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Introduction

Physically Unclonable Function (PUF) is known as a hardware security primitive [1].
On a silicon chip, PUF can be seen as a component founded on the concept of pro-
cess variation to generate chip-specific values. This component as a function receives
a challenge on the input and projects the response to the challenge on the output, and
the challenge-response pair (CRP), singular or plural, will represent as the unique val-
ues. While structurally the same, PUFs on different chip instances generate values that
are different and unique to the chip instance. PUF has been studied for more than two
decades, and since then, many variations of it has been proposed [1], [2]. Numerous
protocols have been designed also using PUF for digital device authentication and en-
cryption key generation [3]. Up to now, there exists a very large family of hardware
implementations of PUF. Trivially, they all fall into two major categories: Strong PUF;
referring to any variant which can generate non-enumerable CRPs, and Weak PUF; re-
ferring to any variant which generates very few or often only one device specific unique
value.

The mandatory requirement for correctly using a PUF-based system is to have a se-
cure server, which is in charge of storing the secret information extracted from the PUF
during the enrollment. In mission mode, the secure server is then involved in the es-
tablishment of secure protocols requiring the use of the PUF secret information. These
protocols will, for instance, guarantee the authenticity of the hardware device, or will
allow confidentiality through cryptographic primitives using the PUF value as mas-
ter key. Figure ?? shows the conventional establishment of the enrollment mode and
mission mode of a PUF-based eco-system.

While several techniques have been proposed in literature for the integration of PUF-
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Figure 1.1: Illustration showing the traditional establishment of the enrollment and mis-
sion mode of a PUF-based eco-system.

based protocols to enhance authentication and communication protocols, the practical
and industrial issues related to the enrollment management are seldom addressed. Few
works such as the one discussed in [4] by Khalfaoui et al, reviews the possibility of
employing machine learning for PUF modeling. In particular, both the longevity of the
enrollment time, and the size of the enrollment data are still open problems. On one
hand, we could imagine the demand of storing all the CRPs of a PUF. This is practically
impossible since the CRPs of strong PUF is non enumerable. A simple example in this
regard is to consider a PUF with a 128-bit challenge input. Such PUF can in turn generate
2128 responses. Even considering to save the responses only will not be possible due to
the very large number of possible responses. On the other hand, considering to capture
a very large number of CRPs per device can take a lot of time during the test phase
where we mainly imagine to perform the CRP-readout. Surely the industrial constraints
will not allow spending very long time per chip to capture a large dataset of CRPs.

To mitigate these issues with enrolling strong PUF, we can consider using machine

learing with the goal to provide a model of PUF for enrollment and replace the CRP
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Introduction

database with it. To this day, several works have been conducted and proved successful
in modeling PUF with machine learning, especially the deep learning techniques. How-
ever, at first sight, these modeling techniques have been introduced as potential tools for
attackers that try to create a clone of a PUF instance [5]. For instance, it has been proved
that a simple Multi-Layer Perceptron model can be trained to predict the response of
several architecture of arbiter PUFs, by being trained with just a very small set of CRPs
of the PUF-enabled device [6]. For this reason, many variations and countermeasures
are proposed for every family of PUF architectures (such as double k-XOR arbiter PUF
[7]) with the goal of avoiding model-building attacks using machine learning and deep
learning techniques.

However, the potential of using modeling techniques in favor of PUF enrollment
to save storage and time is promising. Indeed, replacing the PUF secret database by
a trained model present several advantages. It would make practical (in terms of en-
rollment time and database size) security applications (e.g., protocols, authentication
mechanisms) requiring a large amount of PUF secret data. The enrollment needs indeed
to focus only on a subset of the data and then the trained model should be capable of
generating any data that can provide the given PUFE. Moreover, the PUF model could
also be enhanced by additional variables and parameters related to environmental con-
ditions or the aging of the integrated circuit. These additional properties should make
possible the self-adjustment of the PUF responses during the mission mode in order
to increase the reliability of the protocols and algorithms using the PUF. Figure 1.2 de-
picts the general schematic of what an eco-system including PUF and it’s predictive
equivalent model on the secure server looks like.

So we can see this as one possible solution: To rely on modeling techniques to gen-
erate a predictive model of the PUF instance as a reference on the secure server, which
would replace the traditionally stored set of CRPs. We first introduced it in [8]. In this
solution, the enrollment procedure would require a subset of the possible CRPs to per-
form machine learning on and provide a model of PUF. This subset would be smaller
than the one required in the traditional approach for enrollment. Using this subset of
CRPs and a suitable machine learning modeling solution, the model of the PUF is built
and it is then used to predict the entire possible CRPs of the PUF instance.

To realize this potential, a re-introduction of PUF modeling to facilitate PUF utiliza-
tion is required. In doing so, there are two major points to uphold:

e Point 1: We want to evaluate the feasibility of providing and storing the predictive

11
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Figure 1.2: Illustration showing (a) the general schematic of enrolling PUF with Ma-
chine Learning and (b) utilizing the ML model to communicated with the PUFE.

model of the PUF. It is critically important to ensure that the creation of a predic-
tive model of the PUF is doable and imposes minimal cost in industrial settings.

e Point 2: We want to assure that the PUF and its equivalent predictive model are
used in a protocol which is secure in a manner that is preventing modeling attacks
taking the same advantage as it is given to the users in providing the model of PUF

for beneficial use-case.

prior to performing machine learning, we need to know what modeling solution
we should employ. There is a vast spectrum of possible machine learning solutions to
choose from to model PUF with. In Chapter 1 we present a range of possible modeling
techniques, and identify those that fit best the modeling of strong PUF. Commonly Neu-
ral Network models are potential to handle great deal of noise and complex data mod-
els, and they can achieve optimal behavior with acceptable amount of data, if properly
trained. Their use cases are for many different purposes mainly including classification
and pattern recognition. Their use case in the field of PUF modeling can greatly affect

12
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the storage and time of enrollment compared to those in the traditional methods. We
commonly use Neural Networks in this research work. However, for simpler modeling
subjects, we employ simpler modeling methods like logistic regression.

To cost efficiently model PUF, we need to look at several parameters during the en-
rollment. On the PUF side, we look at the number of CRPs to collect from the PUF
during the CRP-readout from the device under test (DUT). On the secure server side,
we look at parameters such as the model’s prediction accuracy, total time of training,
and the predictive model size. In Chapter 2, we introduce these as cost parameters and
then explain that there can be control parameters such as validation and test accuracy,
prediction loss during training, and number of iterations during training, that are en-
capsulated into a method to control the machine learning to yield the desired model
with minimum cost. We put more stress on the cost of training and how to reduce it
even further. Later on in the same chapter, we introduce some optimization techniques

for PUF modeling with the aim to reduce the overall cost training.

Since during enrollment the trusted party is able to model the PUF, it natural as well
to induce that the PUF is vulnerable to modeling attack. However, we should notice
that this vulnerability at first place is due to the exposure of the CRP or an offset of the
CRP or PUF response to the public. Therefore, we can consider two possibilities: 1) to
improve an existing protocol in a way to obfuscate or mask the publicly exposed PUF
data, 2) to develop a new protocol which does not include exposure of any PUF related
data. In Chapter 3, we introduce 2 of our contributions in this regard, one which is a
masking mechanism on a publicly available code-offset of PUF response, and the other
is a new protocol for authentication and key exchange which requires exchanging only
user generated data to symmetrically provide secret values on communicating parties.
We show further in that chapter that designing a new protocol as explained can be
possible thanks to employing a model of the PUF on the secure server.

Up to this point, the end to end spectrum of various contributions we deliver in this
work, and why we intend to deliver them has been discussed. However, details on each
are yet to be presented in Chapter 2 and 3. In Chapter 4 also, we elaborate on some
of the miscellaneous ideas that we thought of surrounding the coupling of PUF and
machine learning. We also briefly talk about the possibility of employing a simulation
of a strong PUF on a weak PUF substrate, an exotic development to allow us to have a
large CRP space, to then allow us to employ the ml-based PUF protocol we designed

earlier in Chapter 3.
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In the next chapter, we present the state of the art, where we talk about the funda-
mentals of PUF and machine learning. Details on PUF, PUF variants and their character-
istic, important metrics regarding PUF, as well as details on machine learning methods,
variants of ML structures and effectiveness of each model structure for modeling PUF

are all discussed in the next chapter.
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State of the Art

2.1 Introduction

This chapter brings together some of the baseline information regarding Physical Un-
clonable Function (PUF), how PUF works, what are the characteristics that an ideal PUF
has and what metrics we use to identify an ideal PUF, applications and protocols that
utilize PUF, and the known challenges that coop with PUF utilization that exist since
the advent of the concept, alongside the new challenges that exist to this day, some of
which are the incentives of this PhD work. The take from this chapter is to prepare the
reader of the fundamental concepts, before going deeper into the utilization of PUF and
the parametric definitions that elaborate in more details the concept of PUF itself. The
explanation and elaboration in this chapter is broad and to the surface.

At the core of this work, we use machine learning to model PUF for beneficial use-
cases. To use ML in modeling PUF, we first need to know how ML works and what
ML model we should choose according to what application or task we are considering
it. Since variations of ML model solutions are in abundant, and often in choosing or
creating a novel model, there are several parameters involved, we need to first know
what these models are and what parameters we can modify to reach to the potential
solution structure before the training begins. We talk about these points as well in this
chapter. At the end of this chapter, the readers should know the base-knowledge of
PUF, what type of PUF we are majorly concerned with in this work, basic information
on machine learning and what model we use predominantly to model what type of
PUF and why the model is best suited for that PUF variant.

15



Part , Chapter 2 — State of the Art

2.2 Description of PUF & It's Implementation

Silicon device manufacturing is where we can start explaining how PUF is created. Nor-
mally, during the manufacturing process, the digital devices are placed into the silicon
substrate in form of a wafer. On a wafer also, the same blueprint of a chip or an ASIC
processing unit is implemented on small dies. Each die implemented follows the same
blueprint developed in the design process. This makes the expectation that every die is
identical to another. While from a macroscopic vision, it is an expectation that is usually
met, through a microscopic vision however, the case is different. A microscopic vision
will show the smallest building blocks of each die, like a transistor. In such vision its
often observed that two devices from the same position according to the blueprint, how-
ever each device belonging to a different die, will have minor differences such as the
size of the transistor gate (see Figure.2.1b)). An observation like this is shown in Fig-
ure.2.1a. This is often referred to as micro process variation. Such difference will in turn
lead to different signal propagation delay when we compare the performance of each
device. Nonetheless this difference is often observed in the order of nanoseconds. This
propagation indifference is often so minor that in the macroscopic vision, it is consid-
ered negligible. However, there is a possibility that specific designs that are aware of
such indifference, aim to collect the micro process variations to represent a macroscopic
effect [9]. Such implementation is the base-ground of how we can implement PUF.

PUF, as its name suggests, is a function. This function takes a challenge in the in-
put and produces a response to that challenge on the output. The challenge and the
response to it are corresponding, so they make a challenge response pair or CRP in ab-
breviation. Depending on the structure of the PUF, and the input challenge size, PUF
can generate from a singular response and so a singular CRP in general, to billions of
CRPs [1], [3]. PUFs that can generate large number of CRPs are called strong PUFs,
and those with few CRPs are called weak PUF [2]. Later on, we explain what these
variations are and how we can identify a good PUF characteristic.

2.3 PUF numerical characteristic and parameters

The main characteristic that is important to the PUF users is the CRP. While the micro-
variation cultivation in the bare-metal level is as crucial as the desired functionality in

terms of CRP, the user mostly pays attention to the CRP characteristics only, leaving the
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Hn'fr.lbul
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(a) (b)

Figure 2.1: 1 a) Illustration showing the physical minor differentiation between two
devices. b) showing the process variation between two manufactured chips on a wafer

bare-metal implementation to the attention of the designers.

From the perspective of a PUF user, an ideal CRP characteristic can be drawn. An
ideal CRP characteristic should in turn be: 1) randomized: Meaning that the drawn
CRPs in any order are not predictable or follow any pattern, 2) Unique: Meaning that
the CRPs from one PUF device are unique only to that PUF device, 3) Well diffused:
Meaning that in any sub-set of consecutively captured CRPs from a PUF, there is no
dense co-location of 1s and 0Os, or any small pattern comprising Os and 1s, and 4) Reli-
able: Meaning that in multiple acquisitions of Responses for a given challenge or a set
of challenges, the observed response in majority of the time (ideally all the time) is or
are the same. These characteristic metrics can be numerically and logically measured.

In the following we introduce the measurements for each of the metrics:

Randomness

Measuring the randomness of PUF was first introduced in [10]. According to the origi-
nal description of Randomness in PUF CRP characteristic, the number of Os and 1s are
approximately (ideally the same) equal. This means that from any subset of CRPs col-
lection from a PUF instance, the number of Os and 1s are close equal to the half of the

17



Part , Chapter 2 — State of the Art

total size of the set. We can measure the randomness as follows:

H = —log, maz(p,1 — p) (2.1)

where p is represents the frequency of 1’s appearing in a set of CRPs. p itself can be

measured as:

1
P=% > b (2.2)

ri=1
where N, is the total number of CRPs and b; is the state of the ith response in the CRP
dataset. Noting that the ideal value of p is 0.5 for when we observe exactly half of the
CRP dataset have response = 0 and the other half have response = 1. Consequently, the
ideal value for H will be 1.0. A highly randomized CRP characteristic in turn will have
H ~ 1.0. This in turn means that the PUF characteristic is not biased towards a certain
Boolean state. On the other side if the randomness is not high enough, it will mean
that the output of the PUF is more guessable which in turn makes the PUF vulnerable
against certain types of attacks. We will speak more of it later.

Uniqueness

Uniqueness is a measurement of PUF CRP characteristic which represents how unique
the PUF instance is with respect to other PUF instances [11]. Noting that this measure-
ment is done only on a group of PUF which have the exact same implementation. This
means that PUFs’ structure follows the same implementation blueprint on the exact
same spot over each silicon die. The measure of uniqueness then assures that no two
PUF instance have a similar CRP characteristic. This measurement is represented as
in the following. First we feed all PUF instances with a unified challenge set. Then we
measure the uniqueness of the response for every given challenge individually. To do

that we measure:

(2.3)

where N is the number of PUF instances, I D; is the PUF instance ¢ and /D, is the PUF
instance j, and L is the size of the response bit-vector. We do this for all the challenges.

Then we will measure the average uniqueness as in the following:

18



2.3. PUF numerical characteristic and parameters

1 K
A (2.4)
K&

where K is the total number of challenges. Here we also expect the value of the unique-
ness to be a normalized value between 0 and 1.0. The ideal value for uniqueness is also
1.0 like randomness. However, unlike randomness, which is measured for each PUF
individual, the uniqueness is a measurement which is regarded with a group of PUF

instances. This means that we need more than one PUF to evaluate the uniqueness.

Diffuseness

Diffuseness is the measure of how different the set of responses from the same PUF
instance to different challenges are [10]. In other words, diffuseness measures the scat-
tering of the Os and 1s in a format that no pattern is recognizable from the conjunction
of response values at any location in the CRP dataset. We can measure the diffuseness
as in the following:

KQXLZZ > (@b (25)

where L is the size of the response bit-vector, and K the number of CRPs in the dataset.

Diffuseness is normalized between 0 to 1 and the ideal value for it is 1.0.

Reliability

We already explained that PUF is not a source to represent a digital value with 100%
reliability, although that is the expectation for an ideal PUF, practically the reliability of
PUF is a value close 100% but not equal. We can measure the stability of the response
given for each challenge in multiple acquisitions and refer to it as the reliability of the
CRP dataset [10]. To do so, we observe the number of times a response is flipped for
multiple acquisitions for the same challenge. The following is how we measure the Re-
liability:

1 Ne SN by SN p
S=1+ N kz::llogg max(%, 1-— %) (2.6)
where N, is the number of CRPs in the dataset, and N, is the number of times the
challenge is used. The reliability is set between 0 to 1.0 and the ideal value for it is 1.

19



Part , Chapter 2 — State of the Art

For all the metrics presented above, a good PUF which can represent values close to the
ideal value for each metric is considered a good PUF. With that given then we explore
other aspects of a PUF, such as the complexity of the structure of the PUF which is
closely related to the feasibility and security of the PUF.

2.4 PUF Structure Variations

As mentioned earlier in this chapter, PUF has two major categories, the Weak PUF and
the strong PUF. Each category also has many families and sub-variants. This is predom-
inantly true about the strong PUF family. Here we will elaborate on some of the PUF
families in the category of strong PUF and the several from the weak PUF family.

2.4.1 Arbiter PUF and its sub-variants

Arbiter PUF is one of the common strong PUF structures that exist to this day. A simple
yet largely capacitated structure that can produce very large amounts of CRPs. Arbiter
PUF is conceptually based on creating a racing condition between two signal paths.
These two signal paths are symmetrical and run through multiple stages that are se-
quentially connected to each other. Each stage has two options for both signal paths to
either run in parallel or run across each other. The decision on that is made by a selec-
tor bit which is in control of the user of the PUF. The end point for the racing signals is
an Arbiter which receives one signal on its SET input and the other on its RESET [12].
The concept of arbiter PUF assumes that at each stage, due to the micro process varia-
tions, the signal paths will pick differences in terms of their speed. In other words, due
to the variation, it is possible that at one stage one signal goes through a shorter path
that the other, or vise versa. This variation is then accumulated into the propagation
delay of each signal after passing through each stage. At the end, it is then expected
that one signal reaches the arbiter faster than the other, and then defines the output of
the arbiter. A block view over the structure of a simple arbiter PUF is shown in Fig-
ure2.2. Noting that such micro variation in propagation delay is not just internal, but
also should exist when two PUFs with the same structure and from the same device
family are compared to each other. This technically means that the signal propagation
delay differs from device to device, considering a subset of challenges, which then re-
sults to different response for each challenge when the responses are compared from
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XN

Figure 2.2: [llustration of the structure of an Arbiter PUF.

device to device.

We can see here that if we increase the number of stages, we can expect to have ex-
ponentially increased the number of possible racing path combinations. This in turn
means very large number of CRPs. However, the structure of Arbiter PUF itself is not
secure on its own and can be modelled/digitally cloned very easily. To avoid that, sev-
eral variations of it have been introduced over the past decade and half. Some of these
variations are:

e XOR Arbiter PUF: When the output of all Arbiter chains is XORed to represent
the final output [13].

e Feedforward Arbiter PUF: When the output of one or some arbitrary stages are

connected to the input of one or some other stages inside the same arbiter chain
[13], [14].

e Double Arbiter PUF: When there exist multiple Arbiter chains and the idea is to
setup arbiters to the number of existing possibilities of each two racing paths from
two and bottom of each arbiter chain, considering all the arbiter chains [15].

The Table 2.1 shows the structure of the mentioned arbiter PUF variants. These vari-
ants nowadays can promise a more secure arbiter PUF implementation, which in turn
gained more attention on the Arbiter PUF family for industrial implementation.

Arbiter PUF and its variants are of the main research focus in this work, that is why
we elaborate more on this family of PUF. However, there are other family of PUFs in

the weak and strong categories, which we will elaborate on briefly in the following.
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Table 2.1: Structure of 3 variants of Arbiter PUF

Arbiter PUF variant

Structure

3-XORed Arbiter

Feedforward Arbiter

Double Arbiter
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Output '0’ or "1’

Figure 2.3: Illustration showing the structure of a butterfly PUF.

Butterfly PUF

The concept of the Butterfly PUF is based on the idea of creating structures within the
FPGA which behave similarly to an SRAM cell during the startup phase [16]. A Butter-
fly PUF cell is a cross-coupled bistable circuit, which can be brought to an unstable state
before it settles to one of the two stable states that are possible. The structure consists
of two latches whose outputs are cross coupled as indicated in Figure 2.3.

Ring Oscillator PUF

This Ring Oscillator PUF is composed of many delay loops that oscillate with a partic-
ular frequency. They are laid out identically, but the minor variations in manufacturing
lead to loops with slightly different frequencies. The loops drive counters which are
used to produce the response bits to a given challenge. Figure 2 shows the structure of
this type of PUF [17].

Memory PUF

From the notion of PUF, we inherently believe that it is a designated functional unit
that is distinguished from the rest of the SoC components for instance in a silicon chip.
PUF however can be seen as a special behavior observed at a certain state in a conven-

tional SoC component. An example of that is the memory PUF. We know that any SoS
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Figure 2.4: Illustration showing the structure of a ring oscillator PUF.

nowadays has at least a small on-board memory for run-time data exchange. An SRAM
component can be seen as a unit used for that case. Now, it is observed that when an
SRAM is powered up, at the early stage of the power-up, before a whole memory wipe-
out procedure is called, every memory cell randomly has 1 or 0 state. This state also,
for every memory cell, stays the same (ideally) for every power-up. Yet there is no ex-
pectation on what memory cell has what binary state when the power-up values are
seen for the first time. This means that the 0 and 1 values are randomly scattered in-
between the memory cells. Such behavior in an SRAM is also called a PUF [18]-[20].
Now, as mentioned, it is expected that what we call PUF has an input, hence a function.
For an SRAM, we can consider the memory address being the input, or challenge, and
the series of random 1s and Os we get for that specific memory address, can be consid-
ered the response. Such randomized behavior of SRAM also is thanks to the inherent
differences between the voltage thresholds in each memory cell, which is normally des-
ignated to each cell during the manufacturing process as a manufacturing error which
is inevitable. Such error of course is correctable with an initial zeroing process when the
device is turned on. But before that, we can use these values and consider the SRAM
itself at that stage, a PUF.

Bistable Ring PUF

The idea of Bistable Ring PUF was first introduced in [21]. The basic idea of the BR-PUF
is based on the fact that an inverter ring consisting of an even number of inverters has

two possible stable states. Similar to a static random-access memory (SRAM) cell which
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Figure 2.5: Illustration showing the structure of a ring oscillator PUF.

is based on a pair of cross-coupled inverters, a ring with even number of inverters falls
into one of its two possible stable states when powered up or, more generally, when it is
released from some unstable state. We call such kind of an inverter ring a bistable ring.
Figure 2.5 shows the structure of a 64-bit bistable ring PUF.

Optical PUF

Optical PUF is perhaps one of the primary representations of PUF. An optical PUF
which was termed POWF (physical one-way function) [22] consists of a transparent
material that is doped with light scattering particles. When a laser beam shines on the
material, a random and unique speckle pattern will arise. The placement of the light
scattering particles is an uncontrolled process and the interaction between the laser and
the particles is very complex. Therefore, it is very hard to duplicate the optical PUF such

that the same speckle pattern will arise, hence the postulation that it is "unclonable".

2.5 Conventional PUF Protocols

Despite the definition of application for PUFs, we can independently see PUF as a secu-
rity primitive and assign it to encryption and security protocols. We can then designate
the protocol to the appropriate applications knowing the potential that the protocol has
for the security aspects of the application. Here we point out to some of the well-known
security protocols that use PUF as their security primitive.
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2.5.1 Fundamental steps of using PUF

A primary step in preparing PUF for cryptographic or any security-based protocol uti-
lization, is to enroll the PUF. The process of enrolling the PUF comprises steps to take
in order to collect and post process CRPs from all the manufactured PUF instances. An
operator is in charge of preparing the just-manufactured devices for deployment, by
connecting the PUF-enabled device to a collector machine who is either itself a server
or is connected to a server that is storing the PUF CRPs. We expect that during en-
rollment there are direct I/O connectors to the PUF to facilitate the CRP read-out (See
Figure 2.6 (a)). This in turn gives the operator to rapidly collect the CRPs without pass-
ing through unnecessary connectors. While at this state, we assume also that the con-
nection between the collector machine and the PUF is safe and secure. Once the CRP
collection is complete, then the direct connectors to PUF and the system I/O are elimi-
nated (See Figure 2.6 (b) ). Normally for this the designers allocate E-Fuses that provide
such one-time connection. The disabling of the direct I/O to PUF is expected after the
CRP readout to protect the PUF from unwanted queries from the outside of the device.
So, the first level physical security is provided as such.

Then the PUF is available for mission mode, where it is used for any cryptographic
or authentication task. In such setting, The PUF is directly invoked only by the device
thatis housing the PUF. Thus, the demand for PUF CRP is given first to the PUF-enabled
device, and then redirected to the PUF after the request is passed through some encod-
ing and decoding mechanisms. The response of the PUF is then received and ready to
be sent to the demander. It is expected that the PUF response is sent securely to the
demander. This can be assured in two ways. Either the designer makes the PUF com-
plex enough so that the relation between the challenges and the responses of the PUF
is not exposed, therefore the exchange CRP shows a totally random behavior, or we
expect that the response is first wrapped into some post-processing procedures and is
presented in an obfuscated or masked form to the demander from outside of the PUF-
enabled device (See Figure 2.6 (c)). This level of security then corroborates the safety
and security of the communication channel. Later on, in the manuscript we elaborate on
why such security is required. But generally explaining, the obfuscation of requests for
PUF response (a package comprising the challenges to the PUF) and the PUF responses
is needed to prevent attackers, especially those that use machine learning techniques
to create a digital clone of the PUF. Having access to the raw CRP of the PUF can give

attackers such capability which in turn compromises the PUF in a sense that the at-
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Figure 2.6: Illustration showing the restrictions in the physical access in enrollment
mode, and the secured communication channel during mission mode.

tacker then can impersonate the PUF to request for confidential data that is only for the
PUF-enabled device to read. In the following we elaborate on two common forms of
PUF utilization, the authentication, and the key exchange.

Authentication

PUF-based authentication protocols are used commonly to identify that the person or
the device that is communicating with a verifier server is authentic and original [23].
To do so, the sever first collects an adequate number of CRPs that represent the device’s
fingerprint(s) and stores them on a database correspondingly to the User’s or device’s
identification (See Figure 2.7 (a)). Later on, When the device is needed for authenti-
cation, the Server itself, or a trusted third party (TTP) identifier will ask the device’s

owner or itself for a fingerprint (part of or the same that has been collected during the
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Figure 2.7: Illustration showing the enrollment and mission modes for an authentication
protocol.

enrollment). Once the fingerprint is fetched, it is compared to its similar counterpart
that has been stored earlier in the enrollment phase. If they are equal (fractionally or
exactly), then it is decided that the device is authentic (See Figure 2.7 (b)).

Key Exchange

Contrary to authentication protocols, in key exchange protocol the idea is to encrypt the
communicated message between two or more parties. In such case, commonly there is
a centralized unit which synchronizes the key exchange between the parties, including
itself. Similarly, for exchange an enrollment phase is needed. In this phase the CRPs of
the PUF are collected and sent to the server for storage as encryption keys. Noting that
the server creates code-offsets of these keys as well and store them [24]. Code offset is a
value extracted from the PUF response during enrollment, and is later used to recover
the same response on the device’s side (See Figure 2.8 (a)). The code offset is useful
in this case to recover original responses from noisy responses during mission mode.
As we discussed, some PUF responses have a chance to flip their binary value. This is
called the instability of the response. While in a good PUF it is in not considerable to
cause certain issues, yet for encryption key generation, it is a necessity to mitigate it
to ensure that we create the same key as the one that is used to encrypt the message.
Figure 2.8 (b) shows the process of key exchange and a simplified representation of key
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b) Key exchange

recovery on the PUF-enabled device’s side.

Up to now we know how two of the most common use-cases of PUF work. We ex-
plained the authentication and the key exchange, their general schematic and what they
require to operate. Later on, we show that there exist some companies that have actual
products with PUF enabled inside for cryptographic purposes. After that we begin elab-
orating on some of the notable challenges that we need to deal with while considering
PUF. This then opens up the road to where we take inspirations and motivations for the
core contribution of our work which we elaborate in the last subsection of this chapter.

Existing Commercial PUFs

PUF of course is not a concept belonging only to research-oriented works. While many
aspects of it is being studied to this date, the concept of PUF itself goes back to two
decades ago. Since then, of course, several companies and research institutions have es-
tablished solidified security conceptions that comprise PUF as one of their constituents.

In Table 2.2 we point out to several known commercialized PUF products.
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Table 2.2: Semi-conductor solution companies and their PUF-based protucts

Index | Company Name | Products

1 Intrinsic ID Butterfly PUF: Apollo FPGA IP (hardware IP)
SRAM PUF: QuiddiKey IP (hardware IP)

. FPGA PUF IP

2 Enthentica ASIC PUE IP
PUF as root of trust (PUFrt)

3 PUFSecurity PUF as part of Crpyto Processor (PUFcc)
PUF as a Secure Element ( PUFse)
Multiple PUF-based solutions

4 NXP MCUXpresso SDK API
Securuzr

> Secure-IC PUF as a root of trust element

2.6 Challenges, Opportunities, and the Motivations

Despite the promising potential the PUF has and the variety of applications it is favor-
able to, there are several challenges coming with it as well that need resolving. Below

are some of the common ones:
1. Instability of PUF response in normal operational mode
2. Sensitivity against aging and environmental variations
3. Vulnerability of error correction codes against manipulation attacks
4. Vulnerability against machine learning based modeling attacks
5. Incapability of conventional storage methods of the very large CRP dataset

1: One of the main challenges with PUF is the instability of the response. What hap-
pens in that nature is that when PUF is queried with a challenge, there is chance that the
corresponding response is altered through multiple queries. Although it is essential to
ensure that this probability factor is low. Nonetheless, for some challenges there exists
an inevitable high chance of the response to show an alternate value.

2: Sensitivity against aging and environmental variations is another vulnerability the
PUF devices have. Normally the response alteration is amenable, at least for the PUF
that are accepted as workable functions before being deployed (during the enrollment
phase for instance). But even in that nature, when the PUF-enabled device is exposed

to some extreme environmental settings, it will show reflections in way that its CRP
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characteristic is considerably shifted. To avoid such situations getting in the way, PUF-
enabled devices are tested in different environmental situations during enrollment and
their CRP is collected according to each setting so that server will show some adapt-
ability to such situations. This is true also for when the PUF is utilized for a long time
and the aging factor affects the CRP characteristic in a way that again a considerable
portion of it is shifted to an altered manifestation.

3: Instability of PUF though is amenable with error correcting code (ECC) and fuzzy
extractors, which are special coding/decoding (codec) that facilitate PUF original re-
sponse recovery through code offset sharing (also known as helper data). As we explain
later in future chapters, this type of error correction mechanism is vulnerable to manip-
ulation attacks. How it works is that attackers gain access easily to the code offset, and
by manipulating the value of it and redirecting it to the PUF-enabled device, they drive
the recovered response into a value that is easier to guess and so they can recreate the

key by some trial-and-error.

4: On top of the issues the PUF instability causes, and the amount of exposure the
publicly available error correcting helper data values provide for potential attackers,
there exists also the chance that PUF can be modelled by exploiting the power of ma-
chine learning. This happens when the Challenges and responses are publicly exposed
on communication channels. Although, a key PUF design factor is to make the PUF
complex enough so that modeling it is either not possible or requires considerably large
number of CRPs usually in the order of millions to make it possible to model the PUF.
But as the PUF design is getting better through time, the machine learning modeling
techniques also get better over time and so both lanes of evolution run in a competition

that is one picking after the other.

5: One of the key potentials of PUF is that it avails a very large CRP space to create
encryption keys and fingerprints from. This is true mainly for the strong PUF designs
that have a large input challenge size. The acceptable challenge size is usually above
64-bits. This in turn gives us 264 responses which is an astronomical number and prac-
tically impossible to save into a storage device. Even if possible, given that such number
of CRPs is for just one PUF instance, and we can expect the same for all the instances,
therefore it is not possible to save all the CRPs if the approach is to just suffice to build
a CRP dataset.

Given the above-mentioned challenges, it is possible to deal with them potentially

if we consider using Machine Learning and PUF itself as a duo to create authentication
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fingerprints and encryption keys. Such potential builds the core motivation of this work.

In the following we explain how this potential exists and how we can cultivate it.

2.7 Machine Learning and PUF Modeling

Machine learning is an iterative process to create an estimated solution for a problem,
based on a set of data. It is assumed that the dataset that the machine learning creates
a solution according to, has a patterns or features that consistently appear in the data
samples. The Machine learning solution in turn is set to associate sets of features to
data with low dimensionality. An example of that is when a model is created to classify
handwritten digits from imagery data. In such case, the features are the lines in differ-
ent forms, such as straight line in different angles, or curve lines, and the association
of variations of these lines appoint a specific digit. Machine learning solutions are not
just for classification. ML methods can create regression solutions as well, where the
output is a continuous value. A simple example of that is when an ML solution is cre-
ated to estimate the output of a math function. ML in itself includes a training loop. An
iterative process that adjusts the internal status of the model to the relationship seen
between the input and the output. In the training process, for one batch of data sam-
ples, the model will do an inference first, and the outputs of the model are assessed
for that batch based on its distance of the model’s estimation to the correct output. De-
pending on how far the inferred output of the model is, a loss value is calculated and a
fraction of it is propagated back to the model to adjust the internal values. Noting that
the internal values of the model can be considered as weighted connections between
different internal states, or in case of linear problems, just the connection between the
input and output. The idea of adjusting the values during training is to modify their
value so that based on the input, the cascading flow of state change will lead to the cor-
rect output. The training loop runs for one epoch meaning that all the data samples of
the training dataset are met once, and the loop will run multiple epochs until the loss
value is minimum and correspondingly the accuracy of the estimation of the model is
converged to a maximum probability. Given that the estimation accuracy of the model
also can be assessed in different ways. For instance, for classifier models, the proportion
of correctly classified data samples to the total number of data samples classified in a
dataset that the model did not see during the training.

Modeling PUF using machine learning is the most facilitated way of digitally cloning
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Figure 2.9: Illustration showing the procedure of training a predictive model of PUF
using machine learning

the PUF. The way it works is that we collect a dataset of CRPs of the PUF, and we
send the dataset to a training process, and run the training for multiple epochs until
we obtain a model solution that can accurately predict the response of the PUF for any

given challenge. This procedure is also depicted in Figure 2.9.

Multiple parameters play important rules in increasing the probability of obtain-
ing an accurate model. For instance, in the process we can define how we optimize the
model. So far, there are multiple optimization methods introduced, such as stochas-
tic gradient descent, adaptive gradient descent (AdaGrad), Adam optimizer, and RM-
SProp optimizer. Each of the optimizer functions apply differently the loss value back
to the model. We also have different methods in calculating the loss value. For instance,
we have cross entropy loss, and binary cross entropy loss. Cross entropy loss measures
the difference between the discovered probability distribution of a machine learning
classification model and the predicted distribution. All possible values for the predic-
tion are stored so, for example, if you were looking for the odds in a coin toss it would
store that information at 0.5 and 0.5 (heads and tails). Binary cross entropy loss, on the
other hand, store only one value. That means it would store only 0.5, with the other
0.5 assumed in a different problem, if the first probability was 0.7 it would assume the
other was 0.3). It also uses a logarithm (thus "log loss").

Aside to the optimizer and the loss function, there are other parameters exist that
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can be modified and affect the training, such as the batch size which indicates the num-
ber of inferences analyzed in one take and their loss values are combined to then be
propagated back to the model, learning-rate which indicates the proportion of the loss
value that is to be added to the internal values of the model, and the model topology.
However, the model topology has different parameters, such as what is the activation
function of each internal state of the model, and the connectivity of the internal states
to each other. In the following subsection we elaborate more on these parameters.

2.8 What Predictive Model to Use

Predictive models made to cooperate with PUF can be presented in different ways, de-
pended on what is the application or problem to solve. Some of the known ones are
PUF circuit classifier and PUF challenge classifier. The PUF challenge classifier is the
most known approach in modeling PUF. The idea in this approach is simply to create
a predictive model that predicts the response for any given challenge. Using an appro-
priate model structure is a critical decision as we know. Knowing the model structure
and hyper-parameter values beforehand which can achieve the desired prediction ac-
curacy with plausible number of training samples is a big advantage. We had that since
we started this research by looking at some of the already published works. To the best
of our knowledge, machine Learning in itself presents a broad field of predictive and
estimated solutions. One of the key considerations so is to do the research and find
out what model structure can be used to obtain the desired outcome or beyond. The
outcome can be mainly expressed in terms of the prediction accuracy. However, often
times the outcome comprises the price paid to prepare the promising training condi-
tions, such as the amount of training data, the time of training and number of trial and
errors, and the computation power. A relevant point that can help finding the proper
model structure is the complexity of the training subject. Here we are focused on mod-
eling PUF, therefore the complexity of the PUF structure can imply what ML model
structure we should choose. Below we elaborate on variations of ML models that have
been used so far to model PUFE.
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2.8.1 Logistic Regression

Logistic Regression is an ML model solution that is suitable for classification problems
with linear relation between the input and output [25]. It’s counterpart, Linear Regres-
sion, exists also which is a different model solution and is majorly targeted for regres-
sion problems. A simple definition of Logistic Regression (LR) as a solution is a sum of
weighted inputs that are passed to an activation function to yield a probabilistic value

between 0 and 1. It can be written as:

Z =) wazi+f (2.7)

where w; is the ith coefficient value for z; the ith input parameter, and  is the bias
value. The activation function can also be written as:

1

5() = 14e*

(2.8)

As mentioned, the output S(z) is value between 0 and 1 (a probability estimation),
and e is the base of natural log (also known as Euler’s number).

There are several works that have proposed modeling PUF with LR. And the LR
is used predict the relationship between the challenge and response. For instance, the
work of Ruhrmair in [26] proposed modeling Arbiter PUFs with LR. Their evaluation
also showed that using LR to model APUF can yield a model with above 99% prediction
accuracy using a small set of CRPs, usually in the order of several hundreds.

2.8.2 Support Vector Machine

As discussed above, LR is suitable to make predictive model solutions for problems
where the relationship between the input and output is linear. Arbiter PUF as we said
was an example of that. However, when we increase the complexity of the problem,
hence adding non-linearity to the input/output relationship, LR cannot provide an ac-
curate solution. An example of that in modeling PUF would be to create a predictive
CRP model of an XOR Arbiter PUF with any number of XORs above 2 [26]. In this
case, solutions designers have found out that a more sophisticated modeling strategy
called Support Vector machine (SVM) can potentially create a predictive model solu-
tion. SVM is a modeling strategy similar to LR, with the difference that SVM attempts

to create a plane that separates the classes, rather than a line [27]. To do so, SVM project
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the input space into a new space with more dimensions and adjusts a plane separator
(hyperplane) to classify the domains according to the placement of samples in the new
space.

In the case of modeling PUF, several works proposed modeling XOR Arbiter PUF
and Feedforward PUF using SVM [26], [28]-[31]. SVM can be considered a viable and
rapidly trainable solution to model PUF with moderate structure complexity. However,
studies have shown that more complex PUF designs are resilient against modeling us-
ing SVM. Therefore, SVM can be reserved a solution to just a subset of strong PUF
variants. Moreover, SVM is not resilient to noise. We will speak about this later on that
PUF instability can affect the training results, and in terms of SVM, it is an effective
factor that can potentially downgrade the prediction accuracy.

2.8.3 Decision Tree and Random Forest

Decision tree (DT) is also an ML solution for classification and Random Forest (RF) is
a modeling strategy based on DT in ML to create model solutions more accurately for
non-linear problems. We will first start with DT. Like LR models, DT model solutions
can represent regression solutions or classifier solutions [32]. Thus, if the end goal is to
predict a discrete value for the output of the model, then the solution will be a classifier.
However, DT solutions can solve non-linear problems unlike LR solutions. The main
advantage of a decision tree is that it adapts quickly to the dataset. This gives leverage
to DT compared to SVM, as it can solve no-linear problems better without needing extra
pre-processing. Moreover, DTs are better at solving categorical problems and can deal
with the problem better colinearly compared to SVM.

Topologically, a DT classification model solution has leaves which represent the pre-
dictable values for the output, decision nodes which outlie to two or more branches, and
branches which represent the conjunction of features that will lead to the prediction of
the output. Nonetheless, there are debates on the accuracy of DT classifiers. For in-
stance, DTs can easily incorporate outliers to the underlying model within the dataset.
Of course, we can consider noises creating such outliers which are not of the interest.
Therefore, DTs will face challenge in modeling real PUF since there as we said exists
unstable CRPs even within PUFs with good characteristic.

In such case, Random Forest (RF) can be a good candidate to provide a model solu-
tion. RF models in fact comprise multiple DTs whose output for classification is sent for

an averaging function or a voting function to yield the final classification output [33].
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RFs in turn have more accuracy than DT due to the fact that they incorporate several
DTs each trained with a portion of the training dataset or with a different random ini-
tialization state. This gives the RF the ability to deal with the noisy data better than DT.
Nonetheless, such mechanism in RF builds complexity in the solution which makes it
more resource hungry and difficult to interpret and visualize [34]. Nonetheless, due to
the success that RFs brought in modeling PUF, it has been discussed in several works
in the literature [35]-[37]. Therefore, RF can remain as a viable modeling solution for
PUF modeling.

2.8.4 Multi-layer Perceptron

Multi-Layer Perceptron (MLP) is a variant of Artificial Neural Networks (ANN) that
have been used for a broad range of applications and used for modeling PUF in specific
and showed potential results. ANN have many variants of itself, each of them distinctive
due to their unique structural organization. To know to what MLP is, we need to know
what ANN is. ANN is a model solution which in itself comprises an interconnection of
nodes in different layers. Topologically, we can see ANN as a network of nodes, wherein
nodes are ordered in different consecutive layers, and nodes of a layer are connected to
the ones in other layers. An illustration of MLP which is an example of an ANN is
shown in Figure 16. Now, how the topology of an ANN is designed, will speak of its
variation. For the MLP, the topological feature is that nodes in one layer are connected
to all nodes to the next layer (fully connected), and all the connections are set forward,
thus no node in a proceeding layer is connected to a node in a former layer. The input
nodes are nodes that accept the input parameters, and the output node(s) represent
the classes that the model is anticipated to predict.

The organization of an MLP is considerably different than that of a RF, or SVM. The
nodes in an MLP (or ANN in general) are called neurons, and each can be considered
a feature extractor of a data that is being given to it [38]. The connections between
neurons also are called synaptic connections or weighted inputs to the neurons. As
expected, the weights are values that will be multiplied on the data passing through
that connection. We consider each neuron as a linear classifier (a perceptron), thus it
will have a bias value and an activation function (See Figure 2.10). The interconnection
of these linear classifiers so will form a non-linear classifier. Therefore, an MLP can in
turn be expected to solve prediction problems with non-linear relationship between the

input and the output. MLP is an expandable model also, meaning that there is no cap in
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Figure 2.10: Illustration showing the structural organization of an MLP, and the com-
putational format within a single neuron which represents a single linear classifier (be-
low).

the number of layers or neurons in each layer. Therefore, an MLP can grow in number
of neurons or layers to fit into a solution for complex problem.

In modeling PUF, MLP has been used in several works such as in [39] by Ruhrmair
and [40] by Alkatheiri, where they proposed using MLP to model XOR Arbiter PUF
with large number of XORs. MLP seems so far as a potential model solution to create
models of PUFs with increased structural complexity. However, MLP is a general solu-
tion model and for specifications, solution designers can modify the hyper-parameters
such as number of neurons and layers to create models which can potentially require
less training effort and data to achieve high prediction accuracy. Such work for PUF
modeling has been done in the literature by Mursi et al in [6], where they propose
adapting the structure of an MLP comprising 3 hidden layers, to the structure of the
target XOR Arbiter PUF. In specific, their model follows the number of XORs of the
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target PUF to decide how many neurons each of the three hidden layers should have.
The number of layers however is fixed. Such model compared to its predecessors is less
resource hungry and thus can be trained with a smaller number of training samples.
Consequently, the model is trained faster than the other MLP models with large number

of neurons.

2.8.5 Convolutional Neural Network

Despite their adaptability and potential in modeling PUF with increased structural
complexity, MLPs are not entirely resilient to noise. Moreover, if the training data sam-
ples are dispositioned slightly, the training will highly likely converge to no solution
with high prediction accuracy. This is true for other problem fields that suffer from the
same deficiencies, including noisy data and dispositioned data. In such case, another
variant of ANN model solution can be used which is called Convolutional Neural Net-
work or CNN. CNN models are specific types of ANN that have a different organization
in some or all of their layers. Aside to fully connected layers of neural networks, CNN
has layers of convolutional neurons that act as feature extractors that convolute over the
input data. In this organization, the input to each of the Convoluting neurons or feature
extractors is a portion of the overall input data at a time, and the feature extractor moves
over the entire input data until all parts of the data frame are met [41]. An example of
a CNN model with 4 convolutional layers is brought in Figure 2.11. In the organization
of a CNN, the fully connected layers come at the end part of the model, where they
process the lateral features and provide data to the classifier layer at the end.

Compared to MLP, CNNs have more resilience to noise and dispositioning in the
training samples. Moreover, CNN models can be more useful in class of problems where
the classification at the end is depended on the spatial relation between the data points
in the input parameters. Such problems are mostly found in image processing field. In
PUF modeling however, CNNs are scarcely used. Since spatial relations seldom exist in
the challenge vector which can affect the response at the end. Nonetheless, works exist
that used CNN for PUF modeling, such as in [42].

2.8.6 Discusion

Given the variation of modeling solutions that has been discussed here, we can infer

that in cases where the individual subject for modeling has a linear structure, such as
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Figure 2.11: Illustration showing an example of a CNN model with 4 convolutional
layers and 2 fully connected layers. This example model is depicted as a classifier of
handwritten digits.

an Arbiter PUF, then logistic regression can be used. On the other hand, if the individ-
ual subjects to model are non-linear, solutions such as SVM, RF or MLP can be used.
If the non-linearity is moderate, then SVM can be a good candidate to rapidly provide
solutions with high prediction accuracy. But to decide on whether the non-linearity of
the target PUF is low enough for SVM, it may take some trial-and-error since as we ex-
plained, there is no deterministic relationship between the capability of SVM for model-
ing and the level of non-linearity in the structure of the PUF. In such case therefore, we
propose using MLP in general for any PUF with a non-linear structure. We disregard
RF models in this work since RFs can in turn be computationally expensive solutions
compared to optimal MLP models. While MLP models themselves have the potential to
be resource hungry, they instead have modifiable topology from various aspects which
opens them to further optimization, while in RF models the open optimization aspects
are limited (e.g., number of DTs to include in the model). There are other ML model-
ing solutions as well, such as Evolution Strategy (ES), K nearest neighbor (KNN), and
Quadratic Discriminant Analysis (QDA) that exist in the literature and have been used
to model PUF. However, we suffice our explanation with just the former methods since

they have been used in abundant for PUF modeling compared to the mentioned ones.
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2.9 Using PUF Simulation to Evaluate Real PUF

We mentioned that our focus in this research is set on strong PUFs and using ML meth-
ods to manage their CRP enrollment. Of course, as part of the work, we need to perform
evaluations coming from PUF data. However, implementing PUF physically can take a
lot of effort, especially because during the implementation, the engineers should care-
tully do the floor-planning in a way that variations between PUF instances in terms of
the CRP is only due to the micro-variations. To do this, several works have proposed
peripheral solutions that modify the structure in a way that assures the main structural
parameters, such as the length of connections between two internal components, are of
the same size. Majzoobi et al. in [43] proposes using programmable delay lines as an
example of that.

An easier way to assess PUF is to use simulators. Although simulation naturally
trims some of the real-world factors, however, the main point which is to assign mi-
cro process variations can be handled there since there is visibility and access to all
the constituent components in a PUF structure. Up now, there has been several works
that based their assessment on PUF simulation. For instance, the work of Ruhrmair in
[39], performs assessments on data captured from Arbiter PUF and XOR Arbiter PUF
simulators.

In this work we also use PUF simulators due to two major facts. One that is the ease
of access to the internal components which gives us the capability of modifying the
structure to create new variations of PUF. For instance, we are using the base Arbiter
PUF simulator developed by Ruhrmair and used in [39]. This base simulator can be
used to create other variants of Arbiter PUF, such as feedforward and double arbiter
PUF. The XOR Arbiter PUF is already implemented in the simulator. The second rea-
son is the need to generate large number of instances, which then satisfies a realistic
scenario for enrollment. At this point we can see the benefits of using simulator espe-
cially compared to works that used real PUF data for assessment, which could only
present few numbers of instances due to the cost of implementing the PUF on large
number of devices. It is nonetheless essential to assure that the main PUF characteris-
tics are acceptable, such as the randomness, and uniqueness. In our work as we show
later, we analyze these metrics in the simulated, and so far the characteristic of PUF in-
stances generated from the Ruhrmair simulator has been acceptable and represent the

characteristics of a good PUF.
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PUF Modeling and CRP Data-base
Management

In this chapter, we focus on the provision of a predictive model of PUF during en-
rollment. Four of our published works [44]-[47] regarding PUF modeling will be ex-
plained here. First, we go through the methodology that we built on enrolling strong
PUF using machine learning. Then we recall the challenges with the conventional way
of providing the model of PUF, such as large number of CRP, prediction error, size of
model. We present two optimized modeling techniques we implemented specifically
for modeling strong PUF, which are transfer learning and sub-space modeling. We ex-
plain their structure and how they work, and we present experimental result as proof
of concept.

3.1 Introduction

Due to the large CRP space, strong PUF are potential sources to generate single-use de-
vice identifiers or encryption keys. For such applications, it is commonly imagined to
either employ a single strong PUF and expect to extract each time a vector of responses
or employ multiple strong PUFs and thus a multi-bit output of responses. Such PUF
based sketches are useful for device authentication or lightweight encryption key gen-
eration. Given also that the CRP space of the constituting PUFs is very large, the system
employing such sketch for key generation practically never runs out of single-use en-
cryption keys. Although this is a specific use-case for strong PUF, it shows clearly that
the potential exists with harnessing the large CRP space, hence our proposal to use a
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predictive model of PUF during enrollment which provides access to the entire CRP
space of the PUF.

As discussed before in Chapter 1 section 2.7 and 2.8, there already exists a matured
research field for strong PUF modeling, which contains a large number of different
techniques that tackle the PUF modeling in different ways. Although these methods
are mainly proposed to notify the designers of existing attack methods which aim at
modeling the PUF, the benefit of ML-based modeling of PUF, as we discussed earlier,
is not limited to that use-case. Alternatively, modeling of strong PUF can be utilized
by designers for device enrollment. This use-case has already been discussed in several
works such as the Slender PUF authentication protocol in [48], a mutual lightweight
authentication method proposed in [49], and an encryption protocol proposed in [50].

Modeling strong PUF, however, can in turn be seen as a heavy task, requiring a
large amount of CRP and PUF data to yield an accurate model. Depending on the level
of PUF complexity, modeling PUF in turn can lead to requiring over a million CRPs.
While capturing a large number of CRPs for one device is not an issue, practicing it
for a large group of devices can be seen as a cost issue. The lateral is the setting that
designers can face if they do not consider a cost-aware enrollment process.

The primary work that we conduct in this regard is to put together a method for
PUF enrollment using machine learning, with attention to cost parameters that measure
mainly the amount data needed for training, the time needed for a successful enroll-
ment, the storage space needed to store the model of PUF, and the computation power
required to handle the training process. We discuss here that due to the empirical na-
ture of machine learning in yielding a model with desired characteristic, it is required
that we learn about the subject of modeling and find the optimal hyper-parameters for
training first. Then we adjust a set of so-called control parameters which control the
training to perform in a fixed time and data frame during the main enrollment. Later in
this chapter, we introduce two optimization techniques for modeling, one which aims at
optimizing the training which we call transfer learning, and the other is sub-space mod-
eling, a structural modification on the PUF which allows capturing data from the inter-
nal components of the PUF and allow modeling the PUF using a divide-and-conquer
approach. Both of the solutions in turn should enable us, as we show by experimental
results as well, to model PUF with reduced cost in terms of time and training dataset

size.
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3.2 Strong PUF Enrollment using Machine Learning: A
Methodical Approach

The goal of strong PUF enrollment with ML-based modeling is to replace the conven-
tional CRP database with an estimated model of the PUF. Let us denote the estimated
model of PUF as hpy . The enrollment of PUF with ML-based modeling means that the
verifier server will own hpyr, which provides access to the full CRP space of the PUF
circuit with some miss-prediction error that is tolerable (see Figure ??a). This should
in turn mean that the hpyr and the PUF circuit itself should respond similarly to any
given challenge from the CRP space. Let us consider ¢; as a challenge input to the PUF
circuit. If we observe the PUF circuit as a function fpyr of ¢;, then its estimation can
be defined as a function gpyr of ¢; and a set of internal values 6 of the model. Thus,
hpur = {gpur, 0}. The estimation should then follow (3.1):

fPUF(Ci) =T~ 7“2 = gpur(ci, 9) = hpur(ci) (3.1)

where 7; is the PUF circuit’s response to the challenge ¢; and r; is the estimated model’s
prediction of r; for ¢;. The model then goes through an iterative training phase, where
a learning algorithm modifies the internal values with respect to the CRP set and the
function gpyp. At the beginning of the training phase, model hpyr has a significant
probability of erroneous estimation of the PUF’s CRP characteristic. Therefore, the train-
ing runs iteratively until the probability of erroneous estimation is converged to zero or
an acceptable minimum value.

Since modeling here is done for the enrollment, we define metrics that are important
for the enrollment, and we use them to evaluate the cost of training and the performance
of the estimated models:

e Prediction Accuracy (¢): Proportion of correctly predicted responses to total num-
ber of predictions.

e Enrollment CRP Set Size (css): Size (in bytes) of the CRP set collected to enroll
a given PUF circuit.

o Total Time of Training (7"): The time of training in seconds, up to a point when
an estimated model is generated with acceptable e.
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e Estimated Model Size (ms): A measure of size (in bytes) of the internal trainable

parameters 6 of an estimated model of a PUF.

Training in Machine Learning is an iterative process where numerous training data-
samples are fed to a prediction model and the output of the prediction model is assessed
and the result of that is fed back to the model in order to optimize it to increase its
prediction accuracy. The PUF enrollment procedure is done by an authorized party
with open access to the PUF circuits to collect arbitrary number of CRPs. We refer to
this authorized party as the designer.

Before the enrollment process, we assume that the designer first has performed a
CRP-readout on a group of silicon Chips. During the CRP readout, the designer cap-
tures an initial set of CRPs for each strong PUF circuit. We refer to this initial set as
CRPt. We assume that the size of the CRPt is fixed for all the PUF circuits in the same
group. The CRPt is then divided into three subsets. We define a CRPtr subset to be used
for training the estimated model. CRPval is a subset to evaluate the estimated model
during training, and CRPte a subset to evaluate the estimated model after training. We
assume CRPte to be considerably larger than CRPval.

During the process of training the estimated models for the PUF circuits, we take
the following considerations as well:

e The PUF circuit and its estimated model respond similarly to any randomly given
challenge with high probability. In this case, we say that the estimated model has
a high value for e.

e The number of CRPs needed to train each estimated model is enumerable and
feasible to collect.

e The training process is finite and the training time T for obtaining an estimated

model is minimum.

e The estimated model’s internal parameter set # is enumerable and feasible for

storage.

e Each estimated model characterizes only its corresponding PUF circuit and has
no correlation with other PUF circuits in the same group of PUFs.
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Figure 3.1: Our proposed ML-based enrollment procedure

The procedure of ML-based enrollment can then be developed as shown in Figure
3.1. This procedure will run in three phases to enroll a given PUF circuit: (1) the Ini-
tialization phase, (2) the Optimization phase, and (3) the Evaluation phase, which we

will explain more in details in the following:

3.2.1 Initialization Phase

Here, we define and initialize the necessary parameters for the optimization and the
evaluation phase. The control parameters as described in Table 1 are initialized by de-
signer specified values. These parameters define the target accuracy of the estimated
model as well as the maximum period of time the enrollment can take to reach the
model with the target prediction accuracy. The Training Hyper-parameters are also ini-
tialized in this stage. These parameters are machine learning specific and necessary to
be assigned according to the context. The choice of the values for these parameters is
up to the designer as well, and the best practice is to inherit the values of the successful
practices in the literature that have done the strong PUF modeling. The training CRP set
CRPt is also given at this stage, including its three subsets as explained earlier. Finally,
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Table 3.1: Control parameters in the enrollment procedure.

Parameter | Description

val_eg Desired value for ¢ wrt. C RP,,; subset.

test_eg Desired value for ¢ wrt. C RP,. subset.

dy Minimum error of mis-prediction wrt. the C' RP,, subset.
CSSyy Size (in bytes) of the C'RP,, subset.

epochan Maximum allowed training epochs

rtmaz Maximum allowed re-training attempts

the estimated model is created in this stage. The model specifications are also given by
the designer. After the model is created, it is sent to an initialization process where its
internal values are randomized. The model initialization part of the phase can be iter-
ative. It would depend on how the next two phases will perform, which we explain in

the following.

3.2.2 Optimization Phase

The training of the estimated model is done in this phase. It comprises multiple func-
tions for training and evaluation of the estimated model. At the beginning of the phase,
the estimated model is given a set of challenges from the C'RP,, dataset. The model
then predicts the corresponding responses. The loss function will take the predicted
responses and the actual responses from the CRP,, and compute the prediction loss
d. Then, the loss value ¢ is given to the optimizer function which propagates adjust-
ments to the internal parameters 0 of the estimated model. Then, the Eval function
computes the prediction accuracy e of the updated estimated model, using the CRP,
dataset. This entire process is called an epoch, which is counted as epoch in the pro-
cedure. The procedure undergoes several epochs of training until the desired value of

loss ¢, or prediction accuracy val_¢, is observed or epoch reaches max value epoch ;.

3.2.3 Evaluation Phase

The evaluation phase performs the final prediction accuracy assessment of the updated
estimated model over the CRPte dataset. Here, the same eval function measures the
prediction accuracy of the model over CRPte. This evaluation in turn tries to emulate the
scenario where the estimated model is invoked during mission mode to communicate

with the PUF circuit. In such case, it is justified to have the CRPte set size be considerably
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larger than that of CRPval. The control sequence in this phase compares the prediction
accuracy e of the model with the test_eg. If greater, then the enrollment yields the model
as an estimated model with desired accuracy for enrollment. If the prediction value
is less than test_eg, however, the control sequence sets to redo the training from the
initialization phase where the model’s internal parameters are initialized. The number
of re-training times is also counted in the procedure with rta counter. If rta reaches
rtamax as defined by the designer, then the control sequence yields the enrollment
with the model with maximum accuracy emax from the previous training attempts,

where emax < test_eg.

3.24 Methodology

Recall that we assume in this work that enrollment is done for a very large number
of PUF circuits. Primarily, the user has to initialize the control parameters before to
conduct the enrollment procedure. We know already that the ML-based enrollment
procedure is empirical, meaning that there is no deterministic parameter initialization
known beforehand to initiate the ML-based enrollment with and yield the desired re-
sults. Instead, the optimal values to start with are empirically drawn from a test case.
Accordingly, for enrollment of PUF using ML-based modeling, we suggest that the user
performs the enrollment in two parts:

e Partl: Set arbitrary values for the hyper parameters and the control parameters
val_eg, test_eg and dg, epochmax and rtamax. In addition, define the minimum
and maximum bound of c¢ss. Then, perform the enrollment procedure over a dis-
crete range of css values (arbitrary selections between the min, max bound) sep-
arately and evaluate at which css the desired ¢ is obtained with acceptable T'.

e Part 2: Update the control parameters with implications of the optimal values for
¢, T and css, obtained from part 1, and resume the enrollment on the rest of the

PUF circuits with the updated control parameters.

Our focus here is mainly on part 1. Thus, our goal is to show how the observations
obtained in Partl can help the user to define the optimal values for the control parame-
ters. Speculatively, to be cost-efficient for the enrollment of a given large group of PUF,
the user is able to find a minimum value for css given the implications he receives from

the evaluation on the primary subset in part 1. Therefore, he will be able to avoid larger

49



Part , Chapter 3 — PUF Modeling and CRP Data-base Management

update control|
parameters

8 h

CSSyy

val_eg4

Evaluation
set

test_eg

T

epOChmax

PUF-enabled device set
ready for enroliment

rtQmaz

L J
M set enrolled*

Part (2)

Evaluation set
enrolled
Part (1)

Figure 3.2: Our proposed enrollment method. Here, EP refers to our proposed enroll-
ment procedure. M set also refers to the main set of PUF devices to be enrolled with
adapted control parameters.

css and save time during the CRP-readout for the remaining large number of PUF cir-

cuits pending for enrollment.

Since it is an empirical method, we should first define the hard bounds for either one
of the control parameters. We suggest to do this for the most critical parameter such as
csstr. After exploring the values within the hard bounds, then find the optimal points
for the cost values. For instance, looking at where css or 7" is minimum, the € is max-
imum and css is minimum. Accordingly, update the values of the control parameters

(see Figure 3.2).

Additionally, an exploration of ms can be done. ms, however, is mostly relying on the
parameters which constitute the structure of the probabilistic model, such as number of
neurons and weighted connections for each neuron if the model is an Artificial Neural
Network (ANN). ms parameters are quite numerous. Therefore, the exploration over
ms should be selective, such as exploring different model structures that have already
been proposed in the literature. The method of grid searching the hyper-parameters for
training also exists, such as the learning-rate value, the optimization function, etc. This
can be done on the side of the enrollment method as we define here.

Once the enrollment on the evaluation set is complete after exploring different val-
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ues for the control Parameters, there will be two products: one which is the enrollment
of the devices in the evaluation set, and second is the optimized control parameters
which then can be used in the enrollment of the M set (see Figure 3.2). This will con-
stitute the second part of the method. Contrary to the first part, in the second part,
no bound for control parameters are set. Instead, final values for these parameters
are given, which are coming from the first part. The outcome of the second part of
the method is to accept an hPUF model which meets the qualifications according to e
parameters or discard the model which does not have the desired quality. In case of
discarding the models, their corresponding PUF will be queried again for more CRP-
readout. Nonetheless, we speculate that, with the optimized control parameters ex-
ported from part one, the population of discarded models in the second part should

be minimized considerably.

3.2.5 Evaluation Work

In this section, we show in an experiment how we analyze css, T and € over a small batch
of 100 2-XOR Arbiter PUFs. We considered using XOR Arbiter PUF as our target PUF
model family in our evaluation code. We conduct our experiments on data generated
from a Python based Arbiter PUF and XOR Arbiter PUF simulation. We elaborate on
XOR Arbiter PUF and its simulation in Python in the following.

We reused the XOR Arbiter PUF simulator developed by Ruhrmair as described
in [26]. The source code of this simulator can also be found in [51]. In this simulator,
the two racing signals” propagation delay is modeled as the sum of the delays in each
stage. The delay parameter values in the Python-based implementation of APUF and
XOR Arbiter PUF simulator are generated randomly according to a standard normal
distribution, with mean 0 and standard deviation 1.

For our experiment, we generated 100 instances of 128-stage 2-XOR Arbiter PUF.
We then randomly generated 35,000 challenges for each instance and recorded their
corresponding response. Thus, we stored 100 CRP datasets with 35,000 CRPs in each set.
Note that the datasets generated from the simulated PUF instances do not simulate the
instability that is inevitably present in real PUFs. We intentionally chose the instability-
free condition, since the presence of instability is a new fold of complexity that can affect
the modeling results, and thus it needs to be discussed thoroughly in a separate set of
experimental work.

To assure the reliability of the simulated instances and the generated CRPs, we mea-
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Table 3.2: Measurements on 100 PUF instances CRDP sets.

Average Maiti’s Hori’s Uniqueness Average
Randomness Uniqueness Diffuseness
0.9419 0.4999 0.9899 0.9972
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Figure 3.3: [llustrating the MLP structure proposed by Mursi et al. in [6].

sured the randomness, uniqueness, and diffuseness, using the formulations proposed
in [52], [53]. A collective use-case of Hori’s Uniqueness and Maiti’s Uniqueness, as
well as the randomness and the diffuseness, can be found in [54]. Our measurements
of uniqueness, randomness, and diffuseness over 100 instances of 128-bit 2-XOR Arbiter
PUF are brought in Table 3.2. Note that each CRP set considered for these measurements
comprises 10,000 CRPs. As shown in the table, the measurements on all the metrics are
close to the ideal thresholds for each metric as we explained earlier in Chapter 2, Section

3. Therefore we can consider the instantiated PUFs from the simulator as good PUFs.

We chose our estimated model to be Multi-Layer Perceptron (MLP), which is a vari-
ant of Artificial Neural Network (ANN) models. Mursi etal. in [6] has proposed a struc-
tural definition of MLP model for modeling XOR Arbiter PUFs that has the potential
to converge faster with a considerably lower number of CRPs for training compared to
other modeling structures such as ones discussed in [26], [55], which are based on Lo-
gistic Regression (LR), and [56], which is based on Artificial Neural Networks (ANN).
A schematic of Mursi’s proposed MLP structure is given in Figure 3.3. Here, £ is with
the number of XORs in an n-stage k-XOR Arbiter PUF. The mentioned feature vector
in the figure is solely a function of the applied n-bit challenge c. As also described by
Ruhrmair in [26], the feature vector as ® can be defined as ®(c) = [1%_, (1 — 2b;), where
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Table 3.3: Hyper-parameters set for the initialization phase.

Parameter Value Parameter Value
Optimization Function | Adam Loss Function BCE

Learning Rate 0.001 Weight Initializer | Taiming Uniform
Bias Initializer Uniform | * epoch,,ax 400

*test_eg 90% *rta,ax 10

*val_e, 99|% dg 0.01

CRP_{{te}} Set Size 20,000

b; is the ith bit of the challenge c.

Accordingly, for a 128-stage 2-XOR Arbiter PUF, the MLP model we use in this work
has an input layer with 129 neurons, first hidden layer with two neurons, second hid-
den layer with four, and a third layer with two neurons. The output would also have
one classifier neuron. For the training hyper-parameters and the enrollment control pa-

rameters, we considered the values given in Table 3.3.

3.2.6 Evaluation Observations

We did an exploration to find the ideal values for csstr and 7'. The choice of the lower
bound of csstr and the upper bound was also arbitrary. We inferred from the previous
studies that the lowest value for csstr for a 2-XOR 128-it XOR Arbiter PUF is a value of
about 3000 CRPs. Therefore, we choose that as the lower bound. For the upper bound,
we chose 10,000 CRPs. We speculated that the characteristic we observe around this
number of CRPs can be interpolated for larger sizes of csstr as well.

We used Pytorch in Python 3.7 to build and train our ANNs. We conducted our
experiments on a PC running windows 10 with an Intel core i7 8th Gen CPU and 16
GB of memory. We developed our experimental Python codes using Spyder 4.0.1 on
Anaconda Navigator 1.9.12.

The results on the performance of training with various training set sizes are re-
flected in Figure 3.4. Looking at the results, we can identify at what csstr value the
probability of reaching the desired ¢ is very low, which is between 3000 to 4000. Note
that the model accuracy at these csstr values is emax as we indicated in the procedure.
In addition, looking at the range between 4500 CRPs to 10,000 CRPs for csstr, it infers
that, with increasing the set size, the probability of reaching the desired e tends to stabi-
lize at a value above the target test_eg as we defined in the test phase. There exist some
outliers that are cases where the desired € could not be reached; therefore, the model
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Figure 3.4: Illustrating the distribution of prediction accuracy e and the distribution of
total training time T over various csstr.

with emax is yielded.

This can characterize the possibility of having discarded HPUF models during Part 2
of the enrollment method as we explained earlier. Moreover, the training time T tends to
decrease as well at the beginning with increasing the set size up to 7500. We imply that
this reduction in time of training is due to a significant decrease in re-training attempts

until desired model is yielded.

Plots shown in Figure 3.5 also show the minimum, maximum, and average values of
T and e. Looking at Figure 6.a, we can observe what are safe values of csstr in terms of
delivering the target prediction accuracy € with maximum probability. In this scenario,
look for e> 0.90, that is, the values between 7000 to 8000 CRPs. Looking at values of
e and T shown in Figure 3.5.c, one can infer at what csstr values there is a chance of
obtaining the target . Here, at 3000 for instance, 3000 CRPs could yield a model with e
> 0.90. This, however, means that a designer needs to improve other factors to increase

the chance of obtaining model with target e. For instance, by using a better initialization
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technique or modifying the model structure, which could in turn affect the model size
ms consequently. By also looking at Figure 3.5.b, we can infer at what csstr values we
have an increased chance of obtaining the target e. For instance, for csstr > 5000, it is
possible to obtain prediction accuracy > 0.90. However, for this csstr, there is a consid-
erable chance that models with € < 0.90 are yielded. Choosing this option depends on
the cost of re-querying the corresponding PUFs for the outlier predictive models with
low prediction accuracy. If the cost of re-querying is amenable by choosing the low
csstr for the majority of the PUF devices for the first query, then it could be considered
a potential choice in terms of lowering the overall cost of enrollment.

We could have two approaches here: (1) To choose the minimum css that has a
chance to yield some hPUF model with sub-optimal ¢; (2) To choose css which yields
maximum e and has a negligible chance of yielding hPUF with sub-optimal e.

Choosing the first option can yield in overall reducing the CRP read-out cost since
we chose the minimum csstr. However, since there is also the chance of yielding hPUF
with sub-optimal ¢, then there may be some additive cost of re-querying the PUFs with
discarded hPUF for re-enrollment. If the cost of re-querying is tolerable, then the first
option could potentially be the cost-efficient choice.

Choosing the second option, however, could yield the overall increased CRP read-
out cost. We also saw that training time T can also be minimized if the prediction ac-
curacy e is maximized with increasing css. However, the chance of yielding hPUF with
sub-optimal ¢ is negligible on the other hand. This option could be a potential choice
for cost-efficiency if the cost of re-querying the PUF is high.

A k- gk —k—h kA —p- k-4 |

(b)

Figure 3.5: [llustration showing the minimum, average, and maximum training time 7’
and prediction accuracy e for various cc¢;,. (a) Max 7" and Min ¢; (b) average 7" and ¢;
(¢) Min T and Max e.

We also measured the size of the trained estimated models. The MLP used in this
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study comprises 282 trainable parameters in total. Each parameter is 32-bit floating
point, yielding in total a model size of 1128 bytes. Note that we do not need to save any
metadata regarding the internal connectivity of the MLP, since all layers in the MLP
model are Fully Connected. While we cannot make a thorough comparison at this level
of evaluating the method, we can at least draw a primary conclusion that storing an
estimated model of a strong PUF circuit potentially takes much less space, compared to
that of a CRP set. For instance, the training CRP set used here to obtain the most accu-
rate model includes 10,000 CRPs, equal to 161 KB of storage size, whereas the estimated
model size is roughly above 1 KB.

The uniqueness of the trained estimated models is also an important characteris-
tic, which means that no estimated model should respond similarly to two different
PUFs. Although this is not a metric related to the cost of enrollment, it is, however,
essential to ensure that models correspond only to their equivalent PUF circuit. This
should satisfy the fifth consideration we discussed earlier in this chapter. We refer to it
as measuring the uniqueness of the estimated models. Uniqueness here is observed as
the prediction accuracy of each trained estimated model over a given CRP dataset com-
ing from each PUF circuit. Since we have 100 PUF circuits and their corresponding 100
estimated models, we therefore measured 10,000 cases for the uniqueness. We consid-
ered two cases, one which is training the models with csstr = 3000, and one with csstr
= 8000 CRPs. The results of this measurement are brought in Figure 3.6. We expect for
csstr = 3000 that the models have low similarity to their corresponding PUF. Looking at
Figure3.6.a, we see that only a selective number of cases have ¢ above 0.70. Nonetheless,
for all cases, it is apparent that no similarity with e higher than 0.6 is achieved. We also
observe on Figure 3.6.b that estimated models trained with csstr = 8000 show similarity
uniquely only to their corresponding PUF circuit with high accuracy. We cannot infer
directly from these observations that, for any trained model on a PUF circuit in general,
the model shows CRP similarity only to the corresponding PUF. Since we suspect that
there might exist some PUF designs that intentionally have CRP similarities scattered
between various PUF devices, we can nonetheless infer that, for a set of PUF devices
for which their PUF characteristic shows good random and unique behavior, predic-
tive models trained using enough CRPs from a PUF represent uniquely that PUF only,

while having no similarity to other PUF instances.
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3.2.7 Applicability in the Related Works

The methodology we developed here can be used in the protocols that demand a model
of in their authentication and encryption key generation process. Below, we discuss
several protocols as such that exist in the literature, and explain briefly why providing
a model of PUF is an essenial part of them.

The Slender PUF protocol proposed by Majzoobi et al. in [48] is an authentication
protocol that uses strong PUF. In this protocol, the authors propose a substring match-
ing mechanism, wherein the substring in the protocol is a sliced vector from a vector
of generated responses both on the PUF device and the verifier server. Authors in this
work assume that the verifier server has access to a compact model of the PUF, which is
able to generate a response for any given challenge vector, similar to that in the original
PUF circuit. The sliced vector of responses is sent from the PUF device to the verifier,
and convoluted over the entire response vector that has been generated on the verifier
server, using the compact model of the PUF. The authentication is successful once the
sliced vector shows maximum correlation to a subpart of the verifier’s response vector.
Since, in this protocol, the sliced response vector is exchanged on a public channel, it
is obliged that, once the vector is used, it is discarded and never used again to prevent
replay attacks. This in turn requires that the verifier server has access to a very large
amount of the CRP space of the PUF, which is in turn guaranteed by using the model
of the PUF. Thus, the model of the PUF should correspond as accurately as possible to
the PUF circuit in order to suffice the requirement.

Another novel mutual authentication protocol has been proposed by Idriss et al. in
[49], [57], which is based on a challenge-challenge communication mechanism between
the PUF-enabled device and the verifier server. It is also assumed in this work that the
verifier server acquires an accurate model of the PUF for enrollment. During the mu-
tual authentication, after exchanging the device IDs, the PUF-enabled device generates
several random CRPs. To authenticate the server, the challenge vectors of the gener-
ated CRPs are sent from the device to the verifier server. On the server side, for each
received challenge vector ci, two new random challenge vectors cj and ck are generated,
such that the XOR of the response values corresponding to each of the two newly gener-
ated challenge is equal to the response of the received challenge vector. In other words,
the A(cj) XOR A(ck) =1’ ==r = A(ci) should hold true, where A is the model of the
PUF circuit. Once the ¢j and ck are generated for every ci received on the verifier server,
they are sent to the PUF-enabled device. On the PUF-enabled device, it is then checked
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Figure 3.6: Similarity matrices showing the similarity between 100 trained models and
100 instances of a 128-stage 2-XOR Arbiter PUF. (a) css;,. = 3000 ; (b) css;, = 8000.

to see if the equation PUF(cj) XOR PUF(ck) =1’ ==r = PUF(ci) is true for the majority
of the received challenge vector pairs. Once the device authenticates the server, it sends
a new challenge vector pair set (the same as the verifier did) to the verifier server for
authenticating the device. Since this mutual authentication method is based on random
generation of the challenge values for every authentication request, it is assumed that
the verifier server has access to a large CRP space where, for every randomly gener-
ated challenge vector, a response value can be provided. This of course is guaranteed
by using the equivalent model of the PUF, which is highly accurately trained.

A PUF based key generation protocol has been proposed by Quadir et al. in [50],
which uses a machine learning generated predictive model of the PUF on the TTP server
for mutual key generation. Here, the authors propose mutual key generation by ex-
changing only a serial number, which in turn is the challenge to the PUF device and the
predictive model, respectively. It is expected of course that both the model and the PUF
device generate the same response value. The response value of course is prone to vari-
ations due to device instability and model miss-prediction, which is why the authors
also propose using helper data and error correction codes to recover the original key
generated on the TTP server for the PUF device. Similar to the idea of PUF authenticat-
ing in [57], here only the challenge values are exchanged and no responses, in order to
avoid model-building attacks. The protocol proposed here also refreshes the key after
a certain period. This feature of course needs both the device and server to have access
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to a large CRP space, which is again for the verifier server, provided using the model
of the PUF. This way, the users will be able to refresh keys frequently and each time
guarantee that a new value is generated.

The advent of such protocols for device authentication and key generation enables
a secure implementation of One-Time-Password (OTP) methods to be more feasible
and reliable than before. Since the CRP space of strong PUF is considerably large, it
can be easily guaranteed that every newly generated password is unique. On the other
hand, the reliability of the key is of importance, which is partially assured by provid-
ing a highly accurate model of the PUF. Additionally, once these protocols emerge into
a large spectrum of embedded systems and connected devices, it is expected that the
enrollment process now relying on machine learning-based modeling can be practiced
for a very large volume of devices. Therefore, the cost of enrollment, as we defined its
constituent terms in this work, finds their importance and needs to be managed prop-
erly.

In the following section we will now elaborate on transfer learning as an optimiza-
tion technique in modeling PUF. TL is a practice in ML that is trending nowadays due
to its potential. The point about TL is the reusability of trained data into new subjects
of modeling. In the coming chapter, we elaborate on how transfer learning is applied in
modeling strong PUF, in specific the family of XOR Arbiter PUF. We then propose using
TL with a known MLP model that is tailored for XOR Arbiter PUF modeling. Practicing
TL on MLP in modeling PUF is a new approach and we show here that This practice
shows better results in terms of training CRP dataset size compared to an already prac-
ticed TL on CNN models.
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3.3 Transfer Learning: A Modeling Technique to Reduce

Training Data

The success in modeling strong PUF depends on the number of CRPs given to train the
estimated model. It is proven that the minimum number of CRPs required to yield an ac-
curate model is proportional to the level of complexity in the structure of the PUF [58].
Thus modeling a strong PUF can be very data demanding for PUF which are largely
complex [58]. For instance, modeling k-XOR Arbiter PUF with k >= 5 need above 1
million CRPs to yield estimation accuracy above 90%.

While the increased complexity in the structure of strong PUF seems a workable so-
lution against model-building attacks, new research such as the ones found in [6], [56]
try to tackle PUF complexity by proposing novel probabilistic modeling based on deep
learning methods which are structurally tuned to converge faster and require lesser data
for training. Moreover, a recent work suggests that a transferring trained data from one
PUF to model a new PUF can yield accurate model with reduced number of CRPs re-
quired for training [59]. This work proposes using Transfer Learning on CNN models
which are relatively more complex models than MLPs as used in [6].

One of the ideas we wanted venture into was to model strong PUF with MLPs using
Transfer Learning to reduce the training CRPs. Our starting point was set to use the lat-
est MLP proposed by Mursi et al in [6]. We set to experimentally prove that it is possible
to initialize some of the dense layer weights of a given MLP model with pre-trained val-
ues, and consequently train the model accurately with a reduced CRP dataset. In the
following, it will be demonstrated that our modeling technique was able model strong
PUF with less resources compared to its predecessor techniques [6] and [59]. What we
tried to deliver was the following;:

e Schematic of a modeling procedure of strong PUF using MLP and Transfer Learn-

ing.

e Evaluation with simulated noise-free data of several variants of strong PUF mod-
els to show that reusing dense layer weight values can further decrease the re-

quired number of CRPs for training compared to [6].

e Experimental assessment with simulated noisy data to show the resilience of mod-

eling scheme based on Transfer Learning to PUF instability.
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e A comparison between our proposed Transfer Learning method and wang’s Trans-

fer Learning on CNNs in [59] in modeling some variants of strong PUF.

3.3.1 How Transfer Learning Works

Depending on how the internal values of an ANN are initialized, the training process
can lead faster or slower to a point of convergence. Several techniques for ANN weight
and bias initialization have been proposed. A selection of these techniques is discussed
in [60]. In contrast to these solutions, another solution called Transfer Learning exists
which is based on reusing the values of internal parameters of the trained estimated
model [61]. It is proven that Transfer Learning is a potential technique to mitigate the
large data dependency issue in deep learning. This addresses the demand on very large
number of samples in training in order to yield an optimal prediction accuracy, which
also appears in modeling variants of strong PUFs.

In the context of strong PUF modeling, the main goal is to reduce the required CRP
in building an accurate estimation model for a PUF circuit PUF GOAL. Here Transfer
Learning suggests extracting ¢ from an already trained model, we refer to as MODEL
P which is an estimation of a PUF circuit we refer to as Prime PUF. A Transfer Learning
Plan then decides which part of f can be reused. Based on the Transfer Learning Plan,
6 is generated from 0. The modified ¢’ is then assigned accordingly to the internal
parameters of a new model MODEL G. MODEL G is then passed to the training pro-
cess for estimating PUF GOAL. In the following we elaborate on our proposed Transfer

Learning Plan which can be applied to MLPs in modeling strong PUF.

3.3.2 Proposed Method

MLPs have been a common selection as a fit probabilistic model structure to estimate
large and complex strong PUFs [6], [54], [56]. Although other neural network models
exist such CNN that have the potential to model strong PUFs with large complexity.
However, CNN’s computation overhead exceeds that of an MLP with the same capa-
bility. Therefore, it is interesting to see if the potential of Transfer Learning can emerge
with MLPs in modeling strong PUFs. This has not been practiced before. At the time,
the latest practice of Transfer Learning for modeling strong PUF we found is in [59]
which uses CNN models. We continue in the following to elaborate on how we can

successfully use Transfer Learning on MLP models in modeling strong PUF to reduce
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the number of CRPs required for training. In this work we take the following assump-

tions:

o A target PUF exists which is the goal to model. We call this the Goal PUF.

Access to the Goal PUF is limited. Thus only a few CRPs can be collected.

The structure of the Goal PUF is known to the adversary.

e A PUF circuit is available with full control. We call this the Prime PUF.

Access to the Prime PUF is unlimited. Therefore, as many CRPs as required can
be collected.

The structure of the target PUF is known and is similar to the structure of the
Prime PUF.

In common Transfer Learning practices, it is suggested to transfer the weight values
from the initial layers of an ANN model. It is assumed that the primary features of the
target domain are learned in the primary layers of an ANN. In this work, we observed in
a preliminary experiment that if we transfer the first layer’s weight and bias values, the
training performance is negatively affected. Meaning that it will take more CRPs and
time of training until convergence. On the other hand, we observed that transferring
the weight and bias values of the hidden layers have an opposite effect. Meaning that
the training improved in terms of number of CRPs required for training, as well as the
success rate of the training and the time of training until convergence.

In using the lateral approach, we measured the average distance between each cor-
responding layer’s weight and bias values of Model P and Model G. We observed that
the distance between corresponding weight values on Model P and Model G on the first
layers, are considerably higher than that in the subsequent hidden layers. Accordingly,
we speculated that the primitive features learned in the first dense layer of Model P are
device specific. Therefore, transferring these values to Model G can lead to the possibil-
ity of requiring more CRPs and time of training. On the other hand, the weight values
in the hidden layers and the output layer of a trained model in general, could corre-
spond to learned features in higher levels of abstraction regarding the characteristic of
the target PUF. Therefore, we speculate that the weight value in the hidden layers have
potential to be reused in modeling strong PUF with the same structural complexity.
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Figure 3.7: Our proposed Transfer Learning Plan, based on reusing the hidden layers
of Mursi’s MLP model.

Accordingly, we make a Transfer Learning plan to reuse the values of all hidden
layers” weights and biases, excluding the weights between the input layer and the first
hidden layer. A schematic of our Transfer Learning plan is shown in Figure 3.7. We take
the following steps to perform our modeling method:

e Step 1) Initialize an MLP (Model P) to model the prime PUF circuit.

Step 2) Train Model P with the CRPs captured from the prime PUF instance.

Step 3) Initialize another MLP model (Model G) with the similar structure to the
prime model. All weights of Model G are initialized with zeros.

Step 4) Overwrite the weight and bias values of layer 2 to layer 1 of Model G with

the weight and bias values of layer 2 to layer 1 of Model P. Here 1 is number of
layers in the model.

Step 5) Train Model G with a CRP set captured from the PUF goal circuit.

Our evaluation in this work is based on modeling variants of XOR Arbiter PUFs
using simulated data. Here we first elaborate on the structure of XOR Arbiter PUF, and
then the simulation code which we used to generate our CRP dataset for modeling. We

will then elaborate on our model training setup and discuss our experimental results.
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Table 3.4: Training specifications & Hyper-parameters

Parameter Value
Optimization function Adam

Loss function BCEloss
Learning rate 0.001, 0.0001
Weight initializer Kaiming Uniform
Bias initializer Unifrom
Maximum epoch 2000

Maximum re-training attempts

for Transfer Learning disabled 10

Maximum re-training attempts 5

for Transfer Learning enabled

Training batch size = Training set size
Optimal Test Accuracy 90%

3.3.3 Experimental Setup

We reused the Python-based XOR Arbiter PUF simulator developed by Ruhrmair and
described in [39]. Again, the code of this simulator is available in [51]. Using the python
PUF simulator, we generated 10 instances of 64, 128-stage 2, 3, 4-XOR Arbiter PUF vari-
ants. Noting that this simulation does not inherently include the PUF instability noise.
To simulate noisy PUF, we randomly selected CRPs from each dataset and flipped the
response. Accordingly, we generated noisy CRP datasets for each PUF variant, with 2%,
5% and 10% noisy CRPs in each dataset.

On the modeling part, we recreated Mursi’s ANN in [6]. This model is an MLP with
3 hidden layers. The number of neurons in each layer are 2(k-1), 2k, 2(k-1), for the first,
second and third hidden layer, respectively. Here k associates with the number of XORs
in a n-stage k-XOR Arbiter PUF. The activation function used for all layers except the
output layer is hyperbolic tangent function (Tanh). The output layer uses the Sigmoid
activation function.

In terms of the training specifications and hyper parameters, our entire parametric
consideration for the training are given in Table ??. We implemented the model creator
and the trainer code with Pytorch on Python 3.8 with Anaconda IDE and the Spyder
editor on Windows 10. The system we used for training has 2 Nvidia Quadro RTX 5000
graphics cards. Each card has 8 GBs of dedicated memory, 3072 cuda cores with 448
GB/s memory bandwidth. The system has also 2 intel Xeon silver CPUs with 2.2 GHz
speed, 128 GBs of RAM, and 10 TB of storage. It is worth noting that during our exper-
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iments, only one of the Quadro RTX 5000 was enough. Also since the dedicated GPU
memory was large, we considered the training batch size to be the size of the training
set, and also increased the number of epochs accordingly. We clarify that the maximum
epoch indicated in Table. ?? should not lead to and overfitting problem, since the fitting
iteration (updating the trainable parameters ) is performed only once per epoch (due
to the batch size being the same as training set size). This is similar to having batch size

training set size

= wemmdee 22 and maximum epoch = 200. However, the larger batch-size allowed us

to get a better training performance on GPU.

3.3.4 Experimental Results

In modeling each variant of XOR PUFs for various training set sizes, we measure the fol-

10
Zizl(NTri)
MAXNTT

Where ¢; and NT'r,, indicates the trained model’s prediction accuracy and number of

lowing: Averaged prediction accuracy = (3;°, ¢;)/10 Averaged failure-rate =

retraining attempts, respectively., of modeling the ith PUF instance of a given PUF vari-
antand: € {1,2, ...,10}. MAX_NTr also indicates the maximum re-training attempts
as given in Table. ??2.

We first compare our method to Mursi’s MLP with random initializer. Figure 3.8
shows the training results for the variants of 64-bit XOR PUFs. The first observation is
on the average prediction accuracy. If we consider 90% as the target accuracy, we see
that training with our Transfer Learning Plan leads to the target accuracy with fewer
CRPs in all cases. The average failure-rate also is almost zero using our method. We
measured the same for variants of 128-bit XOR Arbiter PUF as shown in Figure 3.9.
The same results as that in modeling 64-XOR PUF variants can be seen here. Where
the target accuracy above 90% can be achieved with fewer CRPs using our method for
initialization. The average failure-rate also is always less than modeling with random
initializer.

Our Transfer Learning plan also shows to have a lead against modeling with random
initializer where the training data includes some noisy CRPs. Figure 3.10 shows the
results of training the 64-bit 4-XOR Arbiter PUF variant in different levels of noise. It is
apparent that the difference between the deterioration rate in modeling with random
initializer and our proposed method is significant. For instance, in the case of 10% noise
and for the maximum number of CRPs given for training, the baseline’s prediction error

has increased by almost 20%, whereas the case with Transfer Learning, it has dropped
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Figure 3.8: Modeling variants of 64-bit XOR Arbiter PUF with and without Transfer
Learning.
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Figure 3.9: Modeling variants of 128-bit XOR Arbiter PUF with and without Transfer
Learning.

for 15%. Although it is apparent also that the failure-rate has increased for both cases.
Yet the difference of the average failure-rate between the case of modeling with random
initializer and our proposed method is significant. Same conclusions can be drawn in
modeling a variant with larger challenge space. Figure 3.11 shows the results of training
the 128-bit 4-XOR Arbiter PUF with different levels of noise. The results prove that the

modeling with our Transfer Learning plan yields the similar advantage.

The observation on modeling with noisy data suggests that using Transfer Learning
for initialization has the potential of more resilience to noise compared to a baseline
where initialization is performed randomly given any training CRP set size. We also
compare our method to the Transfer Learning method proposed by Wang et al. in [59].
In their work, Transfer Learning is done on CNN models to reduce the required number
of CRPs for training XOR Arbiter PUF variants. Their method relies on transferring the
convolutional layer’s weight values from the source domain to the target domain. This

means that their method is applicable on CNNs only. Since their CNN specification
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was not given, we could not reproduce their modeling technique, as we did for Mursi’s
MLP in [6]. However, their work is the only attempt of modeling PUF with Transfer
Learning, and closest to our work.

To compare, we consider the modeling targets (the XOR Arbiter PUF variants) as
the baseline for comparison. Table 3.5 shows the comparison between our method and
Wang's in [59]. Accordingly, to obtain estimated model with 90% prediction accuracy,
our method shows to require a significantly smaller number of CRPs for training over-
all, compared to that of Wang’s. We assume that a good proportion of CRP reduction
is due to the structure of Mursi’s MLP [6] as we reproduced. It is already proven in
the experiments in [6] that this MLP requires much less CRPs to converge to an accu-
rate model compared to previous MLP models. This therefore gives advantage to our
method where we apply Transfer Learning to Mursi’s MLP in order to further decrease
the required training data.

—&— prediction accuracy TLon  —a— failure-rate TL on —8— prediction accuracy TLon  —a— failure-rate TL on —m— prediction accuracy TLon  —— failure-rate TL on
-m- prediction accuracy TLoff - failure-rate TL off -m- prediction accuracy TLoff -~ failure-rate TL off -®- prediction accuracy TLoff -~ failure-rate TL off

°

°

average prediction accuracy

Training CRP set size Training CRP set size

(a) 2% noise (b) 5% noise (c) 10% noise

Figure 3.10: Modeling 64-bit 4-XOR Arbiter PUF with and without Transfer Learning
with presence of noisy CRP.

—=— prediction accuracy TLon  —— failure-rate TL on —m— prediction accuracy TLon  —— failure-rate TL on —m— prediction accuracy TLon  —&— failure-rate TL on
-®- prediction accuracy TL off - failure-rate TL off -m- prediction accuracy TL off - failure-rate TL off -®- prediction accuracy TLoff -~ failure-rate TL off

average prediction accuracy

(a) 2% noise (b) 5% noise (¢) 10% noise

Figure 3.11: Modeling 128-bit 4-XOR Arbiter PUF with and without Transfer Learning
with presence of noisy CRP.
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Table 3.5: Comparing Wang's Transfer Learning with CNN [59] (A) and our proposed
transfer learing plan with MLP (B).

Challenge | No. | Prediction | No. CRPs x10°
size stage | accuracy | A B
2 90% 3.5 8
64 3 90% 31 3
70% 32 -
4 80% 39 9
90% NA 12
2 90% 55 2
3 90% 115 8
70% 170 30
4 80% 190 35
128 90% 380 45

We proposed Transfer Learning technique to model strong PUF with Multi-layer
Perceptron (MLP). We proved that a trained MLP model of PUF circuit can be a source
domain, and the weight and bias values of the hidden layers of the model can be reused
to model a PUF circuit with similar structure with less training data. We experimen-
tally proved that we can considerably decrease the required number of CRPs by ap-
proximately 50% compared to an MLP model which is initialized with random values.
We also showed that our technique has a small failure-rate close to zero for noise-free
modeling and maximum 15% for training with noisy CRPs where 10% of the CRPs are
incorrect. We showed that using Transfer Learning on MLPs has resilience to various

levels of noise up to 10% of noisy CRPs in the training data.

Next we elaborate on Sub-space modeling as another optimization technique in
modeling PUF. Sub-space modeling in turn is a technique mostly focused on the in-
ternal structure of the target PUF. In a way, sub-space modeling as discussed before,
suggests a divide-and-conquer approach in modeling PUF with dividable structure.
In the following section, we explain how this technique can be applied on XOR Ar-
biter PUFs and we show that with sub-space modeling, we can drastically decrease the
required number of CRPs to model the PUF. This in turn can be regarded as an inter-
esting solution solely to be used for modeling strong PUFs. However, it will have it’s
downsides as well which we will point out to later in the coming chapter. Then in the
last chapter, we will talk about how sub-space modeling and transfer learning can po-

tentially co-operate to amend the complexity in modeling strong PUF with very large
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structural complexity.

3.4 Subspace Modeling: A Technique to Tackle Require-

ment for Large CRP data for training

The common approach in building the equivalent software model of PUF is to use Ma-
chine Learning (ML) modeling techniques. The idea is to train a probabilistic model
which can estimate the CRP characteristic of the PUF with high probability. In this ap-
proach, a set of CRPs is captured, and a training algorithm is used to converge the
model’s characteristic to an estimation of the target PUF’s CRP characteristic, accord-
ing to the captured CRP set [5], [7]. An important challenge in ML-based modeling
of PUF is to deal with the structural complexity of the PUF (for instance k-XOR Ar-
biter PUF with k larger than 4). Usually, the strong PUF with high complexity require
significantly large number of CRPs for training [26], [54], [55], [62]-[64]. This on one
hand is appealing for the designers’” community to implement strong PUF with high
complexity to protect against model building attacks. On the other hand, it imposes ad-
ditional cost for protocols which rely on enrolling the PUF with ML-based modeling.
This is due to the fact that CRP collection is done usually during the manufacturing
test phase, since doing it post fabrication is an expensive operation. Therefore, spend-
ing more time during the test phase to collect large number of CRPs, increases the time
of testing and consequently the manufacturing cost. In addition, large CRP training
set size leads to spending hours of training time per PUF model. This in turn leads to
excessive computation power usage and thus increasing the cost of modeling. These
factors generally imply that modeling strong PUF with high complexity using the con-
ventional ML methods is an expensive solution for enrollment. This work is inspired
to put sub-space modeling into practice as a cost-efficient solution for enrollment. In
sub-space modeling, the assumption is that the designer can access the internal values
of strong PUF with large complexity during the test phase. In this way, the designer has
multiple modeling targets with reduced complexity, which in turn need fewer CRPs for
training compared to the whole PUF. In this work, we show how sub-space modeling
can be performed on XOR Arbiter PUF to provide a model with a significantly reduced
cost. Our contributions will be to develop an ML-based enrollment solution with the

following features:
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e Able to generate (at server level) all the possible CRPs of the target PUF.
e Requiring a small amount of memory at server level to store such an information.

e Providing a constant and short enrollment time per PUF, thus applicable in a real
industrial/commercial environment.

In turn, sub-space modeling can be a suitable enrollment solution for the designers’
community compared to other conventional modeling methods. Given that with ML-
based enrollment, access to the full CRP space is provided which can emerge into new
protocols for authentication and encryption key generation. Such protocols require also
novel approaches to restrict CRP access after enrollment. This is crucial, as it prevents
openly accessible CRPs to all parties after enrollment to avoid model-building attacks.
Moreover, it is important that the physical access to the I/O PUF is disabled once the
PUF is enrolled successfully. An example of that can be found in [48], where it is sug-
gested to permanently disable the physical access-points to the PUF, e.g., by burning
irreversible fuses so that other parties cannot access the PUF.

3.4.1 Sub-Space Modeling Method

A schematic of our proposed method is shown in Figure 3.12. Here the illustration
shows sub-space modeling for a variant of XOR Arbiter PUF. As shown in Figure 3.12,
the internal data from each sub-component (rl to rk), in conjunction to their corre-
sponding challenge values (e.g. cl ... ck + rl for APUF_1, c1 ... ck + r2 for APUF_2,
etc.) are fed separately to trainer functions to discretely generate estimation models
of each sub-component. After the trainer functions provide accurate estimated models
of each sub-component, we merge the sub-models into forming a whole model which
represents the whole PUF. We also take the assumptions below on how we can provide
data for training:

e The strong PUF structure should be dividable into smaller sub-components with
reduced complexity. We assume that these sub-components are themselves func-
tions of the input challenge to the PUF.

e An accompanying hardware extractor should be provided which has physical ac-
cess to the internal sub-components’ I/O. The extractor can capture the value of
the internal sub-components in addition to the response of the whole-PUF, for
any given challenge.
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Table 3.6: LR training hyper-parameters

Inverse Tolerance for Max iter | Solver
regularization (C) | stopping (tol) v
1.0 0.0000001 10000 liblinear

o We represent CRvP for samples taken from PUF and its internal data. A CRvP
comprises a Challenge vector, and Response vector (RvP) which is a vector of val-
ues comprising the responses of internal sub-components as well as the response
of the whole PUF.

e Number of sub-components addressed by the extractor are enumerable. We as-
sume that the connectivity of the internal values to the extractor does not disturb
the design and functionality of the PUF itself.

e Once the enrollment is successful and the accurate model is stored, the physical
access to the internal values within the PUF circuit is permanently removed. This
is essential to prevent future threads which may be able to regain access to the
internal values via the extractor.

We also measure the accuracy of the model before storing it on sever. We compare
the model’s predicted responses with the PUF responses for a set of challenges in a CRP
set dedicated for testing (different from the ones used for training). After testing the
model’s prediction accuracy; it is stored for the given strong PUF on the verifier server

for future use.

3.4.2 Experimental Setup

Again, here we used a python-based simulator of XOR Arbiter PUF [51]. We used the
simulator to generate 10 instances of 128-stage 2, 3, 4,5,6,7,8,9 and 10-XOR Arbiter PUF
variants. For each variant we generated 100,000 CRvPs, therefore a total of 9 million
CRvPs for all the instances of all the variants have been generated. Noting that in this
simulation we did not model the PUF instability noise explicitly. Therefore, the ran-
domness is only due to the signal propagation delay as we discussed earlier.
For modeling we used Sklearn’s Logistic Regression (LR) to model each sub-component

independently. The reason we chose LR is that comparing to other modeling tech-

niques, LR shows to converge considerably faster, using less computation power. Also,
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Figure 3.12: Showing how sub-space modeling can be used for strong PUF modeling
with separable components. Here the PUF variant is a n-stage k-XOR Arbiter PUF.
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XOR size
4 5 6 7
css(MB) | e T(h) | ms(KB) | css(MB) | e T(h) [ ms(KB) | css(MB) [ € [T(h) [ms(KB) | css(MB) | e [T(h) | ms(KB)

R 0377 99% | 2:52 4.1 79 99% | 16:36 | 5.1 N/A NA
T |31 98% | 0:02 41 34.6 98% | 00:12 | 5.1 236.2 98% | 4:45 6.1 629.8 98% | 66:53 | 7.2
M* | 15.7 95% | <0:01 | 10.6 15.7 95% | <0:01 | 25.3 157.4 95% | <0:01 | 67.1 4724 95% | 0:02 199.7
S 0.944 98% | 0:05 180.2 6.3 97% | 1:5 1280 18.9 97% | 6:1 3072 441 96% | 18:2 10752
SS | 0.490 98% | <0:01 | 4.1 1.48 97% | <0:01 | 5.1 1.16 97% | <0:01 | 6.1 1.5 96% | <0:01 | 7.2

Table 3.7: A comparison of cost of training in modeling variants of XOR Arbiter PUF.
Here SS refers to our proposed sub-space modeling method. R is the modeling method
used in [26], T is the modeling method used in [55], M* is the modeling method first
proposed in [6] and then revisited in [64]. S also is the modeling method used in [63].

LR seems to be a good starting point to explore modeling techniques due to the fact that
LR is relatively the simplest modeling technique compared to others such as Artificial
Neural Networks or Support Vector Machine. In terms of the training specifications and
hyper parameters, our entire parametric consideration for training with LR are given in
Table 3.6. Noting in addition, that we measure css in terms of bytes for n-stage k-XOR
Arbiter PUF as in equation (3.2) where N is the number of CRPs in a given training set.

Nx(n+k+1)
8

(3.2)

CSS(byte) =

3.4.3 Experimental Results

First we measure the cost of training using sub-space modeling, and compare it to some
of the known and recent modeling methods. Table?? shows the cost of training with re-
spect to various k in n-stage k-XOR Arbiter PUF. Here we compare our sub-space mod-
eling method (SS), to other modeling methods practiced for XOR Arbiter PUF model-
ing. Noting that the competing methods (R,T,M* and S) in Table. ?? are not optimized
for enrollment. These methods are generally proposed to model the whole XOR Arbiter
PUF using a back-propagation technique to adjust the internal values 6 directly accord-
ing to the response behavior of the whole PUF model. Therefore they do not consider
the internal responses.

From Table 3.7, R is the modeling solution of [26] which uses Logistic Regression
with RMSProp as the training function. In T [55] also, the modeling approach is the
same as R, while the training is optimized to be faster. In M* [6] and S [63], Artificial
Neural Networks are used as the underlying model and Adam optimizer as the training
function.

As shown in Table 3.7, sub-space modeling indeed is capable of reducing the cost
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Figure 3.13: [llustration showing the convergence of prediction accuracy e of the XOR
PUF variants with respect to increasing css using sub-space modeling.

of training. Our solution (SS) seems to have the highest efficiency in terms of css, espe-
cially for modeling 5 6 and 7 XOR sizes. The exception is for 4-XOR where R shows to
have a better result in terms of ¢ss. Given however that for the same XOR size, our so-
lution takes significantly less training time T compared to R. The closer case in terms of
css to our solution, is S. However, in terms of 7" and model size ms, our solution shows
better results overall. In terms of 7', our model seems to have overall the best perfor-
mance as well. Given also that closer case in terms of 7" to our model is M*. However,
for M+, the css seems to be considerably larger. It can thus be implied here that sub-
space modeling overall can be considered to have the highest efficiency in terms of all
factors that constitute the cost of modeling, for modeling strong PUF with increased

complexity.

Next in sub-space modeling, we measure the prediction accuracy with respect to
increasing the number of CRvPs for a larger scale of XOR Arbiter PUF variants. Figure
3.13 shows the evolution of prediction accuracy e with respect to increasing CRvP set
size for XOR sizes 2, 3, 4,5,6,7,8,9 and 10. We observe that the convergence points for e
degrades proportionally with increasing XOR size k. For instance, for 4-XOR variants

the convergence point for € is at 0.98 while for 10-XOR it is at 0.93. Another conclusion

74



3.4. Subspace Modeling: A Technique to Tackle Requirement for Large CRP data for training

is that e for all variants start to converge to its maximum value at around 10,000 CRvPs.
The peak for e could be seen in the range of 10,000 to 40,000 CRvPs. While from 40,000
CRvPs above, the ¢ seems to degrade slightly. Which could be due to overfitting the
model with too many CRvPs. This means that sub-space modeling at this stage has a
downside which is the degradation in the maximum prediction accuracy with increas-
ing PUF complexity.

To further analyze prediction accuracy degradation, we measured the distribution of
e over all the sub-components of all the variants of £-XOR for % in 2,3,4,5,6,7,8,9 and 10.
Figure 15 shows the histogram of all the sub-model’s prediction accuracy with respect to
several CRvP set sizes. We observe that the prediction accuracy is less concentrated for
smaller CRvP set sizes like 1000 or 2000. This easily justifies the low prediction accuracy
of the whole model. Since the rate of miss-prediction at these CRvP set sizes are quite
high, and as we know that the accuracy of the whole model can be defined as a product
of the accuracy of the sub-models. Therefore, the effect of internal miss-prediction on

the whole model’s prediction accuracy will be significant. For instance, for a 2-XOR
Arbiter PUF we have:

Probability of two correctly predicted responses at the same time

EWPUF = (ESPUF1 X 6SPUFQ)
+ (3.3)

(1 —espur) X (1 = €spur,))

Probability of two incorrectly predicted responses at the same time

where eWPUF refers to the prediction accuracy e of the whole PUF model, and eSPUF _i
refers to the prediction accuracy e of the ith sub-model. Given also that this equation ex-
tends for larger XORs, where there needs to be computed the product of miss-prediction
probability of every even number of sub-models. Here in equation (3.3), if we give the
average prediction accuracy to the parameter eSPUF_j, it yields approximately the pre-

diction accuracy value for the whole model as indicated in Figure 14.

Looking at Figure 3.14(e), it is apparent that for the 40,000 CRvPs where the peak
value of ¢ is achievable, the € values are distributed around 0.992. This also justifies why
the accuracy for modeling variants of k-XOR with increasing k, degrades as well. Again,
according to equation (3.3), variation as small as 0.01% in the prediction accuracy of the
sub-space models, can lead to variation of up to 1% of the whole model. For instance,
according to an extended version of equation (3.3) for 10-XOR, we need in average,
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99.9% prediction accuracy achieved for each sub-model to then achieve 99% prediction
accuracy for the whole model. However, with our observation of the prediction accu-
racy of models trained with the most optimal training set size, the sub-space models’
prediction accuracy is not concentrated on 99.9%. For larger than 40,000 CRvPs, it ap-
pears that we overfitted a population of sub-models (see the outlined area in Figure
3.14(f)) which deteriorated the estimation of the whole model’s prediction accuracy.
Figure 3.14(f) shows that a considerable number of models trained with 90,000 CRvPs,
appear to have prediction accuracy lesser than the median 99.2% at 40,000 CRvPs. This
means that only increasing the CRvP set size is not a solution to achieve the highest
accuracy for the whole model, as it can lead to overfitting the sub-models.

Our general observation on the sub-space modeling here infers that sub-space mod-
eling seems to be a considerably resource efficient modeling technique. Given however,
that its overall accuracy is more sensitive to minor prediction accuracy variations in the
sub-models. Therefore, special care should be given to stabilize the prediction accuracy
of the sub-model on the maximum achievable accuracy. For instance, if the maximum
achievable accuracy is 99.9%, we set this as the target accuracy for all the sub-space
models. This then requires that each sub-space model is trained with discrete attention
to the number of CRvPs in order to obtain exactly the target prediction accuracy for the
whole PUF model.

Moreover, the number of the sub-components seem to affect the prediction accu-
racy of the whole model. It is observable that with larger number of sub-components,
the accumulation of the probability of miss-prediction errors of the sub-models lead
to higher values. Therefore, it is important to manage the number of sub-models. For
future extensions of the work, it is potential to try with various dividing factors for sub-
space modeling. One example is to divide a k-XOR Arbiter PUF with k being an even
number, to k/2 of 2-XOR PUFs and model each 2-XOR Arbiter PUF separately.

Here we presented a technique for modeling strong PUF, using captured internal
data of the sub-components of the PUF with high complexity. We showed that sub-
space modeling requires significantly less data in order to yield an accurate estimated
model of the PUF. For instance, we showed that it is possible to model 128-stage 10-XOR
Arbiter PUF with 93% prediction accuracy using 40,000 CRvPs which is equivalent to
683 KB of data. This proved that sub-space modeling is a potential cost-efficient solu-
tion for the designers’ community whose priority for enrolling strong PUF is to provide

an estimation model of the PUF. However, we observed that the maximum achievable
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accuracy can be limited with sub-space modeling, due to the internal models’ predic-
tion accuracy variation. As expected, we observed that even a small prediction accuracy
variation of around 0.1% in the internal models can cause the accuracy degradation of
the whole model up to 1%. Depending on the complexity of the whole PUF also, this
degradation can be magnified. And moreover, only adding more training data showed
not to be the solution to overcome the prediction accuracy degradation. Therefore, this
would be an open problem in sub-space modeling of strong PUF with high complexity.

3.5 Conclusion

In this chapter we discussed the modeling of PUF for enrollment. We elaborated on
the details and parameters of the training loop for modeling PUF, the training hyper-
parameters, and the control parameters. We discussed that it is important to extract the
optimal control and hyper-parameter values before beginning to enroll a large group
of PUFs. As a primary essential factor, we need to know the number of CRPs we need
to train the PUF samples. Depending on the priority, we can target capturing a large set
of CRPs, or a compact set of CRPs. We showed that increasing the number of CRPs in
turn assures that majority-to-all the PUF samples can be modelled successfully. While
on the other side, it enables the necessity to spend more time during CRP-readout to
capture a large set. Then, we showed that the primary evaluation phase can unveil to
us the minimum CRP set size that can yield in modeling majority of the PUF samples,
with a minor chance of failure for a selective number of PUF samples. We discussed that
this alternative choice would allow capturing considerably smaller set of CRPs during
readout, and lending the time of processing to the training phase where we expect more
trial and errors and training epochs may be needed to yield PUF models with desired
accuracy. We also discussed that since the training phase can be considered an offline
process, and not necessarily a process running during the test phase, we can assume
the tolerance for taking more time on training and enrollment in general is considerably
higher.

Later in the chapter we discussed two optimization methods for PUF modeling. We
discussed Transfer Learning, a trending technique in machine learning to reduce train-
ing cost, and sub-space modeling, a structural approach to reduce the complexity of the
PUF subjects for training and following that, to facilitate the training with less opposing

cost in terms of time and training data.
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3.5. Conclusion

We explained that in the eco-system of PUF enrollment using ML, Transfer Learning
has a lot of potential due to the fact that PUF samples in the same device family share
features such as their structure, the distribution of the delay parameters, etc. Since trans-
fer learning benefits from similarity of two training subjects, it can be used here with
the goal to reduce the training cost in terms of data and training time. We showed that
we can re-use the lateral features of a trained MLP model of a PUF sample, by transfer-
ring the weight values into a new MLP model with the same structural spec, targeting
to model a new PUF sample with similar structure. Our results showed that TL indeed
reduces the training dataset size compared to each time using a randomly initialized
MLP model for training.

Then we explained sub-space modeling and emphasized on the potential of the
method to model strong PUFs with increased structural complexity, such as XOR PUF
with large number of XORs. To perform Sub-space modeling, we clarified that we need
access to the internal responses of the PUF. This way we could extract the smaller com-
partments of the large PUF structure (such as an arbiter chain of an XOR Arbiter PUF)
and model it separately. Doing so however, we needed to emphasize as well on the
necessity that the access to the internal responses should be eliminated to avoid giving
leverage to physical attacks in modeling the PUF with the same facilitated way. Our pri-
mary results of sub-space modeling also were promising. We could expectedly lower
the training dataset size by a considerable amount.

The methodology and the optimization techniques discussed in this chapter should
in turn give us a fast and robust PUF enrollment methodology based on ML. Nonethe-
less, for each of the optimization methods we discussed, we also observed some short-
comings which needs addressing. For instance, use the TL method, we observed for
some cases the TL could not lower the training dataset size compared to the case of
randomly initializing the model. For sub-space modeling also, we observed that as we
increase the granularity of the modeling subject, the achievable accuracy cap is low-
ered. In the last chapter of this work, we elaborate on these short-comings and propose
briefly what we can do to resolve them.
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Implementation of PUF-based Protocols

This chapter is dedicated to Protocol design. Two of our published papers [65], [66] will
be presented in this chapter. At the early stage of the chapter, we elaborate on Fuzzy Ex-
tractor based key generation protocol and the vulnerability of one of its derivatives, the
Robust Fuzzy Extractor-like method against Helper Data Manipulation attack. Then we
explain our proposed intrinsic masking countermeasure to mitigate the vulnerability.
This contribution was our first attempt in stepping into protocol design. In that, we do
not venture with machine learning. Rather we look at the security of an existing pro-
tocol, and how we can enhance it using existing materials. Then in the second phase
of the chapter, we elaborate on our novel authentication and key exchange protocol,
within which we use machine learning. There set focus not only on the security of the
protocol, but also on the possibility of integrating a predictive model of PUF on the
server side, and how we aim to handle it’s mis-prediction while at the same time taking
advantage of the full CRP access it provides.We also briefly explain the possibility we
ventured in lightly to emulate strong PUF over a weak PUF substrate. This attempt was

meant to allow us to then provide applicability of novel protocol for weak PUFs as well.

4,1 Introduction

As for all the security protocols, keeping the security and the reliability of the secret
values that are used for key generation or identifiers at maximum is the priority. To do
so, the primary protocols suggested using parity checks, which is one of the pioneering
techniques to assess the reliability of a binary code. However more complicated coding
schemes emerged over the past decades and new mechanism such as hashing also were
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added to the circle of coding techniques which ensure not only the underlying secret
values, but also their confidentiality, ensuring that the value has been inspected only
by authorized individuals.

Ensuring that a secret value is secure and reliable is one challenge to overcome, to
recover it from noisy or unwanted manipulation is another challenge. This is a nor-
mal case in situations where it is expected that remote parties who are communicat-
ing with each other and demand a confidential exchange of data, need to setup an en-
crypted channel wherein the exchanged confidential data is encrypted by a mutual key.
Of course, there are symmetric and asymmetric encryption techniques, the mutual cri-
terion in all the variants is to ensure that at all times the same secret value which has

been used for encryption, is available for decrypting the data for later use.

We know already that PUF is a noisy source. At its best characteristic, we still ex-
pect that some CRPs have a flipped response. To ensure a reliable secret value that is
originally generated and then re-generated from PUF is used, a method called Fuzzy
Extraction (FE) was introduced. Briefly explaining, FE-based methods enable recover-
ing an original value from a noisy source based on a code-offset which is a product of
a recoverable codeword and the original value. The code-offset is a publicly available
piece of information that can be queried by any party acclaiming to be authentic. This is
the initial and still a conventional recovery method that is used for PUF-based encryp-
tion algorithms. But it has its flaws, including susceptibility to helper data manipulation
attacks (HDM attacks). The way these attacks work, as we mentioned briefly earlier, is
to modify the code-offset in a way that the decoding function is forced to decode and
recover codewords that are easily guessable by the attacker. Since we set goal to ven-
ture into protocol design based on PUF, we decided first to tinker how we can secure
FE-based techniques(Especially the RFE-like methods which are a lighter version of
FE-based methods) against HDM attacks. Following that, here we discuss on a mask-
ing technique we developed to protect the RFE-like techniques against HDM attacks.
However, in this countermeasure, we did not salvage any of the potential of ML that we
discussed earlier to come to use in PUF-based encryption. It is mostly due to the fact
that the underlying PUF type in this trend of work we ventured in is a weak PUF.

Therefore, we still have the potential to realize a reliable and secure key-exchange
and/or authentication protocol that can use the potentiality of ML-based model of PUF.
To realize that we discuss here as well on a novel key exchange and authentication pro-

tocol we designed which utilizes the ML-based model of PUF and creates a repetition-
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like coding technique that is locally recoverable. As we explain later in this chapter, this
protocol is designed with the aim to completely remove the necessity of a helper data,
a point we learned from the earlier study we had on the RFE-like encryption methods
and their vulnerability against the HDM attacks.

4.2 Introducing Helper Data Masking: An Improvement
for FE-based Key Exchange Protocols

The primary part of encryption key generation is to read the power-up binary values
of memory cells. During the enrollment phase, the power-up binary values of memory
cells are captured and stored on the server. These values are in turn the source to cre-
ate encryption key values. An original key value is the base value which is hashed to
create the encryption key on the server side. Meanwhile, an offset code from the orig-
inal key value is also created as the helper data to send to PUF-enabled device. The
PUF-equipped device uses the helper data in a fuzzy extractor to mutually generate
the original key value known by the server as well. In this section, we will explain the
Robust Fuzzy Extractor-like (RFE-like) construction as discussed in [67]. RFE is com-
monly used in key generation schemes to re-generate an original secret value from a
noisy source (e.g., PUF) by using a publicly available helper data. To ensure a secure
value recovery in an RFE construction, a 2 step verification is performed. First, a hash
value generated from the recovered secret value is compared with a hash value given
as part of the helper data. These two values should be the same to succeed in the first
step. Secondly, the Hamming Distance (HD) between the recovered value and the re-
generated value is checked with a pre-defined threshold. The HD value lesser than the
threshold implies success in the second step. If any of the verification steps fail, the key
generation is considered a failure.

RFE-like construction is also a derivative of RFE construction with the difference that
the security of the RFE-like is provided with only the verification procedure through a
comparison of an original and a regenerated hash value. A detailed description of an
RFE-like construction is in the following.

Figure 4.1.(a) shows the enrollment phase of an RFE-like construction where a ver-
ification hash value # is created by hashing an SRAM-PUF response w with H1 hash
function. Helper data s is also created by XORing the SRAM-PUF response w with a
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Figure 4.1: Illustration showing the RFE-like construction (a) the registration phase, (b)
the recovery phase, and (c) the recovery phase with presence of HDMA, of the SRAM-
PUF based encryption key generation.

generated random codeword z. Noting that a True Random Number Generator (TRNG) is
used here to generate a random message which is encoded to yield a random codeword
z. The SRAM-PUF response is hashed with H2 to extract the encryption key » which is
stored on the server to be used during the encryption key recovery phase.

Figure 4.1.(b) shows the recovery phase of an RFE-like construction where helper
data s and verification hash value h are requested from the server by the PUF-enabled
device. As the device receives the queried data s and h, s is then used to recover the
generated codeword z from the noisy SRAM-PUF response w’, and then the original
SRAM-PUF response w is recovered by XORing the = with s. The recovered w is then
hashed with A1 and the regenerated hash value is compared with h that was received
from the server, to verify the originality of w. If equal, w and helper data s are hashed
with H2 to regenerate the encryption key r for final output ’. If not original, the extrac-

tor returns failed on 7.

4.2.1 Helper Data Manipulation Attack

HDM Attack refers to an attack against soft decision ECCs [68], wherein the attempt
is to reconstruct the original PUF response in a divide and conquer fashion, by pass-
ing many attempts of sending modified helper data to the PUF-enabled device. Dur-
ing each failure in response reconstruction, the adversary learns information about the
original response, leading to the reconstruction of the response. While proved in the-
ory, in practice, it will take many attempts until the adversary obtains full knowledge
of the original response. In contrast to the primary HDMA, another HDMA was also

introduced in [67] where the attempt is not the reconstruction of the original PUF re-
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sponse but instead to try to set the reconstructed PUF response to a value known by the

adversary.

In practice, often single long codes are not used as codewords, but instead, it actually
consists of smaller concatenated codewords [69]-[72]. This approach is considered for
the RFE-like construction we use in our evaluations. In this case, the first assumption
is that the adversary knows the size of target codeword, and will apply helper data
modifications repetitively on each sub-division of the helper data. Figure 4.1.c shows
the schematic of HDMA during the recovery phase. During the attack, we assume that
the adversary is eavesdropping on the public data query and responds to the query
from the server. Using helper data s and hash value / from the server, the adversary
targets a subsection of the helper data s, by applying an error vector to each sub-part
to manipulate the helper data and create adversary’s helper data, s,. The adversary also
has a reduced set of codewords C, which is a subset of the larger codeword set C' that
is used on the server during the enrollment phase to create helper data. This reduced
set C, is in fact extracted relative to the error vector the adversary is using. By choosing
a codeword X, from C,, the adversary attempts the re-generating of a PUF response
w,, which in turn is used to create a candidate adversary verification hash value h, and

adversary encryption key r,.

The adversary’s” helper data s, and adversary’s’ verification hash value h, are then
sent to PUF-enabled device, as a response to the public data query the PUF-enabled
device has passed initially. While on the PUF-enabled device, the same steps of the
recovery phase are taken, the way for the adversary to know if the re-generation of
adversary’s key value 7, is successful, is to receive the positive response of the com-
parison check of the adversary verification hash h, with the one locally generated on
PUF-enabled device.

Usually with the presence of HDMA, the failure rate of key generation will rise as
expected. Therefore, the recovery process will be to repeat, until either the number of
attempts for re-generation per query passes a pre-defined threshold, or the regeneration
of a mutual key between the adversary and the PUF-device becomes successful, leading
to the result of having »’ being equal to r,.

As the RFE-like construction is explained, one can see that the reason why HDMA
can be successful is that there is no check on the authenticity of the received helper data
s during the recovery phase. In other words, during the recovery phase, any helper data

5 can be used to recover a codeword z and following that, produce a random PUF image
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w and a verification hash value h. And as long as h is equal to a received verification
hash value h, the regenerated key ' is valid. And since the adversary can also decide on
the value of h, producing h,, he can enforce a match between a h and h, after multiple
trial and errors.

4.2.2 Helper Data Masking ith Variable Positioning

In this section, we elaborate on PUF-based helper data masking mechanism with vari-
able positioning. First, we discuss how we employ PUF as the source of mask value
generation. Then, we elaborate on the variable positioning mechanism. Later on, we
discuss the threat model which is a derivative of HDM Attack that has knowledge of
masked helper data with variable positioning. We then statistically show how the new
threat model still has a large guessing field to explore breaking the key, compared to
the conventional case of attacking helper data without masking as discussed in [67].

4.2.3 Mask Vector Generation

Commonly on a secured PUF-enabled device, using a non-volatile memory (NVM) on
the PUF-enabled device to store secret values (e.g., mask values) is not suggested. That
is due to its cost and the security issues with this type of memory. Moreover, for gener-
ating mask values on a PUF-enabled device, the values should be highly randomized
to avoid any exploitable leaks that allow adversarial third parties to recreate the mask.

Here we propose using SRAM-PUF itself as a source of mask generation. In our pro-
posed scheme, the SRAM-PUF will be the source of both the key generation, and mask
vector generation. This in turn eliminates the need for any storage component on the
board to store the mask values. Therefore, the method will be cost-efficient and physi-
cally secure. Moreover, assuming the PUF has a good characteristic, is an ideal source of
randomized value generation. That is a key criterion for key generation which makes
at first place the PUF a good candidate for encryption key generation. For the same
reason, it can be a good candidate for generating mask values with high randomness
as well. Here we define the mask vector generation as a process to read the power-up
binary values of several consecutive memory cells from an SRAM device.

Using PUF as the mask value source, one should guarantee that the generated mask
vector is highly reliable since the source is inherently noisy. This means that the recovery

of the mask value on the PUF side should yield exactly the same value used on the
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server side. To assure the reliability of mask vectors, one can consider using a fuzzy
extractor that can suitably address the noisiness of the PUF source. The helper data
based RFE-like construction in this case can also be used to assure reliability, equally to

that in Key generation.

To elaborate on helper data masking, let us define the process of masking to be the
XORing of a candidate mask vector on some sub-parts of the helper data bit stream.
We assume the mask vector itself is a bit stream as well. The masking process is issued
on the server side after the helper data is reloaded and just before answering the query
from the PUF-enabled device. To answer the query, the server sends the masked helper
data with an extended helper data for the recreation of the mask value alongside with
the rest of the public data to the PUF-enabled device for mutual key generation. On the
PUF enabled device, the masked helper data is demasked using a mask vector that is
recovered from the on-board PUF and the extended helper data.

For an adversary in the middle, we assume that there is no access to the source of the
mask value. Thus, the adversary has to undergo a guess-based procedure to discover
the mask vector value in order to demask the helper data. Recalling that the adversary
initially needs the original helper data in order to recreate the PUF response. Therefore,
one can say that masking of helper data potentially increases complexity of the HDM
Attack. This in turn can distance the adversary from the point of success in generating

a mutual key.

The general sketch of our proposed key generation protected with helper data mask-
ing is shown in Figure 4.2. The additional part is the masking of the helper data before
answering a query from a device. Here also the helper data based RFE-like construc-
tion is used for mask vector generation during the recovery phase on the PUF-Enabled
device. Following Figure 16, during the registration phase, aside to enrolling PUF re-
sponse w_1 for key generation, the PUF response w_2 as mask vector generation is also
enrolled. Correspondingly, helper data s_2 of the enrolled mask vector is also created
and also w_2 as the original mask vector, is XORed with s_1 to mask the primary helper
data and produce Ms as masked primary helper data. All of the generated information
in this phase are then stored on the server.

During the recovery phase, the public information sent to PUF-Enabled device in-
cludes 2-parts helper data, where the initiative part is the masked primary helper data
Ms used for key generation. The latter partis the secondary helper data s2 used for mask

vector recovery. During the recovery phase, the primary attempt is to recover the origi-
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Figure 4.2: Illustration showing the structure of helper data based RFE-like construction
protected with helper data masking. Here (a) is the registration phase, and (b) is the
recovery phase.

nal mask vector. Thus, secondary helper data s2 is XORed with captured PUF response
w'2 from SRAM-PUF 2, and the output is decoded to generate a recovered codeword
x2. The output is then XORed with s2 to recover w2 as the original mask vector. w2 is
then XORed with the masked primary helper data M s to demask the helper data and

produce s.

Using this construction, one can assure that reliability is equally provided for the
recovered mask vector as well as in PUF response for key generation, in addition to
primarily securing primary helper data. However, the secondary helper data is now
exposed and HDM Attack can exploit that to break the masking. However, with the
extension of adding variable positioning mechanism to the masking scheme, one can
assure that even with the exposure of the mask value helper data, the adversary has to
undergo an exploration in a large guess-field in order to guess the position of the mask
and correctly demask the helper data.
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Figure 4.3: [llustration showing the schematic of our proposed code-offset masking.

4.2.4 Masking with Variable Positioning

To mask the helper data with variable positioning, we propose applying a mask vector
which is a bit vector smaller than the helper data bit string. Additionally, we propose
to variate the mask vector’s application point with respect to the value of the mask.
Therefore, the address of the target region on the helper data string is defined by an
address vector that is defined within the mask vector itself. Figure 4.3 shows how this
positioning mechanism works. Wherein the first n bits of a k-bit mask vector, w2 is
used to define the address of the mask vector (e.g., the ith block of the primary helper
data s1 as shown in Figure 4.2). Given that the helper data and the mask vector are
bit strings, the address checker block shown in the figure can in turn be a shift register
which outputs the bit string with the same size of the helper data. In the string, the mask
vector is shifted n times from the beginning of the string to be placed in the required
address for masking. The output string then can be XORed with the helper data to
produce masked helper data.

Following this construction, the address of the target block depends on the true
value of the mask vector. In specific, it is depended on the part of the mask vector which
the address is extracted from. Moreover, to break the key from a key generation proce-
dure protected with masking with variable positioning, the HDM Attack model needs
to adapt as well. In the following we explain the HDM Attack that has knowledge of

masking with variable positioning.
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4.2.5 Vulnerability of Masking against HDM Attack

With the application of masking over helper data, the HDM Attack as proposed by
[67] will not be applicable anymore to break the key. However realistically, we can as-
sume that at some point the adversary will obtain knowledge that the helper data is
masked. We assume here the worst case in which the mechanism of helper data mask-
ing with variable positioning is known to the adversary. Thus, the adversary will try
at the same time to find a combination of guessable values for the codeword with re-
duced entropy for mask value regeneration, the position where the mask is applied on
the masked helper data, and the codewords with reduced entropy for the regeneration
of the encryption key. The key point here is that with reducing the entropy of guessable
codeword to break the mask value, the adversary is still faced with the same entropy
of guessing the position of the masked region on the helper data. In other words, since
the position of the masked region is dependent on the true value of the mask, its en-
tropy will stay the same even after modifying the helper data by the adversary. In the
following, we explain in details the threat model against masked helper data. The new
threat model of HDM Attack which is a derivative of Becker’s HDM Attack proposed
in [67] is shown in Figure 4.4. The primary phase of the new HDM Attack is to modify
the mask value. At this phase the adversary first elects an error vector ei and accord-
ingly a Xa,i form a reduced set of codewords with %k possible codewords, accordingly
Xa,1,...,Xa, k. The helper data s_2 for the mask value is then XORed with the elected
ei and Xaj. At this stage the adversary’s modified mask value wa?2 is generated. wa2 is
then passed into a mask stream generator function which takes in addition an elected
Addri which is a number indicating the position of the mask on the stream. The mask
stream is then XORed with the received masked helper data Ms. The product of the
last XOR is an elected demasked helper data dmsa which goes into phase two of modi-
fication.

As can be seen, in this model, two guessing fields in phase 1 are similar to that of
phase 2. Specifically, the guessing field for electing an error vector and a codeword.
However, an additional guessing field is also needed to elect the address of the mask.
Noting that the guessing field for the address of the mask cannot be reduced similar to
the guess field for the reduced codewords to elect a Xa_i. This is due to the fact that
the address of the masked region depends on the original value of the mask. Recalling
that we proposed to define the address space within the mask value itself (e.g., the first

n bits of the mask value). Therefore, at any case, the adversary needs to brute-force
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Figure 4.4: Illustration showing the structure of HDM Attack with a new guess field for
the address of the masked region on the helper data. Mentioned Addrk is an elected
value from the possible positions of the masked region on the masked helper data Ms.

the guessing of the address value. This means that if a user initially defines a large
address space for masking the helper data, the guessing field for the address value on
the adversary’s side would consequently be large proportionally.

We recall that the intention of masking the helper data is for further randomization
of the helper data stream. However, at some point, the mask value could result in a
neutralized product which could make the masking ineffective. Such a case can appear
if the product of the mask vector on the specified region of the helper data would yield
a product where the affected codeword(s) of that region are new codewords. This in
turn means that the baseline HDM model can break the key without going through

phase 1 as shown in Figure 4.3. In the following, we elaborate on a process to detect
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such mask values as we refer to as weak mask vectors, in order to build a more robust

masking scheme.

4.2.6 Detection of Weak Mask Vector

In a noise-free setting for the SRAM PUF source for mask vector generation, the first
milestone is the selection of mask vectors. In the specific case against HDMA, not any
arbitrary value for a mask vector is secure. Potentially against HDMA, certain values of
mask vectors would still allow HDMA the equal chance of success as in the case of no
masking, if they fit in the equation brought in (4.1). We refer to these mask vectors as

weak mask vectors.

c,ccC
Ve, € Cpydm=mdc=c; ¢ eC,

(3

(4.1)

wherein ¢; and ¢, are codeword elements of the main codeword set C' and C,, is a subset
of C that is used by an adversary.

Against such mask vectors, the adversary can yield success without attempting to
demask the helper data. Accordingly, he first queries the server, receiving a masked
helper data Ms and a verification hash value h. Then, XORs error vector e with the
masked helper data to create Msa. Noting that the adversary has no knowledge of
helper data being masked. In XORing a candidate codeword X ai with M sa, the adver-
sary then creates a predictable PUF response wa which then is passed to Hash function
H1 to produce adversary’s verification hash value ha.

On the PUF-enabled device, the pair of M sa and ha are given. Primarily, the helper
data is demasked by XORing the locally regenerated mask vector m, and adversary’s
helper data sa is resulted. Then, the helper data is XORed with captured PUF response
w' and noisy code 2’ is produced which is then passed to the decoder function to pro-
duce recovered codeword z. At this point, the mask vector will be called weak, if the
recovered codeword x, assuming to be one of the guessable codewords by the adver-
sary, is itself a combination of the mask vector and a codeword guessable by the adver-
sary. In this case, after the final XORing of helper data sa and the codeword to generate
recovered PUF response, it will result in the same wa computed on adversary’s side,

which will lead to producing the same verification ha as sent by the adversary to the

92



4.2. Introducing Helper Data Masking: An Improvement for FE-based Key Exchange Protocols

PUF-enabled device. Therefore, at the end, a mutual key will be generated between the
adversary and PUF-enabled device, despite using helper data masking to prevent it.
There in helper data masking, it would be necessary to avoid considering a potential
weak mask vector.

Going back to (4.1) to identify the weak mask vectors, the equation in fact simply
suggests that if a candidate mask vector in XORing with a predicable codeword from
C, lead to another predictable codeword from the same set, then the mask application
on Helper Data is not effective against first order HDM Attack. In this case, we address
the Becker’s baseline HDM Attack as the first order HDM Attack.

However, in order to utilize equation (4.1) to identify weak mask vectors, one would
require prior knowledge of predictable codewords, which itself requires knowing the
error vectors that are the most effective on the decoder function on-board according to
Becker’s suggestion in [67]. Alternatively, a relaxed version of this equation can coexist
which is brought in (4.2). This alternative version suggests that if a candidate mask
vector in XORing with a valid codeword from set C' is equal to another valid codeword
from the same set, then the mask vector is not effective against first order HDMA.

Ve, e C,dm=>me e =c¢; ¢, el (4.2)
wherein ¢; and ¢ are codeword elements of the main codeword set C'. Using this alter-

native equation however, may come with the cost of reducing the chance of graduating
a mask vector.

To experimentally assess the rate of mask vector rejection in our case, and to see how
many candidate mask vectors are rejected according to (4.1), we took an statistical ana-
lyis over each of our SRAM-PUF dataset, considering each one at a time being a source
of mask vector generation. Results of this statistical check are brought in Table 4.1. In
comparison, we also brought the statistical analysis of mask vector rejection according
to the relaxed equation (4.2), in Table 4.2.
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Table 4.1: Number of rejected mask vectors out of 1600 per SRAM according to (4.1).

SRAM1 | SRAM2 | SRAM3 | SRAM4 | SRAM5
18 19 15 19 19

SRAM6 | SRAM7 | SRAMS | SRAM9 | SRAM10
14 20 11 22 6

Table 4.2: Number of rejected mask vectors out of 1600 per SRAM according to (4.2).

SRAM1 | SRAM2 | SRAM3 | SRAM4 | SRAM5
608 608 480 608 608

SRAMSG6 | SRAM7 | SRAMS | SRAM9 | SRAM10
448 640 384 704 192

4.3 Theoretical Analysis of masking with variable posi-
tioning

In theory, one can measure the min-entropy of the PUF responses w, and w, used for
secret key generation and mask vector generation, respectively. Let us first discuss the
measurement of uncertainty for an adversary w.r.t to correctly guessing the address of
a given masked block within the masked primary helper data. We note that our formu-
lation of the min-entropy is considered in a noise-free case.

Let us first denote the probability of masking a sub-division of a given helper data
s as P(s) with a given mask vector w,. We can then define the entropy of the address to
a masked sub-division for a given mask vector, H(Addr), as shown in (4.3).

1

H(Addr) = iP(s)i X (loggw) (4.3)

where z is the number of sub-divisions in the given helper data s that can be addressed

for masking. Noting that in this formulation, we assume that the starting point of the

address in the given mask vector w; is already known by the adversary.
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Now we can consider a specification for P(s), by defining the total number of sub-
divisions in a given helper data s as x = £ where k is the size of a given mask vector and
L is the size of the helper data vector. If we consider that P(s) is equally distributed for all
sub-divisions, we can then define the entropy of the address to a masked sub-division

for a given mask vector as in (4.4).
k
H(Addr) = —log, 7 (4.4)

we can also develop (4.4) for cases in which two or more mask vectors are considered.
Let us denote in masking with variable positioning, using m mask vectors, the length
of the ith mask vector by k;, and the length of the helper data vector by [. Noting that in
this setting, we consider each mask vector out of the m blocks, having a variable size,
thus denoting the length of the ith mask vector as &; and not k. We would then have the
entropy of masking address as in (4.5):

H(Addr) = —log, ﬁ (4.5)

ki
l
we can now use (4.5) in defining the min-entropy of the mask vector w, and the mask-
ing address. We would define it as H,(ws, Addr) and refer to it as the min-entropy of

masking.

Hoo(ws, Addr) = —(logy [[ Max(P,_f;) + log2

=1

ki
L7

||:]3

) (4.6)

where Maz(P,._pj;) is the maximum probability of recovering one of the predictable

codewords for the ith vector of the m mask vectors during the recovery phase.

Using equation (4.6) we can now compute the min-entropy of masking for the ex-
perimental cases we discussed in the previous section. Accordingly, the min-entropy
for which we used 1 mask vector to mask a 256-bit helper data would increase by 5.
This comprises the min-entropy of mask vector which is 1. Recalling that the maximum
probability after error vector is applied to a [16,5,8] Reed Muller code (w.r.t the no-
tation [n, k, t], where n is the size of the codeword, k is the size of the binary random
number and ¢ is the order of the code) with majority logic vote decoder is 3, and the
min-entropy of the masking address is 4. Likewise for 2 mask vectors and 4 mask vec-
tors to mask a 256-bit primary helper data, the min-entropy is increased by 10 and 20,
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respectively.
We can also define the total min-entropy, which comprises the sum of the min-

entropy of PUF response w; and min-entropy of masking. We would define itas H (wy, wo, Addr):

Hoo(wy, wq, Addr) = —(log, ﬁ Max(P._a;)+
” . b (47)
log, 1_[1 Maz(P,_3;) + log, H 7
where Max(P,_a;) is the maximum probability of recovering one of the predictable
codewords for the i block of the n blocks of the primary SRAM-PUF response (i.e.,
the source of encryption key generation), during the recovery phase.

Noting that this specification of min-entropy is not bound to the limits of the primary
specifications of our helper data masking with variable positioning scheme. One for
instance can expand the address space of adaptive masking, but should however mind
that it will then require more bits of the mask vector to define the address. In a noise-
free setting, for S number of available maskable regions on primary helper data, the

min-entropy of the HDMA against the key generation scheme would be:

Hoo(wy, we, Addr) = —(log, ﬁ Maz(Pr_a;)+
" . . (48)
log, 1_[1 Max(Pr_p;) + log, <§>m)

To theoretically analyze the efficiency of our helper data masking, we compare 3
approaches in strengthening the security of an FE based key generation scheme. At one
approach, the w; string is extended without considering to mask the helper data. At an-
other approach, the w, string which is the mask value, is extended and the positioning
step is defined to be bit-wise. Therefore, the number of possible positions of the mask
over the helper data string for w; is n —m + 1, where n is the size of w; and and m is the
size of w,y. The other approach here is to consider for each added extension block for

w,, the positioning step to be the size of the added block. Therefore, the total number

of possible positions of the mask over helper data s would be M.
size of (wy)

Given equation (4.8), we can demonstrate the increase in the min entropy of beck-
ers HDM Attack against a [16, 5, 8] Reed Muller code and a majority logic vote (MLV)

decoder. Initially when encoding, the number of possible codewords are 32 given the
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Figure 4.5: Illustrations showing (a) Min entropy of guessing in Becker’s HDM Attack
against [16,5,8] Reed Muller Code and Majority Logic Vote decoder. (b) Probability of
success of Becker’s HDM Attack against [16,5,8] Reed Muller Code and Majority Logic
Vote decoder.

specification above. However, as discussed in [67], HDM Attack can reduce it to 2 pos-
sible codewords after modifying the helepr data.

We consider the initial size of the key to be 128 bits. Figure 4.5a shows the increase
in the min entropy for the three approaches with respect to extending the helper data
string. It is apparent that the " FE + masked Helper Data” with 1 bit positioning step
size has the lead compared to the other two. The * FE + masked Helper data” with 16-
bits positioning step also has a significant lead compared to the baseline FEs. Recalling
that in baseline FE we just increase the size of the w; sting which is the source value for
generating the encryption key.

We can also assess the probability of success of HDM Attack. The probability of
success can also be defined as in (4.5b).

Pr(wy, wa, Addr) = [[ Max(Pr_oy)x

i=1

ﬁ Max(Pr_p;) x ﬁ

=1

. (4.9)
1l

where Maz(P,_o;) is the maximum probability of recovering one of the predictable
codewords for the ith block of the n blocks of the primary SRAM-PUF response. And
Max(P,_f;) is the maximum probability of recovering one of the predictable codewords
for the ith vector of the m mask vectors during the recovery phase. In Figure 4.5b, we
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Table 4.3: Min entropy of various codes and decoding methods. The two different codes
mentioned here are Hard-in Soft-out.

Min—entropy Min—entropy Min—eﬁttr,(?py Min-elritlr)(_)py Min—eﬁttr,(?py
Code Decoder Reliability | (per codeword) | (per 175 bits) 1(1;elr ak 1tsl)( (pelr ak 1tsl)( (Pf N 1 1ts)k
No Masking No Masking .OC ma.s 1 b.oc ma.s 2b .OC S m?s
5-bit step size | 1-bit step size | 1-bit step size
SDML 100% 1 35 40.09 42.38 49.66
Soft-decision [73] | 95% 4 138.8 143.89 146.18 153.46
SDML 100% 1 35 40.09 42.38 49.66
[7,1,7] hard-decision [73] | 95% 1.5 51.8 56.89 59.18 66.46
Repetit/io’n Code Without Attack 5 175 180.09 182.38 189.66
[1658] GMC [74], [75] | 100% 0 0 5.09 7.38 14.66
Ree d-Ml;H’EI‘ Code ! ‘ 95% 24 82 87.09 89.38 96.66
Without Attack 5 175 180.09 182.38 189.66
Majority logic[67] [ 100% 0.2 6.8 11.89 14.18 21.46
‘ 85% 0.2 11 16.09 18.38 25.66
Without Attack 5 175 180.09 182.38 189.66
[8,1,8] - 100% 0 0 3.32 6.77 132
Repetition Code | S0ft Decision [76] 5557 | 149 1822 51.67 58.1
[24,12,8] Golay Code Without Attack 12 132 135.32 138.77 145.2

can observe the decreasing probability of success for the HDM Attack with respect to
extending the helper data string. It can be seen that overall the * FE + masked Helper
Data” with 1 bit positioning step size is the strongest countermeasure. Nonetheless, ’
FE 4+ masked Helper Data” with 16 bits positioning step size has a similar characteris-
tic. Nonetheless, both masking approaches seem to be considerably stronger compared
to the baseline FE. This suggests ultimately that masking helper data using PUF data
seem to be a reliable and strong countermeasure. Thus at the end that considering to
use a part of w; to construct a w, mask value and mask the helper data, can lead to a
stronger FE based key generation scheme. In the following, we demonstrate our evalu-
ation of HDM Attack against some real SRAM PUF data we collected from an in-house
developed SRAM device.

4.3.1 Evaluation on various Coding and Decoding methods

Reed Muller (RM) codes have been used in abundance for error correction codes in
several applications where biometric data is used to generate secret values. Some of
the use cases of RM codes are mentioned in [73]-[77]. An evaluation of HDM Attack
against RM codes is presented by Becker in [67] where the the codes are used to recover
original secret values generated from PUF source. This work shows how the new HDM
Attack can decrease the min-entropy of the recovering codeword by injecting an error
vector e into the decoding process. We restate his analysis of HDM Attack over various
codes and decoding methods in TABLE.4.3 and demonstrate as well the effect of using

our masking countermeasure on the entropy of the recovering codeword. Here the re-
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sults show that using our helper data masking masking mechanism overall increases
the entropy of the codeword. One can observe here that the entropy of codeword after
using HDM Attack on decoders such as on SDML soft-decision, where the reliability
is not 100%, is considerably high. Therefore the use-case of our masking mechanism,

although it adds to the overall entropy, may not be justified for such cases.

On the other hand, the increase in entropy is relatively high using our helper data
masking mechanism for cases such as Soft Decision Hackett at 100% reliability, Major-
ity Decoding at both 100% and 85% reliability and GMC decoder at 100% reliability. We
can assume here that masking helper data can in turn be accounted as an effective coun-
termeasure against HDM Attack where the overall entropy of the codes are low. Given
that so far we only considered maximum 2 block of the entire bits to be the mask values.
In turn, if the overall overhead of computing large number of masking is justified (i.e.,
considering half of the bits as the stem value for key generation, and the other half for
masking), we can count on the linear addition they provide on the overall entropy of
the codewords against HDM Attacks.

4.4 Experimental Setup

4.4.1 Description of SRAM PUF device

The SRAM-PUF device we developed is an in-house device with a software package
allowing us to interact with and control the device. Figure 4.6 shows the device hous-
ing the micro-controller with our SRAM-PUEF. Some of the functions implemented as
part of our SRAM-PUF include a function for reading the real time PUF response af-
ter refreshing the SRAM every 2 seconds, and a function for enrolling the PUF, where
it performs 100 read-out from the PUF source in the SRAM device and stores the re-

sponses.

Our SRAM-PUF follows the addressable PUF generator (APG) technique, which
is described in [78]. This allows us to extract unique responses from the PUF-device.
The APG mechanism randomly selects memory cells to feed the PUF. For each memory
address queried to the PUF device, there will be several response values coming from
the memory cells. After an arbitrary amount of acquisition, the memory addresses and

the captured responses are stored into a PUF dataset.
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Figure 4.6: Our in-house developed SRAM device.

4.4.2 PUF Data Description

We employed 10 SRAM-PUF devices for evaluation. For a given SRAM-PUF device,
at the same memory address, we read the responses from each memory address 100
times. Noting that each memory address yields a 256-bit binary vector as the response.
Ideally, the captured 100 response vectors should be exactly the same since they belong
to the same address. However, due to the process variation between each response ac-
quisition, there will be a chance that each cell’s binary value would flip. Therefore, the
PUF response vectors in-between different acquisitions have dissimilarities in some cell
values. This implies the inherent physical characteristic of a real PUF.

Here we assess {16, 32, ...,128, and 256}-bit of PUF responses. Noting a PUF re-
sponse smaller than 256-bit, is a sub part of the 256-bit PUF response we captured ini-
tially from SRAM-PUF instances. For instance, a 16-bit PUF response is the first block
of the captured 256-bit PUF response. Similarly, a 32-bit PUF response is the first two
blocks of the captured 256-bit PUF response and so on.

In addition, we also measured the frequency of bit-flipping within each subset, to
identify the unstable cells corresponding to each PUF images. Following Table 4.4 at
the end of the paper, it shows the percentage of cells with bit flipping per block of 16-
bits within the entire 256-bits of a PUF image for a given memory address, per SRAM.
Nothing that this statistical analysis is performed on the 100 captured PUF images from

each SRAM for a given memroy address.
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Table 4.4: Percentage of unstable cells, per block of 16-bits, in a PUF response size of 256
bits per SRAM

SRAM1 SRAM2 SRAM3 SRAM4 SRAMS5 SRAM6 SRAM?7 SRAMS SRAMY9 SRAMI10
Blockl  18.75% 12.50% 18.75% 12.50% 18.75% 12.50% 6.25% 12.50% 12.50%  12.50%
Block2  18.75%  6.25% 18.75%  25.00% 18.75% 12.50% 25.00% 6.25% 18.75%  18.75%
Block3  12.50% 18.75%  6.25% 6.25% 12.50% 12.50% 37.50% 37.50% 6.25%  6.25%
Block4 18.75% 12.50% 18.75% 18.75% 25.00% 18.75% 31.25% 6.25% 18.75%  18.75%
Block5 12.50% 25.00% 12.50% 18.75% 12.50% 0% 31.25% 25.00% 6.25%  6.25%
Block6 0% 18.75%  6.25% 6.25%  31.25% 12.50% 0% 0% 6.25%  6.25%
Block7 12.50% 18.75% 25.00% 12.50% 18.75% 25.00% 6.25%  25.00% 25.00% 25.00%
Block8 18.75% 18.75%  6.25% 18.75%  25.00%  6.25% 18.75% 37.50% 6.25%  6.25%
Block9  25.00% 6.25% 18.75%  25.00% 25.00% 18.75% 31.25% 25.00% 6.25%  6.25%

Block10 0% 12.50% 12.50% 18.75% 18.75% 0% 6.25% 12.50% 12.50% 12.50%
Block1l 25.00% 12.50% 31.25% 37.50% 18.75% 25.00% 12.50% 6.25% 12.50%  12.50%
Block12 12.50% 25.00% 12.50% 18.75% 12.50% 18.75% 12.50% 12.50% 0% 0%
Block13 0% 12.50% 18.75% 18.75% 18.75%  6.25% 18.75%  25.00% 0% 0%

Block14 31.25% 25.00% 18.75%  6.25% 6.25% 12.50% 12.50% 12.50% 6.25%  6.25%
Blockl5 25.00% 18.75%  6.25% 18.75% 18.75% 18.75% 18.75% 31.25% 12.50% 12.50%
Blockl6 18.75% 18.75% 18.75% 18.75% 18.75% 37.50% 12.50% 25.00% 0% 0%

4.5 Experimental results

In this section, the results of performing HDMA against our SRAM-PUF instances datasets
will be discussed. Figure 4.7 shows the best case, the worst case and the average success-
rate of HDMA, respectively. We clarify first that the difference in the attack success-rate
between the best case and the worst case in plots (a) and (b) in Figure 4.7 is due to the
difference in the value of the codeword used per SRAM-PUF dataset per given PUF re-
sponse. Recalling that the possible number of codewords are 32, due to using a 5-bit bi-
nary random number for encoding. We can see that HDM Attack against the employed
Reed Muller code and the majority logic vote decoder has some significant chance of
success if the PUF response is small. Although we can see that at 128-bits size, there
still is a chance of success, even in the best case scenario. At 256-bits obviously due to
the doubled entropy of the guess field, no success was observed in the HDM Attack at
100 attempts per device.

We now observe the success-rate of HDM Attack against FE-based key encryption
with helper data masking with variable positioning. To define one source for key value
and one for mask value generation, we define here 5 virtual devices wherein each device
employs 2 SRAMSs. Thus, each virtual device is defined to comprise 2 SRAM datasets
according to Table 4.5. Accordingly, there is a primary SRAM dataset that is the source
of key generation and the secondary SRAM dataset for mask vector generation. We note

also that we employed the variable positioning step size of 16-bits which is equal to the
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Figure 4.7: Success-rate of Becker’'s HDMA out of 100 attempts on 10 different SRAMs

Table 4.5: Definition of virtual devices.

. . SRAM for SRAM for mask
Virtual device ) ;
key Generation | vector generation

Vdevicel SRAM1 SRAM?2

Vdevice2 SRAM3 SRAM4

Vdevice3 SRAM5 SRAM6

Vdevice4 SRAM7 SRAMS

Vdevice5 SRAM9 SRAM10

size of a codeword in this work.

This experiment is performed in three settings wherein each setting, different sizes
of mask vector is considered. Figure 4.8 shows the results of this experiment in settings
of using 1-block mask vector, 2-block mask vector, and 4-block mask vector. The plots
shown in the figure represent the decreasing success-rate of second order HDM Attack
against 5 virtual devices as the size of PUF response for key generation increases. Not-
ing that for the assessment using 1-block mask vector, the datasets of PUF responses
for key generation are augmented from 100 responses per dataset to 10000 responses.
This augmentation is performed by simply repeating each response 100 times. For the
assessment using 2-block mask vector and 4-block mask vector also, the datasets are
augmented to 100000 responses per dataset using the same augmentation method. Re-
calling also that the responses per dataset correspond to one address of the SRAM-PUF
and the differentiation between them is due to the instability of the SRAM-PUF.

First, we point out to the case where the success-rate of the attack against a PUF
response size of 16 bits is still high regardless of the masking. We expect it since for a 16
bits of helper data, there is only one addressable block to mask. Therefore, there is no

entropy in the guessing field for the address space on the adversary’s side. Other than
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Figure 4.8: Success-rate of HDM Attack with a) 10000 attempts. b) 100000 attempts. c)
100000 attempts.

that, we can see that using masking with variable positioning significantly decreases
the success-rate of second order HDM Attack while the PUF response is larger than the
mask block. Unlike the key generation without masking, the success-rate drops dras-
tically at even smaller w; sizes such as 32-bits and 64-bits while we employ more than
1 mask vector. This is similar to the demonstration of probability of success as we dis-
cussed in Section IV. Noting in the case of the settings using 2-block and 4-block mask
vector, the success-rate has been measured from 100000 attempts of second order and
fourth order HDMA, of which the results are shown in Figure 4.8(b) and Figure 4.8(c),
respectively.

4.6 Related Works and Comparison

Our proposed helper data masking is not the first work to provide a countermeasure
against HDM attacks. Several countermeasures have already been proposed in [79]-
[81]. Here we discuss some of the existing countermeasures and compare them quali-
tatively with our method.

The work of Delvaux et al. in [80] explains four schemes that secure a Helper Data
Algorithm (HDA)-based key generation process. The primary HDM attack detection
method is originally proposed in [82]. The method suggests to provide a hash value us-
ing collectively the helper data and the key value on the server side, and publicize it for
devices to query during key generation. During key generation, the device queries the
server for the hash value and compares it with a locally generated version of the hash. If
equal, the generated key is considered valid and the key can be used for encryption and

decryption of the exchanged message. We have shown a similar key generation struc-
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ture as shown in Figure 4.1 which is similar to the RFE-like process discussed in [67].
The problem with this scheme is that an HDM attacker can impersonate the server and
provide the hash value itself, which is based on the manipulated helper data and the
guessed key value. Therefore the proposed countermeasure can be easily compromised.
Considering our countermeasure however, we showed that the demasking process can-
not be compromised by any modification since the position of the mask over the helper

data vector is based on the true value of the mask.

Similar to [82], another HDM detection scheme has been proposed [83], in which
only the key value is used to generate the hash. However, the same security issue as
we explained above can be discussed here. The HDM detection can be biased just by
the attacker impersonating the server and providing its own hash value for key validity
check on the PUF-enabled device.

Another solution has been discussed in [80] where it is suggested to program the
public key and the helper data all into a one-time programmable NVM memory (EEP-
ROM) during the enrollment phase of the PUF-enabled device [18]. During the key re-
generation then, the IC housing or working with a PUF component for key generation,
queries the NVM memory to retrieve the helper data for key generation. This solution
ultimately negates possibility of HDM attack as we discussed in this work, since there
is no out of device communication with a server system to query for helper data. One
can assume however that device can undergo some physical attacks using side channel
analysis methods to read the information on the NVM device, and also using fault in-
jection attacks to change some bits in order to impose helper data manipulation. These
attacks however need precise tools to perform such modifications from outside of the
device. This means that the attackers are enforced to employ some expensive meth-
ods. Nonetheless, the countermeasure itself is an expensive implementation, since it
requires an external device to store the public key and the helper data. Moreover, using
a memory component accompanying a PUF is fundamentally questioning the employ-
ment of PUF itself. Since the existence of PUF is set to replace conventional methods
which save the secret values on device memories in order to provide protection against
physical attacks.

A countermeasure against HDM attack is proposed by Hiller et al. in [84]and dis-
cussed also in [80]. The problem discussed in their work is the practice of HDM attacks
that focus on single codeword modification by observing several key generation opera-

tion outputs. The authors then propose a scheme where a hash value of the helper data
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is XORed with the recovered PUF response to generate the key. This way, the authors
ensure that at list 50% of the key values are changed and not a single one, which in turn
disturbs the entire attack mechanism. The issue with this countermeasure is that it is
targeted for attack methods which aim to recover the original key. While there exists
other HDM attacks such as the one discussed by Becker in [67], for which this coun-
termeasure is equally vulnerable to that of the RFE-like method we discussed in this
work.

As we explained earlier, the mechanism of robust fuzzy extractors (RFE) can also
provide some level of security. This has been discussed already in [67] and [82]. In that
mechanism, despite the equality check between a localy generated and a publicly re-
ceived hash value on the PUF device, the hamming distance between the recovered PUF
response and the raw extracted PUF response is measured as well. If the the distance is
larger than a threshold, then the key generation fails. This suggests that only recovered
codes with certain Hamming distance from the original ones are valid when recovered.
However, such mechanism can also discard regenerated keys which have not been af-
tected by an HDM attack. Simply due to PUF instability, there could be more noisy bits
than what the RFE’s Hamming distance threshold allows for a valid recovered code-
word. Therefore, this method, although providing security against HDM attacks, also
imposes extensive sensitivity to PUF instability.

Gao et al. in [79] proposes a PUF-based key generation technique and assures its
security using BCH codes and syndrome decoding. Using BCH codes and syndrome
decoding has good level of security against HDM Attacks as discussed in [67 ]. However,
itis also discussed that for [n,k,2¢t+1] BCH codes with small %, it is not as efficient to use
syndrome decoding compared to other simpler decoders such as maximum likelihood

decoding.

Merli et al. in [81] proposes a codeword masking scheme against helper data ma-
nipulation attacks based differential power analysis (DPA). The DPA HDM attack in
their work aims to read the processed output of an inner decoder which decodes the
noisy codeword that is the product of the XOR of the noisy PUF response and the re-
ceived helper data. The codeword masking countermeasure in turn is implemented in
a way to obfuscate the output of the inner code, so that DPA is not capable of reading
the raw output of the first stage decoder. In order to mask the inner code, a random
locally generated mask value is first encoded and the encoded mask value is XORed
with the helper data, which is then XORed with the noisy PUF response. The output

105



Part , Chapter 4 — Implementation of PUF-based Protocols

is then decoded and then demasked using the raw mask value to yield the secret key
value. The countermeasure proposed here is the closest to our work. The similarity is
that by masking the inner code using a random value, the DPA cannot find the corre-
lation between the captured power traces. Theoretically, when masking is applied to
secure an implementation, the DPA will require considerably more traces in order to
bypass the masking and find the correlation to extract the target value. This is similar
to increasing the guessing entropy of the HDM attack as we discussed in this work. The
increased entropy in turn requires more observations on the data transmitting channel

to discover the correct guess for the location of the mask on the helper data.

Most of the countermeasures discussed here were methodical and aimed at pre-
venting the HDM attack using hardware or algorithmic solutions. Few, such as [81]
suggested methods focus on the theoretical aspect of HDM attack and provide solu-
tions that make the attacks more difficult to succeed. Our method also sits in this class
of countermeasures. Since we also try in general to increase the guess entropy of the
attacker using the proposed helper data masking method.

As was apparent however, in this countermeasure we did not practice or incorporate
the potentiality of ML solutions. In the next chapter however, our goal is to discuss
that and propose a novel authentication and key exchange protocol that utilizes ML
model of PUF. There we elaborate on a repetition-like coding technique that is locally
recoverable using the two identical sources of the CRPs, one is the hardware PUF and
the other is the predictive model of the PUF which we make during the enrollment of
the PUF on the server side. We show that we can make such protocol ultimately secure
by exchanging only challenge values. Such communication schematic as we elaborate
on can be considered inherently secure against man in the middle attacks. Then we also
show that the protocol can be adaptive towards different level of noisiness and keep the
success-rate of recovering the secret value at 1.0. In the last chapter also, we elaborate on
a technique to lower the size of exchanged data and also obfuscate the challenge values
as well as a preventive security solution against future attacks that may be interested in

the publicly exchanged challenge values as well.
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4.7 Designing a Novel Secure Key Exchange Technique
using ML and Strong PUF

In this work, we propose a new encoding and decoding method for strong PUF-based
key generation and exchange, which is capable of recovering an original key using no
public helper data information. Here we propose to use a strong PUF with increased
complexity, such as XOR Arbiter PUF with an XOR size of larger than 3. We also pro-
pose using PUF with input size larger than 64 bits. This increases the size of the CRP
space and will enable generating redundant codes locally which in turn increases the
probability of successfully exchanging the encryption keys only between the trusted
parties. In order to provide the capability of generating a large number of random-
ized encryption keys, we propose using a machine learning-based equivalent model
of the PUF on a Trusted Third Party (TTP) verifying server. The ML model of PUF in
turn gives access to its full CRP space with some negligible error probability. This will
enable us to generate one-time usable key values which is a secure mechanism against
replay attacks. Here we show how our method increases the probability of success in ex-
changing encryption keys using challenge packs that generate mutual response values,
a mechanism similar to repetition coding. In such mechanism only, a series of random-
ized challenge vectors are transmitted that have no correlation to the response values
that are the source for generating the encryption keys. Our method can be used for
one-to-one and one-to-many (multi-party) communications. Our contribution is listed

as below:

A repetition code-like error correction method using the PUF and an ML model
of the PUF.

A one-to-one and one-to-many key exchange protocol with locally correctable
codes.

A novel authentication technique between the TTP and the PUF-enabled device.

An evaluation of our proposed method using simulated data of various XOR Ar-
biter PUF model structures with different levels of noisy CRPs.
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Figure 4.9: lllustration of the enrollment procedure.
4.7.1 Proposed Method

The main goal of our proposed method is to provide a medium for a secure encryption
key generation and exchange between two or more trusted parties. We define three
phases that constitute our method, 1) The enrollment phase, 2) The challenge-based
synchronization phase, and 3) The authentication and key generation and exchange
phase.

The process of enrolling a PUF-enabled device to a TTP server is illustrated in Fig-
ure 4.9. Only during the enrollment phase, we assume that the communication channel
between the TTP server and the device is private and only the authorized parties can
audit the channel. We also assume that the access to the PUF is facilitated initially with
E-Fuses which are later to be burned/disabled after the device is successfully enrolled.
In the enrollment phase, the TTP server first invokes the device to prepare it for the
CRP read-out. The TTP server then generates n number of randomized challenge vec-
tors (e.g., a binary vector of size k which is equal to the number of stages in the corre-
sponding PUF) to create a challenge set C', and sends C' to the device. The PUF-enabled
device then acquires n number of responses into a set R and sends the CRP set back to
the server. The TTP server uses the CRP set to train a predictive model M with mini-
mum prediction accuracy € > t. After successfully training the model, the TTP server
saves the model with the I D of the enrolling device and sends feedback to the device

to burn/disable the E-Fuses.

The challenge-based synchronization phase is shown in Figure 4.10. This is the ini-
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Figure 4.10: Illustration of the challenge -based synchronization.

tial phase when the PUF-enabled device demands a new encryption key. Thus, at first,
the device queries the TTP server by exchanging its Device_ID. Once received by the
TTP server, the corresponding predictive model of the device’s PUF is loaded. Then
the server generates a random l-bit binary vector w using a random number generator
(RNG). The generated random value w and the predictive model M are given to a CRP

matchmaking algorithm.

The CRP matchmaking algorithm as shown in Algorithm (1) is responsible for gen-
erating a set of randomized challenge vectors we refer to asC'_pack, which includes [
number of (i subsets comprising m number of challenges that produce the same re-
sponse. The model M here gives the response to any given challenge vector cj. The CRP
matchmaking in turn acts similarly as a repetition code. While the output is not directly
the codeword, it is instead the challenge vectors that will lead to the binary response
values which then constitute the codeword. This will then allow to securely enable re-
generation of the secret value on the device side. One can also assume the PUF and
the model M as the two ends of a noisy channel where the repetition codeword is be-
ing transferred through, as if the predictive model is the channel source and the actual
PUF on the device side is the channel destination, and the PUF instability and model

mis-prediction error are the sources of noise for the channel.
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The generated C_pack set is then sent to the device. On the device side, C'_pack
is passed to the PUF to produce the R_pack set, which comprises | subsets, and each
subset comprises m binary response values. Once the R_pack is extracted, each of the
subsets is given to a majority voter to vote for the most dominant binary value. The
output of the voter for the entire R_pack is w’ which comprises [ binary values. Here it
is expected that w' is equal to w, which is the base condition to issue a successful device

authentication and encryption key exchange.

Algorithm 1 CRP matchmaking algorithm

Require: w{b,|ly ={0,1,...,1},b, € {0,1}}
Require: M{O, e >t}
L1 > size of w
M+ m > repetition length
while i < L do
while j < M do
ch < randomly generate challenge vector
rp < M(ch)
if rp = w(i] then
if ch ¢ C_pack then
J<J+1
C_pack[i] <= ch > Append ch to C_packl
end if
end if
end while
11+ 1
end while
return C'_pack

We assume that a request for synchronization initiates a new session. Once com-
pleted, the communicating parties can initiate device authentication and key exchange.
Figure 4.11 shows the process of device authentication and key exchange between the
TTP server and the PUF-enabled device. For device authentication, the TTP server first
initiates the request to the PUF-enabled device. The request triggers the device to create
a hash value hl’ using its own Device_I D and the generated w’ from the synchroniza-
tion phase. TTP server also generates a hash value i1 using the generated secret value w
from the synchronization phase and the communicating device’s Device_I D. The PUF-
enabled device then sends h1’ to TTP server. On TTP server, if h1 and h1’ are equal, it is

assumed the communicating device is authentic and the TTP server sends the authenti-
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Figure 4.11: [llustration showing the authentication and key generation and exchange
procedure part of our proposed method.

cation successful acknowledgement to the device, meaning that it is known to both par-
ties that their generation w and w' are equal. Both parties then move to the creation of
the encryption key. The TTP server and the device create the Key value which is a hash
value generated using the w and w’, respectively. While no information is exchanged
which correlate to the secret value w and w’, the entire process from synchronization
to the key generation and exchange phase assures that both values are equal, using the

repetition code-like mechanism we proposed.

4.7.2 Related Works

The repetition code-like error correction and the utilization of a predictive model of PUF
for authentication and key exchange are of the core novelties of our work. Nonetheless
there are several works that practice similar mechanisms for their PUF based key gen-
eration/exchange and authentication. Below we discuss few of these works.

Slender PUF is an authentication protocol proposed by Majzoobi et al. in [48]. In this
protocol, the authors propose a mechanism of CRP exchange where the CRP on the

server side is generated from a pseudo random number generator (PRNG) coupled
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with a compact model of the PUF that enables the user to generate CRPs randomly
with no restriction in the number of CRPs. Slender PUF protocol is one of the primary
attempts that suggest leveraging the modeling of PUF with machine learning to build a
robust authentication mechanism. However, in their protocol, they also simply disclose
the CRPs on public communication channels during authentication operations, which
ultimately renders the mechanism prone to model-building attacks.

Idriss et al. proposed a lightweight highly secure PUF based device authentication
method in [85]. This method is one of the few authentication methods that is based on
only exchanging challenge values and disclose no response value during an authenti-
cation operation. Here the primary step is that the device sends it’s ID to the server and
later sends a C_packcili = 1,2, ..., to the server. Given that for the C_pack there is a des-
ignated R_packrili = 1,2, ...,l where ri = PUF(ci). The server then receives the C_pack
and generates a C_pack’(ci, 1,¢i,2)|i = 1,2, ...,l where PUF(ci, 1) XORPUF(ci,2) = ri,
and PU F represents the lookup table of the stored CRPs of the corresponding PUF on
the server. This method ultimately secures the authentication against model building
attacks since no response value is exposed to the public. Nonetheless, since they pro-
pose using a CRP lookup table on the server side rather than a model of the PUF, then
the protocol will ultimately face a limit in terms of the number of CRPs it can use.

Quadir et al. present a novel key generation mechanism based on strong PUF in
[50]. In their mechanism they use a predictive model of the PUF on the server side.
This protocol also proposes exchanging only challenge values. Thus, once a C_pack is
exchanged between the server and the device, both are able to generate an R_pack and
R_pack’ respectively, which have logical differences due to PUF instability and PUF
model prediction error. The R_pack and R_pack’ sets are source to generating the en-
cryption key, however their differences need to be corrected so that both response sets
are expected equal. To do so, Quadir et al. proposes using helper data-based fuzzy ex-
tractors. While the helper data-based fuzzy extractor can guarantee the robustness of
the encryption key, it is however prone to helper data manipulation attacks as we ex-
plained earlier in this paper.

4.7.3 Evaluation of Reliablity

To evaluate the reliability of our method, we used a Python-based Arbiter PUF sim-
ulator to generate 10 instances of each 4,5,6, and 7 XOR arbiter PUF variations with a

64-bit challenge size. The simulator code is developed by Ruhrmair et al. and presented
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Parameter Value
Optimization function Adam

Loss function BCEloss
Learning rate 0.001, 0.0001
Weight initializer Kaiming Uniform
Bias initializer Unifrom
Maximum epoch 2000

Maximum re-training attempts 10

for Transfer Learning disabled

Maximum re-training attempts >

for Transfer Learning enabled

Training batch size = Training set size
Optimal Test Accuracy 90%

Table 4.6: Training specifications & Hyper-parameters

initially in [26] and is available online in [51]. To represent a realistic characteristic, we
added artificial bit flipping characteristic to the captured CRP datasets from the simu-
lated PUF instances. Overall, we considered different noise levels, including 0%, 2%, 5%
and 10% of CRP population for each dataset to be affected by bit flipping. We assessed
the modeling of the PUF instances, and the performance of our proposed method sep-

arately for each noise level.

Using Pytorch, we created the corresponding predictive models of the PUF instances
using a novel Multi-Layer Perceptron (MLP) proposed by Mursi et al. in [6]. We im-
plemented the training procedure as proposed in [86] and we used a transfer learning
technique as proposed in [87] as well to reduce the number of CRPs required for train-
ing an accurate model. The MLP model structure and the training parameters are given
in Table 4.6.

We measured the accuracy of the models we trained for each PUF instance. Ideally
we consider a model successfully trained if it has prediction accuracy above 80%. Ta-
ble 4.7 shows the overall results of the models we provided from the simulated PUF
instances.

To measure the performance of our key exchange method, we implemented the en-
rollment phase, the challenge-based synchronization phase and the key generation and
exchange phase on python, by developing the class of a TTP server and a PUF-enabled
device. We also implemented the exchange mechanism as an interface between the two

classes, and a measurement procedure to measure the success-rate in terms of num-
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Table 4.7: Training performance

XOR size | noise level | NO. CRPs | success-rate | model acc (¢)
0% 40k 1.0 99%
2% 100k 1.0 97%
4-XOR 5% 100k 1.0 94%
10% 100k 1.0 89%
0% 90k 1.0 99%
2% 200k 1.0 97%
5-XOR 5% 200k 0.8 94%
10% 200k 1.0 90%
0% 500k 0.5 98%
2% 700k 0.9 97%
6-XOR 5% 700k 0.4 94%
10% 700k 0.3 90%
0% 950k 0.9 99%
2% 950k 0.2 97%
7-XOR 5% 950k 0.5 94%
10% 950k 0.5 90%

ber of times that both the TTP server and the PUF-enabled device obtain a mutual key
successfully. We measure the success-rate of key generation for each noise level, with re-
spect to increasing repetition length [, testing the key generation also for 1000 iterations
for each case. Figure 4.12 shows the success-rate progress with respect to increasing
repetition length for various XOR sizes. As expected, we can see that for all XOR sizes,
as the noise levels increase, the success rate degrades relatively. Given however, that
with increasing [, the success-rate increases as well to compensate for both the noisy
PUF source as well as the mis-prediction error-rate in the equivalent MLP model. We
can see that for the worst case of having 10% of noisiness in the PUF characteristic, as
well 10% mis-prediction error-rate, with repetition length above 10, we can achieve a
success-rate in key exchange reaching and stabilizing at 1.0.

4.7.4 Security Analysis

Below we also evaluate the security of our method for various known attacks.
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Figure 4.12: Key exchange success rate with respect to repetition code length [.

Machine Learning Modeling Attacks

Modeling attacks on strong PUF require eavesdropping on the communicating channel
to capture PUF CRPs which is a necessity to build a model of a strong PUF[5], 7], [26],
[54]. It is proven that with enough number of CRPs, relative to the complexity of the
structure of the Strong PUF, it is possible to model any PUF using machine learning
methods. If an attacker successfully models a PUF, he will be able to impersonate the
target device and query the server for important information and be able to decrypt
them using the model of the PUF. In our key exchange mechanism however, this way
of attacking PUF is not possible since only randomly generated challenge values are
exchanged, and without the response value for each challenge, modeling the PUF is
not possible.

Helper Data Manipulation Attacks

We discussed earlier that PUF-based key exchange and key generation protocols need
error correction codes to build robust encryption keys. Mainly the fuzzy extractors us-
ing publicly available helper data are employed in PUF-based key generation methods
to recover the original key value from the noisy PUF CRP [88]. However, availing helper
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data publicly has shown to be a weak spot for such methods. There exist adversary
methods that manipulate the helper data and redirect it to the target device with the
aim to bias the underlying recovering codeword during the decoding phase and lead
the final value to a subset of guessable values by the attacker [67]. This vulnerability
is mainly existing due to the publicity of the helper data. We showed here however,
that it would be possible to recreate the codewords using the PUF itself and only publi-
cize challenge values which are randomized and have no correlation to the secret value
without any knowledge of (e.g, the predictive model of the PUF) or physical access to
the PUF.

Side Channel Attacks

PUFs are prone to side channel attacks as well [89], leading to leaking CRP values that
enables the attacker to build a model of the PUF. In our proposed method, we suggest
one can implement a mechanism that adds correlative noise to the capture power traces
through side channel analysis. Here, the designer can employ two PUFs, where one
PUF PUFa is the source of key generation and the other one, PUFb, is the source of
a dummy key generation. We then propose that the TTP server transfers two C_pack
sets, C_packa and C_packb, where R_packa as the offspring of C_packa is logically the
opposite of R_packb as the offspring of C_packb. In other words, we expect:

ri # 15,1 € R_packy,r; € R_packy,i = {1,2,...,(I x m)} (4.10)

Once C_packa and C_packb sets are received on the device side, they are fed in par-
allel to PUFa and PUFb, respectively. Once the responses are generated and passed
through the majority logic decoder, only the recovered code from PUFa is used for
key generation. This mechanism in turn confuses the captured power traces which are
recorded during the decoding process, since for each SET operation performed in gen-
erating the secret value w, there is a RESET operation performed as well in parallel to
generate the dummy value. Such method has already been proposed as a countermea-
sure for an embedded AES key generation mechanism and assessed against machine

learning attacks as well [90].
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Replay Attacks

Replay attacks can practically compromise our authentication and key exchange mecha-
nism if there is no watchdog method that assures no challenge value is being used twice
[91]. However, we propose using predictive models that are trained on the server side
based on the already generated and transferred challenge values. By keeping a record
of already used challenge vectors, we can recognize if a generated challenge value is
fresh or not. Such solution can be compact and sit aside to the main PUF enrollment

solution we proposed earlier.
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4.8 Utilization of Simulatable PUFs and its Constituents

Most of our work has been carried out with PUF simulation. We discovered however,
that using PUF simulation on an embedded device can be beneficial as well. For in-
stance, early in our work we showed the potential use-case of emulating a neural net-
work based-PUF using some randomly generated values that characterize the random
power-up bit values of a weak PUF. Aside to our proposal however, there are some ex-
isting works that propose using PUF simulation on board embedded devices such as
in.

An attempt we had in this research work was to find a solution for ReRAM PUF
which a special kind of memory PUF whose state of each memory cell is programmable
based on the distribution of the voltage values read during an evaluation phase [20].
ReRAM PUF normally needs an enrollment phase which is similar to that in an SRAM
PUF, where the programmed binary state of the memory cells is captured and later used
for encryption key generation. A protocol that uses ReRAM PUF for key generation
also is proposed in [92]. Our counter solution for such system was to read the analog
voltage values of each memory cell and use them to generate a simulation of strong
PUF on-the-fly, and then use the CRPs of the simulated PUF later for authentication
and encryption key generation. In this mechanism, we would use the analog voltage
values whose distribution over all the memory cells is normal and consider each value
a delay parameter in the simulating PUF. Figure 50 shows the schematic of mapping
the voltage values into the simulated PUF’s delay parameters.

Theoretically this technique seemed potential since we observed the distribution of
the voltage values that are normal, and thus it led to yielding good characteristics in
terms of randomness and uniqueness which are necessary to a good PUF candidate.
However, in practice, such protocol cannot be used for ReRAM PUF due to the fact that
the analog voltages are readable only in an evaluation phase where a high current is
passed through the component in order to read the distinctive values of the voltage dif-
ference between the two ends of a memory cell. Therefore, the simulating PUF can only

happen in evaluation phase, and cannot be recreated in a normal operational mode.

Nonetheless, the schematic of simulating PUF using the dispensable analog values
from electronic components can remain potential, only if a group of adjusting compo-
nents dispense values with normal distribution. For instance, we see this a fit in systems

where a large group of sensors are used. Having enough of number of sensors to pack
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Figure 4.13: Illustration showing a technique in simulating a strong PUF from the analog
characteristic of ReRAM memory cells.

into a potential strong PUF (such as a variant of arbiter PUF) can be a good incentive
to revise this schematic. We save this however as a later work to be done outside of the
scope of this PhD thesis.

4,9 Conclusion

In this chapter we discussed two security protocols based on PUF. Our primary inves-
tigation was on Robust Fuzzy Extractor-based (RFE-based) encryption key generation
protocol using weak PUF. We followed the concern we observed primarily in the litera-
ture on the vulnerability of the RFE method against HDM attacks, and set a goal to mit-
igate the vulnerability, considering that we could protect the PUF data using PUF data.
To do so, we proposed masking the publicly available helper data (the code-offset) us-
ing PUF response. In our masking method, we explained that part of the PUF response
that is used for key generation can be allocated to generating mask values instead and
protect the code-offset which is generated later on from the PUF response and shared
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publicly to be re-used during the key-recovery phase. The masking method we pro-
posed as we theoretically showed could increase the entropy of the guessing field in
HDM attack considerably. Then we showed practically as well that the success-rate of
HDM attack is considerably lowered when we lend more PUF response to masking.
The necessity of working on the RFE method in this research work was to get familiar-
ized practically on how one of the existing and pervasively used PUF-based protocols
work and how its vulnerability can get in the way of using it nowadays. The masking
method we proposed later on came naturally as an idea that can use the existing source
of data for key generation and use part of it to protect the key sharing scheme, which

was not considered before in the literature.

Then we moved on to set focus again on ML-based PUF computing, the field of op-
eration we already have worked on and improved the throughput. We imagined first of
how an ML model of PUF can be used in a security protocol, considering the benefit it
brings compared to a database of CRPs. We discussed earlier that the ML model of PUF
provides access to the entire CRP space. Therefore, in a way we can consider issuing
request for a large number of responses each time we want to open a secure communi-
cation session. In other words, we could consider each time a new secret value for key
generation, or a fingerprint for authentication. Moreover, the abundance of CRPs could
open ways to new secure coding of the secret values and increase their robustness. To
realize the full potential, we proposed our version of a secure authentication and key ex-
change protocol. In the protocol we explained how we realize a key recovery scenario
with exchanging only the challenge values. A mechanism which is inherently secure
against man in the middle attacks targeting PUF modeling. We also showed a realiza-
tion of a repetition-like coding mechanism with reliance on a challenge-matching al-
gorithm that dispenses challenges values for exchange whose corresponding response
are the same. We evaluated the robustness of the algorithm and showed that we can
eliminate the noisiness of the PUF CRP characteristic in mission mode, and the predic-
tion error in the PUF model by increasing the length of the code and be able to keep the
success-rate of key recovery at 1.0. We discussed however that the method at this level
of implementation may require exchanging a lot of challenges. Later in the upcoming
chapter, we discuss what augmentations we can consider in the method to reduce the

exchangeable data without compromising the security or the reliability of the method.

The new protocol we proposed in this chapter works for strong PUF variants due to

the modelability nature of their CRP characteristic. Such protocol may not be a fit for
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weak PUFs, such SRAM PUF. In order to find a mechanism to fit these PUF variants
in, we discussed the plausibility of simulating strong PUF over weak PUF data. We
briefly discussed it and showed some potential implementations. Such lane of work
however needs more investigation which will elaborate on also in the final chapter of
the manuscript.
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Reviewing Challenges and Solutions, and
Disscusion on Applications

In this chapter we discuss the next steps that can be envisioned from the endpoint of this
PhD study. This includes first to point out the drawbacks and potential vulnerabilities
or shortages in any of the methods we proposed, as well as potential occurrences in the

future that can comprise our work.

5.1 Introduction

We proposed transfer learning as pre-processing technique in PUF modeling for ML-
based authentication. We showed that using transfer learning, we can get closer a so-
lution model for a PUF before training, and thus train the model for a designated PUF
faster and with fewer CRPs compared to the conventional model where the initial solu-
tion model before training is randomly initialized. In this chapter, we speak more of one
of the challenges we can face with Transfer learning in PUF modeling and propose a so-
lution on how to solve it. Then we set focus on sub-space modeling. We provided but a
simple version of sub-space modeling. More specifically, we demonstrated the applica-
bility of sub-space modeling on only a variation of Arbiter PUFs, the XOR Arbiter PUF.
In this chapter we explain the extendibility of this modeling solution. We also show
that applying a modified version of sub-space modeling on subjects with very high
CRP complexity and explain that sub-space modeling’s expendability is possible and
could be required in enrolling strong PUF with highly randomized CRP characteristic.
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Moreover, we explain how transfer learning and sub-space modeling can be used
together, and where their coupled application is expected the most. We explain that for
PUF subjects with very large number of internal modellable components, where mod-
eling in granular subjects requires as well to employ a non-linear model solution, the
transfer learning technique can enter and keep the demand for high number of CRPs for
training at bay. After addressing the modeling optimization techniques, we proposed
in this work, we set to elaborate more on how we can further secure our proposed au-
thentication and key exchange protocol. Despite the claim we have on the security of the
exchanging challenge values only, we point out that the raw exposure of these values
may become a vulnerability in the future. Thus, we provide a simple coding solution
here that can prevent such vulnerability to emerge.

Then we set focus on the application areas of our proposed protocol. Some potential
applications that we foresee would benefit from the access to the full CRP space of PUF
will be appointed here. At the end of the chapter, we discuss on the future of the FE-
based key generation methods, and where our helper data masking which is appointed
as a countermeasure for RFE-like key generation methods will end up after a probable
expiration of FE-based key generation methods.

5.2 Open Challenges in Transfer Learning

Our proposed Transfer Learning of course has its limits. For instance, we observed that
for some cases there exists little leverage that TL can provide. We will point out to that
and what can be done to identify such cases. One of the issues we faced with the transfer
learning technique in PUF modeling was that in some occasions, the technique was
not effective as much as expected in lowering the training dataset size compared to
the random initialization. We anticipate that the reason is due the distance between
the weight values of the transferred weight package, and that in an already accurate
model solution of the target PUF when a random initialization was used in training the
model. In other words, the transferred weight data was in the domain of the anticipated
solutions that the training model would reach to. In some cases, such scenario did even
put the training model in a status far from the anticipated solution, therefore more
training data samples were required to lead the training into converging to the optimal
state.

To statistically solve this issue, we proposed creating multiple PUF models first us-
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Figure 5.1: [llustration showing the schematic of bagging-enabled transfer learning so-
lution for modeling PUF.

ing the random initialization technique. This would in turn require more data as ex-
pected to create the models. However, we take then a copy of the transferrable weight
values of all the models and set them as reference for transfer learning. Then in training
a larger group of PUFs, if transferring data from one reference did not lead to a con-
vergence, then we attain another reference and transfer its weight values and retry the
training. Doing so, we observed that we can indeed decrease the chance of not converg-
ing and deliver the target model solution as anticipated with lowered training data. We
can see this technique as a bagging solution mixed with transfer learning. Figure 5.1
also shows the schematic of how the bagging solution works with transfer learning in
modeling PUF.

A more sophisticated take on the bagging solution is to consider each successfully
modeled instance a reference, and so increase the options for referencing for future
modeling targets. Nonetheless, as the options increase, it may be possible that the time
of training increase as well for the exceptional cases which fail to converge into an op-
timal state during training. Then a debate may arise, on whether its essential to keep

performing the bagging solution, or normally capture more data and train the model.

We anticipate also that there may be non-statistical solutions with transfer learn-
ing in PUF modeling which enable the solution as a more deterministic pre-processing

must-do when PUF enrollment is done using machine learning. The potential of trans-
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fer learning nonetheless exists with such use-case scenario (PUF enrollment with ML)
since many of the enrolled PUFs share high level features that as discussed can aid the
training if these features are transferred from already optimally trained models, to new
models ready for training.

5.3 Open Challenges in Subspace Modeling

Sub-Space modeling hasn’t been investigated deeply in this work. While with the pri-
mary investigation, we observed promising results, we anticipated some modeling mech-
anisms that are driven from sub-space modeling and can potentially lead to better re-
sults. We discuss that here. Sub-space modeling can also be a costly solution in terms of
real-estate and the extra effort that is required to enable extracting internal CRP values.
We discuss that here with some possible improvements that can happen.

We observed previously that in modeling XOR Arbiter PUF with large number of
XORs, the model accuracy cap is lowered when we consider modeling each arbiter PUF
separately. We could estimate that we will get about 1% accuracy per Arbiter PUF chain.
Therefore, for a 10-XOR Arbiter PUF, we observed a maximum 90% prediction accuracy.
Now if we target 90% accuracy as the minimum acceptable accuracy, then sub-space
modeling at its current state cannot handle modeling XOR Arbiter PUF with more than
10 Arbiter chains. Same is true for any other PUF structure that represent a similar
structural complexity.

To mitigate this issue, we anticipate that if we lower the divisor, we can maximize
the prediction accuracy cap. For instance, for a 10-XOR Arbiter PUF, instead of dividing
the target PUF into 10 sub-components, we divide by 5, thus we get five 2-XOR PUFs
to model.

Another anticipated challenge with sub-space modeling is how we can divide more
intertwined structures into smaller sub-components? For instance, how we can apply
sub-space modeling to a feedforward Arbiter PUF? Or what happens when we have
a target Arbiter PUF complex that includes feedforward sub-parts and XORing sub-
parts as well? Addressing these questions are more of design solutions. For instance,
for feedforward Arbiter PUF, we can consider the schematic in Figure 5.2 (a). And as
well for the complex Arbiter PUF mixing feedforward and XOR compositions, we can
follow the schematic in Figure 5.2 (b).
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Figure 5.2: Illustration showing (a) the design solutions for applying sub-space model-
ing for feedforward arbiter PUF and (b) complex arbiter PUF mixing feedforward and
XOR compositions.
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Table 5.1: Various modeling compositions using sub-space modeling and transfer learn-
ing to model a 40-XOR Arbiter PUF.

Suggested Composition Heuristical estimation of ¢
40 x LR model of Arbiter PUFs ~ 60%
20 x MLP model of 2-XOR Arbiter PUFs ~ 80%

10 x MLP model of 4-XOR Arbiter PUFs using TL | ~ 90%
8 x MLP model of 5-XOR Arbiter PUFs using TL | ~ 88%

5.4 Mixing Modeling Solutions to Yield more Optimal
Results

We introduced Transfer Learning and sub-space modeling so far as non-overlapping
solutions both targeting to lower the training data and to yield the solution with desired
accuracy as fast as possible. In this work, we did not mix these two techniques together.
But here we can discuss that such approach can be possible and can lead to improved
outcome.

For instance, in the case of very large XOR Arbiter PUFs, we suggested using sub-
space modeling with smaller divisor to avoid drastic decrease in the maximum achiev-
able prediction accuracy. We can anticipate that at some point, if the design complex-
ity of the target PUF is very large, the smaller components may in turn be complex
enough for individual training. In such case, we can employ transfer learning to model
the smaller sub-components. Let’s for instance consider a [N * 10]-XOR arbiter PUF
for N > 1. This is a very large design for a singular strong PUF. We can anticipate that
the randomness of the PUF very large and thus makes the design very interesting in
case the security of the overlying system is at stage. To model this for enrollment how-
ever, we would need to carefully apply the sub-space modeling and transfer learning to
yield a model with highest accuracy. To tackle this, we investigate multiple possibilities
in modeling a 40-XOR arbiter PUF. Table 5.1 shows these possibilities.

We came so far with these improvements in modeling PUF and talked about specifi-
cations that can be considered only in case of modeling PUF for enrollment. Of course,
our suggestions for improving the modeling of PUF here are not ultimate solutions. We
can anticipate that more complications would exist targeting novel PUF architectures.
Our purpose of showing the possibility of different takes in modeling PUF here was to
show that potential techniques exist which can make the enrollment of PUF with ma-

chine learning easier. And solutions as such are not crafted only for specific types of
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PUFs such the Arbiter PUF family we worked on dominantly in this work. We encour-
age that strong PUF enrollment using ML need to be investigated on other variations
as well and identify the complications and provide solutions to mitigate them, similar

to what we did with sub-space modeling and transfer learning.

5.5 Anticipated Improvements in the Secure key Exchange

Protocol

Our secure key exchange protocol can also benefit from some improvements. For in-
stance, we know that the primary form of our protocol regularly needs many challenge
exchanges to assure the same secret value is recovered on the PUF-enabled device. This
makes the method running slower in certain conditions. We discuss that here and open

the field for potential solutions that can emerge to mitigate this issue.

In our ML based key exchange protocol, two key factors affect the probability of suc-
cessfully recovering the secret value: 1) The stability of PUF response 2) The accuracy of
the PUF model response prediction. Expectedly, when the probability of response flip
in PUF increases (due to environmental variations or other physical perturbation), cor-
respondingly the success-rate of key recovery can decrease, if the capacity of the error
correction code is fixed. That is why we proposed first to increase the repetition length
in case of observing the success-rate of the key recovery is falling below 1.0. Nonethe-
less, a concern raises in the case of mandating to exchange large number of challenges,
that the size of exchanging data for one key recovery may not be justifiable. Moreover,
the exposure of too many of the raw value of the challenges may raise some security
issues. While still the response value is not part of the exchanging data, for those of
attack models that have physical access to the PUF, the only target would be to audit
the response values somehow, since they already can extract the challenge values from
the communication channel. One of the late improvements we thought of adding the
primary design of our authentication and key exchange protocol to face the mentioned
concerns, is the following:

Instead of exchanging raw challenge values, we consider sending a sorted 2D list of
a range number of byte-size digits alongside with a reference challenge value. The 2D
list can be represented as in the Figure 5.3. Here, each digit represents the index of a
challenge with respect to the reference challenge value. Each row of the list represents
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Figure 5.3: [llustration showing the organization of the 2D challenge index list.

2D challenge index list

the binary value (0,1) of the secret key at the corresponding index, and each column
represents a challenge for that class of binary value, whose response according to the
sourcing PUF is the same binary value as in the corresponding class.

The 2D challenge index list should in turn be considerably lighter than the primary
solution we had to solely exchange the challenge value. For instance, for a 128-bit Ar-
biter PUF variant, if we consider creating a secret value of size 16 bits, with repetition
code length 10, if we use the primary exchange method, we would need to exchange
2.5 KB of data comprising challenge values, while using the 2D challenge index list, the
exchanging data size is reduced to 0.15 KB.

5.6 More Opportunities with Coupling ML & PUF

So far we talked about the benefits of using an ML model of a PUF. We explained that
initially the model of the PUF will replace the CRP database, with the aim to provide
full access to the CRP space of a PUF, given that the model as a solution is compact
and storable (which normally is, given the size of the models created of PUF so far).

However, it is notable that our discussion on such potential pivoted around strong PUF,
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which is the variation of PUF that usually favors/suffers the modelability using ML.
This on the other hand is not applicable on weak PUFs. We mentioned it briefly in
the previous sub-section. But to elaborate more on it, one can imagine that the only
CRP characteristic a weak PUF has, is the relationship of the memory address, and the
extracted vector of bits from the memory, which are the power-up values of the memory
cells designated to that memory address. We can assume that the memory address is
the challenge, and the binary vector is the response. However, we cannot assume that
an ML model can provide a solution in which the relationship between the memory
addresses and the responses seemingly have hidden learnable patterns. Therefore, even
the effort to build such models will fail.

Nonetheless, there can be another take in using ML and the weak PUF data. Recently
a work done by Karimian et al was published in 2020, proposed using deep learning
to create an authentication solution. In their work, they employed a CNN model which
analyzes the PUF response (the binary power-up values of the memory cells) in form
of a 2D image and associates the learned features to the ID of the owning PUF. In such
solution, the model will be able to identify the PUF based on the PUF response it sees.
This is a potential solution which does not model the PUF but builds a predictive model
that can identify PUF. However, the solution in turn lacks security due to the fact that
the PUF-enabled devices need to send their PUF image entirely to the server for identi-
fication, which in turn exposes the image to the public and it can be exploited by replay
attacks. At first sight, designers can suggest encoding the image first and then send-
ing it to the server and decoding it there before identification. However, as we already
know, the encoding itself requires a source for the key value to cipher the images, and

that as a requirement can add complexity to the solution.

To deal with this, we anticipated some adaptive changes to the way the identification
can be taken cared of. For instance, we proposed sending a fraction of the image to the
server in [93], while the server has a reference image of the PUF at sight, and the fraction
can replace its corresponding part on a copy of the reference image on server, and the
product then will be sent for identification. Such method in turn will not expose the
entire image to the public, and with the fraction only exposed, attackers will have less
of success chance to re-use the value for a replay attack. To assure this for instance, we
proposed using a different fraction of the image at a time. Figure 5.4 shows the general
schematic of the method we proposed.

Another interesting idea that we could briefly develop was to use the same tech-
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Figure 5.4: Illustration showing our improved way of PUF authentication using CNN.

nique of PUF authentication for strong PUFs. We proposed it in in [93]. To do this, we
imagined creating PUF images of using multiple responses captured from a range of
consecutive challenges and attempt in associating the image to a PUF identity. Since the
expectation on the PUF image even for the memory PUF is that the elements are ran-
domly set and have no correlation to each other, we can expect the same if we make PUF
image by using multiple binary responses of a strong PUF. Since for a good strong as
well we expect the same randomness. Figure 5.5 shows the schematic of our proposed
DL based authentication method for strong PUFs.

The only matter in this method is since strong PUF can generate very large number
of CRPs, then how many images we can associate to a single PUF identity ? Can a single
CNN model handle multiple images for a single PUF id ? or should we need multiple

models ?

Another exotic method we ventured on was to create a new PUF using the power-up
values of the memory cells [94]. We saw this as a potential to create a design that can
benefit from the random memory cell values and represent a strong PUF, meaning that

it can generate a large number of CRPs. In such case, the PUF on the memory is the
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Figure 5.5: Illustration showing our proposed method to use Karimian’s CNN model
for PUF authentication for strong PUF.

power-up values of the memory cells, but the design on top which utilizes the power-
up values. To do so, we proposed to employ the structure of an ANN, whose synaptic
weight values are the power-up values of the memory cells. Theoretically, it seems a
doable task to create a PUF out of a neural network structure (similar to an XOR arbiter
PUF) and it has been explored once in [95]. However, our primary assessment showed
that the characteristic is not ideal enough (based on the PUF metrics we introduced in
the previous chapter) to candidate a PUF for identification purposes, but good enough
as a random number generator (a side application of PUF in general that is discussed
in the literature as well). Developing such methods up to a point of applicability was
not the focus of our work. Recalling that one of the main focuses we have in this work
is the CRP dataset management which mainly concerns the strong PUFs. Therefore, we

left these ideas remain at the state-of-the-art level of implementation.

5.7 Range of Applications using PUF

PUF is considered a cyber-security primitive. So, in the nature of that, it can be used
within any application that is pivoted on cyber-physical systems. Since PUF has been
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around for more than two decades, and inclusive and deepened studies on many as-
pects of the PUF has been done since then, it is natural to expect that PUF is useful and
is actually used for a wide spectrum of applications. Given the type of the PUF, and the
size of the CRP space for each PUF family and its sub-variants, specific applications can
be designated to them that utilize their maximum potential. Here we will point out to
some of the prevalent applications of PUF and its sub-variants.

IoT

Pervasive application of PUF can be found in IoI systems where employing a security
protocol that is efficiently defined for resource constrained devices is of the key require-
ments. Applicability in IoI however has a large spectrum of field specific use-cases.

In the large variations of IoI' edge devices, there exist a sub-class of devices which
have small form factors and are commonly battery-depended on to operate. This means
that they have to manage their power consumption strictly, and so inherently, most of
these devices come with hardware components which are operational in low power
mode. The silicon real estate in these devices is limited also, thus there would be less
room for components that are either not efficient for small form factors, or not well
titted in low power operational mode. Mostly these devices are packed with sensory
components and communicational components to send the sensory data to a central-
ized computer which runs the necessary algorithms. Since communication is a key part
in IoT devices, it is also important to take care of the data transmission security, and the
security of the entire ecosystem in general. Given the physical restrictions mentioned
in prior for the IoT edge devices, system designers are more leaned towards employing
security primitives that have low hardware overhead while containing the security of
the system. PUF is such component for designers to employ in IoT systems. Not only
PUF can fit well within the physical restrictions, but also due to its tamper resistant
nature, it provides security in the physical level as well as in the communication level
between the Iol devices. This means that with PUF employed, it would be harder for
attackers to physically clone the PUF-enabled devices. There are many discussions and
proposals of security protocol for IoI using PUF, of which some are mentionable here,
such as [96] which proposes an authentication protocol for IoT using PUF. This work is
a secure version of an earlier proposed authentication method for IoT using PUF which
was proposed in [97].
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Industry 4.0

Industry 4.0 refers to the fourth industrial revolution, where the main changes to the
industry are larger inter-connectivity and smart automation. In this concept, cyber-
physical systems and Iol play a major role. Smart factories, at the center of Industry
4.0, comprise many interconnected devices that automate the manufacturing process
alongside a smarter environmental monitoring and self-monitoring scheme which no
longer necessitates the presence of human intervention. Nonetheless, such concept is
still in the maturation phase and in that it still requires more optimal security proto-
cols that fit the needs of the industry such as lower power consumption and hardware
overhead. Such need has been instated in many recently published papers such as [98]
where the authors elevate the importance of PUF-based protocols for Industrial Internet
of Things (IoI') and the industry 4.0 in general.

Smart Grid

As another domain specific implementation of IoI, smart grid as well requires optimal
solutions for security. To synchronize power distribution between consumers from the
power source, power grids require Smart meter (SM) devices. SMs are fundamental
networking devices which are linked to the power grid through networked communi-
cation. SMs though are devices that are susceptible to physical attacks and attacks that
target the communication between them and the central control system near the power
grid. To ensure the authenticity of the exchanged metric data, advance metering infras-
tructure (AMI) is employed which in itself employs authentication and key agreement
(AKA) methods to provide security [99]. PUF here comes in as a suitable security prim-
itive due to its inherent resilience against physical attacks and up to now several works
proposed PUF-based authentication and key exchange protocols for smart grids [100],
[101].

IC Traceability and Blockchain

One of the main concerns in IC manufacturing process is the risk of tampering with
the IC or counterfeiting the silicon chip housed products. Actors who perform device
tampering or counterfeiting can have several interests, such as cloning the device, or
injecting their malicious programs. Thus, it is of outmost important to implement ro-

bust traceability techniques to secure the supply chain and avail the tech-owners to

135



Part , Chapter 5 — Reviewing Challenges and Solutions, and Disscusion on Applications

ensure counterfeit avoidance and detection. This should in turn benefit not only the
supplier, but the costumer as well. Traceability in IC manufacturing refers to the com-
bination of the ability to know the current possession of a product at all times (track)
and the ability to find the origin, ownership history, time spent at each point (trace), by
means of recorded identifications. Such concept can be mapped on a blockchain-based
ownership management system, where an immutable database (the blockchain) that
maintains a continuously growing list of transaction records secured from tampering
and revision is provided on the supplier’s IC tracer system. To satisfy this system with
a secure implementation, PUF can be employed as the root of trust. Due to its low hard-
ware overhead, low power consumption and tamper resistant nature, PUF can be seen
as an ideal choice for root of trust for a wide variety of silicon chips, given that such
implementation of root of trust for IC traceability has already been widely discussed in
several works in the literature such as in [102].

Healthcare

E-health nowadays is a trending subject both in the industry and academia. Smart
healthcare is inevitably borrowing a lot from electronic devices and computing sys-
tems for use-cases such as patient vitals monitoring and motion tracking, to electronic
implants that replace damaged internal organs and prosthetic limbs that replace ampu-
tated parts of the body. Such close-up contact between biological organs and electronic
devices demands certain limitations to the design and operation of these devices. It is
expected naturally that these devices are operated in low power mode and are also fitted
well on, or inside the body. As this field is directed towards maturation, many studies
have proposed so far different form factors and operational modes for such devices that
follow the physical standards for E-health. Nonetheless, these devices have the ability
to connect to a central station to which they transmit vital or physical activity records.
Such nature in itself requires security as well due to the fact that such information is by
nature personal and thus should not be exposed to the unauthorized public. For such
requirements, PUF again can be found as a useful security primitive and indeed several
works have already investigated possible AKA protocols that can use PUF, such as the
work done in [103].
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Agriculture

Agriculture is another domain specific use-case of IoI, yet one of the most important
ones. The application of IoI in agriculture helps with monitoring several production
field parameters such as soil moisture, temperature, pH, humidity, and gas, aside to the
automation of cultivation, field maintenance, and planting. Analyzing these parameters
is an important procedure to help maintaining the ideal conditions for maximum crops
productivity. Monitoring such parameters needs sensory devices that are operable in
the field for a long period. Such devices have low computation power, and mainly act as
data receivers and transmitters. Therefore, they need security protocols implemented
which robustly and resource efficiently ensure that the transmitted data are not tam-
pered with or altered for malicious use-cases. In fact, the U.S. Department of Homeland
and Security report on security issues in Agriculture highlights the importance of data
security, confidentiality, and integrity in agriculture [104]. This means that serious at-
tention to the security in the field of smart agriculture is needed. PUF in such scenario
can come of good use, as is explained in a recently published work [104], where the
authors propose an authentication method based on PUF for smart farms.

Self-Driving Vehicles and smart transportation

Smart transportation is another important field of application for IoTI. Trending subjects
such as vehicular network, traffic monitoring, and autonomous charging are of few sub-
jects that benefit from IoTl in the field of smart transportation. Unlike traditional trans-
portation, smart transportation requires a more secure infrastructure for data exchange
and rapid validation to ensure data validity. Since all entities such as vehicles, traffic
monitoring facilities, charging stands, etc., are interconnected and constantly in com-
munication, they represent themselves as interesting points for breaching for potential
hackers, and one can assume that breaching into such network of things can yield catas-
trophic outcomes such as disturbing the traffic in urban areas or autobahns, or misrep-
resenting key information in Vehicle-to-Vehicle connections that may lead to accidents.
Such eco-systems thus can get a good use of PUF to ensure a robust security primitive
is in place for communication. For instance, Sadhu et al. proposed a novel PUF-based
vehicle authentication method using Ring Oscillator PUF as discussed in [105]. This
method in turn is useful for rapid authentication while also preserving the secureness

of the communicated data and assuring the authenticity of the communicating device
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as the vehicle. Another work has been conducted by Pudi et al. [106 ], where he presents
an authentication protocol using RO-PUF that augments the security and authenticity
of video and imagery data that is transmitted between the Vehicle, the automated traffic
monitoring system, and the base-station. Aside to authentication, PUF shows potential
in generating pseudonyms as discussed in [107] by Petit et al., which is useful for se-
cure communication between vehicles without disclosing any private information of

each vehicle.

Smart Home

Another interesting application of IoT is in Smart Homes. IoI' based Eco-systems in res-
idential places can provide remote access to smart facilities inside the residential for the
residents who may at times reside in any place outside of the residential. Such conve-
nience of course needs to cooperate with secure mechanisms that ensure the authentic-
ity of the accessors outside of the residential, while also ensure that no unauthorized
device is trying to impersonate itself as part of the residential’s facilities. Noting that in
such eco-system, we are dealing with variety of devices from small sensors to video-
based monitoring facilities, to mechanical devices such as smart door locks. Many of
these facilities may be battery operated and provide small real estate for computational
components. Such limitations again could candidate PUF as an ideal security primitive
to take place. As an instance of that is a recently published paper by Xia et al., who
proposes residential device authentication based on PUF [108].

Smart Card

Smart Cards nowadays are inevitable parts of our lives providing us with the ease of
access to our financial services. Due to the nature of the smart cards being tangled with
the financial properties of their users, they need to be protected as efficiently and as
robustly as possible. It is apparent also that smart cards cannot hold very complicated
cryptographic computational blocks due to their small form factor. Thus, the technol-
ogy needs to upgrade to show resilience to new potential attacks. Conventional security
concepts up to now are based on Elliptic curve cryptography, which are vulnerable to
the card lose attack and desynchronization attack, where some schemes add a random
number in verifier-value to resist the card lose attack and store both the old and new

pseudo-identities between authenticator and the corresponding authenticated party to
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withstand desynchronization attack. However, the random number stored in the card
memory can be extracted and the new conversation may be blindly blocked by adver-
sary [109]. PUF can be of good use here to provide a resource efficient security primi-
tive. An example of that is proposed by Chen et al. in [110] where they propose a novel
authentication protocol that utilizes PUF and elliptic curve cryptography (ECC) to pro-
tect the random number that is generated within the card.

With the given examples in IoI based PUF applications, it is evident that PUF phe-
nomenon is indeed a potential security primitive due to its physical and computational
capacities. Yet despite the prevalent use-cases of PUF, the protocols that are based on
PUF are still on their way to maturation. Many studies have been conducted that show
the vulnerability of PUF-based protocols and the complementary on the other hand
present novel techniques to mitigate these vulnerabilities. To take a deeper look into
how security protocols use PUF, we explain in the following the fundamentals of PUF-
based protocols and the variations of them.

5.8 The Future of the RFE-like protocl and our Helper

Data Masking Countermeasure

Our helper data masking method also have a downside. A bold challenge in it is that FE
methods in general are going to expire soon due to the public exposure of the helper
data. This means that our method may not be useful anymore for key exchange pro-
tocols. This is a global issue that all FE-based key generation methods are facing. We
discuss that here and try to depict the expected horizon for our masking-based coun-
termeasure for other PUF-based algorithms.

The main security problem in Fuzzy Extractor methods is the exposure of the helper
data. We have seen that code-offset is an important element in recovering the secret
value that is used in creating an encryption key. We also saw that HDM Attacks can
embed an error vector to into the code-offset which later during the decoding procedure
lowers the guessing entropy on the attacker’s side. This in turn enables the attacker to
manage creating a mutual encryption key with the PUF enabled device with fewer trial

and errors and impersonate itself as the server and exchange confidential data.

There are also other types of HDM attacks that exist as we discussed in Chapter 3.
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In all of them, mutually the problem is that the helper data in turn presents itself as a
doorway for attackers to breach into the key recovery procedure. We foresee that future
FE methods are forced to no longer incorporate public exposure of core helper data
such as the code-offset. Most probably, this will lead to either expiring the FE-based key
generation or change the vitality of the publicly shared helper data. For instance, one
can imagine that helper data represents some meta information about the generatable

key which is not directly affecting the key recovery outcome.

Our proposed helper data masking countermeasure on the FE-based key generation
methods using PUF may be considered an incremental solution. This would mostly be
due to the fact that the overall interest in using FE-based methods for generating key
from biometric data is decreasing [ |. Nonetheless, we showed that for the proportion of
existing key generation protocols using RFE-like method coupled with vulnerable cod-
ing algorithms, our solution can be considered as a low-cost adaptation to reduce the
success-rate of HDM attacks. It has been already discussed in [] that despite the vul-
nerability against HDM attacks, RFE-like methods with primitive coding algorithms are
interesting for their low-cost implementation. Such interest may continue to exist for IoT
edge device security. Therefore, in that lane of application, we can consider our coun-
termeasure to exist as well since the cost of employing it is only a modification in the
implementation of the key generation code, where instead of using the entire extracted
secret value from PUF for key generation, we preserve a portion of it for masking, and
we follow the same procedure of extracting the code-offset for the mask values as we
do for the secret key.

In general, we can also anticipate that masking solution could be around for a longer
period due to their effectiveness against machine learning attacks. Further obfuscation
of the exposed data in turn is a key countermove against the power of prediction in the
ML models [ ] as it can potentially lead to needing more training data until convergence,
or completely randomize the data so that no ML model with high prediction accuracy
can be obtained. Moreover, there are several masking solutions proposed in PUF-based
based key generation algorithms such as in [] and []. We can anticipate that a more
efficient way of implementing mask values for algorithms as such can be the way we
proposed in extracting and recovering the mask values from a PUF source. In such
scheme, we can still be coherent with the recent of design and do not use an external

storage to keep the mask values in.
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5.9. Conclusion

5.9 Conclusion

This chapter mainly focused on some of the late blooming ideas that can augment the
initial proposals that was given in the early stages of this work. Elaborating on how we
can further sophisticate transfer learning optimization, and sub-space modeling, and
how we would be able to use them conjointly in enrolling very large strong PUFs, were
parts of the discussion in this work. We also proposed a structural optimization for
our proposed authentication and key exchange protocol and showed that we can even
hide the challenge values on plain sight during the communication for authentication
and key exchange. While theoretically shown applicable, we encouraged that further
evaluation of the secureness of the proposed modification is required. Al though the
proposals were shown firmly here, the mere intention of this chapter was to show that
the proposed methods here are pioneering and can be the base-ground for further aug-
mentations. At the end we pointed out to some of the potential use-cases of our pro-
posed protocol, with this point in mind that all the use-cases in their core will benefit
from the full access to the PUF CRP space. Finally, we explained that FE-based methods
may be at the end of their use-fullness due to the increasing stress on their vulnerabil-
ity. However, for the sake of their simplicity in design and operation, they may keep
existing in resource constrained IoT systems, and for that, our countermeasure as well
can stay with to provide an incremental level of security. Further on we mentioned also
that other PUF-based security algorithms exist that promote the usage of masking as
a countermeasure, and so we pointed out that our masking mechanism can be consid-
ered within these algorithms as well since in our mechanism we assure the coherency

of using PUF as the primitive.
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FINAL CONCLUSION

The research work developed at the core of this dissertation is two folded. The primary
investigation was set on the viability of using PUF modeling with machine learning for
enrollment. For this we first discussed that we need a methodology to include ML-based
modeling of PUF into the enrollment procedure. We explained that ML-based model-
ing is a potential method to model the PUF, however it is empirical, therefore we need
a methodology that considers the possibility of trial and error in providing a model of
PUF using ML, but maximizes the probability. To do so, we justified that we need an
evaluation phase wherein the PUF subject is analyzed either with set of simulated or
real-world data to unravel the optimal values for hyper-parameters in modeling, and
control parameters in the enrollment procedure. We explained also that the optimality
of these values depends on the desire of the user, either targeting to obtain the maxi-
mum accuracy for the predicative models of PUF, target the combination for parameters
which leads to providing models of PUF faster, or the maximum size of CRP dataset
size that yields the minimum acceptable accuracy. We also explained that other scenar-
ios can exist which exist in between the spectrum of possible outcomes.

After introducing the methodology, we moved onto explaining two optimization tech-
niques in modeling PUF with increased complexity. The necessity in optimizing mod-
eling PUF with increasing complexity is not only assuring the security of the underly-
ing system, but also assures the facilitation of the enrollment of the PUF. To optimize
PUF modeling for enrollment, we introduced first the concept of transfer learning. We
explained that transfer learning realizes trained data reusability as a mean to reduce
training data and training time. We then proposed using transfer learning with multi-
layer perceptron (MLP) model, which is an artificial neural network structure. In spe-
cific, we proposed practicing transfer learning with a recently proposed MLP model
which is adaptable to the structure of the target PUF. We showed that together, the
adaptive MLP model and transfer learning are more potentialized in modeling PUF
with reduced training data. Such potential enables modeling PUF with increased com-
plexity with knowledge that is only known by the manufacturer or the designer of the

PUF. Moving forward, we also proposed sub-space modeling, a divide-and-conquer
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oriented technique which proposes peripheral structural modification as a mean to pro-
vide internal PUF response coming from sub-parts of the PUF. Such schematic allows
modeling each sub-part separately, which in turn leads to requiring lesser training data
to model the overall PUF target. We also ascertained empirically that sub-space model-
ing can indeed decrease the training dataset size compared to targeting the entire PUF
CRP characteristic at once. Together, the two optimization methods, transfer learning
and sub-space modeling, are potential co-ops that can arise certainty of modeling PUFs
with very large structural complexity with high prediction accuracy. We elaborated on
this speculation in the last chapter.

The second fold of the research work is set on developing secure and resource efficient
protocols. First, we investigated one of the conventional key generation methods for
PUF-enabled systems. Fuzzy Extractor is the method which is promoted in both the in-
dustry and academia to be used for encryption key generation on noisy sources of secret
primitives such as PUF. We then explained the vulnerability robust fuzzy extractor-like
(RFE-like) method to HDM attacks and explained that the vulnerability of the pub-
licly available helper data as part of the method schematic needs extra level of protec-
tion against HDM attacks. To which end then we elaborated on our proposed adaptive
helper data masking countermeasure, which is a masking mechanism directly target-
ing to independently increase the entropy of the guess field on the attacker’s side. We
then empirically showed that our method can indeed increase the entropy of the guess
tield of the HDM attack, which in turn drastically decreases the chance of success in the
attack. The attempt to create this countermeasure was the first step to get involved with
developing a resource efficient protocol based on PUF. Although the final outcome was
a countermeasure and not a protocol, the effort taught us that it is possible to count on
PUF to be the source of masking which in itself is a promising act which can be poten-
tial in not just FE-based methods, but other PUF-based protocols which need further
protection at data level.

At the second step in protocol development, we set focus on a blueprint of an entire pro-
tocol from scratch which now is based on the coupling of PUF and its equivalent ML
model, a rare move yet potentialized, which we have made prior preparations in terms
of enrolling PUF with ML. We explained that the existence of an equivalent model of
PUF on a TTP server enables creating locally correctable codes, in sense that the code it-
self does not need to be exchanged through channel, rather a set of challenges that lead
to the code via PUF and the equivalent model of PUF, are exchanged. We explained first
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a challenge matching scheme we enable such exchange of codeword which in turn is se-
cure against model-building attack since no response with the challenges exchanged are
coupled. Then we explained how we can harness a repetition coding into this exchange
method which in turn enables us to cultivate robust secret values usable for encryption
key generation. We then demonstrated the entire procedure of the exchange and the
coding and decoding mechanism, and later an authentication and key exchange proce-
dure that utilize the recoverable secret key. We also empirically showed that the method
can in turn generate and exchange 100% reliable secret values, of course by counting on
the trade-off between the reliability and length of the repetition code. This would mean
that for conditions in which we speculate that the reliability of the recovering secret
value is subject to deterioration, we increase the length o the repetition code to amend
for the potential loss of the reliability.

We also explored on some of the potential yet side-missioned ideas of coupling PUF
and ML. For instance, at the primary phases of the work, we investigated we can use
deep learning for strong PUF authentication, a method that has already been proposed
for weak PUFs by Karimian et al. We also proposed that we can create strong PUF in
the structure of a binary classifier neural network using the primary random values of
a weak PUF source, a mechanism which in turn enables cultivating more from a weak
PUF sources than just a single read-out. For the binary classifier however, we explained
that the initial idea is good to be investigated to develop a random number generator,
and not yet for security protocol.

We also set a brief focus on how we can link the contributions of PUF modeling which
we dominantly explained for strong PUF families due to their very large CRP space,
to the Weak PUFs as well. To do so, we explained the possibility of simulating or em-
ulating strong PUF over weak PUF data, an idea which we introduced and explained
for potential device types such as Re-RAM, but due to impracticality of using the raw
values of the device in normal operational mode, we were unable to further continue in
our investigation. Yet we explained that such idea can be explored further using other
device types such as a local ecosystem of sensory components which can represent ana-
log values. In general, this work aimed to investigate the potentiality of coupling PUF
and ML. A potentiality which has been partially harnessed in the optimization meth-
ods and protocols we proposed and explained here. Some of which we elaborated on
experimentally and empirically, and some we presented as potential ideas. Later works

that are set to run from this research work on will have at hand a solidified and opti-
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mized methodology for strong PUF enrollment using ML, and a baseline protocol for

key exchange and authentication.
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