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ABSTRACT (ENGLISH)

The security of modern communication networks can be enhanced thanks
to the laws of quantum mechanics. In this way, important tasks such as
encryption key distribution, anonymous transmissions or electronic vot-

ing can be made secure without computational assumptions. In this thesis, we
develop a source of photonic quantum states which we use to demonstrate new
quantum-cryptographic primitives: quantum weak coin flipping, and the certified
transmission of quantum information through an untrusted quantum channel.

Our source produces photon-pairs via spontaneous parametric down-conversion
in the telecom range. Pairs can be used as heralded single-photons, or as close-to-
maximally entangled pairs. We show this source is suitable for the implementation
of quantum protocols. We also provide a novel design in order to adapt this source
to multipartite entanglement generation.

Weak coin flipping allows two distant players to decide of a random winner.
Using quantum resources allows to enforce information-theoretic security and
cheat-sensitivity. We demonstrate a refined and loss-tolerent version of a recently
proposed theoretical protocol, using heralded single-photons mixed with vacuum
to produce entanglement. Cheating players are detected in a verification step,
which involves a carefully optimized linear optical interferometer including beam
splitters with variable reflectivities and a fast optical switch. We demonstrate
high values of our protocol benchmarks for attenuations corresponding to several
kilometers of telecom optical fiber.

Finally, we provide a new protocol for certifying the transmission of an unmea-
sured qubit through a lossy and untrusted channel. The security of the primitive is
based on new fundamental results of lossy quantum channels. Probing the channel
with part of a maximally-entangled state allows to device-independently test its
quality, using self-testing of Bell or steering inequalities. We demonstrate that
protocol using photon-pairs entangled in polarization to probe the channel. We
show it allows the certification of quantum communication for a large amount of
losses induced by the channel.



ABSTRACT (FRANÇAIS)

La sécurité des réseaux modernes de communication peut être renforcée grâce
aux lois de la mécanique quantique, permettant d’effectuer sans hypothèse
d’importantes tâches telles que la distribution de clés de cryptage, les trans-

missions anonymes ou le vote électronique. Dans cette thèse, nous développons une
source d’états quantiques photoniques grâce auxquels nous démontrons de nou-
velles primitives cryptographiques : le tirage à pile-ou-face faible et la transmission
certifiée via un canal quantique non-fiable.

Notre source produit des paires de photons par conversion paramétrique de-
scendante spontanée à longueurs d’onde télécoms. Les paires sont utilisées comme
des photons uniques annoncés ou des paires intriquées. Nous montrons que cette
source est adaptée à la mise en œuvre de protocoles quantiques, et proposons une
méthode afin d’adapter cette source à la génération d’états intriqués multipartites.

Le tirage à pile-ou-face faible permet à deux joueurs distants de décider d’un
gagnant aléatoire. L’utilisation de ressources quantiques rend le protocole sensible
à la triche et sécurisé par la théorie de l’information. Nous démontrons une version
retravaillée et tolérante aux pertes d’un protocole théorique récemment proposé.
Nous utilisons des photons uniques annoncés, mélangés avec le vide pour produire
de l’intrication. Un joueur malhonnête est détecté lors d’une étape de vérification,
incluant un interféromètre optique linéaire comprenant des séparateurs de faisceau
à réflectivités variables et un commutateur optique rapide. Nous démontrons des
valeurs de référence élevées pour des atténuations correspondant à plusieurs
kilomètres de fibre optique télécoms.

Enfin, nous fournissons un nouveau protocole pour certifier la transmission
d’un qubit non-mesuré à travers un canal non-fiable présentant des pertes. Il
est possible de tester la qualité du canal en le sondant avec une moitié d’état
maximalement intriqué, et ce indépendamment du système de mesure, en utilisant
la technique de self-testing des inégalités de Bell ou de steering. Nous démontrons
ce protocole en utilisant des paires de photons intriqués en polarisation pour sonder
le canal. Nous montrons qu’il permet la certification de communications quantiques
pour une grande quantité de pertes induites par le canal.
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INTRODUCTION

‘Pearls in oysters may take years
to swell around the sand.’

— An Pierlé, Certain Days.

The ongoing development of modern communication technologies allows

more and more users to connect in an ever growing global network, with

high-speed data transmissions and strong data-processing capabilities. On

a more local scale, the emerging idea of smart cities promises to connect even

the most simple devices in order to improve our everyday quality of life. Despite

these seemingly desirable aspects, such new technologies also raise the awareness

and skepticism regarding potential threats to privacy and general security of the

network. In this context, secure methods allowing to perform a collection of ele-

mentary tasks or primitives, including private and anonymous communications,

remote shared randomness, or faithful message transmission, are needed in order

to build more complex and concrete procedures, such as online banking, electronic

voting or digital signatures.

The security of current cryptographic primitives generally relies on so-called

computational assumptions. In other words, with the known calculation power

of classical computers, cracking such a protocol is a near-impossible task, or re-

quires an amount of time so big it makes the task useless. For instance, the RSA

cypher [1], used for the encryption of world-wide banking transactions, relies on

finding the prime factors of a large integer, which is an exponentially-hard problem

1



CHAPTER 1. INTRODUCTION

even for modern classical computers. Still, the security of RSA holds only thanks

to our knowledge of currently available computational power, which may change

as new types of computers emerge.

With the rapid development of quantum technologies, such computers may well

appear in the near-future. The idea of building a quantum computer is attributed

to R. Feynman in 1982 [2] and was further detailed by D. Deutsch in 1985 [3].

By exploiting the fundamental laws of quantum systems, a whole new variety

of algorithms can be developed, where the classical bit of well-defined value "0"

or "1" makes way for a quantum bit. The value of such qubit is undefined until its

measurement, the result of which is fundamentally probabilistic. The arising new

logic of quantum algorithms goes out of the scope of computational assumptions

made to secure classical protocols, therefore threatening the security of modern

encryption algorithms. In particular, P. Shor proposed in 1994 a quantum algorithm

allowing to find the prime factors of any integer in polynomial time [4], showing

the vulnerability of the RSA cyper to quantum attacks. The development of more

resistant cryptographic primitives has since grown into one of the most prolific

fields of research of the past decades.

If the existence of quantum systems has threatened the security of classical

primitives, it has also allowed the development of new quantum cryptography

protocols. For instance different protocols were proposed for quantum key distribu-

tion (QKD), by C. Bennett and G. Brassard in 1984 [5], and by A. Ekert in 1991

[6]. Such protocols allow two players Alice and Bob to share a private random

key, that they can later use to encrypt their messages with optimal security [7, 8].

Contrary to RSA cypher, this security does not rely on any computation assumption,

but solely on laws of quantum physics, such as the collapse of quantum states

under measurement, Bell theorem [9] relating to quantum entanglement, or the

no-cloning theorem [10, 11]. Since then, various quantum protocols have been

developed to solve new cryptographic problems, including secret sharing [12–14],

bit commitment [15], multipartite QKD [16], or anonymous communications [17],

feeding the hope for the development of a world-wide quantum internet [18, 19].
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Interestingly enough, the resilience of quantum protocols to malicious attacks

can take different forms. In the case of a the protocol proposed by R. Spekkens and

T. Rudolph for remote weak coin flipping [20], the resources’ quantumness provides

an advantage over classical protocols in the form of cheat-sensitivity. This prim-

itive allows two remote players Alice and Bob to fairly design a winner between

them two, using the randomness of two entangled qubits. The cheat-sensitivity

arises when, after the protocol, players verify the entanglement, which unveils a

potential cheating player with non-zero probability. Regarding the resilience of

entanglement-based protocols, the case of device-independent verification proce-

dures may be even more striking. Such procedures allow to certify a wide range of

quantum resources, including quantum states [21, 22], measurements [23, 24] or

channels [25], while making very few assumptions on the certified systems and

measurement devices. In practice, device-independent verification protocols can

be used as building blocks to perform more complex tasks involving untrusted

resources, such as the recently proposed authenticated teleportation [26].

States of the quantified electromagnetic field, also known as photons, have since

proven to be promising candidates for the implementation of quantum communica-

tions protocols, thanks to their relative ease of manipulation and transmission over

large distances with limited decoherence and losses. Thus, quantum information

can be encoded in various photonic degrees of freedom, including photon’s path [27],

orbital angular momentum [28], spectral state [29] or emission time [30]. Most

importantly, the polarization degree of freedom has been widely used to demon-

strate fundamental quantum properties, such as the most notorious experiment

of A. Aspect in 1981 [31] proving the nonlocality of entangled quantum systems,

or to implement quantum protocols such as quantum key distribution [32–35],

quantum money [36–38], secret sharing [39], or conference key agreement [40, 41].

In general, the generation of entangled- and single-photons of high state quality,

detection rates or purity, has become a very active research area, in order to meet

the needs for complex communication and cryptography tasks. This way, sources

based on spontaneous parametric down-conversion in nonlinear crystals have been

used to generate close-to-maximally entangled qubits [42], probabilistic but her-

alded single-photons [43–45], and multipartite entangled states [46, 47]. The rapid

3



CHAPTER 1. INTRODUCTION

improvement of these photonic resources, together with the rising enthusiasm

surrounding the future development of a quantum internet, further motivates the

experimental implementation of new cryptographic primitives, which is the main

scope of this thesis.

1.1 Thesis Outline

Chapter 2 introduces the most important concepts and tools required in this

thesis. We first go through the mathematical framework of quantum mechanics

and information, then we give some insight on classical and quantum optics, and

we finally introduce some notions linked to quantum cryptography.

Chapter 3 gives the details of our photon-pairs source. Pairs are generated via

spontaneous parametric down-conversion in a periodically-poled KTP crystal, and

either used as heralded single-photons, or entangled in their polarization degree of

freedom in a Sagnac interferometer [42]. The source’s characterization shows in

particular that it produces single-photons with relatively high heralding efficiency,

and close-to-maximally entangled qubits, proving it is suitable for the implemen-

tation of quantum network protocols. In addition, we provide a novel design to

upgrade our source to a multipartite source, with relatively few adjustments.

Chapter 4 presents the first implementation of a cheat-sensitive weak coin flip-

ping protocol, based on a heralded single-photon emitted by the source detailed

in chapter 3. We follow a refined recipe inspired from [48]. In this protocol, a

winner is randomly designated among Alice and Bob, by measuring a photon-

path entangled-state generated by Alice from a single-photon. Cheat-sensitivity

arises from the entanglement-verification performed by Bob. Simulating fiber-

communication losses, we show the correctness and fairness of our protocol over

up to 7 km of communication distance between Alice and Bob. Implementing ex-

amples of behavior of dishonest Alice and Bob, we then demonstrate our method’s

cheat-sensitivity, enabled through quantum properties of photons.
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Chapter 5 develops some important fundamental results of quantum channels.

These objects describe the most general operations undergone by quantum states,

and are therefore a necessary ingredient to describe a secure quantum network.

Our result includes the extension of different metrics of non-lossy channels to

lossy channels, a theorem showing the equivalence of those metrics, and another

theorem extending the kwown processing inequality of non-lossy channels to lossy

quantum channels.

Chapter 6 builds a protocol for certified quantum communication through an

untrusted and lossy quantum channel. Our method consists in probing the channel

with maximally-entangled pairs of qubits, and hiding quantum information among

those probe states. The security is derived in a device-independent setting, and

built in particular from our new fundamental results presented in chapter 5, and

from generalizing the verification of lossless quantum channels from [25]. The

protocol is particularly robust, as very few assumptions are made on the quantum

channel and measurement devices. Using polarization-entangled pairs of photons

emitted by our source detailed in chapter 3, we perform the first proof-of-principle

implementation of this protocol, in a semi-device independent setting, where the

sender’s resources are trusted. For this task, we use recent self-testing results

from [26]. We simulate an honest but untrusted and lossy quantum channel using

a variable optical attenuator, and a dishonest channel by randomly performing

bit and phase flips. In this way, we show our procedure can be used in practice to

detect malicious channels and certify undisrupted quantum information, which is

a fundamental building block of quantum networks.

Chapter 7 discusses the main results of this thesis, and provides potential new

perspectives. We summarize the new key ideas presented in the last chapters, and

point out some unsolved challenges which may be overcome in the future.
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1.2 Publications

The results from chapter 4 were submitted for publication in the following manuscript:

• [49] Experimental cheat-sensitive quantum weak coin flipping,

with V. Yacoub, U. Chabaud, M. Bozzio, I. Kerenidis, and E. Diamanti,

The results from chapters 5 and 6 are about to be submitted for publication, in the

following manuscript:

• Experimental Certification of Quantum Transmissions via Bell Theorem,

with L. dos Santos Martins, V. Yacoub, P. Lefebvre, I. Šupić, D. Markham,

and E. Diamanti.

Some results from chapter 3 are also included in these two manuscripts, although

the multipartite source is still under preparation. Results on that source will be

presented when it is ready and characterized. In addition, a contribution was made

in the following manuscript, which was submitted for publication:

• [50] Quantum City: a Realistic Metropolitan Quantum Network Architecture,

with R. Yehia, E. Diamanti, and I. Kerenidis,

The results in this thesis were also presented as poster talks in international con-

ferences and summer schools such as CEWQO 2019, QLight 2019, and QCMC 2022,

and disseminated in nationwide public outreach event Fête de la Science and in a

scientific radio show from radio station France Culture.
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PRELIMINARIES

‘L’homme est également sous le joug
de ces lois qu’il feint d’ignorer, se
croyant exceptionnel et le fruit d’une
opération divine.’

— Edouard Oblak.

We first introduce the most fundamental concepts this thesis is built upon.

First we go through the basic mathematical framework of quantum

mechanics and information, including details on quantum entanglement,

which is at the heart of this work. Then we give some insight on classical and

quantum optics, including nonlinear phenomena that later allow entanglement

generation. Finally we introduce some notions linked to quantum cryptography.

2.1 Mathematical Framework

2.1.1 Quantum State

Each isolated quantum system can be associated with a quantum state, which

gathers all the properties of the system, and can be used to predict its behaviour.

We adopt the Dirac notation, such that the quantum state is a vector, or ket |ψ〉 in

a Hilbert space H . The bra 〈ψ| is the associated element of the dual space H ∗ of

H , and P̂ψ = |ψ〉〈ψ| is the projector on state |ψ〉. The probability of measuring a

particle of state |ψ〉 in a state |φ〉 is given by the inner product 〈.|.〉:

P(ψ→φ) = |〈φ|ψ〉|2. (2.1)

7



CHAPTER 2. PRELIMINARIES

The specific case φ = ψ imposes any quantum state to be normalized, 〈ψ|ψ〉 = 1.

As part of the Hilbert H , the normalized sum of two quantum states is still a

quantum state. This is commonly known as the principle of superposition.

In our experiments, most systems are not isolated, such that the quantum

state does not provide a sufficient description. Often the quantum state is indeed

degraded by noise, induced by interactions with a fluctuating environment, or with

other quantum systems in the form of entanglement. In such cases, the system is

said to be in a mixed state, as opposed to a pure state described in the beginning of

the paragraph, as it displays statistical fluctuations. Therefore, one can only know

the statistical probability pi that the system is in the pure state |ψi〉. With the set

{(|ψi〉, pi}, we define the density operator of the system:

ρ =
∑

i
pi|ψi〉〈ψi|, with 0< pi ≤ 1 and

∑
i

pi = 1. (2.2)

In general, a density operator is a Hermitian, nonnegative and normalized operator

from L (H ):

ρ ∈L (H ), ρ† = ρ, ρ ≥ 0, Tr(ρ) = 1. (2.3)

The hermiticity allows for the diagonalization of the operator, such that we can

choose a set of orthonormal vectors {|ψi〉} in eq. 2.2. Finally, we define the purity

P(ρ) of the state:

P(ρ) = Tr(ρ2) ∈]0;1]. (2.4)

In particular, P(ρ) = 1 when ρ2 = ρ = |ψ〉〈ψ| such that the system is in a pure state

|ψ〉. In this case we sometimes use the notation ψ = |ψ〉〈ψ|.

2.1.2 Quantum Measurements

Projective Measurements - The most intuitive way to grasp measurements in

quantum physics is through the consideration of observables. These are physical

quantities that can be measured on a quantum system, such as the polarization

or wavelength of light. An observable A is represented by a Hermitian operator

8



2.1. MATHEMATICAL FRAMEWORK

Â ∈L (H ), the eigenvalues {am} of which give the possible outcomes when measur-

ing that observable. Knowing the associated orthogonal projectors {P̂m}, one can

diagonalize the operator:

Â =
∑
m

amP̂m. (2.5)

Quantum measurements are inherently probabilistic, the probability of the out-

come am being given by:

P(am|ψ) = 〈ψ|P̂m|ψ〉 for a pure state, (2.6)

P(am|ρ) = Tr(P̂mρ) for a mixed state. (2.7)

The expectation value of observable A therefore reads:

〈A 〉ψ = 〈ψ|Â|ψ〉 for a pure state, (2.8)

〈A 〉ρ = Tr(Âρ) for a mixed state. (2.9)

After the measurement, the state is projected onto the corresponding subspace:

|ψ〉 −→ P̂m|ψ〉√
P(am|ψ)

for a pure state, (2.10)

ρ −→ P̂mρP̂m

P(am|ρ)
for a mixed state. (2.11)

This last property shows another well-known specificity of quantum measurements,

namely the alteration of the quantum state by the observer.

General Measurements - Although projective measurements are the most intu-

itive way of considering quantum measurement, they do not cover the entirety of

possible measurements. Indeed, postulates of quantum mechanics allow for more

general measurements, based on arbitrary sets of operators {M̂m} such that∑
m

M̂†
mM̂m =1. (2.12)

Such a set is known as a Positive Operator-Valued Measurement (POVM). In that

case, the different outcomes’ probabilities are given by:

P(m|ψ) = 〈ψ|M̂†
mM̂m|ψ〉 for a pure state, (2.13)

P(m|ρ) = Tr(M̂mρM̂†
m) for a mixed state. (2.14)

9
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Note that in the specific case (M̂†
mM̂m)2 = M̂†

mM̂m, the measurement is projective. In

some practical situation, the observer might be limited to a partial set of outcomes,

such that accessible measurement operators {M̂m} only verify

∑
m

M̂†
mM̂m ≤1. (2.15)

We call such measurement a partial POVM. Note that in this case, one can always

complete the set {M̂m} with a failure operator:

M̂∅ =
√
1−∑

m
M̂†

mM̂m , (2.16)

which is the no-outcome measurement operator. This way, the set {M̂m}∪ {M̂∅}

forms a full POVM.

2.1.3 The Quantum Bit

Most simple quantum systems are 2-dimensional, and are known as qubits. They

can be seen as the quantum analogue of the classical bit of information. The qubit

Hilbert space H is generated by 2 orthogonal vectors, |0〉 and |1〉, forming the

so-called computational basis. Common observables are the Pauli operators, of

eigenvalues ±1, and their associated eigenstates given in Table 2.1.

Operator Matrix
Eigenvectors

+1 −1

σ̂1 or σ̂x

[
0 1
1 0

]
|+x〉 = 1p

2
(|0〉+ |1〉) |−x〉 = 1p

2
(|0〉− |1〉)

σ̂2 or σ̂y

[
0 −i
i 0

]
|+y〉 = 1p

2
(|0〉+ i|1〉) |−y〉 = 1p

2
(|0〉− i|1〉)

σ̂3 or σ̂z

[
1 0
0 −1

]
|+z〉 = |0〉 |−z〉 = |1〉

Tab. 2.1: Pauli Operators and their eigenstates.
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Together with the identity 12 = σ̂0, these operators form an orthogonal basis of

the operators on the qubit space, for the inner product (A,B) = Tr(A†B). Therefore,

any density operator can be written in the form:

ρ =
1
2

(12 +r · σ⃗), (2.17)

with σ⃗ = (σ̂x; σ̂y; σ̂z) and r = (x; y; z) with ∥r∥ ≤ 1. r is the Bloch vector, in the Bloch

sphere (see Figure 2.1).

Fig. 2.1: Representation of the state of a qubit in the Bloch sphere.

The coordinates of the Bloch vector are the expectation values of the Pauli

operators. This way, the qubit’s density operator can easily be evaluated by mea-

suring these expectation values, which is the root of quantum state tomography
[51, 52]. Note that in case of a pure state ρ = |ψ〉〈ψ|, the vector is at the surface of

the sphere, and we get:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉, (2.18)

where (r = 1,θ,φ) are the spherical coordinates of r.

2.1.4 Quantum Entanglement

Definition - First mentioned by Erwin Schrödinger in 1935 [53], quantum entan-

glement is a fundamental property of composite quantum systems. Let us consider

n quantum systems of Hilbert spaces H1, H2, ...,Hn. Then the tensor product of

all these spaces is a valid Hilbert space:
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H =
n⊗

k=1
Hk =

{∑
j
λ j|ψ1, j〉⊗ |ψ2,i〉⊗ ...⊗|ψn, j〉,λ j ∈C, |ψk, j〉 ∈Hk

}
, (2.19)

such that the ensemble of n systems is also a valid quantum system, that we can

describe by its quantum state |ψ〉 ∈ H . That state is separable when it can be

written as the tensor product of the states of its subsystems:

|ψ〉 =
n⊗

k=1
|ψk〉, with |ψk〉 ∈Hk. (2.20)

The subsystems are then independent from one another, and can be described

separately. When the overall state |ψ〉 cannot be written in such a tensor product,

the state is entangled. In this case, we cannot define the state of a part of the

system independently from the other parts. This leads to correlations between

parts of the system that cannot be explained classically, even when said parts are

separated by large distances.

EPR Paradox and Non-locality - On a fundamental level, the possibility of

such entangled states, allowed by quantum theory, was the source of one of the

most important scientific debates of the past century. It started with the so-called

EPR paradox in 1935 [54], as Einstein, Podolsky, and Rosen claimed quantum

theory to be incomplete, such that the apparent quantum randomness should in

fact arise from deterministic local hidden variables (LHV). This claim relied on

the assumption that laws of nature should be both realist and local, meaning that

physical quantities should be defined independently of whether they are observed

or not, and that a measurement performed on a system should not influence the

result of another measurement performed on a remote system. Later work from

Bell in 1964 [9], and J. Clauser, M. Horne, A. Shimony and R. Holt (CHSH) in 1969

[55], showed that in a local realist theory the correlations measured by Alice and

Bob on two remote particles should always verify the following inequality:

I = 〈Â0B̂0〉+〈Â1B̂0〉+〈Â1B̂1〉−〈Â0B̂1〉 ≤ 2, (2.21)

where Â0, Â1 and B̂0, B̂1 are observables measured by Alice and Bob, respectively.

Yet, this CHSH inequality can be violated by the following 2-qubits entangled state,

known as the singlet or simply Bell state:
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|Ψ−〉 =
1p
2

(|0〉A ⊗|1〉B −|1〉A ⊗|0〉B
)

=
1p
2

(|0〉|1〉− |1〉|0〉) =
1p
2

(|01〉− |10〉). (2.22)

Here we simply display equivalent notations for bipartite states. If Alice and Bob

measure the following observables:

Â0 = σ̂z, B̂0 =− 1p
2

(σ̂z + σ̂x),

Â1 = σ̂x, B̂1 =
1p
2

(σ̂z − σ̂x),
(2.23)

we indeed expect a maximum violation of CHSH inequality I = 2
p

2 [56]. The ex-

periment of A. Aspect [31] demonstrated such violation in 1981, therefore refuting

the LHV model, and proving the inherent non-locality of quantum theory, in the

form of entangled states. Interestingly enough, the violation of Bell inequality

is a sufficient (but not necessary) condition for the presence of entanglement. In

particular, a maximal violation I = 2
p

2 , with unknown observables Â0, Â1, B̂0

and B̂1, can only be achieved by measuring a singlet state, up to local rotations.

This is root idea for device-independent cryptography, from which we can certify

quantum states with minimal assumptions, and that is the scope of chapter 6. For

more details on Bell non-locality, the reader can refer to [57].

Examples of Entangled States - The term Bell state generally refers to the whole

class of states which are equal to the singlet up to local unitaries. In particular,

this includes the four following states, which together form a basis of the 2-qubits

Hilbert space:

|Φ±〉 =
1p
2

(|00〉± |11〉), |Ψ±〉 =
1p
2

(|01〉± |10〉). (2.24)

They are the main resource of numerous protocols such as Quantum Teleportation

[58] or Ekert’s entanglement-based Quantum Key Distribution (QKD) [6]. In this

manuscript we also use a generalization of Bell states to d-dimensions systems,

also called qudits:

|Φd
+〉 =

1p
d

d−1∑
k=0

|k〉|k〉. (2.25)
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We can also generalize Bell states to N qubits, as the Greenberger-Horne-Zeilinger

(GHZ) state [59, 60]:

|GHZN〉 =
1p
2

(|0〉⊗N +|1〉⊗N)
. (2.26)

The latter is at the center of multipartite protocols such as conference key agree-

ment [61] (CKA) or anonymous communications [62], and is the basis of the GHZ

paradox which also refutes the EPR theory.

Entanglement and Density Operators - A key feature of entanglement is the

impossibility to attribute a well-defined quantum state to a portion of the en-

tangled system. Still, density operators can help us predict the local behaviour

of said portion. Let us take the example of a bipartite system of quantum state

|ψ〉 ∈H = HA ⊗HB. Using the Schmidt decomposition, one can write |ψ〉 in the

form:

|ψ〉 =
∑
k
λk|αk〉|βk〉 (2.27)

where {|αk〉} and {|βk〉} are orthonormal bases of HA and HB respectively, and λk

are positive real coefficients such that
∑

kλ
2
k = 1, called Schmidt coefficients. Taking

ρ = |ψ〉〈ψ|, the reduced density operator of system A is then defined as

ρA = TrB(ρ) =
∑
k
〈βk|ρ|βk〉 =

∑
k
λ2

k|αk〉〈αk|, (2.28)

where TrB is the partial trace on system B. This density operator ρA describes the

behaviour of system A regardless of system B. Similarly, we can define the reduced

density operator of system B, ρB = TrA(ρ). The purity of these two operators reads:

P(ρA) = P(ρB) =
∑
k
λ4

k =
1
K

, (2.29)

where K ≥ 1 is called the Schmidt rank. It is maximal when ρA and ρB are max-

imally mixed, indicating we cannot define local states for systems A and B: the

bipartite system is maximally entangled. Conversely, K = 1 when ρA and ρB are

pure, such that the states of A and B are locally defined: the system is fully separa-

ble. The Schmidt rank is therefore a a good measure of the amount of entanglement

in a bipartite state.
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Interestingly enough, any density operator can be interpreted as a reduced

density operator, computed from the pure state of a larger entangled system. This

is the philosophy of state purification, which ensures that for any density operator

ρ ∈L (HA), there exists a Hilbert space HB with dimHA = dimHB, and a pure

state |ψ〉 ∈ HA ⊗HB such that ρ = TrB(|ψ〉〈ψ|). This shows a close connection

between mixed state and entanglement, such that a limited purity in the state of a

system can always be attributed to some entanglement with another system. Far

from being a simple conceptual curiosity, this idea can have very concrete uses in

experiments, particularly when searching for the source of some noise.

2.1.5 Closeness of Quantum States

Different functions can be defined in order to evaluate the closeness of two quantum

states, a first common one being the trace distance:

D(ρ,σ) =
1
2

Tr
√

(ρ−σ)2 =
1
2

Tr |ρ−σ|. (2.30)

It can be characterized as the maximum probability of distinguishing the two

states by performing a single measurement:

D(ρ,σ) = max
0≤P̂≤1

Tr
(
P̂(ρ−σ)

)
, (2.31)

where the maximization can alternatively be restricted to projectors. The trace

distance is indeed a distance, as D(ρ,σ) = 0 implies ρ =σ, it is symmetric D(ρ,σ) =

D(σ,ρ), and it verifies the triangular inequality

D(ρ1,ρ2)≤ D(ρ1,ρ3)+D(ρ3,ρ2). (2.32)

Another important function is the Ulhmann fidelity [63] between two density

operators:

F(ρ,σ) =
[
Tr

(√p
ρσ

p
ρ

)]2

. (2.33)

The formula is in fact symmetric in ρ and σ. This function was first defined as a

generalization of the transition probability from one mixed state to another. More

precisely, it can be written as the maximum overlap between two purifications of ρ

and σ:

F(ρ,σ) = max
|ψ〉,|φ〉

|〈ψ|φ〉|2, (2.34)
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where the maximization is carried over all purifications |ψ〉 and |φ〉 of ρ and σ

respectively (one can alternatively fix the purification of one state and perform

the maximization on the other). The fidelity is not a distance, as it measures the

closeness of states instead of their separation. In particular, it does not verify the

triangular inequality, and F(ρ,σ) = 1 when ρ =σ. Still, one can define metrics from

the fidelity, such as the angle A(ρ,σ) and the sine distance C(ρ,σ) [64, 65]:

A(ρ,σ) = arccos
√

F(ρ,σ) , C(ρ,σ) =
√

1−F(ρ,σ) . (2.35)

This way, A(ρ,σ) is the angle between two purifications of the states, and
√

F(ρ,σ) ,

C(ρ,σ) are the cosine, sine of that angle, respectively. When one of the states is a

pure state σ = |φ〉〈φ|, the fidelity simply reads:

F(ρ,σ) = 〈φ|ρ|φ〉, (2.36)

and when ρ is also pure ρ = |ψ〉〈ψ| we have

F(ρ,σ) = |〈ψ|φ〉|2. (2.37)

Finally, these different functions are always ordered as follows:

1−
p

F ≤ D ≤ C ≤ A. (2.38)

When one of the state is pure, we get a tighter inequality 1−F ≤ D, and D = C
when both states are pure. This gives a characterization for the sine distance:

C(ρ,σ) = min
|ψ〉,|φ〉

D(|ψ〉, |φ〉), (2.39)

where the minimization is carried over all purifications |ψ〉 and |φ〉 of ρ and σ

respectively, or once again only over the purifications of one state by fixing a purifi-

cation of the other one.

The choice of these functions will depend on the context. We generally try to

derive results on the fidelity, which can be interpreted as a success probability

of our protocols. However, we will often use the trace distance in order to derive

interesting results, and then use its proximity with the sine distance in order to

generalize these results to the fidelity. The angle distance will be used mostly for

deriving a tight triangular inequality.
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2.1.6 Quantum Operations

Quantum states can undergo various transformations through their evolution. In

most cases, we consider an isolated system, so the transformation is unitary:

|ψ〉 −→ Û |ψ〉, with Û†Û = ÛÛ† =1. (2.40)

Important unitaries are qubit logic gates, that we provide in Table 2.2. Note the

Controlled-NOT is a 2-qubits gate, which allows for the construction of an entan-

gled state from a product state.

Name Notation Matrix Examples

Phase Flip Ẑ
[
1 0
0 −1

]
Ẑ|+x〉 = |−x〉 Ẑ|+y〉 = |−y〉

Bit Flip X̂
[
0 1
1 0

]
X̂ |0〉 = |1〉 X̂ |+y〉 = |−y〉

Bit & Phase Flip Ŷ iX̂ Ẑ = i
[
0 −1
1 0

]
Ŷ |0〉 = |1〉 Ŷ |+x〉 = |−x〉

Hadamard Gate Ĥ 1p
2

[
1 1
1 −1

]
Ĥ|0〉 = |+x〉 Ĥ|+x〉 = |0〉

Controlled-NOT ˆCX
[
12 0
0 X̂

]
ˆCX |+x〉|0〉 = |Φ+〉

Tab. 2.2: Most important logic quantum gates.

An important property of unitaries is the invariance of the closeness functions over

their application:

M(ÛρÛ†,ÛσÛ†) = M(ρ,σ), (2.41)

where M stands for A, C, D, or F. Unitaries can be generalized to transforma-

tions between two different Hilbert spaces HA and HB. Such transformations

Γ : HA −→HB, that verify Γ†
Γ = ΓΓ† = 1, are called isometries, and are of partic-

ular use in the context of device-independent protocols, such as those studied in

chapter 6. Finally, when the quantum system is not isolated, transformations can

involve interactions with other unknown systems, and cannot be described by

unitary operators or isometries. In such cases we adopt a more general formalism,

using quantum channels, that we detail in chapter 5.
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2.2 Optics

2.2.1 Classical Linear Optics

Free-space optics - In numerous cases the electromagnetic field can be described

as a classical wave, following Maxwell’s equations. In this thesis, we only consider

non-magnetic dielectric media, in absence of free charges and currents, so the

equations read:

∇×B =µ0
∂D
∂t

, ∇·B = 0,

∇×E =−∂B
∂t

, ∇·D = 0,

(2.42)

where E(r, t) is the electric field, D(r, t) is the electric displacement, and B(r, t) is

the magnetic field. In addition, the medium equation relates E(r, t) and D(r, t):

D = ε0E+P, (2.43)

where P(r, t) is the dipole-moment density, also called medium polarization, which

gives the reaction of the medium to the electric field. In free-space we have P = 0,

so we derive specific solutions to Maxwell’s equations. Monochromatic plane-waves

are of the form:

E(r, t) = E0ei(ωt−k·r) +conj., (2.44)

where E0 = (E0x ,E0y ,E0z ) is the complex amplitude vector, ω is the angular fre-

quency, and k the wavevector, that verifies

∥k∥ =ω/c, and E0 ·k = 0. (2.45)

The amplitude vector gives the polarization of the wave p0 = E0/∥E0∥. We also

define the wavelength in vacuum λ = 2πc/ω. Such a plane wave does not describe

any real physical field, as it would otherwise be infinitely extended in space and

time. Still it can be used as a limit case or a mathematical tool, as any physical

field can be decomposed in an infinite sum of plane waves by Fourier transform. A

more physical solution of Maxwell’s equation is the monochromatic Gaussian beam.

Considering such beam propagates along z-axis, the expression in the focusing

plane z = 0 reads

E(x, y, z = 0, t) = E0 exp(iωt)exp
(
− r2

w2
0

)
+conj., (2.46)
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where r2 = x2 + y2, and w0 is the beam radius, or waist. The general expression of

the field in every point of space can be found in [66], but we give here some useful

intuition. First we define the Rayleigh length:

zR =πw2
0/λ. (2.47)

For |z| < zR, the beam can be approximated as a plane wave with k = uzω/c. We

say the beam is collimated at the scale of zR . For |z| > zR , the beam progressively

diverges and spreads, with an increasing radius:

w(z) = w0

√
1+

( z
zR

)2
, (2.48)

so the beam intensity at any point of space reads:

I(x, y, z)∝
( w0

w(z)

)2
exp

(
− 2r2

w(z)2

)
. (2.49)

The beam can ultimately be approximated by a spherical wave for z ≫ zR. The

divergence angle is given by

θ = arctan
λ

πw0
≃ λ

πw0
. (2.50)

Fig. 2.2: Intensity profile of a Gaussian beam (w0 = 70µm, λ= 775nm), (a) in the
z = 0 plane, (b) in the y = 0 plane, in which we display the waist w(z), the Rayleigh
length zR and the divergence angle θ.

A typical Gaussian intensity profile is displayed in Fig. 2.2, which also shows

its significant characteristics. Beams emitted by a Laser or emerging from a

19



CHAPTER 2. PRELIMINARIES

single-mode optical fiber are typically approximated by Gaussian beams, which

therefore cover most beams studied in our experiments. Still some beams have

a non-negligible spectral bandwidth, and therefore cannot be approximated with

monochromatic beams. In such cases, we again decompose our beam as a sum of

monochromatic waves via Fourier transform, which gives the beam’s spectrum.

Linear optics in dielectric media - When electromagnetic waves propagate in

a dielectric medium, it induces a non-zero dipole-moment density P, that we can

decompose into a linear part PL and a nonlinear part PNL:

P = PL +PNL = ε0(χ(1)E+χ(2)E2 +χ(3)E3 + ...), (2.51)

where χ(1) is the linear first order susceptibility, and χ(n) for n > 1 is the n-th order

nonlinear susceptibility, which is a tensor of order n+1. For low power densities

the nonlinear moment density PNL can be neglected, such that we have

D = ε0(1+χ)E = ε0εrE, (2.52)

where χ is a 3× 3 symmetric, real and positive matrix, and εr is the relative

permittivity of the medium. εr can be diagonalized along 3 privileged axes of the

medium

εr =


n2

x 0 0

0 n2
y 0

0 0 n2
z

 (2.53)

where nx, ny, and nz are the optical indices the wave experiences when it is po-

larized along x-, y-, or z-axes respectively. In general, the medium is dispersive,

so the optical indices depend on the frequency ω. When nx = ny = nz = n, then the

medium is isotropic: the wave propagates at the same velocity v = c/n no matter its

polarization or propagation direction. This is the case for media like air, glass or

optical fibers in the absence of stress.

When at least two optical indices among nx, ny, and nz are different, then the

medium is called anisotropic or birefringent. This includes crystals or optical fibers

under stress for instance. In that case the calculation of the wave properties is

more complicated than in the isotropic case (see [66] for details on that matter).
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In this thesis we only consider specific cases, in which the beam propagates along

one of the dielectric axes that is normal to the dielectric interface (we choose the

(Oz)-axis by convention). Hence a horizontally-polarized wave (p0 = ux) experiences

the so-called ordinary index nx = no, while a vertically-polarized wave (p0 = uy)

experiences the extraordinary index ny = ne.

2.2.2 Nonlinear Optics

For relatively high power densities, the nonlinear dipole-moment density PNL in

eq. 2.51 cannot be neglected, which leads to diverse phenomena. The second term

in this equation involves the second order susceptibility χ(2), which is only non-zero

in anisotropic materials. It gives rise to processes such as sum-frequency generation
(SFG, the emission of a field of frequency ω1 =ω2+ω3, from two fields of respective

frequencies ω2 and ω3), second-harmonic generation or frequency doubling (SHG,

or SFG with ω2 =ω3, so ω1 = 2ω2), difference-frequency generation (DFG, a field of

frequency ω3 =ω1−ω2 is emitted from two fields of respective frequencies ω1 and

ω2), or optical parametric amplification (OPA, a field of frequency ω1 amplifies a

field of frequency ω2, and generates a field of frequency ω3 =ω1−ω2). Most impor-

tantly, spontaneous parametric down-conversion (SPDC), allowed via a quantum

description of the electromagnetic fields, describes the spontaneous conversion of a

field of frequency ω1 into two fields of frequencies ω2 and ω3, with ω1 =ω2+ω3. This

process can only be interpreted as a transformation of a photon of high energy into

two photons of lower energies. We introduce this description in the next paragraph.

In crystals of homogeneous susceptibility, also called bulk crystals, all these

processes occur only when the different fields verify the energy conservation and

phase-matching conditions:

Δω =ω2 +ω3 −ω1 = 0, (2.54) Δk = k3 +k2 −k1 = 0, (2.55)

where ∥k j∥ = n(ω j)ω j/c, and n is the extraordinary or ordinary index which de-

pends on the field’s frequency and polarization. We distinguish two types of phase-

matching depending on the fields’ polarizations:
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• Type-I phase-matching: the two fields with lower frequencies have the same

polarization, that is orthogonal to the third field’s polarization

• Type-II phase-matching: the two fields with lower frequencies have orthogo-

nal polarizations, one of which is parallel to the third field’s polarization.

The phase-matching condition ensures that the different fields are in phase all

throughout the propagation, so that all the waves generated at different points of

the crystal add up in a constructive interference. If this condition is not fulfilled,

then a destructive interference occurs at the scale of the crystal, and the new field

cannot emerge. A priori, one has to choose specific orientations of the crystal in

order to fulfill that condition at specific wavelengths. This limits the choices of

parameters for our experiments, which is why we generally prefer periodically-
poled crystals [67–69]. The nonlinear susceptibility of such crystals periodically

changes sign (see Fig. 2.3):

χ(2)
PP = χ(2)sgn

[
cos

(2π
Λ

z
)]

, (2.56)

Fig. 2.3: Sketch of a periodically-poled

crystal. The sign of χ(2) changes periodi-

cally.

whereΛ is the poling period which, if chosen carefully, allows to correct the potential

phase mismatch. This results in the quasi-phase-matching condition (QPM):

Δk′ = k3 +k2 −k1 + 2π
Λ

uz = 0. (2.57)

In this case, an additional phase-matching type is possible:

• Type-0 phase-matching: the three fields have the same polarization.

Thanks to periodic-poling, one can choose the nonlinear material and its orientation

to promote a high nonlinear interaction at the desired wavelengths, and choose the
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appropriate poling period Λ to enforce the phase-matching. In general, we choose

the crystal’s orientation such that the propagation axis (Oz) coincides with one of

the crystal’s axes in eq. 2.53.

The second term in eq. 2.51 involves the third order susceptibility χ(3). The

resulting phenomena are generally undesired in this thesis, as are those induced

by higher terms χ(k) for k ≥ 3. This includes the Kerr-effect for instance [70, 71],

in which the field effectively experiences an intensity-dependent optical index

n(I) = n0 +n2I, where I is the power density or intensity. This leads to self-phase

modulation, which degrades the beam’s spectrum, or self-focusing, which can

increase the beam’s intensity up to the local ionization of the material. All materials

display a non-zero χ(3), so that we have to limit the field’s power density in order to

minimize such undesired phenomena.

2.2.3 Quantum Optics

In previous paragraphs, we have followed a classical-wave description of the electro-

magnetic field. However, only a quantum description can encompass all phenomena

linked to this field, such as the black-body radiation [72], the photoelectric effect

[73], or spontaneous parametric down-conversion (SPDC) [74, 75], which is at the

heart of this thesis. In this quantized description, the field energy cannot increase

in a continuous way, but only with finite energy increments. These so-called photons
can be seen as finite excitations of the field, in specific modes that are defined by

the field’s properties (polarization, wavelength, spatial profile...) in said modes [76].

The addition or subtraction of such an excitation in a mode ν is mathematically

described by the corresponding creation operator â†
ν and annihilation operator âν

respectively. We define the photon number states {|nν〉}nν∈N also known as Fock
states (we omit the ν subscripts in the following), as the eigenstates of the field’s

Hamiltonian (or energy observable) in free space:

Ĥ = ℏω
(
â†â+ 1

2

)
= ℏω

(
N̂ + 1

2

)
, (2.58)
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where ω is the mode’s angular frequency. Using these Fock states we explicit the

action of the creation and annihilation operators:

â†|n〉 =
p

n+1 |n+1〉, (2.59)

â|n〉 =
p

n |n−1〉, (2.60)

and N̂ is the photon-number observable, with N̂|n〉 = n|n〉. This way the energy of

a Fock state can only take values which are half-integer multiples of ℏω:

Ĥ|n〉 = ℏω
(
n+ 1

2

)
|n〉. (2.61)

Interestingly, the no-photon state |0〉, also known as vacuum state, still has a

non-zero energy ℏω/2. Different superpositions of Fock states give rise to various

photonic statistics, such as the coherent state:

|α〉 = e−|α|
2/2

+∞∑
n=0

αn

n!
â†n |0〉 = e−|α|

2/2
+∞∑
n=0

αn
p

n!
|n〉, (2.62)

where |α|2 =µ is the average number of photons. Such a state displays poissonian

photonic statistics

P(n) = |〈n|α〉|2 = e−|µ|
2 µn

n!
. (2.63)

It is typical of the field emitted by a Laser. Another typical photon state is the

(mixed) thermal state:

ρ =
+∞∑
n=0

µn

(1+µ)n+1 |n〉〈n| (2.64)

where µ is the average number of photons, which gives geometric statistics P(n) =
1

1+µ
( µ

1+µ
)n

.

Photonic qubit - In this thesis, we use the photon’s polarization degree of freedom

in order to encode a qubit. Such a photonic qubit can easily be manipulated,

measured and transmitted, making it one of the best platforms for implementing

quantum protocols. First we define the horizontal and vertical polarizations:

|H〉 = â†
H |0H ,0V 〉 = |1H ,0V 〉 ≡ |+z〉, (2.65)

|V 〉 = â†
V |0H ,0V 〉 = |0H ,1V 〉 ≡ |−z〉, (2.66)
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where the H and V subscripts stand for modes that are identical except for the

polarization that is either directed along the (Ox)- or the (Oy)-axis. These two

orthogonal modes form the qubit computational basis. We also define the diagonal

and anti-diagonal polarizations, which form the diagonal basis:

|+x〉 ≡ |D〉 =
1p
2

(|H〉+ |V 〉), (2.67) |−x〉 ≡ |A〉 =
1p
2

(|H〉− |V 〉), (2.68)

as well as the left and right circular polarizations, which form the circular basis:

|+y〉 ≡ |L〉 =
1p
2

(|H〉+ i|V 〉), (2.69) |−y〉 ≡ |R〉 =
1p
2

(|H〉− i|V 〉). (2.70)

Finally, we define the photonic Bell states of polarization:

|Φ±〉 =
1p
2

(|HAHB〉± |VAVB〉
) |Ψ±〉 =

1p
2

(|HAVB〉± |VAHB〉
)

=
1p
2

(
â†

H b̂†
H ± â†

V b̂†
V

)|0〉, =
1p
2

(
â†

H b̂†
V ± â†

V b̂†
H

)|0〉, (2.71)

with â†
H , â†

V the creation operators associated with the first photon and b̂†
H , b̂†

V

those of the second photon. Generating such states is the main focus of chapter 3.

Another encoding of qubits can also be adopted, by taking the vacuum state |0m〉
and single-excitation state |1m〉 = â†

m|0m〉, in a mode m, as the computational basis.

We use this encoding in chapter 4.

2.2.4 Common Optical Components

Optical fibers - Optical fibers are particularly convenient for quantum commu-

nications, as they allow to carry photons over large distances, with relatively low

losses (0.2dB/km for telecom wavelengths ≈ 1550nm). Such fibers are composed

of a silica-core, surrounded by a fluorine-doped-silica-cladding of lower optical

index [77]. The fiber therefore acts as a wave-guide, carrying the field from one end

to the other. In this work we mostly use single-mode (SM) fibers, with a ≈ 10µm-

diameter, optimized for telecom wavelengths. Such fibers also act as a spatial filter,
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projecting the coupled mode on a close-to-Gaussian spatial mode, which is con-

served over the propagation. Birefringence can be locally induced by stress in the

fiber, which can be intentional when using so-called polarization-controllers (PC), or

unintentional when casually bending the fiber. The resulting polarization rotation

may be undesired in some applications. For this reason, SM fibers can be modified

with two stress-rods on opposite sides of the core, which fixes the birefringence-axes

along the propagation. This way, light that is polarized along one of these axes does

not experience polarization rotation. Such polarization-maintaining (PM) fibers

are useful for applications which do not involve polarization manipulation. In

our experiments, these should therefore be avoided, as birefringence over long

distances causes decoherence in photons’ polarization, which destroys our quantum

states. Such fibers can be distinguished by the color of their protective jacket, or by

checking the normal cut with a fiberscope (see Fig. 2.4).

(a) Multi-mode fiber, with
typical orange jacket and
relatively large core.

(b) Single-mode fiber, with
typical yellow jacket and
relatively small core.

(c) Polarization-maintaining
fiber, with blue jacket, small
core and stress rods.

Fig. 2.4: Schematic normal cut of different optical fibers used in our experiments,
with their typical protective jacket (not-to-scale).

We also use multi-mode (MM) fibers in rare cases, when the spatial mode is not

a concern. Their core can take various sizes (typically ≈ 200µm), in order to couple

more light than SM fibers. Consequently MM fibers are generally less lossy than

SM fibers, but cannot be used as spatial filters.

Wave-plates - These are made of a birefringent crystal, so that light polarized along

one axis of the crystal, called fast axis, propagates with an optical index n f , and

light polarized along the orthogonal axis, called slow axis propagates with an index
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ns > n f . The behaviour of any polarization can be deduced by linearity. Because ns

and n f are different, a phase shift is introduced between the polarizations along

the two axes. This way, if the slow axis is horizontal (θ = 0◦), one can write the

transformation matrix of the wave plate, in the |H〉, |V 〉-basis:

Ŝ(φ) =

[
1 0

0 e−iφ

]
, (2.72)

where φ = 2π (ns−n f )
λ

d, d is the thickness of the wave plate, and λ is the wavelength

of the field. The transformation of the wave plate for any value of θ reads:

Ŵ(θ,φ) = R̂(θ)Ŝ(φ)R̂(−θ), (2.73)

where R̂(θ) is the rotation of angle θ (see Fig. 2.5). The cases φ =π and φ = π
2 are

called respectively Half-wave plates (HWP) and Quarter-wave plates (QWP), with

the following matrix representations:

Ĥ(θ) = Ŵ(θ,π) =

[
cos2θ sin2θ

sin2θ −cos2θ

]
,

Q̂(θ) = Ŵ(θ,
π

2
) =[

cos2θ− isin2θ (1+ i)cosθsinθ

(1+ i)cosθsinθ sin2θ− i cos2θ

]
.

(2.74)

Fig. 2.5: Axes of a wave plate,

relatively to |H〉 and |V 〉 axes.

The fast and slow axes are la-

beled by n f and ns respectively.

Each one-qubit logic gates from Tab. 2.2 can be applied to the polarization state

of a single-photon, by using a single HWP or QWP at the proper angle. Moreover,

any one-qubit unitary can be implemented by using three WPs in a row, a QWP,

followed by a HWP, and another QWP. Finally, one can also use WPs at θ = 0◦ to

change the phase between |H〉 and |V 〉. To do so, one tilts the WP around its verti-

cal axis, which increases the thickness d of the crystal the photon goes through,

therefore changing the phase in equation (2.72). When used that way, the WP is

referred to as a phase plate.
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Beam Splitters - A beam splitter (BS) is an optical component that transmits a

photon with probability t, and reflects it with probability r, with r+ t = 1. We often

consider the case t = r = 0.5, which gives a 50 : 50 beam splitter. They can be made

of a semi-reflective plate, of two prism glued together as a cube, or as a fibered

component. The general transformation can be expressed using two input spatial

modes â† and b̂†, with output modes ĉ† and d̂† (see Fig. 2.6):

[
â†

b̂†

]
−→

[ p
t

p
r

−pr
p

t

]
·
[

ĉ†

d̂†

]
. (2.75)

Fig. 2.6: Spatial modes in the BS

transformation

Polarizing beam splitters (PBS) ideally reflect the entirety of vertically-polarized

light, and transmit the horizontally-polarized light. To express the transformation

of such a PBS, we also consider the polarization-mode when writing the creation

operators, as shown in Figure 2.7. This way, the transformation reads:


â†

H

b̂†
H

â†
V

b̂†
V

−→
[
12 0

0 X̂ Ẑ

]
·


ĉ†

H

d̂†
H

ĉ†
V

d̂†
V

 . (2.76)

Fig. 2.7: Spatial and polarization

modes in the PBS transformation

The PBS effectively entangles spatial and polarization modes of the photon, which

is the first step to polarization measurement. When the polarization is an unused

degree of freedom, one can use a PBS and some waveplates in order to implement

a tunable BS. Fibered PBS can also be used, but generally give access to three

modes only, the fourth being discarded, as shown in Fig. 2.8.
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Finally, beam splitters can also be wavelength-dependent, transmitting light

below a certain wavelength, and reflecting the rest (or the other way round). Such

beam splitters are called dichroic mirrors (DM), and are generally used as spectral

filters.

(a) Beam splitter configuration (b) Beam combiner configuration

Fig. 2.8: Fibered PBS and the equivalent configuration with a free-space cube
PBS. Two ends are each dedicated to one polarization |H〉 or |V 〉. The correspond-
ing fibers are generally PM (in blue). The other end can carry any polarization,
either combined from the other two ends (b), or split into those ends (a). In our
experiments, the corresponding fiber is SM (in yellow).

2.2.5 Optical Interference

In its classical description, the EM field is described as a wave verifying the

Maxwell equations (2.42). Thus when two EM waves hit the same point, an in-

terference phenomenon can occur. Here we take a simple example of a plane

and monochromatic wave in a Mach-Zehnder interferometer [78, 79], sketched in

Fig. 2.9. The wave enters a first BS, giving two beams of same angular frequency

ω, propagating with different phase retardance ϕ1 and ϕ2:

E1(t) =
E0p

2
cos(ωt+ϕ1), and E2(t) =

E0p
2

cos(ωt+ϕ2), (2.77)

with E0 the amplitude of the input beam. The beams are then recombined in a

second BS. The average power on the two outputs of the interferometer reads

P1(Δϕ)∝ E2
0

2
(
1+cos(Δϕ)

)
, and P2(Δϕ)∝ E2

0

2
(
1−cos(Δϕ)

)
, (2.78)

with Δϕ =ϕ2 −ϕ1. This way P1 = E2
0/2 is maximal and P2 = 0 for Δϕ = 0, such that

the second output is extinguished. Conversely, P1 = 0 and P2 = E2
0/2 when Δϕ =π.
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Fig. 2.9: Sketch of a Mach-Zehnder interferometer. A beam is separated in two
paths, which are recombined after undergoing a phase retardance.

In real-world situations, different factors may degrade the interference, such

that no phase difference Δϕ can extinguish either of the sides. These factors may

include phase noise, imperfect alignment, or Laser pulses with limited size hitting

the BS at different times. In practice the fields take the expressions

P1(Δϕ)∝ E2
0

2
(
1+v ·cos(Δϕ)

)
, and P2(Δϕ)∝ E2

0

2
(
1−v ·cos(Δϕ)

)
, (2.79)

with 0≤ v ≤ 1 is called the interference visibility. In experiment we measure that

visibility with the following formula:

v =
P1(0)−P1(π)
P1(0)+P1(π)

=
P2(π)−P2(0)
P2(π)+P2(0)

. (2.80)

In general, we tend to maximize this visibility by isolating our optical setup from

noise, and paying particular attention to the alignment and timing of the pulses on

the BS. For the latter factor, we carefully minimize the path difference Δl, such

that Δl ≪ lc, with lc the coherence length of pulses, which is simply the spatial

extension of said pulses.

Interference of the EM field can also be predicted in the quantum formalism.

In that case two modes of a same single-photon may interfere together, so the

interference pattern described in equations (2.79) now applies to the probability of

the photon to go out of the BS on one side or the other. We grasp this intuition we

the following transformation of the photon modes:

|1〉 1st BS−−−−→ eiϕ1

p
2
|11,02〉+ eiϕ2

p
2
|01,12〉 2nd BS−−−−−→ cos

(
Δϕ

2

)|11,02〉+sin
(
Δϕ

2

)|01,12〉. (2.81)
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From the last state we get the expressions (2.79), for detection probabilities of the

photon. Such single-photon interference is at the heart of chapter 4, in order to

ensure cheat-sensitivity in our weak coin-flipping protocol.

In that last case we emphasized, the photon displays a wave-like behaviour,

which can still be predicted via a classical description of the field. Still, photons

can display purely quantum behaviour, when performing two-photons interference,

also-called Hong-Ou-Mandel (HOM) interference [80]. Here two single-photons

hit a BS, and systematically output the BS on the same side as long as they are

indistinguishable (see Fig. 2.10). This photon-bunching results in the state

|HOM〉 =
1p
2

(|21,02〉+ |01,22〉). (2.82)

Interestingly, this interference is not phase-sensitive. Still a significant hardness

lies in making the two photons indistinguishable. We tackle this aspect in the end

of chapter 3, when detailing our plans to build a multi-photon source.

Fig. 2.10: Sketch of the Hong-Ou-Mandel interference. Indistinguishable photons
hitting a BS at the same time bunch on one side of the BS or the other.
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2.3 Quantum Cryptography

2.3.1 From Classical to Quantum Cryptography

Cryptography is the ensemble of knowledge and techniques one can use in order to

secure, conceal, degrade or unveil information. Although encryption and decryp-

tion of information are often associated with futuristic technologies in modern

fictional representations, such techniques are actually as old as human civilization.

They have often relied on simple nonetheless smart ideas, such as the antique

Spartan scytale device (see Fig. 2.11a), or Caesar’s cipher [81]. The birth of modern

cryptology can be dated back to the early 1930’s, with the breaking of German

ENIGMA machine (see Fig. 2.11b) by Polish mathematician Marian Rejewski and

his team, later attributed to British mathematician Alan Turing and his team for

their invention of the first digital computer. From then on, modern ciphers have

relied on more and more sophisticated techniques, in order to catch up with rapidly

increasing computational power.

(a) A home-made scytale, ancient Spartan de-
vice used around 400 BC. One simply rolls a
strip of parchment around a wooden stick of spe-
cific shape, an write lengthwise. The message is
then scrambled when unrolling the strip.

(b) The Enigma machine, used by
Germans during WWII, displayed at
Museo Nazionale Scienza e Tecnologia
Leonardo da Vinci, Milan, Italy. Source:
Wikipedia.

Fig. 2.11: Example of pre-modern encryption-decryption devices, both used for
military applications.

Nowadays most encryption methods have built their security on computational
hardness assumptions, meaning they rely on complex problems which are assumed

unsolvable in polynomial time by classical computers. This is the case of the RSA

protocol in particular, mentioned in the introduction [1]. However, the ongoing
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race for the quantum computer [82] has since questioned the reliability of such

classical algorithms, as powerful quantum attacks such as Shor’s algorithm [4]

are assumed impossible under computational assumptions. For the past decades,

this has largely motivated investigations on new qubit-based algorithms and proto-

cols, also known as quantum cryptography. Post-quantum cryptography has also

provided candidates for classical algorithms which would be resistant to quantum

attacks (see [83] for a review on the matter).

First quantum encryption protocols, which were actually proposed a decade

before Shor’s algorithm, were S. Wiesner’s unforgeable quantum money [84], and

C. Bennett and G. Brassard’s quantum key distribution (QKD), also called BB84

protocol [5]. The latter allows Alice and Bob to generate and share a private ran-

dom key, that they can use later as a one-time pad to encrypt their messages

with optimal security [7, 8]. In order to generate that key, Alice sends a random

sequence of bits to Bob, encoded on single-photons’ polarization taken in random

rectilinear and diagonal bases. Bob then measures each photon in another random

basis, chosen again between rectilinear and diagonal. Both Alice and Bob then

publicly announce their basis choices, and discard all outcomes for which said bases

did not match. The resulting shared bit string forms the encryption key. The power

of this method resides in the impossibility for a potential eavesdropper to copy the

photonic qubits, thanks to the no-cloning theorem [10, 11]. Moreover, any attempt

of said eavesdropper to measure the qubits will fatally degrade the states, which

Alice and Bob can detect by simply comparing portions of their bit strings, and

checking for differences. The encryption key is therefore secured by unbreakable

laws of quantum physics, instead of computational assumptions.

Since then the QKD research area has been the focus of growing interest,

leading to several long-distance on-ground experimental implementation of the

BB84 protocol [32–35], and the encryption of an intercontinental video-conference

between Graz and Hefei thanks to a satellite-relay [85]. In parallel, the alter-

native entanglement-based QKD of A. Ekert [6] was demonstrated in numerous

experimental implementations [86–90], using polarization-entangled photon pairs.

Moreover, other quantum protocols were developed in order to perform new cryp-
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tographic tasks, with corresponding experimental demonstrations. These include

secret sharing [12–14, 39], bit commitment [15], conference key agreement (the

multipartite version of QKD) [16, 40, 41], or implementations of Wiesner’s unforge-

able quantum money [36–38]. In chapter 4 we focus on one of such primitives,

known as quantum weak coin flipping [20, 91].

2.3.2 Quantum Cryptography and Adversary Scenarios

When studying cryptography protocols, one can put more or less trust in the dif-

ferent parties involved and devices used. We expect such protocols to be used in

so-called adversary scenarios, in which players, devices or outside parties might de-

viate from the protocol’s recipe in order to disrupt the outcome or gain information.

This way, a strong security comes by making as few assumptions as possible. In the

following, we define a few important notions that allow us to clarify our protocols’

scenarios and the assumptions made.

Assumptions on players - A player is honest when it does not try to deviate from

the protocol’s recipe. On the contrary, a dishonest or malicious player might at-

tempt to disrupt the protocol by different strategies. Such strategies might involve

lying on a measurement result, preparing different states than those expected,

disrupting the behavior of a device, or gaining some information using powerful

measurements and quantum memories. Such a player might be involved in the

original protocol recipe, or be an outside party trying to attack the protocol.

Assumptions on devices - Devices in a protocol may include sources of quantum

states, operations, classical and quantum channels, and measurement apparatuses.

A device is trusted when it follows a behavior that is predicted by the honest players.

Such a device can be ideal when it has the optimal expected behavior, or noisy
when its behavior is imperfect but can still be characterized to a certain extent. On

the contrary, an untrusted device does not follow the predictions of honest players,

and might be used by malicious players to disrupt the protocol.
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Protocol Robustness - A protocol can be more or less robust to imperfect devices

and attacks from dishonest players. We distinguish three significant cases. A noise-
tolerant or fault-tolerant protocol can operate even if some of the devices are noisy.

In such cases it is essential to estimate the influence of noise on the protocol’s

outcomes and performances. A cheat-sensitive protocol allows honest players to

detect, and eventually sanction malicious players. Finally a device-independent
protocol operates regardless of the devices’ internal function. In that case, the

measurements apparatuses, operations and channels are treated as potentially un-

trusted black boxes, and no assumption is made on the quantum states, which are

therefore taken in an unkwown and arbitrarily large Hilbert space. If only parts of

the devices are treated as black boxes, then the protocol is semi device-independent.
Device-independent protocols are particularly secure in adversary scenarios, as

their security relies on very few assumptions on the systems involved. This feature

is specific to quantum cryptography, as allowed only by Bell non-locality.

Different kind of protocols are detailed in this thesis. We put a particular

emphasis on the cheat-sensitivity of our weak coin-flipping implementation (see

chapter 4) and the device-independence of our quantum channel certification proto-

col (see chapter 6). Both of these robustness properties are ensured by quantum

phenomena, namely superposition and entanglement.
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3
SOURCE OF ENTANGLED-PHOTON PAIRS

‘Un scientifique dans son laboratoire est
un enfant placé devant des phénomènes
naturels qui l’impressionnent comme
des contes de fées.’

— Marie Skłodowska-Curie.

In the context of the potential near-future development of a world-wide quan-

tum network, the design of entangled- and single-photons sources has risen

significant interest in the past decades, in order to meet the needs for complex

communication and cryptography tasks. Photons have been promising candidates

for the implementation of such tasks, thanks to their relative ease of manipulation

and transmission over large distances with limited decoherence and losses. Still,

the generation of photonic quantum states remains a relatively open and active re-

search area, as protocols often require more and more demanding features, such as

on-demand state generation, high detection rates or photonic purity, all the while

maintaining a high quality of the states. Sources based on spontaneous parametric

down-conversion (SPDC) have been some of the most investigated solutions, as

they can be used to generate pairs of close-to-maximally entangled qubits [42],

encoded in photons’ polarization, probabilistic but heralded single-photons [43, 44],

and multipartite entangled states [46, 47]. All of these aspects motivate our choice

to build such a SPDC-based source.

In the following, we start by recalling some basic notions on SPDC, and review-

ing the most important SPDC-based sources of polarization-entangled photons. We

then detail the design of the source that was built from scratch during this thesis,
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specifically for the implementation of quantum network protocols and multi-qubits

states generation. Because of those applications, the source needs to follow certain

requirements. First, it should provide photon pairs around telecom wavelengths,

between 1.5µm and 1.6µm, where optical fibers are the least lossy. Then it should

be able to produce close-to-maximally entangled photons, with > 99% fidelity to

Bell states. In addition, we should have the possibility to use it as a heralded

single-photon source. Finally, the source should be adaptable for multi-qubits

states emission. In this chapter we provide a full characterization of our source, as

well as some perspectives to adapt it to multipartite-states emission, showing it

indeed meets those requirements.

3.1 Prerequisite: Photon-Pair Generation

In paragraph 2.2.2 we mentioned photon pairs could be generated via SPDC in a

nonlinear crystal. In the following we give more details on this phenomenon, which

is at the heart of most of nowadays’ entangled-photons sources, including ours.

SPDC is the probabilistic conversion of a high-energy photon into two photons

of lower energy. One can interpret this process as the reverse of classical sum

frequency generation, or as optical parametric amplification of vacuum fluctuations.

The prediction of this phenomenon comes by deriving the interaction Hamiltonian

in the crystal. For that purpose, we write the energy of interaction per volume unit:

hI ∝E(+)(r, t) ·P(−)(r, t)+conj., (3.1)

where E(+) is the complex electric field, and P(−) =
(
P(+))∗ is the complex dipole-

moment density in the crystal. Only the second order dipole-moment is relevant

here, such that

hI ∝E(+)(r, t) ·χ(2)(r)E(−)2(r, t)+conj., (3.2)

where E(−) =
(
E(+))∗. We decompose the electric field into three interacting fields:

E(+) = E(+)
p +E(+)

s +E(+)
i , (3.3)

where E(+)
p , E(+)

s and E(+)
i are the pump, signal and idler fields, respectively. As

a first approximation we only consider monochromatic plane waves, of angular
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frequencies {ωl}l=p,s,i, wavevectors {kl}l=p,s,i, and polarization {el}l=p,s,i (the reader

can refer to [92, 93] for a more general derivation). We then express the quantified

electric field operators:

Ê(+)
p (r, t)∝ epeωp t−kp·râ†

p, (3.4)

Ê(+)
s (r, t)∝ eseωs t−ks·râ†

s, (3.5)

Ê(+)
i (r, t)∝ ei eωi t−ki ·râ†

i , (3.6)

where â†
p, â†

s and â†
i are the creation operators in the pump, signal and idler modes,

respectively. Thus we deduce the Hamiltonian of interaction, by injecting these

operators in eq. 3.2 and by integrating over the volume V of the crystal:

ĤI ∝
∫
V
η(r)ei(kp−ks−ki)·rd3r · â†

p âs âi +
∫
V
η∗(r)e−i(kp−ks−ki)·rd3r · âp â†

s â†
i , (3.7)

where η(r) = ep ·χ(2)(r)esei, and we only keep the terms which respect the energy

conservation principle ωp = ωi +ωs. The first term describes the SFG and SHG

which were mentioned earlier, while the second term is linked to DFG and OPA.

This way all classical phenomena described in paragraph 2.2.2 can be interpreted

through photon transformations (see Fig. 3.1). But most importantly, the second

term in eq. 3.7 also predicts the spontaneous conversion of a high-energy pump

photon into two lower-energy signal and idler photons, namely SPDC. This phe-

nomenon is allowed purely by the quantization of electromagnetic field.

The phase-matching condition comes by assuming the second order suscepti-

bility is homogeneous in the crystal η(r) = η, and by integrating on a large volume

V . Then the Hamiltonian vanishes except for kp −ks −ki = 0. The quasi-phase-

matching condition, on the other hand, comes by considering a periodic variation

of the susceptibility along the (Oz)-axis η(r) = η · p(z). By approximating this vari-

ation as a harmonic function p(z) = exp(i2πz/Λ) with Λ the poling period, the

Hamiltonian becomes:

ĤI ∝ η

∫
V

eiΔk·rd3r · â†
p âs âi + η∗

∫
V

e−iΔk·rd3r · âp â†
s â†

i , (3.8)

withΔk = kp−ks−ki+ 2π
Λ

uz, such that ĤI vanishes except forΔk = 0 (see Fig. 3.2).
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Fig. 3.1: Energy conservation in SPDC: a

photon is annihilated, and two photons of

the same total energy are created. In SFG

and SHG, two photons are annihilated, and

a photon of the same total energy is created.

Fig. 3.2: Quasi-phase-matching

SPDC, and other nonlinear effects,

in a periodically-poled crystal.

Now we can grasp an idea of the photon statistics. Making the non-depleted

pump assumption, meaning the pump field is strong enough to be unaffected by the

interaction, and under the phase-matching condition, the Hamiltonian becomes:

ĤI = C â†
s â†

i +conj., (3.9)

where C is a constant. Then the signal-idler quantum state reads

|ψ〉 = e
iĤI t
ℏ |0s,0i〉 −−−−→t→+∞

√
1− p

+∞∑
n=0

pn/2|ns,ni〉, (3.10)

where p is a constant that can be interpreted as the probability of emitting exactly

one photon pair, as long as p ≪ 1. The pairs statistics therefore follows a geometric

law, with a probability P(n) = (1− p)pn of emitting exactly n pairs. Besides the

reduced density operator of the signal (or idler) mode gives a thermal state:

ρs/i =
+∞∑
n=0

µn

(1+µ)n+1 |ns/i〉〈ns/i|, (3.11)

with an average number of photons µ = p/(1− p). This can be used in experiments

in order to verify the spectral purity of down-converted photons (see [94, 95]

for more details on that matter). Finally, as p ≪ 1 we can simplify the state as

ρs/i ≃ |1s/i〉〈1s/i| which is a single-photon state. This way measuring a photon from

a SPDC pair allows to announce its twin, which becomes a heralded single-photon.

In general, we may not be able to assume the pump is a monochromatic plane

wave, and the crystal has a finite size. In such cases the signal and idler photons

can be emitted in a superposition of different spatial and spectral modes, and
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therefore display some entanglement in those modes. Then photon-pairs can still

be used in order to generate heralded single-photons, but the spectral and spatial

state is mixed. The full derivation of that state remains an open question, and

attempts can be found in different studies [92–96]. For the rest of this thesis, we

consider the photons spectral and spatial state to be close-to-separable, such that

the statistics is approximated with a geometric law.

3.2 State of the Art

In the following we give a non-exhaustive review of the most significant demon-

strations of entangled-photon sources, based on SPDC in a nonlinear crystal,

which allows the spontaneous transformation of a high-energy photon into two

lower-energy photons. Our own design takes inspirations from these sources.

3.2.1 Bulk Crystal Sources

The first experimental SPDC-based entangled-photon source was built by Z. Y.

Ou and L. Mandel in 1988 [97], using a potassium dihydrogen phosphate crystal.

Photons are generated in the same polarization, via type-I SPDC, and projected

onto the singlet state |Ψ−〉 = |HV 〉−|V H〉p
2

using a BS. Many bulk crystal-based sources

were later demonstrated, such as that of P. G. Kwiat et al. [98], in which photons

are emitted in a β−BaB2O4 crystal (BBO), via type-II SPDC (see Fig. 3.3a). There

photons are distributed on two cones of orthogonal polarizations, such that entan-

glement can be measured at the two intersections of the cones. A type-I source

was also demonstrated using the same BBO crystal [99]. For this experiment, two

identical crystals were used in cascade, rotated by 90◦ (see Fig. 3.3b). In this way

the pump-photon is down-converted either in the first crystal, giving a pair of

horizontally-polarized photons, or in the second one, giving a pair of vertically-

polarized photons. Thus, photons can be distributed on two rings, one for each

polarization. Where the rings overlap, and therefore interfere, the photons are in

the entangled state |Φ+〉 = |HH〉+|VV 〉p
2

. Here the entanglement can in principle be

collected over the whole ring, contrary to the type-II version.
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(a) Type-II source. Two cones of
orthogonally-polarized photons are
emitted by pumping a single BBO
crystal. Entanglement is generated at the
intersections of the rings [98].

(b) Type-I source. Two overlapping cones
of photons are emitted by pumping two
cascaded BBO crystals with orthogonal
axes. Entanglement is generated all over
the rings [99].

Fig. 3.3: Common sources photon pairs entangled in polarization, based on bulk-
BBO crystals.

By collecting photons on parts of the type-I ring, 21×103 pairs/s could be mea-

sured [99], with a pump power of 150mW. The number of pairs measured is

proportional to the pump power, so we give the rate of pairs per mW of pump

power, also called brightness of the source. In this demonstration the brightness

is 140pairs/s/mW. The fidelity of the states generated to the target Bell state was

> 88%, which was mostly limited by the delay between the rings that limits the

interference quality. Radhika Rangarajan et al. demonstrated a compensation

of this so-called walk-off [100], reaching a brightness of 5400pairs/s/mW, and a

fidelity of 99±2% to the Bell state.

3.2.2 Periodically-Poled Crystal Sources

Alternatively to bulk crystals, periodically-poled crystals have become widespread,

as they can be tailored for colinear emission in a wide range of wavelengths,

thanks to the QPM condition. In the following, we focus on a source based on

type-II periodically-poled KTiOPO4 (PPKTP), in a Sagnac interferometer [101],

as shown in figure 3.4. Other common sources use periodically poled LiNbO3

(PPLN) [30, 102–106], which was shown to be particularly adapted to integrated

optics [107].
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Fig. 3.4: Scheme of the Type-II PPKTP-Sagnac source of entangled photons. The
pump is diagonally polarized, and is converted into lower energy photons. The
dichroic mirror reflects the pairs and transmits the pump. The HWP implements a
bit flip X̂ . All components are adapted to both wavelengths of pump and pairs.

In the Sagnac-PPKTP scheme, a diagonally polarized pump goes into a Sagnac

interferometer, where the beam is split by the PBS. There, two situations can occur:

• If the pump photon is in state |V 〉, it is reflected on the PBS and is down-

converted into signal and idler photons, in state |V H〉. Then, they are trans-

formed by a bit flip X̂ , so their state becomes |HV 〉. Finally, the signal photon

is reflected by the PBS while the idler is transmitted.

• If the pump photon is in state |H〉, it goes through the PBS and is flipped

into the state |V 〉 by the bit flip X̂ . Then, it is down-converted into signal and

idler photons, in state |V H〉. Finally, the signal photon is transmitted by the

PBS, and the idler photon is reflected.

A dichroic mirror is used in order to separate the pump from the photons. Provided

the interferometer is properly aligned, we get a superposition of the two situations,

and we collect the entangled state |ψ+〉 = |HV 〉+|V H〉p
2

at the output of the interfer-

ometer. Note the Sagnac interferometer is intrinsically stable, as the interfering

beams take the same round path in opposite directions. Thus a phase change in one

path also affects the other path, so no relative phase appears between the paths.

Thus no phase stabilization is needed for generating high-quality states [108].
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Over the past decades, this PPKTP-Sagnac scheme has become widespread,

thanks to its stability, adaptability and ease of conception. It was first demon-

strated in 2006 by T. Kim et al. [109], with a brightness of ∼ 5000pairs/s/mW and

a fidelity of more than 94.3% to the target Bell state. Considerable efforts have

been made to increase these numbers, and extremely high performances were

later achieved by Alessandro Fedrizzi et al. [42]. By optimizing the focusing of

the pump, they could reach a brightness of ∼ 82×103 pairs/s/mW with a fidelity

as high as 99.6% to the target Bell state, making it one of the best sources ever

made. Furthermore, high coupling efficiencies could be demonstrated, thanks to

the Gaussian colinear emission allowed by periodically-poled crystals [45, 95, 110].

It was also shown that such PPKTP-based sources can emit completely separable

pairs of photons at telecom wavelength, by carefully tailoring the crystal and laser

properties [111–113], which is fundamental when generating pure heralded single-

photons and multipartite entangled-states [95, 111–113]. Finally, this scheme was

used to perform the first satellite-to-ground entanglement distribution in 2017,

where the whole source was sent into orbit [114], showing the extreme stability

of such a setup. All these high performances motivate our choice to adopt this

Sagnac-PPKTP scheme for our own source of entangled-photons.

3.3 Design of the Source

Our source is made of three main blocks (see Fig. 3.5). The first one is the pump

emission and shaping, including the laser source, its spatial filtering and focusing.

The second part is the heart of the source, made of the Sagnac interferometer and

the nonlinear PPKTP crystal, in which the photons pairs are generated. Finally

the third block is the photon collection, which encompasses the photon filtering and

coupling into optical fibers. One could also identify a fourth block as the photons

processing and measurement, though it may differ from one experiment to another.

A full recipe for the alignment of that source was given in D.H. Smith’s thesis [115],

though our method differs slightly. We detail that method in appendix B.
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Fig. 3.5: Outline of our source, with the three main blocks described in this chapter.

3.3.1 Pump Beam

The pump beam is emitted via a Titanium-Sapphire Laser (Mira 900HP from

Coherent), of ≈ 4W average power. Ideally, the Laser is mode-locked, so that 2ps-

pulses are emitted at a f = 76MHz rate. The spectral intensity is approximately

Gaussian (see Fig. 3.6), centered around a tunable wavelength 775nm±15nm with

a 0.33nm full-width at half-maximum (FWHM).

Fig. 3.6: Measured spectrum of the mode-locked pump Laser, with a Gaussian fit
giving the 770nm central wavelength and 0.48nm FWHM.

45



CHAPTER 3. SOURCE OF ENTANGLED-PHOTON PAIRS

Assuming thermal statistics of photons emitted in the crystal, the rate of

simultaneous detection of 2N photons is given by:

R2N = f pNη2N , (3.12)

where f is the pump repetition rate, p is the probability of emitting a pair in a

pump pulse, and η is the detection efficiency of one photon. The probability p is

proportional to the energy Up in a pump pulse, so that

R2N = f κNUN
p η

2N , (3.13)

where κ is the number pairs emitted by Joules of pump pulse, which depends on

the characteristics of the crystal, and the pump focusing mode in the crystal. The

pair detection-rate is directly proportional to the average pump power P = fUp.

This way, when only the two-photons state matters, we try to keep p quite low,

typically p ≲ 0.01, in order to avoid noise coming from double-pair emission, with

a rate R4. We therefore limit the energy Up while keeping the average power

P at a high value. This can be achieved by increasing the repetition rate via a

temporal multiplexer for instance, as demonstrated in [116, 117]. In some specific

applications we can even use the Laser in continuous-wave mode (CW), instead of

the pulsed mode. Thus the energy is maximally spread in time, but the different

frequencies composing the Laser’s spectrum are not mode-locked anymore, which

effectively makes the photons’ spectrum mixed. This is the method we use in

chapter 6, where the spectral state has little importance. On the contrary, when

attempting to prepare 4-photons states, we want to increase the probability of

emitting two pairs in a pump pulse, and therefore the energy per pulse Up. This is

the approach we suggest for multipartite-states emission.

Fig. 3.7: Pump-beam shaping apparatus. In addition to the components mentioned
in the main text, two waveplates are displayed, for polarization management.
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The spatial profile of the Laser is of major importance in our experiments, as

it conditions the spatial modes of the photons, and therefore their coupling into

SM fibers. As the beam emitted by our Laser displays some distortions, we filter

the spatial mode in order to make it close to a Gaussian beam, which fits the mode

of a SM fiber. The beam-shaping apparatus is displayed in Fig. 3.7. It is made of

two 50mm-focal length lenses, forming a telescope, with a pinhole in the middle.

The beam that outputs the telescope is then an Airy disk, with a close-to-Gaussian

profile surrounded by lower intensity rings. Blocking the rings with a diaphragm

allows to retrieve a satisfying Gaussian profile (see Fig. 3.8).

Fig. 3.8: Intensity profile measured in the focal plane of the last lens with a CCD
camera, after spatial filtering of the pump beam (a) when the Airy rings are left
unfiltered, (b) when the diaphragm is closed, letting the central disk through and
filtering the Airy rings out. We retrieve a satisfying Gaussian profile.

Finally, the beam is focused inside the Sagnac interferometer, thanks to a

750mm-focal length lens. The resulting Gaussian beam has a waist of wp ≃ 315µm,

for a Rayleigh length zR,p ≃ 40cm. The choice for this waist is the result of a

compromise, between a high photon-pair emission probability p, ensured by a

strong focusing, and a high separability of photons spectral modes, ensured by the

collimation of the pump beam, among other factors. This last point is addressed in

the following paragraphs.
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3.3.2 Sagnac Interferometer and PPKTP Crystal

Our entangled photon-pairs are emitted by SPDC in a nonlinear PPKTP-crystal,

placed in a Sagnac interferometer. The principle of that Sagnac source is given in

precious paragraph 3.2.2, and a photograph of our setup is displayed in Fig. 3.9.

Fig. 3.9: Photograph of our Sagnac source. The achromatic HWP was removed
from the source while taking the picture, for more clarity in the beams’ paths. We
display a green rectangle where it usually lies during the experiments. Part of the
coupling and filtering block is displayed, for the signal photon, with a spectral filter
(SF) and a SM-fiber coupler. Photograph made in collaboration with Julien Déoux.

The interferometer is made of a PBS, two mirrors and a HWP, all these compo-

nents being compatible with the pump and photons wavelengths. Because of this

last condition, these four components are chosen with special care. Our custom

dual-wavelength PBS was provided by Spectral Optics, and provides a relatively

high extinction ratio (> 1000 : 1) for two ranges of wavelengths, centered around

775nm and 1550nm. An achromatic HWP was provided by Thorlabs, made of six
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different birefringent crystals ensuring a π phase-retardance between horizontal

and vertical polarizations, for the whole range of wavelengths between 600nm and

2700nm [118]. Corners of the Sagnac are made of metallic silver mirrors, which

provide a relatively high reflectivity for our wavelengths. DMs are placed at the

outputs of the Sagnac, in order to separate the pump from the photon pairs.

The PPKTP crystal lies in the center of the Sagnac interferometer, in an oven

that allows to tune the phase matching condition. The crystal was tailored by Raicol

for type-II quasi-phase-matching at room temperature ≃ 20◦C, from a vertically-

polarized pump photon at λp = 775nm, to a vertically-polarized idler photon and

a horizontally-polarized signal photon, at degenerate wavelengths λi = λs. The

QPM condition Δk′ = 0 (see eq. 2.57), along with the energy conservation condition

λi =λs = 2λp = 1550nm, gives the poling period:

Λ =
λp

np(λp)− 1
2

(
ni(λi)+ns(λs)

) , (3.14)

where np, ni and ns are the respective optical indices of KTP for the pump, idler

and signal modes. These depend on the wavelength and polarization of the modes,

and are given by the empirical Sellmeier equations [119, 120]:

np(775nm) = 1.76,

ns(1550nm) = 1.73,

ni(1550nm) = 1.82,

(3.15)

which gives the poling period Λ = 46.2µm. Even though our crystal was optimized

for 775nm pump and 1550nm signal and idler photons, we later tuned the pump

wavelength to λp = 770nm in order to maximize the coupling of our photons (this

can be explained by the variation of diverse component’s transmission with the

field’s wavelength). This way photons still verify the QPM condition, but at non-

degenerate wavelengths λs = 1541.5nm and λi = 1538.5nm. During the course of

these projects, choosing this non-degenerate configuration over the degenerate case

did not cause any significant drawback. For other projects, the degenerate emission

might still be required, for which one could tune the QPM condition by setting up

the crystal’s oven temperature.
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We predict the photon’s spectral state from the crystal and pump’s characteris-

tics. Our crystal’s length is L = 30mm, so the focusing parameter reads

ξp =
L

npzR,p
=

λpL
npπw2

p
≃ 0.04. (3.16)

As ξp ≪ 1, meaning L is far smaller than the pump’s Rayleigh length, the pump

is collimated in the crystal. Thus we adopt the same approach as N. Bruno in

[95], and consider the pump, signal and idler spectral modes do not entangle with

spatial mode (see [92, 93] for a more general derivation). In addition, the latter are

considered to be plane waves of respective vectors:

kp =
ωpnp(ωp)

c
z, ks =

ωsns(ωs)
c

z, ki =
ωini(ωi)

c
z, (3.17)

where ωp, ωs and ωi are the angular frequencies of the pump, signal and idler

modes, respectively. In that case, it was shown that the interaction Hamiltonian

(eq. 3.1) leads to the following state for the photon pairs [94, 111]:

|ψsi〉 =
Ï

dωidωsγ(ωi,ωs)â†
ωi

â†
ωs
|0i,0s〉, (3.18)

where γ(ωi,ωs) is the so-called joint spectral amplitude (JSA) that takes the form:

γ(ωi,ωs)∝α(ωi +ωs) ·β(ωi,ωs), (3.19)

where α(ωi +ωs) is the pump envelope, that gives the frequencies allowed by

energy conservation, and β(ωi,ωs) is the phase-matching envelope, that gives

the frequencies allowed by the QPM condition. In a periodically-poled crystal,

under collinear-emission approximation, and assuming the pump spectrum to be

Gaussian (when the Laser is mode-locked), we can express these functions:

|α(ωi +ωs)| =exp
(
−Δω

2

2σ2
p

)
,

|β(ωi,ωs)| =sinc(Δk ·L),

(3.20)

where Δω =ωp −ωs −ωi, ωp is the central wavelength of the pump Laser, σp its

spectral bandwidth, L the length of the crystal and Δk is the phase mismatch:

Δk =
ωsns(ωs)

c
+ ωini(ωi)

c
− (ωi +ωs) ·np(ωi +ωs)

c
+ 2π
Λ

. (3.21)
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In Fig. 3.10, we display a simulation of the photon pairs’ JSA in our experiments.

Performing the Schmidt decomposition of the spectral state, we expect a Schmidt

number K = 1.18, and a high single-photon purity P = 1/K = 0.85, indicated by the

central close-to-Gaussian lobe in the JSA. Thus the photons are close-to-spectrally-

separable, which is a fundamental feature when performing 2-photons interference

in multipartite protocols or quantum teleportation, as we will see at the end of the

chapter. Still side lobes from the sinc function are responsible for some correlations

in the pairs’ spectral modes, which limits the purity. These can be suppressed by

filtering the spectral state.

Fig. 3.10: Simulated joint spectral amplitude of the photon pairs emitted in our
experiment, when the pump center wavelength is 770nm.

3.3.3 Coupling and Filtering

Before being processed, the photons have to be cleaned from parasitic signals, such

as remnants of the pump, undesired reflections and photons emitted in unwanted

modes. The spectral filtering is performed in three steps. First, we already men-

tioned the longpass dichroic mirrors, which separate most of the pump beam from

the signal and idler photons. Then, longpass filters suppress the last remnants of
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the pump, while transmitting the photons. Finally, custom ultra-narrow bandpass

filters, provided by Alluxa, suppress most parasitic signals emitted in the telecom

range. The central wavelength can be tuned from 1550nm to 1530nm by tilting

the filter around its vertical axis, and the FWHM is 1.3nm as seen in Fig. 3.11.

These narrow filters also allow to suppress the side lobes displayed in Fig. 3.10,

which increases the purity, but induces additional losses.

Fig. 3.11: Transmission of the ultra-narrow bandpass filters depending on the
wavelength, when placed normally to the beam. The central wavelength goes down
when tilting the filter. Data provided by Alluxa.

Spatial filtering is performed by coupling the photons into single-mode fibers

thanks to a short focal-length lens. Tuning the distance of the lens from the fiber

and the crystal center allows to select the Gaussian mode selected by the SM

fiber. We wish to set these coupling modes in order to maximize the probability

of detecting the signal photon, knowing the idler photon was measured. This

probability is also called the asymmetric heralding efficiency, and reads:

ηs|i =
Psi

Pi
, (3.22)

where Psi is the probability of detecting both signal and idler photons, and Pi is

the probability of measuring the idler photon. It was shown that when the pump is

collimated at the scale of the crystal, as it is in our case (ξp = 0.04), then signal and

idler spatial modes are highly correlated [45, 110], such that measuring the idler

photon in a Gaussian mode of waist wi projects the signal photon in a Gaussian
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mode of similar waist ws ≃ wi. Thus, choosing carefully the coupling waists allows

to maximize the heralding efficiency. In our experiment, this maximum heralding

efficiency was reached for ws = 190µm and wi = 218µm. The corresponding focusing

parameters read

ξs =
L

nszR,s
=

λsL
nsπw2

s
≃ 0.24, ξi =

L
ni zR,i

=
λiL

niπw2
i
≃ 0.17, (3.23)

such that both modes are also collimated at the scale of the crystal. This comforts

the assumption taken in the last paragraph, considering signal and idler as plane

waves when calculating the spectrum, leading to eq. 3.17.

The heralding efficiency effectively varies from one experiment to another, de-

pending on losses induced by various components. The maximum value reached

was ηs|i = 66%, in a specific situation where the pump was going through one

side of the Sagnac interferometer only, and the achromatic HWP was removed

from the photons’ path. By discarding the losses induced by fiber connectors, and

detectors efficiency, we get a corrected coupling efficiency η′s|i > 81%, comparable to

state-of-the-art sources [45, 95]. This value might increase even more by choosing

more transmissive optical components, in particular the Sagnac PBS which only

transmits 90% of the light at maximum.

3.3.4 Photon Processing and Measurement

Photons can undergo different operations after being coupled into SM fibers. Typi-

cally, we manage their polarization via different sets of WPs, or more conveniently

by using fibered polarization controllers (PC). The rest of the photon processing

apparatus depends on the implemented protocol. A common processing block is

the polarization-analyzer (PA), that we use to measure the photon’s polarization

in any qubit basis mentioned in paragraph 2.1.3. An example of such an appa-

ratus is shown in Fig. 3.12. A HWP and a QWP are used in order to rotate the

photon polarization, or equivalently the measurement basis. These are followed by

a PBS, which converts two orthogonal polarization modes into spatial modes, later

measured by single-photon detectors.
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Fig. 3.12: A polarization analyzer used in our experiment. WPs are motorized,
PBS is fibered, a PC ensures the PBS axes are aligned with those of the WPs.

In table 3.1, we give the different bases that we measure in our experiments,

along with the ocrreponding WPs configurations. In our setup, WPs are mounted

into fast and precise motorized stages, in order to automatically and swiftly change

the measurement basis. This is of particular convenience when performing quan-

tum state tomography, or quantum information protocols, as in chapter 6.

Basis HWP angle QWP angle
σ̂z : {|H〉, |V 〉} 0◦ 0◦

σ̂x : {|D〉, |A〉} 22.5◦ 0◦

σ̂y : {|L〉, |R〉} 0◦ 45◦

(σ̂x + σ̂z)/
p

2 11.25◦ 0◦

(σ̂x − σ̂z)/
p

2 33.75◦ 0◦

Tab. 3.1: Common polarization bases and the corresponding WPs angle used to
measure the photon in said bases.

After being discriminated by the PBS, photons are carried by optical fibers to

superconducting nanowire single-photon detectors (SNSPDs, ID281 by IDQuan-

tique). These consist of an electronic circuit made of a conductor material (see

Fig. 3.13), that becomes superconducting when cooled down to a cryogenic temper-

ature ≈ 0.8K (see Fig. 3.14). When the photon hits the circuit, the energy income

heats the conductor up, which loses its superconductivity. The resulting increase

in resistivity is then converted into an electric pulse that can be measured and
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timed with maximum uncertainty (timing jitter) of ≈ 40ps. The detection efficiency

for telecom photons is typically ≈ 90%, and the rate of false detections, called

dark counts (DC), is as low as ≈ 50Hz, due to the cryogenic temperature. After

the detection of a photon, the detector is fully operational past a recovery time of

≈ 100ns at maximum. The characteristics of the detectors are given in table 3.2.

Detector Efficiency DC rate Timing Jitter Recovery Time
1 84%±4% 41.5Hz 30.5ps 50ns
2 89%±4% 33Hz 30.6ps 46.6ns
3 86%±4% 61Hz 30.9ps 79.7ns
4 96%±5% 58Hz 40.7ps 97.5ns

Tab. 3.2: Characteristics of our first four SNSPDs, provided by IDQuantique.

Fig. 3.13: Picture of a superconduct-

ing nanowire circuit used as SNSPD,

taken via scanning electron micro-

scope. Source: IDQuantique.

Fig. 3.14: Cryostat containing the

SNSPDs, and keeping them at < 0.8K.

Picture by IDQuantique.

The electric signal of each detector is then sent to a time tagger (Ultra from

Swabian Instruments), also called coincidence counter (c.c.), that times the dif-

ferent detection events with picosecond-precision. The simultaneity of different

detection events can then be assessed, by setting up the right coincidence window,

which is the maximum time interval between two simultaneous detection events.

Timing delays can also be added or subtracted after recording the events, in order

to compensate for differences in each photons’ paths. We choose a coincidence
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window of 500 ps, which is long enough compared to timing uncertainties, but

small enough to cancel-out most of the noise. A summary of the setup used to

measure the correlation between two photons is displayed in Fig. 3.15.

Fig. 3.15: Full apparatus used to analyze the bi-photon polarization state. Two
polarization analyzers allow the local measurement of each photon of the pair.
Correlations between detection events are then assessed by the time tagger and
computer.

3.4 Characterization of the Source

Thanks to the biphoton polarization analyzer shown in Fig. 3.15, we could measure

the most important characteristics of our source. First, sending 1W of pump

power, we measured a maximum pair-detection rate of R2 ≃ 400kHz, depending

on the alignment of the source. Accounting for the detection efficiencies, we get

an emission rate R′
2 ≃ 1.1MHz, and hence a brilliance B ≃ 1.1×103 pairs/s/mW.

This is significantly lower than previous sources [42, 95], which can be explained

by the collimation of the pump beam in the crystal. When the pump is in pulsed-

mode, we derive the probability of emission of a pair from a pump pulse p =

R′
2/ f ≃ 0.015, where f is the Laser repetition rate. This way, we have p ≫ p2, so

the double-pairs emission rate is negligible compared to the pair emission rate.

This feature, together with the high-heralding efficiency ηs|i = 66%, indicates our

source approaches a heralded single-photon source. Another common benchmark of

single-photon sources is the autocorrelation function g(2)(0) of the heralded photon,

detailed in [43], which quantifies the importance of higher-order effects compared
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to photon pair emission. To evaluate this quantity, we herald the signal photon

with its idler twin detected in a detector D1, and we measure the signal photon in

two detectors D2 and D3 after a 50/50 beam splitter. This way the autocorrelation

function reads:

g(2)(0)≃ 4 ·R1 ·R1,2,3

(R1,2 +R1,3)2 , (3.24)

where R1,2, R1,3 and R1,2,3 give the rates of simultaneous detections in the cor-

responding combination of detectors, and R1 is the rate of detection of the idler

photon in D1. In Fig. 3.16 we display g(2)(0) as a function of the average pump

power, in pulsed mode. At low power, our source indeed approaches the behaviour

of a true heralded single-photon source with g(2)(0) = 0.

Fig. 3.16: Autocorrelation function g(2)(0) of the heralded signal photon, as a
function of the average pump power, in pulsed mode.

Most importantly, the biphoton polarization states emitted by our source can

be evaluated on quantum state tomography (QST) [51, 52], which allows to re-

construct the full density matrix of our 2-qubits state, by measuring a finite set

of Pauli observables σ̂iA ⊗ σ̂iB . These are easily accessible in our experiment, by

measuring the two photons in all combinations of two configurations displayed

in table 3.1. Details on this method are given in appendix A. Thanks to the WPs

motorized stages and the relatively high pair detection rate, it typically takes only

15min to 30min to acquire a full data set needed for this state reconstruction.
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Using the pump Laser in continuous-wave mode, double-pair emissions are

negligible, such that the state quality is maximized. We display a typical density

operator ρ emitted by our source in Fig. 3.17. This state displays a fidelity to

maximally entangled state

F(ρ,Ψ+) = 〈Ψ+|ρ|Ψ+〉 = 99.32%±0.05%. (3.25)

(a) Real part. (b) Imaginary part.

Fig. 3.17: Typical biphoton polarization quantum state emitted by the Sagnac
source, reconstructed by QST. We measure a fidelity F(ρ,Ψ+) = 99.32%±0.05% to
the Bell state |Ψ+〉. Real and imaginary parts are not at the same scale.

We mentioned in paragraph 2.1.4 that 2-qubits maximally-entangled Bell states

form a whole class of states that are all equal up to local unitary transformations.

Hence in many cases the absolute closeness of the 2-qubits state to |Φ±〉 or |Ψ±〉
is less relevant that its closeness up to local unitaries. This is the case of device-

independent protocols in particular, as we will see in chapter 6. For this reason

we often maximize the fidelity of our state ρ to |Φ+〉 = |HH〉+|VV 〉p
2

, by applying local

unitaries ÛA ⊗ÛB. This way, with an optimal alignment of the source, we measure

Fmax(ρ,Φ+) = max
ÛA ,ÛB

〈Φ+|ÛρÛ†|Φ+〉 = 99.43%±0.05%, Û = ÛA ⊗ÛB, (3.26)

which is comparable to state of the art sources [42]. Note that in practice, it is

particularly convenient to tune the different WPs angles and fibered polarization

controllers, in order to experimentally perform the maximization on ÛA and ÛB.
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When the Laser is in pulsed mode, the energy is concentrated in time, resulting

in a higher probability of double-pair emission. This induces noise in the effec-

tive state, caused by accidental coincidences between uncorrelated photons. The

consequent decrease in the fidelity of the state to a maximally-entangled state is

displayed in Fig. 3.18.

Fig. 3.18: Fidelity of the biphoton polarization quantum state emitted by the
Sagnac source evaluated by QST, to the maximally-entangled state |Φ+〉, as a
function of the pulsed-pump power.

Using the state emitted by our source, we could test the violation of Bell

inequality 2.21. In CW-mode, we measure the observables Â0 = σ̂x and Â1 = σ̂z on

the first photon, and the observables B̂0 =− 1p
2

(σ̂z+σ̂x) and B̂1 = 1p
2

(σ̂z−σ̂x) on the

second photon. This way, we measure a ϵ-close-to-maximum violation

I = 2
p

2 −ϵ = 2.8142±10−4, with ϵ = 0.0142±10−4. (3.27)

Finally, we show the relatively strong stability of our source over time, by per-

forming a series of QST of the state emitted by the source, for an 8 hours duration.

From the data acquired during these tomographies, we deduce the evolution of both

the source’s state fidelity to a maximally-entangled state and the pairs’ detection

rate, over time (see Fig. 3.19). By fitting the data we conclude the drift in state

quality and coupling to be negligible.
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Fig. 3.19: Features of the source measured over an 8-hours time-span. The 1-hour
gap at the end of the data series is due to a cooling cycle of the detectors.
(a) Fidelity of the source’s state to a Bell state. (b) Biphoton detection rate R2.

3.5 Toward a Multi-Photons Source

Numerous quantum network primitives require more than one pair of photons to

operate. This includes authenticated teleportation [26], composable multipartite

entanglement verification [121], or quantum anonymous communications [17, 122],

which we would like to experimentally implement in our laboratory in a near

future. Here we detail our new design for a source of multiple pairs of photons,

which only requires some mild adaptations of our pair source to operate. These

adaptations are currently being made in the lab.
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3.5.1 Key Ingredient: Two-Photons Interference

The most common SPDC-based multipartite layout is made of at least two sources

of pairs of photons, and at least one bipartite operation in order to make two pairs

interact. This operation generally consists of making two photons from separate

pairs interfere, in a Hong-Ou-Mandel-like setting (see paragraph 2.2.5). We display

the typical experimental setting in Fig. 3.20. We can for instance use a BS, and

post-select on the detection of one photon in each one of its outputs. We say photons

anti-bunch, which effectively performs a Bell-state measurement (BSM), projecting

the interfering photons on the antisymmetric state |Ψ−〉 = |HV 〉−|V H〉p
2

. This is a

fundamental ingredient for quantum state teleportation [58]. When using a PBS,

two maximally-entangled states |Φ+〉 = |HH〉+|VV 〉p
2

, and with the same post-selection,

then we effectively perform entanglement-fusion [46, 123]. This way we prepare a

GHZ state

|GHZ4〉 =
1p
2

(|H1H2H3H4〉+ |V1V2V3V4〉
)
. (3.28)

Fig. 3.20: Typical layout of a optical multipartite quantum experiment.

A wide variety of other two-photons operations are possible, summarized in

the following review [124]. The quality of the operation is quantified by the HOM-

interference visibility, which reads:

V (ρ2,ρ3) =
P(ρ2)+P(ρ2)− ∥ ρ2 −ρ3 ∥2

2

2
, (3.29)

where ρ2 and ρ3 are the reduced states of photons 2 and 3 in Fig. 3.20, P(ρ) is

the purity of state ρ, and ∥ ρ2 −ρ3 ∥2
2= Tr(ρ2 −ρ3)2 is the Hilbert-Schmidt distance.

This way, a high-quality GHZ state or BSM relies on generating separable pairs of

photons (except in the polarization degree of freedom), and in indistinguishable
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states. The design of our PPKTP crystal and pump beam, as well as mild spectral

filtering, ensures the photons are spectrally-separable photons, and therefore

display an optimal purity. In the following we focus on the problem of generating

indistinguishable pairs of photons.

3.5.2 Spatial Multiplexing and Layered Sagnac Source

A naive way to generate independent pairs of photons is to pump different non-

linear crystals with the same Laser. This solution is wide-spread and functional,

and was used in particular to successfully generate a 12-photons GHZ state [47].

Still the hardness of this solution resides in making all independent sources in-

distinguishable, such that all crystals and alignment should be rigorously the same.

An interesting solution was proposed by H. Guilbert et al. [125] and demon-

strated by the KIKO team of M. Bourennane [126, 127] in the form of spatial
multiplexing. It exploits the ring-distribution of entangled pairs emitted via type-I

SPDC in a bulk BBO crystal. In this way, independent pairs can be collected in

different parts of the ring, as shown in Fig. 3.21. These pairs are indistinguishable,

as they come from the same source.

Fig. 3.21: Spatial multiplexing: independent and indistinguishable pairs of photons
can be collected in different points A, B, C or D of the same type-I SPDC ring.

For now, spatial multiplexing was only proposed for bulk crystals. Thus all

multipartite sources based on periodically-poled crystals have so far relied on

building multiple separate interferometers, with two different crystals. This was

pointed out as a limitation for the emission of indistinguishable pairs [128], aris-
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ing from mild differences in separate crystals or alignments. Here we provide an

original adaptation of the standard PPKTP-Sagnac source, in order to get two

sources into one by spatial multiplexing. This method exploits the 2-dimension

geometry of periodically-poled-crystal-based sources, which therefore allows to

vertically stack different sources of entangled-photons in the same Sagnac inter-

ferometer and PPKTP crystal. We display this Layered-Sagnac configuration in

Fig. 3.22. Alternatively, we call this configuration Sagnac Mille-Feuille in French,

or even Lasagnac in Italian, as a tribute to the layered dishes from these two

countries. In addition to ensuring the indistinguishability of photons, this layout is

particular compact, such that we can consider stacking more layers in a limited

space. Also, the alignment of such a layered source is expected to be particularly

simple. Indeed, provided one is able to generate two parallel pump beams (by

using the setup shown in Fig. 3.23 for instance), the whole source can be aligned

by performing a single alignment of the Sagnac interferometer, detailed in annex B.

Fig. 3.22: Scheme of the Layered-Sagnac source. Two parallel beams pump the
same PPKTP crystal at different heights.
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3.5.3 Pump-Shaping for Layered Sagnac Source

Converting our source into a Layered Sagnac source should only require a few

adaptations, the main one being the pump shaping. The main hardness comes from

generating two vertically-stacked parallel beams. A spatial multiplexer made of two

calcite crystals can generate two such beams, as shown in Fig. 3.23. Interestingly,

as the two beams have exactly the same path, one can set the focusing optics before

the multiplexer. This ensures both beams are focused inside the crystal with the

same waist.

Fig. 3.23: A spatial multiplexer used to generate two parallel beams. Calcite
crystals separate two parallel beams of orthogonal polarization. We use two such
crystals, rotated at 180◦, so the optical path-length is the same for both beams.

For this first demonstration, we consider this solution based on calcite-crystals

does not provide enough degrees of freedom in order to ensure the beams are

perfectly parallel. Furthermore, a multipartite source requires to use the Laser in

pulsed mode, in order to maximize the probability of simultaneously emitting two

pairs (see eqs. (3.12,3.13) ), and thus the 4-photons emission rate:

R4 = f κ2U2
pη

4. (3.30)

Here we recall f is the pump-pulse repetition rate, Up the energy per pulse, κ the

number of pairs emitted per Joules of pump pulse, and η the detectors efficiency.

Increasing the pulse-energy also increases higher-order emissions, and therefore

limits the state quality. For this reason, we propose to use a temporal multiplexer

[116, 117], as shown in Fig. 3.24. Such multiplexer consists of dividing the energy

of pump pulses by 2, all the while doubling the repetition rate, so the 4-photons

emission rate becomes:

R′
4 = 2 f κ2(Up/2)2η4 =

1
2

f κ2U2
pη

4. (3.31)
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This way, we divide the rate of emission by 2, instead of 4 if we simply had

divided the pump power by 2. At the output of the temporal multiplexer, we get

two separate beams, that we propose to use for parallel spatial-multiplexing in

the layout shown in Fig. 3.24. We first recombine the beams in a Mach-Zehnder

interferometer, where the second cube is a PBS. This way, we can finely control

the alignment of the beams by measuring the interference visibility. Then we tilt

two glass plates (windows) in opposite angles, such that one beam is displaced

downward and the other is displaced upward. Such glass plates are generally

particularly flat, such that the two beams stay parallel.

Fig. 3.24: Temporal and spatial multiplexer being built in our experiment. In the
temporal multiplexer, half of the pulse power is delayed, in order to make two
pulses with lower power. The windows are tilted around the horizontal axis that
is perpendicular to the beams. The orange beam is displaced upward, while the
magenta beam is displaced downward.

This layout is more complex than the one shown in Fig. 3.23, but can be tuned

more finely. For instance, we can control the focusing of the two parallel beams

separately, by adding lenses in the arms of the spatial multiplexer. Also, the

parallelism and separation of the beams can be controlled finely thanks to the

mirrors and glass plates. This way, we expect the multiplexer from Fig. 3.24 to

be more practical in first laboratory experiments, though that of Fig. 3.23 would

require more investigations for more compact and stable applications.
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3.6 Discussion and Future Improvement

Combining a previously developed PPKTP-Sagnac scheme [42], with more recent

adaptations for the emission of telecom photons [95, 111], we demonstrated a

source of close-to-maximally entangled qubits, encoded on the polarization state of

a photon pair. We showed this source to be quite flexible, as it can also be used in

pulsed mode, to generate heralded single-photons with high heralding efficiency,

spectral purity and low higher-order emissions. All those characteristics make our

source particularly suitable for the implementation of quantum network protocols,

such as weak coin-flipping with a single-photon (see chapter 4) or channel certifica-

tion allowed via the self-testing of maximally-entangled states (see chapter 6).

A significant flaw of our source is its relatively low brilliance, which is limited by

the weak focusing of the pump Laser. This latter feature is necessary for emitting

separable photons with high coupling efficiency, as well as for our novel design of

a multi-qubits source. A low brilliance is not limiting in our protocols, in which

enough pump power is available for high emission rates, but may be a limitation

for wider-scale applications in a near-future, in a context of energy scarcity.

A few improvements may maximize some characteristics of our photon-pair

source. First, the heralding efficiency and detection rates could be improved by

using more transmissive components, particularly the Sagnac PBS and achromatic

HWP. Second, for applications relying mostly on maximally-entangled states, a con-

tinuous diode Laser could replace the Titanium-Sapphire Laser, which is relatively

noisy when used in CW-mode. This would improve the purity of the emitted states,

and thus their fidelity to Bell states. Finally, recent studies demonstrated close-

to-unity spectral purity of telecom single photons emitted via SPDC [112, 113], by

tailoring a custom poling pattern in the KTP crystal. In the future, such solutions

could be applied in our experiments, eliminating the need for narrow spectral

filtering.
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Finally, we proposed a novel layout for adapting our source to multipartite-

entanglement emission, with only a few adjustments. This uses the spatial multi-

plexing technique, which had already been demonstrated for bulk-crystal sources,

emitting photons in a ring-geometry. In our case, we would stack different sources

in the same PPKTP-Sagnac interferometer, exploiting the plane geometry of

periodically-poled-crystal-based sources. The resulting layered-Sagnac source should

be particularly compact, stable and simple to align, compared to the more usual

setting, which uses several separate PPKTP-Sagnac sources. At the time of the

writing of this thesis, this new source is being built in our lab, so we hope to

demonstrate new multipartite communication protocols in a near-future, such as

authenticated teleportation [26], composable GHZ-states verification [121], and

quantum anonymous transmissions [122].
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4
QUANTUM WEAK COIN FLIPPING

WITH A SINGLE PHOTON

‘Nic dwa razy się nie zdarza
i nie zdarzy. Z tej przyczyny
zrodziliśmy się bez wprawy
i pomrzemy bez rutyny.’

— Wisława Szymborska, Nic dwa razy.

The security of a potential future quantum network relies on assembling

different cryptographic primitives, allowing to perform elementary tasks

with a certain resilience to malicious attacks and cheating strategies [129].

In particular, cheat-sensitive protocols display a form of resilience, as they can

expose cheating players with a certain probability, although those players might be

able to cheat and bias the protocol in their favor. This way, sanctions can be taken

against players who are caught, in order to deter them from cheating.

Coin flipping is one of these fundamental building blocks, and comes in two

versions. Strong coin flipping (SCF) allows two players to remotely agree on a

random bit, such that none of the players can bias the outcome with probability

higher than 1/2+ϵ, where ϵ is the protocol bias [130]. It is essential for multiparty

computation [131], online gaming and more general randomized consensus proto-

cols involving leader election [132]. Weak coin flipping (WCF), on the other hand,

allows the same task when both players have a preferred, opposite outcome. This

way the protocol effectively designates a winner or a loser, and players may try to

bias the protocol toward their preferred outcome.
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With classical communication resources, SCF and WCF protocols are only pos-

sible through computational assumptions or trusting a third party [130, 133–135].

For instance the players may trust a clock, in order to simultaneously broadcast

two random bits, the sum of which provides the outcome. This implies no player

would corrupt the third party to favor an outcome over another (by desynchronizing

the clock for instance). In turn, such an assumption limits the protocol’s security.

Using quantum properties, however, one can derive information-theoretic security

for SCF and WCF. Interestingly, quantum SCF can only limit the protocol bias to a

minimum value ϵ = 1/
p

2 −1/2 [136], whereas quantum WCF may reach arbitrarily

small values of ϵ [137, 138]. The latter can also be used for the construction of

optimal quantum SCF and quantum bit commitment schemes [139, 140]. While

quantum SCF protocols were experimentally demonstrated [141–143], only re-

cently a practical implementation of WCF was proposed by M. Bozzio et al., using a

single-photon and simple linear-optics [48]. Still the proposed quantum advantage

provided by this implementation, in terms of outcome-bias from cheating players,

is extremely sensitive to losses. Indeed a dishonest party may always declare an

abort when they are not satisfied with the outcome of the coin flip.

In the following chapter, we present the first experimental demonstration

of quantum WCF, that we performed using a single-photon, heralded from our

photon-pairs source (see chapter 3), and later mixed with vacuum on a beam

splitter. This effectively entangles two path-modes of the electromagnetic field, and

gives the flip outcomes after detecting the presence or absence of a photon in said

paths. Our protocol is a refined version of the theoretical protocol from [48], which

provides a new form of quantum advantage, even in the presence of losses. This

advantage relates to cheat sensitivity rather than bias from cheating players. By

dropping the condition from [48] that both players should have equal probability of

winning when cheating, our protocol allows them to detect whether their opponent

is cheating during a verification step, and does not sanction an honest party. To

this day, no classical protocol displays such cheat sensitivity with information-

theoretic security [144, 145]. In order to emphasize the robustness of this quantum

advantage to losses, we show that our protocol remains secure over an attenuation

that corresponds to several kilometers of telecom optical fiber.
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4.1 Proposed Protocol

We first introduce our protocol for quantum weak coin flipping using a single

photon protocol, which accounts for potential losses and the detection of a cheat-

ing party. We provide the recipe in Protocol 4.1, built on the proposition from

M. Bozzio et al. [48]. In the end we discern five mutually incompatible outcomes:

• Alice wins when (b,v1,v2) = (0,1,0),

• Alice is sanctioned if (b,v2) = (0,1),

• Bob wins when (b,a) = (1,0),

• Bob is sanctioned if (b,a) = (1,1),

• The protocol aborts if (b,v1,v2) = (0,0,0).

The protocol uses three beam splitters, whose reflectivities x, y, and z are

chosen in order to satisfy two conditions on these events. Firstly, the fairness
condition, which states that Alice and Bob have equal winning probabilities when

both of them are honest, i.e. Ph(A. wins) =Ph(B. wins), or

Ph
[
(b,v1,v2) = (0,1,0)

]
=Ph

[
(b,a) = (1,0)

]
. (4.1)

Secondly, the correctness condition, which states that an honest party should never

be sanctioned for cheating, i.e. Ph(A. sanctioned) =Ph(B. sanctioned) = 0, or

Ph
[
(b,v2) = (0,1)

]
=Ph

[
(b,a) = (1,1)

]
= 0. (4.2)

Note that contrary to the previous protocol [48], we drop the balancing condition,

which states that Alice and Bob should have equal probabilities of winning when

using an optimal cheating strategy, as it cannot be satisfied together with the

correctness condition in presence of experimental imperfections. Consequently,

a practical balanced protocol would sanction an honest Alice for cheating, with

non-zero probability. This impacts the cheat sensitivity, as one cannot trust the

verification step if it sanctions honest parties. For more details on the protocol and

the chosen conditions, the reader may refer to appendix C.
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Protocol 4.1: Cheat-sensitive weak coin flipping with a single photon.

1. Preparation. Alice sends a single photon on a beam splitter of reflectiv-

ity x, keeps the reflected mode, and sends the other to Bob.

2. Decision. Bob sends the state he receives on a beam splitter of reflec-

tivity y, measures the transmitted mode with a single-photon detector

DB, and broadcasts the outcome b ∈ {0,1}.

3. Verification. If b = 0, Alice sends her reflected mode to Bob, who mixes

it with his own reflected mode on a beam splitter of reflectivity z, and

measures the two outputs with single-photon detectors DV1 and DV2 .

He distinguishes three cases depending on the outcome (v1,v2):

• v2 = 1: Alice is sanctioned for cheating,

• (v1,v2) = (1,0): Alice wins,

• (v1,v2) = (0,0): the protocol aborts.

If b = 1, Bob discards his state. Alice measures her state with a single-

photon detector DA. She then discerns two cases depending on the

outcome a:

• a = 0: Bob wins,

• a = 1: Bob is sanctioned for cheating.
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4.2 Experimental Setup

Our implementation of Protocol 4.1 relies on the emission of heralded single-

photons on Alice’s side, using the source described in chapter 3. Operations de-

scribed in the protocol are implemented using fibered components at telecom

wavelength. As the polarization degree of freedom is not used for encoding, Alice

entangles it with the spatial modes, using PBSs. In this way, the BSs reflectivities

x, y, and z, can be effectively tuned by rotating the single-photon polarization

before each PBS, using polarization controllers. We use a fast optical switch in

order to select the party who performs the verification step, depending on the

outcome b. During this operation, the photon is delayed in 300m-long optical fiber

spools. In order to simulate communication distance between Alice and Bob, and

the corresponding losses induced by the photon storage that is necessary in this

case, we use variable optical attenuators (VOAs). Photons are finally detected

by single-photon detectors, and the measurement results are processed via our

coincidence counter (c.c., see paragraph 3.3.4). The detailed setup is shown in

Fig. 4.1, and discussed in the following paragraphs.

Fig. 4.1: Experimental setup for cheat-sensitive quantum weak coin flipping. Signal
and idler photons are generated using the source presented in the chapter 3. The
idler photon is detected in Dherald, heralding the signal photon which is used to
perform the protocol and detected in DA, DB, DV1 , and DV2 . The dashed line marks
visually the separation between Alice and Bob.
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4.2.1 Heralded Single Photon

Most important details on the heralded single photon source are given in chap-

ter 3. Still, a few additional details are worth mentioning. Firstly, the maximally-

entangled states of polarization are not required in this protocol, so we only use

one side of the Sagnac interferometer to produce photons in a product state of

polarization |HiVs〉. We also remove the achromatic HWP from the Sagnac in order

to minimize the losses on photons. After being collected into SM fibers, the idler

photon is detected in order to herald the signal photon and trigger a protocol

run. The resulting single-photon is then processed by the players to perform the

protocol, and ultimately detected in 4 different path-modes with our 4 SNSPDs,

which optimizes the heralding efficiency. Losses on the idler photon were not lim-

iting, so we detect it with a 25%-efficiency InGaAs avalanche photo-diode (APD,

ID230 from IDQuantique). This way, protocol runs are triggered at a rate of 51kHz,

and without adding the fibered components we measured a maximum heralding

efficiency ηs = 63% of the signal photon.

4.2.2 Optical Switching

During the decision step of the protocol, Bob’s detection determines which party is

winning, and which one has to perform the verification. In our experiment, this

decision is effectively taken into account by Alice via her optical switch (Nanospeed

from Agiltron, see Fig. 4.2). Hence, if Bob does not claim victory, the switch is in

state "0" in order to send Alice’s state to Bob, who performs the verification. If

Bob claims victory, the switch goes to state "1" such that Alice keeps her state

and performs the verification. In practice, we send the electronic signal from Bob’s

detector, together with the heralding signal, to a fast programmable logic AND

gate, integrated in a time controller (ID900 from ID Quantique). This gate filters

out potential detection events outside of the protocol, which might saturate the

optical switch. The gate’s output signal is then sent to the optical switch, which

executes the decision.
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Fig. 4.2: Optical switch Nanospeed provided by Agiltron

Two timings must be set carefully in order to send the photon in the appropriate

direction. First, the two detection electronic signals must be synchronized inside

the AND gate in order to perform the logic operation. These timings can be tuned by

programming the time controller, and we check that synchronization by measuring

the rate of coincidences between the AND gate output, and the detections in the

heralding detector and in Bob’s detectors. Second, the wave-packet on Alice’s side

must pass through the switch when the latter is in the appropriate state. As it

takes approximately ≃ 800ns to perform the logic gate and the potential shift of

the optical switch’s state, we use 300m-long optical fiber spools, on each party’s

side, in order to delay the photon for ≃ 1.5µs. We can then tune the timing of the

AND gate’s output electronic signal, again by programming the time controller,

so that the photon enters the switch right after its state was set. We check the

synchronization by implementing a dishonest Bob who constantly claims victory

by sending a continuous electronic signal to the AND gate. Then the timing is

appropriately set when the rate in Alice’s verification detector is maximized.

Note that when performing the protocol with honest parties and a true single-

photon, then Alice activates her switch only when Bob measures the photon, so

ideally she cannot measure any signal in her verification detector. This is expected

as we tend to minimize the probability of sanctioning an honest Bob, for optimal

correctness. However, this questions the point of using such an optical switch

and fast electronics, just to send void on Alice’s verification detector. Physically

speaking, this seems equivalent to using the exact same setup with no switch, and

send all photons to Bob’s verification apparatus. However, we cannot assume Bob
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to be honest, even when he is. Therefore, it is of major importance that Alice checks

that her state actually is projected on the void, in a cryptographic context.

(a) With no insulation (right), and partial
insulation (left).

(b) With full sound insulation, as used in
our experiments.

Fig. 4.3: Optical fiber spools used to delay the photon while the optical switch is
being operated, with the sound insulation mentioned in the next paragraph.

4.2.3 Error Management

Various factors can generate undesired detection events in our protocol. This is true

in particular for sanction outcomes, triggered by a detection in DA or DV2 which

should never occur when a party is honest. Thus managing these error sources is

of major importance in order to satisfy the correctness condition in particular, but

also to minimize undesired outcomes in general.

Most of these outcomes arise from Bob’s verification procedure, which relies

on a Mach-Zehnder interferometer. If this interference is of poor visibility, then

DV2 can be triggered even if Alice is being honest, and her winning probability is

also substantially lowered. Considering the length of this interferometer (> 300m

because of the fiber spools), the visibility is limited by two main factors, namely

the coherence length and phase fluctuations. The coherence length of photons is ≃
2.4mm (see the pairs’ spectrum in figure 3.10), which is small enough to start losing

coherence after a few hours of experiment runs. This is mostly caused by length

variations in the interferometer arms due to thermal fluctuations (≃ 2.4mm/◦C
for a 300m arm). We therefore regularly fine tune the length of one arm of the

interferometer, using a free-space micro-metric delay line.
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Phase fluctuations can be separated into two regimes. Slow phase fluctuations,

of typical frequency ≲ 1Hz, are again caused by thermal variations, and can be

easily monitored. Fast phase fluctuations, however, are caused by noise spanning

the audible spectrum from 20Hz to 2kHz. This noise is amplified by the 300m fiber

spools, which act as a sort of microphone. These fluctuations are hard to resolve

with our single-photon rate of a few 10kHz, such that the interference pattern

is averaged on that noise, and we witness an interference visibility of approxi-

mately v ≃ 80%. In order to characterize that noise, we measure the interference

pattern with a continuous diode laser and a fast photodiode (see Fig. 4.4). Without

any sound insulation, the noise in the interference fluctuation spans the audible

spectrum with a power spectral density ≃ 7×10−3 V2/Hz. In order to mitigate this

noise, we wrap the fiber spools into several layers of sound-absorbing floating

parquet underlay (see Fig. 4.3). The power spectral density then drops to less than

10−3 V2/Hz except for some specific frequencies. The total noise power is divided by

≳ 11. The measured visibility then reaches v≳ 96%. Under these conditions, the

thermally-induced fluctuations are slow enough such that we can easily post-select

the protocol runs in which there was no phase difference between the two arms

of the interferometer. This post-selection does not threaten the protocol security,

as the parties could monitor the interference before performing the coin flip, and

agree on starting the protocol only when the phase difference is null.

Undesired outcomes can also be triggered by double-pair emission inside the

crystal, and dark counts in the detectors. The double-pair emission rate is limited

in our experiment, as the probability of emitting a photon-pair in a pump pulse

is p ≃ 0.015 (see the source’s characterization in chapter 3), so the double-pair

emission probability is negligible p2 ≪ p. Dark counts rates are made particularly

low thanks to the use of SNSPDs for detecting the signal photon. Furthermore

we use the pump internal signal in order to synchronize a 500ps detection gate

with each of the detectors signals, and all signal-photon detections are conditioned

on a heralding photon detection. The probability of detecting a dark count during

a protocol run is then 5 ·10−8, such that undesired outcomes due to dark counts

are negligible. However, the heralding photon is detected by an APD of 1kHz dark

counts rate, which is substantially higher than SNSPDs. Such dark counts trigger
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protocol runs while no photon was emitted, and therefore slightly increase the

abort probability. Still we evaluate the rate of such runs to be as low as ≲ 40Hz,

thanks to the gating applied by the pump laser signal. This way the surplus of

abort probability caused by dark count is about 8 ·10−4, which is negligible.

Fig. 4.4: Noise spectrum measured in the interferometer, using a continuous laser
and a fast photodiode, with and without sound insulation on the fiber spools. When
adding the insulation, the noise is low enough to distinguish peaks coming from
the main sources of sound in the lab: 48Hz, 99Hz, and 199Hz are emitted by the
compressor plugged to the detectors cryostat, 290Hz and 580Hz are emitted by
the pump in the cold water circuit, which cools down the compressor, and 412Hz
and 418Hz are emitted by the laser chiller.

4.2.4 Losses

Because of their central role in the analysis of the protocol, we wish to distinguish

the BS reflectivities from the losses induced by the rest of the components in the

setup. For that purpose we define different transmission (or heralding) efficiencies,

measured when the reflectivities and the state of the switch are set to trivial

values x, y, z, s ∈ {0,1}. These values reflect the losses in every possible path in the

experiment, which are induced for instance by fiber spools, VOAs, fiber coupling

and mating, or detectors. We detail the notations for the efficiencies corresponding
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to each path and their measured values in Tab. 4.1. Each path is defined by the

detector it ends in and the arm it goes through (Alice’s or Bob’s).

Notation Path x y z s Efficiency

ηs
A x → switch→ DA 1 1 0.315±0.008

η
y
B x → y→ DB 0 0 0.303±0.008

η
V1
A x → switch→ z → DV1 1 1 0 0.231±0.008

η
V2
A x → switch→ z → DV2 1 0 0 0.219±0.008

η
V1
B x → y→ z → DV1 0 1 0 0.184±0.008

η
V2
B x → y→ z → DV2 0 1 1 0.175±0.008

Tab. 4.1: List of notations and measured values for the efficiencies corresponding
to the different paths involved in the experiment. The paths are described by
the PBSs (labelled by the corresponding reflectivities) and/or the switch they go
through, as well as the detector at the end of the path. We also list the values of x,
y, z, and the state of the switch s, required to measure these efficiencies. Values
are given for VOAs set at 0dB.

4.2.5 Measurement of Outcome Probabilities

The probabilities of the different outcomes are evaluated by measuring the different

detection rates and coincidence rates, provided by simple functions of our time

tagger. However, the time tagger does not provide a direct way of measuring the

rate of an event excluding some other event. For instance, in order to measure

the rate of "Bob wins" event, we need to measure the rate of detection in Bob’s

detector, that did not occur at the same time as a detection in Alice’s verification

detector. In logical notation, we need the event b∧¬a. Yet for any pair of detection

events u,v, we have u∧¬v = u∧¬(v∧u) such that the rate Ru\v of that event can

be calculated as Ru\v = Ru −Ruv, with Ru the rate of detection u and Ruv the rate

of simultaneous detections u and v. In this way, we can easily deduce the formula

for the rates of different outcomes in the protocol, summarized in Tab. 4.2.
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Outcome a b v1 v2 Logical Rate

Alice wins 0 1 0 ¬b∧v1 ∧¬v2
RhV1 −RhV1V2

−RhBV1 +RhBV1V2

Bob wins 0 1 b∧¬a RhB −RhAB

Alice sanctioned 0 1 ¬b∧v2 RhV2 −RhBV2

Bob sanctioned 1 1 b∧a RhAB

Abort 0 0 0 ¬b∧¬v1 ∧¬v2
Rh − {Rates of all
other outcomes}

Tab. 4.2: Different protocol events, with the corresponding detection outcomes,
logical formula and combination of coincidence rates needed to compute the cor-
responding probability. The rates subscripts correspond to the detectors which
simultaneously trigger, h for the heralding, B for Bob’s detector, A for Alice’s verifi-
cation detector, V1 and V2 for Bob’s verification detectors.

4.3 Results for Honest Players

We first perform the protocol for different communication distances between Alice

and Bob, when both of them are honest. These distances are simulated by setting

each of the VOAs to a transmission η= e−0.02L with L the distance in kilometers,

introducing additional losses to each arm of the setup. In our experiments, because

of dark counts, double-pair emission, or imperfect interference visibility, Alice

and Bob can still be sanctioned even though they are honest and the setup is

optimized. In general, we cannot tune the reflectivities perfectly, so Alice and Bob

may have slightly different winning probabilities. This means our implementation

cannot satisfy perfectly the fairness and correctness conditions. Therefore, we

define the fairness F and correctness C in order to quantify the closeness to these

two conditions as follows:

F = 1−
∣∣∣Ph(A. wins)−Ph(B. wins)
Ph(A. wins)+Ph(B. wins)

∣∣∣ (4.3)

C = 1− Ph(A. sanctioned)+Ph(B. sanctioned)
Ph(A. wins)+Ph(B. wins)

(4.4)

Both quantities are equal to 1 when the corresponding conditions are perfectly

fulfilled, and C,F < 1 otherwise. In the following we first show how honest Alice
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and Bob should tune the reflectivities x, y and z, in order to maximize these two

quantities. We then provide the results of our implementations of the protocol with

such honest players.

4.3.1 Reflectivities with Honest Players

We first provide the theoretical values of reflectivities xh, yh and zh that honest

players should set. In our implementation, double-pair emissions and dark counts

are very unlikely, so only the interference visibility v significantly limits C and F .

This way, we show that the correctness and fairness conditions are optimally

approached by setting the following reflectivities:

xh =
[
1+ η

V1
A

η
V1
B

+ η
V1
A

η
y
B

(1+v)
]−1

(4.5)

yh =
[
1+ η

V1
B

η
y
B

(1+v)
]−1

(4.6)

zh =
1
2

(4.7)

The reader can refer to appendix C for the detailed proof. In particular, we show in

this proof that the effective interference visibility can be expressed as the average

on the fast phase fluctuations displayed in Fig. 4.4, v = |〈cosΔΦ f 〉|.

In practive, these reflectivities are set by directly optimizing the correctness

and fairness of the protocol. Bob first sets z = 1/2 by blocking Alice’s signal, and

equalizing the detection rates in DV1 and DV2 . This later ensures an optimized

interference, and therefore the correctness condition. Then he can tune y such

that the detection rate in DB equals twice the total rate in DV1 and DV2 , which

should ensure the fairness condition. Alice then tunes x in order to optimize the

interference visibility, which should complete the setting of reflectivities. If v is

significantly lower than 1, Alice and Bob might have to perform some mild adjust-

ments on x and y in order to maximize the fairness and correctness.

After performing a protocol, we easily evaluate the reflectivities x, y, z by forcing

the switch in state s = 0 or s = 1, measuring the different detection probabilities and
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dividing with the different paths’ efficiencies given in Tab. 4.1. We display those

experimental reflectivities in Fig. 4.5, for different implementations of the protocol

with honest players. We see these reflectivities can deviate from the theoretical

predictions derived from the efficiency values. The most plausible explanation is

that we might not perfectly set the expected reflectivities in each protocol run.

This could happen if the fairness F and the correctness C are hardly sensitive

to reflectivities around the optimal configuration. Also some undetected errors

might have occurred when measuring the efficiencies in Table 4.1, because of some

undetected fluctuations, or if we did not perfectly set the reflectivities x, y, z to

trivial values when performing that measurement.

Fig. 4.5: Reflectivities measured in protocols with honest parties, for different
communications distances simulated with VOAs. The lines show the prediction
from eqs. (4.5) to (4.7), with efficiencies given in Table 4.1, and with additional
factors e−0.02L induced by VOAs. The error bars are mainly due to error propagation
on the efficiencies.

4.3.2 Protocol Results

For each distance L, we set the VOAs to a transmission η = e−0.02L, and we optimize

the fairness and correctness at each distance by tuning the reflectivities. When

these are properly set to values from eqs. (4.5) to (4.7), we obtain the following

probabilities for significant events (see appendix C):
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Ph
(
Alice wins

)
=Ph

(
B. wins

)
= xhη

V1
A (1+v), (4.8)

Ph
(
Bob sanctioned

)
= 0, (4.9)

Ph
(
Alice sanctioned

)
= xhη

V2
A (1−v). (4.10)

Note here the importance of maximizing the interference visibility v so that Alice

is not sanctioned while being honest. We continuously run the protocol and record

all detection events regardless of the phase difference between the two arms of the

interferometer. As if Bob was monitoring the phase difference, we post-select the

runs for which the phase spontaneously goes to zero thanks to slow temperature

fluctuations, such that the rate in DV2 (which essentially corresponds to the proba-

bility of honest Alice being sanctioned) is minimized. In this way, we measure at

least 1.5×105 valid iterations of the protocol for a 15-minutes run, making the

Poisson noise negligible. In Fig. 4.6 we give the probabilities of the different events

for several distances.

We notice that the abort probability takes relatively high values, even when

we trivially set the communication distance to L = 0km. This has to do with impor-

tant losses, particularly in mating sleeves connecting the numerous optical fiber

components, the delay line, or in crystalline components such as the PBSs or the

optical switch. Significant improvements could be made, using integrated optics

for instance. Other critical features are the single-photon coupling and SNSPD

efficiencies. Both of these aspects are being actively studied [146–150] and could

see significant improvement in the near future. We also notice that the winning

probabilities of Alice and Bob are indeed very close and the probability of an honest

party to be sanctioned is minimized.

To further illustrate the performance of our protocol, we show the fairness F
and correctness C in Fig. 4.7. Thanks to the appropriate tuning of reflectivities x,

y, and z, as well as low dark count rates and high visibility, we were able to keep

both of these quantities very close to 1, thus approaching the ideal conditions.
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Fig. 4.6: Probability of each outcome of the protocol, measured for different com-
munication distances between Alice and Bob. The abort probability is shown on the
right axis, in magenta. The lines represent the theoretical evolution of probabilities,
calculated via eqs. (4.5) to (4.10), with efficiencies given in Table 4.1. The error
bars are mainly due to error propagation on these efficiencies.

Fig. 4.7: Correctness C and fairness F measured in our experimental implementa-
tion of the protocol with honest parties, for different communication distances. The
dashed line gives the target value for an ideal protocol.
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4.4 Results for Dishonest Players

Now we highlight the cheat sensitivity of our protocol, by implementing attacks

by dishonest parties. We consider one party to be dishonest, the other one being

honest. Firstly, we implement a cheating Bob, and show the dependence of cheat-

sensitivity with losses and communication distance. We then implement a cheating

Alice, and show how the protocol’s cheat sensitivity dissuades her from performing

an optimal cheating strategy.

4.4.1 Dishonest Bob

Bob’s optimal cheating strategy is quite straightforward, and consists in claiming

b = 1 regardless of the actual measurement in detector DB [48]. As Alice is honest

she sets the reflectivity x = xh given in eq. (4.5). When Bob claims b = 1 then Alice’s

switch directs her mode in detector DA so that she can verify whether Bob is being

honest. She then detects a photon with probability:

P(a = 1|Bob cheats) = xhη
s
A, (4.11)

in which case Bob is sanctioned for cheating. Otherwise, Bob wins with probability:

P(a = 0|Bob cheats) = 1−P(a = 1|Bob cheats)

= 1− xhη
s
A.

(4.12)

In this way, Alice’s conditional verification, enabled in our setup by the fast optical

switch, allows for a first kind of cheat sensitivity.

In order to illustrate this aspect, we implement Bob’s optimal cheating strategy

by systematically forcing the switch to send the photon to DA. We measure the

probability of sanctioning Bob for each of the communication distances simulated

in the honest case. As displayed in Fig. 4.8, we show experimentally that the

probability of sanctioning Bob decreases as communication-induced losses increase,

therefore limiting Alice’s cheat sensitivity. This gives a substantial advantage to

Bob when Alice’s arm is particularly lossy. Note that when Bob implements that

strategy, only two events are possible, namely Bob winning or Bob being sanctioned;

Alice can never win except if the sanction is precisely giving Alice the win (see

discussion below).
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Fig. 4.8: Probabilities of Bob winning or being sanctioned, when he is performing
an optimal attack, measured for different communication distances between Alice
and Bob. Only one set of points is shown for the two axes, as these two events are
complementary. The line is plotted from eqs. (4.11) and (4.12), with ηs

A given in
Table 4.1. The error bars are mainly due to error propagation on this efficiency.
The observed deviation from the theory is linked to systematic errors when setting
the reflectivities.

4.4.2 Dishonest Alice

On the other hand, when Bob is honest and Alice is dishonest, her optimal cheating

strategy is less straightforward. In particular, the security proof from [48] does

not derive her optimal strategy but rather derives a security bound valid for all

strategies. Nevertheless, we can illustrate this scenario using suboptimal strategies

by simply tuning the reflectivity x, so that Alice sends the photon to her side with

higher probability. Intuitively, without taking the verification setup into account,

we can naively expect Alice’s winning probability to increase as she increases the

reflectivity x. We experimentally perform the protocol for different values of x, all

of them higher than the honest value (4.5). In that case, we derive the expected

event probabilities (see appendix C for the detailed proof):
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P(Alice wins) =
1
2

(
xηV1

A + (1− x)yhη
V1
B +2v

√
x(1− x)yhη

V1
A η

V1
B

)
, (4.13)

P(Alice sanctioned) =
1
2

(
xηV2

A + (1− x)yhη
V2
B −2v

√
x(1− x)yhη

V2
A η

V2
B

)
, (4.14)

P(Bob wins) = (1− x)(1− yh)ηy
B. (4.15)

In Fig. 4.9, we show the probabilities of significant events. Contrary to our naive

conjecture, we see that thanks to Bob’s verification, and thus cheat sensitivity, Alice

does not have a clear interest in forcing x = 1, as her winning probability peaks

around x ≃ 0.78. Alice’s interest in cheating actually depends on how deterrent

the sanction is. We define a factor δ ≥ 0, which quantifies that deterrability, or

alternatively how harmful the sanction is for a cheating party. From this parameter

we can derive an empirical function that quantifies Alice’s interest in cheating:

IA(δ) =
P(A. wins)−P(B. wins)−δP(A. sanctioned)
P(A. wins)+P(B. wins)+δP(A. sanctioned)

. (4.16)

This function is built such that it can be linked to the fairness (4.3) when taking the

appropriate sanction. Indeed, if for δ ∈ [0,1] we sanction a cheating Alice by giving

the win to Bob with probability δ, then the relation F = 1−|IA(δ)| holds. In this

way, δ = 0 corresponds to a protocol that simply aborts without sanction when Alice

is caught, and δ = 1 gives a protocol that always declares Bob the winner when

Alice is caught. Ultimately IA(δ) can be interpreted as a sort of expectation value

of a cheating Alice, or a comparison between what she can gain by cheating and

what she can lose. In Fig. 4.10 we plot Alice’s cheating interest for different values

of δ and x. If no sanction is taken (δ = 0), we see that her interest in cheating grows

with x. Indeed, even if her winning probability decreases for high values of x, Bob’s

then approaches zero, such that Alice wins with absolute certainty as long as the

protocol does not abort. On the contrary, as the sanction is tightened and the value

of δ increases, Alice has less interest in cheating for a given value of x. Furthermore,

the value of x that maximizes IA also goes down, showing how strengthening the

sanction actually forces Alice to adopt a strategy that leaves a chance for Bob to win.
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Fig. 4.9: Probabilities of different outcomes measured when Alice cheats, setting
different values of x than the honest value. The lines show theoretical predictions,
calculated from eqs. (4.13)-(4.16), with efficiencies given in Table 4.1.

Fig. 4.10: Alice’s cheating interest for different deterrent factors δ. The dashed
black line indicates the points of maximum interest.
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4.4.3 Case of two dishonest parties

Most quantum two-party computation security models do not consider both parties

being dishonest at the same time, since security makes sense from the perspective

of an honest party willing to protect against a malicious adversary. This threat

model is still very general however, as one does not make any assumption on which

of the two parties is dishonest: the protocol is therefore always secure for both an

honest Alice and an honest Bob. In the case of our protocol however, understanding

the double-dishonest scenario is fairly straightforward, and in fact reduces to a

fully classical protocol. Since the protocol is designed in such a way that the same

party (Bob) always declares the outcome of the flip first (while the verification

is then performed by the losing party), Bob cannot win in any other way than

declaring himself as the winner. The best that Alice can do is to then stop Bob from

winning, claiming that she caught him cheating. Thus, the protocol will always

abort, which is a desirable outcome in such a dishonest scenario. The case only

becomes a little more complex when one considers sanctioning dishonest aborts. In

that case, Bob will always be sanctioned for cheating first, even though Alice was

also dishonest.

4.5 Discussion

After refining a previous theoretical proposal for a practical quantum weak coin

flipping protocol [48], we were able to perform the first implementation of this pro-

tocol by generating a heralded single photon, and entangling it effectively with the

vacuum. Thanks to the use of low dark counts SNSPDs, tunable beam splitters and

a fast optical switch, while keeping a high visibility in our fibered interferometer,

we demonstrated a fair and cheat-sensitive protocol. This last property allows to

detect a cheating party with non-negligible probability, which to this day is not

accessible to classical protocols.

Note that in order to sanction a dishonest party with high probability, one could

systematically sanction the winning party, regardless of their honesty. Thus, in

order to display genuine cheat sensitivity, we highlight the primary importance
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of the correctness condition, which ensures an honest party is never sanctioned

for cheating. This forced us to ignore the balancing of the benefit gained by each

party when adopting an optimal cheating strategy, which was previously assessed

as a necessary condition for a weak coin flipping protocol [48]. Still, we propose a

way of restoring this balance, by using the deterrent factor and interest function

introduced in the previous paragraphs.

The balance could indeed arise from choosing different sanctions for Alice and

Bob, associated with different deterrent factors δA and δB, in order to equalize

the corresponding interest functions IA(δA) and IB(δB). A dishonest party who

could dramatically increase their winning probability would therefore take a bigger

risk of being harshly sanctioned when cheating. Interestingly enough, one could

actually set arbitrarily big deterrent factors δ> 1 in order to account for harsher

sanctions. We leave the evaluation of these sanctions, deterrent factors and poten-

tial alternative interest functions as an interesting game theory open question.

From an experimental perspective, we remark that the robustness to losses

in our implementation was illustrated by simulating communication distance

with variable optical attenuators. In a practical implementation of the protocol,

it would be necessary to maintain a high visibility for a longer interferometer,

which could be achieved with active stabilization techniques used in twin-field

quantum key distribution implementations for instance [151, 152]. Furthermore,

optical implementations of quantum WCF with arbitrarily small biases are yet to

be discovered—such implementations would be challenging since they require a

rapidly growing number of rounds of communication between the parties [153].
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5
THEORY OF PROBABILISTIC QUANTUM CHANNELS

Transformations undergone by quantum states are oftentimes described

by unitary operators, assuming the system is isolated. However, such a

formalism cannot describe more general transformations, which may in-

volve interactions with an unknown outside system. For instance, this includes

random noise introduced in a photon’s polarization state during its propagation

in optical fibers. Therefore, quantum channels are more suitable to describe gen-

eral transformations undergone by a quantum system. In general, deterministic

quantum channels are considered, that transform a quantum state with absolute

certainty. The behavior of such channels is extensively detailed in quantum the-

ory books [154], and different distances can be used to define a topology on the

quantum channels’ space [64]. Still, little is known about probabilistic quantum

channels, which only operate with a potentially state-dependent probability. These

channels describe more accurately experimental situations which involve losses

and post-selection. In this chapter, we derive fundamental results related to the

behavior and topology of probabilistic quantum channels. These have concrete ap-

plications in chapter 6, for deriving the security of our protocols for the certification

of quantum communication through an untrusted and lossy quantum channel.
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5.1 Preliminary Notions

We first recall the definition of a quantum channel, which gives the sufficient

properties for a transformation to send a density operator on another operator:

Definition 5.1 (Quantum Channel). A quantum channel E is a convex completely-
positive non-trace-increasing (CPnTI) map, meaning:

1. Convexity: for any sets of probabilities {pk} with
∑

pk = 1 and density operators
{ρk}, we have:

E
[∑

k
pkρk

]
=

∑
k

pkE[ρk], (5.1)

2. Complete Positivity: for any secondary system of Hilbert space S , (E ⊗1S )[K]

is positive for any positive operator K ∈L (H i ⊗S ),

3. Non-Trace Increase: For any operator K ∈L (H i), we have TrE[K]≤TrK .

When E is also trace-preserving (CPTP map), then we have TrE[ρ] = 1 for any state

ρ, so we call E a deterministic or lossless quantum channel. Otherwise, if E is trace-

decreasing (CPTD map), then there exists at least one state ρ such that TrE[ρ]< 1,

we call the map a probabilistic or lossy quantum channel. In that case, the axioms

ensure that for any density operator ρ ∈L (H i⊗S ), we have 0≤Tr(E⊗1S )[ρ])≤ 1.

This way, the channel does not operate with absolute certainty, but returns a state

only with a certain probability t(E |ρ) = Tr(E ⊗1S )[ρ], that we call the channel’s

transmissivity. Then for t(E |ρ) ̸= 0 we define the output state:

ρo = (E ⊗1S )[ρ]/t(E |ρ). (5.2)

When t(E |ρ) = 0, then no state ever outputs the channel when ρ is the input, so we

set ρo =1/dim(Ho ⊗S ) by convention.

Theorem 5.1 (Kraus’ Theorem). The map E : L (H i) −→ L (Ho) is a quantum
channel if and only if there exists a set of operators {K̂ j}, each mapping H i to Ho,
such that

∑
j K̂†

j K̂ j ≤1 and:
E[ρ i] =

∑
j

K̂ jρ iK̂
†
j . (5.3)

E is a deterministic quantum channel when this condition holds and
∑

j K̂†
j K̂ j =1.

When
∑

j K̂†
j K̂ j <1, the channel is probabilistic.
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This theorem gives an operator-sum representation for quantum channels, which

will be most useful in the following. The operators {K̂ j} are called Kraus’ operators
of the channel E , which are not unique in general.

Quantum channels are fundamental objects that describe any transformation

undergone by a quantum state. Still, most studies focus on lossless quantum chan-

nels i.e. CPTP maps, such that any state passes the channel with absolute certainty.

In theory, any situation involving a lossy channel can be described by considering a

CPTP map E[•] = E s[•]⊗|s〉〈s|+E f [•]⊗| f 〉〈 f |, with E s the successful branch and E f

the failure branch, where the state might be considered as lost. However in most

experimental situations, we generally have no access to the state when it goes

through the failure branch, such that we are only interested in states sent through

the success branch. This means we post-select states on the success branch, and

we only consider the probabilistic channel E s[ρ] = 〈s|E[ρ]|s〉. The transmissivity is

then the probability that the channel successfully outputs the input state, so that

t(E s|ρ) = TrE s[ρ] = Tr(E[ρ]1⊗|s〉〈s|). This way, losses are included in the expression

of the channel itself.

Finally we give a few common examples of probabilistic quantum channels. A

trivial probabilistic quantum channel is E = p·1with p ∈]0;1], that models unbiased

losses. In that case the state is simply transmitted without transformation with

probability p, or lost with probability 1− p. On the contrary, a channel with fully-

biased losses would be a polarizing channel P , with P[ρ] = |Φ〉〈Φ|ρ|Φ〉〈Φ| for any

state ρ, with |Φ〉 a pure state. In that case t(P |ρ) = 1 if and only if ρ = |Φ〉〈Φ|. Finally,

probabilistic channels allow us to describe an experiment where one wishes to

measure a POVM {M̂k}1≤k≤d but only has access to the first m elements, with

m < d. In that case we can define the following channel:

E[ρ] =
m∑

i=1
M̂kρM̂†

k ⊗|k〉〈k|. (5.4)

This example is of particular use for Bell state measurements using linear optics,

where it was shown that one can measure only two elements out of four [155].
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5.2 Extended Process Inequality

A well-known result of deterministic quantum channels is the process inequality,

also known as monotonicity of fidelity and trace-distance under application of a

quantum channel:

F(E[ρ],E[σ])≥ F(ρ,σ), (5.5)

D(E[ρ],E[σ])≤ D(ρ,σ), (5.6)

where F is the fidelity and D is the trace-distance, defined in paragraph 2.1.5,

and the inequalities are true for any quantum states ρ,σ and quantum channel E .

These inequalities ensure that no quantum process can increase the probability

of distinguishing two quantum states. We provide an extension of this result to

probabilistic quantum channels:

Theorem 5.2 (Extended Processing Inequality). Let E be probabilistic quan-
tum channel (CPTD). For any input states ρ i and σi, the following inequality
holds for the sine distance C(ρ,σ) =

√
1−F(ρ,σ) , and the trace distance D:

C(ρ i,σi)≥ t ·C(ρo,σo), (5.7)

D(ρ i,σi)≥ t ·D(ρo,σo), (5.8)

where ρo = E[ρ i]/t(E |ρ i) and σo = E[σi]/t(E |σi) are the output states of the
channel, and t = t(E |ρ i) or t = t(E |σi) is the channel’s transmissivity.

Proof. Let us first prove the inequality for the trace distance D. We follow the

guidelines of the demonstration given in [154] for CPTP maps. As ρ i and σi have

a symmetric role, let us consider t(E |ρ i) ≥ t(E |σi), without loss of generality. We

can define two Hermitian positive matrices P and Q with orthogonal support

such that ρ i −σi = P −Q. Therefore, we have Tr(P)−Tr(Q) = Tr(ρ i)−Tr(σi) = 0 so

Tr(P) = Tr(Q). Moreover, |ρ i −σi| = P +Q. This way we get:

D(ρ i,σi) =
1
2

Tr |ρ i −σi|

=
1
2

(
Tr(P)+Tr(Q)

)
= Tr(P).

(5.9)
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There also exists a projector Π such that D(ρo,σo) = Tr
(
Π · (ρo −σo)

)
. Keeping in

mind that E is trace-decreasing, it follows that for any t ≤ t(E |ρ i):

D(ρ i,σi) = Tr(P)

≥Tr(E[P])

≥Tr(Π ·E[P])

≥Tr
(
Π · (E[P]−E[Q])

)
= Tr

(
Π · (E[ρ i]−E[σi])

)
= t(E |ρ i)Tr(Πρo)− t(E |σi)Tr(Πσo)

≥ t(E |ρ i)Tr
(
Π · (ρo −σo)

)
= t(E |ρ i) ·D(ρo,σo)

≥ t ·D(ρo,σo). (5.10)

This way, we have in particular D(ρ i,σi)≥ t ·D(ρo,σo) for t = t(E |ρ i) or t = t(E |σi).

In order to prove the same inequality for the sine distance C, let us recall we

can express that distance between any density operators ρ,σ as a minimization

over their purifications |r〉 and |s〉 respectively:

C(ρ,σ) = min
|r〉,|s〉

√
1−〈r|s〉 = min

|r〉,|s〉
D(|r〉〈r|, |s〉〈s|), (5.11)

where the minimization is taken over all the purifications. This way, we purify

the input and output states in order to extend the inequality from D to C. Let us

choose two pure states |r i〉, |si〉 ∈ H i ⊗P such that C(ρ i,σi) = D(|r i〉〈r i|, |si〉〈si|),
with P a purification space for ρ i and σi. This purifies the input states. Now let us

define the operator Ê on H i ⊗P such that for any pure state |ψ〉 in that space:

Ê|ψ〉 =
∑

j
(K̂ j ⊗1P |ψ〉)⊗|e j〉, (5.12)

where {K̂ j} are Kraus operators for E and {|e j〉} is an orthonormal basis of an

ancillary space A . As E is trace-decreasing, Ê|ψ〉 is not necessarily normalized, but

is a pure state when renormalized. This way, we can define the quantum operation

Ẽ such that for any density operator ρ ∈ L (H i)⊗L (P ), we have Ẽ[ρ] = ÊρÊ†.

This operation conserves the purity of pure states, and verifies TrA (Ẽ[ρ]) = E[ρ]
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for any density operator ρ. This way, Ẽ[|r〉〈r|]/t(E |ρ i), resp. Ẽ[|s〉〈s|]/t(E |σi), is a

purification of E[ρ i]/t(E |ρ i) = ρo, resp. E[σi]/t(E |σi) =σo. This purifies the output

states. Now we only have to apply the extended contractivity of D to the purified

states under the quantum operation Ẽ , for t = t(E |ρ i) or t = t(E |σi):

C(ρ i,σi) = D(|r i〉〈r i|, |si〉〈si|)
≥ t ·D(Ẽ[|r〉〈r|]/t(E |ρ i), Ẽ[|s〉〈s|]/t(E |σi))

≥ t · min
|ro〉,|so〉

D(|ro〉〈ro|, |so〉〈so|) (5.13)

= t ·C(ρ̂o, σ̂o),

where the minimization is taken over all purifications |ro〉, |so〉, of ρo,σo, respec-

tively. This shows the inequality for the sine distance. ■

Note that our theorem is valid also for a trace-preserving quantum operation.

Indeed, when t(E |ρ) = 1 for any state ρ, we get the well known processing inequality

D(ρ,σ)≥ D(E[ρ],E[σ]) or F(ρ,σ)≤ F(E[ρ],E[σ]). This indicates that our inequality

is tight.

5.3 Topology of Quantum Channels

In the following we intend to construct different metrics on probabilistic channels,

and derive important properties of these metrics. We first recall different functions

allowing to evaluate the closeness of deterministic quantum channels. We can

derive some first functions from the Choi-Jamiołkowski isomorphism [156, 157]

between quantum states and channel:

J : E −→ ρE = (E ⊗1)[Φ+], (5.14)

where |Φ+〉 = 1p
d

∑d−1
i=0 |i〉|i〉 is the maximally entangled states on H ⊗2, d = dimH

and H is the Hilbert space E acts upon. This way, we define the Choi-Jamiołkowski

fidelity and trace distance:

F J(E1,E2) = F(ρE1 ,ρE2) = F
(
(E1 ⊗1)[Φ+], (E2 ⊗1)[Φ+]

)
, (5.15)

DJ(E1,E2) = D(ρE1 ,ρE2) = D
(
(E1 ⊗1)[Φ+], (E2 ⊗1)[Φ+]

)
. (5.16)
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One can also define the Choi-Jamiołkowski sine distance CJ =
√

1−F J and angle

AJ = arccos
√
F J . All these functions relate to the average behavior of quantum

channels [64]. In quantum cryptography, we are generally more interested in the

worst case scenario, in which case we favor the diamond fidelity and trace distance:

F⋄(E1,E2) = min
ρ

F
(
(E1 ⊗1)[ρ], (E2 ⊗1)[ρ]

)
, (5.17)

D⋄(E1,E2) = max
ρ

D
(
(E1 ⊗1)[ρ], (E2 ⊗1)[ρ]

)
, (5.18)

where the maximization and minimization are carried out over pure states of H ⊗2.

We also define the diamond sine distance C⋄ =
√

1−F⋄ and angle A⋄ = arccos
√
F⋄ .

The diamond fidelity and distances are generally harder to evaluate than their

Choi-Jamiołkwoski counterparts, which is why we try to link these functions

together, possibly via some equivalence bounds, as attempted in [25]. In this

section, we extend those closeness functions to probabilistic channels, and derive

some important equivalence bounds between them.

5.3.1 Equivalence Classes of Quantum Channels

Let us first consider two channels E1 and E2 that are proportional to each other,

i.e. there exists a factor p ∈ ]0;1] such that E1 = p ·E2 (or E2 = p ·E1 which is a

symmetric case). Then their corresponding transmissivities also display the same

proportionality t(E1|ρ) = p·t(E2|ρ) for any input state ρ. The two channels therefore

output the same states when fed the same input state:

E1[ρ]
t(E1|ρ)

=
p ·E2[ρ]

p · t(E2|ρ)
=

E2[ρ]
t(E2|ρ)

. (5.19)

In numerous practical situations we only consider what happens when the states

are not lost, such that we post-select on the states being detected. This way, two

channels E1 and E2 that are proportional to each other actually describe the same

physical situation, and we consider them as equivalent E1 ≡ E2. This defines math-

ematical equivalence classes of channels that output the same quantum states.

All channels from a same class can be compared, such that if E1 ≡ E2, then either

E1 ≥ E2 or E2 ≥ E1. In the first case, for instance, we have t(E1|ρ) ≥ t(E2|ρ). For

any class of channel, we can find a maximal channel of that class Emax such that

97



CHAPTER 5. THEORY OF PROBABILISTIC QUANTUM CHANNELS

Emax ≥ E for any channel E of the same class. That maximal channel is therefore

the most transmissive channel, and there always exists a state ρ on which the

channel operates with absolute certainty, i.e. t(Emax|ρ) = 1.

In the following, we will use these equivalence classes in order to define proper

closeness functions on probabilistic quantum channels, with convenient physical

interpretations. In addition, these classes also embody the fact that when certifying

a channel E , one can always consider a more transmissive but equivalent channel

E ′, with E ′ ≥ E and E ′ ≡ E . We can then use this more transmissive channel in order

to describe the physical process, which falls down to assuming a certain amount of

losses are known and unbiased.

5.3.2 Closeness of Probabilistic Quantum Channels

We can finally extend the previously defined closeness functions of deterministic

channels to probabilistic channels:

Definition 5.2 (Closeness of Probabilistic Quantum Channels). We define
the Choi-Jamiołkowski fidelity and trace distance between two probabilistic
quantum channels E1 and E2:

F J(E1,E2) = F
(
(E1 ⊗1)[Φ+]/t(E1|Φ+), (E2 ⊗1)[Φ+]/t(E2|Φ+)

)
, (5.20)

DJ(E1,E2) = D
(
(E1 ⊗1)[Φ+]/t(E1|Φ+), (E2 ⊗1)[Φ+]/t(E2|Φ+)

)
, (5.21)

and the associated Choi-Jamiołkowski sine distance CJ =
√

1−F J and angle
AJ = arccos

√
F J . We also define the diamond fidelity and trace distance:

F⋄(E1,E2) = min
ρ

F
(
(E1 ⊗1)[ρ]/t(E1|ρ), (E2 ⊗1)[ρ]/t(E2|ρ)

)
, (5.22)

D⋄(E1,E2) = max
ρ

D
(
(E1 ⊗1)[ρ]/t(E1|ρ), (E2 ⊗1)[ρ]/t(E2|ρ)

)
, (5.23)

where the maximization and minimization are carried out over pure states
of H ⊗2, and the associated diamond sine distance C⋄ =

√
1−F⋄ and angle

A⋄ = arccos
√
F⋄ .
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None of these quantities are strictly speaking distances of probabilistic chan-

nels. Indeed with M any of the Choi-Jamiołkowski or diamond distances, we can

have M(E1,E2) = 0, but still E1 ̸= E2, on the condition that E1 = p ·E2 or E2 = p ·E1

with p > 0. However, we prove that M(E1,E2) = 0 if and only if E1 ≡ E2 and the

channels are equivalent, meaning they are proportional to each other. This shows

the Choi-Jamiołkowski or diamond distances are proper distances for equivalence

classes of probabilistic quantum channels.

Proof. For all the proof, M stands for any of the channel distances A, C or D, the

subscript standing for the Choi-Jamiołkowski or diamond version. If E1 ≡ E2, then

there exists p ∈ ]0;1] such that E1 = p ·E2 or E2 = p ·E1. Then by definition of M⋄
and MJ , we trivially have M⋄(E1,E2) =MJ(E1,E2) = 0. Now let us assume E1 and

E2 are non-zero channels such that MJ(E1,E2) = 0, and let us show that E1 ≡ E2.

First, we show the following lemma, introduced in [25]:

Lemma 5.1. Let |ψ〉 ∈H ⊗2 be a pure 2-qudits state, with dimH = d. Then there
exists an operator K̂ψ = M̂ψÛψ on H , with 0 < M̂ψ ≤ 1 and Ûψ a unitary, such
1⊗ K̂ψ transforms the maximally-entangled state |Φ+〉 = 1p

d

∑d−1
i=0 |i〉|i〉 into |ψ〉 with

probability 1/d, i.e.:

(1⊗ K̂ψ)|Φ+〉 =
1p
d
|ψ〉. (5.24)

To show this lemma we use the Schmidt decomposition of |ψ〉:

|ψ〉 =
d−1∑
i=0

ψi|i〉|i′〉, (5.25)

where {|i〉} and {|i′〉} are two orthonormal bases of H . There exists a unitary

operator Ûψ acting on H such that:

(1⊗Ûψ)|Φ+〉 =
1p
d

d−1∑
i=0

|i〉|i′〉, (5.26)

with d = dimH . We can then define the operator M̂ψ that probabilistically trans-

forms (1⊗Ûψ)|Φ+〉 into |ψ〉:

M̂ψ =
d−1∑
i=0

ψi|i′〉〈i′|. (5.27)
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Now by we defining the operator K̂ψ = M̂ψÛψ, we have:

(1⊗ K̂ψ)|Φ+〉 = 1p
d
|ψ〉, (5.28)

which completes the proof of the lemma.

From here, as we have MJ(E1,E2) = 0, then we have

M
(
(E1 ⊗1)[Φ+]/t(E1|Φ+), (E2 ⊗1)[Φ+]/t(E2|Φ+)

)
= 0, (5.29)

where M = A,C or D, so the states in the distance are equal:

(E1 ⊗1)[Φ+] = t(E1|Φ+)
t(E2|Φ+) · (E2 ⊗1)[Φ+]. (5.30)

For any pure state |ψ〉 ∈ H ⊗2 we define the operator K̂ψ from Lemma 5.1, such

that (1⊗ K̂ψ)|Φ+〉 = 1p
d
|ψ〉. We apply that operator on both sides of equation (5.30):

(1⊗ K̂ψ)(E1 ⊗1)[Φ+](1⊗ K̂†
ψ) = t(E1|Φ+)

t(E2|Φ+) · (1⊗ K̂ψ)(E2 ⊗1)[Φ+](1⊗ K̂†
ψ), (5.31)

which, since 1⊗ K̂ψ commutes with E1 ⊗1 and E2 ⊗1, implies:

(E1 ⊗1)
[
(1⊗ K̂ψ)Φ+(1⊗ K̂†

ψ)
]

= t(E1|Φ+)
t(E2|Φ+) · (E2 ⊗1)

[
(1⊗ K̂ψ)Φ+(1⊗ K̂†

ψ)
]
, (5.32)

or equivalently:

(E1 ⊗1)[ψ] = t(E1|Φ+)
t(E2|Φ+) · (E2 ⊗1)[ψ]. (5.33)

This way, taking either p = t(E1|Φ+)
t(E2|Φ+) or p = t(E2|Φ+)

t(E1|Φ+) we get (E1 ⊗1)[ψ] = p · (E2 ⊗1)[ψ]

or (E2⊗1)[ψ] = p ·(E1⊗1)[ψ] for all state |ψ〉 ∈H ⊗2, with p ∈]0;1]. This gives either

E1 = p ·E2 or E2 = p ·E1, and therefore E1 ≡ E2. This prooves the result for the

Choi-Jamiołkowski distances. For diamond distances, we straightforwardly get the

same result, as we always have M⋄(E1,E2)≥MJ(E1,E2).

The triangular inequality and symmetry of MJ and M⋄ come trivially from the

distance properties of A,C and D. Therefore, MJ and M⋄ define proper distances

on classes of non-zero probabilistic channels. ■

Note that from the sine or angle channel distances, we also deduce that the

F J(E1,E2) =F⋄(E1,E2) = 1 if and only if E1 ≡ E2.
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5.3.3 Comparison of Quantum Channels Distances

Choi-Jamiołkowski and diamond metrics underline different properties of quantum

channels. As pointed out in [64], the Choi-Jamiołkowki metrics are linked to aver-

age probability of distinguishing two quantum channels when sending unknown

states, while the diamond metrics are linked to the maximum probability of dis-

tinguishing these channels. Here we show the equivalence of Choi-Jamiołkowski

metrics and their diamond counterpart, which allows to get some information

on the channel’s behavior in the worst-case scenario, based on the sole knowl-

edge of its action on a maximally-entangled state. We mention that an attempt

to show such bounds was done in [25], linking the diamond trace distance with

the Choi-Jamiołkowski sine distance. However, it does not give a direct bound on

the diamond fidelity, which is more suitable in cryptography in order to evaluate a

protocol’s success probability.

Theorem 5.3 (Channels’ Metrics Equivalence). For any probabilistic channel
E1, and any E2 that is proportional to a deterministic channel (CPTP map),
both acting on L (H ), the following inequalities hold:

CJ(E1,E2)≤ C⋄(E1,E2)≤ dimH×CJ(E1,E2), (5.34)

DJ(E1,E2)≤D⋄(E1,E2)≤ dimH×DJ(E1,E2). (5.35)

Proof. The left-side inequalities are straightforwardly following from the defini-

tion of the distances. The right-side inequalities come from the following lemma:

Lemma 5.2. For any pure state ρ ∈L (H ⊗2) and any pair of probabilistic
quantum channels E1 and E2 both acting on L (H ) we have:

x ·D(ρ1,ρ2)≤ dimH×DJ(E1,E2), (5.36)

x ·C(ρ1,ρ2)≤ dimH×CJ(E1,E2), (5.37)

for any x ≤max
[ t(E1|ρ)

t(E1|Φ+) ,
t(E2|ρ)

t(E2|Φ+)

]
, and with ρk = (Ek ⊗1)[ρ]/t(Ek|ρ).
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Let us proove the lemma. We consider a pure state ρ = |ψ〉〈ψ| with |ψ〉 ∈H ⊗2,

and two probabilistic channels E1 and E2. We define the corresponding transmis-

sivities t(Ek|ρ) and output states ρk = (Ek ⊗1)[ρ]/t(Ek|ρ) for k = 1 and 2. Using the

operator K̂ψ defined in Lemma 5.1, the map O defined as O[ρ] = K̂ψρK̂†
ψ is a valid

quantum operation on L (H ). Furthermore, 1⊗O transforms |Φ+〉 into |ψ〉 with

probability 1/dimH , and commutes with the channels E1⊗1 and E2⊗1, such that

for k = 1 or 2 and d = dimH :

(1⊗O)[(Ek ⊗1)[Φ+] /t(Ek|Φ+)] = 1
d·t(Ek|Φ+) (Ek ⊗1)[ρ] (5.38)

= t(Ek|ρ)
d·t(Ek|Φ+)ρk. (5.39)

This way, 1⊗O transforms the state (Ek ⊗1)[Φ+]/t(Ek|Φ+) into ρk, with probability
t(Ek|ρ)

d·t(Ek|Φ+) . This way, using Lemma 5.2 for extented metrics monotonicity to the

quantum operation O⊗1, we deduce the following inequality:

M
(
(E1 ⊗1)[Φ+]/t(E1|Φ+), (E2 ⊗1)[Φ+]/t(E2|Φ+)

)≥ t ·M(ρ1,ρ2), (5.40)

for any t ≤max
[ t(E1|ρ)

d·t(E1|Φ+) ,
t(E2|ρ)

d·t(E2|Φ+)

]
, and M = C,D. The left term is MJ(E1,E2) for

M = C,D, and by taking x = t ·d ≤ max
[ t(E1|ρ)

t(E1|Φ+) ,
t(E2|ρ)

t(E2|Φ+)

]
we get inequalities (5.36)

and (5.37), which shows the lemma.

If one of the channels, E2 for instance, is proportional to a trace-preserving

channel, then t(E2|ρ) = t(E2|Φ+) for any ρ. This way, we can take x = 1, so that the

following inequality holds for any pure state ρ ∈L (H ⊗2):

M(ρ1,ρ2)≤ d ·MJ(E1,E2). (5.41)

As it holds for any pure state ρ, we showed that M⋄(E1,E2)≤ d×MJ(E1,E2), which

shows the theorem. ■

The lemma we just showed allows us to bound the deviation of any output

states, with the sole knowledge of the operations actions on a maximally-entangled

state, even if both channels are probabilistic. Yet in a lot of cases, such as the

protocol presented in chapter 6, E2 is a reference quantum channel E0 that is

deterministic, and we can use the special case M⋄(E ,E0)≤ dimH×MJ(E ,E0) from

the theorem, which does not require to evaluate any transmissivity.
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5.4 Discussion

In this chapter we introduced some novel results on CPTD maps, which model

quantum channels which only operate with a certain probability. This includes

an extension of the process inequality to probabilistic channels, the definition of

classes of channels which perform the same operation with different probabilities,

the construction of different distances on these classes, and an equivalence of Choi-

Jamiołkowski and diamond distances. The latter result is also significant for CPTP

maps, as it shows the behavior of a quantum channel on any quantum state can be

evaluated from the behavior of that channel on one part of a maximally-entangled

pair of qudits. This gives a preliminary idea of the protocol we build in the next

chapter, in which we certify the transmission of an unmeasured qubit through

a quantum channel by testing the behaviour of that channel with a maximally-

entangled state. On a more general note, these results may encourage future

studies focusing on lossy quantum channels, which model experimental situations

involving post-selection with more accuracy than deterministic channels.
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6
CERTIFIED QUANTUM TRANSMISSION

VIA BELL THEOREM

‘The gardeners dig a hole, drop in a seed and
water it. They know what kind of seed it is,
but as the plant comes up and they water
it, they don’t know how many branches it’s
going to have, they find out as it grows.’

— George R.R. Martin.

The potential future development of a quantum network would rely on

a collection of elementary building-blocks, allowing to generate, process,

transmit and measure quantum information. In the context of potential

malicious attacks and noisy devices, the ability to reliably certify the quality of

these different building-blocks in a scalable way is therefore a fundamental step to

developing world-wide quantum technologies. While methods for certifying quan-

tum states proliferate in the literature [21, 22, 158], similar methods applicable to

quantum channels are much scarcer.

In a cryptographic context, device-independent (DI) certification techniques are

particularly reliable, as all used devices are considered to be completely uncharac-

terized black-boxes [159, 160]. Such certification procedures are highly resilient to

attacks relying on corrupting the inner functioning of quantum devices. A neces-

sary ingredient for DI certification of a quantum channel is channel self-testing

procedure [161]. An important theoretical contribution to self-testing of quantum

channels was recently provided by P. Sekatski et al. [25], allowing the certification

of a lossless quantum channel (CPTP map) even with a certain amount of noise.
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The first obstacle towards making Sekatski’s result practically applicable is the

fact that the authors consider CPTP maps, which only include lossless determin-

istic operations. Next, as is the case for most self-testing results, its immediate

application to certification is possible only in the case of infinite number of identical

and independent rounds, that is to say it requires the IID assumption. In real-

world conditions, channels are lossy and probabilistic, might evolve through time,

or can even be controlled by a malicious party who could, for instance, perform

powerful quantum memory-based attacks. Therefore, a practical certification proce-

dure should consider general trace-decreasing maps and relax the IID assumption.

In addition, all channel-certification studies so far have focused on verifying the

ability of a tested channel to preserve entanglement [25, 29]. Still, a practical

procedure should not only inform the players about the ability of a previously used

channel to transmit a maximally-entangled state, but it should also certify the

transmission of an arbitrary state through an unmeasured channel.

In the following, we provide a practical method to certify the transmission of a

single qubit through a probabilistic channel, in a semi-device independent scenario,

where the sender trusts their devices but the receiver does not. Thanks to the new

results on lossy quantum channels presented in chapter 5, we deduce a bound

on the diamond fidelity between the untrusted channel and a reference unitary

channel using the sole knowledge of the fidelity of a probe state to a maximally-

entangled state, before and after passing through the channel. From this bound,

we build a protocol that allows to certify with high confidence the fidelity between

an unknown input state and the corresponding output state, received from an

untested quantum channel. This protocol relies on the self-testing through steering

inequalities in a one-sided device-independent and non-IID scenario, building upon

the developments reported in [26, 162]. Finally, we perform a proof-of-principle

experiment, by preparing photon-pairs displaying close-to-maximum entanglement

in polarization and witnessing steering after a lossy and/or malicious quantum

channels. This way we show that such protocol could be used with current technol-

ogy, in order to certify long-distance fibered quantum communications, quantum

teleportation or quantum memories.
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6.1 Genesis: Authenticated Teleportation

The original idea of this project came as an attempt to construct a practical protocol

for semi device-independent authenticated teleportation, inspired from the theo-

retical work of A. Unnikrishnan and D. Markham [26]. The original protocol for

quantum teleportation, summarized in Fig. 6.1, was first proposed by C.H. Bennett

and G. Brassard [58], and allows a player Alice to send a qubit to Bob without

sending the physical system. Let us call ρ i ∈L (H i ⊗S ) the total input state, with

Alice’s qubit being encoded in Hilbert space H i, and S is the Hilbert space of

a potential secondary system with which the qubit is entangled. Alice and Bob

share a maximally-entangled state |Ψ−〉 = |0A1B〉−|1A0B〉p
2

∈HA ⊗HB. Alice performs

a Bell state measurement (BSM), jointly on the input qubit from H i and her part

of the maximally-entangled pair from HA. This BSM consists of 4 projectors on

maximally-entangled states {|Φ±〉, |Ψ±〉}. Alice then sends the measurement result

to Bob, who applies a unitary operation on his part of the maximally-entangled

state depending on that result, and this way retrieve the quantum state ρ i between

L (S ) and L (HB).

The authenticated teleportation protocol from [26] proposes to certify the maxi-

mally entangled state shared by Alice and Bob, in order to bound the transmission

fidelity between the input state Alice sends and the ouput state Bob receives. To

derive this result however, the authors assume the BSM is a full POVM made

of 4 perfect projectors on the Bell states. This assumption is not faithful to ex-

perimental linear-optics-based BSM, in which the projectors are noisy, and we

only have access to two elements of the POVM, |Φ±〉 or |Ψ±〉 [163]. This way, in ad-

dition to the maximally-entangled state, Alice and Bob also have to certify the BSM.

We discern two possible approaches to tackle this problem, both based on the

consideration of a probabilistic quantum channel. The first approach consists in

separating the teleportation protocol into two blocks, the first one consisting of the

maximally-entangled state preparation, the second of the operations, including

the partial BSM, classical communications and unitary operations. As displayed

in Fig. 6.1a, we can express the probabilistic channel E including all operations
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performed on the input state and the maximally-entangled state, such that the

output state of the protocol is (1S ⊗E)[ρ i ⊗Ψ−]. This way, one could certify the

maximally-entangled state following the method from [26], and the BSM thanks

to elements provided in [23, 24]. In the second approach, we consider the telepor-

tation protocol consists of feeding the input state ρ i into a probabilistic channel

1S ⊗E , which includes the BSM and the state preparation, and other operations

(see Fig. 6.1b). Therefore the channel is a black box which is expected to perform

the identity operation. Some elements to certify such a black box are provided

by P. Sekatski et al. [25], though more developments are required to apply such

results to a probabilistic quantum channel. In this work we focus on that second

approach, as it can also be used to certify any untrusted quantum device that is

expected to perform the identity operation, such as quantum memories or any

quantum transmission link. Still, we expect further investigations may show the

first approach provides some advantage in the specific case of quantum teleporta-

tion.

(a) First approach to practical authen-
ticated teleportation. The maximally-
entangled state is certified separately from
the operations, which are included in the
probabilistic quantum channel E .

(b) Second approach to practical authenti-
cated teleportation. The quantum channel
E is a black box including the maximally-
entangled state and the operations, that we
certify all-together.

Fig. 6.1: Sketch of the quantum teleportation protocol. Alice preforms a BSM on
her part of a maximally-entangled pair, together with the input state. Depending
on the result, Bob applies unitaries on his system to retrieve Alice’s input state.
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6.2 Prerequisite: Self-Testing of Quantum States

Our method for self-testing quantum channels is built on the self-testing of quan-

tum states. This procedure, first proposed by D. Mayers and A. Yao [161, 164], relies

on Bell theorem (see paragraph 2.1.4) to certify a maximally-entangled state [57],

by making very few assumptions on the underlying quantum systems. In the most

common setting, Alice and Bob measure multiple copies of a bipartite system,

and under the IID assumption (independent, identically distributed rounds of

experiment), they evaluate the probabilities P(a,b|x, y) of measuring the outcome

a,b when adopting different measurement parameters x, y respectively. Then they

can test a Bell inequality, which consists of a function I of these probabilities and

a value β such that

I
(
P(a,b|x, y)

)≤β, (6.1)

if the state is not entangled, and I >β for some entangled states. This way, such

inequalities can be used by Alice and Bob in order to certify entanglement. In-

terestingly enough, such a certification does not require any assumption on the

physical system being measured, or on the internal functioning of the measurement

apparatus, meaning it is device-independent.

6.2.1 Self-Testing via CHSH Inequalities

The specific case of CHSH inequalities, defined in equation (2.21), is one of the

most popular example of such inequalities. In this scenario, Alice and Bob wish to

self-test the maximally-entangled state |Φ+〉= |00〉+|11〉p
2

∈HA′ ⊗HB′ , in a physical

bipartite quantum system of state |ψAB〉 ∈HA ⊗HB. We consider a pure state, as

Hilbert spaces HA and HB can be taken of arbitrary high dimensions. Alice and

Bob each measure the system with two possible local POVMs {M̂a|x}a=0,1 for x = 0,1

and {N̂b|y}b=0,1 for y = 0,1 respectively. We define the corresponding observables:

Âx = M̂0|x − M̂1|x, (6.2)

B̂y = N̂0|y − N̂1|y. (6.3)
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By measuring the correlations of these observables, if Alice and Bob measure a

maximum violation of CHSH inequality

I = 〈Â0B̂0〉+〈Â1B̂0〉+〈Â1B̂1〉−〈Â0B̂1〉 = 2
p

2 , (6.4)

it was shown [165–168] that a maximally-entangled state can be extracted from

their system. More precisely, there exist two local isometries ΓA : HA −→HA⊗HA′

and ΓB : HB −→HB ⊗HB′ , with HA′ and HB′ two qubit spaces, such that:

(ΓA ⊗ΓB)[|ψAB〉] = |Φ+〉⊗ |ψtrash〉, (6.5)

where |ψtrash〉 ∈HA ⊗HB corresponds to extra degrees of freedom in the system,

that do not contribute to the entangled state. This result alone is not applicable in

practice, as only ϵ−close to maximum violation of Bell inequality can be measured

in experiments, in which noise limits the value I = 2
p

2 −ϵ. A robust self-testing

method allows to derive a function f (ϵ) such that when we extract the state with

isometries ΓA,ΓB, we can bound the fidelity to |Φ+〉:

F
(
TrA,B(ΓA ⊗ΓB)[|ψAB〉], |Φ+〉

)≥ f (ϵ). (6.6)

Many examples of such functions f (ϵ) were derived in the last decade [169–173],

and finding one with the best convergence still remains an open question. In this

work, we mostly use the result from A. Unnikrishnan and D. Markham [26]:

F
(
TrA,B(ΓA ⊗ΓB)[|ψAB〉], |Φ+〉

)≥ 1−α ·ϵ with α = 1.19. (6.7)

Most importantly, the authors extend this result to a finite number of measurement

rounds in a non-IID setting, which is particularly applicable in a cryptographic

setting. This result is further detailed in paragraph 6.4 and appendix D.

6.2.2 Self-Testing via EPR-Steering

Recently the one-sided device-independent (1sDI) paradigm has been pointed out

as an interesting compromise to derive more practical bounds with a reasonable

amount of assumptions. In this setting, Bob still does not make any assumption on

his part of the quantum system nor his measurement apparatus. Alice, however,
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measures a qubit, such that HA = HA′ , and she trusts her measurement apparatus

so that Â0 = X̂ and Â1 = Ẑ. In this case, self-testing can be derived from EPR-

steering [174], in the form of a violation of the following inequality [175]:

I = |〈Â0B̂0〉+〈Â1B̂1〉| ≤
p

2 . (6.8)

There, a maximum violation I = 2 implies a maximally-entangled state |Φ+〉 can

be extracted from the system, by applying an isometry on Bob’s side. Once again,

A. Unnikrishnan and D. Markham provide a robust self-testing bound, when the

players witness an ϵ-close to maximum violation I = 2−ϵ [26]:

F
(
TrB(1⊗ΓB)[|ψAB〉], |Φ+〉

)≥ 1−α ·ϵ with α = 1.26, (6.9)

which can also extended to a finite non-IID setting. In this work we experimentally

demonstrate a protocol in this 1sDI scenario. It is indeed more practical to achieve

than a full-DI version, all the while being suitable for real-world situations in

which a powerful server (Alice) wishes to provide a weaker receiver (Bob) with

quantum information. We still provide full-DI recipes whenever possible.

6.2.3 On the Isometries Formalism

A counter-intuitive aspect of the self-testing procedure is the fact that states are not

certified in absolute terms, but only up to local isometries ΓA,ΓB. This questions

the validity of such a method, as one might require a more absolute definition

of state. To understand how this method is still valid, we first highlight that the

Hilbert space’s structure, i.e. the scalar product and orthogonality, is conserved

under application of isometries. In addition, quantum states are always defined

from a certain reference in experiments. Typically, the horizontal and vertical

polarizations of photons, defined in the laboratory’s reference frame, may have

different definitions in other reference frames (they even rotate though time in the

geocentric reference frame). This way, quantum states are generally not defined in

absolute terms, but relatively to the experimenter’s perception, in the form of the

measurement apparatus’ calibration. In proofs of self-testing results, isometries

are generally built from Alice’s and Bob’s measurement operators {M̂a|x}a=0,1 and

{N̂b|y}b=0,1 (take for instance the Swap isometry, detailed in [26, 176–178]), and
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therefore encompass this reference frame. Instead of claiming states are certified

"up to isometries", one could more intuitively claim a certification "relatively to

the experimenter’s apparatus". This way, in order to use certified states in later

experiments, one would have to calibrate their own apparatus on the certification

apparatus, which may involve self-testing Alice’s and Bob’s measurement operators

together with the state. In particular, the self-testing results we use in this thesis

were proposed in [26], which also includes such device-independent certification of

the measurement apparatuses.

6.3 The Problem

In our framework, a player Alice wishes to send one part of a 2-qubits state

ρ i ∈L (H ⊗2
i ) to Bob, through a local unitary quantum channel E0. This channel

takes any state ρ i ∈H i to another qubit state ρo = (E0⊗1)[ρ i] = (Û⊗1)ρ i(Û†⊗1) in

L (Ho ⊗H i), where Û is a local unitary operator and 1 the identity. Such channel

models perfect unitary gates in quantum computer, quantum transmission links

(carried on through quantum teleportation or a simple optical fiber) or quantum

memories. Without loss of generality, we take Û = 1 and (E0 ⊗1)[ρ i] = ρ i, as this

case encompasses all unitaries in a device-independent scenario [25]. This channel

is called the reference channel.

In real world situations, the channel would be lossy, noisy, or even operated

by a malicious party Eve. Also, Alice and Bob normally do not have access to

isolated qubit spaces, but operate with physical systems such as photons or atoms,

displaying other degrees of freedom. This way, without further assumptions, Alice

and Bob have access to a CPTD map E , i.e. a probabilistic channel, that sends

density operators from an input Hilbert space HA1 to positive operators of trace

smaller than 1 on an output Hilbert space HB. This channel is called the physical
channel. Alice possesses a bipartite state Φi shared between HA1 and a secondary

Hilbert space HA2 , that we call the probe input state. She can send the first part of

Φi through the channel E , resulting in the probe output state Φo, shared with Bob:

Φo = (E ⊗1)[Φi]/t(E |Φi), (6.10)
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where t(E |Φi) = Tr(E⊗1)[Φi] is the channel’s transmissivity (see chapter 5 for more

details on that notion). Finally, the players can measure states with 2-outcomes

(POVMs) {M̂P
l|q}l=0,1 where P = A1, A2 or B indicating the Hilbert space on which

the measurement is acting, and q indicates which POVM is measured.

Fig. 6.2: Sketch of the problem. Alice sends a qubit state ρ i to Bob through an
untrusted quantum channel E (green path). Alice can send half of a close-to-
maximally entangled probe state Φi through E (blue path). Alice and Bob can then
measure the output state Φo, and try to deduce the probability of applying E0 to ρ i.

In an adversarial scenario, Alice and Bob wish to draw device-independent

conclusions, making as few assumptions as possible on the states or the measure-

ments. In particular, physical Hilbert spaces HA1 , HA2 and HB are of arbitrary big

dimensions, including all degrees of freedom of the physical systems and possible

entanglement with the rest of the universe. This way players only certify objects

up to local isometries, mapping the physical spaces onto the qubit spaces H i and

Ho. For this task, we wish to derive a self-testing method for quantum channels,

similarly to quantum states, described in the last paragraph. A first method was

provided by P. Sekatski et al. [25], to device-independently test the equivalence

between the physical deterministic channel E⊗1 and the reference operation E0⊗1,

up to local isometries. In our case, a trace-decreasing physical channel only returns

a state with a certain probability, such that it can only be compared to the reference

channel when post-selecting on rounds when the transmission actually happened,

i.e. by using the equivalence classes of lossy channels described in chapter 5. This

way, we provide a new definition for the self-testing of a lossy channel:
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Definition 6.1 (Self-testing of a CPTD map). Let E : L (HA1)−→L (HB) be a
physical lossy channel, and E0 : L (H i)−→L (Ho) a reference channel. With
two local isometries Γi : HA1⊗H i −→HA1⊗H ext

i and Γo : HB −→Ho ⊗H ext
o ,

and an ancillary state ρA1 ∈L (HA1), we can define an extracted channel:

E i,o : ρ ∈L(Hi)−→Trext
(
(Γo ◦E ◦Γi)[ρA1 ⊗ρ ]

)
(6.11)

where the trace is taken over H ext
i and H ext

o . The self-testing equivalence
between the physical channel E and the reference channel E0 is established if:

E i,o ≡ E0. (6.12)

Note the equivalence in equation (6.12) is defined in chapter 5, such that

E i,o ≡ E0 when there exists t ∈]0;1] giving E i,o = tE0. Physically speaking, these two

channels output the same states, on the condition those were not lost. Also, unlike

in self-testing of quantum states, two isometries are required in order to extract

a qubit-to-qubit channel E i,o from a physical channel E , as a quantum channel is

associated to two Hilbert spaces (one in input and the other in output). This way,

the input isometry brings a qubit input state to a physical state that can be fed

into the physical channel, while the output isometry extracts a qubit state from

the physical channel’s output state.

In experiments, we can never perfectly certify E , therefore we quantify the

ability of this probabilistic channel to implement the deterministic channel E0

by using channels closeness functions defined in chapter 5. In a cryptographic

scenario, we wish to bound that closeness in the worst case scenario, so we favor

the diamond fidelity:

FΓi,o
⋄ (E ,E0) =F⋄(E i,o,E0) = min

ρ
F

(
(E i,o ⊗1)[ρ]/t(E i,o|ρ), (E0 ⊗1)[ρ]

)
, (6.13)

where the minimization is carried out over all pure states of L (H ⊗2). The dia-

mond fidelity is particularly useful here, as it can be interpreted as the minimum

probability that E ⊗1 successfully implements the operation E0 ⊗1 on any state,

on the condition that a state successfully passes through the channel. The main

goal of our protocol is therefore to certify that fidelity.
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6.4 Theoretical Protocols

We now propose different protocols that can be used in order to certify the trans-

mission of a qubit through an untrusted quantum channel. These protocols assume

different levels of trust on the probe states and Alice’s measurement apparatus.

The first one assumes Alice can certify her source and measurement system prior

to the protocol, which are therefore trusted. The second one assumes the source and

measurement appartus are untrusted, though we still consider the probe states

to follow an IID statistics. In both protocols, the channel is completely untrusted,

which can possibly evolve through time depending on previous rounds of experi-

ments, and may display state-dependent losses. Bob measurement apparatus is

also untrusted in both protocols.

6.4.1 Certification Bound and General Recipe

The general protocol recipe comes straight from bounding the channel fidelity with

specific states fidelity, that can be evaluated via self-testing. For that purpose, let

us consider the situation where Alice can certify the probe input state Φi up to

two local isometries ΓA1/A2 : HA1/A2 −→HA1/A2 ⊗H i with the following fidelity to

a maximally-entangled state |Φ+〉:

F i = F
(
(ΛA1 ⊗ΛA2)[Φi],Φ+

)
, (6.14)

where Λ j[·] = Tr j(Γ j[·]). We also assume that Alice and Bob are able to certify the

probe output state Φo up to local isometries ΓA2 and ΓB : HB −→ HB ⊗Ho with

the following fidelity:

Fo = F
(
(ΛB ⊗ΛA2)[(E ⊗1)[Φi]]/t(E |Φi)(E0 ⊗1)[Φ+]

)
. (6.15)

We then show in appendix D that there exist isometries Γi,Γo such that we can

lower bound the diamond fidelity on the corresponding extracted channel E i,o:

F⋄(E i,o,E0)≥ 1−4sin2
(
arcsin

(
C i/t(E |Φi)

)+arcsinCo
)
, (6.16)

where C j =
p

1−F j are sine distances associated to their corresponding fidelities.

This bound generalizes what is shown in [25] to probabilistic channels. It also
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uses the diamond fidelity F⋄, which informs on the behavior of the channel on

any state, instead of the Choi-Jamiołkowski fidelity F J , which only informs on the

behavior of the channel on a maximally-entangled state (see chapter 5). Note that

all isometries involved in the certification and summarized in Fig. 6.3.

Fig. 6.3: Isometries’ involved in the certification, acting on the probe state Φi (a)
and corresponding output state Φo (b), and the channel E (c). Γi encodes a qubit
state onto a physical state that can be fed into E . Other isometries extract a qubit
state from a physical system. Extra degrees of freedom are discarded. Together, Γi
and Γo extract a qubit-to-qubit channel from a physical channel.

From bound (6.16) we deduce the recipe for bounding the fidelity of a quantum

channel to a reference channel. Alice first evaluates the fidelity F i of the probe

input state to a Bell state, then sends one part of the probe through the channel,

and finally evaluates the fidelity Fo of the corresponding output state to the same

Bell state. Such procedure is possible using recent self-testing results [26, 162],

but requires a very large number of experimental rounds in the absence of IID

assumption, as both input and output probe states require certification. This

number can be significantly decreased by making the IID assumption on the probe

input state, or by leaving its full characterization to Alice’s responsibility. Still, as

we make no IID assumption on the channel, optimal security cannot be reached

by first testing that channel, and only then using it to send the input state, as

Eve may change the channel’s expression in the last moment. Our protocol works

around this problem by allowing Alice to hide the state ρ i among a large number of
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probe states, at a random position r unknown to Eve. Then we show in appendix D

that bound (6.16) holds for the average channel Ē i,o over the whole protocol:

Ē =
1

N +1

N+1∑
k=1

Ek|[k−1], (6.17)

where Ek|[k−1] is the channel that operates on the k-th state sent by Alice through

the protocol ([k−1] = k−1,k−2, ...,1). In particular, Alice sends the input state

ρ i through channel E r|[r−1]. Then the transmission fidelity between the expected

output state ρ̄o = (Ē i,o ⊗1)[ρ i]/t(Ē |ρ i) and the input state ρ i is certified:

F(ρ̄o,ρ i)≥F⋄(Ē i,o,1). (6.18)

As long as r stays hidden and random, any measurement performed on the output

state later after the protocol would follow the same statistics as if it was performed

on ρ̄o. Therefore we can use this expected state to describe accurately any ex-

periment that would be carried out after the protocol. The general recipe for the

protocol is summarized in Fig. 6.4, although details depend on the amount of trust

put in the states and player’s apparatuses, and are given in the next paragraphs.

Fig. 6.4: Summary of the protocol for certified quantum transmission: Alice sends
N copies of a probe state Φi, as well as ρ i at a random secret position r, through an
untrusted channel E that varies with time. If ρ i was lost, then the protocol aborts.
Otherwise, Bob stores ρ i, and tests the violation of steering or CHSH inequalities
with Alice with the output probe states. They deduce the average channel quality
over the protocol, which gives the probability that the state ρ i was accurately
transmitted to Bob, up to isometries.
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6.4.2 Protocol with One-Sided Trust

We first focus on a 1sDI scenario, where Alice’s measurement setup is trusted, so

her Hilbert spaces are qubit spaces HA1 = HA2 = H i, her isometries are trivial

Γi =ΓA1 =ΓA2 =1, and she performs measurements in the Pauli X̂ and Ẑ bases:

Â0 = M̂A2
0|0 − M̂A2

1|0 = Ẑ, (6.19)

Â1 = M̂A2
0|1 − M̂A2

1|1 = X̂ . (6.20)

Similarly, the probe state Φi is trusted and characterized. This fits a variety of

scenarios where Alice is a powerful server, trying to provide to a weaker client,

Bob, whose measurement apparatus is still untrusted. This way Bob’s observables

B̂0 = M̂B
0|0 − M̂B

1|0, (6.21)

B̂1 = M̂B
0|1 − M̂B

1|1, (6.22)

are a priori unknown. Alice and Bob bound Fo from eq. (6.15) using self-testing

via steering [26, 174] as detailed in paragraph 6.2.2, and certify the transmission

fidelity from bound (6.16). We give the detailed recipe for the certification protocol

in protocol box 6.1.

Note that the purpose of step 1.(b) is simply to inform Alice of the minimum

amount of states she has to prepare in order to ensure security. If the channel’s

operator Eve overstates the tranmissivity t, then Alice will not prepare enough

probe states, which in turn makes the protocol abort in step 6. On the contrary if

Eve understates t, then Alice is going to prepare more probe states than she and

Bob require, which will in fact improve the certification confidence.
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Protocol 6.1: Certified quantum transmission via Bell theorem, 1sDI scenario.

1. Prior to the protocol:

(a) Alice characterizes the state Φi emitted by her source and evaluates

the quantity F i. She also receives or prepares the state ρ i, possibly

shared with an outside party.

(b) Eve announces the minimum transmissivity t of the quantum channel

E for any quantum state.

2. Alice and Bob agree on parameters ϵ,K , depending on their requirements

and experimental limitations.

3. Alice prepares N = ⌈K /t⌉ copies of the probe state Φi.

4. Alice successively sends each state through E , including ρ i in a random

r-th position, with r ≤ N +1.

5. Bob establishes the set SP of states which successfully passed through E ,

and broadcasts it publicly.

6. If r ∉SP or |S/{r}| < K , Alice aborts the protocol. Otherwise, Alice sends r
to Bob.

7. Alice separates S/{r} into two random sets S0 and S1.

8. For each k ∈Sq, q = 0,1:

(a) Alice measures observable Âq on her part of the k-th state and gets

outcome ak.

(b) She tells Bob to measure observable B̂q on his part of the k-th state

and he gets outcome bk.

(c) Alice and Bob calculate their correlation for round k as ck = akbk.

9. Alice and Bob deduce the average value of I = |〈Â0B̂0〉+〈Â1B̂1〉| over all

rounds.

10. If I ≥ 2−ϵ, then Alice successfully sent the state ρo = E[ρ i]/t(E |ρ i) to Bob,

with a certified average fidelity to ρ i, up to isometry.
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Protocol Security. The security of the protocol is in principle ensured by the fact

that the position r of state ρ i stays hidden to Eve. Thus as we mention in paragraph

6.4.1, we derive the minimum transmission fidelity between the expected output

state ρ̄o and ρ i by applying bound (6.16) to the average channel Ē . In particular,

the output probe state’s fidelity to a maximally-entangled state now reads:

Fo = F
(
(ΛB ⊗ΛA2)[(E ⊗1)[Φi]]/t(Ē |Φi), (E0 ⊗1)[Φ+]

)
. (6.23)

Using the results from [26] for self-testing through steering, in a non-IID and 1sDI

setting, applied to the output probe state, we show in appendix D that for any x > 0,

the distance Co =
p

1−Fo can be bounded by two terms, with confidence of at least

cx = (1− e−x) · (1−2e−x)2:

arcsinCo ≤ arcsin
√
α fx(ϵ,K) +Δx(ηs,K), (6.24)

where ηs = K /N is the measured transmission ratio, Δx(ηs,K) is an error function

that goes to 0 for high values of K , α fx gives self-testing bound on the output state,

in a finite non-IID regime, with α = 1.26 and

fx(ϵ,K) = 8
√

x
K

+ ϵ

2
+ ϵ+8/K

2+1/K
−−−−−→
K→+∞

ϵ, (6.25)

such that we get bound (6.9) in the asymptotic regime. Note that the error function

is due to both the non-IID regime and the lack of information on channels that do

not output any state. A similar error occurs when we evaluate the transmissivity

as the measured transmission ratio:

t(Ē |Φi)≳ τx(ηs,K), (6.26)

where τx(ηs,K)≃ ηs for high values of K . This way, the actual bound on the fidelity

between the input and output state reads, with confidence cx

F(ρ̄o,ρ i)≥ 1−4 ·sin2
(
arcsin

(
C i/τx

)+arcsin
√
α fx(ϵ,K) +Δx

)
, (6.27)

which includes additive error terms compared to bound (6.16). Note that the ex-

pressions and proofs for all the mentioned functions are detailed in appendix D.
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6.4.3 Protocol with No Trust

While the previous protocol has high relevance when devices in Alice’s laboratory

can be trusted, a completely adversarial scenario would demand a fully device-

independent protocol. Theoretically, such a protocol can be formulated, but would

be very resource-demanding and therefore difficult to perform. It could be built

from protocol 6.1, by certifying the fidelity F i in a device-independent manner,

which could be done via self-testing of the violation the CHSH inequality. In the ab-

sence of IID assumption, every single probe state Alice sends through the channel

requires certification, by measuring an additional number M of copies of the probe

state. All in all, assuming M is of the same order as N, a fully device-independent

protocol a priori requires M ·N ≈ N2 copies of the probe state for optimal security.

This corresponds to a very low sample-efficiency of the certification protocol, which

is hardly practical for experimental implementations.

One can simplify the protocol by assuming the source is producing independent

and identically distributed copies, i.e. that the source functions in the IID scenario.

In that case, probe states only require a single certification step with M extra

copies, so the total sample size is M +N instead of M ·N. We provide the recipe

for that certification protocol in protocol box 6.2, making the IID assumption on

the input probe state. In this framework, our fully device-independent protocol

simply consists in performing a very similar protocol to the 1sDI one, by replacing

step 1.(a) by a self-testing-based certification, and using the CHSH inequality [55]

instead of the steering inequality for certification, as all measurement apparatus

are untrusted. In that version, Alice measures the observables Â3, Â4 on the part

of the system she can send through the channel.
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Protocol 6.2: Certified quantum transmission via Bell theorem, DI scenario.

1. Prior to the protocol Eve announces the minimum transmissivity t of E for

any quantum state.

2. Alice and Bob agree on parameters ϵ, η, K , M depending on their require-

ments and experimental limitations.

3. Alice prepares N +M copies of Φi, where N = ⌈K /t⌉.
4. Alice measures M random copies of Φi, and deduces the value of

I i = |〈Â0 Â2〉+〈Â0 Â3〉+〈Â1 Â2〉−〈Â1 Â3〉|.
5. If I i < 2

p
2 −η, Alice aborts the protocol.

6. Alice successively sends each state through E , including ρ i in a random

r-th position, with r ≤ N +1.

7. Bob establishes the set SP of states which successfully passed through E ,

and broadcast it publicly.

8. If r ∉SP or |S/{r}| < K , Alice aborts the protocol. Otherwise, Alice sends r
to Bob.

9. For each k ∈Sq, q = 0,1:

(a) Alice measures observable Âu on her part of the k-th state with u = 0

or 1 at random. She gets outcome ak.

(b) Bob to measures the observable B̂v on her part of the k-th state, with

v = 0 or 1 at random. He gets the outcome bk.

(c) Alice and Bob calculate their correlation for round k as ck = akbk.

10. Alice and Bob deduce the average value over all rounds, of

Io = |〈Â0B̂0〉+〈Â0B̂1〉+〈Â1B̂0〉−〈Â1B̂1〉|.
11. If Io ≥ 2

p
2 −ϵ, then Alice successfully sent the state ρo = E[ρ i]/t(E |ρ i) to

Bob, with a certified average fidelity to ρ i, up to isometry.
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Protocol Security. The security of this protocol can be derived from that of proto-

col 1, with some slight adjustments. First we use another bound for the self-testing

of CHSH inequalities, in a fully device-independent and non-IID scenario [162],

in order to certify the output probe state. We still have the following bound with

confidence at least cx = (1− e−x) · (1−2e−x)2

arcsinCo ≤ arcsin
√
α fx(ϵ,K) +Δx(ηs,K), (6.28)

though this time α = 1.19 and fx takes another form

fx(ϵ,K) = 16
√

2x
K

+ 3ϵ
4

+ ϵ+ (4+2
p

2 )/K
4+4/K

. (6.29)

The input state is also certified via self-testing of CHSH inequality in a fully

device-independent scenario but keeping the IID assumption, with a confidence

level (1− e−x):

F i = F
(
(ΛA1 ⊗ΛA2)[Φi],Φ+

)≥ 1−α · gx(η, M) −→
M→+∞

1−α ·η, (6.30)

withΛA1[·] = TrA1(ΓA1[·]),ΛA2[·] = TrA1(ΓA2[·]), α = 1.19, and gx(η, M) = 8
p

2x/M +η.

We can then plug the two certified fidelities in our bound 6.16, so the transmission

fidelity between input and expected output state is bounded with confidence level

c′x = (1− e−x)2 · (1−2e−x)2

F(ρ̄o,ρ i)≥ 1−4 ·sin2
(
arcsin

(√
αgx(η, M) /τx

)+arcsin
√
α fx(ϵ,K) +Δx

)
. (6.31)

which gives the full certification bound for protocol 6.2.

6.5 Experimental Implementation

In order to test the feasibility of the certification procedure, we perform a proof-of-

principle experiment based on polarization-entangled-photon pairs, emitted by our

Sagnac-PPKTP source, described in chapter 3. A sketch of the experimental setup

is given in Fig. 6.5. For practical reasons, different assumptions are implicitly made

during this first implementation, that we summarize at the end of this paragraph.
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Fig. 6.5: Experimental setup for photonic certified quantum communication
through an unstrusted channel. Photon pairs are generated by our Sagnac-PPKTP
source, detailed in chapter 3. The idler photon is both used to herald a probe
state, and as Alice’s part of the state. The signal photon is sent to Bob through
the untrusted lossy channel. A VOA allows to simulate an honest channel with
a tunable amount of loss. Quantum correlations and channel transmissivity are
measured via the biphoton polarization analyzer shown in Fig. 3.15.

For this first attempt we focus on protocol 6.1, in the one-sided device-independent

scenario. This way the probe states Φi emitted by the source are characterized at

each protocol attempt via quantum state tomography (see appendix A), without

inserting any untrusted quantum channel (green box in Fig. 6.5). Polarization

analyzers (PA) are trusted for that task, as it is performed by Alice. Following the

IID assumption, the state Φi is assumed to remain the same for a whole protocol

run, which is supported by the stability of our source argued in paragraph 3.4. In

order to evaluate the input fidelity F i in equation (6.14), up to local isometries, we

maximize the quantity

F i
U = F

(
(1⊗Û)Φi(1⊗Û†),Φ+

)
, (6.32)

on a local unitary Û . This way the fidelity of the probe’s polarization state to a Bell

state is F i = 99.20%±0.02% on average over all protocol attempts, with a maximum

reached fidelity of F i = 99.43%±0.05%.

We then send the probe states through an untrusted quantum channel. For

this first implementation, we use a variable optical attenuator (VOA) to simulate
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a quantum channel with different losses. Detecting an idler-photon in Alice’s PA

heralds a signal-photon being sent through the quantum channel, which is then

detected in Bob’s PA. This way, we measure K ≃ 109 copies of the probe state

in order to minimize the error terms in certification bounds, and maximize the

confidence level cx > 99.5%. This takes from 1 to 3 hours in our experiments de-

pending on the channel’s transmissivity. We measure the pairs in random bases

Â0B̂0 or Â1B̂1, and evaluate a close-to-maximum violation of steering inequal-

ity I = 2− ϵ. Players should in principle randomize the measurement basis for

each new photon pair. However, because of technical limitations of our motorized

waveplate stages, we only operate this randomization at a limited rate of 1Hz. A

fully secure protocol would require faster electronics and active optical components.

In each protocol attempt, the transmissivity is identified as the probability that

Bob detects a state, knowing Alice heralded that state, and is also known as the

heralding efficiency ηs:

t(E |Φi)≃ ηs = Rsi/Ri, (6.33)

where Rsi is the pairs’ detection rate and Ri the idler’s detection rate. We set dif-

ferent transmissivities of the channel by tuning the VOA, such that ηs ranges from

21.9% to 47.3%, the maximum value corresponding to the replacement of the VOA

by a simple fiber connector (ηs does not reach 66% as in chapter 3 because of extra

components in the setup). We can consider that a certain fraction of the losses is

not induced by the channel itself, but by other components which are characterized

by Alice, as part of the source. Such losses are considered homogeneous and trusted,

so the channel reads

E = (1−λc)E ′, (6.34)

where λc is the amount of losses that is trusted and state-independent, and E ′ ≡ E
in the sense defined in chapter 5, meaning both channels return the same output

states (see Fig. 6.6). This way we can certify E ′ instead of E . In that case the

transmissivity in bound (6.16) can be re-written

t(E ′|Φi) = t(E |Φi)/(1−λc) = ηs/(1−λc), (6.35)

which tightens the bound compared to the naive approach where all losses are

attributed to the channel. Adopting this interpretation is quite realistic, considering
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Alice preforms a full characterization of the probe states, which potentially includes

a lower bound on the coupling losses. In the worst case scenario, she can always

set λc = 0 and attribute all the coupling and detection losses to the channel.

Fig. 6.6: Schematic decomposition of the untrusted channel E , into an equivalent
channel E ′ that the protocol effectively certifies, and a trusted channel, translating
for the characterized and homogeneous losses λc.

6.5.1 Results for a Honest Channel

We first test our protocol on an untrusted but honest channel, by tuning the

channel transmissivity with the VOA. We show the results of our implementa-

tions in Figs. 6.7 and 6.8. We measure a close-to-maximum violation of steering

inequality 2− ϵ with ϵ = 1.42 ·10−2 on average, and ϵmin = 1.32 ·10−2 in the best

case. Thanks to this high violation and a relatively high coupling efficiency, we

are able to certify the sending of an unknown qubit state through the untrusted

channel, with a non-trivial transmission fidelity F(ρ i,ρo)> 50%. This is true even

when Alice attributes all losses to the channel, i.e. λc = 0, for channels with the

highest transmissivities. The certified fidelity increases as Alice trusts a larger

amount of homogeneous losses λc, reaching value F(ρ i,ρo) = 77.1%±0.6% when

she assumes a maximum value λc = 0.526 and the channel is close to lossless.

In any case, the certified fidelity decreases as the channel gets more lossy, as a

direct consequence of bound (6.16), highlighting the difficulties of certifying lossy

channels. This gives further motivation to ensure that a fraction of the losses are

trusted, in order to certify, for example, long-distance quantum communications. In

our implementation, assuming maximum trusted losses λc = 0.526, we could certify

a non-trivial transmission fidelity F(ρ i,ρo)> 50%, for total transmissivities as low

as t(E |Φi) = ηs ≃ 0.263, while such certification was possible only for ηs ≳ 0.44 with

no trusted losses λc = 0.
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Fig. 6.7: Minimum fidelity F(ρ i,ρo) certified via our protocol, using an honest
channel with different losses induced by the VOA. We display the data as a function
of the measured heralding efficiency, and assume different amounts of trusted
losses λc. Curves are plotted by taking the average fidelity of the probe state
to a Bell state F i, and the average of the deviation from maximum violation ϵ,
over all protocol iterations. Experimental results deviate from these curves, as
F i and ϵ vary between implementations. Errors induced by the finite statistics
(seen in equations 6.26 and 6.27) are directly subtracted to the certified fidelity.
Error bars include errors induced by the unbalance in detectors’ efficiency, and
the propagation of errors on F i. We also display the fidelity F(ρ i,ρo) measured via
quantum state tomography, for ρ i =Φi.

Fig. 6.8: Measured probe-state fidelity F i to a maximally-entangled state, and
close-to-maximum violation of steering inequality 2−ϵ.
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In order to fully demonstrate the protocol, one should send a single input state

ρ i through the channel, hidden among the probe states. The specific choice of

that state does not matter in our implementation as we do not use it in a later

protocol, so we choose ρ i =Φi and consider that a random copy of the probe state is

actually the input state. To show the correctness of our protocol, we then perform a

tomography of the corresponding output state ρo after the channel, and evaluate

a transmission fidelity of F(ρ i,ρo) = 99.79%±0.02% on average over all protocol

attempts, with a minimum value of F(ρ i,ρo) = 98.7%±0.5%. This is far higher than

the values certified by our protocol, as displayed on Fig. 6.7, which shows the state

was indeed properly transmitted. Note that the channel and measurement stations

are trusted during the output state’s tomography, as it is performed outside of

the protocol. This allows us to measure numerous copies of ρo, which is necessary

for a full characterization of the state. In order to show the correctness of our

certification protocol would hold for other input states ρ i, we perform a full-process

tomography of the quantum channel [179], and lower-bound the fidelity between

the physical channel and the identity F⋄(E ,1)≥ 94%±3%. We expect this bound

to be far from tight, as it is evaluated using the equivalence between diamond

and Choi-Jamiołkowski distances (theorem 5.3 from chapter 5). Still, the fidelity

is greatly above the values certified by our protocol, showing the certification

procedure is indeed valid for any input state ρ i.

6.5.2 Results for a Dishonest Channel

The strength of our certification procedure is further shown by experimentally

simulating examples of dishonest channels. Let us first recall that the channel op-

erator has no information on the position of the input state ρ i before the end of the

protocol. This way, a typical attack consists in applying a disruptive transformation

with small probability, hoping it will be applied to ρ i and stay undetected by Alice

and Bob. Here we consider such a transformation to be a bit flip X̂ or a phase flip

Ẑ. For this experimental demonstration, we remove the VOA and consider that all

losses are trusted. Note that performing a phase flip is equivalent to turning Bob’s

first measurement B0 into −B0:

B̂0 = M̂B
0|0 − M̂B

1|0 −→−B̂0 = M̂B
1|0 − M̂B

0|0. (6.36)
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Similarly, a bit flip is equivalent to turning Bob’s second measurement B1 into −B1.

Thus, we perform these flips in practice by randomly changing the waveplates’

angles in order to get the opposite measurement bases. This simulates dishonest

channels of the form:

E p,q[ρ] = (1− p)(1− q)ρ+ p(1− q)X̂ρ X̂ + pqŶρŶ + (1− p)qẐρẐ, (6.37)

where p, q are the bit flip and phase flip probabilities, respectively. In fact, we

simulate approximately 5000 different channels E p,q by performing a single 7-

hours protocol run, and picking random measurement samples with different

proportions of disrupted measurements. In order to simulate a larger variety of

data samples, we perform that randomization at a 5Hz-rate. We then generate

the data for the certification of channel E p,q, by picking random samples with the

following proportions:

• q/2 in basis −Â0B̂0,

• p/2 in basis −Â1B̂1,

• (1− q)/2 in basis Â0B̂0,

• (1− p)/2 in basis Â1B̂1.

The data acquired in basis −Â0B̂0 and −Â1B̂1 is then treated as if it was acquired

in basis Â0B̂0 and Â1B̂1, respectively, when calculating the average violation of

steering inequality I = |〈Â0B̂0〉+〈Â1B̂1〉|. When performing this data acquisition,

the probe state’s fidelity to a Bell state is F i = 99.16%±0.04%, and we trust a

maximum amount of losses λc = 0.526.

The certification results are displayed in Fig. 6.9, for different bit and phase

flip probabilities. These show that our implementation is quite sensitive to these

attacks, such that a flip probability of 0.01 induces a collapse of 16% of the certified

fidelity, and we only certify F(ρ i,ρo) > 58%. The certified fidelity falls below the

trivial value 50% for flip probabilities as low as 0.017. This way, any attempt of

Eve to disrupt the input state ρ i with such method can only succeed with very

small probabilities p, q < 0.02, or will be detected by Alice and Bob.
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Fig. 6.9: Minimum fidelity F(ρ i,ρo) certified via our protocol, for malicious chan-
nels E p,q, with p, q the bit/phase flip probabilities, respectively.

6.5.3 Additional Implicit Assumptions

Due to technical limits, a few additional but reasonable assumptions are made in

the course of our experiments, in order to draw conclusions from these implemen-

tations. We detail these in the following.

First, we assume Alice and Bob can communicate via a trusted private classical

channel. It allows the players to agree on their measurement settings, Alice to

send Bob the position r of the input state ρ i, and Bob to tell Alice if the states

were properly received. This way the players can perform measurements on the

fly, instead of storing all the states, then deciding of the measurement bases and

finally measuring the states, which would require a billion of quantum memories

with hours-long storage-time. This effectively slightly changes the recipe of the

protocol we implement in practice. We detail this recipe in the following protocol

box. We assume the security to be the equivalent to that of protocol 6.1.
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6.5. EXPERIMENTAL IMPLEMENTATION

Protocol 6.3: Practical certified quantum transmission via Bell theorem

1. Prior to the protocol:

(a) Alice characterizes the state Φi emitted by her source and evaluates

the quantity F i. She also receives or prepares the state ρ i, possibly

shared with an outside party.

(b) Eve announces the minimum transmissivity t of the channel E for any

quantum state.

2. Alice and Bob agree on parameters ϵ,K , depending on their requirements

and experimental limitations. They also privately agree on the random

position of the input state r ≤ N +1, with N = ⌈K /t⌉.
For k from 1 to N +1:

3. If k ̸= r:

(a) Alice prepares a copy of the probe state Φi and sends half of it

through the channel.

(b) Alice and Bob privately agree on a random q ∈ {0,1} and measure

the observable ÂqB̂q, with an outcome ck = akbk if Bob received a

state, or no outcome if the state was lost through the channel.

4. If k = r:

(a) Alice sends ρ i through the channel.

(b) If Bob does not receive any state, the protocol aborts. Otherwise,

Bob sets the state aside.

5. If the number of "no-outcome" events during step 3.(b) is bigger than

N −K , then the protocol aborts.

6. From the correlations {ck}, Alice and Bob deduce the average value over

all rounds, of I = |〈A0B0〉+〈A1B1〉|.
7. If I ≥ 2−ϵ, then Alice successfully sent the state ρo = E[ρ i]/t(E |ρ i) to Bob,

with a certified average fidelity to ρ i, up to isometry.
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Secondly, the fair sampling assumption is required on the measurement ap-

paratus for the self-testing procedure, as we allow a large amount of losses to be

induced by the quantum channel. Alice’s measurement apparatus is completely

trusted and characterized, according to the one-sided device-independent scenario.

On Bob’s side, we assume the efficiency of the measurement apparatus to be inde-

pendent of the measurement setting B̂0 or B̂1. If the efficiency depends on the state

measured, then we consider that dependence to be part of the quantum channel. A

slight unbalance of efficiency is allowed between the two different measurement

outcomes, and we show in the appendix D.2 that the error induced by this unbal-

ance is negligible. Still, this assumption opens the detection loophole [57], which is

therefore inherent to the certification of lossy channels.

6.6 Discussion

In this chapter we have provided a first protocol to certify the transmission of a

qubit through an untrusted and lossy quantum channel, by probing the latter with

close-to-maximally entangled states and witnessing steering at its output. Our

theoretical investigations rely mostly on assumptions made on the probe state’s

source and the sender’s measurement apparatus, while very few assumptions

are made on the quantum channel and the receiver’s measurement apparatus.

This setting proves to be an interesting trade-off between realistic experimental

conditions and reasonable cryptographic requirements. It also embodies a practical

scenario in which a strong server provides a weaker receiver with a quantum bit.

Compared to previously proposed verification procedures, our protocol not only

certifies the probed channels, but also an unmeasured channel through which a

single unknown state can be sent. As quantum measurement deteriorates the

quantum states, this task can only be performed at the price of measuring a huge

amount of probe states, which limits the repeatability of the protocol with current

technology. Until further theoretical considerations or technological improvements

provide higher repeatability, our protocol can still serve as a practical primitive

for other single-shot protocols that require a single quantum state, such as the

quantum weak coin-flipping protocol presented in chapter 4.
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Our proof-of-principle implementation shows the correctness of this certifi-

cation procedure, and its feasibility with current technology. This way we could

certify non-trivial transmission fidelities for a wide range of losses induced by the

channel, by making some mild but realistic assumptions, such as the characteriza-

tion of a fraction of trusted losses, induced for instance by the coupling of probe

states inside optical fibers. By implementing random bit and phase flips, we could

show that even a highly improbable attempt to disrupt the quantum information

degrades the certified transmission fidelity, and is therefore detected by the players.

Future developments could demonstrate the feasibility of a version of our pro-

tocol with full device-independence, in which Alice’s measurement or even the

probe states’ source are not trusted. Such protocol could be achieved by linking the

probe state’s quality to that of the corresponding output state, or by making the

IID assumption on the probe state’s source. Also, more investigation on quantum-

memory-based attacks could give a sharper idea on the possibilities of deceiving

the certification procedure.

This work opens the way to certification of a wide variety of more sophisti-

cated lossy quantum channels. In particular, the rapid improvements of quantum

technologies could soon provide possible applications of this protocol to the authen-

tication of quantum teleportation, memories or repeaters.
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CONCLUSION

‘Le temps est le meilleur des critiques;
et la patience le meilleur des professeurs.’

— Frédéric Chopin.

For the past couple of decades, the field of quantum communications has

become most fruitful, providing a wide variety of information-theoretic

secure primitives for a potential future quantum network. These have

the potential to ensure a stronger security than the current classical protocols

relying on computation assumptions. Making such quantum protocols concrete has

required to overcome practical and fundamental challenges, some of which are only

starting to be addressed thanks to the availability of new quantum technologies,

such as high-efficiency single-photon detectors and deterministic single-photon

sources [180]. This work has been intended to contribute to this effort, by devel-

oping and demonstrating new quantum primitives in the lab, thanks to a photon

source built from scratch during the preparation of this thesis.

This photon-pair source, presented and characterized in chapter 3, was shown

to be a promising candidate as a resource for the implementation of quantum

network protocols. In particular the high heralding efficiency of the photons makes

it suitable for numerous single-photon based protocols such as quantum weak coin

flipping presented in chapter 4, and the high fidelity of the biphoton polarization-

state to a maximally-entangled state enables device-independent-type protocols,

such as that detailed in chapter 6 for certified quantum transmission through an
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untrusted channel. In the future, some important modifications could be made on

the setup, to improve its performances or provide more complex applications. In

particular, at the time of the writing of this manuscript, a second source is being

built in the lab, with very close characteristics to the one which was detailed here,

but with limited noise, which should enhance the quality of close-to-maximally-

entangled states. In addition, we provided a possible adaptation to our source, in

order to demonstrate a novel compact layout for a multipartite-state generation.

This could be used to demonstrate new protocols such as anonymous transmissions

[122], authenticated teleportation [26] or composable GHZ-state verification [121].

We first used our source to generate heralded single-photons, allowing to demon-

strate the first information-theoretic and cheat-sensitive weak coin flipping protocol

in chapter 4, thanks to path-encoded entanglement. This way, even if players can

bias the protocol in their favor, they can never do so without risking being sanc-

tioned for cheating. Interestingly enough, in the absence of loss in the setup, the

protocol we designed approaches a unit success probability, meaning it always

designates a winner. This motivates further experimental investigations in order to

minimize the losses in our implementation, by using integrated optics for instance.

In addition such an information-theoretically secure and cheat-sensitive protocol

for weak coin flipping was never proposed in classical cryptography, showing a

concrete advantage brought by quantum systems.

We then used the source to generate photon-pairs entangled in polarization,

allowing to demonstrate a novel protocol for the certification of quantum trans-

mission through an untrusted and lossy quantum channel in chapter 6. Building

this protocol required some new fundamental theoretical developments on lossy

quantum channels, which are detailed in 5. This way, thanks to self-testing of

a steering inequality, we could certify the transmission of an unmeasured state

through the channel, in a semi-device independence setting. This assumption was

used as a trade-off, ensuring security in a relatively realistic scenario in which the

sender is trusted, while the channel and receiver’s apparatus are not. More theoret-

ical developments may extend this implementation to a fully device-independent

setting, or experimental authenticated teleportation.
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This last protocol showed how adapting theoretical quantum primitives for prac-

tical quantum network applications often implies making important assumptions,

therefore deviating from the ideal recipes. What remains of the so-called quan-

tum advantage can then legitimately be questioned. In the case of authenticated

teleportation [26], or more generally the certification of quantum transmission via

untrusted channels presented in chapter 6, realistic but nonetheless important

assumptions are required in order to derive practical applications. This involves

trusting a part of the setup, or assumptions on the statistics of untrusted states

or measurement outcomes. We see then that to build a practical and fully secure

quantum network, one has to address the implication of any assumption made

in the primitives. This may involve stacking different verification procedures, or

developing ways of detecting potential disruption or cheating strategies, such as

the cheat-sensitivity displayed by our weak coin flipping protocol. In this context,

the composability of protocols is an important property to seek out for, as found in

the recently proposed composable GHZ-state verification [121].

Another important aspect of quantum protocols, which was not tackled in

this thesis, is their energetic footprint. In the context of resources scarcity and

climate emergency, this was recently pointed out by A. Auffèves as a major feature

to consider when building quantum computers [181], and by extension a world-

wide quantum network. Let us for instance consider the certification of quantum

transmission through an untrusted channel. With our protocol and the current

technology, certifying the transmission of a single qubit requires a few kJ of pump

power, for a good level of security. For now, this makes it impractical to certify

the sending of every qubit in a quantum network with such a protocol. Different

solutions may be explored to reduce this energy consumption and make quantum

protocols more practical. This includes experimental efforts in order to lower the

energy required to obtain quantum resources, but also theoretical efforts in order

to build protocols which require a minimum amount of quantum resources [182].

Finally, more assumptions may have to be made on protocols, highlighting a trade-

off between energy consumption and optimal network security. This might temper

the quantum advantage of certain primitives.
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QUANTUM STATE TOMOGRAPHY

Characterizing the state of a quantum system remains an open question in

the field of quantum information, as one cannot get a complete knowledge

of the state of a system by performing a single measurement. Still quantum
state tomography allows to estimate the density operator of a system, by performing

several measurements on different copies of the system. In the following, we detail

that method that is used extensively in polarization-based photonic experiments,

in the specific 2-qubits case.

A.1 General Method

The idea of qubits-state tomography was first presented by D.F. James et al. in

2001 [51]. It makes use of the decomposition of any n−qubits density operator as

a linear combination of tensor products of Pauli operators, which reads, in the

2-qubits case:

ρ =
1
4

3∑
iA ,iB=0

Tr(ρ · σ̂iA ⊗ σ̂iB ) · σ̂iA ⊗ σ̂iB =
1
4

3∑
iA ,iB=0

〈σ̂iA ⊗ σ̂iB〉ρ · σ̂iA ⊗ σ̂iB , (A.1)

where {σ̂k}k=0,...,3 are Pauli operators (see paragraph 2.1.3). The expectation values

〈σ̂iA ⊗ σ̂iB〉ρ can be estimated via the method described in paragraph 3.4. Injecting
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these in eq. (A.1), we get an estimation of ρ, called the Direct Inversion Operator (DI

operator). In general, because of fluctuations in the experimental measurements,

this operator is not a physical density operator, as it displays negative eigenvalues.

A common workaround is to use the maximum likelihood estimation (MLE) method

[52], which consists in finding the physical density operator that is the most likely

to return our experimental data. Making a few minor assumptions which are

acceptable in our case such as a Gaussian statistics of measurement data, a fast

version of the MLE can be derived [183]. In this way, one only has to find the density

operator ρ that minimizes its Hilbert-Schmidt distance to the DI operator µ:

D2(µ̂− ρ̂)2 = Tr[(µ−ρ)2] =
4∑

i, j=1
|µi, j −ρ i, j|2. (A.2)

Note this distance can be written in an eigenbasis {|µi〉} of µ, in which the optimal

ρ should also be diagonal, such that:

D2(µ̂− ρ̂)2 =
4∑

i=1
|µi −ρ i|2, (A.3)

where {µi} and {ρ i} are the eigenvalues of µ and ρ̂ respectively, with the two

constraints
∑

i ρ i = 1 and ρ i > 0. This way, we find these optimal eigenvalues using

a fast algorithm provided in [183]. Hence the optimal matrix would be:

ρ̂opt =
4∑

i=1
ρ i|µi〉〈µi|. (A.4)

This method was demonstrated to be highly efficient, allowing the reconstruction

of 8-qubits states in less than a few minutes. In addition, one can use the linear

regression estimation method [184] to get a better estimation of the DI operator µ.

A.2 Error Analysis

In order to estimate the errors in the reconstructed quantum state, we follow the

method detailed in [52]. In our experiments, the PBSs in polarization analyzers

have a very high extinction ratio, such that the number of |H〉-polarized photons

going on the |V 〉-side of the analyzer is negligible, and vice versa. Furthermore,

the background noise is negligible, thanks to the low dark-count rates of our
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detectors. This way, systematic errors are mostly caused by differences in the

detectors’ efficiencies. Relative efficiencies can be evaluated by exchanging the

roles of detectors in each polarization analyzer, and the measurement data can

then be corrected to account for the potential efficiency unbalance. Another source

of systematic error is the uncertainty in the position of our WPs axis, which is

evaluated when calibrating the polarization analyzers. It potentially induces a

shift in the angles displayed in Tab. 3.1, which we treat as a statistical error.

Another source of statistical error is the Poisson noise in the photon counting,

that we minimize by measuring a large amount of states (more than 107 for

each measurement basis). Uncertainties on the reconstructed states, induced by

this noise and systematic errors in the WPs angles, are evaluated by using the

Monte Carlo method. This way, we simulate 1000 new data samples with random

perturbations, from which we reconstruct 1000 new density matrices. From these

we evaluate the standard deviation on any relevant quantities related to the

quantum state. Finally, tests on the fast MLE method showed that the numerical

reconstruction itself involved no significant error, provided the number of copies of

the state measured was large enough, typically > 107 in each measurement basis.
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SAGNAC SOURCE ALIGNMENT

Even though Sagnac sources are well known and characterized, we found

very few recipes for the alignment of the whole optical setup. In the follow-

ing we detail our own recipe, developed with some inspiration from [115].

This recipe is meant to be quite systematic, and was repeated many times in order

to obtain close-to-maximally-entangled states. The main components we refer to

are displayed in Fig. B.1.

Fig. B.1: Configuration of the setup in our alignment recipe, including the most
important components. Numbers label each side of the PBS.
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APPENDIX B. SAGNAC SOURCE ALIGNMENT

1. Align the pump beam horizontally, and along a row of holes of the optical

table. Place all the optics required for the pump shaping, including focusing

lenses and WPs for polarization control.

2. Place the non-polarizing BS in the path of the beam, such that the reflected

beam is horizontal and approximately perpendicular to the incident beam.

The BS is supposed to stay in place after the alignment of the source.

3. Place the mirror M0 in the path of the reflected beam. Tune the mirror’s

angles in order to make the beam as horizontal as possible, and aligned

along a row of hole of the optical table. This step is of major importance and

determines how many iterations of the Sagnac alignment will be required.

4. Place the dichroic mirror in the path of the beam, at rougly 45◦. Any optics

that might deviate the pump beam should also be placed at this step.

5. Place the PBS in the path of the beam. Tune its angles so the reflected beam

is as horizontal as possible, and perpendicular to the incident beam (aligned

along a line of holes).

6. Rotate the polarization of the pump beam, such that the reflected and trans-

mitted beam after the PBS are of similar intensity.

7. Place a mirror on each sides of the PBS, at equal distances of the faces. The

incident angle of the beam should be ≈ 22.5◦ on both mirrors, so the beam

coming from side 1 goes back to the PBS on side 2, and vice versa.

8. With a semi-transparent sheet (such as an optical cleaning tissue), check the

beams’ positions on sides 1 and 2 of the PBS. Tune the mirrors’ angles until

clockwise and anticlockwise beams are visibly overlapped on both sides.

9. Equalize the power of clockwise and anticlockwise beams with the help of a

powermeter, by rotating the polarization of the pump beam.

10. Place a QWP after side 3 of the PBS, at 0◦ (axes aligned to horizontal and

vertical polarization, relatively to the PBS), as well as a polarizer at ±45◦.
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11. Check the interference pattern after the polarizer with a powermeter, by

tilting the QWP around its vertical axis. If steps 3., 5. and 8. were done

correctly, one should already note a non-zero visibility:

V =
|P(45◦)−P(−45◦)|
P(45◦)+P(−45◦)

, (B.1)

where P(±45◦) is the power measured when the polarizer is at ±45◦.

12. Tune the mirrors’ angles in order to maximize the visibility, and write down

the value reached Vmax. This value can be increased by placing a diaphragm

in front of the powermeter, which filters out side-reflections that do not

correspond to the mode coupled in SM fibers.

At this stage, the Sagnac interferometer may seem aligned, particularly if steps

3. and 5. were done properly. However, many geometrical configurations allow the

interference to be optimized at the output of the Sagnac, without the clockwise and

anticlockwise beams overlapping inside the interferometer, as displayed in Fig. B.2.

For this reason, we provide a few additional steps, in order to check the overlap of

the beams, and correct their position.

Fig. B.2: An example of Sagnac configuration, that may display a high visibility
though the beams are not overlapped inside the interferometer.

13. As in step 8. check the overlap of the beams with a semi-transparent sheet.

However this time, instead of tuning mirrors M1 and M2, tune the angles of
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mirror M0, until the beams are seemingly overlapped. Tuning this mirror

allows to control the configuration of the beams inside the interferometer,

while maintaining a relatively high interference at the output of the Sagnac.

14. Place a diaphragm inside the Sagnac, mounted on a fine transversal trans-

lation stage, close to side 1 of the PBS. Remove the polarizer and keep the

powermeter in place.

15. Close the diaphragm, and maximize the transmitted power, by tuning both

the angles of M0 and the diaphragm transversal position. When the trans-

mitted power is maximized, the clockwise and anticlockwise beams are maxi-

mally overlapped inside the interferometer.

16. Open the diaphragm, and place the polarizer back in front of the powermeter.

Check the interference visibility Vfinal as in step 11.. If this visibility is higher

or equal to the value that was previously reached Vmax ≲ Vfinal, then the

Sagnac interferometer is aligned. Otherwise, repeat steps 12. to 16. until

reaching this condition.

Among other factors, the number of iterations of steps 12. to 16. depends on the

precision of the alignments in steps 3. and 5.. After step 16., we should not touch

the mirrors M0, M1, M2, nor the PBS or any optics which might deviate the pump

beam. Now we only need to properly place the HWP and PPKTP crystal.

17. Place the HWP inside of the interferometer, with its axes aligned to horizontal

and vertical polarizations, as perpendicular to the beam as possible.

18. Check the interference visibility, as done in step 11.. Carefully tilt the HWP

until you reach a value Vfinal measured in step 16.. If the visibility cannot

reach this value, try rotate the HWP at ±90◦ or 180◦ and repeat the procedure.

If the visibility is still lower than Vfinal, then the interferometer is probably

misaligned. It is recommended to restart the alignment from scratch.

19. Fix the HWP to the optical table, while checking the visibility remains at

Vfinal. Rotate it at ±45◦ in order to minimize the power that goes out on side

3 of the PBS. This way all power goes backward on side 4. Half of this power

can be measured on the left side of the BS, as shown in Fig. B.1.

146



20. Place the PPKTP crystal on the path of the beam, in the center of the

interferometer. If possible, the crystal should be mounted on a multi-axes

platform. Maximize the power transmitted on the side of the BS, by roughly

positioning the crystal.

21. Measure the interference visibility on the side of the BS, using the same

method as described in step 11. and shown in Fig. B.1. Carefully tilt the

crystal in all possible directions, until you reach a value Vfinal measured in

step 16.. Here it is highly recommended to place a diaphragm in front of the

powermeter, as side reflections are more likely to degrade the interference.

After this last step, provided the visibility Vfinal was reached, the source is

optimally aligned, and no optics should be touched inside or before the Sagnac for

the remainder of the experiment, except for rotating waveplates. Then one just

has to collect the photons inside optical fibers and optimize the state, which is

described in other works [115].

The particularity of our alignment method compared to more common ones

resides in the steps 13. to 16., in which we tune the incidence angle of pump in

the interferometer, though it is seemingly aligned. Adding this procedure seems

indispensable in order to check the beams are overlapped inside the Sagnac, even

when one perfectly aligns the pump beam before alignment of the interferometer.

When using a particularly long crystal, as our 30 mm-long PPKTP, placing it inside

the Sagnac without performing those steps may result in loss of coherence between

the two sides of the interferometer, distortions in the photon’s spectral and spatial

modes, or a drop in the pair’s emission rate.

Also, note that in step 21., we do not measure the interference pattern after

the Sagnac, as in steps 11. and 18.. The reason is that because of the crystal’s

birefringence, placing that crystal inside the Sagnac introduces a path difference

of ≈ 3mm between the clockwise and anticlockwise beams, as long as the HWP is

at 0◦. This result in partial or total loss of coherence, particularly in pulsed mode,

where the pump beam has a coherence length of ≈ 0.6mm. When rotating the

HWP at ±45◦, the transmitted horizontally-polarized beam is rotated to vertical
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polarization, so both reflected and transmitted beam enter the crystal with the

same polarization and experience no path difference. This way, we retrieve a high

visibility, and the beam is sent backward, so we can measure the interference

pattern on the left of the BS. Still, this BS can hardly be removed for the pump’s

path without disaligning the setup, such that 50% of the pump power does not

contribute to the generation of pairs in this Sagnac interferometer. In many cases

though, the pump power that is transmitted through the BS can be sent to another

source of photons. The two sources can be used independently, or to perform multi-

photons experiments. In our specific case, this BS is used as an integral part of the

spatial multiplexer, described in Fig. 3.24.
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QUANTUM WEAK COIN FLIPPING:

PREDICTIONS

In the following we give some theoretical predictions for the results we observe

in our experimental implementation of cheat-sensitive weak coin flipping,

presented in chapter 4. In the first two sections, we derive general expressions

for event probabilities, for any values of beam splitter reflectivities x, y, and z.

In the third section we obtain the values of these reflectivities which maximize

fairness and correctness, when both parties are honest, as well as the probabilities

of the different outcomes. Finally, we show such predictions when one of the parties

is dishonest and performs an attack which we implement in this work. In general,

these predictions differ from those derived in previous work [48], as we drop the

balancing condition for the correctness, and we adopt a different parametrization.

We give some development on that matter in the last section.

C.1 Photon Propagation in the Interferometer

We first describe the propagation of the photon in the interferometer (see Fig. C.1),

for any values of x, y, z, and deduce the probabilities of the different events. To sim-

plify our proofs, we neglect dark counts and double-pair emissions. Experimental
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details in chapters 3 and 4 support the legitimacy of this approximation. In this

scenario, when Alice detects a photon in detector Dherald, then exactly one photon

is generated, corresponding to the action of the creation operator a†
1. Some first

losses occur when coupling the photon to single-mode fibers, such that the operator

transforms as:

a†
1 −→

p
ηc a†

1, (C.1)

where ηc is the induced transmission. Then Alice sends the photon to a BS of

reflectivity x:
p
ηc a†

1 −→
p

xηc a†
1 +

√
(1− x)ηc a†

2, (C.2)

where 1 (resp. 2) stands for the reflected (resp. transmitted) mode. Alice keeps

mode 1 and Bob gets mode 2. On each side, the photon undergoes losses due to

fiber transmission and connectors, storage, and diverse other components. We note

ηA1 (resp. ηB1) the transmission on Alice’s (resp. Bob’s) side. Some phases are also

induced by the propagation, and we note ΦA1 (resp. ΦB1) the phase introduced on

Alice’s (resp. Bob’s) side. In this way, we get the following transformation:

p
xηc a†

1 +
√

(1− x)ηc a†
2 −→

p
xηcηA1 eiΦA1 a†

1 +
√

(1− x)ηcηB1 eiΦB1 a†
2. (C.3)

Bob sends the photon to a BS of reflectivity y:

p
xηcηA1 eiΦA1 a†

1 +
√

(1− x)ηcηB1 eiΦB1 a†
2

−→p
xηcηA1 eiΦA1 a†

1 +
√

(1− x)yηcηB1 eiΦB1 a†
2

+
√

(1− x)(1− y)ηcηB1 eiΦB1 a†
3.

(C.4)

Bob sends the third mode to the detector DB, inducing another loss. We note ηy the

transmission, including the detector efficiency, and we have ηy
B = ηcηB1ηy (here we

omit the dephasing as no interference will occur in this mode). The second mode

undergoes some loss and dephasing, and we note ηB2 and ΦB2 the transmission

and dephasing. There we note ηB = ηcηB1ηB2 the total loss on Bob’s arm of the

interferometer, and ΦB =ΦB1+ΦB2 the total dephasing. On Alice’s side, the path

depends on the detection of the third mode that triggers the optical switch. In

absence of dark counts and when Bob is honest, a detection on the third mode

means no detection will occur on Alice’s verification detector, such that Bob is not

sanctioned and wins the coin flip. In other words, Alice trusts Bob’s measurement
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on the third mode, such that we can omit her verification detector and the optical

switch. In that case she simply sends the first mode to Bob to proceed to verification

of the state. That mode undergoes some loss and dephasing, and we note ηA2 and

ΦA2 the transmission and dephasing. There we note ηA = ηcηA1ηA2 the total loss

on Alice’s arm of the interferometer, and ΦA =ΦA1 +ΦA2 the total dephasing. The

total transformation becomes:

p
xηcηA1 eiΦA1 a†

1 +
√

(1− x)yηcηB1 eiΦB1 a†
2 +

√
(1− x)(1− y)ηcηB1 eiΦB1 a†

3

−→ p
xηA eiΦA a†

1 +
√

(1− x)yηB eiΦB a†
2 +

√
(1− x)(1− y)ηy

B eiΦB a†
3.

(C.5)

After receiving the first mode, Bob makes it interfere with the second mode on a

BS of reflectivity z, such that we get:

p
xηA eiΦA a†

1 +
√

(1− x)yηB eiΦB a†
2 +

√
(1− x)(1− y)ηy

B eiΦB a†
3

−→ (
p

xzηA eiΦA +
√

(1− x)y(1− z)ηB eiΦB ) a†
1

− (
√

x(1− z)ηA eiΦA −
√

(1− x)yzηB eiΦB ) a†
2

+
√

(1− x)(1− y)ηy
B eiΦB a†

3.

(C.6)

Bob sends the first and second modes to detectors DV1 and DV2 , with efficiencies

ηV1 and ηV2 , and we note ηV1
A = ηA ηV1 , ηV2

A = ηA ηV2 , ηV1
B = ηB ηV1 , and η

V2
B = ηB ηV2 .

Up to an irrelevant global phase eiΦA , we get:

(
p

xzηA eiΦA +
√

(1− x)y(1− z)ηB eiΦB ) a†
1

− (
√

x(1− z)ηA eiΦA −
√

(1− x)yzηB eiΦB ) a†
2

+
√

(1− x)(1− y)ηy
B eiΦB a†

3

−→ (√
xzηV1

A +
√

(1− x)y(1− z)ηV1
B eiΔΦ)

a†
1

− (√
x(1− z)ηV2

A −
√

(1− x)yzηV2
B eiΔΦ)

a†
2

+
√

(1− x)(1− y)ηy
B eiΔΦa†

3,

(C.7)

where ΔΦ =ΦB −ΦA is the phase difference. We deduce the detection probabilities

in each detector:
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PV1 =Ph
(
(b,v1,v2) = (0,1,0)

)
= xzηV1

A + (1− x)y(1− z)ηV1
B

+2cos(ΔΦ)
√

x(1− x)yz(1− z)ηV1
A η

V1
B ,

(C.8)

PV2 =Ph
(
(b,v2) = (0,1)

)
= x(1− z)ηV2

A + (1− x)yzηV2
B

−2cos(ΔΦ)
√

x(1− x)yz(1− z)ηV2
A η

V2
B ,

(C.9)

PDB =Ph
(
(b,a) = (1,0)

)
= (1− x)(1− y)ηy

B. (C.10)

Fig. C.1: Sketch of the interferometer with most relevant notations.

C.2 Phase Fluctuations

In our experiment, the phase difference ΔΦ evolves through time, because of

thermal fluctuations and diverse vibrations or noise. Slow phase drifts, typically

caused by thermal fluctuations, are generally resolved when counting photons,

provided the photon rate is high enough. Fast phase fluctuations however, typically

caused by noise, are hard to resolve by counting photons, due to low rates and

detector recovery time. Hence, the probabilities PV1 and PV2 are averaged over the

typical temporal resolution τ of our detectors. We distinguish two types of behaviour

in the phase difference ΔΦ(t) =ΔΦ f (t)+ΔΦs(t), with ΔΦ f (t) corresponding to fast

fluctuations of typical period τ f ≪ τ, andΔΦs(t) corresponding to slow fluctuations

of typical period τs ≫ τ. For fast fluctuations, the average value 〈cosΔΦ f 〉τ is

approximately constant. For slow fluctuations, the value ofΔΦs(t) is approximately

constant over a time lapse of τ. In this way, we get:
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〈cosΔΦ〉τ(t) = 〈cos(ΔΦ f +ΔΦs)〉τ(t)
= 〈cosΔΦ f cosΔΦs〉τ(t)−〈sinΔΦ f sinΔΦs〉τ(t0)

= 〈cosΔΦ f 〉τ cosΔΦs(t)−〈sinΔΦ f 〉τ sinΔΦs(t)

= v
(
C ·cosΔΦs(t)−S ·sinΔΦs(t)

)
,

(C.11)

with v :=
√
〈cosΔΦ f 〉2

τ+〈sinΔΦ f 〉2
τ , C := 〈cosΔΦ f 〉τ/v, and S := 〈sinΔΦ f 〉τ/v. By

definition we have C2 +S2 = 1, so there exists a phase Φeff with C = cosΦeff and

S = sinΦeff. We then get:

〈cosΔΦ〉τ(t) = v
(
cosΦeff cosΔΦs(t)−sinΦeff sinΔΦs(t)

)
= v cos(ΔΦs(t)+Φeff).

(C.12)

Here Φeff appears as an additional constant dephasing, such that we can include it

inside the slow dephasing ΔΦs(t0). Effectively, it means taking Φeff = 0, such that

S = 0 and 〈sinΔΦ f 〉τ = 0. In this way, we have:

〈cosΔΦ〉τ(t) = v cosΔΦs(t), (C.13)

with v = |〈cosΔΦ f 〉τ| ∈ [0,1], that we later interpret as the interference visibility.

Now we average PV1 and PV2 :

〈PV1〉τ(t) = xzηV1
A + (1− x)y(1− z)ηV1

B

+2vcos
(
ΔΦs(t)

)√
x(1− x)yz(1− z)ηV1

A η
V1
B ,

(C.14)

〈PV2〉τ(t) = x(1− z)ηV2
A + (1− x)yzηV2

B

−2vcos
(
ΔΦs(t)

)√
x(1− x)yz(1− z)ηV2

A η
V2
B ,

(C.15)

which are the effective expressions of PV1 and PV2 we can use for our estimations

in the following. For this reason, we omit the averaging and time dependence in

the remainder of this thesis.

C.3 Predictions with Honest Players

We now consider a protocol where both parties are honest, and we derive the

parameters x, y and z that maximize the fairness and correctness. The fairness

condition imposes:
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Ph
(
(b,a) = (1,0)

)
=Ph

(
(b,v1,v2) = (0,1,0)

)
, (C.16)

and the correctness condition imposes:

Ph
(
(b,a) = (1,1)

)
=Ph

(
(b,v2) = (0,1)

)
= 0. (C.17)

As we neglected dark counts and double-pair emissions, we already have

Ph
(
(b,a) = (1,1)

)
= 0. However, we have a priori Ph

(
(b,v2) = (0,1)

)> 0 for any non-

trivial parameters x, y, z ∉ {0,1} (these cases do not allow to verify the fairness

condition). It is therefore impossible in principle to verify the correctness condi-

tion. Still, we minimize Ph
(
(b,v2) = (0,1)

)
in order to approach the condition. As a

reminder, we have:

Ph
(
(b,v2) = (0,1)

)
= PV2 = x(1− z)ηV2

A + (1− x)yzηV2
B

−2vcos
(
ΔΦs

)√
x(1− x)yz(1− z)ηV2

A η
V2
B .

(C.18)

We first notice that minimizing that expression imposes ΔΦs = 0. Now we recall

that ηV2
A = ηAηV2 and ηV2

B = ηBηV2 , and define ΠA = xηA and ΠB = (1− x)yηB that we

interpret as the probabilities of measuring the photon in Alice’s side or Bob’s side,

before the last tunable BS. We can then rewrite the probability:

PV2 = ηV2 ·
(
(1− z)ΠA + zΠB −2v

√
z(1− z)ΠAΠB

)
. (C.19)

We can then define a variable ξ := ΠA
Πtot

∈ [0,1] with Πtot =ΠA +ΠB, such that:

PV2 = ηV2Πtot

(
(1− z)ξ+ z(1−ξ)−2v

√
z(1− z)ξ(1−ξ)

)
. (C.20)

PV2 is minimized for ∂PV2 /∂ξ = 0 and ∂PV2 /∂z = 0. One can easily show that

for v < 1, this system has a single solution ξ = z = 1/2, such that ΠA = ΠB. This

drastically simplifies the expressions of the probabilities:

PV1 = xηV1
A (1+v), (C.21)

PV2 = xηV2
A (1−v), (C.22)

xηV1
A = (1− x)yηV1

B . (C.23)

The case v = 1 corresponds to a perfect interference, and implies ∂PV2 /∂ξ = ∂PV2 /∂z
for any set of parameters ξ and z. This way, an infinite number of ξ and z satisfy

154



C.3. PREDICTIONS WITH HONEST PLAYERS

∂PV2 /∂ξ = 0 and ∂PV2 /∂z = 0. One can therefore impose another condition, such as

the balance condition introduced in [48], in order to find a unique solution (ξ, z).

This case is not relevant for our study as the interference is imperfect as in all

practical scenarios.

Now we can apply the fairness condition, which in the honest case with no dark

counts and no double-pair emission reduces to PV1 = PDB . This gives the following

equation on the parameters:

xηV1
A (1+v) = (1− x)(1− y)ηy

B. (C.24)

Combining eqs. (C.23) and (C.24), we can derive the expressions of the three

parameters x, y and z that optimize both fairness and correctness:

xh =
[
1+ η

V1
A

η
V1
B

+ η
V1
A

η
y
B

(1+v)
]−1

, (C.25)

yh =
[
1+ η

V1
B

η
y
B

(1+v)
]−1

, (C.26)

zh =
1
2

. (C.27)

Then, the probabilities of the different events are calculated straightforwardly:

Ph
(
Alice wins

)
=Ph

(
Bob wins

)
= PV1 = PDB = xhη

V1
A (1+v), (C.28)

Ph
(
Bob sanctioned

)
= 0, (C.29)

Ph
(
Alice sanctioned

)
= PV2 = xhη

V2
A (1−v). (C.30)

One can notice that the condition ΠA =ΠB, which later translates to eq. (C.23),

gives the expected result that we should equalize the power of the two arms of the

interferometer in order to display an optimized interference. This condition is used

in the recipe for tuning the reflectivities with honest players, in paragraph 4.3.1.

Finally, by keeping the same reflectivities, and comparing the values of PV1 and

PV2 when ΔΦs = 0 or ΔΦs =π, we get:

v =
∣∣∣PV1(ΔΦs = 0)−PV1(ΔΦs =π)
PV1(ΔΦs = 0)+PV1(ΔΦs =π)

∣∣∣ =
∣∣∣PV2(ΔΦs = 0)−PV2(ΔΦs =π)
PV2(ΔΦs = 0)+PV2(ΔΦs =π)

∣∣∣, (C.31)
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so we can indeed interpret v as the interference visibility, which can be easily

evaluated experimentally. Finally, we mention that each path’s transmission ef-

ficiency can be measured by setting the reflectivities and switch’s state to trivial

values x, y, z, s ∈ {0,1} given in Table 4.1 of in chapter 4, in which we also give the

experimentally measured values of these efficiencies. From these efficiencies we

can compute the above theoretically predicted reflectivities xh, yh and zh, which

maximize the fairness F and correctness C. The evolution of these values with

the communication distance are shown in Fig. 4.5, together with the reflectivities

measured in our experiments.

C.4 Predictions for a Dishonest Alice

Now we derive results for the case when Alice is dishonest and Bob is honest. In

general, Alice might be able to perform more sophisticated strategies, involving

more complex quantum states, such as those mentioned in [48]. Yet, finding optimal

cheating strategies for Alice remains an open question. To illustrate the cheat

sensitivity of our protocol, we consider a naive strategy, by simply setting up a

reflectivity x > xh, which a priori favors Alice (such a strategy is optimal in the case

of a lossless protocol [48]). As Bob is honest, we still keep y = yh and z = zh = 1/2

from eqs. (4.6) and (4.7), and Alice’s verification setup is not required. In that case

we can derive the expressions for the probabilities of the different events:

P(A. wins) = 〈PV1〉 =
1
2

(
xηV1

A + (1− x)yhη
V1
B +2v

√
x(1− x)yhη

V1
A η

V1
B

)
, (C.32)

P(A. sanctioned) = 〈PV2〉 =
1
2

(
xηV2

A + (1− x)yhη
V2
B −2v

√
x(1− x)yhη

V2
A η

V2
B

)
, (C.33)

P(B. wins) = PDB = (1− x)(1− yh)ηy
B. (C.34)

These come straightforwardly from equations (C.10), (C.14) and (C.15), by not-

ing that a dishonest Alice would still set ΔΦs = 0, which maximizes her winning

probability and minimizes her sanction probability. This gives the curves plotted

in Fig. 4.9 from chapter 4.
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The security of our protocols for certified transmission through untrusted

quantum channels relies on some certification bounds, given in equation

(6.27) in the 1sDI protocol, and equation (6.31) in the full-DI protocol. The

first section is dedicated to deriving the certification bounds for the 1sDI and

full-DI protocols. The fair-sampling assumption also plays a significant role in the

security of these protocols, so we clarify the assumptions made on the detection

apparatus in the second section.

D.1 Bounding the Transmission Fidelity

In the following, we give the full proof for the certification bounds used to secure

our protocols for quantum transmission through an untrusted quantum channel.

We first give some further intuition on the average channel over the protocol and

the expected output state. We then show the certification bound (6.16), which relies

on the evaluation of the fidelity of a probe state to a maximally-entangled state,

and the fidelity of the corresponding output state after the channel to the same

maximally-entangled state. This bounds the fidelity between any state that outputs

a quantum channel and the corresponding unknown input state. In the next para-
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graph, we show how to evaluate the two probe states’ fidelities up to isometries,

even when no IID assumption is made and the state source might be untrusted.

This method relies on self-testing of steering inequalities in a semi-device inde-

pendent scenario, where Alice’s measurement setup is trusted. Still, this method

requires the measurement of a large sample of close-to-maximally-entangled states,

going through a channel that might evolve through time. In particular, the chan-

nel might not have the same action on the probe states than on the transmitted

state. Therefore, we then give some important statistical development in the next

paragraph, in order to bound the errors made on the different evaluated fidelities,

due to finite state sample in a non-IID setting, as well as losses in the untrusted

channel. Finally, we tie up the security proof, combining the previous parts’ results

in order to provide a bound on the expected fidelity of the transmitted output state

to the input state. We also give some way to generalize that security proof to a

fully-device independent setting. Note that we extensively use our new results

from chapter 5 in order to derive the following proofs.

D.1.1 Average Channel and Expected States

We first recall most important notations for the understanding of the proof. When

the protocol does not abort, Alice and Bob wish to bound the probability that it

successfully implements the channel E0 ⊗1i on the input state ρ i. During the

protocol Alice sends N +1 states through the channel, including N states Φi, and

one copy of ρ i. On the k−th state, the channel takes the expression Ek|[k−1]. The

average channel reads:

Ē =
1

N +1

N+1∑
k=1

Ek|[k−1]. (D.1)

This defines a physical channel, which would randomly apply any of the Ek|[k−1].

Similarly as we did in (6.11), we call Ē i,o the average channel when the isometries

Γi and Γo are applied. From these two definitions follow the ouput states when

sending the probe state Φi or the input state ρ i:

Φ̄o = (Ē ⊗1)[Φi]/t(Ē |Φi), (D.2)

ρ̄o = (Ē i,o ⊗1)[ρ i]/t(Ē i,o|ρ i). (D.3)
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Only one copy of the state ρ i is sent through the channel during the protocol, at

a random position r. Assuming the channel’s operator has no way of guessing

that position, that state has the same probability of going through any one of the

channels Ek|[k−1], such that it is expected to undergo the operation Ē i,o. Therefore,

ρ̄o is the expected output state, and the fidelity F
(
ρ̄o, (E0⊗1)[ρ i]

)
can be interpreted

as the average probability of successfully implementing the channel E0 on ρ i, up

to isometry [26]. In the following, we show how to bound that fidelity using only

the measurements performed during the protocol when sending the probe states

Φi through the channel.

D.1.2 Bounding Channel Fidelity with State Fidelities

We now prove the key theoretical result of this chapter (6.16), which allows one to

bound the quality of a channel with probe states fidelities to a maximally-entangled

state, up to isometries. More precisely, we show the following lemma:

Lemma D.1 (Probabilistic Channel Certification). Let us consider a de-
terministic channel E0 from L (H i) to L (Ho), a probabilistic channel E
from L (HA1) to L (HB), and a secondary space L (HA2). For any isometries
Γ

A1/A2 : HA1/A2 −→HA1/A2 ⊗H i and ΓB : HB −→HB ⊗Ho we define the cor-
responding fidelities of a state Φi ∈L (HA1 ⊗HA2) to a maximally-entangled
state Φ+ ∈L (H ⊗2

i ), before and after application of the channels:

F i = F((ΛA1 ⊗ΛA2)[Φi],Φ+),

Fo = F((ΛB ⊗ΛA2)[(E ⊗1)[Φi]]/t(E |Φi), (E0 ⊗1)[Φ+]),
(D.4)

where ΛP [·] = TrP (ΓP [·]) for P = A1, A2 or B. Then there exist two isometries Γi

and Γo, built from ΓA1 , ΓA2 and ΓB, such that the diamond fidelity between
E and E0 is bounded, up to isometries:√

1−F⋄(E i,o,E0) ≤ d ·sin
(
arcsin

(
C i/t(E |Φi)

)+arcsinCo
)
, (D.5)

where d = dimH i, E i,o = Trext
(
(Γo ◦E ◦Γi)[ρA1 ⊗• ]

)
, ρA1 an ancillary state in

L (HA1), and C i =
p

1−F i and Co =
p

1−Fo .
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Proof. This theorem is a generalization of the result from [25] to trace-decreasing

channels. We follow the same guidelines for our proof. In order to forget about the

injection map on Alice’s second subsystem that leaves channel E unaffected, we first

we defineΦ′
i = (1⊗ΛA2)[Φi]. Then, we note that according to Proposition 2 from [25],

if one is given a target pure state ρ0 ∈L (Hsys) and any state Γ[ρ] ∈L (H ext⊗Hsys)

with Λ[ρ] = Trext(Γ[ρ]) ∈L (Hsys), then the following relation holds

F(Λ[ρ],ρ0) = F(Γ[ρ],ρext ⊗ρ0), (D.6)

where ρext =
Trsys(Γ[ρ]ρ0 ⊗1)

Tr(Γ[ρ]ρ0 ⊗1)
. We start by applying this proposition to F i, with

Hilbert spaces Hsys = H ⊗2
i and H ext = HA1 , so that fidelity reads:

F i = F
(
(ΓA1 ⊗1)[Φ′

i],ρA1 ⊗Φ+
)
, (D.7)

where ρA1 =
TrH i ⊗H i

(
(ΓA1 ⊗1)[Φ′

i]|Φ+〉〈Φ+|1
)

Tr
(
(ΓA1 ⊗1)[Φ′

i]|Φ+〉〈Φ+|1
) . The isometry ΓA1 can be written

as a unitary, applied on a Hilbert state of larger dimension, so that

(ΓA1 ⊗1)[Φ′
i] = (U i ⊗1)[σext ⊗Φ′

i], (D.8)

where σext is an ancillary pure state and U i a unitary operation applied on that

state and HA1 . This way we get:

F i = F
(
(U i ⊗1)[σext ⊗Φ′

i],ρA1 ⊗Φ+
)

= F
(
σext ⊗Φ′

i, (U
i† ⊗1)[ρA1 ⊗Φ+]

)
≤ F

(
Φ

′
i,Trext,i(U i† ⊗1)[ρA1 ⊗Φ+]

)
,

(D.9)

where we use the fidelity invariance under unitary operation, and the fact that it

can only increase upon tracing out, here of the Hilbert space of σext. This allows us

to define the input isometry Γi = (U i† ⊗1)[• ] so we have:

F i ≤ F
(
Φ

′
i,Trext,i(Γi[ρA1 ⊗Φ+])

)
. (D.10)

Now by defining the output isometry Γo =ΓB, we can apply the map Γo ◦ Ē ⊗1 to

both states on the right-hand side of the inequality, and our new extended process
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inequality from chapter 5 (see theorem 5.2), and once again fidelity monotonicity

when tracing out subsystems:

C i =
√

1−F i

≥ C
(
Φ

′
i,Trext,i(Γi[ρA1 ⊗Φ+])

)
≥ t(Ē |Φ′

i) ·C
(
(Γo ◦ Ē ⊗1)[Φ′

i]/t(Ē |Φ′
i),Trext,i((Γo ◦ Ē ◦Γi ⊗1)[ρA1 ⊗Φ+])/ t̃

)
≥ t(Ē |Φ′

i) ·C
(
(ΛB ◦ Ē ⊗1)[Φ′

i]/t(Ē |Φ′
i),Trext((Γo ◦ Ē ◦Γi ⊗1)[ρA1 ⊗Φ+])/ t̃

)
.

(D.11)

Here in order to apply the theorem 5.2, we noted that t(Ē |Φ′
i) = Tr((Ē ⊗1)[Φ′

i])

is the transmissivity of the first state, which does not vary under application of

isometry Γo. Also t̃ is the transmissivity of the second state, i.e. t̃ = t(Ē i,o|Φ+) as

we define Ē i,o = Trext((Γo ◦ Ē ◦Γi)[ρA1 ⊗ • ]). The last partial trace in the inequality

is carried out over all subsystems except L (Ho ⊗H i), so the distance can only

decrease. Noting (ΛB ◦ Ē ⊗1)[Φ′
i]/t(Ē |Φ′

i) = (ΛB ⊗ΛA2)◦ (Ē ⊗1)[Φi]/t(Ē |Φi) we get:

C i/t(Ē |Φ′
i)≥ C

(
(ΛB ⊗ΛA2)[Φ̄o], (Ē i,o ⊗1)[Φ+]/t(Ē i,o|Φ+)

)
. (D.12)

Finally, we can apply an equivalent of triangular inequality to Ulhmann’s fidelity:

arccos
√

F(ρ1,ρ3) = arcsinC(ρ1,ρ3)

≤ arccos
√

F(ρ1,ρ2) +arccos
√

F(ρ2,ρ3)

= arcsinC(ρ1,ρ2)+arcsinC(ρ2,ρ3),

(D.13)

with the following states

ρ1 = (Ē i,o ⊗1)[Φ+]/t(Ē i,o|Φ+), (D.14)

ρ2 = (ΛB ⊗ΛA2)[Φ̄o], (D.15)

ρ3 = (E0 ⊗1)[Φ+]. (D.16)

ρ1 is the output state of the real channel when sending a perfect maximally entan-

gled state, ρ2 the average output state we effectively measure after application

of the real channel on a close-to-maximally-entangled state, and ρ3 the output

state of the target channel when sending a perfect maximally entangled state. This

way we have C(ρ2,ρ3) = Co and C(ρ1,ρ3) = arccos
√
F J(Ē i,o,E0) by definition, and

C(ρ1,ρ2)≤ C i/t(Ē |Φi) via inequality (D.12). This gives the result:

arccos
√

FJ(Ē i,o,E0) = arcsinCJ(Ē i,o,E0)≤ arcsin
(
C i/t(Ē |Φi)

)+arcsin(Co). (D.17)
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From here, one just has to use the comparison between Choi-Jamiołkowski and

diamond distances, as we showed in chapter 5 (see theorem 5.3), in order to get

the bound (D.5) and lemma D.1. ■

The isometries mentioned in the proof are fundamental in a device-independent

study, in order to extract ideal qubit spaces to real-world infinite-dimension phys-

ical Hilbert spaces. ΓA1 , ΓA2 and ΓB are the same type of isometries as in all

standard self-testing results [158], and they extract a qubit state from the full

state of a physical system, which encompasses all other degrees of freedom. The

unused degrees of freedom are then thrown away. The channel isometries Γi and

Γo were introduced more recently [25] and together extract a qubit channel from a

physical channel acting on all degrees of freedom of a physical system. The output

isometry Γo performs the same operation as ΓB, extracting a qubit out of a physical

system. The isometry Γi however, performs the inverse operation than the other

isometries, encoding the qubit state into a physical system, such that it can be fed

into the physical channel. We give a schematic view of these channels in Figure

6.3. In Protocol 6.1, the input state Φi is assumed to be fully characterized, so we

can ignore the input isometry and Γi =ΓA1 =1. Yet, we must include that isometry

when building the fully device-independent Protocol 6.2.

The result we just showed allows us to deduce the protocol’s success probability,

by evaluating the fidelities F i and Fo to a Bell state, as well as the transmissivity

t(Ē |Φi). The two following paragraphs are dedicated to evaluating Fo and t(Ē |Φi),

using data received by Alice and Bob only. In order to tie up the security of Protocol

2, we tackle the certification of F i in a later paragraph.

D.1.3 Certifying the average Bell output state

In order to certify the average output state Φ̄o = (Ē ⊗1)[Φi]/t(Ē |Φi), we use self-

testing results from previous works [162] that consider steering-based certification

of the Bell pair in a finite number of measurement rounds, without making the

common IID assumption. In a non-IID scenario the channel may change its be-

haviour throughout the protocol, such that we define Ek|[k−1] the expression of

the channel when Alice sends the k−th state. Then, we call the output state
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Φk = (Ek|[k−1]⊗1)[Φi]/tk when Alice sends the state Φi, with tk = t(Ek|[k−1]|Φi) being

the transmissivity of the state Φi through the channel Ek|[k−1]. Using this notation,

we can define the following state:

Φ̄t =
(N+1∑

k=1
T kΦk

)
/(K +1), (D.18)

where T k = 1 when a state is detected by Bob, and T k = 0 otherwise, such that∑N+1
k=1 T k = K+1. We take T r = 1, in order to include the stateΦr = (E r|[r−1]⊗1)[Φi]/tr

in the sum. Φ̄t is the average output state of the protocol, in the particular case

ρ i =Φi and when the protocol did not abort. Therefore, we expect Φ̄t to be a good

approximation for Φ̄o, the expected output state when sending Φi through the

average channel Ē i,o. However, we leave that consideration for the next paragraph,

and now show certification results for Φ̄t in place of Φ̄o.

When ρ i = Φi, we can see our protocol as an attempt to authenticate an un-

measured Bell pair, emerging from an untrusted source. The latter is made of

Alice’s trusted source, sending copies of Φi in the untrusted quantum channel. The

state emerging from the E r is the unmeasured pair, and the K other output states

are measured by Alice and Bob in order to perform a Bell test. In that case, our

protocol corresponds to that described in [26, 162], such that we can apply the

self-testing-based security results from that work, in a non-IID and 1sDI setting,

to our protocol:

Proposition D.1. Let us consider our protocol where ρ i =Φi, Alice and Bob measure
K states and witness an average violation of either steering inequality of 2−ϵ. We
can bound the fidelity of the average state Φ̄t to a maximally-entangled state Φ+,
up to isometry. More precisely, there exist isometries ΓA2 and ΓB acting respectively
on L (HA2) and L (HB), such that by defining the local maps ΛA2[·] = TrA2(ΓA2[·])
and ΛB[·] = TrB(ΓB[·]), for any x > 0 we have with probability at least (1− e−x):

F((ΛB ⊗ΛA2)[Φ̄t],Φ+)≥ 1−α · fx(ϵ,K) −→
K→+∞

1−αϵ, (D.19)

where α is a constant and f is a function which both depend on the inequality used:

fx(ϵ,K) = 8
√

x
K

+ ϵ

2
+ ϵ+8/K

2+1/K
, (D.20)

and α = 1.26.
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It is worth noting that as the r-th state is left unmeasured in this protocol, and

we assume the channel’s operator has no way of guessing r, then the measurements

performed on the test EPR pairs follow the same statistics in the general case as

in the special case ρ i =Φi. We can therefore use the correlations witnessed in our

protocol in Proposition D.1, even when sending any ρ i in r-th position, in order to

certify the hypothetical state Φ̄t up to isometry.

Fig. D.1: Minimum fidelity of the average output state to a Bell state, up to
isometries, as a function of the deviation to maximum violation. As we make no
IID assumption, we give the evolution for different numbers K of states measured.
We set a confidence level 1− e−x ≈ 0.999.

Finally, we give some insight on the behaviour of those bounds with the para-

meters of the problem (see Fig. D.1). First, we can take x = 7 in order to get a

bound with almost absolute certainty, as (1− e−x)≈ 0.999. The corresponding term

in
p

x/K can be made arbitrarily small by measuring a large number K of states.

Similarly, when measuring a reasonable amount of states K > 108, we reach the

asymptotic regime where the fidelity is simply bounded by 1−αϵ.

D.1.4 Errors due to Post-Selection and Finite Statistics

We now show the validity of approximating the state Φ̄o (D.2) with Φ̄t (D.18), as

well as the following approximation:

t(Ē |Φi)≈ R =
K +1
N +1

, (D.21)
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where K +1 = |SP | is the number of states that Bob is able to measure after they

are sent through the channel. Alice and Bob have direct access to the value R in

the end of the protocol, as the fraction of states that successfully pass through the

channel, which we identify as the heralding efficiency ηs in experiments. Therefore,

they can easily evaluate t(Ē |Φi) by using (D.21).

Proposition D.2. In our protocol, provided that Bob measured a large enough
number K +1 of states, the transmissivity t(Ē |Φi) of Φi through the average channel
Ē can be approximated by the proportion R of states which were successfully detected
by Bob, and the state Φ̄o can be approximated by Φ̄t. More precisely, for any x > 0

we have with probability at least (1−2e−x)2:

arccos
√

F(Φ̄t,Φ̄o) ≤Δx(R,K), (D.22)

t(Ē |Φi)≥ τx(R,K), (D.23)

where

Δx(R,K) = arccos 1−3δx(R,K)
1−δx(R,K) , (D.24)

τx(R,K) = R (1−δx(R,K)), (D.25)

δx(R,K) = 1
K+1 +

√
2x

R(K+1) . (D.26)

In particular, this proposition gives the error terms mentioned given in equa-

tions (6.26) and (6.27) from chapter 6.

Proof. First let us rewrite the transmissivity through the average channel using

the expressions at each rounds:

t(Ē |Φi) = Tr
( 1

N +1

N+1∑
k=1

Ek[Φi]
)

=
1

N +1

N+1∑
k=1

tk. (D.27)

Alice and Bob do not have direct access to that quantity, as they cannot measure

tk individually. However, they have access to the random variables {T k}1≤k≤N+1

defined in the previous subsection, the sum of which gives the number of states

that were measured by Bob during the protocol:

K +1 = |SP | =
N+1∑
k=1

T k. (D.28)
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As no IID assumption is made, the variables T k may differ from one another and

depend on the experiment’s history. Taking the difference with transmissivities,

we define a new random variable, for j ̸= k :

D j =
j∑

k=1
k ̸=r

(T k −E[T k]) =
j∑

k=1
k ̸=r

(T k − tk), (D.29)

and Dr = Dr−1. The expectation value of D j is finite for any j, as it is zero, and

we have E[D j+1|H j] =D j, where H j is the history of the experiment after the j-th
state is sent through the channel. This makes D j a martingale. We also note that

|D j+1 −D j| ≤ 1 for any j, such that we can apply the Azuma-Hoeffding inequality:

P(|D j| ≥ γ)≤ 2exp
(
−γ

2

2 j

)
. (D.30)

Note that DN+1 = (N +1) · (R− t(Ē |Φi))−1+ tr, such that by taking j = N +1 we get:

P
(−γ+1−tr

N+1 ≤ R− t(Ē |Φi)≤ γ+1−tr
N+1

)≥ 1−2exp
(
− γ2

2(N +1)

)
. (D.31)

Now considering 0≤ 1− tr ≤ 1, and taking the relative difference we get:

P
( |R−t(Ē |Φi)|

R ≤ γ+1
K+1

)≥ 1−2exp
(
− γ2

2(N +1)

)
, (D.32)

such that by taking x = γ2

2(N+1) > 0 we get the following bound with probability at

least (1−2e−x):

|Δ1| = |R− t(Ē |Φi)|
R

≤ δx(R,K), (D.33)

where δx(R,K) = 1
K+1 +

√
2x

R(K+1) . This straightly gives the inequality in (D.23):

t(Ē |Φi)≥ τx(R,K), (D.34)

where τx(R,K) = R (1−δx(R,K)). Note that as the value of x can be chosen arbi-

trarily, we can take the same value as in Proposition D.1, which will simplify the

notation. To show the bound (D.22), we now assume bound (D.33) stands, such that

|Δ1| ≤ δx(R,K). We then re-write Φ̄o using the states Φk and transmissivities tk:

Φ̄o = (Ē ⊗1)[Φi]/t(Ē |Φi)

=
( 1
N +1

N+1∑
k=1

(Ek ⊗1)[Φi]
)
/t(Ē |Φi)

=
( 1
N +1

N+1∑
k=1

tkΦk
)
/t(Ē |Φi).

(D.35)
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We pick a projector P̂ that allows to express the trace distance between Φ̄o and Φ̄t:

D(Φ̄t,Φ̄o) = Tr(P̂(Φ̄t − Φ̄o))

=
N+1∑
k=1

( T k
K+1 − tk

(N+1)t(Ē |Φi)

)
Tr(P̂Φk)

≤
(∣∣∣N+1∑

k=1

( t(Ē |Φi)
K+1 − 1

N+1

)
T k Tr(P̂Φk)

∣∣∣+ ∣∣∣N+1∑
k=1

T k−tk
N+1 Tr(P̂Φk)

∣∣∣)/t(Ē |Φi).

(D.36)

Let us call the second term in parenthesis |Δ2| and bound the first term:∣∣∣N+1∑
k=1

(
t(Ē |Φi)
K+1 − 1

N+1

)
T k Tr(P̂Φk)

∣∣∣ =
N+1∑
k=1

T k Tr(P̂Φk)
∣∣∣ t(Ē |Φi)

K+1 − 1
N+1

∣∣∣
≤ (K +1)

∣∣∣ t(Ē |Φi)
K+1 − 1

N+1

∣∣∣
=

∣∣∣t(Ē |Φi)−R
∣∣∣

≤ R δx(R,K).

(D.37)

In order to bound |Δ2|, we make the exact same proof as for |Δ1|, taking

Tr(P̂Φk) ·T k in place of T k and Tr(P̂Φk) · tk in place of tk, when defining D j in

equation (D.29). This new sum of variables D̃ j is still a martingale such that

|D̃ j+1 − D̃ j| ≤ 1. Therefore it still verifies equation (D.30), and we have

D̃N+1 = (N +1)Δ2 −Tr(P̂Φr)(1− tr), (D.38)

such that:

P
(−γ+Tr(P̂Φr)(1−tr)

N+1 ≤Δ2 ≤ γ+Tr(P̂Φr)(1−tr)
N+1

)≥ 1−2exp
(
− γ̃2

2(N +1)

)
. (D.39)

As 0≤Tr(P̂Φr)(1− tr)≤ 1 we can simplify:

Pr
(
|Δ2| ≤ γ̃+1

N+1

)
≥ 1−2exp

(
− γ̃2

2(N +1)

)
, (D.40)

such that by taking γ̃2

2(N+1) = x we get the following bound with probability at least

(1−2e−x):

|Δ2| ≤ R δx(R,K). (D.41)

This way, coming back to (D.37) we get:

D(Φ̄t,Φ̄o)≤ 2R δx(R,K)
t(Ē |Φi)

≤ 2δx(R,K)
1−δx(R,K)

. (D.42)
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Now we use a comparison between fidelity and trace distance 1−p
F ≤ D in order

to bound the angle distance between Φ̄t and Φ̄o:

A(Φ̄t,Φ̄o) = arccos
√

F(Φ̄t,Φ̄o) ≤Δx(R,K),

where Δx(R,K) = arccos
1−3δx(R,K)
1−δx(R,K)

.
(D.43)

Finally, we point out that this bound is true with probability (1−2e−x) and

at the condition that bound (D.33) holds, which also happens with probability

(1−2e−x), such that both bounds hold with probability (1−2e−x)2. This ties up the

proof of Proposition D.2. ■

This proposition highlights the purely statistics-induced error on states and

transmissivities. It is mostly due to the fact that Alice and Bob only have access to

a finite number of states, in a non-IID setting. Most importantly, as the channel is

allowed to be lossy, these states only give information on a sample of the different

expressions Ek|[k−1] that it might take during the protocol, causing more uncer-

tainty than when certifying a source of state without channel. This error must

be included in the bounds in order to derive the protocol’s security. Also note that

we can use this theorem when applying the injection map ΛB ⊗ΛA2 defined in the

previous subsection to both states, as we always have:

F
(
(ΛB ⊗ΛA2)[Φ̄t], (ΛB ⊗ΛA2)[Φ̄o]

)≥ F(Φ̄t,Φ̄o). (D.44)

This is fundamental to derive the final security bound for our protocol. Finally, we

give some insight on the dependence of this error on the different parameters of the

problem. First we notice that this error can be made arbitrarily small by measuring

a large enough number K of states, which still needs to be limited for practical

applications. The error tends to increase with the confidence level, such that we

need more states K in order to ensure a smaller error with reasonable certainty.

Similarly, the more lossy the channel is, i.e. the smaller R, the bigger the error.

Therefore having a lossy channel also imposes to measure more states in order

to accurately certify the protocol. We give an idea of the evolution of that error

in Fig. D.2, for different confidence levels and different channel’s transmission

ratios R. We see that with a transmission ratio R = 50%, corresponding to telecom
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light propagating in a 15km-long optical fiber or ideal quantum teleportation, we

can ensure an errorΔx(R,K)≤ 0.015 with a confidence level of 99.5%, by measuring

a reachable number of states K ≈ 1010.

(a) For different minimum confidence levels,
with a transmission ratio R = 50%.

(b) With a minimum confidence level 99.5%,
with different transmission ratios.

Fig. D.2: Minimum statistics-induced error Δx(R,K), as a function of the number
of states measured K .

D.1.5 Certifying the Output State of the Protocol

Combining the last three paragraphs allows us to extract a bound for the fidelity

of the expected output state ρ̄o to the input state ρ i up to isometry. We assume

that Alice prepared N states with fidelity F i to a Bell state, that Bob received K of

those states during the protocol, and that they measured an ϵ-close to maximum

violation of the steering inequality. First, they can use Lemma D.1, implying that

there exist isometries Γi, Γo, ΓA1 , ΓA2 , and ΓB, giving the result from (6.16):

√
1−F

(
(ΛB ⊗ΛA2)[ρ̄o],ρ i

) ≤
√

1−F⋄(Ē i,o,E0)

= C⋄(Ē i,o,E0)

≤ 2CJ(Ē i,o,E0)

≤ 2 sin
(
arcsin

(
C i/t(Ē |Φi)

)+arcsin(Co)
)
.

(D.45)
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Now we fix x > 0 in order to apply Proposition D.2, such that we have both:

t(Ē |Φi)≥ τx(R,K), (D.46)

arccos
p

F
(
(ΛB ⊗ΛA2)[Φ̄t], (ΛB ⊗ΛA2)[Φ̄o]

)≤ arccos
p

F (Φ̄t,Φ̄o)

≤Δx(R,K).
(D.47)

with probability at least (1−2e−x)2, where τx and Δx are functions detailed in

paragraph D.1.4. In that case, we can apply the triangular inequality to arcsin(Co):

arcsin(Co)≤ arcsinC
(
(ΛB ⊗ΛA2)[Φ̄t],Φ+

)+Δx(R,K), (D.48)

and bound t(Ē |Φi) in order to get:

arcsin
(
C i/t(Ē |Φi)

)≤ arcsin
(
C i/τx(R,K)

)
. (D.49)

We can then bound C((ΛB ⊗ΛA2)[Φ̄t],Φ+) using Proposition D.1, with a confi-

dence level (1− e−x):

arcsin
(
C((ΛB ⊗ΛA2)[Φ̄t],Φ+)

)≤ arcsin
√
α fx(ϵ,K) . (D.50)

Combining (D.45), (D.48), (D.49), and (D.50) we can bound the input-output

fidelity up to isometries:√
1−F(ρ̄o,ρ i) ≤ 2 ·sin

(
arcsin

(
C i/τx(R,K)

)+arcsin
√
α fx(ϵ,K) +Δx(R,K)

)
, (D.51)

where α and f are given in Proposition D.1. This way, for any x > 0 we can bound the

output state fidelity to the input state with probability at least (1− e−x) · (1−2e−x)2:

F(ρ̄o,ρ i)≥ 1−4 ·sin2
(
arcsin

(
C i/τx

)+arcsin
√
α fx(ϵ,K) +Δx

)
. (D.52)

D.1.6 Full-Device Independence: Probe State Certification

In protocol 2 Alice does not trust her measurement setup anymore, nor the source

of input state Φi. However we still make the IID assumption on that source. In

that case we deduce the following theorem from a previous work [162]:
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Proposition D.3. When Alice measures an average violation of Bell inequality
2
p

2 −η on M identical copies of Φi with untrusted measurement apparatus, then
for any x > 0 we can bound the fidelity of Φi to Φ+ up to isometries, with probability
(1− e−x), meaning that there exists two isometries ΓA1 and ΓA2 on L (HA1) and
L (HA2) such that:

F
(
(ΛA1 ⊗ΛA2)[Φi],Φ+

)≥ 1−α · gx(η, M) −→
M→+∞

1−α ·η, (D.53)

withΛA1[·] = TrA1(ΓA1[·]),ΛA2[·] = TrA1(ΓA2[·]), α = 1.19, and gx(η, M) = 8
p

2x/M +η.

Then, if Alice and Bob measure K states at the output of the channel with
untrusted measurement apparatus, and witness an average violation of CHSH in-
equality of 2

p
2 −ϵ, we can bound the fidelity of the average state Φ̄t to a maximally-

entangled state Φ+, up to isometries, with probability at least (1− e−x), meaning
that there exist isometries ΓA2 and ΓB on L(HA2) and L(HB), such that:

F((ΛB ⊗ΛA2)[Φ̄t],Φ+)≥ 1−α · fx(ϵ,K) −→
K→+∞

1−α ·ϵ, (D.54)

with ΛA2[·] = TrA2(ΓA2[·]), ΛB[·] = TrB(ΓB[·]), α = 1.19 and

fx(ϵ,K) = 16
√

2x
K + 3ϵ

4 + ϵ+(4+2
p

2 )/K
4+4/K . (D.55)

Thanks to the IID assumption made on the probe-state source, we still consider

all input probe states to be equal to Φi, so the first part of Proposition D.3 enables

Alice and Bob to certify the quantity F i once, for the whole protocol. This way,

compared to Proposition D.1 for protocol 1, we bound C i ≤√
αgx(η, M) , and replace

the expression of fx and α. We also multiply the confidence level by (1− e−x) to

account for the confidence on the input bound, due to the finite number M of input

state tested. This straightly gives the bound:

F(ρ̄o,ρ i)≥ 1−4 ·sin2
(
arcsin

(√
αgx(η, M) /τx

)+arcsin
√
α fx(ϵ,K) +Δx

)
, (D.56)

with confidence level at least (1− e−x)2 · (1−2e−x)2 for any x > 0, therefore showing

the security bound for protocol 2. We show the corresponding certified fidelity with

examples of experimental parameters in Fig. D.3.
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(a) R = 50% (b) R = 70%

(c) R = 90% (d) R = 100%

Fig. D.3: Minimum certified fidelity of the output state of Protocol 2, to the state
sent through the channel, as a function of the deviations η,ϵ from maximum
violation of CHSH inequality. We set x = 7 for a confidence level > 99.4%, a number
of probe states M = K = 1010, and different ratios of transmission R = K /N.

172



D.2. DETECTORS MODEL IN EXPERIMENT

D.2 Detectors Model in Experiment

We now detail the assumptions made on the players’ detection systems, in order to

perform our proof-of-principle experimental protocol, as well as the consequences

on the protocol’s results. We focus on the detectors used in order to certify the

output probe state in the one-sided device-independent protocol, and therefore omit

the system that Alice uses in order to certify the input state Φi. Both Alice and Bob

each possess a local measurement apparatus, ideally made of 2-outcomes POVMs

{M̂A2
l|q}l=0,1 and {M̂B

l|q}l=0,1, for q = 0,1. In reality, these detectors have non-unit

efficiency, meaning they only return a result with a certain probability which may

depend on the parameter q, the outcome l, or even the quantum state ρ. This way

we adopt a similar description as that of [185], such that we get the probabilities of

returning outcome l, when measuring ρ with measurement parameter q:

PA(l|q,ρ) = Tr(ρM̂A2
l|q) ·ηA(l, q,ρ), (D.57)

PB(l|q,ρ) = Tr(ρM̂B
l|q) ·ηB(l, q,ρ), (D.58)

where ηA and ηB are the efficiencies. For a bipartite state, the probability of getting

outcomes (lA, lB) with parameters (qA, qB) becomes:

P(lA, lB|qA, qB,ρ) = Tr
(
ρ · M̂A2

lA |qA
⊗ M̂B

lB|qB

) ·ηA(lA, qA,ρA) ·ηB(lB, qB,ρB), (D.59)

where ρA = TrB(ρ) and ρB = TrA(ρ) are the local states, such that the efficiencies

are local. In the following we focus on the assumptions made on these efficiencies

in our protocol, and the consequences on the results. First, in a one-sided device-

independent scenario, we assume that Alice fully characterizes her measurement

apparatus, and proves her efficiency to be independent of the state ρ and the

measurement parameter q, such that:

ηA2(l, q,ρ) = ηA2(l). (D.60)

The values of ηA2(l) are accessible to Alice, as part of her detectors’ characterization.

This way, for l+ and l− such that ηA2(l+)> ηA2(l−), Alice can ignore the outcomes l+
with probability 1−ηA2(l−)/ηA2(l+) in order to effectively equalize the efficiencies

of the two outcomes. In that case the efficiency on Alice’s side is a constant ηA2 ,

such that

ηA2(l, q,ρ) = ηA2 . (D.61)
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On Bob’s side, we first make the weak fair sampling assumption [185], stating

that we can factorize the efficiencies due to classical parameters from those due to

quantum states:

ηB(l, q,ρ) = ηB
C(l, q) ·ηB

Q(ρ). (D.62)

We then make a form of strong fair-sampling assumption, stating the efficiency

does not depend on q, such that:

ηB(l, q,ρ) = ηB
C(l) ·ηB

Q(ρ). (D.63)

Now we could assume the state-dependent efficiency to be unit, which leads to

an unbalanced-outcomes homogeneous fair-sampling assumption, and leaves the

protocol more vulnerable to attacks. Another solution is to consider ηB
Q(ρ) as a

part of the quantum channel being tested, as shown in Fig. D.4. In that case our

protocol is more secure but certifies a different channel, the output of which is

necessarily measured by Bob measurement apparatus. This would require further

investigation if the quantum communication is followed by another protocol which

does not involve Bob’s measurement apparatus. In both cases, we can neglect the

state-dependent efficiency, such that

ηB(l, q,ρ) = ηB
C(l), (D.64)

is an efficiency which a priori depends on the result l. The detection probability

then becomes

PB(l|q,ρ) = Tr(ρM̂B
l|q) ·ηB(l). (D.65)

Fig. D.4: Schematic representation of Bob’s measurement apparatus, taking our
assumptions into account. The apparatus first displays some state-dependent
transmissivity ηQ , that we can include inside the channel E . Bob then measures
the observable B̂q, the result l ∈ {0,1} of which is filtered with efficiency η(l).
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Similarly to [185], we now show that even though the efficiency ηB slightly

varies with the outcome l, we can still use the measured outcome without any

correction on Bob’s side, and still get a good evaluation of I = |〈Â0B̂0〉+〈Â1B̂1〉|. By

definition we have:

〈ÂqB̂q〉 = 〈M̂A2
0|qM̂B

0|q〉+〈M̂A2
1|qM̂B

1|q〉−〈M̂A2
0|qM̂B

1|q〉+〈M̂A2
1|qM̂B

0|q〉. (D.66)

With their imperfect detectors, Alice and Bob approximate that quantity by mea-

suring the following:

ÂqB̂q =
n0,0|q +n1,1|q −n0,1|q −n1,0|q
n0,0|q +n1,1|q +n0,1|q +n1,0|q

, (D.67)

where nlA ,lB|q is the number of times the measurement of a pair gave the outcome

(lA, lB), when Alice and Bob both measured with parameter q. When measuring a

big number of state N we approximate

nlA ,lB|q = N ·P(lA, lB|qA, qB,ρ) = N ·Tr(ρ · M̂A2
lA |q ⊗ M̂B

lB|q) ·ηA ·ηB(lB), (D.68)

so we rewrite the evaluation of 〈ÂqB̂q〉, symplifying the constant terms N and ηA:

ÂqB̂q =
Tr

[
ρ · (M̂A2

0|q ⊗ M̂B
0|q − M̂A2

1|q ⊗ M̂B
0|q)

] ·ηB(0)+Tr
[
ρ · (M̂A2

1|q ⊗ M̂B
1|q − M̂A2

0|q ⊗ M̂B
1|q)

] ·ηB(1)

Tr
[
ρ · (M̂A2

0|q ⊗ M̂B
0|q + M̂A2

1|q ⊗ M̂B
0|q)

] ·ηB(0)+Tr
[
ρ · (M̂A2

1|q ⊗ M̂B
1|q + M̂A2

0|q ⊗ M̂B
1|q)

] ·ηB(1)

=
Tr

[
ρ · Âq ⊗

(
M̂B

0|q ·ηB(0)− M̂B
1|q ·ηB(1)

)]
Tr

[
ρ · (M̂B

0|q ·ηB(0)+ M̂B
1|q ·ηB(1)

)] .

(D.69)

Then we take ξ such that ηB(1)/ηB(0) = 1+ξ, and we get

ÂqB̂q =
Tr

[
ρ · Âq ⊗

(
M̂B

0|q − M̂B
1|q ·ηB(1)/ηB(0)

)]
Tr

[
ρ · (M̂B

0|q + M̂B
1|q ·ηB(1)/ηB(0)

)]
=
〈ÂqB̂q〉−Tr

[
ρ · Âq ⊗ M̂B

1|q
] ·ξ

1+Tr
[
ρ · M̂B

1|q
] ·ξ .

(D.70)

Considering ηB(1)≈ ηB(0), such that |ξ|≪ 1, we approximate the difference between

the expected and measured correlations 〈ÂqB̂q〉 and ÂqB̂q, at first order:

ÂqB̂q −〈ÂqB̂q〉 ≈−Tr
[
ρ · Âq ⊗ M̂B

1|q
] ·ξ−〈ÂqB̂q〉 ·Tr

[
ρ · M̂B

1|q
] ·ξ

= (1−〈ÂqB̂q〉) ·Tr
[
ρ · M̂A2

1|q ⊗ M̂B
1|q

] ·ξ
− (1+〈ÂqB̂q〉) ·Tr

[
ρ · M̂A2

0|q ⊗ M̂B
1|q

] ·ξ.
(D.71)
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Provided Alice and Bob witness a close-to-maximum violation of steering inequality,

we also have (1−〈ÂqB̂q〉)≪ 1 and Tr
[
ρ · M̂A2

0|q⊗ M̂B
1|q

]≪ 1. This way, that difference

is doubly negligible, such that even noticeable unbalance between the detectors

efficiencies should not significantly deviate the measured correlation from the

expected correlation. We therefore assume ÂqB̂q ≈ 〈ÂqB̂q〉, such that the value of

I can be accurately measured even without correction for the detectors efficiency.

In our experiment, we measure the relative efficiency between Bob’s detectors,

for each protocol iteration. This way we get ξ ≲ 0.03, while witnessing a close-

to-maximum violation of steering inequality, legitimizing the approximation. We

still compute the violation that would be measured if detectors were perfectly

balanced, and ηB(1) = ηB(0), by correcting the data with the relative efficiencies.

The difference between the corrected and uncorrected data is included in the error

bars displayed in Fig. 6.7.
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Photonic Resources for the
Implementation of Quantum

Network Protocols

The security of modern communication networks can be
enhanced thanks to the laws of quantum mechanics. In
this way, important tasks such as encryption key distri-

bution, anonymous transmissions or electronic voting can be
made secure without computational assumptions. In this thesis,
we developed a source of photonic quantum states which we use
to demonstrate important cryptographic primitives, namely
quantum weak coin flipping, and the certified transmission of
quantum information through an untrusted and lossy quan-
tum channel. Our source produces photon-pairs at telecom
wavelengths, with high heralding efficiency and closeness to a
maximally-entangled state. Pairs are used as heralded single-
photons to perform the first implementation of a quantum weak
coin flipping protocol, allowing two distant players to decide of
a random winner. Using quantum resources allows to enforce
information-theoretic security and cheat-sensitivity. Cheating
players are detected in a verification step, which involves a care-
fully optimized linear optical interferometer including beam
splitters with variable reflectivities and a fast optical switch.
We demonstrate high values of our protocol benchmarks for
attenuations corresponding to several kilometers of telecom
optical fiber. Alternatively, photon-pairs are used as maximally-
entangled qubits to certify the transmission of a single qubit
through an untrusted and lossy quantum channel. We provide
a whole new protocol, based on the already-known self-testing
technique and new fundamental results on lossy quantum
channels. We demonstrate that protocol using photon-pairs
entangled in polarization to probe the channel. We show it
allows the certification of quantum communication for a large
amount of losses induced by the channel. Finally, we provide
a novel design in order to adapt this source to multipartite
entanglement generation, enabling the implementation of new
protocols involving more than two players.

Thèse défendue le 2 décembre 2022 à Sorbonne Université, Paris, France.
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