuations, sometimes at the scale of the day, require us to
perform several spectroscopy measurements of the clock transition of 174Yb atoms per
day in order to keep the probe laser resonant with the 1S0 → 3P0 transition.

Cavity frequency lock

The frequency of the cavity is locked thanks to the Pound-Drever-Hall (PHD) technique
(Drever et al. 1983). This technique consists in measuring the light intensity reflected
from the cavity: the reflected field is the result of the coherent superposition of the

20Stable Laser Systems.
21Nano-K 50 BM-10, Minus K Technology.
22Custom-made, Keoda.
23ThermoCube, SSCS.
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field directly reflected by the entrance mirror and the intra-cavity field leaking trough
this mirror, that vanishes on resonance. Using the reflected field for frequency locks
on a high finesse cavity allows a fast response to frequency variations. By contrast the
intra-cavity field response is limited by the time taken by the constructive interference
to build up in the cavity (i.e. the inverse of the cavity linewidth). The incoming
beam is modulated by an Electro-Optic Modulator (EOM) prior to its entrance in the
cavity. The EOM generates sidebands at Ωsb = 2π×4 MHz, which is much larger than
the cavity bandwidth Ωsb � δcav, so that the sidebands are completely reflected. A
fast photodiode24 measures the reflection from the cavity and the beatnote between
the sidebands and the reflected carrier is demodulated with a commercial laser servo
controller 25 to generate the error signal used to lock the cavity, with a slope of 1 mV/Hz.
The output of the servo controller is sent on a frequency synthesizer that drives the
first AOM after the non linear crystal in order to correct the fast fluctuations. The slow
fluctuations and the long-term drifts of the laser frequency are corrected by using a
doubly-integrated output of the servo controller to drive the 1319 nm laser piezoelectric
actuator.
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Figure 3.3 – Drift of the ULE cavity with respect to the 1S0 → 3P0 of 174Yb over
the years. The black hollow dots correspond to measurement of the resonance for
atoms in free space. The red dots correspond to measurements realized with the iodine
spectroscopy setup. The dashed orange line is a linear fit to the data over the last 3
years. It gives a slow drift rate of the resonance frequency of −2.35 kHz/day. (Taken
from Bosch Aguilera 2019)

3.1.2 Imaging the metastable state

As explained in Chap. 2 the experimental system is mainly studied by performing
time of flight absorption imaging on the broad and closed 1S0 →1 P1 blue transition.
Consequently in experiments involving a coherent driving of the clock 1S0 → 3P0

transition, only the atoms in the ground state |1S0〉 ≡ |g〉 can be directly imaged.
Atoms in the metastable state |3P0〉 ≡ |e〉 are repumped to the ground state |1S0〉 to
be imaged on the blue transition. The repumping step is realized by the use of the
3P0 → 4f 145d6s 3D1 transition at λrep. ' 1388.8 nm with width Γrep. ' 2π × 419 kHz

24PDA8A, Thorlabs
25D2-125, Vescent Photonics
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(Bowers et al. 1996). Due to the finite lifetime, τrep. ' 380 ns, of the 3D1 state, the
atoms in this state decay to the 3PJ=0,1,2 manifold with the branching ratios {bJ =
γJ/Γrep.}J=0,1,2 = {0.6, 0.3, 0.1}. The 3P0 and 3P2 states are metastable and thus the
decay channel toward 3P2 is a dead end for the repumping cycle. On the contrary,
the atoms decaying in 3P1 decay through spontaneous emission to the ground state
1S0 with a rate Γg. Since the branching ratio to 3P2 is small, it is possible to repump
atoms in 3P0 to 1S0 with an efficiency Υ close to 1 by performing several cycles on the
3P0 → 3D1 transition (see Fig. 3.4).
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Figure 3.4 – (Left): Scheme of the energy levels involved in the repumping of the
metastable state. (Right): Spectrum of the repumper transition performed with
P = 5 mW, w0 = 500µm, and trep = 500µs.

In practice, the repumping 3P0 → 3D1 is driven by a commercial laser diode26 generat-
ing 20 mW of light at λrep. = 1389 nm. The repumping procedure consists in illuminat-
ing the atoms with a 5 mW collimated beam of about 500µm waist for 500µs. It has
been shown, theoretically (Bosch Aguilera 2019), by solving the optical Bloch equation
associated with this system, that this configuration allows an efficient repumping of
the atoms in the 3P0 state over a frequency span of about 1 GHz, with an efficiency of
about Υ = 0.86. This value is consistent with the one experimentally measured when
performing a spectrum of the repumping transition, as in Fig. 3.4. More details on
the pratical implementation of the repumper optical setup can be found in the thesis
of Bosch Aguilera 2019, in particular concerning the temperature control of the laser
diode.

Remark: If one wants to image the atoms in |e〉 only, the atoms in |g〉 have to be
removed prior to the reumping pulse. This can be made by sending a pulse of blue
light focused at 40µm for a few µs that expels the atoms from the trap.

26NEL Laser Diode, NTT Electronics.
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3.2 Coherent driving of a single atom in optical
lattices

In this section, some theoretical aspects of the coherent driving of a single atom
trapped in an optical lattice on a narrow transition are reminded.

3.2.1 Description of the resonant atom-light interaction

In the rest of this section we will consider the coherent driving of a single 174Yb atom
trapped in an optical lattice by a monochromatic electric field, nearly resonant with
the 1S0 → 3P0 transition, that we will assimilate to a plane wave:

Eclock (r̂) = E0 cos (kclock.r̂− ωLt− φ) . (3.1)

Here ωL is the angular frequency of the coupling laser field, kclock its wave number and
E0 its amplitude. φ is a phase determined by the choice of time origin.

The Hamiltonian describing the coupling between an atom trapped in the optical lattice
and the electric field (3.1) writes:

V̂AL = 〈e|−d.E0|g〉
ˆ

dr
(

Ψ̂†e (r) Ψ̂g (r) + Ψ̂†g (r) Ψ̂e (r)
)

cos (kclock.r̂− ωLt− φ) . (3.2)

Here d is the atomic dipole matrix element coupling the |g〉 state with the |e〉 state,
that we assume to be real, since in practice we will only deal with linear polarization
for the coupling light. The matrix element 〈e| − d.E0|g〉 is the Rabi frequency Ωclock.
Ψ̂g (r̂) (resp. Ψ̂e (r̂)) is the field operator annihilating a boson in state |g〉 (resp. |e〉)
at position r̂, in the optical lattice.

In order to ease the description of the system we perform a change of representation
by applying the unitary transformation T̂ on the system defined by:

T̂ = e−i
ωLt

2
σ̂z , (3.3)

with σ̂z the Pauli matrix, acting on the internal state of the atom. In the new repre-
sentation, the Hamiltonian associated with the atom-light coupling writes:

ˆ̃VAL = T̂ †V̂ALT̂ + i~
dT̂ †

dt
T̂ . (3.4)

Then using the Rotating Wave Approximation, the first term of the expression (3.4)
can be simplified in:

V̂AL =
~Ωclock

2

ˆ
dr
(

Ψ̂†e (r) Ψ̂g (r) ei(kclock.r̂−φ) + Ψ̂†g (r) Ψ̂e (r) e−i(kclock.r̂−φ)
)
. (3.5)

Here we dropped the .̃ for the operators in the rotating representation in order to lighten
the notations. The second term of the expression (3.4) is diagonal and therefore leave
the internal state of the atom unchanged. It is usually associated with the internal
energy term of the Hamiltonian to form the term:

Ĥ0 =
~δL

2

ˆ
dr
(

Ψ̂†g (r) Ψ̂g (r)− Ψ̂†e (r) Ψ̂e (r)
)
. (3.6)
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3.2.2 "Conservation" of the quasi-momentum

The difference between the description of our system made in the previous section
and the textbook case of a two-level atom interacting with a near resonant light field
comes from the fact that for atoms trapped in an optical lattice, the band structure
described in 1.1.1 quantizes the external degree of freedom of the driven atom. The
interplay between the coherent driving of the internal state of the atom in the optical
lattice and its external degree of freedom has to be taken into account.

As seen in 1.1.1, the Bloch functions are the eigenstates of the Hamiltonian describing
the evolution of a particle in an homogeneous optical lattice. It is then possible to
decompose the field operators Ψ̂σ (with σ ∈ {g, e}) according to this basis:

Ψ̂σ (r) =
1

L3/2

∑
n,q

un,q (r) eiqrĉnqσ. (3.7)

Here L is the number of lattice sites in each direction, un,q (r) the Bloch functions and
ĉnqσ the operator annihilating a boson in band n with quasi-momentum q and internal
state σ.

Using this decomposition, the atom-light coupling Hamiltonian written in (3.5) be-
comes:

V̂AL =
~Ωclock

2L3

∑
n,m,q,q′

ˆ
dr
[
u∗nqumq′e

−iqreikclockreiq′rĉ†nq eĉmq′ g + h.c.
]
, (3.8)

setting φ = 0.

The spatial integral
´

dr over the whole lattice can be decomposed as a (discrete) sum
of the contribution of each cell around each lattice site, i.e.:

ˆ
...dr =

∑
ri

ˆ
LCi

...dr =
∑
ri

ˆ
LC

...dr, (3.9)

with ri the position of the lattice site, indexed by i and LCi the lattice cell centered
on ri, defined for a lattice of spacing d by:

LCi =
∏

α=x, y, z

[
ri, α −

d

2
, ri, α +

d

2

]
, (3.10)

denoting ri, α the coordinates of ri. The dependence with i can actually be dropped
thanks to the periodic nature of the lattice.

With this decomposition, we rewrite V̂AL as:

V̂AL =
~Ωclock

2L3

∑
ri

ei(q′+kclock−q).ri

ˆ
LC

dru∗n,q (r) ei(q′+kclock−q).rum,q′ (r) ĉ
†
nq eĉmq′ g + h.c.

(3.11)

The sum on the lattice sites can be reformulated as a sum on the vectors G of the
reciprocal lattice RL (Ashcroft et al. 1976), i.e. the vectors of the from G = 2π

d
p with
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p ∈ Z3.

V̂AL =
~Ωclock

2

∑
G∈RL

δq,q′+kclock+G

ˆ
LC

dru∗n,q (r) eiG.rum,q′ (r) ĉ
†
nq eĉmq′ g + h.c. (3.12)

The expression (3.12) translates the fact that the absorption of a photon from the
clock laser by an atom evolving in the optical lattice, besides changing its internal
state, changes its quasi-momentum and can induce transition to other Bloch bands.
The strength of these transitions, mediated by the lattice, are given by the integral
term of (3.12), under the constraint given by the Kronecker term:

q = q′ + kclock + G. (3.13)

The equation (3.13) stresses the conservation of the quasi-momentum up to a vector of
the reciprocal lattice. This kind of transition is known in the field of condensed matter
as Umklapp processes and are of importance for the description of the conductivity of
crystal at low temperatures (Ashcroft et al. 1976).

3.2.3 Wannier basis formulation

It has been shown experimentally in Bosch Aguilera 2019 that for lattice depths
above a few recoils, the transitions inducing a change in the quasi-momentum of the
atom are strongly suppressed. In this section we propose some quantitative theoretical
results to discuss the single band approximation made in the rest of this chapter.

The coupling Hamiltonian introduced in (3.2) can be computed alternatively: when the
lattice depth increases the Wannier basis, introduced in 1.1.2, can be more convenient
to span the Hilbert space. In this basis the field operators Ψ̂σ rewrites:

Ψ̂σ =
1

L3/2

∑
n,i

wn (r− ri) ân iσ, (3.14)

with ân iσ the operator annihilating a boson in the Wannier state located around ri,
indexed by i ∈ Z3, in band n and with internal state σ. Here wn (r) is the Wannier
function in band n centered around the origin.

Using this decomposition the atom-light coupling Hamiltonian written in (3.5) be-
comes:

V̂AL =
~Ωclock

2L3

∑
n,m, i, j

ˆ
dr
[
w∗n (r− ri) eikclock.rwm (r− rj) â

†
n i eâmj g + h.c.

]
. (3.15)

By substituting the variable r by r′ = r− rj and introducing the vector δ = i− j, the
expression above becomes:

V̂AL =
~Ωclock

2L3

∑
n,m, j, δ

ˆ
dr
[
w∗n (r− dδ) eikclock.rwm (r) eikclock.rj â†n j+δ eâmj g + h.c.

]
(3.16)
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Chapter 3. Coherent driving of the clock transition

Similarly to what has been done in 1.1.3, it is possible to rewrite the Hamiltonian using
the tight-binding approximation: since the Wannier functions decay exponentially from
lattice site around their center, it is possible to neglect in V̂AL the integrals involving
the overlap between the Wannier functions associated with different lattice sites, i.e.
the terms in the sum (3.16) involving |δ| 6= 0. Under this approximation, V̂AL becomes:

V̂AL ≈
~Ωclock

2

∑
n,m, j

[
ηnmeikclock.rj â†n j eâmj g + h.c.

]
, (3.17)

introducing the Lamb-Dicke factor :

ηn,m =

ˆ
w∗n (r) eikclock.rwm (r) dr. (3.18)

Under the approximations made to express (3.17), the coupling strength between the
bands n and m is given by:

ΩL (n,m) = ηnmΩclock (3.19)
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Figure 3.5 – Computation of the modulus square of the Lamb-Dicke factor η0n for
n ∈ {0, 1, 2, 3} in a 1D optical lattice. At high lattice depth, the transition probability
from the ground band to excited bands is strongly suppressed.

Assuming that the 174Yb are initially loaded in the ground band of the optical lattice,
their probability to be send to a higher band of index n due to the absorption of a pho-
ton of the clock laser is given by |η0n|2. The values of this coefficient for n ∈ {0, 1, 2, 3}
and for several lattice depths of a 1D optical lattice are represented in Fig. 3.5. For deep

61



3.3. Coherent driving of an ensemble of isolated individual atoms trapped in a deep optical
lattice.

optical lattices, the transition to higher bands is suppressed. This can be understood
by the fact that for deep optical lattice depths, the Wannier functions are strongly lo-
calized around the lattice sites. Therefore their decomposition on the plane wave basis
is very wide and the translation in the momentum space induced by the term eikclock.r

leave the Wannier functions almost unchanged. Since the Wannier functions belong-
ings to different bands are orthogonal, the term ηnm = 〈wm|eikclock.r|wn〉 ≈ 〈wm|wn〉
becomes small except for the case n = m. This regime where the lattice is deep
enough to suppress the recoil shift of the absorbed photon is called the Lamb-Dicke
regime (Dicke 1953).

For the lattice depths Vx,y,z = {25, 25, 27}ER considered in the rest of this chapter, we
will assume that the transition to higher bands due to the clock laser photon absorption
is small enough to be neglected and all the dynamics under study is in the scope of the
single band approximation. It allows us to reduce the expression of V̂AL to:

V̂AL ≈
~ΩL

2

∑
rj

[
eikclock.rj â†0 j eâ0 j g + h.c.

]
with ΩL = η00Ωclock. (3.20)

In the context of an optical lattice at magic wavelength, the factor eikclock.rj enables
spin-orbit coupling in the dynamics of the atoms. It also at the core of the realization
of artificial gauge fields (Dalibard et al. 2011; Goldman et al. 2014) in 2D optical lattice
at magic wavelength along one direction and at anti-magic wavelengh along the second
one, following the protocol presented in Gerbier et al. 2010.

3.3 Coherent driving of an ensemble of isolated
individual atoms trapped in a deep optical
lattice.

In this chapter we will focus on the simple case of the coherent driving of individual
atoms trapped in an optical lattice deep enough to treat its sites as independent poten-
tial wells. Under this assumption, the relative phase between the lattice sites does not
play a role anymore and the full Hamiltonian describing the dynamics of these atoms
writes:

Ĥ =
∑
j

[
~ΩL

2

(
â†j eâj ge

−iφ + h.c.
)
− ~δL

2

(
â†j eâj e − â

†
j gâj g

)]
, (3.21)

The Hamiltonian (3.21) actually consists in a sum of local Hamiltonians without site
coupling. Consequently it is possible to restrict the description of the system to a
single lattice site filled with one atom. To sum up, after getting rid of the sum on the
lattice sites, in the Lamb-Dicke regime, where the couplings between the fundamental
and the excited bands of the optical lattice are negligible, the Hamiltonian describing
each single trapped atom coupled to the laser field, assumed to be monochromatic, can
be written as:

Ĥ = −~δL

2

(
1̂− σ̂z

)
+

~ΩL

2
(σ̂x cosφ+ σ̂y sinφ) , (3.22)

in the {|g〉, |e〉} basis. Here the σ̂x,y,z are the Pauli matrices, δL = ωL − ω0 is the
detuning between the laser angular frequency ωL and the |g〉 ←→ |e〉 transition angular
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Chapter 3. Coherent driving of the clock transition

frequency ω0 and ΩL the Rabi frequency coupling the two internal states of the atom.
The phase φ is fixed by a choice of the origin of time. The dynamics of such system is
described by the Liouville-Von Neumann equation:

i~
dρ̂

dt
=
[
Ĥ, ρ̂

]
. (3.23)

Remark: The density operator describing one atom can be decomposed on the {1̂, σ̂x, σ̂y, σ̂z}
basis as (Haroche et al. 2013) :

ρ̂ =
1

2

(
1̂ + u.σ̂

)
with u = (ux, uy, uz) and σ̂ = (σ̂x, σ̂y, σ̂z) . (3.24)

The vector u can thus be used to represent the state of the two-level atom and its
modulus is bounded ‖u‖ ≤ 1, with equality only reached for pure states. Consequently
in this framework, any pure state can be represented as a point on a sphere of radius
1, the Bloch sphere, whose "north" (0, 0, 1) and "south" (0, 0,−1) poles correspond
respectively to the states |g〉 and |e〉. The mixed states lies inside the sphere and the
evolution of the system is given by the differential equation:

du

dt
= ΩRuω × u (3.25)

where ΩR is the generalized Rabi frequency, defined by:

Ω2
R = Ω2

L + δ2
L, (3.26)

and uω an unitary vector, defined by:

ΩRuω = (ΩL cosφ, ΩL sinφ, δL) . (3.27)

Since the differential equation on u describing the dynamics of the system is analogous
to the Larmor precession equation, the evolution of the system in the Bloch sphere
picture can be seen as a rotation of the vector u around the vector uω at angular
frequency ΩR. Consequently the propagator associated with the Schrödinger equation
describing the evolution of the system can be written as a rotation operator:

Û (t) = R̂uω (ΩRt) = e−i(ΩRt/2)uω .σ̂ = cos

(
ΩRt

2

)
1̂− i sin

(
ΩRt

2

)
uω.σ̂. (3.28)

In the rest of this chapter we will consider a deep optical lattice (Vx,y,z = {25, 25, 27}ER),
in which a BEC with atom number Natoms < 8 × 103 atoms is loaded, according to
the protocol detailed in 2.3.3, so that the filling of the occupied sites in each of the
superposed 2D lattices are all equal to n = 1. We consequently create a collection of
independent (for experiments shorter than the tunneling time) dipole traps, formed
by the sites of the optical lattice, each filled with a single atoms in |g〉 and lying in
the fundamental band of the lattice. We use this system to study the evolution of the
coherence for a atom driven by our probe laser. For this purpose we perform different
type of experiments on our atoms.
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3.3.1 Rabi flopping

The Rabi flopping experiment is one of the simplest experiment involving the co-
herent driving of two-level atoms. It consists in coherently driving the transition
|g〉 ←→ |e〉 for different durations T . Assuming that all the atoms are initially in
the state |g〉, one can derive from (3.28) that the probability Pg (δL, T ) to measure an
atom in the ground state |g〉 after a coherent driving of the transition by a monochro-
matic field detuned from the transition by δL for a duration T , is given by the relation:

Pg (δL, T ) = 〈g|Û (T ) |g〉 =
Ω2

L

Ω2
L + δ2

L

cos2

(√
Ω2

L + δ2
L

2
T

)
(3.29)

In the Rabi experiments presented in this section, the clock laser driving the atoms
propagates in the plane formed by the two horizontal arms of the optical lattice, with
an angle π

4
with respect to them and is centered on the atomic cloud. The measured

fractions of atoms in |g〉 for a Rabi flopping experiment at ΩL = 2π×1329 Hz are plotted
in Fig.3.11. On may notice that the amplitude of the Rabi oscillations is damped over
time. In the rest of this chapter we will investigate the possible causes for such decay.

3.3.2 Time domain Ramsey spectroscopy

An alternative possibility to study the evolution of the coherence during the driving
of the atom by our laser is to realize time domain Ramsey spectroscopy Ramsey 1986.
This experiment consists in performing a time-domain interference experiment on the
atoms: a first pulse of light send the state of the atoms in the equatorial plane of the
Bloch sphere with a controlled phase. After a time during which the atoms evolve
freely, a second probe pulse is sent on the atoms in order measure the rotation of
the Bloch vector in the equatorial plane. This technique originally used in the field
of Nuclear Magnetic Resonance (NMR) has since been transposed in different fields
involving the coherent driving of a two-level system.

The system is assumed to be initially in the configuration described in 3.3.1 and the
experiments are performed at ΩL (0) ' 2π × 1300 Hz.

The protocol of a time domain Ramsey spectroscopy can be decomposed as follow:

• A first resonant probe pulse (δ = δL − δE = 0), of area ΩLTπ
2

= π
2
, is sent on the

atoms. The propagator associated to this step is:

Ûπ
2

(0) = e−iπ
4
σ̂x . (3.30)

• The light is switched off for a duration Thold. The evolution operator for the
system is:

Ûhold (Thold) = exp

(
− i

2

ˆ Tπ
2

+Thold

Tπ
2

δ (t) dt σ̂z

)
. (3.31)
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Chapter 3. Coherent driving of the clock transition

• A second resonant pulse of duration Tπ
2
is sent on the atoms, dephased by φ with

respect to the first pulse. The propagator for this step is:

Ûπ
2

(φ) = e−iπ
4

(σ̂x cosφ+σ̂y sinφ) (3.32)

• Then the lattice and the coupling light are switched off and, after a time of flight
of 2 ms, the populations of atoms in the different atomic states are imaged.
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Figure 3.6 – Scheme of a Ramsey sequence. The internal state of the probed two
levels is represented in the Bloch sphere picture (red arrow) before and after each laser
pulse, here for δEThold = π

4
and φ = 0.
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Figure 3.7 – Experimental Ramsey fringes. The fraction of atoms in the |g〉 state at
the end of the Ramsey sequence is measured for different dephasings φ ∈ [0, 2π]. Here
the fringes for Thold = {0.02, 3.8, 6.6} ms are represented. The dephasing between
these fringes is a consequence of the non zero detuning δL = δE during the hold time,
that induces a dephasing of δLThold .
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The evolution operator associated to the whole Ramsey sequence is:

ÛR (Thold, φ) = Ûπ
2

(φ) Ûhold (Thold) Ûπ
2

(0) , (3.33)

and the probability to find an atom in |g〉 at the end of the sequence described above
is equal to:

Pg (Thold, φ) = |〈g|ÛR (Thold, φ) |g〉|2 = sin2

(
φ

2
− 1

2

ˆ Tπ
2

+Thold

Tπ
2

δ (t) dt

)
. (3.34)

In particular, when the detuning is constant so that δL = δE, the previous expression
becomes:

Pg (Thold, φ) = |〈g|ÛR (Thold, φ) |g〉|2 = sin2

(
φ− δEThold

2

)
. (3.35)

3.3.3 Time domain Ramsey spectroscopy with spin echo

Another way to probe the evolution of the coherence during the driving of the atoms
by our laser source is to use the spin echo technique (Hahn 1950) initially applied
to the nuclear magnetic resonance (NMR) field. Since this initial demonstration, this
technique and its different variations have been widely transposed to other fields. They
have been more particularly used in order to enhance the dephasing time for supercon-
ducting qubits (Cywiński et al. 2008; Bylander et al. 2011).
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Figure 3.8 – Scheme of a Ramsey with spin echo sequence. The internal state of the
probed two levels is represented in the Bloch sphere picture (red arrow) before and
after each laser pulse, here for δEThold = π

4
and φ = 0. Here the effect of the static

dephasing has been canceled by the intermediate π pulse.

The Ramsey with spin echo sequence consists in:
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• A first resonant probe pulse of duration ΩLTπ
2

= π
2
, is sent on the atoms. The

propagator associated to this step is:

Ûπ
2

(0) = e−iπ
4
σ̂x (3.36)

• The light is switched off for a duration Thold/2. The evolution operator for the
system is:

Ûhold

(
Thold

2

)
= exp

(
− i

2

ˆ Tπ
2

+Thold/2

Tπ
2

δ (t) dt σ̂z

)
(3.37)

• A resonant probe pulse of duration ΩLTπ = π, is sent on the atoms. The propa-
gator associated to this step is:

Ûπ (0) = e−iπ
2
σ̂x = −iσ̂x (3.38)

• The light is switched off for a duration Thold/2. The evolution operator for the
system is:

Ûhold

(
Thold

2

)
= exp

(
− i

2

ˆ Tπ
2

+Tπ+Thold

Tπ
2

+Tπ+Thold/2

δ (t) dt σ̂z

)
(3.39)

• A second resonant pulse of duration Tπ
2
is sent on the atoms, dephased of φ with

respect to the first pulse. The propagator for this step is:

Ûπ
2

(φ) = e−iπ
4

(σ̂x cosφ+σ̂y sinφ) (3.40)

• Then the lattice and the coupling light are switched off and, after a time of flight
of 2 ms, the populations of atoms in the different atomic states are imaged.

The evolution operator associated to the whole Ramsey with spin echo sequence is:

ÛSE (Thold) = Ûπ
2

(φ) Ûhold

(
Thold

2

)
Ûπ (0) Ûhold

(
Thold

2

)
Ûπ

2
(0) , (3.41)

and the probability to find an atom in |g〉 at the end of the sequence described above
is equal to:

Pg (Thold, φ) = |〈g|ÛSE (Thold, φ) |g〉|2 (3.42)

=
1

2

[
1 + cos

(
φ− 1

2

(ˆ Tπ
2

+Tπ+Thold

Tπ
2

+Tπ+Thold/2

δ (t) dt −
ˆ Tπ

2
+Thold/2

Tπ
2

δ (t) dt

))]
.
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Figure 3.9 – Experimental Ramsey with spin echo fringes. The fraction of atoms in
the |g〉 state at the end of the Ramsey sequence is measured for different dephasings
φ ∈ [0, 2π]. Here the fringes for Thold = {2, 10, 10} ms are represented. Here, unlike
the Ramsey case, there no shift of the phase of the Ramsey fringes due to a static
dephasing.

3.4 Sources of decoherence

In order to discuss the results of the study of the dynamics in the deep optical lattice
and later in the 1D optical lattice, the different phenomena that could be responsible
for a dephasing of the system should be considered. In this section we will focus our
attention on the effects of the inhomogeneity induced by the probe and the effects
related to the frequency fluctuations of our probe.

3.4.1 Inhomogeneous dephasing

The probe-induced inhomogeneity over the lattice sites is a first candidate to explain
the decay of the amplitude of the Rabi oscillations. Indeed the laser intensity sent on
the atoms to probe the clock transition is not homogeneous but displays a Gaussian
profile in the directions r⊥ transverse to its propagation axis:

Iclock (r⊥) = I0e−2r2
⊥/w

2
clock (3.43)

where Iclock = 2Pclock/ (πw2
clock) and Pclock is the power of laser light sent on the atoms

and wclock = 80µm the waist of the laser beam. The inhomogeneity of the probe has
two consequences for the Rabi oscillations:

• The coupling between the two internal states of the atoms, given by the Rabi
frequency ΩL = η00Ωclock is now lattice site-dependent since

Ωclock (ri) = αB
√
Iclock (ri). (3.44)
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Here i is the lattice index, η00 the Lamb-Dicke factor introduced in (3.18), B the
amplitude of the magnetic field used for the magnetic mixing (see 2.1.1) and α
the coefficient expressed in (2.7).

• The presence of the probe induces a differential light shift δE (ri) = κIclock (ri)
(see 2.1.1) which creates an inhomogeneity for the detunings over the different
occupied lattice sites δ (ri) = δL − δE (ri).

Consequently, for N individual atoms trapped in a deep optical lattice, the fraction of
atoms in the ground state evolves as:

P g (T ) =
1

N

∑
i

Ω2
L (ri)

Ω2
L (ri) + δ2 (ri)

cos2

(√
Ω2

L (ri) + δ2 (ri)

2
T

)
, (3.45)

where the sum runs over the N populated lattice sites, indexed by i. The expression
(3.45) shows that the inhomogeneity induced by the probe will result in averaging the
Rabi oscillations with different amplitudes and frequencies. While the coexistence of
different amplitudes for the oscillations merely limit the amplitude of the oscillations of
P e (T ) below 1, averaging oscillations at different frequencies results in the dephasing of
the oscillations associated with different lattice sites. The oscillatory part of the signal
P e thus progressively disappears and P e converges toward 1

2
in the limit T →∞.
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Figure 3.10 – Evolution of the effective Rabi ∆ΩR = ΩR (r)− ΩR (0) frequency shift
from the center. For the maximal radius r⊥,max ' 8µm of the optical lattices used for
the experiments presented in this chapter, the shift at the edge is around −10 Hz.

According to the model for the loading of the optical lattice developed earlier in 2.3.3
an optical lattice loaded with 8 × 103 atoms, the typical atom number used in our
experiments, has a maximal radius Rmax ' 8µm. In the following we will denote
Ω0 = ΩL (0) and δ0 = δL − δE (0) respectively the Rabi frequency and the detuning at
the center of the optical lattice (on which the probe is supposed to be pointing) and
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assume that at resonance δ0 = 0. Since the ratio r⊥,max/wclock is small compared to 1, it
is possible to expand the expression for the generalized Rabi frequency ΩR =

√
Ω2

L + δ2

as:
Ω2

R = Ω2
L (r) + δ2 (r) = Ω2

0 − 2Ω2
0

r2
⊥

w2
clock

+O
(

r4
⊥

w4
clock

)
. (3.46)

This expression shows that the maximum difference of angular frequency for the Rabi
oscillations, between an atom at the center of the optical lattice r⊥ = 0 and an atom
at the edge r⊥ = r⊥,max, is equal to:

|∆ΩR| = Ω0

r2
⊥,max

w2
clock

. (3.47)

The numerical computation of ∆ΩR presented in Fig. 3.10 gives a shift of about -10
Hz at the edge of optical lattices loaded with 8× 103 atoms, used in our experiments.

The expression (3.47) points out the fact that the effect of inhomogeneous dephasing
increases with the Rabi frequency applied on the atoms. We use the model for the load-
ing of the optical lattice presented earlier (see 2.3.3) to compute the spatial distribution
of the atoms with respect to the probe beam and simulate numerically the function P e.
The result of the simulation is presented in Fig. 3.11 along with the experimental data
for a Rabi flopping experiment at Ω0 = 2π × 1329 Hz. Although a very small decay of
the oscillations amplitude can be seen over 10 ms for the simulated curve, the damping
of the experimental oscillations is faster than expected for inhomogeneous dephasing
alone.
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Figure 3.11 – Rabi oscillations. The normalized measured population of atoms in the
|g〉 state (blue dots) for different Rabi pulse duration T are compared to the simulated
fraction of atoms in the ground state computed using the loading model for the optical
lattice presented in 2.3.3 (dashed red line).

3.4.2 Frequency fluctuation of the probe

Frequency fluctuations of the clock laser probing the atoms constitute another source
of damping. They are in general difficult to extract from Rabi oscillations where
inhomogeneity and frequency fluctuations of the probe both lead to damping. In a
first attempt to model this effect, it is possible to consider the case of a Gaussian white
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noise of parameter γ. In the case where the laser frequency is resonant with the driven
transition (taking into account the light shift ), the dynamics of the system can be
described by the Optical Bloch Equation equation:

dρ̂

dt
= −i

[
ΩL

2
σ̂x, ρ̂

]
+
γ

2

(
2σ̂zρ̂σ̂z − ρ̂σ̂2

z − σ̂2
z ρ̂
)
, (3.48)

which can be translated in the Bloch sphere picture similarly to (3.25) as:

dux
dt

= −2γux (3.49)

duy
dt

= −ΩLuz − 2γuy (3.50)

duz
dt

= ΩLuy. (3.51)

The solution of this system of ordinary differential equation gives us an expression for
the fraction of atoms in the |g〉 state at the end of a Rabi pulse of duration T :

P g (T ) =
1

2
+

e−γT

2
cos

(√
Ω2

L − γ2.T

)
+

γe−γT

2
√

Ω2
L − γ2T

sin

(√
Ω2

L − γ2.T

)
, (3.52)

assuming γ < ΩL.
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Figure 3.12 – Rabi oscillations in presence of a Gaussian white noise. The fraction of
atoms in the |g〉 state (blue dots) are fitted by the expression found in (3.52) (dashed
red line). The extracted values for ΩL and γ are indicated above the graph.

The measured populations in the |g〉 state for different Rabi pulse durations are fitted
with this model in Fig. 3.12 , giving the estimate γ = 2π × 21 ± 1 Hz for the white
noise parameter γ. The good agreement between the experiment and the model leads
us to consider the frequency fluctuations of a laser as a good "culprit" for the loss of
coherence that translates into a damping of the Rabi oscillations. However using the
Rabi experiment to characterize the probe noise may not be the best option, since the
different effects that play a role during the coherent driving (such as the inhomogeneous
effects) of the clock transition cannot be decoupled. Moreover the long duration of the
pulse makes it very sensitive at long time to any error on the pointed frequency for the
resonance.
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3.5 Noise characterization from time-domain
Ramsey spectroscopy

In order to estimate the spectral width of the probe without dealing with the effect
of the inhomogeneous dephasing: the time-domain Ramsey spectroscopy experiments
involves illumination time of the atoms, inferior or equal to one Rabi period. Conse-
quently the effect of the inhomogeneous dephasing is negligible and the inhomogeneity
of the probe can be neglected for these experiments and all the spatially dependent
quantities can be set to their values at the center of the optical lattice. The Ramsey
spectroscopy experiments can be used to decouple the effects of the probe frequency
fluctuations from the inhomogeneous dephasing and estimate the spectral width of
probe.

For this purpose we can use the formal description of the Ramsey and Ramsey with
spin echo sequences developped earlier in 3.3.2 and 3.3.3, with the detuning δL of the
laser with respect to the probed atomic transition no longer assumed to be constant:
it can be decomposed between its average value δL, set to verify δ0 = δL − δE = 0 and
a stochastic part ξ as:

δL (t) = δL + ξ (t) with ξ = 0. (3.53)

Here the overline ξ stands for the average over the realizations of the stochastic process
ξ. Taking this representation of the frequency fluctuations of the probe, we can re-
express the functions Pg (Thold,φ) derived earlier.

3.5.1 Time domain Ramsey spectroscopy

In the case of the Ramsey spectroscopy without spin echo, taking into account the
frequency fluctuations of the probe changes the integral involved in the expression of
the propagator Ûhold introduced in 3.3.2 which becomes:

exp

(
− i

2

ˆ Tπ
2

+Thold

Tπ
2

δ (t) dt σ̂z

)
= δEThold +WR, (3.54)

with WR the stochastic integral:

WR =

ˆ Tπ
2

+Thold

Tπ
2

ξ (t) dt ≈
Thold�Tπ

2

ˆ Thold

0

ξ (t) dt. (3.55)

The probability to find an atom in |g〉 at the end of the sequence described above is
then equal to:

Pg (Thold, φ) = |〈g|ÛR (Thold, φ) |g〉|2 = sin2

(
φ− δEThold −WR

2

)
. (3.56)

After averaging over different realizations of the random variable WR, this gives:

P g (Thold, φ) =
1

1

[
1− cos (φ− δEThold) e−χR(Thold)

]
(3.57)
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with

e−χR(Thold) = e−iWR (3.58)

= e−
1
2
W 2

R forWR gaussian random variable. (3.59)

The damping function χR can be expressed as a correlation function, by assuming that
the random variable WR obeys gaussian statistics:

χR (T ) =
1

2

ˆ T

0

ˆ T

0

ξ (t) ξ (t′) dt dt′. (3.60)

The autocorrelation function for the noise can be related to the spectral density of the
fluctuations Sξ (ω) thanks to the Wiener–Khinchine theorem, and χR can be rewritten
as:

χR (T ) =

ˆ ∞
0

dω

2π

Sξ (ω)

ω2
4 sin2

(
ωT

2

)
= T 2

ˆ ∞
0

dω

2π
Sξ (ω)FR (ωT ) . (3.61)

The damping function is proportional to the sum of the components of the frequency
noise spectral density, filtered by a Thold dependent function FR (ωT ), represented in
Fig. 3.13, playing the role of a low-pass filter. For the particular case where the noise
is white, i.e. Sξ (ω) = γ, the damping function becomes: χR (Thold) = 1

2
γThold.

To sum up, the Ramsey fringes obtained by scanning the dephasing φ in the interval
[0, 2π] of the second pulse, at different fixed Thold, ends up being a period of a sine
curve, whose phase at φ = 0 is equal to −δEThold and whose contrast decays with Thold

as e−χR(Thold). These fringes are fitted by the function:

Pg (φ) = p0 + p1 cos (φ) + p2 sin (φ) (3.62)

from which the contrast C =

√
p2

1+p2
2

p0
is extracted. The evolution of the contrast with

Thold is represented in Fig. 3.14.

3.5.2 Time domain Ramsey spectroscopy with spin echo

Similarly for the Ramsey spectroscopy with spin echo, taking into account the fre-
quency fluctuations of the probe changes the integral involved in the expression of the
propagators Ûhold introduced in 3.3.3 which become:
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with WSE1 and WSE2 the stochastic integrals:
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The probability to find an atom in |g〉 at the end of the sequence described above is
equal to:

Pg (Thold, φ) = |〈g|ÛSE (Thold, φ) |g〉|2 =
1

2

[
1 + cos

(
φ− WSE2 −WSE1

2

)]
. (3.67)

After averaging over different realizations of the random variable WR, this gives:

P g (Thold, φ) =
1

1

[
1 + cos (φ) e−χSE(Thold)

]
(3.68)

with

e−χSE(Thold) = e−iWSE (3.69)

= e−
1
2
W 2

SE forWSE gaussian random variable. (3.70)

The stochastic integral WSE is defined by:

WSE = WSE2 −WSE1 (3.71)

The damping function χSE can be expressed a correlation function, modulated by a
function equal to 1 in the first half hold time, and equal to -1 in the second. The
autocorrelation function for the noise can be related to the spectral density of the
fluctuations Sξ (ω) thanks to the Wiener–Khinchine theorem, and χR can be rewritten
as:

χSE =
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2π
Sξ (ω)FSE (ωT ) (3.72)

Similarly to the Ramsey case, the damping function is proportional to the sum of
the components of the frequency noise spectral density, filtered by a Thold dependent
function FSE (ωT ), represented in Fig. 3.13. However, for the spin echo case, the filter
function is a pass band, cutting off the low frequency components of the laser noise.
For the particular case where the noise is white, i.e. Sξ (ω) = γ, the damping function
becomes: χSE (Thold) = 1

2
γThold.

The Ramsey fringes obtained with the Ramsey with spin echo sequence, scanning the
dephasing of the last pulse φ in the interval [0, 2π] ends up being a period of a sine
curve, without a phase at the origin and whose contrast decays with Thold as e−χSE(Thold).
Similarly to the Ramsey case, these fringes are fittes by the function in (3.62) and the
evolution of the contrast with Thold is represented in Fig. 3.14. Here we notice that
the decay of the contrast is slower in presence of a spin echo pulse.
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Figure 3.13 – Functions filtering the noise spectral density involved in the computation
of the decay of the contrast of the observed fringes for Ramsey and Ramsey with spin
echo experiments. In the spin echo case, FSE filters out the low frequency component
and cancel the noise of frequency 0, i.e. any static effect.

3.5.3 A simple model for the laser noise

The results on the evolution of the contrast of the fringes at the end of Ramsey with
and without spin echo experiments, represented in Fig. 3.14, can be used to propose a
model for the statistics of the laser frequency noise, and from there, infer the spectral
width of our laser.

The strong difference observed between the timescale for the decays of the Ramsey
and Ramsey with spin-echo fringes discard the Gaussian white noise as a candidate to
model the probe noise: indeed for a Gaussian white noise (i.e. Sω (ω) = γ = constant)
the decay function of the contrast for both protocol would be identical,

χR (T ) = χSE (T ) =
1

2
γT (3.73)

since the correlation function for this noise is a Dirac distribution. Moreover the white
noise presents the additional drawback to be a non-stationary process, which means
that standard deviation of the laser frequency from its mean value would keeps on
increasing over time, while we expect its fluctuations to stay close to the expected
value.

In order to take into account the previous remarks, we propose to model the noise with
a pink noise generated by a Ornstein-Uhlenbeck process: this stationary Gauss-Markov
process is therefore defined by its mean and covariance,

ξ (t) = 0 (3.74)

ξ (t) ξ (t′) =
σ2

2β
e−β(t+t′)

(
e2β.min(t,t′) − 1

)
, (3.75)

from which we extract the expression for the spectral density of noise:

Sω (ω) =
σ2

β2 + ω2
. (3.76)
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3.5. Noise characterization from time-domain Ramsey spectroscopy

This Lorentzian form for the spectral density of noise is consistent with the observation
on some other clock laser locked on a ULE cavity setup (e.g. Westergaard 2010). This
expression for Sω (ω) can be used to compute the damping functions for the fringes
contrast for Ramsey and Ramsey with spin echo experiments.

χR (T ) =
σ2

2β3

(
βT + e−βT − 1

)
≈

βT�1

σ2T 2

4β
(3.77)

χSE (T ) =
σ2

2β3

(
βT + 4e−

βT
2 − e−βT − 3

)
≈

βT�1

σ2T 3

24
(3.78)

The decays of the contrast for the fringes for Ramsey with and without spin echo
are fitted with these functions are fitted with the functions in order to extract the
parameter of the noise:

β = 3 ± 0.6 s−1 (3.79)

σ = 1400 ± 100 s−3/2. (3.80)

0 10 20 30 40 50 60
Thold [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
as
t

e−χR(T )

e−χSE(T )

Ramsey
Spin Echo

Figure 3.14 – Experimentally measured contrast of the fringes for Ramsey (blue
diamonds) and Ramsey with spin echo (red dots) experiments. These dashed lines
of the same color are the decay function, introduced in (3.77), whose parameter have
been found by fitting the experimental points. The observed disagreement at long
times for both protocol may be caused by the difficulty to fit Ramsey fringes when
their contrast become very small. The last two points of each data set has not been
taken into account to fit the parameters of the colored noise model used: it comes from
the fact that contrast for long Thold times, when the contrast of the Ramsey fringes
start to vanish, is hard to fit and is very sensitive to the presence of any outlier point.
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From these values it is possible to extract the characteristic decay times for both
protocol:

τSE =
3

√
24

σ2
≈ 23 ms (3.81)

τR =

√
4β

σ2
≈ 2.4 ms (3.82)

3.6 Conclusion

At the end of this section, we have characterized the different systemic effect that
could alter the result of any further experiment involving the coherent driving of the
clock transition of individual atoms trapped on the sites of the optical lattice. We have
seen that the dephasing due to the inhomogeneity induced by the probe is negligible
at for small atoms number and that pointed out the laser frequency fluctuations as the
main effect responsible for the lose of coherence during the driving of the transition,
which translates into a damping of the Rabi and Ramsey fringes. In order to enhance
the lifetime of the coherence, we performed Ramsey with spin echo experiments, that
allows us to filter out the contribution of the low frequency component of the frequency
noise as well as all the static detuning effects. Consequently, in our further study of
interacting atoms in a 1D optical lattice, we will use this protocol in order to get rid
of all these undesired effects.
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CHAPTER 4

Ramsey spectroscopy in 1D optical lattices

Optical lattice clocks (Ludlow et al. 2015) are a very interesting and promising
platform to study topological states and spin-orbit coupling (SOC) physics and more
generally to simulate condensed matter systems (Dalibard et al. 2011). Experiments
performed on neutral alkali atoms, using optical Raman transitions to couple their
internal states have allowed to investigate these effects in the regime where inter-
particle interactions do not play a significant role. This kind of experiments has been
realized for the first time with ultracold 87Rb atoms by Lin et al. 2011, and later with
40K (Wang et al. 2012) and 6Li (Cheuk et al. 2012) atoms. However the spontaneous
emission and the resulting heating have been limiting factors for the study of many-
body physics (Wang et al. 2012; Cheuk et al. 2012). The use of shaken optical lattice is
an alternative way to implement spin-orbit coupling effects with alkali atoms (Struck
et al. 2012; Aidelsburger et al. 2013; Miyake et al. 2013; Jotzu et al. 2014), but these
experiments (except the one presented in Jotzu et al. 2014) also suffer from heating
issues, related to the external periodic driving of the lattice, that prevent to consider
interacting systems. The introduction of alkaline-earth and alkaline-earth like (AEL)
atoms (such as ytterbium) in the past years, whose internal structure presents long-
lived excited metastable states which can be directly coupled with the ground state by
a single laser light, has allowed to overcome these detrimental effects. The transition
between these two states, forming an effective spin 1/2 manifold (Wall et al. 2016),
can be coherently driven by a clock laser to enable spin-orbit coupling without dealing
with spontaneous emission related heating, putting the study of many-body interacting
systems within reach. Examples of experiments taking advantage of the existence of
a clock transition in lanthanide atoms can be found in Livi et al. 2016 and Kolkowitz
et al. 2017. One must also mention that pure magnetic methods to implement the
spin-orbit coupling without Raman coupling (and thus without their inherent heating)
have been proposed (Anderson et al. 2013; Xu et al. 2013).

In the work presented here the emphasis has been laid on the study of 1D optical
lattices filled with strongly interacting bosonic 174Yb atoms, with an initial average
filling close to n = 1, driven on the 1S0 ←→ 3P0 clock transition. In this chapter
we firstly see how such system, described by the two component Bose-Hubbard model
with coupling light field can be mapped, in the strongly interacting regime, to a doped
Heisenberg model.
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Then we show how it is possible to take advantage to the site dependent phase im-
printed by the clock laser during the driving of the transition to probe the dynamics
of the bosons in presence of a non unitary filling, that can be interpreted using the
classical picture by the presence of "holes" in the lattice: this is implemented by
time-domain Ramsey spectroscopy with spin echo. Finally we propose an approximate
model involving hard-core bosons (HCB) to perform numerical simulations and have
some quantitative insight on the average filling in the system.

4.1 Ramsey spectroscopy in 1D optical lattices

4.1.1 Coupled two-components bosons in a 1D optical lattice

We introduce briefly some theoretical elements that may be useful for further dis-
cussions on the experiments.

Two-component bosons in a unidimentional optical lattice

In the rest of this chapter the system under study is an orthogonal optical lattice
at magic wavelength initially loaded with a BEC made of a small enough number
of 174Yb atoms (Natoms < 8 × 103) to prevent the formation of any doubly occupied
site, according to the loading model introduced in 2.3.3. The lattice depths in the
vertical and in the y horizontal directions are chosen deep enough (Vy,z = {25, 27}ER)
to prevent any tunneling on a timescale of a few seconds, while the lattice depth Vx
on the x horizontal direction is shallower, but still in the range of validity for the
Bose-Hubbard model, and taken as a parameter for the experiments. Consequently
this system can be pictured as a collection of 1D independent optical lattices, with
depth Vx ∈ [8, 25] ER and filled with bosons with two relevant internal states, that are
mapped on pseudo-spins by denoting {|↓〉, |↑〉} the states that correspond respectively
to {|g〉, |e〉}.

Under the single band approximation, i.e. if only the lowest Bloch band of the optical
lattice is populated, the dynamics of the system can be described by the two component
Bose-Hubbard Hamiltonian (Jaksch et al. 1998) in 1D:

ĤBH = −J
∑
i

s∈{↑,↓}

(
â†i,sâi+1,s + â†i+1,sâi,s

)
+
∑
i,s

Uss
2
n̂i,s (n̂i,s − 1)+U↑↓

∑
i

n̂i,↑n̂i,↓. (4.1)

Here âi,s is the annihilation operator for a boson with internal state s in the lattice site
labeled by i and n̂i,s = â†i,sâi,s the associated number operator. The Us s′ are the on-site
interaction energies, resulting of the s wave two-body collisions between one atom in
state s and another in state s′. The tunneling constant J along the x direction does
not depend on the internal state of the atoms, since the optical lattice is set at a magic
wavelength.

In the strongly interacting regime, i.e. J � Us s′ ∀s, s′ ∈ {|↓〉, |↑〉}, a 1D Mott insulator
at unit filling can be mapped to the ferromagnetic Heisenberg model (Duan et al. 2003;
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Kuklov et al. 2003; Altman et al. 2003),

ĤHeis. = −Jz
∑
〈i, j〉

Ŝzi Ŝ
z
j − J⊥

∑
〈i, j〉

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)
, (4.2)

introducing the pseudo-spin operators Ŝi whose components are defined by,

Ŝxi =
1

2

(
Ŝ+
i + Ŝ−i

)
, Ŝyi =

1

2i

(
Ŝ+
i − Ŝ−i

)
, Ŝzi =

1

2

(
â†i,↑âi,↑ − â

†
i,↓âi,↓

)
, (4.3)

with
Ŝ+
i = â†i,↑âi,↓, Ŝ−i = â†i,↓âi,↑. (4.4)

The operators defined above obey the angular momentum commutation rules and com-
mute if they are associated with different lattice sites. In addition, here 〈i, j〉 stands
for the sum on nearest neighbors. Finally the following constants has been introduced,

Jz = 4J2

(
1

Ugg
+

1

Uee
− 1

Ueg

)
and J⊥ =

4J2

Ueg
. (4.5)

In practice, for 174Yb atoms, the values for the on-site interaction energies are very
close one to another Ugg ≈ Ueg ≈ Uee (see Chap. 5) and therefore to their average U .
From this observation it is possible to reduce the two constants previously introduced
to one,

Jz ≈ J⊥ ≈ Jex =
4J2

U
. (4.6)

Jex is called the superexchange coupling constant. Its associated Hamiltonian (4.2)
renders the mechanism involving spin exchange between neighboring bosons mediated
via a virtual state outside of the low energy subspace considered after the perturbation
expansion.

If the unit filling assumption allows to map the Bose-Hubbard model on the ferromag-
netic Heisenberg model, the experimental implementation of the 1D optical lattice in
the strongly interacting regime often comes with the formation of mobile hole-defects,
corresponding to empty sites in the localized picture. Their dynamics is thus taken into
account by adding a doping Hamiltonian to the ferromagnetic Heisenberg one, leading
to the effective Hamiltonian (Essler et al. 2005; Hild et al. 2014),

Ĥeff = ĤHeis. + Ĥd (4.7)

Ĥd = −J
∑
〈i, j〉

s∈{↑,↓}

â†i âj (4.8)

− J2

U

∑
〈i, j, k〉
s∈{↑,↓}

[
â†s, in̂s, j âs, k + â†s, iŜ

s
j âs, k + 2â†s, in̂s, j âs, k

]

where 〈i, j, k〉 stands for the sum over nearest neighbor pairs i, j and j, k with i 6= k
and s flips the internal state s. In Ĥd two kinds of dynamics are involved: the first term
∝ J corresponds to the usual tunneling of the bosons to neighboring "empty" sites,
without any spin flipping, while the second term ∝ Jex renders interaction-mediated
tunneling mechanisms involving spin exchange between neighboring bosons.
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Field coupling for two-component bosons in an optical lattice

The two-component Bose-Hubbard developed in the previous section describes the
dynamics in absence of coupling light. However the preparation and the analysis of
the system is made by driving the atoms on their clock transition. The coupling
laser send on the atoms to drive their clock transition transfers them momentum too.
The component of the momentum transferred along the deep direction is suppressed
by the lattice potential. Consequently, in order to complete the description of the
system under study, we remind from Sec. 3.2 the expression of the Hamiltonian for the
electric-dipole coupling induced by the near resonant monochromatic electric field of
the probe on the atoms in the optical lattice. This Hamiltonian, in the Rotating Wave
approximation (RWA), can be re-expressed in terms of pseudo-spin operators (4.3) as,

ĤAL = V̂L + Ĥδ (4.9)

V̂L (φ) =
~ΩL

2

∑
sites i

[
Ŝ+
i ei(ηi−φ) + Ŝ−i e−i(ηi−φ)

]
(4.10)

Ĥδ = −~ (δL − δE)
∑
sites i

Ŝzi (4.11)

Here ηj = kclock.rj = jη is the local phase imprinted by the recoil induced by the
absorption of a laser photon at site j, introducing the constant η = kLd cos θ, where
θ is the angle formed by the laser beam propagation direction with the x axis of the
lattice, in the horizontal plane and d = λL/2 the lattice spacing. Ĥδ is the detuning
term introduced in 3.2.1, with δE the differential light shift introduced in 2.1.1 and δL

the detuning between the laser angular frequency ωL and the angular frequency of the
driven transition.

By analogy to the individual lattice case studied in Chap. 3.2, it is possible to show
that the expression for the propagator associated with the light coupling term V̂L at
resonance δ0 = δL − δE = 0 writes:

Û (t, φ) = e−i
V̂L(φ)

~ t

=
⊗
sites i

[
cos

(
ΩLt

2

)
1̂− i sin

(
ΩLt

2

)(
ei(ηi−φ)Ŝ+

i + e−i(ηi−φ)Ŝ−i

)]
. (4.12)

In an extended Bloch sphere picture applied on each lattice site, this operator rotates
the vector representing the state of the "atom on site i" around a vector vi in the x−y
plane. From one site to another the vector is rotated by an angle ηj = j.η (see Fig.
4.2). Consequently this propagator will imprint a phase gradient in the 1D optical
lattice, that will result in the formation of a "spin helix" over the lattice sites, in the
Bloch sphere picture.

In the following, we will focus on two particular cases:

• Ûπ
2
for pulses of area ΩLTπ

2
= π

2
,

Ûπ
2

(φ) =
⊗
i

1√
2

[
1̂− i

(
ei(ηi−φ)Ŝ+

i + e−i(ηi−φ)Ŝ−i

)]
. (4.13)
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• Ûπ for pulses of area ΩLTπ = π,

Ûπ (φ) =
⊗
i

[
−i
(

ei(ηi−φ)Ŝ+
i + e−i(ηi−φ)Ŝ−i

)]
. (4.14)

Figure 4.1 – Scheme of "the helix" imprinted on the internal state of the atoms by the
coupling laser, for different angle. Here the internal state of the atoms is represented
by a Bloch vector (red arrows) in the equatorial plane of the Bloch sphere of each
atoms. The spin helix is represented for different values of the angle θ formed by the
laser with the direction of the lattice, oriented along the x axis here.

4.1.2 Time domain Ramsey spectroscopy of 1D optical lattice

The framework introduced or reminded in the previous section allows to describe
the dynamics of strongly interacting two-levels bosons evolving in an unidimensional
lattice, whose internal states are coupled by a resonant monochromatic light field.
More particularly we have seen that the coherent driving of such system in a regime
where the average filling n ≤ 1 imprint a site depend phase on the internal state of the
atoms, that translates into a spin helix in the Bloch sphere picture generalized to an
unidimensional ensemble of atoms. In the rest of this chapter we will see how we can
take use this imprinted phase as a way to labels atoms and monitor their dynamics, in
order to probe the dynamics taking place in our quasi-unidimensional optical lattice
filled with 174Yb atoms.

In order to probe the dynamics of the strongly interacting bosons in the 1D optical
lattice at short timescales (on the order of h/J), the Ramsey with spin echo sequence
described earlier (see 3.3.3) and schematized in Fig. 4.2 is performed on the system
for different lattice depths.

• Initially all the atoms in the 1D optical lattice are assumed to be in the ground
state:

|Ψ0〉 =
⊗

occupied
sites j

|↓〉j. (4.15)
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• The first π
2
of the clock laser transfers the atoms in a coherent superposition of

the |↑〉 and |↓〉 states with a local phase ηj = jη:

|Ψ1〉 = Ûπ
2

=
⊗

occupied
sites j

1√
2

(
|↓〉j − ieiηj |↑〉j

)
. (4.16)

• The atoms evolve "freely", i.e. in absence of coupling light, for a duration Thold/2.

• A π pulse is applied on the system, that reverse the spins of the atoms according
to a site dependent axis.

• The atoms evolve "freely" again for a duration Thold/2.

• Finally the second π
2
pulse with variable phase φ close the internal-state inter-

ferometer that constitutes the whole Ramsey sequence. In particular for φ = 0,
this final pulse remaps the spin helix to the |↓〉 state all over the lattice.

In absence of tunneling the imprinted site-dependent phase ηj on the internal state
of the atoms would be irrelevant and the behaviour of the atoms would be the one
described in Chap. 3 for individual ones. In the experiments presented in this chapter
we study the evolution of contrast of the Ramsey fringes in order to probe the evolution
of the spin helix built over the 1D optical lattice by the first π

2
pulse during the free

evolution time. The π echo pulse is used similarly to Bromley et al. 2018 to filter out
the detrimental dephasing effect pointed out in the previous Chap. 3 (as well as the
static dephasing caused by the light-induced shift of the transition frequency ).

In the following we assume that the evolution of the system during the light pulses is
fully determined by V̂L alone irrespective of Ĥeff . For our system of strongly-interacting
bosons evolving in a 1D lattice, this assumption requires that ΩL � J , to neglect the
motion of atoms at the timescale of the pulses. During the free evolution times, the
dynamics of the bosons is driven by Ĥeff , that involves the two mechanisms discussed
in 4.1.1.

• The superexchange: From the results of similar experiments presented in Hild
et al. 2014, Bardon et al. 2014 and Jepsen et al. 2020, we expect that the su-
perexchange mechanism, responsible for spin transport in the Heisenberg model
picture, will progressively destroy the spiral pattern imprinted on the optical
lattice, with a characteristic time that scales with ~/Jex.

• The tunneling: In the presence of holes, the bosons in the optical lattice will be
able to tunnel to new location where their initial imprinted phase will a priori
no longer match the phase of the local rotation operator. Consequently we ex-
pect that the tunneling will prevent the Ramsey interferometer to close properly,
because of the displacement of the atoms between the pulses, resulting in a de-
cay of the contrast of the Ramsey fringes, on a characteristic time scaling with
~/J . The tunnel-induced decay of the Ramsey fringes contrast will also presum-
ably depends on the number of holes in the lattice, i.e. its initial average filling
n = 〈n̂〉.

84



Chapter 4. Ramsey spectroscopy in 1D optical lattices

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

x

y

|g

|e

Figure 4.2 – Scheme of the Ramsey with spin echo sequence used to probe the dy-
namics in the 1D optical lattice: (a) The atoms in the optical lattice are initially in
the ground state. In the classical picture some lattice sites are empty. (b) the first
π
2
build the spin helix: it transfers the atoms in a superposition of the two internal

states, of the form
⊗

j

(
|↓〉j + eijη|↑〉

)
, up to a global phase factor. Here the product is

made on the occupied lattice sites. (c) the system evolves in absence of coupling light.
(d) The π pulse reverse the vector representing the internal state of the atom on each
site according to the local rotation axis. (e) The system evolves again in absence of
coupling light. (f) The second π

2
pulse remaps the spin helix on the |↓〉 state, up to

eventual dephasing due to the displacement of atoms during the free-evolution times.
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In the experiments detailed in this section we consider an observable, the contrast of
the Ramsey fringes, that results from the contribution of all the sites of the optical
lattice, whereas the experiments presented in Hild et al. 2014 use correlations over a
short range in the lattice to monitor its evolution and are consequently more suitable
to observe the superexchange dynamics.

To sum up the state of the system at the end of the sequence can be expressed in terms
of evolution operators as:

|Ψf〉 = Ûπ
2

(φ) ÛholdÛπ (0) ÛholdÛπ
2

(0) |Ψ0〉. (4.17)

Here Ûhold is the evolution operator obtained by the integration of the Schrödinger
equation for the Hamiltonian Ĥ0 on a duration Thold/2, corresponding to the evolution
of the hard-core bosons on the optical lattice between the light pulses.

The Ramsey fringes are experimentally measured for different Thold and for different
lattice depths and a contrast C is extracted from these data with the same methods
introduced in Sec. 3.3.2. The evolution of this quantity with Thold for different lattice
depth is represented in Figs. 4.3 and 4.4 for an angle of the coupling laser with respect
to the shallow lattice axis of θ = 0 and π

4
respectively. In these figures, the evolution of

the contrast is also represented with Thold rescaled with the characteristic time scales
~/J and ~/Jex involved in the Hamiltonian (4.7), associated with the tunneling and the
superexchange dynamics, respectively. In both cases the rescaling by ~/Jex shows that
the dynamics measured here is faster than the characteristic time associated with the
superexchange dynamics. Moreover for lower lattice depths, between 8ER and 13ER,
all the points seem to collapse on the same decaying curve, when the time is rescaled
by the tunneling time ~/J . This observation is consistent with a description of the
evolution of the system dominated by the dynamics of the holes in the optical lattice,
given by the tunneling terms ∝ J in the Hamiltonian Ĥeff . We can also remark from
the experimentally measured contrast evolutions for the deep lattices Vx = Vy = 26ER,
represented in Fig. 4.5, that for these lattice depths the decay rate does not seems to
depend on the angle that from the coupling laser with the lattice arms. It strengthen
the hypothesis that the momentum transferred by the laser in the deep direction of the
lattice does not play a role in the Ramsey fringes contrast decay.
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Figure 4.3 – Evolution of the contrast for different lattice depths ranging from 8ER

to 26ER for an angle θ = 0 (a) between the coupling laser beam and the horizontal
axes of the optical lattice. The same data are represented as functions of JThold/~ in
(b) and of J2Thold/ (~U) = JexThold/~ in (c). This points out that the evolution of the
systems is faster that the dynamics involving superexchange mechanism. The rescaling
of time by the tunneling time made data for low lattice depths (V0 ∈ [8, 13] ER) to
collapse on a single curve, which is consistent with the tunneling as the main effect
responsible for the damping of the Ramsey fringes contrast.
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Figure 4.4 – Evolution of the contrast for different lattice depth ranging from 8ER

to 26ER for an angle θ = π
4

(a) between the coupling laser beam and the horizontal
axes of the optical lattice. The same data are represented as functions of JThold/~ in
(b) and of J2Thold/ (~U) = JexThold/~ in (c). This points out that the evolution of the
systems is faster that the dynamics involving superexchange mechanism. The rescaling
of time by the tunneling time made data for low lattice depths (V0 ∈ [8, 11] ER) to
collapse on a single curve, which is consistent with the tunneling as the main effect
responsible for the damping of the Ramsey fringes contrast.
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Figure 4.5 – Evolution of the Ramsey fringes contrast measured in a deep lattice
Vx = Vy = 26ER, for an angle of the coupling laser with respect to the axes of the
lattice θ = 0 (black circles) and θ = π

4
(red squares).

In absence of an exact analytically solvable model for the dynamics of the systems,
we choose empirically to fit the evolution of the contrast for these lattice depths V0 ∈
[8, 26] ER with the empirical function

C (Thold) = e−χSE(Thold)e−(γThold)α (4.18)

with α and a characteristic decay time γ left as fit parameters. The prefactor e−χSE(Thold)

in front of the stretched exponential fit function aims to decouple the part of the decay
of the Ramsey fringes due to the frequency fluctuations of the coupling laser, studied
earlier in Chap. 3, from the part related to the tunneling dynamics in the 1D optical
lattice. Here χSE is the function introduced in 3.5.3, with its two parameters {σ, β}
fixed at the values measured in 3.5.3. An example of such fit is represented in Fig. 4.6.
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Figure 4.6 – Evolution of the contrast of the Ramsey fringes over time for 1D optical
lattice with lattice depth 8ER and angle θ = π

4
(hollow black dots). The evolution of

the contrast is fitted with the function (4.18) (dotted line).

89



4.2. Simulation of the Ramsey sequence for the hard-core bosons.

0 200 400
J/h̄ [s−1]

0

100

200

300
Fi
tt
ed

de
ca
y
ra
te
γ
[s−

1 ]
θ = 0
θ = π

4

0 200 400
J/h̄ [s−1]

0.0

0.5

1.0

1.5

2.0

α

Figure 4.7 – Extracted fit parameters from the Ramsey contrast decay, using (4.18)
as fit function for different lattice depths. The experiments are performed with the
coupling laser in the horizontal plane forming an angle θ = 0 (blue squares) and θ = π

4

(red dots) with the shallow axis of the optical lattice. Left: Fitted decay rates γ. Right:
fitted exponent α. We observe that for lattice depths below 15ER, the decay rate of
the contrast seems to scale linearly with J/~. The blue shaded area corresponds to the
lattice depths superior to 15ER.

The extracted decay rates γ and exponents α are represented in Fig. 4.7. For the lower
lattice depths, i.e. for V0 ∈ [8, 13] ER, we observe an apparent linear dependence of
the decay rate γ with the tunneling rate J/~, which is consistent with our hypothesis of
considering the tunneling as the main cause for decay of the Ramsey fringes for these
lattice depths.

To sum up, the results of our Ramsey experiments performed on an ensemble of bosons
trapped in an unidimensional optical lattice, gathered in Figs. 4.3 and 4.4, point
toward the tunneling as the relevant mechanism to explain the decay of the contrast
of the Ramsey fringes with respect to Thold. However the qualitative approach used in
this section, based on a rescaling of Thold by the tunneling time ~/J , fails to give us
quantitative information on the system. The integration of the Schrodinger equation
for the system under study do not lead to any simple analytic solution. In order
to access more quantitative results for the experimentally measured Ramsey fringes
contrasts, we will have to use numerical simulations, whose details are precised in the
next section.

4.2 Simulation of the Ramsey sequence for the
hard-core bosons.

In this section we present the method and the assumptions made to perform nu-
merical simulations of the dynamics of the system during the Ramsey with spin-echo
sequence in order to compare it to the experimental data.
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4.2.1 Description of the system

The results presented in Sec. 4.1.2 points out the tunneling, made possible by the
presence of holes in the optical lattice, as the main mechanism responsible for the
decay of the Ramsey fringes. Since the decay of the Ramsey fringes takes place on a
timescale much shorter than ~/Jex (see Figs. 4.4 and 4.3. ), we will in the following
do an extra approximation to describe the dynamics of our system between the laser
pulses by taking {Ugg/J, Ueg/J, Uee/J} → ∞, that will led us to consider the dynamics
of hard-core bosons. Under these assumptions, the effective Hamiltonian, in absence of
coupling light, reduces to

Ĥeff ≈ ĤHCB = −J
∑
〈i, j〉

s∈{↑,↓}

β̂†i,sβ̂j,s + Ĥδ, (4.19)

with β̂j the hard-core bosons annihilation operators on site j. This approximation is
relevant since J � Ugg, Ueg, Uee (see. Sec. 1.2.1 Fig. 1.5).

This assumption is coupled with the one made in Sec. 4.1.2 that states that the
dynamics is successively driven by the Hamiltonians V̂L and ĤHCB, depending on the
presence or the absence of the coupling light. While V̂L only changes the internal
states of the atoms with a spatial dependence, the Hamiltonian ĤHCB only acts on
their external degree of freedom, up to a global lattice-site-independent phase acquired
on their internal degree of freedom, due to the light shift. Consequently, in order to
simulate the dynamics of p hard-core bosons evolving in a lattice with n sites by exact
diagonalization of the Hamiltonian, it is convenient to span its Hilbert space by a basis
that allows to decouple easily the internal and the motional states of the p bosons. We
introduce the basis defined by

|m,σ〉 =
⊗

{l1,...,lp}, σ

â†lp,σp|∅〉. (4.20)

of D = 2p × Cp
n basis states for the Hilbert space. Here:

• The m ∼ {i1, ..., ip} are the Cp
n possible set of p sites, among the n possible,

occupied by the bosons, i.e. the spatial distribution of the bosons among the
sites of the lattice.

• The σ are the set of the 2p internal states configuration of the p bosons. Given
a spin configuration σ, σ is the configuration with each respective internal state
in the opposite state. We denote [σ]p the state of the pth component of the spin
configuration σ, taken as a p-tuple.

In oder to conduct more easily the simulations, the following additional reasonable
assumptions are made:

• At the timescale of the experiment, there are no losses.

• All the inhomogeneous effects, probe or lattice related, are neglected.
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4.2. Simulation of the Ramsey sequence for the hard-core bosons.

• The frequency fluctuations of the laser are neglected.

Moreover in order to ease the simulation, we use the approximation η = πλL/λclock ≈
4π/3 in the configuration where θ = 0 and use periodic boundary conditions for the
lattice.

The system shall be described by a D = 2p × Cp
n dimensional Hilbert space, but one

may notice that it is impossible for the hard core bosons to reorder the internal state
sequence |σ〉. The kinetic Hamiltonian HK (corresponding to the terms ∝ J in Ĥeff)
can be represented by a d-dimensional hermitian matrix, diagonal by block, with 2p

identical blocks of dimension Cp
n, denoted ĥK . Indeed the tunneling does not depend on

the internal state of the atoms. Consequently to compute the evolution of the system
during the interval of time where the coupling laser is switched off, it is sufficient to
diagonalize the Cp

n-dimensional Hamiltonian ĥK .

4.2.2 Evolution operators in the new basis

Before going into the details of the Ramsey with spin echo sequence for the system,
the evolution operators introduced in (4.13) and (4.14) are expressed on the |m, σ〉
basis.

π
2
pulse:

Ûπ
2
|m0, σ0〉 =

1√
2p

∑
σ

αm0
σ0, σ
|m0, σ〉 with αm0

σ0, σ
=

∏
l∈{l01,...,l0p}
[σ0]p=[σ]p

(
−ie−i[σ]p(ηl−φ)

)
.

(4.21)

Here (σ)p is equal to +1 (resp. −1) when the spin state of the pth atom in the spin
configuration |σ〉 is |↑〉p (resp. |↓〉p). The condition [σ0]p = [σ]p means that the product
runs over components of the spin configuration σ that has been "flipped" with respect
to the initial spin configuration σ0.

π pulse:

Ûπ|m0, σ0〉 = γm0,σ0|m0, σ0〉 with γm0, σ0 = (−i)p
∏

l∈{l01,...,l0p}

e−i[σ0]pηl (4.22)

Evolution between the pulses: The evolution in the time interval between pulses of
coupling light is driven by the Hamitonian Ĥ0 whose expression in the new basis is :

Ĥ0 = −J
∑
σ

∑
〈m,m′〉

|m, σ〉〈m′, σ| − ~δE

∑
l

Ŝzl . (4.23)
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The two terms of the Hamitonian commute and we can write the associated propagator
as:

Ûhold (Thold) |m0, σ0〉 = f (Thold, σ0)
∑
m

βm0,m (Thold) |m, σ〉 (4.24)

Here the βm0,m are the coefficients found by integrating the Schödinger equation for
the Hamiltonian Ĥ0 in absence of static dephasing. The latter effect is rendered by the
factor

f (Thold, σ0) =
∏
p

ei(σ0)pδEThold/4 (4.25)

From the expression of f (Thold, σ0) in (4.25), it comes

∀σ, T, f (T, σ) .f (T, σ) = 1 (4.26)

Remark: If laser frequency fluctuations would have been taken into account in our
model, the product f (T, σ) .f (T, σ) would have been the damping factor of the Ram-
sey with spin echo fringes e−χSE studied in the previous chapter in Sec. 3.3.3. Since
the experiments are performed in a regime where the effect of the laser noise does not
dominate, the corrections made by the factor e−χSE at the considered timescales are
small and for the sake of simplicity, this coefficient is kept equal to 1 in our simulations.

We consider ÛK = ÛholdÛπ (0) Ûhold the evolution operator rendering the evolution of
the system between the two π

2
pulses. This operator acts on the basis states as:

ÛK |m0, σ0〉 =
∑
m1,m2

βm0,m1γm1 ,σ0βm1,m2f (Thold, σ0) f (Thold, σ0) |m2, σ0〉 (4.27)

=
∑
m1,m2

βm0,m1γm1 ,σ0βm1,m2|m2, σ0〉 (4.28)

=
∑
m2

β̃σ0
m0,m2

|m2, σ0〉 with β̃σ0
m0,m2

=
∑
m1

βm0,m1γm1 ,σ0βm1,m2 (4.29)

4.2.3 Ramsey with spin echo sequence

Initial state

We assume that the initial state of the system corresponds to a situation where the
hard-core bosons all the |↓〉 state and localized in p sites among the n of the lattice.
In the new basis, it corresponds to one of the Cp

n states of the form,

|ψ0〉 =
⊗

l∈{l01,...,l0p}∼m0

âl,↓|∅〉 = |m0, ↓1, ..., ↓p〉. (4.30)

Here the lj are p ordered positive integers taken strictly smaller than n, which are the
indexes of the sites where the p bosons can be found.
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First π
2
pulse

A first π
2
pulse is applied to the system, leading to the state:

|ψ1〉 = Ûπ
2

(0) |ψ0〉 =
1√
2p

∑
σ

αm0
σ0, σ
|m0, σ〉. (4.31)

Here |σ0〉 is the spin configuration where the internal state of each atom is in the |↓〉
state.

Free evolution with the echo rephasing

The coupling light field is switched off and the atoms are let evolve during a hold time
interspersed with a π pulse, performing the echo.

|ψ2 (Thold)〉 = ÛK |ψ1〉 =
1√
2p

∑
σ

αm0
σ0, σ

∑
m2

β̃σm0,m2
(Thold) |m, σ〉 (4.32)

Final π
2
pulse and populations measurements

At the end of the Ramsey with spin echo sequence, the populations of atoms in the
ground state |↓〉 are measured. In absence of atomic losses, measuring the fractions of
atoms in |↑〉 or |↓〉 is equivalent to compute the average for the observable :

Ŝz =
1

p

n∑
l=1

Ŝzl . (4.33)

for the state
Ûπ

2
(φ) |ψ2 (Thold)〉. (4.34)

This average can be rewritten as an average for the state |ψ2 (Thold)〉 at the end of the
hold time by introducing the effective φ-dependent observable:

Ŝz (φ) = Û †π
2

(φ) ŜzÛπ
2

(φ) (4.35)

=
1

2p

n∑
l=1

[
−i
(
Ŝ+
l ei(ηl−φ) − Ŝ−l e−i(ηl−φ)

)]
(4.36)

and the fraction of atoms in the ground state is given by,

P (Thold, φ) =
1

2
− 〈ψ2 (Thold)|Ŝz (φ) |ψ2 (Thold)〉 (4.37)

=
1

2
− 1

2ip

n∑
l=1

[
〈ψ2 (Thold)|Ŝ+

l eiηl |ψ2 (Thold)〉e−iφ − h.c.
]

(4.38)

=
1

2
−
[
〈Ŝz (0)〉 cos (φ) + 〈Ŝz (π/2)〉 sin (φ)

]
. (4.39)

We conclude that P (Thold, φ) is a sine function of the phase φ of period 2π, from which
it is thus possible to extract a contrast C (Thold).
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Simulations with Nsites = 12

The results of the simulations conducted for Nsites = 12 (Nsites has to be a multiple
of 3) and η = 4π

3
for different average fillings are represented in Fig. 4.8. The total

rephasing by the spin echo expected for the single particle case is observed and the
fringe contrast damping seems to be maximal around half filling. In order to have
some insight on the presence of finite size effect in our simulations, we compare in the
lower pane of Fig. 4.8 the evolution of the contrast half decay time T1/2 with respect
to the number of sites Nsites ∈ {6, 9, 12} considered in our simulations, for different
initial fillings.

The results of the numerical simulations are compared to the experimental data in
Fig. 4.9. A relative good agreement between the measured contrast and the model
for filling around n = 0.5 is observed. In order to get more quantitative information
on the average filling, we represent in Fig. 4.10 the time T1/2 at which the contrast
reach 0.5 for simulations performed with Nsites = 12 lattice sites. From the results of
the fitting procedures realized in Fig. 4.7, we also extract the quantities T1/2 for the
experimental data as a function of the tunneling rate J/~. The time at half decay are
computed from the fit function, deprived from the prefactor taking into account the
decay of the contrast related to the laser noise. We then perform a linear regression
on these quantities to extract a global T1/2 in units of ~/J and we compare it to the
simulated values in order to determine an estimate of the average filling of the probed
lattices. (see Fig. 4.10). If we assume that the laser frequency fluctuations and the
tunneling are the only mechanisms responsible for the decay of the Ramsey fringes, we
conclude that the average initial filling is equal to n = 0.5± 0.2. However we have to
remark that contribution of any effect, not taken into account in our model, will be
reported to the ones taken into account, and results in a overestimation of the decay
rate. Consequently the value found for the filling may be underestimated.
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Figure 4.9 – Comparison between the measured contrasts at low lattice depths and
the simulated evolution of the contrast for different number of particles in the lattice,
corresponding to different initial average fillings.
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Figure 4.8 – Simulations of the evolution of the contrast C. (a) The results of sim-
ulations performed for Nsites = 12 for different numbers of particles p in the lattice,
corresponding to different initial average fillings n. (b) From the simulations realized
for different Nsites ∈ {6, 9, 12}, we extract the time of half-decay T1/2 for the contrast
for different filling n of the lattice. Here the we have taken η = 4π

3
, which is a good

approximation of the experimental configuration with θ = 0
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Figure 4.10 – Evolution of the time T1/2 at which the simulated contrast of the
Ramsey fringes reach 0.5 for the first time, for different number of particles p computed
in simulations with a number of lattice sites equal to Nsites = 12 (black square). These
simulated quantities are compared to an experimental global T1/2 (blue line) computed
by performing a linear regression on the experimental T1/2 obtained for different lattice
depths, with θ = 0, as a function of the tunneling rate J/~. The blue shaded area
correspond the uncertainty on the experimental T1/2, taken at one statistical standard
deviation and estimated by the linear regression procedure.

The analysis developed in this section of the evolution of the contrast of the Ramsey
fringes gives us an initial average filling further from unity than expected. However
we have to remark that physical quantities measured in our experiments are actually
averaged values over the many isolated unidimensional optical lattices created by our
loading procedure, whose initial average filling can be very different. Moreover, the
local density approximation, introduced in Sec. 1.2.5, assert the presence of shells
in the superfluid phase in the optical lattices, on the margin of the regions in the
Mott-insulator phase. The effect resulting from the presence of such regions are not
taken into account in our model. Lastly the effect of the harmonic auxiliary trapping
potential is not taken into account in our modelization.

4.3 Conclusion

In this chapter we have proposed a first theoretical description of our experimental
unidimensional optical lattice, in the general case with the Bose-Hubbard model, and
in the strongly interacting regime, which leads us to introduce the formalism of hard-
core bosons, that will be detailed later in this dissertation. This modeling coupled
with the work made in the previous chapter allowed us to propose the use of Ramsey
spectroscopy to probe the dynamics of the defects in our 1D optical lattice, by taking
advantage of the phase imprinted by the clock laser on the atoms during the pulse of
the Ramsey sequence. Finally, these results are compared to numerical simulations in
order to have some quantitative information on the average filling of the optical lattice.
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4.3. Conclusion

This information will be considered in our latter study of the 1D systems.
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CHAPTER 5

Zeno effect and adiabatic passages in presence of
atom losses

The long term perspective for our experiment is to use the clock transition of
174Yb atoms to produce artificial gauge field, according to the protocol proposed in
Gerbier et al. 2010. However the losses induced by the inelastic-collision between
174Yb atoms in the 1P0 state raise a supplementary difficulty. Moreover, as we will
see in this chapter, it is experimentally difficult to selectively excite one atoms only in
doubly occupied sites. In this chapter we will see how it is possible to overcome this
issue by taking advantage of the quantum Zeno effect (QZE) arising from the existence
of two-body losses between two atoms in the 1P0 state.

After a presentation of the original quantum Zeno effect, due to repeated measurements,
we will see how it arises an a generalized from in dissipative open quantum systems.
We will reformulate the dynamics in the framework of non-hermitian Hamiltonian. We
will finally show that adiabatic passage experiment can be used to avoid populating
lossy states involving lattice sites populated with a pair of interacting 174Yb atoms
both in the 1P0 state. Indeed the losses will restrict the dynamics to the loss-restriced
subspace of the Hilbert space.

5.1 The quantum Zeno effect and its avatars

In its Physics Aristotle, recount the paradox enunciated by Zeno of Elea:

“If everything when it occupies an equal space is at rest at that instant of time, and
if that which is in locomotion is always occupying such a space at any moment, the
flying arrow is therefore motionless at that instant of time and at the next instant of
time but if both instant of time are taken as the same instant or continuous instant of
time then it is in motion.”

— Aristotle, Physics VI:9, 239b5

The paradox that states that an arrow, while being in motion, is motionless at each
considered instant of the motion, since the duration of a instant is null? Since its for-
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mulation, this paradox had been discussed and refuted by many authors after Aristotle,
until progress in the mathematics of infinitesimal calculus of the late 19th century for-
mally solve it, by introducing the notion of instantaneous speed, coming for differential
calculus.

5.1.1 A toy model for "pulsed" repeated measurements

Zeno’s paradox found a resonance in the realm of quantum physics with the so-called
quantum Zeno effect, highlighted for the first time in the seminal publication of Misra
et al. 1977. The core idea behind the quantum Zeno effect is that it is possible to hinder
or even freeze the dynamic evolution of a quantum system via repeated measurements
of the system. This phenomenon can be illustrated by a simple model inspired by
the proposal of Cook 1988. As previously seen in 3.3.1, the evolution of a two-level
atom driven by a resonant monochromatic field with Rabi frequency ΩL is given by the
Liouville-Von Neumann equation:

i~
dρ̂

dt
=
[
Ĥ, ρ̂

]
with Ĥ =

~ΩL

2
σ̂x, ρ̂ (0) =

1

2
(1− σ̂z) = |e〉〈e|. (5.1)

We note |g〉 and |e〉 the ground and the excited states respectively of the atom and
assume that it is initially in |e〉. The resolution of the differential equations (5.1) gives

ρ̂ (t) =

(
sin2 (ΩLt/2) − i

2
sin (ΩLt)

i
2

sin (ΩLt) cos2 (ΩLt/2)

)
. (5.2)

When the internal state of the atom is measured over time, by considering observables
such as Â = σ̂z, the probability for the atom to be projected back on the |e〉 state is:

Pe (0, τ, 1) = Tr
[
|e〉〈e|ρ̂ (τ)

]
= ρee (τ) =

1

2
[1 + cos (ΩLτ)] , (5.3)

with τ the time after the measurement. From this expression it is possible to see that for
duration τ short enough after the measurement, i.e. if ΩLτ � 1, the probability to mea-
sure again the atom in state |e〉 can be expanded as Pe (0, τ, 1) ≈ 1− 1

4
Ω2

Lτ
2 +O (Ω4

Lτ
4)

and remains close to one. As a consequence if n measurements Â are performed during
a time lapse T at regular intervals separated by τ = T/n, so that ΩLτ � 1, the atom
is likely to be projected every time on the |e〉 state. More precisely, the probability for
the atom to stay in |e〉 over the whole time T is equal to

Pe (0, T, n) =

[
cos2

(
ΩLT

2n

)]n
= 1− Ω2

LT
2

4n
+O

(
1

n2

)
, (5.4)

which can be approximated for n→∞ as:

Pe (0; T ; n) ≈ 1

2

[
1 + e−

1
2

Ω2
LτT
]

with τ = T/n. (5.5)
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Figure 5.1 – Pulsed quantum Zeno effect. The probability to find a two-level atoms
driven by a resonant monochromatic electric field with Rabi frequency ΩL whose inter-
nal state is measured every ΩLτ = 2π×0.1. The superposed light blue curves represent
200 quantum trajectories for such system. For each curve, between each pulse, the sys-
tem evolves driven by the Hamiltonian Ĥ written in (5.1) until the next measurement
(represented as read peaks), where the system is projected in state |e〉 or |g〉 with
probabilities ρee and 1− ρee respectively. The dashed black line is their average. The
green dotted line corresponds to the the Rabi flopping observed in absence of measure-
ment. In average, the dynamics of the internal state of the atom towards |g〉 has been
hindered.

The probability for the atom to stay in the state |e〉 now only decay at rate 1
2
Ω2

Lτ : the
evolution of the internal state of the atom has been slowed down. A simulation of this
example over 200 quantum trajectories is proposed in Fig. 5.1 for ΩLτ = 2π × 0.1.

The quantum Zeno effect has been observed for the first time in Itano et al. 1990 in
an experiment involving beryllium ions, with a protocol following the ideas developed
in Cook 1988: the states |g〉 and |e〉 are two hyperfine sublevels of the ground state of
9Be+, with negligible spontaneous emission from |e〉 to |g〉, coupled by a RF field. Here
the measurement consists in coupling the ground state to a third level |f〉 which has a
strong decay channel to the ground state |g〉 only: the number of photons spontaneously
emitted after each measurement pulse is proportional to the number of ions in the |g〉
state. The experiment showed that it was possible to arbitrarily hinder the transfer to
state |e〉 by increasing the frequency at which the system is probed, highlighting the
Zeno effect.

5.1.2 Zeno effect in the case of continuous measurement

According to the description given by Von Neumann 1932 each pulsed measurement
considered so far projects the system in one of the eigenstates (or eigenspace in case
of degeneracy) of the measured observable Â. However in most cases, a measurement
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actually consists in coupling the system with an external measurement device for a
given period of time. Typically the measurement device has many degrees of freedom
and functionally behaves as an "environment", as in the theory of decoherence. Keeping
this idea in mind, it is possible to reconsider the quantum Zeno effect as a consequence
of the coupling between the state of the system under study and a this large external
environment. In particular, if the measurements are not read, the state of the system
after each measurement can only be described as statistical mixture of the possible
outcomes. Moreover, if the time between two unread measurements is much shorter
than the characteristic timescales at which the system under study evolves, it is possible
to write its evolution in the continuous measurement limit, using the same Born-Markov
approach leading to the quantum master equation (Haroche et al. 2013, Breuer et al.
2007). Consequently the dynamics of the system can be described by a Lindblad master
equation (Lindblad 1976; Gorini et al. 1976):

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
+
γ

2

[
2Âρ̂Â† − Â†Âρ̂− ρ̂Â†Â

]
, (5.6)

with γ characterizing the frequency and the strength of the measurements.
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Figure 5.2 – Quantum Zeno effect. Evolution of the population in the excited state
|e〉 in the model presented in (5.7) for different measurement frequencies. When the
frequency of the measurement becomes much higher than the Rabi frequency, the
internal dynamics of the atoms is hindered.

The continuous unread measurement limit for the model described in 5.1.1, with Â = σ̂z
and γ = 1/τ , gives the following master equation to describe its evolution:

dρ̂

dt
= −i

ΩL

2
[σ̂x, ρ̂] +

1

2τ

[
2σ̂zρ̂σ̂

†
z − σ̂†zσ̂zρ̂− ρ̂σ̂†zσ̂z

]
. (5.7)

The probability to find the atom in its initial state |e〉 at time t in presence of repeated
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measurements Â = σ̂z at frequency τ−1 is given by:

〈e|ρ̂ (t) |e〉 = ρee (t) =
1

2
+
K+e−K−t −K−e−K+t

2 (K+ −K−)
(5.8)

K± =
1±

√
1− Ω2

Lτ
2

τ
. (5.9)

From the expression (5.9), we notice that the transition from under- to over- damping
of ρee as τ decays, occurring for ΩLτ = 1.

In the limit where ΩLτ � 1, this expression can be approximated as ρee (t) ≈ 1
2

[1 + e−γeff t]
with γeff = 1

2
Ω2

Lτ . This decay rate is the same as the one found in (5.5). The proba-
bility to find the atom in |e〉 decays exponentially, with a characteristic time that can
be tuned by the choice of τ . For infinitely fast measurements (τ → 0), it is possible to
"freeze" the atom in its initial state.

5.1.3 Losses induced quantum Zeno effect

The reasoning developed above can be extended (Haroche et al. 2013, Breuer et al.
2007), in the framework of generalized measurements and using the Kraus sum rep-
resentation Kraus et al. 1983, to any linear quantum process which does not involve
a read-out measurement. It is especially the case for open quantum system facing
two-body inelastic collisions-induced losses, which corresponds to the situation stud-
ied in our experiments. More precisely the experimental apparatus under study in
this chapter consists in a collection of independent dipole traps (the sites of the opti-
cal lattice), initially filled with two interacting bosons, each with two internal states
{|g〉, |e〉}, whose unitary evolution, enclosed in the Hamiltonian Ĥ(2) (that will be ex-
plicited later) is interrupted by stochastic inelastic two-body losses. The full Lindblad
master equation describing such system is:

dρ̂2

dt
=− i

~

[
Ĥ(2), ρ̂2

]
+

Γgg
4

(
2âgâgρ̂2â

†
gâ
†
g − ρ̂2â

†
gâ
†
gâgâg − â†gâ†gâgâgρ̂2

)
,

+
Γeg
2

(
2âeâgρ̂2â

†
gâ
†
e − ρ̂2â

†
gâ
†
eâeâg − â†gâ†eâeâgρ̂2

)
(5.10)

+
Γee
4

(
2âeâeρ̂2â

†
eâ
†
e − ρ̂2â

†
eâ
†
eâeâe − â†eâ†eâeâeρ̂2

)
.

Here âg (resp. âe) is the annihilation operator for a boson in state |g〉 (resp. |e〉) and
Γi,j are the two-body losses rates for a boson in state i and the other in state j.

In our particular case, there is no inelastic collision between two atoms in the ground
state |g〉 (Γgg = 0) and that at the timescales of our experiments, the loss rate for the
inelastic collisions between two atoms in different states is negligible (Γeg � Γee). We
thus rewrite the master equation (5.10) as:

dρ̂2

dt
= − i

~

[
Ĥ(2), ρ̂2

]
+

Γee
4

(
2âeâeρ̂2â

†
eâ
†
e − ρ̂2â

†
eâ
†
eâeâe − â†eâ†eâeâeρ̂2

)
, (5.11)
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which is analogous to the Lindblad master equation (5.6) taking γ = Γee and Â =
1√
2
âeâe as the generalized non-Hermitian measurement operator.

5.2 Effective Non Hermitian Hamiltonian

5.2.1 Effective dynamics and quantum jumps

The master equation (5.11) can be unraveled as a way to compute the average of
the quantum trajectories of each individual system which follow an unitary evolution
interspersed with stochastic quantum jumps (here the inelastic two-body collisions).
This point of view can be emphasized by rearranging the different terms of the master
equation (5.11) as:

dρ̂2

dt
= − i

~

(
Ĥeff ρ̂2 − ρ̂2Ĥ

†
eff

)
+ L̂eeρ̂2L̂

†
ee (5.12)

with

Ĥeff = Ĥ(2) − i~
2
L̂†eeL̂ee and L̂ee =

√
Γee
2
âeâe =

√
ΓeeÂ. (5.13)

The first term of the r.h.s. of the master equation (5.12) expresses an evolution of
the system driven by the effective non-Hermititan Hamiltonian Ĥeff , according to the
Schrödinger equation,

i~
d|ψ〉
dt

= Ĥeff |ψ〉, (5.14)

interrupted at random times by sudden quantum jumps corresponding to a two-body
inelastic collision,

|ψ〉 → L̂ee|ψ〉, (5.15)

These jumps occur with a probability density P (t), such that:

dP = 〈ψ|L̂†eeL̂ee|ψ〉dt = Tr
[
L̂eeρ̂2L̂

†
ee

]
dt. (5.16)

The occurrence of these random events are enclosed in the second term of the r.h.s of
(5.12). This picture of the dynamics of the system is at the core of the Monte-Carlo
wave-function (MCWF) approach has been originally developed in Dalibard et al. 1992;
Dum et al. 1992; Plenio et al. 1998 to deal with dissipative process in quantum optics,
in particular when only averaged predictions matters, as it is the case for the quantum
master equation point of view.

In the case of inelastic two-body collisions induced losses, the effect of the dissipative
term L̂ee results in sending a lattice site initially lying in the sub-Hilbert space defined
by 〈â†gâg+â†eâe〉 = 2, and spanned by the Fock states {|2〉g⊗|0〉e, |1〉g⊗|1〉e, |0〉g⊗|2〉e},
to the vacuum state |0〉g ⊗ |0〉e where its dynamics stops. In a context where the
experiment is performed on a large number of independent and identical lattice sites
initially filled with two bosons, only the average dynamics of the "surviving" ones,
described by Ĥeff will be recorded. Consequently, we can restrict the description of
our system to the hyperplane of the Hilbert space generated by {|2〉g ⊗ |0〉e, |1〉g ⊗
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|1〉e, |0〉g ⊗ |2〉e} and not worry about the two-body losses are then rendered by the
non-unitarity of the evolution, due to the anti-Hermitian part of Ĥeff that will damp
the norm of the wave-function during its evolution.

In the rest of this chapter we adopt this picture and describe the system as a doubly-
occupied lattice site evolving according to a non-Hermitian Hamiltonian Ĥeff .

5.2.2 Interacting bosonic pairs in a deep optical lattice

Before going further in our study of the quantum Zeno effect for bosons pairs trapped
in the sites of an optical lattice, we have to do a little detour to precise some aspects
of our experimental setup and complete the model established above.

As seen in section 1.2.4 the gaussian nature of the beam constitutive of the optical
lattice creates a spatial modulation of the lattice depth that can be rendered by adding
an auxiliary harmonic confining potential to the one of the homogeneous optical lattice.
It results in a inhomogeneous distribution of atoms over the lattice. In this chapter we
will pay a special attention to the case of a deep optical lattice at magic wavelength
λm = 759.35 nm, in the strongly interacting regime (J/U → 0), with only singly (n = 1)
and doubly (n = 2) occupied sites. This situation is experimentally realized by loading
an optical lattice with depths Vx, y, z = {25, 25, 27}ER with a BEC of Nat ≤ 6 × 104

atoms so that the fraction of triply occupied sites is small (below 10 %) if not negligible,
according to the loading model presented in section 2.3.3. Moreover we may consider,
similarly to Bouganne et al. 2017 that the triply occupied sites are emptied quickly by
three-body collisions mechanisms and do not play any significant role.

For the considered lattice depths, the tunneling between sites can be neglected ( h/J ≈
500 ms at 25ER) and the lattice sites can be treated as a collection of independent traps
with one or two bosons. These atoms are probed on the 1S0 → 3P0 clock transition by
a laser beam that propagates in the horizontal plane, along the x axis of the optical
lattice. The high lattice depth of the trap ensures to work in the Lamb-Dicke regime.

In the rest of this chapter we adopt the notations for the internal states of the atoms:
|g ≡ 1S0〉 and |e ≡ 3P0〉.

Model for singly occupied sites

As explained in Chap. 2, according to the loading model for the optical lattice
detailed in 2.3.3, a Mott-insulator with a core of doubly-occupied sites is necessary
surrounded by a ring of singly-occupied sites, because of the presence of an auxil-
iary trapping potential. Using the same language as for the doubly-occupied sites,
the dynamics in the singly-occupied sites is described by the Liouville-Von Neumann
equation:

dρ̂1

dt
= − i

~

[
Ĥ(1), ρ̂1

]
, (5.17)

with ρ̂1 the density matrix for singly-occupied sites and Ĥ(1) the Hamiltonian:

Ĥ(1) = −~ΩL

2

(
â†eâg + â†gâe

)
− ~δLâ

†
eâe (5.18)
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where ΩL is the Rabi frequency and δL = ωL − ω0 the detuning of the coupling laser,
already introduced in Chap. 3.

This Hamiltonian can put into matrix from, in the { |g〉, |e〉 } basis that span the
sub-Hilbert space in which evolves the singly occupied sites as:

Ĥ(1) =

(
0 ~ΩL

2
~ΩL

2
−~δL

)
. (5.19)

In the following, at a given Rabi frequency ΩL, we will denote |−〉 the eigenstate of
Ĥ(1) which converges toward |g〉 in the limit δL → −∞. The other eigenstate will be
denoted |+〉 and converges toward |g〉 in the limit δL → +∞.

Model for doubly occupied sites

The non-dissipative dynamics of the doubly-occupied sites enclosed in the Hamilto-
nian Ĥ(2) is the results of the elastic collisions on the one hand and of the electromag-
netic coupling on the other hand. The Hamiltonian can be express in the Rotating
Wave approximation (RWA) (see Chap. 3) as:

Ĥ(2) =
Ugg
2
â†gâ

†
gâgâg +

Uee
2
â†eâ
†
eâeâe + Uegâ

†
eâ
†
gâgâe −

~ΩL

2

(
â†eâg + â†gâe

)
− ~δLâ

†
eâe.

(5.20)

The energy levels associated to the different possible internal configurations are shifted
by the inter-atomic on-site interactions energies Ui,j. These energies can be expressed
from the Wannier function w (r) (which at magic wavelength is independent of the
internal state for a lattice) as:

Uij =
4π~2

m
aij

ˆ
|w (r)|4 dr. (5.21)

Here i, j ∈ {e, g} and the aij are the scattering lengths characterizing the elastic
collisions between an atom in state i and an atom in state j.

Two 174Yb atoms in the |g〉 state only interact trough elastic collisions. However if one
or both atoms are in the state |e〉, inelastic two-body collisions are also possible for
pairs of atoms with one or two of them in |e〉, at rates Γeg and Γee respectively. The
coefficients Γi,j are related to the Wannier functions by the relation:

Γij = βij

ˆ
|w (r)|4 dr (5.22)

involving the coefficient βij, analogous, up to a factor ~/2, to the coupling parameter
gij = 4π~2aij/m introduced in 1.2.1 that characterizes the s-wave contact interactions
between atoms27 .

27The quantity −~
2βij may be considered as the imaginary part of a complex coupling coefficient
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In the end, using the derivation made in 5.2, we can express the effective non-Hermtitian
Hamiltonian describing the dynamics of the doubly occupied sites as:

Ĥeff = Ĥ(2) − i
~Γeg

2
n̂en̂g − i

~Γee
4
n̂e (n̂e − 1) . (5.24)

Here n̂α = â†αâα with α ∈ {g, e}.

In the Fock basis { |gg〉 = |2〉g|0〉e, |eg〉 = |1〉g|1〉e, |ee〉 = |0〉g|2〉e } corresponding to
the different possible configurations for the internal degrees of freedom of the trapped
bosons, the Hamiltonian reduces to the matrix:

Ĥeff =

Ugg
~ΩL√

2
0

~ΩL√
2

Ueg − ~δL − i~Γeg
2

~ΩL√
2

0 ~ΩL√
2

Uee − 2~δL − i~Γee
2

 . (5.25)

This effective model for the dynamics of the doubly occupied sites has been used in
Bouganne et al. 2017 and Franchi et al. 2017 to determine experimentally the val-
ues of the quantities associated with the two-body elastic and inelastic collisions of
174Yb atoms.

Elastic scattering length measurements

As mentioned earlier the agg = 105 a0 scattering length has been measured in Kita-
gawa et al. 2008 with a0 the Bohr’s radius. The scattering lengths associated with the
other eg and ee elastic interaction have been experimentally measured in Bouganne
et al. 2017 and Franchi et al. 2017 by performing clock spectroscopy in a deep optical
lattice showing different filling over the sites:

• the resonance for the |g〉 → |e〉 transition is observed for δL = 0

• the resonance for the |gg〉 → |eg〉 transition is observed for δL = (Ueg − Ugg) /~

• the resonance for the |gg〉 → |ee〉 transition is observed for δL = (Uee − Ugg) /(2~).

A scheme of these transition is proposed in Fig. 5.3.

g
ij

= 4π~2

m ai,j , with ai,j the complex scattering length. From this it is possible to define a extended
complex on-site interaction energy:

U ij = Uij − i
~Γij

2
=

[
4π~2

m
ai,j − i

~
2
βij

]ˆ
|w (r)|4 dr. (5.23)
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Figure 5.3 – Scheme of the energy levels for the different states of singly n = 1 and
doubly n = 2 occupied sites. The on-site two-body elastic collisions in the n = 2 case
shift the energy between the different possible states separated by multiple of ~ω0, the
energy gap between the two accessible internal states.

Consequently, the spacings between the peaks of the spectrum give access to the quan-
tities: aeg − agg and aee − agg and, from the known value of agg, the values of aeg and
agg.

Inelastic collision rates

The two-body losses rates are measured by performing lifetimes experiments in op-
tical lattice populates with a significant fraction of doubly occupied sites in the state
associated to the two-body loss mechanism under study (|ee〉 for Γee and |eg〉 for Γeg).

The experiments performed in Bouganne et al. 2017 and Franchi et al. 2017 do not
allow to give a value for Γeg, only a upper bound, which is specified for both references
in Table 5.5. In the following, we will neglect this effect at the timescales of our
experiments and take Γeg ≈ 0.

To measure Γee, a π pulse resonant with the |gg〉 → |ee〉 transition is send in an optical
lattice with sites of filling n ∈ {1, 2}, in order have a majority of doubly osccupied
sites in the state |ee〉. Then the coupling light is switched off and the decay of atomic
population is monitored. According to the model used in (5.25), the evolution the
population of atoms in |e〉, given by the operator n̂e = â†eâe, in an individual doubly
occupied lattice site, follow the equation:

d〈n̂e〉
dt

= −Γee〈n̂e (n̂e − 1)〉, (5.26)

and the probability Pee to find atoms in a lattice site initially in state |ee〉 follow the
equation:

dPee
dt

= −ΓeePee. (5.27)

Consequently the total population of atoms in |e〉, Ne evolves according to:

Ne (t) = 2N (n=2) Pee (0) e−Γeet +N (n=1)Pe (0) (5.28)
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with N (n=2) and N (n=1) the number of doubly and singly occupied sites in the lattice
respectively, Pee (0) the initial probability to find a site with filling n = 2 in the |ee〉
state and Pe (0) the initial probability to find a site with filling n = 1 in the |e〉 state.
In Fig. 5.4 is displayed the experimental results of a lifetime experiment. The decay
of atomic population is fitted according to fit techniques, more detailed in B. The first
one, referred as χ2 consists in evaluating the fit parameters by minimizing the weighted
quadratic error between the fit function and the experimental points. The uncertainty
on the fitted parameters is then determined by a F−test (Venables et al. 2002). The
second one use bootstrap to compute from the experimental data estimates for the fit
parameters and their distribution. In Fig. 5.4 we found Γee = 6± 1× 103 s−1 with the
statistic approach and Γee = 8±5×103 s−1 with the bootstrap. These values consistent
with the one found in Bouganne et al. 2017 and measured on a larger experimental
dataset, but less accurate .
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Figure 5.4 – Lifetime measurement in an optical lattice filled with 174Yb atoms all
in the |e〉 state. The population decay is the manifestation of the two-body inelastic
collisions in the doubly occupied sites. The asymptote corresponds to the population
of atoms in singly occupied sites. The fitted Ne (t) functions obtained by two different
fit procedures (see B) are represented: one relying on statistical tests, called χ2 (green
dotted line), and another one relying on bootstrap method (black dashed line). The
decay rates estimated with both methods are respectively: Γee = 8± 5× 103 s−1 with
the bootstrap.

Summary

The experimental values found for the different parameters mentioned above by the
groups of the Laboratoire Kastler Brossel (LKB) and the European Laboratory for
Non-Linear Spectroscopy (LENS) are summarized in Fig. 5.5. In the rest of this
dissertation we will use the more accurate values from LENS for the elastic-collision
parameters and the LKB result for the loss coefficient βee.
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Quantity LKB (Bouganne et al. 2017) LENS (Franchi et al. 2017)

aeg [a0] 86(11) 94.7(1.6)
aee [a0] 102(25) 126.7(2.3)

βeg [cm3.s−1] ≤ 1× 10−15 ≤ 1× 10−14

βee [cm3.s−1] 2.5(1)× 10−11 1.3(7)× 10−11

Figure 5.5 – Values found experimentally for the elastic and inelastic collision param-
eters in Bouganne et al. 2017 and Franchi et al. 2017.

5.2.3 Properties of non-Hermitian Hamiltonian

The non-Hermitian effective Hamiltonian

Now that we have all the element to describe the evolution of single atoms and pairs
of 174Yb atoms trapped at the sites of our optical lattice, we focus on the study of a
system driven by a non-Hermitian Hamiltonian.

In the rest of this chapter, in order to simplify the notations we will refer to Ĥeff as
Ĥ(2). We rewrite it in a more compact form:

Ĥ(2) [ΩL, δL] = ~

 0 ΩL√
2

0
ΩL√

2
η − δL

ΩL√
2

0 ΩL√
2

χ− 2δL − iΓ
2

 , (5.29)

with the typical parameters:

• η = (Ueg − Ugg) /~ ≈ −2π × 140 Hz,

• χ = (Uee − Ugg) /~ ≈ 2π × 290 Hz,

• Γ = Γee ≈ 2π × 1400 Hz,

for an optical lattice with depths Vx,y,z = {25, 25, 27}ER. Furthermore we can tune
the light coupling strength ΩL in the range 2π × [0, 1500] Hz. We explore a range of
detuning of a few kHz around the atomic resonance δL = 0 with a accuracy limited to
about 50 Hz (see Chap. 3).

General properties of non-Hermitian Hamiltonian

Hermitian matrices can always be diagonalized on an orthogonal basis of eigenvectors
|φj〉 as

Ĥh =
∑
j

λj|φj〉〈φj| with 〈φj|φk〉 = δjk and ∀j, λj ∈ R. (5.30)

In the general case non-Hermitian matrices are not guaranteed to be diagonalizable.
Their eigenvalues λj are complex and the eigenvectors associated with different eigen-
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values are not necessary orthogonal. Assuming that a non-Hermitian matrix is diago-
nalizable, its eigendecomposition becomes (Ashida et al. 2020):

Ĥnh =
∑
j

λj|φ(r)
j 〉〈φ

(l)
j | with 〈φ(l)

j |φ
(r)
k 〉 = δjk, 〈φ(r)

j |φ
(r)
j 〉 = 1, λj ∈ C. (5.31)

Here 〈φ(l)
j | and |φ

(r)
j 〉 denote respectively the left and right eigenvectors (a priori non

equal) of Ĥnh associated to the complex eigenvalue λj, forming biorthogonal bases.

Properties of the symmetric non-Hermitian Hamiltonian

In our experiments, we are dealing with a continuous family of 3 × 3 symmetric non-
Hermitian matrices parameterized by {ΩL, δL}. They happen to be diagonalizable
almost everywhere on the (ΩL, δL) plane. Moreover, since the non-Hermitian Hamito-
nians under study are symmetric, the left and the right eigenvectors (when they exists)
are related by the equation

∀ j |φ(r)
j 〉 =

(
|φ(l)
j 〉
)∗
. (5.32)

In the following, in order to ease the notations, we will denote {|λj〉}j=1,2,3 (resp.
{〈λ̃j|}j=1,2,3 ) the right (resp. left) eigenvectors associated to the eigenvalues {λj}j=1,2,3,
which form a a priori non-orthogonal basis of the Hilbert space. In this basis the
Schrödinger equation becomes:

i~
d

dt
|ψ (t)〉 =

3∑
j=1

λj|λj〉〈λ̃j|ψ (t)〉 =
3∑
j=1

λjΛ̂j|ψ〉, (5.33)

where Λ̂j = |λj〉〈λ̃j| is the non-Hermitian projector related to the eigenvalue λj. Since
the eigenvalues are complex we can decompose them as:

λj = ~ωj − i
~γj
2
. (5.34)

From the theory of generalized measurements (Haroche et al. 2013), it is possible to
express the probability πj for a lattice site, described by the wavefunction |ψ〉 to lie in
the eigenspace Ej associated to the eigenvalue λj:

πj = Tr
[
Λ̂j ρ̂Λ̂†j

]
= 〈λ̃j|ψ〉〈ψ|λ̃j〉 (5.35)

where ρ̂ is the density matrix associated to the pure state |ψ〉. From the Schrödinger
equation (5.33), it is possible to express the evolution of the quantity πj as:

dπj
dt

= − i

~
(
λj − λ∗j

)
πj = −γjπj, (5.36)

which gives:
πj (t) = e−γjtπj (0) . (5.37)

111



5.2. Effective Non Hermitian Hamiltonian

We recover here the idea that the imaginary part of the eigenvalues renders the lifetime
of their corresponding eigenstate due to the two-body losses occurring in state |ee〉 at
a rate:

γj = Γee〈ee|λj〉〈λ̃j|ee〉 = Γee|〈ee|λj〉|2. (5.38)

The strength of the coupling between an eigenstate and the dissipative state |ee〉 de-
termine the lifetime of the dressed state.

Since we are considering a continuous family of Hamiltonian Ĥ(2) depending on the
parameters {ΩL, δL}, the associated eigenvalues λj and eigenvectors |λj〉 (j = 1, 2,
3) are continuous and regular functions of the parameters almost everywhere on the
(ΩL, δL) plane. We will by convention call |λ1〉 the eigenstate that corresponds to the
state |gg〉 in the limit of very large negative detunings (δL → −∞) and call |λ3〉 the
eigenstate that corresponds to the state |gg〉 in the limit of very large positive detunings
(δL → +∞). We introduce the notation that will be used in the rest of this chapter to
characterize the projection of the eigen-wavefunction for the doubly occupied sites on
the Fock basis:

Π(j)
gg (ΩL, δL) = |〈gg|λj (ΩL, δL)〉|2 and θ(j)

gg (ΩL, δL) = arg [〈gg|λj (ΩL, δL)〉] .
Π(j)
eg (ΩL, δL) = |〈eg|λj (ΩL, δL)〉|2 and θ(j)

eg (ΩL, δL) = arg [〈eg|λj (ΩL, δL)〉] .
Π(j)
ee (ΩL, δL) = |〈ee|λj (ΩL, δL)〉|2 and θ(j)

ee (ΩL, δL) = arg [〈ee|λj (ΩL, δL)〉] . (5.39)

And similarly we introduce for the singly occupied sites:

Π(j)
g (ΩL, δL) = |〈g|εj (ΩL, δL)〉|2.

Π(j)
e (ΩL, δL) = |〈eg|εj (ΩL, δL)〉|2. (5.40)

Exceptional points

As seen earlier, the continuous family of non-Hermitian Hamiltonian Ĥ(2) parame-
terized by {ΩL, δL} is diagonalizable almost everywhere. However at some points of
the parameter plane the Hamitonian is nondiagonalizable. At these singularities called
exceptional points (EP) (Kato 1966; Heiss 2012), two or more eigenvalues and their
corresponding eigenvectors coalesce: they become identical and the dimension of the
resulting eigenspace inferior to the sum of the dimension of the merged eigenspace
around this point.
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Figure 5.6 – Spectrum of Ĥ(2) for ΩL, 1,2. (a) Real (left) and imaginary (right)
parts of of the eigenvalues. (b) Bare state composition of each dressed state. (c)
Complex arguments of the projections of the dressed states on the bare states Fock
basis. The vertical dashed line is located at δL = δL, 1,2. At this detuning, corresponding
to an exceptional point, the eigenvalues λ1 and λ2 becomes identical, along with their
associated eigenvectors |λ1〉 and |λ2〉

With our particular values of Ugg, Ueg, Uee and Γee, the eigenvalues of Ĥ(2) only coalesce
pairwise, in two points of the (ΩL, δL) plane:

• EP1, 2 between |λ1〉 and |λ2〉 at (ΩL, δL)1, 2 ≈ 2π × (541, 578) Hz

• EP2, 3 between |λ2〉 and |λ3〉 at (ΩL, δL)2, 3 ≈ 2π × (713, −12) Hz

The spectrum and some features of the eigenvectors for different detunings δL, at fixed
Rabi frequency ΩL = 2π × 541 Hz are represented in Fig. 5.6. The coalescence of the
eigenvalues λ1 and λ2 and of their corresponding eigenvectors can be observed.
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The exceptional points are an interesting feature arising from non-Hermitian dynamics.
Even if these points are of null measure on the parameter space in which the Hamil-
tonian is considered, the non-Hermitian dynamics in their vicinities exhibits some in-
teresting topological properties. In the Hermitian case, when circling adiabatically on
closed loop of the parameter space, a system initially in the eigenstate |λi0〉 returns to
its initial position, up to a geometric phase acquired during the circling, called Berry
phase (Berry 1984). In the non-Hermitian case, if the closed loop circles around an
exceptional point, a system initially in the eigenstate |λi0〉 may be sent at the end
of the circling to another eigenstate |λi 6=i0〉 of the Hamiltonian at the starting point
of the loop, and some extra circling will be necessary to reach the initial eigenvector
(Dembowski et al. 2001; Dembowski et al. 2004). The adiabaticity of such circling has
been studied in (Milburn et al. 2015), and its chirality in Doppler et al. 2016.

The interest for exceptional points and their properties has arisen in a wide range
of fields of physics and lead to the observation of several related effect such as: loss
induced transmission and unidirectional invisibility (Peng et al. 2014;Lin et al. 2011),
mode selection in lasers (Peng et al. 2014;Feng et al. 2014), enhanced sensing (Wiersig
2014; Chen et al. 2017) and topological energy transfert (Xu et al. 2016).

Unfortunately, we have not been able to study any of the properties related to the
presence of exceptional points so far: going in the vicinity of the these points in the
parameter plane require to go trough regions where the atomic losses are too important
to have a significant population of doubly occupied sites at the end of the experiments.

Strong versus weak coupling regime

Away from the region of the parameter plane where lie the exceptional points, we
will considers two regimes of coupling:

• The strong coupling regime: ΩL � Ω
(EP )
L ,

• The weak coupling regime: ΩL � Ω
(EP )
L .

Here Ω
(EP )
L stands for any Rabi frequency at which the exceptional points occur. The

spectrum of the Hamiltonian and the composition of its eigenvectors in terms of bare
states is represented for particular cases of strong coupling ΩL = 2π × 1500 Hz in
Fig. 5.7 and weak coupling in Fig. 5.8. The bare states composition for the same
Hamiltonian in absence of dissipation are also plotted for the sake of comparison.
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Figure 5.7 – Diagonalization of Ĥ(2 in the strong coupling limit. (a) Real (left) and
imaginary (right) parts of the eigenvalues. (b) Bare state composition of each dressed
state. (c) Bare state composition of each dressed state in absence of dissipation.

In the strong coupling case, the real parts of the eigenvalues are separated and behave
qualitatively as they would in absence of the dissipative term, Γee = 0. When scanning
δL, the eigenvectors successively populate significantly the dissipative bare state |ee〉,
and accordingly all three states acquire a finite lifetime ∼ Γee when the detuning
becomes ∼ ΩL.

In the weak coupling regime, crossings, that would be forbidden for an Hermitian
Hamiltonian, between the real parts of the eigenvalues appears (but not between the
eigenvalues themselves) and for all detunings, the dissipative state |ee〉 is almost entirely
taken in charge by the eigenvector, |λ2〉, which consequently inherits of most of the
dissipative dynamics. On the contrary the two other eigenvectors |λ1〉 and |λ3〉 span
an subspace of the Hilbert space where the losses are strongly suppressed. The crossing
in the spectrum of the Ĥ(2) Hamiltonian, made possible by the loss responsible for its
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non-Hermitian nature, allows the states |λ1〉 and |λ3〉 to stay in the subspace spanned
by {|gg〉, |eg〉}.
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Figure 5.8 – Diagonalization of Ĥ(2) in the weak coupling limit. (a) Real (left) and
imaginary (right) parts of the eigenvalues. (b) Bare state composition of each dressed
state. (c) Bare state composition of each dressed state in absence of dissipation.

Reduced loss subspace

The weak coupling regime can be reinterpreted with the quantum Zeno effect picture.
In this regime the dissipation rate, i.e. the measurement rate of the state |ee〉 is much
faster than the internal dynamics of the system, whose frequency is given by ΩL. As a
consequence a lattice site initially in the orthogonal subspace, spanned by {|gg〉, |eg〉},
will see its dynamics restricted to this subspace.

More formally this picture can be found back by deriving an effective Hamiltonian for
the reduced-loss subspace: the Hamiltonian (5.29) can be split as Ĥ(2) = Ĥ0 + V̂ , with
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Ĥ0 = ~

0 0 0
0 η − δL 0
0 0 χ− 2δL − iΓ

2

 and V̂ = ~

 0 ΩL√
2

0
ΩL√

2
0 ΩL√

2

0 ΩL√
2

0

 . (5.41)

We note EX the matrix elements 〈X|Ĥ0|X〉 and introduce the projector on the hyper-
plane of the Hilbert space spanned by {|gg〉}, called HP with its associated projector
P̂ = |gg〉〈gg|+ |eg〉〈eg|.

Since ΩL is small compared to |Eee − Egg| and |Eee − Eeg|, second order perturbation
theory allows us to derive an effective Hamiltonian that has the same eigenvalues in
the subspace HP as the full Hamiltonian Ĥ. The matrix elements of the effective
Hamiltonian are ∀ |i〉, |j〉 ∈ {|gg〉, |eg〉}:

〈i|P̂ ĤeffP̂ |j〉 = 〈i|Ĥ|j〉+
1

2

(
1

Ei − Eee
+

1

Ej − Eee

)
× 〈i|V̂ |ee〉〈ee|V̂ |j〉. (5.42)

In a more compact form, we have in the {|gg〉, |eg〉} subspace:

P̂ ĤeffP̂ = ~

(
0 ΩL√

2
ΩL√

2
δeff − iγeff

2

)
. (5.43)

with

δeff = η − δL −
2Ω2

L (η − χ+ δL)

4 (η − χ+ δL)2 + Γ2
ee

and γeff =
2Ω2

LΓee

4 (η − χ+ δL)2 + Γ2
ee

. (5.44)

From this expression we find again that an increase of the loss rate Γee would reduce
γeff , i.e. the transfer to the dissipative state |ee〉, which plays here the role of the
environment for the effective Hamiltonian acting on the reduced-loss subspace. We
also recover the behavior γeff ∝ Ω2

L/Γee, given Γee →∞, often typical of the quantum
Zeno effect.

5.3 Adiabatic passages

5.3.1 Experimental protocol

The results of the experiments measuring the elastic and inelastic collision param-
eters for 174Yb (see 5.2.2) have shown that the elastic collision constants ggg, geg and
gee are very close one to another. For optical lattices of depths on the order of 25ER,
the different resonance are only separated by a few hundred of Hertz, on the order
of the standard deviation of the probe frequency. Consequently it may be difficult to
driven separately the |gg〉 → |eg〉 and the |gg〉 → |ee〉 transitions. In the long term
perspective for our experimental setup involving the creation of artificial gauge fields
with ultracold 174Yb atoms in an optical lattice, we need to be able to populate the
|eg〉 state, while avoiding the lossy |ee〉 state. This issue can be circumvented by tak-
ing advantage of the existence of losses in the |ee〉 state and use the quantum Zeno
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effect combined with adiabatic passages to populate significantly the state |eg〉 while
preventing any transition toward the lossy |ee〉 state.

In this section we present the experimental results for the investigation of the properties
of the non-Hermitian effective Hamiltonian Ĥ(2) in the weak coupling regime, with
ΩL = 2π × 150 Hz fixed, at different detuning δL. The N (2) doubly occupied sites of
the optical lattice, initially in |gg〉 in absence of coupling light are send to the states
|λ1 (δL)〉 and |λ3 (δL)〉 for different values of δL thanks to an adiabatic following these
states over the (ΩL, δL) plane to the desired point. These adiabatic followings are
performed according to the protocol presented below:

• Initial optical lattice: A BEC with Natoms ≈ 6 × 104 174Yb atoms is loaded in
a deep [lattice depths Vx,y,z = {25, 25, 27}ER] optical lattice, and singly and
doubly occupied sites are created in states |g〉 and |gg〉 respectively.

• Rabi frequency ramp: The Rabi frequency ΩL is ramped from 0 Hz up to 2π×150
Hz, at fixed detuning δL, init. = −1.5 kHz (resp. δL, init. = +1.5 kHz) for a following
along |λ1〉 (resp. |λ3〉) in a duration equal to one tenth of the total passage time,
denoted Tpassage (see Fig. 5.9).

• Detuning ramp: For a fixed Rabi frequency ΩL, fin. = 2π×150 Hz, the detuning δL

is ramped from δL, init. to its final value δL,fin. with a constant speed of 11.1 Hz/ms.
This step takes the remaining nine tenths of the total passage duration Tpassage

(see Fig. 5.9).

At the end of these two ramps, we expect the remaining doubly occupied sites of the
lattice to be in the dressed eigenstates |λ1〉 (or |λ3〉 depending on the sign of the initial
detuning) of the Hamiltonian Ĥ(2) for the parameters (ΩL, fin. = 2π × 150 Hz, δL, init).
From this we measure the internal states populations (see 5.3.3) or let the coupling
light on to study their lifetimes (see 5.3.2).

According to our loading model, due to the auxillary confining potential, we cannot
create doubly-occupied sites in the optical lattice without having a halo of singly-
occupied sites around them , whose dynamics must also be taken into account in order
to be able to interpret the experimental results. During the ramps, the N (1) singly-
occupied sites, initially in |g〉 have evolved too, and follow the dressed states of a
two-level atom in a near-resonant electric field (Haroche et al. 2013). Although their
(unitary) dynamics is not the point of interest here, their evolution during the ramps
has to be taken into account when it comes to interpret the relative and absolute
populations of atoms in |g〉 and |e〉 at the end of the ramps.

The composition of the states of the lattice sites at the end of the ramp in term of bare
state can be expressed from the wavefunctions |ψ(1)〉 and |ψ(2)〉 for singly and doubly
occupied sites respectively, as:

Forn = 1 : Pg = |〈g|ψ(1)〉|2 and Pe = |〈e|ψ(1)〉|2 (5.45)

Forn = 2 : Pgg = |〈gg|ψ(2)〉|2, Peg = |〈eg|ψ(2)〉|2 and Pee = |〈ee|ψ(2)〉|2
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Figure 5.9 – Evolution of the sites populations during a passage performed in |gg〉
from 2π × (0, −1.5) kHz to 2π × (0.15, 1) kHz (left) and from 2π × (0, 1.5) kHz to
2π × (0.15, −1) kHz (right) on the parameter space (ΩL, δ). The evolution of the
population of the Fock states in singly [(c) and (d)] and doubly [(e) and (f)] occupied
sites is computed by integrating the Schrödinger equation. The non-Hermitian nature
of Ĥ(2) is pointed out by the decay of the total population in the cases n = 2. The
passages (blue arrows) following |λ1〉 [(g)] and |λ3〉 [(h)] are schematized on the real
part of the spectrum of Ĥ(2) . During a passage the, after the rise of the Rabi frequency,
the detuning is ramped and the system follow the dressed state, starting form the blue
square to the orange dot, on the {δL} line. 119



5.3. Adiabatic passages

The evolution of these quantities during the two kind of passage are computed in Fig.
5.9.

Absorption imaging gives us access to the following quantities:

• The measured total population of atoms in |g〉, denoted Ng =
∑

i〈â†gâg〉i where
the i’s stand for the lattice sites indices, is measured by direct absorption imaging.
This quantity is linked to the quantities defined in (5.45) by:

Ng = N (2) (2Pgg + Peg) +N (1)Pg (5.46)

.

• The measured total population of atoms in |e〉, denoted Ne = Υ
∑

i〈â†eâe〉i is
measured by absorption imaging after a "blast pulse" that removes the atoms in
|g〉 from the lattices followed by a repumper pulse that send the atoms in |e〉 to
|g〉 with an efficiency Υapprox0.86, according to the process introduced in 3.1.2.
Assuming Υ does not depend on the atomic density, the quantity Ne is linked to
the quantities defined in (5.45) by:

Ne = ΥN (2) (2Pee + Peg) + ΥN (1)Pe (5.47)

• The measured total population of atoms in both ground and excited states, de-
noted Ne+g =

∑
i

[
〈â†gâg〉i + Υ〈â†eâe〉i

]
is measured by absorption imaging after a

repumper pulse, without blasting away the atoms in |g〉. The quantity Ne+g is
linked to the quantities defined in (5.45) by:

Ne+g = N (2) (2ΥPee + (1 + Υ)Peg + 2Pgg) +N (1)(ΥPe + Pg). (5.48)

5.3.2 Lifetime in the dressed states

In this section the decay of the eigenstates λ1 and λ3 of the Hamiltonian Ĥ(2) for
different values of δL is studied: after an adiabatic passage from |gg〉 to the eigenstate
|λj (δL)〉, with j = 1 or 3 depending on the initial detuning, the doubly occupied lattice
are let evolve at fixed parameters (ΩL, δL). As seen in Eqs. (5.35) to (5.37), the
population of lattice sites in state |λj〉 will decay at rate γj = ΓeeΠ

(j)
ee (ΩL, δL). We

monitor the evolution of the total population of atoms in the lattice. Since there is no
inelastic losses in the singly occupied sites, the decay of population is only accountable
on the doubly occupied ones and the exponential decay can be fitted to measure γj, as
it is done in Fig. 5.10.
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Figure 5.10 – Example of lifetime measurement. After the adiabatic passage that send
the doubly occupied sites initially in the state |gg〉 to the eigenstate |λj〉 (j ∈ {1, 3})
at a given detuning δL, we fix the parameters (ΩL, δL) at their final values and let the
system evolve. The population of lattice sites in the eigenstate will decay exponentially
because of the imaginary part of its corresponding eigenvalue. The fitted Ne+g (t) =
e−γt functions obtained by two different fit procedures (see B) are represented (dashed
and dotted lines).

This experiment is repeated for different values for δL at the end of the passage. The
fitted values for γj, with j ∈ {1, 3} are presented in Fig. 5.11. Since γj is, up to a factor
Γee actually a measure of the contribution of the lossy bare state |ee〉 to the dressed
state |λj〉, we compare γj/Γee = Π

(j)
ee (Γee) to what would have been the same quantity

in absence of losses Π
(j)
ee (Γee = 0). The Fig. 5.11 shows that in presence of losses in

the bare state |ee〉, contributes far less to the dressed states |λ1〉 and |λ3〉 compared to
what it would have in absence of losses. These two eigenstates lie in a subspace almost
decoupled from |ee〉: it is the manifestation of the quantum Zeno effect. The presence
of two-body losses in the |ee〉 state allows us to produce state with a reduced component
along |ee〉. This reduction, that corresponds to the difference between the dotted and
solid lines in Fig. 5.11, is particularly important for the passages in |λ3〉, reaching
several order of magnitude. The main limitation of this procedure, preventing us to
probe states to close to the resonance, is the loss of atoms due to the losses occurring
during the ramp. Faster ramps, but still consistent with the adiabatic approximation
for doubly occupied sites, could be an option to ramps more atoms in the dressed states
of the reduced loss subspace close to the resonance. However faster ramps would not
be adiabatic for singly occupied sites. To conclude adiabatic passages in |λ3〉 up to
detuning close to resonance are good candidates as procedures to selectively populate
a significant fraction of lattice sites in the |eg〉.
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Figure 5.11 – Experimental decay rates γj=1,3 (red dots) extracted from lifetimes
experiments performed on lattices sites at the end of adiabatic passages following |λ1〉
(left) and |λ1〉 (right) according to the protocol detailed in 5.3.1. The decay rates,
rescaled by Γee are compared to the the fractions Π

(j)
ee of |ee〉 in the considered dressed

state obtained by the diagonalization of the Hamiltonian Ĥ(2) (Γ), in presence (Γ = Γee;
blue line) or absence (Γ = 0; dotted black line) of two-body inelastic losses in the state
|ee〉. The losses reduce the coupling of the eigenstates |λj=1,3〉 with the lossy state |ee〉,
confining them to the reduced-loss subspace spanned by {|gg〉, |eg〉}.

5.3.3 Composition of the dressed states

In order to monitor the following of the states |λ1〉 and |λ3〉 according to the protocol
described in 5.3.1, we project the dressed lattice sites at different detuning and for
ΩL = 2π× 150 Hz fixed on the Fock basis, by switching off the coupling light and then
measure the total population of atoms, and the total population of atoms in |g〉.
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Figure 5.12 – Atomic populations evolution during the adiabatic following of the
eigenstates of Ĥ(2) |λ1〉 (left) and |λ3〉 (right). Ne+g is the measured total number of
atoms after the repumper pulse. Ng is the measured total number of atoms in atomic
state |g〉. The associated dashed lines are obtained by solving the Schrödinger equation
during the passage.
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Chapter 5. Zeno effect and adiabatic passages in presence of atom losses

The experimental evolution of the populations during the adiabatic passages, repre-
sented in Fig. 5.12 matches well with the predicted population, computed by inte-
grating the Schrödinger equation for singly and doubly occupied sites, as long as the
resonance δL = 0 is not crossed. After this detuning a small disagreement appears.
However at these points of the passage, according to Fig. 5.9 the population of doubly
occupied sites becomes negligible, and almost only singly occupied sites are responsible
for the recorded signal.

The observed mismatch may be due to a failure of the adiabatic approximation which
is less robust for singly occupied sites as shown in Figs. 5.14 and 5.15. A part of the
discrepancy can be attributed to the clock laser frequency fluctuations characterized
in 3.5.3. It can be studied by modelling the evolution by a stochastic Schrödinger
differential equation:

i~
d|ψn=1〉

dt
= Ĥ(n=1)|ψn=1〉 − |e〉〈e|ξ (t) (5.49)

i~
d|ψn=2〉

dt
= Ĥ(n=2)|ψn=2〉 − (|eg〉〈eg|+ 2|ee〉〈ee|) ξ (t) (5.50)

and average it over several stochastic trajectories. Here ξ (t) is a stochastic term,
generated by a Ornstein-Uhlenbeck introduced in 3.5.3. ξ is obtained from a gaussian
white noise term ξ′ via the Langevin equation,

dξ

dt
= −βξ (t) + σξ′ (t) , (5.51)

with β and σ the parameters measured in 3.5.3.
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Figure 5.13 – Atomic populations evolution during the adiabatic following of the
eigenstates of Ĥ(2) |λ1〉 (left) and |λ3〉 (right). Ne+g is the measured total number
of atoms after the repumper pulse. Ng is the measured total number of atoms in
atomic state |g〉. The associated dotted lines are obtained by solving the stochastic
Schrödinger differential equation (5.49).

The results of such simulations are represented in Fig. 5.13. If the introduction of the
laser frequency noise allows to render the existence of a residual population of atoms
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in |g〉 at the end of the passage, it is smaller than the measured one. This mismatch
can be due to additional detrimental effect occurring during the ramp, which have not
been identified so far. Moreover our (simple) characterization of the noise has been
performed over timescales shorter than 50 ms, and may have failed to capture the
effects of some component of the noise spectrum which are significant only at long
times.

5.3.4 Adiabaticity of the passages

Now that the main the experimental results on the dressed states has been presented,
we must address the question of the adiabaticity of the evolution of the states of the
lattice sites according to the protocol proposed in 5.3.1. In the rest of this section, in
order to ease the notations, we will denote the couple of time-dependent parameters
(ΩL, δL) at time t as ξ (t). Singly and doubly occupied sites are made continuously
evolve from ξ (t0) to ξ (t1) on the parameter plane between the instants t0 and t1. The
evolution operator for each system, denoted Û (n) (t1, t0) acts on the right eigenstates of
the Hamiltonian Ĥ(n) in the adiabatic limit (actually quasi-adiabatic limit for doubly
occupied sites) Û (n)

adiab. as (see A):

Û
(1)
adiab. (t1, t0) |±〉ξ(t0) = e−i

´ t1
t0
ω±(ξ(t)) dt|±〉ξ(t1) (5.52)

Û
(2)
adiab. (t1, t0) |λj〉ξ(t0) = e−

1
2

´ t1
t0
γj(ξ(t)) dte−i

´ t1
t0
ωj(ξ(t)) dt|λj〉ξ(t1) (5.53)

In order to quantify the adiabaticity of the experimental procedure used to study the
eigenstates of Ĥ(2) at different detuning δL, we compute the probability for a site,
initially in a given eigenstate |λk (ξ (t0))〉 of its Hamiltonian, to be send to another
eigenstate |λj 6=k (ξ (t))〉 during the passage. These probabilities are given by:

p (|±〉 → |∓〉) = ei
´ t1
t0
ω∓(ξ(t)) dt

ξ(t1)〈∓|Û (1) (t1, t0) |±〉ξ(t0) (5.54)

for singly occupied sites and

p (|λk〉 → |λj〉) = e
1
2

´ t1
t0
γj(ξ(t)) dtei

´ t1
t0
ωj(ξ(t)) dt

ξ(t1)〈λ̃j|Û (2) (t1, t0) |λk〉ξ(t0) (5.55)

for doubly occupied sites. Here |λ〉ξ(t) = |λ (ξ [t])〉 is the eigenvector |λ〉 of the Hamil-
tonian in point ξ of the parameter plane, where stands the system at time t.

124



Chapter 5. Zeno effect and adiabatic passages in presence of atom losses

−1 0 1
δL [kHz]

0.00

0.02

0.04

0.06

Tr
an

sit
io
n
pr
ob

.
n = 1: p (|−〉 → |+〉)

−1 0 1
δL [kHz]

n = 2: p (|λ1〉 → |λ2〉)
1 Hz/ms
10 Hz/ms
20 Hz/ms
50 Hz/ms

−1 0 1
δL [kHz]

n = 2: p (|λ1〉 → |λ3〉)

Figure 5.14 – Adiabaticity following |−〉/|λ1〉: Probability for singly n = 1 and
doubly n = 2 occupied sites, initially in state |−〉 for n = 1 and |λ1〉 for n = 2, to
populate other eigenspaces than the initial one (i.e. to populate |+〉 for n = 1 and
{|λ2〉, |λ3〉} for n = 2 ) during a ramp performed according to the protocol described
in section 5.3.1, with δL : −1.5 kHz→ +1 kHz. The extent of the passage is expressed
in terms of detuning δL in order to compare the different speeds.
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Figure 5.15 – Adiabaticity following |+〉/|λ3〉: Probability for singly n = 1 and
doubly n = 2 occupied sites, initially in state |+〉 for n = 1 and |λ3〉 for n = 2, to
populate other eigenspaces than the initial one (i.e. to populate |−〉 for n = 1 and
{|λ1〉, |λ2〉} for n = 2 ) during a ramp performed according to the protocol described
in section 5.3.1, with δL : +1.5 kHz→ −1 kHz. The extent of the passage is expressed
in terms of detuning δL in order to compare the different speeds.

These quantities are numerically computed for ramps "following |λ1〉" (Fig. 5.14) and
ramps "following |λ3〉" (Fig. 5.15) for singly and doubly occupied sites, and at different
ramp speeds. From these figures, we can conclude that at the speeds considered, and
more particularly for 10 Hz/ms used in most of our experiments, the probability for the
lattice sites initially in |gg〉 to "smear" on other dressed states than their initial one
during the passage is negligible. As a consequence we can assume that at the end of the
passage, the lattice sites are actually in one of the eigenstate of their Hamiltonian, only
depending on the sign of the initial detuning of the coupling field. It also ensures the
identity Πij ≈ Pij (t) between the quantities defined in (5.39) and (5.45) respectively.
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5.4. Conclusion

5.3.5 Passages back and forth: an experimental verification of
the adiabaticity

In order to test experimentally the adiabaticity of the passages performed in the
experiment previously presented, back and forth passages have been performed. A
forward passage according to the experimental protocol detailed in 5.3.1 two time
faster (i.e. 22.2 Hz/ms for the detuning ramp). Then immediately after, the reverse
ramp is performed at the same speed. Sending back all the lattice sites at their starting
states, i.e. |g〉 and |gg〉 for singly and doubly occupied sites respectively at the end of
this round trip on the parameter plane is a necessary (but not sufficient) condition for
the passage to be adiabatic. From the Fig. 5.16 we can see that for ramps back and
forth involving doubly occupied sites, all the atoms at the end of the ramp are in atomic
state |g〉, which is consistent with an adiabatic passage. As for forward passage, the
discrepancy occurs when the resonance δL is crossed, and concern mostly the dynamics
of singly occupied sites.
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Figure 5.16 – Atomic populations evolution during the back and forth ramps of the
eigenstates of Ĥ(2) |λ1〉 (left) and |λ3〉 (right). Ne+g is the measured total number of
atoms after the repumper pulse. Ng is the measured total number of atoms in atomic
state |g〉. The associated dashed lines are the populations predicted by the integration
of the Schrödinger equation.

5.4 Conclusion

In this section, we show that the dynamic of a collection of pairs of bosons in presence
of inelastic-collision induced losses could be described by an effective non-Hermitian
Hamiltonian. The diagonalization of the 3× 3 non-Hermitian Hamiltonian describing
our experimental situation show the existence of two regimes, depending on the strength
of the coupling between internal states of the atoms, with different properties. The weak
coupling regime in particular, comes with the emergence of a reduced-loss subspace,
almost decoupled for the dissipative state, by a quantum Zeno effect mechanism.
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Chapter 5. Zeno effect and adiabatic passages in presence of atom losses

This phenomenon has then been verified experimentally, by performing adiabatic pas-
sages, following the eigenstates of the Hamiltonian spanning the reduced-loss subspace.
We have showed that the contribution of the dissipative bare state to these dressed
states is, in presence of dissipation, several order smaller that it would have been in
absence of dissipation. The adiabatic passages are also a way to populate coherently
a significant number of lattice sites in the |eg〉 state, starting from |gg〉, without pop-
ulating |ee〉 states, which could be of interest in the perspective of spin-orbit coupling
experiments for quantum simulation.

In order to increase the loss suppression effect, the "slowing" factor Ω2
L/Γee, character-

istic of the quantum Zeno effect, could be reduced by increasing Γee i.e. by increasing
the lattice depth or by reducing ΩL. In practice the maximum lattice depth is limited
by the amount of laser power available and the fact that Γee increases slowly (∝ V 3/4)
with the lattice depth V . On the other hand, reducing ΩL imposes to perform slower
passages in order stay in the adiabatic regime, which makes the experiment more sen-
sitive to long-term dephasing mechanism and may ends in experiments longer than the
tunneling time, invalidating the hypothesis of independent lattice sites.
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CHAPTER 6

Dynamics in 1D lossy optical lattices

In the previous chapter, I have studied the influence of two-body inelastic collisions
on atom pairs trapped in isolated sites of the optical lattice. I have shown the two-body
losses decouples the dissipative state, with two 174Yb atoms in the 3P0 state, from the
rest of the Hilbert space in which the pair of bosons evolves. We have also used this
phenomenon, which is a manifestation of the quantum Zeno effect (QZE), to drive
our system within the reduced loss subspace. Armed with this knowledge for the two
particle case, I tackle in this chapter the many-body case by considering unidimensional
optical lattices filled with 174Yb atoms in the 3P0 state.

Over the last decade, the use of dissipation or decoherence to control or protect quan-
tum many-body system has arisen a growing interest (Syassen et al. 2008; Witthaut et
al. 2008; Diehl et al. 2008; Kraus et al. 2008; Verstraete et al. 2009). This idea has been
more particularly implemented with experiments involving ultracold atoms trapped in
unidimensional optical lattices, using different kind of bosonic particles which are sub-
ject to inelastic losses, including pairs of 87Rb atoms associated to molecules thanks
to Feshbach resonances (Syassen et al. 2008) or 174Yb atoms in the metastable 3P2

state (Tomita et al. 2019). In these experiments the quantum Zeno effect generated by
the two-body inelastic collisions between the atoms evolving in the optical lattices are
used to protect the system from the dissipative subspace of their Hilbert space, slowing
down the atomic losses.

Studying such system is also of interest for the further development of the setup be-
cause it will allow us to determine how much time it takes for the losses to affect the
many body state created in the optical lattice. In the first part of this chapter, we
introduce the first elements for the theoretical description of the system, showing how
the quantum Zeno effect will slow down the loss dynamics. Then, the experimental
protocol for the study of the loss dynamics is presented. Experimental results are then
compared with two models describing the evolution of the average filling of the optical
lattice. Finally, we will try to explain the observed difference between the experiments
and the models for the lowest lattice depths probed by investigating the effects of some
experimental aspects that are not taken into account in the models.
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6.1. Theoretical description of the system

6.1 Theoretical description of the system

6.1.1 The dissipative Bose-Hubbard model

In this chapter we will study the loss dynamics in 1D optical lattices filled with
174Yb atoms in the 3P0 state, denoted |e〉 in the rest of this section, with an initial
filling assumed to be equal or inferior to n = 1. The presence of inelastic collisions-
induced two-body losses for two atoms in this state lead us to describe its dynamics by
a Lindblad master equation on the density of state ρ̂, similarly to what has been done
in 5.1.2:

dρ̂

dt
= − i

~

[
Ĥ0, ρ̂

]
+

Γee
4

∑
i

(
2âiâiρ̂â

†
i â
†
i − ρ̂â

†
i â
†
i âiâi − â

†
i â
†
i âiâiρ̂

)
, (6.1)

with Ĥ0 the single-component 1D single-band Bose-Hubbard Hamiltonian:

Ĥ0 = ĤJ + Ĥint (6.2)

with
ĤJ = −J

∑
〈i,j〉

â†i âj and Ĥint =
Uee
2

∑
i

n̂i (n̂i − 1) . (6.3)

Here âi is the annihilation operator for a boson in state |e〉 at site i of the 1D optical
lattice and n̂i = â†i âi. The summation over 〈i, j〉 is made on the neighboring lattice
sites.

In the rest of this chapter, we will consider the strong dissipation limit, where the
two-body losses occurs at a rate much faster that the tunneling, i.e. Γee � J/~.

6.1.2 A simple model

In order to have some insight on the dynamics of interacting bosons trapped in a
1D optical lattice and subject to two-body losses, we present here the simplest case
corresponding to this situation: a pair of bosons trapped in a double well. Using the
non-Hermitian Hamiltonian framework introduced in the previous chapter in 5.2, the
Hamiltonian describing the dynamics of the system writes:

Ĥ =

 0 −
√

2J −
√

2J

−
√

2J Uee − i~Γee
2

0

−
√

2J 0 Uee − i~Γee
2

 . (6.4)

in the {|11〉, |20〉, |02〉} basis, where |n, m〉 = |n〉l
⊗
|m〉r is the Fock state with n

bosons in the left well and m bosons in the right one.

In the strong dissipation limit (Γee � J/~), it is possible to proceed similarly to what
has been done in 5.2.3 and adiabtically eliminate the rapidly decaying states with
double occupancy. It results in an effective energy Ueff shift and loss rate Γeff for the
"ground state" |11〉,

Ueff = − 4J2

U2
ee +

(~Γee
2

)2Uee and Γeff =
4J2

U2
ee +

(~Γee
2

)2 Γee. (6.5)
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Here we observe that in presence of strong inelastic interactions (Γee � J, Uee) the dis-
sipative part of the energy scales as Γeff ∝ J2/Γee and the two-body losses in the excited
state actually enhance the lifetime of the ground state, by hindering the transitions
toward the dissipative one via tunneling.

Figure 6.1 – Scheme of the perturbation treatment of the system composed of two
bosons evolving in a double well with a tunnel energy J , subject to two-body interac-
tions with the associated complex energy Uee = Uee− i~Γee/2. In the regime where the
tunneling rate J/~ is much smaller than the decay rate Γee for the two-body losses the
system can be approximated by two impenetrable bosons with an effective decay rate
Γeff much smaller that Γee.

In this chapter we show how the perturbative approach applied on this simple model
to point out a quantum Zeno dynamics can be used on the more complex system of
many bosons trapped in an optical lattice, strongly interacting via elastic and inelastic
two-body collisions. It leads to the description of the dynamics of the system by an
effective master equation, with an effective loss rate, analogous to the one found in
(6.5).

6.1.3 The Tonks-Girardeau gas limit

This section summarizes the main steps of the theoretical work made in García-Ripoll
et al. 2009 in order to establish the effective master equation used in this chapter to
describe the dynamics of the system.

Since the Lindblad equation written in (6.1) is linear, it is possible to rewrite it in its
linear form:

d

dt
ρ̂ = (Lkin + Lint) ρ̂ (6.6)

introducing the Liouvillian "superoperators" (linear operators acting on the density
matrix ρ), defined by

Lkinρ̂ = − i

~

[
ĤJ , ρ̂

]
(6.7)

Lintρ̂ = − i

~

[
Ĥint, ρ̂

]
+

Γee
4

∑
i

(
2âiâiρ̂â

†
i â
†
i − ρ̂â

†
i â
†
i âiâi − â

†
i â
†
i âiâiρ̂

)
. (6.8)

Here the Liouvillian has been decomposed between Lkin ∝ J rendering the tunneling
dynamics and Lint ∝ |Uee − iΓee

2
| enclosing the elastic (via Ĥint) and inelastic (via
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the Lindblad term) interactions. In the strong dissipation limit, |Uee − iΓee
2
| � J

the tunnel operator can be treated as a perturbation in order to derive an effective
master-equation.

Similarly to the case of pair of atoms trapped in isolated lattice sites seen in the previous
chapter (see 5.2.2), two-body losses act like continuous measurements, hindering the
transition from the subspace of the Hilbert space without losses, spanned by the hard-
core bosons states of the form:

|ψ〉 =
⊗
j

|pj〉j with pj ∈ {0, 1} ∀j, (6.9)

to the lossy states directly connected to them,

|φj0〉 = |2〉j0
⊗
j 6=j0

|pj〉j with pj ∈ {0, 1} ∀j 6= j0. (6.10)

Here |p〉j denotes the Fock state with p bosons at site j.

Consequently it is possible to restrict the description of the dynamics of the system
to the loss-less subspace, corresponding to the Fock states with at most one atom
per lattice site, by proceeding similarly to 6.1.2. After some algebra, one obtains the
effective Lindblad master equation for the system (García-Ripoll et al. 2009):

dρ̂

dt
= − i

~

[
Ĥ1 + Ĥ2, ρ̂

]
+

Γeff

2

∑
j

(
2L̂j ρ̂L̂

†
j − L̂

†
jL̂j ρ̂− ρ̂L̂

†
jL̂j

)
. (6.11)

The unitary part of the master equation can be decomposed as the sum of the Hamil-
tonian

Ĥ1 = −J
∑
j

â†j âj+1 + h.c., (6.12)

with âj hard-core bosons (HCB) annihilation operators, rendering the tunneling of the
bosons in the optical lattice, and the Hamiltonian

Ĥ2 = −J ′
∑
j

L̂†jL̂j (6.13)

that encloses both effective nearest-neighbor interactions and interaction-mediated tun-
neling via a virtual state out of the reduced-loss Hilbert subspace. To define these
Hamiltonians we have introduced the operator

L̂j = âj
(
âj+1 + âj−1

)
, (6.14)

that annihilates a pair of particles in neighboring sites, and the constants

Γeff =
8J2

4U2
ee + ~2Γ2

ee

Γee and J ′ =
Uee
Γee

Γeff . (6.15)

The Hamiltonian Ĥ1 describes the hopping by tunnel effect of impenetrable hard-core
bosons between the sites of a 1D lattice. This dynamics belongs to the family of the
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Chapter 6. Dynamics in 1D lossy optical lattices

Tonks-Girardeau gas (Tonks 1936; Girardeau 1960), which gathers the unidimensional
gas of bosons whose dynamics is dominated by a repulsive interaction, enabling a
mapping of the ensemble of bosons on a fermionic model (Girardeau 1960). The first
experimental observation of a Tonks-Girardeau gas, implemented with ultrcaold atoms
in an optical lattice, has been reported in Paredes et al. 2004. The quartic Hamiltonian
Ĥ2 is coupling nearest neighbors on the lattice sites. Finally the last term in (6.11)
enclose the dissipative component of the evolution, occurring at a rage Γeff with the
jump operator L̂j.

One of the main feature of the effective Lindblad master equation (6.11) is the emer-
gence of a new timescale Γ−1

eff associated with the dissipative processes. In absence of
elastic-interactions, the effective loss rate would scale as Γeff ∝ (J/~)2 Γ−1

ee , which is a
signature of the quantum Zeno effect (see 5.1.2). When the perturbative approach is
valid, we have the inequalities

Γ−1
ee � ~/J � Γ−1

eff . (6.16)
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Figure 6.2 – Comparison between the timescales of the different dynamics at stake.
(a) The different timescales τ associated with the different mechanisms involved in
the description of the system made in (6.11) for 1D optical lattice of 174Yb atoms
with depth Vx in the shallow horizontal direction, and Vy,z = {25, 27}ER in the other
directions. For the lattice depth studied in 6.2, the hypothesis used to derive (6.11) is
satisfied. The quantity J ′ is not represented for it is equal to ~Γeff up to a constant
factor Uee/(~Γee) ≈ 1.2. (b) Evolution of the ratio between |Uee| = |Uee − iΓee/2| and
J for different lattice depths. The increase of the lattice depth and consequently of
the elastic and inelastic interactions made postpone the emergence of the non-unitary
dynamics in the Tonks-Girardeau gas, by quantum Zeno effect.

This inequality can be interpreted in the quantum Zeno effect picture as follows: the
two-body losses acts as a measurement for the sub-Hilbert space enclosing the states
with at least one doubly occupied site. Since it occurs at a rate Γ−1

eff much faster that the
tunneling dynamics (Γee � ~/J) that takes place in the sub-Hilbert space spanned by

133



6.1. Theoretical description of the system

the Fock states with at most one atom per site, transitions via tunneling are hindered
and only occur at a rate Γ−1

eff , much slower than the other timescales. Consequently, for
timescales τ � Γ−1

eff , the system evolves according a Tonks-Girardeau unitary dynamics,
while its long-time dynamics is characterized by losses at a rate proportional to Γeff . In
the following we propose to probe this dynamics by studying the evolution of number
of atoms. limit.

In our experiments, the system that emulates the unidimensional Bose-Hubbard model
is realized with ultracold atoms trapped in a cubic optical lattice, where the depths
of one of the horizontal axes, denoted y and the vertical axis are kept high, typically
Vy,z = {25, 27}ER. For these lattice depths the motion of the atoms along the y and
z directions is inhibited at the timescales of our experiments. Consequently we end
up with a quasi-unidimensional system, where the dynamics of the bosons takes place
along the remaining horizontal direction x with a lower lattice depth compared to its
transverse axis. The lattice depth of this shallow axis is varied across the experiments.
The evolution of the timescales associated with the different mechanism involved in
the effective master equation (6.11) with respect to the lattice depth Vx is represented
Fig. 6.2 (a). We observe that for the typical lattice depths used in our experiments
(Vx ∈ [8, 20] ER), the inequality (6.16) is satisfied. Moreover we observe that the
decoupling between the mechanism timescales increases with the lattice depth Vx of
the shallow axis.

6.1.4 A mean field approach for the losses in the lattice

A first description of the losses dynamics has been proposed in García-Ripoll et al.
2009 using a mean-field approach to compute the evolution of the total number of
atoms in the lattice N (t) = 〈N̂〉t =

∑
j〈n̂j〉t. Here 〈.〉t denotes the average at time t.

Under the effective master equation (6.11), the evolution of the quantity 〈N̂〉t is given
by the differential equation

dN

dt
= −Γeff

2

∑
j

〈 [
L̂†jL̂j, N̂

] 〉
t

= −2Γeff

∑
j

〈L̂†jL̂j〉t. (6.17)

In order to simplify the solving of this differential equation, the authors of García-
Ripoll et al. 2009 assume that the system is homogeneous and that the populations of
different lattice sites are uncorrelated. It allows to rewrite the terms in the right-hand
site of (6.17) as,

〈L̂†jL̂j〉 = 〈n̂jn̂j+1〉+ 〈n̂jn̂j−1〉+
〈
â†j+1n̂j âj−1

〉
+
〈
â†j−1n̂j âj+1

〉
(6.18)

≈ 2n2 (6.19)

introducing n (t) = N (t) /Nsites the density of atoms in the lattice. The injection of
(6.18) into (6.17) leads to a rate equation on n,

dn

dt
= −4Γeffn

2 (t) , (6.20)

whose solution is
n (t) =

n (0)

1 + 4n (0) Γefft
. (6.21)
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Chapter 6. Dynamics in 1D lossy optical lattices

The model of García-Ripoll et al. 2009 presented in this section provide a quantitative
description of the system of a unidimensional optical lattice filled with bosons inter-
acting via strong inelastic collisions. However the mean-field treatment the rate used
to derive the rate equation (6.20) prevent the model to take into account the effect
of the correlations between the sites that build up during the evolution of the sys-
tem. More particularly the density correlation that appears in the expression (6.18) of
〈L̂†jL̂j〉 are neglected in the mean field treatment. In order to overcome this limitation,
a beyond-mean field approach is introduced in Sec. 6.1.5

6.1.5 Beyond mean field: Rate equations

The hypothesis of uncorrelated populations between the lattice sites, used in Sec.
6.1.4 to derive the mean field model, fails to render the dynamics for low densities
where the correlations can lo longer be neglected. We have an ongoing collaboration
with Leonardo Mazza and Davide Rossini to overcome the limitations of the GR model
and describe the correlated regime that emerges at long times. Starting from the HCB
master equation, it is first convenient to perform a Jordan-Wigner transformation
(Jordan et al. 1928) to "fermionize" the lattice gas, mapping the hard-core bosons field
operators to fermionic ones. This is accomplished by the unitary transformation,

ĉj = eiπ
∑
m<j n̂j âj. (6.22)

Here the phase factor counts how many particles are on the left (by convention) of
the site j. This transformation maps the hard-core bosons operators âj to canonical
fermionic operators ĉj that satisfy

{ĉj, ĉm} = 0 (6.23)

{ĉj, ĉ†m} = δj,m.

Here { , } stands for the anti-commutation brackets.

Then, the effective master equation (6.11) is rewritten using the momentum-space
representation,

ĉj =
1√
Nsites

∑
k

eikjdĉk (6.24)

assuming periodic boundary conditions on the lattice, with Nsites and a period d.

In this representation the rate equations for the quantities nk (t) = 〈n̂k〉t = 〈ĉ†kĉk〉t can
be extracted from the effective master equation:

dnk
dt

=
i

~

〈 [
Ĥ1 + Ĥ2, n̂k

] 〉
t
+

Γeff

2

∑
j

〈
2L̂†jn̂kL̂j − L̂

†
jL̂jn̂k − n̂kL̂

†
jL̂j

〉
t
. (6.25)

This master equation is directly derived from (6.11), using nk = Tr [ρ̂n̂k], without any
further assumption. Here one can notice that the Hamiltonian Ĥ1 do not contribute
to the evolution of nk (t), since

[
Ĥ1, n̂k

]
= 0. This term can consequently dropped in

the rest of this section.

In order to simplify the master equation (6.25), a further assumption is made: the
quantum state of the system is chosen so that it satisfies Wick’s theorem,

〈ĉ†i ĉ
†
j ĉkĉl〉t = 〈ĉ†i ĉl〉t〈ĉ

†
j ĉk〉t − 〈ĉ

†
i ĉk〉t〈ĉ

†
j ĉl〉t, (6.26)
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and factorization in the momentum space,

〈ĉ†j ĉk〉 = δj,kn̂k (t) . (6.27)

Under these new assumptions it is possible to discard the contribution of Ĥ2, since
〈
[
Ĥ2, n̂k

]
〉t = 0. Finally, the hypotheses on the nature of the quantum state allow to

simplify the rate equation (6.25), which becomes

dnk
dt

=
Γeff

2

〈∑
j

L̂†j

[
n̂k, L̂j + h.c.

] 〉
t
. (6.28)

It can be reformulated as a rate equation on the nk (t)’s:
dnk
dt

= − 4Γeff

Nsites

∑
q

[
sin2 (k) + sin2 (q)

]
nknq. (6.29)

We end up with a system of non-linear differential equations on the nk’s. The numerical
resolution of this system shows that the decay of the population nk in the momentum
states corresponding to k = 0 and k = π is slower than for the others states. From the
numerical solutions nk of (6.29), we compute the evolution of the average filling n (t),
introduced in the previous section 6.1.4. This quantity is represented in Fig. 6.5 along
with the same quantity computed with the mean field approach, for an initial average
filling n (0) = 1. We observe that for short times (4Γeff � 1) the two curves almost
coincide, whereas for long times (4Γeff � 1) the decay of n computed with the rate
equation is slower than for the mean-field approach. The divergence between the two
models at long times is a manifestation of the correlations that build up in the system
during its evolution. These correlations, not taken into account by the mean field
model, slow down the dynamics of the atomic losses. From (6.20) on can show that at
long times, the average filling for the mean field model behaves as n (t) ∼ 1/ (4Γefft) ,
whereas it can be deduced from (6.29) that the asymptotic behavior of the rate equation
model follows n (t) ∼ 1/

√
8πn (0) Γefft.

6.2 Experiences

6.2.1 Experimental protocol

To probe the quantum Zeno dynamics described above in 6.1, we study the evolution
of the number of atoms in 1D optical lattices, in the regime of parameters where the
inequality J � ~Γee is verified. The 1D optical lattices studied are obtained according
the following common experimental protocol, starting from a Bose-Einstein Condensate
(BEC) of 174Yb atoms initially trapped in a crossed dipole trap :

• A BEC of Natoms atoms is loaded in the optical lattice according to the procedure
described in 2.3.1. The lattice depths are sets to Vx,y,z = {Vx, 25, 27}ER. Here z
denotes the vertical axis while x and y the horizontal ones. The lattice depth Vy
is kept constant at 25ER, deep enough to prevent any tunneling in this direction
at the timescales of the experiments (for this lattice depth, the tunneling time
is equal to ~/J = 77 ms). The lattice depth along x direction is varied over the
experiments
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• A π pulse of yellow light @ 578 nm, resonant with the 1S0 → 3P0 transition of the
174Yb atoms, is sent on the optical lattice. It transfers the atoms to the excited
state. The pulse is sent along the "strong" horizontal axis y, to prevent any recoil
effect and in order to be in the Lamb-Dicke regime.

• A a cleaning pulse of light resonant on the "blue" transition is sent on the atoms
to remove any remaining atoms in the 1S0 state.

• After the cleaning pulse we let the atoms evolve during a time T .

• Finally the lattice is switched off and the atoms are repumped to the 1S0 state
to be imaged after a short time of flight.

In the following we perform experiments using two different preparation protocols,
depending on the number of atoms initially presents in the BEC that is loaded in the
optical lattice:

• Protocol A: Initial atom number Natoms ≈ 3 × 104. According to the model for
the loading presented in 2.3.3 doubly occupied sites are formed in the center of
the optical lattice, alongside with a shell of the singly occupied sites surrounding
them. The doubly-occupied core quickly (within a millisecond) decays at the
beginning of the evolution. The decay is much faster than any possible redistri-
bution of populations by tunneling, so that we can assume that the inner core
simply "disappears" before any dynamics takes place in the unit-filled outer shell.
We simply wait and record the evolution of the total population after the core is
emptied. We assume that the dynamics of these atoms can be described by the
master equation (6.1) applied on 1D optical lattices with initial average filling
n ≤ 1.

• Protocol B: Initial atom number Natoms ≈ 8 × 103. According to the loading
model presented in 2.3.3 only singly occupied sites are formed in the optical
lattice. This preparation protocol is at first sight much simpler than the previous
one. However, this simplicity comes at the cost of an deteriorated signal over
noise ratio due to the smaller population recorded.

6.2.2 Experimental results

In Fig. 6.3 we present the evolution of the atomic populations in 1D e-lattice obtained
for several lattice depths Vx ∈ [8, 20] ER (Vx ∈ {8, 12, 15, 18, 20}ER for protocol A
and Vx ∈ {8, 11, 14, 17}ER for protocol B), using protocols A (a) and B (b). The
atomic population is normalized by the initial number of singly-occupied sites N (1)

init.
To determine this quantity for optical lattices prepared following the protocol A, we
let the two-body losses deplete the atoms in doubly-occupied sites (see Sec. 6.2.1 ). As
showed in Fig. 6.4, this process translates into a first decay of the atom number in the
optical lattice that occurs at the scale of a millisecond. When all the atoms involved in
doubly-occupied sites have been depleted, the atom number stabilizes at a value that
we assume to correspond to N (1)

init, before the emergence of the dynamics of interest in
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Figure 6.3 – Atom number decay in 1D optical lattices prepared according to the
protocol A (a) for depths Vx ∈ {8, 10, 12, 15, 18, 20}ER and prepared according to
protocol B (b) for depths Vx ∈ {8, 11, 14, 17}ER. The atomic population for each
lattice depths is normalized by the initial number of atoms in the singly occupied sites.
For the protocol A, this quantity is determined by the plateau in the evolution of the
number of atoms, that corresponds to the interval between the end of the two-body
losses, here the blue shaded area, and the Zeno-dynamics related ones. For the protocol
B, it simply correspond to the initial atom number.
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this chapter, i.e. whose associated with bosons evolving in a unidimensional lattice,
subject to strong elastic and inelastic collisions.
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Figure 6.4 – Determination of the initial atom number for protocol A for the experi-
ment performed at Vx = 12ER. In a first time, the atoms involved in doubly-occupied
sites are depleted by the inelastic collision processes within a millisecond (blue shaded
area). When all the bosons pair have been lost due to the two-body losses, the decay
stops and the atom number stabilize around a value (dotted black line) that we assume
to corresponds to N (1)

init. Then a second decay occurs, corresponding to the dynamics,
studied in this chapter, of a bosons trapped in a unidimensional optical lattice, in
presence of strong elastic and inelastic interactions.

6.2.3 Comparison of the models with the experimental data

In this section we compare the experimental data presented in Fig. 6.3 to the two
model introduced above in 6.1.4 and 6.1.5. The experimental data points and both
models are represented in Fig. 6.5, assuming an initial average filling in the optical
lattices of n = 1. We observe a discrepancy between the models at low lattice depths
for both protocols. For the lowest lattice depths probed, the experimental data time-
rescaled by (4Γeff)−1 in Fig. 6.5 collapse on the same, curve. This point toward a good
qualitative description of the mechanism, but the losses occurs at a slower rate than
the ones expected from both models. In order to have more quantitative results to
compare both dynamics, we fit the experimental decays by the function

nMF (T, κ) =
1

1 + κT
, (6.30)

with κ left as a fit parameter. For κ = κth = 4Γeff , the function nMF (T, κ) corresponds
to the function introduced in 6.21, solution of the rate equation 6.20 given by the mean
field model, assuming an initial average filling n (0) = 1. The function nRate eq. (T, κ)
is a heuristic function which, for κ = 4Γeff and n (0) = 1 reproduces the numerically
computed solution of the rate equation (6.29) with a good accuracy. The results of
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the fits, for the data obtained with both protocol, are presented in Fig. 6.6 along
with their comparison with their expected value κth from the models. This analytical
formula, easier to handle, allows a simple comparison with the mean field formula,
while rendering properly the behavior for the average filling at short and long times.
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Figure 6.5 – Comparison between the time-rescaled population decay and the decay
expected from the models presented in, for both protocols (A: (a); B: (b))

In Fig. 6.6 the discrepancy at low lattice depth is more straightforward: For the lowest
lattice depths, the decay rate κ is smaller than the κth = 4Γeff expected from the
model introduced in Sec. 6.1.4, assuming n (0) = 1, but vary similarly as the lattice
depth increases. Then for intermediate lattice depths, the difference between the fitted
κ and κth decreases to end up in an agreement between the experimental data and
the models at 20ER. Furthermore, for the lowest lattice depths, the dynamics for the
optical lattices loaded according to protocol B is even slower than the one in lattices
A. However for lattice depths Vx < 15ER, fitted parameters for both protocol seems to
converge towards each other.
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Figure 6.6 – Fitted effective decay rate κ from fit function introduced in (6.30),
extracted from the experimental data obtained following protocol A (red diamonds)
and protocol B (blue circles). In panel (a) the results of the fit procedure are compared
to the expected value for κ from the models κth = 4Γeff (green line and squares). In
panel (b) the evolution of the ratio κ/κth for the different lattice depths probed in our
experiments.

6.2.4 Investigation on the possible causes for the slowing
down of the losses dynamics

In order to explain the discrepancy between the experimentally observed decay of
atomic populations in the optical lattice and the dynamics described by the models
introduced earlier, we investigate several candidates for the slowing of the losses dy-
namics.
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Evaluation of the physical quantities involved in the effective dynamics

In the discussion about the causes that could explain the observed discrepancy be-
tween the experimental data and the models observed in Fig. 6.6, we must firstly make
sure that the uncertainties on the measures of the physical quantities involved in the
expression of Γeff could not be sufficient. We remind from the expression (6.15) that
the effective loss rate Γeff is function of the tunneling constant J and of the elastic and
inelastic interaction energies, Uee and ~Γee/2 respectively.

The tunneling constants J and thus the lattice depths Vx,y,z along each direction are
estimated by the technique exposed in Sec. 2.3.2 relying on Kapitza-Dirac diffraction
experiments, with an accuracy of 1ER on the lattice depth. Given the lattice depth, the
band theory introduced in Chap. 1 gives us the Wannier functions and their associated
integrals for the lattice depths considered. Consequently, to determine the interaction
energies, one has to estimate the values of the constants aee and βee characterizing
respectively the elastic and inelastic collisions between two 174Yb atoms in the excited
state |e〉. The methods used to measure these quantities are presented in Sec. 5.2.2.
We remind the estimates for the elastic collision parameter aee = 126.7(2.3) found in
Franchi et al. 2017 and for the inelastic collision parameter βee = 2.5(1)×10−11 cm3.s−1.

The errorbars determined for all the quantities involved in the expression of Γeff are not
sufficient to explain the ratio of 0.2 (see Fig. 6.6) between the experimentally recorded
Γeff and the expected one from the estimated values of J , Uee and ~Γee/2 at low lattice
depths. The uncertainty on the measures of the relevant physical quantities also fails
to render the observed dependence with the lattice depth observed in Fig. 6.6. As a
consequence we will consider other causes in order to explain the discrepancy between
the experimental data and the models.

Initial average filling n in the 1D optical lattices

In the computations presented in Figs. 6.5 and 6.6 the inital average filling of the
probed optical lattices n (0) has been assumed to be unity. However the experiments
of time-domain Ramsey spectroscopy presented in chapter 4 have pointed out the fact
that the initial average filling is inferior to unity. In order to test the hypothesis of lower
filling, we compare in Fig. 6.6 (b) the fitted κ to the expected one κth = 4n (0) γeff for
the different lattice depths and protocol probed.

Here we observe that a lattice depth-independent filling inferior to unity cannot explain
the fact that the dynamics observed in our experiment is slower that the one described
by the models. To ensure consistency between the experimental points and the mod-
els, an initial average filling around n = 0.2 have to be considered at the lowest lattice
depths for the protocol A (n = 0.05 for the protocol B). However for higher lattice
depths (above 15ER) the initial average filling has to be increased up to 1. There are
numerous reasons that could make the average filling less than unity. Technical fluctu-
ations of the optical lattice, the initial temperature of the cloud, imperfect adiabaticity
during the transfer are only a few reasons that lead to an increase of entropy of the
lattice gas (or even to a non-equilibrium situation). However such a wide variation of
average fillings seems unreasonable, especially for the lowest lattice depths.
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Figure 6.7 – Comparison between the energy scales at stake in the two-body elastic
and inelastic collisions and the band gap for different lattice depths in the "shallow" Vx
direction, assuming lattice depths of Vy,z = {25, 27}ER in the transverse directions. It
appears that, for the lattice depths considered in our experiments these energy scales
are small compared to the band gap.

Moreover, we expect that the initial average filling to be higher for the protocol B than
for the protocol A. Indeed the presence of doubly occupied sites at the center of the
optical lattice, which are depleted in the first millisecond of the experiment, should end
up in a hole in the center of the optical lattice. At the timescales of the experiments,
much longer than the tunneling time, one could expect than the empty sites in the
middle of the optical lattice would lower the average filling. In addition, in order to
match the models for the evolution of the atomic population in the optical lattice, we
have to assume higher fillings for higher lattice depths. However, we expect adiabatic
redistribution to be better fulfilled at low lattice depth. The average filling should be
closer to unity in these cases.

Loss rates normalization by excited bands

Another way to explain the slowing down of the dynamics with respect to the models
at low lattice depth could be to take into account the contribution of the excited bands
in the dynamics. We expect them to increase the mobility of the atoms in the optical
lattice. It has also been shown (Zhu et al. 2014) that in the regime where the energy
scales associated to the two-body elastic and inelastic collisions are on the same order
or larger than the band-gap, taking into account the excited bands could reduce the
value of Γeff . However in our case, for the lattice depths probed, the energies Uee
and ~Γee/2 are small compared to the band-gap (see Fig. 6.7), and the single-band
approximation made in Chap. 1.2.1 when writing the Bose-Hubbard Hamiltonian is
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relevant.

Effect of the auxiliary trapping potential

In the developments made all along this chapter, the auxiliary confining potential
presented in has not be taken into account. We go back to the simple two-well model
introduced in section 6.1.2 and modify it introducing an energy shift ∆ between the
two sites in order to have some insight on how the presence of an auxiliary confining
harmonic potential will change the tunneling constant between neighboring sites in the
1D lattice. The Hamiltonian associated with this new system is:

Ĥ =

 0 −
√

2J −
√

2J

−
√

2J Uee −∆− i~Γee
2

0

−
√

2J 0 Uee + ∆− i~Γee
2

 (6.31)

in the {|1〉l|1〉r, |2〉l|0〉r, |0〉l|2〉r} basis. If we consider the perturbation treatment of
this Hamiltonian, restricted to the Hilbert space with at most one atom per site, we
end up with a effective loss rate for the state |1〉l|1〉r that can be expressed as:

Γeff (∆) =
2J2Γee
U2
ee

[
1

(1−∆/Uee)
2 + (~βee/2gee)2 +

1

(1 + ∆/Uee)
2 + (~βee/2gee)2

]
.

(6.32)
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Figure 6.8 – Evolution of the correction on the effective loss rate Γeff for the two well
system introduced in C.2, induced by the existence of a bias ∆ between the two wells.
For typical values of the ratio ∆/Uee considered in the optical lattice, the additional
bias reduce the gap between the ground state with one atom in each site |1〉l|1〉r and
the state with a double occupancy in the well of lower potential energy, increasing the
effective loss rate.
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In practice, for our experimental setup, we have shown in 2.3.1 that the harmonic aux-
iliary trapping potential, superposed on the optical lattice in the x "shallow" direction
has a frequency Ωx ≈ 2π × 40 Hz. Moreover, according to the model for the loading
of the optical lattice introduced in 2.3.3, the maximal radius of our optical lattice is
inferior to Rmax ≈ 20µm. It allows us to give an upper bound for the maximal energy
shift between two neighboring sites of the 1D optical lattices under study:

∆ ≈ mΩ2
xdRmax ≈ 0.24ER, (6.33)

where m is the mass of 174Yb atoms, d the lattice period. When the lattice depth of the
shallow axis vary from Vx = 8ER to Vx = 20ER, the ratio ∆/Uee vary from 0.4 to 0.3,
which should translate into an increase of the effective loss rate Γeff , according to Fig.
6.8. This rough qualitative analysis points toward an acceleration of the losses dynamics
due to the external confining potential, which do not explains the observed delay of our
experimental points on the model curves. In Appendix C we perform similar analysis
on slightly more complex systems of wells biased by an auxiliary potential, and end up
to the same conclusion.

To conclude, the qualitative analysis performed from toy-models in this section tends
to dismiss the harmonic auxiliary confining potential as the cause for the slowing down
of the loss dynamics. On the contrary it could induce transport that would enhance
the tunneling and consequently the formation of doubly occupied sites, where inelastic
collisions will occur.

6.2.5 Relevance of the extended Bose-Hubbard model

The experiments performed to study the loss dynamics of the 1D Bose-Hubbard
model in the strong dissipation regime required to consider timescales on the order of
several Γeff that are very long compared to the one associated with the tunneling ~/J .
Consequently the hypothesis used to write down the Bose-Hubbard Hamiltonian may
be no longer valid, and some extra term, neglected so far, should be taken into account.
More precisely the interaction term of the Hamiltonian:

Ĥint =
1

2

∑
i,j,k,l

Uijklâ
†
i â
†
j âkâl (6.34)

with the interaction matrix element given by:

Uijkl =

(
gee −

i~βee
2

) ˆ
drw∗ (r− ri)w

∗ (r− rj)w (r− rk)w (r− rl) (6.35)
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can be expanded as:

Ĥint =
1

2
U0000

∑
i

â†i â
†
i âiâi (6.36)

+ U0001

∑
〈i,j〉

[
â†i â
†
i âiâj + h.c.

]
(6.37)

+ U0002

∑
〈〈i,j〉〉

[
â†i â
†
i âiâj + h.c.

]
(6.38)

+
1

2
U0011

∑
〈i,j〉

[
â†i â
†
i âj âj + â†i âiâ

†
j âj + h.c.

]
+ ..., (6.39)

where 〈., .〉 stands for a sum on nearest-neighbors and 〈〈., .〉〉 stands for a sum on
next-nearest neighbors (Dutta et al. 2015).

The first term of Ĥint with the matrix element U0000 is the usual interaction term of the
Bose-Hubbard model. The second term (6.37) ∝ U0001 gives the first correction to the
Bose-Hubbard model: it renders an interaction induced tunneling event from a site i to
one of its nearest-neighbor j. The term (6.38) ∝ U0002 is associated to a similar event,
occurring this between further lattice sites. Lastly the terms in (6.39) ∝ U0011 are
associated with off-site interactions between neighboring sites, for the term ∝ â†i âiâ

†
j âj

and to correlated tunneling event where two particles tunnel simultaneously, called
co-tunneling, for the term ∝ â†i â

†
i âj âj. The real part of the matrix elements of the

extended Bose-Hubbard model are compared to the tunneling constant and to ~Γeff/2
in Fig.6.9 for different lattice depths.
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Figure 6.9 – Comparison between the first matrix elements of the extended Bose-
Hubbard model, the tunneling energy and the effective loss rate for different depth
of the 1D lattice, assuming Vy,z = {25, 27}ER in the strong directions of the optical
lattice.
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Chapter 6. Dynamics in 1D lossy optical lattices

At the timescales of our experiments, we can neglect the terms ∝ U0011 and ∝ U0002.
However, for lattice depths over 8ER, the occurrence of interaction-induced tunneling
cannot be neglected for timescales on the order of Γ−1

eff . This mechanism is not taken
into account in the models presented earlier and cannot be easily integrated to it.
Consequently, in order to have some qualitative insight on how the interaction-induced
tunneling will alter the effective loss rate, we consider once again the simple model
with two bosons evolving among two wells previously used in 6.1.2.

In the {|11〉, (|20〉+ |02〉) /
√

2} basis the Hamiltonian describing the dynamics of the
system, including the interaction-induced tunneling gives:(

0 −2J + 2Vee
−2J + 2Vee Uee

)
. (6.40)

Here Vee denotes U0001 with g = gee − i~βee/2. We extract from this Hamiltonian the
effective loss rate for the state |11〉 using its second order perturbation expansion:

Γeff =
4|J − Vee|2

U2
ee + (~Γee/2)2 Γee. (6.41)

The numerical computation of the Wannier integral associated with Vee = U0001 gives
negative values for Re

(
Vee
)
. Consequently this correction will increase Γeff i.e. speed

up the of the losses and therefore cannot explain the slower dynamics observed in our
experiments.

6.2.6 Strength of the contact interaction

In the results of the experiments presented in 6.6, we observe that decay rates κ ex-
tracted from the experimental data are closer and closer to its expected value from the
models κth as the lattice depth, and consequently the interactions strength, increases.
Consequently the observed discrepancy between the models and the experiments could
be due to the fact that at low lattice depths, the interactions between the bosons are
not strong enough for the system to be described by the effective master equation
(6.11). Under this hypothesis, the second order perturbation theory used on the Lind-
blad master equation (6.1) to derive (6.11) would start to be relevant only for lattice
depths Vx > 20ER. In order to confirm or disprove this hypothesis, we plan to realize
experiments in deeper lattices, in order to probe the loss dynamics in the regime where
Vx > 20ER.

6.3 Conclusion

In this chapter we have studied experimentally the unidimensional optical lattice
filled with interacting bosons subject to inelastic collision-induced two-body losses, in
the strong dissipation regime. After a brief presentation of the theoretical framework
used to describe the dynamics in the optical lattices, we have presented the results of
our experiments on the evolution of the population of atoms in the optical lattice and
compared them to two models derived from the theory of hard-core bosons in optical
lattices. These results show up a behavior qualitatively consistent with the models, in
a sense that Γ−1

eff seems to be the relevant timescale associated with the losses, but not
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quantitatively: for the lowest lattice depths the dynamics is slower than expected from
the models. In the last part of this chapter we have tried to determine if some aspects of
our experimental setup, neglected so far, could explain this slowdown of the dynamics.
From our qualitative studies, it appears that initial average filling, the coupling with
excited bands, the presence of a confining trapping potential and the effect of higher-
order collisions terms in the expression of the Hamiltonian of the system are bad
candidates to explain the observed slower dynamics of the atomic losses. Another
approach to explain the slower dynamics would be to considers the assumptions made
to derive the models. Indeed in order to derive the models briefly depicted in 6.1.4 and
in 6.1.5, in addition to the conditions on the energy scales (~Γee � J), assumptions has
been made in both case on the nature of the state of the system during its evolution.
More particularly, in the mean-field model presented in García-Ripoll et al. 2009, the
populations of the different sites of the lattice are assumed to be uncorrelated, while in
the model developed in our ongoing collaboration, the derivation of the rate equation
requires a state that satisfies Wick’s theorem and factorization in momentum space.
In both cases, simplifying assumptions on the correlations between the populations for
different sites of the direct or the Fourier space have been made. Consequently, these
models may fail to represent some highly correlated states.

148



Summary and outlook

Summary and conclusion

In the work presented in this thesis manuscript, I have studied several experiments in-
volving ultracold 174Yb atoms trapped in optical lattices, whose internal state is driven
by laser light. I have shown how such experimental platforms can be used to probe the
more general many-body physics of bosons evolving in a lattice, and its related effects.
A particular emphasis is laid on the physics of bosons in unidimensional lattice and
how the dissipative dynamics induced by inelastic collisions between 174Yb atoms in
their excited state can be used to control the driving of the bosons, via the quantum
Zeno effect.

In Chapter 1, I have reminded some notions on the band theory and the Bose-Hubbard
model. These notions have been used throughout this manuscript to describe and
interpret the experiments performed. In this chapter they are more particularly used
to discuss the effect of the auxiliary confining harmonic potential superimposed on the
optical lattice and the adiabaticity of the protocol used to load the optical lattice.

The main experimental aspects of the realization of a Bose-Einstein Condensate of
174Yb have been presented in Chapter 2, along with the electronic structure of yt-
terbium. Then the protocol to transfer the 174Yb Bose-Einstein condensate into the
optical lattice has been presented. Finally, from this protocol, a model describing the
spatial distribution of the atoms in the optical lattice at the end of the loading has
been proposed.

In Chapter 3, after introducing the experimental setup used to produce our narrow clock
laser at λclock = 759 nm, we have proposed a theoretical description of the coherent
driving of 174Yb on the ultranarrow 1S0 ←→ 3P0 transition. This description has
then been used to describe and analyze experiments, such as Rabi oscillations and
Ramsey spectroscopy, preformed on single atoms trapped in isolated sites of deep
optical lattices, so that the tunneling does not intervene. We have shown how these
experiments could be used to study the temporal evolution of the coherence in the
internal state of atoms driven on their clock transition. The results of the Ramsey
experiments allowed us to point out the frequency fluctuations of our laser as the main
cause of decoherence and to give an estimate of their power density spectrum, given
some assumptions on its general form.

The framework and the results of the experiments detailed in Chapter 3 have then
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been used in Chapter 4 to probe the dynamics taking place for two-component bosons
evolving in an unidimensional lattice in the strong interaction regime, close to unit
filling. A prior theoretical description of this system has pointed out two kind of
mechanisms driving the system, tunneling and superexchange. Taking advantage of
the site dependent phase imprinted on the atoms during their driving on the clock
transition, we have seen that it is possible to relate the decay of the contrast observed for
fringes obtained by time domain Ramsey spectroscopy to the dynamics of the system.
The experimental data, which have pointed out the tunneling has the dominant effect,
have finally been compared to numerical simulations, giving information on the initial
filling of the system.

In Chapter 5 we have shown that the two-body losses induced by the inelastic collisions
between a pair of 174Yb atoms in the 3P0 state enable a quantum Zeno effect that can be
used to drive the system while hindering the transitions from the reduced-loss subspace
of the Hilbert space to the lossy state. Then I have presented the implementation of
this idea for isolated bosonic pairs of 174Yb atoms trapped in the sites of a deep optical
lattice, firstly theoretically, introducing the non-Hermitian Hamiltonian framework, in
order to discuss in a second time the results of the passage experiments, to highlight
the role of the quantum Zeno effect.

The physics of bosons evolving in an unidimensional lattice, interacting via both elastic
and inelastic collisions studied in Chapter 6 combines some of the concepts introduced
in Chapters 4 and 5. In this last chapter I have introduced the Lindblad master-
equation describing bosons strongly interacting via strong elastic and inelastic interac-
tions in an unidimensional lattice as an open quantum system. From this equation an
effective master equation has been derived after perturbative expansion in the strong
interaction limit, rendering the dynamics restricted to the reduced-loss subspace. This
effective master equation is used as a starting point to present two theoretical models
that allow to derive analytic expressions for the dynamics of the system. Then the re-
sults of experiments performed with 174Yb atoms in the 3P0 trapped in unidimensional
optical lattices are compared with these models. We observe a qualitative agreement
between the experiments and the models for the dynamics of the two-body losses in
the optical lattice. However the decay of the atomic population in the optical lattices
are slower than expected. This chapter ends with a discussion on the possible causes
for this slow down.

Perspectives

Non-Hermitian linear response theory

Other transitions of 174Yb besides the 1S0 ←→ 3P0 clock one, can be used to study
many-body physics. More particularly it is possible to take advantage of the finite
width of the inter-combination transition 1S0 ←→ 3P1 to enable spontaneous emission
an optical lattice, to study the dynamics of bosons in a lattice in presence of dissipation.
Such system, theoretically described in Poletti et al. 2013, have been experimentally
studied in the work presented in Bouganne et al. 2019, that has not been discussed in
this manuscript. The experiments performed in two dimensional optical lattices have
pointed out the signature of dissipation-induced anomalous diffusion in the momentum
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space.

In a subsequent theoretical work (Pan et al. 2020), it has been shown that the results
of the experiments presented in Bouganne et al. 2019, realized on 2D optical lattices,
were consistent with the non-Hermitian linear response theory developed in Pan et
al. 2020. In order to confront this theory with experiment, we study in an ongoing
project the evolution of the momentum distribution in a quasi-unidimensional optical
lattice in presence of dissipation, enabled by driving the atoms on the inter-combination
transition.

Artificial gauge field

As it has already be mentioned earlier in this manuscript, the long-term goal of our
experimental setup is the implementation of the protocol presented in Gerbier et al.
2010 for the realization of artificial gauge field using the ultranarrow 1S0 ←→ 3P0

transition of ytterbium. For that purpose, ultracold 174Yb have to be loaded in an
optical lattice with one horizontal arm at magic wavelength while the second arm will
be at anti-magic wavelength (see Chap. 2). Along the first direction the atoms in states
1S0 and 3P0 will be indistinctly trapped. Along the second direction a state dependent
lattice is formed, with the atoms in the 1S0 state trapped at the nodes of the lattice
potential while the atoms in the 3P0 state are trapped at the anti-nodes. In the magic
direction the atoms can tunnel via usual tunneling. In the anti-magic direction, the
tunneling requires the atoms to change their internal state. The tunneling in that
direction is enabled by laser-assisted tunneling, using a laser resonant with the clock
1S0 ←→ 3P0 transition. The presence of the coupling light field results in the atoms
acquiring when tunneling along the anti-magic direction.

Figure O.1 – Scheme of the protocol proposed in Gerbier et al. 2010 for the implemen-
tation of artificial gauge fields. The lattice is at the magic wavelength in the y direction
and at the anti-magic wavelength in the x direction. The laser-assisted tunneling in
the state-dependent direction imprints a phase on the atomic state. When it circles
over a closed loop in the lattice, the atom acquires a non-zero phase φ.

In this configuration, a particle that circles on a closed loop in the lattice acquires
a non-zero phase, similarly to the case of a charged particle in presence of vector
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potential described in the work of Aharonov et al. 1959, introducing the Aharonov-
Bohm effect. However in this configuration, the lattice flux is staggered along the
anti-magic wavelength. The protocol presented in Gerbier et al. 2010 suggests to use
a superlattice in order to perform flux-rectification and create a uniform flux over the
lattice.

We expect this experimental setup to allow us to realize artificial gauge field in a lattice,
described by the Harper-Hofstadter Hamiltonian (Harper 1955; Hofstadter 1976). The
single particle picture used in the previous paragraph is relevant in the weak interaction
regime, where the number of lattice vortices is small compared to the number of atoms.
Furthermore our experimental setup could be used to go beyond single-particle physics
and study the new and richer phases that arise when the effect of interactions are
combined to those of artificial magnetism in a lattice (Cooper 2008; Bloch et al. 2008).
In particular we expect the emergence of incompressible quantum Hall phases in the
phase diagram for the bare Bose-Hubdard model (Umucalılar et al. 2010).
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APPENDIX A

Adiabatic approximation

A.1 Adiabatic approximation for non-Hermitian
Hamitonian

Let us consider a system whose dynamics is described by the time-dependent non-
Hermitian Hamiltonian. If we assume that ∀ t, Ĥ (t) is diagonalizable, it can be ex-
pressed as Ashida et al. 2020

Ĥ (t) =
∑
j

λ (t) |Rj (t)〉〈Lj (t)| =
∑
j

λ (t) P̂j (t) . (A.1)

The |Rj〉 and 〈Lj| are respectively the right and left eigenvectors of Ĥ defined by

Ĥ|Rj〉 = λj|Rj〉 (A.2)

〈Lj|Ĥ = 〈Lj|λj. (A.3)

We also introduces P̂j (t) = |Rj (t)〉〈Lj (t)|, the projector on the eigenspace associated
with the complex eigenvalue λj (t) = ~ωj (t) − i

~γj(t)
2

. In the following for the sake of
simplicity, we assume that the spectrum of Ĥ (t) is fully non-degenerate for all times t.
This is the case for the system studied experimentally in Chap. 5. The system and the
Hamiltonian evolve from an initial state, at the instant t0 to a final state at time t1.
We introduce a rescaled time variable s = t−t0

T
, with T = t1 − t0 the total duration of

the evolution. In the context of adiabatic passages, 1/T plays the role of the slowness
parameter.

The evolution operator for Hermitian systems obeys

i~
d

ds
Û = TĤ (s) Û (s) and Û (0) = 1̂. (A.4)

We search for the analog equation for the non-Hermitian case.

We introduce the similarity transformation Â (s) (a priori non-unitary) transforming
the basis of right eigenvectors of Ĥ (0) into the basis of eigenvectors of Ĥ (s), |Rj (s)〉 =
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Â (s) |Rj (0)〉. Â−1 (s) acts similarly on left vectors, 〈Lj (s)| = Â−1 (s) 〈Lj (0)|. This
implies

P̂j (s) = Â (s) P̂j (0) Â−1 (s) and Â (0) = 1̂. (A.5)

The derivative of this expression gives the condition[
K̂ (s) , P̂j (s)

]
= i~

dP̂j
ds

, (A.6)

where K̂ is an invertible operator verifying (Messiah 1999)

i~
dÂ

ds
= K̂ (s) Â (s) and − i~

dÂ−1

ds
= Â−1 (s) K̂ (s) (A.7)

Reciprocally one can start from the condition (A.6) and inject the relations in (A.7)
to recover (A.5).

In fact these relations only define K̂ up to a
∑

k P̂k (s) f̂k (s) P̂k (s) extra term, with f̂k
any operator. In order to dispel the mutiplicity of definition, we arbitrary impose that
K̂ must verify the relation:

P̂k (s) K̂ (s) P̂k (s) = 0. (A.8)

which gives the expression for K̂ (s):

K̂ (s) =
∑
j

dP̂j
ds

P̂j. (A.9)

The operator Â defined above can be use to perform the analogous of representation
change for Hermitian dynamics in order to get rid of the evolution of the basis in the
Schrödinger equation. Indeed, in this representation, the Schrödinger equation writes:

i~
d

ds
Û (A) =

[
TĤ(A) (s)− K̂(A) (s)

]
Û (A) (s) , (A.10)

introducing the transformed Hamiltonian:

Ĥ(A) (s) = Â−1 (s) Ĥ (s) Â (s) =
∑
j

λj (s) P̂j (0) , (A.11)

and the following operators in the new representation:

K̂(A) (s) = Â−1 (s) K̂ (s) Â (s) (A.12)

Û (A) (s) = Â−1 (s) Û (s) . (A.13)
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In the Schrödinger equation (A.10), the footprint of the dynamics of the eigenvector
basis is enclosed in the second term of the r.h.s. of the relation (this correspond to
the Berry phase for Hermitian systems). If the evolution is slow enough, i.e., we may
hope that the first term of the r.h.s of the equation will dominate. We introduce Φ̂R

the solution of the Schödinger equation in absence of the K̂ term:

i~
d

dt
Φ̂ = Ĥ(A) (t) Φ̂ (t) , (A.14)

which corresponds to the situation where the eigenvectors basis are time independent.
This operator takes charge of the phase acquired by the system during its evolution.
The expressions for Φ̂ and its inverse are:

Φ̂ (s) =
∑
j

e−
i
~
´ s
0 λj(σ) dσP̂j (0) and Φ̂−1 (s) =

∑
j

e+ i
~
´ s
0 λj(σ) dσP̂j (0) . (A.15)

This operator can also be used as a similarity transformation to rewrite the Schrödinger
equation (A.10) as:

i~
d

ds
Û (B) = −K̂(B) (s) Û (B) (s) (A.16)

with

Û (B) = Φ̂−1Û (A) = Φ̂−1Â−1Û (A.17)

K̂(B) = Φ̂−1K̂(A)Φ̂ = Φ̂−1Â−1K̂ÂΦ̂ (A.18)

The evolution operator over the all transformation in this representation can be ex-
pressed as:

Û (B) (1) = 1̂ +
i

~

ˆ 1

0

K̂(B) (s) ÛB (s) ds (A.19)

or

Û (B) (1) = 1̂−
ˆ 1

0

∑
j,k

αj,k (s) e
i
~T
´ s
0 λj(σ)−λk(σ) dσ|Rj (0)〉〈Lk (0)|Û (B) (s) ds (A.20)

with

αjk (s) = 〈Lj (s)|dP̂k
ds
|Rk (s)〉 (A.21)

= − i

~
〈Lj (0)|Â−1 (s) P̂j (s) K̂ (s) P̂k (s) Â (s) |Rk (0)〉. (A.22)

On may notice that ∀j αjj (s) = 0 since K̂ verify the property.

Assuming that the system is initially in the eigenstate |Rm〉, its probability to have
"followed" the evolution of the system is given by the modulus square of the matrix
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element:

〈Lm (0)|Û (B)|Rm (0)〉 = 1−
∑
k 6=m

ˆ 1

0

αm,k (s) e
i
~T
´ s
0 λm(σ)−λk(σ) dσ〈Lk (0)|Û (B) (s) |Rm (0)〉 ds

(A.23)
If we restrict ourselves to the a first order approximation, we conclude that the adiabatic
approximation, starting in the eigenstate |Rm (0)〉 is valid only if the terms

ηmk =

ˆ 1

0

αj,k (s) e
i
~T
´ s
0 λm(σ)−λk(σ) dσ ds for k 6= m (A.24)

becomes negligible when T → +∞. From this expression, it is possible to show (Mes-
siah 1999; Nenciu et al. 1992; Sun 1993; Ibáñez et al. 2014) that the adiabatic approx-
imation is valid if the following condition is satisfied:∣∣∣ ~αmk (s)

T |λm (s)− λj (s) |

∣∣∣exp

[
T

2

ˆ s

0

γm (σ)− γj (σ) dσ

]
� 1 ∀ s ∀ j 6= m. (A.25)

which can be rewritten for non rescaled times∣∣∣ ~αmk (t)

|λm (t)− λj (t) |

∣∣∣exp

[
1

2

ˆ t

t0

γm (τ)− γj (τ) dτ

]
� 1 ∀ t ∀ j 6= m. (A.26)

From these expressions it comes that the adiabatic approximation can only be valid in
the limit T → ∞ for the least dissipative state, i.e. the one with the imaginary part
with the smallest modulus, to ensure that exponential factor decays as T → ∞. One
may also remark that for finite T , if the quantity T

2

´ s
0
γm (σ)−γj (σ) dσ remains close to

1 ∀ s, i.e. if the values of γm and γj stay very close one to another during the evolution,
the adiabatic approximation can be used, even if the initial state is not always the less
dissipative state. This situation, which is observed in our experiment between the
two states of the reduced-loss subspace, corresponds to the "weak non-Hermicity" case
mentioned by Nenciu et al. 1992. Consequently, performing adiabatic passages that
cross the detuning (δL, cross. ≈ −115 Hz) where the ordering of the imaginary parts of
the eigenvalues associated to the eigenstates |λ1〉 and 〈λ3| is reversed is still relevant.
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Fit procedures

Most of the fit functions used above are non linear and non linearisable, which made
the fit procedure and the computation of confidence intervals a little more complicated.
We present here the procedure used in the thesis to compute them in the non-linear
case.

B.1 Weighted least squares ("χ2 fit")

This method consists in minimizing the weighted residuals sum of squares RSS over
the parameter p = [p1, p2, ..., pk]:

RSS =
N∑
i

(
yi − f (ti;p)

σi

)2

(B.1)

p∗ = argmin
p

(RSS) (B.2)

Then to estimate the confidence interval for a given parameter (e.g. pk), we compute
the quantity:

F̃ (pk) = (n− k)
RSS (p̃∗)−RSS (p∗)

RSS (p∗)
(B.3)

where p̃∗ =
[
p∗1, p

∗
2, ..., p

∗
k−1, pk

]
. Since F̃ has approximately a F1,n−k distribution, it is

possible to compute confidence intervals. For more details see Chap. 8 of ( 2002)

B.2 Boostrap

The bootstrap is a Monte Carlo like approach to determine the statistical distribution
of the regression parameters Bohm et al. 2010. Our experimental curves are made of
5 measurements of atom numbers Nt,i=1,2,3,4,5 after different wait times t. To perform
the bootstrap we proceed as follow: for each wait time T we pick randomly a value for
NT among the 5 available. Then we perform a regression by minimizing the residual
least squares RSS. This step is repeated several times (e.g. 1000 times) and each set
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of fitted parameters obtained are stored. In the end we compute the mean and the
standard deviation for each parameter.
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APPENDIX C

Effect of the auxiliary trapping potential

In Sec. 6.2.4, we adapt the simple two-well model introduced in Sec. 6.1.2 to have
some insight on the effect of the presence of the auxiliary trap on the quantum Zeno
dynamics under study in Chap. 6. From the pertubative treatment performed on this
simple model we conclude that the presence of an auxiliary confining potential should
accelerate the loss dynamics, whereas we experimentally observe a slowdown.

However one may object that the difference between the models and the experimental
points occurs at long timescales, when the losses has already taken place, reducing the
average filling of the optical lattice. In order to take the presence of empty sites in the
optical lattice in our qualitative analysis of the effect of the auxiliary confining potential,
we perform perturbation expansion on the system made of two bosons interacting via
elastic and inelastic collisions, evolving in a triple well, with an energy shift ∆ between
the central well, indexed by 0 and the lateral ones, indexed by -1 and 1. In the basis
{[|110〉+ |011〉] /

√
2, |101〉, [|200〉+ |002〉] /

√
2, |020〉}, the Hamiltonian of the system

writes: 
0 −

√
2J −

√
2J −2J

−
√

2J ∆ 0 0

−
√

2J 0 Uee + ∆− i~Γee/2 0
−2J 0 0 Uee −∆− i~Γee/2

 . (C.1)

Assuming that ∆ > 0 , ∆� J and that ∆� Uee, the perturbation expansion of this
Hamiltonian gives:

Γeff =
2J2Γee
U2
ee

[
2

(1−∆/Uee)
2 + (~βee/2gee)2 +

1

(1 + ∆/Uee)
2 + (~βee/2gee)2

]
(C.2)

as effective loss rate for the ground state [|110〉+ |011〉] /
√

2.
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Figure C.1 – Evolution of the correction on the effective loss rate Γeff for the two
well system introduced in C.2, induced by the existence of a bias ∆ between the two
wells. For the typical values of the ratio ∆/Uee considered in the optical lattice, the
additional bias reduce the gap between the ground state with one atom in each site
|1〉l|1〉r and the state with a double occupancy in the well of lower potential energy,
increasing the effective loss rate.

Similarly we consider an ensemble of two bosons interacting via elastic and inelastic
interactions, evolving in three wells, indexed by the integers {0, 1, 2} connected by a
tunneling constant J , and with energy shifts ∆1 and ∆2 on the wells 1 and 2 respec-
tively. In the {|110〉, |101〉, |011〉, |200〉, |020〉, |002〉} basis, the Hamiltonian describing
the dynamics of the system writes as:

∆1 −J 0 −
√

2J −
√

2J 0
−J ∆2 −J 0 0 0

0 −J ∆1 + ∆2 0 −
√

2J −
√

2J

−
√

2J 0 0 Uee 0 0

−
√

2J 0 −
√

2J 0 Uee + 2∆1 0

0 0 −
√

2J 0 0 Uee + 2∆2

 , (C.3)

with Uee = Uee − iΓee/2. Similarly to what has been done for the previous studied
systems, a perturbation expansion is performed in order to derive an effective Hamil-
tonian acting in the loss-reduced subspace of the Hilbert space, spanned by the Fock
states with at most one boson per well. We end up writing the effective loss rates for
these states :

Γeff, |110〉 =
2J2Γee
U2
ee

[
1

(1− 2∆1/Uee)
2 + (~βee/2gee)2 +

1

(1 + 2∆1/Uee)
2 + (~βee/2gee)2

]
Γeff, |101〉 = 0 (C.4)

Γeff, |011〉 =
2J2Γee
U2
ee

[
1

(1− δ21/Uee)
2 + (~βee/2gee)2 +

1

(1 + δ21/Uee)
2 + (~βee/2gee)2

]
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with δ21 = ∆2 − ∆1 . More particularly, if we map the three wells on three adjacent
sites of the lattice of index {n, n+ 1, n+ 2} with n an integer equal to 0 at the center
of the lattice, shifted by the auxiliary confining harmonic potential, the detuning ∆1

and ∆2 introduced in C.4 becomes:

∆1 (n) =
1

2
mΩ2

xd
2 (2n+ 1)

∆2 (n) = 2mΩ2
xd

2 (n+ 1) . (C.5)

We use these expression to represent the evolution of the effective loss rates introduced
in C.4 in Fig. C.2. We observe that for our experimental parameters, the correction
induced by the confining potential on the effective loss rate is very small, and tends to
increase the effective loss rate.
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Figure C.2 – Evolution of the correction on the effective loss rate Γeff for the three
well system introduced in C.2, induced by the existence of a bias ∆ between the two
wells. For the typical values of the ratio ∆/Uee considered in the optical lattice, the
additional bias reduce the gap between the ground state with one atom in each site
|1〉l|1〉r and the state with a double occupancy in the well of lower potential energy,
increasing the effective loss rate.
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