
HAL Id: tel-04025814
https://theses.hal.science/tel-04025814

Submitted on 13 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperative navigation of a fleet of mobile robots
Daravuth Koung

To cite this version:
Daravuth Koung. Cooperative navigation of a fleet of mobile robots. Automatic. École centrale de
Nantes, 2022. English. �NNT : 2022ECDN0044�. �tel-04025814�

https://theses.hal.science/tel-04025814
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE CENTRALE DE NANTES

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Automatique, productique et robotique

Par

Daravuth KOUNG
Cooperative navigation of a fleet of mobile robots

Thèse présentée et soutenue à l’Ecole Centrale de Nantes, le 19 octobre 2022
Unité de recherche : UMR 6004, Laboratoire des Sciences du Numérique de Nantes (LS2N)

Rapporteurs avant soutenance :

Charles LESIRE Chercheur HDR, ONERA Toulouse
Roland LENAIN Directeur de recherche, INRAE, Aubière

Composition du Jury :
Président : Philippe MARTINET Directeur de Recherche, Centre INRIA d’Université Côte d’Azur
Examinateurs : Olivier SIMONIN Professeur des universités, INSA Lyon

Vincent FREMONT Professeur des universités, Ecole Centrale de Nantes
Dir. de thèse : Isabelle FANTONI Directrice de recherche CNRS, Ecole Centrale de Nantes
Co-encadrant : Olivier KERMORGANT Maître de conférences, Ecole Centrale de Nantes
Co-encadrante : Lamia BELOUAER Responsable développement logiciel, E-COBOT, Carquefou

Invité :

Sébastien ECAULT Président, E-COBOT, Carquefou

ACKNOWLEDGEMENT

I am so thankful to those who have helped and contributed to the achievement of this
PhD thesis. First of all, I would like to express my deepest gratitude to my supervisors:
Isabelle Fantoni, Olivier Kermorgant, and Lamia Belouaer for their continuous support,
motivation, and immense guidance. I could not ask for better mentors for my PhD study.

My sincere thanks also go to Sébastien Ecault, CEO of E-COBOT who has initiated
this PhD collaboration project. And Sébastien Briot, head of the ARMEN team who has
given me access to the laboratory and research facilities.

I thank my fellow labmates for the countless discussions and encouragements. I also
thank my colleagues at E-COBOT who have supported me during this PhD journey.

Finally, yet importantly, I am glad to denote my appreciation to my parents and
other supportive people including lecturers, friends, and interns whose names were not
mentioned above, but have held significant impacts on the successfulness of this thesis.

Daravuth Koung

3

TABLE OF CONTENTS

List of Figures 7

List of Tables 10

Introduction 11

1 State of the art 15
1.1 Introduction . 15
1.2 Control architecture . 16

1.2.1 Centralized architecture . 16
1.2.2 Distributed architecture . 17
1.2.3 Hierarchical architecture . 17

1.3 Formation control . 18
1.3.1 Leader-follower . 18
1.3.2 Virtual structure . 20
1.3.3 Behavior-based . 21
1.3.4 Other approaches . 22

1.4 Load handling strategy . 23
1.5 Task allocation . 24

1.5.1 Auction-based . 25
1.5.2 Optimization-based . 26

1.6 Conclusion . 28

2 Formation control 31
2.1 Introduction . 31
2.2 Consensus-based formation . 32

2.2.1 Wheeled mobile robots modeling 33
2.2.2 Graph theory . 35
2.2.3 Preliminaries . 39
2.2.4 Formation control algorithm . 42

5

TABLE OF CONTENTS

2.2.5 Simulations and experimental results 44
2.2.6 Conclusion . 49

2.3 Optimization-based approach . 50
2.3.1 Task-based control . 50
2.3.2 Hierarchical quadratic programming 51
2.3.3 Task definitions . 51
2.3.4 Simulation and experimental results 57
2.3.5 Conclusion . 71

2.4 Conclusion on formation control . 72

3 Task allocation 73
3.1 Introduction . 73
3.2 Problem definition . 74
3.3 Methodology . 75

3.3.1 Objective function . 75
3.3.2 Contract Net Protocol approach . 76
3.3.3 Tabu Search approach . 77
3.3.4 Simplified Local Search approach 78

3.4 Experimental results . 80
3.4.1 Experimental setups . 81
3.4.2 Preliminary experiments . 83
3.4.3 Comparison experiments . 90

3.5 Conclusion on task allocation . 95

Conclusion 97

Bibliography 99

6

LIST OF FIGURES

1 A use case scenario of the MRS. 12

1.1 A centralized control architecture, where the orange node is the control
agent. 16

1.2 A distributed control architecture. 17
1.3 A hierarchical control architecture. 18
1.4 A leader-follower example [LLL15]. 19
1.5 A virtual structure using (a) virtual center approach [BWN09] and (b)

virtual vehicle approach [YN08]. 20
1.6 A behavior-based controller with different behaviors. 21
1.7 Difference types of load handling techniques. 23
1.8 A process of auction-based task allocation [See+20]. 26

2.1 A nonholonomic wheeled mobile robot. 33
2.2 Top view of the system. The green square represents a support for load

placement that is on top of the formation. 34
2.3 Example of a graph. 35
2.4 Example of (a) undirected and (b) directed graph. 36
2.5 Example of the connectivity of a graph: (a) connnected, (b) weakly con-

nected, (c) strongly connected, and (d) disconnected graph. 37
2.6 Example of a graph rigidity in 2D: (a) and (b) flexible/non-rigid, (c) and

(d) minimally rigid, and (e) rigid. 38
2.7 Smooth pairwise function Ψα(z) [Olf06]. 40
2.8 Obstacles denoted by agent-based approach: (a) wall and (b) spherical

obstacles [Olf06]. 41
2.9 Simulated system architecture. 45
2.10 Gazebo environment for simulation. 46
2.11 Simulation of formation and obstacle avoidance using flocking / avoidance

law of Equation (2.28). 46

7

LIST OF FIGURES

2.12 Simulation of formation and obstacle avoidance using the proposed control
law, Equation (2.30). 47

2.13 Experimental setup of the consensus formation. 47
2.14 Real experiment of formation and obstacle avoidance using proposed con-

trol law, Equation (2.30). 48
2.15 Snapshots of the experiment. 48
2.16 Experiment of the formation and obstacle avoidance using the proposed

control law with square root diagonal neighbor distance. 49
2.17 Inter-distances diagram of the MRS, each blue node represents a mobile

robot in 2D plane. 52
2.18 Navigation scheme, the blue nodes represent robots whereas the red node

indicates a target point. 53
2.19 Obstacle avoidance scheme: (a) individual and (b) team avoidance. 55
2.20 Environment of simulation I. 59
2.21 Plots of simulation I. 60
2.22 Environment of simulation II. 60
2.23 Plots of simulation II. 61
2.24 Formation shape of simulation II. 62
2.25 Experimental setup of the HQP formation. 62
2.26 Initial poses at S1. 63
2.27 Plots of S1 experiment. 64
2.28 Navigation scenario with two obstacles. 64
2.29 Plots of S2 experiment. 65
2.30 Reduced inter-distances edges of four-robots team. 66
2.31 Experiment of four robots with reduced number of inter-distance features. 66
2.32 Antenna shape of the formation. 67
2.33 Experiment of four robots with reduced number of inter-distance features

and modified desired inter-distances. 68
2.34 Reduced inter-distances edges of five-robots team. 68
2.35 Experiment of five robots with reduced number of inter-distance features. . 69
2.36 Three-robots configuration. 69
2.37 Experiment of a triangle formation with three robots. 70
2.38 Experiment of a line formation with three robots. 71

3.1 Contract Net Protocol flowchart. 77

8

LIST OF FIGURES

3.2 Finding a neighborhood flowchart. 78
3.3 Tabu Search flowchart. 79
3.4 Simplified Tabu Search flowchart. 80
3.5 2D map of the simulated environment. 82
3.6 Computational time required for the TS algorithm with one iteration with-

out storing the results of the estimate function in a cost matrix 84
3.7 Computational time required for the TS algorithm with one iteration with

storing the results of the estimate function in a cost matrix 85
3.8 Impact of the number of tasks to allocate to 5 robots on the computational

time of the studied algorithms . 86
3.9 Impact of the number of tasks allocated to 5 robots on the traveling time

of the robots depending on the studied algorithms 87
3.10 Impact of the number of robots on the computational time of the studied

algorithms for the allocation of 10 tasks . 88
3.11 Impact of the number of robots on their total traveling time using the

studied algorithms for the allocation of 10 tasks 89
3.12 Time gain evolution depending on the allocation mode and the number of

robots for 5 tasks allocated. 90
3.13 Time gain evolution depending on the allocation mode and the number of

robots for 10 tasks allocated. 92
3.14 Time gain evolution depending on the allocation mode and the number of

robots for 20 tasks allocated. 93
3.15 Time gain evolution depending on the allocation mode and the number of

robots for 40 tasks allocated. 94
3.16 Best results of different cases of robots and tasks. 94

9

LIST OF TABLES

1.1 Taxonomy of MRTA. 25

2.1 Value of parameters for the consensus control law. 45
2.2 Hierarchy levels of tasks for the two behavior states 58

10

INTRODUCTION

With recent rapid advancements in technology, the fourth industrial revolution, in-
dustrial 4.0, is born with the emphasis on smart factory 1. With this trend, warehouses
and distribution centers (DC) start to adopt automation and robotics in their daily oper-
ations. In fact, they can leverage multi-robot system (MRS) technology to greatly benefit
from its robustness and efficiency compared to single-robot systems [GM12]. As the name
suggested, MRS is a robotics system formed by multiple robots; they may or may not
cooperate and communicate with each other to accomplish certain tasks. The tasks can
be found in a wide range of applications. Patrolling [Pop+17] is one of them, which re-
quires robots to visit certain places over and over again. The task is to divide roles and
coverage areas between multiple robots. Exploration and mapping is also a subject of
interest applying to MRS. The benefits of having multiple robots performing this task are
shown in [Gif+10]. On the other hand, a task that corresponds the most to the automa-
tizing warehouses and DC is the load transportation task. Indeed, not only it can improve
efficiency, but also workers’ safety. According to the data from the U.S. Bureau of Labor
Statistics (BLS), the rate of recordable illness and injury cases in the warehousing and
storage sector was 4.8 out of 100 workers in 2020 2.

Formation control is a basis of the MRS when dealing with transportation tasks,
especially for a heavy load that requires more than one robot working together to move it.
Formation control can be seen as a problem of driving robots to a desired geometric shape,
which is, normally, defined by inter-distances between robots in the group [Mia+18].
Depending on the hardware setups and transporting scenarios, the team’s formation can
be a rigid or flexible shape. For instance, the formation in [WS16] does not need to be
rigid because of the gripper attached to each robot. In contrast, our goal is to transport
the load by placing it directly on top of the robots. The challenge of our aim is to be able
to use any commercial off-the-shelf robot for the task without needing to heavily modify
or customize the robots. Therefore, a rigid formation is required for such a mission.

Formation control enables a group of robots to cooperatively carry a load. However,

1. https://www.i-scoop.eu/industry-4-0/
2. https://www.bls.gov/iag/tgs/iag493.htm

11

Introduction

it does not decide which robot should be chosen for the formation team; this is where
multi-robot task allocation (MRTA) is needed. MRTA problems are NP-hard optimization
problems whose aim is to assign robots to tasks in an optimal manner [Hus+18]. The
problem is usually expressed as a cost function that is defined based on the context
and requirements of the system. Since our main application of interest is logistics in
warehouses, tasks to be allocated can require either single (simple pick-and-place mission)
or multiple robots (heavy/huge load transportation). Tasks may be defined as a static list
to be allocated at once as well as dynamically added online during the operation. Total
execution time, which includes time to do allocation and time to complete the mission, is
considered the optimizing parameter. Two different allocation approaches are studied in
order to determine the most suitable for these constraints: Contract Net Protocol (CNP)
and Tabu Search (TS). CNP is an auction-based approach that consists of an auctioneer,
whose job is to send out proposals of tasks, and a group of robots, which send their
bids back to the auctioneer for the tasks [NMS15]. TS is a local search method that
allows the search to step on worse solution neighbors, thus escaping the local minimum.
A tabu list is introduced to store sets of banned solutions for several iterations to avoid
cycling [LRV14].

Figure 1 – A use case scenario of the MRS.

12

Introduction

A practical use case concerning the application in the warehouse is shown in Figure 1.
In a given environment, numerous robots co-exist in order to help the operators moving
things from one point to another. This is where task allocation is needed to adequately
match a robot with a mission. Moreover, if the load to be placed on top is heavy or huge,
thus a group of robots is needed, the formation control is required in order to avoid the
load to slip off. The formation can be in various shapes and sizes of the number of robots.
In addition to cooperative navigation, the team also has to be able to reactively avoid
any obstacles that are not already mapped in the environment.

This thesis tries to answer this use case. The goal of this PhD research is to develop
and implement in an industrial environment a cooperative load-transporting system by
leveraging the multi-robot system. A group of nonholonomic mobile robots is used to
carry the load on top. Since there are usually more robots than required for a task in a
real-world scenario, multi-robot task allocation is required to efficiently choose adequate
robots. The contributions of this thesis are as follows: 1) adaptation of a consensus
flocking algorithm to formation control for the nonholonomic system, 2) improvement
to the obstacle avoidance of the former algorithm such that the formation remains rigid
while evading the obstacle, 3) proposition of an optimization-based formation control that
decomposes the transportation task into multiple cost objectives with different priority
levels. Hierarchy quadratic programming is then used to solve for an optimal formation
control that can preserve the shape during navigation, and 4) comparison of two task
allocation methods: CNP and TS, in order to determine a suitable approach for our
application.

This thesis acts as a testament to the effectiveness of the collaboration between aca-
demic lab and company. In fact, this research project is proposed to the LS2N lab 3 by
E-COBOT 4, a manufacturer of mobile robots whose mission is to provide flexible and
reconfigurable logistics solutions for warehouses and factories. Parts of this work will
be implemented directly to the robot fleet of E-COBOT, named Husky. It is impor-
tant to show that the research done in the scientific lab can be practically deployed in a
commercially viable way.

The thesis starts with an overview of the state-of-the-art of multi-robot system. In
this first chapter, we present different types of control architectures as well as control
strategies for both the formation and task allocation. Chapter 2 presents the work done for

3. https://www.ls2n.fr
4. https://e-cobot.com

13

Introduction

the formation control. This chapter includes the two proposed controllers for formation:
consensus-based and optimization-based. Simulation and experimental results of these
two approaches are also presented in this chapter. The comparison work of task allocation
can be found in chapter 3, where details of the two approaches are introduced along with
the simulations of different study cases. Last but not least, the overall conclusion and
perspectives for future work are discussed in the final chapter.

Publications

Journal article

Daravuth Koung, Olivier Kermorgant, Isabelle Fantoni, and Lamia Belouaer, "Cooper-
ative Multi-Robot Object Transportation System Based on Hierarchical Quadratic Pro-
gramming", IEEE Robotics and Automation Letters, Oct., 2021, vol. 6, pp. 6466-6472.
(This paper was also selected for presentation at the 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS))

Conference proceeding

Daravuth Koung, Isabelle Fantoni, Olivier Kermorgant, and Lamia Belouaer, "Consensus-
based formation control and obstacle avoidance for nonholonomic multi-robot system",
International Conf. on Control, Automation, Robotics and Vision (ICARCV), Dec., 2020.

Poster session

Daravuth Koung, Isabelle Fantoni, Olivier Kermorgant, and Lamia Belouaer, "Cooper-
ative navigation of mobile robots fleet", Journées Francophones sur la Planification, la
Décision et l’Apprentissage pour la conduite de systèmes (JFPDA), July, 2019.

14

Chapter 1

STATE OF THE ART

Contents
1.1 Introduction . 15

1.2 Control architecture . 16

1.2.1 Centralized architecture . 16

1.2.2 Distributed architecture . 17

1.2.3 Hierarchical architecture . 17

1.3 Formation control . 18

1.3.1 Leader-follower . 18

1.3.2 Virtual structure . 20

1.3.3 Behavior-based . 21

1.3.4 Other approaches . 22

1.4 Load handling strategy . 23

1.5 Task allocation . 24

1.5.1 Auction-based . 25

1.5.2 Optimization-based . 26

1.6 Conclusion . 28

1.1 Introduction

In this chapter, an overview of the work related to the multi-robot system (MRS)
is presented. We start with a classification of control architecture used in the MRS.
Then, we present state-of-the-art techniques for formation control, which is followed by
an introduction to various load handling strategies. These strategies focus particularly
on logistics problems, which corresponds to our application scenarios. Finally, a general
review of the multi-robot task allocation methods is presented.

15

Chapter 1 – State of the art

As the MRS is a broad field of research, the reviews of literature in the following
sections focus on pure interaction between mobile robots. It does not discuss other forms
of MRS such as collaborative robotic manipulators or human-robot interaction.

1.2 Control architecture

The research activities of the multi-robot system have been taken off as early as the
late 80s; work done in [AMI89] and [Cal+90] are some of the earliest scientific researches
in the field. Since then, many studies have been conducted; these works mainly fall into
three control architectures [YJC13][VR21]: centralized, distributed, and hierarchical.

In this section, we discuss the differences between these control architectures including
their advantages and disadvantages.

1.2.1 Centralized architecture

This architecture is based on a central control agent as shown in Figure 1.1. This
controller can be an external server or a robot in the team. In order to coordinate and
generate control command of the overall system, it requires the states of all robots in the
group.

Robot 1

Robot 5

Robot 2

Robot 6

Robot 7 Robot 3

Robot 4

Figure 1.1 – A centralized control architecture, where the orange node is the control agent.

Since the controller receives every robot’s state, the main advantage of this control
structure is the global knowledge of each robot in the group, which is crucial for optimal
decisions and performance. However, this architecture suffers an issue of robustness and
reliability since the group of robots depends on a central controller. In addition, it,
generally, requires higher computation power compared to other control architectures,
which diminishes the system’s scalability [YJC13].

16

1.2. Control architecture

1.2.2 Distributed architecture

This control architecture allows each robot to make its own decisions. As shown
in Figure 1.2, this architecture is based on the idea of sharing information between neigh-
bors. Each robot makes decisions independently with respect to others’ states; there is
no single-point controller. The exchanging information can be anything from velocity,
and position to sensor data such as lidar scan points or camera images depending on the
needs of the system.

Robot 1

Robot 5

Robot 2

Robot 6

Robot 7 Robot 3

Robot 4

Figure 1.2 – A distributed control architecture.

Due to the nature of having no central controller, reliability is one of its main advan-
tages. In fact, it responds better to changing or unknown environments. Moreover, it
is also suitable for large and scalable systems because the communication is limited to
within the interaction range between neighbors. However, this could lead to a solution
that is often suboptimal in terms of stability and convergence rate [YJC13].

There is a growing interest in this type of control architecture; in some literature,
however, this controller is referred to as decentralized. This could be because of the
researchers’ backgrounds and specialty differences.

1.2.3 Hierarchical architecture

This architecture is a mixture of the centralized and distributed control structure;
there could be more than one central controller, where each controller is in charge of a
local cluster of robots. Figure 1.3 illustrates a hierarchical architecture; there are two
local central agents (Robot 1 and Robot 2) for coordinating their respective cluster.

17

Chapter 1 – State of the art

Robot 1

Robot 5

Robot 2

Robot 6

Robot 7 Robot 3

Robot 4

Figure 1.3 – A hierarchical control architecture.

This control approach is, generally, implemented in an environment where there ex-
ist numerous independent tasks; each task required an individual or a group of robots.
Compared to distributed, this architecture is less robust; but requires less communica-
tion between robots. Similar to the distributed situation, this type of control is called,
interchangeably, as hybrid in the literature.

1.3 Formation control

The formation is one of many applications of the MRS. Formation control can be seen
as a problem of driving robots to a desired geometric shape, which is, normally, defined by
the inter-distance between robots in the network [Mia+18]. Numerous control strategies
can be, interestingly, seen in the literature. Some of which are [Hou+17]: leader-follower,
virtual structure, and behavior-based approach, which we will explore in this section.

1.3.1 Leader-follower

Leader-follower approach is widely used for formation control due to its simplicity
for implementation. In the control strategy, one or more robots are assigned to be the
leader(s) of the group, which leaves the remaining members as followers. Figure 1.4 shows
a simple one leader and one follower situation. The reference of the desired trajectory is
given to the leader(s), and the local control law of each follower can be defined based on
the desired relative position of that follower to its leader.

18

1.3. Formation control

Figure 1.4 – A leader-follower example [LLL15].

Some work based on the basic configuration of a leader and a follower can be found
in [LLL15], [Con+06], and [Wan+18]. In [Con+06], the formation is formed by defining
a geometric framework based on the distance and angle between each follower and the
leader. Instead of following the leader, the authors of [LLL15] introduce a virtual-following
robot whose position is derived from the leader; then the problem is converted from for-
mation to tracking control for the follower robots. In [Wan+18], the authors use a similar
technique as [Con+06]; there is an obstacle avoidance in addition, and a bounded barrier
function to ensure that the leader stays inside the follower’s field of view. In [Wan+17a],
a vision-based leader-follower approach is studied. The controller is an image-based vi-
sual servoing; control variables are the 2D coordinate of the leader detected by a pin-hole
camera. The idea is to avoid any need for communication from the leader.

Stability analysis of such an approach is relatively straightforward as the controller of
each follower is mostly defined based on the distance and bearing to the leader. On the
other hand, this control strategy depends solely on the leader. It must not be failed or it
can affect the whole formation. In addition, error propagation is common in this system.
There is, generally, no communication feedback from each follower to the leader. As a
result, the leader may leave its followers behind, for instance, when the leader moves too
fast. The lack of ability to perform self-organization is also an issue in this approach.

19

Chapter 1 – State of the art

1.3.2 Virtual structure

For the strategy of the virtual structure, a central controller presumes the entire group
of robots as a single entity. The desired motion is defined for the whole formation, which
is, then, transformed into the desired motion of each robot for individual tracking. Exam-
ples of such work can be found in [BWN09] and [CB15]; nonholonomic robot formation is
performed using a virtual center, which is defined from a predefined reference trajectory.
As illustrated in Figure 1.5a, the virtual center is used to determine the desired posi-
tion for each robot at any time instance; then the robots track this position in Cartesian
space following a control command from a centralized computer. In [LN11], this control
approach is applied to fixed-wing UAVs. However, the virtual structure introduced is
flexible in order to allow the formation to turn smoothly following the desired trajectory.
Moreover, the virtual reference point does not have to always be at the center of the
formation. As demonstrated in [YN08], virtual vehicle (VV) is introduced for each robot
instead. With different desired positional relations between the robot and VV, the for-
mation can be achieved by driving all the VV to converge to a common position as shown
in Figure 1.5b.

(a) (b)

Figure 1.5 – A virtual structure using (a) virtual center approach [BWN09] and (b) virtual
vehicle approach [YN08].

Since each robot has its own trajectory to follow, robots’ behaviors can be simpler to
describe. In addition, inter-robot communication is, generally, not required in such an
approach. This is one of its benefits, but also a drawback because inter-robots collisions
could occur in the presence of perturbations. Moreover, it is not a distributed approach,

20

1.3. Formation control

thus suffering the previously mentioned disadvantages of a central controller.

1.3.3 Behavior-based

In the behavior-based approach, various desired behaviors corresponding to different
situations are assigned to each robot. This strategy was first introduced by [Bro86], and
we can still find this approach in recent work. Figure 1.6 illustrates the concept of this
approach. The behaviors can be collision avoidance, obstacle avoidance, formation, go-to-
goal, etc. These behaviors are then fused together based on their priority and importance.

Avoidance
behavior

Formation
behavior

Go-to-goal
behavior

Sensors Velocity

Figure 1.6 – A behavior-based controller with different behaviors.

In [Mar+13], the authors proposed a behavior-based framework of null-space-behavioral
(NSB) control for patrolling application. This NSB approach is also implemented for for-
mation control, which can be found in the work of [AFH14]. The NSB is used to solve a
conflict of control velocity when a robot is a part of different groups that have the same or
different formation tasks. On the other hand, a simple computation-free behavior-based
control is studied in [SPB18]. In order to form a circle, each robot has four behavior states:
1) scouting: to find a leading robot; 2) chaining: to follow a moving robot; 3) hooking
and looping: to close a loop; 4) merging: to integrate any lone robot to an existing circle.

The author of [Rey87] introduced three rules for flocking behavior, which are collision
avoidance, velocity matching, and flock centering. The idea was to simulate the natural
behavior of birds during the flight in the group, so-called flocking. Developed from these
rules, recent flocking literature can be seen in [Olf06] and [SFZ19]. In order to keep a

21

Chapter 1 – State of the art

coherent velocity, each robot’s controller has a velocity control term that is based on
consensus.

The consensus algorithm is a control strategy whose objective is to get to an agree-
ment on some control features, for instance, the states of robots in the team [Hou+17].
[Wan+17b] is one of the recent literature that implements consensus for formation con-
trol. The authors introduce a weight function to the coefficient of consensus controller
for nonholonomic wheeled robots. The formation is achieved once this weight converges
to zero. In [Fu+19], the consensus is applied to second-order systems. The work also
includes velocity constraints in form of a tangent and local velocity damping function.

The main advantages of this control strategy are the self-organization and scalability
of the system. It does not require any central controller sinch each robot has its own set
of rules and goals to follow. On the other hand, this approach suffers an issue of being
complicated in terms of stability analysis, and a slower convergence rate compared to
other methods.

1.3.4 Other approaches

Apart from the presented well-known control strategies above, there are some other
effective approaches such as optimization and machine learning.

Optimization is another method of interest for formation control. In [Liu+17], the
authors propose a distributed model predictive control approach in which each mobile
robot is considered as a subsystem. The neighboring subsystems are, then, coupled in
the cost function where nash-optimization is used to solve for an optimal solution. The
cost function includes path-following and formation. On the other hand, a centralized
optimization-based control is proposed by [PAM20]. The authors define different tasks as
equality and inequality constraints. The tasks consist of formation, obstacle avoidance,
and trajectory tracking; they all have different levels of priority. The hierarchical quadratic
programming framework is used in order to solve for an optimal solution that respects
imposed constraints.

Last but not least, the use of machine learning techniques can also be found in the field
of MRS. [LHW14] and [Wan+19] are some of the recent works in literature; the authors
applied the reinforcement learning approach for formation control. In [LHW14], a set of
formation behaviors is pre-defined. Each action contributes with a certain weight to the
overall control; the reinforcement learning constantly adjusts these weight coefficients for
optimal formation behavior. On the other hand, the authors of [Wan+19] propose a deep

22

1.4. Load handling strategy

neural networks framework that tries to generate a general formation pattern; it is based
on trial-and-error feedback from each formation round in order to improve the formation
strategy.

1.4 Load handling strategy

(a) pushing [Eoh+11]

(b) caging [Wan+20]

(c) grasping [ABR17]

Figure 1.7 – Difference types of load handling techniques.

As logistics is one of the emerging applications of the MRS, cooperative transportation
task is a mission that has demands in real-world usage. To collectively move an object,
a team of mobile robots can utilize one of the numerous load handling strategies; some
of which include [TAA18]: pushing-only, caging, and grasping. Figure 1.7 shows the
different types of load handling scenarios. For the pushing-only and caging strategy,
there is no physical joint between the robots and the object. These two strategies are one
of the easiest to implement. However, they can be inefficient due to frictional forces. The

23

Chapter 1 – State of the art

terrain on which the robots operate has to be smooth. The same requirement also applies
to the object’s bottom surface. As the name suggested, all that is needed to be done to
move an object is to straightforwardly push or, sometimes, pull that object (Figure 1.7a).
This technique can be found in the work of [Eoh+11], [Che+15] and [ANT17]. When the
object is surrounded by both pushing and pulling robots, as shown in Figure 1.7b, it is
called caging. This approach is implemented in [PAM20], [Dai+16], and [Wan+20]. On
the other hand, the grasping approach can be found in the work of [Yan+04], [WS16],
and [ABR17]. In this case, the load is carried by manipulators that are on top of the
mobile platforms; the manipulators may be either passive or active joints. Even though
the rigidity of the formation’s shape is not important, it requires additional and complex
mechanisms added to the robots.

1.5 Task allocation

Multi-robot task allocation (MRTA) problem is solved differently depending on the
type of tasks, robots, and assignation nature. Generally, there are three classifications of
MRTA [GM04]. Table 1.1 shows a summary of this taxonomy. Single-robot (SR) task
means only one robot is required to complete this task, while the Multi-robot (MR) may
require multiple robots. Single-task (ST) robot represents a kind of robot that can execute
only one task at a time, while the Multi-task (MT) counterpart can perform multiple
tasks simultaneously. Instantaneous assignment (IA) assumes that tasks are independent
of each other. With the available information on robots, tasks, and the environment,
only instantaneous allocation is possible; there is no future assignment planned. Time-
extended assignment (TA) allows a schedule allocation into the future. It requires more
information, for instance, the dependencies between tasks.

Some of the practical problems that can be solved using MRTA techniques are the Mul-
tiple Traveling Salesman Problem (mTSP) and the Vehicle Routing Problem (VRP) [KSD13].
mTSP is a modified version of the classic Traveling Salesman problem (TSP). In TSP,
the salesman has a list of towns to visit; the aim is to find the optimal path that would
require the least traveling distance or time to complete the tour. All the towns have to be
visited only once. Increased to m salesmen in mTSP, the goal remains the same; starting
from the same point, each salesman has to visit at least one town before returning back
to the start point. Applying to robotics, the town represents a destination point in the
environment while each salesman is represented by a robot. The travel cost to be mini-

24

1.5. Task allocation

Table 1.1 – Taxonomy of MRTA.

Category Type 1 Type 2

Tasks SR: can be completed by one
robot. MR: requires multiple robots.

Robots ST: can perform one task at a
time.

MT: can perform multiple tasks
at the same time.

Assignment IA: a robot is assigned to one
task at a time.

TA: a robot are given a schedule
of tasks.

mized is distance and/or time. VRP is a more generalized version of mTSP. In VRP, the
starting point of each vehicle does not have to be the same. Instead of having a list of
towns or points to visit, it has sets of pickup and delivery location pairs. It aims to solve
the problem of distributing goods or transporting passengers. Similar mTSP, vehicles will
return to their own starting depot at the end.

Since the MRTA evolves around minimizing an objective function, different techniques
for representing the cost function have been introduced [G L+05]:

— MinSum: to minimize the total cost of all robots.
— MinMax : to minimize the worst cost of a robot.
— MinAve: to minimize the average cost of all targets.
Numerous studies have been proposed in the literature to address the MRTA problems.

We will present some of the recent work that mainly falls into two of the most widely used
MRTA approaches [KHE15]: market-based or auction-based and optimization-based.

1.5.1 Auction-based

Inspired by economical studies, market-based relies on a mechanism called auction.
Figure 1.8 demonstrates a process of the auction for market-based task allocation. A
central server or one of the robots in the team can be an auctioneer in order to broadcast
tasks to be done. Then, each individual robot submits its bids based on various factors
such as distance to travel, time to execute, battery level, robot capability, etc. After all
bids are received, the auctioneer can decide and pick the appropriate winner for the task.

The auction process can be divided into two categories [See+20]: single-item auction
and combinatorial auction. These two are developed further to various variants, but the
core definition remains. Single-item auctioning method allocates only a task at a time.

25

Chapter 1 – State of the art

Figure 1.8 – A process of auction-based task allocation [See+20].

It is a simple and efficiently quick approach. However, optimality can not be guaranteed
because some tasks may be close to each other and should be allocated to the same robot.
This issue can be solved using the combinatorial auction. Since a set of positive synergy
tasks are put to auction at once, the solution can be more optimal for the combinatorial
than the single-item auction approach. However, the computational complexity of the
system increases in this case as the auctioneer has to understand the nature of tasks and
bundle them together.

A recent use of the auction-based approach can be found in [BSM20]. The authors
rely solely on the distance between the robot’s current position and the assigning task
to compute the bid. In [BCD19], heuristics decisions are added to the auction process.
Those heuristics include the closest robot to the starting of the mission; and the priority
zone association of the robot. In [LCS15], the auction’s objective is to maximize total
payoffs, meaning maximum delivery of parts for assembly. Since this work is intended
for a manufacturing environment, a battery constraint is also imposed in form of the
total duration of tasks; this can not exceed the robot’s status. In [SGC19], a single-
item auctioning method is proposed for the heterogeneous system. The authors focus on
minimizing the energy usage as well as the total task completion time. In addition, each
robot can obtain partial knowledge of tasks and robots in the environment; they can then
decide whether to stay and complete tasks they know or roam around for other tasks. In
[Bar+20], more cost factors are added to the objective function. In addition to minimizing
the total traveling distance, the authors aim to balance the load between robots as well
as to maximize a quality satisfaction. Each task has a level of quality requirement, and
so do the robots. To be considered satisfied, the difference in quality metric between the
assigning task and the robot has to be minimized.

1.5.2 Optimization-based

Optimization has been used in many various fields. It aims to find an optimal or close
to optimal solution within a set of constraints by minimizing a cost or maximizing a profit
of a system [KHE15]. There exists a huge collection of optimization-based approaches for

26

1.5. Task allocation

MRTA depending on the nature of the problem.
When the allocation problem is small, with a few tasks and robots, it is possible to find

the optimal solution using an exact search algorithm. Mixed-Integer Linear Programming
is one of the exact algorithms, for which the allocation problem is formulated as integers
and linear equations. In [SR15], this approach is used to solve the heterogeneous mTSP.
The authors focus on having the salesman (robot) that starts from different points. Some
of the targets are set to require specific robots to visit; this is set to reflect the hetero-
geneous nature of the robots. The algorithm aims to minimize the sum of all traveling
costs, which are computed in a function of the euclidean distance between two points.

Another well-known exact search is the Hungarian algorithm. It is exploited in [Xue+21]
to solve task allocation of unmanned surface vehicles, which have to move from their start-
ing position to different target points. The goal is to minimize the max task time and
reduce the total task time. The task time is a combination of the travel time and the
turning time at initial and target points.

On the other hand, if the number of tasks and robots becomes too large, the exact
solution approach might not be able to sustainably find the optimal solution in a finite
amount of time. In this case, approximate search algorithms can be used. They may
not find the general optimal solution, but an approximation that is close to the global
one. Simulated Annealing (SA), a trajectory-based metaheuristic, is an approximation
approach that consists of a single agent that traverses through the search space. In order
to avoid being stuck in local minima, the SA accepts poor solutions within a certain
probability during the search for the global optimum. An example of the use of SA can
be found in [MM06]. The authors propose a solution to the mTSP using the MinMax
cost function, which is based on the traveling cost between target points.

Another type of metaheuristic is population-based optimization, examples of which
are Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Op-
timization (ACO). Inspired by genetic selection, the GA relies on crossover and mutation
operations to find potential solutions, so-called chromosomes. A fitness function is intro-
duced, against which the chromosomes are evaluated. The work in [Tsa+18] is one of the
MRTA that implements this GA. The authors propose a fitness function that corresponds
to the traveling distance of each task for the robot. Similar to GA, PSO relies on evolution
over generations to search for optimal solutions. However, it does not have evolutionary
operators such as crossover or mutation. Instead, PSO initializes a population, called
particles, over a search space. Each particle updates its behavior based on its own trajec-

27

Chapter 1 – State of the art

tory as well as the two best-found solutions: personal best and global best. One of the
PSO work on MRTA can be found in [WJC20]. The authors propose a multi-objective
PSO, whose cost function tries to minimize the total cost of all robots (MinSum) and
the worst cost of a robot (MinMax) at the same time. They are both in the function
of travel distance. Last but not least, the ACO introduces the concept of virtual ants.
These ants start off to search for food (potential solution) leaving a trail behind, known
as pheromone deposition. Other ants update their trajectories taking into account this
trail. Over time, this trail can be evaporated leaving the path less attractive. In contrast,
the more pheromone deposition there is, the more ants are likely to follow that trail; this
induces positive feedback leading to eventually having all ants search on the same path.

1.6 Conclusion

In this chapter we have discussed the three different architectures of control used in the
multi-robot system: centralized, distributed, and hierarchical. Even though they inherit
different advantages and disadvantages, one does not have a clear edge over another. It
depends on the actual MRS application considering the environment, number of robots,
number of missions, etc.

The formation is a crucial part of any cooperative transportation task. Apart from
the leader-follower, virtual structure, and behavior-based, which are the most well-known
approaches, there exists also studies that are based on optimization and machine learning.
However, not all of them are applied to the transportation mission. In addition to con-
ventional formation control, which includes forming a shape and navigation, extra studies
have to be conducted for such tasks; for instance, the load handling or carrying tech-
niques. We have detailed three common strategies: pushing-only, caging, and grasping;
they can have an impact on how the formation control method is chosen.

Since our goal is to transport the load directly on top of the robots, a fixed inter-
distance formation control is required. In this thesis, we base the formation on two
different control strategies: the consensus algorithm and the hierarchical quadratic pro-
gramming approach. We consider using the consensus control because it allows the forma-
tion problem to be resolved in a distributed manner, thus increasing the scalability of the
system. On the other hand, the hierarchical quadratic programming is a more relevant
solution considering our use cases; it allows the formation control to clearly specify prior-
ities for different behaviors. For instance, we can prioritize having a fixed inter-distance

28

1.6. Conclusion

formation over team navigation.
Last but not least, we have presented an introduction to the multi-robot task allo-

cation. The type of MRTA is divided into three poles of taxonomy. Since MRTA is a
challenge of optimization, various objective cost functions can be formulated. Then a po-
tential optimal solution can be found using widely-known strategies such as auction-based
and optimization-based. There is a huge list of MRTA solving strategies that fall into
these two categories. These strategies are tailored to specific requirements and assump-
tions of various applications. However, few of the proposed approaches are validated in
an actual real-world environment, and many of them are validated only in simulations.

In this work, the Contract Net Protocol and the Tabu Search are chosen. The CNP
represents the auction-based approach, which can solve the allocation problem in a dis-
tributed way. However, its solution can be less optimal compared to its optimization-based
counterpart. Hence, Tabu Search is our next choice representing the optimization-based
allocation because it allows the solver to step a bit out of a minimum in order to find better
minima values. These two approaches are then implemented and compared considering
our use cases.

29

Chapter 2

FORMATION CONTROL

Contents
2.1 Introduction . 31
2.2 Consensus-based formation . 32

2.2.1 Wheeled mobile robots modeling 33
2.2.2 Graph theory . 35
2.2.3 Preliminaries . 39
2.2.4 Formation control algorithm . 42
2.2.5 Simulations and experimental results 44
2.2.6 Conclusion . 49

2.3 Optimization-based approach 50
2.3.1 Task-based control . 50
2.3.2 Hierarchical quadratic programming 51
2.3.3 Task definitions . 51
2.3.4 Simulation and experimental results 57
2.3.5 Conclusion . 71

2.4 Conclusion on formation control 72

2.1 Introduction

The aim of this chapter is to present two proposed formation strategies that are based
on different control architectures. The consensus-based formation is a distributed con-
troller, whereas the optimization-based formation is a centralized approach. The con-
sensus provides a solution to the formation problem by allowing each robot to react and
compute its control velocity locally based on its neighbors. On the other hand, the opti-
mization approach, which is based on the HQP, allows us to set behavior priorities. This
results in having a more stable and fixed inter-distance formation.

31

Chapter 2 – Formation control

We will discuss some fundamental mathematical theories that build up to the proposed
consensus algorithm. These include graph theory and the consensus theory itself. The
later half of this chapter is dedicated to the optimization-based controller. In that section,
we introduce the hierarchical quadratic programming approach as well as definitions of
sub-tasks for the optimization problem.

The two proposed control laws are validated in both simulations and real-world exper-
iments. The results are presented in their respective controller sections. Our deployment
objective for all robots in the team is to cooperatively transport a load. It requires con-
stant inter-distances between them throughout navigation. This is the main attribute we
are looking for.

2.2 Consensus-based formation

The consensus algorithm is a process of reaching an agreement on some values of a
system. It is applied to a wide range of applications in the field of distributed computing
and multi-agent systems. For robotics, consensus can be used as a control approach whose
objective is to get to an agreement on some control features, for instance, the states of
robots in the network [Hou+17]. Equation (2.1) is an example of the consensus problem;
the goal is to maintain a relative position to the neighbors by minimizing a cost function:

vi =
∑

j∈Ni

∥pj − pi − pij∥2 (2.1)

where vi is the control input of robot i, pij is a desired relative position of robot i and its
neighbor j, and pi and pj is the position of robot i and j, respectively. If pij =

(
0 0

)T
,

all robots in the group will converge to a single point. Indeed, this relative position can be
defined such that a desired shape of formation is obtained. From this simple technique,
researchers have been pushing the boundary by introducing weight coefficients and/or
designing more complex consensus terms; [Fal+11] and [Wu+19] are some examples of
that.

Our consensus-based formation interest is to adapt the distributed flocking algorithm,
which is introduced for the double integrator system in [SFZ19], for a single integrator
formation system. We also introduce an improved obstacle avoidance, which is inspired by
the work of [Olf06]. It considers each obstacle as a virtual robot, then a potential function
is used to repel robots from the virtual robots (obstacles). The improvement to the

32

2.2. Consensus-based formation

original obstacle avoidance approach is that each robot takes into account its neighbors’
obstacle(s) in addition to its own obstacle(s), which is more suitable for preserving the
formation compared to the original approach, where the obstacle avoidance is performed
independently for each robot. This controller is then applied to a group of wheeled mobile
robots, thus requiring a state linearization to overcome the nonholonomic constraint.

2.2.1 Wheeled mobile robots modeling

Let’s consider a multi-robot system with n robots. Each robot is a differential drive
robot, where (xri, yri)T ∈ R2 is the center of the i-th robot; θi, vi and ωi are its heading
angle, linear velocity and angular velocity, respectively as shown in Figure 2.1. The
kinematic model of this i-th robot can be expressed as follows:

ẋri

ẏri

θ̇i

 =

cos θi 0
sin θi 0

0 1

vi

ωi

 (2.2)

Figure 2.1 – A nonholonomic wheeled mobile robot.

The robot is subjected to nonholonomic constraints. Therefore, a static feedback
method is used in order to apply any control law to the robots. An offset point, pi =(
xi yi

)T
is defined from the robot’s center as shown in Figure 2.1; as a result, the problem

is shifted from controlling center of the robot to this offset point, which can be a point of
interest later. Referenced to this point, the kinematic model is holonomic for l ̸= 0, and
it can be written as follows [RB08].

33

Chapter 2 – Formation control

pi =
xi

yi

 =
xri + l cos θi

yri + l sin θi

 (2.3)

Differentiating Equation (2.3) with respect to time, we can get the velocity of this
offset in relation robot’s linear and angular velocity as follows:

ṗi =
ẋi

ẏi

 = B(θi)ui (2.4)

where B(θi) =
cos θi −l sin θi

sin θi l cos θi

, l ̸= 0 is the offset length, and ui =
(
ui ωi

)T
is the

velocity vector of ith robot.
Expanding Equation (2.4) to n number of robots, the relation between velocities of

each offset point and the robot is expressed as follows:

v = Jxu (2.5)

where:

v =

ṗ1

ṗ2
...

ṗn

 , Jx =

B(θ1) 0

0
. . .

B(θn)

 , u =

u1

u2
...

un

The use of the offset point is extended to a mounting point between the load and

group formation. Since this point is the control point of interest, it is practical to attach
a load support to each robot at this point through a passive revolute joint. Figure 2.2
shows this idea of load placement. By mounting as such, the load’s position and heading
can be directly controlled since its frame is coincident with the formation frame.

Figure 2.2 – Top view of the system. The green square represents a support for load
placement that is on top of the formation.

34

2.2. Consensus-based formation

Once the payload is mounted, the whole system can be seen as a single, highly overac-
tuated mobile robot. Therefore, it is of prime importance to generate consistent control
inputs for all robots such that the formation is kept. Ignoring these would lead to either
set high forces on the passive joint or induce slipping or skidding of some robots. In both
cases, the general motion of the formation would not be controlled correctly.

2.2.2 Graph theory

A graph is a pair of vertex set V and edge set E [Die05], G = (V , E) where V =
{1, 2 . . . , n} and E ⊆ {(i, j) : i, j ∈ V , j ̸= i}. A vertex represents a node, an agent, or
a robot, whereas an edge is formed by two connected vertices. Thus, each element of
E is a pair of V . Figure 2.3 shows an example of the graph consisting of five vertices
V = {1, 3, . . . , 5} and three edges E = {{1, 2}, {1, 3}, {4, 5}}. The adjacency relationships
of the such graph can be expressed in a matrix as follows:

A(G) =

0 1 1 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

(2.6)

1
2

4
5

3

Figure 2.3 – Example of a graph.

The adjacency matrix, A(G), is a symmetric matrix with the dimension of n×n, where
n is the number of vertices, that represents the connectivity between neighbors:

[A(G)]ij =

1 if (i, j) ∈ E ,

0 otherwise.
(2.7)

35

Chapter 2 – Formation control

In a multi-robot system, graph theory is often used to describe its topology. A topol-
ogy is a description of physical relations between each robot in the group. It can be
expressed by either an undirected or directed graph depending on the relations between
neighbors. Vertices are symmetrically linked for the undirected graph, whereas the links
are asymmetric for the directed graph. The edges indicate a two-way relationship in the
undirected graph. For the directed graph, it’s a one-way relationship; a robot can obtain
information about a neighbor by explicitly communicating with that neighboring robot or
by using its onboard sensor(s) to derive the information without actual communication.
An example of the undirected and directed graph is illustrated in Figure 2.4a and Fig-
ure 2.4b, respectively. Notice that each link (edge) between vertices is represented by an
oriented arrow for the directed graph in order to indicate a constraint motion of an agent
with respect to another. For instance, in Figure 2.4b the arrow’s direction flows from ver-
tex (robot) 1 to vertex (robot) 2 indicating that the motion of robot 1 is constrained to
robot 2. On the other hand, the robot 2 is unaware of 1, and its motion is unconstrained.

1 2

4 3

(a)

1 2

4 3

(b)

Figure 2.4 – Example of (a) undirected and (b) directed graph.

A graph is considered to be connected if there is a path that is linked between any pair
of vertices. Otherwise, the graph is defined as disconnected. For the case of undirected
graph, the connectivity can only be either connected (Figure 2.5a) or disconnected (Fig-
ure 2.5d). The directed graph, however, can be further classified into weakly (Figure 2.5b)
and strongly (Figure 2.5c) connected graphs depending on if there exists a directed path
between each vertex pair or not.

Another crucial aspect of the graph theory in formation is rigidity. A rigid graph
is mainly applicable to an undirected graph, where the formation’s shape is maintained
throughout the maneuver [Ren+10]. For instance, if the formation is controlled by inter-
distances between robots, these distances will have to remain constant at their corre-
sponding desired values. In a rigid graph, the number of edges can grow significantly with

36

2.2. Consensus-based formation

1 2

4 3

(a)

1 2

4 3

(b)
1 2

4 3

(c)

1 2

4 3

(d)

Figure 2.5 – Example of the connectivity of a graph: (a) connnected, (b) weakly connected,
(c) strongly connected, and (d) disconnected graph.

respect to the number of vertices or robots. In fact, for a fully-connected graph, the total
number of edges is:

n(n − 1)
2 (2.8)

where n is the number of robots in the formation. Therefore, a concept of minimally rigid
graph is commonly used instead. Minimally rigid graph corresponds to a graph where no
edge can be further removed without losing its rigidity, hence the word minimal [FH08].
There exists also a more constrained version of rigidity, named infinitesimally rigid. It is
when the vertices are allowed to move infinitesimally while still preserving the rigidity.
To achieve this, the motion has to satisfy Equation (2.9) [Zel+15].

(vj − vi)T (pj − pi) = 0, ∀(i, j) ∈ E (2.9)

For a two-dimensional system, the minimal rigidity can be obtained when the total
number of edges in the graph is:

2n − 3 (2.10)

where each subgraph of n′ vertices, where n′ ≤ n, has no more than 2n′ − 3 edges. The

37

Chapter 2 – Formation control

1 2

4 3

(a)

1 2

4 3

(b)

1 2

4 3

(c)
1 2

4 3

(d)

1 2

4 3

(e)

Figure 2.6 – Example of a graph rigidity in 2D: (a) and (b) flexible/non-rigid, (c) and (d)
minimally rigid, and (e) rigid.

configuration of a minimally rigid graph is, therefore, not unique as shown in Figure 2.6c
and Figure 2.6d. Figure 2.6 illustrates an example of the rigidity characteristic. The
graph Figure 2.6a and Figure 2.6b are flexible or non-rigid as the vertex 2 of Figure 2.6a
can swing freely with a fixed radius around vertex 1, whereas in Figure 2.6b, the shape
can change to a parallelogram without affect the distances between robots. On the other
hand, one can remove any edge from the graph in Figure 2.6e without rendering it flexible.

Our system is represented by an undirected graph. Each robot is denoted by a node
of the vertices, and the set of neighbors of node i, Ni, is defined by:

Ni = {j ∈ V : (i, j) ∈ E} = {j ∈ V : ∥pj − pi∥ < c} (2.11)

where c > 0 is the interaction range between robots, and ∥.∥ denotes the Euclidean norm.
pi and pj are the Cartesian coordinates of robots i and j, respectively.

The desired formation of the system can be expressed as:

∥pj − pi∥ = d ∀j ∈ Ni(p) (2.12)

where d is the desired inter-distance between robot i and j.

38

2.2. Consensus-based formation

2.2.3 Preliminaries

This section discusses the flocking control for the double-integrator system. We start
off by introducing the preliminaries and the control algorithm proposed by [Olf06], fol-
lowed by the modified PID-like controller of [SFZ19].

Similar to the adjacency matrix of the topological connection in the graph theory, a
spatial adjacency matrix A(p) = [aij(p)]; it is defined in order to reflect on the position-
based connection between robots. The elements aij of this matrix are given as follows:

aij(p) =

0 if i = j

ρh(∥pj − pi∥σ/∥c∥σ) if i ̸= j
(2.13)

where ph is called a bump function and ∥.∥σ is called σ-norm. The bump function is a
smooth scalar function ranging between zero and one: R+ → [0, 1]. With h ∈ (0, 1), this
function is defined as follows:

ρh(z) =

1, z ∈ [0, h)
1
2

[
1 + cos

(
π

(z − h)
(1 − h)

)]
, z ∈ [h, 1]

0, otherwise

(2.14)

The σ-norm is a map of a vector to positive value: Rn → R+, n ∈ Z+. This norm is
defined as follows:

∥z∥σ = 1
ϵ

[√
1 + ϵ∥z∥2 − 1

]
(2.15)

with ϵ > 0, and its gradient can be expressed as:

σϵ(z) = ∇∥z∥σ = z√
1 + ϵ∥z∥2

= z
1 + ϵ∥z∥σ

(2.16)

Thus unlike ∥z∥, which is not differentiable at z = 0, ∥z∥σ is differentiable everywhere.
A smooth pairwise attractive/repulsive potential function is defined as:

Ψα(z) =
∫ z

∥d∥σ

Φα(δ)dδ (2.17)

This function is an integration of an action function Φα that has a minimum at z = ∥d∥σ

and a finite cut-off when z ≥ ∥c∥σ. An example of this potential function Ψα(z) is depicted

39

Chapter 2 – Formation control

in Figure 2.7. The action function is defined as follows:

Φα(z) = ρh(z/∥c∥σ)Φ(z − ∥d∥σ)

Φ(z) = 1
2 [(a + b)σ1(z + e) + (a − b)]

(2.18)

where σ1(z) = z/
√

1 + z2. With 0 < a ≤ b and e = |a − b|/
√

4ab, the uneven sigmoidal
function Φ(z) = 0 when z = 0.

Figure 2.7 – Smooth pairwise function Ψα(z) [Olf06].

Therefore, a smooth collective potential function is introduced as:

V (p) = 1
2
∑

i

∑
j ̸=i

Ψα (∥pj − pi∥α) (2.19)

With the above attractive/repulsive characteristic, a control law introduced by [Olf06],
which applied on the second-order dynamic of each robot, is defined as follows:

v̇i =
∑

j∈Ni

[Φα(∥pj − pi∥σ)nij + aij(p)(vj − vi)] + fi(vi, pi, vr, pr) (2.20)

where fi(vi, pi, vr, pr) = −c1(pi − pr) − c2(vi − vr), c1, c2 > 0 and nij = σϵ(pj − pi).
This control law is made up of three terms: 1) a gradient-based term that regulates the

inter-distance between robots, 2) a velocity consensus for flocking, and 3) a navigational
feedback control, where pr and pr are the desired position and velocity to be tracked,

40

2.2. Consensus-based formation

respectively.
To further improve the system’s behavior, a PID-like tunable gains version of this

control algorithm is introduced by [SFZ19]. It is given as follows:

v̇i =
∑

j∈Ni

[KpΦα(∥pj − pi∥σ)nij + K ′
paij(p)(pj − pi) + Kdaij(p)(vj − vi)

+ Ki

∫ ∑
j∈Ni

Φα(∥pj − pi∥σ)nijdt] + fi(vi, pi, vr, pr)
(2.21)

where Kp, K ′
p, Kd, Ki > 0 are the tuning gains of the controller. The authors’ perspec-

tive of introducing Kp, K ′
p, Kd is to compensate for the uncertainties when applying to a

nonlinear system, whereas the integral term with Ki is added in order to overcome the
steady-state error problem.

Since this flocking algorithm does not include any obstacle avoidance capability in the
control law, we incorporate the obstacle avoidance algorithm from [Olf06].

Figure 2.8 – Obstacles denoted by agent-based approach: (a) wall and (b) spherical
obstacles [Olf06].

Figure 2.8 shows the agent-based approach of representing obstacles. An α-agent
represents actual robots while a β-agent indicates the obstacles. The set of neighbors of
node i can be written as:

41

Chapter 2 – Formation control

Nα
i = j ∈ Vα : ∥pj − pi∥ < c

Nβ
i = k ∈ Vβ : ∥p̂i,k − pi∥ < c′

(2.22)

Incorporating the agent-to-obstacle constraint into the control law, the overall con-
straints of the system, thus, consist of:

∥pj − pi∥ = d ∀j ∈ Nα
i

∥p̂i,k − pi∥ = d′ ∀k ∈ Nβ
i

(2.23)

where c′ and d′ are the interaction range and inter-distance between α-agent i and β-
agent k, respectively. p̂i,k is an estimated position, and v̂i,k is an estimated velocity of
the closest point from robot i to obstacle k. These estimations of position and velocity
can be done using either external or onboard sensors such as lidar and camera. Since
obstacles are treated as virtual robots, the avoidance control law is similar to the flocking
control law based on a potential function, which is defined as follows:

v̇β
i = cβ

1
∑

k∈Nβ
i

Φβ(∥p̂i,k − pi∥σ)n̂i,k + cβ
2
∑

k∈Nβ
i

bi,k(p)(v̂i,k − vi) (2.24)

where cβ
1 , cβ

2 > 0 are gains, n̂i,k = σϵ(p̂i,k − pi), and bi,k(p), which is the heterogeneous
adjacency between an α-agent i and its neighboring obstacle k at p̂i,k, is defined as:

bi,k(p) = ρh (∥p̂i,k − pi∥σ/∥d′∥σ) (2.25)

with the function defining the repulsive action expressed as follows:

Φβ(z) = ρh(z/∥d′∥σ)(σ1(z − ∥d′∥σ) − 1) (2.26)

2.2.4 Formation control algorithm

If we combine the flocking control, Equation (2.21), with the obstacle avoidance, Equa-
tion (2.24), we get the overall control law as follows:

42

2.2. Consensus-based formation

v̇i =
∑

j∈Nα
i

[KpΦα(∥pj − pi∥σ)nij + K ′
paij(p)(pj − pi) + Kdaij(p)(vj − vi)]

+ Ki

∫ ∑
j∈Nα

i

Φα(∥pj − pi∥σ)nijdt + fi(vi, pi, vr, pr)

+ cβ
1
∑

k∈Nβ
i

Φβ(∥p̂i,k − pi∥σ)n̂i,k + cβ
2
∑

k∈Nβ
i

bi,k(p)(v̂i,k − vi)

(2.27)

Since our goal is to apply a formation control to a single-integrator system, we are
interested only in the gradient-based term for regulating the inter-distance and not so
much in the velocity matching term. The overall control law, Equation (2.27), is thus
modified to be as follows:

vi =
∑

j∈Nα
i

KpΦα(∥pj − pi∥σ)nij + Ki

∫ ∑
j∈Nα

i

Φα(∥pj − pi∥σ)nijdt

− sat(cγ
1(pi − pr)) + vβ

i

(2.28)

where vβ
i = cβ

1
∑

k∈Nβ
i

Φβ(∥p̂i,k − pi∥σ)n̂i,k and sat(.) is a saturation function defined as:

sat(x) =

xmin, x < xmin

xmax, x > xmax

x, otherwise.

(2.29)

The value of xmin and xmax are chosen explicitly in order to ensure that the navigation
term will not dominate over other control terms when the goal point is too far away.

Moreover, in order to ensure the formation shape while navigating around the obstacle,
we propose a new consensus obstacle avoidance scheme. In this approach, each robot will
take into account its neighbors’ obstacles as well. By doing so, it can anticipate incoming
obstacles even if they are not yet in its own detection range. Hence, the robots in the group
will synchronously avoid the obstacle. The obstacle avoidance term of Equation (2.28), vβ

i

now takes into account all potential obstacles for all robots, which is expressed as follows:

vβ
i = cβ

1
∑

k∈Nβ
i

Φβ(∥p̂i,k − pi∥σ)n̂i,k +
∑

j∈Nα
i

∑
k∈Nβ

j

Φβ(∥p̂j,k − pj∥σ)n̂j,k (2.30)

Combining Equation (2.28) and (2.30), the overall proposed control law for a single
integrator system is as follows:

43

Chapter 2 – Formation control

vi =
∑

j∈Nα
i

KpΦα(∥pj − pi∥σ)nij + Ki

∫ ∑
j∈Nα

i

Φα(∥pj − pi∥σ)nijdt

+ cβ
1
∑

k∈Nβ
i

Φβ(∥p̂i,k − pi∥σ)n̂i,k +
∑

j∈Nα
i

∑
k∈Nβ

j

Φβ(∥p̂j,k − pj∥σ)n̂j,k

− sat(cγ
1(pi − pr))

(2.31)

2.2.5 Simulations and experimental results

We validate the proposed control law in simulation as well as in the real experiment.
In order to apply the control algorithm to a mobile robot, we use the static state feedback
as explained in Section 2.2.1, specifically using Equation (2.4). In both simulation and
experiment, ROS 1 is used as the middleware. In the case of simulation, we simulate
the control laws from Equation (2.28) and (2.30). For the experiment, we utilize four
Huskys 2. The control law from Equation (2.30) is run in each Husky independently, only
the obstacle and its own positions, which are estimated using onboard sensors, in a known
map are shared within a local network. The aim is to obtain a formation control that can
keep its shape throughout the navigation, thus the inter-distances between robots should
be constant.

The value of parameters used in the simulation and experiment are shown in Table 2.1.
The interaction range, c, for control law from Equation (2.28) is chosen according to
the remark of authors in [Olf06], while for Equation (2.30), it is defined such that each
robot becomes a neighbor of all others in the team; in another word, a fully-connected
graph. The minimum and maximum values of the saturation function are −0.3 and 0.3,
respectively.

Simulation

Figure 2.9 illustrates the simulation architecture used. Gazebo 3 is used to simulate
four robots under one ROS master. Each robot has its own localization, obstacle detection,
and formation control node.

The simulated environment is shown in Figure 2.10. The obstacle is presented as the
red cylinder whereas the green one represents the goal point.

1. https://www.ros.org
2. https://e-cobot.com/husky-robot-mobile-intelligent-2/
3. https://gazebosim.org

44

2.2. Consensus-based formation

Table 2.1 – Value of parameters for the consensus control law.

Parameter Value Parameter value [m]

a 1.0 xcg 8.0
b 1.0 ycg -3.0
h 0.2 d 2.0
ϵ 0.1 d′ 1.5

Kp 0.2 c for (2.28) 2.5
Ki 0.05 c for (2.30) 5.0
cβ

1 0.3 l 0.2
cγ

1 0.25

Controller

Simulated
Robots

velocity

laserscan

poses
Obstacle
detection

obstacles

Figure 2.9 – Simulated system architecture.

A simulation of Equation (2.28) is shown in Figure 2.11. It can be seen in Figure 2.11b
that robot 0 (red) breaks formation in order to avoid the obstacle. More precisely, this
robot avoids the obstacle from the left side while the other robots avoid it from the right
side. Indeed, in Figure 2.11a it was clear that the inter-distances took a huge amount
of time to stabilize. The formation shape is totally distorted and restored only after the
obstacle is passed through. This is, indeed, a common behavior as shown in [Olf06]. This
behavior is not desirable considering we want the formation to be kept always, which is
important for the application of load transportation.

The result of the proposed control law, Equation (2.30), is shown in Figure 2.12.
In Figure 2.12a, dij represents the inter-distance between robots i and j, where i, j ∈

45

Chapter 2 – Formation control

Figure 2.10 – Gazebo environment for simulation.

0 10 20 30 40 50 60
time [s]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

In
te

r-
d

is
ta

n
ce

[m
]

d01

d02

d03

d12

d13

d23

(a) Inter-distances between robots. (b) Robots’ trajectories.

Figure 2.11 – Simulation of formation and obstacle avoidance using flocking / avoidance
law of Equation (2.28).

{0, 1, 2, 3} and i ̸= j. The inter-distances between each robot quickly converge and
stay stable over time. Moreover, the formation of the team is preserved even during
obstacle avoidance motion. As shown in Figure 2.12b, the shape is fixed throughout the
navigation. This behavior is desirable, and we will see the actual implementation of this
control algorithm in the next section.

Experiment

For the actual experiment, four robots are used; they are all independent of each other
in terms of controller and ROS master node. The team is fully connected, meaning each

46

2.2. Consensus-based formation

0 10 20 30 40
time [s]

1.2

1.4

1.6

1.8

2.0

2.2

2.4

In
te

r-
d

is
ta

n
ce

[m
]

d01

d02

d03

d12

d13

d23

(a) Inter-distances between robots. (b) Robots’ trajectories.

Figure 2.12 – Simulation of formation and obstacle avoidance using the proposed control
law, Equation (2.30).

robot broadcasts its own pose and obstacle position in a fixed reference frame to every
other robot in the group. Obstacles that are not already mapped in the environment will
be detected and avoided in real-time.

Controller

Obstacle
detection

Localisation

Obstacle’s and robot’s
pose from neighbors

Obstacle’s and robot’s
pose to neighbors

(side neighbors)

(diag
onal

neig
hb

ors
)

Figure 2.13 – Experimental setup of the consensus formation.

Figure 2.14 shows the implementation result of the proposed control law. From Fig-
ure 2.14a, we can notice the convergence of the inter-distances between robots. In fact,
once the inter-distances start to converge and stabilize, the formation shape is kept regard-
less of the disturbance from an obstacle. Figure 2.14b shows the trajectories of the four

47

Chapter 2 – Formation control

Huskys. Similar to simulation, the formation does not break while the team maneuvers
away from the obstacle satisfying the requirements for cooperative transportation.

5 10 15 20 25 30 35 40
time [s]

1.4

1.6

1.8

2.0

2.2

2.4

In
te

r-
d

is
ta

n
ce

[m
]

d01

d02

d03

d12

d13

d23

(a) Inter-distances between robots. (b) Robots’ trajectories.

Figure 2.14 – Real experiment of formation and obstacle avoidance using proposed control
law, Equation (2.30).

Figure 2.15 shows a sequence of snapshots of this experiment, where the fleet has to
move from one point to another. An obstacle (a carton box) is placed in between the two
points. This obstacle is not already known in the map, hence no initial path planning can
try to avoid it; it has to be detected and avoided by the whole fleet during the navigation.

Figure 2.15 – Snapshots of the experiment.

Notice that the resultant inter-distance between robots on each side of the square
is not equal to the desired inter-distance; this is because this desired value was set to
all neighbors in the team, including those that are diagonal to each other. Hence the
consensus tries to reach a compromise between all robots. Therefore, in the following
experiment, we introduce a different desired inter-distance value for the diagonal neighbor

48

2.2. Consensus-based formation

robots, more specifically it will be a square root of two of that of the side neighbors; it is
corresponding to the shape of a perfect square.

10 20 30 40 50 60 70
time [s]

2.0

2.5

3.0

3.5

4.0

In
te

r-
di

st
an

ce
[m

]

d01
d02
d03
d12
d13
d23
desired

(a) Inter-distances between robots. (b) Robots’ trajectories.

Figure 2.16 – Experiment of the formation and obstacle avoidance using the proposed
control law with square root diagonal neighbor distance.

The formation result can be seen in Figure 2.16. The inter-distances of side and
diagonal neighbors converge quickly to the desired ones, and they remain around the
desired values even when maneuvering around the obstacle. This is backed by the robots’
trajectories; the square shape is obtained at around t = 10s, indicated as a blue square
in Figure 2.16b.

2.2.6 Conclusion

In this section, we have revised existing flocking algorithms such that they can be
applied in nonholonomic robots systems. A combined consensus control for formation
and obstacle avoidance is proposed, and it is able to do formation and navigation of the
fleet’s barycenter to a goal point without any collision with the obstacle. The validation
of this control law shows its effectiveness in simulations as well as real experiments using
actual industrial robots, Huskys. A video of these experiments can be found here 4.

However, the nature of this approach is a compromised control, which means the
priority of each task (formation, navigation, obstacle avoidance, etc.) is not strictly
enforced. This could potentially be a problem as the formation will not be kept if some
parts of the controller dominate another. A solution to this issue is to introduce a strict

4. https://youtu.be/kS7HrOHnbho

49

Chapter 2 – Formation control

hierarchy of tasks for the controller, which will be discussed in an optimization-based
approach in the next section.

2.3 Optimization-based approach

In order to ensure the strict priority order of tasks, an optimization approach can
be used, namely hierarchical quadratic programming (HQP). This section discusses the
proposed formation controller, which is based on the HQP. Tasks are defined as either
equality or inequality constraints with different levels of priority. These tasks include rigid
shape formation control, group navigation, individual and team obstacle avoidance, and
velocity limits.

2.3.1 Task-based control

Let us define s ∈ Rns as a set of control features. The goal of the controller is to drive
the value of these features to the desired ones, s∗. In order to do this, a relation between
the features’ rate of changes, ṡ, and the robots’ velocities, v, has to be determined, and
it can be expressed as follows [KC14]:

ṡ = Jsv (2.32)

where J is the Jacobian matrix that is, generally, as a function of the features.
As the goal is to regulate the feature error

e = s − s∗ (2.33)

to zero, a proportional controller, ė = −λe, can be used to ensure an exponential de-
cay of e with λ is a positive gain. There the control input of the system, considering
Equation (2.32), can be written as follows:

Jsv = ṡ∗ − λe (2.34)

where ṡ∗ is assumed to be null as the set of desired values is fixed. This Equation (2.34)
has a unique solution only if Js is a square and non-singular matrix, which is often not
the case. Therefore, an approximation solution can be found using the following control
laws:

50

2.3. Optimization-based approach

v = −λĴ+
s (s − s∗) (2.35)

where Ĵ+
s is the pseudo-inverse of the estimation of the Jacobian.

2.3.2 Hierarchical quadratic programming

The hierarchical quadratic programming (HQP) framework [KLW11] is used to solve
for control input ensuring strict priority order. HQP is a sequence of QP that tries
to minimize a cost function subjected to equality and inequality constraints as well as
solutions of higher priority tasks. At k-level of priority, HQP can be formulated as follows:

uk = arg minx ∥Akx − bk∥2

s.t. Aix = Aiui, ∀i < k

Ckx ≤ dk

Cix ≤ di, ∀i < k

(2.36)

where uk is the optimal solution that minimizes the cost function of equality task k, x is
the optimization variable, matrix Ak and vector bk describe the cost function, whereas
Ai and bi represent the cost function of previous hierarchies. Ck, dk and Ci, di are
the inequality constraints of the current and previous levels, respectively. The equality
constraint ensures that the objective task is minimized at best without disturbing previous
higher priority tasks.

Note that the equality constraints inherited from previous hierarchy levels are actually
∥Aix − bi∥2 = ∥Aiui − bi∥2. Writing them as in Equation (2.36) makes the constraints
stronger but keeps them linear. The final solution can be chosen as the minimal-norm
one by solving the last hierarchy level with the pseudo-inverse.

2.3.3 Task definitions

The tasks will be generally defined for n robots, and we chose specifically n = 4 for
implementation examples. All the defined tasks are applied to the offsets’ positions. We
recall Equation (2.5) for the case of four robots, the relation between the velocity of the
offset point and the control input of each robot in the case of four robots is expressed as
follows:

v = Jxu (2.37)

51

Chapter 2 – Formation control

where:

v =

ṗ1
...

ṗ4

 , Jx =

B(θ1)

0

0
. . .

B(θ4)

 , u =

v1

ω1
...

v4

ω4

and ṗi, i = 1, 2, 3, 4, is defined as in Equation (2.4).

Geometric formation

The task of forming into a particular geometric shape is one of our specific goals
mentioned in the previous Section 2.2. The inter-distances between each robot in the
group are used as the control features. With user-defined values of the inter-distances,
specific geometric shape formation can be done.

(a) Inter-distance be-
tween two robots (pi
and pj) denoted by dij .

(b) For four robots
(pi, i = 1, 2, 3, 4).

Figure 2.17 – Inter-distances diagram of the MRS, each blue node represents a mobile
robot in 2D plane.

If we consider two points as shown in Figure 2.17a with pi, pj ∈ R2, i, j = 1, 2..., the
distance dij is as follows:

dij = ∥pj − pi∥ (2.38)

By differentiating Equation (2.38) with respect to time, we can get the relation between
the change of inter-distance and the change of robots’ positions as follows:

ḋij =
(

−(pj − pi)T

dij

(pj − pi)T

dij

)ṗi

ṗj

 (2.39)

In case of four robots as shown in Figure 2.17b, the formation Jacobian Jf can be

52

2.3. Optimization-based approach

derived by stacking Equation (2.39):

ḋf = Jf v (2.40)

where:

ḋf =

ḋ12

ḋ13

ḋ14

ḋ23

ḋ24

ḋ34

, Jf =

−n12 n12 01×2 01×2

−n13 01×2 n13 01×2

−n14 01×2 01×2 n14

01×2 −n23 n23 01×2

01×2 −n24 01×2 n24

01×2 01×2 −n34 n34

6×8

nij = (pj − pi)T

dij

From Equation (2.34), the formation task is, thus, defined as follows:

Jf v = −λf (df − d∗
f) (2.41)

where d and d∗
f are vectors of current and desired inter-distances, respectively. λf is the

formation control gain.

Cooperative navigation

This task focuses on driving the formation’s centroid toward a desired point pd =
(xd, yd)T and orientation θd. The pose (position and orientation) of the centroid is used as
the control feature. Figure 2.18 shows the task of team navigation, in which the centroid
pc = (xc, yc)T has to move toward a target point pd as well as to orient its heading to
any desired angle, in that case, θd.

Figure 2.18 – Navigation scheme, the blue nodes represent robots whereas the red node
indicates a target point.

53

Chapter 2 – Formation control

The position of formation’s centroid is defined as following, with n is the number of
robots in the group:

xc = 1
n

n∑
i=1

xi and yc = 1
n

n∑
i=1

yi (2.42)

The point ph = (xh, yh)T can be defined anywhere, relatively to each robot in the
group. This point can be used to determine the heading of formation, and it can be
expressed in relation to robots’ positions as follows:

xh =
n∑

i=1
aixi and yh =

n∑
i=1

aiyi (2.43)

where ai is the relation coefficient to ith robot, and ∑n
i=1 ai = 1. For instance, a1 = a2 =

0.5 and a3 = a4 = 0 in the configuration shown in Figure 2.18.

The group’s heading can be found using pc and ph:

θc = arctan
(

yh − yc

xh − xc

)
= arctan

∑n
i=1 yi

(
ai − 1

n

)
∑n

i=1 xi

(
ai − 1

n

) (2.44)

By differentiating Equation (2.42) and (2.44) with respect to time, the Jacobian of
navigation task Jn can be determined as follows:

ẋc

ẏc

θ̇c

 =

1/n 0 · · · 1/n 0
0 1/n · · · 0 1/n

−my1 mx1 · · · −myn mxn

ṗ1
...

ṗn

 (2.45)

where:

mxj
=

(aj − 1/n)∑n
i=1 xi

(
ai − 1

n

)
[∑n

i=1 xi

(
ai − 1

n

)]2
+
[∑n

i=1 yi

(
ai − 1

n

)]2
myj

=
(aj − 1/n)∑n

i=1 yi

(
ai − 1

n

)
[∑n

i=1 xi

(
ai − 1

n

)]2
+
[∑n

i=1 yi

(
ai − 1

n

)]2
j = 1, 2, ..., n

Applying to four robots configuration, we get:

(
ẋc ẏc θ̇c

)T
= Jnv (2.46)

54

2.3. Optimization-based approach

where Jn =

1/4 0 · · · 1/4 0
0 1/4 · · · 0 1/4

−my1 mx1 · · · −my4 mx4

From Equation (2.34), the navigation task can be derived as follows:

Jnv = −

λp (pc − pd)
λθ (θc − θd)

 (2.47)

where λp and λθ are the control gains for position and orientation, respectively.

Individual and team obstacle avoidance

Figure 2.19 illustrates the two obstacle scheme used to define their respective tasks.
The red node represents a closest detected point of obstacle (Figure 2.19a) to robot, poi

and (Figure 2.19b) to group’s centroid, pot . doi
and dot are the distances from ith robot

and team’s centroid to the obstacle, while dsi
and dst are the safety distances for individual

and team obstacle avoidance, respectively.

(a) (b)

Figure 2.19 – Obstacle avoidance scheme: (a) individual and (b) team avoidance.

Two obstacle avoidance schemes are introduced in the overall control law depending on
the situation (Figure 2.19). For instance, individual obstacle avoidance is useful when each
robot tries to converge to a defined formation, while the team avoidance is more practical
during navigation. They can be seen as sets of inequality constraints whose purpose is to
make sure that the distances to the obstacle(s), which are the control features, can never
be smaller than the safety distances [PAM20]. They can be found as follows:

doi
= ∥poi − pi∥ and dot = ∥pot − pc∥ (2.48)

55

Chapter 2 – Formation control

Similar to the formation task, we differentiate Equation (2.48) with respect to time.
For each obstacle, we get the following:

ḋoi
= (pi − poi)T

doi

ṗi

ḋot = (pc − pot)T

dot

1/n 0 · · · 1/n 0
0 1/n · · · 0 1/n

ṗ1
...

ṗn

(2.49)

Consider for our four robots, the individual and team obstacle avoidance Jacobian,
Joi and Jot , respectively, are written as follows:

Joi = (pi − poi)T

doi

Jot = (pc − pot)T

4dot

(
I2 I2 I2 I2

)
2×8

(2.50)

The inequality constraints of the obstacle avoidance tasks can be, therefore, expressed
as follows:

Joivi ≥ −λoi
(doi − dsi)

Jotvt ≥ −λot (dot − dst)
(2.51)

where λoi
and λot are the control gains for individual and team obstacle avoidance, re-

spectively.
The distances can be in the form of vectors or scalars depending on the number

of obstacles detected in the workspace, and they can also be null (thus no inequality
constraint) if there is no presence of the obstacle.

Velocity limits

An upper and lower velocity limit is imposed on the robot’s left and right wheel as
inequality constraints. Consider b and r as, respectively, the distance between the two
wheels and wheel’s radius (as shown in Figure 2.1), the relation of linear and angular
velocity (vi, ωi) to wheel’s velocity (ωl,i, ωr,i) of ith robot can be expressed as follows:

ωl,i = 1
r

(vi − 0.5bωi)

ωr,i = 1
r

(vi + 0.5bωi)
(2.52)

56

2.3. Optimization-based approach

Therefore, the inequality constraint of the velocity limit for four robots can be written
as following:

Jlimu ≤ ωlim (2.53)

where:
Jlim is a 16 × 8 block diagonal matrix of G,

G = 1
r

1 −0.5b

1 0.5b

−1 0.5b

−1 −0.5b

 ,

ωlim =

H
H
H
H

 , H =

ωl,max

ωr,max

−ωl,min

−ωr,min

2.3.4 Simulation and experimental results

In order to validate the proposed algorithm, the control scheme is decomposed into
two behavior states:

— Stage 1 (S1): Initial formation ensures that the desired shape is reached before
mounting the payload on top. At this stage, only one level of optimization is
needed. Hence, a formation task that is subjected to individual obstacle avoidance
and velocity limits constraints, which leads to the initial formation.

— Stage 2 (S2): Cooperative navigation is responsible for driving the centroid to a
target point, taking into account preservation of formation, team obstacle avoid-
ance, and velocity limit. Therefore, two hierarchies are proposed. A higher level
for solving the formation task, and a second priority for the navigation task. From
Equation (2.36), the HQP problem can be written as follows:

Level 1 : u1 = arg minx ∥A1x − b1∥2

s.t. C1x ≤ d1

Level 2 : u = arg minx ∥A2x − b2∥2

s.t. A1x = A1u1

C2x ≤ d2

(2.54)

57

Chapter 2 – Formation control

Table 2.2 summarizes the overall control law of the system. The control input is always
a solution from the last hierarchy, which is solved using the pseudo-inverse approach in
order to avoid having multiple sets of solutions. The hierarchical priority order of the
tasks is velocity limits ≻ obstacle avoidance ≻ formation ≻ navigation task.

Table 2.2 – Hierarchy levels of tasks for the two behavior states

S1: u ≡ uf S2: u ≡ un

Level 1
min

uf
∥Jf Jxuf + λf (df − d∗

f)∥
2

s.t. JoiJxui ≥ −λoi
(doi − dsi)

Jlimuf ≤ ωlim

min
uf

∥Jf Jxuf + λf (df − d∗
f)∥

2

s.t. Jlimuf ≤ ωlim

Level 2 none

min
un

∥∥∥∥∥JnJxun +
(

λp (pc − pd)
λθ (θc − θd)

)∥∥∥∥∥
2

s.t. Jf Jxun = Jf Jxuf

JotJxun ≥ −λot (dot − dst)
Jlimun ≤ ωlim

The program always starts from S1 behavior until inter-distance errors between robots
fall below a certain threshold before switching to S2. In addition, if there is any sudden
increase of the inter-distance errors above a threshold, the controller will transition back
to S1 to ensure the formation before moving again.

Similar to the experimental setup in the previous section, ROS and Gazebo are used
to simulate the robots and environment for the simulation. For the real experiment, all
robots in the team send their localized position to a PC for performing the optimization.
The resultant velocities are then broadcast back to each corresponding robot for motion
control.

Simulation

Two simulations are done with different numbers of robots in the formation. In both
cases, the controller respects the hierarchy levels described previously. In addition, the
graphs for the two simulations are fully-connected and rigid. Hence, the number of features

58

2.3. Optimization-based approach

for the formation task is six and nine for simulations I and II, respectively. The desired
inter-distance for the side neighbors is 2.0m.

Figure 2.20 – Environment of simulation I.

Simulation I: A group of four robots starts the formation at a less-than-ideal shape.
Alongside the robots, there are three obstacles in the environment as shown in Figure 2.20.
Figure 2.21a shows the convergence of inter-distances to the desired values at around
t = 10s; this marks the end of stage S1 and begins the cooperative navigation phase.
Figure 2.21c illustrates the error of inter-distances with respect to the desired values;
these inter-distances are well maintained with a very small deviation from the set desired
values (±7.5mm) as shown in Figure 2.21d. During this time, the formation heading angle
also converges a set value of 90o as shown in Figure 2.21b, where the error converges nicely
to zero. Last but not least, the overall trajectories are demonstrated in Figure 2.21e. The
blue square is the formation shape when stage S1 is completed.

0 20 40 60 80 100 120 140
time [s]

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
ob

ot
in

te
r-

di
st

an
ce

s
[m

] d12
d13
d14
d23
d24
d34

(a) Inter-distances between robots.

0 20 40 60 80 100 120 140
time [s]

−60

−40

−20

0

20

E
rr

or
of

or
ie

nt
at

io
n

[D
eg

re
e] Angle

(b) Heading error.

59

Chapter 2 – Formation control

0 20 40 60 80 100 120 140
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e23
e24
e34

(c) Errors of inter-distances.

20 40 60 80 100 120 140
time [s]

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e23
e24
e34

(d) Magnified inter-distances errors.

(e) Robots’ trajectories.

Figure 2.21 – Plots of simulation I.

Figure 2.22 – Environment of simulation II.

60

2.3. Optimization-based approach

Simulation II: As shown in six robots and three obstacles are utilized in this simu-
lation. Figure 2.22 shows the simulation environment, in which there are three obstacles:
a round, a square, and a rotated square.

From Figure 2.23a, we can see that the inter-distance errors converge to form the
formation (S1) at around t = 25s. After that, the robots start to move to a goal point
with the desired formation heading of −90o. The team’s orientation error is well-converged
with an error of less than 5o as illustrated in Figure 2.23b. The shape is preserved
throughout the navigation as shown in Figure 2.23c. The maximum inter-distance error
is around ±0.018m even though they have to navigate through obstacles as demonstrated
in Figure 2.23d. Since the readability of the trajectories plot is increased as the number
of robots increases, snapshots of the Gazebo are instead provided to aid in visualizing the
formation shape; Figure 2.24a and Figure 2.24b show the shape at the end of stage S1
and S2, respectively.

0 25 50 75 100 125 150 175
time [s]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
ob

ot
in

te
r-

di
st

an
ce

s
[m

] d12
d13
d14
d15
d23
d34
d45
d45
d26

(a) Inter-distances between robots.

0 25 50 75 100 125 150 175
time [s]

−50

−40

−30

−20

−10

0

E
rr

or
of

or
ie

nt
at

io
n

[D
eg

re
e]

Angle

(b) Heading error.

0 25 50 75 100 125 150 175
time [s]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e15
e23
e34
e45
e45
e26

(c) Errors of inter-distances.

40 60 80 100 120 140 160 180
time [s]

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e15
e23
e34
e45
e45
e26

(d) Magnified inter-distances errors.

Figure 2.23 – Plots of simulation II.

61

Chapter 2 – Formation control

(a) Formation shape at t = 25s. (b) End of the formation.

Figure 2.24 – Formation shape of simulation II.

Experiment

Obstacle
detection

Localisation

Obstacle
avoidance

Formation

Navigation

HQP

pose information
velocity

Figure 2.25 – Experimental setup of the HQP formation.

In this experiment, we separate the stages S1 and S2 into two experiments because
the group has to first get into a good formation shape, then the payload is manually
attached before starting the navigation. In both cases, a square shape formation of sides
of 2m is desired. ROS is used as the middleware. Each robot has its own independent
ROS_MASTER. There is no external sensor to locate each robot accurately. The self-
localization in a map is done using an onboard lidar sensor. In contrast to the distributed
local controller of consensus, the control velocities for each robot are computed by a

62

2.3. Optimization-based approach

centralized optimization solver, an architecture of which is shown in Figure 2.25.

S1: Figure 2.26 shows the actual initial poses of the robots, which is not yet a square
shape. In addition, there exists an obstacle in order to trigger the individual obstacle
avoidance inequality constraint.

Figure 2.26 – Initial poses at S1.

From Figure 2.27a, we can see that the overall formation converges to the square shape
as the inter-distances between side neighbors converges to the desired value of 2m. It is
also solidified by the graph of the errors shown in Figure 2.27b; they converge nicely to
zero. The overall trajectories of the robots are illustrated in Figure 2.27c. At the end of
S1, the desired formation shape is achieved (blue square in Figure 2.27c), and ready to
attach the load to start S2.

0 5 10 15 20
time [s]

2

3

4

5

6

7

R
ob

ot
in

te
r-

di
st

an
ce

s
[m

] d12
d13
d14
d23
d24
d34

(a) Inter-distances between robots.

0 5 10 15 20
time [s]

−1

0

1

2

3

4

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e23
e24
e34

(b) Errors of inter-distances.

63

Chapter 2 – Formation control

(c) Robots’ trajectories.

Figure 2.27 – Plots of S1 experiment.

S2: Figure 2.28 shows the navigation scenario of the experiment, in which a plate
with a payload of 20kg is added to the system. The team has to reach a target point and
come back while trying not to collide with the two un-mapped obstacles.

Figure 2.28 – Navigation scenario with two obstacles.

The formation shape is kept during navigation, as demonstrated by the plot of the
inter-distance errors in Figure 2.29a. Even though the self-localization, as well as the
velocity tracking low-level control of each robot, are not accurately perfect, the maximum
error for the inter-distances is just about±0.06m, evidenced in Figure 2.29b. The fleet
starts at (2.5m, −2.0m, 0o), and moves to a goal pose of (12m, −4.0m, 90o). Once it
reaches the desired pose at around t = 80s, it has to return to its initial pose. The
trajectories of each robot as well as the formation’s center can be seen in Figure 2.29d;
the blue square indicates the formation shape at the start and end of the navigation,

64

2.3. Optimization-based approach

whereas the black square represents the shape midway when the fleet reaches the goal
before returning. The team’s desired heading angle is also reached for both journeys as
the error converges to zero as demonstrated in Figure 2.29c.

0 25 50 75 100 125 150 175
time [s]

2.0

2.2

2.4

2.6

2.8

R
ob

ot
in

te
r-

di
st

an
ce

s
[m

]

d12
d13
d14
d23
d24
d34

(a) Inter-distances between robots.

0 25 50 75 100 125 150 175
time [s]

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e23
e24
e34

(b) Errors of inter-distances.

0 25 50 75 100 125 150 175
time [s]

−75

−50

−25

0

25

50

75

100

E
rr

or
of

or
ie

nt
at

io
n

[D
eg

re
e] Angle

(c) Heading error. (d) Robots’ trajectories.

Figure 2.29 – Plots of S2 experiment.

In order to show the effectiveness of the proposed approach, we also perform more
experiments using a reduced number of inter-distance features. As the goal is to see its
effectiveness for different formation configurations, we do not need to attach any load to
the fleet. Therefore, we can combine the two stages S1 and S2 in one run for each test. As
discussed in the rigidity part of Section 2.2.2, one can define a minimally rigid graph and
the formation shall still be fixed. To validate this, we try the proposed HQP controller
with a team of three, four, and five robots with a reduced number of edges (2n − 3). All
following experiments start with initial poses that require the fleet to do formation phase
S1 first before navigating to a goal point while avoiding one un-mapped obstacle.

65

Chapter 2 – Formation control

Four robots: Figure 2.30 shows the topology of the experimental setup for four
robots, which we use the concept of minimally rigid graph resulting in only five (using
Equation (2.10)) inter-distances required for the formation, instead of six (using Equa-
tion (2.8)).

1 2

4 3

Figure 2.30 – Reduced inter-distances edges of four-robots team.

0 10 20 30 40 50 60 70
time [s]

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e23
e34

(a) Errors of inter-distances.

20 30 40 50 60 70
time [s]

−0.04

−0.02

0.00

0.02

0.04

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e23
e34

(b) Magnified inter-distances errors.

0 10 20 30 40 50 60 70
time [s]

−100

−80

−60

−40

−20

0

E
rr

or
of

or
ie

nt
at

io
n

[D
eg

re
e]

Angle

(c) Heading error. (d) Robots’ trajectories.

Figure 2.31 – Experiment of four robots with reduced number of inter-distance features.

66

2.3. Optimization-based approach

Figure 2.31 shows the testing result of a square formation. The shape is reached at
around t = 12s as shown in Figure 2.31d. Then, the fleet starts to move to the goal
point without breaking up as the inter-distances errors remain below ±0.05m, illustrated
in Figure 2.31a and Figure 2.31b. The team’s heading also reaches the desired value since
its error converges nicely to zero as demonstrated in Figure 2.31c.

By simply changing the values of desired inter-distances, we can define any formation
shape we want. For instance, Figure 2.32 shows a shape that is similar to an antenna can
be achieved using the same graph topology as the previous case, but with a different set
of values for the inter-distances.

1 2

4

3
Figure 2.32 – Antenna shape of the formation.

The experimental result is shown in Figure 2.33. From a bad initial formation shape,
the team of robots reaches the desired shape at around t = 15s. Then they start to
navigate to the goal point without any collision with the obstacle. The errors of inter-
distances remain well under ±0.04m.

0 10 20 30 40 50 60
time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e23
e34

(a) Errors of inter-distances.

20 30 40 50 60
time [s]

−0.04

−0.02

0.00

0.02

0.04

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e23
e34

(b) Magnified inter-distances errors.

67

Chapter 2 – Formation control

0 10 20 30 40 50 60
time [s]

−50

−40

−30

−20

−10

0

E
rr

or
of

or
ie

nt
at

io
n

[D
eg

re
e] Angle

(c) Heading error. (d) Robots’ trajectories.

Figure 2.33 – Experiment of four robots with reduced number of inter-distance features
and modified desired inter-distances.

Five robots: Figure 2.34 shows five-robots formation configuration. By following
the minimally rigid graph rule, the required number of connected robots are seven (from
Equation (2.10)), instead of ten (from Equation (2.8)).

1

2

4 3

5

Figure 2.34 – Reduced inter-distances edges of five-robots team.

Figure 2.35 shows the testing result of a pentagon formation. Once again, the desired
shape is achieved at around t = 15s as shown in Figure 2.31d. While moving to the goal
point, the fleet manages to keep the inter-distances close to the desired values as shown by
the minimal value of errors in Figure 2.35a and Figure 2.35b. Figure 2.35c shows that the
team’s heading can reach the desired value with an error of less than 2o. The trajectories
of each robot and the fleet are demonstrated in Figure 2.35d.

68

2.3. Optimization-based approach

0 10 20 30 40 50 60
time [s]

−0.5

0.0

0.5

1.0

1.5

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e15
e23
e34
e45

(a) Errors of inter-distances.

20 30 40 50 60
time [s]

−0.04

−0.02

0.00

0.02

0.04

0.06

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e14
e15
e23
e34
e45

(b) Magnified inter-distances errors.

0 10 20 30 40 50 60
time [s]

−120

−100

−80

−60

−40

−20

0

E
rr

or
of

or
ie

nt
at

io
n

[D
eg

re
e] Angle

(c) Heading error. (d) Robots’ trajectories.

Figure 2.35 – Experiment of five robots with reduced number of inter-distance features.

Three robots: Figure 2.37 shows the inter-distance configuration in the case of three
robots. In this case, the required number of connected edges/robots can not be reduced
further as apply the Equation (2.8) and (2.10) gives the same result of three.

1

23

Figure 2.36 – Three-robots configuration.

69

Chapter 2 – Formation control

Figure 2.37 illustrates the testing result of a triangle formation. At t = 12s, the
formation shape in stage S1 is achieved. Then S2 starts to navigate the fleet to the
goal point, during which the shape remains fixed as shown in Figure 2.37d. Similar to
previous experiments, the inter-distances errors are largely below ±0.06m as demonstrated
in Figure 2.31a and Figure 2.31b. The team’s heading is eventually reached the desired
value as shown in Figure 2.31c.

0 10 20 30 40 50 60
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e23

(a) Errors of inter-distances.

20 30 40 50 60
time [s]

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

e12
e13
e23

(b) Magnified inter-distances errors.

0 10 20 30 40 50 60
time [s]

−10

−5

0

5

10

15

20

E
rr

or
of

or
ie

nt
at

io
n

[D
eg

re
e] Angle

(c) Heading error. (d) Robots’ trajectories.

Figure 2.37 – Experiment of a triangle formation with three robots.

Last but not least, a line formation experiment is done to show that the proposed
controller is robust in terms of the different configurations of the formation shape; the
result of which can be seen in Figure 2.38. Once again, after reaching the initial formation
stage, the fleet can navigate to the goal point while avoiding any collision and keeping
the formation shape. The desired orientation converges to zero, while the errors of inter-
distances are within ±0.08m as shown in Figure 2.38c and Figure 2.38b, respectively.

70

2.3. Optimization-based approach

0 10 20 30 40 50 60 70 80
time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

Robot1
Robot2
Robot3

(a) Errors of inter-distances.

20 30 40 50 60 70 80
time [s]

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

E
rr

or
of

in
te

r-
di

st
an

ce
s

[m
]

Robot1
Robot2
Robot3

(b) Magnified inter-distances errors.

0 10 20 30 40 50 60 70 80
time [s]

−10

0

10

20

30

40

50

E
rr

or
of

or
ie

nt
at

io
n

[D
eg

re
e] Angle

(c) Heading error. (d) Robots’ trajectories.

Figure 2.38 – Experiment of a line formation with three robots.

2.3.5 Conclusion

In this section, we present a method for cooperative object transportation with ob-
stacle avoidance based on an optimization approach. Different tasks were formulated to
either equality or inequality constraints, which are solved using the hierarchical quadratic
programming method. Simulations and actual experiments with different numbers of
robots and formation shapes are conducted in order to validate the effectiveness of the
proposed approach. Un-mapped obstacles in the environment can be detected and evaded
during runtime reactively. Videos of some of the experiments can be found following these
links 5.

5. https://youtu.be/LYJWcOHd1L8
https://youtu.be/E1OdhVi11DU

71

Chapter 2 – Formation control

2.4 Conclusion on formation control

We have discussed the two proposed formation controllers in this chapter. The first
approach is based on the consensus algorithm in order to reach an equilibrium in terms
of inter-distances between robots in the team. Graph theory is presented as a basis
for modeling the communication between neighbors, while the concept of static state
feedback is used in order to deploy the controllers in real nonholonomic mobile robots.
Simulations and experiments are shown to validate the proposed consensus formation
controller. In both situations, the fleet can perform the formation to reach a specific
shape and keep it during navigating and obstacle avoidance. Despite enjoying the benefit
of being a distributed controller, however, this approach suffers a problem of not being
able to clearly impose a strict priority for each task; this results in having a fleet behavior
that can not ensure precisely desired inter-distances between neighbors.

On the other hand, task priority can be introduced and respected in the hierarchical
quadratic programming approach, which corresponds to our second contribution of the
chapter. Using the concept of task-based control, we can define the Jacobian matrix
that relates the robots’ velocities to any feature we want to control, the inter-distances
in this case. Tasks defined for this approach are: 1) geometric shape formation, 2)
cooperative navigation, 3) individual and team obstacle avoidance, and 4) velocity limits.
We introduce two levels of the optimization problem, which can be solved using HQP.
Simulations and actual experiments are presented to evaluate the controller performance.
Especially for the real experimental part, we have shown that the proposed controller can
be used with a different number of robots to achieve various formation shapes. By applying
the rules of the minimally rigid graph, the complexity of the optimization problem is
linearly proportional to the number of robots in the fleet as the number of connected
neighbors required is 2n − 3 compared to the full n(n − 1)/2 number of edges.

As the formation control enables a group of robots to cooperatively carry a load, it can
not decide which robot should be chosen for the formation team; this is why multi-robot
task allocation is needed in order to adequately choose and team up robots in a group
ready for the cooperative transporting task. This will be the main purpose of the next
chapter.

72

Chapter 3

TASK ALLOCATION

Contents
3.1 Introduction . 73

3.2 Problem definition . 74

3.3 Methodology . 75

3.3.1 Objective function . 75

3.3.2 Contract Net Protocol approach 76

3.3.3 Tabu Search approach . 77

3.3.4 Simplified Local Search approach 78

3.4 Experimental results . 80

3.4.1 Experimental setups . 81

3.4.2 Preliminary experiments . 83

3.4.3 Comparison experiments . 90

3.5 Conclusion on task allocation 95

3.1 Introduction

Task allocation is a requirement for multi-robot systems working in dynamic environ-
ments. An efficient task allocation model allows the robots to adjust their workloads in
response to other robots’ actions or system’s missions to increase overall system perfor-
mance.

This chapter presents an allocation problem that deals with tasks that requires single
or multiple robots to complete. The tasks can be allocated statically at a fixed interval or
dynamically as soon as they arrive. Two existing task allocation techniques were compared
in order to find the most suitable approach for our application. The first technique is
based on the market-based approach, namely Contract Net Protocol (CNP). CNP is a
distributed allocation approach that relies on each robot to bid in order to compete for

73

Chapter 3 – Task allocation

obtaining the task. Tabu Search (TS) is the second technique, which we look into. It is
a centralized optimization-based approach.

The chapter starts with the problem statement, which can be found in Section 3.2.
Section 3.3 describes the algorithms of task allocation techniques we use. Last but not
least, simulation results of a various number of robots and tasks are detailed in Section 3.4.

3.2 Problem definition

Let us consider a team of n robots, R = {R1, R2, · · · , Rn}, and a set of m tasks
T = {T1, T2, · · · , Tm}, the potential solution for allocation shall reflect an optimal list
of allocations; an example of which can be as [R1 T1 T2 R2 T3 T4 T5 · · ·]. Multi-robot
task allocation (MRTA) is an optimization problem aiming to solve this allocation by
minimizing a cost function or maximizing a profit. Therefore, such a problem can be
expressed mathematically as follows:

min
n∑

i=1

m∑
j=1

wijfij or max
n∑

i=1

m∑
j=1

wijfij

fij ∈ {0, 1}, ∀i ∈ [1, n], ∀j ∈ [1, m]
(3.1)

where wij is the cost, which can be the distance to travel, time for completion, etc., or
reward, depending on the optimization type, for assigning robot i to task j. fij is equal
to 1 if the ith robot is assigned to jth task, and 0 otherwise.

The optimization problem shown in Equation (3.1) can be subjected to various con-
straints depending on the specific application of allocation; some of the most common
ones are as follows:

n∑
i=1

fij = Lj, ∀j ∈ [1, m] (3.2)

m∑
j=1

fij ≤ Li, ∀i ∈ [1, n] (3.3)

where Lj represents the number of robots required for task j and Li is the maximum
number of assignments allowed to each robot. Equation (3.2) ensures that an appropriate
amount of robots is allocated to a task; Lj = 1 in the case of single-robot task. Depending
on nature of the application, Li of Equation (3.3) can be equal to 1; it corresponds to the
single-assignment problem [WVB19].

74

3.3. Methodology

For our application, the task allocation is deployed for logistics in warehouse environ-
ments. The problem focuses on having a list of tasks executed in less time possible. In
addition, it has to be able to deal with tasks that are added in real-time. We focus on
an environment with up to 10 robots and 40 tasks. The robots are single-task robots,
thus they can do only one task at a time, but they are able to have multiple tasks in the
queue. We assume that each robot has the same skills and velocity. Tasks are pick-up
and drop-off missions. The robots need to pick up an object, move to a new location, and
drop them off. The tasks can also require several robots working together to complete.
Therefore, they can be either single-robot or multi-robot tasks. We assume that the time
for picking and dropping an object is negligible compared to the travel time. Each task
has a priority level to indicate the urgency for completion.

The allocation of tasks can be done on two levels. Initially, there is a set of tasks
to be assigned, hence static allocation. Then, tasks can be added online for allocation
dynamically. This dynamic allocation assigns high-priority tasks to available robots as
soon as the task is introduced; this is level one allocation. The remaining unassigned
tasks are added to the level two allocation loop, namely static allocation, which runs at
a fixed slower frequency

In order to evaluate the two approaches: CNP and TS, we focus on optimizing the
overall time needed to perform the task. Therefore, the travel time of each robot for the
tasks is considered as the cost objective.

3.3 Methodology

In this section, we discuss the formulation of the cost function that is used for allocating
tasks, which is based on the estimated travel time of each robot. Then we discuss in detail
the Contract Net Protocol and Tabu Search algorithm, as well as a simplified Local Search
approach. The idea is to use CNP as the set of initial solutions for the TS, which could
enable us to better optimize the solutions with less search iteration.

3.3.1 Objective function

The objective function is a minimization problem with a cost that is based on the
traveling time of the robots. From Equation (3.1), the function can be expressed as
follows:

75

Chapter 3 – Task allocation

min
n∑

i=1

m∑
j=1

wijfij

fij ∈ {0, 1}, ∀i ∈ [1, n], ∀j ∈ [1, m]
(3.4)

where wij is the estimated time for robot i to complete task j. The traveling distance
can also be chosen, but we have decided to work with the time because it is able to easily
incorporate the waiting time of the robot when dealing with multi-robot tasks (tasks that
require more than one robot to complete). If one robot arrives first, it has to wait for
others in order to start performing the mission together. Therefore, the estimated time
wij includes: the time to travel from the current position to the pick-up point, the time
to travel from the pick-up point to the drop-off point, and the waiting time in case of the
multi-robot tasks.

3.3.2 Contract Net Protocol approach

The first algorithm to be tested to solve this Multi-Robot Task Allocation (MRTA)
problem is the Contract Net Protocol (CNP). It is an auction-based approach that consists
of four stages [BCD19]:

1. Announcement: an auctioneer broadcasts the task to other robots.

2. Submission: each robot computes a cost for performing that task based on a defined
cost function.

3. Selection: the auctioneer chooses a winner with the lowest bid.

4. Contract: information of who is the winner announced by the auctioneer.

Figure 3.1 presents the flowchart of the CNP algorithm. It runs each time an allocation
of one task to the robots is needed. Thus, the input of this function is the task to allocate.
This process is repeated as many times as the number of tasks to allocate. The bids are
made by all the robots that are available for the tasks. A robot is set to be available if it
has not started moving or has just finished a task. The bids of robots are added to a list
of bids that are then sorted to select the lowest bid(s). There are as many bids selected
as the number of robots required by the task (in the case of multi-robot tasks).

76

3.3. Methodology

Figure 3.1 – Contract Net Protocol flowchart.

3.3.3 Tabu Search approach

The second algorithm that is tested is the Tabu Search algorithm. The flowchart of
this algorithm is presented in Figure 3.3. This is a Local Search method [LRV14], which
starts with a set of solution as initialization. Then, at each iteration of the algorithm, it
looks for the neighborhood of this solution. A neighbor of a solution is the solution itself
with two elements inverted. The process of finding the neighborhood is described in the
flowchart of Figure 3.2. Once the neighborhood is found, the best neighbor is selected as
being the new solution. The best neighbor is the one with the lowest cost, so the one that
minimizes the most the total traveling time of the robots. Because this process can lead
to cycling on a local minimum if the previous solution is the best neighbor of the new

77

Chapter 3 – Task allocation

one, the notion of Tabu is introduced. A Tabu is set to make it impossible to invert the
two elements of the current solution that would lead to the past solution. This Tabu is
kept for several iterations of the Tabu Search and is then removed to free some memory.
By doing this, cycling on a local minimum is avoided. However, if this local minimum is
the best solution found by the algorithm when it comes across it, it is set as being the
global best solution. Each time a local optimum is found it is compared to the global best
solution to know if it should be kept in memory or not.

Figure 3.2 – Finding a neighborhood flowchart.

3.3.4 Simplified Local Search approach

The iterations of Tabu Search require a lot of computational resources and time.
Indeed, finding all the neighbors of a solution requires m2 operations, where m is the
number of tasks. The initialization solution can be random or not. In order to improve

78

3.3. Methodology

the efficiency of the TS algorithm, we start with a set of initial solutions obtained using
CNP. Thus, the solution is close to optimal already.

Figure 3.3 – Tabu Search flowchart.

A simplified version of the Tabu Search algorithm would be to use the fact that the
initialization is done using the CNP solution to do a simple Local Search; it corresponds
to one iteration of the previous Tabu Search algorithm without taking into account the
notion of Tabu. This simplified Local search algorithm is presented in the flowchart
of Figure 3.4.

79

Chapter 3 – Task allocation

Figure 3.4 – Simplified Tabu Search flowchart.

3.4 Experimental results

In this section, we present a series of multi-robot task allocation results using the Tabu
Search and Contract Net Protocol approach. The experiments that are done aim to find
the best values for those criteria and obtain a function giving these values depending on
some parameters such as the number of robots and the number of tasks. These experi-
ments also compare the use of the TS algorithm with the CNP. With these comparisons,
we can introduce a dynamic task allocator, which is able to switch between using CNP

80

3.4. Experimental results

and TS depending on different criteria. The objective is to minimize the traveling time
of all the robots while having the smallest computational time possible. We consider the
following equations to compare the allocation method with respect to the CNP.

Equation (3.5) expresses the overall execution time, which is an addition of the compu-
tation or allocation time of the algorithm and the traveling time of the robots to complete
all tasks. Generally, centralized search algorithms tend to a give better solution, but they
also require more computational time. This is why we are going to talk about the gain
which will be the time gained from one solution to another taking into account both the
computational time and the traveling time. The comparisons are always going to be done
with the results obtained using CNP as a reference, as shown in Equation (3.6) and (3.7).
Then the overall gain can be determined using Equation (3.8).

timeexperiment = timetraveling + timecomputation (3.5)

gaintraveling = timetravelingmethod
− timetravelingCNP

(3.6)

gaincomputation = timecomputationmethod
− timecomputationCNP

(3.7)

gainexperiment = timeexperimentmethod
− timeexperimentCNP

= gaintraveling + gaincomputation (3.8)

3.4.1 Experimental setups

Environment

The warehouse environment is simulated with a configuration as shown in Figure 3.5.
Robots can only move in the white area, which represents free space. They can be at
and start from any point of the map that is in the white area. The grey part represents
walls, obstacles, or picking racks. Using this environment, the comparison of allocation
algorithms includes a range between 2 and 10 robots, and up to 40 tasks.

Simulated robots

Good communication between vehicles, the ability to pick up and drop off objects,
and good precision of the localization system are all assumed. The capacity to avoid
obstacles or other robots is not taken into account in the simulation. Thus, no collision
between vehicles is taken into account in the simulation. This ability or the notion of

81

Chapter 3 – Task allocation

Figure 3.5 – 2D map of the simulated environment.

safety distances between the robots can be added. The robots can modify their velocity
for this matter if needed. They are identical and take the same time to complete the
tasks once they have reached the starting position of the task. The actual picking up and
dropping off actions are not studied; it is assumed that they can perform them correctly.
The robots that are not required for the tasks are idle. A list of assumptions is as follows:

1. Uniform acceleration,

2. Identical constant velocity vmax,

3. Same skills,

4. Perfect control ,

5. Perfect localization,

6. Perfect Communication,

7. Infinite battery level.

82

3.4. Experimental results

Pre-estimated cost matrix

The values of estimated time to go from an ending point of a task to the starting point
of another task are stored in a matrix to avoid recomputing them several times. The
time estimation is based on a path that is generated by the A* path planning algorithm
assuming there is no obstacle in the map. This path is then converted into time through
an estimation of travel velocity. For algorithms such as TS, it appears that this estimated
time is called many times in order to compute the traveling time of all neighbors of one
solution. Therefore, the values of travel time from one task to another are the same as
tasks to allocate do not change. For this reason, it is beneficial to pre-compute and stores
these values in the memory. The time matrix is defined as follows:

M =

t1,1 · · · t1,n

... ...
tn,1 · · · tn,n

 (3.9)

where ti,i is the time to travel task i from start to end and ti,j is the travel time from the
endpoint of task i to the start point of task j.

In practice, the pre-computation can be done automatically by storing the estimated
time to go from point A to B. If the same computation is required later on, then the
cached value is recalled without any computation.

3.4.2 Preliminary experiments

Advantage of pre-computed cost values

To verify the advantage of using such matrix, an experiment is done comparing the
computational time required for the allocation of 10 tasks to 5 robots through a TS
algorithm with one iteration without storing the results of the estimate function in a cost
matrix presented in Figure 3.6 and with storing the results of the estimate function in a
cost matrix presented in Figure 3.7. Comparing those two figures it appears that thirty
seconds per iteration of the TS algorithm can be gained from storing the estimated cost
in the matrix. Indeed, each iteration of TS algorithm will call one time each value of the
cost matrix. Therefore, computing the same cost each time is an imprudent use of the
resource. A pre-computed cost matrix for tasks is used in the following experiments.

83

Chapter 3 – Task allocation

Figure 3.6 – Computational time required for the TS algorithm with one iteration without
storing the results of the estimate function in a cost matrix

Comparison between Dijkstra and A* for path planning

It is possible to use several path-finding algorithms to select the best path taken by
the robots and minimize the computational cost of the path-finding algorithm and the
traveling distance of the robots. A comparison is made using the Dijkstra algorithm or
A* algorithm in the allocation of 10 tasks to 5 robots.

— Results for 10 tasks, 5 robots using the CNP and Dijkstra algorithm:
— Computation Time: 23s
— Traveling Time: 1260s

— Results for 10 tasks, 5 robots using the CNP and A* algorithm:
— Computation Time: 56s
— Traveling Time: 1737s

84

3.4. Experimental results

Figure 3.7 – Computational time required for the TS algorithm with one iteration with
storing the results of the estimate function in a cost matrix

The impact of the choice of the path-finding algorithm is on the computational time
of the estimate function and on the traveling distance of the robots. It appears that both
the computational time and the traveling time increase using the A* algorithm for our
simulation. Therefore, the Dijkstra algorithm is used in the following simulations.

Impact of the number of tasks on the computation and traveling time

The impact of the number of tasks on the computational time and on the traveling is
studied for the case where 5 robots are available using either the CNP or the TS algorithm
with 1, 2, 4, or 10 iterations. The impact of the number of tasks on the computational
time is presented in Figure 3.8. The impact of the number of tasks on the traveling time
is presented in Figure 3.9.

It can be observed in Figure 3.8 that for all allocation methods, the computational
time increases with the number of tasks that have to be allocated. This increase in

85

Chapter 3 – Task allocation

Figure 3.8 – Impact of the number of tasks to allocate to 5 robots on the computational
time of the studied algorithms

computational time is faster for the TS algorithm than for the CNP, and it is faster when
many iterations of the TS are done. Indeed, it can be observed that 91.26s are required
to allocate 5 tasks and for 10 iterations of the TS algorithm, 8777.51s of computation are
required to allocate 40 tasks with the same algorithm. This is an increase of 9519% of the
time required for 5 tasks. When using the CNP 5.13s are required to allocate 5 tasks and
67.78s are required to allocate 40 tasks. This is an increase of 1220%. The explanation of
the impact of the number of tasks on the allocation algorithms is the increasing number
of operations that comes with the increasing number of tasks. This is greater for the
TS algorithm as this algorithm calls a loop on the number of tasks inside a loop on the
number of tasks which means it has approximately m2 operations to do, where m is the
number of tasks.

It can be observed in Figure 3.9 that for all allocation methods, the total traveling time
increases with the number of tasks that are allocated. As an example, the total traveling
time for the 5 robots is 2980.62s when they are doing 40 tasks that were allocated through

86

3.4. Experimental results

Figure 3.9 – Impact of the number of tasks allocated to 5 robots on the traveling time of
the robots depending on the studied algorithms

a TS algorithm with 10 iterations and 259.53s when they are doing 5 tasks allocated
through the same algorithm. It is 4844.45s for 40 tasks allocated through the CNP and
264.64s for 5 tasks allocated through the CNP. It can also be seen that the total traveling
time is lower with the TS algorithm than with the CNP and when many iterations of
the TS algorithm are used. Indeed, the solution that is found reduces the cost function
value, although it requires more computational time as it was previously highlighted.
This improvement of the cost function value is greater when a high number of tasks is
allocated. As an example the improvement for the allocation of 5 tasks using the TS with
10 iterations compared to when using the CNP is 1.9%, it is 38% for the allocation of 40
tasks.

Impact of the number of robots on the computation and traveling time

The impact of the number of robots on the computational time and on the traveling
time is studied for the case where 10 tasks are allocated to the robots using either the

87

Chapter 3 – Task allocation

CNP or the TS algorithm with 1, 2, 4, or 10 iterations. The impact of the number of
robots on the computational time is presented in Figure 3.10. The impact of the number
of robots on the traveling time is presented in Figure 3.11.

Figure 3.10 – Impact of the number of robots on the computational time of the studied
algorithms for the allocation of 10 tasks

It can be observed in Figure 3.10 that for all allocation methods, the computational
time increases with the number of robots that are used in the multi-robot system (MRS).
This increase in computational time is faster for the TS algorithm than for the CNP, and
it is faster when many iterations of the TS are done. Indeed, it can be observed that using
the CNP, the computational time required for the allocation of 10 tasks to robots is 4.89s
for 2 robots and 24.28s for 10 robots. This is an increase of 396%. Using 4 iterations of
the TS algorithm this time is 27.32s for 2 robots and 337.28s for 10 robots. This is an
increase of 1134%. Using 10 iterations of the TS algorithm this time is of 58.78s for 2
robots and of 767.12s for 10 robots. This is an increase of 1205%.

It can be observed in Figure 3.11 that for all allocation methods, the total traveling
time decreases with the number of robots that are used in the multi-robot system (MRS).

88

3.4. Experimental results

Figure 3.11 – Impact of the number of robots on their total traveling time using the
studied algorithms for the allocation of 10 tasks

This decrease in total traveling time is faster for the CNP than for the TS algorithm, and
it is slower when many iterations of the TS are done. Indeed, it can be observed that
using the CNP, the total traveling time required to do the 10 tasks is 891.99s for 2 robots
and 628.81s for 10 robots. This is a decrease of 29.5%. Using four iterations of the TS
algorithm this time is 612.10s for 2 robots and 565.74s for 10 robots. This is a decrease of
8%. Using 10 iterations of the TS algorithm this time is 596.68s for 2 robots and 565.54s
for 10 robots. This is a decrease of 5%. It is also observed that, although the decrease is
slower for the TS algorithm than for the CNP, the total traveling time is always better
when a high number of iterations is done and is better for the TS algorithm than for
the CNP. But the more robots are in the MRS, the smallest this improvement is. There
is also less improvement from doing one extra iteration of the TS algorithm than from
switching from the CNP to the simplified Local Search method, or the TS algorithm with
one iteration.

89

Chapter 3 – Task allocation

All in all, the more robots there are in the MRS, the less interesting it is to use the TS
algorithm in terms of traveling time and computational time. However, the improvement
of traveling time using the TS algorithm with one iteration compared to using the CNP
is high, about 27% with a 2-robot-MRS and 10% with a 10-robot-MRS. In addition, the
increase of the computational time is slow with the increase in the number of robots for
one iteration of the TS. Therefore, only the Tabu Search algorithm with one iteration
will be compared with the Contract Net Protocol in detail, which is presented in the next
section.

3.4.3 Comparison experiments

5 tasks using CNP and Tabu Search algorithm

The first case studied is the allocation of 5 tasks. The results are presented in Fig-
ure 3.12. It can be observed that, in the case of the allocation of 5 tasks, the best method
of allocation with MRS of 5 and 10 robots is the CNP.

Figure 3.12 – Time gain evolution depending on the allocation mode and the number of
robots for 5 tasks allocated.

90

3.4. Experimental results

Indeed, the gain is immediately negative with the use of the TS algorithm. It decreases
even more with the increase in the number of iterations done. This is consistent with the
results observed in Section 3.4.2 as the increase in the number of tasks implies an increase
in the computational time that is faster for the TS algorithm than for the CNP, while the
improvement seen in the value of the cost becomes the smallest when many iterations of
the TS algorithm are done when the number of robots used in the MRS is high. Therefore,
a high increase of the computation time for a low decrease of the traveling time when using
the TS algorithm compared to the CNP for an increasing number of robots. This explains
the decrease of the gain that comes with the increase of the number of robots. Moreover,
it is seen in Section 3.4.2 that for a low number of tasks the amount of improvement in
the traveling time gained from using the TS algorithm is even lower. This explains that
in the case of the allocation of 5 tasks the best method is the CNP even when 5 robots are
used in the MRS. However, for a MRS with 2 robots, the best method is the Tabu Search
algorithm with one iteration. The gain observed for the allocation of 5 tasks to 2 robots
using the TS algorithm with one iteration is of 17.2s compared to when using the CNP.
This is due to the fact that for a low number of robots, the increase of the computation
time using the TS is low and the benefit in the traveling time is high as seen in Section
3.4.2.

10 tasks using CNP and Tabu Search algorithm

With the number of tasks increased to 10, the allocation results are presented in Fig-
ure 3.13. It can be observed that for the use of 2 robots when 10 tasks are allocated, the
gain is best for 4 iterations of the Tabu Search algorithm. It is 257.45s for 4 iterations
so it corresponds to an improvement of 28.7% of the complete experiment time obtained
through the CNP algorithm which is 896.9s. For the use of 5 robots when 10 tasks are
allocated, the gain is best for one iteration of the Tabu Search algorithm, corresponding
to the simplified Tabu Search algorithm. It is 42.54s for one iteration of the TS algorithm
so it corresponds to an improvement of 6% of the complete experiment time obtained
through the CNP algorithm, which is 710s. For the use of 10 robots when 10 tasks are al-
located, there is no gain using the Tabu Search algorithm. It is best to only use the CNP.
Indeed, as seen in Section 3.4.2 the more robots are in the MRS, the less improvement it
is in terms of traveling time, and the more computational time is required.

91

Chapter 3 – Task allocation

Figure 3.13 – Time gain evolution depending on the allocation mode and the number of
robots for 10 tasks allocated.

20 Tasks using CNP and Tabu Search algorithm

The third case of this experiment is for the allocation of 20 tasks. The results are
presented in Figure 3.14. As seen in the two previous cases the gain is decreasing with
the number of robots in the MRS and with the number of iterations of the TS algorithm.
Oppositely to before the gain is very low even for the use of only 2 robots in the MRS.
This is due to the impact of the number of tasks to allocate seen in Section 3.4.2. Indeed,
the more tasks are added, the more quickly the computational time increases with the
number of iterations. In the case of the allocation of 20 tasks, the gain is slightly positive
when using one iteration of the TS algorithm for a 2-robot-MRS. It is 56.50s, which
corresponds to an improvement of 3% of the total execution time when the CNP is used
which is 1760s. For MRS of more robots, the CNP is the best method to use.

92

3.4. Experimental results

Figure 3.14 – Time gain evolution depending on the allocation mode and the number of
robots for 20 tasks allocated.

40 Tasks using CNP and Tabu Search algorithm

Last but not least, an allocation of 40 tasks is simulated, whose results are presented
in Figure 3.15. The results are similar to the one presented in Figure 3.14 for 20 tasks
allocated. The gain is again decreasing with the number of robots and with the number
of iterations. The gain is also low for the 2-robot-MRS. As previously explained, this
is due to the fact that the more tasks are added the more quickly the computational
time increases with the number of iterations as seen in Section 3.4.2. In the case of the
allocation of 40 tasks, the gain is slightly positive when using the TS algorithm for a
2-robot-MRS. It is best with 4 iterations of this algorithm. It is 724.10s in this case,
which corresponds to an improvement of 14.5% of the total execution time when the CNP
is used which is 4987s. For a MRS of more robots, CNP is still the best method to use.

93

Chapter 3 – Task allocation

Figure 3.15 – Time gain evolution depending on the allocation mode and the number of
robots for 40 tasks allocated.

Figure 3.16 – Best results of different cases of robots and tasks.

The results of which algorithm is best for which case for our MRTA problem are pre-
sented in the table in Figure 3.16. It summarizes all the results obtained in Section 3.4.3.
For MRS with 5 or more robots, the CNP is the best allocation method. The gain ob-

94

3.5. Conclusion on task allocation

tained with the use of the TS algorithm is either negative or too low to be generalized
as being indeed positive with another computing system. However, for MRS with only
two robots, the use of the TS algorithm is interesting, although one iteration of the TS
algorithm is often enough to benefit from a better allocation compared to CNP. Since it
is rarely the case for a warehouse to have less than 5 robots running, the search algorithm
such as TS is not suitable for our application.

3.5 Conclusion on task allocation

A fundamental principle of task allocation, formulation of the objective function, is
discussed in this chapter. We make a performance comparison between two task allocation
approaches, namely Contract Net Protocol and Tabu Search. The comparison focuses on
transportation tasks, which respond to the actual needs of a warehouse. The comparison
criteria chosen is based on the overall total time, which includes the time needed to allocate
and to complete a task. In addition, we show that having a pre-estimated cost matrix on
travel time can be a benefit in terms of time-saving measure during the allocation process.
Tasks are in form of a static list given at the start of allocation and dynamic, which are
not pre-defined; they are added online during the runtime. As the number of robots in
the environment increases, CNP takes significantly less time to perform the allocation
compared to the TS. Therefore, CNP is more suitable for our application.

95

CONCLUSION

Despite the latest advancements and research on formation techniques and the fact
that the multi-robot system is more flexible and efficient in terms of huge load trans-
portation tasks, we are yet to see an actual implementation of such systems in real-world
environments. This thesis’s objective is to bridge this gap between laboratory research
and the industry. Three research axes have been conducted:

— Consensus-based formation control
— Optimization-based formation control
— Determination of task allocation approach for warehouse application
Regarding the first pole of research, it is shown that a fleet of nonholonomic robots is

able to safely navigate the environment without breaking the formation. Consensus-based
formation control is a distributed controller, which opens up the possibility of having a
huge number of robots in a fleet. On the other hand, due to the nature of consensus, this
approach can not ensure precisely the desired formation as the controller itself is made up
of several weighted components (formation, navigation, obstacle avoidance, etc.), which
may dominate each other in various scenarios resulting in undesired behaviors.

The optimization-based controller is proposed to solve the mentioned issue. Each
control component is defined as a task with a different priority to be respected by the
solver. With task priority introduced, a two-level optimization problem is formed and
can be solved using hierarchical quadratic programming. This approach shows better
performance in terms of being able to keep the formation. In addition to being able to
achieve precisely the formation shape and desired inter-distance between robots, we can
also control the heading angle of the whole fleet, which improves the navigation behavior.

Simulations and experiments on Huskys provided by E-COBOT are conducted for the
two proposed formation algorithms. In the case of the optimization-based controller, we
have shown that a sophisticated connection mechanism between the load and the robots
is not required. It is because of the desired inter-distances that are well-kept throughout
the navigation.

The third pole of this work shows the interest in using the Contract Net Protocol over
the Tabu Search for task allocation problems in a simulated warehouse environment with

97

a different number of tasks and robots. Due to the distributed nature of the CNP, it
can allocate tasks quickly but is not necessarily optimal. By contrast, even though the
objective cost of TS is always equal to or lower than that of CNP, its computational time
required is too high compared to that of CNP.

Despite having favorable positive results in this thesis, several potential perspectives
for future work can be considered. First of all, the current implementation of the proposed
consensus formation control does not include the orientation control of the fleet’s head-
ing; future studies could extend the approach to include this part, which could improve
navigation and obstacle avoidance behavior. For the optimization-based controller, it is
interesting to extend to work to a distributed manner similar to what has been studied
for the null-space approach in [Tru+18]. The authors propose a controller that consists
of a local task for obstacle avoidance and a global task for the formation. The individual
avoidance task has more priority than the consensus formation control.

Another interesting extension to the formation control as a whole is to include tra-
jectory planning in the multi-robot system. Since the current controllers are the reactive
ones, a risk of getting stuck in a local minimum due to the obstacle’s shape is prominent.
A study of a trajectory planner that considers the geometric shape and constraint of the
fleet can solve this issue. Thus, the navigation task of the controllers will just need to
track waypoints generated by such a planner.

With recent parallel computing technology, it is compelling to study the improvement
parallel computing makes to the Tabu Search algorithm in terms of computational time.
In addition, the accuracy of the robot’s traveling time estimation can be improved by
having feedback on the actual travel time to adapt the estimation process. Last but not
least, adding collision avoidance and multi-robot path planning could extend the accuracy
of time estimation and increase the overall system’s efficiency.

98

BIBLIOGRAPHY

[ABR17] Javier Alonso-Mora, Stuart Baker, and Daniela Rus, « Multi-robot forma-
tion control and object transport in dynamic environments via constrained
optimization », in: The International Journal of Robotics Research 36.9
(Aug. 2017), pp. 1000–1021 (cit. on pp. 23, 24).

[AFH14] Shakeel Ahmad, Zhi Feng, and Guoqiang Hu, « Multi-robot formation con-
trol using distributed null space behavioral approach », in: Proceedings -
IEEE International Conference on Robotics and Automation (2014), pp. 3607–
3612 (cit. on p. 21).

[AMI89] H. Asama, A. Matsumoto, and Y. Ishida, « Design Of An Autonomous And
Distributed Robot System: Actress », in: Proceedings. IEEE/RSJ Interna-
tional Workshop on Intelligent Robots and Systems ’. (IROS ’89) ’The Au-
tonomous Mobile Robots and Its Applications, Tsukuba: IEEE, 1989, pp. 283–
290 (cit. on p. 16).

[ANT17] Muhanad H.Mohammed Alkilabi, Aparajit Narayan, and Elio Tuci, « Coop-
erative object transport with a swarm of e-puck robots: robustness and scal-
ability of evolved collective strategies », in: Swarm Intelligence 11 (2017),
pp. 185–209 (cit. on p. 24).

[Bar+20] Uthman Baroudi et al., « Dynamic Multi-Objective Auction-Based (DYMO-
Auction) Task Allocation », in: Applied Sciences 10.9 (May 2020), p. 3264
(cit. on p. 26).

[BCD19] F. Basile, P. Chiacchio, and E. Di Marino, « An auction-based approach to
control automated warehouses using smart vehicles », in: Control Engineer-
ing Practice 90.June (Sept. 2019), pp. 285–300 (cit. on pp. 26, 76).

[Bro86] R. Brooks, « A robust layered control system for a mobile robot », in: IEEE
Journal on Robotics and Automation 2.1 (1986), pp. 14–23 (cit. on p. 21).

99

[BSM20] Ali B. Bahgat, Omar M. Shehata, and El Sayed I. Morgan, « A Multi-
Level Architecture for Solving the Multi-Robot Task Allocation Problem
Using a Market-Based Approach », in: International Journal of Mechanical
Engineering and Robotics Research 9.2 (2020), pp. 293–298 (cit. on p. 26).

[BWN09] Thijs H.A. van den Broek, Nathan van de Wouw, and Henk Nijmeijer, « For-
mation control of unicycle mobile robots: a virtual structure approach », in:
Proceedings of the 48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference, Shanghai, China,
Dec. 2009, pp. 8328–8333 (cit. on p. 20).

[Cal+90] P. Caloud et al., « Indoor automation with many mobile robots », in: IEEE
International Workshop on Intelligent Robots and Systems, Towards a New
Frontier of Applications, Ibaraki: IEEE, July 1990, pp. 67–72 (cit. on p. 16).

[CB15] Lei Chen and Ma Baoli, « A nonlinear formation control of wheeled mobile
robots with virtual structure approach », in: 2015 34th Chinese Control
Conference, vol. 2015-Septe, Hangzhou, China, July 2015, pp. 1080–1085
(cit. on p. 20).

[Che+15] Jianing Chen et al., « Occlusion-Based Cooperative Transport with a Swarm
of Miniature Mobile Robots », in: IEEE Trans.on Robotics 31 (Apr. 2015),
pp. 307–321 (cit. on p. 24).

[Con+06] Luca Consolini et al., « On the Control of a Leader-Follower Formation
of Nonholonomic Mobile Robots », in: Proceedings of the 45th IEEE Con-
ference on Decision and Control, San Diego, CA, USA: IEEE, Dec. 2006,
pp. 5992–5997 (cit. on p. 19).

[Dai+16] Yanyan Dai et al., « Symmetric caging formation for convex polygonal ob-
ject transportation by multiple mobile robots based on fuzzy sliding mode
control », in: ISA Transactions 60 (2016), pp. 321–332 (cit. on p. 24).

[Die05] Reinhard Diestel, Graph Theory, 2005 (cit. on p. 35).

[Eoh+11] Gyuho Eoh et al., « Multi-robot cooperative formation for overweight object
transportation », in: 2011 IEEE/SICE International Symposium on System
Integration, SII 2011 c (2011), pp. 726–731 (cit. on pp. 23, 24).

100

[Fal+11] Riccardo Falconi et al., A graph-based collision-free distributed formation
control strategy, vol. 44, 1 PART 1, IFAC, 2011, pp. 6011–6016 (cit. on
p. 32).

[FH08] Bans Fidan and Julien M. Hendrickx, « Rigid graph control architectures
for autonomous formations », in: IEEE Control Systems 28.6 (Dec. 2008),
pp. 48–63 (cit. on p. 37).

[Fu+19] Junjie Fu et al., « Consensus of second-order multiagent systems with both
velocity and input constraints », in: IEEE Transactions on Industrial Elec-
tronics 66.10 (2019), pp. 7946–7955 (cit. on p. 22).

[G L+05] Michail G. Lagoudakis et al., « Auction-Based Multi-Robot Routing », in:
Robotics: Science and Systems I, vol. 1, Robotics: Science and Systems Foun-
dation, June 2005, pp. 343–350 (cit. on p. 25).

[Gif+10] Christopher M. Gifford et al., « A novel low-cost, limited-resource approach
to autonomous multi-robot exploration and mapping », in: Robotics and
Autonomous Systems 58.2 (Feb. 2010), pp. 186–202 (cit. on p. 11).

[GM04] Brian P. Gerkey and Maja J. Matarić, « A Formal Analysis and Taxonomy
of Task Allocation in Multi-Robot Systems », in: The International Journal
of Robotics Research 23.9 (Sept. 2004), pp. 939–954 (cit. on p. 24).

[GM12] Avinash Gautam and Sudeept Mohan, « A review of research in multi-robot
systems », in: 2012 IEEE 7th Int. Conf. on Industrial and Information Sys-
tems (ICIIS), Chennai, India, Aug. 2012 (cit. on p. 11).

[Hou+17] Zhicheng Hou et al., « A survey on the formation control of multiple quadro-
tors », in: 2017 14th International Conference on Ubiquitous Robots and
Ambient Intelligence (URAI), Jeju, South Korea, June 2017, pp. 219–225
(cit. on pp. 18, 22, 32).

[Hus+18] Ahmed Hussein et al., « Hybrid Optimization-Based Approach for Multiple
Intelligent Vehicles Requests Allocation », in: Journal of Advanced Trans-
portation 2018 (2018), pp. 1–11 (cit. on p. 12).

[KC14] Olivier Kermorgant and François Chaumette, « Dealing with constraints
in sensor-based robot control », in: IEEE Trans. on Robotics (Feb. 2014),
pp. 244–257 (cit. on p. 50).

101

[KHE15] Alaa Khamis, Ahmed Hussein, and Ahmed Elmogy, « Multi-robot Task Al-
location: A Review of the State-of-the-Art », in: Cooperative Robots and
Sensor Networks 2015, vol. 604, 2015, pp. 31–51 (cit. on pp. 25, 26).

[KLW11] Oussama Kanoun, Florent Lamiraux, and Pierre Brice Wieber, « Kinematic
control of redundant manipulators: Generalizing the task-priority frame-
work to inequality task », in: IEEE Transactions on Robotics 27.4 (2011),
pp. 785–792 (cit. on p. 51).

[KSD13] G Ayorkor Korsah, Anthony Stentz, and M Bernardine Dias, « A comprehen-
sive taxonomy for multi-robot task allocation », in: The International Jour-
nal of Robotics Research 32.12 (Oct. 2013), pp. 1495–1512 (cit. on p. 24).

[LCS15] Lingzhi Luo, Nilanjan Chakraborty, and Katia Sycara, « Distributed Algo-
rithms for Multirobot Task Assignment With Task Deadline Constraints »,
in: IEEE Transactions on Automation Science and Engineering 12.3 (July
2015), pp. 876–888 (cit. on p. 26).

[LHW14] Jin Ling Lin, Kao Shing Hwang, and Ya Ling Wang, « A Simple Scheme
for Formation Control Based on Weighted Behavior Learning », in: IEEE
Transactions on Neural Networks and Learning Systems 25.6 (June 2014),
pp. 1033–1044 (cit. on p. 22).

[Liu+17] Andong Liu et al., « Nash-optimization distributed model predictive con-
trol for multi mobile robots formation », in: Peer-to-Peer Networking and
Applications 10.3 (May 2017), pp. 688–696 (cit. on p. 22).

[LLL15] Jing Luo, Cheng-Lin Liu, and Fei Liu, « A leader-following formation con-
trol of multiple mobile robots with obstacle », in: 2015 IEEE International
Conference on Information and Automation, 61473138, Lijiang, China, Aug.
2015, pp. 2153–2158 (cit. on p. 19).

[LN11] Chang Boon Low and Quee San Ng, « A flexible virtual structure forma-
tion keeping control for fixed-wing UAVs », in: 2011 9th IEEE International
Conference on Control and Automation (ICCA), Santiago, Chile, Dec. 2011,
pp. 621–626 (cit. on p. 20).

[LRV14] Gilbert Laporte, Stefan Ropke, and Thibaut Vidal, « Chapter 4: Heuris-
tics for the Vehicle Routing Problem », in: Vehicle Routing, vol. 7, 4-5,

102

Philadelphia, PA: Society for Industrial and Applied Mathematics, Nov.
2014, pp. 87–116 (cit. on pp. 12, 77).

[Mar+13] Alessandro Marino et al., « A Decentralized Architecture for Multi-Robot
Systems Based on the Null-Space-Behavioral Control with Application to
Multi-Robot Border Patrolling », in: Journal of Intelligent & Robotic Sys-
tems 71 (Sept. 2013), pp. 423–444 (cit. on p. 21).

[Mia+18] Zhiqiang Miao et al., « Distributed Estimation and Control for Leader-
Following Formations of Nonholonomic Mobile Robots », in: IEEE Transac-
tions on Automation Science and Engineering 15.4 (Oct. 2018), pp. 1946–
1954 (cit. on pp. 11, 18).

[MM06] Alejandro R. Mosteo and Luis Montano, « Simulated annealing for multi-
robot hierarchical task allocation with flexible constraints and objective
functions », in: Workshop on Network Robot Systems: Toward Intelligent
Robotic Systems Integrated with Environments at IROS, Jan. 2006 (cit. on
p. 27).

[NMS15] K. Noack, L. Marsh, and S. Shekh, « Negotiation Protocol Comparison for
task allocation in highly dynamic environments », in: Weber, T., McPhee,
M.J. and Anderssen, R.S. (eds) MODSIM2015, 21st International Congress
on Modelling and Simulation, Modelling, Simulation Society of Australia,
and New Zealand, Nov. 2015, pp. 718–724 (cit. on p. 12).

[Olf06] Reza Olfati-Saber, « Flocking for Multi-Agent Dynamic Systems: Algorithms
and Theory », in: IEEE Transactions on Automatic Control 51.3 (Mar.
2006), pp. 401–420 (cit. on pp. 21, 32, 39–41, 44, 45).

[PAM20] Héctor M. Pérez-Villeda, Gustavo Arechavaleta, and América Morales-Díaz,
« Multi-vehicle coordination based on hierarchical quadratic programming »,
in: Control Engineering Practice 94 (Jan. 2020) (cit. on pp. 22, 24, 55).

[Pop+17] Mihai-Ioan Popescu et al., « Multi-cycle Coverage for Multi-robot Patrolling
- application to data collection in WSNs - », in: Journées Francophones sur
la Planification, la Décision et l’Apprentissage pour la conduite de systèmes
(JFPDA), Caen, France, July 2017 (cit. on p. 11).

[RB08] Wei Ren and Randal W Beard, Distributed Consensus in Multi-vehicle Coop-
erative Control, London: Springer London, 2008, pp. 198–199 (cit. on p. 33).

103

[Ren+10] Rui Ren et al., « Automatic generation of optimally rigid formations us-
ing decentralized methods », in: International Journal of Automation and
Computing 7.4 (Nov. 2010), pp. 557–564 (cit. on p. 36).

[Rey87] Craig W Reynolds, « Flocks, herds and schools: A distributed behavioral
model », in: Computer Graphics 21.4 (July 1987), pp. 25–34 (cit. on p. 21).

[See+20] N. Seenu et al., « Review on state-of-the-art dynamic task allocation strate-
gies for multiple-robot systems », in: Industrial Robot 47.6 (2020), pp. 929–
942 (cit. on pp. 25, 26).

[SFZ19] Osamah Saif, Isabelle Fantoni, and Arturo Zavala-Río, « Distributed integral
control of multiple UAVs: precise flocking and navigation », in: IET Control
Theory & Applications 13.13 (Sept. 2019), pp. 2008–2017 (cit. on pp. 21,
32, 39, 41).

[SGC19] Nick Sullivan, Steven Grainger, and Ben Cazzolato, « Sequential single-item
auction improvements for heterogeneous multi-robot routing », in: Robotics
and Autonomous Systems 115 (May 2019), pp. 130–142 (cit. on p. 26).

[SPB18] David St-Onge, Carlo Pinciroli, and Giovanni Beltrame, « Circle Formation
with Computation-Free Robots Shows Emergent Behavioural Structure »,
in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), Madrid, Spain, Oct. 2018, pp. 5344–5349 (cit. on p. 21).

[SR15] Kaarthik Sundar and Sivakumar Rathinam, « An exact algorithm for a
heterogeneous, multiple depot, multiple traveling salesman problem », in:
2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015
(2015) (cit. on p. 27).

[TAA18] Elio Tuci, Muhanad H. M. Alkilabi, and Otar Akanyeti, « Cooperative Ob-
ject Transport in Multi-Robot Systems: A Review of the State-of-the-Art »,
in: Frontiers in Robotics and AI 5 (May 2018) (cit. on p. 23).

[Tru+18] Miguel A. Trujillo et al., « Priority Task-Based Formation Control and Ob-
stacle Avoidance of Holonomic Agents with Continuous Control Inputs »,
in: IFAC-PapersOnLine 51.13 (2018), pp. 216–222 (cit. on p. 98).

104

[Tsa+18] Kam Fai Elvis Tsang et al., « A Novel Warehouse Multi-Robot Automation
System with Semi-Complete and Computationally Efficient Path Planning
and Adaptive Genetic Task Allocation Algorithms », in: 2018 15th Interna-
tional Conference on Control, Automation, Robotics and Vision (ICARCV),
IEEE, Nov. 2018, pp. 1671–1676 (cit. on p. 27).

[VR21] Janardan Kumar Verma and Virender Ranga, « Multi-Robot Coordination
Analysis, Taxonomy, Challenges and Future Scope », in: Journal of Intelli-
gent & Robotic Systems 102.1 (May 2021), p. 10 (cit. on p. 16).

[Wan+17a] Hesheng Wang et al., « Adaptive Vision-Based Leader–Follower Formation
Control of Mobile Robots », in: IEEE Transactions on Industrial Electronics
64.4 (Apr. 2017), pp. 2893–2902 (cit. on p. 19).

[Wan+17b] Zhuping Wang et al., « A graph based formation control of nonholonomic
wheeled robots using a novel edge-weight function », in: 2017 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, SMC 2017, vol. 2017-
Janua, 91420103, 2017, pp. 1477–1481 (cit. on p. 22).

[Wan+18] Yuanzhe Wang et al., « A Practical Leader–Follower Tracking Control Scheme
for Multiple Nonholonomic Mobile Robots in Unknown Obstacle Environ-
ments », in: IEEE Transactions on Control Systems Technology 27.4 (July
2018), pp. 1685–1693 (cit. on p. 19).

[Wan+19] Jia Wang et al., « Pattern-RL: Multi-robot Cooperative Pattern Formation
via Deep Reinforcement Learning », in: 2019 18th IEEE International Con-
ference On Machine Learning And Applications (ICMLA), IEEE, Dec. 2019,
pp. 210–215 (cit. on p. 22).

[Wan+20] Weiwei Wan et al., « Multirobot Object Transport via Robust Caging », in:
IEEE Transactions on Systems, Man, and Cybernetics: Systems 50.1 (Jan.
2020), pp. 270–280 (cit. on pp. 23, 24).

[WJC20] Changyun Wei, Ze Ji, and Boliang Cai, « Particle Swarm Optimization for
Cooperative Multi-Robot Task Allocation: A Multi-Objective Approach »,
in: IEEE Robotics and Automation Letters 5.2 (Apr. 2020), pp. 2530–2537
(cit. on p. 28).

105

[WS16] Zijian Wang and Mac Schwager, « Kinematic multi-robot manipulation with
no communication using force feedback », in: 2016 IEEE International Con-
ference on Robotics and Automation (ICRA), Stockholm, Sweden: IEEE,
May 2016, pp. 427–432 (cit. on pp. 11, 24).

[Wu+19] Shuang Wu et al., « Leader-following Consensus and Trajectory Tracking for
Nonholonomic Mobile Robots », in: Proceedings 2018 Chinese Automation
Congress, CAC 2018, IEEE, 2019, pp. 3678–3683 (cit. on p. 32).

[WVB19] Fang Wu, Vivek Shankar Varadharajan, and Giovanni Beltrame, « Collision-
aware Task Assignment for Multi-Robot Systems », in: 2019 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS), IEEE, Aug.
2019, pp. 30–36, arXiv: 1904.04374 (cit. on p. 74).

[Xue+21] Kai Xue et al., « An Exact Algorithm for Task Allocation of Multiple Un-
manned Surface Vehicles with Minimum Task Time », in: Journal of Marine
Science and Engineering 9.8 (2021), p. 907 (cit. on p. 27).

[Yan+04] Xin Yang et al., « A decentralized control system for cooperative transporta-
tion by multiple non-holonomic mobile robots », in: International Journal
of Control 77 (Aug. 2004), pp. 949–963 (cit. on p. 24).

[YJC13] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif, « A Survey and Anal-
ysis of Multi-Robot Coordination », in: International Journal of Advanced
Robotic Systems 10.12 (Dec. 2013), p. 399 (cit. on pp. 16, 17).

[YN08] Chika Yoshioka and Toru Namerikawa, « Formation Control of Nonholo-
nomic Multi-Vehicle Systems based on Virtual Structure », in: The Inter-
national Federation of Automatic Control 41.2 (July 2008), pp. 5149–5154
(cit. on p. 20).

[Zel+15] Daniel Zelazo et al., « Decentralized rigidity maintenance control with range
measurements for multi-robot systems », in: The International Journal of
Robotics Research 34.1 (Jan. 2015), pp. 105–128 (cit. on p. 37).

106

https://arxiv.org/abs/1904.04374

Titre : Navigation coopérative d’une flotte de robots mobiles

Mot clés : Systèmes multi-robots, contrôle de formation, algorithme de consensus, optimisa-

tion quadratique hiérarchique, allocation de tâches basée sur l’optimisation et les enchères.

Résumé : L’intérêt pour l’intégration des sys-
tèmes multi-robots (MRS) dans les applica-
tions du monde réel augmente de plus en
plus, notamment pour l’exécution de tâches
complexes. Pour les tâches de transport de
charges, différentes stratégies de manuten-
tion de charges ont été proposées telles que :
la poussée seule, la mise en cage et la pré-
hension. Dans cette thèse, nous souhaitons
utiliser une stratégie de manipulation simple :
placer l’objet à transporter au sommet d’un
groupe de robots mobiles. Ainsi, cela néces-
site un contrôle de formation rigide. Nous pro-
posons deux algorithmes de formation. L’al-
gorithme de consensus est l’un d’entre eux.
Nous adaptons un contrôleur de flocking dy-
namique pour qu’il soit utilisé dans le système

à un seul intégrateur, et nous proposons un
système d’évitement d’obstacles qui peut em-
pêcher le fractionnement tout en évitant les
obstacles. Le deuxième contrôle de formation
est basé sur l’optimisation quadratique hiérar-
chique (HQP). Le problème est décomposé en
plusieurs objectifs de tâches : formation, navi-
gation, évitement d’obstacles et limites de vi-
tesse. Ces tâches sont représentées par des
contraintes d’égalité et d’inégalité avec diffé-
rents niveaux de priorité, qui sont résolues sé-
quentiellement par le HQP. Enfin, une étude
sur les algorithmes d’allocation des tâches
(Contract Net Protocol et Tabu Search) est
menée afin de déterminer une solution appro-
priée pour l’allocation des tâches dans l’envi-
ronnement industriel.

Title: Cooperative navigation of a fleet of mobile robots

Keywords: Multi-robot system, formation control, consensus algorithm, hierarchical quadratic

programming, optimation-based task allocation, auction-based task allocation.

Abstract: The interest in integrating multi-
robot systems (MRS) into real-world appli-
cations is increasing more and more, espe-
cially for performing complex tasks. For load-
carrying tasks, various load-handling strate-
gies have been proposed such as: pushing-
only, caging, and grasping. In this thesis, we
aim to use a simple handling strategy: plac-
ing the carrying object on top of a group of
wheeled mobile robots. Thus, it requires a
rigid formation control. A consensus algo-
rithm is one of the two formation controllers
we apply to the system. We adapt a dynamic
flocking controller to be used in the single-
integrator system, and we propose an obsta-

cle avoidance that can prevent splitting while
evading the obstacles. The second forma-
tion control is based on hierarchical quadratic
programming (HQP). The problem is decom-
posed into multiple task objectives: formation,
navigation, obstacle avoidance, velocity lim-
its. These tasks are represented by equal-
ity and inequality constraints with different lev-
els of priority, which are solved sequentially
by the HQP. Lastly, a study on task allocation
algorithms (Contract Net Protocol and Tabu
Search) is carried out in order to determine an
appropriate solution for allocating tasks in the
industrial environment.

	List of Figures
	List of Tables
	Introduction
	State of the art
	Introduction
	Control architecture
	Centralized architecture
	Distributed architecture
	Hierarchical architecture

	Formation control
	Leader-follower
	Virtual structure
	Behavior-based
	Other approaches

	Load handling strategy
	Task allocation
	Auction-based
	Optimization-based

	Conclusion

	Formation control
	Introduction
	Consensus-based formation
	Wheeled mobile robots modeling
	Graph theory
	Preliminaries
	Formation control algorithm
	Simulations and experimental results
	Conclusion

	Optimization-based approach
	Task-based control
	Hierarchical quadratic programming
	Task definitions
	Simulation and experimental results
	Conclusion

	Conclusion on formation control

	Task allocation
	Introduction
	Problem definition
	Methodology
	Objective function
	Contract Net Protocol approach
	Tabu Search approach
	Simplified Local Search approach

	Experimental results
	Experimental setups
	Preliminary experiments
	Comparison experiments

	Conclusion on task allocation

	Conclusion
	Bibliography

